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Preface

The proliferation of sophisticated instruments which are capable of rapidly
producing vast amounts of data, coupled with the virtually universal availability
of powerful but inexpensive computers, has caused the field of chemometrics to
evolve from an esoteric specialty at the perhiphery of Analytical Chemistry to a
required core competency.

This book is intended to bring you quickly "up to speed” with the successful
application of Multiple Linear Regressions and Factor-Based techniques to
produce quantitative calibrations from instrumental and other data: Classical
Least-Squares (CLS), Inverse Least-Squares (ILS), Principle Component
Regression (PCR), and Partial Least-Squares in latent variables (PLS). It is
based on a short course which has been regularly presented over the past 5 years
at a number of conferences and companies. As such, it is organized like a short
course rather than as a textbook. It is written in a conversational style, and leads
step-by-step through the topics, building an understanding in a logical, intuitive
sequence.

The goal of this book is to help you understand the procedures which are
necessary to successfully produce and utilize a calibration in a production
environment; the amount of time and resources required to do so; and the
proper use of the quantitative software provided with an instrument or
commercial software package. This book is not intended to be a comprehensive
textbook. It aims to clearly explain the basics, and to enable you to critically
read and understand the current literature so that you may further explore the
topics with the aid of the comprehensive bibliography.

This book is intended for chemists, spectroscopists, chromatographers,
biologists, programmers, technicians, mathematicians, statisticians, managers,
engineers; in short, anyone responsible for developing analytical calibrations
using laboratory or on-line instrumentation, managing the development or use
of such calibrations and instrumentation, or designing or choosing software for
the instrumentation. This introductory treatment of the quantitative techniques
requires no prior exposure to the material. Readers who have explored the
topics but are not yet comfortable using them should also find this book
beneficial. The data-centric approach to the topics does not require any special
mathematical background.

I am indebted to a great many people who have given generously of their
time and ideas. Not the least among these are the students of the short course
upon which this book is based who have contributed their suggestions for
improvements in the course. I would especially like to thank Alvin Bober who
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provided the initial encouragement to create the short course, and Dr. Howard
Mark, whose discerning eye and sharp analytical mind have been invaluable in
helping eliminate errors and ambiguity from the text. Thanks also to Wes Hines,
Dieter Kramer, Bruce MclIntosh, and Willem Windig for their thoughtful comments
and careful reading of the text.

Richard Kramer
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I would give whole worlds to know. This solemn, this
awful mystery has cast a gloom over my whole life.
—Mark Twain

Introduction

Chemometrics, in the most general sense, is the art of processing data with
various numerical techniques in order to extract useful information. It has
evolved rapidly over the past 10 years, largely driven by the widespread
availability of powerful, inexpensive computers and an increasing selection of
software available off-the-shelf, or from the manufacturers of analytical
instruments.

Many in the field of analytical chemistry have found it difficult to apply
chemometrics to their work. The mathematics can be intimidating, and many of
the techniques use abstract vector spaces which can seem counterintuitive. This
has created a "barrier to entry" which has hindered a more rapid and general
adoption of chemometric techniques.

Fortunately, it is possible to bypass the entry barrier. By focusing on data
rather than mathematics, and by discussing practicalities rather than dwelling on
theory, this book will help you gain a rigourous, working familiarity with
chemometric techniques. This "data centric" approach has been the basis of a
short course which the author has presented for a number of years. This
approach has proven successful in helping students with diverse backgrounds
quickly learn how to use these methods successfully in their own work.

This book is intended to work like a short course. The material is presented
in a progressive sequence, and the tone is informal. You may notice that the
discussions are paced more slowly than usual for a book of this kind. There is
also a certain amount of repetition. No apologies are offered for this—it is
deliberate. Remember, the purpose of this book is to get you past the "entry
barrier" and "up-to-speed" on the basics. This book is not intended to teach you
“everything you wanted to know about ..” An extensive bibliography,
organized by topic, has been provided to help you explore material beyond the
scope of this book. Selected topics are also treated in more detail in the
Appendices.
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Topics to Cover

We will explore the two major families of chemometric quantitative
calibration techniques that are most commonly employed: the Multiple Linear
Regression (MLR) techniques, and the Factor-Based Techniques. Within each
family, we will review the various methods commonly employed, learn how to
develop and test calibrations, and how to use the calibrations to estimate, or
predict, the properties of unknown samples. We will consider the advantages
and limitations of each method as well as some of the tricks and pitfalls
associated with their use. While our emphasis will be on quantitative analysis,
we will also touch on how these techniques are used for qualitative analysis,
classification, and discriminative analysis.

Bias and Prejudices — a Caveat

It is important to understand that this material will not be presented in a
theoretical vacuum. Instead, it will be presented in a particular context,
consistent with the majority of the author's experience, namely the development
of calibrations in an industrial setting. We will focus on working with the types
of data, noise, nonlinearities, and other sources of error, as well as the
requirements for accuracy, reliability, and robustness typically encountered in
industrial analytical laboratories and process analyzers. Since some of the
advantages, tradeoffs, and limitations of these methods can be data and/or
application dependent, the guidance in this book may sometimes differ from the
guidance offered in the general literature.

Our Goal

Simply put, the main reason for learning these techniques it to derive better,
more reliable information from our data. We wish to use the information
content of the data to understand something of interest about the samples or
systems from which we have collected the data. Although we don't often think
of it in these terms, we will be practicing a form of pattern recognition. We will
be attempting to recognize patterns in the data which can tell us something
useful about the sample from which the data is collected.

Data

For our purposes, it is useful to think of our measured data as a mixture of
Information plus Noise. In a ideal world, the magnitude of the Information
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would be much greater than the magnitude of the Noise, and the Information in
the data would be related in a simple way to the properties of the samples from
which the data is collected. In the real world, however, we are often forced to
work with data that has nearly as much Noise as Information or data whose
Information is related to the properties of interest in complex way that are not
readily discernable by a simple inspection of the data. These chemometric
techniques can enable us to do something useful with such data.

We use these chemometric techniques to:

1. Remove as much Noise as possible from the data.

2. Extract as much Information as possible from the data.

3. Use the Information to learn how to make accurate predictions about
unknown samples.

In order for this to work, two essential conditions must be met:

1. The data must have information content.

2. The information in the data must have some relationship with the

property or properties which we are trying to predict.

While these two conditions might seem trivially obvious, it is alarmingly
easy to violate them. And the consequences of a violation are always
unpleasant. At best it might involve writing off a significant investment in time
and money that was spent to develop a calibration that can never be made to
work. At worst, a violation.could lead to an unreliable calibration being put into
service with resulting losses of hundreds of thousands of dollars in defective
product, or, even worse, the endangerment of health and safety. Often, this will
"poison the waters" within an organization, damaging the credibility of
chemometrics, and increasing the reluctance of managers and production people
to embrace the techniques. Unfortunately, because currently available
computers and software make it so easy to execute the mechanics of
chemometric techniques without thinking critically about the application and
the data, it is all too easy to make these mistakes.

Borrowing a concept from the aviation community, we can say with
confidence that everyone doing analytical work can be assigned to one of two
categories. The first category comprises all those who, at some point in their
careers, have spent an inordinate amount of time and money developing a
calibration on data that is incapable of delivering the desired results. The second
category comprises those who will, at some point in their careers, spend an
inordinate amount of time and money developing a calibration on data that is
incapable of delivering the desired measurement.
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4 Chapter 1

This author must admit to being a solid member of the first category, having
met the qualifications more than once! Reviewing some of these unpleasant
experiences might help you extend your membership in the second category.

Violation 1. —Data that lacks information content

There are, generally, an infinite number of ways to collect meaningless data
from a sample. So it should be no surprise how easy it can be to inadvertently
base your work on such data. The only protection against this is a hightened
sense of suspicion. Take nothing for granted; question everything! Learn as
much as you can about the measurement and the system you are measuring. We
all learned in grade school what the important questions are — who, what,
when, where, why, and how. Apply them to this work!

One of the most insidious ways of assembling meaningless data is to work
with an instrument that is not operating well, or has presistent and excessive
drift. Be forewarned! Characterize your instrument. Challenge it with the full
range of conditions it is expected to handle. Explore environmental factors,
sampling systems, operator influences, basic performance, noise levels, drift,
aging. The chemometric techniques excel at extracting useful information from
very subtle differences in the data. Some instruments and measurement
techniques excel at destroying these subtle differences, thereby removing all
traces of the needed information. Make sure your instruments and techniques
are not doing this to your datal

Another easy way of assembling a meaningless set of data is to work with a
system for which you do not understand or control all of the important
parameters. This would be easy to do, for example, when working with near
infrared (NIR) spectra of an aqueous system. The NIR spectrum of water
changes with changes in pH or temperature. If your measurements were made
without regard to pH or temperature, the differences in the water spectrum
could easily destroy any other information that might otherwise be present in

the spectra.

Violation 2. —Information in the data is unrelated to the property or
properties being predicted

This author has learned the hard way how embarassingly easy it is to
commit this error. Here's one of the worst experiences.

A client was seeking a way to rapidly accept or reject certain incoming raw
materials. It looked like a routine application. The client has a large archive of
acceptable and rejectable examples of the materials. The materials were easily
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measured with an inexpensive, commercially available instrument that provided
excellent signal-to-noise and long-term stability. Calibrations developed with
the archived samples were extremely accurate at distinguishing good material
from bad material. So the calibration was developed, the instrument was put in
place on the receiving dock, the operators were trained, and everyone was
happy.

After some months of successful operation, the system began rejecting large
amounts of incoming materials. Upon investigation, it was determined that the
rejected materials were perfectly suitable for their intended use. It was also
noticed that all of the rejected materials were provided by one particular
supplier. Needless to say, that supplier wasn't too happy about the situation; nor
were the plant people particularly pleased at the excessive process down time
due to lack of accepted feedstock.

Further investigation revealed a curious fact. Nearly all of the reject
material in the original archive of samples that were used to develop the
calibration had come from a single supplier, while the good material in the
original archive had come from various other suppliers. At this point, it was no
surprise that this single supplier was the same one whose good materials were
now being improperly rejected by the analyzer. As you can see, although we
thought we had developed a great calibration to distinguish acceptable from
unacceptable feedstock, we had, instead, developed a calibration that was
extremely good at determining which feedstock was provided by that one
particular supplier, regardless of the acceptability/rejectability of the feedstock!

As unpleasant as the whole episode was, it could have been much worse.,
The process was running with mass inputs costing nearly $100,000 per day. If,
instead of wrongly rejecting good materials, the system had wrongly accepted
bad materials, the losses due to production of worthless scrap would have been
considerable indeed!

So here is a case where the data had plenty of information, but the
information in the data was not correlated to the property which was being
predicted. While there is no way to completely protect yourself from this type
of problem, an active and agressive cynicism certainly doesn't hurt. Trust
nothing—question everything!

Examples of Data

An exhaustive list of all possible types of data suitable for chemometric
treatment together with all possible types of predictions made from the data
Wwould fill a large chapter in this book. Table 1 contains a brief list of some of
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these. Table 1 is like a Chinese menu—selections from the first column can be
freely paired with selections from the second column in almost any
permutation. Notice that many data types may serve either as the measured data
or the predicted property, depending upon the particular application.

We tend to think that the data we start with is usually some type of
instrumental measurement like a spectrum or a chromatogram, and that we are
usually trying to predict the concentrations of various components, or the
thickness of various layers in a sample. But, as illustrated in Table 1, we can use
almost any sort of data to predict almost anything, as long as there is some
relationship between the information in the data and the property which we are
trying to predict. For example we might start with measurements of pH,
temperatures, stirring rates, and reaction times, for a process and use these data
to predict the tensile strength, or hardness of the resulting product. Or we might

MEASUREMENT PREDICTION

Spectrum Concentrations
Chromatogram Purity
Interferogram Physical Properties
Physical Properties Source or Origin
Temperature Accept/Reject
Identity Reaction End Point
Pressure Chemical Properties

Surface Acoustic Wave Response

Concentrations

Concentrations Source or Origin
Molecular Weights Rheology
Structure Biological Activity
Stability Structure
pH Temperature
Flow Age

Table 1. Some types of data and predicted parameters
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measure the viscoscity, vapor pressure, and trace element concentrations of a
material and use them to identify the manufacturer of the material, or to classify
the material as acceptable or unacceptable for a particular application.

When considering potential applications for these techniques, there is no
reason to restrict our thinking as to which particular types of data we might use
or which particular kinds of properties we could predict. Reflecting the
generality of these techniques, mathematicians usually call the measured data
the independent variables, or the x-data, or the x-block data. Similarly, the
properties we are trying to predict are usually called the dependent variables,
the y-data, or the y-block data. Taken together, the set of corresponding x and y
data measured from a single sample is called an object. While this system of
nomenclature is precise, and preserves the concept of the generality of the
methods, many people find that this nomenclature tends to "get between" them
and their data. It can be a burdensome distraction when you constantly have to
remember which is the x-data and which is the y-data. For this reason,
throughout the remainder of the book, we will adopt the vocabulary of
spectroscopy to discuss our data. We will imagine that we are measuring an
absorbance spectrum for each of our samples and that we want to predict the
concentrations of the constituents in the samples. But please remember, we are
adopting this vocabulary merely for convenience. The techniques themselves
can be applied for myriad purposes other than quantitative spectroscopic
analysis, '

Data Organization

As we will soon see, the nature of the work makes it extremely convenient
to organize our data into matrices. (If you are not familiar with data matrices,
please see the explanation of matrices in Appendix A before continuing.) In
particular, it is useful to organize the dependent and independent variables into
separate matrices. In the case of spectroscopy, if we measure the absorbance
spectra of a number of samples of known composition, we assemble all of these
spectra into one matrix which we will call the absorbance matrix. We also
assemble all of the concentration values for the sample's components into a
separate matrix called the concentration matrix. For those who are keeping
score, the absorbance matrix contains the independent variables (also known as
the x-data or the x-block), and the concentration matrix contains the dependent
variables (also called the y-data or the y-block).
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The first thing we have to decide is whether these matrices should be
organized column-wise or row-wise. The spectrum of a single sample consists
of the individual absorbance values for each wavelength at which the sample
was measured. Should we place this set of absorbance values into the
absorbance matrix so that they comprise a column in the matrix, or should we
place them into the absorbance matrix so that they comprise a row? We have to
make the same decision for the concentration matrix. Should the concentration
values of the components of each sample be placed into the concentration
matrix as a row or as a column in the matrix? The decision is totally arbitrary,
because we can formulate the various mathematical operations for either
row-wise or column-wise data organization. But we do have to choose one or
the other. Since Murphy established his laws long before chemometricians
came on the scene, it should be no surprise that both conventions are commonly
employed throughout the literature!

Generally, the Multiple Linear Regression (MLR) techniques and the
Factor-Based technique known as Principal Component Regression (PCR)
employ data that is organized as matrices of column vectors, while the
Factor-Based technique known as Partial Least-Squares (PLS) employs data
that is organized as matrices of row vectors. The conflicting conventions are
simply the result of historical accident. Some of the first MLR work was
pioneered by spectroscopists doing quantitative work with Beer's law. The way
spectroscopists write Beer's law is consistent with column-wise organization of
the data matrices. When these pioneers began exploring PCR techniques, they
retained the column-wise organization. The theory and practice of PLS was
developed around work in other fields of science. The problems being
addressed in those fields were more conveniently handled with data that was
organized as matrices of row vectors. When chemometricians began to adopt
the PLS techniques, they also adopted the row-wise convention. But, by that
point in time, the column-wise convention for MLR and PCR was well
established. So we are stuck with a dual set of conventions. To complicate
things even further most of the MLR and PCR work in the field of near infrared
spectroscopy (NIR) employs the row-wise convention.

Introduction 9

Column-Wise Data Organization for MLR and PCR Data

Absorbance Matrix

Using column-wise organization, an absorbance matrix holds the spectral
data. Each spectrum is placed into the absorbance matrix as a column vector:

AlI A12 Al] b All

A2| AZZ AZJ e A2|

A, A, Ay, L A, 1]
A4| A42 A43 “ee A“

Awl Aw2 AwJ e Awl

where A,, is the absorbance at the w" wavelength for sample s. If we were to
measure the spectra of 30 samples at 15 different wavelengths, each spectrum
would be held in a column vector containing 15 absorbance values.These 30
column vectors would be assembled into an absorbance matrix which would be
15 X 30 in size (15 rows, 30 columns). Another way to visualize the data
organization is to represent each column vector containing each absorbance
spectrum as a line drawing —

either drawn so, or so, or So:

{2,3,4]
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The corresponding absorbance matrix (shown with only 3 spectra) would be
represented —
either drawn so, or so, or so, or so:

17 [

[5,6,7,8]

| Concentration Matrix

Similarly, a concentration matrix holds the concentration data. The
concentrations of the components for each sample are placed into the
concentration matrix as a column vector:

[‘ Ch Cp G C.

C Cp C .. G {91
Ccn Ca Ca Ccs

! Where C,, is the concentration of the ¢" component of sample s. Suppose we
H were measuring the concentrations of 4 components in each of the 30 samples,
| above. The concentrations for each sample would be held in a column vector
| containing 4 concentration values. These 30 column vectors would be
| assembled into a concentration matrix which would be 4 X 30 in size (4 rows,
' 30 columns).

, Taken together, the absorbance matrix and the concentration matrix
i comprise a data set. It is essential that the columns of the absorbance and
concentration matrices correspond to the same mixtures. In other words, the s"
column of the absorbance matrix must contain the spectrum of the sample
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whose component concentrations are contained in the s" column of the
concentration matrix. A data set for a single sample, would comprise an
absorbance matrix with a single column containing the spectrum of that sample
together with a corresponding concentration matrix with a single column
containing the concentrations of the components of that sample. As explained
earlier, such a data set comprising a single sample is often called an object.

A data matrix with column-wise organization is easily converted to
row-wise organization by taking its matrix transpose, and vice versa. If you are
not familiar with the matrix transpose operation, please refer to the discussion
in Appendix A.

Row-Wise Data Organization for PLS Data

Absorbance Matrix

Using row-wise organization, an absorbance matrix holds the spectral data.
Each spectrum is placed into the absorbance matrix as a row vector:

All AIZ AIJ AM

- [10]

Where A,, is the absorbance for sample s at the w" wavelength. If we were to
measure the spectra of 30 samples at 15 different wavelengths, each spectrum
would be held in a row vector containing 15 absorbance values. These 30 row
vectors would be assembled into an absorbance matrix which would be 30 X 15
in size (30 rows, 15 columns).

Another way to visualize the data organization is to represent the row vector
containing the absorbance spectrum as a line drawing —

either drawn so, [11]

orso, - n2)

or so, [ i [13]
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The corresponding absorbance matrix (shown with 3 spectra) would be

represented —
either drawn so, [14]
or so, H“H”HI”H [15]
‘ HHHHHHHHHH
|
! or so, ! 1 [16]
| [ 1
[ -
or so: [17]

Concentration Matrix

Similarly, a concentration matrix holds the concentration data. The
concentrations of the components for each sample are placed into the
concentration matrix as a row vector:

C]l C|2 o Clc

Ch Cp .. Gy
‘ Cy C .. G [18]
” C4| Cu Cdc
1 Csl C|2 Csc

Where C,. is the concentration for sample s of the ¢ component. Suppose we
I were measuring the concentrations of 4 components in each of the 30 samples,
| above. The concentrations for each sample would be held in a row vector
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containing 4 concentration values. These 30 row vectors would be assembled
into a concentration matrix which would be 30 X 4 in size (30 rows, 4 columns).

Taken together, the absorbance matrix and the concentration matrix
comprise a data set. It is essential that the rows of the absorbance and
concentration matrices correspond to the same mixtures. In other words, the s"
row of the absorbance matrix must¢ contain the spectrum of the sample whose
component concentrations are contained in the s™ row of the concentration
matrix. A data set for a single sample, would comprise an absorbance matrix
with a single row containing the spectrum of that sample together with a
corresponding concentration matrix with a single row containing the
concentrations of the components of that sample. As explained earlier, such a
data set comprising a single sample is often called an object.

A data matrix with row-wise organization is easily converted to
column-wise organization by taking its matrix transpose, and vice versa. If you
are not familiar with the matrix transpose operation, please refer to the
discussion in Appendix A.

Data Sets

We have seen that data matrices are organized into pairs; each absorbance
matrix is paired with its corresponding concentration matrix. The pair of
matrices comprise a data set. Data sets have different names depending on their
origin and purpose.

Training Set

A data set containing measurements on a set of known samples and used to
develop a calibration is called a training set. The known samples are sometimes
called the calibration samples. A training set consists of an absorbance matrix
containing spectra that are measured as carefully as possible and a
concentration matrix containing concentration values determined by a reliable,
independent referee method.

The data in the training set are used to derive the calibration which we use
on the spectra of unknown samples (i.e. samples of unknown composition) to
predict the concentrations in those samples. In order for the calibration to be
valid, the data in the training set which is used to find the calibration must meet
certain requirements. Basically, the training set must contain data which, as a
group, are representative, in all ways, of the unknown samples on which the
analysis will be used. A statistician would express this requirement by saying,
"The training set must be a statistically valid sample of the population
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comprised of all unknowns on which the calibration will be used.” Additionally,
because we will be using multivariate techniques, it is very important that the
samples in the training set are all mutually independent.

In practical terms, this means that training sets should:

1. Contain all expected components

2. Span the concentration ranges of interest
3. Span the conditions of interest

4, Contain mutually independent samples

Let's review these items one at a time.

Contain All Expected Components

This requirement is pretty easy to accept. It makes sense that, if we are
going to generate a calibration, we must construct a training set that exhibits all
the forms of variation that we expect to encounter in the unknown samples. We
certainly would not expect a calibration to produce accurate results if an
unknown sample contained a spectral peak that was never present in any of the
calibration samples.

However, many find it harder to accept that "components” must be
understood in the broadest sense. "Components" in this context does not refer
solely to a sample's constituents. "Components" must be understood to be
synonymous with "sources of variation." We might not normally think of
instrument drift as a "component." But a change in the measured spectrum due
to drift in the instrument is indistinguishable from a change in the measured
spectrum due to the presence of an additional component in the sample. Thus,
instrument drift is, indeed, a "component." We might not normally think that
replacing a sample cell would represent the addition of a new component. But
subtle differences in the construction and alignment of the new sample cell
might add artifacts to the specturm that could compromise the accuracy of a
calibration. Similarly the differences in technique between two instrument
operators could also cause problems.

Span the Concentration Ranges of Interest

This requirement also makes good sense. A calibration is nothing more than
a mathematical model that relates the behavior of the measureable data to the
behavior of that which we wish to predict. We construct a calibration by finding
the best representation of the fit between the measured data and the predicted
parameters. It is not surprising that the performance of a calibration can
deteriorate rapidly if we use the calibration to extrapolate predictions for
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mixtures that lie further and further outside the concentration ranges of the
original calibration samples.

However, it is not obvious that when we work with multivariate data, our
training set must span the concentration ranges of interest in a multivariate (as
opposed to univariate) way. It is not sufficient to create a series of samples
where each component is varied individually while all other components are
held constant. Our training set must contain data on samples where all of the
various components (remember to understand "components” in the broadest
sense) vary simultaneously and independently. More about this shortly.

Span the Conditions of Interest

This requirement is just an additional broadening of the meaning of
"components." To the extent that variations in temperature, pH, pressure,
humidity, environmental factors, etc., can cause variations in the spectra we
measure, such variations must be represented in the training set data.

Mutual Independence

Of all the requirements, mutual independence is sometimes the most
difficult one to appreciate. Part of the problem is that the preparation of
mutually independent samples runs somewhat countrary to one of the basic
techniques for sample preparation which we have learned, namely serial
dilution or addition. Nearly everyone who has been through a lab course has
had to prepare a series of calibration samples by first preparing a stock solution,
and then using that to prepare a series of successively more dilute solutions
which are then used as standards. While these standards might be perfectly
suitable for the generation of a simple, univariate calibration, they are entirely
unsuitable for calibrations based on multivariate techniques. The problem is that
the relative concentrations of the various components in the solution are not
varying. Even worse, the relative errors among the concentrations of the various
components are not varying. The only varying sources of error are the overall
dilution error, and the instrumental noise.

Validation Set

It is highly desireable to assemble an additional data set containing
independent measurements on samples that are independent from the samples
used to create the training set. This data set is not used to develop the
calibration. Instead, it is held in reserve so that it can be used to evaluate the
calibration's performance. Samples held in reserve this way are known as
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validation samples and the pair of absorbance and concentration matrices
holding these data is called a validation set.

The data in the validation set are used to challenge the calibration. We
treat the validation samples as if they are unknowns. We use the calibration
developed with the training set to predict (or estimate) the concentrations of the
components in the validation samples. We then compare these predicted
concentrations to the actual concentrations as determined by an independent
referee method (these are also called the expected concentrations). In this way,
we can assess the expected performance of the calibration on actual unknowns.
To the extent that the validation samples are a good representation of all the
unknown samples we will encounter, this validation step will provide a reliable
estimate of the calibration's performance on the unknowns. But if we encounter
unknowns that are significantly different from the validation samples, we are
likely to be surprised by the actual performance of the calibration (and such
surprises are seldom pleasant).

Unknown Set

When we measure the spectrum of an unknown sample, we assemble it into
an absorbance matrix. If we are measuring a single unknown sample, our
unknown absorbance matrix will have only one column (for MLR or PCR) or
one row (for PLS). If we measure the spectra of a number of unknown samples,
we can assemble them together into a single unknown absorbance matrix just as
we assemble training or validation spectra.

Of course, we cannot assemble a corresponding unknown concentration
matrix because we do not know the concentrations of the components in the
unknown sample. Instead, we use the calibration we have developed to
calculate a result matrix which contains the predicted concentrations of the
components in the unknown(s). The result matrix will be organized just like the
concentration matrix in a training or validation data set. If our unknown
absorbance matrix contained a single spectrum, the result matrix will contain a
single column (for MLR or PCR) or row (for PLS). Each entry in the column
(or row) will be the concentration of each component in the unknown sample. If
our unknown absorbance matrix contained multiple spectra, the result matrix
will contain one column (for MLR or PCR) or one row (for PLS) of
concentration values for the sample whose spectrum is contained in the
corresponding column or row in the unknown absorbance matrix. The
absorbance matrix containing the unknown spectra together with the
corresponding result matrix containing the predicted concentrations for the
unknowns comprise an unknown set.

Basic Approach

The flow chart in Figure 1 illustrates the basic approach for developing
calibrations and placing them successfully into service. While this approach is
simple and straightforward, putting it into practice is not always easy. The
concepts summarized in Figure 1 represent the most important information in
this entire book — to ignore them is to invite disaster. Accordingly, we will
discuss each step of the process in some detail.

1. Get the Best Data You Can

2. Build the Method (calibration)

3. Test the Method Carefully (Valldation)

4, Use the Best Model Carefully

5. Improve as Necessary

Figure 1. Flow chart for developing and using calibrations.

Get the Best Data You Can

This first step is often the most difficult step of all. Obviously, it makes
sense to work with the best data you can get your hands on. What is not so
obvious is the definition of best. To arrive at an appropriate definition for a
given application, we must balance many factors, among them:

1. Number of samples for the training set
Accuracy of the concentration values for the training set
Number of samples in the validation set (if any)

Accuracy of the concentration values for the validation set
Noise level in the spectra

SNd W
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We can see that the cost of developing and maintaining a calibration will
depend strongly on how we choose among these factors. Making the right
choices is particularly difficult because there is no single set of choices that is
appropriate for all applications. The best compromise among cost and effort put
into the calibration vs. the resulting analytical performance and robustness must
be determined on a case by case basis.

The situation can be complicated even further if the managers responsible
for allocating resources to the project have an unrealistic idea of the resources
which must be committed in order to successfuly develop and deploy a
calibration. Unfortunately, many managers have been "oversold" on
chemometrics, coming to believe that these techniques represent a type of
"black magic" which can easily produce pristine calibrations that will 1)
perform properly the first day they are placed in service and, 2) without further
attention, continue to perform properly, in perpetuity. This illusion has been
reinforced by the availablity of powerful software that will happily produce
"calibrations" at the push of a button using any data we care to feed it. While
everyone understands the concept of "garbage in—garbage out", many have
come to believe that this rule is suspended when chemometrics are put into
play.

If your managers fit this description, then forget about developing any
chemometric calibrations without first completing an absolutly essential initial
task: The Education of Your Managers. If your managers do not have realistic
expections of the capabilities and limitations of chemometric calibrations,
and/or if they do not provide the informed commitment of adequate resources,
your project is guaranteed to end in grief. Educating your managers can be the
most difficult and the most important step in successfully applying these
techniques.

Rules of Thumb

It may be overly optimistic to assume that we can freely decide how many
samples to work with and how accurately we will measure their concentrations.
Often there are a very limited number of calibration samples available and/or
the accuracy of the samples' concentration values is miserably poor.
Nonetheless, it is important to understand, from the outset, what the tradeoffs
are, and what would normally be considered an adequate number of samples
and adequate accuracy for their concentration values.

This isn't to say that it is impossible to develop a calibration with fewer
and/or poorer samples than are normally desireable. Even with a limited number
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of poor samples, we might be able to "bootstrap" a calibration with a little luck,
a lot of labor, and a healthy dose of skepticism.

The rules of thumb discussed below have served this author well over the
years. Depending on the nature of your work and data, your experiences may
lead you to modify these rules to suit the particulars of your applications. But
they should give you a good place to start.

Training Set Concentration Accuracy

All of these chemometric techniques have one thing in common. The
analytical performance of a calibration deteriorates rapidly as the accuracy of
the concentration values for the training set samples deteriorates. What's more,
any advantages that the factor based techniques might offer over the ordinary
multiple linear regressions disappear rapidly as the errors in the training set
concentration values increase. In other words, improvements in the accuracy of
a training set's concentration values can result in major improvements in the
analytical performance of the calibration developed from that training set.

In practical terms, we can usually develop satisfactory calibrations with
training set concentrations, as determined by some referee method, that are
accurate to +5% mean relative error. Fortunately, when working with typical
industrial applications and within a reasonable budget, it is usually possible to
achieve at least this level of accuracy. But there is no need to stop there. We
will usually realize significant benefits such as improved analytical accuracy,
robustness, and ease of calibration if we can reduce the errors in the training set
concentrations to’ 12% or 13%. The benefits are such that it is usually
worthwhile to shoot for this level of accuracy whenever it can be reasonably
achieved.

Going in the other direction, as the errors in the training set concentrations
climb above 5%, life quickly becomes umpleasant. In general, it can be
difficult to achieve useable results when the concentration errors rise above
+10%

Number of Calibration Samples in the Training Set

There are three rules of thumb to guide us in selecting the number of
calibration samples we should include in a training set. They are all based on
the number of components in the system with which we are working.
Remember that components should be understood in the widest sense as
"independent sources of significant variation in the data." For example, a
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system with 3 constituents that is measured over a range of temperatures would
have at least 4 components: the 3 constituents plus temperature.

The Rule of 3 is the minimum number of samples we should normally
attempt to work with. It says, simply, "Use 3 times the number of samples as
there are components." While it is possible to develop calibrations with fewer
samples, it is difficult to get acceptable calibrations that way. If we were
working with the above example of a 4-component system, we would expect to
need at least 12 samples in our training set. While the Rule of 3 gives us the
minimum number of samples we should normally attempt to use, it is not a
comfortable minimum. We would normally employ the Rule of 3 only when
doing preliminary or exploratory work.

The Rule of § is a better guide for the minimum number of samples to use.
Using 5 times the number of samples as there are components allows us enough
samples to reasonably represent all possible combinations of concentrations
values for a 3-component system. However, as the number of components in the
system increases, the number of samples we should have increases
geometrically. Thus, the Rule of 5 is not a comfortable guide for systems with
large numbers of components.

The Rule of 10 is better still. If we use 10 times the number of samples as
there are components, we will usually be able to create a solid calibration for
typical applications. Employing the Rule of 10 will quickly sensitize us to the
need we discussed earlier of Educating the Managers. Many managers will balk
at the time and money required to assemble 40 calibration samples (considering
the example, above, where temperature variations act like a 4th component) in
order to generate a calibration for a "simple" 3 constituent system. They would
consider 40 samples to be overkill. But, if we want to reap the benefits that
these techniques can offer us, 40 samples is not overkill in any sense of the
word.

You might have followed some of the recent work involving the use of
chemometrics to predict the octane of gasoline from its near infrared (NIR)
spectrum. Gasoline is a rather complex mixture with not dozens, but hundreds
of constituents. The complexity is increased even further when you consider
that a practical calibration has to work on gasoline produced at multiple
refineries and blended differently at different times of the year. During some of
the early discussion of this application it was postulated that, due to the
complexity of the system, several hundred samples might be needed in the
training set. (Notice the consistency with the Rule of 3 or the Rule of 5.) The
time and cost involved in assembling measurements on several hundred
samples was a bit discouraging. But, since this is an application with
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tremendous payback potential, several companies proceeded, nonetheless, to
develop calibrations. As it turns out, the methods that have been successfully
deployed after many years of development are based on training sets containing
several thousand calibration samples. Even considering the number of
components in gasoline, the Rule of 10 did not overstate the number of samples
that would be necessary.

We must often compromise between the number of samples in the training
set and the accuracy of the concentration values for those samples. This is
because the additional time and money required for a more accurate referee
method for determining the concentrations must often be offset by working with
fewer samples. The more we know about the particulars of an application, the
easier it would be for us to strike an informed compromise. But often, we don't
know as much as we would like.

Generally, if the accuracy and precision of a calibration is an overriding
concern, it is often a good bet to back down from the Rule of 10 and
compromise on the Rule of 5 if we can thereby gain at least a factor of 3
improvement in the accuracy of the training set concentrations. On the other
hand, if a calibration's long term reliability and robustness is more important
than absolute accuracy or precision, then it would generally be better to stay
with the Rule of 10 and forego the improved concentration accuracy.

Build the Method (calibration)

Generating the calibration is often the easiest step in the whole process
thanks to the widespread availability of powerful, inexpensive computers and
capable software. This step is often as easy as moving the data into a computer,
making a few simple (but well informed!) choices, and pushing a few keys on
the keyboard. This step will be covered in the remaining chapters of this book.

Test the Method Carefully (validation)

The best protection we have against placing an inadequate calibration into
service is to challenge the calibration as agressively as we can with as many
validation samples as possible. We do this to uncover any weaknesses the
calibration might have and to help us understand the calibration's limitations.
We pretend that the validation samples are unknowns. We use the calibration
that we developed with the training set to predict the concentrations of the
validation samples. We then compare these predicted concentrations to the
known or expected concentrations for these samples. The error between the
predicted concentrations vs. the expected values is indicative of the error we
could expect when we use the calibration to analyze actual unknown samples.
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This is another aspect of the process about which managers often require
some education. After spending so much time, effort, and money developing a
calibration, many managers are tempted to rush it into service without adequate
validation. The best way to counter this tendency is to patiently explain uiat we
do not have the ability to choose whether or not we will validate a calibration.
We only get to choose where we will validate it. We can either choose to
validate the calibration at development time, under controlled conditions, or we
can choose to validate the method by placing it into service and observing
whether or not it is working properly— while hoping for the best. Obviously, if
we place a calibration into service without first adequately testing it, we expose
ourselves to the risk of expensive losses should the method prove inadequate
for the application.

Ideally, we validate a calibration with a great number of validation samples.
Validation samples are samples that were not included in the training set. They
should be as representative as possible of all of the unknown samples which the
calibration is expected to successfully analyze. The more validation samples we
use, and the better they represent all the different kinds of unknowns we might
see, the greater the liklihood that we will catch a situation or a sample where the
calibration will fail. Conversely, the fewer validation samples we use, the more
likely we are to encounter an unpleasant surprise when we put the calibration
into service— especially if these relatively few validation samples we are "easy
cases" with few anomalies.

Whenever possible, we would prefer that the concentration values we have
for the validation samples are as accurate as the training set concentration
values. Stated another way, we would like to have enough calibration samples
to construct the training set plus some additional samples that we can hold in
reserve for use as validation samples. Remember, validation samples, by
definition, cannot be used in the training set. (However, affer the validation
process is completed, we could then decide to incorporate the validation
samples into the training set and recalculate the calibration on this larger data
set. This will usually improve the calibration's accuracy and robustness. We
would not want to use the validation samples this way if the accuracy of their
concentrations is significantly poorer than the accuracy of the training set
concentrations.)

" We often cannot afford to assemble large numbers of validations samples
with concentrations as accurate as the training set concentrations. But since the
validation samples are used to fest the calibration rather than produce the
calibration, errors in validation sample concentrations do not have the same
detrimental impact as errors in the training set concentrations. Validation set
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concentration errors cannot affect the calibration model. They can only make it
more difficult to understand how well or poorly the calibration is working. The
effect of validation concentration errors can be averaged out by using a large
number of validation samples.

Rules of Thumb

Number of Calibration Samples in the Validation Set

Generally speaking, the more validation samples the better. It is nice to have
at least as many samples in the validation set as were needed in the training set.
It is even better to have considerably more validation samples than calibration
samples.

Validation Set Concentration Accuracy

Ideally, the validation concentrations should be as accurate as the training
concentrations. However, validation samples with poorer concentration
accuracy are still useful. In general, we would prefer that validation
concentrations would not have errors greater than +5%. Samples with
concentrations errors of around £10% can still be useful. Finally, validation
samples with concentration errors approaching +20% are better than no
validation samples at all.

Validation Without Validation Samples

Sometimes it is just not feasible to assemble any validation samples. In such
cases there are still other tests, such as cross-validation, which can help us do a
certain amount of validation of a calibration. However, these tests do not
provide the level of information nor the level of confidence that we should have
before placing a calibration into service. More about this later.

Use the Best Model Carefully

After a calibration is created and properly validated, it is ready to be placed
into service. But our work doesn't end here. If we simply release the method and
walk away from it, we are asking for trouble. The model must be used carefully.

There are many things that go into the concept of "carefully." For these
purposes, "carefully" means "with an appropriate level of cynicism."
"Carefully" also means that proper procedures must be put into place, and that

the people who rely on the results of the calibration must be properly trained to
use the calibration,
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We have said that every time the calibration analyzes a new unknown
sample, this amounts to an additional validation test of the calibration. It can be
a major mistake to believe that, just because a calibration worked well when it
was being developed, it will continue to produce reliable results from that point
on. When we discussed the requirements for a training set, we said that
collection of samples in the training set must, as a group, be representative in
all ways of the unknowns that will be analyzed by the calibration. If this
condition is not met, then the calibration is invalid and cannot be expected to
produce reliable results. Any change in the process, the instrument, or the
measurement procedure which introduces changes into the data measured on an
unknown will violate this condition and invalidate the method! If this occurs,
the concentration values that the calibration predicts for unknown samples are
completely unreliable! We must therefore have a plan and procedures in place
that will insure that we are alerted if such a condition should arise.

Auditing the Calibration

The best protection against this potential for unreliable results is to collect
samples at appropriate intervals, use a suitable referee method to independently
determine the concentrations of these samples, and compare the referee
concentrations to the concentrations predicted by the calibration. In other
words, we institute an on-going program of validation as long as the method is
in service. These validation samples are sometimes called audit samples and
this on-going validation is sometimes called auditing the calibration. What
would constitute an appropriate time interval for the audit depends very much
on the nature of the process, the difficulty of the analysis, and the potential for
changes. After first putting the method into service, we might take audit
samples every hour. As we gain confidence in the method, we might reduce the
frequency to once or twice a shift, then to once or twice a day, and so on.

Training

It is essential that those involved with the operation of the process, and the
calibration as well as those who are relying on the results of the calibration have
a basic understanding of the vulnerability of the calibration to unexpected
changes. The maintenance people and instrument technicians must understand
that if they change a lamp or clean a sample system, the analyzer might start
producing wrong answers. The process engineers must understand that a change
in operating conditions or feedstock can totally confound even the best
calibration. The plant manager must understand the need for periodic audit
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samples, and the need to document what otherwise might seem to be
inconsequential details.

Procedures

Finally, when a calibration is put into service, it is important that proper
procedures are simultaneously put into place throughout the organization. These
procedures involve not only actions that must occur, such as collection and
analysis of audit samples, but also communication that must take place. For
example, if the purchasing department were considering changing the supplier
of a feedstock, they might consult with the chemical engineer or the
manufacturing engineer responsible for the process in question, but it is
unlikely that any of these people would realize the importance of consulting
with you, the person responsible for developing and installing the analyzer
using a chemometric calibration. Yet, a change in feedstock could totally
cripple the calibration you developed. Similarly, it is seldom routine practice to
notify the analytical chemist responsible for an analyzer if there is a change in
operating or maintenance people. Yet, the performance of an analyzer can be
sensitive to differences in sample preparation technique, sample system
maintenace and cleaning, etc. So it might be necessary to increase the frequency
of audit samples if new people are trained on an analyzer. Every application
will involve different particulars. It is important that you do not develop and install
a calibration in a vacuum. Consider all of the operational issues that might impact
on the reliability of the analysis and design your procedures and train your people
accordingly.

Improve as Necessary

An effective auditing plan allows us to identify and address any
difficiencies in the calibration, and/or to improve the calibration over the course
of time. At the very least, so long as the accuracy of the concentration values
determined by the referee method is at least as good as the accuracy of the
original calibration samples, we can add the audit samples to the training set
and recalculate the calibration. As we incorporate more and more samples into
the training set, we capture more and more sources of variation in the data. This
should make our calibration more and more robust, and it will often improve the
accuracy as well. In general, as instruments and sample systems age, and as
processes change, we will usually see a gradual, but steady deterioration in the
performance of the initial calibration. Periodic updating of the training set, can
prevent the deterioration.

Inf:remental updating of the calibration, while it is very useful, is not
sufficient in every case. For example, if there is a significant change in the
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application, such as a change in trace contaminants due to a change in feedstock
supplier, we might have to discard the original calibration and build a new one
from scratch.

Creating Some Data

It is time to create some data to play with. By creating the data ourselves,
we will know exactly what its properties are. We will subject these data to each
of the chemometric techniques so that we may observe and discuss the results.
We will be able to translate our detailed a priori knowledge of the data into a
detailed understanding of how the different techniques function. In this way, we
will learn the strengths and weaknesses of the various methods and how to use
them correctly.

As discussed in the first chapter, it is possible to use almost any kind of data
to predict almost any type of property. But to keep things simple, we will
continue using the vocabulary of spectroscopy. Accordingly, we will call the
data we create absorbance spectra, or simply spectra, and we will call the
property we are trying to predict concentration.

In order to make this exercise as useful and as interesting as possible, we
will take steps to insure that our synthetic data are suitably realistic. We will
include difficult spectral interferences, and we will add levels of noise and other
artifacts that might be encountered in a typical, industrial application.

Synthetic Data Sets

As we will soon see, the most difficult part of working with these
techniques is keeping track of the large amounts of data that are usually
involved. We will be constructing a number of different data sets, and we will
find it necessary to constantly review which data set we are working with at any
particular time. The data “crib sheet” at the back of this book (preceding the Index)
will help with this task.

To (hopefully) help keep things simple, we will organize all of our data into
column-wise matrices. Later on, when we explore Partial Least-Squares (PLS),
we will have to remember that the PLS convention expects data to be organized
row-wise. This isn't a great problem since one convention is merely the matrix
transpose of the other. Nonetheless, it is one more thing we have to remember.

Our data will simulate spectra collected on mixtures that contain 4 different
components dissolved in a spectrally inactive solvent. We will suppose that we
have measured the concentrations of 3 of the components with referee methods.
The 4th component will be present in varying amounts in all of the samples, but
we will not have access to any information about the concentrations of the 4th
component.

27
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We will organize our data into training sets and validation sets. The training
sets will be used to develop the various calibrations, and the validation sets will
be used to evaluate how well the calibrations perform.

Training Set Design

A calibration can only be as good as the training set which is used to
generate it. We must insure that the training set accurately represents all of the
unknowns that the calibration is expected to analyze. In other words, the
training set must be a statistically valid sample of the population comprising all
unknown samples on which the calibration will be used.

There is an entire discipline of Experimental Design that is devoted to the
art and science of determining what should be in a training set. A detailed
exploration of the Design of Experiments (DOE, or experimental design) is
beyond the scope of this book. Please consult the bibliography for publications
that treat this topic in more detail.

The first thing we must understand is that these chemometric techniques do
not usually work well when they are used to analyze samples by extrapolation.
This is true regardless of how linear our system might be. To prevent
extrapolation, the concentrations of the components in our training set samples
must span the full range of concentrations that will be present in the unknowns.
The next thing we must understand is that we are working with multivariate
systems. In other words, we are working with samples whose component
concentrations, in general, vary independently of one another. This means that,
when we talk about spanning the full range of concentrations, we have to
understand the concept of spanning in a multivariate way. Finally, we must
understand how to visualize and think about multivariate data.

Figure 2 is a multivariate plot of some multivariate data. We have plotted
the component concentrations of several samples. Each sample contains a
different combination of concentrations of 3 components. For each sample, the
concentration of the first component is plotted along the x-axis, the
concentration of the second component is plotted along the y-axis, and the
concentration of the third component is plotted along the z-axis. The
concentration of each component will vary from some minimum value to some
maximum value. In this example, we have arbitrarily used zero as the minimum
value for each component concentration and unity for the maximum value. In
the real world, each component could have a different minimum value and a
different maximum value than all of the other components. Also, the minimum
value need not be zero and the maximum value need not be unity.
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Figure 2. Multivariate view of multivariate data.

When we plot the sample concentrations in this way, we begin to see that
each sample with a unique combination of component concentrations occupies
a unique point in this concentration space. (Since this is the concentration space
of a training set, it sometimes called the calibration space.) If we want to
construct a training set that spans this concentration space, we can see that we
must do it in the multivariate sense by including samples that, taken as a set,
will occupy all the relevant portions of the concentration space.

Figure 3 is an example of the wrong way to span a concentration space. It is
a plot of a training set constructed for a 3-component system. The problem with
this training set is that, while a large number of samples are included, and the
concentration of each component is varied through the full range of expected
concentration values, every sample in the set contains only a single component.
So, even though the samples span the full range of concentrations, they do not
span the full range of the possible combinations of the concentrations. At best,
Wwe have spanned that portion of the concentration space indicated by the shaded
volume. But since all of the calibration samples lie along only 3 edges of this
6-edged shaded volume, the training set does not even span the shaded volume
properly. As a consequense, if we generate a calibration with this training set
and use it to predict the concentrations of the sample "X" plotted in Figure 3,
the calibration will actually be doing an extrapolation. This is true even though
the concentrations of the individual components in sample X do not exceed the
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Figure 3. The wrong way to span a multivariate data space.

concentrations of those components in the training set samples. The problem is
that sample X lies outside the region of the calibration space spanned by the
samples in the training set. One common feature of all of these chemometric
techniques is that they generally perform poorly when they are used to extrapolate
in this fashion.There are three main ways to construct a proper multivariate
training set:

1. Structured

2. Random

3. Manually

Structured Training Sets

The structured approach uses one or more systematic schemes to span the
calibration space. Figure 4 illustrates, for a 3-component system, one of the most
commonly employed structured designs. It is usually known as a full-factorial
design. It uses the minimum, maximum, and (optionally) the mean concentration
values for each component. A sample set is constructed by assembling samples
containing all possible combinations of these values. When the mean
concentration values are not included, this approach generates a training set that
fully spans the concentration space with the fewest possible samples. We see that
this approach gives us a calibration sample at every vertex of the calibration
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of the calibration space. When the mean concentration values are used we also
have a sample in the center of each face of the calibration space, one sample in
the center of each edge of the calibration space, and one sample in the center of
the space.

For our purposes, we would generally prefer to include the mean
concentrations for two reasons. First of all, we usually want to have more
samples in the training set than we would have if we leave the mean
concentration values out of the factorial design. Secondly, if we leave out the
mean concentration values, we only get samples at the vertices of the
calibration space. If our spectra change in a perfectly linear fashion with the
variations in concentration, this would not be a concern. However, if we only
have samples at the vertices of the calibration space, we will not have any way
of detecting the presence of nonlinearities nor will the calibration be able to
make any attempt to compensate for them. When we generate the calibration
with such a training set, the calculations we employ will minimize the errors
only for these samples at the vertices since those are the only samples there are.
In the presence of nonlinearities, this could result in an undesireable increase in
the errors for the central regions of the space. This problem can be severe if our
data contain significant nonlinearities. By including the samples with the mean
concentration values in the training set, we help insure that calibration errors are
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Figure 4. Concentrations values of a structured training set.
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not minimized at the vertices at the expense of the central regions. The bottom
line is that calibrations based on training sets that include the mean
concentrations tend to produce better predictions on typical unknowns than
calibrations based on training sets that exclude the mean concentrations.

Random Training Sets

The random approach involves randomly selecting samples throughout the
calibration space. It is important that we use a method of random selection that
does not create an underlying correlation among the concentrations of the
components. As long as we observe that requirement, we are free to choose any
randomness that makes sense.

The most common random design aims to assemble a training set that
contains samples that are uniformly distributed throughout the concentration
space. Figure 5, shows such a training set. As compared to a factorially
structrued training set, this type of randomly designed set will tend to have
more samples in the central regions of the concentration space that at the
perhiphery. This will tend to yield calibrations that have slightly better accuracy
in predicting unknowns in the central regions than calibrations made with a
factorial set, although the differences are usually slight.
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Figure 5. Randomly designed training set employing uniform distribution.
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Another type of random design assembles samples that are normally
distributed about one or more points in the concentration space. Such a training
set is shown in Figure 6. The point that is chosen as the center of the normally
distributed samples might, for example, be the location in the concentration where
the operating point of a process is located. This would give us a training set with
a population density that is greatest at the process operation point and declines in
a gaussian fashion as we move away from the operating point. Since all of the
chemometric techniques calculate calibrations that minimize the least squares
errors at the calibration points, if we have a greater density of calibration samples
in a particular region of the calibration space, the errors in this region will tend to
be minimized at the expense of greater errors in the less densly populated regions.
In this case, we would expect to get a calibration that would have maximum
prediction accuracy for unknowns at the process operating point at the expense of
the prediction accuracy for unknowns further away from the operating point.

Manually Designed Training Sets

There is nothing that says we must slavishly follow one of the structured or
random experimental designs. For example, we might wish to combine the
features of structured and random designs. Also, there are times when we have

0o

Figure 6. Randomly designed training set employing a normal distribution.
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enough additional knowledge about an application that we can create a better
training set than any of the "canned" schemes would provide.

Manual design is most often used to augment a training set initially
constructed with the structured or random approach. Perhaps we wish to
enhance the accuray in one region of the calibration space. One way to do this is
to augment the training set with additional samples that occupy that region of
the space. Or perhaps we are concerned that a randomly designed training set
does not have adequate representation of samples at the perhiphery of the
calibration space. We could address that concern by augmenting the training set
with additional samples chosen by the factorial design approach. Figure 7
shows a training set that was manually augmented in this way. This give us the
advantages of both methods, and is a good way of including more samples in
the training set than is possible with a straight factorial design.

Finally, there are other times when circumstances do not permit us to freely
choose what we will use for calibration samples. If we are not able to dictate
what samples will go into our training set, we often must resort to the 7/L/
method. TILI stands for "take it or leave it." The TILI method must be
employed whenever the only calibration samples available are "samples of

00

Figure 7. Random training set manually augmented with factorially designed samples.
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opportunity.” For example, we would be forced to use the TILI method
whenever the only calibration samples available are the few specimens in the
crumpled brown paper bag that the plant manager places on our desk as he
explains why he needs a completely verified calibration within 3 days. Under
such circumstances, success in never guaranteed. Any calibration created in this
way would have to be used very carefully, indeed. Often, in these situations, the
only responsible decision is to "leave it." It is better to produce no calibration at
all rather than produce a calibration that is neither accurate nor reliable.

Creating the Training Set Concentration Matrices

We will now construct the concentration matrices for our training sets.
Remember, we will simulate a 4-component system for which we have
concentration values available for only 3 of the components. A random amount
of the 4th component will be present in every sample, but when it comes time to
generate the calibrations, we will not utilize any information about the
concentration of the 4th component. Nonetheless, we must generate
concentration values for the 4th component if we are to synthesize the spectra
of the samples. We will simply ignore or discard the 4th component
concentration values after we have created the spectra.

We will create 2 different training sets, one designed with the factorial
structure including the mean concentration values, and one designed with a
uniform random distribution of concentrations. We will not use the full-factorial
structure. To keep our data sets smaller (and thus easier to plot graphically) we
will eliminate those samples which lie on the midpoints of the edges of the
calibration space. Each of the samples in the factorial training set will have a
random amount of the 4th component determined by choosing numbers
randomly from a uniform distribution of random numbers. Each of the samples
in the random training set will have a random amount of each component
determined by choosing numbers randomly from a uniform distribution of
random numbers. The concentration ranges we use for each component are
arbitrary, For simplicity, we will allow all of the concentrations to vary between
a minimum of 0 and a maximum of 1 concentration unit.

We will organize the concentration values for the structured training set into
a concentration matrix named Cl. The concentrations for the randomly
designed training set will be organized into a concentration matrix named C2.
The factorial structured design for a 3-component system yields 15 different
samples for C1. Accordingly, we will also assemble 15 different random
samples in C2. Using column-wise data organization, C1 and C2 will each have
4 rows, one for each component, and 15 columns, one for each mixture. After
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we have constructed the absorbance spectra for the samples in C1 and C2, we
will discard the concentrations that are in the 4th row, leaving only the
concentration values for the first 3 components. If you are already getting
confused, remember that the table on the inside back cover summarizes all of
the synthetic data we will be working with. Figure 8 contains multivariate plots
of the concentrations of the 3 known components for each sample in C1 and in
C2.

Creating the Validation Set Concentration Matrices

Next, we create a concentration matrix containing mixtures that we will
hold in reserve as validation data. We will assemble 10 different validation
samples into a concentration matrix called C3. Each of the samples in this
validation set will have a random amount of each component determined by
choosing numbers randomly from a uniform distribution of random numbers
between 0 and 1.

We will also create validation data containing samples for which the
concentrations of the 3 known components are allowed to extend beyond the
range of concentrations spanned in the training sets. We will assemble 8 of
these overrange samples into a concentration matrix called C4. The
concentration value for each of the 3 known components in each sample will be
chosen randomly from a uniform distribution of random numbers between 0
and 2.5. The concentration value for the 4th component in each sample will be
chosen randomly from a uniform distribution of random numbers between 0
and 1.

Figure 8. Concentration values for first 3 components of the 2 training sets.
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We will create yet another set of validation data containing samples that
have an additional component that was not present in any of the calibration
samples. This will allow us to observe what happens when we try to use a
calibration to predict the concentrations of an unknown that contains an
unexpected interferent. We will assemble 8 of these samples into a
concentration matrix called CS5. The concentration value for each of the
components in each sample will be chosen randomly from a uniform
distribution of random numbers between 0 and 1. Figure 9 contains multivariate
plots of the first three components of the validation sets.

Creating the Pure Component Spectra

We now have five different concentrations matrices. Before we can generate
the absorbance matrices containing the spectra for all of these synthetic
samples, we must first create spectra for each of the 5 pure components we are
using: 3 components whose concentrations are known, a fourth component
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Figure 9. Concentration values for first 3 components of the validation sets.
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which is present in unknown but varying concentrations, and a fifth component
which is present as an unexpected interferent in samples in the validation set
Cs.

We will create the spectra for our pure components using gaussian peaks of
various widths and intensities. We will work with spectra that are sampled at
100 discrete "wavelengths." In order to make our data realistically challenging,
we will incorporate a significant amount of spectral overlap among the
components. Figure 10 contains plots of spectra for the 5 pure components. We
can see that there is a considerable overlap of the spectral peaks of Components
1 and 2. Similarly, the spectral peaks of Components 3 and 4 do not differ much
in width or position. And Component 5, the unexpected interferent that is
present in the 5th validation set, overlaps the spectra of all the other
components. When we examine all 5 component spectra in a single plot, we can
appreciate the degree of spectral overlap.

Creating the Absorbance Matrices — Matrix Multiplication

Now that we have spectra for each of the pure components, we can put the
concentration values for each sample into the Beer-Lambert Law to calculate
the absorbance spectrum for each sample. But first, let's review various ways of

Component 1 Component 2

0.5 / 0.5
0 AN ° /.

0 50 100 0 50 100
Component 3 Component 4

0 50 100 [ 50 100
Component 5 Pure Component Spectra

[ [
0 50 100 o 50 100

Figure 10. Synthetic spectra of the 5 pure components.
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of representing the Beer-Lambert law. It is important that you are comfortable
with the mechanics covered in the next few pages. In particular, you should
make an effort to master the details of multiplying one matrix by another
matrix. The mechanics of matrix multiplication are also discussed in
Appendix A. You may also wish to consult other texts on elementary matrix
algebra (see the bibliography) if you have difficulty with the approaches used
here.

The absorbance at a single wavelength due to the presence of a single
component is given by:

A=KC [19]
where:
A isthe absorbance at that wavelength
K is the absorbance coefficient for that component and wavelength
C  isthe concentration of the component

Please remember that even though we are using the vocabulary of
spectroscopy, the concepts discussed here apply to any system where we can
measure a quantity, A, that is proportional to some property, C, of our sample.
For example, A could be the area of a chromatographic peak or the intensity of
an elemental emission line, and C could be the concentration of a component in
the sample.

Generalizing for multiple components and multiple wavelengths we get:

n
A,= XK,C. [20]
c=1
where:
A, s the absorbance at the w" wavelength

K,. is the absorbance coefficient at the w" wavelength for the c*'
component

C.  is the concentration of the ¢ component

n is the total number or components
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We can write equation [20] in expanded form:

A, = K, C, + KiC, + ..+ K G
A, = KyC, + KpGC, + + KC.

A = K;C + KpG + L+ KC [21]

Aw = lecl + Kw2c2 + . + chcc

We see from equation [21] that the absorbance at a given wavelength, w, is
simply equal to the sum of the absorbances at that wavelength due to each of
the components present.

We can also use the definition of matrix multiplication to write equation
[21] as a matrix equation:

A = KC [22]
where:

A isasingle column absorbance matrix of the form of equation [1]
C  isasingle column concentration matrix of the form in equation [9]

K is a column-wise matrix of the form:

Ki Ko K oo Ky

Ka Kpn Ky oo Ky

Ky Ky Ky oo Ky [23]
Ko Ko Ky o Ky

Ki Ko Ko Kos

If we examine the first column of the matrix in equation [23] we see that
each K,,, is the absorbance at each wavelength, w, due to one concentration unit
of component 1. Thus, the first column of the matrix is identical to the pure
component spectrum of component 1. Similarly, the second column is identical
to the pure component spectrum of component 2, and so on.

We have been considering equations [20] through [22] for the case where
we are creating an absorbance matrix, A, that contains only a single spectrum
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organized as a single column vector in the matrix. A is generated by
multiplying the pure component spectra in the matrix K by the concentration
matrix, C, which contains the concentrations of each component in the sample.
These concentrations are organized as a single column vector that corresponds
to the single column vector in A. It is a simple matter to further generalize
equation [20] to the case where we create an absorbance matrix, A, that contains
any number of spectra, each held in a separate column vector in the matrix:

A= X K.C, [24]
c=1
where:
A,, isthe absorbance at the w™ wavelength for the s™ sample

K,. is the absorbance coefficient at the w" wavelength for the c™
- component and wavelength

C, isthe concentration of the c™ component for the s™ sample
is the total number or components

In equation [24], A is generated by multiplying the pure component spectra
in the matrix K by the concentration matrix, C, just as was done in equation
[20]. But, in this case, C will have a column of concentration values for each
sample. Each column of C will generate a corresponding column in A
containing the spectrum for that sample. Note that equation [24] can also be
written as equation [22]. We can represent equation [24] graphically:

+t

n
»

[25]

Equation [25] shows an absorbance matrix containing the spectra of 4 mixtures.
Each spectrum is measured at 15 different wavelengths. The matrix, K, is
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shown to hold the pure spectra of two different components, each measured at
the 15 wavelengths. Accordingly, the concentration matrix must have 4
corresponding columns, one for each sample; and each column must have two
concentration values, one for each component.

We can illustrate equation [25] in yet another way:

X X X X X X Xr XX
X X XX X X X s XX
X XXX X X

Xo XX a b

X XXX X X

XX XX = XX x [26]
X X XX X X

X X XX X X

X X XX X X

X X X X X X

X X X X X X

XX XX X X

X X XX X X

X X XX X X

XX XX X X

We see in equation [26], for example, that the absorbance value in the 4th row
and 2nd column of A is given by the vector multiplication of the 4th row of K
with the 2nd column of C, thusly:

o= (axr) + (bxs) [27]

Again, please consult Appendix A if you are not yet comfortable with matrix
multiplication.

Ndise-Free Absorbance Matrices

So now we see that we can organize each of our 5 pure component spectra
into a K matrix. In our case, the matrix will have 100 rows, one for each
wavelength, and 5 columns, one for each pure spectrum. We can then generate
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an absorbance matrix for each concentration matrix, C1 through CS, using
equation [22]. We will name the resulting absorbance matrices Al through AS,
respectively.

The spectra in each matrix are plotted in Figure 11. We can see that, at this
point, the spectra are free of noise. Notice that the spectra in A4, which are the
spectra of the overange samples, generally exhibit somewhat higher
absorbances than the spectra in the other matrices. We can also see that the
spectra in A5, which are the spectra of the samples with the unexpected Sth
component, seem to contain some features that are absent from the spectra in
the other matrices.

A1l A2

0 50 100 0 50 100

] 50 100
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Adding Realism

Unfortunately, real data is never as nice as this perferctly linear, noise-free
data that we have just created. What's more, we can't learn very much by
experimenting with data like this. So, it is time to make this data more realistic.
Simply adding noise will not be sufficient. We will also add some artifacts that
are often found in data collected on real instruments from actual industrial
samples.

Adding Baselines

All of the spectra are resting on a flat baseline equal to zero. Most real
instruments suffer from some degree of baseline error. To simulate this, we will
add a different random amount of a linear baseline to each spectrum. Each
baseline will have an offset randomly chosen between .02 and -.02, and a slope
randomly chosen between .2 and -.2. Note that these baselines are not
completely realistic because they are perfectly straight. Real instruments will
often produce baselines with some degree of curvature. It is important to
understand that baseline curvature will have the same effect on our data as
would the addition of varying levels of an unexpected interfering component
that was not included in the training set. We will see that, while the various
calibration techniques are able to handle perfectly straight baselines rather well,
to the extent an instrument introduces a significant amount of nonreproducible
baseline curvature, it can become difficult, if not impossible, to develop a
useable calibration for that instrument. The spectra with added linear baselines
are plotted in Figure 12.

Adding Non-Linearities

Nearly all instrumental data contain some nonlinearities. It is only a
question of how much nonlinearity is present. In order to make our data as
realistic as possible, we now add some nonlinearity to it. There are two major
sources of nonlinearities in chemical data:

1. Instrumental
2. Chemical and physical

Chemical and physical nonlinearities are caused by interactions among the
components of a system. They include such effects as peak shifting and
broadening as a function of the concentration of one or more components in the
sample. Instrumental nonlinearities are caused by imperfections and/or nonideal
behavior in the instrument. For example, some detectors show a
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0 50 100

0 50 100

- Figure 12. Spectra with linear baselines added.

saturation effect that reduces the response to a signal as the signal level increases.
Figure 13 shows the difference in response between a perfectly linear detector
and one with a 5% quadratic nonlinearity.

We will add a 1% nonlinear effect to our data by reducing every absorbance
value as follows:

A

nonlinear

= A- 01 A [28]
Where:

is the new value of the absorbance with the nonlinearity

‘nonlinear

A is the original value of the absorbance
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Detector Responses
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Figure 13. Response of a linear (upper) and a 5% nonlinear (lower) detector.

1% is a significant amount of nonlinearity. It will be interesting to observe the
impact the nonlinearity has on our calibrations. Figure 14 contains plots of Al
through AS after adding the nonlinearity. There aren't any obvious differences
between the spectra in Figure 12 and Figure 14. The last panel in Figure 14
shows a magnified region of a single spectrum from Al plotted before and after
the nonlinearity was incorporated into the data. When we plot at this
magnification, we can now see how the nonlinearity reduces the measured
response of the absorbance peaks.

Adding Noise

The last elements of realism we will add to the data is random error or
noise. In actual data there is noise both in the measurement of the spectra, and
in the determination of the concentrations. Accordingly, we will add random
error to the data in the absorbance matrices and the concentration matrices.

Concentration Noise

" We will now add random noise to each concentration value in C1 through
CS. The noise will follow a gaussian distribution with a mean of 0 and a
standard deviation of .02 concentration units. This represents an average
relative noise level of approximately 5% of the mean concentration values — a
level typically encountered when working with industrial samples. Figure 15
contains multivariate plots of the noise-free and the noisy concentration values
for C1 through C5. We will not make any use of the noise-free concentrations
since we never have these when working with actual data.
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Figure 14. Absorbance spectra with nonlinearities added.

Absorbance Noise

In a similar fashion, we will now add random noise to each absorbance value
in A1 through AS. The noise will follow a gaussian distribution with a mean of 0
and a standard deviation of .05 absorbance units. This represents a relative noise
level of approximately 10% of the mean absorbance values. This noise level is
high enough to make the calibration realistically challenging — a level typically
encountered when working wth industrial samples. Figure 16 contains plots of the
resulting spectra in Al through AS. We can see that the noise is high enough to
obscure the lower intensity peaks of components 1 and 2. We will be working
with these noisy spectra throughout the rest of this book.
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Figure 16. Absorbance spectra with noise added.
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Figure 15. Noise-free (O) and noisy (x) concentration values.
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Classical Least-Squares

Classical least-squares (CLS), sometimes known as K-matrix calibration, is
so called because, originally, it involved the application of multiple linear
regression (MLR) to the classical expression of the Beer-Lambert Law of
spectroscopy:

A=KC [29]

This is the same equation we used to create our simulated data. We
discussed it thoroughly in the last chapter. If you have "just tuned in" at this
point in the story, you may wish to review the discussion of equations [19]
through [27] before continuing here.

Computing the Calibration

To produce a calibration using classical least-squares, we start with a
training set consisting of a concentration matrix, C, and an absorbance matrix,
A, for known calibration samples. We then solve for the matrix, K. Each
column of K will each hold the spectrum of one of the pure components. Since
the data in C and A contain noise, there will, in general, be no exact solution for
equation [29]. So, we must find the best least-squares solution for equation [29].
In other words, we want to find K such that the sum of the squares of the errors
is minimized. The errors are the difference between the measured spectra, A,
and the spectra calculated by multiplying K and C:

errors=KC - A [30]

To solve for K, we first post-multiply each side of the equation by CT, the
transpose of the concentration matrix.

ACT=KCCT (31]

Recall that the matrix CT is formed by taking every row of C and placing it as a
column in CT. Next, we eliminate the quantity [C C"] from the right-hand side
of equation [31]. We can do this by post-multiplying each side of the equation
by [C C]", the matrix inverse of [C C"}.

51
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ACT[CCT'=K[CCT[CC"T [32]

[C C™]" is known as the pseudo inverse of C. Since the product of a matrix
and its inverse is the identity matrix, [C CT]J[C C"]* disappears from the
right-hand side of equation [32] leaving

ACT[CCT'=K [33]

In order for the inverse of [C C"] to exist, C must have at least as many
columns as rows. Since C has one row for each component and one column for
each sample, this means that we must have at least as many samples as
components in order to be able to compute equation [33]. This would certainly
seem to be a reasonable constraint. Also, if there is any linear dependence
among the rows or columns of C, [C C"] will be singular and its inverse will
not exist. One of the most common ways of introducing linear dependency is to
construct a sample set by serial dilution.

Predicting Unknowns

Now that we have calculated K we can use it to predict the concentrations in
an unknown sample from its measured spectrum. First, we place the spectrum
into a new absorbance matrix, A,,,. We can now use equation [29] to give us a
new concentration matrix, C,,, containing the predicted concentration values
for the unknown sample.

Aunk =K Cunk [34]
To solve for C,,,, we first pre-multiply both sides of the equation by K"
KT Aunk = KT K Cunk [35]

Next, we eliminate the quantity [K" K] from the right-hand side of equation
[35). We can do this by pre-multiplying each side of the equation by [K"K]?,
the matrix inverse of [K"K].

[K"K]" K" A, = [K"K]" [K" K] Cu [36]
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[KTK]"' is known as the pseudo inverse of K. Since the product of a matrix and
its transpose is the identity matrix, [K" K]'[K" K] disappears from the
right-hand side of equation [36] leaving

[KT I(]-I KT Aunk = Cunk [37]

In order for the inverse of [K" K] to exist, K must have at least as many rows as
columns. Since K has one row for each wavelength and one column for each
component, this means that we must have at least as many wavelengths as
components in order to be able to compute equation [37]. This constraint also
seems reasonable.

Taking advantage of the associative property of matrix multiplication, we
can compute the quantity [K" K] K" at calibration time.

K. =[K'K]"K' (38]

K., is called the calibration matrix or the regression matrix. It contains the
calibration, or regression, coefficients which are used to predict the
concentrations of an unknown from its spectrum. K, will contain one row of
coefficients for each component being predicted. Each row will have one
coefficient for each spectral wavelength. Thus, K, will have as many columns
as there are spectral wavelengths. Substituting equation [38] into equation [37]
gives us

Cunk = Kul Aunk [39]

Thus, we can predict the concentrations in an unknown by a simple matrix
multiplication of a calibration matrix and the unknown spectrum.

Additional Constraints

We have already noted that CLS requires at least as many samples and at
least as many wavelengths as there are components. These constraints seem
perfectly reasonable. But, when we use CLS, we must also satisfy another
requirement that gives cause for concern.

_ This requirement becomes apparent when we examine equation [21], which
is reproduced, below, as equation [40].
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A = K,C + KpG, + ..+ K C,
A = KC + KpG + o+ K C,

A, = KC + KpC, + .+ K C, [40]
Aw = lecl + Kw2C2 o + chcc

Equation [40] asserts that we are fully reconstructing the absorbance, A, at each
wavelength. In other words, we are stating that we will account for all of the
absorbance at each wavelength in terms of the concentrations of the
components present in the sample. This means that, when we use CLS, we
assume that we can provide accurate concentration values for all of the
components in the sample. We can easily see that, when we solve for K for any
component in equation [40], we will get an expression that includes the
concentrations of all of the components,

It is usually difficult, if not impossible, to quantify all of the components in
our samples. This is expecially true when we consider the meaning of the word
"components" in the broadest sense. Even if we have accurate values for all of
the constituents in our samples, how do we quantify the contribution to the
spectral absorbance due to instrument drift, operator effect, instrument aging,
sample cell alignment, etc.? The simple answer is that, generally, we can't. To
the extent that we do not provide CLS with the concentration of all of the
components in our samples, we might expect CLS to have problems. In the case
of our simulated data, we have samples that contain 4 components, but we only
have concentration values for 3 of the components. Each sample also contains a
random baseline for which "concentration" values are not available. Let's see
how CLS handles these data.

CLS Results

We now use CLS to generate calibrations from our two training sets, Al and
A2. For each training set, we will get matrices, K1 and K2, respectively,
containing the best least-squares estimates for the spectra of pure components
1 - 3, and matrices, K1, and K2, each containing 3 rows of calibration
-coefficients, one row for each of the 3 components we will predict. First, we
will compare the estimated pure component spectra to the actual spectra we
started with. Next, we will see how well each calibration matrix is able to
predict the concentrations of the samples that were used to generate that
calibration. Finally, we will see how well each calibration is able to predict the
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concentrations of the unknown samples contained in the three validation sets,
A3 through AS.

As we've already noted, the most difficult part of this work is keeping track
of which data and which results are which. If you find yourself getting
confused, you may wish to consult the data “crib sheet” at the back of this book (pre-
ceding the Index).

Estimated Pure Component Spectra

Figure 17 contains plots of the pure component spectra calculated by CLS
together with the actual pure component spectra we started with. The smooth
curves are the actual spectra, and the noisy curves are the CLS estimates. Since
we supplied concentration values for 3 components, CLS returns 3 estimated
pure component spectra. The left-hand column of Figure 17 contains the spectra
calculated from Al, the training set with the structured design. The right-hand
column of Figure 17 contains the spectra calculate from A2, the training set
with the random design.

We can see that the estimated spectra, while they come close to the actual
spectra, have some significant problems. We can understand the source of the
problems when we look at the spectrum of Component 4. Because we stated in
equation [40] that we will account for all of the absorbance in the spectra, CLS
was forced to distribute the absorbance contributions from Component 4 among
the other components. Since there is no "correct" way to distribute the
Component 4 absorbance, the actual distribution will depend upon the makeup
of the training set. Accordingly, we see that CLS distributed the Component 4
absorbance differently for each training set. We can verify this by taking the
sum of the 3 estimated pure component spectra, and subtracting from it the sum
of the actual spectra of the first 3 components:

Kresidunl = (Kl + I(2 + KS) - (Alpure + Azpure + A3pure) [41]

where:

K, Ky K; are the estimated pure component spectra
(the columns of K) for Components 1 - 3,

respectively;

Al pures A2y A e are the actual spectra for

Components 1 - 3.
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These K,gua (NOisy curves) for each training set are plotted in Figure 18
together with the actual spectrum of Component 4 (smooth curves).

Returning to Figure 17, it is interesting to note how well CLS was able to
estimate the low intensity peaks of Components 1 and 2. These peaks lie in an
area of the spectrum where Component 4 does not cause interference. Thus,
there was no distribution of excess absorbance from Component 4 to disrupt the
estimate in that region of the spectrum. If we look closely, we will also notice
that the absorbance due to the sloping baselines that we added to the simulated
data has also been distributed among the estimated pure component spectra. It is
particularly visible in K1, Component 3 and K2 Component 2.

Fit to the Training Set

Next, we examine how well CLS was able to fit the training set data. To do
this, we use the CLS calibration matrix K., to predict (or estimate) the
concentrations of the samples with which the calibration was generated. We
then examine the differences between these predicted (or estimated)
concentrations and the actual concentrations. Notice that "predict” and
"estimate" may be used interchangeably in this context. We first substitute K1,
and Al into equation [39], naming the resulting matrix with the predicted
concentrations K1,,,. We then repeat the process with K2, and A2, naming the
resulting concentration matrix K2.,.

Figure 19 contains plots of the expected (x-axis) vs. predicted (y-axis)
concentrations for the fits to training sets Al and A2. (Notice that the expected
concentration values for Al, the factorially designed training set are either 0.0,
0.5, or 1.0, plus or minus the added noise). While there is certainly a
recognizable correlation between the expected and predicted concentration
values this is not as good a fit as we might have hoped for.

K1 Residuals K2 Residuals

Figure 17. CLS estimates of pure component spectra.

Figure 18. Residuals of estimated pure component spectra (see text).
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Figure 19. Expected concentrations (x-axis) vs. predicted concentrations
(y-axis) for the fit to training sets Al and A2,

It is very important to understand that these fits only give us an indication
of how well we are able to fit the calibration data with a linear regression. A
good fit to the training set does not guarantee that we have a calibration with
good predictive ability. All we can conclude, in general, from the fits is that we
would expect that a calibration would not be able to predict the concentrations
of unknowns more precisely than it is able to fit the training samples. If the fit
to the training data is generally poor, as it is here, it could be caused by large
errors in the expected concentration values as determined by the referee
method. We know that this can't be the case for our data. The problem, in this
case, is mostly due to the presence of varying amounts of the fourth component
for which concentration values are unavailable.

Predictions on Validation Set

To draw conclusions about how well the calibrations will perform on
unknown samples, we must examine how well they can predict the
concentrations in our 3 validation sets A3 - AS. We do this by substituting A3 -
AS into equation [39], first with K1, then with K2, to produce 6
concentration matrices containg the estimated concentrations. We will name
these matrices K13,,, through K15,,, and K23,,, through K25,,,. Using this
naming system, K24, ., is a concentration matrix holding the concentrations for
validation set A4 predicted with the calibration matrix K2, that was generated
with training set A2, the one which was constructed with the random design.
Figure 20 contains plots of the expected vs. predicted concentrations for K13,
through K25.,... -
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Figure 20. Expected concentrations (x-axis) vs. predicted concentrations
(y-axis) for K13,,, through K23, (see text).

We can see, in Figure 20 that we get similar results when we use the two
calibrations, K1, and K2, to predict the concentrations in the validation sets.
When we examine the plots for K13, and K23,,,, the predictions for our
normal validation set, A3, we see that, while the calibrations do work to a
certain degree, there is a considerable amount of scatter between the expected
and the predicted values. For some applications, this might be an acceptable
level of performance. But, in general, we would hope to do much better.
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K14, and K24,,,, the predictions for the validation set, A4, whose samples
contain some overrange concentration values show a similar degree of scatter.
But remember that the scale of these two plots is larger and the actual
magnitude of the errors is correspondingly larger. We can also see a curvature
in the plots. The predicted values at the higher concentration levels begin to
drop below the ideal regression line. This is due to the nonlinearity in the
absorbance values which diminishes the response of the higher concentration

samples below what they would otherwise be if there were no nonlinearity.
K15, and K25,,,, the predictions for the validation set, AS, whose samples

res
contain varying amounts of a 5th component that was never present in the
training sets, are surprisingly good when compared to K13,,, and K23,,,. But
this is more an indication of how bad K13, and K23,,, are rather than how
good K15, and K25, are. In any case, these results are not to be trusted.
Whenever a new interfering component turns up in an unknown sample, the
calibration must be considered invalid. Unfortunatley, neither CLS nor ILS can

provide any direct indication that this condition might exist.

We can also examine these results numerically. One of the best ways to do
this is by examining the Predicted Residual Error Sum-of-Squares or PRESS.
To calculate PRESS we compute the errors between the expected and predicted
values for all of the samples, square them, and sum them together.

PRESS = Z (Cpredicted - Cexpecled )2 [42]

Usually, PRESS should be calculated separately for each predicted component,
and the calibration optimized individually for each component. For preliminary
work, it can be convenient to calculate PRESS collectively for all components
together, although it isn't always possible to do so if the units for each
component are drastically different or scaled in drastically different ways.
Calculating PRESS collectively will be sufficient for our purposes. This will
give us a single PRESS value for each set of results K1,,, through K25,.,. Since
not all of the data sets have the same number of samples, we will divide each of
these PRESS values by the number of samples in the respective data sets so that
they can be more directly compared. We will also divide each value by the
number of components predicted (in this case 3). The resulting press values are
compiled in Table 2.

Strictly speaking, this is not a correct way to normalize the PRESS values when
not all of the data sets contain the same number of samples. If we want to
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Klenl KZL
r PRESS SEC? r PRESS SEC?
Al 0191 .0204 .9456 - - -
A2 - - - 0127 .0159 .9310
A3 0171 .0143 9091 0188 .0173 .9100
Ad .0984 .0745 .9696 0697 .0708 .9494
AS 0280 .0297 .9667 0744 0688 .9107

Table 2. PRESS, SEC?, SEP?, and r for K1,,, through K25,.,.

correctly compare PRESS values for data sets that contain differing numbers of
samples, we should convert them to Standard Error of Calibration (SEC),
sometimes called the Standard Error of Estimate (SEE), for the training sets,
and Standard Error of Prediction (SEP) for the validation sets. A detailed
discussion of SEC, SEE and SEP can be found in Appendix B. As we can see in
Table 2, in this case, dividing PRESS by the number of samples and
components give us a value that is almost the same as the SEC and SEP values.

It is important to realize that there are often differences in the way the terms
PRESS, SEC, SEP, and SEE are used in the literature. Errors in usage also
appear. Whenever you encounter these terms, it is necessary to read the article
carefully in order to understand exactly what they mean in each particular
publication. These terms are discussed in more detail in Appendix II.

Table 2 also contains the correlation coefficient, r, for each K,,,. If the

.predicted concentrations for a data set exactly matched the expected

concentrations, r would equal 1.0. If there were absolutely no relationship
between the predicted and expected concentrations, r would equal 0.0.

The Regression Coeflicients

It is also interesting to examine the actual regression coefficients that each
calibration produces. Recall that we get one row in the calibration matrix, K,
for each component that is predicted. Each row contains one coefficient for each
wavelength. Thus, we can conveniently plot each row of K., as if it were a
spectrum. Figure 21 contains a set of such plots for each component for K1,
and K2,,,. We can think of these as plots of the "strategy" of the calibration
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showing which wavelengths are used in positive correlation, and which in
negative correlation.

We see, in Figure 21 , that the strategy for component 1 is basically the
same for the two calibrations. But, there are some striking differences between
the two calibrations for components 2 and 3. A theoretical statistician might
suggest that each of the different strategies for the different components is
equally statistically valid, and that, in general, there is not necessarily a single
best calibration but may be, instead, a plurality of possible calibrations whose
performances, one from another, are statistically indistinguishable. But, an
analytical practitioner would tend to be uncomfortable whenever changes in the
makeup of the calibration set cause significant changes in the resulting
calibrations.

Kicat - Comp 1 K2cal - Comp 1
0.1 ' — 0.1
0.05 0.05
0 0
0.05 -0.05
0.1 0.1
0 20 40 60 80 100 0 20 40 60 80 100
K1cal - Comp 2 K2cal - Comp 2
0.2 0.2
0.1 0.1
0 0
0.1 0.1 e
0 20 40 80 80 100 0 20 40 60 80 100
Kical - Comp 3 K2cal - Comp 3
0.1 — 0.1 —
0.05 0.05
0 0
. 0.05 -0.05
0.1 0.1
0 20 40 80 60 100 0 20 40 80 80 100

Figure 21. Plots of the CLS calibration coefficients calculated for each component
with each training set.
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CLS with Non-Zero Intercepts

There are any number of variations that can be applied to the CLS
technique. Here we will only consider the most important one: non-zero
intercepts. If you are interested in some of the other variations, you may wish to
consult the references in the CLS section of the bibliography.

Referring to equation [40], we can see that we require the absorbance at
each wavelength to equal zero whenever the concentrations of all the
components in a sample are equal to zero. We can add some flexibility to the
CLS calibration by eliminating this constraint. This will add one additional
degree of freedom to the equations. To allow these non-zero intercepts, we
simply rewrite equation [40)] with a constant term for each wavelength:

A = K G + K;,C, + + KC. + G
A, = K;C, + KypC, + + KC + G,
Ay, = KyC + KjCp o+ + Ky C, + G [43]
Aw = lecl + Kw2c2 + + chcc +Gw

We have named the constant term G to emphasize that adding a constant term
provides CLS a place to discard the "garbage," i.e. that portion of the
absorbance at each wavelength that doesn't correlate well with the
concentrations of the various components. Equation [43] still requires that we
account for all of the absorbances in the training set spectra. But, now we are no
longer required to distribute "spurious" absorbances from baseline effects,
additional components, etc., among the estimated pure component spectra of the
components we are trying to predict. Rewriting equation [43] in slightly greater
detail:

A, = K, + K;;)C, +
A, = K;C, + KpC, +
A, = K;C, + KpC, +

+ chcc + Glcg

+ K,.C. + G,C,

+ KJcCc + G3Cg [44]
Aw = lecl + Kw2c2 + + chcc +Gwcg

we see that each constant term G,, is actually being multiplied by some
concentration term C, which is completely arbitrary, although it must be

constant for all of the samples in the training set. It is convenient to set C, to
unity. Thus, we have added an additional "component" to our training sets
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whose concentration is always equal to unity. So, to calculate a CLS calibration
with nonzero intercepts, all we need to do is add a row of 1" to our original
training set concentration matrix.

C l l Cl2 wew C lS
Cy Cp .. Gy [45]
C, C, .. C.,

1 1 1 1

This will cause CLS to calculate an additional pure component spectrum for the
G®. It will also give us an additional row of regression coefficients in our
calibration matrix, K_,,, which we can, likewise, discard.

Let's examine the results we get from a CLS calibration with nonzero
intercept. We will use the same naming system we used for the first set of CLS
results, but we will append an "a" to every name to designate the case of
non-zero intercept. Thus, the calibration matrix calculated from the first training
set will be named K1a,,,, and the concentrations predicted for A4, the validation
set with the overrange concentration values will be held in a matrix named
K14a,.,. If you aren't yet confused by all of these names, just wait, we've only
begun. Figure 22 contains plots of the estimated pure component spectra for the
2 calibrations. We also plot the "pure spectrum” estimated by each calibration
for the Garbage variable. Recall that each pure component spectrum is a column
in the K matrices K1a and K2a.

Examining Figure 22, we see that Garbage spectrum has, indeed, provided a
place for CLS to discard extraneous absorbances. Note the similarity between
the Garbage spectra in Figure 22 and the residual spectra in Figure 18. We can
also see that CLS now does rather well in estimating the spectrum of
Component 1. The results for Component 2 are a bit more mixed. The
calibration on the first training set yields a better spectrum this time, but the
calibration on the second training set yields a spectrum that is about the same,
or perhaps a bit worse. And the spectra we get for Component 3 from both
training sets do not appear to be as good as the spectra from the original
zero-intercept calibration.

But the nonzero intercepts also allow an additional degree of freedom when
we calculate the calibration matrix, K. This provides additional opportunity to
adjust to the effects of the extraneous absorbances.

Classical Least-Squares
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Figure 22. CLS estimates of pure component spectra, nonzero intercept

calibration.
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Figure 23 contains plots of the expected vs. predicted concentrations for all
of the nonzero intercept CLS results. We can easily see that these results are
much better than the results of the first calibrations. It is also apparent that when
we predict the concentrations from the spectra in AS, the validation set with the
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Figure 23. Expected concentrations (x-axis) vs. predicted concentrations (y-axis) for
nonzero intercept CLS calibrations (see text).

unexpected Sth component, the results are, as expected, nearly useless. We can
now appreciate the value of allowing nonzero intercepts when doing CLS.
Especially so when we recall that, even if we know the concentrations of all the
constituents in our samples, we are not likely to have good "concentration” values
for baseline drift and other sources of extraneous absorbance in our spectra.

To complete the story, Table 3 contains the values for PRESS, SEC’, SEP?,
and r, for this set of results.
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Kla_, K2a,
- PRESS SEC* r PRESS SEC* r
Al - 0026 .0034 .9924 - - -
A2 - - - 0052 .0059 9723
A3 .0030 .0033 .9844 0074 .0075 .9622
A4 0084 .0089 .9934 0294 .0297 9781
AS 1763 1920 .8576 1148 1261 9016

Table 3. PRESS, SEC?, SEP?, and r for K1a_, through K25a__.

Some Easier Data

It would be interesting to see how well CLS would have done if we hadn't
had a component whose concentration values were unknown (Component 4). To
explore this, we will create two more data sets, A6, and A7, which will not
contain Component 4. Other than the elimination of the 4" component, A6 will
be identical to A2, the randomly structured training set, and A7 will be identical
to A3, the normal validation set. The noise levels in A6, A7, and their
corresponding concentration matrices, C6 and C7, will be the same as in A2, A3,
C2, and C3. But, the actual noise will be newly created—it won't be the exact
same noise. The amount of nonlinearity will be the same, but since we will not
have any absorbances from the 4 component, the impact of the nonlinearity will
be slightly less. Figure 24 contains plots of the spectra in A6 and A7.

We perform CLS on A6 to produce 2 calibrations. K6 and K6, are the
matrices holding the pure component spectra and calibration coefficients,
respectively, for CLS with zero intercepts. K6a and K6a _, are the corresponding
matrices for CLS with nonzero intercepts.

Figure 24. Absorbance spectra with noise added.
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Figure 25 contains plots of the pure component spectra for the two
calibrations. It is apparent that, in the absence of the extraneous absorbances
from Component 4, CLS is now able to do a good job of estimating the pure
component spectra. However, even with nonzero intercepts, CLS is unable to
remove the sloping baseline from the spectra. Both calibrations distributed most
of the baseline effect onto the spectrum for Component 2 and some onto the
Component 3 spectrum.

Figure 26 contains plots of the expected vs. predicted concentrations using
K6, and K6a,,. We see that the results are now much better. Notice that the
predictions, K63,,, and K63a,,,, for the original validation set A3, show a lot of
points with large errors. This is exactly what we would expect when we recall
that A3 has spectral contributions from Component 4. Thus, the samples in A3
contain varying amounts of an unexpected interferent that was not present in the
training set.

Table 4 contains the values for PRESS, SEC? SEP? and r, for this set of
results. We see from these last results that CLS can work quite well under the
right conditions. In particular, it is important that we provide concentration
values for all of the components present in the training sample.

Recognizing the difficulty satisfying the requirements for successful CLS,
you may wonder why anyone would ever use CLS. There are a number of
applications where CLS is particularly appropriate. One of the best examples is
the case where a library of quantitative spectra is available, and the application
requires the analysis of one or more components that suffer little or no
interference other than that caused by the components themselves. In such
cases, we do not need to use equation [33] to calculate the pure component
spectra if we already have them in a library. We can simply construct a K
matrix containing the required library spectra and proceed directly to equation
[34] to calculate the calibration matrix K.,,.
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Figure 25. CLS estimates of pure component spectra.
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Figure 26. Expected concentrations (x-axis) vs. predicted concentrations
(y-axis) for CLS calibrations (see text).
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i K6“| K6atnl
A6 .0039 .0034 .9924 .0039 .0059 .9723
A7 .0048 .0033 .9844 .0046 .0075 .9622
A3 0599 .0089 .9934 0591 .0297 9781

Table 4. PRESS, SEC?, SEP?, and r for K6,,, and K6a_,, results.

Inverse Least-Squares

Inverse least-squares (ILS), sometimes known as P-matrix calibration, is
so called because, originally, it involved the application of multiple linear
regression (MLR) to the inverse expression of the Beer-Lambert Law of
spectroscopy:

C =PA [46]
Equation {46] is a matrix equation. Notice the similarity of this equation and
equation [39]. For clarity, we can expand this equation to give:

Ci=PyA + PA, + + PLA,
C, = PyA, + PpA;, + + PA,
C = PyA + PuA, + + PyA, [47]
Cc= PyA + PLA, + .. + PLA,

where:
A, is the absorbance at the w* wavelength

P, is the calibration coefficient for the c™ component at
the w" wavelength

C. is the concentration of the ¢ component

Computing the Calibration

To produce a calibration using inverse least-squares, we start with a training
set consisting of a concentration matrix, C, and an absorbance matrix, A, for
known calibration samples. We then solve for the calibration or regression
matrix, P. P contains the calibration, or regression, coefficients which are used
to predict the concentrations of an unknown from its spectrum. P will contain
one row of coefficients for each component being predicted. Each row will have
one coefficient for each spectral wavelength. Thus, P will have as many
columns as there are spectral wavelengths.

Since the data in C and A contain noise, there will, in general, be no exact
solution for equation [46], so, we must find the best least-squares solution..In
other words, we want to find P such that the sum of the squares of the errors is

71
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minimized. The errors are the difference between the measured concentrations,
C, and the concentrations calculated by multiplying P and A:

errors = PA - C (48]

To solve for P, we first post-multiply each side of the equation by AT, the
transpose of the absorbance matrix.

CA™= PAA" (49]

Recall that the matrix AT is formed by taking every row of A and placing it as a
column in AT, Next, we eliminate the quantity [A AT] from the right-hand side
of equation [49]. We can do this by post-multiplying each side of the equation
by [A AT]", the matrix inverse of [A AT].

CATAAT]! = P[AATJ[A A™]" [50]

[A AT]" is known as the pseudo inverse of A. Since the product of a matrix and
its inverse is the identity matrix, [A AT] [A AT]" disappears from the right-hand
side of equation [50] leaving

CATAA]! = P [51]

In order for the inverse of [A AT] to exist, A must have at least as many
columns as rows. Since A has one column for each sample and one row for
each wavelength, this means that we must have at least as many samples as
wavelengths in order to be able to compute equation [51]. In our case, we have
spectra of 100 wavelengths each, but only 15 samples in our training set.
Obviously we have a problem here. If we were working with actual spectra
measured at each of 300, or 1500 wavelenths, it would not generally be
practical to assemble enough samples to use ILS. For equation [51] to be
meaningful, we also must have at least as many wavelengths as there are
components.

It is because of this requirement for at least as many samples as wavelengths
that CLS is often called a (or the) whole spectrum method to contrast.it with
ILS. In fact the term is frequently employed in a derogatory way with respect to
ILS to suggest that ILS is, by contrast to CLS, not a whole spectrum method.
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We have two ways to proceed. We can either select up to 15 individual
wavelengths from our 100 wavelength spectra, or we can search for a way to
condense these 100 wavelengths into some smaller set of numbers. There are
many examples in the literature of the first approach. These examples are often
part of a publication that purports to show that ILS does not, in general, produce
calibrations that perform as well as those produced by CLS. Usually
calibrations developed with a relatively small number of wavelengths that are
selected in a casual way will generally not perform as well as a calibration
developed with the benefit of signal averaging the noise of 100 or 1000
individual wavelengths. On the other hand, calibrations developed with
optimally selected wavelengths can perform extremely well.

It is important to note that there are many publications which discuss
optimal ways of selecting individual spectral wavelengths for use with ILS.
Much of this work comes from the near infrared (NIR) community. It provides
many examples of the power of intellegent wavelength selection. Unfortunately
these methods often require more computional time and power than is
convenient.

We can also condense the dimensionality of our spectra in other ways. One
of the most common, and often one of the best, ways is to work with integrated
areas of analytically important spectral peaks. We will see in the next chapters,
that the factor based methods, PCR and PLS, are nothing more than ILS
conducted on data that is first optimally compressed.

Predicting Unknowns

Now that we have calculated P, we can use it to predict the concentrations
in an unknown sample from its measured spectrum. First, we place the spectrum
into a new absorbance matrix, A,,. We can now use equation [46] to give us a
new concentration matrix, C,,, containing the predicted concentration values
for the unknown sample. Notice the similarity to equation [39].

Cunk = P Aunk [52]
Notice the similarity of equation [52] to equation [39].

Condensing the Data

Our synthetic data simulate spectra that are measured at 100 discrete
wavelengths. But, we only have 15 spectra in our training set. Thus, before we
can perform ILS on our data, we must first condense our training set data to ne
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more than 15 individual data points per spectrum. Another way of saying this is AA1 AA2Z
that the spectral data has an original dimensionality of 100, and we have to
reduce the dimensionality to 15 or less. At this point, we would normally define
some number of analytical regions over which to integrate the spectra. Our
choice of regions would be based upon what we know about the samples and
the spectral activity of their components. If this selection of regions is
performed well, it will usually lead to a calibration that works well.
Unfortunately, this process can be very labor intensive. For our purposes, we
will not worry about finding an optimum set of analytical regions. In fact, we
will use a basic, simple-minded approach that we would expect, in general, is
not optimum. We will simply sum our spectra into 10 "bins" of 10 wavelengths
each. For each spectrum, the absorbances at wavelengths 1 through 10 will be
added together and placed into the first "bin." The sum of the absorbances at
wavelengths 11 through 20 will be placed into the second bin, and we will
continue in this fashion until all the wavelengths have been summed into their
respective bins. The result, for each data set, is a set of condensed (and possibly
degraded) spectra of 10 data points each. Since we have 15 samples in each
training set, we will be able to apply ILS to these condensed spectra. Figure 27
contains plots of the condensed spectra we will use in place of the original
spectra in Al through AS. The matrices containing the condensed spectra are
named AA1 through AAS, respectively.

These condensed spectra certainly don't look like much. We can see that Figure 27. Condensed spectra for ILS.
many of the spectra in AA4 have higher absorbances than the two training sets.
Also, some extraneous looking peaks can be seen in AAS.

ILS Results

We now can subject the condensed data to ILS. We will generate two
calibration matrices: P1 from the condensed spectra training set with the Pl P2
structured design, AA1 and C1, and P2 from the training set with the random ) X
design AA2 and C2. We will then use these calibrations to predict the PRESS SEC" r PRESS SEC* r
concentrations from all the sets of condensed spectra AAl through AAS. AAl 0007 .0024 .9980 - - -
Following our naming convention, we will assemble the results in matrices
named P1,, through P25,,,. P1,,, will hold the concentrations for the training set AA2 - - - .0003 .0011 .9983
AAL1 predicted by P1, the calibration generated by that training set. P24,,, will
hold the concentrations predicted for validation set AA4 using calibration P2, AA3 0057 0052 9720 0043 0044 9803
etc. Remember, all of these names are summarized in the crib sheet inside the ’ ’
back cover. Figure 28 contains plots of the expected vs. the predicted AA4 0043 .0045 9961 0136 0124 .9960
concentrations for all of the data sets. Table 5 contains the values for PRESS, AAS 2537 .2603 .8341 2397 2043 .8238

SEC?, SEP?, and r, for this set of results. Table 5. PRESS, SEC?, SEP?, and r for P1,,, through P25, ..
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Figurc 28. Expected concentrations (x-axis) vs. predicted concentrations (y-axis) for
nonzero intercept ILS calibrations (see text).

" We can see that the ILS calibrations are noticeably better than the CLS
calibrations done with zero intercept. And they are as good or somewhat better
that the CLS calibrations with nonzero intercept. This is remarkable when we
consider how badly we have degraded the spectra when we condensed them! The

main reason for the advantage of ILS over CLS can be seen in equation [47].
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Unlike CLS, ILS does not require that we provide concentration values for af/ of
the components present. In equation [47], we are not trying to account for all of
the absorbances in the spectra. Instead, the formulation allows us to pick up only
that portion of the spectral absorbance that correlates well to the concentrations.
If ILS is able to do so well with degraded spectra, imagine how much better we
might do if we can find a more optimum way of reducing the dimensionality of
the spectra than simply summing them into bins. That is precisely what PCR and
PLS will do for us.
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Every lady in this land
Has 20 nails upon each hand
5 and 20 on hands and feet
All this is true without deceit.
— Auld English Rime

Factor Spaces

We are about to enter what is, to many, a mysterious world—the world of
factor spaces and the factor based techniques, Principal Component Analysis
(PCA, sometimes known as Factor Analysis) and Partial Least-Squares (PLS) in
latent variables. Our goal here is to thoroughly explore these topics using a
data-centric approach to dispell the mysteries. When you complete this chapter,
neither factor spaces nor the rhyme at the top of this page will be mysterious
any longer. As we will see, it's all in your point of view.

Eliminating the Barriers

Many analytical practitioners encounter a serious mental block when
attempting to deal with factor spaces. The basis of the mental block is twofold.
First, all this talk about abstract vector spaces, eigenvectors, regressions on
projections of data onto abstract factors, etc., is like a completely alien
language. Even worse, the techniques are usually presented as a series of
mathematical equations from a statistician's or mathematician's point of view.
All of this serves to separate the (un?)willing student from a solid relationship
with his data; a relationship that, usually, is based on visualization. Second, it is
often not clear why we would go through all of the trouble in the first place.
How can all of these "abstract", nonintuitive manipulations of our data provide
any worthwhile benefits?

Our first task is to knock this barrier down to size. Instead of facing a brick
wall, we should simply become aware that we are about to cross over a
threshold, and a low threshold, at that. This author feels uniquely qualified to
guide you over this threshold, having, himself, become a chemist because of a
pronounced aversion to heavy mathematics.

The first step in our journey is to realize that there is nothing so unusual
about these factor-based techniques. In fact, it is likely that you have already
used one or more factor spaces in your studies or your work without even
realizing it! You see, a factor space is nothing more than a particular coordinate
system that offers certain advantages to the task at hand. When we operate in a
factor space, instead of the native data space, we are simply mapping our data

79
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into a new coordinate system. We are not actually changing the data itself. The
operation is no more difficult or mysterious that converting from rectangular to
polar coordinates, and back again. Some factor spaces you might already have
used are:

1. Polar Coordinates. Yes, this is a type of factor space. We might use
polar coordinates when we are mapping electron densities, seasonal
population variations, or anytime it makes our work more convenient or
allows us to better visualize or understand our data.

2. Fourier Series. Most of us are quite comfortable with the concept (if not
the mathematics) of mapping a signal or other data back and forth
between the time domain to the frequency domain. When we take a time
domain signal and represent it as a combination of cosine waves, this is
nothing more than a transformation of our coordinate system. The
coordinates of the signal are changed from time and amplitude to
frequency and amplitude. The signal, itself, is unchanged.

3. Taylor Series. Most of us have practiced how to approximate a curve
over a bounded region as a series of power terms: y =a, + a,x + 2, ... .
But, we probably never realized that each power term x, X’ ..., can be
considered as a new coordinate axis, and each coefficient a,, a,, ..., is
simply the new coordinate on its respective axis.

4. Eigenvectors and PCA. This is the factor space we are about to explore.
We will be working with a factor space defined by the eigenvectors of
our data simply because a coordinate system of eigenvectors has certain
properties that are convenient and valuable to us.

5. PLS. Also on our agenda. We will soon see that PLS is simply a variation
of PCA.

Very often, the axes of the new coordinate system, or factor space are
chosen to be mutually orthogonal, but this is not an absolute requirement. Of
the above examples, the axes chosen for 3 and 5 are generally not mutually
orthogonal.

There are several reasons why we might want to use the coordinate system
of a factor space rather than the native space comprised of physically
meaningful coordinates:

1. Numerical conditioning. By mapping our data from the native
coordinate system into an appropriate factor space, we can eliminate
problems caused by highly colinear data such as a set of very similar
spectra. This can reduce calculation round-off errors and make it possible
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to perform calibrations that are difficult or impossible in the normal
coordinate space.

2. Reduced assumptions. By using an appropriate factor space, we may be
able to eliminate some assumptions about our data that aren't always
completely true. Examples of assumptions that can hurt us are: linearity
of the data, independence of samples, number of components.

3. Noise rejection. Factor spaces can provide a superior way of removing
noise from our data.

4. New insights into the data. Mapping our data into an appropriate factor
space can provide a new frame of reference wherein patterns that were
not apparent in the native coordinate space become evident. Factor spaces
can help us understand how many components are actually present, or
which samples are similar or different to which other samples.

5. Data compression. As mentioned in the previous chapter, PCA and PLS
provide us with an optimum way to reduce the dimensionality of our data
so that we can use ILS to develop calibrations.

Visualizing Multivariate Data

We have already touched on the need to visualize our multivariate data in a
multivariate way. We will now consider this topic in more detail. Earlier, we
mentioned that Figure 1 contains the most important concepts in this entire
book. The next series of figures are the second most important. Once you
understand the concepts in the next few figures, you will be well on your way to
mastering the factor-based techniques.

Let's consider a hypothetical set of spectral measurements on a two
component system. We will measure our spectral absorbances at three separate
wavelengths. Each of the two components absorbs a different amount of light at
each of the three wavelengths. To make things simple, let's start with the case
were there is no noise, no baseline drift, and no nonlinearities. In other words,
we will discuss the perfectly linear, noise-free case. Referring to Figure 29, we
recall that we can plot the spectrum of any mixture of these two components as
a unique point in a 3-dimensional space. The absorbance at each wavelength of
the 3-wavelength spectrum is plotted along a separate axis.

First, consider a blank sample in which the concentration of both
components is equal to zero. With no absorbing species in the sample, there
would be no absorbance at any of the wavelengths, and the spectrum would be
plotted at [0, 0, 0], the origin of this absorbance data space. Now, consider the
spectrum of a sample that contains 1 concentration unit of Component 1 and
none of Component 2. This spectrum will have some absorbance at each of the
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3 wavelengths. We can plot this spectrum in the 3-dimensional space by
plotting the absorbance of the first wavelength along one axis, the absorbance
of the second wavelength along, another axis, and the absorbance of the third
wavelength along the remaining axis as shown in Figure 29.

Next, let's consider the spectrum of a sample that contains 2 -concentration
units of Component 1 and none of Component 2. In this perfectly linear,
noise-free case, when we double the concentration of Component 1, the
absorbance at each of the wavelengths will also double. We have also plotted
this second spectrum in Figure 29. It lies along the same direction from the
origin as the first spectrum and at twice the distance.

In similar fashion, we have plotted the spectrum of a third sample which
contains 3 concentration units of Component 1 and none of Component 2. Of
course, this spectrum also lies in the same direction from the origin as the first
spectrum and at 3 times the distance. It is clear that, when we use this approach
to plot the spectra of samples which contain only Component 1, each such
spectrum must lie somewhere along a line extending from the origin of the data
space in some unique direction that is determined by the relative absorbances of
Component 1 at each of the wavelengths plotted.

Now let's consider a sample that has 1 concentration unit of Component 2
and none of Component 1. Since the spectrum of Component 2 is different from
that of Component 1, this sample has absorbances at each of the 3 wavelengths
that are different from those of the samples plotted in Figure 29. The spectrum

Figure 29. Multivariate plot of 3-wavelength spectra for samples containing
only Component 1.
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for this sample is plotted in Figure 30. Notice that, since the spectrum for this
sample is different from the spectrum of Component 1, it must lie in some other
direction from the origin and at some other distance. We should also realize that
the angle between this sample and the first three samples is totally arbitraty. It
will depend solely on the nature of the differences in the spectra of the two
components. We can continue to plot spectra of samples which contain only
different concentrations of Component 2, just as we did for the samples that
contained only Component 1. A total of three such samples are plotted in
Figure 30.

Next, let's consider the spectrum of a sample that contains both components
together: 2 concentration units of Component 1 and 3 concentration units of
Component 2. Figure 31 contains a plot of this sample. The heavy X* are
plotted to indicate the absorbance contribution from each of the pure
components in the sample, Since the contribution to the absorbance at each
wavelength from each component adds linearly, the spectrum of the mixture is
identical to the vector addition of the spectra of the pure components. Thus, it is
apparent that, if we were to plot the spectrum of any mixture of these two
components, it must be located somewhere in the plane determined by the lines
which lie along the directions of the two pure component spectra. Notice that
these lines that define the plane do not have to be perpendicular to each other.
Indeed, they will usually not be mutually orthogonal. Figure 32 shows a plot of
a number of such samples for this noise-free, perfectly linear case.
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Figure 30. Multivariate plot of 3-wavelength spectra for samples containing
only Component 2.
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Figure 31. Multivariate plot of 3-wavelength spectra for samples containing both
Component 1 and Component 2.

We can easily see that, even though each spectrum was measured at three
wavelengths, all of the spectra in Figure 32 lie in a plane. Suppose that instead
.of measuring at only three wavelengths, we measured each spectrum at 100
different wavelengths. If we were able to plot these 100-dimensional spectra on
a two dimensional page, we would see that all of the spectra would lie in a
2-dimensional plane oriented at some angle in the 100-dimensional hyperspace.

Figure 32. Multivariate plot of 3-wavelength spectra for samples containing
varying amounts of Component 1 and Component 2. In this noise-free, linear
case, all of the specra must lie in a plane.
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If we could find a pair of axes that lay in this plane, we could use these axes
as the basis of a new coordinate system. We could then simply specify each
spectrum in terms of its distance along each of the two axes of our new
coordinate system. Notice that this doesn't change the data at all. The data
points do not move when we change coordinate systems. This is no different
than deciding to define a point in space in terms of its polar coordinates rather
than its rectangular coordinates. We would no longer need to provide 100
individual numbers to identify each spectrum by its 100-dimensional spectrum.
We could, instead specify each spectrum of this 2 component system by just
two numbers, the distances along each new coordinate axis. By extension, the
spectra of a 3 component system would require three numbers, a 4 component
system 4 numbers, etc.

Welcome to Our Abstract Factor Space

What does all of this have to do with factor spaces? Any pair of axes lying
in the plane which holds the spectra comprise a factor space for that data. Each
axis is a factor of the data space. These are usually called abstract factors
because they usually do not have an easily interpretable physical meaning.
Instead of specifying each spectrum in terms of its 100 wavelengths, we would
specify each spectrum in terms of its projections onto the factors. These
projections are often called the scores. Note that the projections of a spectrum
onto the factors is nothing more than the distance of that spectrum along the
direction of each factor. If we have two factors, as we do in this case, we get
two projections, one for each factor. Thus, we can compress the 100-dimension
spectra into 2 dimensions without any distortion of the data. The data remain
unharmed, because none of the data points has been changed in any way. We
have simply found a more efficient way to express the data. So we have seen
that the concept of "working with the projections of our data onto an abstract
factor space" is nothing more than a long, obfuscative way of saying that we are
using a more convenient coordinate system.

So, we have crossed into the formerly mysterious world of factor spaces. In
doing so, we have discovered that the barrier to entry was not a brick wall, but
merely a threshold after all.

Finding the Factors

Now let's consider how we find a pair of axes that lie in the plane containing
these data. Let's not aim to find just any two axes. It would be convenient to
have factors that are mutually orthogonal, so that changes along one axis do not
interact with changes along the second axis. Let's also try to find the set of
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factors that span our data as efficiently as possible. As we will soon see,
insisting that each factor is as efficient as possible is key to their utility.

Beginning with the data in Figure 32, let's find the single axis that most
efficiently spans the data points. In other words, we are looking for the axis that
captures as much of the variation, or variance, in the data as it possibly can. Yet
another way of saying this is that we want to find the unique axis in this
3-dimensional absorbance space for which the sum of the squares of the
distances of all the data points from that axis is a minimum. It turns out that this
axis is exactly the same thing as the first eigenvector for this set of data. In
other words, if we put all of the spectra into an absorbance matrix, and calculate
the first eigenvector for that matrix, that eigenvector will be such that the
squares of all the distances between the vector and all of the data points will be
the minimum possible. This means that this first eigenvector spans the
maximum variance of the data that can be spanned with a single vector. That is
why this eigenvector is also called the first principal component of this data set.
Figure 33 contains a plot of the first eigenvector for the data. Figure 34 contains
different views of the same plot, one view edge on to the plane containing the
points, and a second view looking down onto the plane perpendicularly. These
views make it easy to see that the eigenvector lies in the plane containing the
data. This eigenvector must lie in the plane of the data points if it is to span the
maximum possible variance in the data. Stated another way, any motion of the
eigenvector above or below the plane of the data, will increase the sum of the
squares of the distances of the points to the vector,

Figure 33. The data from Figure 32 plotted together with the first eigenvector (factor)
for the data.
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Figure 34. The data from Figure 32 plotted together with the first eigenvector (factor)
for the data.

Now let's find the next vector that spans the maximum possible amount of
the remaining variance that was not spanned by the first factor. It turns out that
this vector is identical to the second eigenvector of the data. This vector must be
orthogonal to the first factor. If it were not orthogonal, it could not capture the
maximum amount of the remaining variance. It must also lie in the plane of the
data for the same reason. Figure 35 contains a plot of the data together with the
first two factors. Figure 36 shows two different views that make it easy to see
that both factors lie in the plane of the data and are perpendicular to each other.

Figure 35. The data from Figure 32 plotted together with the first two eigenvectors
(factors) for the data.
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Figure 36. The data from Figure 32 plotted together with the first two eigenvectors
(factors) for the data.

So we have found a pair of axes that we can use as the basis of a new
coordinate system. And since each axis spans the maximum possible amount of
variance in the data, we can be assured that there are no axes that can serve as a
more efficient frame of reference than these two. Each axis is a factor or
principal component of the data. Together, they comprise the basis space of this
data set.

Even though two factors are all we need to span this data, we could find as
many factors as there are wavelengths in the spectra. Each successive factor is
identical to each successive eigenvector of the data. Each successive factor will
capture the maximum variance of the data that was not yet spanned by the
earlier factors. Each successive factor must be mutual orthogonal to all the
factors that precede it. Let's continue on and plot the third factor for this data
set. The plots are shown in Figures 37 and 38.
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Figure 37. The data from Figure 32 plotted together with all 3 eigenvectors (factors)
for the data.
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Figure 38. The data from Figure 32 plotted together with all 3 eigenvectors (factors)
for the data.

We can see that the third factor is, indeed, orthogonal to the previous two.
In these plots, each factor has been plotted at a different length for clarity. In
reality, since each vector merely serves to define the direction of a coordinate
axis, its length, or magnitude, is irrelevant. The length of the vectors is typically
normalized to unity. Similarly, the sign of the vector is completely arbitrary. In
fact, different algorithms for calculating the eigenvalues of a data set will
produce the same eigenvectors, but the signs of the individual vectors will often
be different. :

Eigenvalues

Each eigenvector has an eigenvalue associated with it. The eigenvalue of a
eigenvector is equal to the sum of the squares of the projections of the data onto
the eigenvector. Remember, the projections are nothing more than the distance
along the vector of each data point. The eigenvalue is, thus, a measure of the
total variance captured, or spanned, by the eigenvector. Table 6 contains the
eigenvalues for the 3 eigenvectors of the data we have been considering.

Eigenvector # Eigenvalue
1 30.5390
2 1.7298 _
3 0.0000

Table 6. Eigenvalues of the eigenvectors for the data in Figure 32.
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We notice that the eigenvalue of each successive eigenvector is less than
that of its predecessor. This makes sense because each eigenvector captures the
maximum possible variance it can. Each succeeding eigenvector is capturing
the variance in the residuals that are left behind by all of its predecessors. Since
the residuals must get smaller and smaller, each successive eigenvector has less
and less variance available for capture, so each successive eigenvalue must be
smaller than the ones preceeding it. We also notice that the eigenvalue of the
last eigenvector is exactly zero. This also makes sense because, for this
noise-free, prefectly linear case, all of the data lie precisely in the plane defined
by the first two eigenvectors. Since the third eigenvector must be orthogonal to
the other two, it must be orthogonal to the plane holding the data. Thus, the
projection of each data point onto the third eigenvector must be exactly zero.

Data with Noise

Now we are ready to consider what happens if the data are noisy. We will
take the data we just used and add some noise to it. We will add normally
distributed noise to each wavelength of each spectrum at a level of
approximately 5%. It is important to understand that, within a given spectrum,
the particular amount of noise added to each wavelength is independent of the
noise added to the other wavelengths. And, of course, the noise we add to each
spectrum is independent of the noise added to the other spectra. In other words,
there is no correlation to the noise. Figure 39 contains a plot of the data before
and after the addition of the noise. Figure 40 show two other views of the data
after the additon of the noise.

Figure 39. The data from Figure 32 before the addition of noise (x) and after the
addition of noise (o).
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Figure 40. The data from Figure 32 after the addition of noise.

We can see that the effect of the noise has been to displace each data point
from its original location. Since, for each spectrum, the amount of noise at each
wavelength is independent of the noise at the other wavelengths, each data point
is moved a different, randomly determined distance, in a different, randomly
determined direction. Since the direction and distance each data point moved is
totally random, we can say that the noise is isotropic, that is, uniform in all
directions of this data space. While the displacements have a component within
the original plane of the data, they also have a component perpendicular to the
original plane of the data. Thus, we see in Figure 40, that the points no longer
all lie perfectly within the original plane.

Next, we find the first eigenvector of the noisy data set and plot it in Figures
41 and 42. We see that it is nearly identical to the first eigenvector of the noise

Figure 41. The noisy data from Figure 39 plotted together with the first eigenvector
(factor) for the data.
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Figure 42. The noisy data from Figure 39 plotted together with the first eigenvector
(factor) for the data.

free data. If we look extremely closely, we can detect a very slight displacement
as compared to the noise-free eigenvector. This makes sense when we realize
that, in capturing the maximum possible variance in the data by minimizing the
sum of the squares of the distances from the vector to the data points, the vector
has simultaneously performed a least-squares average of all the noise in the
data.

Continuing, we find the second eigenvector for the noisy data. Figures 43
and 44 contain plots of the first two eigenvectors for the noisy data. Again, the
second eigenvector for the noisy data is nearly identical to that of the noise-free
data.

Figure 43. The noisy data from Figure 39 plotted together with the first two
eigenvectors (factors) for the data.
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Figure 44. The noisy data from Figure 39 plotted together with the first two
eigenvectors (factors) for the data. :

Completing the cycle, we calculate the third eigenvector for the noisy data.
Figures 45 and 46 contain the plots of all three eigenvectors for the noisy data.

Figure 45. The noisy data from Figure 39 plotted together with all three eigenvectors
(factors) for the data.
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Figure 46. The noisy data from Figure 39 plotted together with all three eigenvector
(factors) for the data.

Finally, we calculate the eigenvalues for these eigenvectors. They are show
in Table 7 together with the eigenvalues for the noise free data.

Discarding Some Noise

Referring to Table 7, we see that the eigenvalue for the third eigenvector o
the noisy data is no longer equal to zero. Of course, this makes perfect sens
because the noisy data no longer lie exactly in a plane and so the thir
eigenvector is now able to capture some variance from the data.

Let's consider the nature of the variance spanned by the third eigenvecto
We know that it cannot contain any information that is related to th
concentrations of the components in the samples because that information ca
only lie in the plane of the original data. Thus, the Information-to-Noise ratio o
the variance spanned by this eigenvector must be zero.

Since, we made this data ourselves, we know with certainty that it contain
only two components (and it is perfectly linear). So we know that, no matte
how many individual wavelengths we decide to use when we measure th

Noise-free Noisy
Eigenvector # Eigenvalue Eigenvalue
1 30.5390 30.5880
2 1.7298 1.6394
3 0.0000 0.3621 -

Table 7. Eigenvalues of the eigenvectors for the data in Figures 32 and 39.
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spectra, the information in those spectra must all lie in some plane in the
n-dimensional spectral space. Therefore, we can confidently decide to discard
that portion of the variance in the data that displaces the data points out of the
plane. We will soon see that there are ways to determine how many vectors to
discard in the absence of the kind of a priori information we have in this case.

So, we can discard the third eigenvector and, along with it, that portion of
the variance in our spectra that displaced the data out of the plane of the
noise-free data. We are in fact, discarding a portion of the noise without
significantly distorting the spectra! The portion of the noise we discard is called
the extracted error or the residuals. Remember that the noise we added also
displaced the points to some extent within the plane of the noise-free data. This
portion of the noise remains in the data because it is spanned by the
eigenvectors that we must retain. The noise that remains is called the imbedded
error. The total error is sometimes called the real error. The relationship
among the real error (RE), the extracted error (XE), and the imbedded error (IE)
is

RE? = IE? + XE? [53]

The eigenvectors that we discard are sometimes called the error eigenvectors,
noise eigenvectors, or secondary eigenvectors. The eigenvectors we keep are
called the basis vectors, principal components, loadings, primary eigenvectors,
or factors, of the data. The number of factors that we retain is called the rank, or
the dimensionality, of this subset of the data. It is important to remember that
we are assuming here that we are correctly discarding all the vectors that model
only noise.

Since the noise is isotropic, each vector, whether a noise vector or a basis
vector, picks up its equivalent share of the noise (we will see, soon, that we
should take degrees-of-freedom into account when discussing what amount of
noise is an equivalent share for each vector). If we had measured the spectra of
our 2-component system at 100 wavelengths, we would, potentially be able to
discard 98 out of a possible 100 eigenvectors. In doing so, we would expect to
discard more noise than we can in this case.

This process of discarding the noise eigenvectors to extract some of the

noise from the data is sometimes called short circuit data reproduction. A more
convenient term is regeneration.
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Let's see what our data look like when we regenerate it after discarding the
variance spanned by the third eigenvector. Figure 47 contains a plot of the
regenerated data and the original, noise-free data. If we compare this plot to the
plot in Figure 39, we see that the regenerated points, as a whole, lie closer to the
noise-free points than do the original noisy points. We can also see this
numerically. If we calculate the sum of the squares of the differences between
the noise-free data and the noisy data we get 0.2263. The same calculation with
the regenerated data yields 0.1623.

Figure 48 is an edge-on view of the plane of the original noise-free data
together with the regenerated data. We can see that the regenerated data lie
exactly in a plane, but this plane is not precisely in line with the plane of the
original, noise-free data. This is because, the noise in the data deflected the first
eigenvector of the noisy data slightly above the plane of the noise-free data.

So now we understand that when we use eigenvectors to define an "abstract
factor space that spans the data," we aren't changing the data at all, we are
simply finding a more convenient coordinate system. We can then exploit the
properties of eigenvectors both to remove noise from our data without
significantly distorting it, and to compress the dimensionality of our data
without compromising the information content.

Figure 47. The noise-free data from Figure 32 (x) plotted with the data from Figure 39
as regenerated with only the first two factors (o).
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Figure 48. The plane of the original noise-free data viewed edge on together with the
data from Figure 39 as regenerated with only the first two factors.

Factor spaces are a mystery no more! We now understand that eigenvectors
simply provide us with an optimal way to reduce the dimensionality of our
spectra without degrading them. We've seen that, in the process, our data are
unchanged except for the beneficial removal of some noise. Now, we are ready
to use this technique on our realistic simulated data. PCA will serve as a
pre-processing step prior to ILS. The combination of Principal Component
Analysis with ILS is called Principal Component Regression, or PCR.
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Principal Component Regression

Principal component regression is sometimes described as "performing a
least-squares regression of the projections of the data onto the basis vectors of a
factor space using ILS." We have seen, in the previous chapter, that this is just a
long and obscure way to say that we are generating an ordinary ILS calibration
but using a different coordinate system to specify our spectra. PCR is a
multistep operation. Figure 1 contains a flow chart showing the steps.

Recall that, in order to generate an ILS calibration, we must have at least as
many samples as there are wavelengths used in the calibration. Since we only
have 15 spectra in our training sets but each spectrum contains 100
wavelengths, we were forced to find a way to reduce the dimensionality of our
spectra to 15 or less. We have seen that principal component analysis (PCA)
provides us with a way of optimally reducing the dimensionality of our data
without degrading it, and with the added benefit of removing some noise.

Optional Pretreatment

Even though we have waited until this point to discuss optional pretreatments,
they are equally applicable to CLS, ILS, PCR, and PLS. There are a number of
possible ways to pretreat our data before we find the principal components and
perform the regression. They fall into 3 main categories:

1. artifact removal and/or linearization

2. centering

3. scaling and weighting
Optional pretreatments can be applied, in any combination, to either the spectra
(the x-data), the concentrations (the y-data) or both.

Artifact removal and/or linearization. A common form of artifact removal
is baseline correction of a spectrum or chromatogram. Common linearizations
are the conversion of spectral transmittance into spectral absorbance and the
multiplicative scatter correction for diffuse reflectance spectra. We must be
very careful when attempting to remove artifacts. If we do not remove them
correctly, we can actually introduce other artifacts that are worse than the ones
we are trying to remove. But, for every artifact that we can correctly remove
from the data, we make available additional degrees-of-freedom that the model
can use to fit the relationship between the concentrations and the absorbances.
This translates into greater precision and robustness of the calibration. Thus, if
we can do it properly, it is always better to remove an artifact than to rely on the
calibration to fit it. Similar reasoning applies to data linearization.

99
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Data

Optionai Pretreatment

Mandatory Pretreatment

Find All of the Factors (eigenvectors)

Keep the Significant Factors

Regenerate the Significant Data

Generate the Calibration

Figure 49. The steps of a PCR calibration.

Centering, sometimes called mean centering, is simply the subtraction of
the mean absorbance at each wavelength from each spectrum. In other words,
we compute the mean spectrum for the data set and subtract it from each
spectrum. This shifts the origin of our coordinate system to the center of the
data set. Interestingly enough, in some circles it is controversial to suggest that
centering is an optional step. Because of this, you might see some published
work where data centering was employed, but the author, believing that
centering is mandatory and routine, doesn't even see fit to mention the fact. The
worst part of the situation is that some software packages do not allow you to
choose whether or not to center the data. The main reason for centering data is
to prevent data points that are farther from the orgin form exerting an undue
amount of leverage over the points that are closer to the origin. While there are
sound, statistically-based arguments in favor of this practice, they are based on
assumptions that often do not apply to real chemical data. If we center our data,
we lose information about the origin of the factor space. We also lose
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information about the relative magnitudes of the eigenvalues, and the relative
errors. Depending upon the data and the application, this can have undesireable
consequences. Additional discussion of centering can be found in Appendix C.

Scaling and weighting. There are many possible ways to scale or weight
our data. Scaling or weighting involves multiplying all of the spectra by a
different scaling factor for each wavelength. This is done to increase or decrease
the influence on the calibration of each particular wavelength. The most basic
form of weighting is to select which spectral wavelengths to include or exclude
from the calibration—the included wavelengths are scaled by a factor of 1 while
the excluded wavelengths are scaled by a factor of 0. Two types of scaling are
commonly encountered, variance scaling, which is sometimes called
normalization, and autoscaling. As is the case with data centering, in some
circles it is controversial to suggest that data scaling is optional. However,
unlike data centering, data scaling can often be very detrimental to the precision
and/or robustness of a calibration. Thus, it is particularly onerous that some
software packages do not allow you to choose whether or not to scale your data.
Additional discussion of centering and weighting can be found in Appendix C.

Mandatory Pretreatment

Whether or not we scale, weight, and/or center our data, a mandatory
pretreatment is required by most of the algorithms used to calculate the
eigenvectors. Most algorithms require that we square our data matrix, A, by
either pre- or post-multiplying it by its transpose:

D=ATA [54]

D

AAT [55]

It doesn't matter if we use equation [54] or [55] to square our data matrix—the
information in the matrix will be unchanged in either case. But, if we do not
have the same number of samples as wavelengths, equations [54] and [55] will
produce different sized matrices, D. For our training sets which contain 100
wavelengths and 15 spectra, equation [54] will produce D with 15 rows and 15
columns while equation [55] will produce D with 100 rows and 100 columns.
Either matrix, D, will give us the exact same eigenvectors (except that some of
the signs of the various vectors might be different). If we use the 100 x 100
matrix, we will get 100 eigenvectors, but, since we only have 15 samples, only
the first 15 eigenvectors can be meaningful. The remaining 85 are useless. If we
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use the 15 x 15 matrix, we will only get the first 15 eigenvectors. Obviously, the
calculation will require considerably less time if we use the smaller matrix. If
we had more samples than wavelengths, the situation would flip-flop. In any
case, almost every software package that is available handles this detail
automatically. We only consider it here to emphasize the equivalency of the two
possible square matrices.

Find All of the Factors

We can calculate all of the factors for our data matrix using a number of
different algorithms. The two most common are the NIPALS (nonlinear
iterative partial least squares) algorithm, and SVD (singular value
decomposition). Note that, strictly speaking, we do not generally need to
calculate all of the factors. We need only calculate the first N factors where N is
large enough to enable us to determine how many factors we should include in
the basis space.

NIPALS is an iterative algorithm. As such it can suffer from problems with
digital round-off error when handling very large data matrices, or data matrices
that have a high degree of collinearity. This is the algorithm most commonly
referenced in the literature, but it is not necessarily the best algorithm to use.
For very large data sets, NIPALS can provide an advantage in that it can easily
be stopped after finding the first N factors.

SVD is a way of decomposing a data matrix into factors in a more general
sense than NIPALS. We can think of the eigenvectors and eigenvalues of a data
matrix as a particular subset of the SVD factors. Most SVD algorithms employ
a form of diagonalization that allow for proper management of the scale of the
numbers. This helps minimize problems of digital round-off error. As a result, a
good SVD algorithm will usually be able to handle even difficult data that can
cause a NIPALS algorithm to "blow up."

No matter how they are calculated, the eigenvectors are organized into a
matrix which we will call Ve. (We might have called the matrix V, but V is
often used to name a particular matrix in singular value decomposition, so we
are using a distinct name in order to eliminate the possibility of confusion.
Simply understand that Ve is the name of a matrix, ¢ is not a subscript of a
matrix named V.) Ve is a matrix of column vectors. Each column of Ve is an
eigenvector, or factor, of the data matrix. Ve has as many rows as there are
wavelengths in the original spectra. Thus, each eigenvector in Ve has an
absorbance value for each wavelength in the original spectral space. This means
that we can plot each vector in the original wavelength space just as if it were a
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spectrum. That is precisely how we plotted the eigenvectors in Figures 33
through 46 in the previous chapter.

The length, or magnitude, of each eigenvector is normalized to unity. Thus,
the vector cross product of each eigenvector multiplied with itself should be
equal to 1. Also, all of the eigenvectors are mutually orthonormal. This means
that the vector cross product of any eigenvector times any other eigenvector
must equal 0. We can use these last two properties of eigenvectors to check
whether or not our software produced a good set of vectors. The correlation
matrix, Re

Rc = Ve’ Ve [56]

gives us the products of all possible cross-products of each vector in Ve with
itself and the other vectors. The products of every vector with itself, lie on the
diagonal of Re, while all of the various cross-products lie off the diagonal.
Thus, if our software produced a good set of vectors, Re should have 1's on the
diagonal and 0's everywhere else.

Each eigenvector in Ve has a corresponding eigenvalue which we will call
V1,. It is convenient to collect all of the eigenvalues into a single column vector,
VL

Keep the Significant Factors

This is a very important step. If we decide to retain more factors than we
should, we would be retaining some factors that can only add more noise to our
data. On the other hand, if we do not keep enough factors, we will be discarding
potentially meaningful information that could be necessary for a successful
calibration. Usually, we do not have enough information about our data, a
priori, to decide how many factors we should keep. Fortunately, there are a
number of tools to help us make the decision:

1. Indicator functions

2. PRESS for validation data

3. Cross-validation
Indicator functions have the advantage that they can be used on data sets for
which no concentration values (y-data) are available. But cross-validation and,
especially PRESS, can often provide more reliable guidance.

Indicator functions are based upon an analysis of either the eigenvalues or
the errors. Some of them havé been derived empirically, while others are
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statistically based. There are a number of empirical functions based on the
eigenvalues such as Malinowski's imbedded error function (IE), Malinowski's
IND function, and Brown's FRAC function. While all of these work to a certain
extent, they are generally not as reliable as might be desired. There are a
number of statistically derived indicators based on an analysis of error in the
regenerated data vs. the raw data, such as the root-mean-squared error (RMS).
But these are often no better than the empirical functions and have a tendency to
suggest the retention of more factors than is optimum. A statistically derived
indicator, based on an analysis of the eigenvalues, that has proven quite reliable
is the 2-way F-test on reduced eigenvalues (REV's) according to the method of
Malinowski. It's worthwhile to take some time to understand the concept of
reduced eigenvalues.

When we regard each of our spectra as a unique point in the n-dimensional
absorbance space, we can say that the error in our data is isotropic. By this, we
mean that the net effect of the errors in a given spectrum is to displace that
spectrum some random distance in some random direction in the n-dimensional
data space. As a result, when we find the eigenvectors for our data, each
eigenvector will span its equivalent share of the error. But recall, we said that
we must take degrees-of-freedom into account in order to understand what is
meant by equivalent share.

To better underestand this, let's create a set of data that only contains
random noise. Let's create 100 spectra of 10 wavelengths each. The absorbance
value at each wavelength will be a random number selected from a gaussian
distribution with a mean of 0 and a standard deviation of 1. In other words, our
spectra will consist of pure, normally distributed noise. Figure 50 contains plots
of some of these spectra. It is difficult to draw a plot that shows each spectrum
as a point in a 100-dimensional space, but we can plot the spectra in a
3-dimensional space using the absorbances at the first 3 wavelengths. That plot
is shown in Figure 51.

Spectrum of Pure Noise 5 Spectra of Noise

3

Figure 50. Some spectra consisting of pure, normally distributed noise.
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7

8

Figure 51. "Absorbances” at the first 3 wavelengths of the spectra containing only
noise.

We can see, in Figure 51, that the spectra form a spherical cloud in this
3-dimensional subset of the absorbance data space. In other words, this data is
isotropic. No matter in which direction we look, we will see no significant (in
the statistical sense of the word) difference in the distribution of the data points.
If we were able to show the plot for all 10 dimensions, we would see a
10-dimensional hyperspherical cloud that is isotropic within the spherical
distribution of points.

Now let's compute the eigenvectors and eigenvalues of these spectra. We
won't attempt to plot the 10-dimensional eigenvectors, but a plot of the
eigenvalues is shown is Figure 52. We recall that the eigenvalue for each
eigenvector is equal to the amount of variance in the data that is captured by
that eigenvector. We can see that the eigenvalues decline steadily from the first
one to the last one, over several orders of magnitude. Well, if the data are
isotropically distributed, and each eigenvector picks up its equivalent share of
the variance in the data, then why are the eigenvalues not all equal to one
another? The reason is that, each time we find another eigenvector, we remove
the variance spanned by that eigenvector from the data before we find the next
eigenvector. Thus, each time we find another eigenvector we reducé the
degrees-of-freedom remaining in the data. The variance remaining in the
data is also reduced. Thus, each successive eigenvector is only "entitled" to its
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equivalent share of the remaining variance in the data. Malinowski showed that
the remaining variance is proportional to:

w-nt+1)(s-n+1) [57]
where:

w is the number of wavelengths in the spectra
5 is the number of spectra, and

n is the rank (ordinal number) of the eigenvector

Thus, if we wish to compare the eigenvectors to one another, we can divide
each one by equation [57] to normalize them. Malinowski named these
normalized eigenvectors reduced eigenvectors, or REV®. Figure 52 also
contains a plot of the REV" for this isotropic data. We can see that they are all
roughly equal to one another. If there had been actual information present along
with the noise, the information content could not, itself, be isotropically
distributed. (If the information were isotropically distributed, it would be, by

definition, noise.) Thus, the information would be preferentially captured by the
earliest

103 Eigenvalues (...) and REV's (_)

10° r

10'}

10" }
10"} l“',‘_
10° M

0 20 40 60 80 100

Figure 52. Eigenvalues (...) and reduced eigenvalues ( _) for the spectra consisting of
pure, normally distributed noise.

Principal Component Regression 107

eigenvectors until all of the information were spanned. From that point on, the
remaining eigenvectors would only span their equivalent share of the residual
noise. The eigenvalues of the vectors that spanned information would be
significantly (in the statistical sense) larger than the eigenvectors that only
spanned noise. We can use the 2-way F-test to ask the question for each
eigenvalue: "Is this eigenvalue (statistically) significantly larger than all of the
successive eigenvalues?” We begin asking this question with the next-to-last
eigenvalue. If the answer is "no," we ask the question again for the eigenvalue
immediately preceeding it. We continue in this fashion until the 2-way F-test
produces "yes" for an answer. At that point, we retain the eigenvector that goes
with that eigenvalue together with all of the eigenvectors preceeding it. These
become our basis set—the vectors we retain for our new coordinate system. We
will explore the 2-way F-test on REV's in more detail in the next chapter when
we perform PCR on our simulated data.

PRESS for validation data. One of the best ways to determine how many
factors to use in a PCR calibration is to generate a calibration for every possible
rank (number of factors retained) and use each calibration to predict the
concentrations for a set of independently measured, independent validation
samples. We calculate the predicted residual error sum-of-squares, or PRESS,
for each calibration according to equation [24], and choose the calibration that
provides the best results. The number of factors used in that calibration is the
optimal rank for that system.

Cross-validation. We don't always have a sufficient set of independent
validation samples with which to calculate PRESS. In such instances, we can
use the original training set to simulate a validation set. This approach is called
cross-validation. The most commom form of cross-validation is performed as
follows:

1. Calculate a calibration matrix using all of the training set samples except
for one.

2. Use the calibration to predict the concentrations of the components in the
sample that was left out of the training set.

3. Calculate the sum-squared of errors between the expected and predicted
concentrations for the sample that was left out.

4. Return the excluded sample to the training set, and leave out a different
sample. -

5. Calculate a new calibration for this new subset of the original training set.
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6. Return to Step 2, above. Add the new PRESS value calculated in step 3,
to the PRESS values calculated so far. Continue this process until PRESS
values for all combinations of "leave one out" have been computed and
summed.

Steps 1 - 6 are repeated for calibrations generated with every possible rank
(number of factors). We can then examine the PRESS for each of the
calibrations and choose the one that gives the best results. The number of
factors used in that calibration is the rank of the system.

This procedure is known as "leave one out" cross-validation. This is not the
only way to do cross-validation. We could apply this approach by leaving out
all permutations of any number of samples from the training set. The only
constraint is the size of the training set, itself. Nonetheless, whenever the term
cross-validation is used, it almost always refers to "leave one out"
cross-validation.

Regenerate the Data

As we saw in the last chapter, by discarding the noise eigenvectors, we are
able to remove a portion of the noise from our data. We have called the data that
results after the noise removal the regemerated data. When we perform
principal component regression, there is not really a separate, explicit data
regeneration step. By operating with the new coordinate system, we are
automatically regenerating the data without the noise.

Computing the calibration

We compute a PCR calibration in exactly the same way we computed an
ILS calibration. The only difference is the data we start with. Instead of directly
using absorbance values expressed in the spectral coordinate system, we use the
same absorbance values but express them in the coordinate system defined by
the basis vectors we have retained. Instead of a data matrix containing
absorbance values, we have a data matrix containing the coordinates of each
spectrum on each of the axes of our new coordinate system. We have seen that
these new coordinates are nothing more than the projections of the spectra onto
the basis vectors. These projections are easily computed:

Ay = VeT A [58]
where:

A, isthe matrix containing the new coordinates (the projections)

proj
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A s the original training set absorbance matrix

Ve is the matrix containing the basis vectors, one column for each

factor retained.

Now we can substitute A, into equation [46] in place of A:

proj
C = FApro] [59]

We have also changed the name of the regression matrix to F in order to
distinguish it from the ILS regression matrix, P, in equation [46].

Now we are ready to solve for the PCR calibration matrix. We do this
exactly the same way we solved for the ILS calibration. First, we post-multiply
both sides of equation [59] by AT,,,,.

CA",., =FA

proj — ATProl [60]

proj

Next, we post-multiply both sides of equation [60] by [A,, A", ", the
pseudo-inverse of ATy, .

C ATproj [Aproj ATproj]-‘ =F Aproj ATproj [Aproj ATpmj]-l [61]

Since the product of a matrix and its inverse is the identity matrix, the quantity
Aoy Aoy [Aprgy AT,y disappears from the right-hand side of equation [61],
leaving:

proj

C ATproj [Aproj A-rproj]-l =F [62]

Predicting Unknowns

Now that we have calculated F, we can use it to predict the concentrations
in an unknown sample from its measured spectrum. First, we substitute the
expression for A,,,; from equation [58] into equation [59], adding subscripts to
indicate we are predicting the concentrations for an unknown sample:

Cunk = FVcT Aunk [63]
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Notice that we can pre-calculate the quantity Ve' A at calibration time.

Let's call the result F.,;,. Equation [63] becomes
Cunk = FCI' Aunk [64]

The calibration matrix, F., has exactly the same format as K., the
calibration matrix for CLS. It has one row for each component being predicted.
Each row has one calibration coefficient for each wavelength in the spectrum.
We can now use F, to predict the concentrations in an unknown sample from
its measured spectrum. First, we place the spectrum into a new absorbance
matrix, A, We can now use equation [64] to produce a new concentration
matrix, C,,, containing the predicted concentration values for the unknown
sample.

That's all there is to it. In the next chapter, we'll see how it works on our
simulated data.

PCR in Action

Now, we are ready to apply PCR to our simulated data set. For each training
set absorbance matrix, A1 and A2, we will find all of the possible eigenvectors.
Then, we will decide how many to keep as our basis set. Next, we will construct
calibrations by using ILS in the new coordinate system defined by the basis set.
Finally, we will use the calibrations to predict the concentrations for our
validation sets.

All we need do to calculate all the possible eigenvectors and eigenvalues is
feed the data into an appropriate software package. So, we will begin the
discussion with the question of how many of the eigenvectors to keep.

Choosing the Optimum Rank

Table 8 contains the eigenvalues (EV's) and reduced eigenvalues (REV's)
that we get for the data in our training set absorbance matrices, Al, and A2.
These are also plotted in Figure 53.

When we look at Table 8 and Figure 53 it is apparent that something
changes when moving from the 5™ eigenvalue to the 6™. At that point “in the

Al A2
Rank EV REV EV REV
1 586.0547  0.3907 451.8087  0.3012
2 27.3511  0.0197 18.1739  0.0131
3 9.2579  0.0073 7.0551  0.0055
4 25079  0.0022 1.5713  0.0013
S 1.0125  0.0010 1.2394  0.0012
6 0.3308  0.0003 0.4050  0.0004
7 0.3208  0.0004 0.3404  0.0004
8 0.2864  0.0004 0.3213  0.0004
9 0.2609  0.0004 0.2901  0.0005
10 0.2429  0.0004 0.2401  0.0004
11 0.2212  0.0005 0.2263  0.0005
12 0.2114  0.0006 0.1939  0.0005
13 0.1835  0.0007 0.1647  0.0006

Table 8. Eigenvalues (EV) and reduced eigenvalues (REV) for the two training sets,
Al and A2.

11
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Al A2

2 4 6 8 10 12 ¥4 2 4 6 8 10 12 4

Figure 53. Logarithmic plots of eigenvalues ( - - ) and reduced eigenvalues ( --- ) for
the two training sets, Al and A2.

sequence, the rate that the eigenvalues decrease with increasing rank suddenly
becomes smaller. The inflection point is even more apparent when we look at
the REV's. The REV for rank 7 is essentially the same as the REV for rank 6. In
other words, eigenvectors 1 - 5 appear to have captured a larger equivalent
share of variance than eigenvectors 6 and higher. Based on this "eyeball"
inspection of the EV's and REV's, we would estimate that our data has an
intrinsic dimensionality, or rank, or 5. Stated another way, there appear to be 5
independent underlying sources contributing to the systematic (non-noise)
variations in our data.

Let's compare these plots of the REV's to the plot in Figure 52. Notice that
these REV's do not exhibit ideal behavior. Ideally, as rank increases, the REV's
would drop to some minimum value and then remain at that level. These REV's
begin to tail back up. This sort of non-ideal behavior is not uncommon when
working with actual data. Unfortunately, it can complicate matters when we use
the 2-way F-test to see which REV's represent basis vectors and which ones
represent noise vectors.

" We have an advantage in this situation. We know that our data contain 4
components, plus a small linear baseline, and some nonlinearities. This would
lead us to expect that our data would show a rank of 5 or 6. Four dimensions are
required to span the variations from the 4 different spectral components, and an
additional 1 or two would be needed to span the variations due to the baselines
and non-linearities. It gets a bit tricky when we realize that the baseline and
non-linearity effects are rather small. Statistical indicators such as the 2-way
F-test on REV's are not always able to destinguish factors that span small, but
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systematic, variations in the data from factors that span pure random noise. For
this reason, PRESS of validation data or cross-validation is sometimes a more
reliable way to make the determination.

Let's see what the 2-way F-test tells us. Table 9 contains the REV's and F
ratios for the data in the two training sets Al and A2. The details of calculating
the F ratios, and determining the values for the numerator and denominator are
discussed in Appendix D.

Remember, this test is asking the question, "Is the reduced eigenvalue, n,
(statistically) significantly greater than the reduced eigenvalue, n + 1?" We
begin asking the question at the bottom of the table. We see that the F values for
Al and A2 at rank 14 are less than the values from the statistical tables. Thus,
the answer for rank 14 is "no." We continue upwards until we find the rank for
which the F exceeds the value from the statistical table at the desired level of
significance. At that point, we keep that eigenvector and all the ones that lie
higher on the table, and we stop the test. Once we reach a significant
eigenvalue, the F values for all of the reduced eigenvalues situated above it on
the table are not valid for purposes of the test. When we examine the values of F

w £
‘E £ > > g 8
=8 5 8 o B . 2 3
3 5 — ~ =
2 z & 2 o) < P B
1 1 14 03907 91.3900 0.3012 98.3185 4.60 3.10
2 1 13 0.0197 11.1469 0.0131 9.1354 4.67 3.14
3 1 12 0.0073 8.9883 0.0055 7.7190 4.75 3.18
4 1 11 0.0022 3.9011 0.0013 22609 4.84 3.23
5 1 10 0.0010 2.0512 0.0012 2.4620 496 3.29
6 1 9 0.0003 07035 0.0004 0.8729 5.12 3.36
7 1 8 0.0004 07221 0.0004 0.7879 532 3.46
8 1 7 0.0004 06797 0.0004 0.8089 559 3.59
9 1 6 0.0004 0.6515 0.0005 0.8009 599 3.78
10 1 5 0.0004 0.6406 0.0004 07173 6.61 4.06
11 1 4 0.0005 0.6158 0.0005 07512 7.71 4.54
12 1 3 0.0006 0.6336 0.0005 0.7221 10.13 5.54
13 1 2 0.0007 0.5875 0.0006 0.7039 18.51 8.53
1

—
S
—

0.0010 0.6067 0.0008 0.8612 161.4 39.86

Table 9. REV's and F for the two training sets Al and A2. F values at 5% and 10% are
from standard statistical tables.
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for Al, we see that the value at rank 3 exceeds the F value from the statistical
tables for the 5% level. This means that there is less than a 5% probability that
the 3" reduced eigenvalue belongs to a noise eigenvector. We also see that the F
value at rank 4 exceeds the F value from the statistical tables for the 10% level.
This indicates that there is less than a 10% probability that the 4™ reduced
eigenvalue belongs to a noise eigenvector. If we work with the F values for A2,
at either significance level, we are led to discard all but the first 3 eigenvectors.
These results might seem surprising, considering what we know about the data,
The problem is that the F ratios are being skewed by the nonideal behavior of
the reduced eigenvalues at the bottom of the table. We can show this by
artificially setting the REV's for rank 10 and higher to equal .0004, and
recalculating the F ratios. The resulting F values for the first 7 REV's are shown
in Table 10.

At the 10% level, these modified F ratios indicate that we need 5 factors for
either Al or A2. At the 5% level, we get an indication of 4 factors for Al and 3
factors for A2.

This lack of sharpness of the 1-way F-test on REV's is sometimes seen when
there is information spanned by some eigenvectors that is at or below the level
of the noise spanned by those eigenvectors. Our data sets are a good example of
such data. Here we have a 4 component system that contains some
nonlinearities. This means that, to span the information in our data, we should
expect to need at least 4 eigenvectors — one for each of the components, plus at
least one additional eigenvector to span the additional variance in the data
caused by the non-linearity. But the F-test on the reduced eigenvalues only

. £
[=] ]
. g g E modified E modified 2 :;‘
-] -1 < <5 - -
9 2 @ - - [ «
g z & 2 ) < 2 R
1 1 14 03907 93.8416 0.3012 101.6536 4.60 3.10
2 1 13 0.0197 12.0286 0.0131 9.9446 4.67 3.14
3 1 12 0.0073 11.0777 0.0055 9.5448 4.75 3.18
4 1 11 0.0022 5.8109 0.0013 3.1125 484 3.23
5 1 10 0.0010 3.8654 0.0012 42027 496 3.29
6 1 9 0.0003 1.5485 0.0004 1.7379 5.12 3.36

Table 10. First 7 REV's and recalculated F for the two training sets Al and A2. F
values at 5% and 10% are from standard statistical tables.
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considers the magnitude of the variance spanned by each of the eigenvectors.
Thus, if we have a nonlinearity that introduces additional variance that is at or
below the noise level, the F-test may not provide the best guidance on the
number of factors to keep.

Fortunately, since we also have concentration values for our samples, We
have another way of deciding how many factors to keep. We can create
calibrations with different numbers of basis vectors and evaluate which of these
calibrations provides the best predictions of the concentrations in independent
unknown samples. Recall that we do this by examing the Predicted Residual
Error Sum-of Squares (PRESS) for the predicted concentrations of validation
samples.

Figure 54 contains plots of the PRESS values we get when we use the
calibrations generated with training sets Al and A2 to predict the
concentrations in the validation set A3. We plot PRESS as a function of the
rank (number of factors) used for the calibration. Using our system of
nomenclature, the PRESS values obtained by using the calibrations from Al to
predict A3 are named PCRPRESS13. The PRESS values obtained by using the
calibrations from A2 to predict the concentrations in A3 are named
PCRPRESS23. It is clear from the plots that the errors in predicting the
concentrations of the validation set, A3, are minimized by using 5 factors for
the calibration.

If we did not have a validation set available to us, we could use
cross-validation for the same purposes. Figure 55 contains plots of the results of
cross validation of the two training sets, Al and A2. Since no separate
validation data set is involved, we name the results PCRCROSS1 and
PCRCROSS?2, respectively.

PCRPRESS13 1 PCRPRESS23
10" 10
107 107
107 10°
5 10 15 5 10 15
Rank - Rank

Figure 54. Logarithmic plots of the PRESS values as a function of the number of '

factors (rank) used to construct the calibration.
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PCRCROSS1 PCRCROSS2
10" 10"
107 107
10° 107
5 10 15 5 10 15
Rank Rank

Figure 55. Logarithmic plots of the cross-validation results as a function of the number
of factors (rank) used to construct the calibration.

Again, it is clear from these plots that the errors are minimized when 5 factors
are used. Thus, we will construct our calibration matrices using a basis space
cromprised of the first 5 eigenvectors (factors).

The plots in Figure 56 complete the story. They show why, if we do not
have validation samples available, we cannot simply use the fits to the training
set to determine how many factors to keep. First let's recall that, by fits to the
training set, we mean the procedure where we generate a calibration from a
training set and use that calibration to predict the concentrations of the samples
in that same training set. We then examine the PRESS for these predictions for
an indication of how well the calibration was able to fit the data in the training
set. Figure 56 contains plots of the fits for the two training sets, A1 and A2.
Since there are no independent validation sets are involved, we have named the
results PCRPRESS1 and PCRPRESS2, respectively.

When we examine the plots in Figure 56 we see that the PRESS decreases
each time we add another factor to the basis space. When all of the factors are
included, the PRESS drops all the way to zero. Thus, these fits cannot provide
us with any information about the dimensionality of the data. The problem is
that we are trying to use the same data for both the training and validation data.
We lose the ability to assess the optimum rank for the basis space because we
do not have independent validation samples that contain independent noise. So,
the more factors we add, the better the calibration is able to model the
particular noise in these samples. When we use all of the factors, we are able to
model the noise completely. Thus, when we predict the concentrations for
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Figure 56. Logarithmic plots of the PRESS values as a function of the number of
factors (rank) using the same samples for calibration and validation. As factors are
added, the errors continue to decrease. When all of the factors are used, the errors
equal exactly zero.

these exact same samples that contain exactly the same noise, our PRESS
values decrease each time a factor is added. When all of the factors are used, the
noise is modeled completely, and the PRESS values drop to zero. So if we are
trying to find the correct number of factors to use, and we do not have
independent validation samples, we must use a technique such as
cross-validation, Simple fits to the training set are useless for this purpose.

Basis Vectors and Noise Vectors

So, cross-validation and PRESS both indicate that we should use 5 factors
for our calibrations. This indication is sufficiently consistent with the F-test on
the REV" and with our "eyeball" inspection of the EV's and REV's, themselves.
It can also be worthwhile to look at the eigenvectors themselves.

The eigenvectors are called abstract factors because these axes of our new,
optimum, coordinate system for the data are chosen without regard for their
physical or chemical significance. These axes were selected because they are
the most efficient way of spanning the variance in the data, and not because
they are aligned with the pure component spectra of the components or with
some other meaningful parameter of the data. (There is an entire field called
Target Factor Analysis which concerns itself with transforming the abstract
factors into physically or chemically meaningful factors.) Nonetheless, each
factor is nothing more than some unique axis in the original absorbance space.
(Recall that the factors are all normalized to unit length.) Referring back to
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Figure 45, we see that the end point of each factor can be expressed in terms of
its coordinates along the original absorbance axes. If our spectra were measured
at 100 wavelengths, the coordinates of the end point of each factor could be
expressed as 100 absorbances values, one for each of the original wavelengths.
Thus we can plot each factor just as if it were a spectrum. But since these are
abstract spectra, we should not expect that they will, generally, look like
recognizable spectra. Figure 57 contains plots of the first 4 factors of the two
training sets Al, and A2. We have named the matrices holding these factors
Vel and Ve2, respectively.

In Figure 57, we notice that the first factors for each training set are quite
similar to each other. Also, they do not look all that abstract. Since we did not
scale or center the spectra in the training sets prior to analysis, the first factor
for each absorbance matrix is the least-squares average of all the spectra in the
set. The second factors, on the other hand, appear a bit more abstract, although
they contain spectral like features. In fact, they look a bit like first derivative
spectra. This is to be expected since the second factors are capturing the
maximum amount of the residual variance left behind by the first factors. This
residual variance is basically the least-squares average of the differences
between all of the spectra and the first factor in each data set. So it should be no
surprise that the second factors have these kinds of features. It should also be
expected that these factors will begin to look different from each other, because
the factors are now starting to pick up the individual differences between the
spectra in Al and those in A2.

Moving down to the third factors, we still see spectral like features, but now
the differences between the factors for each data set are becoming more
noticable. Also, note that these two factors are roughly mirror images of each
other with respect a line through 0 absorbance. When we recall that the sign of
the vectors is arbitrary, we realize that this is nothing to worry about.
Sometimes changing a single sample in a training set will cause the sign of a
factor to change from positive to negative.

The fourth factors are much more different from each other than were the
first three. They still contain strong, spectral-like features, but they look a bit
noisier that the earlier factors. So far, all of these factors look like they could be
spanning significant information. Let's look at a few more factors which we
have plotted in Figure 58.

In Figure 58 the fifth factors appear quite noisy. Nonetheless, we can
imagine that there are still some systematic features in these factors. The fact
that these apparent features are not much stronger than the noise is consistent
with the results of the F-tests on the REV's. It can be dangerous to decide
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Figure 57. First 4 factors for the two training sets, Al and A2.

whether or not to retain a factor by inspecting it visually. It is too easy to see
patterns in data that are, in fact, random. (For example, when we look at the sky
we can see constellations). But, we based our decision to retain this factor on
the fact that we got the lowest PRESS and cross-validation values with 5
factors. The fact that we can see features on this factor serves to increase our
confidence in the decision.
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Figure 58. Remaining 11 factors for the two training sets, A1 and A2.

" All of the remaining factors do appear to contain nothing but noise.
Remember that true noise eigenvectors will lie in some random direction that is
devoid of any useful information. Thus, they should look like pure noise.

Just for fun, let's look at the distribution of the absorbances in each factor.
Figure 59, contains histograms of the absorbances in the first 8 factors for the first
training set. If a factor is purely a noise factor, it's absorbances should follow a
gaussian distribution. The absorbances of the first 4 factors do appear to deviate
significantly from a gaussian distribution. Notice that, since our data
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Figure 59. Histogram plots of the distributions of the absorbances of the first 8 factors
of the training set, A1. A plot of an ideal gaussian distribution is superimposed on each
histogram.

was not mean centered, the first factor removed the mean from the data. Thus,
all the subsequent factors are mean centered. The absorbances of factors 8, 7,
and even 6 appear to be reasonably gaussian in their distribution. And, with the
benefit of hindsight, we are very tempted to conclude that the distribution of the
absorbances of factor 5 deviate significantly from gaussian. Naturally, visual
inspection is not a sound way to draw any conclusions from these plots.
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However, a discussion of an analytical approach to this issue is beyond the
scope of this text.

Regenerated Data and Residuals

We've seen that the data regeneration step is implicit in the calibration.
Even though there is no need to explicitly regenerate the data, it is, nonetheless
instructive. Let's use the 5 basis vectors for training set Al to regenerate the
spectra in Al. Let's also look at the residuals, that portion of the variance that is
discarded from the regenerated data because it is (hopefully) pure noise. We
will name the matrix holding the regenerated spectra and the residuals
PCAREG! and PCARESIDI, respectively. Figure 60 contains a plot of one of
these regenerated spectra together with a plot of the same spectrum before
regeneration. We can easily see that a significant amount of noise has been
removed without any evident degradation of the spectrum.

Figure 60 also contains a plot of the differences between the original and
the regenerated spectra. This is identical to the residuals. The residuals of
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Figure 60. Plot (top) of a regenerated spectrum (—) and the original spectrum (---) of a
sample in training set Al together with (bottom) a separate plot of the differences
between the two spectra.
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this spectrum look comfortably like pure random noise. Figure 61 cgntains plots
of the residuals for all of the spectra in A1 and A2. Here too, the residuals do not

appear to have any spectral-like features.

We can also use the 5 factors which comprise the basis space of Al to
regenerate the spectra in our three validation sets A3, A4, and AS. We will name
the matrices holding these spectra, PCAREG13, PCAREGI4, PCAREGI5 and
PCARESID13, PCARESID14 and PCARESIDIS, respectively.

Figure 62 contains plots of one regenerated spectrum from each validation set
together with the same spectrum before regeneration. Figure 62 also contains
plots of the residuals of all of the regenerated spectra in these validation sets. In
Figure 62 , we can see that the basis space of our training set does a fine job of
regenerating the validation spectra in A3 Noise is nicely

015 T T T T LI T T T 1

"". ., ’/"“' ‘\,( '“M“ ‘

|
j (Al
i ) ‘4\ ' l” I”“"" “I"‘ "x { i'(‘lv ‘ Ah .
b h' i ” M’n\ »lvl 'l ‘h l“' ) “’wl' ”" i” "

AT !" ' ; '
v\v W“""“ "y’l 's’WH PV

01

(VA
‘:i:v\:/“:'(”

10 20 0 40 50 60 70 80 0 100

'i
*E\
[

W

10 2 0 40 50 60 70 80 €O 100

Figure 61. Plot of the residuals of the all the regenerated spectra in the two
training sets, Al and A2.
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Figure 62. Plots (left column) of a regenerated spectrum ( — ) and the original
spectrum () of a sample from each of the 3 validation sets A3, A4, and AS.
Residuals for all of the regenerated spectra in each of the 3 validation sets are also
shown (right column).

removed without any noticable degradation of the spectrum. Notice that the
residuals for A3 do not seem to contain any spectral features, and they are
roughly the same magnitude as the residuals for A1.

Regeneration also seems to work well on the validation spectra in A4. Again,
we see good noise removal without spectral degradation. Notice, however, that
the residuals for A4 are a bit larger in magnitude than those of Al. Also, there
appears to be a small amount of spectral-like structure in the residuals. This
makes sense when we remember that the samples in A4 are the overrange
samples. Thus, they are somewhat different from the samples in the training set
that was used to develop the basis space. So, it makes sense that the residuals are
a bit higher. The spectral-like features are present in the residuals because the
nonlinearity affects the samples in A4 more than in the training set.
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So, it is not unusual if basis vectors calculated for A1 do not completely span
all of the variance which is due to the increased nonlinearities in the A4
samples.

The story is very different for the samples in AS. Here, we see that the
regenerated spectrum has major differences from the original spectrum. Also,
the residuals are much larger and display significant amounts of spectral-like
features. Of course, the reasons for this are simple. AS contains samples with
varying amounts of an additional, interfering component. The samples in our
training set, A1, do not contain any of this interfering component. So there is no
way that the basis vectors for the A1l spectra can span all of the variance added
to the A5 spectra by that component. So it makes sense that major spectral
features are missing from the regenerated spectra and show up, instead, in the
residuals.

Confidence Indicator

So, we see that the spectral residuals for a sample will be higher whenever
there is something that introduces a mode of variation into the spectrum that
was not present in any of the training samples used to develop the basis space.
The anomolous variation could be caused by instrument drift, an unexpected
interfering component, a misaligned sample cell, or whatever. We can use this
property of residuals as an indicator that can signal us whenever a sample is
significantly different from the training set samples. This is very valuable
because if we try to predict the concentrations of a sample that differs
significantly from the samples with which the calibration was generated, the
reliability of the predictions is very poor.

We can use the sum of the squares of the residuals (SSR) of the training set
as our benchmark. Then, we can establish one or more confidence limits based
on this benchmark. Typically, we might set a warning level at 2 to 3 times the
training set SSR. Anytime the residuals of an unknown spectrum exceed the
wamning level we could take appropriate action. We might turn on a yellow
light, issue a warning message, send an e-mail to the person responsible for the
analysis, repeat the measurement, capture a sample, save a spectrum to disk,
initiate a self-diagnostic routine for the analyzer, or whatever. We could also set
an alarm level. Typically this would be set at 3 to 4 times the training set SSR.
If the SSR of an unknown exceeded the alarm level we could turn on a red light,
sound an alarm, save the data to disk, capture a sample, initiate self-diagnostics,
refuse to report the predicted concentration values, or shut down the analyzer.
Table 11 shows the SSR's for training set Al, and the three validation sets, A3
through AS.
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Data Set Al A3 Ad AS
SSR 0.1577 0.3117 0.6364 3.7120

Table 11. Sum of the square of residuals (SSR) for A1 and A3 through AS, using the 5
basis vectors for Al.

Suppose we set our warning and alarm levels at typical levels of 3 and 5
times the training set SSR, respectively. We can see in Table 11 that our green
light would stay on while predicting the samples in the normal validation set,
A3. If we encounter samples from A4, the overrange validation set, the yellow
light would come on. And when we see samples from AS5, the validation set
with the unexpected interfering component, red lights should flash, alarms
should sound, etc.

Table 12 shows the SSR's for each sample in validation set A5 together with
the concentration of the unexpected component in each sample. Figure
63 contains a plot of the data in Table 12.

We can see, in Table 12 that there is a monotonic relationship between the
SSR and the concentration of the interferring 5" component in each sample of
the validation set AS. In Figure 63 we can see that the relationship is
approximately linear with the square root of the SSR. The important thing is not
the linearity of the relationship, but that it exists at all and increases
monotonically. It gives us a very useful way of flagging samples which our

Data Set Al A5 AS
SSR Conc. SSR
0.1577 0.9880 7.6866

0.9353 6.7935
0.8144 5.4329
0.7733 4.7334
0.6074 3.0793
0.3177 1.1992
0.1161 0.4636

Table 12. Sum of the square of residuals (SSR) for the individual samples in the
validation set, A5, using the 5 basis vectors for Al together with the concentrations of
the unexpected 5" component in the A5 samples.
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Log SSR for A5 vs. Comp. 5 Conc.
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Figure 63. Semi-logarithmic plot of the SSR (y-axis) vs. the concentration of
Component 5 (x-axis) for each sample in AS.

calibration may not be able to handle properly. This capability, alone, will
usually give us sufficient reason to use the factor-based techniques to develop
our calibrations. As we are about to see, calibrations produced with the
factor-based techniques also tend to perform better than ordinary CLS or ILS
calibrations.

PCR Calibration Matrices

First, let's look at the PCR regression coefficients in the calibration matrices
we produce from the two training sets, A1 and A2. We will name these
calibration matrices F1, and F2, respectively. Recall that the calibration
matrices have a row for each component being predicted. Each row has one
regression coefficient for each spectral wavelength. Thus, we can plot each row
of the regression matrix as if it were a spectrum. Figure 64 contains these plots.
We can think of these plots as the "strategy" of the calibration. They show us
which wavelengths are taken as positively correlated with the predicted
concentrations, which negatively, and which wavelengths are essentially
ignored.

One of the first things we notice is that the regression coefficients for each
component produced by the two training sets are quite similar to each other.
Contrast this with the CLS calibration coefficients plotted in Figure 21. It is
also apparent that the coefficients are reasonably well conditioned. In other
words, their magnitude is not excessive, and they do not swmg wildly from
large positive to large negative values.
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Figure 64. Plots of the PCR calibration coefficients calculated for each component
with each training set.

PCR Predictions on the Validation Sets

Let's see how well the PCR calibrations predict the concentrations of our 3
validation sets A3 - AS. We do this by substituting A3 - AS into equation {64],
first with F1,,,, then with F2_, to produce 6 concentration matrices containing
the estimated concentrations. We will name these matrices F13,,, through F15,,,
and F23,,, through F25,.,. Using this naming system, F24,,, is a concentration
matrix holding the concentrations for validation set A4 predicted with the
calibration matrix F2,, that was generated with training set A2, the one which
was constructed with the random design. Again, there is data "crib sheet" inside
the back cover to help you keep things straight. Figure 65 contains plots of the
expected vs. predicted concentrations for F13,, through F25,, Table 13
contains the values for PRESS, SEC?, SEP?, and r, for this set of results.
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Flenl ernl
PRESS SEC* r PRESS SEC* r
Al .0010 .0016 .9970 - - -
A2 - - - .0005 .0008 .9974
A3 .0012 .0013 .9943 0021 .0022 .9898
A4 .0034 .0032 .9987 0063  .0070 .9961
AS 1277 .1367 8819 0914 .1020 .9133

Table 13. PRESS, SEC?, SEP?, and r for F1,,, through F25,,.

It is apparent that these are the best prediction results for this data that we
have seen up to this point. We even do extremely well with the overrange
validation samples in A4. But, it would be dangerous to assume that we can
routinely get away with extrapolation of this kind. Sometimes it can be done,
sometimes it can't. There is no simple rule that can tell us which situation we
might be facing. It is very dependent on the particular data and application
involved. In any case, it is usually a good policy to strongly discourage using a
calibration to predict the concentrations in samples that require extrapolation.

Of course, the calibrations do rather poorly predicting the concentrations of
the samples in AS, This is exactly as expected since these samples have varying
amounts of an additional, unexpected component that wasn't present in any of
the calibration samples. But, with the factor-based techniques, we have the
ability to detect these samples using the SSR's of the spectra. So if we encounter
any unknowns for which the calibration must be considered invalid, we now
know how to take appropriate action.
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Partial Least-Squares

Partial least-squares in latent variables (PLS) is sometimes called partial
least-squares regression, or PLSR. As we are about to see, PLS is a logical,
easy to understand, variation of PCR.

We have seen that PCR is simply ILS performed using a different, optimally
efficient coordinate system for the spectra. PLS takes this concept one step
further by using a different strategy to find a coordinate system that can have
advantages over the coordinate system used for PCR. This strategy involves
finding factors for both the spectral and the concentration data. The reasoning
behind this approach is twofold. First, why not utilize the noise removal
capabilities of PCA to remove some of the noise from the concentration data?
Second, we have seen how the errors due to the noise in the spectral data will,
in general, deflect each eigenvector slightly out of the plane containing the
theoretical, noise-free data. Since the noise in the concentration data is
independent of the noise in the spectral data, the errors due to the noise in the
concentration data will, in general, deflect each concentration eigenvector in
some randomly different direction than the deflection of the corresponding
spectral eigenvector. So, if we compare each spectral vector with its
corresponding concentration vector, they will have some (hopefully small)
angle between them. Since this angle is due to the differences in the particular
noise between the two data 'spaces, why not rotate the vectors back toward each
other until they are aligned? In general, this rotation should provide better noise
removal by bring the vectors closer to the ideal planes containing the noise-free
spectral and concentration data.

PLS vs. PCR: Similarities and Differences

Let's summarize the similarities of and differences between PCR and PLS.
When we do PLS, we follow exactly the same steps for PCR, as shown in
Figure 49, except:

1. The data matrices generally use the row-wise convention.

2. In addition to the set of new coordinate axes (basis space) for the spectral
data (the x-block), we also find a set of new coordinate axes (basis space)
for the concentration data (the y-block).

3. In addition to expressing the spectral data as projections onto the spectral
factors (basis vectors), we express the concentration data as projections
onto the concentration factors (basis vectors).

131
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4. On a rank-by-rank (i.e. factor-by-factor) basis, we rotate, or perturb, each
pair of factors, (1 spectral factor and its corresponding concentration
factor) towards each other to maximize the fit of the linear regression
between the projections of the spectra onto the spectral factor with the
projections of the concentrations onto the concentration factor.

5. We calculate the calibration (regression) coefficients on a rank-by-rank
basis using linear regression between the projections of the spectra on
each individual spectral factor with the projections of the concentrations
on each corresponding concentration factor of the same rank.

The prediction step for PLS is also slightly different than for PCR. It is also
done on a rank-by-rank basis using pairs of spectal and concentration factors.
For each component, the projection of the unknown spectrum onto the first
spectral factor is scaled by a response coefficient to become a corresponding
projection on the first concentration factor. This yields the contribution to the
total concentration for that component that is captured by the first pair of
spectral and concentration factors. We then repeat the process for the second
pair of factors, adding its concentration contribution to the contribution from
the first pair of factors. We continue summing the contributions from each
successive factor pair until all of the factors in the basis space have been used.

Visualizing PLS

If you have not yet read the chapter on Factors Spaces, or if your
recollection of that chapter is at all hazy, you would probably find it useful to
review that chapter before proceeding beyond this point. We are going to use a
similiar graphical approach to understand how PLS works.

PCA of Both the Spectral and the Concentration Data

We've said that PLS involves finding a set of basis vectors for the spectral
data and a separate set of basis vectors for the concentration data. So, we need
to understand how the spectral factors and the concentration factors are related
to each other.

Let's consider the same set of perfectly linear, noise-free data that was
introduced in Figure 32. There is no need to start flipping pages; we'll
reproduce Figure 32 here as Figure 66. Figure 67 contains two additional views
of the data in Figure 67. In Figure 68 we will also plot the compostitions of the
samples whose spectra are plotted in Figures 66 and 67. The concentrations of
the first component are plotted along one axis, and the concentrations of the
second component are plotted along the other axis.
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Figure 66. Multivariate plot of 3-wavelength spectra for samples containing varying
amounts of Component 1 and Component 2. In this noise-free, linear case, all of the
specra must lie in a plane.

I
Figure 67. Two different views of the data in Figure 66.
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Figure 68. Plot of the component concentrations for the samples in Figure 66.
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Recall that Figures 66 and 67 contain plots of the spectra of a number of
samples containing varying amounts of 2 different components. The spectra are
measured at 3 wavelengths. For each spectrum, the absorbance at the first
wavelength is plotted along one axis, the absorbance at the second wavelength
is plotted along another axis, and the absorbance at the third wavelength is
plotted along the remaining axis. If you have any questions about why all of
these noise-free, perfectly linear spectra must lie exactly in a plane, and why
that plane is oriented at some angle in the 3-dimensional absorbance space, then
please don't try to read any further. Go back and study the chapter on Factor
Spaces until you understand these issues before continuing beyond this point.

Figure 68 contains a plot of the composition of the samples whose spectra
are plotted in Figure 67. For each sample, the concentration of the first
component is plotted along one axis and the composition of the second
component is plotted along the second axis. Examining Figures 66 through 68,
it is immediately apparent that the relative positions of the points in Figure 68
are identical to the relative positions of the points within the plane in Figures 66
and 67. In other words, if we were to appropriately scale each concentration
axes in Figure 68, we could take the plot from Figure 68 and lay it onto the
plane containing the data points in Figures 66 and 67 in such a way that the
points in both plots will lie exactly on top of one another. To show this clearly,
we rotate Figure 67 so the plane containing the spectral data points is flat on the
page, and plot it in Figure 69 side-by-side with the concentration data. Stated
yet another way, the points in Figure 68 are congruent with the points in Figures
66 and 67. The points must be congruent because the concentrations plotted in
Figure 68 were used to create the spectra in Figure 66 with perfect linearity, and
without any random noise. If the truth of this is not obvious to you, then please
review the chapter on Factor Spaces.

Now, let's calculate the eigenvectors for the spectra in Figure 66. In fact,
we've already done this in the chapter of Factor Spaces. They were plotted in

Figures 37 and 38. For convenience, we reproduce these plots here as Figures
70 and 71.

In order to process these data with PLS, we must also calculate the
eigenvectors for the concentration data in Figure 68. Figure 72 contains plots of
the first two eigenvectors for the concentration data overlaid onto the plot of the
concentration data points themselves. Recall that eigenvectors are always
normalized to unit length. However, we have plotted the eigenvectors with
different lengths for clarity.
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Figure 69. Spectral and concentration data plotted side-by-side to show the congruence
of the points in the two different data spaces.
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Figure 70. The spectral data from Figure 66 plotted together with all 3 eigenvectors
(factors) for the data.
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Figure 71. The spectral data from Figure 66 plotted together with all 3 eigenvectors
(factors) for the data. :
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Figure 72. The concentration data from Figure 68 plotted together with the first 2
eigenvectors (factors) for the data. The eigenvectors are shown as having different
lengths for clarity. In reality they both have unit length.

It is evident in Figures 70 through 72 that the first two eigenvectors of the
concentration data are congruent with the first two eigenvectors of the spectral
data. Notice that the second concentration vector and the second spectral vector
happen to have opposite signs. But, recall that this is of no consequence because
the sign of an eigenvector is completely arbitrary.

Just as the spectral and concentration data points are exactly congruent with
each other within the planes containing the data points, the spectral and
concentration eigenvectors for this noise-free, perfectly linear case must also be
exactly congruent. Because the vectors are congruent, the projection of each
spectral data point onto a spectral factor must be directly proportional to the
projection of the corresponding concentration data point onto the corresponding
concentration factor:

Y = B X, [65]

Y; is the projection of a single concentration data point onto the
f* concentration factor.

X;  isthe projection of the corresponding spectral data point onto
the f* spectral factor.

B; is the proportionality constant for the f* pair of concentration
and spectral factors.

Recall that the projections are often called the scores. Thus, another way of
expressing equation [65] is "the scores of the spectral data points are directly
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proportional to the scores of the corresponding eigenvector of the concentration
data points."”

Figure 73 contains plots of the projections of the spectral data onto each
spectral factor vs. the corresponding projections of the concentration data onto
each concentration factor.

The perfectly linear, noise-free relationship between the projections is
readily apparent. The slope of each relationship is equal to each proportionality
constant B, in equation [65]. B, is sometimes called the inner relationship. The
sign of the slope depends on the relative signs of the spectral factor vs. its
corresponding concentration factor.

Next, we consider what happens when there is noise on both the
absorbances and the concentration values. Figures 74 and 75 contain plots of
the spectral data with noise added. Figure 76 contains plots of the concentration
data with noise added. We can see that the spectral and concentration data
points are no longer exactly congruent. This is because the noise in the spectral
data is independent from the noise in the concentration data. Thus, in general,
the noise will shift each spectral data point a different distance in a different
direction than its corresponding concentration data point is shifted.

When we calculate the eigenvectors for the two different data spaces
(concentration and spectral spaces) we find the corresponding spectral and
concentration vectors are shifted by different amounts in different directions.
This is a consequence of the independence of the noises in the concentration
and spectral spaces. So, just as the noise destroyed the perfect congruence
between the noise-free spectral and concentration data points, it also destroyed
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Figure 73. Projections of the concentration data onto each concentration factor vs. the
corresponding projections of the spectral data onto each spectral factor for the
noise-free, perfectly linear data.
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Figure 74. The spectral data from Figure 66 before the addition of noise (x) and after
the addition of noise (o).

Figure 75. The spectral data from Figure 66 after the addition of noise.
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Figure 76. The concentration data from Figure 68 before the addition of noise (x) and
after the addition of noise (o).
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the congruence between the spectral and concentration basis vectors. It turns
out that, with this particular data, the shifts of the vectors are relatively small.
At the scale of our plots, the eigenvectors for the noisy data are almost identical
to the noise-free eigenvectors in Figures 70 through 73. But, we will plot the
projections of the spectral data onto each spectral factor vs. the corresponding
projections of the concentration data onto each concentration factor. This plot
may be found in Figure 77.

We see, in Figure 77, that the noise in the data impacts the relationship
between the projections of the spectral data onto the each spectral factor vs. the
corresponding projections of the concentration data onto each concentration
factor.

Rotation of the PCA Factors by PLS

The whole idea behind PLS is to try to restore, to the extent possible, the
optimum congruence between the each spectral factor and its corresponding
concentration factor. For the purposes of this concept, optimum congruence is
defined as a perfectly linear relationship between the projections, or scores, of
the spectral and concentration data onto the spectral and concentration factors
as exemplified in Figure 73. Since the spectral noise is independent from the
concentration noise, a perfectly linear relationship is no longer possible. So, the
best we can do is restore optimum congruence in the least-squares sense.

PLS attempts to restore optimal congruence between each spectral factor
and its corresponding concentration factor by rotating them towards each other
until the angle between them is zero. In other words, PLS will search for a
single
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Figure 77. Projections of the concentration data onto each concentration factor vs. the

corresponding projections of the spectral data onto each spectral'factor for the noisy
data using eigenvectors as factors.
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vector, W, that represents the best compromise between the spectral factor and
the concentration factor. The best compromise is not necessarily the factor that
lies exactly half-way between the PCA factor for the spectral space and the
corresponding PCA factor for the concentration space. It is, instead, the factor
that maximizes (in a least-squares sense) the linear relationship between the
projections (scores) of the spectral points onto the factor and the projections
(scores) of the corresponding concentration points onto this same factor. In
other words, PLS tries to find the factor, W, (for each rank, or dimensionality,
of the data) that maximizes the covariance of the spectral scores with the
concentrations. Each vector, W, will have as many elements as there are
wavelengths in the spectra. By convention, W is usually organized as a column
vector. Even though the vector, W, is actually an abstract factor, the elements of
W are usually called the loading weights, or simply the weights.

PLS finds these factors, W, one-by-one. First, the most significant optimum
factor, W,, is found. Then, that portion of the variance in the spectral data that
is spanned by W, is removed from the spectra. Similarly, that portion of the
variance in the concentrations that is spanned by W, is removed from the
concentrations. Then the next factor, W,, is found for the spectral and
concentration residuals that were not spanned by W,. The process is continued
until all possible factors have been found.

In general, because the noise in the concentration data is independent from
the spectral noise, each optimum factor, W, will lie at some angle to the plane
that contains the spectral data. But we can find the projection of each W, onto
the plane containing the spectral data. These projections are called the spectral
factors, or spectral loadings. They are usually assigned to the variable named P.
Each spectral factor P, is usually organized as a row vector.

Similarly, each optimum factor, W, will lie at some angle to the plane that
contains the concentration data. But we can find the projection of each W, onto
the plane containing the concentration data. These projections are called the
concentration factors, or concentration loadings. They are usually assigned to
the variable named Q. Each concentration factor Q, is usually organized as a
row vector.

If, as in this case, all, or nearly all, of the spectral variance is linearly
correlated to the concentration variance, the optimum PLS factors, W, and the
corresponding PLS spectral factors, P, will tend to be very similar to each other.
And W and P will, in turn, tend to be very similar to the PCA spectral factors.
If, on the other hand, there is a significant amount of spectral variance that is
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not correlated to the variance in the concentrations, W and P will tend differ
significantly from each other and from the PCA spectral factors.

When we perform PLS on the data in Figure 74, we find that the difference
between the PCA factors in Figures 70 through 72 and the PLS factors was so
slight that there is no point in plotting the PLS factors in separate figures. Plots
of the projections onto the PLS spectral factors vs. the projections onto the PLS
concentration factors are shown in Figure 78.

Let's compare these plots to the plots in Figure 77. There are, essentially, no
differences between the scores (projections) on the first eigenvectors (rank 1)
shown in Figure 77 and the scores on the first PLS factors shown in Figure 78.
The correlation coefficient, r, is identical for the two cases. We can see some
slight differences between the results for the second eigenvectors and the
second PLS factors. The points in Figure 78 appear to be slightly less scattered
that the points in Figure 77. Accordingly, the correlation coefficient, r, is also
slightly larger for the relationship between the PLS projections.

As we've said, whether the differences between the eigenvectors and the
PLS factors will be large or small is very dependent on the data itself. In this
case, the relationship between the absorbance and concentration data is so
strong and so linear, that there is very little that PLS can do to improve things.
If, on the other hand, our data should have a large amount of variance that is
unrelated to the concentratjons, particularly if it is nonlinear in nature, PLS will
generally succeed in efficiently rejecting it from the earlier factors. This can
"free-up" degrees of freedom which can be used to enhance the regression and
improve the performance of the calibration.
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Figure 78. Projections of the concentration data onto each concentration factor vs. the
corresponding projections of the spectral data onto each spectral factor for the noisy
data using the PLS factors.
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PLS can be counterproductive for data that has significant levels of
nonlinearities that are systematically related to the concentrations. PLS will
generally reject such nonlinearities from the earlier factors even though they
can have predictive value. PCR can often produce better calibrations that PLS
from data of this type. Also, PCR can usually produce better calibrations than
PLS if there are large errors in the training set concentrations, particularly if the
concentration errors have a systematic component. In such cases, PLS can tend
to overfit the concentration errors. This type of overfitting can reduce the
generality of the calibration resulting in larger errors when it is used to predict
the concentrations in independent unknowns.

The point is that it is usually advisable to generate calibrations using both
PCR and PLS. We can then evaluate each calibration validation samples and
choose whichever one works best in the particular application. Fortunately,
most of the software packages available today make it an easy matter to quickly
generate both calibrations.

PLS in Action

Now, we are ready to apply PLS to our simulated data set. For each training
set absorbance matrix, Al and A2, we will find all of the possible PLS factors.
Then, we will decide how many to keep as our basis set. We will use this basis
set to produce calibrations that we will use to predict the concentrations of the
samples in our validation sets.

We will name the PLS spectral factors calculated for training sets 1 and 2
PLSPI and PLSP2, respectively. Similarly we will name the PLS concentration
factors, loading weights, and inner relationships PLSQ1 and PLSQ2, PLSW1
and PLSW2, and PLSB1 and PLSB2, respectively.

Choosing the Optimum Rank

Just as we did for PCR, we must determine the optimum number of PLS
factors (rank) to use for this calibration. Since we have validation samples
which were held in reserve, we can examine the Predicted Residual Error Sum
of Squares (PRESS) for an independent validation set as a function of the
number of PLS factors used for the prediction. Figure 54 contains plots of the
PRESS values we get when we use the calibrations generated with training sets
Al and A2 to predict the concentrations in the validation set A3. We plot
PRESS as a function of the rank (number of factors) used for the calibration.
Using our system of nomenclature, the PRESS values obtained by using the
calibrations from A1 to predict A3 are named PLSPRESS13. The PRESS values
obtained by using the calibrations from A2 to predict the concentrations in A3

PLSPRESS13 PLSPRESS23
10" 10"
102 107
10° 10°
5 10 15 5 10 15
Rank Rank

Figure 79. Logarithmic plots of the PRESS values as a function of the number of
factors (rank) used to construct the calibration.
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are named PLSPRESS23. It is clear from the plots that the errors in predicting
the concentrations of the validation set, A3, are minimized by using 5 PLS
factors for the calibration.

If we did not have a validation set available to us, we could use
cross-validation for the same purposes. Figure 80 contains plots of the results of
cross validation of the two training sets, A1 and A2. Since no validation data is
involved, we name the results PLSCROSS1 and PLSCROSS2, respectively.

Again, it is clear from these plots that the errors are minimized when 5
factors are used. Thus, we will construct our calibration matrices using a basis
space cromprised of the first 5 eigenvectors (factors).

The plots in Figure 81 complete the story. They show why, if we do not
have validation samples available, we cannot simply use the fits to the training
set to determine how many factors to keep. First let's recall that, by fits to the
training set, we mean the procedure whereby we generate a calibration from a
training set and use that calibration to predict the concentrations of the samples
in that same training set. We then examine the PRESS for these predictions for
an indication of how well the calibration was able to fit the data in the training
set. Figure 81 contains plots of the fits for the two training sets, Al and A2.
Since there are no independent validation sets are involved, we have named the
results PLSPRESS1 and PLSPRESS2, respectively.

When we examine the plots we see that the PRESS decreases each time we
add another factor to the basis space. When all of the factors are included, the
PRESS drops all the way to zero. Thus, these fits cannot provide us with any
information about the dimensionality of the data. The problem is that we are

PLSCROSS1 PLSCROSS2
10" 10"
10° 10
107 10°
5 10 15 5 10 15
Rank Rank

Figure 80. Logarithmic plots of the cross-validation results as a function of the number
of factors (rank) used to construct the calibration.
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PLSPRESS1 PLSPRESS2
10° 10°
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10-10 1 0-10
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Figure 81. Logarithmic plots of the PRESS values as a function of the number of
factors (rank) using the same samples for calibration and validation. As factors are
added, the errors continue to decrease. When all of the factors are used, the errors
equal exactly zero.

trying to use the same data for both the training and validation data. We lose the
ability to assess the optimum rank for the basis space because we do not have
independent validation samples that contain independent noise. So, the more
PLS factors we add, the better the calibration is able to model the particular
noise in these samples. When we use all of the factors, we are able to model the
noise completely. Thus, when we predict the concentrations for these exact
same samples that contain exactly the same noise, our PRESS values decrease
each time a factor is added. When all of the factors are used, the noise is
modeled completely, and the PRESS values drop to zero. So if we are trying to
find the correct number of factors to use, and we do not have independent
validation samples, we must use a technique such as cross-validation. Simple
fits to the training set are useless for this purpose.

For our discussions, we have been using PLS to generate calibrations for all
components simultaneously. Unlike PCR, it can often be advantageous to
generate PLS calibrations for one component at a time. This allows PLS to find
the best compromise factors for each individual component by ignoring the
compromises that would be needed to accomodate the other components. When
PLS is used to calibrate multiple components simultaneously, it is often called
PLS-2. When used to generate calibrations for one component at a time it is
often called PLS-1.
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Basis Vectors and Noise Vectors

Cross-validation and PRESS both indicate that we should use 5 factors for our
calibrations. These factors are the basis factors comprising the basis space for
our calibration. The factors which we discard are the noise factors.

In the earlier chapter on PCR, we saw that we could plot each PCA factor as
if it were a spectrum. The same is true for the PLS spectral factors. Figure
82 contains plots of the first 4 factors of the two training sets Al, and A2. We
have named the matrices holding these factors Vel and Ve2, respectively.

As expected, in Figure 82, we notice that the first factors for each training
set are quite similar to each other and to the corresponding PCR factors we saw
earlier. Again, they do not look all that abstract. Since we did not scale or center
the spectra in the training sets prior to analysis, the first factor for each
absorbance matrix is the least-squares average of all the spectra in the set. The
second factors, on the other hand, appear a bit more abstract, although they
contain spectral like features. In fact, they look a bit like first derivative spectra.
This is to be expected since the second factors are capturing the maximum
amount of the residual variance that correlates well with the concentrations.
This residual variance is basically the least-squares average of the differences
between all of the spectra and the first factor in each data set. So it should be no
surprise that the second factors have these kinds of features. It should also be
expected that these factors will begin to look different from each other, because
the factors are now starting to pick up the individual differences between the
spectra in Al and those in A2.

Moving down to the third factors, we still see spectral like features, but now
the differences between the factors for each data set are becoming more
noticeable. The fourth factors are more different from each other than were the
first three. They still contain strong, spectral-like features, but they look a bit
noisier that the earlier factors. So far, all of these factors look like they could be
spanning significant information. Let's look at a few more factors which we
have plotted in Figure 83.

"In Figure 83 the fifth factors appear quite noisy. Nonetheless, we can
imagine that there are still some systematic features in these factors. It can be
dangerous to decide whether or not to retain a factor by inspecting it visually. It
is too easy to see patterns in data that is really random. But, we based our
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Figure 82. First 4 factors for the two training sets, Al and A2.

decision to retain this factor on the fact that we got the lowest PRESS and
cross-validation values with 5 factors. The fact that we can see features on this
factor serves to increase our confidence in the decision.
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Regenerated Data and Residuals
PLSP1 - Factor § PLSP2-Faclor Just as we did for PCR, we can use the PLS basis factors to regenerate the

0.4 : 04
] data. We've seen that the data regeneration step is implicit in the calibration.
02 2 . .. .
Even though there is no need to explicitly regenerate the data, it is, nonetheless
o 0 instructive. Let's use the 5 basis vectors for training set Al to regenerate the
02 02 spectra in Al. Let's also look at the residuals, that portion of the variance that is
° 4L 04 , discarded from the regenerated data because it is (hopefully) pure noise. We
o 20 PL;21 Fagoﬁ 80 100 o 20 PL;gz i 6:) . 8 100 will name the matrix holding the regenerated spectra and the residuals
- O - Factor . . .
04 04 PLSREG! and PLSRESIDI, respectively. Figure 84 contains a plot of one of
02 02 these regenerated spectra together with a plot of the original data for the same
spectrum. We can easily see that a significant amount of noise has been
0 0 removed without any evident degradation of the spectrum.
-02 02
-04 : : - 04
20 40 60 80 100 0 20 40 6 80 100
PLSP1 - Factor 7 PLSP2 - Factor 7 PLSREG1 - Spectrum 15
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Figure 83. Remaining factors for the two training sets, Al and A2.

Al of the remaining factors, 6 through 15, do appear to contain nothing but
noise. Remember that true noise eigenvectors will lie in some random direction 1o 20 30 40 50 60 70 8o so oo
that is devoid of any useful information. Thus, barring an unusual coincidence
each of them should look like pure noise when plotted in this fashion.

Figure 84. Plot of a regenerated spectrum (—) and the original spectrum (---) of a
sample in training set Al together with a separate plot of the differences between the
two spectra.
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Figure 84 also contains a plot of the differences between the original and the
regenerated spectrum. This is identical to the residual spectrum. The residuals of
this spectrum look comfortably like pure random noise.

Figure 85 contains plots of the residuals for all of the spectra in Al and A2.
Notice that, unlike the case for PCR, these residual spectra do appear to have a
small amount of spectral-like features. The features appear in the spectral regions
where the most intense peaks are located. Recall that PLS chose its basis factors
to optimize the linear regressions between the spectral factors and their
corresponding concentration factors. But these spectra contain some nonlinearity.
We have noted that PLS will tend to reject nonlinearities into the later factors. In
this case some of the nonlinearity is spanned by noise factors which we have not
included in the calibrations. Since the spectral nonlinearities in our data are
strongest in the spectral regions where the spectral absorptions are strongest, it
should not be surprising that it is easiest to see evidence of the rejected
nonlinearities in those regions of strongest spectral absorption.

PLSRESID1 - Alt Spectra
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Figure 85. Plot of the residuals of all the regenerated spectra in the two training
sets, Al and A2.

PLS in Action 151

Whether this tendency of PLS to reject nonlinearities by pushing them onto
the later factors which are usually discarded as noise factors will improve or
degrade the prediction accuracy and robustness of a PLS calibration as
compared to the same calibration generated by PCR depends very much upon
the specifics of the data and the application. If the nonlinearities are poorly
correlated to the properties which we are trying to predict, rejecting them can
improve the accuracy. On the other hand, if the rejected nonlinearities contain
information that has predictive value, then the PLS calibration may not perform
as well as the corresponding PCR calibration that retains more of the
nonlinearities and therefore is able to exploit the information they contain. In
short, the only sure way to determine if PLS or PCR is better for a given
calibration is to try both of them and compare the results.

We can also use the 5 factors which comprise the basis space of Al to
regenerate the spectra in our three validation sets A3, A4, and AS. We will
name the matrices holding these spectra, PLSREG13, PLSREG14, PLSREG15
and PLSRESID13, PLSRESID14, and PLSRESIDI15, respectively. Figure 86
contains plots of one regenerated spectrum from each validation set together
with the same spectrum before regeneration. Figure 86 also contains plots of the
residuals of all of the regenerated spectra in these validation sets.

In Figure 86, we can see that the basis space of our training set does a fine
job of regenerating the validation spectra in A3. Noise is nicely removed
without any significant degradation of the spectrum. Notice that the residuals
for A3 seem to contain some spectral features in the regions of the most intense
peaks. Also notice that the residuals are roughly the same magnitude as the
residuals for Al.

Regeneration also seems to work well on the validation spectra in A4.
Again, we see good noise removal without spectral degradation. Notice that the
regenerated spectral peak around data point 80 is somewhat different in
intensity than the original spectrum. This is consistent with PLS's tendency to
reject some of the spectral nonlinearities. Also, notice that the residuals for A4
are a bit larger in magnitude than those of Al. This makes sense when we
remember that the samples in A4 are the overrange samples. Thus, they are
somewhat different from the samples in the training set that was used to
develop the basis space. So, it makes sense that the residuals are a bit higher.

As with PCR, the story is very different for the samples in AS. Here, we see
that the regenerated spectrum has major differences from the original spectrum.
Also, the residuals are much larger and display significant amounts of
spectral-like features. Of course, the reasons for this are simple. AS contains
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Figure 86. Plot of a regenerated spectrum (—) and the original spectrum (--) of a
sample from each of the 3 validation sets A3, A4, and AS. The residuals for all of the
regenerated spectra in the 3 validation sets.

samples with varying amounts of an additional, interfering component. The
samples in our training set, A1, do not contain any of this interfering component.

So there is no way that the basis vectors for the Al spectra can span all of the
variance added to the A5 spectra by that component. Thus, it makes sense that
major spectral features are missing from the regenerated spectra and show up,
instead, in the residuals.

Confidence Indicator

As was the case for PCR, we see that the PLS spectral residuals for a sample
will be higher whenever there is something in the data that introduces a mode of
variation into the spectrum that was not present in any of the training samples
used to develop the basis space. The anomolous variation could be caused by
instrument drift, an unexpected interfering component, a misaligned sample cell,
or whatever. We can use this property of residuals as an indicator that can signal
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cell, or whatever. We can use this property of residuals as an indicator that can
signal us whenever a sample is significantly different from the training set
samples. This is very valuable because if we try to predict the concentrations of
a sample that differs significantly from the samples with which the calibration
was generated, the reliability of the predictions is very poor.

We can use the sum of the squares of the residuals (SSR) of the training set
as our benchmark. Then, we can establish one or more confidence limits based
on this benchmark. Typically, we might set a warning level at 2 to 3 times the
training set SSR. Anytime the residuals of an unknown spectrum exceed the
warning level we could take appropriate action. We might turn on a yellow
light, issue a warning message, send an e-mail to the person responsible for the
analysis, repeat the measurement, capture a sample, save a spectrum to disk,
initiate a self-diagnostic routine for the analyzer, or whatever. We could also set
an alarm level. Typically this would be set at 3 to 4 times the training set SSR.
If the SSR of an unknown exceeded the alarm level we could turn on a red light,
sound an alarm, save the data to disk, capture a sample, initiate self-diagnostics,
refuse to report the predicted concentration values, or shut down the analyzer.
Table 14 shows the PLS SSR" for training set Al, and the three validation sets,
A3 through AS.

Suppose we set our warning and alarm levels at typical levels of 3 and 5
times the training set SSR, respectively. We can see in Table 14 that our green
light would stay on while predicting the samples in the normal validation set,
A3. If we encounter samples from A4, the overrange validation set, the yellow
light would come on. And when we see samples from AS, the validation set
with the unexpected interfering component, red lights should flash, alarms
should sound, etc.

Table 15 shows the SSR's for each sample in validation set A5 together with
the concentration of the unexpected component in each sample. Figure
87 contains a plot of the data in Table 15. We can see, in Table 15 that there is a

Data Set Al Al3 Al4 AlS5

SSR 0.1907 0.2302 0.7272  3.7450

Table 14. Sum of the square of residuals (SSR) for PLS for Al and A3 through AS,
using the 5 basis vectors for Al.
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Data Set Al AS AlS
SSR Conc. SSR
0.1907 0.9880 7.7626

0.9353 6.8191
0.8144 5.4605
0.7733 4.7653
0.6074 3.1067
0.3177 1.2264
0.1161 0.4998

Table 15. Sum of the square of residuals (SSR) for PLS for the individual samples in
the validation set, AS, using the 5 basis vectors for Al together with the concentrations
of the unexpected 5* component in the A5 samples.

monotonic relationship between the SSR and the concentration of the interfering
5" component in each sample of the validation set AS. In Figure 87 we can see
that the relationship is approximately linear with the square root of the SSR. The
important thing is not the linearity of the relationship, but that it exists at all and
increases monotonically. It gives us a very usesful way of flagging samples which
our calibration may not be able to handle properly. This capability, alone, will
usually give us sufficient reason to use the factor-based techniques to develop our
calibrations.

Root SSR for A5 vs. Comp. 5 Conc.

0 N n 1 2
0 02 0.4 0.6 08 1

Figure 87. Plot of the PLS SSR (y-axis) vs. the concentration of Component 5 (x-
axis) for each sample in A5.
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PLS Calibration Matrices

Although PLS uses the regression between corresponding spectral and
concentration factors to "build" a predicted concentration, factor-by-factor, it is
possible to extract regression cofficients analogous to the coefficients produced
by a PCR calibration by feeding the PLS calibration a "unit spectrum.” We will
calculate the regression coefficients for the PLS calibrations calculated from the
two training sets, A1 and A2. We will name these calibration matrices PLS1,,,
and PLS2,, respectively. In the case of PLS, the calibration matrices have
a column for each component being predicted. Each column has one regression
coefficient for each spectral wavelength. Thus, we can plot each column of the
PLS regression matrix as if it were a spectrum. Figure 88 contains these plots.
We can think of these plots as the "strategy” of the calibration. They show us
which wavelengths are taken as positively correlated with the predicted
concentrations, which negatively, and which wavelengths are essentially
ignored.

PLS1cal - Comp 1 PLS2cal - Comp 1
0.1 0.1
0.05 0.05
0 0
0.05 ’ 0.05
0.1 0.1
0 2 40 60 ] 100 0 20 40 60 ] 100
PLS1cal - Comp 2 PLS2cal - Comp 2
0.2 02
0.1 01
0 0
01 0.1
0 2 40 60 ] 100 0 2 40 60 L] 100
PLS1cal - Comp 3 PLS2cal - Comp 3
0.1 0.1
0.05 . 0.05
0 0
-0.05 0.05
01 0.1 -
0 20 40 ] 80 100 0 2 40 ] ] 100

Figure 88. Plots of the PCR calibration coefficients calculated for each component
with each training set.
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We can see that the regression coefficients for each component produced by
the two training sets are quite similar to each other. It is also apparent that the
coefficients are reasonably well conditioned. In other words, their magnitude is
not excessive, and they do not swing wildly from large positive to large
negative values.

PLS Predictions on the Validation Sets

Finally, let's see how well the PLS calibrations predict the concentrations of
our 3 validation sets A3 - AS. We will use the PLS calibrations produced from
each training set, Al and A2, to predict the concentrations in the validation sets.
We will organize the predicted concentrations into result matrices named
PLS13,,, through PLS15,,and PLS23,, through PLS25 ... Using this naming
system, PLS24, is a concentration matrix holding the concentrations for
validation set A4 predicted with the PLS calibration matrix produced with
training set A2. Again, there is a data "crib sheet" inside the back cover to help
you keep things straight. Figure 89 contains plots of the expected vs. predicted
concentrations for PLS13_, through PLS25 .. Table 16 contains the values for
PRESS, SEC?, SEP?, and r, for this set of results.

It is apparent that these results are essentially identical to the results
obtained from this data using PCR. We even do extremely well with the
overrange validation samples in A4. But, it would be dangerous to assume that
we can routinely get away with extrapolation of this kind. Sometimes it works
well, sometimes it doesn't. There is no simple rule that can tell us which
situation we might be facing. It is very dependent on the particular data and

PLSI_, PLSZ,,

PRESS SEC* r PRESS SEC? r

Al 0008 0013 .9976 - . N
A2 - - ; 0004 .0006 .9980
A3 0012 0013 .9941 0021 0022 9897
A4 0035 .0032 .9987 0061 .0068 .9962
AS 1239 1325 .8846 0937 1045 9117

Table 16. PRESS, SEC?, SEP?, and r for PLS1,,, through PLS25,.,.
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PLS1cal - Comp 1 PLS2cal - Comp 1
0.1 0.1
0.05 0.05
0 0
0.05 0.05
01 0.1
0 20 40 60 80 100 0 20 40 60 80 100
PLS1cal - Comp 2 PLS2cat - Comp 2
0.2 0.2
0.1 0.1
0 0
0.1 0.1
0 20 40 60 80 100 0 20 40 80 80 100
PLS1cat - Comp 3 PLS2cal - Comp 3
0.1 0.1
0.05 0.05
0 ]
0.05 0.05
0.1 0.1
0 20 40 60 80 100 0 20 40 60 80 100

PLS1res - Fit to Training Set PLS2res - Fil to Training Set

05 0.5

0 02 04 08 08 1 0 02 04 06 08 1

Figure 89. Expected concentrations (x-axis) vs. predicted concentrations (y-axis) for
PCR calibrations (see text).

application involved. In any case, it not good practice to use a calibration to
predict concentrations that fall outside the range of the concentrations that were
present in the training set.

Of course, the calibrations do rather poorly predicting the concentrations of
the samples in AS. This is exactly as expected since these samples have varying
amounts of an additional, unexpected component that wasn't present in any of
the calibration samples. But, with the factor-based techniques, we have the
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ability to detect these samples using the SSR's of the spectra. As discussed in
the previous chapter on PCR, this gives us the ability to take appropriate action
if we encounter any unknowns for which the calibration must be considered
invalid.

The Beginning

Well, that's all there is to it! We have explored the 4 methods of quantitative
analysis that are in widespread use, CLS, ILS, PCR, and PLS. We have
considered the strengths and weakness of each method. The most important
lesson we have (hopefully) learned is that no single method is right for all
situations. Depending upon the nature of the application and the data we have to
work with, any one of the 4 techniques might outperform the others.
Fortunately, with the availablity of various software packages together with
inexpensive computers on which to run them, it is a relatively easy matter to try
them all on our data so that we may choose the method which best meets each
situation.

The rest is up to you. This book includes an extensive bibliography of
articles and books that can help you further master these methods. Of course, in
a field as young and as active as this, bibliographies tend to be outdated the day
they are compiled. New methods and new insights into existing methods
appear in the literature on a regular basis. But you should now be able to read
the literature critically, and with comprehension.

Very well, then, I don't see that there is any mystery
about it, after all.
—Mark Twain

159
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Appendix A: Matrices and Matrix Operations

This section will briefly review some of the basic matrix operations. It is not
a comprehensive introduction to matrix and linear algebra. Here, we will
consider the mechanics of working with matrices. We will not attempt to
explain the theory or prove the assertions. For a more detailed treatment of the
topics, please refer to the bibliography.

What is a Matrix?

For our purposes, we can simply consider a matrix as a set of scalars
organized into columns and rows. For example, consider the matrix A:

1 1 -8 -14
6 1 -3 -6
A = 2 -1 -7 10
6 1-3 -6
1 2 1 4

The following statements about A (or, as it is sometimes written, [A]) are true:

Itisa 5 X 4 matrix.

The dimensions of A are 5 X 4.

It contains 5 rows and 4 columns.

Each row is a row vector containing 4 elements.

Each row is a 1 X 4 matrix.

Each column is a column vector containing 5 elements.
Each column is a 5 X 1 matrix.

It contains positive and negative values. (Most matrices encountered in
chemometrics will contain only positive values.)

161
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Each element of A is designated by using subscripts. A; denotes the element
of A in the i row and j* column. For example, in the matrix A, above, A;,= 10.

Special Matrices

There are a number of matrices that are important enough to have special
names:

Zero Matrix

As the name suggests, a zero matrix is a matrix in which all of the elements are
equal to zero.

SO O OO
SO OO O
(=2 R e B o B e
(== 2 = R e I = B =]

Square Matrix
A square matrix is a matrix that contains the same number of columns as rows.

0 1 -3 6
2 -1 =710
0 1 -3 -6
1 2 1 4

Diagonal Matrix

A diagonal matrix is a square matrix in which all of the elements which do not
lie on the diagonal are equal to zero. Note that the diagonal (or, more exactly,
the principal diagonal) is comprised of all the elements A;; for which i = j.

(=

SO O H
|

SO =

o O OO

O OO
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Unit Matrix

A unit matrix is a diagonal matrix in which all of the diagonal elements are
equal to 1. The unit matrix is sometimes callesd the identity matrix. It is often
denoted as I.

1000
~ 0100
1= 0010
0001

Matrix Transpose

The transpose of a a matrix is formed by changing each column into a row
(or each row into a column). The matrix transpose of a matrix, A is denoted by
the superscript T to give A".

1 1 -8 -14 Lo 2 01

0 I3 -6 1 1 -1 12
A= 2 -1 -7 10 AT=

0 13 -6 -8 -3 -7 31

L 2 1 a4 -14 -6 10 -6 4

Notice that each element of A transpose, A} is equal to A;. Also note that
if the matrix A is an m by n matrix, then its transpose, A" must be an m by n
matrix.

We see that the transpose of the transpose returns the original matrix:

(A = A
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Matrix Multiplication

A matrix can be multiplied by a scalar, or by another matrix. When a matrix
is multiplied by a scalar, each element of the matrix is simply multiplied by that
scalar.

1 1 -8 -14 2 2 -16 28
0 13 -6 0 2 -6 -12
A=| 2 -1-7 10 2A=| 4 -2 -14 20
0 1-3 -6 0 2 -6 -12
1 2 1 4 2 4 2 8

In order to multiply two matrices, the number of columns of the first matrix
must be equal to the number of rows in the second matrix. If matrix A is anm X
p matrix and matrix B is a p X n matrix, then they may be multiplied together to
yield a matrix, C, with m rows and n columns. Each element of C is given by

n

Ci = )Y Aij By

=1

For example:

- N
W — tha

We have used bold characters to show how the C;, was calculated. Cj, is
the dot product of the second column of matrix B with the third row of
. matrix A:

2X1) + (4X3) = 14
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Orthorgonality

If the dot product of two vectors is equal to zero, those vectors are
orthogonal (perpendicular) to each other. For example, the dot product of the
vectors:

[237].:? =

CXD+EX-D+AXT=0

Therefore, these two vectors must be orthogonal.

Multiplication by the Unit and Zero Matrices

From the definition of matrix multiplication, we see that the product of any
matrix multiplied with a properly dimensioned zero matrix must be a zero
matrix. We also see that the any matrix that is multiplied with a properly
dimensioned unit matrix will remain unchanged by the multiplication.
Properties of Matrix Operations

Associative Law of Multiplication

A(BC)=(AB)C

Transpose of a Product
(AB) = BTAT
There is NO Commutative Law of Multiplication! Therefore, in general:

AB#BA


andresfe
Rectangle

andresfe
Rectangle


166 Appendix A
Matrix Inverse of a Square Matrix

If a square matrix has an inverse, the product of the matrix and its inverse
equals the unit matrix. The inverse of a matrix A is denoted by A™'.

AA' =1

A'A=1

Appendix B: Errors: Some Definitions
of Terminology

It is unfortunate that the nomenclature used to describe errors in the
regression steps and the prediction steps of the chemometric techniques has
been a source of much confusion. Although there is general agreement on the
underlying theory and practice of discussing and comparing errors, differing
terminologies have been brought to bear. Even worse, some terms are used
differently by different authors.

This section will briefly review some of the basic terms used to discuss
errors. It is not intended to be a comprehensive treatment of the topic. Here, we
will simply consider the basic definitions. We will not attempt to derive or even
explain the underlying theory. For more detailed treatments, please refer to the
bibliography.

What Do We Mean By Error?

For the purposes of this section, error is simply the difference between the
value of the y variable predicted by a regression and the true value (sometimes
called the expected value). Naturally, it is impossible to know the true value, so
we are forced to settle for using the best available referee value for the y
variable. (Note: it is possible that the "best available referee values” can have
larger errors than the predicted values produced by the calibration.) We will
follow the common convention and name the expected value of the variable y
and the predicted value of the variable P, pronounced "Y-hat." Then the error is
given by - y. We will also denote the number of samples in a data set by the
letter n.

Bias
When dealing with more than one sample, we can define the bias of a
regression as the mean of the errors. This can be written as

vy
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PRESS

The Predicted Residual Error Sum of Squares (PRESS) is simply the sum of
the squares of all the errors of all of the samples in a sample set.

n
PRESS = X (Pi-yi)
=1

Many people use the term PRESS to refer to the result of leave-one-out
cross-validation. This usage is especially common among the community of
statisticians. For this reason, the terms PRESS and cross-validation are
sometimes used interchangeably. However, there is nothing inate in the
definition of PRESS that need restrict it to a particular set of predictions. As a
result, many in the chemometrics community use the term PRESS more
generally, applying it to predictions other than just those produced during
cross-validation.

In this book, the term PRESS is used only for the case where the calibration
was generated with one data set and the predictions were made on an
independent data. The term CROSS is used to denote the PRESS computed
during cross-validation. This was done to in an attempt to distinguish
cross-validation from other means of validation.

Notice also, that PRESS, as defined, is not standardized to any absolute
frame of reference. The more samples we have in our data set, the more errors
there are to be squared and summed, and the larger PRESS is likely to be. Thus,
PRESS is only useful for comparisons within a given data set.

Variance of Prediction
The variance of prediction, s?, for a set of samples is defined as

n
. (Di-yi- bias)?
=

n-1

As is the case for PRESS, the variance of prediction can be calculated for
predictions made on independent validation sets as well as predictions made on
the data set which was used to generate the calibration.
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SEP

The Standard Error of Prediction (SEP) is supposed to refer uniquely to
those situations when a calibration is generated with one data set and evaluated
for its predictive performance with an independent data set. Unfortunately,
there are times when the term SEP is wrongly applied to the errors in predicting
y variables of the same data set which was used to generate the calibration.
Thus, when we encounter the term SEP, it is important to examine the context
in order to verify that the term is being used correctly. SEP is simply the square
root of the Variance of Prediction, s>. The RMSEP (see below) is sometimes
wrongly called the SEP. Fortunately, the difference between the two is usually
negligible.

MSEP

The Mean Squared Error of Prediction (MSEP) is supposed to refer
uniquely to those situations when a calibration is generated with one data set
and evaluated for its predictive performance with an independent data set.
Unfortunately, there are times when the term MSEP is wrongly applied to the
errors in predicting y variables of the same data set which was used to generate
the calibration. Thus, when we encounter the term MSEP, it is important to
examine the context in order to verify that the term is being used correctly.
MSERP is simply PRESS divided by the number of samples.

MSEP =PRESS /n

RMSEP

The Root Mean Standard Error of Prediction (RMSEP) is simply the square
root of the MSEP. The RMSEP is sometimes wrongly called the SEP.
Fortunately, the difference between the two is usually negligible.

MSEE, MSEC

The Mean Squared Error of Estimate (MSEE) is sometimes called the Mean
Squared Error of Calibration (MSEC). It is supposed to refer uniquely to those
situations when a calibration is generated with a data set and evaluated for its
predictive performance on that same data set. Unfortunately, there are times
when the term MSEC is wrongly applied to the errors in predicting the y
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variables for a data set which is independent from the set used to generate the
calibration. Thus, when we encounter these terms, it is important to examine the
context in order to verify that they are being used correctly. MSEC is simply
PRESS divided by the number of degrees of freedom (d.o.f.).

MSEC = PRESS / (d.o.f.)
So the trick is to understand the correct number to use for d.o.f.

For CLS, the number of degrees of freedom is equal to the number of samples,
n, minus the number of components modeled, ¢, minus 1.

dof.=n-c-1

For ILS, the number of degrees of freedom is equal to the number of
samples minus the number of wavelengths, w, used in the calibration, (i.e. the
number of columns in the P matrix) minus 1.

dof=n-w-1

For PCR the number of degrees of freedom is equal to the number of
samples, n, minus the number of factors, f, used for the basis space minus 1.

dof.=n-f-1

PLS is more complex than PCR because we are simultaneously using
degrees of freedom in both the x-block and the y-block data. In the absence of a
rigourous derivation of the proper number of degrees of freedom to use for PLS
a simple approximation is the number of samples, n, minus the number of
factors (latent variables), f, minus 1.

dof.=n-f-1

It is important to emphasize that MSEC is only an indication of how well

the regression was able to fit the calibrations data set. It is a major blunder to
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use this statistic as an indication of how well a calibration should perform when
predicting samples independent from those used in the calibration set.

SEE, SEC, RMSEE, RMSE

The Standard Error of Estimate (SEE), the Standard Error of Calibration
(SEC), the Root Mean Squared Error of Estimate (RMSEE), and the Root Mean
Square Error (RMSE) are used interchangeably. As with MSEE, they are
supposed to refer uniquely to those situations when a calibration is generated
with a data set and evaluated for its predictive performance on that same data
set. Unfortunately, there are times when these terms are wrongly applied to the
errors in predicting y variables of a data set which is independent from the data
set used to generate the calibration. Thus, when we encounter these terms, it is
important to examine the context in order to verify that the term is being used
correctly. SEE, SEC, RMSEE, and RMSE are simply the square root of MSEE.
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This section will review the basic operations for centering, weighting, and
scaling data sets. We will simply review the mechanics of each operation. For a
more detailed treatment of the topics, please refer to the bibliography.

There are two basic kinds of centering and scaling. Data can be treated
variable by variable, or they can be treated sample by sample. For example, if
we are dealing with a system of absorbance spectra measured on samples each
containing two components, a variable by variable operation would deal with
one component at a time, or one wavelength at a time while a sample by
sample operation would deal with one spectrum or one sample at a time.

Mean Centering

Mean centering is simply an adjustment to a data set to reposition the
centroid of the data to the origin of the coordinate system. From the statistical
point of view, this centering is intended to prevent data points at one edge of the
centroid of the data from having more influence (or leverage) than data points
elsewhere on the perimeter of the centroid. Also, mean centering will remove
degrees of freedom from the data allowing the calibration to better focus on the
differences among the points in the data set. From the analytical chemistry point
of view, mean centering maps the data set into an abstract space whose origin
no longer has any external physical or chemical significance. Depending upon
the data and the application, mean centering can have either helpful, harmful, or
neutral effect upon the performance of a calibration.

Mean centering is performed on a variable-by-variable basis. In other words,
we would mean center a set of absorbance spectra on a wavelength by
wavelength basis. Starting with the first wavelength, we compute the mean
absorbance over all of the samples at that wavelength. We then subtract this
mean from the absorbance value at this wavelength measured in each spectrum.
When we are finished, our absorbance matrix will now contain positive and
negative numbers, and the new mean absorbance value over all of the samples
at each wavelength will be equal to zero. Similarly, we would mean center the
concentration data for these samples on a component by component basis. The
decision whether or not to mean centering the x-block data is independent from
the decision about centering the y-block data. We can decide to center either,
both, or neither.
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Figure C1 shows a hypothetical set of data before mean centering. Figure
C2 shows the same data set after mean centering. We can imagine that this is a
plot of the y data (let's call them concentration values) for a two component
system. For each of the 15 samples in the data set, we plot the concentration of
the first component along the x-axis and the concentration of the second
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Figure C1. Hypothetical data set before mean-centering.

0.5} --------- beoooaoas aaeo- @ .
: ® :
@ | [ I
e 0
Of -+ O
o ©0 :
! ‘o0 @
05F--------- IL-.._ ______ .: ......... N R
P : ! :
-1 05 0 05 1

Figure C2. Hypothetical data set after mean-centering.
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component along the y-axis. Note that the positions of the data points relative to one
another are unchanged. The effect of mean centering has been to move the origin of
the new coordinate system to the centroid of the data points.

Variance Scaling

Variance scaling is an adjustment to a data set that equalizes the variance of
each variable. From the statistical point of view, this is intended to equalize the
influence of each variable in the data set. Variance scaling removes degrees
of freedom from the data. From the analytical chemistry point of view, variance
scaling maps the data set into an abstract space whose axes no longer have any
external physical or chemical significance. It also can reduce the influence of
variables where the signal variation (and hence analytically useful information
content) is large while increasing the influence of variables that contain mostly
noise. It is becoming understood that variance scaling will usually introduce
into the calibration an undesireable sensitivity to changing conditions.
Generally speaking, it is usually best not to variance scale unless you have a
specific reason for doing it.

Variance scaling is performed on a variable by variable basis. In other
words, we would variance scale a set the concentration values of a data set on a
component by component basis. Starting with the first component, we compute
the total variance of the concentrations of that component. There are several
variations on variance scaling. First, we will consider the most the method
which adjusts all the variables to exactly unit variance. To do this we compute
the variance of the variable, and then use the variance to scale all the
concentrations of all the samples so that the new variance for the component is
equal to unity.

To compute the variance, we first find the mean concentration for that
component over all of the samples. We then subtract this mean value from the
concentration value of this component for each sample and square this
difference. We then sum all of these squares and divide by the degrees of
freedom (number of samples minus 1). The square root of the variance is the
standard deviation. We adjust the variance to unity by dividing the
concentration value of this component for each sample by the standard
deviation. Finally, if we do not wish mean-centered data, we add back the mean
concentrations that were initially subtracted. Equations [C1] and [C2] show this
procedure algebraically for component, k, held in a column-wise data matrix.
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First compute the standard deviation for the variable:

n

2 (aki— @)
-y _ — i=l
standard deviation = §j ___(n D €1}
Then scale each point by the standard deviation
/ Aki — Ek —_
ay = 5 tak [C2]

The decision whether or not to variance scale the x-block data is
independent from the decision about scaling the y-block data. We can decide to
scale either, both, or neither.

Figure C3 shows the same data from figure C1 after variance scaling. Figure
C4 shows the mean centered data from figure C2 after variance scaling.
Variance scaling does change the positions of the data points from one another,
but does not change the location of the centroid of the data set.
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Figure C3. The data from Figure CI after scaling to unit variance.
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Figure C4. The data from Figure C2 after scaling to unit variance.

An alternative method of variance scaling is to scale each variable to a
uniform variance that is not equal to unity. Instead we scale each data point by
the root mean squared variance of all the variables in the data set. This is,
perhaps, the most commonly employed type of variance scaling because it is a
bit simpler and faster to compute. A data set scaled in this way will have a total
variance equal to the number of variables in the data set divided by the number
of data points minus one. To use this method of variance scaling, we compute a
scale factor, s, over all of the variables in the data matrix, ay,

n.n )
S= | X a; [C3)
i=1 =1

We first mean center each data point, a;, and then divide it by the scale
factor. If we do not wish to mean-center the data, we finish by adding the mean
value back to the scaled data point.

a”—E, —

s +ai [C4]

aij =
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Figure C5 shows the

Appendix C

data from Figure C1 after this type of scaling to

uniform variance. Figure C6 shows the mean-centered data from Figure C2
after the same treatment.
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Figure C5. The data from Figure C1 after scaling to uniform variance.
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Figure C6. The data from Figure C1 after scaling to uniform variance.
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Autoscaling

Autoscaling is another term that has been used in different ways by differnt
people. It is often used to indicate "mean centering followed by variance
scaling." Others use it to indicate normalization (see below).

Normalization

Normalization, is an adjustment to a data set that equalizes the magnitude
of each sample. In other words, normalization removes all information about
the distance each data point lies from the origin of the data space but preserves
the direction. Normalization has a relatively limited number of special
applications. For example, it is frequently used a pre-processing step in
preparing reference spectra for a qualitative identification library. The idea is to
retain only the information that qualitatively distinguishes one sample from
another while removing all information that could separate two samples of
identical composition but different concentrations.

Normalization is performed on a sample by sample basis. For example, to
normalize a spectrum in a data set, we first sum the squares of all of the
absorbance values for all of the wavelengths in that spectrum. Then, we divide
the absorbance value at each wavelength in the spectrum by the square root of
this sum of squares. Figure C7 shows the same data from Figure C} after
variance scaling. Figure C8 shows the mean centered data from Figure C2 after variance
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Figure C7. The data from Figure C1 after normalization.
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Figure C8. The data from Figure C2 after normalization.

scaling. Notice that, in both figures the data points all lie on a circle. In Figure
C7 we see that, for the non-mean centered case, the circle is centered on the
centroid of the original data points. In Figure C8, the mean centered data, we
see that the circle is centered on the origin of the new coordinate system. The
magnitude information has been eliminated. All that remains is the direction
from origin. Normalization together with mean centering is sometimes called
autoscaling. Note that the term autoscaling is one of those terms that is used in
different ways by different people. So whenever we see the term used, it is
important to investigate the context in order to understand what it means.

Appendix D: F-Test for Reduced Eigenvalues

Eigenvalues and Reduced Eigenvalues

A data set, existing in its native coordinate system, can be described in
terms of an alternate coordinate system defined by the eigenvectors of the data.
The first n of these eigenvectors will span the meaningful information in the
data set while all of the remaining eigenvectors will span only noise. Each
eigenvector - has, associated with it, an eigenvalue which represents the
magnitude of the total variance spanned by that eigenvector. Malinowski has
shown that, if the errors in the data are uniformly distributed, each eigenvalue
can be normalized for the degrees of freedom in the data with respect to that
eigenvalue. The j* normalized eigenvalue Rev, also known as a reduced
eigenvalye, for a data matrix with r rows and ¢ columns is calculated by
normalizing the j* eigenvalue, Ev,

Rev,=Ev,/(r-j+1)(c-j+1) [D1]

Note that there can be a maximum of s meaningful eigenvectors,
eigenvalues, and reduced eigenvalues where s is the lesser of r and c. Because
the reduced eigenvalues for noise eigenvectors should all belong to the same
normal distribution, we can apply an F-test to determine if a given reduced
eigenvalue corresponds to a-noise eigenvector which may be discarded, or to a
basis vector which should be retained.

F-Test for reduced eigenvalues
We use a two-way F-test to determine if the reduced eigenvalue for the j*

- eigenvector is, to a chosen degree of probability, greater in magnitude than all

of the reduced eigenvectors which come after it. This requires us to calculate
the F statistic, F;, for each reduced eigenvalue except the last. We can do this
directly from each cigenvalue Eyv,

mﬁl t-n+1)c—n+1) Ev,

(c=j+1c=-j+1) ¢ Ev,
P

[D2]

Starting with the next to the last eigenvalue, we can then compare the F
statistic calculated for that eigenvalue to the F(1, s - j) value in the statistical
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table of F percentage points at the desired level of significance (usually 5% or
10%). The notation F(1, s - j) indicates that when consulting the tables, we
always use a numerator of 1, while the denominator is (s - j). If the calculated F
statistic for the next to the last eigenvalue is below the value in the statistical
tables, we conclude that it is, indeed, a noise eigenvalue and move to the next
higher (in magnitude) eigenvalue. Note that each time we move to the next
higher eigenvalue the denominator (s - j) will increase by 1. At the first instance
where an eigenvalue's calculated F statistic exceeds the corresponding F value
in the statistical tables, we conclude that this eigenvalue, together with all of the
eigenvalues higher than it, corresponds to basis eigenvectors which should be
retained, and the test is complete.

Appendix E: Leverage and Influence

Leverage

Simply speaking, the leverage of a single data point is directly proportional
to its distance from the origin of the data space. In general, the greater the
leverage of a data point, the greater its influence on the principle components or
PLS factors, as well as the slope (and in some cases the intercept) of a
regression line computed with a least squares method.

Figure E1 shows a data set which contains one data point, A, with
significantly higher leverage and one data point, B, with significantly lower
leverage than the other points in the data set. Also shown is the first principle
component for the data set.

Figure E2 shows a least-squares regression between the scores of this data
set on the first principle component and a dependent variable. If the regression
is constrained to pass through the origin at 0,0, it is evident that an incremental
change in the slope of the regression line will cause a greater incremental
change in error of the fit to point A than in the error of the fit to any other point
in the data set. Since the regression line is chosen to minimize the sum of the
squares of all of the errors, point A will therefore have more influence on the
slope of the regression line than any other single point in the data set. If a
regression method is used which allows for a regression line with a nonzero
intercept, the influence of point B on the regression will also be larger than the

independent variable B

indeperdent variable A
Figure El. Hypothetical data set containing points with, A, atypically high and, B,
atypically low leverage.
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dependent variable
4

soores onPC 1
Figure E2. Hypothetical regression between a dependent variable and the scores of the
data set containing points with, A, atypically high and, B, atypically low leverage.

remainder of the points. Whether the larger influence of points A and B is good,
bad, or indifferent depends upon whether A and B represent good, valid data for
their respective regions of the calibration space, or whether they are atypical
outliers. A point can be an outlier due to unusually large measurement errors, or
because it is a point which is outside the range of the normal calibration space
for which the regression is required. For example, many measurement
techniques involve a noise level which is independent of the magnitude of the
measured value. Thus, points such as point B which are close to the origin of
the native data space will have a poorer signal-to-noise ratio than points further
from the origin.

If we mean-center the data in Figure E1 before performing the regression,
we would have the situation depicted in Figure E3. Here it is evident that both
points A and B will have a larger influence on the slope of the regression line
than the other points. When we consider points such as point B often have the
poorest signal-to-noise ratios of all the points in the data set, we can see that
mean-centering data prior to regression can be detrimental because it can give
the data points with the poorest signal-to-noise ratios more influence over the
regression than points with better signal-to-noise ratios.

Leverage and Influence 185
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Figure E3. Hypothetical mean-centered data set containing points with, A, atypically
high and, B, atypically low leverage.

Mahalanobis Distances

So far we have been considering leverage with respect to a point's Euclidean
distance from an origin. But this is not the only measure of distance, nor is it
necessarily the optimum measure of distance in this context. Consider the data
set shown in Figure E4. Points C and D are located at approximately equal
Euclidean distances from the centroid of the data set. However, while point C is
clearly a typical member of the data set, point D may well be an outlier. It
would be useful to have a measure of distance which relates more closely to the
similarity/difference of a data point to/from a set of data points than simple
Euclidean distance.The various Mahalanobis distances are one such family of
such measures of distance. Thus, while the Euclidean distances of points C and
D from the centroid of the data set are equal, the various Mahalanobis distances
from the centroid of the data set are larger for point D than for point C.

Influence Plots

It is often helpful to examine the regression errors for each data point in a
calibration or validation set with respect to the leverage of each data point or its
distance from the origin or from the centroid of the data set. In this context,
errors can be considered as the difference between expected and predicted
(concentration, or y-block) values for the regression, or, for PCA, PCR, or PLS,
errors can instead be considered in terms of the magnitude of the spectral
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Figure E4. Hypothetical data set illustrating that Euclidean distance is not an ideal
metric for membership in a data set.

(x-block) residuals for each sample. A plot of errors vs. leverage or
Mahalanobis distance is often called an influence plot. Figure E5 shows an
influence plot for some hypothetical data. A point with relatively low leverage
but high error such as point E is very often an outlier due to some error in the

L)
E
; .
F
e
G
L]
¢ e
Wy LT
» . .
0
0
leverage

Figure E5. Influence plot for a hypothetical data set showing, E, a probable outlier; F
and G, questionable outliers; and, H, a probable atypical but important calibration
sample.

Leverage and Influence 187

measurement, or to an atypical sample for which the calibration is not valid.
Point F and G which have relatively high leverage and errors might also be
outliers, or they might be atypical points which are important to the calibration
but are much less common than the majority of the points in the data set. Point
H which has higher leverage than the majority of data points but a typical error,
is likely to be a valuable atypical point which is important to the calibration.
The normal courses of action here would be to further review sample E to
confirm the validity of excluding it from the calibration set; to understand why
sample H is different from the other calibration points, and the implications for
the calibration; and to further investigate samples F and G to determine why
they are different and whether they should be discarded from the data set,
retained, or remeasured.
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Data “Crib Sheet”

Data Sets and Matrix Names

TRAINING SETS - 3 + 1 components

Al/Cl1 Structure Training Set

A2/C2 Random Distribution Training Set
A6/C6 Same as A2, but with only 3 components
AAl Al spectra condensed into 10 “bins”
AA2 A2 spectra condensed into 10 “bins”

VALIDATION SET - 3 + 1 components

A3/C3 Validation Set
A7/CT Same as A3 but with only 3 components
AA3 A3 spectra condensed into 10 “bins”

VALIDATION SETS with outliers

A4/C4 Validation Set with Overrange Samples

AS/CS Validation Set with Unexpected Sth Component

AA4 A4 spectra condensed into 10 “bins”

AAS AS spectra condensed into 10 “bins”

RESULT MATRICES

CLS RESULTS

Kl CLS estimated pure component spectra for A1/C1

K2 CLS estimated pure component spectra for A2/C2

K13res CLS calibration from A1/C1 predicts concentrations for A3
Kl4res CLS calibration from A1/C1 predicts concentrations for A4
K15res CLS calibration from A1/C1 predicts concentrations for AS
K23res CLS calibration from A2/C2 predicts concentrations for A3
K24res CLS calibration from A2/C2 predicts concentrations for A4
K25res CLS calibration from A2/C2 predicts concentrations for A5

Klcal CLS calibration coefficients from A1/C1

K2cal CLS calibration coefficients from A2/C2

Kla CLS with non-zero intercept estimated pure component spectra
for A1/C1 '

K2a CLS with non-zero intercept estimated pure component spectra

for A2/C2
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Klares

K13ares

K14ares

K15ares

K2ares

K23ares

K24ares

K25ares

K6
K6a
for A6/C6

Keéres
K67res
Ké63res

Keéares

Ké67ares

Ké3ares

K13res
K14res
K15res

K23res
K24res
K25res

ILS RESULTS

Plres

Pl3res
Pldres
P15res

P2res
P23res

CLS calibration with non-zero intercept from A1/Cl predicts
concentrations for A1l
CLS calibration with non-zero intercept from A1/C1 predicts
concentrations for A3
CLS calibration with non-zero intercept from A1/Cl predicts
concentrations for A4
CLS calibration with non-zero intercept from A1/C1 predicts
concentrations for A5

CLS calibration with non-zero intercept from A2/C2 predicts
concentrations for A2
CLS calibration with non-zero intercept from A2/C2 predicts
concentrations for A3
CLS calibration with non-zero intercept from A2/C2 predicts
concentrations for A4
CLS calibration with non-zero intercept from A2/C2 predicts
concentrations for AS

CLS estimated pure component spectra for A6/C6
CLS with non-zero intercept estimated pure component spectra

CLS calibration from A6/C6 predicts concentrations for A6
CLS calibration from A6/C6 predicts concentrations for A7
CLS calibration from A6/C6 predicts concentrations for A3

CLS calibration with non-zero intercept from A6/C6 predicts
concentrations for A6
CLS calibration with non-zero intercept from A6/C6 predicts
concentrations for A7
CLS calibration with non-zero intercept from A6/C6 predicts
concentrations for A3

CLS calibration from A1/C1 predicts concentrations for A3
CLS calibration from A1/C1 predicts concentrations for A4
CLS calibration from A1/C1 predicts concentrations for A5

CLS calibration from A2/C2 predicts concentrations for A3
CLS calibration from A2/C2 predicts concentrations for A4
CLS calibration from A2/C2 predicts concentrations for AS

ILS calibration from A1/C1 predicts concentrations for Al
ILS calibration from A1/C1 predicts concentrations for A3
ILS calibration from A1/C1 predicts concentrations for A4
ILS calibration from A1/C1 predicts concentrations for AS

ILS calibration from A2/C2 predicts concentrations for A2
ILS calibration from A2/C2 predicts concentrations for A3

P24res
P25res

PCR RESULTS

PCRPRESS13
PCRPRESS23

PCRCROSS13
PCRCROSS23

PCRPRESS|
PCRPRESS2

VCl1
VC2

PCAREGI1

PCAREG13
PCAREG14
PCAREG15

PCAREG2

PCAREG23
PCAREG24
PCAREG2S5

PCARESID1

PCARESIDI13
PCARESID14
PCARESID15

PCARESID2

PCARESID23
PCARESID24
PCARESID25

Flcal
F2cal

Flres

Fl3res
Fl4res
F15res
F2res

F23res
F24res
F25res

PLS RESULTS

ILS calibration from A2/C2 predicts concentrations for A4
ILS calibration from A2/C2 predicts concentrations for AS

PRESS of PCR calibration from A1/C1 for A3
PRESS of PCR calibration from A2/C2 for A3

Cross-validation of PCR calibration from A1/C1 for A3
Cross-validation of PCR calibration from A2/C2 for A3

PRESS of PCR calibration from A1/C1 for Al
PRESS of PCR calibration from A2/C2 for A2

Eigenvectors from PCA of A1
Eigenvectors from PCA of A2

PCA factors from A1 regenerate spectra for Al
PCA factors from A1 regenerate spectra for A3
PCA factors from Al regenerate spectra for A4
PCA factors from Al regenerate spectra for AS

PCA factors from A2 regenerate spectra for A2
PCA factors from A2 regenerate spectra for A3
PCA factors from A2 regenerate spectra for A4
PCA factors from A2 regenerate spectra for AS

PCA factors from Al yield residuals for A1l
PCA factors from Al yield residuals for A3
PCA factors from Al yield residuals for A4
PCA factors from Al yield residuals for AS

PCA factors from Al yield residuals for A2
PCA factors from Al yield residuals for A3
PCA factors from A1 yield residuals for A4
PCA factors from Al yield residuals for A5

PCR calibration coefficients from A1/C1
PCR calibration coefficients from A2/C2

PCR calibration from A1/C1 predicts concentrations for A1l
PCR calibration from A1/Cl1 predicts concentrations for A3
PCR calibration from A1/C1 predicts concentrations for A4
PCR calibration from A1/C1 predicts concentrations for AS
PCR calibration from A2/C2 predicts concentrations for A2
PCR calibration from A2/C2 predicts concentrations for A3
PCR calibration from A2/C2 predicts concentrations for A4
PCR calibration from A2/C2 predicts concentrations for A5
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PLSPRESS13
PLSPRESS23

PLSCROSS13
PLSCROSS23

PLSPRESSI
PLSPRESS2

PLSP1
PLSP2

PLSREG1

PLSREG13
PLSREG14
PLSREG1S

PLSREG2

PLSREG23
PLSREG24
PLSREG2S5

PLSRESID1

PLSRESID13
PLSRESID14
PLSRESID15

PLSRESID2

PLSRESID23
PLSRESID24
PLSRESID25

PLSlical
PLS2cal

PLSlres

PLS13res
PLS14res
PLS15res

PLS2res

PLS23res

PLS24res
" PLS25res

PRESS of PLS calibration from A1/C1 for A3
PRESS of PLS calibration from A2/C2 for A3

Cross-validation of PLS calibration from A1/C1 for A3 ln dex
Cross-validation of PLS calibration from A2/C2 for A3

PRESS of PLS calibration from A1/C1 for Al
PRESS of PLS calibration from A2/C2 for A2

PLS factors from PLS of Al
PLS factors from PLS of A2

PLS factors from Al regenerate spectra for Al
PLS factors from Al regenerate spectra for A3
PLS factors from A1l regenerate spectra for A4
PLS factors from A1 regenerate spectra for AS

PLS factors from A2 regenerate spectra for A2
PLS factors from A2 regenerate spectra for A3
PLS factors from A2 regenerate spectra for A4
PLS factors from A2 regenerate spectra for AS

PLS factors from A1 yield residuals for Al
PLS factors from Al yield residuals for A3
PLS factors from Al yield residuals for A4
PLS factors from Al yield residuals for AS

PLS factors from Al yield residuals for A2
PLS factors from A1l yield residuals for A3
PLS factors from A1l yield residuals for A4
PLS factors from Al yield residuals for A5

PLS calibration coefficients from A1/C1
PLS calibration coefficients from A2/C2

PLS calibration from A1/C1 predicts concentrations for Al
PLS calibration from A1/C1 predicts concentrations for A3
PCR calibration from A1/Cl1 predicts concentrations for A4
PCR calibration from A1/C1 predicts concentrations for AS

PLS calibration from A2/C2 predicts concentrations for A2
PLS calibration from A2/C2 predicts concentrations for A3
PLS calibration from A2/C2 predicts concentrations for A4
PLS calibration from A2/C2 predicts concentrations for AS
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Absorbance matrix, 7,9, 11
creating, 37
Abstract factors, 84
Accuracy
training set concentrations, 19
Audit samples, 24
Auditing, 24
Augmenting
training set, 33
Autoscaling, 100, 178
Baseline
curvature, 43
in synthetic data, 43
Baseline curvature, 43
Basis vectors, 94
Beer-Lambert Law, 37
Best data
defined, 17
Bias, 166
Calibration
auditing, 24
classical least-squares, 50
CLS, 50
ILS, 70
improving, 25
inverse least-squares, 70
K-matrix, 50
P-matrix, 70
samples, 13
spanning, 27
validation, 21
Calibration matrix
classical least-squares, 52
CLS, 52
K-matrix, 52
Calibration space, 28
Calibrations
basic approach, 17
developing, 17
Centering

Index

of data, 99
Classical least-squares, 50
CLS, 50 '
Coefficients
calibration, 60
regression, 60
Column-wise data organization, 9
Compromises
accuracy vs. robustness, 21
number of calibration samples
21
Concentration matrix, 7, 10
row-wise, 12
training set, 34
validation set, 35
Concentration space, 28
Congruent
factors, 135
Correlation coefficient, 60
Cross-validation, 106
Cynicism, 5, 23
Data
about, 2
best, 17
centering, 99
examples, 5
normalization, 100
pre-treatment, optional, 98
scaling, 100
visualization, 9, 11
weighting, 100
Data organization, 7
column-wise, 9
row-wise, 11
Data set, 13
column-wise, 10
row-wise, 13
training, 13
unknown, 16
validation, 15
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Dependent variables, 7
Design of experiments, 27
Developing calibrations, 17
Dimensionality, 94
of ILS data, 72
reduction by PCA, 80, 98
reduction by PLS, 80
Education
of managers, 18, 22
of operators, 24
Eigenvalue, 88
Eigenvector, 85
length, 102
magnitude, 102
Eigenvectors, 79
error, 94
noise, 94
primary, 94
secondary, 94
Embedded error, 94
Error
bias, 166
CLS, defined, 50, 71
extracted, 94
imbedded, 94
in synthetic data, 45
PRESS, 167
real, 94
terminology, 166
Error eigenvectors, 94
Estimated pure component spectra
- byCLS, 53
Experimental design, 27
manual, 32
random, 31
" structured, 29
TILIL, 33
Extracted error, 94
F-test
on reduced eigenvalues, 103

Index

Factor Analysis, 78
Factor spaces, 78
Factorial design, 29
Factors, 94
plotting, 117
Fit
to training set, CLS, 56
FRAC function, 103
IE, 94, 103
ILS, 70
Imbedded error function, 103
IND, 103
IND function, 103
Independent variables, 7
Indicator function, 102
empirical, 103
FRAC, 103
IE, 103
imbedded error, 103
reduced eigenvalues, 103
REV, 103
RMS, 103
root-mean-squared error, 103
statistical, 103
Influence, 182
Inverse
pseudo, 51, 71
Inverse least-squares, 70
Isotropic noise, 90
K-matrix, 50
Leverage, 99, 180
Loadings, 94
Mahalanobis distances, 182
Managers
need for education, 18, 22
Mandatory pre-treatment, 100
Matrix
absorbance, 9, 11
basic operations, 160
column-wise, 9

Matrix (cont)
concentration, 10, 12
orthorgonality, 164
result, 16
row-wise, 11
Matrix multiplication
illustrated, 38, 163
Matrix operations, 160
Mean centering, 99, 172
MLR, 50, 70
MSEC, 168
MSEE, 168
MSEDP, 168
Multiple linear regression, 50, 70
NIPALS, 101
Noise
in synthetic data, 45
Noise eigenvectors, 94
Noise rejection, 80
Non-linear partial least squares, 101
Non-linearities
in synthetic data, 43-
Non-zero intercept
CLS, 62
Normalization, 100, 178
Numerical conditioning, 79
Object, 7
column-wise, 11
row-wise, 13
Optional pre-treatment, 98
P-matrix, 70
Partial least-squares, 78
in latent variables, 130
Partial least-squares regression, 130
PCA, 78
PCR, 96, 110, 142
PLS, 78
relationship to PCR, 130
PLSR, 130

Index

Pre-treatment

of data, mandatory, 100

of data, optional, 98
Predicted Residual Error

Sum-of-Squares, 59, 106
Prediction

of unknowns with CLS, 52

PRESS, 59, 106, 167
Primary eigenvectors, 94
Principal component, 85

Principal component analysis, 78
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Principal component regression, 96, 98

Principal components, 94
Procedures
organizational, 25
Projections
onto factors, 84
Pseudo inverse, 51, 71
Pure component spectra, 36
estimated by CLS, 53

Quantatative spectral library
use with CLS, 67

r correlatiom coefficient, 60
Random training set, 31
Rank, 94

choosing the optimum, 110, 142

RE, 94
Real error, 94
Realism
in synthetic data, 43
Reduced eigenvalues, 103
F-test on, 186
Reduced eigenvectors, 105

Regenerated spectra, 121, 148

Regeneration, 94
Regression coefficients
PCR, 126
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Regression matrix
classical least-squares, 52
CLS, 52
ILS, 70
K-matrix, 52
Residuals, 89, 94, 121, 148
sum of squares, 124, 152
Result matrix, 16
REV, 103, 105
RMSE, 170
RMSEE, 170
RMSEP, 168
Row-wise data organization, 11
Rule of 10, 20
Rule of 3, 20
Rule of 5, 20
Rule of thumb
accuracy of training
concentrations, 19
accuracy of validation
concentrations, 23

number of training samples, 19
number of validation samples, 23

Rule of 10, 20

Rule of 3, 20

Rule of §, 20
Samples

audit, 24

calibration, 13
Scaling

of data, 100
Scaling

auto, 100

variance, 100
Scores, 84, 135
SEC, 60, 170
Secondary eigenvectors, 94
SEE, 60, 170
SEP, 168
Short circuit data reproduction, 94

Index

Singular value decomposition, 101
Spanning

calibration space, 27

of data by factors, 85
Spectra

pure component, 37

regenerated, 121, 148
SSR, 124, 152

as an alarm, 124, 152
Standard Error of Calibration, 60
Standard Error of Estimate, 60
Strategy

of the calibration, 60
SVD, 101
Synthetic data

baselines, 43

non-linearities, 43

realism, 43
Target factor analysis, 116
Training set, 13

augmenting, 33

concentration accuracy, 19

creating, 34

designing, 27

* mutual independence in, 15
random, 29, 31
structured, 29

Uniformly distributed training set, 31

Unknown set, 16
Validation, 21, 22

without validation samples, 23

Validation samples, 15, 22
added to training set, 22
Validation set, 16
creating, 35
Variables
dependent, 7
independent, 7
Variance
of data, spanning, 85

Variance (conr)

of prediction, 167
Variance scaling, 100, 174
Vectors

basis, 94
Weighting

of data, 100

Index

Whole spectrum method, 71
x-block data, 7

x-data, 7

XE, 94

y-block data, 7

y-data, 7
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