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Preface 

The fifth volume of the series “Methods and Principles in Medicinal Chemistry” focuses on 
molecular modeling. Progress in modern ligand design is intimately coupled with the access to 
and the continuous refinement of molecular modeling techniques. They allow the computer- 
aided generation of molecular structures as well as the Computation of molecular properties. 
Predictions of the three-dimensional structures of drug and receptor molecules, visualizations 
of their molecular surface properties and optimizations of drug-receptor interactions by visual 
inspection can be realized today. 

The present volume offers an introduction to the field of molecular modeling. The book is 
organized in two parts: the first deals with the modeling of small molecules whereas the second 
examines biological macromolecules, in particular proteins. 

The first part describes in detail the basic know-how necessary for generating 3D coordinates 
of small molecules, the computational tools €or geometry optimization and conformational 
analysis, the determination of molecular interaction potentials, approaches for the identification 
of pharmacophores and last but not least the use of databases.The application of this spectrum 
of methodical approaches is exemplified by a case study dealing with pharmacophore definition 
in the field of serotonin receptor (5 HT,,) ligands. 

The second part gives an introduction to protein modeling. After a description of terminology 
and the principles governing protein structures, approaches for knowledge-based protein 
modeling are summarized,followed by chapters on refinement and validation of protein models 
and on methods for the description of structural properties of proteins. The case study in the 
second part illustrates the application of experimental procedures to the modeling of 
protein-ligand complexes (design of non-natural peptides as high-affinity ligands for a MCH I 
protein). 

The editors would like to thank the contributors for their encouragement in compiling this 
volume. We are sure that scientists entering the fascinating field of computer-aided ligand design 
will find in this volume the adequate support they need to apply molecular modeling techniques 
successfully. 

April 1996 

Diisseldorf 
Ludwigs hafen 
Amsterdam 

Raimund Mannhold 
Hugo Kubinyi 
Hendrik Timmerman 
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A Personal Foreword 

“A Model must be wrong, in some respects, else it would be the thing itself.The trick is 
to  see where it is right.” 

Henry A.  Bent 

We humans receive our data through the senses of vision, touch, smell, hearing and taste. 
Therefore, when we have to  understand things that happen on the submicrosopic scale, we have 
to devise a way of simulating this activity.The most immediate and accessible way to represent 
the world that is unobservable is to make a model that is on our scale and that uses familiar forms 

Many physical and chemical properties and behaviors of molecules can be predicted and 
understood only if the molecular and electronic structures of these species are conceived and 
manipulated in three-dimensional (3D) models. A s  a natural follow up  nowadays the 
computer is used as a standard tool for generating molecular models in many research areas. 

The historical process of developing concepts leading t o  molecular modeling started with 
the quantum chemical description of molecules,This approach yields excellent results on the 
a b  initio level. But the size of the molecular systems which can be handled is still rather limited. 
It is therefore that the introduction of molecular modeling as a routine tool owes its beginning 
to  the development of molecular mechanics some 25 years ago together with the appearance 
of new technologies in computer graphics. 

The goal of this book is to show how theoretical calculations and 3D visualization and 
manipulation can be used not simply to  look at molecules and take pretty pictures of them, 
but actually to  be able to  gain new ideas and reliable working hypotheses for molecular 
interactions such as drug action. 

It is our intention to  reach this goal by giving examples from our own research fields more 
than reporting literature’s success stories. This is because stepwise procedures avoiding pitfalls 
and overinterpretation can at best be demonstrated by data from our own laboratory notebooks. 

Most of the contents will therefore reflect our own ideas and personal experiences, but 
nevertheless represent, what we believe to be an independent view of molecular modeling. 

We gratefully acknowledge the technical assistance of Matthias Worch, Frank Alber and 
Oliver Kuonen. Finally we wish to express our sincere gratitude to  Heide Westhusen for her 
excellent secretarial and organizational help. 

Spring 1996 

Berlin 
Zurich 

Hans-Dieter Holtje 
Gerd Folkers 
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Molecular Modeling 

by Hans-Dieter Holtje and Gerd Folkers 
0 VCH Verlagsgesellschaft mbH, 1997 

Basic Principles and Applications 

1 Introduction 

“Dear Venus that beneath the gliding stars ...” Lukrez (Titus Lucretius Carus, 55 B.C.) starts 
his most famous poem De Rerum Natura with the wish to the Goddess of love to reconcile the 
wargod Mars, which in this time when the Roman Empire starts to pass over its zenith, ruled 
the world. 

Explanation is the vision of Lukrez. His aim is in odd opposition to his introductory wish 
to the goddess of love: the liberation of people from his fear of God, from the dark power of 
unbelievable nature. 

The explanation of mechanism from the common is the measure with which Lukrez will 
take away the fear from the ancient people, the fear of the gods and their priests, the fear of 
the want of nature and the power of the stars. 

Lightning, fire and light, wine and olive oil have been perhaps the simple things of daily 
experience, which people needed, which people was afraid of, whom has been dear to him: 

“ ... again, light passes through the horn 
of the lantern’s side, while rain is dashed away. 
And why? - unless those bodies of light should be 
finer than those of water’s genial showers. 
We see how quickly through a colander 
the wines will flow; how, on the other hand 
the sluggish olive oil delays: no doubt 
because ‘tis wrought of elements more large, 
or else more crook’d and intertangled ...” 

The atom theory of Demokrit leads Lukrez to the description of the quality of light, water 
and wine. For this derivation of structure-quality relationships he uses models. The 
fundamental building stones of Lukretian models look a little like our atoms,calledprimodials 
by Lukrez, elementary individuals, which were not cleavable anymore. Those elementary 
building stones could associate. Lukrez even presupposes recognition and interaction. He 
provides his building stones with mechanic tools that guarantee recognition and interaction. 
The most important of these conceptual tools are the complementary structure (sic!) and the 
barked hook. With these primordials Lukrez built his world. 

How well the modeling fits is shown in his explanation of the fluidity of wine and oil. A 
comparison of the space-filling models of the fatty acid and water molecules amazes, because 
of its similarity with the 2000-years old image of Lukrez. 



2 I Introduction 

1.1 Modern History of Molecular Modeling 

The roots from which the methods of modern molecular modeling have developed, lie at the 
beginning of our century, the first successful representations of molecular structures being 
closely linked to the rapid developments in nuclear physics. 

Crystallography was the decisive line of development of molecular modeling. Knowledge 
of the complexity of crystal structures increased very rapidly but their solution still required 
huge arithmetic expense to produce only an inadequate two-dimensional (2D) paper 
representation. The use of molecular kits was the only possible way of obtaining a 3D 
impression of crystal structure. 

The Dreiding Models became famous because they contained all the knowledge of 
structure chemistry at the time. Prefabricated modular elements, for example different 
nitrogen atoms with the correct number of bonds and angles corresponding to their 
hybridization state, or aromatic moieties, made it possible to build up very exact 3D models 
of the crystal structures, thus allowing molecular modeling. Dimensions were translated 
linearly from the Angstrom area. Steric hindrances of substituents, hydrogen bond 
interactions, etc. were quite well represented by the models. A similar quality of modeling, 
albeit less accurate-but space filling-was provided by Stuart-Briegleb or CPK models. 
Watson and Crick described their fumbling with such molecular kits and self-constructed 
building parts, first to model base pairing and eventually, to outline the DNA helix. 

Molecular modeling is not a computer science a priori, but does the computer provide an 
additional dimension in molecular modeling/molecular design? Indeed, development of the 
computer occured synergetically, as faster and faster processors repeated the necessary 
computational steps in shorter and shorter times so that proteins containing thousands of atoms 
can easily be handled today. However, the molecular graphics technology looked for a further 
quantum leap bound to the same fast processors. For the first time, in the 1970s the pseudo 3D 
description of a molecule, color-coded and rotatable, was possible on the computer screen. 
“Virtual Dreiding models” had been created. Without computer technology the flood of data 
emerging from a complex structure such as a protein would have exceeded the saturation limits 
of human efficiency. Proteins would not have been measurable with methods such as X-ray 
structure analysis and nuclear magnetic resonance without the corresponding computer 
technology. Indeed, it is computer technology that has made these methods what they are today. 

There is however a second factor, without which today’s computer-assisted molecular 
design would be unthinkable. Since the 1930s, nuclear physics has required not only analytical 
but also systematic thought, a component that was vital in construction of the atomic bomb. 
Consequently, mathematical modeling techniques were employed for the computation of 
physical states, and even their prediction. 

In the 1940s the computers in Los Alamos were, in the true sense of the word, made of 
soldiers. Gathered in large groups, everyone had to solve a certain calculation step, but always 
the same step for the same man. It was here that computer development sought a revolution. 
The Monte Carlo Simulation, which originated at that time, was applied to the prediction of 
physical states of gas particles. From that time also the first applications of mechanical 
analogies on molecular systems were developed.The force fields were born and optimized and, 
in the course of time have achieved the unbelievable efficiency of modern times. 
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Mathematical approximation techniques have now made possible the quantum chemical 
calculation of systems even larger than the hydrogen atom, permitting “quantum dynamic” 
simulations of ligand binding at the active site of enzymes. 

1.2 Do Today’s Molecular Modeling Methods Illustrate 
only the Lukretian World? 

This is in fact a question of quality of use. The methods could be used naively or intelligently, 
though the results are clearly distinguishable. However, naive uses should not be condemned, 
as it is vital for the quality of the use that a sufficiently critical position is taken when examining 
the results. In other words, the user realizes his or her naive use of the methods. Now, the 
researcher is conscious of the restrictions of the method and knows how to judge the results. 
Here, even with a very simple approach, this critical position results in further knowledge of 
the correlation between structure and properties. 

Often however, such a critical attitude is not present-perhaps the result of modern 
commercial modeling systems. Those programs always provide a result, the evaluation of 
which is at liberty of the user. The programs tend stubbornly to calculate every absurd 
application and present a result-not only a number, but also a graph-and represent a 
further instrument of seduction for the uncritical use of algorithms. In contrast, the merits of 
molecular graphics is undisputed because of their essential contribution to the development 
of other analytical methods such as nuclear magnetic resonance spectroscopy and the X-ray 
analysis of proteins. 

The tendency to perfect data presentation is the reverse situation. For example, 
visualization of isoelectrical potentials is one of the most valuable means of comparing 
molecular attributes. Very often a positive and a negative potential of a certain energy is used 
to describe structures. The presentation of potentials is based upon a charge calculation and 
may be used to find a suitable alignment of a training set of biologically active molecules.The 
latter can be realized on quite different quality levels. There are, for example, algorithms that 
perform well in calculations for simple carbohydrates, but are incapable of handling aromatic 
structures. Unfortunately these algorithms do not always signal their incapability if an 
aromatic system is to be calculated. A result is obtained, an isopotential surface is calculated, 
and a graph created. With that, an attempt is made to derive structure-activity relationships- 
the second trap comes next. 

The training set that is selected, represents of course a drastic reduction of the parameter 
space. You may hope to receive a most possible representative distribution of the attributes 
by careful selection, but you are never sure. Thus, the correlations originate from the 
coincidential reciprocal completion of two errors, which relate back to the uncritical selection 
of methods and data sets. 
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1.3 What are Models Used for? 

Models in science have different natures.They serve first of all to simplify; that means limiting 
of analysis to the phenomena that are believed to be the most important. Secondly, models 
serve as didactical illustration of very complicated circumstances, which are not easily 
accessible. Here, it must be taken into account in any explanation that the model does not show 
complete rea1ity.A third model is that of mechanical analogies.These benefit from the fact that 
the laws of classical mechanics are completely defined, for example Hooke’s law. 

Model building of this kind plays a decisive role in the development of uniform theories. 
It is their special feature that it is not presupposed that the models reflect reality, but that first 
of all a structural similarity of two different fields is supposed. This is, for example, the 
presumption that the behavior of bonds in a molecule corresponds partly to springs, as 
described by Hooke’s 1aw.These mechanical analogy models have very successfully expanded 
theories, because the validity of a theory can in many cases be scrutinized experimentally, but 
the most important point is that predictions of new phenomena can be made. 

These models are also often called empirical. Force fields belong to this class.The benefit 
of empiric models is that their parameters are optimized on reality.The “mechanization” does 
not provide explicit information from the non-mechanical contributions, but by empirical 
correction the non-mechanical contributions are convoluted in some way. That is why 
empirical models often are very close to reality. 

Finally, the fourth type of model is mathematical modeling. These models serve for the 
simulation of processes, as for instance the kinetic simulation of a chemical reaction step in an 
enzyme. By suitable choice of parameters, kinetic simulations of real processes can be performed. 

1.4 Molecular Modeling Uses All Four Types 
for Model Building 

Didactical models are used for the combined representation of structure and molecular 
properties. In the case of small molecules the graphical representation of results from quantum 
chemical calculations or from the representation of the mobility of flexible ligands such as 
peptides. In the case ofproteins, the structure itself is already a complex problem. Interactions of 
ligand and protein can also be studied with didactical models It is already clear, that the different 
types of models are overlapping. Mechanical analogies, as well as reductions, aim at simplifying 
essential parts of the objects under study and are typical applications of molecular modeling, 

1.5 The Final Step is Design 

Design is perhaps the most essential element of all. Molecular modeling creates its own world, 
which is connected with reality by one of the four model types Within this world-which exists 
in the computer-extrapolations can be made because, in contrast to the “real” world, a 
completely deterministical universe is created. Based on the analytical description of the 
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system, the possibility is available to design inhibitors in advance of the synthesis and for them 
to be tested in a virtual computer experiment. 

With that final design step, the circular course of a scientific study is completed.The study 
does not simply remain an analytical description of a system, which has been devised in 
“clockwork” fashion, but goes further by reassembling the system’s parts. Molecular design 
creates a realization for our understanding-that a system could be more than simply the sum 
of its parts. This is especially effective for biological systems within which drug design is 
confronted by preference. 

The design step itself actually is not as straightforward, even in the virtual world, as would 
be desirable. As Gulliver learns on his visit to the academy of Lagado, there is a machine, which 
at some time will have written every important scientific book of the world by a systematic 
combination of letters and words. Jonathan Swift’s wonderful science fiction of the 18th 
century gives us at once the main problem: the time span of human beings is not large enough 
to test all possibilities. There has to be an intelligent algorithm to obtain the correct solutions. 
In the case of Gullivers Travels, Swift is somebody who introduces an additional criterion of 
quality. This is based on knowledge, experience, and is able to reject combinations of words 
and sentences: the human-machine network. Actually, Swift introduces such a criterion in the 
person of the professor who gives orders to his students, who serve the machines and decides 
after every experiment upon the result, e.g. lets the combination of words enter the book. 
Unfortunately, the experimenter himself is not defined qualitatively in Swift’s novel; that is 
Swift’s irony in Gullivers Travels. Hence, the result depends not only on an error-free function 
of the machine, but on the quality of its user! (Fig. 1) 

The same problem is presented to us in the artificial world of modeling. Systematic 
exploration of properties is only possible for small numbers. Because of the combinatorics the 
system “explodes” after only a few steps. Flexibility studies on peptides give us a correct 
example. The change from four torsion angles to five or six increases the number of possible 
conformations from some thousands to several billions. 

For the design of a ligand the situation becomes more complex. It demands a most 
intelligent restraint by suitable experiments, intuition or knowledge. Here also the quality of 
the human-machine network plays a decisive role. Fully automatic design systems seem to be 
like a Swift prediction machine in Gulliver’s visit to the academy of Lagoda. 

1.6 The Scope of the Book 

The scope of this book is to provide support for the beginner. The recognition of principal 
concepts and their limitations is important to us-more important even than a complete 
presentation of all available algorithms, programs and data banks. As with all areas associated 
with computer techniques the technical development in this area has been more than 
exponential. Almost every day, new algorithms are offered on the network, suitable for 
comparison of protein sequences or for searching of new data banks,etc.The user has no other 
possibility to judge their quality than to use the programs and to explore their limitations. 

He or she must know, therefore, that energy-minimizing in vacuo does not make sense in 
any case for the analysis of the interaction geometry of a ligand. He or she also has to know 
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Figure 1. J. J. Grandville’s imaginary concept of the “book-writing machine” in Gulliver’s visit to Lagoda. 

that a protein can not be simply folded up from a linear polypeptide chain. It must be realized 
that there is alternative or multiple binding mode: inhibitors binding to an enzyme show 
alternative binding geometries in the active site, even within a set of analogs. Very small 
changes in the molecular structure could provoke another orientation of the ligand in the 
active site. It is not necessarily true that a structure-orientated superposition would be better 
than an intuitive one or even one,which is oriented by steric or electrostatic surface properties. 
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Today’s modeling in essence goes far beyond the example of Lukrez. Modeling is no longer 
on the level of analytic description of properties or correlations. It is much more than the 
creation of “colored pictures”-it also introduces us to systematic thinking. It even demands 
systematic thinking in order to avoid too many simple applications and to keep in mind the 
limitations of the methods. 

Here we also want to provide support. By describing our own experiences with molecular 
design in two examples, one for,“small molecules” (ligands) and another for “big molecules” 
(proteins), we aim to encourage the beginner to a critical engagement, hopefully without 
demotivation. 
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Basic Principles and Applications 

2 Small Molecules 

2.1 Generation of 3D Coordinates 

When starting a molecular modeling study the first thing to do is to generate a model of the 
molecule in the computer by defining the relative positions of the atoms in space by a set of 
Cartesian coordinates. A reasonable and reliable starting geometry essentially determines the 
quality of the following investigations. It can be obtained from several sources.The three basic 
methods for generating 3D molecular structures are 

1. use of X-ray crystallographic databases, 
2. compilation from fragment libraries with standard geometries, and 
3. simple drawing of 2D-structures using an approach called ‘sketch’. 

2.1.1 Crystal Data 

First we will focus on the use of X-ray data for molecular building.The most important database 
for crystallographic information studying small molecules is the Cambridge Crystallographic 
Database [ l].This database contains experimentally derived atomic coordinates for organic and 
inorganic compounds up to a size of about 500 atoms and is continuously updated. The 
Cambridge Crystallographic Data Centre leases the database as well as software for searching 
the database and for analyzing the results The output of the database search is a simple, 
readable file containing the 3D-structural information about the molecule of interest.This data 
file can be read by most of the commercial molecular modeling packages [e.g. 2,3]. 

The atomic coordinates listed in the database are converted automatically to Cartesian 
coordinates when reading the file into the modeling program. Subsequently the structure can 
be displayed by molecular graphics and studied in its 3D shape. 

In general, small molecule X-ray structures are very well resolved but there is no guarantee 
for the accuracy of the data.The localization of hydrogen atoms always is a problem because 
they are difficult to observe by X-ray crystallography.The principle of the X-ray method is the 
scattering of the X-rays by the electron cloud around an atom. Because hydrogen atoms have 
only one electron, their influence on X-ray scattering is low and they are normally disregarded 
in structure determination. But of course hydrogen positions can be appointed on the basis of 
collected knowledge on standard bond lengths and bond angles. According to this procedure 
all bond lengths involving hydrogen atoms are usually not very specific. Before using the 
information from the X-ray database it is therefore advisable to check the atomic coordinates, 
bond lengths and bond angles for internal consistency. The following points especially should 
be clarified before starting any work with a X-ray structure: 
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1. are the atom types correct 
2. are the bond lengths and bond angles reasonable 
3. are the bond orders correct 

and in case of chiral molecules, 

4. do the data correspond to the correct enantiomer? 

After taking care of these details the molecule can be saved in a molecular data file. The 
organization, extension name, format, and the information contained in the file are program- 
dependent. 

It should be kept in mind that the crystalline state geometry of a molecule is subject to the 
influence of crystal packing forces. Therefore bond lengths and bond angles can differ from 
theoretical standard values. Furthermore, the solid state structure corresponds to only one of 
perhaps many low-energy conformations accessible to a flexible molecule and is always 
affected by the neighbor molecules in the crystal unity cell and sometimes also influenced by 
solvent molecules in the crystal. Other energetically allowed conformations must be explored 
by a conformational analysis eventually to reveal conformations of biological relevance. Also, 
knowledge of the most stable conformation called the global energy minimum structure is 
important to allow the evaluation of probabilities for conformers with higher energy content. 
Procedures for this purpose are described in section 2.2. 

2.1.2 Fragment Libraries 

The second very common building method is the construction of molecules from pre-existing 
fragment libraries. This is the method of choice when there is no access to crystallographic 
databases or if X-ray data for the desired structures are not available. Almost all commercial 
molecular modeling programs nowadays offer the possibility to construct molecules using 
fragment libraries. 

Fragment libraries can be utilized like an electronic 3D structure tool kit, which is easy to 
handle. Because of the preoptimized standard geometries of all entries in the fragment pool 
resulting 3D structures already have an acceptable geometry. In most cases only torsion angles 
have to be cleared to avoid atom overlapping or close van der Waals contacts. Problems may 
arise with fused ring systems because of the different ways in which saturated rings can be joined 
to each other.To solve this problem it is recommended wherever possible to refer to X-ray data 
or to experimental data of comparable ring systems in order to select the correct ring connection. 

Each atom in any arbitrary structure carries characteristic features which are defined by 
the so-called atom type. Properties distinguishing between different atoms in molecular 
modeling terms are for example hybridization, volume, etc. The corresponding parameters 
define the particular atom type. All atomic parameters taken collectively represent the 
atomistic part of a force field. On pre-existing fragments selected from libraries the atom types 
of course are already defined and in general are correct. In many cases, however, the decision 
as to which atom type will be appropriate is less easy to take. We will discuss this problem on 
the example of N-acetylpiperidine. 
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If N-acetylpiperidine is generated from the fragment library using a piperidine ring and an 
acetyl residue the nitrogen atom in the piperidine is defined as sp’ nitrogen atom type with 
tetrahedral geometry. But if this nitrogen is connected with the acetyl residue it also can be 
considered as an amide nitrogen atom demanding planar trigonal sp2 geometry. In such a case 
the correct decision can only be made by either comparing the geometry obtained from the 
building routine with X-ray data or performing a quantum mechanical calculation for the 
structural element of interest in,order to get a reliable geometry. Fig. 1 shows the results of a 
semiempirical and an ab initio calculation in comparison with force field geometries and the 
crystal structure of N-acetyl-piperidine-2-carboxylic-acid [4]. 

While the sp3 nitrogen atom of the force field structure bears a tetrahedral geometry the 
crystal structure and the quantum chemically calculated geometries indicate an almost planar 
nitrogen atom.To avoid errors in subsequent calculations the nitrogen atom has to be assigned 
an atom type with planar geometry. 

Another problem occuring when building substituted saturated ring systems is the correct 
conformation of the cycle, because it may be influenced by the substituents. Cyclohexane is 
one of the most detailed studied cyclic molecules in organic chemistry.The different possible 
conformations and the energy barriers separating them have been the subject of many 
investigations [5,6].  There is no doubt that the chair form is the most stable conformation of 

Figure 1. The geometry of the amide group in N-acetyl piperidine depends crucially on the method used 
as well as the atom types employed for optimization. For comparison the crystal structure of piperidine- 
2-carboxylic-acid is shown in the upper 1eft.The color code:carbon = white,oxygen = red,nitrogen =blue, 
hydrogen = cyan, sulfur = yellow, halogens = green, is used throughout this book. 
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this molecule. For monosubstituted cyclohexane this still holds true.The preferred position of 
any substituent is found to be the equatorial one. The energy difference determined between 
the equatorial and axial position is not very distinct for small substituents but is increasing for 
larger groups [7]. Therefore it is necessary and advisable always to check the results of 
structure building from fragment libraries in comparable situations with experimental data. 

2.1.3 Sketch Approach 

The third method of structure generation is the so-called sketch approach. When using this 
routine the mouse pointer functions as a simple pencil to draw a 2D formula of the molecule 
on the computer screen. Sometimes a very limited number of small molecular standard 
fragments is already available from a library and can be used as starting points.When finishing 
the drawing process the 2D picture on the screen is converted into 3D information. Because 
of this procedure the setting of correct atom types should be watched especially carefully. Since 
the sketch approach is a very simple method the resulting geometries in general are not very 
satisfying. Therefore a rough geometry optimization is performed automatically at the end of 
each sketch operation in order to relax the molecular geometry. 
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2.2 Computational Tools for Geometry Optimization 

2.2.1 Force Fields 

Molecular structures generated using the procedures described in the previous section should 
always be geometry optimized to find the individual energy minimum state. This is normally 
done by applying a molecular mechanics method. The expression “molecular mechanics” is 
used to define a widely accepted computational method employed to calculate molecular 
geometries and energies. 

Unlike quantum mechanical approaches the electrons and nuclei of the atoms are not 
explicitly included in the calculations. Molecular mechanics considers the atomic composition 
of a molecule to be a collection of masses interacting with each other via harmonic forces. As 
a result of this simplification molecular mechanics is a relatively fast computational method 
practicable for small molecules as well as for larger molecules and even oligomolecular 
systems. 

In the framework of the molecular mechanics method the atoms in molecules are treated 
as rubber balls of different sizes (atom types) joined together by springs of varying length 
(bonds). For calculating the potential energy of the atomic ensemble use is made of Hooke’s 
law. In the course of a calculation the total energy is minimized with respect to atomic 
coordinates where: 

where Etot is the total energy of the molecule, Estr is the bond-stretching energy term, Ebend is 
the angle-bending energy term, Etors is the torsional energy term, Evdw is the van der Waals 
energy term, and Eelec is the electrostatic energy term. 

Molecular mechanics enables the calculation of the total steric energy of a molecule in 
terms of deviations from reference “unstrained” bond lengths, angles and torsions plus non- 
bonded interactions. A collection of these unstrained values, together with what may be 
termed force-constants (but in reality are empirically derived fit parameters), is known as the 
force field. The first term in Eq. (1) describes the energy change as a bond stretches and 
contracts from its ideal unstrained length. It is assumed that the interatomic forces are 
harmonic so the bond-stretching energy term can be described by a simple quadratic function 
given in Eq. (2): 

EStT = X k ,  (b-bJ2 

where k,  is the bond-stretching force constant, 6,  is the unstrained bond length, and b is the 
actual bond length. 

In more refined force fields a cubic term [l], a quartic function [24], or a Morse function 
[5] has been included. 

Also for angle bending mostly a simple harmonic, spring-like representation is employed. 
The expression describing the angle-bending term is shown in Eq. (3): 
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Ebend = X k,  ( 8-8J2 

where k ,  is the angle-bending force constant, B0 is the equilibrum value for 8, and 8 is the actual 
value for 8. 

A common expression for the dihedral potential energy term is a cosine series, as Eq. (4): 

where k is the torsional barrier, rp is the actual torsional angle, n is the periodicity (number 
of energy minima within one full cycle), and ‘po is the reference torsional angle (the value 
usually is 0” for a cosine function with an energy maximum at 0” or 180” for a sine function 
with an energy minimum at 0’). 

The van der Waals interactions between not directly connected atoms are usually 
represented by a Lennard-Jones potential [6] (Eq.5). 

where A ,  is the repulsive term coefficient, B, is the attractive term coefficient, and rij is the 
distance between the atoms i andj. 

This is one form of the Lennard-Jones potential but there exist several modifications of 
this term used in the different force fields. An additional function is used to describe the 
electrostatic forces. In general it is made use of the Coulomb interaction term (Eq.6). 

QlQ2 E =---- 
elec 

where e is the dielectric constant, Q ] ,  Q2 are atomic charges of interacting atoms, and r is the 
interatomic distance. 

Charges may be calculated using the methods described in section 2.4.1.1 or are 
implemented in some of the force fields [ 2 4 ]  as empirically derived parameter sets. 

Some force fields also include cross terms, out of plane terms, hydrogen bonding terms etc. 
and use more differentiated potential energy functions to describe the system. As force fields 
are varying in their functional form not all can be discussed here in detail but they have been 
subject of excellent reviews [7,8]. 

The basic idea of molecular mechanics is that the bonds have “natura1”lengths and angles. 
The equilibrium values of these bond lengths and bond angles and the corresponding force 
constants used in the potential energy function are defined in the force field and will be 
denoted as force field parameters. Each deviation from these standard values will result in 
increasing total energy of the molecule. So, the total energy is a measure of intramolecular 
strain relative to a hypothetical molecule with ideal geometry. By itself the total energy has 
no physical meaning. 

The objective of a good and generally employable force field is to describe as many as 
possible different classes of molecules with reasonable accuracy. The reliability of the 
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molecular mechanics calculation is dependent on the potential energy functions and the 
quality of the parameters incorporated in these functions. So, it is easy to understand that a 
calculation of high quality can not be performed if parameters for important geometrical 
elements are missing.To avoid this situation it is necessary to choose a suitable force field for 
a particular investigation. 

Several force fields have been developed to examine a wide range of organic compounds 
and small molecules [14,9] while other programs contain force fields primarily for proteins 
and other biomolecules [10-12]. If parameters for particular atom types are missing it is 
unavoidable to add the missing data to the force field [13-151. 

2.2.2 Geometry Optimization 

As already mentioned almost certainly the generated 3D model of a given molecule does not 
have ideal geometry; therefore, a geometry optimization must be performed subsequently. In 
the course of the minimization procedure the molecular structure will be relaxed. As can be 
deduced from the example presented in Fig. 1 and Table 1 the internal strain in structures 
obtained from crystal data is mainly influenced by small deviations from the “ideal” bond 
lengths. Therefore above all the corresponding energy terms (bond-stretching term, angle- 
bending term) are altered in course of a force field optimization. Despite the remarkable 
change in energy content torsional angles are effected only to a lesser extent. This is a clear 
indication to the well-known observation that in crystals almost exclusively low-energy 
conformations are found. It also should be realized that crystal structures are by no means 

Figure 1. Superposition of the crystal structure (red) and force-field-optimized geometry (green) of the 
angiotensin-converting enzyme inhibitor ramiprilate. 
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Table 1. Force field energy terms for the ramiprilate molecule before and after geometry optimization 

Structure Energy (kcal mol-’) 

Crystal 
Bond-stretching energy 
Angle-bending energy 
Torsional energy 
Out-of-Plane-bending energy 
1-4 van der Waals energy 
van der Waals energy 
Total energy 

Bond-stretching energy 
Angle-bending energy 
Torsional energy 
Out-of-Plane-bending energy 
1-4 van der Waals energy 
van der Waals energy 
Total energy 

Optimized 

179.514 
15.693 
17.230 
0.043 

18.538 
-3.839 

221.178 

0.982 
10.372 
14.335 
0.01 1 
4.791 

-7.822 
22.669 

“bad” geometries. As can be easily deduced from Fig. 1 the distortion of the crystal structure 
when compared with the relaxed geometry of the force field structure in terms of geometry 
differences is only very subtle.This fact can be interpreted also in the sense that large variations 
in geometry are not to be expected when different well-parameterized force fields are applied. 
In the case considered here the individual but real crystal packing of ramiprilate is compared 
to the well-known general Tripos force field. 

Before starting a geometry optimization, bad van der Waals contacts should be removed 
because the minimum energy geometry at the end of the optimization will depend on the 
starting geometry [7]. 

Several advantages like speed, sufficient accuracy and the broad applicability on small 
molecules as well as on large systems have established the force field geometry optimization 
as the most important standard method. Because of the complexity and the demanding 
computational costs quantum mechanical methods should be reserved for special problems 
which will be discussed later. 

We will now focus on some common energy minimization procedures used by molecular 
mechanics. It is important to note that the minimization algorithms only find local minima on 
the potential energy surface but not implicitly the global energy minimum. 

2.2.3 Energy-Minimizing Procedures 

The energy minimization methods can be divided into two classes: the first-derivative 
techniques like steepest descent, conjugate gradient and Powell; and the second-derivative 
methods like the Newton-Raphson and related algorithms. 
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2.2.3.1 Steepest Descent Minimizer 

The steepest descent minimizer uses the numerically calculated first derivative of the energy 
function to approach the energy minimum. The energy is calculated for the initial geometry 
and then again when one of the atoms has been moved in a small increment in one of the 
directions of the coordinate system. This process will be repeated for all atoms which finally 
are moved to new positions downhill on the energy surface [7].The procedure will stop if the 
predetermined minimum condition is fulfilled. The optimization process is slow near the 
minimum, so the steepest descent method is often used for structures far from the minimum. 
It is the method most likely to generate low-energy structures of poorly refined 
crystallographic data or to relax graphically built molecules. In most cases the steepest descent 
minimization is used as a first rough and introductory run followed by a subsequent 
minimization employing a more advanced algorithm like conjugate gradients. 

2.2.3.2 Conjugate Gradient Method 

The conjugate gradient method accumulates the information about the function from one 
iteration to the next. With this proceeding the reverse of the progress made in an earlier 
iteration can be avoided. For each minimization step the gradient is calculated and used as 
additional information for computing the new direction vector of the minimization procedure. 
Thus, each successive step continually refines the direction towards the minimum. The 
computational effort and the storage requirements are greater than for steepest descent but 
conjugate gradients is the method of choice for larger systemsThe greater total computational 
expense and the longer time per iteration is more than compensated by the more efficient 
convergence to the minimum achieved by conjugate gradients. 

The Powell method is very similar to conjugate gradients. It is faster in finding convergence 
and is suitable for a variety of problems, but one should be careful when using the Powell 
algorithm because torsion angles may sometimes be modified to a dramatic extent. So, the 
Powell method is not practicable for energy minimization after a conformational analysis 
because the located low-energy conformations will be altered in an undesired manner. It is 
advisable to perform a conjugate gradient minimization in this situation. 

2.2.3.3 Newton-Raphson Minimizer 

The Newton-Raphson minimizer as a second-derivative method uses, in addition to the 
gradient, the curvature of the function to identify the search direction. The second derivative 
is also applied to predict where the function passes through a minimum.The efficiency of the 
Newton-Raphson method increases as convergence is approached.The computational effort 
and the storage requirements for calculating larger systems are disadvantages of this method. 
For structures with high strain the minimization process can become instable, so the 
application of this algorithm is mostly limited to problems where rapid convergence from a 
preoptimized geometry to an extremely precise minimum is required. For some more detailed 
information about the optimization methods see [16,17]. 
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It can be summarized that the choice of the minimization method depends on two factors- 
the size of the system and the current state of the optimization. For structures far from 
minimum, as a general rule, the steepest descent method is often the best minimizer to use for 
the first 10-100 iterations.The minimization can be completed to convergence with conjugate 
gradients or a Newton-Raphson minimizer. To handle systems that are too large for storing 
and calculating a second-derivative matrix the conjugate gradient minimizer is the only 
practicable method. The minimization procedure will continue until convergence has been 
achieved. 

There are several ways in molecular minimization to define convergence criteria. In non- 
gradient minimizers like steepest descent only the increments in the energy and/or the 
coordinates can be taken to judge the quality of the actual geometry of the molecular system. 
In all gradient minimizers, however, atomic gradients are used for this purpose. The best 
procedure in this respect is to calculate the root mean square gradients of the forces on each 
atom of a molecule. I t  is advisable also always to check the maximum derivative in order to 
detect unfavorable regions in the geometry.There is no doubt about the quality of a minimum 
geometry if all derivatives are less than a given value. The specific value chosen for example 
for the maximum derivative depends on the objective of the minimization. If a simple 
relaxation of a strained molecule is desired, a rough convergence criterion like a maximum 
derivative of 0.1 kcal mol-' A-' is sufficient while for other cases convergence to a maximum 
derivative less than 0.001 kcal mol-' A-' is required to find a final minimum. 

The choice of the convergence criteria should be a balance between attaining reasonable 
accuracy in determining the minimum structure and avoiding unnecessary computations when 
no further progress can be realized [17]. 

2.2.4 Use of Charges, Solvation Effects 

Molecular mechanics calculations are usually carried out under vacuum conditions ( E  = 1). For 
unpolar hydrocarbons the effect of the explicit inclusion of solvent as compared with gas phase 
calculations is negligible. The investigation of molecules containing charges and dipoles 
however requires the consideration of solvent effects [7 ] ;  otherwise conformations mainly 
influenced by strong electrostatic interactions would be overestimated.The force field will try 
to maximize the attractive electrostatic interaction, resulting in energetically strongly 
preferred but unrealistic low-energy conformations of the molecule.This can be prevented by 
employing the corresponding solvent dielectric constant [18]. For example, in water E amounts 
to 80. In contrast to macromolecules, the electrostatic field of small molecules is considered 
to be homogeneous; therefore the use of an uniform dielectric constant in principle is allowed. 
Experimentally determined dielectric constants for a large number of solvents may be found 
in the literature and can be applied for a correct treatment of the Coulombic term of solvated 
molecules. 

A very simple but effective way to treat the problem of charges and solvation in the course 
of a molecular mechanics optimization is to perform the calculation without taking charges 
into account. This very often yields acceptable results and is especially recommended if the 
results of a conformational analysis are to be minimized because usage of charges may 
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markedly alter the conformation by electrostatic interactions. Consideration of charges always 
is necessary if hydrogen bonding phenomena are to be described. 

The strength of the electrostatic interaction decreases with 7'. Therefore, in some force 
fields the dielectric constant can be chosen to be distance-dependent in order to simulate the 
effect of displacement of solvent molecules in course of the approach of a ligand molecule to 
a macromolecular surface. This is of particular value if a conformational analysis is part of a 
pharmacophore search. 

Whenever possible experimental data should be used for testing results from theoretical 
calculations. Above all, NMR data have become a valuable tool in this respect. Since most of 
the available NMR data have been obtained in chloroform or similar organic solvents, the 
explicit inclusion of the corresponding dielectric constant in the Coulombic term of a force 
field leads to an improved agreement with experimental results. 

Consideration of the dielectric constant is one possibility to simulate solvent effects. An 
alternative way is to create a solvent box around the molecule containing discrete solvent 
molecules. The additional computational effort and the limitations in regard to the limited 
number of solvents that can be used in most of the available force fields are severe 
disadvantages of this method. 

2.2.5 Quantum Mechanical Methods 

Quantum mechanical methods also must be discussed, at least in brief, because they are very 
valuable additional tools in computational chemistry. In general, properties like molecular 
geometry and relative conformational energies can be calculated with high accuracy for a broad 
variety of structures by a well-parametrized general force field. However, if force field 
parameters for a certain structure are not available quantum chemical methods can be used for 
geometry optimization. In addition, the calculation of transition states or reaction paths as well 
as the determination of geometries influenced by polarization or unusual electron distribution 
in a molecule is the domain of quantum mechanical calculations Their disadvantages relative 
to other methods are the computational costs and the limitation to rather small molecules So, 
the use of quantum mechanical methods should be reserved for the treatment of special 
problems.The objective in this context is not to discuss the quantum mechanical methods from 
a theoretical perspective but to give some practical hints for the application of semiempirical 
or ab initio programs. The reader's interest may be drawn to many books and reviews on this 
subject to gain more insight into the theoretical aspects of these methods [19-221. 

2.2.5.1 Ab initio Methods 

Unlike molecular mechanics and semiempirical molecular orbital methods ab initio quantum 
chemistry is capable of reproducing experimental data without employing empirical 
parameters. Therefore, the application of ab initio calculations is especially favored in 
situations in which little or no experimental information are available. 

The quality of an ab initio calculation depends on the basis set used for the calculation [23, 
241 and the computational method employed. A wrong choice of the basis set can render the 
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results of extremely time-consuming calculations meaningless. The decision which basis set 
should be used is related to the objective of the calculation and the molecules to be studied. 
It should be kept in mind that even a large basis set is not always a guarantee for agreement 
with experimental data [25]. 

Only the most commonly applied basis sets will be discussed here.The STO-3G (Slater type 
orbitals approximated by three Gaussian functions each) basis set has been frequently used 
in the past and is the smallest basis set that can be chosen. This minimal basis set consists of 
the smallest number of atomic orbitals necessary to accommodate all electrons of the atoms 
in their ground state, assuming spherical symmetry of the atoms. 

In more recent ab initio calculations the split-valence basis sets have become quite popular. 
In these the valence orbital shells are represented by an inner and outer basis function. In this 
way more flexibility in describing the residence of the electrons has been attained 1261. The 
split-valence basis sets represent a progress over the STO-3G basis set, and the 3-21G, 4-31G, 
and 6-31G basis sets are widely used in ab initio calculations. They differ only in the number 
of primitive Gaussians used in expanding the inner shell and first contracted valence function 
[25]. 4-31G for example means that the core orbitals consist of four and the inner and outer 
valence orbitals of three and one Gaussian functions, respectively. 

The next level of improvement is the introduction of polarization basis sets. To all non- 
hydrogen atoms d orbitals are added to allow p orbitals to shift away from the position of the 
nucleus leading to a deformation (polarization) of the resulting orbitals. This adjustment is 
particulary important for compounds containing small rings [26]. The polarization basis sets 
are marked by a star, e.g. 6-31G*. This basis set uses six primitive Gaussians for the core 
orbitals, a three/one split for the s and p valence orbitals, and a single set of six d functions 
(indicated by the asterisk). 

For a more detailed description of the basis sets the reader is directed to books and reviews 
on this subject [22,25). 

Unfortunately there is no general rule for choosing an adequate basis set. The level of 
calculation depends on the desired accuracy and the molecular properties of interest. A 
geometry optimization of a simple molecule with moderate size reasonably can be performed 
using a 3-21G basis set. For other problems, however, this degree of sophistication may not be 
sufficient. If the geometry of the molecule is influenced by polarization effects, electron 
delocalization or hyperconjugative effects a 6-31G* or higher basis set is necessary to include 
the d orbitals as already mentioned (Fig.2). 

In spite of the rapid development in computer technology, high level ab initio calculations 
still can not always be performed. A common way to overcome the problem of excessive 
computational requirements is the use of a 3-21G basis set to optimize the geometry 
parameters and then to compute the wavefunction on the 6-31G* 1evel.This procedure is often 
termed 6-31G*//3-21G calculation. 

The use of higher basis sets does not automatically improve the accuracy of the calculated 
molecular properties of interest. In order to find a suitable level of calculation it is necessary 
to calibrate the method against experiment or testing the basis sets empirically to yield 
acceptable results. 



2.2 Computational Tools for Geometry Optimization 21 

Figure 2. This shows the final geometries of 2,6-diazaspiro[3.3]hept-2-yl-formamide after geometry 
optimization using different basis sets. The example clearly indicates the dependence of the resulting 
geometry on the applied basis set. The minimal basis set STO-3G and the 3-21G basis set yield very 
different geometries. The inclusion of d orbitals (6-31G*) leads to a structure reflecting the polarization 
effects and the ring tension more precisely. The resulting geometry of the amide nitrogen atom lies 
between tetrahedral and trigonal planar hybridization states. 

2.2.5.2 Semiempirical Molecular Orbital Methods 

The deep gap between molecular mechanics and the ab initio calculations is occupied by the 
semiempirical molecular orbital methods. They are basically quantum mechanical in nature 
but the main difference to ab initio methods is the introduction of empirical parameters in 
order to reduce the high costs of computer time necessary for explicit evaluation of all 
integrals. One-center repulsion integrals and resonance integrals are substituted by 
parameters fitted as closely as possible to experimenal data. 

Another basic idea of the semiempirical approach is the consideration of the fact that most 
of the interesting molecular properties are mainly influenced only by the valence electrons of 
the corresponding atoms.Therefore only the valence electrons are taken into account,leading 
to a further reduction in computer time. 

All the semiempirical methods apply the same theoretical assumptions, they only differ in 
the approximations beeing made [27]. Semiempirical methods like AM1 [28] and PM3 [29-311 
provide a quite effective compromise between the accuracy of the results and the expense of 
computer time required. A calculation performed with AM1 or PM3 is able to reflect the 
experiment as effectively as an ab initio calculation using a small basis set. The advantage of 
semiempirical methods over ab initio calculations is not only that they are several orders of 
magnitude faster, but also that calculations for systems up to 200 atoms are possible with the 
semiempirical methods only. However, it is recommended to check one’s results carefully. Like 
the choice of a wrong basis set in ab initio calculations, the lack of correct parameters in 
semiempirical studies can also lead to meaningless results. The quality of semiempirical 
methods for a wide range of molecules and the calculation of different properties has been 
subject of several reviews [28-311. It should be noted that in general semiempirical methods 
may give erroneous results for the third-row elements. 
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2.3 Conformational Analysis 

Molecules are not rigid. The motional energy at room temperature is large enough to let all 
atoms in a molecule move permanently. That means that the absolute positions of atoms in a 
molecule, and of a molecule as a whole, are by no means fixed and that the relative location 
of substituents on a single bond may vary in the course of time. Therefore, each compound 
containing one or several single bonds is existing at each moment in many different so-called 
rotamers or conformers. The quantitative and qualitative composition of this mixture is 
permanently changing. Of course only the low-energy conformers are found to a large extent. 

A transformation from one conformation to another is primarily related to changes in 
torsion angles about single bonds. Only minor changes of bond lengths and angles take place. 
The changes in molecular conformations can be regarded as movements on a multi- 
dimensional surface that describes the relationship between the potential energy and the 
geometry of a molecule. Each point on the potential energy surface represents the potential 
energy of a single conformation. Stable conformations of a molecule correspond to local 
minima on this energy surface. The relative population of a conformation depends on its 
statistical weight which is influenced not only by the potential energy but also by the entropy. 
As a consequence, the global minimum on the potential energy surface-the conformation 
which contains the lowest potential energy-does not necessarily correspond to the structure 
with the highest statistical weight (for a detailed description see [l]). 

Well-known examples for multiple conformations of molecules are the staggered and 
eclipsed forms of ethane, the anti-trans and gauche forms of n-butane or the boat and chair 
forms of cyclohexane. The rotation about the Csp3-Csps bond in the ethane molecule can be 
described by a sine-like curve potential function (Fig. 1). The energy minima, located at 60°, 
180" and 300", correspond to the staggered form, while the maxima, located at 120", 240" and 
360°, correspond to the eclipsed form of ethane. Because structures located at maxima on the 
potential energy function (or potential energy surface) are not viable normally, only the 
staggered form of ethane needs to be taken into account when physical or chemical properties 
are studied. This straightforward situation completely changes in the case of larger and more 
flexible molecules which exist at room temperature in several energetically accessible 
rotamers. For example, at room temperature approximately 70% of n-butane exist in the anti- 
trans form and 30% in the gauche form [2]. Thus, for a discussion of the physical behavior of 
this flexible aliphatic chain both the anti-trans and the gauche conformations have to be taken 
into account.The same is true for cyclic structures like cyclohexane, where the chair as well as 
the boat form must be regarded. 

The biological activity of a drug molecule is supposed to depend on one single unique 
conformation hidden among all the low-energy conformations [3].The search for this so-called 
bioactive conformation for sets of compounds is one of the major tasks in medicinal chemistry. 
Only the bioactive conformation can bind to the specific macromolecular environment at the 
active site of the receptor protein. Based on the information of the active conformation one 
may be able to design new agents for a particular receptor system. It is widely accepted that 
the bioactive conformation is not necessarily identical with the lowest-energy conformation. 
However, on the other hand it cannot be a conformation that is so high in energy that it is 
excluded from the population of conformations in solution (for a discussion of this aspect see 
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Figure 1. Sine-like potential energy curve of ethane shown as function of the dihedral angle. 

[4]). Thus, the identification of low-energy conformations is an important part of 
understanding the relationship between the structure and the biological activity of a molecule. 

Experimental techniques such as NMR only provide information on one or a few 
conformations of a molecule. A complete and exclusive overview of the conformational 
potential of molecules can be gained by theoretical techniques. Correspondingly a variety of 
theoretical methods for conformational analysis has been developed. Many applications are 
reported in the literature [5-121. The most general methods for conformational analysis are 
those that are able to identify all minima on the potential energy surface. However, as the 
number of minima increases dramatically with the number of rotatable bonds, an exhaustive 
detection of all minima becomes a difficult and time-consuming task. 

The time required for a conformational analysis depends also directly on the type of 
method used for the calculation of the energy. Confonnational energies can be calculated 
either using quantum mechanical or molecular mechanical methods. Because the quantum 
mechanical calculations are very time consuming, they cannot be applied to large or flexible 
molecules. For that reason most of the conformational search programs use molecular 
mechanics methods for the calculation of energies as a standard. Apart from systematic search 
procedures we also will deal in this chapter with the use of Monte Carlo and molecular 
dynamics techniques for conformational analyses. 
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2.3.1 Conformational Analysis Using Systematic Search Procedures 

The systematic search [6,7,13] is perhaps the most natural of all different conformational 
analysis methods. It is performed by varying systematically each of the torsion angles of a 
molecule in order to generate all possible conformations. If the angle increment is 
appropriately small the procedure yields a complete image of the conformational space of any 
molecule. 

The step size which is normally used in a systematic search is 30O.That means, during a full 
rotation of 360", 12 conformations are generated. In close neighborhood to the optimal value 
a smaller step sue  down to 5" may be necessary in order to determine the minimum position 
of a conformation exactly.The number of generated conformations depends on the step size, 
but also on the number of rotatable bonds. If n is the number of rotatable bonds, then the 
number of conformations increases with the ntb power: 

Number of conformations = (360/step size)" 

If for example a systematic conformational search is performed for a molecule with six 
rotatable bonds and a step size of 30" is employed, the number of generated conformers 
amounts to 126 or 2985 984 structures.This huge amount of data cannot be handled; it therefore 
has to be reduced. 

The first step in data reduction is a van der Waals screening or ,"bump check". It is 
performed before the potential energy of the conformations will be exactly calculated. The 
screening procedure excludes all conformations where a van der Waals volume overlap of 
atoms not directly bound to each other is detected.The mathematical criterion for determining 
the validity of a conformation in this respect simply is the sum of the van der Waals radii of 
non-bonded atoms.The hardness of van der Waals spheres can be varied by specification of a 
so-called van der Waals factor. This multiplication constant controls the interpenetrability of 
atoms. A reduction of the van der Waals factor results in softening of contacts between non- 
bonded atoms, thereby increasing the number of valid conformations. 

For the conformers remaining after the bump check the potential energy is calculated using 
a molecular mechanics method. In general the conformational energy is calculated neglecting 
electrostatic interactions, i.e. charges are not taken into account and the conformational 
analysis is performed in vacuo. The reasons for this procedure have been discussed in section 
2.2.4. If the inclusion of electrostatic interactions into a conformational analysis is justified for 
a special case then the whole process becomes much more complex. Good-quality atomic 
charges are sensitive to the discrete spatial environment of the atoms and not only depend on 
the connectivity. Therefore, atomic charges which have been calculated for the initial 
conformation must be constantly updated after each modification of a torsion angle. In 
addition it would be necessary to mimick the effect of a solvent, which tones down the strong 
electrostatic interactions built up between charges in vacuo. Obviously this procedure would 
require a large amount of additional computer time, even for a small molecule. And what is 
even more noteworthy, the increase in complexity of the system does not produce a deeper 
insight into the conformational behavior of a molecule in solution, besides the fact that 
intramolecular interactions are diminished.The same result is obtained when charges are not 
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considered and the analysis is performed in vacuo. Besides, in the active site of a receptor or 
enzyme the intramolecular contacts in ligands are also of minor importance. 

When the conformational energies have been calculated for all conformers which survived 
the bump check another possibility to reduce the number of conformations is the use of an 
energy window. The underlying idea for applying an energy window is based on the fact that 
conformations containing much more energy than those close to the minimum are found in 
the conformer population only to a neglectable quantity, i.e. in our context it may be assumed 
that they do  not have any importance for the biological activity of a particular molecule.The 
value for this energy window depends on the size of the studied molecule as well as on the 
applied force field. It may vary between 5 and 15 kcal mol-' [ll-151. 

The resulting conformations, which have passed all filter methods should represent a 
complete ensemble of energetically accessible conformations for a particular molecule. 
However, in many cases the number still may be too large to allow a reasonable treatment. 
Many of the remaining conformations are very strongly related, because they only differ for 
example in a single rotor step. Obviously these can be combined to a common family with 
pronounced similarity. The description of the conformational properties of a molecule does 
not lack comprehensiveness if we only take the minimum conformer of each conformational 
family into further consideration. Several methods have been developed to execute the 
classification into conformational families [15-171. The parameters used for this purpose are 
the torsion angles. The known classification methods differ in the procedure to associate the 
conformers to individual families. Another possibility to evaluate the large amount of data 
accumulated in course of a systematic conformational search is the application of statistical 
techniques like cluster or factor analysis. For a detailed discussion of these methods see [HI. 

The course of a systematic conformational analysis shall be demonstrated on a study 
performed in our group with two H,-antihistaminic agents, tiotidine and ICI127032 (Fig. 2) 
[19]. It was performed using the SEARCH module within the molecular modeling package 
SYBYL [16]. 

As rotational increment a step size of 15" was chosen. Due to symmetry the methyl group 
of the cyanoguanidine system was only rotated in steps of 30" between 0" and 120". The 
theoretical number of conformations, 3.98 x lo', was reduced using the van der Waals screening 
to 4.6 x lo', i.e. roughly 10% of the initial number still is valid after the bump check. The 
application of an energy window of 15 kcal mol-' leads to a further reduction of 90%. Some 
453393 conformations were stored. Even this number cannot be handled in a reasonable way. 
Therefore, in a next step the conformations left were classified into families using the program 
IXGROS [17] which has been developed in our group. (The complete source code is listed in 
Appendix 1.) This finally yields 227 unique families which are represented by their respective 
minimum energy conformations. Although the reduction from 4.0 x lo7 down to 227 
conformations is very impressive, one has to submit that even the rather small number left is 
too large. There is no chance to decide which of the 227 Conformers is the bioactive one, but 
this and only this is the question of interest. At this point a solution cannot be found if there 
do not exist rigid or at least semi-rigid congeners which in addition must be biologically active. 
It also must be proven that they bind to the same receptor site in an analogous mechanism. 
That is, as a rule, for finding the bioactive conformation of a flexible molecule, potent and more 
rigid compounds of the same series are needed. In the case of the H, antagonists the rigid and 
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Figure 2. Molecular formulas of the histamine H, receptor antagonists tiotidine and IC1127032. 

potent representative is ICI127032. After consideration of the small number of low-energy 
conformations of the rigid matrix and repeated use of IXGROS,eight unique families survived 
the procedure. These remaining conformations could be used successfully to determine the 
biologically active conformation of tiotidine (Fig. 3). 
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Figure 3. Representation of the results of the conformational analysis of tiotidine and ICI127032 (both 
displayed in a possible minimum energy conformation). The local minimum conformation representing 
the different conformational families are displayed by stars symbolizing the center of the cyanoguanidine 
end group of tiotidine and ICI127032.The resulting conformations of tiotidine are indicated by green stars, 
while the red-coloured stars mark the conformations derived for ICI127032. (The calculations have been 
performed using the SEARCH module within SYBYL 6.1 [16] and IXGROS [17]). 

As we have discussed it is of advantage to include rigid molecules in a conformational 
search for a set of flexible congeners.The rigid and biologically potent derivatives are used as 
a matrix for all other members of the series. Marshall and colleagues [7] have extended this 
procedure by also including inactive rigid representatives. By doing this the conformational 
space can be further restricted and by the same token the time necessary for the search is 
reduced by orders of magnitude. This technique has become known as “Active analogue 
approach”. 
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2.3.2 Conformational Analysis Using Monte Carlo Methods 

A completely different path for searching conformational space is realized in the Monte Carlo 
or random search. Random search techniques are of a statistical nature [20].At each stage of 
a Monte Carlo search the actual conformation is modified randomly in order to obtain a new 
one. 

A random search starts with ,an optimized structure. At each iteration in the procedure, 
new torsion angles [ l l  J or new Cartesian coordinates [8,9] are assigned randomly.The resulting 
conformation is minimized using molecular mechanics and the randomization process is 
repeated. The minimized conformation is then compared with the previously generated 
structures and is only stored if it is unique.The random methods potentially cover all regions 
of conformational space, but this only is true if the process is allowed to run for a sufficiently 
long time. This may last extremely long because the probability to detect a new and unique 
conformation decreases dramatically depending on the growing number of conformers 
already discovered. However, even if the computation has been running very long, one cannot 
be certain that the conformational space has been completely covered. It is very important 
therefore to establish a means for testing the completeness of the analysis. This can be done 
efficiently by performing several runs in a parallel mode, each one starting with a different 
initial conformation. If the results are identical or nearly identical, then completeness can be 
assumed. Another measure of completeness is based on the recovery rate for each low-energy 
conformation, because the probabilistic process must reproduce it many times. 

The main advantage of random search methods is that, in principle, molecules of any size 
can be successfully treated. In practice, however, highly flexible molecules often do  not give 
converging results, because the volume of the respective conformational space is too large. 
Other useful applications for Monte Carlo search methods include investigations on cyclic 
systems, because ring systems in general are difficult to treat in systematic searches. The 
effectiveness of random search procedures shall be demonstrated on a practical example. 
Cycloheptadecane was studied using a variety of different methods including a random search 
method [12]. The combined results of the various procedures yielded a total amount of 262 
different minimum conformations. None of the employed techniques succeeded in finding all 
262 conformers, but one of the random search analyses nevertheless was able to detect 260 of 
them. It is therefore safe to comment that random search techniques are very suitable for 
conformational analyses of many types of molecules, but may require a large amount of 
computer time to ensure complete coverage of conformational space. 

2.3.3 Conformational Analysis Using Molecular Dynamics 

The systematic conformational search procedure is a valuable tool to determine the large 
number of minima on the potential energy surface associated with a flexible molecule. In 
principle, the generation of all allowed conformations can be realized and there is a high 
probability for the completeness of the conformational search. However, there are clear 
limitations in the applicability of this method. The multi-minima problem can only be solved 
for rather small molecules with a limited number of rotatable bonds. 
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As already mentioned in section 2.3.1 the systematic conformational search of a molecule 
with six rotatable bonds leads to serious problems in data handling due to the large number 
of generated conformers.Therefore the investigation of flexible molecules-like for example 
arachidonic acid (Fig. 4), which contains 15 rotors-is practically impossible. Even after 
applying several methods of data reduction the systematic conformational search for this 
molecule yielded 5OOOOO different conformations. The procedure was stopped automatically 
by the program due to data overflow, although the conformational space was not completely 
sampled at this point. 

However,conformational analysis of the same molecule by a random search procedure will 
also be unreasonable because of the required computer time. For example, the investigation 
of cycloheptadecane-which is a more restricted molecule-used about 94 days of computer 
time on a Micro-Vax I1 computer [12]. 

Another rather difficult subject in this context is presented when saturated or partially 
saturated ring systems are to be treated in a systematic conformational analysis. In the course 
of the systematic process, bonds have to be broken in order to produce new attainable ring 
conformations. Efficiency and reliability of this procedure have been subject of several reviews 
[12,14]. 

A very common strategy to overcome these problems is the use of molecular dynamics 
simulations for exploring conformational space. The aim of this approach is to reproduce the 
time-dependent motional behavior of a molecule. Molecular dynamics are based on molecular 
mechanics. It is assumed that the atoms in the molecule interact with each other according to 
the rules of the employed force field (as already described in section 2.2.1). At regular time 
intervals the classical equation of motion represented by Newton’s second law is solved: 

Fi ( t )  = mi ai ( t )  

Figure 4. One energetically permitted conformation of arachidonic acid. 
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where F, is the force on atom i at time t, mi is the mass of atom i, and ai is the acceleration of 
atom i at time t. The gradient of the potential energy function is used to calculate the forces 
on the atoms while the initial velocities on the atoms are generated randomly at the beginning 
of the dynamics run. Based on the initial atom coordinates of the system, new positions and 
velocities on the atoms can be calculated at time t and the atoms will be moved to these new 
positions. As a result of this a new conformation is created. The cycle will then be repeated for 
a predefined number of time steps. The collection of energetically accessible conformations 
produced by this procedure is called an ensemble. 

The application of Newton's equations of motion is uniform in all different available 
molecular dynamics approaches, but they differ in the employed integration algorithms. Very 
common methods for integrating the equations of motion are the Verlet integrator [21] and 
algorithms like Beeman [22] and the leap-frog scheme [23] which are simple modifications of 
the Verlet algorithm. In the framework of this book a more extended discussion of the 
molecular dynamics theory is not intended but the interested reader is urged to study more 
detailed reviews on this subject [24-271. 

Before employing molecular dynamics simulations for conformational analysis the 
reader's attention should be drawn to some special features of this method. Unlike the 
conservative geometry optimization procedures, molecuiar dynamics is able to overcome 
energy barriers between different conformations.Therefore it should be possible to find local 
minima other than the nearest in the potential energy surface. However, if the energy barrier 
is high or the number of degrees of freedom in the molecule is very large, then some of the 
existing conformers of the investigated system possibly are not reached. In view of the huge 
conformational space the completeness of the conformational search during the chosen 
simulation time is difficult to ensure. 

To enhance conformational sampling a widely used tactics in molecular dynamics is to 
apply an elevated temperature to the simulation [27]. At high temperature the molecule is 
able to overcome even large energy barriers that may exist between some conformations and 
therefore the chance for completeness of a conformational search increases. It is self evident 
that the choice of a particular simulation temperature and simulation time depends closely on 
the molecule of interest. 

One recent and comprehensive investigation can be used to demonstrate the dependence 
of conformational flexibility on the simulation temperature. The data and additional material 
were made available by courtesy of F. S. Jorgensen, Copenhagen (Denmark). A molecular 
dynamics simulation has been performed on the experimentally well-studied cyclohexane 
molecule using different start conformations and different simulation temperatures* (Fig.5). 

At 400 K the twist form of cyclohexane (TI = 0) which has been used as initial 
conformation, oscillates between different twist forms while at 600 K the molecule contains 
sufficient kinetic energy to convert to one of the chair conformations (TI = 300). Further 
increase of the temperature up to lo00 K yielded both chair as well as twist conformations 

* Sybyl (version 6.0.3) from Tripos Associates Inc., St. Louis, U.S.A. Energy minimizations: Tripos force 
field, PM3 partial charges, dielectric constant E = 20 and a convergence criterion of 0.005 kcal mol-'A-'. 
MD simulations: loo0 ps at various temperatures with conservation of total energy, one conformation 
sampled per picosecond. 
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Figure 5. Variation of torsion angle T, (torsion angle T, = CI-C2-C3-C4) of cyclohexane for different 
simulation temperatures. At 400 K the molecule oscillates between different flexible twisted boat forms 
reflected by an extensive fluctuation of the observed torsion angle. Increasing the temperature to 600 K 
leads to one of the possible stable minima corresponding to one chair conformation. The dynamic 
simulation at loo0 K yields both chair conformations as well as the already observed twist and boat 
conformations. 
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(TI = 300 + 60) and several chair-chair interconversions can be observed. After 800 ps one 
of the chair conformations (T, = 60) exists almost exclusively. In a second study, three methyl- 
substituted cyclohexanes (1,l-dimethylcyclohexane, 1,1,3,3-tetramethylcyclohexane and 
1,1,4,4-tetramethylcyclohexane) were subjected to molecular dynamics simulations at various 
temperatures. The observed chair-chair interconversions at the corresponding temperatures 
have been compared with experimentally determined energy barriers of ring inversion [28] 
(Table 1). As a result of the comparison it can be concluded that the molecular dynamics 
simulations are able to reflect the relative magnitude of the experimentally determined ring 
inversion barriers.This example of high temperature molecular dynamics clearly indicates the 
necessity to verify if the chosen simulation temperature is high enough to prevent the system 
from getting stuck in one particular region of conformational space. 

Table 1. Data on the existence of the two possible chair conformations (chair and chair') of three methyl- 
substituted cyclohexanes at different simulation temperatures. The data are compared with the 
corresponding experimentally determined ring inversion barriers 

Temperature 

Molecular form 600K 800K lo00 K 1200 K AG 
(kcallmol-') 

+A Chair Chair + Chair' Chair + Chair' Chair + Chair' 9.6 

F A  Chair Chair Chair + Chair' Chair + Chair' 10.6 

Chair Chair + Chair' 11.7 

In the application of molecular dynamics to search conformational space it is a common 
strategy to select conformations at regular time intervals and minimize them to the associated 
local minimum. This procedure has been used in several conformational analysis studies on 
small molecules, including ring systems [14,29]. A very impressive example in this context is 
the conformational analysis of the polyhydroxy analog of the sesquiterpene lacton 
tharpsigargin (Fig.6).This study was also performed in the laboratory of F. S. Jorgensen. 

The polyhydroxy derivative has been studied in molecular dynamics simulations at 1200 
K in order to gain insight into the conformational behavior of the ring system*. The seven- 
membered ring adopted several different conformations during the simulation and a 

* Sybyl (version 6.0.3) from Tripos Associates Inc., St. Louis, U.S.A. Energy minimizations: Tripos force 
field, PM3 partial charges, dielectric constant E = 20 and a convergence criterion of 0.005 kcal moT1 A-'. 
MD simulations: loo0 ps at 1200 K with conservation of total energy, one conformation sampled per 
picosecond. 
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Figure 6. Molecular formula of the polyhydroxy analog of tharpsigargin. 

considerable number of ring interconversions took place. This clearly demonstrates an 
extensive exploration of the conformational space. 

Each of the sampled conformations has been energy-minimized subsequently and 
compared exclusively with respect to the conformation of the seven-membered ring. All 
conformations with a root mean square (rms) value below O.'l A were considered to be 
identical. The procedure yielded five different low-energy conformations. Fortunately NMR 
data [30] of tharpsigargin agree with one of the theoretically found conformations of the 
tricyclic ring system.This is shown in Fig.7. 

Figure 7. One of the theoretically determined conformations of the polyhydroxy analog of tharpsigargin. 
The ring conformation is in accordance with results obtained by NMR spectroscopy. 
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In some cases, however, it is not sufficient to minimize the sampled conformations in order to 
reach the final minimum conformation. The intention of the high-temperature dynamics 
simulation is to provide the molecule with enough kinetic energy to cross energy barriers 
between different conformations. However, during the simulation the molecule can occupy 
extremely distorted geometries which sometimes cannot be relaxed by a simple minimization 
procedure. 

If this occurs it is recommended to perform a high-temperature annealed molecular 
dynamics simulation [31]. Using this approach all sampled conformations of the high- 
temperature simulation will be subsequently optimized and then reshaken at a lower 
temperature, e.g. 300 K, in order to remove the internal strain of the molecule. The final 
reoptimization leads to conformations of lower energy when compared with the results of a 
high-temperature simulation which is followed by a simple geometry optimization. 

An additional modification of this high-temperature annealed molecular dynamics 
simulation is the so-called simulated annealing method (321. In this technique the system is 
cooled down at regular time intervals by decreasing the simulation temperature. As the 
temperature approaches 0 K the molecule is trapped in the nearest local minimum 
conformation. The received geometry at the end of the annealing cycle is saved and 
subsequently used as starting point for further simulations at high temperature. In order to 
obtain a set of low-energy conformations the cycle will be repeated several times. As the 
resulting structures should already be close to a minimum it is not absolutely necessary 
subsequently to minimize the structure. The application of this method has been subject of 
several studies [33,34]. Further information may be found in these references. 

In conclusion,it may be stated that molecular dynamics simulations represent an additional 
and very valuable tool that can be used to sample the conformational space, especially when 
other conformational search methods have been unsuccessful. The user should be careful 
when selecting the appropriate method and in setting the simulation conditions in order to 
ensure the completeness of the conformational search and the validity of the results. It should 
also be kept in mind that each approach has its strengths and its weaknesses and therefore, 
wherever possible, experimentally derived data should serve as verification. 
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2.4 Determination of Molecular Interaction Potentials 

The initial step in the formation of a complex like, for example, a drug-receptor complex is a 
recognition event. The receptor has to recognize whether an approaching molecule possesses 
the properties necessary for specific and tight binding.This recognition process occurs at rather 
large distances and precedes the formation of the final interaction complex. The 3D 
electrostatic field surrounding each molecule therefore plays a crucial role in recognition. 
Other molecular characteristics like polarizability or hydrophobicity come into play when the 
distance between the interacting surfaces gradually decreases. It is therefore easy to realize 
that molecular fields which can be determined by systematic calculation and sampling of 
interaction energies between the molecules under study using different chemical probes 
represent data sets of high value for the understanding of intermolecular interaction at any 
level of complexity of the molecular ensemble of interest. 

In the following sections the methods for calculation and analysis of these molecular 
properties will be described and evaluated. 

2.4.1 Molecular Electrostatic Potentials (MEPs) 

Knowledge of the molecular electrostatic potential (MEP) is critically important when 
molecular interactions and chemical reactions are to be studied. If molecules approach each 
other, the initial contact arises from long-range electrostatic forces Inprinciple, interaction 
forces can be separated into three components: electrostatic, inductive and dispersive.The first 
type of interaction appears between polar molecules which carry a charge or possess a 
permanent dipole moment. The second type is found when a polar molecule interacts with a 
non-polar molecule. The dipole of the polar molecule then produces an electric field which 
changes the distribution of the electrons in the non-polar molecule, thereby inducing a dipole 
moment.Thirdly, even if both molecules are non-polar and hydrophobic entities, the permanent 
fluctuations in the electron distribution of one molecule can induce a temporary molecular 
dipole moment in a neighboring molecule. This type of interaction is called dispersion. 
Dispersion forces are weak and fall off rapidly with increasing distance between the interacting 
molecules (see section 2.2.1). However, they constitute the main part of attraction between 
neutral non-polar molecules (The dispersion forces are also called London forces) 

The electrostatic interaction can be either attractive or repulsive; an electropositive portion 
of an approaching molecule will seek to dock with an electronegative region, while similarly 
charged portions will repel each other. The non-covalent interaction obviously is especially 
large between charged regions of molecules. Due to charges-but also due to permanent 
dipole moments present in a molecule-a 3D electrostatic field is generated in the surrounding 
environment. Therefore at moderate distances from polar or even neutral molecules, a 
significant molecular electrostatic potential exists.This can be represented as interaction energy 
between the molecular electron distribution and a positive point charge which is located in a 
3D grid at any point in space surrounding the molecule. For the determination of the molecular 
electrostatic potential an accurate treatment of the electronic properties of the molecules is 
required.Therefore,methods for the calculation of molecular charge densities become priority. 
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2.4.1.1 Methods for Calculating Atomic Point Charges 

The electronic properties of molecules are defined through the electron distributions around 
the positively charged nuclei. Detailed information about the electron distribution can be either 
obtained via experimental results, e.g. X-ray diffraction studies, or by calculations using 
quantum mechanical methods. However, with respect to the computational procedure 
corresponding results provide only a probability distribution of the charge density throughout 
three-dimensional space. For the purpose of interaction energy calculations mostly point 
charges located at the center of the atom positions are needed. Without doubt this produces a 
very simplified picture of the molecular electron distribution. To achieve the transformation 
the electron density needs to be converted into so-called partial or point charges This can be 
done by contracting the charge onto the atomic centers. Thus, the picture of a molecule 
consisting of atoms carrying the partial or point charges has emerged. The definition of these 
empirical partial charges bears some arbitrariness because the molecular electron distribution 
must be assigned to individual atom centers Or to put it in a different way, a molecular 
characteristic is scaled down to an atomic property. Partial charges are not observable, so the 
method of assigning point charges is only relevant and scientifically sound when it can be used 
to correlate or predict physical or chemical properties of molecules. On the other hand, as stated 
before, the electrostatic part of the overall intermolecular interaction energy is very prominent 
and therefore most of the commonly used molecular mechanics programs include a 
corresponding energy term which is dependent on atomic partial charges The application of 
these methods allows the rapid computation of electrostatic energieq even for macromolecules 
with more than a few hundred atoms For that reason a variety of different techniques for the 
calculation of atomic partial charges has been developed (for a review, see [l]). 

In principle it must be distinguished between two methodologically absolutely different 
approaches: 

1. Topological procedures [ 2 4 ]  such as the Gasteiger-Hiickel method [2]. 
2. Procedures which calculate atomic charges from the quantum chemical wave 

functions like the population analysis [7] or the potential-derived charge calculation 
methods [&11]. 

Topological Charges 

The topological methods are based mainly on the electronegativity of the different atom types 
To allocate atomic charges to directly bonded atoms in a reasonable way, appropriate rules 
are used which combine the atomic electronegativities with experimental structural 
informations on the bonds linking the atoms of interest.The topological methods do not need 
information about the molecular geometry or conformational status of a molecule. Only the 
connectivity matrix of the atoms is included in the calculation.The original method proposed 
by Del Re [3] exclusively for saturated molecules was extended to conjugated systems by 
Berthod and Pullman [4]. Both methods still are implemented in some modeling programs. A 
newer approach, which gives more realistic results in comparison with experimental data is 
the Gasteiger-Hiickel method. It is a combination of the Gasteiger-Marsili method [2] for the 
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calculation of the u component of the atomic charge and the old Hiickel theory [12]. The 
Hiickel theory allows to calculate the n component of the atomic charge in a fast and fairly 
efficient way. Naturally the total charge is the sum of u and n elements. Formal charges on 
atoms included in n systems are assumed to be delocalized over the whole n system. For this 
reason, Hiickel charges are calculated first and the Gasteiger charge calculation is performed 
subsequently.The big advantage of the topological procedures is that they are computationally 
fast and in many cases compare quite well with experimentally observable properties.The big 
danger is that one cannot trust the results without validation for a particular group of 
molecules. Very often the validation procedure simply is omitted. Of course this renders the 
corresponding study useless. 

Topological methods often are implemented into commercial software packages as 
standard tools for charge calculation. 

Quantum Chemical Methods 

All other methods for the calculation of atomic partial charges are based on the quantum 
mechanical computation of wavefunctions. Wavefunctions either can be obtained using 
semiempirical or ab initio methods depending on the requested accuracy of the wavefunction 
and also on the available computational resources. Charge densities can be obtained from 
wavefunctions using different procedures. The oldest and most widely used is the Mulliken 
population analysis [7], which is implemented as standard method in various quantum 
mechanical programs [13-15].The population analysis takes the electron density derived from 
the wavefunction and partitions it between the atoms on the basis of the occupancy of each 
atomic orbital. Although widely used, it has long been recognized in the literature that the 
results of the Mulliken method depends strongly on the basis sets applied. It often gives 
unrealistic results [16,17] (see also Table 1). An improved technique that eliminates most of 
the problems associated with the Mulliken procedure is the natural population analysis [MI, 
but it is effective on ab initio wavefunctions only. 

A second, much more recently developed, technique yielding atomic charges from 
quantum mechanically calculated wavefunctions is the method of deriving charges by fitting 
the molecular electrostatic potential (also called electrostatic potential (ESP) fit method) 
[7-111. The charge density is a well-defined function [19]. It contains important and detailed 
information about the molecule because all electrons contribute in some way to the 
distribution of the electronic charge in space. It also is experimentally accessible [20] from X- 
ray diffraction. However, this technique is extremely demanding as far as costs and time 
consumption are concerned and cannot be used as a standard procedure. A set of atomic 
charges able to reproduce the 3D electron density seems to be an excellent choice for 
generating a fairly correct picture of the electronic properties of any molecule. The 
mathematical technique underlying the ESP fit method involves least-squares fitting of the 
atomic charges to reproduce as closely as possible the charge density, which has been 
calculated quantum mechanically at a set of points in space surrounding the molecule. This 
yields much better results [9,11] than the Mulliken population analysis. 

Whether a charge distribution obtained with a particular method is reliable and able to 
represent realistically the electronic proportions of a molecule must be checked against 
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experimental data. One rather easy accessible experimental property is the molecular dipole 
moment. On the basis of atomic point charges a molecular dipole moment can be calculated 
in a simple and fast way and can be compared with appropriate experimental values which are 
listed for many compounds in literature (see for example [21]). Because the dipole moment 
depends crucially on the conformation of a molecule, only values for rigid molecules should 
be taken into consideration for comparative purposes. In order to decide on the applicability 
of a particular method for the calculation of charges in a series of molecules, one often 
proceeds by investigating not the entire flexible molecule but only small yet rigid fragments. 
Table 1 lists calculated and experimental dipole moments for a representative set of small and 
rigid structures. The dipole moments have been calculated using various methods and basis 
sets as well as the different procedures discussed earlier. The dipole moment is a quantum 
mechanically defined property; it can therefore also be calculated directly from wavefunctions 
(marked as SCF in Table 1). Corresponding results derived with a large basis set like 6-31G** 
are in especially good agreement with the experimental values. 

Which type of procedure should be employed to investigate a particular molecular system 
depends on several factors. On the one hand the size of the molecules to be studied plays an 
important role; on the other the available computer power is the limiting factor for choosing 
a particular method. 

Topological methods have the advantage over quantum chemical properties that they are 
very fast and give reasonable estimates of physical properties associated with charge. These 
methods generally produce dipole moments that are in good agreement with experimental 
values, partly a consequence of their calibration against experimental results. In contrast, the 
main disadvantage is the neglect of molecular geometries and conformations. Of course 
topological methods must fail in the case of molecules which contain atom types missing in 
the parameter list (see for example methylsilane in Table 1. Parameters for silicon are not 
included in the Gasteiger-Hiickel method.). 

Calculation of atomic charges from the molecular charge densities is the best choice if 
the results are for use in empirical energy functions for the purpose of interaction energy 
calculations. As can be deduced from Table 1 it is not absolutely necessary to use large ab 
initio basis sets. With smaller basis sets and even with the semi-empirical AM1 method 
dipole moments can be obtained which compare quite well with experimental values. 
However, the quality of the resulting dipole moment depends very distinctly on the 
procedure employed for generating the atomic point charges. All results obtained directly 
from molecular charge distribution are more realistic than the results of the Mulliken 
population analysis, which for some basis sets yields crude and erroneous dipole moments 
(see Table 1). 

If a molecule of interest contains more than about 100 atoms then a sufficiently accurate 
calculation of the wavefunction is not feasible for the entire molecule. This impediment can 
be avoided by partitioning the large molecule into overlapping fragments. The fragment 
results then are transferred onto the large structure, hoping that the fragment properties 
correctly mirror the characteristics of the parent molecule. 

However, even if point charges of high quality have been determined for a series of 
molecules these quantities are only weak arguments if the question of molecular similarity is 
the object of interest. Molecular similarity can be determined much more adequately on the 
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basis of the 3D charge distribution.The most advantageous way to use this important and well- 
defined magnitude is through the MEPs. 

2.4.1.2 Methods for Generating MEPs 

MEPs are represented as interaction energies of a positively charged unit (a proton) with 
the charge density produced by the molecular set of nuclei and electrons at any point in 
space in the vicinity of the molecule. In general, a cut-off value is defined to limit the number 
of MEP points to be calculated.The MEP is a very useful tool in molecular modeling studies. 
It describes the electrostatic features of molecules and can be employed for the analysis and 
prediction of molecular interactions. For the generation of molecular electrostatic potentials 
two different approaches can be followed.The most desirable way is to calculate the MEPs 
directly from the quantum mechanically derived wavefunction. This procedure is 
straightforward and more accurate but time-consuming. A simpler approach is the 
calculation of MEPs on the basis of the atomic partial charges representing the molecular 
charge distribution. The MEP then is calculated applying the Coulomb equation for 
electrostatic interactions. Of course, the first procedure is by far superior and by all means 
should be used if sufficiently accurate wavefunctions are attainable for a particular 
molecule. 

Many investigations are found in the literature which studied the basis set dependence of 
MEPs derived directly from wavefunctions [22-251. It has also been shown that the 
electrostatic potential based on AM1 wavefunction correlates sufficiently well with ab initio 
results [22].Therefore, AM1 can be used in all cases which cannot be handled due to molecular 
size at the ab initio level. 

Visualization of MEPs 

For the display of the molecular electrostatic potential different techniques are in use. The 
major obstacle for a fast and easy utilization of MEPs which permits the comparison of 
different molecules is the large amount of data points associated with this property. One very 
widely employed method to visualize MEPs is the display of the molecular electrostatic 
potential in the form of a 2D isocontour map in a particular plane of the molecule.The map 
may be displayed in color on a graphics screen, and can be manipulated in real-time. A single 
contour line represents values with similar energy. Regions containing a high nuclear 
contribution produce positive fields, corresponding to a repulsive interaction with a positive 
point charge, while those with a high electron density produce a negative potential, 
corresponding to an attractive interaction with a positive point charge. 

The next level of complexity is reached by switching from 2D to 3D display mode. In 
principle, nothing changes since the molecule is completely wrapped by sets of isopotential 
shells. Each point on a particular shell experiences an electrostatic potential of the same sign 
and magnitude. With the help of this technique the overall distribution of positively and 
negatively charged regions around a molecule can be visualized very distinctly. While 2D 
charts naturally may not always reveal a complete picture of the molecular electrostatic 
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potential, the 3D isopotential surfaces effectively allow qualitative interpretation and 
comparison to be made between different compounds. 

The third method for displaying the molecular electrostatic potential is associated with the 
calculation and visualization of the molecular surfaces. We will therefore dwell only shortly 
on the various definitions of the molecular surface. In the formal treatment of molecular 
surfaces the atomic positions are treated as points, whereas the electron clouds are 
approximated by spheres centered on the atomic centers. If the electron spheres are 
represented by the van der Waals radii, then the surface generated by summing all spheres is 
called the van der Wads surface. Van der Waals surfaces approximately represent the 3D 
volume requirements of molecu1es.A different type of surface which is often used in molecular 
modeling studies is the solvent accessible surface, also called Connolly surface [26]. The 
Connolly surface is the surface encircled by the center of a solvent probe as the probe molecule 
rolls over the van der Waals surface. 

The electrostatic potential can be color-coded either onto the van der Waals or the 
Connolly surface. Each color at a defined surface point on the surface indicates a distinct 
energy value of the electrostatic potentiaLThis technique attempts simultaneously to display 
both the shape of the molecules as well as their electrostatic properties. However, when larger 
molecules are studied the images become very complex. A solution to this problem is 
sometimes found by using the different techniques in a combined approach, since areas hidden 
in one display mode may be perceptible in the other (see Fig. 1). 

The molecular electrostatic potential is a much more reliable indicator of electrostatic 
reactivity than the concept of atomic point charges. MEPs and their 3D representation have 
proven to be effective tools for analyzing and predicting the interaction of ligands with their 
macromolecular receptors. 

The electrostatic potentials of different molecules, which bind to the same receptor site in 
a similar way, must share common features. It has been shown that in many cases where an 
atom-by-atom fit of the corresponding molecules does not lead to a satisfactory result, the 
MEP-directed superimposition yields an acceptable solution of the problem (see section 
2.5.3). 

As an example, it has been shown in a study of the electrostatic potential of histaminergic 
H, antagonists [27] that the imidazole ring of cimetidine and the guanidinothiazole ring of 
tiotidine can be superimposed on the basis of their electrostatic potential. This can be easily 
deduced from Fig. 2. 

2.4.2 Molecular Interaction Fields 

Many biological processes are determined by non-covalent interactions between molecular 
structures. This is true for the docking of a ligand to a receptor, the interaction of a substrate 
with an enzyme, or the folding of a protein.Also in the world of crystals the non-covalent forces 
determine decisively the geometry and symmetry of the molecular arrangement. As a general 
rule binding only occurs if the generated energy of interaction overcomes the repulsive van 
der Waals forces. One method to investigate the energetic conditions between molecules 
approaching each other is the generation of molecular interaction fields.These fields describe 
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Figure 1. Visualization of the molecular electrostatic potential (MEP) of nifedipine, using different 
techniques. a)The MEP is displayed as a 2-dimensional isocontour map in the plane of the dihydropyridine 
ring system.The electrostatic potential has been calculated directly from the ab initio wavefunction (using 
a 6-31G** basis set) and is contoured from -50 kcal mol-’ (red) to 90 kcal mol-’ (blue). b) The MEP is 
displayed in the form of isopotential surfaces. The electrostatic potential has been calculated by a point 
charge approach (ESP point charges have been derived from an ab initio calculation applying a 6-31G** 
basis set) and is displayed at the region of -5 kcal mol-’ (blue) as well as 5 kcal mol-’ (red). (The 
calculations have been performed using the quantum mechanical software package SPARTAN 3.0 [14]). 
c, d)  The electrostatic potential displayed on the Connolly surface of nifedipine. The values of the 
electrostatic potential have been calculated using ESP derived point charges [the same as in (b)] and are 
displayed in the form of a simple dot surface as well as in the more sophisticated form of a solid 
“triangular” surface. Blue areas represent negative electrostatic potentials; red areas represent positive 
values. (The calculations have been performed using program MOLCAD [?IS]). 
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Figure 2. Electrostatic potential of imidazole (a) and guanidinothiazole (b). The electrostatic potentials 
have been calculated using the ab initio wavefunction (with a 6-31G** basis set) and are contoured from 
-50 kcal mol-' (red) to 90 kcal mol-' (blue). (The calculations are performed using the quantum 
mechanical software package SPARTAN 3.0 [14]). 

the variation of interaction energy between a target molecule and a chemical probe moved in 
a 3D grid, which has been set around the target.The probes reflect the chemical characteristics 
of a binding partner, or fragments of it. By using computer graphics, molecular interaction 
fields can be displayed as 3D isoenergy contours. Contours of large positive energies indicate 
regions from which the probe would be repelled, while those of large negative energies 
correspond to energetically favorable binding regions. 

The calculation of molecular interaction fields can be carried out using a variety of 
programs like GRID [28], CoMFA [29] or HINT [30]. GRID is one of the most widely used 
programs for investigating molecular interaction fields. It works for small molecules as well 
as large protein molecules such as enzymes. Only Cartesian coordinates are needed as input. 
The list of probes is very comprehensive and the interaction energy is calculated on a regular 
grid of points surrounding the target molecule. The grid can also be confined to a particular 
fragment of the target molecule if only this part is of interest. The calculated energies are 
stored in a datafile and can be transferred for graphical display and analysis into most of the 
common molecular modeling programs [31-33].3D contour maps may then be generated at 
any selected energy level and studied together with the target molecule on a computer 
graphics system. The contouring is a quick process which allows the user to control the 
graphical results almost immediately. 

In this chapter we will focus on the calculation of the interaction fields for small molecules; 
investigations of the fields for macromolecules will be discussed later (see section 4.3.6). 

2.4.2.1 Calculation of GRID Fields 

The probes which can be used for the calculation are small molecules, chemical fragments or 
particular atoms, e.g. a water molecule, a hydroxyl group or a calcium ion. These probes 
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simulate the chemical characteristics of the corresponding binding partners, for example a 
potential receptor protein binding site or the neighbor molecule in a crystal. In the course of 
a GRID calculation the probe is moved systematically through a regular 3D array of grid 
points around the target structure. At each point the interaction energy between the probe 
and the target is calculated using the following empirical energy function: 

= Evdw + 4- Ehh 

where Eta, represents the total interaction energy, Evdw represents the van der Waals 
interaction energy, Ee, represents the electrostatic energy, and Eh, represents the interaction 
energy due to hydrogen bond formation. 

The van der Waals interaction energy can be regarded as a combination of attractive and 
repulsive dispersion forces between non-bonded atoms. An atom of the probe is prevented 
from penetrating an atom in the target molecule by atomic repulsion and electron overlap. 
Repulsion forces can be estimated by an empirical energy function that becomes large and 
positive when the interatomic distance between two atoms is less than the sum of their van 
der Waals radii.The attractive part of the dispersion interaction is due to the correlated motion 
of electrons around the nuclei which results in induced dipole interactions. For non-polar 
molecules the balance between the attractive dispersion forces and the short-range repulsive 
forces can be described with the Lennard-Jones potential [34] (see for example Eq. (5) in 
section 2.2) which is implemented in the GRID program. 

Electrostatic interactions are particularly important due to their long-range character for 
the attraction between ligand and macromolecular receptor. 

The Coulomb equation (Eq. (6) in section 2.2) is widely used in molecular mechanics 
programs for the calculation of the electrostatic term because of its simple mathematical form. 
Its disadvantage is the fact that the heterogeneous media of molecular systems which consist 
of molecules with different dielectric properties are not sufficiently represented. The 
discontinuity between solute and solvent is taken into account by using an extended and more 
comprehensive form of Coulomb’s law [28] which is used by GRID. 

The directional properties of hydrogen bonds play a crucial role in determining the 
specifity of intermolecular interactions. It is therefore of utmost importance for a proper 
evaluation of interaction energies to describe this part of attractive forces between molecules 
in a correct form. A hydrogen bond can be regarded as intermediate-range interaction 
between a positively charged hydrogen atom and an electronegative acceptor atom [35].The 
resulting distance between acceptor and donor atom is less than the sum of their van der Waals 
radii. In contrast to other non-covalent forces like dispersion and electrostatic point charge 
interactions, the hydrogen bonding interaction is directional, i.e. it depends on the propensity 
and orientation of the lone pairs of the acceptor heteroatom. 

In order to comply with the requirements of these aspects the GRID method uses an 
explicit energy term for hydrogen bonds [36]. The functional form of this term has been 
developed to fit experimental data. All parameters are founded on experimental 
crystallographic data, i.e. direction, type and typical strength of these interactions are classified 
according to the real world of crystals. 

The probes implemented in GRID are extensively defined by a variety of parameters, e.g. 
the hydrogen bonding possibility, the van der Waals radius or the atomic charge.The detailed 
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description makes them very specific so that they can be regarded as realistic representatives 
of important functional groups found in the active site of macromolecules. As an example 
properties and parameters for three important probe groups are shown in Table 2. 

Table 2. Examples of the different parameters which are necessary to define GRID probe groups 

Methyl Hydroxyl Carboxyl 
probe probe probe 

Van der Waals radius (A) 
Effective number of electrons 
Polarizabilty (A') 
Electrostatic charge 
Optimal hydrogen bond energy (kcal 
Hydrogen bonding radius (A) 
Number of hydrogen bonds donated 
Number of hydrogen bonds accepted 
Hydrogen bonding type 

1.950 
8 

2.170 
O.OO0 

mol-') O.OO0 
- 
0 

1 0 
0 

1.650 
7 

1.200 
-0.100 
-3.500 

1.400 
1 
2 
4 

1.600 
6 

2.140 
4.450 
-3.500 

1.400 
0 
2 
8 

GRID also contains a table of parameters defining each type of atom that possibly exists 
in target molecules. The respective parameters define the strength of the van der Waals, the 
electrostatic and the hydrogen bond interactions potentially formed by an atom. The careful 
parametrization and the great variety of implemented probes make the GRID program a 
precise and widely used method for the investigation of interaction fields for small molecules 
as well as for macromolecular structures. 

2.4.2.2 How GRID Fields can be Exploited 

The calculation of molecular interaction fields has been applied to a wide range of 
molecular modeling studies [37-42]. The strategy employed depends on the available 
structural information for ligands and macromolecular targets. If the 3D structure of a 
macromolecule is known, the interaction fields can be used to locate precisely favorable 
binding regions for the ligands. Subsequently these regions can be taken as a starting point 
for the design of new ligands for the particular receptor. This procedure will be described 
in detail in Chapter 3. 

More often, situations are met where there is no structural information about the 
macromolecular receptor and only the properties of the ligands are available. Under such 
circumstances molecular interaction fields can help to generate a more or less detailed picture 
of the potential receptor binding site. A prerequisite for this approach of course is that all 
investigated ligand molecules indeed bind to the same receptor site in an analogous 
mechanism. Only then can they be expected to exhibit a similar interaction pattern. Also, 
relative positions and size of the contours at any given energy level should be comparable.The 
energy level at which the contours must be compared is highly dependent on the probe type 
chosen. 
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Two different types of interaction fields for the Ca”-channel-blocking agent nifedipine are 
shown as an example in Fig. 3. 

The interaction fields mark those parts of the corresponding binding region which possess 
particular chemical and physical properties. These properties can be translated into a model 
of the binding region of the macromolecule. If the macromolecular target is a receptor protein 
the model is composed of single amino acid fragments which are located at the corresponding 
interaction regions. The amino acid fragments should satisfy the different binding regions 
which are common for all the active compounds. For example, the hydrophobic interaction 
fields possibly represent the location of hydrophobic amino acids such as phenylalanine, 
tryptophan, valine, leucine or isoleucine. Of course further investigations are necessary to 
specify the exact type of amino acid in each case. This will be discussed in the next section 
where this approach, called receptor mapping, will be described in detail. 

If a large set of compounds has to be studied it may become difficult to recognize all 
existing common interaction patterns. One way to solve this problem is to calculate the 
common interaction regions for different target molecules which were obtained in each case 
using the same probe. The common regions are mathematically detected in a gridpoint-by- 
gridpoint comparison of the fields. Only the hits are saved in a file and used for the generation 
of a common interaction field [43]. 

A more profound technique for comparison and analysis of molecular interaction fields is 
the use of chemometric methods like GOLPE [44] or PLS [45]. Until recently most 
structure-activity relationship studies based on molecular fields have been of a qualitative 
nature. One probable reason for this is that the methods for statistical evaluation contain 
mathematical and methodical difficulties that make these methods practicable only for 
specialists in chemometrics. Nevertheless, qualitative analyses have also shown in many studies 

Figure 3. Visualization of the molecular interaction fields of nifedipine. a) Favorable hydrogen-bonding 
regions derived from GRID [28] calculations using a hydroxyl probe (contour level: -3.5 kcal mol-’).The 
favorable hydrophobic interaction regions obtained with a methyl probe are displayed in b) (contour 
level: -1.4 kcal mol-I). 
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[3&43] the value of molecular interaction fields in identifying features contributing to 
bioactivity. 

2.4.2.3 Use of Chemometdcs: The CoMFA Method 

The CoMFA [29] method (Comparative Molecular Field analysis) was developed as a tool to 
investigate 3D quantitative structure-activity relationships (3D-QSARs). 3D-QSAR 
approaches use statistical methods (chemometrical methods) to correlate the variation in 
biological or chemical activity with information on the 3D structure for a series of compounds 
The underlying idea of the comparative molecular field analysis is that differences in a target 
property, e.g. biological activity, are often closely related to equivalent changes in the shapes 
and strenghts of the non-covalent interaction fields surrounding the molecules. Or stated in a 
different way, the steric and electrostatic fields provide all the information necessary for 
understanding the biological properties for a set of compounds. As in the GRID approach, 
the molecules are located in a cubic grid and the interaction energies between the molecule 
and a probe are calculated for each grid p0int.A very important prerequisite for this procedure 
is some sort of alignment for the set of molecules.The alignment can be achieved by the well- 
known method of pharmacophore determination (see Chapter 3). According to the authors 
of CoMFA the method itself should also be used for this purpose. For this reason a typical 
CoMFA study starts with a rough alignment of the compounds After calculation and sampling 
of the interaction energies at all predefined gridpoints (which are located at the intersections 
of a 3D lattice) the molecules so to speak are represented by their steric and electrostatic field 
properties. The relative 3D positions of common regions in the fields can be discovered with 
the help of statistical and chemometrical methods like for example PLS (for detailed 
information see [45]). The discovered common regions of field properties can be used 
subsequently to optimize the superimposition of the test structures in a so-called “Field Fit” 
procedure. This means that in cases where active molecules belong to different structural 
families, and cannot be aligned using an atom-by-atom fit procedure, they might be 
superimposable on the basis of common molecular interaction fields. 

Although this method is of general use a word of caution is necessary. There are a number 
of practical problems that emerge in the course of its application. The results depend critically 
on the chosen ligand conformation, on the reasonableness of the alignment, on the chemical 
parameters used to describe the interaction fields, and last but not least on the selected statistical 
evaluation method [46]. The reader should be aware of the fact that this program is a powerful 
tool in the hand of the experienced user but may provide some difficulties for beginners. For that 
reason only a short description of the CoMFA method has been given here. A detailed 
description of all features and difficulties that are related to CoMFA would be beyond the scope 
of this chapter. (For a detailed description of the different CoMFA approaches, see [47].) 

2.4.3 Hydrophobic Interactions 

As we have already discussed, attraction and repulsion between molecules are controlled by 
various types of interaction. One type which has not yet been considered is the so-called 
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hydrophobic interaction. Hydrophobic interaction between molecules is a complex process 
that results primarily from entropic effects related to the change in the orientation of solvent 
molecules in the solvation shell wrapping the solute molecules, but also from the bulk form of 
the solvent molecules. For an effective hydrophobic interaction a close contact of the 
interacting hydrophobic surfaces is necessary [48,49].The following piece of fiction might lead 
to a better understanding of hydrophobic bonding: a non-polar region of a deep binding cavity 
in a protein is not directly solvated. Nearby water molecules shield the cavity and are thought 
to form an iceberg-like structure which is stabilized by intermolecular hydrogen bonds 
between the water molecules. An interaction between the hydrophobic surfaces of the binding 
cavity and an entering substrate leads to a disruption of the ordered iceberg-like structure.The 
disruption yields an increase in entropy which results in a gain of free energy for the total 
system [49]. The desolvation of the substrate molecule also of course adds to the amount of 
newly formed bulk solvent molecules and must be taken into account. To date, the entropic 
effect usually is ignored in most modeling studies, because no simple method of calculation is 
available. On the other hand,it is generally accepted that the hydrophobic bonding or entropic 
effect does indeed play an important role in each drug-receptor interaction [50] as well as 
protein folding [51] event. As a natural follow-up the hydrophobic interaction should by all 
means be included in the energy balance of these processes. 

2.4.3.1 Log P a s  a Measure of Lipophilicity 

Hydrophobicity can also be regarded as an empirical property of molecules encoding specific 
thermodynamic information about a molecule’s interaction with its environment. Hitherto, 
several attempts were made for taking into account hydrophobic effects on the basis of 
experimental findings. The most important experimental measure of hydrophobicity is the 
solvent partition coefficient-expressed as log P-of a molecule between water and an organic 
phase. Since the log P can be determined experimentally it is a very useful tool. It can also be 
used to control and improve empirically developed methods, which are reported by several 
authors [52-54].The prediction of log P can be achieved by transforming experimental solvent 
partition data for sets of variously substituted molecules into so-called hydrophobic fragment 
constants.These fragment constants represent the relative lipophilicity of particular structural 
elements found in the original set of molecules.The total lipophilicity of a compound (given 
by the log P )  then can be calculated by summation of all fragment constants for a molecule 
under study.Today, fragment constants are available for a great variety of organic species with 
biological importance. 

It should be noted that log P is a simple “one-dimensional” representation of hydro- 
phobicity and only reflects an overall property. It is insufficient if a more detailed insight into 
molecular interactions between ligands and macromolecules is needed. 

2.4.3.2 The Hydropathic Field 

For that reason several attempts were made to utilize solvent partition coefficients as 
foundation to create a 3D representation for hydrophobicity. One way of approaching the 
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problem is the generation of a hydrophobic field in analogy to the electrostatic field. This 
technique for example is implemented in the program HINT [30]. 

The HINT model of hydrophobic interactions is based on the fact that solubility data can 
be regarded as just another physical property capable of mirroring the molecular interactions 
between solute and solvent molecules. In the framework of the HINT theory the fragment- 
level solvent partition data (the hydrophobic fragment constants) are reduced to hydrophobic 
atom constants [55]. These atomic descriptors are the key parameters and must be assigned 
for each atom in a molecule under investigation. Since the hydrophobic atom constants are 
derived from experimental partition experiments and solubility data, the obtained 
hydrophobic atom constants not only model the hydrophobic interactions but also include 
other types of molecular interactions, like electrostatic and van der Waals terms.The generated 
field therefore incorporates hydrophobic as well as hydrophilic parameters. It is called a 
hydropathic field. The calculation is performed using an empirical function (for a detailed 
description of the functional form, see [55]). The hydrophobic atom constants, the section of 
the solvent accessible surface created by each atom, and a distance function are included in 
the algorithm. The distance function is necessary to describe adequately the distance 
dependence of the hydrophobic effect in the biological environment. HINT generates 3D 
molecular grid maps in a similar way as discussed for comparable programs. 

The result of a HINT study is a combined contour map for the hydrophobic and hydrophilic 
field around a molecule. Grid points with a positive sign represent a hydrophobic region.The 
opposite is true for hydrophilic (polar) segments of space. Because of the empirical nature of 
the data, it is difficult to decide at which energy niveau the fields have to be contoured. It is 
self-evident that the selected energy level directly determines the size of the visualized part 
of the field. For a proportionally correct balance in the size of the displayed contours it is 
usually advisable to contour the hydrophilic effect at a level 2-5 times higher than that of the 
hydrophobic effect [56]. 

The appearance of hydrophobic and hydrophilic fields again is demonstrated for the well- 
known Ca2+ channel blocker, nifedipine in Fig.4(a). 

The information obtained from the analysis of the hydropathic field can be exploited 
following different strategies. The qualitative information on the distribution of hydrophobic 
and polar properties in the vicinity of a series of molecules for example can be used to 
generate a 3D map of the unknown receptor macromolecule. If the investigated series is large 
and complex an interface allows the produced data set to be read directly into CoMFA for a 
more elaborate analysis [57]. 

If the structure of the macromolecular receptor is known, the generated hydropathic fields 
also can be used to optimize the structures of ligands for enhancement of the biological 
activity. For a review of other potential applications, see [57]. 

2.4.3.3 Display of Properties on a Molecular Surface 

The display of hydrophobic and hydrophilic property distributions in the extramolecular space 
can also be projected onto a molecular surface. The program MOLCAD [58] employs for 
example the Connolly surface [26] of a molecule as a screen for mapping local molecular 
properties such as lipophilicity by a color-coded representation. A distance-dependent 
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Figure 4. a) Hydropathic field map of nifedipine.The green surface represents the hydrophobic area and 
the red surface the hydrophilic area of nifedipine.The map has been calculated by HINT 2.02 [30] and is 
contoured at -8 (red) and 4 (green). b) Molecular lipophilic potential of nifedipine displayed on the 
Connolly surface. Brown areas on the surface represent more lipophilic parts and blue areas the 
hydrophilic parts of the molecule. (The calculation has been performed using program MOLCAD [32]). 

function must be defined in order to reflect correctly the influence of different atoms or 
fragments on the local lipophilicity at a certain point on the molecular surface. This can be 
realized for example by introducing a molecular lipophilicity potential [59], which can be 
regarded as a pendant to the molecular electrostatic potentia1.A~ in the case of the MEP, the 
projection of any local properties onto a surface facilitates the perception and interpretation 
of the distribution of the visualized property descriptor. The main advantage of the surface- 
bound representation of hydrophobicity is the fact that the analysis of large molecular systems 
like proteins, is much easier in comparison with the evaluation of hydropathic fields. Because 
the theoretical background of both methods is equivalent, the results obtained should be 
comparable qualitatively. For both methods an effective test of reliability can be performed 
for all molecules for which experimentally derived log P values are available. However, the 
partition coefficient-like the charge distribution-is drastically influenced by the 
conformation of a molecule. Moreover, the situation is further complicated by the 
conformation of a molecule being able to change when it migrates from the aqueous to the 
lipophilic environment. Unfortunately this fact limits the amount of test molecules to a rather 
small collection of rigid or at least semirigid structures. An example for the appearance of 
MOLCAD hydrophobic surfaces is shown in Fig. 4(b). 
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2.5 Pharmacophore Identification 

2.5.1 Molecules to be Matched 

In the first sections of this book we have described how physico-chemical characteristics of 
molecules can be calculated and visualized. Now, we will discuss how this knowledge can be 
used to understand or predict the pharmacological properties of a compound. In the large 
majority of cases the basis for a pharmacodynamic effect is the interaction of a certain 
substance with a protein of physiological importance.The macromolecule might be an enzyme 
or a receptor. In both cases there must exist a highly specific 3D cavity which serves as binding 
site for the drug molecule. Compounds exerting qualitatively similar activities at the same 
enzyme or receptor therefore must possess closely related binding properties. That is, these 
molecules must present to the macromolecular binding partner structural elements of identical 
chemical functionality in sterically consistent locations. In short, congeners of a defined 
pharmacological group possess an identical pharmacophore, and one of the major tasks to be 
solved using molecular modeling techniques is the determination of pharmacophores for 
congeneric groups of drug molecules. Because the 3D structures of most receptors hitherto 
remain undiscovered, information on the corresponding hypothetical pharmacophore as a 
matter of fact is a very important source for understanding drug-receptor interactions at the 
molecular level. 

When all physico-chemical properties have been intensively studied the question 
remaining is “How do we have to superimpose the members of a series to find the 
pharmacophore?” In order to answer this question we have first to define the pharmacophoric 
elements. That is, we must decide what functional groups or atoms have to be superimposed. 
Of course this question cannot be answered completely objectively in an automatic procedure 
because one always has to decide in advance on the atom pairs which correspond between two 
molecules. This may produce a large number of useless data if known structure-activity 
relationship information is not included. This facilitates the superpositioning procedure, 
because it drastically limits the number of solutions. It should be noted that similarity between 
ligands must not comprise the whole molecule, because most of the ligand molecules are not 
completely wrapped by receptor binding sites when they are bound to it.This also reduces the 
number of reasonable solutions. 

If hydrogen bonds are supposed to be important for the pharmacophore then the direction 
and distance of lone pairs should be added to the atomic pattern of the molecules under study. 
This can be realized for example by locating dummy atoms in corresponding positions. These 
positions then are labelled by different flags as hydrogen bond-acceptor or -donor sites (only 
hydrogens bound to heteroatoms) and can be used as a first test for a superposition mode 
(program AUTOFIT [l]). Furthermore, planar elements like aromatic ring systems can be 
treated as special structural units. In this case for example the center of the ring system can be 
defined as matching point instead of the ring system. Other planar groups can be handled 
analogously. 

If the set of molecules contains only very flexible congeners then the search for a common 
pharmacophore is not only very difficult and tedious but also might even yield either none or 
an arbitrary (and therefore useless) result. This task can be easily performed and is of far 
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greater significance if rigid or at least semi-rigid compounds are present.These of course must 
be highly active, otherwise they can not be used as matrices for the flexible ligands. By the same 
token, the consideration of highly active but conformationally restricted molecules relieves 
the need to prove that one is indeed dealing with bioactive conformations. 

The selection of the molecules to be superimposed is very important if significant results 
are to be obtained. The easiest to perform, but rather ineffective, case is the superimposition 
of structurally very similar compounds.This does not provide much information, so it is much 
more effective to include in the series structures containing different skeletons. As a natural 
follow-up this leads to a situation which is highly desirable where a simple atom-to-atom 
superpositioning is not possible but a matching of functionally equivalent elements or a 
matching of molecular fields must be performed. 

One further point must be addressed. Are inactive molecules or molecules with only low 
activity to be taken into consideration? It seems useful at first to superpose highly active 
molecules alone. The derived pharmacophore then can be tested against, and eventually 
modified by, inclusion of low active and inactive congeners.The same holds true for antagonists 
and agonists of one receptor type. Superpositions should be performed for both groups 
separately. However, both models subsequently can possibly be combined, because very often 
competitive antagonists are bound at least partially in the agonistic receptor binding site. 
However, it should be noted that overlapping binding sites of agonists and antagonists are 
indeed common but do not necessarily exist. 

Several different superpositioning procedures are available. They comprise manual or 
automatic fitting by rigid-body rotation or flexible-fitting procedures where both root mean 
square (rms) derivation between the fitted atom pairs and conformational energies are 
minimized. Other important superpositioning techniques perform alignments on the basis of 
equivalences detected in molecular surfaces or molecular field properties. 

2.5.2 Atom-by-Atom Superposition 

The least-squares technique for superpositioning of corresponding atom positions is the most 
widely used method.%o molecules are superimposed by minimizing the rms of the distances 
between the corresponding atom pairs in the molecules. The rms value represents a measure 
for the quality of the fit. This procedure is very powerful in discovering dissimilarity between 
molecules which seem to be apparently similar.The weak point is that it is required to decide 
in advance which atom pairs match. It is obvious that different superpositions are obtained 
depending on the atoms used for the procedure.The method cannot be applied to molecular 
systems in which atom-to-atom correspondences are not detectable in advance. However, 
rigorous similarity in atomical structure is not a prerequisite for the interaction of different 
molecules with the same receptor. Therefore for a large number of cases where 
pharmacological data and structure-activity studies urge upon a common mechanism of 
action for a set of dissimilar molecules the conventional least-squares superpositioning 
method is considered inadequate. 

One may try to escape such a situation by performing a manual, interactive superposition 
if the test set is not too large. In principle, any number of molecules can be investigated directly 
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on the graphics display and the fit may be judged visually. Certainly this procedure is very 
creative and may stimulate new ideas about the underlying mechnism of experimentally 
detected structure-activity data. On the other hand, such a procedure naturally is biased and 
often cannot correctly be reproduced, because a computational optimization is not applicable. 

An efficient and fast search technique which can be used very successfully for the 
generation of pharmacophore models, the Active Analogue Approach, was developed by 
Marshall et al. [2 ,3 ] .  This technique utilizes a systematic search algorithm for calculating a 
representative number of sterically and energetically allowed conformations for congeneric 
molecules. For each of these conformations a set of distances between pharmacophoric groups 
believed to be important for the interaction with the receptor is generated. If each set of 
distances for one molecule is compared with all sets of all the other molecules-with the 
intention to find possible correspondences-the problem would not be solvable except for 
small molecules. On the other hand, in the framework of pharmacophore identification the 
complete conformational space of all compounds is not of interest but rather only those 
subregions which are accessible to all active 1igands.As we have discussed earlier,it is of major 
advantage to include rigid or semi-rigid compounds in a conformational analysis for a series 
of flexible molecules. For that reason the conformational search is started with the most rigid 
molecule. After determination of the respective distance map for this compound these 
distances are used as constraints in the conformational search runs for the more flexible 
molecules. Following these lines the results of a search on one active and rigid analog are taken 
as a basis to explore the conformational space of all the other congeners of the series. As all 
of the active compounds must fit the receptor model the search is restricted to those regions 
of conformational space which correspond to the previously defined model. For example, 
according to the model if a pair of atoms must lie within a certain distance range in order to 
agree with the constraints, then only those torsions that will allow this constraint to be satisfied 
need to be calculated. An example which has demonstrated the strength of the Active 
Analogue Approach dealt with 28 angiotensin-converting enzyme (ACE) inhibitors in an 
effort to predict a model for the ACE active site [4]. Applying this technique the search time 
was reduced by more than three orders of magnitude in comparison with a previously 
performed conventional systematic search study on the same subject. 

Another mapping procedure, which in contrast does not use an explicit atom-by-atom 
superposition approach is SEAL [5]. This program allows a rapid pairwise comparison of 
dissimilar molecules.The similarity score, as an indicator of the quality of fit,is calculated from 
a summation over all possible atom pairs between the two molecules. Each atom pair is 
weighted by the relative distance between the contributing atoms. In doing so the alignment 
function considers all theoretically possible atom pairs in the molecules in the comparison 
procedure and not only one atom pair, as in the atom-by-atom fit approach. As a consequence 
the resulting superposition reflects to some extent the properties associated with the global 
shape of the molecules. The program also offers the possibility to include physico-chemical 
properties in the alignment procedure. Therefore, the terms used in the pairwise summation 
can be composed from any physico-chemical quality supposed to be important for the 
biological effect. In the original version the authors used only van der Waals radii as an 
expression of sterical volume as well as point charges mimicking the electronic molecular 
properties to optimize the alignment. 
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There also exist mapping techniques which include as one of the first steps in the 
computational protocol the automatic and therefore unbiased identification of atomic centers 
or site points as correspondences used for superpositioning. Site points may include points of 
the molecular surface representing molecular features like hydrogen bond acceptor or donor 
characteristics. Several commercial program packages like APEX3D [6] and CATALYST [7] 
offer such functionalities. Others like DISCO [8], RECEPS [9], and AUTOFIT [l] have been 
discussed in the literature. As described earlier the superposition is performed by matching 
the assigned corresponding atoms or site points in all possible combinations. The ranking of 
the achieved alignments is done by rms calculations. 

2.5.3 Superposition of Molecular Fields 

Since molecules recognize each other by characteristic properties on or outside their van der 
Waals volume-and not through their atomic skeleton-the determination of molecular 
similarity should take into account the molecular fields. As a natural follow-up the 
superpositioning approaches should also concentrate on mapping and comparing these 
properties. For matching purposes the molecules are located in a 3D grid of equally spaced 
field points. Each grid point is loaded with a certain characteristic property measure such as 
charge distribution, hydrophobic potential or simply information on the size of the volume. 
Similarity thresholds can be defined in order to guide the optimization procedure to a 
significant and unequivocal result. Single grid points or clusters of adherent grid points can be 
assigned different weights in order to pay as close as possible attention to structure-activity 
relationships. One molecule-preferentially with limited conformational freedom-is chosen 
as the template molecule.The grid loadings of the template serve as a measure for the various 
properties and all trial molecule grids are manipulated by rotation and translation to find the 
best fit of the grid values. The computational technique of orientational search which has to 
be used is extremely time-consuming. Different methods have been described which mirror 
different levels of complexity but also utilize various field properties. Manaut et al. [lo] 
reported an effective method which maximizes the similarity between molecular surfaces on 
the basis of the molecular electrostatic field. Other groups such as Clark et al. [ l l ]  or Dean et 
al. [12] use physico-chemical field properties calculated using Lennard-Jones potentials, or 
replace the regular grid-based evaluation technique by an integration over Gaussian-type 
functions to approximate the electrostatic potential. Goodness-of-fit indices can be calculated 
for example as ratio of the number of commonly occupied grid points to the total number of 
grid points. 

In summary, the tools for matching molecular surfaces do exist. Since the corresponding 
methods do not require any atom correspondences between molecules, they can be used 
efficiently for superposing dissimilar molecules. However, this might become a routine 
technique only if the complicated calculations can be made fast enough to deal with a large 
number of conformations for each molecule to be superimposed. 
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2.6 The Use of Data Banks 

2.6.1 Conversion of 2D Structural Data into 3D Form 

An alternative way for generating 3D molecular structures is to start from 2D or 2.5D 
representations of molecules and to convert this information into a 3D form. While in the 
sketch approach earlier mentioned a single formula drawing is converted into 3D information, 
programs like CONCORD [l, 21 and CORINA [3] offer the possibility of employing the 
structural information for thousands of compounds-which may be stored for example in the 
databases of pharmaceutical companies-and to convert 2D or 2.5D connection tables into 
3D molecular structures. One of these largely commercial databases is available from 
Chemical Abstracts [4]. 

CONCORD was developed specifically for the 2D to 3D conversion of large database 
entries containing connection tables of potentially bioactive molecules. For structure 
generation CONCORD uses a very detailed table of bond lengths. In addition to information 
such as atomic number, hybridization and bond type, the program regards the “environment” 
of the atoms included in the bond before assigning bond 1engths.This precise selection of bond 
lengths is especially important for the construction of ring systems, deviations from correct 
values may have a dramatic effect on the resulting ring conformation. 

When starting the 2D conversion the program identifies the so-called “smallest set of small 
rings”. Subsequently, a logical analysis is performed for each particular ring system. Based 
upon ring adjacency and ring constraints these logical rules decide how the rings will be 
constructed. In addition, a rough conformation of each ring system is determined, taking into 
consideration planarity or stereochemical constraints. 

If fusion atoms of multicyclic systems are not specified CONCORD creates the isomer with 
the lowest energy content. After constructing and connecting the ring systems the program 
modifies the gross conformations in order to remove the internal strain by distributing the 
strain symmetrically over all atoms in the ring. This procedure leads to cyclic structures with 
sufficiently relaxed geometries. 

The next step in structure generation is to add the acyclic substructures. Bond lengths and 
bond angles again are taken from predefined tables.To avoid close van der Waals contacts in 
the built structure the torsion angles are modified in order to obtain energetically acceptable 
conformations. Besides computational speed the main advantage of CONCORD is that the 
entire topology of the growing molecule is considered at each step. As a result of this 
CONCORD yields 3D structures of good quality at low demands of computer time-an 
important criterion when large databases of 2D information are to be converted into 3D 
space. 

CORINA works in a very similar way to CONCORD. The starting point in creating ring 
systems is analogous to CONCORD, but CORINA subsequently uses a different approach to 
connect the ring systems.The rings are fused and the energies of possible ring conformations 
are calculated using a crude force field. If the actual choice of a particular ring connection was 
detected as energetically unfavorable, a new attempt is made using other energetically possible 
conformations of the rings. The generation of ring structures is followed by a geometry 
optimization step. 
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Because the energy-based approach of CORINA is less effective than the logical rules used 
by CONCORD the program is slower in solving the problem of ring connection. 

In a similar manner to CONCORD, the acyclic substructures are constructed after the ring 
system is completed.The chains added to the rings are usually in fully extended conformations. 
This of course leads to geometries needing further refinement.The torsion angles are rotated 
until the first conformation is reached, which relieves close contacts. As a result of this rough 
conformational search the program does indeed provide acceptable structures. 

It is important to note that the'resulting conformations-only as a matter of chance-ither 
correspond to a conformation in the crystal environment or to a low-energy conformation.The 
structure finally obtained therefore must be subjected to a conformational analysis in order 
to detect all possible low-energy conformations. 

Both of the programs reviewed are effective alternatives in structure generation, their most 
significant application being to convert large 2D databases into 3D databases which 
subsequently are subjected to 3D searching procedures. 

2.6.2 3D Searching 

3D searching can be of value for several reasons. It may for example be used to produce a set 
of approximate 3D molecular structures which subsequently can serve as starting points for 
further investigations like conformational analysis or geometry optimization. If the resulting 
approximate structures are of sufficient quality they also can be used directly to calculate 
various properties of the corresponding 3D structures. 

It is well known that bioactive ligands which are able to bind to a common receptor must 
fulfil certain chemical and geometrical criteria. In the case where the 3D coordinates of all atoms 
of the receptor are known, it is straightforward to search for ligands which mirror the 
complementary features of the receptor so that they can interact effectively with the binding site. 
However, in most cases the complete receptor structure is unknown.The lack of precise data on 
the binding site calls for the definition of a pharmacophore for the drug series under study. For 
this purpose the limited information on the receptor, together with additional information 
about some active and inactive ligands to this receptor, is used to generate a crude description 
of the 3D pharmacophore which can serve as search criteria for 3D searching in large databases 

The 3D search can lead to structures similar to those already known and which satisfy the 
chemical and geometrical requirements, or can lead to hitherto unknown structures which also 
possess the features necessary for favorable ligand-receptor interaction. 

Prerequisites for effective 3D searching are large databases of 3D structures and suitable 
software to perform the search. In principle, there are two alternative ways to obtain 3D 
molecular structures necessary for 3D searching.The easiest of course is to search in existing 
3D databases such as the Cambridge Crystallographic Database [5] or the CAS Registry File 
[6,7].These commercial databases offer the possibility either to use already implemented 3D 
searching programs like GSTAT (which is available from Cambridge Crystallographic Data 
Centre) or the CAS ONLINE Service from Chemical Abstracts. Other 3D searching programs 
like 3D search [8] or ALADDIN [9] can also be applied. On the other hand, the user can create 
his or her own 3D database by converting any 2D database into 3D structural information 
using programs like CONCORD or CORINA, as already described in section 2.6.1. 



62 2 Small Molecules 

A sensitive point in 3D searching is the definition of the 3D search criteria which affects 
both direction and success of the 3D search. As already mentioned,since exact structural data 
about receptor proteins in the majority of cases are lacking, the search criteria are usually 
based on SAR data derived from bioactive compounds. 

The “training set” of bioactive structures should contain both active and inactive 
compounds. By including inactive compounds one can define for example regions which are 
sterically forbidden for active compounds.The definition of structural requirements for active 
compounds is straightforward and can be performed on the basis of the 2D molecular 
structure. For example, if all the active members of the training set contain an acidic 
substructure or a hydrogen bond acceptor, this information should be used as search criteria. 
However, it is a more difficult task to define the 3D arrangement of these substructures with 
respect to each other. When the training set contains fairly rigid active compounds it is of 
course more simple to define the geometrical requirements.The rigid congeners of the training 
set can directly serve as templates for the 3D orientation of the substructures, whereas in the 
case of a set of flexible molecules it is indispensable to determine a common pharmacophore 
on the basis of a conformational analysis (see also section 2.5). 

Usually, three points are used to describe the search query. The pharmacophoric points or 
substructures are treated as objects and the corresponding interobject distances define the 
respective 3D orientation.The procedural scenery of 3D searching is nearly identical for most 
of the programs. In a first step a crude search is used to eliminate compounds which do not 
meet the 3D search criteria because they lack the required chemical structures in any relative 
positions. In the second phase the remaining compounds are checked for satisfying both 
chemical and geometrical demands. As a result of the 3D search a “hit list” is created which 
contains all the molecules selected in the course of the search. 

An effective 3D search should yield a hit list containing a sufficient number of active 
cornpounds.The selection of search criteria which are not sufficiently specific will result in an 
oversized hit list of compounds. Most of the hits will not in fact be able to bind to the receptor 
because of improper 3D arrangements of the objects.Therefore, the search criteria should be 
defined in a well-considered manner in order to guarantee a reasonably sized hit list of 
potentially active compounds. 

However, the selection of geometrically very rigid criteria will lead to an unwanted 
restriction of the search. In order to illustrate this point, let us consider the following 
situation.The common pharmacophoric pattern derived for all members of the training set 
does not necessarily correspond to the low-energy conformations of the compounds. 
Therefore, if the 3D arrangement of the pharmacophore is used as search query, low-energy 
conformations of active compounds stored in a database may not be selected as hits 
because they do not fulfil the rigorous geometrical requirements. As a result, active 
compounds would be lost. In such a situation a more flexible searching procedure would 
be desirable. 

Several attempts have been made to handle this problem. The storage of different low- 
energy conformations of a compound is unpracticable. As already described in section 2.3.1 
the conformational flexibility-and thus the number of different possible conformations-is 
increasing with the number of rotatable bonds. A modest database already contains hundreds 
of thousands of compounds. Therefore, the storage of hundreds or thousands of low-energy 
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conformations for each individual compound would consume a huge amount of disk space and 
the searching time would be absolutely impractical. 

One very effective solution to this problem is the introduction of flexible interobject 
distances [lo]. Minimum and the maximum distances which can be achieved by the 
pharmacophoric points in the molecule are determined. If the molecule is flexible enough to 
fit all defined, flexible interobject distances simultaneously, then it will be selected and stored. 

Nowadays, the 3D searching programs are quite effective and can be used to produce 
comprehensive hit lists of potentially active compounds. Further refinement of the programs 
will focus on the improvement in specification of the 3D search criteria to make the search as 
effective as possible and to implement a more detailed consideration of conformational 
flexibility. In addition, the development of tools to evaluate the hit lists in a rational way is in 
progress. 

In the framework of this introductory book the increasingly important subject of 3D 
searching has been presented only very briefly. As this is a relatively new technique significant 
developments are still in progress. More detailed information can be found in several reviews, 
such as [2,11]. 
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Basic Principles and Applications 

3 Example for Small Molecule Modeling: 
Serotonine Receptor Ligands 

In this chapter the proceedings leading to the definition of a pharmacophore-based on the 
construction of a receptor binding site model-will be demonstrated. For this purpose we 
describe a study on serotoninergic 5-HT2, receptor antagonists which was performed in our 
laboratory and for which the FITIT method (which has been developed by our group) was 
used for the superposition procedure. The study employed a simple and straightforward 
protocol [18] The program fits each energetically accessible conformation of one molecule 
with each allowed conformation of a second one. The resulting fit pairs are sorted according 
to rms values and only fit pairs with low rms are saved. This procedure is repeated for the 
complete list of molecules and in most cases finally yields only a small number of different 
pharmacophore models. However, this statement can only be true if all known 
structure-activity relationship data in the series are taken into account and if in addition the 
conformity of molecular fields for the determined pharmacophoric conformations has been 
confirmed. 

In this example a list of 28 substances with known biological data is used as input. The 
compounds can be divided into four different structural subsets: 

1. 4-(phenylketo)-piperidines 
2. tricyclic compounds 
3. irindalone compounds 
4. butyrophenone derivatives 

vpical members of these subsets are shown in Fig.l. 

3.1 Definition of the Serotoninergic Phannacophore 

Unfortunately, the total set does not contain any rigid molecules, but some are at least in part 
conformationally restricted. This is true for clothiapine and irindalone as well as spiperone, 
while the members of the ketanserin subfamily which contain five major rotatable bonds show 
a high degree of conformational freedom. 

Experimental structure-activity data for the 5-HT,, antagonist can be summarized as 
follows. The pharmacological results suggest that two planar aromatic or heterocyclic ring 
systems in a certain distance connected by an aliphatic or alicyclic chain which contains a basic 
protonable nitrogen seem to constitute a potent 5-HT2, ligand [ l ,  21. Additional hydrophobic 
substituents or a carbonyl group in the heterocyclic ring enhance the antagonistic potency [3]. 
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Figure 1. Typical structures of 5-HT2, serotoninergic antagonists. 

This knowledge was taken into account in the conformational analysis. In the case considered 
here an additional advantage could be drawn from the fact that various partial structural 
elements of the different conformationally constrained molecules can be matched with diverse 
regions of the highly flexible congeners. In Fig.2 comparable structural elements of the four 
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Figure 2. Similarity of the partial structure elements used in the search for a pharmacophoric 
superposition. Equivalent elements are highlighted by color coding. Molecules from the left: clothiapine, 
irindalone, altanserin, spiperone. 

main groups of 5-HT2, antagonists are color-coded and the stepwise superpositioning 
procedure followed is indicated. 

This type of routine can of course only yield a purely sterical or volume superposition. 
However, since the interaction of a ligand with its receptor is directed by electronic features 
it has to be checked whether the discovered pharmacophoric overlap also describes similarity 
on these grounds, A preliminary approximation can be made comparing the molecular 
electrostatic potentials (MEPs). In this case it was done on the basis of corresponding AM1- 
derived charges [4]. Fig.3 presents the result.The high degree of similarity between the four 
group representatives is evident. However, a closer inspection of the result of the 
superpositioning operation reveals that two slightly different pharmacophores were found. 
Both have to be treated as being equally meaningful because rms values and total agreement 
of the MEPs within the two sets are similar. In such a situation a general decision for one or 
the other model can only be made with consideration of the 3D structure of the receptor 
binding site. If such information is missing no decision is possible. However, a thorough 
examination of the two pharmacophores for 5-HT2, antagonists brought to light one subtle 
but significant structural divergence. In one of the two models all the protons at the 
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Figure 3. Isopotential contours of altanserin, clothiapine, irindalone and spiperone (counterclockwise 
from upper right). Color code: blue = -1.0 kcal mol-', red = 1.0 kcal mol-I, yellow = _t 0. 

pharmacophorically important cationic tertiary nitrogens are pointing in the same direction; 
in the other model this is not the case. Assuming that the cationic protonated nitrogen is 
involved in a hydrogen-bond-enforced ionic interaction with an anionic receptor binding site, 
the first pharmacophore model would clearly be favored.Therefore only this pharmacophore 
will be considered in the further investigation. 
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3.2 The Molecular Interaction Field 

As mentioned and described earlier the evaluation of molecular interaction fields can be 
performed using GRID [5].The results of such calculations using two different types of probe 
are shown in Fig.4. On one hand a polar hydrogen-bond-active hydroxyl probe was employed 
and on the other a lipophilic methyl probe has been used.This choice of probes guarantees a 
rough but rapid determination of basic intermolecular interaction potentials. Using a variety 
of different probes, a rather detailed picture of the molecular interaction potential for 5-HT2, 
antagonists can be derived.As shown in Fig. 5 it contains several sites for hydrophobic contacts 
and hydrogen bond interactions as well as one ionic link. 

Figure 4. a) GRID contours of the same molecules as in Fig.3 derived from an aliphatic hydroxyl probe. 
Energy contoured at 4 . 0  kcal mol-'. b) GRID contours derived using an aliphatic methyl probe. Energy 
contoured at -1.4 kcal mol-'. 
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Figure 5. The 5-HT,a-antagonistic pharmacophore. Different characteristic regions are marked by 
colored arrows. Color code: violet = hydrophobic area, green = electron-deficient aromatic system, red = 
electronegative heteroatoms, pink = protonated nitrogen, blue = large planar ring system (mostly 
heterocyclic). 
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3.3 Construction of a 5-HT2, Receptor Binding Site Model 

The next step then is to translate this interaction field into a model of the receptor which is 
composed from single isolated amino acids with chemical properties suitable to satisfy the 
different types of binding present in the proposed pharmacophore. The relative 3D positions 
of the amino acid binding sites are defined by the corresponding GRID results.The resulting 
amino acid receptor model sometimes is called a pseudoreceptor [MI. 

A careful inspection of Fig. 5 almost automatically leads to the selection of suitable binding 
partners needed for the construction of the 5-HT2, receptor map. Hydrophobic amino acids 
like phenylalanine, tryptophan, valine, leucine or isoleucine should be positioned on both 
“sides” of the planar cyclic systems. Opposite to the protonated nitrogen an acidic amino acid 
(e.g. aspartic acid) should be used to fill the location marked by the interaction field created 
with a hydroxylic probe,whereas the other regions of this field close to the two carbonyl groups 
found in most of the ligands should be filled with serine, threonine or tyrosine. At this point 
of course we do not know whether all the discovered interaction possibilities in fact are 
realized at the receptor level and we will not know this with certainty until the 3D structure 
of the receptor protein has been elucidated. Nevertheless, structure-activity relationship 
(SAR) studies are very helpful in order to decide on the existence or absence of binding sites. 

In the case under study SAR data tell us that the carbonyl group of the fluorobenzoyl 
partial structural element is not essential and may be omitted without detrimental effect on 
the binding strength [9 ] .  Therefore it is concluded that a corresponding hydrogen-bond- 
donating binding site probably will not be present in the receptor. The same is true for the 
carbonyl element involved in the heterocyclic system. This can be deduced from the fact that 
ketanserin derivatives with undiminished affinity are known which present a thiocarbonyl [lo] 
group instead, or even possess a naphthyl system in place of the heterocycle [ll]. In conclusion, 
from the three interaction sites for hydrogen bond contacts between the ligands and the 
receptor protein, solely the hydrogen-bond-enforced ionic interaction exerted from the 
protonated nitrogen will be present in the amino acid model. 

One additional correction of the interaction field derived receptor map is still necessary. 
From experimental work it is known that the fluorobenzoyl system may be extensively 
substituted with hydrophobic elements and that this type of substitution leads to increasing 
affinity.This fact so far has not been accounted for in the receptor map and therefore we have 
to add a third hydrophobic amino acid binding site to this region.The final receptor map then 
appears as in Fig.6. As mentioned before, the sites A to F of the map now can be occupied by 
different amino acids with the necessary chemical properties. The available biochemical 
information, such as amino acid sequence, bacteriorhodopsin homology, alignment studies, etc. 
has led us to construct the amino acid model of the 5-HT, receptor presented in Fig.7. 

If experimental knowledge about the amino acid sequence of the receptor protein is 
absent, it is possible that several different models could be constructed.The decision for one 
or the other of the hypothetical receptor maps is possible on the basis of calculated interaction 
energies and their subsequent correlation with the known binding affinities. The model 
producing the most significant agreement is selected for prediction purposes. Of course, the 
selection procedure-and coupled to this the quality of the model-is superior if structural 
information from molecular biochemistry can be used. This for example is true for the 
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Figure 6. The receptor map contains six positions for 
receptor contact.The map has been constructed on the basis 
of interaction field calculations as well as experimental 
structure-activity relationship data. Positions A, B, C, D and 
F depict hydrophobic contacts, position E is an ionic 
interaction. 
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Figure 7. Stereoscopic view of the 5-HT, receptor model constructed from single isolated amino acids on 
the basis of the receptor map (see Fig.6). 
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G-protein-coupled receptors like the serotoninergic 5-HT2, receptor [12, 131. Homology 
searching and sequence alignment operations have been intensively performed, and therefore 
some ideas about selected amino acids in binding positions in the active site of the receptor 
do exist [14,15]. On the basis of this knowledge the derived binding site model very likely 
reflects important features of the real 5-HT2, receptor protein. 

3.4 Calculation of Interaction Energies 

Now, the following step is calculation of interaction energies and comparison with 
experimentally determined binding affinities.This can be done very efficiently using force field 
methods. For example, the DOCKING procedure and the MAXIMIN module of the SYBYL 
software package [16] can be employed for optimization of interaction geometries and energy 
calculation, though other programs can be used equally well. As long as only energy differences 
are of interest the results are quite reliable. However, one must be aware that the force field 
methods describe only two different types of binding forces adequately, the dispersion and the 
electrostatic term [17]. The latter depends dramatically on the dielectric constant employed 
and it is extremely important to choose the correct value in compliance with the respective 
situation. Inside a protein environment-for example, in the core of the G-protein-coupled 
receptor channel-the prevailing dielectric constant assumingly is between 3 and 5. Binding 
sites at protein surfaces are better treated with a value around 10. The constant for in vacuo 
conditions should be used only in special cases. For example, this would be reasonable if one 
assumes hydrogen bonds to be of crucial importance for the binding. Since force fields can only 
simulate the electrostatic part of hydrogen bonds, and neglect the covalent part, this drawback 
can be partly compensated for by overestimating the electrostatic interaction. Other energy 
terms which are not included in force field interaction energies are, for example, polarization 
or charge transfer terms. If there is evidence for an important function of charge transfer 
processes from SAR data, a corresponding correction of the force field interaction energies 
should be performed on the basis of quantum chemical calculations. 

Interaction energies are determined according to the formula: 

IE  = Em- ( E R  + EL) 

where IE is interaction energy, E,, is the energy of the receptor-Egand complex, E, is the 
energy of the isolated receptor protein, and EL is the energy of the isolated ligand. 

In order to obtain comparable energy data the interaction geometries of the complexes 
must be generated for all the ligands in an absolutely corresponding manner. All ligands are 
kept in the pharmacophoric conformation and location. Hydrophobic and polar amino acids 
mimicking equivalent receptor binding sites are positioned according to the GRID contours. 
Each individual receptor model-ligand complex is then geometry-minimized in the 
MAXIMIN force field. No constraints are employed. The procecure therefore simulates an 
induced fit between ligand and receptor which can be assumed to occur likewise in reality. An 
energy cut-off of 0.01 kcalmol-' should be used. The calculated energies of interaction 
significantly must correlate with biological data if the developed receptor binding site model 
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Figure 8. Correlation between calculated interaction energies and experimentally derived binding 
affinities (pK,). Interaction energies were obtained on the basis of the receptor binding site model using 
the SYBYL Maximin force field. 

actually does reflect the important features of the real receptor active site. In the case under 
study this in effect is true. As can be deduced from Fig. 8 the calculated interaction energies 
correlate significantly with biological data 1181. Some 83% of the variation in the biological 
data can be explained on the basis of the binding site model; therefore this model is stable 
enough to be used for the prediction of structurally new 5-HT2, receptor antagonists. 

3.5 Validation of the Model 

One word of caution is necessary with respect to the experimentally derived biological 
activities. These by all means should constitute pure receptor binding affinities and ideally 
should stem from one laboratory. Since the computer models simulate molecular interaction 
events in a highly simplified manner, the experimental data that are combined with them in a 
correlation equation must be as close to the molecular niveau as possible. It is therefore 
absolutely forbidden and indeed virtually nonsense to correlate calculated interaction 
energies with pharmacological in vivo (whole-animal) data, because the receptor interaction 
can be blurred or even completely hidden by pharmacokinetics and biotransformation of the 
drug molecules. Sometimes even functional in vitro data are dangerous if a reaction cascade 
separates the measured event from the receptor binding interaction. 

If receptor map and interaction complex have been generated carefully an approximate 
but nevertheless correct picture of reality may be obtained. However, as long as the real 



3.5 Validation of the Model 75 

receptor remains unknown the efficiency and meaning of the model cannot be assessed,except 
by prediction of new active substances. This shouid always be the ultimate test of usefulness 
for each hypothetically derived receptor map. 
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Basic Principles and Applications 

4 Introduction to Protein Modeling 

4.1 Where and How to get Information on Proteins 

Within this book we have,until now,been discussing small molecules. In the second part of the 
book, the topic of discussion will be biopolymers. Since most of the receptors and target 
molecules known are polypeptides, the main part of the discussion will center on the modeling 
of proteins. 

Each modeling study depends heavily on the quality of the available experimental data, 
which always serve as the basis of a hypothetical model.Therefore, the first step should always 
be a careful literature search in order to get a clear picture about the level of knowledge on 
the biopolymer structure of interest.Valuab1e information would for example be the complete 
3D structure of the receptor or enzyme, ideally derived from crystal data or NMR 
measurements. After refinement such a structure can be used directly to calculate different 
properties of the protein or to investigate possible ligand-protein interactions. Unfortunately 
this situation is still a rare event and in most cases only information on the primary structure 
of proteins is available. 

Besides studying the literature it is very useful to scan different databases to search for 
primary, secondary and tertiary structural data. Since the number of published sequences and 
structural information is increasing rapidly an efficient search can only be done by using 
computer software suitable for this purpose. One such well-known system is the UWGCG 
program [l] offered by the Genetic Computer Group, Wisconsin. This package allows work 
with several databases which can be used for the search of an individual protein or DNA 
structure. The search can be accelerated and specified by employing keywords like author 
names, journals or families of proteins. Very similar in organization and handling and related 
to the UWGCG program is the HUSAR program (Heidelberg Unix Sequence Analysis 
Resources) implemented in the GENIUSnet (Genetic Interactive Unix System). GENIUSnet 
is a service offered by the German Cancer Research Centre in Heidelberg. In HUSAR a 
variety of programs greatly facilitates the search in about 20 different sequence and structural 
databases and the access to up-to-date information on protein sequences. 

The collection of available databases in HUSAR comprises for example the EMBL 
database (21 for nucleic acids, the SWISSPROT [3] and the PIR [4] databases for proteins. 
Information from the EMBL database (European Molecular Biology Laboratory, 
Heidelberg) are not only implemented in the GENIUSnet but can also be accessed directly. 

SWISSPROT is a comprehensive sequence database which offers a high level of 
information including a description of the function of a protein, the structure of its domains, 
etc. The PIR database is related to SWISSPROT. A small part of the information in 
SWISSPROT is an adaption of the data contained in the protein sequence database of the 
Protein Information Resource (PIR). 
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Generally the databases and the appropriate programs are free for use to academic 
institutions and can be obtained using the file transfer protocol (ftp) from several servers. 
Some information, however,may only be accessible after a licence agreement has been signed, 
while some of the programs and information are only available commercially. 

The most important and standard database for all structural information on 
macromolecules is the Brookhaven database [5] which also is available via World Wide Web 
(http://www.pdb.bnl.gov). In the Brookhaven database atomjc coordinates of protein or DNA 
structures are collected. Because of the continuously growing number of experimentally 
resolved structures the database is regularly updated. Information hunting in the Brookhaven 
database can be performed by specifying particular keywords: the author name, a journal, or 
a part of a sequence for example can serve as a search subject. 

Based on the Brookhaven database some smaller structural databases have been created. 
One is the HSSP database [6] which contains homology-derived structures of proteins. This 
database combines information from the Brookhaven database and sequences of proteins 
derived from a sequence database like SWISSPROT. 

In general the format, organization and information contained in different structural data 
files is very similar. As the Brookhaven database is widely used the standard format of a 
Brookhaven data file will be described in detail in the following (see also Appendix 2). The 
header of the data file comprises some general information about the protein. It includes the 
official name, references, resolution of the crystal structure and some useful remarks about 
the secondary structure composition of the protein. Adjacent to the header are listed the 
atomic coordinates. Atoms belonging to standard amino acid residues are labelled as ATOM. 
In order to distinguish between individual peptide chains the ATOMS are separated by an 
additional line starting with the abbreviationTER. Between ATOMS a bond is generally built 
when the file is read into the modeling program. This is important as the atoms which do not 
belong to standard amino acid residues are labelled as HETATM. No connectivity is 
established between HETATMS.Therefore an additional connectivity table is included at the 
end of the data file. It is advisable to be careful at this point because it is program-dependent 
whether or not HETATMS are displayed properly and connectivities are correctly assigned. 

HETATMS can either belong to non-standard amino acids or, in the case of complexes, to 
the ligand molecule involved in the ligand-protein interaction. As the proposed atom type 
assignment is often incorrect it is absolutely necessary to check carefully all atom types to 
avoid mistakes resulting in wrong geometries of the ligands (this has already been discussed 
in Chap.2.2.1.2). 

Usually, all structures from the Brookhaven database do not include hydrogen atoms. For 
some types of investigation hydrogen atoms can be neglected but for the study of 
ligand-protein interactions it is inevitable to add the hydrogens.The ligand molecules have to 
be checked especially carefully in order to confirm that the correct degree of protonation has 
been assigned in the case of acidic or basic substances. 

In addition hydrogen atoms never are allocated to all water molecules. As a consequence 
they are displayed only as single points representing the oxygen positions. Water molecules 
can present either simple crystal water distributed near the surface of the protein, or they can 
be located in the active site. In the latter case it is absolutely necessary to include their 
complete coordinates into further investigations because they can crucially influence the 
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conformation of the active site structure.This is also true for cations implemented in the crystal 
structure as they can play an important role for ligand binding or enzyme activity if they are 
located in the active site. 

Most of the modeling programs are able to read the Brookhaven data files without 
problems and to transform the structural information into a 3D picture of the protein. 
However, some points of caution should be kept in mind when using experimentally derived 
information. 

In principle, the resolution of a crystal structure should be at least between 2.5 A and 1.5 
8, or better, otherwise the structural information is not very valuable.The purification process 
of proteins is a difficult and time-consuming task and it may happen that as a result of 
proteolytic activity some information could be lost before the crystallization process has 
finished. Therefore amino residues may sometimes be missing, leading to incomplete 
information contained in the data file. 

Some enzymes and proteins fulfil their biochemical function only in the dimeric or trimeric 
form. The modeler should be aware of this fact because it makes no sense to investigate the 
functionality of the active site of an enzyme which consists of a dimer when only the monomer 
structure is present in the Brookhaven file. 

Recently the NMR technique has become a frequently used method for obtaining 
structural information on proteins. NMR has a special bearing on cases where a protein has 
withstood all efforts to grow sufficiently large crystals. An additional advantage of NMR- 
derived data is that the conformation of the protein is not influenced by packing forces of the 
crystal environment. As the NMR measurements are performed in solution the results are 
highly dependent on the solvent. Experiments in apolar solvents for example lead to an 
overestimation of hydrogen bonding phenomena. Measurements in aqueous environment 
should yield a more realistic picture of the protein structure. 

The pool of information on proteins is already immense and is growing continuously. 
However,most of the available databases still only contain information on primary structures. 
In order to obtain a 3D protein model from these data the application of alignment techniques, 
knowledge-based and homology modeling approaches is necessary. A detailed discussion on 
these subjects will be given in section 4. 
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4.2 Terminology and Principles of Protein Structure 

The complex 3D structure of proteins can be characterized in four general levels of structural 
organization: primary, secondary, tertiary and quaternary structure. 

1. The primary structure represents the linear arrangement of the individual amino 
acids in the protein sequence. 

2. The secondary structure describes the local architecture of linear segments of the 
polypeptide chain (i.e. a-helix, B-sheet), without regarding the conformation of the 
side chains. Another level of structural organization, which was introduced not 
before very recently, is the so-called supersecondary structure. It describes the 
association of secondary structural elements through side chain interactions. 
Another term for the same matter is "motif". 

3. The tertiary structure portrays the overall topology of the folded polypeptide 
chain. 

4. The quaternary structure describes the arrangement of separate subunits or 
monomers into the functional protein. 

Owing to the remarkable capability of polypeptide chains not only in vivo but also in vitro 
to fold into functional proteins, it is currently accepted that most aspects of protein 
architecture and stabilization directly derive from the properties of the particular sequence 
of amino acids that make up the polypeptide chain (i.e. the primary structure). These 
properties include the individual characteristics of the side chains of every residue and the 
influence of the polypeptide backbone on the protein conformation. Only on the basis of this 
information can 3D structure of a protein be understood. It is not the scope of this introduction 
to provide a detailed description of all the properties which determine the conformation of a 
protein, but to explain the main features necessary to understand the contents of the following 
sections. For a comprehensive description of the principles of protein conformation, the reader 
is referred to the literature [1-4]. 

4.2.1 Conformational Properties of Proteins 

Generally, only 20 different amino acids are found in naturally occuring proteins.The physico- 
chemical properties of their side chains, such as size, shape, hydrophobicity, charge and 
hydrogen bonding, span a considerable range. They avoid, however, the extremes of high 
chemical reactivity and also, except for proline, strongly restricted degrees of freedom. The 
question most relevant in view of the 3D shape of proteins is, how the individual side chains 
interact with the backbone as well as with one another, and what roles they play within 
particular types of secondary and tertiary structures. The predominant influences of the 
sequential order on protein conformation are (aside from the linear connectivity and the stenc 
volume) the hydrogen bonding capabilities and the chirality of all (except glycine) amino acid 
residues. All 19 chiral amino acids possess the L-configuration or according to the 
Cahn-Ingold-Prelog scheme the S-configuration, with the exception of L-cysteine, which due 
to a change in ligand priority possesses the R-configuration. 
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An important convention needed for understanding much of the information available for 
a particular protein, is the designation of the individual atoms and structural elements of a 
protein. All atoms, angles and torsion angles that describe the 3D structure of a protein are 
named using letters in the Greek alphabet.The central carbon atom in amino acid residues is 
termed a,  and the side chain atoms are commonly designated p ,  y ,  6, E ,  and 5 in alphabetical 
order starting from the a carbon atom. The backbone of a protein consists of a repeated 
sequence of three atoms, belonging to one amino acid residue-the amino N, the C' and the 
carbonyl C; these atoms are generally represented as N,, CP, and CI' respectively, where i is the 
number of the residue, starting from the amino end of the chain. As an example, a portion of 
the backbone of a polypeptide chain is shown in Fig. 1.This illustrates the conventions used in 
describing protein conformation. 

Figure 1. Designation of atoms and torsion angles in a protein. 
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The main chain torsion angles in proteins are named @ (phi), 1/, (psi) and w (omega). 
Rotation about the N-C" bond is described by the torsion angle @,rotation about the C"-C' 
bond by 1/,, and rotation about the peptide bond C'-N by w.Torsion angles of the side chains 
are designated by x, (chi,, chi,, etc.) where j is the number of the bond counting outward from 
the Ca-atom. 

The peptide bond is usually planar because of its partial double bond character and nearly 
always has the trans configuration (w = 180") which is energetically more favorable than cis 
(w = O").The cis configuration sometimes is found to occur with proline residues (about 10%). 
Small deviations from planarity of the cis or trans form with d w  = -20" to 10" seem to be 
energetically acceptable. 

The variations of @ and 1/, are constrained geometrically due to steric clashes between 
neighboring but non-bonded atoms.The permitted values of @ and 1/, were first analyzed and 
determined by Ramachandran et al. [5]. In their work computer models of small peptides were 
used to vary systematically @ and 1/, with the purpose of detecting stable conformations. Each 
conformation, represented by a particular @, 1/, combination, was examined for close contacts 
between atoms. In this rough model the atoms were treated as hard spheres with fixed 
geometries for the bonds. Only values of q5 and q, for which no close contacts between atoms 
have been discovered, are permitted and usually are presented in a 2D map, the so-called 
Ramachandran plot. Since @ and q constitute a virtually complete description of the backbone 
conformation, the 2D Ramachandran plot is an important and easy-to-analyze test for the 
validity of 3D protein structure. 

The Ramachandran plot of polyalanine is shown as an example in Fig.2.The area outside 
the solid lines corresponds to conformations where atoms in the polypeptide chain are located 
in distances closer than the sum of their van der Waals radii. These regions are sterically 
disallowed for all amino acids, except glycine. Glycine, which lacks a side chain, is evenly 
distributed over the complete plain of the Ramachandran plot.The shaded regions correspond 

me Ramachandran plot 
180 

0 

-1 80 
-180 -phi 0 +Phi 180 Figure 2. Ramachandran plot of a polyalanine. 
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to conformations where no steric clashes are found, i.e. these are the allowed regions (or 
favored regions). The area directly outside the boundaries of this region includes 
conformations which are permitted if slight alterations of bond angles are accepted. 
Ramachandran plots for other amino acids appear comparable in the shape of the various 
regions. 

Sub-regions of @,+ space are generally named after the secondary structure elements 
which result when the corresponding @,+-angles occur repeatedly. The right-handed a-helix 
for example resides in the lower left near -60",-40", the broad region of extendedp-sheets in 
the upper left around -120", 140", and the slightly unfavored left-handed a-helical region in 
the upper right near 60", 40". Conformational properties and other relevant parameters of 
these secondary structures are described in the following sections. 

4.2.2 Types of Secondary Structural Elements 

4.2.2.1 The a-Helix 

The right-handed a-helix is the best known and most easily recognized secondary structural 
element in proteins [6,7].  Approximately 32% to 38% of the residues in known globular 
proteins are involved in a-helices [8]. a-Helices are classified as repetitive secondary structure. 
That is, all Ca-atoms of a-helical amino acids are in identical relative positions.Thus, the rj,+ 
torsion angle pairs are the same for each residue in the helix. The structure of an a-helix 
repeats itself every 5.4 8, along the helix axis; this means that the a-helices have a pitch of p 
= 5.4 A. a-Helices have 3.6 amino acid residues per turn, i.e. a helix of 36 amino acids would 
form 10 turns. 

The a-helical structure is mainly formed and stabilized by repeated hydrogen bonds 
between the carbonyl function of residue n and the NH of residue n+4 (see Fig.3).This results 
in a very regular and energetically favored state. a-Helices observed in protein structures are 
always right-handed. L-amino acids cannot form extended regions of left-handed a-helix 
because the CP-atoms would collide with the following turn. Only individual residues are found 
which possess the $,+ torsion angles of a left-handed a-helix. So,when speaking of an a-helix, 
usually the right-handed a-helix is meant. 

The exact geometry of the a-helix is found to vary somewhat in natural proteins, depending 
on its environment.The ideal a-helix (rj  = -57" and + = 47")  is only one version of a family 
of similar structures [6]. More usually, a slightly different a-helix geometry (rj = -62" and 11, = 
-41") can be observed in proteins [7].This conformation is more favorable than the ideal a- 
helix because it permits each carbonyl oxygen to make hydrogen bonds to both the NH of 
residue n+4 and the aqueous solvent (or other hydrogen bond donors). 

The side chains of an a-helix are pointing outwards into the surrounding space. Several 
restrictions exist for side chain conformations, especially for side chains with branched Cs- 
atoms (Val, Ile, Thr). Proline residues normally are incompatible with the a-helical structure 
because, due to the cyclic structure, the amide nitrogen lacks the hydrogen substituent 
necessary for hydrogen bonding. If single proline residues nevertheless appear in long a- 
helices (e.g. in some of the transmembrane a-helices of bacteriorhodopsin), this appearance 
yields a local distortion of the a-helical geometry. 
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Figure 3. General architecture of an a-helix. 

Variations of the classical a-helix in which the protein backbone is either more tightly or 
more loosely coiled (with hydrogen bonds to residues n+3 and n+5), are named 3,,-helix and 
n-helix,respectively. In general, these helix types play only a minor role in the architecture of 
proteins. However, 3,,-helices frequently form the last turn of a classical a-helix. 

4.2.2.2 The fl-Sheet 

Besides the a-helix, the second most regular and recognizable secondary structural motif is 
the P-sheet [9,10]. Like the a-helix it is a periodic e1ement.B-Sheets are formed fromp-strands 



86 4 Introduction to Protein Modeling 

which develop when a linear extended conformation of a polypeptide backbone (@ = -120", 
= 140") appears [9]. Since interactions between residues of the same strand are not possible, 

a P-strand is only stable as part of a more complex system, the P-sheet. As in a-helices all 
hydrogen bond donor or acceptor groups of the peptide backbone are engaged in the 
formation of hydrogen bonds, however, because these bonds appear not intra- but 
interrnolecular,P-strands are energetically less favored. In contrast to a-helices-which consist 
of a singular stretch of directly bound residues-P-sheets possess a much more pronounced 
structure modulating effect because they are composed of several B-strands which can be 
distributed over a large part of the sequence. 

Adjacent P-strands can be arranged in either parallel or antiparallel fashion. In parallel 
sheets the strands all run in the same direction (see Fig.4(a)), whereas in antiparallel sheets 
they run in opposite directions (see Fig.4(b)). 

Figure 4. Architecture of a) parallel and b) antiparallel B-sheets. 
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The side chains of 0-strands are located nearly perpendicular to the plane of the hydrogen 
bonds (between the single strands).Along the strand they alternate from one side to the other. 
For antiparallelp-sheets typically one side is buried in the interior of the protein and the other 
side is exposed to the solvent. Therefore, the physico-chemical character of the amino acids 
tends to alternate from hydrophobic to hydrophilic. Parallel B-sheets, on the other hand, are 
usually buried on both sides, so that the central residues tend to be hydrophobic, and 
hydrophilic amino acids are found abundantly towards the ends. For both types of 0-sheet, 
edge strands can be much more hydrophilic than central strands. 

&Sheets are very common in globular proteins (2O-28%) [8].They can consist exclusively 
of parallel or antiparallel strands or are formed from a mixture of both. Purely parallel sheets 
are less frequent, while purely antiparallel sheets are very common. Antiparallel sheets often 
consist of as few as two or three strands, whereas parallel sheets always have at least four. 
Mixed sheets usually contain 3-15 strands. 

4.2.2.3 Turns 

Approximately one-third of all residues of globular proteins are involved in turn regions.The 
general function of turns is to reverse the direction of the polypeptide chain. Often turns are 
located on the protein surface and therefore contain predominantly charged and polar amino 
acids. 

Various different types of reverse turns have been observed in proteins. Their specific 
features depend for example on the type of secondary structural motifs which are linked by 
them. For a detailed description of all observed turn types the reader is referred to the 
literature [14,11,12]. 

n r n s  often connect antiparallel 0-strands. In this case they are named 0-turns or hairpin 
bends [12]. Some 70% of hairpin turns are shorter than seven residues in length; most often 
they include only two residues. Larger loops have less well-defined conformations, which are 
often influenced by interactions with the rest of the protein. In all reverse turns the peptide 
groups are not paired by regular hydrogen bonds, but are accessible to the solvent. For this 
reason reverse turns often appear on the protein surface. 

In general, the periodic secondary structural elements in proteins (a-helices and B-sheets) 
are rather short.The length of an a-helix is usually 10-15 residues (12-22 A). A single B-strand 
is found to count 3-10 residues (7-30 A). Most of the described ideal geometries of helices 
and sheets are only rarely observed in nature. Often, the geometries of secondary structures 
are more or less distorted. For example, solvent-exposed a-helices very often show a curved 
helix axis. Most B-sheets in folded proteins are rather twisted than planar with a twist of 0-30” 
between the single strands. 

The common properties of proteins described here provide only some general rules of 
protein architecture. Each naturally occurring protein, on the other hand, is unique and attains 
its functional and structural character by means of specific non-covalent interactions. It is 
therefore necessary to compare each computer-generated structure with “real” 3D structures 
of proteins, and to include as much as possible information about protein structures in the 
process of protein modeling. 
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The exclusive presentation of secondary structural motifs of a complex protein in a 
schematic form is a very helpful tool for comprehending the overall structure. Usually in this 
kind of representation the side chains are omitted to yield a clearer picture of the whole 
protein, including the various secondary structural elements. Helices are often described by 
cylinders or coiled ribbons and extended strands of /%sheets by broad arrows indicating the 
amino-to-carboxy direction of the backbone. The 3D structure of triose phosphate isomerase 
is presented in such simplified form in Fig. 5. 

4.2.3 Homologous Proteins 

It has long been recognized that the evolutionary mechanism of gene duplication which is 
associated with mutations, leads to divergence and thereby to the foundation of families of 
related proteins with similar amino acid sequences and similar 3D structuresThe proteins that 
have evolved evolutionarily from a common ancestor are said to be homologous. Two 
homologous sequences can be nearly identical, similar to varying degrees, or dissimilar 
because of extensive mutations. As a matter of fact the sequence similarity in homologous 
proteins is less preserved than the structural similarity. Or stated in a different way, 3D 
structures of homologous proteins have been remarkably conserved during their evolution 
because the common structure is crucial for the specific function of the proteins. The 

Figure 5. The 3D structure of triose phosphate isomerase presented in simplified form using 
MOLSCRIPT [13]. 
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conservation of protein structure has been detected in many protein families. The 3D 
structures of a-chymotrypsin and trypsin, belonging to the family of trypsin-like serine 
proteases, can be cited as an example. They are remarkably similar, although they share only 
44% identical amino acid residues. This topological similarity can easily be observed in Fig. 6. 
Other members of the family of serine proteases have changed more drastically during 
evolution. Bacterial serine proteases for example show only 20% sequence identity when 
compared with the mammalian enzymes like thrombin, trypsin or chymotrypsin. However, if 
the 3D structural similarity is considered the main features are still present. 

The question which immediately comes to mind in this respect is how such large 
dissimilarities in the primary sequences are compatible with the observed structural similarity. 
The answer was found empirically and can be summarized as follows. The most pronounced 
dissimilarities generally appear in regions close to the protein surface, the so-called loop 
regions. In these regions even the physico-chemical properties of the side chains have often 
changed. Residues located in the interior of proteins, however, vary less frequently and less 
distinctly.This leads to the situation that generally a common core of residues comprising the 
center of the protein and the main elements of secondary structure remain highly conserved 
within a family of homologous proteins. 

Within homologous proteins the elements of secondary structure can move relative to each 
other, can change in length, or can even disappear completely. However, an a-helix is not 
usually replaced by a P-sheet, or vice versa. In general, neither the order nor the orientation 
(parallel or antiparallel) of P-strands has ever been recognized to differ between proteins of 
the same family. 

Figure 6. 3D structure of two homologous enzymes. Color code: red = a-helix; blue = &strand; yellow = 
peptide backbone. 
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In summary, the overall conformations of homologous proteins appear to have been highly 
conserved during evolution. This fact forms the basis for the development of the knowledge- 
based approach in protein modeling, which will be described in the next section. 
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4.3 Knowledge-Based Protein Modeling 

As we have already discussed in section 4.1 extensive information on primary and secondary 
structure of proteins are stored in various databases. Protein sequence determination is now 
routine work in molecular biology 1aboratories.As a result, the rate of publication of primary 
sequences has increased dramatically in the last few years. Sequences of more than 1OOOOO 
proteins are now available.The translation of sequences into 3D structure on the basis of X- 
ray crystallography or NMR investigations, however, takes much more time. Therefore, 
hitherto (by the end of 1995) the 3D structures of not more than 3000 proteins are available 
in the Brookhaven protein database. In certain circumstances it can take, depending on the 
kind of proteins studied, more than one year to perform a complete structure determination 
[l]. Therefore, many more protein sequences are known than complete 3D structures. 
Because of the technical problems related to experimental 3D structure elucidation, 
theoretical procedures for predicting protein 3D structure on the basis of the respective 
amino acid sequence are urgently needed. Since a general rule for the folding of a protein 
has not yet been developed, it is necessary to base structural predictions on the conformations 
of available homologous reference proteins [2-4] (see also section 4.2 for the underlying 
principles). 

If one sequence is found homologous to another, for which the 3D structure is available, 
the knowledge-based approach (also called the homology modeling approach) is the method 
of choice for predicting the structure of the unknown protein. The underlying idea of 
homology modeling is to make use of the collected body of knowledge about already resolved 
proteins. In a first step the sequence of a new protein is compared with all sequences of 
structurally known proteins stored in a database. Proteins in the database which are identified 
as homologous to the unknown are retrieved and used as templates for the structural 
prediction of the unknown protein. This approach was developed by several authors and is 
described in detail in the following paragraphs [5-8]. 

Successful knowledge-based model building, however, depends strongly upon how closeiy 
the structure that one is attempting to model fits the chosen template [9]. Because, at present, 
our understanding of protein folding patterns is still rather limited, the only criterion that can 
be applied for structure prediction is the examination of the extent of sequence homology 
between known and unknown protein. Although the conclusion of many studies in the past 
was that structural homology persists even if sequence homology is hardly detectable, for the 
purpose of knowledge-based modeling the reverse is important. The prediction of structural 
similarity between different proteins can only be based on the detection of homologies in their 
sequences. Thus, the comparison of sequences using alignment methods is a central technique 
in homology modeling and will be described in detail in section 4.3.1. 

The process of homology modeling involves the following steps: 

1. Determination of proteins which are related to the protein to be studied. 
2. Identification of structurally conserved regions (SCRs) and structurally variable 

3. Alignment of the sequence of the unknown protein with those of the reference 
regions (SVRs). 

protein(s) within the SCRs. 
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4. Construction of SCRs of the target protein using coordinates from the template 

5. Construction of SVRs. 
6. Side chain modeling. 
7. Structural refinement using energy minimization methods and molecular dynamics. 

structure(s). 

4.3.1 Procedures for Sequence Alignments 

The first step in homology modeling is the assignment of the unknown protein structure to a 
protein family. In many cases this information is already known because the sequence to be 
modeled belongs to a well-known protein family. However, this may not be true. Then it is 
necessary to compare the new sequence with thousands of sequences already stored in protein 
databases and to identify, if possible, homologous ones. 

In the past,identifying new proteins through database searches has been difficult and time- 
consuming. Computer programs required several hours or made far-reaching compromises in 
sensitivity or selectivity of the search. However, more efficient and rapid searching procedures 
have been developed in recent years [lo-131. Examples are the FASTP [12] or the BLAST 
[13] program. Many commercially available software packages (like HOMOLOGY [14], 
MODELLER [15], COMPOSER [16], WHAT IF [17], UWGCG [18]) include these or 
comparable programs for automatical database searching. 

The central technique used for amino acid sequence comparison is the so-called sequence 
alignment. In the framework of homology modeling the sequence alignment procedure is of 
importance for several reasons. Firstly it is used to search databases in order to find related 
sequences and to identify which regions of the detected proteins are conserved,thus suggesting 
where the unknown protein may also be structurally conserved. This for example can be 
performed employing the above-mentioned FASTP or BLAST programs. Secondly, sequence 
alignment is used for detection of correspondences between amino acids of the structurally 
known reference protein and those of the protein to be modeled. These correspondences are 
the basis for transferring the coordinates of the reference protein(s) to the model protein. For 
this task the more sensitive and selective alignment procedures described below are needed. 

A very natural procedure for aligning sequences would be to simply write them in tabular 
form for visual inspection. Of course this would be not only unsystematic, it would be very 
time-consuming, especially if more than two sequences are to be compared. For that reason 
many programs have been developed which are able to perform alignments automatically 
[18-211. Because the alignment of amino acid sequences is such a crucial step in homology 
modeling of proteins, many different methods and programs have been published and still are 
being developed. It is beyond the scope of this book to discuss all of them, but the reader is 
referred to the literature [12,13,18,19]. 

One of the earliest attempts to clarify whether the structural similarity existing between 
proteins is due to homology or occurs by chance, was carried out by Needleman and Wunsch 
[20]. Variants of the algorithm used by these authors have been further developed 
independently by others and applied in many fields. These programs are more sensitive in 
detecting homology than the database search programs, but on the other hand are slower in 
finding an optimal alignment. However, the great advantage of the Needleman and Wunsch 

' 
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algorithm is that final detection of the best alignment for two sequences is guaranteed. As a 
consequence computer programs based on this method (ALIGN, BESTFIT and GAP which 
are included in the UWGCG program package [18]) have been widely used for biological 
sequence comparison. Whereas the original Needleman and Wunsch algorithm is only able to 
align two sequences, many up-to-date programs handle the alignment of more than two 
sequences. These so-called multiple alignment methods are significantly more difficult than 
the pairwise alignment techniquesnis is because the number of possible alignments increases 
exponentially with the number of the sequences to be compared. Several programs have been 
derived to provide approximate solution of this problem (for example CLUSTALW [18] or 
MAXHOM [21]) 

In contrast to the above-described procedures-which search for the global optimal 
similarity of sequences-other approaches seek to identify the best local similarities between 
two sequences. These so-called optimal local alignment methods are likewise based on a 
modified Needleman and Wunsch algorithm and represent an important tool for comparing 
sequences. This is especially true for the location of highly homologous regions dispersed over 
long sequences [22-241. The basic idea of these methods is to consider only relatively 
conserved subsequences of homologous proteins; dissimilar regions do not contribute to the 
measure (Fig. 1). 

In the course of comparising of two sequences the alignment procedures, at least in effect, 
seek to duplicate the evolutionary process involved in converting one sequence into another. 
For this operation a kind of scoring scheme is required that dictates the weight for aligning a 
particular type of amino acid with another.This type of scoring scheme is provided by the so- 
called homology matrices, which make use of the most probable amino acid substitutions 
according to physical, chemical or statistical properties High numerical values in the matrix 
imply that a substitution is probable, whereas low values indicate that a substitution is unlikely 
to occur. From the various kind of matrices which are in use [25-291 the most often applied are: 

1. Identity matrix: this is the simplest matrix that gives a score of 1 to identical pairs and 
0 to all others. 

2. Codon substitution matrix: the scoring values for this matrix are derived from the 
DNA base triplets coding for the amino acid pairs For each pair, all of the possible 
nucleotide triplets are examined and the number of point mutations required to 
change one amino acid into the other are evaluated. Identical amino acids get a score 
of 9, one required mutation gives a score of 3, and two mutations yield a score of 1. 

3. Mutation matrix (also known as the Dayhoff or PAM250 matrix [25]): this matrix was 
obtained by counting the number of substitutions from one particular amino acid by 
others observed in related proteins across different species. Large scores are given 
to identities and substitutions which are found frequently, and low scores are 
assigned to mutations that are not observed. Due to this procedure larger scores are 
used for certain non-identical pairs than for some identical onesThe Dayhoff matrix 
(Fig. 2), is the most widely used scoring scheme. It is often applied for finding an initial 
alignment for two unknown sequences An advanced form of the Dayhoff matrix was 
suggested by Gribskov et al. [26]. The Gribskov matrix assigns the highest score 
always to identical amino acid pairs. 
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Figure 2. Dayhoff evolutionary mutation matrix. 

4. Physical property matrices: the scores of corresponding matrices are based on 
similarity indices for certain physical properties of amino acids, such as 
hydrophobicity, polarizability or helical tendency [28]. 

Differences in sequence lengths or variations in the locations of conserved regions 
complicate the alignment procedure. If one or both of the mentioned problems are found,gaps 
are introduced into the sequence to allow the simultaneous alignment of all conserved regions. 
To limit the total number of inserted gaps (a large number would render the alignment 
increasingly unrealistic), an additional factor is implemented into the alignment algorithms, 
the so-named gap penaltyfunction.?he overall balance between the number of aligned amino 
acids and the smallest number of required gaps leads to an optimal alignment. 

The combination of an alignment algorithm, a scoring matrix, and a gap-weighting function 
constitutes a system which can optimally align two or more sequences. The quality of a 
particular alignment is described by the alignment score. It is important to know that a derived 
alignment for related sequences is optimal only for the chosen parameters; changing the values 
can lead to a different alignment and a different score.Thus, it should be borne in mind that 
automatic sequence alignment methods are far from being perfect. The resulting alignment 
should always be verified for reasonableness. All known information on all levels on protein 
organization (primary, secondary and tertiary structure) have to be incorporated in the 
examination. Only when the derived alignment agrees with all known structural data can it be 
used as a basis for the generation of a protein model. 

Another fundamental problem of all sequence alignments is found in the fact that 
recognizable sequence homology is lost more rapidly during evolution than the underlying 
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structural similarity. Thus, it is difficult to give simple rules for the degree of similarity 
necessary to demonstrate unambiguously that two protein sequences are homologous. This 
depends strongly on the lengths of the sequences and their amino acid compositions. During 
the past decade several investigations have been performed to quantify the relation between 
sequence and structural homology [30-321. 

Doolittle has defined some rules of thumb which can ease the decision [30]. If the 
sequences are longer than 100 residues and are found to be more than 25% identical (with 
appropriate gaps) then they are very likely related. If the identity is in the range of 15-25%, 
then the sequences may still be related. If the sequences are less than 15% identical, they are 
probably not related. 

In order to be able to take a decision in the undecided range between 15-25% homology 
it must be proven that the alignment is statistically meaningful. One way to evaluate this point 
is by comparing the actual alignment score, which reflects the amount of homology between 
two sequences, with the average alignment score of randomly permuted sequences (which 
were generated by randomly exchanging the amino acid residues in the original sequences). 
This procedure preserves the exact length and amino acid composition of the proteins, and 
the statistical variation of the random comparison provides a measure of the significance of 
the observed similarity. A number of n randomizations for both sequence 1 and 2 will be 
generated. Each derivative of sequence 1 is then aligned against each derivative of sequence 
2, resulting in a total of n2 alignments. Both the mean and the standard deviations of the 
alignments are normally reported and can be compared with the original score. As an 
approximate guide; if the alignment score is more than six times the standard deviations above 
that for the random alignment, most of the residues in secondary structures will be correctly 
aligned [31]. 

Chothia and Lesk have performed an investigation on homologous proteins in order to 
quantify the relation between sequence homology and 3D similarity in core regions of entirely 
globular proteins [32]. They have found, that the success to be expected in modeling the 
structure of a protein from its sequence (using the 3D structure of a homologous protein as 
template) depends to a high degree upon the extent of sequence identity.They concluded that 
a protein structure provides a close general model for other proteins if the sequence identity 
is above 50%. If the sequence homology drops to 20%, large structural differences can occur 
(see Fig.4 in section 4.5.3). However, they found that the active site of distantly related 
proteins can have very similar geometries.Thus, in cases where the sequence identities are low, 
the structure of the active site in a protein may provide a reliable model for those in related 
proteins. 

4.3.2 Determination and Generation of 
Structurally Conserved Regions (SCRs) 

Building a protein model using the homology approach is based on the fact that there are 
regions in all proteins belonging to the same protein family that are nearly identical in their 
3D structures.These regions tend to be located at the inner cores of proteins where differences 
in peptide chain topology would have significant effects on the tertiary structure of the protein 
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[33].  Accordingly, it has been observed that the secondary structural units of strongly related 
proteins, above all a-helices and @-strands, occupy the same relative orientations throughout 
the whole protein family. As a natural follow-up these regions lend themselves to being used 
as the basic framework for the assignment of atomic coordinates for one of the other proteins 
belonging to the same family.These segments are called srructurally conserved regions (SCRs). 

The accurate assignment of SCRs within a family of homologous proteins is affected by 
several factors. The way to proceed depends on the number of available crystal structures of 
homologous proteins. It is fortunate when more than one crystal structure at atomic resolution 
is available. In this situation one can examine all structures in order to discover where the 
proteins are conserved structurally, even with regard to the 3D structure. To recognize the 
conserved parts of the proteins, they must be superimposed relative to each other. This is 
normally done using least-squares fitting methods. The main problem in this context is the 
selection of the corresponding fitting atoms; this means that it is not known a priori which part 
of the protein should be aligned to receive the best 3D overlap. In a first approximation the 
structures can be superimposed by least-square fitting of the C"-atoms [3]. The initial 
superposition then can be optimized using only matching points located in secondary 
structural elements that are found to be conserved. Several approaches have been developed 
which try to solve the fitting problem automatically [ 3 W ] .  

Matthews and Rossmann [40] have suggested a method which uses the least-squares fitting 
procedure. In a first step, two protein structures-which have to be aligned-are least-squares 
fitted using an initial set of equivalent residues The equivalences are then updated according 
to both the distances between potentially equivalent residues and local directions of the main 
chain. The superposition and updating is repeated until no increase can be obtained in the 
number of equivalences. 

In general, the resulting superimposed 3D structures show that large parts of the two 
proteins are very similar in structure and hence appear to be the structurally conserved 
regions, while other sections differ considerably. It should be noted that the applied algorithms 
do not take into account explicitly the secondary structure. Since-according to the definition 
SCRs must be terminated at the end of a secondary structural unit, so that, for example, each 
single strand of a @-sheet comprises a separate SCR-secondary structural elements of the 
proteins must be assigned before SCRs are determined. Information about the secondary 
structure of any known protein can be derived in the easiest way from crystal data files (for 
example from the PDB files) which include the secondary structural elements detected by 
crystallographers. Because the assignment of secondary structures in crystal structure files is 
often subjective and sometimes incomplete, it is more convenient to use objective methods 
which are able to assign correctly the secondary structural elements. Programs like DSSP [41] 
or STRIDE [42] detect secondary structural elements on the basis of geometrical features,i.e. 
the hydrogen bonding pattern or the main chain dihedral angle. Using these programs-which 
are available free of charge from the EMBL server in Heidelberg-one can rapidly assign 
secondary structures to all proteins if atomic coordinates exist. 

The situation is more complicated when only a single homologous protein is known that 
can be used as reference structure for the target sequence, because with only one known 
template protein a basis for a structural comparison does not exist. Under these circumstances 
one has to detect the SCRs manually using both, sequence and structural information of the 
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proteins. As was described before, conserved regions are frequently detected in stable 
secondary structure elements. Therefore, it is reasonable to study carefully as many of those 
elements as possible in the reference protein with the aim of discovering potential clues for 
the existence of SCRs. Residues in the hydrophobic core tend to be more conserved with 
regard to sequence and 3D structure than residues at the protein surface. Amino acids involved 
in salt bridges, hydrogen bonds and disulfide bridges are most likely to be conserved within a 
protein family. The same holds true for amino acids located in the active site. Information 
derived from multiple sequence alignments can also be used beneficially to locate the SCRs 
more accurately. 

It was found in many investigations on homologous proteins, that SCRs show strong 
sequence homology, while the variable regions show little or no sequence homology and are 
the sites of addition and deletion of residues. For that reason the determined SCRs should have 
identical or closely homologous sequences. Due to the structural homology of these regions 
no gaps are allowed in conserved areas. 

In cases where the SCRs of the reference proteins already are known one has only to locate 
the regions of the model protein that correspond to these SCRs. This is accomplished by 
aligning the target sequence with the sequences of the SCRs in the homologs.The alignment 
procedure which must be applied for this purpose differs slightly from that already described. 
Because, by definition, SCRs cannot contain insertions or deletions, an algorithm is needed 
which disallows the introduction of gaps within SCRs. Unfortunately the standard Needleman 
and Wunsch method does not have the measure for treating SCRs in a special manner. It places 
a gap at any location if this results in an optimized amino acid matching. For this reason 
procedures have been developed [3, 22, 431 which can handle each SCR independently. 
Corresponding programs generate alignments without gaps appearing within any conserved 
region. When the correspondence between the reference and the target sequences has been 
established the coordinates for the SCRs can be assigned. The coordinates of the reference 
proteins are used as basis for this assignment. In segments with identical side chains detected 
in reference and target proteins, all coordinates of the amino acids are transferred. In diverse 
regions only the backbone coordinates are transferred.The corresponding side chains then will 
be added after complete backbone (SCRs and SVRs) generation (see section 4.3.4). 

4.3.3 Construction of Structurally Variable Regions (SVRs) 

Since significant differences in protein structures occur preferably in loop regions, the 
construction of these structurally variable regions (SVRs) is a more challenging task. Insertions 
and deletions due to differences in the number of amino acids additionally complicate the 
modeling procedure. A variety of methods for generating loops have been developed and 
described comprehensively in the literature [5-7, 444.61. A good guide for modeling the 
missing region can be the structure of a segment of equivalent length in a homologous protein. 
Extensive investigations of variable regions in homologous proteins have shown that in cases 
where particular loops possess the same length and amino acid character, their conformation 
will be the same.The coordinates then can be transferred directly to the model protein in the 
same way as described for the SCRs. If no comparable loop exists in the protein family, two 
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other strategies can be applied for modeling the SVRs The coordinates for the SVRs can be 
either retrieved from peptide segments which are found in other proteins and that fit properly 
into the model's spatial environment [5-71, or by generating a loop segment de novo [4446]. 
The former approach, which is known as loop search method, looks for peptide segments in 
proteins which meet the specified geometrical criterion. Usually the loop search programs are 
scanning the Brookhaven protein data bank for possible peptide segments. The specified 
geometry input for the database search is given by distances and coordinates, including the 
residues of the regions embracing the loop segment in the model. The output of a respective 
search is a collection of loops satisfying the specific geometrical constraints. Usually the 10 to 
20 best loop fragments are retained for further examination. 'Ihe loops are ranked according 
to goodness of fit to the desired structure. However, additional criteria not used explicitly 
during the loop search, can provide a guide to ascertain the preference of one loop candidate 
over another. The retrieved fragments can be analyzed on the basis of quality of fit to the 
residues confining the loop region, by determining sequence homology between the original 
loop sequence and the sequence of the retrieved fragment, or via evaluation of steric 
interactions and energy criteria. 

The loop search method offers the advantage that all loops found are guaranteed to 
possess reasonable geometry and resemble known protein conformations. It is not certain that 
the chosen segment fits properly into the existing framework of the model, so severe sterical 
overlaps may be detected. If this happens, the de novo generation technique is an alternative 
method. 

Using this approach a peptide backbone chain is built between two conserved segments 
using randomly generated numerical values for all the backbone dihedral angles. Several 
algorithms have been developed to optimize the search strategy and to reduce computing time. 
Due to the complexity of this type of search method the approach can only be used for loops 
smaller than seven residues. 

All loops generated by database or random search methods are usually far from optimal 
geometry. For that reason all loop regions (including confining residues) must subsequently 
be refined by energy minimization techniques in order to remove steric hindrance and to relax 
the loop conformations (see section 4.4.3). 

4.3.4 Side Chain Modeling 

When the peptide backbone has been constructed the next step is to add the side chains.The 
prediction of the numerous side chain conformations is by far a more complex problem than 
the prediction of the backbone conformation of a homologous protein.Many of the side chains 
possess one or more degrees of freedom and therefore can adopt a variety of energetically 
allowed conformations. 

Several strategies have been developed in the past to find a solution for this multiple 
minima problem [47-541. It has been generally assumed that identical residues in homologous 
proteins adopt similar conformations. Also, when the substituted side chain belongs to an 
amino acid pair that shows high homology (indicated by a high score in the Dayhoff matrix, 
for example Ile and Val, or Gln and Glu), it is assumed that the side chains adopt the same 
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orientation in the protein [47].The situation will become more complicated if the amino acids 
to be substituted are not related. When the side chain to be considered is longer than its 
counterpart in the homologous protein or is structurally dissimilar, the side chains must be 
positioned at random but in a conformation that avoids unfavorable contacts with other side 
chains [48]. An alternative way to obtain a suitable side chain conformation is to select the 
calculated minimum conformations of the appropriate dipeptide potential energy surface [49]. 

A more reliable procedure was developed by examining.the relationship between the side 
chain positions in homologous structures of globular proteins. It has been found that the side 
chains adopt usually only a small number of the many possible conformations [50,51]. Side 
chains with for example two x angles have been observed to exist in four to six common 
conformations. All observed rotamers are combinations of the familiar gauche and anti forms. 
On the basis of such statistical evaluations rotamer libraries have been developed [50,53].The 
most often applied side chain library is the one created by Ponder and Richards [50] which 
contains 67 rotamers for 17 amino acids. Several homology modeling programs make use of 
this library for generating the side chains of homologous proteins Selecting the most probable 
conformation out of a rotamer library for side chain modeling might be problematical because 
this procedure disregards the information that is available from the equivalent side chain of 
the reference structure. Apart from that, the correct conformation of a side chain depends 
essentially on the local environment met by the amino acid in the real protein.This has been 
shown by several authors who have investigated well-resolved protein structures [54,55]. In 
the interior of a protein, hydrophobic interactions are predominant and result in tight packing 
of amino acid residues. Factors such as the secondary structure and tertiary contacts with other 
residues can influence the side chain conformation. For that reason, methods have been 
developed which take into account information about the local environment and other 
constraints which may determine the positions of side chains. Sutcliffe et al.,for example, have 
developed rules for mutual substitution of all 20 naturally occurring side chains in a-helical, 
B-sheet and loop regions-a total of 20 x 20 x 3 = 1200 rules [54]. In order to determine which 
atom positions are preserved when substituting one amino acid for another at a topologically 
equivalent position, the study was performed on several sets of homologous proteins. All 
residues corresponding to a particular topologically equivalent position were aligned on their 
backbone atoms and inspected to determine which atoms are correlated in spatial position. 

As we have discussed,various methods for the modeling of side chains do exist. All of them 
can greatly assist the modeler by providing appropriate side chain conformations On the other 
hand, in several situations one has to refine side chain positions manually. Modifications must 
be applied, for example, when amino acids are involved in specific interactions like ion-pair 
formations, disulfide bridges, buried charge interactions or internal hydrogen bonds.Variations 
also occur when the residues are located on the protein surface and are fully accessible. Such 
exceptions must be treated on a case-by-case basis. 

Once the final model has been built, a refinement of the structure is usually desirable. 
Regions where SCRs and SVRs are connected usually suffer from high steric strain and must 
be minimized. Several side chains may also adopt positions which result in bad van der Waals 
contacts. A stepwise approach for the structure refinement is likely to produce the best result. 
Overall simultaneous optimization of all side chains possibly would destroy important internal 
hydrogen bonds and may cause a conformational change within conserved regions. In order 
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to remove steric overlaps, conformational searches are applied for residues which show bad 
van der Waals contacts. Energy minimizing and/or molecular dynamics of the model are useful 
routes to explore the local region of conformational space and may produce a more refined 
structure. The details about energy minimization and molecular dynamics used for structure 
refinement will be described comprehensively in section 4.4.3. 

4.3.5 Distance Geometry Approach 

While several reference structures are often used in the traditional homology modeling 
process,only one set of coordinates can be used for the construction of a particular structurally 
conserved region (see section 4.3.2).The distance geometry approach in homology modeling 
[38, 56, 571 offers the possibility to examine all the reference proteins simultaneously to 
impose structural constraints that in turn can be used to generate conformations consistent 
with the data set.The first step using this procedure is the same as in the traditional homology 
modeling approach. The SCRs are identified and the sequence of the target protein is aligned 
with the sequences of the known proteins. The distance geometry method applies rules by 
which a multiple sequence alignment can be translated into distance and chirality constraints, 
which are then used as input for the calculation. By this means one obtains an ensemble of 
conformations for the unknown structure, where each member of the ensemble contains 
regions (which were constrained during the calculation) showing similar conformations and 
regions (which were free during the calculation) with varying arrangements. The structures of 
the ensemble then are energy-minimized in order to eliminate structural irregularities that 
sometimes appear during distance geometry calculations. The differences among the derived 
conformations provide an indication of the reliability of the structure prediction. A detailed 
description of this technique is given in a study reporting the application of the method to 
predict the structure of flavodoxin from E. coli [58]. 

4.3.6 Secondary Structure Prediction 

The best method for the generation of a structure proposal for a protein with unknown 3D 
structure is to base it on a homologous protein whose 3D structure is available, i.e. by means 
of the knowledge-based approach as described earlier. However, in cases where a homologous 
protein does not exist, several other methods have been developed that have concentrated on 
the prediction of secondary structure.The underlying idea evolves from the fact that 90% of 
the residues in most proteins are engaged either in a-helices, j3-strands or reverse turns. As a 
consequence it seems possible-if the secondary stuctural elements are predicted accurately- 
to combine the predicted segments in an effort to generate the complete protein structure. 
Obviously the reliability of this approach is much lower than homology modeling, thus, it 
should be applied with extreme caution. However, the prediction of secondary structure from 
the amino acid sequence has been widely practiced (for reviews see [59-67]). 

Basically, three different types of methods can be employed for this task: statistical, 
stereochemical and homologylneural network-based methods. All different prediction 
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methods rely, more or less, on information derived from known 3D structures stored in the 
Brookhaven protein database. The correct assignment of secondary structural regions in the 
crystal structure (see section 4.3.2) is therefore necessary for a reliable validation of all 
prediction methods. 

Statistically based methods were among the first that have been developed.The underlying 
idea takes advantage of the observation that many of the 20 amino acids show statistically 
significant preferences for particular secondary structures. Ala, Arg, Gln, Glu, Met, Leu and 
Lys for example are preferentially found in a-helices, whereas Cys, Ile, Phe, Thr, Trp, Tyr and 
Val occur more frequently in P-sheets. The most simple and most commonly used statistical 
method for secondary structure prediction is the one proposed by Chou and Fasman [60].The 
prediction is done by calculating the probability of an amino acid to belong to a particular type 
of secondary structure, such as a-helix, /?-sheet or turn, based simply on its frequency of 
occurrence as part of the respective secondary structure elements as found in the Brookhaven 
protein database. Another commonly used statistical-based method is that of Gamier, 
Osguthorpe and Robson (GOR) [61].The success of this type of algorithm is difficult to verify 
because some of them merely produce tendencies towards a particular secondary structure 
rather than an absolute prediction. Therefore, the methods are open to divergent 
interpretations, with the result that different authors obtain different results. The scope and 
limitations of the statistical methods have been demonstrated by Kabsch and Sander [68] in 
an analysis of three commonly used prediction methods showing that all methods are below 
56% accurate in predicting helix, sheet and loop. 

Another type of secondary structure prediction method is based on the interpretation of 
the hydrophobic, hydrophilic and electrostatic properties of side chains in terms of the 
formulation of rules for the folding of proteins [63-65].The method of Lim, for example, takes 
into account the interactions between side chains separated by up to three residues in the 
sequence [63] in view of their packing behavior in either the a-helical or /?-sheet 
conformations. A sequence with alternating hydrophobic and hydrophilic side chains, for 
example, is likely to be found in a /?-sheet strand, with hydrophilic residues exposed to the 
solvent and hydrophobic residues buried in the interior of the protein. Correspondingly, the 
stereochemical-based methods have been applied successfully for the prediction of 
amphiphilic helices [64] or membrane-spanning segments [65]. 

Other procedures combine statistical and stereochemical rules in a single algorithm to 
predict the secondary structure. Examples are the JAMSEK [69] and the ALB [70] programs. 

Recently, Sander has reported an algorithm which uses evolutionary information contained 
in multiple sequence alignments as input to neural networks [66, 671. Neural networks 
potentially have a methodological advantage compared with other prediction methods 
because they can be trained. This means that rules determining the behavior of the studied 
systems are not needed in advance, but are formed by the network itself on the basis of known 
facts. In a recently published study, a neural network method (called PHD) showed 70% 
accuracy in the prediction of three classes of secondary structure (helix, sheet, loop) on the 
basis of only one known homologous sequence [67]. 

Information derived from secondary structure prediction of homologous proteins is often 
used in addition to the results received in a primary sequence alignment in order to improve 
the location of the SCRs in a class of homologous proteins. Even when only the structure of 
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one homologous protein is known (which can be used as template for the homology modeling 
approach), but several homologous sequences, it is helpful to include the predicted secondary 
structural elements for the homologous sequences to assign the SCRs.Al1 available prediction 
methods should be applied in order to find the most probable assignment for the secondary 
structural elements. Of course different methods do not yield exactly the same result. This is 
shown in Fig.3 using five methods (CHOU, GOR,ALB, JAMSEK, PHD) for the prediction 
of the known secondary structure of a cephalosporinase from Enterobacter cloacae. The 
prediction is also compared with'the result of the DSSP program, which assigns the secondary 
structure on the basis of the known atomic coordinates. 

Most of the prediction methods described are implemented in commercially available 
protein modeling programs. However, nowadays the World Wide Web can also be used for 
structure prediction purposes. At the EMBL in Heidelberg (http://www.embl-heidelberg.de), 
for example, an automated mail server is installed which offers a variety of secondary structure 
prediction methods, including a neural network-based method. 

4.3.7 Energy-Based Modeling Methods 

In contrast to the knowledge-based techniques which,as described,check a database of known 
structures of homologous proteins for the most probable conformation of a specified region, 
energy-based methods generate a protein model ab initio, founded solely on the primary 
sequence. Whereas modeling with knowledge-based procedures is based on a set of 
empirically and statistically proven rules, energy-based methods use a list of geometrical 
criteria in order to sample all possible conformations of a defined region and to find the 
conformation of lowest energy. Energy-based approaches can be regarded as approximate 
solutions for the protein folding problem.Various programs based on the energy approach are 
available: the SCEF (self-consistent electrostatic field) techniques [71], Monte Carlo methods 
[72] and procedures which make use of empirically derived force fields (knowledge-based 
force fields) [73,74]. 

The so-called mean force potentials, or knowledge-based force fields, are quite different 
from the traditional force fields (which were described in general in section 2.2.1).The basic 
idea of knowledge-based force fields is that molecular structures observed from X-ray analysis 
or NMR contain a wealth of information on the stabilizing forces within macromolecules. 
Using statistical methods, the underlying rules governing the 3D structure of proteins have 
been revealed. It is the basic assumption of the Boltzmann principle that frequently observed 
states correspond to low-energy states of a system. Thus, the mean force potentials are 
compiled by extracting relative frequencies of particular atom pair interactions from a 
database of protein structures [75]. The mean force potentials consist usually of interactions 
among particular atom pairs and protein-solvent interactions. They incorporate all kinds of 
forces (electrostatic, dispersion, etc.) acting between particular protein atoms as well as the 
influence of the surrounding solvent on the interaction and can therefore be used to predict 
the structure of a macromolecule from its primary sequence. Mean force potentials have been 
applied for the prediction of protein folds and even for the detection of errors in protein 
models and experimentally determined structures [76]. 
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MMRKSLCCALLLGISCSALATPVSEKQLAEWANTITPLMKAQSVPGMAV 

E E E E E E E E E  HHHHHHHHHHHHHH HHHHHHHHHHTTEEE 
H HH E HHHHHHHHH HH HH E E E  

HHHHHHHHHHTTTTT TTT HHHHHHHHHHHHHHH T T E E E  
HHHHHHHH T T T  HHHHHHHHTTT E 
T T T T  HHHHHHHHHHHH T HHHHHHHHHHHHHHHH TTTTT E E  

HHHHHHHHHHHHHHHHHHH E E E E E E E  

51 100 
AVIYQGKPHYYTFGKADIAKPVTPQTLFELGSISKTFTGVLGGDAIAR 

E E E E E  E E E E E  HHHHHH E E E E E E E  EEEEEETTTHHHH 
EEE E E E E  HHHHH EHEEHE H E E E E E E  E H  
E E E E  T T T T E E E E  TT TT HHHHHHHHHHHWTHHHHH 
E E E E  TTT E E E E T T T  T T T  T T T  T T T E E E E  HHHHHH 
E E E E  TT E E E E  T T T T T T T T T  H 
E T T E E E E E E E E E E E T T T T  E E  T T T T E E E E E  HHHHHHHHHHHH 

101 150 
GEISLDDAVTRYWPQLTGKQWQGIFNLDLATYTAGGLPLQVPDEVTDNAS 

HHHHHHHEEEEEE TT HHHHHHHH T T  E E E E E T T  TTTTT 
HE HHHEE E HH HHHEEHHHH H HHH HH 

THHHHHHHHH T T T E E E E E T T T  TTHH 
HH HHHHHHHHH T T T  TTTHHHHHHHHHEEE T T T  TTHH 

TTT T T H  T HHHHH T T T T T  T T  H HHH 
T T T T  T T T T T T  T T T  HHHHHH T T T T T T T T T T T T  HHH 

151 200 
LLRFYQNWQPQWKPGTTRLYANASIGLFGALAVKPSGMPYEQAMTTRVLK 

E E E E E E E E E T T  TTEEEEEEEEEEEEEHHHHHHTTT HHHHHHHHHH 
HHEE HH EEEHH HHHHHH HHHHHHHHH 
HHHHH T T T  T T T  HHHHHHHH T T T  HHHHHHHHHHH 
HHHHHHTTTTTTTT EEETTT E E E E E  T T T  HHHHHH 
HHHHHHH T T T T T T T T  EE TT HHHHHH TTT HHHHHHHHHHH 
HHHHHHH T T T T E E  HHHHHHHHHHHH HHHHHHHHH 

201 250 
PLKLDHTWINVPKAEEAHYAWGYRDGKAVRVSPGMLDAQAYGVKTNVQDM 

HHHHHHEEEEEHHHHHHH TTTHHHHHHT THH HHHH EEEEEE HH 
H H HHHHH HHHHHHHHH H EEE HHHHHHH E HHHH 

EEEEETTT T T T  EEE HHHHHHHHHHHHHHHHHH 
HHHTTTEEEEE TTT EEE EEEEE 
H TTTT ZTHHHHHHHHH TTTT EE T T T  T T T T  HHHHH 

T T T E E T T T  E E T T T T E E  TTTHHHHHHEEEEHHHH 
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SEQUENCE 

CHOU 
GOR 
ALB 
JAMSEK 
PHD 
DSSP 

SEQUENCE 

CHOU 
GOR 
ALB 
JAMSEK 
PHD 
DSSP 

SEQUENCE 

CHOU 
GOR 
ALB 
JAMSEK 
PHD 
DSSP 

2 5 1  300 

ANWVMANMAPENVADASLKQGIALAQSRYWRIGSMYQGLGWEMLNWPVEA 

HHHHHHHHHHHHHHHKHHHH EEEEEEEEEEE EEEEE HHHHHHHHHH 
HHHHHH H H HHHHHHHHHHHHHH EEEEEEE HHHE 
HHHHHHHH HHHHHHHHHHHHHHHHHHHH HHHHHHHHHHHH 
EEE HHHHHHHHHHHHH EEEETTTE E E EEE T?T T 

HHHHHH T T HHHHHHHHHHH T TTTTT 
HHHHHHHH HHHHHHHHHHH EEEEETTEEETTTTEEEETTT H 

3 0 1  350 
NTWEGSDSKVALAPLPVAEVNPPAPPVKASWVHKTGSTGGFGSYVAFIP 

HHHHH TTHHHHHHHHHHHHH TT HHHHHH TTTTTTTEEEEEEEE 
EEE HHH H H EEEEE E EEEEE 

TT TTT TTT EEEE 
TTT TTTTT TTTTT E TT T EEEEE 

HHHHHHH HHHHH EE EEEEEEE TTTEEEEEEEEETTEEEEEEEE 

EEEETTTTEEEEE EEEEEE TT EEEEET 

3 5 1  3 8 1  
EKQIGIVMLANTSYPNPARVEAAYHILEALQ 

EEEEEEEEEETTTTTTHHHHHHHHHHHHH 
HHHHHEEEE HHHHHHHHHHHHH 
TTEEEEEEE TT HHHHHHHHHHH 

EEEEE TTT 

EEEEEEE HHHHHHHHHHHHHH 
EEEEE TTTTTHHHHHHHHHHHHH T 

Figure 3: Comparison of secondary structure predictions using different methods for a crystallographi- 
cally resolved cephalosporinase from Enterobacter cloacae. Sturcture elements shown in real agree with 
the structures observed in the crystal (H = a-helix, E = b-strand,T = turn) 

The SCEF method is based on the idea that the electrostatic interaction is important for 
the tertiary structure of a protein. In this procedure an initial approximation is made by 
calculating only the electrostatic energy and assuming that each amino acid must have optimal 
electrostatic energy, i.e. the dipole moment of each residue must be optimally aligned in the 
electrostatic field generated by the whole protein. As long as this is not achieved, the 
orientation of the dipole moment of each amino acid is changed to improve its electrostatic 
energy.Then the energy of the whole protein, including all energy terms, is minimized and the 
procedure is repeated iteratively to achieve self-consistency. This method has been tested 
successfully on several peptides [71]. 

Energy-based approaches are still under development. It is true that they have already 
been applied successfully in predicting the general folds of some proteins where no 
information on the secondary or teriary structure was available, but further improvement is 
necessary before these techniques can be employed as standard procedures for the prediction 
of the complete tertiary structure of any unknown protein. 
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4.4 Optimization Procedures-Model Refinement- 
Molecular Dynamics 

4.4.1 Force Fields for Protein Modeling 

Protein models derived from either homology modeling and alignment studies or crystal 
structures need further refinement. In the course of generating protein models the loop and 
side chain conformations in general are chosen arbitrarily; therefore the conformations do not 
correspond to energetically reasonable structures. Also crystal structures must be relaxed in 
order to remove the internal strain resulting from the crystal packing forces or to remove close 
contacts between hydrogen atoms or amino acid residues which may have been added to the 
crystal coordinates after structure determination. 

As protein models consist of hundreds or thousands of atoms the only feasible methods of 
computing systems of such size are molecular mechanics calculations.The common force fields 
used in molecular mechanics calculations are based in principle on the equations for the 
potential energy function as described in section 2.2.1. However, force fields for protein 
modeling differ in some respect from small molecule force fields. Besides the specific 
parametrization for proteins and DNA, certain simplifications are frequently introduced. In 
some force fields non-polar hydrogens are not represented explicitly, but are included into the 
description of the heavy atoms to which they are bonded. In contrast, polar hydrogens which 
may act as potential partners in hydrogen bonding are treated explicitly. This procedure is 
denoted as the united atom model. In the AMBER [ l ,  21 force field both the united-atom 
model or an all-atom representation can be applied, while the GROMOS force field [3] offers 
only the united atom model. Other simplifications can be made by introducing cut-off radii 
[4] to reduce the time-consuming part of calculating non-bonded interactions between atoms 
separated by distances larger than a defined cut-off value. 

An additional variation is made in respect of the treatment of the electrostaticinteractions 
As the explicit inclusion of solvent is still a problem, some force fields try to simulate the 
solvent effect by introducing a distance-dependent dielectric constant [l,  21. Especially in the 
case of macromolecules the electrostatic field in the environment of the system can not be 
considered to be continous. Thus, a differentiating procedure in calculating the particular 
properties is necessary in order to reflect the electrostatic effects which depend on the local 
situation, e.g. in the binding pocket or on the surface of the protein. A detailed discussion of 
this subject and a description of methods handling the complex situation adequately is given 
in section 4.6.1. 

The modifications established in protein force fields are various and can not be discussed 
here in detai1.A comprehensive description of potential simplifications is given in [S]. It should 
be borne in mind that each simplification applied can result in a loss of accuracy.The decision 
on the force field to be chosen strongly depends on the problem to be investigated; hence the 
most accurate force field which is applicable for the whole study must always be selected.The 
use of different force fields within a molecular modeling study should generally be avoided. 

There are several common force fields for protein modeling implemented in software 
programs. The following list is not complete but comprises some of the most frequently 
employed methods:AMBER[1,2],CVFF[6],CHARMM[7]and GROMOS [3]. 
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4.4.2 Geometry Optimization 

The algorithms used in the minimization procedures for proteins are the same as for small 
molecules and have been discussed in detail in section 2.2.3. The minimization algorithms 
applied to optimize the geometry usually find only the local minimum on the potential energy 
surface closest to the initial coordinates. In case of a well-resolved crystal structure the 
minimization will directly yield one energetically favorable conformation.The relaxation of a 
crystal structure usually is a straightforward procedure. However, crystal coordinates-even 
if highly resolved-sometimes have several unfavorable atomic interactions.These disordered 
atomic positions cause large initial forces that result in artificial movements away from the 
original structure when starting the minimization process. A general approach to avoid these 
large deviations is to relax the protein model gradually. 

A more profound solution would be to assign tethering forces to all heavy atoms of the 
crystal structure in the first stage of minimization.The tethering constant is a force applied to 
fix atomic coordinates on predefined positions. The strength of the tethering force can be 
selected by the user and affects the extent of movement of the atoms measured by the rms 
deviation from the initial coordinates. When tethering the heavy atoms the hydrogen atoms, 
and perhaps solvent molecules, are allowed to adjust their positions in order to minimize the 
total potential energy. A suitable minimization method for this purpose is the steepest descent 
algorithm. For this initial relaxation step a crude convergence criterion can be applied or the 
process can be finished by defining a maximum number of allowed minimization steps. 

Subsequently it is recommended to tether only the well-defined main chain atoms Now 
the side chains are allowed to move and to adjust their orientations. The steepest descent 
method is suitable also in this case. Ultimately the restraints are removed in the last step so 
that the final minimum represents a totally relaxed conformation.The minimization algorithm 
should be changed to conjugate gradient to reach convergence in an effective way. The 
convergence criterion should be fixed on the order of 0.002 kcal mol-' A-' to ensure a final 
geometry nearest to the minimum. 

The application of tethering forces can also be useful and necessary in the modeling of 
incomplete systems. These may result in an X-ray study if certain parts of the crystals or 
included solvent molecules cannot be resolved adequately. Also active site models of enzymes 
or binding pockets of proteins used for the investigation of potential ligand-protein 
interactions are examples of typical incomplete systems. 

Due to the absence of neighboring amino acids or solvent molecules the atom positions at 
the surface of a protein are mobile. As a consequence, large deviations from the initial 
positions will result after minimization and the final geometry must be regarded as an artefact. 
Therefore atoms or the ends of side chains are tethered at their original positions to avoid 
unrealistic atom movements at the surface of the protein. 

With the objective to confirm the accuracy of the relaxed protein model the deviations 
from the experimental structure should be examined. For this purpose the initial structure and 
the final geometry are superimposed using least-squares fit methods. Normally either all 
backbone atoms or only backbone atoms of the well-refined secondary structural elements 
are used as fitting points. The quality of the fit can be judged by the rms deviation of the 
optimized form from the initial geometry.The value of the rms deviation is strongly dependent 
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on the number and localization of atoms which are considered for the fit. Naturally, a fit of all 
heavy atoms would result in a much higher rms value than a fit which is confined to backbone 
atoms only, mainly due to the greater mobility of side chains. 

If the generated model is based merely on homology modeling and alignment studies the 
loop and side chain conformations need further refinement. It is necessary to investigate 
carefully their conformational behavior and to analyze the potential energy surface for other 
possible low-energy conformations. A valuable tool for this purpose are molecular dynamics 
simulations.The relaxed g e o m e t j  obtained as result of a minimization procedure can be used 
as starting point for molecular dynamics simulations 

4.4.3 The Use of Molecular Dynamics Simulations in Model Refinement 

As mentioned above the refinement of models derived from homology modeling and 
alignment studies is a must. Loop and side chain conformations of the derived protein model 
represent only one possible conformation and the minimum structure found by the 
minimization algorithms represents only one local minimum. In order to detect the 
energetically most favored 3D structure of a system a modified strategy is needed for searching 
the conformational space more thoroughly. 

Molecular dynamics simulations offer an effective means to solve this problem, especially 
for molecules containing hundreds of rotatable bonds. A molecular dynamics simulation is 
performed by integrating the classical equations of motion over a period of time for the 
molecular system. The resulting trajectory for the molecule can be used to compute the 
average and time-dependent properties of the system. The theory of the molecular dynamics 
method and its application in conformational searching of small molecules have been 
discussed and illustrated on some impressive examples in section 2.3.3. Here, we will focus on 
the utilization of this technique in the refinement of 3D macromolecular structures. 

The use of molecular dynamics has made an essential contribution to the understanding 
of dynamic processes in proteins at the atomic level. However, there are some basic limitations 
and problems arising with increasing size and associated with the immense number of degrees 
of freedom of large molecular systems. 

Although computer resources have become sufficiently powerful to enable handling of 
quite large systems (up to SOOOO atoms) it is still necessary to introduce some modifications 
in order to reduce the demanded computation time [5 ] .  A very useful side effect of the 
simplifications employed is the fact that they open the possibility of longer time periods to be 
chosen for the sampling of the dynamic simulation.This offers a way of observing the dynamic 
behavior of large molecular systems more completely. 

Before discussing the various possibilities in detail it must be mentioned again that each 
modification and reduction of the number of degrees of freedom can cause a lack of accuracy 
and it has to be checked carefully whether or not a respective simplification can be tolerated. 

One basic and very common simplified procedure is the use of united atom potential energy 
functions.The underlying theory of this methodology has been described earlier. Most of the 
force fields for protein modeling,such as AMBER [l, 21 and GROMOS [3] are based on these 
algorithms Omission of the non-polar hydrogens in a united-atom force field does significantly 



112 4 Introduction to Protein Modeling 

reduce the number of particles in a large biomolecule. A further possibility to reduce the 
demand for computer time is provided by application of the SHAKE [8] algorithm. In the 
SHAKE procedure additional forces are assigned to the atoms, aiming to keep bond lengths 
fixed at equilibrium values. This is very useful for several reasons. Above all, bond stretching 
energy terms must not be calculated for the frozen bonds. The magnitude of the integration 
step depends on the fastest occurring vibrations in a molecule. This is usually the high 
frequency vibration of the C-H bond stretching. This period is of the order of seconds; 
therefore the integration step should be chosen to be seconds (1 femtosecond).Applying 
the SHAKE algorithm to this type of C-H bond allows a larger integration step with the effect 
of reducing the necessary computational expense, and thereby offering the chance of 
simulating the system over a longer time period. The definition of cut-off radii, leading to a 
neglect of non-bonded interactions beyond the defined distance, also yields the same effect. 

In addition, the application of a well-balanced computational protocol may save computer 
time. In this respect several parts of a protein can be kept rigid and the molecular dynamics 
simulations then carried out only for flexible parts such as loops or side chains, while well- 
defined secondary structures like a-helices orb-strands in the core of the protein are not taken 
into account. The availability of NMR data can also be a reason to fix atoms, side chains or 
parts of the protein at their initial coordinates in order to impede their movement away from 
the experimentally derived positions. Again, a warning must be given; restraining parts of 
flexible molecules leads to a reduction in the number of degrees of freedom. Without any 
doubt a more comprehensive exploration of the conformational space, and hence better 
results, are achieved when no positional restraints are applied on parts of the protein structure. 

All mentioned methods enhance the efficiency of the molecular dynamics simulations; 
nevertheless, for some problems the feasible time scale is still too short. If for example the 
binding of a ligand to an enzyme or receptor protein-as well as the thereby triggered 
conformational change-is to be studied, the time required for this process can be in the order 
of picoseconds or even nanoseconds [9]. The same time-scale would be indispensable for a 
simulation of protein folding. Both types of problems are still out of reach. 

Several modifications of high-temperature molecular dynamics simulations have been 
successfully applied in conformational analysis of peptides and in the refinement of protein 
models. In this respect two important methods, the high-temperature annealed molecular 
dynamics simulation [lo] and simulated annealing [ll] have been discussed in section 2.3.3. 
They are valuable tools and widely employed also for investigating peptides and proteins 

A sensitive point in all molecular dynamics protocols is the choice of the suitable 
simulation temperature. Usually the simulation will be performed in the range between 300 
K and 400 K. On one hand it must be sufficiently high to prevent the system from getting stuck 
in one particular region of the conformational space, but on the other hand should not be too 
high, as this could result in distorted high-energy conformations, even after minimization [16]. 
Another commonly observed problem in the application of high-temperature molecular 
dynamics simulations of proteins and peptides is the appearance of trans-cis interconversions 
of peptide bonds. These artefacts can be avoided by using lower temperatures at the expense 
of conformational search efficiency, or by introducing torsional restraints onto the peptide 
bonds 

[ 12-16]. 
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4.4.4 lkeatment of Solvated Systems 

The conformational flexibility of a protein especially at the surface and in loop regions is 
strongly affected by the surrounding environment. The non-existence of neighboring atoms 
at the surface of the protein leading in effect to in vacuo conditions for these regions of the 
protein and the problems associated therewith have already been mentioned when discussing 
the minimization process. Of course the accuracy of molecular dynamics simulations increases 
by including explicit solvent. Unfortunately, this is still an unresolved problem. One possibility 
to mimic the effect of solvent and to account for the boundary phenomena is the use of 
distance-dependent dielectric constants. 

To enwrap the molecule with a sphere of solvent molecules can improve the accuracy of 
the molecular dynamics simulations because by doing this at least part of the effect of solvation 
are imitated. At this point it is important to note that there is a decisive difference between 
simple solvent water and structural water. Structural water is very important for the 
functionality of the protein and can mainly influence its conformation, even in the core. 
Therefore structural water must always be included explicitly in the calculations. 

The next level of improvement is the embedding of the protein in a complete solvent box 
containing thousands of water molecules in order to simulate a natural solvent environment. 
This is not always possible because the required computational effort is immense but has been 
applied successfully in a recent molecular dynamics study of a complete enzyme [17]. A 
comprehensive review on molecular dynamics simulations of proteins in different 
environments is given in [18]. 

In the majority of cases the use of realistic water models with thousands of molecules is 
too time-consuming. For this reason specific methods using a simplified representation of 
solvent molecules have been developed [18]. Solvent molecules for example can be substi- 
tuted by neutral spherical atoms. This type of procedure significantly reduces the 
computational effort. A detailed discussion of all procedures used in this context is beyond 
the scope of this book; nevertheless, it is important to consider that inclusion of the solvent 
environment at any level of complexity into the calculations is an important means for 
improving the accuracy and the reliability of molecular dynamics simulations, especially for 
large biomolecular systems. 

4.4.5 Ligand-Binding Site Complexes 

Generated protein models are often used for studying ligand-protein interactions. Small 
molecules which are mostly new drugs of pharmaceutical interest can be placed into the active 
site of the protein. As the natural binding process is not static, molecular dynamics simulations 
are necessary to simulate the dynamical properties of the ligand-protein complex. Valuable 
information like hydrogen bonding pattern, rms deviations and positional fluctuations can be 
deduced from the simulation to discriminate between binding and non-binding ligands 

Several prerequisites must be fulfilled for a meaningful molecular dynamics simulation of 
ligand-protein complexes. The initial coordinates both of the ligand and the protein must 
represent an energetically reasonable conformation. The simulated system must include all 
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regions of interest and must be large enough to sample all forces contributing to the total 
energy of the system correctly. Truncated active site complexes can only be studied if all 
possible ligand-protein interactions can be reflected during the molecular dynamics 
simulation. Last, but not least, the simulation time must be sufficiently long in order to 
generate a representative ensemble of data. 

In spite of the known limitations, molecular dynamics simulations have also become a 
powerful tool for investigating dynamical processes of biopolymers such as peptides, proteins, 
enzymes, receptors and membranes. The combination of experimental results like NMR 
measurements or crystal data with theoretical methods can provide a route for gaining a 
detailed 3D atomic picture of the molecular system and to study hitherto experimentally 
inaccessible processes in proteins. 
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4.5 Validation of Protein Models 

Once a protein model has been built using knowledge-based methods and subsequently 
optimized by molecular mechanics or molecular dynamics, it is important to assess its quality 
and reliability. The question arises how protein models can be tested for correctness and 
accuracy. This is a very difficult business, because the quality of a homology-based protein 
model depends on a huge number of properties on different levels of structural organization. 
This is summarized in Fig. 1. 

Quality of Protein Models 
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Figure 1. Quality questionnaire for protein models. 
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4.5.1 Stereochemical Accuracy 

The quality of the 3D structure of a protein model depends strongly on the accuracy of the used 
template structure, i.e. the quality of the crystal structure [l]. Of course, the modeled protein 
cannot show higher accuracy than the crystal structure which has been used as a template. 
Protein structures derived from X-ray diffraction can contain errors, both experimental and in 
the interpretation of the results [1-3].The general measures for the quality of crystal structures 
are the resolution and the R-factor.The better the resolution of the protein crystal the greater 
the number of independent experimental observations derived from the diffraction data and 
hence the greater the accuracy of the protein structure [4].The resolution of protein structures 
contained in the Brookhaven database is usually found to be in the range of 1-4 8,.The R-factor 
is a measure for the agreement between the derived 3D structure of a protein crystal (the 3D 
structure which fits the electron density map best) and the “real”crysta1 structure.The R-factor 
can be determined by comparing the experimentally obtained amplitudes of the X-ray 
reflections and the amplitudes calculated from the protein structure which shows the best fit 
to the electron density map (for a detailed discussion about the accuracy of protein X-ray 
crystallography the reader is refemed to the literature [S]).The better the agreement between 
observed and calculated amplitudes (resulting in a low R-factor), the better the agreement 
between the derived and the real crystal structure.The R-factor can be artificially reduced in a 
number of ways and therefore sometimes might be misleading [2]. It is commonly accepted to 
consider structures with a resolution of 2.0 8, or better to be reliable. If in addition the R-factor 
is below 20% it can be safely assumed that the protein structure is essentially correct. 

To verify the stereochemical quality of a model-built structure, the accuracy of parameters 
such as bond lengths, bond angles, torsion angles and correctness of the amino acid chirality, 
must be proved. It has been observed in 3D structures of proteins that mainly the bond lengths 
and angles cluster around the “ideal values”. Thus, the mean values detected in crystal 
structures can be regarded as good indicators of the stereochemical quality and must be 
compared with the actual values in the generated protein model (see Table 1) [6] in order to 
discover stereochemical irregularities which would disclose a bad structure. 

Since a manual inspection of all stereochemical parameters of a protein will be tedious and 
time-consuming, programs have been developed which automatically check all stereochemical 
properties. Examples are PROCHECK [7] or WHATCHECK [8], both of which are available 
free of charge (see http://www.biotech.embl-heidelberg.de). 

One important indicator of stereochemical quality is the distribution of the main chain 
torsion angles @ and $I. The distribution of all I#J and I) torsion angles in a protein can be 
examined in a Ramachandran plot. As described in section 4.2.1, the favored and unfavored 
regions of the classical Ramachandran plot have been determined by studying the 
conformational behavior of isolated dipeptides. Very conveniently the @-I) torsion angles 
observed in hundreds of well-refined protein structures generally lie within the same regions 
as determined for the isolated dipeptides. It is one of the remarkable properties of repetitive 
secondary structures in proteins that the observed @,$I-values are very close to the optimal 
dipeptide conformations, as calculated by Ramachandran. Also the Cp and I) torsion angles of 
non-repetitive structures, like loops or turns, are found within the favored regions of the 
Ramachandran plot, but are more widely distributed over these areas. 
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Table 1. Stereochemical parameters derived ftom high-resolution protein structures after Moms et al. [6] 

Stereochemical parameters Mean Value Standard deviation 

in most favored regions of 
Ramachandran plots > 90% - 

x1 torsion angle gauche minus 
trans 
gauche plus 

64.1" 
183.6' 
-66.7" 

15.7" 
16.8" 
15.0" 

x2 torsion angle 177.4' 18.5" 

Proline r$ torsion angle 45.4" 11.2" 

a-Helix Q1 torsion angle -65.3" 11.9" 

a-Helix torsion angle -39.4" 11.3" 

Disulfide bond separation 2.0 A 0.1 A 
o Torsion angle 180.0" 5.8" 

c" tetrahedral distortion: z torsion angle 
(virtual torsion angle Ca-N-C-Cfl) 33.9" 3.5" 

As an example, the Ramachandran plot of a protein crystal structure (cephalosporinase of 
enterobacter cloacae) is shown in Fig.2. The torsion angles of all residues, except those for 
proline residues and those at the chain termini, are presented. Glycine residues are separately 
identified by triangles (as those are not restricted to any particular region of the plot). The 
shading represents the different major regions of the plot: the darker the region the more 
favored is the corresponding @,q combination. The white region is the disallowed region for 
normal amino acids and any residue found in this region must be carefully inspected. Usually 
amino acids lying in less-favored regions are especially labelled (in Fig.2 shown in red) with 
residue name and residue number for easy indentification and inspection. 

Unfavorable stereochemistry, becoming visible by disallowed @,$J torsion angles, seems to 
occur in natural proteins exclusively if the special geometry is required for function or stability, 
for example when residues in the core of the protein are involved in hydrogen bonds or salt- 
bridges. Residues which are allowed to lie outside the major regions of the Ramachandran plot 
are proline and glycine. Because glycine and proline have-due to their different 
stereochemistry-other favored and unfavored regions, it is more convenient to mark these 
amino acid types particularly or to exclude them from the normal Ramachandran plot. 
Therefore, separate Ramachandran plots for all glycines, all prolines, and all other amino acids 
are very often created. The percentage of residues lying in the favored regions of a 
Ramachandran plot is one of the best guides to check stereochemical quality of a protein 
model. Ideally, one would hope to have more than 90% of the residues in the allowed regions 

The same check as described above for main chain torsion angles can be applied in case of 
the side chain torsion angles xi. The x1 torsion angles, observed in well-refined structures of 
proteins [6], are generally close to one of the three possible staggered conformations, the most 

171. 
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Figure 2. Ramachandran plot (PROCHECK). 

favored conformation being the one where the bulkiest groups are most remote (see Table 1: 
gauche plus, trans, and gauche minus torsion angles for x,). For the x2 torsion angles a 
preference for the trans conformation has been found. A similar distribution for the side chain 
torsion angles in protein crystal structures has been detected by Ponder and Richards [9].The 
distribution of the side chain torsion angles of all amino acid types in protein models can be 
inspected in more detail in graphs, where usually side chain torsion anglesx, are plotted versus 
x2. Examples for this kind of graph are shown in Fig.3 for a cephalosporinase of Enterobacter 
cloacae. Every single plot shows the x,-x, angle distribution for a particular amino acid type. 
The green shading on each plot indicates the favorable regions which have been determined 
from a data set of well-resolved protein crystal structures [7]. Black marks indicate the 
corresponding values found in the cephalosporinase; the red marks denote outliers. 

Some of the stereochemical parameters of protein structure have been found to be 
constant in all known proteins. Of course, these properties are a very sensitive measure for the 
quality of protein models and must be carefully checked for consistency. 
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Chi-1 chi-1 

Chi-1 chi-1 

Figure 3. ,q-x, Plot for different amino acids (PROCHECK). 

This list contains: 

1. Thepeptide bondplanarity: this property is usually measured by calculating the mean 
value and the standard deviation of all w angles in the investigated protein. The 
smaller the standard deviation, the tighter the clustering around the normal value of 
180°, which represents the planar trans configuration (see also Table 1 for the 
distribution of w angles in crystal structures). All cis peptide bonds are also separately 
listed and must be inspected. Cis peptide bonds occur in proteins at about 5% of the 
bonds that precede proline residues. Regarding all peptide bonds, which do not 
involve proline residues, the cis configuration is observed less than 0.05% [lo, 111. 

2. The chirality ofthe Cn-atoms: One of the general principles of protein structure is the 
preference for one handedness over the other (e.g. the preference for the right-handed 
conformation of an a-helix).?he basis for this is the presence of an asymmetric center 
at the Ca-atom which in all naturally occurring amino acids is L-configurated.A protein 
model must therefore be examined for correct chira1ities.A parameter which provides 
a measure for the correctness of chirality is the 5 torsion angle.ms is a virtual torsion 
angle which is not defined by any actual bond in a protein. Rather this torsion angle is 
determined by the Ca-N-cI-@ atoms of each amino acid residue. The numerid 
values of the 5 torsion angle should reside between 23" and 45". If the value is negative, 
this fact signifies the appearance of an incorrect D-aminO acid [7]. 
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3. Main chain bond lengths and angles: the distribution of each of the different main 
chain bond lengths and angles in a protein is compared with the distribution 
observed in well-resolved crystal structures. Usually deviations more than 0.05 8, for 
bond lengths and 10” for bond angles are regarded as distorted geometries which 
have to be inspected in detail [3]. 

Aromatic ring systems (Phe,’Qr,Trp, His) and sp*-hybridized end groups (Arg, Asn, Asp, 
Glu, Gln) must be checked for planarity.The deviation of these parameters, i.e. the distorted 
geometry, is often the result of bad interatomic contacts. Removing the steric constraints and 
subsequently optimizing the model in most cases yields a relaxed structure with ideal 
geometrical parameters. 

4.5.2 Packing Quality 

Specific packing interactions within the interior are assumed to play an important role for the 
structural specifity of proteins [12-141. It has been observed that globular proteins are tightly 
packed with packing densities comparable with those found in crystals of small organic 
molecules [12]. The interior of globular proteins contains side chains that fit together with 
striking complementarity, like pieces of a 3D jigsaw puzzle. The high packing densities 
observed in proteins are the consequence of the fact, that segments of secondary structure are 
packed together closely; helix against helix, helix against strands of a &sheet, and strands 
against strands of different 8-sheets [14-171. The interior packing of globular proteins is a 
major contribution to the stability of the overall conformation.Therefore, the packing quality 
of a protein model can be used to estimate its reliability. It can be judged using a variety of 
methods, which will be described in detail in this section. 

In a first step, it must be verified that the generated and refined protein model includes no 
bad van der Waals contacts.Therefore, all interatomic distances must be examined for residing 
in ranges which have been observed in well-refined crystal structures Several procedures exist 
for this distance check. In the simplest, all interatomic distances are measured and those with 
distances below a determined threshold are defined as bad contacts which have to be inspected 
in detail (for example, 2.6 8, is used as threshold in the PROCHECK program [7]). A more 
accurate judgement of interatomic distances is performed by programs like WHATCHECK 
[8]. For all well-refined protein crystal structures stored in the Brookhaven database all 
interatomic distances shorter than the sum of their van der Waals radii +1.0 8, are determined 
and stored. The distance that subdivides the collected values such that 5% of all observed 
distances are shorter and 95% are longer than this measure, is defined as “short normal 
distance”. As there are 163 different atom types in the naturally occuring amino acids 163 x 
163 “short normal distances” are defined. All distances occuring in the protein model which 
are more than 0.25 A shorter than the short normal distances are reported by the program. 

The next step involves the examination of the secondary structural elements of the protein 
model. As we have already mentioned in section 4.3.2, the secondary structural elements are 
the most conserved regions in highly homologous proteins. Thus, it must be proven whether 
the secondary structural elements observed in the template protein also can be detected in 
the protein model, i.e. whether the secondary structure has been maintained during the 
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building and optimization process. Programs which can be applied for this purpose are the 
DSSP [18] or the STRIDE program [19} (see section 4.3.2). These programs allow a more 
sophisticated assignment of secondary structure than the manual inspection of a-helices and 
B-sheets. 

A variety of methods exist, which use the huge amount of information derived from 
protein crystal structures to estimate the packing quality of model built structures [20-231. 
From the assumption that atom-atom interactions are the primary determinant of protein 
conformation, Vriend and Sander have developed a program that checks the packing quality 
of a protein model by calculating a so-called “contact quality index” [20]. This index is a 
measure of the agreement between the distributions of atoms around an amino acid side chain 
in the protein model and equivalent distributions observed in well-resolved protein structures. 
For that reason a database has been generated which contains a contact probability 
distribution for all amino acid side chains. This magnitude describes the probability for a 
certain atom type to occur in a particular region around the side chain. These probability 
values are used to check the contact quality in the protein model. The better the agreement 
between the distributions in the model and in the crystal structures the higher the contact 
quality index, and the more favorable the residue packing. 

The distribution of polar and non-polar residues between the interior and the surface of 
proteins has been found to be a general principle of the architecture of globular proteins. At 
a simple level, a globular protein can be considered to consist of a hydrophobic interior 
surrounded by a hydrophilic external surface which interacts with the solvent molecules.?hese 
building principles have been identified in most 3D structures of globular proteins and can be 
summarized as follows: 

1. The interior of globular proteins is densely packed without large empty space and is 
generally hydrophobic. Non-polar side chains predominate in the protein interior; 
Val, Leu, Ile, Phe, Ala, and Gly residues comprise 63% of the interior amino acids 
[lo]. Ionized pairs of acidic and basic groups hardly occur in the interior,even though 
such pairs might be expected to have no net charge due to the formation of salt- 
bridges. 

2. Charged and polar groups are located on the surface of globular proteins accessible 
to the solvent. On average, Asp, Glu, Lys, and Arg residues comprise 27% of the 
protein surface and only 4% of the interior residues [lo]. (Integral membrane 
proteins differ from globular proteins primarily in having extremely non-polar 
surfaces which are in contact with the hydrophobic membrane core.) 

These features make a major contribution to the stability of folded proteins [14,24,25]. 
The underlying principle for this distribution is the hydrophobic effect, i.e. the removal of 
hydrophobic residues from contact with water. It has been observed that the free energies, 
associated with the transfer from water to organic solvent, of polar, neutral and non-polar 
residues are correlated with the extent to which they occur in the interior and exterior of 
proteins [26]. Therefore, the distribution of hydrophobic and hydrophilic residues in proteins, 
can be used to estimate the reliability of protein models [26-291. Several programs have been 
developed which use this feature as a measure of the packing quality [8,28,29] of a protein 
model. 
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It has been also observed that the hydrophobicity of an amino acid (defined as free energy 
of transfer from water to organic solvent) is related linearly to its surface area, i.e. the more 
hydrophobic the residue, the more completely buried it will be [30]. The buried surface area 
of a particular amino acid is herein defined as the difference between the solvent-accessible 
surface of the residue in an extented polypeptide chain (usually defined as the “standard state” 
in the tri-peptide Gly-XXX-Gly) and the solvent-accessible surface of the residue in the folded 
protein. It has been demonstrated that the buried surface area, i.e. the area which is lost when 
a residue is transferred from the defined “standard state” to a folded protein, is proportional 
to its hydrophobicity. 

Additionally, the total surface buried within globular proteins has been found to correlate 
with their molecular weights, i.e. upon folding, globular proteins bury a constant fraction of 
their available surface [26]. Several programs have been developed which use the general 
properties of amino acid surfaces in order to provide an estimation of the packing quality of 
globular proteins [8,28,30]. For a detailed review of the topic of molecular surfaces and their 
contributions to protein stability the reader is referred to the literature [14,31]. 

Although the residues that form the protein interior are usually non-polar or neutral, there 
are rare cases of buried polar residues. It has been observed in many investigations of protein 
crystal structures that virtually all polar groups in the protein interior are paired in hydrogen 
bonds Many of these polar groups form hydrogen bonds within their own secondary structure 
(i.e. a-helices and B-sheets). Others are involved in binding co-factors, metal ions or are 
located in the active site of proteins. Buried ionizable groups, which rarely occur inside 
globular proteins, are usually always involved in salt-bridges. Sometimes the positive and 
negative charges are bridged by water molecules. Due to this observation, it is necessary to 
check the protein model whether all polar buried residues are paired in hydrogen bonds and 
whether all charged residues are involved in salt-bridges. Salt-bridges and hydrogen bonds are 
usually identified on the basis of their interatomic distances [32]. 

4.5.3 Folding Reliability 

Proteins with homologous amino acid sequences generally have similar folds. Therefore the 
overall 3D structure of the protein model and its template should be similar. Especially in the 
structurally conserved regions, the homologous proteins must possess the same conformation. 
In cases where the originally constructed protein model contains large regions of steric strain 
(due to the incorrect architecture), the protein may undergo correspondingly large movements 
in its 3D structure during the refinement process. The resulting protein conformation is not 
reliable, because it shows only little agreement with the 3D structure of the template protein. 
When checking protein conformations, one normally measures the similarity in 3D structure 
by the rms deviations of the Ca-atomic or the backbone coordinates after optimal rigid body 
superposition of the two structures (for details, see [33]) .  A very large rms deviation means 
the two structures are dissimilar; a value of zero means that they are identical in conformation. 
Homologous proteins generally show low rms deviations for their C-atoms, but no general 
value exists which can be used as an indicator whether two protein structures are similar or 
dissimilar. Chothia and Lesk [34] have performed an investigation on structural similarity of 
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homologous proteins. The overall extent of the structural divergence of two homologous 
proteins was measured by optimally superposing the common conserved regions (the so-called 
common core) and calculating the rms difference in the positions of their backbone atoms 
For a test set of 32 homologous pairs of proteins they have found rms differences for the 
common cores which vary between 0.62 and 2.31 8, (see Fig.4). 

When the overall structural similarity of the protein model and the template protein have 
been evaluated, the question arises whether the generated conformation for an unknown 
protein is the correct native fold. How can one prove whether the constructed model is correct 
in its overall conformation? In the search for criteria that discriminate between the correct 
conformation and incorrectly folded models Novotny et al. have performed an interesting 
investigation [35].They have studied two structurally dissimilar but identically large proteins, 
hemerythrin (1HMQ) and the variable domain of mouse immunoglobulin rr-chain (1MCP-L). 
The two proteins have been modified by placing the amino acid sequence of one protein on 
to the backbone structure of the other and vice versa, in order to obtain incorrect models.The 
model structures were optimized to remove steric overlaps of side chains. After minimization, 
the total energies of native folds and incorrect protein models were approximately the same. 
The authors concluded that the energies obtained from standard force field calculations 
cannot be used to distinguish between correct and incorrect protein conformations. On the 
other hand, the investigation has shown that the packing criteria of the incorrect models were 
different from those normally found in native proteins. The incorrect structures clearly 
violated the general principles of close packing, hydrogen bonding, minimum exposed non- 
polar surface area, and solvent accessibility of charged groups Examination of the interior 
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showed that the packing of side chains at the secondary structure interfaces also differed from 
the characteristics observed in natural proteins (e.g. side chain ridges and grooves spirally 
wound on a-helices, predominantly flat surfaces of p-sheets). This analysis has clearly shown 
that the validity of model-built structures can only be assessed by a careful inspection of the 
structural features of a protein model. 

For that reason several methods have been developed which try to distinguish between 
correct and incorrect folded protein structures [36-44]. One of these approaches is the 3D- 
Profiles method [36-391, which is based on the general principle that the 3D structure of a 
protein must be compatible with its own amino acid sequence. It measures this compatibility 
by reducing the 3D structure of the protein model to a simplified one-dimensional (1D) 
representation, the so-called environment string. The environment string has the same length 
as the corresponding amino acid sequence. This 1D string then can be compared with the 
respective amino acid sequence, which is also a 1D parameter. 

In a first step the 3D structure of the protein model must be converted into a 1D parameter. 
For that reason the program determines several features of the environment of each residue: 
the area of the side chain that is buried in the protein; the fraction of the side chain area that 
is exposed to polar regions; and the secondary structure to which the particular amino acid 
belongs. Based on these characteristics each residue position is categorized into an 
environment c1ass.A total of 18 distinct environment classes are implemented in the program 
[38]. In this manner the 3D structure is translated into a 1D string which represents the 
environment class of each residues in the protein model. 

Although the environment string is lD, it cannot be aligned with an amino acid sequence 
without some measure of compatibility for each of the distinct environment classes with each 
of the 20 naturally occumng amino acids For that reason the program includes a compatibility 
scoring matrix (comparable with the scoring matrices described in section 4.3.1), which has been 
derived from sets of known protein structures [39]. Applying this compatibility matrix, the 
environment string and the amino acid sequence are aligned and a so-called 3D-1D score is 
obtained for the particular alignment. For obvious reasons it is more convenient to calculate 
local 3D-1D scores for small and medium-sized regions of about 5-30 residues length, than a 
global score for the complete alignment. The local scores are then plotted against residue 
positions to reveal local regions of relatively high or low compatibility between the 3D structure 
and the amino acid sequence [38]. Regions showing unusually low scores are likely to be regions 
where the protein conformation is incorrect, or where structural refinement is necessary. 

The folding reliability can be also tested using knowledge-based force field methods 
[4244]. These methods are based on the compilation of potentials of mean forces from a 
database of known 3D protein structures. The basic idea of these approaches is that 
atom-atom interactions in proteins are the primary determinant of proper protein folding. 

A program named PROSA-I1 has been developed, which uses the mean force potentials 
to calculate the total energy of amino acid sequences in a number of different folds [42].The 
calculated total energy of a particular protein conformation is a qualitative criterion for the 
confidence or quality of a predicted protein model.This is in contrast to investigations where 
the total energies, derived from standard molecular mechanics force fields, have been used to 
estimate the reliability of different protein conformations [35]. To test the predictivity of 
PROSA-I1 different native and incorrectly modified protein conformations have been used 
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as a test set. It has been shown that for a very large number of proteins the derived total energy 
of the correctly folded protein is much lower than for any alternative (incorrect) protein 
conformation. Therefore, the program can be successfully applied to recognize erroneous 
protein folds or to detect faulty parts of structures in protein models. 
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4.6 Properties of Proteins 

4.6.1 Electrostatic Potential 

As we have already mentioned electrostatic interactions are among the most important factors 
in defining the conformation of a molecule in aqueous solution and in determining the 
energetics of interaction between two approaching molecules. The protein itself, the solvent, 
cofactors and prosthetic groups are nearly always charged or dipolar, and so the range of 
effects which are dependent in one way or another from electrostatics is broad [14. Contrary 
to dispersion forces the electrostatic interactions are effective over relatively large distances. 
Due to their strong influence on structure and function of macromolecules in aqueous 
solution, it is absolutely necessary to consider explicitly the electrostatic term in any 
theoretical study on proteins [l]. For this purpose theoretical models are needed, which are 
able to describe correctly the electrostatic effects in proteins. 

The interaction between any two charges is described by Coulomb’s law (see section 2.2.1) 
which, in its simplest form is only valid for two point charges in vacuum. If the charges are 
immersed in any other matter, then particles of the surrounding matter are polarized by the 
presence of the charges, and the induced dipoles of the particles interact with the original point 
charges. Thus, the total resolved force on each of the point charges is altered, and the 
electrostatic interaction is decreased by the influence of the dielectric medium. 

In classical electrostatic approaches, the materials are considered to be homogeneous 
dielectric media, which can be polarized by charges and dipoles. A dielectric constant is used 
as a macroscopic measure of the polarizability of a medium rather than explicitly accounting 
for the polarization of each atom.The portrayed procedure is called a continuum model. 

It must be borne in mind that this view is simplistic and that the concept of dielectric 
constant-which constitutes a genuine macroscopic property-is valid only for homogeneous 
media. Less homogeneous environments must be treated explicitly. Special problems arise at 
the boundaries between regions of very different dielectric properties [ S ] .  The surface of a 
protein represents such a case, because it divides the molecule into two regions which differ 
dramatically in composition. The molecular interior possesses a very low dielectric constant 
and includes a particular number of charges (most of them near the surface). Outside the 
protein there is a polar aqueous medium, which normally contains a distinct quantity of ions. 
For two point charges separated by a specific distance in a macromolecule in aqueous solution, 
the electrostatic interaction energy depends on the shape of the macromolecule and the exact 
positions of the charges (for a detailed description of this topic, see [ S ,  7, 81. When using 
Coulomb’s law for the calculation of electrostatic interactions, this fact will not be taken into 
consideration. 

The multiple interactions occurring among the point charges and dipoles of the protein and 
the solvent are mutually dependent and turn the simple relationship of Coulomb’s law into a 
very complex state. The electrostatic interaction among molecules in a homogeneous 
environment can be averaged and expressed, as we have seen above, with the help of a simple 
dielectric constant. This concept is not valid for the inhomogeneous environment of proteins. 
Their electrostatic properties involve interactions among the multiple charges and dipoles of 
the proteins, and between these and the surrounding solvent and any ions that it contains. In 
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this situation interactions between particular charges and dipoles must be calculated 
individually.This is impractical with the many atoms of the protein and solvent. 

The major problem studying electrostatic effects in proteins is, as we have seen, the 
treatment of polarization effects. In many electrostatic problems, real materials are treated as 
simple continua, and the effects of the underlying microscopic structure of the material is only 
incorporated into the macroscopic dielectric constant. At the microscopic level, the shielding 
of the charges arises from the polarizability of the individual atoms.Thus, an approach which 
discards the use of a dielectric constant and considers the individual atoms of the system and 
their mutual polarizabilities would be the best way to solve the problem. Of course, the exact 
quantum mechanical treatment would be a suitable solution, but this at present-due to 
limitations of computer power-is not practicable for systems of the size of proteins. 
Therefore, empirical approaches are generally employed for the exact calculation of 
electrostatic interactions within proteins [6-121. 

Most of these approaches make use of the point charge approximation, i.e. the charge 
distribution of a protein is described by locating point charges at the atom centers. Several 
methods have been developed to obtain corresponding partial charges [13-151. The 
procedures used are comparable with those described for the small molecules (see section 
2.4.1.1). Because the complete protein is too large for a quantum mechanical charge 
calculation, the charges have been calculated for smaller fragments, like individual amino 
acids. The so-derived point charges for individual atoms of particular amino acids are then 
stored in point charge libraries from which they can be retrieved and assigned to each atom 
in the protein of interest.The often-used AMBER charges, for example, have been determined 
by scaling point charges to fit the ab initio-derived molecular electrostatic potential [ 141. In 
the case of proteins, the ionization state has also to be taken into consideration. Therefore, 
formal charges are assigned to those amino acid residues that are expected to exist in charged 
state under physiological conditions. These charges are placed on one or two of the atoms of 
a residue. For example, an aspartic acid residue obtains the formal charge -1,which is assumed 
to be distributed over the two carboxylic oxygen atoms. 

In one of the first approaches for a more reliable consideration of electrostatic interaction 
within proteins, the use of a distance-dependent dielectric constant was introduced. The 
mathematical equation used for the respective function often has the form ~ ( r )  = r, where r is 
the distance between the atoms of interest [16]. The distance-dependent dielectric constant is 
based on plausibility rather than on any experimentally measurable effect. It is assumed that 
at distances of the order of atomic dimensions the dielectric constant between two charges is 
that of vacuum conditions, and that at much larger separations the dielectric constant of water 
E = 80 holds true. For intermediate distances it is assumed that the dielectric varies with 
distance in an appropriate way. Distance-dependent dielectric constants can partially mimic 
the solvent-screening effects on electrostatic energies and are sufficient to stabilize 
macromolecules in molecular dynamics simulations. However, they cannot correctly describe 
properties like the electrostatic forces and the electrostatic potential. 

A solution of the electrostatic problem may be provided by the use of the Poisson-Boltz- 
mann equation.This equation belongs to the class of differential equations that are typical for 
the description of boundary phenomena. The Poisson-Boltzmann equation provides a 
rigorous approach for the calculation of the electrostatic effects of proteins, including the 



4.6 Properties of Proteins 129 

electrostatic potential. Several procedures have been developed which make use of the 
Poisson-Boltzmann equation. WO commercially available programs are DelPhi [17,18] and 
UHBD [lo, 191. 

In the framework of the Poisson-Boltzman approach the macromolecular system is 
considered to consist of two separate dielectric regions. The solvent-accessible surface of the 
protein defines the boundary between these two regionsThe interior of this surface is defined 
as the solute and the exterior is defined as the solvent. Water molecules located in the interior 
of the protein are usually treated as part of the solute rather than of the solvent.The protein 
is described in terms of its 3D structure with the location of point charges on the atom centers. 
A low dielectric constant is used for all points inside the solvent-accessible surface. Common 
values for this parameter range from 2 to 5.The Poisson-Boltzmann equation is also able to 
consider the electrostacic effects associated with ions embedded in the solvent. Thus the 
physiological conditions (0.145 moll-') can be incorporated in the calculation. 

Use of the Poisson-Boltzmann approach yields the total electrostatic potential of a charged 
molecule in a solvent according to the following simplified equation: 

The solvent molecule responds to the electrostatic field generated by each point charge in 
the molecule. This response, which consists of two electrostatic effects, the dipolar orientation 
and the electronic polarization, in turn sets up an electrostatic field at the positions of the 
original point charges, which is called the reaction field [20].The magnitude of the reaction field 
is determined by the point charge, its distance from the molecular surface, the shape of the 
surface and the dielectric constants of molecule interior and solvent. The reaction field exerts 
a force on all point charges in the system, including the source charge itself. The total 
electrostatic potential $? is the sum of the interaction of each point charge with its self- 
reaction field @?', the reaction field induced by other point charges $", the direct coulombic 
interaction with other point charges $icouI, and the intrinsic electrostatic potential generated 
by each point charge @iom (for a detailed description of this topic, see [5,8,21]). 

The Poisson-Boltzmann equation is actually a reliable model for the electrostatic 
interaction in proteins, because it considers the effect of polarization as well as the ionic 
strength. Unfortunately, it is a very complex differential equation and can be solved 
analytically only for small regular systems. The alternative to the analytical solution is the use 
of numerical techniques to find an approximate solution even for large protein systems. For 
the numerical solution the programs use the so-called finite difference method (FDPB). 
Herein, the protein is mapped onto a 3D cubic grid. The calculated values for the charge 
density and the electrostatic potential are located on each point of the cubic grid. The 
numerical solution yields values which are accurate to within 5% in comparison with analytical 
solutions (which are available for small systems). The most critical regions-and thus the 
regions of largest errors-are usually those located near charged residues on the protein 
surface. Several procedures have been recently developed to avoid these errors [18]. 

The Poisson-Boltzmann method not only offers the possibility to calculate the electrostatic 
potential of a protein. Additionally, parameters such as the total electrostatic energy of the 
system, the solvation energy, and the reaction-field energy of proteins can be calculated. 
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Nevertheless, the most important parameter is the electrostatic potential, which can be 
displayed in various ways (as described for small molecules in section 2.4.1.2). 

Electrostatic potentials have been shown to play an important role in molecular 
recognition and binding. For example, the electrostatic potential of the superoxide dismutase 
enzyme has been shown to be responsible for enhanced external diffusion rates of the 
substrates to the active site [22].The investigation of the electrostatic potentials of two trypsin 
enzymes, rat and cow trypsin, has yielded interesting results [23].These two enzymes, although 
having the same catalytic mechanism, differ in net charge by 12.5 units. The calculation of the 
electrostatic potentials, using the Poisson-Boltzmann approach, revealed that both active sites 
are effectively shielded from the charges located on the surface, resulting in near-identical 
electrostatic potentials inside the active sites. 

As one example for the graphical representation of the electrostatic potential of a protein, 
gramicidin A, a well-known membrane cation transporting protein, is shown in Fig. 1. 
Gramicidin A forms a dimer in the membrane. The calculation of the electrostatic potential 
has been performed for the gramicidin A dimer embedded in a low dielectric membrane layer 
(which is treated as part of the low dielectric solute system) using the program Delphi. 

4.6.2 Interaction Potentials 

Other important features for studying interaction, recognition and binding of possible 
substrates to a protein are provided by the evaluation of molecular interaction fields. As we 
have already comprehensively discussed in section 3.2, interaction potentials are useful 
indicators for the prediction of binding properties of molecules. Programs, like the widely used 
GRID 124,251, can be used to map regions within a protein where a water molecule or a 
substrate is attracted preferentially.The interaction fields,derived with a particular probe,can 
also be used as a starting point for docking studies of a substrate to its active site. The 
techniques and procedures applied in this context, are the same as those described in the case 
of small molecules in section 2.4.2. Various examples are given in literature where these 
programs have been used successfully to predict binding regions 126-281, to dock molecules 
into active sites 129-321 and to optimize structures of ligands in order to optimize the binding 
properties [26,33,34]. 

4.6.3 Hydrophobicity 

As we have discussed in section 4.5.2 on the packing quality of proteins, the hydrophobic 
properties play an important role in the process of protein folding. Also, the protein binding 
reactivities are often determined by hydrophobic interactions. As was discussed for small 
molecules (section 2.4.3) several methods are available for the representation of hydrophobic 
and hydrophilic properties of moleculesThe hydrophobicity can be either represented directly 
on the molecular surface or as a hydrophobic field in the space surrounding the molecule. 
Useful programs in this respect are, for example, GRID [24], HINT [35] and MOLCAD [36]. 
A detailed description of the different methods and a comparison of the results derived in 
studies on proteins is given in the literature 137). 
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Figure 1. Representation of the electrostatic potential of a gramicidin A dimer embedded in a membrane 
environment. Calculations were performed using Delphi. Color code: magenta = negative, green = positive 
potentials. 
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Basic Principles and Applications 

5 Example for the Modeling of 
Protein-Ligand Complexes: 
Antigen Presentation by MHC Class I 

5.1 Biochemical and Pharmacological Description of the 
Problem 

Cellular immunity is mediated by unique ternary complexes composed of major 
histocompatibility (MHC)-complex-encoded proteins, antigenic peptides and T lymphocytes. 
MHC molecules are glycoproteins. Their main function is to bind short antigenic peptides and 
present them to T lymphocytes at the surface of infected cells (Fig. 1). 

Figure 1. Cellular immune response. CTL, cytolytic T lymphocyte; ER, endoplasmatic reticulum;TCR, 
T-cell receptor. 
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5.1.1 Antigenic Proteins are Presented as Nonapeptides 

Hence, in contrast to the B lymphocytes,T lymphocytes do not recognize a protein antigen in 
its native conformation. The protein is normally processed inside the antigen-presenting cell 
and afterwards brought to the surface and bound to the MHC proteins. The MHC-peptide 
complex is then recognized by the T-cell receptor on CD8+ T lymphocytes. Most of the 
antigenic peptides for the class I MHC type are nonamers. This could be shown by elution of 
the peptides from purified MHC class I molecules. All peptides show conserved residues. Most 
of them have a conserved amino acid at position 2, which is believed to be the N-terminal 
anchor residue. Another conserved residue is the C-terminus which is hydrophobic in most 
cases and sometimes positively charged. 

Amino acids at other positions are more variable and make either contact to the T-cell 
receptor in the ternary complex (T-cell receptor anchor residues) or should not play any 
decisive role in the formation of the MHC-T-cell interaction complex. 

Until now, five MHC class I molecules have been crystallized. They are either bound to a 
mixture of peptides or to single peptides. Thus, the position of the ligands within the MHC 
molecules could be unambiguously determined and serves as a basis for the design. 

It is a challenge for any design study that the presented antigenic peptides have been shown 
to be determinative for the whole process of the T-cell response. Length and sequence are the 
key features for starting the following biological responses: 

- assembly and folding of the MHC proteins, 
- binding to the MHC molecules, 
- transport of this binary MHC-peptide complex to the cell surface, 
- recognition of the binary complex by the T-cell receptor. 

In terms of a subsequent modeling study, it is important to notice at this point, that: 

1. Obviously no empty MHC molecules exist. Therefore, homology modeling of the 
protein alone does not make sense. This means docking of the ligand and model 
building of the binding site must take place in an iterative fashion. 

2. Binding to the MHC molecule may be achieved by only two residues, namely at 
positions 2 and 9.This means that criteria have to be found for the discrimination of 
good and bad binders, as long as a ternary complex model taking into account the 
effects of theT-cell receptor, cannot be established yet. 

5.1.2 Pharmacological Target: Autoimmune Reactions 

Under normal circumstances, the immune system is self-tolerant. However, T-cell receptors 
which are normally selected to recognize only foreign peptide antigens bound to MHC 
molecules, may sometimes identify self peptides on MHC class I molecules. Obviously, only 
the ternary complex and not the MHC complex itself differentiates between self and non-self. 
T-cell receptors lacking the ability to differentiate between self and non-self may thus break 
the tolerance of the immune system and cause autoimmune diseases. 
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To date, special forms of arthritis are to our knowledge strongly linked to the expression 
of certain human leucocyte antigen molecules (MHC molecules). Presentation of bacterial 
proteins as antigenic peptides which remarkably resemble human self peptides, may be the 
molecular reason for the autoimmune disease. 

In terms of medical treatment of the autoimmune diseases, blocking of the binding site of 
these special MHC molecules would at first glance be a highly attractive concept for a drug 
design study. 

5.2 Molecular Modeling of the Antigenic Complex Between a 
Viral Peptide and a Class I MHC Glycoprotein 

5.2.1 Modeling of the Ligand 

The native ligands of MHC molecules are peptides. At the beginning of a drug design study 
one starts very often with the description of structural properties of the 1igandsThis activity 
is guided by the hope that structure-activity relationships might show up and facilitate the 
identification of the pharmacophore and/or the docking of the ligand into the binding site. 

Peptides however, show considerable flexibility. They have a lot of local energy minima 
corresponding to a huge variety of different conformations None of these may be associated 
with, or relevant for, the bound conformation at the MHC [l]. Furthermore, nothing is known 
to date about the structural features that determine the antigenic quality of the free peptides. 
And at last, as revealed by the biochemistry studies mentioned earlier, MHC protein folding 
seems to be a concerted action process with the binding of the peptidic ligand. The X-ray 
structures of the MHC complexes showed the bound peptides to have different binding 
geometries, ranging from an extended state to some sort of coiled geometry. 

A set of synthetic peptides derived from the native nonapeptidem-Pro-His-Phe-Met-Pro- 
Thr-Asn-Leu by subsequent truncation of the N- and C-terminus respectively provided a data 
basis for a preliminary structure-activity relationship study. A CoMFA study performed with 
eight peptides, truncated subsequently down from nona- to the pentapeptide, was based on 
the superimposition of helical geometries of the peptides. The study revealed the importance 
of the C-terminus to function as an anchor residue [2] (Table 1). The model explains the 
experimental findings by strong hydrophobic interactions of the C-terminus to a putative 
hydrophobic binding pocket at the MHC molecule. This information, however, might have 
been achieved by looking at the isolated C-terminal residues alone.Which relevance had then 
the helical conformation that had been used for superposition? None ! 

The helical conformation had been taken because of its local stability.The idea arose from 
choosing appropriate starting conformations for a dynamic conformational analysis of the 
peptides. A second clue, that seduced us to accept helical conformations as the most plausible, 
came from the physical-chemists, who believed, that because of the helix dipole moment this 
conformation might be the most favored one for establishing protein-ligand interaction. 

Both the theory about the importance of helix dipole moments for ligand interaction and 
the vacuum and solvent dynamics simulation of the isolated peptides, which showed the 
helical conformation to be the most stable, were found to be wrong in the light of the later 
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Table 1. Antigenic properties €or cytolytic T lymphocytes (clone IE1) 

Peptide name Sequence Recognition Peptide concentration 

Nona YPHFMF'TNL + 1 0-9 
Nonar PHFMPTNLG + 10-3 
Nonal MYPHFMPTN - 

Octar PHFMF'TNL + 10-7 
Octal YPHFMPTN - 

Heptar PHFMF'TN + 1 0-7 
Heptal YPHFMPT - 

Penta HFMPT + 10-3 

occurring X-ray structures. However, for reasons of curiosity we had modeled in parallel 
protein-ligand complexes by energy-minimizing the different peptides bound to the MHC. It 
evolved that many more than only the helical conformations were preferred in the native 
environment. 

Thus, the important lesson to learn was that peptides as substrates may be handled like 
other flexible molecules. The binding geometry is strongly case-dependent. 

In the present case, some X-ray structures of MHC-ligand complexes, which had been 
published in the meantime, showed multiple nonapeptides bound to the active site. Their 
common structural features are two anchor residues. The binding geometry may additionally 
be markedly influenced by the third binding partner. 

Thus, methods like the active analog approach [3], may fail in the case of evaluation of the 
docking geometries of peptidic ligands, although they have their profound merits in use with 
synthetic ligands. 

This experience led to the decision, to find out as much as possible about the binding site. 
This knowledge, may it be experimental or theoretical, would help to restrain the degrees of 
freedom of the peptide's docking geometry. 

The aforementioned advent of the first X-ray structures of the MHC class I molecules 
made it feasible to perform a homology modeling study. Sequences showed more than 70% 
homology, which should indicate a high degree of structural similarity in that class of proteins. 

5.2.2 Homology Modeling of the MHC Protein 

Affinity data of the peptides came from the H-2Ld receptor, a MHC-type protein but at 
present still unknown in structure. A X-ray structure of the human HLA-A2 MHC protein at 
2.6 8, resolution was available [4] which shows 70% amino acid homology with the Ld molecule 
in the a, and a2 domains (182 residues) of the peptide binding site. 
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5.23.1 Preparation of the Coordinates 

In a first step, the crystal coordinates of HLA-A2 were refined in order to remove crystal 
packing effects. Three different types of calculation were performed with respect to the 
treatment of electrostatics: 

1. A low dielectric model with distance-dependent dielectric functions. 
2. A high dielectric model with dielectric constant set to 50 (D50 in Fig. 1). 
3. A high dielectric model with explicit water molecules and a dielectric constant set to 1 

(DW in Fig. 1). 

The “best” structures (based on the deviation from X-ray backbone structure) were 
obtained by use of the high dielectric models. The models with the distance-dependent 
dielectric function very often overestimated salt bridges for instance between lysines and 
acidic amino acids, thereby creating non-regular structures. Thus, for a subsequent molecular 
dynamics simulation the distance dielectric model was dropped and only the “good” high 
dielectric models were used. 

The molecular dynamics simulation procedures produced major discrepancies between the 
two starting structures of the model. The model with the dielectric constant set to 50 produced 
an unacceptably large deviation of almost 4 A compared with 2 A deviation obtained in the 
model with the explicit water moleculesTherefore,only the latter was found to provide a realistic 
picture at least near the solid-state geometry in the crystal and with minimized internal energy. 

When inspecting the details of structure deformations in the vacuum dynamics simulation 
(model with dielectric constant set to 50) two prominent features could be seen to be responsible 
for the large rms deviation and typically occumng in vacuum simulation. firstly, the active site, 
aligned by the two large helices shrank considerably by more than 50% (Fig.1). Secondly, the 
helices themselves shrank by up to 6 A. From this, a binding site resulted that would never be 
able to accomodate any ligand and thus was worthless for any further drug design procedure. 

Part of the phenomenon can be explained by artificial hydrophobic collapses occurring with 
in vacuo simulations, because the hydrophobic surface attemps to become minimal. In contrast, 
by using of the explicit water model, the structure was seen to fluctuate around the X-ray- 
defined structure, giving the side chains the possibility of finding the optimal energy level with 
respect to a solvent environment. This led to a structural model averaged from 150 single 
structures during molecular dynamics simulation, that showed a backbone topology very near 
that of the X-ray backbone. Both the X-ray structure and its refined model by explicit treatment 
in a solvent are able to accomodate a nonapeptide as ligand in their binding site. 

5.2.2.2 Building the H-2Ld Molecule 

The coordinates minimized in the explicit solvent environment were taken as a basis for the 
construction of the homology model of H-2Ld from HLA-A2. During the procedure, only the 
side chains were modified; the backbone was kept untouched. As has been described earlier, 
side chains were exchanged in a first step without taking care of interactions or optimal 
electrostatics. Because of differences in the sequence, a deletion occurred near the N-terminus. 
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Figure 1. Orthogonal views of three HLA backbone conformations: X-ray (top),DSO mean conformation 
(middle) and DW mean conformation (bottom). 

This deletion was located in a loop structure. The latter is to be expected because at such a 
level of homology of both of the sequences, helices and sheets are always conserved. However, 
connecting loops are the positions, where individual substitutions occur in order to 
accomodate evolutionary fitting processes between different tissues or different species. 

The loop identified between residues 12 and 18 had to be reconstructed from scratch. 
Because loops often have no ordered structure-or assume ordered structures only in the 
presence of a binding partner-we decided to perform a “loop search” in the Brookhaven 
crystallographic database in order to obtain an at least acceptable structure of the newly built 
loop. “Loop searches” perform a sequence alignment of the sequence to be built with the 
sequences already present in the protein database (Fig. 2). 
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Figure 2. Building a loop using the SYBYL- loop search algorithm. Proposed backbone conformations 
are shown in red. 

The algorithm is contained in most of the leading modeling packages. It presents the ten 
best “matches“ from sequence comparison and subsequently cuts out the respective loop 
structures from the protein X-ray structures. The best fitting loop can be choosen to be built 
into the homology model, with respect to the distance of the N-terminal and C-terminal (see 
also section 4.3.3). 

In the present case we found a loop with moderate homology but having a backbone 
geometry with only a 0.38 8, rms deviation from the N-C terminal distance defined by the 
template structure. At this stage the homology model represents a rough assembly of side 
chain orientations that must be refined in the subsequent steps. 

The question is, whether this must be done in the presence of a docked ligand or with an 
“empty” binding site. According to the literature, as well as to our own experience, refinement 
of the complex should be performed preferentially with the ligand bound to the protein. 
However, the early steps might be done without any ligand, because the disorder of side chains 
may be too large to dock a ligand straight away in the binding site. The situation is worse in 
proteins that show an induced fit;in these cases multiple homology modeling steps are needed. 

In the present case, we were sure that the MHC molecule was only folded correctly in the 
presence of the ligand. Therefore, we kept the backbone constant and removed steric 
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interaction by energy-minimization. Subsequently the homology model was subjected to 
molecular dynamics simulation because we were curious to see whether it behaved like the 
X-ray structure; Indeed it did. Again, the model with the explicit water treatment showed a 
result much closer to the X-ray backbone, than to the model with dielectric constant set to 50. 
This analogy to the behavior of the X-ray structure gave us some confidence that the homology 
model obviously possesses at least some protein properties 

As mentioned earlier,MHC molecules usually fold only in the presence of ligands; this led 
us to attempt a peptide docking in order to achieve the whole binary interaction complex and 
to proceed with the structure refinement of the complex. From previous QSAR studies it was 
suggested that the C-terminus of the ligand should bind to a hydrophobic environment or 
pocket. The peptides showed that at least positions 1 and 2 should additionally contribute to 
binding to the MHC molecule. We began to look for a binding pocket with hydrophobic 
properties that could accomodate the C-terminal amino acid of the peptide ligand and was 
limited in size, so as to exclude the amino acid tryptophan, which caused inactivity in the 
biological tests. 

As a graphical aid, we used a hydrophobicity coloring scheme for the surface of our 
homology model of the H-2Ld molecule.The Fauchkre-PliSka scale was applied to characterize 
hydrophobicity [5] (see Fig.3). This particular scale was chosen because it has 

Figure 3. Space-filling representation of the H-2Ld molecule with the Fauchtre-Pli5ka hydrophobic 
scores. Color scheme: hydrophobic, magenta and cyan; hydrophilic, yellow and red. 
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Figure 4. Part of the binding pocket of the HLA C-terminus. 

been determined experimentally and has already been successfully applied in studying 
antigenic sites in proteins. As expected, hydrophilic residues are located mainly at the surface 
of the protein, whereas hydrophobic areas are buried. One hydrophobic pocket, however, 
seemed quite large and suitably sized for the docking of the C-terminus. It consisted of three 
tryptophan, two phenylalanine and two tyrosine residues (Fig.4). 

Further indications came from experiments; two X-ray studies showed extra electron 
densities at the position of the hydrophobic pocket, supposedly resulting from co-crystallized 
peptides. The resolution, however, was not good enough to detail the interactions. This 
prompted us to choose the described pocket at the site for the C-terminal amino acid to serve 
as an anchor site for the peptide ligands. What of the remainder of the ligand’s geometry? 
Residues at positions 1 and 2 had been predicted by QSAR and biochemically to be important 
also for the ligand’s interaction with the MHC molecule, but nothing was known of the rest. 

The helical interactions of the peptide ligand 

Unfortunately we were seduced by the results of our conformational studies on the ligand. As 
mentioned earlier an a-helical structure was given to the ligands based on 3D-QSAR studies 
and for two additional reasons. 
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1. The a-helix turned out to be the most stable structure in solvent as predicted by 
molecular dynamics. However, this is the wrong line of enquiry. Minimization 
inside the binding site only provides useful information about the ligand, not 
energy minimization in vacuo or even in solvent. Nevertheless, we docked the 
ligand with helical geometry into the H-2Ld binding site. None of the currently 
known X-ray structures of MHC-ligand complexes show a regular helical 
conformation of the bound peptide.Therefore it is not likely that this was the only 
case of ligands being bound in such geometry. Strangely, manual docking provided 
an excellent interaction geometry for the nonapeptide Qr-Pro-His-Phe-Met-Pro- 
Thr-Asn-Leu. The Leu9 fitted nicely into the hydrophobic pocket (Fig. S(c)). The 
N-terminalTyr1 interacted by aromatic interaction withTrpl66 and by electrostatic 
interaction with Qr56  of the MHC molecule (Fig.S(a)).The second residue Pro2 
could also be located nicely adjacent to Leu62 and Leu65 of the MHC, showing 
perfect match of the solvent accessible area and hydrophobic interactions 
(Fig.5(b)). Furthermore, the a-helix ideally spans the space between C- and N- 
terminal docking position. 

2. Further support for this docking alternative was given by the fact, that in the present 
model, the nonapeptide interacted with highly polymorphic positions of MHC 
proteins, which could be interpreted as being a specific interaction. Of special note 
was the Ile62 and Ile65 contacting the proline at position 2, which is unique in these 
molecules. 

This was a very optimistic view of the docking and ligand interactions. The opposite 
interpretation would be also possible, and is probably the more realistic. Although specificity 
is needed for ligand-MHC interaction, the main contacts are made to conserved residues in 
the class I MHC molecules. Therefore, the helical conformation that causes interactions of the 
ligand to non-conserved residues may be incorrect. 

One may criticize that any model of antigen recognition must necessarily be incomplete 
as long as the contribution of the T-cell receptor (TCR) in the ternary MHC-peptide-TCR 
complex cannot be included in the simulation.Yet, to this argument, the fact must be recalled 
that the formation of the ternary complex is a stepwise process. First, the peptide must bind 
before the now-formed binary complex is subsequently recognized by the T-cell receptor.This 
again demonstrates the importance of integration of biochemical knowledge in the modeling 
process. Nevertheless we do not know, until the X-ray structure or model of the ternary 
complex with the T-cell receptor is available, which geometry is the real one. In conclusion, 
the resolution of the model was inadequate to  provide a unique geometry for the 
protein-ligand and interaction complex. 

The extended non-regular interaction of the peptide ligand 

In a parallel study we examined the interaction of a peptide derived from influenza virus 
protein with the HLA-A2 MHC molecule that has been used as a template for the homology 
model of H-2Ld in the previous section [6]. 
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Figure 5. Interaction of a nonapeptide (red) with 
the H-2Ldresidues (cyan).Van der Waals volumes 
of the nonapeptide’s agretope residues (yellow) 
are represented embedded in the hydrophobic 
pockets: a) Q r l ;  b) Pro2; and c) Leu9. 

Before docking the nonapeptide Gly-Ile-Leu-Gly-Phe-Val-Thr-Leu into the binding cleft 
of the HLA-A2 X-ray structure, the structure was truncated to the a, and a2 domains. This 
approximation has been shown before not to alter significantly the 3D structure of a,/a, 
because only limited interactions exists between a,-a2 domains and the a3 andb-microglobulin 
domains. The latter are not suspected to contact antigenic peptides The C-terminus was 
protected by a N-methyl group in order to avoid unrealistic electrostatic interactions. 
Furthermore, three crystalline water moIecules have been placed in the binding site because 
they are visible in the X-ray structure and may be of importance for support of the peptide 
binding. 

Subsequently, the nonapeptide Gly-Ile-Leu-Gly-Phe-Val-Phe-Thr-Leu was docked 
manually in the peptide binding groove. This time we used as a “template” an extra electron 
density map located in the binding groove of the MHC molecule that was observed in the X- 
ray structure, but could not be resolved to a unique ligand. 
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The crystallization of a mixture of peptides with the HLA-A2 molecule might have caused 
this extra electron density. Nevertheless, it provided a volume restraint into which the ligand 
should fit (Fig. 6). The N-terminal glycine was fixed at a hydrogen bonding distance from the 
conserved residuesTyr7,Tyr59 andQr171 (Fig. 7).The second residue,isoleucine,is one of the 
formerly detected anchor residues, conserved among the peptidic ligands of MHC molecules. 
It has been placed such that its hydrophobic side chain contacted a set of three valines that 
form part of a hydrophobic pocket-which is also conserved among the MHC molecules The 
peptide was further extended to the third and fourth residue by fitting it to the electron density 
map. Ile3 pointed in direction of a pocket named D, which was also hydrophobic in character 
aligned by two tyrosines and two leucines. Ile3 did not fill this pocket completely. 

Again, this is a branching point in a modeling study that gives rise to two interpretations. 
Firstly, if there is a pocket it should be filled completely by the ligand’s side chain in order to 
avoid “empty space” or large entropic contribution. It is unlikely that in the hydrophobic 
pocket water molecules fill the empty space. Secondly, the contrary argument is that evolution 
favors an optimal solution, not a maximal one. The ligand should be able to dissociate again. 
Filling every binding pocket to a maximum would considerably increase the energy necessary 
€or dissociation and would decrease the variety in recognition of other peptides without losing 
specificity. Moreover, by an ultra high-affinity, a specificity would be gained that is probably 
not needed or that would even prevent the immune response. 

Figure 6. Extra electron density in the X-ray structure of the HLA-A2 co-crystallized with a mixture of 
nonapeptides. 
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Figure 7. Simplified model ofnonapeptide binding to class I MHCproteins exemplified by HLA-B27.The 
six specificity pockets are labelled from A to F. N- and C-termini are colored in magenta. Main anchor 
side chains at F'Z and P9 are displayed as arrows. MHC-binding side chains are colored in green, potential 
T-cell receptor (TCR)-binding side chains in red. Some amino acids (side chains in cyan) may bind both 
MHC and TCR molecules 

Experimental constraints at branching points 

At branching points the modeler needs help in deciding which branch to follow. Very often 
this information can be taken from previously known biochemical and pharmacological data. 
Therefore it is very important, as discussed earlier, to store and use all experimental 
information that can be accessed concerning the target protein and the ligands. In the present 
case the branching point provides an excellent opportunity to design a biochemical 
experiment that will prove the modeling process and the prediction, respectively. 

Thus, we decided to design a non-natural peptide with maximum interaction at pocket D. 
From the synthetic ligand, we expected a much higher affinity to the MHC. (The design step 
will be described in detail in the next section.) In consequence we proceeded to model the 
natural ligands along the extra electron density template and let the pocket be only partly 
filled by Ile3. From there, the backbone turns upwards,directed to the opening of the binding 
cleft pointing to the solvent. For Gly at position 4 and Phe at position 5 a solvent or T-cell 
receptor interaction is hereby assumed. Va16, in contrast, is again contacting the MHC at a 
binding pocket, that is surprisingly polar, formed by two histidines, a threonine, and an 
arginine. 
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Positions 7 and 8 of the peptide ligand,following the electron density template, again point 
in the direction of the solvent. Interestingly, this is supported by a high variability at this 
position for the peptides eluted from the MHC complex in biochemical experiments. 

Finally, position 9, bearing a leucine, was docked into the well-known hydrophobic C- 
terminal pocket,in line with details in the previous section regarding the H-2Ld molecule.This 
docking alternative created no steric conflicts and seemed rather reasonable from a chemical 
viewpoint. Although having a quite irregular, extended geometry, no violations of angles, 
torsion, etc. were identified on visual inspection of the interaction complex. 

5.3 Molecular Dynamics Studies of MHC-Peptide Complexes 

Modeling and docking of ligands has been described for H-2Ld and HLA-A2. In the next 
section the molecular dynamics simulations of two complexes will be discussed, namely HLA- 
A2 and-far more interesting from a viewpoint of unexpected results-HLA-B*2705 [6]. 

5.3.1 HLA-A2-The Fate of the Complex 
during Molecular Dynamics Simulations 

For the HLA-A2 system, the homology modeling described in the previous section, the 
bimolecular complex,and the three crystalline water molecules were placed in a shell of water 
molecules. No periodic boundaries were applied, nor were positional constraints placed on the 
solvent atoms. 

As usual, the solvated complex was minimized first and subsequently subjected to a 100 ps 
molecular dynamics simulation at constant temperature. The system was coupled to a heating 
bath (see earlier).Analyses were taken from the last 60 ps. From the period of analysis (40-100 
ps) a mean structure of the molecular dynamics simulation was obtained by averaging the 
atomic coordinates for 600 conformations. As shown in Fig.l the overall geometry is 
unchanged compared with the X-ray structure during molecular dynamics situation. The 
docking of the peptide did not significantly change the HLA-A2 structure. Most of the 
structural deviation-r even artefacts-were observed in loops connecting the a and j3 
structures and thej3-sheet, respectively.The more severe artefact was an unexpected flexibility 
of the a, domain.This could be easily explained due to the lack of following a3 and b, domains 
which are the native constituents of the complete MHC molecule, and are not present in the 
model. The general folding, however, was not disturbed because this movement was found 
oscillating around the X-ray structure. 

A more detailed inspection of potential structure distortion was performed by using selected 
fits of secondary structures. This allows for distinguishing rigid body motions from distortion. 
In the first case, a structural element-for instance a helix-is translated or rotated as a whole. 
In a global fit,this would cause a bad rms value because of the average over the whole structure. 
If, however, only the structural element is fitted,it can be seen immediately that if the rms drops 
drastically, than the geometry is maintained and only the structure element has been translated 
or rotated. If, however, the rms value increases, a distortion of geometry is indicated. 
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Figure 1. Experimental and simulated 3D structures of HLA-A2.1. a) Crystal structure of the MHC 
protein. Only a1 and a2 domains are shown (a-helices Hl-H6: yellow; B-strands S1-S8: green; loops 
Ll-L5: red; water: cyan balls). b) Superimposition of the crystal structure (cyan) and the time-averaged 
simulated conformation (red). 

Looking at the HLA-A2 step-wise by comparing secondary structure elements (Table 1) 
all but three secondary structure elements showed a considerably reduced rms, indicating that 
the overall geometry was maintained.The three elements that were more affected and showed 
an increased rms value are located near the C-terminus of the model.As explained earlier, the 
model takes into account only the binding site, consisting of a, and b, domains.The lacking a3 
and b, domains definitely do not contact any antigen, but might stabilize the whole MHC 
molecule. Therefore, if these domains are lacking just adjacent to a2, some higher flexibility 
would be expected, probably resulting in distortion-exactly the situation that we found. 

In an even more detailed step we traced the backbone angle variation. Around 80% of the 
@ and I/J angles did not alter for more than 20". Only in the loop region were larger deviations 
found and, indeed, would have been expected. Interestingly, larger q5 and I/J deviation which 
occurred at the C-terminal elements were always compensated by the next @ and I/J angles 
along the sequence, thus maintaining perfectly the overall secondary structure and the 
interaction geometry. 

To analyze observations and statistics of atomic fluctuations is again one level deeper in a 
detailed study of the system. All fluctuations correlated with the motions of larger parts and 
substructures described earlier. 

Atomic fluctuation has been analyzed in the present case, especially for water molecules, 
the whole system being surrounded by some 1300 water molecules with TIP3P potentials. 

Consideration of atomic fluctuation of water oxygen atoms is one method of analyzing the 
quality of the molecular dynamics simulation. We could clearly detect four different types of 
water: first, the explicit water molecules inside the binding cleft showing participation in the 
hydrogen network of the ligand; second, water molecules bound to the surface of the 
interaction complex, exhibiting fluctuations only; third, the bulk water with moderate 
variation; and fourth, water molecules at the water-vacuum edge being the most flexible and 
showing rms values over 1.0 
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Table 1. Root mean square (rms) deviation from the crystal structure. Coordinates of the HLA-A2 al-a2 
domains were time-averaged over 4&100 ps and compared with the crystal structure. Deviations in nm have 
been calculated for backbone atoms after fitting the whole structure (rms 1) or selected sequences (rms 2) 

Structure Position rmsl rm52 

al-a2 Domains 
a1 Domain 
a2 Domain 
secondary elements 

a-Helices 
H1 
H2 
H3 
H4 
H5 
H6 

@-Strands 
s1 
s2 
s 3  
s4 
s5 
S6 
s7  
S8 

Loops 
L1 
L2 
L3 
L4 
L5 

Crystal water 

1-182 
1-90 
91-182 

50-53 
57-84 
138-150 
152-161 

176179 
163-174 

3-12 
21-28 
31-37 
46-47 
94-103 
109-118 
121-126 
133-135 

13-20 
3845 
85-93 
104-108 
127-1 32 

193-1 95 

0.182 
0.167 
0.195 
0.166 

0.173 
0.206 
0.149 
0.138 
0.091 
0.21 1 
0.371 

0.120 
0.074 
0.073 
0.083 
0.122 
0.076 
0.076 
0.229 
0.185 

0.250 
0.226 
0.264 
0.175 
0.348 
0.201 

0.249 

0.182 
0.162 
0.191 
0.078 

0.091 
0.128 
0.099 
0.033 
0.043 
0.137 
0.042 

0.066 
0.074 
0.043 
0.043 
0.024 
0.056 
0.122 
0.074 
0.044 

0.106 
0.137 
0.128 
0.131 
0.024 
0.057 

0.132 

5.3.2 HLA-B"2705 

For the HLA-B*2705 MHC molecule a X-ray crystal structure was available [7] from which 
the coordinates were taken. The peptides bound to the MHC molecules were derived from 
the nonamer which had been modeled into the binding cleft of the X-ray structure; this had 
the sequence Ala- Arg- Ala-Ala-Ala-Ala-Ala-Ala-Ala. The other peptides have been created 
simply by replacing the alanines subsequently by the corresponding residue of the desired 
derivative. Its side chains were centered in the binding-pockets according to the electron 
density map of the peptide. Those residues responsible for the interaction with the T-cell 
receptor pointed towards the solvent as no receptor interaction could be taken into account. 
The backbone geometry of the crystal structure was taken as a template for all nonapeptides 
bound to the MHC [8]. 



5.3 Molecular Dynamics Studies of MHC-Peptide Complexes 149 

So far, the entire situation is quite similar to the complex described earlier, so, what is 
interesting about B*2705? The B*2705 binding motif has been characterized by analysis of a 
variety of the bound peptides. These were eluted from the native complex by HPLC and 
sequenced. From the set of peptides available, position 2 was identified as a main anchor 
residue, always being an arginine. The other anchor positions are 1, 3, and 9, preferring 
hydrophobic and positively charged residues, and 2 and 9 being the most important. These 
experimental data do not, however, entirely account for the HLA-B*2705 binding properties 
of several bacterial peptides. 

Peptides from Chlamydia truchomutis could be shown to bind to HLA-B*2705.They stem 
from the 57 kDa heat shock protein of C. truchornutis and are probably responsible for an anti- 
immune reaction causing diseases related to rheumatoid arthritis. The bacterial peptide Leu- 
Arg-Asp-Ala-Tyr-Thr-Asp-Met-Leu, for example, fits nicely the consensus sequence. Arginine 
in position 2 and a hydrophobic or positively charged amino acid in positions 1, 3, and 9 
represent a binding pattern as defined by the anchor residues, except for position 3.Thus, the 
peptide is expected to show affinity to HLA-B*2705, but does not because it is not recognized. 
The opposite is true for the peptide Arg-Arg-Lys-Ala-Met-Phe-Glu-Asp, i.e. an octapeptide 
rather than a nonapeptide, but with the only similarity being the arginine in position 2. If this 
position is correctly docked into the second pocket, the peptide would be too short for any 
interaction with the hydrophobic pocket at position 9, this being very important for 
stabilization of the nonapeptides. Surprisingly, the octapeptide is recognized by the MHC 
molecule, although its binding motif does not match the experimental pattern very well. 

These were the reasons why we were interested in the B*2705 complex and tried to 
rationalize the structure-activity relationships by performing molecular dynamics simulations 
Six different peptides were chosen for this study, the rationale for choice being the following 
(see Table 2): 

1. The nonapeptide Arg-Arg-Ile-Lys-Ala-Ile-Thre-Leu-Lys has been described as part 
of the crystal structure. Therefore this peptide served as a basis for the setup of 
appropriate parameters for the molecular dynamics simulations. If the X-ray 
structure could be reproduced by a certain set of molecular dynamics parameters, 
we would be willing to accept these conditions for the whole series of peptide-HLA 
complexes to be simulated. We are fully aware, that this assumption is in fact an 
extrapolation. It is, however, the most cautious one that can be done in this case. 

2. The second (Glu- Arg-Leu-Lys-Glu- Ala- Ala-Glu-Lys) and third (Arg-Arg-Lys-Ala- 
Met-Phe-Glu-Asp-Ile) peptides were taken as positive controls, because they 
showed high-affinity binding.The sequence Glu- Arg-Leu- Ala-Lys-Leu-Ser-Gly-Gly 
has been taken as a negative control, as it does not bind to the B*2705. 

Both peptides mentioned previously (Arg- Arg-Lys-Ala-Met-Phe-Glu-Asp and Leu-Arg- 
Asp-Ala-Tyr-Thr-Asp-Met-Leu) were used as test cases, where we hoped to be able to explain 
the unexpected binding properties. 

For the docking of the octapeptide we had to accept some compromises. The negatively 
charged Asp at the C-terminus was certainly not expected to interact with the pocket for the 
normal C-terminal residues of the nonapeptides because the pocket itself is aligned by two 
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Table 2. Binding of bacterial peptides to HLA-B*2705 

Peptide no. Sequence Origin Binding 

1 Arg- Arg-Ile-Lys- Ala-Ile-Thr-Leu-Lys Model not determined 
2 Gln- Arg-Leu-Lys-Glu- Ala- Ala-Glu-Lys Hsp 75” good 
3 Arg- Arg-Lys-Ala-Met-Phe-Glu-Asp-lle Hsp 57b best 
4 Glu- Arg-Leu- Ala-Lys-Leu-Ser-Gly-Gly Hsp 57 non 
5 Leu- Arg- Asp- Ala-Tyr-Thr- Asp-Met-Leu Hsp 57 non 
6 Arg-Arg-Lys- Ala-Met-Phe-Glu- Asp Hsp 57 good 

a From Escherichia coli. 
From Chlamydia trachomatis. 

Asp residues. Thus, the docking was based on the hypothesis that the Asp might be able to 
simulate the normal C-terminus of the nonapeptide. Therefore, the octapeptide was docked 
without having a side chain interaction of pocket F, which is normally responsible for binding 
the C-terminus of the nonapeptide.The more extended conformation of the octapeptide could 
be accomplished by moderating the bulge, normally occurring between position 4 and 7 and 
in reality supposedly binding to the T-cell receptor (Fig. 2). 

5.3.2.1 The Fate of the Complex during Molecular Dynamics Simulations 

Here we describe only the main concepts used to distinguish between “good” and “bad” 
binders. The detailed analysis with listings of every hydrogen bond interaction may be 
duplicated in the original papers [8,Y]. 

In fact, the molecular dynamics simulation proved able to account for anomalous binding 
of the bacterial peptides. Again, as shown previously, the most important criteria for the 
judgment of the models were hydrogen bonding, solvent-accessible areas, and atomic 
fluctations.To begin with the latter, we were mainly interested in the behavior of the binding 
pockets related to anchor residues 2 and 9. When bound to the inactive peptides Glu-Arg-Leu- 
Ala-Lys-Leu-Ser-Gly-Gly and Leu-Arg-Asp- Ala-Tyr-Thr- Asp-Met-Leu, respectively, atomic 
fluctations were increased dramatically compared with the native peptides. As expected, the 
atomic motions of the pockets correlate clearly with the nature of side chain of the peptides. 
Good binders have perfectly complementary side chains properties. Thus, inactive peptides 
lack side chain interactions or show only weak interaction with pockets 2 and Y.This results 
in an increased atomic mobility. Logically, a similar pattern emerged for the analysis of 
hydrogen bonding in the peptide-MHC interaction. Again, our main interest focused on the 
binding pockets for residues 2 and 9. 

b 
Figure 2. Time-averaged conformation of HLA-B27 in complex with six peptides (A-F). The backbone 
atoms of the two u-helices delimiting the peptide-binding groove are displayed here with the side chains 
of peptide-binding residues.The C2 positions of bound peptides (in bold) are labeled from P1 (N-terminus) 
to P9 (C-terminus). Only the peptide anchor side chains are shown. MHC-peptide hydrogen bonds are 
represented by broken lines and water molecules by balls. 
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For the native complex (X-ray structure) from 15 hydrogen bonds interactions at positions 2 
and 9, all but four could be reproduced by the molecular dynamics simulation.?his is quite a lot 
if one considers the highly reductionistic model. Interestingly, these four missing H bond 
interactions compared with crystal structure could be shown to be engaged in the water 
intercalation effect at the N-terminus. Water molecules slowly “walk in”, starting at the N- 
terminus, slightly loosening the side chains from their binding pockets Although this might be an 
artefact of the simulation, the principle reflects the differences between solution and crystal state 

A dramatic drop of H bond interactions is seen for the inactive peptides; this was also 
expected from atomic fluctuation analysis with only two of seven H-bonds remaining. For both 
peptides, the C-termini have lost their original H-bonds, while at the N-terminus the peptides 
are not hydrogen bonded at all. 

The most interesting situation is that for the octapeptide. Thirteen H bonds emerge after 
and during 150 ps molecular dynamics simulation. The main anchor residue arginine resides 
in pocket B, its native 1ocation.The middle part of the peptide (residues 4-7) does not interact 
at all with the MHC molecule. The C-terminus, however, is in fact replacing the normal 
carboxyl end of the nonapeptide (Fig.2). 

5.4 Analysis of Models that Emerged from Molecular 
Dynamics Simulations 

Four criteria have been used to analyze the binding situation of ligand-protein complexes and 
to correlate them at least non-quantitatively to the experimental observations. The criteria 
were: hydrogen bonding networks, interaction energies, solvent-accessible surface, and atomic 
fluctuations. 

Attempts to quantify the results of the molecular dynamics simulation were very difficult. 
Therefore, the use of calculated interaction energies may be the weakest part of the four 
criteria mentioned. Simplification in quantification of electrostatic interaction and 
hydrophobic binding, respectively, will provide only rule-of-thumb values for estimation of 
ligand-protein interactions. Only in rare cases does the reductionistic nature of the models 
allow for a quantitive structure-activity relationship based on interaction energies. 
Thermodynamic analyses of ligand-protein interaction are currently under study and may be 
used in future to calibrate calculated interaction energies. Furthermore, refined approaches 
to calculate electrostatics-as designed by the use of the Boltzmann-Poisson equation [lo]- 
may be helpful in the detailed quantitative analysis of interaction energies. 

5.4.1 Hydrogen Bonding Network 

In the studies presented, hydrogen bond properties have been described in terms of a donor 
(D)-acceptor (A) distance lower than 0.35 nm and a D-H-A bond angle value of 12CL180”. 
Time-averaged conformations of up to 200 ps simulation time were analyzed in most cases 

In general, the total number of MHC-peptide hydrogen bonds was strictly correlated to 
the binding properties of the corresponding peptide. In all simulations the significant pattern 
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of hydrogen bonding networks could be reproduced for crystal structures. For the non- 
binders-peptides exhibiting low experimental affinities-a dramatic loss of hydrogen bonds 
could generally be observed.This was especially true for the N- and C-termini.The effect was 
less dramatic for the main anchor position 2. 

Differences in the hydrogen bond pattern, when compared with the crystal structures, may 
also occur with high-affinity ligands, for example, water molecules moving in at C- and N- 
terminal binding pockets, though whether this is an artefact or simply shows an early step of 
dissociation remains unclear. 

In our opinion molecular dynamics simulations represent much of a solvated state. 
Furthermore, the molecules are provided with kinetic energy which enables them to find new 
positions, not necessarily tracing down to the global minimum.Thus, differences to the crystal 
state might be expected which-if they occur coincidentally at the termini of the bound 
peptides-may cause the molecular dynamics simulations to reflect something of the reality 
of dissociation behavior of the ligand-protein complexes. In the present case of ligand-MHC 
interaction, careful analysis of the hydrogen bonding pattern was the basis for predicting 
correctly these parts of the ligands that could be replaced by non-interacting spacer residues 
(see the next section). 

Table 1 shows how such a H-bond pattern emerging from the molecular dynamics 
simulation can be represented. Low-affinity binders (peptides 4 and 5 )  can be detected directly 
by loss of H-bond interactions compared with the crystal structure of a native ligand bound 
to the MHC (first column). 

5.4.2 Atomic Fluctuations 

The atomic fluctuations were computed and compared with the fluctuations from the 
crystallographically determined temperature factors. This allows for an illustration of the 
relative gain or loss in flexibility compared with the native X-ray structures. 

Atomic fluctuations were found to be an excellent tool which provides direct insight in the 
activity-correlated properties of the ligands, as they depend directly on strong or weak 
electrostatic and/or hydrophobic interactions. Graphical representation facilitates the direct 
comparison of several ligands with respect to their binding properties within the same scale. 
This is illustrated by the following example (Fig. 1). 

The upper graph in Fig.l represents the atomic fluctuations of the binding pockets. 
Fluctuations are calculated from time-averaged conformations of the last 500 conformations 
of the molecular dynamics simulation. The binding pockets themselves are formed by up to 
six side chains. If one looks at the active peptides, which means high-affinity binders, pockets 
B for residue 2, pocket D for residue 3, and pocket F for residue 9, show the lowest fluctuations. 
The second amino acid of every peptide is bound to pocket B with such a high affinity, that 
the movement of the side chains of the pockets is dramatically restrained.This is represented 
by the solid lines clustering around 0.65 A rms fluctations. 
Switching to the low-affinity peptides (the non-binders), the situation changes completely.The 
residues forming pocket B show rms fluctuations between 0.7 and 0.8 A.This indicates a larger 
flexibility of the binding pocket and, vice versa, a less tight binding or only few interactions 
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Table 1. MHC-peptide hydrogen bonds. Peptide positions (Pn) are labelled from 1 (N-terminus) to 9 (C- 
terminus). Closed and open boxes indicate the presence or absence of a peptide-MHC hydrogen bond, 
respectively (time-averaged distance between donor D and acceptor A less than 3.2 A, D-H.-A angle 
between 140" and 180"). Crosses indicate the absence of specific side chains for some peptides. Hydrogen 
bonds have been analyzed for the crystal structure (X-ray) and during the last 50 ps of the simulation over 
500 HLA-peptide conformations for each complex with peptides 1 to 6 (MD1 to MD6) 

Peptide HLA*B2705 X-ray MD1 MD2 MD3 MD4 MD5 MD6 

P W )  

Pl(NE) 
Pl(NH1) 
Pl(NH2) 

P1(0) 

P2(N) 
P2(NE) 

P2(NHl) 

P2(NH2) 

P2(0) 
P3") 
P3 (0 D2) 
P3(NZ) 
P8(0) 

P8( OXT)) 
P8( OD2) 

P9(NZ) 
P9(N) 

P9(0) 

P9(OXT) 

Total 
Backbone 
Side chains 

TYr7(0H) 
Tyr59(OH) 
Glu63( OEl  ) 
Glu63(OE2) 
Tyrl71(OH) 
Glu163(OE2) 
Glu63( OE2) 
Glu58(OE2) 
Glu166(OE2) 
Tyr99(OH) 
Tyr159(OH) 
Glu63(OEl) 
Glu45 (OE 1) 
Glu45(OE2) 
Glu63(OE2) 
His9(NE2) 
Thr24(OG1) 
Glu45(OEI) 
His9(NE2) 
Glu45(OEl) 
Glu45( OE2) 
Arg62(NH 1) 
Tyr99(OH) 
Gln155(NE2) 
Asp77(OD1) 
Lys146(NZ) 
Trp 147( N E 1 ) 
Thrl43(OGl) 
Tyr84(OH) 
Asp77(OD1) 
Asp77(OD2) 
Asp1 16(OD2) 
Tyr84(OH) 
Thr143( OG 1) 
Lys146(NZ) 
Tyr84(OH) 
Thr143( OG 1) 
Lys146(NZ) 

15 18 16 13 2 7 13 
10 9 9 8 1 4 6 
5 9 7 5 1 3 7 
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Figure 1. a) rms atomic fluctuations of the six HLA-BU specificity pockets in complex with the bacterial 
peptides. The values for the X-ray structure (bold line) were obtained from temperature factors. b) rrns 
atomic fluctuations of HLA-B27-bound peptides (backbone atoms) for the crystal structures and six MD 
conformations. 
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from the peptide to the binding sites. The situation is much more dramatic for specificity 
pocket F, which normally binds residue 9. There is a difference of nearly 0.4 8, in atomic 
fluctuations, which indicates a large movement of the pocket and hence no interactions to the 
peptide’s C-terminal residue. In summary, it can be seen that the highest fluctuation values are 
found for the complex with inactive peptides. 

The lower graph in Fig. 1 provides a complementary picture,showing the fluctuation of the 
binding ligands, the peptides. The graph is even easier to interpret; low atomic fluctuations 
indicate tight binding, and vice versa. Again, the most active peptides 1,2, and 3, show the 
lowest fluctuations. 

Much more interesting in this context is the behavior of the octapeptide. This is also an 
active peptide, and thus needs tight binding to the MHC molecule in order to be presented to 
the T-cell receptor. The octapeptide (*) shows a highly fluctuating sequence in the middle, 
namely for the residues 4 to 7. Amino acids at position 1,2, and 8, however, are at very low 
fluctuation levels. 

Thus, the octapeptide reveals the importance of the binding pockets for peptide 
presentation, the binding to pockets A, B, and F being complementary to residues 1 and 2, 
while the C-terminus of the ligands seems the precondition for presentation toT-cell receptor. 

5.4.3 Solvent- Accessible Surface Areas 

For peptide side chains binding to a pocket within the surface of a receptor, the idea of 
correlating this process with the residual surface that is accessible to the solvent, seems 
straightforward. As we learned from the X-ray studies [7], binding pockets B and F that bind 
residues 2 and the C-terminus 1 of the peptidic ligands really bury these side chainsThus,most 
of the side chain-solvating molecules must be removed and replaced by an interaction to the 
side chains of the receptor protein that make up the walls of the binding pocket.The residual 
surface that is still accessible to the solvent after the ligand has been docked, is a measure of 
the depth of binding into the pocket. It correlates with the tightness and more or less with the 
strengths and number of binding interactions with the pocket. 

Accessible and buried surface areas, respectively, were computed using an algorithm from 
Connolly [ll]. A probe atom with a 1.4 8, radius is used to walk around the ligand or the part 
that is visible. The radius of the probes simulates a water molecule. In order to quantify the 
results in terms of percentages, free peptides of the sequence Gly-Xaa-Gly were built in an 
extended conformation and computations performed with those in a similar fashion. These 
served as an example of fully solvated or fully accessible reference surfaces. 

Using this description technique, the important binding pockets of the MHC molecules 
could be easily identified by analyzing the ligand-protein complexes. Fig. 2 shows the results 
of the study on B*2705-ligand interaction. Again, the active peptides are represented by solid 
lines, the inactive ones by open lines; the octapeptide is represented by *.The horizontal line 
in the graph represents a 50%-buried residue. It is immediately clear from the graph that 
residues at position 1,2,  and 9 are the important binding locations of the MHC molecule, 
because they are buried almost completely. Significantly this is not true for the low-affinity 
peptides, since their side chains, even at the C-terminus, are 70% exposed to the solvent. Again, 
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Figure 2. Solvent-accessible surface area of MHC-bound nonapeptides. A11 values were computed for 
relaxed molecular dynamics mean structures, time-averaged over 500 conformations during the last 50 ps 
of the molecular dynamics simulation, 

the graph provides an immediate interpretation of the pharmacophore of the peptidic 
ligands. Residues that bind to MHC can be identified by their high degree of burying;inactive 
peptides can be seen not to be buried at all at these positions. The side chains of the ligands 
that bind to the T-cell receptor must not be buried into the MHC-binding cleft; hence they 
can be seen exposed to the solvent.This is true for the residues 4-7 of the active, high-affinity 
peptides. 

Thus, the solvent-accessible surface correlates closely with the experimental observations 
and seems to be an excellent tool for careful and detailed interpretation of ligand-protein 
interaction. 

5.4.4 Interaction Energies 

The analysis of interaction energies has been broadly discussed and is still debated for instance 
in respect of hydrogen bond energies Many authors consider that the calculation of interaction 
energies is useless because of the weakness of the potentials used for the calculation. The 
simple Coulomb equation is mostly taken for the electrostatics, hydrophobic interaction is 
neglected in most cases. Nevertheless, some calculations, if comparing several structures, at 
least provide an estimation, whether an energetically favored interaction occurs or not. 
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However, one should always bear in mind, that the computation of interaction energies 
sums up very large numbers to result tiny differences. This means, the calculation may be 
extremely sensitive to the choice of starting conditions, like geometries, or the quality of charge 
calculations. 

In the present case, we have studied the energies of the protein-ligand interaction complex 
in terms of energy value per residue for charged residues, neutral residues, the whole peptide, 
and for the water molecules. The internal energy of each of these substructures has been 
computed every 20 ps throughout the molecular dynamics simulation. 

The idea was that artefacts caused by strong interactions should be recognized by an 
increase of internal energy for the neutral amino acids, because those would have to 
compensate the structure artefacts. The analyses showed that all substructures had decreased 
their internal energies. 

Most interesting was the finding that the energy of the bound peptides fluctuates quite 
widely but in general falls to a level that is more than 30% lower in energy than the starting 
structure which had been energy-minimized before docking. Again, this shows the 
performance of ligand optimization by molecular dynamics simulation in the presence of 
restraints from the binding site. 

The complete situation has always been analyzed energetically. The vacuum, or solvent 
energy of the ligands may be very different from the minimum energy of the docked ligand. 
The docked conformation, however, is the only valid optimized structure which can be used 
for further drug design steps. The solvent conformations, and especially the vacuum 
conformations, are in most cases absolutely useless.There are of course exceptions, for instance 
for rigid molecules! 

Also remarkable was the overall decrease in internal energy for the charged residues, which 
was computed to be about 60 kJ mol-’ per residue. The interactions of the bound peptide to 
neutral residues, or to itself, fluctuated and changed only slightly. This seems reasonable 
because during the docking process hydrophobic interactions were carefully optimized 
knowing the weakness of the potentials.Thus, no dramatic changes are to be expected during 
the molecular dynamics simulation of the interaction complex. 

Although interaction energies might not be able to provide a quantification of the 
protein-ligand interactions-as had been previously hoped-we feel that they allow for an 
estimation of quality and provide a feeling for what happened during the molecular dynamics 
simulation. 

There remains an open question whether more sophisticated calculations of interaction 
energies-for instance using “good” charge calculation that take into account the Poisson- 
Boltzmann equation-are able to improve the quality of interaction energy calculations. This 
is also true for quantum chemical interaction energy calculations. Although there are many 
counter-arguments, especially with respect to lacking performance of an ab initio basis set for 
non-covalent interactions, good results have been obtained even with very simple basis sets 
using quantum mechanical calculations. One such example is the prediction of ammonium 
partial structure interaction with an aromatic moiety by semiempirical methods as early as 
1975 [12]. This interaction has been fully confirmed by the X-ray structure of acetylcholine 
esterase some 20 years later [13]. 
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5.5 SAR of the Antigenic Peptides from Molecular Dynamics 
Simulations and Design of Non-natural Peptides as 
High-Af‘finity Ligands for a MHC I Protein 

From the analyses described in the previous section, much information was provided for a 
design of non-natural ligands. Knowledge of the site, flexibility and side chain interaction of 
the binding pockets led to the idea to investigate whether all of them were used optimally by 
the native ligands. It evolved that the binding pocket D, responsible for interacting with side 
chains in position 3 of the peptidic ligands, provides much more space than the native ligands 
used to fill.This might provide the possibility of adding binding interactions by placing a larger 
side chain or substituent in this pocket.This would increase binding energy and hence lead to 
a ligand with high affinity. 

Pocket D is hydrophobic in nature, lined by tyrosine, histidine, leucine, tyrosine and leucine. 
As seen in the crystal structure-based homology models, the ligand’s side chains only interact 
with the upper rim of the hydrophobic pocket, taking into account only both tyrosines. 

5.5.1 The Design of New Ligands 

To rationalize the binding of a hydrophobic side chain to pocket D, we have computed the 
optimum interaction site. The computation was made for the isolated pocket using the 
program GRID (see section 4.6.2) and applying the methyl group as a probe. The resolution 
of the grid was 0.5 A. Interaction of the methyl probe with the pocket walls was summed to 
result in a contour plot localizing negative binding energy.This indicates the approximate size 
of a putative ligand to fill the pocket completely and to interact with the pocket by gain of 
interaction energy (Fig. 1). 

As we had hoped, the contour map extends much more deeply into the pocket, than the 
native ligand’s side chain.Thus, it could accomodate even larger residues than phenylalanine 
for instance. Using molecular graphics, we were able to show that residues as bulky as 
naphthylalanine fitted nicely into the pocket. Furthermore, we predicted that this should be 
possible without distortion of the geometry of the peptide ligand’s backbone. 

The question whether the hypothezised interactions remain stable-as suggested by this 
static picture-was addressed by molecular dynamics of the solvated complexes. One of the 
bacterial peptides (Lys-Arg-Gly-Ile-Asp-Lys-Ala-Ala-Lys) was used as a template and 
position 3 substituted by apolar side chains of increasing size (Table 1). 

Analysis techniques, described earlier, were then applied to determine, whether the 
constructs would be expected to be stable and worth synthesizing. Molecular dynamics 
simulation in water for 150 ps revealed for all cases that the new substituents in pocket D did 
not affect the 3D structure of the binding groove-at least,not to an extent that would destroy 
the complex. rms deviations from X-ray structure and from previous homology models, 
respectively, were reasonably low. 

The analysis of the surface areas indicated the stability of the complexes with the new, non- 
natural side chains in position 3 (Fig.2(a)). Buried surfaces (the opposite of solvent-accessible 
surface) of more than 100 A‘ are found for the anchor positions 1,2, and 9 corresponding to 
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Figure 1. Energy contours indicating at the 2.75 kcal mo1-l level the most favorable interactions between 
the free pocket D and a methyl probe. Complementary peptide side chains were fitted a posteriori to the 
energy contour map from the crystal structure of HLA-B27-bound nonapeptide (isoleucine, blue; 
homophenylalanine, red). 

Table 1. Sequence of non-natural HLA-B27 ligands derived from two bacterial nonapeptides‘ 

Peptide no. Peptide sequence Symbol 

Lys-Arg Xaa Ile- Asp-Lys- Ala- Ala-Lys 
Gly” A 

HPa 
Leu v 

Ana 0 
Bna rn 

Gln-Arg-Leu ~ Spacer __ Lys 
Lys-Glu-Ala-Ala-Glub 

Aba- Abs- Aha 
Aha-Aha 

Gly-Gly-Gly-Gly-Gly 

a Chlamydia trachomatis groEl 117-125 [14]. 
Escherichia coli dnaK 220-228. 
Hpa = Homophenylalanine; Ana = a-Naphthylalanine; Bna = B-Naphthylalanine; 
Aba = 4-Aminobutyrie acid; Aha = 6-Aminohexanoic acid. 



5 Example for the Modeling of Protein-Ligand Complexes 

16 

Peptide Position 

I 1  I 1 I I I I I I 

P1 P2 P3 P4 P5 P6 P7 P8 P9 

Peptide Position 

a 

b 

Figure 2. Atomic properties of HLA-B27-bound nonapeptides 1-5 simulated by 150 ps molecular dynamics 
simulation on solvated MHC-peptide pairs. a) Buried surface areas of HLA-B27-bound peptides,calculated 
from relaxed time-averaged conformations. b) Rms atomic fluctuations averaged per peptide residue over 
all atoms and calculated from time-averaged conformations. Symbols used explained in Table 1. 
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the binding pockets at the N- and C-termini. As expected the middle part of the ligand 
(residues 4-7) shows low buried surface areas. Insofar, the picture closely resembles the 
normal situation. A striking difference occurs at position 3 of the ligand, corresponding to 
pocket D. Correlated with the size of the residues the buried surface increases significantly up 
to 140 11’. By comparison the native glycine at position 3 is less than 10 A’.Thus, the analysis 
of the surface areas directly reflects the GRID calculations and the expectations arising from 
the calculations, that the non-natural side chains, as do the naphthyl derivatives, should be able 
to fill and stabilize binding at pocket D better than the native residue. 

A very similar situation results from the analysis of the atomic fluctuations. As expected 
lowest fluctuations are found for anchor positions 1,2, and 9. High mobility occurs at positions 
4-7, representing the part of the peptide ligand pointing to the solvent or the T-cell receptor, 
respectively. At position 3, however, a clear discrimination is again possible between the 
native and the new, synthetic ligands. Atomic fluctuations at position 3 are strictly related to 
the size of the residue and hence to the number and strength of interactions to pocket D 
(Fig.2(b)). Again, the most flexible ligand is the parent peptide having a glycine at position 3. 
In contrast, naphthylalanine residues restrain the whole peptide in its mobility by their tight 
binding to pocket D.Therefore, our prediction was to expect higher affinity for ligands bearing 
non-natural side chains in position 3. Those side chains should have aromatic/hydrophobic 
properties for optimal interaction with the residues that comprise the walls of the binding 
pocket in the MHC molecule. 

5.5.2 Experimental Validation of the Designed Ligands 

In order to prove the model, all five isomers have been synthesized and purified [14]. The 
binding assay was based on an immuno reaction. Antibodies raised against the MHC- 
protein-ligand complex are able to recognize the geometry of polypeptide chain that makes 
up the active site. As it has been shown experimentally (see earlier), MHC molecules fold up 
in the presence of a ligand. Therefore, non-binding ligands should lead to a significantly 
reduced number of correctly folded active sites to be recognized by the antibodies. Those 
conformation-specific antibodies could be produced and shown to be effective in the present 
case [14,15]. In this assay the non-natural peptides showed a significant increase in binding, 
reaching the levels of native high-affinity binders like GROE lfrom bacteria [14]. 

So far, the experimental data fully supported the hypothesis that had been derived from 
theoretical studies. It should be noted, however, that this success is only a small part of the 
whole story. Detailed inspection of the experimental results reveals that glycine and leucine 
at position 3 have equivalent binding affinities. They were predicted, however, to interact 
differently with pocket D. The reason for the underestimation of the glycine interaction are 
several. On one hand, the model does not represent the complete situation of T-cell 
receptor-MHC interaction; on the other, entropic contributions are omitted from the force 
field calculations.They may nevertheless contribute significantly to the binding of the residues 
to MHC. The higher conformational flexibility may in this case compensate entropically for 
the lack of van der Waals interactions. 
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5.6 Summary and Conclusion 

The description of the properties of the ligand-protein complex was the central point in this 
chapter. By carefully applying theoretical tools such as solvent-accessible surface calculation 
or consideration of atomic fluctuation, a detailed picture of the protein-ligand interaction 
could be established. It is important to note, that the static inspection of a model that emerged 
from homology modeling is not sufficient to derive a conclusion for the design of new ligands. 
Molecular dynamics simulation of the complexes of several ligands, in only a fully solvated 
environment, identified the important anchor positions or parts of the molecule that could be 
neglected for binding optimizations. 

In our view this reflects a general problem.Very often only the crystal structure is taken as 
sufficient for the design of new ligands. In contrast, we found it very useful to carry out 
extensive and time-consuming molecular dynamics simulations in a fully solvated state, as only 
these calculations revealed the further binding details that ultimately were important for the 
design. Moreover, only the molecular dynamics simulations provided tools as atomic mobility 
studies, that allowed an estimation of the binding abilities of the new ligands to be made. 
Interaction energies were found instead to be much less significant for judging the designed 
ligands. 

It should be pointed out that the experiments supported the hypotheses derived from the 
models and that the whole study was completely prospective, both in the mechanistic 
interpretation and the design step. From our viewpoint this shows the power of structure-based 
design and its ability to produce optimized or even entirely new ligands. Our recent studies 
show that protein-ligand complexes, established by homology modeling can be used 
successfully to introduce non-peptidic parts into peptide ligands, or even to create heterocyclic 
non-peptidic ligands using de novo design procedures. 
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Appendix k Program IXGROS 

I* ixgros 2.0*1 
/* (c) 1993 W. Sippl *I 

#include <stdio.h> 
#include <stdlib.h> 

#define TRUE 1 
#define FALSE 0 

#ifndef EXIT-FAILURE 
#define EXIT-FAILURE -1 
#endif 

#define LOADMODE 0 
#define SAVEMODE 1 

typedef int boolean; 

typedef struct ( 
FILE *file; 
int nbonds,nrings; 
short flag; 
short *oldtuple; 
boolean energies,first-data,first-rbond,first-ring ; 

] AFILE; 

typedef struct { 
int tuple[lS]; 
float energy; 

} cnfrow; 
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typedef struct [ 
int al,a2,a3,a4; 
int incr,rbid; 
float refangle; 

] rotbond; 

I* PROTOS *I 

AFILE* SRCH-AFILE-OPEN(char*,int); 
boolean SRCH-AFILE-CLOSE (AFILE*); 
boolean SRCH-AFILE-READ-HEADER(AFILE*, boolean*, int*,int*,int*, char*); 
boolean SRCH-AFILE-WRITE-HEADER(AFILE*, boolean, int,int,int, char*); 
boolean SRCH-AFILE-READ-DATA(AFILE*,int*,float*); 
boolean SRCH-AFILE-WRITE-DATA( AFILE*,int*,double); 
boolean SRCH_AFILE_READ_RBOND(AFILE*,int*,int*,int*,int*,int*,int*,float*); 
boolean SRCH-AFILE_WRITE_RBOND(AFILE*,int*,int*,int*,int*,int*,int*,float*); 

boolean TestRange(int,int); 
void FindNeighbours(); 

I* END OF PROTOS *I 

/*declaration of variables*/ 

AFILE *infile; I* .ANG-input file */ 
AFILE *outfile; I* .ANG-output file *I 
FILE *asciiout; I* ASCI file *I 

boolean has-energy; /* energies *I 
int numbonds, I* number of rotable bonds *I 
numrings, I* number of rings *I 
numconfs; I* number of conformations *I 

int mincnt=0; I* number of minima */ 

char molname[20]; I* molecule name *I 

rotbond RB[10]; I* arrays for rotable bonds */ 

cnfrow *conformations; 
int i,count; 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* find neighbours * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

boolean TestRange(int ref, int num) 
I 

boolean isin=FALSE; 
int testwert=O, 

localrefl=O, 
1 ocalreE=O, 

cnt=0; 

for (cnt=O;cnt<numbonds;cnt++) 
( 

testwert = conformations[num].tuple[cnt]; 

localrefl = conformations[ref].tuple[cnt] + RB[cnt].incr; 
localref2 = conformations[ref].tuple[cnt] - RB[cnt].incr ; 

isin = (testwert <= localrefl) && (testwert >= localref2); 

if (isin==FALSE) 
{ 

I 

I 

( 

I 

if (localrefl >= 360) 

testwert=testwert+360; 

if (localref2 <= 0) 

testwert=testwert-360; 

isin = (testwert <= localrefl) && (testwert >= localref2); 
if (isin==FALSE) 

return FALSE; 
( 

I 
I 

I 
return isin; 

I 
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void FindNeighboursO 
{ 

signed int i,TestKandidat,Referenz; 
boolean minfound=TRUE; 
double tmpreal=O.O; 

for(Referenz=O;Referenz<numconfs;Referenz++) ( 
minfound =TRUE; 

for(TestKandidat=Qminfound && (TestKandidat<numconfs);TestKandidat++) ( 

if (TestRange(Referenz,TestKandidat)==TRUE) { 
if (conformations[TestKandidat].energy < conformations[Referenz].energy) { 

minfound = FALSE; 
I 

I 
I 

if (minfound==TRUE) ( 
tmpreal = conformations[Referenz].energy ; 
SRCH~AFILE~WRI~~DATA(outf~e,&conformations[Referenz].tuple[O],tmpreal); 
mincnt=mincnt+l; 

fprintf (asciiout ,"% -Sd",mincnt); 

fprintf(asciiout,"KNum: % -6d ,,,Referenz+l); 

for(i=O;i<numbonds;i++) ( 
fprintf(asciiout," YO 3d ,,,conformations[Referenz].tuple[i]); 
1 

fprintf(asciiout," % fln",conformations[Referenz].energy); 
1 

I 
I 
/* main program *I 
int main(int argc, char *argv[]) 
1 

int i; 
char anginname[50], 
angoutname[50], 
ascout name [ 501; 

if (argc ! = 2 )  
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{ 
printf(,,Usage: YO s [filename]\n",argv[O]); 
puts(,,Copyright (c) 1993 W. Sippl"); 
exit(EX1T-FAILURE); 

I 
strcpy(anginname,argv[ 11); 
strcpy(angoutname,argv[l]); 
strcpy(ascoutname,argv[l]); 
asciiout = fopen(strcat( ascoutname,"-fam.asc"),"w"); 
if (asciiout==NULL) 
{ 

printf(,,Cannot open output file YO s .\n",strcat(argv[l],"-fam.asc")); 
exit (EXIT-FAILURE); 

I 
fprintf(asciiout,"\nixgros 2.0\nCopyright (c) 1993 W. Sippl\n\n"); 
fprintf(asciiout,"Filename: YO s\n",argv[l]); 

infile = SRCH-AFILE-OPEN(strcat( anginname,".ang"),LOADMODE); 
if (infile==NULL) 
{ 

printf(,,Cannot open input file %s.\n",strcat(argv[l],".ang")); 
exit(EX1T-FAILURE); 

I 

outfile = SRCH-AFILE-OPEN(strcat( angoutname,"-fam.ang"),SAVEMODE); 
if (outfile==NULL) 
{ 

printf(,,Cannot open output file YO s.\n",strcat(argv[l],"-fam.ang")); 
exit(EX1T-FAILURE); 

1 
if 

(SRCH-AFILE-READ-HEADER(infile,&has-energy,&numbond~&nu~ng~&num~nf~ 
molname)) 

{ 
fprintf(asciiout,"numbonds = %d, numrings = %d, numconfs = %d\n", 

fprintf(asciiout,"molecule name: Yo s\n",molname); 
numbonds,numrings,numconfs) ; 

I 

{ 
else 

puts(,,Reading not possible - exit"); 
exit(EX1T-FAILURE); 

I 
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conformations = malloc(numconfs * sizeof(cnfrow)); 

for (i=O;i<numbonds;i++) 
I 
SRCH-AFILE-READ-RBOND(infile,&RB[i].al ,&RB[i].a2,&RB[i].a3,&RB [i].a4, 

&RB[i].incr,&RB[i].rbid,&RB[i].refangle); 

fprintf(asciiout,"A1-4%4d %4d %4d %4d, Incr = %4d, RefAngle = %fin'', 
RB[i].al,RB[i].a2,RB[i].a3,RB[i].a4,RB[i].incr,RB[i].refangle); 

I 

I* reading conformations * I  
for (i=O;i<numconfs;i++) 
{ 

1 
SRcH_AFILE_READ_DATA(infile,&conformations .tuple[O],&mnformations[i] .energy); 

fprintf(asciiout,"\nminima\n\n"); 
if ( ! SRcH-~LE-WRITE_HEAER(outfile,has_energy,numbon~O,~ncnt,mo~~e)) ( 

printf( ,,Cannot write header.\n"); 
I 

FindNeighboursO; 

if ( ! SRcHAFILE-WRI"E-HEADER(outfile,has-energy~umbonds,O~ncnt,molname)) { 
printf(,,Cannot write header.\n"); 

I 

if (infile!=NULL) 
1 

I 
SRCH-AFILE-CLOSE( infile); 

if (outfile!=NULL) 
I 

for(i=O;i<numbonds;i++) ( 
SRCH-AFILE-WRITE-RBOND(outfile,RB[i].al ,RB [i].a2,RB[i].a3, 

RB [i] .a4,RB [i] .incr,RB [ i] .rbid,RB [i] .refangle); 
1 

SRCH-AFILE-CLOSE(outfi1e); 

1 
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/* close ASCI file */ 
if (asciiout !=NULL) 

fclose(asciiout); 
I 

I 

if (free!=NULL) 

free(conformations); 
( 

I 

I 
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Appendix 2: Brookhaven data file of trypsin complexed 
with a benzamidine inhibitor. 

For more clarity some ATOMS (no. 11-1654) and HETATMS (no. 1680-1824) have been 
omitted. 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REYJRK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 

1 REFERENCE 2 
1 AUTH A.O.SMALAS,A.HORDVIK,L.K.HANSEN,E:HOUGH.K.JYNGE 
1 TITL CRYSTALLIZATION AND PRELIMINARY X-RAY 
1 TITL 2 CRYSTALLOGRAPHIC STUDIES OF BENZAMIDINE-INHIBITED 
1 TITL 3 TRYPSIN FROM THE NORTH ATLANTIC SALMON (SALMO 
1 TITL 4 SALAR) 
1 REF J.MOL.BIOL. V. 214 355 1990 
1 REFN ASTM JMOBAK UK ISSN 0022-2836 OD 
1 REFERENCE 3 
1 AUTH M.MARQUART,J.WALTER,J.DEISENHOFER,W.BODE,R.HUBER 
1 TITL THE GEOMETRY OF THE REACTIVE SITE AND OF THE 
1 TITL 2 PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS 
1 TITL 3 COMPLEXES WITH INHIBITORS 
1 REF ACTA CRYSTALLOGR.,SECT.B V. 39 480 1983 
1 REFN ASTM ASBSDK DK ISSN 0108-7681 62 
2 
2 RESOLUTION. 1.8 ANGSTROMS. 
3 
3 REFINEMENT. 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 

PROGRAM PROLSQ 
AUTHORS KONNERT,HENDRICKSON 
RMSD BOND DISTANCES 0.020 ANGSTROMS 
RMSD BOND ANGLE DISTANCES 0.040 ANGSTROMS 

NUMBER OF REFLECTIONS 14474 
RESOLUTION RANGE 6.0 - 1.8 ANGSTROMS 
DATA CUTOFF 3.0 SIGMA(F) 

NUMBER OF PROTEIN ATOMS 
NUMBER OF SOLVENT ATOMS 

1622 
164 

RMS DEVIATIONS FROM IDEAL VALUES (THE VALUES OF 
SIGMA, IN PARENTHESES, ARE THE INPUT ESTIMATED 
STANDARD DEVIATIONS THAT DETERMINE THE RELATIVE 
WEIGHTS OF THE CORRESPONDING RESTRAINTS) 

BOND DISTANCE 0.020 (0.011 
ANGLE DISTANCE 0.040(0.02) 
PLANAR 1-4 DISTANCE 0.046 (0.03) 

PLANE RESTRAINT (ANGSTROMS) 0.015(0.02) 
CHIRAL-CENTER RESTRAINT (ANGSTROMS**3) 0.042 (0.12) 
NON-BONDED CONTACT RESTRAINTS (ANGSTROMS) 

SINGLE TORSION CONTACT 0.172 (0.50) 
MULTIPLE TORSION CONTACT 0.321(0.50) 
POSSIBLE HYDROGEN BOND 0.221(0.50) 

PLANAR 4.( 3.0) 
STAGGERED 15.2(15.0) 
ORTHONORMAL 27.6 (20.0) 

DISTANCE RESTRAINTS (ANGSTROMS) 

CONFORMATIONAL TORSION ANGLE RESTRAINT (DEGREES) 

4 THE STRUCTURE WAS SOLVE0 AND REFINED WITH ONLY A SMALL 
4 FRACTION OF THE PRIMARY STRUCTURE KNOWN. HOWEVER, THE GENE 
4 SEQUENCE OF SALMON TRYPSIN HAS NOW BECOME AVAILABLE AND 
4 SOME DISCREPANCIES BETWEEN THIS SEQUENCE AND SEQUENCE 
4 OBTAINED FROM THE X-RAY STUDIES INDICATE THAT THE 
4 MENTIONED SEQUENCES MAY CORRESPOND TO ISO-ENZYMES. 
5 

2TBS 23 
2TBS 24 
2TBS 25 
2TBS 26 
2TBS 27 
2TBS 28 
2TBS 29 
2TBS 30 
2TBS 31 
ZTBS 32 
2TBS 33 
ZTBS 34 
ZTBS 35 
ZTBS 36 
2TBS 37 
ZTBS 38 
2TBS 39 
2TBS 40 
2TBS 41 
ZTBS 42 
2TBS 43 
2TBS 44 
2TBS 45 
2TBS 46 
2TBS 47 
2TBS 48 
2'8s 49 
ZTBS 50 
2TBS 51 
2TBS 52 
2TBS 53 
2TBS 54 
ZTBS 55 
2TBS 56 
ZTBS 57 
2TBS 58 
ZTBS 59 
2TBS 60 
2TBS 61 
2TBS 62 
2TBS 63 
ZTBS 64 
2TBS 65 
2TBS 66 
2TBS 67 
2TBS 68 
2TBS 69 
ZTBS 70 
2TBS 71 
2TBS 72 
2TBS 73 
2TBS 74 
2TBS 75 
2TBS 76 
2TBS 77 
2TBS 78 
2TBS 79 

5 THE STRUCTURE WAS SOLVED BY MOLECULAR REPLACEMENT METHODS, 2TBS 80 
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REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
REMARK 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEQRES 
SEORES 

5 USING THE MERLOT-PACKAGE (FITZGERALD, P. (1988) J.APPL. 
5 CRYST., 21, 273-278), AND THE REFINED MODEL OF 
5 BOVINE TRYPSIN AS SEARCH MODEL (PROTEIN DATA BANK, ENTRY 
5 3PTB). 
6 
6 THE CALCIUM IS ION IS BOUND IN A MANNER SIMILAR TO THAT 
6 OBSERVED IN BOVINE TRYPSIN. 
7 
7 THE AMINO ACID NUMBERING SCHEME USED IS ADOPTED FROM 
7 CHYMOTRYPSINOGEN. , 

8 
8 THIS ENTRY WAS REFINED USING A NON-STANDARD SETTING FOR 

8 OPERATORS MUST BE USED TO GENERATE CRYSTALLOGRAPHICALLY 
8 RELATED MOLECULES. 

a THE SPACE GROUP P 21 21 2 .  THE FOLLOWING SYMMETRY 

8 X, Y, Z 
8 -x, 1/2tY, -z 
8 1/2tx, -Y, -Z 
8 1/2-x, 1/2-Y, Z 
9 
9 THERE IS NO SIDE-CHAIN DENSITY BEYOND CB FOR LYS 23, 
9 ARG 62, LYS 74, TYR 97, ASN 178. 
10 
10 THERE IS NO CLEAR DENSITY FOR THE LAST THREE C-TERMINAL 
10 RESIDUES ALA 243, SER 244, TYR 245. 
11 
11 THE PRIMARY SEQUENCE OF THIS FORM OF SALMON TRYPSIN IS 
11 DEPOSITED IN THE EMBL DATA LIBRARY: ACCESSION NO. X70071. 
12 
12 PDB ADVISORY NOTICE: 
12 OH TYR 245 AND N ALA 28 HAVE VERY SHORT CONTACTS WITH 
12 WATER MOLECULES 388 AND 418 RESPECTIVELY. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
11 

SEQRES 18 
HET BEN 
HET CA 
FORMUL 2 
FORMUL 3 

2 2 2  
2 2 2  
2 2 2  
2 2 2  
222 
222 
2 2 2  
222 
222 
2 2 2  
222 
222 
222 
222 
222 
222 
222 
222 
246 
247 

BEN 
CA 

ILE VAL GLY GLY TYR GLU CYS LYS ALA TYR SER GLN ALA 
HIS GLN VAL SER LEU ASN SER GLY TYR HIS PHE CYS GLY 
GLY SER LEU VAL ASN GLU ASN TRP VAL VAL SER ALA ALA 
HIS CYS TYR LYS SER ARG VAL GLU VAL ARG LEU GLY GLU 
HIS ASN ILE LYS VAL THR GLU GLY SER GLU GLN PHE ILE 
SER SER SER ARG VAL ILE ARG HIS PRO ASN TYR SER SER 
TYR ASN ILE ASP ASN ASP ILE MET LEU ILE LYS LEU SER 
LYS PRO ALA THR LEU ASN THR TYR VAL GLN PRO VAL ALA 
LEU PRO THR SER CYS ALA PRO ALA GLY THR MET CYS THR 
VAL SER GLY TRP GLY ASN THR MET SER SER THR ALA ASP 
SER ASP LYS LEU GLN CYS LEU ASN ILE PRO ILE LEU SER 
TYR SER ASP CYS ASN ASP SER TYR PRO GLY MET ILE THR 
ASN ALA MET PHE CYS ALA GLY TYR LEU GLU GLY GLY LYS 
ASP SER CYS GLN GLY ASP SER GLY GLY PRO VAL VAL CYS 
ASN GLY GLU LEU GLN GLY VAL VAL SER TRP GLY TYR GLY 
CYS ALA GLU PRO GLY ASN PRO GLY VAL TYR ALA LYS VAL 
CYS ILE PHE SER ASP TRP LEU THR SER THR MET ALA SER 
TYR 

9 BENZAMIDINE INHIBITOR 
1 CALCIUM t2 COUNTER ION 

C7 H8 N 2  
CA1 

FORMUL 
SSBOND 
SSBOND 
SSBOND 
SSBOND 
SSBOND 
SSBOND 
CRYSTl 
ORIGXl 
ORIGX2 
ORIGX3 
SCALE1 

4 HOH *164(H2 01) 
1 CYS 22 CYS 
2 CYS 4 2  CYS 
3 CYS 128 CYS 
4 CYS 136 CYS 
5 CYS 168 CYS 
6 CYS 191 CYS 
61.950 84.330 39.1 

1.000000 0.000000 
0.000000 1.000000 
0.000000 0.000000 
0.016142 0.000000 

157 
58 

232  
201 
182 
220 

0.000000 0.00000 
0.000000 0.00000 
1.000000 0.00000 
0.000000 0.00000 

. 1 0  90.00 90.00 90.00 P 2 !I 21 2 4 

2TBS 81 
2TBS 82 
2TBS 83 
2TBS 84 
2TBS 85 
2TBS 86 
ZTBS 87 
ZTBS 88 
2TBS 89 
2TBS 90 
2TBS 91 
2TBS 92 
2TBS 93 
ZTBS 94 
ZTBS 95 
ZTBS 96 
2TBS 97 
2TBS 98 
2TBS 99 
2TBS 100 
2TBS 101 
ZTBS 102 
2TBS 103 
ZTBS 104 
2TBS 105 
2TBS 106 
ZTBS 107 
2TBS 108 
2TBS 109 
2TBS 110 
2TBS 111 
2TBS 112 
ZTBS 113 
ZTBS 114 
ZTBS 115 
ZTBS 116 
2TBS 117 

ZTBS 119 
ZTBS 120 
ZTBS 121 
2TBS 122 
2TBS 123 
2TBS 124 
2TBS 1 2 5  
2TBS 126 
ZTBS 127 
2TBS 128 
2TBS 129 
ZTBS 130 
2TBS 131 
2TBS 132 
2TBS 133 
2TBS 134 
ZTBS 135 
ZTBS 136 
2TBS 137 
2TBS 138 
2TBS 139 
ZTBS 140 
ZTBS 141 
2TBS 142 
2TBS 143 
2TBS 144 
2TBS 145 
2TBS 146 

ZTBS iia 

SCALE2 0.000000 0.011858 0.000000 0.00000 2TBS 147 
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SCALE3 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 
ATOM 

ATOM 
ATOM 
ATOM 
ATOM 
ATOM 

Appendix 

0.000000 
1 N ILE 
2 CA ILE 
3 C ILE 
4 0 ILE 
5 CB ILE 
6 CG1 ILE 
7 CG2 ILE 
8 CD1 ILE 
9 N VAL 
10 CA VAL 

1655 CD2 TYR 
1656 CE1 TYR 
1657 CE2 TYR 
1658 CZ TYR 
1659 OH TYR 

TER 1660 
HETATM 1661 
HETATM 1662 
HETATM 1663 
HETATM 1664 
HETATM 1665 
HETATM 1666 
HETATM 1667 
HETATM 1668 
HETATM 1669 
HETATM 1670 
HETATM 1671 
HETATM 1672 
HETATM 1673 
HETATM 1674 
HETATM 1675 
HETATM 1676 
HETATM 1677 
HETATM 1678 
HETATM 1679 
HETATM 1680 

HETATM 1825 
HETATM 1826 
HETATM 1827 
HETATM 1828 
HETATM 1829 
HETATM 1830 
HETATM 1831 
HETATM 1832 
HETATM 1833 
HETATM 1834 
CONECT 50 
CONECT 193 

TY R 
C1 BEN 
C2 BEN 
C3 BEN 
C4 BEN 
C5 BEN 
C6 BEN 
C7 BEN 
N1 BEN 
N2 BEN 
CA CA 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 

0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
0 HOH 
49 1033 
192 307 

CONECT 
CONECT 
CONECT 
CONECT 
CONECT 
CONECT 
CONECT 
CONECT 

307 193 306 
399 398 1670 
439 438 1670 
457 456 1670 
848 847 1553 
890 889 1361 
1033 50 1032 
ill8 1117 1224 

16 
16 
16 
16 
16 
16 
16 
16 
17 
17 

245 
245 
245 
245 
245 
245 
246 
246 
246 
246 
246 
246 
246 
246 
246 
247 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 

455 
456 
457 
458 
459 
460 
461 
462 
463 
464 

0.000000 0.025569 0.00000 
29.847 42.460 26.572 1.00 8.08 
29.126 
29.929 
30.273 
27.690 
26.845 
26.956 
26.415 
30.198 
30.956 

43.406 
43.832 
43.035 
42.882 
42.492 
43.882 
43.592 
45.162 
45.745 

27.446 
28.670 
29.550 
27.913 
26.687 
28.864 
25.702 
28.721 
29.835 

1.00 13.82 
1.00 17.40 
1.00 9.27 
1.00 10.91 
1.00 8.97 
1.00 9.09 
1.00 13.04 
1.00 12.26 
1.00 11.31 

14.549 34.212 -4.417 0.00 20.00 
11.808 33.996 -4.911 0.00 20.00 
14.087 33.477 -5.520 0.00 20.00 
12.715 33.368 -5.765 0.00 20.00 
12.259 32.653 -6.831 0.00 20.00 

31.488 
32.812 
33.111 
32.216 
30.913 
30.513 
31.077 
29.800 
31.893 
24.994 
26.953 
30.850 
26.187 
30.555 
33.910 
24.418 
23,257 
20.708 
17.357 
24.170 

11.191 
16.546 
14.102 
32.772 
38.365 
36.179 
14.492 
25.637 
19.274 
19.470 

48.310 
48.214 
47.223 
46.350 
46.593 
47.518 
49.169 
49.347 
49.980 
25.960 
44.930 
53.755 
50.990 
56.524 
53.136 
47.260 
61.631 
58.939 
31.529 
50.899 

21.819 
63.660 
61.389 
34.783 
44.015 
39.288 
20.990 
19.443 
65.428 
32.777 

20.312 
19.951 
18.971 
18.252 
18.786 
19.788 
21.257 
21.673 
21.938 
26.418 
36.915 
25.931 
24.323 
25.932 
24.036 
34.811 
9.074 
15.604 
24.895 
10.058 

22.927 
20.602 
19.146 
25.141 
25.187 
21.439 
4.683 
16.555 
18.101 
24.901 

1.00 20.30 
1.00 19.75 
1.00 22.63 
1.00 20.35 
1.00 14.49 
1.00 25.62 
1.00 19.02 
1.00 8.66 
1.00 9.08 
1.00 16.33 
1.00 43.47 
1.00 15.22 
1.00 5.60 
1.00 28.23 
1.00 9.45 
1.00 23.51 
1.00 50.82 
1.00 28.53 
1.00 24.87 
1.00 9.00 

1.00 32.44 
1.00 33.22 
1.00 39.14 
1.00 30.84 
1.00 56.33 
1.00 41.13 
1.00 61.09 
1.00 64.61 
1.00 22.16 
1.00 17.10 

2TBS 148 
ZTBS 149 
2TBS 150 
ZTBS 151 
ZTBS 152 
2TBS 153 
2TBS 154 
ZTBS 155 
2TBS 156 
2TBS 157 
2TBS 158 

ZTBS 18 03 
2TBS1804 
2TBS18 05 
2TBS1806 
2TBS1807 
2TBSl8 0 8 
2TBS 18 0 9 
2TBS18 10 
2TBS1811 
ZTBS 18 12 
2TBS1813 
2TBS1814 
2TBS18 15 
2TBS1816 
2TBS 18 17 
2TBS 18 18 
2TBS18 19 
2TBS1820 
2TBS18 2 1 
2TBS18 2 2 
2TBS1823 
2TBS1824 
2TBS1825 
2TBSl82 6 
2TBS1827 
2 TBS 18 2 8 

2TBSl97 3 
2TBS19 7 4 
2TBS1975 
2TBSl976 
2TBSl977 
2TBS19 7 8 
2TBS1979 
2TBS1980 
2TBS198 1 
2TBS1982 
2TBS19 83 
2TBSl9 8 4 
2TBS1985 
2TBS19 86 
2TBS1987 
2TBS1988 
2TBSl9 89 
2TBSl9 90 
2TBS19 9 1 
2TBS19 92 
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CONECT 1224 1118 1223 
CONECT 1299 1298 1463 
CONECT 1361 890 1360 
CONECT 1463 1299 1462 
CONECT 1553 848 1552 
CONECT 1661 1662 1666 1667 
CONECT 1662 1661 1663 
CONECT 1663 1662 1664 
CONECT 1664 1663 1665 
CONECT 1665 1664 1666 
CONECT 1666 1661 1665 
CONECT 1667 1661 1668 1669 
CONECT 1668 1667 
CONECT 1669 1667 
CONECT 1670 399 439 457 
END 

2TBS 19 9 3 
2TBS 1994 
2TBS1995 
2TBS 19 9 6 
2TBS 19 9 7 
2TBS 19 9 8 
2TBS1999 
2TBS2 0 0 0 
2TBS2 0 0 1 
2TBS2 002 
2TBS2 0 0 3 
2TBS2004 
2TBS2005 
2TBS2 0 0 6 
2TBS2 0 07 
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repulsion forces 46 
repulsive term coefficient 14 
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-of crystal structures 116 
reverse turns 101 
rheumatoid arthritis 149 
right-handed a-helix 84 
rigid body motions 146 
rigid body superposition 122 
rigid compounds 26.56 
rigid molecules 159 
ring 
- interconversion 34 
- inversion barriers 33 
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- gradient 
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rotatable bond 25,29,30,111 
rules for the folding of proteins 
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SEARCH module 26 
search query 62 
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Investigation of Individual Molecular Structures 

The goal of molecular modeling was originally to build, visualize and compare 3D structures 
of new compounds or known lead structures with defined modifications. Therefore, Tripos 
software development started in 1979 with tools to sketch, display, rotate and manipulate 
molecules on the computer screen. Since that time, the sophistication of the software has 
increased and SYBYL now contains a broad range of tools for investigating the geometric, 
electronic and conformational structure of molecules. 

Several levels for geometry optimization to cover a broad range of molecule classes are 
provided using molecular mechanics including the Tripos general force field, Amber version 
4.0, MM2, MM3, or using semiempirical (for example AM1 and PM3) and ab initio quantum 
chemical methods via interfaces from Sybyl to programs such as MOPAC, ZINDO and 
Gaussian. Geometrical comparisons of two or more structures can be done by a rigid-body fit 
or flexible superposition (MULTIFIT). 

Structures can also be retrieved from several frequently used structural databases such as 
the Brookhaven Protein Database (PDB), the Cambridge Crystallographic Database or MDL 
databases. Crystal structure data (fractional coordinates and unit cell dimensions) as well as 
different NMR raw data formats are readable and processable. If a database contains only 2D 
connectivity information, CONCORD rapidly generates 3D structures with one low-energy 
conformation per compound using a combination of knowledge-based and energy 
minimization approaches. 

To further explore the conformational space that is occupied by a given molecule, different 
conformational searching techniques like Random Search, Grid Search and Systematic Search 
or a MOLECULAR DYNAMICS simulation (for example using Simulated Annealing with 
or without explicit solvation) can be applied. 

Determining the charge distribution is an important step in modeling the intermolecular 
and intramolecular electrostatic interactions or in structure comparisons. Sybyl provides a 
range of methods including simple atomic charge estimation methods like the 
Gasteiger-Marsili approach and quantum chemical methods which can be used to compute 
the electronic structure of a set of molecules or may be chosen to calculate selected descriptors 
for molecular similarity or for structure-activity relationship investigations. 

A wide range of properties such as electrostatics, hydrophobicity, hydrogen-bonding 
potentials and other local properties of a molecule and their subsequent fields can be 
calculated. Additionally, molecular volume and surfaces may be displayed and the various 
properties can be mapped onto molecular surfaces by color coding (MOLCAD). 

As the field of molecular modeling has matured, there has been an increased demand for 
customization of methods, commands and menus to address the needs of individual 
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researchers and project areas. Tripos has responded to this important request by providing a 
powerful Sybyl Programming Language (SPL) and by allowing to use customized force fields 
within the Force Field Engine (FFE). The FORCE FIELD ENGINE allows users to switch 
easily between different force fields (Tripos force field, Amber, MM2). More importantly, the 
FFE enables researchers to design and implement new or preferred specialized force fields 
without having to change and recompile any source code. Using FFE, force fields can be 
modified to include new energy terms and parameters. SPL is a flexible programming language 
that allows to implement new algorithms, create interfaces to external programs, and generally 
expand and customize the Sybyl environment to individual research needs. A large library of 
user-generated SPL applications and routines is available via the world-wide web. SPL is a 
major contributor to the open-system architecture of Sybyl and the high level of user flexibility 
available within this comprehensive and integrated software package. 

Pharmacophore Identification in Absence of a 3D Protein Structure 

Within pharmaceutical drug design, there is often little or no knowledge of the 3D structure 
of the target receptor. Therefore, chemists use the geometrical and electronic structure of 
compounds with known activity to intuitively define a working model of how the ligand 
interacts with its receptor or to develop simple structure-activity relationships based, for 
example, on a net charge required at a given location or on a required intramolecular atomic 
distance. 

Several computational approaches are available to systematically compare molecular 
features and extract valuable information from a broad range of ligand data to describe aspects 
of the binding mechanism to the unknown active site of the target protein. 

A first step in this direction might be to determine and display the common molecular 
volume of superimposed active compounds or the difference volume of inactive versus active 
compounds. 

For a series of molecules that bind to a common active site, conformations can be identified 
which place the key atoms in the same or similar relative orientation. If these key atoms are 
obvious or known, the fast constrained conformational searching in RECEPTOR or the 
overlapping distance-based conformational space in the ACTIVE ANALOG APPROACH 
directly determines the bioactive conformations of each molecule in the data set. 

When the key pharmacophoric centers are not obvious, the clique detection algorithm 
implemented in DISCO (DIStance COmparison) or the genetic algorithm provided with 
GASP (Genetic Algorithm Similarity Program) can generate both the aligned conformations 
of each compound and the models for the 3D pharmacophore - the spatial arrangement of 
key features shared by all active compounds.The GASP program represents an example for 
modern cross-platform access (for example Unix, IBM-PC, Macintosh) and for sharing 
information based on Web technology using the Internet and Intranets. 

Another well-established approach to compare molecular properties and to determine 
their influence on the biological potency is QSAR (Quantitative Structure-Activity 
Relationships). The QSAR and the Molecular Spreadsheet functionality in Sybyl allow 
chemists to establish models using 2D or 3D structures. In classical 2D-QSAR analyses, either 
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(i) substituents or substructural units are assigned a constant contribution to the overall 
activity of a molecule (Free-Wilson, Fujita-Ban type) or (ii) physico-chemical (hydrophobic, 
steric, electrostatic) descriptors are used to find a correlation with the bioactivity (Hansch 
type). The presence of substructures can easily be detected by using the flexible SLN (Sybyl 
Line Notation) and a series of descriptor metrics for Hansch-type analyses can be computed 
by means of HDISQ (electro-topological state, Kier-Hall connectivity, E state, shape, 
symmetry indices etc.), CLOGP, CMR or Rekker’s logP hydrophobic fragmental constant 
scheme or by using other property calculation techniques from the different Sybyl modules. 
The MOLECULAR SPREADSHEET unites the results of applications from different 
molecular research components and is central to all kinds of molecular analyses and is capable 
of extracting relevant information from the bulk of molecular data. It offers a unique frame- 
work for accessing, manipulating, combining and storing molecular property information 
tightly cross-linked with interactive graphs, visualization and computation capabilities. Also 
from the Molecular Spreadsheet, all the statistical analysis methods including the PLS (Partial 
Least Squares) method, factor analysis or clustering techniques are applicable to any data set. 

Unlike 2D-QSAR, the CoMFA (Comparative Molecular Field Analysis) method directly 
takes the 3D molecular structures into account. Steric and electrostatic fields are calculated 
for the superimposed bioactive conformation of each molecule in the data set. The variance 
in these field data is used to explain the variance in the activity data by means of PLS and cross- 
validation statistics. The molecular regions that contribute most to the activity variations can 
be identified and give an indication of the pharmacophoric features. In addition, the predictive 
power of the QSAR correlations can be used to estimate the bioactivity of new compounds 
and to guide the modifications and refinements of existing structures to obtain a better activity 
profile. 

The ADVANCED CoMFA module offers an automated routine for lead structure 
refinement as well as an interface to the fast SAMPLS program, new molecular field classes, 
or region focusing which enhances the signal-to-noise ratio in CoMFA models. Additionally, 
the GOLPE (Generating Optimal Linear PLS Estimators) program can be used to 
complement the CoMFA technology. GOLPE is a procedure based on an advanced 
chemometric method to establish optimal regression models for highly reliable predictions by 
using variable selection criteria. 

As part of the rational drug design process, QSAR models are used to rank candidates for 
chemical synthesis and biological testing, to develop an understanding of the binding mode to 
proteins, as starting point for database mining, and to enhance the desired activity of a lead 
compound, once it has been identified. 

3D Protein Structures, Ligand Binding and Biopolymer Modeling 

The development of X-ray crystallographic and NMR techniques to determine an increasing 
number of protein structures has been important for the computerized drug design. 
Experimental 3D structures of proteins provide reliable information about the active site, the 
binding mode of ligands and can, therefore, serve as basis for a variety of receptor-based drug 
design approaches on the computer. Sybyl provides an environment for the general modeling 
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and advanced design of biological molecules including proteins, peptides, nucleic acids, 
carbohydrates and lipids within the BIOPOLYMER module. In addition, a spreadsheet-based 
comparison and analysis of protein structures using well-established criteria as useful 
descriptors of local conformation, secondary structure and topological folds, solvent 
accessibility etc. can be performed with PRO-TABLE. 

Protein structure determination can be accomplished using the TRIAD module within 
Sybyl for NMR data processing, bookkeeping, visualization, analysis of multi-dimensional 
spectral data and to extract structural information. CAPRI (Computer Assisted Peak 
Resonance Identification) quickly identifies spin coupling networks of proton NMR 
resonances and accurately assigns them to protons in the corresponding molecular structure. 
MARDIGRAS calculates a set of accurate distances from observed 2D NOE cross-peak 
intensities. DIANA (DIstance geometry Algorithm for Nmr Applications) determines 
conformations of biopolymers consistent with NMR measurements translated into distance 
and torsion constraints. 

If only the sequence but no NMR or X-ray structure is available for a particular protein, 
homology modeling with COMPOSER generates a model structure based on the assumption 
that similar folding pattern exist for all members of a given protein family. Part of the tertiary 
folding pattern, the SCRs (Structurally Conserved Regions), is common to all of these 
homologs whereas loops as SVRs (Structurally Variable Regions) connect the SCRs. 
COMPOSER identifies the SCRs, determines the location of the SCRs in the target sequence, 
models the backbone of each SCR and constructs sidechains and SVRs by using established 
rules, protein homolog structures and database information. A different and complementary 
approach to predict a 3D protein model structure starting with its amino acid sequence is 
provided by the inverse protein folding algorithm in MATCHMAKER. A pseudo-energy 
function is used to describe the relationship between the amino acid sequence and the 3D 
protein structure and can be applied (i) to find all sequences compatible with a given 3D 
structure (all database sequences are threaded through a given fold) or (ii) by using a 3D 
structure database to find those 3D structures that fit a given sequence best. 

Once a receptor structure is available, interactive DOCKING of a particular ligand under 
visual control with real-time energy feedback might be the first approach to get an idea about 
how well the ligand fits into the receptor cavity with respect to steric and electrostatic 
complementarity. 

Alternatively, the de n o w  design program LEAPFROG builds ligand candidates that fit 
optimally into a rigid receptor cavity. First, potential interaction site points are created based 
on the 3D structure of the active site, then putative ligands or fragments are randomly 
retrieved from a fragment library and placed inside the active site to match site points and link 
existing ligand substructures. Movements of a given ligand candidate within the cavity are 
taken into account. The quality of the ligand-to-site fit is evaluated based on the computed 
binding energy. Portions of the ligand with non-optimal fit are modified and refined until an 
optimal binding is found with respect to steric, electrostatic and hydrophobic contributions. 
Considering the variety of possible fragments and their combinations in the iterative 
refinement process, LEAPFROG is able to propose new lead structures and to improve initial 
leads. 
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Database Mining and Lead Compound Discovery 

To identify a new lead structure, a broad selection of compounds from different molecule 
classes is typically tested. High-throughput screening (HTS) has dramatically increased the 
number of compounds that can be screened in a given time. Considering the large number of 
available and potential compounds and the limited resources of every company, the need of 
useful and efficient compound selection techniques is evident. Depending on the available 
information, there are three general ways in which computers can assist in selecting 
compounds from one or more databases or libraries: pharmacophore searching, receptor- 
based searching and molecular diversity selection. 

The 3D pharmacophore, as the structural prerequisite for each active compound, is often 
represented by individual functional groups and their relative orientation to each other 
encoded in a set of interatomic distance constraints. Once determined, a 3D pharmacophore 
model can be used for a UNITY substructure search through an electronic database of 3D 
structures. During this pharmacophore search, the conformational flexibility of the structures 
in the database is taken into account using the fast directed tweak method (minimization in 
torsional space). This allows UNITY to identify all new lead candidate structures which are 
able to adopt the pharmacophore geometry, independent of whether the bioactive 
conformation is stored in the 3D database or not. Beyond flexible 3D substructure searching, 
UNITY allows fast 2D substructure and exact-match searching, non-structural data searching 
in relational databases (biological and physico-chemical data), similarity searching and offers 
very flexible query definitions (Markush atom definitions including nesting). 

A known 3D receptor structure can be used to search a database for molecules which might 
bind into the receptor cavity. The steric, hydrophobic and electronic complementarity can be 
investigated by computing the binding energy of all potential ligands Using UNITY integrated 
in Sybyl for receptor-based searching, a query can be created where active-site locations 
occupied by receptor atoms and, therefore, not accessible to ligand atoms, are taken into 
account as excluded volume. This query definition is then used by UNITY to search for 
molecules which could fit into the receptor pocket. Any pharmacophore information can also 
be included in this receptor-based database mining. 

In the absence of any 3D structural information about the pharmacophore or the receptor 
binding site, a careful selection of compounds to be screened should cover a broad range of 
structurally diverse molecules and, thus, increase the screening hit rate. To assist in high- 
throughput chemistry and screening,Tripos provides a software package called the Molecular 
Diversity Manager (MDM) for the design of compound libraries with optimal diversity and 
molecular diversity selections. MDM consists of several components: LEGION is used to 
create and store virtual combinatorial libraries based on reactants or on a core product 
molecule. LEGION handles possible complexities such as multiple attachment points or 
nested and merged substitutions. SELECTOR is used to calculate appropriate descriptor 
metrics and subsequently select a diverse compound subset. A variety of metrics such as 2D 
fingerprints, logP, HDISQ, molecular fields and pharmacophoric triplets can be computed and 
then used in compound library selection, refinement and optimization. DIVERSE 
SOLUTIONS provides distance-based algorithms and a novel cell-based selection technique 
including the novel BCUT descriptor values. The cell-based approach allows fast selections 
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from large databases comprising hundreds of thousands of structures. It will also identify 
under-represented or empty diversity regions (voids) in a given compound library and can 
assist in filling these diversity voids with compounds from other existing databases. 

A screening library with broad molecular diversity and undefined structural objectives for 
initial lead structure generation is available with the OPTIVERSE COMPOUND LIBRARY. 
This library was designed by applying Tripos’ proprietary technology, synthesized in 
cooperation with Panlabs, Inc., and contains nearly one hundred thousand of chemical 
substances in 96-well microtiter plates with a single compound per well. In addition to 
molecular diversity, selections of reactants and products are based on stability, chemical 
reactivity, reaction yield, toxicity, hydrophobicity, molecular weight and other criteria. Every 
new compound adds different structural information, avoiding redundancy and holes in the 
molecular diversity space. 

This library also forms one basis of the new-compound discovery service that Tripos offers 
based on its pre-eminent position and broad expertise in the application of computer 
technology to molecular discovery. The value-added research service capitalizes on 

(i) the SYBYL package providing an integrated science, analysis and chemical information 
software for modern network architectures supporting a distributed computing and graphics 
environment, and 

(ii) TRIPOS’ experience in using these software tools, for example, in rational drug design, 
molecular information analysis, proprietary design strategies for both lead-discovery and 
lead-refinement libraries. 

TRIPOS GmbH, Martin Kollar-Str. 15, D-81829 Munich, Germany 
phone: ++49-89-4510300, fax: ++49-89-45103030 

TRIPOS Inc., 1699 South Hanley Road, St. Louis, MO 63144, USA 
phone: US-800-323-2960, fax: US-314-647-9241 

http ://www.tripos.com 
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