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Preface

Food security and pollution are global issues that will get bigger due to the

increasing population, industrialisation and climate change. One-third of food

produced for human consumption is lost or wasted globally, which amounts to

about 1.3 billion tons per year, according to the Food and Agriculture Organization.

There is therefore a need for advanced technology to save food and clean the

environment. This book reviews advanced nanotechnology in food, health, water

and agriculture. In food, nanobiosensors display an unprecedented efficiency for the

detection of allergens, genetically modified organisms and pathogens, as explained

in Chaps. 1, 2 and 3 (Fig. 1). In agriculture, nanofertilisers improve plant nutrition

by releasing nutrients slowly and steadily (Chap. 4). Chapter 5 reviews the toxico-

logical impact of carbon nanomaterials on plants, whereas Chap. 10 presents a

modelling method to predict the toxicity of pollutants. Classical and advanced

methods for water desalinisation are then described in Chap. 6. Bioremediation

and nanoremediation of waters and metals are reviewed in Chaps. 7, 8 and 9.
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Fig. 1 Nanobiosensor, a unique combination of high-order enzyme specificity and quantum

property of nanomaterial, provides many applications in agri-food industry by rapid and

ultrasensitive detection of various contaminants (Verma, 2017; Env Chem Lett, doi:10.1007/

s10311-017-0640-4)
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Chapter 1

Advances in Nano Based Biosensors for Food
and Agriculture

Kavita Arora

Abstract Nanotechnology is revolutionizing development in almost all technolog-

ical sectors, with applications in building materials, electronics, cosmetics, phar-

maceuticals, food processing, food quality control and medicine. In particular,

nano-based sensors use nanomaterials either as sensing material directly or as

associated materials to detect specific molecular interactions occurring at the

nano scale. Nano biosensors are used for clinical diagnostics, environmental mon-

itoring, food and quality control. Nano biosensors can achieve on site, in situ and

online measurements.

This chapter reviews nanobiosensors and nanosensors, and their applications to

food and agriculture. Nanosensors exhibit an unprecedented level of performance and

the ability to ‘nano-tune’ various properties to achieve the desired levels of sensitivity
and detection limit. Nanobiosensors are used for the monitoring of food additives,

toxins and mycotoxins, microbial contamination, food allergens, nutritional constit-

uents, pesticides, environmental parameters, plant diseases, and genetically modified

organisms. Applications include: a nano-diagnostic briefcase kit for in situ crop

investigation; a dip stick nanosensor kit ‘4-my-co-sensor’ for multi-analyte detection;

a barcode assay for genetically modified organisms (GMO) using Surface Enhanced

Raman Spectroscopy (SERS); and a mobile barcode enzymatic assay.

Keywords Nanoparticles • Nanobiosensors • Nanosensors • Food • Agriculture

• Environmental monitoring • GMOs
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1.1 Introduction

Nano-based biosensors and nanosensors are sensors designed to sense parameters

of interest either by measuring chemical, physical, biological ‘signals or interac-
tions’ at nano scale or by making use of nanomaterials for measuring desired

parameters in specific application range. Applications of sensors and biosensors

can be traced all around us, from our bathroom, kitchen, laundry through clinical

diagnostics, environmental monitoring, safety alarms to industrial process etc. to

almost every technology that involves measurement of some parameter. This

becomes very important to understand basics of sensor and biosensor before

understanding a nano based biosensors (Dasgupta et al. 2015, 2017; Shukla et al.

2017; Jain et al. 2016; Ranjan et al. 2014).

A typical sensor is a device, which detects or measures a physical property and

then responds, records and indicates the measured phenomena into understandable

form by observer or an instrument. It consists of three parts viz. sensor, transducer,

detector and coupled to output display device as shown in Fig. 1.1. This device

responds to electrical or optical or mechanical signal and converts that physical

parameter with the help transducer to be detected into a signal output. Physical

parameter can be temperature, blood pressure; humidity etc. Simplest example of

sensor is thermometer that has mercury that expands when temperature increases,

which is measured through visual movement of the mercury at a calibrated scale of

1 atmosphere pressure. In order to be a good sensor, it must have accuracy,

specificity, ability to measure in the desired analyte range along with easy calibra-

tion, good resolution, reusability and low cost.

A Biosensor is a self-contained analytical device that incorporates a biologically

active material in intimate contact with an appropriate transducer to qualitatively

or quantitatively sense chemical or biochemical phenomena occurring at sensor

surface. It converts a biological recognition response into an electrical signal (Arnold

1985) which is further processed to be represented as output display. The schematic

arrangement of a typical biosensor is shown in Fig. 1.2. It consists of three primary

components: bio-receptor, transducer and amplifier coupled to display output.

A biosensor may use biomolecule as a bio-receptor component such as tissue,

microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc.

interfaced to a desired transducer component (Chaubey and Malhotra 2002). Sig-

nals generated due to biomolecular interaction can be electrical, electrochemical,

2 K. Arora



physicochemical, optical, piezoelectric or thermal, which is converted into electri-

cal signal via desired transducer that is easily measured, quantified, amplified and

processed to associated electronics for display as output in user friendly form or

desired units/scale of measurement (Gerard et al. 2002, Arora et al. 2006a, b). A

variety of signals can be generated from the different types of biomolecular

interactions which can be measured and processed using different types of trans-

ducers such as potentiometric, amperometric, voltammetric, surface conductivity,

electrolyte conductivity, fluorescence, colorimetric measurements, absorption,

reflection, surface plasmon resonance, resonance frequency of peizocrystals, heat

of reaction, heat of absorption etc.

Nanosensors are basically chemical sensors, which help in detection of presence

of chemical species or monitor various parameters through use of nanomaterials /

nanostructures that may or may not lie at nano-scale. These may include electronic

nose, miniaturized point of care devices, silicon computer chips, nano robots etc.

that are urbanized to operate at nanoscale and give extraordinary sensation aptitude

at cellular or molecular lever. Their vocation is by scheming and quantifying ups

downs and adapts dislodgment, dislocations, concentration, volume, acceleration,

Analyte Sensor
Output 
display 
device

DetectorTransducer

Feed back

Fig. 1.1 A typical sensor consisting of sensor, transducer and detector connected to output display

unit to collectively sense process and display change in parameter/analyte of interest

Amplifier processing     Display OutputTransducer Bio-receptorAnalyte sample

Fig. 1.2 A simple biosensor consisting of biomolecule coupled or linked to substrate/sensor

surface in close contact with transducer-amplifier and display unit for signal to be expressed in

user-desired scale/ units of measurements
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external forces pressure or temperature. Henceforth, nano based biosensors are set

of sensing devices that make use chemical or physical or mechanical or biological

phenomena to measure change in parameters (biological/nonbiological) of interest

at nano-scale and may make use of nanostructures or materials as integral part

through use of biological molecules as sensing (recognition) material.

Use of nanotechnology in the area of sensing technology has offered wider

opportunities to construct sensors to provide high product competence that has

influenced all areas including home, communication, transportation, medicine,

agriculture, and industry. Nanomaterials are materials with structure at the nano

scale that have unique optical, electronic, physical or mechanical properties that are

absent in the bulk form and can be used for various applications. These unique and

bracing features of nanomaterials facilitate opportunities to improvise and enhance

the performance characteristics for various sensing applications too. Nano materials

can exist in single, fused, aggregated or agglomerated forms with various shapes

such as spherical, tubular, and irregular shapes. Depending on structure, composi-

tion and configuration nanomaterials can be made from carbon, metals or organic or

inorganic materials. Common types of nanomaterials may include nanotubes,

dendrimers, quantum dots, nanoparticles, nanowires and fullerenes. Diverse spec-

trum of anisotropic nanomaterials reported in the literature may include nanorods

(Pérez-Juste et al. 2005), nanowires (Chen et al. 2007), nanotubes (Hu et al. 1999),

triangles (Jin et al. 2001; Millstone et al. 2005), plates and sheets (Wang et al.

2005), ribbons (Swami et al. 2003), and so on.

As per US National Nanotechnology initiative, nanotechnology has moved from

first generation- passive nanostructures (2000-dispersed nanostructured metals,

polymers, ceramics, composites) to second generation-active nanostructures

(2005- bioactive drugs, biodevices, amplifiers, actuators, transistors etc.) to third

generation – systems of nanosystems (2010- guided assemblies, 2D networking,

robotics, evolutionary structures etc.) to fourth generation- molecular nanosystems

(2015 onwards- by designing molecular devices, emerging functions etc.) to

molecular manufacturing. Nano based biosensors developed through nano molec-

ular systems can play a far larger and vital role in healthcare and biomedical

industry. Although, nano based implications impend future productivity of counting

robotics, transportation, construction, energy storage, food management,

environmental monitoring, security, surveillance and military (Touhami 2014).

Production processes still holds it back for nanosensor development due to chal-

lenges imposed through high cost and technical limitations involved in fabrications

to design physical nano based biosensors or nanosensors.

This chapter intends to bring in detailed review some important nano based bio-

sensors and nanosensors while explaining role of nanomaterials towards enhancing

various working principles and performance characteristics of the intended devices for

various applications towards food and agriculture. Attempts have been made to include

various arenas in food and agriculture for measurement of food additives, toxins and

mycotoxins, microbial contamination, food allergens, nutritional constituents in food,

pesticides, environmental parameters, in food and environment, plant diseases, genet-

ically modified organisms/plants (GMOs), pH etc. reported in past 5 years.
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1.2 Nano Based Biosensors and Nanosensors for Food
and Agriculture

The requisite objective of any sensor especially a nano based biosensor or a

nanosensor is to spot any chemical or biophysical or biochemical indication

occurring at lone molecular or cellular levels. As explained earlier, use of

nanomaterials offers miniaturization of a sensor dimension to achieve enormous

resourcefulness for assimilation into multiplexed, mobile, convenient, wearable, in
situ and even implantable medical devices. This also incorporates application areas

to be limited not only to industrial production processes, environmental monitoring

and molecular diagnostic purposes in health care but lot more including food and

agriculture. Besides, the dominating biomedical applications and need to achieve

point-of-care diagnostics, nano based biosensors and nanosensors appear to be the

major step and the panorama impact of these nano-molecular systems for onsite or
online testing remains unrivalled.

Nano based biosensors made from various carbon, metal based nanomaterials

and screen printed electrodes generally utilize electrochemical mode of measure-

ment and/or microfluidics based system to achieve simple and compact analytical

devices for detection of toxins, various applications in food, agriculture and envi-

ronmental monitoring (Fig. 1.3a, Reverté et al. 2016; Hughes et al. 2016).

Although, several reports do exist on various electrochemical/ acoustics nano

based biosensors, till date majority of them are based on optical methods due to

feasibility of ease of visual detection. Demchenko 2006, had elaborated on advan-

tages and application of fluorescence probes for probing and sensing for proteins,

cells and bio membranes. He explained that two band maxima containing two

different dyes can be simultaneously used to demonstrate two different phenomena

occurring at nanostructure levels (Fig. 1.3b, Demchenko 2006). This phenomenon

made use of the principle of coupling of wavelength shifts with two-band

ratiometric response in fluorescence intensities. Different intermolecular interac-

tions resulted in a strongly amplified fluorescence signal, where two fluorescence

dyes at ground state are denoted as N and T and two excited species as N* and T* in

dynamic equilibrium. For each fluorophore change of intermolecular interactions

leads to change of energy separation between ground (N or T) and excited (N* or

T*) states, expressed through shifts of their “green” and “red” fluorescence bands.

These shifts are common and can be used in fluorescence sensing. Some examples

of such dyes include 3-Hydroxychromone dyes, 3-hydroxyquinolones etc.

Food and agricultural analysis may involve: quality check for presence of toxins,

microbial/fungal/viral contamination, rotting; food production quality control i.e.,

control of various parameters like, pH, temperature pKa, sugar/glucose content; or

monitoring environmental parameters for qualitative/quantitative analysis of soil,

water, fertilizers, pesticides/herbicide etc.to achieve desired level of food and

agricultural production. Next sections are categorized to facilitate nano based bio-

sensors reportedly available to achieve for aforesaid objectives.
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Fig. 1.3 (a) Electrochemical nano based biosensors that measure biorecognition event through

change in electrochemical properties at receptor/sensors surface (Reprinted from Reverté et al.

2016 with © permission from Elsevier Publishing company), (b) Optical nano based biosensors

that use fluorescence response of two different fluorophores (N and T) giving two different

fluorescence signals (N* to N, T* to T) with change in intermolecular interaction occurring at

receptor/sensor surface (Reprinted from Demchenko 2006 with © permission from John Wiley

and Sons Publishing Company)
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1.2.1 Food Additives

Present day food industry is governed by changing customer interests that has

drifted the attention of producers towards the attractive looks, colour, flavor and

taste rather than the nutritional values. Intentional and unintentional additives in

food have led to significant health problems which points towards the need for food

analysis. Food additives may include artificial colours, flavours, texturants, antibi-

otics, pesticides etc.

Sivasankaran et al. reported a fluorometric nanosensor for detection of blue food

colorant Brilliant blue FCF in food samples like sports drink and candies, demon-

strating its potential in food analysis (Sivasankaran et al. 2016). They had devel-

oped a L-cysteine capped cadmium sulphide quantum dots based nanosensor in a

fluorometric quenching assay (Fig. 1.4a) for discriminative detection and determi-

nation up to 3.50 � 10�7 M and a linear range of 4.00 � 10�5–4.50 � 10�6 M

Brilliant Blue FCF.

Melamine is an additive, which is often added in dry milk powder, dried egg and

protein powders as a food adulterant to increase protein content, which has been

shown to have toxic effects for humans. Chondroitin sulfate-reduced gold

nanoparticles (using green synthesis) based nanosensor was used to detect mela-

mine by measuring absorbance (surface plasmon resonance band) ratio (A620/

A530). This nano based biosensor was reported to have melamine linear range

0.1–10 μM and was used to quantify melamine spiked in real infant formula at

concentrations as low as 12.6 ppb (Noh et al. 2013). Wu et al. 2015 have reported

combination of upconversion nanoparticles and gold nanoparticles composite based

nanosensor for detection of melamine (Fig. 1.4b). As it can be seen that up

conversion nanoparticles were prepared from sodium Yttrium fluoride doped with

rare earth metals lanthanides (Ytterbium-Yb and Erbium-Er) i.e., NaYF4:Yb
3+,Er3+

(explained in Sect. 1.2.2.). NaYF4:Yb
3+, Er3+ possess unique fluorescence proper-

ties, that get quenched by associate gold nanoparticles under normal conditions.

When melamine is added, gold nanoparticles get released from the surface of up

conversion nanoparticles since melamine could cause gold nanoparticles to aggre-

gates by N-Au interaction, resulting fluorescence of up conversion nanoparticles.

This easily operatable nanosensor showed linear response to 32.0–500 nM mela-

mine with a detection limit of 18.0 nM at pH (7.0) with 12 min incubation time and

sensitivity of 0.968 in raw milk samples.

Formalin/formaldehyde is constituent of many fruits and vegetables at low

concentrations, which is known to cause cancer at high dose. This is a commonly

used additive to various foods like fish, milk and fruits to facilitate and sustain their

shelf life. Nano emraldene-polyaniline based nanosensor was described to detect

low concentrations of formaldehyde ranging from 0.0003 to 0.9 ppm in a dose

dependent manner (Omara et al. 2016).

Urea is one of the metabolic products of protein metabolism and has a strategic

function in the marine nitrogen cycle as a source of excreted nitrogen by inverte-

brates and fish. Likewise, the bacterial decomposition of nitrogenous materials and

terrestrial drainage are influenced by urea. That is why, estimation of urea is very

crucial in clinical diagnostics, food science and environmental-monitoring
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(Saeedfar et al. 2013). Urea is used as fertilizer too and annual worldwide produc-

tion of urea exceeds 100 million metric tons where overuse of nitrogen fertilizer

application can lead to decrease in soil pH and pest problems (increasing birth rate,

longevity, and overall fitness of certain pests etc.). Urease (from Arthrobacter
creatinolyticus) immobilized membrane (PAN-[poly(acrylonitrile-

methylmethacrylate-sodium vinylsulfonate)] membrane) was employed in analysis

of urea spiked milk samples that showed detection range of urea concentration from

UCNPs- upconversion nanoparticles, AuNPs-gold nanoparticles

MelamineUCNPs AuNPs

980 nm

Aggregated AuNPs

980 nm
550 nm

550 nm

(a)

(b)

Fig. 1.4 Detection of (a) Brilliant Blue FCF using L-cysteine capped Cadmium sulfide (CdS)

quantum dots based nanosensor that shows quenching in fluoresce signal upon addition of analyte

(Reprinted from Sivasankaran et al. 2016 with © permission from Springer Publishing company)

and (b) Melamine using up conversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) via

fluorescence resonance energy transfer (FRET) phenomena based fluorescence ‘turn on’ assay
(Reprinted from Wu et al. 2015 with © permission from Elsevier Publishing company)
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1 to 100 mM (Ramesh et al. 2015).The immobilized urease had good storage

stability for a period of 70 days at 4 �C and could be effectively reused for

13 cycles.

Intentional addition of various antibiotics in food and its products is a usual

practice to increase its shelf life throughout the world. Although, repercussions of

excessive use of antibiotics has been realized and despite the fact that now there are

known adverse affects to human health, very few countries could impose regula-

tions of their uses. Tendency of these compounds to get accumulated, warrants need

of easy onsite/in situ sensing devices for suspected antibiotics in various food

matrices. Danofloxacin is one broad spectrum antibacterial fluoroquinolone com-

pound used for treatment of respiratory diseases in human and veterinary diseases.

At higher concentrations, i.e., after accumulation, this may have adverse reactions

and can detrimentally affect muscle, central nerve system, peripheral nerve system,

liver, and skin. Therefore, prescreening and determination of the level of

danofloxacin in foods or food products becomes very important. An surface

plasmon resonance based nanosensor was reported that used RNA (ribonucleic

acid) aptamers for danofloxacin (Han et al. 2014). The selected specific RNA

aptamer were shown to have potential for specific detection of danofloxacin that

could be uploaded on sensor systems and was found to be useful as a rapid,

selective, and sensitive monitoring/ diagnostic/ detection of ligand for danofloxacin

in food animals. In a similar row, a chemiluminescence biosensor based on aptamer

functionalized gold nanoparticles for detection of p53, a tumor suppressor protein

up to 10 pg/ml and showed 10-fold improvement in p53 detection gold

nanoparticles based colorimetric assay (Shwetha et al. 2013). Counting on similar

kinds of reports mentioned in this chapter, the potential of aptamers as specific

biorecognition elements could substantially enhance the performance of

nanobiosensors.

Tetracyclin, is a widely overused antibiotic whose exact and rapid quantification

in an aqueous buffer solutions and complex biological samples such as milk is of

high importance. An ultra long zinc oxide (ZnO) nano walls based nanobiosensor

was developed and demonstrated for real-time electrical measurement of dynamic

molecular interactions via monitoring phenomena of binding of the tetracycline

repressor (TetR) to its operator DNA (deoxyribonucleic acid) and its inducible

release by the addition of tetracycline (Menzel et al. 2013). This exciting method

allows ultra-sensitive measurements of tetracycline concentrations as shown in

Fig. 1.5a. When tetracycline is added, the induced switching and release causes a

down bending of the surface energy bands (EV – valence band and EC – conduction

bands, EF – Fermi energy level) due to the reduction of negatively charged

molecules. The process is reversed when TetR molecules are attached to the surface

again.

Tobramycin, a aminoglycoside is water soluble antibiotic which is utilized to

treat the infections caused by aerobic Gram-negative and some Gram-positive

microorganisms) and excessive use of this drug may result in ototoxicity and

nephrotoxicity. Tobramycin imprinted poly(2-hydroxyethyl methacrylate–
methacryloyl amidoglutamic acid) [p(HEMA–MAGA)] molecular imprinted
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Fig. 1.5 Detection of (a) tetracyclin using zinc oxide/aluminum oxide (ZnO/Al2O3) nanowall

nanobiosensor (cross section) that uses affinity of tetracyclin with its repressor /operator DNA

where binding of tetracyclin results in down bending of surface energy bands (where TetR-
tetracyclin repressor, zinc oxide/aluminum oxide -ZnO/Al2O3, SiO2 – silicon oxide, EV – valence
band and EC – conduction bands, EF – Fermi energy level)) (Reprinted from Menzel et al. 2013

with © 2013 permission from Royal Society of Chemistry); (b) lovastatin using molecular

imprinted polymer (pMAA) – gold – quartz crystal based nanosensor where binding of analyte

shall be indicated by directly proportional change in vibrational frequency of quartz crystal (where
EDGMA-ethylene glycol dimethacrylate, AIBN- N,N0-azobis-iso-butyro-nitrile, pMAA- poly2-
hydroxy ethyl methacrylate–methacryloyl amido aspartic acid (Reprinted from Eren et al. 2015

with © 2015 permission from Elsevier Publishing company) and (c) Small drug molecule using a

plasmonic nanosensor in a sandwich structure through anchored capture antibodies onto substrate

and gold nanocluster labeled antibodies where presence of analyte shall facilitate formation of

sandwich structure and will favour formation of gold nanoparticles (where gold nano clusters-
AuNCs, gold nanoparticles- GNPs, HAuCl4- auric chloride and H2O2- hydrogen peroxide)
(Reprinted from Zhao et al. 2016 with © 2016 permission from ACS publications)
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polymer film was generated on the gold surface to prepare a nanosensor for

tobramycin (Yola et al. 2014). This nanosensor was described to give linearity

range and detection limit of 1.7 � 10�11–1.5 � 10�10 M and 5.7 � 10�12 M,

respectively for pharmaceuticals, and food samples like chicken egg white and milk

extract.

Lovastatin is a member of the class of statins, which are produced through

fermentation process and are used to lower the cholesterol content in hypercholes-

terolemia. Red yeast rice is a dietary supplement in south Asia and this, being

fermentation product grown on rice, contain lovastatin drug residue. Increased use

of this food supplement is causing cardiovascular diseases and posing serious risk

of the over release of lovastatin drug residue to the environment that may cause

increased incidences of coronary artery disease, muscle and liver damage. There-

fore, a simple, sensitive and quick molecular imprinted gold quartz crystal micro-

balance chip based nanosensor (Fig. 1.5b) was developed to detect lovastatin in

natural samples (Eren et al. 2015). Lovastatin imprinted poly(2-hydroxyethyl

methacrylate–methacryloyl amido aspartic acid) [p(HEMA–MAAsp)] nano film

was attached on the mercapto propane based self assembled monolayer deposited

gold surface of quartz crystal microbalance chip. The fabricated specific

nanosensor gave linear performance for lovastatin at 0.10–1.25 nM and detection

limit of 0.030 nM in red yeast rice.

A plasmonic nanosensor using gold nanoclusters was fabricated to enable

visually quantitative determination of ultra-trace target molecules like synthetic

small molecules or drugs. This method combines enzyme-mimetic gold

Fig. 1.5 (continued)
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nanoclusters assisted visual color change exhibited by gold nanoparticles in visible

range in presence of desired analyte (Fig. 1.5c) (Zhao et al. 2016). In this sensor, a

target analyte can be captured by its antibody anchored on a solid surface and

further covered by a layer of same antibody tagged with enzyme mimetic gold

nano-clusters. Now, the formation of sandwich structure shall favor the formation

of gold nanoparticles when immersed in into a solution of HAuCl4 and H2O2,

thereby leading to visual colour change. This system was demonstrated for protein

avidin, cancer antigen 15-3 (a breast cancer biomarker shortened as CA15-3), 3,5,30

-L –tri-iodo thyronine thyroid hormone (T3), and even synthetic small molecular

drug such as methamphetamine. This systme possess potential to be utilized for its

applications in analytical requirements of food and agriculture.

Toxic metal content in food, pharmaceutical industry and clinical diagnostics

is one of the area of concern, therefore, monitoring trace levels is desired for

various applications (Maddinedi et al. 2015, 2017; Tammina et al. 2017;

Siripireddy et al. 2017; Sannapaneni et al. 2016). Cu2+ ions are among fre-

quently monitored species, especially where strict purity guidelines are

implemented e.g., medical industry, pharmaceutical applications, dialysis

water, microelectronics and manufacturing of integrated circuit semiconductor

chips etc. Kacmaz et al. 2015 reported a nanosensor based on fluoroionophore

DMK7 or 2-{[(2-aminophenyl)imino]methyl}-4,6-di-tert-butylphenol doped

nano-fibrous (polymeric ethyl cellulose) films to detect ultra-low concentrations

of Cu ions giving detection limit of 3.3 � 10�13 M and detection range of

5.0 � 10�12–5.0 � 10�5 M (Fig. 1.6a). Additionally, this extremely specific

nanosensor exhibited high selectivity over convenient cations like Na+, K+, Ca2+,

Mg2+, NH4
+ and Ag+, Al3+, Ba2+, Co2+, Cr3+, Fe3+, Fe2+, Hg2+, Li+, Mn2+, Ni2+,

Pb2+,Sn2+ and Zn2+.

Selenium is known as an essential nutrient responsible for immunity and anti-

oxidant activity. Its deficiency and excess intake causes both have been reported to

be unsafe for human health, therefore, the accurate detection of trace amounts of Se

has great significance on environmental, medical and nutritional sciences. A

ratiometric fluorescent nanosensor for accurate and on-site sensing of SeO3
2� by

linking the recognition molecule 3,30-diaminobenzidine onto the surface of car-

boxyl group modified cadmium telluride embedded silica nanospheres or quantum

dots that were was explained to have single fluorescence peak at 655 nm (Chen et al.

2016a, b). Addition of SeO3
2�onto nanosensor results in two emissions peaks

(530 and 655 nm) of Se-diaminobenzidine and Se-cadmium telluride embedded

silica nanosphere quantum dots under a single excitation wavelength as shown in

Fig. 1.6b. This nanosensor presented detection range 0–2.5 μM and detection limit

of 6.68 nM (0.53 ppb) of selenium ions. No interference to the performance of

nanosensor was observed for other common anion ions and some amino acids, such

as NO2�, CO3
2�, SO3

2�, SO4
2�, S2�, HS�, HSO3

�, ClO�,HPO4
2�, H2PO4

� Br�,
NO3

�, H2O2, GHS and Cys under the same experimental conditions. Nano sensor

was tested on real water samples spiked with different amounts of Se(IV) and in

food samples like rice, lettuce and radish.

Mercury is the most toxic water soluble elements known in ecosystems which is

non-biodegradable and can only get absorbed through plants and water resources to
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be subsequently accumulated in food chain. Monitoring Hg2+ level in environmen-

tal, food and biological samples is an important issue to understand its distribution

and potential pollution. A dual emission fluorescent probe nanosensor for Hg2+

detection was developed by Tan et al. 2015, that used lanthanide combination of

green emitting terbium (Tb3+) embedded and red emitting europium (Eu3+) cova-

lently tagged SiO2 nanoparticles. In dual-emission fluorescent probe, one

fluorophore functions as reference unit and another as response moiety to ensure

naked eye distinction and accuracy in quantification. As shown in Fig. 1.6c, two

lanthanide (Tb3+ and Eu3+) chelates were synthesized by the chemical coordination

dipicolinic acid (2.6-pyridinedicarboxylic acid) denoted as Tb- dipicolinic acid

chelate and Eu- dipicolinic acid chelate) and the surface of SiO2 nanoparticle

doped with Tb- dipicolinic acid chelate was functionalized by diethylene

tri-amine penta acetic acid to immobilize Eu- dipicolinic acid chelate at periphery.

Diethylene tri-amine penta acetic acid as functional ligand offers its carboxyl

groups to coordinate with Eu- dipicolinic acid chelate to form ‘Diethylene
tri-amine penta acetic acid-Eu-dipicolinic acid’ ternary complex on surface of

the SiO2 nanoparticle and also assist dipicolinic acid to offer selective response to

Hg2+. Since Hg2+ has higher binding constant (K ¼ 1026.4) compared to Eu3+

(K¼ 1022.39) the binding of Hg2+ is favored to enhance its detection. Upon addition

of Hg2+ onto nanosensor, the fluorescence of Eu3+ chelates gets selectively

quenched, while the fluorescence of Tb3+ chelates remained unchanged

(Fig. 1.6c) and this nanosensor gave excellent selectivity and high sensitivity up

to 7.07 nM detection limit in drinking water and milk samples.

Bisphenol analogs or popularly known as BPAs are compounds, which are

ubiquitously involved in our daily commodities and for this reason this has become

a part of our food ingredients due to unintentional leaching from all around. BPA is

known as ubiquitous endocrine disrupter and considering its serious adverse human

health risks; its use has been banned in many countries. Since, tyrosinase being

ortho-hydroxylation oxidase can oxidize BPA to corresponding o -diphenols and o

-quinones (Ragavan et al. 2013), it has been used to fabricate metal � organic

frameworks and chitosan based tyrosinase nanosensor (Lu et al. 2016). This

nanosensor consists of Cu- metal organic frame works i.e., metal nodes

connected/linked to organic chains or network to lead to a nano-porous materials.

In this work, two organic ligands, chitosan and tyrosinase were used to sense

bisphenol analogs (BPAs). The Cu- metal organic frame works based nanobiosensor

showed a wide linear range for BPE from 5.0 � 10�8 to 3.0 � 10�6 mol L�1 with

sensitivity as 5.51 A M�1 cm�2, and the limit of detection as 15 nmol L�1

(S /N¼ 3). This nanosensor showed sensitive response to bisphenol A, bisphenol F,

bisphenol E, bisphenol B, and bisphenol Z in order of sensitivity as

BPE > BPF > BPA > BPB > BPZ ranging from 5.51 to 1.13 A M�1 cm�2 and

anti-interference ability to anti-interference ability to heavy metals like Hg2+, Pd2+,

Cu2+, Fe2+, Co2+, Ba2+, Zn2+, Cd2+, and Ni2+. Authors also illustrated the advantage

of using Cu metal organic frame works, as BPA tends to preconcentrate on the
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Fig. 1.6 Detection of (a) Copper ions (Cu2+) using nano-scale fluorescent chemo-nanosensor where

selective binding of analyte resulted in fluorescence quenching (Reprinted from Kacmaz et al. 2015

with © 2015 permission from Elsevier Publishing company); (b) Selenium ions (SeO3
2�) using

diamino benzidine (DAB) – cadmium telluride coated silicon oxide (CdTe@SiO2) quantum dot

(QuD) nanosensor where presence of analyte causes an additional emission peak at 530 nm (TOETAT-

N-((trimethyloxy)silylpropyl) ethylene diamine triacetic acid trisodium salt, TEOS- tetra ethyl

orthosilicate) (Reprinted from Chen et al. 2016b with© permission from Royal Society of Chemistry)

and (c) mercury ions (Hg2+) using dual-emission fluorescent probe Tb-DPA@SiO2-Eu-DPA

nanosensorwhere presence of analyte favors quenching of fluorescent surface via selective replacement

of Eu3+ ions from nanosensor surface (where Tb- terbium and Eu- europium and dopants to DPA-
dipicolinic acid; DTPA- diethylene tri-amine penta acetic acid; SiO2- silicon oxide) (Reprinted from

Tan et al. 2015 with © 2015 permission from Elsevier Publishing company)



biosensor surface through a π� π stacking interaction between the aromatic rings of

BPA and the organic ligands of metal organic frame works coupled with favorable

immobilization of tyrosinase in a biologically stable environment.

A super paramagnetic nanoparticle and tannic acid hybrid nanosensor was

shown to detect polyphenol (dihydroxybenzene derivatives and their polymers)

content in blueberries by using square wave voltammetry (Magro et al. 2016). This

unique core–shell hybrid nanomaterial was formulated due to ability of metal

organic frame works for stable colloidal suspensions without organic or inorganic

coating i.e., no aggregations and at the same time to be able to bind to specific to

organic molecules to form composites and associating properties of tannic acid

(P-penta-O-galloyl-d-glucose) to form easy complexes with Fe3+ ions imparting

low solubility in water and corrosion inhibition (Iglesias et al. 2001). This

nanosensor exhibited square wave voltammetric based studies to sense tannic

acid in linear range of 25–500 μM with sensitivity 312.81 nCμ M�1 cm�2 and

detection limit of 8.57 μM.

1.2.2 Toxins and Mycotoxins

Mycotoxins are secondary metabolites that are produced by fungal/microbial con-

tamination of crops and foods. These are highly resistive in nature and cause severe

toxic effects leading to teratogenic, carcinogenic, and nephrotoxic situations in

humans. Conventionally mycotoxins are detected by diode arrays, multi-

Fig. 1.6 (continued)
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chromatographic and enzyme linked immunosorbent assay (popularly known as

ELISA) based immunological techniques that require sample pretreatment, labori-

ous synthetic procedures and expensive instrumentations.

A nanostructured cerium oxide film-based immunosensor was also developed

for the detection of food-borne mycotoxins ochratoxin-A (Kaushik et al. 2009).

Then, a nanobiosensor using aflatoxin B1 antibodies linked cysteamine capped gold

nanoparticles attached onto a 4-mercaptobenzoic acid self assembled monolayer

coated gold electrode was used to detect aflatoxin B1 in the range of 10–100 ng L�1

(Sharma et al. 2010). Subsequently, a sol–gel derived nano-zinc oxide based

immunosensor was developed for ochratoxin A (Ansari et al. 2010). This group

and many other groups made attempts to develop and review nano based biosensors

for mycotoxins (Maragos 2016; Ruscito et al. 2016; Lin and Guo 2016; Chauhan

et al. 2016; Turner et al. 2015; McPartlin et al. 2016) for detection mycotoxins such

as aflatoxins, ochratoxin B, citrinin, patulin, ergot alkaloids, fumonisins, trichothe-

cenes, zearalenone etc. and multi-mycotoxin detection nanobiosensor (Mak et al.

2010). Around the same time, a new signal transduction by ion nano-gating sensors

for the ultrasensitive detection of mycotoxins was described, with a detection limit

up to 100 fg mL�1 (Actis et al. 2010; Lattanzio et al. 2012).

A nanodiagnostic kit was developed as ‘lab in a box’ system having sophisti-

cated measuring devices, reagents, power supply and other features packed in a

briefcase like box that can be implemented to field for in situ crop investigations to

prevent disease epidemics (Goluch et al. 2006; Pimentel 2009). Recently, a dip

stick multi parameter detecting nanosensor kit ‘4-my-co-sensor’ based on compet-

itive antibody assay for the real-time detection of mycotoxins such as zearalenone,

trichothecene (T-2/HT-2), deoxynivalenol and fumonisin (B1/B2) for corn, wheat,

oat and barley samples was reported (Lattanzio et al. 2012). This proposed immu-

noassay protocol was fast, cheap, easy-to-use and suitable for the purpose of quick

screening of mycotoxins in cereals.

Immunoglobulin (anti-mycotoxin viz. anti-aflatoxin B1 and anti-

deoxynivalenol) coupled rare earth-doped up conversion nanoparticles i.e., triva-

lent ions (ytterbium-Yb3+, holmium-Ho3+/thulium-Tm3+ and gadolinium-Gd3+)

doped sodium-yttrium-fluoride (NaYF4) nanoparticles were used to simultaneously

detect mycotoxins (aflatoxin B1 and deoxynivalenol) linked to SiO2 magnetic

nanoparticles having sensing range of 0.001–0.1 ng ml�1 with the limit of detection

of 0.001 ng ml�1 in adulterated peanut oil (Chen et al. 2016a, b). Antigen-modified

magnetic nanoparticles were employed as biosensing probes and antibody-

functionalized improved up conversion nanoparticles were used as signal probes.

As shown in Fig. 1.7, this method involved magnet-assisted separation of antigen-

antibody complex and subsequent discriminative (aflatoxin B1 and deoxynivalenol)

fluorescence bioassay facilitated by Ho3+ and Tm3+ doped up conversion

nanoparticles coupled to anti-AFB1 and anti-DON, respectively. Discriminative

fluorescence/ luminescence properties were introduced via doping rare earth metals

(Ho3+/Tm3+) to NaYF4 nanoparticles that can efficiently convert a long wavelength

radiation (e.g. near-infrared light) into a sharp and short wavelength luminescence

emission (e.g. visible light) in narrow bandwidth giving large anti-Stokes shifts and
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improved signal to noise ratio. Flexible chemical features and low toxicities for

in vitro and in vivo systems also make them suitable for biological applications.

Detection of aflatoxin B1 was achieved via aptamer-gold nanoparticles based

nanosensor in a colourimetric (red to purple) analysis showing linear range afla-

toxin B1 concentrations from 80 to 270 nM and the detection limit of 7 nM

(Hosseini et al. 2015).

Phylotoxins are some potent marine toxins found in temperate waters. These are

known worldwide for their extreme toxicity and ability to contaminate seafood

thereby causing intoxications and/or fatalities. Zamolo et al. 2012 developed a

chemiluminescence based nanobiosensor that was able to produce a concentration-

dependent light signal, allowing phylotoxins quantification in mussels, with a limit

of quantification (LOQ ¼ 2.2 μg kg�1 of mussel) more than 2 orders of magnitude

more sensitive than that of the commonly used detection techniques, such as liquid

chromatography-mass spectrometry/mass spectrometry (popularly known as

LC-MS/MS). This method used anti-PITX linked to multiwalled carbon nanotubes

bound on polysuccinimidyl acrylate-indium tin oxide substrate and Ruthenium

NH2-NaYF4:Yb/Tm/Gd@SiO2-DON antibody NH2-NaYF4:Yb/Ho/Gd@SiO2-AFB1 antibody

NH2-MNPs-DON antigenNH2-MNPs-AFB1 antigenNH2-MNPs
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Fig. 1.7 A photo-luminescence nanobiosensor for simultaneous detection of mycotoxins: afla-

toxin B1 (AFB1) and deoxynivalenol (DON) is shown to be made of antigen (AFB1 or DON)-

modified magnetic nanoparticles (MNPs) and antibody-functionalized upconversion nanoparticles

(UCNPs) signal probes. Selective detection of both mycotoxins: AFB1 and DON in single reaction

is facilitated by selective/ separate doping of rare earth metals Ho3+ and Tm3+, respectively (where

NaReF4: Sodium-Rare earth Fluoride with Re ¼ ytterbium-Yb3+, holmium-Ho3+/thulium-Tm3+

and gadolinium-Gd3+, SiO2 silicon oxide nanoparticles) (Reprinted from Chen et al. 2016a, b with

© 2016 permission from Elsevier Publishing company)
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complex linked anti-phylotoxins with tripropyl amine co-reactant for detection of

phylotoxin as shown in Fig. 1.8.

1.2.3 Microbial Contamination

Microbial contamination in food and water is known to cause major food borne

outbreaks that has major impact on human health. E. coli (O157:H7), Salmonella,
Campylobacter, Staphylococcus, Shigella, Clostridium, L. monocytogenes, Bacillus
cereus are most common microbes known to cause food borne outbreaks (Arora

et al. 2006a, b). Most food pathogens are easily transmitted through untreated water

supply, undercooked or raw meat, milk, fruits, vegetables, food. Use of common

facilities make easy contamination and provide higher probabilities of causing

Fig. 1.8 A nanobiosensor for phylotoxin (purple sphere, Biotin-PITX) showing (a)
Electrografting of indium tin oxide (ITO) with N-succinimidyl acrylate (NSA), (b)
Functionalization of multiwalled carbon nanotube with antibodies against PITX (MWCNT-

mAb1); (c) Addition of biotin-PlTX (purple sphere) followed by addition of Ruthenium complex

labelled antibodies (pAb2 –Ru) to PITX and (d) Addition of the tripropyl amine (TPA) co-reactant

for electrochemiluminescence (ECL) generation and (e) ECL measurement which resulted in

concentration dependent light generation (Reprinted from Zamolo et al. 2012 with © 2012

permission from ACS publications)
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outbreaks. This is important to know that sometimes presence of 1 cfu E.coli O157:
H7 in 25 g of food is considered at its dangerous level!

A simple approach was developed for rapid determination of Escherichia coli
using a flow-injection system where microbial metabolism induced K3Fe(CN)6,

reduction was electrochemically measured, and used as direct evidence of micro-

bial metabolism (Hashimoto et al. 2008). This method allowed the quantitative

determination of bacteria / fungi in 20 min. This new biosensor system gave

opportunity for rapid diagnosis of soil-borne diseases which consisted of two

biosensors made up of equal quantities of two different microbes, each individually

immobilized on an electrode (Hashimoto et al. 2008).

Raman spectroscopy has been a routine practice for label free analysis chemical

and biological components of a sample at micrometer scale. Surface Enhanced

Raman Scattering (popularly named as SERS) is one of the available technique that

is increasingly being used to detect changes occurring at the surface through

antigen-antibody based specific binding (Chae et al. 2013). This convenient and

reliable nanobiosensing technique was demonstrated for detection of bacteria

E. coli using antibody (against E. coli) bound to gold nanoparticles deposited

Indium Tin Oxide substrate chip via studying concentration dependent SERS

peak intensity Raman shift in raw milk sample. Likewise, use of nanoparticles

have potential to enhance Raman signal in the order of 104–106 using surface

enhanced Raman spectroscopy via surface plasmon resonance (SPR) phenomena

giving extended applications in detection, imaging and bacterial discrimination.

Due to higher negative charge availability onto to surface of gram positive bacteria

compared to gram negative bacteria, significantly distinguishable SERS spectra can

be obtained through use of nanoparticles over wide range of wavelengths. A

magnetic–plasmonic Fe3O4–Au core–shell nanoparticle synthesis was used to

concentrate, detect and identify different bacterial cells by applying an external

point magnetic field through SERS (Zhang et al. 2012). A silver nanoparticle

coating was used to design a nanobiosensor for the detection of live bacteria in

drinking water (Zhou et al. 2014) as well as anthrax spores on nanosphere substrates

(Zhang et al. 2005) through simple mixing process. This enabled external spectra of

the bacterial cells which are very much similar for two categories of bacterial

(Gram positive and Gram negative). In this is row, an interesting label-free near

infrared SERS based nanosensor using silver nanoparticles was reported. This

method discriminated wide range bacteria in water by analysing inner side of the

cell wall through synthesis of silver nanoparticles within bacterial culture (E. coli,
P. aeruginosa, Listeria monocytogenes, L. innocua and Methicillin-resistant Staph-
ylococcus aureus) in presence of cell membrane disruption agent (Triton X 100) in

less than 5 min. This could enable to achieve distinguishable SERS spectra of inner

side of bacterial walls avoiding an additional sample preparation step (i.e., isolating

bacterial plasma) (Chen et al. 2015).

A label-free ultrasensitive nanosensor based on Surface Enhanced Raman Scat-

tering (SERS) for detection of bacteria is recently reported via one step assembly
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phenomena guided by electrostatic attraction of negatively charged bacteria with

positively charged plasmonic nanoparticles (silver @ gold core shell (Ag@Au)

nanorods) and two-dimensional bifacial nanoparticle liquid crystalline superstruc-

ture (SH-polyethylene glycol-NH2 coated triangular gold nanoplates � gold

nanospheres based bifacial plasmonic assembly) (Qiu et al. 2016). In this method,

a ‘bifacial superstructure-bacteria-columnar array’ assembles when nanoparticle

liquid crystalline superstructure is added onto bacterial sample placed onto a

‘columnar array of Au@Ag nanorods’ as shown in Fig. 1.9. Presence of food

borne Gram positive bacteria resulted in formation of dynamic optical hotspots

leading to a hybridized nano-assembly under wet � dry critical state, thereby

amplifying efficiently the weak vibrational modes. A SERS spectrum was measured

at 730 cm�1 for detection of bacteria on a nanorod columnar array using bifacial

triangular gold nanoplates � gold nanospheres superstructure. This method repre-

sents an attractive detection approach that can detect presence of bacteria in various

samples/matrices. Moreover, in this report this method limits its application to be

not able to distinguish likewise bacteria detected (S. xylosus, L. monocytogenes,
and E. faecium).

An E. coli (O157:H7) specific 22mer oligonucleotide functionalized SiO2 nano-

structure (70 nm sized) coated shear horizontal surface acoustic wave YX LiNbO3

substrate was fabricated to detect high performance nanobiosensor for detection of

E. coli showing sensitivity of 0.6439 nM/0.1 kHz and detection limit of 1.8

femtomolar (1.8 � 10�15 M) (Ten et al. 2016).

Recently, a co-polymer brushes based functional coating was used to exhibit

high fouling resistance and biorecognition capabilities for variety of food matrices

(like milk, spinach, cucumber, hamburger, and lettuce) for detection of bacterial

contamination using a surface plasmon resonance shift as function of binding with

specific antibodies against bacteria like E.coliO157:H7, E.coliO145:H2, and

Fig. 1.9 One-step assembling and Surface Enhanced Raman Spectrometry (SERS) based detec-

tion of bacteria by adding plasmonic superstructure on bacteria – Au@Ag nanorod columnar array

resulting in formation of coffee ring (distinguishable SERS spectra) (Reprinted from Qiu et al.

2016 with © 2016 permission from ACS Publications)
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Salmonella. Detection parameters were found to be within concentrations ranging

from 1.5� 10�2 to 1.5 � 10�7 CFU mL�1 (colony forming unit per millilitre),

1.5 � 10�2 to 1.5 � 10�7 CFU mL�1, and 2.5 � 10�2 to 2.5 � 10�7 CFU mL�1,

respectively (Lı́salová et al. 2016). Bacillus cereus spore-forming, gram-positive

bacilli (found in diverse environmental conditions, including soil and food such as

dairy products, rice and vegetables) was electrochemically detected using electro-

chemical gold nanoparticles and DNA (single stranded DNA of nheA gene) based

nanobiosensor in milk. The nano based biosensor showed up to 10 colony forming

units per milliliter (CFU mL�1) with a detection limit of 9.4 � 10�12 mol L�1. The

infected milk sample was pre-treated and extracted for the specific target DNA prior

to detection using nanobiosensor (Izadi et al. 2016).

Some of recent reviews describe variety of available nanobiosensors for detec-

tion of waterborne bacteria (Deshmukh et al. 2016); use of nanotechnology for

microbial biosensors (Lim et al. 2015) and detection of pathogenic microbes (Yoo

and Lee 2016) to demonstrate the potential of nanobiosensors and nanosensors for

detection of microbes in wide range of matrices.

1.2.4 Food Allergens

Food borne allergies share a major food safety and public health concern globally

and impose huge cost to patients and sometimes death. Since there exist no cure for

any kind of allergies, the only significant way is to avoid intake of allergen

containing food (Alves et al. 2016).Till date food allergens are being tested by

immunological and DNA based methods that involves use of ELISA based kits and

use of polymerase chain reaction (known as PCR) based methods (such as

PCR-ELISA, real-time PCR, PCR-peptide nucleic acid-high performance liquid

chromatography, duplex PCR and multiplex real-time PCR etc.). Recently, Alves

et al., have reported available biosensors both immunosensors and DNA biosensors

for detection of allergens in various food matrices along with sample preparation

methods (Table 1.1).This review contains few nano based biosensors that make use

of optical and electrochemical modes of signal transduction mechanisms explained

as follows.

Beta-lactoglobulin, a milk based allergen was detected via sensitive label-free

graphene modified screen printed based voltammetric immunosensor (Eissa et al.

2012). Cyclic and differential pulse voltammetry (DPV) based measurement were

taken to study the response of fabricated nano based biosensor as a function of b–

lactoglobulin concentration at pg mL�1 level (Table 1.1) in different samples from

cake, cheese snacks and biscuits.

Mascini and group reported large number of publications on food allergens/

contaminants. Hazelnut allergens were reportedly detected by voltammetric

genosensor made up of screen printed eight sample-DNA-array for PCR amplified

samples from various food items at nanomolar range. This method provided

favorable poor non-specific signal and high sensor stability (Bettazzi et al. 2008;
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Farabullini et al. 2007) and allows simultaneous analysis of eight samples. This

makes use of PCR derived biotinylated hybrids binding to streptavidin–alkaline

phosphatase conjugate in naphthyl phosphate solution (that acts as electro-active

indicator) giving current proportional to the target analyte.

To detect ovalbumin or ovomucoid allergens, a resonance enhanced absorption

based colorimetric solid-phase immunoassay on a planar chip using

biofunctionalized gold nanoparticles as signal transducers in a highly sensitive

distance-dependent interferometric setup (Maier et al. 2008). Resonance enhanced

absorption involves use of labeled detection reagents and when noble metal

nanoclusters are deposited at nanometric distances from the highly reflective mirror

of an interferometric setup in optical near field and change in absorption is

measured as a function of binding. Binding of gold nanoparticles – conjugated

IgGs (immunoglobulin-G, i.e., polyclonal rabbit antisera against ovalbumin and

ovomucoid) was successfully demonstrated for food allergens or antigen (ovalbu-

min or ovomucoid) immobilized on the surface of the optically transparent distance

layer (poly(styrene-methyl methacrylate)copolymer) of a Aluminium foil chip. In a

similar type of setup, a sandwich assay was described for the detection of lacto-

globulin (milk allergen) in processed milk matrices using antibody (purified poly-

clonal rabbit anti-bovine-lactoglobulin, IgG) pre-coated matrix to capture the

antigen (Hohensinner et al. 2007). And, detection of antigen was accomplished

by second gold nanoparticles-labeled readout antibody, which within a certain

resonance distance generated a visually detectable colorimetric signal (strong

blue color) on the chip that could be photometrically read for a semi-quantitative

measurement.

A peanut protein ‘Ara h1’, known to be responsible for peanut allergy was

detected using gold-coated nanoporous polycarbonate based impedance

immunosensor by measuring the change in the pore conductivity (Singh et al.

2010a, b). These authors reported to study binding of Ara h 1 to antibody bound

within nanopore as a function of the membrane pore diameter (15, 30 and 50 nm)

and the protein concentration. Interestingly, highest sensitivity was achieved with

the smallest pore diameter membrane with improved limit of detection of 0.04 m

g/mL compared to SPR based immune assay for Ara h1 detection (0.09 m g/mL, as

mentioned in Table 1.1).

Recently, aptamer/quantum dots-functionalized grapheme oxide biosensor is

reported for food allergen (peanut, Arah1) detection on a microfluidic platform. It

utilizes fluorescence quenching and recovering properties of graphene oxide

through the adsorption and desorption of Quantum Dots conjugated aptamers

(Weng and Neethirajan 2016). This microfluidic platform introduced features like

decreased sample/reagent consumption and rapid fluorescent signal detection on a

miniature size optical detection while avoiding probe immobilization procedures as

shown in Fig. 1.10. This microfluidic system is governed by powerless sampling

that can be generated by hexagons capillary pump, which introduce capillary force,

and favours liquid sucking into the microfluidic channel. Capillary-driven retarding

inlet valve (Mohammed and Desmulliez 2013) help avoiding air capture in

24 K. Arora



the microchannel while dispensing the Qdots-aptamer-GO probe mixture and the

Ara h 1 sample into the inlets. Ara h1 was demonstrated to be detected in linear

response region between 200 ng mL�1 and 2000 ng mL�1 with detection limits of

56 ng mL�1 within 5 min of quenching and fluorescence recovery time (Weng and

Neethirajan 2016). These interesting findings warrants realization of integration of

existing nano- and bio- sensor technology with microfluidics. This shall facilitate

achieving enhanced features of performance through throughput processing,

desired transport for controlling the flow conditions, increase the mixing rate of

different reagents, smaller sample / reagents volume (down to nanoliter) leading to

increased sensitivity of detection, and utilize the same platform for both sample

preparation and detection (Luka et al. 2015).

There are various reports available that show selection of various specific

aptamers that are being isolated and have been isolated for potential harmful

Fig. 1.10 Schematic showing (a) sensing mechanism of Quantum dots (Qdots)-aptamer-

Graphene oxide (GO) quenching system. (b) microfluidic chip driven capillary forces consisting

of two inlets for loading the Quantum dots-aptamer-Graphene oxide probe mixture and the Ara h

1 sample, mixing/incubation channel (zig zag), diamond shaped sensing well aligned to sensing Si

photodiode window and a capillary pump at the end (Reprinted from Weng and Neethirajan 2016

with © 2016 permission from Elsevier Publishing company)
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bacteria (Lee et al. 2012; Han and Lee 2013), suggests that aptamer based

nanosensors possess immense potential for monitoring bacterial contamination in

various food and agricultural matrices.

1.2.5 Nutritional Constituents in Food

Vitamins are important constituents of living things, which are not only measured

and monitored, as important ingredients of food items but are also equally impor-

tant for health care diagnostics. Vitamins are complex group of compounds that are

known to play important role in various biochemical pathways and have been found

to have chemical structures that give rise to electrochemical properties. Vitamins

like vitamin C (L-ascorbic acid), compounds in the B vitamin group: vitamin B2

(riboflavin); vitamin B6 (pyridoxine); vitamin B7 (biotin); vitamin B9 (folic acid);

and vitamin B12 (cyan) are either naturally electroactive or electroactive under

modified conditions (Ho et al. 2010). Hence, their properties continue to be

exploited using electrochemical techniques. Nanobiosensors for vitamin C (linear

range 50.00–400.00 μM), polyphenols, vanilla flavours, and isoflavones were

reported by Crevillén et al. 2007, 2008 using a multi-walled carbon nanotube screen

printed carbon electrode coupled with a capillary electrophoresis micro-chip device

through amperometric detection. A gold nanoparticle enhanced biotin (vit B7)

detection was carried out in a competitive electrochemical immunosensor assay

by Ho et al. 2010.

Choline is an essential food ingredient (mainly milk) that has nutritional value

for all age groups as it is required for essential roles in brain development,

metabolic functions, signalling in central nervous system, memory functions etc.

Although, it is synthesized in body, its dietary intake is also required to sustain

appropriate development especially in kids/infants. Any disbalance in choline

metabolism has been found to lead to Alzheimer’s, Parkinson’s and prostate cancer
(Richman et al. 2012; Zeisel and Blusztajn 1994). Recommended levels of choline

intake ranges from 125 mg day�1 in infants to 550 mg day�1 in males over age

14 years and in breast-feeding women (Zeisel and Blusztajn 1994). An chemilumi-

nescence bi-enzyme (choline oxidase and horseradish peroxidase) linked Zinc

oxide nanorods film based nanobiosensor was developed for detection of choline

in range of 0.0005–2 mM as shown in Fig. 1.11 (Pal et al. 2014). In this chemilu-

minescence assay enzymatic action on analyte choline resulted in production of

hydrogen peroxide which was used for quantification through HRP enzyme in

presence of chemiluminescence indicator luminal to generated photons directly

proportional to the analyte. This nanobiosensor presented a promising example a

stable assembly that retained 78% enzyme activity till 28 days.

Glucose is an important food ingredient and an central parameter which needs to

be monitored due to various clinical and food production reasons. Magnetite

(Fe2O3) – Prussian blue nano-composites were described to sense glucose

exhibiting fast response time 3–4 s, lower detection limit of 0.5 μM, wide linear
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range from 5 μM to 1.2 mM, sensitivity of 32 μA mM�1 cm�2 and good long-term

stability (Jomma and Ding 2016).

Lactate is another important analyte for clinical analysis, sports medicine and

food industry. Besides, its clinical importance, lactate in food is an import analyte

that is monitored in food industry. It can indicate microbial contamination leading

to lactate fermentation (Gyawali and Ibrahim 2012; Muyanja et al. 2012). An

amperometric lactate nano-biosensor based on lactate dehydrogenase

functionalized graphene was reported to have sensitively from 0.08 mM to

20 mM, with a fast steady- state measuring time of 2 s y measuring formation of

hydrogen peroxide as a result of enzymatic reaction (Labroo and Cui 2013).

Amino acid phenylalanine and proteins like lysozyme (Lys) and bovine serum

albumin was detected through a gold nanorods based nanobiosensor via use Surface

Enhanced Raman Spectra (SERS) based detection mechanism (Fazio et al. 2016).

In this novel approach radiation pressure was utilized to locally push gold nanorods

and induce their aggregation in buffered solutions of biomolecules, achieving

biomolecular SERS detection at almost neutral pH reaching detection limits in

the μg mL�1 range and achieve single molecule sensitivity. The addition of

nanoparticles aggregates to protein solutions paved the way to quantitative estima-

tion. SERS exploits electromagnetic enhancement of localized surface plasmon

resonance of metal nanoparticles to tailor molecular sensitivity, by creating SERS-

active clusters i.e., nanoparticle embedded molecules leading to ‘hotspots’ that

enhance Raman Scattering for magnified detection. In a similar way, SERS based

detection of uric acid in human serum was achieved with limits of detection (LOD)

~240 μ M (equivalent to 40 μ g mL�1) (Zakel et al. 2011).

Polyphenolics are a broad class of compounds present in many fruits, vegetables,

and their products, including grapes and wines. Wines, particularly red wines are
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Fig. 1.11 Zinc oxide (ZnO) nanorods (NR) based choline nanobiosensor using bi-enzyme-

cholesterol oxidase/horseradish peroxidase (ChOx/HRP) through physical adsorption (Path A)

and covalent coupling (Path B), showing detection of choline using chemiluminescence assay

where production of hydrogen peroxide by ChOx is quantified by second enzyme HRP in presence

of luminol which intern generates photon directly proportional to analyte choline (Reprinted from

Pal et al. 2014 with © 2014 permission from Elsevier Publishing company)
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known contain biologically active poly-phenols which provide antioxidant proper-

ties and contribute substantially to the quality by color, flavor, stability, and aging

behavior. Tyrosinase-immobilized nanobiosensors based on poly(acrylic acid)-

grafted multi-wall carbon nanotube and poly(maleic anhydride)-grafted multi-

wall carbon nanotube as substrate materials were fabricated (Kim et al. 2010).

This amperometric nanobiosensor could show sensing range of 0.2–0.9 mM and

0.1–0.5 mM for phenol in phosphate buffer solution, respectively for both

nanobiosensors. Laccase (p-diphenol oxidase containing copper ions) was

co-immobilized with Tyrosinase in a sol–gel matrix of diglycery silane) to detect

wide range of phenolic compounds present in wine (Montereali et al. 2010). Yang

et al. 2009 used a tyrosinase nanobiosensor based on polyglucosyl 4-vinyl phenyl

boronate-multiwall carbon nanotube using cyclic voltammetry and suggested that

the amounts of phenolic compounds in commercial red wines range between 68.50

and 655.0mg L�1 for Lindemans wine to Duchessa Lia wine. About ten times

higher content of these phenolic compounds is responsible for typical bitter taste of

the Duchessa red wine.

Heterocyclic amines are constituents of cooked food, which are formed as a

result of incomplete combustion process of proteins at high temperature. As per

International Agency for Research on Cancer (IARC 1993) some of the heterocy-

clic aromatic amines as possible human carcinogens e.g., Class 2B: (2-amino-3,4-

dimethyl-imidazo [4,5-f]-quinoline, 2-amino-3,8-dimethyl-imidazo [4,5-f]

quinoxaline and 2-amino-3,4,8- trimethylimidazo [4,5-f]-quinoxaline, 2-amino-

3,7,8-trimethyl-imi-dazo [4,5-f]-quinoxaline and Class 2A: 2-amino-3-

methylimidazo [4,5-f]-quinoline (Puangsombat et al. 2012, John and Beedanagari

2014, IARC 1993). A carbon dots based nanosensor was prepared from lactose

using microwave process and was used as such without any further

functionalization for detection of four different heterocyclic aromatic amines.

Specific binding of heterocyclic aromatic amines, reportedly quenched the fluores-

cence of carbon dots at 455 nM and facilitated detection of heterocyclic aromatic

amines in exponential manner in concentration range of 0.35–0.45 mg L�1 (Lopez

et al. 2015).

1.2.6 Monitoring Environmental Parameters for Food
and Agricultural Applications

Phosphate levels in aquatic environments are very important tool in understanding

the quality of water to facilitate production of fishes and aquatic plants as well as to

sustain balance in ecosystem for various purposes. Phosphorus is usually present in

the natural water as phosphates (orthophosphates, polyphosphates, and organically-

bound phosphates) (Nollet and Gelder 2013; Spellman 2013) at a very low concen-

tration of 0.025–0.1 mg L�1 (Fadiran et al. 2008a, b). Use of excessive fertilizers,

industrial effluents, laundry, human and animal waste has caused increase in
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phosphate level of water bodies. This over-fertilized situation of aquatic plants

results in “eutrophication” (Smith et al. 1999) i.e., explosive growth of the plants

and algae due to oversupply of the nutrients. Thereby, causing hypoxia condition in

water for fishes due to consumption of all O2 (Upadhyay and Verma 2015).

Therefore, a stable amperometric phosphate nanobiosensor was developed to

quntitate phosphate levels in water samples using pyruvate oxidase and its cofac-

tors, thiamine pyrophosphate and flavin adenine dinucleotide closely integrated

with a highly ordered gold nanowires array (Fig. 1.12a). This nanobiosensor gave

detection limit of 0.1 mM, a linear concentration range of 12.5–1000 μM, and a

sensitivity of 140.3 μA mM�1 cm2 (Ogabiela et al. 2015).

Cyanide is acutely toxic to mammals by all routes of administration. These are

produced by plants biologically and also by anthropogenic activities which can be

used a potential bio war agent. Therefore, detection of cyanide contamination in

food and water is extremely important. A nanosensor for cyanide detection was

developed using a pair of two luminescent hetero-trinuclear complexes [Pt2Ag

(μ-dpppy)2(CuCC6H4R-4)4](ClO4)(R ¼ H, 1; R ¼ CH3, 2) as self-assembling

building blocks of [Pt(CuCC6H4R-4)4]
2� and [Ag2(μ-dpppy)3]2+ to achieve Pt2Ag

(platinum silver) acetylides. These were further associated with mono dispersed

silica nanoparticles to form new kind of luminescent nanoparticles called

‘Pt2Ag@SiO2 nanoparticles’ (Lin et al. 2014a, b). This interesting ‘platinum-silver

@ silicon oxide’ nano assembly had specific fluorescence quenching response

phenomena for cyanide anions and had improved water solubility, stability and

luminescence signal enhancement that could be observed through naked eye

(Fig. 1.12b). Nanosensor was reported to have ratio of the luminescence intensity

(I0/I) vary in a linear relationship with concentration of cyanide anions in the range

of 0.1–10.0 μM (R2 ¼ 0.9984) having detection limit of 0.08 μM at S/N ¼ 3. This

nanosensor could sense in the range of acceptable cyanide ion limits (<1.9 μM)

prescribed for drinking water by World Health Organization (WHO). A new

two-photo excitation nanosensor using graphene quantum dots @gold nanoparticle

conjugate for sensing and imaging endogenous biological CN�ions was reported
(Wang et al. 2015). This nanosensor could detect CN� up to 0.52 μM and at deeper

penetration depth (about 400 μ m) in sample matrices, to realize in situ sensing and
imaging of CN� ions in different types of plant tissues and food samples using

fluorescent sensing and imaging (Wang et al. 2015). In this unique hybrid

nanosensor a peptide-mediated graphene quantum dots /gold nanoparticles hybrid

assembly was achieved through π � π stacking of graphene quantum dots and

peptide to form the nanosensor. The nanosensor underwent disassembly upon

addition of CN�, gold nanoparticles were etched to lead to fluorescence of graphene
quantum dots to be released to be able to sense and image presence of CN� ions.

Whereas in the absence of CN�, the fluorescence of graphene quantum dots would

remain quenched by gold nanoparticles through the fluorescence resonance energy

transfer (commonly known as FRET) (Fig. 1.12c).

Green fluorescent protein (commonly known as GFP)-tagged sensor proteins,

ArsR-GFP and CadC-GFP, were used as nano-biosensors for simple and low-cost

quantification of As(III) or Cd(II) in drinking water (Siddiki et al. 2012). The sensor
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Pyruvic acid + phosphate +O2

Acetylphosphate + H2O2 +CO2

H2O + O2

PyOx-Pyruvate oxidase
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FAD-flavin adenine dinucleotide

TPP-thiamine pyrophosphate

H2O2

Fig. 1.12 Detection of (a) phosphate ions using gold nanowires array–thiamine pyrophosphate

(TPP)–pyruvate oxidase (PyOx) nanobiosensor that amperometrically measures enzymatic deg-

radation of analyte (Reprinted from Ogabiela et al. 2015 with © 2015 permission from Elsevier
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protein-promoter DNA complexes bound to surfaces of magnetic particles of

different sizes so that they can be separated by magnets, and can release different

amounts of GFP-tagged protein, as per metal concentrations within 5 min leading to

increases in fluorescence. A detection limit of 1 μg/L for As(III) and Cd(II) in

purified water was obtained only with the nanoparticles exhibiting enough magne-

tization after heat treatment for 1 min.

1.2.7 Pesticides in Food and Environment

Use of pesticides is an indispensable component of modern crop management

practices as they are believed to improve the nutritional value of food and minimize

the loss in agricultural productivity caused by insects and pests. Pesticides like

methyl parathion, organophosphorus compounds, ethyl parathion, malathion,

2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, dichlorodiphenyltrichloroethane

(DDT) and hexachlorocyclohexane (HCH) are some examples of chemicals that

had been used in agriculture for controlling weeds, insects and rodents to increase

productivity. On the contrary, use of pesticides, herbicides and chemical fertilizers

have resulted in various harmful effects to environment and disbalance in ecosys-

tem besides bringing in revolution in the production quantity. Hazardous health

effects and toxicological interventions due to use of pesticides has led to wide range

of diseases throughout the world, that monitoring pesticide levels in various

matrices like water, food, soil, ground water, and food at extremely low concen-

tration i.e., pg levels has become need of hour to comply with environmental,

product specification and government regulatory norms.

As per Nature Asia 2008, A nucleic acid and intrinsically conducting polymer

based biosensor was reported, that could detect minute amounts of toxic organo-

phosphate insecticides at nanomolar levels for screening of environmental samples

such as drinking water, waste water and industrial effluents (Nature Asia, doi:

https://doi.org/10.1038/nindia.2008.213 Published online 29 May 2008). The sen-

sor could track chlorpyrifos (0.5–200 ppb) and malathion (0.005–10 ppm) a

conducting polymer (polyaniline-polyvinyl sulfonate) and nucleic acid as a

biorecognition element within 30 s exposure time having stability of about 6 months

(Prabhakar et al. 2008). In a similar series of studies, double stranded calf thymus

⁄�

Fig. 1.12 (continued) Publishing company); (b) cyanide anions using ‘platinum-silver @ silicon

oxide’ (Pt2Ag@SiO2) nano-assembly based nanosensor where fluorescence quenching occurs in

presence of analyte, which is shown to have affinity for especially designed nano-assembly

(TEOS-tetraethyl orthosilicate) (Reprinted from Lin et al. 2014a, b with © 2014 permission

from Royal Society of Chemistry) and (c) CN� ions using gold nanoparticle (AuNP)-Peptide @

graphene quantum dot (GQD) nanosensor assembly where presence of analyte would dissociate

the nano assembly to stop fluorescence resonance energy transfer (FRET) between AuNP and

GQD facilitating in situ sensing and imaging in plant tissues (Reprinted from Wang et al. 2015

with © 2015 permission from ACS publications)
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deoxyribonucleic acid entrapped polypyrrole-polyvinyl sulphonate films fabricated

onto indium-tin-oxide coated glass plates were used to detect organophosphates

such as chlorpyrifos (0.0016–0.025 ppm), malathion (0.17–5.0 ppm),

2-aminoantharcene (0.01–20 ppm) and o-chlorophenol (0.1–30 ppm) (Prabhakar

et al. 2007, Arora et al. 2006a, b).

A nanosensor based silver nanoparticles was shown to be sensitive to herbicide

in a solution that induced variation in colour of the nanoparticles from yellow to

orange red and finally to purple in concentration depended manner (Dubertret et al.

2001). This method represents and interesting useful approach for detection con-

taminants, such as organic pollutants and microbial pathogens in water bodies and

in the environment. In a similar way intrinsically conducting polymers like

polyaniline, polythiophene and polypyrrole are being used to fabricate fast

nanosensors that can detect molecular signals with very low intensity of

chemicals/toxins spoilage and food-borne pathogens (Sekhon 2010).

Deltamethrin (a replacement of organochlorines and organophosphorus insecti-

cides) was detected using cadmium telluride embedded molecularly imprinted

polymers of fluorescent silica (SiO2) quantum dots or nano spheres in concentration

range of 0.5–35.0 g mL�1, and corresponding detection limit of 0.16 g mL�1 in fruit

and vegetable samples using fluorescence measurements (Ge et al. 2011,

Fig. 1.13a). This nanosensor was reported to be highly specific to deltamethrin

due to existence of a quenching mechanism (that facilitates electron transfer from

the cadmium telluride-silica quantum dots to the deltamethrin species through the

strong binding to the template molecule) and was shown to give no signal for

trichlorfon, carbofuran, lambda-cyhalothrin, cypermethrin, permethrin and various

ions (NH4
+,NO3

�, Na+, Cl+, CO3
2�, Fe3+).

Cartap, (a nereistoxin derivative and a pesticides used in agriculture) was

detected using a novel up conversion nanoparticles [NaYF4:Yb,Ho/Au

nanocomposite or lanthanide (ytterbium-Yb and holmium-Ho) doped sodium

yttrium fluoride-NaYH4 nanocomposite on gold nanoparticles] through chemo-

nano-sensor up to 10 ppb via luminescence resonance energy transfer (LRET)

(Wang et al. 2013). LRET is reported to occur between upconversion nanocrystals

and the gold nanoparticles and upon specific hydrogen binding of cartap to

mercaptopropionic acid bound on gold nanoparticles that lie in close association

with upconversion nanoparticles (NaYF4:Yb,Ho nanocrystal) LRET is facilitated

as shown in Fig. 1.13b.

Same group of researchers worked on detection of organophosphorus pesticides

and reported a novel nanosensor based on FRET between upconversion

nanoparticles (NaYF4:Yb,Er nanocomposite or lanthanide (Ytterbium-Yb and

Erbium-Er) doped sodium yttrium fluoride-NaYH4 nanocomposite) and gold

nanoparticles as shown in Fig. 1.13c (Long et al. 2015). The detection mechanism

is based on the fact that gold nanoparticles quench the fluorescence of upconversion

nanoparticles and organophosphorus pesticides inhibit the activity of acetylcholin-

esterase which catalyzes the hydrolysis of acetylthiocholine into thiocholine.

Acetylthiocholine is an analog of acetylcholine, a substrate of acetylcholinesterase,

and it can be easily hydrolyzed to generate thiocholine. The electrostatic
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Fig. 1.13 Detection of: (a) deltamethrin using cadmium telluride embedded molecularly

imprinted polymers of SiO2 based nanosensor where binding of target analyte results in quenching

of fluorescence (Reprinted from Ge et al. 2011 with © 2011 permission from Elsevier Publishing

company); (b) cartap using up conversion nanoparticles (UCNPs) and gold nano particles based

LRET nano sensor, where a- Hydrogen-bonding between cartap and MPA, b-LRET between

UCNPs and GNPs is favoured in presence of analyte (Reprinted from Wang et al. 2013 with

© 2013 permission from Elsevier Publishing company); (c) organophosphate (OPs) pesticide

using upconversion nanoparticles-gold nanoparticles (UCNPs-AuNPs) based nanosensor where

presence of analyte deactivates acetylcholinesterase enzyme (AChE) and formation of thiocholine

(ATC) goes down thereby leading to disintegration of nanosensor assembly to stop FRET between

UCNPs and gold nanoparticles or no/less response signal and vice versa (Reprinted from Long

et al. 2015 with © 2015 permission from Elsevier Publishing company); (d) Acetamiprid using

aptamer-upconversion nanoparticles (UCNPs)–gold nanoparticles (GNPs) based nanosensor

where presence of analyte leads to fluorescence signal due to no FRET between UCNPs and

GNPs (Reprinted from Hu et al. 2016 with © 2016 permission from Elsevier Publishing company)

and (e) organophosphorus (OPs) and carbamate Pesticides using colorimetric Sensor Array where

presence of analyte results in decrease in colourimetric signal due to inhibition of Acetylcholin-

esterase (AchE) activity (ChOx-choline oxidase, S-ACh- acetyl thiol choline, ACh-acetyl choline)

(Reprinted from Qian and Lin 2015 with © 2015 permission from ACS publications)



Fig. 1.13 (continued)
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interactions and gold–thiols interaction between thiocholine and gold nanoparticles

resulted the disintegration of the gold nano particles/upconversion nanoparticles

assembly and the aggregation of gold nanoparticles. In presence of pesticides,

activity of acetylcholinesterase is inhibited by pesticides that prevented the gener-

ation of thiocholine and facilitated the FRET system resulting in quenching of

fluorescence of upconversion nanoparticles. The logarithm of the pesticides

concentration was proportional to the inhibition efficiency offering detection limits

of parathion-methyl, monocrotophos and dimethoate reached to be 0.67,23, and

67 ng L�1.

In a similar strategy, a upconversion nanoparticles and gold nanoparticles based

nanosensor was developed via use of specific aptamer for detection of acetamiprid

as shown in Fig. 1.13d (Hu et al. 2016). Acetamiprid is a chloropyridinyl

neonicotinoid, is widely used in agriculture and garden markets for its low toxicity

and high insecticidal activity. As it is mentioned earlier, for most of the pesticides

uncontrolled use of acetamiprid can also lead to dangerous levels of residues in

food and its exposure of non-target organisms leading to various harmful effects.

Hu et al. 2016 reported of linear detection range of acetamiprid to be from 50 nM to

1000 nM and detection limit of 3.2 nM in adulterated tea sample.

A colorimetric sensor array comprising five inexpensive and commercially

available thiocholine and H2O2 sensitive indicators for the simultaneous detection

and identification of organophosphates and carbamates was reported (Qian and Lin

2015) as shown in Fig. 1.13e. This system makes use of irreversible inhibition

acetylcholinesterase activity in presence of organophosphates and carbamates

thereby, preventing production of thiocholine and H2O2 from S-acetylthiocholine

and acetylcholine, resulting in decreased or no color reactions by indicator arrays.

Fig. 1.13 (continued)
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Anti-atrazine based immunosensor for detection of atrazine was reported using

directly deposited gold nanostructures onto ITO glass slides for environmental

monitoring (Singh et al. 2013a). Fabricated nanobiosensor could sense atrazine

through Square Wave Voltammetry and was found to have dynamic linear range

from 50 aM to 1 nM (10.78 fg mL�1–215 pg mL�1) in 60 s antigen exposure time.

This nanobiosensors was also shown to retain substantial stability till 12 weeks

upon storage at 4 �C in desiccated condition and showed no binding with

non-specific antigens like malathion, parathion, 2-amino anthracene,

albendazole etc.

Graphene oxide-magnetic (Fe3O4) nanocomposites based ‘on-chip’ enzymatic

microreactor was developed for ultrasensitive organophosphorus pesticide, dimeth-

oate. This novel on-chip enzymatic (acetylcholine esterase) microreactor exhibited

a linear relationship between the inhibition rates of acetylcholine esterase as a

function of dimethoate concentration from 1 to 20 μg L�1 with a detection limit of

0.18 μg L�1 (S/N ¼ 3) (Liang et al. 2013).

Methyl parathion an organophosphorus pesticide which is toxic to both verte-

brates and invertebrates (that act by inhibiting acetylcholinesterase enzyme in nerve

tissue), is needed to be detected in wide range of matrices due to its extensive use in

agriculture and fishes. In the reported smartphone-readable barcode assay, yellow

color barcode formation is inhibited due to absence of the activity of acetyl-

cholinesterase (enzyme) (Fig. 1.14).AchE hydrolyses acetyl-thiocholine iodide

(substrate) to intermediate (thiocholine), which reacts with DTNB(dithio-bis-

nitrobenzoate, a chromogenic reagent) to generate TNB (thionitrobenzoate), giving

strong absorbance peak centered at 412 nm with a high extinction coefficient
(14,150 M�1 cm�1) in dilute buffer solutions (Guo et al. 2015). It can be seen

that presence of pesticides(+) leads to enzyme inactivation and hence absence of

yellow barcode. While, absence of pesticides(�) results in yellow bar code which is

indicated as error code 39 in mobile application.

1.2.8 Plant Diseases

Increased food production is requirement throughout the globe to cope up with the

increasing demands of exponentially rising population. Crop infections occurring

due to pathogens like bacteria, viruses and fungi are major cause of agricultural

losses past many centuries. As per projections an additional 70% of food production

is required by 2050 throughout the world (Godfrey et al. 2010) to cope up with the

daily nutritional needs especially for lower economies and developing countries.

Although, decrease in agricultural productivity can be attributed to a variety of

reasons, damage caused by pests and pathogens plays a significant role in crop

losses throughout the world. This becomes highly important to ensure agricultural

sustainability through addressing specific reasons of the losses and taking preven-

tive measures. Identifying plant pathogens via conventional techniques may take

several days and therefore researchers need rapid detection tools that can provide
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results within a few hours. Conventionally, direct methods like, PCR: polymerase

chain reaction; FISH: fluorescence in-situ hybridization; ELISA: enzyme-linked

immunosorbent assay; IF: immunofluorescence; FCM: flow cytometry etc.(with

detection up to 103–106 CFU (colony forming unit) mL�1) (Fang and Ramasamy

2015) and indirect methods like, thermography, fluorescence imaging,

hyperspectral techniques, gas chromatography are used for detection of various

plant diseases. Potential nanotechnology applications in plant pathology can not

only facilitate in detection of plant pathogens but also in plant disease control

(Khiyami et al. 2014).

Wide range of nanomaterials based biosensors and sensors have been reported

for detecting plant diseases by utilizing DNA, antibody and enzymes as

biorecognition element making use of variety of measurable signals/changes occur-

ring onto infection containing plants, besides various other parameters that possess

potential to be used for food and agricultural applications. As per a recent review

from Fang and Ramasamy 2015, some examples of optical nanobiosensors include,

antibody assisted fluorescent silica nanoparticles based nanobiosensor for

Xanthomonas axonopodis that causes bacterial spot disease in Solanaceae plant

(Yao et al. 2009a, b); gold nanoparticle-based optical immunosensors for karnal

Fig. 1.14 (a, b and c) A smartphone-readable barcode assay for detection. Yellow bar code is

formed due to active acetylcholinesterase. In presence of analyte yellow barcodes is not formed

and quantitation of pesticide residues colorimetrically read as yellow bar code 39 in absence of

pesticide (�) and absence of barcode 39 indicates presence of pesticide (+) (Reprinted from Guo

et al. 2015 with © 2015 permission from Royal society of Chemistry)
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bunt disease in wheat using surface plasmon resonance (SPR) (Singh et al. 2010a,

b); DNA hybridization fluorescent oligo probes based single probe sensors/ nano-

chips based microarrays using for bacteria and viruses (Lopez et al. 2009); quantum

dot-fluorescence resonance energy transfer based nanosensor for witches’ broom
disease of lime caused by Candidatus Phytoplasma aurantifolia (Ca.
P. aurantifolia) using immunosensing at a detection limit of 5 ca. P. aurantifolia/
μL (Rad et al. 2012); fluorescent silica nanoparticles based immunosensor for

Xanthomonas axonopodis pv. vesicatoria for bacterial spot disease in tomatoes

and peppers (Yao et al. 2009a, b); Rhizomania (a most destructive disease) in sugar

beet caused by beet necrotic yellow vein virus (BNYVV) carried by vector

Polymyxa betae (Keskin) (Safarpour et al. 2012); copper oxide (CuO) nanoparticles
and nanostructural layer immunosensors for detecting the A. niger fungi (Etefagh
et al. 2013) and metal oxide nanoparticles (such as Au, SnO2 and TiO2) based

nanobiosensor for p-ethylguaiacol (a volatile organic compounds (VOC)known to

be released in various plant diseases) by infected strawberry (Fang et al. 2014a, b) at

nanomolar concentration etc.

A recent report suggests detection of viral infection using novel combination of

quantum dot incorporated Bacillus spore as nanosensor (Zhang et al. 2015). A

spore-based mono disperse microparticles were used to form nanocomposites of

spore-based mono disperse microparticles loaded with Cadmium telluride quantum

dots. As shown in Fig. 1.15a cadmium telluride quantum dots were multicolor-

coded microspheres that have quantum dots of different emission spectra and the

capture antigen porcine parvovirus. This was coated on the microparticles loaded

cadmium telluride quantum dots surface. The surface reactivity of the microparti-

cles loaded cadmium telluride quantum dots was tested for immunoassay of porcine

parvovirus antibody in swine sera using microparticles loaded cadmium telluride

quantum dots as suspension beads in a heterogeneous assay system and reporter

(labeled with Alexa fluor 647) secondary antibody by monitoring luminescence

color by fluorescence spectroscopy, flow cytometry and isothermal titration micro-

calorimetry.(Fig. 1.15b). This method possesses excellent potential to be

implemented for viral infections in the field of food and agriculture.

Amperometric immunosensors for plant pathogens viz. bacteria, viruses and

fungi include Cowpea mosaic virus, Tobacco mosaic virus, Lettuce mosaic virus,
Fusarium culmorum, Puccinia striiformis, Phytophthora infestans, orchid viruses,

chlorotic mottle virus and Aspergillus niger (Fang and Ramasamy 2015). Some

examples of nano-immunosensors include gold nanorods functionalized antibodies

for Cymbidium mosaic virus (CymMV) or Odontoglossum ringspot virus (ORSV)
infections with limits of detection 48 and 42 pg mL�1, respectively, using surface

plasmon resonance, 1 ng using quartz crystal microbalance technique in leaf saps

(Lin et al. 2014a, b) and polypyrrole nanoribbon modified chemiresistive sensors

for Cucumber mosaic virus (CMV) up to 10 ng mL�1 using amperometric tech-

nique (James 2013).

Nucleic acid based nanobiosensors use unique complementary nucleic acid

sequences specific to bacterial/viral/fungal pathogens through DNA-DNA,

DNA-RNA hybridization as biorecognition event (Arora et al. 2008, Singh et al.
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2013b, 2015a, b). Examples of DNA nanobiosensors include use of molecular

beacons and quantum dots for two orchid viruses—Cymbidium mosaic virus
(CymMV) and Odontoglossum ringspot virus (ORSV) to detect viral RNA of

both orchid viruses up to 0.5 ng of viral RNA in 100 mg orchid leaves using

fluorescent probe (Eun and Wong 2000) and presence of target RNA up to 1 ng and

10 ng in the crude sap using quartz crystal microbalance based detection (Eun et al.

2002a, b). A 50 end fluorescent and 30 end – gold nanoparticle labelled DNA

oligonucleotide was used as a nano transducer to diagnose flavescence dorée

phytoplasma of grapevine. Fluorescent signal was measured consequent to hybrid-

ization event occurring with complementary target (Firrao et al. 2005).

Enzymatic biosensors for plant pathogen detection usually utilize detection of

volatile organic compound which are released in the infected plants only. Studies

have shown that various redox enzymes catabolize several of phytohormones and

these plant chemicals can be detected using enzyme-based nanobiosensors. Some

Fig. 1.15 Quantum dot-encoded Bacillus spores (a) and microparticles loaded cadmium telluride

quantum dots for immunoassay (b) where PPV- porcine parvovirus, BSA- bovine serum albumin.

Presence of analyte virus is captured by immune labeled microparticles loaded cadmium telluride

quantum dots, which is further detected via fluorescent labeled secondary antibody (Reprinted

from Zhang et al. 2015 with © 2015 permission from Elsevier Publishing company)
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examples for detection of plant infection are: methyl salicylate with a bi-enzymatic

system where analyte determination involves conversion of methyl salicylate to

methanol and salicylic acid and then oxidation of methanol (Fang et al., 2014),

alcohols and aldehydes such as cis-3-hexen-1-ol and trans-2-hexanal by alcohol

dehydrogenase enzymes (Jansen et al. 2009), common phytohormones such as

auxin, cytokinins and gibberellins by oxidases (e.g., Gibberellin by GA-2-oxidases

for plant disease prediction)(Thomas et al. 1999; Kulagina et al. 1999).

Advancements in plant science research to analyse plant genomics, gene func-

tion, crop improvement and pathogen detection have taken edge with the help of

nanotechnological tools and techniques. A recent example of such application

suggests use of nanopore technology (Oxford Nanopore Technologies) and “DNA

transistor” technology (companies like IBM and Roche are working on this) that

can be used for DNA sequencing in minutes instead of hours and days

(Niedringhaus et al. 2011, Ozsolak 2012, Zhang et al. 2011). Portable genome

sequencer (MinION) is already available to sequence 10 kb of a single sense and

anti-sense DNA strand to enable next-generation sequencing (NGS). A protein

nanopore and enzyme were designed to control a single strand of DNA, and as

the DNA goes through the nanopore a direct electronic analysis is conducted (Clark

et al. 2009). The protein nanopore is inserted in a polymer bilayer membrane across

the top of a microwell. Each microwell has a sensor chip that measures the ionic

current as the single molecule passes through the nanopore. However, the speed at

which the DNA strand travels through the nanopore is too fast for accurate

identification.

Present day analytical nanosensors associated with biomolecular recognitions

coupled with latest tools-technologies, possess capacity to detect and quantify

minute amounts of contaminants such as viruses bacteria, fungi, toxins and other

bio-hazardous substances in the agriculture and food systems. These nano-sensors

can be linked to a global positioning system (GPS) for real-time monitoring of

disease and distributed throughout the field to monitor soil conditions, water

quality/quantity, ecological changes and crop health. In fact, Khiyami et al. had

suggested that, ‘nanosensors will allow us to identify plant diseases before visible

symptoms appear and thus will facilitate their control and also that recision farming

will allow improved agriculture production by providing precise data, helping

growers to make better decisions’ (Khiyami et al. 2014).

1.2.9 Genetically Modified Organisms (GMOs)

GMOs such as rice (e.g., stress/saline resistant or golden rice to added to its

nutritional value), mustard, resistant cotton, tomatoes, fruits and many more had

been the need of hour to bring in green revolution in agricultural production while

avoiding food spoilage/losses and facilitating nutritional food available to poorest

people throughout the world. Lot of GM crops/foods are available throughout the

world nowadays, however, there is ongoing debate over use of GMOs and various
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government based regulations have been applied to put a control on use of GMO

crops. European continent has put complete ban over use of GMOs based food

materials, however, US continent has been less stringent and liberal enough to

allow declaration of use GMO on product packaging. Lot of GM crops and food

products are in markets of US, Canada and Asian subcontinents. Presently, there are

lot of methods available in the market which are based on polymerase chain

reaction (PCR, multiplex PCR, qPCR etc.), microarrays, southern blotting,

ELISA, western blots, strip tests including biosensors etc. are available for detec-

tion of GM crops or organisms (Singh et al. 2011).

Surface Enhanced Raman Spectroscopy (SERS)-barcoded nanosensor was

reported that sensed Bacillus thuringiensis (Bt) gene transformed rice, expressing

insecticidal proteins. This method used specific oligonucleotide conjugated silica

encapsulated gold nanoparticles as ‘SERS-barcoded nanoparticles spectroscopic

tags’ (Chen et al. 2012). The Bt genes usually used in rice are cry1Ab, cry1Ac,

therefore, transition between the cry1A(b) and cry1A(c) fusion gene sequence was

used to construct a specific SERS-based detection method and sucrose phosphate

synthase (a rice gene) was used as interior reference gene of rice that gave detection

limit of 0.1 pg mL�1 as shown in Fig. 1.16. The SERS-barcode nanosensor had

sensitivity and accuracy comparable with real-time PCR. The SERS-barcoded

analytical method provided precise detection of transgenic rice varieties but also

informative supplement to avoid false positive outcomes.
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Fig. 1.16 (a) SERS spectra of the nanosensor for Bt (from bottom to top: 0.0 pg mL�1, 0.05 pg

mL�1, 0.1 pg mL�1, 1.0 pg mL�1, 10 pg mL�1, 100 pg mL�1, 1.0 ng mL�1, 10 ng mL�1, black

line: blank control by using sucrose phosphate synthase). (b) Normalized Raman intensity and

real-time PCR results in the presence of different amount of Bt rice relative to normal rice. Error

bars were calculated based on the standard deviation of eight measurements. *Comparison of

obtained result with real-time PCR )Reprinted from Chen et al. 2012 with© 2012 permission from

Elsevier Publishing company)
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1.2.10 Measurement of pH

Food production requires large scale fermentation and bioreactors to achieve

desired food product. In this context measurement of pH is one of important

parameter not only at industrial scale but also at intra and inter cellular levels for

various food and agricultural applications. Various pH control devices have been

reported for such applications that involve use of nano based biosensors and/or

nanosensors.

A triple fluorescent pH sensor was reported as a new tool for pH measurement

that can measure pH 3.9–7.3 by simultaneously incorporating two complemental

pH-sensitive fluorophores in a same nanoparticle in a cellular compartment by

making use of octaarginine which mimics human immunodeficiency virus-1, Tat

protein (a cell penetrating moiety) (Ke et al. 2016). Ratiometric pH nanosensors

with tunable pK(a) were prepared by entrapping combinations of two pH-sensitive

fluorophores (fluorescein isothiocyanate dextran and Oregon Green(®) dextran)

and a reference fluorophore (5-(and-6)-carboxytetramethylrhodamine dextran), in a

biocompatible polymer matrix (Chauhan et al. 2011). Dual-fluorophore pH

nanosensors permit the measurement of an extended dynamic range, from pH 4.0

to 7.5. A polyacrylamide-based nanosensor with two pH-sensitive fluorophores,

fluorescein and Oregon Green was reported to sense (pH 3.1–7.0) having

pH-insensitive fluorophore rhodamine as a reference fluorophore. These

nanosensors are spontaneously taken up via endocytosis and directed to the lyso-

somes where dynamic changes in pH can be measured with live-cell confocal

microscopy (Sondergaard et al. 2014). Henceforth, it can be stated that nanosensors

are available as exciting tools for determining on line / in situ pH in the micro and

nano environments of living cells as well as in food production bioreactors, thereby

allowing measurements of absolute values of pH at places that have so far been

restricted by the limited sensitivity range of nanosensors, calibration challenges and

the complexity of image analysis.

1.3 Future Prospects of Nano Based Biosensors

Nano based biosensors and nanosensors have demonstrated exceptional amount of

developments and has combated various challenges of contemporary as well as

competitive methods of detection of various parameters/analytes of interest to

achieve unprecedented levels performance i.e. to sense ultra trace amounts with

unsurpassed sensitivity. Having been through with entire set of available research in

the literature, potential of existing various tools and technologies has been realized.

Various techniques like molecular imprinted polymers, microfluidics, plasmonic

nanosensors, Surface Enhanced Raman Scattering (SERS)/ fluorescence/chemilu-

minescence/ quartz crystal microbalance /advanced electrochemical measurements

coupled with additional features i.e., ability to ‘nano-tune’ various properties of
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fabricated ‘nano-bio-molecular assembly systems’ as per custom requirements

offers limitless possibilities. Merging of chemical and biological components into

a single platform can allow new opportunities for future nano sensing/ nano based

biosensing applications with additional features of portability, disposability, real-

time detection, unprecedented accuracies, and allowing simultaneous analysis of

different analytes in a single device. However, it needs lot more to integrate and

enable current methodologies to reach to desired level of performance characteris-

tics and open doors to reach to realize on site, in-situ, on-line measurements.

Moreover, this is also true that, there exists lot of unexplored potential in nano

based biosensors, which have not been utilized for various food and agricultural

applications till date. Achievements made so far suggest that nano based biosensors

are the pioneers for the future diagnostic devices that offer unlimited opportunities

to be tapped.

1.4 Conclusions

Nano based biosensors and nanosensors have witnessed successful demonstration

of their potential to provide unsurpassed levels of detection limits and sensitivity

utilizing various unique properties, features and affinities of biological as well as

nanomaterials for various food and agricultural applications. Most of these avail-

able reports demonstrate their applications for measurement of food additives,

toxins and mycotoxins, microbial contamination, food allergens, nutritional con-

stituents in food, pesticides, environmental parameters, in food quality control,

environment, plant diseases, genetically modified organisms/plants/crops (GMOs)

etc. However, it can be established that most of these works continue to develop at

their primitive stages and exists only till laboratory or researcher level. There had

been very few techniques that are successfully translated to real world applications

and lot more attention/efforts are needed to smoothen up and remove the barriers to

bring these new developments to the market and serve masses throughout the world.
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Chapter 2

Physical, Chemical and Biochemical Biosensors
to Detect Pathogens

Brindha J, Kaushik Chanda, and Balamurali MM

Abstract The development of science and technology has not only improved the

comfort of humans but also added a wide variety of hazardous chemicals and life

threatening pathogens into the living environment. Surveillance of bacterial path-

ogens is a daunting task for healthcare industries, food industries and environmental

quality control sectors. During the past few decades, pathogens with high virulence

have emerged, leading to steady increase in the mortality and morbidity rates,

posing burden on the nation’s economy. Therefore it becomes necessary to develop

devices that can quickly sense pathogens in quantities much lower than pico- and

femto-moles. A ideal sensor has short sensing time, low measurable quantities and

reliable results.

In this chapter we discuss various types of biosensors for pathogen detection.

Optical biosensors have been explored extensively and used as labeled

(fluorophores, quantum dots, carbon dots), label free (surface plasmon resonance)

and hybrid biosensors for a highly sensitive pathogen detection. Piezoelectric-

cantilever biosensors are simple, rapid and as effective as conventional pathogen

detection techniques and are notable for detection of food pathogens like Listeria
monocytogenes. Successful electrochemical biosensors have also been developed

with unmodified electrodes and later electrodes were modified with bio-recognition

elements such as specific DNA, antibodies or nanoparticles, for detection of

pathogens like methicillin resistant Staphylococcus aureus and Salmonella. Almost

all biosensors, including immunosensors, are being improved, by sample enrich-

ment or signal amplification, in order to obtain a simple and rapid pathogen

detection tool with lower limits of detection.
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2.1 Introduction

Sensors are becoming a vital part in human lives in this fast moving world due to its

rapid mode of detection and ease of use. They are used to detect the measurable

responses of an analyte in a sample with respect to either physical conditions or

chemical interactions. A good sensor is the one that possesses optimum character-

istics like reproducibility, sensitivity, selectivity, stability and linearity (Bhalla

et al. 2016). Biosensors are analytical devices that work by detecting the presence

and/or concentration of a biological analyte, such as biomolecules, microorganism,

or any biological structure. It is composed of three major components namely: bio-

recognition element that recognizes the analyte and produces a specific signal,

transducer that receives and transmits the signal in a readable format which is

read by another component, a reader device. With developments in science and

technology, there is an increase in exposure to different kinds of hazardous

chemicals and life threatening pathogens (Dasgupta et al. 2015, 2017; Shukla

et al. 2017; Jain et al. 2016; Ranjan et al. 2014). This urges researchers for the

development of a vast range of sensors. Detection of pathogen gains extreme

importance in various sectors like health care for clinical diagnosis (Yanase et al.

2014), food industry to ensure food quality (Scognamiglio et al. 2014), and water

and environmental quality control (Bereza-Malcolm et al. 2014; Teo and Wong

2014). Most of the available diagnostic methods are time consuming, requires

skilled labor and large sample volumes. All these pave way for the researchers to

develop sensors that can offer fast response, ease to operate and high sensitivity to

detect analytes.

Detection of pathogens in food, water and air has been vital for the researchers

due to its crucial effects on the health of people. Though the standard techniques in

microbiology using cell culture and plating could confirm the identity of microbial

strains (Gracias and McKillip 2004; Monis and Giglio 2006), it usually takes

several days to finish the processes. Also, almost all the conventional methods

involve complex instrumentation which defies on-site detection process. Conven-

tional methods of pathogen detection are still in use in spite of their longer response

times, which is solely due to their high selectivity and sensitivity. Thus, it becomes

essential to develop biosensors that could be used for pathogen detection in a rapid
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and precise manner. Efficient pathogen sensors must satisfy several requisites.

Firstly they need to exhibit high sensitivity and lower limits of detection. As the

microorganisms like bacteria multiplies at a faster rate, even meager numbers of

cells could lead to risk of health in patients (Ward et al. 2014; Thakur et al. 2015). It

is also necessary to meet zero tolerance of certain bacterial strains such as E. coli
O157:H7, Salmonella, Listeria monocytogenes etc., in food products to meet the

standards of food safety (Batt 2007; Nugen and Baeumner 2008). Second important

requirement is faster mode of analysis. This is essential in order to take immediate

actions for treating patients and preventing the transmission of pathogens. Next

requisite would be high specificity in identifying different bacterial strains. This

could be satisfied by means of micro or nano arrays or chips in sensors with a

number of target specific probes. Lastly, portability, ease of use and also automa-

tion are significant for real time as well as long term monitoring.

A pathogenic biosensor works by transmitting/transducing receptor recognition

signals to a specific target pathogen, into a detectable signal. Presently available

techniques to detect pathogens include immunosensing or nucleic acid

(Deoxyribonucleic acid/aptamers) detection. There are various modes of transduc-

tion that includes optical mode involving fluorescence (Li et al. 2015), surface

plasmon resonance (Rifat et al. 2015; Liu et al. 2016a), colorimetric (Taneja and

Tyagi 2007), mechanical mode involving cantilever (Fritz 2008)/ piezoelectric

crystal/quartz crystalline microbalance (Fawcett et al. 1988; Farka et al. 2013)

and electrochemical mode consisting of amperometric, voltammetric and

impedimetric (Wan et al. 2011; Chen and Shah 2013) and immunosensors (Menti

et al. 2016; Sign and Sumana 2016). Immunosensors are based on antigen-antibody

interactions, where antibodies specific to antigens are immobilized on sensor

surfaces. Antibody development and selection are vital for constructing an

immunosensor for pathogen detection. Moreover, as the cells contain lesser con-

centrations of nucleic acids or other analytes, the biosensors need an enrichment

step for amplification of targeted analytes like nucleic acids using polymerase chain

reaction (PCR), reverse transcriptase-PCR and various other techniques. Amplifi-

cation of the transducing signals is also done for confirming the hybridization or

affinity binding between the probe and the analyte. The specific target

DNA/ribonucleic acid (RNA) can also be identified using different physical

bio-sensing methods. Overall, the efficiency of a pathogen sensor is based on the

specificity of biochemical reactions, high concentration of analytes under investi-

gation and sensitive/selective detection or transduction methods. The sensor probe

ought to be developed with smaller dimensions providing high sensitivity and low

detection limit. Here we discuss about the different types of biosensors involved in

pathogen detection, brief account on their principles of transduction along with

some remarkable research, critically analyzing its construction, specificity, effi-

ciency like limit of detection and ability to detect pathogens.
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2.2 Classification of Biosensors

Biosensors can be broadly classified, as physical and chemical biosensors, based on

the mode of signal transduction used in detection of biological analytes. The

biological components can be enzymes, whole cells, organelles, lipids, peptides,

tissues, antibodies or nucleic acids. Biosensor functions by following a biological

event (e.g. antibody-antigen interaction) whose signals can be sensed by any

physical or physico-chemical transducer as illustrated in Fig. 2.1.

2.2.1 Physical Biosensors

Biosensors that can sense a biological event by following the changes in physical

phenomena like mass, resonance frequency, refractive index, fluorescence, etc. of

the targeted analyte are classified as physical biosensors. These are further classi-

fied into optical and mechanical biosensors.

2.2.1.1 Optical Biosensors

Biosensors that quantify the analyte in a sample by its interaction with photons are

categorized as optical biosensors. There are several advanced optical sensing

methods available today to overcome the limitations of its preceding version.

Few of them are discussed below.

Fig. 2.1 Schematic representation of a Biosensor. Following a biological event, the alterations

caused in any of the intrinsic parameters like fluorescence intensity, refractive index, surface

tension, viscosity, etc. of the sensor probes can be sensed by a physical or physico-chemical

transducer/detector which converts into a readable signal
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Labeled Optical Biosensors

Fluorescent Labels

Fluorescence and phosphorescence emissions are about 1000 fold more sensitive

with low limits of detection than other available spectrophotometric methods

(Guilbault 1990; Yu et al. 2013). A typical fluorescence label method (Li et al.

2015) involves excitation of fluorophore at a particular wavelength followed by

emission of light at a different wavelength. When the analytes are present in trace

amounts, reporter molecules labeled with fluorescent dyes, are used for sensitive

detection. Fluorescence detection has number of advantages (Waggoner 2006) that

includes higher level of detection, sensitivity, rapid response times, a selective

fluorescence signal, multiple assays using different colored dyes and direct labeling

process, which yields specific functional moieties on the analyte.

The reagents used for fluorescent labeling have their key roles for sensitive and

reliable mode of detection. Fluorescent labeling agents include organic dyes,

nanoparticles like quantum dots, carbon nanotubes and rare-earth elements. Fluo-

rescent biosensor works with optical signals for quantitative or semi-quantitative

detection of pathogens. Recently, a number of nanomaterials which can act as

efficient fluorescence quenchers have been studied to build biosensing platforms

(Jans and Huo 2012; Wang et al. 2015; Wang and Alocilja 2015). Organic dyes

were the mostly used labeling molecules in fluorescence biosensors (Panchuk-

Voloshina et al. 1999) which included fluorescein, rhodamine dyes, sulfo rhoda-

mine, Alexa dyes (Alexa350, Alexa488, Alexa532 and Alexa594) and cyanine dyes

(carbo cyanines Cy3, Cy5 and Cy7). Cyanine dye labels like Cy3, Cy5 and Cy7

were used along with immunological reagents like antibodies and also DNA as bio-

recognition elements (Kallioniemi et al. 1992). Sulfonate groups with negative

charge, enhances solubility in water, prevents aggregation and minimizes the

fluorescence dye-dye interactions bound to the antibodies (Mujumdar et al. 1993).

These groups were combined with cyanine dyes in its ring structure, enhancing the

intensity of the dyes in aqueous media. Cy3 and Cy5 have been extensively used for

DNA and RNA labeling for gene expression studies (Schena et al. 1995). Recently,

Cy3 dye bound capillary tube, along with a mesoporous chip was explored in the

detection of a carcinoembryonic antigen, a protein available in the blood of some

people with certain kinds of cancer (Yu et al. 2013; Yu et al. 2014). Drawbacks

faced in using these highly sensitive fluorescent labels for detection includes lower

fluorescence intensity, pH-sensitivity, photo-bleaching and non-fluorescent product

formation. These limitations restricted their use in a bio-sensing system and paves

way for alternatives.

Fluorescence can be directly used as bio-recognition tool/reagent that takes part

in the bio assays for the detection of pathogens. Calcein Blue is a fluorophore whose

fluorescence is quenched in the presence of iron (III) has been proved to have the

potential to directly detect bacteria (Sankaranarayanan et al. 2015). In the presence

of an iron chelating molecule (siderophore) released by bacteria, iron is removed

from the fluorophore and fluorescence is restored in Calcein Blue. This serves as an
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easier, sensitive and cheaper method, which could be done in a 96 well plate, to

identify and quantify iron chelators, and hence the presence of pathogenic bacteria

within 7–8 h of incubation. Formation of siderophores by the Gram positive

bacteria such as Bacillus species, Staphylococcus aureus (Dale et al. 2004;

Zawadzka et al. 2009) and Gram negative bacteria like Escherichia coli, Legionella
species, Proteus species and Mycobacterium tuberculosis (Himpsl et al. 2010;

Wells et al. 2013; Adler et al. 2014) have been well studied. Here fluorescence

acts as a sensitive indicator of iron sequestration by the virulence marker,

siderophores and hence in the detection of the presence of bacterial pathogens in

the sample. Fluorescence based antibiogram method was found to be exceptional

compared to disc diffusion method or the standard liquid turbidity method. Per-

centages of individual pathogens susceptible/resistant to different antibiotics are

profiled as antibiogram. This technique helps in reporting antibiotic susceptibility,

intermediateness and resistance within 6–8 h, allowing rapid selection of suitable

antibody against infectious bacteria. Fluorescein diacetate is used as viability

indicator along with the antibiotic agent and the bacterial samples that has grown

for 7 h (Alagumaruthanayagam and Sankaran 2012). Fluorescence released was

measured after half an hour to check for viability of the infectious bacteria in the

sample.

Specific antibodies conjugated with fluorescein enriched hollow silica

nanospheres (diameter 350 nm) were used along with magnetic probes for selec-

tively detecting Escherichia coli O157:H7 (Hu et al. 2016). Here, acidity of the

solution is important for the fluorescein release, as the hollow silica nanospheres

dissolves only in alkaline solution of sodium hydroxide leading to release of the

fluorescent labels from the immune complexes. It involves capture of Escherichia
coli O157:H7 cells followed by magnetic separation and fluorescein release in a

detection solution (pH 10). Quantification of pathogens is based on the fluorescence

intensity of the fluorescein released from the fluorescein-enriched hollow silica

nanospheres. Here the detection time is only 75 min with limit of detection as low

as 3 cfu/ml. The same strategy could be employed in detection for a different

pathogen.

Graphene-Fluorophore

Graphene and graphene oxide are used for their functionalization, high volume to

surface ratio, desirable physical and electrical properties. Combination of graphene

and graphene oxide material with fluorescent labeled probes like aptamer/DNA

enabled detection by their fluorescence quenching properties (Zhang et al. 2017).

Quenching occurred upon adsorption of the fluorophore conjugated probes on the

graphene surface. The analytes present in the sample interacts with the probe

leading to its detachment from the graphene surface and generating more fluores-

cence and hence acting as indicators for detection of the target analytes.

Graphene and graphene oxide can be complemented with different types of

sensing mechanisms like optical/fluorescence biosensors and electrochemical sen-

sors (Shao et al. 2010; Liu et al. 2012; Kamali et al. 2015). Based on the sensing
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mechanism and principle graphene-based biosensors either use its unique properties

like high electron mobility, high electron-transfer rates, or high surface to volume

ratio for detection of biomolecules (Kuila et al. 2011; Zheng et al. 2014).

Quantum Dots

Nanoparticles in the form of quantum dots and carbon nanotubes have been used for

immobilization in bio-recognition applications (Rosi and Mirkin 2005; Ansari et al.

2010; Merkoci 2010). They serve as good alternatives for their biocompatibility,

higher distinct surface area, non-toxicity, good electro-catalytic activity, high

chemical and thermal stability, and rapid communication by means of electrons.

Moreover, nanoparticles associated fluorescence is an emerging research area that

enhances sensitivity, ease of use and diversity of the fluorescence-based sensing

methods. The development of quantum dots in labeling technology is due to their

desirable optical and chemical properties that include broader absorption with

narrow photoluminescence spectra, minimum photo-bleaching, high quantum

yield and ability to withstand chemical degradation. These are semiconductor

nanocrystals that are spherical with size ranging from 1 to 10 nm (Sutherland

2002). An interesting feature of quantum dots is that their fluorescence emission

wavelengths can be tuned by varying their particle size and chemical composition.

The ability of quantum dots to tune their size has been exploited for labeling and

detection of multiple analytes at the same time (Rosenthal 2001). The uninterrupted

long term tracking of biological processes is possible with quantum dots due to their

low photo degradation rate (Chan and Nie 1998; Wu et al. 2003). Quantum dots are

considered to be more advantageous than traditional organic dyes as fluorescent

probes (Vinayaka and Thakur 2010), as they are 20 folds brighter and 100 folds

more resistant to photo-bleaching (Chan and Nie 1998). But it also has three major

limitations, synthesis from toxic elements, no inherent solubility and aggregation in

water leading to lower quantum yields, which restricts its use for biological

applications (Shen et al. 2012).

Carbon Dots

Carbon-based nanomaterials, fluorescent carbon dots with similar optical properties

like quantum dots have emerged which possesses photoluminescence properties.

By means of purification of single-walled carbon nanotubes through preparative

electrophoresis carbon dots of size below 10 nm, were first formed in 2004 (Xu et al.

2004). Carbon nanotubes offer high surface to volume ratio, strong adsorption

ability, desirable electronic and mechanical properties (Davis et al. 1998). It is

commonly used as, single-wall carbon nanotubes and multi-wall carbon nanotubes.

Due to its high surface to volume ratio and good adsorption, carbon nanotubes are

employed for adsorption of bacteria and enrichment of various types of pathogens

(Srivastava et al. 2004; Deng et al. 2008; Upadhyayula et al. 2009). It also serves as

a material with high antimicrobial nature (Kang et al. 2007).
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Combination of Quantum Dots with Bio-recognition Elements

One major development in fluorescence based detection technique includes immu-

noassays that uses bio-recognition elements along with fluorescent labels (Yang

and Li 2006). Quantum dots are bound to biomolecules like antibodies by strategies

like covalent binding, electrostatic binding, non-covalent biotin-avidin binding and

nickel-based histidine tagging (Xing et al. 2007; Lee and Kang 2009; Zhang et al.

2010). Semiconductor quantum dots with different emission wavelengths (525 nm

and 705 nm) were bound to anti-Escherichia coli O157 and anti-Salmonella
antibodies by streptavidin and biotin coupling and used as fluorescent labels in

immunoassay for detection of E. coliO157:H7 and Salmonella (Yang and Li 2006).

Fluorescence-Based Fiber Optic and Planar Waveguide Biosensors

Fluorescence based optical fiber and planar waveguide consists of an optical

transmitter for the bio-recognition and for transporting the signal responses to a

photodetector which converts the photons into an electrical signal. The optical

biosensors offer advantages like low cost, compact size, ease of use and ability

for real time monitoring or detection of specific species in test samples as well as

quantification of the binding events (Taitt et al. 2016). These sensors find their use

in detection of pathogen or contamination in food samples, environment and also in

clinical diagnosis (Ligler and Taitt 2008; Benito-Pena et al. 2016). Fluorescence

based transduction is most common in optical biosensors (White and Errington

2005; Borisov and Wolfbeis 2008). Parameters like fluorescence intensities mea-

sured at a particular excitation/emission wavelengths and decay time as a function

of intensities could be used for bio-sensing (Demchenko 2008). It offers various

ways to improve the performance, selectivity and sensitivity of the optical bio-

sensors. Optical waveguides are made up of dielectric structures which transmit

energy between ultra violet-visible and infra-red regions in the electromagnetic

spectrum. Based on their configuration they are categorized as cylindrical and

planar wave guides (Fig. 2.2). Optical fibers are composed of cylindrical central

dielectric core covered by a lower refractive index material, whereas a planar

waveguide consists of block of dielectric core placed in between two layers with

reduced refractive indexes (Banica 2012).

A fiber-optic biosensor, shown schematically in Fig. 2.3, used to detect Staph-
ylococcus aureus was established in 1996 (Hsin Chang et al. 1996). The fluorescein
derivative fluorescein isothiocyanate was bound to the anti-Protein A

immunoglobulin G, produced by Staphylococcus aureus that emits fluorescent

signals of the antigen-antibody reaction with lower detection time (24 h). Similarly,

the above method was used to detect Staphylococcal enterotoxin B with cyanine

dye Cy5 as fluorescent label (Rowe-Taitt et al. 2000). A planar waveguide attracted

the Staphylococcal enterotoxin B present in samples, a small diode laser excited the

fluorophore Cy5, the pattern of fluorescent biochemical assay was recorded and

extraction procedure lasted for less than 20 min. Another fiber optic biosensor

60 B. J et al.



(Ko and Grant 2006) based on fluorescence resonance energy transfer with donor

fluorophore as Alexa Fluor 546 and Alexa Fluor 594 as acceptor fluorophore due to

its high spectral overlap and energy transfer (Panchuk-Voloshina et al. 1999) for the

detection of Salmonella typhimurium in the samples of ground pork was

established. A glass fibre based lateral flow DNA biosensor was reported (Chua

et al. 2011) for the detection of food borne Vibrio cholerae by conjugation of the

capture reagents to carrier beads and fluorescein labeled detector reagent bound to

gold nanoparticles.

Fig. 2.2 Schematic of Optical waveguides. Cylindrical optical waveguides with central cylindri-

cal dielectric core covered by low refractive index material (Left). Planar waveguides with block of
central dielectric core placed between two layers of reduced refractive index materials (Right)

Fig. 2.3 Schematic representation of a fluorescence-based fiber optic biosensor. In this illustra-

tion, a laser source coupled with fiber optics is used in the detection of protein A from Staphy-
lococcus aureus. This antigen-antibody reaction induces fluorescence signals from fluorescein

isothiocyanate (FITC) conjugated anti-protein A immunoglobulin G (IgG), when complexed with

protein A which then can be detected by a conventional optical set up
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Label Free Optical Biosensors

Surface Plasmon Resonance Biosensors

While sensing biological analytes it becomes necessary to analyze them in their

naturally occuring form. Early optical sensors required a fluorescent probe to be

tagged to the analyte. Such tagging may interefere with the native interpretations.

Therefore it becomes necessary to identify techniques that can go label-free,

background-free and detect heterogeneity among interactions. In this context,

surface plasmon resonance biosensors follow a label-free technique. They have

been developed for sensitive and specific real time analyte detection. These surface

plasmon resonance instruments work by optically monitoring the changes that

occur on its surface, (usually metals like gold, copper or silver), with respect to

the analyte flowing over the surface. A surface plasmon occurs at the metal-

dielectric interface, as a charge density wave also called as surface plasmon wave

(Liedberg et al. 1995). Surface plasmon resonance biosensors employ an optical

phenomenon where the surface plasmon wave undergoes changes corresponding to

the changes in the refractive index of the dielectric, and due to the binding of the

analyte to the surface (Homola 2003). The most commonly used surface plasmon

resonance sensing method involves the prism-coupling system (Fig. 2.4) where an

incident light at the metal/glass interface at the bottom is coupled to the surface

plasmon waves on the metal or liquid interface at the top. The light rays with an

incident angle bends due to high refractive index of the prism which then interacts

with the surface plasmon dispersion curve at the interface (Pi et al. 2016). Here the

change in signal will be solely due to the variation in the surface refractive index at

the top interface.

Some examples and improved methodologies employed for pathogen detection

along with their limitations are listed below. Surface plasmon resonance has proven

Fig. 2.4 Prism coupled-surface plasmon resonance biosensor with immobilized antibodies to

detect specific antigens in the sample. The antigen-antibody reaction, causes a change in the

refractive index at the interface (thin noble metal), which is being monitored as variations in output

optical signals by the detector
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to have the potential to identify a particular target bacterium in a sample containing

closely-related species. Differentiation of spores of Bacillus globigii, a simulant of

the bio-warfare agent Bacillus anthracis, from a sample mixture of various other

Bacillus species, was made possible with a portable surface plasmon resonance

biosensor. Detection was performed by direct capture using anti-Bacillus. However
this technique was impractical to use due to its higher limit of detection (107 spores/

ml) compared to other detection methods (Byrne et al. 2009) and the lethal dose of

Bacillus anthracis (100 spores) (Housewright and Glassman 1966). This also

signifies the need for a biosensor to have lower limits of detection for pathogens

in order to detect them sensitively.

Hybrid Optical Biosensors

Integration of surface plasmon resonance biosensors with other detection elements/

techniques like, fluorophore, immunolabels, magnetic nano particles, PCR, etc.,

was found to enhance sensitivity and reduce limit of detection.

An improved version of surface plasmon resonance sensor was developed by

integrating with immunolabels, for Salmonella detection in food samples with

lower limit of detection of 103 cfu.ml�1(Farka et al. 2016). The surface plasmon

resonance chip was immobilized with capture antibody, to which the samples

containing Salmonella will be added. Salmonella if present in the sample will

bind to the immobilized capture antibody followed by binding to secondary/detec-

tion antibody conjugated to Horse Radish Peroxidase. Here surface plasmon reso-

nance detection is enhanced by Horse Radish Peroxidase catalysed reaction where

4-chloro-1-naphthol gets converted into insoluble benzo-4-

chlorocyclohexadienone as shown in Fig. 2.5. This has been found to increase the

detection signal and 40 times enhancement of sensitivity in detecting Salmonella

compared to label-free detection. Enzymatic reaction oriented bio-recognition

along with antibodies have proved to enhance the ability of surface plasmon

resonance biosensor in pathogen detection compared to direct detection with

antibodies or amplification with secondary antibodies. Use of antibody

functionalized with Fe3O4 (iron oxide) magnetic nanoparticles (immuno magnetic

nanoparticles) in surface plasmon resonance sensors based on sandwich immuno-

assay for Salmonella detection (Fig. 2.6) was found to be more sensitive with limit

of detection as low as 14 cfu/ml (Liu et al. 2016a). These immune magnetic

nanoparticles work as vehicles to selectively detect, isolate and deliver Salmonella

from a sample mixture onto the sensor surface. Moreover, it also serves as labels

that amplify sensor signal by the enhancement of refractive index variations for

particular analyte pathogen. Sensitivity of the surface plasmon resonance sensors

employing these immuno magnetic nanoparticles were proved to have four times

more sensitivity compared to direct detection surface plasmon resonance sensors.

Surface plasmon resonance biosensors with labeled antibodies, (be it enzyme/

magnetic nanoparticles), that were based on sandwich immunoassay were found

to have high sensitivity compared to other direct detection surface plasmon
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Fig. 2.6 (i) Formation of antibody functionalized iron oxide magnetic nanoparticles by

EDC/NHS coupling; (ii) Binding of specific antibodies conjugated iron oxide magnetic

nanoparticles with pathogenic antigens; (iii) Enrichment of pathogens complexed with antibody-

iron oxide nanoparticles from sample mixture by magnetic separation; (iv) Pathogen detection by

surface plasmon resonance based gold chip coated with anti-pathogen polyclonal antibody. SPR -

Surface plasmon resonance, EDC/NHS - 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-

Hydroxysuccinimide, Fe3O4 MNPs - iron oxide magnetic nanoparticles

Fig. 2.5 Schematic representation of surface plasmon resonance chip that can detect pathogenic

antigens in the sample, by surface plasmon coupled sandwich immunoassay, enhanced by Horse

radish peroxidase labeled antibodies catalyzing the formation of insoluble benzo-4-

chlorocyclohexadienone; SPR- Surface plasmon resonance, HRP- Horse radish peroxidase
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resonance sensors. With appropriate antibodies immobilized on gold surface of

surface plasmon resonance sensors, pathogens in food samples could be detected in

less than 5 h (Sharma and Mutharasan 2013). All these prove the ability of surface

plasmon resonance sensors to be a sensitive, selective, quicker and label-free

detection tool. Moreover, these sensor surfaces can be regenerated and reused by

washing with NaOH (5 mM). A surface plasmon resonance based protein chip with

Protein G immobilized on its surface was developed to selectively detect different

pathogens (Fig. 2.7) like Escherichia coli O157:H7, Salmonella typhimurium,
Legionella pneumophila, and Yersinia enterocolitica (Oh et al. 2005) that exist in

the contaminated environment. The immobilised Protein G preserves the orienta-

tion of the monoclonal capture antibodies on sensor surface. It enhances the

sensitivity by associating specifically with the fragment crystallizable portion of

antibody immunoglobulin G (Boyle and Reis 1987) and improving the efficiency of

antigen-antibody binding.

As production of specific antibodies is expensive, time consuming, complicated

and are prone to lose its activity due to external conditions (Arya et al. 2011) DNA

based surface plasmon resonance biosensors were developed. Here the carboxyl-

ated dextran fixed onto the gold surface of sensor chip was coated with streptavidin

covalently linked to biotinylated single stranded oligonucleotide probe as shown in

Fig. 2.8 (Zhang et al. 2012). The probe was designed in such a way that it is specific

to a highly conserved gene, a potential target for pathogenicity in pathogens like

Salmonella which undergoes hybridization that lasts only for 15 min.. Detection of

Salmonella cells upto 102 cfu/ml could be performed in 4.5 h using this surface

plasmon resonance DNA biosensor. Regeneration of the sensor surface makes it

possible to reuse the sensor for atleast 300 assay cycles, thereby reducing the cost of

pathogen detection. By standardizing the sample preparation procedures to extract

Fig. 2.7 Illustration of a biosensor chip that can selectively detect different pathogens by specific

antigen-antibody interaction together with surface plasmon resonance. Here protein G coated on

surface of the chip helps to preserve the orientation of immobilized monoclonal antibodies.
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DNA followed by its amplification, this sensor could be used as an efficient tool to

detect and monitor pathogens in real samples.

Surface plasmon resonance biosensors based on grating coupled long range

surface plasmons were employed along with magnetic nanoparticles to detect

bacterial pathogens like Escherichia coli O157:H7 at concentrations as low as

50 cfu/ml (Wang et al. 2012a). Here the limit of detection is four times better

than that obtained by the regular surface plasmon resonance with direct detection.

Long range surface plasmons provide reduction in losses compared to the normal

surface plasmons and exhibits narrow resonance, thereby rendering accurate mea-

surements of changes in refractive index. Long range surface plasmons based

biosensors could probe higher distances from the surface (Dostalek et al. 2007)

and possess several fold enhanced refractive index resolution compared to regular

grating-coupled surface plasmons suitable for analyzing large analytes (Huang

et al. 2011; Vala et al. 2009).

Further PCR microchip hybridized with optical fiber surface plasmon resonance

sensor with bimetallic coating (Ag/Al) (Nguyen et al. 2017) serves as a label-free,

reusable, point of care diagnostic instrument by genetic analysis. In this, DNA of

the pathogen to be detected is amplified within 30 min on the PCR microchip

followed by detection with the surface plasmon resonance optical fibre sensor

without the aid of any kind labels. Here the pathogen detection is free from sample

volume restriction and labeling, until the DNA sample is in close contact to the

surface of the sensor. It has paved way for further miniaturization and point of care

diagnosis by genetic analysis towards effective pathogen detection without much

human intervention.

SPR
sensor chip

SPR
sensor chip

SPR
sensor chip

Carboxylated
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sensor chip
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sensor chip
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Biotinylated
ss-DNA
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containing
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Fig. 2.8 Schematic representation of a surface plasmon resonance - DNA biosensor chip, coated

with gold, carboxylated dextran and streptavidin on top that binds biotin conjugated ss-DNA

probe, followed by hybridization with complementary pathogenic target gene from the sample.

SPR - surface plasmon resonance, ss-DNA - single stranded-deoxyribonucleic acid
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2.2.1.2 Mechanical Biosensors

Sensors that sense the analytes by monitoring the change in mass associated with it

during the interaction process. They are more advantageous (Arlett et al. 2011) than

any other biosensors as they do not require any sample preparation. The commonly

available mechanical sensors follow either quartz crystal microbalance or cantile-

ver technology for the detection of analytes. Moreover, these sensors work as label-

free unlike other optical techniques.

Piezoelectric Quartz Crystal Biosensors

In piezoelectric quartz crystal biosensors, the detection of an analyte is usually

based on adsorbate identification. Here corresponding to the selective binding, mass

change occurs and is detected by change in electrical/acoustic parameters of a

piezoelectric quartz crystal. Piezoelectric effect is well observed in crystals on

applying pressure to it, thereby distorting the crystal lattice and inducing dipole

moment in the crystal molecules (Alder and McCallum 1983). Quartz crystal is the

most commonly used (Deakin and Buttry 1989), due to its desirable electrical,

mechanical and chemical properties. The piezoelectric quartz crystal is placed in

between two metal (gold/silver) electrodes and when a potential difference is

applied, the crystal lattice gets distorted and undergoes oscillation with a charac-

teristic resonance frequency. This oscillating piezoelectric quartz crystal has a

characteristic frequency dependent on its own physical properties and other phases

adjacent to it. This particular proportional relationship between the resonance

frequency and the mass of the crystal is exploited from this technique for pathogen

detection.

Piezoelectric biosensors are being used for rapid detection (Farka et al. 2013) of

pathogens either by active mode or passive mode. In active mode, the piezoelectric
crystal oscillates and the corresponding resonance frequency is measured by means

of a frequency counter (Arnau 2008). The passive mode is an expensive one where

the resonators are monitored for their impedance (Zhang et al. 2002). Passive mode
piezoelectric biosensor employs one equipment that can recognize the changes in

mass and viscosity (Itoh and Ichihashi 2008). These sensors detect the change in

resonance frequency that is caused by the binding of an analyte or increase in the

mass on its surface. A more stable and sensitive series piezoelectric quartz crystal
sensors (Shen et al. 1993; Jang et al. 2009) were designed by interconnecting

several piezoelectric quartz crystal with conducting electrodes successively,

which responded with resonance frequencies to every change in the electrical

parameters (He et al. 2003; Lakshmanan et al. 2014). With the aid of series

piezoelectric quartz crystal having multiple channels several samples could be

analyzed at the same time (Tong et al. 2014) and hence can be used for high-

throughput analyses.
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To further increase the sensitivity, series piezoelectric quartz crystal with
interdigital electrodes where a series of cathodes and anodes are connected with

micro gap in between were designed. This enables detection of even minute

variations on its surface (He et al. 2007; Ren et al. 2010). Graphene coated

interdigital gold electrodes are connected in series with piezoelectric quartz crystal

to develop a series piezoelectric quartz crystal sensor upon which the probes like

pathogen specific aptamers or antibodies, are impregnated as assemblies for the

corresponding pathogen detection. This was demonstrated initially by binding

Staphylococcus aureus aptamers to grapheme by π-π stacking of DNA bases

(Lian et al. 2015). Upon introducing analyte/target DNA (Staphylococcus aureus),
the aptamers bind strongly with the target DNA. The force of interaction of aptamer

with graphene becomes relatively weaker and the aptamer-target DNA complex

gets itself freed from the electrode surface, thereby causing changes in electrical

parameters of electrode surface with corresponding shift in oscillation frequencies.

These sensors have limit of detection of pathogens upto 41 cfu/ml. Similarly

interdigital electrodes impregnated with pleurocidin, an antimicrobial peptide

with broad spectrum of antimicrobial activity, help in rapid detection of microbes

in clinical blood samples in a time span of 15 min has also been established (Shi

et al. 2017). This sensor has found its importance in clinical diagnosis (Jordana-

Lluch et al. 2013) and food safety applications (Farahi et al. 2012). In this the

transducing element is an integrated single walled carbon nanotubes that crosslinks

pleurocidin with interdigital electrodes connected to a multichannel series piezo-

electric quartz crystal. This sensor works by specific binding of pleurocidin with

microbe which causes detachment of pleurocidin from the single walled carbon

nanotubes associated with the electrodes. The response in the form of frequency

changes in multichannel series piezoelectric quartz crystal are detected by the

transducer which is proportional to the microbes present in the sample. It fulfills

the need to detect the microbes which is the first step in the microbial blood stream

infection tests (Gonsalves and Sakr 2010), followed by identification and drug

susceptibility of microbes.

As a further step towards increasing the sensitivity, a sensor holding a similar

transducer as above is used along with gold nanoparticles (He et al. 2016), aptamers

specific for the complex of 10 kDa culture filtrate protein and 6 kDa early secreted

antigen target (Renshaw et al. 2002; Philip et al. 2005), an early phase antigen,

secreted by the pathogenic Mycobacterium tuberculosis, is used as probe for

detection of Mycobacterium tuberculosis. These aptamers along with complemen-

tary DNA bound gold nanoparticles over the interdigital electrodes showed more

sensitivity (Zheng et al. 2007; Li et al. 2009) when the target protein in the test

sample interacts with the aptamer. The DNA bound gold nanoparticles detached

from the electrode surface followed by electrical changes on the electrode due to the

substitution of conductive DNA-gold nanoparticles by non-conductive target pro-

teins. This had led to a more sensitive detection of frequency changes by the
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multichannel series piezoelectric quartz crystal with a detection time of 96.3 h. This

sensor serves as a rapid and early detection tool for detection of pathogenic

M. tuberculosis which is not possible with other sensors based on antigen-antibody

interactions (Ren et al. 2008; Kirsch et al. 2013).

Piezoelectric – Cantilever Biosensors

Cantilevers are rigid structural elements held at one end to a rigid support. Micro-

cantilever sensors have bio-receptors bound to it and have characteristic resonance

frequencies of oscillation upon interaction with bio-analytes (Ahmed et al. 2014).

The cantilever undergoes mechanical stress due to increase in mass on the sensor

surface and induces variation in the resonance frequencies. This property has been

used in the detection of various bacteria like Escherichia coli O157:H7 (Zhang and
Hai-Feng 2004; Campbell and Mutharasan 2005a), Salmonella typhimurium (Zhu

et al. 2007), Vibrio cholerae (Sungkanak et al. 2010), and the biowarfare agent

Francisella tularensis (Ji et al. 2004). Antibody functionalized cantilevers of the

size of a millimeter excited by piezoelectric effect has the ability to detect various

bacteria like Escherichia coli cells (Campbell and Mutharasan 2007), Listeria
monocytogenes cells in milk (Sharma and Mutharasan 2013). By using an imped-

ance analyzer the changes in the resonance frequencies when the analyte binds

specifically to the antibody at the cantilever tip could be measured. In a 1 ml sample

cell, Escherichia coli O157:H7 upto 700 cells/ml has been detected with a cantile-

ver functionalized with monoclonal antibody specific to Escherichia coli O157:H7
(Campbell and Mutharasan 2005b). Amplitude ratio and phase angle variations

with respect to mass changes at the cantilever were measured using an impedance

analyzer. Further, flow cells wherein analyte solution flows at a particular rate have

been used along with the functionalized piezoelectric-cantilever to detect pathogens

more sensitively (Campbell and Mutharasan 2006).

Piezoelectric cantilever sensors employing specific gene based detection of

pathogenic bacteria have also been developed. A food pathogen, Listeria
monocytogenes could be detected with one such sensor employing a probe specific

for the target virulence hemolysin gene, hlyA, within 90 min (Sankaranarayanan

et al. 2015). The hybridization response of the specific virulence gene from the

sample genome extract of the pathogens, with the probe on the cantilever was

detected by different means. It includes, a fluorescent indicator to detect the

hybridized double stranded DNA, a secondary single stranded DNA to detect the

unhybridized portion of the target DNA and also gold nanoparticles tagged sec-

ondary single stranded DNA to amplify the target hybridization. It is necessary to

extract the genomic DNA of the test sample prior to detection with the cantilever. It

proved to be a rapid technique compared to other conventional detection techniques

with almost same detection limit.
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2.2.2 Chemical Biosensors

Chemical biosensors monitor the changes in the chemical phenomenon of the

analytes upon interaction with the sensor probes. Further discussion on this will

be carried out under two categories as electrochemical and biochemical sensors.

2.2.2.1 Electrochemical Biosensors

Here the variations in electrical properties like current, potential or impedance at

the electrode surface upon binding to the bio-analytes in the test sample will be

examined. It can be further classified as label dependent and label free electro-

chemical biosensors (Xu et al. 2017) based on the technique used for detection.

Labels like enzymes, metal particles, etc. are specifically tagged to the target

analyte in case of label dependent sensors. Label free technique involves the

binding of bacterial cells on the electrode surface that elicits changes in electrical

parameters which could then be measured (Sang et al. 2016). With respect to the

methods used for measurement of electrical parameters, electrochemical biosensors

can be sub divided as amperometric, potentiometric, voltametric, conductometric

and impedimetric.

Amperometric and Potentiometric Detection

Pathogen detection by amperometric or potentiometric methods (Monzo et al.

2015) depends on the variations in current or potentials in which the electrode is

kept at a constant potential or current, relative to the reference electrode (Bard and

Faulkner 2001). This type of sensor has biological receptors like aptamers/anti-

bodies that can specifically adsorb microbes coupled to an enzyme transducer.

Upon binding of microbes, the enzymatic reactions are initiated, which either

produces or takes up a species, followed by its detection, by a selective electrode

(Barlett 2008). It proves to be a sensitive method as it is dependent on logarithmic

concentration. Recently, the use of a semiconductor device, field effect transistors,

for microbial detection enhanced the signal of the sensors ensuring increased

sensitivity (Grieshaber et al. 2008; Lin et al. 2008). It is also a rapid and cost

effective method (Barlett 2008; Wei et al. 2009), but these amperometric sensors

tend to have poor selectivity. This is because all the constituents in the solution with

a standard potential less than operating potential will add to the faradaic current,

generated by the reduction or oxidation of those constituents at the electrode

surface (Monzo et al. 2015).
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Impedimetric Detection

Here the impedance changes caused by the voltage signal when the analyte binds,

relative to the frequency of an electrode with dielectric properties, are measured

(Bard and Faulkner 2001; Barlett 2008). Two approaches are employed for the

identification of pathogens using impedimetric techniques. One involves the use of

unmodified electrodes, or electrodes bound to biological receptors, for the mea-

surement of the variations in impedance due to unspecific or specific attachment of

bacteria to the electrode, respectively (Wang et al. 2012b). Another approach is the

direct detection of the metabolites or toxins that are released by the pathogens

during their growth and is considered to be an important tool in detecting infected

samples (Felice et al. 1999; Gomez et al. 2002). The association of the microbes or

the metabolites with the electrode can be measured by differences in the capaci-

tance magnitude at the junction of electrode or variations in impedance. Upon

adsorption of either metabolites or microbes, reduction in total electrode surface

area occurs which further shifts the impedance to a higher level. Sensitivity and

selectivity are found to be high in impedance spectroscopy towards detecting

biological elements (Felice et al. 1999). Carbon electrode modified with reduced

graphene oxide has been reported in the detection of methicillin resistant Staphy-
lococcus aureus by means of impedance spectroscopy (Wang et al. 2011). Single

stranded probe DNA bound to the functionalized electrode undergoes hybridization

with the complementary target DNA present in the test sample, followed by

measuring the change in impedance values. This proves to be a more sensitive

and selective method in the detection of pathogen with the help of DNA as

bio-receptor. A rapid (45 min) and label free approach was demonstrated for the

detection of Salmonella by using a combination of polypyrrole based polymer, poly

[pyrrole-co-3-carboxyl-pyrrole] copolymer and a specific aptamer (Sheikhzadeh

et al. 2016). Impedimetric measurements upon interaction of the aptamer with the

target, cause changes in electrical parameters of the polypyrrole based copolymer.

It is considered to be a cost effective and rapid detection technique that could be

used for analyzing the contaminants in food samples and also in the environment.

As an alternative to the above, gene/immune based approach with engineered

synthetic peptides specific for pathogens have been used while monitoring the

changes in impedance (Liu et al. 2016b).

Voltammetric Detection

Voltammetric method for pathogen detection depends on the variations in the

potential at the junction of the electrode surface and the analyte solution with

respect to time, along with the measure of current (Bard and Faulkner 2001). Cyclic

sweep voltammetry is a commonly used technique for acquiring information like

oxidation or reduction potentials, reaction mechanisms and kinetics (Bard and

Faulkner 2001; Compton and Banks 2011). Here the voltage scan is performed

from a minimum to a maximum level of potential at a specific scan rate. The
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response in the form of current is recorded with respect to the voltage instead of

time. Voltammetric sensing is done either with the help of biological receptors or

by direct detection of the metabolite species undergoing oxidation or reduction on a

modified or unmodified electrode. Several advanced voltammteric detection

methods employing pulse strategies are available. These include differential pulse

voltammetry, normal pulse voltammetry and square wave voltammetry. For better

time resolution and high frequency operation, differential pulse voltammetry and

square wave voltammetry are more preferred for electroanalysis (Chen and Shah

2013). Genomic DNA of the targeted pathogens like Salmonella or Escherichia coli
cultures without any PCR amplification could be detected by means of sandwich

like assay consisting of magnetic nanoparticles, the genomic target DNA and gold

nanoparticles imprinted on carbon electrodes (Blow 2015).

An antibody based sensor with an immunoelectrode containing Graphene oxide-

silver nanoparticles immobilized with antibodies of the pathogen Salmonella
typhimurium utilizes cyclic voltammetry for the detection the same pathogen

(Sign and Sumana 2016). This could be extended to detect various other pathogens

with corresponding specific antibodies.

2.2.2.2 Biochemical Sensors

Immunosensors

Immunosensors are solid-state devices that combine immunochemical reactions

and transducers. Here the sensitivity and selectivity depends on specific ligand-

receptor interactions. A typical immunosensor is composed of two elements: a bio-

recognition element and a transducer. Here the bio-recognition element is formed

by impregnation of specific antigens/antibodies, and their interaction is converted

into a measurable signal by the transducer.

The immunoassay strategies involve direct or indirect methods of detection. In

the direct method, the immunochemical reaction is directly quantified with respect

to the physical changes that occur due to the antigen-antibody interaction. Indirect

method involves the use of a label in association with the antibody or antigen.

Immunosensors are combined with magnetic particles or gold nanoparticles for

enrichment or signal amplification in the detection of pathogens (Wang and

Alocilja 2015). An in-situ immuno-gold nanoparticle integrated network-based

enzyme-linked immunosorbent assay biosensor together with initial sample enrich-

ment using immuno-magnetic separation have been developed for the detection of

pathogens with high sensitivity (Cho and Irudayaraj 2013). It involves the forma-

tion of immuno-gold nanoparticle network onto the antigenic site at the bacterial

outer membrane surface, followed by analytical validation using microtiter immu-

noassay. Here magnetic and gold nanoparticles are coupled with antibodies specific

to the target bacterium. Initially separation and enrichment of bacteria will be done

by immuno-magnetic separation followed by secondary antibodies functionalized

with gold nanoparticles (30 nm in size) and are able to bind to complementary
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targets on the cell surface to form a network structure that can grow with time

amplifying the signal in the network structure (Lee and Irudayaraj 2009; Lee et al.

2011). It proved to be highly sensitive to detect pathogens at extremely lower

concentration like 3 cells/ml of Escherichia coli O157:H7 and Salmonella
typhimurium in buffer, and 3 cfu/ml of Escherichia coli O157: H7 and 15 cfu/ml

of Salmonella typhimurium in real sample conditions within 2 h of inoculation. The

ability to detect and monitor target bacteria with enhanced analytical sensitivity

compared to other current techniques makes it suitable as a tool for routine

monitoring and improved food safety. Based on the measurement of the amount

of specific virulence factors formed by the pathogenic organism, the pathogen can

be detected. Immunochemical approaches have been developed to detect Pseudo-
monas aeruginosa infections by quantification of a specific virulence factor

pyocyanin secreted exclusively by these organisms (Pastells et al. 2016). Anti-

bodies specific to 1-hydroxyphenazine, the major metabolite of pyocyanin viru-

lence factor enables us to quantify both 1-hydroxyphenazine and pyocyanin in

clinical test samples in 20 min. This assay completes in 2 h and offers simultaneous

detection of several samples. It proves to be a remarkable development in diagnosis

of infections in test samples.

Immunoassays/ Immunochemical Methods to Detect Pathogenic Infections

Antibodies suitable for immunoassays are chosen based on factors like, the assay

format where these monoclonal/polyclonal antibodies will be employed according

to antigen specificity. These assays are integrated with sensors to form

immunosensors. After establishing the ability of antibodies to recognize particular

antigens, it becomes easier to classify, detect and ultimately prevent pathogenic

infections. Several immunoassays have emerged through the years, to detect path-

ogens in the clinical stool samples or industrial food products. Immunoassays have

been developed for food industry to detect and quantify various food components

like protein, enzymes, vitamins and contaminants like microorganism, toxins,

pesiticides, hormones and others (Fukal and Kas 1989). Immunoassay format can

be designed for identification by means of understanding the immunochemical

reaction between antigen-antibody complex that is formed during an immunolog-

ical reaction between the analyte (antigen) and the reagent antibody (Kas et al.

1986). Immunoassays serve as a tool for analyzing the presence or concentration of

an antigen. Initially the agglutination of the antigen-antibody complex was visual-

ized followed by visible clumping of cells and antibodies (Burnet 1934; Pauling

1940), which would be discussed in the latter part of this chapter. This was fine-

tuned with the establishment of radial immune diffusion assays commonly referred

to as the double disk diffusion assays (Ouchterlony 1949). This immune diffusion is

based on the principle that molecules with similar structure will migrate with

similar rates through the agarose gel, without any restriction of movement of the

molecules (Lam and Mutharia 1994). Double disk diffusion assay is used in the

determination of minimum concentration of antigen required for precipitation of
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the antibody-antigen complex. Here the center part of the agarose gel consists of a

well or disk with an antibody surrounding which antigens are placed at equal

distances around the center forming a streak or band like precipitate or the precip-

itin line would be formed, ensuring the binding of antigen with the specific

antibody. This type of double disk diffusion assay was used to identify various

components of Escherichia coli like enzymes (Lee and Englesberg 1962), surface

proteins (Guinee et al. 1976; Isaacson 1977), enterotoxins (Honda et al. 1981; Tsuji

et al. 1985) and Shiga toxins (Oku et al. 1989).

Immunoassays work by the hydrophobic interaction of an antibody and antigen,

where either component could be bound to hydrophobic surfaces to quantify the

relationship between antigen and antibody. Immunoassays were developed further

with multiple screening of samples in a microtiter plate (96-well plates). Upon

binding of the antibodies to solid phase surfaces that are mostly hydrophobic,

quantification of these antibodies could be done by attachment of labels to antibody

which can be detected with a transducer. The important approaches include radio

immuno assay, enzyme-linked immunosorbant assay and latex agglutination.

Radio Immunoassay

Radio immunoassay pioneered in incorporating labels (Lequin 2005) like the

radioisotopes 125I and 3H were commonly used (Soergel et al. 1982; De Boever

et al. 1983). Here the radio labelled antibodies are allowed to interact with the

analytes and the screening was carried out with the help of a liquid scintillation

counter, which quantifies the particles emitted due to radioactive decay (Chase

1980). It was then followed by the emergence and usage of non-radioactive labels

like enzyme-conjugated chromophore systems that indirectly forms a detectable

label in an immune assay reaction (Lequin 2005).

Enzyme-Linked Immunosorbent Assay

Several enzyme associated formats of immunoassays emerged with the successful

implementation of enzyme labels for detection of antigens (Lequin 2005). Enzyme

linked immunosorbent assay development could be seen as a way of improving the

detection methods in clinical and public health setting, where cell culture or radio

immune assay was commonly used (Downes et al. 1989). Enzyme linked immu-

nosorbent assay has evolved into different forms for antigen detection and quanti-

fication as illustrated in the Fig. 2.9.

A sandwich assay (Skinner et al. 2013) was developed based on enzyme-linked

immunosorbent assay for detection of Escherichia coli producing Shiga toxin Stx2

subtype known as Stx2f. Although the Stx2f toxin was not involved in any critical

human disease (Melton-Celsa 2014), the assay proved to be useful in detecting the

presence of phages and plasmids in Escherichia coli isolates (Skinner et al. 2013).
Prior to the development of immunoassay for the Stx2f toxin, monoclonal anti-

bodies were generated by murine immunization with a Stx2f A subunit and fusion

of the mice spleenocytes with the myeloma cells. It was followed by screening of
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antibodies for immune reactions with the antigen Stx2f toxin, where four unique

antibodies (Stx2f-1, Stx2f-2, Stx2f-3 and Stx2f-4) were found to be specific for

Stx2f toxin.

Latex Agglutination

This method uses latex beads immobilized with specific antibodies and is one of the

widely used technique to sense the pathogens by their specificity towards antibodies

(Hegde et al. 2012). It is the common technique employed in clinical laboratories

for O antigen identification (Atkinson et al. 2012). Latex-bound antibodies gener-

ates complexes with any antigen present in the sample and forms visually detect-

able precipitates (Boer and Heuvelink 2000).

In addition, an optical immunoassay has been developed for visually identifying

microorganisms. The BioStar optical immunoassay SHIGATOX kit (Inverness

Fig. 2.9 Illustration of Enzyme labeled immunosorbent assay (ELISA), (i) Direct ELISA -

antigen adsorbed on plastic/microtiter plate binds to the enzyme-antibody complex added

(ii) Indirect ELISA - the enzyme-antibody complex uses an antibody against the isotype of

antibody that is used to detect the antigen (iii) Sandwich ELISA - antigens in sample bind to

capture antibody followed by binding with monoclonal antibody and secondary antibody conju-

gated with enzyme, (iv) Competitive ELISA - more the antigen present in the sample, the less

antibody will be present to bind to the antigen coated in the microtiter well, followed by the

enzyme-antibody conjugate that binds the isotype of antibody that is used to detect the antigen;

Addition of enzyme’s substrate produces colored product
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Medical Professional Diagnostics, Inc.) serves as a visual identification tool to

detect the presence of shiga toxins Stx1 and Stx2, but the drawback is that it does

not differentiate the two toxins (Teel et al. 2007). Here a mixture of anti-Stx

antibodies (either Stx1 or Stx2 specific) is bound to a silicon wafer. The principle

is based on the reflection of light from the silicon wafer, which appears gold in color

when bare and purple as the thickness increases due to the binding of shiga toxins

from the pathogen (Teel et al. 2007).

Antibiogram

Antibiogram was employed as a surveillance tool for the detection of early micro-

bial growth. It was initially developed as a 96 well plate format which was later

transferred to a portable, low cost point of care resazurin based polymeth-

ylmethacrylate microfluidic chip (Elavarasan et al. 2013) for live cells. Resazurin

is a blue colored water soluble dye that undergoes two stages of reduction in the

presence of viable cells (Fig. 2.10), first stage resulting in an irreversible pink

colored resorufin, formed by loss of one oxygen atom and a reversible second stage

resulting in colorless hydroresorufin (Sarker et al. 2007). It serves as an indicator of

cell viability, growth and toxicity (Palomino et al. 2002). Here, in this immunoas-

say, blue color indicates the blank/antibiotic susceptibility of the microbial sample

where there is no cell growth; pink/colorless indicates antibiotic resistance of the

sample and violet coloration shows intermediate to poor growth of the sample due

to partial/complete reduction of resazurin by cell growth. This method is used for

testing contamination of milk with bacteria and detection of multi drug resistant

microbes. This microfluidic chip can be used as a one-time disposable device and

thereby no cross contamination.

Fig. 2.10 Immunoassay based on Resazurin reduction reaction (Left), blue colored resazurin loses
one oxygen atom in the presence of oxidoreductases in viable cells to form pink colored resorufin

followed by further reduction to a colourless hydroresorufin. Resazurin dye reduction antibiogram

in 96 well plate format (Right), blue color- blank/antibiotic susceptibility, pink/colorless- antibi-

otic resistance, violet- intermediate to poor growth of microbes in the sample
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2.3 Conclusion

Researchers working on pathogenic biosensors focus mainly on lowering the time

taken for detection, the limit of detection, the need for skilled labor and sample

volume required for pathogen detection. Pathogen surveillance tools including

microchips and other diagnostic kits, based on surface plasmon resonance or

immunochemical reactions are remarkable. New trends involve the integrated use

of micro and nano fabrication techniques along with sample enrichment using

techniques like magnetic separation, followed by signal amplification and detection

using various transducers in the area of biosensors for pathogen detection (Zuo et al.

2013; Kim et al. 2014; Hsieh et al. 2015; Altobelli et al. 2016). Progress has been

witnessed in label free technologies like surface plasmon resonance/piezoelectric

quartz crystal based optical, mechanical and biochemical biosensors, in spite of the

improvements in label-based detection techniques which includes fluorophores,

quantum/carbon dots based techniques. As a next step, these significant pathogen

detection tools ought to be made available in the market for timely detection of

pathogens in no minute at a cheaper cost, thereby preventing epidemic conditions.
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Jordana-Lluch E, Carolan HE, Giménez M, Sampath R, Ecker DJ, Quesada MD, Mòdol JM,
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Chapter 3

Nanotechnology in the Food Industry

Arun G. Ingale and Anuj N. Chaudhari

Abstract Nanotechnology delivers emerging applications in functional food by

engineering biological and synthetic molecules toward functions that are excep-

tionally changed from those they have originally. Nanotechnology has enhanced

the superiority of foods by making them flavoured, nutritive and more healthier.

Nanotechnology generates also novel food products, better packaging, coating and

shelf storage techniques. Applications in food also improve shelf life, food quality,

safety and fortification. Biosensors in food packaging are designed to detect

contaminated or spoiled food. Nanotechnology improve food processes that use

enzymes to confer nutrition and health benefits. This report reviews applications of

nanotechnology in agriculture, and food science and technology. Furthermore, risk

assessment, safety concerns and social implications are discussed.

Keywords Food nanotechnology • Agriculture nanotechnology • Food

processing • Food packaging • Nanotechnology in food supplements
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3.1 Introduction

Nanotechnologists are being hopeful that nanotechnology will able to transform the

entire scenario of food industry by bringing significant changes in the various

processes in the food industry: production, processing, packaging, transportation

and consumption of food and food products. Increase and exploitation of nanotech-

nology in these processes ensures the safety of food and food products and creates a

healthy food culture which dominantly enhancing the nutritional quality of foods

which is the need of an hour (deAzeredo 2009; Ravichandran 2010; Dasgupta et al.

2017; Shukla et al. 2017; Jain et al. 2016). Moreover smart food packaging systems

can be developed using nanotechnology that in turn boosts the shelf-life of food

products by developing active antifungal and antimicrobic surfaces, improving

properties like heat-resistance and mechanical, modifying the permeation behaviour

of foils simultaneously detecting and signalling biochemical and microbiological

changes (Neethirajan and Jayas 2011). Implication of nanotechnology in current food

processing is creating an incredible impact on the advanced development of interac-

tive and functional foods which deliver nutrients and respond to the body’s require-
ments in an efficient manner (Dunn 2004). Nanocapsules which are added into food

products with the aim to deliver nutrients and nanoparticles when added to food and

food products increase the absorption of nutrients. Organic and polymeric

nanoparticles are being used to deliver vitamins or other nutrients in food and

beverages without affecting the taste and appearance of the product. The nutrients

are encapsulated by the nanoparticles and carried all the way through the stomach and

reaches into the bloodstream. This method applied for delivery of many vitamins in

higher percentage of availability of the nutrients to be used by the body because, when

nutrients are not encapsulated by the nanoparticles, few of the nutrients would be lost

in stomach (Ezhilarasi et al. 2013). Researchers are also engaged in development of

nanocapsules containing nutrients that would be released when nanosensors detect a

deficiency in of particular nutrient in body. Fundamentally the phenomenon behind

this is to construct a super vitamin storage system in body that gives only what body

need and when body need. Dominantly nanomaterials are being developed to improve

the overall quality viz. taste, color, and texture of foods. Taken an example “interac-

tive” foods are continuously being developed that would allow consumer to choose

which flavor and color a piece of food has (Dunn 2004). Nanosensors are enormously

developed and improved that can prior detect bacteria and other contaminants on the

surfaces of food at a packaging plants. Resultantly this will allow for frequent testings
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at a much lower cost than usually is acquire by sending samples to a lab for analysis

and wait till the results will arrive. This particular packaging testing point is conducted

more properly and carefully, has great potential to considerably reduce the chance of

contaminated food reaching grocery store shelves.

In August 2006, the US Food and Drug Administration (FDA) formed a Nano-

technology Task Force with goals that include; (i) evaluate the effectiveness of the

agency’s regulatory approaches and authorities to meet any unique challenge that

may be presented by the use of nanotechnology materials in FDA-regulated prod-

ucts. (ii) Explore opportunities to foster innovation using nanotechnology materials

to develop safe and effective drugs, biologics, and devices, and to develop safe

foods, feeds, and cosmetics. (The US Department of Agriculture 2015) Focusing

this goals nanotechnology is having a significant impact on numerous facet of the

food industry, from how food is grown to how it is travelled, processed and

packaged. Industries are developing nanomaterials that will make a difference not

only in the taste of food, but also in food safety, and the health benefits food going

to delivers when consumed. Increasing developments in micro- and nanotechnol-

ogies are growing at a rapid rate and strongly offers the functional potential to not

only improve the products in terms of textural and sensory qualities, stability and

health benefits, but also develop new products or manufacturing processes for the

food industry. Today food industry is the one of the largest manufacturing sector in

the world, with counting an annual turnover approximating US $4 trillion. World-

wide, a large amount of foods are consumed after only minimum processing e.g.,

fresh fruits, vegetables, nuts, some cereals and with additionally high post-harvest

losses considerably with fruits and vegetables (Fig. 3.1) (U.S. FDA 2014).

Nanotechnology offering wide ranges of opportunities for the development and

improvement of innovative products and applications in food manufacturing sys-

tem. Recently developed functional foods, neutraceuticals, bioactive compounds,

enriched farmafoods, etc. are highlighted examples of it.

Majorly of the sector where nanotechnologies are settling to make a difference is

in meat food processing in near future like, intelligent packaging of meat and meat

products, meat derived bioactive peptides, pro- and pre-biotics inclusion in

processed meat products, fat based nanoemulsions, nanosensors and nanotracers

for meat biosecurity tracing and nanostructured meat food products with distinct

functions (Table 3.1). Complex set of engineering techniques and occurrence of

scientific challenges in the food and bioprocessing industries for manufacturing

high quality and safe food through efficient and sustainable means can proven to be

solved through nanotechnology. Identification of contaminating bacteria and mon-

itoring of food quality using highly precised biosensors; intelligent, active, and

smart food packaging systems; and nano-encapsulation of bioactive food com-

pounds are strong establishing applications of nanotechnology for the next gener-

ation food industry. Nanotechnologies are not new and researchers have been

making various polymers based on nanoscale subunits for many years. The result

of new, previously unknown, properties attributed to engineered nanoparticles

(NP) many inventive consumer products containing these Nanoparticles have

been launched to the market recently. Application of nanotechnologies in
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electronics, medicine, textiles, defence, food, agriculture, cosmetics, and other

areas are already a reality and fruits of it applications are beginning to impact the

next generation of food production and processing industries (Chen et al. 2006).

Within food and agricultural sector nanotechnologies covering many aspects, such

as food security, packaging materials, disease treatment, delivery systems, bio-

availability, new tools for molecular and cellular biology and new materials for

pathogen detection (Maynard et al. 2006; Jasińska et al. 2010). The latent profit for

consumers and producers of these innovative products are widely emphasized.

3.2 Role of Nanotechnology in Agriculture

There is huge potential in nanoscience and technology in the stipulation of state-of-

the-art key for various challenges faced by and opportunities missed by agriculture

development society today and in the future. Concerning to climate change,

increase in urbanization, elevated use of natural resources and environmental issues

like runoff and continuous accumulation of pesticides and fertilizers are the burning

Fig. 3.1 Aims of next generation food industry of the future
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issues for today’s agriculture sector and the researcher community, who are waiting

for the recommendations of many nanotechnological strategies for the advance-

ment of scientific and technological knowledge currently being examined. The

future, demand for food will increase tremendously while natural resources such

as land, water and soil fertility are actually limited. Utilization of nanotechnology in

materials science and biomass conversion technologies applied in agriculture are

the starting point of providing food, feed, fiber, fire and fuels in the agriculture

sector. With reference to the cost of production inputs like chemical fertilizers and

pesticides is increasing at an alarming rate due to the limited reserves of fuel such as

natural gas and petroleum. To overcome these constraints, precision farming is

proving a better option to reduce the initial production costs and to maximize

agricultural product output. Possible through implicational advancement in nano-

technology, a number of techniques exist for the improvement of precision farming

practices which will allow precise control at nanometer scale (Ingale and Chaudhari

2013).

Nanoencapsulation researchers are working on applications of pesticides encap-

sulated in nanoparticles; these only release active pesticide in a target insect’s
stomach, which minimizes the possibility of contamination of plants themselves.

A further development being looked at is a network of nanosensors, nanotracers and

dispensers throughout a food crop. The sensors and tracers have ability to recognize

when a particular plant needs nutrients or water, before crop grower could see any

sign that the plant is deficient of the nutrients and water. Dispensers release

Table 3.1 Applications of various nanoparticles in active functions

Type of nanoparticles Deliverable application Active functions

Metal nanoparticles

(Silver, ZnO)

Food additive/supplement Enhanced gastrointestinal uptake

of metal

Packaging materials/storage,

Food preparation devices

Increase barrier properties Clean

surface

Refrigerators, storage containers Anti-bacterial coating

Water purification/soil cleaning Removal/catalysation/oxidation

of contaminants

Sprays Refrigerators, storage containers Anti-bacterial coating

Complex

nanostructures

Nanosensors in packaging Detection of food deterioration

Hand-held devices Storage conditions evaluation Monitoring of contaminants

Incorporated active

nanoparticles

Migration out of packaging

materials

Oxygen scavenging, prevention

of growth of pathogens

Filters with nano-pores

contaminants

Water purification Removal pathogens

Nano-sized nutrients/

foods

Food additives/supplements Claimed enhanced uptake

Delivery systems

(nano-encapsulates)

Food additives/supplements Protecting and (targeted) delivery

of content
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fertilizer, nutrients, or water as needed demand, optimizing the growth of each plant

in the field one by one.

3.2.1 Precision Farming

The precision farming is process that maximizes the crop yield and minimizing the

excessive usage of pesticides, fertilizers and herbicides through efficient monitor-

ing. Precision farming applies advanced remote sensing devices, computers and

global satellite positioning systems to precisely analyze various environmental

conditions in order to determine the growth behavior of plants under the conditions

and identify problems related to crops and their growing environments. Mainly this

helps in determine timely development of plant, soil conditions, usage and take up

of water and chemicals, fertilizers and seeding and consequently controls environ-

mental pollution to a minimum extent by helping in reducing agricultural waste.

The implementation of nanotechnology in the form of sensors and monitoring

devices will anticipate creating a positive impact on the future use of precision

farming methodologies. Nanosensors enabling systems help in growing the use of

autonomous sensors that are linked to GPS systems to provide proficient monitoring

services which focusing on crop growth and soil conditions. The use of smart

sensors in precision farming will results in incredibly increased agricultural crop

productivity by providing accurate information that will enable the farmers to make

accurate decisions related to plant growth and soil suitability. Applying precision

farming tools like, centralized data storage and collection system to determine soil

conditions and plant development, seeding, fertilizer, chemical and water use can

be accurately fine-tuned to lowers the production costs and certainly increase

production which all the way benefiting the hard worker farmer (Rickman et al.

1999).

Precision farming is also helping to reduce the massive generation of agricultural

waste and thus keeping environmental pollution to a minimum extent. But still not

fully put into practice yet, small sensors and monitoring systems enabled by

nanotechnology certainly will have a huge impact on future precision farming

methodologies. One of the major functionality of nanotechnology-enabled devices

will be the increased use of autonomous sensors linked into a GPS system for real-

time monitoring of the implemented field and its environmental conditions. These

nanosensors are distributed throughout the field where they can monitor soil

conditions and crop growth.

The use of nanotechnology in development of precision sensors will create

equipment of increased sensitivity, allowing an earlier response to environmental

changes. For example: Nanosensors which are utilizing carbon nanotubes (Fujii

et al. 2005) or nano-cantilevers (Vashist 2007) are fairly small enough to trap and

measure individual proteins or even small molecules of farmer interest.

Nanoparticles or nanosurfaces can be specifically engineered to trigger a specific

electrical or chemical signal in the existence of a active contaminant such as
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bacteria. While other nanosensors work by triggering a running enzymatic reaction

or by using nanoengineered branching molecules called dendrimers as detecting

probes to bind to target chemicals and proteins (Ruiz-Altisenta et al. 2010). Sooner

or later, future precision farming, with the help of advanced smart sensors, will

allow enhanced productivity in agriculture by providing accurate information, thus

helping farmers to make better decisions and improving the profit folds.

Particular Nanobiosensors are successfully used for sensing of a wide variety of

chemical fertilizers, herbicide, pesticide, insecticide, pathogens, moisture, soil pH,

and their controlled use can support sustainable development of agriculture for

enhancing crop quality and productivity (Rai et al. 2012). This technology provides

farmers a better fertilization management, reduction of inputs, and better manage-

ment of time and the environment. This system could help in the efficient use of

available agricultural natural resources like water, nutrients, and chemicals through

precision farming. Operational nanosensors which are dispersed in the field can also

successfully detect the presence of plant viruses and other crop pathogens, and the

level of soil nutrients in the defined area (Jones 2006; Brock et al. 2011). Levels of

existing environmental pollution can be evaluated quickly by nano-smart dust (the

use of tiny wireless sensors and transponders) and gas sensors (Mousavi and Rezaei

2011). Application of nanobarcodes and nanoprocessing could also be used to

monitor the quality of agricultural produce (Li et al. 2005). By keeping an eye on

nanotechnology-based plant regulation of hormones such as auxin helps scientists

to understand how the plant roots adapt to their environment variations, especially

to marginal soils where the variations are too flexible (McLamore et al. 2010). The

biosensors based on specific interactions creats atomic force spectroscopy more

effective in detecting enzyme-inhibiting herbicides. A nanobiosensor based on an

atomic force microscopy tip functionalized with the acetolactate synthase enzyme

was successfully detected for the herbicide metsulfuron-methyl, an acetolactate

synthase inhibitor, through the acquisition of force curves (daSilva et al. 2013).

Bionanosensors also allow the more quantification and rapid detection of bacteria

and viruses, thereby increasing the safety of the food for the customer (Otles and

Yalcin 2010).

It is difficult to predict the long-term and broad applications of nanotechnology

in agriculture and agricultural process and product development. Within agricul-

ture, precision farming is settling a promising objective. Applications like smart

sensors for early warning of changing climatic and crop conditions, and the use of

nanocapsules with pesticides that are able to respond to the raised different condi-

tions (Fig. 3.2).

3.2.2 Agrochemicals

Extensive amount of work is also being carried out in the development of various

nanosized agrochemicals, such as fertilizers, pesticides and veterinary medicines.

The aim to use of nanosized active ingredients has been suggested to offer
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improved and targeted delivery of agrochemicals in the only required area of field,

better efficacy of pesticides in terms of minimal use and better control over

necessary dosing of veterinary products. Nano-encapsulated and solid lipid

nanoparticles have been widely discovered for the delivery of agrochemicals

(Frederiksen et al. 2003); applicably it includes slow- or controlled-release of

fertilizers and pesticides within the stipulated time and required area. Combination

of fertilizer with pesticide formulation encapsulated in nanoclay for the slow

release of growth stimulants and biocontrol agents, has been tested (Chung et al.

2010).

The progress of nano-emulsions (water/polyoxyethylene) non-ionic surfactant

(methyl decanoate) containing the pesticide beta-cypermethrin has been character-

istically described by Wang et al. (2007a, b) and similarly, the manufacturing of

organic–inorganic nanohybrid material for controlled release of the herbicide

2,4-dichlorophenoxyacetate has been described by Bin Hussein et al. (2005).

Porous hollow silica nanoparticles, developed for the controlled delivery of the

water-soluble pesticide validamycin with a high loading capacity (36 wt%), have

been shown to have a multistaged release pattern (Liu et al. 2006).

Use of zinc–aluminium layered double hydroxide to host the herbicide active

ingredient by self-assembly. A few fertilizers claimed to contain nanosized

Fig. 3.2 Possible application areas of nanotechnology in food science and technology
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micronutrients which are mainly oxides and carbonates of zinc, calcium, magne-

sium, molybdenum, etc. are available till date. For remineralisation of soil a

micronized (volcanic) rock dust is available from a variety of sources. Product,

which comprises sulphates of iron, cobalt, aluminium, magnesium, manganese,

nickel and silver, is available for treatment of seed and bulbs prior to planting.

Research and development into slow- or controlled-release fertilizers is continu-

ously being carried out in China and India in large extent. The use of nanoforms of

agrochemicals offers a number of potential benefits in terms to significantly

reduced use of toxic chemicals, but may also raise numerous concerns over

exposure of agricultural workers, and elevated contamination of agri-food products.

Apart from the intended use and application of nanotechnologies in agriculture and

food sectors, there may be seen instances where engineered nanomaterials can get

into food and drinks through environmental contamination. Researchers identified

possible route of exposure through environmental contamination from the manu-

facture, use and disposal of consumer products containing advanced engineered

nanomaterials. In the product list the major share is contributed by cosmetics and

personal care products (TiO2, ZnO, fullerene (C60), Fe2O3, Ag, Cu, Au), catalysts,

lubricants and fuel additives (CeO2, Pt, MoS3), paints and coatings (TiO2, SiO2,

Ag, quantum dots), water treatment and environmental remediation (Fe, Fe–Pd,

polyurethane), agrochemicals (porous SiO2 carriers and other nanosized agrochem-

icals), food packaging (Ag, nanoclay, TiO2, ZnO, TiN), nanomedicine and carriers

(silver, Fe, magnetic nanoparticles) (Dasgupta et al. 2016; Boxall et al. 2007).

3.3 Role of Nanotechnology in Food Processing

Consumers increasing demand of fresh, authentic, textured, convenient and

flavourful food products in competitive market is keeping nanotechnology to

leadership in the food and food processing industry. The next generation food

industry belongs to innovative products manufactured by novel processes, with

the ambition to enhancing the performance of the product, prolonging the shelf life,

keeping the freshness, improving the safety and quality of food product. The

advance processing of food products has been asserting to give new tastes;

improved textures, consistency and stability of used emulsions, compared with

conventionally produced and processed food products (Nandita et al. 2016; Walia

et al. 2017). An increasing demand of the heath conscious society, benefit of this

technology results in form of a low-fat containing food product that is as creamy as

the full-fat alternative, and hence offers a healthy option to the consumer. The food

product which is oil in water emulsion that contains nanodroplets of water inside

the oil droplets is in the pipeline. This offers different taste and texture attributes

similar to the full-fat equivalent, but with a substantial reduction in fat intake by the

consumer (Kaiser 2004) (Table 3.2).

Another area of application of nanotechnology in food processing involves the

development of nanostructures also termed nanotextures in foodstuffs. Mostly
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mechanisms commonly used for preparing nanostructured food products include

nano-emulsions, surfactant micelles, emulsion bilayers, double or multiple emul-

sions and reverse micelles (Weiss et al. 2006). Examples of nanotextured foodstuffs

include spreads, mayonnaise, cream, yoghurts, ice creams, etc. a further area of

application involves the use of nanosized or nano-encapsulated food additives. The

broaden application is expected to exploit a much huge segment of the health food

sector, and include colours, preservatives, flavourings and supplements. Efforts are

taking to make better dispersion of water-insoluble additives in food products

without the use of excessive fat or surfactants, and enhanced tastes and flavours

due to the enlarged surface area of nanosized additives, compared with conven-

tional additives forms. Quantities of consumer products containing nanosized

additives are already available in some food markets, including foods, health

foods, supplements and nutraceuticals. This includes minerals, antimicrobials,

vitamins, antioxidants, etc. nearly all of these products are claiming to have

improved absorption and bioavailability in the body compared with their conven-

tional equivalents.

Table 3.2 Application of nanotechnology for the food and bioprocessing industries

Technology Description Benefits

Nanostructures of food

ingredients

Nanosized ingredients,

additives

Improved texture, flavor, taste;

Reduction in the amount of salt and

sugar; enhanced bioavailability

Nanoparticle-based intelligent

inks; reactive nanolayers

Nanolithography

depositions

Traceability, authentication, pre-

vention of adulteration

Nanoencapsulaton of supple-

ments based on micelles and

liposomes

Delivery systems for

supplements

Taste masking; protection from

degradation during processing

Membrane Filtration effective sepa-

ration of target material

from food

Higher quality food products and

fluids

Nanoparticle form of addi-

tives and supplements

Nano-engineered partic-

ulate additives

Antimicrobial; health benefits;

enhanced bioavailability of

nutrients

Nutrient delivery Enzymatic structure,

modification, emulsion

and foams

Targeted delivery of nutrients,

increased bioavailability of

nutrients

Improved and active nano-

composites, intelligent and

smart packaging

Food packaging Improve flexibility, durability,

temperature/moisture stability, bar-

rier properties

Surface disinfectant Engineering

nanoparticles

Non-contaminated foods, protec-

tion from pathogens
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3.3.1 Monitoring Food Quality

Researchers are importantly keeping eye on quality assurance in food production

and processing industry because consumers demands of more safe and wholesome

food products in addition to the governments imposing to strictly follow stringent

regulations to ensure food products safety and feed hygiene. For this sensor or

advanced detection systems for rapid detection of spoilage of product and its

components, for quality control, and for ignorance in detection at source and during

production chain is possible through nanotechnology. In monitoring of food quality

the analytical methods for contamination detection must have the flexibility to

detect different analytes as well as the specificity to distinguish between different

bacteria, and the sensitivity to detect bacteria directly and on-line in real samples

without pre treatment to meet consumer expectations. Biosensor technology is

holding a promise with manufacturing of inexpensive and simple devices to satisfy

these requirements (Palchetti and Mascini 2008; Ozimek et al. 2010). Mainly

biosensors can be an inherent alternative to the traditional methods for the detection

of toxins and pathogens in food and food product (Bogue 2005, 2008; Connolly

2008).

3.3.1.1 Nanosensors for Bacteria Identification

Most commonly found food born Campylobacter jejuni are bacteria on infection

which cause savoir abdominal cramps and diarrhea in humans (Ingale and Goto

2013). The campylobacter infections can possibly be traced from poultry meat

products which have been contaminated with intestinal contents of the livestock

during processing. Stutzenberger et al. (2007) group worked to tackle this food

safety problem, they have developed a novel strategy that utilizes bioactive

nanoparticles in the chicken feed which is specifically designed to bind to the

biomolecular structures on the surfaces of campylobacters. This antibiotic enriched

feed with functioning nanocarbohydrate particles successively binds with the

bacterium’s surface to remove it through the animals excretes.

Another biosensor developed by Fu et al. (2008) utilized fluorescent dye particles

which attaches to anti-salmonella antibodies on a silicon or gold nanorod array. On

testing the nanosized dye particles on the sensor become visible when the salmonella

bacteria present in the food. In contrast to the time-consuming conventional labora-

tory testings that are based on bacterial cultures maintenance and labour consuming

process, this biosensor can detect the salmonella in food instantly.

An analytical technology called reflective interferometry have been developed

by Horner et al. (2006), which provides specific, rapid, and label-free optical

detection of biomolecules in complex mixtures. This new technology has provided

food quality assurance by detecting Escherichia coli (E. coli) bacteria in a food

sample by measuring and detecting light scattering by cell mitochondria. This

sensor works on the principle of this sensor is that a protein of a known and
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characterized bacterium is set on a silicon chip and can bind with any other E. coli
bacteria present in the food sample. A nanosized light scattering is emitted by this

binding and detected by analysis of digital images.

Industry named Agromicron Ltd, located in Hong Kong has developed a low

cost Nano Bioluminescent Spray (Plexus Institute 2006), which can react with the

pathogen strain on food and produce a visual glow for easy detection. The spray

contains nanoparticles and would work based on its adherence reaction with the

bacteria. The higher the number of adherence between bacteria and molecules, the

more intense the glow produced by the particles. A broad range of food related

pathogens are identified by this spray, such as Salmonella and E. coli. Cheng et al.

(2009) demonstrated detection of E. coli in food using biofunctional magnetic

nanoparticles (about 20 nm in diameter) in combination with adenosine triphos-

phate bioluminescence. Zhao et al. (2004) successfully developed an ultrasensitive

immunoassay for in situ pathogen quantification in spiked ground beef samples

using antibody-conjugated silica fluorescent nanoparticles (about 60 nm in

diameter).

3.3.2 Nanoencapsulation

Recently role of food materials has progressed from being only a source of energy

and nutrients to actively contributing to the health conscious consumers. The

nutrients such as enzymes can be sensitive to proteases and other denaturing

compounds to protect this nutrients there is need to immobilise it on different

tailored carriers this may also improved nutrients stability to pH and temperature

changes. Hence the protection as well as controlled release of bioactive compounds

at the right time and the right place can be implemented by encapsulation.

Nanoencapsulation remains to be the one of the most promising technologies

having the feasibility to entrap bioactive compounds offers targeted site-specific

delivery and efficient absorption through cells. Encapsulation is mostly carried out

by physical and chemical techniques such as emulsification, coacervation, inclu-

sion, complexation nanoprecipitation, emulsification–solvent evaporation, and

supercritical fluid for food ingredients, drying techniques such as spray drying

and freeze drying for stabilization of nanoparticles describes in Table 3.3.

Microencapsulation of foods components or products is well established tech-

nique, microencapsulated fish oil has been added to bread for a health benefit which

masks the unpleasant taste of fish oil (Chaudhry et al. 2008a, b) and this bread is

marketed successfully. The nanoencapsulation of food components and additives is

a coherent advancement of the encapsulation technology to provide protective

barriers, flavour and taste masking, increased bioavailability, increased potency,

controlled release and better dispersion in aqueous systems for water-insoluble food

ingredients and additives (Chaudhry et al. 2008a, b; Mozafari et al. 2006).

The chief protein found in corn, zein, has received attention in food nanotech-

nologies because it has the potential to form a mesh like tubular network resistant to
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microorganisms. The zein nanomaterial is widely as a vehicle for flavouring

ingredients of the food product and the nanoencapsulation of dietary supplements

has been explored (Sozer and Kokini 2009). Just like carbon nanotubes, the

nanotubes of a-lactalbumin have a cavity diameter ranging of 8–10 nm which

may enable the binding of food components such as vitamins and enzymes

(Srinivas et al. 2010), cavities could also be used to encapsulate neutraceuticals

or to cover undesirable flavour or aroma compounds (Graveland-Bikker and de

Kruif 2006). Nanotubes can be obtained from milk protein by appropriately condi-

tioning the partial hydrolysis of milk with a specific protease, a-lactalbumin will

self assemble into nanotubes (Graveland-Bikker and de Kruif 2006). As the origin

of these nanomaterials used for encapsulation is milk protein or in the case of zein,

corn protein, they are considered to be food grade material and so their introduction

to the market should be relatively easy for a nano ingredient. The food grade

association of these proteins may facilitate widespread applications in

nanoencapsulating nutrients, supplements and pharmaceuticals.

Thus the size and the structure of food is influenced the functionality of foods by

providing the taste, texture, and stability properties that desired by the consumer.

Here nanotechnology can prove to play a vital role in controlling the size and

structure of food to a greater extent to make the desirable texture of food. It serves

healthier foods (lower fat, lower salt) with desirable sensory properties; ingredients

with improved neutraceutic properties; and the potential for removal of certain

additives without loss of spreadability and stability (Garti and Benichou 2004).

3.3.3 Ultrafiltration in Food Processing

Filtration process has been widely applied in numerous foods processing industries

for the last two decades due to its operational advantages over conventional

ingredient separation processes such as gentle product treatment, high selectivity,

and lower energy consumption (Mohammad et al. 2012). Ultrafiltration becomes an

essential part in food technology as a tool for separation and increase the concen-

tration. Same time membranefouling compromises the benefits of ultrafiltration as

fouling significantly reduces the performance and hence increases the cost of

ultrafiltration resulted in overall increase in product cost. Recently various

advanced intensive studies carried out to improve ultrafiltration, focusing on mem-

brane fouling control and cleaning of fouled membranes.

Membrane filters are extensively used in dairy processing industries. The dairy

industry has been one of the pioneers in the development of equipment and

techniques of ultrafiltration based on the practice gained from its application in

the dairy processing field (Daufin et al. 2001; Fox et al. 2004; Moresi and Lo Presti

2003; Pouliot 2008; Rosenberg 1995; Saxena et al. 2009). Ultrafiltration has found

a major appliance in the making of cheese, during cheese production, whey was

discharged to the sewer due to its high salt and lactose content, causing the direct

use as a food supplement difficult, but now whey can be processed to obtain

3 Nanotechnology in the Food Industry 103



additional food values through a newer process using ultrafiltration membrane by

increasing the fraction of milk proteins used as cheese or some other useful

products and reduce the waste disposal problem represented by whey (Saxena

et al. 2009). Membrane filtration technology is documented as a standard tool in

the food processing and beverage industry (Cheryan 1998). It is being in use for

processing a variety of fruit and vegetable juices (lemon, orange, grapefruit,

tangerine, tomato, pomegranate, sweetlemon, cucumber, carrot, and mushroom)

(Echavarria et al. 2011). For clarification of juices, ultrafiltration can be used to

separate juices into fibrous concentrated pulp and a clarified fraction free of

spoilage microorganisms. The clarified fraction can then undergo non-thermal

membrane concentration and eventually whole juice reconstitution by combination

with pasteurized pulp, in order to obtain a product with improved organoleptic

qualities (Cassano et al. 2008). In addition, a better quality clarified fruit juice could

able to stand in new market areas, such as clear juice blends, liqueur and related

food juice products such as carbonated soft drinks (de Barros et al. 2003). Ultrafil-

tration is also applied in the concentration process in fruit juice production and

processing industry. To recover bioactive components in fruit juice ultrafiltration

were employed; bioactive compounds of the depectinized kiwifruit juice were

recovered in the clarified fraction of the ultrafiltration process (Galaverna et al.

2008). Ultrafiltration used for fractionation and recovery of waste in fish processing

industry. To improve the bioactivity of a saithe protein hydrolysates the ultrafiltra-

tion process were employed, by fractionating or concentrating some specific

molecular weight peptide classes it increases the concentration of the protein in

the filtrate (Chabeaud et al. 2009). Using cross-flow membrane ultrafiltration and

nanofiltration the protein recovery from fish meal effluents were made technically

and economical feasible (Afonso et al. 2004).

3.4 Role of Nanotechnology in Food Packaging

Increasing the shelf life of food by avoiding spoilage, bacteria, or the loss of food

nutrient can be achieved by smart packaging. Nanotechnology offering advanced

hopes in food packaging by promising its longer shelf life, safer packaging, better

traceability of food products, and does providing healthier food. Intelligent, smart,

and active packaging systems produced by nanotechnology would be able to repair

the tears and leakages, and respond to environmental conditions. In addition

polymer nanocomposite technology also holds the key to future advances in

flexible, intelligent, and active packaging (Cushena et al. 2012).

Smart food packaging can detect when its contents are spoiling, and alert the

consumer prior to start or in the early stages of the spoiling, as active packaging will

release a preservative such as antimicrobials, flavors, colors, or nutritional supple-

ments into the food when it begins to spoil (Ranjan et al. 2014). Nanotechnology

provide solutions for food packaging by modifying the permeation behavior of

foils, increasing barrier properties (mechanical, chemical, and microbial),
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providing antimicrobial properties, and by improving heat-resistance properties

(Brody et al. 2008; Chaudhry et al. 2008a, b).

3.4.1 Nanoparticles for Food Packaging

The application of bionanocomposites for food packaging protects the food and

increases its shelf life, and also be considered a more eco friendly solution because

it reduces the requirement to use plastics as toxic, nondegradable packaging

materials. Conventional packaging materials are made from nondegradable mate-

rials, which increase environmental pollution in addition it consuming restricted

fossil fuels for their production. This current alternative of biodegradable films

exhibit poor barrier and mechanical properties and these properties need to be

improved considerably before they could replace traditional plastics (Suyatma

et al. 2004; Tharanathan 2003) and thus help to manage the global waste problem

(Sorrentino et al. 2007. The use of inorganic particles, such as clay, into the

biopolymeric matrix enhances the biodegradability of a packaging material and

can also be controlled with surfactants that are used for the modification of layered

silicate. The inorganic particles use also makes it possible to introduce multiple

functionalities, which might help to improve the delivery of fragile micronutrients

within edible capsules (Bharadwaj et al. 2002; Alexandre and Dubois 2000).

3.4.2 Improved Food Storage

Storage of food is the major concern in the food industry as there are numerous

reasons which affect the food storage. The main cause for food deterioration inside

food packaging is oxygen; as a result of it oxidation of fats and oils and growth of

microorganisms develops in the package. It also accelerates the processes inside

food packaging leading to discoloration, changes in texture, rancidity and off-odor,

and flavor trouble. Nanotechnologies effectively produce oxygen scavengers for

sliced and processed meat, beer, beverages, cooked pastas, and ready-to-eat snacks;

moisture absorber sheets for fresh meat, poultry, and fish; and ethylene-scavenging

bags for packaging of fruit and vegetables. A functional packaging film for selec-

tive control of oxygen transmission through the package and aroma affecting

enzymes has been developed by using the nanotechnology approach (Rivett and

Speer 2009). The modification of the surface of nanosized materials by dispersing

agents can act as substrates for the oxidoreductase enzymes based on reactions

catalyzed by food grade enzymes oxygen absorbing s packaging system are also

commercially available in the market. Packaging film supplemented with silicate

nanoparticles produced, reduces the entrance of oxygen and other gasses, and the

exit of moisture and can prevent the food from spoilage. The clay nanoparticles

embedded in the plastic bottles strengthen the packaging, reducing gas
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permeability, and minimizes the loss of carbon dioxide from the beer and the

ingress of oxygen to the bottle, keeping the beverage fresher and increases the

shelf life (Avella et al. 2005).

3.4.3 Antimicrobial Packaging

Antimicrobial packaging systems holds the impression of being significant for the

food industry and the consumers sight because these systems can help extend the

product shelf life and maintain food safety by reducing or merely inhibiting the

growth rate of microorganisms. Antimicrobial nanoparticle covering in the matrix

of the packaging material can reduce the growth of bacteria on or near the food

product, inhibiting the microbial growth on nonsterilized foods and maintain the

sterility and quality of pasteurized foods by preventing the post manufacture

contamination (Table 3.4). Sophisticated techniques of antimicrobial packaging

systems contain adding an antimicrobial nanoparticle sachet into the package,

dispersing bioactive antimicrobial agents in the packaging; coating of bioactive

agents on the surface of the packaging material or utilizing antimicrobial macro-

molecules with film forming properties or edible matrices (Coma 2008). Foods such

as cheese, sliced meat, and bakery that are prone to spoiling on the surface can be

protected by contact packaging imbued with antimicrobial nanoparticles, a typical

antimicrobial coating nanopackaging film was developed (Buonocore et al. 2005).

Paper having active antifungal properties developed for packaging by Rodriguez

et al. (2008) which incorporating cinnamon oil with solid wax paraffin using

nanotechnology as an active coating was shown to be used as an effective packag-

ing material for numerous bakery products. Working with oregano oil and apple

puree, Rojas-Grau et al. (2006) have created edible food films that are able to kill

E. coli bacteria.
Nanoparticles posing antimicrobial property have been synthesized and tested

for applications in antimicrobial packaging and food storage boxes which include

silver oxide nanoparticles (Sondi and Salopek-Sondi 2004), zinc oxide, and mag-

nesium oxide nanoparticles (Jones et al. 2008) and nisin particles produced from the

fermenation of a bacteria (Gadang et al. 2008). Many antimicrobials are hypothet-

ically proposed to be used in the formulation of edible films and coatings in order to

inhibit the spoilage flora and to decrease the risk of pathogens. There is a trend to

select the antimicrobials from natural sources and to use generally recognized as

safe compounds so as to meet consumer demands for healthy foods, free of harmful

chemical additives (Devlieghere et al. 2004).

The most commonly used antimicrobials are organic acids, the polysaccharide

chitosan, some polypeptides as nisin, the lactoperoxidase system, and some plant

extracts and its essential oils among others. Organic acids such as lactic, acetic,

malic, and citric acids, among others, are present in the ingredients of many foods

and are broadly used for preservation. The efficacy of antimicrobial activity is
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Table 3.4 Food borne pathogens causing illness, their major sources and time taken for action

Pathogen Sources Symptoms

Incubation and

duration

Campylobacter
jejuni

Raw milk, untreated

water, raw and

undercooked meat,

poultry, or shellfish

Diarrhea (sometimes

bloody), stomach

cramps, fever, muscle

pain, headache, and

nausea.

Generally 2 to 5 days

after eating contami-

nated food

Clostridium
botulinum

Home-canned and pre-

pared foods, vacuum-

packed and tightly

wrapped food, meat

products, seafood, and

herbal cooking oils

Dry mouth, double

vision followed by nau-

sea, vomiting, and diar-

rhea. Later, constipation,

weakness, muscle paral-

ysis, and breathing

problems may develop.

Botulism can be fatal.

12 to 72 h after eating

contaminated food

(in infants 3 to

30 days)

Clostridium
perfringens

Meat and meat products Abdominal pain, diar-

rhea, and sometimes

nausea and vomiting.

8 to 16 h after eating

contaminated food

Pathogenic

Escherichia coli
(E. coli)

Meat (undercooked or

raw hamburger),

uncooked produce, raw

milk, unpasteurized

juice, and contaminated

water

Severe stomach

cramps, bloody diar-

rhea, and nausea. It can

also manifest as

non-bloody diarrhea or

be symptomless. Must-

know: E.coli0157:H7
can cause permanent

kidney damage which

can lead to death in

young children.

Usually 3 to 4 days

after ingestion, but

may occur from 1 to

10 days after eating

contaminated food.

Listeria
monocytogenes

Refrigerated, ready-to-

eat foods (meat, poultry,

seafood, and dairy –

unpasteurized milk and

milk products or foods

made with

unpasteurized milk)

Fever, headache,

fatigue, muscle aches,

nausea, vomiting, diar-

rhea, meningitis, and

miscarriages.

9 to 48 h after inges-

tion, but may occur

up to 6 weeks after

eating

contaminated food.

Salmonella
Enteritidis

Raw and undercooked

eggs, raw meat, poultry,

seafood, raw milk, dairy

products, and produce

Diarrhea, fever,

vomiting, headache,

nausea, and stomach

cramps must-know:

Symptoms can be more

severe in people in

at-risk groups, such as

pregnant women.

12 to 72 h after eating

contaminated food

Salmonella
Typhimurium

Raw meat, poultry, sea-

food, raw milk, dairy

products, and produce

Diarrhea, fever,

vomiting, headache,

nausea, and stomach

cramps must-know:

Symptoms can be more

severe in people in the

at-risk groups, such as

pregnant women.

12 to 72 h after eating

contaminated food

(continued)
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Table 3.4 (continued)

Pathogen Sources Symptoms

Incubation and

duration

Shigella Salads, milk and dairy

products, raw oysters,

ground beef, poultry,

and unclean water

Diarrhea, fever, stom-

ach cramps, vomiting,

and bloody stools

1 to 2 days after eat-

ing contaminated

food

Staphylococcus
aureus

Dairy products, salads,

cream-filled pastries and

other desserts, high-

protein foods (cooked

ham, raw meat and

poultry), and humans

(skin, infected cuts,

pimples, noses, and

throats)

Nausea, stomach

cramps, vomiting, and

diarrhea

Usually rapid –

within 1 to 6 h after

eating contaminated

food

Vibrio cholerae Raw and undercooked

seafood or other con-

taminated food and

water.

Often absent or mild.

Some people develop

severe diarrhea,

vomiting, and leg

cramps. Loss of body

fluids can lead to dehy-

dration and shock.

Without treatment,

death can occur within

hours.

6 h to 5 days after

eating contaminated

food

Vibrio
parahaemolyticus

Raw or undercooked fish

and shellfish

Diarrhea, stomach

cramps, nausea,

vomiting, headache,

fever, and chills

4 to 96 h after eating

contaminated food

Vibrio vulnificus Raw fish and shellfish,

especially raw oysters

Diarrhea, stomach pain,

nausea, vomiting,

fever, and sudden

chills. Some victims

develop sores on their

legs that resemble

blisters.

1 to 7 days after eat-

ing contaminated

food or exposure to

organism

Yersinia
enterocolitica

Raw meat and seafood,

dairy products, produce,

and untreated water

Fever, diarrhea,

vomiting, and stomach

pain

Must-know: Symptoms

may be severe for

children.

1 to 2 days after eat-

ing contaminated

food
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based on pH reduction, disruption of substrate transport, and reduction of proton

motive force. The most common acidulant agents are acetic, lactic, and malic acids.

They are obtained by fermentation and are effective against the main pathogen

bacteria encountered in foods (Samelis and Sofos 2003).

In whey-protein-based packaging films containing of glycerol as plasticizer, the

use of formic, acetic, and fumaric acids or citric acid produced films of extreme

brittleness. In the case of use of acetic acid, whey proteins precipitated since pH was

close to isoelectric pH of proteins; as a consequence, gels formed were thick and

could not form films (Pintado et al. 2009). Different molecular weighted chitosan

can be extracted from shell wastes with different degree of deacetylation, due to

difference in molecular weight different functional properties and biological activ-

ities were exerted by these chitosan (No et al. 2007). The antimicrobial activity is

related to its positively charged amino group which interacts with negatively

charged microbial cell membrane promoting an increase in their permeability in

the cell and causing disruptions that lead to cell death (Ziani et al. 2009). Chitosan

inhibit the growth of many spoilage causing, yeast, molds and pathogenic bacteria

(No et al. 2007; Roller 2003). The antimicrobial activity of chitosan is depends on

the type of chitosan, degree of acetylation, its molecular weight, the target micro-

organism, pH of the medium, and presence of other additives or food components

(Aider 2010). Researchers have reported that efficacy of chitosan activity depends

on the application technique used; in a coating solution it is more available to act as

a preservative than when the preservative is forming the film (Vásconez et al. 2009;

Zivanovic et al. 2005). Addition of other antimicrobials to chitosan films and

coatings generally enhances the antimicrobial activity and also modified physical

and mechanical properties of films and coatings. Taking into consideration the

mentioned trend, addition of another antimicrobial agent such as potassium sorbate,

nisin, and essential oils, to enhance chitosan antimicrobial action explained in

Table 3.5 (Hosseini et al. 2009; Pranoto et al. 2005; Vásconez et al. 2009).

Combination of compounds from aromatic plant, clove, and cinnamon essential

oils to chitosan films, in general, inhibited the growth of L. monocytogenes,
S. aureus, Salmonella enteriditis, and Pseudomonas aeruginosa (Hosseini et al.

2009). Essential oil exhibited the greatest inhibitory action on contaminating

bacteria and also modifies physical and mechanical properties of films and coatings.

It has seen in essential-oil-free films, inhibition of bacterial growth was not

observed, suggesting that chitosan is unable to diffuse through the agar layer and

pointed out the necessary addition of other antimicrobial in the film to exert

chitosan its influence (Pranoto et al. 2005). Zinc oxide nanoparticles have been

incorporated in different materials including glass, low density polyethylene, poly-

propylene, polyurethane, paper and chitosan using different incorporation methods

(Espitia et al. 2012). Antimicrobial activity if zinc oxide nanocomposites material

has been tasted by agar diffusion test, direct contact with culture broth contained

microorganisms followed by colony counting (Applerot et al. 2009; Jin et al. 2009;

Vicentini et al. 2010). Antimicrobial activity of ZnO nanocomposites performed

against Gram-negative bacteria such as E. coli as well as Gram-positive bacteria

such as B. subtilis, S. aureus and L. plantarum (Applerot et al. 2009; Emamifar et al.
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2010; Jin and Gurtler 2011). Paper coated with ZnO nanoparticles has shown

antimicrobial activity against E. coli (Ghule et al. 2006).

3.4.4 Green Packaging

Use of natural biopolymer, bio-nanocomposites-based functional packaging mate-

rials have generated great potential for enhancing food quality, safety, and stability

as smart packaging and processing technology. Researchers are taking efforts to

manufacture biodegradable and fully compostable bioplastics packaging (CSIRO

2006), made from organic corn starch using aspects of nanotechnology. Use of bio

degradable biopolymer in food packaging material also provide enhanced organo-

leptic characteristics such as appearance, odor, and flavor (Zhao et al. 2008). The

exceptional advantages of the use of natural biopolymer packaging are that these

can easily handle particulate foods, can act as carriers for functionally active

components, and provide nutritional supplements (Rhim and Ng 2007). A natural

polymer and a main component of lobster shells called chitin is used for the making

of biodegradable green food packaging using electrospinning technique. The

electrospinning technique involves dissolving chitin in a solvent and drawing it

through a tiny hole with applied electricity to produce nanoslim fiber spins (Kriegel

et al. 2009).

3.4.5 Edible Films and Coatings

Development of edible films and coatings has been possible due to the film forming

capacity of natural biopolymers. Hydrocolloids have good ability to form a uniform

and cohesive matrix with controlling mechanical properties (Bourtoom 2008,

2009). This ability of hydrocolloids is related to the chemical structure of these

compounds, which allows the association through hydrogen bonding of their

polymeric chains. The most common biopolymers used for edible antimicrobial

film production are polysaccharides, proteins single or mixtures from different

sources, and combination of carbohydrates and proteins. While lipids such as

waxes and fatty acids are main constituent of edible films and coatings, they do

not possess a stand-alone film making nature. For this reason, lipids are often

supported on a polysaccharide matrix to provide a film with mechanical strength

(Bourtoom 2009). Incorporation of lipids in hydrocolloid-based film formulations

facilitates to improve their water barrier characteristics or change their visual

appearance (Karbowiak et al. 2010; Maftoonazad et al. 2007) (Table 3.5).

Polysaccharides Polysaccharides make transparent and homogeneous edible films

with moderate mechanical properties. The application of these films is limited by

their water solubility and poor permeability. To solve this issue, the blending of this
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with different biopolymers (Xu et al. 2005), addition of hydrophobic materials like

oils or waxes (Anker et al. 2001; Ayranci and Tunc 2003; Garcı́a et al. 2000), or

chemical modification of polymer structure have been proposed (Marques et al.

2006).

Cellulose and Derivatives Cellulose is the major structural material of plant cell

walls and it is composed of linear chains of (1 ! 4)-β-D-glucopyranosyl units.
Chemical substitution of some hydroxyl groups along the chain gives origin to ionic

(carboxymethylcellulose, CMC) and nonionic cellulose ethers (methylcellulose,

MC; hydroxypropylcellulose, HPC; hydroxypropyl methylcellulose, HPMC). Cel-

lulose derivatives films are tough, flexible, totally transparent, and highly sensible

to water presence but resistant to fats and oils (Lin and Zhao 2007; Vargas et al.

2008). Crosslinking treatments can be used to decrease the water solubility of

cellulose ethers (Coma et al. 2003).

Chitosan Chitosan is a natural carbohydrate polymer derived by deacetylation of

chitin [poly-β-(1 ! 4)-N-acetyl-D-glucosamine]. It is a high molecular weight

cationic polysaccharide that exhibits antibacterial, antifungal activity and film-

forming properties (Fernandez-Saiz et al. 2009; Ziani et al. 2009: Arvanitoyannis

2008; Sebti et al. 2005). Numerous information has been reported about chitosan

potential to act as a food preservative, function that was evaluated either on the

basis of in vitro trials or through direct application of chitosan on real complex

matrix foods (Durango et al. 2006; Han et al. 2004; Park et al. 2004; Ribeiro et al.

2007; Vásconez et al. 2009). Because of the good film-forming capacity of

chitosan, it is broadly used to protect, improve quality and extend the shelf life of

fresh and processed foods. Only chitosan coating was successfully applied on silver

carp (Fan et al. 2009) and ready-to-eat roast beef coating (Beverlya et al. 2008);

chitosan coatings incorporated with cinnamon oil retained the good quality char-

acteristics as well as extended the shelf life during the refrigerated storage of

rainbow trout (Ojagh et al. 2010); modified atmosphere packaging in combination

with chitosan edible coating maintained quality and enhanced phenolic content in

carrot sticks (Simões et al. 2009) and coatings based on selectively high molecular

weight chitosan alone (Han et al. 2005) or combined with oleic acid extended

strawberry shelf life (Vargas et al. 2006).

3.4.6 Nanocomposites for Food Packaging

Efficient nanocomposite materials for food packaging are developed with nano-

technology can provide better solutions to food industry challenges concerning to

product safety and performance as well as economic and environmental advantages

(Silvestre et al. 2011; Ingale 2014). In preservation of food, implications of

nanotechnology can extends and improve functional packaging, which like been

inhibition and protection from contaminants, preservation, marketing and commu-

nication, leading to a active food packaging system. In synthesis of nanocomposite,
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the composites are made of a polymeric matrix act as continuous phase and a

discontinuous phase known as filler, fibres, platelets and particles have been widely

used as fillers, so as to improve the mechanical properties and heat resistance of

polymers hence it also enhances the overall properties of nanocomposites. (Ajayan

et al. 2003; Chaudhry et al. 2008a, b; Arora and Padua 2010). Zinc oxide (ZnO) is

an inorganic compound enormously used in everyday applications and also facil-

itates in formation of nanocomposites since currently listed as a generally recog-

nized as safe (GRAS) material by the Food and Drug Administration and hence is

used as element of food additive. ZnO nanoparticles have shown antimicrobial

properties and been incorporated in polymeric matrices in order to fabricate

nanocomposite which provide antimicrobial activity to the packaging material

and improve packaging properties (Espitia et al. 2012). Polyurethane films incor-

porated nanoparticles have shown antimicrobial activity against E. coli and

B. subtilis, amongst E. coli being more sensitive to the developed nanocomposite

material, eventually this may be the result of a strong affinity of the nanoparticles

with E. coli cells and consider that the antibacterial activity of ZnO is due to the

generation of H2O2 in nanoparticle surface (Li et al. 2009).

3.5 Role of Nanotechnology in Food Supplements

Food supplements are generally considered to include vitamins, minerals, fiber,

fatty acids, or amino acids, among or within other food substances. Nutrients are

essential to the sustainability of a body, the bioactive compounds are not essential

since the body can functions without them but bioactive compounds can have an

influence on health and can believe to act as alternative of direct drug use external

to the body. Bioactive compounds are known to be considering are flavonoids,

caffeine, carotenoids, carnitine, choline, coenzyme Q, creatine, dithiolthiones,

phytosterols, phytoestrogenss, glucosinolates, polyphenols, anthocyanins

(Golmohamadi et al. 2013).

3.5.1 Bioactive Compounds

Bioactive compounds defined as extra nutritional constituents that normally occur

in small quantities in foods, include beta-carotene from carrots, lycopene from

tomato, beta-glucan from oats, omega-3 acid from salmon oil, conjugated linoleic

acid from cheese, Lactobacillus from yogurt, and isoflavones from soybeans, etc.

There is evidence to recommend consuming food sources rich in bioactive com-

pounds. From a practical perspective, this translates to recommending a diet rich in

a variety of fruits, vegetables, whole grains, legumes, oils, and nuts (Kris-Etherton

et al. 2002). Nanotechnology has made known better potential in improving the

efficiency and delivery of nutraceuticals and bioactive compounds in functional
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foods ultimately to improve human health. Enhanced solubility; improve bioavail-

ability and protection of the stability of micronutrients and bioactive compounds

during processing, storage and distribution results by efforts of nanoencapsulation

(Chen et al. 2006).

Bioactive compounds can be protected by nanoencapsulation from absorption

and ensures controlled release of beneficial live probiotic species to promote

healthy and targeted gut function. Thus the viability of probiotic organisms includ-

ing Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, and
Bifidobacterium spp. within freeze dried yogurt can be improved by encapsulation

of this bioactive component with calcium alginate (Kailasapathy and Rybka 1997).

The bioavailability of antioxidant component from mainly from tomato; lycopene

can be increased by synthesizing nanoparticles of lycopene and incorporating in

tomato juice, pasta sauce, and jam (Auweter et al. 1999). Casein a bulky found milk

protein, was used to make nanosized micelles and has been employed as a vehicle

for delivering sensitive health promoting ingredients like various vitamin (Semo

et al. 2007). Biopolymer nanofibers prepared by electrospinning technique by zein

for encapsulating beta-carotene show the potential of nanotechnology in food and

nutraceutical formulation and catings, bioactive food packaging, and food

processing industries (Fernandez et al. 2009). New naturally derived carrier

nanotubes for nanoencapsulation of nutrients, supplements, and pharmaceuticals

are assembled from hydrolysed milk protein α-lactalbumin (Graveland-Bikker and

de Kruif 2006).

3.5.2 Interactive Foods

Nanotechnology is helping to develop interactive foods which can allow consumers

to choose and modify the food depending on their own nutritional needs or choice

of tastes and flavors. The nanocapsules containing flavor or color enhancers or

added nutritional elements would remain in dormant phase in the food and will only

be released when triggered by the consumer (Dunn 2004). Efforts are made to

develop foods which are capable of changing their color, flavor, or nutritional

properties according to a consumer nutritional needs, allergies, or taste preference.

Nanotechnology can facilitate techniques to make foods such as soft drinks, ice

cream, chocolate, or chips to be commercially marketed as ‘health’ foods by

reducing fat, carbohydrate or calorie content or by increasing protein, fiber or

vitamin content. In addition, nanotechnology can help in the production of stronger

flavorings, colorings, and nutritional additives, and processing aids to increase the

speed of manufacturing and lowers costs of ingredients and processing (Burdo

2005). Utilization of nanofilters and membranes successfully can screen out or pass

through certain molecules based on the shape and or size to remove toxins or adjust

flavors, Nestle and Unilever are reported to be developing a nanoemulsion based ice

cream with a lower fat content that retains a fatty texture and flavor (Renton 2006).
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3.5.3 Texture

Commonly Texture Described as What Things Are Made of and how they Feel on

Contact. Textures can Be Illustrated as Rough, Smooth, Hard, Soft, Liquid, Solid,

Lumpy, Gritty Etc. Consumer like or Dislike Food because of its Taste, but the

Texture of the Food Also Plays a Part in whether Consumer like it or Not. Texturing

Is Big Business and the Science of Food Structure Even Has its Own Logy that Is

Food Rheology.

Reduction of the size of food molecules to nanosized crystals creates more

particles for providing greater surface area. Smaller particles improve food’s
spreadability and stability, and can assist in developing healthier minimal fat food

products. Multiple emulsions such as water-in-oil-in-water can distribute the lipids

more evenly to reduce extra stabilizers and thickeners to achieve a desirable food

texture (Garti and Benichou 2004). Food texturing researchers, prepared nanoscale

assays can activate the taste receptors of human tongue and can reduce the bitter-

ness naturally inherent in some foods. (Wenner 2008). In beverages industry,

photocatalytic process developed using gold nanoparticles by Lin et al. (2008) for

decreasing the aging period and enhancing the sensory quality of sorghum spirits.

Contreras et al. (2009) showed that zinc nanoparticles can be used to optimize

conditions for surface enhancement of infrared absorption of food components.

This technique able to demonstrate that butter treated with zinc naoparticles exerts

trans fat spectral information along with the degree and the unsaturation of the acyl

groups. These results clearly indicate the potential of nanomaterials in real time

imaging sector to reveal useful information concerning food allergens, bioactive

compounds, and microbial pathogens.

3.6 Safety and Societal Implications

Recently, interest has extensively grown in safety issues regarding the use of

nanoparticles, nanocomposites, nanoconjugates in food packaging. Awareness

about food safety and quality as well as its potential impact on consumers are key

issues related to food processing and packaging which are developed by nanotech-

nology (Jain et al. 2016). Researchers are particularly more concerned with the

possible ways of nanoparticles migration from the process to packaging material

into the packed food and whether this migration would have a negative impact on

the safety of food and consumer or quality of the packaged product (Bradley et al.

2011). Nanoparticles have much larger surface area to volume ratios, thus they may

exhibit substantially different physicochemical and biological properties compared

to conventionally larger sized particles (Ingale and Chaudhari 2013). There are

three key factors majorly concerned of nanoparticle toxicity test strategies includes,

physicochemical characterization, in vitro assays and in vivo studies (Oberd€orster
et al. 2005).
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The existing functional safety laws, safety testing protocols, and the workplace

health procedures are apparently inadequate to measure the exposure and assess the

risks posed by nanofoods, nanofood packaging material and nanobased chemicals.

Still the industries following established guidelines in the safety assessments of

nanomaterials used for manufacturing nanofoods and nanopackaging materials and

are not assessed as new chemicals. Novel experimental protocols and research tests

should be performed to generate hazard and exposure information leading to risk

assessments and to reliably answer concerns about the possible toxicological effects

of exposure to nanoparticles, nanocomposites in the food product. A study shows

that toxicities of nanoparticles and large particles were similar when the dose was

expressed in surface area (Monteiller et al. 2007).

Toxicological evaluation of nanomaterials in food applications has done by high

content screening technique and utilizing Zebrafish model can provide valuable

developmental toxicity information in terms of endpoint identification and mech-

anism elucidation (Donofrio 2006). Nevertheless, currently there is a huge demand

for low cost in vitro assays without reducing the efficiency and reliability of the risk

assessment, since in vivo experiments are expensive, slow and ethically question-

able (Siripireddy et al. 2017; Maddinedi et al. 2015, 2017; Tammina et al. 2017;

Sannapaneni et al. 2016; Ranjan et al. 2016).

3.7 Conclusion and Perspective

Numerous varied opportunities for nanotechnology exist to play an important role

in techniques of agriculture, food processing and packaging. The uses and benefits

of nanotechnology are countless, from productivity enhancement through nano-

technology driven advanced precision farming and maximization of output in terms

of yield with profit and minimization of inputs of fertilizers through better moni-

toring and targeted action only where required is desirable. Precision farming

enables plants to use water, pesticides, and fertilizers more efficiently and reduces

its excessive use. Use of nanotechnology may bring great benefits to farmers

through ease in food production and to the food industry through development of

new products through food processing, preservation, and packaging.

Expected applications of agricultural food nanotechnology include nanosensors or

nanobiosensors for detecting contaminants and for soil quality and for plant health

monitoring, for steady release and efficient dosage of water and fertilizers for plants,

nanocapsules for agrochemical delivery, creating biofuels, nanocomposites for

bioplastic film coatings used in food packaging, antimicrobial nanocomposites used

for applications in decontamination of food, nanobiosensors for identification of

pathogen contamination, and improving plant breeding (Dasgupta et al. 2015a, b).

Additionally existing efforts are extra oriented to effectively reduce the negative

impact of developed agrochemical products in the environment and human health,

rather than its direct applications to improve the properties for food production. Agro

formulations with higher bioavailability and efficacy and better selectivity will be

seen actively functioning the near future of agriculture.
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The use of biopolymers in the food industry has solved feasibility problems

related to their relatively high cost and overall performance when compared to

those of synthetic polymers. Several nanocomposites can provide active and or

smart properties to food packaging materials, such as antimicrobial properties,

oxygen scavenging ability, enzyme immobilization, or indication of the degree of

exposure to some degradation related factor. Nanocomposites can not only protect

the food against environmental factors, but also incorporate properties to the

packaging material so it may actually enhance quality of foods to be consumed.

Nanotechnological developed Membrane filters and filtration processes are gaining

more attention and focus in food industry due to its exponential advantages

(environmental friendliness, cost saving, and product improvement) when com-

pared with other traditional methods. Use of nanotechnology in food industry, has

provided sensors and diagnostic devices with improved sensitivity and selectivity to

monitor food processes and assure food quality measurements along the real time

production lines. Moreover antimicrobial edible films and coatings are utilized for

improving the shelf life of food products without impairing consumer acceptability.

In addition to antimicrobial properties of antimicrobial edible films and coatings,

zinc nanocomposites has presented modifications in the structure and properties of

packaging materials like mechanical and thermal resistance. The design of a food

packaging is significant since each industrial trait influences the physical integrity

of the developed packaging and, therefore, ensures the protection of the packaged

food. Understanding gap in addressing and framing the authority regulations of

nanotechnology usage for foods, food additives, and food packaging materials is in

progress through various regional and international agencies. Majorly the potential

benefits of nanotechnology in agriculture and next generation food industry need to

be balanced concerning for the soil, water, environment, and the occupational

health of workers.
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Plant Nano-nutrition: Perspectives
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Abstract The global agriculture is facing many challenges including sustainable

use and conservation of natural resources, climate change, urbanization, and pol-

lution resulting from agrochemicals (e.g., fertilizers and pesticides). So, the sus-

tainable agriculture is an urgent issue and hence the suitable agro-technological

interventions are essential (e.g., nano- and bio-technology) for ensuring the safety

and sustainability of relevant production system. Biotechnology and nanotechnol-

ogy also can be considered emerging solutions to resolve the global food crisis.
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Nanoparticles or nanomaterials can be used in delivering different nutrients for

plant growth. These nanoparticles as nanofertilizers have positive and negative

effects on soils, soil-biota and plants. These effects mainly depend on multiple

factors including nanofertilizer properties, plant species, soil fate and dynamics as

well as soil microbial communities. Nanofertilizers could improve the nutrient use

efficiencies through releasing of nutrients slowly and steadily for more than 30 days

as well as reducing the loss of nutrients in agroecosystems and sustaining farm

productivity. Here we review the plant nano-nutrition including the response of

plants and soils to nanonutrients and their fate, dynamic, bioavailability, phytotox-

icity, etc. Concerning the effects of nanonutrients on terrestrial environments are

still an ongoing processes and it demands further researches as well as a knowledge

gap towards different changes in shape, texture, color, taste and nutritional aspects

on nanonutrients exposed plants as a major component in the food chain. Moreover,

the interaction between nanonutrients and plants, soils, soil biota and the entire

agroecosystem will be also highlighted.

Keywords Agri-nanotechnology • Plant nano-nutrition • Nanonutrients

• Nanoparticles

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2 Nanotechnology in Agriculture and Its Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3 Nanotechnology in Soils: The Hidden Face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4 Nanotechnology in Plant Nutrition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.5 Nanofertilizers and Nanonutrients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6 Plant Nano-nutrition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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4.1 Introduction

A great challenge faces all countries all over the world concerning the feeding

population from 6 to 9 billion by 2050 (Ditta et al. 2015). Due to about 40% of the

population depends on agriculture in the developing countries; hence the agricul-

ture can be considered a backbone in these countries. The global agriculture is

facing several challenges including climate changes (Chalise and Naranpanawa

2016; Chen et al. 2016a, b; Ma et al. 2016; Villoria et al. 2016; Brown 2017),

conservation of natural resources and their sustainable use (Ditta et al. 2015;

Ma et al. 2016; Duran-Encalada et al. 2017), and urbanization (Maheshwari and

Bristow 2016; Henderson et al. 2017) as well as environmental issues (e.g.,

pollution resulting from runoff and accumulation of fertilizers and pesticides)

(Jacobsen and Hansen 2016; Qureshi et al. 2016; Ma et al. 2016; Kuppusamy

et al. 2016a, b). So, the sustainable agriculture is an urgent issue and hence

the suitable agro-technological interventions are essential like nano- and

bio-technology for ensuring the safety and sustainability of relevant production

system (Dasgupta et al. 2015a, b; Abhilash et al. 2016; Magalh~aes et al. 2017;

Dasgupta et al. 2017; Ranjan et al. 2014; Shukla et al. 2017).

A great progress has been achieved in the nanotechnology sector in the last two

decades (Belal and El-Ramady 2016; Liu et al. 2016; Reddy et al. 2016; Shalaby

et al. 2016; Magalh~aes et al. 2017). The agricultural sector was one of the most

important fields, which nanotechnology science involves leading a revolution in

many applications such as the agri-food industries (Dasgupta et al. 2015a, b;

Handford et al. 2015; He and Hwang 2016; Sarkar et al. 2016; Vélez et al. 2017),

remediation of soils and waters from pollutants or nanoremediation (Belal and

El-Ramady 2016; Jain et al. 2016a, b; Gillies et al. 2016; Gil-Dı́az et al. 2016a;

Kuppusamy et al. 2016a, b; Shao et al. 2016; Pulimi and Subramanian 2016),

fertilizers and pesticides production (Mastronardi et al. 2015; Solanki et al. 2015;

Subramanian et al. 2015; Chhipa and Joshi 2016; Dubey and Mailapalli 2016;

Dwivedi et al. 2016; Panpatte et al. 2016), the precision farming (Gemtos et al.

2013; Ditta et al. 2015; Chhipa and Joshi 2016; Li et al. 2016a, b, c; Dubey and

Mailapalli 2016; Shaw et al. 2016; Shalaby et al. 2016), post harvest and storage

of crops (Flores-López et al. 2016; Luo et al. 2016; Mohammadi et al. 2016;

Sogvar et al. 2016; Song et al. 2016; Li et al. 2017; Ray et al. 2017), etc.

Nanotechnology may have a hidden face in soils. The apparent face not only

include the direct effects on soil microbial communities, and remediate of polluted

soils, but also using natural nanoparticles like zeolites and nano-clays as soil

amendments. Therefore, several applications of nanoparticles or nanomaterials in

soils including (1) use of nanoparticles like zeolites and nano-clays in soil improve-

ment (Xiong et al. 2015; Lateef et al. 2016; Danish et al. 2016), (2) soil application

of nanofertilizers (Mastronardi et al. 2015; Subramanian et al. 2015; Dwivedi et al.

2016), (3) remediation of polluted soils (Araújo et al. 2015; Jain et al. 2015; Fajardo

et al. 2015; Ibrahim et al. 2016; Jain et al. 2016a, b; Gillies et al. 2016; Gil-Dı́az

et al. 2016a), (4) using nano zero valent iron technique in the degradation of

pollutants (Raman and Kanmani 2016; Yang et al. 2016; Vı́tková et al. 2016;
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Yirsaw et al. 2016; Zhao et al. 2016; Xie et al. 2017) etc. Concerning the hidden

face of nanotechnology in soils, it may be include the interaction between different

nanoparticles and different environments. These different environmental compart-

ments include plants, microbes, air and soil, which have been extensively studied

(e.g., Abhilash et al. 2016; Du et al. 2016; Gil-Dı́az et al. 2016b; Gillies et al. 2016;

Song and Lee 2016; Yausheva et al. 2016; Wang et al. 2016a, b). So, the fate and

behavior of nanomaterials in soils including transport, bioavailability and bio-toxicity

of these nanoparticles should be addressed (Watson et al. 2015; Gogos et al. 2016; Li

et al. 2016a, b, c; Wang et al. 2016a; Yirsaw et al. 2016, Shukla et al. 2017; Walia

et al. 2017; Siripireddy et al. 2017; Maddinedi et al. 2015, 2017; Tammina et al. 2017;

Sannapaneni et al. 2016; Ranjan et al. 2014, 2015, 2016; Nandita et al. 2016; Jain

et al. 2016a, b). On the other hand, this behavior of nanoparticles in soils is mainly

controlled by soil characterization particularly soil pH (Conway and Keller 2016),

soil clay content (Zhang et al. 2016a; Chen et al. 2016a, b), soil organic matter

(Majumdar et al. 2016), and soil cation exchange capacity (Watson et al. 2015; Gogos

et al. 2016).

Plant nano-nutrition as a science is dealing with nanonutrients from different

aspects including the uptake, translocation, metabolism, bioavailability of

nanonutrients in rhizosphere for plant growth and development or it is nanotech-

nology application for the provision of nano-nutrients for the production of crops

(Ditta et al. 2015). This branch of plant nutrition also includes nanoparticles

phytotoxicity, the interaction between nanonutrients and plants (de la Rosa et al.

2016; Reddy et al. 2016; Zuverza-Mena et al. 2016; Wang et al. 2016b), soils

(He et al. 2016; Dwivedi et al. 2016; Pachapur et al. 2016; Lateef et al. 2016), soil

biota (Ibrahim et al. 2016; Maliszewska 2016) and the entire agroecosystem (Costa

and Fadeel 2016; Fraceto et al. 2016; Servin and White 2016). Therefore, this

review will focus on the plant nano-nutrition including the response of plants and

soils to nanonutrients and their fate, dynamic, bioavailability, phytotoxicity, etc.

4.2 Nanotechnology in Agriculture and Its Challenges

More than 30,000 articles have been published since 2013 concerning nanotech-

nology with about 8,000 of those studies occurring in this year (June 21, 2016

through Science Direct or Springer Link). This reflects the significance of this

science in our life including all fields or sectors. The agricultural field is an

important one, which nanotechnology strongly invasives it. More than 100 books

till now (June 21, 2016) have been published by Springer including some hand-

books or encyclopedia (e.g. Bhushan 2016; Aliofkhazraei 2016; Aliofkhazraei and

Makhlouf 2016; Egorova et al. 2016). Concerning nanotechnology definition, it is

defined as “the science, engineering and technology of controlling, building, and
restricting materials and devices at the nanoscale” according toWang et al. (2016a,

b). Nanotechnology penetrates all fields including medicine (Olivo and Dinish

2016; Khanna 2016; Ahmed and Jackson 2016; Steinhoff 2016; Zhang et al.

2016), pharmacology (Garvie-Cook 2016), industry (Bindal and Hamedi-Hagh
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2016; Meguid 2016; Andrievski and Khatchoyan 2016), engineering (Jorio 2016;

Singh and Gaharwar 2016), energy (Zhang 2016) and agriculture (Parisi et al. 2015;

Dwivedi et al. 2016; Egorova et al. 2016; Ibrahim et al. 2016; Mehlhorn 2016;

Piperigkou et al. 2016; Peters et al. 2016; Servin and White 2016; Wang et al.

2016a, b).

It is well known that, nanotechnology deals with the manufacturing, manipula-

tion and characterization of different materials having a size range at the nanometer

scale. Furthermore, reduction of the material size into the nano scale changing the

physico-chemical properties comparing with the same material at larger-size scales

(Peters et al. 2016). Therefore, it could be classified the agri-nanotechnology into

three categories including plant- (phytonanotechnology), microbes (microbial or

bio-nanotechnology) and animal-nanotechnology (zoo-nanotechnology).

Phytonanotechnology refers to different applications of nanotechnology in both

plant sciences and plant production systems (Wang et al. 2016a, b). Regarding the

benefits and potential uses of nanotechnology in agriculture, there are significant

applications including producing greater quantities of food with lower cost as well

as energy sector and waste remediation (Fraceto et al. 2016; Servin and White

2016). However, many questions regarding different previous approaches and their

risk in agricultural production remain unanswered. Numerous applications in agri-

nanotechnology have developed engineering nanoparticles as smart delivery sys-

tems (e.g., Piperigkou et al. 2016; Peters et al. 2016; Servin and White 2016; Wang

et al. 2016a).

Regarding the potential applications of nanotechnology in agricultural field, it is

reported about these impacts including (1) increasing the crop productivity through

using nano-agrochemicals (e.g. nanopesticides and nanofertilizers), (2) improving

food security and its productivity, (3) improving soil quality via enhancing the

water-holding capacity of soil (e.g. using nanoclays, nano-zeolites and hydrogels),

(4) stimulating plant growth using nanomaterials by enhancing elemental uptake

and use of nutrients (e.g. nano-SiO2, TiO2, ZnO and carbon nanotubes), (5) provid-

ing smart monitoring using nanosensors by wireless communication devices help

farmers in maintaining farm with precise control and report timely needs of plants

(Fraceto et al. 2016). These applications of nanotechnology in agricultural

researches have been intensively used in both academic and industrial levels

(Dasgupta et al. 2015a, b; Parisi et al. 2015; Fraceto et al. 2016) due to the unique

properties of nanomaterials as well as its suitability candidates in designing and

developing such novel nano-tools supporting the sustainability of agriculture (Ditta

et al. 2015; Dwivedi et al. 2016).

It should be considered some important information regarding nanotechnology

and its effects on plants including size, composition, concentration, surface charge

and physical chemical properties of used nanoparticles/nanomaterials as well as

their susceptibility of the plant species (Fraceto et al. 2016). Concerning the

challenges of using nanotechnology in agriculture, some urgent issues should be

kept in mind remain to be resolved in the near future including (1) the ecotoxicol-

ogy of nanomaterials in agroecosystem (Bhatt and Tripathi 2011; Ma et al. 2013;

Judy and Bertsch 2014; Anjum et al. 2015; Bour et al. 2015; Costa and Fadeel 2016;
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Hu et al. 2016), (2) the pollution resulted from nanomaterials and its advanced

regulations (Amenta et al. 2015; Du et al. 2016), (3) the sustainability and its

biosafety of nanomaterials, (4) the development of carrier of nanomaterials

(De Oliveira et al. 2014), and (5) the investigation of nanomaterial on the applied

scale like the industrial level (Fraceto et al. 2016). Therefore, more developed

techniques should be saved to monitor the fate of nanoparticles in different envi-

ronments under different concentrations (Sadik et al. 2014). Moreover, more

advanced carriers should be used for nanoparticles achieving high delivering the

active agents (e.g. pesticides, nutrients, and fertilizers) enhancing the maximization

of their efficiency seeking the sustainability (De Oliveira et al. 2014; Van Koetsem

et al. 2016). Concerning the applied side, it should be investigated and then

evaluated the nanomaterials on the commercial scale by comparing these

nanoparticles with the commercial products as well as the interaction between

different kinds of nanoparticles (Dimkpa et al. 2015). Regarding the ecotoxicology

of nanoparticles, it should be studied the phytotoxic effects of nanoparticles on

agroecosystems including plants, soil microbial communities, soil biota, water, air

as well as human health (Bouguerra et al. 2016; Costa and Fadeel 2016; Fraceto

et al. 2016; Servin and White 2016). Therefore, it could be concluded that,

nanotechnology has a very strong link with the agriculture and penetrates several

agricultural fields including fertilization, irrigation and water saving,

nanoremediation of soils and water from pollutants as well as the agri-food sector.

Many challenges are still needed for more researches and investigations for safe and

sustainable using of nanomaterials in agriculture.

4.3 Nanotechnology in Soils: The Hidden Face

More than 110,000 articles have been published since 2013 concerning

nanoparticles with about 25,000 of those studies occurring in this year (June

22, 2016 through Science Direct), whereas more than 37,000 articles belong

nanomaterials from the same and previous period (about 10,000 only for 2016

through Science Direct). Several issues have been published concerning the nano-

technology in soils including nanoremediation of polluted soils (Araújo et al. 2015;

Jain et al. 2015; Fajardo et al. 2015; Ibrahim et al. 2016; Jain et al. 2016a, b; Gillies

et al. 2016; Gil-Dı́az et al. 2016a), using nanoparticles/nanomaterial (e.g. zeolites

and nano-clays) in soil improvements (e.g. Xiong et al. 2015; Lateef et al. 2016;

Danish et al. 2016), soil application of nanofertilizers (Mastronardi et al. 2015;

Subramanian et al. 2015; Dwivedi et al. 2016), using nano zero valent iron (nZVI)

technique in the degradation of pollutants (e.g. Raman and Kanmani 2016; Yang

et al. 2016; Vı́tková et al. 2016; Yirsaw et al. 2016; Zhao et al. 2016) etc.

The interaction between nanoparticles/nanomaterials and different environmen-

tal compartments including plants, microbes, air and soil was and still one of the

most important issues in environmental nanotechnology. This previous interaction

has been extensively studied by several researchers (e.g., Adams and Kanaroglou
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2016; Abhilash et al. 2016; Du et al. 2016; Gil-Dı́az et al. 2016a, b; Gillies et al.

2016; Song and Lee 2016; Yausheva et al. 2016; Wang et al. 2016a, b). Regarding

the fate and behavior of nanoparticles in soils, once the nanoparticles enter the soil,

different soil physico-chemical properties are largely controlled the transport,

bioavailability and bio-toxicity of these nanoparticles (Watson et al. 2015; Gogos

et al. 2016; Li et al. 2016a, b, c; Wang et al. 2016a, b; Yirsaw et al. 2016). Like

other metals, the transportation, bioavailability, and sorption of metal nanoparticles

in soils is totally governed by soil properties including soil pH (Waalewijn-Kool

et al. 2014; Conway and Keller 2016), clay content (Zhang et al. 2016b), soil

organic matter (Majumdar et al. 2016) and cation exchange capacity (Benoit

et al. 2013; Dimkpa et al. 2015; Watson et al. 2015; Gogos et al. 2016).

On the other hand, the interaction between different types of nanoparticles in

soils is an emerging issue and needs further studies to evaluate the behavior of

nanoparticles in long-term field condition as well as their interactions in soils and

the role of these interactions on plant nutrition (Dimkpa et al. 2015). Definitely, the

interaction between these nanoparticles themselves in soils is governed by different

soil properties as mentioned before and the properties of nanoparticles themselves

(e.g. the size, shape and surface charge of nanoparticles). These previous properties

of both soil and nanoparticles are the main factors control the dissolution, solubi-

lization, agglomeration and aggregation of nanoparticles in soils (Dwivedi et al.

2016; Pachapur et al. 2016). It is reported that, the high organic content in soil

enhances a strong binding between nanoparticles and soil decreasing the mobility,

bioavailability and uptake of these nanoparticles and then the bio-toxicity by plants

(Shoults-Wilson et al. 2011). Concerning silver nanoparticles in soils, it is also

stated that, (1) the aggregation and its retention in soils of these particles is

enhanced by both ionic strength and divalent cations (Thio et al. 2012), (2) the

bioavailability of Ag ions is decreased by increasing soil pH due to a greater CEC

raising the adsorption of Ag ions onto the soil surface and (3) as well as the hetero-

aggregation of Ag-nanoparticles with natural colloids in soils reduces their mobility

(Cornelis et al. 2013; Dwivedi et al. 2016; Pachapur et al. 2016; Troester et al.

2016).

What about the hidden face concerning the nanoparticles in soils? It could be

drawn the complete portrait for nanoparticles in soils through the following ques-

tions: what is the interaction between nanoparticles and the different agroecosystem

compartments including soil matrix (Dwivedi et al. 2016; Floris et al. 2016;

Pachapur et al. 2016; Yang et al. 2016), plants (Zhang et al. 2016a; Yang et al.

2016), soil water (Zhao et al. 2016), soil air (Polis et al. 2013), soil biota (Shen et al.

2015; Xu et al. 2015; Durenkamp et al. 2016; He et al. 2016), aquatic environments

like drinking water (Troester et al. 2016; Zhao et al. 2016) as well as the interaction

between nanoparticles and pollutants (Xie et al. 2016) or themselves (Dimkpa et al.

2015; Li et al. 2016a, c; Pachapur et al. 2016). Therefore, the hidden face of

nanoparticles in soils can be considered still not well understood and further studies

should be suggested in monitoring nanoparticles in soils. It is reported that, the

production of metal nanoparticles is expected to reach 58,000 tons by year 2020

according to United Nations Environment Programme (UNEP 2007). Concerning
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the environmental dynamics of metal oxide nanoparticles in homogeneous or

heterogeneous systems, there are some factors controlling the fate, transport,

transformation and toxicity of these metal nanoparticles. One of the most important

factors controlling the dynamic of metal oxide nanoparticles is presence of pollut-

ants in different environmental conditions. Hence, the interaction between these

pollutants and metal nanoparticles will govern the transformation of metal oxides

and their transport kinetics as well as the effects of pollutants on the toxicity of

metal nanoparticles in both homogeneous and heterogeneous systems (Joo and

Zhao 2016). In more details, it is resulted from the presence of contaminants

decreasing in the bioavailability of these nanoparticles through sorption, hetero-

aggregation, and/or complexation. Furthermore, the pollutants also control the fate

and transport of these nanoparticles exhibiting their synergistic toxic effects (Joo

and Zhao 2016).

One of the most important issues concerning nanoparticles in soils is the

pollution resulted from these nanomaterials, which have great impacts on human

health and soil ecosystems (Yang et al. 2016). It is found that, nano zero-valent iron

(nZVI) represents about 70% from the metal-based nanoparticles widely used in

environmental nanotechnologies, which have been extensively applied for in
situremediation across the world (Yang et al. 2016; Xie et al. 2016). The large

amounts of these nanomaterials (nZVI) have been caused many ecotoxicity impacts

on soil ecosystems including toxicity (Lefevre et al. 2016), cytotoxicity (Dong et al.

2016) and phytotoxicity (Xie et al. 2016) as well as increasing in oxidative stress

(Chaithawiwat et al. 2016) and disruption of microbial community (Pawlett et al.

2013; Sacc�a et al. 2014) in both aquatic and terrestrial ecosystems (Yang et al.

2016).

Therefore, it could be concluded that, the nanotechnology has many applications

in soil system including nanoremediation polluted lands, nanofertilizers,

nanopesticides, precision farming using nanosensors (nano-farm), using

nanomaterials in soil improvement, etc. There are further studies should be

performed concerning the fate and behavior of nanomaterials in soils and their

effects on agroecosystem. So, it could be called this interaction between

nanomaterials and soil system by “the hidden face” because a lot of information

in this area is still unknown.

4.4 Nanotechnology in Plant Nutrition

More than 110,000 articles have been published several years ago regarding plant

nutrition, whereas in general these publications were nearly more than 6,000

annually as recorded by the Science Direct (accessed by June 22, 2016). Like

other plant sciences, plant nutrition is a branch dealing with the physiology,

metabolism, uptake and translocation of different nutrients by plants as well as

the molecular plant nutrition. This science can be also involved the following

topics: (1) agronomic or physiological efficiency of nutrients (Chaudhary et al.
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2015; Loeppmann et al. 2016), (2) rhizosphere and its architecture (Szoboszlay

et al. 2015; Oburger and Schmidt 2016), (3) the mineral nutrition and stress

physiology (Matraszek et al. 2016; Kolenc et al. 2016), (4) molecular nutrient

uptake and plant sensing (Mitra 2015; Rizwan et al. 2016a), and (5) nutrient cycles

(Hobbie 2015; Ford et al. 2016). Many publications have been published several

years ago concerning plant nutrition started 5000 BC when the ancient Egyptians

recorded their paintings about plant nutrition (El-Ramady et al. 2014a), till Justus

von Liebig (1803–1873; El-Ramady et al. 2014b) and the handbook of plant

nutrition for Barker and Pilbeam (2015).

Nanoscience and nanotechnology have a great applications in agricultural sci-

ences, although the applications in plant sciences as well as plant production

systems have been received comparatively little interest (Wang et al. 2016a, b).

Several nanomaterials have been synthesized through the physical, chemical and

biological methods via bacteria, fungi, plants etc. These nanoparticles or

nanomaterials have been investigated including many studies such as studying

different effects of nanoparticles on the cellular morphology, functions, behavior

and the effectiveness of nanoparticles on plants from the agricultural and the

horticultural significance (Patra et al. 2013; Ditta et al. 2015; Rizwan et al.

2016b; Panpatte et al. 2016; Wang et al. 2016a, b). It is reported that, nanoparticles

have been used in enhancing the crop productivity through the high efficiency of

nutrients in the form of nanofertilizers, nanopesticides, or nanoherbicides by the

plants (e.g. Tarafdar et al. 2013; Ditta et al. 2015; Panpatte et al. 2016; Rizwan et al.

2016b). These nanoparticles have several advantages in promoting the agricultural

productivity including (1) enhancement plant seed germination and growth against

stress (Table 4.1; Khan et al. 2016), (2) increasing the efficiency of water and

fertilizer dosage, (3) sustainable management using nanosensors in pest detection,

(4) using of nanocapsules for pesticides and herbicides in control pests (Ditta et al.

2015) and these nanoparticles can be considered as a next generation technology for

sustainable agriculture (Panpatte et al. 2016; Tolaymat et al. 2016) (Fig. 4.1).

Concerning the nanotechnology and plant nutrition, it is reported that plant

nano-nutrition includes nanofertilizers as a source for nutrients (Ditta et al. 2015;

Liu et al. 2016; Panpatte et al. 2016), nano-capsules as a nanoscale carriers

(Meredith et al. 2016), nano-smart delivery systems (Ditta et al. 2015), nano-

oligo cellulosic materials (Mohamed et al. 2016), clay nanotubes or halloysite

(Peixoto et al. 2016; Donaldson 2016), micro-fabricated xylem vessels (Ditta

et al. 2015), and nanopesticides (Ditta et al. 2015; Subramanian et al. 2016). It

could notice that, many agricultural practices can be achieved seeking for the

improvement of crop production through using many applications of

nanoagrochemicals such as nanopesticides (e.g. nanofungicides, nanoherbicides,

etc), nanofertilizers, nanosensors (Subramanian et al. 2016).

Therefore, it could be concluded that, there is a strong link between plant nutrition

and nanotechnology through many applications including different nano-

agrochemicals such as nanofertilizers, nanopesticides, nanosensors, nano-capsules as

a nanoscale carriers etc. Definitely, the using of nanotechnology applications in plant

nutrition can help in improving crop production, saving the time and costs as well as
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Table 4.1 A comparison between nano copper oxide and nano selenium role in impacting on

plants including oxidative stress and antioxidative defense system

Plant species

Stressor level (Exp.

medium)

Form & dosage

(exposure period)

Different effects of Se on

stressed plants and

associated potential

mechanisms (Reference)

Nano-CuO stress

Oryza sativa
L.

Nano-CuO: 2.5, 10, 50,

100, and 1000 mg L�1

(hydroponic)

30 days and size

<50 nm nano-

CuO

nano-CuO increased MDA

and proline contents and

APX and SOD activities

(Da Costa and Sharma 2016)

Zea mays L. Nano-CuO: 0.01,

0.02 ppm for root expo.;

8 mg kg�1 foliar spray

(hydrop.)

Exposure root and

leaf 3 weeks and

size <50 nm

nano-CuO

0.02 ppm root exposure and

8 ppm foliar spray decreased

GPX, CAT and succinate

dehydrogenase activities but

increased SOD and glucose-

6-phosphate dehydrogenase

activities in leaves (Adhikari

et al. 2016)

Transgenic

cotton and

conventional

cotton

10, 200 and 1,000 mg L�1

nano-CuO (hydroponics)

10 days and nano

CuO diameter

were 30 � 10 nm

Plant hormones IAA and

ABA were significantly at

high level inhibited and also

reduced the uptake of B, Mo,

Mn, Mg, Zn and Fe; plants

biomass and height not

affected at 10 mg kg�1 nano-

CuO exposure (Le Van et al.

2016)

Halimione
portulacoides

Nano-CuO: 10 mg kg�1

(hydroponic)

8 days and size of

nano CuO

<50 nm

No metal translocation Cu in

roots of Halimione, less Cu
accumulation in roots when

Cu available in the form of

nanoparticles, Cu can form

aggregates, reducing SA and

thus decreasing Cu avail-

ability (Andreotti et al.

2015)

Brassica
juncea L.

Nano-CuO: 20, 50,

100, 200, 400, 500 mg L
�1 (in vitro exp.)

14 days and size

<50 nm nano-

CuO

Nano-CuO increased H2O2

and MDA formation;

induced POD and SOD but

inhibited APX activity in

roots and shoots (Nair and

Chung 2015)

Medicago
sativa L. and

Lactuca sativa
L.

5, 10 and 20 mg L�1

nano-CuO (hydroponic)

15 days and

nanoparticles

10–100 nm

Nano-CuO reduced CAT

activity in alfalfa and

increased APX activity in

roots of both lettuce and

alfalfa. (Hong et al. 2015)

(continued)
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Table 4.1 (continued)

Plant species

Stressor level (Exp.

medium)

Form & dosage

(exposure period)

Different effects of Se on

stressed plants and

associated potential

mechanisms (Reference)

Glycine max
L.

Nano-CuO: 50, 100,

200, 400 and 500 mg L�1

(in vitro ex.)

14 days and size

<50 nm nano-

CuO

Nano-CuO at 100–500 mg L
�1 significantly increased

the H2O2 level, POD activity

in roots (Nair and Chung

2014a)

Arabidopsis
thaliana L.

Nano-CuO: 0.5, 1, 2,

5, 10, 20, 50, and

100 mg L�1 (in vitro ex.)

21 days and size

30 nm nano-CuO

Nano-CuO concentration-

dependently increased O2
•

and H2O2 formation in

leaves and roots; induced

antioxidant, sulfur assimila-

tion, GSH biosynthesis

genes (Nair and Chung

2014b)

Nano-Se stress

Lycopersicum
esculentum
Mill. cv. Halil

Temperature stress:

10, 25, 40 �C for 24 h

(hydroponic)

2.5, 5, 8 μM Se as

Na2SeO4 & nano-

Se 1, 4, 8, 12 μM
(3 d)

Se and nano-Se can improve

fresh and dry weight of

shoot, diameter, root fresh

and dry weight and root of

tomato plants under high

and/or low temperature

stress; Se and nano-Se

increases relative water

content and root volume

significantly after a short-

term of high and/or low

temperature stress (Haghighi

et al. 2014)

Arundo donax
L. 2 ecotypes

Blossom and

20SZ

Nano-Se: 100 mg L�1 Se

as Lactobacillus casei (in
virto experiment)

0.1, 1, 10,

50, 100 mg L�1

Se as Na2SeO4

(8–16 d)

Both Arundo ecotypes could

uptake and accumulate

nano-Se however in lower

concentration comparing to

the selenate; the toxic level

of selenate was 20 and

50 mg L�1 for Blossom and

20SZ accumulating 920 and

896 mg kg�1 Se in clusters

resp. (Domokos-Szabolcsy

et al. 2014)

(continued)

4 Plant Nano-nutrition: Perspectives and Challenges 139



alleviating the abiotic stress-induced damage through the activation of plant defense

system. This reflects the role of nanomaterials in (1) giving the plant protection against

reactive oxygen species, (2) protecting plants against the oxidative stress through

enhancing the plant antioxidative enzymes including superoxide dismutase, catalase,

peroxidase and (3) the acting of nanomaterials itself as inducers of oxidative stress.

The small size of these nanomaterials can help plants easily in penetrating and

regulating water channels and then assisting the germination of seeds and plant growth

as well as the big surface area of nanomaterials improves the adsorption and delivery

substances (Khan et al. 2016).

4.5 Nanofertilizers and Nanonutrients

As mentioned before, a real revolution in nanoparticles or nanomaterials has been

achieved to penetrate all fields including industrial, pharmaceutical, medicinal, and

agricultural sectors. These nanoparticles represent a magic solution in many sectors

such as nanoremediation of polluted water and lands (Gil-Dı́az et al. 2016a, b;

Gillies et al. 2016; Peters et al. 2016; Zhao et al. 2016). Several studies regarding

nanoparticles have been published focusing on many fields including energy sector

(Le Croy et al. 2016), food industries (Khan and Oh 2016; Rizwan et al. 2016b;

Souza and Fernando 2016), synthesis of nanoparticles (Ahmed et al. 2016a; Bennur

Table 4.1 (continued)

Plant species

Stressor level (Exp.

medium)

Form & dosage

(exposure period)

Different effects of Se on

stressed plants and

associated potential

mechanisms (Reference)

Nicotinia
tabacum
L. cv. Ottawa,

Petit, Havana

Nano-Se: 1, 10, 20, 50,

100 mg L�1 Se as Lacto-
bacillus acidophilus (in
virto exper.)

1, 10, 20,

50, 100 mg L�1

Se as Na2SeO4

(8 and 16 d)

Nano-Se (50–100 mg kg�1)

stimulated callus initiation,

micro-shoot formation on

callus surface and root

regeneration; SeO4
�2 (50–-

100 mg kg�1) inhibited both

callus and root formation;

SeO4
�2 can get into plant

tissue and in excess as a

pro-oxidant can damage

directly and/or indirectly

root generation growth and

regeneration of explants;

nano-Se generated roots

80% of plantlets on 8th day

and >90% on 16th day

(Domokos-Szabolcsy et al.

2012)

Abbreviations: AsA Reduced ascorbate, GST glutathione-S-transferase, MTs metallothioneins, Pn
net photosynthesis, Gs stomatal conductance, Tr transpiration rate, APX ascorbate peroxidase

activity, CAT catalase activity,MDA malondialdehyde, SOD superoxide dismutase, CAT catalase,

POD peroxidase, GPX guaiacol peroxidase, IAA indole-3-aceticacid, ABA abscisic acid
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et al. 2016; Kuppusamy et al. 2016a, b; Sodipo and Abdul Aziz 2016; Singh et al.

2016), nanosensors (Priyadarshini and Pradhan 2016), oil lubrication (Dai et al.

2016), the dynamics and effects of metal oxide nanoparticles (Joo and Zhao 2016;

Mustafa and Komatsu 2016; Rizwan et al. 2016b), biomedical applications (Durán

et al. 2016; Karimzadeh et al. 2016; Jones et al. 2016; Zarschler et al. 2016), and

Fig. 4.1 Some experiments

using nanoparticles in plant

nutrition including in vitro
trials (photo 1: nano-Se and
in a very hard rooting moth

orchids plant –
Phalaenopsis spp. –
unpublished data; whereas

photo 2: nano-Se and
tobacco plant growth),

microfarm (photo 3:
nano-Se and some sprouts

production) and field

experiments (photo 4: using
of nitrogen nanofertilizer in

lettuce growth). All photos

by El-Ramady except no.1

by Elmahrouk; a kind

permission from

Dr. Mohamed Sharaf for

photo 4; the bar in photo 1
represents 2 cm
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antimicrobial purposes (Ahmed et al. 2016b; Samiei et al. 2016; Ambika and

Sundrarajan 2016).

It is well known that, nanoparticles can (in homogeneous or heterogeneous)

interact with soil, air, sediment, and plants and release into different previous

environmental compartments. Several studies concerning the beneficial and nega-

tive effects of nanoparticles on plants have been reported (Rizwan et al. 2016b;

Wang et al. 2016a, b). Definitely, these effects were controlled by plant and

nanoparticles characterization including the source, type, the duration of exposure

to plants and size of these nanoparticles as well as the plant species (Rico et al.

2014; Bandyopadhyay et al. 2015; Lalau et al. 2015; Cox et al. 2016; Du et al. 2016;

Mustafa and Komatsu 2016). On the other hand, the factor of environmental media

is also significant in orientation the interaction between nanoparticles and plants

including in vitro (Domokos-Szabolcsy et al. 2012, 2014; El-Ramady et al. 2014c;

Gomez-Garay et al. 2014; Homaee and Ehsanpour 2015; Castiglione et al. 2016;

Kumari et al. 2016; Sarmast and Salehi 2016), micro-farm (El-Ramady et al. 2014a,

b, c; El-Ramady et al. 2015a, b; El-Ramady et al. 2016a, b), pots (Alidoust and

Isoda 2013; Sri Sindhura et al. 2014; Rico et al. 2015a; Gogos et al. 2016; Moll et al.

2016), hydroponic (Schwabe et al. 2013; Haghighi et al. 2014; Zhang et al. 2015a,

b; López-Moreno et al. 2016; Tripathi et al. 2016) and field experimentation

(Suriyaprabha et al. 2012).

In the early 2000s, the nano-era began when more than 35 countries have been

initiated research programs in nanotechnology, resulting in a steady increase in

engineered nanomaterials production (Zuverza-Mena et al. 2016). The release of

engineered nanomaterials in the environment is considered an important issue

(Nowack et al. 2013, 2014, 2015; Keller et al. 2013, 2014; Wigger et al. 2015;

Conway and Keller 2016; Caballero-Guzman and Nowack 2016; Nowack et al.

2016; Park et al. 2016; Tolaymat et al. 2016). It has been resulted from the rapid

proliferation of nanoproducts use increasing in the exposure to humans through

different environmental systems (e.g. water, air, sediments and soils). Regarding

the exposure to nanomaterials, it could be happened directly through the

unintentional release during both use and consumption of nanoproducts and

through remediation purposes for polluted sites (Nowack et al. 2013). The indirect

pathway for nanomaterials can be occurred via the sewage treatment plants and

landfills as well as incineration plants (Park et al. 2016; Caballero-Guzman and

Nowack 2016).

There are several metal/metalloid oxide nanoparticles (e.g., TiO2, ZnO, CeO2)

can be release into the aquatic environments through both wastewater discharge

and runoff (Osmond and McCall 2010). It is reported that, ZnO and TiO2

nanoparticles have been extensively used in the production of skincare products,

with more than 33,000 tons of sunscreens produced containing up to 25% of ZnO

nanoparticles as well as at least 25% of the sunscreen used (�4000–6000 tons/

year) was released in reef areas (Joo and Zhao 2016; Caballero-Guzman and

Nowack 2016). Concerning the uptake pathway by plants and translocation of

metal nanoparticles, two confirmed pathways in plant system have been reported

including the uptake from the soil application (root to leaves or fruits) or from the
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foliar application (leaves to roots) (Ma et al. 2015; Du et al. 2016). Due to the

existence of metal nanoparticles and their interaction with plant system, several

physiological, agronomical, photosynthetic parameters and antioxidant activities

have been reported (Du et al. 2016; Reddy et al. 2016; Rizwan et al. 2016b;

Zuverza-Mena et al. 2016).

It is reported that, fertilizers are an important outputs in enhancing the agricul-

tural production but its problem includes the environmental pollution from overuse

and the low use efficiency (only 30–40% from the total applied fertilizers, whereas

the rest is lost form the agroecosystem through leaching or evaporation or degra-

dation) (Panpatte et al. 2016). Therefore, using the nanofertilizers or nanonutrients

will increase the efficiency use of nutrients as well as reducing the possibility for

environment pollution if nanofertilizers will be used in proper amounts. On the

other hand, nanofertilizers can be mainly produced from the encapsulation of

fertilizers within a nanoparticle. Concerning the main techniques for encapsulating

fertilizers within nanoparticles, it is reported according to Rai et al. (2012) that,

these techniques include (1) encapsulating the nutrients inside nano-porous mate-

rials, (2) coating with thin polymer film and (3) delivering nutrients as particle or

emulsions in nanoscale dimensions (Panpatte et al. 2016).

Nanofertilizers can be defined as fertilizers contained within nano-structured

formulations which can be delivered to targeted sites to allow release of active

ingredients keeping the plant nutrient demands (Wang et al. 2016a, b). Therefore,

among different agricultural inputs, nanofertilizers can be quite considered prom-

ising in enhancing the growth, nutrition and then productivity of crops as well as

regulating the release of nutrients and improving efficiency use of nutrients under

controlled environmental conditions (Yuvaraj and Subramanian 2015;

Subramanian et al. 2015, 2016). Different crops have been fertilized using

nanonutrients or nanofertilizers as presented in Table 4.2. These studies include

fate and behavior of these nanonutrients in different agroecosystem compartments

(soil, water and soil micro-biota), and evaluation of the potential mechanism for

toxicity of nanonutrients and their tolerance in both soil–micro-biota and plants

(Anjum et al. 2015). It is found that, the manufactured nanoparticles are not always

more toxic than other chemical species containing the same elements. For example,

CuO nanoparticles are slightly more toxic comparing with other Cu ions, whereas

ZnO nanoparticles have a similar toxicity of Zn ions but in case of manganese and

iron oxide nanoparticles the toxicity were less than their ionic counterparts as well

as significant enhancement the growth of lettuce seedlings by 12–54%, respectively

(Liu et al. 2016). That means nanoparticles of Mn and Fe can be considered

effective nanofertilizers in increasing the agronomic productivity (Liu et al. 2016).

Therefore, it could be summarized that, the global food production suffer from

several challenges including climate changes, pollution, poverty, the wrong agri-

cultural practices, tenure, and low soil fertility. To save the enough and safe food

for all people, new strategies in the agricultural production should be performed

particularly using the applications of technology in agriculture. These applications

include the precision farming and nanofertilizers or nanonutrients. A part from the

great advantages of nanofertilizers including the high use efficiency, saving in costs
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Table 4.2 A list of some important articles published recently on plant nano-nutrition

Focus area of the study References

The effects of uncoated and coated cerium oxide nanoparticles with

citric acid, bulk cerium oxide, cerium acetate on the nutritional quality

of tomato fruits

Barrios et al. (2016)

Physiological and biochemical response of plants to engineered

nanomaterials and their levels in the environment including the inter-

actions with the plants, soil microorganisms and potential accumulation

in the food chain

de la Rosa et al.

(2016)

The interaction between metal oxide nanoparticles with higher terres-

trial plants including the physiological and biochemical aspects

Du et al. (2016)

Selenium and nano-selenium in plant nutrition including different nano-

fertilizers of selenium

El-Ramady et al.

(2016a)

Synthesis, using and characterization of nano-zeolite and nano–com-

posite as an environment friendly slow release fertilizer

Lateef et al. (2016)

Study of the phytotoxicity of ionic (FeCl3), micro- and nano-sized

zerovalent iron in three macrophyte plants (Lepidium sativum, Sinapis
alba and Sorghum saccharatum)

Libralato et al. (2016)

Study the effects of stabilized nanoparticles of oxide Cu, Zn, Mg, and Fe

in low concentrations on lettuce seed germination to establish and know

these nano-toxicants or nanonutrients

Liu et al. (2016)

Effects of soil organic matter contents on cerium translocation and

different physiological processes in kidney bean plants exposed to

cerium oxide nanoparticles increasing the antioxidant enzyme activities

in the aerial tissues of plants

Majumdar et al.

(2016)

Toxicity of heavy metals and metal-containing nanoparticles on plants

including different strategies for plant tolerance mechanisms and

transport through cell wall and plasma membrane and the vacuole

Mustafa and

Komatsu (2016)

The next generation technology for nanoparticles and its application in

nanofertilizers in frame of the sustainable agriculture

Panpatte et al. (2016)

Different lessons learned from nanotechnology including the toxicity of

engineered nanomaterials to terrestrial plants

Reddy et al. (2016)

The next steps for understanding engineered nanoparticle exposure and

risk in frame of nanotechnology in agriculture

Servin and White

(2016)

Using of nano-TiO2 particles in removal and bioaccumulation of cad-

mium in soybean plants cultivated in contaminated soils

Singh and Lee (2016)

Selenium nanoparticles as a nutrition supplement including different

methods for synthesis of Se-nanoparticles

Skalickova et al.

(2016)

Nano zerovalent iron from synthesis to environmental applications

including the impacts on living organisms, microorganisms, aquatic and

soil, plants and its toxicity assessment

Stefaniuk et al.

(2016)

The role of nano-silicon and its foliar application on heavy metals

accumulation in different rice cultivars

Wang et al. (2016c)

Exposure of different engineered nanoparticles (metal oxide of iron,

copper, zinc, etc) to plants including the physiological and biochemical

responses

Zuverza-Mena et al.

(2016)

Different copper nano-scales and its fate in the soil–plant system

including the toxicity and its potential mechanisms

Anjum et al. (2015)

(continued)
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and time, a lot of problems are still need solution and further researches. These

problems include the nanotoxicity, ecotoxicity, genotoxicity for all environmental

compartments.

4.6 Plant Nano-nutrition

The using of nanoparticles or nanomaterials in plant nutrition could be defined as

the plant nano-nutrition. It includes using these nanofertilizers or nanonutrients in

supplying cultivated plants with the essential nutrients for their growth and pro-

ductivity (e.g., ZnO, SiO2, iron oxide, CuO, Mn oxide, phosphorus, nitrogen

nanoparticles, etc.). That means simply the source of different nutrients for plants

will be through the applied nanonutrients or nanofertilizers as well as the release of

nutrients will be also slowly and steadily for a long time (more than 30 days)

creating a new approach in improving the nutrient use efficiency (Kah 2015;

Mastronardi et al. 2015; Subramanian et al. 2015). Globally, the use of

nanofertilizer in a large scale is still limited, although the customized fertilizers

have a significant role in sustaining the farm productivity (Subramanian et al.

2015).

As mentioned before, nanonutrients are nutrients in nano-dimensions ranging

from 30 to 40 nm having the capability in holding of many nutrient ions because of

their high surface area; the release of nutrients is slowly and steadily in

Table 4.2 (continued)

Focus area of the study References

The applications of nanotechnology in agriculture sector including the

controlled release of different agrochemicals

Aouada and de

Moura (2015)

The using, applications and perspectives of nanoparticles in sustainable

agricultural crop production

Ditta et al. (2015)

The potentials of engineered nanoparticles as fertilizers in increasing the

agronomic productions

Liu and Lal (2015)

The emerging contaminants and opportunities for risk mitigation from

both nanopesticides and nanofertilizers

Kah (2015)

The strategic role of nanotechnology in fertilizers sector including their

potential and limitations

Mastronardi et al.

(2015)

Nano-fertilizers and their smart delivery system including the compar-

ison between conventional and nano-fertilizers

Solanki et al. (2015)

Nano-fertilizers and their using for balanced crop nutrition including

synthesis of nanofertilizers, characterization, uptake by plants

Subramanian et al.

(2015)

Implications of nanotechnology on plant productivity including

nanofertilizers and its rhizospheric environment

Thul and Sarangi

(2015)

Using silicon nanoparticles in alleviating chromium (VI) phytotoxicity

in pea (Pisum sativum L.) seedlings

Tripathi et al. (2015)

The role of foliar application with nano-silicon in alleviating cadmium

toxicity in rice seedlings

Wang et al. (2015)
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commensuration with crop demands (Subramanian et al. 2015). It is also reported

about the effects of nanonutrients on the nutritional quality of crops by a few

researchers (e.g., Peralta-Videa et al. 2014; Barrios et al. 2016; Reddy et al.

2016; Servin and White 2016). These effects include in general beside different

positive effects on plant defense and growth aspects improving the nutritional

quality of edible crops. The previous effects definitely depend on the type, concen-

tration and size of metal/metalloid nanoparticles or nanonutrients, plant species,

soil and its characterization and climatic conditions. The nutritional quality of

edible crops has been become one of the most important issues in plant nano-

nutrition, which many studies focused on it (e.g., Rico et al. 2013, 2014, 2015a;

Reddy et al. 2016; Servin and White 2016). Many previous studied have been

shown effects of nanoparticles on the nutritional quality of some crop plants

exposure to CeO2 nanoparticles such as wheat (Rico et al. 2014), rice (Rico et al.

2013), barley (Rico et al. 2015a), soybean (Lopez-Moreno et al. 2010; Hernandez-

Viezcas et al. 2013; Peralta-Videa et al. 2014), tomato (Wang et al. 2013; Barrios

et al. 2016) and cucumber (Zhao et al. 2014).

Therefore, plant nano-nutrition is a branch of plant nutrition dealing with the

nutrition and development of plants using nanonutrients or nanomaterials. These

nanonutrients have a positive effects in plant growth as well as the nutritional

quality of crop plants. Definitely, there are some gaps in plant nano-nutrition

particularly in the use of these nanonutrients on the large scale and the global

level. The different interactions between nanonutrients or nanomaterials with

different agroecosystem compartments is still not fully understood and needs

further more researches.

4.7 Conclusion

No doubt that, metal/metalloid nanoparticles have a vital role in the emerging

nanotechnological sectors but the progress in researches related to the impact of

these nanoparticles on the terrestrial environments is still not fully understood. In

general, the concentration of nanoparticles less than 50 mg kg�1 thought to be

beneficial for plant growth, whereas the higher concentrations will be inhibited as

well as toxic. Therefore, more in depth studies should be carried out on the plant

cell level including gene expression, production of reactive oxygen species, signal

transduction etc. (Reddy et al. 2016). Studies of omics in the nanotoxicology should

be also considered (Costa and Fadeel 2016; Hu et al. 2016) as well as the plant

physiology and biochemistry resulted from nanonutrients exposure (Barrios et al.

2016; de la Rosa et al. 2016; Zuverza-Mena et al. 2016). More researches are also

needed in investigating the response of the terrestrial ecosystems to the combined

metal nanoparticles and the interaction between nanoparticles and pollutants under

different climatic conditions including the arid, flooding, etc. (Du et al. 2016). More

investigations in the rhizospheric region are required in order to evaluate the

interaction among nanonutrients besides their properties and different soil
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characterization as well as plant species (Majumdar et al. 2016; Zuverza-Mena

et al. 2016). It is worth to mention that, an urgent need is also wanted concerning

development of a framework in measuring the availability and total soil contents of

nanoparticles or nanonutrients as well as their extraction (Rodrigues et al. 2016).

The safe and enough food production were and will still the global emerging

issue. To produce these enough amounts of food, it should focus on the plant

nutrition science and how develop its applications to achieve this global target.

Plant nano-nutrition can be considered one of the most important tools that help us

in performing a high use efficiency of nutrients saving their amount and time.

A global regulation for use these nanonutrients or nanofertilizers should be

established as soon as possible.
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Chapter 5

Toxicological Impact of Carbon Nanomaterials
on Plants

Prakash M. Gopalakrishnan Nair

Abstract The fast growth of nanotechnology has resulted in the production and

use of engineered nanoparticles with unique physical and chemical properties in

various fields. The increased utilization of engineered nanoparticles enhances the

risks associated with their release into the environment. The smaller size and

modified physico-chemical properties raise concerns about their entry and adverse

effects in plants. For instance, studies have shown that nanomaterials can be

absorbed and translocated within plants. Since plants represent a major component

of the ecosystem, the accumulation of engineered nanoparticles in plants is a threat

to plants and the food chain.

This chapter reviews phytotoxic effect of carbon nanomaterials under in vitro
and in vivo exposure conditions. Carbon nanomaterials are widely incorporated in

commercial products used in agriculture. Recent studies have been conducted to

test the toxic effects of carbon nanomaterials either alone or in combination with

other chemicals in plants. Results reveal that the effect of carbon nanomaterials in

plants are intricate and challenging and vary between different plant species,

type of the nanomaterial and concentrations tested. Carbon nanomaterials were

evidenced to penetrate through seed coats, enter into the plant cells and translo-

cate into different plant parts. Exposure to carbon nanomaterials decreases seed

germination, root growth and changes the roots architecture. Carbon

nanomaterials inhibits seedling growth and changes morphological, physiologi-

cal, biochemical, molecular, nutritional and genetic levels in plants. Modulation

in the expression of genes related to cell division and plant development were

also reported.
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5.1 Introduction

The beginning of the “nano-era” in early twentieth century revolutionized the

nanotechnology industry with the production of a variety of engineered

nanoparticles (Roco 2003). The engineered nanoparticles are broadly classified

into four categories based on their composition (1) carbon-based materials

(2) metal-based nanoparticles (3) dendrimers and (4) bio-inorganic complexes

having one (nanolayers), two (nanowires and nanotubes) or three dimensions

(quantum dots, metal nanoparticles and fullerenes) on the nanoscale (US EPA

2007). The unique physico-chemical characteristics of engineered nanoparticles

vary based on their shape, surface composition and size and are used as free

nanoparticles or incorporated in to different products. The engineered

nanoparticles are used in several applications viz. biomedical imaging for diag-

nosis, drug and gene delivery, pharmaceuticals, cosmetics, fuel additives and

electronics.

The engineered nanoparticles enter into the environment through emission from

manufacturing processes or through various anthropogenic activities. Waste dis-

charges from waste water treatment plants and the application of sewage sludge in

agricultural fields results in the deposition of engineered nanoparticles in agricul-

tural soils (Gottschalk et al. 2009; Westerhoff et al. 2011). According to the

available datas 50, 55 and 100% of treated wastewater sludge or bio-solids are

used for agriculture use in Australia, USA and Switzerland respectively (Gottschalk

et al. 2009). As per the reports, soils, sediments and landfills are the sinks of

approximately 80% of the carbon nanomaterials released to the environment

(Keller et al. 2013). This has raised concerns regarding the high risk of carbon

nanomaterials to agricultural regions (Keller and Lazareva 2014).

Nanotechnology offers many uses in agriculture and due to their ever increasing

use, the potential risks remain unclear. In agriculture, the engineered nanoparticles

are incorporated in nano-agrochemicals (nano-pesticides and nano-fertilizers),

nano-biosensors and nano-biocomposites (Adhikari et al. 2012; Gopal et al. 2012;

Sekhon 2014). Apart from the direct risks to plants, since plants belongs to the first

trophic level of the terrestrial food chain, exposure to engineered nanoparticles will

have significant implications on human health and environment (Klaine et al. 2008;
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Ma et al. 2010; Rico et al. 2011). Therefore, it has become essential to conduct risk

assessments which will be useful for the safer use of nanotechnology (Tolaymat et al.

2015). The initial studies on the effect of engineered nanoparticles on germination and

seedling growth in plants was reported in soybean (Lin and Xing 2007). Later on,

several morphological, physiological and genetical changes have been reported in

plants exposed to different types of engineered nanoparticles (Reddy et al. 2016). The

impact and efficacy of engineered nanoparticles depends on their composition,

physico-chemical properties, size, concentration as well as plant species (Ma et al.

2010; Khodakovskaya et al. 2012; Dasgupta et al. 2015, 2016, 2017; Shukla et al.

2017; Walia et al. 2017; Siripireddy et al. 2017; Maddinedi et al. 2015, 2017;

Tammina et al. 2017; Ranjan and Ramalingam 2016; Dasgupta and Ramalingam

2016; Sannapaneni et al. 2016; Ranjan et al. 2014, 2016; Jain et al. 2016). This review

covers the effects of carbon nanomaterials on in vitro cultures, seed germination,

growth,mixture toxicitywith other chemicals and the possiblemechanisms of toxicity.

5.2 Carbon Nanomaterials and Their Applications

The detection of carbon-based nanomaterials started with the identification of

“buckminsterfullerene” or the “buckyball” (Kroto et al. 1985), followed by carbon

nanotubes (fullerene derivatives) (Lijima 1991) and graphene (Klaine et al. 2008).

Presently due to their special optical, mechanical, electrical and thermal properties,

carbon nanomaterials are increasingly used in several applications (Hurt et al. 2006;

Srivastava et al. 2015). The carbon nanomaterials contains materials of diverse

structure and size such as fullerenes, nano-onions, nano-cones, nano-horns, carbon

dots, carbon nanotubes, nano-beads, nano-fibers, nano-diamonds and graphene

(Sharon et al. 2010; Chai et al. 2013).

Fullerenes are hollow spheres (cage like structure) with a hexagonal network of

carbon atoms (Chichiriccò and Poma 2015). For example, the fullerene C60 consists

of 60 carbon atoms located at the vertices of twenty hexagons and twelve pentagons

(Yadav and Kumar 2008). The fullerenes are also produced as higher mass with

different geometric structures, such as, C70, C76, C78 and C80 (Kikuchi et al. 1992)

and are extensively used in lubricants, electronics, cosmetics, fuel cells and in

dietary supplements (Loutfy et al. 2002).

The carbon nanotubes are cylindrical structures with open or closed ends and are

mainly categorized into single walled carbon nanotubes (having an outer diameter

of 0.8–2 nm), and multi-walled carbon nanotubes (having outer diameter of

5–20 nm) depending on the number of rolled graphene layers (De Volder et al.

2013). Carbon nanotubes are used in electronic devices, paper batteries, cables and

wires, field emission devices, transistors, electrical circuits, composite materials,

absorbent for pollutant removal from water and in biomedical imaging (De Heer

et al. 1995; Yao et al. 1999; Fuhrer et al. 2000; Rueckes et al. 2000; Franklin et al.

2001; Kemp et al. 2003; Jerosz et al. 2011; Islam et al. 2015).

Graphene is one atom thick planar sheet of sp2-bonded carbon atoms packed in a

hexagonal honeycomb crystal lattice, having two dimensions (Georgakilas et al.
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2015). Graphene has several applications in electronics, biochemical sensors and in

solar cells (Choi et al. 2010). Grapheme oxide is obtained by oxidation of graphite

and has several applications in biomedical fields, such as drug delivery, cancer

photothermal therapy, tissue engineering, bio-sensing and biological imaging (Sun

et al. 2008; Zhang et al. 2011a,b; Sheng et al. 2013).

The carbon nanomaterials are utilized in various environmental applications

such as in solar cells, for the production of renewable energy, soil remediation,

contaminant degradation and in the detection as sensors for pollutants (Mauter and

Elimelech 2008; Rasool and Lee 2015). In agriculture, carbon based nanomaterials

contributes to approximately 40% of the total engineered nanoparticles used and are

mainly used either as additives or as active components (Gogos et al. 2012). For

example, fungicides encapsulated in multiwalled carbon nanotubes were more toxic

to Alternaria alternate compared to bulk pesticides which were not capsulated

(Sarlak et al. 2014). In the case of fertilizer application, for slow and efficient

release, encapsulation with graphene oxide films was found to be effective (Zhang

et al. 2014). For example, Zhang et al. (2014) reported that encapsulation of

potassium nitrate in graphene oxide prolonged the release into the soil thereby

making the availability of potassium nitrate more efficiently to the plants. Carbon

nanomaterials could be used as additives for the development of efficient fungicides

due to antifungal properties (Wang et al. 2014). In nano-biotechnology areas, the

ability of carbon nanomaterials to penetrate and enter into cells could be used for

the purpose of delivery of DNA molecules (Liu et al. 2009a, b; Burlaka et al. 2015).

The various applications of carbon nanomaterials in different areas are shown in

Fig. 5.1.

5.3 Phytotoxic Effect of Carbon Nanomaterials on Plants

The effects of carbon nanomaterials in plants were mainly studied on their effect on

seed germination, plant growth and development. Only few studies have been

reported on the toxicity of carbon nanomaterials in combination with other

chemicals and on the mechanism of toxicity in plants. According to the available

reports, the responses of carbon nanomaterials in plants varied based on the plants

species, concentration tested and the stage of development. The reported effects of

carbon nanomarials in plants are summarized in Fig. 5.2.

5.3.1 Penetration of Carbon Nanomaterials in Plants

The ability of different types of carbon nanomaterials to penetrate in to the plants

has been reported from several studies. Lin et al. (2009a, b) investigated the uptake

and translocation of carbon nanomaterials in rice plants (Oryza sativa L.). They

found that fullerene C70 could be easily taken up by roots and transported to shoots.
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It was also observed that C70 could be potentially transported downward from

leaves to roots through phloem if C70 entered into plants through plant leaves.

According to reports, the main pathway for the uptake of C60 fullerene to the plant

from the soil is through the roots. Avanasi et al. (2014) reported that the highest

accumulation of fullerene C60 (40–47%) occurred in the roots, followed by tuber

(22–23%), stem (12–16%) and leaves (18–22%). Husen and Siddiqi (2014)

observed that small sized carbon nanomaterials assimilated to the spaced areas

after being transported through the capillary system and larger ones accumulated in

the narrow passages thereby blocking the nutrient flow.

Wang et al. (2016) investigated the bio-accumulation of fullerenol (water-

soluble derivative of fullerene carbon nanomaterial) nanoparticles in wheat using

Fig. 5.1 The application of carbon nanomaterials for various uses in agriculture, environmental,

bio-medical and industrial areas
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13C-labelling techniques. The maximum bio-accumulation was observed in roots.

Prolonged exposure with lower concentrations of fullerenol showed significant

increase of 13C content in roots and higher concentrations (10 μg/mL) suppressed

the bio-accumulation. Only limited translocation of fullerenol from roots to stems

and leaves was observed. Scanning electron microscopy analysis confirmed the

presence of fullerenol nanoparticles in roots, with smaller particles being found in

the vascular cylinder area of roots.

Samaj et al. (2004) demonstrated that single walled carbon nanotubes of length

less than 500 nm labeled with fluorescein isothiocyanate penetrated the cell wall of

the living plants by endocytosis. The results showed that though fluorescein iso-

thiocyanate alone is not easily taken up by the plants, both of them jointly

facilitated the absorption and penetration of carbon nanomaterials. In another

study, Liu et al. (2009a, b) demonstrated the cellular uptake of both single walled

carbon nanotubes and fluorescein isothiocyanate and single walled carbon

nanotubes and DNA conjugates, demonstrating that single walled carbon nanotubes

hold great promise as nano-transporters for walled plant cells. The penetration of

chemically shortened single walled carbon nanotubes into the cell wall and cell

membrane of tobacco (Nicotiana tabacum) and periwinkle (Catharanthus roseus)
has also been reported (Liu et al. 2009a, b; Serag et al. 2011, 2012a, b, c).

Fig. 5.2 Schematic representation showing various effects of carbon nanomaterials in plants at

morphological, physiological, genetical and molecular levels
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Smirnova et al. (2011) demonstrated the presence of multi walled carbon

nanotubes from Taunit inside the cells and tissues of seedling roots and leaves.

The results showed the ability of multi walled carbon nanotubes to penetrate and

accumulate inside the roots as well as their ability to be transported to the seedling

leaves.

Ghosh et al. (2011) reported the internalization of multi walled carbon nanotubes

inside the plant cells resulting in chromosomal aberrations, DNA fragmentation and

apoptosis in Allium root cells. Wang et al. (2012a, b) revealed that wheat seedlings

exposed to o- multi walled carbon nanotubes penetrated the cell wall and entered

the cytoplasm through the roots. Larue et al. (2012) observed the uptake and

translocation of14C-radio labeled multi walled carbon nanotubes through the roots

to the leaves in wheat and rape seed. Lahiani et al. (2013) reported the penetration

and presence of multi walled carbon nanotubes to the seed coats of barley, soybean

and corn. Yan et al. (2016) reported that exposure to multi walled carbon nanotubes

in rice resulted in the penetration to the cell walls of roots of rice seedlings.

Zhai et al. (2015) studied the vegetative uptake of differentially charged multi

walled carbon nanotubes viz. neutral pristine multi walled carbon nanotubes,

positively charged multi walled carbon nanotubes-NH2 and negatively charged

multi walled carbon nanotubes-COOH in model food chain plants viz. maize

(Zea mays) and soybean (Glycine max). The aim of the study was to find the effect

of cellular, charge and size selectivity on the uptake differentially charged multi

walled carbon nanotubes on food crops. They observed that the multi walled carbon

nanotubes were directly taken-up through the roots and translocated to stems and

leaves of maize and soybean plants. Accumulation of multi walled carbon

nanotubes was observed in the xylem and phloem cells and also in the cytoplasm,

cell wall, cell membrane, chloroplast and mitochondria using transmission electron

microscope studies. Overall the study showed that the uptake and translocation of

different types of multi walled carbon nanotubes were based on the cellular, charge

and size in maize and soybean.

The post uptake behavior of carbon nanotubes inside the plant cells was studied

by Serag et al. (2012a, b, c). It was observed that the plant cells differentiating into

tracheary elements incorporated the cup-stacked carbon nanotubes into cell struc-

ture via. oxidative cross-linking of monolignols to the nanotubes surface during

lignin biosynthesis. In a later study, Serag et al. (2013) reported that the diameter

and length of single walled carbon nanotubes are the major restraining features for

their effective penetration into the plant cell wall. Zhao et al. (2015) reported the

accumulation of grapheme oxide in root hair and root parenchyma cells of

A. thaliana. However, no translocation of grapheme oxide from the roots to the

stem or leaves was observed.

Due to their smaller size and altered physical, chemical and structural properties,

the absorption and translocation of different types of carbon nanomaterials raises

serious concerns about their toxic effects on plants and also on the environment

since plants represent the interface between the environment and biosphere.
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5.3.2 In vitro Exposure Studies of Carbon Nanomaterials

The vulnerability of carbon nanomaterials on plant cells under in vitro cell culture

conditions has been investigated by few studies. Liu et al. (2013) studied the effects

of water-soluble carboxy fullerenes [ws-C70; C70(C(COOH)2)2–4] in tobacco BY-2

cells (Nicotiana tobacum, cv. Bright Yellow). The results showed cell boundary

disruption and growth inhibition, possibly due to the adsorption of ws-C70 to the

plant cell wall through hydrostatic interaction with the carboxylic groups of fuller-

enes. Shen et al. (2010) showed that exposure to single walled carbon nanotubes

exerted adverse effects on Arabidopsis and rice leaf protoplasts through oxidative

stress, leading to programmed cell death or apoptosis, DNA damage and chromatin

condensation. Dang et al. (2012) reported that exposure to water-soluble single

walled carbon nanotubes and fullerene C70(C(COOH)2)4–8 on Nicotiana tabacum
BY-2 cells caused shrunken morphology and lower proliferation rates. An increase

in reactive oxygen species generation, abnormal mitochondrial distribution,

decreased mitochondrial activity and impaired actin cytoskeleton arrangement

was observed. However, no cytotoxicity was observed after treatment with either

single walled carbon nanotubes or C70(C(COOH)2)4–8. In comparison, exposure to

C70(C(COOH)2)4–8 caused more serious adverse effects on BY-2 cells. Tan et al.

(2009) also reported that rice (Oryza sativa L.) suspension cells treated with multi

walled carbon nanotubes enhanced the reactive oxygen species generation and

decreased the cell viability.

The toxic effects of graphene was studied in A. thaliana (Columbia ecotype) T87

cell suspensions using different toxicological end points viz. morphology, mito-

chondrial dysfunction, reactive oxygen species generation and also the transloca-

tion of graphene inside the cells (Begum and Fugetsu 2013). Transmission electron

microscopy analysis revealed the uptake of graphene nanoparticles in to the cells

probably through endocytosis. Graphene exposure also caused morphological

changes, fragmented nuclei, membrane damage and mitochondrial dysfunction in

exposed cells. The results showed that graphene induced cell death in A. thaliana
T87 cells through mitochondrial damage mediated by reactive oxygen species

generation.

5.3.3 Phytotoxic Effects of Fullerenes

Investigations on the inhibitory effect of water-soluble fullerene C70 (C(COOH)2)

4–8 at the cellular level has been studied by Liu et al. (2010) using the transgenic

seedling lines expressing fluorescent makers. Root growth retardation and loss of

root gravitropism was observed and fluorescence imaging revealed the abnormal-

ities of root tips in hormone distribution, cell division, microtubule organization
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and mitochondrial activity. Jiang et al. (2014) observed that rice seeds germinated

in the presence of 150 μg/mL of carbon nanotubes decreased the root length, root

activity, and stem length of the germinated seedlings of rice. The results showed the

toxicity of higher concentrations of carbon nanotubes on seed germination and root

growth. Mushtaq (2011) investigated the inhibitory effects of carbon nanoparticles

(size 30–50 nm; 0 to 5000 μg/mL) on seed germination and root elongation of

cucumber (Cucumis sativus). Inhibitory effect was more obvious in root growth

than the seed germination percentages.

Liu et al. (2013) provided the first direct evidence for the change of plant cell

wall composition under fullerene treatment using atomic force microscopy ligand-

receptor binding force measurement to the living plant cell. They studied the

changes of tobacco plant cell wall (Nicotiana tobacum L. cv. Bright Yellow)

after treatment with water-soluble carboxy fullerenes (C70(C(COOH)2)(2–4). It

was observed that, the C70(C(COOH)2)(2–4) were adsorbed to the cell wall which

led to the disruption of cell wall and membrane leading to cell growth inhibition. A

time and dose dependent increase of glycosyl residue on the cell wall accompanied

by enhanced reactive oxygen species generation was observed.

5.3.4 Effects of Single Walled Carbon Nanotubes

The species dependent toxicity of single walled carbon nanotubes was studied by

Canas et al. (2008). It was observed that exposure to single walled carbon nanotubes

significantly affected root elongation of tomato, cabbage, carrot and lettuce.

Tomato (Lycopersicon esculentum) showed the highest degree of sensitivity to

single walled carbon nanotubes. The results showed that functionalized single

walled carbon nanotubes demonstrated different toxic behaviors and are less toxic

than non-functionalized single walled carbon nanotubes. This work highlighted the

importance of investigating the surface properties of carbon nanotubes in deter-

mining their phytotoxicity. Pourkhaloee et al. (2011) reported that in salvia

(S. macrosiphon), pepper (C. annuum) and tall fescue (F. arundinacea) exposure
to higher concentrations of single walled carbon nanotubes affected the develop-

ment of seedlings.

Yan et al. (2013) reported that exposure to single walled carbon nanotubes in

maize seedlings caused inhibition of root hair growth. Gene transcription analysis

showed that exposure to single walled carbon nanotubes decreased the root hair

associated gene (RTH1, RTH3) expression. Treatment with single walled carbon

nanotubes up-regulated the expression of epigenetic modification enzyme genes

resulting in the global deacetylation of histone H3. It was concluded that exposure

to single walled carbon nanotubes increased the histone deacetylation as a result of

accumulation of the nanoparticles in the root apex.
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5.3.5 Toxic Effects of Multi Walled Carbon Nanotubes

The germination rate of maize and rye grass decreased after exposure to 2000 mg/L

of multi walled carbon nanotubes (Lin and Xing 2007). Stampoulis et al. (2009)

investigated the effect of multi walled carbon nanotubes exposure under hydro-

ponic conditions on zucchini. Treatment with 1000 mg/L for 15 days resulted in a

60% biomass reduction compared to control and bulk carbon. Ghodake et al. (2010)

reported that exposure to 40 μg/mL of multi walled carbon nanotubes reduced root

length and number of root hairs in Brassica juncea and Phaseolus mungo. Phyto-
toxicity studies using soil and in vitro conditions in young seedlings of Parodia
ayopayana exposed to single walled and multi walled carbon nanotubes were

conducted by Basiuk et al. (2013). The plant height, width and total root lengths

were affected after 22 weeks of growth in soil and 16 weeks under in vitro

conditions. The stronger effect was observed under in vitro conditions. Exposure

to single walled carbon nanotubes caused higher effects as compared to multi

walled carbon nanotubes. Reduction in primary spine length and under developed

micrometer-sized secondary spines was observed. This gave evidences for the

strong and systemic phytotoxic effect of multi walled carbon nanotubes on plant

growth and development.

Mondal et al. (2011) revealed the dose dependent toxicity of multi walled carbon

nanotubes in mustard, where oxidized-multi walled carbon nanotubes exerted

higher negative effects than pristine multi walled carbon nanotubes. At higher

exposure concentrations, both pristine and oxidized-multi walled carbon nanotubes

caused toxicity, reducing germination by 4.4% and 7.6% and dry biomass by 1.6

and 2.2-fold respectively. Zhai et al. (2015) reported that exposure to differently

charged multi walled carbon nanotubes viz. neutral pristine multi walled carbon

nanotubes, positively charged multi walled carbon nanotube-NH2 and negatively

charged multi walled carbon nanotube-COOH inhibited the growth of soybean.

The importance of cyto-genotoxic effects of multi walled carbon nanotubes in the

plant system and the importance of epigenetic studies on nanoparticle toxicity was

investigated by Ghosh et al. (2015). They investigated the cytotoxic, genotoxic and

epigenetic effect of multi walled carbon nanotubes in Allium cepa. Uptake of multi

walled carbon nanotubes into the root cells significantly altered the cellular morphology,

compromised the membrane integrity and mitochondrial function. Induction of

DNA damage, micronucleus formation and chromosome aberration was also

observed. Apoptotic cell death was observed as indicated by formation of inter

nucleosomal fragments. The cyto-genotoxic effects were also confirmed by the

accumulation of cells in the sub-G0 phase of the cell cycle and an increase in CpG

methylation using the isoschizomers MspI/HpaII. Significant increase in the

levels of 5-methyl-deoxy-cytidine was revealed by High Performance Liquid

Chromatography analysis of DNA samples.

Apart from studying the toxic effects of multi walled carbon nanotubes in plants,

few studies have been conducted to understand their mixture toxicity along with

other environmental pollutants. The implications of the application of multi walled
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carbon nanotubes alone or in combination with pesticides for their use in agricul-

ture, especially in leafy vegetables were studied by Hamdi et al. (2015). They

evaluated the effect of non-functionalized and amino-functionalized multi walled

carbon nanotubes as well as the presence of multi walled carbon nanotubes on the

coexistent pesticide accumulation in lettuce (Lactuca sativa L.). The phytotoxicity

of multi walled carbon nanotubes during germination and growth of lettuce seeds

was monitored after sowing into 1000 mg/L of multi walled carbon nanotubes-

amended vermiculite. The seedlings were subsequently exposed to 100 ng/L of

chlordane (cis-chlordane, trans-chlordane and trans-non achlor and p, p’-DDE in

the irrigation solution for a 19-days during the growth period. No significant

influence on seed germination and plant growth was found after multi walled carbon

nanotubes and pesticide exposure. However, the presence and type of multi walled

carbon nanotubes significantly influenced pesticide contents in the seedlings. In roots

and shoots, exposure to the non-functionalized multi walled carbon nanotubes

decreased the root and shoot pesticide content by 88% and 78%, respectively.

Exposure to amino-functionalized multi walled carbon nanotubes decreased the

pesticide content by 57% in the roots and 23% in the shoots. However, the presence

of humic acid completely reversed the reduction in the accumulation of pesticides

induced by amino-functionalized multi walled carbon nanotubes probably due to the

strong competition over adsorption sites on the multi walled carbon nanotubes.

To determine the combined effect of multi walled carbon nanotubes and heavy

metals on agricultural crops, Wang et al. (2014) studied the effects of carboxylated

multi walled carbon nanotubes (2.5, 5, and 10 mg/L) and their combination with

20 μM lead and 5 μM cadmium (shortened as Pb + Cd) in Vicia faba L. seedlings. It
was observed that exposure to multi walled carbon nanotubes disturbed the nutrient

element homeostasis, induced oxidative stress and damaged the leaves. Exposure to

combination of carboxylated multi walled carbon nanotubes with Pb + Cd resulted

in an increase in the content of Pb and Cd and decrease in oxidative damages as

compared to treatments with carboxylatedmulti walled carbon nanotubes or Pb +Cd

alone. The results showed that exposure to carboxylated multi walled carbon

nanotubes caused oxidative stress and biochemical and subcellular damages as a

result of treatment with Pb + Cd in the leaves. The results obtained from the

investigation suggested that the continuous release of carboxylated multi walled

carbon nanotubes into the environment may result in phytotoxicity and aggravate

the ecological risks due to their combination with heavy metals.

The systemic toxicity and potential influence of multi walled carbon nanotubes

was evaluated in red spinach by Begum and Fugetsu (2012). After 15 days of

exposure under hydroponic conditions, the multi walled carbon nanotubes exposed

plants showed inhibition of growth, cell death, and changes in root and leaf

morphology. Reactive oxygen species generation and cytotoxicity were greatly

increased in red spinach 15 days post-exposure to multi walled carbon nanotubes.

However, supplementation of ascorbic acid reversed the adverse effects of multi

walled carbon nanotubes exposure. It was concluded that excess reactive oxygen

species generation and oxidative stress are the primary mechanism of toxicity of

multi walled carbon nanotubes in red spinach.
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The effect of multi walled carbon nanotubes in the presence and absence of NaCl

was studied in broccoli (Martı́nez-Ballesta et al. 2016). Uptake and higher accu-

mulation of multi walled carbon nanotubes was observed in cells demonstrating

that multi walled carbon nanotubes can enter into the cells of adult plants under salt

stress. Increased water uptake, growth and assimilation of CO2 were observed in

plants treated with multi walled carbon nanotubes. The authors hypothesized that

assimilation of multi walled carbon nanotubes promoted more-favorable energetic

forces and enhanced net assimilation of CO2. Multi walled carbon nanotubes also

enhanced aquaporin transduction which improved water uptake and transport,

alleviating the negative effects of salt stress probably due to changes on plasma

membrane properties of the cell wall.

5.3.6 Phytotoxic Effects of Graphene Nanomaterials

Few studies have been conducted to understand the effect of graphene

nanomaterials on plants. Begum et al. (2011) investigated the interactions of

graphene and its derivatives on root and shoot growth, biomass, shape, cell death

and reactive oxygen species generation in cabbage, tomato, red spinach and lettuce.

Morphological and physiological analyses indicated that exposure to graphene

significantly inhibited plant growth and reduced the biomass. A dose dependent

reduction in the number and size of leaves were observed in graphene-treated

plants. A concentration-dependent increase in reactive oxygen species generation

and cell death was observed in cabbage, tomato and red spinach indicating that the

toxic effects were mediated through oxidative stress. Morphological analysis indi-

cated that the epidermis of graphene treated roots of tomato and red spinach was

loosely or completely detached.

Anjum et al. (2013) evaluated the effect of graphene oxide on the fava bean

(Vicia faba) glutathione redox system, a major determinant of cellular redox

homeostasis. A concentration dependent stress-response as well as decreased oxi-

dative enzyme activity was observed. In a later study, Anjum et al. (2014) inves-

tigated the effect of single-bilayer grapheme oxide sheet in germinating faba bean

seedlings to study their impact and potential mechanisms of toxicity. The results

showed a concentration dependent decrease in the growth parameters and the

activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes and the levels

of electrolyte leakage, H2O2 generation, lipid peroxidation and protein oxidation

increased. Liu et al. (2015a, b) studied the effects of different concentrations of

graphene on the germination and growth of rice seeds. Delay on the germination

rate of rice seeds was observed with increasing graphene concentration. Inhibition

of radicle and plumule growth and changes in the root length, stem length, adven-

titious number, root fresh weight, fresh weight of over ground part and root cap

ratio of rice seedlings was also observed.

Short term and long term exposure studies were conducted in wheat (Triticum
aestivum L.) to evaluate the phytotoxic effects of graphene on its growth and
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nutritional levels (Zhang et al. 2016). The plants were exposed different concen-

trations i.e. 250, 500, 1000 and 1500 mg/L of graphene under hydroponic culture

conditions for 48 h and 30 days. Significant improvement in root elongation was

observed but the root hair production was impaired. The phytotoxic effects were

correlated with graphene induced-oxidative stress indicated by enhanced lipid

peroxidation and antioxidant enzyme activity. Long term exposure to graphene

resulted in reduction in shoot biomass, chlorophyll content, PSII activity and levels

of nutrient elements viz. N, K, Ca, Mg, Fe, Zn and Cu. The results indicated that

exposure to graphene inhibited plant growth and photosynthesis and caused an

imbalance of nutrient homeostasis. The authors concluded that graphene has

growth-limiting effects on plants, including root hair reduction, oxidative burst,

inhibition of photosynthesis and nutritional disorder.

To understand the effects of graphene oxide on plant growth and development,

B. napus cv. Zhongshuang 11 was treated with various concentrations of graphene

oxide (Cheng et al. 2016). Treatment with 25–100 mg/L of graphene oxide resulted

in shorter seminal root length compared to controls. Decrease in fresh root weight

was observed when treated with 50–100 mg/L of graphene oxide. No significant

change in lipid peroxidation as indicated by malondialdehyde content was

observed. An increase in transcript levels of genes involved in absicic acid

(ABA) biosynthesis (NCED, AAO and ZEP) and indole 3 acetic acid (IAA)

biosynthesis (ARF2, ARF8, IAA2 and IAA3) was observed after treatment with

50 mg/L of graphene oxide. However, an inhibition of transcript levels of IAA4 and

IAA7 was observed. As compared with the control, exposure to graphene oxide

treatment resulted in a higher ABA and lower IAA content. Overall, the results

indicated that exposure to graphene oxide modulated the root growth of B. napus
and affected ABA and IAA biosynthesis and concentration.

In a co-exposure study with graphene oxide and arsenate [As(V)], Hu et al.

(2014) found that 0.1–10 mg/L of graphene oxide exposure enhanced the adverse

effects of As (V) in wheat seedlings. They revealed that exposure to grapheme

oxide greatly amplified the phytotoxicity of arsenic (As) in wheat causing a

decrease in biomass and root numbers. Graphene oxide also triggered damage to

cellular structures and enhanced the uptake of graphene oxide and arsenate.

Co-transport of graphene oxide-loading arsenic (As) and transformation of As

(V) to high-toxicity As (III) by graphene oxide were observed. The generation of

dimethyl arsinate, produced from the detoxification of inorganic arsenic, was

inhibited by graphene oxide in plants. Significant reduction in the fresh mass,

shoot length and chlorophyll content was also observed in treated plants. In

addition, the activity of peroxidase and superoxide dismutase, likely biomarkers

for stress response, were increased in a concentration-dependent manner. Graphene

oxide also regulated phosphate transporter gene expression and arsenate reductase

activity to influence the uptake and transformation of As, respectively. The authors

concluded that the indirect nanotoxicity of graphene oxide should be carefully

considered in food safety. The results obtained from studies conducted on the effect

of different types of carbon nanomaterials on various types of plants species has

been concluded in Table 5.1.
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Table 5.1 The phytotoxic effects of different carbon nanomaterials on different plant species is

summarized in the table

Nanoparticle(s) Plant Toxic growth effects Reference(s)

C60 fullerenes Corn, soybean Reduced biomass Torre-

Roche et al.

(2013)

Functionalized

carbon nanotube

Lettuce Reduced root length Ca~nas et al.
(2008)

ws-C70 Tobacco BY-2

cells

Cell boundary disruption and growth

inhibition

Liu et al.

(2013)

SWCNTs Rice Delayed flowering, decreased yield Lin et al.

(2009a, b)

Non-

functionalized and

functionalized

SWCNTs

Carrot, cabbage,

cucumber, lettuce,

onion, tomato

Functionalized SWCNTs inhibited

root growth in tomato.

Non-functionalized SWCNTs

inhibited lettuce root growth

Ca~nas et al.

(2008)

MWCNTs Rice cells Increased ROS generation and

decreased cell viability

Tan et al.

(2009)

MWCNTs Rice Delayed flowering and seed setting.

Reduced seed weight

Lin et al.

(2009a, b)

MWCNTs Zucchini Negatively affected biomass produc-

tion and transpiration

Stampoulis

et al. (2009)

MWCNTs Wheat Enhanced the uptake of phenantrene

to the living cells

Wild and

Jones (2009)

MWCNTs Garden cress, sor-

ghum, tomato,

radish, cucumber

Influenced seed germination and root

growth depending of the type of

sewage sludge

Oleszczuk

et al. (2011)

MWCNTs Onion Chromosomal aberrations, DNA

fragmentation and apoptosis in root

cells

Ghosh et al.

(2011)

MWCNTs Onobrychis Enhanced the POD activity Smirnova

et al. (2012)

MWCNTs Lettuce Reduced root length Lin and

Xing (2007)

MWCNTs Rice Chromatin condensed inside the

cytoplasm and caused cell death,

plasma membrane detachment from

cell wall and cell shrinkage

Tan et al.

(2009)

Oxidized

MWCNTs

Mustard Shorter germination time, enhanced

root growth, and seedling stem

development

Mondal

et al. (2011)

CNTs Red spinach Growth inhibition, changes to tissue

structure

Begum and

Fugetsu

(2012)

GO Faba bean Concentration dependent decrease in

oxidative enzyme activity.

Anjum et al.

(2014)

Single bilayer GO

Sheet

Faba bean Stress in plant development and

growth. Reduction on peroxidase

enzyme activity

Anjum et al.

(2014)

(continued)
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Overall, analysis of the available reports indicate that the ability of different

types of carbon nanomaterials to enter into plant cells and translocate to various

parts poise different types of risks both in terms of plant health and as well as raises

environmental issues. Following exposure, the different types of carbon

nanomaterials were able to penetrate and enter through the seed coats, decreased

seed germination, root growth and elongation. For example, from the studies it was

observed that multiwalled carbon nanotubes were able to penetrate into the root

system and translocated to the leaves and the fruits. The carbon nanomaterials were

also able to modulate the expression of genes related to root development and also

affect the synthesis of hormones related to root growth and development. The entry

of carbon nanotubes to the plant tracheary elements may affect plant defense

responses as well as wood development. Apart from this, mixture toxicity studies

have found that carbon nanomaterials will enhance the toxicity and uptake of other

environmental pollutants in plants.

5.4 Conclusions and Future Work

The application of carbon nanomaterials are growing. However, the production and

release of different types of nanomaterials possessing various properties have

complicated the evaluation of different types of carbon nanomaterials on plants.

Due to safety considerations, several studies are being conducted to evaluate the

effects of different types of carbon nanomaterials either alone or in combination

with other environmental pollutants and heavy metals in plants. Results from the

available studies indicate that exposure to different types of carbon nanomaterials

caused toxic responses in plants and are depended on the concentration, exposure

media and plant species. However, one limitation is that most of the studies were

Table 5.1 (continued)

Nanoparticle(s) Plant Toxic growth effects Reference(s)

Graphene Arabidopsis Fragmented nuclei, membrane dam-

age and mitochondrial dysfunction

Begum and

Fugetsu

(2013)

Water-soluble

graphene oxide

(ws-GO)

Lettuce, cabbage,

red spinach,

tomato

Reduced plant growth, biomass, the

number and size of leaves, increased

ROS along with necrotic symptoms

Begum et al.

(2011)

sWCNTs single walled carbon nanotubes,MWCNTs multi walled carbon nanotubes, CNTs carbon
nanotubes, GO graphene oxide

Species names: – Corn – Zea mays; Soybean – Glycine max; Lettuce – Lactuca sativa; Rice –

Oryza sativa; Carrot – Daucus carota; Cabbage – Brassica oleracea; Cucumber – Cucumis
sativus; Onion – Allium cepa; Tomato – Solanum lycopersicum; Zucchini – Cucurbita pepo;
Wheat – Triticum aestivum; Garden cress – Lepidium sativum; Sorghum – Sorghum bicolor;
Tomato – Solanum lycopersicum; Radish – Raphanus sativus; Onobrychis – Onobrychis arenaria;
Mustard – Brassica juncea; Red spinach – Amaranthus dubius; Faba bean – Vicia faba;
Arabidopsis – Arabidopsis thaliana
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conducted under in vitro or controlled growth conditions thereby making it difficult

to predict the effect of carbon nanomaterials under natural field conditions. There-

fore, further studies need to done to understand the toxic effects of various carbon

nanomaterials under natural conditions in plants.
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Chapter 6

Sustainable Desalination Process and

Nanotechnology

Saikat Sinha Ray, Shiao-Shing Chen, Dhanaraj Sangeetha,

Nguyen Cong Nguyen, and Hau-Thi Nguyen

Abstract A wide variety of methods are used for water treatment and purification.

The use of membranes allows efficient treatment by reverse osmosis, nanofiltration,

ultrafiltration, microfiltration, membrane distillation and forward osmosis. Membrane

technology has been researched extensively for water treatment and desalination.

Desalination is the technology predominantly used to solve water scarcity. The sus-

tainability of desalination processes aims at reducing energy costs and increasing water

recovery. In recent years numerous large-scale seawater desalination plants have been

built in water-stressed countries. Construction of new desalination plants with the latest

emerging technology is expected to increase in the future. Despite major advances in

desalination technologies, seawater desalination is still more energy intensive com-

pared to conventional processes uszd for the treatment of fresh water. However,

forward osmosis and membrane distillation are emerging for sustainable desalination.

In this chapter we review key points of membrane processes including advantages

and disadvantages of forward osmosis and membrane distillation. The advances in

membrane material and modules is also discussed elaborately. Drawbacks of forward

osmosis are also highlighted within each part, including draw solution development,

reverse solute diffusion, concentration polarisation and membrane fouling. This

chapter discuss the capability of membrane distillation in treating highly concentrated

aqueous solutions derived from other desalination processes. We review the fabrication

and performance of membranes, and the optimization of membrane distillation.

Finally, the sustainability and application of forward osmosis and membrane distilla-

tion in seawater desalination is elaborately analysed.
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6.1 Introduction

Recently, water scarcity becomes one of the prominent environmental problems

faced by many people because of limited quantity of fresh water and uneven

distribution (Valipour 2015a, b, 2016; Yannopoulos et al. 2015). According to the

current statistics, the total volume of water on Earth is around 1.4 billion km3, in

which 97.5% consists of seawater and only 2.5% is fresh water. Interestingly, it has

been reported that out of 2.5% of fresh water, only 0.35% is in the form of liquid

which is available for human consumption (Gleick 1996; Valipour 2015a, b). Due

to enormous increase in global population, the shortage of fresh water has been one

of the environmental issues that requires permanent solution in the near future. In

addition to that, the shortage of fresh water issue has been intensified by water

pollution because of global industrialization and overpopulation of developing

countries (Yuan et al. 2015). This issue could be eradicated if an ideal treatment

technology can be developed to convert salt water or polluted water into potable

water. A lot of research was focused on developing water purification technology

over the past decades, and one of the most advanced applicable technology is
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reverse osmosis. Typically, reverse osmosis is a membrane separation methodology

that uses applied pressure across a semi-permeable membrane for water treatment.

Further, the first ever practical salty water desalination by utilizing reverse osmosis

has been demonstrated by Sidney Loeb in the 1960s (Loeb and Sourirajan 1964).

Currently, forward osmosis emerges out as one of the best in desalination technol-

ogy that has started to gain attention because of potentially lower energy and

operating cost than reverse osmosis (Cath et al. 2006; McCutcheon et al. 2006;

Cath 2010; Ray et al. 2016a; Dasgupta et al. 2015, 2017; Shukla et al. 2017;

Jain et al. 2016; Ranjan et al. 2014).

Membrane distillation is a membrane separation technology that can overcome

few limitations of other membrane processes. Typically, high solute concentrations

can be easily achieved by overcoming the issue of concentration polarization and

purified form of water as a permeate can be produced. Recently, membrane

distillation is a relatively novel membrane separation technology that may over-

come some drawbacks of some conventional membrane processes (Lawson and

Lloyd 1997; Alkhudhiri et al. 2012). In particular, the possibility of an industrial

advancement of this present methodology is related to the developing commercial

availability of membranes of potential interest. Membrane Distillation can be

defined as a thermally-driven separation technology, in which only water molecules

in vapour form transfer across a microporous hydrophobic membrane (Schofield

et al. 1987). The driving force in the membrane distillation technology is the vapour

pressure difference produced due to the temperature difference across the hydro-

phobic membrane. Generally, this technology offers different applications, such as

seawater and brackish water desalination, wastewater treatment and in the food

industry (Souhaimi and Matsuura 2011). This research article reviews all the

necessary details based on membrane characteristics, membrane-related heat and

mass transfer theories, membrane fouling and its effects of various operating

conditions.

Forward Osmosis over the past 10 years has gained more attention, both com-

mercially and academically. Basically, it works by utilizing two solutions with

different concentrations (in other words different osmolality) separated by a semi-

permeable membrane. This potential application is widely utilized in nature, but

unfortunately it has not been fully recognized in industrial areas. Additionally, this

process can be utilized on its own or in combinations with other processes, for

example concentrating desalination and renewable power generation (Zhao et al.

2012a, b). Forward osmosis or osmotically driven membrane processes may not

recently be ‘main stream’, but it is quiet probable that these processes are increas-
ingly becoming a topic of some interest. Over the past decades, this process has

considerable efficiency across a wide variety of applications such as power gener-

ation, emergency drinks, enhanced oil recovery, water treatment, fluid concentra-

tion, desalination. Unfortunately, only few of them were currently commercialised

(Kessler and Moody 1976; Chung et al. 2012). This research article demonstrates

some of the important aspects of this process and its derivatives, with regard to key

problems, theories and some potential applications.
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Additionally, membrane distillation has the capability to use the alternative

source of energy, such as solar energy (Banat et al. 2002; Koschikowski et al.

2003). Basically, membrane distillation technology is a competitive methodology

for desalination of brackish water and sea water (Alklaibi and Lior 2005). In other

words, membrane distillation is an effective methodology for removing organic and

heavy metals from aqueous solution from contaminated water. Furthermore, mem-

brane distillation has also been utilized to treat radioactive waste in low concen-

tration (Zakrzewska-Trznadel et al. 1999). Nevertheless, membrane distillation is

also having few limitations such as low permeate flux compared to reverse osmosis.

Even, the trapped air within the membrane offers an additional mass transfer

resistance, which became another drawback of membrane distillation process that

indirectly influences the permeate flux (El-Bourawi et al. 2006; Alkhudhiri et al.

2012).

As far as the history of desalination technology is concerned, Fig. 6.1 indicates

the evolution of desalination technology where forward osmosis and membrane

distillation emerge out as one of the potential methodologies that can be considered

as third generation desalination technology.

Fig. 6.1 Evolution of desalination technology. According to International Desalination Associa-

tion (IDA), Multi-stage flash distillation plants produce about 60% of all desalinated water in the

world (2001) whereas reverse osmosis was utilized in 66% of installed desalination capacity by the

end of 2011. According to National Geographic magazine (March 2011), forward osmosis is one

of three technologies that promised to reduce the energy requirements of desalination. Further,

membrane distillation also emerges out as one of the efficient methodologies in the field of

desalination technology

MSF Multi-stage flash distillation, RO Reverse osmosis, FO Forward osmosis, MD Membrane

distillation
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6.1.1 Background

Since 2000s and especially in current years, forward osmosis and membrane

distillation have gained much attention because of high interest in membrane

technology to produce ultra-pure water from seawater with these versatile technol-

ogies (Khayet 2011; Khayet and Matsuura 2011; Zhao et al. 2012a, b). A detailed

survey has been presented by peer-reviewed publications (research articles and

review articles) related to “forward osmosis” and “membrane distillation” of the

last 10 years in Fig. 6.2. This presented database has been taken from the Scopus-

based advanced scholar search system and the data clearly demonstrates that the

forward osmosis and membrane distillation have regained much attention in recent

research for the advancement of water treatment and desalination.

A schematic block diagram is indicated in Fig. 6.3 to demonstrate the process of

forward osmosis and membrane distillation for water treatment and desalination.

Therefore, there is a need to address this research and development in order to

explore the emerging technology for sustainable desalination in near future. In this

research article, recent advances and developments in the application of forward

osmosis and membrane distillation are discussed as a barrier layer for waste water

treatment and desalination.

6.2 Potential of Forward Osmosis and Membrane

Distillation

6.2.1 Efficiency of Forward Osmosis

As earlier mentioned, forward osmosis is a novel emerging membrane separation

process with a number of major advantages compared to reverse osmosis. Recently,

forward osmosis is considered as a complementary methodology but it has the

efficiency to become the reference option in many industrial based applications.

Forward osmosis is typically based on the natural phenomenon of a solvent passing

from a portion of low osmotic pressure through a semipermeable membrane to one

of high osmotic pressure. This phenomenon takes place continuously as far as

nature is concerned such as in trees, plants, bacteria and animal cells.

Forward osmosis can be utilized to generate high quality permeate water from an

aqueous effluent with varying level of contamination, a semipermeable forward

osmosis membrane and a solution of high osmolality. Basically, this technology

consumes very low energy (less operating cost), as it is maintained at very less

pressure and at normal room temperature, which became one of the key advantages

(Su et al. 2012; Lutchmiah et al. 2014). In addition to that, forward osmosis

membranes are more resistant to membrane fouling and can tolerate chlorine,
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thus less physical and chemical cleaning is required; thereby extending the life span

of the forward osmosis membrane. But forward osmosis does not generate high

quality permeate water suitable for utilization in only one single step, since the
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Fig. 6.2 Comparison of the number of peer reviewed publications since 2007. (Data analysis of

publications has been done using the Scopus scholar search system with the term “Forward

Osmosis” and “Membrane Distillation” with filter search of membrane and desalination, as on

February 2017). The graphical data clearly explains that the forward osmosis and membrane

distillation has gained attention in recent research for the advancement of water purification and

desalination technology

FO Forward osmosis, MD Membrane distillation

190 S.S. Ray et al.



Fig. 6.3 (a) Typical pictorial form of Forward Osmosis (b) Lab set-up of Membrane Distillation.

Forward osmosis is an osmotic process that uses a semi-permeable membrane to separate water

from dissolved solutes. The driving force for this separation is an osmotic pressure gradient,

whereas, for membrane distillation, the driving force of the process is given by a partial vapour

pressure difference commonly triggered by a temperature difference

FO Forward osmosis, MD Membrane distillation
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water produced adulterates with the draw solute. Hence, a second step is needed in

order to separate the water generated from the draw solute (McGovern 2014;

Shaffer et al. 2015). Further, in next stage, the draw solute is regenerated by leaving

high quality of permeate water.

6.2.1.1 Basic Applications of Forward Osmosis

The most crucial advantageous applications of forward osmosis over conventional

reverse osmosis process are as follows (Yip et al. 2010; Linares et al. 2014):

(a) lower operating cost (Reduced energy consumption); especially when high

osmolality solutions utilized; (b) less membrane fouling and high resistance to

chlorine; (c) easier and more effective physical and chemical cleaning of the

membrane; (d) longer life span of the membrane. Additionally, forward osmosis

can be utilized in a wide range of applications, including the treatment of brackish

water and sea water, water with various mineral salts and metal ions, effluents with

silica, effluents with a high organic contamination etc. The most crucial examples

are as follows (Kravath and Davis 1975; McGinnis and Elimelech 2008): (a) water

generation in regions where there is a shortage of clean water; (b) effluent treatment

for water reclamation and water reuse; (c) execution of a zero discharge system;

(d) treatment of contaminated with complex effluents, that are usually difficult to

treat by conventional technologies; (e) effective alternative methodology when

lower energy needed.

Therefore, forward osmosis is an emerging methodology that is entirely reliable

and feasible, and is a potential competitor for conventional technologies such as

reverse osmosis and other separation processes. In brief, forward osmosis can be

summarised as mentioned below (Miller and Evans 2006; Su et al. 2012; Altaee

et al. 2014): forward osmosis is an alternative technology compared to the reverse

osmosis process which reduces the energy consumption required; forward osmosis

is a novel emerging process over conventional thermal evaporation technologies

and has a wide variety of different advantageous applications in industries; forward

osmosis is a potential methodology with the scope for further advancement and

improved performance, has very low investment (operating costs) in zero discharge

applications and reduces the need of pre-treatment process and further increases the

potency as the process advances.

6.2.2 Effectiveness of Membrane Distillation

Although, the potentialities of membrane distillation are well known in water

research area, its direct application in industrial area is still questionable due to

high energy requirements. Hence, high water fluxes shall be obtained with reason-

able energy consumption. However, membrane distillation was extensively recog-

nized as one of the cost-effective technology for desalination operating at higher
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temperatures when waste form of heat can be employed to power the process

(Alklaibi and Lior 2005; Susanto 2011). In general, the working temperature varies

from 30–60 �C permit re-use of residual heat flows, and the utilization of alternative

energy sources like solar, geothermics, and wind. Additionally, when compared

with reverse osmosis, membrane distillation is less susceptible to flux limitations

due to concentration polarisation, whereby a higher recovery of matter is attained

on the feed stream. Typically, membrane distillation attempts 100% rejection for

non-volatile dissolved substances. Comparatively, membrane distillation offers

prominent advantages in membrane separation processes such lesser footprint,

simple up-scaling, simple operational conditions (temperature and pressure), pos-

sibility to treat flows with heat-sensitive components or a high suspended particle-

content at atmospheric pressure and a temperature below the boiling point of the

feed (Hsu et al. 2002).

6.2.2.1 Basic Applications

There is no doubt that membrane distillation is versatile in nature. Therefore,

membrane distillation is a well-known technology that can be utilized for the

generation of clean and reusable water. Desalination of seawater and generation

of pure water from the brackish salt water are the prominent membrane distillation

applications as because non-volatile ionic matters are completely rejected

(Souhaimi and Matsuura 2011). Moreover, membrane distillation also allows

water purification in the pharmaceutical industries, textiles and chemical industries,

for the concentration of fruit juices and milk processing, in bio-technology and

bio-medical applications such as the removal of water from blood, in separating

azeotropic aqueous mixes (alcohol-water), in the concentration of glycols,

non-volatile acids and oil-in-water emulsions and applications where high temper-

ature processing causes thermal degradation of the process flow. Further, mem-

brane distillation permits greater efficiency where wastewater is contaminated with

different organic dyes (Tomaszewska 2000; Camacho et al. 2013).

6.2.2.2 Efficiencies of Membrane Distillation

Membrane distillation can be utilized for the concentration/separation of

non-volatile components such as ionic salts, acids, colloids and macro-molecules

from aqueous solutions for the removal of traces of volatile organic compounds like

choroform, benzene and tri-chloroethylene from water, and for the separation of

other organic components like alcohols from diluted aqueous liquid (Lawson and

Lloyd 1997; Martinez-Diez et al. 1999; Al-Obaidani et al. 2008). The advantages of

membrane distillation process include: (a) lower operating temperature; (b) lower

operating hydrostatic pressures than the pressure-driven processes such as reverse

osmosis process; (c) high rejection factors achieved; (d) pure permeate water;

(e) less demand of membrane mechanical properties/toughness; (f) less membrane
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fouling as compared to any pressure driven processes such as reverse osmosis;

(g) possibility to utilize waste form of heat and renewable energy sources.

(El-Bourawi et al. 2006; Souhaimi and Matsuura 2011). Therefore, based on its

high compatibility, membrane distillation can be combined in various crucial

industrial production cycles rising the potency of the entire technique.

6.3 Issues Associated with Forward Osmosis

and Membrane Distillation

6.3.1 Concentration Polarization and Its Modelling

Concentration polarization is a typical and undeniable aspect in both processes

such as pressure driven and osmotically driven membrane technologies. Generally,

in osmotically driven membrane technologies, concentration polarization occurs

due to difference in concentration between the feed solution stream and the draw

solution stream through an asymmetric forward osmosis semipermeable membrane

as indicated in Fig. 6.4. Thus, both type of concentration polarization

i.e. (a) external concentration polarization and (b) internal concentration polariza-

tion can occur in forward osmosis as well as membrane distillation. In particular,

external concentration polarization takes place at the surface of the dense active

layer of the membrane and internal concentration polarization takes place within

the porous support layer of the membrane (Martınez-Dıez and Vazquez-Gonzalez

Fig. 6.4 (a) External concentration polarization. The line is the concentration profile, indicating

concentrative (towards right) and dilutive (towards left) (b) Dilutive internal concentration

polarization and (c) concentrative internal concentration polarization

ECP External concentration polarization, ICP Internal concentration polarization

194 S.S. Ray et al.



1999; McCutcheon and Elimelech 2006). In addition to that, both external con-

centration polarization and internal concentration polarization have been

illustrated.

Because of concentration polarization effect, the solute being retained by the

membrane and the solvent passing the membrane. Consequently, the solute will

accumulate and form a layer at the membrane interface with a relatively high

concentration. The concentrated layer near the membrane is less permeable for

the solvent (usually water) in comparison with an unaltered solution, which is an

additional resistance. This phenomenon in parallel results in a (much) higher

osmotic pressure Δ∏ at the membrane interface, even for cases where macromo-

lecular solutions are used, and leads to a decrease in the driving force which then

becomes ΔP – Δ∏. Finally, the concentration at the membrane interface can reach

such high values that the concentrated solution will change into a gel with a

resistance. Gel layer formation occurs easily with protein containing liquids. The

flux decline phenomena can be generally divided in fouling (irreversible and long

term phenomena) and concentration polarization (reversible and directly occuring

phenomena).

Concentration polarization is the growth of concentration gradients both inter-

nally and externally forward osmosis membranes during the running of system. As

mentioned earlier, gradients lower the effective osmotic pressure difference across

the membrane active layer and thus limit the achievable permeate water flux.

According to Cath et al., concentration polarization takes place at lower water

flux. It can be expressed mathematically by the performance ratio, r performance (Cath

et al. 2006) as mentioned in Eq. 6.1;

r performance ¼ Jw experimental

Jw theoritical
ð6:1Þ

where Jw experimental is the measured flux experimentally whereas, Jw,theoretical is the

estimated flux from the given equation Eq. 6.2;

Jw ¼ A πD� πFð Þ ð6:2Þ
However, the performance ratio doesn’t fully demonstrate the concentration

polarization, as both external concentration polarization and internal concentration

polarization take place (McCutcheon and Elimelech 2006). Typically, in mem-

brane separation technologies there are four different types of concentration

polarization that fall into two important categories, (1) external concentration

polarization and (2) internal concentration polarization, and there are other two

sub-categories in both cases; (a) dilutive and (b) concentrative. Figure 6.4 indicates

the phenomena of external concentration polarization as well as internal concen-

tration polarization:
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6.3.1.1 Internal Concentration Polarization

According to Lee et al., the extent of the internal concentration polarization mainly

depends up on the solute resistance to diffusion in the membrane’s support layer, K
(Lee et al. 1984) Eq. 6.3,

k ¼ tτ

D
2 ð6:3Þ

where, t, τ and 2 represents the thickness, tortuosity and porosity of the support

layer of membrane, and D represents the bulk diffusion coefficient of the solute. As

per equation Eq. 6.3, the solute resistance also depends upon the solute diffusion

coefficient. It indicates that the higher diffusion of solute leads to better compen-

sation for the dilutive or concentrative internal concentration polarization respec-

tively, as demonstrated in Fig. 6.4.

The solute resistance to diffusion, K, can be combined with equations describe

by McCutcheon et al. (2006) to get the simplified form that describes the flux with

dilutive internal concentration polarization, Eq. 6.4;

Jw ¼ A πDexp �JwK

kD

� �
� πFexp

Jw

kF

� �� �
ð6:4Þ

whereas, with concentrative internal concentration polarization, the expression can

be written as, Eq. 6.5;

Jw ¼ A πDexp �Jw

kD

� �
� πFexp

JwK

kF

� �� �
ð6:5Þ

In general, for asymmetric membranes; that consist of both dense rejection layer

and porous support layer – internal concentration polarization occur in the porous

underlying support layer whereas external concentration polarization on the inter-

phase in between the dense rejection layer and solutions (Gray et al. 2006):

1. Typically, when the rejection layer faces towards the feed solution side (which is

also known as active layer towards feed solution (AL-FS) or forward osmosis

(FO) mode), the water permeate through the porous underlying support layer

dilutes the draw solution inside the support layer, that gives rise to dilutive

internal concentration polarization. Whereas, concentrative external concentra-

tion polarization occurs on the dense rejection layer of the membrane

(McCutcheon and Elimelech 2006).

2. On the other hand, when the rejection layer faces towards the draw solute (which

is also known as active layer towards draw solution (AL-DS) or pressure

retarded osmosis (PRO) mode), solutes inside the support layer are concentrated

as water passes through the membrane, that gives rise to concentrative internal

concentration polarization. Whereas, dilutive external concentration polariza-

tion occurs on the dense rejection layer of the membrane (Tang et al. 2010).
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6.3.1.2 External Concentration Polarization

All membrane processes suffered from external concentration polarization effect at

the membrane interfaces which are in contact with the bulk fluids because a thin

layer of fluid at the interface may get polarized. For a fluid flowing via a rectangular

channel, a thin layer of fluid close to the fluid-channel interface will be in laminar

flow regardless of the nature of the free stream (Tan and Ng 2008). This thin layer is

an interface between the membrane and the bulk solution. Within this thin layer of

fluid, transport of water and other solutes are only based on convection (perpen-

dicular to the membrane surface) and molecular diffusion. A concentration profile

will develop and this phenomenon is known as external concentration polarization.

The Fig. 6.4 demonstrates the concentration profile of osmotic agents along with a

membrane. Since water diffuse from the feed stream solution into the membrane, a

local concentration of the feed takes place. Typically, at the draw solution side of

the membrane, a local dilution takes place when water from the membrane diffuse

into the solution stream. This results in external concentration polarization in a

boundary layer against the membrane, decreasing the effective osmotic gradient.

Further, in this mass balance, the external concentration polarization at the feed side

of the membrane is illustrated as Eq. 6.6;

JwC ¼ JwCd � D dC

dx
ð6:6Þ

where, C represents the concentration of solute in the layer at the length of x from

the membrane, whereas, Cd represents the concentration of draw solute, D repre-

sents the diffusion coefficient of solute and dC/dx represents the concentration

gradient within the boundary layer. By utilizing the boundary conditions, when C¼
Cmembrane, x ¼ 0 and C ¼ Cbulk when x ¼layer thickness, δ and presuming total

rejection of salt, the following equation can be obtained Eq. 6.7;

C membrane

C bulk
¼ exp

Jw δ

D

� �
ð6:7Þ

This above-mentioned relationship is known as the polarization modulus. It may

be concentrative or dilutive, mainly dependent on whether it is the feed or draw

external concentration polarization studied. If considered dilutive external concen-

tration polarization, the exponential term will be negative (�ve). δ/D can be

substituted with the mass transfer coefficient ‘kD’ and ‘kF’ for external concentra-
tion polarization in draw stream and feed stream respectively.

As per McCutcheon and Elimelech et al., the mass transfer coefficient has been

illustrated, k, as in given equation Eq. (McCutcheon and Elimelech 2006), Eq. 6.8;

k ¼ ShD

dh
ð6:8Þ
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where, Sh represents the Sherwood number and dh is the hydraulic diameter. Since,

osmotic pressure is considered as a colligative property, the polarization modulus

can be expressed mathematically as given Eq. 6.9;

π membrane

π bulk
¼ exp

Jw

k

� �
ð6:9Þ

where Πmembrane represents the osmotic pressure at the membrane and Πbulk repre-

sents the osmotic pressure in bulk. As per some researchers, the polarization

modulus inclines with different conditions which are as follows (Blatt et al. 1970;

McCutcheon et al. 2006): (1) increasing flux, (Jw); (2) thickness of boundary layer,

(δ); (3) lower diffusion coefficient, (D).

External concentration polarization occurs on the inter phase in between the

dense rejection layer and encompassing solutions. Basically, for symmetric, dense

membranes which reject feed and draw solutions, external concentration polariza-

tion occurs on the membrane surfaces (Tan and Ng 2008, 2013): (1) Solutes are

concentrated at the surface on the feed side, as water passes through the membrane,

that gives rise to concentrative external concentration polarization; (2) On the other

hand, solutes are diluted at the surface on the draw solution side, as water permeates

from the feed side, that gives rise to dilutive external concentration polarization.

6.3.2 Membrane Fouling

The recent advancements of the membrane technologies fell far behind the initial

anticipation, and one of the prominent hindrances that interfere more widespread of

its application is that the filtration performance necessarily declines with respect to

time. Typically, this aspect is commonly defined as membrane fouling, that refers to

the blockage of membrane pores while filtration by the combination of filtering and

adsorption of compounds and particulates onto the surface of membrane or within

the pores of the membrane. Generally, blockage of pores lowers the permeate water

flux and results in complexity of the membrane filtration performance. Therefore,

membrane fouling became the most challenging and complicated issue for further

membrane applications and development (Abdelrasoul et al. 2013). Figure 6.5

indicates membrane fouling and shows different types of membrane foulants

responsible for fouling.

Membrane fouling can be broadly classified into two categories: (1) back-

washable or non-back-washable, and (1) reversible or irreversible based on the

type of attachment of particles to the membrane surface. Typically, back-washable

membrane fouling can be easily eliminated by reversing the direction of flow at the

end of each filtration cycle. However, non-back-washable membrane fouling can-

not be eliminated by normal backwashing technique. Non-back-washable mem-

brane fouling can be easily handled and removed by chemical cleaning technique.

Furthermore, irreversible membrane fouling cannot be eliminated with flushing,
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backwashing, physical cleaning, chemical cleaning, or by any other techniques, and

hence the membrane cannot be recovered to its original permeate water flux. In

addition to that, membrane fouling can also be subdivided, based on the type of

fouling particulates and material, into four sub-categories: (1) inorganic fouling,

(2) particle/colloidal fouling, (3) microbial/biological fouling, and (4) organic

fouling. Membrane fouling is a continuous process where solutes or particulates/

particles deposit onto the surface of membrane or into the membrane pores that

results in an increase in the resistance to flow during filtration process. To under-

stand the clear mechanism of membrane fouling, a pictorial form of fouling

mechanism has been indicated in Fig. 6.6. Moreover, Table 6.1 indicates the

basic description of different types of fouling.

Typically, natural organic matter is the organic substances present in ground or

surface water and consists of various high molecular weight organic matters/

compounds. Natural organic matter includes both humic and non-humic compo-

nents. Humic fraction contains high molecular weight organic matters. On the other

hand, non-humic natural organic matter foulants are proteins, amino sugars, poly-

saccharides, and polyoxyaromatics (Hong and Elimelech 1997; Lee et al. 2004).

Recently, several studies have revealed that natural organic matter is one of the

main membrane foulant in ultrafiltration. As per Makdissy et al., the organic

colloidal fraction results in significant membrane fouling. In addition to that,

polysaccharides are recognized as the dominant membrane foulant too. According

to the recent research, it was reported that most of the membrane fouling were

caused by hydrophobic natural organic matter components. However, as per some

other researchers, neutral hydrophilic natural organic matter components were

observed to be the major membrane foulants. Natural organic matter components,

can be ranked in this order which is as follows: neutral hydrophilics natural organic

Fig. 6.5 A general membrane fouling pictorial presentation indicating different types of mem-

brane foulants including particles, macromolecules, microbes and ions

There are other various types of foulants that may cause membrane fouling which are as follows:

colloidal (clays, flocs), biological (bacteria, fungi), organic (oils, polyelectrolytes, humic) and

scaling (mineral precipitates)
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matter > hydrophobic acids natural organic matter> transphilic acids natural

organic matter > charged hydrophilics natural organic matter (Seidel and

Elimelech 2002; Lee et al. 2005). Therefore, it can be concluded that there are

many conflicting results and hypothesis from different researchers and many facets

of membrane fouling, so there would be no appropriate solution for membrane

fouling control, but it has to be dealt with and designed specifically for a particular

type of foulant and membrane in use, which has been discussed in next section.

Table 6.2 indicates a brief discussion on nature of foulants along with the mode of

fouling.

Fig. 6.6 Membrane fouling mechanism. This picture illustrates four kind of fouling namely: (a)

Complete blocking; (b) Standard blocking; (c) Intermediate blocking; (d) Cake layer formation.

Contamination of membranes causes a higher energy use, a higher cleaning frequency and a

shorter life span of the membrane. Membrane contamination is usually called fouling

Adapted and modified from (Konieczny and Rafa 2000)

Table 6.1 A brief summarisation based on different types of fouling (Lee et al. 2005; Meng et al.

2009)

Nature of fouling Brief description

Inorganic fouling Accumulation of particulates matter when the concentration of the

chemical species exceeds its saturation concentration. Several studies

have shown that increased concentration of Ca2+ and Mg2+ caused

more fouling

Particles or colloidal

fouling

Algae, bacteria and certain natural organic matter fall into this cate-

gory. To distinguish different fouling phenomena, particles and col-

loids here are referred to biologically inert particles and colloids that

inorganic in nature and are originated from weathering of rocks

Microbial or biologi-

cal fouling

Results due to formation of biofilms on the membrane surface. Once

bacteria attach to the membrane surface, bacteria start multiplying and

produce extracellular polymeric substances to form a viscous, slimy

and hydrated form of gel

Organic fouling Clogging of the membrane by organic substances, and organic carbons

generally concentrate on the internal surface of the membrane

There are four categories of membrane fouling. They are (a) inorganic fouling or scaling,

(b) particle or colloids fouling, (c) microbial fouling or biofouling, and (d) organic fouling
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6.3.2.1 Membrane Fouling Mechanism

Flux-time curve of membrane filtration process, as denoted in Fig. 6.7, initiates with

(I) a rapid initial decrease of the water flux, (II) followed by a long duration of

gradual flux decline, and (III) terminates with a steady-state flux. Typically, flux

decrease in membrane filtration process is a consequence of the increase in the

membrane resistance by the pore blockage and cake layer formation on the mem-

brane surface. The pore blockage in membrane increases the membrane resistance,

on the other hand, the cake layer formation creates an additional layer of resistance

to the permeate flow. In addition to that, pore blockage on membrane and cake layer

formation on membrane surface can be considered as two prominent mechanisms

for membrane fouling (Choo and Lee 1996; Jiang et al. 2005).

According to the graph, the rapid initial decline of the permeate water flux can be

attributed to pore blocking of membrane pores. However, the maximum permeate

water flux occurs at the initial period of filtration because membrane pores are

typically clean and opened at that time. Thus, flux decreases as pores of membrane

are blocked by retained particulates/ particles. Basically, membrane pores are being

blocked partially and the degree of pore blockage in membrane depends on the

relative size of particles, shape and pores. As per previous report, the pore blockage

Table 6.2 Summarisation of nature of foulants and mode of fouling in membrane processes

(Burggraaf 1996; Field 2010)

Nature of foulants Mode of fouling

Large suspended particles Particles present in the original feed (or developed due to concen-

tration polarization) can block module channels as well as forming

a cake layer on the surface

Small colloidal particles Colloidal particles can develop a fouling layer (e.g., ferric

hydroxide from brackish water can become a slimy brown fouling

layer on membrane surface). In recovery of cells from fermentation

broth, some colloids can be present

Macromolecules Gel or cake formation on membrane. Macromolecular fouling

within the structure of porous membranes

Small molecules Some small organic molecules tend to have strong interactions with

some polymeric membranes (e.g., anti-foaming agents, such as

polypropylene glycols used during fermentation, adhere strongly to

certain polymeric membranes)

Proteins Interactions with surface or pores of membranes

Biological Growth of bacteria on the membrane surface and excretion of

extracellular polymers

Chemical reactions lead-

ing to scaling

Concentration increase and pH changes can lead to precipitation of

salts and hydroxides

There are roughly four kinds of membrane foulants that have been distinguished: (i) organic

precipitates (consists of macromolecules, biological substances, etc.); (ii) colloids; (iii) inorganic

precipitates (consists of metal hydroxides, calcium salts, etc.) and (iv) particulates
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is generally more dominant when the size and shape of particles and pores are

identical. Pore blockage in membrane is a rapid process compared to cake layer

formation as less than one layer of particles is enough to attain the full pore

blockage (Ho and Zydney 2000; Wang and Tarabara 2008; Guo et al. 2012).

Whereas, further permeate flux decreases after pores blocking because of cake

layer formation growth on the membrane surface. The cake layer formation creates

an additional membrane resistance to the permeate water flow and the membrane

resistance of the cake layer inclines with the growth of cake layer thickness. As a

result, the permeate water flux continues to decrease with time (Zhu and Elimelech

1997; Duclos-Orsello et al. 2006).

6.3.2.2 Membrane Fouling Control

After thorough analysis of modelling of permeate flux decline, the general ways to

prevent and reduce membrane fouling have been mentioned in this section.

Table 6.3 indicates an overview of various approaches to reduce the influence of

membrane fouling. Typically, it has been categorized into direct and indirect

techniques. Direct method includes the use of turbulence, which are clearly iden-

tical to the preventive measures applied to reduce the intensity of a concentration

boundary layer (Field 2010). Whereas, the selection of proper operating models has

Fig. 6.7 Typical water flux-time curve during filtration processes. A general flux-time curve of

filtration process, as indicated, starts with (I) a rapid initial decline of the permeate flux,

(II) followed by a long period of gradual flux decrease, and (III) terminates with a steady-state flux
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been installed with indirect methodologies. In other words, it circumscribes the

selection of whether one is selecting crossflow filtration or dead-end (direct)

filtration with simultaneous periodic backflush (Vrouwenvelder and Van der

Kooij 2001; Drews 2010; Field 2010).

Thus, from this brief introduction of minimizing and prevention of membrane

fouling one can observe that a several approaches have been designed. While

prevention is the objective, and this can be attained on the laboratory scale with

well-defined feed solution, but the reality is that the primary aim is reduction.

Currently, for new applications, pilot plant examines to establish the degree of

membrane fouling rates and hence, the effectiveness of cleaning methods are

necessary.

6.3.3 Reverse Solute Flux

Typically, in osmotically driven membrane technology, reverse flux of the solute

from the draw solution stream through the membrane to the feed solution stream is

also unavoidable due to differences in concentration. Earlier, Cath et al. reported

that the reverse solute flux of the draw solution shall be considered thoroughly

because it may increase the capital cost of the entire process (Cath et al. 2006;

Hancock and Cath 2009). Current researches have correlated the reverse solute flux

of the draw solute to membrane fouling. As per Lay et al. and Lee et al., suggested

that reverse solute flux of the draw solution can increase the cake enhanced osmotic

pressure effect and aggravate forward osmosis membrane fouling (Lay et al. 2010;

Table 6.3 Typical ways to reduce and prevent membrane fouling (Maartens et al. 2002; Field

2010)

Direct methodologies Indirect methodologies

Turbulence promoters (eg. Modified membrane

spacers)

Pretreatment by filtration

Pulsed or reverse flow Treatment of the membrane surface

Rotating or vibrating membranes Preparation of more hydrophilic

Membranes

Stirred cells with rotating blades close to the

Membrane

Selection of appropriate operating mode

Periodic maintenance cleaning Selection of optimum operating

conditions

(a) Chemical cleaning

(b) Hydraulic cleaning

(c) Mechanical cleaning

Periodic backwash with permeate or gas

Generation of a dynamic membrane layer

An overview of several approaches to minimize the influence of membrane fouling. These have

been divided into direct and indirect methods
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Lee et al. 2010; Qin et al. 2010). Thus, multivalent ion based solutions with lower

diffusion coefficients might be favourable in certain applications in which high

rejection is preferred (Cath et al. 2006). But unfortunately, few multivalent ions (for

e.g. Mg2+and Ca2+) might interfere with the foulants in the feed stream solution

after reverse solute diffusion, which is likely to aggravate membrane fouling (Zou

et al. 2011). Additionally, multivalent ion solutions may also offer more severe

internal concentration polarization effect due to lower solution diffusion coeffi-

cients and larger ion size (Zhao and Zou 2011a, b). The specific reverse solute

diffusion, which is termed as the ratio of the reverse solute diffusion to the water

flux, has been recommended as an evaluation of membrane selectivity(Hancock

and Cath 2009). This factor offers another parameter for the measure of forward

osmosis performance in addition to the water flux (Jw) and salt rejection %. In

general, a higher value indicates a deterioration in membrane selectivity and a

lower efficiency in forward osmosis process. Recently, a study has indicated that

the above-mentioned factor is evaluated by the selectivity of the membrane active

layer, but it is independent of the concentration of draw solute and the structure of

the supportive layer of membrane (Phillip et al. 2010). This observation possesses

significant implications as it offers another criterion for the development of a novel

forward osmosis based membrane: high selectivity of the membrane active layer.

This can reduce the reverse solute flux, and thus enhance forward osmosis perfor-

mance. Moreover, recent research revealed that utilizing a multivalent ion solution

as a novel draw solute may reduce the reverse solute flux (Hancock and Cath 2009)

and therefore, minimize membrane fouling (Lay et al. 2010), but it may lead to

higher internal concentration polarization (Zhao and Zou 2011a) which must be

fully considered. Thus, it can be concluded that, reverse solute flux became one of

the crucial issues in osmotically driven membrane processes and it must be thor-

oughly considered and can be reduced in the novel design/developments of both

forward osmosis membranes and draw solutions.

6.4 Advancements in Forward Osmosis Process

6.4.1 Exploration of Draw Solutes

Forward osmosis emerges out as key technology for overcoming the water scarcity

issue in the future. This continuous process possesses crucial potential in order to

attain energy-efficient separations in many contexts, such as the desalination of

seawater, and brackish water or the purification of contaminated water sources

(Cath et al. 2006). Moreover, the key advantages of forward osmosis (compared

with reverse osmosis) are the high amount of water recovery, much considerably

low energy consumption, and less tendency for membrane fouling (Cath et al.

2006). The forward osmosis process can be operated inexpensively because of the

absence of hydraulic pressure. Draw solutes is one of the most important compo-

nent for forward osmosis but in many cases lower water flux, high reverse solute
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flux, toxic by-products and poor performance have been identified as the main

drawbacks of draw agents (Zhao et al. 2012a, b; Ge et al. 2013; Ray et al. 2016a, b).

Therefore, there is a need of new draw solute that can overcome these drawbacks. In

addition to that, the draw solute must be nontoxic and compatible with forward

osmosis membranes (Zhao et al. 2012a; Ge et al. 2013). However, the following

criteria must be considered while selecting a draw agent which are as follows:

(a) high osmolality, that may increase the water flux (Jw); (b) lower reverse solute

flux (Js), which may reduce the replenishment cost of draw solute; and (c) high

recovery and rejection, which may reduce operating costs and energy consumption

during the process (Achilli et al. 2010; Ge et al. 2012). There are other major

criteria that may include nontoxicity, favourable solubility, and limited membrane

fouling (Phuntsho et al. 2011).

Many efforts have been executed to explore suitable draw solutions. Earlier,

volatile solutions, such as sulfur dioxide, were utilized as draw solute in 1960s and

could be recovered by a heating gas stripping operational condition. Then in 1970s,

a draw solute made of aqueous aluminium sulfate has been prepared as an osmot-

ically active agent and particular salts were added in solutions in order to facilitate

the separation of salts by precipitation method, as well as to neutralize the solution

(Ling and Chung 2011; Chung et al. 2012; Na et al. 2014).

6.4.2 Draw Solute Characteristics Affect Forward Osmosis
Performance

The osmolality across the forward osmosis membrane is the driving force of the

entire process, therefore draw solution should possess high osmolality and high

solubility in water. Typically, the osmolality must be much higher than the osmo-

lality of the feed stream solution in order to produce high permeate water flux across

the forward osmosis membrane. As proposed earlier by Van’t Hoff (van’t Hoff
1887), the osmotic pressure (π) of an ideal dilute solution can be indicated as

mentioned below, Eq. 6.10:

π ¼ n
C

m

� �
R:T ð6:10Þ

where n represents the no. of moles of species formed by the dissociation of solutes

in the solution; c represents the concentration of the solute in terms of g/L; M

represents the molecular weight of the solute in terms of g/mol; R represents the gas

constant (R ¼ 0.0821); T represents the absolute temperature of the solution in

terms of K.

Based on the above-mentioned equation, it can be stated that a draw solution of a

low molecular weight and high water solubility will induce a high osmotic potential

and finally, produce high permeate water flux across the forward osmosis
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membrane. Therefore, the draw solution concentration has the capability to influ-

ence the forward osmosis process performance.

The diffusion coefficient (Ds) of the draw solution may also affect the perfor-

mance of the entire process and can be expressed as Eq. 6.11;

Ds ¼ tτ=K ε ð6:11Þ
where K represents the solute resistance while diffusion within the membrane

underlying support layer, t, τ and ε represent the thickness, tortuosity and porosity

of the membrane underlying support layer respectively. The above-mentioned

equation clearly indicates that a draw solution with a high diffusion coefficient

(Ds) will easily diffuse across the membrane support layer and hence it decreases

the internal concentration polarization effect. Typically, draw solution with less

molecular weight possess higher diffusion coefficient (Ds) and can produce higher

permeate water fluxes through the membrane. Nevertheless, it has been demon-

strated that lower molecular weight draw solutes indicate high reverse solute flux.

The reverse salt diffusion (Js) of a draw solute can be evaluated by using this

equation, Eq. 6.12:

Js ¼ VtCt� VoCo

A:Δt
ð6:12Þ

where Ct (mol/L) and Vt (L) are the concentration of salt and volume of feed at a

time t, C0 (mol/L) and V0 (L) are the concentration of salt and volume of feed at

time 0, Δt ¼ t – t0 (h) represent the time duration of the experiment and Am (m2)

represents the effective membrane area utilized. Additionally, reverse solute flux of

the draw solute decreases the performance of the process by decreasing the net

osmotic potential across the forward osmosis membrane. The accumulation of draw

solution in the feed stream solution may also have negative effect on entire

treatment processes (Phillip et al. 2010).

In general, pressure-based membrane separation process, temperature is one of

the crucial factors affecting the forward osmosis performance; and it has been

observed that draw solution temperature may affect significantly on the efficiency

of the forward osmosis process. It has been revealed that, increasing the tempera-

ture of draw solution can improve the permeate water flux because of reduction in

solution viscosity and hence enhanced mass transfer coefficient through the mem-

brane (Zhao and Zou 2011a, b). In addition to that, increasing the temperature of

draw solution will incline the diffusion coefficient (Ds) in solution and thus

decrease the K value (i.e. solute resistance to diffusion within the support layer of

the membrane) based on the given equation that will finally enhance the permeate

water flux (McCutcheon and Elimelech 2007; Wang et al. 2011). Nevertheless, it

was also observed that increasing the temperature enhanced water flux only to a

certain critical level; after that scaling of membrane can occur, that results in water

flux decline and in overall decreases efficiency of the process(Zhao and Zou 2011a, b,

Kim et al. 2014).

206 S.S. Ray et al.



6.4.3 Classifications of Draw Solute

In the past few years, there has been a fast growth in the preparation of proper draw

solutes for forward osmosis technology; but, very few reviews articles based on

draw solutions have been published till date. Basically, draw solutes can be

categorized into four classes which is as follows: (1) volatile compounds,

(2) organic compounds, (3) inorganic compounds and (3) novel synthetic com-

pounds including magnetic nanoparticles and polymer hydrogel (Ge et al. 2013;

Nguyen et al. 2016). Therefore, an overview of various draw solutions that has been

utilized till date, including some of limitations and applications is summarised in

Table 6.4.

6.4.4 Development of High Performance Forward Osmosis
Membranes

As far as forward osmosis membranes are concerned, there are very limited review

articles on the advancements and development of forward osmosis membrane.

Generally, forward osmosis membranes were casted by conventional technique

i.e. phase inversion and thin-film composites membranes by interfacial polymeri-

zation technologies. Forward osmosis membranes fabricated from the layer-by-

layer technique have been analysed but unfortunately, their reverse salt fluxes found

to be extremely high (Qiu et al. 2011; Cui et al. 2013). In order to enhance water

flux, using of hydrophilic materials as substrates for high performance forward

osmosis membranes is necessary (Chung et al. 2015). Currently, thin film compos-

ite membranes fabricated on nano-fibrous and multi-bore substrates with high

mechanical strength/properties have been performed. Membrane based research

and development must consider membranes with minimum membrane fouling and

lower internal concentration polarization. Till now, forward osmosis membranes

with double skinned layers, have demonstrated promising efficiencies with reduced

membrane fouling and lower internal concentration polarization (Wang et al. 2010;

Duong et al. 2014).

The membrane morphology and structure for an ‘ideal’ forward osmosis mem-

brane is different from a reverse osmosis membrane, one of the crucial factors that

affects the performance is internal dilutive concentration polarisation within the

porous supportive layer of the membrane. This indicates that the forward osmosis

membrane must be thin, with a porous open structure and lower tortuosity. As far as

the forward osmosis membrane performance is concerned, it is noteworthy to

indicate that most forward osmosis membranes are of asymmetric composite type

membrane which means that it consists of a thin rejection layer (thickness of

100–200 nm) combined with underlying supportive layer (thickness of

100–200 μm), that provides mechanical strength and overall support to the forward

osmosis membrane (Yip et al. 2010). So, it is necessary to mention that forward

6 Sustainable Desalination Process and Nanotechnology 207



Table 6.4 Overview of various draw solution utilized in forward osmosis process

Type of

draw

solution Draw solute Recovery process Limitations

Applications and

commercial status

Volatile

compounds

Ammonium

Bicarbonate

(NH4HCO3)

Heating –

decomposition

into NH3 and

CO2

Low solubility;

High reverse salt

flux; High replen-

ishment cost; Ther-

mally not stable

Seawater desalina-

tion; Commercial

(Oasys Water) for

brine

concentration

Sulfur dioxide

(SO2)

Heating, air strip-

ping or

distillation

Volatile; Corrosive;

Unstable

Seawater

desalination

Organic

compounds

Glucose

(C6H12O6)

Direct applica-

tion, Lower RO

pressure

High molecular

size causes high

ICP effect

Emergency drink-

ing solutions

Fructose

(C6H12O6)

Direct applica-

tion, Low pres-

sure RO

High molecular

size causes high

internal concentra-

tion polarization

(ICP) effect

Nutritious drink

production

Sucrose

(C12H22O11)

Nanofiltration Low water flux Wastewater

treatment

Ethanol

(C2H6O)

Pervaporation-

based separation

High reverse salt

diffusion and low

water flux

Recovery of water

from highly

impaired sources

Sodium formate

(HCOONa)

RO process High reverse salt

flux; High replen-

ishment cost

Wastewater

treatment

Sodium acetate

(C2H3NaO2)

RO process Relatively high

replenishment cost

compared to inor-

ganic salts

Wastewater

treatment

Switchable

polarity solvents

(SPS)

Polar to

non-polar phase

shift induced by

CO2

Degradation of FO

membrane

Industrial purifica-

tion of water

Under develop-

ment (Idaho

National

Laboratory)

Inorganic

compounds

Sodium Chlo-

ride (NaCl)

RO process, Dis-

tillation/RO,

Direct

application

High reverse salt

diffusion; Protein

deterioration

Seawater desalina-

tion, Algal biodie-

sel production,

Sucrose concen-

tration, Reuse of

domestic

wastewater

Pre-commercial

(IDE Technolo-

gies, Porifera)

(continued)
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Table 6.4 (continued)

Type of

draw

solution Draw solute Recovery process Limitations

Applications and

commercial status

Diammonium

Phosphate

((NH4)2HPO4)

Direct

application

Low water flux Direct fertigation

Potassium Chlo-

ride(KCl)

Direct

application

High reverse salt

diffusion

Direct fertigation

Ammonium

Chloride

(NH4Cl)

Direct

application

High reverse salt

diffusion

Direct fertigation

Ammonium

Nitrate

(NH4NO3)

Direct

application

High reverse salt

diffusion

Direct fertigation

Potassium Bro-

mide (KBr)

RO process Very high reverse

salt diffusion; High

replenishment cost

Desalination

Sodium Bicar-

bonate

(NaHCO3)

RO process Low water solubil-

ity; Contain scale

precursor ions

Desalination

Potassium

Bicarbonate

(KHCO3)

RO process Contain scale pre-

cursor ions; Not

easily recovered by

RO

Desalination

Magnesium

Chloride

(MgCl2)

Nanofiltration or

direct application

High viscosity;

Low diffusion

coefficient; Mg2+

may affect mem-

brane fouling by

complexing with

some functional

group

Seawater desalina-

tion; Emergency

drinking solutions

Calcium Chlo-

ride (CaCl2)

RO process Contain scale pre-

cursor ions

Tomato juice con-

centration; Emer-

gency drinking

solutions

Ammonium

Sulfate

((NH4)2SO4)

Direct

application

High replenishment

cost

Direct fertigation

Magnesium Sul-

fate (MgSO4)

Nanofiltration High viscosity;

Low water solubil-

ity; Contain scale

precursor ions

Desalination

Calcium Nitrate

(Ca(NO3)2)

Direct

application

High replenishment

cost; Poor water

extraction capacity

Direct fertigation

Ammonium

Phospate

(NH4H2PO4)

Direct

application

Low water flux Direct fertigation

(continued)
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osmosis membrane performance is based on the physical properties of both the thin

rejection skin and the support skin of the membrane.

6.4.4.1 Pure Water Permeability Coefficient (A-value)

A-value which is also known as the pure water permeability coefficient. Typically,

it is a feature of the active layer of membrane which helps to evaluate the permeate

water flux performance at particular osmotic pressure difference across the mem-

brane’s active layer. Future researchers must focus to increase the membrane

Table 6.4 (continued)

Type of

draw

solution Draw solute Recovery process Limitations

Applications and

commercial status

Novel syn-

thetic

material

Polyacrylic acid

MNPs (PAA

MNPs)

Magnetic field

separator, FO

process using RO

brine as draw

solution,

Ultrafiltration

Slightly drop of

water flux due to

agglomeration of

the magnetic

nanoparticles

Protein enrich-

ment, desalination

Nano size dex-

tran coated Fer-

ric oxide MNPs

(Fe3O4)

External magnet Slightly drop of

water flux due to

agglomeration of

the magnetic

nanoparticles

Brackish water

desalination

Polyelectrolytes

of polyacrylic

acid sodium

(PAA-Na)

FO-MD inte-

grated process,

Ultrafiltration

High viscosity Wastewater

treatment

Thermo-sensi-

tive

polyelectrolytes

Hot ultrafiltration Poor water flux Desalination

Polymer

hydrogels

Direct applica-

tion, Heating,

Pressure Stimuli

Energy intensive;

Poor water flux

Seawater

desalination

Polymer-

graphene com-

posite hydrogels

Heating Poor water flux Seawater

desalination

Na3PO4 + Triton

X100

Two stage:

UF-NF system

Lower water flux Desalination

EDTA–2Na +

Trion X100

NF-TS80 Rejection ¼ 95%

(Recovery stage)

Desalination

The driving force for this separation is an osmotic pressure gradient between a solution of high

concentration, often referred to as a “draw” and a solution of lower concentration, referred to as the

“feed”

FO Forward osmosis, RO Reverse osmosis,MDMembrane distillation, ICP Internal concentration

polarization, UF Ultrafiltration, NF Nanofiltration
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A-value in order to enhance the permeate water flux across the membrane during

forward osmosis process. Hence, it can be concluded that higher the A-value of

forward osmosis membrane, better the performance. The A-value can be evaluated

by utilizing the given equation (Ong et al. 2015), Eq. 6.13;

A ¼ Jw= Δπ � ΔPð Þ ð6:13Þ
where, Jw is the permeate water flux across the membrane, Δπ is the osmotic

pressure difference across the membrane whereas ΔP is the hydrostatic pressure

difference.

6.4.4.2 Salt Permeability Coefficient (B-value)

B-value which is also known as the salt permeability coefficient. Generally, it is

another feature of the active layer of membrane that helps to evaluate the reverse

diffusion of a particular draw solution at a given concentration difference of the

solute across the membrane’s active layer. The researchers must focus to decrease

the membrane B-value in order to minimize the quantity of draw solution being lost

into the feed solution stream during forward osmosis process. Hence, it can be

concluded that lower the B-value of forward osmosis membrane, better the perfor-

mance. The B-value can be evaluated by utilizing the given equation (Shaffer et al.

2015), Eq. 6.14;

B ¼ Jw 1� Rð Þ
R

exp �Jw

k

� �
ð6:14Þ

Where, R is the salt rejection, was evaluated from the difference between the bulk

feed (Cf) and permeate (Cp) salt concentrations, and R ¼ 1 � Cp/Cf., whereas k is

the mass transfer coefficient for the crossflow channel of the forward osmosis

membrane module.

6.4.4.3 Structural Parameter (S-value)

S-value which is also known as the structural parameter. Basically, it is another

crucial analysis of the resistance of the support layer of membrane towards the

solute diffusion. Future researchers must focus to minimize the S-value of forward

osmosis membrane because lower the S-value, the easier for solutes to diffuse

inside the membrane’s support layer, and hence higher the permeate water flux

during forward osmosis operation. According to some researchers, for high perfor-

mance forward osmosis membrane, future research and development must aim for

S-values lower than 300 μm. The S-value can be evaluated by utilizing the given

equation (Wei et al. 2011), Eq. 6.15;
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S ¼ D

Jw
: ln

Bþ A:πD

Bþ Jwþ A:πF

� �
ð6:15Þ

where, D is the diffusion coefficient of the draw solute used for Jw, is the osmotic

pressure of bulk draw solute and is the osmotic pressure of feed solution. The lower

S-value is the indication of less internal concentration polarization effect.

6.5 Recent Developments in Membrane Distillation

Application

Membrane distillation is an emerging non-isothermal membrane technology that

utilizes thermal energy in order to maintain a vapor phase of volatile molecules

existing in the feed solution (water molecules) and condensing of the permeated

vapor in the permeate stream. The difference in temperature leads to a vapor

pressure difference across the membrane. Typically, only vapor can pass across

the membrane because of hydrophobic nature of the membrane (El-Bourawi et al.

2006). Furthermore, there are four prominent configurations for the membrane

distillation system, the difference being in the process to impose a vapor pressure

difference across the membrane’s pores to drive the permeate water flux. These four

configurations have been discussed in Table 6.5. In direct contact membrane

distillation, an aqueous solution colder than the feed solution is maintained in direct

contact with the distillate stream of the hydrophobic membrane. Both the hot feed

solutions and cold distillate solutions are circulated to the membrane surfaces by

utilizing pumps. In general, direct contact membrane distillation is the simplest and

widely studied membrane distillation configuration (Wang and Chung 2015).

Whereas, a stationary air-gap is inserted in between the hydrophobic membrane

and a condensing surface in air gap membrane distillation configuration. In this

configuration, the distillate volatile molecules (i.e. water molecules) permeates

both the porous hydrophobic membrane and the stagnant air-gap to finally condense

over a cold surface inside the membrane module (Meindersma et al. 2006). On the

other hand, in the third membrane distillation configuration, i.e. sweeping gas

membrane distillation, a cold inert gas (mostly dried air) sweeps the distillate

stream of the membrane carrying the vapor molecules and condensation occurs

outside of the membrane module. In this configuration, because of heat transfer

from the hot feed stream via the membrane, the sweeping gas temperature in the

distillate side inclines constantly along the membrane module length (Khayet

2011). In order to establish the driving force across the membrane distillation

membrane, vacuum is also utilized in the distillate stream by a vacuum based

pump. The applied vacuum pressure must be lower than the saturation pressure of

the volatile molecules (mostly water molecules) to be separated from the hot feed

solution stream. Basically, in this module, condensation also occurs outside of the

membrane configuration (Ding et al. 2006).
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6.5.1 Operating Parameters of Membrane Distillation
Process

In this part of this article, the influence of feed temperature (Tf), effect of concen-

tration and type of membrane has been thoroughly reviewed and key observations

will be discussed.

6.5.1.1 Feed Temperature Dependence

The feed temperature has a major impact on the permeate water flux which has been

discussed in Table 6.6. As per Antoine’s equation, the vapour pressure inclines

exponentially with increasing temperature. Hence, it can be concluded that the

operating temperature in membrane distillation has an influence on the permeate

water flux (Alklaibi and Lior 2005; Alkhudhiri et al. 2012). It has been observed

that, the permeate water flux increases exponentially when the temperature of the

hot feed stream solution rises (Gunko et al. 2006). According to some authors, it

Table 6.5 Comparative study of four major categories of membrane distillation (Summers et al.

2012; Shirazi et al. 2015)

Membrane

distillation

configurations Conditions Summarization

Direct contact

membrane

distillation

Membrane is in direct contact with process

liquids, i.e. hot feed stream and cold distillate

streams

(a) High permeation water

flux

(b) Low energy efficiency

(c) Simplest membrane

distillation mode

Air-gap mem-

brane distillation

A stationary air-gap in the permeate side is

inserted in between the membrane and a con-

densing plate

(a) Highest energy

efficiency

(b) Low permeation flux

(c) Air-gap is around

2–10 mm

Sweeping gas

membrane

distillation

Stripping cold inert gas or air is utilized as a

carrier for the produced vapor molecules in the

permeate stream

(a) Useful for concentrat-

ing of non-volatile

compounds

(b) Condensation happens

outside the module

Vacuum mem-

brane distillation

Permeate stream is vapor or air under vacuum

conditions

(a) Useful for removal of

volatile compounds

(b) Permeate is condensed

outside the module

The basic four techniques mainly differ by the arrangement of their distillate channel or the

manner in which this channel is operated. The following technologies are as follows: Direct

Contact Membrane Distillation; Air Gap Membrane Distillation; Vacuum Membrane Distillation;

Sweeping Gas Membrane Distillation
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was revealed that increasing the temperature difference, that results in increased

vapour flux. Furthermore, the temperature polarization declines with increasing

temperature of feed stream solution (Phattaranawik and Jiraratananon 2001).

6.5.1.2 Effect of Concentration

There has been a significant decline in the permeate water flux when feed concen-

tration increases due to decrease in vapour pressure and increase in temperature

polarization (Martı́nez 2004). Similarly, for long term operation, there is reduction

in permeate water flux with time. Furthermore, some authors pointed that the

permeate water flux decreases slightly with increase in feed concentration. There

is reduction of about 12% in permeate water flux when the feed (NaCl) concentra-

tion increased from 0 to 2 molar concentration (Qtaishat et al. 2008). This decline in

the permeate water flux is because of the reduction in vapour pressure. Moreover,

key findings for this decrease were reported which are as follows: (a) water activity,

that is a function of temperature, declines when the concentration inclines (b) mass

transfer coefficient of the boundary layer of the membrane at the feed stream side

declines due to increased impact of concentration polarization, and (c) heat transfer

coefficient declines at the boundary layer, due to reduction in the membrane surface

temperature (Banat and Simandl 1994). Hence, vapour pressure of the feed stream

solution decreases, that causes reduction in performance of membrane distillation.

Table 6.6 Effect of temperature on water flux

Membrane

distillation

type

Membrane

type

Solution

type

Feed

temperature

(Tf) (�C)

Permeate

Flux (Kg/m2.

h) References

AGMD PVDF Artificial

seawater

40–70 1–7 Banat and

Simandl

(1998)

DCMD PVDF Pure

water

40–70 3.6–16 Phattaranawik

et al. (2003)

DCMD PTFE NaCl

(2 M)

17–35 3–25 Martinez-Diez

et al. (1999)

SGMD PTFE Pure

water

40–70 5–16.5 Khayet et al.

(2000)

DCMD PVDF Pure

water

40–70 7–33 Srisurichan

et al. (2006)

AGMD PTFE NaCl

(1%)

5–45 1–6 Hsu et al.

(2002)

Typically, the vapour pressure increases with increasing temperature difference that results in

higher permeate flux

AGMD Air Gap Membrane Distillation, DCMD Direct Contact Membrane Distillation, SGMD
Sweeping Gas Membrane Distillation, PVDF Polyvinylidene fluoride, PTFE
Polytetrafluoroethylene
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6.5.1.3 Type of Membranes

Typically, the membrane permeate water flux is proportional to the porosity,

whereas it is inversely proportional to the thickness and tortuosity of the membrane

(Garcıa-Payo et al. 2000; Ray et al. 2016a, b). Some authors revealed that for a

higher pore size membrane, higher permeate water flux can be achieved. Addition-

ally, higher water flux is attained utilizing a membrane without support layer,

compared to the same kind of membrane pore size with support layer (Garcıa-

Payo et al. 2000). Similarly, for a more efficient membrane distillation process,

lower thermal conductivity material must be utilized (without support layer mem-

brane) (Izquierdo-Gil et al. 1999; Alklaibi and Lior 2005).

6.5.2 Advancements in Fabrication of High Performance
Membrane

One of the key issues in membrane distillation process is the lack of efficient high

performance hydrophobic membrane distillation membranes. Few researchers have

pointed certain requirements for a potential membrane distillation membranes

which are as follows: (a) single layered or multi-layered with at least one must be

hydrophobic in nature; (b) pore size varies from nanometers to few micrometers

with a narrow distribution; (c) tortuosity factor must be small; (d) hydrophobic

layer must have high porosity; (e) thickness must be optimum so as to increase the

mass transport and reduce the heat loss across the membrane; (f) thermal conduc-

tivity must be low; (g) surface of the membrane must be smooth in order to be avoid

membrane fouling; (h) thermal stability must be good for long term application;

(i) must be resistant to chemicals like acid (to avoid scaling issue); (j) high

performance of membrane distillation membranes for long term operation.

Recently, nanotechnology has more impact on membrane based desalination

techniques including membrane distillation. Electrospun nanofiber based mem-

branes have been demonstrated in many experiments and have shown interesting

outcomes. Table 6.7 indicates the contribution of electrospinning technology for

fabricating high performance membranes. Due to the control in operational condi-

tions based on fiber size, shape, and morphology, electrospun membranes have

been utilized for wastewater filtration and membrane distillation applications (Ray

et al. 2016a, b; 2017).

Typically, the modification assured the operational stability of the application

and a permeate water of high quality has been attained during long time operation.

According to some reported results, the membrane surface of polyetherimide

hollow fiber membrane was modified with fluorinated silica layer. Interestingly,

there is an increase in hydrophobicity of the membrane due to increase in surface

roughness and decrease in surface energy of the fabricated membrane (Zhang and

Wang 2013). On the other hand, Fang et al. utilized fluoroalkylsilane to make
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hydrophobic property to the surface of porous alumina ceramic hollow fiber

membrane for membrane distillation process. Finally, the modified membrane has

been utilized for vacuum membrane distillation and showed that the performance

was comparable with the commercial polymeric membrane (Fang et al. 2012). A

brief discussion has been summarised of various modifications applied on mem-

brane surface in Table 6.8.

6.6 Sustainability in Desalination Application

Reverse osmosis is the most recent energy efficient sea-water cum brackish-water

desalination process that has been widely utilized. Unfortunately, energy costs are

responsible for up to 75% of the total operating expenditure in reverse osmosis

plants. Typically, energy utilization in reverse osmosis desalination plants varies

from 0.5–3 kWh/m3 for brackish water desalination whereas 3–7 kWh/m3 for

seawater desalination (Akther et al. 2015). In general, brackish water plants often

need more energy due to higher water recovery (Elimelech and Phillip 2011). In

order to dilute seawater before it is fed to reverse osmosis stream, sources such as

impaired water or wastewater effluent can be utilized. In addition to that, the direct

mixing of such feed streams with the seawater would be counterproductive due to

the fact that more toxic pollutants can be introduced into the feed solution stream,

thus further limiting the effective processing of the impaired water and seawater.

Therefore, the utilization of forward osmosis can assure that the seawater is

effectively diluted by the impaired water without mixing directly and this will

have a significant energy minimization in the whole plant as less energy is required

Table 6.7 Electrospun nanofibrous membranes fabricated for membrane distillation

Technique used

Membrane

material

Porosity

(%)

Contact

angle (�)
Flux

(LMH) References

Electrospinning with post

treatment

PVDF 80 150 31.6 Liao et al.

(2013a, b)

Electrospinning followed

by hot pressing

PVDF-HFP 63 125 21 Lalia et al.

(2013)

Electro–spinning followed

by hot pressing

PVDF 71 136 20.6 Liao et al.

(2013a, b)

Electro-spinning followed

by sintering

PTFE 82 136 16 Zhou et al.

(2014)

Electrospinning PVDF 72 143 39 Essalhi and

Khayet (2014)

Electrospinning PVDF-HFP 80 127 13 Lalia et al.

(2014)

Contribution of electrospinning technology for casting high performance membrane distillation

membranes

PVDF Polyvinylidene fluoride, PVDF-HFP Poly(vinylidene fluoride-co-hexafluoropropylene),

PTFE Polytetrafluoroethylene
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to desalinate diluted saline water when compared with sufficient strength seawater.

The technology that can be utilized, depend on the nature of feed stream solution

and draw solution, the kind of forward osmosis membrane used, and the scale of

production (lab scale/pilot scale/full scale) (Hoover et al. 2011; Akther et al. 2015).

Recovery of draw solution is a prominent step and a sustainable utilization of

forward osmosis for desalination of sea water would be easily attained by the

integration of forward osmosis with other desalination methodologies. However,

there are many opportunities of reduced energy requirements while the diluted

saline draw solute of forward osmosis is utilized as feed stream in membrane

distillation, electro-dialysis, reverse osmosis, microbial desalination cell, and ther-

mal based distillation. Capital cost can be saved in the near future if diluted saline

water from forward osmosis with lower osmolality is fed into full-scale reverse

osmosis plants Additionally, water recovery from oily waste-water sources through

forward osmosis–membrane distillation hybrid process offers promising advan-

tages for forward osmosis process capital cost in the near future. Therefore,

development of various draw solutions to enhance higher permeate water flux and

higher recovery rate via novel developed draw solutes and newly developed

membranes would also expand a perspective of new scopes for future forward

osmosis applications. Compared to traditional draw solute i.e. NaCl, the utilization

of hydroacids complexes that can minimize reverse solute flux, concentration

polarization-inhibiting micellar solutions, simple-regenerative switchable polarity

Table 6.8 Attempts for modification of membrane surface

Base of the

polymer Modification Key objectives References

PVDF Immobilization of detonation

nano-diamonds

To avoid wetting Bhadra

et al.

(2014)

PVDF Grafting of polyethylene glycol

followed by deposition of TiO2

particles

Incorporation of anti-oil

fouling properties

Zuo and

Wang

(2013)

PVDF Hydrophobic modified CaCO3

nanoparticles

Improvement in pore size

distribution, surface

roughness and porosity

Hou et al.

(2012)

PVDF Deposition of TiO2 nanoparticles

on microporous membrane

followed by flourosilanization

Improvement in hydro-

phobic character

Razmjou

et al.

(2012)

Polyetherimide Blending followed by surface seg-

regation of surface modifying

macromolecule

Fabrication of hydropho-

bic/hydrophilic membrane

Essalhi

and

Khayet

(2012)

CNT-bucky

paper

membranes

Thin layer coating of PTFE Improvement of hydro-

phobicity and mechanical

strength

Dumée

et al.

(2011)

Modifications based on pore size, surface area to volume ratio and morphology enhances the

performance of membranes

PVDF Polyvinylidene fluoride, CNT Carbon Nano Tube, PTFE Polytetrafluoroethylene
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solvents, polymer hydrogels, polyelectrolytes based draw solutes, and hydrophilic

based nanoparticles has assured the achievement of good permeate water fluxes

(Elimelech and Phillip 2011; Akther et al. 2015). Despite these currently prepared

draw solutes could reduce concentration polarization and reverse salt transport

associated with NaCl, efforts to boost the lower water flux and high regeneration

energy needed by them would be a significant advancement for future forward

osmosis applications. Development in current efforts on the utilization of forward

osmosis membranes in order to remove toxic heavy metals and hazardous mate-

rials/substances from waste-water feed stream such as boron would lead to the

generation of high-quality permeate water and ensure sustainable health. Forward

osmosis membrane alternative costs could be decreased by the minimization of

membrane structural parameter by preparing membrane supportive layer that would

safeguard the active layer and minimize internal concentration polarization. The

current efforts on the doping of nanomaterials/nanoparticles and hydrophilic

sulfonated based polymers into thin film composite, and preparation of double

skinned membranes hold promising substitute for the applications in forward

osmosis (Yip et al. 2010; Blandin et al. 2015).

Forward osmosis process has been less utilized for applications in industry,

however for many years the potential scientists have performed experiments that

lead to potential industrial applications. In this present article, most of the potential

applications such as: hydration bags, seawater and brackish water desalinisation

and power generation. Additionally, it offers much more applications in various

areas such as: food processing industry, pharmaceutical industry or wastewater

treatment plant and water purification plant (Jacob). Furthermore, the most famous

examples in these research areas are as follows: concentrating fruit juices in food

processing industries; osmotic pumps in pharmaceutical industries; and in waste-

water treatment and water purification: (a) concentrating dilute industrial based

waste-water; (b) concentrating landfill leachate; (c) direct potable reuse and recla-

mation for advanced life support systems; (d) concentrating digested sludge liquids;

(e) forward osmosis for source water treatment/purification – hydration bags.

There are various applications which have been put into practice (utilized in

industrial field), though on a relatively smaller scale or with few real references,

however it has been seen that currently a significant rise in the number of research

papers published in both form peer and non-peer reviewed articles. Interestingly,

few of these have mentioned with the clear objective of indicating the diversified

range of applications that forward osmosis processes may be implemented. How-

ever, some of them can be in the form of single step processes, where only forward

osmosis has been implemented with no recovery of the draw solute and others have

incorporated a recovery methodology of the draw solute. Table 6.9 indicates the

commercial status of forward osmosis based on primary current applications.

As far as the applications are concerned, pharmaceutical based industries,

energy and waste-water treatment plants could be interested by recent advance-

ments and applications by forward osmosis.
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6.7 Research Challenges

The ideology of forward osmosis was well known for 100 years, but it was during

the twentieth century that forward osmosis process emerges out as the water recycle

and reclamation method. Nevertheless, due to lack of proper membranes and

membrane modules, the research and development on forward osmosis was virtu-

ally dormant. However, during the meantime, reverse osmosis became the remark-

able technology for desalination since the invention of commercially available

membranes. Since 2000s, forward osmosis was drawing much attention as a future

desalination technology. Recently, the crucial challenges of forward osmosis pro-

cess are as follows (1) lack of effective membranes (2) lack of cost effective draw

agents which can be easily recycled and regenerated (3) limited analysis of mem-

brane fouling (Cath et al. 2006; Achilli et al. 2010; Chung et al. 2012; Alsvik and

Hägg 2013). Despite of all the efforts put in during the last 20 years, forward

osmosis is far from commercial progress because of the following reasons:

6.7.1 Loss of Driving Force Due to Concentration
Polarization

To reduce the filtration resistance, the skin layer should be thin as much as possible.

Forward osmosis as well as reverse osmosis are not exceptional cases. The skin

Table 6.9 Recent commercial status along with primary applications

Company name Application description Current status

Forward Water Technologies Desalination technology Under

Development

Hydration Technology Innova-

tions (HTI)

Emergency drinks production unit Commercial

Flow back water concentration technique Commercial

IDE Technologies Osmotic Power processing Pre-

commercial

Oasys Water Brine concentration technique Commercial

Statkraf Osmotic Power processing Pre-

commercial

Modern Water Forward Osmosis or Reverse Osmosis

processes

Commercial

Forward osmosis – cooling tower make-

up technique

Commercial

Thermal desalination feed water

softening

Under

Development

Trevi Systems Desalination technology Commercial

A wide range of implementations that either have been put into practice is categorized based on

their current status and applications
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layers of the membrane are cast on porous support layers that includes an interme-

diate layer and supportive fabric (Song and Elimelech 1995).

In reverse osmosis, feed stream solution comes in contact with the skin layer

and the permeate fills in porous support layer of the membrane, hence concentra

tion polarization takes place only in feed stream side of the membrane. In

forward osmosis, concentration polarization takes place in both side of the

membrane. If skin layer is facing towards the feed solution, concentration

polarization takes place in feed side just like in reverse osmosis. In addition to

that, concentration polarization also takes place in the porous support layer of the

membrane, where fresh water contacts with saline water. Since the turbulence in

the bulk stream does not effectively relieve the concentration polarization in the

porous support layer of the membrane, concentration polarization leads to a loss

of driving force. On the other hand, if the support layer faces towards feed

solution, foulants will fill up the pores of support layer of the membrane leading

to a serious filtration resistance. In meantime, the permeate emerging on the skin

layer dilutes the draw solute and minimize the driving force (Sablani et al. 2001;

Mulder 2012).

The loss of driving force resulted by concentration polarization is detrimental

with respect to the energy potency in forward osmosis process. For example, even

if 0.5 M NaCl solution is utilized as draw solute, that is equal to 25 bar of

transmembrane pressure, permeate water flux is generally not higher than

10 LMH. This starkly contrasts with reverse osmosis, where water flux is basically

20–40 LMH at 10 bar. If permeability is compared, <0.4 LMH/bar and 2–4

LMH/bar for forward osmosis and reverse osmosis, respectively (Elimelech

2007; Akther et al. 2015).

6.7.2 Reverse Salt Flux/Diffusion

In the continuous process, salts permeate through the membrane by means of

diffusion. A large amount of salt diffuses back to the feed stream because of

extremely high salt concentration in the draw solution stream. As feed solution,

must remain in contact with the membrane for a longer period of time in forward

osmosis than in reverse osmosis because of lower flux, the quantity of reverse salt

diffusion towards feed stream becomes even more. As a consequence, a large

amount of salts will be lost from the draw solution stream. Recently, forward

osmosis membranes have been utilized and applied to Membrane Bioreactor,

where typically the draw solution is circulated during the continuous process,

however, a large quantity of salts diffuse to biological system and hence damage

the biological stability in membrane bioreactor system.
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6.7.3 Expensive Production/Capital Cost

There are few impressions that forward osmosis is less vulnerable with membrane

fouling, but the low membrane fouling is just a natural result of the lower permeate

flux. As reported earlier, particulates in feed solution stream tend not to be retained

on membrane surface at low flux due to the critical permeate flux caused by the

reverse transport mechanism. However, even if some particles are retained, they

tend not to be compacted too much at low permeate flux and would not lead to

filtration resistances. Thus, as a result, membranes appear not to foul easily.

A drawback of the less operating permeate flux is a larger membrane surface

areas essential to treat the same feed stream. As for example, if the permeate flux is

5 LMH in forward osmosis process, 100% more membrane surface areas are

essential comparing to the reverse osmosis operating at 10 LMH permeate flux. It

is noteworthy that, if the operating capital expenditure for draw solutes recovery

will be considered, then the overall capital costs will incline even further.

6.8 Conclusion

In this paper, an elaborate review was conducted to analyse the recent trend and

advancements in forward osmosis and membrane distillation desalination pro-

cesses. Typically, publications from last 10 years were thoroughly reviewed in

order to understand the current research and developments to render the forward

osmosis and membrane distillation process more economical and practical. In this

review paper, forward osmosis membrane modules, draw solutions, membrane

distillation configuration, membrane characteristics, membrane fouling and oper-

ating parameters were examined. The draw solutes for application of forward

osmosis process would be those that can be easily regenerated and

re-concentrated utilizing minimal energy. Advancements in draw solutes for for-

ward osmosis process that can possess high osmolality and lower toxicity. Thus, an

extensive research can be performed in order to minimize the reverse solute flux

and maximize the water flux in forward osmosis process. Recently, the develop-

ment of new membranes became the most important measure to develop the field of

forward osmosis and membrane distillation technology. In general, the membranes

must possess high water permeability, high rejection, minimal internal concentra-

tion polarization, high chemical stability, and high mechanical and tensile strength

are desired for the optimization of forward osmosis desalination efficiency. Com-

pared to other desalination techniques, the crucial advantages of membrane distil-

lation process include 100% theoretical rejection of ions, macromolecules and

colloids; lower operating temperature and pressure; requirement of lower mechan-

ical strength of the membrane; lesser footprint compared to conventional processes.

However, besides these advantages, membrane distillation still faces difficulties for

commercialization. Therefore, in case of membrane distillation process, membrane

6 Sustainable Desalination Process and Nanotechnology 221



technology must be emphasised for higher rejection and water flux. Finally, the

recent developments suggest that forward osmosis and membrane distillation were

found to be sustainable process for practical application in large scale in near future.
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Chapter 7

Fungal-Based Nanotechnology for Heavy
Metal Removal

Manisha Shakya, Eldon R. Rene, Yarlagadda V. Nancharaiah,

and Piet N.L. Lens

Abstract Heavy metal pollution, cleaning and recycling are a major environ-

mental issue. In particular, there is a need for efficient techniques to treat

wastewaters. Conventional technologies to treat industrial waters are limited by

stringent health policies and emerging contaminants. Fungi-based nanotechnol-

ogy is rapidly emerging as an effective technology to treat industrial wastewaters.

This chapter reviews the recent developments in fungal biosorption, biological

synthesis of nanoparticles using fungi, and the application of fungi-based

nanosorbents for heavy metals removal.

Keywords Heavy metals • Fungus • Remediation • Nanotechnology •

Bioaugmentation
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7.1 Introduction

Heavy metal pollution is considered to be one of the persisting global environmen-

tal problems. Despite the rapid advancements made in the last few decades in the

field of engineering sciences and medical health, heavy metals present in water

sources and ambient air continually engender adverse effects on public health and

the environment. Apart from its natural occurrence, heavy metals are widely used in

different applications in industry, agriculture and defence operations. Industrial

effluents are contaminated with heavy metals such as zinc (Zn), lead (Pb), copper

(Cu), cadmium (Cd) and nickel (Ni), which are toxic in nature (Liu et al. 2008; Fu

and Wang 2011). Metals are non-biodegradable and can be bio-accumulated in the

food chain, leading to carcinogenic effects on plants, animals and humans. In order

to limit the exposure of toxic heavy metals to the environment and public health,

standards and guidelines have been established by different organizations such as

the World Health Organization (WHO), European Union (EU), and the United

States Environmental Protection Agency (USEPA).

Apart from the grievous environmental issues, heavy metals are non-renewable

natural resources. Natural reserves of heavy metals are being depleted due to their

excessive use in industrial applications. Therefore, the removal of heavy metals

should be focused along with their recovery. Different physicochemical technolo-

gies for the removal of heavy metals from wastewater, both at the lab and industrial

scale, have been proposed: membrane filtration, chemical precipitation,

ion-exchange, reverse osmosis, coagulation–flocculation, flotation and electro-

chemical methods (Fu and Wang 2011). Even though extensive research has been

done on the use of these technologies, there are still some drawbacks related to their

applications. Especially in the case of low concentrations of heavy metals, most of

the conventional technologies are expensive and inefficient (Say et al. 2001).

Because of global concern towards environmental protection and the develop-

ment of greener remediation techniques for pollution remediation, biosorption has

become one of the promising techniques for removing metal and metalloid ions

from wastewater (Gautam et al. 2014). The use of nanoparticles for the removal of

heavy metals from wastewater has also received great interest. Different studies

have demonstrated successful application of nanotechnology for the remediation of

metal pollution. Research has been conducted on different nanomaterials such as

carbon nanotubes, dendrimers, nanostructured catalytic membranes, nanosorbents,

nanocatalysts, bioactive nanoparticles, biomimetic membranes and molecularly

imprinted polymers (MIP) for removing pollutants. Use of biologically synthesised

nanoparticles for the remediation of heavy metals from wastewater is an emerging
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research topic in the field of nanotechnology for wastewater management (Dasgupta

et al. 2015, 2017; Jain et al. 2016; Ranjan et al. 2014). Considering this line of

progressive research, this chapter deals with the application of nanosorbents with a

special focus on fungi based nanotechnology for the removal of heavy metals from

wastewater.

7.2 Heavy Metals

Heavy metals are elements that have a specific density over 5 g cm�3 and relative

atomic mass above 40 (Järup 2003; Srivastava and Majumder 2008). A large

number of elements from the periodic table fall into this category. The most

important heavy metals relevant in the environmental context are: arsenic (As),

cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), mercury (Hg),

nickel (Ni), tin (Sn), vanadium (V) and zinc (Zn). Existing in different mineral

forms such as sulphides, oxides, carbonates and silicates naturally, most of these

metals are insoluble in water (Dean et al. 1972; Nriagu and Pacyna 1988), whereas

some salt forms are soluble in water.

7.2.1 Sources of Heavy Metals Pollution

Metals are widely distributed in rocks and soil naturally and as trace elements, they

also form an essential part of various processes (Srivastava and Majumder 2008).

Natural weathering of the rocks and soil break them down and releases the metals

into water bodies. Rapid industrialization and technical advancement have

influenced the geochemical metal cycles by exploiting the heavy metals for various

industrial uses and dumping them in various toxic forms as a waste matrix into the

natural environment causing heavy metal pollution. Major sources of heavy metal

pollution are industries, including the mining activities, tanneries, fertilizer produc-

tion, batteries, electroplating, oil refineries and paper industries (Järup 2003). Some

of the anthropogenic sources of heavy metals are summarized in Table 7.1.

7.2.2 Health and Environmental Risk of Heavy Metal
Pollution

Heavy metals, in trace quantities, have nutritional value and are essential for the

functioning of living cells. However, recent development in mining technologies to

utilize and disperse mineral resources has altered their natural geochemical cycles.
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The environment and human health are in risk because of exposure to heavy metals

and their toxicity. Heavy metals discharged into the environment can be transported

through a long distance by air or water movement. They have adverse impacts on

human health, as well as on terrestrial and aquatic ecosystems, due to their toxic and

bioaccumulation characteristics (Wang and Chen 2006).

Heavy metals can alter the physical and chemical properties of air and water

transporting them. Once they enter the food chain, they can be biomagnified in the

higher trophic levels causing significant changes in the biochemical cycle of living

cells (Srivastava and Majumder 2008). Very well known diseases such as “Itai Itai”

due to Cd pollution in Japan (Gautam et al. 2014), “Arsenecosis” due to As

pollution in Bangladesh, and “Minimata” due to Hg pollution in Japan are caused

due to poisoning by heavy metals (Volesky 1990). Thus, heavy metal pollution has

become a serious problem to the present society. Regarding the potential hazards to

human health, Cr, Ni, Zn, Cu and Cd are considered as “priority metals”. Cr in the

hexavalent oxidation state is highly toxic to humans and animals. Similarly, Cu, Ni

and Zn are moderately toxic and all these heavy metals have shown toxic effects on

plants (Álvarez-Ayuso et al. 2003).

Table 7.2 summarizes the toxic effects of some heavy metals to human health.

Because of their acute toxicity, bioaccumulation and non-biodegradable nature,

wastewater loaded with heavy metals should be treated well before their environ-

mental discharge. Different regulatory bodies have set the maximum limits for the

discharge of toxic heavy metals and their permissible concentration in drinking

water in order to avoid risks due to the presence of such elements in the environ-

ment (Table 7.3).

Table 7.1 Significant anthropogenic sources and causes of major heavy metal pollution in the

environment

Source Heavy metals released Causes of pollution

Batteries Cd, Hg, Ni, Pb, Sb, Zn Waste battery fluid

Electronics As, Au, Cd, Cr, Hg, Mn,

Ni, Pb

Wastewater from manufacturing and

recycling process

Electroplating Cu, Cr, Ni, Zn Effluents from plating processes

Fertilizers Cd, Cr, Mo, Pb, U, V, Zn Run-off

Landfill Cd, Cr, Cu, Hg, Ni, Pb, Zn Leachate

Manures sewage

sludge

Zn, Cu, Ni, Pb, Cd, Cr,

As, Hg

Land spreading

Metalliferous

mining

Cd, Cu, Ni, Cr, Co, Zn, As Acid mine drainage, slag heaps

Paints and

pigments

Pb, Cr, As, Ti, Ba, Zn Effluent from manufacture, old paint

deterioration

Paper and pulp Zn, Cu, Cd, Pb, Ni, Fe,

Mn

Effluents

Modified from Gautam et al. (2014)
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7.2.3 Technologies for the Removal of Heavy Metals from
Wastewater

In order to follow the regulatory limits of discharge, wastewater generated by

industries need to be treated prior to their discharge. The growing necessity for

efficient and environmentally sustainable technologies for the removal of heavy

metals from wastewater has resulted in marked improvements in conventional

treatment processes. Various technologies such as ion exchange, adsorption, oxi-

dation, membrane filtration, ozonation, coagulation/flocculation, photochemical

methods and adsorption combined with magnetic separation have been used for

the treatment of wastewater contaminated with heavy metals (Mahdavian and

Mirrahimi 2010; Gautam et al. 2014). The advantages and disadvantages of differ-

ent technologies to treat polluted effluents with heavy metals are summarized in

Table 7.4.

Table 7.2 Toxic effects of heavy metals to humans

Heavy

metals Toxicity References

Cu Irritation of mucus membrane, capillary damage, renal

degradation, problem in nervous system

Acheampong et al.

(2010)

Cd Diarrhoea, nausea, muscular cramps, renal degradation,

chronic pulmonary problems, skeletal deformity

Acheampong et al.

(2010) and Boparai

et al. (2011)

Cr Respiratory cancer, asthma, skin ulcerations, irritation and

ulceration of the nasal septum

Kirman et al. (2012)

and Das et al. (2015)

Pb Behavioural disturbances, kidney damage, anaemia and

toxicity to the reproductive system

Xu et al. (2012a, b) and

Moghadasali et al.

(2013)

Ni Skin allergies, lung fibrosis, cardiovascular

And kidney diseases and cancer of the respiratory track

Gupta et al. (2010) and

Kanold et al. (2016)

Zn Nausea, vomiting, stomach cramps, anaemia, skin irrita-

tion, muscle stiffness, restlessness

González and Pliego-

Cuervo (2014)

Hg Mental and motor dysfunction, kidney damage, fatigue,

memory loss, headache, muscle and joint pain, tingling

around the mouth, muscle and joint pain

Falih (1997) and

Silbernagel et al. (2011)

Table 7.3 Permissible limits for inland discharge of different heavy metals according to the

United States Environmental Protection Agency (USEPA), and their permissible concentration in

drinking water according to the European Union (EU) and World Health Organization (WHO)

Heavy metal USEPA, 2002 (mg L�1) EU, 1998 (mg L�1) WHO, 2011 (mg L�1)

Cr 2.0 0.05 0.05

Cd 1.0 0.005 0.003

Cu 5.0 2.0 2.0

Ni 5.0 0.02 0.07

Zn 5.0 – –
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7.3 Bioremediation of Heavy Metals with Fungal
Biosorption

Bioremediation is one of the emerging technologies for the clean-up of pollutants

like heavy metals using microorganisms. In terms of economy and efficiency,

bioremediation processes for treating toxic pollutants are better compared to chem-

ical and physical methods and the potential of fungal communities for bioremedi-

ation processes has recently been realized. Biosorption is one of these

bioremediation methods which is discussed in the following sections.

7.3.1 Biosorption

Biosorption refers to “many modes of non-active metal uptake by (microbial)

biomass which may be dead” (Volesky 1990). It is the property of certain

bio-molecules to bind certain ions or molecules from aqueous medium (Gautam

et al. 2014). The adsorption of metals occurs on the biological material due to the

Table 7.4 Advantages and disadvantages of different treatment technologies for the removal of

heavy metals from wastewater

Technology Advantages Disadvantages References

Adsorption Flexibility in design and

operation, high capacity,

fast kinetics

Performance depends on the

type of adsorbent, physical

or chemical activation

might be required

Loukidou et al.

(2003), Crini

(2005)

Biological

treatment

Feasibility of removing cer-

tain metals

Not yet commercialized Ahmaruzzaman

(2011)

Chemical

precipitation

Cheap, simple and

non-metal selective

Production of sludge with

high cost for sludge disposal

Aderhold et al.

(1996), Rashed

et al. (2013)

Coagulation-

flocculation

Efficient, simple to operate,

characteristics of good

sludge settling and

dewatering

Large amount of chemical is

used and sludge generation

Aderhold et al.

(1996)

Flotation Small particles can be

removed, and low retention

time

Expensive Rubio et al.

(2002)

Ion

exchange

Metal selective and high

regeneration capacity

Initial capital cost and

maintenance costs are high

Rengaraj et al.

(2003)

Membrane

filtration

Can be operated in small

space, less chemical con-

sumption and waste

generation

Expensive due to high

investment, maintenance

and operational costs,

membrane fouling

Qin et al. (2002),

Madaeni and

Mansourpanah

(2003)

Photo

chemical

Does not produce sludge Production of by-products Ahmaruzzaman

(2011)
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biological activities in living cells or metal binding functional groups of cells in

both living and dead cells (Bakircioglu et al. 2010).

Previous studies have shown the dependency of metal cation removal on the

interactions of these metals with specific functional groups present in microbial

cells (Loukidou et al. 2003). Generally, the binding mechanisms that cause

biosorption include ion exchange, micro-precipitation and electrostatic interactions

(Acheampong et al. 2010). In the mechanism of ion exchange, the metal ion within

the wastewater is replaced by another similarly charged ion (Han et al. 2006).

According to Tan and Cheng (2003), ion exchange is the dominant mechanism for

the removal of Cu(II), Ni(II), Zn(II), Pb(II), and Cr(III) by Penicillium
chrysogenum. The same mechanism is also involved in removing Cd(II) by Sac-
charomyces cerevisiae (Romero-González et al. 2001). The biosorption of Pb

(II) and Cd(II) onto Amanita rubescens biomass was also mainly due to the

ion-exchange between the hydrogen atoms of amine (�NH), hydroxyl (�OH)

and carboxyl (�COOH) groups of the biomass and the metal ions (Sarı and

Tuzen 2009). Chelation is another metal binding mechanism in biosorption where

the metal ions bind with an organic molecule to form a ring structure (Acheampong

et al. 2010). Different functional groups present in cells that take part in chelation

are carboxyl, sulphydryl, amino, sulphate, phosphate, thioether and carbonyl

groups. According to Xu et al. (2012a, b), a chelation process is responsible for

the biosorption of Pb(II) onto iron oxide nanoparticles immobilized Phanerochaete
chrysosporium cells. The same mechanism took place in the removal of Cr

(VI) using surface modified P. chrysosporium (Chen et al. 2011).

The use of microorganisms as adsorbents is efficient, cost-effective and safe for

the removal of heavy metals from soils, sediments and water. Biosorption using

microorganisms exploits bacteria, yeast, algae and fungi to remove heavy metals

from water. Microbes can be produced in large quantities and the process can be

operated under different conditions of inoculum size, pH, temperature, ionic

strength and metal concentrations. In addition to this, low cost, free availability,

good regeneration capacity and less use of chemicals also make microbial biomass

very attractive for biosorption processes (Bakircioglu et al. 2010).

7.3.2 Use of Fungi as Biosorbents for Heavy Metal Removal

Although different microorganisms like bacteria, algae and fungi have been used in

biosorption processes, fungi are conceived as a prospective candidate because they

are easy to handle, produce large quantities of biomass and are easy to wash and

separate from aqueous solutions due to their hyphae network (Gopal et al. 2002,

Çeribasi and Yetis 2004, Xu et al. 2012a, b, Akar et al. 2013). Particularly, fungi are

attractive because of the following reasons: (i) they can be easily manipulated

genetically and morphologically, (ii) ability to tolerate heavy metals, and (iii)

withstand low pH conditions (Sarı and Tuzen 2009). The surface of the fungal

biomass is coated with polymeric substances (carbohydrates, proteins, lipid and
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nucleic acids) which consist of negatively charged functional groups such as

carboxylate and phosphate. Due to these negatively charged functional groups,

they are able to adsorb cations (Say et al. 2001). Different fungal strains have shown

the potential to be used as biosorbents (Dias et al. 2002; Yan and Viraraghavan

2003; Bayramoglu and Arıca 2008; Sarı and Tuzen 2009). Table 7.5 overviews the

adsorption capacity of different fungal strains with their optimum pH conditions to

adsorb heavy metals from aqueous solutions.

7.3.3 Role of Fungal Morphology on the Biosorption Process

Fungal cultures normally grow by hyphae extension. Fungi can grow in the form of

mycelia to form pellets (Grimm et al. 2005), which depends on factors such as level

and type of inoculum, shear forces, medium composition, pH, cell physiology,

agitation rate, temperature and dissolved oxygen concentrations (Grimm et al.

2005; Fu and Wang 2011; Espinosa-Ortiz et al. 2016). Fungal morphology plays

a very important role in the biosorption of heavy metals. Both filamentous and

pelleted forms of fungi have been applied in the biosorption process. The main

advantages of using fungal pellets in biosorption processes can be summarized as

follows (Xu et al. 2012a, b): (i) high mechanical strength compared to dispersed

mycelium, (ii) porous characteristics and increased biosorption capacity, and (iii)

stronger resistance towards environmental perturbations.

7.4 Nanotechnology in Wastewater Treatment

Nanotechnology has been recognized as one of the frontier technologies that offer a

good potential for treating wastewater in a more effective and efficient manner than

commercial methods that have shown to pose technical and operational challenges.

Some of the conventional wastewater treatment techniques require additional costs

when dealing with heavy metals. Recently, in the field of bio-nanotechnology, the

application of various novel nanomaterials produced in-situ for the treatment of

industrial wastewater contaminated with different pollutants, including toxic heavy

metal ions, has been tested. Due to their inimitable action toward contaminants, the

field of nanotechnology and bio-nanotechnology is under active research and

development for application in the treatment of wastewater. Nanoparticles based

technologies applied in water treatment consists of different methods such as

reverse osmosis, nanofiltration and ultrafiltration membranes. Indeed, various

nanoparticles, filters with nanofibers, and carbon nanotubes are among the emerg-

ing products used in nanotechnology.
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Table 7.5 Application of different fungal strains for the biosorption of heavy metals

Fungal strain Treatment

Heavy

metal

Adsorption

capacity

(mg g�1) pH References

Amanita
rubescents

Dried biomass Pb (II) 38.4 5.0 Sarı and

Tuzen (2009)Cd (II) 27.3

Aspergillus
terreus

Immobilized in polyure-

thane foam

Fe (II) 164.5 4.5 Dias et al.

(2002)Cr

(VI)

96.5

Ni (II) 19.6

Aspergillus
flavus

Dried biomass Pb (II) 12.44 – Dwivedi et al.

(2013)Ni (II) 0.53

Cr (II) 0.05

Dried biomass Zn (II) 287.8 5.0 Aftab et al.

(2013)

Claviceps
paspali

Dead biomass Zn (II) 1.0 – Luef et al.

(1991)

Lentinus
edodes

Washed with saline solution

and heat inactivated live

pellets

Hg (II) 336.3 6.0 Falih (1997)

Cd (II) 78.6

Zn (II) 33.7

Mucor rouxii Biomass treated with NaOH Pb (II) 35.69 5.0 Yan and

Viraraghavan

(2003)
Ni (II) 11.09

Cd (II) 8.46

Zn (II) 7.75

Dead biomass Pb (II) 25.22 5.0 Yan and

Viraraghavan

(2003)
Ni (II) 6.34

Cd (II) 8.36

Zn (II) 16.62

Phanerochaete
chrysosporium

Inactivated and boiled pel-

lets in alkaline for 45 min

Cd (II) 15.2 4.5 Li et al.

(2004)

Inactivated and boiled pel-

lets in alkaline for 45 min

Pb (II) 12.34 4.5 Li et al.

(2004)

Surface modified pellets Cr

(VI)

279.9 3.0 Chen et al.

(2011)

Resting cells Ni (II) 77.96 4.0 Çeribasi and

Yetis (2004)Pb (II) 73.56

Dried biomass Pb (II) 45.25 6.0 Say et al.

(2001)Cd (II) 13.24

Cu (II) 10.72

Washed cells Pb (II) 90.0 5.0 Gopal et al.

(2002)Cd (II) 17.0

Cu (II) 43.0

Iron oxide nanoparticles

immobilized pellets

Pb (II) 176.33 5.0 Xu et al.

(2012a, b)

Live biomass Pb (II) 1.33 – Dey et al.

(1995)
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7.4.1 Nanoparticles

Nanoparticles are particles which have a size of 0.1 to 100 nm which can be formed

by two techniques: a top-down and a bottom-up approach (Fig. 7.1). In the first

approach, nanoparticles are formed by breaking bulk particles into nanosize range

particles. In the second approach, atoms are build into molecules to synthesize

nanosized particles. They have specific properties which are different from the bulk

materials. As a result, nanoparticles have a wide array of applications in the field of

electronics, medical and health sciences, information technology, biotechnology

and the environmental sector (Buzea et al. 2007). Nanoparticles are also used in the

wastewater treatment sector.

7.4.2 Biological Synthesis of Nanoparticles

Different physical and chemical technologies are available for the synthesis of

nanoparticles (Murray et al. 1993; Qu and Peng 2002) as shown in the Fig. 7.2.

However, the use of flammable and harmful materials, the requirement of high

temperature, pressure and oxygen free environment make these technologies

unmanageable and non-feasible. To rise above these issues, the biosynthesis of

nanomaterial has been recognized as the best alternative to synthesize nanoparticles

due to its dependency on active and efficient microorganisms for the transformation

of metal(loid) ions to nanoparticles (Suresh 2014). Several organisms have been

tested for this approach, such as Fusarium oxysporum, Rhodobacter sphaeroides,
Schizosaccharomyces pombe, Rhodopseudomonas palustris and Escherichia coli.

As a self defence mechanism under metal stress situations, microorganisms can

produce nanoparticles when they are exposed to the metal ions. When they seize the

target ions from their environment, the enzymes generated by the cell activities act

as reducing agents and convert the metal ions into elemental metal nanoparticles.

This biogenic method is carried out at room temperature. Other advantages of these

methods are avoiding the excess use of chemicals, production of the required size of

quantum dots and eventually the particles can be solubilised in water. Nanoparticles

produced biologically are reported to be biocompatible and environmentally

benign. However, they have some disadvantages like more downstream processing

is required for the purification and shortage of control on the surface and morphol-

ogy traits (Narayanan and Sakthivel 2010; Syed and Ahmad 2013). Despite these

qualities, the rate of synthesis of biologically synthesised nanoparticles is slow and

is not mono-disperse.

To overcome these problems, special effort has to be considered in the sector of

microbial cultivation methods and the extraction techniques. Another solution may

be the photo-biological methods of nanoparticles production which require further

optimization studies (Narayanan and Sakthivel 2010). A summary of the
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Fig. 7.2 Technologies for the synthesis of nanoparticles

Fig. 7.1 Different

approaches for the

formation of nanoparticles
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advantages and disadvantages of biological and physico-chemical methods for

nanoparticles synthesis is shown in Table 7.6.

7.4.2.1 Intracellular Biosynthesis of Nanoparticles

Biosynthesis of nanoparticles can be classified into intracellular and extracellular

synthesis according to the location in which the nanoparticles are formed. In the

intracellular method, the metal ions are transported into the microbial cell with the

help of specialized transporters and converted into nanoparticles in the presence of

enzymes (Zhang et al. 2011). There have been several studies on the intracellular

synthesis of nanoparticles. For instance, 1–1.5 nm CdS nanoparticles were pro-

duced using the yeast Schizosaccharomyces pombe (Kowshik et al. 2002). Intra-

cellularly produced nanoparticles are more homogeneous in size and shape

distribution; however, harvesting of product and recovery of nanoparticles are

more troublesome and expensive (Basavaraja et al. 2008). To overcome this

difficulty, extracellular biosynthesis of nanoparticles is recommended for high

throughput applications.

Table 7.6 Advantages and disadvantages of biological and physico-chemical methods for nano-

particle synthesis

Method Advantages Disadvantages

Physical

methods

Highly controlled particle shape, size

and narrow size distribution can be

achieved.

Uses extreme conditions and high end

facilities. High cost is associated with

the production.

Chemical

methods

Highly controlled particle shape, size

and distribution is possible. Cost effec-

tive compared to top down synthesis of

physical methods.

Uses extremely hazardous reducing

agents, stabilizing agents, and high

temperatures. These chemicals are

highly toxic to living organisms.

Bacteria Inexpensive source of reducing and sta-

bilizing agents (enzymes and biomole-

cules) in nanoparticle synthesis.

Production is performed at ambient

conditions. Scale up is possible.

Particles with a wide range of size dis-

tribution are produced. Difficulties in

controlling the desired shape, size and

distribution of particles. Problems with

repeatability. Organic material is

always associated with the

nanoparticles.

Fungi Inexpensive source of reducing and sta-

bilizing agents in nanoparticle biosyn-

thesis. Synthesis occurs at ambient

conditions. Smaller sized particles can

be obtained using fungi compared to

bacteria. Scale up is possible.

Particles are formed with a wide range

of particle size distribution. There are

problems with reproducibility and less

control on particle size, shape and dis-

tribution. Particles are associated with

biogenic organic material.
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7.4.2.2 Extracellular Biosynthesis of Nanoparticles

This method is used to entrap metal ions on the surface of cells, and these metal ions

are reduced with the help of certain enzymes (Zhang et al. 2011). The production of

CdTe quantum dots with 2–3.6 nm size extracellularly was demonstrated by Syed

and Ahmad (2013). Suresh (2014) also demonstrated the extracellular synthesis of

CdSe nanoparticles using Fusarium oxysporum. The thermophilic fungusHumicola
sp. was also reported to produce extracellular protein capped silver nanoparticles

(Syed et al. 2013). In addition, different types of nanoparticles have been produced

extracellularly using different kinds of microorganisms such as Aspergillus flavus
(Vigneshwaran et al. 2007), Rhodopseudomonas (Bai et al. 2009), Lactobacillus
(Prasad and Jha 2010), Helminthosporum solani (Suresh 2014), Aspergillus
clavatus, Aspergillus sydowii, Fusarium semitectum, Penicillium brevicompactum
and Shewanella oneidensis (Kitching et al. 2015).

7.4.3 Fungi as Biological Factory for Nanoparticle
Production

Even though different microorganisms have been explored for the synthesis of

nanoparticles including bacteria, yeast and algae, fungi are very promising for

nanoparticles production because they are easy to culture and handle at the labora-

tory and industrial scale (Table 7.6). While biosynthesis of nanoparticles by

bacteria is well researched, fungal biosynthesis of nanoparticles need much more

investigation. For instance, only around 30 species of fungi have been reported to

produce gold nanoparticles (Kitching et al. 2015). Generally, fungi can tolerate

higher metal concentrations compared to bacteria and secrete plentiful extracellular

redox proteins to synthesize nanoparticles after reducing the soluble metal ions to

their insoluble form. Especially at low pH, the biosorption capacity of fungi is

higher than that of bacteria. A big biological diversity of fungi may provide novel

metal reductases for metal detoxification and bioreduction. The biomass of fungi is

also available as a by-product of different industries which reduces the costs for

procuring the biomass. A thorough understanding of the biosynthetic mechanism of

nanoparticles in fungi is needed to reduce the time of biosynthesis and to scale up

their production process. Fungi show promises for industrial biosynthesis of

nanoparticles because of large biomass production, easy handling, large protein

secretion compared to bacteria. Additionally, their morphology can be manipulated

according to the need. They also produce stable protein coated nanoparticles

(Vigneshwaran et al. 2007; Syed et al. 2013).
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7.5 Role of Nanosorbents for Heavy Metals Removal

Deployment of new water treatment technologies using nanomaterials has received

much attention due to their unique physico-chemical and biological properties, such

as exceptionally small size, high surface area to volume ratio, surface modifiability,

magnetic properties, short intraparticle diffusion distance, changeable surface

chemistry and biocompatibility (Amin et al. 2014). Generally, adsorption is con-

sidered as a polishing step to remove the organic and inorganic contaminants

present in wastewater. The application of conventional adsorbents is limited due

to limited active sites, surface area, lack of selectivity and adsorption kinetics.

Moreover, conventional adsorbents require more raw materials for processing and

preparation and they are considered to be energy intensive if the adsorbents are to

be modified for their surface properties. Waste reduction can be achieved by

employing green nanotechnology in order to synthesize nanomaterials and use

them as adsorbents. However, more quantitative research should be done in order

to validate these claims. Comparative studies on energy and material consumption

are still missing in the literature to replace traditional materials with nanoparticles.

Moreover, research gaps still exist on the topics such as the safety of using

nanosorbents and their potential impact on the environment. If these issues are

properly addressed, nanosorbents could be a cheap, green and sustainable alterna-

tive for the developing countries to treat industrial wastewater instead of using the

expensive conventional methods.

7.6 Mechanism of Heavy Metals Removal Using
Nanosorbents

Nanosorbents are nanoscale particles made from organic or inorganic materials that

have a high affinity to absorb substances. They have different physical, chemical

and biological properties than their normal size equivalents. For example,

nanomaterials of metals and metal oxides deliver a higher ratio of surface area to

particle size that leads to the exhibition of different optical, magnetic and electrical

properties (El Saliby et al. 2008). They contain unsaturated surface atoms which

help them to form strong chemical bonds with the metal ions (Lemos et al. 2008).

Recent studies have shown that nanoparticles have the capacity to penetrate in

contaminated zones where the micro particles cannot penetrate (Gao et al. 2011;

Sheet et al. 2014). They can also be functionalized with various chemical groups to

increase their affinity towards a particular compound, i.e. enhanced selective

properties (Bhattacharya et al. 2013). These physio-chemical characteristics

prove the effectiveness of nanomaterials in water purification systems. Application

of these particles as adsorbent lead to the availability of a high number of atoms or

molecules on the surface of contaminants, thereby enhancing the adsorption capac-

ities of sorbent materials. Different studies have demonstrated the successful
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application of nanosorbents such as carbon nanotubes, nanoscale metal oxides and

nanofibers for the removal of heavy metals from wastewater (Sheet et al. 2014).

Typical examples include the removal of Cu (Bystrzejewski et al. 2009; Yalcinkaya

et al. 2011; Al-Rashdi et al. 2012), Pb (Yalcinkaya et al. 2011), Cd (Afkhami et al.

2011), Cr (Hu et al. 2005a, b) and Ni (Karimi and Kafi 2015) from wastewater.

Among the different nanosorbents reported in the literature, the carbon based

nanosorbents have revieved great attention in the field of heavy metal remediation.

Lee et al. (2012) synthesised carbon-based nanosorbents by ethylene decomposi-

tion on stainless steel mesh without the use of external catalyst for the treatment of

water containing Ni(II) ions. A number of batch sorption tests were performed by

the authors to determine the effects of initial pH, initial metal concentration and

contact time on Ni(II) removal by the nanosorbents. The kinetic data fitted well to a

pseudo second-order model indicating that the process was of the chemisorption

type whereas the equilibrium data fitted to the Freundlich isotherm. Further analysis

by the Boyd kinetic model revealed that the main mechanism of adsorption was

controlled by boundary layer diffusion. This study suggests that the prepared

carbon based nanosorbent is a promising sorbent for the sequestration of Ni

(II) from aqueous solutions.

A similar study was done by Di et al. (2006), wherein Cr adsorption on Ceria

nanoparticles supported on aligned carbon nanotubes (CeO2/ACNTs) was studied.

This novel adsorbent was prepared by the chemical reaction of CeCl3 with NaOH

in a carbon nanotube solution followed by heat treatment. The maximum adsorption

capacity of this adsorbent at pH 7.0 was found to be 30.2 mg g�1 at an equilibrium

Cr(VI) concentration of 35.3 mg l�1. Lu and Chiu (2006) and Li et al. (2005) also

studied the adsorption capacity of Zn and Pb onto purified carbon nanotubes. The

maximum adsorption capacity was found to be 43.7 mg g�1 for Zn and 30.3 mg g�1

for Pb, respectively. According to the authors, the adsorption data for Zn best fitted

the Langmuir isotherm, whereas Pb adsorption was found to be pH dependent and it

followed the Freundlich isotherm model.

Magnetic nanoparticles are also very promising in removing heavy metal ions

from water. Liu et al. (2008) developed humic acid (HA) coated Fe3O4

nanoparticles for the removal of toxic Hg(II), Pb(II), Cd(II), and Cu(II) from

water. The sorption of the heavy metals to Fe3O4/HA reached equilibrium in less

than 15 min, following the Langmuir adsorption model with maximum adsorption

capacities ranging between 46.3 and 97.7 mg g�1. This nanosorbent was able to

remove 99% of Hg(II) and Pb(II) and greater than 95% of Cu(II) and Cd(II) in

natural and tap water, respectively, at the optimized pH conditions. According to

Xu et al. (2012a, b), the contaminants can be adsorbed in magnetic nanoparticles by

various mechanisms such as surface sites binding, magnetic selective adsorption,

electrostatic interaction and modified ligands combination. The performance of

some of the chemically prepared nanoadsorbents and their maximum adsorption

capacities for heavy metal removal are listed in Table 7.7.
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7.7 Fungal Based Nanosorbents for Heavy Metals Removal

For industrial applications, the immobilization of the fungal biomass is essential to

maintain microbial cell activity in a toxic environment, the re-use of biomass, the

use of conventional reaction systems, and for the lack of biomass-liquid separation

requirements. In order to achieve the right size, mechanical strength, rigidity and

porosity of the biosorbent, immobilization of fungal biomass on different materials

is performed. Different techniques have been practised for the immobilization of

fungal biomass. For example reticulated foams, activated carbon and glass raschig

rings have been used as inert supports for the immobilization of biomass. For

instance polyurethane foams were used as supporting materials to immobilise the

biomass of Aspergillus terreus in order to treat heavy metals such as iron, chro-

mium and nickel (Dias et al. 2002). Polymeric matrices such as calcium alginate,

polyacrylamide, polysulfone, polyethylenimine and polyhydroxoethylmethacrylate

(polyHEMA) are also used for the immobilization of biomass. Immobilization of

fungal biomass with nanoparticles is a new research line in the field of biosorption

of heavy metals. Iron oxide nanomaterials have also shown good potential for the

immobilization of biomass due to their chemical inertness and favourable biocom-

patibility (Xu et al. 2012a, b).

In general, nanomaterials should be stable to avoid aggregation and achieve low

deposition rates. Even though nanoparticles are effective for the adsorption of

heavy metals, they have some drawbacks such as low mechanical strength and

clogging of filters in continuous flow through reactors. It is reported that

nanomaterials tend to aggregate in solution. More commonly, the electrostatic

and van der Waals interactions affect the stability of colloidal nanoparticles.

Different solutions such as the use of stabilizer, electrostatic surfactant, and steric

polymers have been widely proposed. For instance, TiO2 and SiO2 nanoparticles

immobilised on different supporting materials have been used to treat Cd(II) where

the supporting material helped to increase the permeability of the solution and the

aggregates did not pass through the filter paper (Kalfa et al. 2009). Fungal biomass

has attracted attention in frontier research areas in order to obtain effective nano

bio-composites for the removal of metal pollutants because they offer advantages

such as good physical, chemical and biological stability (Perullini et al. 2010).

Bakircioglu et al. (2010) tested filamentous fungal biomass loaded TiO2

nanoparticles and used this mixture as a sorbent for Pb removal. The adsorbent

had a longer life span compared to the pure nanoparticles of TiO2 and the modified

biosorbent was found to be cheap because the fungal biomass used was obtained as

a by-product from an oil plant. Along with this, the preconcentration level for this

nanobiocomposite was found to be much higher (868 times) compared to other

biocomposites of fungi such as Aspergillus fumigatus immobilized Diaion

HP-2MG (Soylak et al. 2006), Penicillium italicum loaded on Sepabeads SP

(Tuzen and Soylak 2008), Pseudomonas aeruginosa immobilized onto multi-

walled carbon (Tuzen et al. 2008) and Aspergillus niger loaded on silica gel (Baytak
et al. 2007).
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In another study, iron oxide nanoparticles immobilized onto Phanerochaete
chrysosporium were successfully tested for the adsorption of Pb and a maximum

adsorption capacity of 176.3 mg g�1 was reported (Xu et al. 2012a, b). This value is

much higher compared to the adsorption capacity of a magnetic adsorbent formed

by encapsulating magnetic functionalized nanoparticles by calcium-alginate beads

(100 mg g�1) (Bée et al. 2011) or dried biomass of P. chrysosporium (69.8 mg g�1)

(Say et al. 2001). The fungal nanocomposite was reused 5 times with greater than

90% recovery of the metals in each cycle. According to the authors, immobilization

of nanoparticles with fungal biomass provided stability to the biosorbent and also

increased the adsorption capacity.

Espinosa-Ortiz et al. (2016) studied the Zn(II) removal efficiency of novel core

shell based selenium nanoparticles immobilized fungal pellets of Phanerochaete
chrysosporium from aqueous solution. The fungus produced elemental selenium

nanoparticles intracellularly by reducing selenite from wastewater streams. The

influence of different operational parameters such as pH, initial metal ion concen-

tration, ionic strength and biosorbent dosage on the removal of Zn(II) was inves-

tigated and a Zn(II) removal efficiency of ~80% was reported. In another study by

Peng et al. (2010), Saccharomyces cerevisiae immobilized chitosan coated mag-

netic nanoparticles (Fig. 7.3) was tested for the adsorption of Cu(II) from aqueous

solution. The authors observed that this nano-biocomposite was quite efficient for

the adsorption of Cu(II) and a removal efficiency of >90% was noticed within

20 min, with a maximum adsorption capacity of 134 mg g�1.

As shown in several recent literature reports, these types of novel

nanobiosorbents will have broad applications in the field of heavy metal removal

from wastewater. Such immobilization techniques help to pre-condition the fungal

biosorbent for application in large-scale systems. Although several immobilization

media and techniques have been tested, little information is available on combining

nanotechnology with existing biotechniques for long term practical applications. In

addition, screening studies should be performed to select the best microorganism

that can be used for immobilization and possibility to scale up these nano-

biocomposites has to be assessed.

7.8 Desorption of Metal Ions and the Removal
of Nanoparticles After Water Treatment

Studies conducted by Lu and Chiu (2006) and Li et al. (2005) has revealed that

metal ions adsorbed onto nanotubes can be easily removed by altering the pH

values of the solution using both HCl and HNO3. However, the applications of

nanosorbents in wastewater treatment will invariably lead to the release of

nanoparticles into the environment. Tracking their mobility, bioavailability and

persistence in the environment is essential to assess their potential risk in the

environment. Traditional methods for the removal of particulate matter during
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wastewater treatment like flocculation, sedimentation and filtration will not be

effective to remove these nanoparticles due to their small size (Bhattacharya

et al. 2013). Hence, detailed research is essential to quantify how much

nanomaterials are released to the environment and sustainable eco-technologies

should be developed to treat those released nanoparticles in treated water.

7.9 Technical Challenges

Presently, novel nanosorbents are being synthesized and tested for the remediation

of industrial wastewater contaminated with heavy metals. In order to scale up this

technology and meet the requirements of the real world, there are several challenges

that need to be addressed. For example, the novel nanosorbent must be economi-

cally beneficial and socially acceptable and at the same time it should be able to

comply with the different water quality regulations to guarantee safety of human

health and environment. Scaling up the process is challenging because the com-

mercial production of nanoparticles still requires more intense research. Specifi-

cally, in the case of bionanoparticles, more studies on the stability, longevity of

operation, regeneration and reuse of the bionanoparticles as well as a cost-benefit

analysis should be performed in order to scale up its production. The treatment

procedure must ensure that no nanosorbent is released to the environment.

7.10 Conclusions

The use of nanotechnology based biosorbents have shown promising results to treat

wastewater polluted with heavy metals. Although most of the nanobiosorbents have

so far been investigated only at the laboratory scale, for full scale applications, the

selection of a proper fungal biomass, economic and energy consumption aspects of

immobilization, pilot-scale testing to confirm the reuse and regeneration capacity of

Fig. 7.3 Transmission electron micrograph of (a) Pure Fe3O4 magnetic nanoparticles, (b)
Chitosan-coated magnetic nanoparticle and (c) S. cerevisiae immobilized on the surface of

Chitosan-coated magnetic nanoparticles (Source: Peng et al. 2010)
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the nanosorbent should be investigated. From a green technology view point, the

toxicity and environmental fate of nanosorbents are areas of concern during mate-

rial selection and design for wastewater treatment. In continuous systems, param-

eters such as inoculum size, pH, temperature, ionic strength and heavy metal

concentrations play a major role in determining the kinetics of the heavy metal

removal.
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Álvarez-Ayuso E, Garcıa-Sánchez A, Querol X (2003) Purification of metal electroplating waste

waters using zeolites. Water Res 37:4855–4862. https://doi.org/10.1016/j.watres.2003.08.009

Amin M, Alazba A, Manzoor U (2014) A review of removal of pollutants from water/wastewater

using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24. https://doi.org/10.1155/

2014/825910

Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS (2011)

Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for

removal of copper ions: synthesis and adsorption studies. J Hazard Mater 185:1177–1186.

https://doi.org/10.1016/j.jhazmat.2010.10.029

Bai H, Zhang Z, Guo Y, Yang G (2009) Biosynthesis of cadmium sulfide nanoparticles by

photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B: Biointerfaces

70:142–146. https://doi.org/10.1016/j.colsurfb.2008.12.025

Bakircioglu Y, Bakircioglu D, Akman S (2010) Biosorption of lead by filamentous fungal

biomass-loaded TiO2 nanoparticles. J Hazard Mater 178:1015–1020. https://doi.org/10.1016/

j.jhazmat.2010.02.040

Basavaraja S, Balaji S, Lagashetty A, Rajasab A, Venkataraman A (2008) Extracellular biosyn-

thesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull

43:1164–1170. https://doi.org/10.1016/j.materresbull.2007.06.020

Bayramoglu G, Arıca MY (2008) Removal of heavy mercury (II), cadmium (II) and zinc (II) metal

ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143:133–140. https://doi.

org/10.1016/j.cej.2008.01.002

248 M. Shakya et al.

https://doi.org/10.1002/jctb.2358
https://doi.org/10.1016/S0960-8524(96)00072-7
https://doi.org/10.1007/s00604-011-0660-x
https://doi.org/10.1016/j.watres.2013.04.051
https://doi.org/10.1016/j.cis.2011.04.005
https://doi.org/10.1016/j.cis.2011.04.005
https://doi.org/10.1016/j.cej.2012.11.001
https://doi.org/10.1016/j.cej.2011.12.082
https://doi.org/10.1016/j.cej.2011.12.082
https://doi.org/10.1016/j.watres.2003.08.009
https://doi.org/10.1155/2014/825910
https://doi.org/10.1155/2014/825910
https://doi.org/10.1016/j.jhazmat.2010.10.029
https://doi.org/10.1016/j.colsurfb.2008.12.025
https://doi.org/10.1016/j.jhazmat.2010.02.040
https://doi.org/10.1016/j.jhazmat.2010.02.040
https://doi.org/10.1016/j.materresbull.2007.06.020
https://doi.org/10.1016/j.cej.2008.01.002
https://doi.org/10.1016/j.cej.2008.01.002
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Chapter 8

Nanomaterials Reactivity and Applications
for Wastewater Cleanup

Tamer Elbana and Mohamed Yousry

Abstract Treated wastewater is a reliable water resource for agriculture in arid and

semiarid areas. Nanomaterials are promising to clean wastewater. Here we review

nanomaterials characteristics, reactivity and potentiality to reduce or remove pol-

lutants from wastewater. Characteristics include high reactivity of surface areas,

quantum confinement effects, surface charge density and stability of nanophases.

We discuss applications to remove from inorganic and organic contaminants, with

focus on reaction kinetics, sorption and degradation. Remediation efficiency is also

controlled by wastewater properties such as pH, ionic strength and water

temperature.

The use of nanomaterials often allow a removal of more than 80% of most

pollutants. Nonetheless, this review explains that the cost, the aggregate formation

and the difficulty of recovering most applied nanomaterials are challenging. Alter-

natively, natural nanomaterials such as nano clay represent an inexpensive and

environmental friendly substance for wastewater remediation.

Keywords Nanomaterials • Wastewater • Inorganic pollutant • Organic pollutant
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Abbreviations

CNT Carbon nanotubes

DOS density of states

FAO Food and Agriculture Organization

ISO International Organization for Standardization

nZVI nanoscale zero valent iron

POPs persistent organic pollutants

PZC point of zero charge

U.S EPA U.S. Environmental Protection Agency

WHO World Health Organization

8.1 Introduction

The reactivity of a material is strongly depending upon its particle size and surface

area as well as its chemical properties. Thus, cutting down the bulk material into the

nanoscale dimension increases surface area and enlarges the surface energy of this

material. Since, the nanomaterials science has been attracted the attention of several

researchers globally, the Nobel prize 2016 in chemistry was awarded for develop-

ing the world’ smallest machine that executed nanomaterials. One of the most

widely known definition of nanomaterial was introduced by the international

organization for standardization (ISO 2015), as “a material with any external

dimension in the nanoscale, length range approximately from 1 nm to 100 nm, or

having internal structure or surface structure in the nanoscale”. Comparison of the

varied regulatory and advisory definitions of the term “nanomaterial” elucidates

that the size is the only common aspect. While, numerous definitions disregard key

factors such as the agglomerates and aggregates, distributional thresholds, novel

properties, and solubility (Boverhof et al. 2015).

The nanomaterials are employed effectively in numerous modern daily life

applications such as nanoelectronics (sensors and detectors), nanomedicine,

nanobots and catalysis as well as various biological and environmental applications

(Cao and Wang 2011). Murty et al. (2013) listed the applications of nanomaterials

in environmental remediation as; (i) Nano-membranes and nano-clays for water

filtration, (ii) Nanoparticle-activated wastewater reuse, and (iii) Nanosensors to

monitor water quality. Additionally, the same authors considered the application of

nanomaterials in green energy technologies. Practically, the nanomaterials are

promising to remediate environmental pollution however rational manipulation

and safety policies are essentially required for recycling the manufactured

nanomaterials (Buzea et al. 2007). For instance, the nanoscale zero valent iron is

commonly applied for remediating groundwater and contaminated soil (Kržišnik
et al. 2014; O’Carroll et al. 2013; Ranjan et al. 2014; Dasgupta et al. 2015, 2017;

Jain et al. 2016). Whereas, evaluation of the ecological impacts of the nanoscale

zero valent iron applications is environmentally necessary due to its cytotoxicity and

the adverse effects on the indigenous microbial communities (Araújo et al. 2016;

Lefevre et al. 2016; Siripireddy et al. 2016, 2017; Maddinedi et al. 2015, 2017;
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Tammina et al. 2017; Shukla et al. 2017; Walia et al. 2017; Ranjan and Ramalingam

2016; Dasgupta and Ramalingam 2016; Ranjan et al. 2016; Dasgupta et al. 2016a, b).

8.2 Wastewater: Contamination Source

Wastewater term is usually implemented to designate the generated water after its

original use for domestic, commercial establishments, or industrial purposes. Based

on the global water withdrawals data between 1950 and 2010, Fl€orke et al. (2013)
estimated the global domestic water use as 390 km3 which was increased by 3.7

folds during the past 60 years. Whereas, the water use in the industry sector

increased by 2.9% to get 955 km3 by 2010. The food and agriculture organization

of the United Nations estimated the total global withdrawal by agricultural sector in

2010 as 2769 km3 that represents 69% of the total withdrawal waters (FAO 2017).

As the water sacristy is one of the most environmental problem that the world faces,

so investigation a new alternatives for saving water resources is critically required.

One of the promising alternatives is the reuse of treated wastewater in agriculture.

Thus, treated wastewater is a vital resource of water especially in arid and semiarid

regions to cope water scarcity issue in such area. Moreover, it is essential to apply a

recommended treatment level before discharging it to the surrounding ecosystem

for sustaining the performance of our environment.

In fact, wastewater pollutants are varied in corresponding to the source of water

(e.g. agricultural, industrial, or domestic wastewaters). Generally, chemical, bio-

logical, and radiological pollutants can be found separately or collectively in

wastewater. Chemical pollutants can be classified into organic (such as,

chlorophenols) and inorganic contaminants (such as, trace elements). The

U.S. environmental protection agency and the world health organization published

a comprehensive guidelines for wastewater reuse that specified the maximum

concentration and the allowable levels of organic and inorganic chemicals in the

treated wastewater to be reused for agriculture, aquaculture and other ruse purposes

(U.S. Environmental Protection Agency 2012; World Health Organization 2006a,

b, c, d). Various domestic wastewaters contain microorganisms, organic materials,

nutrients, and radioactive substances (Henze 2002). However, agricultural drainage

water contains numerous fertilizers and pesticides residues at different concentra-

tions. Specifically, quality of drainage water is identified by its salt contents and

major ions (e.g. Na, Ca, Mg, CO3, SO4, Cl), toxic trace elements (e.g. Cd, Pd, Hg,

As), pesticides (e.g. atrazine, carbofuran), as well as the concentrations of plant

nutrients such as nitrate and phosphates (Tanji and Kielen 2002). On the other hand,

industrial wastewater is usually classified as a point source pollution that is mainly

contains a certain chemical composition. Industrial organic wastes can often be

biologically or thermally degraded into carbon dioxide (CO2) and water whereas,

inorganic industrial wastes are not degradable and should be discharged after a

treatment that can reduce the negative consequences on the environment and

human health (Artiola 2006). However, the diffuse of pollutants from mining
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industries represents highly polluted wastewater which is hardly can be treated

(UN-Water 2015).

Untreated wastewater is a source of contamination for air, fresh water, and soil

(Chamtouri et al. 2008; Elbana et al. 2013; Karaouzas 2016). Environmental chemists

are continuously seeking for affordable highly reactive materials that can safely

remove pollutants from wastewater. Due to the high surface area of the nanomaterials,

these materials exhibit reactive chemical characteristics and high potential for cleaning

up the polluted aquatic solutions. The applications of nanomaterials for water and

wastewater treatment principally depend upon adsorption, oxidation (Photocatalysis),

and disinfection as well as separation processes (Qu et al. 2013). In this chapter

nanomaterials reactivity and potentiality to reduce or eliminate pollutants concentra-

tions from wastewater will be discussed. Specifically, the main objectives of this text

are; (1) introducing the importance of nanomaterials and their reactivity and (2) empha-

sizing the application of nanomaterials in cleaning up the wastewater from inorganic

and organic contaminates.

8.3 Nanomaterials Reactivity

The reactivity of any material is highly related to its surface area. In order to explain

the nanomaterials reactivity, there is a need to illustrate how those materials get their

huge surface area. Theoretically, if there is one cube of iron with 0.2 μm edge

dimension, then this cube is segmented into eight identical cubes. Repetitively, if

each new cube is divided up equally into another eight cubes and keep dividing of

each new cub to smaller identical cubes for another time. Finally, there will be

512 similar size cubes in total (1, 8, 64, 512 cubes for the consecutive segmentation,

see Fig. 8.1). As the edge length of the original cub is 200 nm with total surface area

of 0.24 μm2. However, with sequential splitting up of a cube for only three times, the

total area of the 512 cubes will be 1.92 μm2 as the edge length of each smallest cube is

25 nm. Accordingly, the surface area increased by eight folds when the cube is

divided three times. This increasing in the surface area can increase the edge energies

and chemical reactivity of the materials in nano-size compared with the case of the

normal size. Additionally, this hypothetical example illustrates how nanoparticles

have an extremely large surface area per unit mass or volume “specific surface area”.

The reactivity of nanomaterials can be ascribed to the surface and the quantum

confinement effects (Roduner 2006). Precisely, atoms on the surface of

nanoparticles have less bonding and coordination number compared with that

ones in the materials bulk. Additionally, the nanomaterials are characterized by a

set of discrete energy levels due to the change of the density of states. Moreover, the

reactivity of nanomaterials depends on their surface curvature, as high reactivity is

expected to associate with the high curvature (small radius). Agrawal (2013)

emphasized the influence of surface curvature on nanomaterial reactivity and

explained that the chemical potential of atoms on convex surface is higher than

its chemical potential on concave surface. In accord, Solveyra and Szleifer (2016)
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justified the substantial role of nanomaterial’s confinement and curvature in the

sorption process of the molecules from the contiguous environment.

Additional key characteristic of nanomaterials reactivity is the surface charge

density. The surface charge is known to be dependent on the surrounding media

properties such as pH, ion concentration, and temperature. The electrical charge

density (E) can be quantified by Nernst equation:

E ¼ Eo þ R T

F Ci
ln ai ð8:1Þ

Where Eo is the standard electrode potential; Ci is the ion concentration; ai is the
activity of ions; R is the gas constant; T is the temperature, F is the Faraday’s constant.
The material surface is positively charged when the surrounding media has a pH less

than the material’s point of zero charge and vice versa, it is negatively charged when

the surrounding media has a pH value higher than the material’s point of zero charge.
Clavier et al. 2015 showed that in addition to the acid–base properties, the surface

charge variations of nano-metal oxide were controlled by the site distribution and

dielectric constant. Furthermore, Barisik et al. (2014) elucidated the increase of the

surface charge density magnitude for silica nanoparticles with the increases of pH and

salt concentration. Additionally, Barisik et al. (2014) clarified that the magnitude of

the surface charge is particle size dependent till a critical diameter of the silica

nanoparticles. In other words, the surface charge density magnitude was decreased

by increasing particle size till the critical diameter. The authors attributed this variation

to the change in the surface concentration of H+ ions.

Stability of nanophases is an additional important characteristic that is affecting

nanomaterials reactivity. Wang et al. (2011) demonstrated that the particle size and

surface charge are key factors for the stability of nanoparticle suspension. He and

Alexandridis (2015) found that the stability of nanoparticle dispersions in ionic

liquids affected by temperature, pressure, and water concentration as well as the

Fig. 8.1 Schematic of the segmentation of one cube into identical eight ones for three times

consecutively
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intermolecular interactions and the physicochemical properties of ionic liquids and

nanoparticles. Brant et al. (2005) examined the effect of ionic stress on the stability

of fullerene nanoparticles (nC60) suspension, they found that 0.001M of NaCl was

able to destabilize the nC60 by forming large aggregates whereas; nC60 was stable

overtime with the absence of the electrolytes. Unquestionable, preserving the

stability of nanophases and avoiding the growing of grains is critical to maintain

the nanostructure and the reactivity of the nanomaterials (Andrievski 2014). In

another example of instability, the bara nanomaterial of iron oxide is oxidized in

low pH and consequently forming large aggregates. This instability can be resolved

by functionalized or coating nanoparticles in acidic media (Gautam and

Chattopadhyaya 2016).

Quantifying the nanomaterial reactions is a prerequisite for contaminant removal

from wastewater. Exploring the reaction kinetic provides a comprehensive knowl-

edge on nanomaterials behavior in the environment. Removal of contaminants from

different solutions can be described by quantifying the rate of sorption, degradation,

decay, or transformation of the toxic chemical. The rate of reaction (r) can be

calculated by:

r ¼ � dCcont

dt
ð8:2Þ

Where, dCcont is the change of contaminant concentration during a certain period of

time (dt). Based on Eq. 8.2, a high absolute value of “r” is an indication of the

speedy removal of contaminant from the solution. This simple calculation provides

a measuring way to select the appropriated materials or treatment design for

removing contaminant. Besides, calculating the half-life of a reaction is an impor-

tant measure for wastewater treatment design that is calculating the required time to

reduce contaminant concentration to the half of its initial one. Further calculations

will be needed to simulate the reaction and identifying its order. First, second, and n
th order kinetic models can be considered for understanding the chemical behavior

of the applied material for cleaning up wastewater. For instance, Fu et al. (2014)

elucidated the kinetic of the oxidation reaction between nanosized zinc sulfide and

oxygen. Authors explained that reaction constant and reaction order were increased

by decreasing the particle size of zinc sulfide (from 71.9 to 17.9 nm) and increasing

temperature (from 473 K to 553 K).

Kinetic studies can progressively help in improving and understanding the

nanomaterials catalysts size, shape and surface-composition (Mondloch et al.

2012). Moreover, adsorption kinetic information can provide a manner to evaluate

nanoparticles reactivates and its potentialities to remove pollutants. For example,

Ahmadi et al. (2015) studied the removal kinetic of Congo red dye by nickel-zinc

sulfide nanoparticle and palladium nanoparticles which were loaded on activated

carbon. This study indicated the fast removing of the dye with contact time (less

than 26 min) and the pseudo second order kinetic successfully simulated experi-

mental data whereas, the pseudo first order kinetic model failed to simulate the

experimental data.
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8.4 Nanomaterials for Wastewater Cleanup

One of the main applications of nanomaterials is the water treatment through

filtration by nano-membranes and nano-clay, nanoparticle-activated wastewater

reuse systems, and nanosensors to monitor water quality (Murty et al. 2013).

Several efforts have been accomplished to remediate wastewater and to improve

quality of water for achieving particular water quality criteria. Cleanup can be done

by reducing contaminant concentration to a certain permissible limit, transforming

a toxic chemical to a nonhazardous compound, and/or to eliminate pathogens and

biological threats. Hasemzadeh et al. (2014) emphasized the wide range of

nanomaterials uses for wastewater treatment; they considered treating of inorganic

polluted water, dye wastewater, papermaking wastewater, pesticide wastewater and

oily wastewater through adsorption of chemicals and removal/inactivation of path-

ogens. For example, the advanced oxidation process using nanoscale zero valent

iron as a catalyst is appropriate for the toxic or non-biodegradable materials; that

can be ascribed to the positive impact of nanoscale zero valent iron on the

production of hydroxyl radicals (Rosales et al. 2017). Additionally, graphene-

based nanocomposites exhibit a robust potential as reactive adsorbents for remov-

ing inorganic and organic contaminates from wastewaters whereas, further exper-

imental examination is needed on large scale applications (Gautam and

Chattopadhyaya 2016).

Recently, Zhang et al. (2016) reviewed the most commonly categories of

nanomaterials that are used in water treatment specially carbon based

nanomaterials (graphene based nanomaterials, carbon nanotubes), metal and

metal oxides nanoparticles (nanoscale zero valent iron, nanosized iron oxides,

nanosized titanium oxides), noble metal nanoparticles (such as gold (Au) and silver

(Ag)); authors concluded that these materials are promising candidate for the

development of next generation water treatment technology (Zhang et al. 2016).

For example, carbon nanotubes have a great performance for removing contami-

nants. That’s owing to its high adsorption capacity, its high speed reaction kinetic,

and carbon nanotubes were considered as efficient catalysts as well as its high

ability to remove bacteria and viruses (Liu et al. 2013; Ren et al. 2011). Actually, it

was expected to have the current rapidly development for large scale applications of

nanotechnology for wastewater treatment (Hasemzadeh et al. 2014).

Despite of nanomaterials benefits for wastewater treatment, challenges and

obstacles should be taken into consideration. Zhang et al. (2016) pointed out that;

(i) the instability of nanomaterials due to aggregates formation; (ii) the difficulty of

recycling nanomaterials except for magnetic nanoparticles; (iii) the long-term fate

of nanomaterials is unclear yet. Liu et al. (2013) emphasized the engineering and

economical challenges for carbon nanotubes such as uniform dispersion and

manufacturing cost, respectively. Concurring with that, Savage and Diallo (2005)

explained that however the great functionality of nanomaterials for water purifica-

tion, there is a necessity for synthesizing cost-effective and environmental friendly

nanomaterials. Recently, Adeleye et al. (2016) highlighted the importance of
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practicing risk assessment of nanotechnology to gain the promising implementation

of it in the pollution cleanup, especially for affordable nanotechnologies which

exhibits economical comparable to the conventional methods. Understanding

nanomaterials toxicology and safety practices of its application will expand the

advantages of those materials implementations (Dasgupta et al. 2016a, b).

8.5 Nanomaterials for Inorganic Contaminants Removal

The high affinity of the inorganic chemical to be sorbed on nanomaterials makes the

sorption process one of the widespread approach for wastewater cleanup. Actually,

ion-exchange, adsorption and membrane separation are commonly considered for

removing of heavy metals from wastewater (Fu and Wang 2011). The

nanoadsorbents are considered as practical and simple process to remove heavy

metals and radioactive elements from wastewater (Ray and Shipley 2015).

Generally, sorption term is applied to describe the attachment of contaminant

(adsorbate) to a reactive particle (adsorbent) without referring to the bonding

mechanism. Freundlich equation is a popular equation that is applied to mathemat-

ically quantify the sorbed amount:

S ¼ KF Cb ð8:3Þ
where S is the sorbed amount on a specific adsorbent; C is the concentration in

surrounding solution; b is a dimensionless reaction order and KF is the Freundlich

distribution coefficient. Moreover, Langmuir equation is commonly applied to

quantify maximum sorption capacity and to simulate the relation between the

sorbed amount (S) and the contaminant concentration (C) at the apparent equilib-

rium using the following formula:

S ¼ SmaxKLC

1þ KLC
ð8:4Þ

Where Smax is the maximum sorption capacity; KL is a Langmuir coefficient.

Table 8.1 shows some examples of nanomaterial applications for trace elements

removal from wastewater. Data in Table 8.1 reveals the various uses of

nanomaterials to remove potential toxic elements from contaminated water. The

pH of wastewater, temperature and contact time should be considered to obtain high

sorption capacities and consequently to perform a high removal efficiency. Data in

Table 8.1 indicates the importance of quantifying the maximum sorption capacity

for comparison purpose. For example, zeolite nano-particles sorbed approximately

seven times higher of Pb (682 mg/g) in comparing with nano-alumina that sorbed

100 mg/g. Whereas, carbon nanotubes exhibited the highest sorption capacity for

Ni of 3900 mg/g (See Table 8.1).
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Table 8.1 Selected examples of nanomaterial applications for trace element removal from

wastewater

Nanomaterial

(adsorbent)

Inorganic

contaminant

Sorption

capacity/

removal

potential Note References

Nanoscale zero-

valent iron

(nZVI)

As (III) Sorption

capacity of

1.80, 2.47,

and 1.56 mg

of As(III)/g of

nZVI at 25.

35, and 45 �C,
respectively

The maximum adsorption

capacity was calculated

based on Langmuir equa-

tion for sorption

isotherm data.

Kanel et al.

(2005)

Zn(II) Removal of

5 mg Zn2+ L
�1 and 25 mg

Zn2+ L�1

using 0.4 g Fe

L�1 during a

contact time

of 1 h and

24 h,

respectively

Removal at pH of 7. Kržišnik
et al. (2014)

U (VI) The maxi-

mum removal

capacity of

350.47 mg/g

was realized

at pH of 5.5

Using nZVI- polyaniline-

graphene composite,

Chen et al.

(2017)

Uranium removal is

increased by temperature

increasing.

Nano-alumina Pb (II), Cd

(II), Cr (III),

Co (II), Ni

(II), and Mn

(II).

Sorption

capacity of

100, 83.3,

100, 41.7,

18.2, and

6.3 mg/g for

Pb, Cd, Cr,

Co, Ni, and

Mn,

respectively

Nano-alumina was modi-

fied with

2,4-dinitrophenylhydrazine,

Afkhami

et al. (2010)

Simultaneous removal,

Langmuir equation was

applied

Carbon

nanotubes

Ni (II), Zn

(II), As

(III), and Co

(II)

Sorption

capacity of

3900, 3650,

3500, and

3800 mg/g for

Ni, Zn, As,

and Co,

respectively

PAMAM/CNT

nanocomposite,

Hayati et al.

(2016)

Langmuir equation was

applied.

(continued)
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Removing toxic elements from wastewater is an environmental demand. Kumar

and Chawla (2014) provided a comprehensive review on the application of nano-

metal oxides as adsorbents to remove cadmium (Cd) from polluted water, where the

sorption capacity varied between 15.2 to 625 mg/g for different nano-metal oxides.

According to their review, the selection of an appropriated nanosorbent for Cd

removal from wastewater depends on the concentration of Cd in the water, pH,

temperature, cost and toxicity as well as adsorption capacity. For another example,

removal of selenium (Se) from wastewater is receiving a great attention nowadays.

Holmes and Gu (2016) compared the reported adsorption capacities of varied

nanomaterials to explore Se adsorption which diverged between 0.05 to 178 mg/

g. Definitely, the initial concentration and the pH of wastewater are important key

factors that affect Se affinity to nanomaterials.

Furthermore, application of the natural nanoscale materials is promising as

adsorbents for inorganic removal too. Zhang et al. (2015b) emphasized the impor-

tance of nano-clay as an adsorbent material for heavy metals removal from waste-

water and authors provided the properties of nano-Kaolinite, nano-

Montmorillonite, and nano-layered double hydroxides (anionic clay) that control

the removal of heavy metals from aqueous solutions. Based on the available

literature, nano-clay provides affordable materials for wastewater cleanup.

Removal of nitrate (NO3) from wastewater is very critical to sustain environ-

mental resources and safely reuse treated wastewater. Similar to the removal of

Table 8.1 (continued)

Nanomaterial

(adsorbent)

Inorganic

contaminant

Sorption

capacity/

removal

potential Note References

Zeolite nano-

particles

Pb (II) and

Ni (II)

Sorption

capacity of

682 and

122 mg/g

respectively

for Pb and Ni

Implementation of adsorp-

tion and the filtration

processes,

Yurekli

(2016)

After 60 min of filtration

with 1 bar of transmem-

brane pressure.

Mercaptoamine-

functionalised

silica-coated

magnetic nano-

adsorbents

Hg (II) and

Pb (II)

Sorption

capacity of

355 and

292 mg/g

respectively

for Hg and Pb

Langmuir equation was

applied,

Bao et al.

(2017)

The maximum adsorptions

were occurred at pH 5–6

and 6–7 for Hg and Pb,

respectively.

PVA/TiO2

nanohybrid

adsorbent

Cd (II), Ni

(II) and U

(VI)

Sorption

capacity of

49.0, 13.1 and

36.1 mg g�1

for Cd, Ni

and U,

respectively

Sorption at pH of 5.5, 5 and

4.5, for Cd, Ni and U,

respectively.

Abbasizadeh

et al. (2014)
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heavy metals, the initial concentration, wastewater pH, contact time, and temper-

ature are significantly affect NO3 removal. In a study to assess the use of nano-

alumina to remove NO3 from contaminated water, the sorption capacity of 4.0 mg/g

was reported at pH of 4.4 and 25 �C. However, the NO3 adsorption found to be

strongly pH dependent and sharp sorption decrease was observed with increasing

the pH above 5 due to the change of surface charge (Bhatnagar et al. 2010).

Application of nanoscale zero valent iron for reducing NO3 concentration in

water is commonly practiced. The use of nanoscale zero valent iron -based perme-

able reactive barriers for NO3 reduction is effective technique and can remove up to

100% (Araújo et al. 2016). One advantage of using the nano-alumina (sorption

process) compared with using of nanoscale zero valent iron (reduction technique) is

that using nano-alumina is avoiding the production of NH4.

8.6 Nanomaterials for Organic Pollutant Removal

Various uses of nanomaterials are implemented to decontaminate wastewater by

removing or reducing the organic contaminate concentrations. Along with sorption,

contaminant degradation process is commonly practiced for organic contaminant

removal. Table 8.2 shows examples of recently applications for cleanup wastewa-

ters from petroleum, dairy, and textile industrial sectors. Application of various

kinetic calculations can provides a numerical approach to understand the fate of the

targeted organic contaminants. For example, the nonlinear degradation kinetics can

be simulated by calculating the change of the relative contaminant concentration

(C/Co) using Eq. 8.5 (McDonald et al. 2013):

d C
Co

� �

dt
¼ �Kd

C

Co

� �m

ð8:5Þ

Where, C is the contaminant concentration at specific time (t), Co is the initial

concentration (at time 0), Kd is the degradation rate, and m is the degradation order.

Experimental data can be fitted to the integrated form of the Eq. 8.5 that is shown in

Eq. 8.6:

C

Co
¼ 1þ m� 1½ �Kdtð Þ�1= m�1ð Þ ð8:6Þ

Moreover, the calculation of the half-life of the organic contaminant due to the use

of certain nanomaterial is useful to design an appropriated treatment. For the first

order degradation, half-life time (t0.5) can be calculated as t0.5¼ 0.693/Kd (for

further details on the modeling the degradation kinetics see Levenspiel 1999;

Méndez et al. 2010).

Literature review of utilization of nanomaterials proved the high potential of

nanomaterials to remove and reduce pesticides, dyes, antibiotics and among other
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Table 8.2 Selected examples of nanomaterial applications for organic contaminant removal from

wastewater

Nanomaterial contaminant Removal/degradation Note Reference

Nano-TiO2

supported on

Fe-ZSM-5

zeolite

Petroleum

refinery

wastewater

Photodegradation effi-

ciencies of 63% and

67.05% were obtained

at pH 4 and

8, respectively

High degradation at

pH of 4, 45 �C, and
UV irradiation for

120 min,

Ghasemi

et al.

(2016)

The degradation

followed the first

order kinetics.

TiO2-Ag

nanofibers

Dairy effluent 60% degradation after

180 minutes

Photocatalytic

degradation

Kanjwal

et al.

(2016)

Amino acid

proline based

polymer

nanocomposite

Textile dyes Sorption capacities of

24.4 to 28.3 mg/g were

achieved within

180 minutes.

Dyes: Reactive blue

222, reactive red

195, and reactive

Yellow145,

Raghunath

et al.

(2016)

Increasing of tem-

perature, pH, and

salt contents

reduced the sorp-

tion efficiency.

Zinc

nanoparticles

(ZnNPs)

Trypan blue

dye

The maximum sorp-

tion capacity of 129.87

was observed at pH 7

within 30 min

Langmuir isotherm

model was applied,

Nadaroglu

et al.

(2017)Pseudo-second

order kinetic model

provide a success-

ful simulation of

kinetic data.

Palladium/

hydroxyapatite/

Fe3O4

nanocatalyst

(Pd/HAP/

Fe3O4)

Azo dyes

(methyl red,

methyl

orange and

methyl

yellow)

A complete decompo-

sition of azo dyes was

observed after 80 min

Catalytic activity of

Pd/HAP/Fe3O4

enhanced with the

low pH,

Safavi and

Momeni

(2012)

The pseudo-first-

order provided a

good-fitting of

the data.

Cu-nano

zeolite

2-

chlorophenol

Maximum adsorption

capacity of 204.68 mg/

g

The highest removal

at pH 6 during

150 minutes.

Huong

et al.

(2016)

Nano zeolite Meta, ortho

and para-

nitrophenols

isomers

Sorption capacities of

121.7, 143.8, and

156.6 mg/g for meta,

ortho and para-

nitrophenols,

respectively

With adsorbent dose

of 0.6 g at pH 6.0

within 150 minutes.

Pham et al.

(2016)
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organic contaminants from contaminated water (Ghasemi et al. 2016; Pham et al.

2016; Raghunath et al. 2016; Ramya et al. 2016). Also, natural nanomaterial such as

nano zeolite can offer an inexpensive remediation material for wastewater treat-

ment. Pham et al. (2016) evaluated the use of nano zeolite to remove nitrophenol

from contaminated water and showed that nano zeolite economically removed more

than 70% of the nitrophenol effectively with 46.6% cost reduction compared with

the use of activated carbon.

Occurrence of antibiotics in wastewater represents serious environmental

threats. Karthikeyan and Meyer (2006) surveyed 21 antibiotic compounds in

wastewater in Wisconsin, USA and emphasized the importance of monitoring of

at least six compounds namely: sulfamethazine, sulfamethoxazole, tetracycline,

ciprofloxacin, erythromycin-H2O, and trimethoprim. Recently, Meng et al. (2016)

showed that nano-MgO/diatomite membrane was able to remove >95% of tetra-

cycline for a wide range of pH (6–10.2) with water flux of 120.5 L/m2 h. Here is

another example of removing antibiotic compound by nanomaterial, Fang et al.

(2011) completely removed metronidazole (80 mg/L) using a dosage of 0.1 g/L

nanoscale zero valent iron within 5 minutes.

Organic pollutants in wastewater represent challenge for reusing the treated

wastewater or even to discharge it to the environment safely. Positively charged

nanomaterials are needed to sorb anionic organic pollutants. Cai and Larese-

Casanova (2016) functionalized graphene oxide with ethylenediamine to remove

anionic ibuprofen in a batch reactor experiment. Their results proved the enhancing

of the sorptive capacity for removing ibuprofen (maximum sorption capacity of

95.2 mg/g) compared with the case of using activated carbon and regular graphene

oxide. Organofluorine compounds exhibits a harmful impact on the environment;

Stahl et al. (2011) provided a toxicological evaluation of perfluorinated compounds

that showing their contamination potential to the environmental resources and

adverse impacts on human health. Zhang et al. (2016) used nano-ZnO coated

electrodes for degradation of perfluorinated compounds in wastewater treatment

and achieved removal efficiency of 39% to 66% within 40 minutes of electrochem-

ical oxidation process. This removal efficiency is higher than that one of using

stainless steel plates as anode and cathode electrode where the reported efficiency

was 39% to 66% (Zhang et al. 2015a). Actually, organic contaminants represent a

real threatens to environmental resources particularly due to its various categories

that occasionally need specific treatments. In other words, organic contaminants

could be cationic, anionic, volatile, short or long chains, persistent organic pollut-

ants and others classes, thus the elimination of them from wastewater is a prob-

lematic issue that need integrated remediation approach. Nanomaterials provide an

effective solution to cleanup wastewater from those tenacious contaminants.

The high reactivity of applied nanomaterials for cleaning up wastewater can

modify the conventional treatment approaches. The expected consequences of

using nanomaterials in wastewater treatment plants includes reducing the required

time and energy of the treatment, types and quantities of the applied chemicals as

well as improving the quality of the treated wastewater. For instance, implementa-

tion of nanofiltration technology in wastewater treatment shows an effective
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improvement of the treated water quality (Bunani et al. 2013, 2014; Li et al. 2016).

In a pilot-scale experiment for cleaning up a hospital wastewater, nanofiltration

equipped with membrane bioreactor was effectively applied (Kootenaei and Rad

2013). The results of the experiment after 20 days revealed that the average removal

efficiencies were 94%, 88%, > 80%, 87%, and 46 to 68% for chemical oxygen

demand, ammonia, nitrite, and nitrate, and phosphorus, respectively. On the other

hand, chemicals incompatibility, limited temperature range, and fouling can restrict

the application of nanofiltration for cleaning up wastewater (Shahmansouri and

Bellona 2015).

According to the current literature review, designing of wastewater treatment

based upon the use of nanomaterials should consider the application scale, time and

cost of treatment as well as the existing type of contaminants. Prior of applying such

nanotechnology the following assessments are suggested:

– Assessing the nanomaterials potentiality for reduce the concentration to accept-

able level or remove the targeted contaminants.

– Check the required optimization of operating conditions and reactor

configuration.

– Evaluate the cost-effectiveness of the nanotechnology implementation on the

large scale.

Additionally, integrating of nanomaterials-based treatment with the current con-

ventional techniques for wastewater cleaning up is simply compatible (Gehrke et al.

2015). In the following schematic diagram we suggested different contribution of

implementing nanomaterials-based treatment unit for cleaning up wastewater

(Fig. 8.2). Specifically, three cases are suggested: Case “A” represents the

Fig. 8.2 Schematic diagram of the consequences of combining nanotechnologies with the con-

ventional wastewater treatment on timescale and the quality of the treated wastewater
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conventional wastewater treatment; Case “B” represents the situation of using the

nanomaterials in one main process such as applying nano-membranes technology;

Case “C” represents the use of more than two nanotechnologies (such as nano-

membranes, nanomaterials for oxidation and sorption processes) during the waste-

water treatment.

Generally, the conventional wastewater treatment incudes different processes

and units of operation such as screening, sedimentation, flotation, chemical oxida-

tion, membrane filtration, sorption, ion exchange, ultraviolet, and others. Figure 8.2

reveals the influence of combining nanotechnology with the conventional treatment

on the required time of treatment and on the quality of treated wastewater. The

diagram shows the decrease of treatment time on the left side and the improvement

in the treated wastewater quality on the right side as a result of implementing

nanomaterials-based treatment. For example, the nanoscale zero-valent iron parti-

cles are largely applied in wastewater treatment. As a result of simple oxidation

process, the surface of zero-valent iron is covered by iron (hydr)oxides that pro-

vides a surface for contaminants sorption and reduction reactions. One can clearly

imagine the high rate of reaction in case of using the nanoscale zero-valent iron in

reference to the high reactivity of nanomaterials that has been discussed in this

chapter.

8.7 Summary

In summary, cleanup of wastewater using nanomaterial is a potentially promising

approach that has been used recently. Nanomaterials are applied for sorption,

oxidation, reduction, disinfection and degradation of wastewater contaminants.

The effectiveness of nanomaterials to eliminate contaminant concentration in

wastewater is highly depending on the physical and chemical characteristics of

the nanomaterial, the wastewater, and the contaminant. Reactivity of nanomaterial

varies based upon its surface features such as surface area, surface confinement

effect, surface charge density, energy, and surface curvature, as well as the stability

of nanophase system in the wastewater. Selectivity of the appropriated

nanomaterials for wastewater cleanup should consider the reactivity of the

nanomaterial (sorption capacity, removal efficiency, etc) as well as the rate of

reaction that is a critical factor sometimes in the treatment design. The use of the

simulation models provides a powerful tool for such purpose. Although, the devel-

oping of nanoscience is exponentially grown, the main challenge of using

nanomaterials could be attributed to the absence of the full understanding of its

fate and behavior in the environment. Developing the application of natural

nanomaterials such as nano-clay is highly promising technique in reducing the

contamination of wastewater, simultaneously, it can reduce the expenses of using

this advanced technology.
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valent iron for the removal of Zn2+, Zn(II)–EDTA and Zn(II)–citrate from aqueous solutions.

Sci Total Environ 476-477:20–28. https://doi.org/10.1016/j.scitotenv.2013.12.113

Kumar R, Chawla J (2014) Removal of cadmium ion from water/ wastewater by nano-metal

oxides: a review. Water Qual Expo Health 5:215–226. https://doi.org/10.1007/s12403-013-

0100-8

Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016) A review of the environmental implications

of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on

microbial communities. Sci Total Environ 565:889–901. https://doi.org/10.1016/j.scitotenv.

2016.02.003

Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York, p 668

Li K, Wang J, Liu J, Wei Y, Chen M (2016) Advanced treatment of municipal wastewater by

nanofiltration: operational optimization and membrane fouling analysis. J Environ Sci

43:106–117. https://doi.org/10.1016/j.jes.2015.09.007

Liu X, Wang M, Zhang S, Pan B (2013) Application potential of carbon nanotubes in water

treatment: a review. J Environ Sci 25(7):1263–1280. https://doi.org/10.1016/S1001-0742(12)

60161-2

272 T. Elbana and M. Yousry

https://doi.org/10.1016/j.molliq.2016.10.053
https://doi.org/10.1016/j.molliq.2016.10.053
https://doi.org/10.1039/C5CP01620G
https://doi.org/10.1039/C6EN00144K
https://doi.org/10.1016/j.psep.2016.02.002
https://doi.org/10.1016/j.psep.2016.02.002
https://doi.org/10.1021/es048991u
https://doi.org/10.1021/es048991u
https://doi.org/10.1016/j.jiec.2015.09.026
https://doi.org/10.1007/698_2016_453.
https://doi.org/10.1007/698_2016_453.
https://doi.org/10.1016/j.scitotenv.2005.06.030
https://doi.org/10.1016/j.scitotenv.2005.06.030
https://doi.org/10.5829/idosi.ijee.2013.04.01.10
https://doi.org/10.5829/idosi.ijee.2013.04.01.10
https://doi.org/10.1016/j.scitotenv.2013.12.113
https://doi.org/10.1007/s12403-013-0100-8
https://doi.org/10.1007/s12403-013-0100-8
https://doi.org/10.1016/j.scitotenv.2016.02.003
https://doi.org/10.1016/j.scitotenv.2016.02.003
https://doi.org/10.1016/j.jes.2015.09.007
https://doi.org/10.1016/S1001-0742(12)60161-2
https://doi.org/10.1016/S1001-0742(12)60161-2


Maddinedi SB, Mandal BK, Ranjan S, Dasgupta N (2015) Diastase assisted green synthesis of

size-controllable gold nanoparticles. RSC Adv 5(34):26727–26733

Maddinedi SB, Mandal BK, Patil SH, Andhalkar VV, Ranjan S, Dasgupta N (2017) Diastase

induced green synthesis of bilayered reduced graphene oxide and its decoration with gold

nanoparticles. J Photochem Photobiol B Biol 166:252–258

McDonald J, Gaston L, Elbana T, Kevin A, Eileen C (2013) Dimoxystrobin sorption and

degradation in sandy loam soil: impact of different landscape positions. Soil Sci

178:662–670. https://doi.org/10.1097/SS.0000000000000030

Méndez V, Fedotov S, Horsthemke W (2010) Reaction-transport systems, mesoscopic founda-

tions, fronts, and spatial instabilities. Springer-Verlag, Berlin/Heidelberg, p 454

Meng X, Liu Z, Deng C, Zhu M, Wang D, Li K, Deng Y, Jiang M (2016) Microporous nano-MgO/

diatomite ceramic membrane with high positive surface charge for tetracycline removal. J

Hazard Mater 320:495–503. https://doi.org/10.1016/j.jhazmat.2016.08.068

Mondloch JE, Bayram E, Finke RG (2012) A review of the kinetics and mechanisms of formation

of supported-nanoparticle heterogeneous catalysts. J Mol Catal A-Chem 355:1–38. https://doi.

org/10.1016/j.molcata.2011.11.011

Murty BS, Shankar P, Raj B, Rath BB, Murday J (2013) Applications of nanomaterials. In:

Textbook of nanoscience and nanotechnology. Springer, Berlin/Heidelberg, pp 107–148

Nadaroglu H, Cicek S, Gungor AA (2017) Removing Trypan blue dye using nano-Zn modified

Luffa sponge. Spectrochim Acta A 172:2–8. https://doi.org/10.1016/j.saa.2016.08.052

O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and

bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122.

https://doi.org/10.1016/j.advwatres.2012.02.005

Pham T, Lee B, Kim J (2016) Improved adsorption properties of a nano zeolite adsorbent

toward toxic nitrophenols. Process Saf Environ 104(322):314. https://doi.org/10.1016/j.

psep.2016.08.018

Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater

treatment. Water Res 47:3931–3946. https://doi.org/10.1016/j.watres.2012.09.058

Raghunath S, Anand K, Gengan RM, Nayunigari MK, Maity A (2016) Sorption isotherms, kinetic

and optimization process of amino acid proline based polymer nanocomposite for the removal

of selected textile dyes from industrial wastewater. J Photoch Photobio B 165:189–201. https://

doi.org/10.1016/j.jphotobiol.2016.10.012

Ramya T, Anbazhagi M, Muthukumar M (2016) Electrochemical oxidation of fipronil contami-

nated wastewater by RuO2/IrO2/TaO2 coated titanium anodes and sorbent nano hydroxyapa-

tite. Mater Today Proc 3(6):2509–2517. https://doi.org/10.1016/j.matpr.2016.04.169

Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane

rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494

Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A

(2014) Nanoscience and nanotechnologies in food industries: opportunities and research

trends. J Nanopart Res 16(6):1–23

Ranjan S, Dasgupta N, Rajendran B, Avadhani GS, Ramalingam C, Kumar A (2016) Microwave-

irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis:

microbial and cytotoxicological evaluation. Environ Sci Pollut Res 23(12):12287–12302

Ray PZ, Shipley HJ (2015) Inorganic nano-adsorbents for the removal of heavy metals and

arsenic: a review. RSC Adv 5:29885–29907. https://doi.org/10.1039/C5RA02714D

Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental

pollution management: a review. Chem Eng J 170:395–410. https://doi.org/10.1016/j.cej.2010.

08.045

Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592.

https://doi.org/10.1039/B502142C
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Chapter 9

Bioremediation of Heavy Metals

Anamika Das and Jabez William Osborne

Abstract Human activities and industrial processes have led to worldwide heavy

metal pollution. Several strategies have been developped for metal remediation.

The conventional strategies are expensive, usually low in efficiency and may alter

the soil nature. Here we review bioremediation using plants, microbes, e.g. bacteria,

fungi, and actinobacteria, earthworms, and algae for metal removal.

Bioaugmentation of microbes using plants, earthworms and algae is used to

enhance the bioremediation efficiency. We discuss the importance of

metagenomics, metabolomics and proteomics approach to assess the response of

the living organisms under stress and how they can contribute to the improvement

of the already existing strategies.

Keywords Heavy metals • Bioremediation • Biosystems • Bioaugmentation

• Metagenomics • Metabolomics • Proteomics
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9.1 Introduction

Environmental pollution occurs when the natural environment cannot destroy an

element without creating harm or damage to itself (Wijnhoven et al. 2007). The

elements involved are not produced by nature, and the destroying process can vary

from a few days to thousands of years. Current research has documented elemental

pollutants as “emerging contaminants” (Yu et al. 2014). Intense industrialization,

modern agricultural practices, increased anthropogenic activities, and unauthorized

disposal methods have increased the concentrations of elemental pollutants in the

environment, creating adverse effects to all the living organisms (Wijnhoven et al.

2007). Heavy metals are one of the major pollutants which has been the chief

concern in past decade. They can enter the environment in a single high-level

exposure or the cumulative effect of repeated high or low-level exposures but when

introduced into an environment, it can stay there in toxic form for a long period

of time.

A number of physical, chemical and biological techniques can be used to

remediate metal contaminated soils. Physico-chemical methods are, however, not

appreciated as they generate a large amount of sludge and result in more contam-

ination (Ahluwalia and Goyal 2007). Thus, bioremediation provides the best

answer. Many reports have established the bioremoval of heavy metals by the use

of either plants, earthworms or microbes (Wang et al. 2015; Rodriguez-Campos

et al. 2014; Dharni et al. 2014; Ma et al. 2015). But recent reports have studied the

uptake studies by using more than one living organism and have come out with

more efficient and improved results (Emenike et al. 2016; Wood et al. 2016; Lemtiri

et al. 2016). Thus, they have opened the gate of exploring the more diverse flora and

fauna for achieving the best result in bioremediation. Scientists have also developed

and studied the three main ‘omics’ approach for understanding the response of the

organism under the stressed condition, i.e., metagenomics, metabolomics and

proteomics (Gillan et al. 2015; Tomanek 2014). The integrated ‘omics’ analysis
can be a powerful technique to identify the vast microbial communities which are

unculturable but still possess the ability of bioremediation and the various metab-

olites released under stress along with their function. This approach has brought a

revolution in the field of bioremediation. Figure 9.1 summarizes the bioremediation

technologies described in this review.

This review emphases on the utilization of different tactics of bioremediation

using plants, bacteria (rhizobacteria, actinobacteria), earthworms, algae, fungi and

highlights the advantages of the integrated approach of using multi-biosystem for

278 A. Das and J.W. Osborne



the bioremediation of Heavy metals. To support the statement, many evidence has

been provided representing different case studies along with their mechanism and

limitations. In this context, the scope of ‘omics’ tool to enhance the overall

bioremediation process has also been discussed.

9.2 Heavy Metals

Heavy metals represent a class of metallic element present abundantly in the earth’s
crust (Yu et al. 2014). They are defined as the metals possessing density greater than

5 gm/cm3 (Das et al. 2014). Different from other organic pollutants, heavy metals

are harder to be chemically or biologically degraded. Irrespective of the origin of

the metals in the soil, excessive levels of many metals can result in the deprivation

of soil quality, crop yield and agricultural products and can be significantly haz-

ardous to human, animal and ecosystem health (Das et al. 2014). The metals or

Fig. 9.1 An outline of the remedial strategies applied for bioremoval of heavy metals. The

conventional methods are ineffective or expensive when the concentration of heavy metals is

very low and produces a large amount of derivatives of contaminants. Alternately, biological

methods with the usage of living biosystems has proven efficient in heavy metals bioremediation.

The ‘omics’ approach also enhanced the understanding of the living biosystems under stressed

condition (PGPR Plant growth promoting rhizobacteria)
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metalloids including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead

(Pb), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), and zinc (Zn) can be of

severe threat to human and animal health due to its intensified long-term persistence

in the environment (Gisbert et al. 2003). Toxic heavy metals are also known as

cumulative poison because of it persistence in nature and the ability to get trans-

ferred and accumulated in various tropic levels causing DNA damage and carcino-

genic effects by their mutagenic ability (Knasmüller et al. 1998). Therefore an

alarm has been triggered for the researchers to conserve the environment from toxic

heavy metals. The Agency for Toxic Substances and Disease Registry (ATSDR) in

Atlanta, Georgia, (a part of the U.S. Department of Health and Human Services)

compiled a Priority List called the “Top 20 Hazardous Substances.” The heavy

metals arsenic, lead, mercury, and cadmium appear on this list (ATSDR 2011).

9.3 Conventional Strategies for Detoxification of Heavy

Metals

In order to make the environment healthier, contaminated water bodies and land

need to be remedied to make them free from heavy metals and trace elements.

There are several conventional techniques to remove these heavy metals, including

chemical precipitation, oxidation or reduction, filtration, ion-exchange, reverse

osmosis, membrane technology, evaporation and electrochemical treatment. But

most of these techniques become ineffective when the concentrations of heavy

metals are less than 100 mg/L (Ahluwalia and Goyal 2007). Additionally, physico-

chemical methods are ineffective or expensive. Some of the techniques are men-

tioned in Table 9.1 with their drawbacks.

Biological methods for removal of heavy metals has become an attractive

alternative to physico-chemical methods. Bioremediation has proved to be an

innovative and promising technology available for removal of heavy metals and

recovery of the heavy metals in polluted water and lands.

9.4 Bioremediation of Heavy Metals

According to Environmental Protection Agency (EPA), bioremediation is a tech-

nique that uses naturally occurring organisms to break down hazardous substances

into less toxic or nontoxic substances (Agouborde and Navia 2009). Various living

biosystems can be utilized for the bioremoval of heavy metals. The biomass-based

systems are more satisfactory compared to the conventional treatment methods as it

is cost effective with high efficiency of detoxification of dilute effluents and

reducing the quantity of sludge disposal in the environment. There are many reports

about biodegradation and bioremediation strategies being utilized by bacteria or
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plant species (Wang et al. 2015; Ma et al. 2016; Glick 2010) but so far very few

investigations have been carried out using other living biosystems such as earth-

worms, algae, fungi and their integrated approach.

9.4.1 Phytoremediation of Heavy Metals

The word “phytoremediation” is derived from Greek word phyto (mean plant) and

Latin word Remedium (to remove an evil). Phytoremediation utilizes a variety of

plant processes and the physical characteristics of plants to aid in remediation of

contaminated sites. It is an in situ remediation technology driven by solar energy.

Remediation of metals using plants seems an effective approach in the present

scenario since plants are the primary recipients of heavy metals (Ali et al. 2013;

Table 9.1 Conventional techniques for heavy metals removal and their drawbacks

Technique

Application

to heavy

metal Drawback References

Reverse osmosis- A semi

permeable membrane is used

to separate the heavy metal

at a pressure greater than the

osmotic pressure

Cu2+, Ni2+,

Zn2+
High power consumption

due to the pumping pres-

sures, and the restoration of

the membranes

Fu and Wang

(2011)

Electrodialysis-Ion selec-

tive semi permeable mem-

brane are used to separate

heavy metals by applying

electrical potential between

two electrodes

Cr(III), Cu,

Fe

The separation percentage

decreased with an increasing

flow rate

Sadrzadeh et al.

(2009)

Ultrafiltration- A porous

membrane is used to remove

heavy metals by applying

pressure.

Cd2+, Cu2+,

Ni2+, Pb2+

and Zn2+

If the surfactant and heavy

metals are not disposed of, it

lead to secondary pollution

by generating sludge

Landaburu-

Aguirre et al.

(2009)

Ion exchange- From the

dilute solution containing

heavy metal, the metal ion

gets exchanged to the

exchange resin by the ions

held by electrostatic force

Ce2+, Fe2+

and Pb2+
It can be used only with low

concentrated metal solution

and is highly sensitive with

the pH of the aqueous phase.

Gunatilake

(2015)

Chemical precipitation-

Chemicals react with heavy

metal ions to form insoluble

precipitates

Cu2+, Cd2+

and Pb2+
Generates large volumes of

low density sludge, which

can cause disposal problems

Kongsricharoern

and Polprasert

(1995)

Coagulation- Removal of

heavy metals by charge neu-

tralization of particles

Ni2+ Unable to treat the heavy

metal wastewater

completely

Chang and Wang

(2007)

9 Bioremediation of Heavy Metals 281



Wang et al. 2015). Phytoremediation technique includes processes such as

phytoextraction, phytostabilization, phytovolatilization (Alkorta et al. 2004).

9.4.1.1 Phytoextraction

It is the process of uptake of contaminants from soil or water by plant roots and their

accumulation in biomass, i.e., shoots (Seth 2012). Generally shoot metal concen-

tration and shoot biomass mainly determine a suitable plant species for

phytoextraction of metals. Depending upon these parameters, two different

phytoextraction approaches have been used, i.e., use of hyperaccumulator plants

with relatively low biomass production and use of plants with relatively higher

above ground biomass production but lesser metal accumulation such as Brassica
juncea (Robinson et al. 1998; Ali et al. 2013). A recent report by Ma et al. (2016)

suggested that the highly developed root system of Napier grass makes it an ideal

candidate for phytoextraction process by absorbing, transporting and storing both

contaminants and nutrients into the plant tissue.

9.4.1.2 Phytostabilization

Phytostabilisation is a method where the plants are used to immobilise metals in the

rhizosphere and reduce the above ground wind and water erosion (Gil-Loaiza et al.

2016). There are two main factors which are considered when determining the

aptness of plants with a large biomass for phytostabilisation: root accumulation and

rhizosphere immobilisation (Sun et al. 2016). The plants selected must be able to

develop abundant root systems, and translocate metals from roots to shoots at as

low concentrations as possible (Mendez and Maier 2008). Giant reed (Arundo
donax) and silvergrass (Miscanthus sinensis) genotypes are bioenergy crops well

suited for the phytostabilisation of metal(-loid)-contamination of dry land (Barbosa

et al. 2015). But phytostabilization is not a permanent solution as heavy metals

remains in the soil as it is; only with restricted movement and needs to monitor

regularly.

9.4.1.3 Phytovolatilization

This approach involves conversion of heavy metals into volatile forms by plants

and subsequently released into the atmosphere. This process has been used for

removal of some volatile heavy metals like Hg and Se from polluted soils (Karami

and Shamsuddin 2010). However, this is limited by the fact that it does not remove

the metals completely but rather transfers them from one medium (soil or water) to

another (atmosphere) from which they can re-enter soil and water.
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9.4.1.4 Hyperaccumulator Plants

Recently, removal of heavy metals through hyperaccumulators to degrade the

contaminants, has received wide attention due to its efficacy and cost efficiency

(Ahemad 2014). Hyperaccumulators have been found to exhibit higher heavy metal

tolerance and accumulating abilities compared to other plants (Prasad and Freitas

2003). Many reports are provided for hyperaccumulators being utilized such as

Arabidopsis halleri and Solanum nigrum L. for uptake of Cd (Dahmani-Muller

et al. 2000; Wei et al. 2005), Zea mays for uptake of Pb, Cd and Zn (Meers et al.

2010), Brassica juncea, Astragalus bisulcatus for uptake of Se (Bitther et al. 2012).
However, the disadvantages that limit the use of hyperaccumulators include diffi-

culty in finding heavy metal hyperaccumulators, slow growth and lower biomass

yield. This makes the process quite time-consuming and therefore not feasible for

rapidly contaminated sites or sewage treatments (Xiao et al. 2010).

9.4.1.5 Mechanism of Heavy Metals Phytoremediation

The uptake of heavy metals by plants depends mainly on the bioavailability of the

heavy metals in the soil as well as the plant nutrients. The heavy metals either gets

accumulated in the root tissues or get translocated to the aerial regions of the plants

through xylem vessels by symplastic and/or apoplastic pathways (Sarwar et al.

2016). The tolerance against heavy metals is a prerequisite for phytoremediation

process to minimize the adverse effects on the plants. The tolerance potential of the

plant depends on mechanisms like cell wall metal binding, active transport of metal

ion into the vacuoles, chelation of metal ions with proteins and peptides and

complex formation (Memon and Schroder 2009).

9.4.1.6 Challenges in Phytoremediation

Phytoremediation, no doubt, is an attractive process for heavy metals uptake but the

researchers have confronted several limitations when only plants were used for the

bioremediation (Karami and Shamsuddin 2010; Naees et al. 2011; Ramamurthy and

Memarian 2012) which has been summarized in Fig. 9.2.

9.4.2 Microbial Remediation of Heavy Metals

Microorganisms as metal accumulators possess an inherent novel remediation

property for toxic metals in the soil with increased crop productivity. Many

researchers have studied the close interactions among plants-microorganisms

heavy metals in rhizosphere soils to enhance phytoremediation process (Glick
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2010; Dharni et al. 2014; Ma et al. 2015). Inoculation of plants with selected and

acclimatized microbes (bioaugmentation) has attained prominence for

phytoremediation of metal polluted soils (Lebeau et al. 2008; Glick 2010; Ma

et al. 2011). Some microorganisms live in association with plant roots while others

are free living. A recent report by Abd-Elnaby et al. (2016) identified three marine

Psychrobacter strains which were able to resist and accumulate several metals (Pb2+

, Cu2+ and Cd2+) with variable degrees, depending on bacterial strains and metal ion

species. There are few bacterial species such as Alphaproteobacteria and

P. aeruginosa which are isolated from sponge genera such as Sarcotragus
sp. Suberites clavatus and Crella cyathophora and have been recognized as a source
for secondary metabolites having the potential for heavy metal bioremediation

(Saurav et al. 2016a, b).

9.4.2.1 Endophytic Bacteria

Endophytes mostly lives under the epidermal cells of plant tissues and colonize

(Schulz and Boyle 2006). The extensive co-evolution of plants and endophytes has

developed an intimate ecosystem which helps the plants to survive in stressed

conditions and helps in enhanced bioremoval of Heavy metals (Ryan et al. 2008).

Fig. 9.2 An overview of the common problems faced by the plants in bioremediation. These

limitations inhibit the application of the traditional phytoremediation techniques on large scale

applications. The limitations can be overcome by synergistic integration of the plants with other

living organism for bioremediation by advanced bioremediation research
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Bioaugmentation with such endophytic bacteria can diminish the metal phytotox-

icity and alter the phytoavailability of heavy metals in contaminated soils, making

them ideal for microbial assisted phytoremediation studies (Weyens et al. 2009; Ma

et al. 2011). The hyperaccumulator plants constitute a complex and specialized

endophytic bacterial flora such as Pseudomonas koreensis, Bacillus sp., Rahnella
sp. with high levels of resistance to heavy metals such as Pb, Mn and Cd (Babu et al.

2015; Luo et al. 2012; Yuan et al. 2014).

9.4.2.2 Plant Growth Promoting Rhizobacteria

Plant growth promoting rhizobacteria (PGPR) are a group of microbial community

which can improve the growth of the host plant in heavy metal contaminated soils

by mitigating toxic effects of heavy metals on the plants (Seth 2012). These may be

free- living bacteria, in symbiotic associations, or endophytic bacteria (Glick 2012).

Some important genera of PGP bacteria include Bacillus, Pseudomonas,
Enterobacter, Erwinia, Klebsiella, Flavobacterium and Gluconacetobacter
(Dardanelli et al. 2010; Nadeem et al. 2010). PGPR improve plant growth and

effect heavy metals mobility by atmospheric nitrogen fixation, production of

phytohormones and siderophores and solubilisation of insoluble phosphate (Ullah

et al. 2015). A wide range of PGPR has been identified which aid in uptake of

Heavy metals (Glick 2010). A report by Jing et al. (2014) showed enhanced

accumulation of Cd, Pb, Zn in Brassica napus when inoculated with PGPR strains

such as Enterobacter sp. and Klebsiella sp..

9.4.2.3 Fungi

Fungi have been chiefly ignored as constituents of the host microbiota and their role

in bioremediation (Moyes and Naglik 2012). Fungi have emerged as potential

biocatalysts to access heavy metals and transform them into less toxic compounds.

They possess metal sequestration and chelation systems to increase their tolerance

to heavy metals. Moreover, their high biomass makes them suitable for bioreme-

diation of Heavy metals (Aly et al. 2011). Some fungi such as, Allescheriella sp.,

Stachybotrys sp., Phlebia sp. Pleurotus pulmonarius, have metal binding potential

(D’Annibale et al. 2007). Fungi of the genera Penicillium, Aspergillus and Rhizopus
have been studied extensively as potential microbial agents for the removal of

heavy metals from aqueous solutions (Volesky and Holan 1995; Huang and Huang

1996). Pb (II) contaminated soils can be biodegraded by fungal species like

Aspergillus parasitica and Cephalosporium aphidicola with biosorption process

(Tunali et al. 2006; Akar et al. 2007). Recent reports identifies 20 fangal taxa in

which Alternaria, and Peyronellaea are the dominant genera and shows excellent

uptake of Pb2+ and Zn2+ (Li et al. 2012).
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9.4.2.4 Actinobacteria

Actinobacteria are a group of bacteria which play an important role in recycling

substances, since they are able to metabolize complex organic matter (Kieser et al.

2000). They prove to be an important ecological agent by possessing the ability to

remove Heavy metals (Albarracı́n et al. 2005; Polti et al. 2009). Several reports

signifies Corynebacterium strain tolerant to heavy metals such as Cd(II), Co(II), Cr

(VI), Hg(II), and Ni(II) (Oyetibo et al. 2010). Other reports by Mangold et al.

(2012) demonstrates the strain Acidimicrobium ferrooxidans tolerant to higher

concentrations of Zn(II) and adapting to the adverse environment. Although the

bioremediation skills of the genera such as Streptomyces, Rhodococcus, and

Amycolatopsis were extensively studied but the lack of information to enhance

the bioremediation process of actinobacteria through pathway engineering tech-

niques did not supported their further use (Alvarez et al. 2017).

9.4.2.5 Mechanism of Bioremediation by Microbes

We know microorganisms are omnipresent and reside in heavy metal contaminated

soil. The bioremediation strategy for Heavy metals depends on the active metabo-

lizing capabilities of microorganisms. The microbes mineralize the organic con-

taminants to end-products such as carbon dioxide and water which are used as

substrates for cell growth. The production of degradative enzymes by the microbes

for the target pollutants is one way to resist against Heavy metals. Microbes are

capable of dissolving metals and reducing or oxidizing transition metals. A short

summary of microbial mechanism for Heavy metals tolerance with some examples

are provided in Table 9.2.

9.4.2.6 Challenges in Microbial Bioremediation

The lack of information on the cellular responses of microbes towards utilization

and interaction with trace heavy metal pollutants restricts their successful execution

(Boopathy 2000). Large-scale application of microbes is limited because of their

requirements for extra nutrients which in turn increases the biological oxygen

demand in the waste (Dixit et al. 2015). Few challenges in bioremediation by

microbes has been summarized in Fig. 9.3.

9.4.3 Bioremediation of Heavy Metals Using Earthworms

As one of the most important species in soil fauna, earthworms play a major role in

the functioning of the soil ecosystem (van Gestel et al. 2009). They have been
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described as the soil ecosystem engineers with physical, chemical and biological

effects on plants and the environment (Lavelle et al. 2006). The potential use of

worms in so-called vermiremediation process was recently reviewed (Rodriguez-

Campos et al. 2014). Indeed, earthworms can be exploited in the process of

remediation of contaminated soils due to their ability to enhance the removal of

some heavy metal trace pollutants. Earthworms can survive in heavy-metal con-

taminated soils, can accumulate efficiently high tissue metal concentrations such as

Pb, Cd, and Zn using a variety of sequestration mechanisms (Sinha et al. 2008;

Andre et al. 2009). They may expose to heavy metals through their intestine and

Table 9.2 Summary of microbial bioremediation mechanisms

Microorganisms Mechanism of bioremediation References

Endophytic

bacteria

Bioremoval of Heavy metals in metal amended medium;

Increased biomass, chlorophyll content, nodule number

and metal accumulation

Babu et al.

(2013)

Endophytic

bacteria

Increased root elongation of plant; Reduced metal phyto-

toxicity and increase metal accumulation

Shin et al.

(2012)

Endophytic

bacteria

Improved heavy metal availability in soil, shoot dry bio-

mass and uptake of Heavy metals

Chen et al.

(2014)

PGPR Produce metal chelating agents termed siderophores,

which are able to bind metals and thus enhance their

bioavailability in the rhizosphere through a complexation

reaction

Rajkumar et al.

(2013)

PGPR Decrease the level of ethylene in plants, which increases

plant growth. This attributed to ACC deaminase, which

hydrolyzes ACC, the biosynthetic precursor for ethylene in

plants, into ammonia and α ketobutyrate

Ullah et al.

(2015)

PGPR Phosphate solubilization and nitrogen fixation which affect

heavy metals mobility and availability to the plant

Gadd (2010)

Fungi Extracellular metal sequestration and precipitation, metal

binding to the fungal cell walls, intracellular sequestration

and complexation, compartmentation, and volatilization

Fomina et al.

(2005)

Fungi Fungi can compete with roots and other microorganisms

for water and metal uptake, protect the roots from direct

interaction with the metals and impeded metal transport

through increased soil hydrophobicity

Wenzel (2009)

Fungi Fungal endophytes possess chelation systems to increase

the tolerance of host plants to heavy metals

Aly et al.

(2011)

Actinobacteria Upregulation of genes to antioxidant proteins like super-

oxide dismutase, alkyl hydroperoxide reductase and

mycothiol reductase,

Costa et al.

(2012)

Actinobacteria Use of immobilized microbial cells provides high degra-

dation efficiency and good operational stability

Ahamad and

Kunhi (2011)

Actinobacteria Production of ‘Surface active compounds’ which form

complexes with pollutants attached to soil matrix and

promote their desorption

Shafiei et al.

(2014)

Heavy metals Heavy metals, PGPR Plant Growth Promoting Rhizobacteria, ACC
1-Aminocyclopropane-1-Carboxylate
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skin via alimentary and dermal uptake routes (Homa et al. 2010). There are reports

which indicates that earthworms reduced the concentrations of Cr, Cu, Pb and Zn in

the vermicomposted sludge below the limits set by the USEPA in 60 days

(Contreras-Ramos et al. 2006). Earthworms collected from the roadsides and

mining sites show higher amounts of heavy metals than those from the other sites

and hence can be a ‘bioindicator’ of heavy metal contamination in soil. The choice

of the right species of earthworm and proper selection of earthworm for

vermicomposting is the prime step as it affects the rate of waste stabilization. For

eg. a recent report by Sizmur et al. (2011) showed that Lumbricus terrestris
decreased water soluble Cu and As but increased the solubility of Pb and Zn in

soil but at the same time, Natal-da Luz et al. (2009) did not observed an influence of

Dendrobaena veneta on the solubility of Cr, Cu, Ni, and Zn in soil. A brief report on

successful bioremediation cases of Heavy metals by earthworms is provided in

Table 9.3.

Earthworm, no doubt, is beneficial candidate for bioremediation as they easily

available, easy to handle and to measure the toxic parameters such as growth,

reproduction and biochemical responses but taking into account the indicator role

of earthworms in contaminated environments is a topic of limited practicality.

9.4.3.1 Mechanism of Vermiremediation

Earthworms ingests a large amount of different substrates and thus, concentrates

Heavy metals in their body through their skin and intestine (Mohee and Soobhany

2014). Thus, vermicomposting can be used to breakdown the toxic metals into its

non-toxic forms. Dia et al. (2004) suggested that bioaccumulation of metals in

Fig. 9.3 Limitations of the microbial remediation. It is difficult to maintain the healthy condition

of microbes in contaminated soil throughout as it is exposed to various environmental factors

which inhibit the bacterial growth. Unexpected mutation in microbes can lead to loss of their

enzymatic activity which will affect their heavy metal degrading property
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earthworms is their ability to eliminate the excess of metals. Sizmur and Hodson

(2009) suggested four prime mechanisms of metal bioremoval by earthworms

(Fig. 9.4).

Few reports on mechanism of vermiremediation suggested by various scientists

are given below:

(a) The heavy metal accumulation in the tissue of earthworms is the result of their

detritivorous lifestyle coupled with their highly permeable body walls and

Chloragosomes (phosphate- sulphur rich stuctures) which function as metal

sequestering organelles (Morgan et al. 2002).

(b) Some metals are taken up by earthworms and bound by a protein called

‘metallothioneins (MT)’ which have the capacity to bind metals. Stürzenbaum
et al. (2004) found that Cd detoxification in E. fetida was due to

Table 9.3 A report on bioremoval of heavy metals by earthworms

Earthworm species Heavy metals uptake References

Eisenia andrei Body accumulation factor exceeded 1 only for Cd (17.4

4). BAFs calculated for all analyzed metals can be

ranked as follows: Cd > Cu > Zn > Ni > Cr > Pb

Rorat et al.

(2017)

Eisenia fetida A slight reduction of total Pb in a binary biological

system was observed with an adverse impact of Pb on

the morphological parameters of the earthworms

Liu et al.

(2017)

Eisenia fetida and

Metaphire guillelmi
M. guillelmi accumulated more Cd than E. fetida but at

higher doses of Cd, inverse results were obtained. This

behavioural response indicates higher bioaccumulation

at low-dose exposure and to the lower detoxification

ability of M. guillelmi

Chen et al.

(2017)

Eisenia fetida Co uptake was higher than Hg which proves that Hg is

more toxic to earthworms as it effects coccon produc-

tion, coelomocytes, body weight and length also

Jatwani

et al. (2016)

Eudrilus eugeniae An increased concentration of Cd, Co and Ni were

obtained in the tissue of the earthworms after the

vermicomposting processes which showed that

vermicomposting can efficiently remove heavy metals

Soobhany

et al. (2015)

Metaphire posthuma
and Eisenia fetida

The removal efficiency ofM. posthumawas positive for
Zn but it was negative in E. fetida

Sahariah

et al. (2015)

Eisenia fetida Indicated a reduction in As mobility and bioavailability

in all matured composts and vermicomposts.

Maňáková

et al. (2014)

Lumbricus rubellus The heavy metals Cr, Cd and Pb contained in

vermicompost of sewage sludge were lower than initial

concentrations, with 90–98.7% removal

Azizi et al.

(2013)

Eisenia fetida Cu and Zn appear to be less toxic to earthworms than

Cd and Pb

referring to Cytochrome P450 monooxygenase activity.

Cao et al.

(2012)

Eisenia fetida Bioaccumulation of Cu and Zn within 10 weeks of

experiment

Malley et al.

(2006)

BAF Bioaccumulation factor
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compartmentalization of the metal by binding it to metallothioneins in the form

of Cd-metallothioneins

(c) Wang et al. 2014 studied the relative contribution of the dermal and the gut

exposure route to the uptake of heavy metals in earthworms. Using a modeling

approach, it was estimated that the dermal exposure route accounted for more

than 96% of the total uptake of Cd and Cu in the E. Andrei.
(d) Malonylaldehyde (MDA) is an important indicator of lipid peroxidation whose

level increases reactive oxygen species stress (produced in response to oxida-

tive stress). Sinhorin et al. (2014) measured decreased malonylaldehyde content

in E. fetida under Cd stress which may be one of the mechanism to resist against

heavy metal.

(e) Earthworms either bio-transform’ or ‘biodegrade’ the contaminants rendering

them harmless in their bodies. The process takes place in their gut followed

metabolization, complexation and sequesteration in tissues or vacuoles

(Gu et al. 2016).

(f) The worm’s digestive system is capable of detaching heavy metal ions from the

complex aggregates between these ions and humic substances in the waste as it

rots. Various enzyme-driven process accumulate the metal ions in the worms’
tissues rather than being released back into the environment. The separation of

dead worms from compost is a relatively straight forward process allowing the

heavy metal to be removed from the organic waste (Jatwani et al. 2016).

Fig. 9.4 Principal mechanism of vermiremediation. Vermiremediation is very cost-effective,

environmentally sustainable way to treat heavy metals polluted soil. It lead to significant improve-

ment in the quality of soil
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9.4.3.2 Challenges in Vermiremediation

Although earthworms are capable of accumulating heavy metal from the soil, it is

not considered worldwide as a practical approach of enriching contaminated sludge

or soils since there are evidences which indicates that progressive mineralization

tends to increase the total metal concentration of metals in the substrates (Sizmur

et al. 2011). Moreover, the application of metal-containing vermicomposts, to any

contaminated site will inevitably introduce heavy metal into terrestrial food chain

by earthworms which are significant prey organisms (Roodbergen et al. 2008). The

general concept is that when earthworms are available for their predators with high

concentrations of heavy metals in their tissues, the heavy metal should not get

transfer to higher trophic levels and lead to biomagnification of heavy metal. There

are few reports which exhibits such predator-prey phenomenon along with transfer

of metals in terrestrial and aquatic food chains (DeForest et al. 2007). There are no

recent cases reported on biomagnification of heavy metal from one trophic level to

another via earthworms but that does not mean that the bioaccumulation of heavy

metal by earthworms during vermicomposting, or during field exposure has no

potentially serious ecotoxicological impacts on consumer species since earthworms

can transfer metal fractions both from internal cellular compartments and alimen-

tary canal. Future research is needed to better understand the interaction mechanism

between heavy metal exposure and soil macroorganism in polluted soil.

9.4.4 Bioremediation of Heavy Metals by Algae

Accumulation of heavy metal by algae has received attention only in recent years

because of its potential for application in environmental protection and recovery of

some important metals (Zeraatkar et al. 2016; Malik 2004). The algal biomass may

serve as an ecologically safer, cheaper and efficient means to remove heavy metal

ions from waste water by biosorption process (Pohl and Schimmack 2006). The

metal content of the indigenous algae can be used for biomonitoring metal pollution

in a water body since the amount of metal accumulated by algae is related with the

concentration of metal in water (De Filippis and Pallaghy 1994). The heavy metal

uptake may depend upon the specificity of the algal strain used in the process for

interaction. For eg. Monteiro et al. (2010) investigated removal of Cd ions using

two strains of Desmodesmus pleiomorphus cells and found 25% difference between

them for cadmium biosorption. Romera et al. (2007) introduced brown algae as a

very good candidate for biosorbents of heavy metal ions. Alginate is one of the

main constituents of the cell wall of brown algae and it is well recognized to be

involved in metal accumulation (Davis et al. 2003). The phenomenon of remedia-

tion by algae can be broadly categorized in two different sets. (i) Bioaccumulation

of heavy metal by living cells and biosorption by non-living cells, (ii) Macroalgae

and microalgae.
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9.4.4.1 Live vs. Non-living Biomass for Heavy Metal Biosorption

Heavy metal ions can be removed from wastewaters by either live cells or dead

cells by the usage of inactive biomass. Lamaia et al. (2005) reported the limited

sortion capacity of heavy metal ions by live cells as they were harmed by the

increased heavy metal ions. The live cells are affected by many environmental

factors which influence their sorption capacity. The absorption mechanism of the

live cells are more complex as the intracellular heavy metal uptake occur at the

growth phase where adsorption occurs whereas in dead algal cells, the heavy metal

are absorbed on the surface of the cell and it is an extracellular process (Godlewska-

Zyłkiewicz 2001). The non-living algal biomass is an assemblage of polymers such

as sugars, cellulose, pectins, etc. which are capable of binding heavy metal ions

(Volesky 2007; Arief et al. 2008). Moreover, they do not require a nutrient supply

and therefore can be used for multiple sorption desorption cycles (Areco et al.

2012).

9.4.4.2 Macro Algae vs Micro Algae

The green macroalgae (seaweed) exhibit high affinity for many metal ions (Mani

and Kumar 2014). The adsorption capacity of the macroalgae is directly related to

the alginate content, availability and its specific macromolecular conformation. Lee

and Chang (2011) tested the bioremoval capacity of two macroalgae Spirogyra and
Cladophora for Pb(II) and Cu(II) and found that although the functional groups of

these two genera of algae were similar but the sorption capacity of Spirogyra was

superior to Cladophora.
Microalgae has gained more demand due to the development of innovative

mass-production and more efficient biosorption of heavy metal ions. Minimal

growth requirements (solar light and CO2) make them suitable for bioremediation

of heavy metal. Microalgae have developed an extensive spectrum of mechanisms

(extracellular and intracellular) to cope with heavy metal toxicity (Kumar et al.

2015). Spirulina spp. and Planothidium lanceolatum are reported to remediate Ni

and Zn (Doshi et al. 2008; Sbihi et al. 2012).

9.4.4.3 Mechanism of Algal Bioremediation

The accumulation of heavy metal ions in algae occurs in two phases (Monteiro et al.

2012). The first is a rapid passive biosorption where the metal ions adsorb onto the

cell surface within a short span of time, and the process is metabolism independent.

The second phase is a slower active sorption of heavy metal ions into the cytoplasm

of algal cells. This phase is metabolism-dependent (Talebi et al. 2013).

The biosorption capacity for heavy metal ions has been attributed to presence of

various functional groups on the algal cell surface such as hydroxyl (OH),
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phosphoryl (PO3O2), amino (NH2), carboxyl (COOH), sulphydryl (SH), etc., which

confer negative charge to the cell surface (Kaplan 2013). Since heavy metal ions are

in the cationic form in water, they get adsorbed onto the algal cell surface. The

functional groups are associated with various cell wall components such as pepti-

doglycan, teichoic acids, polysaccharides and proteins which provide metal binding

sites (Kuyucak and Volesky 1988).

Other mechanisms have also been reported like complexation which is important

in metal sorption by algae (Davis et al. 2003). Adhiya et al. (2002) reported that Cd

biosorption to Chlamydomonas reinhardtti involves complexation with carboxylic

groups. Electrostatic attraction and covalent binding, respectively, mediate Ni and

Zn adsorption on Chaetophora elegans (Andrade et al. 2005). Aluminum sorption

onto algal cells involves a different kind of mechanism. Aluminium (Al) ions bind

to biomass in the form of polynuclear Al species and thus prevents other heavy

metal ions from accessing the binding site (Bottero et al. 1980).

9.4.4.4 Challenges in Algal Bioremediation

Use of algae for biosorption of heavy metal ions from wastewaters has shown

promising results but an efficient and commercially viable algal technology still

need to be developed. There is a need to develop a thorough understanding of the

mechanism of metal sorption. Still there are many freshwater and marine algae

which has not been explored for their metal binding capacity. Therefore, screening

of algae is a necessary step for selection of the best algal species with high affinity

for a particular metal. The algal biomass has to be immobilized before passing

wastewater through it. For this purpose, alginate is used which is an expensive

chemical and thus not feasible for metal removal from wastewater always.

Although the use of inactivated algal biomass has been preferred, there are some

limitations to it as well. Dead cells cannot be used where biological alteration in

valency of a metal is sought. Moreover, there is no scope for biosorption improve-

ment through mutant isolation. On the other hand, use of live cells also carries some

demerits. The metal recovery might be limited since it is bound intracellularly and

the metabolic extracellular products may interact with metals and retain them

within the solution. However, to achieve the highest removal efficiency, interaction

between algal strains, dead or live cells and pollutants should be optimized.

9.5 Integrated Approach Using Multi-biosystems

for Remediation of Heavy Metals

There are many cases of heavy metal bioremediation reported using single

biosystem but very few reports on biological approaches using multi-biosystems.

When compared bioremediation strategies applied to polluted soils between

9 Bioremediation of Heavy Metals 293



combined and single process, it can be easily concluded that combined multiple

bioremediation approaches removed much more heavy metal from the soil and

highly efficient hydrophobic than each single process alone.

Bacterial consortia have gained interest of environmentalists where the ultimate

aim of the bacterial mixtures system is to deliver benefits environmental applica-

tions of cleaning up the contaminants (Emenike et al. 2016). Compared with single

strain, the bacterial mixtures showed higher growth rate and a considerably higher

heavy metal bioremediation which might due to higher bacterial cell density at high

levels of heavy metals (Kang et al. 2016).

Phytoremediation alone sometimes may not be sufficient to bring out the best

result and may cause toxic effects to the plants at higher concentrations of heavy

metal. Inoculation of the plant rhizosphere with microorganisms is an established

route to improving phytoextraction efficiency. The plants are benefited from syn-

ergistic effects with rhizobacteria that improve plant growth and metal accumula-

tion, mitigating the toxic effects on plants and increasing their tolerance to heavy

metals (Wood et al. 2016; Sumi et al. 2015). PGPBs-legumes associations represent

an alternative procedure for phytostabilisation of heavy metals polluted soils

mainly generated by industrial and agricultural practices (Hao et al. 2014).

We know microorganisms are responsible for the biodegradation of heavy metal

but the combination of earthworms and microbes have shown better results. Tomar

and Suthar (2011) have reported a successful treatment of waswater by microbial-

earthworm ecofilters as a promising economical process. The concept behind the

approach is that microorganisms perform biochemical degradation of waste mate-

rial while earthworms regulate microbial biomass and activity by directly or/and

indirectly grazing on microorganisms (Liu et al. 2012). Earthworms have a com-

plex digestive system in which the earthworm and microbes in the gut are mutually

benefited from each other and lead to the degradation of ingested contaminants

(Brown et al. 2000). However, it is difficult to differentiate between the metabolism

of earthworms microorganisms which contribute to the bioremediation of heavy

metal.

Algae and bacteria have coexisted ever since the early stages of evolution. They

synergistically affect each other’s physiology and metabolism. Many studies have

dealt with algae-bacteria consortium for metal bioremediation (Boivin et al. 2007).

Higher concentrations of heavy metal can cause toxic effects in algae but the

consortia of algae and bacteria overcomes it and they mutually detoxify and

assimilate metals from metal rich environments.

Generally, fungi are more tolerant to metals than bacteria (Kidd et al. 2009).

They can proficiently explore the soil microbes which are not accessible for plant

roots due to their small diameters. Fungi can compete with roots and other micro-

organisms for water and metal uptake, protect the roots from direct interaction with

the metals and inhibit metal transport through increased soil hydrophobicity (Wen-

zel 2009). The endophytic fungi could increase resistance of the host plant to multi-

metal contamination. They can also reduce the level of growth-inhibiting stress

ethylene within the plants and also provide the plants with iron from the soil. Thus,
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they prove to be a suitable candidate for remediation of heavy metal in combination

with plants with reduced toxicity of plants under stressed condition.

Remediation of contaminated soils using earthworms and plants appears to be

cost-effective and environmentally friendly technology. Wang and Li (2006)

observed higher uptake of heavy metal by plants under earthworm inoculation

which was probably due to the increase in dry matter production stimulated by

earthworms. However, further research is needed to optimize the species combina-

tions for suitable heavy metal uptake. A brief summary of the remediation of the

heavy metal by integrated approach is demonstrated in Table 9.4.

9.6 Metagenomics

To bioremediate the heavy metal contaminated site, various biosystems are used.

But very often, remediation techniques fail because of the difficulty to control and

expand key biodegradative processes from bench to full scale (Fantroussi and

Agathos 2005; Paerl and Steppe 2003). To get better results, a better understanding

of the ecology of microbial communities inhabiting contaminated sites is needed, as

well as of their interactions with the environment (Rittmann et al. 2006). But, the

complete study of the microbial communities of the environment is challenging as

most of them are recalcitrant to conventional cultivation (Stewart 2012). The proper

management of microbial resources needs a comprehensive characterization of

their genetic pool to measure the fate of contaminants and enhance bioremediation

processes (Gillan et al. 2015). The emergence of metagenomics has the potential to

revolutionize the overall bioremediation process as it gives direct access to micro-

bial communities inhabiting polluted environments independently of their

culturability (Bouhajja et al. 2016).

There are few main metagenomic approaches:

9.6.1 Library-Based Targeted Metagenomics

The environmental DNA is isolated from the environmental samples and cloned

inside suitable host (usually Escherichia coli), then the clones of interest are

selected based on their expression of biodegradative functions or sequence homol-

ogy with probes and primers, thus establishing a metagenomic library. As host,

Escherichia coli has been extensively used in metagenomic studies (Gabor et al.

2004) but use of multiple-host systems and broad-host-range vectors can be used to

overcome the limitations of gene expression machinery or toxicity of some gene

products in a single host (Cheng et al. 2014; Ekkers et al. 2012).
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Table 9.4 Some examples of bioremediation of heavy metal by integrated approach

Biosystems

Reports on bioremediation on heavy

metal References

Bacterial consortia- Bacillus sp.,
Lysinibacillus sp. and Rhodococcus
sp

Optimal removal of Pb, Mn and Cu in

leachate-polluted soil of a land fill

environment. Enhanced metabolic

activity due to bioaugmentation of the

microcosm using bacterial inoculums

Emenike et al.

(2016)

Bacterial consortia- Viridibacillus
arenosi B-21, Sporosarcina soli
B-22, Enterobacter cloacae KJ-46,
and E. cloacae KJ-47

Compared with single strain cultures,

the bacterial mixtures demonstrated

greater resistance and efficiency for

the remediation of heavy metals such

as Cd, Pb, Cu

Kang et al.

(2016)

Plant and bacteria-Sedum alfredii and
Burkholderia cepacia

Increase in the plant biomass and

leading to enhanced Zn and Cd

uptake

Li et al. (2007)

Plant and bacteria-Brassica juncea
and Bacillus spp.

Increase in the plant dry weight with

an increase in Cd uptake

Jeong et al.

(2013)

Plant and bacteria-Vicia faba, Lens
culinaris and Sulla coronaria
co-inoculated with Enterobacter clo-
acae, Pseudomonas sp. and Rhizo-
bium sullea

Inoculations decreased heavy metals

(Cu and Pb) availability in the soil

indicating a positive effect of

co-inoculation of legumes by appro-

priate heavy metals resistant bacteria

for the phytostabilisation of mine

tailings

Saadani et al.

(2016)

Plant and bacteria-Lepidium sativum
and Azotobacter

Stimulate the plant growth and

enhance its tolerance to Cr(VI) and

Cd(II), to ultimately provide a reli-

able phytoremediation system.

Sobariu et al.

(2016)

Fungi and plant-Trichoderma
atroviride and Brassica juncea

Significantly alleviates the cellular

toxicity of Cdand Ni from contami-

nated soil

Cao et al.

(2008)

Fungi and plant- Cryptococcus sp.
(yeast), Rhodotorula sp. and
B. chinensis

Fungi helps in plant growth in multi-

metal contaminated soils and give

resistance to Cd, Pb, Zn, and Cu

Deng et al.

(2012) and

Wang et al.

(2013)

Fungi and plant-Microsphaeropsis
sp. and Solanum nigrum

Shows enhanced Cd biosorption

capacity

Xiao et al.

(2010)

Fungi consortia-Mucor sp. and
Fusarium sp.

Increased metal concentrations in the

canola (Cd, Pb, and Zn), elevated the

extractable metal amount, and

increased metal translocation from

roots to shoots

Deng et al.

(2014)

Plant and Earthworm-Vicia faba, Zea
mays, and Eisenia fetida

Earthworms and plants increased the

uptake of metals (Pb, Cd and Zn)

from contaminated soils. The

earthworm-plant-soil interaction

influence both the health of the plant

and the uptake of heavy metals by

plants

Lemtiri et al.

(2016)

(continued)
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9.6.2 Direct Sequencing of Metagenomes

It does not involve a cloning step and has been more often applied to polluted

environments for characterization of the taxonomic and functional composition of

microbial communities and their dynamics. The analysis has focused on 16S rRNA

genes and marker genes of biodegradation.

9.7 Next Generation Sequencing

Next Generation Sequencing (NGS) was introduced in 2005 (Margulies et al.

2005).There has been a remarkable increase in metagenomic studies based on

NGS. It includes immense parallel sequencing of clonally amplified or single

DNA molecules spatially separated in a flow cell (van Dijk et al. 2014).

Lastly, the huge amount of data generated by metagenomic studies is analyzed

using bioinformatic tools to predict the microbial diversity, enhance the discovery

and characterization of unknown bacterial and fungal metabolic pathways involved

in the degradation of hazardous pollutants. Even though metagenomics is having

some technical and computational challenges, the positive claims of it can be used

to efficiently monitor the clean-up process of the environment and mitigate the

effects of the pollutants on the eco-system.

9.8 Metabolomics

The main challenge faced by plants growing under heavy metal stressed condition

is biomass reduction, nutrient deficiency aided with increased toxicity of heavy

metal. Plants are considered to biosynthesize specialized (primary and secondary)

metabolites to adapt to the environmental stresses (Auge et al. 2014).

Table 9.4 (continued)

Biosystems

Reports on bioremediation on heavy

metal References

Plant and Earthworm-Lantana
camara and Pontoscolex corethrurus

Interaction between earthworm and

plant have a positive effect on

Pb-phytoextraction yield and was

significantly correlated with the

increase in total microbial activity

and richness index of the fungal

community

Jusselme et al.

(2015)
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Metabolomics is a newly emerging discipline which can serve to analyze the

whole set of small molecular weight chemical compounds (<1000 Da) in organism

(Ji et al. 2015; Watanabe et al. 2015). It provides a glimpse of dynamic changes in

metabolic pathways in the host plant regulated by microbial population and their

response to highly dynamic environmental conditions in their unique ecological

niches. This field is coupled with functional genomics to understand biochemical

phenotypes across a range of biological systems. Metabolomics measures all

metabolites at a specific time point, reflecting a snapshot of all the regulatory events

responding to the external environmental conditions (Kumar et al. 2016). The

metabolites reflect the true integration of gene regulation and protein expression

incorporating the impact of the environment and other organisms. The metabolites

fate can be employed as bioindicators to monitor the biological effects of the

pollutants on living organism and help in better understanding of the environment

(Tomanek 2014).

Recent developments in analytical instrumentation and bioinformatics tools has

led to evaluate numerous plant metabolites, metabolic changes and finally elucidate

metabolic pathways responsible for heavy metal tolerance to plants (Obata and

Fernie 2012). Current studies are mostly restricted to targeted metabolomics, which

focuses on amino acid and/or lipid metabolism (Kumari et al. 2015; Melo et al.

2015).

9.8.1 Various Metabolomic Platforms to Identify Metabolites

The main strategies engaged to analyse the metabolome of plants include

(i) metabolite profiling; (ii) targeted analysis; and (iii) metabolic fingerprinting

(Hill and Roessner 2013). Metabolite profiling is a semi-quantitative which allows

for detection of a large set of both known and unknown metabolites. Target analysis

is an absolute quantitative approach which detects metabolites involved in a

particular pathway by utilizing specialized protocols and detection techniques.

Finally, metabolic fingerprinting is the highest throughput procedure and generates

fingerprints characterizing a specific metabolic state of a sample by non-specific

and rapid analysis of crude metabolite mixtures.

Without adequate knowledge of the metabolites under stressful conditions, a

targeted metabolomic approach possess a high risk of missing significant changes in

the metabolome. In order to achieve desired results, there is a need to expand

beyond the known targets that can only be accomplished with non-targeted, unbi-

ased metabolomics also known as global metabolomics (Kueger et al. 2012).

Global metabolomics provides a panoramic view covering both primary (including

sugars, amino acids and tricarboxylic acids involved in primary metabolic pro-

cesses such as respiration and photosynthesis) and secondary metabolites (includ-

ing alkaloids, phenolics, steroids, lignins, tannins, etc.) in a single run and has

advantages of uncovering many novel compounds.
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9.8.2 Analytical Platform to Analyze the Metabolites

A range of analytical platforms have been established which includes nuclear

magnetic resonance (NMR), Fourier transform ion cyclotron resonance mass spec-

trometry (FT-ICRMS) and mass spectrometry (MS). MS-based metabolomics

combines chromatographic separation with mass spectra and are available in

multiple forms such as liquid chromatography (LC –MS), gas chromatography

(GC –MS), capillary electrophoresis (CE –MS) and matrix-assisted laser desorp-

tion/ionization (MALDI-MS). However, due to high grade of molecular weight and

structural diversity between primary and secondary metabolites, a single platform is

not sufficient to indentify and quantify the metabolites (Kueger et al. 2012).

Therefore, a combination of different techniques will reveal a vast metabolite

profile. However, investigations have demonstrated 1H NMR as efficient approach

for detection of the metabolites released in responses to metal pollutants whereas,

MS-based analytical approaches are preferred to investigate plant responses to

environmental cues due to its sensitivity to low abundant molecules and the

flexibility for detecting multiple classes of molecules (Hill and Roessner 2013).

9.8.3 Bioinformatics Tools

The vast amount of metabolic data generated need to be archived, managed and

integrated for metabolic analysis. So, various bioinformatics tools are designed for

processing of raw data, mining, statistical analysis, management and mathematical

modelling of metabolomic networks. A range of bioinformatics tools for effective

insilico data pre- processing have been designed for this purpose including Ana-

lyzer Pro, Automated Mass Spectral Deconvolution and Identification system, and

many more (Fukushima and Kusano 2013).

Though metabolomics is a relatively new approach in plant biology, it can be

combined with other ‘omics’ disciplines turning out to be a major tool in revealing

new knowledge on diverse metabolites produced by plants to heavy metal contam-

inants, and also on their metabolomic reprogramming for acclimation to extreme

perturbations.

9.9 Proteomics

It is very important to understand why a particular metal at a certain concentration

can alter from non-toxic to toxic form for other species at a slightly higher

concentration (Ge et al. 2009; Vido et al. 2001). In the past years, substantial

improvements in protein separation and identification techniques have opened the
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application of proteomic methods to answer the biological questions along with

metagenomics and metabolomics methods (Isaacson et al. 2006). The heavy metal

uptake process across a number of unrelated plant species appears to be associated

with proteins involved in energy metabolism, the oxidative stress response and

abiotic and biotic stress (Visioli and Marmiroli 2013). Examining the toxic effects

of heavy metals on protein expression can be useful for gaining insight into the

biomolecular mechanisms of toxicity and for identifying potential candidate metal-

specific protein markers of exposure and response (Luque-Garcia et al. 2011).

Proteomics, an important omic approach facilitates both identification and quanti-

fication of differentially expressed proteins. Moreover, the identification of post-

transcriptionally regulated array of functionally diverse genes playing a key role in

conferring resistance towards stress has also been advanced (Zargar et al. 2017).

Proteomic data supplement the huge genomic and transcriptomic data sets in

providing a clear picture of the process and thus helps in determination of major

genetic determinants of the hyperaccumulation phenomenon (Visioli and

Marmiroli 2013). Research analysis has depicted that proteomics in union with

bioinformatic tools, can facilitate the discovery of new and better biomarkers of

heavy metal toxicity (Zhai et al. 2005).

The current state of knowledge regarding the proteomics of hyperaccumulation

is inadequate to understand the role of the large number of proteins involved and the

level of cross-talk between different pathways (Visioli and Marmiroli 2013). Few

proteomic methodologies appropriate for the identification of key regulators of

hyperaccumulation are as follows.

9.9.1 Gel and Non-gel Approaches

For most of the plant proteomics studies, pre-fractionation of the sample prior to

mass spectometry (MS) analysis is carried out which can be achieved by gel

electrophoresis or by certain gel-free techniques. 2D-Gel electrophoresis (2D-GE)

has become the optimum choice for separating complex protein mixtures with

respect to achievable resolution and reproducibility (Rose et al. 2004). However,

there are certain drawbacks such as limited capacity to fractionate hydrophobic

proteins and glycoproteins successfully, detection of small peptide molecules and

the risk of quantification (Visioli and Marmiroli 2013). Generally, the reproduc-

ibility of LC-based separation is better than that achieved by 2D-GE which is an

important advantage for comparative proteomics (Lambert et al. 2005; Pirondini

et al. 2006). There are various statistical packages which facilitate semi-

quantitative proteomics such as Progenesis (Nonlinear Dynamics), ImageMaster

2D Platinum (Ge Healthcare, Amersham Biosciences) and PDQuest (Bio-Rad).
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9.9.2 Mass Spectometry-Based Quantification

The introduction of MS technology has widely enhanced the throughput of prote-

omic data compared to electrophoretic or chromatographic methods and provides a

more reliable characterization of all the protein species along with identification of

post-translational modifications such as phosphorylation and acetylation, which are

important in cell signalling and various epigenetic phenomena (Bantscheff et al.

2012).

9.10 Conclusion

Heavy metal contamination has taken a serious turn leading to devastating effects

on environment and human health. Compared to the complexity and time con-

sumption involved in the conventional methods for remediation of soil, bioreme-

diation techniques has proven to be the best alternative techniques where in

addition to bioremoval of heavy metal, it also replenishes the site and maintain

the ecological balance of the environment. Plants are the most widely accepted

bio-tool for remediation of soil. But the traditional phytoremediation approaches

are less economical because the hyperaccumulators are generally slow growing and

have less biomass production. Earthworms, being the soil organism, leads to

significant improvement in the quality of soil and assist in heavy metal bioremoval

in their biomass but higher concentrations of heavy metal produce toxic effects in

earthworms. The bioremediation capacity of the algae and fungi have been studied

extensively and has been effective remediators in many cases. Use of microbes has

arisen as the savior for bioremediation. Recently, the integrated approach of using

more than one organism for bioremediation has gained popularity as it helps to

overcome the drawback of a single biosystem. Moreover, the symbiosis relation

between has resulted in high performances such as more metal accumulation, high

biomass production and well adapted to variety of climatic conditions, therefore

driving us towards a sustainable environment. A successful bioremediation strategy

require a detailed understanding of the functioning of degradative microbial com-

munities which is quite a challenge for microbiologists. Thus, metagenomics,

metabolomics and proteomics have come into play and has become the major

tool for identification of all the unexplored microbial communities possessing the

ability to degrade heavy metal and identification of the diverse metabolites pro-

duced by organism to tolerate under stress conditions. Thus, coupling both the

‘omics’will give a comprehensive understanding of the microbial communities and

their biodegradation pathways.

Moreover, in order to achieve even better results for bioremediation, certain

points have to be considered as follows:
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(a) The exploitation of the floral diversity should be extended for obtaining the

effective hyperaccumulator plant which can maintain effective rate of heavy

metal uptake throughout. Prior comprehensive risk assessment studies should

be carried out to protect the local plant diversity.

(b) Studies need to be conducted to have a better understanding of the interactions

between heavy metal, soil, microbe, earthworm and plant roots to comprehend

the fate of metal ions in the soil.

(c) More research is needed to obtain effective and environmentally safe chemicals

which can increase the metal solubility in soil and thus, enhanced the bioavail-

ability of metals to the plant roots.

(d) In spite of all the advances, most of the research is still limited to laboratory

scale studies. Long-term in-situ field trails are actually required for to prove the

efficacy of the strategy in real-contaminated area.

(e) More sophisticated bioinformatics tools should be developed to reconstruct full

length metabolic and catabolic pathways. More studies have to carried out

opting an integrated approach using the ‘omics’ tool together for better insights.
Thus, it can provide a practical implementation of large-scale application of

bioremediation.
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Chapter 10

Quantitative Structure-Activity Modelling
of Toxic Compounds

Raghunath Satpathy

Abstract Continuous exposure of living organisms to toxic compounds is a major

health issue. Studying the effects of toxic compounds is a difficult task because

compounds are present at trace levels in complex media with other toxic com-

pounds. Toxicity evaluation by animal testing is long and costly. Therefore, this

chapter reviews an alternative method of toxicity evaluation, named quantitative

structure-activity relationship (QSAR) modelling, which is used to predict the

acute toxicity of substances. The principle is that the molecular structure is

correlated with toxicological effects. The characteristics of toxic compounds are

computed and correlated using software tools and databases. Biodegradation

features and classification methods are discussed. Various computational tools

and databases are presented. This review also presents the discipline of

bionformatics, to study risk, toxicity and biodegradability.

Keywords Biodegradation • Computational tools • Database • Descriptors •

Environmental toxicity • Quantitative structure-activity relationship modeling •

Validation methods • Risk assessment • Toxic compounds
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10.1 Introduction

The diversity in the chemistry of the several environmental toxic compounds is one

of the important consideration to study their toxicity (Raies et al. 2016; Chen et al.

2013; Basant et al. 2016). Some of these toxic substances are extensively used in

day to day life as well as many industrial processes as solvents, as precursors for

another compound such as dyes, plasticizers, pharmaceuticals, pesticides etc. Every

year, millions of tons of chemicals are released into the environment (Settivari et al.

2015; Awaleh and Soubaneh 2014; Perocco et al. 1983). In order to protect human

health and the environment, risk assessments should be conducted for all toxic

chemicals, especially for those already found in the environment. Several tons of

these toxic compounds produced from industry and their accumulation in the

environmental habitats represents a global ecological danger. Also, many of these

substances have also been reported to be persistent in nature (Halling-Sørensen

et al. 1998; Battaglin and Kolpin 2009; Li et al. 2011; Luo et al. 2015; Satpathy

et al. 2015a, b). Toxicity tests are usually used to predict the harmful effect of these

compounds by considering the animal models (Raies et al. 2016). However, this is a

time-consuming process also it is not economically feasible to conduct toxicity tests

on each chemical individually and also difficult to study the combinatorial effects

of the toxic substances on organisms. Therefore, in the field of environmental

toxicology and environmental chemistry, Quantitative Structure-Activity Relation-

ships (QSARs) is currently used to predict toxicity for a number of toxic chemicals

(Doke and Dhawale 2015; Raunio 2011; Boobis et al. 2002).

Quantitative structure-activity relationships (QSARs) referred as a correlation of

the chemical structure to a wide variety of physical, chemical, biological (including

biological, toxicological, ecotoxicological) properties. Once, the suitable correla-

tions are established and validated, the same can be used to predict properties of

other similar unknown compounds, for that the properties are not yet measured

(Fig. 10.1). The QSAR process depends on the principle that molecular structures

are internal factors are responsible for the physicochemical properties, environ-

mental behavior, and ecotoxicology of organic compounds.

One of the assumptions is to be considered in QSAR analysis is that those

chemical compounds share the similar structures must have the similar physico-

chemical properties thereby exhibiting similar toxicological effects on the environ-

ment. The relations can be represented as mathematical models, termed quantitative

structure-activity relationships models. Traditional Quantitative structure-activity

relationships are regression models between the biological activities called as the

dependent variable and structure-related descriptors (numerical presentation of
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molecular features) called as independent variables. By a proper choice of the

variables and an adequate data analysis, QSARs or similar models may account

for exposure-related chemical properties as well as for correlations among

responses in different test systems. Furthermore, by a proper selection of the

training compounds, QSARs can cover large series of similar compounds and

thus provide the basis for an efficient and comparative screening assessment of

toxic substances. (Nendza et al. 1991; Tunkel et al. 2005; Hulzebos et al. 2005).

One of the important features of QSAR study is the physical chemistry lies at the

heart of all biological activity, and it is a reflection of that fact that so many

physicochemical parameters have been devised and used in QSAR studies. So,

Knowledge about different types of toxicity is essential in environmental risk
assessment, a study that includes acute toxicity, chronic toxicity and environmental

fate and behavior of a chemical substance. The quantitative evaluation of the

toxicity of compounds enables to derive potential models in the different environ-

ment such as soil, air, water, and sediment.

10.2 Quantitative Structure Activity Relationship Methods

The foremost important thing in QSAR methods is to correlate the molecular

property of the toxic compounds with the other biological and environmental

property. The molecular properties are coded by the representation of descriptors.

The molecular descriptor is computed by a logical and mathematical method that

transduces the chemical information of molecule in a numerical form as shown and

explained in Tables 10.1 and 10.2.

The QSAR method begins by taking a suitable group of compounds known as

training data set. The required molecular features of a suitable training set are data

Fig. 10.1 Showing the importance of quantitative structure activity relationship based analysis on

toxic compounds. Three major categories of characterization can be made from the analysis
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may be taken from literature, various databases and sometimes computed from by

the sophisticated software tools. The parameter to be studied and correlated with the

molecular features may be either a physicochemical property, such as water solu-

bility, vapor pressure, Henry Law constant or octanol/water distribution coefficient

(log P) or a biological activity, for instance, acute toxicity values, bioaccumulation

Table 10.1 Common categories of descriptors derived from the toxic molecules for quantitative

activity relationship analysis

Sl

No.

Types of

descriptors Explanation Common examples

1 Constitutional Based on atomic constitution

of the chemical structure

(molecule)

Total number of atoms and bonds in

the molecule, numbers of atoms of

certain chemical identity (Carbon,

Hydrogen, Oxygen, Nitrogen, etc.) in

the molecule, numbers of single, dou-

ble, triple, aromatic or other bonds in

the molecule, total number of rings

2 Topological

descriptors

Numbers that give information

about the bonding arrangement

in a molecule.

Weiner index, Randic indices, Kier

and Hall indices, connectivity index

and so on

3 Electrostatic

descriptors

Single values that give infor-

mation about the molecular

charge distribution

Polarity indices, multipoles, and

polarizability, topological polar sur-

face area

4 Geometrical

descriptors

Values that describe the mole-

cule’s size and shape

Moments of inertia, molecular vol-

ume, molecular surface area, and other

parameters that describe length,

height, and width

5 Quantum

chemical

Give information about the

electronic structure of the

molecule

Highest occupied molecular orbital

and highest occupied molecular

orbital energies, refractivity, total

energy, ionization potential, electron

affinity, and energy of protonation

Compararive analysis among different types of descriptors are usually helpful for better prediction

of toxicity

Table 10.2 Types of biological and environmental properties of the toxic compounds

Sl

No.

Properties of

compounds Explanation Common examples

1 Biological

properties

Properties related to biolog-

ical activities

Binding affinity, lethal dose, inhibition

concentration, mutagenicity, carcinoge-

nicity, anti-inflammatory activity, anti-

depressant activity, skin sensitization

and so on

2 Environmental

properties

Parameters associated with

environmental fate of toxic

pollutants

Biodegradation, bio-concentration,

Biochemical oxygen demand, Chemical

oxygen demand, half -life time, mobil-

ity, atmospheric persistence
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or biodegradation data. After proper selection of training set, the actual QSAR

modeling starts. The modeling procedure is to statistically correlate the molecular

feature along with the biological/ environmental properties of consideration.

(Fig. 10.2).

The correlations among both dependent and independent variables are most

commonly expressed by a linear equation. For examples, if the molecular properties

(independent variables) are x, y, z. . ., and the desired activity (dependent variable)

of study is A.

For compound i, the relationship can be written as

Ai ¼ a xi þ byi þ czi þ β

Where a, b, and c are the expression of the correlation of the particular molecular

property with the activity of the compound (Ai), and β is a constant. The correlation
in the above equation is most frequently calculated using various statistical

Fig. 10.2 Steps of

quantitative structure

activity relationship

modeling methods for

prediction of toxic

compounds. After end of the

analysis an equation and

plot is obtained to represent

the relationship between

toxicity and molecular

feature of the compound
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methods. The most common QSAR models have been developed to predict the

environmental toxicity is based on the physicochemical parameters of the toxic

compounds. Various common physicochemical parameters and variables consid-

ered for toxicity analysis are the size and structure, water solubility, vapor pressure,

octanol/water partition coefficient (corresponds to lipophilicity) and adsorption

coefficient etc. QSARs have been developed with acceptable results for most

industrial chemicals. In the case of different types of toxic compounds different

dependent variable, parameters have been analysed in QSAR analysis by many

researchers (Table 10.3).

10.3 Quantitative Structure Activity Relationship
Validation Methods

To characterize the established QSAR models, the quality of goodness-of-fit

(Kolossov and Stanforth 2007; Tropsha et al. 2003). The traditional parameters

used for the measure of goodness-of-fit are as follows:

(a) Determination coefficient (R2) or adjusted determination coefficient (Radj2): R
2 is a measure of the quality of fit between model-predicted and experimental

values. But due to over-fitting criteria, obtaining of high R2 values resulting

from low degrees of freedom may lead to a predict a weak QSAR model.

Therefore, the adjusted R2 by the freedom degree (Radj2) should be adopted.

The higher the Radj2 value, the better is the goodness-of-fit.

(b) Summary square error (SSE): This value reflects the deviation of predicted

values from observed values, and depends on the number of data points.

(c) Root mean square error (RMSE), mean absolute residual (MAR), and standard

error (SE) or standard deviation (SD) are commonly used to indicate the

precision of prediction.

(d) F-test: It is a variance test method of the overall significance level and is only

applicable to QSAR models derived basically from multivariate linear regres-

sion (MLR).

In addition to this, the overfitting and underfitting of QSAR models should be

further accessed by the stability analysis of the model (Eriksson et al. 2003;

Baumann et al. 2002; Wehrens et al. 2000; Burden et al. 2000). Usually, model

instability is analyzed, by figuring out the wrong set of variables selected in an

experiment. Many of the commonly used cross-validation methods are used such as

leave-one-out cross-validation (LOO-CV) and bootstrapping. An alternative

method is to split the original dataset into a training set, used for establishing

QSAR models, a test set, and a set for external validation. The objective of using

this method is to ensure that in the case of all these types of data set the evaluation

parameter should not be too dissimilar.
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10.4 Computational Tools Used in Quantitative Structure
Activity Relationship Study of Toxic Compounds

Currently, more and more studies have been carried out by utilizing computational

programs to predict the toxicity of the hazardous chemical compounds. The main

challenge is to discover the novel chemical descriptors, new algorithms, and

Table 10.3 Earlier literature study about QSAR analysis to predict the toxicity of different types

of toxic chemicals

Sl

No. Toxic Compounds

Dependent

variable

parameter References

1 Phenols and thiophenols EC50 Ghamali et al.

(2017)

2 Nitroaromatics compounds IGC50 Artemenko et al.

(2011)

3 Non-polar narcotic EC50 Aruoja et al.

(2014)

4 1-(3,4-dichlorophenyl)-3-methlyurea (DCPMU),

3-(3-chlorophenyl)-1,1-dimethylurea (MCPDMU),

and 1-(3,4-dichlorophenyl)urea (DCPU)

EC50 Neuwoehner

et al. (2010)

5 Poly-substituted benzenes EC50 Netzeva et al.

(2004)

6 Nitrobenzene EC50 Altenburger

et al. (2005)

7 Alcohol ethoxylate surfactants EC50 Wong et al.

(1997)

8 Normal and branched alkanes, alkylbenzenes,

polyaromatic hydrocarbons, alkanols, polyols,

phenylcarbinols, aliphatic primary amines etc

POW Chicu et al.

(2000)

9 Linear alkyl benzene sulphonates and ester

sulphonates

EC50 Hodges et al.

(2006)

10 Carboxylic acids IGC50 Seward and

Schultz (1999)

11 Anilines and phenols Kow Damborsky and

Schultz (1997)

13 Organophosphorus pesticides LC50 de Bruijn and

Hermens (1993)

Major dependent variables were used is EC50

Note: EC50¼ effective concentration 50, refers to the concentration of a toxic substances, that

indices 50 % of mortality in cells after a specified exposure time ; IGC50¼50% inhibition
growth concentration, IGC 50 stands for Inhibited the Growth of Cells by 50% ;Kow and Pow¼
n-octanol-water partition coefficients, is widely used widely used property for assessing the

partitioning behaviour of chemicals in the environment to estimate the fate, behaviour and effects

of toxic chemicals in the environment; LC 50¼ lethal concentration 50, LC50 value is the

concentration of a material in air that will kill 50% of the test subjects (animals, typically mice

or rats) when administered as a single exposure (typically 1 or 4 h)
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statistical perspectives for classification purpose. Another factor for using computer

programs is to calculate toxicity of compounds as for many toxic compounds, the

experimental value for many toxic compounds is not available. The basis for

performing a quantitative structure-activity relationship (QSAR) model is that a

chosen toxic property of chemicals can be described in relation to its features of the

chemical compound that is described by using certain parameters. Therefore,

implementation of a suitable modeling method is required that include a good

mathematical algorithm. However, in using the same algorithm with a chemical

descriptor calculated using different programs, it is likely that variation in results

may obtain (Benfenati 2007). Another potential use of computational methods, this

is used as an alternative to the in vitro and in vivo toxicity tests, because that require
animal testing, are a high-cost and time-consuming process. In addition to this,

these in silicomethods are able to predict the toxicity feature of the molecules even

before they are chemically (industrially) synthesized (Madan et al. 2013).

QSAR based toxicology research utilizes a wide variety of computational tools

(Pirhadi et al. 2016; Liao et al. 2011), such as databases for storing data about

chemicals, their toxicity, and chemical properties, software for generating molec-

ular descriptors and simulation tools to generate the QSAR equation and validation

(Tables 10.4, 10.5 and 10.6). However, the good predictive models for toxicity

parameters depend crucially on selecting the right mathematical approach, the right

molecular descriptors for the particular toxicity endpoint.

10.5 Applications of Quantitative Structure Activity
Relationship Analysis of Environmental Toxic
Compounds

In the field of environmental toxicology, quantitative structure-activity relation-

ships (QSARs) methods have been used as robust tools for predicting the toxicity of

chemicals whenever there is no or little amount of data are available. As per the

statistics, there are more than one million toxic chemicals are exposed to the

environment throughout the world but among them about few as 1000–5000

compounds toxicity data are available. Also the industrial point of view, some

high volume producing compounds having a risk to induce toxicity. However, it is

often difficult to determine whether or not a chemical possesses a particular

mechanism of the toxic action, can be solved by QSAR analysis. A basic and

fundamental understanding of toxicological principles has been considered crucial

to the continued acceptance and application of these techniques as biologically

relevant (Gopi Mohan et al. 2007; P€olloth and Mangelsdof 1997). As a conse-

quence, many novel QSAR methods have been developed and implemented to

deduce the consistent with assumptions regarding modes of toxic action of several

toxic compounds. Thus, in this way, the applicability of a QSAR model will help in

the understanding of both toxic mechanisms and the critical structural
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Table 10.4 Software tools and servers details for calculating variables in toxicity prediction in

case of compounds

Sl.

No. Software Availability Application

1 ADMET Predictor http://www.simulations-plus.

com/

Quantitative prediction of

oestrogen receptor toxicity

in rats.

2 ACD ToxSuite

(ToxBoxes)

http://www.acdlabs.com/prod

ucts/admet/tox/

Prediction of Endoplasmic

Reticulum (ER) binding affin-

ity prediction.

3 CAESAR http://www.lhasalimited.org/ Two classification models for

developmental toxicity

4 Derek https://www.lhasalimited.org/ Different levels of classifica-

tion models (based on devel-

opmental toxicity

5 Leadscope http://www.leadscope.com/ Classification models for

developmental toxicity in the

rodent fetus

6 MolCode Toolbox http://molcode.com/ Quantitative prediction of rat

ER binding affinity and AhR

binding affinity

7 MultiCASE http://www.multicase.com/ Classification models for

developmental toxicity asso-

ciated with drugs

8 OSIRIS property

explorer

http://www.organic-chemistry.

org/prog/peo/

Predicts mutagenicity, tumor-

igenicity, irritating effects and

reproductive effects

9 PASS http://ibmc.p450.ru/PASS// Classification models giving

the probability of reproductive

toxic effects.

10 T.E.S.T.: The Tox-

icity Estimation

Software Tool

http://oasis-lmc.org/ Developmental toxicity

estimation.

11 TOPKAT http://www.accelrys.com Classification model for

developmental toxicity of

pesticides, industrial chemical

12 Toxboxespharma

algorithms

http://pharma-algorithms.com/

tox_boxes.htm

A classification model for the

prediction of ER binding.

13 VirtualToxLa http://www.biograf.ch Classification model for

endocrine disrupting potential

14 HAZARD

EXPERT

http://www.compudrug.com/

hazardexpertpro

Human carcinogenicity and

genotoxicity prediction

15 Toxline https://toxnet.nlm.nih.gov/cgi-

bin/sis/htmlgen?TOXLINE

Human neurotoxicity

prediction

16 BCABAF https://www.epa.gov/tsca-screen

ing-tools/epi-suitetm-estimation-

program-interface

Prediction of bio- concentra-

tion of toxic substances

17 PCKOCWIN cpas.mtu.edu/cencitt/oppt/

tsld019.htm

Prediction of soil sorption

with the toxic chemicals

(continued)
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characteristics of a chemical. The various potential applications of the QSAR

analysis with respect to the toxicity of chemical compounds are presented below.

10.5.1 Prediction of Toxicity

As stated above, the biochemical behavior of a molecule is directly associated with

its molecular structure as well as the chemical properties. The establishment of a

relationship between the structures and chemical properties of molecules and the

toxicities, the QSAR models can be used to predict the toxicity of analogous

chemicals. Also, it provides much significant information for the design and

modification of new molecules. The QSAR analysis has been used to predict a

specific chemical class that behaves in a toxicologically similar manner (Pavan

et al. 2008; Chen et al. 2004; Li et al. 2006). In the case of human being, the

prediction of the acute toxicity of a compound is an important task in order to justify

the in the regulatory assessment of particular compounds. However, mostly this

information is obtained from the animal studies that is related to animal ethics and

cost considerations. Therefore, the alternative method alternatives to animal exper-

iments are preferable (Lapenna et al. 2010; Raies and Bajic 2016). As a powerful

technique, the QSAR methods have been widely applied in toxicology by many

researchers as described below. Cronin et al. (2003) emphasized about the appli-

cation of QSAR techniques to predict ecologic effects and environmental fate of

chemicals for facilitating the regulatory agencies and authorities will find them to

be acceptable alternatives to chemical testing. Roberts, D. W. (1991) studied the

acute lethal toxicity data for a range of anionic and non-ionic surfactants by QSAR

modeling to predict by calculated log P (octanol/water) values. Similarly, the acute

aquatic toxicity of reactive inorganic compounds on have been reviewed by (Cronin

Table 10.4 (continued)

Sl.

No. Software Availability Application

18 BIOWIN envirosim.com/products/biowin Prediction of biodegradability

of toxic substances

19 KOWWIN https://www.epa.gov/tsca-screen

ing-tools/epi-suitetm-estimation-

program-interface

Estimates octanol-water parti-

tion coefficient of toxic

chemicals

20 AMBIT http://ambit.sourceforge.net/

intro.html

Chemical structure search,

experimental data and predic-

tive model can be obtained

21 PreADMET https://preadmet.bmdrc.kr/ A web-based application for

predicting ADME data and

also toxicity prediction

The dependent variables are to be obtained from the below computational tools are used for

evaluation of toxicity of compounds
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and Dearden 1995) and suggested about the importance of validity, quality and

quantity of toxicological data to fit the model. The toxicity prediction about active

ingredients in pharmaceutical products and their importance and mechanism has

been reviewed by (Kruhlak et al. 2007). The successful prediction of genotoxicity

of the compounds like 2-amino-9H-pyrido[2,3-b]indole (AαC) and

Table 10.5 Describes about major 9 types of databases to compute the descriptor calculation in

case of toxic compounds

Sl.

No. Databases Availability Application

1 Toxicology Data Net-

work (Toxnet) Devel-

opmental and

Reproductive Toxicol-

ogy Database (DART)

http://toxnet.nlm.nih.gov/cgibin/

sis/htmlgen?DARTETIC

Contains references to

the aspects of develop-

mental and reproductive

toxicology.

2 Endocrine Disruptor

Knowledge Base

(EDKB)

http://www.fda.gov/

ScienceResearch/

BioinformaticsTools/

EndocrineDisruptorKnowledgebase

Contains in vitro and

in vivo experimental

data for more than 3000

chemicals

3 Endocrine Active Sub-

stances information

system (EASIC)

https://eurl-ecvam.jrc.ec.europa.eu/

databases/eas_database

Searchable database

giving information

chemical structure,

toxicity

4 NureXbase http://www.nursa.org Information on chemi-

cal structure, crystal

structure, physical

descriptors, nuclear

receptors and mecha-

nism of endocrine

action

5 OECD (Q)SAR

Toolbox

http://www.oecd.org/env/ehs/

riskassessment/theoecdqsartoolbox.

htm

Contains several data-

bases, including repro-

ductive toxicity data

6 Acute Toxicity

Database

https://www.cerc.usgs.gov/data/

acute/acute.html

Database of aquatic

acute toxicity test

results for thousands of

chemicals

7 Distributed Structure-

Searchable Toxicity

(DSSTox) Database

https://www.epa.gov/chemical-

research/distributed-structure-

searchable-toxicity-dsstox-database

Resource for supporting

improved predictive

toxicology.

8 TerraBase http://www.terrabase-inc.com/ Provide for the quick

search of compounds

with specific biological

effects and properties

9 EXTOXNET http://extoxnet.orst.edu/pips/

ghindex.html

Pesticide information

including experimental

toxicity value

These resources are freely available on web to facilitate the researchers for toxicity study
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2-aminoacetophenone (2-AAP) by QSAR have been studied by (Worth et al. 2013).

Comparative evaluation and prediction of mammalian acute toxicity, by consider-

ing lethal dose (LD50) as a dependent variable has been studied by GonellaDiaza

et al. 2015) in a dataset of 7417 toxic chemical compounds. Also, the prediction for

no observed effect level (NOEL), developmental and reproductive toxicities have

been successfully predicted by Hisaki et al. (2015) from total 892 numbers of toxic

chemicals.

10.5.2 Biodegradation Analysis

Another important application of QSAR analysis is known as Quantitative Struc-

ture Biodegradability Relationship (QSBR) model to the study of mechanisms of

degradation of toxic chemicals. This is an interesting approach to understand the

chemical structure of toxic pollutant molecules and their biodegradability as there is

no direct relationship among them (Philipp et al. 2007; Yin and XI 2007). Also,

different classes of chemicals are likely to have different mechanisms of biodegra-

dation, it would be expected that the biodegradability of groups of diverse

chemicals would be difficult to model using QSAR techniques (Dearden 2002). A

QSBR model for microbial degradation of substances usually performed by con-

sidering the similar features toxic molecule same as that of classical QSAR study

but the selection of the dependent variable which is the important task (Zhang et al.

2006). Molecular connectivity indices were taken and studied by Okey and Stensel

(1993) to obtain the direct relationship between biodegradation of substances in an

activated sludge. Eriksson et al. (1995) studied about multivariate quantitative

structure-biodegradability relationships (QSBRs) were developed for a series of

Table 10.6 Standard list of softwatre tools details used for QSAR analysis

Sl.

No. Simulation software Availability

1 Molecular Operating Environ-

ment (MOE)

https://www.chemcomp.com/MOE-

Cheminformatics_and_QSAR.htm

2 BIOVIA QSAR Workbench http://accelrys.com/products/collaborative-science/

biovia-qsar-workbench/

3 VEGAHUB https://www.vegahub.eu/

4 WEKA http://www.cs.waikato.ac.nz/ml/weka/

5 KNIME https://www.knime.org

6 BuildQSAR http://www.profanderson.net/files/buildqsar.php

7 Orange http://orange.biolab.si/

8 Rapid Miner https://rapidminer.com/

9 MALLET http://mallet.cs.umass.edu/

10 R www.r-project.org

The programs are basically data mining tools involves in classification, clustering, modeling,

validation of the model
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20 halogenated aliphatic hydrocarbons investigated for their microbial bio

dehalogenation (expressed as half-lives) can be further extrapolated to predict bio

dehalogenation properties for yet untested compounds. Lu et al. (2003) studied

about the biodegradation of substituted phenols and benzoic acids by QSAR

methods. In the study, the quantum mechanical descriptors were found suitable

whenever linear regression method was implemented in the modeling method.

Yang et al. (2006) predicted about the features (descriptors) about the 46 types of

aromatic compounds that biodegraded anaerobically. Similarly, the aerobic biode-

gradability of chlorinated aromatic compounds has been analyzed by Liu and Feng

(2012) and the fundamental structural parameters of the compounds are related to

the biodegradation was obtained from their study. Biodegradation rate constants

that are correlated better with the quantum chemical descriptors of the halide

substituent are able to predict the activity and possibly enzyme binding features

of the halogenated compounds have been described by Satpathy et al. (2015a, b).

10.5.3 Classification of Toxic Compounds

Many of the toxic compounds have been identified only after human exposure and

create health hazards. Therefore early detection and classification of such chemicals

are required to reduce the risk of exposure to developmental hazards (Gomba et al.

1995; Sussman et al. 2003). Another application by using the QSAR analysis it is

possible to classify the toxic chemicals based on their mode of action, the study is

known as predictive toxicology. But the prediction is constant for a particular

variables or organisms considered for the prediction (Nendza and Wenzel 2006).

Similarly out of hundreds of compounds, it is also possible to assign a class to a

particular class of toxic chemicals, has been studied by many researchers (von der

et al. 2005; Lin et al. 2003). Verhaar et al. (1992) presented a scheme that classifies

a large number of organic pollutants into one of four classes such as inert chemicals,

less inert chemicals, reactive chemicals and specifically acting chemicals by QSAR

analysis. Subsequent classification of toxic compounds by Verhaar (1994) esti-

mated the effect of reactive compounds specifically on the toxicity of aquatic biota.

Vaal et al. (1997), studied and classified the chemicals as non-polar narcotics, polar

narcotics, reactive compounds in terms of acute toxicity data for aquatic species.

Similarly, binary classification of toxic compounds into nephrotoxin versus

non-nephrotoxin has been classified by QSAR methods have been described by

Lee et al. (2013). In a recent study by Ghorbanzadeh et al. (2016), a novel binary

QSAR classification models were developed and validated, based on the OECD

QSAR validation principles, to discriminate developmental toxic compounds from

non-toxic ones in zebrafish. To discriminate between baseline and excess toxicants

in the case of fish acute toxicity a scheme based on the physicochemical property

proposed by Nendza et al. (2017).
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10.6 Advantage of Quantitative Structure Activity
Relationship Based Study on Toxic Substances

The QSAR based study in toxic compounds having a lot of advantages such as

summarized below:

• Prediction of the environmental fate of the toxic compounds such as

bio-concentration, soil sorption and biodegradation and so on.

• Since the prediction methods are computer based, therefore they provide a rapid

assessment of toxicity of these compounds.

• Further, they have the capability of reducing, and even replacing, animal tests

for toxicological assessment of the pollutant compounds.

• Industrial users can apply these models to screen new compounds and to assist in

the process of designing out toxic features of new chemical entities, may be this

information can be used by the regulatory agencies use, and helps in impose the

regulation of new and existing chemical compounds.

• Prediction of toxicity can be applied to environmental risk assessments for

common pollutants.

10.7 Challenges in Quantitative Structure Activity
Relationship Based Modeling on Toxic Compounds

Although QSAR based methods having enormous potential for analyzing the toxic

profile of compounds, however, certain challenges should be overcome.

• Problems in Biological dataset

The foremost important thing in QSAR analysis is the data. One of the limitation

is very little amount biochemical data is available in terms of mechanism of

toxic action. Therefore, for validation purpose, it faces a problem thereby

causing inconsistency in prediction.

• Better selection of dependent and independent variable and domain

applicability

Predictions of toxicity should be made within the domain of applicability of an

appropriately validated QSAR. An appropriate choosing of descriptor vari-

ables and dependent variable lead to a good prediction of the model. Also, the

number of independent variable in case of specific chemicals is important for

model generation and prediction.
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• Variability in toxicity action of compounds

Usually, it is expected that similar toxic chemicals possess similar mechanism of

action in toxicity, but if any of the compounds that do not possess the same

mechanism of action will show up as outliers; that is, they will not be well

modeled by the QSAR.

10.8 Conclusion

The development of models for quantitative structure-activity relationships (SARs)

and its application for toxicological effects are of great importance. Since a million

numbers of chemicals from industry and other sources are released and exposed to

the environment, but little is known about the toxicity of them. It would be difficult,

expensive and time-consuming to test all such chemicals for toxicity. Due to this,

QSAR methods have been used to interpret the toxicity also many regulatory

agencies are beginning to accept toxicities predicted by QSAR. The basic principles

behind QSAR analysis are a prediction of biological activities from chemical

structures that are closely related. However while performing the analysis many

of the aspects are to be considered such as avoiding the false correlation of the data

and perfect experimental design. Therefore validation process for the experiment

must be observed carefully.
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