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Preface

Despite significant development of novel rational drug design strategies and high-
throughput screening methods, the cost of drug development has sharply increased, and
at the same time, the rate of failures in clinical trials has escalated [1]. The “one drug, one
target, one disease” approach has failed to appreciate the complexities of disease pathways
and the system-wide effects of drugs [2]. Diseases are often multifactorial involving a
combination of constitutive and/or environmental factors, and they result from the break-
down of robust physiological systems due to multiple genetic and/or environmental factors,
leading to the establishment of robust disease conditions. Thus, complex disorders are more
likely to be healed or alleviated through simultaneous modulation of multiple targets. Until
now, there are still not fully effective drugs for treating complex, multifactorial diseases, such
as cancer, metabolic diseases, and neurological diseases [1]. Polypharmacology that
addresses small-molecule interactions with multiple targets has generated a great interest
in drug discovery [3]. This approach allows for studies of off-target activities and the
facilitation of drug repositioning. Multi-target drugs expand the number of pharmacologi-
cally relevant target molecules by introducing a set of indirect, network-dependent effects
[4]. Moreover, low-affinity binding of multi-target drugs eases the constraints of drugg-
ability and significantly increases the size of the druggable proteome. Multi-target agents are
a promising strategy to face complex, multifactorial disorders and drug resistance issues.
Compared to combination therapies, they present several advantages, including more
predictable pharmacokinetics, lower probabilities of drug interactions, and higher patient
compliance [5]. Several already existing efficient drugs, such as nonsteroidal anti-
inflammatory drugs, antidepressants, anti-neurodegenerative agents, and multi-target
kinase inhibitors, affect many targets simultaneously [4]. Hybridization of drugs is also a
powerful tool to develop better treatments for several human diseases, as this can provide
combination therapies in a single multifunctional agent in a more specific and powerful way
than conventional treatments [6].

In polypharmacology, one of the most important goals is to rationally design com-
pounds that act on multiple key targets driving the pathogenesis of a given disease. There-
fore, targeting multiple proteins simultaneously stands a good chance to increase drug
efficacy and decrease the possibility of drug resistance. In order to achieve these goals, it
would be necessary to develop state-of-the-art computational techniques for data curation,
model development, and quantitative predictions [2]. Computational approaches are capa-
ble of predicting the activity profile of ligands to a set of targets, anticipating potential
selectivity issues, and discovering desired multi-target activities early in the iterative design
and optimization steps typical of a preclinical drug discovery project. These approaches are
based on 2D or 3D shape and chemical similarity, pharmacophore mapping, target and
binding site similarity assessment, docking experiments, bioinformatics, graph theory and
modeling, machine learning algorithms, and chemogenomics [3]. These approaches can be
classified into statistical data analysis and bioinformatics, ligand-based, and structure-based
approaches, all of which are well-documented in the literature. The structure-based meth-
ods include inverse docking, binding site similarity analysis, inverse pharmacophore model-
ing, molecular dynamics simulation, etc., while the ligand-based methods include similarity
ensemble approach, extended-connectivity fingerprint, fragment-based shape similarity
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search, etc. which can be used in combination with a variety of machine learning methods
including deep learning [2]. Systems biology approaches and cellular networks help to
understand complex diseases and their mechanisms and offer a lot of possibilities to point
out the key elements as potential drug targets and thus suggest new therapeutic treatment
strategies. Proteochemometric modeling (PCM) simultaneously considers the bioactivity of
multiple ligands against multiple targets and permits exploration of the selectivity and
promiscuity of ligands on biomolecular systems of different complexity [7].

Computational modeling including quantitative structure-activity relationship (QSAR),
pharmacophore mapping, docking, virtual screening, and other cheminformatics and pro-
teochemometric approaches play a vital role in finding and optimization of leads in any drug
discovery program. Computational modeling helps to understand the important molecular
features contributing to the binding interactions with the target proteins, thus facilitating
design of new potential compounds and prediction of activity of designed compounds which
have not yet been tested. These approaches can save time, money, and more importantly
animal sacrifice in the complex, long, and costly drug discovery process.

This volume (Multi-target Drug Design Using Chem-Bioinformatic Approaches) intends
to showcase the recent advances in computational design of multi-target drug candidates
involving various ligand- and structure-based strategies. Different chem-bioinformatic
modeling strategies that can be applied for design of multi-target drugs have been discussed
in this book. Apart from a few literature reviews on the application of chemometric and
cheminformatic modeling tools for multi-target drug design, several case studies are also
presented. Important databases and web servers in connection with multi-target drug
design are also discussed. There are a total of 21 chapters in this book.

The first chapter “Cheminformatics Approaches to Study Drug Polypharmacology”
provides a tutorial overview on selected cheminformatics methods useful for assembling,
curating/preparing a chemical database, and assessing its diversity and chemical space. This
chapter also discusses the methods for evaluating the structure-activity relationships and
polypharmacology.

The second chapter “Computational Predictions for Multi-target Drug Design” high-
lights the current state-of-the-art methodologies used in multi-target identification for
therapeutic effects of known drugs or new drug candidates. This chapter emphasizes
experimental validation of model-derived predictions.

The third chapter “Computational Multi-target Drug Design” discusses multi-target or
polypharmacological drug discovery and several in silico methodologies like quantitative
structure-activity relationship (QSAR), pharmacophore modeling, and molecular docking
used in the process of discovery of multi-targeted drugs.

The fourth chapter “Multi-target Drug Design for Neurodegenerative Diseases” pre-
sents an overview of multi-target computational methods as well as of their successful
applications to neurodegenerative diseases. This chapter recommends application of virtual
screening encompassing both structure-based and ligand-based techniques for effective
multi-target drug design.

The fifth chapter “Molecular Docking Studies in Multi-target Antitubercular Drug
Discovery” gives an overview of various targets for antitubercular drug development fol-
lowed by a literature survey of application of docking studies for the development of multi-
target compounds for developing new promising drug candidates against tuberculosis.

The sixth chapter “Advanced Chemometric Modeling Approaches for the Design of
Multi-target Drugs Against Neurodegenerative Diseases” discusses the recent advances in
chemometric techniques in multi-target anti-neurodegenerative drug design. This chapter
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recommends the use of proteochemometric modeling for multi-target-directed ligand
design.

The seventh chapter “Computational Studies on Natural Products for the Development
of Multi-target Drugs” provides an overview of the currently used computational methods
in natural product research, with special reference to multi-target drug design. This chapter
discusses that pan-assay interference compounds (PAINS) are for the most part not extraor-
dinarily promiscuous and should not be disregarded prematurely.

The eighth chapter “Computational Design of Multi-target Drugs Against Alzheimer’s
Disease” provides the basic background about the molecular targets implicated in the patho-
genesis of Alzheimer’s disease. Furthermore, the chapter reviews structure-activity relation-
ships (SAR), 2D and 3D quantitative structure-activity relationships (QSAR), as well as other
computational modeling studies performed on multi-target agents for Alzheimer’s disease.

The ninth chapter “Design of Multi-target-Directed Ligands as a Modern Approach for
the Development of Innovative Drug Candidates for Alzheimer’s Disease” reviews some
examples of the exploitation of the multi-target-directed ligand approach in the rational
design of novel drug candidate prototypes for the treatment of Alzheimer’s disease.

The tenth chapter “Virtual Screening for Dual Hsp90/B-Raf Inhibitors” describes a
computational strategy leading to the identification of the first dual inhibitors of heat shock
protein 90 (Hsp90) and protein kinase B-Raf, both being validated targets for anticancer
drug discovery.

The eleventh chapter “Strategies for Multi-target-Directed Ligands: Application in
Alzheimer’s Disease (AD) Therapeutics” presents several in silico strategies adopted for
the development of multi-target anti-Alzheimer compounds followed by a case study
leading to their in vitro validation.

The twelfth chapter “Computational Design of Multi-target Kinase Inhibitors” sum-
marizes two effective computational strategies to identify multi-target kinase inhibitors. The
first approach involved a combination of merged pharmacophore matching, database
screening, andmolecular docking to reliably identify potential multi-target kinase inhibitors.
The second strategy employed ensemble pharmacophore-based screening (EPS) of a com-
pound database, post-EPS filtration (PEPSF) of the ligand hits, and multiple dockings.

The thirteenth chapter “Proteochemometrics for the Prediction of Peptide Binding to
Multiple HLA Class II Proteins” discusses “proteochemometrics” (PCM) as a method for
deriving QSAR. This chapter presents a protocol applied to a set of peptides binding to
seven polymorphic HLA class II proteins from locus DP.

The fourteenth chapter “Linked Open Data: Ligand-Transporter Interaction Profiling
and Beyond” presents a workflow for retrieving and curating information for multiple drug
targets from the open domain, provides insights into how the retrieved data can be
employed in ligand- and structure-based approaches, and discusses the hurdles to consider
with respect to data analysis.

The fifteenth chapter “Design of Novel Dual-Target Hits Against Malaria and Tuber-
culosis Using Computational Docking” reviews different approaches (knowledge-based and
screening-based) for designing multi-target inhibitors. Additionally, a step-by-step guide
(protocol) and different computational resources are also discussed in detail to design multi-
target hits for malaria and tuberculosis.

The sixteenth chapter “Computational Design of Multi-target Drugs Against Breast
Cancer” presents protocols and computational practices for screening of multi-target drug
molecules for breast cancer receptors. However, the authors emphasize that validation of the
screened molecules is essential in the in vitro and in vivo conditions.
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The seventeenth chapter “Computational Methods for Multi-target Drug Designing
Against Mycobacterium tuberculosis” presents available strategies for computational multi-
target drug designing with their advantages and disadvantages. This chapter also discusses
an easy, fast, and accurate protocol for multi-target drug designing against the Mycobacte-
rium tuberculosis.

The eighteenth chapter “Development of a Web Server for Identification of Common
Lead Molecules for Multiple Protein Targets” presents a computational protocol that
involves screening, docking, and scaffold-based optimization of hit molecules from a variety
of compound libraries against any two specified protein targets. The protocol is made
available via a web server named “Multi-target Ligand Design.”

The nineteenth chapter “Computational Method for Prediction of Targets for Breast
Cancer Using siRNAs Approach” discusses the development and application of a web-based
database, BOSS, for selection of potential RNAi based on the sequences that have been used
and validated for RNAi-mediated suppression of breast oncogenes. This database includes
the latest information regarding used RNAi molecules that can be cost-effective and less
time-consuming.

The twentieth chapter “Historeceptomics: Integrating a Drug’s Multiple Targets (Poly-
pharmacology) with Their Expression Pattern in Human Tissues” presents “historecep-
tomics” as a new, integrative informatics approach to describing the mechanism of action of
drugs in a holistic, in vivo context. The chapter discusses that this approach may give new
insights into drug mechanism of action, drug repurposing, and prediction of adverse effects,
including the design and development of multi-target drugs or drug combinations.

The twenty-first chapter “Networking of Smart Drugs: A Chem-Bioinformatic
Approach to Cancer Treatment” reviews the existing network of “smart drugs” by using a
chem-bioinformatic approach toward cancer treatment. According to the authors, an appli-
cation of computational tools in smart drug designing for cancer treatment will be path-
breaking in the future.

I am sure that this collection of 21 chapters will be useful to the researchers working in
the field of drug discovery and development.

Kolkata, India Kunal Roy
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Nacional Aut�onoma de México, Mexico City, Mexico

MUKTI N. MISHRA � Biotechnology Division, CSIR-Central Institute of Medicinal and
Aromatic Plants, Lucknow, Uttar Pradesh, India

ANA S. MOURA � LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty
of Sciences, University of Porto, Porto, Portugal

ORAZIO NICOLOTTI � Dipartimento di Farmacia-Scienze del Farmaco, Università degli
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Abstract

Herein is presented a tutorial overview on selected chemoinformatics methods useful for assembling,
curating/preparing a chemical database, and assessing its diversity and chemical space. Methods for
evaluating the structure–activity relationships (SAR) and polypharmacology are also included. Usage of
open source tools is emphasized. Step-by-step KNIMEworkflows are used for illustrating the methods. The
methods described in this chapter are applied onto a chemical database especially relevant for epi-
polypharmacology that is an emerging area in drug discovery. However, the methods described herein
could be extended to other therapeutic areas and potentially to other areas of chemistry.

Keywords Chemoinformatics, ChemMaps, Chemical space, Data mining, Epigenetics, Epi-
informatics, KNIME, Molecular diversity, Open-access, Polypharmacology, Structure–activity rela-
tionships, SmARt

1 Introduction

The rapid growth of chemical information demands efficient and
reliable computational algorithms to analyze the accumulated data.
Similarly, current trends in drug discovery such as polypharmacol-
ogy [1, 2] demand the organization and efficient mining of multi-
ple drug–target interactions and study of structure–multiple activity
relationships (SMARt) efficiently [3]. Indeed, a plethora of methods
and resources for exploiting SMARt and other data relevant to
polypharmacology have been published, and many of them are
open access [4]. This review includes methodological details for
implementing scalable KNIME cheminformatics workflows for:

a. Curating a chemical database;

b. Computing chemical descriptors;

Electronic supplementary material: The online version of this article (https://doi.org/10.1007/7653_2018_
6) contains supplementary material, which is available to authorized users.
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c. Analyzing and comparing database diversity, and

d. Visualizing their chemical space.

Of note, KNIME is an open-access initiative intended for gen-
erating data mining pipelines or workflows, which are capable of
integrating multiple tools [5].

Although sufficiently detailed, this review aims at being a quick
practical guide. More comprehensive tutorials in chemoinformatics
can be found elsewhere [6, 7]. Additionally, web applications for
cheminformatics methods that have been developed by our research
group are mentioned in the respective subsections. These applications
are part of the D-Tools initiative for generating open cheminformatics
resources (available at https://www.difacquim.com/d-tools/). The
D-Tools usage is further described elsewhere [4, 8–11], and these
are not the focus of this review.

2 Methods

2.1 Construction and

Curation of a

Compound Database

Due to the increase in the amount of chemical information, where
it is common to the concept of big data [12], the efficient manage-
ment of information represents a challenge today. This is of partic-
ular importance in polypharmacology where large compound
datasets contain information of screening across several biological
endpoints. In response to this need, the construction of compound
and other databases can be a convenient way to sort information
according to the data available and the specific objectives of the
study.

In chemoinformatics, construction of databases is a fundamen-
tal practice to perform various computational studies like the design
of chemical libraries, characterization and comparison of the chem-
ical space, the study of the structure–activity relationships (SAR),
and virtual screening studies, among others.

Currently, web pages of large public databases such as Drug-
Bank [13], ChEMBL [14], ZINC [15], and BindingDB [16] allow
the user to download their own databases (complete or partial
downloads) with information on approved drugs, drugs in the
experimental phase, commercially available compounds, molecular
targets, etc. However, these databases are not always updated, so
they can be enriched with new information published in books or in
scientific articles.

Also, in research groups devoted to the synthesis, isolation from
natural sources and/or evaluation of new chemical entities can be
carried out for the construction of completely new compounds’ data-
bases. Such collections are usually referred to as in-house databases.

The process of building and annotating chemical databases is
not trivial. Each organization has its own rules, conventions, and
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procedures. However, the steps that are considered essential are
listed below:

1. Identify compounds and resources that contain information
required, e.g., journals and databases with chemical informa-
tion [4, 17].

2. In a spreadsheet, it is recommended that the user has the
following information for each compound:

a. Name of each compound. This can be searched in public
databases.

b. A number that identifies this compound in the database that
has been consulted, for example, ChemSpider ID, Sub-
stance or Compound ID (SID, CID in PubChem, the
CAS registry number, or an internal and consistent code if
building an in-house collection).

c. Structure input. An example of this is the use of Canonical
SMILES notation used for encoding molecular structures
that can be imported to other molecular editing systems. It
is worth noting the relevance of creating a single computa-
tional representation. This can be achieved by using various
algorithms in a process known as canonicalization.

3. Once this information is collected in the spreadsheet, save the
database preferably in .csv format (comma delimited). Other
database formats with chemical information and compatible
with most computer programs as KNIME are sdf (structure
data file),mol (molecular data file), and mol2 (tripos mol2 file).

For the management and analysis of databases, the KNIME
Example Server provides access to many explanatory workflows.
The example server is accessible via the KNIME Explorer panel
within the KNIME workbench and represents a great help when
starting a new workflow.

Some of the nodes to start working with files with chemical
information are: Molecule Type Cast, a node useful for reading
chemical data from a .csv file or database, and this node casts
any string as a chemical type (i.e., It tells KNIME “This is a
smiles string”) and Marvin MolConverter, a node provided by
Chemaxon/Infocom that translates seamlessly between types
(smiles $ sdf $ mrv).

An important aspect to consider when analyzing molecular
databases generated by other scientists is that these may contain
wrong information or unnecessary information for the intended
application or project. Therefore, cleaning or curating the informa-
tion is highly relevant to enhance the quality of the data and to
avoid erroneous results [18].

As in the construction of databases, there is no widely accepted
standard protocol for the preparation of small molecules. However,
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hereunder are described the essential points in the preparation and
curation of databases:

1. Normalize the chemical structures. In this step, each chemical
structure is checked for valid atom types, valence checks, and
functional groups such as nitro groups are converted to a
consistent representation. This is followed by a standardization
step in which chemical structures are converted to a canonical
tautomeric form, aromatic structures are kekulized, placement
of stereo bonds is standardized, and all implicit hydrogens are
converted to explicit hydrogens [19].

2. Remove duplicates. After the molecules have been properly
standardized, it is appropriate to detect duplicates. InChiKeys
is a useful method to identify several states of protonation and
tautomers of a molecule.

3. Discard inorganic and organometallic atoms or molecules if
these are not the object of study. It is worth mentioning that
the majority of the chemoinformatics programs currently avail-
able are developed to process small organic molecules.

4. Wash the compound database by applying to each molecule a
set of rules of “cleaning” such as the elimination of salts and the
adjustment of the protonation states. The purpose of this step
is to ensure that each chemical structure is in a form suitable for
the subsequent modeling.

5. Enumerate tautomers and stereoisomers. This step is impor-
tant in virtual screening studies, particularly when using search
methods such as docking or pharmacophore.

6. Optimize the geometry and minimize the energy if the data-
base will be used to evaluate the potential of each compound to
bind to a receptor or enzyme, or to calculate descriptors which
depend on the three-dimensional conformation of the mole-
cule. The specific method to optimize the geometry will largely
depend on the type, quantity of molecules to optimize, and,
most importantly, on the specific application.

In addition, if the quantity of compounds is too large to be
examined or tested with the resources available, different strategies
can be employed to reduce the number of compounds in a rational
and consistent manner. Such strategies include: filtering—essen-
tially imposing secondary search criteria to eliminate compounds,
clustering—taking a representative subset of a larger set, and human
inspection of the compound structures (with or without extra
data) [20].

In several articles, the impact of the use of duplicates and incon-
sistencies in the molecular structures in prediction models had
already been discussed [21]. For this reason, the project CERAPP
(Collaborative Estrogen Receptor Activity Prediction Project) has
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developed a workflow to curate databases [22]. A similar workflow
can be found at the link https://github.com/zhu-lab/curation-
workflow/blob/master/Structure%20Standardizer2.zip.

Gally et al. also report a workflow designed to prepare molecu-
lar databases but focused on studies of virtual screening [23]. In
addition to carrying out of the standardization of chemical struc-
tures, the workflow of Gally et al. has implemented filters (based on
molecular property distribution) to characterize specific subsets of
chemical libraries such as drug-like, lead-like, or fragment-like sub-
sets of compounds.

See Workflow 1 in the Supplementary Information for an
example in KNIME.

The following analyses use an epigenomics chemical database
that has already been curated and published [24].

2.2 Diversity

Analysis

In drug discovery projects focused on one single target or multiple
targets, it is of high relevance quantifying the structural diversity of
compound datasets. For instance, if the goal of a high-throughput
screening campaign is to identify hit compounds with a desirable
polypharmacological profile, it is desirable to screen a compound
collection with high diversity. This will increase the possibilities to
find active molecules with a desirable profile. If the goal of the
screening campaign is to further develop a focused library (e.g.,
increase the structure–activity information of a focused region in
chemical space [25]), it is desirable to screen a compound dataset
with high internal similarity (low diversity).

The diversity in a chemical library can be assessed in multiple
ways, mainly depending on the data under scrutiny. In addition to
the diversity metric, a key aspect of diversity analysis is molecular
representation [26, 27]. The most common ways to represent mol-
ecules in chemoinformatic applications are molecular descriptors
(including physicochemical properties and molecular fingerprints),
and chemical scaffolds [28]. Depending on the type of descriptor
and the level of accuracy desired (considering the time of computa-
tion and the number of compounds to analyze), the input structures
can be in two or three dimensions (the latter requires conformational
analysis). The choice of molecular representation depends on the
goals of the study.

A more detailed description on how to use molecular descrip-
tors and scaffolds as an input for diversity analysis follows in the
next paragraphs. See Workflow 2 in the Supplementary Informa-
tion for an exemplary diversity analysis in KNIME.

2.2.1 Molecular

Descriptors

Molecular descriptors capture information of the whole molecule
and are usually straightforward to interpret. Also, whole molecular
properties such as physicochemical properties of pharmaceutical
interest are usually part of empirical rules for drug likeness that
aids to guide drug discovery programs. KNIME includes RDKit,
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CDK, and Indigo nodes, with which complexity descriptors (e.g.,
chiral carbons, and fraction of sp3 carbon atoms), and physicochemi-
cal properties of pharmaceutical interest (including molecular
weight, number of hydrogen bond donors and acceptors, number
of rotatable bonds, logarithm of octanol–water partition coefficient,
and topological polar surface area) [28].

Starting with curated databases (discussed in Sect. 2.1), the
steps for quantifying diversity with molecular descriptors are:

1. Select the features to be evaluated (usually the six commonest
physicochemical properties of pharmaceutical relevance, vide
supra).

2. Scale the data using a Z-transformation. This transforms the
data to dimensional units. The purpose is to improve the
comparability of the variables and give a similar weight to all
of them independently of the units with which they were
originally measured.

3. Compute pairwise euclidean distance. For a database with
n compounds, n � (n � 1)/2 pairwise comparisons are to be
computed. Euclidean distance is calculated with the formula:

D A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ai � bið Þ2

q
,

where D(A, B) is the euclidean distance between compound A
and B, ai and bi are the i-th descriptor, and n the total number
of descriptors [29]. D(A, B) can take any positive real number
as value.

4. Compute a central tendency statistic (e.g., mean or median) for
all the pairwise comparisons. The larger the mean or median,
the more diverse the dataset is [30].

5. Finally, for comparison, the statistic can be computed for other
reference databases or looked up at the literature if already
reported.

2.2.2 Molecular

Fingerprints

Many structural features escape the very general information
obtained with physicochemical and complexity descriptors. Molec-
ular fingerprints are vectors that aim towards a more comprehensive
set of features (usually more than a hundred) to compare molecules.
Every feature is encoded as a Boolean variable, where “0” represents
absence and “1” represents presence of the feature. Therefore,
repeatedmotifs are not generally acknowledged. For every molecule,
a Boolean vector of features is obtained, and these are susceptible of
standard set operations [31–33]. However, molecular fingerprints
do have limitations, for example, they could be more difficult to
interpret intuitively, and therefore pose a greater difficulty for extract-
ing insights relevant for medicinal chemistry.
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The steps for computing diversity based on fingerprints are:

1. Select a molecular fingerprint. Although the selection of the
“best” fingerprint could be different from case to case, it has
been consistently found that MACCS keys 166-bits [34] are
useful for quantifying database diversity. In turn, extended
connectivity fingerprints of diameter 4 (ECFP4) [32] as well
as other circular fingerprints are, overall, better suited for vir-
tual screening, activity landscape modeling, and SAR studies in
general.

2. Compute pairwise Tanimoto similarity [27, 35]. For a database
with n compounds, n � (n � 1)/2 pairwise comparisons are to
be computed. Tanimoto similarity is calculated with the
expression:

T A;Bð Þ ¼ c

a þ b � c0

where T(A, B) is Tanimoto similarity with possible values being
any real number between 0 and 1, c is the number of features
for which both molecules A and B have a “1” value, a is the
number of features for which molecule A has a “1” value, and
b is the number of features for which molecule B has a “1”
value. Dissimilarity matrices implemented in KNIME are quite
efficient at these calculations. However, by default they com-
pute values as dissimilarities, the complement of similarities, or
distance matrices. Conversion from Tanimoto dissimilarity to
similarity is accomplished by just subtracting the value from 1
(Ts ¼ 1 � Td, where Ts is Tanimoto similarity and Td is
Tanimoto dissimilarity).

3. Compute a central tendency statistic (e.g., mean or median) for
all the pairwise comparisons. Conversely to Euclidean distance
(and any distance metric in general), the smaller the mean or
median, the more diverse the dataset is [30].

4. Finally, for comparison, the statistic can be computed for other
reference databases or looked up at the literature if already
reported.

2.2.3 Molecular

Scaffolds

KNIME has nodes for finding Murcko scaffolds [36, 37]. By defi-
nition, Murcko scaffolds contain all the cyclic systems in a molecule
as well as the linkers between them. All other decorations and
ramifications are omitted. The greatest benefit of working with
scaffolds data is that, unlike molecular fingerprints, they are readily
interpreted by medicinal chemists. Nonetheless, the representation
is rougher and loses information from the side chains. Also, more
advanced methods must be applied to account for the structural
relations among the scaffolds.
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It is logical and generally accepted that a dataset is more diverse
when it has a large number of different scaffolds, and the proportions
of compounds with each scaffold are evenly distributed. The proce-
dure for measuring scaffold diversity is as follows:

1. Find Murcko scaffolds for every molecule in the dataset.

2. Compute a frequency table of the scaffolds.

3. From here, there are a number of different methods for asses-
sing the diversity [38]:

a. Order the scaffolds by their frequency of occurrence and
compute the median (i.e., the minimum number of scaffolds
in the database that contain at least 50 % of the total entries).
Lower values in this statistic mean higher diversity.

b. Order the scaffolds by their frequency of occurrence. This
order would be an index from 1 to n, where n is the total
number of different scaffolds in the dataset. Divide all
indexes by n, such that the highest index value is 1. Using
scaffold indexes in the x-axis and their respective cumulative
proportions in the y-axis, compute the area under the curve
as a diversity statistic. This statistic admits as value any real
number in the domain [0.5, 1.0]. Lower values in this
statistic mean higher diversity.

c. Compute scaled Shannon entropy (SSE) with the formula:

SSE ¼ SE

log2n
0

where SE ¼ Pn
i¼1 �pi log2pi,

where pi is the proportion in the dataset of th i-th scaffold
(calculated by dividing the occurrence of this i-th scaffold by
the total number of entries/molecules), SE is the Shannon
entropy, and n is the total number of scaffolds in the dataset.
SSE takes as value a real number in the range [0,1]. For this
statistic, higher values mean higher scaffold diversity.

4. Finally, the statistic can be computed for other reference data-
bases for comparison.

2.2.4 Consensus

Diversity Plots

In the light of numerous variables that can be used to quantify
diversity, visual representations have been built in order to summa-
rize multiple of them simultaneously. These are the consensus
diversity plots (CDPs). A CDP, as defined by González-Medina
et al. [10], renders 2D diversity measured by scaffolds, fingerprints,
physicochemical properties, and the number of compounds in the
databases. It is also possible to integrate 3D data [24]; however, we
will not emphasize on 3D data usage here. The steps required for
plotting a CDP from data are:
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1. Curate databases; calculate diversity with physicochemical prop-
erties, molecular fingerprints, and scaffolds (see above for
details).

2. Plot the molecular fingerprints diversity in the x-axis, the scaf-
fold diversity in the y-axis, the physicochemical properties in a
color continuous scale, and the number of compounds in the
database as the data point size. Every data point represents a
database. (See Fig. 1 and Supplementary KNIME Workflow 3
for a few examples.)

As an alternative, an online server was developed for generating
CDPs and is also available in D-Tools (see Sect. 1). A video tutorial
is available at https://youtu.be/lruo1ypKGbE, and detailed writ-
ten instructions about how to use it can be found at http://132.
248.103.152:3838/CDPlots/.

2.3

Structure–Activity

Relationship Analysis

A common assumption in virtual screening is that similar molecules
are expected to have similar properties, e.g., comparable biological
activity. This assumption is called the similarity principle. Although
virtual screening is often useful for detecting active compounds, it is
reassuring to verify whether the similarity principle is valid for the
molecules under scrutiny. Such insights can be obtained through a
subtype of SAR analysis, activity landscape modeling. SAR analysis
of chemical libraries, for which activity against a biological target is

Fig. 1 An exemplary consensus diversity plot (CDP). Each data point represents a compound database.
Molecular fingerprints diversity is plotted in the x-axis, the scaffold diversity in the y-axis, the physicochemical
properties diversity in a color continuous scale, and the relative number of compounds in the database as the
data point size. AUC area under the curve, PCP physicochemical properties
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known, can also reveal substructures that are relevant for inhibiting
the target in question. The next paragraphs give details onto some
useful methods for assessing SAR of single and multiple libraries
simultaneously. Workflow 4 in the Supplementary Information illus-
trates a KNIME implementation of the methods described below.

2.3.1 Structure–Activity

Similarity Maps

Structure–activity similarity (SAS) maps are bidimensional activity
landscape representations that contrast structural similarity (e.g.,
measured with Tanimoto coefficient of molecular fingerprints) and
activity similarity (for example, as pIC50 or pKi). Systematic pair-
wise compound comparisons are included in the plot [39]. Each
point in a SAS map represents a pair of compounds and is colored
according to the most active compound of the pair. The sequence
of steps for generating and ultimately interpreting a SAS map is as
follows:

1. Given n compounds in a library, compute the n � (n � 1)/2
paired chemical similarity as described in Sect. 2.2.2.

2. Similarly, for the same paired comparisons calculate the abso-
lute difference in potency. All compounds should have potency
in pIC50 units. It is calculated from IC50 measurements in
nanomolar concentration units with the formula (ideally, all
compounds should have IC50 values measured under the
same protocol and assay conditions):

pIC50 ¼ �log10 IC50 nM½ �ð Þ:

3. Plot the structural similarity in the x-axis and the potency
difference in the y-axis. The color of the data points can also
be set to render more information, for example, the maximum
potency value in the pair.

4. The resultant plot, illustrated in Fig. 2, can be divided into four
quadrants with thresholds defined a priori: (a) smooth (high
structural similarity and low activity difference), (b) activity
cliffs (high structural similarity but high activity difference),
(c) scaffold hops (low structural similarity but low activity
difference), and (d) uncertainty (low structural similarity and
high activity difference) [40–42]. Typical potency thresholds
are 2 for deep activity cliffs and 1 for shallow activity cliffs. In
the case of structural similarity, 1 or 2 standard deviations
above the mean could be used.

Alternatively, a web application for plotting SAS maps can be
found at D-Tool under https://unam-shiny-difacquim.shinyapps.
io/ActLSmaps/. A video tutorial is available at https://youtu.be/
52jHCcg5mXU.
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2.3.2 Scaffold

Enrichment Factor

SAR can also be explored based on chemical scaffolds. For every
dataset with activity annotations against a particular biological
target, every scaffold could be considered as a cluster of molecules.
At this point, it is interesting to find which clusters have a higher or
lesser proportion of active molecules, pointing towards clusters of
highly related molecules that tend to be more or less active than the
average. This is the basis of the calculation of enrichment factors
(EF) for scaffolds, which are obtained as follows:

1. If activity is represented quantitatively in the dataset, a thresh-
old of activity should be set a priori. Often, a pIC50 of 5–6 or
more is useful for defining a compound as active.

2. Essentially, the EF is an odds ratio, i.e., a ratio of proportions.
Specifically, the proportion of active compounds with a given
scaffold is divided by the proportion of active compounds in
the general dataset. A more formal definition would be that, for
every scaffold λ, an EF is calculated using the equation [43]:

EF Cλð Þ ¼ Act Cλð Þ
Act Cð Þ

where Act Cλð Þ ¼ Cþ
λj j

Cλj j

and Act Cð Þ ¼ Cþj j
Cj j ,

where, in turn, C is the total number of compounds tested, C+

the number of compounds active, Cλ the number of total
compounds with a scaffold λ tested, and Cþ

λ the number of

Fig. 2 Structure–activity similarity (SAS) maps. Each data point represents a pair of compounds. The x-axis
plots the structural similarity, while the y-axis plots the activity difference. Four quadrants are formed as
described in Sect. 2.3.1. A color scale might be added to represent density of points or the maximum activity
value in the pair. Tc Tanimoto coefficient
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compounds with a scaffold λ active against the target. Values
above 1 imply a positively enriched scaffold (i.e., a scaffold that
has a higher proportion of active compounds than the general
dataset), while values below 1 have the opposite meaning.

3. EFs are susceptible of hypothesis testing. For finding statisti-
cally significant enriched scaffolds, chi-squared tests can be run
using a 2� 2 contingency table for the compounds considering
as variables whether they have a given scaffold and whether
they are active. Since sometimes values in the cells might be
lesser than 5, and this interferes with the analytic calculation of
the chi-squared statistic, simulated values can be obtained.

4. After running all p-values for every scaffold, the false discovery
rate correction (or other method for correcting for multiple
hypothesis testing) should be applied.

2.3.3 Degree of

Polypharmacology

Themethods for SAR analysis mentioned above are useful for single
target studies. However, sometimes inhibition data of multiple
targets are available for single compounds. These data could lead
to polypharmacology studies. Maggiora and Gokhale recently for-
malized the notion of polypharmacology and polyspecificity [44].
In practical terms, the degree of polypharmacology of a molecule
equals the number of different targets against which the molecule is
active, while the analogous degree of polyspecificity of a target
equals the number of different molecules that are active against
the target.

2.3.4 Multiple

Structure–Activity

Relationship Analysis

A review addressing SmARt analysis in epigenetics was recently pub-
lished [3]. Two of themost useful SmARt tools are methodologically
explained in the following paragraphs: dual-activity difference
(DAD) maps and structure–promiscuity index difference (SPID).
Similarly as for other SAR analyses, Workflow 4 in the Supplemen-
tary Information contains practical tools for computing them.

Dual-Activity

Difference Maps

DAD maps are designed to compare at once the activity of com-
pounds against two biological endpoints, in contrast to SAS maps
[45]. However, DAD maps lose structural information, which is
accounted for with SAS maps. The procedure for generating a
DAD map is straightforward:

1. Select a library of compounds with the activity of each inde-
pendently measured against two different endpoints.

2. Plot in the x-axis one of the measurements and on the y-axis the
other. A general form of a DAD map is presented in Fig. 3.

Structure–Promiscuity

Index Difference

Aiming towards a statistic for quantifying the relationship between
structural similarity and polypharmacology (or promiscuity), the
SPID was created [46]. It is computed with the formula:

14 J. Jesús Naveja et al.



SPID A;Bð Þ ¼ PA � PBj j
1� T A;Bð Þ

where A and B are chemical compounds, PA and PB are the poten-
cies of compounds A and B, respectively, and T(A, B) is the Tani-
moto similarity of compounds A and B computed as in Sect. 2.2.2
using molecular fingerprints.

3 Chemical Space

Visual representations of the relationships of the compounds in a
database are often useful for assessing libraries’ diversity and SAR.
Furthermore, the recent development of database fingerprints (DFPs)
(described below) has made easier to chart multiple target-focused
libraries in the chemical space, thereby providing polypharmacology
insights [24]. Workflow 5 in the Supplementary Information illus-
trates a KNIME implementation of the methods described in this
section.

3.1 Principal

Components Analysis

for Charting

Compounds

There are no universal methods for chemical space representations
[47, 48]. A commonly used approach involves calculating similarity
matrices, which capture all the pairwise comparisons. These matri-
ces are squared and have n columns and rows, with n equal to the
number of compounds in the dataset. Finally, principal components
analysis (PCA) as well as other dimensionality reduction methods is
useful to compress most of the relevant information in a few

Fig. 3 Dual-activity difference (DAD) maps. Each data point represents a pair of compounds. The x-axis plots
the activity difference of target 1, while the y-axis the activity difference of target 2. A color continuous scale
might be added to the plot to represent chemical similarity of each pair of compounds. Up to nine regions can
be distinguished depending on whether activity is conserved, increased, or decreased for any of the two
targets. Tc Tanimoto coefficient, T1 target 1, T2 target 2
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variables. This makes possible to obtain visualizations of the chem-
ical space. The concrete steps for creating visualizations of the
chemical space using the approach presented above are as follows:

1. Select the set of descriptors with which the similarity or dis-
tance will be calculated. Common sets are: physicochemical
properties (see Sect. 2.2.1) and molecular fingerprints (see
Sect. 2.2.2). Compute the similarity matrix accordingly.

2. Apply PCA to the matrix. Select two or three principal compo-
nents for plotting. It is useful to consider the percentage of
variance captured with each principal component.

This method may become impractical for large datasets (>1000
compounds). See Sect. 3.3 for a chemical space visualization method
that is less computationally expensive.

3.2 Comparing

Multiple Libraries in

the Chemical Space

DFPs are a recently introduced approach to simplify the represen-
tation of all compounds in a dataset using a single bit-vector for
each database, thereby summarizing every individual fingerprints it
contains. DFPs retain the predominant information captured in the
molecular fingerprints of the molecules in a given chemical dataset.
Briefly, if a given bit had a “1” value in at least 50 % of the com-
pounds in the dataset, it is set to “1” in the DFP, or as “0” otherwise.
Further details of the DFPs standardization are described elsewhere
[49]. This adds only one step prior to chemical space visualization as
commented in Sect. 3.1. If it is intended to include SAR in these
plots, libraries could be filtered to include only active compounds.
Figure 4 shows schematically the concept of DFPs.

3.3 ChemMaps Several chemical space visualizations are based upon pairwise simi-
larity measurements. Remarkably, computation of similarity matri-
ces has exponential complexity. Thus, sometimes calculation times
make impractical to chart the chemical space of more than 1000
compounds. ChemMaps aim at simplifying the computational task,
by adaptively selecting some molecules in the database as compari-
son references or “satellites.” This method reduces up to 30 % of
the time needed for generating a visualization of the chemical space,
depending on the size and diversity of the database [50]. Themethod
is as follows:

1. Select at random 25 % of the compounds in a library to use as
satellites.

2. Compute the pairwise similarity matrix of all the compounds
against the satellites.

3. Perform PCA on the matrix and select the first two or three
principal components.

4. Using the principal components as descriptors, compute the
distance matrix for all the charted compounds or a subset.
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5. Add another 5 % of the database compounds to be used as
satellites and repeat steps 2–4.

6. Calculate the correlation between the distances obtained with
the PCA as descriptors and repeat step 5 until a correlation of
0.9 or higher is achieved.

7. Plot the chemical space. See Fig. 5.

Fig. 4 Database fingerprint (DFP). (a) For every compound in a chemical database, different kind of fingerprints
might be obtained. (b) Usually, fingerprints store data in bits. If 50 % or more of the compounds in the
database have a value of “1” for a given bit, then it is set as “1” in the DFP, otherwise it is set as “0.” (c) This
procedure could be applied to many target-focused libraries. (d) DFPs of multiple libraries can be visualized to
represent the chemical space of such libraries. DFPs can also be used for other applications, such as virtual
screening. DFP database fingerprint
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3.4 Activity

Landscape Sweeping

It is common that some structural clusters tend to form when
analyzing the chemical space of libraries. Moreover, these clusters
may also have different SAR morphologies, with a smoother or
rougher application of the similarity principle [11, 51]. The SAR
studies and their use for selecting clusters of molecules from a given
library are named “activity landscape sweeping.” Such approach is
useful to characterize discrete regions in the chemical space where
predictive methods that heavily rely upon the similarity principle
could be applied. The method is quite straightforward:

1. As a baseline, compute the general SAS map for the whole
library as described in Sect. 2.3.1.

2. Plot the chemical space as described in either Sect. 3.1 or 3.3.

3. For defining clusters in the chemical space, apply some method
for unsupervised clustering, such as k-means.K-means method
could use many principal components for defining the clusters.
For selecting a number of principal components to use, a rule
of thumb is to plot the contribution of variances of the princi-
pal components and select the “elbow” of the curve (i.e., the
inflexion point whereupon adding more principal components
do not significantly add information). Given that k-means also
requires to a priori define the number of clusters, a similar
procedure as that for selecting the number of principal compo-
nents could be applied. However, instead of plotting the var-
iances contribution, the within groups sum of squares is used.
However, the number of clusters can also be defined visually by
manually adjusting it.

Fig. 5 ChemMaps concept. Chemical space is charted relative to adaptive chemical satellites. Two satellites
are used in the example
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4. Once that clusters of compounds are defined, individual SAS
maps per cluster are plotted as described in Sect. 2.3.1.

5. The SAS maps and the proportions of activity cliffs are com-
pared, in order to identify regions with smoother SAR.

4 Target Fishing

In polypharmacology, the identification of all the likely targets for a
given chemical compound is of utmost importance and has been an
active area of research in recent years [52]. This problem is known
as reverse virtual screening or “target fishing” [53]. There is a
plethora of computational approaches applied in this field. Che-
moinformatics methods are mostly based on the principle of SAR
[54] which suggests that similar compounds are likely to overlap
between the sets of targets that they show activity against [55].

This identification of targets for a given compound can be
carried out based on the similarity it presents with other compounds
that are known to be active or inactive against some targets. If
quantitative and comparable activity values are available, it is possible
to build quantitative structure–activity relationships (QSAR) models
[21, 56] for every target of interest. If the activity values are not
completely reliable, a better alternative is the use of the categorical
form of them to build machine-learning models for clustering and
classification [57]. Although the general objective of most of these
methodologies is the identification of targets for a given compound,
the amount and type of biological information available can lead to
various applications. This section describes the methodologies impli-
cated in them.

4.1 Target

Identification

The most general application of target fishing strategies consists of
predicting all the possible targets for a given compound, or at least
all of them for which bioactivity data is known. Most of these
strategies treat the target fishing problem as a multi-label classifica-
tion problem, in which every target is a label that a given compound
belongs to and for which a predictive model is constructed [52, 58].
Themain differences between different approaches are the molecular
representation employed and the predictive models used. This work
is not intended to provide a detailed description on the construction
of these models, which can be found in several other works [59, 60],
but of the general strategy for their application.

4.1.1 Multi-label

Classifiers

One of the most used alternatives to face the target fishing problem
is by building a multi-label classifier. The general steps to build such
model are described below:

1. Given a set of targets of interest, a set of compounds, and a
defined bipartite activity relation between them, construct and
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curate compound databases for each target according to the
methods discussed in Sect. 2.1.

2. Build and validate a binary classifier for each database, which
allows to distinguish between active and inactive compounds.
At this point lies the main difference between distinct models,
because the pertinence of a compound to one class or another
can be defined according to a priori defined thresholds for a
given score. For instance, a similarity coefficient when dealing
with similarity searches (discussed in Sect. 2.2), an activity value
in the case of QSAR models, or the probability coming from a
machine-learning model.

3. Finally, evaluate a compound of interest with all binary models.
The targets associated to that compound will be those for
which the binary classifiers assign a score higher than the
established threshold.

The general scheme of a multi-label classifier is presented in
Fig. 6a. The application of these types of strategies in drug design
projects is discussed in other works [21, 61, 62] and currently there
are several web implementations of these methods [58, 63].

4.1.2 Cluster Analysis Another methodology to address the multi-label classification pro-
blem of target fishing is clustering, which is the task of grouping
objects (compounds) such a way that objects belonging to the same
group are more similar to each other in comparison to those
belonging to other groups. This kind of methodologies only take
into account the structure and properties of compounds known to

Fig. 6 (a) Representation of a multi-label classifier. The targets associated to the query compound are those
for which the corresponding classifiers identify them in the active class. (b) Representation of a clustering
analysis. The targets associated to the query compound are those associated to the cluster in which such
compound is grouped
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be active against each target of interest. The general strategy is as
follows:

1. Given a set of targets of interest, a set of compounds, and a
defined bipartite activity relation between them, construct and
curate a database considering only the compounds known to be
active against at least one target.

2. Split the compound database into multiple groups by using a
clustering algorithm. This grouping task can be performed
according to different criteria, for example, by scaffolds or by
molecular similarity, discussed in Sect. 2.2, or employing a
machine-learning algorithm like k-means, discussed in Sect. 3.4.

3. For each cluster, identify all the targets against which at least
one compound in the cluster is active, those will be the targets
associated to that cluster.

4. Finally, assign a compound of interest to one cluster by using
the same criteria involved in step 2, the targets associated to
that cluster will be the predicted targets for the query
compound.

Figure 6b presents the general scheme of a cluster analysis.
Recent applications of this type of approaches in different research
areas and web implementations are discussed in other publications
[64, 65].

4.2 Target

Deconvolution

Although the knowledge of compounds with activity against one or
several targets is fundamental for the development of the strategies
presented in Sect. 4.1, these are not the only bioactivity data avail-
able. In addition to data from target-based methodologies, the
amount of data from cell-based phenotypic screenings has increased
considerably in recent years [66]. One of themajor advantages of this
kind of information is that it provides a more direct view of the
responses taking place in the context of a complex biological system,
such as a cell [67].

Identifying the molecular targets of active hits from phenotypic
screens is a required process to understand the mechanisms of
action involved and thus direct the optimization of such com-
pounds. This task is referred as target deconvolution and the che-
minformatic approaches to address the problem are essentially the
same as those presented in the previous section, with the major
difference being that the set of targets to analyze is reduced to those
relevant for the phenotype under study [64, 68].

5 Future Prospects

The increasing awareness of polypharmacology in drug discovery
and developments will continue demanding the application of che-
moinformatics approaches to accelerate the process. Computational
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methods initially developed for drug discovery focused on a single
target are being adapted to develop compounds for multiple targets.
Typical examples are SMARt and inverse virtual screening or target
fishing. In this regard, it is expected that such approaches are further
refined to improve accuracy. It is also expected that new computa-
tional approaches will emerge to boost the development of poly-
pharmacological drugs.
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Abstract

Computational techniques have proven to be an essential tool in modern drug discovery research. These
tools offer powerful methods for prediction of ligand–receptor interaction events at atomic details, without
attempting exhaustive experimental setup. Single ligand–single target strategies for the discovery of new
drug molecules have become outdated due to the factors like drug resistance, increased side effects, reduced
efficacy, etc., in addition to the involvement of long time period for validation of a new molecule by
toxicology and pharmacokinetic studies. Multi-target drug designing approach can offer a paradigm shift
for alternative usage of known drugs for complex diseases. These approaches combine knowledge of
complex disease networks, chemical and physical characteristics of drugs, and biological receptors. With
the availability of advanced computational resources, a number of tools have been developed that help in the
identification of new and multiple targets for the already known or new drugs. In the present chapter, an
attempt has been made to highlight the current state-of-the-art methodologies used in multi-target
identification for therapeutic effects of known drugs or new drug candidates.

Keywords Binding interactions, Machine learning, Molecular docking, Molecular dynamics, Multi-
target drug design (MTDD), Polypharmacology, QM–MM approach, QSAR, Systems approach

1 Introduction

Drug discovery for complex diseases continues to present several
challenges to researchers as these diseases are known to possess
complex network of pathways involving diverse proteins as func-
tional units. Examples of such diseases are cancer, certain neuro-
logical disorders, inflammatory diseases, and metabolic and
cardiovascular diseases; even addiction-related problems encompass
networks of multiple pathways [1]. These networks are often so
robust that any effort to tamper them through modulating a single
biomolecular target results in the activation of alternative pathways
for effective management of network functioning [2, 3]. Even with
the most state-of-the-art technology, the drug discovery process is
still an extremely expensive and time consuming prospect [4–7]. It
has been recognized that an effective strategy to counter such
robustness of biological networks is to attack them simultaneously
at multiple levels [8]. Such multi-level targeted attacks require drug
molecules that can bind with multiple biomolecules—mostly pro-
teins, but also nucleic acids in some cases. The search for such
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multi-target agents could be achieved by identifying promiscuous
compounds that have the tendency to bind with several proteins.
During recent times, one effective way to fill the gap in the devel-
opment of new therapeutic agents has been the repurposing of the
existing approved drugs for different diseases. The strategy has
been extensively supported by computational modeling approaches
for faster prediction of efficacy of known drugs with new targets
[9–15] by elimination of steps involving toxicological and pharma-
cokinetic assessments. For example, multi-target interaction studies
have proven to be useful in the prediction of potential ligands that
target multiple proteins in malaria [11]. Another option to recog-
nize a multi-target drug may be the identification of alternate
targets for a known drug with some degree of side effects, conse-
quently leading to the optimization of particular drug for a com-
plex disease. Thereby, drug repurposing or polypharmacology is
another way to find out alternative targets of existing drugs
[16, 17].

Multi-target drugs have become popular during recent years
owing to the following advantages:

1. Improved efficacy

2. Fewer side effects

3. Better bioavailability

4. Reduced risk of drug resistance

5. Less burden on discovery

Efficacy of a drug depends on its interaction with biological
receptors. Binding of drug-like small molecules with biological
receptors involves several bond types, most notably among them
are weak interactions originating in weak hydrogen bonds, van-der-
Waals interactions, hydrophobic associations, etc. As a result, the
molecule naturally possesses affinity towards more than one bio-
molecules with varying degree of strength. Such multi-target bind-
ing raises an obvious point that in case the drug molecule has
affinity to bind with several other biomolecules, shouldn’t they be
optimized appropriately for modulation with desired targets in
biological systems?

Two main approaches in computational multi-target drug dis-
covery being practiced are:

1. Ligand-based virtual screening

2. Structure-based virtual screening

Different methodologies under the above two types of
approaches have been presented in Fig. 1.

Machine Learning (ML) methods depend on understanding
the differences in known active and inactive leads. These methods
comprise several approaches such as linear discriminant analysis
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(LDA), k-nearest neighbors, binary kernel discrimination, Bayesian
methods, decision trees, random forests, artificial neural networks
(ANN), and support vector machines. The reliability of these meth-
ods depends on the quality of datasets.

Considerable progress has taken place in the development of
structure-based drug discovery approaches due to advancements in
computational techniques and resource utilization. Depending on
the ligand- and structure-based approaches, various available
computational tools are utilized for multi-target drug design.
Here, in the following sections, the details of some important
computational methods and methodologies that are helpful in
speeding up the multi-target drug discovery process are explained.

2 Multi-Target Drug Design with Systems Approach

Human biology is full of complex networks consisting of proteins,
nucleic acids, etc. Each node of a network signifies a biological
macromolecule such as protein, DNA, or RNA while each link
represents their mutual interactions within pathways. Most multi-
target drugs are weak binders as they interact with multiple recep-
tors with weaker interactions. It is known that limited inhibition of
a small number of targets can provide useful therapeutic effects and
it has been suggested that often the inclusive effect of partial
drug action at multiple target sites is better than the exclusive
drug action at a single target. Several multi-target drugs such as

Computational Approaches 

for Multi-target Drug Design

Ligand Based

Similarity Search 
(Descriptor Based)

Conformational 
Alignment (�D 
structure Based)

Pharmacophore 
based searching

Machine 
Learning

Structure Based

Molecular 
Docking

Pharmacophore 
Search

Pharmacophore 
based searching

Fig. 1 An overview of computational approaches for multi-target drug discovery
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sunitinib, lapatinib, and dasatinib have been discovered and used
effectively for cancer treatment [18, 19]. These drugs are known to
effectively block the alternative escape mechanism of disease net-
works [20–22].

Systems approach makes use of the available knowledge of
disease processes and drug actions to integrate biological system
network and data mining to identify the drug for treatment of
diseases by modulation of more than one target, either one drug
binding to multiple targets or multiple drugs binding to different
targets within a network. Network theory-based methods such as
network-based inference (NBI), target-based similarity inference
(TBSI), and drug-based similarity inference (DBSI) have been
effectively used to identify new targets for existing drugs
[23]. Recently, a few ligand-based target similarity methods have
been developed that predict similar protein targets for known drug
molecules. For instance, investigations with Similarity Ensemble
Approach [24] reveal that functional genomics and ligand similarity
are complimentary, and can be assessed by employing network-
based similarity searching approaches. Some freely available tools
and servers employing Systems Approach are listed in Table 1.

Table 1
List of some freely available tools and servers for systems approach

Program Details Link

PharmMapper Server Identifies potential target candidates for
small molecules using pharmacophore
mapping approach

Honglinli’s group, School of
Pharmacy, East China University
of Science and Technology

http://lilab.ecust.edu.cn/
pharmmapper/index.php

Stitch Server (search
tool for
interactions of
chemicals)

Provides information about interactions
from metabolic pathways, crystal
structures, binding experiments, and
drug–target relationships

EMBL
http://stitch.embl.de/

Pocketome Ensembles of conformations of druggable
binding sites that can be identified
experimentally from co-crystal structures
in the Protein Data Bank

University of California at San
Diego

http://www.pocketome.org/

SystemsDock Network pharmacology-based prediction
and analysis, uses high-precision docking
simulation and molecular pathway map

http://systemsdock.unit.oist.jp/
iddp/home/index

BINDNET Prediction of binding network between
proteomes and small molecules

Computational Biology Research
Group (CompBio), State
University of New York

http://protinfo.compbio.buffalo.
edu/cando/servers/bindnet/
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Figure 2 presents network linkages of tyrosine ligase-like family
protein (TTLL8) with other macromolecules in a metabolic path-
way as obtained from Stich program. Such information is valuable
in finding multiple targets of known drugs as it provides multiple
options for drug targeting in a concerted framework.

3 Molecular Docking

Ligand–target docking is an essential tool in modern drug discov-
ery and development efforts. Docking is generally employed to
identify binding affinity and appropriate conformations of drug
molecules in the bound form within a receptor binding site
[25–33]. Molecular docking essentially relies on the three-
dimensional structural information of both the receptor and ligand.
There are two main steps in the docking protocol that determine its
output in terms of binding free energy estimates and ligand con-
formations, viz., conformational search and scoring of ligand based
on free energy estimates. In some cases, docking can also be utilized
to find out the binding mode of a drug when the binding site
information about a target is unknown [28, 30, 31]. Several studies
have shown that docking helps in the determination of the most
effective locations for suitable binding of the target. Some of the
challenges that are faced by docking calculations include receptor
flexibility, solvation effects, conformational search, scoring criteria,
covalent binding, etc. Recent attempts have been made to address
the problem of target and ligand flexibility using novel algorithm
design.

Fig. 2 Interaction network of tubulin tyrosine ligase-like family protein using Stitch

Computational Predictions for Multi-Target Drug Design 31



Most of the available docking programs consider drug flexibil-
ity, while ignoring target flexibility to provide a rigid-body system
as the target site for drugmolecules [27, 28, 31, 34–37]. Although,
these methods have produced reasonable estimates in most cases,
they often fail to account for precise simultaneous conformational
flexibility of ligand and binding site atoms as both of them may
change during the interaction process. Biological systems are essen-
tially dynamic systems, where solution structures of molecules
remain flexible for environmental and other molecular effects. A
normal DNA molecule remains structurally intact but conforma-
tionally flexible in solution. Similarly, proteins also possess flexible
regions to accommodate ligands for metabolic and other pathways.
Therefore, it becomes essential to consider the flexibility of target
sites in computational calculations. Molecular dynamics enhanced
docking can be useful in generating structural ensemble to map
flexibility of protein sites [38, 39].

3.1 Methodology A conventional protocol for rigid-body docking includes, prepara-
tion of ligand, receptor, docking box, setting up calculation para-
meters, search algorithm, scoring function, number of iterations,
etc. Several different types of strategies are applied for calculation
pertaining to the binding of small molecules with biological recep-
tors in various docking tools. Some of the important steps followed
in a docking protocol [37, 40] are as follows:

1. Generation of 3D structures of ligand and receptor (Fig. 3).

2. Preparation of ligand and receptor: addition of polar hydrogens,
atom identification, charge assignment, etc.

Fig. 3 Overview of obtaining docked complex from interaction of receptor and
ligand
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3. Assignment of force field.

4. Generation of grid in binding site of the receptor.

5. Searching of stable conformations of ligand in binding site based
on various degrees of freedom by systematic or stochastic algo-
rithms (Fig. 3).

6. Scoring and ranking: evaluating binding free energies and sub-
sequently ranking the binding poses.

The steps mentioned above can be suitably modified when
multiple receptors are screened viz-a-viz single ligand on massive
parallel processing machines to reduce large-scale scanning
[41]. The platforms, such as VinaMPI (massively parallel Message
Passing Interface) [41] and INVDOCK [42], make use of inverse
docking to identify multiple targets for selected ligands [43, 44].

Another approach for dealing with multi-target identification
by docking is to use it in combination with molecular dynamics
simulations to sample ligand and receptor flexibility [38, 39]. Bind-
ing affinity prediction is the key aspect in drug target interaction
forecast which is ultimately used to correlate the therapeutic utility.
Programs such as CANDO [45] provide another unique approach
in which multiple targets are screened using automated fragment-
based docking andmolecular dynamics approach to predict binding
energies of drug–target systems with more accuracy. CANDO
identifies multiple targets using knowledge-driven fragment-based
docking followed by dynamics simulations. CANDO is a compre-
hensive package of automated tools to screen large number of
protein targets and includes protein structure prediction tools
such as I-TASSER, MODELLER, etc., for proteins without
known crystal structures. Some popular open-source available
docking programs are listed in Table 2.

3.1.1 General

Methodology of Docking

Experiment Using

AutoDock-Vina

The programsMGLTools, AutoDock-Vina1.1.2 (Table 2), and any
of the following visualization tools: viz., UCSF-Chimera, Discov-
ery Studio Visualizer, PyMol, etc., are required for docking
experiment.

The following steps summarize the working of a docking exper-
iment and obtaining output results using AutoDock-Vina.

Step I—A folder to be created, where the input files, e.g.,
Target.pdbqt, Ligand.pdbqt, and instruction files, are to be saved
and the calculations carried out.

Step II—Creation of Target (Protein/DNA) input file

1. Open MGLTools

2. File | Read Molecule | location of Target.pdb

3. Edit | Hydrogens | Add | Polar only | remove water molecules
(if required)

Computational Predictions for Multi-Target Drug Design 33



Table 2
List of common freely available docking programs

Software Description Link

AutoDock For prediction of binding of small molecules,
or drug candidates, to a receptor of known
3D structure

The Scripps Research Institute
http://autodock.scripps.edu/

ParDock Automated Server for Protein Ligand
Docking by an all-atom energy-based
Monte Carlo

SCFBio at IIT, Delhi
http://www.scfbio-iitd.res.in/
dock/pardock.jsp

DNADock Online DNA-Ligand Docking SCFBio at IIT, Delhi
http://www.scfbio-iitd.res.in/
dock/dnadock.jsp

SwissDock EADock DSS based protein–ligand
interaction prediction server

Swiss Bioinformatics Institute
http://www.swissdock.ch/

DOCK Rigid-body docking to find lowest energy
binding mode using geometric matching
algorithm to superimpose the ligand onto a
negative image of the binding pocket

University of California, San
Francisco

http://dock.compbio.ucsf.edu/

DOT Docking macromolecules, including proteins,
DNA, and RNA

University of California at San
Diego

http://www.sdsc.edu/CCMS/
DOT/

GRAMM (Global
Range Molecular
Matching)

Open-source program for protein docking
using only the atomic coordinates of the
two molecules (two proteins/a protein and
a smaller compound/two transmembrane
helices, etc.)

Vakser Lab, University of Kansas
http://vakser.compbio.ku.edu/
main/resources_gramm1.03.
php

Hex Protein
Docking

Open-source interactive protein docking and
molecular superposition program

Dave Ritchie
http://hex.loria.fr/

ZDOCK Automated Fast Fourier Transform-based
protein docking program

University of Massachusetts
Medical School

http://zdock.umassmed.edu/

Cluspro Protein–protein docking Structural Bioinformatics Lab,
Boston University and Stony
Brook University

MolFit Protein–protein docking using Fast Fourier
Transform

Weizmann Institute of Science
http://www.weizmann.ac.il/
Chemical_Research_Support//
molfit/downloads.html

MOLS 2.0 Open-source program for peptide modeling
and protein–ligand docking

University of Madras
https://sourceforge.net

DOCK BLASTER Online server for structure-based ligand
discovery

University of California, San
Francisco

https://blaster.docking.org/

(continued)
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4. Grid | Macromolecule | Choose | Select the Target.pdb (this
opens a save dialogue) Save in the same folder in pdbqt format.

5. Setting the grid box size—Go to MGLTools again | Grid | Grid
Box | Adjust Spacing if required | Center grid Box (by changing
x,y,z center) | reduce or increase the box size in x, y, and
z directions around the active site | Note down all box para-
meters | close Grid Dialog Box

Step III—Creation of input file for Ligand

1. Go to MGLTools again | Input | Open | Location of Ligand.pdb

2. Add polar Hydrogens, if needed

3. Hide | Target | select Ligand

4. Ligand | Torsion Tree | Choose Torsion (this will show all the
torsion angles and if required, change torsion angle by clicking
on torsion angle) | Done

5. Ligand | output | save as pdbqt (in the same folder having
Target.pdbqt file)

Step IV—Creation of Instruction file

Create an instruction file named conf.txt for AutoDock-Vina in
notepad (Fig. 4).

Step V—Docking calculation

1. At this point, the calculation folder (created in Step I, e.g.,
VinaTest) should contain three files: Target.pdbqt; Ligand.
pdbqt; and conf.txt

Table 2
(continued)

Software Description Link

GEMDOCK For computing a ligand conformation and
orientation relative to the active site of
target protein

Institute of Bioinformatics,
National Chiao Tung University,
Taiwan

http://gemdock.life.nctu.edu.tw/
dock/

FORECASTER
Suite

Suite of programs for drug design and
discovery that includes FITTED docking
program and the sites of metabolism
prediction program IMPACTS

Molecular Forecaster Inc. and
McGill University

www.fitted.ca/ and http://
molecularforecaster.com/

CANDO Server for fragment-based docking with
dynamics, multi-targeting, and drug
repurposing

Computational Biology Research
Group, State University of
New York, Buffalo

http://ram.org/compbio/
protinfo/cando/
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2. Open command line and reach the calculation folder, Exam-
ple—<C:\Users\Science\Documents\VinaTest>

3. Run the calculation by invoking the Vina program into the
calculation folder. Example, <C:\Users\Science\Documents
\VinaTest> “\Program Files(x86)\The Scripps Research Insti-
tute\Vina\vina.exe” --conf conf.txt --log log.txt
Note that “--conf” is an instruction to read input file named
“conf.txt”. “--log” is the instruction to generate results in a file
named “log.txt”. Results of the docking calculation are provided
in the log.txt file generated by the program (Fig. 4).

The input and output geometries of ligand, target, and docked
complex can be visualized using any of the visualization tools listed
in Table 3. The graphical visualization of target HSA and

Fig. 4 Examples of an instruction file (conf.txt) and output file (log.txt) from an AutoDock-Vina calculation

Table 3
Some common freely available tools useful in drug designing

S. No. Software Description

1 Discovery Studio Visualizer Visualization and analysis

2 UCSF-Chimera Visualization and analysis

3 PyMol Visualization and analysis

4 OpenBabel File format convertor

5 ACD/ChemSketch Sketching and generating ligand files in various formats
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ligand–HSA complex using Discovery Studio tool has been
depicted in Fig. 5.

4 Hyphenated Methods

4.1 QM–MM

Approach

Majority of the currently used docking methods describe the ligan-
d–receptor interactions by making use of the classical force field
potential of Molecular Mechanics (MM), having the limitation of
fixed charge treatment of electrostatic interactions. On the other
hand, the Quantum Mechanics (QM) calculations, generally used
for studying chemical reaction mechanism, are intensive and time
consuming; hence, their use for faster prediction of potential drug
candidates has not been explored rigorously. QMmethod is partic-
ularly suitable to study the transition states (TS) and intermediates
formed during a reaction. It might be interesting to note that such
transition states could be well suited as inhibitors of enzymes. Since
QM calculations are computationally costly, it has been found
appropriate to study intermolecular interactions between two
large molecules such as ligand and receptor using a hybrid
QM–MM method involving the reaction site at more accurate
QM and rest of the system at MM level. Such QM–MM method
has been used for studying chemical reactions of enzyme systems
[46, 47]. In conventional non-covalent binding event, it is often
desirable to identify the true minimum energy conformation that a
small drug-like molecule can attain, in order to form a stable
ligand–receptor complex. The true level of low energy conforma-
tion can be obtained best by employing QMmethod to the ligand.
Recently, we have employed the hybrid QM–MM approach using a
two-layer ONIOM method in an attempt to identify the

Fig. 5 Visualization of protein (crystal structure extracted from PDB) and docked complex using Discovery
Studio program
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conformational strain of ligand molecule in docked state, treating
the latter with QM in bound form [27]. The geometry of drug
(DRG)–receptor (R) complex in bound state, obtained from dock-
ing experiment, was subjected to QM–MM treatment in an
ONIOM calculation [27] (Fig. 6). The ONIOM(B3LYP/6-
31G*:AMBER) calculation was done on DRG–R complex using a
two-layer method considering the receptor R as rigid molecule and
subjecting the DRG in the bound state to energy minimization
using density functional theory (DFT)-level calculations with
B3LYP functional and 6-31G* basis set. Interaction energy E5 of
the DRG–R complex, as a measure of stabilization, was obtained
from the following equation sequences:

E1 DRG‐Rð ÞONIOM ¼ E2 DRG‐Rð ÞMM þ E3 DRGð ÞQM

� E4 DRGð ÞMM

where E2(DRG-R)MM is the energy of DRG–R complex obtained
from AMBER force field treatment and E3(DRG)QM and
E4(DRG)MM are the energy of the DRG in bound form obtained
from DFT (B3LYP/6-31G*) and AMBER treatment, respectively.

Fig. 6 Visualization of the drug–DNA complex resulting from QM–MM approach using ONIOM calculation

38 Neelima Gupta et al.



E5 ¼ E1 DRG‐Rð ÞONIOM � E6 DRGð ÞQM þ E7 Rð ÞMM

h i

E6(DRG)QM is the QM energy of isolated DRG and E7(R)MM

the MM energy of R alone.
Major shortcomings of MM docking algorithms arise due to its

incapability of treating the role of charge polarization in determin-
ing the ligand’s bound conformation, henceforth, limiting the
prediction of the correct binding mode. Schrödinger suite of pro-
grams [48] has introduced QM–Polarized Ligand Docking
(QPLD) algorithm to its QM–MM software QSite. QPLD uses
ab initio charge calculations to consider charge polarization
induced by the protein environment making the docking results
even more accurate. The QM–MM approach provides the confor-
mational landscape of drugs in the bound form that are not easily
obtained through conventional docking methods. If applied suit-
ably, such approach can indirectly provide an insight about the
actual binding mode of small molecules when experimental details
are not available.

5 Quantitative Structure–Activity Relationship Approach

Drug discovery itself remains a complex and time consuming pro-
cess and over the period of time during recent decades, the search
of new drugs for complex diseases has shifted towards multi-target
drugs as with the invent of cheminformatics it has become possible
to identify multiple targets for a potential drug candidate
[49, 50]. Quantitative structure–activity relationship (QSAR) uti-
lizes the correlation between molecular structure of chemical spe-
cies and their corresponding activity viz-a-viz biological receptors
[51, 52]. This is possible by establishing a mathematical relation-
ship with the structural features (known as molecular descriptors)
of small molecules and biological targets. These descriptors are
used in calculations based on dimensionality. Features such as
molecular weight, types of atoms, functional groups, bonding pat-
terns, and substitution are considered in zero- and one-dimensional
QSAR calculations. Similarly, more complex descriptors such as
molecular connectivity indices, molecular surface, molecular vol-
ume, electronic, steric, shape, volume, rotatable bonds, interatomic
distances, electronegativity, atom distribution, aromaticity, solva-
tion properties, etc. are considered in 2D and 3D QSAR calcula-
tions. Based on the dimensionality of the applied descriptors, two
most applied 3D-QSAR models are CoMFA (Comparative Molec-
ular Field Analysis) and CoMSIA (Comparative Molecular Similar-
ity Index Analysis). Further, more complex descriptors also include
the conformational variation of small molecules and other experi-
mental insight into the structure of the molecules. QSAR
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calculations essentially require large datasets of small molecules and
in some cases biological macromolecules as well. These datasets are
divided into training and test sets in order to validate the calcula-
tions. Multi-dimensional data is often analyzed using multivariate
analysis [53]. To accomplish this, advanced data mining approaches
are utilized in evaluation of the descriptors and their corresponding
correlation with the activities [53, 54].

Conventional QSAR methods explore the correlation with
respect to a single receptor to identify potential small molecules to
be used as therapeutic agents.However, in order to identifymultiple
targets for a set of chemical compounds, significant modifications
have been done in the form of multi-target QSAR method
(mt-QSAR) [55–57]. Normal course of computer-aided drug
design approach uses QSAR dataset for standard support vector
regression to solve the constrained optimization problem in search
for a drug-like molecule having high binding affinity with a desired
biological target. Rosenbaum et al. have elaborated a multi-target
QSAR approach usingmulti-task algorithms to exploit the similarity
between several targets to translate information between the target-
specific QSAR models [58]. mt-QSAR models are used to link the
structures of potential drugs with biological activity against a num-
ber of diverse targets [59–62]. Much recently, advancements in
chemoinformatics has led to two novel in silico approaches—first
having ability to integratemultiple chemical and biological data into
a single multi-tasking model for quantitative structure–biological
effect relationships (mtk-QSBER) and the second resulting from
combination of the perturbation theory with quantitative struc-
ture–property relationships modeling tools (pt-QSPR) [63]. The
mt-QSBERmodel is based on a particular modeling technique such
as linear discriminant analysis (LDA), multiple linear regression
(MLR), or machine learning tools like artificial neural networks
(ANN). Pt-QSPR model combines the moving average approach
with perturbation theory to address the deviations by considering all
possible combinations of the dataset cases [63]. Another novel
approach for descriptors, MARCH-INSIDE has been developed
to incorporate specific information about biphasic partition system,
biological species, and chemical structure [62, 64]. Using advanced
QSAR methods, many biological activities such as pharmacological
and toxicity effects have been successfully predicted [65]. Therefore,
there exists enormous potential for making use of mt-QSAR studies
in the development of multi-target drug designing.

General methodology followed in a QSAR experiment is
depicted in Fig. 7. TheQSARmodeling generally involves following
steps: (1) Collection of experimental data and designing of training
and test sets of chemicals, (2) Generation of descriptors to relate
appropriately the chemical structure to biological activities, (3) Cre-
ation of a QSAR model based on variable analysis or statistical
methods using regression analysis and its evaluation for predictive
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capacity in terms of goodness of fit, stability as well as robustness of
model, and (4) Application of validated model for evaluation using
appropriate software for prediction of biological activity.

6 Molecular Dynamics Approach

One major drawback of rigid-body docking is that the estimates
obtained do not always conform to the exact binding energy of the
complex and unable to reflect the true structural profile of ligand
viz-a-viz receptor. This is largely due to the fact that during actual
interaction, not only ligand but also the conformation of the recep-
tor atoms may change to accommodate the ligand. This is especially
true to the binding site region of the receptor where structural
disturbances are often accompanied by dislodging of solvent

Fig. 7 Overview of quantitative structure–activity relationship (QSAR) methodologies
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molecules and conformational rearrangement of a few side chains.
In many cases, water molecules occupy an important place in the
structural integrity of a receptor. For example, DNA minor groove
possesses a spine of hydration which needs to be disturbed in order
for the drug molecule to bind in the minor groove. Similarly,
studies have revealed that sampling of such solvent molecules is
an essential prerequisite to estimate properly the structural feature
of ligand–receptor complexes. Conformational changes due to
bonded as well as non-bonded long-range van der Waals and elec-
trostatic molecular interactions are also needed to be addressed by
considering dynamic properties of biological ensembles. Conven-
tional docking protocols often fail to achieve this and may be
treated with molecular dynamics simulations [66] of both types—
classical and quantum. In the classical mechanics treatment, the
atoms are treated as balls and chemical bonds as springs and the
laws of classical mechanics are applied to define the system dynam-
ics. In the quantum mechanics-based MD simulations, quantum
nature of the chemical bond is taken into account and the electron
density functional for the valence bonding electrons is treated using
quantum equations, whereas the dynamics of ions is treated with
classical mechanics.

Using state-of-the-art software tools and computational power,
one can easily predict the forces acting on each atom by every other
atom in the system and consequently obtain the information about
the structure of the molecule at any given point in time. Thus,
molecular dynamic simulations provide information about confor-
mational states of molecules as a function of time and are usually
achieved by applying classical Newtonian movement. The trajec-
tories of atoms and molecules are usually determined by numeri-
cally solving Newton’s equations of motion for a system of
interacting particles, where forces between the non-bonded parti-
cles are often calculated using interacting atomic pair empirical
potentials, mainly comprising of the mathematical models based
on Lennard–Jones (LJ) and Coulomb models [67, 68]. LJ poten-
tial is a simple mathematical model that describes the approxima-
tion of van der Waals interactions between two uncharged
particles with an advantage of easy computability. The LJ equation,
considering the distance between the two particles to calculate the
potential energy of the interaction, is given below:

ELJ ¼ 4ε
σ

r

� �12
� σ

r

� �6
� �

ð1Þ

In above equation, ELJ is the intermolecular potential between
the two atoms separated by the distance r. ϵ is the potential energy
well depth and is a measure of attraction between two particles. σ is
the closest distance at which the intermolecular potential between
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the two particles is zero and may be referred to as the van der Waals
radius.

The electrostatic interactions between non-bonded charged
particles are considered using Coulomb’s electrostatic potential
[69]. The equation for calculation of the Coulomb interaction
potential by taking into account the charges q1 and q2 of two
atoms and the distance r between them is given below:

Ep ¼ q1 q2

4πε0r
ð2Þ

where Ep is Coulombic potential energy, and ε0 is the permittivity
of vacuum. When Ep < 0, then the interaction is attractive, while if
Ep > 0, then the interaction is repulsive.

To run MD simulations, the force on each particle is required
to be known so that the acceleration is calculated as a function of
gradient of potential energy, since each single atom is affected by
potential energy function of every other bonded or non-bonded
atom in the system. Force field may be presented by a mathematical
expression describing the dependence of the energy of a system
on the coordinates of its particles and is expressed in terms of
interatomic potential energy due to bonded and non-bonded
interactions.

V Rð Þ ¼ Ebonded þ Enon�bonded ð3Þ
As mentioned above, the non-bonded potential may be con-

sidered as a combination of LJ and Coulomb’s electrostatic poten-
tials (Eqs. 1 and 2), the bonded potential is the result of three
intramolecular degrees of freedom due to stretching along bond,
bending motion of bonds, and rotation around the bonds. A typical
MD force field equation given below, therefore, consists of the
following potential terms:

V Rð Þ¼
X
bonds

ai

2
l i� l i0ð Þ2þ

X
angles

bi
2

θi�θi0ð Þ2þ
X

torsions

ci
2

1þ cos nωi�γið Þð Þ

þ1

2

XN
i¼1
non

XN
j 6¼1
bonded

4εij
σij
rij

� �12

� σij
rij

� �6
" #

þ1

2

XN
i¼1
non

XN
j 6¼1
bonded

k
qiqj
rij

ð4Þ

The first three terms in Eq. 4 represent internal degrees of
freedom of a molecule through the bonded atoms. The first term
calculates the energy contribution due to change in bond lengths
while the second term signifies the potential due to valence angles
of the molecule. Similarly, the third term denotes the torsional
potential due to fluctuation in energy originating from change in
torsion angles. The fourth term in the force field gives estimates for
van der Waal’s interactions while the last term estimates the
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Coulombic interaction potential between charged pairs. In princi-
ple, the interaction potential between every non-bonded pair of
atoms should be computed. Nevertheless, the interactions between
atom pairs separated by a distance larger than the predefined cut-off
distance are ignored to speed up the computation without affecting
much the extent of accuracy. Further, water as the solvent in
biological systems influences the structure and dynamics of inter-
acting molecules mainly by screening their electrostatic interaction.
Solvent effect is usually implied in MD simulation by including the
dielectric screening constant in the electrostatic term of the poten-
tial energy function (Eq. 5) and not including the explicit water
molecules.

V elect: ¼
qiqj
εeff rij

ð5Þ

where qi, qj are the partial atomic charges, eeff is the effective
dielectric constant, and rij is the relative distance between the two
particles. Often the value of effective dielectric constant (eeff)
itself is taken to be distance (rij) dependent. MD simulations are
also better suited for such structural contingencies in which the
role of solvent could be crucial [70]. In recent times, several
continuum electrostatic theory-based solvent models have also
been developed.

In MD simulations, the time-dependent behavior of a set of
interacting atoms is obtained by integration of Newton’s equations
of motion:

Fi ¼ mi
d2ri tð Þ
dt2

ð6Þ

where ri(t) is the position vector of ith atom, Fi is the force acting
upon ith atom at time t, andmi is the mass of the atom. Integration
of Newton’s equation of motion is used to define position ri(t + Δt)
of the ith atom at time t + Δt. Several algorithms are available for its
solution, but most commonly used one is the Verlet algorithm
due to its simplicity. Thereby, MD simulations result in a time-
dependent series of conformations known as MD trajectories
which are defined by both positions and velocities. The MD trajec-
tories of moving particles may be analyzed for getting three types
of properties, i.e., thermodynamic, structural, and dynamical.
Therefore, the functional properties of the biomolecular system
that are influenced by the dynamic events can be estimated at the
atomic level by MD simulations. Molecular dynamics essentially
provides several conformations of a receptor molecule to sample
thermodynamically viable receptor flexibility. Another important
benefit of molecular dynamics simulation is that it can help in the
identification of transition states in a complexation event between a
ligand and receptor [71].
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A Molecular Dynamics simulation involves the following steps.
An initial configuration of the system at t ¼ 0 is selected. For
biomolecule, mostly an X-ray crystal structure from the Protein
Databank is taken as initial structure. If required, an energy minimi-
zation of the structure is done prior to a molecular dynamics simula-
tion. A valid force field is selected, a cut-off radius is selected, and in
case of the presence of partial charges, the method to treat the
electrostatic interactions and an integration algorithm are chosen.
Coordinates and velocities of the system from an MD simulation
are saved for further analysis. Average structures are calculated and
visualized to reflect the conformational changes. Time-dependent
properties are displayed graphically with one of the axis
corresponding to time. Having access to the positions of atoms,
velocities, and forces as function of time, the properties such as
mean energy, rms difference, rms fluctuation, etc. can be computed.
Commonly available programs for performing MD simulations are
given in Table 4, the reliability of results depends on the force field

Table 4
List of commonly used programs for MD simulations

Software Description Link

NAMD Distributed freely, parallel molecular dynamics
code designed for high-performance simulation
of large biomolecular system uses VMD
visualize for simulation setup and trajectory
analysis [72]

http://www.ks.
uiuc.edu/
Research/
namd/

GROMACS
(GROningenMAchine for
Chemical Simulations)

Public domain high-performance program capable
to simulate the Newtonian equations of motion
for systems with hundreds to millions of
particles [73]

http://www.
gromacs.org/
Downloads

CHARMM (Chemistry at
HARvard Macromolecular
Mechanics)

For application to many-particle systems with a
comprehensive set of energy functions. Multi-
scale techniques including QM/MM, MM/CG,
and several implicit solvent models available
[74]

http://charmm.
chemistry.
harvard.edu/

AMBER Freeware package of programs for molecular
dynamics simulations of proteins and nucleic
acids [75]

http://ambermd.
org/GetAmber.
php

GROMOS (GROningen
MOlecular Simulation)

Freeware program package for the dynamic
modeling of biomolecules using methods of
molecular dynamics, stochastic dynamics,
energy minimization, and path integral
formalism [76]

http://www.
gromos.net

TINKER Public domain software for molecular mechanics
and dynamics calculations, with some special
features for biopolymers [77, 78]

https://dasher.
wustl.edu/
tinker/
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employed to model the intra- and intermolecular interactions and
the accuracy is usually validated by comparison with experimental
results. VMD, gOpenMol, and Rasmol are some freely available tools
for visualization and analysis of input and output results.

7 Convergence of Theoretical and Experimental Results

Computational methods are best at predicting the interaction pat-
terns of small molecules with biological receptors and latest
advancements in computational techniques have made them partic-
ularly useful in identifying multiple targets for already approved
drug molecules. The techniques and methods discussed above have
clearly established the usefulness of computer-driven methods in
enhancing the pace of multi-target drug discovery research in
particular. However, the ultimate test of all such computational
methods rests on the ability of these methods to provide accurate
estimates that can be verified in the living system. Experimental
validation, therefore, becomes essential for every prediction. Sev-
eral studies have taken into consideration both the experimental
and computational aspects of drug–receptor interactions [25–32]
thereby providing a useful insight as to the extent the prediction
methods apply in real-world scenarios.
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Abstract

Multi-target (mt) therapy is an attractive approach as well as a challenging task in drug discovery research
and pharmaceutical industry. The multi-target drug design strategy is an opportunity to find new drugs for
the treatment of two or more targets simultaneously. Advanced characterization of bioactive molecules,
computational science, and molecular biology have contributed to planning of new bioactive compounds
and evaluating different features of multi-targeted drugs. Computational methods have different roles in
drug candidate searching, analysis, and prediction in this field. Here, we discuss several in silico methodol-
ogies and computer-aided drug design (CADD) as structure-activity relationship (SAR), quantitative SAR
(QSAR), pharmacophore modeling, and molecular docking in the process of drug discovery in the field of
multi-targeted drugs (MTDs). Computational efficiency of each method has been stated in relation to their
key strength and weakness. These capacities for binding affinity prediction are rationally effective with
promising potential in easing drug discovery directed at selective multiple targets.

Keywords CADD, Drug discovery, Molecular docking, MTD/MTDD, Multi-target, Pharmaco-
phore, QSAR, SAR

1 Multi-Targeted or Polypharmacological Drug Discovery

The key idea of “one drug-one target-one disease” is single protein
target identification whose inhibition can lead to success in the
treatment of the identified disease. There is no side effect based
on the principle assumption in highly selective ligands via binding
to secondary non-therapeutic targets. Recently, the results of net-
work biology and post-genomic studies have revealed that proteins
are not isolated and act as a portion of a network with a highly
connected robust system [1]. Thus, a growing interest in emerging
therapeutics that influences on multiple targets at the same time has
developed.

Multi-targeted drugs (MTDs) are generally accepted due to the
ability of the polypharmacology of these drugs to modulate the
bioactivity of multiple targets [2, 3]. Polypharmacology is the use
or design of a single drug that works on the “multiple targets” or
“disease pathways.” It offers therapeutic agents that can modulate
“multiple targets.” Accidental drug-target interactions could pro-
duce adverse effects or toxicity [4]. Some of these effects have been
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connected to unintended contacts with specific off-targets, i.e., the
cardiac hERG channel for astemizole, terfenadine, and grepaflox-
acin [5]; the serotonin 5HT2B receptor for fenfluramine [6]; and
the M2 receptor for rapacuronium [7]. Polypharmacology opens a
window to logically design subsequent production of therapeutic
agents with more efficiency and less toxicity [4, 8]. Therefore, it
would be either responsible for side effects or the best to reach a
high level of control over drug specificity [9, 10]. In this regard,
Morphy described MTD in several publications using the term
“designed multiple ligands.” This term exhibits at least something
responsible for MTD efficacy [11, 12]. Other terms such as “dirty
drug” or “promiscuous” have been used for their multiple bioac-
tivities that can be helpful for improved efficacy or may not be
positive for unwanted pharmacology or toxicity. Analysis of the
physicochemical data of candidate drugs indicates that toxicity
risk and clinical failure of “promiscuous or dirty compounds” are
due to high lipophilicity [12]. It is essential to point out that the
phrase “promiscuous” has also been applied in the area of high-
throughput screening (HTS) to represent HTS analytes’ bioactivity
associated with typically undesirable physicochemical or chemical
features. This fact may be linked to covalent bond formation of
ligand-target complex [11] or undesirable biophysical effects
in vitro such as aggregation of colloidal particles [13]. In these
two cases, the observed effects are unwanted biological activities.
But, in case of in vivo situation, this colloidal aggregation may be
favorable in the gastrointestinal region for improving oral absorp-
tion [14]. In our opinions, the covalent bonding potential of a
ligand with a target may be favorable in dedicated drug research
and development (R&D).

Today, it is well-known that single drug targets fail in compli-
cated diseases such as cancer; central nervous system (CNS) dis-
eases, i.e., Parkinson’s and Alzheimer’s diseases; and rheumatoid
arthritis (RA) illnesses, and this affects many different cell types or
tissues. Drugs with a better balance in safety and effectiveness have
preference for regulating multiple targets in contrast to a one-target
drug. The success of MTDs in some therapeutic scopes such as
infectious diseases, diabetes, and cancer requires efficient hard work
(Fig. 1) to identify novel combination of medicines with different
indications [12, 16].

Comparing the therapeutics that resulted from MTD and
“combinations of single-target drugs,” it appears that MTDs have
advantages such as the following:

l Higher efficacy

l Improved safety profile

l Easier administration

l Further expected pharmacokinetics
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l “Lower probabilities of drug interactions” [17]

l “Higher patient compliance” [17]

As mentioned before, various studies in different branches such
as medicinal chemistry, computational studies, and systems biology
are done in order to find the best drug candidates for pharmaceuti-
cal molecule engineering. It is the main task to produce effective
treatment regimens. Complicated diseases, like rheumatoid arthri-
tis and cancer, are certainly multifactorial in nature. Hornberg et al.
[18] described cancer complexity and difficulty of predicting many
molecular processes of cancer therapy. Systems biology is required
for complete understanding of relationships among systems behav-
ior with the systems components and all interactions among them
[18, 19]. Generally, three principles have led to success of clinical
treatment [18]:

l Drug transport, pharmacokinetics, and reaching of a drug to its
target site

l Selectivity (related to side effects and drug dose toxicity)

l Efficacy (e.g., the amount of sufficient effect on cancer cells by
drug-target attack)

To propose new medicines, various in silico methods have been
planned in order to ease the analysis of detailed data of target
molecules and to offer a selective drug. To our knowledge, ligand-
and structure-based CADD methodologies (Fig. 2) are used in a
wide range in academia and industry investigations. Virtual drug
screening strategies have been applied to recognize sources of

Fig. 1 Drug processing pathway from target discovery to clinical application [15]
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off-target activity profile of drugs and examine their capacity caus-
ing desired or adverse side effects [20, 21].

CADD methods are commonly used for making decisions of
exploring the bioactive compounds and their fundamental physi-
cochemical properties [15]. They try to know how the bimolecular
associates work to justify their functions in a unit, so pharmacoki-
netic understanding and prediction of four key issues including
“absorption, distribution, metabolism, excretion, and toxicity
(ADME/Tox)” assist designing of a drug. As a significant result,
CADD techniques, namely, SAR, QSAR, docking, and others, have
become important tools to remove experimental troubles to under-
stand biological activity networks of drugs and to gain better
insight into it [12, 15].

2 Multi-Target Drug Discovery/Design (MTDD) Strategy

As mentioned in the previous section, the progress of studies and
efforts to aid the discovery of multi-target ligands for treatment of
complex diseases has been observed recently [22]. In silico drug
design as a suitable tool has been used to identify hits in the initial
step to lead optimization at the final step. Many CADD methods
(Fig. 3) have been extended to address different parts of drug
design [17, 23]. A number of published reviews have examined in

Fig. 2 Different in silico methods for discovery of therapeutics agents [15]
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silico methods for polypharmacology encompassing structure-
based, ligand-based, and data-driven MTDD. Frequently, most of
these studies focus on utilization of existing drugs for repurposing
(i.e., usage of well-known drugs to discover new targets) [4, 8, 12,
15, 23, 24]. Zhang et al. have classified CADDmethods applied to
MTD discovery into “target centric” or “ligand centric” [23].

The methods mentioned above could be used to detect inter-
actions among molecular paths that may possibly be leveraged for
medical treatment. It is needed to emphasize that combinations of
computational data analysis methods with usage of different
machine learning approaches give access to maximum information
of bimolecular systems.

This chapter presents a summary of important theoretical fea-
tures behind in silico methods for multi-target drug design
(MTDD). It familiarizes the reader with basic concepts of compu-
tational processes as a routine tool and a guideline for multi-target
drug discovery. The chapter also focuses on the popular procedures
including structure-activity relationships (SARs), quantitative
structure-activity relationships (QSARs), pharmacophore searches,
and molecular docking using 3D receptor structures. Description
of each method is followed by some uses in drug design. The text
has main sections consisting of mt-SARs, mt-QSAR method,
molecular docking, and pharmacophore modeling.

2.1 Multi-Target

Structure-Activity

Relationships

(Mt-SARs)

Lead compound generation is an important phase in the process of
drug discovery [25]. Structure-activity relationships (SARs) are
well-known in current drug research projects and have been mostly
applied for the new lead finding, receptor optimization with respect
to physicochemical properties, pharmacokinetics, and scaffold gen-
eration [25]. Thus, understanding of this concept is important for
practical medicinal chemistry as well as for successful in silico

Fig. 3 Different strategies of CADD for drug discovery [12]
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optimization of a bioactive substance. Once a SAR plan is accessi-
ble, it is conceivable to do drug design computationally. In particu-
lar, any fruitful use of the systems needs an artificial optimization of
a basic feature of the original search space, to be specific the
“principle of strong causality” [26]. Maggiora and Johnson
renamed this idea in drug design as the similarity rule of chemicals.
Similarity in chemistry is a key concept to consider so many aspects
of molecular properties, i.e., “biological activities,” “reactivity char-
acteristics,” “structural features,” and so on.

It should be noted that drug design scientists try to find the
relationships between the chemical structure and activity (SAR) of
the chemicals by data mining practices applied on “molecular frag-
ments.” SAR identifies the molecular structure changes that can
increase beneficial drug effectiveness. Generally, a few changes in
the lead compound structure for modification continue with prac-
tical tests to measure the biological activity variations [27].

By examining many derivatives of one pharmacophore, SARs
can be formed to direct other medicinal chemists to create reason-
able drug candidates. Regardless of their usefulness, SARs do not
connect drug candidates to their active site within a cell [12]. In
drug discovery research, it is important to link a drug candidate to
its assumed in vivo target. Auxiliary information signifying the
specificity of this drug-target interaction will aid the SAR principally
at branch points where chemical changes may have significantly
altered the original pharmacophore. Solving the SAR method
restrictions will make a notable progress in the initial step of drug
finding [28].

Bio-data collection and organizing based on conventional
SARs are a common tactic for lead optimization in the medicinal
chemistry toolbox. For molecules with low chemical similarity and
chemical scaffold clustering, computations can also be imperative
for screening of libraries and analysis of rough data [29]. In lead
optimization or hit-to-lead plan, molecular series are commonly
explored case-by-case to deduce SAR data and generate actual
analogous. In fact, ligands are often active against a number of
closely connected targets. This type of cross-reactivity is sometimes
favored but is often considered as lacking molecular specificity
[30]. Accordingly, if one intends to focus on a single target, one
usually attempts to extract compounds with multi-target activity
made target-selective through chemical optimization. Conse-
quently, mt-SARs must be considered and evaluated. This task is
slightly difficult for analogue design processes performed conven-
tionally. We reviewed previous examples of SAR/QSAR of multi-
target drugs using the following descriptors [12]:

l Quantum-chemical descriptors for determining electronic
effects

l Molecular quantum similarity (MQS) to determine local reactiv-
ity indexes
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Computational methods have seldom been used to study
mt-SARs due to difficulty of mt-SARs analyses for bioactivity vs. a
number of targets in the ligand series. mt-SAR understanding is
needed for optimization and designing of a ligand [31]. Activity
cliffs considered through characterization of the most important
features of activity landscapes play a key task in the inclusive SAR
study [32].

The molecular descriptors play an important role in drug
design as follows:

(a) For predicting chemical properties

(b) For classifying chemical structures

(c) For searching for similarities between chemical structures

It is thought that with the increase and continuous growth of
different descriptors, significant problems in SAR studies would be
answered [33]. Selective ligands and associated SAR information
are required for framework combination [34].

The term “framework combination” as a knowledge-based lead
generation method combines two pharmacophores or frameworks
of ligands in one molecule leading to a dual-acting bioactive mole-
cule. Each one of these pharmacophores is selective for a target.
SAR information from one-target drug finding projects can be
utilized to direct this combination process. MTDs emerging from
above concept can be categorized into “linked,” “fused,” or
“merged” frameworks. The size of overlapping between two frame-
works determines which dual molecules can be generated. Several
methods of designing MTDs (Fig. 4) have been reported in our
previous review [15].

Generally, a maximum overlapping tries to produce a simpler
and smaller analogue with a better chance of bioactivity. Therefore,
a high level of similarity of two pharmacophores will require a
higher amount of overlap. SAR flexibility is another important
term for a medicinal chemist in the field of MTDD, and generally
it appears to be valid in some scope to the monoamine-binding
targets. It is possibly connected to the presence of basic nitrogen
that binds to a key aspartate residue in the target. An anchor set
with the contribution of a big quantity of the binding energy may
allow larger flexibility in a different place in the molecule [35–37].

Reported SAR samples of the framework combination proce-
dure in the literature indicate wide-ranging information of selective
drug SARs allowing the rational designing of MTDs. In this regard,
proteomic families like nuclear receptors, GPCRs, transporters,
oxidases, and proteases are examples [38].

2.2 Multi-Target

Quantitative Structure-

Activity Relationships

(Mt-QSARs)

A well-known CADDmethod is QSAR mostly built up by correlat-
ing chemical structure information of compounds with response
data. Therefore, a standard method of QSAR presents regression/
classification equations between a set of molecular descriptors with

Computational Multi-Target Drug Design 57



the experimental values of the properties under study. Several steps
of this procedure include:

(a) Data collection

(b) Molecular descriptor assembly

(c) Descriptor selection

(d) Model building

(e) Model interpretation

(f) Model evaluation

Dataset gathering, descriptor generation, and descriptor thin-
ning continue with dividing the data into test and training sets. The
model is constructed in a step involving a linear or nonlinear data
analysis method. In the end, the model quality, predictability, and
its robustness are assessed. Therefore, the QSAR models detect
drug leads by guessing the activity on the basis of statistically
significant correlation between molecular activities and their
structures [12].

Thus, common QSAR models use chemicals acting against one
specific target. Consequently, one uses many models against several
targets to predict a given activity for a set of chemicals. The method
of multi-target or multitasking QSAR (mt-QSAR) is capable of

Lead generation
Approaches

Virtual Screening

SAR

QSAR

Pharmacophore

Molecular Docking

Knowledge-based Natural products
Fragment-based drug

discovery Structure guided

Fig. 4 Lead generation procedures in drug discovery
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tackling this limitation by means of making a single equation that
relates multiple properties. In summary, a single mt-QSAR model
may predict multiple outputs. This is the best characteristic aspect
of mt-QSAR. Thus, it is an advantage of the new method for
exploring and searching of new drugs, including new leads
[39]. We can compare the two methods by comparing the men-
tioned steps of classical QSAR with an mt-QSAR searching process.
The second method involves the steps [39] as follows:

l Data collection (group of chemicals for study and/or analysis,
biological property against various targets, parasites, bacteria,
etc.)

l Descriptor generation (topological, physicochemical, quantum
chemical, etc.)

l Searching for the statistical models and their validation (either
through multilinear techniques, such as LDA, MLR, PLS, etc.,
or nonlinear, such as ANN)

l Model building in search of new bioactives

Generally, an mt-QSAR or multitasking QSAR can lead to
predictions of multiple outputs by a single model. Thus, we can
predict bioactivity against different microbial species to any drug
using a single model [40]. Further description of mt-QSAR details
as a flowchart is given in the next section. The mt-QSAR is a
relationship between the drugs structure to their activities against
different targets.

2.2.1 Molecular

Structure Descriptors

Descriptor generation is the initial phase next to the collection of
compound structures for QSAR model building. Molecular
descriptors quantify physicochemical and structural properties of
compounds, their substituents, or electrostatic fields with the cor-
relation to their binding activities. 1D, 2D, and 3D descriptor
classes translate chemical composition, topology, 3D shape, and
functionality, respectively. Structural indices are used to differenti-
ate structures in order to explain non-covalent molecular interac-
tions, thus relating to properties and activities. There are various
chemical descriptors that can be generalized and used to solve the
mt-QSAR problems.

At present, there are many marketed and free available software
for descriptor calculation [41]. MOE, CODESSA, DRAGON,
TOMOCOMD, TOPS-MODE, or MARCH-INSIDE(MI) [42]
are the software tools that can be used for descriptor calculation
and mt-QSAR or multiplexing QSAR (mx-QSAR) model building.
“For the pickup of the best mt-QSAR model, we consider the prior
ideas about variable selection method.” “We also consider the rule
of parsimony, in which the best model was that with high statistical
significance but having few molecular descriptors as possible”
[42]. Speck-Planche et al. applied TOPS-MODE and DRAGON
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to search mt-QSAR/mx-QSAR models [42]. Alonso and
co-workers defined a multiplexing QSAR (mx-QSAR) model for
multiplexing tests of anti-Alzheimer drugs based on the MARCH-
INSIDE (MI) method [12].

2.2.2 QSAR and

Statistical Technique(s) for

the Model Building

In 3D-QSAR studies, 3D alignment of chemical structures causing
overlapping of the chemical features is required. Other versions
(e.g., 4D, 5D, and 6D) integrate new dimensions or new degrees
of freedom. Thus, with the added refined analysis on the active site
modification of an enzyme to the ligand topology, and vice versa,
these methods can be signified well again [33]. There are several
reports of 3D-QSAR for single target in combination with molec-
ular docking studies, GRid-INdependent Descriptors (GRIND)
[43], CoMFA and CoMSIA descriptors [44, 45], and CoMSIA
descriptors for 4D-QSAR [46].

mt-QSAR models relate the drug structure to the bioactivity
against different targets [47, 48]. The mt-QSAR permits to com-
pute the probability of activity of a given chemical against different
pharmacological or biological targets. It means “a single equation
for multiple outputs” [39]. Frequently, chemical compounds have
multiple bioactivities “(cf. polypharmacology) that may be interre-
lated (not to mention multiple physical properties that are fre-
quently the subject of prediction by QSAR approaches).”
However, QSAR models are studied for each target property sepa-
rately, “without utilizing knowledge that can be extracted from
QSAR models for other activities of the same compounds. Individ-
ual QSAR models of this sort should not be viewed as separate
entities but rather as nodes in a network of interrelated models.”
This concept is accounted for in an inductive knowledge transfer
approach realized in a multitask learning (MTL) and feature net
(FN) methods. MTL treats several tasks in parallel and uses a shared
representation of data. This can be performed using machine
learning methods yielding models with several outputs, such as
neural networks, PLS, or SVM with special kernels. FN treats
different tasks sequentially when predictions made by previously
developed models are used as descriptors for the main task
[49]. Figure 5 shows a typical flowchart of processing of multi-
target QSAR modeling.

Nowadays data mining methods are used for bioactivity predic-
tion of substances. These methods find drug leads with the statisti-
cal analysis of basic correlations between activity status and
molecular structures; regression methods can be integrated for
estimating levels of activity [50]. Compared to chemical similarity
methods, these methods do pattern recognition in vast cluster
compounds and chemogenomic space that deliver similarities in
multidimensional space. Some of the most popular machine
learning methods [50, 51] include:
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l Linear discriminant analysis (LDA)

l Logistic regression (LR)

l Binary kernel discrimination

l k-nearest neighbor (kNN)

l Decision trees (DT)

l Bayesian methods

l Random forests (RF)

l Support vector machines (SVM)

l Artificial neural networks (ANN)

It is easy to apply linear and nonlinear statistical tools such as
LDA or ANN to create mathematical models enabling a good
prediction of different pharmacological and biological properties
of compounds, such as antifungal or antiparasitic activity and bac-
terial susceptibility, just to mention a few. It is to be expected that
there will be an important spread of this sort of methods in the near
future given their great performance and low computational cost
[39]. In this regard, we can cite examples of mt-QSAR study
reported by Cruz-Monteagudo in a multi-objective optimization

Fig. 5 Typical flowchart of multi-target QSAR methods
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(MOOP) of desired activity or properties of drugs against different
targets [52, 53]. MOOP technique can find the global optimal
solution by simultaneous optimization of numerous dependent
properties [54]. Several instances of mt-QSAR model for bacterial,
fungal, and viral species using ANN and linear discriminate analysis
(LDA) methods exist in recent published papers [12]. Zanni et al.
have reviewed many mt-QSAR published research considering the
above methods [39].The performance of these practices depends
on numerous factors [50] including the following:

l Training set variation, their capacity to deal with imbalanced
datasets

l Applicability domain

l Parameter ranges in covering active and inactive chemical space

It should be noted that after mt-QSAR model building, one
can use it for the search of new active agents (screening, computa-
tional design, etc.).

Some researchers have applied the QSAR theories to construct
models for MTDD. Ajmani and Kulkarni used a new process of
group-based QSAR (G-QSAR) for lead optimization of multi-
kinase (PDGFR-beta, FGFR-1, and SRC) and scaffold hopping of
multi-serotonin target (serotonin receptor 1A and serotonin trans-
porter) inhibitors. Also, the established G-QSAR models propose
key “fragment based features that can produce the building blocks
to conduct combinatorial library design for exploring of the opti-
mally potent multi-target inhibitors” [55].

Namasivayam et al. studied emerging chemical patterns (ECP)
for classification “with overlapping or distinct activities of multi-
target and different mechanisms for molecular interactions”
[56]. Also, in another work, the ECP process was used by above
researchers to discover molecular descriptors and value ranges. This
processing distinguishes between “modeled conformations and
experimental bioactive conformations of ligands experimentally”
[57]. “For small training sets, the ECP process does better than
decision trees and Bayesian QSAR methods” [58].

Prado-Prado et al. reported mt-QSARs using Markov model
for encoding molecular backbone information. The term
“MARCH-INSIDE, MARkovian CHemicals IN SIlico DEsign”
refers to the mentioned process [59]. They developed mt-QSAR
models for active agents against multiple fungal [60, 61], bacterial
[40], and multi-target agent identification [62]. The model devel-
opment was performed by joining multi-target/species changes of
binding site specifications into the species-dependent descriptors or
mt-dependent descriptors and stochastic Markov drug-binding
process models. They computed new multi-target spectral
moments to meet a QSAR model using Markov chain theory for
active drugs against 40 viral species. In this way, they can present
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“matrix invariants such as spectral moments, stochastic entropies,
and potentials for molecular properties study” [63, 64]. The same
author group in another mt-QSAR study applied Markov chain
theory for determining a new mt-spectral moments to find a
QSAR model which estimates activities by an mt-QSAR model
for 500 drugs against 16 parasite species and other 207 drug-like
compounds. “They used LDA for model development and classifi-
cation of drugs as actives or non-actives against various tested
parasite species. They derived four types of nonlinear artificial
neural networks (ANN) which were evaluated as the mt-QSAR
models. The total performance for the training set was 87% for
the improved ANN model” [65].

Cruz-Monteagudo et al. have reported mt-QSAR studies using
a multi-objective optimization (MOOP) of activity or properties of
drugs against diverse targets. An effective methodology of the
MOOP problem uses the “Derringer’s desirability function and
several QSARmodels for different objectives.” TheMOOP process
as a chemometric method is a useful tool that obtains the global
optimal solution by “simultaneous optimization of numerous
dependent properties” [54]. Various applications of MOOP tech-
niques can be found “ranging from substructure mining” to molec-
ular docking mainly on the basis of “weighted-sum-of-objective-
functions (WSOF)” and Pareto optimality methods.” The above
strategy considers the full spectra of objectives in order to avoid
local optima. This aspect is a key advantage that leads to a more
efficiency [12, 40]. Different desirability functions may be used to
identify the response as maximized, minimized, or given a target
value. Derringer and Suich presented a desirability function that
can be useful in the field of drug discovery [62, 66]. Derringer’s
desirability function is a tactic of the different techniques of multi-
criteria decision-making [54]. The MOOP-DESIRE method on
the basis of Derringer’s desirability function enables researchers of
developing a global QSAR model. Thus, such QSAR models con-
sider the pharmacokinetic, pharmacological, and toxicological pro-
files of a series of candidate molecules simultaneously [52, 67].

2.3 De Novo Method De novo method is an MTDD plan with different target profiles.
Virtual screening techniques need pre-existing ligand libraries, but
de novo design procedures can produce a pool of drug candidates
from simple building blocks (i.e., atoms, fragments) to obtain a
focused library [23].

CADD-based de novo design offers a complementary method-
ology through screening virtual ligands. It greatly increases the size
of the pool of molecules that are freely available for HTS (usually
1–3 million molecules). Here, the practice of molecule synthesis
and testing must be performed by smart algorithms. Fragment-
based virtual synthesis methods have been verified for their
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particular applicability to this task [68, 69]. Two problems for de
novo designing are:

l The assembly problem

l The scoring problem

Fragment-based methods provide a way to tackle the assembly
problem and two plans for scoring problem through in situ design
or disregarding receptor structure [70].

Practical or in silico fragment-based search could be applied to
discover the primary starting point [71–73]. Moreover, it provides
evidences for employing “ensemble linking” plans and supporting
the efficiency of the “fragment linking” algorithms that link frag-
ments occupying different subpockets. With the progress of auto-
mated robotic chemical synthesis and its pairing to de novo design
software, designed ligands can be quickly produced and examined
[74, 75]. Artificial intelligence methods such as deep learning have
been used to predict ADMET properties, and more properties
related to late-phase growth can be unified in the de novo design
practice [76, 77].

In silico screening has been extended further along the
biological dimension leading to new integrative methods capable
of estimating the pharmacological profile of molecules on multiple
targets [78]. Screening of compound libraries and virtual screening
were established to more rational methods, such as de novo design
with insight from liganded or unliganded protein structures, data-
base mining employing pharmacophore models derived from
known compounds, or based on mechanistic insight.

2.4 Molecular

Docking

Molecular docking has become an interesting keyword in the
computational multi-target drug design development. Molecular
docking is in silico technique that can be used to model the inter-
action between a ligand and a target protein at the atomic level.
Docking is widely applied to the study of biomolecular interactions
and mechanisms, and it is used in structure-based drug design and
virtual ligand screening methodologies. The aim of docking is to
predict the best binding pose of a ligand to fit the binding site of a
protein and evaluate its binding affinity using a scoring function.

Many available docking software tools have revealed their
impressive growth, and the accuracy of each tool has been regularly
improved by introducing new techniques. A docking software can
generate correct binding poses in many cases if a reasonable tem-
plate structure of a protein is chosen. The challenge is how to
efficiently select a correct pose among the putative candidate
poses generated by the software. There are several cavity detection
programs or online servers for apo structure that can detect putative
active sites within proteins in blind docking. Blind docking was
introduced for the detection of possible binding sites and modes of
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peptide ligands by scanning the entire surface of protein targets.
For example, in the AutoDock program, when we do not know
where the ligand binds, we can build a grid volume that is big
enough to cover the entire surface of the protein using a larger
grid spacing than the default value and more grid points in each
dimension. Then, we can perform preliminary docking experiments
to see if there are particular regions of the protein preferred by the
ligand. This is sometimes referred to as blind docking, cavity detec-
tion, or pocket detection [79].

Docking programs have been developed based on different
aspects as follows: open source or commercial [80], scoring
[81, 82], posing [83–85], sampling [86, 87], optimization
[88–90], and flexibility [91, 92]. Docking and cavity detection
software tools developed in the last decade are listed in Table 1.

2.4.1 Receptor

Representation in Docking

The traditional docking algorithm represents the receptor as a rigid
body, leading to predict an incorrect binding pose resulting in
meaningless ligand-binding scores. Different techniques for recep-
tor flexibility have been developed. In some methods, receptor
flexibility occurs by enumerating its conformations or modeling
its changes (e.g., conformational searching and/or optimization
approaches) during docking. The ensemble-based techniques
depend on using multiple input receptor conformations into dock-
ing programs. It is noteworthy that using an ensemble approach is
superior to a single-receptor conformation input.

GalaxyDock [90, 119] (Table 1) explains protein flexibility of
residues selected previously in the receptor binding site by using
global optimization, and we can make a favorable comparison by
applying a wide range of programs (FLIPDock, AutoDock, Rosetta
Ligand, and SCARE) in binding pose prediction accuracy with
success rates of 80–87%. By doing so, it is possible to measure
success rate as the fraction of docked poses with predicted rmsd
of �2 Å compared with the experimental structures.

Consensus Induced Fit Docking (cIFD) [131] method as a way
for the adaption of receptor binding site in order to accommodate
multiple diverse ligands is a vital characteristic for virtual screening
(VS) introduced by Kalid et al. The cIFD workflow undergoes two
stages: (1) IFD of multiple ligands for preliminary binding mode
determination and (2) receptor optimization in the presence of a
“hybrid” ligand which combines selected poses of the IFD-docked
ligands. cIFD was validated on three targets demonstrated before
to be challenging for docking. A practical way is recommended
to explain receptor flexibility covertly to avoid the additional
computational costs of ensemble docking or accounting for full
receptor flexibility during docking.

Ensemble docking which includes docking compounds into
many conformations of a target receptor is a robust way to show
receptor flexibility in a separate format. This approach copies the
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Table 1
Software and performance details for molecular docking

Program name Descriptions Ref.

AutoDock Vina It is an entirely separate code base and approach from AutoDock that
was developed with a focus on runtime performance and ease of
system setup. It uses a fully empirical scoring function and an iterated
local search global optimizer to produce docked poses. It includes
support for multi-threading and flexible side chains

[93]

APBS It performs solvation free-energy calculations using the Poisson-
Boltzmann implicit solvent method

[94]

AutoDock It is an automated docking program that uses a physics-based
semiempirical scoring function mapped to atom-type grids to
evaluate poses and a genetic algorithm to explore the conformational
space. It includes the ability to incorporate side-chain flexibility and
covalent docking

[95]

Clusterizer-
DockAccessor

They are tools for accessing the quality of docking protocols. It
interfaces with a number of open source and free tools

[96]

DockoMatic It provides a graphical user interface for setting up and analyzing
AutoDock and AutoDock Vina docking jobs, including when to run
on a cluster. It also includes the ability to run inverse virtual screens
(find proteins that bind a given ligand) and support for homology
model construction

[97]

DOVIS It is an extension of AutoDock 4.0 that provides more efficient
parallelization of large virtual screening jobs

[98]

Idock It is a multi-threaded docking program that includes support for the
AutoDock Vina scoring function and a random forest scoring
function. It can output per-atom free-energy information for hotspot
detection

[99]

MOLA It is a prepackaged distribution of AutoDock and AutoDock Vina for
deployment on multi-platform computing clusters

[100]

NNScore It uses a neural network model to score protein-ligand poses [101]

Paradocks It is a parallelized docking program that includes a number of
population-based metaheuristics, such as particle swarm
optimization, for exploring the space of potential poses

[102]

PyRx It is a visual interface for AutoDock and AutoDock Vina that simplifies
setting up and analyzing docking workflows. Its future as an open-
source solution is in doubt due to a recent shift to commercialization

[103]

rDock It is designed for docking against proteins or nucleic acids and can
incorporate user-specified constraints. It uses an empirical scoring
function that includes solvent-accessible surface area terms. A
combination of genetic algorithms, Monte Carlo, and simplex
minimization is used to explore the conformational space. Distinct
scoring functions are provided for docking to proteins and nucleic
acids

[104]

RF-Score It uses a random forest classifier to score protein-ligand poses [105]

(continued)
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Table 1
(continued)

Program name Descriptions Ref.

smina It is a fork of AutoDock Vina designed to better support energy
minimization and custom scoring function development (scoring
function terms and atom-type properties can be specified using a
runtime configuration file). It also simplifies the process of setting up
a docking run with flexible side chains

[106]

VHELIBS It assists the non-crystallographer in validating ligand geometries with
respect to electron density maps

[107]

VinaLC It is a fork of AutoDock Vina designed to run on a cluster of
multiprocessor machines

[108]

VinaMPI It is a wrapper for AutoDock Vina that uses Open MPI to run large-
scale virtual screens on a computing cluster

[109]

Zodiac It is a visual interface for structure-based drug design that includes
support for haptic feedback

[110]

BetaDock Prioritizing shape complementarity, based on the theory of b-complex
and the Voronoi diagram, rigid bodies (both receptor and ligand)

[84]

bhDock Identification of low-resolution binding sites, ligand posing via
simulated annealing MD-based global optimization

[111]

EADock DSS Efficient tree-based dihedral space sampling (DSS), based on hybrid
sampling engine and multiobjective scoring

[87]

GENIUS Binding constraints via essential interaction pairs (EIP) [83]

H-DOCK Docking by hydrogen bond matching and shape complementarity [112]

LigDockCSA Powerful global optimizer, conformational space annealing (CSA) [89]

MedusaDock Modeling both ligand and receptor flexibility simultaneously with sets
of discrete rotamers

[92]

NeuroDock Generation of docked poses by self-organization of atom coordinates
without the need for input/seed conformation

[85]

ParaDockS Open source and operating system-independent code [102]

PythDock A simple scoring function, a population-based search engine (particle-
swarm optimizer algorithm)

[81]

SKATE Decoupling sampling from scoring [86]

VoteDock Discriminant analysis, adaptive and radial sampling and clustering,
consensus scoring

[81]

RigiDock + PoseMatch A fast approximation scheme for the docking of rigid fragments [113]

PD DOCK Parameter optimization for docking scores [114]

BSP-SLIM Blind docking using low-resolution receptor structures, such as
homology models

[115]

CovalentDock Capacity to handle the molecular geometry constraints of the covalent
bonding using special atom types and directional grid maps

[116]

(continued)
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dynamic behavior of the protein. As a consequence, the structural
degree of freedom is attained where each ligand may find a match-
ing receptor. Practically speaking, the latter depends on the confor-
mational space covered by the ensemble. It is generally assumed
that ensemble docking is superior to docking into a single-receptor
conformation.

This hypothesis was examined by Craig et al. through probing
VS enrichment using an ensemble of crystallographically derived

Table 1
(continued)

Program name Descriptions Ref.

CRDOCK Increased speed and efficient treatment of ligand flexibility, by
pre-generating the conformational libraries of ligands

[117]

FIPSDock Implementation of the fully informed particle swarm optimization [118]

GalaxyDock Flexibility of preselected receptor side chains by global optimization of
an AutoDock-based energy function trained for flexible side-chain
docking

[90]

GalaxyDock2 Geometry-based generation of initial ligand conformations in
conformational space annealing global optimization

[119]

HYBRID Utilization of the knowledge of bound ligands [120]

LiGenDock Capacity to conduct de novo design [121]

PRL-Dock Increased speed, probabilistic relaxation labelling algorithm to search
for potential intermolecular hydrogen bonding

[122]

QuickVina Increased speed, improvements in the local search algorithm via
heuristic prevention of some intermediate points undergoing local
search

[123]

SAMPLE It is based on the hybrid genetic algorithm, ability to handle
intramolecular and intermolecular degrees of freedom and an
arbitrary number of independent species

[124]

eFindSite It is using homology modeling and machine learning predicts ligand-
binding sites in a protein structure

[125]

fpocket It detects and delineates protein cavities using Voronoi tessellation and
is able to process molecular dynamics simulations

[126]

KVFinder It is a PyMOL plug-in for identifying and characterizing pockets [127]

McVol It calculates protein volumes and identifies cavities using a Monte Carlo
algorithm

[128]

PocketPicker It is a PyMOL plug-in that automatically identifies potential ligand-
binding sites using a grid-based shape descriptor

[129]

POVME POcket volume MEasurer is a tool for measuring and characterizing
pocket volumes that includes a graphical user interface

[130]
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structures [132]. They tested their approach using Glide in SP
mode with GlideScore against the aspartic protease β-secretase
and the cAbl kinase domain. They employed an area under the
receiver operating characteristics (ROC) curve (AUC) as an enrich-
ment metric. The results indicate that crystallographically derived
ensembles in comparison with all individual members produced
better enrichment only in some cases. More frequently, the ensem-
ble gave better results compared with a mean of the enrichments of
the individual members. Thus, following a range of caveats and
suggestions for further investigations (more test systems, more
docking programs/scoring functions/ensemble construction stra-
tegies, and inclusion of receptor conformation energy into a scor-
ing function), the authors concluded that it may be incorrect to
assume that ensemble docking is always able to account reliably for
protein flexibility. On one hand, this conclusion, though very cau-
tious, seems to be quite uncommon; on the other hand, Craig and
co-workers were not alone in questioning and finding faults in the
ensemble-based treatment of receptor flexibility.

Several key features influencing ensemble docking with regard
to pose prediction and VS performance were suggested by Korb
et al. [133]. The features are as follows: sampling accuracy, choice
of the scoring function, and the similarity of docked ligands to the
ligands bound to the protein structures in an ensemble. In addi-
tion, they thoroughly assessed the ensemble performance com-
pared with the performance of the individual ensemble members,
and the following observations were made: (1) in almost all cases,
ensembles had a better performance than the worst single struc-
ture; (2) in many cases ensembles performed better than the aver-
age single protein structure; and (3) in some cases ensembles
performed better than the best single protein structure. Consider-
ing these findings, they determined that the rational prospective
selection of optimum ensembles is a demanding task requiring
further critical research. The most significant point to mention is
that protocols are required to generate ensembles, in terms of both
size and membership, leading to increased docking efficiency and
reduced false-positive rate in VS.

The issue of rational ensemble construction was dealt with by Xu
and Lill through considering three potential selection strategies,
namely, clustering based on pairwise rmsd, pose prediction perfor-
mance, and VS performance in terms of actives/decoys differentiation
[134]. They used VS performance which appeared to be the most
successful method for the selection criterion. Therefore, using the
earlier developed Limoc concept, they were able to obtain a balance
between the extent of protein flexibility accounted for and the risk of
false positives resulting from the excessive ensemble size. Specifically,
successful docking was shown to be performed using ensembles of
relatively small size (3–5 receptor structures).
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In case extensive and diverse crystallographic data are not
accessible for a given target, simulation-based ensembles can be
used. A widely agreed-upon viewpoint is that a greater sampling
of biomolecular space is desirable for the construction of the opti-
mal ensemble. The main obstacles to such coverage are the small
configurational changes usually observed in relaxed complex
schemes and induced fit methods, and, conversely, short time scales
are generally accessible to molecular dynamics (MD) simulations
[135]. Approaches employed to surpass the obstacles include the
brute force hardware advances and algorithmic improvements.
Conceptually, the simplest brute force improvements to the prob-
lem of configurational space coverage come from increasing speed
and efficiency of computer hardware. The latest advances in this
field come from the implementation of graphics processing unit
(GPU)-accelerated computing [136], building special purpose
supercomputers such as Anton, or moving calculations into the
cloud [137]. More conceptually demanding are the advances in
algorithms, allowing more efficient space coverage. Enhanced sam-
pling methods such as temperature-accelerated replica exchange,
Hamiltonian-based accelerated MD, umbrella sampling, metady-
namics, and Markov state models can accelerate calculations by
developing artificial biases into simulations.

Combining docking with molecular dynamics (MD) is exclu-
sively useful in cases where binding causes significant conforma-
tional changes. Dynamic docking’s predictive power in estimating
the binding free energy can be assessed against experimental results,
when available. The key step is thus to develop dynamic docking
methods and techniques for correctly computing the binding free
energy of a ligand to its target. This task is at the very core of
challenge in developing new and better computational tools for
drug discovery [138]. Whalen et al. developed the flexible enzyme
receptor method by steered molecular dynamics [139]. They pres-
ent a novel hybrid method for accurate and precise affinity rank
ordering of ligands against a challenging enzyme drug target. This
hybrid method combines ensemble docking via AutoDock 4, com-
putationally efficient steered MD by YASARA 9.11.9, and binding
affinity calculation by MM/PBSA. They demonstrated an
improved accuracy in affinity predictions, considered poor when
delivered by traditional scoring functions even when receptor flexi-
bility is taken into account. Multi-targeted molecular dynamics
(MTMD) is a unique technique in which important intermediate
catalytic structures could be sampled out. MTMD studies of stable
binding poses of substrates and inhibitors were further carried out
to analyze the conformational changes in the residues forming
stable binding interactions. A report was published using the
MTMD techniques by Prajapati and Sangamwar [140]. They pre-
sented the mechanistic picture of translocation of P-glycoprotein as
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a well-known multidrug resistance in drug therapy; MTMD studies
gave sufficient details into conformational changes in drug-binding
region, role of intracellular coupling helices and topological
arrangements of TM helices in P-glycoprotein translocation, and
quantitative shifts in TM helices providing valuable information for
future experiments.

2.4.2 Ligand

Representation in Docking

Ligand representation in docking, especially, conformation selec-
tion and specifications, has significant effects on docking results.
Feher and Williams in their studies have shown that input ligand
conformations alter the docking outcomes [135]. They tested this
variability using GOLD, Glide, FlexX, and Surflex programs. It is
concluded that there are two major effects leading to such varia-
bility: the adequacy of conformational search during docking
(major) and random “chaotic” effects arising from sensitivity to
small input perturbations (minor, but significant). Ligand flexibility
is one of the main obstacles in failure of docking protocols to
correctly predict the pose. Bohari and Sastry tested five programs
(Glide, GOLD, FlexX, CDocker, and LigandFit) on a dataset of
199 FDA-approved drug-target complexes [141]. Even given the
limited range of ligand conformational complexity in such dataset,
they noted the dependence of pose prediction accuracy on ligand
“size” and observed better performance for low or medium flexi-
bility. Similarly, using docking with AutoDock 4 and AutoDock
Vina, Houston and Walkinshaw suggested that there appears to be
a certain ligand size that maximizes pose prediction accuracy
because of optimum flexibility [142]. Using these programs
[143, 144] and some others can result in increased failure rates
while docking small and fragment-like molecules. This is generally
accepted to be a scoring failure. Conversely, failing to correctly
dock large, often highly flexible molecules is ascribed to be a
shortcoming of sampling.

2.4.3 Scoring Functions Scoring functions accounting for the potential of a compound to
act as a ligand are mainly derived from three main approaches based
on their characteristics.

Scoring functions in molecular docking are fast approximate
mathematical methods to predict the strength of the non-covalent
interactions (also referred to as binding affinity) between two
molecules after having been docked. Ranking of compounds by
their probability of being active (virtual screening) presents a dif-
ferent problem to predict the bound pose of a compound (pose
prediction). Therefore, different scoring functions perform better
for one or the other of these problems. Furthermore, scoring
functions cannot predict binding affinity or binding free energy
for two reasons: They calculate mostly enthalpic terms disregarding
entropy particularly of the protein. Entropy is explicitly required to
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estimate binding free energy. Scoring functions only know about
the bound state of the protein-ligand system, not the unbound
states of the protein and the ligand. Binding free energy can only
be estimated using knowledge of the bound state and the unbound
states of the binding partners.

Popular scoring functions are roughly grouped into four main
categories: force field, empirical, knowledge-based, and machine
learning scoring functions.

Force field scoring functions: Binding affinities are estimated by
summing the strength of intermolecular van der Waals and electro-
static interactions between all atoms of the two molecules in the
complex using a force field.

Empirical scoring functions: They are based on counting the
number of various types of interactions between the two binding
partners.

Knowledge-based scoring functions: They are based on a statisti-
cal analysis of protein-ligand complex structures.

Machine learning scoring functions: The functional form is
inferred directly from the data. Machine learning scoring functions
have consistently been found to outperform classical scoring func-
tions at binding affinity prediction of diverse protein-ligand
complexes.

Consensus scoring: Given the performance inadequacies of
established and newly developed scoring functions, a common
approach to attempt improving their accuracy is using scoring
functions in combination (i.e., consensus scoring). The consensus
scoring approach based on multiple scoring functions seems to
perform better than a single scoring function.

The ranking mechanism which can correctly identify such
modes or effectively distinguish between binders and nonbinders
or active and inactive compounds still remains a challenge. To tackle
this problem, many advances to scoring functions have been
attempted by addressing the main obstacles to robust scoring:
entropy and desolvation effects.

In an investigation by Huang and Zou, simple empirical terms
were added, accounting for ligand configurational entropy to their
knowledge-based scoring function ITScore to produce ITScore/
SE [145]. ITScore/SE achieved a significant improvement in its
performance compared with ITScore as well as 14 other scoring
functions.

On the interface of biomolecular complexes, one factor that
facilitates the increase in specificity and/or affinity and may enable
promiscuous binding is water molecules. Thus, properly account-
ing for specific water molecules on the interface as well as for the
general effect of solvation is an important aspect of docking [144].

The choice of the best docking program for a specific protein
receptor could be a complicated issue. However, in order to make a
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possible regression between scoring function and bioactivity, the
evaluation criterion is to be on the basis of the best regression of
scoring function. The docking program has the potential to calcu-
late only the binding affinity; hence, it cannot be argued that a good
dock score guarantees a good inhibitor or an agonist since the real
mechanism is both complicated and unknown. There is one thing
we can say for sure as the concluding point, which is “the ligand
binds well into the binding site of the protein.” After bioassay
validations, it can be judged whether it is an inhibitor or an
agonist [146].

Molecular docking has been applied in virtual screening against
the individual targets in HIV and its associated opportunistic
pathogens to find multi-target agents such as KNI-764 that
inhibit both HIV-1 protease and malarial plasmepsin II enzyme
(Fig. 6) [147].

In multi-targeted docking approach (mt-docking), the data
obtained from a series of ligands tested on multiple targets of a
specific disease are used to create a network; the extracted data
provide information about the number and quality of the com-
pound’s interactions, helping to understand mechanism. Through
degree centrality parameters, it becomes possible to characterize
the importance of the nodes in a network (by molecule or target
protein). A score-weighted docking prediction model reveals infor-
mation concerning all of the bindings between a ligand and a
receptor [148]. An investigation by Azam and collaborators [149]
suggested 13 compounds from ginger (Zingiber officinale) against
Alzheimer drug targets: acetylcholinesterase (AChE), butyrylcho-
linesterase (BuChE), β-site amyloid precursor protein-cleaving
enzyme (BACE), glycogen-synthase-kinase-3 β (GSK), TNF-α
converting enzyme (TACE), c-Jun N-terminal kinase (JNK), nitric
oxide synthase (NOS), human carboxylesterase, N-methyl-D-

Fig. 6 Molecular docking strategy of multi-target inhibitor discovery [147]
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aspartate (NMDA), cyclooxygenase-I (COX1), cyclooxygenase-II
(COX2), phosphodiesterase-5, and the angiotensin-converting
enzyme. They employed a rigid protein and a flexible ligand
whose torsion angles were identified (for ten independent runs
per ligand). The calculations, reliability, and reproducibility of the
molecular docking methodology were validated; docking para-
meters showed a correlation coefficient of r2 ¼ 0.931. From the
docking data, the authors built a “ginger” model from structural
requirements and interactions with the receptors (Fig. 7). Multi-
functional drug investigations report on the different binder classes
and their various targets in many diseases, from respiratory infec-
tions to cancer, simultaneously displaying the great breadth of such
research, as well as the immense applicability of multi-target drugs.

2.5 Pharmacophore

Modeling

Ehrlich in 1909 defined pharmacophore as a molecular framework
that carries (phoros) the essential features responsible for a drug’s
(pharmacon) biological activity [150]. After a century, in 1998
Camille Wermuth submitted a refined definition to the IUPAC as
follows: “A pharmacophore is the ensemble of steric and electronic
features that is necessary to ensure the optimal supra-molecular
interactions with a specific biological target structure and to trigger
(or to block) its biological response” [151].

A pharmacophore model can be derived by either ligand-based
or structure-based methods. Ligand-based methods generate phar-
macophoric features by superposing a set of active molecules and
subsequently extracting their common chemical features essential
for binding activity. Structure-based methods construct pharmaco-
phoric features by probing possible interaction points between
target and ligands.

Replaced with C=O, OH
and OAc groups increase

activity for all targets

Cyclization of carbon chai
N is necessary for activity

with NMDA, BuChE,
ACE, JNK, and NOS
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CH3 is adverse for all
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targets if
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substituted with H-
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Fig. 7 Structural requirements for ginger compounds to interact with anti-Alzheimer targets [84]
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Pharmacophore models must in some way uniformly represent
the physicochemical properties and location of functional groups
involved in ligand-target interactions. The most common represen-
tation of pharmacophores is a spatial arrangement of so-called
chemical (or pharmacophoric) features that describe essential struc-
tural elements and/or observed ligand-receptor interactions by
means of geometric entities.

Most common properties used to define pharmacophores are
hydrogen bond acceptors, hydrogen bond donors, basic groups,
acidic groups, partial charge, aliphatic hydrophobic moieties, and
aromatic hydrophobic moieties [152].

For instance, LigandScout supports the derivation of 14 feature
types whose graphical representation is shown in Fig. 8.

Pharmacophore features have been used extensively in drug
discovery for virtual screening, de novo design, and lead optimiza-
tion [153, 154].

Since pharmacophore-based queries are based on pharmaco-
phore feature alignments rather than compound scaffold align-
ments, they are able to find hit molecules with diverse scaffolds

Hydrogen Bond Donor
Iron Binding Location

Zinc Binding Location

Magnesium Binding Location

Manganese Binding Location

Excluded Volume

Hydrogen Bond Acceptor

Positive Ionizable Area

Negative Ionizable Area

Hydrophobic Interactions

Aromatic Ring

Fig. 8 Pharmacophore depictions in LigandScout. Hydrogen-bonding interactions: Hydrogen bonding is an
attractive interaction of electropositive hydrogen atoms with an electronegative atom (H-bond acceptor) like
oxygen, fluorine, or nitrogen. Hydrophobic interactions: Hydrophobic (lipophilic) interactions occur when
nonpolar amino acid side chains in the protein come into close contact with lipophilic groups of the ligand.
Aromatic and cation-π interactions: Electron-rich π-systems like aromatic rings are capable of forming strong
attractive interactions with other π-systems (π-stacking) and adjacent cationic groups. Ionic interactions: Ionic
interactions are strong attractive interactions (energies >400 kJ/mol) that occur between oppositely charged
groups of the ligand and the protein environment [152]
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when compared to the original ligands used for the generating the
pharmacophore models [155]. This is of special interest for
researchers who need to find novel molecules that are patentable
or lead candidates with better ADMET properties, and/or higher
activity, and/or selectivity toward the target [156].

Several computational tools and programs which have estab-
lished the pharmacophoric geometry for automated pharmaco-
phore generators such as HipHop, HypoGen (Accelrys Inc.),
DISCO, GASP, GALAHAD, PHASE, LigandScout, MOE,
GBPM, Schrödinger, Pocket v.2, HS-Pharm, and Snooker have
been developed. The main difference between these programs is
in the algorithms applied for managing the flexibility of ligands and
for the alignment of compounds [154].

Ligand- and structure-based pharmacophore models and
molecular docking are commonly used in single-target drug discov-
ery. Combined pharmacophore and molecular docking strategy
named as combinatorial approaches were applied to discover
multi-target inhibitors. Parallel searches against each individual
target are directly conducted in these methods to find virtual hits
that simultaneously interact with multiple targets. Based on the
chemical structures of known ligands or the 3D structure of the
binding site, a pharmacophore model with several key features can
be built for each target. Multiple conformations of virtual ligands
generated and mapped onto pharmacophore model and fitness are
evaluated [23].

For docking-based methods, the ligands are put into the bind-
ing site and then evaluated by scoring functions. Figures 9 and 10
show the strategy and framework of these approaches. This
approach is mentioned due to selection of common hits involving
various computational screening steps that are computationally
expensive and could present multiple challenges such as comparing
binding scores or fitness scores for different targets.

Recently, an investigation by Zhang et al. suggested a com-
mon pharmacophore-guided multi-target drug design technique
to overcome these limitations based on the findings that the
number of bound conformations of a ligand even for different
targets is limited [158, 159]. For systems where a ligand binds all
targets having common features, this approach can be applied. As
can be seen in Fig. 11, the pharmacophore model for each target
can be first constructed from 3D structures of the targets or
available potential ligands. Then, a common feature pharmaco-
phore model is generated by aligning all combinations of possible
pharmacophore. This technique can be applied to rapidly screen
matching compounds. A molecular docking algorithm is per-
formed for the top-ranking compounds to identify compounds
that bind well to all targets in the initial screen. The common
pharmacophore can also be used as a post-filter technique after
multiple docking screening to discover compounds that may bind
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Fig. 9 Combined pharmacophore and molecular docking strategy of multi-target inhibitor discovery [157]
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Fig. 10 Illustration of framework combination approach to multi-target drug
discovery [157]
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to all targets. Furthermore, a shape-based comparison can also be
used as an alternative approach for docking [160].

This approach was used to design compounds that can simul-
taneously inhibit two human inflammation-related proteins, leuko-
triene A4 hydrolase (LTA4H-h) and human non-pancreatic
secretory phospholipase A2 (hnps-PLA2). The common pharma-
cophore was constructed using structure-based pharmacophores
generated by Pocket V2 using co-crystal structures of LTA4H-
h and sPLA2. The common pharmacophore model includes two
hydrophobic sites and a metal-coordination site (Fig. 12).

The key step for this type of design strategy is generation of a
common feature model. Rather than directly building a common
pharmacophore from known pharmacophores, Hsu et al. used the
information from a large-scale dataset of docked compounds to
build a core site-moiety map followed by searching for multi-target
inhibitors. They docked molecules to the orthologous proteins,
shikimate kinase from Mycobacterium tuberculosis and Helicobacter
pylori (MtSK and HpSK, respectively) [161].

In the end, which virtual libraries are to be searched should be
carefully decided. Pockets with low similarities will make it difficult
to identify an adequate number of multi-target candidates for
further studies. A well-designed library with a broad range of
chemical space and a sufficient number of molecular candidates is
highly recommended.
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Fig. 11 Common pharmacophore-based multi-target drug design [23]
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3 Challenges and Limitations of Computational MTDD

Although a rapid progress has been made in MTDD during the
recent decade and many successful examples of its techniques and
uses have been reported, several challenges still remain. For
instance, target combinations were not selected since sparse quan-
titative data for network dynamic studies were found, and we could
not construct a molecular network for the disease. As omics data

Fig. 12 The common pharmacophore-based design of a multi-target inhibitor of hnps-PLA2 and LTA4H-h. (a)
Compound 1 fit a common pharmacophore generated by two targets. The binding conformation was
confirmed using a docking method. (b) Compound 1 and compound 2 showed the desired multi-target
activities [23]
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and quantitative measurements are gathered rapidly, soon more
disease-connected models will be accessible to analyze target com-
binations. It is possible to use more than one target combination in
most cases so that a disease network can be controlled. Numerous
multiple target combinations will make it possible for the research-
ers to choose targets easily modulated by small molecules and at the
same time obtaining the same level of network control [162]. The
validation of MTDs in early experimental phase is significant for
post-optimization. When we lay emphasis on polypharmacology as
an important discovery strategy, we do not mean to choose any
possible promiscuous leads for optimization. Computational meth-
ods are less expensive thanHTS; however, it is necessary to carefully
examine the selection of ligands from in silico methods to avoid
non-specific activities [163]. Recently, the pan-assay interference
compounds (PAINS) have been broadly employed to prevent false-
positive ligands which have chemical reactions and may interfere
with fluorescent assays or aggregate [164–166]. The PAINS criteria
analysis is only responsible for possible false activity. The next type
of non-specific false-positive is derived from colloidal aggregates
where the aggregated compounds are either aqueous solutions or
micelle formation.

Membrane and soluble proteins may adsorb aggregates result-
ing to inhibitory effects or infrequently activation [167–170]. A
CADD method has been suggested for the detection of the simi-
larity of compounds in well-known aggregators.

Also, some practical techniques such as hyphenated NMR with
other well-known assays, flow cytometry light scattering, can detect
aggregation [163]. Development of the MTD-based methods
(e.g., pharmacophore and docking) as well as available drug candi-
dates and exact scoring algorithms can reduce false-positive rates.
Besides these, growing computational power will drop runtime,
and more extensive searches are required to be carried out in the
right time free [171].

The development of de novo design both through ligand- and
structure- based design will also benefit from the combined data. As
computational and experimental tools are rapidly developed, devis-
ing MTDs for feasible target combinations is expected to be
increasingly applicable in the near future.

The favorable efficacy of existing combination therapeutics
illustrates that searches specifically designed to identify multi-target
mechanisms can provide a new path forward in drug discovery.
There are two approaches to create multi-target therapeutics, mix-
ture of monotherapies and individual multi-targeted single agent
[172]. The advantages and disadvantages of these two approaches
are discussed in Table 2 [16].
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4 Future of MTDD

Nowadays, MTDs are a favorable plan to face complicated cases of
diseases. MTD design is a promising alternative for single-target
drugs in a more efficient manner for adjusting biological networks
mainly in polygenic diseases or drug resistance. The search for more
effective therapeutics with progressive advances of computer-based
and theoretical tactics in bioinformatics science and linked disci-
plines would become possible. Using existing advanced computa-
tional ways may offer a more rapid and accurate mode to achieve
this task.

Combination of the mentioned drug exploration/design with
various data mining methods is useful for achieving maximum
information of chemicals as well as lead discovery. The success
rates and limitations of the MTDD technologies have made it an
interesting multidisciplinary field of investigation for developers,
students, and practitioners.

In this way, there is a great enthusiasm for the utilizing of
“hybrid multi-target drugs” [173]. In silico screening has been
extended further along the biological dimension leading to new
integrative methods capable of estimating the pharmacological
profile of molecules on multiple targets [72]. The beginning of

Table 2
Advantages and disadvantages of different methods of MTDD

Advantages Disadvantages

Mixture of monotherapies

l Straightforward to tailor ratio of agents in the
mixture—to account for differential potency at
target and/or target stoichiometry

l Opportunity for sequenced action or
independently varying target exposure (e.g.,
using immediate versus extended release
formulations of the components)

l Speed to proof-of-concept clinical trials and cost
advantage over multi-targeted single agent

l Might need to align pharmacokinetics and/or
pharmacodynamics of the component agents in
co-formulated product

l Approval might require “combination versus
parts” factorial trial design

l Must look for drug-drug interaction (DDI)
relative to single agent

Individual multi-targeted single agent

l Standard new chemical entity intellectual
property position

l Standard development program and regulatory
approval process

l Easier manufacture and formulation of an
individual active pharmaceutical ingredient
(API) compared with a mixture

l Challenge to achieve multi-selective action
without becoming nonselective

l Challenge to optimize potency at two targets
simultaneously in a single chemical structure—
might only be able to achieve low potency at
the targets

l Difficult to achieve sequenced action at the
targets
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mt molecules is being attainable due to advanced techniques in
various fields of medical and chemical sciences, for example, organic
synthesis, evaluation of biological activities, natural products,
and/or computational methodology, and different cheminfor-
matics techniques.

In silico methods are efficient tools for pharmaceutical hypoth-
esis testing/discovery that are used to obtain an insight to in vitro/
in vivo models for building relationships (as qualitative or semi-
quantitative) between activity and molecular structure. These
methods include data mining, pharmacophores, databases, network
analysis, de novo analysis, SAR/QSAR and other molecular mod-
eling approaches, machine learning, and data analysis tools that use
a computer [78]. These efforts display that multi-target ligands
pave an important way in the progress of novel drug (lead)
compounds.

All of these can provide a significant opportunity for future
progress allowing rapid access to diverse series of multi-target
molecules with higher activity, better selectivity, and lower toxicity
than the common combination therapies. But the critical require-
ment for growth still remains with the efficacy of synthesis. Hence,
the development of efficient synthetic methods allowing rapid
access to diverse series of mt molecules must be further investigated
by researchers [174].

Glossary

ADME/Tox Absorption, distribution, metabolism, excretion, and
toxicity

ANN Artificial neural network
API Active pharmaceutical ingredient
CADD Computer-aided drug design
cIFD Consensus Induced Fit Docking
CNS Central nervous system
DDI Drug-drug interaction
DT Decision trees
ECP Emerging chemical patterns
FN Feature net
GPU Graphics processing unit
GQSAR Group-based QSAR
HTS High-throughput screening
kNN k-nearest neighbor
LDA Linear discriminant analysis
LR Logistic regression
MD Molecular dynamics
MI MARCH-INSIDE
MTD Multi-targeted drugs
MTDD Multi-target drug discovery/design
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mt-docking Multi-target docking
MTL Multitask learning
MTL Multitask learning
MTMD Multi-targeted molecular dynamics
mt-QSARs Multi-target quantitative structure-activity relationships
mt-SARs Multi-target structure-activity relationships
ROC Receiver operating characteristics
SARs Structure-activity relationships
SVM Support vector machines
VS Virtual screening
WSOF Weighted-sum-of-objective-functions

References

1. Achenbach J, Proschak E (2011) Rational,
computer-aided design of multi-target
ligands. J Chem 3(S1):P10

2. Metz JT, Hajduk PJ (2010) Rational
approaches to targeted polypharmacology:
creating and navigating protein–ligand inter-
action networks. Curr Opin Chem Biol 14
(4):498–504

3. Morphy R, Rankovic Z (2009) Designing
multiple ligands-medicinal chemistry strate-
gies and challenges. Curr Pharm Des 15
(6):587–600

4. Anighoro A, Bajorath J, Rastelli G (2014)
Polypharmacology: challenges and opportu-
nities in drug discovery: miniperspective. J
Med Chem 57(19):7874–7887

5. Yeung KS, Meanwell NA (2008) Inhibition of
hERG channel trafficking: an under-explored
mechanism for drug-induced QT prolonga-
tion. ChemMedChem 3(10):1501–1502

6. Setola V, Roth BL (2005) Screening the
receptorome reveals molecular targets respon-
sible for drug-induced side effects: focus on
‘fen–phen’. Expert Opin Drug Metab Toxicol
1(3):377–387

7. Jooste E, Zhang Y, Emala CW (2005) Rapa-
curonium preferentially antagonizes the func-
tion of M2 versus M3 muscarinic receptors in
Guinea pig airway smooth muscle. Anesthesi-
ology 102(1):117–124

8. Reddy AS, Zhang S (2013) Polypharmacol-
ogy: drug discovery for the future. Expert Rev
Clin Pharmacol 6(1):41–47

9. Morphy R, Rankovic Z (2005) Designed
multiple ligands. An emerging drug discovery
paradigm. J Med Chem 48(21):6523–6543

10. Rastelli G, Pinzi L (2015) Computational
polypharmacology comes of age. Front Phar-
macol 6:157

11. Baell JB (2010) Observations on screening-
based research and some concerning trends in
the literature. Future Med Chem 2
(10):1529–1546

12. Abdolmaleki A, B Ghasemi J, Ghasemi F
(2017) Computer aided drug design for
multi-target drug design: SAR/QSAR,
molecular docking and pharmacophore meth-
ods. Curr Drug Targets 18(5):556–575

13. Jadhav A, Ferreira RS, Klumpp C, Mott BT,
Austin CP, Inglese J et al (2009) Quantitative
analyses of aggregation, autofluorescence, and
reactivity artifacts in a screen for inhibitors of a
thiol protease. J Med Chem 53(1):37–51

14. Doak AK, Wille H, Prusiner SB, Shoichet BK
(2010) Colloid formation by drugs in
simulated intestinal fluid. J Med Chem 53
(10):4259–4265

15. Abdolmaleki A, Ghasemi JB (2017) Dual-
acting of hybrid compounds—a new dawn in
the discovery of multi-target drugs: lead gen-
eration approaches. Curr Top Med Chem 17
(9):1096–1114

16. Zimmermann GR, Lehar J, Keith CT (2007)
Multi-target therapeutics: when the whole is
greater than the sum of the parts. Drug Dis-
cov Today 12(1–2):34–42

17. Talevi A (2015) Multi-target pharmacology:
possibilities and limitations of the “skeleton
key approach” from a medicinal chemist per-
spective. Front Pharmacol 6:205

18. Hornberg JJ, Bruggeman FJ, Westerhoff HV,
Lankelma J (2006) Cancer: a systems biology
disease. Biosystems 83(2–3):81–90

19. Khalil I, Hill C (2005) Systems biology for
cancer. Curr Opin Oncol 17(1):44–48

20. Keiser M, Setola V, Irwin J, Laggner C,
Abbas A, Hufeisen S et al (2009) Predicting

Computational Multi-Target Drug Design 83



new molecular targets for known drugs.
Nature 462:175–181

21. Jenwitheesuk E, Samudrala R (2007) Identi-
fication of potential HIV-1 targets of minocy-
cline. Bioinformatics 23(20):2797–2799

22. Shang E, Yuan Y, Chen X, Liu Y, Pei J, Lai L
(2014) De novo design of multitarget ligands
with an iterative fragment-growing strategy. J
Chem Inf Model 54(4):1235–1241

23. Zhang W, Pei J, Lai L (2017) Computational
multitarget drug design. J Chem Inf Model
57(3):403–412

24. Lavecchia A, Cerchia C (2016) In silico meth-
ods to address polypharmacology: current sta-
tus, applications and future perspectives.
Drug Discov Today 21(2):288–298

25. Andricopulo AD, Montanari CA (2005)
Structure-activity relationships for the design
of small-molecule inhibitors. Mini Rev Med
Chem 5(6):585–593

26. Guha R (2010) The ups and downs of struc-
ture–activity landscapes. In: Chemoinfor-
matics and computational chemical biology.
Springer, Heidelberg, pp 101–117

27. Martins GR, Napolitano HB, Camargo
LTFM, Camargo AJ (2012) Structure-activity
relationship study of rutaecarpine analogous
active against central nervous system cancer. J
Braz Chem Soc 23(12):2183–2190

28. www.biolog.com

29. Duffy BC, Zhu L, Decornez H, Kitchen DB
(2012) Early phase drug discovery: chemin-
formatics and computational techniques in
identifying lead series. Bioorg Med Chem
20:5324–5342

30. Wassermann AM, Peltason L, Bojarath J
(2010) Computational analysis of multi-
target structure activity relationships to derive
preference orders for chemical modifications
toward target selectivity. ChemMedChem
5:847–858

31. Chen YC (2015) Beware of docking! Trends
Pharmacol Sci 36(2):78–95

32. Dimova D, Bajorath J (2012) Design of
multi-target activity landscapes that capture
hierarchical activity cliff distributions. J Che-
minform 4(Suppl 1):P4

33. Santos CBR, Lobato CC, Alexandre M, Sousa
C et al (2014) Molecular modeling: origin,
fundamental concepts and applications using
structure-activity relationship and quantita-
tive structure-activity relationship. Rev
Theor Sci 2:1–25

34. Medina-Franco JL, Giulianotti MA, Wel-
maker GS, Houghten RA (2013) Shifting
from the single to the multi-target paradigm

in drug discovery. Drug Discov Today 18
(9,10):495–501

35. Angus D, Bingham M, Buchanan D,
Dunbar N, Gibson L, Goodwin R et al
(2011) The identification, and optimisation
of hERG selectivity, of a mixed NET/SERT
re-uptake inhibitor for the treatment of pain.
Bioorg Med Chem Lett 21(1):271–275

36. Bénardeau A, Benz J, Binggeli A, Blum D,
Boehringer M, Grether U et al (2009) Alegli-
tazar, a new, potent, and balanced dual
PPARα/γ agonist for the treatment of type
II diabetes. Bioorg Med Chem Lett 19
(9):2468–2473

37. Zhang W, Nan G, Wu H-H, Jiang M, Li T-X,
Wang M et al (2017) A simple and rapid
UPLC-PDA method for quality control of
Nardostachys jatamansi. Planta Med.
https://doi.org/10.1055/s-0043-123655

38. Norman P (2008) Pfizer’s dual-acting β2 ago-
nists/muscarinic M3 antagonists: Pfi zer:
WO2008041095. Expert Opin Ther Pat 18
(9):1091–1096

39. Zanni R, Galvez-Llompart M, Galvez J,
Garcia-Domenech R (2014) QSAR multi-
target in drug discovery: a review. Curr Com-
put Aided Drug Des 10(2):129–136

40. Prado-Prado FJ, Uriarte E, Borges F, Gonzá-
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Abstract

The quest for new pharmacological treatments of neurodegenerative diseases (NDs) still remains a priority
for researchers and caregivers. Being inherently multifactorial, NDs benefited of the paradigm shift from
“one-drug-one-target” to “one-drug-more-target” which is typical of the so-called multitarget approach,
whose ultimate aim is that of providing a wider pharmacological spectrum to single molecular entities. A
multitarget drug should encompass the basic molecular features necessary for an effective interaction with
each desired biological target. In this respect, different drug design strategies, mostly inspired by ligand-
based and target-based approaches, have been envisaged to achieve this goal. Indeed, huge efforts have
been addressed in recent years to harmonically integrate the amount of different (bio)chemical information
in the attempt to derive reliable predictive multitarget models. An overview of multitarget computational
methods as well as of some successful applications to NDs will be the focus of this chapter.

Keywords Computational chemistry, Computer-aided drug design, Fragment-based drug design,
Ligand-based approaches, Molecular docking, Multitarget drug design, Neurodegenerative diseases,
Structure-based approaches

1 Introduction

Alzheimer’s (AD) and Parkinson’s (PD) are typical neurodegenera-
tive diseases (NDs) still suffering from inadequate pharmacological
treatments, which are mostly based on symptomatic rather than on
disease-modifying drugs. The multifactorial nature of NDs, i.e.,
either from genetic or sporadic causes, contributed in the last
years to the consolidation of the so-called multitarget approach in
designing new molecular entities. Based on serendipity, this idea
stems from the observation that some unwanted side effects typical
of drugs could be instead exploited to address off-target desired
activities, which could concur to fight and alleviate multifactorial
diseases. At the molecular level, a multitarget activity can be pur-
sued by rationally designing ligands, which can simultaneously bias
different biological targets.

The multitarget approach for NDs represents still an unprece-
dented opportunity for researchers since no multitarget agent has
reached the market so far. The only drug in advanced clinical trials
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(phase III) is ladostigil, a multitarget inhibitor of cholinesterases
and monoamine oxidases licensed by Avraham Pharmaceuticals for
the treatment of mild cognitive impairment in AD [1]. As a result,
the actual advantage of a multitarget approach, compared to a
traditional drug cocktail, still needs a validated proof of concept,
at least in the field of NDs. Multitarget drug design (MTDD) is
rooted on the in-depth knowledge of the molecular interactions of
known drugs with the binding site(s) of each target. A naı̈ve
approach in the design of multitarget molecules is the building-
brick approach, which implies the assembling of two known mole-
cules, each one separately biasing with high affinity a single
biological target [2]. Normally, such chimeric structures are
obtained by linking the two moieties through a spacer, or by fusing
scaffolds of the two parent highly active compounds to obtain a
new molecular hybrid. Indeed, making bulkier compounds
provided with higher volume and molecular weight could spark
some unforeseeable ADME attrition with a higher risk of an unde-
sired lipophilic/hydrophilic balance, poor aqueous solubility, and
increased cellular clearance through efflux systems such as P-gp.
Mostly related with druglikeness, these issues represent a serious
concern for the successful discovery and development of multi-
target compounds.

MTDD is structured in two basic steps. The first one aims at
dissecting highly active compounds engaging specific interactions
with different targets to detect their main molecular determinants
necessary for such interactions. The second one aims at properly
assembling the identified molecular determinants into desired
molecular hybrids whose further molecular optimization is how-
ever sustained by adequate druglikeness. To this respect, the large
availability of high-quality ligand-protein complex crystallographic
data and of supportive qualitative and quantitative structure-
activity relationship studies has speeded up the development and
successful application of in silico methods specifically tailored
for MTDD.

Computational methods for MTDD derive essentially from the
two traditional approaches followed by medicinal chemists, i.e.,
ligand-based and target (or structure)-based design (Fig. 1). How-
ever, the boundary between these two approaches is not so neat
after the recent advent of chemoinformatic tools enabling their
combined use, especially for the design of new multitarget ligands.
In this respect, a key role is still the study of ADMET properties
whose place has been anticipated in the early design stage to mini-
mize expensive late failures on the drug discovery and development
pipeline [3].
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2 Ligand-Based Methods

2.1 Fragment-

Based MTDD

Basically, the fragment-based approach consists of (1) the identifi-
cation of structural alerts responsible for bioactivity within a pool of
known ligands of a given specific target, (2) the detection of sub-
structural patterns common to the desired targets, and (3) the
incremental growth of fragments to form extended structures
able to fit the active site of each target.

At each step, the computer-assisted detection of bioactive frag-
ments, design, and refinement of the growing structure should
ensure a rational worksheet where collecting compounds are first
virtually screened, then prioritized for chemical preparation
(or purchased from public/proprietary libraries), and finally tested.

In this respect, some successful examples of computing
packages able to drive the growth of fragments taking into account
both chemical feasibility and druglikeness of the evolved structures
are LigBuilder [4], SYNOPSIS [5], and DOGS [6].

In the first step, common substructures responsible for affinity
on a single target are retrieved from the superposition and compari-
son of the chemical structures of known ligands of the target. For an
efficient identification of fragments, several computational tools
have been developed, including alignments based on self-organizing
maps (SOM) [7], docking studies [8], and quantification of ligand

Fig. 1 Scheme of computational methods for MTDD
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efficiency [9]. Taken together, these methods represent a low-cost
but very valuable complement to powerful and time-demanding
experimental techniques based on biophysical screening methods,
which include nuclear magnetic resonance [10], X-ray crystallogra-
phy [11], surface plasmon resonance [12], and isothermal titration
calorimetry [13].

The endless search for unveiling relevant structural features
common to diverse biological targets, as well as the efforts toward
the molecular decoration of suitable hits, resulted in a number of
chemical scaffolds spanning a high grade of affinity for several
targets, whence the definition of privileged substructures for
MTDD. These studies have been carried out on the basis of
designing-in strategies [2], taking into account the structural
requirements of the active sites involved, and the druglike feature
of the designed molecule. An example of versatile scaffold for
chemical decoration is represented by coumarin, whose multitarget
activity has been extensively studied [14–16]. Starting from previ-
ously described selective inhibitors of monoamine oxidase (MAO)
[17] and acetylcholinesterase (AChE) [18], the structural require-
ments for a multitarget activity were merged into newly prepared
molecules displaying good dual AChE-MAO inhibition and favor-
able ADMET parameters (Fig. 2).

Computational methods may involve the evaluation of
binding site similarity, through the inspection of enzyme pockets
displaying possible interaction points with a given molecule [19].
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For instance, the SOM approach has allowed the successful align-
ment of the receptor maps of 5-lipoxygenase and soluble epoxide
hydrolase, leading to a multi-SOM model for dual acting frag-
ments. The structural enrichment of one of these core scaffolds
was of utmost importance in discovering a multitarget ligand for
both enzymes [20]. By a different approach, five targets involved in
AD (amyloid β-A4 protein, glycogen synthase kinase-3, glycogen
synthase kinase-3 beta, monoamine oxidase B, and presenilin-1)
were explored with a library of ca. 500 compounds, and 20 frag-
ments were recognized as highly recurrent [21]. Each fragment
contributed in a different extent (i.e., giving higher or lower con-
tribution) to the affinity on each target (Fig. 3). By combining
several fragments, possibly showing the highest number of positive
contributions, authors designed a pool of virtual molecules, all of
them predicted as highly active by the multitarget model.

2.2 SOM-Based

Methods

The lack of therapeutic alternatives for the treatment of NDs
continuously claims for new molecular entities or, alternatively,
for drug repurposing of known drugs. A pursued method for
prediction of ND targets for non-ND molecular libraries is the
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SOM consensus for macromolecular targets. By combining the
SOM prediction with consensus scoring and statistical analysis,
Reker and coll [22] developed an in silico technique of
SOM-based prediction of drug equivalence relationships (SPi-
DER), able to disclose ND off-target features from known drugs.
Application of SPiDER tool to few case studies revealed the high
liability of such combination method in predicting off-target activ-
ities of known drugs and identifying possible targets of de novo
designed molecules.

2.3 Machine

Learning Methods

Prediction of druglike properties may be performed by means of in
silico methods evaluating the physicochemical descriptors shared
by known classes of compounds/drugs. Since the descriptor space
may be very large, particularly in MTDD, there is an increasing
need for high-performing computational methods. A statistically
reliable filtering is operated by machine learning methods, among
which support vector machines (SVMs) allow an iterative selection
of the best descriptors for a given target, starting from known
ligands, thus improving the predictivity of the computational
method.

By applying a recursive feature elimination based on SVM
(RFE-SVM) approach, using public databases of drugs used or
not used in ND therapy (ND, non-ND drugs), Shahid and cow-
orkers [23] disclosed the main physicochemical descriptors fea-
tured by ND drugs and able to discriminate them from non-ND
drugs. It is worth of note that among the best-scored descriptors,
the most used lipophilicity parameters such as log P and polar
surface area (PSA) were present. The RFE-SVM model was then
applied on a data set of non-ND drugs, and several of them were
disclosed as potential ND drugs. Indeed, the method may also be
applied to the de novo design of molecular libraries endowed with
potential ND multitarget activity.

2.4 Polypharma-

cology Prediction

The high-throughput techniques (chemical genetics, next-
generation sequencing) boosted by the post-genomic era made
available an impressive number of biological data and continuously
offer new druggable targets for screening campaigns. The oppor-
tunity in exploiting chemical databases or repositioning old drugs
can be matched by means of computational tools able to manage
such huge amount of data [24].

Predictive models of polypharmacology have been obtained
since the early establishment of the multitarget approach by apply-
ing classical quantitative structure-activity relationship (QSAR)
studies. Basically, QSAR describes biological activity of a defined
set of ligands as a function of measurable physicochemical descrip-
tors. Translation of QSAR to MTDD involves the QSAR modeling
for each target activity, the analysis of QSAR models in an
integrated framework, and then the design of novel multitarget
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ligands. By such convergent approach, Pang and colleagues [25]
identified, among the constituents of Naodesheng, a herbal remedy
used in the traditional Chinese medicine, those acting as multi-
target ligands for AD. In the preliminary step, the main chemical
components of Naodesheng were virtually challenged for their
ADMET properties; then their potential targets were screened by
applying two common pharmacophore mapping protocols, namely,
common feature pharmacophore generation (HipHop method)
[26] and 3D QSAR pharmacophore generation (HypoGen
method) [27]. Interestingly, this analysis resulted in a panel of
predicted constituents that showed to be very active toward a set
of targets notoriously involved in AD (Fig. 4).

Starting from reliable QSAR studies available for specific tar-
gets, an alternative approach to MTDD individuates potential hit
structures on the basic principle of the chemical similarity,

Fig. 4 Constituents of Naodesheng predicted as multitarget agents for AD (reproduced from ref. [25] by
permission of Elsevier, © 2018)
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supposing that similar molecules should bind same targets. The
recognition of a similarity pattern may be achieved by considering
molecular fingerprints associated to the structures of the query
compound and of the ligand set [28]. Fingerprints are encoded as
binary strings and compared by means of opportune similarity
criteria: the higher is the superposition of fingerprints, the higher
the possibility of a molecule to result in a ligand for the targets
considered.

3 Target-Based Methods

3.1 Molecular

Docking

Docking methods are greatly useful in MTDD, provided that the
retrieved energy scores of ligand-receptor complexes are compre-
hensively evaluated for all the targets involved. Molecular dynamics
simulations may often strengthen the observations obtained by
docking studies [29]. Of course, the increasing availability of crys-
tallographic data for enzymes involved in NDs makes docking-
based virtual screening an attractive strategy to find out new multi-
target agents. Hit compounds are virtually screened for their inter-
action (evaluated in terms of posing or binding energy) with the
main anchoring points of the active site of each target and ranked
on the basis of their predicted affinity. Top-scored hits predicted for
each target may be clustered on the basis of their structural similar-
ity or other consensus approaches and finally submitted to the
bioassay phase [30, 31].

The MTDD could also benefit of the so-called inverse docking
approach, which is conceptually more prone to the exploration of
multiple binding sites then classical docking. While docking ranks
molecules on the basis of their affinity for a specific target, inverse
docking allows the exploration of the interactions of a given mole-
cule with many targets, which are ranked according to their com-
plementarity to the molecule. It is evident that inverse docking
requires high calculation performances and that scoring functions
needed for targets are not always interchangeable with those used
for small molecules. Nevertheless, the improvement of machine
potencies and the accurate selection and refinement of scoring
functions have led in the last decade to successful research projects
in NDs and other diseases [32].

3.2 Binding Site

Similarity

Target prediction may also be performed by disclosing similarities
in binding sites of different proteins. When proteins differ in
sequence and biological function but share a certain grade of
similarity of their active sites, they would possibly interact with
the same ligands. This binding site similarity approach preliminarily
finds out the common geometrical patterns of each target and then
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derives the pharmacophore fingerprints required for ligand-
receptor comparison. Such procedure works well with the use of
classical pharmacophore-deriving programs such as Fingerprint for
Ligands and Proteins (FLAP) algorithm [33].

3.3 Inverse

Pharmacophore

Modeling

Pharmacophore models may be generated through target-based
methods by the inspection of target-ligand complexes and by the
mapping of the interaction site. Several chemoinformatic tools, for
instance, ZINCPharmer [34] and CAVITY [35], perform ligand-
binding site detection and geometry-based analysis and predict the
potential of a target to be recognized and bound by a small mole-
cule (ligandability) or more precisely by a lead to be developed as a
drug (druggability). Pharmacophores are generated on the basis of
robust physicochemical parameters, i.e., hydrogen bond donor/
acceptor sites, positive/negative charges, and hydrophobicity.
PharmMapper, a well-trained computational tool, available online,
compares the fit scores of different pharmacophore models with a
query compound and generates a list of possible targets on the basis
of a probability-based ranking score [36].

4 Combination Methods

Examples of virtual screening combining structure-based and
ligand-based techniques give a glance on their potential in
MTDD. A common procedure would combine the main structural
information, obtained by docking studies on target proteins, with
the common pharmacophore mapping derived from a set of known
ligands for each target. By applying this procedure, the docking
exploration of the active sites of leukotriene A4 hydrolase and of
phospholipase A2, two targets involved in neuroinflammation, was
integrated and combined with a common pharmacophore model of
affinity. A pool of molecules retrieved from a public chemical data-
base was found having multitarget activity on the two targets [37].

By a different procedure, a multitarget pharmacophore analysis
of three main targets for AD, i.e., acetylcholinesterase (AChE),
beta-secretase (BACE), and beta-amyloid protein (Aβ), was com-
bined with the virtual screening of chemical databases, and hit
molecules were optimized in order to improve the affinity for
each target [38]. In the first step, the virtual screening via molecular
docking on AChE and BACE and molecular dynamics on the
aggregating sequence of Aβ allowed to define the molecular
requirements for an efficient binding. A pool of molecules was
then synthesized and tested, leading to the discovery of pleiotropic
agents with converging inhibitory activities on AChE, BACE, and
Aβ aggregation (Fig. 5).
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The consolidation of MTDD has improved the development of
rational drug design methodologies. While in the past researchers
focused their efforts in optimizing a single property (objective) at a
time in single-target molecules, a paradigm shift introduced in
more recent years tends to privilege, since the early development
stages, the overall druglikeness of molecules by means of the simul-
taneous optimization of several, often conflicting, objectives. The
concept of multi-objective optimization (MOO) has emerged as a
powerful methodology to this task, allowing a holistic approach to
the computer-aided drug design [39–41]. MOO may involve not
only the most relevant physicochemical parameters, useful for
QSAR, docking, and other virtual screening protocols, but also
the ADMET properties and even the synthetic feasibility. Such
versatility makes MOO very prone to MTDD, interpreting the
multi-objective as multitarget optimization of the structural requi-
sites for a good correspondence to all the pharmacophores
expressed by each target.

Fig. 5 Combined hit to lead optimization of multitarget inhibitors (adapted from ref. [38], © 2015 American
Chemical Society)
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5 Conclusions and Perspectives

MTDD represents a powerful approach to the design of novel
therapeutic weapons for NDs. Yet, the hybrid molecules assembled
by rationally combining diverse pharmacophoric features could
present severe issues in their druggability, especially depending
from an increased molecular weight and decreased aqueous solu-
bility. In this respect, the recent progress in early stage ADME
studies and computational toxicology [42, 43] will contribute to
alleviate these concerns of MTDD.However, the way toward a real-
life multitarget therapy still needs a proof of its validity from scien-
tists. This makes this challenge highly attractive but explains the
disengagement of Big Pharma in MTDD especially for NDs. How-
ever, we are confident that an informed use of chem-bioinformatic
approach can be of help in bridging the gap still existing between
MTDD and the bench of ND patients.
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Abstract

Tuberculosis, caused by Mycobacterium tuberculosis, is an infectious disease with high levels of mortality
worldwide, currently with approximately 6.3 million new cases per year that often present resistance to both
first- and second-line drugs. These high rates of incidence are due to several factors including bacterial
resistance, AIDS cases, and latent tuberculosis that can reoccur in the patient. Among methods used in the
search for new tuberculosis drugs are in silico or CADD (computer-aided drug design) studies, which are
increasingly being employed in industry and universities. They investigate molecular interactions in order to
understand both the structural characteristics of compounds and their activities through virtual manipula-
tion of their three-dimensional (3D) molecular structures, as is the case with molecular docking. Such
analyses allow extraction of information and characteristics relevant to compound activity, as well as to
predict potential application. In our studies, we discovered antituberculotic activity in various derivatives:
thiophenes, sulfonamides, chalcones, nitroimidazoles, benzimidazoles, peptides, and quinolones with
action in several specific M. tuberculosis enzymes. For each derivative, multitarget activity was evaluated in
molecular docking studies to select promising compounds with activity(s) against tuberculosis. This chapter
will present and discuss molecular docking studies within the bacillus complex, the pharmacological
potential of multitarget compounds, and new promising drug candidates with high levels of specificity.

Keywords Antituberculosis, Docking studies, In silico, Multitarget compounds, Tuberculosis disease

1 Introduction

Tuberculosis (TB) is an infectious disease caused by the Mycobacte-
rium tuberculosis complex (MTBC) which includes Mycobacterium
tuberculosis (Mtb), Mycobacterium bovis, Mycobacterium africa-
num, andMycobacterium canettii [1, 2]. It is one of the most lethal
diseases in the world, accounting for 6.3 million new cases per year,
most of which are from Asia, Africa, and the Western Pacific, with
China and India alone accounting for 40% of cases. Various public
awareness programs, such as the Directly Observed Treatment
Short course (DOTS), and the End TB strategy have helped to
reduce TB mortality by 47% in the last decade, and within 2030,
they aim to reduce TB deaths by up to 90%, and the incidence of TB
by up to 80% [3]. Every year, WHO publishes comprehensive
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reports on tuberculosis, ensuring updated disease assessments as
well as reporting on progress in care and prevention measures.

The increase in tuberculosis cases in recent years has been due
to three main factors. The first factor is the increase in the suscepti-
bility of patients with Acquired Immune Deficiency Syndrome
(AIDS); co-infection increases the risk of disease by 100 times [4]
and contributes to 26% of AIDS deaths in the world [5]. The
second factor is increased resistance in Mycobacteria strains, pre-
senting cross-resistance cases for up to nine drugs. Multidrug
resistance (MDR-TB) and extensively drug-resistant (XDR-TB)
tuberculosis have brought a return to “Global Emergency” status
for the disease [6]. The third factor is the already great virulence of
tuberculosis, due to the dormant state abilities of the bacillus which
can be reactivated at any time.

One of the major challenges in managing tuberculosis occurs
when the bacterium is in a state of slow growth or dormancy, its
bacterial life cycle. Most drug treatments prioritize active bacillus
growth stages, making dormant bacteria both more resistant and
less susceptible [7]. It is this persistent state of slow growth or
dormancy that allows the bacillus to develop resistance to various
types of drugs [8, 9]. In a survey conducted in 2016, there were
close to 600,000 new rifampicin resistance cases (RRTB), and
490,000 multidrug resistant (MDR-TB) cases [10–12].

Tuberculosis usually occurs in the lungs, spreading through the
air through coughing, sneezing, or spitting, but it also affects other
parts of the body [13]. The emergence of MTB strains that are
resistant to first-line drugs, (isoniazid, rifampicin, pyrazinamide,
ethambutol, rifapentine, and rifabutin), and with growing resis-
tance (Fig. 1), to second-line drugs, (streptomycin, amikacin, kana-
mycin, capreomycin, and fluoroquinolones), is alarming [14].

Treatment of MTB infection is difficult to follow and usually
requires patients to undergo 6–9 months of chemotherapy, or 18–-
24 months for patients with resistant bacteria. For resistant cases,
several drugs are used, but unexpected effects and reduced treat-
ment success have been reported. A cocktail of drugs can generate
many side effects, including toxicity [15].

This M. tuberculosis resurgence, characterized by a growing
number of drug-resistant strains, further emphasizes the need for
planning and development of new antituberculosis drugs with
activities that decrease resistance mechanisms. Since they block
more than one target, drugs with multitarget activity have become
key compounds in the search for and development of more effec-
tive, promising solutions. CADD presents several experimental
advantages: (1) lower expenditure of time and money, using virtual
screening through computational studies in structural optimization
[16, 17]; (2) greater safety, reducing drug interactions [18];
(3) small and simple to administer doses can be optimized [19];
and (4) effective avoidance of resistance in target proteins [20].
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New studies in the field of molecular biology have contributed
to the discovery of both resistance mechanisms and new targets.
This has been essential to an expansion of investigations into many
anti-TB drugs [21–23]. Various protein structure databases are now
available including the PDB—Protein Data Bank (www.rcsb.org)
[24], which currently contains about 2145 depositedM. tuberculosis
structures. Recognizing three-dimensional structures is crucial to
identify active sites, and potential interactions between drugs and
receptors can be used for molecular coupling and in silico screening
studies [25].

Strategies that increase drug discovery efficiencies are highly
valued and reduce expenditures of both time and money (Fig. 2).
Among these strategies, CADD offers advantages that go beyond
economics and data simplification; it also accelerates the discovery
of compounds with therapeutic action [26]. In addition, it is possi-
ble to reconcile CADD studies with experimental studies to coor-
dinate and model data, allowing more directed and immediate
information flow.

This chapter will report on molecular docking studies in multi-
target compounds with antituberculosis activity. In addition to
investigating mechanisms of action and pharmacological potential,
the chapter will report on new drug candidate target–ligand bind-
ing interactions that may help combat M. tuberculosis resistance.

CADD studies include Molecular Docking, a computational
technique that seeks to ascertain the interaction affinity of a mole-
cule (ligand) with the active site of its macromolecular (receptor)
target. The complex formed involves two characteristics that need
to be studied: Fitting, which refers to conformational sampling and
orientation of the ligand within the active site of the receptor
(Fig. 3); and Score, which correlates the best pose, that is, the
best conformation and orientation of a given binder, as classified
according to energy value [27].

2 Targets

Through sequencing of the M. tuberculosis genome, the fight
against tuberculosis has expanded its identification of the proteins
essential for mycobacterial survival and thus also antituberculosis
compounds and their mechanisms of action [28]. With sequencing,
several databases important for drug development have emerged
enabling recognition of possible mechanisms of action to block
mycobacterial biosynthetic pathways and lead to mycobacterial
death [29]. The following will present some of the numerous
therapeutic targets, validated in the literature that push develop-
ment of new candidate compounds for antituberculosis drugs: they
involve proteins of the mycobacterial cell wall, metabolism, and the
nucleus.
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2.1 DprE1 Blocking of mycobacteria cell wall formation has been frequently
used to develop and improve anti-TB drugs. TheM. tuberculosis cell
wall presents six external lipid layers: polysaccharides (arabinogalac-
tan), lipoarabinomannan (LAM), peptidoglycan, mannoside phos-
phatidylinositol, a plasma membrane, and mycolic acid [30]. The
composition of the mycobacteria cell wall is highly hydrophobic,
favoring protection against external agents, including pathogens,
the immune system, and the action of many antibiotics, such
as isoniazid, ethambutol, ethionamide, D-cyclo-serine, PA-824,
OPC67683, BTZ, and SQ109 [31].

The flavoenzymedecaprenyl phosphoryl-β-D-ribose-20-epimerase,
also known as DprE1 is necessary for formation of theM. tuberculosis
cell wall. Within the protein machinery a reaction complex forms
(Fig. 4) and acts together with DprE2 to catalyze the epimerization
of decaprenyl phosphoribose (DPR) to decaprenyl-phospho-D-arabi-
nofuranose (DPA) through an intermediate formation of decaprenyl-
phosphoryl-2-keto-ribose (DPX). In the mycobacterium cell wall,
DPX is the only synthesis precursor of arabinogalactan and lipoarabi-
nomannan (LAM) [32].

In comparison with the species Mycobacterium smegmatis,
structural homology studies of the DprE1 protein have been per-
formed finding 83% similarity between their configurations
[33, 34]. In PDB, the DprE1 enzyme crystalline structural form
has been described as BTZ043 and TCA1, two benzothiazinone
derivatives [35]. Descriptions of such crystallized structures have
contributed to a better understanding of the mechanisms of action
and inhibition of these compounds. Tiwari et al. [36] showed that
BTZ, one of the most promising inhibitors currently studied, can

Fig. 3 Molecular docking of the drug candidate piperazinobenzothiazinone derivative PBTZ169 with the
enzyme DprE1(ID PDB 4KW5) through Molegro Virtual Docker 6.0. The Molecular Docking was performed
using the setup of the software: GRID resolution 0.30, MolDock Score, ten runs, and five poses. Red lines:
steric interactions; blue lines: hydrogen bonds
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bind to the active site through cysteine. Thiolates can induce
non-enzymatic nitro group reductions through addition to aro-
matic carbons in these compounds. BTZ compounds act as a
substrate, converting the DprE1 enzyme to its reduced form
through a nitro-reduction mechanism and forming a nitro-
derivative in the DprE1 active site [37–39]. This presents a novel
mechanism for DprE1 nitro-aromatic inhibitors.

2.2 Mur Ligase Proteins belonging to the Mur ligase family catalyze non-ribosomal
peptide bonds to form peptidoglycans [40–42]. For this reason, in
the search for new promising TB targets, they attract attention
[43, 44]. ATP-dependent murine ligase proteins play a key role in
cell wall biosynthesis and present high specificity for their substrate.

The proteins share only a 37% structural and functional similar-
ity with Escherichia coli proteins, which makes it difficult to deter-
mine their exact functions. However, what we do know is that these
proteins are monomeric, presenting three conserved catalytic
domains which vary according to ligase type (MurC, MurD,
MurE, and MurF). These have been characterized as nucleotide-
binding domains for ATP binding and substrate activation [45].

In peptidoglycan (PG) biosynthesis, the MurC biochemical
pathway starts with conversion of UDP-GlcNAc to UDP-MurNAc
by enolpyruvyl transferase-MurA, and a flavin-dependent reductase
MurB (Fig. 5). The MurC protein then adds the amino acid L-Ala
to form UDP-MurNAc-L-Ala [47]. The MurD protein catalyzes an
amide bond between D-Glu and UDP-MurNAc-L-Ala to form
UDP-MurNAc-L-Ala-D-Glu. MurE acts through addition of a
third highly specific peptide residue that involves maintaining the
integrity of peptidoglycans in the cell wall; if not maintained,
cellular lysis occurs [48]. Finally, MurF adds the dipeptide D-Ala-
D-Ala to UDP-MurNAc-L-Ala-D-Glu-(mA2pm/L-lys) to form the
cytoplasmic PG precursor: UDP-MurNAc-L-Ala-D-Glu-(mA2pm/
L-lys)-D-Ala-D-Ala [46]. This dipeptide is an essential factor for PG
formation, such that its binding energizes the binding of the glycan
chain [49].

2.3 Deazaflavin-

Dependent

Nitroreductase

Due to its enzymatic activity, the enzyme Rv3547 is named
Deazaflavin-dependent nitroreductase (Ddn). Protein studies
have reported that Ddn may be a peripheral membrane protein
[50], but complete substrate data and functions remain unclear,
since it presents low sequence homology with similar proteins of
the same function [51]. Homologs do exist in several species
and are commonly found in PA-824-resistant Actinobacteria
[52]. These proteins form as soluble aggregates making crystal
formation rare and structural elucidation difficult.

Thus, despite numerous studies reported in the literature, it has
been difficult to obtain enough full-length Ddn crystals or NMR
spectra. What is known is that this protein has 151 amino acids with
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only one cysteine residue (in region 149), that is, the existence of
only one intermolecular disulfide bond throughout the structure.
However, its biochemical pathway is still unknown. Yet, in the
presence of nitroimidazole, PA-824, which is already in Phase II
clinical studies, has antituberculosis activity. As reported in the
literature, its action on mycobacteria is promoted through enzy-
matic activation provided by Ddn in M. tuberculosis. Thus, it cata-
lyzes PA-824 reduction, resulting in a product that releases
intracellular reactive nitrogen species (RNS) (Fig. 6), compromis-
ing protein and lipid synthesis while promoting antimycobacteria
activity [53].

Homologous protein sequences have been reported for actino-
bacteria; however, there are few confirmations of cellular function
for this target. In M. tuberculosis, Ddn was first seen in a study of
membrane proteins, which may potentially have associated func-
tions [54]. The genes Rv1261c, Rv1558, and Rv3178 are homo-
logues of Ddn present in theMtb bacillus. Together with orthologs
present in other species of mycobacteria, they form a class of
nitroreductases, yet without delineation of their physiological
mechanisms.

Fig. 6 Representation of the biochemical pathway associated with PA-824 and the enzyme Ddn, whose
activity favors NO production and consequent Mycobacterium tuberculosis cell death (Somasundaram et al.
[53])
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2.4 N-Acetyl

glucosamine-1-

Phosphate

Uridyltransferase

The protein N-acetylglucosamine-1-phosphate uridyltransferase
(GlmU) is known as a bifunctional enzyme that catalyzes the for-
mation of UDP-N-acetylglucosamine (UDP-GlcNAc), which in
bacteria is closely involved in the peptidoglycan pathway, and lipo-
polysaccharides [55]. The reaction occurs as GlmU catalyzes acetyl-
CoA group transfer to glucosamine-1-phosphate (Fig. 7), towards
the final formation ofN-acetylglucosamine-1-phosphate (GlcNAc-
1-P).

For being an important precursor for lipopolysaccharide bio-
synthetic pathways, this protein becomes an attractive target for
newmycobacterial agents. Structurally, GlmU is a 49-kDa cytoplas-
mic protein with a dimer/trimeric solution [56], and maximal
activity against magnesium and phosphate ions. The enzyme is
delineated by two domains: the first is the N-terminus of pyropho-
sphorylase, which presents similar identity to other pyrophosphor-
ylase enzymes, and the second is the acetyltransferase domain with
hexa-peptide repeats, as also reported in other acetyltransferases
[57]. In homology studies, GlmU presented sequence identities
of 69% with Haemophilus influenzae [58] and 42% with Bacillus
subtilis [59]. Other studies performed with GlmU have reported

Fig. 7 Graphical representation of the Glucose pathway in production of peptidoglycan by enzymes belonging
to the glucosamine-phosphate family: Glk glucokinase, Pgi phosphoglucose isomerase, GlmS glucosamine-6-
phosphate synthase, GlmM phosphoglucosamine mutase, GlmU glucosamine-1-phosphate acetyltransferase,
and N-acetylglucosamine-1-phosphate uridyltransferase (Rani et al. [55])
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inhibition with specific thiol reagents, which indicates that cysteine
residues may take part in the acetyl transfer.

In M. tuberculosis, mtGlmU acts as a functional enzyme,
involved in synthesis of GlcNAc-1-P via acetylation of Glc-1-P in
the C-terminal domain also known as the acetyltransferase domain
[60]. Upon product formation, it is carried to the N-terminal
domain, a portion of the uridyltransferase site which joins with
UTP for production of UDP-GlcNAc, which itself acts upon for-
mation of peptidoglycans in the mycobacterial cell wall [61].

2.5 Pks13 PKS proteins are part of a group of multifunctional enzymes that
act in the biosynthesis of innumerable natural compounds known as
polyketides. This biosynthesis resembles that of fatty acids (Fig. 8),
and involves decarboxylative condensation of two long-chain fatty
acid derivatives; the very long (C40–C60) meromycoloyl-AMP and
a shorter (C24–C26) 2-carboxyacyl-CoA [62, 63]. For these steps,
several PKS protein domains are involved: an acyltransferase
(AT) domain (with selection and transferring action for the
extender unit); a domain of the ACP carrier protein (acyl carrier
protein) activated by phosphopantetheine which transfers its unit;
and a third domain called β-ketoacylsynthase (KS) which involves

Fig. 8 Biochemical pathway involving action of the Pks13 protein for synthesis of mycolic acids in
mycobacteria
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the condensation of starting and extension units, forming the
β-ketoacyl intermediate [64, 65].

It is important to note that all of these domains belong to a
single polypeptide chain, and studies concerning structural elucida-
tion of the PKS type I enzyme group are difficult to characterize
because of the intrinsic flexibility of the protein. At this point,
several structure and function relationships for these enzymes
have been proposed based on FAS (fatty acid synthase) type I
enzymes via KS and ATunits [66, 67]. PKS13 is intriguing precisely
because it is highly specific to its substrates, and performs only one
condensation cycle between its two unusually long substrates.

In M. tuberculosis studies, the genome sequence encoding PKS
type I contains about 20 PKS genes, and among them is PKS13
which acts on the final assembly of mycolic acid, a structural com-
ponent of mycobacteria. Structurally, Mtbs PKS13 has 1733 amino
acid residues in a molecular mass of 186,446 Da, with three obli-
gate PKS domains; in addition to an ACP in the N-terminal region,
and a thioesterase (TE) domain in the C-terminal. These five
domains are bound by 30–200 amino acid residues. In summary,
the AT domain is responsible for loading the carboxyacyl-CoA
extension unit, which is subsequently transferred to the ACP
domain of the C-terminal region. The meromycolyl chain is acti-
vated and carried by the FadD32 enzyme, from which it is trans-
ferred to the KS domain of the PKS13 enzyme. This domain acts on
meromycolyl and carboxy-acyl chain condensations in the produc-
tion of an α-alkylβ-ketothioester linked to the C-terminal ACP
domain. Several current studies point to the use of this protein as
a new target when planning antituberculosis compounds [68].

2.6 MtFabH The mycobacterial wall includes various macromolecular structures
(enzymes involved in biosynthetic pathways) that are targets for
development of antimycobacterial compounds. Fatty acid synthases
(FAS) present in mycobacteria may be grouped into two types
[69]. Type I synthases, which include multifunctional polypeptides
with chain elongation functions, are commonly found in both yeast
and mammals. Type II synthases whose chain elongation reactions
are performed by other classes of enzymes and initiated by
β-ketoacyl-ACP synthase III (ecFabH), which is also responsible
for promoting condensation of acetyl-CoA with malonyl-ACP
[70], are found in bacteria and plants.

The purpose of the mtFabH enzyme reaction mechanism is
mycolic acid biosynthesis and fatty acid elongation. The fatty
acids synthesized by Type I synthases are removed by means of a
transacylase, producing acyl-CoA. The free acyl-CoA is used to
promote synthesis of glycerophospholipids and lipids, but it can
also be used by the enzyme mtFabH (Fig. 9), where further elon-
gation processes, promoted by type II synthases, occur in mycolytic
acid production units in the mycobacterial cell wall [71].
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By kinship or homology, FabH enzyme reaction mechanisms
present inM. tuberculosis can occur in the bacillus genome. A 46.8%
identity is seen with the E. coli FabH enzyme, and 42.9% with
B. subtilis FabH2 [72]. This degree of similarity is found mainly
in the residues binding the CoA portion, and indicates clear reac-
tion mechanism similarities with mtFabH.

2.7 Pantothenate

Synthase

For synthesis of coenzyme A and other acyl carrier proteins in
energy and fatty acid metabolism, and still other cellular processes,
pantothenate (also known as vitamin B5) is a precursor compound
[73]. Both plants and microorganisms synthesize it; yet, only mam-
mals obtain this nutrient through the diet. Its synthetic route thus
offers many effective target enzymes for developing drugs with
antimicrobacterial activity.

The biosynthetic pathway of pantothenate involves four stages,
catalyzed by the PanB, PanC, PanD, and PanE genes [74]. These
genes encode the pantothenate synthetase (PS) enzyme which
catalyzes the last step in pantothenate biosynthesis (Fig. 10) involv-
ing condensation of pantoate, and ATP with alanine to form
pantothenate [75].

In kineticM. tuberculosis pantothenate synthetase (mtPS) stud-
ies, it was observed that this enzymatic action is performed in two
steps: formation of an ATP-pantoate intermediate and pantoyl
adenylate, and soon afterwards a nucleophilic attack on β-alanine
to form pantothenate and AMP [76].

Proteins constructed from the Panc gene of various organisms,
such as E. coli [77], in plants [78], Fusarium oxysporum [79] and
M. tuberculosis [80], have been characterized. In these studies, the

Fig. 9 Mycobacterium tuberculosis FabH enzyme fatty acid elongation pathway
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formation of dimers in solution is reported. The crystallized struc-
ture of the M. tuberculosis PS enzyme (mtPS) evidences the pres-
ence of folds, as seen in the Escherichia coli PS (ecPS) enzyme, and
also presents substrate complexes that confirm the binding position
of ATP and pantoate, as also reported for the ecPS enzyme. How-
ever, differences were found in the domains of each subunit, which
presented closed conformations, a characteristic not found in
E. coli. The structure also has a flexible region, which forms close
to the active site cavity, and acts as a gateway to the mtPS enzyme
[80]. Analysis of the crystalline structure of PS, complexed with the
reaction intermediate, depicts strong interactions of pantoyl ade-
nylate with the active site, allowing for stability of the already highly
reactive compound [81]. Several studies have reported pantothe-
nate synthase inhibition using new analogs of pantoyl adenylate
reaction intermediates, which can be used as agents against
tuberculosis [82].

2.8 Ptp A and B Protein tyrosine phosphatases (PTPs) are a part of a large family of
approximately 100 types of enzymes, presenting great diversity in
cellular processes, and being essential for phosphate hydrolysis of
tyrosine residues (Fig. 11) present in proteins [84]. These are
characterized as proteins present in many tissues, and belonging
to a group of low molecular weight tyrosine phosphatases which
have also been identified in other bacteria [85, 86]. PTPs contain,
in addition to a structure composed of 240 amino acids and a
precisely conserved domain, a consensus sequence at their catalytic
sites. In these catalytic sites, a pattern of cysteine and arginine
provides an essential contribution to enzymatic action [87, 88].

During the infectious process, bacteria present many tyrosine
phosphatases [89]. Among them is low molecular weight PtpA,
also present in M. tuberculosis and belonging to the tyrosine

Fig. 10 Schematic diagram representing the action of Pantothenate synthetase in M. tuberculosis production
of pantothenate
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phosphatases [83, 90], and it also mediates host pathogenicity.
Homology studies were performed for PtpA, and a close similarity
to that of Streptomyces coelicolor was found, where it hydrolyzes free
phosphotyrosine residues. This provided an evidence of its involve-
ment in regulation of sulfur amino acid metabolism [91]. Detailed
mechanisms concerning M. tuberculosis PtpA are essential for
understanding the bacillus virulence [90].

2.9 InhA M. tuberculosis contains mycolic acids formed by chain α-alkyl,
β-hydroxy fatty acids (60–90 carbons) [92], and because it is a
critical biosynthetic pathway many studies have regarded the
enzyme InhA as a possible target for the new antimycobacterial
agents [93]. The biosynthetic pathway is catalyzed by several
monofunctional enzymes from the FAS II group. These differ
from FAS I present in mammalian cells, where all enzymatic activ-
ities are assembled into one or two multifunctional polypeptides.
Such differences present in bacteria and mammalian cells are essen-
tial for design of novel inhibitors that act with increased activity,
selectivity, and low toxicity. FAS I products are transferred to the
FAS II pathway, i.e., C16–C26 fatty acids, where they are elongated
to very long-chain C56 [94].

Fig. 11 Biochemical representation of the enzymatic action of PtpA and PtpB phosphatases in M. tuberculosis
(Wong et al. [83])
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In M. tuberculosis, the elongation process is a key catalytic
process for producing mycolic acid precursors and depends on the
InhA enzyme. The InhA gene product is characterized as an
NADH-dependent enoyl-acyl carrier protein reductase that acts in
reducing 2-trans enoyl chains. These possess at least 12 carbon
atoms [95, 96] and are the last step in the biosynthetic pathway
of fatty acid elongation (Fig. 12). Several studies have reported the
production of this InhA protein in bacteria [98, 99]. It is involved
in the production of very long-chain fatty acids, mycolic acids, and
is an essential component in the formation of the mycobacteria cell
wall.

The InhA enzyme belongs to the short-chain dehydrogenase/
reductase (SDR) family. In aqueous solution, the InhA crystal is a
homotetramer structure with three perpendicular twofold symme-
try axes that cross the center of the molecule [100]. Each enzyme
subunit is expressed in a domain with a central nucleus containing a
Rossmann fold as an NADH binding support. In the inner region,
several α- and β-strand helices extend from the Rossmann fold,
known as the substrate binding loop to create a slit for insertion

Fig. 12 Schematic representation of enoyl acyl carrier protein reductase InhA inhibition in the M. tuberculosis
mycolic acid pathway (Wright [97])
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of the fatty acid substrate. The extension contains two helices which
form one side of the fatty acid cleavage slit.

Isonicotinic acid hydrazide (INH) and ethionamide inhibit this
enzyme, though in M. tuberculosis several InhA gene mutations
have been associated with resistance to isoniazid [98]. However,
these resistance cases are found in prodrug activation processes
(i.e., the catalase-peroxidase enzyme KatG) [97, 101], and in only
one enzyme, enoyl-ACP reductase, while other catalytic processes
of the FAS II pathway are conserved. The enzyme InhA therefore
still remains a target in the search for new drugs.

2.10 Cytochrome

P450 Monooxygenase

The cytochrome P450 monooxygenase (P450) belongs to the
family of heme-containing monooxygenase enzymes [102]. They
are responsible for many metabolic roles, such as detoxification and
synthesis of steroids in mammals [103], and are also found in other
organisms. P450 catalyzes other oxidative mechanisms, but its
main activity is the oxygen transfer reaction, catalyzing reduction
of oxygen reversibly bound to iron in P450 [104]. This reaction
removes an oxygen atom from oxygen (O2), and promotes its
transfer to an organic substrate with parallel formation of a water
molecule (Fig. 13).

This above process is essential for the survival of microorgan-
isms, including M. tuberculosis; it regulates several other biochemi-
cal pathways that are essential to bacillus pathogenicity. Due to its
good solubility, the enzymatic structure has been reported in sev-
eral structural elucidation studies [106]. Although studies in E. coli

Fig. 13 Monooxygenase enzymatic activity in oxidative catalysis of the internal bacteria membrane (Quehl
et al. [105])
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have found P450 [105], the genomes of S. coelicolor and
M. tuberculosis reveal 18–20 encoded P450 genes [107]. Thus,
since various M. tuberculosis genes involved in the lipid metabolic
system (with approximately 250 enzymes) have been processed,
studies have focused on anti-P450 mycobacterial target strategies.

2.11 Pyridoxine-

50-phosphate
The pdxH gene present in E. coli produces a monofunctional flavo-
protein that can use either pyridoxine-5-phosphate (PNP) or pyri-
doxamine-5-phosphate (PMP) substrates [108, 109]. PNP oxidase
acts as a key enzyme in the biosynthesis of the coenzyme pyridoxal-
5-phosphate. This enzyme is present in several organisms, such as
the human brain [110],E. coli [111], andM. tuberculosis [112]. The
protein contains 203 amino acid residues.

In E. coli, the enzyme pyridoxine-5-phosphate oxidase
(PNPOx) catalyzes oxidation of PNP to PLP during biosynthesis
of vitamin B6, which itself also functions as a critical constituent of
PLP. The enzyme catalyzes oxidation of either aC4 alcohol group or
an amino group of the substrates PNP or PMP to an aldehyde, and
forms PLP (Fig. 14). A hydrogen atom exits C4 during oxidation
and a pair of electrons is carried towards the flavin mononucleotide
(FMN) bond. PNPOx is the only flavoprotein oxidase that oxidizes
an amine or primary alcohol to form the same product [113].

The protein is homodimeric with disulfide bridges connecting
two monomeric portions through salt-bridge interactions. Each
subunit is responsible for binding to a pyridoxal-5-phosphate mol-
ecule. This enzyme requires the presence of a cofactor, called FMN,
a deep cloven composition of peptide subunits retained by hydro-
gen bonds with the protein. After formation of the binding sub-
strate binding complex with the molecular receptor, it is converted
to PLP. Amino acids present in the target are responsible for the
PLP-hydrogen bonds constructing a cover on the active site, in
closed conformation [114].
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Fig. 14 Schematic of PLP formation route through the pyridoxine 5 phosphate enzyme (Mashalidis et al. [113])
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2.12 Thymidine

Monophosphate

Kinase

For M. tuberculosis nucleotide metabolism, the enzyme thymidine
monophosphate kinase (mtTMPK) is essential, its function is catal-
ysis of reversible thymidine monophosphate (dTMP) phosphoryla-
tion to thymidine diphosphate (dTDP) [115]. The TMPK enzyme
is known to catalyze the transfer of γ-phosphate ATP (Fig. 15) to
thymidine monophosphate (dTMP) under the action of Mg2+, to
produce thymidine diphosphate (dTDP) and ADP. The presence of
a tyrosine residue (Tyr103) near position 2 allows the enzyme to
discriminate between 2-deoxynucleotides and ribonucleotides, and
thus transform only the former [116].

Low structural similarities with the enzyme in humans make it
an attractive target for planning of new agents against tuberculosis
that block mycobacterial DNA synthesis. The enzyme is similar to
the other TMPK isoenzymes, but in homology studies, it presents
only 26% identity with E. coli isoenzymes, and even less (22–25%)
with humans [117].

2.13 Isocitrate Lyase Several glycolytic enzymes reported in the literature can induce the
growth of M. tuberculosis in rats [118]. Many microorganisms can
survive in the presence of acetate or fatty acids as the only source
of carbon used to produce glyoxylate for cellular machinery.
This involves the enzymes isocitrate lyase and malate synthase
[119]. In this process, isocitrate breaks down into succinate and
glyoxylate, and glyoxylate then condenses with acetyl-CoA to form
malate. Glyoxylate also recycles the loss of two carbon dioxides
from the tricarboxylic acid (TCA) cycle. During the TCA cycle,
formation of acetyl-CoA requires the presence of isocitrate lyase.

Fig. 15 Schematic view of the thymidine metabolic pathway in M. tuberculosis
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Isocitrate lyase (Fig. 16) competes with isocitrate dehydrogenase
for the isocitrate substrate [120].

The activity of isocitrate lyase is continuously reported for
M. tuberculosis. The glyoxylate pathway in M. tuberculosis presents
two genes in the production of isocitrate lyase [121]. One of them,
ic11, encodes the same enzyme present in other eubacteria, while
the second gene, called icl2, encodes a protein that shows greater
homology with eukaryotic isocitrate lyase. Although both exhibit
similar in vitro activity characteristics, icl1 was shown to be more
active than icl2 [122], being positively regulated by Mtb.

2.14 Glutamine

Synthetase

Glutamine synthetase (GS) has been reported in several studies in
the literature as a major new target in the pathogenic pathway of
M. tuberculosis [123]. The enzyme is secreted by pathogenic myco-
bacteria and essentially acts to influence the phagosome ammonia
level of the host [124], and consequently on physiological phago-
some conditions which influence poly-L-glutamic acid/glutamine
synthesis [125]. GS, a dodecane formed from identical subunits is
responsible for nitrogen production, catalyzing L-glutamate,
ammonia, and ATP for L-glutamine synthesis (Fig. 17).
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Fig. 16 Schematic view of the TCA cycle with the action of isocitrate lyase in the formation of glyoxylate
(Cheah et al. [120])
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The mtGS enzyme (molecular mass of 53.6 kDa) is identical
to that found in M. tuberculosis, and it can also be found in
M. smegmatis, and yet it differs because in M. smegmatis it is
exported to the outside of the cell. In M. tuberculosis, it remains
within the cell. Studies suggest that this enzyme can be found in the
early stages of mycobacteria growth, but in Mtb it appears as the
only means of assimilating ammonia [126]. Genetically, the gene
that determines glutamine synthetase (mtGS) expression presents
only a single copy, being next to the glnE gene which encodes
adenylyl transferase in E. coli, and is next to the dsIII gene which
encodes another glutamine synthetase-like protein [127].

2.15 Shikimate

Kinase

The shikimate pathway comprises seven steps to convert phoenol-
pyruvate and erythrose 4-phosphate to chorismate, which itself is
responsible for derivations in other synthesis, such as vitamins
E and K, folic acid, ubiquinone, and aromatic α-amino acids
[128]. The shikimate kinase (SK) enzyme, responsible for the
fifth step of the pathway in the transfer of phosphoryl from ATP
to shikimate [129], forms shikimate-3-phosphate (Fig. 18). This
pathway has been reported to be essential for plants, fungi, algae,
bacteria, and parasites [130], but its existence in mammals has not
been reported; it is thus a promising target for the development of
antimycobacterial agents.

Currently, there are crystallized shikimate kinase structures
from Mycobacterium tuberculosis SK (mtSK). In Mtb, it belongs to
the nucleoside family of monophosphate kinases. The core domain
contains five stranded parallel β-sheets and a P-loop, which has five
stranded parallel β-sheets surrounded by eight helices forming
the nucleotide-binding site; the LID domain, which closes on
the active site, and contains binding residues with ATP; and the

Fig. 17 Biochemical pathway of the glutamine synthetase regulation in Escher-
ichia coli; assimilation of ammonia (Yuan et al. [124])
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shikimate binding domain, generally hydrophobic on the surface,
which is essential to development of various enzyme inhibitors for
antituberculosis activity [131].

The existence of a fourth domain has been reported, with a
reduced core domain, due to changes in compartments resulting
from binding of the linker to the enzyme, so that exact shikimate
and ATP positioning occurs in the enzymatic process. ATP binding
to the enzyme promotes rotation of the NB domain to the SB site,
and shikimate binding promotes the rotation of the SB domain to
the NB region [132].

2.16 CFP10–ESAT6 The CFP-10 and ESAT-6 proteins belong to a large family of
proteins present in mycobacteria [133]. They have coiled-coil
motif characteristics [134] and contain salt bridges that stabilize
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the complex [135]. The activity of this enzymatic complex involves
cell signaling in lysing processes and formation of pores in the host
cell membrane [136].

Approximately, 11 protein pairs are found in Mycobacteria,
encoded by paired genes [137]. CFP-10 is known as a 10-kDa
M. tuberculosis secreted antigen consisting of a 1:1 heterodimeric
complex with a 6-kDa ESAT-6 protein. The two proteins are con-
sidered interdependent and act to inhibit production of reactive
oxygen species (ROS), as well as regulating ROS production in
bacterial lipopolysaccharides [138]. The protein pair form reveals
two similar helix–turn–helix hairpin structures (Fig. 19) formed by
the individual proteins, which lie antiparallel to each other, and
form a four-helix bundle [135].

The genes of these enzymes are known as Rv3874 and
RV3875, respectively, representing CFP-10 (with 100 residues)
and ESAT-6 (with 95 residues). Both proteins are found in low
levels in M. tuberculosis and M. bovis [139], despite their highly
conserved status in the Mycobacteria genus. Studies have reported
that the loss of one of these proteins in the mycobacteria causes
reductions in tuberculosis virulence, an essential for new antituber-
culosis agents [140].

2.17 DNA Gyrase DNA gyrase is a topoisomerase that acts in DNA supercoiling in a
reaction that depends on ATP hydrolysis [141, 142]. Topoisomer-
ase has two forms and depends on catalysis of one or both DNA
strands (Fig. 20). Its structure is hetero-tetrameric, having two
subunits of each type: A and B, which are commonly known as
A2B2 [143, 144].

Fig. 19 Illustration of the ESAT-6 and CFP-10 secretion complex in the extracellular medium ofM. tuberculosis
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DNA gyrase is considered a promising target for the treatment
of tuberculosis since several compounds such as fluoroquinolone
inhibit subunit A of the enzyme, whereas the drug Novobiocin, an
amino-coumarin derivative, inhibits subunit B. Chopra et al. [145]
sequenced GyrB genes and found 99.9% homology between them,
suggesting protein conservation, and a promising candidate for
drug development.

2.18 Dihydrofolate

Reductase (DHFR)

The enzyme dihydrofolate reductase acts by reducing 7,8-dihydrofolate
(DHF) to 5,6,7,8-tetrahydrofolate (THF) with the aid of an NADPH
cofactor [146, 147]. THF is the precursor responsible for supplying
methyl groups for the synthesis of thymidylate, purine, methionine,
serine, and glycine nucleotides required for DNA, RNA, and protein
synthesis (Fig. 21). Dihydrofolate reductase (DHFR) receptor inhibi-
tion, as presented by THF analog compounds, freezes DNA synthesis
and causes cell death. The bacteria fail to produce sufficient tetrahydro-
folatewhich is used as a coenzyme in theproductionof purines necessary
for DNA synthesis and cell reproduction. Human cells can use exoge-
nous folate for metabolism, while bacteria depend on endogenous
production (Fig. 4). Pathway failures do not normally affect human
cells but are fatal to many bacteria [148], and this pathway has become
an attractive target in the design and development of new drugs [149].

The DHFR structure has a central β sheet surrounded by four
α-helices. The B sheet contains seven parallel chains and one anti-
parallel chain. In homology studies, it was found that DHFR in
humans has about 26% identity with mtDHFR. Crucial differences

Fig. 20 Structural model of the enzyme DNA gyrase, with a representation of the binding sites, and their
subunits A and B (Stanger et al. [143])
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are important in the active site specificity and can decrease cytotoxic
effects [150, 151]. The differences in NADPH binding sites and
active inhibitor sites is that Mtb has a glycerol molecule close to the
active site coupled to Trp22, Asp27, and Gln28 residues, in humans
the binding site has a glycerol islet with three hydrophobic residues
Leu22, Pro26, and Phe31. Trimethoprim (TMP) and pyrimeth-
amine (PYR) have antimycobacterial and antiprotozoal activity
[152, 153] inhibiting DHFR, but TMP has the lower affinity.

3 Multitarget Compounds

Multitarget therapies are considered highly effective in treatment of
multifactor diseases, especially those with high resistance. Molecu-
lar modeling studies are able to predict possible mechanisms of
action for these compounds based on their physicochemical char-
acteristics as well as measure their interactions in the ligand–recep-
tor complex [154]. The benefits of using these compounds and
their therapeutic value have been demonstrated, and the value of
docking studies to assure faster planning and development of new
compounds that circumvent resistance has also been demonstrated
[155]. Herein will be reported several classes of compounds that act
on more than one target, their interactions with active sites, and
critical residues favoring greater activity.

3.1 Thiophenes Synthesis of thiophene analogs has attracted considerable attention
in pharmaceutical research. In drug design and development, het-
erocyclic ring substitutions are now a routine strategy [156]. Thio-
phenes and their derivatives belong to the aromatic heterocyclics
group and are important structural fragments in many pharmaceu-
ticals and chemical compounds [157]. The thiophene ring is a
cyclic hydrocarbon; molecular formula C4H4S; a hetero-aromatic
compound. In the field of medicinal chemistry, benzo[b]thio-
phenes are important as biologically active heterocyclic molecules
[158]; remarkably, they unite many biological activities [159].

In studies carried out by Lu et al. [160], several derivatives of
2-acylated and 2-alkylated amino-5-(4-(benzyloxy)phenyl)thio-
phene-3-carboxylic acid were evaluated for their antituberculosis
activity. They exhibited MICs of 1.9 and 7.7 μM, low toxicity, and
moderate activity; and when subjected to analysis in extensively
drug-resistant strains (XDR-TB) yielded MICs of 12 and 16 μM.
In order to predict the mechanisms of action involved in the anti-
tuberculosis activity, four derivative compounds (10d, 12h, 12k,
and 15) were submitted to molecular docking analysis with the
homologous E. coli FabH enzyme. The enzyme shows several key
interactions in the 2,6-dichlorophobic group complex, with inter-
action in Cys112, His244, and Asn274 residues. The acid group
forms an ionic interaction with the arginine residues (at the top of
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the active site tunnel); with the 6-chloropiperonyl group, which
interacts with residues close to the active site; and the indole moiety
which act on alignment of the binding elements. These interactions
serve as a basis for associating the activity of these compounds with
mtFabH, and they were found to have such activity due to the acid
group on the thiophene ring that forms an ionic interaction with
Arg36 in the active site portion, and also due to the presence of
hydrogen interactions between the carbonyl oxygen and hydrogen
of the amino group with residue Arg249.

A second target reported in the literature for thiophene deri-
vatives is the enzyme Pks13 [161]. In that study, in vitro activity
inhibiting loading of fatty acyl-AMP in Pks13 was observed, thus
inhibiting the biosynthesis of mycolic acids in M. tuberculosis, this
yielded MIC values ranging from 0.5 to 78 μM. In order to design
the in vitro studies, molecular docking studies of the thiophene
derivatives with the enzyme mtPKS13 were performed. In that
study, binding sites within the PKS13 protein domain were identi-
fied, separating residues Ser55 and Phe79, and confirming valida-
tion of the thiophene derivatives while characterizing their
therapeutic role in inhibiting this Mtb biosynthetic pathway.

In the studies byMahajan et al. [162], synthesis of several benzo
[b]thiophene derivatives yielded compounds with in vitro activity
and MICs in the range of 2.73–22.86 μg/mL (M. tuberculosis) and
0.60 and 0.61 μg/mL (M. bovis) both in dormancy, in addition to
presenting low cytotoxicity for HeLa, Panc-1, and THP-1 cells. In
this study,molecular docking studies elucidated the antituberculosis
activity mechanism of the thiophene compounds. A good fit was
predicted for thiophene linkers to the active site of the DprE1
(Decaprenyl phosphoryl-β-D-ribose-20-epimerase) enzyme from its
crystalline structure, with energy variance of only �9.198 for the
most active compound (7a), to�6.995 for the less active compound
(7e). The compounds appeared to have similar interactions with the
active site residues; they had a number of interactions with the most
active compound, with strong pi bond interactions observed for the
His 132 space, and hydrogen bonds with Lys418 and Gly117. This
demonstrated their high affinity for the enzyme.

3.2 Sulfonamides Sulfonamides are a class of compounds having the functional group
–SO2NH– in their chemical structure. The class constitutes the
structural basis of a variety of drugs, present in many biologically
active compounds, including antimicrobial drugs [163, 164], anti-
viral drugs [165], anticancer drugs, and anti-inflammatories
[166]. In addition to their broad spectrum, they are among the
most widely used antibacterial agents in the world, mainly because
of their low cost, low toxicity, and excellent activity against com-
mon bacterial diseases [167].

In studies conducted by Naidu et al. [168], a series of
33 (thirty-three) new 6-(piperazin-1-yl) phenanthridine amides
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and sulfonamides were evaluated for anti-Mtb activity, and pre-
sented MIC50 activities of between 1.56 and 50 μg/mL. From
these, two of the most active compounds were evaluated through
molecular docking activity in ATPase domains of M. tuberculosis
DNA Gyrase B. In these analyses, strong hydrophobic interactions
were seen with Val98, Val99, Ile84, Pro85, Ala113, and Tyr114, in
addition to certain specific interactions such as hydrogen bonding
with Lys108 of compound 6d, a hydrophobic interaction with
Ala87, and (for compound 7d) π–π stacking with Arg141.

Another study by Oliveira et al. [169] was carried out using
sulfonamide derivatives for inhibition of the Mtb protein tyrosine
phosphatase B (mtPtpB). The six sulfonamide and eight sulfonyl-
hydrazone acyclic amide compounds presented excellent activity
with IC50 values ranging from 2.5 to 15 μM. The study also
investigated molecular docking simulations for the PtpB enzyme
with the four most active compounds. These simulations produced
similar interactions which contributed significantly to the stability
of the complexes. For the most favorable compound, the sulfonyl
group presented hydrogen and dipole interactions, but the pres-
ence of p-bromo and p-nitrophenyl substituents overlapped amino
acid Leu227. The observed substituents also exhibited favorable
interactions in various amino acid residues, which may have con-
tributed to increases or decreases in the potency of the compounds
tested.

3.3 Chalcones Chalcone, or 1,3-diphenyl-2E-propene-1-one, belongs to a class of
natural products that occurs throughout the Plant kingdom. Ben-
zylideneacetophenone is a precursor through a union of two aro-
matic nuclei united by a three-carbon α,β-unsaturated carbonyl
bridge. The chalcones are precursors of flavonoids and isoflavo-
noids, and have attracted the attention of medicinal chemists
synthesizing active derivatives [170], and been recorded in the
literature as antioxidants [171], and antituberculosis agents [172]
among others.

In 2010, Mascarello et al. [172] reported antituberculosis
activity for five synthetic chalcones on protein tyrosine phosphatase
A (mtPtpA), through competitive inhibition, and IC50 values rang-
ing from 7.5 to 55 μM. In this study, predictive molecular docking
(Fig. 22) was performed which revealed key interaction residues of
the complex, where methoxy groups in the ring interact with the
residues Arg17, His49, and Thr12 in the active site of the enzyme.
In addition to these interactions, substitutions on the phenyl ring
by the 2-naphthyl grouping were seen to be subject to hydrophobic
interactions with the PtpA Trp47 residue.

Yavad et al. [173] studied synthetic chalcone derivatives
(3.5–30 μg/mL) through in vitro tests against M. tuberculosis.
Quantitative Structure–Activity Relationship (QSAR) was studied,
generating a model to correlate the physical–chemical properties of
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chalcones with their antitubercular activity. Through regression
curve analysis, it was observed that the lowest unoccupiedmolecular
orbital energy (eV), together with the amine, hydroxyl, and methyl
group counts, positively correlated with activity. In addition, the
molecules that were found to be the most active underwent molec-
ular docking studies to explore their receptor affinity mechanisms.
The enzyme InhA commonly known asM. tuberculosis enoyl reduc-
tase (ENR) was used; chalcones present similar residues to those
found with the standard drug, isoniazid (INZ): aliphatic interac-
tions with residues Gly93 and Ile200, sulfur grouping withMet159
and Met206, the cyclic portion with Pro191, and the aromatic
portion with Tyr146, try156, and Phe203. The anchoring study
on mechanism of action showed high-affinity binding of the active
derivatives, thus characterizing them as possible drug candidates
against tuberculosis.

Gond et al. [174] analyzed 11 synthetic chalcone derivatives in
molecular docking simulations to investigate possible interactions
with the M. tuberculosis DHFR enzyme. The interactions obtained
from the analysis were the same interactions as presented by metho-
trexate, with key residues Ala9, Ile7, Glu30, Ser59, Tyr121, and Val
115 involved.

3.4 Nitroimidazoles Nitroimidazoles are compounds with widely reported antibacterial
and antiprotozoal actions [175]. The majority of their activities are
due to drug bio-reduction processes within the pathogen. The

Fig. 22 Binder–receptor complex showing the interactions of the amino acid
residues with the portions of the chalcone derivatives reported in the literature.
Docking of a chalcone derivative complexed with the enzyme mtPtpA
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activity of nitroimidazoles against Mtb has already been reported in
the literature [176], and the activity of nitroimidazoles varies
according to the location of the nitro group.

In studies conducted by Sharma et al. [177], profiles of com-
pounds with antituberculosis activity were analyzed. The com-
pounds were obtained from the ZINC, DRUG BANK, and
PUBCHEM databases and divided into known first-line com-
pounds and natural antituberculosis compounds. In the screening
of these compounds, ZINC00004165 (5-[3-(2-nitroimidazol-1-
yl) propyl] phenanthridine) presented the highest interaction with
cytochrome P450 monooxygenase, presenting an interaction
energy superior to drugs such as Pyrazinamide, Rifampicin, Isonia-
zid, Streptomycin, and Ethambutol reported in the literature.

Gupta et al. [178] analyzed a series of 2-nitroimidazooxazine
derivatives subjected to QSAR studies. Their physicochemical
properties were calculated and submitted to statistical analysis.
The compounds were subjected to molecular docking analysis
with deazaflavin-dependent nitroreductase (Ddn), and exhibited
key interactions with nitro and Tyr65 residues and hydrogen inter-
actions with the Tyr133 residue, exhibiting similar interactions
with a co-crystallized linker positioned at the active site of the
enzyme.

Somasundaram et al. [179] studied the activity observed at a
concentration of 12.5 μg/mL of a nitroimidazole (PA-824) acti-
vated by Ddn, which catalyzes reduction and release of lethal
reactive nitrogen. To further understand its mechanisms of action,
the compound was subjected to docking studies in the crystalline
structures of wild-type and mutated Ddn (Fig. 23a). In these
analyses, two hydrogen interactions were observed and key inter-
actions (involving inhibition effectiveness) occurred between the
nitro portion of the compound andMet87, and oxygen with Try88
of the active site. A hydrogen interaction with the Glu83 residue
was indicated in wild-type Ddn, but not in mutated Ddn.

In studies conducted by Kumar and Jaleel [180], the activity of
PA-824, a nitroimidazole that acts against antihypoxia activity, and
replication of active or latent forms ofM. tuberculosis were analyzed
through bioinformatics. The activity of this molecule has already
been reported in the literature, but its reaction mechanism has not
been elucidated. The basis of the article was prediction of PA-824’s
activity on the PNPOx enzyme (Fig. 23b). Several PA-824 interac-
tions were reported, including residue Ile51 with 5H bond inter-
actions between the compound and the enzyme, yet residue
Lys57 was the best pocket site with a free energy binding of
�6.17 kcal/mol and six H bond interactions between the target
protein and compound, making it the best pocket site for a poten-
tial inhibitor.
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3.5 Benzimidazoles Benzimidazoles or imidazolines are five-membered heterocyclic
systems containing an imino group which is fused from amino
acids [181]. These compounds present several therapeutic
activities [182].

Saleshier and collaborators [183] in a study of new antimyco-
bacterial agents synthesized a series of pyran-substituted

Fig. 23 Binder–receptor complex showing interactions between amino acid residues and nitroimidazole
derivative portions. (a) Candidate PA-824 interacting with the enzyme Ddn. (b) Candidate PA-824 complexed
with a pyridoxine-5-phosphate oxidase (PNPOx) enzyme
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benzimidazoles and evaluated their activity against tuberculosis in
concentrations of 1–100 mcg/mL. The molecular docking studies
for the enzyme enoyl reductase (InhA) of Mtb (Fig. 24a) indicated
good binding affinity to the receptor, and key interactions with the
residues of Gly96, Ile95, Phe41, and Ser94 in agreement with a
demonstration of in vitro activity.

Soni et al. [184] screen investigated 500,000 compounds from
the Asinex database. Nine inhibitors of N-acetylglucosamine-1-
phosphate uridyltransferases (GmlU) from M. tuberculosis under-
went predictive analyses through molecular docking. Key interac-
tions with Arg19, Thr 89, Gly 151, Glu 166, Asn 181, and Asn
239 residues were presented, and the pyrimidine moiety presented
hydrophobic interactions with Leu12, Ala14, Val55, Pro86,
Leu87, and Ala92 residues.

The M. tuberculosis DHFR enzyme is another target for benzi-
midazolic inhibition as reported by Priyadarsini et al. [185]. At a
concentration of 0.01 μg/mL, the researchers found the tested
derivatives to be moderately active when compared to methotrex-
ate. Through molecular docking studies, interaction between ben-
zimidazoles and the mtDHFR enzyme was predicted for key
residues: Ile94, Arg60, Phe31, Leu57, Ile20, and Pro51, thus
characterizing antituberculosis activity.

Aanandhi et al. [186] synthesized new benzimidazole deriva-
tives as well as performed molecular docking analyses with the
enzymatic complex CFP10-ESAT6. As a result, interactions with
Ser34, Glu33, Gly37, and Gln40 residues present on the active site
of the compound were reported, and have been shown to be
essential for inhibition activity.

Fig. 24 Binder–receptor complex showing amino acid residue interactions with benzimidazole derivative
portions. (a) Docking of pyran-substituted benzimidazoles derivatives complexed with the Mtb InhA enzyme.
(b) 2-Heterostyrylbenzimidazole derivative inhibiting the Mtb Pantothenate synthetase enzyme
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Anguru and collaborators [187] reported synthesis of
2-heterostyrylbenzimidazole derivatives evaluated for their antitu-
berculosis activity at less than 16 μg/mL. In docking studies,
interaction of pantothenate synthetase (Fig. 24b) with the amino
acids Lys160 and Val187 in all compounds was verified, and is
essential for inhibition activity.

3.6 Peptides Peptides are signaling molecules that bind to specific receptors on
the cell membrane to elicit intracellular effects. Peptides consist of
four structural parts: α-helical, β-stranded, β-hairpin, or loop and
extended. They are highly specific and are generally safe and effec-
tive in humans [188]. The search for new peptides is essentially
based on their biochemical affinity to their target macromolecules
and their promotion of desired effects [189, 190].

Considering structural similarities between M. tuberculosis
DHFR enzymes and human DHFR, a molecular docking study of
tripeptide inhibitors with the (DHFR) enzyme was carried out by
Kumar et al. [191]. The peptide designed in the study obtained
potency of up to 6� higher than methotrexate, a crystallized PDB
inhibitor, and was up to 120�more selective for theM. tuberculosis
DHFR enzyme as compared to the selective for human DHFR
enzyme. The tripeptide can be considered a lead candidate com-
pound for new antituberculosis drugs.

Another cyclic peptide was designed in the studies of Chandra
et al. [192], from the β-lactam structure through intramolecular
ring opening transamidation, and this presented micromolar activ-
ities against the PtpA enzyme ofM. tuberculosis. In this same work,
molecular docking studies (Fig. 25a) of compound binding to the
active site of the enzyme demonstrated induced flexibility in the
PTP loop region, which already has a catalytic function in the
interaction of hydrogen bonding of the cyclic terminal with
amino acid residues Cys11 and Arg17. In addition, key interactions
with Gly125 residues, and interactions of theN-phenyl moiety with
Trp48 and Thr12, have been reported to act in strengthening the
existing bond.

In the studies conducted by Yang et al. [193], a library of
compounds led to the identification of the compound actinomycin
D (ActD) as an inhibitor of the enzyme pantothenate synthetase of
M. tuberculosis (mtPS), with activity at 250.72 μM. A virtual screen-
ing was performed based on the structure of ActD in which the
existence of two compounds with 10� activity greater than that
registered for ActD was evidenced. When conducting a molecular
docking study (Fig. 25b) with the mtPS enzyme, the cyclopeptide
portion was shown to be essential for inhibition, involving hydro-
gen interactions with the key residues of amino acids Try82,
His135, Lys160, and Gln164.

Another study evaluated the structure of the enzyme thymidine
monophosphate kinase in M. tuberculosis and in humans to
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investigate the efficacy of new tripeptide inhibitors [194]. By means
of docking studies, it was seen that the highest affinity was due to
aromatic double bond interactions with residues Tyr103 and
Tyr165, interactions of the naphosultam ring with the Tyr39 resi-
due, and guanidine portion hydrogen interactions with the Arg95
residue. The tripeptide prediction resulted in 33,000� greater
affinity for mtTMPK, thus highlighting the compound for further
research and a possible new class of Mtb selective compounds.

Another study reported on 29 heptapeptide inhibitors of
M. tuberculosis, specific to the enzyme isocitrate lyase (ICL). Predic-
tion of this activity occurred duringmolecular docking studies. Three
of these inhibitors demonstrated IC50 of 126 μM and are involved in
enzyme cavity binding generating conformational changes, and sup-
pressing catalytic activity through non-competitive inhibition. Thus,

Fig. 25 Binder–receptor complex showing amino acid residue interactions with portions of peptides. (a) Cyclic
peptide in the active site of the M. tuberculosis enzyme PtpA. (b) ActD inhibiting a pantothenate synthetase
enzyme. (c) Lidamycin, an antimycobacterial cyclic peptide, inhibiting an ATP-dependent protease enzyme
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it was found that the interaction of the Gln119 residue in the active
site is essential for peptide inhibitory activity [195].

Perumal et al. [196] studied interactions of a group of endoge-
nous 10–50 amino acid peptides with voluminous amounts of
hydrophobic residues. The affinity of these peptides for glutamine
synthetase and RNA polymerase proteins was determined; com-
pounds (AIA)—I and II were shown to be highly potent against
both enzymes, as well as presenting higher interaction energies
than standard drugs, such as rifampicin and isoniazid.

As another antituberculosis drug candidate [197], a dipeptide
inhibitor based on the shikimate kinase (SK) structure, with bind-
ing affinity predicted at 5.5 ηM, and a bond similar to that found
for the shikimate substrate showed a high number of interactions:
hydrogen with Asp34, Arg58, and Arg136, and its carboxylic
group interacting with the Gly81 residue of the enzyme and resi-
dues Arg117, Pro118, and Leu119 from the LID domain.

In studies conducted by Gavrish et al. [198], lidamycin, an
antimycobacterial cyclic peptide which plays a role in growing and
dormant forms of M. tuberculosis, was studied. In molecular dock-
ing of the peptide with the ATP-Dependent Protease enzyme
(Fig. 25c), the presence of Gln17 residues was found; this is key
to formation of an inhibitory complex and may explain its antimy-
cobacterial activity.

3.7 Quinolones Due to their broad spectrum antibacterial activities, quinolones
are an important class of compounds in medicinal chemistry
[199]. With the various structural modifications reported in the
literature, it is seen that changes in carbon positions 6 and 8 present
more potent antibacterial activity [200]; yet, fluoroquinolones are
effective against a wider spectrum of bacteria [201, 202].

Guzman et al. [203] reported on N-methyl-2-alkenyl-4-qui-
nolones that act on theM. tuberculosisMurE ligase enzyme yielding
IC50 activity of 40–200 μM. In addition, molecular docking ana-
lyses were performed on the target, which presented weak bonds
with only one interaction coming from the nitrile group of the
quinolone with the hydroxyl group present in residue Thr176.
Due to the extra space existing in the cavity of the active site,
development of new derivatives is possible.

Cunha et al. [204] reported on gatifloxacin analog interactions
and activity against the M. tuberculosis DNA gyrase enzyme. Bioin-
formatic studies verified six compounds as having interactions with
subunits A and B of the enzyme. The study reported that key steric
interactions were present at hydrogen bonds of amino acids Lys49
and Asn172 and with amino acid Ser91; interactions of the bicyclic
ring at the active site region of the enzyme were also observed.

Maddela and Makula [205] synthesized 22 isatin–quinoline
hybrids and submitted them to molecular docking studies with
the enzyme enoyl ACP reductase (InhA). The most active
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compound presented hydrophobic interactions with residues
Phe97, Gly96, and Met199, in addition to presenting critical inter-
actions with residues Tyr158 and NAD500 in the active site of the
receptor. The results confirmed observed in vitro activity of
0.09 μM against Mtb, verifying isatin–quinoline as a promising
antituberculosis compound.

Minovski et al. [206] constructed combinatorial libraries with
several analogous compounds, a total of 53,871 6-fluoroquinolone
structures which passed through a molecular filter using neural
networks (NN). After virtual screening, the compounds were sub-
mitted to chemometrics analysis and molecular modeling in the A
subunit of the enzyme DNA gyrase. They presented interactions
with Ser79, Arg117, Arg456, and Glu475 considered key interac-
tions for GyrA enzyme activity. Levofloxacin was used as a standard.

4 Conclusion

Themultitarget drug is a key that can openmultiple locks. Research
in multifunctional compounds can follow two paths: comprehen-
sive experimental analyses, or computer-aided rational drug design;
and screening for and identifying potential targets, with optimiza-
tion; both avoid higher expenses.

In this chapter, we have presented molecular docking studies as
a method of multitarget compound discovery in the treatment of
tuberculosis disease. Based on this review, the following interactions
of the ligand–receptor complex of compounds to their enzymes
were observed: (1) thiophenes with activities in FabH, Pks13, and
DprE1 targets, (2) sulfonamides with activities in DNA gyrase and
PtpB targets, (3) chalcones with activities in the enzymes PtpA,
InhA, and DHFR, (4) nitroimidazoles with activities in Cyto-
chrome P450 monooxygenase, Ddn, and Pyridoxine 50-phosphate
oxidase, (5) benzimidazoles with activities in the enzymes InhA,
GmlU, DHFR, CFP10-ESAT6, and Pantothenate synthetase,
(6) peptides with activities in the enzymes DHFR, PtpA, Pantothe-
nate synthetase, TMPK, isocitrate lyase, Glutamine synthetase, Shi-
kimate kinase, and ATP-dependent protease, and (7) quinolone
derivatives with activities in MurE ligase, DNA gyrase, and InhA
targets. The use of in silico methods presented the action of these
compounds in greater detail, as well as predicting possible interac-
tions with their enzymes. Such methods accelerate and favor the
development of drugs with activities in more than one receptor.
Development of more specific and potent compounds for such
varied targets is of great interest to the public health industry and
may well reduce the current high number of M. tuberculosis resis-
tance cases.
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CE, Dou SJ, Sahly HE, Moghazeh SL, Kreis-
wirth BN, Musser JM (2000) Molecular
genetic analysis of nucleotide polymorphisms
associated with ethambutol resistance in
human isolates of Mycobacterium tuberculosis.
Antimicrob Agents Chemother 44:326–336

23. Bhatt JD, Chudasama CJ, Patel KD (2015)
Pyrazole clubbed triazolo [1, 5-α] pyrimidine
hybrids as an anti-tubercular agent: synthesis,
in vitro screening and molecular docking
study. Bioorg Med Chem 23(24):7711–7716

24. Berman HM, Westbrook J, Feng Z,
Gilliland G, Bhat TN, Weissig H, Shindyalov
IN, Bourne PE (2000) The protein data bank.
Nucleic Acids Res 28:235–242

25. Lou Z, Zhang X (2010) Protein targets for
structure-based antiMycobacterium tuberculo-
sis drug discovery. Protein Cell 1(5):435–442

26. Chetty S, Ramesh M, Pillay AS, Soliman MES
(2017) Recent advancements in the develop-
ment of anti-tuberculosis drugs. Bioorg Med
Chem Lett 27(3):370–386

27. Yuriev E, Agostino M, Ramsland PA (2011)
Challenges and advances in computational
docking: 2009 in review. J Mol Recognit 24
(2):149–164

28. Cole ST, Brosch R, Parkhill J, Garnier T,
Churcher C, Harris D, Gordon SV,
Eiglmeier K, Gas S, Barry CE, Tekaia F,
Badcock K, Basham D, Brown D,
Chillingworth T, Connor R, Davies R,
Devlin K, Feltwell T, Gentles S, Hamlin N,
Holroyd S, Hornsby T, Jagels K, Krogh A,
McLean J, Moule S, Murphy L, Oliver K,
Osborne J, Quail MA, Rajandream MA,
Rogers J, Rutter S, Seeger K, Skelton J,
Squares R, Squares S, Sulston JE, Taylor K,
Whitehead S, Barrell BG (1998) Deciphering
the biology of Mycobacterium tuberculosis
from the complete genome sequence. Nature
393(6685):537–544

29. Ananthan S, Faaleolea ER, Goldman RC,
Hobrath JV, Kwong CD, Laughon BE, Mad-
dry JA, Mehta A, Rasmussen L, Reynolds RC,
Secrist JA, Shindo N, Showe DN, Sosa MI,
Sunling WJ, White EL (2009) High-
throughput screening for inhibitors of

Mycobacterium tuberculosis H37Rv. Tubercu-
losis 89:335–353

30. Foo CSY, Lechartier B, Kolly GS, Röttger SB,
Neres J, Rybniker J, Lupien A, Sala C, Piton J,
Cole ST (2016) Characterization of DprE1-
mediated benzothiazinone resistance in Myco-
bacterium tuberculosis. Antimicrob Agents
Chemother 60(11):6451–6459

31. New Drugs TB. https://www.newtbdrugs.
org/pipeline/compounds. Accessed 15 Sept
2017

32. Mikusova K, Huang H, Yagi T, Holsters M,
Vereecke D, Haeze WD, SchermanMS, Bren-
nan PJ, Mcneil MR, Crick DC (2005) Deca-
prenylphosphoryl arabinofuranose, the donor
of the D-arabinofuranosyl residues of Myco-
bacterial arabinan, is formed via a two-step
epimerization of decaprenylphosphoryl
ribose. J Bacteriol 187(23):8020–8025

33. Batt SM, Jabeen T, Bhowruth V, Quill L,
Lund PA, Eggeling L, Alderwick LJ,
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62. Gavalda S, Léger M, van der Rest B, Stella A,
Bardou F, Montrozier H, Chalut C, Burlet-
Schiltz O, Marrakchi H, Daffé M, Quémard A
(2009) The Pks13/FadD32 crosstalk for the
biosynthesis of mycolic acids in Mycobacte-
rium tuberculosis. J Biol Chem
284:19255–19264

63. Maier T, Jenni S, Ban N (2006) Architecture
of mammalian fatty acid synthase at 4.5 Å
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Biol 311(1):87–100

117. Shmalenyuk ER, Kochetkov SN, Alexandrova
LA (2013) Novel inhibitors ofMycobacterium
tuberculosis growth based on modified pyrim-
idine nucleosides and their analogues. Russ
Chem Rev 82(9):896–915

118. Shukla H, Kumar V, Singh AK, Singh N,
Kashif M, Siddiqi MI, Krishnan MY, Akhtar
MS (2015) Insight into the structural flexibil-
ity and function ofMycobacterium tuberculosis
isocitrate lyase. Biochimie 110:73–80

119. Bhusal RP, Bashiri G, Kwai BXC, Sperry J,
Leung IKH (2017) Targeting isocitrate lyase
for the treatment of latent tuberculosis. Drug
Discov Today 22(7):1008–1016

120. Cheah HL, Lim V, Sandai D (2014) Inhibi-
tors of the Glyoxylate cycle enzime ICL1 in
Candida albicans for potential use as antifun-
gal agents. PLoS One 9(4):95951–95959

121. Fleischmann RD, Alland D, Eisen JA,
Carpenter L, White O, Peterson J, DeBoy R,
Dodson R, Gwinn M, Haft D, Hickey E,
Kolonay JF, Nelson WC, Umayam LA,
Ermolaeva M, Salzberg SL, Delcher A,
Utterback T, Weidman J, Khouri H, Gill J,
Mikula A, Bishai W, Jacobs WR, Venter JC,
Fraser CM (2002) Whole-genome compari-
son of Mycobacterium tuberculosis clinical
and laboratory strains. J Bacteriol 184
(19):5479–5490

122. Bentrup KHZ, Miczak A, Swenson DL, Rus-
sell DG (1999) Characterization of activity
and expression of Isocitrate Lyase inMycobac-
terium avium andMycobacterium tuberculosis.
J Bacteriol 181(23):7161–7167

123. Odell LR, Nilsson MT, Gising J,
Lagerlund O, Muthas D, Nordqvist A,
Karlen A, Larhed M (2009) Functionalized
3-amino-imidazo [1, 2-α] pyridines: a novel
class of drug-like Mycobacterium tuberculosis
glutamine synthetase inhibitors. Bioorg Med
Chem Lett 19(16):4790–4793

Molecular Docking Studies in Multitarget Antitubercular Drug Discovery 149



124. Yuan J, Doucette CD, Fowler WU, Feng XJ,
Piazza M, Wingreen HNS, Rabinowitz JD
(2009) Metabolomics-driven quantitative
analysis of ammonia assimilation in E. coli.
Mol Syst Biol 5:302–318

125. Harth G, Clemens DL, Horwitz MA (1994)
Glutamine synthetase of Mycobacterium
tuberculosis: extracellular release and charac-
terization of its enzymatic activity. Proc Natl
Acad Sci U S A 91(20):9342–9346

126. Tullius MV, Harth G, Horwitz MA (2003)
Glutamine synthetase GlnA1 is essential for
growth of Mycobacterium tuberculosis in
human THP-1 macrophages and Guinea
pigs. Infect Immun 71(7):3927–3936

127. Tullius MV, Harth G, Horwitz MA (2001)
High extracellular levels of Mycobacterium
tuberculosis glutamine synthetase and super-
oxide dismutase in actively growing cultures
are due to high expression and extracellular
stability rather than to a protein-specific
export mechanism. Infect Immun 69
(10):6348–6363

128. Herrmann KM, Weaver LM (1999) The shi-
kimate pathway. Annu Rev Plant Biol 50
(1):473–503

129. Meibom KL, Charbit A (2010) Francisella
tularensis metabolism and its relation to viru-
lence. Front Microbiol 1:140–153

130. Roberts F, Roberts CW, Johnson JJ, Kyle DE,
Krell T, Coggins JR, Coombs GH, Milhous
WK, Tzipori S, Ferguson DJ, Chakrabarti D,
McLeod R (1998) Evidence for the shikimate
pathway in apicomplexan parasites. Nature
393(6687):801–805

131. Ducati RG, Basso LA, Santos DS (2007)
Mycobacterial shikimate pathway enzymes as
targets for drug design. Curr Drug Targets
8:423–435

132. Hartmann MD, Bourenkov GP,
Oberschall A, Strizhov N, Bartunik HD
(2006) Mechanism of phosphoryl transfer
catalyzed by shikimate kinase fromMycobacte-
rium tuberculosis. J Mol Biol 364(3):411–423

133. Pallen MJ (2002) The ESAT-6/WXG100
superfamily – and a new Grampositive secre-
tion system? Trends Microbiol 10:209–212

134. Brodin P, Jonge MI, Majlessi L, Leclerc C,
Nilges M, Cole ST, Brosch R (2005) Func-
tional analysis of early secreted antigenic
target-6, the dominant T-cell antigen ofMyco-
bacterium tuberculosis, reveals key residues
involved in secretion, complex formation, vir-
ulence, and immunogenicity. J Biol Chem
280(40):33953–33959

135. Renshaw PS, Lightbody KL, Veverka V, Mus-
kett FW, Kelly G, Frenkiel TA, Gordon SV,

Hewinson RG, Burke B, Norman J, William-
son RA, Carr MD (2005) Structure and func-
tion of the complex formed by the
tuberculosis virulence factors CFP-10 and
ESAT-6. EMBO J 24:2491–2498

136. Guinn KM, Hickey MJ, Mathur SK, Zakel
KL, Grotzke JE, Lewinsohn DM, Smith S,
Sherman DR (2004) Individual RD1-region
genes are required for export of ESAT-6/
CFP-10 and for virulence of Mycobacterium
tuberculosis. Mol Micobiol 51(2):359–370

137. Renshaw PS, Veverka V, Kelly G, Frenkiel TA,
Williamson RA, Gordon SV, Hewinson RG,
Carr MD (2004) Letter to the editor:
Sequence-specific assignment and secondary
structure determination of the 195-residue
complex formed by the Mycobacterium tuber-
culosis proteins CFP-10 and ESAT-6. J Bio-
mol NMR 30:225–226

138. Meher AK, Bal NC, Chary KV, Arora A
(2006) Mycobacterium tuberculosis H37Rv
ESAT-6-CFP-10 complex formation confers
thermodynamic and biochemical stability.
FEBS J 273(7):1445–1462

139. Berthet FX, Rasmussen PB, Rosenkrands I,
Andersen P, Gicquel B (1998) A Mycobacte-
rium tuberculosis operon encoding ESAT6
and a novel low-molecular-mass culture fil-
trate protein (CFP-10). Microbiology 144
(11):3195–3203

140. Wards BJ, De Lisle GW, Collins DM (2000)
An ESAT-6 knockout mutant of Mycobacte-
rium bovis produced by homologous recom-
bination will contribute to the development
of a live tuberculosis vaccine. Tuber Lung Dis
80(5):185–189

141. Nollmann M, Crisona NJ, Arimondo PB
(2007) Thirty years of Escherichia coli DNA
gyrase: from in vivo function to single mole-
cule mechanism. Biochimie 89:490–499

142. Bates AD, Maxwell A (2007) Energy cou-
pling in type II topoisomerases: why do they
hydrolyze ATP? Biochemistry 46:7929–7941

143. Stanger FV, Dehio C, Schirmer T (2014)
Structure of the N-terminal Gyrase B frag-
ment in complex with ADPPi reveals rigid-
body motion induced by ATP hydrolysis.
PLoS One 9(9):107289–107302

144. Champoux JJ (2001) DNA topoisomerases:
structure, function, and mechanism. Annu
Rev Biochem 70:369–413

145. Chopra S, Matsuyama K, Tran T, Malerich JP,
Wan B, Franzblau SG, Lun S, Guo H, Maiga
MC, Bishai WR, Madrid PB (2012) Evalua-
tion of gyrase B as a drug target in Mycobacte-
rium tuberculosis. J Antimicrob Chemother
67(2):415–421
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Abstract

Neurodegenerative diseases (ND), a major worldwide health problem, present a multifactorial nature. This
implies that a multitargeted therapy approach can be considered more effective in such cases when
comparing with “one drug-one target” based therapies. Multitarget drugs interact simultaneously with
two or more therapeutic targets, thus acting synergistically to improve the disease conditions. This chapter
discusses the recent advances in chemometric techniques in multitarget anti-ND drug design. After a brief
introduction to the most relevant pathophysiological aspects of some common neurodegenerative diseases,
it analyses not only pathophysiology versus therapeutic targets but also conventional versus novel chemo-
metric techniques within such context. The emergence of novel and various chemometric techniques
undoubtedly contributed to the design of multitarget-directed ligands (MTDLs) over the last decade,
laying emphasis on the sound prospective for future therapeutics regarding diseases such as Alzheimer’s and
Parkinson’s disease.

Keywords Chemometrics, Multitarget-directed ligands (MTDLs), Multitargeted therapies, Neuro-
degenerative diseases, QSAR

1 Introduction

The wide spectrum of neurological disorders, characterized by grad-
ual loss of neuronal integrity and functions until neuronal demise,
encompasses the neurodegenerative disorders (NDs), such as Alz-
heimer’s disease (AD), Parkinson’s disease (PD), or Huntington’s
disease (HD), whose several symptoms include cognitive decline,
dementia or even breathing problems, and loss of motor functions,
compromising life itself as well as its quality [1–3]. Further, as the
human life expectancies have increased, and at the same time neuro-
degeneration has become more common as age progresses, NDs are
increasing their incidences in alarming proportions. In fact, in 2016,
the World Health Organization (WHO) estimated that 47.5 million
people are suffering from dementia worldwide and this number is
expected to increase to around 75 million by 2030 and 135 million
by 2050 [4–6].
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Current therapies of NDs are based on symptomatic treatments,
i.e., relief from symptoms, and, as such, there is an emerging and
urgent need for the development of new ND therapeutics [7].
Recent years saw a surge of new therapeutic targets for NDs taking
into account the complex multifactorial etiologies, with the develop-
ment of multitarget-directed ligands (MTDLs) being considered as a
promising strategy to achieve therapeutic success [8–13].

Rational drug discovery is a complex, exhaustive, and expensive
process, and computer-aided drug design (CADD)-based techni-
ques are frequently utilized in both industrial and academic plat-
forms to assist the traditional experimental drug discovery [14–17].
Chemometric techniques are frequently used in CADD. Lavine et al.
considered that “A chemometric based approach to scientific prob-
lem solving attempts to explore the implications of data so that hypo-
theses, i.e., models of the data, are developed with greater awareness
of reality” [18–20]. Chemometrics itself presents branches andmeth-
odologies which are frequently used in drug design, such as chemical
database storage and recovery, quantitative structure-activity relation-
ships (QSAR), or virtual screening [18, 21].

In this chapter, focus is made on the recent development of
chemometric modeling approaches for the design ofMTDLs against
different NDs, without overlooking the neurodegeneration context
and the most interesting issues regarding the subject, either consid-
ering a health sciences or computational point of views. The chapter
comprises the following main themes: (1) pathological characteris-
tics of and currently available treatment options for commonNDs, as
presented in Subheading 2; (2) multitarget drugs for NDs, dealt
with in Subheading 3; (3) chemometric methods in polypharmacol-
ogy, discussed in Subheading 4; and (4) chemometric modeling
approaches for design of anti-ND MTDLs, in Subheading 5, which
presents the state-of-the-art analysis of the main subject of the
chapter. A final section, Subheading 6, presents the future directions
of the research in this area and some important conclusions. It
should be noted that themes (1), (2), and (3) provide the necessary
background for understanding not only the current state of in silico
methods in NDs and MTDLs context but chemometrics in general,
while the theme (4) represents the core of the discussion.

2 Pathological Characteristics and Current Available Treatment Options
for Common NDs

In order to fully grasp the intention and scope of application of the
chemometric techniques and models presented in this chapter, a
brief introduction to the main pathologic features and a summar-
ized survey to the current available treatments for common NDs
are made in this section. It should be noted that several NDs share
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common pathologic features, such as the loss of neuronal cells or
the deposition and spread of pathogenic misfolded protein aggre-
gates, the latter due to spontaneous or inherited mutations and a
main causative factor in neurodegeneration cases [22, 23].

In Table 1, the main pathologic factors for common NDs are
displayed. In the first row is presented Alzheimer’s disease (AD),
which is reported as the sixth leading cause of death in the United
States and related to progressive deterioration of cognition, memory,
and executive task and speech performance, affecting not only approx-
imately 44 million people worldwide but also presenting 70% death
rate increase over the past decade [24, 25]. Among its pathological
characteristics, there are depositions of extracellular plaques due to
β-amyloid peptide formation, derived from the cleavage of the amy-
loid precursor protein (APP), and intracellular neurofibrillary tangles
caused by the hyper phosphorylated amyloid tau protein formation in
the central nervous system (CNS) [26, 27]. Also interestingly, some
studies demonstrated the relation between generic mutations and
onsets of familial forms of ADs [28, 29].

Sharing an association with genemutation with ADs, the second
row presents main pathologic aspects of Parkinson’s disease (PD).

Table 1
Common neurodegenerative diseases and main pathologic features

Neurodegenerative
disease Pathologic features

Alzheimer’s disease (AD) l Neuron loss
– Most affected brain regions: (1) cortex, (2) hippocampus, (3) basal
forebrain, and (4) brain stem

l Depositions of extracellular plaques
– Cause: β-amyloid peptide formation

l Intracellular neurofibrillary tangles
– Cause: hyper phosphorylated amyloid tau protein formation in the CNS

Parkinson’s disease (PD) l Neuron loss
– Most affected regions: (1) substantial nigra, (2) cortex, (3) locus
ceruleus, and (4) raphe nuclei

l Most common cause: mutations in LRRK2 and parkin

Huntington’s disease
(HD)

l Cause: elongation of trinucleotide CAG on the short arm of chromosome
4p16.3 in the Huntingtin gene (HD or IT15 gene)

Amyotrophic lateral
sclerosis (ALS)

l Most common cause: mutation of the gene encoding the SOD
l Pathogenesis factors: (1) glutamate excitotoxicity, (2) mitochondrial

abnormalities, (3) impaired axonal structure, and (4) free radical-mediated
oxidative stress

Prion disease (PD) l Cause: mutations in prion gene
– Conformationally modified prion protein damages the neuronal cells of
cortex, thalamus, brain stem, and cerebellum of mammalian CNS

l Can be transmitted through infected brain tissue, or surgical tools
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In fact, alongside with the formation of Lewi bodies, i.e., cytoplasmic
aggregates formed by α-synuclein, in the midbrain and other mono-
aminergic neurons in the brain stem and consequent effects, reces-
sive PDs can also be caused by mutations in the genes encoding
parkin, DJ-1, or PINK1 [26, 30–33].

The fatal Huntington’s disease (HD) is caused by the elongation
and repetition on the short arm of chromosome 4p16.3 in the Hun-
tingtin gene (HD or IT15 gene) of the trinucleotide CAG, a building
stone of DNA, resulting in Huntingtin proteins with elongated poly-
glutamine stretches and a symptomology of irregular/involuntary
muscular movements, cognitive decline, psychiatric disturbances, and
dementia [34, 35]. HD is considered to be spread when polygluta-
mine stretches exceed the critical length of 37 glutamine units [36].

Another progressive fatal ND is amyotrophic lateral sclerosis
(ALS), although unlike the previous cases, it does not present cog-
nitive impairment on its symptoms [37]. The most common cause
of ALS is a mutation of the gene encoding the superoxide dismu-
tase (SOD), an enzyme that reduces superoxides formed during
cellular metabolism [38]. To conclude the common NDs discussed
in this section, we also mention prion disease (PD), characterized
by conformationally modified prion protein damaging the neuronal
cells [39]. Further, mutations in prion gene can cause a specific group
of ND diseases, such as kuru, Creutzfeldt-Jakob disease (CJD),
Gerstmann-Straussler-Scheinker (GSS), and fatal familial disorder,
which unlike other NDs can be transmitted through infected brain
tissue or surgical tools [40].

The abovementioned NDs and all the remaining NDs that are
unmentioned in Table 1 have now no absolute cure. The therapies
are solely based on symptomatic relief, aiming at the improvement
on patient life quality, albeit how small and/or enduring. Among
the mentioned NDs, Parkinson’s disease seems to have the most
effective treatment options, which have some measure of signifi-
cance on improving the patient’s motor symptoms, namely, by
promoting dopaminergic functions in the substantia nigra [41].

The prominent status of PD among available therapies in NDs
scenario does not exclude the existence of other interesting and
promising approved therapies, namely, for Alzheimer’s disease. In
fact, the Food and Drug Administration (FDA) approved for AD
acetylcholinesterase (AChE) inhibitors (donepezil, galantamine, and
rivastigmine) and NMDA receptor antagonist memantine, which is
believed to protect neurons from excitotoxicity [42, 43]. It should
be noted that though the β-amyloid and tau proteins are the prime
targets for disease-modifying therapies in AD, at least 100 different
classes of therapeutic agents are now in different phases of clinical
trials for future AD therapy [43, 44].

We briefly mention here that the most successful therapy for ALS
impacting the disease’s progression is the neuroprotective agent rilu-
zole, which extends the life span of patients by a few months, while
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the tetrabenazine is the only FDA-approved drug for the treatment
of HD-related chorea, though drugs such as amantadine (dopamine
agonist) and riluzole are also used in different cases [45, 46].

3 Multitarget Drugs for NDs

Though the typical drug design “one molecule-one target” strategy,
i.e., the development of small molecules capable of modulating the
function of a disease-responsible single biological target, is account-
able for several successful drug discoveries, it may not deliver satis-
factory outcomes in NDs, and this is due to the multifactorial
pathological nature of these diseases [12, 47]. As an example, the
drug impact on a particular biological target can be nullified due to
emergence of alternative biological pathways [12, 48]. This situation
may be resolved by polypharmacology-based research, and two of
the most frequently followed polypharmacological approaches are
(a) multiple-medication therapy (MMT), where different formula-
tions containing more than one drugs are prescribed in the same
time, and (b) multiple-drug medication (MDM), in which the same
formulation contains multiple drugs acting in different mechanisms.

A third proposed polypharmacological approach is based on the
concept of multitarget-directed ligands (MTDL) [49, 50]. In this
strategy, a single drug is aimed at interacting with multiple biological
targets, associated in a specific disease, in order to promote synergistic
therapeutic response. The MTDL has several advantages over MMT
and MDM, such as ease of administration and formulation develop-
ment as well as higher patient compliance [51–53]. Though there are
many different terminologies in literature, the term multitarget-
directed ligand (MTDL) is used in this chapter and henceforth
when in context of NDs chemometric methods. Although the design
of MTDL is comparatively simpler for the structurally homologous
proteins, the development of MTDL is undoubtedly more challeng-
ing than single-target drugs due to increased risk of toxicity and poor
pharmacokinetic profiles [50]. Furthermore, target proteins of NDs
are polygenic and diverse in nature. It also poses a significant chal-
lenge to develop MTDLs for the treatment of NDs [54, 55]. Never-
theless, there are promising cases, such as the AD treatments with a
dual orexin receptor antagonist suvorexant (MK-4305) or the dual
cholinesterase-monoamine oxidase B (ChE-MAOB) inhibitor (anti-
AD agent ladostigil), and also in the PD treatment, the dual adeno-
sine A2A/MAOB inhibitor has possibilities in AD treatment, while
another promising MTDL memoquin shows free-radical scavenging
action, inhibition of AChE activity, as well as inhibition of Aβ aggre-
gation [44, 55–57].
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4 Chemometric Methods in Polypharmacology

As previously stated (vide Subheading 1) and in accordance to the
International Chemometric Society (ICS), the MTDLmethods led
to the popular chemoinformatic approaches for large-scale efficient
computational screening within the scope of recognition of new
ligand-protein interactions [21, 58, 59]. Focusing further on the
analysis of these methods, we can divide them broadly into two
areas: (a) ligand-based drug design (LBDD) and (b) structure-based
drug design (SBDD).

LBDD is based on the chemical, structural, and functional
knowledge of the ligands interacting with the target of interest.
Different quantitative structure-activity relationship (QSAR)-based
approaches as well as ligand-based pharmacophore mapping are
examples of LBDD approaches. On the other hand, SBDD relies
on the three-dimensional structures of the biomolecular targets
obtained through X-ray crystallography or nuclear magnetic reso-
nance (NMR) or homology models. As such, structure-based phar-
macophore mapping, molecular docking, and molecular dynamics
(MD) simulations are examples of some frequently used SBDD
techniques. Combined LBDD and SBDD approaches may improve
the overall reliability of computational predictions [17, 60].

Several chemometric techniques in the following subheadings
are presented (i.e., Subheadings 4.1 Conventional 2D-QSAR and
3D-QSAR, 4.2Multitarget QSARmodeling, 4.3 Similarity searches,
4.4 Pharmacophore mapping approaches, 4.5 Structure-based ana-
lyses, and 4.6 Chemical databases and web-based biological target
searching tools).

Virtual screening (VS) is a computational strategy that identi-
fies the chemical molecules expected to interact with a specific bio-
logical target. The chemicals are generally retrieved from large diverse
chemical libraries, i.e., databases. A good VS process is expected to
maintain a balance between high screening speed and high accuracy,
especially since its in silico competitors, the structure-based methods
such asmolecular docking, are computationally more time-consuming
[61, 62]. Moreover, in order to reduce the chemical search space,
compounds with poor ADMET profiles or less prospective therapeu-
tically properties may be discarded from the screening databases,
allowing subsequent application of Lipinski’s rule of drug-likeness
and computational ADMETpredictivity methods for screening data-
sets [62, 63].

4.1 Conventional

2D-QSAR and 3D-QSAR

Quantitative structure-activity relationship (QSAR) calculations are
frequently employed to model the biological and physical proper-
ties of the compounds, its purpose being to obtain a well-defined
mathematical relationship between the biological activity and mol-
ecular descriptors, i.e., the descriptive parameters of molecular
chemical or physicochemical properties [19, 64, 65]. As MTDL
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methods are based on compound-specific properties, either chemi-
cal, structural, physicochemical, topological, or biological, and
within the context of general in silico methodologies, it is impor-
tant to define formally a “descriptor.”

In chemometrics, “themolecular descriptor is the final result of a
logic and mathematical procedure which transforms chemical infor-
mation encoded within a symbolic representation of a molecule into
a useful number or the result of some standardized experiment,” i.e.,
it is the mathematical expression of a given compound attribute
formulated in order to be used in an in silico model [66].

As examples of descriptors, we can mention the molar volume,
which is a steric descriptor; the Hammett constant, within the cate-
gory of electronic descriptors; or the energy of highest occupied
molecular orbital, representing a quantum chemical descriptor. In
Table 2 are displayed some of the currently available commercial and
noncommercial software solutions for the calculations of molecular
descriptors.

Following this stage, regression or classification mathematical
models are then derived using different statistical machine learning
tools, such as multiple linear regression (MLR), partial least squares
(PLS), linear discriminant analyses (LDA), support vector machines
(SVM), artificial neural networks (ANN), deep neural networks,
genetic algorithms, random forest (RF), Bayesian modeling, or
others [67, 68].

Table 2
List of some common softwares for descriptor calculation in 2D-QSAR analyses

Software name
Descriptor
numbers Home page

ADAPT 260 http://research.chem.psu.edu/pcjgroup/adapt.html

ADMET Predictor 297 http://www.simulations-plus.com/

ADRIANA 1244 https://www.mn-am.com/software/adrianacode/index.html

CODESSA 1500 http://www.codessa-pro.com/

DRAGON 5270 http://www.talete.mi.it/products/dragon_description.htm

ISIDA FRAGMENTOR NA http://infochim.u-strasbg.fr/spip.php?rubrique49

MARVIN Beans 500 http://www.chemaxon.com/

MOE 300 http://www.chemcomp.com/

MOLCONN-Z 40 http://www.edusoft-lc.com/molconn/

MOLGEN-QSPR 700 http://www.molgen.de/?src¼documents/molgenqspr.html

PaDEL-Descriptor 850 http://padel.nus.edu.sg/software/padeldescriptor/

PowerMV 1000 https://www.niss.org/research/software/powermv

Sarchitect 1050 http://strandls.com/sarchitect/index.html

Advanced Chemometric Modeling Approaches for the Design of Multitarget Drugs. . . 161

http://research.chem.psu.edu/pcjgroup/adapt.html
http://www.simulations-plus.com/
https://www.mn-am.com/software/adrianacode/index.html
http://www.codessa-pro.com/
http://www.talete.mi.it/products/dragon_description.htm
http://infochim.u-strasbg.fr/spip.php?rubrique49
http://www.chemaxon.com
http://www.chemcomp.com
http://www.edusoft-lc.com/molconn
http://www.molgen.de/?src=documents/molgenqspr.html
http://www.molgen.de/?src=documents/molgenqspr.html
http://padel.nus.edu.sg/software/padeldescriptor
https://www.niss.org/research/software/powermv
http://strandls.com/sarchitect/index.html


It should be noted that the reliability of the QSAR models
depends on the dataset size and diversity, robust feature selection
technique, and validation methods. Therefore, after construction
of the QSAR models, suitable internal and external validation tools
should be applied, respectively, on the training/modeling set and
on the test, validation, or prediction set to justify statistical robust-
ness of the model. Possible internal validation includes the leave-
one-out and leave-many-out cross-validation techniques. Moreover,
all QSARmodel must have a well-defined applicability domain, i.e., a
chemical space under which the prediction is expected to be
reliable [19].

3D-QSAR correlates the biological activities of a set of bioac-
tive target molecules with the non-covalent interactions, and the
results are represented by contour maps displaying favorable and
unfavorable non-covalent interactions surrounding the molecules.
Examples of alignment-dependent 3D-QSAR techniques, where
proper alignment of 3D molecular structures and appropriate tem-
plate structure is mandatory, include comparative molecular field
analysis (CoMFA), comparative molecular similarity indices analysis
(CoMSIA), self-organizing molecular field analysis (SOMFA), k-
nearest neighbor-molecular field analysis (kNN-MFA), topomer
CoMFA, and Open3DQSAR [69–74]. Grid-independent descrip-
tor (GRIND) is an example of an alignment-independent QSAR
technique [75–77].

As far as design of MTDL is concerned, multiple 2D-/3D-
QSAR models may be developed separately based on various data-
sets with different targets of interest, and afterward they may be
recruited separately to screen a whole plethora of chemical libraries.
Compounds with higher predicted activity values in multiple mod-
els may be considered as multipotent virtual hits, and in fact these
may be refined in a posterior phase with other chemometric mod-
eling tools, in order to validate the results [78].

4.2 Multitarget QSAR

Modeling

Another promising QSAR method in multitarget drug design is
multitarget QSAR (mt-QSAR) [79, 80]. While conventional QSAR
modeling depends on only one type of assay conditions and bio-
logical target, mt-QSAR allows incorporation of the assayed com-
pounds against different biological targets in a single dataset. Further,
this incorporation is possible for several assay conditions, such as
information, target mapping, level of curation, or reliability of the
assay [79]. The mt-QSAR approaches therefore expand both the
chemical-biological spaces and the applicability domain of the chemo-
metric models, and a schematic presentation of mt-QSAR approach
is depicted in Fig. 1 [80].

In particular, input descriptors are modified based on the char-
acteristics of the individual system. One example of such modifica-
tion is the moving average approach (MAA) [81]. The following
equation illustrates the MAA applied for the creation of new
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molecular descriptors [ΔDi(cj)] from originally calculated descrip-
tors (Di).

ΔDi cj
� � ¼ Di �Di cj

� �
avg

The essential element cj defines various experimental condi-
tions (me, bt, ai, etc.), andDi(cj)avg characterizes average descriptor
values calculated for the active compounds in each set tested under
the same experimental condition (cj) (vide Fig. 1).

Furthermore, not only different machine learning tools such as
LDA, ANN, or SVM are applied to develop the classification mod-
els, but a recent proposal for a regression-based mt-QSAR provides
a context for the development of regression models alongside a
novel modular neural network technique [80, 82]. The capability
of mt-QSAR for simultaneous prediction regarding multiple bio-
logical systems, assay parameters, and conditions makes it invalu-
able as a highly efficient tool for multitarget drug design [81–84].

Fig. 1 Schematic presentation of the mt-QSAR approach

Advanced Chemometric Modeling Approaches for the Design of Multitarget Drugs. . . 163



4.3 Similarity

Searches

Based on the assumption that structurally similar compounds fre-
quently have similar biological activity and bind with same group of
proteins, chemical similarity search approaches are effective in iden-
tifying alternate targets for existing compounds, and thus they may
assist in both polypharmacology and drug repositioning [85, 86].

Fingerprint-based similarity search is widely used for the target
predictions, and it generally represents the compounds by 2D finger-
prints, whereas the similarity is calculated by similarity indices such as
Tanimoto coefficients (Tc) [87].

Similarity ensemble approach (SEA) is another promising
approach which quantitatively relates receptors to each other on
the basis of the chemical similarity among their ligands [88]. Apart
from structural fingerprints, molecular shape is another important
parameter for measuring similarity among ligands. Finally, shape-
based techniques may identify similarity between structurally unre-
lated compounds, using 3D descriptors presenting shape, chirality,
and charges to compare chemical compounds [85, 89].

4.4 Pharmacophore

Mapping Approaches

Pharmacophores are defined as minimum 3D structural features, or
attributes, required for eliciting biological response, and pharmaco-
phore models are frequently used for the screening of chemical
databases to find potent virtual hits for biological targets. The process
of developing pharmacophores is called pharmacophore mapping,
and examples of important pharmacophores include hydrogen bond
acceptor/donor or aromatic rings [62, 90].

Ligand-based pharmacophores are generated on a set of diverse
compounds active against the same biological target, with the quality
of ligand-based pharmacophores depending on several parameters,
such as the conformation generation techniques, molecular align-
ments, or ligand flexibility, among others [90, 91].

Though structure-based pharmacophores are derived from
receptor-bound conformations of the ligands, apoprotein struc-
tures are also used for pharmacophore mapping, with active pro-
tein amino acid residues as basis for complementary pharmacophores
development.

Pharmacophore mapping may be efficiently used for the devel-
opment of multipotent targets if pharmacophores were developed
on more than one target. Compounds achieving good fit values in
different pharmacophores for different targets (ligand or structure-
based) may be considered as primary virtual hits for MTDL [92].
Examples of some frequently used well-known pharmacophore
mapping tools are provided in Table 3. Also, PharmMapper is a
web-based platform that uses inverse structure-based pharmaco-
phore matching techniques of the query molecules for bio-
macromolecular target prediction in order to understand polyphar-
macological profiles of the chemical structures [93].

164 Amit Kumar Halder et al.



4.5 Structure-Based

Analyses

Frequently used for virtual screening of large chemical databases,
molecular docking is the most popular and frequently used in silico
structure-based tool, helping hypothesizing the bioactive confor-
mation of the ligands through intermolecular interactions between
receptor and ligand. The performance of each docking program
depends as much on the protein and ligand preparation, informa-
tion about the binding site, and conformation generation techni-
ques as on docking algorithms [95, 106, 107]. Different docking
tools may differ on the basis of conformation generation techni-
ques, search algorithms, and scoring functions. Some frequently
used docking tools are provided in Table 4.

Information about the receptor binding sites is vital for structure-
based analysis. In the absence of binding site information, as in the
case of newly reported proteins, blind docking may be performed,
with the grid extended as to cover the whole protein [96]. Addition-
ally, in silico binding site identification tools, such as SiteMap,
FTMAP, fpocket, or others, may help in locating possible enzyme
active sites, doing so through identifying the largest concave protein
pocket possessing hydrophobic, hydrogen bond acceptor and hydro-
gen bond donor sites [117–120].

Since proteins adopt multiple conformational states, only one
docking conformation fails to account for all possible binding states.
Ensemble docking tends to solve this issue by allowing the docking of
the ligands against multiple rigid receptor conformations. Therefore,

Table 3
List of some common ligand- and structure-based pharmacophore mapping and their characteristics

Software Typea Characteristics

GALAHAD [94] L Atom-based alignment and quantitative modeling analyses

ALADDIN [95] L Steric, geometric, substructure-based model, open for academic use

DANTE [96] L Noncommercial, SAR-based modeling technique

DISCO [97] L Concord and Confort based conformation search, clique detection
algorithm-based alignment

E-Pharmacophore [98] S Energy-based feature generation in ligand on protein complex

GASP [99] L Atom-based alignment and genetic algorithm-based analyses

HipHop [100] L Feature-based alignment and quantitative modeling analyses

HypoGen [101] L Feature-based alignment and QSAR

LigandScout [102] S Energy-based feature generation in ligand on protein complex

MOE [103] L Property-based alignment, manual pharmacophore mapping

MPHIL [104] L Atom-based alignment, GA-based analyses with clique detection

PHASE [105] L ConfGen conformational analyses, feature-based alignment, QSAR

aL ligand-based, S structure-based
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conformational ensemble leads to improved virtual screening out-
comes [85, 121].

It is noteworthy that MTDLs often have low-binding affinities
against multiple proteins due to weak interactions, which renders
structure-based design more challenging [122]. Thus, rather than
simply depending on higher docking scores, or fitting values, the
explanations of structure-based tools are dependent on higher dock-
ing scores and pharmacophore fitting values, underlining how impor-
tant is examining dynamic stabilities of the ligand-protein complexes.
Further, long-time molecular dynamics (MD) simulations allow
conformational flexibilities of both proteins and ligands. Since MD
simulation provides both high- and low-populated conformational
states, the overall interpretability of the results is increased [123].

Inverse docking is a comparatively novel technique where a single
ligand is docked against multiple biological targets. On the basis of
ligand-receptor interactions, the targets are ranked. INVDOCK was
the first reported web-based inverse docking program that selects
potential protein targets based on competitive binding analysis and
ligand-protein interaction energy [124]. Two other web-based inverse
docking tools are idTarget and TarFisDock [125, 126].

In addition, binding site similarity-based search, grounded on
the assumption that structurally similar proteins interact with struc-
turally similar compounds, is frequently used for the target predic-
tion and may contribute in the development of multitarget drugs
[127]. IsoMIF Finder and BioGPS27 are two such tools that
implement the fingerprints for ligands and proteins (FLAP) algo-
rithm, which generates pharmacophoric features from GRID mol-
ecular interaction fields (GRID-MIFs), and these pharmacophoric
features are then utilized for searching of find ligand-ligand, ligand-
receptor, and receptor-receptor similarities [127–129].

Table 4
List of some common molecular docking tools and their characteristics

Docking program Characteristics

AutoDock [108] Genetic algorithm (GA)-based search, free energy-based scoring

Dock [109] Anchor-and-Grow-based docking program, GA-/MC-based search

FlexX [110] Incremental reconstruction search, modified Bohm’s scoring

FRED [111] Exhaustive search, Gaussian scoring function

GLIDE [112] Hybrid exhaustive search-based docking program, GlideScore scoring

GOLD [113] GA-based search and Goldscore, ChemScore, ASP, and ChemPLP scoring

LigandFit [114] Monte Carlo (MC)-based search, LigScore, PLP, PMF scoring

Surflex [115] Incremental reconstruction search, idealized active site ligand, Bohm’s scoring

VLifeDock [116] GA-based search, PLP score, Xcscore
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4.6 Chemical

Databases and

Web-Based Biological

Target Searching Tools

Chemometrics and its feasibility and success for polypharmacology-
based research depend considerably on the availability of chemical
and biological data. For this reason, computational chemists rely on
different web-based databases for fast and focused collections of
data and information. Some examples of such databases include
chemogenomic, drug target, toxicogenomic, disease-specific target,
pathway analysis, and metabolomic databases, as well as protein data
and information repositories [130–143].

Similar to online chemical databases, different web-based tar-
get fishing tools may provide excellent opportunities for finding
new biological targets for chemical compounds. A list of a few
important and publicly accessible web-based target prediction tools
is provided in Table 5.

5 Chemometric Modeling for Design of Anti-ND MTDLs

In the former section, polypharmacological research via chemometric
methods were reviewed, and the discussion comprised a wide scope
of areas, techniques, and subjects, from conventional 2D/3D-QSAR
to pharmacophore mapping approaches and even web-based bio-
logical target searching tools. In this section, the focus will be an
in-depth analysis on different in silico chemometric techniques within
the specific context of anti-ND MTDLs development.

Table 5
Publicly accessible web-based target prediction tools [127, 129]

Program Similarity method Website

ChemMapper SHAFTS molecular shape fit http://lilab.ecust.edu.cn/chemmapper/

ChemProt Molecular fingerprints http://potentia.cbs.dtu.dk/ChemProt

DRAR-CPI Docking https://cpi.bio-x.cn/drar/

HitPick Molecular fingerprints http://mips.helmholtz-muenchen.de/
proj/hitpick

Polypharmacology
browser

Molecular fingerprints www.gdb.unibe.ch

Similarity ensemble
approach

Molecular fingerprints http://sea.bkslab.org

SuperPred Molecular fingerprints http://prediction.charite.de/index.php

SwissTargetPrediction Fingerprints/electro-shape
descriptors

www.swisstargetprediction.ch

TarFisDock Docking http://www.dddc.ac.cn/tarfisdock/

TargetHunter Molecular fingerprints www.cbligand.org/TargetHunter
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5.1 Design of Anti-

ND MTDLs: 2D-QSAR

and mt-QSAR

Approaches

Though in the last few years were presented several conventional
2D-QSAR models which considered various biological targets of
AD, PD HD, ALS, as well as neuroprotective agents, none of them
were intended for modeling newmultipotent compounds [144–164].
In 2015, Fang et al. attempted building 100 binary classifier models
using two machine learning approaches, Naive Bayesian (NB) and
recursive partitioning (RP), and the workflow of the procedure
adopted by them is outlined in Fig. 2 [78].

In a brief summary, multiple QSAR models were developed
with a large number of compounds collected from Binding Data-
base with biological activity against 25 AD-related targets, and each
molecule was represented by two types of fingerprint descriptors:
(1) ECFP6, a circular topological extended-connectivity finger-
print designed for molecular characterization, similarity search,
and structure-activity modeling, and (2) MACCS, whose finger-
prints are 2D substructure descriptors encoding atoms, atom types,
rings, and bond information about the molecule [135, 165, 166].

The best predictive models were used to evaluate six approved
anti-AD drugs and 19 known anti-AD agents in an attempt to
identify multitarget activity compounds. Subsequent in vitro exper-
imental validation confirmed predictivity of the developed models,
exemplified by the compliance between the in silico prediction and

Fig. 2 The multi-QSAR workflow of the procedure adopted by Fang et al. [78] to identify multitarget
compounds
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the properties of one compound, which exhibited submicromolar
inhibitory and antagonistic potential toward AChE and histamine 3
receptor (H3R), respectively [78]. In conclusion, this investigation
justified how reliable multiple QSAR models are for identifying
multipotent lead molecules.

Another very interesting work was reported by Besnard and
colleagues, presenting the development of multiple category
Laplacian-modified naı̈ve Bayesian models with ECFP6 fingerprints
for 784 biological targets [167]. The investigators started with the
chemical structure of the AChE inhibitor donepezil, aiming at first
to improve activity toward dopaminergic D2 receptor. Secondly,
they intended to ensure good blood-brain barrier (BBB) perme-
ability. After applying classification models, some novel analogues
were synthesized, and all of these showed substantial D2 receptor
affinities in experimental assays. The most potent compound pos-
sessed BBB penetration, although it also showed affinity toward
anti-target α1-adrenergic receptors. Therefore, further investiga-
tion is ensued, aiming to increase selectivity toward D2 receptor
using classification models. This particular work is an important
example to demonstrate how in silico modeling may be used to
tailor multipotent activity, toxicity, and ADME properties of the
compounds [167].

Speck-Planche et al. reported mt-QSARmodeling with a dataset
containing 483 compounds with 1244 cases of inhibitory activity
against at least one of five proteins related to AD, i.e., amyloid β-A4
protein (ABPP), glycogen synthase kinease-3α (GSK3α), GSK3β,
MAOB, and presenilin-1 (PSEN1) [168]. The activities of the com-
pounds were classified into two categorical outputs depending on
specific cutoff IC50 values for each target. Spectral moment topolog-
ical descriptors of different orders, μk, were calculated for each
molecule, as well as the average value of each spectral moment,
avμk, for all active against the same classification variable compounds.
Further, the values obtained from deviations of μk and avμk, dμk,
were also determined, introducing variables characteristics of each
system. Finally, linear discriminant analysis (LDA) was used to
develop a 14 descriptors mt-QSARmodel with accuracies of approx-
imately 95% in both the training and validation sets. The novel
mt-QSARmodel was used for the automatic extraction of fragments
responsible for the inhibitory activity against these five AD-related
proteins [168].

Using a similar mt-QSAR approach, another modeling study was
reported by Luan et al. on neuroprotective agents, considering 2217
compounds with 4915 bioactivity data collected from CHEMBL
database [130, 169, 170]. This highly complex data contained 338
types of biological assays depending on the assay techniques, mea-
surement of effects, and biological targets (protein and cell lines). The
elaboration of the LDA mt-QSAR model used the moving average
technique along with the help of spectral moment descriptors. The
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best model, developed with five descriptors, achieved an accuracy of
89.5% and 89.1% for the training and the validation sets, respectively.
To further understand the practical utility of the work, the neuropro-
tective effects of novel synthesized 1,3-rasagiline derivatives were
evaluated by three different assays, with two compounds showing
considerable neuroprotective activities inmulti-assays. Simultaneously,
the mt-QSAR model was also used to predict the probable responses
of the new compounds in 559 unique tests, which served to confirm
the experimental findings.

A similar strategy was adopted in a neuroprotection-related
investigation, where the development of a mt-QSAR model departed
from a dataset containing 8309 samples with bioactivities toward
more than 20 target proteins [170]. The best model showed more
than 80% overall accuracy. Eight new synthesized rasagiline derivatives
were biologically tested to confirm their neuroprotective actions.
Interestingly, the developed mt-QSAR model predicted that brain
inducible nitric oxide synthase (iNOS) enzyme is the most probable
target for these compounds.

To conclude this subheading, it is worth mentioning another
mt-QSAR modeling work on neuroprotective agents more recently
reported by Romero Duran et al. [171]. In this work, multiple
outcomes for more than 30 measures of neurotoxic/neuroprotec-
tive effects in more than 400 different assay conditions were calcu-
lated, and some 1,2-rasagiline derivatives were synthesized, including
the most active compound of those evidencing a higher predictive
potency against the 5-hydroxytryptamine 3 receptor (5HT3R) [171].

5.2 Design of

Anti-ND MTDLs:

3D-QSAR

Within 3D-QSAR research toward novel anti-NDMTDLs develop-
ment, an interesting case study was on the derivatives of donepezil,
PF9601N, ASS234, and donepezil-pyridyl, which were all investi-
gated in the ND field of research (Fig. 3 presents the structures of
the compounds) [172, 173]. Multipotent ASS234, designed as a
hybrid of AChE inhibitor donepezil andMAOB inhibitor PF9601N,
was found to be a promising multitarget agent with inhibitory
potentials toward MAOA, MAOB, AChE, and butyrylcholinesterase
(BuChE) enzymes. Additionally, it was demonstrated to have anti-
apoptotic and antioxidant properties as well as satisfactory BBB
permeability.

The bioactivity data of different analogues and derivatives of
donepezil, PF9601N, clorgyline, and ASS234 against MAOA,
MAOB, AChE, and BuChE enzymes were separately used by
Bautista-Aguilera and co-workers to develop 3D-QSAR models
using the Pentacle program [172, 174]. These generated 3D-QSAR
models were shown to have a moderate to high internal and external
predictivity, though they also revealed some crucial information
regarding structural requirements of these derivatives [172]. For
example, the essential role of the propargylamine moiety for MAOA

and MAOB inhibition was highlighted.
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Similarly, bulky substituents at p/m-positions of the benzyl
moiety evidenced enhancement of the MAOA inhibitory potential
at the expense of MAOB inhibitory activity. The 3D-QSAR model
also predicted that an electron withdrawing substituent in the
benzyl and piperidinyl moieties might increase AChE inhibiting
activity, whereas the presence of bulky substituent at p-position of
the benzyl moiety could lower BuChE inhibiting activity. The
oxygen bridge formed unfavorable interactions with the benzyl
moiety in both MAO subtypes, whereas this bridge has a positive
influence on ChE subtypes. Therefore, substitution of the oxygen
in the bridge with other atoms indeed could increase both MAOA

and MAOB inhibiting activities [172].
Departing from the structure of ASS234, the same researchers

then designed a new set of donepezil-pyridyl hybrid derivatives
(vide Fig. 3), which were synthesized and biologically evaluated
[173]. They followed the study with 3D-QSAR analysis, performed
with a larger dataset (N ¼ 37), containing these newly synthesized
donepezil-pyridyl derivatives as well as different analogues and
derivatives of donepezil, PF9601N, clorgyline, and ASS234, thus
providing additional information about SAR of these compounds.
It is worth mentioning here that overall statistical predictabilities of

Fig. 3 Structures of donepezil, PF9601N, ASS234, and donepezil-pyridyl derivatives investigated by 3D-QSAR
analysis
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these models were increased, probably due to the expansion of the
dataset size.

The inferences of the 3D-QSAR models are (a) substitution of
the terminal hydrogen of propargylamine moiety with bulky groups
and replacement of the N-Me methyl with hydrogen of the indole
moiety may selectively enhance MAOA inhibiting activity, (b) bulky
groups in m/p-positions of the benzyl moiety may lower MAOA

inhibiting activity, (c) electron donating substituents in the propar-
gylamine or indole moiety and bulky substituents on N-atom of the
indole moiety may selectively increase MAOB inhibition activity,
(d) electron withdrawing bulky groups at m/p-positions of the
benzyl moiety may selectively increase MAOB inhibiting activity,
(e) extension of the N-alkyl bridge could selectively strongly increase
AChE inhibitory potential, and (f) in donepezil-pyridyl hybrids, phe-
nyl substituent in the pyridine ring may selectively increase AChE
inhibiting activity, though substitution at m-position of this phenyl
ring decreases AChE inhibitory activity [173]. These investigations
substantiate that 3D-QSARmodeling may be successfully implemen-
ted for the design of multipotent inhibitors [172, 173].

More recently, Nikolic et al. investigated multitarget ligands
interacting with some important biological targets for the treat-
ment of neurological conditions, including AD and PD [175, 176].
In one of these studies, 35 amino-quinoline derivatives with inhib-
itory data against histamine 3 receptor (H3R) and histamine
N-methyltransferase (HMT) were considered for the alignment-
independent 3D-QSAR analysis, and the generated QSAR models
presented high and moderate statistical predictivity for H3R and
HMT datasets [175]. 3D-QSAR analysis revealed that the presence
of specific lipophilic or steric components is important for H3R
inhibition. Further, hydrogen bond acceptor features were found
in the certain regions of H3R pharmacophore, notwithstanding
that the same regions showed hydrogen bond donor features for
HMT pharmacophore. Moreover, longer optimal distance between
hydrogen bond donor and steric hot spots in the H3R pharmaco-
phore distinguished it from the HMT pharmacophore [175].

In another work, Nikolic et al. resorted to alignment-
independent 3D-QSAR models for tackling the activity against
three different groups of multipotent inhibitors [176]. The first
set of ligands consisted of 17 compounds with MAOA and MAOB

inhibitory activities, while the second group included 67 deriva-
tives with polypharmacology against MAOA, MAOB, AChE, and
BuChE. The final and third group contained multipotent hista-
mine H3R/HMT antagonists. Using the Parzen-Rosenblatt ker-
nel density estimation method, probabilistic models were developed
for both primary targets and off-targets using data collected from the
ChEMBL andDrugBank databases [130, 136]. The cheminformatic-
based target identifications complied with four 3D-QSAR models
developed on H3R, D1R, D2R, and 5HT2AR. Also, in vitro 5HT1A
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and 5HT2A receptor binding assays corroborated these theoretical
predictions. As such, several other multitarget ligands were chosen
for further investigation of their possible additional beneficial phar-
macological activities [176].

5.3 Design of

Anti-ND MTDLs:

Pharmacophore

Mapping

With regard to pharmacophore mapping for the design of novel
anti-ND MTDLs, there are some interesting and worth noting
published works. Huang et al. developed a ligand-based pharma-
cophore with BACE-1 inhibitors. This pharmacophore was used
for screening a chemical library containing N-phenyl-1-arylamide
and N-phenylbenzene sulfonamide derivatives and allowed them to
identify a lead molecule with moderate inhibitory potential against
BACE-1 enzyme (IC50 ¼ 18.33 μM) (vide Fig. 4) [177].

In another investigation, this lead molecule was hypothetically
combined with metal chelator LR-20 to design some hybrid
1,3-diphenylurea derivatives, displayed in Fig. 4 [178]. Screening
of these hypothetical derivatives with the abovementioned BACE-1
pharmacophore model identified some potential virtual hits. Sub-
sequent syntheses and biological assays of these hits yielded multi-
potent BACE-1 inhibitor/metal chelator agents. Though the most
potent derivative showed slightly reduced BACE-1 inhibition
(IC50 ¼ 27.85 μM), its copper and iron chelating properties
made it a promising multitarget lead molecule.

This pharmacophore model was used in other research to
screen a chemical database of quinoxaline derivatives, and some
top hits were subjected to molecular docking into AChE protein
structures to identify some virtual hits with possible multipotent
activities [179]. Syntheses of these hits and their biological analyses

Fig. 4 Design of MTDLs for AChE/BACE-1 inhibition and BACE-1 inhibitor/metal chelator using ligand-based
pharmacophore modeling
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confirmed the inhibitory potency of some of the virtual hits against
both AChE (IC50 ¼ 483 nM) and BACE-1 (46.64% inhibition at
20 μM) (vide Fig. 4).

In 2017, Xie et al. developed a highly predictive ligand-based
pharmacophore model with 41 structurally diverse carbamate deri-
vatives, divided into 25 training and 16 test set molecules. This five-
feature pharmacophore model was subsequently utilized to identify
(�)-meptazinol phenylcarbamate as a potent nanomolarAChE inhib-
itor with anti-amyloidogenic properties [180].

In a recently reported multi-chemometric analysis, Bhayye et al.
developed statistically significant pharmacophore and hologram
QSAR (HQSAR) models with some previously reported dual A2A

antagonists/MAOB inhibitors as anti-PD agents [181]. Pharmaco-
phore mapping revealed the importance of heterocyclic rings,
hydrogen bond-forming polar groups, hydrophobic core residues,
and substitution of the hydrophobic cores. In addition, use of a
fragment-based HQSAR technique allowed to point out important
favorable and unfavorable fragments for higher biological activity
toward A2A antagonism and MAOB inhibition [182]. Therefore,
fragments that lead to positive contributions for both bioactivities
may help in increasing multitarget properties [181].

5.4 Design of

Anti-ND MTDLs:

Structure-Based

Analyses

Molecular docking has been proved as one of the most essential
approaches for the design of the dual-binding AChE inhibitors.
One interesting aspect of AChE enzyme is that it may itself serve as
an excellent target for multifunctional drug development due to
“cholinergic” and “non-cholinergic” roles that are regulated from
two distinct binding sites, catalytic site (CAS) and peripheral ani-
onic site (PAS) of the enzyme, and, in fact, interactions of Aβ at the
PAS of AChE lead to the conformational changes of this peptide that
facilitates its aggregation [183, 184]. Therefore, dual-binding inhi-
bitors which simultaneously interact with both CAS and PAS sites of
AChE are likely to be more effective against AD than compounds
interacting with either of these binding sites [184, 185].

Interestingly, the binding modes of the dual-binding AChE
inhibitors at CAS and PAS sites of the enzyme are frequently ana-
lyzed and monitored to understand the mechanism of action as well
as to modify the lead molecules [178, 186, 187]. As an example, Xie
et al. developed a tacrine-coumarin hybrid molecule, labeled 1 in
Fig. 5, considering both the MAO inhibitory potential of coumarin
and the AChE inhibitory potential of tacrine [188].

Xie et al. also combined the structures of compound 1 and
donepezil to obtain another hybrid molecule (vide 2, Fig. 5), and
the performed molecular docking analysis indicated that compound
1 binds only with the CAS site, whereas compound 2 interacts simul-
taneously with CAS and PAS binding sites of AChE [186]. Therefore,
though compound 2 is less potent than compound 1, the former may
have higher possibility to inhibit Aβ aggregation.
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It should be noted that the application of docking-based analy-
sis is not limited to structural studies of already synthesized multi-
potent molecules, as it may also help identifying novel MTDLs. A
molecular docking-aided investigation reported by Prati et al. dem-
onstrated successful design of multitarget triazinones as BACE-1
and GSK-3β inhibitors [189]. These two enzymes share only 19%
sequence identity and are therefore divergent in nature, and, as
such, finding dual-targeting agents for these two enzymes is chal-
lenging. Guanidine and cyclic amide fragments to target BACE-1
and GSK-3β, respectively, were considered to intuitively design of
4-substituted triazone scaffold. Considering this scaffold as a start-
ing point, different derivatives were docked in these two enzymes
separately to identify the most suitable dual inhibitors. Subsequent
syntheses and biological screening led to identification of one tria-
zone derivative (vide 3, Fig. 5) with well-balanced in vitro potencies
against these two enzymes, which demonstrated neuroprotective
action along with good BBB permeability.

In another recently reported investigation, systematic molecular
docking analyses were performed with thiazolylhydrazone derivatives
at the binding sites of AChE, BuChE, MAOA, and MAOB to identify
multitarget AChE/MAOB inhibitors as anti-PD agents [190]. A com-
mon scaffold, 4-(phenyl)-thiazol-2-ylhydrazone (4, Fig. 6), showed
docking interactions with all these four enzymes. However, docking
orientation of compound 4 also indicated unwanted irreversible
inhibition of MAOs due to covalent binding, and in order to avoid
such interaction, hydrogen atoms of terminal hydrazone were replaced
with methyl groups to produce compound 5 (vide Fig. 6). Addition-
ally, molecular docking recognized possible interactions of the phenyl
groups of these compounds with electron-rich tryptophan aromatic
residues of AChE. Therefore, to promote π-stacking interactions,
nitrophenyl derivatives were taken into considerations (vide 6,
Fig. 6). Subsequent quantum mechanical dihedral energy profile
analysis indicated m-nitro derivatives as most suitable multitarget
agents due to its coplanarity (vide 7, Fig. 6). Multitarget activities
of these compounds were established through syntheses and experi-
mental bioassays, indicating that docking analysis may take vital roles
in taking minor but crucial decision during lead modification.

Similarly, docked structures may be subjected to MD simula-
tion analyses to understand the dynamic behavior of the complex

Fig. 5 Chemical structures of some anti-ND MTDLs investigated by molecular docking analysis
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and the most probable binding patterns of the ligands. Marco-
Contelles et al. synthesized some multipotent tacripyridine deriva-
tives as racemic mixtures, and their biological activities were deter-
mined against human AChE enzyme [191]. Subsequently MD
simulations and binding energy analysis were performed for sepa-
rate enantiomers of the most potent derivative, revealing that the
(R)-enantiomer is the major contributing enantiomer for the anti-
ChE activity.

Inverse docking program InvDock was used to identify possible
targets for icariin, a natural compound isolated from Epimedium
brevicornum [124, 192]. The docking results indicated that the
anti-AD property of this compound may be mainly related to
three factors: attenuation of hyperphosphorylation of tau protein,
regulation of Ca2+ homeostasis, and anti-inflammation.

5.5 Design of

Anti-ND MTDLs:

Web-Based Platform

for Polypharmacology

In this section, we discuss some relevant studies for the design of
anti-NDMTDLs through polypharmacological web-based platform
strategies. Some years ago, Liu et al. developed an AD domain-
specific chemogenomic knowledgebase named AlzPlatform to sup-
port polypharmacology-based drug discovery for AD [193, 194].
The platform assembled 928 AD-related genes, 320 AD-related
proteins, and around 200 compounds that were FDA approved or
entered clinical trial. Furthermore, this platform was generated with
405,188 chemical compounds with 1,023,137 reported bioactivity
data. AlzPlatform is implemented within the molecular database
prototype CBID, a MySQL database, an apache web server, and
the Open Babel chemical toolbox [195–198]. Additionally, this
platform uses Target Hunter program for off-target identification
of chemical structures by molecular fingerprint-based similarity
searches [199].

Alternatively, the HTDocking program is implemented for
docking-based off-target identification of chemical structures [200].

Fig. 6 Stepwise design of multitarget ChE/MAO inhibitors through a molecular docking approach
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This platform also provides BBB predictor program to understand
blood-brain barrier permeation of the compounds [194, 201].

Very recently, AlzhCPI has been introduced as another web-
based platform to predict chemical-protein interaction with the
help of naive Bayesian and recursive partitioning-based mt-QSAR
analyses [202, 203]. This platform was developed based on 204
binary classifiers to predict the chemical-protein interactions for
54 key targets related to AD using the mt-QSAR method. Both
AlzPlatform and AlzhCPI may serve as important web-based plat-
forms for the design of multitarget compounds of AD.

6 Conclusive Remarks and Future Directions

It is estimated that probability of success of a novel CNS molecule
to become a clinical agent is as low as 3%, making the need for
improving the rate of feasibility of development of new CNS drug a
paramount and urgent task [96]. Among different CNS agents,
anti-ND agents are of special significance due to the highly complex
nature of these diseases. Multitarget drug design is one of the best
strategies to cope with these complex multifactorial disorders, and,
as such, several research groups are currently involved in investiga-
tions related to the development of MTDLs for different NDs.

Most of these investigations are focused on a few limited NDs
such as AD and PD, as research on other disorders such as HD or
ALS have rarely been reported. However, biological targets of these
NDs, especially for symptomatic treatments, are often found to be
common, and therefore, a major number of recently reported inves-
tigations related with design of anti-NDMTDLs adopted molecular
hybridization strategies. Nevertheless, alternative rational design
methods including in silico chemometric techniques were proved
to be equally promising.

It is interesting to find that applications of computational
chemometric techniques steadily increased in recent years, indicat-
ing the growing interest among the scientific community to apply
these techniques on multitarget anti-ND agents design.

Proteochemometric modeling (PCM) is a comparatively novel
chemometric method that aims at predicting bioactivity more gen-
erally, by integrating descriptors of both the ligand and protein
target along with cross-term interactions [204]. Despite tremen-
dous potential, proteochemometric modeling has been less utilized
so far in MTDL design. Furthermore, network polypharmacology
may serve as a better option for new targets of multifactorial dis-
eases [205]. In fact, recently, Chen et al. introduced a noncommer-
cial, Internet-accessible database called the Multiple Target Ligand
Database (MTLD) to facilitate the MTDL-based design [206].
Finally, chemometric techniques are not only helpful for the design
of MTDLs, as they are also predicting ADMET profiles of the
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molecules, in order to save considerable time and efforts. Currently
available in silico ADMET models may greatly contribute to the
knowledge of screening approaches in the early stages of drug
discovery and the development process [207].
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Abstract

Secondary plant metabolites represent “privileged structures” in drug development; they frequently
interact with multiple protein targets within the body. For example, the anti-inflammatory natural product
resveratrol from red wine has been shown to be active on over ten targets. Computational methods allow us
to tackle the complexity of plant extracts, which often contain multiple active structures, which are in turn
interacting with multiple targets. Virtual screening-based target fishing with pharmacophore modeling can
help to identify protein targets, and docking simulations can be employed to propose a binding mechanism.
Computational methods also play an important role in the analysis of plant extracts. Dereplication databases
can be used to compare mass spectra of new extracts to a database of literature data to identify already
known natural products. Activity networks of plant constituents help to understand the effect of extracts on
specific pathologies and help to determine the active principles. We provide an overview, over the currently
used computational methods in natural product research.

Keywords Activity networks, Dereplication, Molecular docking, Multi-target inhibitors, Natural
products, Pharmacophore modeling, Polypharmacology, Virtual screening

1 Introduction

1.1 Natural Products

as Multi-target Leads

While plant-based remedies constitute the roots of pharmaceutical
sciences, drug development has largely shifted to explore and opti-
mize synthetic lead structures. For a long time, the “one drug-one
target” paradigm was dominant in pharmaceutical research, side-
lining natural products, because of their unspecific modes of action.
Over the last decade, however, this paradigm is crumbling more
and more, as it turns out that even among successful synthetic
drugs, many actually interact with several proteins aside from the
intended target [1]. These off-target effects, long regarded mainly
as causes for side effects, can actually improve a drug’s efficacy and
pave the way for drug repurposing, where new applications for
known drugs are found. One prominent example of this process is
acetylsalicylic acid (ASS, aspirin), derived from the natural product
salicylic acid. It is commonly used as an analgesic and antipyretic.
The anti-inflammatory properties of ASS are attributed to its irre-
versible inhibition of cyclooxygenases 1 and 2, which blocks
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prostaglandin formation [2]. Over the years, however, ASS has also
been found to interact with multiple other targets, such as 20-
α-hydroxysteroid dehydrogenase [3], 50-AMP-activated protein
kinase [4], and the endothelin-1 receptor [5].

The multi-target approach is also much discussed in cancer
treatment, where multi-kinase oncolytic drugs aim to impede the
development of treatment resistance in cancer cells [6].

With the reinvigorated interest in multi-target drugs, natural
products are once more heading toward the center stage of drug
development. Due to similarities in the genetic and biochemical
makeup of plant and animal life, secondary plant metabolites often
represent so-called privileged structures for interaction with animal
proteins [7]. They frequently feature structural motifs and scaffolds
that evolved as ligand-protein binding pharmacophores [8]. This
also predisposes natural products for interaction with multiple
targets, leading to the complex mechanisms of action that natural
product researchers so often encounter.

A typical representative of compounds displaying substantial
polypharmacological effects is resveratrol, the active constituent
from red wine, which exhibits activity on nuclear factor κB,
cyclooxygenases, 5-lipoxygenase, silent information regulator 2, -
AMP-activated protein kinase, and others [9]. It is likely the com-
bination of all these effects that leads to the well-documented anti-
inflammatory and antiaging properties of resveratrol. Curcumin is
another example of a natural product that is hailed to have positive
effect on a whole range of pathologies and has been shown to be
effective in vitro on so many targets that it fills whole books [10].

Resveratrol and curcumin are particularly thoroughly investi-
gated natural products, but there is a wealth of active natural
products, whose mechanisms of action remain to be elucidated.

The 2015 Nobel Prize was awarded for the discovery of arte-
misinin, a potent natural antimalarial compound, whose mecha-
nism of action is still under investigation and intense discussion.
Recently it has been shown that activation by heme leads to a
cornucopia of interactions with multiple proteins [11].

Libraries of natural product-like compounds are created to
profit from their beneficial mechanism of action while accessing
the optimization potential provided by synthetic chemistry
[12]. Natural products are also a valuable source of inspiration for
fragment-based drug discovery, as their ring systems and functional
groups often display target affinity and are therefore particularly
suited for fragment growth.

The search for multi-target drugs is a constant walk on a tight-
rope, because while it is becoming clear that hitting multiple targets
can be an advantage for a drug, it of course also remains true that
interactions with other targets in the body can also cause side effects.
Aside from creating unwanted effects, a drug’s promiscuity might
also hamper its efficacy [13]. Compounds that show significant
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activity in an in-vitro setting may lose their activity in the organism,
because the compound never reaches the intended targets.

Some combinations of targets are medicinally useful, while
others do not really add any beneficial effect. The search for
so-called master key drugs that bind to a number of targets that
add a desirable effect and avoid off-targets causing adverse effects
[14] is therefore quite challenging and unlikely to be successful by
testing based on trial and error. Computational methods play an
important role in rationalizing the available data and pointing the
search into the right direction.

1.2 Natural Product

Drug Discovery and

Computer Aided

Methods

In the development of synthetic drugs, the starting point is usually
a lead structure discovered to have a specific activity in high-
throughput screening. Natural product research by contrast typi-
cally starts with a plant that is in use for specific pathologies in often
ancient local folk medicine. In the bio-guided fractionation
approach, different extracts of a plant are tested for a specific
biological activity, often not target specific but more general (e.g.,
anti-inflammatory). The active extracts are then further fractio-
nated to enrich the active compounds [15]. The isolation of active
natural products is at the end of this process, and sometimes this
laborious process leads to the re-isolation of active constituents,
which are already known from other plants. For new active natural
products, the molecular targets often remain unknown.

Identifying and isolating individual compounds from these com-
plexmixtures is a time- andmaterial-consuming task. Computational
methods that help to predict constituents with a high likelihood for
activity or that can help to elucidate the molecular targets of natural
products are therefore highly valuable in natural product research.
While experimental tests are usually limited to a small set of targets
that are available for biological tests, virtual screening allows us to
consider a larger space of known targets to get a more complete
picture of a compound’s putative polypharmacology.

Several methods, such as molecular fingerprinting, pharmaco-
phore modeling, and docking, are used to rationalize activities and
to predict likely targets. Chemogenomics aims to comprehensively
chart the associations of all possible ligands with all possible targets
[16]. Dereplication can be used to compare mass spectrometry
(MS) and NMR data from the extracts to databases of known
natural products to focus the fractionation on novel structures
[17]. Molecular networking takes this approach one step further
and connects the structural data from MS and NMR with activity
data from databases, to predict putative targets for the whole
extract [18].

We aim to give an overview over recent applications of compu-
tational methods in natural product research with special regards to
elucidating their polypharmacological profiles.
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2 Computational Methods in Natural Product Drug Development

2.1 Pharmacophore

Modeling

In the search for multi-target inhibitors, pharmacophores can be
used in two fashions [19]. Either the activity on different targets is
related to different parts of the molecule that fit a ligand binding
motif of different targets. On the other hand, two similar binding
sites can possess similar structural requirements that are mapped by
a single molecule; this is likely if two protein targets have the same
natural ligand (Fig. 1).

Collections of pharmacophore models, such as the Pharma DB
(available in Discovery Studio (http://accelrys.com/products/col
laborative-science/biovia-discovery-studio/), the inte:ligand phar-
macophore DB (http://www.inteligand.com/pharmdb/) [20, 21],
a collection of structure-based pharmacophore models available in
the online tool PharmMapper [22, 23], or pharmacophore models
created by individual research groups, can be used for parallel screen-
ing. This allows researchers to predict potential protein targets for
their active compounds.

This approach was successfully applied in natural product research
in several published cases: Rollinger et al. investigated 16 secondary
metabolites isolated from Ruta graveolens, which were screened
against 2208 pharmacophore models. For three targets, acetylcholin-
esterase (AChE), the human rhinovirus (HRV) coat protein, and the
cannabinoid receptor type-2 (CB2), the virtual hits were biologically
tested. The study revealed arborinine as a dual inhibitor of AChE and
HRV coat protein [24].

Leoligin, the major lignan from Leontopodium alpinum, was
predicted by a pharmacophore-based virtual screening to bind to
the cholesteryl ester transfer protein (CETP). This activity was

Fig. 1 (a) Two separate parts of the molecule bind to the two different targets (green and red); in the lock key
analogy, this is represented by a key with different teeth, and (b) the binding motifs for two targets are the
same or overlap represented by a key that fits two locks
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experimentally confirmed [25]. A ligand-based pharmacophore
model for 3-hydroxy-3-methyl-glutaryl-(HMG)-CoA reductase
also predicted leoligin activity that was experimentally confirmed.
Leoligin as a dual CETP and HMG-CoA reductase ligand reduces
LDL cholesterol levels and improves LDL/HDL and LDL/total
cholesterol ratios [26].

Pharmacophore modeling is also used to predict adverse effects
for plants in medical use. For example, natural product human
ether-a-go-go-related gene channel blockers were identified in a
study by Kratz et al. [27].

2.2 Molecular

Docking Simulations

Molecular docking is widely used in natural product research,
predominantly in retrospective to elucidate the mechanism of
action of active plant constituents. In the search for multi-target
ligands, the interaction patterns observed in docking poses can be
compared to each other to find common or complementary bind-
ing features.

The natural product embelin was found to be a potent inhibitor
of 5-lipoxygenase (5-LO) and microsomal prostaglandin E2

synthase-1 (mPGES-1). Binding modes for both enzymes were
suggested in docking simulations [28]. Over the recent years,
several dual inhibitors of 5-LO and mPGES-1 of natural origin
have been discovered [29–31], suggesting that the binding sites
of these two enzymes share several common features.

If the molecular targets are preselected, docking can also be
used to predict potential dual (or multi-target) inhibitors. Park
et al. used this method to predict dual inhibitors of wild-type
stem cell factor receptor (c-KIT) and its most abundant gain-of-
function mutant (D816V). Four dual inhibitors of natural origin
were identified, which were active in the micromolar to submicro-
molar range [32]. This illustrates the value of computational stra-
tegies to anticipate mutations in target proteins.

Analogous to parallel screening, there are also docking tools
available, which propose targets for natural products (this strategy
is sometimes called “reverse molecular docking”) (see Table 1). The
tool Selnergy™ docks compounds into more than 7000 targets and
proposes the most promising hits [33]. The natural coumarin
meranzin was screened against 400 proteins, and the 30 best-fitting
targets were proposed. Out of these, three targets were selected for
experimental validation: COX 1 and 2 and the peroxisome
proliferator-activated receptor γ (PPARγ). Meranzin was shown to
bind to all three selected targets [34].

2.3 Similarity Search

Methods

Several online tools allow users to search for targets based on 2D
and 3D similarity measures, comparing a query molecule to known
ligands. The SwissTargetPrediction webserver compares a query
molecule to a library of 280,000 compounds active on more than
2000 targets of five different organisms [37].
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The SPiDER target prediction software moves away from direct
molecular comparison to a combination of pharmacophore and
physicochemical descriptors, ideally enabling scaffold hopping and
the discovery of novel chemical entities [38]. This is valuable in
natural product research, since active natural products often differ
in their physicochemical properties and structural motifs from syn-
thetic drugs; therefore judging them solely by their similarity to
them often leads to false-negative results (see part 3 on challenges).

This approach was further evolved to the chemically advanced
template search (CATS) [39] and successfully applied to identify a
set of pyrrolopyrazines as multi-target antimalarial agents [40].

In a recently published study by Schneider et al., this ligand-
based target prediction method, based on self-organizing feature
maps, was further refined with the Target Inference GEneratoR
(TIGER) software, which assumes that similar pharmacophore pat-
terns overlap for ligand binding in a specific binding site. Its scoring
function therefore relies on the rank order of isofunctional ligands
in the local neighborhood of the query compound. (�)-Marino-
pyrrole A was identified as a potent glucocorticoid, cholecystoki-
nin, and orexin receptor antagonist with this method [41].

2.4 Machine

Learning

In this approach different descriptors are calculated for the mole-
cules and correlated, e.g., with their activity on a specific target. The
more data so-called neural networks are fed, the more accurately
they can predict activities for novel compounds.

PASS Online provides a tool predicting activities with a Bayesian
neural network based on molecular fragment descriptors [42]. This
approach was successfully used to predict oncolytic activity among

Table 1
Pharmacophore modeling and docking identifying multi-target activities of natural products

Natural products Targets Method Software Reference

400 compounds from African
medicinal plants

Multiple cancer
targets

Pharmacophore
modeling

LigandScout [35]

Arborinine AChE, HRV Pharmacophore
modeling

Discovery Studio/
LigandScout

[24]

Leoligin CTP, HMG, COA
reductase

Pharmacophore
modeling

Discovery Studio/
LigandScout

[25, 26]

Embelin 5-LO, mPGES-1 Docking Gold/Glide [28]

Two compounds from the
InterBioScreen DB

MMP-2, HDAC-6 Pharmacophore
modeling/docking

Discovery Studio [36]

Four compounds from the
InterBioScreen DB

c-KIT and mutant Docking AutoDock [32]

Meranzin PPARγ, COX1/2 Docking Selnergy [34]

Vitamin E metabolites mPGES-1/5-LO Docking Gold [30, 31]
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marine sponge alkaloids. St. John’s wort is known to have an activat-
ing effect on cytochrome P450 (CYP), leading to often undesired
interactions with other drugs. A set of 93 individual constituents of
St. John’s wort were screened for modulation of CYPs in PASS, and
several virtual hits were experimentally confirmed to have a modulat-
ing effect [43].

2.5 Computational

Binding Site

Comparison

Computational binding site comparison is getting renewed attention
as another valuable aid in the search for multi-target inhibitors, allow-
ing researchers to identify proteins that share binding features and
have a high probability of attracting similar ligands. There are several
software tools available to compare binding sites in a geometry-based
approach, e.g., CavBase [44], SiteEngine [45], and TrixP [46]. Lately
also LigandScout (www.inteligand.com) implemented a binding site
analysis tool. Alternatives are descriptor-based tools that assign
fingerprint-like descriptors to the binding sites, such as FLAP [47]
and FuzCav [48]. A comprehensive review on available methods is
given by Ehrt et al. [49]

In a strategy published by Dekker et al., protein structure
similarity clustering was used to select natural products as a starting
point for potential multi-target leads [50]. In one study the
enzymes Cdc25A phosphatase, AChE, 11βHSD1, and 11βHSD2
were clustered and investigated for structural resemblance. The
natural sesterterpene dysidiolide was used as a base for derivatives
active on the multiple targets [51].

2.6 Analysis of

Polypharmacological

Networks

The work with plant extracts confronts researchers with complex
mixtures of many ingredients active on a wide network of targets.
Systems (or network) pharmacology is an emerging concept that is
especially interesting for natural product research, while polyphar-
macology leaves the one drug–one target principle to move on to a
one drug-multiple target approach; systems pharmacology moves
on to the ambitious catchphrase “one treatment-one network”
aiming at target networks instead of isolated targets [52] (Fig. 2).

Several case studies in the last years used the connectivity map
(CMap) data. This CMap relies on the CMap data resource, which
is publicly available from the Broad Institute at MIT and Harvard,
and provides the genome-wide gene expression profiles of over
5000 small molecules [53].

The underlying hypothesis is that cellular signatures represent-
ing systematic perturbation are connected with genetic (protein
function) and pharmacologic (small molecules) perturbagens. Sim-
ilar network signatures represent a connection (e.g., between a
small molecule and its protein target). Researchers can record
gene expression profiles for their samples and compare them to
the database with online tools. CMap data was used in several
instances to elucidate a mechanism of action for natural products.
Pristimerin, a triterpenoid, isolated from Celastrus and Maytenus
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spp., which induces selective myeloma cell apoptosis, was used to
treat cells. Their transcriptional response was compared to the
CMap data, which lead the researchers to several molecular targets.
Pristimerin was shown to inhibit IKK phosphorylation of IκB and
to act as a proteasome inhibitor [54].

Genistein, a major isoflavone from soybean, which is known to
inhibit tumor cell growth [55] was analyzed with CMap. Kibble
et al. extracted the transcriptional response profiles for genistein
from the CMap database and compared them with the online tool
MANTRA [56] to other small molecules. Known targets for mole-
cules close to genistein on the connectivity map included COX
2, which was confirmed experimentally as a target for genistein
and histone deacetylases (HDACs), which was confirmed by litera-
ture data [57].

2.7 De-replication Tackling the problem of the chemical complexity of the biological
matrices in which natural products and their metabolites are found,
bioinformatics is working hand in hand with analytic profiling to
predict the bioactivity potential of extracts. Computer-assisted
dereplication strategies have been developed to avoid the problem
of isolating already known structures over the course of bio-guided
isolation. The spectral data of the extracts can be compared to
databases to quickly identify known chemotypes [58].

Fig. 2 Schematic drug-target connectivity map: the different drugs (green
triangles), in case of NPs often multiple components of the extracts, are
connected to their molecular targets (blue circles), forming an overview over
likely activity patters for a mixture
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The compound activity mapping platform offers the possibility
to predict the identities and modes of actions of bioactive consti-
tuents of complex natural product mixtures directly from primary
screening data [59].

Olivon et al. employed amassive multi-informational molecular
network approach to select extracts from a Euphorbiaceae extract
library and to predict active and non-active metabolites from Boc-
quillonia nervosa and Neoguillauminia cleopatra against the Wnt
signaling pathway and chikungunya virus replication. All data
acquired on chemical (LC-MS, UHPLC-HRMS), biological
(assay data), and taxonomical (comparison with natural product
databases) level was combined to form a multiinformative map,
using an online workflow from Global Natural Products Social
Molecular Networking (GNPS, https://gnps.ucsd.edu) [60].

These valuable data organizing tools aid researches in dealing
with the immense complexity of plant extracts.

3 Notes

3.1 Physicochemical

Differences Between

NPs and Synthetic

Drugs

As we saw in the previously described computational approaches
currently used in natural product research, many of them rely on
training the models with previously known active compounds with
a high affinity for the target protein (see Subheadings 2.1–2.4).
Most of the data found in, e.g., biological activity databases, such
as the ChEMBL [61] mainly refers to synthetic molecules, simply
because there is more activity data available for them. However this
means that most models are trained predominantly with com-
pounds that differ significantly in their physicochemical properties
from natural products [62]. To name just a few general differences,
natural products tend to have a higher molecular weight; they
contain more saturated bonds and are therefore more flexible and
contain also more stereocenters. In addition they have a lower
nitrogen content and a higher oxygen content, and they favor
aliphatic over aromatic rings. It has been shown that natural pro-
ducts cover different areas of the chemical space [63].

A computational filter just based on a simple concept like
Lipinski’s “rule of five” [64] would fail to predict a large portion
of natural product drugs, because they do not share the properties
of the average drug-like compound. But also more complex models
can fail to correctly predict active natural products as hits, if they
were trained exclusively on synthetic compounds. It is therefore key
to consider natural products already in the model generation.

Awareness of the differences between natural products and
synthetic drugs is also advised for similarity-based methods. If
there are no natural products in the reference database, it is less
likely that they will be returned as hits, depending on the search
criteria. For example, an algorithm searching for similar ring
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systems as observed in synthetics drugs will inevitably overlook
complex ring system like they are found in many terpenoids.
When applying machine learning or similarity-based methods to
screen for natural products, it is therefore crucial to inspect suit-
ability of the underlying dataset.

3.2 Natural Products

and PAINS

Since they were first described in 2010 [65], the discussion about
pan assay interference compounds (PAINS) has been ongoing in
the drug development community. The concept of PAINS was
originally conceived by observing the results of a synthetic high-
throughput screening library and finding that there were about 10%
of promiscuous compound classes that occurred as frequent hitters
in the employed biological assays but turned out not to possess a
dose-dependent activity in later experiments and could therefore
not progress to the later stages of drug development. From this
dataset, several structural motifs with a high likelihood of assay
interference were extracted.

Especially for researchers in natural product-based drug devel-
opment, the notion that several very prevalent structural motifs
such as quinones or catechols should be excluded from target-
based drug development was a hard blow. Of course scientists
working in the field were quick to point out all the clinically active
natural products containing these substructures and their immense
pharmaceutical value.

In reaction to this controversy, Baell published a review, focus-
ing on the consequences of PAINS for natural product research
[66]. He stresses that the PAINS philosophy is especially relevant in
hit to lead discovery. Usually compounds with a good activity in a
target-based high-throughput screening are then progressed to
tests in cell-based assays. For PAINS it is often observed that they
lose their activity in the cell-based assay and they are discarded.
Either they were falsely identified as actives, due to interference
with the target-based assay, or they are acting on multiple targets
and have difficulties reaching the intended target in cell-based
environment. However, many natural drugs, which structurally
fall in the PAINS category (such as e.g., curcumin, resveratrol, or
thymoquinone), have been discovered by observing in vivo efficacy
in relatively low doses, not in in vitro assays. This shows that the
PAINS approach is only partly applicable to natural product drug
discovery.

Recently a study showed that PAINS are for the most part
not extraordinarily promiscuous and should not be disregarded
prematurely [67].

There are computational filters available that point out PAINS
compounds to the researcher (http://www.cbligand.org/PAINS/).
While it would be premature to exclude a PAINS compound from
further investigation, by default, it is extremely advisable to check
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them for possible interference with the assay and to be aware of their
potential to give false-positive readouts.

Efforts have also been made to define criteria for problematic
natural products and to provide filter tools for them [68].

4 Future Outlook

Due to evolution nature offers an enormous wealth of compounds,
many of which are multi-target ligands. Many structures and activ-
ities of natural products have yet to be elucidated. Additionally
natural product fragments have a high potential as an inspiration
for multi-target drug discovery and lead optimization [69]. With
every new part in a multicomponent system, the complexity increases
and becomes more difficult to grasp.

Computational methods help to organize, rationalize, and ana-
lyze the sometimes overwhelming amounts of data available and
generated. Activity network maps allow researchers to gain a
glimpse at the bigger picture behind complex mixtures of different
multi-target active natural products.

Filter tools can alert us to potentially harmful structural motifs
and preemptively point out potential assay-interfering compounds.

Target fishing methods can be employed to identify individual
molecular targets of active natural products, and computational
visualization and simulations allow us to investigate the ligand-
target interaction mechanism that underlies the individual activities
of a compound. This also offers a base for rational multi-target
optimization.

Overall, computational methods can be a powerful assistant in
meeting the challenges of leaving the one drug-one target para-
digm behind and opening up for the possibilities and pitfalls of
multi-target drug design.
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Abstract

In the present review, the authors provide the basic background about the molecular targets implicated in
the pathogenesis of Alzheimer’s disease. Furthermore, the authors review structure–activity relationships
(SAR), 2D- and 3D-quantitative structure–activity relationships (QSAR), as well as other computational
modeling studies performed on multitarget agents for Alzheimer’s disease.
The information provided includes chemical structures of multitarget agents and/or of hybrids acting on

several molecular target enzymes implicated in the Alzheimer’s disease pathogenesis and information for
the used computational techniques. This should be useful in the development of new multitarget drugs
with clinical applicability in Alzheimer’s disease.

Keywords Alzheimer’s disease, Docking, Modeling, Multitarget agents, QSAR

1 Introduction

Human brain is a very complex organ and the ion channels endow
the neurons to generate action potentials used to signal other
neurons. Abnormalities in neuroregulation lead to deficit in atten-
tion and learning, and mood disorders. Alzheimer disease (AD) is a
chronic neurodegenerative disorder that slowly destroys neurons
leading to serious cognitive disability [1]. The number of AD
patients will be more than 10.4 million in the America and there
will be an increment in the 80+ segment of the society at an
alarming rate. AD is the progressive neurodegenerative disease of
aging, leading to senile dementia including progressive memory
loss with difficulty in performing daily activities, lack of coordina-
tion, social withdrawal, vision problems, and poor judgment. Phy-
sicians’ therapeutic recommendations include the use of major six
classes of drugs: acetylcholinesterase inhibitors (AChEI), N-
methyl-D-aspartate (NMDA) receptor antagonists, monoamine
oxidase inhibitors (MAOI), antioxidants, metal chelators, and
anti-inflammatory drugs [1].
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Several review papers and book chapters have been written
describing the molecular biology and the pathogenesis of the AD
(Fig. 1) [2–5]. Alzheimer’s disease is a complex neurodegenerative
disorder. So far, the therapeutic paradigm “one-compound-one-
target” has failed to cure the disease. The multitarget-directed
ligand (MTDL) approach has gained increasing attention by
many research groups, for the rational design of new drug candi-
dates, developing a variety of hybrid compounds acting simulta-
neously on diverse biological targets [6]. This review aims to show
some recent advances and examples of the exploitation of the
MTDL approach in the rational design of novel drug candidate
prototypes for the treatment of AD and examples of “one-com-
pound-one-target.”

2 Virtual Screening Approaches

The current scenario of drug discovery has undergone a drastic
change, and the latest pharmaceutical research aims to develop new
therapeutic entities characterized by selectivity and specificity with
the implementations of in silico and “omics” technologies and 2D
and 3D quantum and docking studies. Computational biology

Fig. 1 The pathogenesis of the Alzheimer’s disease
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approaches have proved to be reliable tools for the selection of
novel targets and therapeutic ligands. Molecular docking is a key
tool in drug design and development to propose structural hypoth-
eses of how the ligands bind with the target for lead optimization.

It is a fact nowadays that virtual screening approaches offer a
quicker, broader, and more efficient way to identify bioactive small
molecules than the typical high throughput screening (HTS). Hit
compounds’ results have increased over 1% or more instead the
typical �0.1% rate of HTS [7]. Though being a complex effort,
concerning the amount of data that ought to be analyzed each
time. Currently, besides commercial libraries (i.e., Enamine,
Mcule, ChemBridge, etc.), there are numerous freely obtained
sources of compound libraries that include several millions of
small molecules in different formats like SMILES, CDX, MOL2,
SDF, and much more, as ZINC12 [8, 9] and ZINC15 [10] data-
bases, PubChem database [11], ChemSpider database [12], and
the ChEMBL_23 database [13]. However, the duplication of com-
pound occurrence within these databases cannot be excluded since
they are individual initiatives. This exponential increase on data
availability goes in parallel to the increasing structural data of
proteins being published on the PDB [14]. Today, there are
136,594 structures deposited that can be utilized in virtual screen-
ing processes. Alternatively in the absence of structural data, the
generation of a homology model is needed to follow this approach.
Furthermore, several online tools exist for homology model pro-
duction, presented by the Swiss Institute of Bioinformatics [15].

Generally, the computer-aided drug design pipeline consists of
several steps as presented in Fig. 2.

As mentioned above, the initial library volume may vary to
several millions. Hence, the most important step in the process is
their 2D filtering based on desired properties. During this step,
several filters may be applied as: (1) physicochemical properties
[16, 17], (2) PAINS [18], and (3) structural features [19].

Fig. 2 The computer-aided drug design pipeline
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3 Molecular Known Targets for the Treatment of AD and Active “One-Compound-
One-Target”/Multitarget Agents Against AD

This chapter summarizes the known drug targets of AD, in vivo
active agents against AD, state-of-the-art docking studies done in
AD, and docking studies of multitarget agents with particular
emphasis on AD.

3.1 Acetylocholine

Receptors

One of the consistent findings in brains of AD patients is the
declining level of acetylcholine (ACh), the muscarinic endonative
agonist-mediated cognitive effects by stimulating the postsynaptic
muscarinic M1 receptors in central nervous system. Since musca-
rinic M2 subtype receptor antagonists could increase ACh release
and improve learning ability through its blockade of the presynaptic
M2 autoreceptors in the brain, the development of muscarinic M2
subtype receptor antagonists becomes one of the cholinergic
approaches to AD by improving ACh level [20].

In 2000, Messer et al. [20] continuing their efforts on the
development of muscarinic M1 receptor inhibitors designed biva-
lent analogues (Scheme 1) of xanomeline. The authors utilized
molecular modeling to design the synthesized compounds over a
homology model of the muscarinic M1 receptor as it was previously
described originally fromNordvall andHacksell [21] and replicated
later by Messer et al. [22]. The biological study of the bivalent
xanomeline derivatives indicated a much higher affinity than the
parent compound, towards both M1 and M2 receptors. Although
the mode of activity for these compounds has not been clearly
elucidated, the authors speculate a dual receptor activity over a
kind of a formed dimmer and/or a nearby region of the active site.

Niu and coworkers [23] used a 3D mathematic analytical
method resembling a comparative molecular field analysis
(CoMFA) [24] in combination with quantitative structure–selec-
tivity relationship (QSSR) on both muscarinic subtypes (M2/M1),
in order to design M2 receptor antagonists. Simultaneously, they
worked on a series of piperidinyl piperidine derivatives known as
muscarinic M2 antagonists (Scheme 2) synthesized by Wang et al.
[25]. All the produced models showed high predictive abilities and
statistical significance.

Scheme 1 Synthesized bivalent xanomeline derivatives

206 Sotirios Katsamakas and Dimitra Hadjipavlou-Litina



3.2 Neuronal

Nicotinic Acetylcholine

Receptor

Ongoing clinical trials and preclinical models in nonhuman primates
have validated the neuronal nicotinic acetylcholine receptor
(nAChRs) as promising drug targets for various CNS pathological
conditions including Parkinson’s disease, L-dopa-induced dyskine-
sia, Alzheimer’s disease, addiction, ADHD, schizophrenia, and
major depressive disorders.

nAChRs are transmembrane ligand-gated ion-channel proteins
resulting from the pentameric assembly of 16 human subunit gene
products. The a4b2 nAChRs are believed to represent one of the
most abundant isoforms in mammalian brain. Several isoforms
containing different stoichiometry of a4 and b2 (the high- and
low-sensitivity receptors) in addition to subtypes containing the
a5, or the a6 and b3 have expanded the diversity of the a4b2
targets.

In 2002, Nicolotti et al. [26] reviewed in terms of quantitative
structure–activity relationship (QSAR) and CoMFA, an extensive
and diverse collection of 270 compounds on nAChR (Scheme 3).

Wei and coworkers [27] produced a homology model of a7
nAChR based on the AChBP structure 1I9B [28], and the ligand
binding site was considered to be between the two subunits of the
protein. The docked compounds were GTS-21 and derivatives
(2-OH-GTS21 and 4-OH-GTS-21, Scheme 4). The results of

Scheme 2 The general structure of used piperidinyl piperidine derivatives

Scheme 3 General lead structures of compounds included in the study
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their study were in accordance with the previously reported experi-
mental data.

In 2013, Combo et al. [29] performed a docking analysis on
several diazabicyclic amide analogues (Scheme 5) on a4b2 nAChR,
using a produced homology model based on Aplysia AChBP with
the entry 2BYQ [30]. The researchers through their in silico study
highlighted an alternative binding mode for the molecules, by the
formation of residue interactions from the amine group.

3.3 Monoamine

Oxidases

Monoamine oxidase (MAO) is a flavin adenine dinucleotide
(FAD)-containing enzyme that catalyzes the degradation of bio-
genic and xenobiotic amines. Two isoforms, namely MAO-A and
MAO-B, have been characterized by their amino acid sequence,
tissue distribution, substrate specificity, and inhibitor sensitivity.
These isoforms present structural differences in the binding sites
as revealed by high-resolution X-ray structures.

MAO-A, which preferentially degrades serotonin, adrenaline,
and noradrenaline, is irreversibly inhibited by clorgyline.Monoamine
oxidase B (MAO-B) constitutes one of the key targets for the devel-
opment of new neuroprotective agents in both anti-AD and anti-PD
chemotherapies.MAO-B is responsible for the oxidative deamination

Scheme 4 The chemical structure of GTS-21 and its derivatives

Scheme 5 Diazabicyclic amide analogues
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of phenylethylamine and benzylamine. It is irreversibly inhibited by
(R)-deprenyl (selegiline) (Fig. 3).

In particular, a key structural feature is the replacement of the
pair Phe208/Ile335 in MAO-A by Ile199/Tyr326 in MAO-B,
leading to the distinction between “substrate” and “entrance”
sites in MAO-B [31]. The replacement of Ile180/Asn181 and
Val210 in MAO-A by Leu17/Cys172 and Thr201 in MAO-B are
additional differences in the binding sites, which may modulate the
selective inhibition by certain MAO inhibitors.

The neuroprotection exerted by MAO inhibitors is correlated
also with the prevention of the formation of neurotoxic species,
which may lead to neuronal damage, and from the antiapoptotic
properties of the propargylamine group present in some MAO
inhibitors.

In 2012, Speck-Planche and Kleandrova [32] analyzedMAO-B
inhibitors with diverse structures (i.e., coumarins, chromones, and
flavones derivatives), in terms of 2D QSAR and artificial neuronal
networks (ANNs). Based on the precursor compound rasagiline,
they suggested several new bioisosteres (Scheme 6).

Di Petro et al. [33] reported their research on three generations
of triazole-based compounds (Scheme 7) tested as dual MAO-A
and MAO-B inhibitors. The in vitro results varied from high- to
low-micromolar range, IC50 0.5–553.5 μM for human MAO-A
and 0.6–373.9 μM for human MAO-B. The selectivity index of
the compounds was in favor of MAO-B and therefore the research-
ers docked this series over two MAO-B crystal structures com-
plexed with inhibitor ASS234 (PDB entry 4CRT) [34] and
deprenyl (PDB entry 2BYB) [35], respectively. Tested compounds
exhibited good blood–brain barrier permeation.

Fig. 3 Structure of selegiline

Scheme 6 Chemical structures of the proposed rasagiline bioisosteres
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3.4 Glutaminyl

Cyclase

Glutaminyl cyclase (GC) has been implicated in the formation of
toxic amyloid plaques and thus may participate in the pathogenesis
of Alzheimer’s disease. An in vitro structure�activity relationship
(SAR) study [36] identified several excellent QC inhibitors demon-
strating 5- to 40-fold increases in potency compared to the refer-
ence inhibitor. Potent Aβ-lowering effect was achieved by
incorporating an additional binding region into a previously estab-
lished pharmacophoric model [36], resulting in strong interactions
with the carboxylate group of Glu327 in the GC binding site.

Hoang and coworkers [36] designed a new series of thiourea
compounds (Scheme 8) that potentially act as multifunctional
agents against AD by targeting glutaminyl cyclase and the forma-
tion of Aβ fibrils. Their design strategy included molecular model-
ing over the known crystal structure of human GC with the
ascending number 3PBB [37] over the protein databank. All of
the compounds exhibited activity in the low- to sub-nanomolar
range with values between 0.7 and 41.2 nM. The most active
compound presented optimum activity both in vitro and in vivo,
while significantly inhibited aggregate formation. This activity was
in alignment with docking results of the derivatives for the GC
active site and its interacting regions A-, B-, C-, and D-,
respectively.

3.5 Estrogen

Receptor

Computer-aided modeling analyses were used to investigate the
potential correlation of the molecular mechanisms that conferred
estrogen neuroprotection with estrogen interactions with the

Scheme 8 Glutaminyl cyclase inhibitors

Scheme 7 Designed triazole derivatives
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estrogen receptor (ER). Cultured basal forebrain neurons were
exposed to either β-amyloid or excitotoxic glutamate with or with-
out pretreatment with estrogens followed by neuroprotection ana-
lyses. Three indicators of neuroprotection were used to assess
neuroprotective efficacy, LDH release, intracellular ATP level,
and MTT formazan formation. Results of these analyses indicate
that the estrogens, 17α-estradiol, 17β-estradiol, equilin, 17-
α-dihydroequilin, equilinen, 17α-dihydroequilenin, 17-
β-dihydroequilenin, and Δ8,9-dehydroestrone were each
significantly neuroprotective in reducing neuronal plasma mem-
brane damage induced by glutamate excitotoxicity. 17β-Estradiol
and Δ8,9-dehydroestrone were effective in protecting neurons
against β-amyloid25-35-induced intracellular ATP decline. Coad-
ministration of two from 17β-estradiol, equilin and Δ8,9-dehy-
droestrone, exerted greater neuroprotective efficacy than
individual estrogens.

Zhao et al. [38] studied the potential neuroprotective activity
of estrogen compounds (Scheme 9). Selected estrogens have been
docked by the researchers over the estrogen receptor subunit α
(ERα/PDB entry 1ERE [39]) and were found to be directly cor-
related with their overall biological effects.

Scheme 9 Estrogen compounds studied for their neuroprotective activity
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3.6 DKK1–LRP6

Complex Formation

Wnt signaling is found to contribute to AD pathophysiology when
deregulated, while activation of the pathway is neuroprotective
[40]. According to Hanger and Noble, the kinase activity of
GSK3b is inhibited following the activation of Wnt signaling,
implicating this pathway in the hyperphosphorylation of Tau and
the formation of NFTs (Fig. 4) [41]. Wnt signaling involves the
interaction of Frizzled (FRZ) and LRP5/6 transducing to GSK3b
with a subsequent stabilization of β-catenin, which in turn enters
the nucleus and forms a complex with TCF/LEFs to activate
transcription of target genes [42]. The canonical Wnt pathway is
negatively modulated by the extracellular protein DKK1, which
binds to LRPs inhibiting Wnt by preventing their interaction
with FRZ receptor [43]. DKK1 is a chemokine overexpressed in
brains of AD patients and in AD transgenic mouse models
[44, 45]. Hence, disruption of the LRPs and DKK1 complex
formation could provide a way to regulate Wnt/β-catenin signal-
ing, offering an attractive therapeutic approach for treating AD. In
2010, LRP5–DKK1 interaction has been known to be targeted by
monoclonal antibodies [46].

The last 2 years, Sarli’s group [47, 48] designed and synthe-
sized NCI8642 derivatives (Scheme 10) targeting the interruption
of DKK1/LRP6 complex formation as an alternative approach to
treat AD through the Wnt activated pathway. The docking experi-
ments were performed on the DKK1–LRP6 interface of the avail-
able crystal structure of the complex, entry 3S8V [49]. All the

Fig. 4 The hyperphosphorylation of Tau and the formation of NFT
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derivatives were tested on their ability to inhibit the complex for-
mation with IC50 at the low-micromolar range, similarly or better
to the parent compound NCI8642. Moreover, the compounds
exhibited increased β-catenin expression and reduction of PGJ2
induced tau phosphorylation indicating that Wnt canonical path-
way activation is occurring.

3.7 Secretases Amyloid plaques represent one of the central pathological hall-
marks of AD. Plaques mainly consist of Aβ peptides which are
formed from the proteolysis of APP [50]. APP is located on the
cell membrane as a single pass protein with the N-terminus located
extracellularly, while its C-terminus is located in the cytoplasm.
Several isoforms of APP exist ranging from 695 to 770 amino
acids long. In neurons, the most common isoform is the
695 amino acid APP [51]. Cleavage of APP is performed by secre-
tases α-, β-, and γ-. Among them, α-secretases do not promote the
formation of Aβ, while the other two secretases (β- and γ-) generate
amyloidogenic peptides [52]. β-Secretase cleaving enzyme
1 (BACE1) cleaves APP at a unique site, while γ-secretase cleaves
APP at the C-terminus site at positions 40 and 42 leading to the
formation of Aβ1–40 and Aβ1–42, respectively [53].

Secretase inhibition was a research target from the early twenty-
first century. Thus, Gundersen and coworkers [54] developed a
series of multitargeting compounds over γ-secretase inhibition,
with the use of 3D-mapping simulations over previously reported
inhibitors, combining also prevention of Aβ aggregate formation.
Among the 3D shape similarity search applied, they identified the
molecule that is illustrated in Scheme 11. The reported activity data
suggest that their approach was successful but with no significant
increase in γ-secretase inhibition nor Aβ aggregate formation.

Scheme 10 General structures of synthesized compounds

Scheme 11 Overview of the piperidine-based structure of synthesized
derivatives
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In 2009, Zhu et al. [55] synthesized a series of compounds
bearing a hydroxyethylene framework (Scheme 12) as β-secretase
(BACE-1) inhibitors. In their design, they incorporated docking
experiments using the crystal structure 1TQF [56] that was avail-
able through the PDB and was co-crystallized with a non-peptide
inhibitor. The most active compounds were found fivefold more
active than previous inhibitors [57] with IC50 of 0.010 and
0.031 μmol/L, respectively.

Al-Tel and coworkers [58], in 2010, identified two highly
selective classes of imidazopyridine-based inhibitors (Scheme 13)
for β-secretase (BACE-1 and BACE-2). In their design, they
utilized the available X-ray co-crystallized structure of BACE-1
protein with a small molecule having the entry code 2B8L
[59]. The most active compound displayed an IC50 of 18 nM
inhibition of BACE-1 with high affinity (KI ¼ 17 nM), followed
by an EC50 of 37 nM. Overall, the ligand efficiency value for the
most active compound was 1.7 kJ/mol and it was found 204-fold
more selective for BACE-1 compared to BACE-2.

Recently, Ajmani and coworkers [60] reported a QSAR study
of approximately 233 known γ-secretase inhibitors, drawn from the
ChEMBL database, in order to fill gap of the absence on a crystal
structure for the protein. They used a combination of partial least
squares (PLS) regression and neural networks (NN) to obtain key
descriptors responsible for secretase inhibition.

In the work of Semighini et al. [61], several in silico techniques
such as virtual screening, ADME and ADMET predictions, and
similarity search were incorporated in order to be designed novel
BACE-1 inhibitors. Pharmacophore-based approaches were created

Scheme 13 General structures of imidazopyridine-based compounds

Scheme 12 General structure of studied derivatives with the HE framework
highlighted in green color
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by the combination of crystal structures, with entries 2VJ7 [62],
2VNM [63], 2WF1 [64], 2WF2 [64], 2WF3 [64], 2WF0 [65],
2VNN [13], 2WEZ [65], and 2VIJ [66]. The physicochemical
profiles for all the compounds were performed. The results led to
ten promising candidate compounds (Scheme 14), three of which
were on the low-μM range.

Edraki et al. [67] in 2015 have developed a novel series of
piperazine-based derivatives (Scheme 15) as β-secretase (BACE-1)
inhibitors. The molecular docking was performed in the BACE-1
active site of the 2ZJM crystal structure available on PDB. The
most active compound showed superior protein inhibition at
10 and 40 μM, presumably through the molecule interactions
with residues Asp228 and Thr72 within the active site.

In 2016, Zheng and Wu [68] reviewed all recent progress of
CADD techniques regarding β- and γ-secretase inhibitors develop-
ment. In the same year, Hernandez-Rodriguez et al. [69] studied
extensively the binding mode of four known selective BACE-1
inhibitors (Scheme 16) against BACE-1, BACE-2, and Cathepsin
D due to their high homology. The used crystal structures were
entry 2QP8 [70] for BACE1, entry 2EWY [71] for BACE2, and
entry 1LYW [72] for CTSD, respectively.

Scheme 14 Structures of the identified compounds
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Tarazi et al. [73] identified some potent isophthalic acid deri-
vatives (Scheme 17) as potent β-secretase inhibitors. Crystal struc-
tures employed in docking experiments were withdrawn from the
PDB under the entry codes 1TQF [56], 2B8L [59], 2QZL [74],
and 3EXO [75] for human β-secretase. Most active compounds
exhibited a low-nanomolar range for BACE-1. Moreover, molecu-
lar descriptor values for the compounds were calculated in order to
extract SARs.

3.8 Aβ Fibrils Although the mechanism of small molecules interaction with Aβ
fibrils still remains elusive, Prade et al. [76] in 2015 used PDB
entries 2LMN [77] and 2LMP [77]. Solid-state NMR-obtained
structures of Aβ1–40 were used to study the binding mode of
sulindac sulfide (Scheme 18), suggesting that the tested compound
seems to bind in a specific way.

3.9 Cholinesterases Acetylcholinesterase (AChE, E.C. 3.1.1.7) predominates in the
healthy brain, playing a key role in cholinergic neurotransmission
within the autonomic and somatic nervous system. It is a serine
protease that hydrolyses the carboxylic ester of neurotransmitter

Scheme 16 Studied â-secretase inhibitors

Scheme 15 Piperazine-based derivatives
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acetylcholine (ACh), expressed in nervous tissue, neuromuscular
junctions, plasma, and red blood cells [78–80]. The active site of
the enzyme is located in the bottom of a deep narrow gorge
characterized by several subsites: (1) the anionic site, where the
interaction with ACh occurs, (2) the esteratic site (ES), that con-
tains three residues of the catalytic triad, (3) the oxyanion hole,
(4) the acyl pocket, which confers substrate selectivity, and (5) the
peripheral anionic site (PAS) which is located approximately 15�A
from the CAS [81, 82].

The appearance of AD is accompanied by extensive degenera-
tive changes, resulting in ACh depletion and cholinergic hypofunc-
tion, which contribute to the progressive memory deficit and
cognitive decline. Thus, AChE inhibitors represent a rational
approach in AD pharmacotherapy restoring the synaptic levels
of ACh and thus treating the symptoms caused by cholinergic
imbalance.

Scheme 17 General structures of synthesized compounds

Scheme 18 Chemical structure of sulindac sulfide
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In addition, AChE presents secondary noncholinergic func-
tions attributed to the PAS active site, co-localizing with Aβ depos-
its, and directly promotes Aβ assembly and aggregation into
insoluble plaques [83]. Butyrylcholinesterase (BChE) is considered
to play a minor role in the regulation of synaptic ACh levels.

These two enzymes differ in substrate specificity, kinetics, and
activity in different brain regions. BChE inhibition may also be
considered a valid approach to restore cholinergic function in AD
[83, 84]. However, its role in the regulation of cholinergic trans-
mission in humans is not yet fully understood, and AChE remains
the main target within this hypothesis.

In 1997, Recanatini et al. [85] performed an extensive QSAR
analyses on 13 different series of derivatives in order to identify
important physicochemical properties governing their inhibitory
activity against acetylcholinesterase. Among the analyzed classes,
physostigmine analogues, 1,2,3,4-tetrahydroacridines, and benzy-
lamines were included. The results pointed that hydrophobicity,
electronic effects, and steric factors were equally implicated.

Few years later, Sippl et al. [86] described the construction,
validation, and application of a 3D QSAR model in combination
with docking for the development of novel AChE inhibitors. The
PDB structures used were 1ACL co-crystallized with decametho-
nium [87], 2ACKwith edrophonium [88], 1ACJ with tacrine [87],
and 1VOT with huperzine A [89]. Generally, they were able to
produce a very good predictive model, since a number of designed
inhibitors (Scheme 19) were synthesized and tested for their
biological activity and the results were validated. The compounds
seemed to interact with the cation-p subsite and the peripheral site
in AChE.

Scheme 19 General chemical structures of aminopyridazine derivatives reported
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Finally, Kosak et al. [90] in continuation to their previous
studies further optimized their previous inhibitors [19] (Scheme
20) driving the potency to the picomolar range. This particular
compound co-crystallized with BChE under the PDB entry
5NN0 [90].

In 2006, da Silva and coworkers [91] with the use of docking
produced new hybrid molecules (Scheme 21) combining in one
entity the donepezil and tacrine structures, in order to produce
AChE inhibitors capable of keeping the original biological interac-
tions of both molecules. The AChE–donepezil complex with PDB
entry 1EVE was used in the X-ray study [92]. Herein, the research-
ers predicted the ADMET properties of the hybrid molecules in
order to make a drug-like alternative suggestion for treatment.

In 2007, Alcaro and coworkers [93] performed a study on
known herbicide analogues like paraquat, MPP+, MPDP+, and
MPTP (Scheme 22). Since these compounds were damaging neu-
rons, the researchers considered to test them as AChE and BChE
inhibitors. Their approach included molecular modelling over
1ACJ PDB structure [87] and an enzymatic study against the two
enzymes. As a reference compound, they used tacrine. The
reported docking results supported a binding mode similar to

Scheme 20 General structure of naphthamides

Scheme 21 Donepezil–tacrine-based hybrid derivatives
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tacrine, whereas the SARs underlined the significant role of the
electrostatic properties.

Da Silva et al. [94] reported the computer-aided drug design of
three new AChE inhibitors (Scheme 23) following molecular mod-
eling techniques. The structure of choice was the AChE–donepezil
complex with PDB entry 1EVE [92]. The results were in accor-
dance to calculated ADMET. Compounds 1 and 3 (proposal-1 and
3) proposed to be used as interesting AChE inhibitors for the
treatment of AD.

Fang et al. [95] designed a new series of tacrine-based NO
donor hybrid compounds (Scheme 24) as ChE multitarget

Scheme 23 Structures of the newly proposed and known inhibitors

Scheme 22 Chemical structures of known herbicides
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inhibitors. For the docking experiments, they used crystal structure
2CKM [96] to proceed AChE binding. All the synthesized com-
pounds showed significant in vitro results with their inhibition
being in the low-nM range. Specifically, the most active compounds
showed AChE inhibitory activities between 5.6 and 9.1 nM being
five- to sixfold more potent than the reference compound tacrine.
BChE activity remained also on the low-nanomolar range with
IC50 varying from 7.2 to 18.1 nM. These compounds seemed to
occupy both CAS and PAS domains simultaneously and they show
a nonselective inhibitory activity.

In 2010, Badran et al. [97] synthesized some novel thiophene-
fused derivatives (Scheme 25) to replace the tacrine scaffold and
tested them as AChE inhibitors. The in vitro results showed mod-
erate activity in comparison to tacrine. Hence, a molecular model-
ing study was also performed to the X-ray structure of AChE with
the entry number 1ACJ [87] in order to rationalize the obtained
biological results in terms of SAR.

In 2012, emerged a study on the multifunctional properties of
saffron natural products (Scheme 26) as anti-AD agents [98]. Four
compounds of saffron CRT, DMCRT, and SFR were studied as
AChE inhibitors with IC50 values of 96.33, 107.1, and 21.09 μM,
respectively. These natural products were also docked against AChE
with PDB entry of 1ACJ [87].

El-Malah and coworkers [99] were another team of researchers
who published some novel tacrine analogues (Scheme 27) as AChE
inhibitors in 2014. Their approach included docking experiments

Scheme 24 General structures of novel NO-donating tacrine derivatives

Scheme 25 General chemical structures of the fused thiophene derivatives
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over AChE crystal structure with code 1ACJ [87]. Almost all of the
studied compounds exhibited significant in vitro activity with some
compounds being more potent than tacrine, which have been used
as an internal standard.

In 2014, Brus et al. [19] performed drug design based on
virtual screening and developed a novel class of BChE selective
inhibitor. The used X-ray structure was human BChE in complex
with a choline molecule and entry 1P0M [100]. Among 40 resulted
hits, the in vitro results revealed a highly potent nanomolar inhibi-
tor (IC50 21.3 nM) as a racemate, with the pure (+) enantiomeric
compound having an IC50 13.4 nM and Ki 2.7 nM. A crystal
structure of this compound over human BChE was also obtained
and was available over the Protein Data Bank with code 4TPK
[19]. Additionally, a significant inhibition of β fibrils was observed
(61.7%).

In the same year, another study for AChE inhibition on novel
series of chroman-4-one derivatives was published from the group
of Arab et al. [101] (Scheme 28). The docking study was per-
formed over AChE PDB entry 1EVE [92]. The most active com-
pound exhibited IC50 ¼ 0.048 mM. The in silico study was found
in full compliance with the in vitro results.

Scheme 26 Saffron natural compounds studied

Scheme 27 General structures of tacrine analogues
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Liu et al. [102] in 2017 synthesized several tacrine–curcumin
hybrid compounds (Scheme 29) as multitarget agents against
ChEs. Molecular modeling was performed over PDB entry
2CKM [96] for AChE and 4BDS [103] for BChE. The biological
results showed that these hybrids were good cholinesterase inhibi-
tors, compared to the standard used drug (tacrine).

Mehrabi et al. [104] developed benzofuran-3-ones derivatives
(Scheme 30) as dual ChE inhibitors. X-ray data utilized in the
docking were AChE with PDB entry 1EVE [92] and BChE with
PDB entry 1P0I [100]. The in vitro inhibitory results for AChE/
BChE revealed the presence of very active derivative with
IC50 ¼ 0.045 μM against AChE. Docking study confirmed these
results and provided the possible binding conformation.

Da Silva Goncalves et al. [105] in 2016 proposed some fuller-
ene (C60) derivatives (Scheme 31) as AChE inhibitors. Docking of
these compounds was performed using AChE from the Protein
Data Bank with the entry code 2X8B [106]. In that work, the
results show that the ligands can bind to FASII region of the AChE.

Basiri et al. [107] developed two series of piperidine derivatives
(Scheme 32) as AChE inhibitors. Docking was performed with the

Scheme 30 General structure of benzofuranone derivatives

Scheme 29 Tacrine–curcumin hybrid derivatives

Scheme 28 Chroman-4-one derivative’s general structure
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structure 1EVE [92]. The most active compounds displayed IC50

at the sub-micromolar range.

4 Multitarget Agents

In 2001, Yu et al. [108] performed a molecular modeling-based
approach to synthesize a novel series (Scheme 33) of AChE and
BChE inhibitors. Quantification of their results confirmed their

Scheme 31 Chemical structures of the C60 derivatives

Scheme 32 Piperidine-based inhibitors

Scheme 33 General structure of the synthesized derivatives
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binding mode within the enzymes whereas their structural features
were also defined.

In 2009, Camps and coworkers [109] developed a series of
multitarget compounds (Scheme 34) as AChE, BChE, AChE-
induced, and self-induced Aβ fibril aggregate inhibitors and
β-secretase (BACE-1) inhibitors. Their design included docking
of the compounds against X-ray crystallographic structures of
AChE, entries utilized here were 1Q83 [110], 1Q84 [110],
1ODC [96], 1ZGB [111], 1ZGC [111], 2CKM [96], and
2CMF [96]. The reported hybrid compounds showed great
potency and selectivity against human AChE activity. Simulta-
neously, they exhibited significant in vitro inhibition of both Aβ
aggregation and BACE-1 and a great ability to enter the central
nervous system. The new hybrid compounds bear a 6-chlorotacrine
and pyrano[3,2-c]-quinoline moiety in their structure and the
modeling showed that they reside in both CAS and PAS at the
same time.

Ul-Haq and coworkers [112] reported a molecular modeling
study of a novel multitarget benzothiazepine (Scheme 35) acting as
a dual ChE inhibitor. They docked the studied compound in AChE
1ACL [87] and BChE 1P0P [100].

Hamulakova and coworkers [113] in 2012 developed new
tacrine derivatives (Scheme 36) as multifunctional ChE inhibitors,
based on docking simulations over the human proteins 1B41/

Scheme 34 Synthesized hybrid derivatives

Scheme 35 Chemical structure of the new benzothiazepine studied
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AChE [114] and 1P0I/BChE [100]. Mainly, the studied deriva-
tives exhibited an increased inhibition towards both AChE and
BChE with IC50 values in the low-nanomolar range, compared to
tacrine and 7-MEOTA that were used as reference standards. The
most active compounds showed IC50 values of 4.49 and 4.97 nM,
respectively, on AChE with a noticeable selectivity. On the contrary,
the most active BChE inhibitor presented an IC50 value of 33.7 nM
exhibiting also a good selectivity towards the protein. The docking
results showed that the structures interact both in CAS and PAS
sites.

Makhaeva et al. [115] in the same year made an extensive study
combining QSAR approaches to analyze and predict inhibitory
properties of 58 O-phosphorylated oximes against AChE, BChE,
NTE, and CaE. The following QSAR techniques were also used:
Molecular Field Topology Analysis (MFTA), Comparative Molec-
ular Similarity Index Analysis (CoMSIA), and molecular modelling.
For the simulations, mouse AChE 2HA3 [116] and human BChE
1P0M [100] crystal data were used. Moreover, due to their interest
as ChE inhibitors, the researchers applied MFTA to design a library
of some novel inhibitors.

In 2013, Ozturan Ozer et al. [117] designed and tested a
series of N0-2-(4-benzylpiperidin-/piperazin-1-yl)acylhydrazone
derivatives (Scheme 37) as multitarget ligands against both choli-
nesterases along with anti-Aβ aggregates activity. The design of all
derivatives was based on docking simulations performed on
the human proteins 1B41/AChE [114] and 1P0I/BChE [100].
Although, due to the fact that the selected proteins did not have
any ligands co-crystallized, they superimposed these structures over
protein entry 1EVE/AChE [92] co-crystallized with the known

Scheme 36 Tacrine derivative’s general structure

Scheme 37 General structure of the derivatives
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drug Aricept [118]. Moreover, for all the designed molecules were
calculated Lipinski’s rule of five [16, 17] properties, along with the
polar surface area indicator in an attempt to predict their blood–
brain barrier penetration. The in vitro results showed no selectivity
towards the targeted proteins, and no greater potency in compari-
son to donepezil (IC50 23.1 nM/human AChE and IC50 7.4 μM/
equine BChE). Their activities varied from 53.1 to 88.5 μM for
AChE and 48.8 to 98.8 μM for BChE. The calculated binding
constants (Ki) for some derivatives showed similar values in the
low-μM range. On the contrary, all the derivatives significantly
inhibit Aβ aggregation compared to rifampicin [119] which was
used as a reference for the assay. The docking studies indicated that
both PAS and CAS interactions of human AChE were present,
supporting a multisite binding mode for the compounds.

Li and coworkers [120] reported multitarget ligands against
ChEs and Aβ aggregate inhibition based on the flavone moiety
(Scheme 38, structure a). Their approach also contained docking
experiments over known crystal data of ChEs, using 1EVE/AChE
[92] 1P0I/BChE [100], respectively. These compounds showed
greater potency and selectivity for AChE over BChE, combined
with a good inhibition against Aβ fibril formation. All the compounds
present in vitro low inhibitory potency in the sub-micromolar range.
However, the best compound exhibited a 20-fold and a 2-fold drop
in activity compared to the used control substances, galanthamine
and tacrine, respectively. Additionally, these derivativeswere designed
to chelate metals. Themost active compound presented similar activ-
ity towards Cu2+ and Fe2+. The present study revealed that com-
pounds targeted both CAS and PAS regions of AChE, a factor that
was directly associated with the alkyl chain length.

Luo et al. in 2013 [121] developed a series of multitarget
flavone derivatives (structure b) (Scheme 38), as inhibitors of
ChEs and Aβ aggregates. The design of the new molecules was
based on molecular modeling techniques over the torpedo 1ACJ/
AChE [87] and the human 1P0I/BChE [100]. All compounds
presented in vitro equipotent inhibitory activities (on the
low-micromolar region with IC50 values varying from 1.83 to
33.20 μM and 0.82 to 11.45 μM, respectively) on both AChE
and BChE. Rivastigmine was used as the reference compound
[122]. A significant inhibition of Aβ aggregates was also recorded

Scheme 38 Developed flavonoid derivatives’ general structures as multitarget
AD agents
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for the mentioned compounds. Moreover, some of the compounds
exhibited a radical scavenging ability. The activity profile along with
the modeling study suggests that these compounds can target both
the CAS and PAS regions of AChE.

A group from China [123] published their work on tacrine–
coumarin hybrid molecules (Scheme 39) as an alternative multi-
target approach for the treatment of AD. They focused on a more
combined activity against ChEs and Aβ aggregation. The design of
the molecules was based on docking over AChE protein with entry
number 2CKM [96], which was co-crystallized with a carbon chain
linked bis-tacrine ligand. All the compounds exhibited significant
inhibition upon the abovementioned targets. The best compound
showed IC50 value of 0.092 μM for AChE, 0.234 μM for BChE,
and 67.8% inhibition of fibril formation at a 20-μM concentration.
The binding mode of derivatives revealed a mixed-type inhibition
occupying simultaneously CAS, PAS, and mid-gorge sites of AChE.

Thiratmatrakul et al. [124] in 2014 developed a series of new
tacrine–carbazole hybrids (Scheme 40) as potential multifunctional
anti-Alzheimer agents with ChE inhibitory and radical scavenging
activities. The binding interactions of these derivatives were also
studied utilizing AChE with the PDB entry 2CEK [125]. All devel-
oped compounds showed high inhibitory activity on AChE with
IC50 values 0.48–1.03 μM and good selectivity index over AChE/
BChE. Molecular modeling studies revealed that these tacrine–
carbazole hybrids interacted simultaneously with CAS and PAS
sites of AChE. Some derivatives showed scavenging activity; while
considering their neuroprotection in total, these derivatives could

Scheme 39 Tacrine–coumarin hybrid derivative’s general structure

Scheme 40 Tacrine–carbazole hybrid molecule’s general structure

228 Sotirios Katsamakas and Dimitra Hadjipavlou-Litina



reduce neuronal death induced by oxidative stress and Aβ fibrils
formation.

Qiang et al. [126] developed a series of genistein derivatives
with various carbon spacer-linkers (Scheme 41) as multifunctional
agents for AD. Their docking experiments were performed using
crystal data of AChE in presence with donepezil and code 1EVE
[92] in the Protein Data Bank. In vitro results exhibited good
AChE activity combined with moderate-to-good anti-oxidative
activity. The most potent compound was on the range of
sub-micromolar values (IC50 0.09 � 0.02 μM). Also, several of
the studied compounds exhibited significant inhibition of Aβ
aggregation with metal-chelating properties. The binding mode
analysis for these derivatives suggested the typical occupation of
CAS and PAS domains.

Pudlo and coworkers [127] designed, synthesized, and evalu-
ated a series of quinolinecarboxamide derivatives (Scheme 42) as
new multifunctional AChE inhibitors and radical scavengers.
Molecular modeling was performed over AChE structures obtained
from Protein Data Bank with accession codes 4EY7 [128] and
1EVE [92], respectively. The in vitro results showed good AChE
inhibition with good selectivity index over BChE and high radical
scavenging. Most active compounds were found to inhibit AChE in
the sub-micromolar range.

Scheme 41 Genistein derivatives

Scheme 42 General structures of the quinolinecarboxamide derivatives
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The work of Hong et al. [129] in 2014 was focused on the
development of multitarget compounds on both ChEs and thus
reported three types of aromatic–polyamine conjugates (Scheme
43). Derivatives were subjected to a docking analysis to clarify their
binding modes and to derive SAR. The procedure utilized AChE
structure with code entry 1ACJ [87]. Anthraquinone conjugates
were the most potent inhibitors for AChE with IC50 values
1.5–11.13 μM, while anthracene conjugates proved to be highly
selective towards BChE accompanied by IC50 values ranging from
low- to high-nanomolar range (0.016–0.657 μM). Kinetic and
modeling analysis revealed that the compounds under study occupy
both CAS and PAS domains in ChEs.

Continuing their efforts, Lan et al. [130] reported the design
of tacrine–carboline hybrids (Scheme 44a) as multitarget agents
aiming ChEs, Aβ aggregation, and metal chelation. Their design

Scheme 43 Polyamine conjugate structures

Scheme 44 Tacrine–carboline hybrid derivatives (a), tacrine–rhein hybrid deri-
vatives (b), tacrine-related analogues
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strategy was based on docking experiments of the AChE PDB entry
2CKM [96] and the BChE PDB entry 1P0I [100]. In vitro results
showed for most of the compounds significant inhibition of AChE,
BChE, and self-induced Aβ aggregation, Cu2+-induced Aβ1–42
aggregation, and metal chelation. The most active compound of
all exhibited IC50 21.6 nM for eeAChE, 63.2 nM for hAChE, and
39.8 nM for BChE, 65.8% inhibition on Aβ aggregate formation at
a 20-μM concentration combined with antioxidant activity. The
study indicated that most active derivative was mixed-type inhibitor
simultaneous binding to CAS and PAS sites of AChE.

The group of Li and coworkers [131] reported in 2014 a series
of tacrine–rhein hybrids (Scheme 44b) as novel multitarget inhibi-
tors for ChEs. Crystallographic data of AChE complexed with bis
(7)-tacrine (PDB entry 2CKM [96]) was utilized in their design
efforts. In vitro results of the most active compound showed a
fivefold drop when compared to reference compound tacrine for
AChE inhibition and low-nanomolar potency for BChE inhibition
(IC50 200 nM). The mode of activity was the simultaneous typical
binding at the catalytic and peripheral sites of AChE. Additionally,
the most active compound showed a moderate inhibition of Aβ
aggregate formation and metal-chelating properties.

Stoddard and coworkers [132] based on marine metabolites
developed a new series of multitarget compounds aiming inhibition
of AChE and Aβ aggregate formation. Their work was involved
over seven classes of known marine metabolites by combining
experimental data with docking results. Several PDB entries of
AChE were utilized in this study, including 1ACL [87], 1ACJ
[87], 1DX6 [133], and 1EVE [92].

Bautista-Aguilera et al. [134] reported the design, synthesis,
and pharmacological evaluation of donepezil–indolyl-based deriva-
tives as multitarget agents able to inhibit simultaneously ChEs and
MAO. In their theoretical studies, they used 3D-QSAR to define
pharmacophores able to inhibit enzymes MAO A/B, AChE, and
BChE. The in silico approaches included also the docking of deri-
vatives against the selected enzymes with X-ray structures 1C2B
[135] for AChE, 2PM8 [136] for BChE, 2Z5X [137] for MAO-A,
and 2V5Z [138] for MAO-B. The most active compound propar-
gylamine (Scheme 45a) exhibited a nanomolar inhibition for
mostly all enzymes (MAO-A IC50 ¼ 5.5 � 1.4 nM, MAO-B
IC50 ¼ 150 � 31 nM, AChE IC50 ¼ 190 � 10 nM, and BChE
IC50 ¼ 830 � 160 nM inhibitor).

Continuing their efforts, Bautista-Aguilera et al. [139]
reported in the same year a new generation of multitarget com-
pounds (Scheme 45b) as inhibitors of ChEs andMAO. The in silico
approach was the same as mentioned above, combining 3D-QSAR
for identifying pharmacophores and docking of derivatives against
the selected enzymes with crystal data of 1C2B [135] for AChE,
2PM8 [136] for BChE, 2Z5X [137] for MAO-A, and 2V5Z [138]
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for MAO-B. For the most potent inhibitor, the in vitro results
showed IC50 ¼ 1.1 � 0.3 nM for AChE, IC50 ¼ 600 � 80 nM
for BChE, and IC50 ¼ 3.950 � 940 nM for MAO-B.

Goyal and coworkers [140] in 2014 designed multitarget dihy-
dropyridine derivatives as AChE and β-secretase (BACE-1) inhibi-
tors. Their approach included a highly predictive group-based
QSAR (GQSAR) model followed by molecular docking. The
X-ray structures used were AChE with PDB code 4M0E [141]
and BACE-1 with PDB code 2B8L [59]. The present study gave
two highly potent dual inhibitors (EDC and FDC) as depicted in
Scheme 46.

In 2015, Xie et al. [142] developed a series of tacrine–coumarin
hybrid compounds (Scheme 47a) as multitarget agents against
AChE, BChE, andMAO-B inhibitors. In the docking experiments,
the researchers used structures PDB code 4EY7 [128] for AChE
and PDB code 2V61 [138] hMAO-B. The in vitro results of the
hybrids indicated that most of them were potent inhibitors against
the tested enzymes, and the most active one exhibited
IC50 ¼ 33.63 nM for eeAChE and IC50 ¼ 16.11 nM for hAChE,
IC50 ¼ 80.72 nM for eqBChE and IC50 ¼ 112.72 nM for hBChE,
and IC50 ¼ 0.24 μM for hMAO-B. The binding analysis indicated a

Scheme 45 General chemical structure of the propargylamine derivative (a) and
donepezil–pyridyl hybrids (b)

Scheme 46 Chemical structure of the compounds EDC and FDC, respectively
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mixed-type inhibitory activity at catalytic, peripheral, and
mid-gorge sites of AChE.

Another tacrine-based hybrid series of compounds (Scheme
47b) have been presented by the group of Xie et al. [143] as
novel multifunctional hybrids showing ChEs inhibition combined
with antioxidant activity. X-ray structure of the human AChE with
PDB entry 4EY7 [128] was utilized for the in silico study. Themost
active in vitro compound showed an IC50 ¼ 9.8 nM for eeAChE
and IC50 ¼ 23.5 nM for hAChE, IC50 ¼ 22.2 nM for eqBChE and
IC50 ¼ 20.5 nM for hBChE. All the compounds identified as
mixed-type inhibitors.

The group of Luo et al. [144] in 2015 reported the design and
synthesis of a novel series of melatonin-based benzylpyridinium
bromides (Scheme 48) as multitarget agents presenting ChEs
inhibition, antioxidant, and neuroprotective activities. The in silico

Scheme 47 General chemical structure of the synthesized tacrine–coumarin
hybrids (a) and tacrine–trolox hybrids (b)

Scheme 48 General structures of the benzylpyridinium hybrids
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simulations were performed over X-ray structure of AChE with
code 1EVE [92]. The in vitro biological investigation showed
that the majority of the compounds were potent inhibitors against
AChE and BChE with good antioxidant activity. The most active of
them displayed an IC50 ¼ 0.11 μM for AChE, IC50 ¼ 1.1 μM for
BChE and good antioxidant activity. Themode of binding followed
the usual mixed-type.

Sang et al. [145] designed and synthesized a series of
scutellarein-based derivatives as multifunctional agents targeting
AChE and Aβ aggregate inhibition along with metal-chelating
properties (Scheme 49). Docking was used for the design of the
molecules utilizing the X-ray structure 1EVE [92]. Most of the
compounds exhibited good activity against the selected targets.
The best one demonstrated significant metal-chelating properties,
moderate acetylcholinesterase (AChE) inhibition and anti-
oxidative activity, combined excellent inhibitory effects on self-
induced and Cu2+-induced Aβ1–42 aggregation, human AChE-
induced Aβ1–40 aggregation, and disassembled Cu2+-induced
aggregation of the well-structured Aβ1–42 fibrils. The binding
mode of the compounds was typically situated at both CAS and
PAS domains.

Liu et al. [146] in 2015 designed a series of multifunctional
chromone derivatives (Scheme 50) as AChE inhibitors with antiox-
idant, metal-chelating properties, and Aβ aggregation ability. The
binding mode and the interactions of compounds were performed
over AChE PDB entry 1EVE [92]. The most active compound
showed AChE IC50 ¼ 0.07 � 0.01 μM. The analysis showed a
mixed-type inhibition. An excellent self-induced Aβ aggregation
inhibition was observed (63.0%) as well as a good Cu2+-induced
Aβ aggregation inhibition (55.6%) and metal-chelating ability.

Scheme 49 Scutellarein derivative’s general structure

Scheme 50 General structure of the synthesized chromone derivatives
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Bajda and coworkers [147] designed a novel series of tacrine
derivatives (Scheme 51) as multitarget inhibitors against ChEs and
Aβ aggregate formation. The utilized crystal data of ChEs were
entry 2CKM for AChE [96] and 1P0I for BChE [100]. The deri-
vatives were proved very potent inhibitors of both AChE and BChE
with IC50 values from sub-nanomolar to the nanomolar range
higher than rivastigmine and tacrine that were used as reference
compounds in the biological testing. Inhibition of Aβ fibrils forma-
tion was also significant.

Benchekroun et al. [148] designed some new tacrine–ferulic
acid hybrids (Scheme 52) as ChEs and Aβ aggregate inhibitors with
antioxidant activity. They used AChE PDB entry 4EY7 [128] and
BChE PDB entry 4BDS for the X-ray docking studies [103]. The
most active compound showed moderate and selective BChE inhi-
bition with IC50 ¼ 68.2 � 3.9 nm, good BBB permeation, strong
antioxidant activity, high Aβ1–42 aggregate formation (65.6%), and
good neuroprotection.

Dominguez et al. [149] designed some novel multitarget
ligands for AChE and BACE1 inhibition (Scheme 53). The dock-
ing experiments were performed using the X-ray structure of AChE
entry 1ODC [96] and BACE1 entry 1FKN [150]. Besides the
robust predictions on designed compounds, the in silico protocol
revealed insights on the flap opening in BACE1. The in vitro results
of most active candidates show high ligand efficiency displaying a
multitarget behavior on the amyloid cascade and cholinergic
activity.

In 2016, Wu and coworkers [151] developed some donepezil-
based multitarget chelators (Scheme 54) as inhibitors of ChEs,
MAO-A, and MAO-B. The design was based on their docking
against AChE PDB entry 1B41 [114], MAO-A PDB entry 2Z5X

Scheme 52 Tacrine–ferulic acid hybrid derivatives

Scheme 51 Tacrine hybrid derivatives
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[137], and MAO-B PDB entry 2V5Z [138]. The in vitro results
exhibited high potencies for AChE and BChE inhibition with IC50

values in the nanomolar range, followed by a micromolar selective
MAO-A inhibition. Moreover, compounds showed metal-
chelating activity and moderate antioxidant ability.

Najafi et al. [152] developed chromenone hybrid derivatives
(Scheme 55) and evaluated them as inhibitors of ChEs and BACE-
1. The in silico design included docking against the X-ray data of
AChE PDB entry 2CMF [96]. The most active compounds
showed IC50 values comparable to the internal standard (rivastig-
mine). In addition, they exhibited satisfactory inhibition of BACE-
1 and neuroprotective activity. Herein, also the binding mode of
the inhibitors showed both CAS and PAS occupancy.

Zhang et al. [153] designed new tacrine hybrids (Scheme 56)
as multitarget compounds against ChEs and Aβ fibril formation. In
order to evaluate their inhibitory binding modes, they docked them
against TcAChE PDB entry 2CMF [96] and hBChE PDB entry
4BDS [103]. All the designed molecules presented IC50 values at

Scheme 55 Novel chromenone hybrid’s general structure

Scheme 54 General chemical structure of the donepezil-like derivatives

Scheme 53 General chemical structure

236 Sotirios Katsamakas and Dimitra Hadjipavlou-Litina



the nanomolar range, with the best displaying high selectivity and
IC50 ¼ 5.63 nM for AChE. Also, the exhibited inhibition of Aβ
aggregate formation was 51.81 nM.

Luo et al. [154] on the contrary developed a new series of
flavonoid-based derivatives (Scheme 57a) as multitarget agents for
ChEs, self-induced Aβ aggregates, and antioxidant activity. The
crystal structures of AChE code 1ACJ [87] and the BChE code
1P0I [100] were utilized in their in silico experiments in order to
determine their mode of activity, showing the typical CAS and PAS
interaction in AChE. Almost all of the compounds exhibited potent
AChE and BChE inhibition along with potent self-induced Aβ fibril
formation inhibition and radical scavenging activity.

Continuing their efforts, Luo et al. [155] designed novel flavo-
noid derivatives (Scheme 57b) as dual ChEs inhibitors. They used
AChE PDB entry 1ACJ [87] to extract binding mode features. The

Scheme 57 Flavonoid-based hybrid derivatives (a) and flavonoid derivatives (b)

Scheme 56 Tacrine hybrid derivatives’ structures
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in vitro results showed that most of the synthesized compounds
exhibited potent AChE and BChE inhibitory activities at the low-
and sub-micromolar range. The most active compound exhibited
IC50¼ 0.64 μMagainst AChE and IC50¼ 0.42 μM for BChE, with
the same interactions on the protein.

Wang and coworkers [156] synthesized a series of donepezil
derivatives (Scheme 58) as multifunctional AChE and BChE inhi-
bitors, metal chelators, and antioxidant agents and inhibitors of
AChE- and Cu2+-induced Aβ inhibition of fibril formation. Bind-
ing modes were analyzed by docking using AChE PDB entry 4EY7
[128] and BChE PDB entry 4XII [157]. These derivatives dis-
played good antioxidant, Aβ aggregation inhibition as well as
good calculated in silico ADMET properties. The most active
derivative presented a low-nanomolar inhibitionwith IC50¼ 85 nM
for eeAChE and IC50 ¼ 73 nM for hAChE.

Xie and coworkers [158] developed some novel coumarin-
based hybrid compounds (Scheme 59) as ChEs and MAO-B inhi-
bitors. Docking approaches were used for binding mode prediction
over AChE PDB entry 4EY7 [128] and MAO-B PDB entry 2V61
[138]. The most active compound exhibited inhibition of Elec-
trophorus electricus AChE (eeAChE) IC50 ¼ 0.87 μM and of equine
BChE (eqBChE) IC50 ¼ 0.93 μM. Another compound presented a
good and balanced inhibition with IC50 ¼ 1.37 μM for hAChE,
IC50 ¼ 1.98 μM for hBChE, and IC50 ¼ 2.62 μM for hMAO-B.
The mode of activity was a typical mixed-type with simultaneous
binding to CAS, PAS, and mid-gorge site of the AChE.

Koca et al. [159] designed some novel indene derivatives
(Scheme 60) as multifunctional ChEs and Aβ aggregate inhibitors.

Scheme 58 Donepezil hybrid derivatives
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In silico simulations were based on X-ray structures of AChE entry
1EVE [92] and BChE entry 1P0I [100]. The compounds revealed
higher inhibitory potency against BChE and most of them pre-
sented also remarkable Aβ fibril formation. The mode of inhibition
was noncompetitive and the interactions were on CAS and PAS
regions.

Wang and coworkers [160] published in 2016 another study
on multitarget flavonoid hybrids (Scheme 61) as dual AChE and
MAO-B inhibitors. Docking simulations were based on X-ray
structures PDB entry 2V60 [138] for MAO-B and 2CMF [96]
for ACh. The most active compound showed a balanced inhibitory
activity with IC50 values of 3.94 for AChE and 3.44 μM MAO-B,
revealing a mixed-type inhibition for the proteins as confirmed also
from the obtained in silico data.

Mohamed et al. [161] designed 2,4-disubstituted quinazoline
compounds (Scheme 62) as multitarget agents presenting ChEs
inhibition and antioxidant activity. Molecular modeling studies
included X-ray structures AChE PDB entry 1B41 [114], BChE
PDB entry 1P0I [100], and NMR solution structure of Aβ fibrils

Scheme 59 Coumarin hybrid derivatives

Scheme 60 Indene derivatives

Scheme 61 Homoisoflavonoid derivatives

Scheme 62 General chemical structure of quinazoline hybrids
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with PDB entry 2LMN [77]. The in vitro inhibition results for
AChE and BChE enzymes as IC50 values were ranged from 1.6
to 30.5 μM, whereas the Aβ fibril formation was high with
IC50 ¼ 270 nM–16.7 μM.

In 2017, Panek et al. [162] developed phthalimide and saccha-
rin derivatives (Scheme 63) as multifunctional inhibitors against
ChEs, β-secretase, and Aβ. Their binding modes were investigated
over the structures AChE PDB entry 1EVE [92] and BACE-1 PDB
entry 4D8C [163]. For the majority of the compounds, the AChE
inhibition was in the low-micromolar region 0.83–19.18 μM. On
the other hand, BACE-1 inhibition ranged from 26.71 to 61.42%
at 50 μM concentration. Binding mode of the compounds was the
same, noncompetitive, interacting with both CAS and PAS sites.

Najafi et al. [164] developed new tacrine-based hybrids
(Scheme 64) as potent dual ChEs inhibitors. The utilized structures
in this study were 2CMF for AChE [96] and 1P0I for BChE
[100]. Most of the tested compounds showed good in vitro inhibi-
tion on both AChE and BChE. The most active exhibited AChE
inhibition of IC50 ¼ 0.521 μM and IC50 ¼ 0.055 μM.

Scheme 63 Donepezil derivatives

Scheme 64 General structure of tacrine hybrid derivatives
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Sang et al. [165] developed multitarget scutellarein derivatives
(Scheme 65) as ChEs inhibitors, metal chelators, antioxidant
agents, and for their ability to influence the Aβ aggregation and
disaggregation. The structure of AChE PDB entry 1EVE [92] was
used for simulations. The most active compound demonstrated
excellent AChE inhibition, moderate Aβ inhibitory effects, metal-
chelating, and antioxidant activity.

Jameel and coworkers [166] developed some multitarget
ligands as triazine–triazolopyrimidine hybrids (Scheme 66). Molec-
ular modeling was performed over the X-ray structures of AChE
with PDB entry 1EVE [92] and BChE with PDB entry 4TPK
[19]. The best compounds showed encouraging inhibitory activity
against AChE with IC50 values 0.065–0.092 μM, and selectivity in
comparison to BChE.

Sang et al. [167] developed a novel series of quinoline-based
(Scheme 67) multitarget molecules as ChEs and MAOs inhibitors.
The utilized structures were AChE PDB entry 1EVE [92]
and BChE PDB entry 4TPK [19]. The most active compound
demonstrated an AChE and BChE inhibition with IC50 values
of 0.56 μM and 2.3 μM, respectively, while MAO-A
IC50 ¼ 0.3 � 0.001 μM and MAO-B IC50 ¼ 1.4 � 0.01 μM
inhibition.

Scheme 65 General structure of scutellarein derivatives

Scheme 66 Triazine hybrid derivatives

Scheme 67 Quinoline hybrid derivatives
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5 Conclusion

This chapter summarizes the diverse receptors or enzymatic systems
which are implicated in the pathogenesis of AD, in vitro active
agents against AD, state-of-the-art docking studies done in AD
targets, and docking studies of multitarget agents with particular
emphasis on AD. Recent advances and examples of the exploitation
of MTDL approach in the rational design of novel drug candidate
prototypes for the treatment of AD and examples of “one-com-
pound-one-target” were described. Alzheimer’s disease is a com-
plex neurodegenerative disorder thus, so far, the therapeutic
paradigm “one-compound-one-target” has failed to cure the dis-
ease. The QSAR results revealed that some important molecular
characteristics should significantly affect ligands’ binding affinities,
e.g., hydrophobic and electrostatic interactions.

In general, from the presented computational results it can be
concluded that the MTDL approach can offer in the design of
multifunctional agents targeting simultaneously more than one of
the following enzymes: AChE, BChE, MAO, and BACE. Most of
the examples describe inhibitors of both cholinesterases. In some
cases, molecules with combined inhibitory activities against AChE,
BChE, MAO or AChE, MAO, or AChE, BChE and BACE were
recorded. In most of the cases, the multitarget molecules exhibited
some other activities as Aβ aggregates inhibition, metal-chelating,
and scavenging activities. Among the studied multitarget agents, a
number of hybrids were also computationally studied. These
groups were synthesized by the combination of known anti-Alzhei-
mer’s drugs, especially tacrine and donepezil or coumarin.

The developed models are useful tools to predict the binding
activities for new multifunctional small anti-AD agents for which
ADMET properties should be also predicted.
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Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disorder with a multi-faceted pathogenesis. So
far, the therapeutic paradigm “one-compound-one-target” has failed and despite enormous efforts to
elucidate the pathophysiology of AD, the disease is still incurable, with all current medicines only being
capable to slow up its progress and ameliorate the quality of life of the patients. The multiple factors
involved in AD include amyloid aggregation to form insoluble neurotoxic plaques of Aβ, hyperphosphor-
ylation of tau protein, oxidative stress, calcium imbalance, mitochondrial dysfunction, deterioration of
synaptic transmission, and neuronal loss. These factors together accentuate changes in the central nervous
system (CNS) homeostasis, starting a complex process of interconnected physiological damage, leading to
cognitive and memory impairment and neuronal death. A recent approach for the rational design of new
drug candidates, also called multi-target directed ligand (MTDL) approach, has gained increasing attention
by many research groups, which have developed a variety of hybrid compounds acting simultaneously on
diverse biological targets. In this chapter, we aimed to show some recent advances during the last decade
and examples of the exploitation of MTDL approach in the rational design of novel drug candidate
prototypes for the treatment of AD.

Keywords Alzheimer’s disease, Multifunctional drugs, Multi-target directed drugs, Multi-target
drugs, Neurodegenerative disorders, Rational drug design

1 Introduction

Alzheimer’s disease (AD) is one of the greatest challenges of cur-
rent research for new drugs [1–3]. Similar to cancer, diabetes,
rheumatoid arthritis, and other chronic inflammatory and neuro-
degenerative diseases, AD is characterized by multiple factors
involving physiological, biochemical, and chemical mediators
operating concurrently with, caused by the same or different path-
ways [4, 5].

In recent years, advances in biochemistry, neuropharmacology,
and other biological fields have been responsible for new insights in
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the high complexity multifactorial pathophysiological hallmarks of
AD. Thus, the development of innovative and effective multi-target
directed drugs for AD represents a new paradigm in the discovery
and drug design. Until then, the question that guided the planning
of a new drug was “What is the best target for the treatment or
prevention of a disease?” which supported, since 1990s, the origin
of the reductionist strategy. By this concept, a drug should have its
action limited to individual genes, a single protein or enzyme, and a
specific ligand to a target, following the current paradigm “one
gene, one target, one drug” [1, 4, 6].

The limitations imposed by the low therapeutic efficacy against
most of these diseases, coupled with the apparent reduction in the
approval of new bioactive chemical entities, despite significant
investments from the Pharmaceutical Industry, have reinforced
the need to look up new strategies for planning and discovery of
more effective and safer drugs.

In this context, polypharmacology seems to be a real and
plausible possibility, based in three possible therapeutic strategies:
the first would be the use in combination of multiple active ingre-
dients, like the associations of natural ingredients used for centuries
in Traditional Chinese Medicine; or cocktails of drugs, such as used
in the treatment of the acquired immunodeficiency syndrome
(AIDS) and cancer. Another alternative would be a combination
of more than one active ingredient in the same formulation. In a
third and more recent approach, it would be a single molecule
assembling structural requirements to allow molecular recognition
of more than one target simultaneously, featuring a multi-target or
multifunctional drug [4, 5]. When multiple targets related to the
same pathology are associated with distinct biochemical cascades,
the active ligand can be also called as a symbiotic compound [4].

2 Socioeconomic Impact and Prevalence of Alzheimer’s Disease

With the increase in average life expectancy worldwide, neurode-
generative disorders, such as AD, have attracted a great attention,
especially in more developed countries. As a progressive, disabling,
and incurable disease, patients die within an average of 10 years
after its installation and first symptoms [7]. The age is its main risk
factor, with a prevalence of 0.7% among individuals 60–65 years of
age and about 40% in the age groups above 90 years [8, 9]. In
2012, about 5.4 million of American people were affected by
AD. In spite of very imprecise estimates available, it is believed
that by 2050, over 16 million Americans will have AD, with an
annual cost that could exceed U$ 1.1 trillion [10]. Other estimates
point to a global epidemic of AD, reaching 26 million people by
2050, if a cure is not yet discovered and available [3, 11].
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The increase in life quality, as a natural consequence of recent
advances in medicine and technological development, has been
reflected directly in the increased longevity worldwide. The United
Nations (UN) believes that the “age of aging” began in 1975 and
this trend is expected to extend until 2025 [11, 12]. According to
the Brazilian Institute of Geography and Statistics, Europe occupies
the first position in the proportion of the population above 60 years
(19.8%), followed by North America (16.3%) [13].

3 Multifactorial Aspects of Alzheimer’s Disease

AD is a degenerative disorder of the central nervous system (CNS)
and is one of the most common dementia among the population
above age 65. AD is characterized by a progressive loss in memory,
cognition, motor and functional capacity, gradually undermining
social behavior, and ability to perform routine tasks, such as feed-
ing, personal hygiene, and interpersonal relationships. Although
the etiology of AD is not completely understood, it is well estab-
lished that operation of multiple interconnected factors (Fig. 1)
is related to the installation, development, and evolution of the
disease.

AD patients present lower levels of the neurotransmitter ace-
tylcholine (ACh) in the synaptic cleft and an impaired cholinergic
transmission, resulting in learning and memory dysfunction. These
related events originated the proposal of the “Cholinergic Hypoth-
esis” for AD, stating that one way to enhance cholinergic neuro-
transmission is to inhibit an enzyme responsible for the metabolic
breakdown of ACh [14].

Apparently, physiological deregulation in some brain regions,
the origin of which being not entirely understood, is responsible
for an overproduction of amyloid peptide (Aβ). Then, β- and
γ-secretase enzymes abnormally cleave Aβ, producing insoluble
fragments of 39–43 amino acid residues. Fragments Aβ1–42, even
at low concentrations, seem to be more prone to oligomerization
and formation of insoluble neurotoxic aggregates, the so-called
amyloid plaques, and are the main therapeutic target advocated by
the “Amyloid Hypothesis” [5, 6, 15].

A secondary event due to neurotoxicity of amyloid plaques is
the hyperphosphorylation of the neuronal microtubule constitutive
tau protein. This abnormal phosphorylation of tau leads to struc-
tural collapse of microtubules and the consequent release of tau
protein fragments, which take the form of insoluble fibrillar coil,
depositing intracellular as neurofibrillary tangles [6, 10, 16–18].

These two biochemical factors acting together lead to accentu-
ate changes in the CNS homeostasis and function, causing numer-
ous cellular processes and organelles activation, acting as starting
points of a complex process of interconnected physiological
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damage, also leading to neuronal death [17]. Although most stud-
ies have emphasized the neurotoxicity of amyloid plaques, recent
evidences indicate that an increase in the concentration of soluble
amyloid oligomers generated by overproduction of Aβ (Fig. 1) can
be also responsible for increasing neuronal injury [6, 19].

Mitochondria are the major intracellular targets of soluble Aβ
(sAβ) oligomers. In excess, sAβ eventually interferes with normal
function of mitochondria, causing overproduction of reactive oxy-
gen species (ROS), inhibition of cellular respiration, ATP produc-
tion, and damage in mitochondrial structure [19, 20]. It seems that
the deleterious effects of sAβ on the mitochondria are the result of
changes in homeostasis and intracellular Ca2+ signaling, as evi-
denced by the induction of massive influx of Ca+2 in cultured
neurons, causing its concentration increasing in mitochondria and
neuronal apoptosis (Fig. 1) [19]. Accumulation of Ca2+ in mito-
chondria causes opening of the mitochondrial permeability transi-
tion pore (mPTP), a wide mitochondrial membrane channel that
allows the passage of large molecules bidirectional uncontrolled,
resulting in disintegration of organelles and functional
structure [19].

Recent studies have shown that the dephosphorylation of neu-
rofibrillary tangles of tau protein was able to restore its ability to
bind to microtubule neurons, indicating that the kinetic mechan-
isms that regulate the phosphorylation/dephosphorylation process
are altered in AD [21]. The nature of the protein kinases, phospha-
tases, and tau sites involved in these lesions was recently unveiled,
suggesting that activation of protein phosphatase phosphoserine or
phosphotreonine (PP-2a) or inhibition of glycogen synthase
kinase-3β (GSK-3β), and protein cyclin-dependent kinase
5 (CDK5) may be required for inhibiting the degeneration caused
by neurofibrils in AD [21].

In recent years, many other hypotheses have been proposed to
explain the complexity and multifactorial pathogenesis of AD,
including oxidative stress, disruption of homeostasis by metal
ions, and neuroinflammation [17, 22, 23]. Currently, oxidative
stress is considered one of the major causative factors of AD, uni-
fying a number of other sequential or individual pathophysiological
events. Oxidative damage in the brain of AD patients is a result of
excessive production of free radicals induced by Aβ, functional
alteration in mitochondria, inadequacy in energy supply, produc-
tion of inflammatory mediators, and alteration of antioxidant
defenses (Fig. 1) [24, 25]. Modulation of cellular oxidative pro-
cesses is closely related to the redox properties of some metals.
Change in concentration of such ions can lead to oxidative stress
and increased ROS production. Copper (Cu2+), zinc (Zn2+), and
other metal ions influence the processes of protein aggregation, a
critical step in many neurodegenerative diseases. In the case of AD,
amyloid precursor protein (APP) and Aβ are able to form
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complexes with and reduce Cu2+, which forms a high affinity
complex with Aβ, promoting their aggregation.

Furthermore, in vitro studies showed that Aβ neurotoxicity is
dependent on the catalytic generation of H2O2, which is enhanced
by the presence of Aβ-Cu+2 complexes. In addition, Cu2+, Zn2+,
and Fe3+ are present in amyloid plaques in brains with AD, which
can be dissolved by the action of metal-chelating substances
[6, 18, 26].

The production of Aβ also depends on the bioavailability of
cholesterol in nerve cells, since the activity balance of the α- and
β-secretases (BACE-1) is related to the lipid composition of cells.
High concentrations of cholesterol into the cells lead to an
increase in amyloidogenic APP process by β-secretase. Lower levels
of cholesterol stimulates APP processing physiological by action of
enzyme α-secretase. The hypothesis that the control of plasmatic
cholesterol levels would be beneficial for treating AD has been
demonstrated by using anticholesterolemic drugs, such as statins,
which act as HMG-CoA reductase inhibitors [18].

Finally, deposition of Aβ fragments and neurofibrils, coupled
with the uncontrolled production of ROS, is crucial for the instal-
lation of a neuroinflammatory process, with the same complexity
observed in peripheral tissues. The scope and relevance of this
process in the establishment and development of chronic DA have
been demonstrated in several recent studies in the literature
[27–30]. Among all the brain cells, microglia appears to have
fundamental importance in CNS inflammation associated with
AD. These cells could be activated by Aβ, and then they modulate
the production of cytokines, chemokines, and neurotoxins that
are highly neurotoxic, contributing to neuronal degeneration
[17, 27–30].

Given the variety of factors associated with the onset, progress,
and severity of AD, increasing their degree of pathophysiological
complexity, and associated to the inefficiency of the current thera-
peutic arsenal available, it becomes unavoidable to adopt a new
concept for the rational design of new drugs against DA (Fig. 1).
In this context, drug candidate prototypes with dual mode of
action were the first attempts to look up ligands recognized by
more than one molecular target or more than one site on the
same macromolecular target. Currently, a new strategy of multi-
target directed ligands (MTDL) is gaining special attention in the
scientific community, which has been seeking molecular hybridiza-
tion, a tool for designing new molecular patterns. These molecular
hybrids could lead to the identification of new bioactive chemical
entities with selective affinity for multiple targets, preferably in
different biochemical cascades. Therefore, these innovative ligands
could play a singular role in the advance of a broadly and more
efficient therapy, and perhaps, in the cure of AD.
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4 Recent Multi-target Directed Drug Candidates Designed for the Treatment of AD

This new approach, considering multifunctional drugs or ligands
directed at multiple targets associated with the same disease (sym-
biotic drugs), has gained special importance and introduced a new
thinking approach in the design of new drug candidates for
AD. Molecular hybridization of pharmacophoric subunits of differ-
ent bioactive molecules is the main tool for structural planning and
has provided the discovery of numerous ligands with multiple
properties, including antioxidant, neuroprotective, metal chelation,
anti-inflammatory, anti-Aβ aggregation, and cholinesterase and
secretase inhibitory activities. Therefore, a set of other potential
therapeutic targets have been studied for simultaneous interven-
tion, seeking for more efficacy in relieving the symptoms and slow-
ing the progression of AD, and aiming for its definitive control and
cure [1, 2, 31–33].

Since 2005, the literature has shown several results from apply-
ing this innovative approach in drug design. Drugs such as done-
pezil, tacrine, and rivastigmine [34, 35] have been used as
structural models for molecular hybridization with bioactive syn-
thetic and natural products such as curcumine [15, 36], berberine
[37, 38], and 8-hydroxyquinolines [39], among others in the
search for new chemical entities with multiple bioactive properties
useful for the treatment of AD.

Memoquin (2, Fig. 2), a 1,4-benzoquinone-poliamine hybrid
compound, was reported by Cavalli and co-workers as a promising
drug prototype for AD. The structural design of compound 2 was
based on a polyamine core, derived from coproctamine (1), a
dimeric agent with anticholinesterasic and antimuscarinic. Aiming
to add to these properties, the ability to neutralize ROS and
neuroprotection, the authors proposed the insertion of a
1,4-benzoquinone, from coenzyme Q10 (CoQ10), a fragment
with a recognized potent mitochondrial antioxidant property and
a protector of the hippocampus neurons against Aβ1–40 induced
neurotoxicity. The inner polymethylene chain was replaced by the
benzoquinone nucleus. The insertion of the benzoquinone nucleus
contributes to increase the neuroprotective activity, because a
hydrophobic and planar π system is generated, which is able in
principle to bind Aβ [36, 40].

Memoquin (2) exhibited ability to inhibit acetylcholinesterase
(AChE) (IC50 ¼ 1.55 nM), almost 15-fold more potent than the
reference compound (coproctamine, 1). Memoquin (2) also inhib-
ited AChE-induced Aβ1–40 aggregation with an IC50 of 28.3 μM
and the self-induced Aβ1–42 aggregation with an IC50 of 5.93 μM.
In addition, compound 2 is also capable to inhibit BACE-1
(β secretase) activity in the range of nanomolar concentrations
(IC50 ¼ 108 nM) and showed antioxidant properties, reducing
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the formation of free radicals by 44.1%. It was demonstrated that
the 1,4-benzoquinone moiety can be reduced in vivo to the
1,4-dihydroquinone form, increasing its antioxidant potential and
scavenging properties. Finally, in vivo assays showed the potential
of memoquin to restore the cholinergic deficit and successfully
reduce Aβ expression and accumulation, also reducing hyperpho-
sphorylation of tau protein [40, 41].

Considering all these multi-target profiles of memoquin (2),
Bolognesi and co-workers reported in 2009 the design of new
hybrid lipoic acid–memoquin (4–7) derivatives inspired on the
memoquin structure and lipoic acid structure which is a potent
antioxidant. In addition to the observed biological properties
of memoquin, compound 5 (IC50 human AChE
(hAChE) ¼ 0.10 � 0.01 μM, IC50 hBuChE ¼ 4.99 � 0.13 μM,
and inhibition of Aβ aggregation ¼ 45.4 � 0.1%) also exhibited a
good neuroprotective effect against oxidative stress, greater than
the reference control lipoic acid (3) [41].

Curcumin (8, Fig. 3) is the major constituent of Curcuma
longa, species that is used in Indian Traditional Medicine that
exhibit various neuroprotective properties. This compound has
been used as estructural model molecular to generate new hybrids
with memoquin (2). These hybrids exhibit effects Aβ-aggregation
inhibitory, neuroprotective and AChE and butyrylcholinesterase
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(BuChE) inhibitory properties. Among the novel memoquin
hybrid derivatives, compounds 10 and 11 (Fig. 3) showed the
best multiple-target action profile with selective inhibitory activities
of AChE and BuChE, with modulatory effects on the amyloid
aggregation and inhibition of neurofibrils formation [42].

5 Multi-target Directed Ligands Inspired by Galanthamine

According to the studies of Simoni and co-workers, a series of
hybrid derivatives (14) of galanthamine (12), an AChE inhibitor
and memantine (13), a noncompetitive NMDA receptor antago-
nist, showed potent AChE inhibitory activities with multiple neu-
roprotective effects in vitro (Fig. 4). Some of these hybrid
compounds were also capable to prevent glutamate-induced
neurotoxicity by moderately blocking glutamate receptor NMDA
subtype and neuronal cell death via NMDA receptor-dependent
effect at nanomolar concentrations (e.g., memagal (15), IC50
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NMDA ¼ 0.28 nM). These molecules were the first examples
reported of dual AChE/NR2B drug prototype candidates [43].

A new series of bivalent β-carboline derivatives (16–18) was
synthesized by Rook and co-workers based on previous studies that
disclosed monovalent β-carbolines as potent dual AChE/BuChE
inhibitors (Fig. 5). During an investigative study for the ability of
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O N
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Fig. 4 Chemical structure of galanthamine–memantine hybrid compounds (14) with dual AChE/NR2B effect
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Fig. 5 Chemical structure of new bivalent β-carboline derivatives 17 and 18

264 Cindy Juliet Cristancho Ortiz et al.



these β-carboline derivatives to interact with multiple targets, the
researchers also found that several compounds were also potent
NMDA receptor blockers, in addition to the potent inhibitory
properties of both AChE/BuChE enzymes. A structure–activity
study revealed that the inhibitory activity of quaternary
N9-bivalent β-carbolines was increased compared to their monova-
lent analogues. Compound 18 showed the higher AChE inhibitory
activity (IC50 AChE¼ 0.5 nM) and proved to be a potent inhibitor
of the transient induced-glutamate Ca+2 with an IC50 ¼ 1.4 μM,
which is fourfold more potent than memantine (13)
(IC50 ¼ 5.6 μM) in the same assay conditions [44].

Rizzo and co-workers reported a new series of hybrid mole-
cules based on the structure of the AChE inhibitor N-methyl-N-
benzylamine (20), and compound SKF-64346 (19), a benzofuran
derivative with good inhibitory properties of Aβ-fibril formation,
using a heptyloxy moiety as a linker subunit. All compounds eval-
uated have shown to be good AChE and Aβ-fibril formation inhi-
bitors, reducing the Aβ neurotoxicity. Compound 21 showed an
IC50 of 38.1 μM in BuChE inhibition, being 1.06-fold more
selective towards BuChE than AChE (IC50 AChE ¼ 40.7 μM).
Furthermore, this compound was also able to inhibit Aβ self-
aggregation with an IC50 of 12.5 μMand showed a neuroprotective
effect of 58% at 30 mM [45]. Some years later, aiming to improve
its pharmacological profile the researchers modified the original
structure of compound 21 by variation of the spacer subunit
between the 2-arylbenzofuran and the N-methyl-N-benzylamine
moieties. They proposed a variation in the length of the spacer
subunit, modification in the substituents in three positions of the
benzofuran scaffold, and change of the N-methyl-N-benzylamine
heptyloxy side chain from the para to meta position (Fig. 6)
[45]. These structural modifications led to a new series 22 that
exhibited an increase in activity for most of the modified
compounds.

Among the most active compounds of the series 22,
compounds 23 (IC50 hAChE ¼ 102 � 18 μM, IC50

hBuChE ¼ 0.40 � 0.07 μM) and 24 (IC50 hBuChE ¼
0.048 � 0.008 μM) exhibited the best BuChE inhibitory proper-
ties, with carbamate 25 (IC50 hAChE ¼ 0.34 � 0.03 μM, IC50

hBuChE ¼ 0.88 � 0.10 μM) also showing higher dual inhibitory
activity of AChE and BuChE in comparison to rivastigmine. In
addition, compounds 26 (IC50 hAChE ¼ 32.6 � 11.9 μM, IC50

hBuChE ¼ 0.28 � 0.02 μM) and 27 (IC50 hAChE ¼
0.24 � 0.02 μM, IC50 hBuChE ¼ 2.88 � 0.26 μM) also showed
significant in vitro inhibitory activities on Aβ-fibril formation up to
81% (Fig. 7) [45, 46].

Piazza and co-workers also searching for multifunctional drug
candidates for AD planned a series dual of inhibitors 30–31 of
hAChE and BACE-1. The molecular design was based in a dual-
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binding site (DBS) AChE inhibitor, AP2238 (28), which is able to
simultaneously interact with both the central and the peripheral
anionic sites (PAS) of AChE. It was synthesized a series of com-
pound derivatives by replacing the methoxy substituents of the
coumarin moiety by an amidic chain subunit aiming to extend the
activity to BACE-1 (Fig. 8). The position 6 or 7 of the coumarin
moiety was also replaced by a di-halophenyl acid subunit, consider-
ing that this moiety emerged as a leitmotif in different BACE-1
inhibitors reported in the literature. All compounds were potent
inhibitors, particularly compounds 30 (IC50 hAChE ¼ 0.551 μM,
IC50 BACE-1 ¼ 0.149 μM) and 31 (IC50 hAChE ¼ 0.181 μM,
IC50 BACE-1 ¼ 0.150 μM) that exhibited the best inhibitory
profile in the target series. Biological data clearly indicated that
the introduction of a halophenyl alkylamidic subunit on the scaffold
of 28 allowed obtaining more potent BACE-1 inhibitors, and the
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Fig. 6 Design of compound 21 by molecular hybridization of SKF-64346 (19) and N-methyl-N-benzylamines
(20) and its molecular derivative series 22
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presence of substituents in the position 6 or 7 on the coumarin
nucleus seems to equally contribute to the relative binding affinity
of this molecular series [46].

6 Multi-target Directed Ligands Inspired by Donepezil

The donepezil (Aricept®, 32) arose in the 1980s as a reversible and
noncompetitive inhibitor of AChE, to be the most used drug for
the AD therapy [47]. Computational studies indicate that its action
mechanism is derived from the N-benzylpiperidine and indanone
subunits, which guarantee high affinity and selectivity for AChE
[48]. Clinical studies revealed that the use of donepezil resulted in
significant improvement in memory, concentration, language, and
reasoning, without signs of toxicity; however, there was no cure
[48]. We will see below (Fig. 9) that donepezil (32) has been widely
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used as a prototype in the design of new MTDL drug candidates
planned by molecular hybridization.

Wu and co-authors develop new substances capable of acting
concomitantly as AChEIs, monoamine oxidase (MAO) inhibitors,
and antioxidants, interacting with different targets involved in AD
pathogenesis. The novel hybrid series was planned by structural
combination of the N-benzyl-piperidine moiety from donepezil
(32) as an AChEI pharmacophore, a metal-chelating portion repre-
sented by the 8-hydroxyquinoline system (33) and a propargyla-
mine moiety (34) for MAO inhibitory activity (Fig. 9). In this
context, six new substances were synthesized, with compound 35
which stood out from the others, showing a selective inhibition of
MAO(IC50MAO-A¼10.1�1.1 μMand IC50MAO-B>100 μM)
and interesting IC50 values for AChE inhibition
(IC50 ¼ 0.029 � 0.003 μM) and BuChE (IC50 ¼ 0.039 �
0.003 μM). Then, the metal-chelating properties of compound
35 were evaluated and this has shown to be capable of chelating
Zn+2 and Cu+2. These results explain an observed dose-dependent
pharmacological profile, when used in concentrations greater than
0.4 μM, for inhibition of Cu-mediated H2O2 production. In addi-
tion, compound 35 also showed antioxidant activity (1.12 � 0.43
trolox equivalent by ORAC assay). Finally, we can state that com-
pound 35 represents a genuine multi-target hybrid ligand, being a
strong inhibitor of ChEs and a selective inhibitor of MAO-A, with
antioxidant and Cu+2 chelating activities [49].

The N-benzylpiperidine moiety, derived from donepezil (32),
was also used as a scaffold by Pudlo and co-workers for the design
of a series of donepezil–quinolones hybrid compounds (37–38)
with antioxidant and AChE inhibitory properties (Fig. 10). Quin-
olone derivatives (36) include motifs exhibiting a wide variety of
biological activities, such as ROS scavenging ability. All phenolic
compounds of the target series 37–38 have shown moderate to
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high radical scavenging activities. Compounds 37 and 38 were the
most potent, with compound 37 showing an effective inhibition of
AChE and high radical scavenging activity, without altering the
inhibition of AChE. The catechol moiety of compound 38
provided antioxidant activity and was also involved in an additional
interaction with AChE. However, despite the multifunctional
properties exhibited by both compounds 37 and 38, their AChE
inhibitory activities were considered low, with IC50 values of
0.23 � 0.03 μM and 0.98 � 0.35 μM, respectively. By contrast,
these results suggested that, due to its ability in radical scavenging,
quinolone moiety could be considered an interesting biophore
group in the design of novel multipotent molecules for the treat-
ment of Alzheimer’s disease [50].

A new family of multi-target molecules able to interact with
both AChE and BuChE as well as with MAO A and B has been
synthesized by Samadi and collaborators. Rational structural pat-
tern of these compounds considered conjunctive approach by com-
bination of benzylpiperidine and N-propargylamine moieties
present in the AChE inhibitor donepezil (32) and the MAO inhib-
itor PF9601N (39), respectively, connected by a central pyridine or
naphthyridine ring system (Fig. 11). The most promising derivative
40 showed a potent inhibitory activity of AChE (IC50 ¼ 37 nM),
but less potent than donepezil. This compound also showed a
moderate inhibitory potency of MAO-A (IC50 ¼ 41 μM). More-
over, molecular modeling showed that these inhibitors probably act
in two binding sites of AChE, and that the length of the spacer
subunit is of particular relevance in the modulation of AChE inhi-
bition, being crucial for the dual interaction of these molecules with
both catalytic anionic site (CAS) and PAS sites of the enzyme [51].

In 2011, another publication by Bolea and collaborators also
reported the synthesis and pharmacological evaluation of a new
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family of multifunctional molecules capable of interacting simulta-
neously with the AD-related enzymes AChE, BuChE,MAO-A, and
MAO-B. The structural architecture of the series 42 (Fig. 12) was
based on the molecular hybridization of the benzylpiperidine
moiety of donepezil (32) and the indolyl-propapylamino subunit
present in the structure of the MAO inhibitor N-[(5benzyloxy-1-
methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine (41),
connected by a central oxy-methylene chain. Compound 43
was identified as the most promising compound from series 42,
showing a good selectivity and high potency in the inhibition of
MAO-A with an IC50 ¼ 5.2 nM (IC50 MAO-B ¼ 43.0 nM), but
less potent and with poor selectivity for the AChE (IC50 ¼ 0.35
μM) and BuChE (IC50 ¼ 0.46 μM). Further molecular modeling
and enzymatic kinetics studies clarified that these inhibitors act in
two binding sites of AChE, which could explain the inhibitory
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Fig. 12 Chemical structure of the lead compound 43 designed as a multi-target directed ligand (MTDL) for
ChEs and MAO-A and B
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effect over Aβ-self-induced (47.8 � 2.1%) and AChE-dependent
aggregation (32.4 � 7%) exerted compound 43 [52].

Taking the structure of donepezil (32) as a model, Huang and
co-workers reported in 2012 a new family of derivatives based on
the structure of benzylidene-indanone (45) pharmacophoric sub-
unit of 32 with the insertion of set of substituted benzene ring
systems (44, Fig. 13). In vitro evaluation showed that most of
the compounds were potent inhibitors of MAO-B (IC50 of
7.5–40.5 μM), besides antioxidant (ORAC-FL value of
2.75–9.37 μM) and metal chelator properties. In addition, they
showed a great ability for inhibition of self-induced β-amyloid
aggregation (10.5–80.1%, 20 μM). Compound 46 was identified
as the most potent inhibitor agent of Aβ1–42 aggregation (80.1%)
and MAO-B (IC50 ¼ 7.5 μM). Moreover, compound 42 proved to
be an excellent antioxidant and metal chelator agent, being able to
inhibit Cu2+-induced Aβ1–42 aggregation and disassembling the Aβ
fibrils [53]. Thus compound 46 is one of the most current exam-
ples from the literature for a genuine MTDL drug prototype can-
didate for AD treatment.

In 2015, Guzior and co-workers reported the synthesis and
pharmacologic evaluation of a new series of donepezil-based com-
pounds endowed with inhibitory properties against cholinesterases
and β-amyloid aggregation. The donepezil-based compounds 48
and 49 consisted of an isoindoline-1,3-dione fragment connected
to N-methyl-benzylamine subunit by alkyl linkers of different
lengths 47 (Fig. 14). Crystallographic studies revealed that AChE
has two binding sites: CAS and PAS. AChE is associated with
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HO

HO
O O

N

4544

IC50 MAO-B = 7.5 mM

Fig. 13 Chemical structure of compound 46, a substituted-benzylidene indanone derivative with a wide range
of multi-activity profile
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induced β-amyloid aggregation. The peripheric anionic site (PAS)
of AChE is the local where the interaction between the enzyme and
Aβ apparently occurs. This enzyme interacts with the amyloid
β-peptide (Aβ) and promotes amyloid fibril formation [54]. Dual
AChEIs could have pro-cognitive effects as well disease-modifying
properties by inhibiting Aβ aggregation in AD. These findings
showed an additional role of PAS, resulting in the development of
novel classes of active compounds-bivalent AChE inhibitors – that
interact with CAS and PAS at the same time. Thus, a series of
phthalimide–benzylamine derivatives were designed as DBS
AChE inhibitors in which theN-benzylamine moiety could interact
with the CAS of the AChE and an isoindoline-1,3-dione fragment
could bind to the PAS of the enzyme. The results of pharmacologi-
cal evaluation led to compound 49 (Fig. 14) as the most potent and
selective hAChE inhibitor (IC50 ¼ 0.361 � 0.010 μM) with addi-
tional properties such as Aβ aggregation inhibition and neuropro-
tective effect against Aβ toxicity. Kinetic studies revealed that 49
inhibited AChE in noncompetitive mode and the results from
blood–brain barrier (BBB) permeability assay showed their ability
to penetrate in the CNS [55].

In another approach, Więckowska and co-workers designed
and synthesized new compounds as donepezil derivatives contain-
ing the N-benzylpiperidine moiety combined with phthalimide
(50) or indole moieties (51) (e.g., 52 and 53, Fig. 15). Most of
these compounds showed micromolar-range activities towards cho-
linesterases and β-amyloid aggregation, along with positive results
in BBB permeability assays. Derivative 52 is an example of such a
compound, as it combines inhibitory activity against BuChE
(IC50 ¼ 0.72 � 0.038 μM) with Aβ anti-aggregation activity
(72.5% inhibition at 10 μM). Moreover, these compounds
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Fig. 14 Design of isoindolino-1,3-dione derivatives and structure of the most active compound 49
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exhibited a similar effect of donepezil (32) in animal model of
memory impairment induced by scopolamine [56].

Considering that compound M30 (54) had been already
described as a potent selective inhibitor of MAO-A and metal
chelator, its structural framework was selected as a model for
molecular hybridization with the N-benzylpiperidine moiety pres-
ent in donepezil (32) in the drawing of a novel family of
M30–donepezil hybrid ligands (Fig. 16). These compounds were
designed to act as multifunctional inhibitors of AChE, MAO-A,
metal chelators, and inhibitors of Aβ-protein formation. Among
seven synthesized compounds, compound 55 was the most active,
being able to inhibit AChE (IC50 ¼ 1.8 � 0.1 μM) and BuChE
(IC50 ¼ 1.6 � 0.2 μM) in almost the same proportion and was able
to inhibit MAO-A (IC50 ¼ 6.2 � 0.7 μM) and MAO-B
(IC50 ¼ 10.2 � 0.9 μM) with a twofold selectivity for MAO-A.
This same compound also showed chelating ability for Cu2+ and
Fe3+ ions, when subjected to the toxicity test with HepG2 cells
showing lower toxicity than donepezil, with similar oral absorption.
Thus, it can be stated that compound 55 exhibited balanced prop-
erties as AChE and MAO-A inhibitor, besides biometal-chelating
ability, being an interesting ligand for future studies aiming at an
improvement of its action profile for the therapeutics of AD [57].

Other two new hybrid compounds 57–59 were designed as
multipotent inhibitors of ChEs andMAO based on the structure of

N
N

O

O

N

N
H

N 6

O
O

O

N

Donepezil (32)

phthalimide moiety (50) indole moiety (51)

53

N

N
HN 6

O

O

Cl

52

ßA aggregation of 72.5%

IC50 AChE = 0.72 ± 0.038 µM

ßA aggregation of 56%
IC50 AChE = 0.34 ± 0.0097 µM

Fig. 15 Design and structure of the most active hybrid donepezil–phthalimide 52 and donepezil–indole
derivative 53
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ASS234 (56), an MAO-A/B, AChE and BuChE inhibitor, done-
pezil (32), an AChE inhibitor, and PF9601N (40), a potent and
selectiveMAO-B inhibitor (Fig. 17). The hybrid compound 57was
identified as a potent nanomolar-range inhibitor of MAO-A
(IC50 ¼ 5.5 � 1.4 nM) and moderate inhibitor of MAO-B
(IC50 ¼ 150 � 31 nM), AChE (IC50 ¼ 190 � 10 nM), and
BuChE (IC50 ¼ 830 � 160 nM). Molecular modeling analysis
suggests that compound 57 is a mixed-type EeAChE inhibitor,
and that its linear conformation allows to span both the catalytic
active site and peripheral anionic subsite, compound 57 contribut-
ing to its superior binding towards AChE respect to compound 58.
Furthermore, this compound was able to establish more interac-
tions with the MAO-A active site compared to the MAO-B, which
may indicate more tight interaction and selectivity with the former
enzyme [58].

Bautista-Aguilera and collaborators described in another work
a new family based on the structure of ASS234 (56). In that
approach, the authors varied the piperidine ring substituents,
showing a very completed quantitative structure–activity
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Fig. 16 Design and structure of donepezil–M30 hybrid 55 and its inhibitory data for ChEs and MAO enzymes
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relationships (QSAR) study, identifying compound 59 (Fig. 17) as
the lead molecule. The conclusions of the QSAR study were con-
firmed by the biological evaluation, where substance 59 was able to
inhibit hMAO-A (6.3 � 0.4 nM), hMAO-B (183.6 � 7.4 nM),
hAChE (2.8 � 0.1 nM), and hBuChE (4.9 � 0.2 nM). In that
second work, Bautista-Aguilera et al. reported the design, synthesis,
and biological evaluation of 19 new donepezil–indolyl hybrids as
multifunctional drugs able to bind human MAO-A and ChE
enzymes. According to QSAR studies, the o-methyl group in com-
pound 59 improves the ligand recognition, increasing the hydro-
phobic interaction with hBuChE and π–π stacking interaction in
hMAO-A, hMAO-B, and hAChE. The ADMET virtual analysis
suggested that compound 59 has good druggable characteristics,
similar to compound 40, a prediction experimentally confirmed by
in vitro BBB permeation assays [59].

A series of 5,6-dimethoxy-indanone-benzamides planned as
analogs of donepezil was also drawn as multifunctional agent
candidates for the treatment of AD. In the study, the aim was to
evaluate a family of donepezil-like secondary amide compounds
that display a potent inhibition of cholinesterases and Aβ, with
antioxidant and metal chelation abilities. The authors synthesized
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Fig. 17 Design and biological data of the donepezil–PF9601N hybrid compounds 56–59
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some 5,6-dimethoxy-indanone-2-carboxamide derivatives contain-
ing ortho-, meta-, and para-substituted secondary aromatic amines
which could act as potent AChE inhibitors. The results showed that
the designed compounds are likely to interact with amino acid
residues in the catalytic site of AChE. Compounds 60 (IC50

BuChE ¼ 2.10 � 0.015 μM) and 61 (IC50 AChE ¼
0.08 � 1.813 μM) (Fig. 18) were found to be the most potent
inhibitors in the series, and compound 60 is the most potent
antioxidant too. Compound 61 was selective for AChE, with addi-
tional good anti-aggregation activity (55.3% at 25 μM) as well as a
moderate radical scavenging activity. Additionally, docking studies
revealed that compound 61 was able to interact with both catalytic
and peripheral AChE binding sites, which justifies its high inhibi-
tory potency and mixed-type inhibition mechanism [60].

Recently, intense research efforts in neuroscience disclosed
serotonin receptors (5HT6Rs) playing an important role in prog-
ress of neurodegenerative disorders and as a new suitable molecular
target in drug development, these receptors are not only related to
the cognitive aspects of AD but also to the behavioral and patho-
physiological aspects of the disease. These receptors are distributed
almost exclusively in the brain areas responsible for the learning
process and memory [33–36]. Looking to this new perspective,
inhibition of 5HT6Rs was considered in the design of novel hybrid
multifunctional AChE inhibitors 64 and 65 (Fig. 19) that were
drawn based on the structure of compound (62), a known 5HT6Rs
antagonist, donepezil (32) or tacrine (63) as AChE inhibitors
prototypes. In this way, tacrine–63 hybrids and donepezil–32
hybrids were synthesized and evaluated for the ability to inhibit
concomitantly 5HT6Rs, AChE, and BuChE, leading to com-
pounds 64 (IC50 5HT6 ¼ 2.0 � 0.2 nM, IC50

AChE ¼ 12.9 � 0.17 nM, and IC50 BuChE ¼ 8.2 � 0.23 nM)
and 65 (IC50 5HT6 ¼ 2.0 � 0.3 nM, 37.2% AChE inhibition at
10 nM, and IC50 BuChE ¼ 2,384 � 52.10 nM) as the most active
compounds in the target series, respectively. However, only
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Fig. 18 Chemical structures of the most active 5,6-dimethoxy-indanone-2-carboxamide derivatives 60 and 61
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compound 65 showed a promising multi-target profile, being able
to act on 5HT6Rs and AChE. Additionally, compound 65 was able
to permeate in vitro and in vivo the BBB, also exhibiting a dose-
dependent behavior initially, but when evaluated with a fixed dose,
it was verified that its activity increases with time. Finally, the
authors considered that compound 65 has a multi-target behavior,
being a potent AChE, BuChE, and 5HT6Rs inhibitor and an
interesting prototype for the development of new drug candidate
for AD treatment [61].

Lipoic acid (LA, 3, Fig. 20) is a naturally occurring substance
known for its therapeutic potential as a direct scavenger of ROS,
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with fast absorption and fast tissue distribution. It is able to quench
free radicals in aqueous and lipid phases, chelate bimetals, and
regenerate other biogenic antioxidants [62]. Data from the litera-
ture suggest that LA could also play remarkable role in neuropro-
tection, and cognitive enhancing effects related to AD pathology
[63–65]. Donepezil (32) and AP2238 [46] (28), as described
above, in spite of being AChE inhibitors, are also a potent σ-1
receptor agonist and BACE1 inhibitor, respectively. These com-
pounds were taken as molecular prototypes for the designing of
two new families of LA–donepezil and LA–AP2238 hybrid com-
pounds (Fig. 20). Six different molecules were synthesized, four
LA-donepezil and two LA-AP2238 hybrids, with some of them
separated in their enantiomers and tested separately in order to
compare their results with those of the racemate mixtures.
Among the target substances, compounds 66 and 67 were high-
lighted, showing the best results in inhibition of AChE. The race-
mic form of 66 showed a selective AChE inhibitory activity with
IC50 AChE ¼ 0.39 � 0.03 μM, IC50 BuChE ¼ 1.23 � 0.14 μM,
and IC50 BACE1 ¼ 5.65 � 0.26 μM, with the S-isomer showed to
be the eutomer (IC50 AChE ¼ 0.21 � 0.09 μM, IC50

BuChE ¼ 0.63 � 0.09 μM, and IC50 BACE1 ¼ 9.92 � 0.39 μM),
whereas the distomer R-66 showed to be twofold and 1.4-fold less
potent and selective towards AChE (IC50 ¼ 0.43 � 0.11 μM) and
BuChE (IC50 ¼ 0.79 � 0.20 μM) as well as on BACE1
(IC50¼ 8.11� 0.26 μM). In the same assay, compound 67 showed
the weaker enzymatic inhibitory potency with IC50

AChE ¼ 2.43 � 0.12 μM, IC50 BuChE ¼ 4.87 � 0.23 μM, and
IC50 BACE1 > 10 μM, in comparison to racemic 66 and its single
isomers. Furthermore, compounds (R)-66, (S)-66, (R,S)-66, and
67 were subjected to the inhibition test of σ1R and σ2R, showing
affinities ofKi σ1 ¼ 8.90� 0.45 nM,Ki σ2 ¼ 232 � 27 nM for (R,
S)-66,Ki σ1 ¼ 7.56� 0.98 nM,Ki σ2 ¼ 205� 42 nM for (R)-66,
Ki σ1 ¼ 15.1 � 1.4 nM, Ki σ2 ¼ 289 � 51 nM for (S)-66 and Ki
σ1 ¼ 21.0 � 2.6 nM, Ki σ2 ¼ 1,400 � 230 nM for compound 67.
All tested substances showed selectivity for AChE and for σ-1
receptor agonist, with weak antioxidant activities, and good CNS
permeability [66].

In a recent work, Dias and co-authors reported the synthesis
and pharmacological evaluation of a new series of molecular hybrids
feruloyl–donepezil based on the combination of the pharmacopho-
ric N-benzylpiperidine subunit from donepezil (32) and the feru-
loyl subunit present in ferulic acid (69) and curcumin (68).
Curcumin (68), an abundant natural polyphenol found in
C. longa rhizomes, is also widely used as scaffold for the planning
of new MTDLs for AD due to its potent antioxidant and anti-
inflammatory properties, playing an important role in the decrease
of oxidative damage, inflammation, and amyloid accumulation with
an additional biometal-chelating ability. The feruloyl moiety

Design of Multi-target Directed Ligands as a Modern Approach for the. . . 279



present in curcumin (68) is responsible for its antioxidant activity
and is also present in the ferulic acid (69) structure (Fig. 21), a
natural compound with potent antioxidant activity. Based on these
findings, a novel series of feruloyl–donepezil hybrid compounds
were designed as multi-target drug candidates for the treatment of
AD. In vitro results revealed potent AChE inhibitory activity for
some of these compounds and all of them showed moderate anti-
oxidant properties. Compounds 70, 71, and 72 (Fig. 21) were the
mostpotentAChE inhibitors, highlighting70with IC50¼0.46μM.
Kinetic and molecular docking studies revealed that compounds 70
and 72 are noncompetitive inhibitors, capable of interacting with
PAS of AChE. In addition, these three most promising compounds
exhibited significant in vivo anti-inflammatory activity in the mice
paw edema, pleurisy, and formalin-induced hyperalgesy models,
in vitro metal chelation activity for Cu2+ and Fe2+, and neuropro-
tection of human neuronal cells against oxidative damage. Based on
these data, 70 was elected as a lead compound in the series due to
its best inhibitory activity of AChE, also displaying high antioxidant
activities in neuronal SH-SY5Ycells, in both direct and indirect
mode (activating the Keap1/Nrf2/ARE pathway), besides being
a good biometal chelator and with significant in vivo anti-
inflammatory activity in different animal models [67].

In another recent approach, Xu and collaborators synthesized
and evaluated a novel family of donepezil–ferulic acid hybrids as
MTDLs against AD (Fig. 22). In vitro results indicated that some
of these molecules exhibited potent cholinesterase inhibitory
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activities, outstanding radical scavenging activities, and good neu-
roprotective effects on PC12 cells and could penetrate the CNS.
The compounds of series 71 without hydroxyl groups exhibited
better inhibition of both ChEs than compounds with hydroxyl
groups. Compound 71b bearing two methoxy groups on the R2

and R4 positions and one hydroxyl group on the R3 position has
better ChE inhibitory activity (IC50 ¼ 0.398 � 0.028 μM for
AChE; IC50 ¼ 0.976 � 0.102 μM for BuChE). The compounds
of series 72 exhibited moderate inhibitory activities towards
both ChEs (72a, IC50 ¼ 2.60 � 0.37 μM for AChE;
IC50 ¼ 1.08 � 0.16 μM for BuChE), suggesting that the β-
diketone bond is not needed to induce inhibition for these analo-
gues. Compounds 70a–c, 71a–c, 72a, and 72b had the ability to
scavenge the ABTS radical with 1.41, 1.81, 1.65, 1.39, 1.78, 2.10,
0.76, and 7. Compounds 70a, 70b, 71a, and 71b, which bear a
phenolic hydroxyl group or methoxy group on R2, demonstrated
that the group at the ortho position of the phenolic hydroxyl
is crucial. Moreover, the IC50 of compound 71b
(IC50 ¼ 24.9 � 0.4 μM) showed that the locations of the phenolic
hydroxyl and methoxy groups are nonadjustable. It can be seen that
compounds 71a (5.16� 10�6 cm s�1), 71b (7.68� 10�6 cm s�1),
and 71c (5.38 � 10�6 cm s�1) might be able to cross the BBB. In
additional, these compounds of series 71 are being considered a
potential multifunctional neuroprotective agent as a new lead can-
didate for the treatment of AD [68].

Similar strategy was used by Wang and co-workers on taking
advantage of the neurogenic potential profile of melatonin-based
hybrids, which are endowed with additional anticholinergic proper-
ties. Thus, they designed a novel series of compounds (74–76,
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Fig. 22 Design strategy for a new series of donepezil–ferulic acid hybrid compounds 70–72
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Fig. 23) obtained by fusing the N-benzylpiperidine moiety of the
AChEI donepezil (32) and the indole subunit of the antioxidant
melatonin 73. The design was based on the anticipation that mel-
atonin–indole subunit could ensure neuroprotective features and
could also interact with the AChE-PAS via π–π aromatic stacking
for its aromatic character. On the side, the protonable N-benzyl
piperidine moiety from donepezil could be responsible for the
interaction with the AChE-CAS through cation–π interaction.
Therefore the new molecular scaffold could be able to a dual
interaction with PAS and CAS of AChE. Biological evaluation of
this series led to compound 76 with the most promising multi-
functional profile, showing inhibitory activity of AChE
(IC50 ¼ 193 � 0.2 nM (EeAChE) and 273 � 0.5 nM (hAChE)),
with higher selectivity for BuChE (IC50 ¼ 73 � 0.1 nM
(eqBuChE) and 56 � 0.1 nM (hBuChE)), along with moderate
inhibition of Aβ1–42 self-aggregation (56.3% at 20 μM), good
antioxidant activity (3.28 trolox equivalent by ORAC assay), and
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good biometal-chelating ability, also reducing PC12 cells death
induced by oxidative stress and adequate BBB permeability [69].

Genistein (77) is a flavonoid found in soybeans and other
plants that contain red clover. This substance presents several phar-
macological activities, including antioxidant, anti-inflammatory
activity, metal chelator, and neuroprotective against Aβ-protein.
These characteristics make 78 a good prototype for planning anti-
Alzheimer drugs. However, its inability to inhibit AChE prevents
its direct use in the treatment of AD. For this reason, the N-
benzylpiperidine fragment, that is one of the well-known pharma-
cophore groups of donepezil (32), of which tertiary amino group is
related to adequate AChE inhibition, was used for a rational molec-
ular hybridization with 77 aiming new genistein–donepezil hybrids
designed as MTDLs with innovative structural pattern (Fig. 24).
Thus, three families of hybrid compounds were prepared, with
compounds 78 (IC50 hAChE ¼ 5.80 � 0.65 μM), 80 (IC50

hAChE ¼ 3.88 � 0.64 μM), and 79 (IC50 hAChE ¼
0.35 � 0.03 μM) being the most active in each family for AChE
inhibition. None of the synthesized compounds showed good
antioxidant activity. Meanwhile, compound 79, in addition to a
significant AChE inhibitory activity, also showed ability in Cu2+

chelation, with neuroprotective activity against Aβ-protein greater
than curcumin. Moreover, despite the low antioxidant activity,
compound 79 proved to be promising for further studies, as it
has high ability to inhibit AChE and moderate ability to inhibit
aggregation of Aβ-protein, both self-induced aggregation and Cu2
+-induced aggregation [70].
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Fig. 24 Design and chemical structure of the multifunctional hybrids genistein–donepezil 78–80
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Docking-assisted hybridization strategy of aminocoumarins
(81) and donepezil (32) (Fig. 25) was designed and tested by
Farina and co-workers over MAO-A and B, AChE, and BuChE.
The compounds (82) displayed from low to sub-micromolar
potencies against rat MAO-B (rMAO-B) and EeAChE, whereas
potencies against rat MAO-A (rMAO-A) and EeBuChE were
slightly lower. Compounds with the longest linker, such as 83a
and 83b, displayed the highest inhibitory potency on rMAO-A
(IC50 ¼ 0.51 and 2.1 μM, respectively) and ChEs (IC50

AChE¼ 0.095 and 0.32 μM, respectively, and IC50 BuChE¼ 0.67
and 0.49 μM, respectively). The compounds with substituents in
meta and para positions of the 7-benzyloxy subunit of the couma-
rin ring also were evaluated, with 11 substances showing significant
inhibition of AChE, and compound 84a as the most potent AChE
inhibitor (IC50 ¼ 0.10 μM). In contrast, only six compounds
exhibited a sub-micromolar activity over BuChE, with compound
84b showing the highest inhibitory potency (IC50 ¼ 0.24 μM).
Moreover, compound 85 showed a good inhibitory activity over
the three target enzymes with IC50 ¼ 0.41, 0.42, and 1.1 μM for
rMAO-B, EeAChE, and EeBuChE, respectively. Thus, some of
these multipotent inhibitors, specially compound 84a, may be
considered as promising drug candidate prototypes for further
preclinical studies in cognitive and neurodegenerative disease
models [71].

Considering a number of recent findings that points a potential
role of serotonin receptors in neurophysiology of AD [72, 73],
Rochais and co-workers report the synthesis of a novel series of
MTDLs displaying DBS inhibition of AChE and a partial 5-HT4R
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Fig. 25 Chemical structure of new derivatives aminocoumarins 83–85
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agonist activity (Fig. 26). In spite of the AChE inhibitor donepezil
(32) and donecopride (86), a novel drug candidate exhibiting, for
the first time, both in vitro DBS AChE inhibitory activity and a
serotonergic subtype 4 receptor (5-HT4R) partial agonist effect
[74], was used as molecular model in the design approach of
the new hybrid compounds 87 and 88. The compound 87
could be considered as MTDL since they exhibit both a Ki
(5-HT4R) � 20 nM and an IC50(AChE) � 400 nM. Already, the
compound 88 was a potent inhibitor of AChE (45% at 10�5 M),
but it is almost devoid of affinity for 5-HT4R (Ki ¼ 2.25 nM), as is
the case for DPZ. These results seem to confer to compound 87
(Fig. 26) a greater symptomatic and disease-modifying effect in
relation to donecopride (86), thus designing it as a potentially
promising drug candidate in AD [75].

Mishra and co-workers synthesized a novel series of (E)-2-
(4-(4-(substituted) piperazin-1-yl)benzylidene)-5,6-dimethoxy-
2,3-dihydro-1H-inden-1-one (90–92) based donepezil (32) mul-
tifunctional agents (Fig. 27). In vitro studies revealed that these
compounds demonstrated moderate to good AChE and Aβ aggre-
gation inhibitory activity and these derivatives are also endowed
with admirable antioxidant activity. The compounds 90, 91, and
92 appeared as most active multifunctional agents and displayed
marked AChE inhibitory, Aβ disaggregation, and antioxidant activ-
ity. Studies indicate that 91 and 92 showed better AChE inhibitory
activity than the standard drug donepezil 32 (IC50 � SD
(μM) ¼ 0.039 � 0.002) with IC50 � SD (μM) ¼ 0.034 � 0.002
and IC50 � SD (μM) ¼ 0.025 � 0.001, respectively. The com-
pounds 90 (IC50 � SD (μM) ¼ 7.4 � 0.10), 91 (IC50 � SD
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Fig. 26 Design of compounds 87 and 88 by molecular hybridization of donepezil (32) and donecopride (86)
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(μM)¼ 10.9� 0.17) as well as 92 (IC50 � SD (μM)¼ 9.9� 0.14)
exhibited better Aβ aggregation inhibitory activity than curcumin
(IC50 ¼ 21.81 � 0.16 μM). These three compounds successfully
diminished H2O2-induced oxidative stress in SH-SY5Y cells and
displayed excellent neuroprotective activity against H2O2 as well as
Aβ induced toxicity in SH-SY5Y cells in a concentration dependent
manner. Moreover, these derivatives did not exert any significant
toxicity in neuronal SH-SY5Y cells in cytotoxicity assay [76].

7 Multi-target Directed Ligands Inspired by Tacrine

Tacrine (THA, Cognex®, 63) was the first cholinesterase inhibitor
approved by the FDA for the treatment of AD. However, in a few
years it was banned in some countries due to its high hepatotoxicity
and low bioavailability. In recent years, tacrine 63 has been widely
used as a scaffold for the development of new multifunctional
agents [34, 77, 78].

Contelles and co-workers synthesized a new series of 4H-pyr-
ano[2,3-b]quinolone derivatives (93), planned by molecular
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Fig. 27 Molecular framework of designed novel hybrid derivatives of donepezil-based multifunctional agents
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hybridization of tacrine fused to a benzylamino-3-pyridyl ring moi-
ety, aiming to obtain new AChEIs with an innovative molecular
scaffold and to explore its pharmacophoric contributions to addi-
tional neuroprotective properties and modulatory effects on
voltage-dependent Ca+2 channels. In general, the new tacrine-
hybrid compounds showed to be better selective for AChE inhibi-
tion than tacrine. It seems that the substitution at C-20 position of
the 3-pyridyl ring system (compounds 95, 96, and 97, Fig. 28) was
deleterious for AChE inhibition as observed for derivative 94
(X¼H). In contrast, compounds 95–97 showed a good neuropro-
tective profile, as the derivative 96 was exhibiting the best neuro-
protective effect, with only 46% of cell-death suppression [79].

The dimer bis-(7)-tacrine (102, Fig. 29) was one of the first
homodimers reported in the literature with increased AChE affin-
ity, exhibiting a 1,000-fold higher inhibitory potency than tacrine.
This best inhibitory profile is due to a dual simultaneous interaction
with active and peripheral sites of AChE. Further studies demon-
strated that this compound was also capable to inhibit the AChE-
induced Aβ aggregation with an IC50 of 41.7 μM. Because of this
symbiotic profile, compound 102 has been described as
an important structural model for rational design of novel
MTDLs [80].

In 2007, Bolognesi and co-workers proposed modifications on
the structure of bis-(7)-tacrine (102) with the insertion of func-
tional groups capable of chelate metals (100, 101, 103), which are
involved in the degenerative process. For this purpose, compounds
98 (BW284c51) and ambenonium (99) were selected as model
prototypes due to their cholinesterase inhibitory activity and their
singular structural feature, carrying carbonyl and oxalamide func-
tionalities which could lead to the desired metal chelation property
(Fig. 29). The multifunctional compounds maintained potent
AChEIs in the nanomolar range, which showed additional inhibi-
tory effect of AChE-induced amyloid-β aggregation. The results
showed the ability for chelation of Cu2+ and Fe3+ ions and suggest
that these compounds might act against AD by a chelation
mechanism [35].
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94 X= H (IC50 AChE = 7.11 mM, IC50 BuChE = 13 mM)
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Fig. 28 Chemical structure of tacrine (63) and tacrine-hybrid derivatives (94–97)
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Minarini and co-workers also explored the structure of bis-(7)-
tacrine (104), in an attempt to obtain the hybrid derivative cysta-
mine bis-(7)-tacrine (105), with an insertion of the cystamine
moiety 106 as a linker between two acrydine subunits of the
bis-tacrine framework of 104 (Fig. 30). Cystamine (105) has
shown important biological properties such as antioxidant and
neuroprotection. This study revealed that the hybrid dimer cysta-
mine–tacrine 105 was able to inhibit AChE (IC50 ¼ 5.04 nM),
BuChE (IC50 ¼ 4.23 nM), self-Aβ aggregation (IC50 ¼ 24.2 μM),
and AChE-induced Aβ aggregation (52.6%) in the same range of
the reference compound, with additional neuroprotective effect on
SH-SY5Y cell line against H2O2-induced oxidative injury, with low
toxicity [80].

Fang and co-workers reported in 2008 the synthesis and phar-
macologic evaluation of a new series of tacrine–ferulic acid hybrid
derivatives (69) (Fig. 31). They planned a new structural pattern by
the connection of ferulic acid (107) to the structure of tacrine (63)
via an alkylenediamine as a linker side chain. This approach was used
aiming to obtain new multi-target hybrid compounds which could
conjugate the AChE inhibitory activity originating from the tacrine
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Fig. 29 Design of the new series of derivatives of bis-(7)-tacrine (102) with improved activities for inhibition of
AChE inhibition and AChE-induced amyloid-β aggregation, and ion metal chelation
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template and the antioxidant activity from the ferulic acid moiety.
The compounds showed lower antioxidant activity than ferulic
acid, but all hybrids tested showed moderate to good antioxidant
activity. All compounds effectively inhibited AChE in in vitro
assays. Particularly, compound 108 showed a tenfold higher
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Fig. 30 Design of the multipotent cystamine–tacrine dimer (105) by molecular hybridization of bis-(7)-tacrine
(104) and cystamine (106)
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Fig. 31 Design of the new series of hybrid tacrine–ferulic acid (107) derivatives with dual antioxidant and
IAChE properties
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AChE inhibitory activity (IC50 ¼ 4.4 nM) than tacrine. Enzymatic
kinetics studies suggest that this compound possesses high affinity
binding to the PAS of AChE and, therefore, could inhibit
Aβ-peptide fibril formation [81].

In another approach, Rosini and co-workers also used tacrine as
a model for the planning of a new series of hybrid compounds
(110–113) based on the structural feature of carvedilol (109).
This compound showed a significant neuroprotective efficacy,
probably related to its modulatory action as a low-affinity antago-
nist of N-methyl-D-aspartate (NMDAR). Thus, carbazole moiety
of 109was elected as a probable structural pharmacophoric subunit
responsible by its antioxidant properties and efficient inhibitory
activity of Aβ-fibril formation (Fig. 32). Biological evaluation
revealed that all compounds showed effective AChE-inhibiting
activity in a nanomolar range, being more potent than tacrine.
Particularly, compounds 110–113 showed an adequate biological
profile for multi-target drugs, inhibiting AChE activity and also
capable of blocking in vitro Aβ self-aggregation, AChE-mediated
Aβ-aggregation, NMDARs antagonistic effect, and to reduce cere-
bral oxidative stress [6].
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Fig. 32 Chemical structure of carvelodiol (109) and their active derivatives 110–113
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In another approach, tacripyrines (115) were designed by
combining tacrine (63) with a calcium antagonist such as nimodi-
pine (114) (Fig. 33). In this study, the AChE inhibitory activity of
the nimodipine–tacrine hybrids 115 is potentiated, with IC50 in the
nanomolar range for AChE. Besides acting as an inhibitor of AChE,
these compounds also showed significant neuroprotective effects.
In particular, compound 115a ((IC50 ¼ 105 � 15 nM) was mod-
erately active in AChE-induced and Aβ-self-aggregation models
(30 and 35% inhibition, respectively). Further kinetic studies and
molecular modeling data suggest that compound 115a could inter-
act with the PAS of the AChE, exerting its inhibitory properties in
noncompetitive mode. Additionally, most of the compounds
showed moderate Ca2+ channel blocking effect and therefore the
compounds are neuroprotective agents [82].

A novel series of tacrine–caffeic acid hybrids (116) were
designed by combining the structure of caffeic acid (117) and
tacrine (63) (Fig. 34) as MTDL against Alzheimer’s disease. In
vitro studies showed that most of the target molecules exhibited
significant antioxidant activities on oxygen radical absorbance
capacity (ORAC) method. The hybrid molecules showed to be
good metal chelators and exhibited higher antioxidant capacity
than the caffeic acid with values of 2.75–9.37 μM. In particular,
compound 118 exhibited the greatest ability in inhibition of self-
or AChE-induced β-amyloid1–40 aggregation as well as showed
potent neuroprotective effects against H2O2- and glutamate-
induced cell death, with low toxicity in HT22 cells. Further molec-
ular modeling and enzymatic kinetics studies clarified that these
inhibitors may act in two binding sites of AChE, which could
explain the inhibitory effect exerted over Aβ-aggregation [83].

In another work, Wang and collaborators reported a series of
tacrine-based 63 hybrid compounds, containing an additional
pharmacophoric subunit 4-phenyl-2-aminothiazole with different
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Fig. 33 Structure of tacripyrines (40) and the most active compound 115a designed by molecular hybridization
of tacrine (63) and nimodipine (114)
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spacer subunits. The pharmacophoric grouping 4-phenyl-2-ami-
nothiazole 119 was elected based on data from the literature that
suggest this functionality as responsible for inhibitory effects on tau
protein aggregation and on Aβ self-aggregation, neuroprotection,
and anti-inflammatory. All ten compounds of the series of phenyl-
thiazole–tacrine hybrids (120, Fig. 35) were potent inhibitors
of cholinesterases with IC50 values ranging from 5.78 � 0.05 to
7.14 � 0.01 nM for AChE, and from 5.75 � 0.03 to
10.35 � 0.15 nM for BuChE. Moreover, a structure–activity rela-
tionship study was conducted to study the influence on the type of
middle linker and substitutions at 40-position of 4-phenyl-2-ami-
nothiazole. The results were indicative that the length of middle
linker affected the AChE inhibitory potency. Compound 121, with
the largest linker subunit exhibited, showed a greater potency in
AChE inhibition (IC50 ¼ 7.14 � 0.01 nM). Data from kinetic
studies have shown that this compound is a mixed-type inhibitor
and could bind simultaneously at the catalytic and the peripheral
sites of AChE. Most of phenylthiazole–tacrine hybrids showed a
good inhibitory potency on Aβ1–42 self-aggregation, although the
activity was lower when compared with subunit 4-phenyl-2-ami-
nothiazole. Additionally, compound 121 displayed a blockade
effect on Ca2+ overload in the primary cultured cortical
neurons [84].

Lan and co-workers outlined novel tacrine–β-carboline hybrid
compounds (123), designed from the structural feature of natural
β-carboline-(pyrido[3,4-b]-indoles (124) and tacrine (63)
(Fig. 36). Tacrine was used for the inhibition of ChE through its
binding ability to the CAS of AChE, while β-carboline (122) was
used for its potential interaction with the PAS due to its aromatic
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character. In vitro evaluation showed that most of the target com-
pounds exhibited significant inhibition of AChE (EeAChE and
hAChE), BuChE, and self-induced Aβ aggregation, along with
Cu2+-induced Aβ1–42 aggregation and metal-chelating ability.
Compound 122 showed the greatest ChE inhibitory activity
(IC50 ¼ 21.6 � 0.8 nM (eeAChE), 63.2 � 2.5 nM (hAChE) and
39.8 � 1.6 nM (BuChE), good inhibition of Aβ aggregation
(65.8% at 20 μM), and good antioxidant activity (1.57 trolox
equivalents). Kinetic and molecular modeling studies indicated
that compound 122 was a mixed-type inhibitor, binding simulta-
neously to CAS and PAS of AChE. Compound 122 was also
capable to reduce PC12 cells death induced by oxidative stress
and penetrate the BBB in vitro [85].

Chioua and co-workers also used tacrine (63) as scaffold
for planning a series of eight tacrine–pyranopyrazole derivatives
(Fig. 37). All compounds were initially submitted to toxicity tests
by using cell viability assay with Hep G2 cells (300 μM). The results
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Fig. 35 Design of the phenylthiazole–tacrine hybrid compounds 120 and structure of the most active derivative
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showed that all tacrine derivatives were safe, with cell viabilities of
76–95%, in comparison to tacrine (40%). Then, AChE inhibition
assay was carried out and compounds 125 (IC50¼ 0.17� 0.04 μM)
and 126 (IC50 ¼ 1.52 � 0.49 μM) showed the best results, with
compound 125 being almost ninefold more potent than 126, with
82% of cell viability. Both compounds were additionally tested for
inhibition of Aβ aggregation and were able to reduce by half the
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O NN
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NH2
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O NN
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Fig. 37 Chemical structures of novel tacrine–pyranopyrazole multifunctional hybrid compounds 125 and 126
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amount of Aβ aggregates induced by AChE. Compound 125 was
evaluated for its neuroprotective activity, showing 164% of cellular
viability in cortical neurons after 24 h of treatment (10 μM). This
activity showed to be dose dependent, reaching its maximum effect
at 10 μMwith an EC50 ¼ 0.25 � 0.06 μM. Taking all these results,
compound 125 was elected as the most promising tacrine–pyrano-
pyrazole derivative, with a genuine structural framework and a
singular and safe multifunctional mode of action, inhibiting
AChE and AChE-induced Aβ aggregation, with neuroprotective
activity [86].

Ferulic acid (69) acid was also used as molecular scaffold by Fu
and co-workers in the design of a new series of tacrine–ferulic acid
hybrids (Fig. 38) with expected multi-target effects in the inhibi-
tion of cholinesterases, reduction of self-induced β-amyloid (Aβ)
aggregation, chelation of Cu2+, and neuroprotection. Among all
the synthesized compounds, 127 and 128 displayed the highest
selectivity in inhibiting AChE over BuChE (SI ¼ 4.087 and 1.733,
respectively). Moreover, compound 128 also showed dramatic
inhibition of self-Aβ aggregation (37.2 � 0.9% at 20 μM), Cu2+

chelating activity, and the best activity against Aβ-induced neuro-
toxicity in neuro-2A cells [87].

Benchekroun and co-workers selected ferulic acid (69) and
melatonin (73) to draw multifunctional tacrine-derived hybrid
compounds for AD. Melatonin (73) is a molecule produced by
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Fig. 38 Design and chemical structures of new multifunctional tacrine–ferulic acid hybrid compounds 127 and
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various human organs and tissues and is involved in many physio-
logical processes, such as the modulation of endogenous antioxi-
dants and immune system regulation. With aging, human beings
have a natural decline in the levels of melatonin, which has been
associated with the development of neurodegenerative diseases
such as AD. Melatonin (73) has been shown to be capable of
quenching free radicals, stimulating the biosynthesis of antioxidant
enzymes, reducing the hyperphosphorylation of neurofilaments
and protective activity against Aβ protein. Moreover, melatonin
could induce the proliferation and differentiation of neural cells in
the hippocampus of adult mice. Given these data, new ferulic
acid–tacrine–melatonin hybrids (FATMHs) (129, Fig. 39) were
synthesized and evaluated for their abilities in the inhibition of
AChE and BuChE, toxicity towards HepG2 cells, neuroprotection
in SH-SY5Ycells, Nrf2 pathway induction in AREc32 cells, BBB
permeability as well as their antioxidant capacity through ORAC.
Among all tested compounds, 129 was identified as a most potent
human cholinesterase inhibitor (IC50 hAChE ¼ 1.29 � 0.070 μM;
IC50 hBuChE ¼ 0.234 � 0.008 μM) and strong antioxidant
(9.11 � 0.21 μM), with adequate BBB permeability. This com-
pound also showed the best in vitro neuroprotective profile against
toxic insults mediated by H2O2 (300 μM), Aβ1–40 and Aβ1–42

Fig. 39 Design of the new MTDL based on the structure of tacrine (63), ferulic acid (69), and melatonin (73)
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(30 μM) at 1 μM, with significant induction of Nrf2 transcriptional
pathway (at 3 μM) in AREc32 cells [88].

Quinolines are also considered privileged heterocyclic struc-
tures present in different natural or synthetic bioactive substances
used in the treatment of different pathologies, including neurode-
generative diseases. Thus, chloro-quinoline 130 was used for
molecular hybridization with the structure of tacrine (63) to gen-
erate a new family of tacrine–quinoline hybrids, designed as AChE
inhibitors and neuroprotector MTDL candidates (Fig. 40).
Thirteen new substances were synthesized and initially submitted
to cell viability assays with Hep G2 cells, in order to verify their
safety and their hepatotoxicity. Almost all substances showed cyto-
toxicity lower than tacrine (EC50 ¼ 179 μM) and were then eval-
uated for their AChE inhibitory properties. The lowest toxic
compound 131 exhibited a very significant AChE inhibition
(IC50 AChE¼ 0.48� 0.05 μM), similarly to its methoxy derivative
132 (IC50 AChE ¼ 0.47 � 0.13 μM), were identified as the most
AChEI inhibitors. All molecules were also subjected to neuropro-
tection assays for cell death mediated by oxidative stress and, once
again, compounds 131 (EC50 ¼ 1.59 � 0.39 μM) and 132
(EC50 ¼ 0.63 � 0.13 μM) have stood out and were considered as
innovative candidates for the development of novel MTDLs for AD
therapeutics [89].

Tacrine (63) and resveratrol (133) were used as molecular
prototypes for molecular hybridization in the design of
tacrine–resveratrol hybrids with improved biological properties
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131 IC50 AChE = 0.48 ± 0.05 mM
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132 IC50 AChE = 0.47 ± 0.13 mM
EC50 Nneurop.= 0.63 ± 0.13 mM

Fig. 40 Tacrine–quinoline hybrids and more potent derivatives 131 and 132
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against AD (Fig. 41). In this context, 36 hybrids were synthesized,
and initially tested for their ability to inhibit Aβ aggregation and
antioxidant activity. Compounds 134–136 were the most active in
the inhibition of Aβ aggregation with IC50 values of 10.8� 1.5 μM,
9.7 � 1.2 μM, and 10.3 � 0.9 μM, respectively. However, the
antioxidant activity of all hybrids was lower than that of resveratrol.
Compounds 135 and 136 were evaluated towards ChE activity,
both exhibited a moderate activity and slightly selective by BuChE
with IC50 values of 64.0� 0.1 μM (AChE), 0.2� 0.1 μM (BuChE)
and 68.3 � 0.1 μM (AChE), 1.0 � 0.1 μM (BuChE),
respectively [90].

Coumarins are an important class of natural metabolites with a
wide spectrum of biological properties, and recently they have been
drawing special attention due to their biological activity related to
neuronal disorder [91]. Coumarin derivatives have been reported
as excellent MAO inhibitors, especially any 7-substituted coumarin
[92]. The substituents at three and/or four positions may increase
the selectivity to MAO-B, along with interaction with the AChE-
PAS [93, 94]. Therefore, a series of hybrids of tacrine (63) and
coumarin (137) was designed aiming novel dual inhibitors of
AChE and MAO-B (Fig. 42). Among 20 new tacrine–coumarin
hybrids, in vitro evaluation disclosed compounds 138 (IC50

AChE ¼ 16.11 � 0.09 nM, IC50 BuChE ¼ 112.72 � 0.93 nM,
IC50 MAO-A ¼ 15.07 � 0.88 μM, and IC50 MAO-B ¼
0.24 � 0.01 μM) and 139 (IC50 AChE ¼ 24.37 � 0.23 nM,
IC50 BuChE ¼ 124.32 � 1.19 nM, IC50 MAO-A ¼
53.07 � 1.24 μM, and IC50 MAO-B ¼ 0.70 � 0.02 μM) showing

HO
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OH

Resveratrol (133)

N

NH2

Tacrine (63)

N

N

N

N

N

N

N

CH3

N NN

134 IC50 Ab-aggregation =10.8 ± 1.5 mM 
IC50 AChE = --
IC50 BuChE = --

IC50 AChE = 68.3 ± 0.1 mM
IC50 BuChE = 1.0 ± 0.1 mM

IC50 AChE = 64.0 ± 0.1 mM
IC50 BuChE = 0.2 ± 0.1 mM

135 IC50 Ab-aggregation =9.7 ± 1.2 mM 136 IC50 Ab-aggregation = 10.3 ± 0.9 mM 

Fig. 41 Design, chemical, and biological data of tacrine–resveratrol hybrids 134–136
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the desired dual inhibitory profile, with good BBB
permeability [95].

Boulebd and co-workers described the synthesis and in vitro
biological evaluation of 13 new racemic and diversely functiona-
lized imidazolyl-pyrano-tacrine derivatives (140–152) as
non-hepatotoxic multipotent compounds (Fig. 43). Compound
143 was highlighted for its selective, but moderate AChE inhibi-
tory activity (IC50¼ 38.7� 1.7 μM), and a very potent antioxidant
activity on the basis of the ORAC test (2.31� 0.29 μmol Trolox/μ
mol compound). In the search for enhanced inhibitory and antiox-
idant properties, other tacrine analogues, such as compounds 147
and 150, were obtained significantly more potent AChEIs than
143, with high antioxidant activity, but, unfortunately, a high
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Fig. 43 Chemical structures of tacrine analogues 140–152 designed by molecular optimization of the imidazo-
pyranotacrine derivative
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Fig. 42 Design of the dual AChE and MAO-B inhibitors 138 and 139 by molecular hybridization of tacrine (63)
and coumarin 137
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hepatotoxicity comparable to tacrine 63 at high concentrations
(�300 μM) [96].

Spilovska and co-workers reported the synthesis and pharma-
cologic evaluation of a new series of cholinesterase inhibitors acting
as DBS heterodimers for the management of AD. Based on the
MTDL strategy by Simoni et al. [43], a series of 7-MEOTA-
amantadine urea-linked derivatives were designed, synthesized,
and evaluated as AChE/BuChE inhibitors (Fig. 44). All
14 7-MEOTA-amantadine derivatives were compared with
7-MEOTA-amantadine thioureas, 7-MEOTA (153), tacrine 63,
and galanthamine–memantine dimers. The new hybrids showed to
be more potent hAChE and hBuChE inhibitors than 7-MEOTA
with IC50 values ranging from 5.02 to 0.47 μM for thioureas
(156–162) and from 4.98 to 0.69 μM for urea derivatives
(163–169). In the 7-MEOTA-amantadine thioureas, series of five
compounds had IC50 values in sub-micromolar range for hAChE.
Only two derivatives (156 and 158) exhibited inhibition potency
in sub-micromolar range for hAChE. However, compounds 156,
and 158–162 showed sub-micromolar inhibition potency for
hBuChE. The best inhibitory activity was identified for compound
158 with IC50 of 0.11 � 0.02 μM, bearing five methylene groups
in the linker, that displayed inhibitory potency in the same magni-
tude order of THA for hAChE [97].

Based on the remarkable capacity of tacrine to interact in the
active site of AChE, Martins and collaborators proposed a new
series of tacrine-derived analogues by the insertion of a furo
[2,3-b]quinolin-4-amine (170) and pyrrolo[2,3-b]quinolin-4-
amine (171) subunits (Fig. 45). Pharmacological results revealed
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N

NH2

O NH2NH2

Memantine (155)Amantadine (154)7-methoxytacrine (153)

Fig. 44 Design of compounds 7-methoxytacrine (7-MEOTA)-amantadine ureas (156–162) and series of
7-MEOTA-amantadine thioureas (163–169)
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that the furanotacrines and pyrrolotacrines showed selective inhibi-
tion of BuChE, in a micromolar range, but these compounds have
lower potency than tacrine. The lead compound 172 exhibited the
best inhibitory profile with IC50 AChE ¼ 0.61 nM and IC50

BuChE ¼ 0.074 nM, for AChE from Electrophorus electricus and
BuChE from equine serum, with significant neuroprotective effects
against Aβ-induced toxicity in concentrations below 300 nM.
Molecular modelling studies have corroborated that the hybrid
derivatives containing pyrrole or furan ring subunits interact with
AChE and BuChE and the presence of a phenyl ring at the position
1 of the pyrrole ring is beneficial for both AChE and BuChE
inhibition [98].

Chen and co-authors reported the design, synthesis, and
in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as
multi-target AChE and BuChE inhibitors. In this work, the struc-
tural modification of ferulic acid 69 moiety was replaced by cin-
namic acid with different substitutions (Fig. 46). The target
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IC50 huAChE = 55.1 ± 4.9 nM
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Fig. 46 Design strategy and the compound 174, one of the most potent analogues
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Fig. 45 Chemical structure of the compound 172, the lead molecule forms the pyrrolo[2,3-b] quinolin-4-amine
series
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compounds were synthesized and evaluated for their in vitro and
in vivo activities related to the treatment of AD, including in vitro
assays for Aβ1–42 self-aggregation, ChE catalytic activity, cytopro-
tective effects against hydrogen peroxide, and antiproliferative
activity in PC-12 cells. In vitro assays proved that most of the
compounds effectively inhibited ChEs in the nanomolar range
(IC50 ¼ 3.8–173 nM for AChE and IC50 ¼ 13.6–170.6 nM for
BuChE) and the compound 174 was one of the most potent
analogs (IC50 hAChE ¼ 55.1 � 4.9 nM, IC50 hBuChE ¼
55.9 � 3.3 nM), which was about fourfold more active than the
compound 173 against AChE [99].

Jerábek and co-workers synthesized some tacrine–resveratrol
fused hybrids as a new series of anti-AD MTDLs. Their rational
design was based on the combination of the structural features of
the cholinesterase inhibitor tacrine with that of resveratrol 133,
which is known for its purported antioxidant and anti-
neuroinflammatory activities. Compound 175 (Fig. 47) showed
intriguing anti-inflammatory and immunomodulatory properties
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Fig. 47 Design strategy to hybrids and compound 175
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in neuronal and glial AD cell models and IC50

hAChE � SEM ¼ 8.8 + 0.4 μM, inhibition of Aβ42 self-
aggregation ¼ 31.2 � 9.0. Importantly, the MTDL profile is
accompanied by high-predicted BBB permeability, and low cyto-
toxicity on primary neurons [100].

Tepponou and co-authors designed and synthesized tacrine–-
trolox 178 and tacrine–tryptoline 179 hybrids with various linker
chain lengths. Hybrid derivative 178, containing the trolox moiety,
showed moderate to high TcAChE inhibition (IC50 ¼ 49.31 nM),
eqBuChE inhibition (IC50 ¼ 4.74 nM), and free radical scavenging
activities (IC50 ¼ 12.67 μM). The hybrid compound containing
the tryptoline moiety linked with a seven-carbon spacer to tacrine
(63) displayed the best AChE (IC50 ¼ 17.37) and BuChE inhibi-
tory activity (IC50 ¼ 3.16 nM). Novel multi-target agents that
exhibit good ChE inhibition (178 and 179) and antioxidant
(178) activity were identified as suitable candidates for further
investigation (Fig. 48) [101].
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Fig. 48 Design strategy towards tacrine–trolox and tacrine–tryptoline hybrids and the compounds 178
and 179
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8 Multi-target Directed Ligands Inspired by Natural Products (NPs)

Different structural patterns derived from plants or microorgan-
isms present AChE inhibitor activity among others, so many natural
products (NP) are used as inspiration for the design of newMTDLs
[102]. Whether by structural modifications or molecular hybridi-
zation we have numerous examples of MTDLs inspired in NP.

As one example of this strategy, berberine (180) was used as a
basic skeleton for the construction of a series of hybrid compounds
with molecular subunits that include melatonin (73) and ferulic
acid (69, Fig. 49). The aim was to obtain new derivatives 181–184
with antioxidant properties and anti-Aβ aggregation, but with
reduced inhibitory potency of AChE. The hybrid compound hidro-
quine 181 demonstrated the best ability for suppression of Aβ
aggregation, plus excellent antioxidant effect and reasonable ability
to inhibit AChE and BuChE. In addition, derivative 182 (Fig. 49)
was identified as a potent inhibitor of AChE, with strong antioxi-
dant properties, confirming the multi-target potential of these
substances in comparison to berberine, the original prototype [38].

Melatonin (73) has been shown to be capable of capturing free
radicals, stimulating the synthesis of antioxidant enzymes, reducing
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the neurofilaments hyperphosphorylation and having protective
activity against amyloid-β (Aβ) protein. Moreover, melatonin was
able to induce the proliferation and differentiation of neural cells in
the hippocampus of adult mice. N,N-dibenzyl (N-methyl) is a
protonable amine present in the structure of the known AChE
inhibitor AP2238 (28, IC50 ¼ 0.044 � 0.006 μM), because its
interaction with the AChE-CAS has been probed [103–105].
Thus, a series of melatonin–AP2238 (Fig. 50) was planned as
novel AChE inhibitors, assembling the endogenous characteristics
of both bioactive molecular prototypes. Hence, 14 new substances
were synthesized and evaluated, all showing anticholinesterase
activities with IC50 values in micromolar order, but less potent
than AP2238 (28). Permeability assay prove that all molecules
were able to cross BBB, with additional antioxidant activity close
to the reference value of melatonin, but with lower neuroprotective
activity than melatonin. Finally, considering that methoxy group is
indicated as crucial for neurogenic activity of melatonin, the
methoxy-substituted hybrids 185–187 were submitted to neuro-
genic studies. The results evidenced that these three compounds
were able to induce neurogenesis, but compound 186 excelled in
ability to induce maturation of these cells. Therefore, one can
expect that hybrids 185, 187, and specially compound 186 could
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represent innovative multifunctional drug candidates capable to
repair CNS damage caused by neurodegenerative diseases and pro-
tect neuronal cells from oxidative processes [106].

Besides melatonin (73) as an antioxidant prototype molecule,
benzylpyridinium salt (188) has been considered a privileged struc-
ture in the development of AChE inhibitors. In this context, ben-
zylpyridinium–melatonin hybrids were planned with the aim of
obtaining novel antioxidant-AChE inhibitor molecules. Twenty-
three new substances were synthesized (Fig. 51), highlighting
compounds 189 and 190 that showed high ChE inhibitory activ-
ities with IC50 values of 0.11 � 0.001 μM (AChE), 1.1 � 0.1 μM
(BuChE) and 1.3 � 0.1 μM (AChE), 0.08 � 0.001 μM (BuChE),
respectively, with pronounced antioxidant activity, especially
for compounds 189 (ORAC ¼ 3.41 � 0.05) and 190
(ORAC¼ 2.04 � 0.004). Toxicity was also evaluated in neuroblas-
toma cell cultures, with both compounds 189 and 190 showing
similar toxicity to or less than melatonin 73 [107].

Resveratrol (133), a potent phenolic natural plant metabolite,
with remarkable antioxidant and anti-inflammatory properties, has
been recently described as an inhibitor of Aβ aggregation. Thus, its
molecular scaffold has been also explored for assembly of innovative
MTDLs with antioxidant, anti-inflammatory, and inhibitory of Aβ
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Fig. 51 Design of novel benzylpyridinium–melatonin hybrids 189 and 190 with anticholinesterase and
antioxidant properties
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aggregation properties. Compounds 193 and 194 were the lead
compounds identified among a series of resveratrol-derived molec-
ular hybrids (192), planned by the combination of the catechol
pharmacophore of 83 with the well-known metal chelator clioqui-
nol (191) (Fig. 52). These two hybrid compounds showed high
potency in the inhibition of self-induced Aβ aggregation (193,
IC50 ¼ 7.56 μM and 194, IC50 ¼ 6.51 μM) in comparison to
resveratrol (IC50 ¼ 15.11 μM). Furthermore, antioxidant assays
performed by the ORACmethod showed the ability of compounds
193 and 194 in decreasing the generation of ROS species in 4.72
and 4.70 trolox equivalent, respectively. These compounds were
also capable to disassembling the highly structured Aβ fibrils gen-
erated by self- and Cu(II)-induced Aβ aggregation and exhibited
significant inhibitory effect on MAO-A and MAO-B with a moder-
ate AChE inhibition and low neurotoxicity [108].

In 2014, Pan and co-authors have already reported a series of
resveratrol (133) derivatives (Fig. 53), with potential therapeutical
use for AD treatment. Basically, derivatives 195 were planned by
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Fig. 53 Chemical structures of 3,5-dimethoxy-40-O-alkylamine–resveratrol derivatives (195) with AChE and
Aβ inhibitory properties
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exchanged the 3,5-di-hydroxy group on the ring A of resveratrol
by 3,5-di-methoxy and insertion of an alkylamino side chain
attached to the oxygen on the ring B. Among them, compound
195 exhibited the best biological results, with significant inhibitory
activity of cholinesterases (IC50 AChE ¼ 6.55 � 0.16 μM; IC50

BuChE ¼ 8.04 � 0.22 μM), Aβ42 aggregation (57.78% � 2.36 at
20 μM), and MAOs (IC50 MAO-A ¼ 17.58 � 0.76 μM; IC50

MAO-B ¼ 12.19 � 0.40 μM) [109].
Memoquin (2) is considered an example of success, being one

of the first AD multi-target drug discovery efforts. It interacts with
three molecular targets involved in AD pathology: AChE,
β-amyloid (Aβ), and BACE-1. Ferulic acid 69 has antioxidant and
anti-inflammatory effects, inhibits Aβ fibril aggregation, and pre-
vents Aβ-mediated toxicity both in vitro and in vivo. Based on these
data, Pan and co-workers selected ferulic acid (69) to combine with
different alkyl-benzylamine fragments to design a series of novel
ferulic acid–memoquin hybrids (196, Fig. 54) that are expected to
show potentially applicable multifunctional properties towards
AD. All the target compounds exhibited more potent inhibitory
activities than ferulic acid (69, IC50 > 100 μM), but lower inhibi-
tory activities than memoquin (2, IC50¼ 6.7� 0.0001 μM). Com-
pound 197 showed the strongest inhibitory activity with
IC50 ¼ 3.2 � 0.002 μM. In addition, 197 was able to disaggregate
Aβ fibrils (30.8% � 0.006 disaggregation at 25 μM), with signifi-
cant antioxidant potential (ORAC of 1.2 � 0.001) and adequate
BBB permeability in vitro. At a concentration of 10.0 μM, com-
pound 197 exhibited significant neuroprotective effect and cell
viability (88.3 � 6.5%). It is important to note that compound
197 exhibited interesting multi-target ligand profile, without
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restrictions of solubility, which is a great advantage related to
memoquin (2) that failed in preclinical trials due to its very low
solubility [110].

Pérez-Areales and co-workers described the design, synthesis,
and pharmacological evaluation of a short series of multi-target
anti-Alzheimer hybrid compounds that combine a fragment of
the highly potent AChE inhibitor huprine Y (198) with the
4-hydroxy-3-methoxyphenylpentenone moiety of shogaols (199)
(Fig. 55). A series of hybrids 200–202, differing in the nature and
size of the spacer between the huprine (198) and shogaol (199)
fragments, were docked in the hAChE models. All three com-
pounds turned out to be potent hAChE and hBuChE inhibitors
with IC50 values of 6.7 � 0.1, 18.3 � 2.0, and 21.1 � 1.9 nM,
respectively, and potent antioxidant agents, even though this hybri-
dization strategy led to slightly decreased hAChE inhibitory activity
relative to the parent huprine Y (198). The presence of the addi-
tional aromatic ring in the linker of hybrids 201 and 202, which led
to increased antioxidant activity, seemingly enhances their interac-
tion with Aβ42 and tau protein, leading to potent Aβ42 and tau anti-
aggregating activities. The Aβ42 and tau anti-aggregating activities
were in the ranges 39–71% and 35–51%, respectively, using a 10 μM
concentration of the hybrids, they being clearly more potent than
the parent huprine Y (198) and shogaol (199) [111].

Viayna and collaborators designed a family of rhein–huprine Y
hybrids (203, Fig. 56) to hit several key targets for Alzheimer’s
disease. All the racemic hybrids (�)-204–210, obtained from

OH

OCH3

O

N

Cl

HN

OH

OCH3

O

R

O

H3CO

HO

NH

Cl

N

N

Cl
H2N

(201) R= H; AChE IC50 = 18.3 ± 2.0 nM
(202) R= CH2NMe2; AChE IC50 = 21.1 ± 1.9 nM

(199) [6]-shogaol (198) huprine Y

Molecular hybridization

200

AChE IC50 = 6.7 ± 0.1 nM

Fig. 55 Structures of the natural antioxidant shogaol, the AChE inhibitor huprine Y, and shogoal–huprine Y
hybrids 200–202

Design of Multi-target Directed Ligands as a Modern Approach for the. . . 309



racemic huprine Y (198), turned out to be potent inhibitors of
hAChE, with IC50 values in the low nanomolar range. Hybrid (�)-
204, the most potent hAChEI of the series (IC50 ¼ 1.07 nM), was
equipotent to the parent racemic huprine Y [(�)-198]. Addition-
ally, the beneficial effects of (+)-204 on synaptic integrity were
apparent in the context of LTP induction. Finally, in vivo experi-
ments with transgenic APP-PS1 mice have shown that (+)- and
(�)-204 are able to lower the levels of hippocampal total soluble
Aβ and increase the levels of APP in both initial and advanced stages
of this AD model, thus suggesting a reduction of APP processing,
as expected from their potent BACE-1 inhibitory activity. Overall,
the novel rhein–huprine hybrids (+)- and (�)-204 emerge as very
promising multi-target anti Alzheimer drug candidates with the
potential to positively modify the underlying mechanisms of this
disease [112].

To date, it is well known thatMAO-B activity can increase up to
threefolds in the AD patients compared with controls. This increase
in MAO-B activity produces higher levels of H2O2 and oxidative
free radicals, which have been correlated with the development of
oxidative stress [113]. In addition, highly concentrated metal ions
(e.g., Cu2+, Zn2+, and Fe3+) in the neuropil and plaques of the brain
are closely associated with the formation of Aβ plaques and neuro-
fibrillary tangle as well as linked to the production of ROS and
oxidative stress [114, 115]. According to the studies of Huangi and
co-workers, a series of hybrid derivatives (211) with the
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pharmacophore moiety of metal chelator clioquinol (CQ) (191)
and coumarin (212) (Fig. 57) was rationally planned to generate
coumarin derivatives with expected biometal chelation ability,
along with inhibitory activity of MAO-B and Aβ anti-aggregation.
Compound 213 showed the greatest potential to inhibit hMAO-B
(IC50 ¼ 0.081 � 0.0002 μM) with >1.234-fold selectivity over
MAO-A (IC50¼ 3.5� 0.1 μM) as well as good inhibition of Aβ1–42
aggregation (52.9% � 2.2 at 20 μM), low cell toxicity in rat pheo-
chromocytoma (PC12) and SH-SY5Y cells, and BBB
permeability [116].

Aurones, 2-benzylidenebenzofuran-3(2H)-ones 214, which
are structural isomers of flavones, are present in vegetables and
flowers and have attracted considerable attentions because they
possess a wide range of bioactivities associated with neurological
diseases. Thus, Li and co-workers synthesized and evaluated a series
of 4-hydroxy-aurone derivatives 215–216 (Fig. 58) designed as
potential multifunctional agents for the treatment of AD. They
observed that all derivatives showed high antioxidant activities,
ranging from 1.00- to 3.56-fold of Trolox, especially compound
215e that showed an antioxidant activity 1.90-fold higher than
trolox, in spite of a good inhibitory activities of self- and Cu2+-
induced Aβ1–42 aggregation with 99.2 � 1.1% and 84.0 � 1.5% at
25 μM, respectively. In addition, 215e also showed remarkable
inhibitory activities of both MAO-A and B with IC50 values of
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0.271 � 0.013 μM and 0.393 � 0.025 μM, respectively. Further-
more, 216b exhibited high selectivity to MAO-B over MAO-A,
which may serve as potential MAO-B selective inhibitors. These
lead compounds 215e and 216b also showed good metal-
chelating properties and BBB permeability [117].

Li and co-workers reported the design, synthesis, and
biological evaluation of a new series of pterostilbene–benzylamines
hybrid derivatives (218–222, Fig. 59). Pterostilbene (217) is a
dimethoxy derivative of resveratrol (133) and it was used as molec-
ular model for planning new MTDL candidate prototypes with
inhibitory activity of AChE and BuChE, along with antioxidant
and Aβ aggregation inhibitory effects. The design approach was
based on the connection of pterostilbene 217 with benzylamines
218a–d using an amide functionality as spacer subunit with differ-
ent chain lengths. Pharmacological evaluation revealed compound
221d as the best selective AChE inhibitor (IC50¼ 0.06� 0.03 μM)
and good inhibition of BuChE (IC50 ¼ 28.04 � 1.71 μM). Both,
inhibition kinetic analysis and molecular modeling study indicated
that these compounds showed mixed-type inhibition mode, bind-
ing simultaneously to the CAS and PAS of AChE. In addition to
cholinesterase inhibitory activities, these compounds showed dif-
ferent levels of antioxidant activity (ORAC 0.51 � 0.03 of Trolox

Fig. 58 Structure of multifunctional aurone derivatives 215–216 designed as multifunctional drug candidates
for AD
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equivalent). SAR studies suggested that the introduction of an
amide function on the side chain of the pterostilbene fragment
led to significantly increased enzymatic activity as well as increasing
the length of the linker may give rise to a better activity [118].

Chromone 223, a privileged scaffold in Medicinal Chemistry,
is the core fragment of several flavonoid derivatives such as flavones
and isoflavones. Liu and co-workers selected chromone-2-carbox-
amide moiety to combine with alkyl-benzylamine fragments of
different lengths (a–h), inspired in the structure of genistein deri-
vatives 224, to design a potential multifunctional series of novel
chromone-2-carboxamido-alkylbenzylamine series (225, Fig. 60).
In vitro biological evaluation showed that all the target compounds
significantly inhibited AChE activity in a sub-micromolar to micro-
molar range, with good selectivity. Compound 226 exhibited the
best inhibitory potency over rat cortex homogenate AChE
(RatAChE) (IC50 ¼ 0.07 � 0.002 μM), with 736-fold higher
selectivity for AChE over BuChE. Kinetics studies revealed a
mixed-type inhibition mode for this compound, being capable of
accessing both the CAS and PAS of AChE. In addition, 226 exhib-
ited a moderate anti-oxidative activity, selective biometal-chelating
ability, along with excellent self-induced and good Cu2+-induced

Fig. 59 Design of the pterostilbene–benzylamines hybrid multifunctional derivatives 141–144
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Aβ aggregation inhibitory activity (63.0% � 1.3 and 55.6% � 1.3,
respectively) [119].

Synthetic and natural coumarins (137) have recently received
special attention due to their wide biological employability. Some
of their derivatives have been described as good AChE inhibitors,
Aβ-aggregation inhibitors, and neuroprotectors against oxidative
damages. Thus, coumarin was used as the basic scaffold in the
drawing of a series of innovative and with singular structural pattern
coumarin derivatives. Nineteen new coumarin derivatives were
synthesized and showed a very selective and potent AChE inhibi-
tion profile (Fig. 61). Among all these, compounds 227
(IC50 ¼ 0.016 � 0.0021 μM), 228 (IC50 ¼ 0.003 � 0.0007 μM),
229 (IC50 ¼ 0.012 � 0.0018 μM), and 230 (IC50 ¼
0.019 � 0.001 μM) (Fig. 61) were the most prominent AChE
selective inhibitors (IC50 BuChE > 100 μM). These most active
substances were submitted to cell viability assay (MTT) and H2O2-
induced oxidative damage in human neuroblastoma cells to verify
possible neurotoxic effects, among the four, one presented a profile
similar to that of galanthamine and other three had better results,
especially 228. Taking all data set, compound 229 exhibited the
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best MTDL profile, with lower toxicity than galanthamine, and
could be considered an interesting prototype candidate in the
process of drug development for AD therapeutics [120].

Lan and co-workers designed and synthesized by combining
N-benzyl pyridinium moiety and coumarin 231 into in a single
molecule, novel hybrids with ChE and MAO-B inhibitory activ-
ities. The biological screening results indicated that most of com-
pounds displayed potent inhibitory activity for ChE and Aβ1–42
self-aggregation, and clearly selective inhibition to MAO-B over
MAO-A. The compound 232 (Fig. 62) was the most potent inhib-
itor for hMAO-B, and it was also a good and balanced inhibitor to
ChEs and hMAO-B (0.0373 μM for EeAChE; 2.32 μM for
eqBuChE; and 1.57 μM for hMAO-B). Furthermore, the active
compound 232 with no toxicity on PC12 neuroblastoma cells
showed good ability to inhibit Aβ1–42 self-aggregation and cross
the BBB. The results suggested that this compound is a promising
multi-target candidate [121].

A series of prenylated resveratrol 133 derivatives were
designed, synthesized, and biologically evaluated for inhibition of
BACE1 and Aβ aggregation as well as free radical scavenging and
neuroprotective and neuritogenic activities, as potential novel
multifunctional agents against AD by Puksasook and co-workers.
Compound 233 (Fig. 63) exhibited good antioxidant activity
(IC50 ¼ 41.22 μM), anti-Aβ aggregation (IC50 ¼ 4.78 μM), and
moderate anti-BACE1 inhibitory activity (23.70% at 50 μM).
Moreover, this compound showed no neurotoxicity along with a
greater ability to inhibit oxidative stress on P19-derived neuronal
cells (50.59% cell viability at 1 nM). All results suggest that com-
pound 233 had the greatest multifunctional activities and might be
a very promising lead compound for the further development of
drugs for AD [122].
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A series of salicyladimine derivatives were designed by Yang and
co-authors as multifunctional anti-AD agents by fusing the struc-
tures of resveratrol 133, benzyloxy 234, and clioquinol 131
(Fig. 64). Biological assays demonstrated that some derivatives
possessed significant inhibitory activities against Aβ aggregation
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and hMAO-B as well as remarkable antioxidant effects and low cell
toxicity. Compound 235 exhibited excellent potency for inhibition
of self-induced Aβ1–42 aggregation (91.3 � 2.1%, 25 μM), antioxi-
dant effects on the DPPH (IC50 ¼ 43.4 � 2.6 μM) and ABTS
methods (0.67 � 0.06 trolox equivalent), inhibition of hMAO-B
(IC50 ¼ 1.73 � 0.39 μM), metal chelation, and BBB penetration.
In addition, this compound showed neuroprotective effects against
ROS generation, 6-OHDA-induced cell injury, H2O2-induced
apoptosis, and a significant in vitro anti-inflammatory activity, sug-
gesting its promising multifunctional profile [123].

9 Multi-target Directed Ligands Inspired by Other Polycyclic Structures

The aspartyl protease BACE-1 is the enzyme responsible for Aβ
formation and it has become an attractive drug target for AD. In
addition, an enzyme known as GSK-3β is involved in the tau
hyperphosphorylation process, promoting tau detachment from
the microtubules and the consequent formation of neurofibrillary
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tangles. In 2015, Prati and co-workers discovered a new series of
6-amino-4-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-ones (238)
by hybridization of pharmacophoric features responsible for the
BACE-1 and GSK-3β activity, such as the guanidine 236 and the
cyclic amide group 237 (Fig. 65), respectively. Compound 239was
the most potent derivative, inhibiting both enzymes BACE-1 and
GSK-3βwith IC50 values of 18.03�0.01 μMand14.67�0.78 μM,
respectively. Moreover, compound 239 has shown a good profile in
neuroprotection, neurogenesis, good CNS permeability, and no
neurotoxicity [124].

The combination of the quinoline (238) and triazolopyrimi-
dine (239) groups has led to hybrid compounds with diverse
biological effects, including neuroprotection, AChE inhibitory
activity, free radical scavenging effect, and metal complexation
ability. The quinoline structure was expected to interact with
AChE via π–π interaction. Beside this, it was supposed to intercalate
between Aβ sheets and was expected to enhance its disaggregation
due to its planar structure. On the other hand, the triazolopyrimi-
dine scaffold was anticipated to interact with important amino acid
residues of AChE. Indeed, the triazole scaffold has an excellent
previous record in the inhibition of AChE and BuChE. In this
context, a number of quinoline–triazolopyrimidine hybrids (240)
were designed as multi-target candidates for the treatment of AD,
with both pharmacophoric subunits connected by a piperazine
moiety (Fig. 66). Eleven new hybrids were synthesized and tested
for inhibition of AChE, BuChE, self-induced Aβ-aggregation,
AChE-induced Aβ-aggregation, and antioxidant properties.
Among all, compound 241 stands out for its potent inhibitory
activity of cholinesterases (IC50 AChE ¼ 0.042 � 0.79 μM; IC50
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BuChE ¼ 0.51 � 0.91 μM), with an AChE inhibition similar to
donepezil (IC50 AChE ¼ 0.038 � 0.003 μM and IC50

BuChE¼ 2.58� 0.65 μM) and a good selectivity of 12-fold higher
for AChE. In relation to inhibition of Aβ aggregation, once again
compound 241 stood out by showing a reduction of 72.9%
(at 25 μM) in the amount of self-induced Aβ-aggregation and
80.45% (at 100 μM) for AChE-induced Aβ-aggregation. Antioxi-
dant activity was accessed from MTT cell viability assay in human
neuroblastoma cells (SH-SY5Y), in the concentrations of 1, 5,
10, 20, and 25 μM. The lead compound 241 showed a dose-
dependent activity 2.5-fold higher than Trolox, highlighting its
multi-target profile as a promise drug candidate prototype for AD
treatment [125].

In another approach to pull off novel tacrine derivatives with
MTDL profile, Liao and collaborators studied new family of tacri-
ne–flavonoid hybrids designed to act as selective AChE inhibitors,
antioxidants, and inhibitors of self-induced β-amyloid peptide (Aβ)
aggregation. The structural architecture of this new series was
based on the molecular hybridization of the 5,6,7-
trimethoxyflavone (242) with 6-chlorotacrine (243, Fig. 67).
From the target hybrids 244a–d and 245a–d, compound 243,
with five methylene groups into the spacer subunit between the

N

Quinoline (238)
N

N

N

N

Triazolopyrimidine (239)

HN NH

Piperazine (240)

N N

O

O

F

N N

NN

CH3

241 IC50 AChE = 0.042 ± 0.79 mM 
IC50 BuChE = 0.51 ± 0.91 mM
ORAC = 2.43 ± 0.61

Selectivity of 12.14 for AChE/BuChE
Ab aggregation of 72.86% (self-induced)
Ab aggregation of of 80.45% (Cu2+-inducec)
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5,6,7-trimethoxyflavone and 6-chlorotacrine moieties, showed
the strongest selective inhibitory potency for AChE with
IC50 ¼ 12.8 � 0.05 nM, being sixfold more potent than
6-chlorotacrine (IC50 ¼ 78.5 � 0.04 nM). Furthermore, this com-
pound also showed significant antioxidant activity, a remarkable
inhibition of self-induced Aβ1–42 aggregation (33.8% � 0.06 at
25 μM), good neuroprotective effect against H2O2-induced
PC12 cell injury, and BBB permeability [126].

In another recent approach, Sang and co-workers combined
the structure of scutellarin (246) and rivastigmine (247) for the
design of a new molecular architecture of MTDL candidates
(Fig. 68). Scutellarin is a natural compound with a number of
pharmacological properties related to neurological disorders, such
as free radical scavenging and metal-chelating activities, anti-
inflammatory effects, neuroprotective action, and inhibition of Aβ
fibrils. Thus, a series of scutellarin–rivastigmine (248) based carba-
mates was synthesized and evaluated for multifunctional biological
properties, including AChE and BuChE inhibition, metal-chelating
properties, anti-oxidative, and neuroprotective effects against
H2O2-induced PC12 cell injury and BBB permeability. Com-
pounds 249c and 250c, containing the N,N-diethyl carbamate
moiety, showed the most potent and selective inhibition of AChE
over BuChE, with 249c exhibiting an IC50 value of 0.34 μM for
AChE and a 24.1-fold higher selectivity, followed by compound
250cwith a39.7-foldhigher selectivity forAChE (IC50¼0.57μM).

Fig. 67 Design strategy for the 5,6,7-trimethoxyflavone–6-chlorotacrine hybrids 244a–d and 245a–d
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Kinetic studies demonstrated that compound 250c could interact
concomitantly with the CAS and PAS of AChE, which is consistent
with molecular modeling results. Compound 250c also exhibited a
good antioxidative activity with a value 1.3-fold of Trolox, and
ability for selective biometal chelation. Furthermore, compound
250c showed neuroprotective effect against H2O2-induced PC12
cell injury and adequate in vitro BBB permeability [127].

BuChE has several neural and nonneural functions. Recent
observations suggest that rather than selective inhibition of
AChE, BuChE inhibition may be more effective for the treatment
of neurodegenerative diseases such as AD [128]. Studies indicate
that high levels of BuChE in the cortex are related to some DA
markers such as the extracellular deposition of the Aβ and the
aggregation of hyper-phosphorylated tau protein [129]. According
to these statements, the use of nonselective ChEs inhibitors would
lead to more expressed improvements than the use of selective
AChE inhibitors [130]. Previously, some researchers reported
that hybrids combining hydroxycinnamic acids (253) and ChE
inhibitory pharmacophores like in rivastigmine (247) could have
potential multi-target profile for the therapy of AD [110, 131,
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132]. On this basis, novel rivastigmine–hydroxycinnamic acid
hybrid compounds were planned as inhibitors of AChE, BuChE,
Aβ aggregation, and ROS scavengers (Fig. 69). Among eight
hybrids, compound 254 stood out, exhibiting moderate AChE
inhibition rate (23.42% at 1 μM and 23.99% at 5 μM) and a higher
and selective BuChE inhibitory activity (76.32% at 1 μM and
91.95% at 5 μM), with additional good ability to inhibit Aβ self-
aggregation (85.3% of inhibition at 10 μM). All compounds
showed good safety in the MTT cell viability assay with hippocam-
pus neuronal cells (HT22 cells). Finally, a neuroprotection test was
performed with the lead compound 254 that showed neuropro-
tective effects on HT22 cells against cell injury induced by gluta-
mate and against H2O2-induced cell death. In spite of the moderate
AChE inhibitory activity, compound 254 was able to inhibit the
hydrolytic activity of ChEs, to potentially prevent Aβ self-
aggregation, to protect HT22 cells from glutamate, and H2O2-
induced cell death. These data support that compound 254 could
be an attractive lead compound for further optimization in the drug
discovery process [133].

Wang and co-authors synthesized a novel series of hybrid com-
pounds 256a–c, designed by inspiration in the structural scaffold of
the metal chelator clioquinol (191) and the glutathione peroxidase
(GPx) mimic ebselen (255) (Fig. 70). The target hybrid com-
pounds were evaluated as potential inhibitors of Aβ1–42 aggrega-
tion, antioxidant activity, and superfast antioxidant catalysts against
H2O2 and metal-chelating ligands. All hybrids exhibited more
significant inhibition of Aβ1–42 aggregation than ebselen, clioqui-
nol, and an association of ebselen/clioquinol, with the best results
for compounds 256a (IC50 ¼ 9.6 � 0.4 μM) and 256b
(IC50 ¼ 8.1 � 0.3 μM). Most of the target compounds
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demonstrated strong antioxidant activity ranging from 0.6 to 3.5
trolox equivalents, surpassing ebselen, clioquinol, and ebselen +
clioquinol. Compound 256c exhibited the best antioxidant activity
(3.5 � 0.1 trolox equivalent) and compound 256a the best brain
permeability (>4.7 � 10�6 cm s�1). These properties highlight the
potential of these compounds, especially for 256a, as promising
candidates for the development of innovative multifunctional drug
candidates for AD therapeutics [134].

The same research group exploited the structure of coumarins
(212) in the design of a series of 3-imine-4-hydroxycoumarin
derivatives (257) (Fig. 71). Biological evaluation for their
multifunctional activities in MAO, Aβ1–42, antioxidant, and
biometal chelators disclosed compounds 258 (IC50

MAO-A¼ 0.673� 0.011 μM, IC50MAO-B¼ 0.711� 0.013 μM),
259 (IC50 MAO-A ¼ 4.97 � 0.41 μM, IC50 MAO-B ¼
0.851 � 0.047 μM), and 260 (IC50 MAO-A ¼ 3.78 � 0.62 μM,
IC50 MAO-B ¼ 1.32 � 0.18 μM) as the most potent MAO
inhibitors. All compounds exhibited moderate to good potencies
(20.2–82.3% at 20 μM) in the inhibition of self-induced Aβ1–42
aggregation, compared to resveratrol (67.3 � 3.4 μM at 20 μM)
and curcumin (50.2% � 5.9 at 20 μM). Compound 258 was
capable to chelate Cu2+ and all compounds demonstrated moderate
to good antioxidant activities ranging from 0.12- to 1.57-fold of
the trolox values. The best activity was observed for 260 with 1.57
trolox equivalent. In the DPPH radical scavenging method,
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Fig. 70 Chemical structure of series compounds 256a–c with multi-target profile designed from the
prototypes ebselen (255) and clioquinol (191)
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the compounds 258 (IC50 ¼ 45.8 � 1.2 μM) and 260
(IC50 ¼ 38.6 � 2.0 μM) showed the most potent radical scaveng-
ing activities. These results suggested that compounds 258 and
260might be promising lead compounds with balanced properties
for AD treatment [135].

In another work, Wang and co-authors also described the use
of clioquinol (191) for molecular hybridization with moracin
(261), leading to the novel series of hybrid compounds
(262–265, Fig. 72). Among the four series of compounds
(262–265), 262a (PDE4D2 IC50 ¼ 2.31 � 0.32 μM), 263a
(PDE4D2 IC50 ¼ 0.96 � 0.11 μM), and 264a (PDE4D2
IC50 ¼ 0.32 � 0.02 μM), which bear a phenolic hydroxyl group
on the R3 position, demonstrated better activities than the other
analogs in the series in the inhibition of PDE4D2. The compound
265a (PDE4D2 IC50 ¼ 8.86 � 0.39 μM) exhibited moderate
activity. The inhibitory activities of the target compounds on
Aβ1–42 self-induced aggregation were first determined by a thio-
flavin T (ThT) fluorescence assay using curcumin and resveratrol as
reference compounds. None of the tested compounds exhibited
significant fluorescence signals under the experimental conditions.
Moreover, most of the target compounds demonstrated a higher
antioxidant ability compared to moracin M (261) and clioquinol
(191). Compounds possessing a phenolic hydroxyl group on the
benzofuran moiety, such as 264a, exhibited significantly higher

O

N

HO

R1

R2

R3

R4O

OH

N N N
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1,4-diamine (257)

258 R1=R2=OH, R3=R4=H
IC50 MAO-A = 0.673 ± 0.011 µM, IC50 MAO-B = 0.711 ± 0.013 µM
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Fig. 71 Design of the new series of derivatives of coumarin–clioquinol hybrids (258–260) with improved
activities for MAO inhibition, antioxidant, anti-aggregation of amyloid-β, and ion metal chelation
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ORAC values (3.6 � 0.02). The parallel artificial membrane per-
meability assay (PAMPA) indicated that most of the target com-
pounds exhibited significant BBB permeability. Among them,
compound 264a (19.1 � 10�6 cm s�1) exhibited the best BBB
permeability with additional biometal-chelating property functions
and an interesting neuroprotective effect against inflammation in
microglial cells [136].

1,3,5-triazine scaffold (266) has been serving medicinal che-
mists for a long time for the development of antifungal, anticancer,
and antiviral agents. Regarding neurodegenerative diseases, due to
its roughly planar structure, triazine is expected to intercalate beta-
amyloid sheets and to enhance the Aβ disaggregation. For this
reason, triazine was selected by Maqbool and co-workers as pre-
ferred scaffold in the draw of a series of new cyanopyridine–triazine
(267) hybrids rationally designed as persuasive multifunctional
agents for the treatment of AD (Fig. 73). All eight derivatives
obtained were potent and selective AChE inhibitors, with com-
pounds 268 and 269 showing the most promising activities
(IC50 ¼ 0.059 � 0.003 and 0.080 � 0.005 μM, respectively),
along with high inhibition of Aβ1–42 aggregation
(IC50 ¼ 10.1� 0.09 and 10.9� 0.15 μM, respectively). Molecular
modelling studies suggested that compounds 268 and 269 have
significant binding affinity with both CAS and PAS of the AChE. In
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Fig. 72 Design of the new series of derivatives of moracin M (261) and clioquinol (191)
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addition, the results from neuroprotection studies indicated that
these derivatives can reduce H2O2-induced neuronal death
mediated by oxidative stress and Aβ1–42 induced cytotoxicity [137].

Sheng and co-workers planned a series of novel 1-phenyl-3-
hydroxy-4-pyridinone (275), as multifunctional agents for AD
therapy through incorporation of 3-hydroxy-4-pyridinone moiety
from deferiprone (272) into the general scaffold of H3 receptor
antagonists (271, Fig. 74). The 3-hydroxy-4-pyridinone moiety

H3 receptor Antagonism
Ab Aggregation Inhibition

Metal Chelation
Radical Scavenging

aminopropoxyphenyl moiety (270)
SKF-64346 (271) deferiprone (272)

Structure modification
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O

O
N

N

O

OH
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O

OH

R3

R4

ON
R1

R2

n 274

275 para, n= 3, NR1R2= pyrrolidinyl, R3= CH3, R4=H.
H3 inhibitory potency IC50 = 0.32 ± 0.01 nM. 
Ab 1-42 agregation inhibitory potency IC50 = 2.85 ± 0.22 mM.

Fig. 74 Rational design of 1-phenyl-3-hydroxy-4-pyridinone derivatives (275) as multifunctional agents
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Fig. 73 Chemical structures of the very active MTDL cyanopyridine–triazine hybrids 268 and 269
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(274) of the commercial metal chelator deferiprone was chosen
due to its desirable chelating properties with high affinity for Cu2+,
Zn2+, and Fe3+ ions, but low affinity for sodium, potassium, and
magnesium. The generally accepted pharmacophore model of H3

receptor antagonists (272) is composed of a “western part” con-
taining a tertiary basic amine and a spacer, an aromatic central core,
and an “eastern part” consisting of a polar group, a second basic
amine, or a lipophilic residue. Next, they prioritized the introduc-
tion of an appropriate metal-chelating pharmacophore 274 accord-
ing to the “eastern part” attributes to generate novel molecular
hybrids with multiple functions. Interestingly, the newly designed
1-phenyl-3-hydroxy-4-pyridinone derivatives share similar struc-
tural elements to Aβ aggregation inhibitor SKF-64346 (271).
Thus, molecular hybridization of the molecular models 271 and
272 led to compound 273. Structural modifications on compound
273 were carried out and gave rise to series 274. Among all tested
compounds, hybrid 275 displayed excellent selective H3 receptor
antagonistic activity (IC50 ¼ 0.32 � 0.01 nM), efficient
ABTSl + scavenging effect (1.54 � 0.15), good Cu2+ and Fe3+

chelating properties, and effective inhibitory activity against self-
and Cu2+-induced Aβ1–42 aggregation (IC50 ¼ 2.85 � 0.22 μM).
More interestingly, an in vivo study revealed that 275 possesses
suitable PK profiles in plasma and acceptable BBB penetration
behavior, highlighting this compound as a new promising and
innovative drug candidate prototype for AD [138].

Wei and co-workers used the structure of oxoisoaporphine
(276) to plan two series of 8- and 11-substituted-amide derivatives
(277 and 278, Fig. 75) as potential inhibitors of AChE and Aβ
aggregation with neuroprotective properties. Oxoisoaporphine is
an alkaloid and was previously isolated and identified as an impor-
tant lead for anti-Alzheimer drugs [139]. Biological evaluation of
the oxoisoaporphine derivatives 277a–e and 278a–e disclosed that
analogues with the same length in side chain exhibited similar
inhibitory potency towards AChE. Compounds 277b and 278b,
with two methylene groups in the side chain, showed the strongest
AChE inhibitory potency (IC50¼ 28.4� 14 nMand 80.8� 26 nM,
respectively) and a significant inhibition of self-induced Aβ1–42
aggregation potency (IC50 ¼ 74.6 � 1.9 and 76.1 � 1.2, respec-
tively). Moreover, these compounds showed to be able to cross the
BBB to reach their targets in the CNS and a significant reduction in
Aβ secretion levels by human neuronal cells (SH-SY5Y), which
overexpress the Swedish mutant form of human β-amyloid precur-
sor protein (APPsw) [140].

In another approach for searching innovative and effective drug
candidates for AD, and based in previous research data [141],
Hebda and co-workers reported the synthesis and evaluation of
two novel series of phthalimide derivatives 279 and 281
(A and B, Fig. 76), designed as DBS AChE inhibitors. Compound
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280 (from series A), holding a pyrrolidine moiety, was the most
potent AChE inhibitor with IC50 ¼ 0.276� 0.003 μM. Regarding
the length of the linker, the most potent were the compounds with
six to eight carbon atoms as linker length. Some compounds from
series B inhibited EeAChE in the low micromolar to nanomolar
range, highlighting compounds with a five-carbon atom linker.
Compounds 282a (2-fluoro derivative) and 282d (3-chloro deriv-
ative) were the most potent AChE inhibitors with IC50 values of
150 and 70 nM, respectively. These two compounds were also
evaluated for their ability to inhibit self-induced Aβ1–42 aggrega-
tion, with only compound 280n demonstrating a moderate inhibi-
tion activity of 35.8% [142].

In another strategy, considering that molecular hybridization
plays a highlighted role in the design of novel MTDLs and that the
search of new pharmacophores is determinant in the search of novel
drug candidate prototypes, more than 600 compounds were
screened by HTS (high throughput screening) for AChE inhibitory
activity. The aim was to identify promising structures to be used in a
structural optimization study. As a result, the pyrimidine derivative
202 (AChE inhibition of 32.15% at 40 μM) was chosen as initial
prototype molecule and 15 derivatives were synthesized and eval-
uated for their ability to inhibit AChE (Fig. 77). Aiming to identify
the optimal side chain for the desired enzyme inhibition, com-
pound 284 was recognized as the most active of this first series
(77.26% of AChE activity at 40 μM and IC50 ¼ 8.14 � 0.40 μM).
In a second step, optimization of the lateral 1,2-diazol ring in
compound 284 led to additional nine new analogues, with the
1,3-diazol derivative 285 disclosing a discreet improving in AChE
inhibition (IC50 ¼ 1.59 � 0.02 μM). In sequence, modification in
the central ring confirmed that 1,3-diazine was the best pharmaco-
phore, and it was conserved in another 24 analogues with different
substituents at the lateral 1,3-imidazolyl ring. After all these SAR
studies, compound 287 was finally identified with a very improved
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selective AChE inhibitory activity (IC50 ¼ 0.067� 0.019 μM), and
additional chelating ability for Cu2+ ions, antioxidant activity,
inhibitory activity of Aβ-aggregation, and low toxicity in human
neuroblastoma cells [143].

Simone and co-workers synthesized a series of hydroxy-
substituted trans-cinnamoyl derivatives 288–292 as multifunc-
tional tools in the context of DA. To confirm the multifunctional
activity profile envisaged for the designed compounds (Fig. 78),
they were evaluated for their ability to inhibit GSK-3β and Aβ42
self-aggregation and to counteract reactive oxygen radical (ROS)
formation. Compound 290 revealed the most promising multi-
functional profile, showing ability to inhibit both GSK-3β
(IC50 ¼ 24.36 � 0.01 mM) and Aβ42 self-aggregation
(IC50¼ 9.0� 1.4 mM), chelate copper (II) and act as exceptionally
strong radical scavenger (kinh ¼ 6.8 � 0.5 .105 M�1 s�1) even in
phosphate buffer at pH 7.4 (kinh ¼ 3.2 � 0.5 � 105 M�1 s�1).
Importantly, compound 290 showed high-predicted BBB perme-
ability, did not exert any significant cytotoxic effects in immature
cortical neurons up to 50 μM and showed additional neuroprotec-
tive properties at micromolar concentration against toxic insult
induced by glutamate [144].

Ozadali-Sari and co-workers described the synthesis, pharma-
cological evaluation (BuChE/AChE inhibition, Aβ anti-
aggregation, and neuroprotective effects), and molecular modeling
studies of 2-[4-(4-substituted piperazin-1-yl)phenyl]benzimid-
azole derivatives 293–300 (Fig. 79). The alkyl-substituted deriva-
tives exhibited selective inhibition on BuChE and the compounds
294 and 296 were found to be the most potent inhibitors of
BuChE with IC50 values of 5.18 and 5.22 μM, respectively. The
compounds with an inhibitory effect on BuChE were subsequently
screened for their Aβ anti-aggregating and neuroprotective
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Fig. 78 Design strategy leading to derivatives 288–292
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activities. Compounds 293 and 294 exerted a potential neuropro-
tective effect against H2O2 with cell viability of 104% and 105%,
respectively, which is similar to rifampicin (102%), and Aβ induced
cytotoxicity in SH-SY5Y cells results revealed that 293, 294, 296,
and 298 were the most potent compounds in the series with cell
viability ranging from 81 to 130% at 10 μM. The protective effect of
these compounds against Aβ1–40 induced cell death was signifi-
cantly higher compared to donepezil (60%). Collectively, com-
pound 294 was found as the most promising compound for the
development of MTDL against AD [145].

Aiming the identification of multi-targeted prototypes with
multiple activities as MT-stabilizing agents and/or inhibitors of
the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) pathways,
Cornec and co-workers started a SAR study from a series of
1,5-diarylimidazoles with microtubule (MT)-stabilizing activity
and structural similarities with knownNSAIDs. Several compounds
showed brain-penetrant abilities and exhibited balanced multi-
targeted in vitro activity in the low μM range, with compounds
301–304 (Fig. 80) showing the most promising properties as
MTDLs prototype candidates [146].

A series ofN-propargylpiperidines with naphthalene-2-carbox-
amide or naphthalene-2-sulfonamide moieties was synthesized and
their potential multifunctional anti-Alzheimer was investigated by
Kosak and co-workers. Their rational design approach was based on
piperidine-based selective human BuChE (hBuChE) inhibitors and
propargylamine-based MAO inhibitors. Biological investigation
disclosed all compounds as good hBuChE inhibitors, with good
selectivity over AChE and adequate BBB permeability in a PAMPA.
The dual BuChE (IC50 ¼ 2.60 � 0.35 μM) and MAO-B
(IC50 ¼ 53.9 � 4.78 μM) inhibitor 307 (Fig. 81) also protected
neuronal SH-SY5Y cells from toxic amyloid β-peptide species,
without any cytotoxic effects [147].

A series of novel ferulic acid–O-alkylamines derivatives were
designed as multi-target against AD by Sang and co-authors. In
vitro assays displayed that all the synthesized target compounds
showed impressive inhibitory activity against BuChE, with signifi-
cant inhibition/disaggregation of self-induced Aβ aggregation and
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Fig. 79 Target compounds 2-[4-(4-substituted piperazin-1-yl)phenyl]benzimidazole derivatives 293–300
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antioxidant activity. Compound 308 (Fig. 82), one of the most
potent BuChE inhibitors (IC50 ¼ 0.021 μM for EqBuChE,
8.63 μM for ratBuChE, and 0.07 μM for hBuChE), was found to
be also a good selective AChE inhibitor (IC50 ¼ 1.8 μM for
RatAChE, 2.13 μM for EeAChE, and 3.82 μM for hAChE). This
compound also had noteworthy inhibitory effects on self-induced
Aβ1–42 aggregation (50.8� 0.82%) and was capable to disaggregate
self-induced Aβ1–42 aggregation (38.7� 0.65). Furthermore, com-
pound 308 showed a modest antioxidant activity (0.55 eq of
Trolox), good protective effect against H2O2-induced PC12 cell
injury, with low toxicity and good BBB permeability in vitro. More-
over, compound 308 did not exhibit any acute toxicity in mice at
doses up to 1.000 mg/kg, and in the step-down passive avoidance
test this compound significantly reversed scopolamine-induced
memory deficit in mice. These results set indicated compound
308 as a very promising multifunctional agent in the treatment of
AD, particularly the advanced stages [148].

Mohamed and Rao designed a novel class of 2,4-disubstituted
quinazoline derivatives, planned as innovative multi-targeting
agents to treat AD. Biological results demonstrated the ability of
several quinazoline derivatives in inhibiting both AChE and
BuChE, with additional prevention of Aβ aggregation and
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antioxidant properties. Compound 310 (Fig. 83) was identified as
a dual inhibitor of cholinesterases (IC50 AChE ¼ 2.1 μM; IC50

BuChE ¼ 8.3 μM) and inhibitory activity of Aβ aggregation (IC50

Aβ40 ¼ 2.3 μM) [149].
A new series of 3,4-dihydro-2(1H)-quinoline-O-alkylamine

derivatives, capable of interacting with both AChE and BuChE as
well as MAO-A and B was designed by Sang and co-workers by
using a conjunctive approach that combines structural fragments of
JMC49 and donepezil 32 (Fig. 84). The most promising com-
pound 312 showed potent and balanced inhibitory activities

N

N

R

NH

2

4

Dissubstituted Quinazoline
Ring (DQR) Template

N

N

NH

O

O

N
H

N

310 IC50 AChE= 2.1 µM; 
IC50 BuChE= 8.3 µM 
IC50 Ab40 = 2.3 µM)

309

Fig. 83 Template and compound 310, multi-targeting agent to treat Alzheimer’s disease

Br
O

H
N O

311 (MAO-BI)
hMAO-B IC50

= 2.9 nM SI > 2751

MeO

OMe

O N

Donepezil (32)
AChE IC50

= 0.016 mM
BuChE IC50

= 8.2 µM

ON
H

O N

R2

R1
n

312
IC50eeAChE

: 0.56 µM

IC
50eqBuChE

: 2.3 µM

IC50hMAO-A
: 0.3 µM 

IC50hMAO-B
: 1.4 µM

n: 6

NR1R2:
N

Fig. 84 Design strategy for 3,4-dihydro-2(1H )-quinoline-O-alkylamine derivatives and most promising com-
pound 312

334 Cindy Juliet Cristancho Ortiz et al.



towards AChE (IC50 ¼ 0.56 μM), BuChE (IC50 ¼ 2.3 μM),
MAO-A (IC50 ¼ 0.3 μM), and MAO-B (IC50 ¼ 1.4 μM), but
with low selectivity for both cholinesterase and monoaminoxidase
isoforms. Furthermore, this study revealed that compound 312
could adequately cross BBB in vitro and abided by Lipinski’s rule
of five, which suggests this derivative as a potential and interesting
multi-targeted active molecule for further development [150].

A series of rivastigmine–caffeic acid and rivastigmine–ferulic
acid hybrids were designed, synthesized, and evaluated as multi-
functional agents for AD in vitro by Chen and co-authors. In
general, these new compounds exerted antioxidant neuroprotective
properties, good ChE inhibitory activities, and with some com-
pounds also inhibiting Aβ aggregation. In special, compound 313
(Fig. 85) emerged as promising drug candidate endowed with
neuroprotective potential, stronger inhibition (inhibition rate of
76%) against BuChE than rivastigmine at 1 μM, inhibition of
Aβ1–42 self-aggregation (85.3% at 10 μM) and copper chelation
properties [133].

10 General Vision of the Main Therapeutic Strategies Explored in the Search
of Multi-target Directed Ligands for AD Treatment

As discussed above, a number of research groups have explored
different ways in the design and discovery of innovative drug can-
didate prototypes capable to represent effective advances in the
development of therapeutics and, hopely, the cure of AD. In fact,
there are many active and promising ligands recently discovered,
with diverse strcutural pattern and mechanisms of action that could
represent innovation and could seduce the Pharmaceutical Industry
to invest in these new alternatives.

The main advances in the search of such innovative MTDLs are
summarized in Table 1.
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Fig. 85 Structure of compound 313 (rivastigmine–hydroxycinnamic acid hybrid)
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Table 1
Chemical structure and biological data of the main multi-target directed ligands (MTDLs) designed as
innovative drug candidate prototypes for AD

Compound Target/IC50 Ref.

MTDLS inspired by galanthamine

N

N+

(CH2)9

N

N+

18. ß-carboline derivatives

AChE ¼ 0.5 nM [44]

O

O

O(CH2)7N
27

hAChE ¼ 24 � 2 nM
hBuChE ¼ 2.88 � 0.26 μM

[45]
[46]

MTDLs inspired by donepezil

N

OH

N

CN

N

35

MAO-A ¼ 10.1 � 1.1 μM [49]
MAO-B ¼ >100 μM
AChE ¼ 29 � 3 nM
BuChE ¼ 39 � 3 nM

ORAC ¼ 1.12 � 0.43

N

43
N

N

O

MAO-A ¼ 5.2 nM
MAO-B ¼ 43.0 nM
AChE ¼ 0.35 μM
BuChE ¼ 0.46 μM

[52]

N

H
NN

N

N
S

OO
64

5HT6Rs ¼ 2.0 � 0.2 nM
AChE ¼ 12.9 � 0.17 nM
BuChE ¼ 8.2 � 0.23 nM

[61]

(continued)
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Table 1
(continued)

Compound Target/IC50 Ref.

O

O

O

N

N
92

N

N

AChE ¼ 0.025 � 0.001 μM
Ab aggregation ¼ 9.9 � 0.14 μM

[76]

MTDLs inspired by tacrine

N
H

N
H

102

AChE ¼ 0.81 nM
BuChE ¼ 5.66 nM

[35]

N

HN N
H

O

OH
O

5

108

AChE ¼ 4.4 nM [81]

NH O N
H

H
N

N

Cl

n

110 n=3 
111 n=4 
112 n=5 
113 n=6

110 n ¼ 3 AChE ¼ 2.15 nM,
BuChE ¼ 296 nM

111 n ¼ 4 AChE ¼ 1.65 nM,
BuChE ¼ 211 nM

112 n ¼ 5 AChE ¼ 1.54 nM,
BuChE ¼ 189 nM

113 n ¼ 6 AChE ¼ 2.57 nM,
BuChE ¼ 137 nM

[6]

NN

NH2

172

AChE ¼ 0.61 nM
BuChE ¼ 0.074 nM

[98]

(continued)
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Table 1
(continued)

Compound Target/IC50 Ref.

MTDLs inspired by natural products (NPs)

HN

O

H
N

O

N
Br

189

F

AChE ¼ 0.11 � 0.001 μM
BuChE ¼ 1.1 � 0.1 μM
ORAC ¼ 3.41 � 0.05

[107]

N

Cl

HN

OH

OCH3

O
200

AChE ¼ 6.7 � 0.1 nM [111]

HN
HN

N Cl

(CH2)5 O

O
HO

O

HO

204

AChE ¼ 1.07 nM [112]

O

OCH3

H3CO

N
H

O

N6

222d

OCH3 AChE ¼ 0.06 � 0.03 μM
BuChE ¼ 28.04 � 1.71 μM
ORAC 0.51 � 0.03

[118]

(continued)
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11 Concluding Remarks

The development of more effective, secure, well tolerated, with
innovative mechanism of action drugs for Alzheimer’s disease is
still a challenge for Medicinal Chemistry. Due to the characteristic
multifactorial pathogenesis of AD and other neurodegenerative
disorders, the discovering and development of innovative disease-
modifying drugs is a problem to be solved to overcome current
clinical limitations and therapeutical inefficiency for such diseases.

Table 1
(continued)

Compound Target/IC50 Ref.

MTDLs inspired by other polycyclic structures

N N

O

O

F

N N

NN

CH3241

AChE ¼ 0.042 � 0.79 mM
BuChE ¼ 0.51 � 0.91 mM
ORAC ¼ 2.43 � 0.61

[125]

O

OOCH3

H3CO

NCl
244c

OCH2CONH(CH2)nNH

244a-d n=3, 4, 5, 6 spacer linking in Para position

AChE ¼ 12.8 � 0.05 nM [126]

N

O

NH

Cl

O

N
2

277b

AChE ¼ 28.4 � 14 nM
Aβ1–42

aggregation ¼ 74.6 � 1.9 nM

[140]

Design of Multi-target Directed Ligands as a Modern Approach for the. . . 339



Regarding this complex multifactorial pathophysiology, polyphar-
macology, and especially the multifunctional or MTDLs approach
represents a new perspective and stated a new paradigm in the way
of thinking, design, evaluate, and interpret the simultaneously
modulation of diverse molecular targets, aiming to block out com-
pensative mechanisms and alternative biochemical routes, reaching
a more efficient control of the progress and, hopefully, the cure of
the disease. The more recent insights about the pathophysiology of
AD have proven a complex interconnected variety of deleterious
events, with multiple pathways involving in its etiology and a variety
of factors that are associated with the installation, progress, and
severity of AD. In this way, in consonance with many medicinal
chemists worldwide, we can affirm that the AD treatment will be
effective only when we find druggable chemical entities capable of
interacting and modulating concomitantly different targets, and
blocking or activating different biochemical interconnected path-
ways related to the disease progression. In the last decade, efforts
have been employed in the design and search for new biological
chemical entities capable to direct simultaneously with different
molecular targets involved in the pathogenesis of AD and many
new significantly active and promise molecules have been discov-
ered. Consequently, new drug prototype candidates have been
identified and they are the starting point of a revolutionary new
way of thinking drug design and some drug candidates are under
preclinical evaluation. Current drugs, such as donepezil, galantha-
mine, rivastigmine as well as the restricted tacrine, have been used
as the starting point for molecular inspiration in the drawing of
innovative hybrid compounds with multifunctional mechanism of
action. Molecular hybridization is the major tool in the design
of new scaffolds, leading to the conception of new molecules with
diverse and singular structural characteristics that could make pos-
sible to access simultaneously different molecular targets related to
the pathophysiology of AD. One great challenge for this new
concept of MTDLs, differently to the old paradigm of one potent
and target-selective drug, is to achieve balanced properties of
one single molecule to act in a multi-target environment or in
interconnected diverse sites or biochemical ways related to the
installation and progression of the disease. As discussed in this
chapter and highlighted in Table 1, many bioactive and promising
molecules have been discovered and proved to be interesting for
further investments in the evaluation and development, stage where
the interest and cooperation by the Pharma Industry is of capital
importance. Despite none of these MTDL drug candidates have
reached clinical phase of development, we hope that in the next few
years the system biology approach could effectively contribute to
the Medicinal Chemists in the discovery of innovative chemical
entities able to understand and effectively modify the course of
this devastating neurodegenerative disorder.
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Pérez-Castillo A, Rodrı́guez-Franco MI
(2016) New neurogenic lipoic-based hybrids
as innovative Alzheimer’s drugs with σ-1
agonism and β-secretase inhibition. Future
Med Chem 8:1191–1207. https://doi.org/
10.4155/fmc-2016-0036

67. Dias KST, de Paula CT, dos Santos T, Souza
INO, Boni MS, Guimarães MJR, da Silva
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111. Pérez-Areales FJ, Di Pietro O, Espargaró A,
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Cañas M, Garcı́a-Arencibia M, Fernández-
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Virtual Screening for Dual Hsp90/B-Raf Inhibitors
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Abstract

In this chapter, we describe a computational strategy leading to the identification of the first dual inhibitors of
Heat Shock Protein 90 (Hsp90) and protein kinase B-Raf. Both proteins are validated targets for anti-cancer
drug discovery. There is strong evidence that the simultaneous inhibition of Hsp90 and B-Raf provides
therapeutic benefits compared to exclusive engagement of one or the other target. Hence, we have been
interested in searching for dual Hsp90/B-Raf inhibitors. Virtual compound screening led to the identifica-
tion of two compounds with micromolar activity against both targets. The computational approach faced a
number of challenges that needed to be overcome, as described herein.

Keywords B-Raf, Hsp90, Molecular docking, Multi-target inhibitors, Pharmacophores, Polyphar-
macology, Virtual screening

1 Introduction

A subset of drugs is known to elicit their therapeutic efficacy by binding
to multiple biological targets, an effect commonly referred to as poly-
pharmacology [1, 2]. Multi-target activities of compounds were mostly
not achievedby design but uncovered retrospectively by experimental or
computer-aided target deconvolution [3, 4]. Polypharmacology is also
responsible for unwanted side effects of drugs. Whether or not multi-
target activities are desirable depends on the specifics of therapeutic
applications. Thus, it would be best to achieve a high level of control
over drug specificity on one hand and polypharmacology on the other.
This also explains whymethods for the prospective design and discovery
ofmulti-target ligands are of high interest [5, 6].We discuss recentwork
leading to the identification of the first dual inhibitors of Hsp90 and
B-Raf [7], which are popular targets in anti-cancer drug discovery.
Hsp90 is a molecular chaperone that aids in the folding process of
numerous client proteins. A schematic representation of the function
of Hsp90 is presented in Fig. 1. Several members of the Hsp90 inter-
actome are involved in signal transduction and regulatory mechanisms
[8]. Therefore, Hsp90 plays a pivotal role in cell physiology. Among
Hsp90 clients are many mutant or abundantly expressed oncoproteins
that sustain the uncontrolled proliferation and apoptotic resistance of
cancer cells [8, 9]. AlthoughmanyHsp90 inhibitors are known, none of
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these compounds has so far been approved as a drug, which is mostly a
consequenceofnon-optimal safety profiles or lackof efficacy [10, 11]. In
cancer treatment, drug polypharmacology is typically desirable since
multiple signalling pathways need to be controlled and side effects are
more tolerated than in other therapeutic areas. Hence, Hsp90 engage-
ment might be complemented by co-inhibition of other anti-cancer
target(s) to further increase therapeutic relevance. A prime candidate is
the Ser/Thr protein kinaseB-Raf that is involved in theMAPK signaling
cascade (Fig. 2). This signal transduction pathway contributes to the
regulation of many essential cell processes such as cell proliferation and
survival [12]. The naturally occurringB-RafmutantV600E is critical for
cancerdevelopment.Thismutant is in a constitutively activated state that

Fig. 1 A schematic representation of the Hsp90 function is shown, i.e., assisting the folding of a client protein
(C. P.). Hsp90 contains an N-terminal domain (N) including the ATP binding site, a central or middle domain
(M), and a C-terminal dimerization domain (C). In the presence of ATP, an Hsp90 dimer interacts with the client
protein to facilitate correct folding (green). Hsp90 inhibitors prevent productive interaction of the chaperone
with the client protein resulting in misfolding (red) followed by proteasome-dependent degradation
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stimulates uncontrolled cell proliferation [13]. Suchmutationsmay also
cause resistance to drug treatment directed against the wild type
[14]. Few B-Raf inhibitors are currently used in anti-cancer therapy,
however, responses tend to be temporary, incomplete, and subject
to drug resistance [15]. Hence, targeting B-Raf might also benefit
from complementary target engagement. Potential benefits of simulta-
neously inhibiting Hsp90 and B-Raf are indicated by current clinical
trials (ClinicalTrials.gov identifiers: NCT02721459, NCT02097225,
NCT01657591) that investigate combination therapies using
Hsp90 and B-Raf inhibitors. Since B-Raf is a client ofHsp90, inhibition
of the chaperone would contribute to the kinase degradation
[16]. This relationship, schematically represented in Fig. 2, further
increases the potential of Hsp90/B-Raf combination therapies. Repre-
sentative Hsp90 and B-Raf inhibitors investigated for their potential
application in combination therapies are shown in Fig. 3.

Given inherent complications of combination therapies such as
coordinated dosing of different compounds or possible drug–drug
interactions, it would be desirable to identify and develop dual
Hsp90/B-Raf inhibitors. Therefore, we set out to search for such
inhibitors focusing on a computational strategy [7].

Fig. 2 A schematic representation of the MAPK signaling pathway is shown that originates from a receptor
tyrosine kinase (RTK) and involves subsequent activation of the RAS, B-Raf, MEK, and ERK kinases. Functional
relationships between B-Raf and Hsp90 inhibitors are also indicated. B-Raf inhibitors directly target the
signaling pathway whereas Hsp90 inhibitors act indirectly by preventing correct folding of B-Raf
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Hsp90 and B-Raf have distinct folds and binding sites of different
architecture, which represented an obstacle for identifying dual inhibi-
tors [6]. However, there was at least remote binding site resemblance
detectable between Hsp90 and few protein kinases [17] other than
B-Raf. As a starting point of our analysis, we analyzed and compared
available X-ray structures of Hsp90- and B-Raf-inhibitor complexes to
explore potential similarities between target–ligand interactions. On
the basis of our findings, a combined ligand- (LB) and structure-based
(SB) virtual screening (VS) campaign was carried out in order to
identify suitable candidate compounds.

Our computational strategy is schematically summarized in Fig. 4.
Its application resulted in the identification of two Hsp90/B-Raf dual
inhibitors sharing a thieno[2,3-d]pyrimidine scaffold. These inhibitors
had micromolar activity against Hsp90, wild-type B-Raf, and the
critically important B-RafV600E mutant.

Fig. 3 Structures of representative B-Raf and Hsp90 inhibitors are displayed that are investigated for their
potential in combination therapy
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2 Materials

2.1 Protein

Structures

For B-Raf and Hsp90, eight and nineteen X-ray structures of com-
plexes with different inhibitors were selected, respectively (Table 1).
For B-Raf, structures with inhibitors for which high-confidence activ-
ity data were available were selected on the basis of a previous study
[18]. ForHsp90, structures with a co-crystallized inhibitor having aKi

value of less than 10 μM were collected (see Note 1). All complex
structures were taken from the Protein DataBank (PDB) [19].

2.2 Compound

Database

A database of 4,805,970 unique compounds was assembled by merg-
ing the catalogs of 10 vendors includingAMRI,Aronis, Asinex,Chem-
Bridge, Enamine, InterBioScreen, Life Chemicals, Maybridge, Otava,
and Vitas-MLab.

Fig. 4 A schematic representation of the applied virtual screening protocol is
shown
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3 Methods

3.1 Selection of

Reference Ligands

Selected complex X-ray structures were analyzed to identify inhibi-
tors potentially representing promising templates for searching for
dual inhibitors. We especially focused on known inhibitors that
were structurally similar and/or displayed similar interaction pat-
terns in the binding sites of Hsp90 and B-Raf. Importantly, crystal-
lographic ligands revealed bioactive conformations and detailed
interactions with the binding site residues. This interactive analysis
prioritized two known inhibitors as templates. These compounds
were designated L1E and 3RR and contained in PDB entries 3IDP
[20] and 3RLR [21], respectively. L1E and 3RR had a common
scaffold (Fig. 5) and were thus structurally related (see Note 2).

3.2 Substructure

Search

A SMARTS string representing the common scaffold of L1E and
3RR was generated and used to conduct a substructure search with
OpenBabel 2.3.2 [22] in our database of commercial compounds.
All ring substitutions preserving aromaticity of the core structure
were permitted. A focused library of 15,167 compounds matching
the SMARTS representation was obtained.

3.3 Pharmacophore

Model

To further analyze the similarity of L1E and 3RR from a 3D perspec-
tive, their bioactive conformations were superposed on the basis of the
shared scaffold (Fig. 5). The superposition highlighted additional
common structural features including a hydrogen bond donor, a
hydrogen bond acceptor, and an aromatic center, known to be impor-
tant for activity against both Hsp90 and B-Raf. These features were
combined into a pharmacophore model (Fig. 5) generated with the
Molecular Operating Environment 2014.09 (MOE) [23].

3.4 Protein

Preparation

Protein structures 3IDP (B-Raf) and 3RLR (Hsp90) were selected as
templates for SBVS and prepared for docking calculations. 3IDPmissed
15 residues (from598 to613) in the kinases activation loop [20].There-
fore, MOE was used to fill the gap by building the crystallographically
not resolved residues and generating an initial 3D conformation by
structural relaxation. Refinement of the loop conformation was carried

Table 1
X-ray structures of B-Raf and Hsp90

Protein
Analyzed
complexes

Selected complexes
(PDB code)

Resolution
(Å)

Ligand
ID

Ki
(nM)

B-Raf 8 3IDP 2.70 L1E 1

Hsp90 19 3RLR 1.70 3RR 30

Reported are the number of X-ray complex structures considered for B-Raf and Hsp90
and the two selected complexes. For inhibitors L1E and 3RR, Ki values are provided
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out using ModLoop [24]. A total of 300 loop conformations were
generated and the one yielding the most favorable force field energy
scorewas retained. Both 3IDP and 3RLR structures were preparedwith
MOE. Preparation steps included the selection of L1E and 3RR as
ligands that were automatically removed during docking calculations,
addition of hydrogen atoms, and calculation of atomic partial charges
according to the MMFF94x force field. All water molecules were
removed except for one water molecule inHsp90 (number 2 according
to 3RLR residues numbering) that was known to be intimately involved
in a conserved network of hydrogen bonds formed betweenHsp90 and
several other inhibitors [21].

3.5 Docking Docking of the focused compound library generated by substructure
search (see above) was carried out with the Dock module of MOE
[23]. The library was also computationally screened to remove known
pan assay interference compounds (PAINS) [25] using publicly available
filters [26] and aggregating compounds using the ZINC/UCSF aggre-
gator advisor [27]. Target sites for docking in 3IDP and 3RLR were
defined using the experimental coordinates of L1E and 3RR,

Fig. 5 The structures of B-Raf and Hsp90 inhibitors selected as templates for computational compound
screening are shown in the upper half of the figure. In the shared scaffold, shown in the lower left panel, “a”
stands for any aromatic atom. The modeled pharmacophore is depicted in the lower right panel
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respectively. A docking protocol was set up to exploit the feature infor-
mation encoded in the pharmacophore model (seeNote 3). The phar-
macophore placement algorithm implemented in MOE was used to
generate up to 1000 poses per test compound. The poses were scored
and ranked based on the London dG function. The top 10 poses were
selected and subjected to energy refinement and re-scoring with the
more complex GBV/WSA dG function. Among poses matching the
pharmacophore model, if any, the best scoring pose was ultimately
obtained for each test compound. For both Hsp90 and B-Raf, highly
ranked compoundswere visually inspected for conformational and inter-
action commonalities to aid in a final selection of 20 candidates. The
selected candidates were tested in vitro for activity against both targets.
Experimental procedures were extensively described in the original
publication [7].

4 Results Summary

Two of 20 candidate compounds were found to have micromolar
activity against both Hsp90 and B-Raf in enzyme assays (com-
pound 1 and 2 in Table 2 and Fig. 6). Interestingly, 1 and 2 also
displayed comparable or higher activity against B-Raf mutant
V600E (Table 2). As a consequence of the applied computational
strategy, the newly identified compounds were structurally similar
to L1E and 3RR. However, among known inhibitors, they were the
first compounds with dual activity against Hsp90 and B-Raf.

Binding modes of 1 and 2 predicted by docking (Fig. 6) were
characterized by the formation of known key interactions with target
binding sites previously observed for other inhibitors such as hydrogen
bonding with Asp93 in Hsp90 and with Cys532 of the hinge region in
B-Raf. Themodeled bindingmodes were further supported by superpo-
sition with known crystallographic inhibitors. Identification of 1 and
2 provides a basis for compound optimization and polypharmacological
targeting of Hsp90 and B-Raf. The computational approach described
herein (Fig. 4) provides an example for combiningLBVS (using substruc-
tures and pharmacophores) and SBVS (docking) in the search for dual-
target inhibitors. While we do not claim that this protocol might be
generalizable, it nicely illustrates the potential of knowledge-based
computational approaches for specialized drug design applications.

Table 2
Experimental IC50 values of the virtual screening hits

Compound IC50 B-Raf (μM) IC50 B-Raf V600E (μM) IC50 Hsp90 (μM)

1 28.9 � 1.7 9.1 � 0.4 1.2 � 0.1

2 1.5 � 0.1 2.5 � 0.2 7.6 � 0.6

IC50 values of compounds 1 and 2 are reported for Hsp90, B-Raf, and B-Raf V600E
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5 Notes

1. Our focus was on known inhibitors that were relatively potent in
order to improve the odds of identifying comparably potent dual
inhibitors. However, the choice of a potency threshold should
also take into account the degree of chemical diversity among
co-crystallized ligands. In the case of Hsp90 and B-Raf, a variety
of crystallographic inhibitors existed, hence making it possible
to raise the bar. In other cases, weakly potent compounds may
require more extensive consideration.

2. The initial analysis of complex X-ray structures was interactive and
largely relied on graphical assessment. As such, the approach was at
least partly subjective in nature and involved chemical experience
and intuition. Automated analysis would be indispensable if large

Fig. 6 The structures of the identified dual inhibitors are shown in the upper half of the figure. Binding modes
predicted by docking into B-Raf and Hsp90 are shown in the lower half. In the docked complexes, compound
1 is colored in cyan and compound 2 in magenta
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sets of complexeswould need to be analyzed. For example, scaffolds
could be extracted from candidate compounds and systematically
compared using numerical similarity measures. Similarly, the geom-
etry and chemical features of active sites might be automatically
compared. However, while automated analysis will likely assign
priorities to complexes for further study, it will typically not be
able to entirely replace an in-depth analysis by experts.

3. Docking protocols including constraints in binding mode gen-
eration and selection such as those provided by a pharmaco-
phore model or a set of pre-defined key interactions represent
an intrinsically knowledge-based component of VS campaigns.
Although such approaches are not without caveats and potential
errors, e.g., the use of ill-defined constraints cannot be compen-
sated for in subsequent computations, they typically help to
narrow down candidate compounds and reduce noise of compu-
tational screening. In the case of our study, pharmacophore-
constrained docking was designed to eliminate many com-
pounds from further consideration that could not possibly sat-
isfy interactions known to be critical for inhibition, although
they might be able to fit the geometry and shape of the Hsp90
and/or B-Raf binding site. This type of negative selection
helped to quickly focus docking calculations on more promising
candidates.
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Strategies for Multi-Target Directed Ligands: Application
in Alzheimer’s Disease (AD) Therapeutics
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Abstract

Design of multi-target directed ligand (MTDL) is believed to be a novel and improved approach for diseases
that elucidate a multifactorial nature. Alzheimer’s disease (AD) is related to increased levels of the amyloid β
peptide (Aβ), the hyperphosphorylated tau protein, free radicals, oxidized proteins and lipids, metal ion
dysregulation and many more. For the multifactorial aetiology of AD and the fact that till date there is no
effective treatment besides drugs alleviating associated symptoms, molecules designed to hit simultaneously
different key targets of the complex pathological network emerges as a more realistic alternative. In this
context, the present chapter puts forward a note of several strategies adopted for the development of
MTDLs for the disease followed by a case study leading to in vitro validation.

Keywords Anti-amyloidogenic, Antioxidant, Aβ, BACE1, Inhibitor, MTDL, QSAR, Virtual
screening

1 Introduction

Discovery and development of drugs is routinely becoming com-
plex and challenging with the aggressive accumulation of molecular
data and with rapid advances in technology. Drug research aiming
at the discovery of a single drug, modulating the function of a
single protein target, though prevalent was unsuccessful for multi-
factorial diseases. Of late, the philosophy of drug designing has
remodelled from single target therapy to polypharmacology
wherein either a single drug acts on multiple targets of an exclusive
disease pathway or it acts on multiple targets related to multiple
disease pathways. These multi-target ligands are more likely to be
effective for multifactorial diseases due to reduced side effects of
unintended drug–target interaction and lesser vulnerability to drug
resistance. Moreover, highly selective ligand for a particular target
does not always result in a clinically efficacious drug. Besides, drugs
targeting only one protein are more vulnerable to resistance. Even a
single mutation in the active site of the protein might affect ligand
binding affinity reducing the efficacy. On the contrary, resistance to
drugs targeting multiple proteins requires the unlikely event of
concurrent mutations in multiple targets. In view of the prevalence
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and expected increase in the incidence of diseases involving multi-
ple pathways, the design and development of efficacious and safe
agents has become a hotspot in the field of pharmaceutical research.

Diseases like neurodegenerative syndrome, diabetes, cardiovas-
cular diseases, cancer and many more that involve multiple patho-
genic factors are inadequately treated by drugs hitting a single
target. Different pharmacological approaches are adopted to cir-
cumvent this issue. Multiple-medication therapy (MMT) also
referred to as cocktail or combination of drugs is a blend of two
or three drugs that combine several therapeutic mechanisms. This
approach might not work well for patients with compliance prob-
lem. A second approach that handles this problem of compliance
includes the use of multiple-compound medication (MCM) also
referred to as “a single pill drug combination” wherein different
drugs are incorporated into a single formulation thus simplifying
the dosing regimen. The third emerging approach that forms the
eventual choice for multifactorial pathoaetiological diseases is the
multi-target directed ligand (MTDL) in which a single compound
simultaneously targets multiple proteins. Definitely, therapy with a
single drug with multiple properties would be inherently advanta-
geous over MMT and MCM whereby the administration of multi-
ple single drug-entities with differential bioavailability,
pharmacokinetics, metabolism and so forth is a challenge. However
the reductionist approach centred around single drug for single
molecular target would remain as a milestone for years to come.
Needless to say that it has already yielded many successful drugs
that are still in use.

It is worth mentioning that use of combination of drug entities
for multiple targets has been in vogue for quite a few years through
a polypharmaceutic approach. Polypharmacy is the approach
whereby several drugs that independently act on different aetiolo-
gical targets of a disease are combined. For instance, an HIV reverse
transcriptase inhibitor and an HIV protease inhibitor are
co-administered as a cocktail [1] in AIDS therapy. Another
approved combination of drugs for the treatment of asthma is the
corticosteroid—fluticasone and salmeterol, a bronchodilator. The
drugs simultaneously target the inflammation and bronchocon-
striction associated with the disease [2]. The combination of the
calcium channel blocker amlodipine and the cholesterol-reducing
agent atorvastatin in the treatment of cardiovascular disease [3] is
yet another example. It may be borne in mind that there are several
limitations behind the use of this kind of pharmaceutical combina-
tion. Apart from the demerit of different degrees of bioavailability,
pharmacokinetics and metabolism [4, 5], polypharmacy might
bring in or even multiply toxicity and side effects. Even worse is
the possibility of an unforeseen drug–drug interaction [6] that can
be fatal [7]. Research has therefore focused on the advantages
associated with the design of single drug molecules acting on two
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or more specific aetiological targets of a particular disease. In this
case the possibility of unwanted side effects is much less and even if
there are such effects it would be a much easier task to ‘design out’
the effect when only one ligand in contrast to many is used. Poly-
pharmacology where compounds are designed as multiple-ligand
drugs is the development of disease-modifying therapeutics addres-
sing the principal causes of the disease. Elementary development of
such compounds under numerous names such as ‘multi-target
directed ligands’, ‘designed multiple ligand’, ‘dual ligand’, ‘dual-
mechanism’, ‘bifunctional’, ‘multi-functional’, ‘multimechanistic’,
‘multimodal’, ‘pan-agonist’ or ‘hybrid’ drugs [8–14], started way
back in 1990.

MTDLs are single chemical entities that simultaneously modu-
late multiple targets. The molecules are conceived to interact
directly but weakly with multiple targets thus obviating the chal-
lenge of administering multiple drugs with different levels of bio-
availability, pharmacokinetics and metabolism. Besides ensuring
simplification of the therapeutic regimen to the patients it provides
drugs that would prevent and cure diseases effectively and safely.
MTDLs have found its use in a wide range of diseases [15]. Diseases
associated with the central nervous system (CNS) that have been
suggested to be catered by this strategy include movement disor-
ders, cognitive deficit disorders, negative symptoms in schizophre-
nia, Lewy body disease and depressive illness [16–19].

Approved drugs currently prescribed for Alzheimer’s disease
are incapable of curing the disease and provide symptomatic relief.
MTDLs thus emerge as a very significant strategy for designing of
safer drugs in such complex diseases. It thus becomes absolutely
essential to articulate the different methods adopted in designing
such ligands for the scope of developing mechanism-modulating
drugs for AD.

2 Materials

BACE1 and β-secretase activity assay kit, 2,2 0-Azinobis-3-ethyl-
benzothiazoline-6-sulfonic acid (ABTS) and Thioflavin-T were
purchased from Sigma-Aldrich. Hesperidin was purchased from
EXTRASYNTHESE and Aβ (25–35) was purchased from ANA-
SPEC. ANS was gifted by Dr. Rajat Banerjee (Department of
Biotechnology, University of Calcutta). All solvents used in the
study were of analytical grade (E. Merck). Deionized water from a
Milli-Q system apparatus (Millipore Corp., Billerica, MA) was used
throughout the experiments.
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3 Methods for Development of MTDLs

The adopted methods that are commonly practised for this purpose
may be very crudely classified to one in which a random screening
approach is utilized and another in which a knowledge-based
approach is used to combine scaffolds from different active mole-
cules with known activity against a particular target. The latter is
termed as framework combination approach. The scheme in Fig. 1
portrays the subgroups in each approach.

3.1 Random

Screening Approach

Random screening is either carried out using virtual screening
protocols or through multi-target quantitative structure activity
relationship (mt-QSAR). The search by Huang et al. [20] may be
taken up as an example of virtual screening. It is a bi-layered
screening approach (Fig. 2) wherein core structural elements for
H3R antagonist and BACE1 along with AChE inhibitor were
hybridized to generate the MTDL. Initially, a virtual database con-
taining derivatives of quinoxaline was screened using a pharmaco-
phore model of BACE1 inhibitor to arrive at 2073 compounds and
next, docking studies with AChE were used for filtering the num-
ber to 17. The scaffolds were prepared such that they consisted of
2-amino-3,4-dihydroquinazoline of BACE 1 inhibitor joined to a
benzyl pyrrolidine fragment of BYYT-25, an AChE inhibitor. The
ring core moiety of the BACE1 inhibitor combined to the basic
centre (contributed by BYYT-25) resulted in the scaffold that

Fig. 1 Methods used for development of MTDL
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consisted of all the required pharmacophores of an H3R antagonist.
These 17 hits were synthesized and experimentally validated.

mt-QSAR has certain merits over structural similarity and
docking methods such as for accuracy of prediction and scaffold
hopping. A study by Fang et al. [21] is the first report where the
mt-QSAR approach has been used, validated and successfully
proven in favour of polypharmacology for anti-AD drugs and even-
tually for discovering MTDLs. Here, naı̈ve Bayesian (NB) and
recursive partitioning (RP) algorithm have been employed for con-
structing classifiers using two kinds of fingerprints, namely ECFP_6
and MACCS and predicting active molecules against 25 key targets
related to AD using the multitarget-quantitative structure–activity
relationships (mt-QSAR) method. One hundred classifiers were
constructed to predict the chemical protein interaction using the
mt-QSAR method and the predictability of the model has been
validated by cross-validation and test set validation.

3.2 Framework

Combination Approach

In this knowledge-based approach, the strategy is to use the knowl-
edge of activity of potent compounds for each target from individ-
ual SAR (structure–activity relationship) for the combination of
different activities in a single molecule by integrating the pharma-
cophores of the selected molecules. The integration may occur in a

Fig. 2 A schematic representation of the bi-layered screening approach

MTDL Strategies for AD 371



few different ways as shown in Fig. 3. In linked ligand they are
separated by a distinct linker group that is absent in the structure of
either of the ligands. The pharmacophore of this resulting molecule
is actually responsible for the activity with different targets [22]. In
some cases the linker may be designed to be cleavable so that it may
be metabolized to release the molecules to interact with their
targets independently. In yet another case the molecules might be
in contact to each other without requiring a linker to link them and
thus be fused [23]. The framework in merged ligands is overlapped
on the basis of structural similarity with the starting structure. This
combination strategy almost always produces dual ligands, discov-
ering ligands that bind to more than two targets usually demanding
a screening approach.

The difference between screening approach and framework
combination is that in the former a novel chemotype may be
selected whereas in framework combination selective ligands for
known targets are considered from the beginning. However in
framework combination, incorporation of subsequent activities
retaining the former may be difficult to be employed.

3.3 A Hybrid

Approach

A more recent approach is the one in which combination of dock-
ing studies and 2-D QSAR models for different targets have been
successfully applied for a multi-tier screening [24]. In this study, the
authors choose the targets supporting the Aβ hypothesis which
emerges as the prominent pathological mechanism for the complex
neurological disorder, AD. Aberrant processing of the amyloid
precursor protein (APP) by BACE1 results in toxicity and can
cause oxidative stress mediated neuronal death. The study by

Fig. 3 A schematic representation of the different methods of framework
combination approach
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Chakraborty et al. has exploited these facts for the design of effec-
tive multi-potent agents from natural origin. Therefore an MTDL
was developed (Fig. 4) that could inhibit the protease BACE1 as
well as exhibit anti-amyloidogenic and antioxidant activities. The
steps undertaken for the method are described below.

Fig. 4 A flowchart of the steps of hybrid approach
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3.3.1 Development of an

In-House Phytochemical

Library

An in-house phytochemical library with 200 entries was built as the
first step. The 3-D structure of each phytochemical was built from
the respective 2D structures using HYPERCHEM 8.0. [25]. Mini-
mization using MM+ molecular mechanical force field with Polak-
Ribiere conjugate gradient algorithm was carried out to RMS
gradient of 0.001 kcal/Å mol. 3D structures of all the phytochem-
icals were prepared in the SYBYL mol2 format. This database of
phytochemicals was screened simultaneously by molecular docking
algorithm with receptor ensemble of BACE1.

3.3.2 Ensemble Docking A structure-based docking was next carried out with BACE1 to
mine inhibitors for the highly flexible enzyme. It is due to its
flexibility that BACE1 exhibits structural reorientation [26] and is
capable of binding ligands that range from smaller molecules to
larger peptide fragments. Choosing the appropriate receptor con-
formation for docking thus forms a crucial step here. Several crystal
structures for BACE1-inhibitor complexes available in the Protein
Data Bank (PDB) were systematically searched and aligned for
comparison of the active site. Two different BACE1-inhibitor crys-
tal structures (PDBID: 3TPP and 3IND), one with a squeezed
active site cavity and another with a wider one were chosen for
docking (Fig. 5). Before using the method of molecular docking for
screening, the docking method was validated by re-docking. In this
approach, the bound inhibitors of the 3TPP and 3IND are docked
back to their respective receptors using the docking method of
FlexX. Re-docking with 3IND yielded two solutions in terms of

Fig. 5 Superimposed images of the two BACE1 structures—3IND (red) and 3TPP
(blue)
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the most favourable docking energy and best root mean square
deviation (RMSD) with respect to the crystallographic orientation
of the bound inhibitor in 3IND. For 3TPP, the solution with the
most favourable docking energy exhibited the lowest RMSD with
the corresponding crystallographic orientation. These results sug-
gest that the lowest energy docking solution exhibited by FlexX
reproduces the pharmacophoric features for the inhibition of the
enzyme. Further, cross-docking was also applied such that the
inhibitors of 3IND and 3TPP were interchangeably docked and
as expected the pharmacophoric features could not be unfolded
from cross-docking. This is so as the two inhibitors largely differ in
size as do the binding cavities of their respective receptors. Results
of re-docking and cross-docking advocates us to use the small as
well as the large cavity receptors for virtual screening of unknown
ligands which in turn calls for the application and hence validation
of ensemble docking. That ensemble docking can be successfully
applied to BACE1 was already tested by our group [27]. In this
study, multiple receptor conformations (MRC) of BACE1 was
generated by normal mode analysis and the structures were subse-
quently used to dock myricetin, a polyphenol for the elucidation of
pharmacophoric features necessary for it to dose dependently
inhibit the enzyme with an IC50 of 2.5 μM. A similar validation
with seven BACE1-inhibitor crystal complexes obtained from PDB
was carried out. A dataset with diverse structural scaffolds and the
binding potency ranging from μM to nM was considered. The
seven inhibitors were re-docked into the respective receptors repro-
ducing the inhibitor orientation as observed in the crystal structure
judged by the RMSD (<1 Å) between the docked pose and the
crystallographic orientation. These seven inhibitors were further
docked to the receptor ensemble of BACE1 (3IND and 3TPP)
and the results implied that inhibitors with higher binding affinity
reveal exact crystallographic contacts as observed in the crystal
structure. Highly active inhibitors were found to dock with much
higher affinity which led us to set an energy cut-off criterion of
�20 kJ/mol for a compound to be judged active during virtual
screening.

3.3.3 Virtual Screening The in-house developed library was subsequently screened adopt-
ing the high-throughput ensemble docking approach using both
3IND and 3TPP as the structure of BACE1. Apart from selecting
the phytochemicals with a docking energy cut-off criterion of
�20 kJ/mol, the docked conformation corresponding to the
higher binding affinity was selected. Sixty-four phytochemicals
were mined, out of which the highest binding affinity was calcu-
lated for hesperidin.
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3.3.4 Development of a

QSAR Model for Anti-

Amyloidogenic Activity

Eighteen polyphenols from different structural classes of flavonoids
were selected from literature survey with known anti-
amyloidogenic activity expressed as their IC50 value and converted
to the logarithmic scale. The structures were drawn using the
molecular builder interface of HYPERCHEM 8.0 and minimized
following the steps discussed in Subheading 3.3.1. The CODESSA
package [28] was used for the calculation of several descriptors and
also for QSAR modelling. Descriptors are classified into six sub-
groups (constitutional, topological, geometrical, electrostatics,
quantum-chemical and thermodynamic) in CODESSA. Out of
these, for the calculation of quantum-chemical and thermodynamic
descriptors, wave-function optimization was carried out on all the
pre-optimized structures using the AM1 semi empirical method
from the AMPAC 9.2 packages [29]. Other descriptors of each
structure were calculated using the descriptor calculation tool avail-
able in CODESSA. 1-D, 2-D and multivariate analysis tools of the
CODESSA package were utilized for preliminary analysis of the
physico-chemical properties and descriptors. Heuristic methodol-
ogy of the package was used to generate the QSAR models. Initi-
ally, 458 descriptors were calculated for each of the dataset
compounds. Descriptors with missing and unacceptable values
were eliminated along with the highly correlated ones obtained
from the one-parameter regression models. Next, two-parameter
regression models computed on the remaining descriptors were
arranged on the basis of squared correlation coefficient. Then,
multi-parameter regression models were generated by step-wise
addition of descriptors. Highest values of R2, Rcv

2 and the
F value judge the best model. The predictive potential of these
models is assessed using the squared correlation coefficient R2,
root mean square error (RMSE) and F-test values. Finally, valida-
tion of the designed QSAR model was performed by cross-
validation techniques using the leave-one-out (LOO) method.
Rcv

2 is calculated by removing a data point from the data set and
the regression is recalculated. This process is repeated until each
datum has been omitted at least once. One more thing that
becomes very important is to determine the number of descriptors
required to explain the observed anti-amyloidogenic activity. A
simple breaking point rule was applied to determine the optimum
number of descriptors. Multi-parameter QSAR models were gen-
erated using 2–6 descriptors. For a given number of descriptors,
heuristic method generates many possible QSAR models. The
QSAR model selected based on the highest predicted R2 value
among all generated models for a given number of descriptor is
supposed to be the best model. To judge the applicability of the
model, cross-validation techniques have been used. Variations of
the predicted R2 and RCV

2 of the QSAR models with the number
of descriptors increase significantly for QSAR model with four
descriptors. Both the squared correlation terms thereafter increase
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marginally with the increasing number of descriptors indicating the
“breaking point” to have occurred at 4, i.e., at least four descriptors
are required to model the anti-amyloidogenic properties of the
polyphenols with reasonable accuracy. The descriptors include
HBSA (hydrogen bonding surface area), average information con-
tent of zero order (topological descriptor), relative negative
charged surface area and the vibrational entropy per atom (thermo-
dynamic descriptor).

Anti-amyloidogenic activity of the hits obtained using docking
energy cut-off was assessed using this 5-parameter QSAR model
and hesperidin was predicted to show high anti-amyloidogenic
activity. Thereafter another QSAR model for antioxidant activity
was developed for the progress of the process of MTDL
development.

3.3.5 QSAR for

Antioxidant Activity

Literature study yielded antioxidant activity of 33 phytochemicals
expressed as TEAC values that were converted to the logarithmic
scale. These compounds were chosen such that the activities
spanned over tenfold in magnitude and their structures were
drawn using the molecular builder interface of HYPERCHEM
8.0 and minimized following the steps discussed in Subheading
3.3.1. The CODESSA package was used for the calculation of
several descriptors and also for QSAR modelling following the
same method as described in the section for anti-amyloidogenic
activity.

A total of 458 descriptors belonging to different classes were
calculated which was reduced by eliminating descriptors with miss-
ing values and also those that are highly correlated. Bayesian multi-
ple linear regression (BMLR) was finally carried out on
426 descriptors. The dependent variable in the QSAR model was
the observed free radical scavenging activity and the independent
variable constituted of the various combination of the chosen
descriptors. Determination coefficient (R2), standard deviation
(σ), F-statistics (F) and t-statistics (t) were considered to evaluate
the quality of the model statistically.

Another challenge was to determine the optimum number of
descriptors required to explain the modelled activity. An addition of
descriptors no doubt increases theR2 value but simultaneously, the
model suffers from over-parameterization. Series of models com-
prising of 2–7 descriptors were obtained using BMLR method.
Variation of the predicted R2 with the number of descriptors asso-
ciated with the particular model increases up to four, after which
the value saturates. Thus the slope of the line changes at 4 giving
rise to a break point at 4, implying that a model with four descrip-
tors is necessary and sufficient to predict the antioxidant activity
with reasonable accuracy. It may be noted that the R2 marginally
increases from 0.8903 for four-descriptor model to 0.9094 and

MTDL Strategies for AD 377



0.9094 for five- and six-descriptor model, respectively. These three
models were further validated using cross-validation techniques.
Cross-validated squared correlation coefficient (Rcv

2) was calcu-
lated using the leave-one-out (LOO) method. Rcv

2 is supposed to
be a better measure of the predictive power of a regression equa-
tion. It is highly sensitive to the number of descriptors and
decreases when a model is over-parameterized.Rcv

2 > 0.5 is gener-
ally supposed to be an acceptable prediction ability. For this study,
Rcv

2 with four-descriptor model is 0.8318, but for five-descriptor
model it significantly increases to 0.8706 although for
six-descriptor model it marginally increases to 0.8723. Finally car-
rying out principal component analysis for all the three models and
subsequently plotting the first two score vectors in the form of a
bi-dimensional projection, it was concluded that the descriptors in
the four- and the five-descriptor models being widely distributed
unlike the six-descriptor QSAR model, the former two descriptor
models were considered for further studies. The following are the
descriptors of the four-descriptor QSAR model—number of ben-
zene ring, zero point vibrational energy (a thermodynamic descrip-
tor that describes the vibrational property of the molecule due to
atomic fluctuations at the lowest possible energy state), maximum
partial charge for an Oxygen atom and minimum valency of a
Carbon atom (a quantum-chemical descriptor negatively correlated
with the antioxidant activity). For the five-descriptor QSAR model,
FNSA-2 (fractional partial negative surface area � total charge
weighted partial negative surface area/total molecular surface
area) is an important descriptor and so is HACA-2/TMSA which
is also an electrostatic descriptor calculated from the hydrogen
acceptor charged surface area and the total molecular accessible
surface area.

Hits obtained using docking energy cut-off after being assessed
for anti-amyloidogenic activity using a four-parameter 2-D QSAR
model [30] were further assessed for predicting antioxidant activity
using two (four and five parameter) QSAR models [31]. Moderate
antioxidant activity of the most potent compound hesperidin was
thus predicted. These predicted activities were further verified by
in vitro assays.

3.3.6 Experimental

Validation

Steady-state fluorescence spectroscopy confirms ligand binding and
finds the binding constant. ANS binding assay confirms the binding
of the compound at the hydrophobic core of the Aβ aggregate,
Thioflavin T assay shows the ability of the compound to destabilize
the fibrils with final confirmation through atomic force microscopy.
Finally, ABTS+ assay and DNA nicking assay estimate the antioxi-
dant activity of the screened compound.
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3.3.7 Steady-State

Fluorescence Studies for

BACE1–Hesperidin

Interaction

BACE1 was prepared in 0.2 M acetate buffer, pH 4.8 and concen-
tration was 100 nM for fluorescence experiments. Concentrated
stock solution of hesperidin was prepared in DMSO. To perform
the binding studies, fluorescence emission experiments were carried
out using the titration method. Aliquot of the inhibitor from the
stock solution was gradually added to the protein solution to obtain
the desired final concentration of the inhibitor. In all samples, the
final concentration of DMSO was kept <1% (by volume). Emission
spectra were obtained in the wavelength range from 300 to 450 nm
using λex¼ 295 nm, whereas excitation spectra were obtained in the
wavelength range from 260 to 310 nm using λem ¼ 340 nm.

The equilibrium constant (K) was determined by the above-
mentioned fluorescence titration experiments using the Benesi-
Hildebrand equation. In the titration experiments, as the ligand is
present in excess when compared to the protein and there is an
increase in fluorescence intensity with increasing ligand concentra-
tion hence it is possible to apply this equation.

The equation used is as follows:

1=ΔF ¼ 1=ΔFmax þ 1=ΔFmaxK Ligand½ � ð1Þ
whereΔF¼ Fx� F0, Fx and F0 represent the fluorescence intensities
of BACE1 in the presence and absence of added compound, respec-
tively. Fmax is the maximum change in fluorescence intensity and
K is the binding constant for the 1:1 complex. A plot of 1/ΔF
vs. 1/[ligand] exhibits strong linearity indicating 1:1 complex
formation.

The equilibrium constant (K) for the BACE1-hesperidin com-
plex obtained by fitting the fluorescence data to Eq. 1 is
3.02 � 105, which implies that hesperidin binds strongly at the
active site of the protein.

Therefore, inhibitory effect of hesperidin on the activity of the
enzyme was further evaluated using the BACE1 assay kit and
interestingly, it has been observed that only 500 nM of hesperidin
causes 100% inhibition of BACE1 activity.

Steady-state fluorescence spectroscopy reveals that hesperidin
binds at the active site of BACE1. Docking studies with hesperidin
and BACE1 illustrate that hesperidin docks close to the catalytic
residue and orients itself in a manner such that it blocks the cavity
opening, precluding substrate binding.

3.3.8 Preparation of Aβ

(25–35) and Compound

Stock Solution

Hesperidin stock solution was prepared in DMSO at 10 mM con-
centration and was diluted in appropriate concentration using PBS
(pH 7.4). Aβ (25–35) was dissolved in 1,1,1,3,3,3-hexafluoro-2-
propanol (HFIP) at concentration of 1 mM to produce uniform,
non-aggregated Aβ, immediately stored at �80 �C. The amyloid
samples were cryo-lyophilized and dissolved in PBS (pH 7.4) for
aggregation study during the experiment. Aβ (25–35) peptide in
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absence and presence of hesperidin in different concentrations were
immediately suspended in PBS buffer (pH 7.4) at final concentra-
tion of 100 μM and incubated at 37 �C for 3 days.

3.3.9 Intrinsic Flavonoid

Fluorescence Assay

Incubated Aβ (25–35) peptide in absence and presence of hesperi-
din at 1:1 peptide: hesperidin concentration ratio was immediately
diluted five times with PBS buffer (pH 7.4) such that the final
peptide and hesperidin concentration became 20 μM. In another
experiment, Aβ (25–35) solution incubated for 3 days at 37 �C was
diluted with PBS such that the final peptide concentration became
20 μM and to this solution, hesperidin (20 μM) was added. Intrin-
sic flavonoid fluorescence measurement was done using excitation
at λex¼ 340 nm and emission measurements were monitored in the
wavelength region of 410–520 nm.

A study of the intrinsic fluorescence of hesperidin reveals that in
bulk solvent it is non-fluorescent. Upon addition of hesperidin in
3 days aged Aβ (25–35) solution, a significant rise in fluorescence
intensity has been observed. When co-incubated with Aβ, fluores-
cence intensity decreases. Since the core of the fibril is highly
ordered and essentially hydrophobic in nature therefore in the
former the fluorescence increases but in the latter, decrease in
fluorescence indicates reduction of fibrillar species in solution.

3.3.10 ANS Binding

Assay

Reaction mixtures of peptide in presence and absence of hesperidin
after 3 days incubation at 37 �C were diluted five times with PBS
buffer such that the final peptide concentration became 20 μM.
Aliquots of ANS were added from the concentrated stock solution
of 1 mM in Tris buffer (pH 8.0) such that the final concentration of
ANS was 4 μM. Fluorescence measurements using excitation at
λex¼ 350 nm and emission measurements in the wavelength region
of 410–520 nm were monitored. Fluorescence was corrected by
subtracting the appropriate hesperidin fluorescence from the ANS
fluorescence of peptide in presence of hesperidin.

3.3.11 Thioflavin T Assay Both reaction mixtures (with and without hesperidin), after 3 days
incubation at 37 �C, for fibrillation, were diluted five times with
PBS buffer such that the final peptide concentration became
20 μM. Aliquots of Thioflavin T (ThT) were added from the
concentrated stock solution of 5 mM ThT in DMSO such that
the final concentration of ThT was 15 μM. Fluorescence measure-
ments were carried out using excitation at λex ¼ 440 nm and
emission measurements were monitored in the wavelength region
of 460–550 nm.

3.3.12 Atomic Force

Microscope (AFM) Imaging

Aβ (25–35) peptide in absence and presence of hesperidin was
immediately suspended in PBS buffer (pH 7.4) such that both the
peptide and ligand concentrations were 100 μM and incubated at
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37 �C for 7 days. Five microlitres of sample was placed on freshly
cleaved mica surface for 15 min, rinsed gently with deionized water,
and dried in a desiccator. Images were acquired in air using a
VEECO VI INNOVA AFM (Bruker AXS Pte. Ltd) operating in
tapping mode using antimony doped silicon probes (Bruker).

Hesperidin shows complete inhibition of the amyloid fibril
supported by ANS, Thioflavin T binding assay and AFM study.
Amyloid fibril formation has not been observed in images obtained
from AFM when Aβ (25–35) peptide was co-incubated with hes-
peridin for 7 days at 37 �C.

3.3.13 Antioxidant

Activity of Hesperidin

ABTS+ Radical Scavenging

Assay

The method assesses the ABTS+ scavenging ability of antioxidant
molecules by the change in the characteristic absorption peak of
ABTS+ at 405 nm [32]. A stable stock solution of ABTS+ was
prepared by reacting a 7 mM aqueous solution of ABTS with
2.45 mM potassium persulfate (final concentration). The mixture
was allowed to stand in the dark at room temperature for 12 h before
use. Thereafter, the ABTS+ solution mixture was diluted with PBS
buffer at pH 7.4 to an absorbance of 0.60 at 405 nm. Varying final
concentrations of hesperidin was obtained by adding aliquots from
the stock solutions. Percentage inhibition of the test compounds has
been calculated using the equation mentioned below.

I% ¼ AControl �ASample

� �
=AControl

� ��� 100 ð2Þ

where AControl is the absorbance of ABTS+ solution and ASample is
the absorbance of ABTS+ solution in presence of increasing con-
centration of hesperidin.

DNA Nicking Assay As described in Satyamitra et al. [32], the experiments were con-
ducted in potassium phosphate buffer (pH 7.4, 50 mM). Briefly,
2 μl each of ethylenediaminetetraacetic acid (EDTA), phosphate
buffer, H2O2 (25 mM), FeSO4 (16 mM), hesperidin (250 μM) and
plasmid pcDNA Hismyc B4 (0.3 μg/μl) were mixed. The final
volume of the reaction mixture was brought to 12 μl with deionized
DDW incubated for 1 h at 37 �C in all the cases. After incubation,
2 μl loading dye (6XEESB-20XTEA buffer, glycerol, bromophenol
blue, xylene cyanole and water) was added and 14 μl of this mixture
was loaded onto a 0.7% agarose gel. Electrophoresis was conducted
at 60 V in Tris, boric acid, EDTA (TBE) buffer for 2 h. The gel was
stained with ethidium bromide (0.5 μg/ml in DDW) for 30 min
and DNA bands were visualized under UV light and photographed
using a gel documentation system (Amersham Biosciences, GE
Healthcare, UK).

Finally, ABTS+ radical scavenging assay demonstrates that hes-
peridin shows moderate antioxidant potential but DNA nicking
assay shows that it can strongly scavenge hydroxyl radicals.
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4 Pitfalls

MTDLs that are designed to address two or more targets should
potentially lead to additive response if not acting in synergism. Yet
there are certain drawbacks and disadvantages which limit its appli-
cation. It is well understood that high quality negative data chosen
from experimentally validated inactive compounds are hard to find.
DUD, the online database, or compounds randomly extracted
from the commercial database serves the purpose for decoy genera-
tion. But this brings in the involvement of some noisy compounds.
A second concern is a good classification model. This implies a large
and diverse chemical space in the training set and test set. Thus in
case of targets with only few ligands or no ligand (such as orphan
receptors), structural similarity or inverse docking may be preferred
for target fishing.

Finally, compared with docking method, machine learning
models and structural similarity cannot directly interpret recep-
tor�ligand interaction, which aids in understanding the mecha-
nism of action and rational structural modification. Thus, an
appropriate application for each method, or a combination of dif-
ferent methods, provides a new perspective to overcome their own
shortcomings.
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Computational Design of Multi-target Kinase Inhibitors

Sinoy Sugunan and Rajanikant G. K.

Abstract

As key regulators of every aspect of cell function, protein kinases are frequently associated with various human
diseases. Therefore, protein kinase inhibition has become the second most important group of drug targets,
after G-protein-coupled receptors. Owing to the complex and polygenic nature of diseases, designing multi-
kinase small molecule inhibitors as potential therapies is gaining major consideration. Effective in silico drug
design strategies are desired to identify multi-target kinase inhibitors. In this chapter, we summarize the two
such effective computational strategies reported by our group to identify multi-target kinase inhibitors.

Keywords Ensemble pharmacophore, Molecular docking, Molecular dynamics simulation, Multi-
target inhibitor, Protein kinase, Virtual screening

1 Introduction

Protein kinases play a critical role in signal transduction and regula-
tion of a range of cellular activities and hence have established them-
selves as promising drug targets for the treatment of wide variety
of human diseases [1–3]. The notion of kinase inhibition was origi-
nated during the 1950s and 1960s, when multiple studies on protein
kinases characterization and elucidation of their signaling cascade
were initiated [1, 3]. The strategy of kinase inhibition was introduced
during late 1980s, when inhibitors against the epidermal growth
factor receptor (EGFR) were reported [4]. Subsequently, a large
number of kinase inhibitors based on diverse structural frameworks
and pharmacological profiles have been reported [1, 5–8]. Currently,
there are around 46 approved small molecule kinase inhibitors in the
market, along with these inhibitors; a large number of molecules are
undergoing clinical trials at different stages [9–11].

Amid 46 FDA approved drugs affecting the human kinome,
15 are multi-target drugs, and 14 are mainly used in combination
with other drugs [9]. The approved multi-target kinase inhibitors
manage themultifaceted nature of complex diseases by simultaneously
modulating multiple targets. The multi-target inhibitors provide an
effective approach to avoid the untoward effects caused by drug–drug
interactions [9, 12, 13], but it is very challenging to design an effective
multi-target molecule. Even though the combination of individual
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single-target drugs represents the most clinically practiced therapeutic
tactics, the modulation of multiple targets by a single molecule has an
improved chance of affecting themultifarious equilibrium of complete
cellular networks than drugs acting on a single target [9, 14].

Computer-aided drug design methodologies are being used
extensively in drug discovery and development arena [15]. To design
and identify novel small molecules as effective therapeutics, various
promising computational strategies have been formulated, depending
on the purpose and target system. Two important in silico approaches
in the drug discovery process are ligand- and structure-based design.
These potent approaches are widely applied in virtual screening for
lead identification and optimization. Considering the potential of in
silico approaches in drug discovery process, various studies have
reported the use of computational methodology to derive multi-
target molecules with appreciable success [16–18]. This chapter dis-
cusses the two such effective in silico strategies reported by our group
to identify multi-target kinase inhibitors.

The first approach involved a combination of merged pharma-
cophore matching, database screening, and molecular docking to
reliably identify the potential multi-target kinase inhibitors [19]
(Fig. 1). The second strategy employed ensemble pharmacophore-
based screening (EPS) of a compound database, post-EPS filtration
(PEPSF) of the ligand hits, and multiple dockings. Consequently,
the binding affinity of small molecules with the desired protein struc-
tures was validated by molecular dynamics (MD) simulation [20]

Fig. 1 Merged pharmacophore-based strategy to identify multi-target kinase inhibitors
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(Fig. 2). These strategies were effective in mining structurally diverse
inhibitors through combined pharmacophoric features, which in
turn increased the speed of the virtual screening. In general, the
collection of multiple protein structures for pharmacophore extrac-
tion is considered as an improvement over the standard technique of
using a single structure. The study by Zou et al. [21] had shown that
multicomplex-based pharmacophore model derived from many
holoprotein (protein–ligand complex) structures would determine
all of the key protein–ligand interactions. It was also demonstrated
that an ensemble pharmacophore derived from multiple apoprotein
(protein only) and holoprotein structures could help in extracting all
of the features available at the binding site of the protein [21]. The
usage of merged and ensemble pharmacophore for screening of
multi-target ligands is preferred when the conformations of protein
structures vary considerably and ligands dock to them with different
pharmacophoric features. This in turn would effectively screen
ligands with different scaffolds.

Fig. 2 Ensemble pharmacophore-based strategy to identify multi-target kinase inhibitors
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2 Materials

1. High-end computer work station

2. Small molecule databases such as ZINC

3. Schrödinger Suite (module: Prime, Glide, E-pharmacophore,
Ligprep, and Phase)

4. SMAP webserver

5. Molecular dynamics (MD) simulation software such as
Gromacs

3 Methods

3.1 Merged

Pharmacophore

Strategy

3.1.1 Protein Structure

Preparation

The protein–ligand complexes of proteins are retrieved from the
PDB and are prepared using the protein preparation wizard of
Schrödinger (Schrödinger, LLC, New York, NY, USA). Missing
hydrogens are added, proper bond orders are assigned, and water
molecules further than 5 Å from the heterogeneous groups are
deleted. The H-bonds are then optimized and the protein struc-
tures should be minimized to the default root mean square devia-
tion (RMSD) value of 0.30 Å. The minimized protein structures
will be further considered for pharmacophore analysis and docking.

3.1.2 Analysis of

Active Site

The active sites of proteins could be analyzed by selecting neigh-
boring region within 5 Å of their respective ligands. This analysis
could give information about amino acids involved in H-bond and
hydrophobic interactions with ligands. It could reveal information
of shared amino acid features present in proteins of the same family.
Potential of this analysis is reported in our study related to screen-
ing of multi-target inhibitors against DAP kinases [19].

3.1.3 Superimposition of

Binding Sites

The binding sites are compared by superimposing the proteins. This
could be achieved by using the SMAP software package [19, 22].
The proteins should be superimposed in such a way that the binding
sites occupy approximately the same region of space. It could also
provide information about position of active and conservation
among all the members of a protein family. Significantly, SMAP
server provides vital data regarding ligand-binding sites and feasi-
bility of identifying common ligands for different proteins, by
comparing the binding site similarity [19]. The server computes
p-value, raw alignment score, RMSD, and Tanimoto coefficient of
overlap for each of the hits. The hits producing SMAP p value
<1.0e�3 and high Tanimoto coefficient (near to one) could be
considered significant. We have calculated these values for DAP
kinases and the results are mentioned in a Table of our previously
reported study [19].
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3.1.4 Generation and

Evaluation of

Pharmacophore

Pharmacophores could be generated for each protein–ligand com-
plex using an e-pharmacophore script of Schrödinger Suite [19].
The script mines the energetic descriptors of the Glide XP score and
allocates them to pharmacophore features. The resulting energy
e-pharmacophore hypotheses can be opened in a Phase search of
Schrödinger or could be modified manually based on energetics
and visualization. In order to generate the hypotheses, Phase uses a
default set of six chemical features: namely, H-bond acceptor (A),
H-bond donor (D), hydrophobic (H), negative ionizable (N),
positive ionizable (P), and aromatic ring (R) site. The Phase defini-
tions could be edited so that the positive and negative groups are
also labeled as donors or acceptors, respectively. The successful
generation of merged pharmacophore and alignment of ligands to
pharmacophore for DAP kinases was presented in Fig. 4 of previ-
ously reported study [19].

3.1.5 Preparation of

Ligand Dataset

The strategy of merged pharmacophore is mainly useful if the
ligand dataset is small. These ligands are prepared using the LigPrep
module of Schrödinger. Ligands are protonated and subjected to
removal of salt, ionization, and generation of low-energy ring con-
formations. The chiralities of the original compounds should be
preserved. Lastly, low-energy 3D structures of all the ligands will be
produced.

3.1.6 Multiple Merged

Pharmacophore-Based

Ligand Screening

To identify the multi-targeting kinase inhibitors, the dataset of
ligands should be screened in a sequential way with all merged
pharmacophore hypotheses. Constraints given during this process
should be based on shared features among the pharmacophores.
We have effectively screened dataset with merged pharmacophore
in our previously described study [19].

3.1.7 Cross-Docking of

Ligand Hits to Proteins

The ligand hits retrieved through screening of the ligand dataset,
using merged pharmacophores of proteins, are docked into the
binding sites of each protein. Glide Extra Precision (XP) present in
the Glide module of Schrödinger is used for these docking studies.
All Glide protocols should run on default parameters. Throughout
the docking process, glide scoring function (G-score) is used to select
the best conformation for each ligand. The similar docking study of
DAP kinases was reported earlier and the results were presented in a
Table of our previous study [19].

3.2 Ensemble

Pharmacophore-

Based Strategy

3.2.1 Protein Structure

Preparation

All protein–ligand complexes should be prepared as mentioned
earlier in Sect. 3.1.1 of this chapter.
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3.2.2 Receptor Grid

Generation

Glide energy grids are produced for all of the prepared protein struc-
tures through Receptor Grid Generation panel. The co-crystallized
ligand has to be differentiated from the active site of the receptor. The
grid is defined by a rectangular box surrounding the co-crystallized
ligand. The atoms should be scaled by van der Waals radii of 1.0 Å
with the partial atomic charge less than 0.25 defaults. No constraints
have to be defined. The grid should cover the active site of the protein.
These grids are to be engaged in all of the docking studies.

3.2.3 E-Pharmacophore

Extraction

Structure-based pharmacophores could be created from protein struc-
tures using the energy-optimized pharmacophore (e-pharmacophore)
script of Schrödinger [20]. Both ligand- and fragment-based e-phar-
macophores have to be extracted. During ligand-based method,
various protein structures are treated as holoproteins and during
fragment-based method, they are treated as apoproteins. Pharmaco-
phore features from holoproteins are extracted through ligand-based
e-pharmacophore approach. In this step, ligands are separated from
their respective receptors and then re-docked using the Score in
Place option in Glide XP.

Extraction of pharmacophoric features from apoproteins is
achieved through fragment-based e-pharmacophores. To extract
these pharmacophores, the glide fragment library is docked to
each of the proteins using Glide XP. In our study, glide fragment
library consisted of a set of 441 unique small fragments (1–7
ionization/tautomer variants; 6–37 atoms; MW range 32–226),
derived from molecules in the medicinal chemistry literature [20].

The script extracts the energetic descriptors, and the later steps
are carried as mentioned earlier in this chapter. The generated
pharmacophore sites and the Glide XP energies from the atoms
that comprised each pharmacophore sites are compiled. Then,
these sites are ranked based on the individual energies. The success-
ful e-pharmacophore extraction was carried out on RIPK1 protein
and was mentioned in Figs. 6a–d and 7 of our previously described
study [20].

3.2.4 Ensemble

Pharmacophore

Construction

The ligand- and the fragment-based e-pharmacophores obtained
from the proteins should be carefully evaluated for their diverse
features. In order to retrieve all these features in the final pharma-
cophore, all the e-pharmacophores are superposed and their coor-
dinates are manually compiled into a single file to generate an
ensemble pharmacophore. If common features corresponding to
the same amino acid feature in the binding site are present, then
they are considered as a single feature and only one of them was
represented in the ensemble pharmacophore. The results of ensem-
ble pharmacophore construction for RIPK1 and RIPK3 are pre-
sented in Tables of our previously reported study [20].
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3.2.5 Ensemble

Pharmacophore-Based

Screening for Proteins

Ensemble pharmacophore obtained from the previous step is
screened against ligand databases such as ZINC (�2 million unique
structure records) to retrieve lead-like compounds [31], using the
Phase module. The database molecules are filtered explicitly with a
distance-matching tolerance of 2.0 Å, and matching of a minimum
of four sites is required. The database hits are ranked based on their
fitness scores, which measures how well the aligned ligand confor-
mers matched the hypothesis.

3.2.6 Post-

Pharmacophore-Based

Screening Filtration

To filter out the false positives from EPS hits, PEPSF has to be
carried out, which separates the compounds into groups with fea-
tures from individual pharmacophores. The output of protein EPS
gives information on the pharmacophore features present in each
ligand hit that matched with the protein ensemble pharmacophore
features. The EPS result retrieved in the form of an Excel work-
sheet, and the ligand hits are arranged based on their matching
sites. These sites are compared with each of the protein fragment-
based e-pharmacophores, and the compounds with sites that
matched with any of these pharmacophores are considered. Com-
pounds with sites that matched with more than one pharmaco-
phore are identified as false positives since they contained cross-
features, and removed from the study. PEPSF could eliminate a
large number of compounds, greatly reducing the computational
time required for the docking step. The compounds retrieved
through PEPSF of a protein are subjected to EPS and PEPSF
with the second protein. These compounds will contain pharma-
cophore features of both proteins (like RIPK1 and RIPK3 in our
study) and will not harbor any cross-features [20].

3.2.7 Multiple Dockings The multiple groups of compounds generated from PEPSF steps
are subjected to multiple dockings with their respective protein
structures. The resultant top-ranked compounds are expected to
show good fitness and Glide scores and also exhibit good interac-
tions with the desired amino acids of both the proteins.

Docking is performed with the Glide module using the OPLS
2005 force field. Default settings are selected for all of the docking
calculations, and the Glide XP descriptor information is used to
construe energy terms such as H-bond interactions, electrostatic
interactions, hydrophobic enclosure, and π–π stacking interactions
(Glide v.5.7, Schrodinger, LLC). At final stage, post-docking mini-
mization is carried out to augment the ligand geometries.

3.2.8 Molecular Dynamic

Simulation of Lead

Compounds

Based on docking results, top hit compounds could be subjected to
molecular dynamics (MD) simulation studies with both the protein
structures to validate binding affinities of compounds. MD simula-
tions may be carried out using the Gromacs v4.5.5 software with
Gromos53a6 force field [20, 23].
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4 Conclusion

In this chapter, we have described two computational strategies to
screen and identify multi-target kinase inhibitors, which were suc-
cessful in identifying multi-kinase inhibitors [19, 20]. According to
us, both strategies are effective in identifying multi-target inhibitors
in a swift way, the choice of strategy depends largely on size of
ligand database and on discretion regarding the curation of phar-
macophoric features. Furthermore, other computational approaches
that have been utilized successfully for screening small molecule
multi-target kinase inhibitors are listed in Table 1.

5 Notes

1. A molecular dynamic simulation step could also be included in
merged pharmacophore-based strategy to verify the ligand–tar-
get binding efficiency.

2. Comparatively, ensemble pharmacophore-based strategy is
potent in screening big ligand databases and PEPSF step short-
ens the time consumed in screening. This strategy compiles the
pharmacophoric features in more accommodative manner, as it
considers both ligand- and fragment-based pharmacophores.

3. The speed of whole screening process also depends upon the
computer-hardware configuration.

4. Modeled protein structures could also be used for
ensemble pharmacophore generation as described in our previ-
ous study [20].

Table 1
It describes the few notable computational strategies reported by various researchers to identify
multi-target kinase inhibitors

Strategy adopted References

Docked with targets separately [24–26]

Docked with targets separately and comparison of binding sites [27]

Neural network-QSAR based strategy [28]

QSAR based strategy [29]

mtSAR approach [30]

Machine learning–datasets–structure-based drug designing approach [31]

CoreSiMMap based approach [32]
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Abstract

Proteochemometrics (PCM) is a method for deriving quantitative structure–activity relationships (QSAR).
It models the bioactivity of multiple ligands against multiple target proteins. Thus, PCM is a key method
used to develop multi-target drug molecules. In the present protocol, the PCMmethod is applied to a set of
peptides binding to seven polymorphic HLA class II proteins from locus DP. The peptides bind to an open-
ended binding site on DP proteins which accepts a nonameric binding core. As the peptides in the studied
set are 15-mers, the initial set is processed by an iterative self-consistent algorithm to select the most
probable binding nonamer for each 15-mer peptide. The final set containing the most probable binding
nonamers is used to derive the PCMmodel. The model is validated by external set of proteins and enters the
server EpiTOP which is freely accessible at http://www.ddg-pharmfac.net/EpiTOP3/.

Keywords Proteochemometrics, HLA class II binding prediction, Partial least squares, EpiTOP

1 Introduction

The main steps of the immune response mounted by the host af-
ter microbiological invasion are: antigen processing in antigen-
presenting cells (APCs), presentation on the cell membrane of
foreign peptide fragments, and recognition by the cells of the
host immune system. A major role in this process is played by
major histocompatibility complex (MHC) proteins, a family of
proteins that bind antigens and present them on the cell surface.
In humans, MHC proteins are often referred to as HLA (human
leukocyte antigen). There are several classes of HLA proteins, the
most important of which are class I and class II [1]. HLAs are the
most polymorphic proteins in higher vertebrates, with more than
17,000 class I and class II molecules listed in IMGT/HLA [2]. The
HLA class II proteins include three main loci: DR, DQ, andDP and
consist of two chains: α and β. Each chain contains one variable and
one constant domain. The variable domain forms the peptide bind-
ing site where the foreign peptide fragments bind to the HLA
molecule. The binding site itself accepts only nine residues but it
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is open at both ends and peptides longer than nine amino acids are
able to bind (usually between 13 and 25 residues).

Quantitative structure–activity relationship (QSAR) is a drug
discovery method which uses statistical approaches to model the
relationship between the chemical structure of a ligand and its
biological activity, typically its affinity for a given target biomacro-
molecule. This method is based on the principle of similarity of
compounds—or active analogue approach (similar structures—simi-
lar activity); it is often used for lead optimization. A drawback of this
method is the consideration of the ligand structure only. So, QSAR is
not able to model interactions with multiple biological targets ade-
quately [3–5].

Proteochemometrics (PCM) is a QSAR method developed by
Lapinsh et al. [6] to model simultaneously the bioactivity of multi-
ple ligands against multiple target proteins [6, 7]. PCM can be seen
as a generalization of QSAR, combining information from ligands
and target molecules into a single matrix, allowing extrapolation of
results and predicting biological activity of new compounds to new
target molecules [5]. The ability of PCM to link such data mimics
inductive learning, a process from artificial intelligence, which ac-
quires knowledge from one system and uses it to solve a related
problem in a similar system. PCM works with multiple target mol-
ecules, which is the key in the development of multi-target drug
molecules [4]. A drawback of PCM is its dependence on the assumed
variability of ligand and target molecules; if an amino acid plays an
important role in a given interaction but remains constant across the
dataset, PCM will struggle to evaluate its importance [8].

In the present protocol, we apply the PCM to derive a model
describing the interactions between peptides of foreign origin and
seven polymorphic HLA-DP proteins. The model is implemented
in a server for HLA binding prediction EpiTOP, which is freely
accessible via the web.

2 Datasets

2.1 HLA-DP Proteins The HLA class II proteins considered in the protocol presented
here are from locus DP:

l DP1 (DPA*02:01/DPB1*01:01),

l DP2 (DPA*01:03/DPB1*02:01),

l DP3 (DPA*01:03/DPB1*03:01),

l DP41 (DPA*01:03/DPB1*04:01),

l DP42 (DPA*01:03/DPB1*04:02, assigned as DP42a and
DPA*03:01/DPB1 *04:02 assigned as DP42b), and

l DP5 (DPA*02:01/DPB1*05:01).
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Taken together, these DP proteins are found in >90 % of the
human population [9]. The peptide binding site is formed by the
first 80 residues of α chain and the first 90 residues of β chain
(Fig. 1) [10–12]. Among them are four polymorphic residues from
α chain (Ala/Met11α, Met/Gln31α, Gln/Arg50α, and Leu/Ser66α)
and 15 polymorphic ones from β chain (Val/Leu8β, Tyr/Phe9β,
Gly/Leu11β, Tyr/Phe/Leu35β, Ala/Val36β, Ala/Asp/Glu55β,
Ala/Glu56β, Glu/Asp57β, Ile/Leu65β, Lys/Glu69β, Val/Met76β,
Asp/Gly84β, Glu/Gly85β, Ala/Pro86β, and Val/Met87β).

The peptide binding site on the DP proteins consists of 54 resi-
dues: 25 residues belong to α chain (9, 10, 11, 22, 24, 31, 32, 43,
52, 53, 54, 55, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 72, 73, and
76), and 29 residues are from β chain (9, 11, 12, 13, 24, 26, 27, 28,
35, 36, 45, 54, 55, 58, 59, 65, 68, 69, 72, 75, 76, 77, 79, 80,
81, 82, 83, 84, and 88) (Fig. 2). The contacts between the bound
peptide and the protein are found by the software Chimera (UCSF)
and a combinatorial library of 172 peptides (9 positions � 19 amino
acids + 1 parent peptide from the X-ray structure) [12]. Among the
contact residues, only three residues from α chain (Ala/Met11α,

Fig. 1 Protein sequences of α and β chains forming the peptide binding site on HLA-DP. Data are taken from
IMGT/HLA database (http://www.ebi.ac.uk/imgt/hla)

Fig. 2 A peptide (purple) bound in the peptide binding site on HLA-DP2 protein (pdb code: 3lqz). The α chain is
given in cyan, the β chain in yellow. The polymorphic residues are shown in blue and red, respectively
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Met/Gln31α, and Leu/Ser66α) and nine residues from β chain
(Tyr/Phe9β, Gly/Leu11β, Tyr/Phe/Leu35β, Ala/Val36β, Ala/Asp/
Glu55β, Ile/Leu65β, Lys/Glu69β, Val/Met76β, and Asp/Gly84β) are
polymorphic (Table 1). Asp55β forms a salt bridge with the peptide
Ser9.

2.2 Peptides Binding

to HLA-DP Proteins

A set of 4304 15-mer peptides binding to the seven HLA-DP
proteins was collected from Immune Epitope Database (IEDB)
(http://www.iedb.org) in February 2016 at the following settings:
alleles—HLA-DP, assay—purified/competitive/radioactivity, and
units—IC50 nM. In case of overlapping peptides of different
lengths, the longest peptide was considered. The affinity was pre-
sented as pIC50 ¼ log (1/IC50). Duplicates were removed. The
final set consisted of 3864 15-mer peptides. They were grouped by
allele. Each 15-mer peptide was presented as a set of overlapping
9-mers as is shown in Fig. 3.

2.3 Proteins Used for

Model Validation

Some of the peptides considered in the present study have natural
origin, others are synthetically derived. The 72 parent proteins of
the naturally occurring peptides were collected and used to validate
the PCM model.

3 Methods

3.1

Proteochemometrics

1. The chemical structure of ligands and proteins in PCM is
described by three descriptor blocks: ligand (L), protein (P),
and ligand–protein (LP) (Fig. 4) [7]. The chemical structure of
the peptides and proteins used in the present protocol is
described by three z-scales obtained by Hellberg et al.

Table 1
Contacts between peptide and HLA-DP protein

Peptide position Protein position

p1 31α, 76β, 84β

p2 76β

p3 76β

p4 69β, 76β

p5 –

p6 11α, 66α, 11β

p7 66α, 55β, 65β, 69β

p8 55β

p9 9β, 35β, 36β, 55β
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[13, 14]. They describe three main properties of amino acids:
the hydrophobicity (described by z1), size (described by z2),
and electronic properties (described by z3) (Table 2). Amino
acids with similar properties show similar z values: aromatic
amino acids or long chain aliphatic chains show negative values
for z1 (Ile, Leu, Phe, Trp, etc.); glycine is the smallest amino
acid and therefore has the lowest value for z2; for descriptor z3
has a positive correlation with the negative charge in molecule
(Arg and Lys are positively charged and have the lowest values).

2. Each 15-mer is presented as a set of overlapping nonamers.
Thus, from 3094 15-mers are generated 21,658 nonamer pep-
tides. Each nonamer is described by 27 descriptors (9 posi-
tions � 3 z-scales). They form the L block.

3. The 19 polymorphic residues from α and β chain also are
described by the z-scales (19 positions � 3 z-scales ¼ 57
descriptors) and form the P block.

4. The peptide–protein contact residues given in Table 1 are
described by 57 descriptors (19 contacts � 3 z-scales) and
form the LP block.

The final X matrix consists of 141 descriptors grouped into
three blocks: L, P, and LP. This matrix is used by the iterative self-
consistent algorithm to identify the most probable binding core of
each 15-mer.

Affinity
= + +

Descriptors of the
ligand chemical

structures

Descriptors of the
protein chemical

structures

Cross terms between the
ligand and protein

descriptors

L block P block LP block

(pIC50)

Fig. 4 Blocks of descriptors used in proteochemometrics (PCM)
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the parent 15-mer

Proteochemometrics for HLA Binding Prediction 399



3.2 Iterative Self-

consistent Algorithm

Based on Partial Least

Squares (ISC-PLS)

1. The initial X matrix (Set 0) is processed by multiple linear
regression based on partial least squares (PLS) [15] and the
initial model M0 is derived (Fig. 5). The M0 calculates pIC50

value (pIC50calc) for each nonamer. The nonamer whose pIC50-

calc is closest to pIC50exp of the parent 15-mer is selected as the
most probable binding core. Thus, 3094 most probable bind-
ing nonamers are collected from each 15-mer and enter a new
set (Set 1).

2. From Set 1 is derived PLS model M1. M1 is used to predict the
pIC50s of Set 0 and again the most probable binding nonamer
cores are selected and enter a new set (Set 2).

3. The Set 2 is used to derive model M2. M2 predicts the pIC50s
of Set 0 and the most probable binding nonamer cores are
selected and enter a new set (Set 3).

Table 2
z-scales [13]

ак z1 z2 z3

Ala 0.07 �1.73 0.09

Arg 2.88 2.52 �3.44

Asn 3.22 1.45 0.84

Asp 3.64 1.13 2.36

Cys 0.71 �0.97 4.13

Gln 2.18 0.53 �1.14

Glu 3.08 0.39 �0.07

Gly 2.23 �5.36 0.30

His 2.41 1.74 1.11

Ile �4.44 �1.68 �1.03

Leu �4.19 �1.03 �0.98

Lys 2.84 1.41 �3.14

Met �2.49 �0.27 �0.41

Phe �4.92 1.30 0.45

Pro �1.22 0.88 2.23

Ser 1.96 �1.63 0.57

Thr 0.92 �2.09 �1.40

Trp �4.75 3.65 0.85

Tyr �1.39 2.32 0.01

Val �2.69 �2.53 �1.29
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4. After each iteration, the identity of two subsequent sets is
registered.

5. Steps 2 and 3 are repeated until the identity of two subsequent
set reaches 100 % or close to it.

6. The final set is used to derive the PCM model.

The calculations are performed by the software SIMCA 13.0.3
(Umetrics, Sartorius Stedim Biotech).

3.3 Model Validation 1. The test set of 72 parent proteins is presented as a set of 4239
overlapping peptides.

2. The derived PCM model is used to predict the pIC50 values of
the test peptides for each of the seven HLA-DP proteins.

3. The set of peptides binding to a specificHLA-DP is divided into
binders (predicted pIC50 > 5.3, IC50 < 5000 nM) and non-
binders (predicted pIC50 < 5.3, IC50 > 5000 nM). Common
nonamers between the subsets are classified as non-binders.

4. The predicted binders for each HLA-DP protein are ranked by
descending pIC50.

5. The top 5 % of the predicted binders are compared to the
known binders from the training set. The common nonamers
are considered as true binders and expressed as % of the total
known binders originating from one parent protein. The PCM
model recognizes 75 % of known binders.

6. Step 5 is repeated for the top 10 % of the predicted binders. The
PCM model recognizes 95 % of the known binders.

Set 0
M0

M1

Selectio
n of the best nonamer for each

 peptide

Selectio
n of the best nonamer for each

 peptide

Selectio
n of the best nonamer for each

 peptide

PLS

PLS

Same as the previous
set?

YES = exit (last
model is the final)
NO = continue

PLS M2

Set 0

Set 0

Set 0

Set 1

Set 2

(n = 21,658) (n = 21,658)

(n = 21,658)

(n = 21,658)

(n = 3,094) 

(n = 3,094)

Fig. 5 Iterative self-consistent algorithm
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3.4 EpiTOP Themodel derived here is implemented by the EpiTOP server, which
is freely accessible at http://www.ddg-pharmfac.net/EpiTOP3/.

EpiTOP is a proteochemometric tool for HLA class II bind-
ing prediction [16–19]. It predicts peptide binding to 24 most
frequent HLA class II proteins: DRB1*01:01; DRB1*03:01;
DRB1*04:01; DRB1*04:04; DRB1*04:05; DRB1*07:01;
DRB1*08:02; DRB1*09:01; DRB1*11:01; DRB1*12:01;
DRB1*13:01; DRB1*15:01; DQA1*01:01/DQB1*0501;
DQA1*01:02/DQB1*0601; DQA1*03:01/DQB1*0302;
DQA1*04:01/DQB1*0402; DQA1*05:01/DQB1*0301;
DPA*02:01/DPB1*01:01; DPA*01:03/DPB1*02:01;
DPA*01:03/DPB1*03:01; DPA*01:03/DPB1*04:01;
DPA*01:03/DPB1*04:02; DPA*03:01/DPB1*04:02; and
DPA*02:01/DPB1*05:01.

The EpiTOP home page is shown in Fig. 6. The amino acid
sequence of the tested protein is given using single letter format.
The HLA class II locus (HLA DRB1, HLA DQ, or HLA DP) of
interest is selected and the binding threshold (pIC50) is set. Two
thresholds are optional: 5.3 (up to IC50¼ 5000 nM, includes weak,
median, and strong binders) and 6.3 (up to IC50 ¼ 500 nM,
includes median and strong binders). On the results page (Fig. 7),
the protein is presented as a set of overlapping nonamers with pre-
dicted pIC50 values. The first column indicates the starting position
of the nonamer in the protein. In the second column, the nonamer

Fig. 6 Home page of EpiTOP
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sequence is shown and in the following columns the affinity for each
DP protein, expressed as pIC50, is given. The last column shows the
number of DP proteins to which the peptide binds with pIC50 above
the selected threshold.

4 Notes

The search in IEDB is case-sensitive. For full search, one has to
enter all possible combinations for specific terms, e.g., the molecu-
lar weight is given in kDa, KDA, or kda units.
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Abstract

Multi-target drug design is an innovative new paradigm in the drug development process. With the help of
growing open data sources, in silico modeling approaches have become successful tools to discover and
investigate multi-target drugs. In this chapter, we describe a workflow for retrieving and curating informa-
tion for multiple drug targets from the open domain, provide insights into how the retrieved data can be
employed in ligand and structure-based approaches, and discuss the hurdles to consider with respect to data
analysis.

Keywords KNIME workflow, Ligand-based design, Molecular docking, Molecular dynamics simula-
tion, Multi-target drug design, Open data, Protein homology modeling, Structure-based design

1 Introduction

Multi-target drug design is an emerging new paradigm to treat
complex diseases by regulating multiple targets at the same time to
achieve the desired physiological responses [1–4]. Traditionally,
drugs have been designed to selectively modulate a so-called on-tar-
get in order to avoid side effects by modulating “off-targets.” How-
ever, several approved drugs retrospectively have been shown to hit
more than one target, which turned out to contribute to the thera-
peutic efficacy [5, 6]. Furthermore, in recent years many drugs failed
in phase II clinical trials because of a lack of therapeutic efficacy
[7]. Therefore, multi-target drug design represents an innovative
principle to overcome lack of efficacy. Different approaches to dis-
cover and investigate multi-target drugs have been reviewed by
Zhang et al. [8] addressing data-driven, ligand-based, or structure-
based methods [4, 9–14]. Most of these methods focus on drug
repurposing (i.e., to find new targets for known drugs) such as the
ligand-based methods SPiDER [15] and SEA [16], which are based
on 2D fingerprint or 3D shape similarity. Furthermore, structure-
based methods such as TarFisDOCK [17], INVDOCK [14, 18], or
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VinaMPI [18] could be used to dock potential ligands into many
target structures at the same time [19, 20]. With the help of growing
open data sources such as Open PHACTS [21], ChEMBl [22], and
freely available medicinal chemistry literature, data-driven in silico
modeling approaches have also proven to be capable of effectively
identifying protein-ligand interactions at an early stage in the drug
discovery pipeline [23]. However, increase in complexity and size
and diversity of public data sources necessitate judicious curation of
the data. With the availability of workflow tools like KNIME [24] or
pipeline pilot [25], complex querying for multiple drug targets
became a feasible task without the need of comprehensive program-
ming skills [26]. In this chapter, we present a protocol which starts
with mining the Open PHACTS Discovery Platform to collect a
data-set of suitable size and quality for subsequent structure-based
selectivity profiling studies. As concrete case study, we chose the
human serotonin (hSERT) and dopamine transporter (hDAT).
Both proteins belong to the neurotransmitter sodium symporter
family which represents the largest group of transporters in the
human genome. hSERT and hDAT are responsible for the reuptake
of serotonin and dopamine, respectively, from the presynaptic cleft
after signaling [27, 28]. Numerous drugs have been developed
which interact with these transporters and are used as therapeutic
agents to treat neurological disorders such as depression. In addition,
there is a wealth of compounds which are abused as illicit drugs
[28–30]. Even though hSERT and hDAT share high sequence and
structural similarity, they fulfill different physiological roles. Sub-
stances increasing dopamine levels in the mesolimbic pathway of
the brain can influence the reward system, whereas increased levels
of serotonin are involved in several other neurotransmitter systems,
most importantly influencing mood [31]. A profound understand-
ing of the structural basis for hSERT and hDAT ligand selectivity is
therefore of major interest for designing ligands that either hit one of
these transporters or both. This chapter will tackle this research
question by reviewing the data mining and curating process for
hSERT and hDAT bioactivities present in the linked open data
domain. This is followed by a comprehensive scaffold analysis in
order to analyze the chemical space, which allowed to identify a
congeneric series of compounds suitable for structure-activity rela-
tionship studies and experimental data guided ligand docking. The
power of this protocol is based on the combination of mining the
available knowledge in the open data domain and its breakdown to
concrete molecular interactions. This chapter thus gives an overview
of the overall workflow, points out the potential of retrieving data for
multiple drug targets from the open domain, provides insights into
structure-based approaches, and discusses the hurdles to be consid-
ered in data analysis.
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2 Materials

Data retrieval and scaffold analysis

l Knime [24]: Knime is an open-source platform that provides an
integrated solution for the data mining process across the drug
discovery pipeline. It can be downloaded from https://www.
knime.com/software. It also provides a visual assembly of data
workflows drawn from an extensive repository of tools. Addi-
tionally, it also offers nodes for machine learning (classification
and regression analysis).

Homology modeling

l MODELLER [32]: Modeller is a widely used open-source soft-
ware for comparative modeling of protein three-dimensional
structures. The program also incorporates limited functions for
ab initio structure prediction of loop regions of proteins, which
are often highly variable even among homologous proteins and
thus difficult to predict by homology modeling. It can be down-
loaded from https://salilab.org/modeller.

Molecular docking and visualization

l Schrödinger [33]: Schrödinger is one of the leading commercial
software packages in the field of drug design. It includes small
molecule modeling and simulations, macromolecular modeling
and simulations, lead discovery, and lead optimization, visualiza-
tion, and automation (https://www.schrodinger.com/maestro).
Glide [34] is the molecular docking module in Schrödinger that
places the ligand in the protein binding pocket and ranks the
generated poses with an empirical scoring function.

l Molecular Operating Environment (MOE) [35]: MOE is a
commercial drug discovery software platform that integrates
visualization, modeling, and simulations, as well as methodology
development, in one package (http://www.chemcomp.com/).

Molecular dynamics

l Desmond [36]: Desmond is a freely available software package
developed at D. E. Shaw Research to perform high-speed molec-
ular dynamics simulations of biological systems (http://www.
deshawresearch.com/index.html). Schrödinger provides an
easy-to-use graphical user interface for performing molecular
dynamics simulations with Desmond [37].
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3 Methods

Sophisticated approaches are necessary to tackle multi-target drug
design. The great variety of methodological possibilities demands
well-informed decisions on which individual path to embark. In this
section, we describe the methods in detail which we used to retrieve
and curate information on two drug targets. Note that this example
was driven by the solid basis of available experimental data and
previous findings on these drug targets. All technical parameters
described in the methods section are either the default options
recommended by the software developers or adapted due to specific
biological evidence relevant for the focus of the study.

3.1 Data Collection

and Data Mining

Open data sources such as ChEMBL [22], DrugBank [38], KEGG
[39], or Open PHACTS [21] provide a large collection of linked
information on compounds including their structures, biological
targets, pathways, bioactivities, and experimental details on
biological assays. ChEMBL and other resources extract their infor-
mation from the literature in an automated or semiautomated fash-
ion. The collected data therefore originate from a variety of different
resources resulting in a collection of bioactivity data of different
activity endpoints (Ki, IC50, % inhibition, etc.) that was measured
in different assay types and under varying assay conditions (see Note
1). However, using such diverse data for modeling or virtual screen-
ing was reported to show inconsistent performance, and hence
recommendations were proposed to deal with the experimental
uncertainty associated with such data [40, 41]. For our case study,
bioactivity data for hSERT and hDAT were extracted from the Open
PHACTS Discovery Platform via a KNIME workflow. The applica-
tion programming interface (API) call was used to retrieve pharma-
cology data from ChEMBL20 for both proteins. In the present case
study, we decided to include the bioactivity endpoints IC50 and Ki,
because these bioactivities have been demonstrated to be most reli-
ably in large data analysis [41, 42] and because they can be correlated
with each other. In order to investigate the uncertainty of the data
that was introduced by combining these different activity endpoints
from different assays, the correlation between pIC50 and pKi

(p ¼ negative log) values from duplicate measurements for hSERT
and hDAT was calculated. This showed that the observed correla-
tions are within the same range as the calculated correlations for
duplicate measurements within only one of the activity endpoints
[43]. As a next step, classification of the data into active and inactive
compounds has to be performed in order to extract the actives.
Setting reasonable activity thresholds is a challenging task, and it
requires considering the focus of the study. In the present case, the
thresholds were tailored according to the lowest known activity
endpoints (IC50 and Ki) that still showed pharmacological activity.
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If a dataset is used for calculating structure-activity relationships
(SAR), the compounds must be measured for the same activity
endpoint (i.e., either IC50 alone or Ki alone). However, if a dataset
is designed for the construction of machine learningmodels, also the
use of activity annotations is possible (i.e., active, 1, inactive, 0). In
this scenario, the data from different endpoints can be merged
(as described above). To increase the accuracy of the classification
of the dataset, data points close to the activity thresholds might be
omitted. Inconsistent data points with conflicting activity data
should in general be omitted from the dataset. In order to visualize
the diversity of the dataset and to see if there are scaffolds showing
pronounced selectivity for one or both targets, Bemis-Murcko scaf-
fold analysis [44] was performed. Out of the 53 most populated
scaffolds, four scaffolds were identified as hDAT selective, 10 as
hSERT selective, and 24 as promiscuous. In order to perform quan-
titative structure-activity relationship (SAR) calculations, scaffolds
that contained congeneric series of compounds, which showed selec-
tivity for one of the targets and were measured in the same assay,
were prioritized. A congeneric series of 56 compounds sharing a
cathinone substructure was identified that showed pronounced
selectivity for hDAT over hSERT. A detailed description of the
KNIME workflow for data retrieval, filtering, preprocessing, and
analyses can be found in [43]. The whole workflow can be down-
loaded frommyExperiment [45]. Out of the whole set of derivatives,
six compounds were further selected for subsequent structure-based
studies in order to link the observed selectivity profile to specific
molecular interactions.

3.2 Ligand-Based

Methods

In general, ligand-based methods can be used to find trends in the
data (as discussed above) or to classify compounds with machine
learning methods. However, their application depends strongly on
the data quality. In our case study, we analyzed the SAR of the
56 cathinones to get first insights which molecular features trigger
their selectivity profiles. Since the compounds show selectivity for
hDAT (over hSERT), we performed multiple linear regression
(classical Hansch analysis) with hDAT pIC50 values and selectivity
(¼ log(hSERT IC50/hDAT IC50)) as dependent variables using a
limited set of descriptors characterizing the molecules (Van der
Waals volume (overall, Cα- and N-substituents), partition coeffi-
cient (log P (o/w)), molar refractivity, constants for the substitu-
ents on the aromatic ring, and indicator variables for meta- and
para-substitutions). Briefly, both calculated equations showed a
first trend that the substituent on the Cα-atom to the carbonyl
group of the compounds influences hDAT activity and selectivity.
Details on the approach can be found in [43]. This information is
subsequently used to guide the prioritization of docking poses.
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3.3 Structure-Based

Methods

Structure-based methods require 3D coordinates from available
high-resolution crystal structures, NMR experiments, or homolo-
gous template structures. A plethora of crystal structures is depos-
ited in the Protein Data Bank [46] (PDB, www.rcsb.org) and can
be downloaded free of charge. All selected crystal structures should
be checked thoroughly whether the resolution and B-factors are
appropriate, if certain amino acids are annotated with multiple
possible rotamers, and if there are relevant amino acids missing
(see Note 2). This procedure can be performed with commercial
protein visualization software (MOE [35] or Schrödinger Suite
[33]) or free software (VMD [47] or pymol [48]). A lot of infor-
mation can be already taken from the downloaded pdb files them-
selves, as they are written in text format and include the
experimental data and setup. A visual inspection of PDB structures
is also possible in a web browser using the LiteMol viewer [49, 50]
in PDBe (https://www.ebi.ac.uk/pdbe/) [51]. Since many crystal
structures are models retrieved by X-ray crystallography based on
experimentally measured diffraction patterns, it is furthermore
advisable to check the placement of the protein and its ligands in
the experimentally measured electron density map [31, 52]. Elec-
tron density maps can be visualized with commercial software
(Schrödinger [33], MOE [35]) and free software (Coot [53]) or
in the web browser (LiteMol [49, 50], PDBe [51]). By considering
the abovementioned procedures, one can identify the areas of the
crystal structure where the structure can be trusted or should be
taken with caution. In the case of our study, no crystal structures of
hSERT and hDAT were resolved back then. Consequently, homol-
ogy modeling needs to be performed to obtain decent models
based on suitable template crystal structures.

3.3.1 Homology

Modeling

Homology modeling or comparative modeling refers to the tech-
nique of using a resolved crystal structure to model an unknown
homologous protein structure. It is believed that overall fold is far
more conserved among different proteins than sequence identity
[54]. There are four crucial steps in homology modeling. First, a
suitable crystal structure is chosen as a template. At the time this
analysis was performed, the PDB provided two different types of
homologous template structures for modeling hSERT and hDAT:
crystal structures of the bacterial leucine transporter (LeuT,
sequence 20%) [55] and the drosophila dopamine transporter
(dDAT, sequence identity 70%) [56]. In the present case study,
the dDAT PDB structure 4M48 was chosen as the most suitable
template due to higher sequence identity and the fact that it shows
the desired outward-open conformation (see Note 3). Second, the
desired protein sequence needs to be aligned with the template
structure. This task was performed with the tool ClustalX [57]. All
12 transmembrane helices (TMs) of hSERT and hDAT are highly
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conserved and can be easily aligned with the template structure.
Third, models are generated and refined, e.g., with the program
Modeller, which was also the program of choice in this study
[32]. Within Modeller it is possible to also implement experimental
data in the model generation process by setting restraints for sec-
ondary structure elements, disulfides or salt bridges. Fourth, the
models’ quality needs to be assessed with help of, e.g., the DOPE
score (see Note 4) [58]. Additional quality assessment can be
performed with ProCHECK (https://www.ebi.ac.uk/thornton-
srv/software/PROCHECK/index.html) [58, 59] and ProQM
(http://bioinfo.ifm.liu.se/ProQM/index.php) [60]. Procheck
additionally provides Ramachandran plots and information on resi-
due properties. ProQM was specifically optimized for membrane
proteins. Nevertheless, the quality of the homology model depends
highly on the quality of the available crystal structures and the
amount of available structural information. A more detailed
description of homology modeling was recently provided by Lush-
ington [61]. The generated hSERT and hDAT homology models
were then further used for molecular docking experiments.

3.3.2 Docking Molecular Docking is a common method in structure-based drug
design to calculate the possible positions of a ligand in the binding
site of its target protein. A great variety of software packages is
available that provide different algorithms and all kinds of settings
[62]. In the present example, six selected compounds of a congeneric
series sharing a cathinone scaffold were docked into the central
binding site of both the homology models of hDAT and hSERT
with Glide 6.8 [34] from the Schrödinger release 2015-2 [33]. In
Glide, the protein is kept rigid during the docking process, and the
ligands are placed into the space between defined binding site resi-
dues. This setting was sufficient for our task, as we were docking
small compounds with respect to the outward-open binding site of
the transporters and we wanted to keep the side chain rotamers of
the homology models as close as possible to the dDAT template
crystal structure 4M48 at this stage. Furthermore, we restrained the
cationic amine function of the compounds to be placed within 2–4 Å
to the carbonyl oxygen of F76 in hDAT and Y95 of hSERT, because
several X-ray structures of related proteins with co-crystallized
ligands are available in the PDB showing a similar distance (for
further details, see [43]). The decision on how much flexibility
should be allowed during the docking process is strongly depending
on the availability of experimental data—which is very rich in this
case. Consequently, the introduced bias caused by applying docking
constraints was justified by the available experimental data. The
models and ligands were prepared in the Schrödinger suite using
default options (seeNote 5). Once the docking output is generated,
which usually results in about 100 poses per ligand, a reasonable pose
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analysis and interpretation approach are needed. The poses are
ranked by a specific docking score, which gives an orientation how
well the program was able to place the ligand into the defined
binding site. The docking score includes relevant energetic and steric
terms to achieve a most accurate placement and ranking. The Glide-
Score (used in this study) consists of such components (van der
Waals energy, Coulomb energy, lipophilic term, hydrogen-bonding
term, metal-binding term, as well as several rewards and penalties for
relevant features) [33] to predict the binding mode of the ligand
most accurately. However, these algorithms cannot include individ-
ual information such as the details known from biological experi-
ments about proposed binding modes for a certain target. In this
case a common scaffold clustering approach of all gained poses is
recommended [63]. In this approach, the common scaffold shared
by all docked ligands is extracted, and an RMSDmatrix of all poses is
generated from these atoms. Subsequently, the clusters are calculated
at a defined similarity level which corresponds to the maximal dis-
tance within a cluster in Ångström. This helps to bundle the large
amount of poses into assessable bins which can be analyzed for
common characteristics and compared with the knowledge from
biological experiments in a more quantitative way. The analysis of
the docking study revealed certain trends explaining the observed
ligand selectivity of hSERT over hDAT showing slightly more nega-
tive overall glide scores, less steric clashes, and hydrogen bonding
exclusively in hDAT.

3.3.3 Molecular

Dynamics Simulations

In general, molecular dynamics (MD) simulations are used to study
the motions of molecules over time and are therefore the method of
choice to characterize dynamic interactions within and between
biomolecules. Using such methods requires a lot of considerations
regarding the force field, ligand parameters, membrane and solvent
type, ion concentration, system size, and many more. Experimental
data about the respective systems and facts from profound literature
ideally guide these decisions. The book Molecular Modeling of
Proteins [64] provides an excellent review on various aspects of
these issues. This case study focuses on the protein-ligand interac-
tions between cathinone compounds and hSERT and hDAT. Inves-
tigating the structure-activity relationships of these compounds and
a subsequent docking study showed trends in the ligand selectivity
and provided possible binding modes. To further evaluate these
hypotheses, MD simulations of one compound representing the
previous findings (see [43]) were conducted. In this context, the
primary aim is to verify the stability of the complexes gained from
docking and to review the motions of the ligand inside the binding
site over time. MD simulations are computationally expensive and
need comprehensive analysis, so it is crucial to take the actual
research question into consideration before choosing the simulation
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settings. For example, the simulation time to check the ligand stabil-
ity can be short (20 ns) if the binding mode is well defined, whereas
free simulation of unbinding might take up to micro or even milli-
seconds [65–67]. For this study, a system instability or an unfavor-
able starting pose of the ligand would already be observed within the
first nanoseconds of the simulation, because the biological data
provide a solid basis for our current understanding. The major
criteria to prove stability is a convergence of the root-mean-square
deviation (RMSD) of the protein and the ligand in unrestrained
simulations. For the protein, it is important to solely consider the
RMSD of the backbone atoms as the higher side chain movement
could hide major conformational changes in the backbone. The
stability of the protein-ligand interactions can be observed by inves-
tigating all interactions of the ligand with the protein residues over
the whole simulation time. This identifies the involved residues and
shows the duration of each interaction. Key interactions should be
present over the whole simulation time. The structure-based part of
this work was all done in the Schrödinger software suite [33]. The
MD simulations were prepared in Maestro 10.2 [68] and conducted
in 20 ns simulations with Desmond 4.2 [69]. The MD studies
showed that the selected poses were stable and could also confirm
the observed trends in the ligand selectivity profiles for the two target
proteins.

3.4 Summary Designing ligands which target multiple targets with a defined
affinity pattern represents a powerful approach to overcome lack
of efficacy. With this case study, we present a holistic workflow
starting from data mining across public data sources and ending
with molecular dynamics simulations of a concrete ligand-
transporter complex, which revealed the stability of the ligand-
binding mode suggested by experimental data guided docking. As
parts of the protocols described are implemented in KNIME work-
flows, they can be easily adapted to other targets of interest.

4 Notes

1. In ChEMBL, more than 5000 measurement types are consid-
ered including, e.g., “%max,” “Activity,” “Efficacy,” “EC50,”
“Kd,” and “Residual Activity” [41]. Depending on the focus of
the study, these filters can be modified.

2. If there are several rotamers possible fitting in the observed
electron density, the “right” rotamer is not necessarily the one
selected by the crystallographer! High B-values are also an indi-
cator for high flexibility. Make sure to check which rotamer is
relevant for the specific research question.

Linked Open Data: Ligand-Transporter Interaction Profiling and Beyond 413



3. When dealing with flexible proteins such as transporters, choos-
ing the right conformation of your template structure is essen-
tial. We believe that classical inhibitors most probably bind and
stabilize the outward-open conformation of the transporter and
therefore hinder the transporter from adopting other conforma-
tions in the transport cycle [55]. Substrates most likely bind to
the occluded transporter state as the translocation process
requires among others the adaptation of an outward-occluded
transporter conformation [70].

4. The DOPE score is the most widely used quality assessment
parameter even though it is only optimized for soluble proteins
[58]. It has been successfully used for scoring homology models
of different membrane proteins [71, 72], nevertheless, it is
advisable to not only rely on this parameter when modeling
membrane proteins. Scores specifically optimized for membrane
proteins such as the ProQM score should be taken into consid-
eration as well for selecting the best model.

5. The Schrödinger Suite [33] offers preparation modules for both
proteins and ligands. It is strongly recommended to conduct
both preparation and docking procedure in the same software
package as the used algorithms are compatible.
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Design of Novel Dual-Target Hits Against Malaria and
Tuberculosis Using Computational Docking
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Abstract

Drugs which are purposefully designed to hit more than one target (multi-target drugs) promise a better
safety profile and low resistance probability. Multi-target therapy also offers a cost-effective model for
pharmaceutical R&D, making it quite an appealing strategy in the domain of neglected tropical diseases
(NTDs) and other infections/coinfections of the global impact such as malaria, tuberculosis, and AIDS. We
reviewed herein different approaches (knowledge base and screening base) for designing multi-target
inhibitors with the special emphasis on the research work of the authors. Additionally, a step-by-step
guide (protocol) and different computational resources are also discussed in detail to design multi-target
hits for malaria and tuberculosis.

Keywords AIDS, AutoDock, Computational docking, Druglikeness, Infectious diseases, Ligand
efficiency, Malaria, Multi-target drugs, Multi-target screening, Neglected tropical diseases,
Tuberculosis

Abbreviations

2D Two dimensional
3D Three dimensional
ACD Advanced Chemistry Development, Inc.
ADMET Absorption, distribution, metabolism, excretion, and toxicity
ADT AutoDock Tool
AIDS Acquired immune deficiency syndrome
AM1 Austin model 1
AMBER Assisted model building with energy refinement
AMR Antimicrobial resistance
BE Binding energy
BMRB Biological magnetic resonance data bank
CCDC The Cambridge Crystallographic Data Centre
CHARMM Chemistry at Harvard Macromolecular Mechanics
ChEMBL or ChEMBLdb Chemical database of bioactive molecules with drug-like properties
COX Cyclooxygenase
DHFR Dihydrofolate reductase
DMEs Disease-modifying agents
DMLs Designed multiple ligands
DSV Discovery Studio Visualizer
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DUD Directory of useful decoys
EGFR Epidermal growth factor receptor
EMBL-EBI European Bioinformatics Institute
FDA Food and Drug Administration, USA
GA Genetic algorithm
HIV Human immunodeficiency virus
In silico (syn in computo) Performed on computer
LE Ligand efficiency
LGA Lamarckian genetic algorithm
LS Local search
MAPK Mitogen-activated protein kinase
MD Molecular dynamics
MDR Multidrug resistance
MGLTools Molecular Graphics Laboratory tools
MM2 Molecular mechanics 2
MMV Molegro Molecular Viewer
MTDs Multi-target drugs
MW Molecular weight
NSAIDs Nonsteroidal anti-inflammatory drugs
NTDs Neglected tropical diseases
OMICS Genomics, proteomics, or metabolomics
PAINS Pan-assay interference compounds
PDB Protein Data Bank
PM3 Parameterized model number 3
QSAR Quantitative structure activity relationship
R&D Research and development
RCSB Research Collaboratory for Structural Bioinformatics
RMSD/rmsd Root-mean-square deviation
SA Simulated annealing
SHAFTS Shape-Feature Similarity
SITITCH Search tool for interacting chemicals
STRING Search tool for the retrieval of interacting genes/proteins
TB Tuberculosis
TCM Traditional Chinese medicines
TDR Total drug resistance
TS Thymidylate synthase
TTD Therapeutic target database
WT Wild type
XRD Extreme drug resistance
ZINC Zinc Is Not Commercial (ZINC database)

1 Introduction

1.1 Multi-Target

Therapies

Traditional pharmacology-based approaches are focused on the
identification of compounds/inhibitors which can selectively and
effectively bind to a single therapeutically important target (mostly
protein). This one target-one drug strategy is historically the main
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theme of most of the drug discovery endeavors. With the emer-
gence of new areas such as system biology, network pharmacology,
polypharmacology, and drug repurposing, the concept of inhibi-
tion of single selective target by a drug is becoming increasingly
questionable and outdated. These new disciplines believe that the
effect of a drug on an organism is the result of its several complex
and coordinated interactions with several biomolecules/targets
[1–5]. In reality, most of the conventional drugs are essentially
multi-targets (i.e., they interact with more than one target), and
their major interaction/s depend on the site of action. For example,
HIV-1 protease inhibitors mainly interact with protease molecule
in the main event, but it has to be catabolized by some oxidases
such as cytochrome P450 (CYP450) enzymes after its action
[6]. Side effects by many known therapies/drugs are also indicative
of low off-target selectivity of a drug and support the concept of
multi-target drug models.

At present, numerous terms have been used to define the
compounds which are intentionally designed to inhibit more than
one target such as dual inhibitors, triple inhibitors, multi-target
drugs, dual blocker, dual antagonist, multipotent agents, multi-
functional compound, and heterodimer just to name a few
[5]. Morphy, who has done pioneering work in this field, suggested
to use the term designed multiple ligands (DMLs), to describe
“compounds whose multiple biological profile is rationally
designed to address a particular disease, with the overall goal of
enhancing efficacy and/or improving safety” [5]. The term multi-
target drug/inhibitor (hereafter abbreviated as MTDs) is still very
common in literature and has been used throughout this chapter.

It is also important to realize that MTDs are significantly
different from highly promiscuous compounds such as pan-assay
interference compounds (PAINS), which have very high activity
against a range of biological targets [7]. No doubt, MTDs are active
against more than one target, but these targets are purposefully
selected for a particular disease/s without negotiating its safety
profile. The study of activity cliff, PAINS, and bright and dark
spots in biochemical space can undeniably provide valuable infor-
mation/s for designing newer and more effective MTDs [7].

Some examples of successful MTDs include anticancer kinase
inhibitors such as sunitinib, dasatinib, and lapatinib (Fig. 1)
[8, 9]. These drugs target the main therapeutic target along with
the alternative signaling pathway (escape mechanism) hence result-
ing in effectively breaking the cross talk between the two paths.
Similarly, the nonsteroidal anti-inflammatory drug (NSAID) aspi-
rin was initially known as a selective COX inhibitor. Later on, it was
found that it renders its anti-inflammatory properties by multiple
pathways along with COX, such as interference with transcription
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factors [e.g., nuclear factor (NF)-kB and mitogen-activated protein
kinases (MAPKs)] etc. which makes it even more effective. In fact,
most of the known MTDs were first discovered as single target
drugs for a protein, and later on, some additional target/s were
identified [10, 11].

1.2 Multi-Target

Therapies and

Microbial Infectious

Diseases: A Unique

Connection

In the particular area of infectious diseases such as neglected tropi-
cal diseases (NTDs) including malaria and tuberculosis, application
of MTDs can be very crucial. Genesis and spread of resistant
pathogenic forms has seriously compromised the efficiency of cur-
rent drug arsenal. For example, quinolines, antifolates, and related

Fig. 1 Structures of selected multi-target inhibitors and other bioactive compounds mentioned in this chapter
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compounds, which were initially the first-line medications for
malaria, have lost their effectiveness due to the emergence of new
mutant forms of Plasmodium species [12, 13]. There are also some
initial reports of artemisinin resistance in western Cambodia and
other regions of East Asia [14, 15]. Similarly, multidrug resistant
(MDR), extreme drug resistant (XDR), and total drug resistant
(TDR) forms of Mycobacterium tuberculosis are also difficult to
treat by drugs traditionally used to treat TB [16–18]. Most of
these drugs are the outcomes of single target-based strategies,
and even a single mutation in amino acid sequence of target protein
is enough to render them ineffective. As what has happened with
antibiotic resistance (or antimicrobial resistance, AMR), it is quite
likely that the single target drug/s of future may also meet similar
fate. Considering the present situation and unavoidable resistance
of future single target therapies, the design and screening of MTDs
is the need of the hour. Drugs, which are deliberately aimed for
more than one target of therapeutic interest, offer better safety
profile and low resistance against pathogens. Since MTDs simulta-
neously interact with more than one target, their low dosage can
bring the desired effect. Furthermore, possibility of concurrent
mutation in all the involved targets is highly unlikely. These two
factors contribute to overall low resistance probability of drug by
pathogen (Fig. 2) [5, 6, 19].

At this point, it would also be interesting to compareMTDswith
combination therapies, which are now very common in some of the
infectious diseases such as malaria (e.g., quinine + tetracycline/doxy-
cycline, artesunate + mefloquine etc.). MTDs are expected to have a
better safety profile as compared to the cocktail of drugs individually
targeting a specific protein (combination therapy), since in the latter
case, each component drug has its own selectivity profile [3, 4]. As
compared to the combination therapy, MTDs are also theoretically
easy to design as well. Consider an imaginary scenario, where each

Fig. 2 A comparison between different therapies of drug designs
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candidate has to pass ten requirements such as potency, selectivity,
half-life, ADMET, etc. to be a successful drug. In this situation, the
total numbers of factors for a dual inhibitor (MTD targeting two
targets of therapeutic relevance) will be 10 + 1 ¼ 11 (ten initial
factors + one additional factor, potency). While at the same time,
for a new combinational therapy that targets the same two targets, the
total number of criteria will be at least 10 + 10 ¼ 20 (ten for each
component drug and two drugs).Hence theoretically, it will be easier
to design a MTD than to design two or more component drug for
combination therapy (Fig. 2) [19].

In the specific context of NTDs, where economics of drug
research and development (R&D) is largely a limiting factor,
MTDs offer a cost-effective alternative. In principle, the cost of
development of a new MTD should be comparable to that of a
single target drug, which is supposedly lower than the development
of two or more component drugs for combination therapy/multi-
drug regimen (Fig. 2) [6].

Additionally, many of the infectious diseases such as malaria and
tuberculosis are opportunistic in nature. For example, infection of
HIV is largely encountered with secondary infections such as tuber-
culosis and/or malaria. As the immune system of AIDS patient
ceases, he/she becomes more and more prone to microbial attack.
A combination of several drugs (multidrug regimens) is used to
relieve the patient with many possible side effects and drug-drug
interaction/s [20, 21]. Design and development of a MTD, which
can suppress both the coinfection (HIV and opportunistic infec-
tions) at once, would be a highly desirable situation. In fact, some
initial attempts have already been made in this direction. For exam-
ple, KNI-764 (or JE-2147) (Fig. 1) shows significant HIV-1 pro-
tease and plasmepsin II (Plasmodium malariae) inhibitory activity
[22]. If successful, current multidrug regimen for HIV treatment
may be replaced by a single and safer multi-target regimen in the
foreseeable future.

In the next sections, we will discuss different strategies for
designingMTDs, available resources, and a case study for designing
dual inhibitor against tuberculosis and malaria in silico.

2 Methods

2.1 Overview of

Multi-Target

Screening Methods

There are broadly two different methods for designing MTDs,
relying on two different concepts. Knowledge-based approaches
are based on the existing knowledge (such as scientific databases,
literature including patents, etc.) to commence a MTD project,
while in screening-based approach, different filters are applied to
find out some novel multi-target hits.
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2.1.1 Knowledge-Based

Approaches

System Biology,

Networking, and

Polypharmacology-Based

Approaches

With the advancements made in the field of structural biology and
instrumental techniques, we have now more access to biological
information which is stored in different structural data banks (such
as 3D structures of targets, activity and toxicity data, off-target
selectivity, etc.). Capturing this existing knowledge is very impor-
tant for the successful completion of a MTD project [3, 4].

Network-based approaches only navigate the available bio-
chemical space for the search of new MTDs. Bigger size of this
accessible biochemical space means greater chances of success in
MTD efforts. Unfortunately, there is a striking contrast in the
speed of chemical and biological data with which it flows toward
public databases. While most of the biological data such as protein
structure, sequence, and function had been historically available in
the open/publically accessible repositories such as PDB, UniProt,
etc., most of the chemical databases have remain commercial/
private and not freely available. Only in the past decades, several
public collections of chemical databases have emerged such as
PubChem, ChemDB, ZINC, etc. Finally, it is also important to
integrate these two sets of information through appropriate con-
nections/projections, so that important inferences can be mined
[23]. Programs such as STITCH [24] can be very useful to study
these interconnections. An example of this approach is explained
below.

Pyrimethamine (Daraprim, Fig. 1) is primarily used as a medi-
cation for protozoal infections including Plasmodium and Toxo-
plasma. It mainly inhibits bifunctional dihydrofolate reductase/
thymidylate synthase (DHFR-TS) of the pathogen and inhibits its
effect. It also binds with some important human enzymes such as
cytochrome P450 (CYP2), mitochondrial peptide deformylase
(PDF), signal transducer and activator of transcription 3 (or acute
phase response factor, STAT3), hexosaminidase B (HEXB), etc.
(Fig. 3). Side effects by this drug such as nausea, vomiting, glossitis,
anorexia, and diarrhea, etc. can be the result of these interactions
[25]. Its interaction with HEXB (Fig. 3) is clinically important as it
slows down the progression of late-onset Tay-Sachs and Sandhoff
disease [26]. Pyrimethamine is under clinical trial for this applica-
tion. This information on the binding of pyrimethamine with
important human off targets has been collected from different
data banks using STITCH program [24]. Color code has been
used to display protein-protein and chemical-protein interactions
(Fig. 3).

Approaches Based on

Protein-Protein

Relationship and

Evolutionary History of

Proteins

Along with this network information, the evolutionary history of
different protein families can also be a valuable resource for design-
ing newer MTDs. Proteins which are close in the evolutionary tree
may be structurally and functionally similar, and it would be easier
to design a common inhibitor for these proteins as compared to the
proteins with different origins. Evolutionary dendrograms (tree
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diagram) should always be examined to find out protein-protein
relationship [6, 23].

Approaches Based on Drug

Repurposing/Drug

Repositioning

One other knowledge-based route to find new multi-target leads
can be drug repurposing (also known as drug repositioning). The
main benefit of this strategy is that researcher needs not to think
much about other liabilities such as selectivity and safety. Pfizer’s
Viagra and Celgene’s thalidomide (Fig. 1) are the two well-known
examples of drug repurposing [27]. Many FDA-approved drugs of
the developed world had already been tested in target-specific
assays to examine their interactions with important protein families;
unfortunately, this is not the case for many of the drugs related to
neglected tropical/infectious diseases, and drug repurposing can be
an important starting point for the discovery of some important
multi-target leads [19].

Fig. 3 Drug-target relationship network for pyrimethamine extracted from STITCH program [24] (stronger
associations are represented by thicker lines. Protein-protein interactions are shown in gray, chemical-protein
interactions in green and interactions between chemicals in red)
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Multi-Target Inhibitors by

Design

Conceptually, hybrid pharmacophores (compounds having more
than one pharmacophore, sometimes called combi-molecules) can
retain their activity against each of the specific targets. These struc-
turally designed MTDs fall into categories such as conjugates,
fused, and merged [5, 28]. In conjugates, all the distinct pharma-
cophore domains are connected by a cleavable or non-cleavable
linker. Linker of cleavable conjugates is metabolically unstable and
released both (or all) the connected units after enzymatic action
and all the free ligands then act separately. As the size of linker
decreases, a situation comes where all the pharmacophoric frame-
works just touch each other and this results into a fused hybrid
pharmacophore. In another scenario, the common structural fea-
tures of different functional domains can be coalesced, giving rise to
a smaller “merged pharmacophores.” Most of the hybrid pharma-
cophore projects either commence with the incorporation of two
already known and distinct functional pharmacophores or by add-
ing a structural component in a known drug. Fu’s group has
extensively reviewed many structurally designed multi-target inhi-
bitors in anticancer drug discovery paradigm [28]. A classic exam-
ple of multi-target agent targeting both Src family kinase and
EGFR tyrosine kinase is presented by Barchéchath S and coworkers
[29]. Combi-molecule SB163 is a conjugate hybrid pharmaco-
phore which is designed by connecting PP2 (Src kinase inhibitor)
and FD105 (EGFR tyrosine kinase inhibitor) using a suitable linker
(Fig. 1). The hybrid SB163 displays an IC50 of 2.9 μM (EGFR) and
0.32 μM (Src) which is superior to that of an equimolar combina-
tion of Iressa and PP2 in the Boyden chamber assay [29].

2.1.2 Screening-Based

Approaches

Screening-based approaches are based on the actual or computa-
tional filtering of large databases. As compared to single target
screening, these multi-target screening approaches are less com-
mon and only recently reviewed [1–6]. Since more than one target
or activity series (QSARs) are involved in designing a multi-target
model, extra precision should be taken to ensure the robustness of
the model [4, 5].

Multiple Phenotypical/

Enzyme-Based Assays in

Parallel

A typical example of screening-based approachwas the discovery of a
multi-target kinase inhibitor involved in tumor progression
[30]. Abbott kinase proprietary was screened against a broad panel
of kinases (pan-kinase assays), and it was found out that compound
A (a thienopyridine urea analogue, Fig. 1) displays inhibitory activity
of IC50¼ 9.0 nM (KDR, cellular) and IC50¼ 32.0 nM (enzymatic)
along with moderate aurora B activity [IC50 ¼ 487.0 nM (enzy-
matic), 42,000 nM (cellular)]. Further structural modification at
two different sites (thienopyridine C7 position and urea terminal
phenyl position) led to the discovery of ABT-348 with acceptable
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aurora B VEGF and PDGF activities (Fig. 1). This molecule is
currently in phase I/II clinical trial against solid and hematological
cancers [30]. Similarly, the screening of a collection of 2-benzylpi-
peridin-4-amines against anti-cholinesterase (ACHE and BuCHE),
anti-Aβ aggregation (ACHE and self-induced), and anti-β secretases
(BACE-1) led to the identification of multi-target inhibitor
compound B, [N2-(1-benzylpiperidin-4-yl)-N4-(3,4-dimethoxy-
benzyl)pyrimidine-2,4-diamine] (Fig. 1) [31]. This compound has
a potential to develop as a disease-modifying agent (DME) for
Alzheimer’s diseases.

In Silico Screening of Multi-

Target Inhibitors

While experimental assays are time, labor, and cost intensive with
high attrition rate, in silico screening approaches can find a solu-
tion. Now, we will discuss some computational (in silico or in
computo) models for MTD screening which is also the theme of
this chapter.

In Silico Target

Identification or Reverse

Docking

The simplest screening method is based on in silico target identifi-
cation (or reverse docking). By structural similarity (2D or 3-D), a
compound can be screened against all the cognate ligands/innate
inhibitors available in Protein Data Bank (PDB) or similar struc-
tural databases. In theory, if a compound is structurally similar to a
known inhibitor, chances are there that it may also act as an inhibi-
tor for that specific target. Computational target identification
methods such as SHAFTS [23] use this concept for identification
of targets. Multi-target activity of quercetin (a polyphenolic phyto-
chemical, Fig. 1) was determined by screening it against cognate
inhibitors in PDB by SHAFT and binding site similarity (idTarget,
LIBRA). The identified targets fall into two broad categories pro-
tein kinases and poly [ADP-ribose] polymerases which are impor-
tant in conditions like inflammation, neurodegeneration, and
cancer [32].

Parallel Docking, Multiple

QSAR, and Other

Computational Screening

Methods

Docking- and multi-QSAR-based screening approaches have also
been frequently employed for identification of multi-target hits. In
the simplest form, if a ligand collection is screened using two
different proteins (in docking, structure based) or using two dis-
tinct QSAR models (ligand based), then the common hits in paral-
lel runs represent the starting point for multi-target leads. An
example of this parallel screening approach was presented by Li
group [33]. In a quest of novel multi-target inhibitors against
Alzheimer’s disease, this group screened 1.4 million compounds
from PubChem data bank using their druglikeness and molecular
docking. Five targets including amyloid-beta fibril, peroxisome
proliferator-activated receptor γ, retinoic X receptor α, and β- and
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γ-secretases were used in the study. Only common hits to all the five
receptors with AutoDock Vina score ΔE � �8.0 kcal/mol were
selected for further MD simulation. Finally, two compounds CID
16040294 and CID 9998128 were identified as multi-target hits
(Fig. 1). Similar structure-based screening of ZINC + Pub-
Chem + Mcule database (about three million molecules) led to
the identification of multi-targeted (EGFR + HER2 + HSP90)
inhibitors against breast cancer (Fig. 1) [34].

In most of the cases, computational docking- and QSAR-based
approaches are used in stepwise manners along with several other
filters such as Lipinski’s rule of fives, druglikeness, ADMET, etc.
For example, Basu and coworkers successfully applied structure-
based ensemble docking (using different closed conformations of
BACE1 such as 3IND and 3TPP) and a four parameter-based 2D
QSAR model for the screening of an in-house library of 200 phyto-
chemicals [35]. The top 65 compounds (based on energy criteria)
were selected for the second round of screening where these were
again filtered using 2D QSAR model for anti-amyloidogenic and
antioxidant activity. A polyphenol narirutin (Fig. 1) was the com-
mon hit in both the 2DQSAR exercises and eventually tested for its
BACE inhibitory activity (enzyme-based fluorescence titration
assay), anti-amyloidogenic (ANS and ThT assay), and antioxidant
activity (ABTS scavenging assay). Narirutin displayed significant
BACE and anti-amyloidogenic activity with moderate antioxidant
activity, making it a suitable multi-target hit for Alzheimer’s disease.
This group also explored some other multi-target hits for the same
disease using similar computational strategy [36, 37]. Jiang group
has also explored PubChem database by a three-tier screening for
the discovery of a multi-target (EGFR, VEGFR-2, and PDGFR)
compound CID:47037197 (Fig. 1) [38]. Their method involved
the use of support vector model (SVM), druglikeness criteria, and
computational docking by Discovery Studio 2.5/CDOCKER.

Despite its relevance, there are only a few scholarly articles
dedicated to the design of MTDs especially in the domain of
neglected tropical and infectious diseases [6, 39–42]. In the next
section, a molecular docking-based strategy has been presented for
the discovery of dual inhibitors against malaria and tuberculosis.
This case study is based on authors’ published research work [39].

2.2 Screening Dual

Inhibitors Against

Malaria and

Tuberculosis by a

Three-Tier

Computational

Approach: A Case

Study

Presented three-tier screening is based on parallel computational
docking, and several variations are possible depending upon the
preferences and resources available to medicinal/computational
chemists (see Note 1) [39]. Conceptually, the similar methods can
be extended to other research domains of MTDs. Computational
docking by AutoDock is the key event of this strategy, so a step-by-
step protocol is given in detail (Fig. 4).
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Selection of Protein: Selection of suitable targets (receptors) is a
key step for any multi-target screening exercise.

1. Two essential criteria which must be satisfied by a target are as
follows: (1) it should have therapeutic weight (in case of infec-
tious diseases, it should be an enzyme/protein of vital impor-
tance for the survival of microbe/pathogen), and (2) it must be
druggable (it must be capable of binding to a small molecule,
and its activity can be modulated by that small molecule).

2. It is highly recommended to survey the literature to examine
the validity of a target (linkage and site mutation studies), its
physiological role, off-target relationship, etc. before finalizing
its selection. Previous docking studies can be very helpful in
this regard.

In the presented case study, ten well-validated targets of
Plasmodium, Mycobacterium, and Trypanosoma were selected
[39]. These include wild-type (WT) forms of Pf-DHFR–TS
(1J3I.pdb, [43]), Pf enoyl-ACP-reductase (1NHG.pdb, [44]),
Pf-PK7 (2PMN.pdb, [45]), Mt-SK (2DFN.pdb, [46]), Mt-PS
(1N2H.pdb, [47]), Mt-TMPK (1G3U.pdb, [48]), Mt-MurE
ligase (2WTZ.pdb, [49]), Tc-TR (1BZL.pdb, [50]), Tc-G3PD
(1QXS.pdb, [51]), and Tc-TS (1S0I.pdb, [52]).

Fig. 4 A step-by-step flowchart of a docking operation using AutoDock
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2.2.1 Protein Preparation 1. Protein files can be retrieved from Protein Data Bank (RCSB
PDB, www.rcsb.org, [53]) in pdb format with maximum possi-
ble resolution.

2. File should be examined for any structural error/s, missing
residue/s, inappropriate charge/s, wrong tautomeric state/s,
etc. and should be corrected.

3. If protein molecule contains any cognate ligand/inhibitor/
substrate, it should be removed first. [For example, Pf-
DHFR-TS (1J3I) contains a third-generation inhibitor
WR99210 (or WR 609A).]

4. If the protein is homodimer (homomultimer) and the binding
cavity is not present at the area of intersection, a single mono-
mer can be dissected.

5. Polar hydrogen atoms are added, and Gasteiger charges are
computed using AutoDock tool (ADT 4.2, http://autodock.
scripps.edu/) [54].

6. The target structures are cleaned by removing crystallo-
graphic/bound water molecules. Finally, protein files are
saved as pdbqt files.

2.2.2 Ligand Preparation 1. A ligand is the small molecule which will be docked inside the
binding cavity of the macromolecule. There are many ready to
use small molecule repositories available for this purpose (can
be directly downloaded in various file formats such as sdf) such
as natural products, phytochemicals, commercially available
compounds from different suppliers, known drugs, etc.
In-house collection of focused or diverse set of compounds
can also be built.

A small collection of 30 imidazo-azines (with different substit-
uent patterns) was used by the authors [39]. The selection of
this library was based on the therapeutic profile of this class of
N-fused bicyclic heterocycles and their easy accessibility
through Groebke-Blackburn-Bienymé multicomponent
reaction [55].

2. 2D structure of a ligand is drawn using a suitable drawing tool
such as ChemDraw (http://www.cambridgesoft.com). Chiral
and stereochemical positioning of a group in space should be
drawn with extreme care using suitable bond representation
such as wedge bond (up to plane), hatch bond (down to plane),
or wiggly bond (stereo configuration is irrelevant or
unavailable).

3. The 2D structures are converted to 3D structures. Simplest
way to do this is to copy 2D file and paste it to ChemDraw 3D
or by using a file format converter tool such as Open Babel
(http://openbabel.org).
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4. 3D structures are energy minimized/geometry optimized
using a suitable force field such as MM2, AM1, PM3,
CHARMM, etc. depending on the size and flexibility of the
ligand.

5. Finally, all the 3D structures are saved as pdb format. The pdb
format contains information regarding the coordinate and con-
nectivity of all the constituent atoms along with the annotation
of side-chain rotamers and secondary configuration.

6. Finally, ligand pdb file is loaded to ADT, and information such
as AutoDock 4 atom types, Gasteiger charges (if necessary),
nonpolar hydrogens, aromatic carbons (if any), and the torsion
tree (for information of bond flexibility) are added to it and
again saved back to pdbqt [pdb (atom coordinate and connec-
tivity) + q (partial charge) + t (AutoDock 4 atom types)]
format. This pdbqt file is the main input file for grid setting
and docking by AutoDock.

2.2.3 Grid Setting and

Calculation of

Pre-energy Maps

1. Setting a grid (a square box) around binding cavity of protein is
an important step of the AutoDock protocol. Each atom type
of the ligand (aliphatic carbon, aromatic carbon, hydrogen-
bonded oxygen, etc.) is used as an imaginary probe, and their
interaction energy at each regularly spaced point (grid points) is
calculated. In this way, energy files (map files) for each atom
type of ligand are calculated. In addition, AutoDock version
4 and electrostatic and desolvation energy files are also
calculated.

2. Size of the grid box should be larger than the binding cavity of
the target protein and that of the fully extended form of the
ligand/s under study. The default spacing is 0.375 A between
grid points which can be changed especially when a large
volume is to explore.

3. Binding site residues can be identified by opening the protein
pdb file into some visualizer such as Discovery Studio (DSV,
http://accelrys.com), Molegro Molecular Viewer (MMV,
www.qiagenbioinformatics.com), PyMOL (https://pymol.
org), etc. or by browsing the motif and site option available
in Protein Data Bank in Europe (EMBL-EBI, http://pdbe.
org/motif/) for each cognate ligand present in the protein.

4. All the information about position and size of the grid, the
types of map to be calculated etc. are stored in the form of gpf
(grid parameter file). Once gpf is generated, AutoGrid is run
to calculate all maps and glg (grid log file) files which are the
precondition for running AutoDock (Fig. 4).
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2.2.4 Execution of

Docking Program

1. A specific file called docking parameter file (dpf) has to be built
before performing docking experiments. This file contains all
the information about the size of docking calculation (number
of run, number of final pose, etc.), which algorithm is to use
and which grid maps are to use etc. for docking.

2. There are four different types of algorithm presently available in
AutoDock 4.2 [49]: Monte Carlo simulated annealing (SA),
traditional Darwinian genetic algorithm (GA), local search
(LS), and a combination of genetic algorithms and local search
[GA-LS, also called LGA (Lamarckian genetic algorithm,
[56]). LGA was shown to be the better than other three and
mostly used to run the docking experiments. In LGA local
environmental adaptations of a “parent” are allowed to inherit
back to “offspring” [56].

3. Some important parameters of the search algorithm are
ga_pop_size (number of individuals in population, default
value 150), ga_num_evals (maximum number of energy eva-
luations, default value 2.5 � 107), ga_num_generation (maxi-
mum number of generations, default value 27,000), ga_elitism
(number of top individuals to survive to next generation,
default value 1), ga_mutation_rate (rate of gene mutation,
default value 0.02), ga_crossover_rate (rate of crossover, default
value 0.8), ga_run (number of hybrids GA-LS run, default
value 10), etc.

ga_num_evals and ga_num_generations determine the size of
calculations, while ga_run determines the numbers of final
poses in the output file. If ligand has more flexible and rotatable
bonds, then size of the computational calculations can be
increased.

4. Once all the files (pdbqt of receptor and ligand +map files for all
atom types + electrostatic and desolvation map files + dpf) are
generated, AutoDock can be launched (Fig. 4).

2.2.5 Visualization of

Docking Output

1. The docking log file (dlg) is the output file of the docking
process; it contains important information such as spatial coor-
dination of all the poses, binding energies (�ΔG), clustering,
histogram, root-mean-square deviation (RMSD), etc. By open-
ing this file as a notepad and then typing a keyword “histo-
gram,” the entire docking summary can be viewed in the table
format.

2. In ADT all the conformations can be visualized separately or at
once. Mostly dlg files are converted back to pdb files via pdbqt
using ADT itself or with the help of a file converter. These files
then can be opened in any 3D visualize tool such as DSV,
MMV, PyMOL, etc.

3. Finally, these conformations are studied for their interactions
with the neighboring residues of the proteins. Van der Waals
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(VdW) electrostatic hydrogen interactions are especially looked
for. The location of hydrophobic and hydrophilic residues
around the ligand is also important. These interactions provide
a rational base for the calculated binding energy.

2.2.6 Analysis of Results 1. Analysis of docking result is a tricky and subjective exercise
(see Note 2). While mostly the lowest energy poses are given
preference in the ranking, pose belonging to the most popu-
lated cluster is also important (because of their high reproduc-
ibility in the repeated runs) [57].

2. Binding energy (BE) is definitely an important criterion. Gen-
erally it is advisable to compare the binding energy of the
docking pose with that of the already known inhibitors using
it as a benchmark for the study.

3. In docking-based multi-target screening, all the docking exer-
cises are set up in parallel, and all the common hits are consid-
ered as a starting point, though more optimization may require
further. For example in multi-tiers strategy proposed by the
authors, the following criteria were selected (Fig. 5):

(a) Re-docking/control docking including flexibility and
clustering pattern of the bench marks for those protein
ligand sets where docking engine was failed to meet rmsd
criteria of 2 Å in validation experiment was not simply
considered for the next round. Similarly the cases where
too many clusters were generated due to high flexibility of
benchmark (more than 15 flexible bonds) were also
rejected (see also Notes 3, 4 and 5). Although implemen-
tation of this criterion led to the elimination of four
proteins from the multi-tier screening, yet it significantly
improved the reliability of the model (Fig. 5).

(b) Filter based on potency/ligand efficiency (LE): it has been
shown that as compared to binding energy, binding
energy per heavy atom (or ligand efficiency, LE) is a better
representative of potency [58–60]. So a common baseline
was set up by averaging the LEs of all the cognate ligand
(also served as benchmark). This LE base line
(��0.35 kcal/mol per heavy atom) was quite close to
consensus LE (�0.30 kcal/mol per heavy atom) proposed
for fragment-based lead discovery. The hits
(LE � �0.35 kcal/mol per heavy atom) which were com-
mon in all the proteins were selected for the next phase of
multi-target screening (Fig. 5) [39].

(c) Filter based on druglikeness/leadlikeness: nowadays the
potency of a molecule is not a sole criterion for making it
hit; other factors such as druglikeness are also very decisive
(Fig. 5) [59, 60]. The main benefit of this approach is to
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identify drug-like hits in the initial stages of drug discov-
ery with minimum numbers of liabilities in the advance
stages. The following criteria were selected based on
various literature reports [61, 62]:

(d) Molecular weight (MW) < 350 Da, log P(octanol/
water) ¼ 3–5, maximum no. of rings (Nring) < 4, maxi-
mum no. of nonterminal single bonds (Nter) < 10, maxi-
mum no. of hydrogen bond donors (HBD) < 5,
maximum no. of hydrogen bond acceptors (HBA) < 8,
and ligand efficiency (LE) � 0.30 kcal/mol/non-
hydrogen atom.

Fig. 5 Details of the strategy used in multi-target screening of imidazo-azine library (adapted from ref. 37)
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After applying all these filters, two compounds 2-(4-chlorophe-
nyl)-N-cyclohexyl-6-methylH-imidazo[1,2-a]pyridine-3-amine
(MCL011) and N-cyclohexyl-2-(4-methoxyphenyl)-6-methylH-
imidazo[1,2-a]pyridine-3-amine (MCL017) (Fig. 1) were selected
as a multi-target hits. Like a master key (which can be used to open
more than one lock), these hits can be used to design multi-target
leads against multiple targets [39].

3 Materials and Tools

Many computational tools are available for multi-target screening.
Some of the tools/software/online servers/repositories used in the
three-tier protocol are given in detail:

3.1 Macromolecular

Database

The Protein Data Bank (RCSB PDB, www.rcsb.org, [51]) is a freely
available database for 3D structures of macromolecules such as
protein and nucleic acid. The structural data are obtained by tech-
niques such as X-ray crystallography, NMR spectroscopy, cryo-
electron microscopy, etc. It was established in 1971 at the Broo-
khaven National Laboratory (BNL), New York. It also has some
sister organizations such as PDBe (Protein Data Bank in Europe),
PDBj (Protein Data Bank in Japan), etc. Some other databases also
rely on PDB for structural information such as SCOP (http://scop.
mrc-lmb.cam.ac.uk/scop/, for protein structural classification),
PDBREPORT (http://swift.cmbi.ru.nl/gv/pdbreport/, database
of structure error in macromolecule structure), PDBsum (http://
www.ebi.ac.uk/pdbsum/, summarize data from other databases
about PDB structures), etc. From 2003, worldwide Protein Data
Bank (wwPDB, https://www.wwpdb.org/) came to existence as a
single macromolecule data bank founded by RCSB PDB, PDBe,
PDBj, and Biological Magnetic Resonance Data bank (BMRB,
http://www.bmrb.wisc.edu/). Some other data banks and
resources are UniProtKB/Swiss-Prot (http://www.uniprot.org/,
protein sequence database), STRING (https://string-db.org/,
protein-protein interactions), SWISS-MODEL Repository (pro-
tein homology models, https://swissmodel.expasy.org/reposi
tory), TTD (Therapeutic Target Database, http://bidd.nus.edu.
sg/group/cjttd/), etc.

3.2 Small Molecule

Databases

There are several private and publically available databases for small
molecules which can be directly used for a screening campaign.
Some notable examples are:

ZINC (Zinc Is Not Commercial, http://zinc.docking.org/) is
a freely available collection of commercially available compounds
(over 35 million compounds, in ready to dock format) including
information about their suppliers.
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ChEMBL (https://www.ebi.ac.uk/chembl/) is an open data
bank of small drug-like compounds along with information about
their binding and ADMET properties.

DrugBank (https://www.drugbank.ca/) is a freely available
database for comprehensive information about drugs and drugs
targets (mainly important for drug repurposing). It is both bioin-
formatics and a cheminformatics resource.

TCM-Taiwan (traditional Chinese medicines, http://tcm.cmu.
edu.tw/) is an natural product database which contain information
about different TCM constituents (1,70,000 entries in 2D and 3D
format).

PubChem (https://pubchem.ncbi.nlm.nih.gov/) is an open
chemistry database maintained by National Institute of Health
(NIH), USA. It contains information about chemical structures,
identifiers, chemical and physical properties, biological activities,
patents, health, safety, toxicity data, etc.

Other important database includesMcule (https://mcule.com/),
ChemDB (http://cdb.ics.uci.edu/), ChemBank (http://chembank.
broadinstitute.org/), DUD (http://dud.docking.org/), KEGG
DRUG (http://www.genome.jp/kegg/drug/), SuperDRUG2
(http://cheminfo.charite.de/superdrug2/), eMolecules (https://
www.emolecules.com/), etc.

3.3 Tools for

Computational

Docking

AutoDock (http://autodock.scripps.edu/, [54]) is a suite of auto-
mated docking tools. It is freely available and maintained by the
Molecular Graphics Laboratory (MGL, http://mgl.scripps.edu/)
and the Scripps Research Institute, La Jolla, USA. Its current
version AutoDock 4 consists of two main programs: AutoGrid for
calculating pre-energy maps which were then used by another
program AutoDock for molecular docking. It has option for four
different types of search algorithm, but genetic algorithms and local
search [GA-LS, also called LGA (Lamarckian genetic algorithm) are
the mostly implemented. AutoDock 4.2 has an empirical free
energy-based scoring function which uses linear regression analysis
in AMBER force field.

There are several other docking software tools are UCSF
DOCK [http://dock.compbio.ucsf.edu/, freeware for academic
user, Kuntz’s Group in University of California, San Francisco
(UCSF)], GOLD [https://www.ccdc.cam.ac.uk/solutions/csd-dis
covery/components/gold/, commercial, from the Cambridge
Crystallographic Data Centre (CCDC)], FlexX (https://www.
biosolveit.de/FlexX/, commercial, from BioSolveIT), Glide
(https://www.schrodinger.com/glide, Commercial, from Schrö-
dinger), ICM-Dock (http://www.molsoft.com/docking.html,
commercial, MolSoft Inc.), MOE (https://www.chemcomp.
com/, commercial, from Chemical Computing Group), Surflex-
Dock (http://www.jainlab.org/downloads.html, commercial,
from Tripos), SwissDock [http://www.swissdock.ch/, free web
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service for academic user, from Swiss Institute of Bioinformatics
(SIB)], GEMDOCK (http://gemdock.life.nctu.edu.tw/dock/,
freeware, from National Chiao Tung University, Taiwan), etc.

3.4 Software Tools

for Visualization

These software tools are used for the visualization, editing, and
studying protein-ligand interaction. Some examples are Discovery
Studio Visualizer (DSV, http://accelrys.com) (freeware for aca-
demics, now distributed by BIOVIA Inc.), UCSF Chimera
[https://www.cgl.ucsf.edu/chimera/, freeware, from Resource
for Biocomputing, Visualization, and Informatics (RBVI)], ICM
Browser (http://www.molsoft.com/icm_browser.html, freeware,
fromMolsoft LLC), Jmol (http://jmol.sourceforge.net/, freeware,
widely used, developed by Jmol developer team), PyMOL (https://
pymol.org, commercial, from Schrödinger), RasMol (http://www.
openrasmol.org/, freeware, developed by Roger Sayle), Swiss-
PdbViewer aka DeepView [https://spdbv.vital-it.ch/, freeware,
by Nicolas Guex, Swiss Institute of Bioinformatics (SIB)], etc.

3.5 Drawing Tools

(Molecular Editors)

and File Format

Converters

Drawing tools are used for the drawing, processing, storing, ren-
dering, and editing the 2D structural information. Some example
includes ChemDraw (http://www.cambridgesoft.com, developed
by CambridgeSoft), BIOVIA Draw (http://accelrys.com, formerly
Accelrys Draw and before that Symyx Draw, by BIOVIA), Chem-
Doodle (www.chemdoodle.com, by iChemLabs), MarvinSketch/
View (https://chemaxon.com, by ChemAxon), etc.

During different steps of computational docking (and other
operations), formats of different files need to be converted to other
suitable formats. Open Babel (http://openbabel.org) is a toolbox
which can read, write, and convert over 110 chemical file formats.

4 Notes

1. In theory, tools for computational screening of multi-target
inhibitors are similar to that of single target inhibitors. It’s
just the integration of these tools which is differing.

2. Multi-target screening exercises are more prone to errors and
false input etc. Therefore, special care should be taken care to
minimize the errors.

3. Validity of a docking protocol must be confirmed by a
re-docking or control docking exercise. Validation experiment
confirms how accurately docking engine mimics the conforma-
tional orientation of the substrate or inhibitor within the active
site of the protein. For this purpose, the cognate (in bound)
ligand from protein structure is removed and again docked
back into the active site of the protein. For successful docking
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model, RMSD of spatial coordinates of cognate and docked
ligand should be �2 Å.

4. Traditional rigid docking-based approach considers the pro-
tein/macromolecule as a rigid body. This consideration no
doubt saves some computational time but affects the predicting
power of the model. The use of fast molecular dynamic
(MD) simulation can be useful and can provide more realistic
picture. Alternatively, structure-based ensemble docking can
also be useful.

5. Flexibility of the ligand is also an important factor for compu-
tational docking. Compounds with too many rotatable bonds
may lead to too many clusters and can produce inconclusive
outcomes.

5 Future Prospects and Concluding Remarks

Devastating nature of many infectious diseases and continuous
reports of drug resistance demand new strategic advancements in
the field of NTDs and tropical infectious diseases. Multi-target
screening is one such promising concept which offers better safety
profile with low resistance possibility than the current therapeutical
models. Multi-target screening and design also present an econom-
ical and more cost-effective drug discovery model than the tradi-
tional single target and combination therapies. Moreover, multi-
target drugs can also replace multidrug regimen used at the time of
coinfection by HIV and opportunistic pathogens.

Following developments will definitely help in R&D in the
domain of MTDs:

1. Theoretical and computational progress in the field of struc-
tural biology and OMICS science.

2. Ever-expanding biochemical space available for drug discovery
endeavors.

3. New efforts focused on the drug repurposing/drug reposition-
ing of current medications of infectious disease.

It is highly likely that computational multi-target screening
methods may lead to safer and superior drugs in the area of
infectious disease in the foreseeable future.
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Abstract

One drug one target approach has nowadays evolved in the form of one drug multiple targets strategy for
the drug designing. In recent years, polypharmacology has gained much attention for the identification of
multi-targeting drugs, i.e., a single drug molecule interacting to more than one target. For the treatment of
HER-2-positive breast cancer, lapatinib is used as a dual inhibitor against the EGFR and HER-2 receptors.
Several other multi-target inhibitors are also reported for the treatment of breast cancer, which are basically
dual inhibitors of PI3K and mTOR, mTORC1 and mTORC2, and multikinase anti-angiogenesis
inhibitors. Strategies for identifying multi-target drugs for the breast cancer treatment are still needed.
Computational methods for identifying multi-target drugs are mainly of two types, i.e., structure-based and
ligand-based. Structure-based drug designing methods are based on physical interaction studies and
include molecular docking and molecular dynamics simulations for screening of multi-target drug mole-
cules. On the other hand, ligand-based methods are knowledge-based methods which analyze similar
properties of ligand molecules for identifying multi-targeting molecules.

Keywords Breast cancer, Computer-aided drug design, Molecular descriptors, Molecular dynamics
simulation, Molecular interaction, Pharmacophore

1 Introduction

1.1 Breast Cancer

and Therapeutic

Targets

Breast cancer is one of the most prevalent types of cancer among
women worldwide raising serious concerns. It is mainly of three
types. The most common type of breast cancer with nearly 60% of
cases is due to the overexpression of estrogen receptor (ER) and/or
progesterone receptor (PR) known as hormone receptor-positive
breast cancer [1]. The second type comprising 15–20% of all cases is
due to overexpression of human epidermal growth factor receptor-
2 (HER-2) [2], while in the rest of the breast cancer cases, none of
these three receptors, i.e., ER, PR, and HER-2, are overexpressed,
and this type is known as triple-negative breast cancer (TNBC)
[1]. For the treatment of breast cancer, overexpressed receptors
and various pathways assisting tumor development are targeted
using drugs (Table 1).

For the treatment of hormone receptor-positive breast cancer
(ER or PR positive), endocrine therapy is used, i.e., selective
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estrogen receptor modulators (SERMs) are administered. These
SERM molecules, viz., tamoxifen [3], raloxifen [4], and bazedox-
ifene [5], are antagonists to ER [1]. Similarly, molecules that down-
regulate ER, i.e., selective estrogen receptor downregulators
(SERDs), are also utilized for the treatment of hormone receptor-
positive breast cancer. SERDs like fulvestrant and ARN-810 disrupt
the dimerization and nucleation of ERs [6, 7, 26]. In addition,
aromatase receptor responsible for the conversion of androgens
into estrogens is also targeted. Aromatase inhibitors (AIs) (target-
ing aromatase receptor responsible for estrogen production), viz.,
letrozole, anastrozole, and exemestane, are used for treatment of
hormone receptor-positive breast cancer (Table 1) [1, 8–10,
27]. In hormone receptor-positive breast cancer, hyperactivation
of phosphatidylinositol 3-kinase (PI3K) pathway promotes anties-
trogen resistance. In such cases PI3K signaling pathway kinases, viz.
PI3K, protein kinase B (Akt), and mammalian target of rapamycin
(mTOR) inhibitors, are targeted in a combination therapy [22, 27].

For the treatment of HER-2-positive breast cancer, drugs tar-
geting HER-2 receptor are provided along with chemotherapeutic
drugs [1, 2]. HER-2 receptor is a tyrosine kinase class of receptor.

Table 1
Various mono-target drugs and their respective target, used for the treatment of various types of
breast cancers

Breast cancer type Drug type Drug molecule Reference

Hormone receptor positive (ER+ or PR+) SERMs Tamoxifen [3]
SERMs Raloxifen [4]
SERMs Bazedoxifene [5]
SERDs Fulvestrant [6]
SERDs ARN-810 [7]
Aromatase inhibitors Letrozole [8]
Aromatase inhibitors Anastrozole [9]
Aromatase inhibitors Exemestane [10]

HER-2 receptor positive EGFR inhibitor Gefitinib [11]
EGFR inhibitor Erlotinib [12]
HER-2 inhibitor Trastuzumab [13]
HER-2 inhibitor Pertuzumab [14]

TNBC (in combination therapy
in all types of breast cancer)

PI3K inhibitor PX-866 [15]
PI3K inhibitor GDC-0941 [16]
PI3K inhibitor XL-147 [17]
PI3K inhibitor BKM-120 [18]
AKT inhibitor GSK690693 [19]
AKT inhibitor A-443654 [20]
AKT inhibitor MK-2206 [21]
mTOR inhibitor Everolimus [22]
VEGFR inhibitor Bevacizumab [23, 24]
VEGFR inhibitor Aflibercept [24, 25]
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It belongs to human epidermal growth factor receptor family,
having four members, viz., epidermal growth factor receptor
(EGFR/HER-1), HER-2, HER-3, and HER-4 [28]. All these
receptors have a role in controlling cell growth, proliferation, and
cell survival [28]. HER-2-positive breast cancer is characterized by
overexpression of HER-2 receptor. HER-2 targeting drugs are
mainly used for the treatment. Trastuzumab is the first monoclonal
antibody targeting HER-2 receptor, for HER-2-positive breast
cancer treatment [13, 29, 30]. Pertuzumab targeting HER-2 and
inhibiting HER-2 dimerization is also used in combination therapy
[14]. EGFR-targeting drugs like erlotinib [12, 31] and gefitinib
[11] show activity in combination therapy against HER-2-positive
breast cancer [29]. Moreover dual inhibitors targeting both EGFR
and HER-2 are successful in HER-2-positive breast cancer
treatment.

In the absence of ER/PR or HER-2-targeted therapy for TNBC
type, other conventional chemotherapeutic agents like alkylating
agents, drugs targeting cytoskeleton proteins (taxanes), focal adhe-
sion kinase (FAK) inhibitors, and vascular endothelial growth factor
receptor (VEGFR)-targeting drugs are mainly used in TNBC treat-
ment. ForTNBC treatment, target-specific drug is not utilized, and it
is mainly treated using cytotoxic chemotherapy drugs [1]. Due to
overexpression of EGFR in nearly half of the TNBC cases, EGFR
inhibitors are also used for TNBC treatment [29, 32]. PARP inhibi-
tors in combination therapy are also used for TNBC treatment
[33]. In addition, drugs targeting PI3K/Akt/mTOR pathway are
considered promising therapeutics agents for TNBC treatment
[34]. FAK is an intracellular tyrosine kinase having a role in signal
transduction and other cellular responses like cell adhesion, migra-
tion, survival, proliferation, and angiogenesis [32]. FAK is overex-
pressed in most breast cancer cases [35]. Therefore FAK inhibitors
likeVS-6063 andVS-4718 are important candidates for breast cancer
treatment in particular for TNBC [36].

In addition, angiogenesis, i.e., formation of new blood vessels,
is essential for tumor growth and metastasis. Various kinases are
involved in angiogenesis, and VEGFR receptor tyrosine kinase
plays a key role in tumor angiogenesis and breast cancer develop-
ment [25]. Therefore VEGFR-targeting drugs like bevacizumab,
aflibercept, etc. are used for breast cancer treatment [23, 29,
37]. In monotherapy, these drugs demonstrate limited activity;
therefore they are generally used in combination with chemothera-
pies (with taxanes like paclitaxel or docetaxel) [24, 37]. Multikinase
anti-angiogenesis inhibitors like sunitinib, sorafenib, vandetanib,
vatalanib, and axitinib targeting VEGFRs (different VEGFR var-
iants like VEGFR-1, VEGFR-2, and VEGFR-3) show significant
activity for breast cancer treatment (Table 1) [25, 29, 37]. Apart
from VEGFRs, these multikinase inhibitors also target other
kinases like platelet-derived growth factor receptor (PDGFR),
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stem cell factor receptor (KIT), feline McDonough sarcoma
(FMS)-related tyrosine kinase 3 (FLT-3), colony-stimulating factor
1 receptor, rearranged during transfection (RET), C-rapidly accel-
erated fibrosarcoma (CRAF), and B-type RAF kinase (BRAF)
[37]. Since they inhibit multiple kinases of the angiogenesis path-
way, these inhibitors show high anti-angiogenesis activity.

PI3K/Akt/mTOR pathways regulate signaling of cell prolifer-
ation, adhesion, survival, and motility, and aberrant activation of
this pathway in tumor cells leads to cancer growth, survival, motil-
ity, and development of resistance against targeted therapy
[34, 38]. PI3K pathway kinases are the key target in treatment of
all breast cancer types for use in combination therapy [34]. Analysis
of cancer samples showed that nearly 38% of solid tumors have
alteration in PI3K pathway receptors [39]. PIK3A, phosphatase
and tensin homologue deleted on chromosome 10 (PTEN), and
AKT1 mutations are frequent in hormone receptor-positive breast
cancer (ER+/PR+) [22]. Likewise, PIK3CA mutations are com-
mon in HER-2-positive breast cancer [39]. This reveals the impor-
tance of targeting PI3K/Akt/mTOR pathway, in particular for
TNBC and in combination therapy for hormone receptor-positive
and HER-2-positive breast cancer.

In the PI3K/Akt/mTOR pathways, PI3K is the initial signal-
ing kinase required for cell growth, cell proliferation, and important
metabolic activities. PI3K consists of three classes of heterodimeric
lipid kinases with catalytic and regulatory subunit catalyzing phos-
phorylation of 30-hydroxyl group of phosphatidylinositols
[34]. PI3K activation occurs through growth factor stimulation
via receptor tyrosine kinases like EGFR. In contrast, PI3K is nega-
tively regulated by PTEN, promoting dephosphorylation of phos-
phatidylinositol phosphates [40]. The second kinase is serine/
threonine kinase AKT, having three isoforms AKT1, AKT2, and
AKT3. The downstream effector of AKT is mTOR, the third
important serine/threonine kinase of the pathway [34]. mTOR
comprises two cell signaling complexes mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2) [41]. This path-
way also suppresses expression of apoptosis receptors like caspases.
Therefore, drugs targeting PI3K pathway activate caspases, thus
leading to apoptosis of cancer cells.

PX-866 is a pan-PI3K inhibitor with significant inhibition of
PI3K signaling [15]. Various Class I PI3K selective compounds,
viz., GDC-0941 [16], XL-147 [17], and BKM120 [18], are also
reported for inhibiting PI3K signaling in breast tumor cells
(Table 1). AKT inhibitors developed for breast cancer treatment
include GSK690693, A-443654, and MK-2206 [19–21].
MK-2206 is a highly selective allosteric pan-inhibitor of AKT
[21]. These AKT inhibitors show significant antitumor activity in
breast cancer. Everolimus is a mTOR inhibitor, showing allosteric
binding to mTORC1 [22]. Everolimus combined with aromatase
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inhibitors is used for hormone receptor-positive breast cancer
patient treatment [22]. Dual inhibitors targeting both PI3K and
mTOR receptors are reported for treatment of breast cancer.

In a better approach to combat breast cancer, multiple targets
are inhibited using drug combination. In case of dual inhibition,
two drug molecules targeting two different receptors for treat-
ment of breast cancer are utilized for synergistic activity. For
instance, the dual inhibition of FAK (by FAK-CD) and EGFR
(by AG1478) protein tyrosine kinases was reported to have syner-
gistic effect and trigger apoptosis in breast cancer cells [42]. Like-
wise, dual inhibition of mTOR (by everolimus) and aromatase
receptor (by letrozole) in combination induces apoptosis in
hormone-dependent breast cancer [43]. Dual inhibition of
EGFR (by erlotinib) and VEGFR (by bevacizumab) in combina-
tion was reported for improved antitumor activity in patients with
metastatic breast cancer [31].

Contrary to dual inhibition (using two different molecules
targeting two receptors), in multi-targeted approach, a single mol-
ecule targets multiple inhibitors (e.g., one molecule targeting two
receptors). This ability of drug molecules to bind multiple targets is
the characteristic feature of multi-targeting drugs. Multi-targeted
approach is very useful for the treatment of breast cancer. In this
approach single drug molecule is able to inhibit multiple receptors,
thus providing better opportunity for breast cancer therapy.

1.2 Multi-Target

Approach in Breast

Cancer Treatment

Multi-target therapeutics overcomes the limitations of the mono-
target therapies. Multi-target drugs are more efficacious and less
prone to resistance [44]. The process of oncogenesis is multigenic;
therefore, multi-target drugs are more useful for cancer treatment
[44]. Multi-target approach is utilized for breast cancer treatment.
Lapatinib, one of the pioneer dual inhibitors of HER-2 and EGFR
receptor, was reported for breast cancer treatment [45]. For breast
cancer treatment, various multi-targeted drugs are used, viz., dual
inhibitors of HER-2 and EGFR receptors, dual inhibitors of PI3K
and mTOR kinases, dual inhibitors of mTORC1 and mTORC2
kinase, and multikinase inhibitors of angiogenesis (Fig. 1).

1.2.1 Dual Inhibition of

EGFR and HER-2 Receptors

EGFR and HER-2 receptor targeting dual inhibitor lapatinib was
the major breakthrough for the treatment of breast cancer (Table 2)
[45]. Lapatinib is a tyrosine kinase inhibitor that binds at the
intracellular domain of both the EGFR and HER-2 receptor and
causes complete blockage of phosphorylation and restricts the
downstream cascade [46, 47, 54]. Another dual inhibitor
molecule neratinib was reported for HER-2-positive breast cancer
[48]. BIBW-2992 was reported for targeting both EGFR and
HER-2 receptors in HER-2-positive breast cancer [49]. All these
dual inhibitors of EGFR and HER-2 receptor show activity against
HER-2-positive metastatic breast cancer.
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Fig. 1 This figure shows the way dual inhibitors concurrently inhibit multiple inhibitors. (a) EGFR and HER-2
dual inhibitor, (b) PI3K and mTOR dual inhibitor, and (c) mTOR1 and mTOR2 dual inhibitor

Table 2
Various multi-target inhibitors used for breast cancer treatment

Drug targets Drug molecule References

EGFR + HER-2 receptor Lapatinib [45–47]
Neratinib [48]
BIBW 2992 [49]

PI3K + mTOR NVP-BEZ235 [18]
GSK2126458 [50]
VS-5584 [51]

mTORC1 + mTORC2 AZD8055 [52]
OSI-027 [53]

Multikinase anti-angiogenesis inhibitors

VEGFR1-3, PDGFR
KIT, FLT-3, MET

Sunitinib [25, 37]

VEGFR1-3, PDGFR
KIT, FLT-3, CRAF
BRAF

Sorafenib [25, 37]

VEGFR1-3,
PDGFR-b, KIT

Axitinib [37]

VEGFR1-3, PDGFR, KIT, RET Motesanib [37]

VEGFR1-3
PDGFR, KIT

Pazopanib [25, 37]

VEGFR1-3, EGFR
KIT, RET

Vandetanib [37]

VEGFR1-3, PDGFR-B
KIT

Cediranib [37]

FGFR1-3, VEGFR1-3
PDGFR-b, C-KIT
FLT-3

Dovitinib [37]

MET, VEGFR2 Cabozantinib [37]
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1.2.2 Dual Inhibition of

PIP3K and mTOR

A dual inhibitor of PI3K and mTOR, NVP-BEZ235, was reported
for breast cancer activity (Table 2) [18]. The use of NVP-BEZ235
for breast cancer in HER-2-positive and PIK3CA mutations was
later reported [55]. Another dual inhibitor reported for PI3K and
mTOR is GSK2126458 [50]. VS-5584 is another dual inhibitor of
PI3k and mTOR [51]. PI3K/mTOR dual inhibitors are effective
for hormone-resistant ER+ breast cancer and TNBC. These dual
inhibitor molecules effectively and specifically block PI3K/Akt/
mTOR signaling pathway.

1.2.3 Dual Inhibition of

mTOR1 and mTOR2

The traditional targets of mTOR are rapamycin analogs known as
rapalogs, everolimus, temsirolimus, and deferolimus that show
allosteric inhibition of mTORC1 [34]. But the feedback activation
continues via mTORC2. Therefore the ATP-competitive inhibitors
binding to both mTORC1 and mTORC2 can completely inhibit
the mTOR signaling. AZD-8055 and OSI-027 are the selective
competitive dual inhibitors of mTOR (binding to mTORC1 and
mTORC2); these inhibitors interact with both mTOR receptors
and have promising results against breast cancer (Table 2) [52, 53].

1.2.4 Multikinase

Inhibition of Angiogenesis

These multikinase anti-angiogenesis inhibitors target multiple
proangiogenic pathways [25]. Sunitinib and sorafenib were initially
explored for multiple kinase activity on angiogenesis signaling path-
ways [25]. Sunitinib prevents angiogenesis by targetingVEGFR1-3,
PDGFR, KIT, FLT-3, colony-stimulating factor 1 receptor, and
RET kinases [25, 37]. Similarly sorafenib interacts with VEGFR1-
3, PDGFR,KIT, and FLT-3 cell surface kinase andCRAF andBRAF
intracellular kinases [25, 37]. Other multikinase inhibitors include
axitinib, motesanib, pazopanib, vandetanib, and cediranib targeting
various angiogenesis signaling pathway receptors (Table 2) [37].
These multikinase inhibitors due to the property of concomitantly
inhibiting various kinases prevent angiogenesis and, thus, tumor
progression and metastasis in breast cancer.

2 Methodology

With the utility of multi-targeted inhibitors in breast cancer treat-
ment, efforts are required to search for novel molecules for breast
cancer treatment. Computational methods aid in the development
and identification of multi-target molecules. The computational
methods for development and identification of multi-target lead
molecules for breast cancer treatment are discussed in detail.

2.1 Virtual Screening

and Molecular Docking

Virtual screening is a computational method to discover new leads
against biological drug target via screening ligand libraries
[56–58]. It is a computational method in drug discovery for new
lead molecule identification, compared to experimental method of
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physical screening of large compound libraries against the disease
target, i.e., high-throughput screening [59]. Virtual screening is an
important tool in computer-aided drug designing based on molec-
ular docking. It requires structure preparation of ligand libraries
and protein target. For multi-target approach, two or more breast
cancer target proteins (e.g., HER-2 and EGFR), blocking a path-
way, should be identified. The experimental structures (X-ray,
NMR, Cryo-EM) of breast cancer drug targets can be obtained
from PDB (www.PDB.org) database. On the basis of active site of
multiple targets, ligand libraries should be prepared. The proton-
ation state of the target proteins can be determined using servers
like PROPKA [60], H++ [61], etc.

The ligand libraries can be prepared using the public chemical
compound databases like PubChem, Zinc, DrugBank, etc. Ligand
libraries can be prepared using the knowledge from the pharmaco-
phore of the receptor protein molecules. Ligand libraries with
pharmacophore of both the receptor molecules (e.g., HER-2 and
EGFR) can be utilized for virtual screening, and they would pro-
vide lead molecules for further evaluation [57]. The ligand libraries
can be screening for absorption, desorption, metabolism, excre-
tion, and toxicity (ADMET) properties. The significance of
performing ADMET profiling is that it rejects those molecules
which can be later rejected after performing whole study due to
poor ADMET parameters [62]. The best set of identified lead
molecules showing good binding affinity in both the targets (e.g.,
HER-2 and EGFR) are utilized for further assessment.

After virtual screening, the set of molecules showing good
binding affinity for both the targets are further evaluated by
performing molecular docking. In molecular docking as compared
with virtual screening, priority is given for accuracy as compared to
time cost. For molecular docking, freely available docking software
AutoDock could be utilized which also provides the option for the
flexible docking [63, 64]. AutoDock uses Lamarckian genetic algo-
rithm to perform molecular docking [64]. Other docking software
includes DOCK [65], GLIDE [66], Surflex [67], and AutoDock
Vina [68]. The lead molecules showing good docking scores in
both the receptor molecules (e.g., HER-2 and EGFR) are further
evaluated using molecular dynamics simulation studies. A complete
protocol for identification of new lead molecules using computa-
tional methods is called as relaxed complex scheme which could be
used for identification of common lead molecules among multiple
targets [69, 70].

2.2 Molecular

Dynamics Simulation

After molecular docking, protein-ligand docked complexes are fur-
ther evaluated using molecular dynamics simulation [71, 72]. As
compared to molecular docking, in molecular dynamics whole
system is in fully flexible explicit solvent [72]. In molecular dynam-
ics simulation, the ligand-bound docked complex of the protein
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molecule is simulated using classical force fields. The simulation
time period is normally in the range of 10–50 ns with time step of
1–2 fs. Various packages to performmolecular dynamics simulation
include GROMACS [73], AMBER [74], CHARMM [75], NAMD
[76], etc. Various force fields used to perform molecular dynamics
simulation are GROMOS [77], AMBER [78], OPLS [79], and
CHARMM [80]. In brief, the steps involved in molecular dynamics
include preparing the system with periodic boundary condition;
solvating with water molecules, viz., SPCE [81] and TIP3P [81];
and neutralizing the system with counterions Na+ or Cl�. After
system preparation, energy minimization is performed using stee-
pest descent and/or conjugate gradient algorithms. Energy mini-
mization is followed by equilibration of the system in NPT
ensembles. Equilibration should be performed in a stepwise man-
ner initially relaxing only the solvent molecules that the proton of
the protein molecule followed by relaxing the amino acid side
chain, and in last the entire system should be relaxed. Then the
final production run should be performed in NVT ensemble to
generate the molecular dynamics trajectory. To maintain the tem-
perature of the system, thermostat like velocity-rescale thermostat
[82] is utilized. Likewise, to maintain the pressure, barostat like
Parrinello-Rahman barostat [83] is utilized.

From the obtained molecular dynamics trajectory, the binding
of ligand molecules is analyzed monitoring various parameters like
root-mean-square deviation (RMSD), root-mean-square fluctua-
tions (RMSF), solvent-accessible surface area (SASA), and radius
of gyration (Rg) [84, 85]. The evaluation of hydrogen bonds
formed between the ligand molecule and protein molecule is also
another parameter monitored for protein-ligand binding analysis.
Similarly, secondary structure analysis of protein is also performed
to monitor any changes induced by ligand binding in the protein. If
the ligand binding creates huge fluctuations in the protein RMSD,
or if the molecular dynamics trajectory ligand is moving far apart
from the active site, then only those ligand molecules having unsta-
ble interactions with the protein molecules are considered. Other
ligand molecules are discarded and are not further included in
binding free energy estimation.

2.3 Binding Free

Energy Estimation

To monitor the binding of ligand molecules with receptor, the
affinity of a ligand with protein molecules can be evaluated by two
approaches. In the first approach, from the MD trajectory frames,
ligand binding affinity is evaluated using the implicit solvent
method. For the implicit solvent binding free estimation, molecular
mechanics Poisson-Boltzmann/generalized Born surface area
(MMPB/GBSA) methods are utilized [86]. The benefit with
MMPBSA and/or MMGBSA method is that they are not compu-
tationally expensive and use the MD simulation frame. However,
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the main drawback with these methods is that they do not include
entropic changes and are thus less reliable.

In the second approach from the equilibrated structure, bind-
ing affinity is evaluated using more rigorous explicit solvent meth-
ods. The rigorous explicit solvent methods include linear
interaction energy (LIE) [87], thermodynamic integration (TI)
[88], and free energy perturbation (FEP) [89]. LIE, TI, and FEP
are computationally expensive methods but provide reliable esti-
mates of binding free energy. Free energy workflow facilitates easy
calculation of binding free energy with AMBER simulation package
[90]. Using binding free energy methods, lead molecules showing
a significant activity in the multiple targets can be evaluated further.

2.4 Advanced

Molecular Dynamics

Simulation Methods

For further evaluation of identified lead molecules, they can be
sampled using advanced MD simulation method like accelerated
molecular dynamics (AMD) [91], umbrella sampling (US) [92],
and replica exchange molecular dynamics (REMD) [93, 94].
PLUMED is a very useful plugin which can be patched with any
of molecular dynamics simulation package like GROMACS and
AMBER to perform these advanced methods [95]. Although cur-
rently these methods are very rigorous and computationally expen-
sive, but in the future with increasing computational power and
with better protocols, time of residence will prove an important
tool in lead identification.

After evaluating the lead molecules on the binding free energy
criterion, molecules showing good binding free energies are now
selected. These selected lead molecules can be evaluated using
experimental methods. Molecules showing good binding energy
in both the receptor molecules are further evaluated using in vitro
and in vivo testing.

In summary, an example of dual inhibitor identification using
computational methods for HER-2 and EGFR receptor is dis-
cussed here. Initially, we obtain the X-ray structure of the HER-2
and EGFR receptor from the PDB database. Then, using PROPKA
server the protonation state of the amino acid residues is decided.
The bound heteroatoms in the protein, i.e., water and ligand
molecules, are removed. Now our protein structure for the
HER-2 and EGFR receptors is ready. To prepare the ligand library,
chemical compounds will be retrieved from database like ZINC.
The downloaded compound library will be further screened using
ADMET criterion. This filtered library of chemical compounds will
be screened against both HER-2 and EGFR receptors via virtual
screening. On the basis of binding affinity molecules showing
appropriate binding with both the HER-2 and EGFR receptors
will be separated. Now these lead molecules will be evaluated with
rigorous docking at both the receptors. The lead molecules
showing significant binding affinity to HER-2 and EGFR receptors
will be selected. These lead dual inhibitors will be further tested for
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their binding affinity to both HER-2 and EGFR receptors via
molecular dynamics simulation. For the filtered molecules showing
stability in molecular dynamics simulations, binding free energies
will be estimated. The dual inhibitor lead molecules having good
binding free energies with both HER-2 and EGFR receptors will be
our lead dual inhibitors. These dual inhibitor lead molecules can be
further evaluated for in vitro and in vivo testing.

3 Notes

The protocols discussed in the above book chapter are the compu-
tational practices for screening of multi-target drug molecules for
breast cancer receptors. Further validation of the screened mole-
cules is essential in the in vitro and in vivo conditions. Moreover,
the screened molecules should be tested for the enzyme kinetics
against the targeting receptors. The toxicity and other ADMET
profiles of the screened molecule should also be evaluated.
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Abstract

Despite the availability of several drugs, Mycobacterium tuberculosis is still a big concern for public health.
Such situation exists because of continuous emergence of TB-resistant strains. Possible reasons of develop-
ing resistance include long therapy and combination therapy. Therefore new potential leads are needed to
be identified, and at the same time, the number of drugs in the combination therapy should also be reduced
that will make administration of drug doses easier. In the present scenario, developing drug having the
ability to interact with multiple targets, simultaneously, is a promising approach to treat the complicated
diseases. These multi-target drug therapies have advantage of improved safety profile and high drug efficacy
with easier administration over the single-target drug therapies. Many of in silico methods have been
applied to reach different polypharmacologically directed drug designing, mainly for multi-target drug
designing. In this chapter, we have discussed about the available strategies for computational multi-target
drug designing with their advantages and disadvantages. We have also discussed an easy, fast, and equally
accurate method for multi-target drug designing against the Mycobacterium tuberculosis.

Keywords De novo methods, Docking, FEL,MDR-TB,MM-PBSA, Molecular dynamics simulation,
Multi-target drug designing, Mycobacterium tuberculosis, PCA, Pharmacophore

Abbreviations

BCG Bacillus Calmette-Guerin
CS Cycloserine
DDI Drug-drug interactions
DOTS Directly observed short-course chemotherapy
EMB Ethambutol
ETA Ethionamide
FEL Free energy landscape
IFN Interferon
IGRA Interferon-gamma release assay
INH Isoniazid
MDR Multidrug resistant
Mtb Mycobacterium tuberculosis
ODE Ordinary differential equation
PAS Para-amino salicylate
PCA Principal component analysis
PZA Pyrazinamide
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Rg Radius of gyration
RIF Rifampin
RMSD Root mean square deviation
RMSF Root mean square fluctuation
SASA Solvent-accessible surface area
SMD Steered molecular dynamics
TB Tuberculosis
TDR Totally drug resistant
TST Tuberculin skin test
XDR Extensively drug resistant

1 Introduction

Tuberculosis (TB), which is one of the most infectious diseases, still
persists as a major global health problem [1]. TB is an airborne
disease caused by Mycobacterium tuberculosis (Mtb). Mtb, a species
belonging to the family Mycobacteriaceae, was first discovered by
Robert Koch in the year 1882 [2]. Mtb has a special composition of
its cell wall which makes it unique to the other bacteria [3, 4]. Cell
wall of Mtb is made up of high lipid constituents (about >60%),
which include mycolic acid, cord factor, and wax-D. Out of them,
mycolic acid is a hydrophobic alpha-branched lipid, whereas cord
factor influences the arrangement of Mtb cells into long slender
formation [5–7]. Such unique composition of Mtb cell wall makes
it impervious against the gram (�) or gram (+) staining, that is
why acid-fast techniques are used to identify the Mtb under the
microscopes [8].

Mtb, an infectious disease, transmits through droplet infection
by sneezing or cough. After reaching into the host, Mtb resides into
the alveoli. Initially, Mtb appears to gain entry into the macro-
phages of lung cells through phagocytosis. But inside the macro-
phages, they do not get affected because of having unique cell wall.
Inside the macrophages they multiply, survive, and sustain for a
long time period. The success of Mycobacterium in producing
disease relies entirely on its ability to utilize macrophages for its
replication and, more importantly, the maintenance of viability of
host macrophages that sustain Mycobacterium. Mycobacterium has
several mechanisms to maintain the hostile environment of macro-
phages, its primary host cell [9–12]. The mechanism includes:

l Inhibition of fusion of phagosome with lysosomes

l Inhibition of acidification of phagosome by proton ATPase
pump

l Protection from reactive oxidative radicals
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l Recruitment and retention of tryptophan/aspartate-containing
coat protein on phagosomes to prevent their delivery to the
lysosomes

l Expression of virulence proteins of PE-PGRS family

TB may be classified into two categories: first is a latent infec-
tion, and another is an active disease. Latent TB refers to the
condition when the patients have TB infection but the bacteria
remains in inactive form and the patient does not exhibit the disease
conditions. It has no symptoms and their chest X-ray may also be
normal. The only manifestation of this encounter may be diagnosed
through the tuberculin skin test (TST) or interferon-gamma release
assay (IGRA). Latent TB is not contagious, but there is an ongoing
risk that the latent infection may escalate the chances of getting
active TB disease [13, 14]. Active TB is an illness in which the TB
bacteria seem to rapidly multiply and invade toward the different
organs of the body. The typical symptoms of active TB variably
include cough, phlegm, chest pain, weakness, weight loss, fever,
chills, and sweating at night [14, 15]. The most common form of
active TB is pulmonary TB (lung disease), but depending upon the
site of infection, other types of TB are loosely classified as “extra-
pulmonary TB.” Symptoms of extrapulmonary TB are listed in
Table 1. Since most of the TB cases follow a general pattern of
infection course, the whole pathophysiology has been classified in
five stages, named as stage 1, stage 2, stage 3, stage 4, and stage
5 [16–19]. All stages are discussed below.

Stage 1: Droplet nuclei are inhaled through talking, coughing,
and sneezing. Once nuclei are inhaled, the bacteria are taken up by

Table 1
Type of extrapulmonary TB with their symptoms

Type of
extrapulmonary TB Symptoms

Skeletal TB/Pott’s
disease

Spinal pain, back stiffness, paralysis is also possible

TB meningitis Headaches, mood swings, coma

TB arthritis Pain in single joint (most commonly in hips and knees)

Genitourinary TB Dysuria, flank pain, masses or lumps (granulomas)

Gastrointestinal TB Difficulty in swallowing, nonhealing ulcers, abdominal pains, malabsorption,
diarrhea (may be bloody)

Miliary TB Many small nodules widespread in organs that resemble millet seeds

Pleural TB Empyema and pleural effusions

Caseous TB Appearance of necrotic tissues with a soft, dry, and cheesy appearance
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alveolar macrophages. The macrophages will not be activated,
therefore unable to destroy the intracellular organism. The large
droplet nuclei reach the upper respiratory tract, and the small
droplet nuclei reach to the air sacs of the lung (alveoli) where
infection begins. The disease starts when droplet nuclei reach to
the alveoli.

Stage 2: It begins after 7–21 days post initial infection. TB
bacilli multiply within the inactivated macrophages until macro-
phages burst. Other macrophages diffuse from the peripheral
blood and phagocytose the TB bacterium, but because of the
inactivated form, macrophages are not able to destroy TB.

Stage 3: Lymphocytes, specifically T cells, recognize TB anti-
gen. This results in T-cell activation and the release of cytokines,
including interferon (IFN). The release of IFN causes the activation
of macrophages, which can release lytic enzymes and reactive inter-
mediates that facilitate immune pathology. The Tubercle thus
formed, which have a semi-solid or cheesy mass like structure. TB
cannot multiply within tubercles due to low pH and anoxic envi-
ronment, but TB can persist within these tubercles for extended
periods.

Stage 4: Although many activated macrophages surround the
tubercles, many other macrophages are inactivated or poorly acti-
vated. TB uses these macrophages to replicate causing the tubercle
to grow. The growing tubercle may invade a bronchus, causing an
infection which may spread to other parts of the lungs. Tubercle
may also invade the artery or other blood supply. Spreading of TB
may cause miliary tuberculosis, which can cause secondary lesions.
Secondary lesions occur in the bones, joints, lymph nodes, genito-
urinary system, and peritoneum.

Stage 5: The caseous centers of the tubercles liquefy. This liquid
is very crucial for the growth of TB, and therefore it multiplies
rapidly (extracellularly). This later becomes a large antigen load,
causing the walls of nearby bronchi to become necrotic and rup-
ture. This results in cavity formation and allows TB to spread
rapidly into other airways and to other parts of the lung.

In the year 2015, TB was found in the list of top ten infectious
diseases, caused deaths throughout the world, and ranked above
HIV/AIDS [1]. According toWHO report (2016), 1.4 million TB
deaths were reported in the year 2015, and in addition 0.4 million
also died because of TB along with HIV-2. Another estimation
showed a total of 10.4 million new TB cases in the year 2015.
Among them 1.2 million were HIV-positive. Out of 10.4 million,
5.9 million were men, 3.5 million were women, and 1.0 million
were children [1].

Several drugs have been developed to combat the TB infection.
These drugs can be classified into two categories: first-line drugs
[isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and eth-
ambutol (EMB)] and second-line drugs (para-amino salicylate
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(PAS), kanamycin, cycloserine (CS), ethionamide (ETA), amikacin,
capreomycin, thiacetazone, and fluoroquinolones) [20]. DOTS
(directly observed short-course chemotherapy), current TB ther-
apy, is a predefined therapy program which includes combinations
of some of these drugs to treat the disease. It consists of an initial
phase of treatment with four drugs, INH, RIF, PZA, and EMB, for
2 months daily, followed by treatment with INH and RIF for
another 4 months, three times a week. But, this treatment has not
been improved for over 30 years [21]. DOTS are singularly ineffi-
cient by the standards of today’s pharmaceutical industry in terms
of drug activity and toxicity, and its efficacy is threatened by increas-
ingly widespread drug resistance [22, 23]. A brief of the available
TB drugs is tabulated in Table 2.

Table 2
Illustration of anti-TB drugs and their target with encoding genes

Antibiotics Targets proteins Encoding genes

First line

Isoniazid Catalase/peroxidase
Enoyl reductase
Alky hydroperoxide reductase
NADH dehydrogenase

katG
inhA
ahpC
ndh

Pyrazinamide Fatty acid synthetase I
Pyrazinamidase/nicotinamidase

rpsA
pncA

Rifampin RNA polymerase B chain rpoB

Streptomycin S12 ribosomal protein
16S rRNA
7-Methylguanosine methyltransferase

rpsL
rrs
gidB

Ethambutol Arabinosyl transferase embB

Second line

Levofloxacin/moxifloxacin DNA gyrase gyrA/gyrB

Capreomycin rRNA methyltransferase tlyA

Amikacin/kanamycin 16S rRNA
Enhanced intracellular survival protein

rrs
eis

Cycloserine D-Alanine racemase alrA

p-Aminosalicylic acid Thymidylate synthase A thyA

Ethionamide Enoyl reductase
Monooxygenase
TetR family transcriptional repressor
NADH dehydrogenase

inhA
ethA
ethR
Ndh

Fluoroquinolones DNA gyrase gyrAB
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Apart from these, active immunization techniques have also
been applied to control TB. Although vaccination is not effective
nowadays, bacillus Calmette-Guerin (BCG) is the most commonly
used vaccine against tuberculosis. This is an attenuated strain of
Mycobacterium bovis (MB), and mostly, it was found effective in
children to protect them from the TB disease, while in adults it was
not found effective, especially against pulmonary TB. This again
shows a predominant necessity of developing more effective vac-
cines against the Mtb [24, 25].

Despite presence of a range of drugs against the mycobacte-
rium, continuous emergence of various drug-resistant TB strains
has made these treatments less effective and necessitated attention
on this emerging problem which if avoided may become a serious
health issue. Drug-resistant tuberculosis has been classified into
three groups [26–28].

1.1 Multidrug-

Resistant TB (MDR-TB)

MDR-TB strains are defined as those strains which have resistance
against two major first-line anti-TB drugs (isoniazid and rifampi-
cin) with or without having resistance to other first-line drugs.
MDR-TB is a serious health condition because patients with
MDR-TB respond very poorly to the standard anti-TB treatment
with first-line drugs. In addition, MDR-TB needs relatively costly
laboratory diagnosis as well as a long-term treatment of at least
2 years with drugs that are expensive, toxic, and not specifically
potent. A case of MDR-TB is about 20–40 times more expensive to
manage than a case of drug-sensitive TB.

1.2 Extensively

Drug-Resistant TB

(XDR-TB)

XDR-TB strains are MDR-TB strains having resistance against
second-line drugs (i.e., fluoroquinolones) along with at least one
of the injectable aminoglycosides (like capreomycin).

1.3 Totally Drug-

Resistant TB (TDR-TB)

TDR-TB strains are those resistant TB strains which have resistance
against all first-line and second-line drugs. TDR-TB has been
reported in India also.

Above all, association of HIV with TB has made the DOTS
therapy inefficient. Tuberculosis (TB) is the largest cause of death in
human immunodeficiency virus type 1 (HIV-1) infection, having
claimed an estimated one third to one half of the 30 million AIDS
deaths that have occurred worldwide [1, 28]. In such circum-
stances, the second-line drugs are prescribed in combination with
DOTS. However, this combination of drugs is very expensive and
has to be administered for a longer duration with significant side
effects.

One major drawback of current TB therapy is that the drugs are
administered for at least 6 months. The length of therapy makes
patient compliance difficult, and such patients become potent
source of drug-resistant strains. The second major and serious
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problem of current therapy is that most of the TB drugs available
today are ineffective against persistent bacilli, except for RIF and
PZA. RIF is active against both actively growing and slow metabo-
lizing nongrowing bacilli, whereas PZA is active against semi-
dormant nongrowing bacilli. However, there are still persistent
bacterial populations that are not killed by any of the available TB
drugs. Therefore, there is a need to design new drugs that are more
active against slowly growing or nongrowing persistent bacilli to
treat the population at risk of developing active disease through
reactivation. Secondly, it is important to achieve a shortened ther-
apy schedule to encourage patient’s compliance and to slow down
the development of drug resistance in Mycobacterium.

Multi-target drug therapy may help a lot to reduce the chances
of resistance development, and since single molecule will act on
multiple targets, so it will also be able to reduce the toxicity or side
effect of the drug. Although most of the presently available drugs
have multiple targets, but when we use the term “multi-target
drug,” it senses for the drug having the ability to target different
known targets, and all targets must have some contribution to
control that specific disease.

Recent advancement in computational modeling and molecu-
lar interaction study open the window of prelaboratory screening of
molecules. This increases the success rate of bench experiments
[29, 30]. These computational experiments are used to direct the
drug discovery against a specific disease [31]. The drug may act
against a single target, or it may subvene multiple targets against the
same disease. This multi-targeting approach increases the rate of
success of that specific drug with the high chance of successful
inhibition of at least one target and accomplishes the purpose of
multi-targeting lead identification. This approach also decreases the
probability of resistance development and lowers the toxicity effect
by decreasing effective dose [29, 32–34]. Advantages of multi-
target drugs are as follows:

l Multi-target or multifunctional lead molecules may replace the
combination therapy of drugs and help to decrease the side
effects of combination therapies.

l Toxicity-related issues, arising because of multiple drug intakes,
can beminimized with the treatment of single multi-target drug.

l From the patient’s point of view, in multi-target drug therapy,
patients only have to remember to take a single drug instead of
remembering to take multiple drugs.

l In order to minimize the drug resistance, multi-target drugs can
be directed against the key disease targets.

l In the multi-target drug therapy, chemical or drug metabolism-
related issues, i.e., drug-drug interactions (DDIs), may also be
avoided.
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1.4 Multi-Targeting

Drug Designing

Against

Mycobacterium

tuberculosis

Several methods have been proposed in multi-target drug design-
ing for diseases like cancer, Alzheimer, etc. [83–88]. However, in
case ofMycobacterium tuberculosis, not much has been done instead
of having very clear targets on those needed to be targeted simul-
taneously. Since combination therapy is recommended in TB,
multi-target drug designing approach may be a very promising
approach for targeting all the possible targets with a single mole-
cule. Recently, Kai Li et al. have presented multi-target drug
designing approach against Mycobacterium tuberculosis and pro-
posed a series of new leads that have potential to restrict the
pathogenicity of Mycobacterium tuberculosis as well as some other
bacteria, fungi, and malaria parasite [89]. The proposed com-
pounds were basically the analogues of a new anti-TB drug, which
was reported for the inhibition of MmpL3. MmpL3 is an inner
membrane transporter protein which exports mycolic acids in the
form trehalose monomycolate (TMM) into the cell envelope. Dif-
ferent analogues were prepared by varying the nature of the ethy-
lenediamine linker to provide cationic, protonatable, or neutral
variants. In addition adamantyl head group was also altered. The
proposed compounds were also targeting the enzymes involved in
menaquinone biosynthesis and electron transport, inhibiting respi-
ration and ATP biosynthesis. Study has shown potent inhibition of
TB cell growth, as well as very low rates of spontaneous drug
resistance.

In another study Alejandro Speck-Planche et al. have intro-
duced the first chemo-bioinformatic approach for the in silico
designing and virtual screening of anti-TB compounds against dif-
ferent MTB targets by developing a multi-target (mt) QSAR dis-
criminant model [90]. The model was developed on the basis of
datasets of 124 compounds, having inhibitory activity against six
potentMTB targets. These protein targets were enoyl-[acyl-carrier-
protein] reductase (InhA), DNA gyrase subunit A (GyrA), DNA
gyrase subunit B (GyrB), pantothenate synthetase (PS), fibronectin-
binding protein C (Ag85C), and peptide deformylase (PDF). Clas-
sical chemoinformatics- or bioinformatics-based approaches con-
sider only small series of structurally related compounds and
generally target only one protein to derive new leads, while in this
study, Alejandro Speck-Planche et al. [90] have shown an effort to
overcome this problem. During the training as well as prediction
phase, more than 90% of active and inactive compounds were classi-
fied correctly through this model. Proposed mt-QSAR model has
extracted significant fragments of small molecules and their contri-
butions for anti-TB activity against the selected target proteins.
Several fragments were identified. Further new molecular entities
were also designed as possible anti-TB agents on the basis of
extracted fragments.
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2 Methodology

Application of computational biology has shown very promising
results in the field of multi-target drug designing and also gathered
a huge attention of researchers in this field. Several methods have
been proposed to discover ligands with the ability of desired multi-
target activities. To reach the goal, known ligands, having multiple
pharmacological activities, are always a primary choice to renovate
them by removing the unwanted activity and retaining only desired
activity profile. In case of unavailability of known multi-target leads
of the desired set of pharmacological activity, a new molecule may
be designed using the target-centric methods. This includes classi-
cal computational drug design methods like searching of 3D simi-
larity, pharmacophore studies, docking, and molecular dynamics
simulation studies, in series or parallel [35, 36]. In this chapter,
we have discussed some recent multi-target drug designing meth-
ods including docking-based, pharmacophore-based, and de novo
methods.

2.1 Selection of

Target Combinations

for Multi-Target Drug

Design

In amulti-target drug designing approach, the first question arises that
how to select combination of targets, against which drug needs to be
developed. Identification of a set of feasible targets against a specific
disease is one of the key task [37, 38]. To resolve this issue, network
analysis of disease is one of the promising methods. Topology and
dynamics of a disease network provide a valuable insight to develop
potential therapeutic interventions and manipulations [39–43]. Previ-
ous studies indicated that developing a set of novel synergistic drug,
based on network topology, is a promising approach in multi-target
drug designing. In a network with realistic dynamics, a phenotypic
response could be related to the state of the network. A networkmodel
could be used to identify potential intervention through multiple
drug-target interactions, which drive the network from a disease state
to a healthy state [44].

A Monte Carlo simulation annealing-based algorithm, also
called as multiple target optimal intervention, has also been pro-
posed to identify combinations of drug targets, which work on
ordinary differential equation (ODE)-based network models. This
method has been applied on human arachidonic acid metabolic
network and predicted combinations of potential drug target with
high efficacy and lesser side effects. The resulting targets have also
been validated experimentally [45–47].

After detection or recognition of combinations of target pro-
teins, their interaction sites with small molecules should also be
known [48]. This can be achieved through different detection
methods like Q-SiteFinder, CAVITY, LIGSITE, SiteMap, etc.
[49–52]. These programs identify the binding sites of target pro-
teins on the basis of their structures. In this way this is highly possible

Computational Methods for Multi-Target Drug Designing Against. . . 467



that proteins with similar binding sites bind with the same ligand,
but in case of distinctly related or unrelated biological targets,
comparison of binding sites through computational methods may
provide significant indications. One of the binding site comparison
programs is Apoc [53]. It gives promising results for binding site
selection in multi-target drug designing. In the Apoc program,
pocket similarity score (PS-score) is calculated on the basis of com-
bination of side chain orientation, backbone geometry, and chemical
similarity of binding site residue. This score can be used to judge the
similarity or dissimilarities between the sites of distantly related or
unrelated proteins. After target selection and their structure-based
binding site prediction, the next step in the multi-target drug
designing is lead identification against different targets. Existing
methods for multi-target drug designing are discussed below.

2.2 Computational

Lead Identification

Methods

2.2.1 Pharmacophore-

and Docking-Based Multi-

Target Drug Design

Methods

Docking- and pharmacophore-based screening of lead molecules
are two highly popular computational methods in the field of single-
target-based drug discovery.Many related tools have been extended
for finding ligands with the required biological profile. A pharma-
cophore model can be built on the basis of three-dimensional struc-
ture of target binding site or according to the structure of known
ligand of that specific target, and then different conformations of
lead molecules are mapped against that pharmacophore model with
some fitness score. In the docking-based approaches, each ligand
molecule needs to be placed into the binding sites and evaluated
with different scoring functions. These approaches can be used
sequentially or parallel, to screen the molecules having the ability
to target multiple proteins. In this process, top-ranked screened
molecules, showing proper interaction with two or more than two
targets, are subjected to the next step. One way is to check each
model and then select top-ranked molecules from each screening.
However, to approach these strategies and identify common hits,
multiple computational screening steps are required which raise
computational expense and have to face different challenges like
fitness scores for different targets and comparison of binding scores.
Alternatively to lower the computational power, a pharmacophore-
guided multi-target drug design strategy was also proposed
[54, 55]. Initially the pharmacophore models were developed on
the basis of three-dimensional structure of target sites or available
active ligands (Fig. 1) [56]. Further a common pharmacophore is
built by aligning all possible pharmacophore combinations.
Top-ranked compounds are then passed throughmolecular docking
experiments to identify the well-bound molecules in the initial
screening. The common pharmacophore may also be used for
post-filtering after multiple docking to select compounds, binding
to all targets. In addition, a shape-based comparison is also proposed
in this method as an alternative way for docking [57]. Similar to
single-target drug designing, implementation of multi-target drug
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designing methods should also address the same concerns. The first
ones are false-positive hits, which should be avoided. False-positive
molecules show very minor variation in comparison to active mole-
cule; that is why they usually pass the pharmacophore screening and
further show incompatibility with the target protein. In pharmaco-
phore screening, application of volume- or shape-based filters can
address these issues to some extent. In the docking experiment,
false-positive results come because of scoring function and protein
flexibility [58–60]. The overall docking scores and pharmacophore
fitness scores are used to rank the ligands against a single target.
Therefore, to avoid these errors, some statistical significance con-
sideration should be applied to compare the scores against different
targets [61–63]. In the docking-based methods, because of limited
computational resources, target flexibility is not supposed to be fully
taken into consideration; therefore the fit criteria of pharmacophore
models may get changed to provide some sort of flexibility in the
model [64]. These limitations can be further compensated by
using molecular dynamics (MD) simulation-based validation, like
MM-PB/GBSA free energy calculation, [65] or by examining dif-
ferent conformational representatives from the FEL analysis on the
trajectories fromMDsimulations [66, 67]. The overall challenges in

Fig. 1 Common pharmacophore-based multi-target drug design

Computational Methods for Multi-Target Drug Designing Against. . . 469



developing a good pharmacophore model for multi-target drug
discovery are quite similar to the single-target ligand designing
which includes proper selection of ligands, handling of ligand con-
formational flexibility, selection of key chemical features from ligand
functional groups or target residues, and proper pharmacophore
alignments [64]. Although low pocket similarities do not allow an
easy identification of sufficient number of multi-target candidates, a
well-designed library, covering a broad range of chemical space with
a sufficient number of candidates, can resolve this issue.

2.2.2 De Novo Design-

Based Methods for Multi-

Target Drug Designs

Apart from the pharmacophore-based or molecular docking-based
approaches, de novo drug designing method is a way to develop
new molecules to ensure that the resulting molecules meet multiple
predefined objectives. This approach designs molecules on demand
and could address the goal of multi-target drug designing, i.e., to
design molecules of specific activity profiles. As compared to virtual
screening-basedmethods, in de novo drug designing, the candidate
pool is usually diverse and broad, which is a better way for the
rational of designing and optimizing highly integrated multi-target
drugs, especially for proteins with dissimilar binding pockets. Dif-
ferent de novo drug design programs are available which include
DOGS [68], PhDD [69], SMoG [70, 71], SYNOPSIS [72], FLUX
[73, 74], LUDI [75], LigBuilder [76, 77], etc. De novo drug
design can be classified as structure-based or ligand-based. De
novo designed compounds usually are not usually commercially
available, and their synthesis is required afterward. In structure-
based methods, embedded chemical reaction database and a retro-
synthesis analyzer (first introduced by LigBuilder 2) methods are
used to analyze the synthetic accessibility of designed compounds
[77], while in ligand-based methods, the compounds get synthe-
sized by transformations of most common chemical reaction, e.g.,
SYNOPSIS and DOGS [68, 72]. A typical scheme of de novo
multi-target drug designing includes several steps which are
shown in Fig. 2. In this way several of ligand-based [78] and
structure-based de novo multi-target drug designing methods
[79–82] have shown promising results, which are discussed below:

Ligand-Based De Novo

Methods for Multi-Target

Drug Design

In the ligand-based de novo multi-target drug design methods, the
known active ligands of each of the desired targets can be taken as a
reference or a starting structure to generate a virtual ligand library.
These can also be used in the training dataset for prediction modeling
of ligand target interactions. The initial reference structure of ligand
which satisfies at least part of the objective functions is used as the
starting point, and further different candidate structures are generated
using a predefined transformation/growth scheme (Fig. 2). All the
compounds are then examined for their fitness against several optimal
objective functions. These objectives usually include the desired inter-
action pattern with the specific target which may get calculated using
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similarity-comparison or machine learning methods. The top-ranking
compounds are then moved to another round of transformation until
the desired criteria are achieved. Top representative structures are then
selected for the synthesis and experimental validation such as synthetic

Fig. 2 De novo multi-target drug design scheme
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accessibility, novelty, and ADMET properties. Various target activity
profiles and blood-brain barrier penetration ability were also utilized to
validate the fitness of the generated ligands. Several successful examples
of ligand-based de novomethods for multi-target drug designing have
been reported [79–82].

Structure-Based De Novo

Methods for Multi-Target

Drug Design

Another de novo method, known as structure-based multi-target
de novo approach, is an intuitive and rational method because it
directly peruses the interaction of a ligand with different targets. In
this method the initial seeds are first placed into the desired binding
pocket with the physical energy-based assistance method like dock-
ing experiments. Candidate pools are incubated on the basis of
genetic algorithm-based growth algorithm. The explicit interac-
tions with proposed targets can be used as fitness criteria. In this
way all the generated compounds are tested against fitness criteria.
The top-ranked candidates are then passed to the next round of
screening. However, in the structure-based de novo designing,
conformations of multiple targets can be used to address the target
flexibility-related issues. LigBuilder 3, an updated version of Lig-
Builder 2, is a successful example of structure-based, multi-target,
de novo designing [77]. LigBuilder 3 can judge the accessibility of
synthetically designed compound. The earlier studies have demon-
strated that in case of high similarity with the binding site, common
pharmacophore approaches should be used; otherwise docking-
based or de novo design may be recommended.

Moreover, these computational multi-target drug designing
methods may also include MD simulation, binding free energy
calculation through MM-PB/GBSA method, FEL analysis, and
steeredmolecular dynamics (SMD) study to validate and strengthen
the findings. In case of Mycobacterium tuberculosis, continuous
emergence of resistant strains is still demanding to replace the
available drugs with more effective and potential lead molecules
which may be able to interact with two or more than two drug
targets, especially with first-line drugs. As it was already discussed
that in case of tuberculosis not much has been done by utilizing
multi-target drug designing approaches, therefore, a method is
discussed below which includes a generalized protocol of MD sim-
ulation, MM-PBSA calculation, FEL analysis, and SMD for the
computational validation of the results.

2.2.3 An Illustration for

Designing Multi-Targeting

Drug Against Mtb

Target Selection

In multi-target drug designing, target selection is the first and very
important step toward drug designing which is usually done with
the network or pathway analysis of diseases. This approach may also
be used to recognize some new and potential targets against the
Mtb or targets of known TB drugs; potential to restrict the TB
virulence will also be a good option. Several first-line drugs like
isoniazid, pyrazinamide, rifampin, streptomycin, and ethambutol
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are available against tuberculosis (Table 2). DOTS, the current TB
therapy, consists of an initial phase of treatment with four drugs,
isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and etham-
butol (EMB), for a time period, followed by the treatment with
INH and RIF for another fixed time period. So the targets of these
four important drugs may be taken into consideration as the key
targets to develop multi-target drugs. INH, RIF, PZA, and EMB
mainly target enoyl-acyl reductase (InhA), RNA polymerase B
subunit (RpoB), fatty acid synthetase I (RpsA), and arabinosyl
transferase (EmbB), respectively. The three-dimensional crystal
structures of these target proteins are available in PDB with the
PDBID of 1BVR [91], 5UHB [92], and 4NNI [93] for InhA,
RpoB, and RpsA, respectively. In this case, binding pocket of all
the three targets has already been well studied, and there is no need
of predicting active sites of these target proteins [91–93].

Retrieval of Small

Molecules

Around 1.4 million anti-TB compounds are available in the Pub-
Chem [94], which can be retrieved. At the same time, reference
compounds for each target should also be retrieved. Reference
compounds are used to compare the in silico findings with the
experimentally proven data. In this case INH, RIF, PZA, and
EMB will be the reference compounds for InhA, RpoB, RpsA,
and EmbB, respectively. All the retrieved compounds along with
reference compounds should pass through the Lipinski filters.
Lipinski rule of five helps to distinguish drug-like and non-drug-
like molecules. It predicts high probability of success or failure due
to drug likeness for molecules complying with two or more of the
Lipinski parameters [95]. To pass the Lipinski filter, molecules
should pass the criteria of having:

l Molecular mass should be less than 500 Da.

l Optimum lipophilicity (expressed as LogP should be less than
5).

l Less than five hydrogen bond donors.

l Less than ten hydrogen bond acceptors.

l Molecular refractivity should be within 40–130.

These filters help in early preclinical development and could
help to avoid costly late-stage preclinical or clinical failures [96].

Molecular Docking After retrieval and preparation of target proteins and screening of
small molecule library with the Lipinski filter, the next step is dock-
ing of each target molecule with each drug-like small molecule.
PyRx virtual screening tool [97], connected with Autodock Vina
[98], is a widely used tool for fast library screening through molec-
ular docking. In this way, to prepare the PDBQT file of both
receptor protein and ligand, Autodock tool [99] may also be used
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with merging of nonpolar hydrogens and addition of Gasteiger
charges. Charge deficits should spread all over the atoms of related
residues. These PDBQT files are further utilized in Autodock Vina
for the molecular docking. In the docking experiment, some para-
meters need to be set according to the systems. For example, when
the binding pocket of the target is well-known, the grid box should
focus that specific pocket with settling the grid dimensions accord-
ingly; otherwise grid box should cover entire target protein. Bind-
ing sites of all the target proteins (i.e., InhA, RpoB, RpsA, and
EmbB) are well studied. For a reliable docking result in a global
search, exhaustiveness should be near to 600. In Autodock Vina,
binding energy is used as scoring function. After virtual screening,
this need to be manually observed that how many common leads
exist in the drug library showing good binding against all the target
protein. This is done on the basis of binding energy of each small
molecule in comparison to the docking score of respective reference
compound against each target. Common molecules, found to have
good binding energy against all the targets, should again be docked
individually with each target through Autodock tool. This will
validate the result as well as achieve better binding conformation.
Docking parameters may be set as follows: number of GA runs
200, population size 200, maximum number of evaluations
25,000,000, maximum number of generations 2,700,000, maxi-
mum number of top individuals that automatically survive 1, rate of
gene mutations 0.02, rate of crossover 0.8, GA crossover mode
2 points, mean of Cauchy distribution for gene mutation 0.0,
variance of Cauchy distribution for gene mutation 1.0, and number
of generations for picking worst individuals 10. Binding poses may
be generated through Lamarckian genetic algorithm (LGA) or
simulation annealing or through local search parameters [100]. Fur-
ther, docked conformations may be clustered on the basis of root
mean square deviation (RMSD) of ligand. The best conformations
from each docked complexes should be obtained on the basis of
binding energies of clusters. The selected conformations may be
further analyzed throughMD simulation to evaluate the interaction
of each lead molecule with their respective target in comparison to
interaction of their reference molecules.

Molecular Dynamics

Simulation

Several tools like GROMACS [101], AMBER [102], and NAMD
[103] are available for MD simulation study. Out of these,
GMOACS is an open-source and highly accepted platform to per-
formMD simulation studies. In GROMACS, force field parameters
of small molecules are required to be generated outside the GRO-
MACS platform, e.g., prodrug server or other pipelines which
utilize Antechamber [104] and Acpype [105]. GROMACS pro-
vides several options of force field to generate the topology of
macromolecules. It includes AMBER, CHARM, GROMOS, and
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OPLS force fields with their different variants. Protein-ligand com-
plexes or apoproteins must be placed in the center of the box having
a distance of 1.0 nm between the protein and edge of the simula-
tion box. In GROMACS, the simulation box may be of triclinic,
cubic, dodecahedron, or octahedron nature. To solvate the system,
GROMACS provides the option of different types of solvent mod-
els which include SPC, SPC/E, or TIP3P, TIP4P, and TIP5P.
According to the selected force field, the solvent model is also
recommended, e.g., GROMOS force field and SPC water model,
and with AMBER force field, TIP3P water model is recommended.
After solvation, the desired numbers of positive or negative ions are
to be added to neutralize the charges of the system. Na+ is used as
positive ion and Cl� is used as negative ion. After the system
assembly, the system must pass through an energy minimization
step by using steepest descent or conjugate gradient method [106],
and then the system is equilibrated. Equilibration is often con-
ducted in two phases. The first phase is conducted under an NVT
ensemble (constant number of particles, volume, and temperature).
This ensemble is also referred to as “isothermal-isochoric” or
“canonical.” The timeframe for such a procedure is dependent
upon the contents of the system, but in NVT, the temperature of
the system should reach a plateau at the desired value. If the
temperature has not yet stabilized, additional time will be required,
typically, e.g., 50–100 ps should suffice. NVT equilibration stabi-
lizes the temperature of the system. The next is to stabilize the
pressure (and thus also the density) of the system. Equilibration of
pressure is conducted under an NPT ensemble, wherein the num-
ber of particles, pressure, and temperature are all constant. The
ensemble is also called the isothermal-isobaric ensemble, and most
closely resembles experimental conditions. Finally, the production
MD is performed for a time period depending upon the availability
of the computational power. A stepwise protocol of GROMACS
tutorial has been available by Bevan Lab (http://www.bevanlab.
biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/index.
html).

Trajectory Analysis The generated trajectories may be analyzed further through differ-
ent GROMACS analysis tools like g_rms for root mean square
deviation (RMSD), g_rmsf for root mean square fluctuation
(RMSF), g_gyrate for radius of gyration (Rg), g_sas for solvent-
accessible surface area (SASA), g_hbond for hydrogen bonds, etc.
H-bond occupancy can also be calculated by a python script. The
resulting plots can be analyzed through Xmgrace [107], while the
visual analysis and figure preparation can be done with VMD [108],
CHIMERA [109], and Pymol [110, 111].
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Binding Energy Calculation Binding free energy calculation through the MM-PB/GBSA
method may be done on different platforms, depending upon the
trajectory format. In AMBER and NAMD, MM-PB/GBSA can be
calculated on the same platform, while against the GROMACSMD
trajectory, the g_mmpbsa tool is used for the calculation of binding
free energy between protein-ligand complexes [112, 113]. The
g_mmpbsa uses the molecular mechanics Poisson-Boltzmann sur-
face area (MM-PBSA) approach for the binding free energy estima-
tion. It calculates the molecular mechanics potential energy
(electrostatic and van der Waals interactions) and solvation free
energy (polar and nonpolar solvation energies) but do not calculate
the entropy function of the system. MM-PBSA calculations should
be done on the last stable trajectories (by excluding initial unstable
trajectories).

PCA and FEL PCA of any system can be done using GROMACS tools. PCA
defines all the essential motions, governing conformational transi-
tions throughout the simulation period [114, 115]. Collective
motion of most dominant, initial eigenvectors determines the
sub-conformational structural transitions of protein [115]. FELs
[116] can also be generated on the basis of estimation of joint
probability distribution of top two highly contributing eigenvectors.

Steered Molecular

Dynamics (SMD)

Parallel to MM-PBSA, the use of SMD studies strengthens the
findings and reduces the chances of getting false-positive results.
SMD is a promising tool to analyze single biomolecules using the
external force as an additional variable [117, 118]. This can also
utilized to probe the binding affinity of ligand by pulling the ligand
from the receptor binding site [119]. Previous studies have
reported that the accuracy of the SMD method is compatible with
that of the MM-PBSA method, but its computational speed is
much higher [120–122]. Since SMD is about 133-fold faster than
MM-PBSA, it can be used to refine the docking results in virtual
screening. In SMD the ligand is attached to a dummy atom via a
spring with spring constant k, and the dummy atom is moved with a
constant velocity v along the direction allowing a smooth exit from
the binding site. Thus, during pulling the force, exerted by the
dummy atom on the ligand, is.

F ¼ k Δx � vtð Þ
where Δx is a displacement of pulled atom from the initial position
[120–122]. To prevent the receptor from drifting together with
the ligand during the pulling, Cα-atoms should be restrained with
maintaining flexibility of side chain.

Possible pathways for ligand to escape from the binding pocket
can be determined using CAVER 3.0 [123], a plug-in of Pymol.
The easiest or optimum path with the lowest rupture force should
be chosen [124]. The ligand changes direction during exit from the
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binding site. Therefore the drawback of SMD with a single pulling
direction is that it does not take into account multidirectional
movement. Recently, Yang et al. [125] and Gu et al. [126] have
proposed a SMD method with adaptive direction adjustments
where the optimum path of ligand is navigated by minimizing the
pulling force automatically during the simulation.

The self-adaptive SMD also yielded a good correlation between
the rupture forces and experimentally measured binding free ener-
gies for two sets of protein-ligand complexes [126]. As the correla-
tion level from standard SMD [122] is compatible with that of self-
adaptive SMD, SMD with single pulling direction is also a good
option which can be implemented in GROMACS. In GROMACS,
receptor-ligand complexes should be solvated in a box filled with
water. After equilibration, 500 ns of SMD simulations can be
performed in the NPT mode. These runs are long enough to get
the ligand out from the active site completely. To obtain good
statistics, five independent runs, starting from the same initial
conformation, may be carried out but with different velocity dis-
tributions. In SMD one can choose either rupture force Fmax or
non-equilibrium work Wpull as a scoring function to rank binding
affinities.

In this way the resulting lead molecules, showing good results
in each step of analysis as compared to the control one, may be
further evaluated using in vitro and in vivo testing.

3 Conclusion

TB, an infectious disease, is still sustaining as one of the major
concerns for the scientific fraternity, dealing with the medication
of TB disease. Although a range of drug regimens are available
against TB, consistently emerging TB-resistant strains are making
the available treatment inefficient. Previous studies have indicated
that long treatment course and inefficacy of available drug against
the persistent TB infections are some of the major reasons behind
the emerging resistance. So, the current TB status is demanding for
some new alternatives of drug regimens against its emerging resis-
tant strains. To handle these issues to some extent, a combination
therapy is very popular for the TB treatment, but it again raises the
toxicity level as well as makes the drug administration more com-
plex. To overcome these challenges, multi-target drug designing
approach is one of the options through which multiple targets may
be addressed simultaneously. Currently, multi-target drug design-
ing is a highly acceptable and promising approach in the field of
drug designing. It raises the success rate of any proposed com-
pound with more chances of successful inhibition of at least one
target. Multi-target drugs reduce the complexity of the treatment,
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ease the combination therapy, and reduce the toxicity by reducing
the number of drugs. In case of Alzheimer and cancer, multi-target
drug designing is quite popular, while in case of TB, not much work
has been done. Since combination therapy is highly required for the
treatment of Mtb, therefore, multi-target drug designing approach
may prove as a more fruitful approach. Studies have already shown
that replacement of the first-line anti-TB drugs with a single or less
number of drugs will be a great breakthrough in TB treatment, and
presently, this seems possible with multi-target drug designing
approach.
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Abstract

Due to increasing unresponsiveness of drugs to single targets in the form of resistance or presence of
alternate mechanisms in case of complex diseases and disorders, etc., the focus is shifting towards poly-
pharmacology. It is desirable that a drug works on multiple targets to elicit guaranteed/multiplier effect.
Here, we provide a one stop solution to the quest of finding common leads for multiple protein targets. The
computational protocol designed involves screening, docking, and scaffold-based optimization of hit
molecules from a variety of compound libraries against any two specified protein targets. The protocol is
validated with five case studies involving five pairs of proteins with varying active site similarities. The
methodology is able to recover the known common FDA approved drugs against them. A web-server
named “Multi-Target Ligand Design” is created and made freely accessible at http://www.scfbio-iitd.res.
in/multitarget/.

Keywords Multi-target drug design, Polypharmacology, Scaffold-based optimization, Screening and
docking, Structure based ligand design

1 Introduction

Drug discovery is a century old process, but the methods used to
discover therapeutically relevant compounds have evolved over the
years. Pre 1980 era, medicine discovery was based on phenotypic
response of animals to compounds. The compounds were then
tested on humans to test if it remedied a medical complication.
Post 1980s saw the evolution of the concept of “magic bullet,” an
idea first established by Paul Ehrlich [1]. This propelled the reduc-
tionist approach which saw the development of a new class of drugs
which were specifically tailored to bind to a key bio-molecular
target [2]. This method of drug discovery involves the selection,
synthesis, and testing of compounds which are highly specific and
selective to their targets. The molecules that affect one target only
might not always affect the complex biosystems in the way
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expected, even if they inhibit the immediate target because of the
alternate mechanisms the complex organisms possess. In addition
to this, many academicians, researchers, and industry experts of
drug development have hinted at the slowing rate of new drug
development and rise in the rate of failures and cost [3, 4]. The
failures have mainly manifested themselves in clinical trials where
the drug candidates fail to show efficacy or are rendered unviable
due to adverse drug reaction/toxicity [5]. Based on the above facts
and the evidences collected over the past two decades there is a
transition from single target drug design to polypharmacology
[6–14].

Polypharmacological processes include a single drug acting on
multiple targets of a unique disease pathway or even multiple
disease pathways [15]. Another approach towards polypharmacol-
ogy is to discover the unknown off targets for the existing drugs
which is also known as drug repurposing. The studies by Grant
et al. suggest that multi-target drugs can help in bridging this weak
link in the complex biosystems caused due to their alternative net-
works [16]. Certain examples of multi-targeting drugs are dicou-
marol which inhibits vitamin K epoxide reductase (VKOR) as well
NAD(P)H quinone oxidoreductase 1 (NQO1) [17], Gleevec
(Imatinib) initially used for inhibiting Bcr-Abl fusion gene which
later was shown to inhibit other kinases such as c-kit and PDGFR as
well [18], and letermovir [19–23] which acts on three protein
targets and cures prophylaxis of cytomegalovirus (CMV) infection.
Some drugs like asenapine, dronedarone, iloperidone, pazopanib,
and milnacipran have 20, 18, 11, 10, and 9 protein targets, respec-
tively [24]. Other examples are of complex disorders and diseases
such as cancer, depression, diabetes, and infectious diseases, etc.
which showcase the success of multi-targeted agents in small mole-
cule therapy [16, 25]. Polypharmacology of certain natural pro-
ducts like curcumin, berberine, baicalein, and flavonoids has also
been studied [26–32].

For drug discovery approach, in general, efforts are crucially
dependent on identifying compounds that are able to inhibit the
target proteins [33]. The structure based drug discovery
approaches mainly work on the ideology of active site inhibition
[34–36]. Thus, the active site similarity and the pattern of residues
found in multiple drug targets can greatly influence the probability
of a ligand to be a multiple target binder [37–40]. Targeting mul-
tiple protein targets is beneficial in terms of saving economic costs
and time involved in phase trials and marketability [14, 26,
41–46]. Our work focuses on development of a protocol with
advanced and refined techniques which convert the
uni-dimensional one-target one-drug approach to a multi-
dimensional many-target one-drug approach.
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2 Methods

Multi-Target Ligand Design (MTLD) is a web server that helps to
identify common leads for any two protein targets. The basic
principle of identifying common small molecules inhibiting multi-
ple targets remains the active site similarity and common interactive
residues in their binding pockets. The protocol is based on the
utilization of already established and validated software tools
which are harnessed here to provide a set of common ligands for
multiple proteins. A schematic representation of the methodology
is provided in Fig. 1.

To predict common ligand molecules for two protein targets,
MTLD requires either the structure or sequence of two proteins. In
the first step, if the structure is unavailable, then it is predicted for
each protein using BhageerathH+methodology [47–50]. Bhageer-
athH+ is a leading state-of-the-art software for prediction of ter-
tiary structures of proteins. It is ranked as one of the leading servers
for tertiary structure prediction in the biennial Critical Assessment
of Protein Structure prediction (CASP) experiment. This is fol-
lowed by model evaluation using ProtSAV [51] meta-server. The
end result is a combined evaluation of the models predicted by
BhageerathH+. The best model is utilized for MTLD methodol-
ogy. Alternatively, user can input the known structures of the two

Fig. 1 Methodology for identifying lead molecules common to both input protein targets
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protein targets. The active site can be either user defined in the
protein structure or is predicted for each protein in step two using
the in-house (Automated Active site detection, Docking and Scor-
ing) AADS [52] methodology. AADS utilizes physico-chemical
properties of the residues in cavities of the protein to predict
biologically relevant binding pockets in a given protein. It has an
accuracy of 67% in top 1 and 100% in top 10. In the third step,
the protocol utilizes RASPD methodology on each protein to
predict potentially viable binders [53]. It utilizes a quantitative
structure–property relationship (QSPR) type equation to predict
the binding affinity between a protein-ligand complex using 1D
and 2D descriptors without actual docking. The prediction is based
upon physico-chemical descriptors like hydrogen bond donors and
acceptors, logP, molar refractive index, volume and wiener index of
both the active site and the ligand. The methodology is capable of
scanning million molecule library of small organic compounds
under 10 min. User can choose from any of the following four
databases: (1) Million molecule database, which is a collection of
over onemillion compounds fromZINCdatabase [54]; (2) Natural
compound library comprising 0.2million compounds; (3) National
cancer database which is a collection of compounds from NCI [55]
and finally (4) FDA approved drugs [46, 56, 57]. In the fourth
step, the compounds selected through RASPD are re-evaluated
using BAITOC methodology. This methodology selects ligands
based on the complementarity of distances between pairs of hydro-
gen bond donors and acceptors, ratios of volumes of active sites
with the ligands of interest and ratio of nonpolar surface areas of the
ligands and the active sites of the proteins of interest (http://www.
scfbio-iitd.res.in/software/drugdesign/baitocnew.jsp). This is fol-
lowed by selection of common ligands between the proteins. The
top 50 ligands based on calculated binding affinities with both
proteins are selected. The selected ligands are then subjected to
atomic-level docking and scoring using ParDOCK [58] methodol-
ogy. The methodology uses Monte Carlo technique to predict the
best pose of a ligand in the active site. The resulting structures are
energy minimized using steepest descent and conjugate gradient
minimization techniques. The poses are then evaluated for binding
affinity using BAPPL [59] scoring methodology. Top 10 com-
pounds showing best affinity to both chosen targets are then
reported. Optionally the resulting ligands can be optimized for
better binding using ligand optimization step. In this step, func-
tional groups are added in place of hydrogen atoms while retaining
the scaffold and re-evaluated for binding affinity. Ligands showing
better binding affinity compared to original input ligands with both
proteins are selected. In cases where optimization is unable to find
better binding ligands, original unmodified ligands are reported.
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3 Results and Discussion

Here we report the development of a multi-target ligand design
protocol. The protocol works on predicting a list of common
ligands against both the input protein targets. To assess the proto-
col, we validated it on five well-known cases of multi-target FDA
approved drugs. The protein targets in the case studies vary in
active site similarities and were scanned against available FDA
approved drug library, thus, testing the methodology. The experi-
mental data of these systems along with their predicted binding
affinities are shown in Table 1.

In the first case study two proteins maltase-glucoamylase and
lysosomal alpha-glucosidase were considered to identify the com-
mon FDA approved drugs against them. The protocol presented
here identified MIG as one of the common hits among the top
10 molecules which is experimentally known to work against both
these protein targets [64, 65]. Miglitol is known as an antihyper-
glycemic drug which results in reversible inhibition of membrane-
bound intestinal α-glucoside hydrolase enzymes called alpha-
glucosidases. In diabetic patients, primarily diabetes mellitus type 2,

Table 1
Experimental and computational binding energy values for various known multi-targets

Ligand name
[57] Disease Protein target [60]

PDB ID
[60]

Predicted
binding
energy [58]

Experimental
binding energy
[61]

Rank in
the hit
list

Active site
similaritya

[62, 63]

Miglitol
(DB00491)

Diabetes mellitus type 2 Maltase-
glucoamylase

3L4W �4.22 �6.00 2 0.93

Lysosomal alpha-
glucosidase

5NN6 �4.16 N.A.

Progesterone
(DB00396)

Progesterone hormone deficiency Mineralocorticoid
receptor

2AA5 �8.16 N.A. 4 0.88

Ancestral steroid
receptor 2

4LTW �8.87 N.A.

Crizotinib
(DB08865)

Non-small cell lung cancer Hepatocyte growth
factor receptor

2WGJ �9.80 �8.70 7 0.87

ALK tyrosine kinase
receptor

4ANQ �7.89 �6.22

Imatinib
(DB00619)

Chronic myelogenous leukemia
and gastrointestinal stromal
tumors

Mast/stem cell
growth factor
receptor

1T46 �12.19 �6.43 7 0.69

vWF glycoprotein 3PYY �6.81 N.A

Dasatinib
(DB01254)

Chronic myelogenous leukemia DDR1 and DDR2
receptor tyrosine
kinases

5BVW �9.35 �8.82 9 0.57

Ephrin A2 (EphA2)
receptor protein
kinase

5I9Y �8.85 �8.55

N.A. not available
Predicted binding energy reported is the result after atomic-level docking (in kcal/mol). Experimental energy (kcal/mol)

is adapted from PDBbind-CN Database [61]. Active site similarities are calculated using PocketMatch [62, 63]
aActive site similarity scores near 0 imply no similarity and near 1 imply complete similarity. Pockets are considered very

similar if they have scores of 0.8 or greater. Pockets are considered somewhat similar if they have scores of 0.6 or greater
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this enzyme inhibition results in delayed glucose absorption and
lowering of postprandial hyperglycemia. The active sites of both the
protein targets chosen had almost 93% similarity as shown in Fig. 2.

In the second case study, the common ligands against mineral-
ocorticoid receptor and ancestral steroid receptor 2 (Table 1) were
considered which showed progesterone as one of the best common
identified leads using our protocol. Progesterone, a naturally occur-
ring progestin, is reported to bind to the mineralocorticoid recep-
tor and ancestral steroid receptor 2 [67, 68] and its levels dictate
the release of eggs, thus, maintaining sexual fertility. The active sites
of both the protein targets have almost 88% similarity as shown in
Fig. 3.

In the third case study we considered hepatocyte growth factor
receptor and ALK tyrosine kinase receptors. The protocol identified
crizotinib as the common FDA approved drug against the two

Trp481

Trp376
Tyr299

Trp406

Trp613
Trp539

Trp516
Trp441

His674
His600

Asp542

2.95
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3.00
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Asp616
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Phe649
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Arg600

Met519
Met444

Ile328

Ile364

Asp404

Leu405

Ile441

Asp327

Fig. 2 The interaction patterns of active site residues of proteins maltase-glucoamylase and lysosomal alpha-
glucosidase with ligand miglitol (ball and stick model representation shown in purple color) are illustrated in
which nonpolar and polar residues are labelled black in the former case and in deep-skyblue in the latter case.
Hydrogen bonds are shown in green color. The 2D interaction diagrams are made using LigPlot [66]
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proteins. It was ranked seventh among the top 10 common identi-
fied hits among all the FDA library of compounds as shown in
Table 1. Crizotinib (DB08865) is a well-known tyrosine kinase
receptor inhibitor. Experimentally it is known to inhibit both hepa-
tocyte growth factor receptor (HGFR, c-MET) and ALK tyrosine
kinase [69, 70]. The inhibition of tyrosine kinase receptors by
Crizotinib ultimately results in decreased proliferation of cells that
carry the genetic mutation and tumor survivability, thus making it
multi-target anti-cancer drug. The active sites of both the protein
targets have almost 87% similarity as shown in Fig. 4.

In the fourth case study we considered two protein targets,
viz. mast/stem cell growth factor receptor and vWF glycoprotein.
The active sites of both the protein targets have almost 69% simi-
larity as shown in Fig. 5. Imatinib was identified as common ligand
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Thr945
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Phe941
Phe206

Arg817
Arg82 Gln41

3.153.09

Fig. 3 The interaction patterns of active site residues of proteins mineralocorticoid receptor and ancestral
steroid receptor 2 with ligand progesterone (ball and stick model representation shown in purple color) are
illustrated in which nonpolar and polar residues are labelled black in the former case and in deep-skyblue in
the latter case. Hydrogen bonds are shown in green color
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molecule in the final output list of the protocol (Table 1). Imatinib
(DB00619) mesylate is a known protein-tyrosine kinase inhibitor
that inhibits the Bcr-Abl tyrosine kinase, the constitutive abnormal
tyrosine kinase created by the Philadelphia chromosome abnormal-
ity in chronic myeloid leukemia (CML) [71, 72].

Finally in the fifth case study we considered DDR1 and DDR2
receptor tyrosine kinase and Ephrin A2 (EphA2) receptor protein
kinase. The active sites of the two protein targets differ significantly
as shown in Fig. 6 with 57% binding pocket overlap. The protocol
was able to identify Dasatinib among the best binders via screening
and atomic level docking using the protocol as shown in Table 1.
Dasatinib is an anti-cancer drug which was approved for use against
kinases. Experimentally dasatinib is known to bind DDR1 and
DDR2, Ephrins, and GFR kinases [73, 74].

Arg1253
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Tyr1230
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Tyr1159
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Ala1148
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Fig. 4 The interaction patterns of active site residues of proteins hepatocyte growth factor receptor, ALK tyrosine
kinase receptor, and ligand crizotinib (ball and stick model representation shown in purple color) are illustrated in
which nonpolar and polar residues are labelled black in the former case and deep-skyblue in latter case.
Hydrogen bonds are shown in green color and deep-skyblue color for HFGR and ALK receptors, respectively
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The active site similarity of the protein targets considered for
case study varies from 0.57 to 0.93. As it can be inferred from
Table 1, the methodology was able to capture the known common
FDA drugs as one of the top molecules for the selected two pro-
teins in each case study.

4 Web Interface

A free web-server implementing the protocol presented is available
at the following url: http://www.scfbio-iitd.res.in/multitarget/.

The starting point of the MTLD methodology are two target
proteins whose sequences and/or their tertiary structure informa-
tion are known. The web-server provides options to input either
sequences or structures (Fig. 7). In case of sequences, tertiary

Fig. 5 The interaction patterns of active site residues of proteins Mast/stem cell growth factor receptor Kit and
vWF glycoprotein with ligand imatinib (ball and stick model representation shown in purple color) are
illustrated in which nonpolar and polar residues are labelled black in the former case and deep-skyblue in
latter case. Hydrogen bonds are shown in green color
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structure and active site are predicted using Bhageerath-H+ and
AADS, respectively. The methodology then follows the flowchart
given in Fig. 1. User can control various aspects of the methodol-
ogy using optional parameters for docking and database selection.
The job can be submitted by clicking on “find common hits”
button. Once the job is submitted a unique job identifier number
is generated which user can use to access the results and the status
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Fig. 6 The interaction patterns of active site residues of proteins DDR1 and DDR2 receptor tyrosine kinases
and Ephrin A2 (EphA2) receptor protein kinase with ligand dasatinib (ball and stick model representation
shown in purple color) are illustrated in which nonpolar and polar residues are labelled black in the former
case and deep-skyblue in latter case. Hydrogen bonds are shown in green color
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Fig. 7 Screenshots of the Multi-Target Ligand Design (MTLD) web-server available at SCFBio for identifying
common lead molecules for two druggable protein targets. Webpages displaying the options provided to input
(a) sequences and (b) structures for both protein targets are shown
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of the job later. If an (optional) email address has been specified in
the submission form, the result page URL is also sent to the user by
email once the job is completed. The result web page features a
JSmol applet for the visualization of the predicted binding poses,
structure of the common small molecules identified, and the input
protein structure(s) available at the web browser (Fig. 8).

The structure(s) of the molecules found as common leads for
both input protein targets along with their best binding docked
pose(s) are also provided at the completion of the job for both
visualization and for downloading. In cases where the input protein
target(s) was sequence, the tertiary structure of the input protein is
also available for visualization and downloading at the result web-
page. The result page also displays all the input parameters selected
at the time of submission for user reference. The user has the
independence for submitting multiple jobs to extend the work on
multiple targets.

Fig. 8 The result webpage of MTLD. Red arrow highlights the compound selected for visualization. (a)
Compound identified among the million database shown as seventh best common hit is displayed in the
visualization box. (b) Protein-Ligand docked best pose is displayed in the cartoon (Protein 2) with ball and stick
representation (Molecule1). (c) Visualization of 3D structure generated for input Protein 2 sequence. User can
also download all the structures in pdf format from the download links provided. The webpage also shows the
input parameters used for identifying common hits
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Fig. 8 (continued)
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In addition to the automated target protein structure predic-
tion or preparation, screening, docking and scoring, alternative sets
of parameters are also provided along with sample input files at the
web suite. All calculations are run on the server side, thus avoiding
any computational power requirements from the user.

5 Scope for Further Improvement

Multi-target based virtual screening methods have been explored
extensively in recent years with promising potential towards identi-
fying selective multi-target agents. To refine the protocol, it is
possible to introduce more comprehensive structural and physico-
chemical features of selective multi-target agents. One such exam-
ple would be to classify the binding site profiles of different multi-
targets to expedite the identification of selective multi-target agents
and active compounds. With recent and continuing efforts in pro-
tein structure prediction and active site prediction, results are
expected to be more accurate and reliable. The methodology cur-
rently employs a single level addition of functional groups. Tomake
the list of common hit molecules more selective towards the tar-
geted multiple proteins, a multi-level scaffold extension protocol
can be developed. Synthesis constraints can be incorporated to the
scaffold extension methodology so that the hits are more viable to
chemical synthesis.

6 Conclusions

The MTLD web server aims to provide the scientific community
with a free and user-friendly, state-of-the-art software suite to iden-
tify common leads for multiple protein targets. The automated
setup of preparation of the target input protein(s) and ligand
structures, the availability of different docking parameter presets,
and the convenient visualization and analysis of predictions make it
easy to use. The methodology has been validated on five protein
sets with known FDA drugs and has shown promising results. No
such web-server similar to MTLD is reported so far. Thus this
contribution fills a crucial void in the space of computer-aided
drug discovery.
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Abstract

The increasing incident of breast cancer, which is a leading cause of women’s death in both developed and
developing countries, demands the development of novel and efficient therapies. One of the major
challenges is to design drugs that can specifically target the genes or proteins responsible for breast cancer,
as gene and chemotherapy both are suffering from the drug specificity issues. Several recent studies have
highlighted the potential of RNA interference (RNAi)-mediated targeted silencing of breast oncogenes,
which can be exploited to develop cancer cell-/target-specific therapeutic molecules. However, one of the
bottlenecks of RNAi-based gene therapy is to identify the RNAi sequences for efficient and targeted
suppression of oncogenes. In this chapter, we discuss the development and application of a web-based
database, BOSS (http://bioinformatics.cimap.res.in/sharma/boss/index.php), for selection of potential
RNAi based on the sequences that have been used and validated for RNAi-mediated suppression of breast
oncogenes. This database includes the latest information regarding used RNAi molecules that can be cost-
effective and less time-consuming.

Keywords Breast cancer, Gene silencing, Mammary cancer, Oncogene, RNAi, shRNAs, siRNAs

1 Introduction

Breast cancer, which is the result of uncontrolled proliferation and
differentiation of breast cells [1–10], is one of the major causes of
women’s death across the world. Mutations in the oncogenes result
in gain or loss of function that may contribute to the uncontrolled
proliferation and differentiation known as malignant phenotype.
These mutations are generally the consequences of spontaneous
mutations, environmental factors, viral infections, etc. Despite
recent advances in early detection and [11] therapeutic strategies
(chemotherapy, surgical, and radiation interventions), malignant
breast cancer remains incurable. This is because of the toxicity
and/or the lack of specificity of the current therapies and develop-
ment of drug resistance by cancer cells. To overcome these issues,
cancer cell-/target-specific efficient anticancer drugs are required.
Since amplification or overexpression of breast oncogenes is the
major mechanism through which oncogenes participate in the
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cancer development [3], targeted suppression of these oncogenes
can help to achieve the goal.

Nucleic acid therapy is based on: (1) introducing oligonucleo-
tides or plasmids to express target genes for adding, correcting, or
replacing the oncogenes in transformed cells and (2) RNAi-mediated
targeted suppression of oncogenes. RNAi-mediated specific suppres-
sion of oncogenes is one of the most promising strategies for tar-
geted gene knockdown. RNAi is a eukaryotic regulatory process for
gene expression and antiviral defense. These small RNAs come under
two distinct classes, small interfering RNAs (siRNAs) and micro-
RNAs (miRNAs). The sizes of si- and miRNAs, which can vary bet-
ween 19 and 24 nucleotides in length, are generated by processing of
longer and complex double-stranded RNAs (dsRNAs) by ribonucle-
ase III type DICER enzymes. Once generated, small RNAmolecules
base pairs with their complementary target RNA to direct the RNAi-
mediated degradation.

Small interfering RNAs (siRNAs) have been achieved in mamma-
lian systems following transfection of synthetic RNA molecules with
overhanging 30 ends indicating that siRNA may be used as a power-
ful tool to block the expression of target genes specifically [12]. The
factors that determine siRNA efficacy are thermodynamic stability of
the duplex at the 50 antisense end, GC content, and the ability to
form internal hairpins in the RISC (RNA-induced silencing com-
plex), which promotes the degradation of target mRNA. Although
siRNAs and short hairpin RNAs (shRNAs) have become a standard
tool for targeted gene silencing, selection of siRNA/shRNA
sequences for efficient and targeted suppression of oncogenes is
still a time-consuming and laborious task. A siRNA/shRNA data-
base can provide a virtual platform to compare the suppression
efficiency of earlier reported siRNAs/shRNAs for designing of effi-
cient siRNA.

1.1 Earlier siRNA

Databases

In the past decade, a considerable number of databases and predic-
tion servers have been developed to understand the features of
siRNAs and to implement these features to predict potent siRNAs.
Many databases for siRNA have been described in the literature.
Some examples are RNAi (siRNA) libraries and their specificity
(RNAiAtlas), database for ta-siRNA regulatory pathways (tasiR-
NAdb) [13], an innovative and comprehensive resource for identi-
fication of siRNA-mediated mechanisms in human-transcribed
pseudogenes (pseudoMap) [14], an online resource to publish and
query data from functional genomics high-throughput siRNA screen-
ing projects (HTS-DB) [15], a web-based tool for siRNA sequence
design and analysis and an open-access siRNA database (sIR) [16],
HIV-specific siRNA (HIVsirDB) [8], human-specific siRNA database
(HuSiDa) [17], siRNA data of mammalian RNAi experiments (siR-
ecords) [9], and viral-specific siRNAs (VIRsiRNAdb) [18]. The VIR-
siRNAdb database provides information on 1358 experimentally
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validated siRNAs pertaining to 42 important human viruses. Many
databases are also available in the literature like siRNAmod, chemically
modified siRNAs [19], and DSTHO (database of siRNAs targeted at
human oncogenes) for targeting human oncogenes [7]. However,
only the DSTHO database provides limited information on siRNAs
for human oncogenes including few breast oncogenes. Although
several (>100) siRNAs have been reported after development of
DSTHO, there is no database available for the analysis of the latest
breast oncogene siRNAs. Therefore, it is difficult for the researchers
to search and analyze the data from the literature. In this chapter, we
describe the details of the BOSS database, which exclusively includes
the information for all the reported breast oncogenic specific siRNAs.

2 BOSS Database

RNA interference (RNAi) is an important technique for targeted
gene silencing that may lead to promising novel therapeutic strate-
gies for breast cancer. Therefore, identification of such molecules
having high oncogene specificity is the need of an hour. Several
exciting studies demonstrated the potentials of different siRNAs to
inhibit the gene expression of breast oncogene and therapeutic
molecules against cancer [10, 20–37]. Thus, it is important to
collect and compile siRNAs in order to explore their potentiality
against breast cancer (Fig. 1). Here, we present a database named as
breast oncogenic specific siRNAs (BOSS, http://bioinformatics.

Fig. 1 Breast oncogenic specific siRNA database
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cimap.res.in/sharma/boss/) based on current status of siRNA-
mediated repression of oncogenes in different breast cancer cell
lines. BOSS is the resource of experimentally verified breast onco-
genic siRNAs, collected from research articles and patents. The
BOSS database contains information on 865 breast oncogenic
siRNA entries. Each entry provides comprehensive information of
a siRNA that includes its sequence, name of siRNA, target gene,
types of cells, inhibition value, etc. Additionally, some useful tools
like siRNAMAP and BOSS BLAST were also linked with the data-
base. siRNAMAP can be used for the selection of the best siRNA
design for user target, while the BOSS BLAST tool can predict
those siRNA sequences that user siRNA can target effectively. In
this database, activities of most of the breast oncogenic specific
siRNAs have been tested using MCF-7 cell lines (~400 entries),
and MCF-7 and MDA-MD-231 cell lines were used for 46% and
18% siRNA entries, respectively. In order to facilitate the users,
several web-based tools have been integrated that include search
option, advance option, and browsing option (Fig. 2).

2.1 Materials For this study, Tyagi et al. [10] collected and compiled 551 breast
oncogenic siRNA entries. Each entry provides comprehensive
information of a siRNA that includes its sequence, name of the
siRNA, target gene, types of cells, inhibition value, etc. Addition-
ally, some useful tools like siRNAMAP and BOSS BLAST were also
linked with the database. siRNAMAP can be used for the selection
of the best siRNA design for user target, while BOSS BLAST tool
can predict those sequences that user siRNA can target effectively.
In this database, activities of most of the breast oncogenic specific
siRNAs have been tested using MCF-7 cell lines (~221 entries). In
order to facilitate the users, several web-based tools have been
integrated that include search option, advance option, and brows-
ing options.

2.2 Data

Architecture

BOSS database contains the following 17 fields for each siRNA entry
(Fig. 2): (1) BOSS ID, (2) PubMed ID, (3) sequence, (4) siRNA
name, (5) target gene, (6) GC content, (7) length of siRNA, (8) cell
types, (9) year, (10) siRNA source (siRNA/shRNA), (11) position of
siRNA, (12) test objective, (13) test method, (14) NCBI Accession
no., (15) biological inhibition, (16) transfection reagent, and (17).

2.3 Search This search option is the easiest way to search BOSS. It allows users
to search in any field of the database. In the search field, please type
any keyword such as PMID, siRNA name, NCBI accession, target
gene, target site sequence, inhibition value, transfection reagent,
etc. User can select different fields to be displayed. The keyword
should be without spaces. User can choose default fields or select
“All.” It will display a list of BOSS database-related to keyword,
with all the selected fields (Fig. 3).
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2.4 Advance Search This option allows users to perform advance search by making
many combinations. User can submit two or more than two queries
with conditions. It provides more filtered results. To perform an
advanced search, user can enter or select queries and press the
submit button. It will display a list of BOSS database related infor-
mation that satisfies the search criteria (Fig. 4).

2.5 Browse BOSS database has powerful browsing facility tools that allow a user
to browse data using various options. A short description of web
interfaces designed for browsing is as follows: This option allows the
user to browse BOSS DB based upon some main categories like
siRNA name, target gene, cell type, inhibition, GC content, and test
time of breast oncogenic specific siRNAs. User can select any of the

Fig. 2 Data architecture of breast oncogenic specific siRNA database (Tyagi et al. [10])
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categories and click button. A list of breast oncogenic specific siRNA
related to category is displayed. This option allows the user to
browse BOSS DB based upon some main categories like siRNA
name, target gene, cell type, inhibition, GC content, and test time
of breast oncogenic specific siRNAs. User can select any of the
categories and click button. A list of breast oncogenic specific
siRNA related to different categories is displayed (Fig. 5).

Fig. 3 Search page of breast oncogenic specific siRNA database

Fig. 4 Advance search page of breast oncogenic specific siRNA database
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2.6 Web-Based Tools BOSS database allows the users to take advantage of useful tools
like siRNAMAP and BOSS BLAST. In order to facilitate the user,
two tools have been integrated in this database that include:

(1) siRNAMAP for mapping siRNAs on target sequence: The
siRNAMAP maps the BOSS database siRNAs on the user nucleotide
sequence. It will provide the lists of siRNA from BOSS DB which are
complementary to the user-provided sequences. (2) BOSS BLAST for
BLAST search against database: User can use this tool for similarity-
based search of any query sequences with those present in the BOSS
database. By doing this, user can confirm whether a given siRNA
sequence or similar siRNA sequence has already been reported or not.
User can submit a query sequence in single FASTA format in the
search field and press the submit button. It will display all siRNAs
similar to query sequence. The server provides option to modify
different parameters like scoring matrices, gap penalty, word size, etc.

BOSS database has also an online submission form for the
users. In this database user can add new siRNA-/shRNA-related
information within specified fields, and subsequently entries are
added to the database after proper validation (Fig. 6).

Fig. 5 Browsing page of breast oncogenic specific siRNA database

Fig. 6 siRNA tool page of breast oncogenic specific siRNA database
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3 Application of BOSS Database

BOSS database will provide the comprehensive details of the experi-
mentally validated breast oncogene specific siRNAs at one platform.
It will help researchers to compare the sequence and efficiency of
different siRNA molecules and design and/or select potent siRNA
for suppression of breast oncogenes. The above-stated approaches
will also help in the identification of potential siRNA available in the
database. BOSS database includes all the known siRNAs specific for
different breast oncogenes that have been experimentally validated.
This platform will help to select more than one siRNA molecule
targeting different oncogenes. These siRNAs can be used simulta-
neously to knock down different breast oncogenes if required.
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Glossary

BOSS Breast oncogenic specific siRNAs database
siRNAs Small interfering RNAs
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Abstract

Historeceptomics is a new, integrative informatics approach to describing the mechanism of action of drugs
in a holistic, in vivo context. The approach is based on leveraging emerging big data sources in genomics
and chemistry to incorporate tissue specificity into mechanism of action descriptions. New insights into
drug mechanism of action, drug repurposing, and prediction of adverse effects may be possible, including
the design and development of multi-target drugs or drug combinations. The critical elements still under
development include: (1) defining the tissue ensemble associated with specific human diseases, (2) appre-
ciating the pattern or partitioning of the expression of drug targets (receptors) across and outside of these
ensembles, and (3) informatics methods to integrate direct drug-receptor data with receptor expression
data in tissues. Maturation of this field may enable the complementary field of tissue-targeted drug delivery,
enabling novel concepts in drug design and development for unmet medical needs.

Keywords Adverse events, Big data, Chemical genomics, Drug mechanism of action, Drug optimi-
zation, Systems pharmacology

1 Introduction

Most drugs in clinical use exhibit moderate to high affinities to
more than one receptor, a phenomenon termed “polypharmacol-
ogy.” Ironically, almost all drugs are colloquially classified and
identified for discussion purposes according to their primary recep-
tor or target, e.g., “HMG-CoA reductase inhibitor.” This inconsis-
tency is representative of a potentially serious deficiency in drug
design and discovery, namely, a tendency to ignore off-targets in
designing and discovering drug candidates. This deficiency may be
compounded by a conceptually parallel ignorance of the in vivo
context of drug action, namely, a failure to appreciate the variable
expression and function of drug targets across the different tissues
of the human body. Undoubtedly, these deficiencies are a conse-
quence of an historical absence of reliable technologies or data
necessary to take polypharmacology or cross-tissue dimensions
into account. The recent explosion of big data in chemistry,
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pharmacology, and genomics, however, has raised the question as
to whether sufficient data is now available to make progress in these
areas. Extensive genomic [1], and even proteomic [2], molecular
profiling of tissues is available. Here, we review the basic questions
and existing work related to this problem and to what degree it can
be incorporated into multi-target drug discovery and design. First,
we explore whether specific tissue ensembles can be defined for
specific human diseases: for example, central nervous system tissues
underlie psychiatric diseases, but what is the relevant tissue ensem-
ble for diabetes? Second, we review the scant research into a ques-
tion that might have been considered an assumption and ignored,
namely, are drug targets actually normally expressed in the tissues of
the disease for which they are indicated as treatment? Then, we
review the data sources that can be used to develop polypharmacol-
ogy and holistic in vivo cross-tissue-inclusive signatures for the
mechanisms of action (MOA) of drugs and drug candidates.
Finally, we will review the technologies for generating such signa-
tures and their performance in producing impactful results.

2 Which Tissues Are Responsible for a Disease?

There are three dimensions to defining disease-relevant tissues. One
simple definition is to equate disease-relevant tissue with diseased
tissue. This is the most common, unspoken, operative definition and
has been invoked largely in the context of drugs for cancer. Under
this definition, the question of whether a drug target is expressed in a
disease-relevant tissue is relatively simple: inmany cases, the drugwas
developed because the target receptor was noted to be overexpressed
(e.g., Her-2/neu in breast cancer [3]) or overactive (e.g., B-raf in
melanoma [4]) in the disease tissue and exhibited a pro-cancer
function. Drugs were usually then designed or discovered to target
that receptor. For example, the leukemia drug Gleevec (imatinib)
targets the bcr-abl fusion protein kinase [5] that is a marker of
chronic myelogenous and other leukemias. Nevertheless, cancer
drugs designed for a specific cancer often were found to be effective
in other cancers, exhibiting tissue specificity in the sense of specificity
across different cancers or cancer cell lines [6]. Indeed, this observa-
tion and the interest in matching drugs for different cancers have
made screening of cancer cell line panels, such as the NCI-60 [7], a
common step in cancer drug discovery. Little to no work has focused
on non-cancer tissues in cancer patients, despite growing evidence
that host (noncancerous) immune and other tissues are crucial
players in the establishment, maintenance, and progression of several
cancers [8]. Some cancer drugs, such as angiogenesis inhibitors [9],
are indeed targeted at host tissues, but only tissues with direct
physiological and mechanistic interactions with the cancer are so
targeted. This limited approach to the in vivo context of cancer
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drugs is illustrated by the absence of widespread, industrial drug
discovery interest in targeting tumor-infiltrating lymphocytes (TILs;
a tissue) for many years until the mechanism of co-receptor blockade
of these TILs was understood, leading to highly effective immu-
notherapies for previously treatment-resistant cancers [10]. The tra-
jectory of research under the umbrella of a narrow definition of
disease-relevant tissues as only diseased tissues thus begs the question
of how many other drug discovery opportunities have been missed
because the mechanisms of tissues influencing cancer establishment,
maintenance, or progression have not yet been understood. Further-
more, the cancer-centric nature of this definition may have held back
tissue-specific drug discovery and design approaches in other fields.
This is changing to some degree as the urgency of certain unmet
medical needs have forced creative approaches into this area. For
example, some promising approaches to non-addictive pain medica-
tion (to prevent opioid addiction) target inflamed tissue over the
CNS [11]. Equating disease-relevant with diseased tissue is intuitive
and single-target, but, even so, may be significantly underutilized in
drug design.

Another definition that more closely approaches the in vivo
context of drug action is to define disease-relevant tissues as those
mechanistically involved in the disease in human subjects suffering
from the disease. This is more complex than the cancer-centric,
single-tissue, single-target view of diseased tissues and has the
advantage of broadening the drug discovery to the entire ensemble
of tissues mechanistically interacting with the tissue that produces
the prominent symptoms of the disease. In cancer, as discussed
above, those tissues are, at least, noncancerous vascular, immune,
and metabolic tissues, and important advances in cancer drug dis-
covery have been made targeting these tissues (angiogenesis inhibi-
tors, co-receptor blockade [12]). However, even these approaches
adhere to a single-tissue, single-target view, and rationales for multi-
target therapies intended to attack synergistic vulnerabilities between
tissue-target pairs in cancer have been few and far between. For
example, synergistic beneficial effect might be expected for a multi-
target drug simultaneously targeting angiogenesis in the vasculature,
DNA replication in the cancer tissue, and co-receptor blockade in
the TILs.

Beyond cancer, the definition of disease-relevant tissues as the
mechanistic ensemble in the disease patient is similarly rarely
exploited, perhaps because of the primitive means of targeting
drugs to specific tissues (see Subheading 6). Overall, this definition
opens more avenues to improvements in drug discovery via multi-
target tissue-specific drugs, but these avenues remain underex-
plored. Remarkably, despite the importance of this question, only
one group has attempted to systematically map diseases to tissues
they affect (disease-tissue matrix) independently of molecular infor-
mation. Lage et al. surveyed disease-relevant literature in PubMed
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to create a disease-tissue covariation matrix of high-confidence
associations of >1000 diseases to 73 tissues [13]. Even so, these
investigators only focused on heritable diseases and only performed
this task in the service of a larger investigation into the connection
between tissue-specific pathology and causal gene expression. Nev-
ertheless, the Lage disease-tissue matrix, although published
10 years ago prior to major revolutions in molecular profiling and
informatics, remains the only such matrix ever developed. Other
matrices are derived from network analysis of gene-expression data
across multiple tissues [14], which may skew to the molecular from
the full in vivo context, but may nevertheless be useful. In particu-
lar, work in this area is showing that different neighborhoods of the
human interactome may represent specific, different tissues, sug-
gesting that modules or pathways differentiate tissues or differenti-
ate along with tissue differentiation. This appears to hold true in
both multi-genetic [15] and hereditary [16] diseases. Novel infor-
matics methods for this purpose are also being introduced [17].
Still, the paucity of published disease-tissue matrices is indicative of
the extreme underutilization of the tissue-specific approach to drug
design and discovery in non-cancer diseases, to say nothing of
multi-target approaches to these multi-tissue, disease constructs.

3 Are Drug Targets Expressed in Disease-Relevant Tissues?

Perhaps the most general definition of disease-relevant tissue spe-
cifies tissues that are biologically relevant to the disease whether or
not they originate from patients who have the disease. This is a less
intuitive question: is the baseline presence of drug targets in normal
tissues known to be biologically/mechanistically relevant to a dis-
ease predictive of response to a drug? The presence of the drug
target in the tissue of a person without the disease is not necessarily
predictive of its presence and druggability in a person with the
disease. This assumption was challenged, posed as a question and
answered only recently by Kumar and associates who profiled 345
drug targets of 406 diseases in 32 tissues [18]. They found that 87%
of drug targets are expressed in the non-diseased, disease-relevant
tissues in non-diseased subjects. The data overwhelmingly estab-
lished that expression of a putative drug target in non-cancer,
disease-relevant tissue in vivo is a predictive factor for eventual
success of the drug. The finding further diminishes the hypothesis
that viable drug targets are induced by the disease, calling into
question the applicability of common in vitro drug sensitivity pre-
diction approaches, which, in addition to being underwhelming in
performance, notoriously find prominent drug targets upregulated
by the disease or the drug itself [19]. Furthermore, the divergence
between the expression pattern of drug targets in diseased cells
in vitro and the Kumar findings in vivo emphasize the importance
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of assessing drug targets and especially any multi-target drug con-
cept, in the holistic, cross-tissue in vivo context.

4 Tissue Specific and Polypharmacology Data

High-throughput, molecular profiling of human cells and tissues,
both normal and diseased, is now routine and abundant. An enor-
mous amount of genetic (DNA), expression (RNA), and proteomic
(protein) data on just about every cell and tissue frommany sources
is available publicly [1]. Major genomic data sets include GWAS,
eQTL, GTEx, ENCODE, dbGAP, BioGPS, the Cancer Cell Line
Encyclopedia (CCLE), GEO, Expression Atlas, TIGER, and Road-
Map Epigenomics databases. Major proteomic data sets include the
Human Protein Atlas, Human Proteome Map, and ProteomicsDb.
Specific composite data sources of high value include the Allen
Brain Atlas, TISSUES, Project Achilles, MotifMap, TRANSFAC,
ChIP-X, the Molecular Signatures Database, PhosphoMouse, and
CircNet. The amount of data in these sources is already overwhelm-
ing, covers just about every disease and phenotype and is growing
exponentially. The prospects for extracting profiles of the molecular
variability of a drug target across tissues or cells have never been
better.

High-throughput drug screening programs have produced
extensive data on drug-target affinities. ChEMBL, the Psychoactive
Drug Screening Program, and PubChEM are the most prominent
of these sources. A growing number of large-scale computational
molecular docking efforts have added exponentially to this trove of
data, driven by the interest of cloud-based computing service com-
panies like Google and Amazon in demonstrating large-scale com-
puting tasks [20]. All possible chemical structures may be considered,
not just those synthesized into existence [21]. Although the space of
all drug candidates measured against all drug targets in the human
genome is immeasurably large, and enormous amount of polyphar-
macology data is available, to the point that polypharmacology of
approved drugs may often be reliably appreciated.

5 Does Assessing the Tissue Pattern of Expression of the Full Polypharmacology
(Primary and Off-Targets) of Drugs Add Value?

The data may now exist to infer polypharmacologic ensembles of
drugs computationally and project this ensemble of targets across
their presence in tissues of the body to approximate the in vivo
context, but in silico. Drugs used to treat human diseases and
chemicals that cause diseases or adverse effects indisputably act on
specific cellular components that vary between body tissues, and
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most drugs exert their beneficial and adverse effects through their
combined action on several different molecular targets. The con-
cept of “historeceptomics” signatures of the actions of drugs [20]
was introduced to generate signatures integrating polypharmacol-
ogy with the in vivo, cross-tissue context by collecting the ensemble
of all the receptors upon which a drug acts projecting it to the
differential level of expression of these receptors across organs/
tissues. Remarkably, this is the only report on drug mechanisms in
the literature based on the postulate that drug action depends on
both affinity and receptor abundance in tissues [22]: there are
thousands of publications linking drug effects to specific targets/
receptors with no mention of the tissue expression pattern of
targets.

Historeceptomics (Fig. 1) maps both diseases/phenotypes and
polypharmacologic drugs into a common, but previously unex-
plored, target-tissue space [20]. This means that instead of diseases
being stratified according either to deficiencies in a single-gene
product (e.g., thalassemia$ hemoglobin) or a deficiency in certain
tissues (e.g., breast cancer), they are thought of as deficiencies in a

Fig. 1 Historeceptomics. Far right: A drug has many targets (blue arrows) that determine its action in the body.
These are then projected to the tissues in which they are expressed (purple arrows) to form target-tissue
molecular signature of the polypharmacologic, in vivo action of the drug. Far left: Disease is profiled by
genomics/proteomics/etc. across the tissues of the human body to form target-tissue molecular signatures of
the disease. Where target-tissue pairs are activated by the drug but are unrelated to the disease (red block
arrows), these could be adverse effects to be eliminated from the drug action. Where target-tissue pairs are
active in the disease but unmatched to the drug target-tissue profile, these are opportunities for multi-target
drug improvement
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holistic pattern of many specific gene products in many specific
tissues (e.g., many genes in many tissues in metabolic syndrome).
In turn, drug action is described as a highly specific pattern of
modulation of several specific gene products in several specific
tissues. The critical integrative data structure is the tissue atlas of
the human body, which allows polypharmacologic actions of drugs
to be easily matched to Omics-derived biomarkers of complex,
untreatable diseases like Alzheimer’s, COPD, and schizophrenia
by comparing two target-tissue vectors. In addition, combinations
of drugs can be matched to complex biomarkers rationally for the
first time, and targeted drug delivery can be advanced to use small
molecule drugs and be applicable to many diseases (instead of just
drug delivery vehicles targeting focal, diseased tissues like cancer),
with attendant benefits in precision, efficacy, and safety. This con-
cept renders complex multi-genetic diseases and drugs with com-
plex polypharmacologic mechanisms of action (i.e., most drugs in
clinical use today) as easily and simply matched as the previously
successful model of single gene biomarker-matched therapy (e.g.,
Herceptin for Her2/neu + breast cancer).

Generating a tissue-target score: Target-tissue scores are based
on a simple postulate—the affinity of a drug for a target is unrelated
to its therapeutic effect if the target is not expressed in tissues relevant
to the disease. For example, drug X treats schizophrenia and has very
high affinity for receptor Y measured in vitro, but receptor Y is only
expressed in the bone matrix. Therefore, receptor Y is not a signifi-
cant target of drug X with respect to schizophrenia. To integrate
drug bioactivity with the target gene expression, a key enabling
assumption is made to detect differential expression across tissues
via normalized gene expression and cross-tissue Z-normalization.
This enhances detection of highly expressed outliers in each tissue
but misses ubiquitously expressed targets such as actin. The
integrated tissue-target score is then calculated by multiplying the
Z-score for gene expression for each target identified for a drug in
the chemical-biology network by the �log(affinity) of the drug for
the target (Fig. 2).

Thousands of tissue-target scores can thus be generated in this
prototype for each individual drug. These scores are normally
distributed, so outlier detection can be used to identify the signifi-
cant scores at a chosen α level. The array of these significant hits is
the signature (Fig. 3).

Historeceptomics was used to investigate the unique MOA of
the antipsychotic drug clozapine. Most psychiatric diseases do not
have a known organic etiology (no genetics, no animal models,
etc.). They are simply a classification of symptom and sign patterns.
This has greatly inhibited understanding of the mechanism of
action of psychiatric drugs, which are very polypharmacologic.
The anti-schizophrenia drug clozapine (Clozaril®), which is an
atypical antipsychotic with greater efficacy for certain psychotic
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symptoms and less propensity for motor side effects as compared to
the typical antipsychotic drug chlorpromazine, was studied. The
mechanism of action for clozapine’s atypicality/atypia is unknown
but can be derived from historeceptomics tissue-target signatures
by subtracting the signature of a typical antipsychotic (chlorprom-
azine) from clozapine’s signature. The 5HT2a receptor in the PFC
and D2 receptors in multiple brain regions were found to be
common contributors to the MOA of both clozapine and chlor-
promazine. These results strongly correlate with what is known
about these drugs, including that the hallucinogenic drug, LSD,
operates on the 5HT2a receptor in the PFC and produces halluci-
nations which can resemble those experienced by people with
schizophrenia. The clozapine-specific result revealed that M1 and
M3 muscarinic receptors in the prefrontal cortex (PFC), the dopa-
mine D4 receptor in the pineal gland, and the histamine H1 recep-
tor in the superior cervical ganglion (SCG) were tissue-target
outliers for clozapine and therefore candidates for the mechanism
of its atypical effects. Indeed, the pineal gland produces melatonin,
which in addition to its well-known mood-stabilizing properties
(clozapine has unique mood effects), may be effective against some
symptoms of schizophrenia [23] especially negative symptoms

Fig. 2 Calculations of historeceptomics (target-tissue) score. Affinity or computational molecular docking score
(upper left) of drug with a target/receptor is integrated with differential expression of that receptor across the
tissues of the human body (lower left) using a Z-statistic (center). The resulting scores represent the “product” of
the drug’s likelihood of directly interacting with the receptor, specifically and independently in each tissue (right)
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against which clozapine has particular efficacy as compared to other
neuroleptics. M1/M3 are also recently emerging as promising
targets for negative symptoms [24]. Overall, historeceptomics
rebalances the view of theMOA of clozapine to reconcile previously
divergent data on the action of the drug. Repurposing, adverse
effect MOA and target validation all arise from the analysis of a
complex and poorly understood but clinically useful drug. As most
drugs in clinical use were discovered via phenotypic assays or
means, MOAs of most drugs in clinical use are poorly understood
and could benefit from this multidimensional view.

6 Tissue Targeting of Drugs

Notably, the historeceptomics concept necessarily invokes targeted
drug delivery. A polypharmacologic, in vivo context drug MOA is
better understood in terms of the target tissue. Therefore, it stands
to reason that beneficial effects of drugs could be amplified with no
increase in adverse effects by preferential effects of those specific
targets in the specific tissues identified by the method. Crude tissue
targeting is already possible via exploitation of in vivo barrier

Fig. 3 (a) Historeceptomics signature of action of the drug LSD. Blue arrows represent affinities to targets with
thickness proportional to level of affinity. The first heat map shows the expression levels of those targets across
tissues. Applying the integration results in massive dimensionality reduction. Significant outliers (b) form the
tissue-atlas signature (c)
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compartments or altered in vivo environments. For example, sev-
eral small molecule drugs, such as glycopyrrolate, with potentially
serious sedative or other CNS effects, are widely used for peripheral
effects because they do not cross the blood-brain barrier. Cancer
tissue is sufficiently different and accessible as compared to normal
tissues that this is the most advanced area of tissue targeting, where
molecular targeting using biologics is already utilized. In addition,
the aforementioned strategy of targeting the different pH of
inflamed tissue for nonaddictive pain management small molecule
chemical compounds is a similar tissue-targeting approach [11].
Nevertheless, historeceptomics reveals avenues that are currently
not yet approachable. In the example of clozapine given above, a
drug that preferentially or exclusively targets the M1 and/or M3
receptors in the PFC of the brain would be hypothesized to be a
breakthrough for psychiatry, but how would this be accomplished?

7 Summary

Incorporating both polypharmacology and the in vivo context of
drug action in multi-target drug design is a chemical-biology
approach in its infancy but clearly offers pioneering opportunities
for progress in drug discovery and design. The explosion of bio-
medical big data has made such an approach possible, but major
current challenges involve:

l Precise definitions of diseases

l Accurate and precise disease-tissue association matrices

l Generating the complete polypharmacologic ensemble of small
molecule drugs

l Accurate and precise methods, like historeceptomics, for pro-
jecting the complex polypharmacologic ensemble of a (multi-
target) drug in a weighted manner into the tissue atlas of the
human body

l Precise and effective tissue targeting of drugs

Advances in these areas may greatly enable multi-target drug
discovery and design by revealing the exact tissue-target pairs
responsible for different aspects of the MOA and for specific
adverse effects of drug candidates, which would allow surgical
design of multi-target drugs and drug combinations to emphasize
beneficial drug actions in specific tissues and eliminate adverse drug
action in other tissues. Advances in this area will also therefore
increase the urgency of developing creative tissue-targeting drug
methods, especially for small molecules and for tissue compart-
ments to which biologics have restricted access.
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Abstract

Increasing rate of cancer incidence has put a global demand of high and advanced level of diagnosis
methods. Although surgery (surgical treatment), radiotherapy, and chemotherapy are well-known tradi-
tional methods for cancer treatment, the use of novel, advanced, and reliable drug delivery methods
(nanodrugs, DNA origami, nanoparticles, and exosomes) are now more applicable to reduce the associated
side effects of traditional cancer therapies. Therefore, this chapter will review the existing network of smart
drugs by using chem-bioinformatic approach towards cancer treatment. In future, the combination of
computational tools in smart drug designing for cancer treatment will be path-breaking.

Keywords DNA origami, Exosomes, In silico, Nanodrugs, Smart drugs

1 Introduction

The growing rate of cancer among young generation is an issue of
concern. Lifestyle factors like cigarette smoking, alcohol drinking
and caffeine, radiations, illicit drug use, and exposure to different
kind of toxicants available in the environment and diet have been
found a cause of concern. By 2030, with a projected world popula-
tion of 8.3 billion, demographic effects alone will give rise to an
estimated 21.4 million incident cases and 13.2 million deaths due
to cancer [1, 2]. With increasing cases of cancer, demand of
advanced technologies for cancer treatment is also increasing. Sur-
gery (surgical treatment), radiotherapy, chemotherapy, and hor-
mone therapy come in our mind first in respect to cancer
treatment, as these are more frequently available globally. However,
advances in science and technology are showing an amazing world
where it keeps moving towards more advanced methods and tech-
niques. The term “smart drug” is more common nowadays to
understand the targeted drug delivery systems integrated from
various immunological therapies for cancer treatment. It is a
method of delivering medication to a patient in a manner that
increases the concentration of the medication in the infected organs
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or cells, relative to the normal cells [3]. There are different ways of
targeted drug delivery systems; however, inverse, double, active,
passive, dual, and physical targeting are being used broadly in
cancer therapy. The drug-targeted delivery system is to confine,
prolong drug properties, fortify a distinct route, target the desired
site, reduce side effects of the drugs, and prolong drug interaction
with the diseased tissue [4]. “Smart drugs” specifically target cancer
cells and not healthy ones as also presented in Fig. 1. On the other
hand, it can normally reduce side effects of chemotherapy and
radiation.

The carrier of smart drugs could be nanoparticles, liposomes,
exosomes, and nanotubes, where the applications of all the above
should have to adopt some smart ways to target the cells [5]. An
implementation of computational models to target the cancer cell
will provide a mechanistic approach to understand the treatment of
cancer cells. The possible pathway for the loading of drugs and their
delivery through various types of carriers and the uptake in cells by
targeting cancer cells are presented in Fig. 1. The purpose of this
pathway is to show the drug-targeted delivery system which may
increase the therapeutic efficacy by controlling the toxic effects.
The delivery of drugs such as tyrosine, DNA origami, and small
molecules by using an appropriate carrier to malignant tissues is
increased and the normal tissue remains unaffected. The targeted

Fig. 1 The possible pathways of smart drug uptake and targeting of cancer cells through different carriers
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therapy is being developed rapidly with a significant improvement
to target only cancer cells while protecting the normal cells and
tissues. The use of nanoparticles, nanodrugs, nanotubes, and nano-
carriers are playing significant role in nanomedicine and shows very
promising role in problem solving issues in medicine, specifically to
diagnose, treat, and prevent diseases [6, 7]. This chapter will
explore and discuss some of the advanced methods currently used
in targeted drug delivery system.

2 Exosomes as Smart Drug Carrier

Exosomes are a subpopulation of extracellular vesicles (ECV). It
can be introduced as a family of nanoparticles due to their basic
diameter in the range of 30–120 nm and biogenesis that it is
secreted by most of the cell types of body [7, 8]. They can be
isolated from several types of extracellular fluids, including saliva,
amniotic fluid, blood, urine, and cerebrospinal fluid [8–10]. The
delivery of drugs to target the cancer cells, which may be affected
due to chemical or physical factors, was proven to significantly
influence cell-to-cell communication through different signal trans-
duction systems. It has been found that ECV plays an essential role
in cell-to-cell communication by carrying their contents, including
proteins, metabolites, RNAs, DNAs, and lipids [11–13]. Several
researchers have reported that exosomes have been found one of
the distinct cellular entities specifically capable of carrying cargos
like RNA, proteins, lipids, etc., to be shared between the cells
[8, 11]. Johnsen et al. [14] have reviewed well and reported that
how components of successful exosome-based drug delivery can be
performed. Most of the studies showed an approach for loading
therapeutic cargo into exosomes by transfecting the exosome
donor cell to overexpress a certain gene product that the cell will
package into the exosome lumen or membrane for secretion
[15, 16]. Several other studies investigated it by introducing miR-
NAs into exosomes using expression vectors or pre-miRNAs
[15–19]. The possible pathway(s) how exosomes carry the drugs
and target the cancer cells has been indicated in Fig. 1 and the
computational model for the identification of affected site and
recovery of cells has been explored in Fig. 2. Exosomes can be
used as carrier for smart drug or biosensor, mainly due to their
involvement in cell-to-cell communication [20], but also in immu-
nological responses [21] and in rescue from apoptosis [22].
Exosome-mediated miRNA transfer plays an important role in the
radiation responses and intercellular signaling pathway between
irradiated cells and by stander effects [23–25].

Since exosomes can be detected in blood, urine, saliva, and
other biological fluids, the identification of exosomal biomarkers
related to cancer can lead to the generation of novel non-invasive
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methods to follow mutagenic-induced changes [26]. The proposed
use of exosomes as biosensors could be a novel tool for both cancer
detection and therapeutic implementation. There is no understand-
ing of how mutagens can affect the exosomes and exosome-
mediated signaling between tumor cells and their microenviron-
ment, and identifying factors affecting such communication seems
critical for better diagnosis and treatment of human malignancies.

3 Liposomes in Targeting Drug Delivery

Liposomes are tidy bubbles or closed vesicles [27] and this has
similar composition as like cell membrane. In 1906, Ehrlich derived
the concept of a “magic bullet” in respect to liposomes for target-
ing tumor sites [28]. The first study on liposomes as drug carrier
was initiated in 1970 [29], and later in 1974 liposomes were
recommended as drug carriers in cancer chemotherapy. In the last
decade, liposomal systems have well advanced in terms of improved
drug delivery potential for cancer therapy [30–32]. In addition, it
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Fig. 2 Flow chart reflecting the computational approach to find out novel smart drug compounds
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has been reported that liposomes are potentially strong to target
the cancer cells by delivering the drugs of low molecular weight,
proteins, imaging agents, nucleic acids, and peptides [33, 34]. After
the approval of small-molecule therapeutics, liposomes were inves-
tigated to deliver macromolecules such as plasmid DNA, antisense
oligonucleotides, and siRNA to disease-targeted sites. Liposomes
potentially encapsulate both hydrophilic and hydrophobic drugs,
because their membranes are composed of natural and/or synthetic
lipids or amino acid surfactants. Due to this, it has good biocom-
patibility and biodegradability properties and makes it an attractive
carrier for drug delivery. Food and Drug Administration (FDA) has
approved the liposome formulations in the form of Doxil and
DaunoXome (DOX) for cancer therapy [35–37]. Doxil is a brilliant
example of clinical use for anthracycline anticancer agent active
against a wide variety of rigid tumors [38, 39]. For the delivery of
DOX, several researchers have reported new liposomal formula-
tions [40–43], and they are mainly used in “active loading” and
“passive loading” methods, where active loading method has been
reported in majority to achieve small encapsulation efficiencies of
the drug. Several other formulations include Myocet [44], Dau-
noXome [45], Marqibo [46], and DepoCyt [47]. The exact mech-
anism of drug delivery through liposomes is unclear but [45] it has
been suggested that the internalization of drugs like DaunoXome
by cells is via endocytosis. The endolysosomal pathway has a signifi-
cant advantage of targeted intracellular drug delivery because not
only it does endocytosis to allow for macromolecular internaliza-
tion but it also activates receptor and lysosome-specific localization.
Liposomal drug delivery system is very effective and safe for cancer
treatment process because it has the capability of reducing the toxic
side effects of chemotherapeutic agents while enhancing their anti-
tumor efficacy. The possible ways of drug initialization by liposomal
system are presented in Fig. 1.

4 DNA Origami: Advancement in Drug Delivery

The delivery of drug molecules specifically to the tumor site is an
exigent requirement to avoid side effects during cancer therapy
[48]. Several DNA-based nanostructures, namely tetrahedral, ico-
sahedral [49], nanotubes [50–53], squares, and triangles [54], have
been developed recently for in vitro and in vivo drug delivery
applications. Udomprasert and Kangsamaksin [55] reviewed that
DNA Origami could be a novel biological detector of cancer which
plays an important role in cancer therapy. It has a great application
in medical science and biological research for drug delivery system.
DNA origami has been examined as a most promising agent for
drug delivery in cancer therapy [56–61] and as well as a promising
candidate to serve as the next-generation drug delivery vehicle
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[56, 62]. The application of DNA origami is to target the specific
receptor responsible for diseases like neurodegenerative diseases
where it may use receptor proteins of trigeminal sensory neurons,
which are naturally designed to detect a multitude of environmental
stimuli, such as electromagnetic, heat, mechanical, and chemical
factors. These natural detectors are supersensitive by applying sen-
sitizing agents (some kind of carrier) as nanopores constructed by a
DNA origami technique could be used to regulate the entry of
therapeutic drugs into cancer cells. DNA origami nanostructures
possess abilities to enhance efficacies of chemotherapy, reduce
adverse side effects, and even circumvent drug resistance. DNA
origami nanostructures enhanced anticancer activities and circum-
vented drug resistance. Jiang and colleagues [63] reported that
triangular and tubular DNA origami nanostructures with doxoru-
bicin resulted in an increased apoptosis of doxorubicin-resistant
breast cancer cells. This mainly depends on structural variations
which precisely defined nanoscale shapes, uniform sizes, and obvi-
ous biocompatibility. DNA origami shows more impactful action to
target the cancer cells with their size and shape variations. With
shape variations and good biocompatibility, Jiang et al. [63]
reported a drug delivery system based on triangular and tubular
DNA origami nanostructures, whereas Halley et al. [64] synthe-
sized a rod-like DNA origami drug carrier. Figure 1 shows the
overall pathways that how DNA origami can be used as a carrier
or may be directed to treat the cancer cells by targeting through
drug delivery-based channel. Therefore, based on the available
data, we can say that DNA origami is potentially capable of playing
important roles in cancer therapies in the future.

5 Tyrosine as a Smart Drug

Tyrosine is another smart drug, which may play an important role
in the modulation of growth factor signaling in cancer therapy
(Fig. 3). Tyrosine kinase is a type of tumorigenic protein and has
been divided into two groups as receptor tyrosine kinase (RTK) and
non-receptor tyrosine kinase (NRTK). Tyrosine kinases are
enzymes that catalyze the transfer of the γ phosphate group from
adenosine triphosphate to target proteins. Arora and Scholar [65]
have reported that activated forms of these enzymes can cause
increases in tumor cell proliferation and growth, induce antiapop-
totic effects, and promote angiogenesis and metastasis. Further,
RTKs are membrane-spanning cell surface proteins that play
critical roles in the transduction of extracellular signals to the
cytoplasm [66].

The RTKs and NRTKs can be targeted and inhibited by small-
molecule, tyrosine kinase inhibitors (TKIs). The inhibition of RTKs
in neoplastic cells shows promising therapeutic changes by the
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administration of monoclonal antibodies, which interfere RNAs,
and/or small kinase inhibitors and impair cell proliferation and
survival, thereby inducing arrest of cell growth and apoptosis
[67–71]. The ultimate goal of tyrosine is to diagnose cancer by
the drug delivery mechanism as also indicated in Figs. 1 and 2.

Shawver et al. [72] have reported that the Herceptin showed
antitumor activity against breast cancer providing the proof that
RTKs could be used as potential therapeutic targets in cancer ther-
apy. Sierra et al. [73] proposed a functionality of tyrosine that during
tumor progression, the hyperactivation of tyrosine kinases leads to
the continuous activation of downstream signaling cascades that
block cellular apoptosis, promote cellular proliferation, and increase
the nutrient/waste interchange by enhancing angiogenesis.

6 Nanodrug Delivery

Nanotechnology has made a significant impact on clinical thera-
peutics in the last two decades [74]. There are several reports to
show that nanoparticles are useful in cancer treatment and can
further rely on the enhanced permeability and retention (EPR)
effect caused by the leaky tumor for better drug accumulation at
the tumor sites [75]. Nanomedicine for cancer therapy covers
nano-sized drugs and particles which, when injected into the
bloodstream, passively accumulate in tumor tissue through the
leaky tumor vasculature [76–78] known as EPR effect. Nanoparti-
cles have the advantage of targeting cancer by simply being accu-
mulated and entrapped in tumors (passive targeting). A number of
novel technologies based on nanoparticle–DNA binding and their
interactions have been developed and used in molecular diagnosis,
gene therapy, sensing, drug delivery, and artificial implants
[79–83]. These approaches offer an opportunity for the

Fig. 3 2D chemical structure of L-tyrosine (DB00135) and D-tyrosine (DB03839)
obtained from DrugBank Database
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development of efficient and low-cost technologies for disease
diagnosis and DNA detection with high sensitivity
[84, 85]. Meena et al. [86] have investigated that hydroxyapatite
(HAP) nanoparticles (NPs) inhibit the growth of MCF-7 breast
cancer cells as well as induce apoptosis. The authors reported that
HAP NPs induce the production of intracellular reactive oxygen
species and activate p53, which may be responsible for DNA dam-
age and apoptosis in a dose-dependent manner.

The structure of the nanoparticles plays an important role in
targeting the tumor tissues. DNA origami or nanocarriers are one
of the phenomena, which ascertain the specificity of structural
importance with respect to nano-delivery materials, while protect-
ing the drug from premature inactivation during its transport. It
also protects the drug from degradation and reduces the renal
clearance thereby increasing its half-life in the bloodstream. More-
over, it further augments the payload of cytotoxic drugs, improves
the solubility of the insoluble drugs, and allows the controlled
release of the anticancer drugs [87–89].

Generally, nanoparticles exist in three broad categories: organic,
inorganic, and hybrid particles. A polymer-based nanoparticle
comes into the category of organic nanoparticles. Both organic
and inorganic types of nanoparticles, which may act as nanocarrier
for the drug delivery system to target the cells, include carbon
nanotubes, fullerene particles, metallic nanoparticles (gold and sil-
ver nanoparticles), and many metal oxide species. A combination
of organic and inorganic nanomaterials such as peptide- and
DNA-functionalized gold nanoparticles [90] and DNA–carbon
nanotube arrays are termed as hybrid nanoparticles or engineered
nanoparticles. The promising mechanism of nanodrug delivery sys-
tem has been proposed in Fig. 1. Nanoparticles may help the exist-
ing state of medicine in several ways, by providing highly selective
and targeted therapeutics, i.e., with increased efficacy and minimiz-
ing side effects of current therapeutics, with increased efficiency of
diagnostic and prognostic tools and by impacting the development
of drugs.

7 Computational Approach and Smart Drug Designing

Bioinformatics influences new drug design outline. The procedures
of discovery of novel drugs by utilizing bioinformatics techniques
have opened up a new avenue in drug design innovation. In order
to find out the smart drug compounds, the below-mentioned
methods would be helpful.

7.1 Target Disease

Identification

Target distinguishing proof alone may not be adequate keeping
in mind the end goal to accomplish a fruitful treatment of the
disease. Bioinformatics techniques have been discovered to
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computationally screen the potential targets for the drug leads in
order to bind or inhibit the proteins. In the current era of compu-
tational biology, several software and tools are available to predict
the specific targets like TargetHunter, ChEMBL, and many more
reported in Table 1 [91–130]. The therapeutic target database
(TDD) is another example by which we can identify the drug
targets. It is a large annotated database of drugs, cancer drug
targets, and their clinical information. Another plausibility is to
discover different proteins that control the movement of the target
by interacting and forming a complex [131] (Fig. 4). Recently,
Jeon et al. [132] have identified 5169 proteins as putative
non-drug targets by using TDD database searching.

Kesari et al. [133] have reported that the computational eluci-
dation of melatonin in repair system induced by microwave radia-
tion exposure is a useful tool in different types of therapeutic
treatment. Melatonin is a well-known scavenger of ROS which
may participate to reduce the oxidative injury. Melatonin is also a
useful agent for use as a drug for the delivery to target the cells.
Melatonin might use some kind of carriers, like DNA origami,
nanotubes, liposomes, and exosomes, to target some specific cells.
Kesari et al. [133] selected melatonin, which is reported as an
acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)
inhibitor used in the microwave-induced cancer treatment. The
knowledge of BuChE structure is essential for understanding its
high catalytic efficacy and the molecular basis for the recognition of
AChE by other ACh-binding protein (AChE receptors). Therefore,
we have selected this enzyme to see the interaction pattern analysis
of melatonin. The structural interaction by introducing computa-
tional approaches explores the binding/inhibition pattern of mela-
tonin with BuChE enzymes (Fig. 5).

BuChE is known as pseudocholinesterase or non-specific ChE.
These ChEs are highly efficient since they are able to cleave more
than 10,000 molecules of AChE per second thereby rapidly pro-
ducing acetate and choline [134].

7.2 Searching of

Novel Compounds

We have to distinguish and contemplate the lead compounds that
have some action against a disease. These compounds give a begin-
ning stage of refinement of the synthetic/chemical structures.
There are a few diverse bioinformatics techniques to recognize
the lead compound, for example, high-throughput screening
(HTS), virtual screening of structural databases like ZINC [135],
PubChem, PDBeChem, and many more reported in Table 1.

7.3 Identification of

Receptor Biomolecules

Protein structures are a rich source of structural data about families
and superfamilies. It is such distantly evolved proteins that should
be perceived as they are destined to show comparable structure and
capacity [136].
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Table 1
Summary of docking tools and software used for in silico prediction of drugs and targets

S. No. Tool Function Resource Reference

1 BindingDB BindingDB is a public,
web-accessible database of
measured binding affinities,
focusing chiefly on the
interactions of protein
considered to be drug
targets with small, drug-like
molecules

https://www.
bindingdb.org/

Liu et al. [91]

2 BioGRID BioGRID is an interaction
repository with data
compiled through
comprehensive curation
efforts. Our current index is
version 3.4.159 and searches
64,826 publications for
1,548,143 protein and
genetic interactions, 27,785
chemical associations, and
39,028 post-translational
modifications from major
model organism species

https://thebiogrid.
org/

Stark et al. [92]

3 canSAR canSAR is an integrated
knowledge base that brings
together multidisciplinary
data across biology,
chemistry, pharmacology,
structural biology, cellular
networks, and clinical
annotations and applies
machine learning approaches
to provide drug-discovery
useful predictions

http://cansar.icr.ac.
uk/

Tym et al. [93]

4 ChEMBL ChEMBL is an Open Data
database containing binding,
functional, and ADMET
information for a large
number of drug-like
bioactive compounds

https://www.ebi.ac.
uk/chembl/

Gaulton et al.
[94]

5 TargetHunter TargetHunter therefore
provides a promising
alternative to bridge the
knowledge gap between
biology and chemistry, and
significantly boost the
productivity of
chemogenomics researchers
for in silico drug design and
discovery

http://www.cbligand.
org/TargetHunter

Wang et al.
[95]

(continued)
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Table 1
(continued)

S. No. Tool Function Resource Reference

6 DINIES DINIES (Drug–target
Interaction Network
Inference Engine based on
Supervised Analysis) enables
us to predict potential
interactions between drug
molecules and target
proteins, based on drug data
and omics-scale protein data.
The users can use any data as
the input, as long as they are
represented as the
tab-delimited matrices or
profiles

http://www.genome.
jp/tools/dinies/

Yamanishi et al.
[96]

7 ECOdrug The ECOdrug database
contains information on the
Evolutionary Conservation
Of human Drug targets in
over 600 eukaryotic species.
The interface allows users to
identify human drug targets
to 1000+ legacy drugs and
explore integrated
orthologue predictions for
the drug targets,
transparently showing the
confidence in the predictions
both across methods and
taxonomic groups

http://www.ecodrug.
org/

Verbruggen
et al. [97]

8 HitPick A web server for identification
of hits in high-throughput
chemical screenings and
prediction of their molecular
targets

http://mips.
helmholtz-
muenchen.de/
proj/hitpick

Liu et al. [98]

9 iDrug-Target The web server for predicting
the interaction between
GPCRs and drugs in cellular
networking

www.jci-bioinfo.cn/
iDrug-Target/

Xuan et al. [99]

10 idTarget A web server for identifying
biomolecular targets of small
chemical molecules with
robust scoring functions and
a divide-and-conquer
docking approach.
Identification of
biomolecular targets of small

idtarget.rcas.sinica.
edu.tw/

Wang et al.
[100]
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Table 1
(continued)

S. No. Tool Function Resource Reference

chemical molecules is
essential for unraveling their
underlying causes of actions
at the molecular level

11 IUPHAR/BPS Provides expert-curated
molecular interactions
between successful and
potential drugs and their
targets in the human
genome

www.guidetopharma
cology.org/

Southan et al.
[101]

12 Open Targets Open Targets is a
public–private initiative to
generate evidence on the
validity of therapeutic targets
based on genome-scale
experiments and analysis

https://www.
opentargets.org/

Koscielny et al.
[102]

13 PharmMapper An updated integrated
pharmacophore matching
platform with statistical
method for potential target
identification

lilab.ecust.edu.cn/
pharmmapper/
index.php

Wang et al.
[103]

14 SuperDRUG2 Collection of drugs
(containing 4587 active
pharmaceutical ingredients)
which include small
molecules, biological
products, and other drugs.
The database is intended to
serve as a one-stop resource
providing data on: chemical
structures, regulatory
details, indications, drug
targets, side effects,
physicochemical properties,
pharmacokinetics, and
drug–drug interactions

cheminfo.charite.de/
superdrug2

Siramshetty
et al. [104]

15 SwissTargetPrediction Predict the targets of a small
molecule. Using a
combination of 2D and 3D
similarity measures, it
compares the query
molecule to a library of
280,000 compounds active
on more than 2000 targets
of five different organisms

www.swisstarget
prediction.ch/

Gfeller et al.
[105]

(continued)

540 Kavindra Kumar Kesari et al.

http://www.guidetopharmacology.org
http://www.guidetopharmacology.org
https://www.opentargets.org
https://www.opentargets.org
http://lilab.ecust.edu.cn/pharmmapper/index.php
http://lilab.ecust.edu.cn/pharmmapper/index.php
http://lilab.ecust.edu.cn/pharmmapper/index.php
http://cheminfo.charite.de/superdrug2
http://cheminfo.charite.de/superdrug2
http://www.swisstargetprediction.ch
http://www.swisstargetprediction.ch


Table 1
(continued)

S. No. Tool Function Resource Reference

16 TargetNet Drug–target interactions
(DTIs) are central to current
drug-discovery processes
and public health fields.
Analyzing the DTI profiling
of the drugs helps to infer
drug indications, adverse
drug reactions, drug–drug
interactions, and drug mode
of actions

http://targetnet.
scbdd.com

Yao et al. [106]

17 TTD Therapeutic Target Database is
a resource for facilitating
bench-to-clinic research of
targeted therapeutics.
Current coverage for
searches based on similarities
to the input query includes
interconnected information
on 3100 target and 34,000
drugs and drug-like
compounds, consisting in
part of 2500 approved drugs
and 18,900 investigational
agents

http://xin.cz3.nus.
edu.sg/group/
ttd/ttd.asp

Chen et al.
[107]

Ligand database

1 PubChem Collect information on
chemical structures,
identifiers, chemical and
physical properties,
biological activities, patents,
health, safety, toxicity data,
and many others

https://pubchem.
ncbi.nlm.nih.gov/

Kim et al.
[108]

2 ChemSpider ChemSpider is a free chemical
structure database providing
fast text and structure search
access to over 63 million
structures from hundreds of
data sources

http://www.
chemspider.com/

Pence and
Williams
[109]

3 DrugBank The DrugBank database is a
unique bioinformatics and
cheminformatics resource
that combines detailed drug
data with comprehensive
drug target information

https://www.
drugbank.ca/

Wishart et al.
[110]
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Table 1
(continued)

S. No. Tool Function Resource Reference

4 NCI The purpose of this service is to
provide structures, data,
tools, programs, and other
useful information to the
public. In addition to
current and former members
of the CADD Group, many
others, both individuals and
companies or their
representatives, have
contributed to these services

https://cactus.nci.
nih.gov/ncidb2.2/

Voigt et al.
[111]

5 ZINC A free database of
commercially available
compounds for virtual
screening. ZINC contains
over 35 million purchasable
compounds in ready-to-
dock, 3D formats

http://zinc.docking.
org/

Irwin et al.
[112]

6 PDBeChem Dictionary of chemical
components (ligands, small
molecules, and monomers)
referred to in PDB entries
and maintained by wwPDB.
It provides comprehensive
search facilities for finding a
particular component, or
determining components in
structure entries or vice versa

http://www.ebi.ac.
uk/pdbe-srv/
pdbechem/

Dimitropoulos
et al. [113]

7 PDBbind The PDBbind database is
designed to provide a
collection of experimentally
measured binding affinity
data (Kd, Ki, and IC50)
exclusively for the
protein–ligand complexes
available in the Protein Data
Bank (PDB).

http://sw16.im.med.
umich.edu/
databases/
pdbbind/index.jsp

Wang et al.
[114, 115]

8 SuperDRUG2 SuperDRUG2 database is a
unique, one-stop resource
for approved/marketed
drugs, containing more than
4600 active pharmaceutical
ingredients. Also, it contains
information related to drugs
with regulatory details,
chemical structures (2D and

http://cheminfo.
charite.de/
superdrug2/

Siramshetty
et al. [104]
and Goede
et al. [116]
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Table 1
(continued)

S. No. Tool Function Resource Reference

3D), dosage, biological
targets, physicochemical
properties, external
identifiers, side effects, and
pharmacokinetic data

Pathways database

1 BRENDA BRENDA is an information
system representing one of
the most comprehensive
enzyme repositories

https://www.brenda-
enzymes.org/

Schomburg
et al. [117]

2 Reactome REACTOME is an open-
source, open access,
manually curated, and peer-
reviewed pathway database.
Our goal is to provide
intuitive bioinformatics
tools for the visualization,
interpretation, and analysis
of pathway knowledge to
support basic and clinical
research, genome analysis,
modeling, systems biology,
and education

https://reactome.
org/

Fabregat et al.
[118] and
Milacic et al.
[119]

3 KEGG KEGG is a database resource
for understanding high-level
functions and utilities of the
biological system, such as
the cell, the organism, and
the ecosystem, from
molecular-level information,
especially large-scale
molecular datasets generated
by genome sequencing and
other high-throughput
experimental technologies

http://www.genome.
jp/kegg/

Kanehisa and
Goto [120]

4 PANTHER PANTHER Pathway consists
of over 177, primarily
signaling, pathways, each
with subfamilies and protein
sequences mapped to
individual pathway
components

http://www.
pantherdb.org/
pathway/

Mi et al. [121]
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Table 1
(continued)

S. No. Tool Function Resource Reference

Docking and drug design tools

1 AutoDock Vina AutoDock Vina is an open-
source program for doing
molecular docking

http://vina.scripps.
edu/

Trott and
Olson [122]

2 AutoDock AutoDock is a suite of
automated docking tools. It
is designed to predict how
small molecules, such as
substrates or drug
candidates, bind to a
receptor of known 3D
structure

http://autodock.
scripps.edu/

Morris et al.
[141]

3 DockingServer DockingServer offers a
web-based, easy to use
interface that handles all
aspects of molecular docking
from ligand and protein
setup

https://www.
dockingserver.
com/web

Bikadi and
Hazai [123]

4 Click-Docking Predicts the binding
orientation and affinity of a
ligand to a target

https://mcule.com/
apps/1-click-
docking/

NA

5 GLID Glide reliably finds the correct
binding modes for a large set
of test cases. It outperforms
other docking programs in
achieving lower RMS
deviations from native
co-crystallized structures

https://www.
schrodinger.com/
glide

Halgren et al.
[124]

6 FlexX Best enrichment tool for
structure-based drug design

https://www.
biosolveit.de/
FlexX/

Rarey et al.
[125]

7 GOLD GOLD is a program for
calculating the docking
modes of small molecules in
protein-binding sites and is
provided as part of the
GOLD Suite, a package of
programs for structure
visualization and
manipulation (Hermes), for
protein–ligand docking
(GOLD) and for post-
processing (GoldMine) and
visualization of docking
results

https://www.ccdc.
cam.ac.uk/
solutions/csd-
discovery/
components/
gold/

Jones et al.
[126]
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Table 1
(continued)

S. No. Tool Function Resource Reference

8 ICM-DOCK Provides a unique set of tools
for accurate individual
ligand-protein docking,
peptide–protein docking,
and protein–protein docking

http://www.molsoft.
com/docking.html

Abagyan et al.
[127]

Physicochemical properties of prediction software

1 PhysChem and
ADME-TOX

The platform offers a uniform
interface for the prediction
of ADME, toxicological, and
physicochemical property
endpoints and offers a single
interface for the analysis and
interpretation of predicted
data

http://www.acdlabs.
com/products/
percepta/
physchem_adme_
tox/

ACD [128]

2 SwissADME A free web tool to evaluate
pharmacokinetics, drug-
likeness, and medicinal
chemistry friendliness of
small molecules

www.swissadme.ch/ Daina et al.
[129]

3 ChemAxon Physicochemical properties of
the drug molecule

https://chemaxon.
com/products/
calculators-and-
predictors

NA

4 Cyprotex Cyprotex offers a range of
different physicochemical
profiling screens including
turbidimetric and
thermodynamic solubility,
chemical stability, pKa, and
lipophilicity (log P and
log D). Cyprotex has
partnered with Sirius
Analytical to provide pKa,
log P, and dissolution studies
using their SiriusT3
technology

http://www.cyprotex.
com/
physicochemical
profiling

Cyprotex
Discovery
Ltd. (CDL)
[130]
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If we have a better idea after analysis of the available data
related to disease that a drug must tie to a specific spot on a
specific protein or nucleotide, at that point a drug can be carefully
fit to tie at that site. Bioinformaticians regularly demonstrated a
few distinct methods like network and pathway analyses using
KEGG (Kyoto Encyclopedia of Genes and Genome) database,
Reactome Database, BRENDA database, and many others
(Table 1). This could also test a huge number of compounds
from a database that have accessible structures. The study of
Klahan et al. [137] shows that authors have identified 86 differen-
tially expressed genes, including 37 downregulated genes and
49 upregulated genes in lymphovascular invasion-positive patients
using pathways analysis method. Recently, Zhu et al. [138] have
investigated miR-542-5p as a predictive biomarker and potential
target for therapy of breast cancer patients after deep mining of the
Gene Expression Omnibus (GEO) database.

Fig. 4 Schematic diagram shows two proteins whose complexes were obtained
from the HDOCK server (http://hdock.phys.hust.edu.cn/) after performing
protein–protein interaction

Fig. 5 3D molecular interaction visualization of melatonin with
butyrylcholinesterase (BuChE). Graphics generated by Discovery Studio
Visualizer 4.5
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7.4 Rational Drug

Design Tools

Rational drug design is utilized as a part of the biopharmaceutical
research to find out the possibilities to develop a new drug com-
pound [139]. It utilizes an assortment of computational strategies
to distinguish novel compounds, plan drug compounds for selec-
tivity, adequacy, and safety, and form drug compounds into clinical
trial objects. These strategies fall into a few common classifica-
tions—structure-based drug design, ligand-based drug design out-
line, and homology modeling approach, relying upon how much
data is accessible about drug targets and potential novel drug
compounds [140]. The software packages like AutoDock and
AutoDock Vina tool provided by Molecular Graphics Laboratory
(MGL) of the Scripps Research Institute can perform molecular
interaction analysis between biomacromolecules and drug com-
pounds or chemical compounds [122, 141]. Also, online molecular
interaction tools are available where researchers can easily perform
molecular interaction analysis, for example, Docking Server. Many
commercial software packages are available for the complete rela-
tional drug design, e.g., FlexX, GLID, GOLD, ICM-Dock, Lead
Finder, etc. (Table 1). The in silico study done by Gao et al. [142]
reveals that the selected compound M7594_0037 in their compu-
tational analysis exhibited potent anticancer activities against HeLa,
A549, and MCF-7 cell lines.

7.5 Drug Compound

Refinement

The developed leads compounds using computational and wet lab
methods for inspecting the atomic structures to figure out which
perspectives are in charge of both the drug compound action and
the adverse effects. Quantitative Structure–Activity Relationships
(QSAR) can be utilized to discover which part(s) of the molecule
associates well with the drug activity or adverse symptoms
[143]. The identification of useful functional group(s) in the com-
pound is important keeping in mind the end goal to refine the drug
leads.

7.6 Detection of

Physicochemical

Properties of Drugs

Physicochemical properties of a drug, for example, lipophilicity,
dissolvability, pKa, hydrogen holding, and porousness, importantly
affect its pharmacokinetic properties and metabolic destiny in the
body [144]. The capacity to get a drug to the right place of the
molecular system is a critical factor in its strength. In a more refined
way, there is a persistent trade of data between the analysts doing
QSAR and ADME-Tox studies, synthesis, and testing [145]. Some
computational methods are eligible to find out the physicochemical
properties of compounds like SwissADME, ChemAxon, Cyprotex,
etc. (Table 1). These methods are utilized regularly and exception-
ally effective since they may not depend on the biomolecular prem-
ise of the disease which can be extremely hard to decide.

7.7 Drug Validation Once a drug compound has appeared to be viable by an underlying
assay procedure, vigorous testing must be conducted prior to be
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given to human patients [146]. Preclinical animal model testing is
essential at this stage. Finally, the drug compounds, which are
deemed appropriate at this stage, are further tested to clinical trials.
In the clinical trials, additional effects might appear and human
measurements of dosages are finally determined [147].

8 Multitarget Drug Design

In addition to the above discussions on networking of smart drugs
and targets, we mention here about another advanced framework
of multitarget drug design, which plays an important role in
several cancer or neurological diseases like Alzheimer’s disease
[148]. There are several methods which may participate to protect
the cells by multitargating with designed drugs. DNA origami is
one of the best examples of a designed drug target. However, a
positive approach of computational methods in multitarget drug
design is surplus for future research [149]. Target-based drug
discovery has successfully produced target-specific medicines for
cancer, inflammation, diabetes, and central nervous system disor-
ders. In addition, the multitarget drug-design strategy has emerged
to address the complexity of the disease networks. Zhang et al.
[149] reported that the complexity of disease-related molecular
networks, which is robust with many redundant pathways, comes
from systemic pathways of multidrug targets. The developments in
single-target drugs may not always induce the desired effects to the
entire biological system even if they successfully inhibit or activate a
specific target [150]. Moreover, the intricacy of the ongoing incur-
able pathologies has indicated that such single-target drugs are
inadequate to accomplish desirable therapeutic effects in complex
diseases [151, 152]. More recently, the multitarget drug-design
concept has been proposed by researchers particularly for the com-
plex diseases. Network-based approaches have been largely used to
integrate, analyze, and visualize the available knowledge on a dis-
ease. Moreover, combining different types of information (e.g.,
drug interactions, and biological signaling pathways) into network
models may help to better understand the molecular mechanism of
drug actions and to investigate potential drug therapies. Vatali et al.
[153] suggested an approach to the case of Triple Negative Breast
Cancer (TNBC), a subtype of breast cancer whose biology is poorly
understood and that lacks of specific molecular targets. Their “in-
silico” findings have been confirmed by a number of in vitro experi-
ments, whose results demonstrated the ability of the method to
select candidates for drug repurposing. Therefore, it can be sum-
marized that the multitargeted drug designing has great future
perspectives towards deadly and complex diseases.
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9 Conclusion and Future Prospective

The huge level of information created straightforwardly by the
drug-discovery process that have turned out to be openly accessible
by the scientific community joined with the disease-based informa-
tion. Through an implication of database or organization, compu-
tational methodologies connecting chemical and molecular level of
disease-based information have been explored. Imaginative bioin-
formatics approaches are as of now affecting the disclosure, preclini-
cal, and clinical periods of the drug revelation process. Furthermore,
the difficulties faced by the pharmaceutical industry imply that it is
getting noticeably urgent to put additional resources into the bio-
informatics assets required to help and facilitate translational drug
discovery and revelation. Methodologies include:

1. The advancement of databases and information stockrooms that
can file, keep up, and incorporate a lot of drug information
disclosure and biomedical information as of now being created.

2. The improvement of vigorous data mining algorithms to
empower the examination of huge and complex datasets.

3. Advancement of software to empower the in vivo or in vitro
drug discovery for researchers to effortlessly get to and decipher
this information.

4. Formal and casual administration systems that empower bioin-
formaticians to connect up and gain from each other.

These kind of attempts will empower a superior comprehension
of how we can utilize genomics and other “omic” ways to deal with
group of disease, enhance, analyze, and educate new ways to deal
with new chemical compounds or smart drug repositioning. They
will enable us to recognize infection and disease biomarkers and
hereditary variations which connect well with patients’ data analysis
results, and utilize them to enhance remedial methodologies.
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Tumor targeting using liposomal antineoplas-
tic drugs. Int J Nanomedicine 3(1):21–29

550 Kavindra Kumar Kesari et al.



31. Elbayoumi T, Torchilin V (2010) Current
trends in liposome research. In: Weissig V
(ed) Liposomes. Humana Press, Totowa, NJ,
pp 1–27

32. Sawant RR, Torchilin VP (2010) Liposomes
as ‘smart’ pharmaceutical nanocarriers. Soft
Matter 6(17):4026–4044

33. Laouini A et al (2012) Preparation, character-
ization and applications of liposomes: state of
the art. J Colloid Sci Biotechnol 1
(2):147–168

34. Lian T, Ho RJ (2001) Trends and develop-
ments in liposome drug delivery systems.
J Pharm Sci 90(6):667–680

35. Hofheinz RD (2005) Liposomal encapsulated
anti-cancer drugs. Anti-Cancer Drugs 16
(7):691–707

36. Immordino ML, Dosio F, Cattel L (2006)
Stealth liposomes: review of the basic science,
rationale, and clinical applications, existing
and potential. Int J Nanomed 1(3):297–315

37. Barenholz YC (2012) Doxil®—the first
FDA-approved nano-drug: lessons learned.
J Control Release 160(2):117–134

38. Herman EH, Rahman A, Ferrans VJ, Vick JA,
Schein PS (1983) Preventionof chronic doxo-
rubicin cardiotoxicity in beagles by liposoma-
lencapsulation. Cancer Res 43:5427–5432

39. van Hoesel QG, Steerenberg PA, Crommelin
DJ, van Dijk A, van Oort W, Klein S, Douze
JM, de Wildt DJ, Hillen FC (1984) Reduced
cardiotoxicity and nephrotoxicity with preser-
vation of antitumor activity of doxorubicin
entrapped in stable liposomes in the
LOU/M Wsl rat. Cancer Res 44:3698–3705

40. Silva J et al (2011) DODAB:monoolein-
based lipoplexes as non-viral vectors for trans-
fection of mammalian cells. Biochim Biophys
Acta Biomembr 1808(10):2440–2449

41. Silva JPN et al (2014) Tunable pDNA/
DODAB:MO lipoplexes: the effect of incuba-
tion temperature on pDNA/DODAB:MO
lipoplexes structure and transfection effi-
ciency. Colloids Surf B: Biointerfaces
121:371–379

42. da Rocha MEB (2014) Desenvolvimento de
uma formulação lipossomal para entrega de
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147. Fürdös I, Fazekas J, Singer J, Jensen-Jarolim
E (2015) Translating clinical trials from
human to veterinary oncology and back.
J Transl Med 13:265

148. Simoni E, Bartolini M, Abu IF, Blockley A,
Gotti C, Bottegoni G, Caporaso R,
Bergamini C, Andrisano V, Cavalli A, Mellor
IR, Minarini A, Rosini M (2017) Multitarget
drug design strategy in Alzheimer’s disease:
focus on cholinergic transmission and amy-
loid-β aggregation. Future Med Chem 9
(10):953–963

149. Zhang W, Pei J, Lai L (2017) Computational
multitarget drug design. J Chem Inf Model
57(3):403–412

150. Lu J-J, Pan W, Hu Y-J, Wang Y-T (2012)
Multi-target drugs: the trend of drug research
and development. PLoS One 7(6):e40262

151. Bolognesi ML (2013) Polypharmacology in a
single drug: multitarget drugs. Curr Med
Chem 20(13):1639–1645

152. Bolognesi ML, Cavalli A (2016) Multitarget
drug discovery and polypharmacology.
ChemMedChem 11(12):1190–1192

153. Vitali F, Cohen LD, Demartini A, Amato A,
Eterno V, Zambelli A et al (2016) A network-
based data integration approach to support
drug repurposing and multi-target therapies
in triple negative breast cancer. PLoS One 11
(9):e0162407

Networking of Smart Drugs: A Chem-Bioinformatic Approach to Cancer Treatment 555

https://doi.org/10.1093/nar/gkx407
https://doi.org/10.1007/978-3-319-46248-6_2
https://doi.org/10.1007/978-3-319-46248-6_2
https://doi.org/10.1021/jm4004285
https://doi.org/10.1021/jm4004285


INDEX

A

Absorption, distribution, metabolism, excretion and

toxicity (ADME/Tox) ......................... 54, 64, 76,

94, 96, 99, 102, 160, 161, 177, 178, 214, 219,

220, 238, 242, 276, 424, 429, 437, 453, 472, 538

Acetylcholine (AChE)........................... 73, 96, 101, 158,

203, 206–208, 216–218, 234, 261, 263, 537

Acetylcholinesterase .............................. 73, 96, 101, 158,

203, 216, 218, 234, 261, 263, 537

Activity cliffs ............................................................ 12, 19

Activity landscapes ............................................ 18–19, 57

Activity networks................................................... 54, 197

ADME/Tox, see Absorption, distribution,

metabolism, excretion and toxicity

Alzheimer’s disease (AD)............................... vii, 52, 157,

158, 203–242, 255–340, 367–382, 428, 429, 548

AMBER ................................. 38, 45, 451, 452, 474–476

AMBER force field....................................... 38, 437, 475

Amyloid ..................................................... 157, 210, 213,

235, 257, 259, 260, 273, 279, 331, 372, 379, 381

Amyloid β-A4 protein .................................................... 97

Amyotrophic lateral sclerosis (ALS)................... 157, 158

Antiamyloidogenic .................... 174, 373, 376–378, 429

Antigen-presenting cells (APCs) ................................. 395

Antituberculosis ............................... 108, 110, 116, 119,

129, 133–135, 137, 139, 140, 142, 143

Artificial intelligence methods....................................... 64

Artificial neural networks (ANN).................... 29, 40, 59,

61–63, 161, 163

Assembly problem.......................................................... 64

Astemizole ...................................................................... 52

Atomic force microscopy ............................................. 378

AutoDock ................................... 34, 65, 66, 70, 71, 166,

192, 429–433, 437, 450, 474, 544, 547

AutoDock-Vina ......................................... 33–37, 66, 67,

429, 473, 474, 544, 547

B

BACE1, see β-secretase-1 inhibitors (BACE1)

Bayesian methods........................................................... 61

Bayesian QSAR............................................................... 62

Benzimidazoles................................... 138–140, 143, 331

β-amyloid ................................................... 157, 158, 211,

272, 273, 287, 288, 295, 305, 308, 324, 327,

328, 428

β-secretase-1 inhibitors (BACE1) ..................... 173–175,

213–216, 225, 232, 235, 240, 260, 261, 265,

266, 268, 279, 308, 310, 315, 317, 318, 369,

370, 372–375, 379, 428, 429

β-secretases .......................................... 69, 213, 214, 216,
257, 260, 261, 369

Binary kernel discrimination .................................. 29, 61

Binding affinity.................................... 31, 40, 64, 71–73,

139, 267, 325, 367, 375, 386, 450–453, 476,

490, 540

Binding pocket ............................................ 34, 407, 470,

473, 474, 476, 489, 490, 494

BINDNET...................................................................... 30

Bioactive .............................................. 54, 56, 57, 59, 62,

95, 165, 195, 205, 256, 260, 261, 297, 305, 340,

360, 422, 538

Biological receptors................................................. 39, 46

Biphasic partition system ............................................... 40

Blind docking ........................................... 64, 65, 67, 165

B-Raf ............................................................. vii, 355–364,

446, 448, 449, 518

Breaking point..................................................... 376, 377

Breast cancer........................................ vii, 429, 443–453,

505–512, 518, 522, 523, 534, 535, 546, 548

Butyrylcholinesterase ......................................... 170, 218,

262, 263, 537, 546

C

CADD, see Computer-aided drug design

Cancer........................................... 27, 52, 134, 188, 255,

368, 428, 443–453, 466, 488, 505–512, 518,

529–549

CANDO .................................................................. 33, 35

Cardiac hERG channel .................................................. 52

Central nervous system (CNS)............................ 52, 157,

206, 257, 369, 518, 548

CFP10-ESAT6 ................................... 129–130, 139, 143

Chalcones ................................................... 135–137, 143

Charge assignment......................................................... 32

CHARMM ................................................... 45, 432, 451

CHEMBL....................................................... 4, 169, 172,

195, 205, 214, 406, 413, 437, 521, 537, 538

Chemical databases ................................................ vi, 3, 4,

7, 17, 98, 101, 160, 165, 167, 173, 425

Chemical genomics .......................................................... 7

Kunal Roy (ed.), Multi-Target Drug Design Using Chem-Bioinformatic Approaches, Methods in Pharmacology and Toxicology,
https://doi.org/10.1007/978-1-4939-8733-7, © Springer Science+Business Media, LLC, part of Springer Nature 2019

557

https://doi.org/10.1007/978-1-4939-8733-7


Chemical scaffolding clustering .................................... 56

Chemical space .......................................... vi, 4, 7, 15–19,

62, 78, 162, 195, 382, 406, 421, 425, 439, 470

Cheminformatics.................. vi, 3–22, 39, 172, 437, 541

ChemMaps ............................................................... 16–18

Chemogenomic....................... v, 60, 167, 176, 189, 538

Chemometrics ................................... 143, 156, 161, 167

Cholinesterases ............................................. 94, 216–224,

242, 272, 276, 292, 295, 308, 318, 334

Classical force field potential ......................................... 37

Classical mechanics ........................................................ 42

Cluspro ........................................................................... 34

Combination therapy......................................... 358, 423,

424, 444–446, 465, 466, 478

Comparative molecular field analysis (CoMFA) ......... 39,

60, 162, 206, 207

Comparative molecular similarity indices analysis

(CoMSIA)......................................................... 162

Compound database ............................................ 4–7, 11,

17, 20, 21, 359–360, 386, 450

Computational chemistry .............................................. 53

Computational docking................................ vii, 419–439

Computer-aided drug design (CADD) ................. 53–55,

57, 63, 80, 108, 110, 156, 215, 500, 542

Conformational changes........................................ 42, 45,

70, 71, 141, 174, 413

Conformational search...................................... 31, 65, 71

Consensus diversity plot (CDP).............................. 10–11

Co-receptor blockade .................................................. 519

Coulomb’s electrostatic potential ................................. 43

Covalent binding............................................. 31, 37, 175

Cytochrome P450 monooxygenase (CYP) ...... 124–125,

137, 193, 421, 425

D

Data-driven........................................... 55, 405, 406, 521

Data-mining ....................................................... 4, 30, 40,

56, 60, 81, 82, 406–409, 413, 549

Deazaflavin-dependent nitroreductase

(Ddn) .............................................. 114–116, 137

Decision trees (DT) .......................................... 29, 61, 62

Deep learning ............................................................ vi, 64

De novo

design...................... 63, 64, 68, 75, 80, 98, 470, 472

methods ............................................ 63–64, 470–472

Density functional theory (DFT).................................. 38

Dereplication .............................................. 189, 194–195

Derringer’s desirability function ................................... 63

Dielectric screening constant......................................... 44

Dihydrofolate reductase (DHFR) ............. 131–133, 425

Dirty compounds ........................................................... 52

Discovery Studio Visualizer.................................. 36, 546

Disease pathway ........................................ v, 51, 367, 488

DNADock ...................................................................... 34

DNA gyrase ....................................... 130–131, 135, 142,

143, 463, 466

DNA minor groove........................................................ 42

DNA molecule ............................................................... 32

DNA Origami .................................... 530, 534–537, 548

DOCK ................................................................... 34, 450

DOCK BLASTER.......................................................... 34

Docking

box ............................................................................ 32

protocol ......................................... 31, 32, 42, 66, 71,

362, 364, 438

Donepezil .................................................. 158, 169–172,

174, 219, 220, 227, 229, 231, 232, 235, 238,

240, 242, 267–286, 319, 331, 334, 336, 340

Dopaminergic receptor ................................................ 169

DOT ............................................................................... 34

DprE1 ................................................. 112–114, 134, 143

Drug-based similarity inference (DBSI) ....................... 30

Drug discovery ................................................. v–viii, 3, 7,

21, 22, 27, 29, 39, 46, 51–55, 58, 63, 70, 77, 80,

94, 107–143, 156, 176, 188, 189, 197, 204, 308,

355, 386, 407, 421, 427, 439, 449, 465, 468,

487, 488, 500, 518, 519, 526, 538, 541, 549

Druglikeness ....................................................... 7, 94, 95,

102, 160, 428, 429, 434, 473, 545

Drug repurposing .................................................. viii, 28,

35, 97, 187, 421, 426, 437, 439, 488, 525, 548

Drug targets ......................................................... vi, 3, 30,

31, 33, 51, 53, 56, 70, 71, 73, 108, 206, 207, 317,

408, 426, 448–450, 467, 517–521, 530,

538–541, 547

D-tools................................................................. 4, 11, 12

Dual inhibitors ...................................................... vii, 175,

190, 191, 232, 265, 298, 334, 355, 360, 363,

421, 424, 429–436, 445–449, 452, 453

Dynamic docking ........................................................... 70

Dynamic systems ............................................................ 32

E

Efficacy................................................... 5, 28, 52, 53, 80,

82, 141, 187, 188, 196, 211, 256, 261, 290, 355,

356, 367, 405, 413, 421, 463, 467, 488, 506,

523, 525, 530, 533, 536, 537

Electrostatic interactions ......................... 37, 43–45, 242

Emerging chemical patterns (ECP) .............................. 62

Ensemble docking............................................ 65, 68–70,

165, 374, 375, 439

Ensemble linking............................................................ 64

Ensemble pharmacophore ........................... vii, 386, 387,

389–392

EpiTOP....................................................... 396, 402–403

Estrogen ................................................. 6, 210–212, 444

Exosomes.................................................... 530–533, 537

Extracellular vesicles (ECV) ........................................ 531

558
MULTI-TARGET DRUG DESIGN USING CHEM-BIOINFORMATIC APPROACHES

Index



F

Feature net (FN) ............................................................ 60

Fenfluramine................................................................... 52

Fibrils ................................................ 210, 216, 222, 229,

234, 235, 239, 272, 307, 308, 378

Fingerprints for ligands and proteins (FLAP) ............ 166

Focused library .................................................. 7, 63, 360

Force field ............................ 33, 37, 38, 43, 45, 72, 361,

374, 391, 412, 432, 437, 451, 474, 475

FORECASTER Suite..................................................... 35

Fragment-based drug design................................... 95–97

Framework combination ....................... 57, 77, 370–372

Free energy ........................................ 31, 66, 70–72, 137,

166, 451, 452, 469, 472, 476

Free energy landscape (FEL)..................... 469, 472, 476

G

GEMDOCK .......................................................... 35, 438

Gene silencing ..................................................... 506, 507

Genomics.............................................................. 30, 506,

518, 522, 549

Global optimal solution................................................. 62

Global Range Molecular Matching

(GRAMM) .......................................................... 34

Glutamine synthetase (GS)........................ 127–128, 143

Glutaminyl cyclase (GC).............................................. 210

Glycogen synthase kinase (GSK).................... 73, 97, 318

gOpenMol ...................................................................... 46

Grepafloxacin.................................................................. 52

GRid Independent Descriptors (GRIND) ................... 60

GROMACS ................................................. 45, 388, 391,

451, 452, 474–477

GROMOS ............................................ 45, 451, 474, 475

Group based QSAR (GQSAR)...................................... 62

H

Hesperidin .......................................................... 369, 375,

377–381

Hex Protein Docking..................................................... 34

High throughput screening (HTS) ........................... 196,

205, 329, 450, 537

Histamine N-methyltransferase (HMT) ..................... 172

Histamine 3 receptor (H3R) ....................................... 172

HLA class II binding prediction ................................. 402

HLA-DP proteins ...................................... 396–398, 401

Hologram QSAR ......................................................... 174

Hsp90 ................................................... vii, 355–364, 429

Human biology .............................................................. 29

Huntington’s disease (HD)........................................ 155,

157–159, 168, 177

Hybrid QM-MM method ............................................. 37

5-Hydroxytryptamine receptor ................................... 170

Hyphenated methods .............................................. 37–39

I

Induced fit docking........................................................ 70

Inducible nitric oxide synthase.................................... 170

Infectious diseases ........................................ 52, 422–424,

426, 429, 439, 460, 488

InhA................................................... 122–124, 136, 139,

142, 143, 463, 466, 473, 474

In silico .................................................. vi, vii, 53–55, 62,

64, 80–82, 94, 98, 110, 111, 143, 156, 160, 161,

167–169, 177, 178, 204, 208, 214, 222, 233,

235, 237–239, 386, 406, 424, 428, 466, 473,

521, 538, 547

In silico approach ......................................... 40, 231, 386

Intermolecular interactions ............................ 37, 46, 165

INVDOCK................................................................... 166

Inverse docking .............................. v, 100, 166, 176, 382

In vitro ...................................................... vii, 52, 82, 115,

127, 134, 135, 139, 143, 168, 172, 175, 188,

189, 196, 209, 210, 221–223, 225–227, 229,

231–236, 238, 240, 242, 262, 263, 265, 272,

276, 278, 280, 285, 289, 290, 293, 296, 298,

299, 301, 302, 308, 313, 317, 321, 331, 333,

335, 362, 378, 452, 453, 477, 520, 523, 533,

548, 549

In vivo .................................................. vii, viii, 52, 56, 82,

196, 206, 210, 262, 278, 280, 301, 302, 308,

310, 327, 452, 453, 477, 517–522, 525, 526,

532, 533, 549

Isocitrate lyase .................................... 126–127, 141, 143

I-TASSER ....................................................................... 33

Iterations......................................................................... 32

K

Kernels ............................................................................ 60

k-nearest neighbor (kNN) .............................. 29, 61, 162

KNIME............................................................... 3–5, 7, 9,

12, 15, 406, 407

KNIME workflow ........................................ 11, 408, 409

Knowledge-based lead generation ................................ 57

L

Lennard-Jones (LJ) potential ........................................ 42

Ligand-based .................................................... 28, 30, 31,

55, 74, 94–101, 160, 164, 165, 173, 174, 191,

390, 405, 409, 428, 470–472, 547

approaches ................................................................... v

design...................................................................... 405

virtual screening ....................................................... 28

Ligand-based drug design (LBDD)................... 160, 547

Ligand centric................................................................. 55

Ligand efficiency (LE) ...................... 214, 235, 434, 435

Ligand similarity............................................................. 30

Ligand-target docking ................................................... 31

MULTI-TARGET DRUG DESIGN USING CHEM-BIOINFORMATIC APPROACHES

Index 559



Linear discriminant analysis (LDA)....................... 28, 29,

40, 59, 61–63, 161, 163, 169

‘Linked,’ ‘fused’ or ‘merged’ framework...................... 57

Logistic regression (LR) ................................................ 61

M

Machine learning....................................... 19–21, 28, 40,

55, 68, 72, 82, 98, 161, 163, 168, 192–193, 196,

382, 407, 409, 471, 538

methods ........................................................... 98, 471

tools ................................................................. 40, 163

Macromolecules ............................................... 29, 31, 34,

35, 40, 140, 431, 436, 439, 474, 533, 547

Major histocompatibility complex (MHC) ................ 395

Malaria ................................... 28, 73, 188, 419–439, 466

MARCH-INSIDE (MI) ............................ 40, 59, 60, 62

Markov chain........................................................... 62, 63

MARkovian CHemicals IN SIlico Design.................... 62

Memoquin ................................. 159, 261–263, 308, 309

Merged pharmacophore .................... 386–389, 392, 427

Metabolic pathway ....................................... 30, 113, 126

Micro RNAs (miRNAs) ...................................... 506, 531

MODELLER ............................................... 33, 407, 411

Model validation ................................................. 398, 401

Molecular descriptors........................................... 7–8, 39,

57–59, 62, 161, 163

Molecular docking ........................................... 31–37, 55,

64–79, 100, 107–143, 160, 165, 166, 173–176,

191, 205, 215, 280, 323, 374, 386, 407, 411,

429, 437, 449–450, 468, 470, 473, 474, 521,

524, 544

Molecular dynamics

approach ...................................................... 33, 41–45

simulations.................................................. 42–45, 70,

160, 166, 386, 388, 391, 412, 413, 429, 439,

451, 452, 469, 472, 474

trajectories ................................................................ 44

Molecular fingerprint ........................................... 7–9, 11,

12, 15, 16, 100, 167, 176, 189

Molecular Graphics Laboratory tools (MGLTools) 33, 35

Molecular interaction.............................. 42, 62, 94, 406,

409, 540, 546, 547

Molecular mechanics.............................. 37, 45, 374, 476

Molecular mechanics Poisson-Boltzmann surface area

(MM-PBSA) ..................................... 40, 472, 476

Molecular modeling........................................... 143, 206,

223–225, 227–229, 239, 270, 271, 275, 291,

293, 312, 321, 330, 412

Molecular Operating Environment (MOE)................ 59,

76, 161, 165, 360–362, 407, 410, 437

Molecular profiles.................................................... 64, 81

MolFit ............................................................................. 34

MOLS 2.0 ...................................................................... 34

Monoamine oxidases ............................................. 94, 96,

97, 159, 171, 176, 208–210, 242, 268, 269

MOOP-DESIRE............................................................ 63

Moving average approach..................................... 40, 162

M2 receptor........................................................... 52, 206

MtFabH...................................................... 119–120, 134

Mtk-QSBER................................................................... 40

Mt-spectral moments ..................................................... 63

Multidrug resistance tuberculosis

(MDR-TB)............................................... 108, 464

Multi kinase (PDGFR-beta, FGFR-1,

and SRC) ............................................................ 62

Multi-kinase target ....................................................... 188

Multi-objective optimization (MOOP)......... 61–63, 102

Multiple linear regression (MLR) ......................... 40, 59,

161, 409

Multiple outputs ..................................................... 59, 60

Multiple target .......................................... 21, 22, 28–31,

33, 39, 46, 51, 52, 73, 76, 80, 81, 177, 188, 193,

196, 256, 260, 261, 263, 265, 367–369, 385,

386, 396, 405, 413, 436, 447, 449, 450, 452,

465, 467, 468, 472, 477, 488, 498, 517–526

Multi-serotonin target ................................................... 62

Multi-target agents .......................................... 28, 62, 73,

303, 427, 500

Multitarget compounds ..................................... 133–143,

168, 177, 225, 230, 231, 236

Multitarget directed ligands (MTDL) ....................... 156,

159, 160, 162, 164, 166, 168–177, 255–340,

367–382

Multi target drug discovery/design

(MTDD) .................... 54–79, 81, 94–96, 98–103

Multi-targeted drugs (MTD)................................. 27–46,

51–83, 93–103, 162, 177, 187–197, 280, 290,

308, 385, 396, 405, 408, 421–429, 439,

443–453, 459–478, 488, 518, 521, 522, 526, 548

Multi-targeted molecular dynamics

(MTMD) ..................................................... 70, 71

Multi-target inhibitors .............................. 62, 73, 76, 77,

79, 190, 191, 193, 385, 388, 422, 427, 428, 448

Multi-target ligand design.................................. 489–501

Multi-target QSAR (mt-QSAR) ............................ 40, 61

Multi-target quantitative structure–activity

relationships (mt-QSARs)............ 57–59, 62, 370

Multi-target screening ....................................... 424–430,

434–436, 438, 439

Multi-target structure–activity relationships (mt-SARs)

Multi-task algorithm...................................................... 40

Multi-tasking QSAR ............................................... 58, 59

Multi-task learning (MTL)............................................ 60

Multivariate analysis ..................................................... 376

Mur Ligase........................................................... 114, 115

Mycobacterium tuberculosis

560
MULTI-TARGET DRUG DESIGN USING CHEM-BIOINFORMATIC APPROACHES

Index



N

N-acetylglucosamine-1-phosphate uridyltransferase

(GlmU) .................................................... 117–118

NAMD.................................................. 45, 451, 474, 476

Nanodrugs.................................................................... 531

Natural products ................................. 82, 135, 187–197,

221, 261, 304–317, 338, 431, 437

Neglected tropical diseases (NTDs).......... 422, 424, 439

Network-based inference (NBI).................................... 30

Neurodegenerative diseases ................................. 93–103,

155–178, 203, 259, 284, 296, 306, 321, 325, 534

Newtonian movement ................................................... 42

Newton’s equations of motion ..................................... 42

Nitroimidazoles.................................. 116, 136–138, 143

Nonamer.............................................................. 399–402

Nucleic acids.............................. 27, 29, 45, 66, 436, 506

O

Off-target.............................. v, 52, 54, 93, 98, 172, 176,

187, 189, 405, 421, 425, 430, 488, 517, 521–525

Oncogene .................................... viii, 447, 505–508, 512

ONIOM ................................................................... 37–39

OpenBabel ................................... 36, 176, 360, 431, 438

Open data ..................................... vii, 405–414, 437, 538

Open Source program .......................................... 34, 544

P

Pantothenate synthase (PS) ............................... 120–121,

139–141, 143, 466

Parallel processing .......................................................... 33

ParDock ........................................................... 34, 67, 490

Parkinson’s disease (PD) ....................................... 52, 67,

93, 155, 157–159, 168, 172, 177, 207

Partial least squares least squares (PLS)....................... 59,

60, 161, 214, 400–401

Pattern recognition ........................................................ 60

PDB, see Protein Data Bank

Peptides ............................................................ vii, 34, 65,

114, 125, 140–143, 157, 174, 213, 374,

379–381, 395–403, 425, 533, 536

Perturbation theory ....................................................... 40

Pharmaceutical ............................................... 7, 8, 81, 82,

94, 133, 187, 196, 204, 256, 335, 368, 463, 540,

542, 549

Pharmacokinetic ..................................................... 28, 52,

53, 55, 63, 81, 159, 368, 369, 540, 543, 545,

547, v

Pharmacological ............................................... 22, 40, 60,

61, 63, 64, 81, 93, 110, 173, 231, 265, 269, 270,

279, 283, 300, 309, 312, 320, 330, 368, 385,

408, 467

Pharmacophore .................................................. 6, 55–57,

64, 74–80, 82, 99, 101, 102, 164–166, 172–174,

188, 190–192, 231, 269, 307, 311, 321, 327,

329, 360–362, 371, 372, 387–392, 427, 450,

467–470, 472, 540

Pharmacophore mapping .............................. v, vi, 30, 99,

101, 160, 164–165, 167, 173–174

PharmMapper server...................................................... 30

Physicochemical ............................................. 7, 8, 10, 11,

16, 52, 55, 59, 75, 98, 101, 102, 133, 137, 160,

161, 192, 195–196, 205, 215, 218, 376, 490,

500, 540, 543, 545, 547

Phytochemical library .................................................. 374

PKS13 ................................................. 118–119, 134, 143

PLS, see Partial least squares least squares

Pocketome...................................................................... 30

Polypharmacology............................................ v, vi, 3–22,

28, 51–55, 60, 80, 98–100, 160–167, 172,

176–177, 188, 189, 193–194, 256, 355, 356,

362, 367, 371, 421, 488, 517–527

Predictability.......................................................... 58, 371

Presenilin-1 (PSEN1) ........................................... 97, 169

Principal components analysis (PCA) ............ 15–17, 476

Prion disease (PD) .................... 157, 158, 168, 172, 177

Promiscuous ............................................... vii, 28, 52, 72,

80, 196, 409, 421

Protein Data Bank (PDB) ............................. 30, 37, 110,

112, 140, 205, 209, 211, 214–216, 218–223,

228, 229, 231–241, 359, 360, 374, 375, 388,

410, 411, 425, 428, 431, 432, 436, 450, 452,

473, 542

Protein homology modeling ....................................... 436

Protein–protein docking....................................... 34, 545

Proteins............... 27, 51, 108, 157, 187, 205, 256, 355,

367, 385, 395–403, 406, 420, 461, 487–500,

518, 531

Proteochemometrics ................................ vi, vii, 395–403

PS, see Pantothenate synthase

Pterostilbene........................................................ 312, 313

Ptp A and B ......................................................... 121–122

pt-QSPR ......................................................................... 40

PyMol ...................................................... 33, 36, 68, 410,

432, 433, 438, 475, 476

Pyridinone .......................................................... 326, 327

Pyridoxine 50-phosphate ..................................... 125–126

Pyrimidine .................................................. 139, 329, 358

Q

QM–MM approach.................................................. 37–39

QM–Polarized Ligand Docking (QPLD) .................... 39

Quantitative structure–activity relationship

(QSAR) ............................................ vi, vii, 19, 20,

39–41, 54–63, 82, 94, 98, 99, 102, 135, 137, 156,

160, 162–163, 165, 168, 169, 172, 174, 207,

209, 214, 218, 226, 232, 242, 275–276,

376–378, 392, 396, 409, 427–429, 466, 547

MULTI-TARGET DRUG DESIGN USING CHEM-BIOINFORMATIC APPROACHES

Index 561



Quantitative structure–property relationship

(QSPR) ............................................................. 490

Quantum mechanics (QM) .............................. 37, 42, 45

Quinazoline ......................................................... 239, 333

Quinoline.................................................... 241, 318, 422

Quinolones ......................................... 142–143, 270, 286

R

RA, see Rheumatoid arthritis

Random forests (RF) ............................... 29, 61, 66, 161

Rapacuronium ................................................................ 52

Reactivity characteristics ................................................ 56

Receptor binding site............................. 31, 65, 165, 476

Receptor flexibility ........................ 31, 33, 44, 65, 67, 69

Receptors ............................................................ 6, 28, 34,

52, 97, 110, 131, 158, 188, 203, 206–207, 263,

357, 374, 390, 443, 473, 491, 517, 533

Receptor tyrosine kinases (RTK) ............................... 357,

444–446, 449, 494, 496, 534, 535

Resveratrol ........................................ 188, 196, 297, 298,

302, 306–308, 312, 315, 316, 323, 324

Rheumatoid arthritis (RA) ............................. 52, 53, 255

Rigid body docking .......................................... 32, 34, 41

Rigid body system.......................................................... 32

Riluzole......................................................................... 159

Rivastigmine ..................................... 158, 227, 235, 261,

265, 320, 321, 335, 340

RMSD, see Root mean square deviation

RNA interference (RNAi) ........................... viii, 506, 507

Robustness................................................ 27, 41, 58, 427

Root mean square deviation (RMSD) ....................... 375,

388, 412, 413, 433, 439, 451, 474, 475

S

SAR, see Structure–activity relationships

Scaffold .............................................. 7, 9–14, 21, 55, 56,

62, 75, 94, 96, 97, 175, 188, 221, 265, 266, 269,

279, 282, 286, 287, 293, 295, 306, 313, 314,

318, 322, 325, 326, 340, 358, 360, 361, 364,

370, 371, 375, 387, 406, 407, 409, 411, 412,

490, 500

Scaffold-based optimization .......................................... viii

Scaffold hopping .......................................... 62, 192, 371

Schrödinger suite ............... 39, 388, 389, 410, 411, 414

Scoring criteria ............................................................... 31

Scoring functions ............................................. 32, 64, 66,

67, 69–74, 76, 100, 165, 166, 389, 407, 468,

469, 474, 477, 539

Screening virtual ligands......................................... 63, 64

Scutellarin ............................................................ 320, 321

SEA, see Similarity ensemble approach

Serotonin ....................................... 52, 62, 208, 284, 406

Serotonin 5HT2B receptor ........................................... 52

Serotonin receptor 1A ................................................... 62

Serotonin transporter..................................................... 62

Shikimate kinase ................................... 78, 128–129, 142

Shogaol ......................................................................... 309

Short hairpin RNAs (shRNAs).................................... 506

Side effects ........................................................ 28, 51–54,

93, 108, 187, 188, 355, 356, 367–369, 405, 421,

424, 425, 467, 524, 530, 533, 534, 536, 540, 543

Similarity ..................................................... v, 7, 9, 11–16,

18–21, 30, 40, 56, 57, 60, 69, 96, 99–101, 112,

120, 122, 160, 162, 164, 167, 168, 176,

191–193, 213, 214, 360, 364, 371, 372, 382,

388, 396, 405, 406, 412, 428, 468, 472, 488,

489, 491–493, 495, 540

Similarity ensemble approach (SEA)...... v, 164, 167, 405

Similarity rule ................................................................. 56

Similarity searches .................................................. 20, 30,

160, 164, 168, 176, 191–192, 213, 214

Simulations ............................................. v, 30, 33, 42–45,

68, 70, 100, 135, 136, 160, 166, 176, 191, 197,

213, 225, 226, 234, 239, 241, 386, 388,

391–392, 407, 412–413, 429, 439, 450–453,

467, 469, 472, 474–477

Small interfering RNAs (siRNAs) ............................... viii,

505–512, 533

SMARt, see Structure–multiple activity relationships

Smart drug designing .................................. viii, 536–548

Smart drugs ................................................... vii, 529–549

Solvation effects ............................................................. 31

Steady state fluoresence ...................................... 378, 379

Stitch Server ................................................................... 30

Stochastic algorithms ..................................................... 33

Structural features ..................................................... 8, 39,

42, 56, 96, 164, 205, 209, 225, 287, 290, 292,

302, 360

Structure–activity relationships (SAR) ........................... 4,

9, 11–16, 18, 19, 54–57, 82, 171, 210, 221, 230,

313, 329, 331, 371, 409, 412, vi, vii

Structure-based ......................................................... v, 74,

76, 78, 101, 129, 160, 164–166, 174–176, 190,

358, 374, 390, 406, 409–411, 413, 429, 439,

468, 470, 472, 544, 547

approaches .............................................. v, vii, 29, 406

design................................................ 80, 94, 166, 386

drug design.............................. 64, 67, 392, 544, 547

virtual screening ....................................................... 28

Structure–multiple activity relationships

(SMARt) ......................................................... 3, 22

Substructure mining ...................................................... 63

Sulfonamides .............................................. 134–135, 143

Support vector machines(SVM)............................ 29, 60,

61, 98, 161, 163, 429

SwissDock.............................................................. 34, 437

Synthase-kinase 3 .................................. 73, 97, 259, 318

562
MULTI-TARGET DRUG DESIGN USING CHEM-BIOINFORMATIC APPROACHES

Index



Systematic algorithms .................................................... 33

Systems approach ..................................................... 29–31

SystemsDock .................................................................. 30

T

Tacrine ...................................... 174, 218–223, 225–227,

231, 235–237, 240, 242, 261, 277, 286–303,

319, 340

Tanimoto coefficients...................... 12, 13, 15, 164, 388

Target-based similarity inference (TBSI)...................... 30

Target center ......................................................... 55, 467

Target deconvolution............................................ 21, 355

Target fishing ................................ 19–21, 167, 197, 382

Tau protein ....................................... 157, 158, 176, 257,

259, 262, 292, 309, 321

TBSI, see Target-based similarity inference

Terfenadine..................................................................... 52

Thioflavin T assay ................................................ 378, 380

Thiophenes ......................................... 133–134, 143, 221

3D structures........................................... 32, 34, 76, 374,

389, 425, 431, 432, 436, 498, 544

Thymidine monophosphate kinase

(TMPK) .......................................... 126, 140, 143

TINKER ......................................................................... 45

Tissue specificity ........................................................... 518

TKIs, see Tyrosine kinase inhibitors

TMPK, see Thymidine monophosphate kinase

TOMOCOMD .............................................................. 59

TOPS-MODE................................................................ 59

Toxicity .............................................. 40, 51–54, 82, 108,

122, 133, 134, 159, 169, 267, 273, 274, 286,

288, 291, 293, 295–297, 301, 303, 306, 308,

311, 315, 317, 330, 333, 368, 372, 425, 437,

453, 463, 465, 477, 478, 488, 505, 541

Toxicological ................................................... 28, 63, 545

Training datasets .......................................................... 470

Transition state (TS) ........................................... 9, 37, 44

Triazolopyrimidine....................................................... 318

Trolox ........................................................ 269, 282, 293,

299, 303, 307, 311, 312, 317, 319, 321, 323, 333

TS, see Transition state

TTLL8 ............................................................................ 31

Tuberculosis (TB) ............................................. vi, vii, viii,

78, 107, 108, 110–112, 114, 116, 118–128, 130,

131, 133–137, 139–143, 422–424,

429, 459–478

Tyrosine kinase inhibitors (TKIs) .............................. 427,

447, 493, 494, 534

U

UCSF-Chimera ............................................... 33, 36, 438

V

Van der Waals interaction ........................ 28, 42, 43, 476

Van der Waals radius ............................................. 43, 390

Verlet algorithm ............................................................. 44

VinaMPI .......................................................... 33, 67, 406

Virtual screening (VS) ..................................... vi, vii, 4, 6,

7, 11, 17, 19, 22, 28, 63–67, 69, 71, 73, 75,

100–102, 108, 140, 143, 156, 160, 165, 166,

189, 190, 204–205, 214, 222, 355–364, 370,

375–376, 386, 387, 408, 449–450, 452, 466,

473, 474, 476, 500, 537, 542

Visual molecular dynamics (VMD)....................... 45, 46,

410, 475

VS, see Virtual screening

W

Weighted-sum-of-objective-functions (WSOF) ........... 63

X

X-ray structures ......................................... 208, 221, 222,

231–235, 239, 241, 358–360,

363, 397, 411, 452

Z

ZDOCK.......................................................................... 34

ZINC database ............................................................. 490

MULTI-TARGET DRUG DESIGN USING CHEM-BIOINFORMATIC APPROACHES

Index 563


	Dedication
	Preface
	Contents
	Contributors
	Part I: Chem-Bioinformatic Tools
	Cheminformatics Approaches to Study Drug Polypharmacology
	1 Introduction
	2 Methods
	2.1 Construction and Curation of a Compound Database
	2.2 Diversity Analysis
	2.2.1 Molecular Descriptors
	2.2.2 Molecular Fingerprints
	2.2.3 Molecular Scaffolds
	2.2.4 Consensus Diversity Plots

	2.3 Structure-Activity Relationship Analysis
	2.3.1 Structure-Activity Similarity Maps
	2.3.2 Scaffold Enrichment Factor
	2.3.3 Degree of Polypharmacology
	2.3.4 Multiple Structure-Activity Relationship Analysis
	Dual-Activity Difference Maps
	Structure-Promiscuity Index Difference



	3 Chemical Space
	3.1 Principal Components Analysis for Charting Compounds
	3.2 Comparing Multiple Libraries in the Chemical Space
	3.3 ChemMaps
	3.4 Activity Landscape Sweeping

	4 Target Fishing
	4.1 Target Identification
	4.1.1 Multi-label Classifiers
	4.1.2 Cluster Analysis

	4.2 Target Deconvolution

	5 Future Prospects
	References

	Computational Predictions for Multi-Target Drug Design
	1 Introduction
	2 Multi-Target Drug Design with Systems Approach
	3 Molecular Docking
	3.1 Methodology
	3.1.1 General Methodology of Docking Experiment Using AutoDock-Vina


	4 Hyphenated Methods
	4.1 QM-MM Approach

	5 Quantitative Structure-Activity Relationship Approach
	6 Molecular Dynamics Approach
	7 Convergence of Theoretical and Experimental Results
	References

	Computational Multi-Target Drug Design
	1 Multi-Targeted or Polypharmacological Drug Discovery
	2 Multi-Target Drug Discovery/Design (MTDD) Strategy
	2.1 Multi-Target Structure-Activity Relationships (Mt-SARs)
	2.2 Multi-Target Quantitative Structure-Activity Relationships (Mt-QSARs)
	2.2.1 Molecular Structure Descriptors
	2.2.2 QSAR and Statistical Technique(s) for the Model Building

	2.3 De Novo Method
	2.4 Molecular Docking
	2.4.1 Receptor Representation in Docking
	2.4.2 Ligand Representation in Docking
	2.4.3 Scoring Functions

	2.5 Pharmacophore Modeling

	3 Challenges and Limitations of Computational MTDD
	4 Future of MTDD
	Glossary
	References


	Part II: Computational Multi-Target Drug Design: Literature Reviews
	Multitarget Drug Design for Neurodegenerative Diseases
	1 Introduction
	2 Ligand-Based Methods
	2.1 Fragment-Based MTDD
	2.2 SOM-Based Methods
	2.3 Machine Learning Methods
	2.4 Polypharmacology Prediction

	3 Target-Based Methods
	3.1 Molecular Docking
	3.2 Binding Site Similarity
	3.3 Inverse Pharmacophore Modeling

	4 Combination Methods
	5 Conclusions and Perspectives
	References

	Molecular Docking Studies in Multitarget Antitubercular Drug Discovery
	1 Introduction
	2 Targets
	2.1 DprE1
	2.2 Mur Ligase
	2.3 Deazaflavin-Dependent Nitroreductase
	2.4 N-Acetylglucosamine-1-Phosphate Uridyltransferase
	2.5 Pks13
	2.6 MtFabH
	2.7 Pantothenate Synthase
	2.8 Ptp A and B
	2.9 InhA
	2.10 Cytochrome P450 Monooxygenase
	2.11 Pyridoxine-5′-phosphate
	2.12 Thymidine Monophosphate Kinase
	2.13 Isocitrate Lyase
	2.14 Glutamine Synthetase
	2.15 Shikimate Kinase
	2.16 CFP10-ESAT6
	2.17 DNA Gyrase
	2.18 Dihydrofolate Reductase (DHFR)

	3 Multitarget Compounds
	3.1 Thiophenes
	3.2 Sulfonamides
	3.3 Chalcones
	3.4 Nitroimidazoles
	3.5 Benzimidazoles
	3.6 Peptides
	3.7 Quinolones

	4 Conclusion
	References

	Advanced Chemometric Modeling Approaches for the Design of Multitarget Drugs Against Neurodegenerative Diseases
	1 Introduction
	2 Pathological Characteristics and Current Available Treatment Options for Common NDs
	3 Multitarget Drugs for NDs
	4 Chemometric Methods in Polypharmacology
	4.1 Conventional 2D-QSAR and 3D-QSAR
	4.2 Multitarget QSAR Modeling
	4.3 Similarity Searches
	4.4 Pharmacophore Mapping Approaches
	4.5 Structure-Based Analyses
	4.6 Chemical Databases and Web-Based Biological Target Searching Tools

	5 Chemometric Modeling for Design of Anti-ND MTDLs
	5.1 Design of Anti-ND MTDLs: 2D-QSAR and mt-QSAR Approaches
	5.2 Design of Anti-ND MTDLs: 3D-QSAR
	5.3 Design of Anti-ND MTDLs: Pharmacophore Mapping
	5.4 Design of Anti-ND MTDLs: Structure-Based Analyses
	5.5 Design of Anti-ND MTDLs: Web-Based Platform for Polypharmacology

	6 Conclusive Remarks and Future Directions
	References

	Computational Studies on Natural Products for the Development of Multi-target Drugs
	1 Introduction
	1.1 Natural Products as Multi-target Leads
	1.2 Natural Product Drug Discovery and Computer Aided Methods

	2 Computational Methods in Natural Product Drug Development
	2.1 Pharmacophore Modeling
	2.2 Molecular Docking Simulations
	2.3 Similarity Search Methods
	2.4 Machine Learning
	2.5 Computational Binding Site Comparison
	2.6 Analysis of Polypharmacological Networks
	2.7 De-replication

	3 Notes
	3.1 Physicochemical Differences Between NPs and Synthetic Drugs
	3.2 Natural Products and PAINS

	4 Future Outlook
	References

	Computational Design of Multitarget Drugs Against Alzheimer´s Disease
	1 Introduction
	2 Virtual Screening Approaches
	3 Molecular Known Targets for the Treatment of AD and Active ``One-Compound-One-Target´´/Multitarget Agents Against AD
	3.1 Acetylocholine Receptors
	3.2 Neuronal Nicotinic Acetylcholine Receptor
	3.3 Monoamine Oxidases
	3.4 Glutaminyl Cyclase
	3.5 Estrogen Receptor
	3.6 DKK1-LRP6 Complex Formation
	3.7 Secretases
	3.8 Aβ Fibrils
	3.9 Cholinesterases

	4 Multitarget Agents
	5 Conclusion
	References

	Design of Multi-target Directed Ligands as a Modern Approach for the Development of Innovative Drug Candidates for Alzheimer&r
	1 Introduction
	2 Socioeconomic Impact and Prevalence of Alzheimer´s Disease
	3 Multifactorial Aspects of Alzheimer´s Disease
	4 Recent Multi-target Directed Drug Candidates Designed for the Treatment of AD
	5 Multi-target Directed Ligands Inspired by Galanthamine
	6 Multi-target Directed Ligands Inspired by Donepezil
	7 Multi-target Directed Ligands Inspired by Tacrine
	8 Multi-target Directed Ligands Inspired by Natural Products (NPs)
	9 Multi-target Directed Ligands Inspired by Other Polycyclic Structures
	10 General Vision of the Main Therapeutic Strategies Explored in the Search of Multi-target Directed Ligands for AD Treatment
	11 Concluding Remarks
	References


	Part III: Case Studies
	Virtual Screening for Dual Hsp90/B-Raf Inhibitors
	1 Introduction
	2 Materials
	2.1 Protein Structures
	2.2 Compound Database

	3 Methods
	3.1 Selection of Reference Ligands
	3.2 Substructure Search
	3.3 Pharmacophore Model
	3.4 Protein Preparation
	3.5 Docking

	4 Results Summary
	5 Notes
	References

	Strategies for Multi-Target Directed Ligands: Application in Alzheimer´s Disease (AD) Therapeutics
	1 Introduction
	2 Materials
	3 Methods for Development of MTDLs
	3.1 Random Screening Approach
	3.2 Framework Combination Approach
	3.3 A Hybrid Approach
	3.3.1 Development of an In-House Phytochemical Library
	3.3.2 Ensemble Docking
	3.3.3 Virtual Screening
	3.3.4 Development of a QSAR Model for Anti-Amyloidogenic Activity
	3.3.5 QSAR for Antioxidant Activity
	3.3.6 Experimental Validation
	3.3.7 Steady-State Fluorescence Studies for BACE1-Hesperidin Interaction
	3.3.8 Preparation of Aβ (25-35) and Compound Stock Solution
	3.3.9 Intrinsic Flavonoid Fluorescence Assay
	3.3.10 ANS Binding Assay
	3.3.11 Thioflavin T Assay
	3.3.12 Atomic Force Microscope (AFM) Imaging
	3.3.13 Antioxidant Activity of Hesperidin
	ABTS+ Radical Scavenging Assay
	DNA Nicking Assay



	4 Pitfalls
	References

	Computational Design of Multi-target Kinase Inhibitors
	1 Introduction
	2 Materials
	3 Methods
	3.1 Merged Pharmacophore Strategy
	3.1.1 Protein Structure Preparation
	3.1.2 Analysis of Active Site
	3.1.3 Superimposition of Binding Sites
	3.1.4 Generation and Evaluation of Pharmacophore
	3.1.5 Preparation of Ligand Dataset
	3.1.6 Multiple Merged Pharmacophore-Based Ligand Screening
	3.1.7 Cross-Docking of Ligand Hits to Proteins

	3.2 Ensemble Pharmacophore-Based Strategy
	3.2.1 Protein Structure Preparation
	3.2.2 Receptor Grid Generation
	3.2.3 E-Pharmacophore Extraction
	3.2.4 Ensemble Pharmacophore Construction
	3.2.5 Ensemble Pharmacophore-Based Screening for Proteins
	3.2.6 Post-Pharmacophore-Based Screening Filtration
	3.2.7 Multiple Dockings
	3.2.8 Molecular Dynamic Simulation of Lead Compounds


	4 Conclusion
	5 Notes
	References

	Proteochemometrics for the Prediction of Peptide Binding to Multiple HLA Class II Proteins
	1 Introduction
	2 Datasets
	2.1 HLA-DP Proteins
	2.2 Peptides Binding to HLA-DP Proteins
	2.3 Proteins Used for Model Validation

	3 Methods
	3.1 Proteochemometrics
	3.2 Iterative Self-consistent Algorithm Based on Partial Least Squares (ISC-PLS)
	3.3 Model Validation
	3.4 EpiTOP

	4 Notes
	References

	Linked Open Data: Ligand-Transporter Interaction Profiling and Beyond
	1 Introduction
	2 Materials
	3 Methods
	3.1 Data Collection and Data Mining
	3.2 Ligand-Based Methods
	3.3 Structure-Based Methods
	3.3.1 Homology Modeling
	3.3.2 Docking
	3.3.3 Molecular Dynamics Simulations

	3.4 Summary

	4 Notes
	References

	Design of Novel Dual-Target Hits Against Malaria and Tuberculosis Using Computational Docking
	Abbreviations
	1 Introduction
	1.1 Multi-Target Therapies
	1.2 Multi-Target Therapies and Microbial Infectious Diseases: A Unique Connection

	2 Methods
	2.1 Overview of Multi-Target Screening Methods
	2.1.1 Knowledge-Based Approaches
	System Biology, Networking, and Polypharmacology-Based Approaches
	Approaches Based on Protein-Protein Relationship and Evolutionary History of Proteins
	Approaches Based on Drug Repurposing/Drug Repositioning
	Multi-Target Inhibitors by Design

	2.1.2 Screening-Based Approaches
	Multiple Phenotypical/Enzyme-Based Assays in Parallel
	In Silico Screening of Multi-Target Inhibitors
	In Silico Target Identification or Reverse Docking
	Parallel Docking, Multiple QSAR, and Other Computational Screening Methods


	2.2 Screening Dual Inhibitors Against Malaria and Tuberculosis by a Three-Tier Computational Approach: A Case Study
	2.2.1 Protein Preparation
	2.2.2 Ligand Preparation
	2.2.3 Grid Setting and Calculation of Pre-energy Maps
	2.2.4 Execution of Docking Program
	2.2.5 Visualization of Docking Output
	2.2.6 Analysis of Results


	3 Materials and Tools
	3.1 Macromolecular Database
	3.2 Small Molecule Databases
	3.3 Tools for Computational Docking
	3.4 Software Tools for Visualization
	3.5 Drawing Tools (Molecular Editors) and File Format Converters

	4 Notes
	5 Future Prospects and Concluding Remarks
	References

	Computational Design of Multi-Target Drugs Against Breast Cancer
	1 Introduction
	1.1 Breast Cancer and Therapeutic Targets
	1.2 Multi-Target Approach in Breast Cancer Treatment
	1.2.1 Dual Inhibition of EGFR and HER-2 Receptors
	1.2.2 Dual Inhibition of PIP3K and mTOR
	1.2.3 Dual Inhibition of mTOR1 and mTOR2
	1.2.4 Multikinase Inhibition of Angiogenesis


	2 Methodology
	2.1 Virtual Screening and Molecular Docking
	2.2 Molecular Dynamics Simulation
	2.3 Binding Free Energy Estimation
	2.4 Advanced Molecular Dynamics Simulation Methods

	3 Notes
	References

	Computational Methods for Multi-Target Drug Designing Against Mycobacterium tuberculosis
	Abbreviations
	1 Introduction
	1.1 Multidrug-Resistant TB (MDR-TB)
	1.2 Extensively Drug-Resistant TB (XDR-TB)
	1.3 Totally Drug-Resistant TB (TDR-TB)
	1.4 Multi-Targeting Drug Designing Against Mycobacterium tuberculosis

	2 Methodology
	2.1 Selection of Target Combinations for Multi-Target Drug Design
	2.2 Computational Lead Identification Methods
	2.2.1 Pharmacophore- and Docking-Based Multi-Target Drug Design Methods
	2.2.2 De Novo Design-Based Methods for Multi-Target Drug Designs
	Ligand-Based De Novo Methods for Multi-Target Drug Design
	Structure-Based De Novo Methods for Multi-Target Drug Design

	2.2.3 An Illustration for Designing Multi-Targeting Drug Against Mtb
	Target Selection
	Retrieval of Small Molecules
	Molecular Docking
	Molecular Dynamics Simulation
	Trajectory Analysis
	Binding Energy Calculation
	PCA and FEL
	Steered Molecular Dynamics (SMD)



	3 Conclusion
	References


	Part IV: Databases and Web Servers
	Development of a Web-Server for Identification of Common Lead Molecules for Multiple Protein Targets
	1 Introduction
	2 Methods
	3 Results and Discussion
	4 Web Interface
	5 Scope for Further Improvement
	6 Conclusions
	References

	Computational Method for Prediction of Targets for Breast Cancer Using siRNA Approach
	1 Introduction
	1.1 Earlier siRNA Databases

	2 BOSS Database
	2.1 Materials
	2.2 Data Architecture
	2.3 Search
	2.4 Advance Search
	2.5 Browse
	2.6 Web-Based Tools

	3 Application of BOSS Database
	References


	Part V: Special Topics
	Historeceptomics: Integrating a Drug´s Multiple Targets (Polypharmacology) with Their Expression Pattern in Human Tissue
	1 Introduction
	2 Which Tissues Are Responsible for a Disease?
	3 Are Drug Targets Expressed in Disease-Relevant Tissues?
	4 Tissue Specific and Polypharmacology Data
	5 Does Assessing the Tissue Pattern of Expression of the Full Polypharmacology (Primary and Off-Targets) of Drugs Add Value?
	6 Tissue Targeting of Drugs
	7 Summary
	References

	Networking of Smart Drugs: A Chem-Bioinformatic Approach to Cancer Treatment
	1 Introduction
	2 Exosomes as Smart Drug Carrier
	3 Liposomes in Targeting Drug Delivery
	4 DNA Origami: Advancement in Drug Delivery
	5 Tyrosine as a Smart Drug
	6 Nanodrug Delivery
	7 Computational Approach and Smart Drug Designing
	7.1 Target Disease Identification
	7.2 Searching of Novel Compounds
	7.3 Identification of Receptor Biomolecules
	7.4 Rational Drug Design Tools
	7.5 Drug Compound Refinement
	7.6 Detection of Physicochemical Properties of Drugs
	7.7 Drug Validation

	8 Multitarget Drug Design
	9 Conclusion and Future Prospective
	References


	Index

