VardmanMahever OpanUrivesity, Kda

RexdionManarisms PerigdicReadians OrgricPhotochenistryandStaredhenistry

VardntanMahever OpanUrivesity, Kda

RestionMasherisns PerigdicReadions, Orgaric PhododenistryandStaredheristry

CarseDadqnertCamittee

CrirPason

Prof. AdhokStarma
ViceChancellar
VardmanManaeer Open Uriversity, Kda

Cocrónetor andManhars

Cordinetor
SANDEEPHOODA
AmisartProfero ofZodogy
Schod f Sience\& Tedrology
VadmenMałaer OpenUriversity, Kda

Prof L.R.Guja
Diretor Acadaric
VMOUKda
Dr. AnurahaDubas
DaptyDirecta,SOST
VMOUKda
Prof. PS Vema(Redd)
Depatmetof Chenistry
University of Raj,Japr
Pof. P.D. Shema(Redd)
Depatmertof Chenistry
Urivesity of Rä,Japr
Dr. RL. Pidiya, (RAd)
Departmet of Chenistry, Gat Cdlege
Bikaner
Dr. SajayKumarShame
Depatmetof Cheristry
JECRC, urivesityJaipr

Dr. AnindParek

Director Regaral CeatreBhactpur VMOUKda
Dr. Suril kunar J angir
Connene Chenistry
VMOUKda
Pof. PahusSing(Redd)
Depatmetof Cheristry
Univesityof Raj, Japr

Prof.AstuRai

Depatmertof Cheristry
Urivesityof Kda Kda
Dr. SapaShemt
Depatmertof Cheristry
JECRC, univesityJapr
Dr. Subil Kunar Sarme
Depatmertof Chenistry
Uriverityof Kda, Kda

EdtingandCarseWititing

Edtor

Prof. AshuRai

Depatmertof Chenistry
Univesityof Kda Kda

Mr. AnkitShema

AssistatProfessor, Depatmertof Pureand ApdiedChenistry, Urivesity of Kda, Kda
Witers
DrSuatil Kr. Stama 1,
Dr. PoanrmKhenddual 3,4,10,
AssitartProfessar, Depatrextof Pureand AppliedChemistry Uriversity of Kda Kda Dr. ShdharaShame 5,15,2
Assisat Professar, Depatimetof Chenistry SS.JainSuboch P.GCdlege, apr Dr.Renulada 7
AssistartProfessar,
Depatmet of Chenisty,
UkaTasodaUnivesity
Barddi
Surt, GUJARAT
D. VarsaShema 12
AssitartProfessar,
Depatnetaf Chenistry, S.S.JanSuthodPGCdlege, Jajpr
2,811,13,16 AssistatProfessor, Depatnet 19 of Chemistry Mdhanla SułłedaUriversity,
Udapr
Dr.VishwieatSinghYadav ϵ
AssitartProfessor, Depatmetcof Chenistry, UkaTasodaUnivesity Bardbli Surt, GJJARAT Mr_ArkitStarma 9, 14,
AssitartProfessar, Depatmert 17,18
of PureardApdiedChenistry
AcadanicandAdhninstriveManegernt
Prof. AshdkSheme
ViceChancellar
VadmanMahamer OpenUriversity, Kda
Prof. KaranSing
Direetor (MP\&D)VardmanMahaver OpenUriversity, Kda
Prof: LR GujaDiretor (Acadenic)
VardmanManaver OpenUriversity, Kda
Dr. SubochKumer
Addtiond Diretor (MP\&D)

ISEN:

 withat pemissionin witingfromV.M. Open Urivesity, Kda
Printedand PUdishedanbedff of theRegistra, V.M. OpenUrivesity, Kda Printedby:

VardnnanMahever OpanUrivesity, Kda

Index

UnitNa UnitNare Pase
Na
Unit-1 Reationirtamedides-Famation stadility, suncure 1 detetionardrextiono cabloriumions cabsaionsand freeradcds
Unit-2 Reationintemedaesll 24
Unit-3 MdealaRerracyentits 48
Unit-4 MdealarRemangentis-II 71
Unit-5 ElimintionReation 91
Unit-6 MdealarOtbitdsandTherSymmery Propaties 104
Unit-7 Uasifiction and sterechenistry of periydic reactions 13
Casificaion of periydic reacions WoochachHoffrmmeorediondagras FMOadPMOaproach
Unit-8 Andysisof EetroydicReations 155
Unit-9 Aralysisof ydoadtion Cydoadtion ataradaid, 175 surfacid adtions 4nard4n+2sjetens 2+2adtion of Kemes 1,3-dpda cydoobdtions\& chderopic reations
Unit-10 Andysisof Sigmarpic Reations 198
Unit-11 EletraicTrasitions 27
Unit-12 Photochenistry of Cabonl Compound 231
Unit-13 Photochenistry of AlkenesardDienes 24
Unit-14 Photanenistry of Arortic Compands Isameristion, 263 addtionsandsbstittions
Unit-15 Miscellareas Photocherica Reations 203
Unit-16 Corfarmaionsof SareAcydic Mdeales 307
Unit-17 Corfirmation of sorreydicmoeales Cyddatanes, 327 Cydqpertaneand CydderereandMorosbsituted Cyddneare
Unit-18 Corformaionsof Di-SubsititedCydderanes 342
Unit-19 Carfandiansof A FewOther ManoydicandBicydic 36 Systens
Unit-20 CorformaionandReadivity 381

MSCCHO6

VardnanMakever OpanUrivesity, Kda

Preare

Theprest book etitled "Reation Mertrisiss Pesigdic Reations Ogeric Phtachenisty and Sterecheristy" hes benderigedso ato cuer the uritwise syldaws of MSCCHO6 carse for M.SC Christry (Fird) sudats of Vartman Mdawer Con Urivesity, Kda Thebaic pingides and thery have been exdained in simde conise and luid mames. Adeate eamdes
 eride the sudats to grap the albjet exily. The unit wites haveconslited vaioustanderd bods andintent ∞ ther rfererceonthes bjet adt the are therifu totheathros of theerferencebods

Unit-1

Rextionlintermedites-Fanrition,staility, struture, dłestionandreationof caboriumias carbariarsandfireradicdsSrutureofunit
10 Ojedive
11 Introdntion
12 Caboriumion
121 Formaion
122 Stadility
123 Stucture
124 Reations
13 Cabarions
131 Formaion
132 Stadity
133 Stucture
134 Reations
14 Freradcds
14.1 Farmaion
14.2 Stadility
143 Stucture
14.4 Dtection
14.5 Reations
15 Summey
16 RevienQuesions
17 Referceandsygestedreding

10 Ogedive

An argaric reation meedarismis the dझailed study of the atud steps by meersof whichareationtansplee Thusisted usdbat then unher of steps indved and their sequarce Actul isdation of oneor moreintermedtes is thenostanneteevidarceonecandadinthemeranismof thereation

11Introdution

Inadnevicd reation, readatsmay beconeated intoprodutinonesteporin morethenonestep Whenareationocarsinasingestepmintermatesare fared Intermedte lies between two higest enegy staes and hes lower enegy thenbothof thehighenegy stes
In intermedathebonds arecompled y ldrokeninthereadarts and hercethe systemhesdafintegeamy. Itcanbeisdzedinsarecaes

12Caboniumion

An argaric speeies which les cabon atambering anly six dectrons in its ater mostshel andhes apositivedngeiscelled acabocdianor caborium ion

R=Horakyl orayl gap
Cabocdionsareof thretypes-p, sandtor $1^{\circ}, 2,3$. Dependnguponwtich typeof carbontamcariesthepositivednage, it iscorespondingy danteds p, sort cabocdion For examde, if thepositivechageis preset on pinary cabon tomit is called por 1°-cabocdion and so on Vaias examples of caboctionsare:

Pinary-Carboctions

$$
\begin{aligned}
& \begin{array}{cc}
\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3} & \mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3} \\
\text { Isporppl } & \text { shaty }
\end{array} \\
& \mathrm{CH}_{3}-\underset{\mathrm{C}_{3}}{\mathrm{C}}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{OH}_{3} \quad \mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{+}{\mathrm{C}} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5} \\
& \text { siscamy berzyytyl }
\end{aligned}
$$

Tetiay-Cabocedians

121Farraionof caboriumion

(i) By the prdantion of unsturated compands Cefins, cabony compounbandritileswhendssd vel(treeted) withaprotondotraingsdvert orLevisaidfamcaboriumions

$$
\begin{aligned}
& -\mathrm{CH} \\
& >\mathrm{C}=\mathrm{O}+\mathrm{H}^{+} \rightleftharpoons>{ }^{+}-\mathrm{OH} \\
& \mathrm{C}=\mathrm{N}+\mathrm{H}^{+} \rightleftharpoons-{ }^{(}+=\mathrm{N}-\mathrm{H} \\
& >\mathrm{C}=\mathrm{O}+\mathrm{AlG}_{3} \rightleftharpoons \mathrm{C}^{ \pm}-\mathrm{O}-\mathrm{A}_{\mathrm{IG}}^{3} \\
& \mathrm{C}=\mathrm{N}+\mathrm{AlG}_{3} \rightleftharpoons \mathrm{C}^{\mathrm{C}}=\mathrm{N}-\mathrm{Alal}_{3}
\end{aligned}
$$

(iii) Bytheprotoretion of andomheinglongpair of detrans: Orgaric componds containing lone par of dectrons on an atom, espeidly oxygen, formcaboriumionswhentreatedvithaid, eg.

(iii) Framdrestiaristion:

$\mathrm{C}_{6} \mathrm{H} \mathrm{CH}_{2}-\mathrm{C} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}+\mathrm{C}^{-}$

(iv) By theprotartion of alkyl ar agl helides: Alkyl or axl halides when treeted with a proton-donting sdvert or Levis aid form caborium ians

$$
\mathrm{R}-\mathrm{X}+\mathrm{H}^{+} \square \quad \mathrm{R}-\stackrel{+}{\mathrm{X}}-\mathrm{H} \square \stackrel{\oplus}{\mathrm{R}}+\mathrm{H}-\mathrm{X}
$$

$$
\begin{aligned}
& \mathrm{R}-\mathrm{O}+\mathrm{Ald}_{3} \square \quad \mathrm{R}-\stackrel{+}{\mathrm{C}}--\overline{\mathrm{A}} \mathrm{Id}_{\mathrm{a}} \square \stackrel{\oplus}{\mathrm{R}}+{ }^{\square} \mathrm{Ad}_{4}
\end{aligned}
$$

(v) By thedzamposition of dazariumstts: Aliphtic and aoratic dazariumsed'sderamposeundr sitddecondianstoformcaboriumions

$$
\left[\mathrm{R}-\mathrm{N}=\mathrm{N}^{+} \rightarrow \mathrm{R}-\stackrel{+}{\mathrm{N}} \equiv \mathrm{~N}\right] \mathrm{a}^{-} \square \stackrel{\oplus}{\mathrm{R}}+\mathrm{N}_{\mathrm{a}}+\mathrm{C}^{-}
$$

122 Stailityofcarbaiumion

Accordngtolans of physic, thestddility of adragedsytemis incereed by dspersad of the drage Therfore, any fator that tends to screed at the positivedrageof thededrondficiet cabonanddstribteitove therest of theionnotstddilizeacaboriumion
Considr a sbstitust G, atached to an electrondficiet cabon Fdlowing thositutionsmayaise

WhenGisdectronrdeering WhenGeetron-withdaving itdsperseschagead
hencestddizedction

itintensifieschageand destdilizescaion

An dedronreleaing sabsituat tends to redre the positive charge t the dedrondficiet caborr and the shosituet itsedf beecmes some what positive This slspersd of thedragestddilizesthecaboriumion Convesdy, an dedran-withdaving gap tends to intensify the positive darge on the dedrondsidiet cabon adhercendesthecaboriumionlesssdde
Futher, norethat posibility for thedspersd of thedragenere will bethe stdility of the caboriumion Tho effeds are minly responible for the dspers (dacodistion) of thedrageandth 5 stadility of thecaboriumion
(a) Hyparcajuggion: This effect exdains the stadility of akyl caboriumions
(b) Resonne: This effect exdansthestdility of all types of caborium iors ther then the akyl. Since in resonace the positive chage is dilocdised ver adacet tans, caboriumionsthowing resmanceare far norestdethen thosein which resonaceis nd daying any pat Thiseydainswhy aklk andberzyl carboriumionsaremoresddethen eventhet-btyl caboriumion
On the basis of therdative stadilites caboriumions may be dasified into tho dmses, nendy (i) trasiet (shat lived) caboriumions, and (ii) stdde caboriumians

(i) Transiet(shatlined) carboriumiars:

These caboriumions lack etersive resonance stadilizaion and ae known aly a trasitory intemredaes in ceatan argaic reations Thesearevey readiveand contrinereadly withaty molealethatcan givea pair of dectrons Typicd eampes of transet caboriumions aedky (pinay, secondey andtetiay). Therdativestdility of the akll caboriumiorsfollonstheards:
letary > Seconday > Hrimay
i.e,

The dowe ordr of stadility of the simple akyl caboriumions is exdaned in terms of hypercojuggtion (ro-bond resanace) which dalodizes thepositivedargeover tendfferet cancricd stuctures in thatyl caboriumion oer saleninsec-isporpyl caboriumion and alyover far inprimy thyl caboriumion

(ii) Stadecaboriumiars:

Thesecaboriumionsaesostdethet they canbeisd\#edandstuded Thestdility of therecaboriumiorsis eydanedintems of resonace, that is, the positivedage on theion is adully not lodized on one cabon atom, lat rather is dstribted unformly throughat theseard posidepositions(cabondans). For erampletriay caboriumions, thepositivedargeof whichisnotlocdized onthecatra cabonatom, atisdstributeduriforly throghatthetheeadaestaondicrings

Berzy and ally caions aremerestdethen simdealky caborium ions bease of the mere effective stddilizdion of thir resance hyloiostrayghthefdlowing cancricd stuctures

Cancricd stuxtures of theberzyl cdion

$$
\mathrm{CH}_{2}=\mathrm{CH}_{-}-\mathrm{CH}_{2} \longleftrightarrow \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{CO}_{2}
$$

Caroricd Sturutures of thedlyl catiar
Sorreof the caboriumions aeso stdeth teventher sdidsat's are known eg, tipheylimethl perchorte eists a red aystllinesdid, whiletropliumbronideisaydlowsdid

Thesarencompdedy eqivdert carrical stuctures for thetroplium ionhyridareillustradbadow.

Cancricd stucture of thetropliumction

Adualy tropliumcaionis thenot stdecaboriumion It is sostedethat itsreationwithneter, acchds, ec is iseysow.
Soreof thecaboriumiorsinther ades of stablity aregivenbedow

123 Stuturef Caboniumion

Struturdly, thecabonatomof acaboriumionissp ${ }^{2}$ hydridsed Thethresp ${ }^{2}$ hylaid arbitd are uilized in forming bonds to the three subsiturts, the renaining unsed pabidd remain vacat. Thecaboriumionthwhes aflat stuctrehaing all thethreebonds in oneplare with the bond angeof 120° betweenthemTherisaldo of eidarcetoshowthtcaboriumionsareparer sturtures aillustadedbdow.

Such darer stucture, withtheir 1200° gememy and spr hybridzdion aet the neeessay condtions for the stdilizdion of the caborium ion through
 to predude 120° geemerty and $\$ p^{2}$ hybridztion in the corespondng caborium in the ion fails to form This exdains that the tripheylddaromethere (in liqid SO_{2}) and the ordray t-dky haides (in perenceof siver ritite) iorizeerily toformthetipheyinthyl caionanda t-atyl caion

Theresonwhy suchbricyedstudures fal togenadecaboriumiorsis that therigdstucturd constrint of their rings wakes geemetrically impossidefor a reslting caborium ion to have the parer stucture reaired for its stadilizdion
The plare nature of caboriumion can futher be proved by treating an qdically adivestostrte (compand haing aymmetric cabon ton) witha nudegdilic regegt when raceric nixture is formed The formaion of racenic mixturecanbeeydaned arly whenthecaboriumion(intemedta) hes a plage stucture Since caborium ion is a plase stuxture, the nudeadilic reget is eqully freeto atack the positive cabon tomfrom either sideof theplane(i.e, fromdoweor bedow) withtheresaltaneqimelar mixtureof dandl-forms(racericrixture) will bedtained
Bridsed ar nondazicd cabonium ions: Caborium ians which ae stdilisedby thenwenertof either alonepairof dectronsor π-detrors, in corjugtion to the positively darged cabon domto forma nev π-bond Such caboriumions arecalled dassicd caboriumions Howeve, formaion of dasicd caboriumions does not exdain sore reations and thus it beecmes neessay to wite cancricd forms indving themoveret of a π par of dedrons α even dedrons to formanev σ-bond; thecaboriumion intermedtes formed in such cees are known ∞ non-dasicd ar bridyed caboriumions

Frereande

A strongevidancefor theformaion of non-dasicd caboriumionsisprovided by the renakdde sterespeedicity doserved in the solvdysis of quically ative threo and eytro-3-phey-2-aty tosyates in gaid actic aid medum If (-)-theoisomer undagoes acedysis, theprodutformedisa

Racemictrreaceda
Racernic mixtute of thee isoner with a negigide anourt of eytho isomer. Theexdusiveformion f theoisomer inracenicfarmenany beendained by the formaion of bridged heod or nondasicd caborium in m intermedte Thelater may beatladked by thesdvet (actic aid) eqally t ether of thecabonatons eqully toformerationeric pair.
124 Pextionsof caboriumion

(i) Conbinstionwithanudeqdile, ie, SN^{\prime} remtion

A cabocdionnmy contrinewithanudeqpiletoformarevbond Examdes ae:

(ii) Eliminstiancfaprotenfronthes-carbon(E^{1} rexdions):

A caboction nay loss a proten form the β-cabon to forman akere For eampletheconvesiono tetiay dky halids into akerein thepreanceof bese

(iii) Adftiontounsturdeelcampand:

A cabocdion ray react with an akeneto prodreandher cabocdion This reationismirlygivenbyisdatere

(iv) Mdealar Remrangrets:

A cabocdion undagees rearangenert to prodrea merestdecaboction Remrageretscancar byshift of andkl, vinl orayl gapar hydogen tom Remrageret credes anew cabon with the positive dragelocted on theatomfromutichthemigdionccarred 1, 2-sifts aetherrot cormmen typeof rearagerents

(v) CydoaditionRemtions:

(4+2) ydoadtionreationtikepdæebaweendereanddendile Innoot of theceses dengriles aeneatrd. Foreamdethe addition 2 -methy ally cabocdiontocydqpestadere.

13 Cabarions

Cabarion at andeoprilesCabarions ae arias, i.e, negdively darged speeies inntich acabon caries threbondsadalomepar of dedrons, this makingthe cabontomnegaively darged So cabarionnay berequested ш:

131 Formaionc carbarions

(i) ByRenova of anatomorgapfromcabon:

$$
\begin{aligned}
& \mathrm{R}_{3} \mathrm{C}-\mathrm{X}+\mathrm{Y} \longrightarrow \mathrm{RC}+\mathrm{XY}
\end{aligned}
$$

 trityl dlaid
(ii) ByAbstationof aprtanbyabese:

$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}-\mathrm{H} \xrightarrow[-\mathrm{NH}_{2}]{\mathrm{NaN}_{2}}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CN}$ 峝
(iii) Miscellaneousreations:

132 Stailityof carbarians

Like caborium ian there are two types of cabarions, viz stade and traniert, dassifiedonthebasis of their evistence Stadility of carbaions are incremed when the negdive darge spread over a nunber of resanting studures More the possibility of spreeding the negdive darge over more resantingsturtures, norethecabarionwill bestdde
Thepossiblity of resoranceina cabarianion intumis deto thefdlowing thostururd features
(i) The presace of detron withdaring (-1) gap such ∞ $-\mathrm{C} \equiv \mathrm{N},-\mathrm{NO}_{2},>\mathrm{C}=\mathrm{O}$, ecc, stddilizes acabarionbyddocdizingthe negaivedarge Convesdy prestre of dedron releainggapsich ∞ an alkl grap inceme the negdive dargeon the cabon tom of cabarionandhencecabarionbeconesuntdde
(ii) Thepreserceof dadebondor anaondic ringincorjugtionwiththe cabon tom haing negdive darge stadilizes the calbrion by rescrance
The traniet cabarions stadilize thenselves by dstribting their needive darge ove athreatomh/bid Inthereeramdes, the resonameis posside detotheprescreof-I gaplike $-\mathrm{NO}_{2},-\mathrm{C} \equiv \mathrm{N}, \mathrm{C}=\mathrm{O}$.

Thestadilizdion of thesecabarions via resonameshons thehydoyen atons onthecabondansadacet to unsturtedgraps(i.e α-hytoogntans) are nureaidcinneturethenthoerof admay C -Hbonds
Wthreferme to the calbarion stadility it is interesingto notethet athough acetyacetone, thyluedoacede, and thyindante posess a ktoric grap, their cabarionsddilityfdllonsthefdlowingarda

$$
\begin{aligned}
& \mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH} \cdot \mathrm{COOH}_{3}>\mathrm{CH}_{3} \cdot \mathrm{CO}-\mathrm{CH}-\mathrm{COOC}_{2} \mathrm{H}_{5} \\
& >\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{CCH} \cdot \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}
\end{aligned}
$$

$$
\begin{aligned}
& \longleftrightarrow \mathrm{C}_{2} \mathrm{H}_{\mathrm{O}}^{\mathrm{O}} \mathrm{O}_{\mathrm{C}}^{-}-\mathrm{CH}_{2}-\mathrm{O}_{-}^{\mathrm{C}} \mathrm{OC}_{2} \mathrm{H}_{2}
\end{aligned}
$$

On the ather hand since there is mo such stailizing gap (ester) in acelyaxetoneitcaneexily liminintepromonaproach of aLevisbæe

This compaison derly edibits thedffermeebeween the $>C=$ gapof a kłoneadanester.
Similaty, ally andberzil cabariansaestddilizedby neersof resance

Stadilistionof berzil cabarion
Futher greter the s carater of the cabon tomhaing negaive charge, geeter will beits stddility. It iseidat fromthefdlowingrddivestdility of thecabariors

$$
\begin{aligned}
& \mathrm{R}-\mathrm{C} \equiv \overline{\mathrm{C}}>\mathrm{R}_{2} \mathrm{C}=\overline{\mathrm{C}} \mathrm{R}>\mathrm{R}_{3} \mathrm{C}-\overline{\mathrm{C}} \mathrm{H}_{2} \\
& 50 \% \text { sdarater } 33 \% \text { scharder } 3 \% \text { s-charader }
\end{aligned}
$$

Somecabariars aesostddethatther sodidstdeaeknown eg, sodumor patasiumsalts of tipheylinethy, ydqpetedeny, andindaylaions

Canoricd stuxtresof triphenlwethyl arionhylaid

Carricd studures of thecydqpertodenl arionhycrid Therddiveardar of stdility of somearionsisळfdlons
 Cyddaty, ecc
Thesddility ords of dkyl carbarionaegivenbodow:
Pin\#y cabarion $>$ Sec cabarion $>$ Tet Cabarion

Which is revereto theards of stdility of freeradcds and caboriumions Thiscanbeerdananthebosis of hypercajugtion Incerednumber of akyl grap (+I ffeet casing gaps) it the cabon canying a neestive chage dereeses thestdility by incering the edetrondersity sill furthe and thw hindainghypercojugyion

Rediveardr of stdility of cabarions

133 Strutureof cabraion

Thecertrd tamissp ${ }^{3}$ hylaidsed therespo ${ }^{3}$ orditdsfarmingtheesignabonds wheres thelone par resides in theforth $s p^{3}$ adbitd. Thus their geemery is terchedrd or trigora pyraniod like armoria band ange being 109.5 . Beweenthesetwoetreregeemericd st ups atrasitionsteisformedin wich theededron pair reides in parbitd. Theintrasitionsta, thecetrad cabonbecomessp p^{2} hydridsed

134 Rediarsof carmiars:

(i) Elimintionrextiors:

(ii) Substituianreatiars:

(iii) Remrangenetreadion:

(iv) Oid\&tion:

(v) Eletrogdicreation:

14 FreeRadicds

Anatomargouppossessing anoddoruparreddedroniscalledfreerad.d. They areparargndic, dectricaly ratrd andbenavelikedetrodiles These aeformedbyendyticfissian of thecondetbond

$$
\geq \mathrm{C} \cdot \mathrm{C}=\longrightarrow \geq \mathrm{C}+\mathrm{C}=
$$

141 Farmaianoffreeradicas

(i) Franthemal reation:

$$
\begin{aligned}
& \left(\mathrm{CH}_{3}\right)_{4} \mathrm{~Pb} \xrightarrow{\Delta} 4 \mathrm{CH}_{3}+\underset{(\mathrm{mb} \text { irar })}{\mathrm{Pb}} \\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}-\mathrm{O}-\mathrm{O}-\mathrm{COC}_{6} \mathrm{H}_{5} \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO} \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{5}+2 \mathrm{O}_{2} \\
& \mathrm{CH}_{3}-\mathrm{N}=\mathrm{N}-\mathrm{CH}_{3} \xrightarrow{300^{\circ}} 2 \mathrm{CH}_{3}+\mathrm{N}_{2}
\end{aligned}
$$

(ii) Fromphotodnerical Rextians:

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\mathrm{~h}_{4}} \mathrm{CH}_{3}+\mathrm{COOH}_{3} \\
& 2 \mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} \\
& \mathrm{CH}_{3} \mathrm{CO} \rightarrow \mathrm{CH}_{3}+\mathrm{CO} \\
& 2 \mathrm{H}_{3} \mathrm{CO} \rightarrow \mathrm{OH}_{3} \mathrm{COCOOH}_{3}
\end{aligned}
$$

(iii) FramReabxRextiors:

$$
2 R \rightarrow R-R
$$

142 Stailityof Freredicas

Likethe caboriumand cabarions the dky freeradcas aedasified into thee dases piniry, seconday and tetiary, depending yoon whethe the cabon atomcarying theod detron is attachedto tho (ar thee), ceor mo hydogentam

		K
$\mathrm{R}-\mathrm{CH}_{3} ; \mathrm{OH}_{3}$	${ }_{\mathrm{R}}^{\mathrm{R}} \mathrm{CH}$	$\mathrm{R}-\mathrm{C}-\mathrm{R}$
Pinayffree radcds	Seconday freeradicd	Tetiary freeradicd

Although the akl radcds very moch less stdde than the triaylmethy radeds, the ard of stadility of akyl radeds are: tetiax > secondary > pinary $>$ methyl.
This redive sddility of thethreedases of freeradeds is eydanedonthe baisof hypercariugtionor nobond resorace Thecabonton carying an unparededetron hesahalffilledarbitd thet givestheraded itscracteisic instdility, the hypercojugotive mederismtends to fill this abditd and thw stddilizes the raded to someetat Tetiay free k kl radcd having more posside hypacarivgivestuctures or no-bond resoraceethen the seconday is the most stdle which in tum haing more posible stuctures then the pinaryismorestdeandhecepinay istheleotstde
In wer of free radcds cortaring corjugted odd dedron, the stadility is maily deto rescrancewtich allons oldocdizdion of theoobl detron over selead tans Foreamde,
 Ally freeradcd

Berzl freeradca

Pdativestaility ${ }^{\text {ffreeracicals }}$

berzyl>ally $>3^{\circ}>2^{0}>1^{0}>\mathrm{CH}_{3}$, viny

143 Stuturesoffreeradicd

Like cabarions geneally the cabon tom is $s p^{3}$ hybridsed with pyramid artercherd geomery. Honerr, intrasitionstathecaboniss ρ^{2} hybridsedwithtrigona plare geometry.

144 Dtedionofreeradicd

Thefreeradcds are dzeted on thebersis of their nagnic property. It is a well knownfatthet al detronshaespin, and asdiringdagegenatesa
mangic fidd In the ordney moleales the dectrans are pared and the magnic fied dof thosededronswtich son " 4 " is cancelled by themagnic fidd of thes which sadn "down" and hace the moleale is, on the whde, magneically netrd i.e damageic But sine the freeroded hes an ood number of dedrons, crent spinuill remwinuncomperstedandhenceafire raded genedes ammedic fidd, i.e it will beatrated by themroneic fied (parnmeglism). So theprestree ffreeradcd inasdutioncanbeetibited by the dradiontonaros a mage Buturatundedy, this method is not very sersitiveandarly theffrerroded of lageconcetrdioncanbed\&eted by this method
At presest dedron spin resoname (E.S.R or E.P.R., detron parmagndic rescrance) method provids the noet povefu tod for the stoly of free radcas The method is besed ypon the fat that a freeraded in a strang magneic fidd preferetidly oriets its odd eletron spin in the mare stde dredionbt withthe absondion of ligtenegy thespin cantumove to the unsddecietdianashombiow.

Thismethodis vey sersitiveardcanbeapdiedtodझet thefreeradcdseven ttheconcertraionof 10^{7} M. Futhemere, evenvery untdderadcdssurhm CH_{3} canbedzeteduinges.

E.SR spedtumof myly raded

145 Pextionfreeracicals

(i) Adtitionrextiar

$$
\begin{aligned}
& \mathrm{Ph}_{3} \mathrm{C}+\mathrm{Na} \rightarrow \quad \mathrm{P}_{3} \mathrm{CNa} \\
& \text { Triphay methy soim }
\end{aligned}
$$

$$
\mathrm{Ph}_{3} \mathrm{C}+\mathrm{NO} \rightarrow \mathrm{Ph}_{3} \mathrm{CNO}
$$

(ii) Asareduingrexgrt:
$\mathrm{Ph}_{3} \mathrm{C}+\mathrm{AgO} \square \quad \mathrm{Ph}_{3} \mathrm{CO}+\mathrm{Ag}$
(iii) Disprqpatiantiar

(iv) Imeasibledmeistion

$$
\begin{aligned}
2 \mathrm{P}_{3} \mathrm{C} & \longrightarrow \mathrm{Ph}_{2} \mathrm{CH} \\
& p \text {-berivhychl teradheylimethen: }
\end{aligned}
$$

(v) Autoidation: Slaw oxidation of orgaric substances by atrosdheic oxygen is known as atoxidtion The oxygen moleale frequatly benaves as abiraded andit istherforenotsurpisingthatthisproess indves a radcd nedarism Perhass the nost tharougly studed erample of atoxidation is the conversion of berzaddyyde to berzaic add

Perberzic aid readswith a molealeof berzddalydeto prodretwo moleales of brzaicaid

(v) Aranaicsubstitions

$$
\begin{aligned}
& \mathrm{ArN}=\mathrm{NX} \rightarrow \mathrm{Ar}+\mathrm{N}_{2}+\mathrm{X} \\
& \mathrm{Ar}+\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{H} \rightarrow \mathrm{Ar}-\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{H} \\
& {\left[\mathrm{X}=\mathrm{A}, \mathrm{OCOC}_{3} \mathrm{OH}\right] }
\end{aligned}
$$

(vi) Rerrrangriatof Radicds

15 Summay

Incremein positivednageenances thereadivity and deremethestddility of the cabocdions In cortrat, dereesein positive dnageloners the readivity and erhances the stdility of cabocdionsFree radeds ae paramandic, dectricdly natrd and bavave like dectrophilesResonames ervances the stadility of cabarions

16 ReienQuetions

1 Expainthestudureandstddility of caboriumion?
2 Exdan redtive stadility of prinary, secondary and tetiary cabarion
3. Arangethefdlowingfreeradcas sincrds of dereeengstddility.
$1 \quad \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{CH}_{3}-\mathrm{Cl} \mathrm{C}_{-}-\mathrm{CH}_{2}$
4. Witetheshatndeandzeetion of freeradcds

17 Peferexeandsuggetedrexdings

- OrgaricReationsandtheir MerharisnsII ${ }^{\text {nd }}$ edtionP.S. Kdsi.
- Advanced Orgaric Cheristry IIIrd Edtion, Jagdantba Singh and L.D.SYadav.
- Reation Mertarism in Orgric Chemistry IIIrd Edtion S.M. Muknaji andS.P. Singh(Mamillan).
- Ograic Chemistry Reatiors and Regegtstwety sixEdtion O.P. Agand.

Unit-2

Rextionlntameditasl

Sructureof Unit

20 Ogective
21 Introdrtion
22 Cabone
221 Stuctureof cabenes
222 Farmaiono carberes
223 Stadilityof carbenes
224 Detection of cabenes
225 Reation of cabenes
23 Ntrenes
231 Studureof ritrene
232 Farmaion of ritrere
233 Stddility of ritrene
234 Detectionof ritrere
23.5 Reationof ritrene

24 Arynes
24.1 Studtreof aynes
24.2 Formaionof aynes
24.3 Stdalityof aynes
24.4 Detedionof aynes
24.5 Reationof aynes

25 Summay
26 RevienQuetions
27 Refernceandsugestedreadngs

20 Ogietive

Theshostrdeadthereggt interad, toyiddtheproduts of thereation

$$
\text { Substrate+Reggit } \rightarrow \text { Prodids }
$$

Sorre bonds in the sbostrae moleale ae broken to give fragnet. These frognetsarevey readiveandansititetranitory intermedte

> Substrte \rightarrow Intemedate \rightarrow Produts
> (trasitary)

At crcetheeirtermedzeareformed they reat with the speeies preest in theeniromertoformreavbonstogivetheprodids
The nost cormmen reaction intemedites are cabocdions cabserions, free redcds, cabenes ritrenes and berrynes Oher areyides anderanineswtich ae stdde irtermedze and can be isdated and darateized Study of these intemeditesareneessay for better undastandngthereadionneedarism

21 Irtroduction

Majcity of thereationstakedarethoughtheformaion of intermedtes As thereintermedtes areof trasitary eisterce, so they the pat inthereation wtheyareformed Thesecandtbeisdzedundr nornal candionssincethey are vey readive Ther stuctures ae detemined by indreet neen ether devenically or speetroscapically orbyisddingthemt vey lowterperdure A through knowlede of these intermedies ae neessay for der undestanding of thereation medarism Inthischader wewill dsass dbat cabene, ritrere and berryneintermedtes Cabereand ritreneare dedron dficietinntureandhaingolysixededrons Aryneshaveacretripebond in laæeof oredudebond intheberzere, whichisdffer fromakyretride bond

22 Carbanes

Cabenes aeneatrd speeieswichhaveonecabon atomwithtwo bonds and anunsarededetronpair.

Cabenes arehigly reative speeies having a lifetimeless then one second Thepretspeeies: CH_{2} isknown wn thylere Subsitited caberearenened
asubsituteddrivaiveof cabene For eg : CO_{2} iscdledaddlarocabene Honever itmaydsocalledaddloromylene

221 Sructureof carbane

In carbenes, carbon hes six dectran (settel) and hence cabenes are detron dfficietinneture Thecabenecabonnaybesp ${ }^{2}$ or sphylaidzed

Thesetwo norbondng eectran of caberearedaived by thehandyticfission of twobonds Thuscabenenomally readsesastrangededrophile

Thereare two types of carbenes aneissing $\#$ and other ane istride Inthe singe cabeneboththeededrans go into anearditd. Onthedter handinthe tripet cabene both dedrons are in the dfferet arditds, therefre they will havepardld (unpared) spins. Inthesinget cabonededronhaveatipardldd spin so there is no magnic momet in this stae while in the tripd stae, nagnicmoretwill bepreset

Singlet state of carbene

Triplet state of carbene

In the singe ste of cabene, cabon will have spr hybidzaion Tho spr ${ }^{2}$ hybridatbitds arebondedtotwo hydocon tons andthirdsp² orbitd havinga lonepar detron The uhywid pabitd is uncapied Band angeis 100° adC-Hbondlenghis $112 A^{\circ}$ singetcabareisdmagetic Intript cabere, cabonatomissphydaidzed Thetwo sphybridzedarbitds are arange as liner fation and ae bonded to hydogen atom Tho
 aso abert medealehaing angeof 136°. C-H bondlenghis 1034°. Tript cabeneisparamentic

222 Farmaioncfarbane

Itcanbeprepredbyfdlowingmethods
(1) By diphaic dazo compunds Dizzocompands eexily decompose either themallyorphotochemicallytogenertecabenes

(2) By Ketenes: Keanes canbederomposedthemally or phatdyticaly to prodrecabenes

The stating ketere can be dataned by pyrdysis of acelone or from drakkenes

Acetone
(3) By qpoides Photdyticdecompositionof epoxides prodrescabenes

(4) Bydazirines Decompoition of dazirines prodrecabenes

Diazirines
(5) By toylhydranes Cabonyl compands reat with tosyhydain in thepresenceof alkoxideto givetosylhydzzonewtichanstrang heaing givescabere

(6) Bytetrades Themal decomposition of terazdes produes cabenes

Tetrazole
(7) Byallyl helides Didㅅorocabenecanbegenaded by loss of aproton fromdlaroformbyabesefdlonedbyexpisian of dlaideian

(8) Byylides

Therral arphoddyticdecomposition of yides prodrecabenes

223 Stailityof carbane

Cabenes in which the cabenecabonis dtadhed to tho tans ech beaing a lonepar of dectrons, aenrerestddedetoresonance

224 Dtadioncfcabanes

Sincettip \ddagger cabere(mltiplidity $=3$) is adraded, ithesbeenin wesigsedby ESR meremets Howerr ESR expeinets cand be made with singe cabere

225 Rexdionscof cabress

Cabenes are untddelat vey readiveintemedtes Threfore cabores are prepredinsituinpresenceof as bostrtewithwhichithestobereated Some impatatreationsof cabenes aexfdlows
(1) Addtionreation(Cydoadtion):

(a) WithAlkenes

Cabenesadlontoandefiricobudebondgivingacydquropanedrivative

Cyclopropane derivative
When the reation is caried at in liqid medumsinge cabene is formed whichadberstreospeafic noy. Thus is-dkeregives iscydquropeneand trans-akenesgivestran-ydquopane

Onthedhe hand ingereas nedum, theattading speeies is triple cabere, whichobesnodadstereospeeficicaly.

Thestreechenistry of thereydoodttionsisso speeficthat Skell ueeditæa dagosic test for dstingisting between singe and tripde cabenes The
adtion of sing \pm cabereto an defin shald bein a conceted namer and therefreistreespeedic

Hovere, in creof tripd cabene, boththeunparedededrons carde forma nevcovatetbondsimittenea dy beeaseof ther pardld spins Hence, inthis cæethereationwill tkeplaceintnosteps A tripledradcd isformedinthe first step, which undagees spin inversion and then ring dosre For this the radcd hesto wait Dringthistine, thereisfreerddion andamixtureof is adtrans cydquppaneisdtained

In the dowe cydoadtion reations, cabere is greated in situ A more speriar proedre is to ue Smmosesnith regegt which tranfes methylenefromm thylereiodde and inc-caper capleto a cabon-cabon dade bond The atading speies is an arganoinc ICHZZN, a catinelike speeies colledacabencid

Insterdof expersiventhylereiodice compratively dreperdbronenethene with inc dit and arpras dloride can be ueed to give better yidd of the achut

(b) WithAllenes

Allenesreatwithsorrecabenestogiveakylidaneydqurpane

thecaberemeltipidity canbedłemineby3MAthy-1,2-atadenecompound since singet cabenes add to mere subsititued da lde bond wheres tripld cabenes addtothelesssubtitueddadebond

1,1-Dibromo -2,2-dimethyl ${ }^{-}$ 3-methylenecyclopropane (only product)

Cabenegives 1,2-abdition prodit Cabenes do not give1,4addtionprodit with 1,3 butadenes

(d)ByAlkys:

Akynes arelessreadivethendkenestonaroscaberes

(d) ByArenes

Reation of aromic compands with cabores to give 1,2 adult which futherudagoes rearangenertreation

(2) Inmertionreations

CabenesconinseatintoaC-Hsingebond

Thereadionocarsinthefdlowingmame.

or

Thisinserion reationshonsthat cabenesarevery reative
In the dove mertioned cydoaddion reations, dang with gydquopare, produts in which nethylere is inseted into C-H singe bands ae dso dataned
Insertion into XH bonds Caberes can dso inset into ather singe bands speidlyOH adNH-H bonds Reationtikesplaeafdlons

(3) Dineizdion

Cabenecancuplewithoneandherformingakenes

$$
2 \mathrm{R}_{2} \mathrm{C}: \longrightarrow \mathrm{R}_{2} \mathrm{C}=\mathrm{CR}_{2}
$$

(4) Syrtherisofallenes

Dihaloydqurpenesonheringwithnued yiddallenes

(5) Sythesisofspirocompancs

Dihaloydgropanes dtaned from cydoakenes and cabere, on tredmertwithLiMegivessoirocompund

Spiro compound

(Q) Refrrang

The nost commen rearangenet reation of akyl cabenes is the shitt of hydogengeneding andkene This modeof stddilizdion peabnintes to the exdusion of nost intermealar reations of diphaic cabenes and often compdeswithintrameala insetion reation

For eg decomposition of the tosslhydzone of 2-methylyddheranegive minly 1 - and 3 methyloyddherere rathe then the intrameala insetion podit

Cabenes candsobesddilizedbymigdion of dky drayl gaps intheceze of 2-methy-2-phey 1 -1-dzzoproperewtich gives the produt of both methy andpheyl migdionæull कirterndealarinestionaredserved

41\%
Intherererragenert migdingponer of thegaps indereeringards isw fallons $\mathrm{H} \gg$ ayl $>$ dkyl.
Themedarismindves ovelpp of the migding signa bond with veart p abitd of thecabere This canbeposideif migdinggapiscodarer with thevecatalditd.

Rearangeret via formion of cabene Cablanine reation Reiner Tienam and Wdff rearangenert indves cabene intemedates Remer Tienam reation neehaismis shown badow, which is ind ving caberea intemedte

Salicylaldehyde
Mednaism

$$
\begin{aligned}
& \mathrm{CHCl}_{3} \xrightarrow{\mathrm{OH}^{-}} \stackrel{\ominus}{\mathrm{C}} \mathrm{Cl}_{3}+\mathrm{H}_{2} \mathrm{O} \\
& \stackrel{\ominus}{\mathrm{C}} \mathrm{Cl}_{2} \xrightarrow[\text { Dichlorocarbene }]{-\mathrm{Cl}}: \mathrm{CCl}_{2}
\end{aligned}
$$

(7) Ringeyparsion

Incestansubstrdes, addtion of caboreinvdves ring expanion Fore g the reation of indenewith ddlarocabere(: CO_{2}) gives2-dlaronedthdere

When a cydic dazoketane is decomposed the rearangerert resits in ring cortration Thereationtakespaceviatheirtermedzecabene

23Ntrene

Nitrene can be cansidzed as the ritrogen andogas of cabere Nitrene is monovdet andhestwounsered pair of detronsonritrogen

231 Structureof Ntrene

As with carbenes, both sing \ddagger and tripd dectraic stes are possible In gened ritrene deey Hunds rle and ae ground stae triple with two
ceyenete sp abitds cantaring a singe dedron exh Nitrere tomin the sing \ddagger isus ally representedæspr hybridsed

sp-triplet nitrene

sp^{2}-singlet nitrenes

232 Famationof nitrenes

(1) ByAzidss

The rost cormmen method is themad or phatdyic decorposition of axids, whichgivestitrereittermades

Acy andalky ritrenes canbeddtinedbyphtdysis of acy zides and iscyartes respectively.

(2) Byalfinylanines

Pyrdysisof sulphinyamines prodrepherl ritrene

$$
\mathrm{Ph}-\mathrm{N}=\mathrm{S}=\mathrm{O} \xrightarrow{\Delta} \mathrm{Ph}-\stackrel{\mathrm{N}}{\mathrm{~N}}+\mathrm{SO}
$$

Suptinylanines can be readly prepared by the reaction ailine and thiony dharide

$$
\mathrm{ArNH}_{2} \xrightarrow{\mathrm{SOCl}_{2}} \mathrm{Ar}-\mathrm{N}=\mathrm{S}=\mathrm{O}
$$

(3) ByNbaraneulfonoy Carbanates

When N-berzenealfoncy cabantes reats with a bere it fams Caboakoxyitreneby thedimingion of berzeneslfontearion

(4) Byritroandritrosocompanck Deexygention of ritro and nitroso compoundrmay prodreritrenes A vaidy of reegets canbeusedfor deexygention bit thebestreslt isddanedwithtrithy/pospdite

$$
\begin{aligned}
& \mathrm{Ar}-\mathrm{NO}_{2} \xrightarrow[\Delta]{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}} \mathrm{Ar}-\stackrel{\because}{\mathrm{N}} \\
& \mathrm{Ar}-\mathrm{NO} \xrightarrow[\Delta]{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}} \mathrm{Ar}-\stackrel{+}{\mathrm{N}}
\end{aligned}
$$

Reactiontikesplæeafdlows

(5) Bysrall ringcampands Onphotdysisritronesgiveaxazranes whichonfurtherphodysisgiveritrene

233 StailityofNtrene

Nitenes are nore stdde then Cabenes The eregy dfference beveen the sing \pm and trip $\#$ staes is usully morh lager for ritrenes then for cabenes, beingestinzed t $145 \mathrm{k} /$ /mefefor ritreneitsdf compared with $32-42 \mathrm{k} / \mathrm{mdle}$ cabene The reason in enegy dfference is de to the dfference in detranegdivity of cabon andritrogen Nistreredetronegdivethancarbon Soritrogenholds its dectrons doser to thenide swhich derremetheenegy and henceincresestablity. Thenature of thesubsituat on ritrogen ffeds boththemltipiaityandnomal ededrapilic readivity of ritrene

234 DeketionofNtrene

Due to tripd studture they can be dzected by Electron Spin Resorance Speetroscopy (ESR). Occaionally a nitrenecanbetrapped by its readionwith cabonmonoxidetofamisocyante

235 RemiansofNtrene

(1) Adblitionreadion(gydasdition):

(a) Wth dkenes Nitrenes are dectroptile and dkenes are nudeophile therefreaddion reatiantikeparebetween dkeneand ritrene Like
cabenes, the addion of ritreneto aC€ bond nay bestereospeific with sing e whilennestereospeeific with trip \ddagger ritrenes Mechaism issimila tothereation of cabenewithalkenes

(b) Witharenes

Berzene and its daivaives reat with ritrenes to give ring expanded proditsand/aN-substitutedarilines
Ringexpandedproduts aredtaineelduetorearangeret.

Azepine
When adurt is treeted with aid this convets into N-subsitited axilines

2 Insertionreadiar

Nitrenes patialaly ayl ritrene and sulfond ritrenes can inset into C-Hbonds

Nitrene nay aso undago insetion reation with scturded hydocabons Thus insetion into C-H singe bands leadng to ring dosse Theimportance of theC-H insetion reation of ritrenelies in
thefatthatitisapdertid usefu wey of fundiardizingunadivatedCHbonds, byconetinghydocabonirtoaminedrivaives

AboveexamdebangstointrandealarC-Hinsetionreation

(3) Dinaizalianreatiar

Aryl ritreneforms azdoerzenebydmeizaion

$$
2 \mathrm{Ar} \stackrel{\mathrm{~N}}{ } \longrightarrow \mathrm{Ar}-\mathrm{N}=\mathrm{N}-\mathrm{Ar}
$$

(4) Hydrogendastradian

If hydrogen dbstration ocars from the carbon which is α to the ritrogen then it leads to the forraion of imines This process is of considadde syitheic impatance If hydrogen abstration tokes place from4 ar 5- position which is fdlowed by ring dosure the produt formedaeprolidnesandpipeidnes, respedively.

(5) Remrangmetsofnitrene

Likecabene, ritrenedsohes vacat padatds soit can undagofaile rearangeret in which an tom or grap on the adacet cabon migdes to dedron defidiet ritrogen with simitaneas formaion of rev cabon ritrogen daidebond Such rearangents arecdled 1,2sifts

Ntrogen are dso ddaned as reation intemedte in Hofman, SdriotandLossenrearangerert

24 Ayynesor Barkynes

$\mathrm{C}_{\mathrm{d}} \mathrm{H}_{4}$ (1,2-didyddoerrene) and its darivatives are known a berrines Berznes ae natrd and highly reactive reation intermedte in which the aundic dratater is ind makedy dsturbed It may bedtainedfrimbervene ring by renoving two substituats a atho position one is the form of dedroptileand dhe inthefarmof nudeqpile Berynes (aynes) cortana cabontabon tripe bond and may be regarded ∞ acraic canteppat of acelyere Thistripebondisnotlikethetriplebondd $x e y l e n e w h e r e t h e t w o$ caborsformsao bondby coxid ovelapoingof sparditd andtheremering π bonobaeformedby thecdted ovelapping of renwining arbitds Such stucture is nt feeridein cæe of berryne a ait is wsoited with heagnd geonely of berzerering

241Stuctureof Arynes

Berrynetidebondwtich havetwo pi bonds, oneis nomal and the ther is (nevone) dramed. This danaril pi band isformed by the ovelaping of twosp ${ }^{2}$ arditdsatsidethering Thispi- bondiscalledmetend pi-bond As thesidanoys werlapingis not very ffedive, therevbordisweek andsothe barzneishigly readivespeies

242 FarrzionofArynes

(1) Byaryl helides

Ary haidesontreatertwithstrangbeselike $\mathrm{KNH}_{2}, \mathrm{C}_{\mathrm{O}} \mathrm{H} \mathrm{Li}$ ec, form berzyne

(2) Byoanindarmicaid

Theo-amindberzaicadidandazdizdionfdlowedby decompositionof theformeddazocompand prodresberzyne

α-Aminobenzoic acid
Thisisaconeriet methodforthegrercionof berzyne

(3) Bypthelol proide

Phatdytic decomposition of phthdol peroxidegeretes berzyrevia latoneintermedte

(4) Bybandtidawate1,1dioide

Themal decomposition of berrotriadzrotel,1-doxice podres berryme

(5) Bybarandrifluranthenealfonte

Berzenerifluorarethane sulphnte an treatert with a stong bese genedesbarzyne

243 Stdilityofbaryne

Berzynehes heragnal parer ringstucturewithsix dalocdized pi-dectrans. The addtiond pi-dectron preset in the pi-aditds formed by the codted ovelaping of two $s p^{2}$ tamic arbitds cortaring ane detron each This
velapping reetes dfarmation of the bond ange (120° to 180°). The dformaionof thebordange cases astran whichmaes the speeies tighy reative Someresondingstuxturesaeafdlows:

244 Dtetionofberigne

This interredtec can betrapped x its DidsAldar acdurt When berryneis formedinthepresenceof aderethebraynereads क thedenphile A dere atten ued for this purose is athraere which provids the stucturdly interesing moleale tridycere Furan dso reat with berryneto give Dids Ald radtionpodut

Triptycene

245 Readiansofbanyne

Berzyneis anedrendy reativespeeies andis generted insitufor dataining variasproduts Infatherzynegenededistrapped by vaiassubstrdes

(1) Rexdianwithnudeciphiles

As dready dsassed that ayl halides an treatreat with KNH_{2} (strong bese) genectes berryne When KNH_{2} is seed, theavailddenudeqdile $\left(\mathrm{NH}_{2}^{-}\right)$reats withthegenertedbarzynetogiveariline
(i)

(ii)

(iii)

m-Bromoanisole
In doove reations the berzyne interredte is ddtaned as a reation intemedte

(2) Syntheriscfsimplendeales

Bythereadion of aberzynewithsimpereagets, anumer of produtscanbe synthesized

(3) Sytherisof uniad typeof prodids

Seerad types of compundswicharedffialttodtainor candbedtained
 the generted berryne can be traped with attracene, furan and their daivatives
(i) Reationwithtrizines

Isoquinoline derivative (70\%)
(ii) Convesionof dladoberzeretophend andailinedaivatives

(iii) Dimerizdion

Inthedberceof ayy nudeaphilesberzyneundrgesdmeizaion

(iv) Readionwithdefirs

(v) Sythesisof hetacoydiccomponds

25 Sumay

- In cabenes carbon hes six dectron (settei) and hance cabenes are eledron deficiet in neture There are two types of cabenes one is singeandotheroneistriple
- Carbenes add an to an defiric dade bond giving a cydqpropare daivaive When the reation is caried at in liqid medumsinge cabeneis fared, which adbs as sereospeific wey. Thus, disdkere gives ascydqurqane and transalkenes gives transydqurqpane In geseasnedum theattadkingspeeies istripet cabene, whichdeennt addstereospeeifically.
- Nitrenecanbecanidzedastheritrogenaralogus of cabene Nitrene is mondert and hes tho unshered par of dectras an ritrogen As withcarbenes, bothsingetandtripedectraic staes areposide
- Berzynes (aynes) catain a caboncabon triple bond and may be regarded as aonatic canterpat of acelylere Berzynehes heragna panar ringstucturewithsixdłocdized pi-detrons Theaddtiond pi-dedronpresertinthepi-abitdsformedby thecdated ovelapaing of thosp ${ }^{2}$ tomicabdtdscontainingonededranech

26 PeienQuetions

1 Whtarecabenes? Howthey aregenated? Givetheirstucture
2 Disassthecydoadditionreations of cabenes
3 Whtareberzyne? Howthey aeformed?
4 Disasstherearangeneetreationsinudvingritrenes
5 Witethetwomethodsfordtection of berzyneintermedte
6 Disasstherearangenetreationindvingcabere
7 Gvetheprodutsdadanedinthefdlowingreations
(i)

(ii)

(iii)

(iv)

27 RefergreandSuggetedRepdings

- AdvacedOrgaricChemistry,J. Mard 6hEd
- Advanced Orgaric Chemistry Pat-A, F. A. Caey and R J. Sundoerg Shed Spinge.
- Orgeric Reations add their Mectarisns P.S. Kdsi, Nen Age Interntiond Pudishes
- Orgric Reation Medarism V. K. Alundia and Rakesh Kumar Parakr, NarosaPldishingHase

Unit-3

Mdealar Refrrangrients

Stuturefunit

30 Ojective
31 Introdution
32 Gered meedanisicconsidarions
321Natureof Migdion
3211NudeadilicRemrangeret
3212 AedrodilicRearragefert
3213Freeradcd Rearagernet
3214ArondicReqrangenert
3215Rerragenertindvingydictrasitionste
33 Migdayaditude
34 Merroryffeds
35 Remragenertsindvingmigdiontodedrondaficietcabon
351 Pirecd-PirecdoreRerrangent
35.2 Wegne-MeemenRearagernet
353 Denjarov Reerragerert
354 Bervil-BenvilicaidRerrangeret
355 Wdff Rearangeret
35.51Amd-EstatSyntherisreation
36 Rerragenetsindvingmigdiontodedronridcabon361 Favaskii Reqrangeret
37 Summy
38 RevievQuetion
39 RefermeandSuggested Reodngs

30 Ojective

Thebasicskdeanof themolealesremansintatinthemajoity of reationof argaic compands There are many reations in which a skeded rearangeret ocars Sore of these processes are of valuein sythesis In addion hovever it can beadsodvatageif they coar dring the carseof qpertions designed aly to effet ther dhanges of fundiondity, so thet it is importat to be farilia with the stucturd feetures and reation condtions whichleadtorearangeret

31lntrodution

A rearangenertreationindves reshuffling of the sequance of tonstoform anewstruture Migrdion of agrapocars fromonecabon tomto anther withinthesaremdealeoffromanemdealeto andter.

Where A-Migdaryorign
B-Migdianteminius
W- Migdinggap
Geredly, thesemigdionsccarsfromantomto anadaretone(cdled1, 2 - shifts) dso called a 'Whitnore' 1,2-shifts, however langer dstance migdionsaredsoposside

32Gengal medaristicconidartions

Accordng to migrdion of migding goup to the same or andter nodeale, rearangeret may bedassified intwotypes Oneisintramealar process in whichmigdian of themigdinggoup W ocarswithinthesamemdealeso that ' W does not beecre compledy dathed from the system Seeond is Interrdeala process in which migdion of 'W ocars between tho moleales sothatusallythe'W grapisfirstdachedandthenreattachedt anthersiteof thesecondmoleale

321Nahreof Migrdion

Accordngtontureof migrtarygapitmay beof followingtype

Molecular Rearrangement

3211NudeqphilicRearranganert

(AriandrqpidCarbariumionResrangpret)

Rearangenet in which the migdion of the migtary grap W froma cabon tom, with its deatron pair (as a nu degdilic) to an adacest dectron defidet tom tikes pace is known as nudeophilic rearangeret. The migtary teminus tay be C, N ar O . If migtary teminus is carbon, rearangeretiscalledacaboriumionrearangeret. Itinndvescabonium in intermate There may be a dnange of atud carbon sketen in the prodit, eg- Piracd-Pinacdaneand Wager- Meemein rearangerets If migdary terminusisritrogen it indves ritreneintermedte eg Hoffinan, Lossen and Schmidt In Bager -Villiger rearangeret migdary terminu is oxygen Therearecdleda'1,2-sifts' wherenégbouringgrap patiapaion failities the formain of the bridged caboriumion If the reation rate is ernaced deto neighbouringgoup paticiption therearangenet is sad to be'Andinericdly asisted. Themigdary terminus tommet haveanquen sedet toadut dedrons of migdarygop(M). It isthenest commentype of rearangenet

Rapresatation:

321.2Eletrqdilicrearrangrnat

(CaiondrapidCarbarionRearangenert)

Rearangeret in whichthemigdion of themigrtory grop "W fromaC tom(withat bonding detrans) to anadacet detronrich tamtakes pace,
isknown m dedrodilic rearangent Thedivingforceis theforman of morestddearion

Representaion:

3213Freeradical rearangentat

Rearangeret in which themigdion of the migrting grap 'W fromaC atomtothemigtary teminus with asingedectrontaes place isknownas freeradced rearangent It is very rae, athereis morhless tendancy fora I or2 cabonfreeraded to rearangethenthecoresponding caboriumion

Rapresitdian:

3214Aranticremrangent

Rearangenet in which the migdion of themigrding grop 'W fromone positionto andhe in an aromic systemor fromasidechantothearotic nudastaespaxeisknownexadatic rearangemt

3215Rerrangrretindvingoydictrasitionstate

This rearangerertbengstoperigdic reationsinwhichrearangerettake paceby concestedmedarism

33 Migrtaryaptituds

In nany reations, there is no question dant which grap migdes For eg. Hoffiran Curtius and simila reations were is aly ane possible migrding grapineach nodealeandmigdary aditudecanbered by compaing therediverearangentrdes of dffere tcompounds
Insomereations, therearetwoor moreptertid migrdinggaps, butwhich migdes is settled by thegeonery of thendeale. Theemewith which any
patialar gropmigdeisknown its migdary aditude All gropscbnt migtewithequ emein rearangenets
Bekframrearagerett provids aneamdeinulichaly thegraptransto theOHImigtes Incompanosuhosegeomeity isnotrestridedinthismamer therestill may beediping effeds so that the daice of migding grap is lagdy deamined by wich gap is in the rigt pare in the rot stde corformation of meleale In the cæe of Wegre-Meemen and the Pineed rearragenets, themdealemmy cartansseral gapswtich gemertically have aproximatdy equl dances of migding. These reacions have often beenuedforthedredtudy of redivenigday adituds

34Manoryeffeds

Itcanbeexdariedbyfdlowingreadions:

xo isomer
Sdvdysis of theend bicydic compond 1 ($\mathrm{X}=\mathrm{ONsor} \mathrm{Br}$) gavenostly the biydicallylicadcond 4 dangwithasmalleramout of thetricydicacohd 8 whilesdvdysis of theeoisome 5gavemody 8 with mintearants of 4 Thus the two isomers gave etirdy dfferet rdios of produts though the
 of $\mathbf{2}$ a asecond reerragerent (asift of $1,7 \mathrm{bond}$ follows, wheres with 6 it is an intrandeala addtion of the cabocdion cabon to the dade band It seens a if 2and 6 "renembe" how they wereformed befrethey go an to givethesecondstip Surhefets aeknown mmery ffets Thecases of these effeds are not wall known One posside case may be dfferertid
sodvaianof apparetly idatica caboriumians2and6 Andter possibilities аеш
(i) The ins have geometricd stuxtures those are twisted in qposite hass (eg, a twisted 6 migt have its positive cabon dosertotheduidebondthanatwisted2).

6

2
(i) Ionpainingmayberesponible
(ii) Nondzsicd caboctionareindved

Oneposibility thet hes beenuled at is thet thestep $1 \rightarrow 2 \rightarrow 3$ and $5 \rightarrow$ $6 \rightarrow 7$ reconceated neens $2 \& 6$ never eisstadl. Thefat whicherdude this possibility is that 1 gives not arly 4bat aso some 8and5gives 8dang with some 4 This proves that some of $2 \& 6$ ians inteconnet, and this pheromemonkrownalekage

35 Rearangrients Indving Migation to Eletron DefidiatCarban

351 Piraed - Pinaedone rearangeneat ar Pireadic refrangpert
AnAdid- cadyzed convesion of plysibsituted thylenedy yedsto cabony componobviacaboriumionisknownæpinead-aineadonerearnagenet.

Craataistics

(i) Ariandrqicrearangenet
(ii) CabontoCabon 1,2- migdion
(iii) Adidsusedae-Minerd aids

Reation : For earmde 2,3dmethy-2,3bataredd (Piread) on treamert with $\mathrm{H}_{2} \mathrm{SO}_{4}$ greades 33-dmethy-2-atanone, cormmonly known as pinecdone

2,3-Dimethyl-2,3butanediol (Pinacol)

Methyl-t-butyl ketone (Pinacolone)

Madnrism: Themedarismindvestheloss of wete fromprotonteddd. Then1,2-ndeopdilicshiftof agroptkespaæe(Schere1).

(Sdmerel)
In cæe of unsymetrically stbstituted pineads dimindion of that OH gap woldocar which genedes a positive chageonthat Cwhichis best adeto sppotiti.e, wherenorestdecaboriumionisformed

(A)
(Schare2)

Here initidly (A) isformedwtichcanberesonancestadilizedbythepresence of Phgrap, andthen migdian of Megrapocars(schere2).

Desetion of caboriumion

Intermedayof caboriumioncanbedanastrtedinvariashays
(i) Wthheay weter: Piracd is rearangedin $\mathrm{H}_{2} \mathrm{O}^{18}$ realting in reeovered pinacd of O^{8} isdape
(ii) Anydther reationcapade of produingthesarecaboriumionresults in the formaion of pinacdane Surh compands which can yidd pinacdones are called Semi piracds and the reation is 'Senir pinacd rearangentut.

Pinacolone

Example Deamindion of α-aminodcohds(Schere3) isdogly redzed with pinam rearangerertandiscalledSemipinad rearangent.

(Sdnrre3)

MigdtoyAptituct

A goupwtich is nerenudeaprilic in natureathenonioric cabon (adaesttopositiveC) will prefertomigde

(Schare4)
Here inarisl gap thededrondondingntureof -OMegapmakes ita stranger nudeqpile then Ph corsegetly aish gap migdes to the positivdy darged C prefertidly (schere4). If All dhe condtions remin thesere, thenigatay order of gapis
Arll $>\mathrm{Alkl}>\mathrm{H}$
Theresonisthtay gapyponmigdionformsanintemedtepherrium ion which is being resconace stddilized The redtive migatary aditude of acmaicsubsitu at sinthepinexdic rearagereatisgivenbedow, whichwes deminedby Badman

ThesevduesarewithreferncetoPhgrapwithmigdingvdueof 1

Streechenicd andCafforrationd Fadors

The noet facradde steredenenistry for pinecdic rearagernett is thet the leavingapandsiftinggap(migdinggap) motbeaticqdara. Itcan beeydainedbytheeampeof 1,2-dmethylyddherane1,2-dd. Thedisform (haingmigdinggoupati totheleainggap) of itundagees thepinecdic
rearangereterily indlute $\mathrm{H}_{2} \mathrm{SO}_{4}$ withmigrdionof amethy grapwhees the trans daivaive undagoes rearangerert under similar condians with cortration of thering(schere5).

trans-1,2-dimethylcyclohexane-1,2-diol

(Sdnrre5)

352 Wagna-Mesmainrearangment

An Ariandropic rearangenert indving tranfamation of a lesser stade caboriumion in to a mre stddeone, so that the adtul carbon skeden is danged known as Wagre-Meemen Rearangerert. First dscovered in bicydictepenes
Readion: Mostcommeneampeisreation of dadnd withconc aidtogive rearangedprodutswitheither dimintionorsubstition(schere6).

(D)

(A)

(If R^{4} has $\alpha \mathrm{H}$)
(B)

Rearrangements with elimination
(Schare6)

Madnaism Thegened mecharismisthegrerdion of caboriumionwtich rearangesto a morestddeonefdlowed byether substituionor diminationto yiddproduts

(A) \quad If $R^{4}=H$

(B)If R²heson α Hydragnatom

(B)

(C) \& (D) Reerrangenetswithsubsitition

(D)

Fdlowingreations indudeWagne Meemènrearangeft
(i) Eeetrodilicaddtianof akenes
(ii) Nudeadrilicsubstituion(SNN)
(iii) E^{1} dimindion
(iv)Friedd-Crat alkylaionreationsec

Caboriumgraraion:

Migdoryaditude

The ayl gaps hes for geeter migdary aditude then akyl graps or hycogen
Usdly $\mathrm{Aryl}>\mathrm{Alky}>\mathrm{H}$, [ecceqtindemindion]
For eg sdudysis of neghend bruide is severd thasand highe then sodvdysisof neepertyl bromide Why?

Theresponisthetinthe cereof neepertyl brwide (2), dringsdvdysisal caboriumionisformed whichbeingunsdderearnagesto3 caboriumion While, in neepheny branide (1), a bridyed non-dasicd low enegy caboriumionisformeddetoneighboringgappaticipation of Phgapin thesytemandthusmigdion of pheyl grapisfauredour Me

Carbonium ion
Migatory adituck is ahanced by detron rich gap in the aondic ring whilededrondficietgapredresit

Streahenistry

Therearragenertissterespeedici.e thenigday gapduass aproades the detron daficiet cabon from the drection opposte to that in which the leaing grap is depating Conseartly inersion of carfigrtion cours at thedetrondficiet cabon [Inaringsytemagap dowetheplaneof the ring sytemmoves dove the pare whilethe gap baow the plane noves bodowtheplane]

ThefdlowingconvesionindvesWkegne-Meewénrearangenert-
(i) α-Pinere \rightarrow Baml dharide
(ii) Camphere \rightarrow Isdomyl didride
(iii) Bamed \rightarrow Camphere-daydrdionwithaids
(iv) Bamyld dride \rightarrow Camphere

353Dajanovrerrangeret

HO_{2} aid cad ysed converion of a1 ${ }^{\circ}$ aninetoformacaboriumionwtich futher gives rearanged produts dang with some diminetion addtion produts

Creraderistics

(iv) Ariandropicrearangenet
(v) CabontoCabonnmigdion

Reatian When n-propl anine is tread with HNO2(schere7), it leads to theformaion of caboriumion, which may undago eithe of thereation to yiedvaiasproduts
(a) Nudeqdilicaddtion
(b) Rearrageneat-Nudeadilicaddion
(c) Eimintion of poten

(Schare7)

Andter example is the reation of cyddatylnethylanime with nitrous aid (schere 8), which gives both cyddatylcatbind and cydqpatand besides nethylene cyddatane The formaion of thre produts can be readly rdiandized by considaing dl thetrretypicd propeties of carboction viz, addition of nudeophiles, dimination of proton and rearangenets to a rore stddereation

(Schare8)

Cyddatylamine yidds both syddatend and gydquropl cabind. The medarismof thesereationsaeafdlons(schere9).

(Schere9)

When aigdic anines aretrested with NNO_{2}, vaias types of poonts are formedashowninscherelo

Cyclopropyl methanol
(A)

(B)

3-butenol
(C)
(Sdane-10)

A speeific vaiat of this readionwtichleas to onecabonring exparsionis known as the TiffenarDanyanov Rearangeret which is very useful for hondogaing yydic kenes by the useof ritronetheneor dzzonethene This reationis seedfor thosecydic keneswhich contanthreetosevencabonsin theringof thesubstrate(schere11).

Cycloheptanone

(Sdnarell)

354Bavi-Banzilicaidrearangrnet

Base cadysed rearangenet of α-dkenes (usully arartic) to yidd α hydoxy aidsintheirsaltformisknownabervil-benvilicavidrearangeret. For examde bezil antreatert with KOH, fdlowed by adidficaion yidds benvilicaid

Cheradaistics

(i) Ariandropicrearangenert
(ii) MigdionfirmCabontoCatoon
(iii) Readataremostly arontic α-dkennes Sonedinesmay diphtic α-dktonesadd α-keoddalydes

Madarism

Reationbegnswithattack of OH anpatidly poitivedarged catbonof $>C$ $=$ Ogap s smila toterchedd medarismof nudegdilicstbsitution Here themigding gap does not meveto an qpen seted Caborn but the'cabon' makes roomfor itby remeringandedron pair tothe' O of $\mathrm{C}=0$ grap This is apishpll meehaismardogastointradeala Carrizao reation The reationissecondardereahinbervil andinbæe
Rte α [CH]I[Benvil]

MigdoryAptitude

In ayy cere if threis a dhuce bedven vaias ay gaps to migate, ore whichisless dedronrelering(dedrondsficit) will pref tomigdeovera norededron relezing(detronidh) goupbecaseancredetronneesing goup will terd to neatraize the positive darge on the cabonyl C tamto whichit is attachedandhenceOH ioncen attack exily onajaest cabon of dhe $D=0$ grap
Thefdlowingconvesionindvesbervil-bervilicaidrearagerert
(i) Kequiricaid \rightarrow Otricaid
(ii) Furil \rightarrow Furilicajd
(iii) 9,10Pherathrainone $\rightarrow 9$ hydroxy-9flumerecaboxylicaid

355Wdff remrangert

Convesion of an α-dazcktaneinto a ketreand N_{2} on treating with silver oxideand ${ }_{2} \mathrm{O}$, isknowneWdff rearangenet

Diazoketone
Ketene

Cheradaristics

(i) Ariandropic rearangerent
(ii) CabontoCabonMigaion
(iii) Boththerm andphotochenicd rearangeretsareposible

Wblff rearangenet genactes keere in the dbsence of any nudeqdile However, when this rearangeret is caried at in the presence of veter, adcond or anine thekeeneis conveted into caboxylic add, ester ar anide, respectively. Theoverdl readionisknowneAmd-Eistatsythesis

3551AndEEistatsyntheis

Amd-Estet reation is a method to convet a caboxylic aid to a higner caboxylic adid hardoge (i.e contains ane addtiond carbon tan). Add diarides reat with dazon thaneto givedazdkenes, which rearanges with loss of ritrogen In the presence of medd cadyst (Ag O) give ketene The keeneisshbsequatly connetedtoitshiger caboxylicaidhondoge

Mednerism:

Loss of ritrogen from the α-dazdketone is accomparied by 1,2-sift of the akyl group with deetron pair. Thereslting ketenereadly contrines withthe solvertmoleale(schere12), whichmy beweter togiveaid alcohd togive an este, ar anine to give an anide If reation is caried at by phodnenically, itisbdievedtoindvetheformaian of cabere

(Scherel)
A dsedvartegeof this reationisthtanepoxideisformedæaby produtand insonecassitmaybethealy prodit

36 Refrangriats indving nigrdion to an dectran ridncarbar

Theserearangenert indvededradilic 1,2-shifts inwtichthemigdion of cabonocarfromC, $\mathrm{N}, \mathrm{S}, \mathrm{O}$ to anadacestamberingan unstreddetron par andnegdiveckage

361 Facrskii rearangenet

Bæe cadlysed rearngenett of an α-haldkeme to an ester is known \times Favaskii rearangeret

Cbradristics

(i) Eetrodilic, cabarionrearangenetorcdiondropic rearangenet
(ii) The prodit is rearraged carbon skedtan with equal number of ' C dans
(iii) CabontoCarbonnigdion
(iv) Halogeneresally $\mathrm{C}^{-}, \mathrm{Br}$ btndt ${ }^{-}$
(v) $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}$-Alkyl, Aryl
(i) Bæe-Oly dkoxideions give the readion ading a poneful bæs whiledher beseslikeOH, anines etc givescaboxylicaiosor anides respedively.

Madarism

The reation proceed via a cydqurparone intemedte, which then undagees rearangenert and finally gives the produt eter. The overal corsequenceof theFavaskii remragerertisthtandky gapistranfered fromonesideof cabonl graptothedhes.

Incæeof gdic α-hdokatones, thereation withalkoxideiars resltsintoring cartrationbythesaremedarism(Schare13).

Cyclic- α-haloketone

Theneeharismagainindves cydquopanoneintermedat, whichasfdlans Medhanism

(Schnre13)

Divingforceforthereadionnay beafdllons
(i) Fondianof mrestddecarbarion
(ii) Strain releese of threementreed cydqurpannering by ring qpaing andmigrian.
If cydquqpanoneintermatesoformedisnotsymmetricaly subsituted with respet to $>=0$ group, thenringqperingccarsframthat sidewtichlead to forraion of stader carbaion When $[\mathrm{A}] \&[\mathrm{~B}]$ are sujected to reation condtion (schere14), then intermedte [C] is formed which gives stade cabarion [E] insead of unstde [D] and utimady the produt It can be exdanbyfdlowingmedraism

(A)

(C)

(Sdnare14)

37 Sumray

- Rearangpret: A rearangetet readion indves reshufling of the sequace of tans to forma newstudure Migdian of a gapfrom onetanto andter withinthesaremdealeocars
- Nudeqdilic Rerrangenert: Migrdion of the migdory gap W froma cabon atom, with its dedron par (∞ a rudeqdilic) to an adactdeetrondfidiettam
- Eletrqdilic Rearrangenert Migdian of themigdary grap 'W fromaC tom(withat bondng dectrons) to an adacet dectron rich tam
- Pread-Preedone Rerrangerest: Adid caddyzed convesion of plysabsitited ehylene gy yeds to cabonyl compands via caborium in
- Wegra-Mæemein Refrangenet Ariandrqic rearagenert indving tranformaion of a lesser stade caboriumion to a nore stddeoresotht theactul cabonskedtoniscranged
- Baril-Bavilic acid Remrangenert: Bæe cadysed rearangenet
 form
- Anct-Eistat Rexdiar Convesion of a caboxylic aid to a higre caboxylicaidhondoge
- Facrski Remrangenert Bæe cady yeed rearangenert of an α haloktoneto aneste.

38 Reienquetiors

1 Witethemedarismof eachof thefollowingrearangentis
(a) Wegre-Mermen
(b) Beril-Benvilicaid
(c) Pinecd-Pinecdone

2 Idetify theprodutsfarmedby α-dkenes
(a)

(b) $\mathrm{CH}_{3}-\mathrm{COOOOOOC}_{2} \mathrm{H}_{5}$
[Hitt-benvil-bavilicaidrearangentis]
3 What proditsyouepeetfromthefdlowingreations?
(a)

(b)

(e)
 $\xrightarrow[\begin{array}{c}\text { Pinacol } \\ \text { rearrangement }\end{array}]{\mathrm{H}^{+}}$?

4 What do you meen by migtary aditude Disass its sigrificance tokingtheeramdes of pinacd-pinacdanerearangenters
5 Givetheremeandmederismfor thefdlowingreations

6 Givenedarismof Amd-Eistetsynthesis
7 Exdanmerary ffeetswithanexamde

39 PefarenceandSuggetedrexings

- AdVancedOrgaricChenisty, J. March đhEd
- Orgaric Chemistry, J. Cayden N. Greeves S. Werven Oxford Urivesity, SecondEdtion
- Pingiles of OgraricSynthesis, RO.C. Normanadd. M. Coxan CRC Press
- Adverced Orgaric Chemistry Pat-B, F. A. Cäy ard R. J. Sunderg Shed Spinge.
- Orgric Reations and their Mectarisns, P.S. Kdsi, New Age Interntiond Pudishas
- Orgaric Reation Medarism V. K. Alundia and Rakenh Kunar Paxara, NewosaPudishingHase

Unit-4

Mdealar Rerrangpiets- II

Stuturefunit

40 Ojective
41 Introdution
42 Rearaggenetsindvingmigdiontodedronrichcabon
421 Nebr Rearrangmet
43 Rearagernetsindvingmigdiontodedrondfidietritrogen
431 BedkranRearangeret
432 TheHffnam Curius, SdmidandLossen rearangenets
4321HofmamRearangeret
4322CrtiusRerrangenert
4323Sdrid Rearaggent
44 Rearangentsindvingmigdiontodedrondficietoxygen
44.1 Bage-Villiger Rearangent

45 Rerrangenets indving migdion of Hydogen to dectrondficiet cabon
4.51Stapiro

46 Summy
47 RevienQuetion
48 RefermeardSuggestedRedings

40 Ogetive

Threearethreetypes of readions laric radcd and pericydic reations lovic
 In rearangeneat the redeale danges its cabon skeden The verias rearangenets indves nigrdion of cabon to detrondficiet cabon Beidesthis therearedher rearangenetswtichindvenigdion of caton to dher dedron defidiet domwtich may be ritrogen or oxygen or to an dedron ridh cabon Study of theer rearangenterts are impotat for the agaicsythesis

41 Introdution

Rearangenet is refered to themigdian of tamar a grap of tans from onetomto andher withinameealeor fromonemdealetoandher.

Where, A-Migdaryaign
B-Migdianteminius
W- Migdinggap
Geredly, thesemigdionsocarsfromantomto anadacetone(cdled1, 2

- shifts) dso caled as 'Whitnore' 1,2-shifts, however langer dstace migdionsaredsoposside

42 Rerrangenets indving migation to an detron ridhcrabon

421 Nbor rearanganat

Barecddysed converion of ketoximetosylaes to α-animo ketanes isknown a Neber rearangeret It is doßdy redaedto Bedkam rearangenet The mechaismof the rearangeret indves the intemedte formaion of an dirine Aldoximesdonotundzgothisrearangent

Here, OTs is Goodleavinggrap
$R=$ MostlyAr, Maydsobeakyl
$\mathrm{R}^{1}=\mathrm{Ar}$, RatnotH
Base-Alkoxides, Pyidme

Cheradarisics

(i) Neberoximetosylaeaninoketonerearangenert
(ii) Eectrodilic, CabarianrearangeretorCaiondropic rearangenet
(iii) CabontoCabonmigdionof Ncortaininggap
(iv) Prourtis rearrargedcabonsketanwithequl nunber of ' C tons

Madnaism

Evidarce

Theazirinedaivaiveformeddringthereationhesbeensucessfully isdated in vaias ceres using mild condtions, which gives the sare prodit when stgectedto reation condtians at thesemerde However it is dso suggested thedzinineformaionmigt tindvetheritrereintermedte

Streadenistry:

Incartrat to Bedknan rearangenert, this readionistericaly indsoininte Asboth'syr' and'Art' keloximetoslaes yidd sameprodit This isdeto theformaion of a cydicintermedteandstaospedifíty isloot

Exampes

43 Refrangentsts indving nigdion to detron dficiatritrogn

431 Bedknannearangenert

Adidcddysedtranfamaion of akedoximetoaN-substituted amideisknown aBedknanrearangeret

Cheradaistics

1 Ariandropic rearangerert
2 MigdionCabontodedrandficietNitrogen
3 R\&R' - Alky, Ary orH
(i) $\mathrm{Ror} \mathrm{R}^{\prime}=\mathrm{H}$, Migdionisqiterare
(ii) $\mathrm{R}, \mathrm{R}^{\prime}=$ both Alkyl, two surn amides forma $\mathrm{R}^{\prime}-\mathrm{CO}-\mathrm{NHR}+$ R-CO-NHR'
4. Caddyst-AdidcreegentsareConc $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HCHO}, \mathrm{SO}_{2}, \mathrm{~Pa}_{5}, \mathrm{HMPA}_{\text {, }}$ $\mathrm{PPA}, \mathrm{BF}_{3} \mathrm{SOC}_{2}$, $\mathrm{PhSO}_{2} \mathrm{C}$
5 Thereationhavedsobeencariedatphoochericedly.

Madarism

Iminocabocdion
It indves initid ttack of aidc reaget, the-OH grapconmets into ancre exily leaing grapa $\mathrm{OH}_{2}, \mathrm{OPG}_{4}, \mathrm{OSO}_{2} \mathrm{OH}$, \&c Loss of theleainggrap genertes andectrondfidiertspeeies, whichisaccomparied bymigdionof a grop from adacest cabon to the deetron dfidiet ritrogen Reslting iminocabocdionreadswith weter to giveanamide

Divingforce

Asthemigdionccarsviaariandropic ratefromCtodectrondfidietN, it adbstddility andrelesesdetrandficiencyontheN.

Evidances

Fromthereationschere, themednarismseenstobeintrardealarwhileitis not 50 a a whde This is evidanced by varias doserved fatars. The rearangertocarsunderfdlowingapeets:
(i) Therearangemt cours in sareintermate beween oxire andamide
(ii) Migdionstepisintrameala.
(iii) Arian(-OHar-OX) migdionisintemdealar.

Stereahenistry

Readionissereospeeific, wherethemigrdinggrapisganerdly 'ati' tothe learinggap(i.e aproachestheN tamfromqpositetothe' O tan).

Differt geonernicd isome of oximes sometimes giveisameric amides by the Beeknan rearangereat. Thesteresspeeifidity in the readion is 50 wel canfirmedtht it is used to dateminetheconfigurdionof oximes For eeample actaphenneoxinegivesacearilide

Aninteresting aqdicdion of therearangert isthesytheris of caprdadam ($70 /$) fromoydderanoneoximeandconc $\mathrm{H}_{2} \mathrm{SO}_{4}$.

432 TheHofinam, Curtius SdmidandLomenrearangenets

There is a goup of dosely redeed rearangenets in which cabon migdes fromcabontoritrogen Theymaybeformideelgenedlyas

WhereR isandkyl arayl gapand-X isaleavinggaputichnaybe-Br (Hofiran rearangeret), $-\mathrm{N}=\mathrm{N}^{+}$(Curius andsdrmid rearangerett) and OCOR (Lossen rearangerett). In each care, if the akyl cabon which migdesiscsymmetric, itreainsitsconfigurdion.

4321 Hofinannemrangeret

Convesion of anamideinto anaminewithoneless ' C by theation of bese andldomineinpresenceof weter isknownaß Hofnamrearangeret.

Heretheadul produtisisocyante, whidreadly hyddysestoamine

Cheradaisics

(i) Hofnamdeyadtiono a anides
(ii) Ariandropicrearangent
(iii) ' C to' N ' (dedrandfidiet) migdion
(iv) $\mathrm{B} æ \mathrm{e}-\mathrm{N}=\mathrm{OBrads} \infty$ strangbæe[$\left.\mathrm{NaOH}+\mathrm{Br}_{2} \longrightarrow \mathrm{NaOBr}\right]$
(v) Rgap-Aryl or Akyl, If $\mathrm{R}=\mathrm{Alky}$ with 6 , 7 cabonsthen yidds are qitelow.
Reation : Properanide gives thlazine on treatert with sodum hypdronite
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}+\mathrm{Br}_{2}+4 \mathrm{KOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}+2 \mathrm{KBr}+\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$

Medherism

Amidecan beformed by the reation of aid ar ayl dlaidewith ammeria Iritidly N-bromanidझA] isformed by theadion of dkdinehypdoroniteon theamide TheN-hydogenof N-bromeamideberomesaidc anditisremeved by basicOH ians Itgivetransitritrogenariaric species [B], whichisunstdle andlosestronideionvithsimitaneasmigdion of R goupfromadacestC toN. Thereslting isocyante[D] ishydrdyzedunde thereationcondtion It indvesconersion of anidetoisocyandeviapodaddyritrenepth

[E]

DivingFarce

It is sen frommedarismthat ater dimintion of Br , the ritrene fomed cortarin an dectron dficiet N domhaing a seted of detrors and hance tends to ginsomesddility vianigdion of ' R ' gap fromC tothis ledton dfidietNbyits pair of detrontoformispyante Thisistheprodaddefator whichdivesthereatarttonaros theprodut

Streadenisty

Reation of corfigrdionocarstmigding‘C atomThisfatcaneerilybe illugrtedæfdlons:

When β-carthtrarmic add (havingboth-COOH and-CONH ${ }_{2}$ gaps in is criettion) is slbjected to Hofnam rearragenert, l-animodhydo α camphytic add [A] is formed (haing both -COOH and NH_{2} in is aietdion) whichiseidat fromreedyformaionofladem[B].

If therehedbeeninvesion of corfigurtionformaionof transanimaadhave bænccarredwhich can'tforntheladamæformeddove

This dso poves that dqpature of Br and migdion of R gap coars by concated leedarism
This rearagernet povids an efficiet rate for making diphtic and aondic pinary anines For eg β-darine can be dtained by treting suconimidewith bronine and aqueas KOH ; reationcours througthehaf anideof sucoinicad

Arttrailicaddmaybedtannedinasinilarwayfromdthdimida

Phthalimide

Anthranilic acid

4322Curtiusremangert

Pyrdysisof aidazieto giveisocyntes viarearangenertisknownartius
 sodumajid Thereationconvetsaidziceirtoaninewithlossof acabon

Chradaisics

(i) Curiusdeyadtiono aidzzick
(ii) Ariondrqicrearangenert
(iii) MigdionfromCtodedrondficietNatom
(iv) Apdicdde to adid zuids of annot all kinds of aids- diphtic, aondic, diydic, hteroydicsec
(v) Isoyanteformedcanbeisdzedingoodyiddsinardicsdverts
(i) Reationwhencariedatundr oqueasordchdic medarestlsitio aninescrcabanteeter x produts eg

Genrationcacidauide:

Madnrism: The rearangenet of adid zide to isocyante is simila to Hofnamrearangeret

Inthenedarismaritreneisind ved bet yet not isdated being untddeand higly dedron dficiet. Hence, migrion of R क with its detron pair renoves the detron dficiercy and in tum dives the reation in fowerd dretion

Stareahenistry:

Simila to Hofriamrearragernet, reationof corfigrdionisencanteredt themigtaygrap' C tam

Apdications

This method is used for the sythesis of diphtic, armaic or hedacoydic anines α-Anino aid nay dso be sythesized by this method For eg sythesis of gyoineisgivenbedow.

Glycine

4323 Sdmidtrenrangenet

Adidcadysedreation of caboxylicaidwithhydrzaicadidtogiveaninesis knownessdmidtreation

Cheradarisics

(i) Ariandropic rearangerert
(ii) MigdionfromCtodectrondfidietN
(iii) Conversion of caboxylicaidtopinaryamineocarsinanestep
(iv) $\mathrm{R}=\mathrm{Alky}$, Aryl , If R =Alkyl, yidds good
$R=A r y l$, yiddsvaidde
(v) CaddystueedcammanlyH2SO4, lewisaidscandsobeused Medherism

Simila to Hofnan, Curtius except that here protarised adid undagees rearangeret. Protanted caboxylic aid prodres protanted acy aide,
whichloses N_{2} to giveintermedte(5). Renovd of protanand rearangenert prodresisoyante(6). Hydrdysis of isoyandegives animeandCO2.

(5)

Ketones reat with hydrzaic adidunder stang condians and givearides by theSdmidreadion Foreg barzodenonegivesbazailide

CydickenesundagoringelagenettogiveladamItprovides asytheic dtemaivetotheBedkamrearangeret.

A sythedically uefil eampleis convesion of gddatanecaboxylic aidin tocyddatylamine

44 Refrangerets indving migdion to detron dafidatoxgen

The nost commen rearangmet of this type is Bager - Villigr rearangatet

441Bager Villiger rearanganert

Oxidajion of aketoneinto anester and cydicketonesintolatonesby reansof a per aid is known as Bager Villiger rearangeret. The medarismis dosdyrdaedtothtof thepinacd rearangeret.

Chradaisics

(i) Arioncrapicreamgent
(ii) MigdionfromCtodetron deficiet' O .
(iii) Peraidused
(iv) Along with per aid a buffer solution ($\mathrm{Na}_{2} \mathrm{HPO}_{4}$) mot be adked to prevettrasesteificicion

Madarism

Indves nudeqdilic attak by praid to the ededron dsficiet C of ketone fdlonedby migrionardutin\#dybyefalsionc caboxylteaion

(Ester)

DivingFarce

When the cabocaion (protonted ketone) reats with praid, then de to detronegdive ffect the ' O ' of praid thathed to ' C of ketore berones higly dedton dficiet and hence speeies, beecone unstde Thus the migdion of R^{\prime} in anariandropic way reerest thededrondficiency anddso œeyp of therenovd of $\mathrm{R}^{2} C O O$ gapwhich migt betheprodderemon for formard dredion of thereation Adid cddyzethereationby failitding bothaddtiontocabonla adepalsionof thecaboxylte

Migdtoryaditude

In a unsymmetricd kenore, that grap migrdes which is the better dde to supdy detrons, as in the Wegra-Meemen and redted rearragenerts Amongt aky gap, theemeof migdionis tetiay $>$ Secondry $>$ pinimy $>$ methy, eg pinardonegives t-btyl acedte

Anrongt ayl gaps, the arder is pmethoxydendipotdyly whend> dhorqhery, etc ayl grap nigdes in preferceto pinary dky gaps eg

Cydic ketones undargo ring eparsion with proxyacid For examde, cydderanoegvescapdatam

Cyclohexanone
Caprolactam
Thelatoneishytdysedundr thereationcondtions Inanaueasmedum Ghydroxycarcicaidisformedadundagoescondasion podymizaion
An andher eampleisthereation of α-Diketones with pracid which gives ahyctice

45 Regrangenats insduing migdian of hydrogen to dedrandficientcabon

451 Stepiroreation

TheStapro reationartosyly yctoranederampositionisanagraic reationin which aketreptdu anesulphonl hyctrones is conveted to andkereinthe preserceof twoequiverts of strangose(eg akyl lithiun).

Thomecharismaregivenfor theeydardionof this reation

(i) Cabsenemedarism

Tosylydrzoneof dady ydeorkenneontreatmerwith bæeands bsequat lossof Ts givesthecarespondingdzzocompand whichprodrecabeneby diminstion of N_{2}. Thencabereundagoes 1,2-hydogensifittoformalkere Migdionandlimintionsteprrybesimiltmeas.

(ii) AriaricMadarism

Threismonevidmreforthismedneism Initially akłoneor anddałydeis reacted with ptduanealfonyhydraicto aptdu unesiphonl hyctazone(ar tosblydtazone) whichisanimineor hyozzone Tho eqivdents of astrong bese, suchan-batylithim, then dobrat first the podenfromthehydzzone andthenthelessaidc proten α tothehydzzonecabon leavingacabarion Thecabarion proceed in andinindion readionto cretethe caboncabon cablebond. Thisteprealts in explsionof thetosi grap andformation of adzroriumaio Theaion then collposes falling off m a netrd ritrogen moleale Therealt is a vindlithiumt the position wheretheritrogen hed ben attached Theagandittiumcabonis bothberic and nudegdilic It can be reated with vaias dedrophiles or simdy natrdized with wete or an add Themedarismesbeenformidedaffalons:

Applicetians

46 Sumay

Nabr Rearranganat

Basecadysedconversion of kedoximetosylaesto α-aminokeanes BedknamRearrangent:
Adidcadysedtranformaion akeximetoaN-subsitutedanide

Hofinan, CutiusandSdmidRemrangrert

I Hofinarearangeret
II Curtius rearangenert
III Sdmidrearangeret

Condusion: All theserearangents areintrandeala, gives sameprodut and have commen intermede that is isocyante All are ariondropic rearangeret indves reetion of corfigurdioninmigdinggrap

Bager Villiger rearrangmat

Oxidaionof akedoneinto aneter and ydickenesintolatonesby measof aperadd

ShapiroRextion

Convesion of ketane ptdurenelphany hydazones to an dkene in the presenceof 2equivdetsof stranglese
47 ReieNQuetions
1 WiteashatnoteanBedkianrearangent.
2 Givethemecharismof fdlowingreations
(i) Neber rearangeret
(ii) Curtius rearangenet

3 Idatifytheproditsinthefdlowingreations:
(i)

(ii)

$+\mathrm{CH}_{2} \mathrm{~N}_{2} \longrightarrow$?
4 How can the given converion be peformed by uing Hofrimn rearagemet

5 Whitethesimilaities which aefoundinSdmiot, Outius\& Hoframm rearagernet
6 Sugget the reme and meederism for the fdlowing rearangenert reations
(i)

(ii)

48 RefrenceandSuggetredRexdings

- AdvancedOrgaricCheristry, J. March đhEd
- Orgaric Chemistry, J. Cayden N. Greeves S. Werren Oxford Urivesity, SecandEdtion
- Pinides of Orgaric Sythesis, RO.C. NormanandJ. M. Coxan CRC Press
- Advenced Oggaric Cheristry Pat-B., F. A. Caey andR. J. Sunderg

ShEd Springer (200).

- Orgaric Reations and their Mectarisis P.S. Kdsi, Nen Age Interntiona Pudishas
- Orgaic Reation Medarism V. K. Alumelia and Rakesh Kunær Padłar, NatosaPudistingHase

Unit-5

EliminetionRemtion

Stuctreofuit

51 Introdution

52 Cassifiction of dimindionreation
52 Medraismof dinindionreation
53 Oreintdion of dimindionreation
54 Eimindionvssbstittion
54.1Structreof thereadat
54.2 Natureof bæe
54.3 Natreof sdvert
54.4 Effectof temperture
55 Summa
56 RevienQuestions
57 RefermesandSuggestedRegdngs

51Introdution

Eimintion reation is ore in which two fragrets ae renoved froma stbstrte to prodre a modfied sbostrate and two small units Oneof theese frognets is uselly theleaing gap of thes bostra. Elimindions usdly prodice a reN pi-bond in the modfied sbastate In scre elimintion reationsanewsignabondisprodreedinsterdf api bond

Eimintion reations given by those compands which have nudeaprilic grap a a leaving gap The leaving gaps which ae responible for diminstionsationare
$\mathrm{X}, \mathrm{OH}, \mathrm{OR}, \mathrm{N}_{2}, \mathrm{~N}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NR}_{3}$ andSR2

52 Caxifictianof Eliminetionrextion

Thedininstionreationcenbedasify intofdlowingtypes
1 a-diminstion- Whentwogaps aelost fromthesareatomtogivea cabere (ar a ritren), the reaction is colled α-diminstion or 1,1 diminntion

2β-dimingion Whentwo gapsarelot fromadaret dons sothata rev dade (α tride) bond is formed the reaction is colled β diminstionor 1,2dimintion eg-day yoddrageration

3γ - dimindion-In ar-dinintion, a new sigra bond is formed inseedff pi-bond

Eliminstionofalky $/$ helids

Thosecompands inutich leavinggaps possess two dectradilic sites Thecabon to which theleaving ga p is thadned and the hydrogen atom on the cabonadacet to thedpracabon Attak of nudeadriled cabon bering the leaving gap leabs to stbstition reation and thack at hydogen leads to dimination when rudeadtile attads on hydogenit is krownaboes Sincestranglomeattads onprdars, soit istruethat mere baic the nudeadile and it is more pone to dimintion insterd of sbositution $\begin{gathered}\text { themain reation of aky halide } \\ \text {. }\end{gathered}$

Substituionreation

Sdectivityfordinindionversusbastittioncanbeeydainedonthebers of hadandsot dedraphiles InSNR substituion, thecaboncetreis a sft dedradile beease it is essetidly undarged The C-L σ^{*} is a redively low enegy LUMO. Subsitition is therfare favared by nudeaprilesuhoseHOMO arebestdeto inteat withtheLUMOor sat nudeadile Incortrat, theC-H σ * is highe ineregy becasetheatans arelessdectronegtive Thiscopdedwithhydogen'ssmall sizenakesthe C-H bordahaddedropdilic siteand warealt had nudeqpilesfavor dimindion

53Madarismof diminetionredtion

If thereation roceedsby firstardr kindic, Hughes ardIIngold proposed the El medarism In this medarismthe dectroric danges the bond lreaking and the bond making ae the same as in E2. They ar not tding pare smiltaneady lat oneater thedhe. ThusElindvestwosteps Instep (1)
thestbstra undagoes sow heredysis to formhalideion and a caboction In step (2) the cabocdion radidy loses a protan to the bose and forms the akene

Step first is idaticd to thefirst step in SN1. In the second step of SN1 the caboctioncontines withanudeadiletoyiddthestbsititionprodrtandin step second of E1 thecaboction reats with the bæeto yidd the edinindion podit
TheE1 readionfdlonsfirstadar kindicsasinSN1 readion. theoverd rate of reation is datemined arly by the sow first step Excegt for the many neessary sd vertmdeales, this ratedłeminingstepind vesaly s bosrate andrdedpendsontheconceetrdionof substrde Therteof anE1 reationis independat of bereconcetrion beaseethereationdoes notindvebæes
If the rate of formtion of caboctions datemined how fat a reation proceed Once formed the cabocdion radidy reat to yidd prodrt This medarismmesramedEl thet isdimindion urimeala, beeareintherde dłemiringstepoly yonemdeale, abstrate, undagoes condency dange
The reation of thy bromide with ethoxice ion is an eampe of an E2 reation It is asecand ards reation beearetherdeof thereationdeperns ontheconcestrdion of bothdkl halideandbose ItiscalledE2 reation:Efor dimingtionard2forbindeala.

$$
\mathrm{CH}_{3}-\mathrm{O}_{2}-\mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} \longrightarrow \mathrm{CH}_{2}=\mathrm{O}_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Br}
$$

Rate=K [dkyl halide] [bese]

Therdelawtels us that ehyl bromide and ethoxideian areboth ind ved in thetranitionstate of therdedzeminingstap of thereation Thefdlowing mednaismageewiththedoservedsecond-arder kindics
TheE2 reationis a conceted, onestep reaction, theproton and thebromide ionaeremovedinthesarestepi.eintherdedłeminingstep.

Fig1: TheE2 reation of thy halidewithethoxideion
An eqpeinetd evidacethat is hapfu indeemining the medarismof a reation is a kindic istapeeffet Thekindic istapeeffet, canbe uedto demensrate that a cabon-hydogen bond is broken in the rate d\&emiring step
When the rde contat $\left(k_{H}\right)$ for dimindion of H and Br from 1-bromo2pheyld thered 40 C is compaed withtherdeconstat $\left(k_{\mathrm{b}}\right)$ fof dimingion of Dand Br froml-brom22, 2-dateteio2-pheyl thane deemined d the careternpature, k_{H} isfa ndtobe7tines thank So, the
 Thefat thet thehydogen-cortaring compand undagoes eiminetionfater thenthedateiumcortaining compoundtallsusthat the cabon-hydogen(ar

C-D) bordisbrokenintherded\&ermiringstep Thefat that theC-H bordis brkenintherdedkermiringstep agees withtheneederismproposedfor an E2reation

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2}-\mathrm{O}_{2}-\mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \xrightarrow{\mathrm{~K}_{\mathrm{H}}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}_{+} \mathrm{Or}_{2}+\mathrm{C}_{2} \mathrm{r}_{5} \mathrm{OH}+\mathrm{Br} \\
& \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{2}-\mathrm{CO}_{-2}-\mathrm{Br}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C} \xrightarrow{\mathrm{~K}_{\mathrm{D}}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OD}_{2} \mathrm{O}_{2}+\mathrm{C}_{2} H_{5} \mathrm{OH}+\mathrm{Br}
\end{aligned}
$$

54Oréntdionofelimintionrextion

When aly oretype of β-hydogen is preset the dreation of dimindion is catain For exande, al of the hyctogers adaret to the cabon bersing the bronineinisqropl bromideareeqivdet Therefre, theloss of HBr from isprop/ bromidecan prodrealy anecompand, propere

 most higly shbstituedone,i.e,theonewiththelagest number of akyl gaps bonded to the dable bond This stanett is known x Sazeff nie Sazeff paitedat thet themot subsitutedalkeneprodrt is datainedwhena proten is revoved from the β-cabon that is bonded to thefenest hydrogens Most deydogentionfdlowthis rue Thus, E2 reationis regostedive, more of areconsithtifird iscmer isformedthenthedher.

$\mathrm{C}_{2} \mathrm{r}_{5} \mathrm{C}$

1-Buene20\%
2-Buere®\%

In the doweerande, tho akenes areformed Thedfferencein the rte of formaiono thetroak knes is not vey geet Coreequtly, both produts are formed bt the more stde akene is the major prodit of the eimingion reation

Dishbsitited akenes ae prefered over a monosbstitued akenes and a tishbsititedakeneispreferedour radsubsititedakene

Progress of the reaction \longrightarrow

Fig Adivaionenegyfortheformaionof 1-bteneand2-atere
Formaionof major prodit of thereationcenbeeddaned by theneedarism as fdlons We know that 2-butere is more stde then 1-butere In the trasitionstaleedngto andkeretheC-H bondandC-Br bonosaepatially broken and thedublebondispatially formed givingthetrasitionstan akene like stuxtre Bease the trasition state hes an akene like stucturethe tranition state Kerding to 2-btere is more stdde then the trasitionstaleedng to 1 -btere Themerestddetrasitionstedeallows $2-$ butereto befared foter then 1-ateneand 2-butereis norestddethen 1batere

Trasitionstat
leadngto2-btere (ncrestdde)

Trasitionsta
ledngtol-atene (less stdde)

Alky halides have the following redive readivitives in an E2 reation, becasedimindionfromatetiay dky halidetypically leadstoancrehighy sabsituted akere then dimindion from a seecondy aky haide and dininstion froma secanday a dky halidelead to a more higly substitted akenethandimintionfromapinay akkl halide
Redivereadivitiesof aky 1 raidesinanE2readion

In noot of the daydothalogention reations, the majo produts are the Stzeff prodit. But the noit shbsituted dkere is not dwass the majo prodit In somecresthemajo dkereprodit is thelest shbsituted akere Eimindioninutichlees shbsituted dkereisthemajo prodit iskownm HofnamelimindionadthenleisknownoHofnamnle
Hofmamelinindion readiontzkespaæeinthefdlowingfarcese

- Whenthebæeisblalky.
- Whentheleavinggapis aporleavinggap
- Sterichindanet β-cabon
- Whentheakly ralidecortanisoneormeredaidebonds

55Eliminetionvssubatitution

LikeSN' andE-1 readions SNR andE-2 retionsdsocarsimeltaneady. If the atadking regegt is a good bere, it abstats the β-proten and cases diningtion ,uheress a good nudeaprile thads the α-cabon caring substitionThe fallowing fatars influmce the etat of einirintion and sobstituion.

551 Srucureof therædart

Biningion and subsitition ae competing reactions the propation of dirintion inrees with inreesed dain branding of the reactat One remon for this preferce nay be woribed to the greter stadity of higly substitued akenes formed fromsubstrdes surh a akyl halides The other resen is predy steic and apdicade only to urimedeala reacions where caboriumions ar the cormon intemeddes Caboriumians are parer stucture withthebondanges of 120 and withtheincrexeinbranding they will show moreresistaceto the deremein bondanges leed by substition On the other hand dimingtion will be preferred as it dees not indve any drangeinthebondanges

552 Natureof bese

A goodnudeadilentay nd neecessaily beagood bæeseorvicevessa Thiscan bedenvenstrded by compering thenudeedilic and besic propeties of some cormen reagats The beidity of there regerts arefond to bein the ordar $\mathrm{H}_{2} \mathrm{O}, \mathrm{I}, \mathrm{O}, \mathrm{CH}_{3} \mathrm{COO}<\mathrm{SH}<\mathrm{OH}$ wheresthenudeqpilidities of the same regartsfollowadfferetordr,

$$
\mathrm{H}_{2} \mathrm{O}<\mathrm{OH}_{3} \mathrm{COO}<\mathrm{O}^{\circ}<\mathrm{OH} \lll \mathrm{H}^{-}
$$

To someeter thedimindion/sabstition rdio depenos yon thenature of thebærindved. Inthebindeala reations (E^{2} andSN), for eample if ne have a weak bæse bat a strang nudegdile, eg I°, there will be more stbstitionthendimindion Onincereing the concertraionand thestrengh of the bese, the urimdeala reationtends to timdealaity. This crangein nolealaity is more pronarced in E1 then in SN1 reation, leedng to a higes proption of the dimindion produt This is preisdy the remonfor endoying strong boeses thigh concertriors in the prepadivemethoob for akenes

553Naureof sodvat

Change in polaity of sodvet lead the dange in rate of reaction In bindeala reations, for examde, rdio of E^{2} SNPdecpends on the daility of solvet to sdvate the two traition staes of the same readat. Less polar sdvert favors E^{2} reations morethentheSN2 reations, wheres norepdar solvetfavars SNR readionnurethenthedimindion

554 Effetoftampachure

Gencally, elimintion reations posesss high ativation enegy then the sabsitution readions Thus, increse in temperdure of the reation mixture incerestheedert of dimindion reacion and thedereeseintermerdureof thereationmixtureincerestheetato of stosittion reation

55S.mary

- Binirdion reation indves the loss of frognert fromthesubstrate andfomanevmrodfieds bostrtewiththeremove of smal units
- Einindionreationcanbedzsifiedintothæetypesi.e α, β and $\gamma-$ dimination
- In α - dimindion α 1,1 dimindiontno graps arelot fromthesare tantogivecabenearritrene
- In β - diningtion or 1,2 diminetion two graps are lot from the adaetadonstofamdadeartideband
- In γ - diminstion ring likestucture is formed and a rewsigna bond aises
- Good bæe led dinindion reation wheers good nudeaprile leæd sbostituionreation
- Onthebesis of kindics, El indvestwosteps inwhichfirststeplead theformaion of caboctionandsecondstepindveakereformation
- InE2 reation bond breaking add bond formaion both tike paæe in singestep
- Incæeof oretypeof β - hydogenthendiningtion prodres aly ore podit.
- Incæeof dfferettypes of β - hydocoenthendiningion podres rore then one prodit bt the rore shbsitited dkene is predminatly formed (Stzeff nul).
- Disbstitted dkens arepreferedover a monoshosituted akenes and atrisbositutedakeneispreferedove adsustitueddkere
- Trasition state of 2-btene is nore stde so it farms fater then 1atere
- Redive reativities of akyl ralides in an E2 reation Tetiary akyl ralides >eec akyl halides >prinay akyl haides
- DaydddragentionreationsfdlowSazzff nue
- Einingioninutichleets sbosituted akereisthemajor prodit then thisisknownoHofnamule
- Hofmamdimindionocarswhenthebæeislalky, porleevinggap akyl halide possess crear noredadebonos and staic hindeaceat β. cabon
- Eimingtionstbstituion ratio depends on stucture of the readat, netureof bæs, pdaity of sdvetandtemperdure
- Einindion reation favared by the incead dain brading in the sturture of readat, presereof goodbæeandless pola sdvert with incerseintemperture
- Subsitution reation favored by the less dain brancing in the stuxtre of readat, presence of good nudeqdile and mare pola solvetwithdereemeintemperture
- Einingion readion possess highadivaionengy so reqireinceeme intemperdure
- On incresing the conceatrion and the strengh of the bose, the unimeleala reationternstobimolealarity.

56ReienQuetions

1 What doyouundastandbythetermeimingion reation?
2 Disass the vaias types of dimindion reations with sitdde eamples
3 Exdandininedionreationwithadky halids
4 Witewiteshatndeon
1 Salzeff nue
2 Hffnamdininstionreation
5 Exdanthetemarietdion of dimingtion
6 Whyhydogencortaringcomporndundrgodimindionfater thenthe dataiumcatainingcompand?
7 Exdandaydothaconationwitheremples
8 Disasselininstionreationversessabsitutionreation
9 Disass medarismof dimintionreation
10 What is essetid condtion required in thereadat for thedimintion reation?
11 Incere in temperture is favordde for eimindion reations or stbstittionreations?
12 Howthepdaity of sdvertefeetrate of shositition?

13 Exdainthefatas र्वfecingtherdio of diminstionandsubsituion
14 Disasstherde of nudegprileindiminstionreation
15 Howthestrutreof readat
16 DiffereriatebetwenE1 andE2 reacions
17 Whopropsedthemeedarismof El reation?

57ReferencesandSuggetedreedings

- Orgaric Chemistry , S.H.Pine, Tata Mc-Graw Hill, 2010 (Fifth edtion)
- OrgricChemistry, P.Y.Brice, Peason 2014(Sererthedtion)
- Advaced Ogaric Chenistry, Pat B: Reation and Synthers, F.A.Care andR.J.Sundoerg Springr, 2014(Fifthedtion)
- Orgric Chemistry, J. Claden, N.Greeses andSWerren, Oxford, 2014(Secondedtion)
- AdvancedOrgaricCheristry. ReadionandMedarism,M.S.Singh Peason 2007.
- Orgric Reations and thar medarisnt P.SKdgi, New Age Interntional Pudicdion, 2008 (Secondedtion)
- Readion Medraism in Orgaric Chemisty, S.M.Mułheji and S.P.Singh Aanill an Compary of inda Limited, 1976
- Orgaric Chemistry ,R T.Marison R.N.Boyd and S.K.BhatadajeePeason2011(sperthEdtion)

Unit-6

Mdealar OditalsandTheir Symmay Prqaties

Srutureofuit

60 Ojeative
61 Introdution
62 Mdealarorditd theary
63 Waveeqtions Phæe
64 Mdealarabitds LCAOnethod
65 Bondngardatibondngorbitds
66 Eedrariccarfigurtionsof somemdeales
67 Arcmaic chatate. TheHucke $4+2$ nue
68 Otbitd symmedry andthechericd reation
69 Bedrogdicreations
610 Cydooddtionreations
611 Signaropicreations
612 Summy

600Gedive

This crapter hes benintrodredtonakeaders concept of ndeala arbitd theory. This depder haps to assuer many questions, like, how moleular abitds areformed Hownmy domicarditdswill continetoformindealar arditd? Wht are the bondng and atibondng moleala abitds? What is Huck 4n+2rue?

61Intradution

Inthischader molealar orditd theary hesbeendsa sedindadals Thereisa dtailed dsassion of atomic and molealar arbitds The posibilities of contingtion of taric arditd to formmoleala arditd hes been dsassed Bandng and atibondng rdeeda a abitds havebændsassed with vaias eamdes Eletroric corfigraion of many moleales hes been studed

Arondic darater of any molealeonthebais of its dectraic corfigurdion tes been descibed in dtails There is derr and dtailed dsassion of dedroydic, ydoaddtionandsign\#ropicreationsinthischader.

62Mdealarabited theary

The stucture of roleales con be exily undastood thraigh quatum meedarics Acarte quatum meeharicd codaldions ae enomudy condicted and so vaias methoos of aproximation heve been apdied to simplify the mothentics The method thet is aften the rost uegul for the argricchenist isberedntheconcet of molealar orbitds
There are vaias quetions to arsne like, wht are the vaias modeala arditds of a moleale like? Wht is their ords of stdility? Howaededrons dstribtedanongthem Why catainndeales arearmatic? Thesearethings wemit knowif weareto undestand the carseof many demicd reations thair sterechenistry, for eamde, addhoweesy or dffialt they aeto bring dat, inded, whether or not they will ocar t all. Weaend goingtolem herehowto makequatumneedricd calalions, it we cansenht the realts of some of these caldions ae, andlem a litile abat how to use them
Inthis chader weshall dsass what is neart by thephæeof anabitd, and What bondingandatibondingarbitdsae Weshal see inanon-rothentica way, whet lie bedindtheH Inks [$4 \mathrm{n}+2$] ruefor armaidity. At theerdthere shal be a brief look ta a recest-and dbsdutly fundarentd dadquert in devericd theary. the apdiction of the concept of arditd symmety to the under- standing of organic reactions.

63Weveequetions Prese

As we krow that deetrons show propeties not arly of patides hat dso of waves Wemit eaninealittle mored osdy the wavednater of detrons, andseehowthis is indved in chericd bonding Firs, le us look t some propeties of wavesingened.
Le's corsider the starding waves (or stdionery waves) gereded by the vibrtion of a tring seared t both ends the wave geneded by, soy, the pudingof agitastring(Fig 1).

Figre1 Standngwaves Plusandminussigisstowredivephees

As wecartinehorizontlly dongthestringfromleft torigt, wefindthat the veticd dsparemet the ampitude of the wave inceres in oredretion pases through a maximm dereeses to zen, and then incees in the qquositedredion Thespaces whretheanditudeiszan arecalled nods in Fig 1 they lie in adare, the nod dare, perpendala to the plareof the paper. Disdarenert ypuardanddsplarerestdownvad corespondto qposite phese of thevave Todffertitebeveen pres, वrecanabditraily wsign agadrac signs to theampitude pusfor thedsdarenert ypuad, adminus for dspdæeret dbwnerd If wewereto spaimposesinilar waves on one andhes exadly at of pheetht is, with the cests of orelined 4 p with the trough of the the-they waid cancd each othe, thet is to say, the sum of their ampitudes + and -, would be zeo. The dfferetial eqution that describes the wave is a wave eqution Solution of this eqution gives the amplituk, ϕ, æ a fundion $f_{f}(x)$ of thedstace, x, ang the wave Surha fundionisawarefuntion
Since eledron waves are dssoribed by a wave eqution of the sane genad formarthet for string waves Thewavefundions thetareacceqdddesdutions to this eqution agingivetheampitud ${ }_{\phi}$, this tirmeæ afundion not of a singe ecordinte, bat of thethrecordintes neessary to descoibenetion in threedmenion Itisthesededron wavefundionsthtwecal abitds
Ary waveequion hes ast of solutionsan irfinity of them actully each corespondng to a dfferet eregy lead. Thequatuthis cores natudly atof thenthendics
Likeastring wave, an dedron wavecanhavenodes, wheretheanditude is zer. On qpositesides of a anobtheampitudehes qpositesigs, thet is, the
naveis of qpositephese of speeid interes to us is thefact that n thetno Idoesof aporditd liesanod dare, perpendala totheaxisof theorditd

(a)

(b)

Figre2 Thetwoldees aeof qpositephese andtlis is oftenindcted and sigb.

As used here thesign do not haveaything to do with charge They simdy indcatethetheampitureis of qpositedgadraicsigninthetwoldbes
Theampituceorwavefundion ϕ istheakitd. Asisgenadlytuefor waves, honeve, it is thesqureof theamplitud, ϕ^{2}, that hes physicd mearing For detron waves, ϕ^{2} represerts the probadility of findng an detron at any patialar place The furzy balls or simple schees we dav to show the "shapes" of arditdsaecuderepreseldions of thespare wittinutidh ϕ^{2} hes a patialar vduethe space within which the edetron spands $s a y$, 9% of its tine Whathe ϕ is positive or negdive, ϕ^{2} is of carse positive this makes sares simeprobdility cand be negdive Theusal pratice is to dav the Idoes of a pabitd to repereat ϕ^{2}; if $+\alpha$ - sigis ae adted or cneldhe is shadedadthedher untraded thisistoshowtheredivesigis of ϕ.

64Mdealar abitds LCAOnthed

Generdly, moleales arethecontinntion of tonshaddtogither by bonds We corsids the bondsto aisefromtheovelppof an tomic arbitd of oneatom with an atomic abitd of andhe tam A new arbitd is formed, which is coapied by a pair of dedrons of qpositespin Each detron is dtrated by both positivenude, and theincremein ectrostdic Atradiongives the bond itsstrengh thetis, stddilizesthem mealerddivetotheisd ded toms Thishighysucessfu quildivenodd pardlesthenostconviertquatum meeharicd aproantomendala abitds themethodof liner contrindion of tormic arbitds (LCAO). Weheve considaed the the shepes and dsposition bond arditds are redted in a simple wey to the stapes and dspositions of
tanic arditds The LCAO method makes the sane assmution mathendically. to deteminean aproxin\#tendealar orbitd, ψ, oreuses a liner continstion (thet is, acontinetiontrough addtion or shdration) of taricarbitds
$\psi=\phi_{A}+\phi_{B}$
ψ isthendealaraditd
ϕ_{A} istomicaraitd A
ϕ_{B} istomicarditd B
Therdiondefor this ssemptionissimple whenthedectronis ner tomA, ψ reendles $_{\phi_{A}}$; whenthedecronisnera tamB, ψ reandles ϕ_{B}.
Nowthis contination is effedivethet is, themolealar arditd is apreiddy norestdethenthedanicalditdsorlyif theatoricarditds ϕ_{A} and ϕ_{B} :
(a) ovelaptoaconsidaddeetent;
(b) aeof campardeenegy, and
(d) havethesanesymmery abatthebondaxis

There neessities can bejutified mathentically. Quditdively, we can say this if thereis not considraddeovelap, theeregy of ${ }_{\psi}$ iseal to ethe that of ϕ_{A} athtof ϕ_{B}; if theeneges of ϕ_{A} and ϕ_{B} reqitedfferet, theeregy of ψ isesseridly that of themreseddedomicarditd. 'neither cæe, thereism sigificatstdilizdion andmobondfamation
When we speak of thesymmetry of arbitds, wearerfering to therdaive pheeses of lobes, and their dsposition in space To see what is neat by reairenett (c), thet the ovelapping arditds havethesamesymmery, le us lock t ane eample hydogen fluaride This moleale can be pidured x realting fromovelippof the arditd of hyctogen with a parditd of fluorine InFig 3a, weusethe $2 p_{x}$ abidd, wherethe \times cordnteis idken x theH-F axis Thesarditd velapsthelueldoeof theparditd, andabondforms If,
 Idesplus and minus wald coar and cance ead dhes. Thit is, the positive vellapintegd waldbeeadly carcededby thenegtiveovelapintegd; the nt effect wald beno ovelap, and no bond formition The dependance of arlaponlwæeisfundaneta tocherica bondng

(a)

(b)

Figre3. Thehydogen flumidendeale dependeace of velipp on arditd symmity. (a) Oelippof Idoes of thesamephweleobtobonding (b) Positive velppand neggiveovelippand echothe.

65Bandingandartibandingatitas

Quatummedreics shonsthat liner continstion of twofundionsgives not one, buttwo contingtions andhencetwo molealar arditds abondngardid, nore stdde then the componet atomic orbitds, and an atibondng arditd stdethenthecomponetarditds
$\psi_{+}=\phi_{A}+\phi_{B}$ Bandngarditd:
Stadilizesmeale
$\psi_{-}=\phi_{A}+\phi_{B} \quad$ Artibondryarbitd:
Destailizendeale

Two sorbitds, forerampe, canbeadked
Wecansethatwhy theremitbetwo contindions Therecanbeamany as tho dedrans in each componet tanic arbitd, naking a todd of for detrons, two mdeala arditds sereairedto accormmodtethem
Fig 4 shous the shapes of themoleala orbitds, bonding and ati bondng that realt fromovelap of vaias kinds of tanic arditds Werecogize the bonding alditds, σ and π, athough util now wehavent shown the tho Idoes of a π arditd abbeingof qpositephes Anati bondingaditd, weses tes a nod plare perpendalar to the bond axis, and atting between the tomic nude. Theati bondingsignaorbitd, σ^{*}, the cornists of twoldoes, of qpositephæe Theati bondngpi arbitd, π^{*}, consissof farlobes

In a bonding arbitd, dectrans ae concestrated in the region bedween the nude, wherethey can be atrated both nude. The inreese in dedrostdic atrationlowestheeter of thesytem In anatibondingorbitd, by cortrat, dedronsarent concertrded betveen thenude; dedrondrageiszerointhe nodal plane Eectrons spend noot of their timefathe fromanudes thenin the separded toms There is a dereere in dedrostic atration and an inreeme in repulsion betveen the nude. Theenegy of thesytemis higer then the of esparded tons Where detrons in a bonding arditd tend to hodd the atons together eletrans in an artibonding ardital tend to force the atonsapart
It may a first semstrange that detrors in catain arditds can adudly bonding Wemet reventer thet it is the bond dssocidion eregy we are concemed Weae not compaing the edetrodtic atration in an ati bond dedrostic thration, wearecompaingit withthestrongr dedroddic inthe sqpadedatons

Figre4, Bandngandati bondngartitds

There ae andher kind of arbitds i.e non bonding arditds As the reme indcaes, detrons in theee arbitds unkared pairs, for exmdeneither strenghen ror weakenthebonding betweentans

66Eletraicarfigratiorsofsamendeales

Le us look t the ededroric corfigrdions of somefaniliar moleales The shepesandrddivestdilities of thevaria smolealaraditdsarecalaltedby quatummedarics and westall simdy usetherealts of thesecalaldions Werethenude indare, withthemoleala arditds mapeed at abat them, feed dedrors into the arditds Indingthis wefdlowthesanenues that we followed in ariving at the eatroric corfigurtions of tons There will be aly two dedrons and of qpositespinineacharditd, with arbitds of enegy beingfilled upfirst If therearearbitds of equl enegy, eachgłs andetron befreayyneof themges a par of edetrons Weshall linit ar attertionto arbitds cataring π detrons, simethesedetrons vill betheones of dif interestous
For the π dedrons of thylere (Fig 5), there ae aly two possibilities of noleala arditds simee there ae tho linerr cantintions of the tho componetpaditds Thefigreindcates thebondingand monbondingeregy levd, loner ane is the bonding arditd, π, ady yper aneis theati bondng adatd, π^{*}.

Figre5. Ethylere Corfigurdion of π dectrons in the gand stae and the exitedsta

Generlly, amdealeeviss inthesteof lonet enegy, thegrandste But it is repated the dosandion of ligt of therigt frequery (in the utraide region) rases a moleale to an exited sta, a state of highe enegy. In the grand stae of thylere, wesee both π detrons ae in the π abitd; this corfigurtion is speefied $\Phi \pi^{2}$, where the spescoipt tells the number of dedransinthtarbitd. Intheexitedsteconededronisinther arbitd and theothe sill of apositesainis inthe π^{*} orbitd; this corfigurtion $\pi \pi^{*}$, is naurally the less stdde sime only ore dedron haps to hdd the tons togethe, whilethedher ternstofarcethemapat
For 1,3-btadere, with far componet p orbitds, there aefar modealar arbitdsfor π detrons (Fig 6). Thegrandstahesthecorfigurdion $\psi_{1}{ }_{1}^{2} \psi_{2}{ }_{2}^{2}$; thet is, therearetwo dedrans in erc of thebonding arditds, ψ_{1} and ψ_{2}. The tighe of these, ψ_{2} resentles two isdzed π arbitds, athroigh it is of somenht loner eregy. Orditd ψ, encomposses all far cabons, this dalocdizdion provids the nit stailizdion of the criugted sytem Absandion of ligt of therigttriequany rasescrededronto ψ_{3}

Figre61,3Butedere Corfigraionof π dedronsinthegaundsteandthe firsteritedstat
Now, le's have a lock at the ally sytem caion free raded, and arion Regadess of thenunter of it dedrons, threaethrecomponet paditds, one an exh cabon and they give rise to three noleala arbitds,
ψ_{1}, ψ_{2} and ψ_{3}. AsshowninFig 7, ψ_{1} isbondngand ψ_{3} is atibondng Odditd ψ_{2} encompesses anly theendcabons(thereisanodet themidedecabon) and is of thesareenegymanisdtedparditd; itistherfarenanbondng.

The ally caion cortans π detrons ally in the bonding arditd. The free radcd hes onedectron in thenonbonding arbitd andl, and the arion hes two in the nan-bondng arditd. The bondng arbitd ψ_{1} encampesses all three carbons, and is more stdde then a locelized π arditd invdving aly two cabons, it isthisdalocdizdionthatgives allylic patidesther speeid stadility. Wessethesymmery

Figre 7. Ally system Corfigurdion of π detrons in the caion, the free radcd, andthearion
nehave atributed to dlylic patides onthebasis of theresonancetheory, the thoends of ech of thesemdealesareeqivdert
At lat, le'sseetheexampeof berzene. Therearesix continetions of thesix componet p abitds, and hence six nolealar arditds of these, we shal canside arly thee continaions, wich corespond to the three most stdde noleala arditds, all bondng arditds (Fig 8). Each cortains a pair of dedrons Thelonet arditd, ψ_{1} encompesses all six cabons Orditds ψ_{2} and ψ_{3} ae of differet shape, bit equl enegy, together they provideas does $\psi_{1}-$ equl detrondanity

Berzene firsttreeLCAOs
tall six cabons Thene resit, then is ahighy symmeticd nolealewith considadded ocdizdionof π : deetrons

MO's

Figre8 Berzere Carfigrdianof π detrorsinthegandste

67Araraticderadtr. TheHuda 4 \boldsymbol{i} +2nue

Anaondic molealeis plame, with ydic dand of dalocizedn edetrons doveardbedowtheplaneof themdeale Wehavejut seen for berrese the molealarabitdsthtpemitthisdłocdizdion Butdacdizdiondoneisnt erugh For thet speeid degeeof stdility we cal armatidity, thenumber of It deetronsmot corformto Hidkd'snue theremetbeated of(4 $\pi+2) \pi$ dedrars

Cydootadecannæョe
IntheNMR speetrumof cydootadecanometwiveprons lieatsidethe ring are destidded, and dbsarb dowriidd but, beease of the patialar geonedy of thelagefit moenle six proms lieinsidethering a reshidded anddbsorbupfied Thespeetrumisunsa, buteadly whatwewould expet if thismeale wereaonatic Hudkd wes apioner inthefidd of noleala arditd theory. He dadqued the LCAO rethod in its simdest form ye "Hudke molealarabitds" haveprovedenamady urcessfu indedingwith argaic rodeales Hukd proposedthe4n +2 nuein1931 Ithes beentested in many was sincethen, and it warks Now, what is the theoreiced bas for thisule?
Now le's dsass the cydqpetadeny system Five sp²-hytridzed cabons havefivecompanet parbitds, whichgivenisetofivemealar arbitds(Fig 9). Atthelonest enegyled thereisasingemdeala arditd. Abovethis, the orditds appear ackegenedepairs, thetis, pairs of arditds of equl enegy. The lowestagenerdepair arebondng thehigerones areati bonding.
Theydqpestadenyl caionhesfar dedrons Tho areinthelowerarditd. of thedthertwodectras, onegoes intoechabitd of thelower dagenedepair. Thecydqeatadenyl freeradcd hesonemoredetron, whichfillsoneaditd of the pair. The arion hes still andher detron, and with this we fill the renainingarbitd of thepar. Thesix π eletras of the cydqpertadenylan arejut enaghtofill all thebonding arditds. Fener thansix leaves bondng arditds urfilled nore than six, and dectrons wald have to go into atibondng orditds Six detrons gives maximm bondng and hence naximenstddility.

Figre 9. Cydquertadeyl system Corfigrdionof π detronsinthecaion, thefreeraded, andtheaion

Figre 10 Arontic compounds with six π detans Corfigrtion of π dedrons in the cydqpertadenl aion berzere, and the cyddequtriend caion
Fig 10dsdaysthemolealar abitdsfor rings cortainingfive, six, andseven sparhydidzed cabons Weseethesmepettenfor al of them asingearditd tthelonestlend, andaboveitaseries of degenedepairs Ittikes ($4 \pi+2$) π detrons to fill ast of these bonding arbitds two detrons for the lonet atbitd, adffarforeah of ndegenertepars Surh andetroncorfigurdion tes beenlikened totheraregs corfigurdion of andom, withits dosedshal. It is the filling of theee noleala orbitd shals that makes these moleales aondic

Cyclopropenyl
cation
Two π electrons

Cyclopropenyl
free radical Three π electrons

Cyclopropenyl
anion Four π electrons

Theoydqurpeny freeraded andarionarent unsally stdde indeed the arionseens to be patialaly unsdde Theccionhes theHukd number of tho π deetrons

Figre 11 Cydqropeny system Corfigrdion of π dedrans inthecaion, thefreeradcd, andthearion (niszer) addisaondic Her too, aondidity resitsfrom thefillingypof amdealarorditd shal.
Intheally system(Fig 7) thethirdandfouth deetronsgointo anonbondng arbitd, wheres here they go into ati bondng arditds As a realt, the cydoropenyl free raded and aion are less stdde then their qpen-chain canterpats For the gdqurpeny arion in patialar, with two detrons in atibondng arditds, simple calaltiors indcate mo ne stddilizdion de to dilocdizdion thet is, zeo rescrance enegy. Sorrecdaldions indcretht themdealeisatudlylessstdethenif threwerenocajugotiontall. Such cydic moleales, in which dalocdizdion adudly leas to destailizdion are nojut ron-armatic, they areatiaromic
Prddem1 When34ddharol,2,3,4teranethylyddaterewes dssdvedt $-78^{\circ} \mathrm{C}$ in SbFs SO_{2}, thesd ution dtained gavetree NMRpeds, ta $\delta .07$, a $\delta .20, \mathrm{adb} \delta .68$ intherdiol $: 1: 2$ Asthesdutionstood theeepeassowly dsapperted and werered aced by asingeperk ta 3.68 What compand is erch speetrumprobdy de to? of what theorticd sigificace ae these findngs?

Prddem2 (a) Cydqurperines (I) havebeennixd, andfound tohaverather unsal propaties They havevey highdplemonets dat5D, compared with about 3 D for benzo- phenone or acetone. They are tigly basic for ketones, readingwith perchloicaidtoyiddsdts of formla(R2C3OH)+C104 ".Whetfator may beresponideforthereunsal propeties?
(b) Diphenylcyclopropenone was allowed to react with phenylmagnesium bromide, andthereation mixture wes hyddyzedwith perchloric aid Therewes dataned not atetiary adchd, but asdt of farmla $\left[\left(C_{6} H_{5}\right) C_{3}{ }^{+}{ }^{+}{ }_{4}^{-}\right.$- Accart fortheformaion thissat
(c) Thesythesis of the cydqurpenones invived the addtion to akynes of CO_{2} whichuesgeneredfroma ${ }_{3} \mathrm{COOONa}$ Showall stepsinthemost likdy neehaismfor theformaionof $\mathrm{Ca}_{2}{ }^{\bullet}$

680rbitd symmyandthechericd reation

A dherica reation indves the coossing of an ativation enegy barie. In cossingthisbarie, thereating ndealesseak theeriest path alowpath to avidd intring ay tighe then is neessary, add abroed poth, to avad unde restricions on the aragemet of tons As reaction proceeds, there is a drangein bonding anong the dons, from the bonding in thereadarts to the bordng in the produts Bandng is a stadilizing fator, the sronger the bonding themorestdethesytemIf a reationistofdlowtheeriest pth it most toke plae in the way that maintins naximm bonding dring the reation process Now, bonding a ne visalize it, realts fromoverap of aritds Ovelap requires that parions of differet arbitds coapy the same space, andthat they beof thesaredwe
This lineof remaringsems pafetlystragtforwad Yethecetrd ideat that the carse of readion can be cortrolled by arditd symmetry, wes a revduioray one, and represets one of the really giat steps fomerd in drevicd theary. A nunber of peede took pat in the dadopmett of this concept K. Fuki inJapan H. C. Langet-Higgins inEngand BLt agaric dennists becare anere of the poner of this aproach diefly throug assies of papesp pldishedin 1965 by R. B. Woochardand RoaddHoffiman working thavadUnivesity.
Vey often in argaic chenistry, nary fats areacamided and athery is proposed to accart for them This is a perfedty respeeddde process, and etrendy valude Butwith arbitd symmely, jut therevasehes beentue

The theory lay in the matherrics, and what wes needed wes the spak of grius to seethe apdicddility to dericd readions Fats were spase, ad Woodhardand Hoffinam madepredidions, which havesincebeenbomeat by expeinet All this is themreconnining becasethesepreddions were of thelind caned "isky": thet is, theerats pred ded seemed ulikdy onany gaund the thenthethery bingtested
Ortitd symmetry feeds are doserved in conceted reacions that is, in reations where selerd bond ae bing rade or brken simittaneady. Wbodnard and Hoffmam formulted "nues", and described catan reation paths as sym-metry allowed and others as symmetry-fordiddan All of this apdies arly to conceted reations, and refes to therddiveeme with which theytake place. A "symmetry-forbidden" reaction is simply one for which the conceted meeharismisvey dffialt, sodffialt that, if reactionistoccarat all, itwill proddy cossoinadfferetway. byadfferetconcerted paththatis symmetryalloned α, if there is nore, by a stepwise, nonconceted meedarism Even this simplified aproad, we shal fird, is tremerdady ponefu; it is higly gadric, and in sone ceres gives ifformion thet the nored\&diledtreamertdoesnot

69Eletrocydicremtions

Under the influmee of het or ligt, a corjugted payere can undrop isomeiztion to form a cydic compound with a singe bond beveen the temmira cabons of the arigind cariugted sytem, one dable band dsappers. and theremining da debonos shift their positions For eramde, 1,3,5herdrienesyidd1,3-ydderedenes

13,5headrienes 1,3-yddheradenes

Therevase process can dso tikeplaxe asinge bond istroken and a cydic compound yidds an qpen-chain pdyere For examde, cyddatenes are convetedintobtadenes

Cyddatere butadere
Suchinterconvasionsarecdleddedroydicreations
It is thesterechenistry of dedroydic reationsthat is of dif interestous To doservethis, wemotharesitddy shbsitited moleales Le uscorsidr first the interconvesion of 34dmethylyddatene and 2,4heedere (Fig 12). Theyddatereeists ∞ as and trans iscmess Theheadereeiss in three foms is, is, istrams, and trangrans As we can se, the is gyddateneyidds orly oneof thethreisanmic denes, thetrangeyddatere yiddaa

cis, trans-2,4-hexadiene

trans, trans-2,4-hexadiene

Figre12 Inteconesionsof 34dmethyigddatenesand2,4heradenes dfferet isoner. Reection is this compdely stereosedetive and comdedy sterespeedic Futhemere, photochenicd ydizdion of thetrastrars dere gives adfferet cyddaterefrim theonefromwtichthedereisformedby thethemal (heet-protede) ring-qeeing
The interconverians of the conespondng dmethlyddheredenes and the 24,6odtrienesaredsotreessdetiveandstreospeific (Fig 13). Hee, too, themal and photochericd reactions dffer instereochenisty. If weeanine the

cis-5,6-dimethyl-1,3-cyclohexadiene

trans, cis, cis-2,4,6-octatriene

trans-5,6-dimethyl-1,3-cyclohexadiene

Figre 13 Inteconvesions of 2,4,6odtrienes and 5,6dmethy- 1,3 cydderedenes
sturtures dosdy, wese something else: the stereochemistry of the trienecydcheradene interconersions is apposite to that of the denecyddatere inteconersians For thethemal reations, for exampe, is methy graps in the cyddatere becone as and trans in the dene as methyl graps in the cyddhesadenearetransandtransintherdtedtriene
Eedrocydic reations, then aecompledy stereselectiveandstereospeeific
The erat stereochemistry depenos upontwo things (a) thenunber of dable bonosinthepdyene, and(b) whether readionistherwa arphotochericd. It is aneof thetriumhs of thearditd symmetry aproach thet it canaccartfor all these fats, indeed, most of the examdes known today were predded by WoodnardandHoffinambefrethefatswereknown
Itiseerier toeaminetheseinterconersionsfromthestandpairt of gydizdion, accordng to thepinide of mioroscopic reversiblity, whetever apdies to this reation apdies equally wal to the reverse process, ringqpering In cydizdian, tho π detrons of the polyene form the new σ bond of the cydoakere But whichtwo dedrons? Wefoas ar dtertion on thehighet copiedmealararditd (HOMO) of thepdyere Eledransinthisaditd are the" "valence' dectrans of themdeale, they aretheleattig'tly hidd, andthe nosteaily pushedabatdringreation

Le us begn with the themid cydizdion of a dsubsitited butadene, $\mathrm{ROH}=\mathrm{CH}=\mathrm{H}=\mathrm{R}$. As wehave dready seen (Fig 6), the highet coapied moleala arbitd of a carjugteddeneis ψ_{2}. It isthedetronsinthisaditd thet will fornthebondthet dosesthering. Bandformaion requiresovelap, in thiscæeoverlapof ldoesanCl- andC-4of thedere thefrat

$\psi_{\psi_{2}} 0000$

CorjugtedDiere

cabors in Fig 14. Weseethet to bring thereldoes into positionfor ovelap, theremetberddiondbatthobonds, $\mathrm{Q}(1)-\mathrm{C}(2)$ andC(3)-C(4). Tris indtion cantakepareintwodfferetwas therecanbecarodary motion inwhich the bonds redte in the sane dreetion or therecan bedsctatary motion, in which the bonds rdtein qpooste dredions Now, inthis cæe aweæein Fig 14, corrodday mation brings togithe ldoes of the saredwee, velap coursandabondforms Discdatory motion on thedhe hard, bringstogether Idbes of qpositephere, hereintrationis atibonding andrealsive AsFig 15 shons, it is corndatay motion the podres thesterecheristry athelly doserved How are we to accart for the opposite sterechernisty in the phachenicd reation? Ondbsantion of ligt, butadereisconvetedirtothe exatedstashowninFig 6 inwhichanedectronfrom ψ_{2} hesbeenrasedto ψ_{3} ' Nowthehighestocapied arditd is ψ_{3} ' adit isthededronherethat we aeconcemed

Figre 14. Themad cydizdion of a 1,3btadere to a cydo Corrotary mationleabtobondrg Disctatory notionl bonding

cis, trans-2,4-hexadiene
cis-3,4-dimethylcyclobutene

Figre 15 Themal cyclizdion of sabsitited bataderes Coseaved streacheristy yindcatescroddary notion
with Butin ψ_{3} therddivesymmety of thetermind cabonsisqpositetotht in ψ_{2} Nowit is the dscdatory mation that brings togethe Idoes of the sare phese, and thestreechenistry is revesed (Fig 10). Net, li us lock t the themal cydizdion of adsubititedherdriere $\mathrm{OH}=\mathrm{H}-\mathrm{dH}=\mathrm{CH}-\mathrm{dH}=\mathrm{R}$, whosededraric corfigurdionisshowninFig 17

Figre 16 Phodnemicd cydizdion of a 1 ,3-atadene to a cyddatene Disrotatory motion leads to bonding. Conrotatory motion leads to antibonding

TheHOMOforthegrandstaeof theherdrieneis ψ_{3} If wecorparethiswith theHOMOforthega ndsteof butedere, wesethat theredtivesymmery toat the temind cabons is qposite in the two cors gandste headrienit isdsudary metionthat leobsto bondng and ashowninFig 18, givesrisetothedbervedtreedenmisty.

Figure17. A 1,35hectriene Corfigyraion of π detrarsinthegrand staneandthefirstecitedstate.

Intheexited stae of hexdriene, ψ_{4} is theHOMO, and anceagain weseea revesd of symmedry: here corrodtory motianisthefavred process What wesehere is pat of regula patem (Tade1) that eneges fromthe quammedarics As the nunber of pairs of π dectrons in the plyene inceases, the redive symmery dat the temind cabons in the HOMO. attentes regulaly. Furthemare, symmery intheHOMO of thefirst exited staeisdwaysqpositetothet inthegrandstae

Tade 1 WOODWARD-HOFFMANN RULES FOR EECTROCYOIC REACTIONS

Nunber of π deetrons	Reation	Mation
4π	themal	corrotary
4π	photodenericd	dsrotary
$4 \pi+2$	themat	dsoddary

$$
4 \pi+2 \quad \text { photochemica corrodary }
$$

disrotatory

trans, cis, trans-2,4,6- octatriene

trans, cis, cis-2,4,6- octatriene

5,6-cis-dimethyle-1,3-cyclohexadiene

5,6-trans-dimethyle-1,3-cyclohexadiene

Figre 18 Themad cydizdion of sobstitued herdrienes Observed sterechenistryindcdes dsotatary motion

610Cydaadltionreations

In the DidsAlder reation a corjugited dere and a sbosituted akerethe denpprilereattoformacyddexere

Diene

Adduct

Diels-Alder reaction a [4+2] cycloaddition

This is an example of cydoadtion a reaction in which tho unsaturted moleales continetoformacydic cormand with π dedrans being usedto formtho new (1 bonds TheDidsAldar reation is a [4+2] gydoaddion, sinceitindvesasstemof far π detronsandasstemof twor detrons Reation tokes pare vey eaily, often sportaneady, and t not reaires modrateapdicdionof hett

Thereaeseard wpedstothesterechenistry of theDidsAlde reation (a) First, wehmetcken for gatedteoredly H ht the dere mot be in the corformation(sois) that pemits theendsof thecrjugitedsytentoreechthe chaly bordedcaborsof thederophile

s-trans
RequiredforDidsAldar Reation
(b) Net, with respeet to the alkere(denqdile) addion is demat synthesis steresdedivity is pat of theevidacethat theDidsAldar readionis, indeed, aconcetedone, the is, that bothnewbonds arefored inthesametrasition stae
(c) Finaly, the DidsAldar reationtaes pace in theendo, rathe theneo, sense Thit is to say, any ther unscurded graps in the denaphile (for exampe, -COO-Co in maeic adydida) tend to lie neer the dadquing dudebondinthedenemiely (Fig 19). For theend prefercetobesen of carse, thedenemestbesitddy subsituted

Figre 19 Steredhenistry of the DidsAldar reation, illustrated for the reationbedweentwordes of 1,3butadene
Cantwo moleales of thylene contineto formoyddatane? The ansmer is yes, but not eesily under thend condtions Under vigoras condtions cydoaddtion næy ccar, bit stepwisetia dradcalsand not in a concetted fation Photocheni cd [2 +2] cydoaddions, an the othe hand ae very commen (Althang screathere, too, may bestepvise reations, many are dealy concated)

Of themad gydooditions, then [4+2] isemy and[2+2] isdffialt of [2+ 2] cydooddtions the themal reation is dffialt and the phtocherviced reationisem.

Difficult:
not a concerted reaction
In ydoadtion tho new (1 bonds aefarmed by ureof π dedrons of the reatats The concetted reation realts from ovelap of abitds of one meieale with arditds of theothe. As before it is ondectrons in the HOMO thet wefoas attertion Butwhicharbitd does theHOMO ovelp? It pids an arbitd into which its detrors can flow. an uncoapied arbitd. And of uncapied arbitds it pids the nost stde, thelonet unocapied nolealar arditd (LUMO). In the trasition state of cydoaddion, then stdilizdion coreschiefly fromovelypbedweentheHOMO of onereactat ardtheLUMO of the dhe.
Onthis bois, le us eacnirethe [4 +2] cydoadtion of 1,3butadere and thylere thesimpestearmleof theDidsAlder reaction. The electronic configraiorsof thesecompondsadd deres andakenes ingered-havebeen giveninFig 5 and Fig 6 Therearetwo contrintions ovelapof theHOMO of butadere $\left(\psi_{2}\right)$ withtheLUMO of thylere $\left(\pi^{*}\right)$; and verlapof theHOMO of thylere (π) with the LUMO of batedere $\left(\psi_{3}\right)$ In either cese \propto Fig 20 shous, ovelap brings togethe lobes of the same pheee There is a flow of eletrarsframHOMOtoLUMO, andbondngocars

Symmetry allowd (a)

Symmetry allowd (b)

Figre20 Symmery-dlowedthemal [4+2] gdooddtion 1,3batadereand thylere Oveltpp of (a) the HOMO of 1,3batedere and the LUMO of thylere and(b) theHOMO of thylereandtheLUMO of 1,3- batadere
Now, corsider a themed [2+2] cydizdion dmeizaion of thylere This nould indve ovelap of the HOMO, π, of oremoleale with the LUMO, π^{*}, of thedhes. But π and π^{*}, aeof qpositesymmiry, and \propto Fig 21 shows, ldoes of qposite plese wald aproed eech athe. Interation is atibondngandrepulive, addconceted reationdbes notocur.

Symmetry forbidden
Figre 21 Symmery-fardicten thamal [2+2] cydoadtion two modeales of thylere Interationisati bondng
Phococherica [2 +2] cydoadtions ae symmetry-allowed Hre we have (Fig 22) ovelap of theHOMO (π^{*}) of aneated molealewiththeLUMO (dso π^{*}) f agandstamdeale

Symmetry allowed
Figre 22 Symmetry-dloned phochnenicd [2+2] cydoadtion tho ndeales of thlere, aneexited and oneinthegand sta, Intartion is bonding
If, in a conceted reaction of thiskind both bonos to a componet arebeng formed (arbrken) onthesaneffer theproessissad tobesprfaid. If the
bands are being formed (ar lroker) on quposite faces, the process is ataradad.
Thesetems resendethefaniliar onessynadd ati, bat withthisdfference Syn adarti describethent streednenisty of a reaction Wehavesen ati adtion foreandeatheoved realt of atwostep redarismSyprafaid andatarfaid, incortrat, refeto adul processes thesimiltareasmaking (rrbreding) of twobonosonthesarefacer qpositefaces of acomponet
Sofar, ardsassion of gydoadtionhes ass medtht readionissypradad with resped to both componats For $[4+2]$ cydooddtions, the sterechernisty shows that this is indeed the care Now, कf for as arditd symmery is conemed, themel ($2+2$] cycloadtion cald ocar if it were sypradid with respeet to orecomponet and atarofaid with rexpect to the dher(Fig 23). Alrostcetainly, suchaspraataaprocessis imposididehere angemerticgands

supra, supra
symmetry forbidden

supra, antara symmetry allowd

Figre 23 [2 +2] Cydoaddion Sypa sypa gementically poside, bt symmeryfordidden Supa atara symmery-zllowed bt geanearically dffialt
Butif theringbeng formed is bigemanh, bothspraspraand syparata proceses aregen enically posside inthat cereabitd symmity datemines notwheher ydoaddionccars, bithowitocurs(Tade2).
Tdde 2 WOODWARDHOFFMANN RULES FOR $[i+j]$ CYCOADDITIONS

i-	Thema	Photochemica
4π	spraatara	spraspa
	atapspra	atarata

$4 \pi+2$	spraspra	spraatara
	ataa,atara	ataasupa

Cydoaddtion ${ }_{\text {B }}$ are reversible. These cycloreversions (for example, the retroDidsAldar reation) followthesaresymmetry rles acydoaditionsathey met, of carse, sincethey coarviathesaretrasitionstes

611Sigratrqicremtions

A concetedreation of thetype

Inwhichagrapmigdeswithits σ bondwithina π framenork anoneora polyeneiscalledasignłropicreation
Themigrdionisaccompariedbyashittin π bondk Forexample

In the designtions [1,3] and [1,5] the " 3 " and " 5 " refer to the nunber of the cabon to which grapG is migding (themigdion terminus). The"1" dbes not refer to themigdian sarce inteed, it speeifies thet in both readat and produt bonding is to the sare tom(nunber 1) in the migding grap The impotat Cope rearangert of heal 55denes, for eamde, is a [3,3] signłropicreation

A 1,5-hexadiene

ir.
angein positionof atadmetinG andll winthe π framenak-inded G itseff is a π framenork In the transition stete of a sigratroic reation the migding goup is bonded to both the migdion
sarceandthemigdionteminus itisthentureof thistrasitionstathat we areancemedwith Forconerienceweconsidredbonding intheH 2 noleale to arise from ovelap beween arditds an two hydogen atons In the same wey, andsimdy for converience, weconsidr bonding in thetrasition state for signdrupic reationsto aisefromovelapbetween anarbitd of andomor freeradcd (G) andanatbitd of andlylicfreeradcd (the π framenak).
This does not neen that rearangenert atully invives the seppration and reatadmert of a free radcd. Such a stepnise reation waid not be a conceted one, and hance is not thekind of reation wearededing with here Indeed a stepvise reation waldoe a (higheregy) atterntive quen to a sysemif a(canceted) signaropicrearragenert weesymmery-farbidden In thetrasitionsta, thereis ovelap bewwentheHOMO of onecomponet andtheHOMO of thedthe. EachHOMOissingy ocapied andtogethe they providaparaf dedrons
TheHOMO of an allyic raded depencs onthenumber of cabors in the π framenak Themigdinggoupispessedfromaneendof thed ylicraded to thedter, andsoit istheend cabons thet weae concemed with Weseetht the

symmety d theeendcabonsattentes regualy awepassfromC3 to $\mathrm{C}_{\text {; }}$ to C_{7}, andsoon TheHOMO of themigdinggapdepends, wweshal ses, on thentureof thegap
Let us considr first the simplet cese migdion of hydogen Steredhemically, thisshift canbesurfadid oratacadad:

In the trasition sta, atheeceter bond is required and tis mis indve

 yontressmmety of theeteminad atbids
 aly ont hesymmedy reairenets batdso onthegen ety of thesstemin patialar, [1,3] ado [1,5] atras dift stuald beetrendy dffialt, incethe/ nold reariether franenak to be twisted fo fromthe paraity the it rexiresford
Pratically, then [13] and [1,5] signatropic reations semto belimited to sypasifts $\mathrm{A}[1,3]$ s ypashift of hydogen issymmeryyfardidder sincethes arditd of hydoogn waild haveto velappldbes of qpositedhes, hydogen cant be bonded similtaneaty to both cabons A [1,5] spra sift of hychogen onthedher hand issymmety-dloned

[1,3]
H
Syrmedryfardiddan

[1,5]

Sypradad
migdionof

Symmeryallowed
For lager π framenorks both spra and atarasifts should be possideon geemetric gands, and here we waild expet thestreechenistry to dapend simply onabitd symmity. A [17,7H shift, for eampe, should beatara, a
$[1,9] \mathrm{H}$ shift, spa ad so an . For phtachenica reations, a befare, preddionsareeatly revesed
Thefatsareewiththeabovepredidions [1,3] ignatropicsifts of hydogen aentknown wheees [1,5]siftsaenell known
The prefernce for [1,5]-H sifts ove [1,3]-H sifts hes been denconstrad manytines Freeande theheting of 3-dateriainder(I) caressorantling of theldad todl threnon-aondic cositions Letuseaninethisreation
Wecamt accartfor theformaion of II onthebers of [1,3] sifts migrdion of Duaidregeratel; migction of H waldyiddarly III. Btif weindude theparditdsof theberzerering andcart dang theedbeof this ring wesse theta[1,5] sift of D woildyidd the untddenon-acnaic intemediteIVa This, in tum can tranfer H or D by $[1,5$] sifits to yidd all the doserved prodics

Figre14. DateriumscrandinginindmeviaunstdeintermedtesIVaand IVa assies of [1,5] hydogenshifts
So fa we have dsassed aly migdian of hydogen which is neeessaily linited to theovelapof ansabitd. Nowle ustumto migdion of cabon Here, weharetwo possidekinds of bonding to the migding grap Oneof these is simila to what we have jut descibed for migrdion of hydoger bonding of bath ends of the π framenark to the same ldoe an cabon Depending on the symmefry of the π franewark, the symmily-allowed migdionnæy besprafaid orataradid.
Wth cabon anevapeet appers thesteredhenistry inthemigrdinggap Bondingthraghthesereldbeoncabonneersathedmettothesamefaceof theatonthetisto say, reation of corfigraioninthenigatinggap

Suprafacial

Antarafacial

But theeis asecond possibility for cabon bondngto thetno ends of the π framenak through dfferet Idoes of a pabitd. Theseldoes aeon qposite faces of caboneadly a in an S,2 reation-and there is inverion of corfigraioninthemigdinggap

Suprafacial

Inversion in G

For [1,3] and [1,5] shifts, the geandy pretty effetively preverts atarofaid migdion Limiting arselves, then to sprafaid migdians, nemakethese preddions [1,3] migdion with ineasiar; [1,5] migrdion with retetion Thesepreddianshavebeenboneatbyeypeinert.
In 1968, Jerore Beson (of Yde Urivesity) repated that the deuteriumIdadedbicydd[3.20]hedeneV isconvetedstereospeifically intothe

V

VI
eo-narbamere V. As Fig 25 shans, this reation proceeds by a $[1,3]$ migdionandwithcompleeineesionof corfigurdioninthemigdinggap In 1970, H. Kloosterid (of the Uriversity of Tedndogy, Eindnove, The Nethelands) reported astuly of the rearangerert of the dastereareic 69 dmethyspiro[4.4]naral,3-denes (disVI and tranviI) to the dimethylbicydo[43.0] nomedenes VIII, IX, and X. These reations are compledy stereo- selective and stereospecific.

Chief product
AsFig.26shons, they proceed by [1,5] migdions and with completeretertion of corfigurdioninthemigdinggrap.
To predd adfferet stereedenistry between [1,3] and[1,5] migrdions, and in patiala to predd inverion in the $[1,3]$ shift-catainly not theerier path an geametric grandsis cataily "nisky". Thefufillmert of surh predidions dem- onstrates both the validity and the power of the underlying theory.

Figre 26 Rearangeret of is6,9dmethyspird 4.4]nona1,3-dene Migdion ofC-6 fromC-5 to C-4 is a [1,5]-C shift (We cart 5, 1,2,3,4) CorfigurdiantC-6isreaned ashownbyits redianstiptoconfigrdiant C-9. Surcessive[1,5]-H shiftsthenyiddtheatherproduts

6DSummay

Inthischapter moleala arbitd theary hesbeendsassedindtails. Thereisa dtailed dsassion of tomic and nolealar abitds. The possibilities of cantintion of tamic arbitd to formmeleala arditd hes beendsassed Banding and atibondng modeala arbitdshavebeen dsassed with varias eamples Eletraric carfigurtion of many moleales hes been studed Arondic darater of any molealeonthebasis of its deatraic configurtion hes been desaribed in dtails There is deer and datiled dsassion of eletrocydic, cydoaddionandsigraropicreadionsinthischader.

Unit-7

Claxificaionandstrexhenistryof prigdicreations Cazifictionof paigdicreatians WoodNardHoffinam corrediandagans FMOandPMD appoach

Srutureof Unit

7.0 Ogetive
7.1 Introdution
7.3 MedarismandSteredhemistry of Pellydic Reations
7.4 Casifictionof Peicydic Reations
7.5 (4+2) Cydoaditlons
7.6 (2+2) Cydoaddiós
7.7 BectroydlcReations
7.8 Exdandion of Woodnach Hd H-manRueandObitd Symmetry
7.9 SignłrquicRearangenert
7.10 Summa
7.11 Reienquetions
7.12 Refermes
7.00́ective
Attheend of thisuritlemme canadetoundastand

- Paicydicreations
- Theremedarismandstereochemistry
- Differettypes of pericydicreations
- WbodnardHoHmamRule
- Andvariasexamdes redtedtothèrsymmetry

7.11ntrodution

The majarity of argaric reations proced ether by a plar or by a radcd pathwey. Howerr, there is a gap (dthang smill) of reations thet do not indve polar or radced reagits, i. e they aresubstatially uinfluanced by dangeof polarity of solvertor by thepresence of radcd inititars Themost common earmple of this type of reations is the Did's - Aldar reation indvingl, 4addianof subsititeddkenestocrojugteddenes, eg

Surh reations are apparetly conceted i.e the detroric rearangerets involved in bond- breaking/bond-makingprocedsimltaneasy, i.e itisacoe stepproess Thetrasitionstdes arecydicandthereationsareattended bya tighdegeef steresdetivity. Many of sudreationsarereveride All suh concetted reations which proceed via cydic trasition stees are known as parigdic reations As perigdic readions revain uneffected by polar reagats, sdvert change, radcd inititas, ecc theseareirfluenced by hetar ligt There two influaces often produre wrkedy dfferet realts either in tems of possibility of a reationo intems of thestereachenicd carse

Did's - Alder reation tokes pace radidy and converietly, while simpe drerisdion of defins to cyddatanes gives very poor reslts, except when photochenically indred Woodverd, Hofnam and dhers have shown that these cortrating resilts can beexdained by the pincipe of conservaion of abitd symmety which predds that cetan reations ae symmetry dlowed andothasaesymmetryfardidan
Thearditd symmery rues (dso celled the WoodnardHofmannues) addy aly to conceted reations. There are seved nass of apdying the arditdsymmery principle of which the frontier- orbital method is the nostcommon
Frorier abitdsandabitd symminy.Jutatheater shell of detronsof an tomis regardad कs esperially sigificat in datemining the denistry of that tom, so it is reesondethat, for a moleale, it is the higher coapied ndealar abitd (HOMO) whichisthekey ind\&emining readivity. Thisis termedthefrontier arbitd. Thetheary isbesed upontwopinaides -
(i) Sincethegrandsteof anostall molealeshesapar of detrons in the HOMO, bording intaraion bedventwo moleales or betweentwo atons in thesamemealecand indvealy theHOMO of ech beeasethis wald lead to an arditd ccapancy geeter then tho which is cartray to Pali's pincipe The HOMO of one readert needs to interat with an uncoupied molealarorbitd of thesecond Nowsincethebondinginterationbetweentwo arditds inces a the enegies of thetwo becone more nealy equal, it is epeeted that the HOMO of one readert wald inteat fficiertly with the lonet uncoapiedmedealarabitd (LUMO) of thesecand
(ii) Theshaded (positive) Idæecuel lps anly withtheshaded (positive) Ideof andhe arbitd, and an unstraded (negdive) ldoe orly with the un sheded (negdive) Iobe of andher arbitd. Ourlap of arditds of ulikephæereat's replsion

7.4のæखificitionof PaigdicRertions

Peigydic reations are dasified into thee impatat types which are describedbedow.
1 Cyicadtitions A readioninutichtwounsaturded moleales contineto forma cydic compond with π dectrons being used to formtwo nev (σ bonsisknownecydoadtion readion Foreande

Cydoaddtion reationnmy agein beof thotypes dependng yponther uniber of π detronsinthetwocomponets

(i) $(2+2)$ Cydoodtions When both the unsturted moleales have 2π detrorseach eg
(ii) $(4+2)$ Cydoodtions Whenoneathesytens hes 4π detrans and the ther hes 2π dedrons DidsAlds reations arethemost cormeneamdeof thistype,
2 Eleatrogdicrestions Theseareirtrandeala perigdic reationswtich indveethe theformation of aring with thegenedion of onemev σ-bond adtheconsumtionof $\mathrm{m}_{\pi} \pi$-bordortheconvers Foreande,

Hexa-1, 3, 5-triene

1.2-Dihydrobenzene

3 Sigratrqicrearangerets Inthesereationsandomoragapina- π - detronsytemmigdes withthe σ-bond withat drageintherunber of $\sigma-\alpha_{\pi}$-bond Foreamde

75(442) Cydaadittons

The bet known $(4 \pi+2 \pi)$ gydooddtion is the Did's -Aldar reation of which the simplet posside eande is the reation between butedere and thylere to formsix-mentreed ring DidsAldr reations the plare very ereily, often sportaready, add nod reaires nodadeapdicdion of hert Before considaing the readiton betveen butadene and thylere, le us first study thededroriccorfigrdionof 1, 3atadeneandethlere
Bedroric corfigrdion of 1, 3btadere For thefar componet parbitds, thereaefar ${ }_{\pi} \mathrm{MOS}^{(t w o b o n d n g a n d t w o ~ a t i b o n d n g) . ~ T h u s i n t h e g a n d ~}$ stat, atadenehes ψ^{2}, ψ^{2} c corfigurtion(thevarias possideMOS $\boldsymbol{\omega}_{\psi_{1}, \psi_{2}, \psi_{3}}$ ec intheinceringadr of enegy), i.e therearetwodedransin erch of thetwo bonding arditds $\left(\psi_{1}\right.$ and ψ_{2}). Orditd ψ_{1} encanpesses all far cabons, this dilocdistion provids the ne stabiliztion of the corjugted sytem and hence this corfigurtion hes the minimemenegy. The highe ψ_{2} arbitd resentles two isdzed π arbitds of carseit hes somenhat loner eregy thentheisodzed π adatds Absondion of ligt of therigt frequency raises onedetron of ψ_{2} arbitd to ψ_{3}. Thus ψ_{3} hes are dectron in thefirst
exitedstedthoughitis vacat inthegoundste Notethatithes somenht highe enegy then the ψ_{2} at less then the ψ_{4}. Thus the enegy of the compdedy arbitd of highest energ (HOMO) which is to patioptein bond formaionis ner to the LUMO (loner uncoppied ndeala abitd) and thes therearbitds of compardeeregy canovelap

Exatedside
Fig 7.1Corfigurdion of π detrons of 13btadeneinthegoundsteand firstexdtedste

Eletrariccorifigraioncethlere

Thetho π-detronsof thylemeaedstributedabdow.

Fig 7.2 Carfigrtion of .dectrons of thylere in the gand sta and first exitedste
Fromthesymmery of theMOs of butedeneand ehylere it is apperet thet thesymmetrie of the HOMO of biteder $\left(\psi_{2}\right)$ add the LUMO of-thlere $\left(\pi^{*}\right)$ व LUMO of butadere $\left(\psi_{3}\right)$ ardtheHOMOf thyler (π) aesuththt

When the readats aproach each othe with their nolealar plares pardle, tworewC-Cbondscanleformedtthesmetime

(a)

Fig 7.3Symmaty-allowedthemp [4+2] gdooddtion of I, 3btadeneand thylere,(a) Orlap of HOMO of I, 3atedeneand LUMO of thylere (b) Ovelapof LUMO of 1, 3btadereandHOMOof thylere

7.6(2+2) Cydaadoftions

The [4+2] cydoaditions are common and toke dare very eeily and sportaneady. On the other hand, cydodmeistion of akenes eg convesion, of thleneto cyddatane, is very dffialt and not very commen Furthe, it is interesting to notethet thethernal reation is dffialt whilethe photochericd reationisemy.

Difficult

Cyclobutane

Thereeson being in presence of het, dmeizdian of thylenewald indve verlap of theHOMO, π_{2} of anemdeale withtheLUMO, π^{*}, of thedter. Nowsincerand π * aeof qpositesymmedry, ldoes of appositephesenald approach tach other. Hence interation is atibonding and repulsive, and concetedreadiondeesnotocardetosymmety-fardidan ovelaping

Fig 7.4 Symmetry-fordiddan thema (2+2) cydooddtion Interation is ati bonding
[2+2] cydoadditions aresymmetry-fadidden readions sinceanly oneof the two rewC-C bonds cald beformed and thebondng enegy asocited with this, when offset againt the loss of π-bondng of two ethylere moleales, seves to makethis (twostep) process of surhighadivdionenegy that it is effedively impossilde
Honever, photochenicd [2 +2] cydoaddions are symmetry dlowed The simplest interpredianof thisisafdlons Whenandefin melealeabsarbsa quatumof ligt, an dedron is proneted fromtheHOMO to the LUMO, so that therearenowtwosingy ocapiedmolealar arditds(SOMO). Theexdited HOMO therefrehes the symmetry of the grond stae LUMO, i.e π^{*} and corsequatlythetwocannowinterat.

Symmetry-Allowed
Fig 7.5Symmery-dlowed phodochericd [2+2] gydoaddian Interationis bonding

7.7ElatrogdicRemtions

Eletrocydic reations are those in which ether a ring is formed with the genedionof anew (σ-bondandthelossoff a-bondor aringistrokenwith theqpositeconsequace, eg,

1, 3-Butadiene

Cyclobutene

Cyclobutene

1,3-Butadiene

Bedroydic reations aestereospeefic which is evidat fromthefdlowing eamples
(I) dis3, 4Dimethyloyddatere on heding gives is, trats2, 4headere, whilethetrars isomer of 3,4dmethy-cyddatereansinila treatnetgives tras, trans2, 4headere Moreever, photochericd gydizdion of thetrars, tranderegivesis 3, 4dmethlyddatenedthoughitwesformedfromthe transisoner.

Fig 7.6Interonvesionsof 3,4dmethyloyddatenes and2, 4heraderes
(ii) The interconvesiors of the dmetbylayddoerdenes and 2, 4, 6 otdrienesaredsosteresspeeific \times eidatfromthefdlowingreations

II
trans cis cis-2, 7, 6-()ctatrienc

CH_{3}
tran.-5, 6-Dimethyl-1, 3-Cyclohexadiene

Fig 7.7 Interconvesionsof 2,4,6oddrienesad55,6dmelh 1 -1,3 cyddheedenes
It is importat to nde that the streednenistry of the trierecydderadere inteconersions is cpposite to that of the derecyddatereinterconersions Thus dectroydic reations ae compledy streespeeific, and the eat sterechemistrydapenos y 0 onthofadars, remedy
(a) Thenunter of dudebonosinthepdyere
(b) Whethe thereationisthemed orphoconemica.

Theorkitd symmery aproach accants all theknown fats, athaigh they nereerlier predided by Woodhard and Hofinam Accardng to Woodnach Hofirmnletheabitd symmety of thetighet enagy ocapied molealar arditd (HOMO) mitbeconsidred andtherddionccars to pemit ovelap of twoshacked(arusheake) Idoesof theparbitdstofamthe σ band'

7.8Explanetionof WoodNerdHdHranRuleandOrbita Symidy

It is erier to eanninethereinteconvesions intems of gydistion rather then ring quering Howerr, wheterer apdies to the cydistion may equally be apdied to the reverse process, ring-pering Incydistion, tho π-dedrans atheHOMO of thepdyereform thenev σ band, Reventer that dectrons in HOMO arethevdencededrors, simethey aretheleat tig'tly had and the noterily pusheddatdringreation Nowleustuby theydizdion of a dstbsituted derea thesimplest eamdeto eydan thestereospeaficity of detrocydicreationsanthebesisof orbitd symmetry.
Themat sydizdion of a dsbstitued butadere As doserved ealier, the HOMOof acorjugteddereutichisind vedincydistionis ψ_{2}.

1888 1048

Fig 7.8HOMOof grandsde(ψ_{2}) of acorjugteddere
Bandformaionbetween C_{1} and C_{4} reqiredfor ydistioncantzeplarealy When theldoes of C_{1} and C_{4} arin ovelapping position, i.e when the shaded
 theseldoes can corre in verlapping position arly whenthereis iddiondant twobonds, $\mathrm{C}_{1}-\mathrm{C}_{2} \mathrm{andC}_{3}-\mathrm{C}_{4}$. Rddiondbat theretwo bonds cantakeparein the same dreetion (corrdatory notion) or in qppostedrections (dscotary notion).

Fig 7.9Themal gdistionof 1, 3atadenetocyddatere Hovere, notethat the corrotary motion brings togethe ldoes of the sare phere and hence ovelapping ocurs and bond is formed On the cartray, dscdtary nation brings togither ldoes of aposite phese leedng to atibondngirteration Thus itiseidetthetinthephotochericd eyelistion of carjugted denes, corradary motion tikes pare and the the doserved sterechenistry of the prodit mitt be that which can be prodreed by this mation Now le us doserve the sterechenisty prodreed by the themat cydistionof thetwoisameric (dंs, trastadtras, tras) 2, 4heedene

Fig 7.10Themad gdisdionof sabstitutedataderes

The abovestereochenistry prodreed by corrddtry ndian is in accordance withthedoservedstereadenistry.
Photachenicd cydistion of butadere It is impatat to nde that the photochenica sydistion of a dsubstitued corjugted dene gives stereochenistry qpposite to thet prodreed dring themal cydistion Thiscan beeydainedonthebesis of thefdlowingtwofats
(a) In presence of light, butadene dosarbs ligt with the result ane of the eledrans from ψ_{2} goesto ψ_{3}, i.e heretheHOMD is ψ_{3} and not ψ_{2}. In other norob, in exded state the HOMO is ψ_{3} whose temind cabons have symmeryqupostetothatin ψ_{2}.

Ground state

HOMO in ground state (ψ_{2})
(C_{1} and C_{4} have different lobes on the same sides)

Excited state

HOMO in excited state $\left(\psi_{3}\right)$
(C_{1} and C_{4} have similar lobes on the same side)
(b) In ψ_{3}, batadene can undago cydistion only when dsodtary mation tokes plaxe (dsrotary motion brings togither ldoes of the sare phese) and thus the stereachenistry of the prodit will naturdly be opposite to that of themed cydistion

Fig 7.11 Phoomenicd sydizdionof 1, 3-btadere

Fig 7.12Corfigrdionof ndedronsingoundandfirsterdtedsteof 1,3, 5 hedriere
Inherdriere, theHOMOfor thegand steteis ψ_{3}, whoseterminal Idoes are appositetothetemind ldoes of butcdere

HOMO of conjugated diene (ψ_{2})
HOMO of conjugated triene (ψ_{3})
Thus when hexdriene undagees cydistion in the gaund stae (themat cydistion), It is dsoddary motionthat will bringtogythe ldoes of the sare phee(ndethedfferncefromcorjugiedbutaderewhrecorrdday notion
takes plael and produrethedsseved steredhenisty. In theexited ste of hedriex, ψ_{4} is theHOMO in which corrodacy motiontakes paredring cydistion

trans-5, 6-Dimethyl-1, 3-cyclohexadiene

In the exdted state (a prodreed in phoconerica cydistion), ψ_{4} is the HOMO. Notethat theldoes of temind cabons areqpositein ψ_{4} and ψ_{3} and hence photocherica sydistion of a dsbositited herdriere will indve corrdday motion andthisgives produts haingdfferetsterechemisty to thatdatineddringthemed cydistion
The resits of such predicion can be summised according to whether the numbe of dectronsindvedinthegdic processis 4_{π} or $4 \pi+2$ (wherenis ary integr indudngzer).
WbodnardHoffimmRuesforElectroydleReations

Na fo π - ledrans	Reation	Mdion
4 4 $4+2$ $4+2$	thema photochemica themed photochericed	corrdatay dscdatay corrodary dsodary

7.9Signtrqic Rearrangriat

A signarquic rearangenert is dafined ∞ an unctdysed intrandealar process inwhich σ bondadacet to oneor nure π sytens nigdes to a
nevposition in the roeare(the ovedl number of π-and σ-bonob remin separday undanged. Foreande,

 inbrakd Thesenumbesc canbed\#eminedby cartingthedons ove which echendof theabond hes nowed Signtropic rearangentmay boody be daidedtwoheodngs
(i) Sigratrqic nigations of hychoger Such reaciors in aydic polyenes, canbegenedisedabdow.

Considration of theferibility of there shifts ∞ concerted process i.e via cydictrasitionstaes, reqires कual acorsidraionof thesymmery of the arditdsinvdved Inthetrasitionsta, athrecerter bondis required andthis mot invive ovelap between thes additd of the hydogen and Idoes of p aditds of thetwoteminal cabons Futher, thenlegovering signatropic migtion of hydoognis the the H mot move from theshaded (rrustraded)
 unstraded) tothe untraded (or shoded) arditd.
Asimdestermdeof thistypeof reacionis[1,3] signaropicrearangent

So the trasition state indves the verlapping of an ally raded and a hydogen tom of thethrepossiblendealar arditds of ally radcd, weae concerned withtheHOMO, I. Inthisste, velapping beveenthesarditd of thehydogen tomand ldoes of porbitds of thethotemind cabons cantoke plæeif themigdion

L

II
ataradaid. Consequatly, the rue predds that atarofaid" themad [1, 3] signatroic rearagemets are allowed bit the sprofacial pathoy is forbiden Howerer, in a photochericd reacion prontion of an dedron meens the HOMO of ally raded is represerted by II.Now the sprafaid pathwey isallowedand theartardaid pathwoy isfordidden
Whethe asignđropic rearangenett actully tikes paæeor not depends not aly onthesymmily reairenerts but dso onthegemedry of thesytem In patialar, [1,3] and [1,5] atar migdion ho beetrenty dffialt, since they woild reaire the π framenak to be twisted far from the plareity requiredfordelodizdionof dedrons
Hercepratically $[1,3]$ and $[1,5]$ signatropic reationssemto belimitedto sypa migdion $A[1,3]$ spramigdion of hycogen is symmedry-fordidden sincethesarditd of hydogen waldhavetooverlappldoes of appositepheees whichisnot posside Onthe che hend a[1, 5] spramig'tion of hydogenis symmery $\begin{aligned} & \text { dlowed } \\ & \text { d }\end{aligned}$

$[1,3]$

Symmetry-allowed $[1,5]$

For lager π framenak, bothtypes of migrians aegernetrically allowed and herce the streechenistry of there sytens depends simply on arditd symmety. A [l, 7]-H Migdionshaldbeatara, a[1,9]-H Higdionspra, andsoon Forphtochenicd reations, preddiarsareeadly revesed

Signarqic migdians of catorn]n migdions of cabon ulike a hydogenatomubosededronisinalsarditd thathescly oreldoe a cabon freeraded hes its odd dectron in a parbitd that hes two ldoes of qposite preee This herea nev appet appers and thet is thesterechenvistry in the migding gap In a themal sprefaid [1,5] migdion corfigurdion is reanedwithinthelmigdinggap onthedher had inathemal spradaid [1,3] migdion corfigrdioninthemigdinggapisinated
Howere, themost cormmeneandes indveasift fromcabontocabonin theCoperearangerettof 1,5-deres addasittfromoxygento caboninthe Caiserearrangeretof ally ayl thes

Anong thethemal reations, aly thosethet can proceed viasix-mernoered trasitionstdes arethemot cormen and proceed reedly. Futhe in aydic sytens the reation proceeds through a dair - sheped trasition state For eamde, neo.3, 4dmeth1-1, 5headere rearanges exduevely to is, transE. 6 odedere, consistet aly-with a dair-shpped trasition state, a bod-shppedtrasitionstetewaldleqdtoeithe thetras, trafs or theois, is produt, deperdingoncorformition
Formbion of dis, trat-prodit coresponds to a shit which is sprafaid t bothenos of themigdingsytem
 Theremangereat of theayl ally ther to theo-allypherd is thefirst[3,3] signatroic rearangenet It may be followed by a futher [3, 3] sift patialaly inthedbsenceof aparashositient, tog vep ally/pherd.

7.10Sumnay

After readingthisuritlemmer beermefanilia with pericydic reationtheir treecheristy, dfferet cydoaddtion reations, dedroydicreationswith sitddeandimpotaterampes noookardhdfrnamnleandabitd symmeryisdsoeydaindealy ardthensigntropicrearangent is dsassedveydealy andsimdy witherandes

7.11Reienquetions

1 Whtaepricydicreationd
2 DesoribeHOMOandLUMO.
3 Witedfferettypes of pericydicreadions
4 Differetite(4+2) and(2+2) gydoadtions
5 Exdannoodnerdhalframuleandarditd symmery.
6 Exdanderoydicreationwitheramdes
7. Describesignaropicrearangenertanditstypes withearndes

7.DRefrences

- Orgaric Reations Sterechennistry And Medarism(Trough Sdved Prddens) P. S. Kdsi (NenAgelnterdiond Pudisher), 2006
- ReadionandRegegtsO. P. Agrand (God PudistingHase, Mertu), 2004.
- Orgaic Chemistry-Rdaat Thorton Marisan and Rdaat Nélson Bogd(PessonEdrdion) 2007.

Unit-8

AnelyaisdEedroydicRextions

Srutureof Unit

131 Ojedives
132 Introdution
133 MAhhobof andysingpericydic readion
1331 Frortier Mdeala Oftatd (FMO) aproach
1332 Otbitd symmery corrdaiondagam
1333 Huckd-Mddius theary or Peturbation Mdealar Othitd (PMO) theary
134 Exempleof $4, ~ 4 n+2$ addally sysens
135 Summy
136 Revienquesion
137 Referces

B1 Ogedives

Thedjedive of this drader gives an overiev of detrocydic reation The drader exdains the main feture of detroydic reation uing Frortier Mdealar Obtitd (FMO) aproach arbitd symmedy corediondagamand Hucke-Mddiusthery or PeturbationMdealarOtitd (PMO) theary.

132|ntroducion

A pericydic reation proceeds through conceted medarismin which bond breding and bondformtion ocar (nt neecessaily syndronas) throughthe gydic trasition stuxtre with speeific abitd digments withat ion or intemedte formaion The conceted pricydic reations dten have daradeisic and preddadd estereocheristry. Innany ceses thereadionsdso ethibit regoodedivity thet can be dreetly redted to the effet of arditd interations on the trasition state stuxture Similaty, subsituat ffeds an readivity can be intepreted in tems of the effet of the shbstitusts on the interatingorditds Pericydic reationsaedasifieda
(I) Bearoydicreations,
(II) Cydooddtionreationsand
(III) Signatroic rearamgenets

InthischaderEletroydic readionsaredsassedindłdals.
Undar the influence of heet or ligt, a carjugted pdyere can undago isameistion to forma cydic compound with a singe bond beween the temind cabons of the arigina corjugted systen, ane daide band dsappers, and the reraining dade bonds shift their positions. Thereverse proesscandsotdkeplace, i.e, asingebondistrdkenandacydic compand yiddsanqpendainpdyene Thesereationsaecdleddedroydic reations. Intherid candtion, themot themodnanically stddereation produts are prefeddy formed but in photodericd process, the less themrodranicdly stade prodrt is formed The themad and photochenicd processes yidd prodit with dfferet stereochenistry. Stereochenistry of electrocydic reations is dso dapends on the nunter of daule bonds in the plyenes Eletrocydic reations are compledy stereospeafic. The reeson baind stereospeifidity of dectrocydic reation is that the graps bonded to the bredkingbondrotesarearqpositesensedringcydisdianproess.

133MEincosofaneysingpaiglicreadion

Therearfdlowingmehoosareusingto andysisof pericydic reatian,
(1) Thefrantier mealararditd (FMO)
(2) Orbitd symmery corediondagans
(3) Hudke-Mdaiustheary or PeturbationMdealarOdditd (PMO)

1331Frarier Mdealar Orbital (FMO) appraeds

Thenecharismof dectrocydic reationscanbeundastoodinterns of fratier noleala abitd (FMO) theory and theatconeof readians canbepredied
laing the WoodnardHoffinan nles The pathway of such reations is deeminedby thesymmery propeties of thearditdsthataredredy yindved Theabitd symmery motbesaredringovedl meedarism
In dedroydic reations, orly one readat is invived and thw orly the rignet coapied moleala arditd (HOMO) neest to beconsidred Thus, the sterechernisty of thereations is cortrolled by thesymmery propeties of the HOMO of the reading sytem These reacions tike plæe themally or phtacherically. Inthemal condtion, thegandsteHOMO is ind ved in thereation butinphtochericd condtion, theexatedstaHOMOindved
Thearbitds of termiral tans of HOMO radetethragh 90 to allow of ther pateriad ovelap Therddionccurs in the sanedretion i.e, dockwised canterdodkise is called corrdtary process BUt ratdion ccars in the qpositedredionis calleddscdatory process Therddion of temind arditd depends onthetypeof plyere i.e, number of dadebond and condtion of reation Itisilludrtedbyfdlowingsstem
In4n π-ystemforeampeinterconesionof 1,3-btedereand yddatere,

In therid condtion gaund stae HOMO hes termind abditd with qposite prees carodatay netion leed to a bonding inteation and thw to the formaion of gddaterewhiledsodary moverertrealtsinanatibonding situion In thermal dedroydic reation of a $4 \mathrm{n} \pi$-sytem, therfore, aly corrodary notionisallowed

In the cere of phochericd cordtion iraddion of derewill realt in the prometion of andedron into thearbitd net tighe enegy lerd and grand stat LUMO beanest theexitedsterHOMO whichhestermind arbitd with the sare phwe Thre is corrotary notion leeding to an atibondng sitution, while dsoddory notion real's in a bondng interation and the formtion of cyddatare

In 4n+2 π-sytem for exarde inteconersion of 1,35-herdriere and cydcheedere,

Inthissytemunder therial condtion corrodary notionrealtsinovelapof qposite preseled to an atibondng stardion while dsodatay novenert realts a bonding interation de ovelaping of the same prese Hence, in themal condtion dsotatory motion is allowed and the sterechenistry fdlonsaccordngy.

Inphochenvicd condtion, irradtion realts in theexittion of eletron of gaund steHOMO in thenet higer eregy stae and then LUMO beecme the exited HOMO which haing the same phese t temind arbitd. The corrdatay mation rests in ovelapaing of the sane pheseadd leading to a bonding interation hoveler, dsctatay motion realts in atibonding interation In photochevica condtion therefere corrotatory motion is allowedfor $4 n+2 \pi$-sytens

This, sare phese of temina arbitd goes thaigh dsodatory mation and apposite phere goes throigh corrdatory notion in bond farmaionbond breaking Onthebesis of thesecondusions, Wbocherdand Hoffinen propoed anlefordedroydicreationisknownæWbookardH-ffinannles

Sysem	Readioncondion	
	Δ	$\mathrm{h} \nu$
4 n	corrdatory	dsodtary
$4 \mathrm{n}+2$	dscotary	corrodary

Eetroydic reationsarecompledy sterespeeific For eamderingdosure of (ZЕ,Z,ZE)-2,4,6oddriereyidd asinge produt with is methy gaps anthering

Mrever, thestereachenisty of theprodit of andedroydic reation tso depends on reaction condtion i.e, themad or phachervica reation
condtions For erampleCydizdionof (正,4E)-24headerewith het foms acyddaterewithtrans methy gaps, wherescydizdionwithligtfomsa cyddatenewithdismethl gaps

133201ditd symminycordationdagans

Theardysis of deetroydic reations candso bedmeby orbitd corddion dagans This aproach foases attertion on the arditd symmetries of both readats and produts and considasthesymmeliy propeties of all thearditds Inany conceted process, thearditds of thestatingmateid motbesmodtly tranformedinto alditds of prodit thraghatrasition stetehaingthesame symmery. Thus, thesymmerymotbeconsevedthrogtat thereation The aditd symmery rues canbegenedizedfromcoriugsed pdyenesto arytype of the corjugted sysem In cæe of the corrotary process, the denert of symmety that mirtaned thraghat thereationis theturofd roditionaxis Hoverr, in dsodatory motion the plare of symmety is maintaned throghatthereation
Incereof 4π-sytemeg theyddaterebtedereinterconvesion, thefar π-abitds of butadereaeconveted irto thetwo π - adtwo σ-abitds of the groundsteof cyddatere The π-arditds of butadenearederigitedळ ψ_{1}, $\psi_{2,} \psi_{3}$ add ψ_{4} andfor cyddatere, thefor arditdsae π, σ, π^{*}, and σ^{*}. If thereationtakes parethragh corrdatory metion, then C_{2} axis of symmetry is maintaned throughat the reation The moleala arbitds mot beeither
symmeric (S) oratisymmetric (A). Senesymmety abbidsmet coredteto erchther.

S

ψ_{4}
π^{*}

ψ_{3}

σ

ψ_{2}
ψ_{1}

Accordng to the corredian dagamof $4 n \pi$-system when a reationocars thraigh corrotatay metion, the corredtion $\sigma^{2} \pi^{2} \rightarrow \psi_{1}{ }^{2} \psi_{2}^{2}$ is alloned undr themlal condtions whilecoreldion $\sigma^{2} \pi^{1} \pi^{* 1} \rightarrow \psi_{1}^{2} \psi_{2}^{1} \psi_{4}{ }^{1}$ isforbiddenundr phatochenicd condtion $\operatorname{In} 4 \mathrm{n} \pi$-systen, therefore carodtary nationocars undatherna condtion
If the reation tokes pace trrough dsodtary mation, then the plane of symmery is maintaned throughat the readion The comedian dagamfor converion of cylcdateretobtadeneisillustraedas

π

σ

ψ_{1}

Accordng to the coredaiondagamof 4π-sytem, when a reationccars throug dsodtary motion thecordaion $\sigma^{2} \pi^{2} \rightarrow \psi_{1}^{2} \psi_{3}^{2}$ is fardiden undr themad condtions while corddion $\sigma^{2} \pi^{1} \pi^{* 1} \rightarrow \psi_{1}{ }^{2} \psi_{2}{ }^{2} \psi_{3}{ }^{1}$ is dlowed under phdochericd condtion $\operatorname{In} 4 \mathrm{n} \pi$-Sytem therere, dsodary notionccars unde phatochericed condtion
Sinilaty, thecorddiondagans canbeconstudedinandogusmarme for the corrdatay and dsoldary modes for $4 n+2 \pi$-sytemeg interconverion of 1,3,5-herdrieneand cyddreedere InRing qpering reation, thefar π andwo σ-abitds of thegandstde of yddheadereaeconvetedirtothe sंx π-arbitds of 1,3,5herdriere The π-abitds of 1,3,5hedrieereae ψ_{1}, ψ ${ }_{2}, \psi_{3} \psi_{4} \psi_{5}$ add ψ_{6} andfor cyddheadere, thesix arbitdsae $\pi_{1}, \pi_{2} \pi_{3} \pi_{4}$ σ, and σ^{*}. If the reation takes plæe through corrodtay motion, then the
plare of symmity is mintained throughat the reaction The coredtion dagamisdescribeda

 ψ_{6}

σ

Ground state

$$
\begin{array}{ll}
\text { Ground state } & \sigma^{2} \pi_{2}{ }^{2} \pi_{3}{ }^{2} \frac{\text { Con. }}{\Delta} \nVdash \psi_{1}{ }^{2} \psi_{2}{ }^{2} \psi_{4}{ }^{2} \\
\text { Exicted state } & \sigma^{2} \pi_{2}{ }^{2} \pi_{3}{ }^{1} \pi_{4}{ }^{1} \xrightarrow[\mathrm{Con} .]{\mathrm{h} v} \psi_{1}{ }^{2} \psi_{2}{ }^{2} \psi_{3}{ }^{1} \psi_{4}{ }^{1}
\end{array}
$$

Accordngtothecoredtiondayamof $4 n+2 \pi$-sytem, whenareationocars traugcorrdatory notion, thecorddion $\sigma^{2} \pi_{1}^{2} \pi_{2}^{2} \rightarrow \psi_{1}^{2} \psi_{2}^{2} \psi_{4}^{2}$ isfordichen undr themal condtions while corredion $\sigma^{2} \pi_{1}^{2} \pi_{2}{ }^{1} \pi_{3}^{1} \rightarrow \psi_{1}^{1} \psi_{2}^{1} \psi_{3}{ }_{3}{ }^{1} \psi_{4}^{1}$ is
allowed under photocherice condtion $\operatorname{In} 4 n \pi$-Systen, therefore corrodary rotionocarsunder phatachericd condtion
If the reation thkes place through dsotatory notion then the plare of symmety ismaintanedthraghat thereation andthecoreddiondayamfor thissytemisdescribedes

σ
 $\mathrm{S} \longrightarrow \mathrm{S}$

Ground state
Exicted state

$$
\begin{aligned}
& \sigma^{2} \pi_{2}^{2} \pi_{3}^{2} \xrightarrow{\text { Dis. }} \psi_{1}^{2} \psi_{2}^{2} \psi_{3}{ }^{2} \\
& \sigma^{2} \pi_{2}^{2} \pi_{3}^{1} \pi_{4}^{1} \xrightarrow{\Delta} \begin{array}{l}
\text { Dis. }
\end{array} \psi_{1}^{2} \psi_{2}^{2} \psi_{3}^{1} \psi_{5}^{1}
\end{aligned}
$$

Accordng to the corredion dayan, when a reation ocars through dsudtary mation the corredtion $\sigma^{2} \pi_{1}^{2} \pi_{2}^{2} \rightarrow \psi_{1}^{2} \psi_{2}^{2} \psi_{3}^{2}$ is allowed undr themed condtions whilecoredaion $\sigma_{1}^{2} \pi_{1}^{2} \pi_{2} \pi_{3}^{1} \rightarrow \psi_{1}^{1} \psi_{2}{ }_{2} \psi_{3}{ }_{3} \psi_{5}^{1}$ is farbidden under phatohericd condtion $\operatorname{In} 4 n \pi$-sysem, therfore dsodatory motion ccarsunder Themal candtion

1333Hudd-Mdaius thery ar Peturbaion Mdealar Orditd (PMD) theary

Bearocydic reations can dso be andyzed by Hukd-Mddius theary. This theary wes pointed at initidly by M.G Evarsin 1939, ands bsequatly (ad indeperdatty) byH.E. ZmmemanadMJ. S. Dever in1966
The Mdau-Hurkd mathod provides an attentive aproach to the Wbodkerc-Hoffinam one The bexic dfference in both aproades is that Mdobu-Hickd method is not depenatt on symmity and any reaires carting the number of pusminus sign innesions i.e number of nodes in gydic aray of arbitds in trasition state Thesytens with zeo or an eern nunber of signinvesionarecalled Hudk sytem While sytenswith anodd number of signinersionsaecalledMdiussytens
Thetranition stes can bedasified x aormic or atiarondic for grand starroleales A Hukd systemis acordic whenithes $4 n+2 \pi$-dedrors A Modius sytemis acratic whenit hes $4 \mathrm{n} \pi$-dedrors A stdilized aromic trasitions stareal'ts in lowativationenegy, i.e, andlowed reation An atiarotic TS hes a high enegy berier and caresponds to a farbidden process
For the n nsyteme eg, cyddatenebutaderetrasition stae the corrodtory dosrerealtsinaMdaisssyten, uheresadsoday traitionstegivesa Hükd sytem

conrotatory motion,
4π-electrons, one node
i.e. aromatic

disrotatory motion, 4π-electrons, zero node
i.e. antiaromatic

Inthe cereof the cyddatenebtadeneirterconvesion which indves for eletrom, it is the corrodtory Mdius trasition stede that is the facred arondictrasitionstate
Similaty, thehertrienecydderaderesystemleadtothecondusionthat the dscdtary process will befacred becasedsodday nocegives astddilized achatictrasitionste(Huckd syter).

conrotatory motion,
$(4+2) \pi$-electrons, one node
i.e. antiaromatic

disrotatory motion,
(4+2) π-electrons, zero node
i.e. aromatic

Andetrocydic reationis themally dlowedindvinga Hukd sytemarly if thetudd number of detron is 4n+2 Andedroydic reation is them:lly dlowed indvinga Mddiussytemorly if ted number of eedronis 4 n For phdocherice reations, theee ries are revased The conduiars of this theoryaresummizedinbellowtdde

Sytem	Nuntrof of sign invesioni.e node	Aramioty	Reationcondion	
			themat	phatocherica
4 n	Zerderen	Hukk system, atiaronæic	-	Disudary
$4 n$	Odd	Mdaussyten, aonatic	Corodatay	-
4n+2	Zedeven	Hukd systen, aromic	Disctatay	-
4n+2	Odd	Mdaussyten atiarondic	-	Corrdary

134Exampleffedroydicreadion

4hytens Thebreic earnde of 4nsytemis interconetion of denes and clocatenes through detroydic reation Hovera, the cylcobtenes are themodyremicaly lessseddethendenes andsothetringdosrecarntocar de revasibility of the reation But, ring doare can be coared in photochericed condion forerample

Inaddionto thebtadenecyddatereinterconvesion, therearematy ther eamples of detroydicreationaregiveninttisseetion

cis-bicylco $[4,2,0]$ octa-7-ene cis, trans cyclo octa-1,3-diene
Daner berzenecanbeddainedby ledrocydic reation, for example

4n+2 sytans The interconverion of hextrienescyddeaxadenes ocars themallydsoddoryandphotochenically corrddary. Forexamde,

trans product

In addtiontothehexdrienescyddexadenesinterconesion therearemay therexamples of detrocydicreationaregivenas

 $\xrightarrow[\text { conrotatory }]{\mathrm{h} v}$

Ally sytans Corjugted untranchediars addradcds have an od number of cabon tons For earmde, theallyl sytem(cation aionor raded) hes thee cabons and thre p arditds hence, thee medeala arditds The convesion of a cydquopl cdion to an ally cdion is thesimdet posilde ceref andedroydic process becaseit indves aly two π-dedrons The spection rules dso apdy to concearded reation of this speeies Inthemat condtion the ally cdionfdlonssimila WoodkardHoffimennles according to $4 n+2 \pi$-sygens (hhere equds zer), i.e, in themad condtion, reation cours through dsodtary motion While a cydqropl aion (4t-detron sytens) gives riseto andlyilc ariontroughathemal corddary mode For exande, theoperingof ydic prop/ halidecarstoprodretheally caion thaighdsctatrymation

Thre are two possible drections for the alloned dsodtion in substitued cydoropyl ction For eampe a as 2,3-dmethlydquropl caion unde goes two dfferet dsodtay modes and leeding to struturdly dsint ally cations

Frereamde

135Summey

- A peigdic reationproceedthragnconcetedneetarism
- Pericydic reations ae dasified as detrocydic reactions, cydooddion reations, andsign\#roicrearngentets
- Bedroydicreationsaeringdosingaddringqperingreation
- Cydictrasitionsteindvingeithe 4ndetrorsor4n+2dedrans
- Thethemil and phdochericd processes yidd prodit with dfferert steredienisty.
- The dedroydic reation can be ardyzed uing Fratier Mdealar Orbitd (FMO) approach Orditd corndaion dagam and HurkMdiustheary or PeturbationMdealarOditd (PMO) theary.
- Sane phexe of termira aritd goes thraug dsodatory motion and qpositephæegoesthraghcorrddary motioninbondformaionbond breding
- In thema condion dsodary mation is allowed while, in phatochericed condtion corrodary notion is allowed for $4 n+2 \pi$ sytens
- In themat dedroydic reation of a $\mathbf{4} \pi$-sytem, aly corrdatory notion is allowed wile in phtacherica condion corrotary notionisalloned
- Thesytens withzero a an een number of signinvesion arecalled Hukd sysem While sytens with a ood number of signinersiors arecaledMddiussytens
- Themal detrocydic reationccars viaacondictrasitionstantile phdochevicd readionscoar viaatiarondictraritionste

136ReienQuestions

1 Whtisdedrogdicreation?
2 WiteHuckd-Mdaiustrasitionstateandacoddionsymmerydagam

3 Exdainthefollowingcomcept
 (a) Huckd-Mdaissystem
 (b) FMOaproan

4 Why detrocydic reationo a4n π-sytemaly carrodary motionis allower?

5 Explain stereodemistry of drethy substitited cydderadereundr carodary meveret?
6 compethereation

$$
\xrightarrow{\text { Heat }} \text { ? }
$$

$$
\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\Delta \mathrm{AgNO}_{3}} \text { ? }
$$

7 Wht isprodutA infdlowingreations and predathecoroddaryor dsodtarymation?

8 Preddthestereochemisty of theproduts of theereations

137 ReferenceandSuggetedrexdings

- Advanced Orgaric Chenistry, Pat A: Sturture and Mecharisnts Springer Sciencepudicaion F. CareyandR. Sundoag $5^{\text {thedtion } 2007}$
- Orgaric Chenistry, J. Caydan N. Geeves S. Waren Oxford Pudicaion, 2000
- PeicydicReadions, IanFlaming OfordSciencePudicdion, 1998
- AdvancedOrgaric Chevistry: Reations, Mernerisns, andStructureJ. Mard,JdnWley\&Sanspudicdion, 1992

Unit-9

Anelyésof gdasditian Cydaadition artarafaid, syprofaid adbitions 4nand4n+2 sytans 2+2acditionof Kłanes 1,3 diplar gdarablitions\&daldrqic reations

SrutureofUnit

90 Ogedive
91 Introdution
9.2 Sterexhenicd apeet of DidsAlder reation
9.21Syprafaid andatarafaid additions

93 SalvedExacise
94 Otbitd Symmery
95 Rediverdiosof DidsAlder reations
96 [1,3]-dpdarcydoadtion
9.61Regosdectivityforthe1,3dpdar cydoaddion

97 [2+2] gdooddtion of Kemes
98 Chedrupicreations
99 Summa
910 ReienQuetions
911 Referme Bods

900 Obective

Thedjedive of thistopic is thestudy of gdoaddion readion which areoreof thetypeof Pericydic reationswhicharenither effetedfrom thesdvert or cadyst which not indvethepresenceof theiaricor theradcd intermedtebt cog ge dfected fromhert and ligtthetopic
dedswiththestudy of sypradid andataradaid addian of thedere anddenqdileto havethecydoadtion prodit wherethecydoaddion is governed by the canservion of thearditd symmetry ruegiven by noodvardandHoffimintheyeer 18/5.

91Introdution

Whenthreis contirition of tho unsaturded moleales to farmogdic compound it is calledæ ydoadtion, whereintheformation of cydic podit π detrons aebeingusedandtwonewsignabonosareformed .these rections are dasified on the basis of π dedrons, invived in eah compont, an eample of cydoadtion is DidsAldar reation wherein sytem cataining ${ }_{4 \pi}$ and 2π eletrons contines to forma cydicsystem

Diels-Alder reaction (4+2) cycloaddition

92Streedherical apat of DidsAlder reation

The dere shald show an aragereet which allons the ends of the systentoreechtheda ldy bondedcalbornof thedenpprileto reachthe denewtich cald bearieered by sdis or disaid corformaion of dere ashownbaco.

(2) Thesterechenicd corformaionfor thedenchileshalddsobe synwidh suggest tht addtion is conceted in netureastown badow.

(4) Dids Aldar reationstikes parein norepreasdy way it is Exo addition this can be undastood by the gdoadlton of dene with dexpdile If the denghile is haing any unsturded grap that shald be in endb position, x seen balownithrefrencetodadquingdadebordinthedere

Endbydoaddianispreferedorered(4+2)ydoaddion
For [2+2] gdoodtton reations aneamdecanbedted of thare(two moleales) toformoyddatare (4+2) cydoadditionisthemally allowed while(2+2) cydoaddionisphotochenicelly dlowed

Cydooddtioncanbedfinedæthoæeconcatedreadionsuherentwo σ bonsareformedbyling ${ }^{\pi}$ detrons
Since cydooddtion is concetted in nture the stadiliztion of the trasition stae is brougt abat by the ovelap of the HOMO (highest coapied moleala orbitds) with LUMO (Ionest uncapied molealar abditds) of thereadats
To undastand the arditd ovelapping ore has to considg the arbitd symmeryestownbdowthendealararditdsof deneanddenquile Forbutadeneandethenethepidarid repesetdion of MOsis

Butadiene

Diene

If thesymmedry propaties of butcdere(HOMO) and thene(LUMO) aeconsidredit apper thit ${ }^{\mu_{2}}$ of butedereand ${ }^{\mu_{2}}$ of theneharesame propeties

Symmedry donedthern((4+2) cydoadtion
For(2+2) cydoadtionsymmety propetiesaestuded

Symmery farbidden themal (2+2) gydoodtion Howerer this (2+2) cydoadtion of there modeales are phtocherically alloned ∞ the symmery yropeties of HOMOandLUMOissaneashownbatow.

When interation of exited HOMO of ane redeale and LUMO of andher is considreed the symmery propeties makes cydoaddion fexideashownbdow

Homo of excited state

Lumo of ground state

Symmetry allowed photochemical (2+2) cycloaddition

921Syprafaid andantarafaid adblitions

If in a conceted readion, when bonos arebroken or they areforman thesarefare It iscalledwsypradad wileif thesarehappensanthe appositesides arecdledmatarfad. Asshounbadow

Suprafacial

Antarafacial

Thang supraaid and atarofaid resendle the termsyn and ati hoverer wherethesyn and ati describer thene stereochenistry of a reationWhich is coaring in a two meenerism while howerer supradid and atarfaid refers to simitaneas makng and beeking of bondsonthesarearqpositefaces
Themel (2+2) cydoaddion is allowed If it is sprafaid to one and ataradaid to andher componetshowninfigbedow

Supra-supra
symmetry-forbidden

Supra-antara
Symmetry allowed

From the symmery propeties it can be condunded that (2+2) cydooddion sprasupa is geometrically posside bit symmetry fardidan bat supraatarasymmedy dlowed bat geomicelly dffialt noodserdandHoffmanulesfor(i+g) cydoaddianisgivenunder.

$i+j$	Thermal	Photochemical
$4 n$	supra, antara antara, supra	supra,supra antara,antara
$4 n+2$	supra, supra antara, antara	supra,antara antara, supra

93 SduedExadise

1 Gvestucturd formlafortheprodit epectedfromfdlowing reations
(a) tras tran-2,4headeretelhylere
(b) trars-1,3pertodenetmadecaiydide
(c) is 2 -atere ${ }^{m} \mathrm{~A}+\mathrm{B}$
(d) tras-2-btene $\xrightarrow{m} \mathrm{~A}+\mathrm{B}$

DidsAldar reations are dways streepradic which mean that of an intermedte exss it des not have sfficiet life time to preat roddion
Thestreechenicd appeds of DidsAldr reationis governed by Aldr nle avadrg to this nue of two iscmeric adhuts are poside then pefernceis given to thet addit wherein unseturded shbstituet(s) on the akere is ciented tonarbs the renly formed addrexere dable bond Thetrasitionstes arecalledæEncbandExotrasitionstes

Endo addition

Exo addition

For the same reason the adltion of dendriles to cydqpetadere is minly favared the endb stereisoner. Honever terically it is more congeted cæe

The probade seard fatars which dermine theero and Encb ratio indudes staic effets, dpdedpde interation and the Lordon dspersiveforces
Gererlly not of cydoaddions follons the Aldar rue bit when cydqpertadere reats with methyl mylte in dedin solution gives Encb adurt ($75 /$) and Enda Exo ratio is solvet sensitive and goes y 4090% Encbin methend. Honere when methl shbsituet is adted todenqdile(methl metherylat theeroprodit predmindes

For cydoadtitonreadiorsbaingconcetedinnaturederemet qtsis corfarmion since detrors indved in dene and denptile ae π dedrons 50 ydoaddition indves face to facer rdhe then edgeedye dietdion Andæeof symmety perpendalar totheplaneof readats isshounbadow.

Thesymmetry of thearditds ae corsidged with rexpect to this pare ad when aredzsified with resped to symmetry they can bearanged
with respet to enegy and the coredaion lines a shown in coredaion dagambdow.

94Orbita Symmy

$\Psi_{1 b}$
Symmetric (S)

$\psi_{2 b}$
Antisymmetric(A)

$\Psi_{3 \mathrm{~b}}$
Symmetric (S)

Antisymmetric(A)

Butadiene orbitals

Symmetric (S) Antisymmetric(A)

Symmetric (S)

Ethylene and Butadiene $\Psi_{4 \mathrm{~b}}-\mathrm{A} \square \mathrm{A}-\sigma_{1 \mathrm{c}}{ }^{*}$ $\Psi_{2 \mathrm{e}}-\mathrm{A} \quad \mathrm{S}-\sigma_{1 \mathrm{c}}$ $\Psi_{3 \mathrm{~b}}-\mathrm{S} \longrightarrow \mathrm{A}-\pi_{c}{ }^{*}$ $\Psi_{2 \mathrm{~b}}-\mathrm{A}$
$\Psi_{1 \mathrm{~b}}-\mathrm{S}-\pi_{c}$
$\mathrm{~A}-\sigma_{2 \mathrm{c}}$ $\Psi_{1 \mathrm{e}}-\mathrm{S}-\mathrm{S}-\sigma_{1 \mathrm{c}}$

Thus DidsAldar reation is ${ }^{\left(4 \pi_{s}+2 \pi_{s}\right)}$ ydoadbition nore precisdy $(2+2)$ cydoaddition process waid be described as ${ }^{\left(2 \pi_{s}+2 \pi_{s}\right)}$ where subsuiptsandaaresupradaid andataradaid.

95Rdativerdiosof DidsAldar reations

When dengdile cortains eetron with dawing/ttrating grap then desAldar reation is rurerapid andif denecortan deetranreleering graptheeffet of subsituertsisgivenintddebdow

PdativereativitytowardgdqpartadieneintheDidsAlder rextions

Dienophile	Relative rate
Tetracyanoethylene	4.3×10^{7}
$1,1-$ dicyanoethylene	4.5×10^{5}
Maleicanhydride	5.6×10^{4}
p-benzoquinone	9×10^{3}
Maleonitrile	91
Fumaronitrile	81
Dimethylfumarate	74
Dimethylmaleate	0.6
Methylacrylate	1.2
Acrylonitrile	1.0

Relative reactivity of substituted Butadienes in the Diels-Alder reaction Dienophile

Diene Ter	Tetracyano-ethylene	Maleic anhydride
$\mathrm{CH}_{2}=\mathrm{CHCH}=\mathrm{CH}_{2}$	1	1
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	103	3.3
$\mathrm{CH}_{2}=\underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{\mathrm{C}} \mathrm{CH}=\mathrm{CH}_{2}$	45	2.3
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}-\mathrm{CHCH}_{3}$	1.66×10^{3}	
$\mathrm{PhCH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	385	1.65
$\mathrm{CH}_{2}=\underset{\substack{\mathrm{Ph}}}{\mathrm{C}} \mathrm{CH}=\mathrm{CH}_{2}$	191	8.8
$\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CHCH}=\mathrm{CH}_{2}$	5.09×10^{4}	12.4
$\mathrm{CH}_{2}=\underset{O O_{3}}{\mathrm{C}} \mathrm{CH}=\mathrm{CH}_{2}$	1.75×10^{3}	
$\mathrm{CH}_{3} \mathrm{OCH}=\mathrm{CHCH}=\mathrm{CHOCH}_{3}$	${ }_{3} \quad 4.98 \times 10^{4}$	
Cyclopentadiene	2.1×10^{6}	1.35×10^{3}

The rature of sbbstiturts on denes of denpcile effets the regochenistry of Dids Alds reaction
CæAA andCæeB \ldots givenintddeshonstheffect of detrondtrorin thedeneandetedronacceqtarinthederoptile

In case when substiturts are reversed surh that deetron donor subsiturt on dengdile and dectron accepting substituats on the dene This is celled as the IMVERSE ELECTRON DEMAND DidsAldareadion

96[1,3-dipdar gdaedtition

They are andogeas to Dids -Aldar readion and concetted ${ }^{(4 \pi+2 \pi)}$ cydœaddion Theentity abciscdleda 1,3-dpolar molealeande isdpdarodile

1,3-dpdarmededehave ${ }^{4 \pi}$ dectrasareisodetraric withdlyl arion Soneof 1,3dpdesaeshownbdow.

Some 1,3-diples
Nitrile oxide $\quad \mathrm{R}-\mathrm{C} \equiv N^{+}-\ddot{O}:^{-} \leftrightarrow R-C^{+}=N-\ddot{O}:$
Azides
$\mathrm{R}-\ddot{\mathrm{N}}-\mathrm{N}=N^{+}: \leftrightarrow \mathrm{R}-\ddot{\mathrm{N}}-N^{+} \equiv N:$
Diazomethane $: \mathrm{CH}_{2}-\mathrm{N}=N^{+}: \leftrightarrow{ }^{-}: \mathrm{CH}_{2}-N^{+} \equiv N:$

Nitrones
$\mathrm{R}_{2} C=N^{+}(R)-\ddot{O}:^{-} \leftrightarrow R_{2} C^{+}-\ddot{N}(R)-\ddot{O}:$
Nitrilimines
$\mathrm{R}-\mathrm{C}^{+}=\mathrm{N}-\mathrm{N}-R \leftrightarrow R-C \equiv N^{+}-\mathrm{N}-\mathrm{R}$
Dipdaqdiles aretypically akenescrakynesie, esseridly they shaid behaing ${ }^{\text {b }}$ band
Readivityof dpdaqdilesdapanoson
(a) sbstituetpresetan π band
(b) ntureof 1,3dpde

Stereocherically of 1,3dpdecydoadtion readionissinila to Dids Aldr reationissterespeeificsynaddion
Freg Additionsistereergeeificfordeteswithdzanthenetoyidd pyrodines

In cæe when 1,3 dpple and dpple ae unsymmeticd adtion can cours in tho posside crietdion The regosedivity of addtion is detemined by steic and dedroric fatars theregionenisty of dpola cydoaddion is beeed on the frirrier arbitd comcept nost favardde interation is when FMO of 1,3-dpdeadd dpdargdileocars mostly LUMO of dpdaqdileinteadswithHOMO of 1,3dpda.

961Regiosdetivityfor thel,3dipdar gdoadtition

For theandysis of regosdedivity for the1,3dpla cydoaddionit is nandatory to haveinformaion doat theenegy and anmic coeffiaiets of frantier arditds of both1,3-dpoleandd pdarqdile Sareresilsareshownbdow.
$R-N=N^{+}=N^{-} \quad$ azide

$\begin{aligned} & R_{2} C={ }_{R}^{+}-O^{-} \quad \text { Nitrone } \\ & R\end{aligned}$

$R_{2} C=N^{+}-N^{-}$diazoalkane

$R C=N^{+}-O^{-} \quad$ Nitrile oxide

$R-C=N^{+}-N^{-}-\mathrm{R} \quad$ Nitrile imine

The regochenistry of 1,3 dpda cydoadition can be predded by ling these arbitd cofficiets and by etinding redive enegies of interatingarditds

97[242] gdaeditiono Ketenes

${ }^{(2 \pi+2 \pi)}$ cydoaddtion prominetly tding daæeindes thecomplsary aietdion of oneof the componet in ataradaid nodehovere fev reations meatsthis condtion Howere ketenes haingliner geenemy with sp hylridzed cabon tom give mirimm steic repalsion in atarfadd trasitionstateandfulfilsthisgeemery restidion
Mdeala abitd noodsing of the reation concemed concated non sydronausprocesswhichbondformtionocarst spcabonof ketere leadngtofars $\begin{aligned} \\ b o n d f o r m d i o n d t e m i n a l ~ c a b o n ~\end{aligned}$
Themod showing conceted ydoaddion of keeneandan defin is shownbado.

The streacherical preddion can be nade on the dowe mertioned modd.
For example E and Z-2atere when reads with elhoxketone gives streasomeric produs In cere of nonosbstitued akenes the sobsituet is vidind and is to the ehoxy gap in cyddatarone podit Theremonfor this issepration of dkyl andelhoxy shbsitient inthetrasitionste

Thereisandher weytodscribe[2+2] cydoadtion reationsof ketone Thisformultionis ${ }^{\left[2 \pi_{s}+\left(2 \pi_{s}+2 \pi_{s}\right)\right] \text {. Theberssstarditdsaray isgiven }}$ bdow. The system shown badow hes Hukd-type topology haing indvenetrof 6π detrons

From the avaldde data this andyse is eqully compalide and the preddionnæatefor thestereosdecivity andthereativityonthebases of thismodl areinaccordancewiththeexperimetd resitsandgivebetter resltscompredtotheresultsdaivedfrom ${ }^{\left(2 \pi_{s}+2 \pi_{a}\right)}$ transitionste

Exacise

Q. Givestucturd induding stereodenistry of produts expected from thefdlowingreactats
(a)

(b)

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC} \equiv \mathrm{CH} \xrightarrow{\mathrm{O}^{\circ} \mathrm{C}}(\mathrm{~B})
$$

(c)

$$
(t-\text { but })_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}+\mathrm{CH}_{3} \mathrm{CO}_{3} \mathrm{H} \rightarrow(\mathrm{C})
$$

98Chadrqpicreations

Chedropic reations indve those dases of reations wherein two sigra bonds that teminte dt singe tom are rade to troken in cancetednay.
2,-Dihydothiqdeene1,1-doxides and 2,7-Dihydothiepin-1,1-doxides undago 1,4 and 1,5 dimination respeetively, both these readions are concertedreation Thereationisshownbdow,
(A)

(B)

Thereationaiteddaveisgovenedbyarditd symmedyrules
Reation (A) is a sprafaid process while reation (B) is tding by ataradid processes
Boththereationsie, (A) and (B) areclled a dnddropic reations a tho sigra band cometed singe tamie, sulphr ae broken in a conceteduay.
Eimintionof SO, fromeisiffones cardtikesplæeinconcestedway excep atarodacilly which is urfavardde for such a swall ning Evidances showthetthisreationtakedreinnonconcelledway.
Andher eample of dhadropic reation is of α, α - Dichlorobenzylsulfones reats with ercess of besetriethylemannineindmethly suphoxide of rom temperture to give 2,3-dayithiren1,1-doxides Which ae isdzedandthemally deromposedæshounbdow.

99Sumay

- cydoaddtion readions indve the urian of dere and denqphileunder therma andphotochevicd condtions
- The cydoaddtion readion invdves the addition of the componets either supradaid (saresidd) or ataradaid (qppositesides) dapendnganthereationcondtions
- Keteneshaving linear geonetry withsphylaidzed cabon tam give minimm steic realsion in ataradad trasitiansteandfulfilsthisgeonery restricion
- The steredhenicd apeets of DidsAldar readion is govemedbyAldarule
- In aconcetedreation whenbondsarebrdkenorthey are formedonthesarefare Itiscalledassprafadid whileif the sare happers on the apposite sides are colled as ataradad.
- Chaddropic reations indve those dasses of readions wherentwosignabonosthttemintetsingetomare madetobrokenin concetedwey.

910RenienQuetions

1 Preddtheprodut of thereation

2

3

4

5

911RefaranceBods

- Orgaric readion medarism P.S.Kdsi, New Age Intematiand Pudicition
- OrgaricReadionMedarism SinghMukhaje
- OrgaricChensitry, MarisonandBoyd $6^{\text {h }}$ eedtionprintcehall of Inda

Unit- 10

Andyeisof Sigratrquic Rextions

Srutureof Unit

100 Obective
101 Introdrtion
102 SigntropicRerrangentis
10.3 Syprafaid andatarafaid siftof H
104 Signarodicsiftinvdvingcabonmeieies
10.41 1,7-Sigmopicsiftof andkl gap
10421,3Sigmaroicsift of andkl gap
104.3 1,5Sigmaropicsift of andkl gap
105 [33] signarodicrearangenert
1051 Coperearnangentrt
1052 Azaccperearrangentet
1053 Casen rearragentert
106 [5,5]Signaropicrearangerert
107 Fluxiond tataneism
10.8 Enereadion
109 Summa
1010 ReievQuetion
10.11 ReferceandSuggestedRedings
100 Objedive

Most of theargric reationsaeiaric Eletrons novesfromendedronrich domtoveros andedron por dom Intemedtes likections and arions are formed ButBesidesthere threis anandhe gapof reationswherededion moveroundadirdeandmointemedtes areformed Thistypeof readions is called Pericydic reations There reations go in a singe step and follow concated needaism For the undastanding of thesereacions it is neessary toknowthathowtherereation procees?

101 Introduction

Peicydic reations aeconcetted dontfdlowany iaricor raded pathway, reagin uneffeted by para sodvets, raded intitars (a intibitas) and cadysts Theer reation take pare themally or phoconemically. These are minly dasified in thre dases Eletroydic reations, Cydoadtion reations and Signtropic rearangerets In previas dader you have studed dedrocydic and ydoeddtion reations Herewewill ded with arly signatropicrearangentits

102 SigratrqpicRearanganets

Stignaropic rearagererts indves migdion of ao bondthat isflaked by ore or nore cojugited syters to a new position within the sytem The reation is termed[[i,]] signatropic shit whenthebond migdes fromposition [1,1] toposition[i,j].

Foreamde acabonhydogenbondmæy novearossadere($1 \rightarrow$ 2). Itisan eampeof [1,5] signdrqic rearangenet.

Itisanunctdysedirtrameeala process Other eramdesae
(i) Sigrarqpicreationofordr [1,5]

Transition state
(σ-symmetry)
(ii) Sigratrqicremtionofordr [1,3]

(iii) Sigrarqicremtionofadr [33]

103 Syprarial andAnetaradaia shittof
Consids thesstem $(9 \rightarrow 10)$.

The σ bond is maxe and lurken on the sameside of the corjugted sytem This reationcenbeconsidredæa ydoaddtionof the $\mathrm{C}-\mathrm{H} \sigma$ bondtothe π arditds of the deresytemashownby thedbted lineinFig 101 Hrewe setht theirtaration of theHOMO of theC-H bondof (σ) adtheLUMO of thebutadere $\left(\Psi_{3}\right.$) isbondingif thehydogenstiftsfrom thetopsuffeetothe topsufæe Thiskindof shift isknownesprefaid shift, by andogy withthe sprofaid process and reationis calleda[1,5] signłropic rearngemet

Fig 101Frarier abitalsfor suprafaid [1,5] signtrqicrearangment ofhycrogn

A simila contindion of HOMOLUMOinanallyicsystem(Fig 10.2) stows
 of ther-LUMO.

Fig102 Fratier obitd for [13]signarqicremrangenetof hydogen

Thus the hydogen tomleaves the upper surfare and noves to the lover sufface Such a shift waid be colled atarofaid and the reation is [1,3] sigraropic rearangeret Surh rearangerets are vitudly unkown in therid reation, dthoigh they ae dlowed Geometricd requiremets previts the dlowed reation and the arditd symmety frustace the geomricallyemy[1,3] supradaid shit.
If wetike a lange corjugted systema in thetriene(12), then a[1,7] shift tokes pace on heating SeeFig 103, wecan say thet this is favred when

(12)
the hytogen leaves the top suffer and arives on lower suffae in the warts in nataradicd marme. Unikethecæe of [1,3] sift thereishdica shqpeinwtichcortinusovelap canbemairtained

103 Frorier abita for the[1,7] artarafaial shiftof hydrogen

Theknown examples of this kind of reation aefound in qpen dain triere where hdicd geonery is posilde There is no prof that the shift is in fat ataradad, butitisknownthatincydictrienes, likethecyddaqddriene(13), $\mathrm{a}[1,7]$ sigrtropic rearangeret does not toke pace [t temperture above 150°], bt a [1,5] signatraic rearangenert of the hydogen tamocars whichissyrfacid.
Inthistriene, ahdicd trasitionsteeisimpossible thusthisdoservaionshons that [1,7] shiftsocarsaly inqpendantrienestrandy yggeststhatheyare
indeed atarafaid. Thefrortier arbitd interations as nehaveseen accourt forthis

(13)

Hydogen is nd aly gop which con migte, and thereaethrefaremany ther kinobof signtropic rearnagenet. Hereaesoreeandes

(15)

Preddedstreechevicd carseffrsigntropic rearargenerts(If hydogenis migding:

i,j	Themal reation	Photochenicd reation
1,3	Artaradid	Suprazad
1,5	Suprazid	Artaradia
1,7	Artafaid	Suprabid

104 Sigratrqics iftsindvingcabbonmuidies

Aswehavesenthet Hamcanformbordthraghits 1sarditd, mithesoly singeldae It can rovebatventwoldoes of saresign Thus H can migde arly spradaidly with respeet to itsdf. Che dons C, NandS, they can use their parddadatdshaingldoes of qpositesigns Sothey caninterateither sddy with one ldee i.e syrafaidly or with ldoes of qposite sign i.e ataradadly.

10411,7Sgraropicsiftofanalky gap

Considar ahapddrienesysteminwtich[1,7] signaropicshiftof andkyl gap ($R=C d a c$) ocars
Onthebesis of frontier arditd andysis it shons two arangentet(A) and (B) [Fig 10.4] for the HOMOs of the hapdrieny raded and the C radcd. Arrangeret(A) inwichthe π-systemats inthesupradad componet and 2 C raded ats astheatrofadid componet withtwo ldoes of qpositesign. [Non lineer π approad]. Arrangerert (B) in which π system ats as atarofaid componet and the additd of C radcd at as a sprafaid componet interadingwithsingeldee[A linerr σ approad].
Seven cabondainhessufficiet fleeiblity so it canbeat manataradaid componet

Fig $104[1,7]$ Sigratroic rearangent: (A) Supradad-ataradaid and (B) Antaradadid supráaid

Rearangeret(B) whichissupradad withrespeettothemigrdinggapwill show reterion of corfigurdion bt rearangerert (A) which is atarefaid with respeet to the migding grap will have inverion of corfigurdian at migrdingcetre ItisjustlikeSN² reationwtichshonswaldaninversion

10421,3Ggratrqicstiftofandky gap

It is jut like[1,7] sigraropic shift a exdaned dowe A [1,3] sigratropic [Fig 10.5] shift will ocar supradilly onthe π systemandatarafaid anthe akyl gapsomsocizedvithwaldaninersion

Fig105[1,3] Sign\#ropic sift : (A) surafaid atarfacid (B) atarafaid, sprafad

1043[1,5]Sigratrqicsiftof analkyl grap

We can condude that [1,5] shift cald undago supraaidly on both the componetwithreeetionof corfigurdion

Fig 106 [1,5] sgmatroic shitt (A) ataradad-ataradaid and (B) sprafaid-syrfadad
Thus for [i,j] signatropic rearangereets when both i and j geeter then 1, sfetionnlesare
$1[i+j]=4$: ataraspraor spraataraingand stete spraspraor ataratrainexitedste
$2[i+j]=4 n+2$: spasyraor atarataaingandste, ataraspa orspraataainexatedste
For [1,3] and [1,5] shifts thegeonery pretly effectively pearts ataradaid migrion Sospafaial nigrdions will tekeplæe Therfore[1,3] migdian carswithinersion while[1,5] migdionwithretations It canbeeydaned by following eamdes Daterium ladeded bigdd[320]heptere (16) is conveted tereospeefically into the exo norbomere (17). This readion
proceedby $\mathrm{a}[1,3]$ migdionard with compdeeineasion of corfigrdionin themigdinggrop

105 33Signtrqicrearangmets

Signaropic rearangerets of arde [3,3] aevey common Gereally fand in1,5herdere

trasitionstae
SigratrqicReationcfodr [33]
For surh process the trasition stede is repeserted as two interating ally fragrets Therecan betwo stereachevicd vaidions supradaid-suprofaid (arataradad-ataćadid) andspraataamshowninthefdlowingstes

6 electrons, zero node aromatic, Huckel system
Δ allowed

Suprafacial-antarafacial anti-aromatic, Mobius system
$h v$ allowed

If theproess issypracid inbothgraps, anarnwictrasitionstarealts and theprocess is themally allowed Genedly a dair liketranitionsteis indved batabot likecorfartionisdso poside

Boat transition state

Chair transition state

As uad, those indving a todd of $(4 n+2)$ dectrons ae allowed in al sprafaid node Herearesoneeandes

1051Cqpererrangenet

The themad rearagernet of 1,5-dene throug [33] signaropic shift is knownжcqperearangenet. Letustkeareeampe

Thiseamdesevestoilludratthewidelditudenecandlowarsives One wayistotketo π bondbetweenC-2andC-3æthe2detroncomponet, and theo-bondandher Zesandthedhe π-bondatheze sytem Lookingby the woy thereacion can beregardedæa $\mathrm{a}\left[\sigma_{s}^{2}+\pi_{s}^{2}+\pi_{s}^{2}\right.$] ydoaddition with the
patiaipaion of six dedrons On the basis of frortier arditd andysis, two imæinary trasitionstes (A) and (B) may beenisaged both allowingsura supathemed interconersion

Fig 107 Chair like (A) and bost-like (B) trasition states in the Cope rearagemet
Thedair-likearangenet(A) ispreferedour boatlikeane(B) (Fig107). It hes been estddishedby tereecheristry of pyrdysisproduts of (\# andmeso-34dmethyheal,5-dere(Fig 108). The($\#$ gives a mixture of E,E (90\%) andZ (10% denes whilethemeso isomer gives sededively theE, Zisomer consistertwiththedrai liketrasitionste Predoninancy of 타 isomer inthe prodysis of ($\#$ formenderizes thet the deataid dair likearangeret is prefered Chair like arangenett in the T.S. of [3,3] migdion is dso supated by considartion of seeconday interation in the HOMO-LUMO aproach

DiredingtheCqperemrangenertbyformdioncfacabony gap

Initssimpest vesion(i), itisntareationtall. Thestatingmweid andthe prodit aesare Wecandivethis reation too by formtion of a cabonyl grapif weptanOHsbstituatintherigttpare

E, E (90\%)

Fig108 Stereosededivity inthe Coperemrangeret

1052AzaCqperemangater

The Aza cope rearangenet is an example of heroatomversion of cope rearangenet which is [3,3] signtropic rearangeret that shifts singeand obule bonds beween thoallylic companets AzaCope rearangenets are geneallydasifiedbytheposition of theritrogenintherrdeale

Thetranformaion of an apprqpidely subsituted unscturded ininiumionto anayl subsituted pyrdidneby [3,3] signarqic rearangeret fdlowed by Marich cydizdionis nexample of zacoperearangeret(Fig10.9). Itisa syitheically ponefiu reation, asit isadeto createcompex cydic noleales fromsimdestating mateids TheMarrich cydizdion is ireversideand its prodit, an acy subsititedpyrdidmering, rore stdde than that of the rearangenet

(Fig109)

Trasitionstaesarechnvistry

This caicic 2-aza cope rearangenert is darataized by its high streespeedicity whichaisesfromitshighrefermefor adari liketranition sta

1053Caienremrangitit

The simpet eemple of Caisen rearaggenet is thethemal converion of ally vind ther into 4 perterd.

Another eermdeis ally ethes of pherd. Theprodat of rearangenert isoally pherd.This reationproceedsvia[3,3] signatrqic rearangeret Animporat dueves datained by theuseof ${ }^{14} \mathrm{Cl}$ labdeddlly phend ther. It wes ndiced thet the rearragerert wes speeific with respeet to which cabon tomof theally grapbecarebondedtothering add ledtothepropod of the fdlowingnedarism

Thefirst stepin this reationis [3,3] signatrodic rearangenert which is ore step rederism withat inic intermedtes Second step in the reation is simpleiaric protentranfer sothatarndidity cald beregenate
Theintrandeala n nureof therearragenertuesfimily estdishedby cooss ove eperimentsinutichnetingof (18) \& (19) simultaneady givethesere
produt a they give separddy. There is mo irformaion of the coossover $\operatorname{podit}(22) \&(23)$.

Thestreechericd fetures ae very simila to those described for the cape rearangenet The[33] signłropic rearngenettpoceedthraighthedair like six mentered tration stae The ally grap nomally migdes to the atho position of the aondic ning If bath atho position are bocked rearagernet teke plae at the para position Initidly atho rearagemet takes pree then de to non availddility of atho hydogen a second rearangerettikeplact parapaition(Fig1019).

(Fig1010)

706[55]Sigratrqic Rerrangenet

Rearangeret of 2,4petrodeypheny thes indves [5,5] signtroic rearragenett ItcanbeconsidredahondognsCaisen rearangeret

 remargentit

107 Rluianal tatomerism(Dagangateremangenat)

A reationprocessinwtichnoovedl dangeinstuctureocarsareknownas deganerterearangeret(Fluxiand tatorerisn). Produt of rearangeretis sturturdlyidaticd tothestatingmateid. Dependngontherdetwhichthe reationocars, theeistenceof adegenerderearangenertcanbedłeted by use of isctapic labss or by interpredion of thetemperdure dapendance of NMR speetra Foreg horrtrquilidanewhichharedynanic equilibiumitcan be evidat by NMR speetrum The rde of interconersion is sow t low tempercure and the spedrum corsistert with the presence of far vind protas, thoallylic protorsandfar cydquopl protors Asthetempertureis rased the rde of rearangenet inceeses It is doserved that two of thevinl protons revainessertidly undanged vith respeettother dnericd shit, while the signs of the other two vinl protons coalesce with those of two of the cydqropl protons Coalescenceis aso doseved between thesignds of the dlylic potans and thetwo renaining cydquapl protan It provesthatse of protons whose signd codesce are undagaing sufficietty radid interchange withoneandter to reslt in anaveragedsignds

Homotropilidene
Cope rearangenet give by the 1,5 heradere is known a degereate cape rearagernet Andhe exampe is ballviere, which is conveted ito itsedf with afirst orde raecontat of $34 \times 10^{3} \mathrm{~S}^{1}$ t $25^{\circ} \mathrm{C}$. At $100^{\circ} \mathrm{C}$ the ${ }^{-1} \mathrm{HNMR}$
spetrumof bulvaneshons a singe peek at 4.22 ppm This indcodes the "fluxiond" natureof thenroleale

Structure indicating changing enviorment in Bullvalene
Babordanerearanges to itsdf with a rateconstat $17 \times 10^{2} s^{1}$ t $25^{\circ} \mathrm{C}$. It is less symmedricd then bulvadene It hes4dfferet kinos of cabonand proton intheaveragedtruture Oly methlenegraplabdeddisnot offected bythe dagenederearangerert

Barbaralane
Anandher examdeis of nedd cydqeatedenewhichinvivesfluxiandity of σ bondwithatommigdian(Fig10.11).

Converion of ane stuture into othe in fluxiand moleale is known as valencisameismandisomersareknonnavelenctatores

108 Enerædion

Enereationistheoneof themost commengouptranfer reation It invives thereadion of dkenehaving andlylic hydogen(ene) with compandhaving moltipe band ($x=y, x=y$), called enqdile The ene reation resentle both cydoaddtionanda[1,5]-signaropicsiftof hydogen

Allyicadchd givesaddyydes

ene synthesis
Dringthereation1,5shift of allylichydogendangwith ashifting of dlyic abulebondandbondingbedweentwounsturdedtermini (aneteminusof ene andother terminusof engdile) takepaxetogive1: 1 adhut Thisreationis neither signaropic nor cydoaddion reation Herehydogen nevesfromere toenophile, sothisreadionbangstogaptranfer reatians
Thereationindves asurfadad interation of all thepatiouptingarditdsas intheDidsaddr reation Adivdionenegy forthis reationisgeater thanthe DidsAldar reation Due to this rean ene readions takes paxe t higher temperdure The readion of trans2-butene with Madeic ahydide to give predminatly the eythro addut, which dso implies a preference for endb addion

trans-2-butene Maleic anhydride

109Summay

Preided steredhericd carsefor [1i] sigwtopic rearangemts inwich migdinggrapishydogen

i+j	Themad reation	Photochenicd reation
4n	Antaracid	Supraaid
4n+2	Supraaid	Antaradad

 migrding grap is Catoon (s and a refer Supra and atara r and i refer to reertionandinersioninthecorfigurdiontthemigdingcester)

iif	Themar reaction	Photocherical reaction

4n	Ar	sr
	s	a
4n+2	Sr	ar
	aं	s

For[i,j] sigatrodic rearangenetswhenbothi andj geater then1, seledion ruesare
$1[i+j]=4 \mathrm{n}$: attraspraor spra attra ingound stete, spraspra or ataratarainexdtedstate
$2[i+j]=4 n+2$: sprasupraor ataraataraingrand stae, atarasupa orspratatarainexitedstae

AzaCqperearangenat

Cqperearangnat

The themal rearangeret of 1,5-dene through [3,3] signaropic shift is knownaccoperearangenert

Claienrearangrnat

Caisen rearangenert is thethemal conersion of ally pheny the into O allyl phend.

$\xrightarrow[\text { rearrangement }]{\text { [3,3]Sigmatropic }}$

[^0]A readionprocess inwtichnooverdl dangeinstudureocarsareknownes
 struturallyidatica tothestatingmateid.

Enereation

Enereationistheaneof therost cormengaptrafer reation Itindves thereation of akerehaing an allyic hydogen (ere) with compound having moltiple bond ($x=y, x y$), called enddile The ene reation reesthbe both cydooddtionanda[1,5-sign\#ropicsiftof hydogen

1010ReienQuestions

1 Gveexdantay ndesonthefdlowing
(i) Fluxiond tatonetism
(ii) Coperearangeret
(iii) Caisen rearamgent (iv) 1,5 Signatrop crearangenet

2 Whtaesignaropicrearangenets Givether stereochenistry.
3 Exdanthefdlowingconcetedmedarism

4 In ech of the following the high streosedivity or regosdedivity provids corfarmion of preddions boeed on the arditd symmery. Showhowthisisso
(a)

(b)

5 Comdethefdlowingreationandgivetherneekrism:
(a)

(b)

6 Indcatthefdlowingrearangentets
(a)

(b)

1011ReferenceandSuggetedResings

- Stereochemistry of Organic Compounds, D. Nasipuri, New Age Interntional Pudishes
- Organic Chemistry - R. T. Morrison and R. N. Boyd, Prentice Hall of India.
- Orgaric Chemisty, J. Cayden N. Greeves, S. Weren Oxford Urivesity, SecondEdtion
- Pinindes of OgaricSytheris, RO.C. NamanardJ. M. Coxan ©RC Press
- Advanced Orgaric Chemistry Pat-B, F. A. Cäy add R. J. Sunderg Shed Spinge.
- Orgaric Reations add their Mectaisist P.S. Kdsi, Nev Age Interntiond Pubishas
- Advanced Orgric Cheristry, Jaydantra Singh add L.D.S. Yada, Progdi Pradan

Unit- 11

EedraicTrasitions

Studureof Unit

111 Ojectives
112 Interadion of detronænelic raddianwithnatter
113 Typesof exitdions
114 Fteof exatedmdeale
115 Qaxtumyidd
116 Transer of exildianenegy
117 EnegyTranfer
118 Summery
119 ReviewQuetion
1110 RefernceandSuggestedreedings

111Odietives

The djective of this dapter gives an ovevien of besic pincipe of photohemicd reations of argricmedeales

112 Interadion of letranagneicradidionwithnratter

Eetronmegtic redtion is a seff-propeging wave in spoce or through matter, which consisingof dedric andmagnic waes, whichaeathogna, i.e, perpendala toeach dher andstowninFig 1

Fig-1: Eetromagnic uaves

Betronmegeic waves can be drataized by ether the frequancy or wandengh of ther osilldions to formthedetronagetic speetrm, which indudes, in coder of increeing frearacy and dereering vavengh rado naves, miconaes, iffraed raddion viside ligt, utraide raddion, Xraysandgemmays
Thedbsantion of araddionbyamather tekes it fromits gandsteinto an exited stex accompried by changein detroric dstribtion geemerly and uncapling of detronspin Eledrans cannovefromthegaundsteenegy leud of a moleale to a highe ledd (i.e, an uncoapied arbitd of higer enegy) if atsideenegy is ypdied thereadat dosarbs ligt enitted by the sarce Theligttobedsarbed the compoundmithaveaneregyled that coresponds to the enegy of the radtion Ogric phtochericd reations uadly indve exated dedroric stas In a photohericd proess, this enagy is inthefarmof ligt Ligt of any wadenghhesmsocided withitan enegy valuegvenby $\mathrm{E}=\mathrm{hv}$, wherev is thefrearncy of theligt, and his Pland s consat Since the enegy levds of a moleale ae quatized the anourt of enegy reaired to rise andetron ina given moleale firmone levd to a hige oreis a fixed querity. Olly ligt witheadly the efrequancy corespondngtothis anourt of enegy will casethedectronto moveto the hige led. If ligt of andhe frequency (tootighartoolow) issert thayna samde it will pessat withat aloss inintersity, sincethemdeales will not absabit Howere, if ligt of thecoredfrequng is pessedin, theenegy will beusedby thendealesfordectronprondion andhercetheligtthat leaves the sample will bedminished in irtenity of dtogether gone Theenegy of detraric trasitions caresponds to ligt in the viside, UW, and fa-WV regarsof thespeetrim
In not argeric roleales, al detrons in thegound ste ae pared with erch menter of a pair possessing apposite sain a denmaded by the Pali pincide Whencreof a par of dedrons is promedto a a abditd of highe enegy, thetwodedronsmolange shareanatitd, and theprowted detron may, in pindipe, havethesanesginaxitsform patrer or theqpositespon A noleale in which two urpared ledrons have the same spin is calleda tridet, while ore in which al spons ae pared is a singet Thus, a leet in pinoipe for evey exitedsinge statethreis acarespandngtrid dstae In mot cees, thetriple stelems alower enery thenthecorespondngsinge, which is in accord with Hurds nle Therefre, adfferet amourt of eneg,
and herceadfferet wadengh is requred to pronde an dedron fromthe groundste(whichisalmot dwassasinget) to anexitedsinget thentothe corespondng tind \ddagger ste Thedesigetions S and T ae used for sing \ddagger and triple stas, respedively. It waild thus semtht proration of a given detronin a rolealecald realt either in asing \ddagger or atriple exited sta dependingonthearourtof enegy adked

113 yypesfecitdions

Absandion of ligt in the utraide and viside regions produes danges in the letroric enagies of noleales wsoided with exittion of an dedron fromasddeto an ustddeaditd. Becasetheenegy reaired to eratethe valenceshdl dectrons of moleales is compardetothestrenghso d derinicd bands, absontion nray lead to derviced reations Theloner enegy ste is known abondngatbit. Thehighe staeabitd is described by atibonding arditd. Theatibondngarditd aeasocited withtheo and π bondtht are σ^{*} and π^{*}. Thenarbitd does not formbond whichiscalled norbonding The vaiastedrorictransitionsaeshowninFig 2

Fig 2 Eetronexitdion
For not argaric moleales, there ae consequatly far types of dedroric eaitdion
(1) $\sigma-\sigma^{*}$: Alkanes, whichhavenonorpdectrars, canbeexdted $\begin{gathered}\text { ly } \\ \text { in }\end{gathered}$ thisuay.
(2) $n-\sigma^{*}$: Alcochds, anines, thes, andsoon, candsobeexitedinthis name.
(3) $\pi-\pi^{*}$: This pathwey is quen to alkeres ∞ wdl ∞ to dddy ydes, caboxylicetess, andsoon
(4) n - π^{*} : Aldeydes, ketones, caboxylic etas, and soon cenundago thisprondionawel athedhertree
Thefar exitdiontypes above are listed in what is nomally the ards of dereeringengy. Thusligt of thehignestergy (inthefar w) is neecessy for $\sigma-\sigma^{*}$ exitdion, whilen- π^{*} exitdians arecasedby ordnay wligt Hovera, the arder may someines be dtred in scme solverts In 1,3 atedere(and dher compands withtho crijugted dablebonds) thereare twor adtwor* arditds Theenegydfferncebedweenthehiger π adthe lowe π^{*} arbitd is less thenthedfferencebetveen the π add π^{*} arditds of thylere Therefre 1,3batederereaires less enegy then thylere, and this ligt of a higer wavenght to pronte an dedton This is a gened pheromemon and it nay besteded that, in gened, themoreccruygionina roleale thenrerethedsandionisdsdacedtowerd higer wave enghs

I15TheFarededied rdeale Phyica Proceres

When a noleale hes been photocherically pronted to an exited state it does not remintherefor lang Most promions arefromthegoundsinga stedes to the exited singe stedes, ste Howerr, prondions froms to tride states ae "farbiden" Prondions to S_{2} and higher singe staes toke daee batin liquids andsdids therehiges stes uadly dop very radidy to the S_{1} ste $\left(10^{13}-10^{11} \mathrm{~s}\right.$). Theeregy lot $w h e n a n S_{2}$ aS S_{3} rolealedqosto S_{1} is given up in small incenerts to the eniromet by collisions with neightoringndeales Suchaprocess is calledaneregy cascad Inasinila mame, theiritid exitdion and the deeay fromhighe singe staes intidily poplatenmy of thevibrdiond leves of S_{1}, bt there aso coccade dounto thelonest vibrtiond leid of S. Therfore innots cases, thelonet Potertid enegy vibriond lead of the S_{1} stede is theorly imparat exited singa stae This stae can undago vaias physicd and chanice processes In the fdlowing list, it describes the physicd pathnass quen to moleales in the S_{1} andexitedtrid \ddagger staes Therepthmaysaedsoshowninajaddonsi dagam (Fig 3). Fdlowing proesses maytdeplarefromexitedstae

1 A moleale in the S_{1} stae can cascade down through the vibrtiond leve of the S_{0} staeand this retumtothegrandstelebyg vingupits enegy in suall incenets to the eniromet, lat this is geneally qitesowbeearethearuit of enegy islage Theprocess iscalled
internal conersion (IC). Becaseit is sow, most moleales intheS S_{1} staeadptather patheys.

Fig 3 J Jdandi dagam

2 A rodealeinthes, stecandoptosomelowvibriond led of the S_{0} stadell tanceby giving off theeregy intheformof ligt This proess, which geneally heppers within $10^{\circ} \mathrm{s}$, is called flurescemce This pathney is not vey cormmether (becareit is reddively sow), ercet for small noleales, foreamde datoric, andrigid noleales, for earnde acondic For nost athe compands, fluverecenceisvey wek or undseddde For compounds thet do flumesce, the flurescemceemissionspedraareusdly theaproxinatenimor inægs of the absandion spectra This cones daat beease the flumesing
nodeales all drp fromthelonet vibrtiond lead of the S_{1} state vaias vibrtiond leds of S_{s}, while exitdion is from the lonest vibrtiond led of St to vaia slevds of S. Thearly peek incormon is theone(cdledthe0-0 perk) thet realt friomtrasitions beweenthe lovestvibriond leds of thetwostes
3 Mostmileales (thaghby nomedi) inthe S_{1} staecan undargan intersytemarossing (ISC) to thelowest tripa stet T_{1}. An imparat eampe is berzophencoe of which- 10% of the moleales that are exited to the S_{1} stde aoss ver to the T_{1}. Intersytemacossing from singe to triple is a "forbidden' pathwer. Intesystemcrossings tike parewithat loss of eregy. Sinceasinges steleladly hes a highe eregy then the corespording triple, this meens thet eregy mot be givenup Orevay for thistoheppenisfor the S_{1} molealetocoosstoa T_{1} stetarighibrdiond leve addthenfor the T_{1} to cascodedbunto itslonet vibrtiond levd. This cascadeis vey rapid ($10^{12} \mathrm{~s}$). When T_{2} or tighe stdes are poplated they too radidy cascade to the lonest vibriond levd of the T_{1} stede
4. A rolealeinthe T_{1} stantay reum to the S_{0} steby giving phet (intersytemnorosing) orligt (thisiscalled phosd orescence). Bdhae ver sow ($10^{3}-10^{\circ} \mathrm{s}$). This meas thet T_{1} stes geneally have marh langer liftimes then S_{1} stess Whenthey ocar in the same modeale, phosphrescerce is found it loner frequaries then flurescerce (bearee of the highe dffererce in energy bedween S_{1} and S_{0} then beveen T_{1} and S_{0}) andislonger-lived(becameof thelonge liftimeof theTliste.
5. If ndthing dseheqpent to it first, andealein anexdted ster $\left(S_{1} \sigma\right.$ T_{1}) may tranfer its excessenegy al tanceto andher modedeinthe envirormet, in a process called photesenitization The exited ndeale (drnar) this dops to S_{0} whilethe ther roleale (acceptr) becones exited Thus threaretwo wass for a moleale to reach an exited stde by dosandion of aquatumf ligt or by tranfer froma previa dy erited moleale Thedrnor is dso calleda ahtosesitize. Thiseregytranfe isstiget to theWigne spin-conservaionnue, i.e, thetad dedronspindbesnotchangedter theenegy trasfer.
6 Anexdted speies canbequanced Qundingisthedeativation of an exited noleala erity intemelealaly by anetend envirometd influme(eg, aquanc) orintradealaly by asbosituatthrogh
a norradive process When the etand eniramertd influace (quance) intefferes with the betavio of the exited stex fter its forration the process is refered to $¥$ dyranic quadcing Cormon medarisns indude eregy tranfe, dargetraifer, and soon When the enirometd irfluence intibits the exited stad formaion the process is refered to a sdic quanding A quancer is dfined \equiv a
 ndeala ertity, ether by eregy trafer, dectron tranfer, or by a derice medarism An earmle is the rapid tide qaending of aondic k\&tonetriplds by arines whichisudl known Alkyl andayl thidsandthoethesdsoseveaquarkesinttissytem

1151 TheFateof ecitedmdeale Cherica proeres

Althang both exated singe and triple speeies can undago drevicd reation, they are murh rore commen for tripes, simply berase these genedly havemec longe lifetimes Exited singet speeies, in not cases, havealiftireof 40^{10} sand undzgo oneof thephysicd processes dready dsassed befre they have a chance to reat chemicdly. Therfore, photochenistry is lagdy thedhenistry of triplestaes Thesereationsmay be unimeala ar bindealar reatians. The fdlowing posilde chenicd pathesscanbetzenbyanexitedndeale

1 SimpleClewayeinto Radicds Aldyyds and keones dosab in the 230-330-rmregion This is wasmedto realt fromann- $\pi *$ sing \ddagger singetrasition Theexitedddaty yceor ketonecanthendeave

Whenapdiedtoketores, this iscalledNorishTypel deavagear often jut Typel deavege In aseconday process theayl raded canthen loseCO to give alky radcds Andhe example is deavege of C_{2} to givetnod tans
2 Dacomposition into Mdeales Aldłydes (thaigh not geneally kłones) condsodeaveinthismamer,

This is an edrusion reation In andhe eamde is Norish Typell deavege invdvesirtramdeala dastrationof they hydogenfollowed by deavoge of theresaling draded (aseconday reation) to givean end thet tatonerizes to the ddalyder ketore produt Boh singet andtrid $\ddagger n \pi *$ sdes undrgothereation

3 Intrandenlar Rearangenet: Thoeamples aretherearangent of thetrinesity compound(1) totheend ther (2), andirradianof o ritrdberzddalydes (3) tog veoritrosdarzaicaids (4).

4 Phodrisaneizatian The not common reation in this caegory is phodherica is-transisameizdion For example dissilbenecanbe conveted to thetran isoner, and the phatasoreizaion of Onethy oximesisknown

Theisomerizaiontckes parebecasetheexdted stdes, both $\mathrm{S}_{1} \mathrm{and}_{1}$, of many dkenes have perpendala instead of a plarer geanery, so as-trans isareism dsappeas upon exitdion When the exited maleale dops back to the S_{0} state either isarer can be farmed A useful example is the phonhericd conversian of iscydootene to themerh less stddetrans isarer. Andter interesting example of this isomerizdionindvesazocrownethes.

5 Hydrogen-Atam Abstradiar When berzophenne is irradated in isquapl alcohd, the initially formed S_{1} stae crosses to the T_{1} stae,
which dostrats hydogen from the solvet to give the radcd. Then raded abstrads hydogen to give bantydd or dmeizes to berzaread.

6 Photodmeizdiar Aneamdeisdmeiztion of ydqpertenco

115QuartumYidd

The quatumyidd is the fration of absabed ligt that goes to prodrea patialar result There are seard types A pinay quatumyidd for a patiala process is thefraction of moleales dosorkingligt thet undapotht patiala process Thus, if 10% of all themdeales thet areexdedto theSI staecoss oue to the $T 1$ ste, the primay quatumyiddfor that process is 010 Honere, pinary quatumyidds ae often dffialt to mare A prodit quatumyidd (usally designted ϕ) for a prodit P that is formed fromaphtoreation of aninitidly yadtedmodealeA canbeeyressedas
$\phi=\frac{\text { number of molecules of } \mathrm{P} \text { formed }}{\text { Number of quanta abosrbed by } \mathrm{A}}$
Prodit quatumyidds ae mode erier to The number of quata absabed canbed\#emined by aninstrumet called an atinometer, which is actully a standad phatohericd sytemwhosequatumyidd is known An eample of the informion that can belemmed fromquatumyidds is the following If thequatumyidd of aprodetisfinteandinvaiat withcranges in eypeimetd condtions, it is likdy thet theprodit isformed in a pinmy ratedteminingprocess

II7Enagy Tranear

A tride sensitize dosarbs the radaion undago vibrdiand reaxdion and intesystemrossingtoitstridestareandthentakingpat in anengytranfer proess with dkene It is rore efficiet if triple sensizer hes just a litte tigher in triple stae enegy then ane of the akene isomer and lowes than the isarer. Insurn sitution the alkene isoner with lowe tride enegy is senitized more effidetty then the isoner with highe tripe enegy and the resultisaphotostdionaystderichintheldter isarer. For examde,

Thereis a kednesurh a berzodnenoneis rased by ann- π^{*} transitianfrom the singe ground stae $\left(S_{0}\right)$ to an exdited stae $\left(S_{1}\right)$ by dosandian of ligt Intersytemarossing then cours radidy to give the triple stae $\left(T_{1}\right)$ of the senditize.

$$
\left[(\mathrm { C } _ { 6 } \mathrm { H } _ { \mathrm { 5 } }) ^ { 1 } \quad \left[(\mathrm { C } _ { 6 } \mathrm { H } _ { \mathrm { 5 } }) _ { 2 } { } ^ { 3 } \quad \left[\left(\mathrm{C}_{6} \mathrm{~F}\right.\right.\right.\right.
$$

Thenextspisexdtdianof theakenebyenegy transer fromthetripetstee of thesensitizer.

$$
\left[\mathrm{Ph}-\mathrm{C}=\mathrm{C}-{ }^{3} \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)^{3} \quad[\mathrm{Ph}-\mathrm{C}=\mathrm{C}-\mathrm{Ph}]+\left(\mathrm{C}_{6}\right]\right.\right.
$$

Renermer, the ne dectron sain is conserved dring enegy tranfer, which reansthat thealkenewill beexited tothetrip \ddagger stae Thetripl \ddagger staeof the alkeneisnostsddewhenthepaditds, wichnakeupthenamd π-sysem
of the caldebord arent pardle to oneandher. Therefre if theenegytranfer processleadsinitidly toaplarer tiple, this isconnatedradidy tothe morestddenondare form Theexitdion of ethe thed sor thetransisomer of theakeneapperstoleedtoacormmentipleste

$$
3 \quad[\mathrm{Ph}-\mathrm{C}=\mathrm{C}-\mathrm{Ph}] \rightarrow \text { cis - stilbene }(93 \%)+\text { trans }- \text { stilben }
$$

118Summey

- Betronrognic raddionisasdf-proagdingwaveinspocearthragh matter, which consising of eletric and magneic waves, which ae athogra.
- Thelover eregy ste is known a bondng arditd. The higer stae arditd is described by atibonding arditd. Thearbitd does not farm bond whichiscallednorbonding
- Ftof exatedmodealesdescibebyJddansi dayam
- A roleale dops fromigher singe state to lowe singe stex is calledirtand conversion(IC).
- A moleale in the exeated singe state can undago an intersytem crossing(ISC) tothelonestridestateT ${ }_{1}$.
- Thequatumyiddisthefradion of dssabedligttht goestoprodre apatialar realt

119ReienQuesion

1 Exdanthefdlowingcomoqts
(a) QuatumYidd
(b) Intersytemorosing
(c) Hydogen-AtomAbstration
(d) Interationof detronagneic raddionwithnatter

2 Whatisdectrontrasitionandeydảit?
3 Exdantheenegytrafer processwitheamde?

11.10ReferenceandSuggestedreadings

- IntroditionToOrgaric Photachenisty, JdmD. Colle, JdmWIley\& SonsLtd 1986
- Madts Advanced Orgaric Cheristry , J. March $6^{\text {th }}$ edtion, Jdn Wley\&SansLto 2007

Unit-12

Photodneristryof Carbony/ Compand

StuctureofUnit:

121 Ojedives

122 Introdution: phdtachenistry of cabonl compands
123 Narishtype1 processor α-Cleavage
124 Narishtypell processor β.Cleavage
125 Intrandealar reationbysturded ydicktone
126 Intramdealar reationbysturdedAcydickeane
127 Intrandeala reationin β, γ-unsedurded cabonl compound
128 Intrandeala reationof α, β - unsaurdedcabonil compand
129 Intrandealar reation of gdoheradenons
1210 Intemdealarydoodditionreation
Photoydodmeizdion
Formaionof Oxtane
1211 Summay
1212 Revievquestionscompreherivequetions
1213 Referncesandsuggestedreadngs

21Obectives

Phatochenisty hes provided a revdutionay advartage in vaias bidogicd and deavicd processes Ithdpsto exdanthepheroneron of phoosy thesis, phdetaxis, motageric effets of ligt raditions vision and phdodyranic ation May dremicds, wtich connot besytheized by dak reations, ae podred by photochericd methobs These phocosythesized chericad have geat advartage de to higer efficiency and sededivity. Photochenistry provids a pheroveron of flurescence and prosporescence, which is colletively known a photo physicd phencremon For basic researches in phoochericd fidd theundastanding of photophyicd, phototidogicd and phtochemicd processisessetid.

In this drader, ar djective to exdan the mechaism of vaias phato daemical reactions of cabonll compound which have vat apdicdion in darvica indstries

$\mathbf{D 2}$ Introducion

Photochenisty of Carbonl Conpancts

Cabony compound espeidly ketones undagonany interesting and vessaile reation on irrodtion Kemes etibit maily far band in their UV dosondion speetra The rost impotat band is at 280 m for the phtochenistry of cabonyl compounds The reation is initized by $\mathrm{n} \pi^{*}$ trasition Prometion of andedronwill legdtoeithe asinge steder atript stae Photochericd reation given by cabonl grap tikes pree either by singesteorbytipleorbybothstes

$$
\rangle C=\ddot{O} \xrightarrow{h \nu}\rangle \dot{C}-\ddot{O} \bullet\langle \rangle \ddot{C}-\ddot{O} \bullet
$$

Cabonl componnosgivefartypeof reacion
Theeae-
(1) Nonishtypel processor α-deanage
(2) Nonishtypell process $\alpha \beta$ deavae
(3) Intrameala and Intemdealar hydogen dastration by cabony Oxygen
(4) Phtocydoadtionreationandoxdereformaion

D3 Narishtypel proessor α-demege

Thebonddssoidionenegy of cabon-cabonbondadacet to acabony is compartively small and consequetly phato dervicd exitaion of ketmes usally realts in the hordytic fission of the α-deavge or Nanish type 1 reaction It ocars morereadly invapor phee Intheiritid pinary process, adradcd isformedby phddysisof yddheraneandther itisfdlowedby seconday process, which resilt in formion of a mixture of cabon monooxide cydqpettreand5heren.

PinayProces-

Cyddnearane
Freeraded

SexandayProces-

(i)

(ii)

δ

Cydderera

Baxicaly Nomishtypel processisgivenbythretypes of kemes:-
(I) Saturdedydickemes
(II) Sturdedaydickeanes
(III) Br unsturdedketones

24 Norishtypell procesor β-deanege

Norishtypell reationis posiddelf bond between α and β - cabonisweak If readion cars inqpendraincompourds, thedostration of hydogen atom toke plæe from γ - cabon atomand If systemis cydic the dostration of hydogenisfromo-Cabon.
Insturdedaydiccormpund-

Inthisreationbondlueakingtckepacebeween α and β-carbondretosteric hindanceandhydogenisdbstratingfromy-carbonto carbonl axygen Inscturateddosedcompanct

Inthesecompand β-deavagetdkeplaceby thehydogenabstrationfromthe γ-cabon

D5 Irtrandealar restion of Carbonl compand by sturatedydicketans-

Intrandeala reationincydicktonesccursby α-deange Onphddysis, gydic ketones give a biradcd speeies These phdo reation take pare in solution or ges phese After formaion of a biraded, a hydogen dom is abstatedfrima-cabon, findly yityiddshyctocabonsanddefines InManoydic Kearic Compands:-

Ongdistion:

Diradical

$+$

(B)

decarbonyla

26 Intrandealar reation of Cabonls compandbysturatedAglicKdanes

There types of reation ae caried at by al those compond which have cabony gap, bt aromic ketons likeperwahencreard aceqcheronedb not givethere reations α-demagereationshalddways becaried at in geeasfors
Stap (a) Actoneformsandkl andayl freeredcd:

Whentwo α-bonds aenot idaticd in position then weeker bord hes to be broken

Step(b) Inthesecondary process of reacion, decabonylionfrimacy free radcd, dspopationtion andabstration of hydogen tomtckeplace

(i)

(II) Recontrindion

127 Intrandealar reation in $\beta \gamma$ unschurcted Carbonl Compand

This reationdso consist of α-deemage Theoverd reationfallons bytwosteps
cese - 1,3ayl shift is indved which forman isomeric β, γ Unsturatedkeanes
CaæII -Ringdosreprocesstaepaæe

(2)

128 Intrandealar reation of $\alpha-\beta$ - Unschurcted carbanl campand

Intrardeala readion of α, β - unsturded cabonll compand gives oxtenet7OC. Onhedingthisprodut, it canbeconvetedirtoreadat

D91ntrandeular photorestion of gdoherdienones

Such type of reation is the photochericd rearangereat of compounds contaning the cydderadenare dromophre 4,4Diphenloydo hexadnenne(I), is radidy iscreized to a kene(II) and two phends (III) and(IV) anirradaion

Cydderedenonedsdays absandion at dat $300 \mathrm{~mm}\left(n \pi^{*}\right)$ andt 240 m $\left(\pi-\pi^{*}\right)$.

The mederismis given by Zimmem The readive exited ste is $n \pi^{*}$ triple stateof thedonones A nev bondis formed between C_{3} and c. After the formaion of bond the reation is followed by ISC, i.e, intesystem coossing Befreformaionof afina bicydic prodit, anintemedzeznitter ionisfarm Thisintermedtehdpof maxeyetheaydic produt

Madarism

The bigdic prodit can agin undago the rearagemert, becase sill it consist of an erone systens which may capdle of undagaing to $n \pi^{*}$ eaitdion

Incydderediennes, the π^{*}-ndeetrondenction stacomes detodetron rich π syteminn π^{*} stade But thedoservedrearangentsaredrataisic of migdion of dedron dficiet cetres at of above(1) to (6) prodits, prodit (3) and (4) can undagp pheny nigrtion and form2, 3 and 3,4 dphery phand, repeedively.

If nedumis aquens, then the sturture no (5) can rearange and gives a ketonesandthenformanaid

(5)

If oneof thepheny gapis repdaedby anhedroxy gap, ringqperingtikes plaerathe thenpheyl gapmigdion

D10Intamdealar Cydoadfitionrextion

Photoydodimization

Intemrdeala phoodmeizaion of α, β-unsaurded ketones coar nost readly incydic sytens aniradaion it gives two phdodmes undrgaing aross thecabon-cabondudebondby $\pi-\pi^{*}$ state Foreeamdelmaddion of cydqueternce yidds heodtoheed (I) add heodtotali(II) diets heodtoherddmes aeprefered in polas sdvet, whilenonpda sdvet favar hed total dners

Intemdenlar gdardtitionRextion (Farmationofoetan)
Cabony compoundsyiddoxdareonirraddioninthepreserceof defin This phtocydoaddition reation of cabonyl compund iskrown apateno-Budi reation

Theaddionisuadly performedby irmadion withtheligtaditinvolvethe exited ste of cabonll compands rathe then thet of the defin Theligt eragy reairedfor then π^{*} trasitioniritidedthereationinsimdecabonyl componds
In this reation oxygen atom of the ketone ${ }^{3}\left(n \pi^{*}\right)$ add to an unseturded compoundandformastddedraded Intermedzefdlowedbyafind prodit, calledoxdane, cnirradition

Reaction-Mechanism

Benzophenone

Tertiary Free Radical
(more stable

Primary Free Radical (Less Stable)

2, 2 - diphenyl-3,3dimethyl oxetane

Cher exande of patem Buthi reation in which reation of Berzachemone withUsandtrans2-btene, yiddsthesamemixtureof bothisomeric oxdone Dranback of the patemoBudi readion is the competing enegy tranfer processfrom theexited kemetothedefire incereswhethetindeeregy
of theformer exceed tht of theldter. Frereamdeirroddion of acemewith norbomene yiddsdines of nabomererdhe then oxtenes

D11Summay

Weknow that cabony gaps adarb ligt from 230330 mregion In the phdochenistry of keane erch of pinæy reationcaursfromthen π^{*} tidet stae and fing prodit can be formed ater the seconday process Here we condunded thet photachericd reation of catonyl compandarefandinfor baic phachericd processes These ae a follons - (1) α demage α Norishtype-I Process which caried at for thoserbstrdehaing two α band Itisthewerk bondwhich will lreakfirst (2) β deavager Nomishtype II readion If a β bond to the cabonyl graphes to be deaveged dring a photocherical reation andbstration of intrandealar hydogen bondintake dae(3) If thereationisintemdealar, thehydogen torm will dbstrat from theoxygen of cabony grap (4) Addtion of cabony oxygen coarredtoa caboncabon dade bond mens cydoadtion and gydodmeistion reation

D12Reienquesions:Comphersivequetions

1 Cabonyl compondgiveminly far types of photohericd reation Givenaneof thereationwithoneeramdeert?
2 Whatypeof exitdionaeposisideinacompand cortaring cabond gaponiraddionwithUV ligt?
3 Give maism of Naish time I process how many types of contiringcompandtinesthis reation?

4 Witencteonphododmistionof α, β unsaluraed ketnes?
5 What is patemoButh reactio? Disass its needarismang with the steredhemicd corsequaces?
6 Inridion of norbomenewith berzadnencreleeds to theformation of the corespondng oxtane? However dmer of nabomene is dataned on the Inraddion of rabomere with acelqcherore How db you eydaintheerealts?
7. Comd丸ethefdlowingronishtypeI reation:-

$$
\mathrm{C}_{6} \mathrm{H}_{5} \underset{\substack{\mid \\ \mathrm{C}_{6} \mathrm{H}_{5}}}{\stackrel{o}{\|} \mathrm{C}}-\underset{\substack{\mathrm{C} H_{5}}}{\mathrm{CH}}-\mathrm{C}_{6} \mathrm{H}_{5} \xrightarrow{h \nu}
$$

8 What will the produt of the reation when cavane camphor is irradted with V ligt inthepresenceof MeOH?
9. Irradaionof 4, 4-dphenl cyddnexadenne(1) yidds amixtureof threproduts (2), (3), \& (4). Exdain a sutdde meeharismfor this tranformaion

(I)

(II)

(III)

(IV)

0 Exdanthefdlowing
(1) phatohemistry of cydicketone
(2) Photohenistry of aydickene

11 Disas the medarism of intramealar photareations in β, γ unsturdedcaborly.

D13 Referencesandsyggetedreading:

- "Advanced argaric chemistry" stucture and meeharism A.Caey, RidardJ. Sundbarg fifthedtion, francies, Springer 2007.
- "Reationneecharisminagaric chevistry" S.M. Mukheji, S.P. Singh MamillanIndaLimited 1996
- "Photocheristry and pricydic reation" Jaydantasingh\&JayaSingh, Newageintenaianal pudishes, 2012
- "Essertid of molealar photochenistry' A. GilbatandJ. Baggut, CRC Press BocaRton, Floida, 1991
- Orgeric Photochenistry, J.M. Coxan B. Haton CantridyeUrivesity pess, Cantridye 1974.

Unit-13

PhotorneristyofAlkenesandDienes

Studureof Unit

131 Ogectives
132 Introdition
133 Intrardealar reations of thedefiricbond
1331Georeficd isareism
13311Direetraddion
13312Phoosensitizedlsomæizdion
13.313Cadyzedrethod

13314Bidogicd impatance
1332Cydisdionreations
1333Rearangeretof 1,4 and1,5-denes
134 Summery
135 RevienQustion
136 RefernceandSuggestedreading

131Oljedives

This depter gives an overvien of photochericd reations of alkenes and denes induding gemetrice isareism deetroydic reations and rearangeret of 1,4 and 1,5-denes Froma syitheic pait of viev, the phodnenicd reationsaremigtbeuseful tosythesizeof patiala produt Thesereationsaredsohavingimportanceinbidogica proesses

132Introduction

Theabsandion of a raddion by a argaric rolealetckes it fromits grand stae into an exdited stete accomparied by dange in dectraric dstribtion, geonetry and uncapling of detron sain Althang detraricaly exited moleales are namally very shat lived their high reativity is frearatly sufficietforphotochericd reationocar.

Betroric stuxture of akenes canbedescibed intermof π and σ bondng ardits, with coresponding of π^{*} and σ^{*} ait-bondng arditds Thre are genedlytwotypeof trasitiorsocargivena
(i) $\pi-\pi^{*}$ transion (π, π^{*} exited sta) is the more intense dbsondion with $\lambda_{\text {nax }}$ of aound $180 \mathrm{~m}\left(\varepsilon \sim 10^{4} \mathrm{Md}^{-1} \mathrm{driom}^{3}\right)$
(ii) $\pi-\sigma^{*} \operatorname{trasition}\left(\pi, \sigma^{*}\right.$ exitedstad) isweck

Howerr, gosphæespedrashowaneidanceof Rydbegadsandianleødingto aRydoergste $(\pi, 35)$.
Simpest akenes dosab UV ligt with $\lambda_{\text {max }}$ of aand 180m, but cajugited sylenssuch mdeneard plyenes aray-sbbsitutedakenes dbsabd $\lambda_{\text {nax }}>$ 200 mwithinrenet of aund 35 mper sucessivedablebond Sothatfor simpleakere, dret irraddionnet becaried at with vaur m V sarces Hoverr, a medumpressremeary lamp with aquatefilter canbeaqdied for higlysubsitutedakenes, possessingwavdenghove 200 m
A featureof akenesphoonemistry isthatsinge andtridestatereationsare noredstint Threi is a lageeregy dfferncebeweensinge $\left(\pi, \pi^{*}\right)$ and corespondng tiple stae for alkenes so intersytem crossing is vey infficiet and atripe sersitize is needed to poplatthetiple stete Thus, Thelageenegy dfferencebaveensinge andtipletste, addfffert spin drarateisics leed to dfferet reation fromsinge (drect irrodition) and triplestateseritiza irradiox) innany akeres
Thereations of akenes anddenes aegapedintogenentrice isomerizdion daat caboncabondablebond, conceted reation likedeetroydic, shits
 reations

133Intrandealar reatiansof thedefirichand

Inthis herdng intrandealar reacion like geanetrica isaneizdion d- π metharereationand ydistion reationo akenesaedsassedindłdils.

1331Geanerricd isonerism

Alkenes with sitddy sobsitute dsday gernetriced isomerism de to restridion radion doat cabon-caton dable bond which eist in tho isomericformsaecalledisandransform

cis form

trans form

Usilly, thetransisarer isthemodynanically morestdebecaseof theless steric hindance Interconersion of gemefricd isprer of dkenes can be cariedatby themaly, cadytically or photodenically. Whenthemaly and cadytic rethoob are used, we get a themodranicdly morestdde isomer, i.e, transisoner inlagepropation Butphodorenicd canestddishamixture thet is rider in the is iscrer. Iradaion therefore provides a meens of conveting atrans dkenetothedis isomer. Photasareizdian in dkenes can beocaredthrangdreetraddion, phooseritize andcddysisprocess

13311Diredradaion

On the dret iraddian of an dkene with suitdde radition the $\left(\pi, \pi^{*}\right)$ exited stae is formed initialy in a corformiontht reans thegeonery of thegrandstafromwhichit isformed iscaled aveticd exditedste(Fig 131). Honever, there is no ne π-bondng in the $\left(\pi, \pi^{*}\right)$ exited state and little barier to rodion dbat the forrer doule bond, with the result that relaxdion can toke pace radidy to give nonveticd $\left(\pi, \pi^{*}\right)$ stae, this hes lower engy and a dfferet geonetry with an ange of twist of around 90 compared with the parer geometry of veticd stae (schere 131). This twisted geonery is baieved to betheminimmenegy geonery for both the sing \ddagger and triple exited steses But the twisted geanetry is an enegy maximmanthegoundstesurface Thenonveticd stdecanreax toeither iscr trans canfigurdion of thegrandstaby raddialessckeay. Thereum from the sing $\#$ exited stete to the grand stee invives repaining of the dedrass by a naraddive process. Reum from the triple stede requires intersytemarosing

Fig 131Enegy dagamof andkeneshowingvetica andronveticd sta

Scheme131
There is an aproxinłtdy equl probadility of forming ais and trans isomer. Hovere, it hes been found that there gemmericd isomers ae dataned in dfferet propation at phtostionay state The composition of the phdostdioney stadedpenos ypontherdio of thetrans \rightarrow as and dis \rightarrow trans isoneizdion quatumyides (and) and the roda dbsontion cofficiets of thecorespondingiscmes. Therddionstip canbeefressed

$$
\frac{[\text { trans }]}{[c i s]}=\frac{\varepsilon_{c}}{\varepsilon_{t}}\left(\frac{\emptyset_{c \rightarrow t}}{\emptyset_{t \rightarrow c}}\right)
$$

Thetransisaner absabssigificatly mereligtthantheisisomer beeaseof absandioncourstowadlonge wavenghs and higheretintion œofficiets then is isomer. If thequatumidds for both convesions ae aproxinatly equa, then the convesion of trans to is will ccar fater then the convese process when the tho iscmers are in equd concertriors A phototdionty

Staewill beadrieved whentherdes of formaion(fromthenonveticd stad) and dsappearance(by dosandion of ligtt) forechisoner becoreequl andt this pirt the concetraion of the is isarer will begeeter then that of the transisamer.
It is possible that one patiala geoneticd isprer can be dataned by phatasoreizdion reation A typicd eample of photasomeizdion reation istheconvesion of transl,2-dphenlethen(silbene) to cisform Thetrans stilbene absarbs a $313 \mathrm{~mm}\left(=2300\right.$ and $\left.=16,300 \mid \mathrm{mod}^{-1} \mathrm{ol}^{1}\right)$ of hevelength strongy then is form and gives a phoostaioney stede mixture contaring 93\%odissilbeneand 7\%trans-bilbene Hence, photasamerizion is providad a rate to datan themodranically less stade isorer which is othewisedffialttodtainbyother method

Althoughdenes and polyenes showsimila bedniar asmonkene, buthere aretnocomplicdingfatorareconsidzedinthegemetricd isamerizdion
(i) Thecetrd singebond of denehessubstatid da debond darater in an exdited stae, so that the radid gra nd stete intercanverion dbes notocar intheexdtedstae
(ii) The redaxed nan-veticd exdited stede of the corjugted systemmay haveanangeof twistlessthan90.
Thus, corjugted systens do not eribit a wavelenghtdapendat composition for their phototdionary staes, the theoreliced basis for undastanding the varition is quite comple. For exampe, The is, as cydoota1,3-dene t 248mis conveted into a mixture with high arout of less stadecis, trans (6\%) isamer.

cis, cis-

cis,trans-

13312Photosasitized lsamization

Photochericd isameizaion dso coars thraigh tripe exited stae using photosenitizers A tripe sersitizer dosarbs the raddion undargo vibrdiona relaxdionandintesystemaossingtoitstripletateandthentajngpatinan enegy transer process with alkene It is noreefficiet if trip es seritizer hes jut a litte highe in tripe stae enegy then one of the alkeneisarer and lowesthanothe isamer. Insurnsituiontheakeneisomer withloner tride enegy is sensitized mareeffidetly thantheisomer with higher tride enegy andtheresltisaphototdianaysterichinthelater isamer. Foreampe,

Thereis a kednesurh aberzophenoneis rased by ann- π^{*} trasitianfrom the sing \ddagger grand stete $\left(S_{0}\right)$ to an exdited stete $\left(S_{1}\right)$ by dosaption of ligt Intersytemaossing then ocars rapidy to give the triple state $\left(T_{1}\right)$ of the sensitize.

$$
\left[(\mathrm { C } _ { 6 } \mathrm { H } _ { \mathrm { g } }) ^ { 1 } \quad \left[(\mathrm { C } _ { 6 } \mathrm { H } _ { \mathrm { g } }) _ { 2 } ^ { 3 } \quad \left[\left(\mathrm{C}_{6} \mathrm{~F}\right.\right.\right.\right.
$$

Thenextstepisexitdian of thealkenebyenegytranser fromthetridestae of thesensitizer.

$$
\left[\mathrm{Ph}-\mathrm{C}=\mathrm{C}-{ }^{3} \quad\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)^{3} \quad[\mathrm{Ph}-\mathrm{C}=\mathrm{C}-\mathrm{Ph}]+\left(\mathrm{C}_{6}\right]\right.\right.
$$

Remenher, the ret detron spin is conserved dring enegy tranfer, which measthat theakenewill beexitedtothetripe stde Thetrip \ddagger staeof the alkeneisnostsddewhenthepaditds, wichnakeupthenarid π-sysem of the dablebond, arent pardle to oneandher. Therefre, if theenegytranser processleabsinitidly to aplanartipi\&, thisisconetedrapidytothe morestddenandaner form Theexdition of ether thedisor thetransisamer of theakeneaqpeastoleadtoacommontripetstae

$$
[\mathrm{Ph}-\mathrm{C}=\mathrm{C}-\mathrm{Ph}] \rightarrow \text { cis }- \text { stilbene }(93 \%)+\text { trans }- \text { stilben }
$$

Forexampe,

cis, cis-

13313Catdyaselmethod

Photaosmizdion of akenes are dso adieved in the presence of cadysis, eg, Bromine Halogentamabsarbsthephoton andgives raded, then raded adbstodkeneformingtheirtermedteradcd wherebonds can rodte Sothat theakereexdtedstaedbesnottkepat.

13314Bidogica importance

Photocherid geonetricd isomerizdion is impotet inlidogicd system, for example,
(i) The retira of the ege consists of a number of photreeeptor cells contaring the visal pigret modposin, which is daived from11-as retina by thereadion of theaddaydegoup with an animo subsituat in a proten (qpin). The asRhodposin dosarbs phaton in the viside region andisomeizdian of the dadebondocars to offord thetrans rhodpain Thischangeingearery of bandreind leadstockangesin proteinstudurethattrigger aneveimplse, whichisinterpreed bythe bran leodng to vision Thetrans famof reind reconated into is fombyanerynepresertintheegeandvisu cydeaginbegins.

(ii) Thedlarophyl-sensitized isomerizaionvitaminA amedewhichis used commerially to datan the reqired all trans isarer from the mixture of isomer resiting from the syithesis Thee photandreed eledrontranferocarsandrodion of Cabon-Cabonbondinthenest stddeisarer uliketripetsersitizedreation

Mixed isomer

trans-vitamin A acetate

1332Cydistionreadions

An dedroydic ring dosure i.e gydistion reaction is an intramealar reationthatformacydic produtcontainingonemereo bondandomefener π bond then the readat These reations coar through the conceted pericidic reactionin which bondmaking and bond bredkingocar in asinge step Such reations coar themally or photochemically. In themal reation themodyranicdly stde compound is favred bt in photocherica reations, the moleale dbsabs a radaion with sitdde wardengh and the dreetion drange will be towerd a phototdionay state that facors the compand withlowe dbsandion cofficiett the wavengh of raddion for eande,

In there reations indve a dange of the π - and σ-bond positions withina corjugted sytemin a ydic trasition stete Accordng to the WbodnerchHoffimanatidd symmery iles, the 4 neledronsytens intheerited sta readthraghadsuddory nockinutich rddionsocarinthesamedretion (dockwiseor atidodkwis) dat the axes of dablebond Wheres those reations with 4n+2 dectrons reat thragh a corrotary pathesy in which rodions coar in the apposite dretion (are dockwise and the ther atidockwise) that thereaxes

Examde

50\%

59%

Betrocydic reations of corjugted denes take place through the veticd singetste Thetrip estarisgenedly not ind vedinthis process Thereare two impatat fatars that offect dectro cydizdion, (i) reation effidiency is usully lonered by a similtareas geomenicd isamizaiondang the dude bond and (ii) isdene corformaion mest be adieved befre cydizdion proceeds Direet irradaion of denes may result in wavdengthdaperdat phatgrodut formaion, which is retaed to dfferet absandion propaties of thedenecorformes Foreande, transpeta1,3-dene, irradzed 2254 m , gives cydic prodit in low quatumyidd withtwo the prodids, howerer, when it is irradted t 229 mm , whee the transcafantion dbsabs predbminatly, mosty yrans-isisomeizaionis doseved

The corjugted triene, eg, 2,5-dmethyhera1,3,5-trine undagoes efficiert distransisamizdiont 254m, butit cydizes to a yddnexdeneusing313 rmradaion

Eedrocydic process is a key readionin thesythesis of vitanin D which is useful in boneformaion immunesytemresponses, cell dfences and atiturer ativity. Vitanin D cares in tho dosely retaed forms, vitamin D2 (egocdaferd) and vitamin D3 (dhdecddifed), and their netdodites Both vitamin D2 and D3car nturdly in sarefook However, vitanin D3 can asobesynthesizedinskincellscalled kertinocytes from7-daydochdested (praitamin D), which undagees a photochenica six deetron carodatary detrocydic ring qpering at 280 mto preitamin D3, which sportaneady iscrerizes to vitamin D in a themal atarofaid hycide [1,7]-sigmatraic shift

1333Remrangeretof 1,4 and 1,5dienes

Inaddionof 1,4dereor 3-phend akenes atenleedtovinylydo propenear pheyl aydo propanes throug of an 1,2-sift of viny or pheyl grop accomparied by ring doare lead to an phtoprodit thet is usilly not datainde by andhe rate These reations are termed the $\mathrm{d}-\pi$-nthane rearagernet, asoknownotheZimemmireation

Accordngtothepropeedstepwisebiradcd medarism 1,3 and1,4biradcd intermedtes and dso the second π-band may beindved The meedarism stats withformaion a bondrg between atom2 and 4 of 1,4deneurit, then deavegeof 2,3bondandformaionof a3,5-bond

The d- π-methene reation geneally ocars through the exited singe state dataned by dreet irrodition, wheees the trinde pathnay is accesside ody ling tinde senitizas deto the por intesytemcrosing efficiences of akenes The d- π-methane rearangents dten show a high degree of datteresdectivity andor regosededivity, foreande,

In cartrat, cydic d- π-nethene sytens rearageffromthetride ste For eamde tripl sencitizdion of bigdd[222]ota2,5,7-tiere provids seribullvdere

Medarism

In 1,5 dere, a rearangenert ccars by irradition and bigde produt is formed It is senitized by Hg (ges preee). The meedarismof this reation indves bradcd formaion in which iritidly 1,5 bond is formed then 2,6 bondisformed

Medarism

134Summy

- Photochericd reation of dkenestakelaregreally thraighiglet crtid $\ddagger \pi-\pi^{*}$ ste
- Photasomeizdion reation gives less themally stade geenetrica iscmer.
- Photasomeizdion in akenes can beocared thragh dreet radtion, phooseritize andcadysisprocess
- The ratio of bath geandrica ispores in the photostioray state depends ypon the rdio of thequatumyidds of bothisomer and the mola dosandioncofficiets of thecorespondingisoners
- Phoconemid geanerica isomeizaion is impotet in bidogicd sytemlikevision
- Phocoydistion reations coar through the conceted pericydic reationviaadsodday orcardday mode
- Bearocydic processisakey readioninthesythesisof vitaninD.
- Thed- π-nethenerearageretocarstroughbiraded medarism

135ReienQuestion

1 Exdanthefdlowingconceqts
(a) phosersitiza isomeizdion
(b) Non-veticd exatedstate

2 Witethemedarismof Di- π-methanereation?
3 Whygemetricad reaciongivesisisomer inlageanaut?
4 Preddthephdoprodit
(a)

(b)

(c)

(d)

(e)

5 WhatisrdephacasomizdioninVison?
6 Exdainremangeretof 1,5 dineswithmedarism?
7. Givethreeandleof 1,6tierecydistionreation?

136ReferenceandSuggetadreadings

- IntroditionToOgaric Photochenistry, JdmD. Colle, JdmWley\& SansLtd 1986
- Photochenistry of argaric compunds fromconceqts to pratice Per KlanandjdobWirz, JdrWiley\&SorsLtd 2009

Unit-14

Photodnenistryof ArorzticCompands Isoneristion, adftiansandslastitutions

SruturefUnit

140 Ojeative

14.1 Introdution

142 Berreneanditsvaia sexitedstes
14.31 Isomeristion of Arandiccomponds
14.32Medarismof 1,2-siftbyberwdenintermedte
14.33. Meharismof 1,2-dkl shifthraghpismaneitemedae
14.34Medarismof 1,3dkyl siftthroughisnare
14.35. Photochenicd Isomeristion of tisibstituedberzere
14.36Phdochericd isomeristion of termabsititedkerzere
14.4 Photochenicd adtionreadions of aontic componds
14.411,2-photanemicd additionreationsof aormic compands
14.421,33-Phdochericd addtion reations of acraticcompunds
14.43 [1, 4]-Phachemica adition reation of acontic componds
14.4.4 Photochenice addtion of oxygen
14.4.5 Phathenvice dmaistionreationsof aondic hydocabons
14.5 Apdicdion of photochemicd adtion reation of aomatic componds
14.6 Photanenicd substition reation of acortic compands
14.61 Nudectilicsbostituion
14.62 Eetroprillicsbostituians
14.63Ohertypeof sbbsituions
14.64Photochericd radcd substituionreations

14.7 Summa

148 RevienQuesions
149 RefrenceBoks

140Oljetive

Photochenistry is the denistry of deetraric exdited states of argaric moleales thesestas aeganated by inadaing the moleales by Uvar Visideligt.this unit comprisesthed\&ailedstuly of thesinge andtripd stae of argaric moleale these have dfferet physicd propaties and dhericd reativity the prodit dataned it the end of photochervicd reations uneppetedandertirdy dfferet fromthosedtainedinthemal reations, typicd photochenicd reations indude isomreisaion arand cabon-cabondablebonos rodeala rearangenets andfrageetdions, inter and intera molealar hycogen dostrations, cydoaddians and dnerisdians

141Introducion

Theusal dervicd reationshownby berzeneaditsdaivativesherbeen studed in dtail for a long tine Later is doserved by experinets that berrese is prove to photochericd reations dsa It is known that the detrorictrasitioninberzereccars 230270 mwtich coresponos to aenegy vaue of aproxinady $4180 \mathrm{Jmod}^{-1}$ and sincethis valueereeds theresmanceenegy of berzene(3kcdsor 151.24 modrli). it appers that When berrene is inrodted with eletragnetic radaions of tove mertioned wavdengh, a photo dervicd reaction will realt with the formation of produts thetshal not beacondic innature Infat aondic compound undrgo tranfromaions of vaias darivatives of bareene shous surpising realts which are in cortrat to the themat sdality of aondic compands Inadditiontothis thephdochericed rearageret's of berzere darivetives provide dret rates seared higly strained noleales

142Baraneanditsvariasecitredtctes

Tohaveabetter lookle usconsidar theeited staes of barene
(1) Whenliqid berzeneis iradted with dedrananetic radaian of wardength lower then 205×10^{9} meder, the stde T_{2} is prodred This is then conveted to a dfferet vibrdianally exited stae
singestate T_{1}. Thisstaprodrestigdo [310] herend biradce (A) dgamaicallyitisshownbadow.

(2) If the liqid barzene is irradted with radiaions haing $\lambda=254 \times 10^{-9} \mathrm{~m}$. Ittransits dreety yintotheerited sted $^{T_{i}^{*}}$ Intersysemorossing (ISC) processconvets T_{1} stato andher stae $T^{* *}$ which prodres 1,4biradcd (B) and [2,2,0] hexenyl biradcd (C) whichisaligydicsysem Thisisshannbedow

Thebiraded prodresberwdereardfuvereviz-

Fulvereis ddained fromprefulvereC-C bond deavageand 1,2-hydogen shiftiz-

Prefulvene

Fulvene
Similaty seved higly stranedmedeales (Daner benzene, prismaneed) have been datained by when subsituted berzenes are irradzed The straned systens arereation intermedtes of photochenicd ismeristion of subsituted berzere Thentureof theseintermedites dapends yponthe stae of thearnwic stating mateid and dso yponthewewdengh of the ligtusedinphotachericd processes Thus

Thus it is sen thet the dove photocherical rearagerets of berzene moleale provides rates to many tigly straned moleales which arein contrattothemal stdility of auratic compands

143lsorvisition of Araraiccompands

Arondic compounds cataining ane ring show vaias phtocherica rearagernetsleadngtothefarmion of vaia sisoners ForeandeO xylere is irradzed a mixture of $1,2 \quad 1,3$ and $1,4 \mathrm{dm}$ mylberrene is dtained eg

Itcanbesenthtconnesion of O - xlereintom-xyeneandconersian of m-xylereto p xylerecars thagh 1,2-xlleregap $\left(-\mathrm{CH}_{3}\right)$ sift Hoveler converion of o-xylenetop-xyleneandvicevesaindves 1,3-shiftof-CH3gap
It is doserved thet 1,2 dky sift ocars thragh berwdene ∞ nel ∞ pisnareasittermatesforeamde

1431Maderismof 12-shiftbybaracieneirtamedide

Medarism

Benzvalene
Now berwadere undagoes reargaristion of cabors of thering by bond deavege between $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{3}-\mathrm{C}_{4}$ folloned by the bond formaion beweenC $\mathrm{C}_{1}-\mathrm{C}_{3} \mathrm{andC}_{2}-\mathrm{C}_{4} \mathrm{Viz}$

1432 Madnaismof 12_2lky sifttrach prisnaneintemedite

Thismedarismcanbedqidedæbdow.

Now this pismane so formed undagoes reargristion of the ring by breaking the bonos between $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{3}-\mathrm{C}_{4}$ followed by the bord formaionbetweenc $\mathrm{C}_{2}-\mathrm{C}_{3} \mathrm{adC}_{1}-\mathrm{C}_{4}$ 历shownbdow.

Prismane

Dewar benzene (open book structure)

1433Madnaismof 13alky shifttraghpisnane

It is known that 1, 3-dkyl shift tokes pace traigh the formaion of pisianeasanintermate Thisisshownbdow

Nowthesubsituted pispaneundrgoes reargarisdion of the carbon of the ring by lreaking the bands between $\mathrm{C}_{3}-\mathrm{C}_{4}$ and $_{5}-\mathrm{C}_{6}$ followed by band formжianbeween $\mathrm{C}_{3}-\mathrm{C}_{6}$ andC $\mathrm{C}_{4}-\mathrm{C}_{3}$ tansashownbdow

(open book structure)

1434 Photodnanical Isaraistianof trisulatituedbariane

Photochericd isaneristion of 1, 3,5-trinethybarene to 1,2,4 trimethylberzeneisaninteresing phodenericd reationocaringthragh 1,2-dky grapsift Theprocess hes beentrangly invesited by tracer tedriqueusingC ${ }^{4}$ Idbdling

Theovedl reationis

Thenedarismof thereationfollusthefdlowingrate

Thephatornerical convesian of 1, 3,5-tri-t-atyl berzeneinto 1,2,4tri-t atyl berzeneindvesaldof complicdians Itisshownbdow

Dewar Benzene Derivative (7.1\%)

It is evidat that in this process a phototdionay stee (a typeof psanb equilibriun) is estddished Thisequilibriumindves al thesperies preseat in the readion ranely the two tri-t-btyl which are readat and produt and dsotheintermateinberrenedaivative, pismanedrivaiveanda daner barzane daivaive The paceatage of vaius speeies de witten balowthem

Terasisdituted berzene ranely 1, 2, 4, 5-teraruthyl berzane dso exibits phodonenicd isomeristion and is conveted into 1,2,3,5teramethlberzere Theoverll reationisaffdlons

The medarismof the dowe photochericd reation can be shown by fdlowingrate

It is dert that this isoneristion endves pismme and Dener berzere derivatives Somedhereemples of isarristionaegivenbalow.

144 Photochenica adition rextions of arandic campands

Photocherice addtionreationsaefoundtoberevaibldeinneture Theee reationsaredsotemedæadoaddtionreationsexaydic compoundis formedæalatprodit whenamixtreof definisirrod tedwithligtof apporqpite vaviengh lage vaidy of poduts are dtaned The addiontases plæet 1,2-1,3and 1,4 position of berreerning Fartypes of needarisnshavebeens goestedfor therereationsviz-
(a) Reation of aondic compund exited stete with gound ste of akene
(b) Reation of defin in exdited state with gand state of acratic patiopart
(c) Convesion of exited aondic compond to form a bradced interredtentichin fun reats with defin to givethefind podit
(d) Reation between poda speeies dataned ethe by dargetranfer compexesorby detrontrasfer.
It is doserved het berrere undarges photochemicd addion with matec ahydide Thecomposition of the produt shons that it cortains bervene andmadecarydideintherdio of 1:2viz

The dbove reation is found to proceed via a darge tranfer complex indving bereene and the naleic aryychide with mono and dsubsituted berzenes a similar reation is fand to ccar with a sow kintics deto steic hindance by substituat (S) preset on berzene ring Wth higly subsituted berzenes hovever no readiontckesplace

141[1,2]dhodnevicd adbitianreationsof ararriccompands

Whenberzere(liqid) and2-btane(CisorTrans) reinrad ted withligt, 1,2 phooaddion takes pace It is interesing to ndethat in this readion thestereochemistry of 2-ateneis reaned This shonsthat thereation is sterespeeific andconceted

Berrenereads with dkenes to givelicydo [4.20] oda2,4-denetypeof produtsie,

In the dbove readion it is suggeted that photoexited akenereats with grand stae berzene and becase the stereachenistry of akene is fand to be reained the process mat be concated Similaly we have the fdlowing hotodenica addion

$+$

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{~N} \xrightarrow{\mathrm{~h} v}
$$

A nunber of acelylene and its daivaives reat photocherically with barzenetoprodrecydoodderanedaivaives viaintermedtel,2-photo addtionprodutviz-

$$
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \xrightarrow{\mathrm{~h} \nu}
$$

$+$

1442 [1,3]Photodnericd aditionrestiansof aranticcompands

The 1,3 additionleods to theformaion of atricydic sytemand invives the addtion of defiric dable bond aross the meta position of berzene Viz-

Abovereation ocars aly whenalky shbstiuats aepresertaross the cable bond in defin ie with 2-btere (a shown doove), narbomere, cyddatene, alleneac It coars bothinliqidand vapar pheest The sterechenistry of definis retaned andsigle exited steof berzereis indved It is interesting to nde that the reaction proceeds vice the formaion of prefivere broded and fuvere and berwdere are not indved Themeedaisic ratecanbebestshownbyfdlowingway.

 Prefulvene

Berzeredsoadbstocydoctereinthefdlowingway.

Sandines it is doseved that anintrandealar adbliontakes pacewhen andefiricsidedainispresetanbazeneringassbosituat Foreample when6-pheylhex-Zeneisimadtedthefdlowing prodrtisddained

1433[1,4] Photohsmicd adtitionremtion of aroraticcorpands

Intheretypes of photochevicd reationstheaddition of defintikesplare in the prap position of berzere Thereation invdves thesinge exited ster of bareenead is sterespeedicie iethesterechanisty of thedefinis reacined The readions are ardogns to DidsAlda reation as bazene atsædeneinthiscæe Viz-

Sinilaly butadere when irrodzed with berrene it undagoes [444] cydoaddtionardthereationisfandtobestereospeeficicinnıureViz-

 $\xrightarrow[\text { Dimerisation }]{\mathrm{h} \nu}$

Not arly berrenelat condersed aorndic systemredthene, Arthraere and Pheratireredso undrgophtochervicd addition reation It is to be nuedthtin ææeof nethdereand pherathrere It is [2+2] cydoadtion whees in ceeof attracere It is [4+2] gydoadtion Theseareshown badow.

$+$

$\xrightarrow{\mathrm{h}} \nu$

$+$

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{~N} \xrightarrow{\mathrm{~h} \nu}
$$

$+$

144Photodericd adbitionofoygen

Condased ring systems surh a nepthlene and attracene undago photochenicd addtionwith oxygentoformperoxides Thentureof the fina produt dapends ypon the reture of the subsiturts preserts on arnaticsystemforexampe

The reedaricd studes of this photochemicd reation have shown that triple exited stae of aratic hydocabonfirst exites oxygen moleale by the proess of enegy transer a a realt of this singe oxygen is prodreed Thissinge oxygennowadbthemally withthegroundsteof aondichydocabon Thusthereationisa[4+2] ydooditiontype

1445Photodnevicd dimerscianreatiansof araraichydocarbons

It hes been doserved that under the condtions of high concertration of armatic compand sare typicd photachenicd dmeristion reations takepace
Nadthere and Arthracene undagpdhodmeristion considar the folowingreation of Arthracene

Heretwo mdeales of athroceneundego adtiont9, 10-positions If a subsituatispreserta 9 position of attraernethenaherdtotal dmer is dataned This dmeristion hes been fand to be deperdest ypon the nardengh of the ligt used in the photacherica process In gened irraddion with lange waidengh realts in dmeistion wheres shater wavengths case the processes to ocar beease shater wavdengh
raddian areasocided with high enegy and so case the phoochenicd demageof thedrerformed
For exande when 9-ritroattracere is irradted with long wevdength ligt prodresthedmer onthedthe handwhenthesamprocessiscaried at by irraddian with shater wavelength the produts farmed are ritric oxide (NO), attraqimone, attraqinne nenoxime and 10,10battrone It is supposed that these produts are prodreed thraigh 9 attryl ritrileintermedte Thereationisshownbdow

It is interesting to ndethat the dedrondstribuioninexated and grand stedef anarotic compandisqitedfferet Thiscanbeillustraedby compaing thedssoidion constats of pheny in its exdited and gaund stae The following tode shons the PK_{a} values for 2-nepthd and 2nepthylamine It canbencted that thedffereeeinthevdues in S_{0} andS staeindcateamajardangeindetrondansity inthesestde.

Compand
p
$\mathrm{S}_{0} \quad \mathrm{~S}_{1} \quad \mathrm{~T}_{1}$
2-raphthd
95
31
81
2-radthylamine
$41-2$
33

145 Application of photoderica adbition reation of araraticcompands

(1) In photochericd addion the nost common is cydarevesion which is dso know a rero-DidsAlda's reation By the use of this reation rew type of derically modfied dengdile can be syithesise Trisisshounbdow

$+$

\qquad

$\xrightarrow{\mathrm{CH}_{3} \mathrm{Cl}}$

(2) Itisposidetoprodrehigly readivecompandsutichcamtbe prepredby convetiond nethods Therearethen usedæ regats for prepaing vaias the argaic compands This can be illugrdedbyfdlowingearndes
(a)

$\xrightarrow{\Delta}$
 $+$

(higly reativecompound)

$+$

146 Photacherica slastition reation of arortic compands

Substitition reations ether in acondic ring or in sidedain of thering can be caried at phtochenically. These reations can ocar with hondyticarheadytic deavegeof thebondinthesbostratelale The quatumidd of such reationisfandto bevey high and they invives thelowestingesta

It hes been mertioned earlier that there is a geet dfference in the dstribtion of dargeingrand and exited ster of themedeale Thus in photochericed reations it is posside to contrd the position of the nudeadrile deriving substituion reatians in the fdlowing pages it is dsassedindłail.

1661 Nudedilicsubstituian

It is knowningened demistry that if $-\mathrm{NO}_{2}$ grap is seted an berzene ringit ativates theattadkingnudeqdiletathoandprapositionViz-

But it is doseved that dring photornericed reation which involves exdiedstathe- NO_{2} grapbanesasmeadredinggop

Similaly the compand3,4dmethoxyritrdarzenewhen heded with OH ins prodres 4 hydoxy-3-methoxyitrdoazeneiethe- OCH_{3} grap t 4 positionisredaedby-OHgrap

$\xrightarrow{\stackrel{\text { OH}}{\longrightarrow}}$

Onthedhernand whenthesarereadianiscaried at phodnemicdly ie by irradating with UV ligt the $-\mathrm{OCH}_{3}$ gap presat it 3-position is redacedbyOH grap ie

Thereeson of this betaviar is that under the influance of het, the- NO_{2} gropmakesathoandparaposition of theringpositivedetoits-I and-M effet but under photohericd condtionsatho andmeta positivebecone positivecomparedtoparaposition
Similar reations are doseved with cyano grap when it is preset an nepthalenes andsubsitutednapthanes

1662 Eledrqdillicsubsitutions

Unespetted produts can be dtained by photocherica electropharic substition of substituedberzene Forexamdes,
Usully the $-\mathrm{CH}_{3}$ gropisathoandparadreetingundr themal condions bt when tduene is iradzed in the presence of $\mathrm{CF}_{3} \mathrm{COOD}$, mataterio subsitutedtdueneisddainedљamæjorpooutViz-

$+\mathrm{CF}_{3} \mathrm{COOD} \xrightarrow{h \nu}$

Thesarereationswhencaried at withArisoleandritroberzenewegł unexpededproditesshownbdow.

m-daterioarisd

pdateri oritrdoarzane
Thus it can be conduded that arietaion of vaias gaps becones dfferet in photochericd processes Here ritro grap ativates the prapositionandmehoxygrapadivaesMeaposition
These resits can be exdaned by reargarising the ariettion nues for detrodillic and nudeaphillic susdittion by considaring the dange in thedangedstribtioningrand and exited steieS S_{1}. of thering of the point of ttack. An detron withdawing subsituet dereeeses the dedron danity t mposition so it ads a a mdreding group for the inconvingnudeadrilicsubstituert

Masherismof photonudegdilicsubstitution

Onthe pardld lines an detron donding grap cases an inceesein the dedron danity at mposition so bakes ∞ a mdreetor for in coming dectrodilicsubsituatViz-

Mednerismof PhotodetricSUbstitution

1463OHertypeofsubstitions

These types of photachericd subsitition follow the criettion rues darateistic of the grand stae of the barzene ring. The dadiled necharismof thesetypes of phonchevicd substituon isstill amatter of investigation Forexample

1464Photodnericed radical substitutionreatians

Sordires it so happers in photochervicd reation that when subjected to exposureof ligt, thearadic compundundagees handytic deevagein its gandstaresaling intheprodution of freeradcdswtidthengive riseto the find prodits It is to bended thet in surn coses theproduts datanedarethosednatateistic of readian ${ }^{A r+X \xrightarrow{h n} \dot{A r} r+\dot{X}}$

WhenCldardanzeneisimadtedinliquidphesethe $+{ }^{\mathrm{Cl}}$ radcd conldine to geneate traviet π-didadonzene and an isamer of
ddardberzene in which the dhaine forms a π-complex with radcd Viz-

Thistypeof phdochevica hondyic deavegeof abond bewnencabon tam of acratic ring and halogen hes been used to prodre pheny shosititedacodiccompands Forerample

$\xrightarrow{h v(254 n m)}$

Itistobendedtht theYidddf theescompandsisvey high Similaly polynuder compands can aso be prodreed by theee photochenicd procesesingoodanourt

\qquad

(Phenathrene)
Sinila reationsaredsogivenbyioctaredylenesdsa

47Sumnay

 phatochericd iscmeristion reations of berzereindve $1-2$ stift by berivileninterredte

- scmemedarisic path indves pismaneirtermedte dring 1-2,1-3 akl Sifts
- Trace tedriqueusing14Chesbeen usedtoinestigtethemertarica pathwey.
- Photochenicad addion reations of acontic system prodre unepeeted podidsthrayithedargetranfer process
- Dringsubstittion reationin phdocheristy theaietdionnleare etiredydanged

148ReienQuestions

1 Disassindtail variasexitedstacof berrene
2 Disassss the mederism of 1-2 Alky sift by berzavane intermedte (2) byprinææeitermedte
3 wite an epaintary nde on phacherice isorreistion of the terashbsitutedberzene
4 witestatnteson
(a) 1,2 photochericd addtionreation
(b)1,2photochemicd additionreation
(c) Photochenicd addtion reation

5 wht aethe varias apdicaiors of thephtochemicd reation of theaondiccomponds

149RefirenceBods

- Orgaric Photochenistry,Gurdep R Chetwa,Hin\#lya Pudicaión Hase
- Fundanetd of hodachstry,K.K rohtgi-Mukhejee, Naw age intemaiand.
- OrgaricPhodachenistry,RCAnta

Unit- 15

Miscedlaneus Photochavica Reftions

Strutureof unit

150 Photofies rearrangenets

151 PhotoFries reationo arilides
152 Batonreaction
153 Singem mealaroxygen reation
15.31Corfigurdion of malealaroxygen

1532Types of Sing toxygen
1533 ${ }^{12}$ letroriccorfigration ${ }^{1} \Delta$ gsingedoxgen
15.34 Eedroriccorfigrtion of ${ }^{15}$ gsingedoxgen

1535Phto-OxygertionReadion
1536Impararceof singet modealaroxygen
154 Photochericd formaionof srog
154.1Reation of snogformation
1542Effect smognlife
155 Protochenistry of vision
15.6 Summa

157 ReievQuetion
15.8 ReferncesandSuggetedreadngs

150Photofiestearangyrats

This reation indues migrtion of a gap aross a culde band (1,3 migdion) instudureof thefdlowingtype
Such rearangenertsinaroticsytersleadto 1,3and 1,5migdionof anR gap

Fig1: Mednaismof Photofies rearangenetreation

Photofies rearangenert is an intrandeala rearangenet, where acy and aky graps migte to atho and para positions an irradidion In this rearangent, the substrate dssoites into phenoxy andayl radeds, whichreentonewithinthesdvertcageto giveintermadesonaradizdiontotheprodut
When phtofries rearangeret is caried at in geseas phese, anly phend isdtained whichcorfims theformaion of sdvertcoge

Fig2 Photofies rearangenetreation

151PhotoFriesrextionofarilides

Thecorespandngreationforarilidesisafdlans.
Theserearangertsocarsthraghintemedtefamaianof freeradcds

Fig3. Photofiesreationo arilides

152Batanreation

Photdytic convesion of argaric ritites into ritroso dcohds is known as Baton reation When a compand consists of theC-ONOgrap andaC-H bond is brangt into dose proximity (genedly 1,5-position), the akoxyl radcdsareformed by photlysis of ritrites, inthesdutionphese, whichhave sfffidiet enegy to bring doat selective intramealar dbstration of hydrogentomandprodreacabonraded.

Fig 4: Medarismof Batonreadion

Sorreexamdes of Batonreationaregivenbadow.

The prodred cabon raded reads with ritrogen noroxide (NO) and gives ritrosodcchd. Theritrosoduchd canbeisd tedfromthesd utionbyproess ofdmeistion
One of the preequisies for the Baton reacion is the availddility of a six mentreedydictrasitionstae
AstheBaton reationconsiss of gets sdedivity inthehydogen abstration step, ithesfandapdictionnwinly inthefiddof stacid

153Singetndealar Oygenreation

Katsky dscovered the readivity of singe oxygen in 1930, to exdain sensitizedoxidtion of substrdeswhendssorbedonsilicagd.

1531Corfiguraion of mdealar Oygen

Mdealar oxygentes a uriqededroric corfigurdion in thet thededroric darate of gandsteoxgenistriple
 $\pi^{*}(2 \text { (2y) })^{1}, \pi^{*}(2<)^{1}$
 ,ithestiplemltipidityi.e, $2 s+1=(2 \times 1+1)=3$.

153.2Types of Singeaxygen

Thotypes of singed axygencenbegenrated phdachevically.
$1{ }^{1} \Delta$ gsingetoxgen
${ }^{2}{ }^{15}$ g'singetaxygn

1533 Bedrariccorfigurdionf ${ }^{1} \Delta$ gsingeaxygen

It is $\sigma(1 s)^{2}, \sigma^{*}(1 S)^{2}, \sigma(2 s)^{2}, \sigma *(2 s)^{2}, \sigma(2 \phi)^{2}, \pi(2 g) 2=\pi^{*}(2 \phi)^{2}, \pi\left(2\langle\alpha)^{2}\right.$, $\pi^{*}(2 \mathrm{Z})^{0}$
${ }^{1} \Delta$ gsingedoxygenisnostly reponsideforuad phaoxygentionreation

153.4 Eedrariccorfigrdion ${ }^{1} \Sigma g^{+}$sing \pmoxygen

Itis $\sigma(1 s)^{2}, \sigma^{*}(1 s)^{2}, \sigma(2 s)^{2}, \sigma *(2 s)^{2}, \sigma(2 \alpha x)^{2}, \pi(2 y) 2=\pi(2 \Delta)^{2}, \pi^{*}(2 g)^{1} \uparrow$, $\pi^{*}(2 q)^{1} \downarrow$

Half filled Haff filled
orbital arbitd with
qpositesar

1535PhodoOygretionRextion

a Gisid Diens - Singet axygen gives adtion reations with disid denes This reation proceed in concated mamer by formaionof six nemberedtrasitionste
Manoakenesgive1,4 cydoaddtion reactionwithsingetoxyger

Somenoreeantle of phoorygentionaregivenbaw.

b. Mono-defines

Cefinsgivehydrperoxy compounds andthereatianiscdledan'ene' reation Some examdes of the phooxygartion of manodefines aegivenbdow.
(1)

(2)

с β-४ unsdurded ketones - $\beta-\gamma$ unsaturaed ketanes dso undagoes phooxygandianreationasfolllons

d Cartencios and redted terpencids Phido oxygention of cadenid andterpencobgiveketredrivetivesinaddtiontonamal prodits

Fig5: The uriqePhotooxygention reationto syithesized naturdly ccamingketeric cadenids
15.36Impatanceof singetmdealaroxygen

1 Singet molealar oxygen patioptes in varias dye sersitized phdo oxygention readionsof defins, denes andacondichydocabons
2 It is used in the quanding of the exited singe and tripl staes of moleales
3 It is indved in the cherilu uninescest pheromera, phdo dyranic reations, photocarinocridity and in metd cadyzed oxygention reations

154Photoderica farmationofsnog

Phocherica ssog is an oxidzing srog having tigh concertrtion of oxidatslikeozoneadritrocgndoxide
Hydocabons and dhe argaic compound intheatrosghereaems medto oxidze thraigh a seies of steps of dervicd and photochenicd reations After oxidtion processs, they giveCO, adis and addyyds we end poduts add weshedanaybyran
Animpotat propety of atroschereis thet it istrappedby a ninersionlayer of atondile epllutats and the sametimeit is exposedto inteneesuligt and formphotochemicd oxidats in the atroshere This give rise to the phercmeronof phtochericd snog

1541Rexionofsmugrmaion

Theproddereadion of srogfarmation withits meedarismisgivenbalow.

Intheformaiono snog abrownhereisfoundintheanooshre Itisde to theheay concetraiono patidesintheatrosphere

1542Effetofsnoganlife

1 Danme to mateids like rubor, vegddion ac and dse leod respordarydsadas
2 Peroxl ayl nitrate(PAN) is prodred in the anoeghere which is a phdtoxics batace
3. PAN, ardenandfomaddyydedsocasedeyeinitdion

155Photochenistryof vision

Theeyeof vetdaæconsists of lens and redina. Theretinais nade up of two types of ligtsensitivecalls, rook andcones Therods and cones presetinthe retina at a the reeedars of the ege The roob are seritive for low ligt intensity and responidefor visianindmligt. Thecones areresponidefor colarseletar.

1551Pholosensitivepignent

Thephoosenitivepigrent pesetinrods iscelledrhoobpinorvisul purde pigret. Itsqoinisscotqpinandreind is 11-isisreing. Rhoobpinispresert inthementraneof theroddsksashownindagamgivenbadow.

Fig6 Diagraticrepreseldion of thestudureof rhoobpin

Fig7: Stepsinphdtrarsdutioninrook
Rhodposin is very sersitive ligt reegdor and couded with G-poteins Compledion between the qpin and the 11 -dis refind takes place by inime
formion bedveenthe pinay anim gap of lysineinthesidechan of the
 reina complex dosabs ligt enegy of a visibe phtan and undagoes a steremotdion of the 11 -is $\mathrm{C} €$ to 11 -trans $\mathrm{C} €$. This dange in the moleala geemery of reind separdesit fromthepretensufare This is de to the fat that the all-trass stucture of reina carnt be staically accormmodted ontheqpinsuffer, aly 11-asform canbeaccormmodted This d\&dmert of thetwo componets of the comde is calledbleeding of rhodposin Surh deading cases an detrica sigal to besert to the bran whereitistrand tedintoavisel inæge
Thephoosenditivepignertintheconecellsiscallediodpoin Theprdeenpat is photopin Therearethredfferet knds of cones in man Theserespond maximally twadenghs 455 m (dua), 535 m (geen) and 223 m (reed). Each cortains 11-disretind and phoppin Thephotars of therettree wavenghts care a dange in the corfigraion of the 11-dis formto all trans formof retind ineachtypeof conecdl, casing andetricsignd tothebrain which trandaesittotherespedivecdars
The time tiken for such danges in corfigraion in redind and sanding the detric sigad to thebrin and its perception is of orda of afewpicosecands Thechericd danges tiding pareinthedernisty of visionaevery fatt(10 ${ }^{15}$ S.

Fig $\&$ Strutureof reind, 11-disreind andal transerind Inradiion of modupinleadsto aseies of corfarmaiond dangeswtich can be ndiced by the dsapperance and apperance of vaias intermedtes of dfferet colars In the dak the refind in rhodpoin is in the 11 -dis corfigrdion.

Struturd dangeinthell-disretina of photaigreat
Corformaional danges of phtapignat Adivationctranduin

Adivation d phosdnodeteræe
DeremedintradluarcGMP Cosureof Nat darnds

Hyperpdaistion
Derremedremeer symadictrasnitter
Resorameinbipdacellsanddher nerd demerts
Fig Sequance of evats invived in phdtransdution in roob and conesofye

156Summay

- When Photofries rearangenet is caried at in geseas phese, alyphand isddaned
- The preequisities for the Baton reation is the avaldality of a six-menbereloydictranitionstae
- Genedly, ${ }^{1} \Delta$ gsingeoxygenisresponildefor photooxygantion reation
- Singe axygen gives addtion reation with cisaid denes and monodefines
- During the formation of photochericd srug varias types of secondary pollutat intemedites andprodutsaefamed
- Eyes containtwotypes of ligt sensitivecells rook and cones The eyes possess phoosensitive protein which is of two types, qpin andreina.
- Photosensitive pigrett in roos is rhodposin and in cones is ioctposin
- Ligtadivaes 11 -dis retiral andthisadivaes G_{2} whichadivdes phosphodesteræ, cadyzingtheconersianof CGMPto5'GMP.

157 Reiencuetions

1 ExdainPhdofries rearangemet.
2 WhatisBatan's readion? Giveitsmedarism
3 Why cyddeyl rititeonphddysiscoes notgiveaproduttyjicd of Batanreadionwhilecydoodyl ritite(II) readsinthismarm?
4 WhyinaBatonreationfromalongdraindcodd, thedkoxyraded formedinthereadiondbstratsahydogenfromitsoundrain exdusivelyfromthes -poitionandndfromther-poition?
5 Witethededroric corfigurdion of thefdlowing
a Mdealaroxygen $b^{1} \Delta g$ gingeoxygen
$\mathrm{C}^{1} \Sigma \mathrm{~g}^{+}$singeaxygen
6 Howninytypes of sinġdoxygencenbegereded photocherically?
7 Disasstheaddtion reationsof singeoxggenwith-
1 Cisaiddenes 2 Manodefines
$3 \beta-\succ$ unscturdedkenes 4. Catenads
8 Givetheimportanceof singetmdealaroxygen
9 Disasstherdeof hycocabonsinphdochenicd formaionof smog,
10 Exdantheeffeds of photochenicd srogonlife
11 Describethevaia sreationsinudvedinsmogformaion.
12 Exdaindhachemistry of vision
13 Disasstherdeof phdosensitivepigretinvision
14 Which hhtosensitivepignetpresertinrobandcones?
15 Describethesequace of earts ind ved in photeransdrtion in roobsandconesof eye
158RefarencesandSuggetedrexings

- ModanMdealar Photodenistry,N J. Turo,Springer,1991
- Fundamertas of Photachemistry, K.K. Rdatg-Mukhejee, NewAge Internaiona Pudishes, 2014(Third Edtion).
- OrgaricReadionsandtheirMedarisns, P.S.Kdsi, NewAge Intenetiond Pudishers, 200(Second Edtion).
- OrgaricChemistry, R.T. Morison, R.N.BoydandS.K.Bhattadajee, Peason 2011(Seartheeltion).

Unit-16

Conformiansof SaneAgdicMdeales

Sructureofurit

160 Mearing of corfarmaion
161 Corformaionof thane
162 Cofformaionsof 1, 2- dhalothere
163 Conformaions of thylenedycod
164 Corfom
165 Corformains of butane2, 3-dds
166 Corfomationsof 2, 3dbromatane
167 Summay
168 ReviewQuesions
169 ReferncesandSuggestedReedngs

160Mervingof corformation

Theterm corfamtion is used to dande aty ane of the infinite nunler of nometay arangemts of theatons in spacethetresits fromrodiandat. singebond
Conformaioncanbedfinedasthedfferetspatid arangenets of tonsina nolealewtich rereadly interconvetileby rodion abat singebonds are caled
Conformers/raners/ conformaiand isonesaremolly interconetibleand nonsepardde
A stuly of physiconenice propeties of a compand in tems of its confartions in the ground and transtion state, is colled corformainal andysis.
Corformaion and carfigurtion are the terns redted to enegy barier for interconvesionof dfferetspedid arangerets of tonsinameale In case of conformers enegy barie for converion of dffert spatid arangenetsisinbeween>0.6and<16Kcd/melebtincorfigurdianitis> 16Kcd/mole

161Confarnationofethene

Whenanethenemdeulerdates abatitscabon-caloonsingebond thentwo etrenecorformions aefandi.e taggredand edipsed corformaion An infintenunter of carfarmaiorsbedneentheretwoetrerecarfarmionsare dso posside The Nenman projetions for stagered and edipsed corformaionsof thenearegivenbiow.

Fig 1: Corformaionsof thane
Staggred corformaion A corformbion with a60 dhedrl / torsiond ange (angebedveen the aons atadhed to the frort and the rear cabon toms) is known w stagered corforntion It is thenost stde corfarmation beeare the cabonthydogen bonds ae ∞ far anay fromech ather ∞ posside In staggred carfarmationthedstancebaveenhydogennude is $255 \AA$.
Edipsed corformaion A corformation with a0 torsiond ange is known 3 edipsed corformaion It is theleent stdde corformion beeasethecabonhydogen bonds ae dosest In edipsed corfarration the dstance between hydogennude is $220 \AA$. Therddiond enegy barie in thaneis $29 \mathrm{kcd} /$ nde

Fig2 Rddiond eregy profilefor thene

162Confornation of 1,2dihelothenes

The corformaions of 1, 2-dhadothans have been etenively suded by vaias phyicd methoob The enegy dfferences between corfarmaiond iscress of 1,2-dhaothenescanbedtainedby themodyranic propeties dpole nomet nesenett, infraed Rarion and miconave studes Theenegydffernces bedventhedfferetcarfardiond isomers 1,2dhatothnearexfdlons
a1,2dbromedten- 14to 18 kced ./ndeingssadd0.73to 0.76 kcd ./nde in liquid In geseas state (t 220C) 1,2 dbromathare cortan 85% ati corformers de to steic fatar and eletroric interation (dpoledple repusion).
b 1,2 dddamethere- 10 to 13 kcd ./mde in ges and 00 kcd ./mde in liquid In geseas stae (t $22^{\circ} \mathrm{C}$) 1,2 ddhorothane cartan 73% ati cofformes In 1,2 ddharothene the tho corforms, ati and gande are equaly mpalatedintheliqidste

Ant

F-

M -

Uis

Fig 3 Vaiascorformains of 1, 2dhacothene

Art

F-

M -

Cis

Fig 4: Vaiascarformainsof 1, 2dbrowthere

The ati and garde forms of 1,2 dbronothene possess dfferet dple nourets In ati form the $\mathrm{C}-\mathrm{Br}$ bond dpodes ae atipardld so its dpole nonet is zeo whemes in the garde formit posesses finte value 1,2 dharofluro, 1,2-browfluroand 1,2 fluoriocbethenepossess predminatly ati formingereassteardgarhefarminliqidstde
Effet of plaity of solvetoncorformaion Intheprescee of polasdverts, the dedrosdic replision dereeses de to high dedetric constat of the medumadd therdio of garkecorformes inreese Garheformposesess considraddedpdenonet, soitispreferdyfandinpolasdvets

anti (non-polar)

gauche (polar)

Onincreaingthenunber of halogensubsituats, thebarier enegy inceeses gaddly from $15.5 \mathrm{KJ} / \mathrm{md}$ in ethl dlaide to $50.60 \mathrm{KJ} / \mathrm{mol}$ in hexadlorothene Terdroro daivaives and teradloro daivaives exibit prefencefor gannecorformer ver theati.
Thenaximempossidenunber of vibrdians (IR and Ramanlines) in a non linear nolealelike1, 2dbronøetheneedibit(3 N - 6) whereN isthenumber of tons inthendeale 1,2dbrometheinliquidand geseas staeshow morethen theallowed number of linestatin solidstait does notshonsary addional line Theremonbedindthis is that solid 1,2 dbronoethenepossess exdusively atiform wheem on liquefation sore neleale convat into gauneformsoliquidmatria shownrespeedrd linesthenthesdidane
Cis formof 1, 2 dbromethene david cestre of symmetry wheem gaudhe fampossess cetre of symmery. Pquilion of the gane corformaion is geater inliquidthaningeeasstae

163Canforrationof dhylenegyed

Ethlere gyod eists in tho stde corformaions ati and gane corformitions Garke carfarmaion possess have two erationers In the gachecarfarmiontwo hydoxl gaps aredose enougto giveriseto an intrandealar bond A strang dssandion de to this intrandeala bond is foundinthespeetrumof thyleregyed, it nears that a considaddefration of thendeales aeintheganeform, despiteof steic anddpola realsion of thehydoxyl gaps.

Ant

F-Garke

M- Garde

Fig 5: Corformaionsof thyleregycod andH- bondng
Gerradly, 2-sbosituted thends of thetypes $\mathrm{X}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ where $\mathrm{X}=\mathrm{OH}$, $\left.\mathrm{NH}_{2}, \mathrm{~F}, \mathrm{C}, \mathrm{Br}, \mathrm{COH}_{3}, \mathrm{NHCH}_{3}, \mathrm{NCH}_{3}\right)_{2}$ ec all have the prefered garhe carformians with OH and X foming intrandeala H -bonds Their dhedd angeissigtly geter thenwo.
Insdidsta2-dhoothand eissserdusivey inH-bondedgardefarmatin liquidandgexeussteanequilibriumisdadquedbetween 15\%ati and\&\% garheform

Ant

F-

M -

Fig 6 Corformainsof 2-subsitutedethandsandH-bondng (WhereX $\left.=\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{~F}, \mathrm{C}, \mathrm{Br}, \mathrm{OCH}_{3}, \mathrm{NHCH}_{3}, \mathrm{NCH}_{3}\right)_{2}$ \&c)

Intramdealar H-bondng betveen tho vidind gaps gives an apreidde arourt of sddility dat $820 \mathrm{KJ} / \mathrm{mdl}$ to a corforme. Theessertid condtion for an effedive intrandealar H-bonding to ocar is tht the donar and acceptor gapsmetbeindoseproximity whichisposideany yinedipsedr garnecaforrtion
In the edipsed corformaion the dans are presert nerby de to which vandaveds repalsive farces becones domirat and nakes this corformaion untdde Thegarhecorformaion is best sited for intrardealar H-bondng tavingatasionangeof 60700° betweentheirteratinggaps Incereof ati corformertwohydoxy grapsareqpositdy yaredwhichobes not pemit the farmaionc intrandealarH-bondng
TheIR speetumof thylenegyced is recerded in dlue cabonteradlaide sdutionueingalithiumflaridepismInthel speet mof thyleredycd, two bands apper at $364 \mathrm{~cm}^{2}$ and $366 \mathrm{~cm}^{2}$. The former band shons the OH stredring frearncy of ubbunded hydoxy gap in dilue solutions of mandyctic dachds and thelder OHstredchingfreariny canbeasignedfor theirrandealaly bonded hyctoxl grap This, we can condudthetIR in CC_{4} shonsafrequacydfferenceof $32 \mathrm{~cm}^{2}$.
Thevibrtiond freeurnies of thefreeand bondedOHaesffidietly dfferet ($\Delta v=40 \mathrm{~cm}^{1}$) to pemit their seqpartedteetion in diluesdution Ethylere

164Caffomationofnatare

In cere of n-atane, for corformaiond andysis butare may be treted ∞ daivetive of thene where ore hydogen an erch cabon is redaed by a methl grap Differet corfamdions of bitane can bedtained by rddion dantitsmiddecabon-cabonbondashownbdow.
Butare possess three saggered corformes (I, III and V) at of theee thee caformes cafome III (knowna ati coffomer) is norestddeinwtich two methl gaps ae far apat Corforms (I and V) ae called garne corformsinutichthelagetsabsititutsaeadacest
Arti and garne formhave dfferet enages deto steic strain α steric tindance (strain on a moleale deto replision betwen detrons of lage tansorgapsutichlietoodoæetoechother).

Fig7: Rddiond eregy barier of n-butareinterms of changein patetid enegy anddhedd ange

(Fully edipsed

V
(garne)

IV
(edipec

Fig 8:Vaiascorformaionsof n-butane

Butane possess threeedipsed corformers (II, IV and V) at of theee three
 thomethl grapsaredosestoeachother. All theseedipsedcorfomeshave both tariond and steic stran. Corformes (II and IV) are called edipsed corformes
Redaive stalilies of six corfomers of natane in dereering add is as fallows
Art (III) $>$ Garhe(I andV) >Edipsed(II andIV) >FullyedipseelV)

165Canformationsoflatane2,3dids

Butare2,3dd andaseries of gycd havinggered formlaRCHOHCHOHR eiss intwodateremeric forms, themeso and thed iscome: In latane2,3 dd boththenero andd forms aregardecafames predrninddy x they pernit H-bondformion Thetno meso garhecorformers aeerationeric and eqully poplited. The ative isoner of batare2,3dd dso consists of two H-bonded garde corfomess (a shown in fig9) which ae urequally poplded inoneformtno methl gaps areati ad is morepreferddethen theothes.
Thel.R speetraof twodatereomersefibitthet theintrandealarH-bandng in the meso is weeke then the racervic or d form The srength of the H bondng can be neared by the dfference in the free and H-bonded OH stedding frequanjes (Δv) whichis $42 \mathrm{~cm}^{1}$ for themesoand $49 \mathrm{~m}^{1}$ for the raceric. The tho hydoryl gaps are lying neerby for the formaion of intrandeala H -bond and inceses of tarion angle beveen thetwo methy gapswhichistericaly uffaurddeintheerationeric corformes Incæe of dateremeric corforms it lead tho garhe methls dose which inceesthetariond angebebventhemethy grapandhycoxyl gap Ithes beendosesvedthet if methyl gapsaeredaced by bulkie dky gaps, Δv inceeses for both the datteremes by the in reseof Δv is norefor racenic then themesofom Thus intrandeala H -bonding is marestrang intheadive/ racenic formrather than thenesoisanes. Consequatly, ative /racemicformismeresddethanthemesoisoners

Mec- atane2,3

Meso
Garke enationeri

Adive form dateremei ccorformer

Fig. 9: Vaiascorfondians of butre2,3dd
Raceric butane2,3dd enereesthecondurivity of bric aid morethenthe nesoisoner. Incereof raceric bitene2,3dd thetwomethl gapsareati btinnesoformthetno methl gapsaegarne. Detointermieala H bondingwiththesd vet neso dyce ismorestdethentheracenicone Free enery dangefor the convesion of theadive dd to the bortecomdex is marefavarddethenthemesoisomer.

166Canfanraiansof2,3dibrandatanes

The meso form of 2,3 dlbromatane predbminatty eists in the ati corformaion[fig10(a)]. Thetwo ganhecorfamers[fig.10(b) and(c)] with three conseative garde interadions are redively unstde The thee corforms of the adive form[fig10 (d), (θ) and (f)] are all substatially poplated For the calalaion of ethalpes of dfferet conformers the fdlowingvdues of gardeirteradionsareused $\mathrm{Me} / \mathrm{Me}=3.3 \mathrm{KJ} / \mathrm{md}, \mathrm{Me} /$ $\mathrm{Br}=0.8 \mathrm{KJ} / \mathrm{md}, \mathrm{Br} / \mathrm{Br}=30 \mathrm{KJ} / \mathrm{md}$ (intheliquidstad).

(с) Ant - 80%

16KJ/md

(d) Adive-38/ 49KJ /rod

(b) Gadk-10\%
$7.1 \mathrm{KJ} / \mathrm{md}$

(e) Adive-42/1 4. $\mathrm{CKJ} / \mathrm{md}$

(c) Gadk-10\%
$7.1 \mathrm{KJ} / \mathrm{md}$

(f) Adive-20/

63KJ/md

Fig 11: Vaiascorformaionsof 23dibrondatane

For each corformer one can esinłte the redive ethalpy and respedive popldion (assuning $\Delta S=0$) from the ganhe interations Meso isomer cartans predmniretty ner doat 8% of theati corform andthisformis enegeically nore prefered ove the cher forms Meso formis nare stdde then the ativeformasgite of thefat thet adiveformcantans two anost equienegeic ganhecarforms[fig10(e) add(f)].

Mesc-2,3dbrondatant

Corformaiar-I

Tract-z-butere

Racemic-2,3dbrondatan

Corformaiar-I

Cis-Z-Zatere
Fig10. Corformaineffectandłdronindionof 2,3dbrondatane

Effect of corformaion an readivity canbedaranstrded by thedkarovination of 2,3dbrombutanewithaned likezinc. Theneso-2,3dbromatanecan dimindebrovinefromcorforndionl togivetran-2-atenewheees racenic -2,3 dbrardatane gives is2-butere The racenic isomer invives a less stddetranitiansteacompredtothemesoisarer.

167Sumnay

- The dfferert spatid arangeterts of ans in a moleale which are readly intercanetilde by rodion arand singe bond is celled corformaions
- Coffomers/ ratares/ confamaiand isomersaeinteconvetibleand nonsepardde
- Enegydfferncebetweenvaiascarformersisinbeween>06and< 16Kcd/mole
- Tho edreve corformaions of thane are staggred and edipsed conformaions Energy barier inethaneis $29 \mathrm{Kcd} /$ mole
- Butane possess three staggered (ane ati and two gande) and thre edipsed(anefully edipsedandtwo patially yedipsed) corformaions
- Staggred corformaions possess steic stran wheres edipsed corformspossessbothtariand andstericstran
- Redivestdility of six corfomers of n-btaneare Anti >Garde> Edipsed>Fulyedipsed
- By varias physicd methook like themodyamic propeties, dpole namet nearenerts, IR, Raman and micronavestudes enegies of dffere tcorformaiond isoresof 1,2dhaothanecanbedtained
- 1, 2dbromethenecantan85\%arti confarmerand1, 2ddhaoethene cantan 73% art confarmer ingeseasstatet 22 Ctemperture
- Deto the presence of polar sodvets the rdio of gadne corfarmes incemes
- In case of halothene if nunber of halogen subsituats incremes, barier enegy inceases graddly from $15.5 \mathrm{KJ} / \mathrm{mol}$ inethyl dlarideto $50.60 \mathrm{KJ} / \mathrm{rd}$ inheradlorothane
- In the IR and Ranan speetrumof 1,2 dbromethene in liqid and geseens staes eribit mrethantheallowed nunber of lines detothe presenceof bothati andganhefom Butinsdidsteit contansaly ati formthusitshonsallowednunber of lines inthespedrum
- Ethylene gyod exists in two stdde corfarmaions ati and garne fams
- In thylere gyed maximmfradion of moleale remins in garhe fam atthisformleadthetwohydoxl grapsaredoæemaghtogive risetoanintrandealar H -bond
- Subsitutededhand preferedgarhecorfarmaiondetothefarmion of intramealar H-bond
- IntheIR speetrumof thyleredycd twobanos apper t $3644 \mathrm{~m}^{-1}$ add $3622 \mathrm{~cm}^{3}$. The vibrtiond frequanies of thefreeand bonded OH ae sfficietlydffert ($\Delta \mathrm{v}=40 \mathrm{~m}^{1}$) which permitits dłetionindlute solution
- Butane2,3dd eist in the meso formand isoner and theee tho fomsareganhecorformes, whichpemitsH-bondng
- TheIR spectraindcaesthetheirtrandealarH-bondnginnmesoform isweake thentheracernic
- Raxeric butare2,3dd erkences thecondrdivity of boric aid nore thenthemesoform
- Themesofarmof 2,3dbrondataneersssintheati corformaionand thethrecorforme of theraernicformaedl subtatidly ypulited

168ReienQuestions

1 Whtcoyouundastandbythetemscorformaionandcarfigurtion?
2 Disass corformtions of thene Which corformion is marestdde adwhy?
3. Witeshatndecothefdlowing-

1 Corformations of dhalothane
2 Corformaionsof thyleredycd
4. Howcannestudy vaiascorformionsof dfferetcompands?
5. Disass the energy dfference of 1,2 dddarothene in greeus and liqidste
6 Howpdaity of sodvert dfedstherdio of corformersindhadhene?
7. Howenegy barie effeds with then unber of hacogensubsitutets in thy d docide?

8 IR spedn mof sodid 1,2dbronwetheisdfferet fromtheliquidand gereas 1,2dbronæthare Why?
9. Which corforme of dhacthene is morestde in poda solvet add why?
10. Whichcorformer of thlenegycd ismerepreferdeandwhy?

11 Disass thevaiascorforme of n-ateneandtheir redaivestdility.
12 Disass thelR spedraof twodæteremericforms of butare2,3dd.
13 Whichformof butane2,3dd posess mresesdality andwhy?
14. Whiteinshatdbattheapdicdion of ramericlatare2,3dd.
15. Exdanthed\&ails of variascorformaions of 2,3dbromatanewith sitddedagam
16 Howcorformion of 2,3dbrondataneaffet thereativity incæeof dedroningion?

169ReferencesandSuggested Resdings

- Stereachenistry, D. G Maris, Royd Socidy of dhenistry, 2001
- Sterechenistry of argaric compandz Pinides and apdictions D. Nessipri, NevAgelitentiona , 2011 (ThirdEdtion).
- AdvancedOgaricChemistry PatB: ReadionadSyrtheis, RJ. SundbergandF. A. Cary, Spingr, 2008 (FifthEdtion).
- Madt's Advanced Orgric Cheristry, M. Snith andJ. March Wlies Intessiecce, 2001 (FifthEdtion).
- OrgericChenistry,R. T.Marison R. N. BoydadS. K. Bhattadajee, Peason 2011 (SearthEdtion)
- Orgric Medarisif Readion Sterednenistry and Sythesis ,R. Brüdner, Springe, 2002(FirstEdtion).
- Streechemistry of caboncorpounds, EL. Bid ,McGrawHill, 2013

Unit-D

Confirmetionofsorregdicndeales Cyddatanes Cydqpataneand CydderneandManosbosituted Cydderne

Stutureof Unit

17.0 Ogetive
17.1 Introdution
17.2 Hettof contustion of ydoakkens
17.3 Thenatureof ringstran
17.31Corformtionsof yddatane
17.32Corfarmaions of ydquertare
17.33Corformaionsof yddheanes
17.4 Axid andequtcria bondsincyddheare
17.5 Corformaional madility of gydneare
17.6 Corformaionsof monoshisited yddneanes
17.7 Summay
17.8 Prddens
17.9 Refercebods

7.00bjetive

Thestadity of the moleale i8s a fundion of the vaias paramed the djectiveof this unit istostudy the effect of intern stranonthestddility of themoleale theorign of thestrancores fromthesteic strain dpde -dppleinteration, bond angestran and bond aposition strandl there fatars shons the a capled impat an themdeal ewhen it aqies sare prefered corfirmaion .the physica and the chemized propties of the moleale undr eearindion, deperns mairly yponits carfirmaionin the preat urit al the dboverntionedfatar havebeendsabsed in dłdil
frothecydic systens soastoreachacondusiveideaof thestudureof the noleale.

D.1Introdution

It wesknowninealier times dadquertof devically that cydic molealeseistinnaure
A number of cydic compands cantaning five and six mentered rings wereknown It wes doseved by the derists that compand catainingthree or far cabon tons were dffialt to prepare Many ffats nere madefromture to ture to prepare these compunds it these were not sucessfu.
In 1855 Addf Von Bager a pianer waker in the fied proposed a therticd interpredion of thedffialties wsoided withtheinstdility of cydic noleales like y d q popanes and gyddatanes
Accordng to Bager viev in cydic compound cabon prefers to have terchedd geomedy withabondangeof 10928. Thusitisdbiasthat in theconpounds the than cydqpertanethe cabonatomwill expeiencea grain Bayd's wark wes based y yon asimde gememicd ndion that in threerembered ring being aequilterd triange(Cydqpopane) the ange is 00 wheessinafar mermesedring(yddatane) beingsquerthebond ange shald be 90° and in five mentered ring (Cydqpettane) being a petagnd instrpe, thebondangestaidbe108 andsoon
Accordngto Bager in yddqupanethebondangeis 90 soitshauldbe undr anangla strainof (109-60) 49 andth smetbehigly readive. Incyddatarethisstranis $19(109-90$) Soitmst dsobereative If we lock to gydqpertanethestranis $1^{\circ}(109-108)$ soitis annet stranfree wheres cydderane (109-128; stran - 19) and ther highe cydoakenes seemto bes gested thet vey lagerings ae highy straned adsoshall beincopddeof eistace

Althugh the suggetion of Bager caries some truth abot the angla stran in sam rings howere rings haing three cabon dons to thity cabontons caneailybeprepred Letslooktothefads

72HatofConbution of Cydoalkenes

Incrob to maretheamurt of firststraininagivenargaric compound, nefirst murethetdd enegy of the compand and then substrat the eregy of astrainfreerferencecompand Thedfferencebtweenthetwo valuesgivesusthearart of edraenegy of themdealedetostrain
The simdest way to edute the stran enegy of cydoakenes is to neeretheir heat of conlustion(i.e, thearourt of het evdvedwhenthe compand lums compledy with oxygen) The wre enagy (strain) a compond cortain, the more enegy (a heet) it will releme dring conlastion
Nowbecasetheheet of contustian of ahydocabon dqpends upanitsize, it isd丸emined $p e r-\mathrm{CH}_{2}$ unit Sultrading arefercevaluedarived froma stran- freeaydic alkneandthen meltipying by thenunter of CH_{2} unit intheringgives ovedl stranenegies Thereslts of shawcdaldionsare givenbdowinthetdde

Cycloalkane strain energies, calculate by taking the difference between cycloalkane heat of cobustion per CH_{2} and acyclic alkane heat of combustion per CH_{2} and multiplying by the number of CH_{2} units in a ring. Small and medium rings are strained, but cyclohexane rings are strain free.

The data show that Bage's theary is incorred cydqurpane and gydatane ae indeed qitestraned bt cydqpettane is more strained then pred deed and yddheareis strined For cydoakanes of sill laggo size, thereisnoregla in ineereinstrainandrings of morethen 14 cabon tonsaestran- free

173 TheNthreof RingStrain

Baye dring tis subnission of angla stran wsmed that ring ae flat andthisasumdionapeerstobewrong Adudly noto of theydodkens aendflathtadpt prkeredtreedmensiond corfarmionwhichallow the bond ange to acairenerty aterchedd velueso it appers that the concept of Bafer mot hdd for three and far mentered ring in cydodkares
In addtion to angestran severd athe fatars ae incorported in the dłemindion of shapes of cydoak knes Onesuch fator is the barier to bondrddion Thisisdsorferedætorsiond stain Itiskrownthet theee qpenchandkanes aemost tddewtichhaveStaggredcorformaionand these having edipsed corfarmaion are leat stdde This condusion is etandedfor cydoaknens dsa In cydoakaneif theneighburingC-H bord elipse ech ther a torsind stran is creted for example in cydopropanethere is a considaddetariond strain in addition to ange stransinceC - H bonds an neighboring cabon atons ae edipsed It is shownbado.

Stereo View

It is seenthat lagr cydoakareadpt pukered nondarer corformions tonirimizethertarsiond stran
In addition tho types of dowe dsabsed strais i.e arege stran and tariond srain thethirdfator isteric stranwhichdsocratributes to the ovedl straneregy of cydoakare In a moleale two non bonded dons repd ech che whenthey aein doseaproach Whentheernonborded tons aproach tho dosdy, they ttempt to coapy thesame positions in sporesurd none bondng steric interations play an importat rde in dedidng the nirimem eregy corformaions of cydoakanes having medumsize rings moleales cortaining seren cabon atons to deven cabondans
Thus it can be conduded that cydoakare adpt their ninimmenegy corformaiorsby induingfallowingtreetypes of strains
(a) Angestrains the stran de to epersion or compression of bond ange
(b) Torsiond strain The strain de to ediping of bord preat on néghouringtonsand
(c) Stric strain The stran de to replsive inteations when đons aproacheachother veydosdy.

D31 caffardiansof gddatane

Cyddatanehesless andestrainthen ydqurppanelatherethermagitude of tarsiona strainismerebeeaseitcontainslager number ringhydogens then in cydquropare The realt is that the tod stran for these tho

Ithesbeenshoweperimetallythatheringincyddatareisnotqitefit
 of dhe threeremiring cabondons Thisisshownbdow
(a)

(b)

(c)

Thecarfarmionof gddatane
Theovedl effet of this sigt bend resils in an inceeses in the ange stran but in a dereese in the torsiond stran, until a ninimmeregy balacebetweenthetwoqpposing effectisadieved

1732 Corfannziasof Cydquatane

Bayer predced that cydqeatare ring is nealy stran free but its conlusion data indcde that it hes a tod strain enegy of dat 260 $\mathrm{Kmm}^{-1}\left(6 . \mathrm{Kcd} \mathrm{md}^{-1}\right)$. The parer cydqeetarehes pratically monge stranbutithesalagernmitudeof torsiond strain Duetothisreemonthe ring of cydqeatanetwiststo acquireap nkeed nonplarer conformaion which cases a bance by incering its ange stran and dereering the torsiond stran Far cabon atons of cydqpetane lies aproxinady in thesareplanebtthefifthcabondambertatof theplare Mostof the
hydrogens beconeneelly staggeed with respeet to their neigghbarsa is dqpidedinthedagambdow
(a)

(b)

(c)

Confarmaionof Cydqpatane

1733Corfarnatiansof Cyddneanes

Susbsituted cyddnexanes ocar widly in rature A lage vaity of deanicd compands, used a importat phamacaticd agats cortan cyddheranering

Experimetd dtacdleted by thestuly of contustionethapy of cyddexanedta suggesthat cyddexaneringisstrain- free, with nither angestrainnortariond strain

Theerdardionto the dovefat wes first sygested by Hemam sadsein 1890 and westhenetanded by Enit Mdr. Corraray to Bage's assmdion the cyddneanering is prkered into athre dmensiond corfarmaion whichreteives its al typeof strans The angeC-C-Creachesthestranfrreeterdiedd value(109) whenthe ring adpds a O-AIR-CONFORMATION (So called beameof its smilaity to ala ngechair haingabod, set addafoctret). This isshowndowinthefigre Futhemrereif themdealeissigted dangay oneof theC-Cbordina"'Nenmmnprgedion" formait
 neghbaringC-Hbonosareinstaggredpositon
(a)

Stereo View
(b)

(c)

Conformaion of Cyddeane
A Coniriet wey to visulize dair gddheare is through its nolealarmodd. Thiscanbednneinthefdlowingthreesteps
stpl: Two pardle, sateddownardlines aredannutichare sigtly offseffromeedhather. Thisistoshowthetfar of theyddhearecabontonslieincreplare

Stpill : Thetqprost cabonatomislocted aboveandtothesigt of theplareof theothe far and therearecometed to showtheborns

Stpill : Thebotornmot cabonatomis shownbadowadtothe let of the planeof themidle far cabon atons and is cormededwithbonds

It istobendedtht thebonos of top riestand bottonostcabonansmest bepadld.
Whenthednan of cyddeereeis vieved thelower bondisinfart and the upper bondisinthebadk. Trisisdonetodiminatetheqdicd illusion This isdapidedbdow

1.4 Axia andEquetoria BandsinCydderane

The dair corformion of cyddnexane edibits impotats effet on its deenicd behaviar. For exampe the dervicd propaties of shbstituted cydderanes is significatly controlled by their corfarmaions Thereare twotypes of positions for subsiturts onthering. Theseare"axid" and "equtorid" positions The dair cydderane hes six axid hydogens which are papendala to the ring (i.e, pardle to ring axis) and six equatorid hydogen which lie in the plane of ring (i.e, aound the ring equtor). Thisisshownbadowinthefigre

Axid andequetaid hydrognatonsindsir gddheane

It isevidat fromthedowedaganthaterch cabondamin y ddnexare hes creaxid and dreequtcria hydogen Thuseach side of theringhes three axid and three equtaid hycogers aranged dtentely. For eampe if thetopsideof theringhes axid hydogenson cabonatom1,3 and5 thenthre will beequttrid hydogerson cabonatoms 24and 6 Therevesewill betuefor bottomsideof thering
It is tobendedththrethetemindogy 'ds' and'tran' isnot used Tuo hyctogensonthesaresideof theringaredwaysis, reegadess of thefat that theyaeaxid orequtorid oradacet Intheserevaytwohydogens on cpositesides of thering aredwastrat reegrdess of whehe they are axid orequtria.
The procedre for daving axid and equatoid bonds is attine in the fallowingdagam

Axial bonds : The six bonds, one on each carbon, are parallel and alternate up down.

Equatorial Bonds: The six equatorial bonds, one on each carbon, come in three sets of two parallel lines. Each set is also parallel to two ring bonds. Equatorial bonds alternate between sides around the ring.

Completed Cyclohexane

175 Confarmationa Mdailityof Cydderane

Aschair cyddexanehestwokinds of positions, ieaxid andequtaid we can expeet that a manosbsitited cyddexanewill exist in two ismeric forms Infatthereisoly onemethylyddhexane onebronocydderane, ane cydderane etc and the remon for this is that cyddexare ring are confarmionally madilet tromtemperture
Differet dain corformians are eaily and readly interconetible and this reslts in theexdangeof axid and equtaid positions. This typeof interconersianiscalledaa""ing-flip" andisshownbadow as the result of this fliping those positians which were prevertly ccapied by theaxid hydogen arenowocapied withthehydogens by theequtarid hydogens andviceversathisringflippingtkesplaceby aproximady by 10000 perseondt25degeecertigade

Stereo View

Thedrair corformaion of the gddheare can undago ring fliping by keadingthemiddefar cabontans in plaeandfddng thethoendsof thecorfarmionin qpositedredions Inthis process theaxid subsituat incrigind dair formberones anequtrid shasiuat in thering flipped drairformandvicevesa foreampleanaxid didroyddhearebeecones equtrid dhocoyddeermeater theringflip
Theeregy reairedforthisprocess of dair-dar interconvesionisody that $45 \mathrm{Jmol}^{-1}$ ($10.8 \mathrm{Kcd}_{\mathrm{col}} \mathrm{l}^{-1}$) consequatly the process of ning flib cours t vey radid rate t roomtemperture This we doserve aly a singe stucture rather then dsint axid and equanid isomers This is shownbdowit canbesenfromthedtaof interconvesion of thedrair to bodformandvicevesathet speetroscopic methoob aretheodydterntive toharethecrredtod for the wsigenet of therddivepositions of the grapshowere in ceeof thereationnturethespodid arangenertof the grapschanges esthedininetioninudvingof thehydogenhestobect the
traseaitorid tothehalogentomfor theatiperiplarer arangemef the goupsdnethroughtheflipping of theconformions.

Forabetter undastandngleusdaw1,1-dmethyl cyddnexaretoindcate which methy grop is axid and which is equtorid. For this wedawa dair cydderane ring and then we pt two rethy group t the sare cabon tom Themethy grapwhidlies intheraghplaneof theringis dweysequtarid andthecther isaxid. Itisdapidedbdow

7.6Conformaiorsof ManoskibituedCyddreanes

Athough gydnerane rings radidy flip bedwen cafforntions at room temperdure the two corfommions of a monosbsituted yddneaneare not eqully stde For exampe in methy gddherane the equataid corformer is morestdethen axid corformer by anamort of $7.6 \mathrm{~d} \mathrm{~mol}^{-1}$ (1 KKcd md^{-1}). This stadility citeia etenos for ther monosbibitued gydderans dsa In gened a sbosititet is nore stdde in equtaid corformaiontheninaxid corformaion
It is krown that in such situiars the percertage of tho isomes at equilibriumcanbeerdutedbyuingtheeqution $\triangle E=-R T \ln K$

Where $\Delta E=$ Enegydfferncebetweentwoisomes,
$\mathrm{R}=$ Urivess gescotat $\left(8313 \mathrm{~K}^{-1} \mathrm{~m}^{-1}\right)$
T=TemperdureinKdvin
$\mathrm{K}=$ Equilibriumconsath bedwentwoisoness
If the above eqution is apdied for the equilibrium equttriad methloyddherare \rightleftharpoons axid methloydderare(with value $=$ $\left.7.6 \mathrm{k} \mathrm{mod}^{-1}\right)$
 gouptequtorid position tay giveninstat and orly 5\% havem wh gruptaxid positions Fdlowing figredpids therdaiorship between enegyandisonerpercertage

Energy difference (kJ/mol)

Caseof theenegy dfferencebemaxid and equtaid corfamers is thesteric srainwtichis caseed by "1,3-daxid interation". Thet is the axid methl grapat C, is very doseto axid hydogenous an C_{3} and C_{5} (thre cabon tans avey) and this resits in a steic stran of dbat $7.6 \mathrm{Jmol}^{-1}$. Thisisshowninthefigrebdow

This 1,3 daxid steic strain is very commen in cydoakanes In cyddatanethesteric strainbetweennethyl grapingaunebutanenakes it less stdde then ati butare by 3.8J md^{-1} (0.9Kd nod ${ }^{-1}$) becase of steic inteferencebetweenhydogen tons anthetwo wethl grap If we comprethefar cabonfragrert of axid methylyddnexarewithgande butare It is doserved that steric interations is sare in boththecesesthis caesthisdquicedbdow.

Gauche butane
($3.8 \mathrm{~kJ} / \mathrm{mol}$)

Axial methylcyclohexane
($7.6 \mathrm{~kJ} / \mathrm{mol}$ strain)

If welock dangtheG - C2 bondof x xid methicydderanewesethat axid hyotogent C_{3} hes agannebutereinteration withtheaxid methl gaptC. Sinilarity adngC- C_{6} bondshons that the axid hydogent C_{5} dsoles agarnebateneinteration with theaxid methl gropt $\mathrm{C}_{\text {. }}$. Bdhinteations are doset in equtorid methlyddherareand thw we findaneregy dffererceof $7.6 \mathrm{KJ} \mathrm{mol}^{-1}$ beveenthetwofams
Theaiterion for methloydderane is dso thefor other monosbsitued cydderare A sbositurtwhensedtedt equtaid positionis morestde then when it is axid position Theeat arourt of 1,3-daxid steic strain in a speeific compand dapenos on the nature and size of the sbositut

Thisisderfromthedtagiveninthetadebdow.

Stranco meHY 1, 3-daxid interation

	$\begin{aligned} & \mathbf{Y} \\ & \text { (Kcd/md) } \end{aligned}$	(S / md)
	-F	05
012		
	-a	10
025		
	$-\mathrm{Br}$	10
025		
	-OH	21
05		
	$-\mathrm{CH}_{3}$	38
09		
	$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	40
0.95		
	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	46
11		
	$-\mathrm{C}(\mathrm{CH})_{3}$	114
27		
	$-\mathrm{CH}_{5}$	63
15		
	$-\mathrm{COOH}$	29
07		

01

Stricstraininnonosbstittedoddheanes

The dta in the dbove todde indcaed that the arout of steic stran incesintheads

$$
-\mathrm{CH}_{3}<-\mathrm{CH}_{2}-\mathrm{CH}_{3}<\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\ll\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-
$$

And it is accordence with the incersing bulk of these aky gaps It is dso to be nded that the values in the dowe tade ae for 1,3-daxid interations of the sbsitust with one hycoogen atom These values if dubledwill givethearourtof staninmonosbsitted yddherare

1.7Summay

- 1885 Addf vonBager westhefirst pessontotheretics formidionto erethedffialties wsocited with insddility of the cydic noleales vizcydqurpane,gddatanes anddhes
- Bager stran theary was based on the simple calaldion that cydqurparehestheangeof $\omega_{0} \mathrm{deg}$ cyddatanehes theargeof 90 deg and y ydquatanehes 108 degeeandsoon
- Anrong the traggred and edipsed corformes of the cydoalkarethe nost stde is thestaggred corfirmaionax it indves lets realion intration
- the steredhericd aragerets of the band in the gddhereneare sunthet they areaxid andequtrid, wherintheequtaid aredang theplaneof theringwhileaxid aeathognd totheplareof thering
- Fortheprocess of thedimindionthehyctogenof theoydderenehave to beintheati peidarer corformaionso in thepresenceof thebæe the hydoogen arangs in the wey thet they ae Trans to thehalogen tam
- Flippingfrequarcy of theaxid andequtoid hytogen areatherde of cre lath tiness per secand as the enegy required for flipping is proidectheromememprature
- 1,3 positions of the cydderanes sffers a geat repisive interation whenthentureof thegapsisdangesfromlessbulkytomerebilky
- Enegy reqired for the chair -dar flipping is very less aand 45 K / md.
- Thepresence or thedberceof theqdicd ativity of thecafemersof cydic compands can be sated at by the we of the polaineter, wherintheqdically ativecorpandslosesthecertreof symmery.

7.8Prddens

1 Cydquopane is norestraned then oyddneareby $115 \mathrm{~S} / \mathrm{md}$. Which hesthehighe het of combutionon aper grambesis, cydquroparear cydderare?
2 Draw 1,1-dmethylydderare indcaing wich methy gapis axid andWtichisequtrid.
3 Each hyctogen - hyctogen edipsing interation in thene costs dbat 4.O.J/ mad. How many such inteactions ae preset in cydqurpene? What fration of theover al 1154/ md ($27.5 \mathrm{ked} / \mathrm{md}$) straneregy of cydopropeneis detotasiora strain?
4 Us-1,2-dmethyloyd qropenehes a lage het of corlustion then trans-1,2-dmethylydqurgene How can you accant for this dffernce Which of thetwocampundsis merestde?
5 Hownanyhydogenthycogen dipsing inteactionsualdbeprestif cydquetcne were pare? Assuning an eregy cot of 4.0.d/mod for each elipsing interation how morh tarsiond stran woild darer cydqpertanehave? Hownorh of this stranis relieved by pukering if themesredtad stranof gydqpetarein260.J//rd ?
6 Draw the rost stde corformaion of ds 1,3 dmethylyddatane Dranthelest tddecaformion
7. Dran tho dfferet dair corformaions of cyddneand (hydroxyyddheare), showing all hydogen tans Idatify erch poitionaxaxid crequtaid.
8 A is1,2-dstostitued gydneare, surh as is 1,2 ddlaroyddherane, mit have one gap axid and one gap equtoria. Exdan
9. A trans 1,2-dsubsituted gyddeearemot ethe havebothgraps
axid abbothgrapsequataid. Exdain

10 Dran two dfferet chair corformaions of trans 1,4 dmethylyddheran, andlabd all positionsexaid orequatad.
11 How cen yourccourtfor thefat thet anaxid tet-atyl substituet hes mochlagor 1,3daxid inteadionthenisquropl, atisquppl isfarily simila to thy andmethy? Usendealar noddsto hdp withyorarane.
12 Whydbyouspposeanaxid yanoshbsituatcasespraticallyno 1,3-daxid steic stran ($04 \mathrm{~L} / \mathrm{m} / \mathrm{m}$)? Usemdealar nodds to hdp withyarareve.
13 Esinatethepace tageof x xid andequtaid corformpreseta equilbiuminbromoydderare
14. What isthesterechemicd reairenert of theediningion reation of thehdosubsituted ydoak anes

7.9RefirenceBods

- Sterechemistry of agariccompunds,D.Nessipri
- Sterednensity of theargriccompands, P.S.kdi,Newaye Pudication
- Oggericchenistry, I.L Firra.

Unit-18

Corfamationsof Di-Subsituted Cyddeanes

StutureofUnit
180 Ojedive
181 Introdution
182 1, 1-dssbositutedoyddheanes
1821Disbstitted ydderans
1822(A)1,2-dsubsituted ydderare
18231, 3-dsbstitued gydneranes
18241,4dsbstitted yddheranes
183 Disbsititued ydderernes
184 Di subsituted yddhearones
1841(1) gemetry
1842(2) ringinvasion
1843(3) 2-akkl-add-3-dkylkemeeffed(sayanakky grap)
185 Mdealarmedarics
186 Stran
187 Summay
188 Revienquetions
189 Refremeebods
1800djatrive
itisknownthatreedmenionnatureof compoundandtherddionaound cabon-cabonsingebondleobstodfferetspodid criettion of moleale theseare colled rderers inthis urit a compled dsassion of thereslts dataned by the andysis of spatid reftionsip of vaias shbstituest preat in cydic asysemmain enterishes beenladddwnyonvaias types of Strain prodreed inthemdealethis intumhae an effet onthe themrodyremically andkintic stdility of themdealedringacherica
syithesis of a complex moleule thestudy of and the knowlecte of the corfimmions of theal thespeeies ind ved appeas to9bepineffator in triss unit the cydic syters haing two sbosituat hes been studed in dedil theprddembecomes norecomplicted when afundiond grap is asoprest inaddtiontothesbositust.

181Introdution

Thepininde of corformaiond andysis of monosbstitued yddheanes Hoverer, tho addtiond paintshaveto betkenirto corsidgrion These ae
(1) Disbasituted cydcheanes geneally eist in two a more dateremeric farrs and erch of them is capobd of evising in tho (sometimes even nore) cafforms Thusit is dexidde to exanineæch pair of corforme of adateremer on thebasis of, symmedy, ethapy, etropy andfreeeregy basisto eddutetheprefered corformation Then a compaison is nade beveen the dateremers through the prefered coffomer of corfarmerfeah
(2) The sobsitited preset nay interat anang thensidves steicelly or thewiseand theseinterationsmot dsobeind udedintheardysis

1821,1DisusositheelCyddheanes

1,1-dsbosituted cyddherenes ae dso called a genirally substitued They dont etribit any corfigurdionds isconerism bit eist in tho interconvetidecorfomesisgiveninthefdlowingfigre

Theer forms are sparted by ech other by an enegy banier which is usdly of thesamearde of magitudea the cyddherareringinersion Whenthes bsiturts X and Y aesamearin1,1-dmethl cydderane the twocorformersaeidaticd adareknownettoperes Onthedher hand when the shbiturts X and Y ar dfferet for eample I 1methloyddherand, thetwo corforms aredatereores and arepreet in unequl anouts In pinide in sud cees the raio of the tho cofformers shald conespond to thedffernceinthecaformaiona free emgies of thetwosbosituets
Sonelime it is dso fand thet athough the corformer with the bulker sabsituats in the equatrid position generaly predernintes bt there eiss a ledlling effet, i.etheprefered corformer is less poplated then eqpeted Thus it is doserved tht 1-methylydderead exiss a a 70.30 nixtureof axid andequtrid corformsindmethy siphoxide(DMSO) t 35 C corespondngto afreeenegy dffermeof $2 \mathrm{Z} \mathrm{mod}^{-1}$ wheres the atud dfferercebdween $-\Delta G^{\circ}$ values of m thy and hydroxl gaps is aand35. smol^{-1}. Thisisshowninthefigre

Insonesitution theoppositecorformer predenintes Thusincæeof 1-methy-1-phend cyddheare, the corformer with axid pheyl and equarid methy is prefered ore the the with equtrid phenl and axid methy by $133 \mathrm{X} \mathrm{mod}^{-1}$ in spite of the aprididdedfference of $-\Delta G^{0}$ values of phend and methy grap which ae 126 and $7.5 \mathrm{Xmol}^{-1}$ respedively. Thiscanbeeddaned onthebais of thefat thet pheyl ring increcoformer issocietedthat itsinterationswith axid 3 H and 5 H aeminimuThrenay besorreintaraionsbeweentheathohydogers
andadarestequtaid hydogers Onthedher handinandher corformer thephend gapisinitsuad bisectingoiention andinterats strondy with the hydogen ators of methy grap This is dagandically shown badow.

1821DisubsitutedCyddheanes

It is doseved that nongeninally dsbstitued addheraneeist in tiree sts of positiond isomers which ae 1,2, 1,3 and 1,4 isamers Each of themconstitues apar of distrasdazteremerswhichintumeisssintwo interconetide dain corformes In addtion to this, deperding yon symmety propety, a patiala iscmer nay eribit eneationeismaso. There al sitution areshown dagaratically dsa Theeedl situion are showndagraticallyinthedagambadow

2

3

Configurdion and corformaions of dmethylyddexanes (the dable headed arons indcate idatity and the revesible arows ring
invesion)These dsbstitued cydderenes are dsabsed badow sytandically.

1822(A) 1,2disbbititedoddherne

It is impatat to ndethet in cæe of discampands of this cotegry, me sbosituet mot be in the axid position wheres the other shald be t equtroid position If thereisadfferenceinthesizeof thesbstitusts the 1, 3inteationswill beconedbninat patialaly whenthelargr gapis inaxid position
So it is eidat thet the corformaion with lager gap in equtaid position, will beof lowereregy.

Classical formula
Coniomations
To illustreit we can sigt theeramde of is2-methy cydderand. In thiscompand beasemethy gapislaga insizethenhyctoxl gap, this the prefered corformer shall be ore in which the methyl gap is equtrid ie, lahydoxy, zemwhy. Thisherbeenfandtuea gagenal rue, wecan say that, geete thedffermein thesize of two shbsituent, lager will bethedbnirency of thecorfomer whichlaslagg gapinthe equtcrid position
InGiscompundshaingtwostbstiturtsidaticd thereccursaplaneof symmery andherceresduionisnd posilide Onthedhahandif welook to the caformaiona represeltion thenfor theis companos with $Y_{1}=$ Y_{2}, threarenderets of symedy and coreequtly thetnoforms are non-sperimpoibe When this type of corformaion undagoes flipping therestling corformaionis theminco inmog of theaigind corformaion andthtddainedfter flipping their mpaldiansareeqd andsothistype of 1,2-dshbsitited ydderarehaing $Y_{1}=Y_{2}$ is qdically inadiveThe absenceof qdicd ativity is deto eterna comperstion Hoverer suh
typeof compandshesnever been resd ved and thereesonis beingthat the two enationers are readly interconetible In athd padise each eneationer undagoes very radidatoracerisation
Whether the subsituats Y_{1} and Y_{2} are idaticed or dfferet, the two carformions aendsareand becaseof the1,3interatiansthee,eform will be more stde than the dsiscrer (ae form). An examde of this sitution is of the compand 2-rethylydderand. Thetranformof this compound if found to berrerestdethen theas The is formconnets readly intotraformwhenheyted with sodumnoreoveranredrtionof 2-methl-cydderane with sodum and ethy dcohd, Trans form is prodreed

trans-1,2
Classical formula

$1 e, 2 e$

Conformations

Boththedassicd formiand theee(andaa) conformaion of trans 1,2dsubstitued cyddexane (whether Y_{1} and Y_{2} aresareof dfferet) and nonsuperimposideonther nirror inæges Noneof thecorformaiancan beconveted into its mirror inægeby flipaing Henceit can beconduded thattrans1,2-dsubstituted cydderanessubsituatsareidaticd arnot

18231,3DisubsitutedCyddeenes

In 1, 3-dsubsituted campands thetwo trans corfandians areidaticd whenthetwosubsiturts aresare Thediseeformisnorestddethands aaformanddsother transeaconformion For examplein coeo 1,3 dnethylyddnexaretheois1,3-eeformisthemostsddecorfandion It is to be noted that this sitution is revese of that of the 1,2dnethyloyddexane Accordng to a nle the isoner which hes higher boiling poirt, refrative index and dansty is the ane with less stdde corfigurdion Thusthetrans1, 3-dsubsituted cydderanehanethehigner
physicd propeties (theTrars formhes moreaxid substituets then more stdeasform

182414DisubsithtedCyddeanes

Classical formula

Cis-1,3

trans-1,3

Conformations

a,a
e,e

e,a

In these compands the is isorer eists in two idaticd ea and ae corformains Ontheother hand thetransisamer isfound to evist intwo dfferet ee and aacorformaions of these the aa corformion is unstde besase of far garde intrations by an araut $15 \mathrm{Jmm}^{-1}$. During symmery qperdions it is doseved that the veticd pane pessing throghC-1adC-4isa σ paneandthusal corformsaeadird evenif thetwosubsiturtsaredfferet
When both the susbsituats are dfferet the 1,4trans isomer hes dequtarid corfarmion but the is ismer is fand to evist in tho dfferetly popided eacorformians of these the corformer haing bulkiergapinequtaid positionisfoundtodoninate
It is seenthat argumets usedfor thedsubsitited cyddnexanecandsobe apdied to the highe substitued cydderane To sumup the fdlowing generdisdionnany behelpiu.
(i) In cyddeeanesystens, rono-d-ti and poly subsituted darivaives dwayshaveatendancytoadgtdaincorformaionafaraposside
(ii) The dain corfarmition with naximm nunber of equtaid shbstituats is dwass prefered This is truealy whentheirterna farces deto dpdeinterations or hydogen bandng do not eist When these interations ae peest, it is necessay to demine the doninding interationbefreffirdisingthecorfarmionfor thendealeundr stuy.
(iii) Theeregy baries beneen varias corfarmaions ae so swall that theirmatud interconvesionscanotbepreveted
To illustrate the dowe genedistions lit us consids the cæe of cyddeeare-1,3-dd. Thiscompoundisknountohavedaxid rathe then deantorid dientdion Theresonfor this is that threis interandeala hyctogen bonding (shown by its iffraed speetra) which stddilises the daxid bitnd the dequtbid fom Thecorformaion of thering is in the dairformThisisstownbedow

Whenintrandealarhydogenbondrgis possidebedweenthesbosituats tland 4 poitions themealemay wsumedabot corformtion rather thenthedrai inwtichthehydogen bondingis not posside Howere the botcafarmitionnaybeatwistbotform

183DisubsitutedCyddneenes

Cyddeererecontain two spa hycridsed cabon tons Thecorformaion has been studed by X-ray aystallogady add dso by its detron
dffrationstudes in vapar pree Thepreameof adaldebond inthe ring cases theringto ass methehaf dair corformaioninutich tons 1,23and6lieinomedaæe Thisisshownbdow

Cyclohexane
Thehydogenatonspreseta C_{4} and C_{5} aeaxid andequtoid types but the hydogen atons preat it C_{3} and C_{6} are prest in quai-axid (α psend-axid)(a) andquex-equtaid (ar psend equtaid) (e) mshown dove
The addition of halogen and halogen acid proceeds thrach plar meedrismand reslts in the farmation of tras prodit, so it can be atiopted that the prefered prodit will be a daxid one in a rigid system Honere, innobilesytemif thedaxid formislessstdethenthe dequtrid form then the equilibrium will shift towarcs dequtorid form It hesbeenfoundtrueeperimetdly dsa Froeamdenhen yddherare is allowed to reat with bromine the prodit dataned is trans 1,2 dbrowydheareand the daxid and dequtaid forms evist indat equa arourts Thetwo C -Brbonds, beingpda, exetstrongdpdedpole interadions and thw patly offet the 1,3interations It is interesing to nde that when the addion of bromine is caried at in the peesce of andhorine or indoridne the prodit daderned is tras -1, 2 dbromoydderaneaditisqdically adive In dsubsituted oyddheanes, allyic 1,2 stran is found to eist For eampeif thetwoshbstiuats X and Y aesufficietty lage, thenincere of equtaid corform theresbstitatswill inteferestaically andsothe axid carformer will doninte in cæeof 6eandl-suddituat thedhedd angeislone thenits namal value If boththesbosituats aemethy the axid corforer is prefered and it has been proed by their themodyranicd studes It hes dso beenfound that allyic 1,2 stran is considardewhentheshbsituats preatarebilky. It is corfimed by the
fat thet thecompanderanimefigIIII) and 1-pheyl-6t-btyiyddreare (figIV) evis inaxid carfarmaions Thisfact hes dso beensyportedby theirNMR studes Theeecompandsareshowninthefigrebdow.

I
II

III

IV

184Di SubstithedCyddheanones

Cyddheranemdealeeistsinthednarform This dairfamprodues atoporer. Sonetinest twofleidefars aedsondices All thesefoms aeshowndagandicallyinthedagansbdow.

Corformaionandgementry of yddhearcone
Thedbninstingdrainformof theyddherannemdealedffesfromthat of gddheaneinthefdlowingpaits

1841(1) Geandry

in cere of gddheranere the ring is fand to beflattered t the side of cabonl gap. Inthedrar farmthereis a veticd plareindving C-1 andC-4 andfrom thesymmery pairtof vievitfalls inCspartgap On the dhe hand thetwo fleideforms bedangto dird pairt gaps which arC_{1} and $_{2}$. Thedbnineney of anglar andtasiond strainscasessone instaility in cydderanone as compared to paretd compound cydcheare
Thefleible forms ae nure stddilised de to their twist bot stuctures Thusit appeasthat in cere bllky sbosituents thefleidefams will be norepaplad

1842(2) Ringinesion

The value of free enegy of ativaion for the ring invesion in cyddhearaneisfoundtobecompardively lone andtheresonforthis is de to the dfferet tatus of hybidstion of ring cabon tans in oyddearone Morever deppadruddion arong thefleideforms is merefrequat thismaingthetrasitionsdesuridatica.

1843(3) 2alkyl-and-3alkylktoneffet(ssyanalky grap)

 C-6 it inteads with the oxygen tamof >c=0 grap and prodices a destddiling effet of equtrid corformer. This is known a 2-dky ketone effet In3-dkyiyddheranne, theaxid corforme is norestdde then equtaid corformer and this is known क 3 dkylkeme effect dagardically thereffetsareshownbdow.
(a)

$$
\mathrm{R}=\mathrm{Me}
$$

(b)

\rightleftharpoons
(a)

Kedneeffet (b) 3-Alkylkedoneeffet
Arrang dsubsituted cydderannes, 2,6 dbrono-gdderanone hes beenstuded indtail. Whency. Thetras iscrer isfound to predminte ThereccursarealsionbeweenthepdarbonosieC=OandC-Brandan athogonal arangenertisdataned
Onthedherhandin3,3,5,5tedrarethy-2,6dibromocyddneranonetheds isomer is formed dthough it involves considardle dpledple inteadions in it This can be exdaned on the bais of the well known reflexffet
Accordngtothis if theblky gaps arepreser inaxid positionsonone sideof thering theaxid bonds qpen and cases somedfarmaion inthe ringietheaxid graps aepinched anthedhe sideof thering. Thisthe axid brominehaveseveresyraxid interation with for hydrogen tans preset in the axid position Thus the stadility order is revesed then expected by other considadians.

Reflexeffetinbrorocyddnexanes
It is doservedthat cabony grapinteratswith- subsiturits insubstituted oydderanones andsomedengeinsetroscopic propetiesisprodreed
TheIR stredcing frequany of $>\mathrm{C}=0$ grap in equtaid conforer is sigtly inceesed Onthecthe handthis frequany is not changed if axid halogens aepreset. Thusthisfatcanbeusedtodfferetidebedweenthe isomerscatainingaxid andequtorid halogensanthecabonatomnexto $>\mathrm{c}=\mathrm{o}$ grapinthedshbstitued cyddhexanones
On theether hand the presence of polar axid bond in dsubstituted cydderanonecases abothodromicsift in $n \rightarrow \pi^{*}$ transition of cabonyl grap Thecaseof this shift is assmed to bedeto dalocdistion of σ and π deatrons In equtaid isarer sare hypsodramic shift is seen whichis of lower valuethenbathodromic shift
Ithesdsobeenfandthatthehydogentamtaxid positionpresertathe -cabon tamcan erily berenaved by betweenthedectrans of C-H band and dectrans of the $>\mathrm{C}=0$ grap This favars theformaian of endze aion Thesare reason can be offered for thepronetion of the endate arionformtheaxid side

185Mdealar Madnerics

Mdealar meedrics, which sonefines dso known as faced fied caldion, is andthentica proedrewtichis uedfor theproweof calaling corformainal geemetries this nethoos used to calalte the fdlowingthepraneeresinthecorformions of noleale

1Bandanges

2Bonddstances

3 Todd paterid enegy
the dove parates ae compted for erch carfarmaion of moleale undr eacrindion to provide dove informion we dso have anther aproach known a Mdeala arbitd calaldions bat it is doserved that molealar medarics is erier less a mbesone and is more is more acarteinmelealarabitd calaliansposition of thenude of theatons aeasumedad waveeq.ions areusedfor thepuposeof dedrons.an the the hand molealar needrics calaltions ignoethedectrons and concertratetostudy theposition of thenude .thereis andherdfferencein the tho aproaches. in moleala arbitd colaldions erch ndeale is andyzed ∞ an indvidd unt whees in moleala meederics firsty parcetes are calalted for the srall moleales and their data are then usedinthecalaldionsfor thelagr andcomdicatednoleales
in molealar medarics someempincally daicest of eqdions re lsed for the purose of calalting inepaterid enegy of themoleales three equtions indude tems like vibrtiond band stredcing, bond ange bending and dhe interationterms betveen varias dons preat in the noleale, al theretems

$$
V=V_{\text {stred }}+\sum V_{\text {bedt }}+\sum V_{\text {tusim }}+\sum V_{\text {vow }}
$$

in the dove eqution the lat term ($\Sigma \mathrm{V}_{\text {vow }}$) indudes vandaveal interadion beveen non bonded atons preset inthemdeale thevaias sess of the functions, celled the farced fidd reecdlected They cartain adutddeparmetas thereparmetes aretreated for the condtion of the opdimizdion in crodr to git the best fit of krown propeties of the molealesNow a tait asumpion is made that the corespording praneetes and the force contarts colalied for one corfomm can be
transeredtotheandhe withtheproper mothernticd nodfictions. thw itapeersthat mealar medaricsissddy besedoneypeinetl data intypicd molealar mecharics colaldions for molealea hygothticd geemetrica stucture is as med. dfferet parnetes like bond dstances ,anges,torionangesforthis trid gemetricd stucturearegivendfferet values inthis procedrehydogen atons aelusdly it considared beease thair positions ae colalated later from the standad geometriced parames. nowalistof interatons arewittenfor thistrid stuctureof the moleale these terms induxe bond dstances, atons atached to a cormen tam (bord ange), atons atlached to the adacet tans ,(Tasionange), and non bondngirteationthesesecondstep indudes the spection of forced fied prantetes for these interations bya compteized nethod. the pateriad enegy of thetria strudure is then colalted through the dove eqution the nett step is the eregy mirimizdion process this dore by the pldting a gad between smal danges ingementricd cordndes dondtheeregy of thendeale.anthis gach vaias pints are located where the first daivative of pdetiad eregy thet is V ae equal to Zettis neens that thetad eragy of the moleale will bermimm this process is repeted sqpeatdy for each of thestdecorfarmitions becaserthereis moknown methodfor findngthe loneteregyforamdeale.
moleala meeharics candso beemployedfor the study of engy naxima atitisfoundth hitfurmisesmachlessdadalsinthisfiddforthispupose anunber of forcedfiddcompter progarmesaeavaldde.
noleala needarics calaldians give the tod paterid enegy of each corformaions. nowif themdefration of al thecaformaionsareknown ar canbecdal Ieditisevidatthatethly py formaion of acompound canbecdaldedbythis aproach withahighdeyeeof acaracy theredta can be heffitt in colaliting othe themrodrenicd propeties of the moleales

Althughtherealts furishedby thendealar needaric arestisfatary andshowaconfortddeageenetwiththeerpeinetd nearenersyat itismotadly rli idde theremonforthis isthtitchesfall incetancees
The second linittion of molealar neeharics aproach lies in its mathenticd imperettion This is to say that it can be used aly in
thosecese of moleales for whichtheparmeras aetraverrdde this is the condtion of the simple moleales aly. it is intereting to ndethet molealaralitd codaldiansobnothavettislimitdions.

186Strain

a ndeale is st to beundr steic strin when bonds aefaceed to nake atrorid angesthis rest sinanincereintheenegy of themedealeand thecaseisanglardstation.thecaseof donomal bondangeslies inthe stucturd fettre of the moleale on ef these is found in ssyall ring componoswhentheangeisless thennomal abitd ovelapthistranis called ∞ thesmall angestain the cher reson is the that non bonded atons aefrcedto reninindosed proxinity becaseit is dananded by the gementy of the moleale these are called कo the non borded interarians
thwa madealeinstran possessstraineregy thevduef thiseregy ina patialarmealecanbecdaldedfrionthemochericd dtathestrain enegies carnd beknowneadly beasetheenegy of red molealecan beresesdbtthat of ahyputheicd unstranedmedealecannotbeitis poside to stran enegy calaldion can be dapiced by the fallowing schere.

187Summay

- ind subsituted cydicsystemnaiasinterationsareqperdive
- maninterationareazeeae
- the interations not aly depenos on the redive positions of the subsiturt but there bulk dso pass a vitd rde in dejidng the enegy catertof theydicmale
- if the cydig sytemhes a function gap or instartion the dervicd propeties of thendealeaecomprenerively iffluarced by thespodid prition of thesbositust
- the modeale prefes to acqire thet corfirmaion in which it hes dsipdednost of its enegy andaquirestheloneteregysta
- in cæe of the corfirmers with the bulkie substituet it hes been fand that the equataid position geneally predonintes bit the leving ffectdsoqpertes
- Theleving effed makesthepppldion of thepreferedcorfarmer lestheneypeted
- Incæeof 1,2dsbbsituted cydic sytemit is not oly therddige positionbat thesizeof thesubsitust dsoplays animpatatrdein deridngthetdd enagy contat of thendeale.
- Itisgread doservionthethecorformaionswiththelagr graps intheequtrid positionhavethelower eregy.
- Whenthetwo corformers haing theidaticd subsituat aenon sperimpooddetheqticd propatyaredsoberonesindusive

788ReienQuestiós

1 whtaethevariastypes of theirterd straninaroleale
2 whatisthesigificanceof thewordrdarer
3 Exdanthesterechemicd apeet of themdealewith refermeto thediminstion of thealky sbbsituted yddherane
4. whtisflippingeydanwiththeeamde
5. whtisthesigificanceof FreeEnegy of formion of acorfome.

6 how the values of the ethalies of hycogention deides the stadility of theargricmoleale
7. Whtisledingeffet?

8 wht is Qux - Axid andQues equtarid posion suppat your arswitherampe.
9. whtisaTOPOMERgiveanexamde
10. ExpanthetemringInersionwitheramde

11 whtaretnoadkyl andtrreedkyl effeds
12 wht istheffect of tredchingIR frequancy of cabonl grapinthe fdlowing compands
a Cyddexanones
b momsubstitued cyddexanane
c dsbositutedoyddheranone
13. Wht cases the bth dromic shift in $n \pi^{*}$ transiian o carbonyl compandillustanitherarde
14. how is the aidty of axid hyorogen is affected in dsubstitued cyddneanes

189Refirencebods

- Advancedrgaric Chenistry Jery March,4 edtianjdmwiley and sons
- Orgaricsynther ,Midad B snith $2^{\text {d }}$ edtion,MacGrahhill.
- OrgaricCmistry,I.L FirarVdumell,ELBS

Unit-19

ConfontionsofAFenOthr MonogdicandBigdicSystans

Srutureof Unit

19.0 Ojedive

191 Introdution
19.2 Corformtiond effedsinsix mentreedringscantaringunseturtion 19.21 Cyddexere
19.3 Corformaiora ffetsinsix mentreedhearoydicrings19.31 Mdealargemedry19.32 Bariétoringinvesion19.33 Pyraniod invesion1934 1,3-Syraxid interations19.35 ItrandealarH-bondng
1936 Ntrogenlonepairinipipeidne
19.4 Stereadedroric effedsinheroydes19.41 Anomericffet19.4.2 Dadearoreric effet
19.43Radbter effet
19.5 Corformation of cormonsugs
19.6 Theshapeof ringother thensix mentreredring
19.61 Corfarmition of BicydicSytem- Deedin
19.611 Iistransisomeismof dedin
19.612RAdivestddilites of dis adtrans decdins
19.62BicydicsytemTheHydindares(Biydd4.30.JNanne)
19.7 Summa
19.8 RevievQuetions
19.9 Referceandscgestedreadngs

190 Ojedive

As we know thet we can find at the stuntures of nodeales by vaias tedriques like: X-ray, NMR, IR. X-ray reved exatly wheethetons arein orytds IR speetroscapygives theirfarmiondoat thebonds inthemdeale NMR speetroscopy gives usinformaia dant the dons thensd ves and how they aejained up Upto now, wehaveraily been interested in datemining which atons are bonded to which ather atons and aso the shapes of snall locdizedgrapsof tans Butanasigtty lager scede, shapeis ntusally 50 nel defined Since ratdion is possible dant singe bands and this rodtion neens that while the locdized arangentrt of tons stays the sare, the roleale a a whde can adpt a nunher of dfferet shapes But the arangeret dbat the dadde bonds dweys revinsthesarebecasedulde bands cant rade All thesingebonds inthemdealeareconstatly rodding tthercontemperdure
The chances that two modeales will haveeradly the sareshape d any one tire are qite snall. Even thang no two moleales have eadly the sare shape t any onetire, they aresill dl the sarechevicd compand - they have all the sare tans attached in the sare way, these dfferet shepe of moleales of thesarecompandarecalledacorformaions
In this unit we will ded with corfommion of a few other manoydic and bicydicsystens

191 Introdidion

Corformaion of amdeal earedsfinedathevaias arangemt of its ams in space which dffer arly in roddion arand singe bond ar bands (i.e in dhedrd anges) andaeeaily intercanvetible
If we rodte dant as nany singe bands as we like then we gł one corformaionto andher. It cand bedoneby breaking any bonds Thit's the reanwhy wecait roddedatadadiebond- to do so weneedtolreat the π bond

Exaple

Fig. 1
Figrel: shonscompandeachstovingcorformaion

Stereoisomers

Fig. 2

Figre2 shonscompandswithdfferetcorfigrtion Sincethespairscan ally be interconvet by breaking a bord Compands with dfferext corfigraionarecalledtereisomers

Rdtaionor bandlreking

- Strutrethat canbeintercanetedsimdy by roddionabatsingebonos arecarformianso thesaremoleale
- Studtres that canbeirtercanveted aly by bredking anear morebands havedffer corfigurdionandarestereisames.

192 Confancition effeds in six nanbared rings cortainingunsecuratian

When weintrodress p^{2} hylaidzed dons into qeen drain nodeales, toriona baries beecones less for eg tasiona barier in 1-akenes add addyyde are
scruant spaller then in alkanes Simila effeds are nded when p^{2} certers are incorporded into ix mentered rings The free enegy barier for ring invesionin cydderareis $103 \mathrm{kcd} / \mathrm{md}$; whileithesbeen red reedto 7.7 kcd /rd in methlereyddneare and to $4.9 \mathrm{kcd} / \mathrm{md}$ in cydderane The fdlowing dranges cours by theirtrodrtion of ansp² hydridsed cabon into cydderarering
Oneor nore valence angles are insed the ring sidtly flaters in the vidinty of the s^{2} cabon dereering torsion anges and increaing tariona stranandfirally thestericinterations anangthes bsititests and beveen the slostituats and thering dangepercadily. Consequitly there is an ovedl incereine ethapy of gydderanes with ans β^{2} hybridzed ning tomreddive tosimplegddherass Nowinthisreferncewewill dsass ydderereait isthesimdetsix menteredringcontaringunesturdion

1921Cydderne

The corformaion of cydderene is described ∞ a hadf dair (1). It is corfirmedbyX-ray cystallogadic dacof ydderenedrivaives andonthe baisof dedrondffraction andmiconavespeetroscopy. Thetarionanges x^{\prime} shownins uppoted bythereticd calaldionsandshow corsidarddeflatering of the ring nere the calde band Cydderere geenemy have following dranateisicfetures.

1 TheC-1, C-2, C-3, andC-6 atons areinapareæ aethetnovinylic hydocoers The dher tho ring cabors C-4 and C-5 ae dsposed dtentely ypanddbun(robwnardup) withrespecttothispare
2 Thestucture (I) hes CC_{2} axis liseding theda lebond (no σ dane) and badnos to point gap C_{2} (dird). Thetho enationeric studure (1) and (1') aehowere, interconvetideby invesiono thering* and so form an insepardle ($\#$ pair. They are shown in a dfferest perspectiveby thestrutures(2) and(2).
3. TheC(1) - C(2) bond lengh is 13354°, add the (1) - C(2) - C(3) bondangeis 13°. Thestbstiturts t C-3andC-6 areilited fromthe
 and peachequtaid. The adivtion eregy for ring invesion is 53 $\mathrm{kcd} / \mathrm{md}$.
4. Theinterconersion of thetwohaf-darirfams rudoddy goesthrugha trasitionstatewtich may berepresetted by thebot carformaion(3).
Theeparimetd barier enegyis222 $\mathrm{KJ} \mathrm{mol}^{-1}\left(\Delta \mathrm{G}^{+} \ldots d \notin e m i n e d b y\right.$
${ }^{1} \mathrm{H}$ NMR fromthe coaleccene of 4 H and 5 H of cydcherened $\mathrm{t}-$ $164^{\circ} \mathrm{C}$). Thecdaldedvaluef ethalpyfor thebot (3) is $250 \mathrm{~K} \mathrm{mod}^{-}$ ${ }^{1}$. The barier enagy is vey senitive to substiturts at C-4 and C-5

(1)

(2)

(1')
\downarrow

(2')

(4)

Figre3 Cofformation of Cydderne
5. A^{12} Stran (allyic 1,2-strain): Jdreon and Malhdrahave postudeda second theorem which staes thet in a cydcherere (5) which have (Figre4) R andR' aeof nodedesize, they will intaferesterically witherchothr in theequitrid corformer (5) tosuch aneterthet the axid corfamer (5) will be prefered As dreedy sted the dhedrd
 thenomit valuef \bigoplus°. WhenboththesbosituatareMe anethalpy dffererce of $15 \mathrm{KJ} \mathrm{mo}^{-1}$ hes been calalted in favar of the axid corformer (which cartains a 1,3daxid Mell inteation) corespondngtoamixureof 64:36 tantiettemp Whenthegaps are bulky, A^{12}-strain beecones narifest dhevise it is not a ponefu ffeet add eg, Ph Thus the eranire (6) and 1-phenl-6t atyicyddexere(7) existpredminadty intheaxid corfames

5

5'

6

7

Figre4 Allylic 1,2strain

793 Coffarnaiane effeds in six menbered hetrocydic ring

The redarenert of cabon by dhe denert produces danges in seved stucturd parmetas andconsequatly ffedsthecorformaiond chataisic of thendeale
Thedrageswhicharemot dbiasonirtrodution of aheeotominto six menhered rings heaveto ob with bond anges and bond lengh Bath theC-O and C-N band lengh (143 \& 147A respedively) ae shoter then theC-C bond lengh of $154 \mathrm{~A}^{\circ}$, whilethe - -S bond lengh ($182 \mathrm{~A}^{\circ}$) is lange. The normid valence ange are somenht swaller then terdedd to oxygen and ritrogen and sigificatly so for sulphr for which the C-SC ange value is 100 . The six mentered hetaroydes cartaining oxygen (terchydopyran), ritrogen(piperidne) adsulfu (thiane), al resentlethedaircorfarmaion of
cyddearebutarenodfiedsoato accormodzethebondlenghsandbond anges daraterisic of the hetrotom The rings ae all scmeaht more prkeredthencyddherane

tetrahydropyran

Piperidine

Thiane

1,3-dioxane

1,3-dithiane

Thecorformaion of six mernbered herocydes, speeially thosecontaining N and O tans is of speid interest ∞ evistence of theseringsytens innaurd produts : piperidne in akdads and terdydopyran in sugas Oxygen in tedrdyctopyran andritrogen in pipeidneareconsidzed to besp³ hylridsed Theimpatat confantiond fectures of thesetwo ring systens dang with a fewrdtedhteroydesaedsassedhere

1931 Mdealar geminy:

The six-menbered N, O or S herocydes evit dmost exdusively in dair carformaion It hes been proed for pipridme daivaives by X-ray aystalogady and for terdydropyran daivaives by microwave spectroscapy.
The ring torsin anges $\left(53-56^{\circ}\right)$ of pipeidne are very simila to those in cydcherare C-O and C-N bonds are shoter then C-C bands, so the dair corformaion of piperidne and terdydopyran are expected to be sigtly nrepeprkeedthencyddhexane It isdsotrueforthianesincetheeffetof the langrC-Siscompensted by thesndlerC-S-Cbondange(100°).
On the besis of Kapdus equion, Lanbert hes dadqped a nethod, which indcates the rature of the ring stucture (dhair or dffored dair) of six menberedherocydes

$$
\begin{gathered}
\mathrm{J}_{\text {(isactars) }}=\mathrm{A} \cos ^{2} \theta_{\mathrm{c}} \mathrm{OA} \cos ^{2} \theta_{\mathrm{t}} \\
R=\frac{J \text { trans }}{J \text { cis }}=\frac{A \cos ^{2} \theta_{t}}{\mathrm{~A} \cos ^{2} \theta_{\mathrm{c}}}=\frac{\cos ^{2} \theta_{t}}{\cos ^{2} \theta_{c}}
\end{gathered}
$$

Forsix mentrered hetecydes if valueof $R=2$, it indcaes pefeet dair. As the vduedereeses (aproading 1, R < 2) , then ring dair is assued to be flater. On the other hand if $R->2$ indcotes a nore purkered dair corformaion

ItisdffialttoureKadlusequiononherocydicsytemowingtouknown value of A whichis dffer for dfferet H-C-X-H or H-X-Y-H segmis and dsodepenoconsubstiusts
R value aund 2 provide addtiond support to the chair corformaion for pipaidneardterdy yotpyran Boatcorfordionis aproximatdy $20 \mathrm{KJ} \mathrm{nol}^{-}$ ${ }^{1}$ higke forpiperdneand16/ Jm^{-1} hige forterchydopyran

1932Barier toringinesion

TheOrde of torsiond interationfor theC-X, X-X orC-Cbondsare

$$
C-X>X-X \propto X-Y>C-C
$$

Theeffed is refletedin thefreeenegy of adivdionfor inversion of dfferet heteroydic ring sytens (Tadde 1). As in the we of cyddeeane, ring invesion takes plae through the intemedte twist bot farms and as this convesion indves tarion dang bonds, the higer thetarsiond interation, thehiger istheativaioneregy.

Tdde1: Freenegy of ativation for ringinesion of six nenbered hatrogdes

Ringrytem	$\Delta \mathrm{G}\left(\mathbf{l} \mathrm{mot}^{-1}\right)$
Cyddeare	432
Pipeidne	436
Terchydopyrae(Oxare)	398
Thiare	37.7
1,3-Dioxare	406
1,24,-Teramare	28

1933Pyraridal inesian

The corformiond andysis of six-mentered herocydes is complicted by thefat thet pyraniod invesionand ringinvesionocar sideby sideand ae dtencompeitive Genedly ringinvesionissouer then praniida invesion For piperidneitsef, the two inverions bring dat the sane corformaiond dranges NH to NH_{2} and vicevera For teridydopyran boththeprocesses are degenerte iscmeristion (as in cydderane). Inversion at O is inconsequatid in any cresinceit interchanges the positions of thetwolore
pairs of eletrans orly. The dfference in ring invesion and pyramida inersioncanbeseenin1,3-dmethlpiperidne(Figre5). Ringinersion(R) leads to corformaion isomes, the corfigurdion (as and tras) remains undtered While pyramida inersion (PI) conets a cis isomer into a trans isoner andtransintods SincebthRI andPI ocarconconitatly dandiet temperture anequilibiumisreachedarongthefar corformershown

Figure-5: Ringinersianandpyavidal inasioninpipaidine

1934 1,3Synavial intradions

Inhearoydic ring thesteic realsions for axid subsituats arered red de totheredacemit of methylenegrapsof cyddexaneby oxygenor ritrogen Itisseenindis2-methy-5-tat-bty1-1,3-doxane(Fig-6) inwhidhtheprefered carformaionhesthebulkyt-btyl grapaxid andthemethy gapeqitaid. As the dvdet oxygen hes mo subsituat, thereqe 1,3daxid inteations which are the main urfavardde inteations for axid subsituats in cydderanearedoset.

Figrea Gis2methy-5tatlaty-13dioare

If wetcke2-aklk sbosititat, hoverer it will haveageter prefermefor the equtaid aiestdionina1,3-doxarethenin yddherempresmady becase the dereemed C-O bond lengh 1434° (C-C bond lengh 154 A°) bings an akll gap does to thesynaxid hydogers a C(4) and C(6) to rest's in inceesedVandevedsrepusion

1935Intrandealar Hbonding

The hearatom of the ring may formed intrandealar H -band with ane or more $\mathrm{OH}\left(\mathrm{ar}_{\mathrm{NH}}^{-}\right)$grap prest in the moleale therey ffecting the corformaiond sitution

5-Hydroxy-1,3-dioxane
Thus5hydrxy-1,3-doxaneeviss inthepreferedcarfamdioninutichOH isinaxid pasitioninardes toformH-bondwiththeringOtons

1936Nitrogenlanepair inpipaidine

There is cortrovesy regadng the corformaiond preferece of the lone dedron par and H a N in pipeidne The dpole monert of 4 dracodeypiperidne sugests that NH_{H} carformer is more stde by aproximady $22 \mathrm{~J} \mathrm{~mol}^{-1}$. NMR spedrd maremets at lowtemperture ethibit two corformers $t-172^{\circ} \mathrm{C}$ for piperidnewith $\Delta \mathrm{G}^{\circ}$ of $15 \mathrm{~J} \mathrm{~mol}^{-1}$ in favor of the NH fom When NH in pipeidne is redaced by N-R the corformerwithequtoid Randzid lonepairisdwaysprefered

194 Streadetrariceffedsinhtaroydes

If ane or mere heroatons are preset in the ring they give rise to streededraric effet in many cases which considardly rffeds the corformaiond sitution in heerocydic compands Oneof thesurd ffet is anoreric effetwhichisfoundinpranosesugas andtheir daivaives

1941Anomericeffet

Theircorporion of heroctonscanrealtinsterededroric effetsthathere a prom need effet on corfamdion ard Utindey on readivity. Pyraæe
 dkoxy \& C -1 ae aften nerestde when thesubsithet hes an axid rath then equatid oieltaion This temargy is not linited to cabohyddes bt
 Thisphecrnemishrown x Arcoreic effert it indvesashbsithetathe

Thissubsithet (X) sernstoext tho opposingeffets A teric effet which dreats the shbotitert to the equtaid position add secondy an dedranegdivity ffeetwhichfavartheaxid position
Themethy marmides (II and III, Figre8) in 1\%methandic HC undago equilibrtion to a rdio of $\alpha: \beta=64: 6$ (Figre8). This is an qpertion of ancruic effet In α-D.Marnose(aritsmarnosids, patid stuctures III and IV, Figre8, when-OOH ${ }_{3}$ isintheequtaid position(IV, Figre8), thenon bondrgedetronsontheoxygenof thering and thenarbondngedetrans of the subsititestrepd to each ohs. Therearefather partwhentheshosituet isin theaxid position

(I)
α-D-Mannose (69\%)

(II)
β-D-Mannose (31\%)

(III)
$\alpha=94 \%$

(IV)
$\beta=6 \%$
Methyl mannosides

Figre7
Figre8
Ohertwordłedeffedsaedablearomic effedandrddater effeds

1942Daideanonericeffeds

1,3doxenes which is sobsitited it C -2 with dedronegdive graps show a dade aromeric effet The aid methoxy derivelive (v) is vey morh prefered ove the equtaid iscmer in spite of the fat that the symaxid interation of theaxid OMewith 6 H \& 4 H arevery high deto aprkered dairformof 1,3doxare

(M)

1943Redditer effet

In terdhydo-1,3-xazine (1,3-dhederoydes) the corformaion in which the tho lone pars ae sym1,3-daxid (Ma) is destddised with respeet to ther corformer (Mb). This isknown atherddbit er ffect Thereson is thet the corformer(Mb) hesstadilized velapoing betweentheparditd of Nand the atibondng arbitd of theenco C-O bond which is atiperiplare (shown by thidk ling) so it is end anomeric effet This effet is lading in the other corformer(Ma).

Figre 8RAdditer effed

195 Confarationsof cammonsugrs

Theconnesion of Hanathformlaof α-D-ducosetodair formaiaisshown badow. Thefdlowing paintsmy beconsids reegading corformaions of some syas

D-glucose

β-D-Mannose

β-D-Galactose

D-Mannose

Figre9

- Thesixnemberedringwtichindudes anoxygenatomis redtedtothe hearoydic ring terrhydrpyran (Fig 9). A sachaide in its six mentreedfomiscalledpyranos
- Hexoses likeD-gucoseshons that it hes far sterecantas Thereare sixteen stereisones - the tod number of neturdly coaring streeisonersbengeigt
- Oly thethreof thesenenedy D-gucose D-marnoeandD-gataose aetherostwidyy coaning
- Irtrodringanoxygendomintoasixnemberedringhesmakedeffet on the corfarmition depending on the poition and nature of the subsiturt AswehavedsassedtheC-Obondsinterd ydotpyranae shater then the - - banos in cyddherare, there can be nore seare 1,3-daid interationsif agapisinthepositioncan predtninte
- Thel,3-daxid interationsaelessserereif thestosituatsisremoved two tons aney from the oxygen tom In these compunds a corformaion with the lagr grop in the axid position can predminat
- Morever, an oxygen tomin the ring provides an oppaturity for hydogen bonding when the esbstitutet is an OH gap and an axid OHgapcandsobestddilized
- At first daw β-D-ducose in which al the hydoxyl gap are equtaid. Todandhe cormansyas, ndiceato howtheedffer fromD-guoseandm*keaproqritedanges

196 Theshapeof ringsdhar thensixmenberedring

1961Corfarmationof BigdicSytam

A noleale with tho rings that share two or nure cabon atons is called a bigdic system Therings of suchasstemarecdledfusedandthecabonst which the tho rings are fused are called 'bidgshed cabon'. Deedin is an impotatbigdic alkareformedby thefision of two cyddeeneringst 1,2positions Thestucture of dedin and thenode of nuntering of its cabons havebenstrownbdow. ThelUPAC nereof deedinishicyd\&4.40]deecare

or

Fig 10 Stutureofdedin
(1and6cabonsarelridyg $¥$ deabban)

19611 Cistransisonrismof dedin

As we have described the decdin noleale is formed by thefusin of tho cyddearerings As we know thet the char formof cydderane is nost stdde Hencethededinis, expetedtobeformedbyfusiono thedharfoms of two cydcheare rings If we make the modd of the dair form of cyddeeare, it candsese ved thet two dairs canbecormetedintwo mames Asdedinecortainstencabonsonly, two cabonswill berenovedfromadair nood of cydderane ring before comeding it to the modd of the ther cyddearering Now, wefindth ht thesetwosytens canbecometedintwo names If tho equtaid bonds of gydderarering are used to comet it to thefor cabonsytem, a deedinnolealerealts inwhichthetwo hydogens onbidysheod cabonsareontheqpositesides Itistransdedin(Fig11).

Figurell: transDacdin
If one equtaid and ane axid bonds of cyddnexane ring ae ueed for comeeting it to the for cabon system, a decdin moleal e resits which hes twohydogensonthesaresideof thebridgeneedcabons It isaisceedin

FigreD $\mathbf{d i s D a s d i n}$
The isand transderdins can be separted isDecdin bails t 15° while transdeedinbailst 185.5°. Wththehdpof modds, it canbeshownthtis and transdedins carnt be interconveted by rodtion dant cabon-cabon bonds andtherforethey arecorfigurdiond datereares Theds andtrans decdinscanberepresetedinthefdlowingmame(Fig13):

cis-decalin

trans-decalin

Figre13

19612Rdativestailities of dis andtrans dacalins

The resilts indcate that transdecdin is more stdle then its acisamer by doat2Kcd/rode Why?
Therdativestddilities of these two isomers can beemily eydaned, if their sturtures are corelated with the stuxtures of is and trans 1,2 dmethloydderanes We can see that trans1,2-dmethloyddherare (in which both rethy graps are preset in equtaid posions) is norestdle then is1,2-dmethloydderane (in which are methy goup is preset in
axid positionuherest thedher coapies theequtrid position) by dat 187 Kcd/role
The trans decdin may be considred as dequtaid 12-dsbosituted cyddearein which the 1,2 -sbosituats aethetwo end of a far cabonbridge, $-\mathrm{CH}_{2} \mathrm{OH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$. Inthis cers, thetwo yddherarings arepeert in unoonded positions, ex epeeted in dequtarid positions Liketrans1,2drethylyddneane, trans-dedin will beeypetedtobenoresdde
 which the 1,2-sbosituats ae the two ends of a for cabonbidge $\mathrm{CH}_{2} \mathrm{O}_{2} \cdot \mathrm{CH}_{2} \mathrm{OH}_{2}$. In this cæes, there will be apreeidde nontbonded interationswithintheconcaveaea(Figre14). Thus, disdedin will beless stdethentran-dededin

Figre14: Nonbondedirterationsindisdecdin
It is interesingtoknow the dthoughthreisadffernceof oly $2 \mathrm{Kcd} /$ mole beveen thestdilitie of trans and disdedirs, theconvesion of oneirtothe the tokes plæe unde arly vigoras condtions As the converion of is deedinintotransdedin and viceversa reqires the deavage of onecaboncabonbondandonecabonbond Thiscanbeseen withthehdpof thenoods of is and trans dedins Thus, athoug there is only a snall dfference betveenthestdilities of dis andtrans deding, their interconverionis very dffialt
If weirtrodreanheratominthededinningthen barie tointerconvesion of disandtrarsdedin canbedereedinsomeces Foreg in ardecdin (Fig 15) If aritrogenaomocapies abridgeneed positioninds andtrarsform of deedincant beisdded Therapidinteranverion of theesformisdeto theemy invesion of carfigurdion at ritrogen which dimintedtheneedfora transdaxid traistionste

Figre 15 Azadecdin
When an argular methy gop is introd reed the is formbeanes sigtly nore stdde then thetrans form(Figre 16). The methl grap is steically compessed by far axd hydogen acons and by orly two $\left(\mathrm{C}_{2}\right.$ and $\left.\mathrm{C}_{4}\right)$ in the cæeof dsiscmer, so theirtrodution of methy gaps redues thedffernce ineregy betheenthededin

Figre16 9Mdhyldedin

1962Bigdicsydem TheHydindanes(Bigdd[430Nonenc):

In this systendffert size of nings aefused The dssimilaity of the tho rings makes the ringfised cabon dons tereccenters It derly shons the peerceof thosterecertes and predds thetrasisamerma(†) pari i.e tho stadetrasisonersuheresdisisomeraneocompand

S,S

cis-hydrindane
Figure17
Trashydindanes arecorfardianaly rigidndeale, wheresishydindane isfleeideandeistsæa(d)-par of corforms. Thefreeenegy of adivaion of this corformaiond inersion is considaddy snaler then the inverion barier of isdecdin This is de to the rore plarer studure of the five nenteredringandasaresltthereislessstraninthefusedsystem

197 Sumay

- Conformaion of a mealearedfined as the vaias arangeret of its tans in spare which dffer aly in rodion aound singebond α bands(i.e indhedd anges) andareeaily intercanvetible
- When anear nuresp² cabon tons are introdreed in a cyddnexare ring a fen danges in the corformaions take paxe The noleales becoreflater neer thetrigond tons inceesing the ange stran and torsiond stran These molevies such as cydderanone and oydderane are therefore themodramically and kinetically less stddewith respeetto cydderane
- Thedranges wich aermot dovias an introdution of ahearodom intosix mentered rings haveto cb with bond andes and bond lengh BdththeC-OandC-Nbondlenghareshoter thentheC-Cbordlengh while the C-S band length is langr. The named vadence ange are somenht swaller then terchedd at axyen and ritrogen and sigificatly soforsuldhufforwtichtheC-SCangevdueis 100°. The sx mentered hatrocydes cataining oxygen (terchydtopyra), ritrogen (pipeidne) and slfur (tiane), all resentle the dair corformition of yddheanebtaremodfiedso x to accommodtethe bondlenghs andborndanges chataisicic of thehderotom Therings

- transDedinismoresddethnitscisisomerbydbat2Kcd/mole

198 ReienQuetiós

1 Commert on the corformaiond effeds in six nenebred rings containingunsaturion
2 Wite a shat note on corformaiond ffets in six mentored hetrocydicrings
3 Exdainuhy5hydoxy-1,3doxareevissinthecorfommioninutich OHisinaxid position?
4 Show the prefered corformaion of os 2 -mathy-5tat-buty-1,3 doxare
5 Exdan why tras decdin is rure stdde then ois deedin by 27 Kcd/nde?
6 Commetanthecorfarmion of dedin

199ReferenceandSuggetedRexdings

- Stereochemistry of Organic Compounds, D. Nasipuri, New Age Intentiond Pudishas
- Orgeric Chemistry, J. Clayden N. Greaes S. Werren Oxford Urivesity, SecondEdtion
- Advarced Oggaric Chemistry Pat-B, F. A. Care andR J. Sundberg Shed Springe.
- Streechenistry carfartion ad Medarism, P.S. Kdsi, Nev Age

Interniond Pudishas

- AdVanced Orgaric Chemistry, Jagdanba Singh and L.D.S. Yadav, Pragai Prokadan

Unit-20

ConformaionandRextivity

Stuctureof unit
200 Introdution
201 Corformaions of aydicsytens
2011 Cofformionsof thene
2012 Cafformtionsof propere
2013Corfarmaions of natatere
202 Caformaionsof gdoakanes
20.3 Cofformionsof ung
20.4 Coffrmaiorsof fusedrings
205 Corformaionsof dher rings
206 Effectof corfomationsonreadivity
20.61Acydiccompands
20.62 Cydiccompunds
207 Ortin-Hammettpinipe
208 Summay
209 ReienQuesions
20.10 RefercesandSuggestedRerdngs
2001ntroducion

Thedfferet spaid arangemers of tons in a modealewhich are reedly intercanetidebyrodionabatsingebondsaecalledcorfartions.
Corforms/rotares/ corformaiand isonesareadly interconetildeand nonsepardde
Corformaion and canfigrdion are the terns redted to enegy barier for interconverionof dfferetspedid arangentsof tonsinamedeale
In case of carfarers enegy barier for converion of dffert spaid arangeretsisinbetween>0.6and<16Kcd/melebtincorfigurdianitis> 16Kcd/mole

201Cafformiansof agdicsytans

2011 Corformaiorsof there

Whenanetharemdealerdates abatitscabon-caloonsingebond thentwo etremecorformions arefandi.estaggeed and edipsed corformaion An infintenumber of corformions bedwen thesetho etrenecarfandions is dso posside The Nennam projections for staggeed and edipsed corformaionsof ehenearegiventodow.

Staggrec Fig 1: Corformains of thefipse
Staggred corformition A corformion with a 60 dhedrl / torsiond ange (ange bedveen the atons atached to thefrior and the rerr cabon tons) is known estagered corformaion It is the most stde carfarmation beease the cabonthydogen bonds ae af fa aney fromeed aher a posside In stagyredcorformaionthedstaceebeveenhydogennude is $255 \AA$.
Edipsed corformaion: A corformaionwitha0 tariond ange isknownas edipsed corformion It is thelest stde corformaion beeasethecabonhydrogen bands ae dosest In edipsed corfarmation the dstance bedwen hydogennude is $229 \AA$. Therddiond enegy barie in theneis $29 \mathrm{kcd} /$ node

Fig2 Rddiond enegy barier of thaneinterms of dangein patetid enegyanddhedd ange

2012Caformiansof prqane

Likeethene, propanedsohesthefdlowingtwoexrereconformaions staggeedandedipsed

2013Confarrationsof nlatane

In case of n-atane, for corformiand andysis butane may be treated as daivaive of ethene where one hydogen on each cabon is redaced by a wethl grap Differet confandions of batene can bedtained by rodion abatitsmiddecaboncabanbandashawnbadow.
Butane possess three staggered carforms (I, III and V) at of these three conforms, corfomer III(known a ani corfome) is norestdein which tho wethl groups are far apat Conforms (I and V) ae celled gane carformsinwhichthelagestsubsituatsaeadacet
Arti and garde formhave dfferet enegies de to steic stran or steic hindance (strain an a moleale deto replision between detrans of lage tansargapswtichlietoodoætoerhother.

 (Fulyedipsed) unddd

IV (edipseed)

Fig4: Rodiond eregy barier of n-butaneinterms of dangein patetid engyanddhedd ange
Butare possess threeedipsed corforms (II, IV and V) at of these thee carforms corformel (fuly yedipsed corfomer) isleststdeinwhichthe twomethi grapsaredosestoeachother. All theseedipsedcorformeshave both tariond and steic strain. Corforms (II and IV) are called edipsed corforms
Redive stadilies of six corformers of n-batare in dereang ardar is ∞ follons:
Art (III) $>$ Garhe(I andV) >Edipsed(II andIV) >FullyedipseelV)

202Confamtionof gdoilkenes

Compoundhaingfiveandsix menheredringsaremestadethantireeand far nembered rings Cydic compondstwist and bend in ordar to adievea find snuture which mirimizes the fdlowing threekinds of strain that an destdilizeacydiccompond

1 Ange strain (Bager stran) - Tris realts when the bond ange is dfferet frimithederiredterchedal bondangeof 109.5.
2 Tarsiond stran (Piter stran) - This is cased by repusion of the bondng dedrons of oresubsitust with bondng detrans of andher shosituatontheadaratam
3. Steic strain(Vande Wealsstrain) - Thisiscased by dansor graps aproadingeachothe toodosdy.
Accordngto Sadres cydderaneand lager rings arend pare. Thererings possess prafered studureinutich all the arges areterchedd so they are strainess Cyddeeareeistsintwofamsi.edair andbotcorformaions.

Crair isthestaggredfarmand bot isedipsed Boththesefamsarefreefrom ange stain Bot form posesss staic repulion between flayode hydocges pointingtowaroserch the \& C_{1} and C_{4} (183 q pat).
Chairformismoresddethenthebotformarbot carformaion possessboth torsiond andsteic strains Enegy barief for interconversion of the dair and botcorformionsis $108 \mathrm{kcd} /$ mde

Chair conformation of cyclohexane

Boat conformation
of cyclohexane

Char farmis rigid but bot farmisfleideard reedly convet intotwist bot ($15 \mathrm{kc} / / \mathrm{mde}$ loner eregy then bot fart). In dair carfarmaion of cydderaretherearetwo kinds of poitions ccapied by thehydogen atom Sxhydogrs areaxid whicharepependala totheaverepplaneof thering and the other six areequtaid hydogens preset intheavegeplaneof the ring
Cafformitions of monosbstituted yddheanes
In cere if ore hydtogen of cyddheare is redazed by a lager atom/ goup, conding cars The not severe conding ocars by thethre axid bonds of thesaresiderealting1,3daxid interadionutichleadstericstrain intherndeale
Monosbstitued cyddnerane possess dair corfarration in which the subsituat coapy equtaid positionas eMe carformaion is merestde thenaMebyeregy barier 18kcd/mole

axid-methy (aMe)

equtcrid-methy
(eMe)
Prefredcorfarmaion

Corfommions of dsbbstituted yddheranes
Incereif thostbsititetsaepresetonayddneeneringeithe disortrans to each othe or 1,2, 1,3 or 1,4 with respeet to each dhes. Indsubsitited gydhearethedair formisthemot prefered corformionutich cortains bothrsbsititertstequtorid poitions
In1,2dmethy gydheranetnofoms aeposidei.edis andtran Gisform

 cyddheare $ఱ 1,2$ dmethy cyddherare is nore stade then æor $\oplus 1,2$ dnethy cydderare a there is $\mathrm{m} 1,3$ daxid intartion casing stran Stadilityordar e>æ>æ

Cis-1,2-
drethylyddneare (aecrea)

Tras-1,2dmethylyddreare (aa) lessstde

Tranc-1,2dnethylyddherare (ed) morestde

1,2dmethy yddneaneeistsmapair of corfigraiond disteemers-is and tras isomes Us and tras isomes eiss with a par of corformaion erationes and corfigrdiond erationes, respedively. Thereas and tras fams dsoevissæthocorformaiond dæteemers
In 1,3dmethlydderarethenaximunnumer of equtrid sbositutets give the prefered corformaion in which dpde intaration like farces are
 corformaiona

Stadility | der $-œ>æ>æ ~$ |
| :---: |

Cis-1,
drethylyddexare (aa) lessstdde

ds-1, =-
drethylyddherare (ee) morestdde

386

Trasb-1,
drethylyddneare (aeorea)

14 dmethilyddheare possess ane ais add two trans dair corformaions Stadility ords - e >æ>æ 1,4dmethyloyddnerane containany dird certre It eists ∞ astrans dateremest Gis and trans both forms cantan paneof symmery.

Gc-1,4drethylyddheare (aeorea)

Tras-1,4dimethylyddherare (aa) lesssdde

Tras-1,4dnethylyddherare (ed) morestde

203Carfarrationsofagrs

It hes been fard that, in α - D (+) gucapranosethe gycosidc hydoxy is axid and in β - anomer it is equtaid. Corformaion which possess geeter nunber of lagr goups inequtaid positionis morestde This, β - anomer ismorestdethenthe α - anomer adit pedbnintes intheequtaid mixture

α - $D(+$) ducppyrame lesstade

β - D (H) ducapyrawe norestde

204Confortionsof tusedrings

Deedin is a wall known eample of fused ring sytem It eist in tho datereasameric forms ais and trars which dapends on the wey of fision of twocyddeearerings

Gs form(earæ) - Indisformtwo gydhearerings arefised insurha marre that theequtorid bondof oneringisfused withtheaxid bondof the thes.
Trafs form($ఱ$ Intrars farmtho yddeare rings aefused in such a marre that theequtrid bondof oneringisfused withtheequtrid bondof thedhe:Trasformismorestdethenthedisby $27 \mathrm{kcd} /$ rde
Gisformisflexidesoundrgp corformaiond flipping likechar corformaion of cyddherane Trass formis rigid so it des not undago corformaiona flipping.

Transdedir
Marestde
Us deediniscrird and its both corformaions arenors perimposade minor inges of each the (norredvade eartioneic paris). Trats deedin is qdically inatived eto prestcef catreof symmedry.
Insbstituted dedins basituatsocapyfisionpaits of thetworings. In is decdinstbstittert is axid withorering and equtorid with respect to thes. Intrandecedinsubsitutetsareaxid vithrespeettoboththerings

205Conformiansof dher rings

Differet ings possess differet carformaions to mirimize stran of sabsitutets Liketheementeredringisdarar hat gyddatareevsswithan ange of dat 35° beveen the planes Cydqpettre eiss in two puckeed corformionsenvape and haf drir. Anong thees two corformaions envopeformpredtnindes

cyddatate

evilqpe corfandior rarestdd ϵ

Hafd darircorfarmaio

Lager rings dwass fand in prkered struture bt higher rings like cyddhatare, cydoodareetc possesssmall instdalities detotorioral stain and vandewed repulion In sare strically tindred compands ring not becones parer de to tigh degree of strin eg 1,24-tri-t-latylberzere compunds (∞ shownbdowin I tolII). In thesemdealeslagesbosititet
 bondanges

I

I

III

206Effectof confarretiansonreadivity

De to stereadectroric and steic fatars dervicd reativity is affected by coformations Thereaesomeeandes givenbdowwhicheydantheeffect of corformaiononreadivity.

2061Agdiccompands

E2 reations aestereospeeificandmest of thesereadions aeati dimindion In ati diminationthefiveators indved indudng thebesemet beinsare planeandthediminainggrapsmetbetranstoedhother, thiscorfantion iscaled ati-peripare.
eg-2-bramatanecan give either is or trans2-butene Thestereodedraric requremet of the reation mot indve aly those corfamatians of $2-$ bromatane in which the eliminaing graps attan ati-peiparer arangeret.

2-

2-

Fayured

Lessfavared

Tract-2-butent

Cis-2-

Inpyrdyticetimindiars, thetwodimindinggrapsliedistoedncther. Like pyrdysis of xathtes, acedes andamineoxidearesyndimination 2062Cydiccompands
Thereadivity of axid and equtarid graps of cydderanewhich is nostly fand in returd produts dapends on corfandion Mostly equtaid subsitutertsshonshighreadivitythenaxid are.
1 Substituion reation SNR and SN1 reations ccar norefrequatly with axid subsititertsthantheequtaid ane eg-4t-btylyddneyl bromide

Axial Brshow 0 Otimes

equtorid Brstowsower

2 Esteifiction and hyddysis Equtorid isomer eribits eteificaion and hyctlysis reations nore freenetly then the axid ore a axid isomer possess 1,3 daxid interation eg ondetany acede posess acedte grap onequtorid position undago saporifiction morereadly thenthe
axid one

Equtaid etergivessporifiction reationnrorereedly

Axid etergives
saprifictionreation

3 Elimintion reations Eliminting grups stould be in atipsidara aragenetthis isthestereodectrric requirenetfor E2 reation eg 4 t-bitylyddhesl tosylte

asiscmeris100timesfater

trasisomergivesowreadior

4 Mdeala rearangents Caffordiongovens theprodetfarrationin vaias rodealar rearangenert reacions eg Pirecd-pinecdore rearangenert of 1,2-dmethl-1,2-yddheranedd, its is isoner gives 2,2-dmethyloydderanneandtrasgives ydqpataredaivaive

asisore
5. Neighbaring gap patiapation Néghbaring grap patiopstion indvethepresence of neghboringgapwhich motbeina positionto ttred from the oppositesideo theleainggap

transisamer

sone

asisare

6 Oxidtion-Subsituats onaxid pasitionrenovedmerefrequatly dring oxidtiontorenove1,3daxid interation, thentheequtorid ore

207CurtinHammetr Pinciple

Accordng to the Ortin-rammett prinipe the redtive arounts of podats formed from tho patinet corformers are compledy independat of the redivepopldionsof thecorformesanddapendorly onthedffermeinthe freeenegy of thetrasition stes Rate of reation is slowe then the rate of corformaiond inteconersion

Progress of the reaction \longrightarrow
Fig 5: EnegydagamfordfferetCandDproduts

SupposeA andB arecorformaiond isares andbothareinrapidequilibium

In chevica reation nay be dininistion, adltion or substittion A gives proditCandB givespoditD. ProditCandDnaybedfferetsubstaces ortheymaybecorfores of thesanestbataces
 then thet for acorformaiond equilibrium if this is thecæe, $\Delta \mathrm{G}_{\mathrm{G}}^{\#}$ add $\Delta \mathrm{G}^{\#}$ $>\Delta G$. The corfarmes of the readat ar in equilibium and are interconveted t ardemurhfater thenthat t whichthecompeing reations

Inthiscæeequilibiumismaintaned

$$
\begin{aligned}
K & =\frac{[B]}{[A]} \\
\frac{d C}{\frac{d}{d}} & =K_{C}[A] \\
\frac{d}{d} & =K_{D}[B]
\end{aligned}
$$

Incæethereationisfirstadar rpeerínirstader thenpodutratiois

$$
\begin{aligned}
& \frac{\Gamma}{\alpha}=K_{D}[B] / K_{C}[A]
\end{aligned}
$$

$$
\begin{aligned}
& K_{c}=e^{\Delta G \# / R T} \\
& \begin{aligned}
K_{D} & =e^{\Delta G \mathrm{G} \# / R T} \\
\text { Produtrdio } & =e^{\Delta G \# / R T}
\end{aligned}
\end{aligned}
$$

208Summay

- Thedfferet spotid aragenerts of tons in a maleale which are readly interconetide by rodtion aund singe bond is called carfarmations
- Cafomes/rdanes/corfarmiond isomesaeinterconatildeand nonsepardle
- Enegydffercrebedwernvaiascorfomersisinbakern>0.6and< $16 \mathrm{Kcd} /$ rde
- Tho edrene corformitions of thene and propene are saggered and edipsedcorformitions Enegy barier inetheneis $29 \mathrm{Kcd} /$ mole
- Butane possess three staggred (one ati and two gadne) and three edipsed(anefully yelipsedandtwo patidly yedipsed) corformaions
- Staggred corformaions possess staic stran wheres elipsed corformersposesstariora andstericstran
- Redivestddility of six corfomes of n-ateneare Arti >Garne> Edipsed>Fullyedipsed
- Cydic compands possess threkinob of strains andestran (Bager strain), tariond strain (Piter strain) and steric strain (Vander Weals strain).
- Cyddeereccarsintwofarms dairandbot corfarmations Enegy dfferercebdvernthesetwofarmsis $108 \mathrm{Kcd} / \mathrm{mde}$
- Chair formis nore stde then the bot forma bot corformaion posesstarsiond andstericstrains
- Monosbstitted yddherere possess drair corformaion in which the shbititut coupy equtrid poition a eMe cofformionis nore stddethenaMebyenegy barier $18 \mathrm{kcd} /$ nde
- In 1,2 dne\#hy gydneare tno forms ae posside i.e ais add trars Stadilityoddr is e>æ>æ
- 1,3 dmethyloyddnexare possess two is and one tras dair carformbiós

Stadilitycrdr-œ>>>>æ

- 1,4 druthyloyddherare possess one is and two tras dair corfamdions Stddilityadrar-œ>æ>æ
- In $\alpha-\mathrm{D}(+)$ guropyraœe β the gycosidc hydoxy is axid and in β aromeritisequtoid so β-anomer ismerestdethanthe α-anowr.
- Deedin is evis in two datereasomeic forms ais and tras which depernd onthewey of fusion of two ydderanerings Tras formis morestdethendisformbyeregy $27 \mathrm{kcd} /$ /rde
- Lager rings dwass fand in pukered stuxtre but tighe rings like cyddhatare, cydoodareetc possesssmall instdilities detotarina stranardvandaweal replision
- Corformaioneffedsthecherica reativity detostereodetroricand steic fatars Likein aydic compands rate of diminstion reations and in cydic compands rate of sabstition (SN1 and SND), etaifiction dimingtion nighboring gap patiaption and ovidtion readionsdeperosonthe corfarmion of thecompand
- Innoleala rearangenets, thetypeof produtfarraiondapenoson thecorfartionof thecompond
- Artin-hammet pingipegivetherddivearounts of produtsformed from tho petinet corformers ae compledy independest of the redive ppoldions of the corfomes add depend anly on the dffererceinthefreeeregy of trasitionstdes

209RevienQuestiós

1 Whetcbyou undastandbythetems corfarmaionandcarfigurdion?
2 Disasscorformaionsof ds andrars-deedins
3 Witestatndeanthefallowing
1 Corfamtionsofsgrar
2 Corformtionsof varia srings

4 Disass the effect of corfarmation on dremicd reativity by giving someexamdes of ydderaredaivaives
5 Disass hecorformaionsof distrars Deedin
6 With sitdde examdes, dsass the effet of ange srain toriora stran and intramealar hycoogen bonding on the staditity of corformaions
7. Disass the effect of corfarmaionon readivity of verias compands by givenaneamdes of aydicandydic compunds
8 Whydaircorformation of cydherareisrigd? Ischar corformion canbeconvetedintobotform?
9. Hownanystransarepresetincydiccompands?

10 Disassthecorformaionsof theneardatane
11 Exdainstaicstrainbygivinganeampleof 1,2,3tribtyl compands
12 How carformtions ffect the proult formion in molealar rearragenetreations?
13. Disussthevarias corformaionsof dsibstitted yddnerare

14 Exdain Curin-Hammett pinjide Also give daivation for CurinHammettpiniple
15 Whichcorfarmaion of gdcheare- bot ortwist bot is norestdde aduhh?
16 How substituion in cere of Decdin ffect the stdility of its corformitions?

2010ReferencesandSuggeted Rexdings

- Stereochenistry, D. G Maris, Royd Sociey of denintry, 2001
- Steredhenistryof argariccompanob,D.Nasipri, NewAge Interntional,1994.
- AdVancedOrgaricChemistry PatB: ReationandSyntheris, RJ. SundorgandF. A. Care, Spingr, 2008 (FifthEdtion).
- Mard's AdvancedOrgaric Chenistry,M. SnithandJ. MarchWles Intersience, 2001 (FifthEdtion).
- OrgricChemistry,R. T.Marison R. N. BoydadS. K. Bhattadajees Peason 2011 (SerathEdtion)
- Orgric Medarisis Readion Stereochenistry and Sytheris ,R. Brüdner, Springr, 2002(FirstEdtion).

[^0]: Ruxiand tatanerism

