

THE PYRAZINES

Supplement I

This is the Fifty-Eighth Volume in the Series

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

THE CHEMISTRY OF HETEROCYCLIC COMPOUNDS

A SERIES OF MONOGRAPHS

EDWARD C. TAYLOR and PETER WIPF, *Editors*

ARNOLD WEISSBERGER, *Founding Editor*

THE PYRAZINES

Supplement I

D. J. Brown

Research School of Chemistry Australian National University Canberra

AN INTERSCIENCE® PUBLICATION

JOHN WILEY & SONS INC.

This book is printed on acid-free paper. \circledcirc

Copyright © 2002 by John Wiley & Sons, Inc., New York. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permissions of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM.

For ordering and customer service, call 1-800-CALL-WILEY.

Library of Congress Cataloging in Publication Data is available.

Brown, D. J. The Pyrazines: Supplement I

ISBN 0-471-40382-2

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To Professor Emeritus Felix Bergmann† *(heterocyclic chemist and pharmacologist) now in his ninety-fifth year*

†Felix Bergmann was born in Frankfurt an der Oder in 1908 and graduated with doctorates in chemistry and medicine from Berlin in 1933. He then joined his brother Ernst at the Weizmann Institute, Rehovot, until he was elected in 1950 to the chair of Pharmacology within the Hebrew University of Jerusalem. During retirement, he has remained active in research until quite recently.

The Chemistry of Heterocyclic Compounds Introduction to the Series

The chemistry of heterocyclic compounds is one of the most complex and intriguing branches of organic chemistry, of equal interest for its theoretical implications, for the diversity of its synthetic procedures, and for the physiological and industrial significance of heterocycles.

The Chemistry of Heterocyclic Compounds, has been published since 1950 under the initial editorship of Arnold Weissberger, and later, until his death in 1984, under the joint editorship of Arnold Weissberger and Edward C. Taylor. In 1997, Peter Wipf joined Prof. Taylor as editor. This series attempts to make the extraordinarily complex and diverse filed of heterocylic chemistry as organized and readily accessible as possible. Each volume has traditionally dealt with syntheses, reactions, properties, structure, physical chemistry, and utility of compounds belonging to a specific ring system or class (e.g., pyridines, thiophenes, pyrimidines, three-membered ring systems). This series has become the basic reference collection for information on heterocyclic compounds.

Many broader aspects of heterocyclic chemistry are recognized as disciplines of general significance that impinge on almost all aspects of modern organic chemistry, medicinal chemistry, and biochemistry, and for this reason we initiated several years ago a parallel series entitled General Heterocyclic Chemistry, which treated such topics as nuclear magnetic resonance, mass spectra, and photochemistry of heterocyclic compounds, the utility of heterocycles in organic synthesis, and the synthesis of heterocycles by means of 1,3-dipolar cycloaddition reactions. These volumes were intended to be of interest to all organic, medicinal, and biochemically oriented chemists, as well as to those whose particular concern is heterocyclic chemistry. It has, however, become increasingly clear that the above distinction between the two series was unnecessary and somewhat confusing, and we have therefore elected to discontinue *General Heterocyclic Chemistry* and to publish all forthcoming volumes in this general area in *The Chemistry of Heterocyclic Compounds* series.

It is a major challenge to keep our coverage of this immense field up to date. One strategy is to publish Supplements or new Parts when merited by the amount of new material, as has been done, *Inter alia*, with pyridines, purines, pyrimidines, quinazolines and isoxazoles. This strategy was also the case recently with *Pyrazines*, (published in 2000) which had last been covered in this series in 1982. We acknowledge once again the extraordinary contributions of Dr. D. J. Brown, whose previous classics in heterocyclic chemistry in this series (*The Pyrimidines, The Pyrimidines Supplement I, The Pyrimidines Supplement II, Pteridines, Quinazolines Supplement I, The Pyrazines, Supplement I)* are now joined by the present exhaustive treatment of the last twenty years of pyrazine chemistry. We extend once again our congratulations and our thanks to Dr. Brown for a further outstanding contribution to the literature of heterocyclic chemistry.

Princeton University Princeton, New Jersey

Department of Chemistry EDWARD C. TAYLOR

Department of Chemistry PETER WIPF *University of Pittsburgh Pittsburgh, Pennsylvania*

Preface

This supplement seeks to build on the solid foundation established by Dr. G. B. Barlin's original volume, *The Pyrazines*, that appeared within this series in 1982. That original book presented the first comprehensive review of pyrazines, embracing a mass of important historical material as well as a modern systematic treatment of pyrazine chemistry. Not surprisingly, it stimulated a great deal of research in all aspects of the field, resulting in the need for a supplementary volume to cover literature published between 1979 and 2000, inclusive.

In undertaking this task, the present author thought it wise to make certain changes in format to conform with recent trends. Thus pyrazine *N*-oxides and reduced pyrazines are no longer separated out from regular pyrazine derivatives; primary syntheses are now divided between two chapters, one involving aliphatic or carbocyclic substrates and the other involving heterocyclic substrates; and the many classified tables of pyrazine derivatives are replaced by a single alphabetical table of simple pyrazines that aims to list *all* such pyrazines (including those in the earlier tables). In view of these and other necessary changes, the essential status of the present volume as a *supplement* has been maintained by many sectional cross-references (e.g., *H* 28) to pages in the original volume (*Hauptwerk*), where earlier relevant information may be found; such crossreferences are used also in the Table of Simple Pyrazines.

Chemical nomenclature used in this supplement follows current IUPAC recommendations [*Nomenclature of Organic Chemistry, Sections A–F, H* (eds. J. Rigaudy and S. P. Klesney, Pergamon Press, Oxford, 1970)] with one important exception: in order to keep "pyrazine" as the principal part of each name, those groups that would normally qualify as principal suffixes, but that are not attached directly to the nucleus, are rendered as prefixes. For example, 3-carboxymethyl-2 $(1H)$ -pyrazinone is used instead of 2-(3-oxo-3, 4-dihydropyrazin-2-yl) acetic acid. Secondary and tertiary amino groups are rendered as prefixes. Ring systems are named according to Chemical Abstracts Service recommendations [*Ring Systems Handbook* (eds. anon., American Chemical Society, Columbus OH, 1998 edition)]. Many trivial names for pyrazines are listed in Section 5.6. In preparing this supplement, the patent literature has been largely ignored in the belief that useful factual information therein usually appears subsequently in the regular literature.

I am greatly indebted to my good friend and author of the original volume, Dr. Gordon Barlin, for invaluable consultation and advice; to the Dean of the Research School of Chemistry, Professor Denis Evans, for the provision of postretirement facilities within the School; to the branch Librarian, Mrs Joan Smith, for continual assistance in library matters; and to my wife, Jan, for much needed encouragement and her mighty help during indexing, proofreading, and the like.

Research School of Chemistry DES BROWN *Australian National University, Canberra*

Contents

CHAPTER 1

Primary Syntheses from Aliphatic or Carbocyclic Synthons

Primary synthetic routes to pyrazines or hydropyrazines from aliphatic or carbocyclic synthons are so numerous and diverse that any system of classification cannot be satisfactory in all respects. The approach adopted here is based on the ways in which the six ring atoms of pyrazine can be supplied by synthons, as indicated in the Contents headings.

In each subsection, any examples of syntheses that lead directly to pyrazines usually precede any that afford di-, tetra-, or hexahydropyrazines (piperazines) in that order. Examples of any pre-1978 syntheses in each broad category may be located from the cross-references (e.g., *H* 49) to appropriate subsections in Barlin's parent volume.1686 Less comprehensive reviews of primary syntheses in the pyrazine series have appeared in recent years.743, 1287, 1426, 1677

1.1. FROM A SINGLE SIX-ATOM SYNTHON

Because of symmetry in the pyrazine ring, there are only two ways in which a pyrazine can be formed from a six-atom synthon: by completion of the $N1-C2$ bond or the C2—C3 bond. In most examples, the synthon has been isolated but not necessarily characterized prior to ring closure.

1.1.1. By Completion of the N1–C2 Bond

The cyclization of an $N-C$ — $C-N-C$ synthon has been used widely to make pyrazines and hydropyrazines. Because the terminal nitrogen atom is usually an amino or related group, examples are classified according to the substituent (or unsaturation) at the terminal carbon atom of the synthon: The nature of the synthon naturally determines the degree of aromaticity in the product.

1.1.1.1. From Appropriate ω-Unsaturated Azaalkylamines (Η 358)

This unusual synthesis is exemplified by the cyclization of methyl [1-methyl-2- (prop-2-enylimino)propylideneamino]carbonate (**1**) to 2,3,5-trimethylpyrazine (2) in 63% yield by brief thermolysis in toluene at $300^{\circ}C_{3}^{339}$ several analogues were prepared from comparable substrates.839, 1534

1.1.1.2. From Appropriate ω-Halogeno(azaalkylamines)

Such cyclizations are illustrated in the following examples:

1-(2-Chloroacetamido)-1-phenylacetone oxime (**3**) gave 5-methyl-6-phenyl-2 (1*H*)-pyrazinone (**5**) via the *N*-oxide (**4**) (NaOH, dioxane, 20°C, 20 h: 86%); several analogues of (**4**) and (**5**) were made similarly.544

Methyl 2-{2-[*N*-(2-bromoethyl)-*o*-nitrobenzenesulfonamido]propionamido}-2 phenylacetate (6) gave $1-(\alpha$ -methoxycarbonylbenzyl)-3-methyl-4- o -nitrobenzenesulfonyl-3.4.5.6-tetrahydro-2(1*H*)-pyrazinone (**7**) [1,8-diazabicyclo $[5,4,0]$ undec-7-ene, tetrahydrofuran(THF): $> 95\%$].¹⁶²² Also other examples.863, 1493, 1772

1.1.1.3. From Appropriate α, ω-Diamino(azaalkanes)

This rare synthesis has been used to advantage in the conversion of *N*,*N*-bis (2-amino-1-methoxycarbonylvinyl)aniline (**8**) into dimethyl 1-phenyl-1,4-dihydro2,6-pyrazinedicarboxylate (**9**) (74%) by simply boiling in acetic acid for 20 min; analogues were made similarly. 810 Related examples have been reported.¹⁷⁶⁷

1.1.1.4. From Appropriate ω-Amino(azaalkanols) (Η 372)

This synthesis usually gives hydropyrazines but appropriate substituents in the substrate can ensure autooxidation to pyrazines, as illustrated in the first of the following examples:

2-Amino-3-(2,3-dihydroxypropylideneamino)maleonitrile (**10**) gave 5-methyl-2,3-pyrazinedicarbonitrile (11) (HgCl₂, Me₂SO, 25°C, 3 h: 60%).⁷⁶

- 2-[2-(Benzyloxycarbonylamino)acetamido]-3-hydroxypropionaldehyde hydrate (**12**) gave 6-hydroxymethyl-3,4,5,6-tetrahydro-2 (1*H*)-pyrazinone (**13**) (Pd/C, MeOH, H₂, 50 atm, 20 $^{\circ}$ C, 24 h: 96%).¹⁰⁶¹
- 2-(2-Aminoethylamino)ethanol gave piperazine (14) (Cu-Al₂O₃ catalyst, continuous flow, 200°C: 95%).¹⁰⁶⁴

Also other examples.1330, 1641

1.1.1.5. From Appropriate ω-Amino(azaalkanals) (Η 49)

In this type of synthesis, the substrate's aldehydo group is usually present as an acetal and its amino group may sometimes form part of a terminal amido group. Such possibilities are illustrated in some of the following examples:

N-(2,2-Diethoxyethyl)oxamide (**15**) gave 2,3(1*H*,4*H*)-pyrazinedione (**16**, $R = H$) (AcOH, reflux: 68%);¹⁵⁶² 5-methyl-2,3 (1*H*, 4*H*)-pyrazinedione (16, $R = Me$) was made somewhat similarly.⁸¹²

Ethyl *N*-{1-[(*N*-(2,2-diethoxyethyl)-*N*-methylcarbamoyl]-2-phenylethyl}aminoformate (**17**) gave ethyl 2-benzyl-4-methyl-3-oxo-1,2,3,4-tetrahydropyrazinecarboxylate (**18**) [HCl, MeCN, 20°C, 1 h: yield unstated (?%)]; analogues likewise.²⁴⁸

2-{2-[*N*-(2,2-Dimethoxyethyl)-*N*-methylamino]ethylamino}pyridine (**19**) gave 1-methyl-4-(pyridin-2-yl)-1,2,3,4-tetrahydropyrazine (**20**) (3 M HCl, 80°C, 2 h: 65%).¹⁴⁰⁴

Also other examples.36, 122, 123, 339, 665, 822, 1095, 1774

1.1.1.6. From Appropriate ω-Amino(azaalkanones) (Η 64, 358)

In some of the following examples, the terminal amino group of the substrate is initially protected or even replaced by an azido group:

N-(1-Acetylethyl)-2-phthamimidopropionamide (**21**) gave 2,5,6-trimethyl-2(1*H*) -pyrazinone (22) (KOH- H_2O , 20°C, 30 min; then AcOH \downarrow , pH 4–5, reflux, 10 h: 65%); also homologues.¹⁰⁹⁹

2-Azido-*N*-phenacyl-*N*-phenylacetamide (**23**) gave 1,5-diphenyl-2(1*H*)-pyrazinone (24) (Ph₃P, PhMe, 20°C, 20 h: 35%; the evident oxidation was not aerial); analogues likewise.⁵⁵⁵

2-Amino- N -(1-chloroacetyl-3-methylbutyl)butyramide (25, $R = H$), prepared *in situ* as hydrochloride by treatment of its *N*-*tert*-butoxycarbonyl derivative (**25**, $R = CO₂Bu^t$ in HCl–dioxane, gave 3-ethyl-6-isobutyl-5-methyl-2(1*H*)pyrazinone (26) (MeOH, reflux, 2 h: 90%);³⁸⁹ many analogues were made similarly.^{118, 121, 175, 389, 1452,} 1491

N-(1-Acetyl-1-methylethyl)-2-azido-*N*-hydroxyacetamide (**27**) gave 1-hydroxy-5,6,6-trimethyl-3,6-dihydro-2 (1*H*)-pyrazinone (**28**) (Ph3P, THF, 20°C, 24 h: 79%).424

Also other examples.416, 1031, 1101, 1386, 1628, 1743

1.1.1.7. From Appropriate ω-Amino(azaalkanoic) Acids

Such substrates have been used occasionally, as illustrated in the following examples:

N-Benzyl-*N*-[(*N*-*o*-methoxyphenylcarbamoyl)methyl]glycine (**29**) underwent dehydrative cyclization to 4-benzyl-6-hydroxy-1-*o*-methoxyphenyl-3,4-dihydro-2(1*H*)- pyrazinone (30) (1,1'-carbonyldiimidazole, THF, $-30 \rightarrow 65^{\circ}$ C, 17 h: 83%; other reagents gave lower yields).⁴⁸⁷

- *N*-(2-Aminoethyl)-*N*-carboxymethylglycine (**31**) gave 4-carboxymethyl-3,4,5, 6-tetrahydro-2(1*H*)-pyrazinone (32) (Me₂NCHO, reflux: ?%).⁸²⁰
- Also the formation of bis(3,6-dioxopiperazin-2-ylmethyl)disulfide (**33**) ¹⁴⁴⁰ and other examples.671, 1748, 1759, 1770

1.1.1.8. From Appropriate ω -Amino (azaalkanoic) Esters (H 363, 369)

Such cyclizations have been used extensively, especially to prepare hydropyrazines. The amino group of the substrate may be replaced by an azido group or it may be used (especially for chiral syntheses) in a protected form: In the latter case, deprotection is usually done prior to cyclization albeit in a one-pot sequence; the ester group of the substrate may be replaced by a terminal lactonic grouping.⁸¹³ The following examples illustrate some such possibilities:

Ethyl *N*-(2-amino-3-methylbutyryl)glycinate $(34, R = Prⁱ)$ gave 3-isopropyl-3, 6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (35, $R = Pr^i$) (PhMe, reflux, 24 h: 79%);1351 similar procedures afforded the 3-isobutyl homologue (**35**, $R = Bu^{i}$) $(71\%)^{193}$ and 3-(3,4-dimethoxybenzyl)-3-methyl-3,6-dihydro-2,5(1*H*,4*H*) -pyrazinedione (36) (81%).¹⁸⁸

Ethyl *N*-(2-azido-1-ethoxycarbonylethyl)-*N*-benzylglycinate (**37**) gave ethyl 1-benzyl-5-ethoxy-1,2,3,6-tetrahydro-2-pyrazinecarboxylate (38) (Ph₃P, PhMe, 100°C, 9 h: 58%).¹⁴⁶⁸

Ethyl *N*-[2-(*tert*-butoxycarbonylamino)propionyl]glycinate (**39**) gave 3 methyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**40**) (200°C, A, 30 min: $> 95\%$; mechanism?);¹⁶¹⁶ an homologous product, 3-isopropyl-3,6dihydro-2,5(1*H*,4*H*)-pyrazinedione (**41**) was made somewhat similarly but in two stages (Pd/C, MeOH- CH_2Cl_2 , H₂, 24 h; then PhMe, reflux, 12 h: 65%).⁵⁰

Methyl *N*-(2-diallylamino-3-hydroxyhexyl)-2-isopropylglycinate (**42**) gave 6-(1 hydroxybutyl)-3-isopropyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone (43) $[(Ph_3P)_3]$ RhCl, MeCN—H₂O, distillation (see original for details), 5 h: 47%].⁴⁰⁴ Also other examples.182, 189, 229, 703, 813, 843, 1347, 1465, 1495, 1498, 1535, 1750

1.1.1.9. From Appropriate ω -Amino(azaalkanamides)

Such substrates are seldom used but *tert*-butyl {1-[1-(*N*-methoxy-*N*-methylcarbamoyl)-3-methylbutyl]carbamoyl -2-phenylethyl}aminoformate (**44**) gave 3-benzyl-6-isobutyl-2(1*H*)-pyrazinone (45) (21%) by two deprotections (LiAlH₄; and HCl-dioxane) and a final cyclization in acetonitrile during 13 h.¹⁵¹⁰

1.1.1.10. From Appropriate ω-Amino (azaalkanenitriles) (Η 49, 344)

These nitriles are usually employed to afford aromatic pyrazinamines but they can be used to produce hydropyrazinamines, chloropyrazinamines, or even pyrazines without an amino substituent. The following cyclizations illustrate some of these uses:

Methyl 2-cyano-*N*-(2-hydroxyimino-4-methylvaleryl)glycinate $(46, R = Me)$ gave methyl 3-amino-5-isobutyl-6-oxo-1, 6-dihdyro-2-pyrazinecarboxylate 4-oxide (47, R = Me) (AcOH, 70°C, 3 h: $>32\%$);³³⁷ the ethyl ester (47, $R = Et$) ($>62\%$) was made similarly.⁸⁴⁸

Methyl $2-(\beta$ -aminostyrylimino)-2-cyanoacetate (48) gave methyl 3-amino-5phenyl-2-pyrazinecarboxylate (49) (MeONa, MeOH—CH₂Cl₂, 20^oC, 15 min: 70%).941

 α -(Dicyanomethyleneamino)malononitrile (**50**) underwent addition of hydrogen chloride to afford the unisolated iminonitrile (**51**) and thence 3-amino-5 chloro-2,6-pyrazinedicarbonitrile (52) (HCl—AcMe, reflux, 10 min: 43%).⁴⁴⁷

2,2-Iminodipropiononitrile (**53**) gave 6-hydroxy-3,5-dimethyl-3,4-dihydro-2(1*H*)-pyrazinone (54) (HCl/EtOH, 0°C, 12 h; then Na_2CO_3 —H₂O: 18%; by a yet unconfirmed mechanism).577

Also other examples.436, 747, 749, 1180, 1284

1.1.2. By Completion of the C2-**C3 Bond**

Not unnaturally, the synthesis of a pyrazine or hydropyrazine from a single C—N—C—C—N—C synthon is rare. However, the cyclization of *N*,*N'*-dibenzylidene or *N*,*N*-diacyl derivatives of ethylenediamines has proven possible, as indicated in the following examples:

1,2-Bis (benzylideneamino)-1,2-diphenylethane (**55**) gave 2,3,5,6-tetraphenylpyrazine (57) , via the unisolated 2,3-dihydro derivative (56) (Na—Et₂O, reflux, N₂, 6 h; then O₂ \downarrow , 20°C, 10 min: 90%).¹³⁸

2,3-Bis(benzylideneamino)-2-cyanoacrylamide (**58**) gave a separable mixture of 3 cyano-5,6-diphenyl-4,5-dihydro- (**59a**) and 3-cyano-5,6-diphenyl-1,6-dihydro-2 pyrazinecarboxamide (**59b**) ($Me₂SO$, $80^{\circ}C$, 10 min: 10 and 68%, respectively); oxidation of either product gave 3-cyano-5,6-diphenyl-2-pyrazinecarboxamide (60) (MnO₂, Me₂NCHO, 60°C, 12 h: 80%; or H₂O₂, MeOH, 55°C, 8 h: 30%); several substituted-phenyl derivatives were made likewise.752

1,2-Bis(benzylideneamino)ethane (**61**) afforded 2,3-diphenylpiperazine (**62**) (TsONEt₄, MsOH, Me₂NCHO, Pb cathode, 0.5 amp: 95%); analogues likewise.⁸⁴⁵

1,2-Bis(*N*-methylbenzamido)ethane (**63**) gave 1,4-dimethyl-2,3-diphenyl-1,4, 5,6-tetrahydropyrazine (64) (Sm—SmI₂, THF, 67^oC, 3 h: 62%).⁴⁶³

1.2. FROM TWO SYNTHONS

Most of the primary syntheses from aliphatic or carbocyclic substrates fall into this category, which is subdivided successively according to the number and the type of ring atoms supplied by each synthon.

1.2.1. By Using a One-Atom and a Five-Atom Synthon

The one-atom synthon may supply either N1 or C2 but nearly all known examples fall into the first of these subcategories.

1.2.1.1. Where the One-Atom Synthon Supplies N1 (H 49)

Such one-atom synthons are normally ammonia or a primary or secondary amine. The following examples are therefore classified according to the type of five-atom cosynthon used:

With 1,5-Dialkylidene-3-azapentanes

N-Ethyl-*N*,*N*-bis(3-methoxycarbonylallyl)amine (**65**) gave 1-ethyl-3,5-bis(methoxycarbonylmethyl)-4-methylpiperazine (66) (MeNH₂, MeOH, $0 \rightarrow 25^{\circ}C$, ? h: 69%); homologues likewisa.¹⁴⁹⁴

With 1,5-Dihalogeno-3-azapentanes

Bis(2-chloroethyl)amine (**67**) and 2,5-dimethoxyaniline gave 1-(2,5-dimethoxyphenyl)piperazine (68) (K₂CO₃, MeOCH₂CH₂OCH₂CH₂OMe, reflux, 48 h: 62%). 610

With 5-Halogeno-3-azapentanyl Ketones or Aldehydes

N-(1-Acetyl-1-methylethyl)-2-chloro-*N*-hydroxyacetamide (**69**) gave 1-hydroxy-5,6,6-trimethyl-3,6-dihydro-2(1*H*)-pyrazinone (**70**) (NH₄OH—EtOH—dioxane, 20 $^{\circ}$ C, 3 days: 8%); likewise one homologue.⁴²⁴ Aldehydes gave better results under reductive conditions.1768

With 5-Halogeno-3-azapentanoic Acids or Esters

2-(2-Bromopropionamido)-3-methylvaleric acid (**71**) gave 3-*sec*-butyl-6-methyl-3,6-dihydro-2,5 (1*H*,4*H*)-pyrazinedione (**72**) (NH4OH, 20°C, 7 days, volatiles \uparrow ; PhOH, 145°C, 2 h: 73%).³¹⁷

Ethyl 2-[2-chloro-*N*-(1-phenylethyl)acetamido]propionamide (**73**) gave 3 methyl-4-(1-phenylethyl)-3,6-dihydro-2,5 (1*H*,4*H*)-pyrazinedione (**74**) (7 M NH₃/EtOH, 20°C, 24 h: ?%).¹³⁴⁹

Also other examples.⁸⁹⁰

With 3-Aza-1,5-pentanediols

- A neat mixture of diethanolamine hydrochloride and aniline hydrochloride gave 1-phenylpiperazine (**75**) (microwave irradiation, Dean–Stark, 12 min: 50%);1197 also related examples.^{1066, 1197}
- Diethanolamine and *m*-(trifluoromethylthio)aniline gave 1-[*m*-(trifluoromethylthio)phenyl]piperazine (**76**) (HCl gas \downarrow , ~190°C, 1 h; then 240°C, 90 min: 33%); analogues likewise.592

Also other examples. 814, 894

Note: It seems relevant that aqueous solutions of *N*-methyldiethanolamine (**77**), employed to remove H2S from hydrocarbon gases, gradually accumulate *inter alia* 1,4-dimethyl-, 1-(2-hydroxyethyl)-4-methyl-, and 1,4-bis(2-hydroxyethyl)piperazine.1583

With 3-Aza-1,5-pentanediyl Diketones

- 1-Isovaleryl-*N*-phenacylformamide (**78**) gave 3-isobutyl-5-phenyl-2(1*H*)-pyrazinone (79) (AcONH₂, EtOH, reflux, 3.5 h: 67%).^{311, 632}
- N,*N*-Diphenacyl-*p*-toluidine and *p*-toluidine gave 2,6-diphenyl-1,4-di-*p*-tolyl-1, 4-dihydropyrazine (80) (TsOH, PhMe, reflux, Dean–Stark H₂O removal, 5 h: 35%).³¹

Also other procedures.^{1627, 1760}

With 3-Aza-5-oxopentanoic Acids or Esters

Benzyl 4-methyl-2-(*N*-methyl-1-propionylformamido)valerate (**81**) gave 3-ethylidene-6-isobutyl-1-methyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**82**) (AcONH₄, AcOH---PhMe, heat: $> 73\%$; this and related products were prepared on a solid resin support).¹⁶²¹

Also other examples under conventional conditions.¹⁷⁵⁷

With 3-Aza-1, 5-pentanedioic Acids or Derivatives

Bis(carboxymethyl)amine $(84, R = H)$ gave 4-formyl-6-hydroxy-3,4-dihydro- $2(1H)$ -pyrazinone (83, $Q = CHO$) [HCO₂NH₄, Me₂NCHO—PhMe, Dean–Stark H₂O removal, $150-170^{\circ}$ C (bath?), 4 h: 58%], and thence 6-hydroxy-3,4-dihydro-2(1*H*)-pyrazinone (83, $Q = H$) (HCl, EtOH, reflux, 3 h: 98% , as hydrochloride).⁴⁴¹

Tris(carboxymethyl)amine (nitrilotriacetic acid: 84 , $R = CH_2CO₂H$) gave 6-hydroxy-1-methyl-4-(methylcarbamoyl)methyl-3,4-dihydro-2 (1*H*)-pyrazinone (**85**) (HCHNHMe, 150–160°C, ? h: 59%).1470

Also other examples.274, 487, 1041

With 3-Aza-5-dialkylaminopentanenitriles

-(3,3-Dimethoxy-2-pyrrolidinoprop-2-enylimino)malononitrile (**86**) gave 3 amino-5-dimethoxymethyl-2-pyrazinecarbonitrile (**87**) (NH3/MeOH, 20°C, 45 min: 85%).767

 α -(α -Methyl- β -morpholinostyrylimino)malononitrile (88) gave 3-imino-4,6-dimethyl-5-phenyl-3,4-dihydro-2-pyrazinecarbonitrile (89) (MeNH₂, EtOH-CHCl₃, 20 \degree C, 12 h: 97%); analogues likewise.⁹⁴²

Also other examples.¹⁴¹⁹

1.2.1.2. Where the One-Atom Synthon Supplies C2

This type of cyclization appears to have been used recently with only one substrate, as illustrated in the following examples:

3-Amino-2-benzylideneamino-3-methoxyacrylonitrile (**91**) and 2-methoxypropene gave 3-methoxy-5,5-dimethyl-6-phenyl-4,5-dihydro-2-pyrazinecarbonitrile (90) (pyridinium. TsOH, PhMe, N_2 , reflux, 48 h: 82%);⁸⁵⁷ substrate (**91**) and triethyl orthoformate likewise gave 3-methoxy-6-phenyl-2 pyrazinecarbonitrile (**92**) in 91% yield.857

The same substrate (**91**) and triethyl orthoacetate, however, gave a separable mixture of 5-ethoxy-3-methoxy-5-methyl-6-phenyl-4,5-dihydro-2-pyrazinecarbonitrile (**93**) and 3-methoxy-5-methyl-6-phenyl-2-pyrazinecarbonitrile (**94**) (likewise: 35 and 43%, respectively); the dihydro product (**93**) gave its aromatic counterpart (**94**) quantitatively by loss of ethanol on treatment with pyridine or triethylamine.857

1.2.2. By Using a Two-Atom and a Four-Atom Synthon

The two-atom synthon may supply Nl $+$ C2 or C2 $+$ C3 but most of these syntheses fall into the latter category. When both synthons are unsymmetrical, two products are possible.

1.2.2.1. Where the Two-Atom Synthon Supplies $NI + C2$

This category appears to be represented in recent literature only by a single esoteric type of cyclocondensation, as illustrated with the following example:

2-Benzamidopropionic acid (**95**) underwent unsymmetrical self-condensation and aminolysis to give 1-benzoyl-2,5-dimethyl-6-methylimino-3-phenyl-1,2,5,6-tetrahydro-2-pyrazinecarboxylic acid (**97**), possibly via intermediate (**96**) (MeNH₂-POCl₃, CHCl₃, reflux, 5 h: 43%); several analogues were made similarly.¹⁰⁹⁸

$$
\begin{array}{ccc}\n & \overset{BZ}{\longleftarrow} & \overset{BZ}{\longleftarrow} \\
& \overset{NH}{\longleftarrow} & \underset{P_1}{\bigcirc O_2H} & \overset{MeNH_2 - POCI_3}{\longleftarrow} & \overset{Me}{\longleftarrow} & \overset{N}{\longleftarrow} & \overset{D}{\longleftarrow} & \overset{Me}{\longleftarrow} & \overset{N}{\longleftarrow} & \overset{BZ}{\longleftarrow} \\
& \overset{P_1}{\longleftarrow} & \overset{P_2}{\longleftarrow} & \overset{N}{\longleftarrow} & \overset{N}{\long
$$

1.2.2.2. Where the Two-Atom Synthon Supplies C2 C3 (H 28, 35, 62, 63, 348, 358)

This category of synthesis has been used extensively. Since there is little variation in the $N-C$ — C — N synthon (usually ethylenediamine, 2-aminoacetamide, oxamide, cyanogen, or a derivative thereof), these syntheses are classified according to the two-atom $(C-C)$ synthon, which does vary considerably. The following examples, with occasional explanatory notes, illustrate possibilities that have been reported in recent literature:

With Prop-2-ynols

Ethylenediamine (**98**) and 1-methylprop-2-ynol (**99**) gave 2,3-dimethyl-5,6-dihydropyrazine (100) [Hg(OAc)₂, CHCl₃, reflux, 7 h: 51%); homologues likewise.²¹⁰

With -Methylene Ketones

Bis(*p*-tolylimino)ethane (**101**) and acetylacetone (**102**) gave 2-acetyl-3-methyl-1,4-di-*p*-tolyl-1,4-dihydropyrazine (**103**) (neat EtONa, 145°C, 3 h: 68%); also analogues likewise.141

With Acrylic Acids or Esters

1,2-Diamino-2-methylpropane (**104**) and diethyl maleate (**105**) gave 3-ethoxycarbonylmethyl-6,6-dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone (**106**) (Pr*ⁱ* OH, 60°C, 6 h: 53%; structure confirmed by nuclear magnetic resonance (NMR) and no isomer could be detected); also analogues likewise.722

With 1,2-Dihalogenoethanes, Chloroacetyl Chloride, Oxalyl Chloride, and so on

1,2-Bis(2,2,2-trifluoroacetamido)ethane (**107**) and methyl 2,3-dibromopropionate (**108**) gave methyl 1,4-bis(trifluoroacetyl)-2-piperazinecarboxylate (**109**) (NaH, Me₂NCHO, $5 \rightarrow 20^{\circ}$ C, 3 h: 59%).⁴¹⁸

Ethylenediamine and octafluoro-2,3-epoxybutane (**110**) gave 2,3-bistrifluoromethyl-1,2,5,6-tetrahydro-2-pyrazinol (111) (MeOCH₂CH₂OCH₂CH₂OMe, 20°C, 2–5 h: 20%); also analogues.¹¹⁰⁵

1,2-Diamino-1,2-diphenylethane (**112**) and 1,2-dichloro-1,2-bis (*p*-tolylimino) ethane (**113**) gave 2,3-diphenyl-5,6-di-*p*-toluidino-2,3-dihydropyrazine (**114**) $(Et₃N, PhMe, 20^oC, until thin-layer chromatography (TLC) shows no$ dichloro synthon: 80%); also analogues.⁹⁷⁹

N-(2-Benzylaminoethyl)cyclohexanecarboxamide (**115**) and chloroacetyl chloride (**116**) gave 1-benzyl-4-cyclohexylformyl-3,4,5,6-tetrahydro- $2(1H)$ -pyrazinone (117) (NaOH, PhCH₂Et₃NCl, H₂O—PhH, 20 \rightarrow 55°C, 2 h: 80%;433 Bu*^t* OK, Bu*^t* OH, 20°C, 40 min: 65%); 58 also analogues by both procedures.58, 433

- 2,3-Di-*p*-toluidinoacrylonitrile (118, $Q = H$, $R = C₆H₄$ Me-*p*) and oxalyl chloride (**119**) gave 5,6-dioxo-1,4-di-*p*-tolyl-1,4,5,6-tetrahydro-2-pyrazinecarbonitrile $(120, Q = H, R = C_6H_4Me$ -*p*) CHCl₃, 20°C \rightarrow reflux, >2 h: 65%); also analogues.²⁹⁶
- 2,3-Diaminomaleonitrile (118, $Q = CN$, $R = H$) and oxalyl chloride (119) gave 5,6-dioxo-1,4,5,6-tetrahydro-2,3-pyrazinedicarbonitrile (120, $Q = CN$, $R =$ H) (dioxane, $0 \rightarrow 50^{\circ}$ C, 4 h: 90%).¹³⁹⁰

N,*N*-Diethyloxamide (**121**) and oxalyl chloride gave 1,4-diethyl-5,6-dihydro-2,3,5,6(1*H*, 4*H*)-pyrazinetetrone (**122**) (neat, 120°C, sealed, 4 h: ?%); also homologues similarly.796

Also other examples.480, 482, 825, 1622, 1647

Note: In the foregoing syntheses, acyl halides react at their halogeno entity to afford pyrazinones; however, sometimes they appear to react at their carbonyl entity (at least with primary amino cosynthons) to afford halogenopyrazines (see examples later in this subsection).

With 2-**Halogenoacetaldehydes**

- *Note:* The only available examples in this subcategory employ a complicated one-pot procedure that has been used effectively to make several related products: a mechanism has been suggested.¹⁵³³
- 2-Benzylaminoethylamine (**123**), 2-chloroacetaldehyde, *tert*-butyl isocyanate, and formic acid gave 4-benzyl-*N*-*tert*-butyl-1-formyl-2-piperazinecarboxamide (124) (MeOH-H₂O, 23[°]C, 3 days: 60%).¹⁵³³

With α -Halogeno Ketones

Ethylenediamine and 3-bromo-2-octanone (**125**) gave 2-methyl-3-pentyl-1,4,5,6 tetrahydropyrazine (**126**) (EtOH, 20° C \rightarrow reflux, 3 h: 47%).¹¹⁰³

Also other examples.718, 1394

With 2-**Halogenoacetic Acids or Derivatives**

Note: Most of the available examples in this subcategory involve the somewhat specialized condensation of α -aminonitriles (as four-atom synthons) with oxalyl chloride, operating not as a dihalogenoethane derivative (as exemplified previously) but as an α -chloro carboxylic acid derivative.

1,2-Bis(benzylamino)ethane (127) and diethyl α -bromomalonate (128) gave ethyl 1,4-dibenzyl-3-oxo-2-piperazinecarboxylate (129) (MeCN, N₂, reflux, 6 h: 75%);⁶⁴⁴ also analogous examples.¹⁴⁹

2-Methylaminoacetonitrile hydrobromide $(130, X = Br)$ and an excess of oxalyl bromide (131, $X = Br$) gave 3,5-dibromo-1-methyl-2(1*H*)-pyrazinone (**132**, $X = Br$) ($C_6H_3Cl_2$ -*o*, 20 \rightarrow 80°C, 5 h: 49%); the dichloro analogue $(132, X = C)$ was made similarly from $(130, X = C)$ and $(131, X = C)$ in 55% yield and two possible mechanisms have been suggested.1309 The reaction has been used to make many analogous products.^{1309, 1381, 1496, 1672}

With 1,2-**Ethanediols or Related Synthons**

Ethylenediamine undergoes vapor-phase cyclocondensation with 1,2-ethanediol (**133**, $R = H$) or 1,2-propanediol (**133**, $R = Me$) over heavy metal catalysts at $400-500\degree$ C to afford pyrazine (135, R = H) or 2-methylpyrazine (135, $R = Me$), respectively, via intermediates (134).^{155, 438, 1038, 1167, 1191, 1203, 1207, 1229, 1258}

2,3-Diiminosuccinonitrile (**136**) with 1,2-dimethoxyethylene (**137**) gave 5,6 dimethoxy-1,4,5,6-tetrahydro-2,3-pyrazinedicarbonitrile (**138**) (MeCN, $10 \rightarrow 20^{\circ}$ C, 7 h: 76%), and hence 2,3-pyrazinedicarbonitrile (139) (thermally or on silica gel);789 the same diimine (**136**) with 1-diethylaminopropyne (**140**) gave directly 5-diethylamino-6-methyl-2,3-pyrazinedicarbonitrile (**141**) (THF, $-70 \rightarrow 20^{\circ}$ C: 62%).⁷⁸⁹

- 1,2-Bis(tosylamino)ethane (**142**) and 1,4-bis(methoxycarbonyloxy)-2-butene (143) gave 1,4-ditosyl-2-vinylpiperazine (144) [Pd catalyst, P(OPr)₃, THF—CHCl₃, N₂, 20 $^{\circ}$ C, 4 h: 69%); also analogues.⁸²⁹
- Ethylenediamine undergoes catalytic self-condensation (with loss of 2 NH_3) to give piperazine and subsequently (by dehydrogenation)pyrazine $(Pt - Al₂O₃)$, 400°C: \sim 38% pyrazine).⁴³⁸

With 2-**Hydroxyacetaldehydes**

1,2-Dianilinoethane (**145**) and mandelaldehyde (2-hydroxy-2-phenylacetaldehyde: **146**) gave 1,2,4-triphenyl-1,4,5,6-tetrahydropyrazine (**147**) (TsOH, PhMe, reflux, Dean–Stark H₂O removal, 6 h: 70%).⁷⁰¹

With 2-**Hydroxyacetic Acid Derivatives**

2-Amino-2-methyl-1-propylaminopropane (**148**) and acetone cyanohydrin (2 hydroxy-2-methylpropionoitrile: **149**) gave 3,3,5,5-tetramethyl-1-propyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone (**150**, $X = 0$), presumably via the imine $(150, X = NH)$ (PhCH₂Et₃NCl, NaOH, CHCl₃—H₂O, 5°C, >5 h: 70%); also analogues.187

With Ethanedial (Glyoxal)

2,3-Diamino-3-phenylthioacrylonitrile (**151**) and glyoxal (**152**) gave 3-phenylthio-2-pyrazinecarbonitrile (153) (TsOH, H₂O-MeOH, reflux, 5 h: 77%).1507

-Aminomalonamide (**154**) and glyoxal gave 3-oxo-3,4-dihydro-2-pyrazinecarboxamide (155) (OHCCHO.NaHSO₃, H₂O, 80 \degree C, 3 h; then NaOH, H₂O₂: 84%; note requirement for oxidation);^{598, cf 1119} likewise, α, β -diaminosuccinic acid gave $2,3$ -pyrazinedicarboxylic acid (OHCCHO, NaOH, H₂O-MeOH, air \downarrow , 50° \rightarrow reflux, 3.5 h: 70%).¹⁴³

2-Amino-*N*-hydroxyacetamide (**156**) and glyoxal gave 1-hydroxy-2(1*H*) pyrazinone (**157**) (NaOH, MeOH-H₂O, $-30 \rightarrow 45^{\circ}$ C, 3 h: 85%);¹³⁸² an analogous cyclocondensation gave the isomeric 2(1*H*)-pyrazinone 4-oxide (159) from 2-hydroxyaminoacetamide (158), made *in situ* (OHCCHO, H₂O, N_2 , 5°C, 20 min: 91%). 97, cf. 88

2,3-Bis(hydroxyamino)-2,3-dimethylbutane (**160**) and glyoxal gave 2,2,3,3 tetramethyl-2,3-dihydropyrazine $1,4$ -dioxide (161) $(H₂O$ —EtOH, reflux, 10 min: 83%; naturally not subject to facile oxidation).⁷⁰²

Also other examples.1, 86, 237, 414, 466, 483, 588, 988, 1108

With Monoalkyl- **or Monoarylglyoxals or Schiff Bases**

2,3-Diaminomaleonitrile (**162**) and methylglyoxal (**163**) gave 5-methyl-2,3 pyrazinedicarbonitrile (164) (EtOH, reflux, 3 h: 61%).¹⁵⁹⁹ 1,2-Diaminopropane (**165**) and phenylglyoxal gave a separable mixture of 2-methyl-5 phenyl- (**166**) and 2-methyl-6-phenylpyrazine (**167**) (EtOH, $5 \rightarrow 20^{\circ}$ C, 2 h; then KOH, reflux, 9 h: 21 and 19%, respectively).^{1307, cf. 80}

Ethylenediamine (**168**) and 5-methyl-3-phenylimino-2-hexanone (**169**) (liberated *in situ*) gave 2-isobutyl-3-methylpyrazine (**170**) (Me NCHO, 80°C, 24 h; then NaOH/MeOH, O₂ \downarrow , 60°C, 3 h: >64%).^{753, 754}

Ethylenediamine and phenyl-or thien-2-ylglyoxal gave the respective unisolated dihydropyrazines (172, $R = Ph$ or thien-2-yl). The first was oxidized to 2phenylpyrazine (171) (KOH, H₂O, 95°C, 5 h in air: 34%);¹²⁹⁰ the second was reduced to 2-(thien-2-yl)piperazine (173) (NaBH₄, EtOH, 18 h: 52%).⁶⁰¹

Note: The following examples employ a 2-aminoacetamide as the $N-C-C-N$ synthon with an alkyl- or arylglyoxal as the $C-C$ synthon. In every case only one product was isolated, usually that arising from condensation of the free amino group with the ketonic carbonyl and the amidic amino group with the aldehydic carbonyl.

2-Aminoacetamide (**174**) and phenylglyoxal gave 5-phenyl-2(1*H*)-pyrazinone $(175, R = Ph)$ (NaOH, MeOH-H₂O, $-30 \rightarrow 20^{\circ}$ C, 18 h: 67%);⁷³⁴

likewise, *p*-bromophenylglyoxal gave 5-*p*-bromophenyl-2(1*H*)- pyrazinone $(175, R = C_6H_4Br-p)$ (57%) ,⁷³⁵ furan-2-ylglyoxal gave 5-(furan-2-yl)-2(1*H*)-pyrazinone (175, R = furan-2-yl) (28%),¹²⁷¹ and analogous cyclocondensations gave 3-(2-methylthioethyl) -5-phenyl- (41%) , 3^{15} 3-allyl-5phenyl-(36%),³¹¹ and 1-benzyloxy-5-methyl-2(1*H*)-pyrazinone (53%).³⁴⁶

Exceptionally, 2-aminoacetamide (174) and methylglyoxal NaHSO₃ complex gave 6-methyl-2(1H)-pyrazinone (176) (H₂O, pH 8, 70°C, 2 h: 32%).¹⁴⁶¹

Also other miscellaneous examples.^{88, 162, 314, 524, 758, 835, 1015, 1125, 1264, 1746, 1753}

With Dialkyl-**, Alkyl Aryl**-**, or Diarylglyoxals**

2,3-Diaminomaleonitrile (**178**) and 1-phenyl-6-(triisopropylsilyl)-hexa-1,5 diyne-3,4-dione (PhC=CCOCOC=CSiPr^{*i*}₃) gave 5- phenylethynyl-6-(triisopropylsilyl)ethynyl-2,3-pyrazinedicarbonitrile (**177**) (AcOH, 20°C, 5 min: 72%)403 the same diamine (**178**) and 3,3,3-trifluoro-1-*p*-tolyl-1,2 propanedione (F3CCOCOC6H4Me-*p*) gave 5-*p*-tolyl-6-trifluoromethyl-2, 3-pyrazinedicarbonitrile (**179**) (no details: 74%);807 and the same diamine (**178**) with p, p' -bis(bromomethyl)benzil (p -BrH₂CC₆H₄COCOC₆H₄CH₂Br- p) gave 5,6-bis[*p*-(bromomethyl)phenyl]-2,3-pyrazinedicarbonitrile (**180**) $(ACOH, reflux, 4 h: 67\%)$.¹⁵⁰²

Ethylenediamine and p , p' -dimethoxybenzil gave 2,3-bis(p -methoxyphenyl)-5,6dihydropyrazine (181) (EtOH, $20^{\circ} \rightarrow$ reflux, 30 min: 88%)^{1065, cf. 1582} and thence 2,3-bis(p-methoxyphenyl)pyrazine (182) (KMnO₄, AcMe: 93%;¹⁵⁸²) neat S, 140°C, 30 min: 87%);1365 several dihydro and aromatic analogues were made similarly.561, 852, 1272, 1376, 1582

- Ethylenediamine and diacetyl gave 2,3-dimethyl-5,6-dihydropyrazine (**183**) $(Et₂O, 5 \rightarrow 20^{\circ}C, 15 \text{ h}: 67\%)$; homologues likewise.^{1282, cf. 473} However, when KOH was included in the condensation medium, the main product was the tricyclic spiro entity (**184**), formed by a rational mechanism and confirmed in structure by X-ray analysis. 120
- 3-Hydroxyamino-2-butanone oxime (**185**) and diacetyl (**186**) gave 2,3,5,6 tetramethylpyrazine 1,4-dioxide (187) (MeOH, 20°C, 8 h: 72%).⁴²³ Variations in the substitution pattern of synthon (**185**) led to dihydro- or even tetrahydropyrazine oxides.414, 437, 1163
- 2-Amino-*N*-(benzyloxy)acetamide (188, $R = H$) and diacetyl gave 1-benzyloxy-5,6-dimethyl-2(1*H*)-pyrazinone (189, R = H) (5 M NaOH, $-30 \rightarrow 20^{\circ}$ C, 12 h: 53%);1085 likewise, methyl 4-amino-4-(*N*-benzyloxycarbamoyl)butyrate $(188, R = CH_2CH_2CO_2Me)$ gave 1-benzyloxy-3-(2-methoxycarbonylethyl)-5,6-dimethyl-2(1*H*)-pyrazinone (189, $R = CH_2CH_2CO_2Me$) (MeOH-H₂O, pH 8, $-30 \rightarrow 20^{\circ}$ C, 2 h: 43%).⁸⁹⁷

Ethyl 2-amidino-2-aminoacetate (**190**) and diacetyl gave ethyl 3-amino-5, 6-dimethyl-2-pyrazinecarboxylate (191) (AcONa, H₂O, 10^oC, 12 h: 61%).¹ Also other examples.101, 153, 653, 971, 976, 984, 996, 1202, 1291, 1305, 1332, 1560, 1624, 1654

With Glyoxylic, Pyruvic, or Similar Acids

2-Amino-2-phenylacetamide (**192**) and ethyl benzoylformate (**193**) gave 5-hydroxy-3,6-diphenyl-2(1*H*)-pyrazinone (**194**) (EtONa, EtOH, reflux, 5 h: 19%).1386

Ethylenediamine and benzoyl cyanide (**195**) gave 3-phenyl-2-pyrazinamine (196) (PhH, 20° C \rightarrow reflux, 4 h: 60%).²¹⁶

1,2-Diamino-2-methylpropane (**197**) and ethyl pyruvate gave a separable mixture of 3,5,5-trimethyl- (**198**) and 3,6,6-trimethyl-5,6-dihydro-2(1*H*)-pyrazinone (199) (PhMe, N_2 , reflux, Dean–Stark H₂O removal, 12 h: 40 and \sim 10%, respectively, after separation).^{779, 780}

- 2,3-Diamino-2,3-dimethylbutane (200) and diethyl α -oxomalonate (201) gave ethyl 5,5,6,6-tetramethyl-3-oxo-3,4,5,6-tetrahydro-2-pyrazinecarboxylate (**202**) (EtOH, 20° C, 45 h; then reflux, 7.5 h: 83%).⁴⁵⁵
- Also other examples.956, 1269, 1752

With Oxalic Acid Derivatives

2-Amino-3-phenylpropionamide (**203**) and diethyl oxalate (**204**) gave 5-benzyl-6-hydroxy-2,3(1*H*, 4*H*)-pyrazinedione (**205**) (EtOH, reflux, 10 min; then Me- $ONa/MeOH$, reflux, 20 min: 60%); likewise the phenyl homologue (61%) . 969

Cyanogen (**206**) and oxalyl dibromide (2 mol) gave 2,3,5,6-tetrabromopyrazine (**209**) [HBr gas, Bu₄NCl, CH₂Cl₂, sealed, $70 \rightarrow 140^{\circ}$ C, 3 days: 73%; the mechanism was said to involve the intermediates (**207** and **208**)].922

1,2-Bis(methylamino)ethane (**210**) and diethyl oxalate gave 1,4-dimethyl-5, 6-dihydro-2,3(1*H*, 4*H*)-pyrazinedione (211) (Et₂O, 20^oC, 12 h: 90%);^{895, 1471} also the 1,4-didecyl homologue.⁸⁹⁵ Also other examples.^{1049, 1423, 1450, 1578}

With Oxalonitrile Dioxide (Cyanogen Dioxide)

1,2-Dianilinoethane (**212**) and oxalonitrile dioxide (**213**) gave 2,3-bis(hydroxyimino)-1,4-diphenylpiperazine (214).⁹⁷⁵

1.2.3. By Using Two Three-**Atom Synthons**

The three-atom synthons can supply either $(N1 + C2 + C3$ and $N4 + C5 +$ C6) (215) or $(N1 + C2 + C6$ and $C3 + N4 + C5$) (216) but most known examples fall within the first of these categories. Moreover, in each category, the two synthons may be the same or different. This type of cyclocondensation is therefore divided into four subsections along the foregoing lines.

1.2.3.1. Where Identical Synthons Provide $NI + C2 + C3$ and *N4* + *C5* + *C6* (*H* 11, 344, 355, 366, 372)

This listing is a major subcategory of condensations, not only from a synthetic point of view, but also in respect of the occurrence of many alkylpyrazines in foodstuffs by the self-condensation of natural α -aminoacids from protein with subsequent elaboration (*H*4). The following synthetic examples illustrate the types of N — C — C synthons that may be used.

Using Alkenylamines, Alkynylamines, or Related Azides

Ethyl (allylamino) formate (**217**) gave diethyl 2,5-dimethyl-1,4-piperazinedicarboxylate (218) [Hg(NO₃)₂, CH₂Cl₂, reflux, 24 h: 98%].¹³⁶⁸

1,1-Dimethylprop-2-ynylamine (**219**) gave 2,2,3,5,5,6-hexamethyl-2,5-dihydropyrazine (221) , probably via the aminoketone (220) (red HgO, 28% H₂SO₄, $70 \rightarrow 20^{\circ}$ C, 12 h: 32%; structure confirmed by X-ray analysis).^{790, 1479} Also other examples.24, 145, 207

Using 2-Aminoethanol or 2-Arylthioethylamines

2-Aminoethanol (222) gave pyrazine (223) [2CuO.Cr₂O₃, 320°C: 31%; note dehydrogenation]; also analogous reactions.⁴⁴⁰

$$
\text{HOCH}_{2}\text{CH}_{2}\text{NH}_{2} \xrightarrow[(-2 \text{ H}_{2}\text{O}, -3 \text{ H}_{2})]{2 \text{ CuO} \cdot \text{Cr}_{2}\text{O}_{3}} \begin{bmatrix} N \atop N \atop N \end{bmatrix}
$$
\n(222) (223)

2,3-Diamino-3-phenylthioacrylonitrile (**224**) gave 3,6-diamino-2,5-pyrazinedicarbonitrile (**225**) by oxidative coupling.1629

Also related self-condensations.⁵¹⁸

Using α -Aminoalkanals

2-Amino-2-deoxy-D-glucose (**226**) gave 2,5-bis(1,2,3,4-tetrahydroxybutyl) pyrazine (227) (H_2O , 37°C, air: "major product").¹¹⁶⁹

Also other examples.¹¹⁰⁹

Using -Aminoalkanones

- 3-Amino-2-butanone (**228**) gave 2,3,5,6-tetramethylpyrazine (**230**) via the unisolated dihydropyrazine (229) (AcONa, MeOH, air \downarrow , 60°C, 1 h: 73%); homologues likewise.⁹⁰¹
- Ethyl 2-acetyl-2-aminoacetate hydrochloride (**231**) gave diethyl 3,6-dimethyl-2,5-pyrazinedicarboxylate (232) (Et₃N, EtOH, air, 20^oC, 6 h: 90%).³⁹

5-Aminolevulinic acid hydrobromide (**233**) gave 2,5-bis(2-carboxyethyl)pyrazine (**235**) (Et₂N, 3-Å molecularsieve, air \downarrow , 20°C, 3 days: 50%);⁵⁴² the intermediate 3,6-dihydro derivative (234) could be isolated as its HgCl₂ complex.²⁴⁴

N-Phenacyl-*p*-toluidine (**236**) has been reported to give 2,5-diphenyl-1,6-di-*p*tolyl-1,2-dihydropyrazine (238) (neat, N₂, 140°C, 16 h: 18%), probably by rearrangement of the isolable intermediate, 2,5-diphenyl-1,4-di-*p*-tolyl-1, 4-dihydropyrazine (**237**).31

Also other examples.23, 26, 399, 580, 870, 1275, 1441, 1586

Using α -Hydroxyimino- or α -Hydrazonoalkanones

Note: Reduction of such an oxime gives the corresponding aminoketone that spontaneously self-condenses under appropriate conditions to afford a hydropyrazine, and thence a pyrazine, The use of analogous hydrazones has not been developed satisfactorily yet.479, 1170

-Hydroxyiminoacetone (**239**) gave 2,5-dimethylpyrazine (**241**) via the dihydropyrazine (240) [SnCl₂, HCl; then NaOH, $(NH_4)_{25}O_8$, 20°C, 2 h: 56% (one pot) $]^{425}$

Methyl 2-hydroxyimino-3-oxobutyrate (**242**) gave dimethyl 3,6-dimethyl-2, 5-pyrazinedicarboxylate (243) (TiCl₃, H₂O—MeOH, AcONa, pH 7, A, 20°C, 3 h; then air \downarrow until white: 30%).³⁰⁰

2-(2-Hydroxyimino-3-oxobutyramido)-6-methylpyridine gave 3, 6-dimethyl-*N*, *N*-bis(6-methylpyridin-2-yl)-2,5-pyrazinedicarboxamide (**244**) (Pd/C, HCl/ EtOH, H_2 , 20 \degree C, 2 h, oxidation during workup: 43%).¹⁵⁶⁸

3,4-Bis(hydroxyimino)hexane (diethylglyoxime: **245**) gave 2,3,5,6-tetraethylpyrazine (**246**) (Zn, 4 M NaOH, 95°C, 1 h: 57%; mechanism unsure).1000

Also other examples.7, 541, 557, 830

Using -(Substituted Amino)alkanones

N-Phenacyl-2,4-thiazolidinedione (**247**) gave 2,5-diphenylpyrazine (**248**), presumably by dideacylation of the substrate followed by self-condensation (MeNH₂, H₂O – MeOH, reflux, 4 h: 60%); also an analogue likewise.⁹³⁰

Also other examples.1505

Using -Azidoalkanones

Phenacyl azide (**249**) gave 2,5-diphenylpyrazine (**250**) (Pd/C, EtOH, trace AcOH, H₂, 3 atm, 24 h: $> 85\%$;¹³⁵² or Ph₃P, CH₂Cl₂, 20°C, 12 h: ?%);¹³⁶³ also 2,5-di-*tert*-butylpyrazine and homologues (by the foregoing reductive route with a final air \downarrow , 12 h: ?%).¹³⁵²

Also other examples.1288

Using -Aminoalkanoic Acids

Phenylalanine $(251, R = H)$ gave 3.6 -dibenzyl-3.6-dihydro-2.5(1*H*, 4*H*)pyrazinedione (252, R = H) (HOCH₂CH₂OH, reflux, 24 h: 80%);¹⁰²⁸ 3-(*o*hydroxyphenyl)alanine (251, $R = OH$) gave 3,6-bis(o -hydroxy-benzyl)-3, 6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (252) (HOCH₂CH₂OH, reflux, 18 h: 20%).¹⁶

Also other examples.1472, 1631

Using -Aminoalkanoic Esters or Related Substrates

Dimethyl aspartate (**253**) gave 3,6-bis(methoxycarbonylmethyl)-3,6-dihydro-2, 5(1*H*,4*H*)-pyrazinedione (254) (NH₃/CHCl₃, 65^oC, sealed,5 days: 25%).¹⁵³⁵

Bis(methoxycarbonylmethyl)amine (**255**) gave 1,4-bis(methoxycarbonylmethyl)-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (256) (Et₃B or Ph₃HSi, PhMe, reflux, 48 h: 54%); also analogues.³⁴⁷

Sodium α -butoxycarbonyl- α -nitromethanesulfonate (257) gave 3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (260) [Pd/C, EtOH—H₂O, H₂, 20^oC, 24 h: 60%; the mechanism involved disproportionation of the initial amino intermediate (258) into disodium α -amino- α -butoxycarbonylmethanedisulfonate (259) (isolated in 72% yield) and butyl glycinate, which self-condensed spontaneously to give the product (260) ¹¹¹¹

Also other examples.21, 204, 464, 512, 539

1.2.3.2. Where Different Synthons Provide $NI + C2 + C3$ *and* $N4 + C5 + C6$ (*H* 59, 64)

Two different types of N —C—C synthon can be combined in many ways to afford pyrazines. However, only about a dozen such combinations have been employed recently, as illustrated in the following examples:

Using an Alk-1-envlamine and an α -Hydroxyiminoalkanoic Ester

Ethyl 2-cyano-2-(tosyloxyimino)acetate (**261**) and diethyl 3-amino-4-cyanopent-2-enedioate (262) gave ethyl 6-cyano-3-(α -cyano- α -ethoxycarbonylmethyl)-5-oxo-4,5-dihydro-2-pyrazinecarboxylate (263) (Et₃N, MeCN, 20°C, 2 days: 70%);¹³¹⁵ also analogues.^{301, 1315}

Using an -Aminoalkanal and an -Hydroxyiminoalkanal

2-Hydroxyiminopropionaldehyde dimethyl acetal (**264**) and ethyl 2-formamido-2-formylacetate (**265**) gave ethyl 5-methyl-2-pyrazinecarboxylate 4-oxide (266) (HCl/AcMe, reflux: ?%).¹¹⁶⁷

Using an -Aminoalkanal and an -Aminoalkanone

3-Aminopyruvic acid (**267**) and 2-amino-2-formylacetic acid (**268**) gave 2, 6-pyrazinedicarboxylic acid (**269**) (no details).1586

Using an -Aminoalkanone and an -Aminoalkanoic Ester

3-Amino-3-methyl-2-butanone (**270**) and ethyl glycinate (**271**) gave 5,6, 6-trimethyl-3,6-dihydro-2(1*H*)-pyrazinone (272) (Et₃N, PhH, reflux, 5 days: 64%).790

Using an -Aminoalkanoic Acid and an -Aminoalkanoic Ester

N-Benzyloxycarbonylleucine (**273**) and ethyl glycinate (**274**) gave 3-isobutyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (275) [(EtO)₂POCN, Et₃N, CH₂Cl₂, 20 $^{\circ}$ C, 4 h; crude product, HCO₂H, 20 $^{\circ}$ C, 21 h: 92%].^{45, cf. 517} Also other examples.371, 522, 652, 837

Using an α -Aminoalkanenitrile and an α -Hydroxyiminoalkanone

Note: This type of synthesis has been used extensively to furnish a variety of aminopyrazine N-oxides that may be deoxygenated to the corresponding aminopyrazines

2-Amino-3-phenylpropiononitrile (276) and α -hydroxyiminoacetone (277) , $R = Me$) gave 3-benzyl-5-methyl-2-pyrazinamine 1-oxide (278, $R = Me$) [MeN(CH₂CH₂)₂O, CHCl₃, reflux, 4 h: 63%];⁸⁸³ the same nitrile (276) and α -hydroxyiminoacetophenone (277, R = Ph) gave 3-benzyl-5-phenyl-2pyrazinamine 1-oxide (278, R = Ph) (TiCl₄, pyridine, N₂, 0 \rightarrow 82°C, 3 h: 33%);73 broadly similar procedures gave 3-benzyl-5-*p*-methoxyphenyl-2 pyrazinamine 1-oxide (278, $R = C_6H_4OMe$ - p ³⁹⁷ and other such analogues.397, 585, 586

 α -Aminomalononitrile (279) (as TsOH salt) and α -hydroxyimino- α' , α' dimethoxyacetone $[280, R = CH(OMe)_2]$ gave 3-amino-6-dimethoxymethyl-2-pyrazinecarbonitril 4-oxide $[281, R = CH(OMe)_2]$ (MeOH, 5^oC, until homogeneous: 57% ;⁷⁶⁷ the same nitrile (279) and 2-[2-(hydroxyimino)acetyl]furan $(280, R = \text{furan-2-yl})$ gave 3-amino-6-(furan-2-yl)-2pyrazinecarbonitrile 4-oxide $(281, R = \text{furan-2-yl})$ (PrOH, 20°C, 8 h: 68%);¹⁵³⁰ the same nitrile (279) and α -hydroxyiminoacetophenone (280, $R = Ph$) gave 3-amino-6-phenyl-2-pyrazinecarbonitrile 4-oxide (281, $R = Ph$) (TsOH, PrⁱOH, 20°C, 5 h: 82%; the added TsOH proved essential

for a good yield);¹⁵²⁴ and use of other appropriate oximes afforded ethyl 6-amino-3-chloromethyl-5-cyano-2-pyrazinecarboxylate 1-oxide (53%) ,⁷⁷³ 3-amino-5,6-diphenyl-2-pyrazinecarbonitrile 1-oxide (28%) ,²⁵⁸ and the like. 759

Also other examples.587, 728, 772, 960, 1335, 1339, 1517

Using an α-Aminoalkanenitrile and an α-Hydroxyiminoalkanoic Acid

Ethyl 2-amino-2-cyanoacetate (**282**) and 2-hydroxyimino-4-methylvaleric acid (**283**) gave ethyl 3-amino-5-isobutyl-6-oxo-1,6-dihydro-2-pyrazinecarboxylate 4-oxide (284) (*N,N'*-dicyclohexylcarbodiimide: $?%$).¹²⁵⁹

Using an α -Methylenealkanamide and an α -Hydroxyiminoalkanenitrile

2-Cyano(thioacetamide) (**285**) and 2-cyano-2-(tosyloxyimino)acetamide (**286**, $R = \text{CONH}_2$) gave 3-amino-6-cyano-5-thioxo-4,5-dihydro-2-pyrazinecarboxamide (287) (pyridine—Et₂O, 20°C, 12 h: 85%);¹⁴⁰¹ the same thioamide (285) and α -(tosyloxyimino)malononitrile (286, R = CN) likewise gave 3-amino-5thioxo-4,5-dihydro-2,6-pyrazinedicarbonitrile $(287, R = CN)$ (90%).¹⁴⁰¹

1.2.3.3. Where the Synthons Provide $NI + C2 + C6$ and $C3 + N4 + C5$

In comparison with the foregoing types, this synthesis (whether from identical or differing synthons) has scarcely been used, probably because it involves the

formation of two C —C bonds rather than two C —N bonds. The paucity of examples that follow indicates its present state of neglect, despite some potential utility.

N-Benzylidene-*N*-(diphenylmethyl)amine *N*-oxide (**288**) gave 2,2,3,3,5,6-hexaphenyl-2,3-dihydropyrazine (290) via the isomeric anions (289) (LiPh, Et₂O, A, 20° C, 10 min: 30%).¹¹¹²

N-[1-Chloro-2,2,2-trifluoro-1-(trifluoromethy)ethyl]-*N*-(dimethylaminomethylene) amine (**291**) gave 2,3-bisdimethylamino-5,5,6,6-tetrakis (trifluoromethyl)-5,6 dihydropyrazine (292) (Et₃N, MeCN, 20 $^{\circ}$ C, 3 h: 50%; structure confirmed by X-ray analysis).1323

 $N-\{\alpha$ -Chloro- α -[bis(trifluoromethyl)amino]methylene}- $N-\{\alpha,\alpha$ -dichloro- α -[bis-(trifluoromethyl)amino]methyl}amine (**293**) gave 2,3,5,6-tetraks[bis(trifluoromethyl)amino] pyrazine (294) (Ph₃P, 120°C, 6 h: 6% as a distillate/sublimate; a mechanism was suggested).¹³²¹

- *N*-Benzyl-*N*,*N*-bis(tosylmethyl)amine gave 1,4-dibenzylpiperazine (SmI₂, THF—(Me₂N)₃PO, 5 min; Et₂CO \downarrow : ~65%; minimal detail).¹⁶²⁰
- *Note:* One postulated cyclocondensation with dissimilar $C-N-C$ synthons to give a pyrazine has been reported without details.¹¹²⁹

1.3. FROM THREE SYNTHONS (*H* **25)**

Of all the possibilities for producing a pyrazine ring from three synthons, only one type of cyclocondensation has emerged from the present survey: it involves the reaction of a C — C synthon with two identical N— C synthons, as indicated in the following examples:

Benzil (**295**) and (di-*p*-tolylmethyl)amine (**296**) gave 2,3-diphenyl-5,6-di-*p*tolylpyrazine (297) (neat ZnCl₂, 180 $^{\circ}$ C, 5 h: 12%; presumably with loss of $2H₂O$ and 2 PhMe but the mechanism remains unclarified).¹³⁴

Benzil (**298**) and benzylamine (**299**) gave a separable mixture of three products including $2,3,5,6$ -tetraphenylpyrazine (300) (N₂, 150°C, 30 min: ?%; mechanism not studied).1364

2-Butanone (**301**) and nitroethane (**302**) gave 2,3,5,6-tetramethylpyrazine (**303**) (Zn, NH₄Cl, H₂O, 85°C, 30 min: 30%; minimal details).⁸⁷⁵

1.4. FROM FOUR OR MORE SYNTHONS

Of the several ways to combine four synthons to build the pyrazine ring, only three appear to have been used recently: $(Nl + C2-C3 + N4 + C5-C6)$, $(NI-C2 + C3-N4 + C5 + C6)$, and $(NI-C2 + C3 + N4-C5 + C6)$. No examples for the use of five or six synthons have been reported.

1.4.1. Where Synthons Provide NI, C2 + C3, N4, C5 + C6 (*H* 18, 20)

Since Nl and N4 are always provided by ammonia or an amine, examples in this small but significant category are classified according to the nature of the $C - C$ synthons (which are identical in all examples reported recently).

Using -Diketones

Bis(benzofuran-2-yl)glyoxal (**304**) and ammonium chloride gave 2,3,5,6 tetrakis(benzofuran-2-yl)pyrazine (305) (MeOH, sealed, 210°C, 2 h: ?%).⁵⁴⁶

Using -Hydroxyketones

- 4-Hydroxy-3-hexanone (propionoin: **306**, $R = Et$) and ammonium acetate gave 2,3,5,6-tetraethylpyrazine (307, $R = Et$) (neat, reflux, 16 h: 50%; presumably an aerial oxidation was involved);1000 4-hydroxy-2,5-dimethyl-3-hexanone (306, $R = Prⁱ$) likewise gave 2,3,5,6-tetraisopropylpyrazine (307, $R = Prⁱ$) (44%) ¹⁰⁰⁰
- Benzoin (306, $R = Ph$) and ammonium acetate gave 2,3,5,6-tetraphenylpyrazine $(307, R = Ph)$ (neat, 120° C, 24 h: \sim 30% after separation from a byproduct);1120, cf. 934 2,3,5,6-tetrakis (2,2-bipyridin-6-yl)pyrazine (30%) was made somewhat similarly and its structure was confirmed by X-ray analysis.540
- *Note:* The formation of alkyl- and hydroxyalkylpyrazines from glucose or glyceraldehyde and ammonium hydroxide at \sim 150°C has been studied.¹⁴²⁵

Using *α*-Halogenoketones

Phenacyl bromide (**308**) and ammonia gave a separable mixture of 2,5- (**309**) and 2,6-diphenylpyrazine (310) [NH₄OH (or NH₃ ?), 100 $^{\circ}$ C, 90 min: 40 and 30% , respectively];¹³¹ replacement of ammonia by ethoxycarbonylhydrazine $(H₂NNHCO₂Et)$ gave mainly 2,5-diphenylpyrazine (309) (Me₂NCHO, reflux, 5 h: 50%; mechanism complicated) and analogues were made similarly.131

Using -Dibromoalkanes

1,2-Dibromoethane (**311**) and neopentylamine gave 1,4-dineopentylpiperazine (312) (MeOH- H_2O , reflux, 40 h; then NaOH \downarrow , reflux, 12 h: 13%).²⁶⁶

1.4.2. Where Synthons Provide NI + $C2$, $C3$ + N4, $C5$, $C6$

The only examples of these cyclocondensations employ four identical synthons in each case: Mechanisms have been postulated but remain unconfirmed for the following examples:

Acetonitrile (313, $R = Me$) gave 2,3,5,6-tetramethylpyrazine (314, $R = Me$) (TiCl₄, Zn, THF, A, 20° C \rightarrow reflux, 1 h; then substrate \downarrow reflux, 4 h: 44%); appropriate nitriles (313) likewise gave tetraethyl- $(314, R = Et)$ (63%), tetrabenzyl- (314, $R = CH_2Ph$) (46%), and other homologous pyrazines.²²³

2-Aminomethylpyridine (**315**) gave 2,3,5,6-tetra(pyridin-2-yl)pyrazine (**316**) $(CoCl₂, H₂O, 95^oC, 3 h: 48\%).$ ²⁶⁷

1.4.3. Where Synthons Provide NI + C2, C3, N4 + C5, C6

This rare combination is represented by only one type of example. Thus -tosylaminomalononitrile (**317**) and benzaldehyde (**318**), in methanolic sodium acetate at $20-25^{\circ}$ C for 20 h, gave 3, 6-diphenyl-2,2,5,5-piperazinetetracarbonitrile (**319**) as the major product (48% yield);834 several *para*-substituted phenyl and other analogs were made similarly, most in comparable yields.⁸³⁴

1.5. APPENDIX: GLANCE INDEX TO TYPICAL PYRAZINE DERIVATIVES AVAILABLE FROM ALIPHATIC OR CARBOCYCLIC SYNTHONS

This glance index may assist in the choice of a primary synthesis for a required type of pyrazine derivative. In using the index, it should be borne in mind that products broadly analogous to those formulated can often be obtained by minor changes to the synthon (s) employed: for example, by change, addition, or deletion of alkyl or aryl groups; by interchange of halogeno substituents; by modification or interchange of acid, ester, amide, nitrile, or similar groups; by interchange of oxo, thioxo, selenoxo, or imino groups; by interchange of alkoxy, aryloxy, alkylthio, arylthio, or related groups; and so on.

Section Typical Products 1.1.1.1 N Me. Me

1.1.1.4

1.1.1.5

1.1.1.6

1.1.1.7

1.2.2.2

H H

1.2.3.1

1.4.2 N N Me Me Me Me

CHAPTER 2

Primary Syntheses from Other Heterocyclic Systems

The primary synthesis of pyrazines from other heterocyclic systems has a body of literature that is quite modest by comparison with those for pyridazines¹⁶⁸⁷ and pyrimidines.1688 Earlier information on such syntheses has been summarized in Barlin's original book¹⁶⁸⁶ and some more recent data have been reviewed thoughtfully from time to time. $1677, 1689$

The present treatment of post-1978 literature is divided according to the nature of the heterocyclic substrate (monocyclic, bicyclic, tricyclic, or spiro); each of these broad categories is then subdivided alphabetically, with reduced substrates included with their aromatic counterparts. Cyclic anhydrides, cyclic imides, lactones, and the like are classified as the appropriate heterocyclic derivatives. A glance index to the main product types is appended as Section 2.5.

2.1. PYRAZINES FROM OTHER HETEROMONOCYCLIC SYSTEMS (*H* **53)**

Such syntheses can occur by ring expansion, ring contraction, rearrangement, ring fission (with or without subsequent elaboration), fragmentation with subsequent elaboration, or combination with a second synthon followed by other reactions.

2.1.1. Azepines as Substrates (*H* **53)**

Catalytic hydrogenation of 2-nitromethylenehexahydro-1H-azepine $(1, R = H)$ over palladized charcoal in acidic methanol afforded 2,5-bis(5-aminopentyl)pyrazine $(2, R = H)$ (67%, as hydrochloride) by reduction of the nitro group, 1,2-fission, and self-condensation of the unsaturated product;^{145, 467} the 1-methylated substrate $(1, 1)$ $R = Me$) likewise gave 2,5-bis(5-methylaminopentyl)pyrazine $(2, R = Me)$ but only in 10% yield.¹⁴⁵

2.1.2. Azetes as Substrates

Treatment of the β -lactam, 3,3-dimethoxy-1-p-methoxyphenyl-4-pmethoxyphenyliminomethyl-2-azetidinone $(3, R = H)$, with stannous chloride in dichloromethane for 20 h gave 1,4-bis(*p*-methoxyphenyl)-2,3(1*H*,4*H*)-pyrazinedione (5, R = H) in 95% yield by ring expansion via the acetal (4) ;⁸⁷⁴ the 4-methylated substrate $(3, R = Me)$ likewise gave 1,4-bis(*p*-methoxyphenyl)-5,6-dimethyl-2,3(1*H*,4*H*)-pyrazinedione (**5**, R = Me) (99%).^{874, cf. 1740}

2.1.3. Azirines as Substrates (*H* **22**, **344**, **352)**

This type of synthesis has been investigated extensively. It can occur by several general routes that are illustrated in the following examples:

By Ring Fission and Dimerization

- 3-Dimethylamino-2,2-dimethyl-2*H*-azirine (**6**) gave 2,5-bis(dimethylamino)-3,3, 6,6-tetramethyl-3,6-dihydropyrazine (7) [PhCH(NO₂)CO₂Me, MeCN, reflux, 6 h: 85% ; it is not clear whether the nitroester plays any role].⁹⁴⁸
- Methyl 3,3-diethoxycarbonyl-1-methyl-2-azididinecarboxylate gave dimethyl 3,3,6,6-tetraethoxycarbonyl-1,4-dimethyl-2,5-piperazinedicarboxylate (**8**) as an inseparable 4:6 mixture of diastereoisomers (PhH, N_2 , reflux, 60 h: $\frac{2}{\%}$).⁹⁵⁰

2,2-Dimethyl-3-phenyl-2*H*-azirine (**9**) and ammonia gave 3,3,6,6-tetramethyl- $2,5$ -diphenyl-1,2,3,6-tetrahydro-2-pyrazinamine $(11, R = NH₂)$ [NH₃, MeOH, 20°C, 30 min: 73%; the mechanism appears to involve condensation of the NH₃ adduct (10) with original substrate (9)];⁴⁰⁸ the same substrate (9) and 2-chloroethanethiol likewise gave 2- (2-chloroethylthio)-3,3,6,6-tetramethyl-2,5-diphenyl-1,2,3,6-tetrahydropyrazine $(11, R = \text{SCH}_2\text{CH}_2\text{Cl})$ (13%) by an analogous route. 422

Also other examples.¹⁵⁹

By Ring Fission and Oxidative Dimerization

Note: Oxidation may occur by addition of an oxidant, loss of hydrogen halide, and so on, or incidentally during work up; ineffective dehydrogenation, especially by the last mentioned method, may perhaps account for some of the poor yields reported.

2,3-Diphenyl-2*H*-azirine $(12, R = Ph)$ gave 2,3,5,6-tetraphenylpyrazine $(13,$ $R = Ph$) [Mo(CO)₆, PhH, N₂, 50°C, 3 days: 18%];^{937, 1414} likewise, 3-phenyl-2*H*-azirine (12, $R = H$) gave 2,5-diphenylpyrazine (13, $R = H$) in poor yield;1333 and 2,2-dimethyl-3-phenyl-2*H*-azirine (**9**) gave 2,2,5,5-tetramethyl-3,6-diphenyl-2,5-dihydropyrazine (**14**) (5 days: 25%).937, 1414

- 3-Phenyl-2H-azirine $(12, R = H)$ gave a separable mixture including 2,5diphenylpyrazine (13, R = H) (O=C=NSO₂Cl, CH₂Cl₂, -78°C, 40 min: 9% after separation;¹¹⁷⁴ the yield was improved to 24% by isolation of an intermediate).¹¹⁷⁸
- 2-Methyl-3-phenyl-2*H*-azirine $(12, R = Me)$ gave 2,5-dimethyl-3,6diphenylpyrazine (13, R = Me) [Bu'OOH, PhH, PhCH₂Me₃NOH, MeOH, 20°C, 24 h: 9%;²⁴⁹ HF/pyridine (70:30; Olah's reagent), THF, $-20 \rightarrow 20$ °C, N₂, 2 h: 81%;^{358, 1416} HF/pyridine, PhH, $5 \rightarrow 20^{\circ}$ C, 1 h: 54%].⁷⁶⁴

2-Benzoyl-3-phenylaziridine (**15**) gave a separable mixture of 2,5-dibenzoyl-3,6 diphenylpyrazine (**16**) and 2,5-diphenylpyrazine (**17**) (*hv*, PhH, 45 h: 11 and 8%, respectively; rational mechanisms were suggested).⁹⁰³

Also other examples.554, 1416, 1422

By Rearrangement

1-Ethoxycarbonylmethyl-2-isobutylaziridine (**18**) gave 1-ethyl-5-isobutyl-3,4,5,6 tetrahydro-2(1*H*)-pyrazinone (**20**) by rearrangement of the isolable intermediate, 1-(*N*-ethoxycarbamoylmethyl)-2-isobutylaziridine (19) (excess EtNH₂, $BF_3.Et_2O, -15 \rightarrow 19^{\circ}C$, sealed, 3 days: 76%); two homologues were made similarly.⁵⁷⁸

By Condensation with a Second Synthon

- 2-Methyl-3-phenyl-2*H*-azirine $(21, R = Me)$ and ethyl glycinate hydrochloride gave 6-methyl-5-phenyl-2(1*H*)-pyrazinone (22, R = Me) (Et₃N, MeCN, reflux, 48 h: 43%; oxidation by air during work up);1432 2,3-diphenyl-2*H*-azirine $(21, R = Ph)$ likewise gave 5,6-diphenyl-2(1*H*)-pyrazinone (22, R = Ph) (90%) ¹⁴³²
- 3-Dimethylamino-2,2-dimethyl-2*H*-azirine (**23**) and methyl 2-amino-3-phenylpropionate gave 3-benzyl-5-dimethylamino-6,6-dimethyl-3,6-dihydro-2(1*H*)-

Aziridine, as its Ni complex (**25**), and acrylonitrile gave 1,4-bis(2-cyanoethyl)piperazine (26) (EtOH, reflux, $2 h$: $> 60\%$, initially as dihydrobromide). 1345

3-Dimethylamino-2,2-dimethyl-2*H*-azirine (27) and 4-isopropyl-2-trifluoromethyl-5-oxazolinone (**28**) gave 5-dimethylamino-3-isopropyl-6,6-dimethyl-3,6-dihydro-2(1*H*)-pyrazinone (29) (MeCN, reflux, N₂, 1 h: 60%; a rational mechanism was suggested);⁹⁴⁴ analogues, like 3-allyl-5-dimethylamino-6,6-dimethyl-3-phenyl-3,6-dihydro-2(1*H*)-pyrazinone (44%) ⁹⁵⁸ were made similarly.944, 958

2.1.4. Azocines as Substrates

In a manner analogous to the corresponding azepine (Section 2.1.1), 2-nitromethyleneoctahydroazocine (**30**) gave 2,5-bis(6-aminohexyl)pyrazine (**31**) in 58% yield as hydrochloride.145, 467

2.1.5 1,2-Diazepines as Substrates

Treatment of 1,3-diphenyl-4,5,6,7-tetrahydro-1*H*-1,2-diazepine (**32**) with polyphosphoric acid at 110°C for a few minutes gave three products, of which one proved to be 2,5-bis(3-anilinopropyl)-3,6-diphenylpyrazine (**33**) (10% yield after separation);³⁷ a rational mechanism involving N—N fission and subsequent dimerization has been proposed. 37 No other examples appear to have been reported.

2.1.6. 1, 4-Diazepines as Substrates

Flash pyrolysis of 5,7-diphenyl-2,3-dihydro-1H-1,4-diazepine $(34, R = H)$ at 700°C in a vacuum afforded 2-phenylpyrazine (**35**) in 21% yield, after separation from a pyrimidine; the methyl substrate $(34, R = Me)$ also gave a small yield of the same product (**35**); and 6-phenyl-2,3-dihydro-1*H*-1,4-diazepine gave some unsubstituted pyrazine.176, 1698

2.1.7. Furans as Substrates (*H* **53)**

5-Phenyl-2,3-dihydro-2,3-furandione (36) reacted with α , α' -diaminomaleonitrile in refluxing dioxane during 1 h to give 5-oxo-6-phenacyl-4,5-dihydro-2,3 pyrazinedicarbonitrile (**37**) in 68% yield; several *p*-substituted-phenacyl analogues were made similarly in comparable yields.⁹³⁵

2.1.8. Imidazoles as Substrates (*H* **53)**

Imidazoles have proved to be quite useful as substrates for the preparation of pyrazines. Various routes are illustrated in the following examples:

By Rearrangement

 $1-\left[\alpha\text{-Methoxycarbonyl-}\alpha\text{-(phenylhydrozono)}\right]$ methylimidazolium chloride (**38**) gave 4-methyl-3-oxo-2-phenylhydrazono-1,2,3,4-tetrahydro-1 pyrazinecarbaldehyde (**40**) by rearrangement of the isolable intermediate ylide (39) (NaOH, H₂O-EtOH, 20°C, 12 h: 55%);² likewise, 4-amino-5-carbamoyl-3-diphenylmethyl-1-phenacylimidazolium bromide gave 3-[*N*- (diphenylmethyl)amidino]-6-phenyl-2(1*H*)-pyrazinone (**41**) (NaOH, MeOH, reflux, 10 h: 65%).¹⁵¹

 $2-(\alpha)$ -Diazo- α -ethoxycarbonylmethyl)-1,3-diphenylimidazolidine (42, R = Et) gave among other products ethyl 1,4-diphenyl-1,4,5,6-tetrahydro-2 pyrazinecarboxylate $(43, R = Et)$ $(2$ -methylnaphthalene, $160^{\circ}C$, 90 min: 40%);⁴⁷⁸ the substrate methyl ester (42, R = Me) gave methyl 1,4-diphenyl-1,4,5,6-tetrahydro-2-pyrazinecarboxylate $(43, R = Me)$ by irradiation $(hv,$ Et₂O, 20 $^{\circ}$ C, 12 h: 11% after separation from other products).⁴⁷⁸

Also other examples.164, 466

By Fragmentation and Recombination

1,2,2-Trimethyl-4,5-diphenyl-3-imidazoline (**44**) gave 2,3,5,6-tetraphenylpyrazine (**45**) (2 M HCl, 25°C, 8 days: 8%; mechanism not studied).19

By Dimerization and Subsequent Reactions

4-(2-Ethoxycarbonylethyl-2-isopropyl-3-imidazoline (**46**) gave a separable mixture of $2,5$ -bis(2-ethoxycarbonylethyl)pyrazine $(48, Q = H)$ and its 3-isopropyl derivative $(48, Q = Pr^i)$ [trace TsOH, xylene, reflux, 1 h: 21 and 38%, respectively; postulated mechanism: formation of dimer (**47**) and loss of Pr*ⁱ* C (=NH)H to give a dihydropyrazine that in part undergoes oxidation to product $(48, R = H)$ and in part adds one of the foregoing fragments with subsequent oxidation to product $(48, R = Prⁱ)$ ⁵⁴²

By Condensation with a Second Synthon

- 1,3-Dimethyl-2-phenylimidazolidine (**49**) gave 1,4-dimethyl-2-phenyl-1,4,5,6 tetrahydropyrazine (50) {Et₂MeSiH, [RhCl(CO)₂]₂, CO, PhH, 50 atm, 140^oC, 4 days: 51%}; when the Ph substituent was replaced by an alkyl group, no such reaction occurred. 1403
- 2-Methylimidazole (**51**) with chloroform in the vapor phase gave, among other products, 2-chloro-3-methylpyrazine (52) $(550^{\circ}C,$ flow system: \sim 17%);¹¹ other such reactions with imidazole, methylimidazoles, and methylimidazo-

lines also gave pyrazines but the procedures are probably of little preparative value.^{11, 12, 1230}

2.1.9. Isoxazoles as Substrates (*H* **53)**

Although not widely used, at least three procedures have been employed to convert isoxazoles into pyrazines, as illustrated in the following examples:

3-Phenyl-5-isoxazolol (53) gave 2,5-diphenylpyrazine (54) $(h\nu$, MeOH, \sim 5°C, 7 h: 67%; oxidation during work up).449

- 4-(*C*-Acetylformamido)-4-isopropyl-3-methyl-4,5-dihydro-5-isoxazolone (**55**) gave 6-isopropyl-3,5-dimethyl-2 (1 *H*)-pyrazinone (**56**) [Lindlar catalyst $(Pd/CaCO₃/trace Pb)$, H₂, EtOH, 20 $°C$, 10 h: 90%]; also several homologues likewise and in comparable yields.²²⁷
- 4-Amino-4,5-dihydro-3 (2*H*)-isoxazolone (**57**) gave 3,6-bis(aminooxymethyl)- 3,6-dihydro-2,5 (1*H*, 4*H*)-pyrazinedione (58) (AcOH—EtOH, reflux, 45 min: 55%).700

2.1.10. Oxazoles as Substrates (*H* **53)**

There are several recent reports of this transformation but only that affording 1-arylpyrazines appears to be of practical utility, as illustrated in the following examples:

2-*p*-Methoxyphenyl-4-phenyl-4,5-dihydro-5-oxazolone (**59**) gave, among other separable products, 2,3-bis(*p*-methoxyphenyl)-5,6-diphenylpyrazine (**60**) (2,5-diphenyl-2*H*-tetrazole, PhOMe, reflux, 5 h: 31%; the formation of this byproduct did not involve the tetrazole, of which an equivalent amount was recovered).325

3-(2-Anilinoethyl)-2-oxazolidinone hydrochloride (**61**) gave 1-phenylpiperazine hydrochloride (63) directly (neat, N_2 , 170°C, \sim 4 h: 88%) or via *N*-(2-anilinoethyl)-*N*-(2-bromoethyl)amine (62) [AcOH-30% HBr, 20° C, <4 days; crude (62), EtOH, reflux, ≤ 4 days: 85%]; other 1-aryl- and 1-alkylpiperazines were made by both methods.¹⁴⁹³

Also other examples.¹⁴³⁹

2.1.11. Oxirenes as Substrates

Such epoxides naturally require a nitrogenous cosynthon to afford pyrazines. Such a rarely used condensation is illustrated by the reaction of octafluoro-2,

3-epoxybutane [2,3-difluoro-2,3-bis(trifluoromethyl)oxirane: **64**] with ethylenediamine in bis(2-methoxyethyl) ether at 20°C during 90 min to give 2,3-bis(trifluoromethyl)-1,2,5,6-tetrahydro-2-pyrazinol (65) in 20% yield.⁹³⁶

2.1.12. Pyridazines as Substrates (*H* **53)**

Earlier work on the photolytic or thermal rearrangement of polyhalogenated pyridazines to corresponding pyrazines has been continued, $14, 161, 774, 1690$ but the fascinating results offer little of preparative value. It has been reported that 300-nm irradiation of 3,4,5,6-tetra-*tert*-butylpyridazine (**66**) gave a quantitative yield of the Dewar isomer (3,4,5,6-tetra-*tert*-butyl-1,2-diazabicyclo [2.2.0]hexa-2,5-diene: **67**] that subsequently afforded 2,3,5,6-tetra-*tert*-butylpyrazine (**68**) in 18% yield on 254-nm irradiation.¹⁴⁶⁴

2.1.13. Pyridines as Substrates

Thermolytic conversions of aromatic pyridines into pyrazines have been reported, albeit in minute yield. Thus vacuum pyrolysis of 4-dichloroamino-2,3,5,6 tetrafluoropyridine (**69**) at 550°C gave at least 12 products in which 2,3,5,6 tetrafluoropyrazine (70) could be identified;¹³²⁰ and flow thermolysis of 4-azido-2,3,5,6-tetrafluoropyridine in nitrogen at $\sim 300^{\circ}$ C gave 1,2-difluoro-1,2bis(3,5,6-trifluoropyrazin-2-yl)ethylene (71) , isolated in 0.1% yield.¹³²²

Hydrogenation of 2-nitromethylenepiperidine (**72**) gave 2,5-bis(4-aminobutyl) pyrazine (**73**) in only 8% yield (cf. Sections 2.1.1, 2.1.4, 2.1.14).145, 467

2.1.14. Pyrroles as Substrates

Pyrrole derivatives are of little use as substrates for making pyrazines. However, treatment of 2,3,4,5-tetraphenylpyrrole (**74**) with potassium in THF for 6 h gave, among other products, $2,3,5,6$ -tetraphenylpyrazine (75) in 7% yield;⁵⁶⁴ 3-amino-2,5-pyrrolidinedione (**76**) in phosphate buffer of pH 7.1 at 20°C for 2 days gave 3,6-bis(carbamoylmethyl)-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (77) in \sim 10% yield;²¹ and hydrogenation of 2-nitromethylenepyrrolidine gave $2,5$ -bis(3-aminopropyl)pyrazine (26%) (cf. Section 2.1.3).^{145, 467}

2.1.15. 1,2,5-Selenadiazoles as Substrates

The sole example of this transformation involved treatment of 3,4-diphenyl-1,2,5-selenadiazole (**78**) with dimethyl acetylenedicarboxylate in benzene at 150°C (sealed) for 20 h to afford dimethyl 5,6-diphenyl-2,3-pyrazinedicarboxylate (**79**) in 16% yield.¹⁰⁸⁴

2.1.16. 1,**2**,**5-Thiadiazoles as Substrates**

Like their selena analogues (Section 2.1.15), these thiadiazoles have been neglected as substrates for pyrazines. However, 4-*p*-anisidino-2-(3-ethoxycarbonylacetonyl)-2,3-dihydro-1,2,5-thiadiazol-3-one 1-oxide (**80**) afforded 3-*p*-anisidino-5-ethoxycarbonylmethyl-2(1*H*)-pyrazinone (**81**) in 30% yield by standing with *N*, *N*-diethyl-*N*-isopropylamine at 20^oC for 3 days.²⁸⁹

2.1.17. Thiirenes as Substrates

Although thiirenes have not been used recently to make pyrazines, the ring-reduced 2-chloromethylthiirane (**82**) reacted with 1,2-bis(methylamino)ethane in refluxing toluene to furnish 2-mercaptomethyl-1,4-dimethylpiperazine (**83**) as the major product.¹⁶⁵⁵

2.2. PYRAZINES FROM HETEROBICYCLIC SYSTEMS (*H* **37, 38, 53, 348)**

Most such heterobicyclic substrates are fused pyrazines from which the second ring must be removed completely or in part by oxidation, hydrolysis, or some other means to afford the desired monocyclic pyrazine derivatives. However, some such bicyclic substrates do not already incorporate a pyrazine ring, so that more profound processes (like rearrangement, ring expansion, or use of a cosynthon) must be employed to furnish pyrazines.

The various syntheses are classified simply according to the bicyclic substrate systems in alphabetical order.

2.2.1. 1,2-Diazabicyclo[2.2.0]hexanes as Substrates

The photolytic rearrangement of 3,4,5,6-tetra-*tert*-butyl-1,2-diazabicyclo[2.2.0] hexa-2,5-diene into 2,3,5,6-tetra-*tert*-butylpyrazine has been covered in Section 2.1.12.

2.2.2. 2,4-Diazabicyclo[3.1.0]hexanes as Substrates (*H* **53)**

The only reported example of this synthesis involved the treatment of 1,5-dimethyl-2,4-diazabicyclo[3.1.0]hexan-3-one (**84**) with aqueous barium hydroxide at 140°C (sealed) for 60 h, followed by an acidic work up, to give 2,2,3,5,5,6-hexamethyl-2,5-dihydropyrazine (**85**) in 42% yield, presumably via the cyclopropane derivative shown.¹¹⁹⁰

2.2.3. 2,3-Dioxa-5,7-diazabicyclo[2.2.2]octanes as Substrates

One such epidioxypiperazinedione has been reduced to a regular pyrazine. Thus 1,4-dibenzyl-2,3-dioxa-5,7-diazabicyclo[2.2.2]octane-6,8-dione (**86**) underwent reduction by sodium borohydride in ethanol at 20°C during 1 h to afford 3,6 dibenzyl-3,6-dihydroxy-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (86a) in $\sim 65\%$ yield, confirmed in structure by dehydration to 3,6-dibenzylidene-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione $(86b)$ ⁵

The furan ring of such substrates may be opened by reduction or hydrolytic processes to afford pyrazines, as illustrated in the following examples:

7-Bromo-6-phenylfuro[2,3-*b*]pyrazine (**87**) gave 3-phenylethynyl-2(1*H*)-pyrazinone (88) (BuLi, THF $-C_6H_{14}$, -60°C, 30 min: 70%).⁴⁸⁴

Ethyl 2,3-dichloro-6-methylfuro[2,3-*b*]pyrazine-7-carboxylate (**89**) gave 5,6 dichloro-3-ethoxycarbonylmethyl-2(1H)-pyrazinone (90) (NH₄OH, NH₄Cl, EtOH-THF, 50°C, 12 h: 29%).¹³⁰⁸

2.2.5. Imidazo[1,2-*a***]pyrazines as Substrates**

The sole recent example of this synthesis involved treatment of 2-phenylimidazo[1,2-*a*]pyrazin-3(7*H*)-one (**91**) briefly with warm alkaline hydrogen peroxide (Radziszewski's reagent) to afford 2-benzamidopyrazine (**92**).738

2.2.6. Indoles as Substrates

A number of partly reduced arylpyrazines has been made from *N*-acetyl-5-arylisatins (1-acetyl-5-aryl-2,3-indolinediones), as illustrated in the following examples:

N-Acetylisatin (93, $R = H$) was converted into a solution of the ketoester (94, $R = H$) (EtOH, reflux, 3 h) and thence with ethylenediamine into 3- o -acetamidophenyl-5,6-dihydro-2(1*H*)-pyrazinone (95, R = H) (5 \rightarrow 20 \degree C, \sim 1 h: 85%

overall); 3-(2-acetamido-5-bromophenyl)-5,6-dihydro-2(1*H*)-pyrazinone (**95**, $R = Br$) (88%) and other derivatives were made similarly.¹⁰⁵⁴

N-Acetylisatin (**97**) with 1,2-diamino-2-methylpropane gave either 3-*o*-acetamidophenyl-5,5-dimethyl-5,6-dihydro-2(1*H*)-pyrazinone (**96**) (two-stage process as in the foregoing examples: 74%) or its 6,6-dimethyl isomer (**98**) (THF, 5°C, 3 h; then 20° C, 1 h: 60%); other pairs of isomers were made similarly.¹⁰⁵⁴

2.2.7. Isoxazolo[2,3-a]pyrazines as Substrates

The only examples of this synthesis employed isoxazolopyrazine substrates that were themselves made from pyrazines. Thus 1-benzyl-5,6-dihydro-2(1*H*)-pyrazinone 4-oxide (**99**) underwent addition by ethynylbenzene to give 5-benzyl-2 phenyl-6,7-dihydro-3*aH*-isoxazolo[2,3-*a*]pyrazin-4(5*H*)-one (**100**) (60%), which subsequently underwent ring cleavage by molybdenum hexacarbonyl in wet acetonitrile to afford 1-benzyl-3-phenacyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone (**101**) in 54% yield; several analogues were made similarly.¹⁵³⁹

2.2.8. Isoxazolo[4,5-b]pyrazines as Substrates

Like the foregoing isomeric substrates (Section 2.2.7), these isoxazolopyrazines were frequently made from pyrazines. Thus 3-(*N*-hydroxyamidino)-2(1*H*)-pyrazinone (**102**) was converted in two stages into isoxazolo[4,5-*b*]pyrazin-3-amine (**103**), which on vigorous treatment with acetic anhydride afforded 2-acetoxy-3-(5 methyl-1,2,4-oxadiazol-3-yl)pyrazine (**104**) in 78% yield; the same substrate (**103**) in hot formic acid for 5 min gave mainly $3-(1,2,4-\alpha x)$ and $3-(1,4-\alpha x)$ and 3 none (**105**) (50%) but if heating was prolonged for 3 h only 3-oxo-3,4-dihydro-2 pyrazinecarbonitrile (**106**) was obtained, presumably via the oxadiazolopyrazine (105) .¹¹¹⁵

2.2.9. Pteridines as Substrates (*H* **38)**

Although pteridines can be made from pyrazines, it is usually much easier to prepare them from 4.5 -pyrimidinediamines or the like.¹⁶⁸⁹ Since many pteridines can be easily degraded to pyrazines, this process offers a practical primary synthetic route to a variety of pyrazine derivatives. However, in comparison with more than 150 examples cited by Barlin from pre-1978 literature,1686 recent use of the method has been modest. Typical examples follow:

By Alkaline Hydrolytic Fission

7-Methyl-2,4(1*H*, 3*H*)-pteridinedione (**107**) gave 3-amino-5-methyl-2-pyrazinecarboxylic acid (**108**) (4M NaOH, reflux, 20 h: 30%).⁶⁹³

2-Amino-6-*p*-[(1,3-dicarboxypropyl)carbamoyl]anilinomethyl-4(3*H*)-pteridinone (folic acid: **109**) gave 3-amino-6-*p*-carboxyanilinomethyl-2-pyrazinecarboxylic acid (110) (2.5 M KOH, reflux, N₂, 96 h: 87%).⁷⁶⁹

1,3-Dimethyl-6-thioxo-5,6-dihydro-2,4(1*H*,3*H*)-pteridinedione (**111**) gave bis(5 methylamino-6-methylcarbamoylpyrazin-2-yl) disulfide (**112**) (1 M NaOH, 20°C, 12 h; then I + KI + NaHCO₃ \downarrow , 20°C, 10 min: 69%).^{940, cf. 943} Also other examples. $28, 713, 732$

By Aminolytic Fission

6,7-Di(thien-2-yl)-2,4(1*H*, 3*H*)-pteridinedione (**113**) gave 3-amino-5,6-di(thien- $2-yl$ -2-pyrazinecarboxamide (114, R = H) (NH₄OH, 150°C, sealed, 26 h: 65%) or 3-amino-*N*-butyl-5,6-di(thien-2-yl)-2-pyrazinecarboxamide (**114**, $R = Bu$) (BuNH₂, H₂O, 150°C, sealed, 16 h: 84%).⁶⁹⁹

4-Pteridinamine 3-oxide $(115, R = H)$ gave 3- $(hydrazonometryl)$ amino-2pyrazinecarboxamide oxime $(116, R = H) (H_2NNH_2.H_2O, MeOH, 20°C, 4 h:$ 85%); the 2-phenylated substrate (115, $R = Ph$) likewise gave 3-(α -hydrazonobenzyl)amino-2-pyrazinecarboxamide oxime $(116, R = Ph)$ $(20^{\circ}C, 2 h;$ then reflux, 30 min: 66%).³⁵³

7-Phenylpteridine (**117**) gave 3-ethyliminomethyl-6-phenyl-2-pyrazinamine (**119**) (neat EtNH₂, 20° C, 4 h: 78%; via the adduct (**118**)] or a separable mixture of 4-ethylamino-7-phenylpteridine (**120**) and 3-amino-5-phenyl-2 pyrazinecarbaldehyde (121) [neat EtNH₂, KMnO₄ (1 mol), 17^oC, 5 h: 26 and 38%, respectively, after separation; the second, presumably via the Schiff base (**119**)]; the aldehyde (**121**) was oxidized further to 3-amino-5-phenyl-2 pyrazinecarboxylic acid (122) (KMnO₄, H₂O, 20°C, 1 h: 28%).¹³⁸⁵

By Reductive Fission

6-(2-Hydroxyethyl-1,3-dimethyl-2,4(1*H*, 3*H*)-pteridinedione gave 6-(2-hydroxyethyl)-*N*-methyl-3-methylamino-2-pyrazinecarboxamide (NaBH₄ NaOH, $H₂O$, 20 $°C$, 1 h: 73%).¹⁷⁶⁵

2.2.10. Pyrazino[2,3-*d***][1,3]oxazines as Substrates (H 38]**

Only one recent example of this synthesis has been reported. 2-Methyl-4*H*pyrazino $[2,3-d][1,3]$ oxazin-4-one (123) and methylhydrazine at $5 \rightarrow 20^{\circ}$ C during 1 h afforded 3-acetamido-*N*-methyl-2-pyrazinecarbohydrazide (124) in 45% yield.¹²⁶⁵

2.2.11. Pyrazino[2,3-e][1,3,4]thiadiazines as Substrates

This synthesis is also represented by only one example. 3-Ethoxycarbonylamino-1*H*-pyrazino[2,3-*e*][1,3,4]thiadiazine (**125**) in methanolic hydrogen chloride under reflux during 2 h furnished 3-(4-ethoxycarbonylsemicarbazido)-2(1*H*) pyrazinethione (**126**) in 32% yield.284

2.2.12. Quinoxalines as Substrates (*H* **37)**

The oxidation of quinoxalines to pyrazine derivatives has been used for almost a century. Some typical examples from recent literature follow:

Quinoxaline (127) gave 2,3-pyrazinedicarboxylic acid (128) [KMnO₄ (6 mol), H₂O, 95°C, 3 h: 71%;⁹⁴⁷ other oxidative procedures were reported^{840, 846, 1057,} ¹²¹⁵ to give up to 79% yield], and hence 2-pyrazinecarboxylic acid (**129**) by thermal decarboxylation (sublimation at 210°C/4 mmHg: 81%).^{846, cf. 1057}

2,3-Dimethylquinoxaline (130, $Q = R = Me$) gave the dicarboxylic acid (131, $Q = R = Me$) [KMnO₄ (3 mol), KOH, H₂O: crude product], which was didecarboxylated to give 2,3-dimethylpyrazine $(132, Q = R = Me)$ (AcOH, 200°C, autoclave, 1 h: 46% overall);543 2-butyl-3-methylquinoxaline (**130**, $Q = Bu$, $R = Me$) gave 2-butyl-3-methylpyrazine (132, $Q = Bu$, $R = Me$) (similarly: 21%) or 2-methylpyrazine (132, $Q = H$, $R = Me$) [similarly but $KMnO₄$ (10 mol): 55%; presumably by additional oxidation of the Bu group to give the (uncharacterized) tricarboxylic acid $(131, Q = CO₂H, R = Me)$ and tridecarboxylation].543

- 2-Chloro- $(130, Q = C1, R = H)$ or 2,3-dichloroquinoxaline $(130, Q = R = C1)$ gave 5-chloro-2,3-pyrazinedicarboxylic acid $(131, Q = Cl, R = H)$ (KMnO₄, H₂O, 95°C 3 h: 70%, as hydrochloride)⁹⁴⁷ or 5,6-dichloro-2,3-pyrazinedicarboxylic acid $(131, Q = R = Cl)$ (likewise: 73% as hydrochloride or $41-49%$ as base), $462, 947$ respectively.
- 2,3(1*H*,4*H*)-Quinoxalinedione (**133**) gave 5,6-dihydro-2,3,5,6(1*H*,4*H*)-pyrazinetetrone (134) $[Co(OAc)_2, AcOH, O_3 \downarrow$, (4 mol), 20°C: 45%]; 2,3-dichloroquinoxaline (**135**) gave the same product (**134**) (similarly: 70%; clearly involving a hydrolytic step); the mechanisms were discussed.¹⁴⁶³

Also other examples.^{348, 543}

2.2.13. 4-Thia-1-azabicyclo[3.2.0]heptanes as Substrates

The sole example of this synthesis appears to be more of interest than utility. Thus 6-(2-amino-2-phenylacetamido)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0] heptane-2-carboxylic acid (ampicillin: **136**), in aqueous glucose maintained at pH 9.2 for 24 h at room temperature, gave 3-(4-carboxy-5,5-dimethyl-1,3-thiazolidin-2-yl)-6 phenyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (**137**) as a mixture of epimers in 43% vield.⁴⁸³

2.2.14. [1,2,5]Thiadiazolo[3,4-*b***]pyrazines as Substrates (***H* **38)**

This synthesis appears to have considerable potential for making 2,3-pyrazinediamines. It is typified in the reductive fission and desulfurization of the parent $[1,2,5]$ thiadiazolo $[3,4-b]$ pyrazine $(138, Q = R = H)$ by stannous chloride and methanolic hydrochloric acid at 20°C during 1 h to furnish 2,3-pyrazinediamine $(139, Q = R = H)$ in 83% yield;¹⁴⁵¹ also in the preparation of several homologues, for example, 5-methyl-6-phenyl-2,3-pyrazinediamine $(139, Q = Me, R = Ph)$ (similarly but at 60° C for 2.5 h: 84%).¹⁴⁵¹

2.2.15. Thiazolo[3,2-*a***]pyrazines as Substrates**

Fission and desulfurization of 2,2-dimethyl-5,8-dioxo-2,3,6,7,8,8a-hexahydro-5*H*-thiazolo[3,2-*a*]pyrazine-3-carboxylic acid (**140**), by treatment with Raney nickel in aqueous ethanolic sodium bicarbonate at 20°C during 12 h, gave 1- (1-carboxy-2-methylpropyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**141**) in 58% yield.1255

2.2.16. Thiazolo[3,4-*a***]pyrazines as Substrates**

Again, only one example of this synthesis has been reported. Like the analogous substrate (**140**), isobutyl 1,1-dimethyl-5,8-dioxo-1,5,6,7,8,8a-hexahydro-3*H*-thiazolo[3,4-*a*]pyrazine-3-carboxylic acid (**142**) underwent fission and desulfurization (on stirring with ethanolic Raney nickel at 20°C for 12 h) to afford an hydropyrazine, this time 1-isobutoxycarbonylmethyl-6-isopropyl-3,6-dihydro-2,5(1*H*, 4*H*) pyrazinedione (143) in 89% yield.¹²⁵⁵

2.3. PYRAZINES FROM HETEROTRICYCLIC SYSTEMS (*H* **37, 38)**

The conversion of heterotricyclic systems into pyrazines has been largely neglected recently. However, two reported examples of useful syntheses follow:

From Phenazines

1,6-Phenazinediol (**144**) gave 2,3,5,6-pyrazinetetracarboxylic acid (**145**) [RuO4 (made *in situ* from RuCl₃ + NaOCl), H₂O—CCl₄, 20°C, 3.5 h: 46%].⁷

From Pyrazino[2,**3-***b***][1**,**4]benzoselenazines**

1O*H*-Pyrazino[2,3-*b*][1,4]benzoselenazine (**146**) gave 2,5-dichloro-3-[3-chloro-6-(chloroseleno)anilino]pyrazine (147) (MeCN, $Cl_2 \downarrow$: ~75%; characterized but structure not fully confirmed), and thence bis[4-chloro-2-(3,6-dichloropyrazin-2-ylamino)phenyl] diselenide (148) (Me₂SO, 20°C, 15 min: ?%; ClCH₂SMe formed; structure confirmed).³⁵¹

2.4. PYRAZINES FROM SPIRO HETEROCYCLES

The only spiro systems used as substrates for preparing pyrazines appear to be those involved in the following examples:

1-Oxa-4-azaspiro[4.5]decanes

 $4-Benzyl-1-oxa-4-azaspiro[4.5] decane$ (149, $R = CH_2Ph$) gave 1,4-diben $zylpiperazine$ (150, $R = CH_2Ph$) and cyclohexanone (polyphosphoric acid, 200° C, 10 h: ~ 40%);⁴¹³ 1,4-bis(2-hydroxyethyl)- (**150**, R = CH₂CH₂OH) and 1,4-diphenylpiperazine $(150, R = Ph)$ were made similarly and in comparable yields.413

1-Oxa-4,**7-diazaspiro[2.5]octanes**

6-Benzylidene-4,7-dimethyl-2-phenyl-1-oxa-4,7-diazaspiro[2.5]octane-5,8-dione (**151**) gave 3-benzoyl-6-benzylidene-1,4-dimethyl-3,6-dihydro-2,5(1*H*, 4*H*) pyrazinedione (152) (TsOH, PhMe, reflux, water removal (?), 18 h; 73%).¹⁰³⁰

2.5. APPENDIX: GLANCE INDEX TO TYPICAL PYRAZINE DERIVATIVES AVAILABLE FROM OTHER HETEROCYCLIC SYSTEMS

This glance index is provided to assist in the choice of a primary synthesis that may provide a required type of pyrazine derivative from another heterocyclic system. Procedures that afford very poor yields or employ substrates that are difficult of access are omitted; so too are those methods that appear to lack general applicability in their present state of development. However, such syntheses are often of great interest and may prove invaluable in the right context.

2.1.8

2.1.10

2.2.6

2.4

CHAPTER 3

Pyrazine, Alkylpyrazines, and Arylpyrazines (*H* **68, 344)**

This chapter covers the preparations, physical properties, and reactions of pyrazine and its *C*-alkyl, *C*-aryl, *N*-alkyl, or *N*-aryl derivatives as well as their respective di-, tetra-, and hexahydro derivatives (the last usually known as piperazines). In addition, it includes methods for introducing alkyl or aryl groups (substituted or otherwise) into pyrazines and hydropyrazines already bearing substituents and the reactions specific to the alkyl or aryl groups in such products. For simplicity, the term *alkylpyrazine* in this chapter is intended to include alkyl-, alkenyl-, alkynyl-, cycloalkyl-, and aralkylpyrazines; likewise, the term *arylpyrazine* includes both aryl- and heteroarylpyrazines.

It seems appropriate here to mention some general studies or reviews of broad areas in pyrazine chemistry that do not fit comfortably into other chapters. Thus an excellent review of most aspects of pyrazine chemistry, including experimental details, appeared in 1998;¹⁶⁷⁷ summaries of progress in pyrazine chemistry appeared in 1995, 1775 and also annually since 1989; $1540 - 1550$, 1714 brief Japanese-language reviews of general pyrazine chemistry and the synthesis of naturally occurring pyrazines were published in 1989.1600, 1601 A comprehensive review of the direct metalation of π -deficient nitrogenous heterocycles (including pyrazines) appeared in 1991.¹⁴³³ Review papers on the occurrence,^{1274, 1724} structure – odor relationships,^{690, 1306, 1719} and biosynthesis¹⁴²⁶ of a great many alkyl- and alkoxypyrazines (that occur naturally or as artifacts in processed foods) have appeared since 1990. In addition, the partition coefficients (octanol/water) for many mono- and disubstituted pyrazines (bearing alkyl, halogeno, alkoxy, amino, or carboxy groups) have been measured, analyzed, and compared with those for corresponding pyridines.^{723, 724} An attempt has been made to rationalize the dipole moments of a number of monosubstituted pyrazines by comparing them with those of correspondingly substituted benzene derivatives.^{1081, cf.} 1001

3.1. PYRAZINE (*H* **1, 68)**

3.1.1. Preparation of Pyrazine (*H* **68, 372)**

Apart from the pyrolysis of 2-*tert*-butylsulfonylpyrazine to afford pyrazine (**1**) [in 49% yield with loss of sulfur dioxide and unsaturated $(?)$ hydrocarbon]²³⁹ and the reduction of pyrazine to piperazine (**2**) (in 76% yield by treatment of an alkaline solution with Ni—Al alloy), 479 no new or improved routes to pyrazine or piperazine appear to have been reported in recent years; nor has any di- or tetrahydropyrazine been prepared. Both pyrazine and piperazine are now available commercially at modest cost.

3.1.2. Properties of Pyrazine (*H* **69, 376)**

Recently reported physical data for pyrazine (and its salts or simple derivatives) are collected with references under "pyrazine" in the Appendix (Table of Simple Pyrazines). More extensive studies on such aspects of pyrazine (and some hydro or putative dehydro derivatives) are here indicated briefly with references.

- *Aromaticity*. An aromaticity index, based on deviation of peripheral bond orders,1691 has been applied to pyrazine (89% of that for benzene) and some derivatives.^{257, 376, 379, 383} The aromaticity of 1,s4-dihydropyrazines has been studied.565, 1734
- *Conformations*. Calculations have been made of the preferred conformations for 1,4-dihydropyrazine,456, 1080 1,2,3,4-tetrahydropyrazine,100 piperazine (and several alkyl derivatives), 1079 and the (reduced) pyrazine ring in several biologically important di- and tetrahydropteridines.¹⁰⁰
- *Crystal phases*. The measured heat capacities for crystalline pyrazine in the range 20–40°C suggest that, in each of the phases involved, \sim 50% of the molecules must be disordered⁵⁵⁶
- *Electron distribution*. The π and σ -electron distributions in pyrazine and other azines have been studied theoretically $:$ $458, 562$ there appears to be a reasonable correlation between the net charges on nitrogen atoms and the measured ¹⁵N NMR shifts.⁵⁶²

Fine structures. Di- and tetradehydropyrazines (as their derivatives) are sometimes implicated as transient intermediates in proposed reaction mechanisms. Some theoretical studies have suggested that didehydropyrazine would exist as the diradical structure (3) ,⁴⁵⁴ whereas others seem to suggest more normal formulations for di- (**4**) and tetradehydropyrazine (**5**).235

- *Ionization*. Ionization constants for pyrazine and several C-methylated derivatives have been redetermined for possible correlation with the polarographic half-wave potentials of the same compounds and their 1-alkyl iodides.¹³⁷³
- *Nuclear magnetic resonance spectra*. The ¹³C- and ¹⁵N NMR spectra of pyrazine and a variety of alkyl, other monosubstituted, and dialkylpyrazines (as well as some of their *N*-oxides) have been reported and the substituent effects compared with those in other π -deficient systems.^{77, 256, 545, 1405, 1409, 1410}
- *Nonbonded complexes*. The equilibrium constants, enthalpies, and entropies for the weak complexation of pyrazine with dichloromethane, chloroform, or carbon tetrachloride have been determined from changes in the $n \rightarrow \pi^*$ absorptions of solutions at various concentrations (in cyclohexane) and temperatures;568 similar data for pyrazine–aromatic hydrocarbon complexes were obtained from variations in the ${}^{1}H$ NMR chemical shift values.¹⁰³⁷ The spectral effects of complexation with borane have been studied in the pyrazine diborane adduct and its methyl derivatives.254
- *Vibration spectra*. Revised assignments for all observed bands in the IR and Raman spectra of pyrazine have been proposed after appropriate measurements of pyrazine and tetradeuteropyrazine in the vapor, liquid, and solid states as well as in carbon disulfide and carbon tetrachloride solutions.^{584, 1483} Other aspects have been studied.^{1722, 1732}

3.1.3. Reactions of Pyrazine (*H* **70, 377)**

Some typical examples of recently reported reactions of unsubstituted pyrazine are mentioned here but, for pragmatic reasons, those of piperazine are simply covered piecemeal in appropriate sections and may be accessed through the Index.

Quaternization and Ylide Formation

Pyrazine gave 1-dodecylpyrazinium iodide (6) (C₁₂H₂₃I, AcMe, reflux, 8 h: 4%, owing to losses in purification)¹⁴⁷⁵ or 1,4-diethylpyrazinediium bistetrafluoroborate (Et₃OBF₄, ClCH₂CH₂Cl, reflux, N₂, 45 min: 75%).¹⁶⁶⁷

- Pyrazine gave 1-methylpyrazinium bromide (**7**), and thence 1-methylpiperazine (8) (MeBr, CH₂Cl₂, 25°C, sealed, 50 h: 44%; then H₂, Rh/Al₂O₃, EtOH—H₂O: ~ 30%).¹³³⁷
- Pyrazine gave 1,4-pyrazinediium bis(dicyanomethylide) (**9**) (tetracyanoethylene oxide, PhMe, reflux, 6 h: 45%; X-ray confirmation of structure). 62 , cf. 573

Also other examples.273, 551, 1177

C-Alkylation

Note: Pyrazine may be C-alkylated directly, e.g., by alkyl radicals; also by addition to give an alkylated hydropyrazine, sometimes amenable to subsequent oxidation. Typical procedures are illustrated here.

- Pyrazine gave 2-(1-hydroxyethyl)pyrazine (**10**) [MeCHO, lithium tetramethylpiperidide (made *in situ*), THF, -75° C, 2 h: 65%]; also anaolgous products likewise.899
- Pyrazine gave 2-butylpyrazine (11) $[F_3CO_2H, AgNO_3, (NH_4)_2S_2O_8, H_2O$ —PhCl, reflux, 2 h: 65%; replacement of the organic acid by H_2SO_4 gave some dialkylation]; also analogues likewise.³⁶⁸
- Pyrazine gave 2-*o*-tolylpyrazine (12) [LiC₆H₄Me-*o* (made *in situ*), Et₂O, <10 \rightarrow 20°C, 2 h: 20%1.929
- Pyrazine gave bis(2,2,2-trichloroethyl) 2,3-diallyl-1,2,3,4-tetrahydro-1,4 pyrazinedicarboxylate (13) (Bu₃SnCH₂CH=CH₂, ClCO₂CH₂CCl₃, CH₂Cl₂, 0 $^{\circ}$ C, 1 h: 52% after separation from a byproduct).^{114, 336}

Also other examples.373, 821, 1325, 1388, 1579, 1606

Addition Reactions

Pyrazine gave 1,4-bis(dimethylphosphinothioyl)-1,4-dihydropyrazine (**14**) [Li, Me₂P($=$ S)Cl, THF, 20 $^{\circ}$ C, 24 h: 20%],⁵⁴⁹ 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (15) (somewhat similarly), $908, 909$ and some interesting derived metal complexes.907, 913, 914, 1663 In addition, the silylated product (**15**) underwent insertion of two molecules of $CO₂$ to afford the ester-like entity, bistrimethylsilyl 1,4-dihydro-1,4-pyrazinedicarboxylate (16) (CO₂, 20^oC, 24 h: 33%).⁵⁴⁹

Halogenation

Pyrazine gave 2-iodopyrazine $(17, R = I)$ [I₂, lithium tetramethylpiperidide (made *in situ*), THF, -75° C, 2 h: 44%];⁸⁹⁹ compare the vigorous conditions needed for classical halogenation of pyrazine (*H* 70).

N-Oxidation

Pyrazine gave pyrazine 1,4-dioxide (Na₂WO₄, H₂O₂: no details).⁹⁹⁵

C-Acetoxylation

Pyrazine gave 2-acetoxypyrazine (17, R = OAc) (AcOF,¹⁷⁰¹CHCl₃, $-75 \rightarrow$ -40° C, 1 h: 80%).³⁰⁴

C-Acylation

Pyrazine gave 2-benzoylpyrazine $(17, R = Bz)$ (substrate, PhCHO, AcOH—H₂SO₄—H₂O, N₂; then Bu^{*t*}OOH/H₂O \downarrow , FeSO₄/H₂O \downarrow , <15°C, 1 h: 30%).¹⁸¹

Metal Complexation

Pyrazine reacts with triethylborane and other such gallium or indium alkyls in the presence of sodium to afford persistent radical complexes;²⁶⁰ also somewhat similar aluminum and silicon complexes.⁴⁵⁷

3.2. *C***-ALKYL- AND** *C***-ARYLPYRAZINES (***H* **72, 344)**

It is now widely accepted that alkyl groups attached to heterocycles are not mere nonfunctional appendages but do undergo many reactions and do have important steric and electronic effects on the reactivity of the molecule as a whole. In the pyrazine series, alkyl groups have an additional interest because even quite simple alkylpyrazines occur as natural products or as artifacts in processed foods: These alkylpyrazines often impart characteristic odors and tastes to such foods.

3.2.1. Preparation of *C***-Alkyl- and** *C***-Arylpyrazines (***H* **72)**

The following coverage is not confined to methods for making simple alkylpyrazines. It does include methods leading to products with one or more functional passenger groups that have survived the procedure(s) involved. The many *primary syntheses* of alkylpyrazines have been covered in Chapters 1 and 2.

3.2.1.1. By Direct C-Alkylation (H 73)

This process has been performed in many way to convert pyrazines or hydropyrazines into their C-alkylated derivatives. One particular form of such alkylation has been used extensively as the first step in making optically active α -amino acids by the Schöllkopf synthesis.47, 48, 354, 743, 906, 1270, 1649, 1693, 1694, 1720 This involves, for example, lithiation/benzylation of the chiral "pyrazine bis lactam ether" (**18**) to give (with high asymmetric induction) the C-benzylated product (**19**), bearing its benzyl group trans to the methyl group across the ring; subsequent hydrolytic ring fission then affords a new optically active benzylated α -amino acid (as its ester: **20b**) accompanied by the original optically active alanine used for synthesis of the substrate (18) (again as its ester: $20a$).⁹⁰⁶

For convenience, this alkylation section is subdivided into two subsections, the first covering various regular C-alkylation processes and the second outlining some typical C-alkylations as used in the Schöllkopf synthesis.

3.2.1.1.1. General Procedures for C-Alkylation (*H* 73)

The following classified examples illustrate the methods that have been used recently for C-alkylation of pyrazines and hydropyrazines (see also Section 3.1.3 for the alkylation of unsubstituted pyrazine).

By Homolytic Alkylation

Note: It is probably fortuitous that nearly all recent examples of such nuclear *C*-alkylation have employed substrates bearing electron-withdrawing substituents.

- 2,3-Dimethylpyrazine $(21, R = H)$ gave 2,3-dimethyl-5-phenethylpyrazine $(21, R = H)$ $R = CH_2CH_2Ph$) [PhCH₂CH₂CO₂H, H₂SO₄, AgNO₂, (NH₄)₂S₂O₈, H₂O₂ 95 $°C$, no further details: 45%].¹⁴⁶²
- 2-Pyrazinecarboxamide $(22, R = H)$ gave 5-*tert*-butyl-2-pyrazinecarboxamide $(22, R = Bu^t)$ [Bu^tCO₂H, AgNO₃, (NH₄)₂S₂O₈, H₂O, 80^oC, 1 h: 50%];⁵⁰⁹ 2-pyrazinecarbonitrile $(23, R = H)$ likewise gave 5-*tert*-butyl-2-pyrazinecarbonitrile $(23, R = Bu^t)$ (69%);⁵⁰⁹ and analogues were made similarly.^{509, 511, 669}

- 2,3-Pyrazinedicarbonitrile (24) gave a separable mixture of 5-ethyl- $(25, R = H)$ and 5,6-diethyl-2,3-pyrazinedicarbonitrile $(26, R = Et)$ [EtCO₂H (3 mol), AgNO₃ (0.5 mol), (NH₄)₂S₂O₈ (4 mol), MeCN—H₂O, reflux, N₂, 7 h: 45 and 41%, respectively];¹³⁹⁵ analogues likewise.¹³⁹⁵
- 5-Methyl-2,3-pyrazinedicarbonitrile $(26, R = H)$ gave 5-hydroxymethyl-6methyl-2,3-pyrazinedicarbonitrile $(26, R = CH_2OH)$ [HOCH₂CO₂H, AgNO₃, $(NH_4)_2S_2O_8$, MeCN—H₂O, 75°C \rightarrow reflux, 5 h: 74%; note incorrect name in original experimental section].1599

Also other examples.338, 1378, 1528, 1723

By Organometallic Reagents

- *Note:* Such alkylations appear to proceed by initial addition of the reagent to afford an alkyl dihydro product that may or may not undergo subsequent oxidation to an alkylpyrazine.
- 2-Pyrazinamine (27, $R = H$) gave 3-benzyl-2-pyrazinamine (27, $R = CH_2Ph$) (preformed PhCH₂Li, THF, 0° C, N₂, 1 h: 32%); 2-acetamidopyrazine (28, R = H) gave 2-acetamido-3-benzylpyrazine $(28, R = CH_2Ph)$ (37%) ; and other analogues were made similarly without added oxidant.¹⁰⁹⁶
- 2-Acetonylpyrazine (29, $R = H$) gave 2-acetonyl-3-phenylpyrazine (29, $R = Ph$) (preformed PhLi, Et₂O, 20 $^{\circ}$ C, 2 h: 8%; see original for more detail).¹³⁸⁸

2-Chloro-3,6-dimethylpyrazine 4-oxide $(30, R = H)$ gave 2-chloro-5-isopentyl-3,6dimethylpyrazine 4-oxide (30, R = CH₂Bu^{*i*}) (Bu^{*i*}CH₂MgBr, THF, A, $0 \rightarrow 20^{\circ}$ C, 45 h: 16%).¹⁵⁹⁴

Also other examples.384, 833, 1108

By C-Lithiation and Subsequent Treatment with an Alkyl Halide

- 2,6-Dimethoxypyrazine $(31, R = H)$ gave 2,6-dimethoxy-3-methylpyrazine $(31, R)$ $R = Me$) [preformed LiMe₄ piperidide, THF, -78° C, 15 min; then MeI \downarrow , 20 $^{\circ}$ C, 12 h: 92%];⁸³² likewise 2-methoxy-3-methylpyrazine (57%).⁸³²
- 2,5-Diethoxy-3,6-dihydropyrazine $(32, R = H)$ gave 2-allyl-3,6-diethoxy-2,5dihydropyrazine (32, R = CH₂CH=CH₂) (preformed LiNPr^{*i*}₂, THF, -78°C, 90 min; then BrCH₂CH= $CH_2 \downarrow$, -78°C, 3 h; then 20°C, 16 h: 52%); analogues likewise.⁶
- 1,4-Dimethyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (33, R = H) gave 3-[3-(*tert*-butyldimethylsiloxy)propyl]-1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (33, R = Bu'Me₂SiOCH₂CH₂CH₂) [preformed LiNPr^{*i*}</sup>₂, THF, -78° C, 2 min; then $(Me_2N)_3PO\downarrow$, ICH₂CH₂CH₂OSiMe₂Bu^t \downarrow , $-78 \rightarrow 20^{\circ}C$, 5 h: 55% net].⁴⁵¹
- 2-Chloropyrazine (34, $R = H$) gave 2-chloro-phenylpyrazine (34, $R = Ph$) [preformed LiMe₄ piperidide, THF; then ZnCl₂, \vert , $-70 \rightarrow 20^{\circ}$ C, giving (34, $R = ZnCl_2$) by transmetalation; then PhI \downarrow , Pd (PPh₃)₄ \downarrow , THF, reflux, 20 h: 85%];1637 in making some analogues similarly, sonication improved yields.1637

Also other examples.470, 486, 904, 1252, 1418

Note: For many more examples, see Section 3. 2. 1. 1. 2

By C-Lithiation and Subsequent Treatment with Ethylene Oxide

1,4-Dimethyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (33, R = H) gave 3-(2hydroxyethyl)-1,4-dimethyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (**33**, R = CH₂CH₂OH) [preformed LiNPr^{*i*}</sup>₂, THF, -78°C, 10 min; then $(CH_2)_2O \downarrow$, $-78 \rightarrow 20^{\circ}$ C, 4 h: 79% net].⁴⁵³

By Lithiation and Subsequent Treatment with an Alkene

2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine $(35, R = H)$ gave 2-isopropyl-3,6-dimethoxy-5-(2-methoxycarbonyl-1-phenylethyl)-2,5-dihydropyrazine (**35**, $R = CHPhCH₂CO₂Me$ (LiBu, THF- $-C₆H₁₄$, -70 °C, 10 min; then MeCH=CHCO₂Me \downarrow , $-70 \rightarrow -20$ °C, 1 h: 88%; see original for chiral implications).803

By C-Lithiation and Subsequent Treatment with an Aldehyde or Ketone

Note: This type of alkylation affords only *C*-(1-hydroxyalkyl)pyrazines.

- 2-Chloropyrazine $(36, R = H)$ gave 2-chloro-3- $(1-hydroxyethy)$ pyrazine [36, R = CH (OH) Me] (preformed LiMe₄ piperidide, -70° C, 30 min; then MeCHO \downarrow , -70° C, 90 min: 90%); the same substrate (26, R = H) gave 2-chloro-3-(α -hydroxydiphenylmethyl)pyrazine [36, R = C (OH) Ph₂] (Ph₂CO, likewise: 82%); also other analogues.²²⁰
- 2,5-Di-s-butylpyrazine 1-oxide $(37, R = H)$ gave 2,5-di-s-butyl-3- $(1-hydrox$ ypropyl) pyrazine 1-oxide [37, $R = CH$ (OH) Et] [preformed LiMe₄ piperidide, THF, -78° C, A, 20 min; then $(Me₂NCH₂)$, \downarrow , -78° C, 20 min; then EtCHO \downarrow , $-78 \rightarrow 0^{\circ}$ C, 17 h: 74%]; also several analogues likewise.³¹⁶
- 2,5-Diethoxy-3,6-dihydropyrazine $(38, R = H)$ gave 2,5-diethoxy-3-(1-hydroxy-1methylethyl) $-3,6$ -dihydropyrazine [38, R = C (OH)Me₂] [preformed LiNPr₂^{*i*}, THF, -78° C, 90 min; then AcMe \downarrow , $-78 \rightarrow 20^{\circ}$ C, 24 h: 51%], and thence 2,5diethoxy-3-(1-hydroxy-1-methylethyl)pyrazine (dichlorodicyanobenzoquinone, PhH, reflux, 1 h: 52%).⁶

Also other examples.^{406, 459, 642, 832, 912, 1092, 1455, 1504, 1519, 1588, 1597, 1602, 1613}

Note: The lithio intermediate for this process may be generated alternatively by reductive dechlorolithiation of a chloropyrazine with Li metal.¹⁷⁵¹

By Aldehydes or Ketones with a Strong Base (Alkylidenation?)

- *Note:* This type of alkylation is applicable only to hydropyrazines and the products are frequently considered as alkylidene derivatives, despite the fact that they can usually be formulated as the tautomeric alkylpyrazines (with the extra double bond within the pyrazine ring).
- 2,3-Dimethyl-5,6-dihydropyrazine (**39**) gave 2,3-dimethyl-5-propylidene-5,6-dihydropyrazine (40, $Q = Et$, $R = H$) and/or the tautomeric 2,3-dimethyl-5-propylpyrazine (41, Q = Et, R = H) (EtCHO, EtONa, EtOH, N₂, reflux, 1 h: 37%);⁴⁷³ the same substrate (39) gave 2-sec-butyl-5,6-dimethylpyrazine (41, $Q = Me$, $R = Et$) (AcEt, similarly: 46%);⁴⁷³ also many analogues likewise.^{473, 849, 1246}

1,4-Diacetyl-3,6-dihydro-2,5-(1*H*, 4*H*)-pyrazinedione (**43**) gave 1-acetyl-3-benzylidene-3,6-dihydro-2,5- $(H, 3H)$ -pyrazinedione (42) [PhCHO (1 mol) , Et₂N, Me₂NCHO, 25° C, 4 h: 66% ¹⁵²⁵ or 3,6-dibenzylidene-3,6-dihydro-2,5 (1*H*, $4H$)-pyrazinedione (44) [PhCHO (2 mol), Et₃N, Me₂NCHO, reflux, 4 h: 93%; note deacetylation in both cases];¹⁰²¹ also analogues of both products.^{1021, 1525} Reduction of the dibenzylidene derivative (**44**) gave 3,6-dibenzyl-3,6-dihydro-2,5 (1*H*, 4*H*)-pyrazinedione (Zn, AcOH—HCl, reflux, 9 h: 40%).¹⁰²¹

The same substrate (**43**) gave 1-acetyl-3-*m*-methoxybenzylidene-3,6-dihydro-2,5 (1*H*, 4*H*)-pyrazinedione (45) with monodeacetylation (MeOC₆H₄ CHO-*m*, Bu^tOK, Me₂NCHO, N₂, 0 \rightarrow 20°C, 6 h: 63%).⁴⁴

1,4-Diacetyl-3-methyl-3,6-dihydro-2,5 (1*H*,4*H*)-pyrazinedione (**46**) gave 1-acetyl-3-*p*-methoxybenzylidene-6-methyl-3,6-dihydro-2,5 (1*H*, 4*H*)-pyrazinedione (**47**) $(MeOC₆H₄ CHO-p$, Bu^tOK, Me₂ NCHO—Bu^tOH, $0 \rightarrow 20^{\circ}C$, 22 h: ?%; or $MeOC₆H₄CHO-p$, $KF/Al₂O₃$, Me₂ NCHO, 20^oC, 16 h: 48%; note lack of base in the second procedure). 1616

Also other examples.56, 98, 1002, 1075, 1158, 1415, 1744, 1762

By Other Reactions

2,5-Dimethylpyrazine (**48**) and the cationic bis(cyclopentadienyl) zirconium complex (**49**) gave an isolable intermediate formulated as the complex (**50**) and thence 2,5-dimethyl-3-(pent-1-enyl) pyrazine (**51**) [one pot procedure: complex (49), CH₂Cl₂, 23[°]C, 15 min; then HC=CPr \downarrow , 23[°]C, 2.5 h: 88%];⁸⁶⁸ several analogues, like 2,5-dimethyl-3,6-bis[1-methyl-2-(trimethylsilyl) vinyl] pyrazine $(51a)$ (61%) , were made similarly.⁸⁶⁸

2,3,5-Trimethylpyrazine gave 2,3,5-trimethylpiperazine (Ni-Al, KOH, H_2 O, 19 h: 74%); likewise analogues.799 Contrarywise, 2,3-diphenyl-5,6-dihydropyrazine gave 2,3-diphenylpyrazine (NiO₂, PhH, reflux, 4 h: 92%).⁷⁴⁶

3,5-Dichloro-1-phenyl-2 (1*H*)-pyrazinone underwent 3,6-bridging alkylation (by a Diels–Alder mechanism) to give 4,6-dichloro-2-phenyl-2,5-diazabicyclo [2.2.2] oct-5-en-3-one (52) $\{H_2 \}$ C=C H_2 (25 atm), PhMe, 110°C, sealed, 16 h: 86% [as somewhat unstable crude material, characterized by mass spectrometry (MS) and NMR];³⁷⁴ also many analogues and derived products.^{374,375}

3.2.1.1.2 C-Alkylation in the Schöllkopf Synthesis

As indicated in the introduction to Section 3.2.1.1, the crucial step in Schöllkopf's synthesis of optically active α -amino acids is the C-alkylation of a chiral 2,5-dialkoxy-3-alkyl-3,6-dihydropyrazine with high asymmetric induction in respect of the entering 6-alkyl group: This is almost always achieved by lithiation 1764 of the substrate and subsequent treatment with an alkyl halide or other such reagent.1693,1694 The huge recent literature on this process (indicative of existing demand for optically pure α -amino acids) is covered briefly by the following typical examples, classified according to the type of electrophilic reagent employed to supply the entering alkyl group. For practical reasons, chirality designations are not included in the names of substrates and products mentioned in these examples; the diastereoisomeric efficiency (de) is seldom $\langle 75\% \rangle$ and usually $>90\%$. A typical lithiated substrate has been isolated and submitted to X -ray analysis;¹⁶⁶ also several unlithiated substrates.1735,1737

Using Alkyl Halides

- 2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**53**) gave 2-*p*-bromobenzyl-5-isopropyl-3,6-dimethoxy-3,6-dihydropyrazine (54) (BuLi, THF $-C_6H_{14}$, $-78^{\circ}C$, 15 min; then BrH₂CC₆H₄Br- $p \downarrow$, -78°C, 2 h: 88%).¹⁶³⁰
- The same substrate (**53**) gave 2-(but-3-enyl)-5-isopropyl-3,6-dimethoxy-2, 5-dihydropyrazine (55) (BuLi, THF $-C_6H_{14}$, A, $-78^{\circ}C$, 30 min; then BrCH₂CH₂C=CH₂ \downarrow , -78 \rightarrow 20°C, 15 h: 93%), and hence 2-(but-3-enyl)-5-isopropyl-3,6-dimethoxy-2-(prop-2-ynyl)-2,5-dihydropyrazine (**56**) (BuLi, THF- C_6H_{14} , -78°C, 1 h; then BrCH₂C=CH \downarrow , -70 \rightarrow 20°C, 15 h: 88%).1610
- Also many other examples.^{41, 109, 115, 157, 174, 188, 189, 193, 195, 198, 200, 204, 228, 233, 263, 322,} 344, 387, 394, 398, 400 – 402, 489, 491, 512, 516, 519, 522, 525, 527, 529, 536, 538, 798, 804, 819, 906, 910, 918, 945, 981, 998, 1051, 1056, 1058, 1150, 1253, 1341, 1346, 1348, 1350, 1442, 1453, 1466, 1469, 1477, 1486, 1489, 1512, 1552, 1608, 1628, 1632, 1676, 1680, 1727, 1731, 1755

Using Copper-Assisted Alkyl Halides

- *Note:* Treatment of the lithiated substrate with cuprous cyanide prior to addition of the alkyl halide has been found to improve yield and/or stereoselectivity in some cases.
- 2,5-Diethoxy-3-isopropyl-3,6-dihydropyrazine (**57**) gave 2-[7-(*tert*-butyldimethylsiloxycarbonyl)heptyl]-3,6-diethoxy-5-isopropyl-2,5-dihydropyrazine (58, R = Si Bu'Me₂) (BuLi, THF, -78° C; then CuCN \downarrow , 0°C, 2 min; then I $(CH_2)_7CO_2Si$ Bu'Me₂ \downarrow , $-25^{\circ}C$, 18 h: crude ester), and thence 2-(7-carboxyheptyl)-3,6-diethoxy-5-isopropyl-2,5-dihydropyrazine (58, $R = H$) (Bu₄ NF, THF, 20°C?, 1 h: 90%, overall).1532

Also other examples.^{902, 987}

Using Ethylene Oxide(s)

2-Allyl-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**59**) gave 2-allyl-2- (2-hydroxyethyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**60**) (BuLi, THF- C_6H_{14} , -78°C, A, 45 min; then $(CH_2)_2O \downarrow$, BF₃.Et₂O \downarrow , -78°C, 1 h: 60%).1615

Also other examples using substituted ethylene oxides.²¹¹

Using Alkenes

2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**53**) gave 2-isopropyl-3, 6-dimethoxy-5-(2-methoxycarbonyl-1-methylethyl)-2,5-dihydropyrazine (**61**) (BuLi, THF- C_6H_{14} , N₂, -78°C, 15 min; then MeCH=CHCO₂Me \downarrow , -78 °C, 3 h: 62%);⁴⁹ the same substrate (53) gave 2-(4-ethoxycarbonyl-1methylbut-2-enyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**62**) (similarly, using MeCH=CHCH=CHCO₂Et: $>52\%$).²¹⁸

Also other examples.213,658,900,1492,1521

Using Heavy Metal-Assisted Alkenes or Arenes

- *Note:* Some alkylations are improved by conversion of the lithiated substrate into a Cu or Ti complex prior to addition of an alkene; alternatively, the Mn complex of an arene may be used.
- 2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**64**) gave 2-(2-acetyl-1-phenylethyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**63**) (BuLi, THF, -78° C; CuBr.SMe₂ \downarrow , SMe₂ \downarrow , -30° C, 2 h: then PhCH=CHAc \downarrow , -70° C,
 >4 h: $62\%)^{921}$ or 2-isopropyl-3,6-dimethoxy-5-[(4-oxocyclohex-1- >4 h: $62\%)^{921}$ or 2-isopropyl-3,6-dimethoxy-5-[(4-oxocyclohex-1enyl)methyl]-2,5-dihydropyrazine (**65**) (likewise, using 4-methylenecyclohex-2-enone: 48% after separation from an isomeric byproduct).^{892,924}
- The same substrate (**64**) gave 2-isopropyl-3,6-dimethoxy-5-(1-methyl-2-nitroethyl)-2,5-dihydropyrazine (66) [BuLi, THF— C_6H_{14} , -78°C, 15 min; then CITi(NEt₂)₃, 1 h; then MeCH=CHNO₂, 12 h: 51%; this yield was lower than that (81%) obtained without titanation but the stereoselectivity was much better]; also analogues. $377,919$
- The same substrate (**64**) gave the complex (**67**) (BuLi, THF, -78° C; then PhMn $(CO)_{3}$.BF₄⁻ \downarrow , -78°C, 30 min: 80%), and thence, by oxidative demetalation, 2-isopropyl-3,6-dimethoxy-5-phenyl-2,5-dihydropyrazine (**68**) [*N*-bromosuccinimide (NBS), Et₂O, 20 $^{\circ}$ C, 15 min: 60%); also substituted-phenyl analogues likewise.¹⁶⁹

Using Alkyl *p***-Toluenesulfonates, Methanesulfonates, or the Like**

- 2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**64**) gave 2-isopropyl-3,6 dimethoxy-5-methylenecyclopropylmethyl-2,5-dihydropyrazine (**69**) [BuLi, THF- C_6H_{14} , -78°C, 30 min; then methylenecyclopropylmethyl *p*-toluenesulfonate \downarrow , A, $-78 \rightarrow 20^{\circ}$ C, 4.5 h: 90%].^{173,386}
- 2,5-Diethoxy-3-isopropyl-3,6-dihydropyrazine gave 2,5-diethoxy-3-isopropyl-6-(3-trimethylsilyprop-2-ynyl)-3,6-dihydropyrazine (**70**) (BuLi, 78°C; then $MSOCH_2C = CSiMe_3$: 72%).¹⁶⁶⁶

Also other examoles employing phosphate or other sulfonate esters;^{1069,1666} one of the latter, 2-bromoethyl trifluoromethanesulfonate, afforded a product stereochemically contrary to that expected from a Schöllkopf procedure.¹⁰⁶⁹

Using Aldehydes or Ketones

- *Note:* Both aldehydes and ketones afford hydroxyalkylated products but it appears that aldehydes give better results in Ti-assisted reactions (see the next subsection).
- 2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**71**) and 1,4-dioxaspiro[4.5] decane-2-carbaldehyde (**72**) gave 2-(1,4-dioxaspiro[4.5]dec-2-yl)hydroxymethyl-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**73**) [BuLi, THF, -70° C, 15 min; then aldehyde (72) \downarrow , -70° C, 12 h: 69%].⁵²¹
- The same substrate (**71**) gave 2-(1-hydroxy-1-methylethyl)-5-isopropyl-3, 6-dimethoxy-2,5-dihydropyrazine (74) (BuLi, THF $-C_6H_{14}$, -70° C, 10 min; the AcMe \downarrow , -70° C, 1 h: 98%);¹⁹⁶ 2-(1-hydroxy-1-methylethyl)-5-isopropyl-3,6-dimethoxy-2- methyl-2,5-dihydropyrazine¹⁹⁴ and other homologues^{517,905,} ⁹¹¹ were made similarly.
- The same substrate (**71**) gave the 2-(1-ethyl-1-mercaptopropyl) derivative (**75**), isolated as its more stable thioether, 2-[1-ethyl-1-(methylthio)propyl]-5-isopropyl-3,6-dimethoxy-2,5- dihydropyrazine (76) (BuLi, THF $-C_6H_{14}$, -70° C, 10 min; then Et₂C=S \downarrow , -70° C, 12 h; then MeI \downarrow , 20°C, 40 h : 76%).355

Also other examples.197,459,471,515,520,531,537,1023,1097,1435,1497,1498,1520,1670

Using Titanium- or Aluminum-Assisted Aldehydes

- 2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**71**) gave 2-(1-hydroxyethyl)-5 isopropyl-3,6-dimethoxy-2,5-dihydropyrazine $(77, \text{ R} = \text{Me})$ [BuLi, THF- C_6H_{14} , -70°C, 15 min; then ClTi (NMe₂)₃ \downarrow -70°C, 45 min; then MeCHO \downarrow , -70°C, 12 h: 79%];²⁰⁶ in a similar way, appropriate aldehydes gave 2-(α -hydroxybenzyl)- (77, R = Ph) (84%), 2-(1-hydroxybut-2-enyl)- $(77, R = CH:CHMe)$ (91%) , and 2-(1-hydroxybutyl)-5-isopropyl-3,6dimethoxy-2,5-dihydropyrazine (77, R = Pr) (84%) .⁵³⁵
- 2,5-Diethoxy-3-isopropyl-3,6-dihydropyrazine gave 2,5-diethoxy-3-isopropyl-6- (2,3,4,5-tetraacetoxy-1-hydroxypentyl)-3,6-dihydropyrazine (**78**) [BuLi, THF, -50° C; then Et₂AlCl \downarrow , -78° C; then AcOCH₂(CHOAc)₃CHO \downarrow , -78° C, 3 h: 58%].¹¹⁰⁷

Also other examples.372,521,526,532,1213

Using Variant Procedures for C-Alkylation

- *Note:* There are several ways to prepare Schöllkopf's alkylated lactam ether substrates (for the preparation of α -amino acids) that do not imvolve the foregoing standard lithiation/alkylation procedures. Such variants are exemplified here.
- 2-Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**79**) gave 2-chloro-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (80) (BuLi, THF, -78° C, 15 min; then $C_2Cl_6 \downarrow$, $-78^{\circ}C$,? min: 90%; isolable but unstable and best used *in situ*), and thence 2-(dimethoxycarbonylmethyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (81) [NaHC(CO₂Me)₂, [18]crown-6-ether, THF, 0°C: $\sim 65\%$].⁹¹⁶
- The foregoing chloro intermediate (**80**) gave a tin complex (**83**) that reacted with *p*-diethoxybenzene to afford 2-(2,5-diethoxyphenyl)-5-isopropyl-3, 6-dimethoxy-2,5-dihydropyrazine (84) (EtOC₆H₄OEt-*p*, SnCl₄, CH₂Cl₂; then (80) , -78 °C, 6 h: 65%).⁹²⁰
- The substrate (**79**) gave 2-cyclohexyl-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (82) (BuLi, THF, -70° C, 15 min; then TsN₃ \downarrow , -70° C, 30 min; then cyclohexene \downarrow , 20°C, 18 h: 71%; see original for postulated mechanism involving attack by a pyrazine radical on cyclohexene).⁹¹⁷

- Ethyl 3,6-diethoxy-5-isopropyl-2,5-dihydro-2-pyrazinecarboxylate (**85**) gave ethyl $2-\lceil\alpha-(tert-butyldimethylsiboxy)$ benzyl]-3,6-diethoxy-5-isopropyl -2,5-dihydro-2pyrazinecarboxylate (86) $\text{[Sn(CSO_2CF_3)]}, \text{EtN(CH_2)}$, THF, -78°C ; or MgBr₂, Et₃N, MeCN, -20°C; in both cases followed by Bu'Me₂SiOSO₂CF₃, lutidine, CH₂Cl₂, -45° C: \sim 85%; note lack of a lithiation step];¹⁶³⁴ also analogous examples.¹⁷³⁹
- 2,5-Diethoxypyrazine (**87**) gave the unisolated dihydro adduct (**88**), and thence *racemic*-2-butyl-3,6-diethoxy-2,5-dihydropyrazine (**89**) (BuLi, Et₂NCH₂CH₂NEt₂, THF, -70° C, 3 h; then pH 7 buffer \downarrow : 75%); this underwent normal Schöllkopf lithiation/alkylation at the 5-position but the product and derived amino acid were naturally both racemic.⁵³⁹

3.2.1.2. By Replacement of Halogeno Substituents (H 142)

The replacement of (mainly nuclear) halogeno substituents by alkyl or aryl groups has been used extensively in recent years. Such replacement can be achieved with a variety of reagents, as illustrated in the following classified examples:

Using Alkynes (Pd or Pd—Cu Catalyzed)

- 2-Chloro-3,6-diisobutylpyrazine (**90**) gave 2,5-diisobutyl-3-trimethylsilylethynylpyrazine (91) [HC=CSiMe₃, Pd (PPh₃)₄, Et₃N, 100°C, sealed, 6 h: 93%].¹⁵²⁷
- 3-Amino-6-bromo-2-pyrazinecarbonitrile $(92, R = Br)$ gave 3-amino-6-phenylethynyl-2-pyrazinecarbonitrile (92, $R = C$:CPh) (PhC=CH, PdCl₂, CuI, Ph₃P, Et₃N, MeCN, 20^oC, 18 h: 75%);⁸⁰² analogues likewise.^{802,806}

2,6-Dichloro-3-iodopyrazine (**93**) gave only 2,6-dichloro-3-phenylethynylpyrazine (**94**) [PhC \equiv CH, CuI, PdCl₂ (PPh₃)₂, Et₃N, 20 $^{\circ}$ C, 1 h: 87%; note preferential displacement of the iodo substituent].¹⁴⁵⁵

Also other examples.10,93,96,201,234,252,817,838,1114,1537,1559,1588,1607,1747

Using Alkenes (Pd Catalyzed)

2-Chloro-3,6-diethylpyrazine (95) gave 2,5-diethyl-3-styrylpyrazine (96, $R = Ph$) $[PhCH=CH_2, Pd(PPh_3)_4, AcOK, AcNMe_2,$ reflux, 2 h: 71%], 2-(2-ethoxycarbonylvinyl)-3,6-diethylpyrazine (**96**, $R = CO₂Et$) [EtO₂CCH=CH₂, Pd(PPh₃)₄. AcOK, AcNMe₂, 130°C, 15 h: 44%], or 2-(2-cyanovinyl)-3,6-diethylpyrazine (**96**, $R = CN$) [CH₂=CHCN, Pd(PPh₃)₄, AcOK, Me₂NCHO, 100^oC, 15 h: 50%];¹³⁹¹ also several analogues likewise.^{252,1391}

Also other examples.1570,1588

Using Heteroaromatics (Pd Catalyzed)

- *Note:* Replacement of halogeno substituents with heteroaromatics appears to be confined to the use of π -excessive systems; a few sugars have also been used. 2-Chloro-3,6-dimethylpyrazine (**97**) and furan (**98**, $X = O$) gave 2-(furan-2-yl)-3, 6-dimethylpyrazine (99, $X = O$) [Pd(PPh₃)₄, AcOK, AcNMe₂, reflux, 6 h: 75%]; the same substrate (**97**) with thiophene (**98**, $X = S$) likewise gave 2.5-dimethyl-3-(thien-2-yl)pyrazine (99, $X = S$) (77%); and appropriate heterocycles, in a broadly similar way, afforded products such as 2,5-dimethyl-3-(pyrrol-2-yl)pyrazine (99, $X = NH$) (25%), 2,5-dimethyl-3-(oxazol-5-yl)pyrazine (100, $X = 0$), 2,5-dimethyl-3-(thiazol-5-yl)pyrazine (**100**, R = S) (61%), and 2-(3, 6-dimethylpyrazin-2-yl)benzothiazole (**101**) (43%).323
- 2-Chloro-3,6-dimethylpyrazine (**97**) with indole gave 2-(3,6-dimethylpyrazin-2-yl)indole (102, $Q = Me$, $R = H$) [Pd(PPh₃)₄, AcOK, Me₂NAc, reflux, A, 12 h: $54\%/12^{87}$ 2-chloro-3,6-diphenylpyrazine likewise gave 2-(3, 6-diphenylpyrazin-2-yl)indole (102, $Q = Ph$, $R = H$) $Pd(PPh_3)_4$, K_2CO_3 , CuI, Me₂NAc, reflux, A, 12 h: 70%];²⁸⁷ but 2-chloro-3,6-dimethylpyrazine (**97**) with 1-tosylindole gave, not the expected product (102, $Q = Me$, $R = Ts$), but the isomeric 3-(3,6-dimethylpyrazin-2-yl)-1-tosylindole $[Pd(PPh₃)₄$, AcOK, AcNMe₂, reflux, 12 h: ~40%; other N-substituted indoles behaved similarly].102

Also other examples, including the use of sugars.^{113,1302,1503}

Using Carbanions

- 2,3,5,6-Tetrachloropyrazine $(103, R = \text{Cl})$ gave 2,3,5-trichloro-6-dicyanomethylpyrazine $[103, R = CH(CN)_2] [H_2C(CN)_2, NaH, THF, reflux, 20]$ h: 85%1.¹³⁰⁸
- 2-Chloropyrazine gave 2-(2-oxocyclopentyl)pyrazine (104) $[(CH₂)₄$ C=O, KH, Me₂NCHO, 0°C; substrate \downarrow , 0°C 2 h: 34%].⁷⁹³
- 2-Chloropyrazine gave 2-(α -cyanobenzyl)pyrazine (105) [PhCH₂CN, NaNH₂, THF, N₂, $\leq 20^{\circ}$ C, 15 min; substrate , 20°C, 2 h: 73%]⁶⁹ or 2-acetonylpyrazine (106) [AcMe, KNH₂, NH₃ (liquid)—Et₂O; then substrate \downarrow , N₂, dark, 5 min: 98%; for more precise details, see original].⁷⁶⁶

- 5,6-Dichloro-3-nitro-2-pyrazinamine and ethyl 3-aminocrotonate gave 5-(2 amino-1-ethoxycarbonylprop-1-enyl)-6-chloro-3-nitro-2-pyrazinamine (**107**) (Et3N, Pr*ⁱ* OH, 20°C, 16 h: 62%).788
- 2,3-Dichloropyrazine and tosylacetonitrile gave 2-chloro-3- $(\alpha$ -cyano- α -tosylmethyl)pyrazine (108) (Me₂SO, anhydrous Cs_2CO_3 , 60°C, 6 h: 48%).⁴³⁴
- Also other examples, 51,361,783,808,1180,1195,1412,1518 some using extranuclear halogenopyrazines as substrates.^{938, 1402}

Using Radicals

5,6-Dichloro-2,3-pyrazinedicarbonitrile (**110**) gave 5-*tert*-butyl-6-chloro-2, 3-pyrazinedicarbonitrile (109) [Bu^tCO₂H, AgNO₃, (NH₄)₂S₂O₈, H₂O-MeCN, 80°C, A, 130 min: 31%],335 several analogues likewise,335 or 5-chloro-6-(*N*formylanilino)methyl-2,3-pyrazinedicarbonitrile (111) [PhN(CHO)CH₂SiMe₃, MeCN, hv: <20%; radical mechanism postulated].³³⁸

Also other examples.⁵⁵

Using Alkyl Halides (Cu Catalyzed)

- *Note:* This replacement appears to have been used recently only with perfluoroalkyl halides.
- 2,6-Dichloropyrazine (112) gave 2,6-bis(perfluorooctyl)pyrazine (113) $[C_8F_{17}]$, Cu, 2,2'-bipyridine, Me₂SO, C₆F₆ (solvent), reflux, 53 h: 89%].¹³²⁶
- 2-Iodo-3-phenylthiopyrazine $(114, R = I)$ gave 2-phenylthio-3-trifluoromethylpyrazine (114, $R = CF_3$) (MeO₂CF₂Cl, KF, CuI, Me₂NCHO, A, 115°C, 3 h: 63%; MeI and CO₂ lost);¹⁵⁹⁶ 2-chloro-3-trifluoromethylpyrazine (50%) was made similarly.¹⁵⁹⁶

Using Aryl- or Heteroarylboronic Acids (Pd Catalyzed)

- 2-Chloropyrazine (115, $R = Cl$) gave 2-phenylpyrazine (115, $R = Ph$) $[PhB(OH)_2, PdCl_2(PPh_3)_2, Na_2CO_2, PhMe—EtOH—H_2O, reflux 24 h: 78\%;$ product named incorrectly in the experimental section of the original paper].380
- 3-Benzoyl-5-bromo-2-pyrazinamine $(116, R = Br)$ gave 3-benzoyl-5-phenyl-2pyrazinamine (116, $R = Ph$) [PhB(OH)₂, PdCl₂(PhCN)₂, Ph₂PCHMeCH-MePPh₂, PhMe, A, 20°C, 30 min; the substrate \downarrow , Na₂CO₃, EtOH-H₂O, reflux, 7 h: 92%];¹⁰⁹² likewise, the 5-(naphthalen-2-yl) (116, R = C₁₀H₇- β) (96%), some 5-(substituted-phenyl), and the 5-(thien-2-yl) analogues.¹⁰⁹²

2-Chloropyrazine $(115, R = C)$ gave 5-(pyrazin-2-yl)indole (117) [5-indoleboronic acid, $Pd(PPh_3)_4$ NaHCO₃, MeOCH₂CH₂OMe - H₂O, N₂, reflux, 4 h: 55%].326

Also other examples.735,808,1617,1619

Using Trialkylaluminums (Pd Catalyzed)

2-Chloro-3,6-diethylpyrazine $(119, R = H)$ gave 2,5-diethyl-3-methylpyrazine (**118**) [Me₃Al, Pd(PPh₃)₄, dioxane—C₆H₁₄, A, reflux, 2 h: 88%];²⁸⁰ 2,5dichloro-3,6-diethylpyrazine (119, $R = Cl$) gave 2,5-diethyl-3,6-dimethylpyrazine (**120**) (likewise but reflux, 4 h: 93%);280 and many homologues and their *N*-oxides were made similarly.^{280,282}

The use of triethylaluminum under similar conditions proved less satisfactory.²⁹³

Using Trialkylboranes (Pd Catalyzed)

2-Chloro-3,6-diisopropylpyrazine (**121**) gave 2,5-diisopropyl-3-phenylpyrazine (122) [Ph₃B (made *in situ* from BF₃.Et₂O, PhBr, Mg, Et₂O), K₂CO₃, Me₂NCHO, reflux, A, 12 h: 47% (with 32% substrate recovery)];³⁰⁷ the same substrate (121) gave 2-ethyl-3,6-diisopropylpyrazine (123) (Et₃B, likewise: 89%);²⁹³ and analogues were made somewhat similarly.^{293, 307}

Using Diethylzinc (Ni or Pd Catalyzed)

- 2-Chloro-3,6-dimethylpyrazine (**124**) gave 2-ethyl-3,6-dimethylpyrazine (**125**) [Et₂Zn, NiCl₂.(Ph₂PCH₂)₂CH₂, THF, A, 20 $^{\circ}$ C, 3 h: 71%];⁵⁵ 2-ethyl-3,6-dimethylpyrazine 1-oxide (126) $(46%)$ was made similarly;¹⁵⁹⁴ and analogues likewise.^{55,1594}
- The same substrate (**124**) gave a separable mixture of 2-ethyl-3,6-dimethylpyrazine (125) and 2,5-dimethylpyrazine $[Et_2Zn, Pd(PPh_3)_4, K_2CO_3,$ Me₂NCHO, reflux, A, ≤ 12 h: 25 and 49%, respectively: the main reaction was therefore hydrogenolysis].²⁹³

Using Tetraalkyl- or Tetraaryltin (Pd Catalyzed)

- *Note:* These tin compounds might well be the reagents of choice (from among their metal/metaloid analogues) for the replacement of halogeno by alkyl/aryl substituents in the pyrazine series.
- 1-Benzyl-3,6-dichloro-2(1*H*)-pyrazinone (127, $R = Cl$) gave 1-benzyl-5-chloro-3methyl-2(1*H*)-pyrazinone (127, R = Me) [Me₄Sn, Pd(PPh₃)₄, PhMe, reflux, <5 days; residue from evaporation, KF, AcOEt, 20°C, 12 h: 81%) or its 3-ethyl homologues (127, $R = Et$) (Et₄Sn, likewise: 95%);³⁹¹ analogues similarly.³⁹¹
- 2-Bromo-5-formamidopyrazine $(128, R = Br)$ gave 2-formamido-5-phenylpyrazine (128, R = Ph) [Ph₄Sn, Pd(PPh₃)₄, Me₂NCHO, N₂, 120°C, <24 h; then KF/H₂O \downarrow , 20°C, 12 h: 58%] or its 5-(thien-2-yl) analogues (128, $R =$ thien-2-yl) (tetrathien-2-yltin; likewise: 99%).¹⁰⁹³
- *Note:* In some cases, the addition of LiCl and EtPr*ⁱ* 2N to the reaction mixture improved rates and yields.1093
- 2-Chloropyrazine with 3-(tributylstannyl)pyridine 1-oxide (**129**) gave 2-(1-oxidopyridin-3-yl)pyrazine (130) $[Pd(PPh_3)_4$, THF, reflux, 10 h: 98%; see original for procedural details].898

Also many other examples.288,305,469,649,990,1488

Using Grignard Reagents

Note: The paucity of examples in this category is surprising. 1-Benzyl-3,5 dichloro-2(1*H*)-pyrazinone (**131**) gave 1-benzyl-5-chloro-3-phenyl-2(1*H*) pyrazinone (132) [PhMgBr/Et₂O (made *in situ*), THF, -30°C, 10 min: 90%].374

Using Copper Alkynides

- 5-Iodo-3,6-diisobutyl-2(1*H*)-pyrazinone (**133**) gave 3,6-diisobutyl-5-phenylethynyl-2 $(1H)$ -pyrazinone (134) (CuC $=$ CPh, pyridine, reflux, 6 h: 67% after separation from unchanged substrate (23%); the corresponding chloro and bromo substrates gave much lower yields under comparable conditions.³²¹
- Methyl 3,5-diamino-6-iodo-2-pyrazinecarboxylate $(135, R = I)$ gave methyl 3,5-diamino-6-phenylethynyl-2-pyrazinecarboxylate $(135, R = C:CPh)$ $[CuC = CPh, (Me₂N)₃PO, N₂, 100°C, 30 min: 29%]^{713}$

Using Sulfonium or Phosphonium Reagents

- 2-Chloro-5,6-diphenylpyrazine (**136**) gave successively dimethyloxosulfonium 5,6-diphenylpyrazin-2-ylmethylide (137) [H₂CS(=O)Me₂, THF, N₂, reflux, 5 h: 93%], acetyl dimethyloxosulfonium 5,6-diphenylpyrazin-2-ylmethylide (**138**) (Ac₂O, dioxane, 0°C, 90 min: 91%), and 2-acetonyl-5,6diphenylpyrazine (139) (Raney Ni, MeOH, reflux, 30 min: 60%).⁹¹
- 3,5-Dichloro-1-phenethyl-2(1*H*)-pyrazinone (**140**) gave 5-chloro-3-methyl-1 phenethyl-2(1*H*)-pyrazinone (**141**), via an unisolated phosphonium ylide (MePh₂P⁺ Br⁻, BuLi, THF, -30° C, 15 min; substrate \downarrow , 20°C, 6 h; 0.5 M Na₂CO₃ \downarrow , reflux, 6 h: 82%).³⁷⁴

3.2.1.3. By Replacement of Alkoxy, Cyano, Nitro, or Oxo Substituents

There have been few recent reports on the introduction of an alkyl group into the pyrazine nucleus by displacement of a non-halogeno substituent. However, the following examples indicate that this possibility should not be ignored:

2-Methoxypyrazine (142) gave 2- $(\alpha$ -cyanobenzyl)pyrazine (143) (PhCH₂CN, NaH, THF, reflux, 30 min; then substrate \downarrow , reflux, N₂, TLC monitored: 46%).³⁰⁹ other carbanions seem to have been less successful.³⁰⁹

5,6-Diphenyl-2,3-pyrazinedicarbonitrile (**145**) gave 3-allyl-5,6-diphenyl-2 pyrazinecarbonitrile (144) (Me₂SiCH₂CH=CH₂, MeCN, hv, A, 70 h: 98%; with a trace of phenanthrene as sensitizer, only 25 h was required) or 3-benzyl-5,6-diphenyl-2-pyrazinecarbonitrile (146) (Me₃SiCH₂Ph, trace phenanthrene, MeCN, *hv*, A, 25 h: 98%).¹⁰⁸⁷

- 2-Bromo-5-nitropyrazine (**147**) gave 2,5-bis(1,1-dicyanopent-4-ynyl)pyrazine (148) [HC=CCH₂CH₂CH(CN)₂, NaH, THF, N₂, 20^oC, 20 min; substrate \downarrow , 20°C, 2 h: 48%].361
- 6-Benzyl-2,3,5-piperazinetrione $(149, X = 0)$ gave 3-benzyl-6-methoxycarbonylmethylene-2,5-piperazinedione $(149, X = CHCO₂Me)$ $(Ph₃P=CHCO₂Me,$ PhMe, reflux, 19 h: 60%); also analogues.⁹⁶⁹

3.2.1.4. By Interconversion of Simple Alkyl Substituents (H 74, 92)

Alkyl-, alkenyl-, or alkynylpyrazines [usually with no functional groups attached to the alkyl substituent(s)] may be converted into other such pyrazines in several ways, as illustrated in the following examples:

Using Reduction

- 2,5-Dimethyl-3-phenylethynylpyrazine (**150**) gave 2,5-dimethyl-3-styrylpyrazine (150a) [H₂, Lindlar catalyst (Pd/CaCO₃, Pb-deactivated), C_6H_{14} , 20°C: 97%; or LiAlH₄, THF, reflux, 4 h: \sim 20%].⁹⁶
- In contrast, methyl 5-(pent-1-ynyl)-2-pyrazinecarboxylate $(151, R = C$:CPr) gave methyl 5-pentyl-2-pyrazinecarboxylate $(151, R = CH_2Bu)$ (H₂, Pd/C, MeOH, 20° C: 94%).⁹³

Also other examples.^{969,1588}

Using Extranuclear Alkylation

- 2-Methylpyrazine (152) gave 2-benzylpyrazine (153) [NaNH₂, NH₃ (liquid), trace Fe(NO₃)₃, -78°C; then PhBr \downarrow 15 min: 53%]¹⁹⁹ or several other 2alkylpyrazines likewise.⁸⁸⁶
- 2,3,5,6-Tetramethylpyrazine gave 1,2-bis(3,5,6-trimethylpyrazine-2-yl)ethane (**154**) Pr^{*i*}₂NLi, Et₂O—C₆H₁₄, 0°C, 1 h: then I₂ \downarrow , 0°C, 30 min: 31%); also homologues likewise.¹¹²⁸

Also other examples.340,1560

Using Extranuclear Alkylidenation

- 2,5-Dimethylpyrazine gave 2,5-distyrylpyrazine (PhCHO, Bz_2O , reflux, no further details).1077
- 2-Methylpyrazine 1-oxide gave 2-styrylpyrazine 1-oxide (PhCHO, MeONa, MeOH, reflux, 2 h: 96%).¹³⁰⁰

By Prototropy

Some esoteric examples of the acid-catalyzed migration of extranuclear double bonds have been reported.1756,1763

3.2.1.5. By Elimination of Functionality from Existing Substituents (H 77)

Substituents bearing a functional group may be converted into simple alkyl substituents in a variety of ways, illustrated in the following examples:

From (Hydroxyalkyl)pyrazines

2,5-Diethoxy-3-(1-hydroxy-1-methylethyl)pyrazine (**155**) gave 2,5-diethoxy-3 isopropenylpyrazine (**156**) (TsOH, PhH, molecular sieves, reflux: 80%);6 2-(1-hydroxy-2-methylpropyl)-6-iodo-3-methoxypyrazine gave 2-iodo-5 methoxy-6-(2-methylprop-1-enyl)pyrazine (**157**) (TsOH, PhMe, reflux with $H₂O$ removal, 6 h: 65%).¹⁵⁸⁸

- 2-(2-Hydroxyheptyl)-3-methylpyrazine gave 2-(hept-1-enyl)-3-methylpyrazine (TsCl, pyridine, 10° C \rightarrow reflux, 12 h: 45%); also homologues and isomers likewise.³⁵²
- Also examples of extranuclear dehydroxylation by other dehydrative methods^{194,} 1239,1377 or by reduction³⁸⁴ have been reported.

From (Halogenoalkyl)pyrazines

- *Note:* Hydrogenolysis and other reductive methods appear to be almost unrepresented in recent literature (however, see Section 4.4).
- 2-(2,2-Dibromovinyl)- (**158**) gave 2-ethynyl-5-isopropyl-3,6-dimethoxy-2-methyl-2,5-dihydropyrazine (159) (BuLi, THF—C₆H₁₄, -78° C, 90 min: 83%; mechanism?).528
- 2-Chloromethyl-5-methylpyrazine (**160**) gave 2-methyl-5-triphenylphosphoniomethylpyrazine chloride (161) (PPh₃, Me₂NCHO, 75^oC, 6 h: 81%), and thence 2-methyl-5-vinylpyrazine (162) (HCHO, Na₂CO₃, H₂O—CH₂Cl₂, 20° C, 2 h: 37%).¹⁴⁴⁶

Also other examples.^{811,1239}

From Acylpyrazines

- *Note:* The reduction of *C*-acyl- to *C*-alkylpyrazines has been used occasionally;1022,1567 in addition, pyrazinecarbaldehydes react with methylene reagents to afford alkenylpyrazines, providing one or other reactant is preconverted into a Wittig reagent, as here illustrated.
- 3-Methylthio-2-pyrazinecarbaldehyde $(163, X = 0)$ and the Witting reagent, (ethoxycarbonylmethylene)triphenylphosphorane, gave 2-(2-ethoxycarbonylvinyl)-3-methylthiopyrazine (163, $R = CH_2CO_2Et$) (neat reactants, N_2 , 135°C, 8 h: 87%).¹¹²⁶

Also analogous reactions.¹¹⁵²

From Trialkylsilylalkylpyrazines

2,5-Dimethyl-3-(trimethylsilylethynyl)pyrazine $(164, R = \text{SiMe}_3)$ gave 2-ethynyl-3,6-dimethylpyrazine $(164, R = H)$ (KOH, MeOH-H₂O, 20^oC, 1) h: $>68\%$).²⁰¹ Displacement of SiMe₃ by aryl is also possible.¹⁵²⁷

From Tosyloxypyrazines

- 2-Methyl-6-tosyloxypyrazine gave 6,6-dimethyl-2,2-bipyrazine (**165**) (formally an arylpyrazine!) (PPh₃, NiCl₃, Zn, Me₂NCHO, 20° C, 15 min; then substrate \perp , 50°C, 4 h: 50%).¹⁴⁶¹
- 2-Methyl-5-tosyloxymethylpyrazine and indol-3-ylmagnesium bromide (made *in situ*) gave 3-[(5-methylpyrazin-2-yl)methyl]indole (THF, $-23 \rightarrow 20^{\circ}$ C, 12 h: 30%).324

From Pyrazinyl Sulfones or Sulfoxides

- 2-Methylsulfonylpyrazine (**166**, $R = Me$) gave 2-methylpyrazine (**167**, $R = Me$) and pyrazine with loss of SO_2 (pyrolysis, \sim 270°C, 760 mmHg, 30 min: 25% and a trace, respectively); as the size/bulk of the alkyl group was increased, so the yield of pyrazine increased at the expense of the alkylpyrazine (167): for example, 2-*tert*-butylsulfonylpyrazine (166, $R = Bu^t$) gave 2-*tert*-butylpyrazine (167, $R = Bu^t$) and pyrazine (~170°C: trace and 49%, respectively).239
- 2-(6-Methylpyridin-2-ylsulfinyl)pyrazine gave 2-(6-methylpyridin-2-yl)pyrazine (MeMgBr, THF, -50° C, 15 min: 36%).⁸⁷¹

From Heteroarylpyrazines

- 2-(5-Amino-3-phenylisoxazol-4-yl)pyrazine (**168**) gave 2-phenylethynylpyrazine (169) (NaNO₂, AcOH—H₂O, 20^oC, 1 h: 80%; mechanism suggested).⁷⁹⁵
- 2-(Benzo[*b*]thien-2-yl)-3,6-dimethylpyrazine (**170**) underwent desulfurization to 2,5-dimethyl-3-phenacylpyrazine (**171**) (Raney Ni, EtOH, reflux, 8 h:

72%);323 likewise 2,5-diisobutyl-3-(thien-2-yl)pyrazine (**172**) gave 2-butyl-3,6-diisobutylpyrazine (92%) .³²³

3.2.1.6. By Ipso-Substitution of Trimethylsiloxycarbonyl Substituents

Trimethylsilyl 2-pyrazinecarboxylate (174) gave $2-\lceil\alpha-(\text{trimethylsiloxy})\text{ben-}$ zyl]pyrazine (173) (neat PhCHO, N₂, 200°C, 4 days: 50%) or 2-[α -phenyl- α -(trimethylsiloxy)benzyl]pyrazine (**175**) (BzPh, 240°C, 13 days: 23%); a rational mechanism was suggested.³⁶²

Note: The foregoing products are clearly of potential use as intermediates because analogous (trimethylsiloxyalkyl)pyridines readily underwent hydrolysis to the corresponding alcohols.³⁶²

3.2.2. Preparation of N-Alkyl- and N-Arylpiperazines (*H* **377)**

The N-alkylation, N-arylation, and in particular N-heteroarylation of piperazines is an important process because of the common propensity (justified or not) for introducing a piperazino grouping into structures perceived as potentially bioactive in a variety of drug-related areas. The various routes to such N-alkylated piperazines are outlined in this section, which also includes examples of the N-alkylation of di- or tetrahydropyrazines; the N-alkylation of (tautomeric) pyrazinones and the like is covered in Section 5.1.2.2.

3.2.2.1. By N-Alkylation Processes (H 377)

Most such processes have involved treatment with an alkyl halide or with an (activated) aryl or heteroaryl halide in the presence of a base but many other reagents have been used as well. Naturally, piperazines can undergo mono- or dialkylation, broadly according to the amount of reagent, but sometimes prior protection of one NH grouping may be necessary to avoid any dialkylation. The following classified examples illustrate recently reported alkylation processes:

N-Monoalkylation with Alkyl Halides

- *tert*-Butyl 1-piperazinecarboxylate (**176**) gave *tert*-butyl 4-*p*-chlorobenzyl-1 piperazinecarboxylate (177) (ClH₂CC₆H₄Cl- p , K₂CO₃, EtOH, reflux, 12 h), and thence 1-*p*-chlorobenzylpiperazine (178) (F₃CCO₂H, CH₂Cl₂, 20^oC, 12 h: 91% overall); note protection from dialkylation.¹⁶⁴⁴
- 2-Piperazinecarboxamide $(179, R = H)$ gave 4-(3-cyanopropyl)-2-pyrazinecarboxamide (179, $R = CH_2CH_2CH_2CN$) (BrCH₂CH₂CH₂CN, K₂CO₃, Me₂NCHO, 50°C, 3 h: 67%) or 4-[3-(diethoxyphosphiny1)propy1]-2-piperazinecarboxamide (179, $R = CH_2CH_2CH_2PO(OEt)_2$, Me₂NCHO, 50°C, N₂, 6 h: 80%]; note regioselectivity in both cases.¹³⁵⁵
- 1-Benzylpiperazine (180, $R = H$) gave 1-benzyl-4-cyanomethylpiperazine (180, $R = CH_2CN$) (ClCH₂CN, Na₂CO₃, 0 \rightarrow 20^oC, 2 h: 93%;⁶³⁵ or BrCH₂CN, K_2CO_3 , Me₂NCHO, 35 \rightarrow 20 $^{\circ}$ C, 24 h: 85%).⁶⁶⁰
- 3-Methyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone (181, $R = H$) gave 4-benzyl-3methyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone (181, $R = Ch_2Ph$) (PhCH₂Cl, MeOH, reflux, 24 h: 60% as hydrochloride; note regioselectivity).¹⁴⁹
- Also other examples.42,292,443,493,495,606,677,679,685,692,694,697,715,781,814,841,873,951,953,992,1014, 1155,1176,1189,1342,1514,1554,1682

N,N-Dialkylation with the Same Alkyl Halide

Piperazine gave 1,4-diallylpiperazine (**182**, $R = H$) [BrCH₂CH=CH₂, (2 mol), NaOH, PhCH₂Et₃NCl, H₂O—CH₂Cl₂, 45°C,3 h: 55%]⁴⁹⁸ or 1,4-bis(2,3,3trichloroallyl)piperazine (182, R = Cl) (ClCH₂CCl=CCl₂, PrⁱOH, 95°C, 4 h: 87%).1344

Also other examples.266,596,720

N,N-Dialkylation with Different Alkyl Halides

1-Piperazinecarbaldehyde (1-formylpyrazine) gave successively 1-cinnamyl-4 piperazinecarbaldehyde (183) (PhCH=CHCH₂Br, K₂CO₃, PhMe, 110^oC, 23 h: 45%; note protection from dialkylation), 1-cinnamylpiperazine (**184**) (HCl, 95°C, 3 h: 55%; deprotection), and 1-cinnamyl-4-[2-(2,6 dimethoxyphenoxy)ethyl]piperazine (185) [BrCH₂CH₂OC₆H₃(OMe)₂-2,6, K_2CO_3 , AcOEt, reflux, 6 h: 35%].⁷⁰⁷

Also other examples.⁷¹²

N-Arylation with Activated Aryl Halides

Piperazine gave 1-(*p*-nitrophenyl)piperazine (186) (O₂NC₆H₄Cl-*p*, K₂CO₃, AcMe, 125°C, sealed, 20 h: 54%; note sluggish reaction, even with activation of aryl halide by a nitro group). 142

Also other examples. 856,885,1553,1643

N-Heteroarylation with Activated Heteroaryl Halides

- Piperazine (**187**) (in excess) and 5-chloro-6-phenyl-3(2*H*)-pyridazinone (**188**) gave 6-phenyl-5-(piperazin-1-yl)-3(2*H*)-pyridazinone (**189**) (BuOH, reflux, 16 h: 63%). 313
- Piperazine (**187**) (in excess) and 3,7-dibromo-1,2-benzisothiazole (**190**) gave 7-bromo-3-(piperazin-1-yl)-1,2-benzisothiazole (191) [MeoCH₂CH₂OCH₂- $CH₂OMe$, reflux, 20 h: 68%; note selective aminolysis of the more activated bromo substituent in the reagent (**190**)].1338

Also other examples.146,602,615,617,655,670,696,978,985,1226,1366,1553

N-Alkylation with Alkenes

- 1-(*p*-Fluorophenyl)piperazine (**192**) gave 1-(*p*-fluorophenyl)-4-phenethylpiperazine (193) (BuLi, THF, A, $-78 \rightarrow 20^{\circ}$ C; then PhCH=CH₂ l, 120^oC, sealed, 20 h: 99%); also analogues. 1611
- 1-Phenylpiperazine gave 1-(2-cyanoethyl)-4-phenylpiperazine (**194**) (neat $H_2C=CHCN$, 95°C, 1 h: 67%).⁴⁴⁶
- 1-Piperazinecarbaldehyde gave 4-(2-ethoxycarbonylethyl)-1-piperazinecarbaldehyde (**195**) (EtO₂CCH=CH₂, CHCl₃, 20°C, 3 days: ~90%).¹⁵³⁸

Also other examples.497,933,1147,1342

N-Alkylation with Ethylene Oxides (Oxiranes) or Aziridines

- Piperazine (**196**) gave 1-(2-hydroxyethyl)piperazine (**197**) $[(CH₂)₂O, Me₂NCHO,$ reflux: >75%); homologues likewise.^{861, cf. 1043}
- 1-(8-Chlorodibenzo[*b*, *f*]thiepin-10-yl)piperazine (198, $R = H$) and 1,2-epoxybutane gave 1-(8-chlorodibenzo[*b*, *f*]thiepin-10-yl)-4-(2-hydroxybutyl)piperazine $[198, R = CH_2CH(OH)Et]$ (MeOH, reflux, 5 h: >95%).⁴⁹⁴
- Piperazine (**196**) and 2-methylaziridine (**199**) gave a mixture of 1-(2-aminopropyl)piperazine (**200**), 1-(2-amino-1-methylethyl)piperazine (**201**), and a trace of dialkylated material (a kinetic study with products identified spectrally; H₂O, trace HCl, $35-80^{\circ}$ C).¹³⁴³

Also other examples.977,1143,1490,1642

N-Alkylation or N-Arylation with Alcohols, Ethers, or Esters

- Piperazine (203, $Q = H$) gave a mixture of 1-methyl- (202, $R = H$) and 1,4-dimethylpiperazine (202, $R = Me$) [MeOH, IrCl₃.3 H₂O—PPh₃, reflux, 7 days: 52 and 13%, respectively, as determined by gas-liquid chromatography (GLC) ¹⁶³
- 1-Methylpiperazine $(203, O = Me)$ gave 1- $(1-\text{amino-2-nitrovinv})$ -4-methylpiperazine (204) [MeOC(NH₂)=CHNO₂, EtOH, reflux, 90 min: 84%; or $(MeS)₂C=CHNO₂$, NH₃ \downarrow , EtOH, reflux, 1 h: 64%].⁷⁰⁴
- 1-Methylpiperazine $(203, Q = Me)$ gave 1-*o*-methoxyphenyl-4-methylpiperazine (205) [BuLi, THF—C₆H₁₄, 0 \rightarrow 20°C, 2 h; then C₆H₄(OMe)₂-*o* \downarrow , reflux, 12 h: 75%].876
- 1-Benzylpiperazine $(203, Q = CH_2Ph)$ and 2-ethylthio-4(3*H*)-quinazolinone gave 2-(4-benzylpiperazin-1-yl)-4(3*H*)-quinazolinone (**206**) (neat reactants, 155°C, 3 h: 87%).105

1-Methylpiperazine $(203, O = Me)$ and 2-(trifluoromethanesulfonyloxy)-5,6,7,8-tetrahydroquinoline (made *in situ*) gave 2-(4-methylpiperazin-1-yl)- 5,6,7,8-tetrahydroquinoline (207) (neat reactants, 135° C, A, \leq 2 h: 79%).⁶⁶⁶ Also other examples.154,1603

N-Alkylation with Aldehydes or Ketones

- *Note:* These Mannich-like reactions have been used extensively, as illustrated here.
- 1-Phenylpiperazine (208) gave 1-methyl-4-phenylpiperazine (209) (CH₂O, HCO₂H, EtOH-H₂O, reflux, 3 h: 93%);¹⁶⁴⁷ also analogous methylations.^{149,} 493,1278
- *tert*-Butyl 2,5-diphenyl-1-piperazinecarboxylate $(210, Q = CO_2Bu^t, R = H)$ gave *tert*-butyl 4-benzyl-2,5-diphenyl-1-piperazinecarboxylate $(210, Q = CO₂Bu^t)$ $R = CH₂Ph$) (PhCHO, NaBH₃CN, MeOH, $0 \rightarrow 20^{\circ}C$, 2 h: crude), and thence 1-benzyl-2,5-diphenylpiperazine (210, $Q = H$, $R = CH_2Ph$) (deprotected by F₃CCO₂H, CH₂Cl₂, 20^oC, 1 h: 73% overall, as dihydrochloride);¹¹² analogues likewise.¹⁰²⁵

1-(Diphenylacetyl)piperazine (**211**) and 3-acetylpyridine (**212**) gave 1-(diphenylacetyl)-4-[1-(pyridin-3-yl)ethyl]piperazine (213) (NaBH₃CN, MeOH, 25°C, 24 h; more NaBH₃CN \downarrow , 48 h: 16%).⁶⁴³

- 1-Methylpiperazine (**214**) gave 1-(3-chloro-6-hydroxybenzyl)-4-methylpiperazine (215) (ClC₆H₄OH-*p*, CH₂O, EtOH-H₂O, $5 \rightarrow 20^{\circ}$ C, 24 h, then reflux, 8 h: 67%).1025
- 1-Phenylpiperazine gave 4,6-diphenyl-2-(4-phenylpiperazin-1-yl) methyl-3(2*H*) pyridazinone (216) [CH₂O, 4,6-diphenyl-3(2H)-pyridazinone, EtOH-H₂O, reflux, 12 h: 79%].106

Also other examples.84,125,444,445,659,826,878,962,1648

N-Alkylation with Miscellaneous Reagents

- 1-Methylpiperazine (**217**) and tris[spiro(1,3-benzodioxole-2,1-cyclohexan)-4 yl]bismuthine (**218**), prepared from the parent heterocycle by 4-lithiation and transmetalation (BuLi, Et₂O—THF, 24 h; then BiCl₃ \parallel , 24 h: 70%), gave 1-methyl-4-[spiro(1,3-benzodioxole-2,1-cyclohexan)-4-yl]piperazine (**219**) $[Cu(OAc)₂, CH₂Cl₂, A, 20^oC, 45 h: 25%]$; several analogues likewise.¹¹⁹⁴
- 1-Methylpiperazine (**217**) gave a mixture of 1-(1,2-dihyrophenyl)- (**220**) and 1-(1,4-dihydrophenyl)-4-methylpiperazine (**221**) (PhH, *h* ; for details see original).¹¹³⁵

3.2.2.2. By Reduction of N-Acyl- or N-Alkoxycarbonylpiperazines

This route to *N*-alkyl-, *N*-aryl- or *N*-heteroarylpiperazines is illustrated in the following examples:

1-Methyl-4-pivaloylpiperazine (**222**) gave 1-methyl-4-neopentylpiperazine (**223**) (LiAlH₄, Et₂O, 20^oC, 24 h: ~60%).¹³⁴²

1-(3,5-Dimethoxybenzoyl)- gave 1-(3,5-dimethoxybenzyl)piperazine (**224**) $(LiAlH₄, THF, 20[°]C, 12 h: 82\%).$ ¹⁵¹⁴

Ethyl 3-(thien-2-yl)-1-piperazinecarboxylate (**225**) gave 1-methyl-3-(thien-2 yl)piperazine (226) (LiAlH₄, Et₂O, reflux, 12 h: 89%).⁶⁰¹

Also other examples.637,1444,1684

3.2.2.3. By Miscellaneous Routes

Several minor routes to *N*-alkylpiperazines are illustrated in the following examples:

4-Methylpiperazin-1-ylmagnesium bromide (made *in situ*) and crude 3-chloro-4 methylthio-1,1-diphenylsilolane (**228**) [made *in situ* from the 2,5-dihydrosilole (227) , $Me₂S₂$, and $SO₂Cl₂$] gave 1-methyl-4-(4-methylthio-1,1-diphenylsilolan-3-yl)piperazine (229) (THF, 20°C, 12 h: 50%, as oxalate salt).¹¹⁸²

1,4-Dibromo-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (**230**) gave a separable mixture of 1-(2-bromo-2-methylpentyl)- (**231**) and 1,4-bis(2-bromo-2 methylpentyl)-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (232) [MePrC=CH₂, 1,2-epoxybutane (HBr scavenger), MeCN, hv, 20°C, 4 h: 5 and 45%, respectively];⁵⁷² analogues likewise.^{567,572,579}

2,3,5,6-Tetraphenylpyrazine gave an (unformulated) disodium dianionic adduct (**233**) (excess Na, THF, 20°C, A, 24 h: solution filtered) that reacted with MeI to give a separable mixture of 1,2-dimethyl-2,3,5,6-tetraphenyl-1,2-dihydropyrazine $(234, R = Me)$, 1,2,4,5-tetramethyl-2,3,5,6-tetraphenylpiperazine (**235**), and 2-methyl-2,3,5,6-tetraphenyl-1,2-dihydropyrazine (**234**, $R = H$) [MeI (2 mol), $-78 \rightarrow 20^{\circ}$ C, 4 h: 45,18, and 23% respectively].⁴⁹²

1-Acetyl-4-methylpiperazine dimethyl acetal (**237**) (made *in situ*) and 5-benzoyl-4-pyridazinamine (**236**) gave 2-(4-methylpiperazin-1-yl)-4-phenylpyrido[2,3 *d*]pyridazine (238) (neat reactants, 130° C, 15 h : 56%).¹⁵²⁶

3.2.3. Properties of Alkyl- and Arylpyrazines (*H* **77)**

Some papers on the physical or biological properties of alkyl- or arylpyrazines include data on unsubstituted pyrazine: References to such reports will be found in Section 3.1.2. Other sources of relevant information are covered briefly here.

Crystal structures. Crystal structures have been determined by X-ray analysis for the following alkyl- or arylpyrazines: 2-methyl-,¹⁷⁶⁶ 2,3-dimethyl-,¹⁷⁶⁶ 2,5-dimethyl-,¹⁷⁶⁶ 2,6-dimethyl-,^{1303,1766} 2,3,5-trimethyl-,¹⁷⁶⁶ 2,3,5,6-2,5-dimethyl-,¹⁷⁶⁶ 2,6-dimethyl-,^{1303,1766} 2,3,5-trimethyl-,¹⁷⁶⁶ 2,3,5,6tetramethyl- (also the trihydrate and several polyiodides), $1200,1208,1235$ 2,3diphenyl-,¹²⁰⁹ 2,3-diphenyl-5,6-dihydro- (and its AgNO₃ complex),^{1153,1273} 2,3,5,6-tetraphenyl- $,^{1736}$ 2,3-di(pyridin-2-yl)- (and salts),^{1214,1665} 2,5di(pyridin-2-yl)- (and some Mn, Fe, and Cr complexes), 1254 2,3,5,6-

tetra(pyridin-2-yl)- (and its tetrahydrochloride), $1228,1247$ 1,4-bis(trimethylgermyl)-1,4-dihydro- (239, $X = Ge$),¹⁴³¹ and 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (239, $X = Si$);¹⁴³¹ also 1,4-bis (2-hydroxyethyl)piperazine.¹²²³

- *Photoisomerization*. Studies have been reported for the photoisomerization of *cis*- to *trans*-2,3-diphenylpiperazine,250 *cis*- to *trans*-1,4-dimethyl-2,3 diphenylpiperazine,²⁵⁰ and between possible geometric forms of $2-[2-(naph$ thalen-2-yl)vinyl]pyrazine (**240**) ⁶⁶ or related compounds.1236
- *Conformations*. Conformational analyses have been reported for 2-methyl-, 2,3 dimethyl-, 2,5-dimethyl-, and 2,6-dimethylpyrazine;¹⁰⁷⁰ for 1,4-dihydropyrazine;¹⁴⁵⁹ for 1-phenyl-, 1-(o -, m -, or p -monosubstituted phenyl)-, 1- $(2,3$ dihydro-1,4-benzodioxin-5-yl)- (241) , and 1-(pyridin-4-yl)piperazine;⁴⁹⁰ and for 2-(piperazin-1-ylpyrimidine (**242**).490 Alkyl–alkylidene tautomerism has been discussed theoretically.⁹³²

Nuclear magnetic resonance spectra. As well as numerous routine reports of NMR spectra (see individual entries in the Appendix Table of Simple Pyrazines), a brief correlation of ¹H NMR spectra for 2-alkyl-3,5,6-triphenylpyrazines (**243**) and the corresponding 2,3-dihydro derivatives (**244**) has appeared;¹³⁷ in addition, a comparative 13 C NMR study of 2-styrylpyrazine (245) with other styryldiazines and some styrylazines has been reported.¹⁴²⁸

Other spectral studies. Ultraviolet (UV) spectral studies have been reported for 2-methylpyrazine (vapor), $999,1429$ 2,5-dimethylpyrazine (solution), 1005 the charge-transfer complexes of 2,5-dialkylpyrazines (with styphnic acid, picryl chloride, 2,4,6-trinitrotoluene, and 2,4,6-trinitrophenetole), 127 and reduced states (generated *in situ*) of 2,2'-bipyrazine.⁷¹

- Infrared(IR)/Raman spectral investigation of 2-methyl-, 2,5-dimethyl-, and 2,6 dimethylpyrazine has permitted the assignment of all fundamental vibrational modes for such derivatives.^{989,999,1005}
- The mass spectral fragmentation pathways for a series of eight 2-(*E* and *Z*-) alkenyl-3-alkyl-5-methylpyrazines (representing some of the most complex pyrazines isolated from the ant, *Rhytidoponera metallica*, ⁹⁶¹ or indeed any natural source) have been elucidated with the help of specifically placed deuterium labels within the alkenyl group: these paths are influenced significantly by the stereochemistry of each alkenyl group.¹⁴⁰⁷
- The fluorescence spectra of 2,5-diarylpyrazines have been studied: the presence of electron-donating substituents on each aryl group, as in 2,5 bis(*p*-methoxyphenyl)pyrazine (**246**), strengthened fluorescence on photoexcitation; the fluorescence of 2,5-di(naphthalen-2-yl)pyrazine (**247**) proved stronger than that of the isomeric 2,5-di(naphthalen-1-yl)pyrazine due to reduced planarity in the latter structure.1288 *p*-Bis[2-(pyrazin-2 yl)vinyl]benzene (**248**) proved to be an efficient blue laser dye (emission λ_{max} 438 nm in Me₂SO solution) on excitation by a nitrogen laser at 337 nm.1484

Ionization constants. Known pK_a values for pyrazine and six methylated derivatives showed good correlation with newly calculated electron densities on the nitrogen atoms;1052 such a correlation was also observed for 1,4-dimethylpiperazine and a series of (distantly) related *m*- and *p*-bis(dimethylaminomethyl)benzene derivatives.¹⁰³⁹

Solvent efficacy. 1-Acetyl-4-methylpiperazine proved to be a reasonably good solvent for reactions requiring a polar aprotic medium, such as the conversion of alkyl tosylates into the corresponding halides with lithium halides.750

3.2.4. Reactions of Alkyl- and Arylpyrazines (*H* **79)**

Alkyl and aryl groups attached to pyrazine undergo a variety of reactions. Of these, *the interconversion of one simple alkyl group into another* has been covered in Section 3.2.1.4 and most reactions that affect only the nucleus of alkyl- or arylpyrazines (except nuclear reduction and some cyclizations) will be found in appropriate chapters. The remaining reactions, including some in which the alkyl/aryl groups may bear passenger functional substituents, are discussed in the following subsections.

3.2.4.1. Oxidative Reactions (H 79)

Alkylpyrazines may be oxidized to pyrazine aldehydes, ketones, or carboxylic acids. They may also undergo nuclear oxidation (covered piecemeal in most other chapters), oxidative hydroxylation, epoxidation, and so on. Such reactions are illustrated in the following examples:

Oxidation to Pyrazinecarbaldehydes

- 2-Methyl-3-methylthiopyrazine (**249**) gave 3-methylthio-2-pyrazinecarbaldehyde (250) (SeO₂, dioxane, reflux, 4 h: 62%).¹¹²⁶
- 2- sec -Butyl-6-methoxy-5-methylpyrazine (251, R = Me) gave 5- sec -butyl-3methoxy-2-pyrazinecarbaldehyde $(251, R = CHO)$ [PhSe(=0)OH, PhCl, reflux, 6 h: 43% with 39% substrate recovered].³¹⁷

Also other examples.^{425,432}

Oxidation to Pyrazinecarboxylic Acids

- 2,3-Diethyl-5,6-dimethylpyrazine (**252**) gave 2,3,5,6-pyrazinetetracarboxylic acid (253) (KMnO₄, KOH, H₂O, reflux, 3 h: 50%).⁷
- 2-Styrylpyrazine 1-oxide $(254, R = CH:CHPh)$ gave 2-pyrazinecarboxylic acid 1-oxide (254, $R = CO₂H$) (KMnO₄, dicyclohexyl-18-crown-6, PhH, 20°C, 3 h: 49%).¹³⁰⁰
- Also other examples, $80,758,1271,1293$ including the use of catalyzed oxygen, $432,1244$ anodic oxidation, 442 and enzymatic oxidation. 926

Oxidation to Other Products

Monolithiated 2,3,5,6-tetramethylpyrazine (**256**) gave 1,2-bis(3,5,6-trimethylpyrazin-2-yl)ethane (255) (I_2 , Et₂O, 0°C, 30 min: 31%) or a separable mixture of the same product (**255**) and 2-hydroxymethyl-2,5,6-trimethylpyrazine (257) (Et₂O, O₂ \downarrow , 0°C, 1 h: 12 and 21%, respectively);¹¹²⁸ also analogues likewise.²⁴⁷

2,5-Dimethylpyrazine gave successively its 1-oxide (258) $(H₂O₂)$, 2-acetoxymethyl-5-methylpyrazine (259, $R = Ac$), 2-hydroxymethyl-5-methylpyrazine (259, $R =$ H) (HO⁻), and 5-methyl-2-pyrazinecarboxylic acid (260) (KMnO₄: for details of all stages in this indirect route, see original paper).432

2-(1-Hydroxybut-2-enyl)- (**261**) gave 2-(1-hydroxy-2,3-epoxybutyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (262) [Ti(OPr^{*i*})₄, CH₂Cl₂, -20^oC, 20 min; then Bu^tO₂H \downarrow , -20°C, 4 days: 74%]; analogues likewise.³⁶⁵

- 2,5-Dimethyl-3-(pent-1-enyl)pyrazine gave 2-(1,2-epoxypentyl)-3,6-dimethylpyrazine (ClC₆H₄CO₃H-*m*, CH₂Cl₂, 45°C, 4 h: 81%).⁸⁶⁸
- 3,6-Dibenzyl-1,4-dimethyl-2,5-piperazinedione (**263**) gave 6-benzyl-1,4-dimethyl-2,3,5-piperazinetrione (263a) (FeCl₃, AcMe^{-H₂O, *hv* (sunlight),} TLC controlled: 30%].⁹³⁹
- 2,3-Diphenyl-5,6-dihydropyrazine gave *N,N'*-dibenzoylurea [BzHNC(=0)-NHBz] $(O_2 \downarrow, PhH, hv, 30 min: 22\%$; the complicated mechanism appears to be well established).751

3.2.4.2. Reductive Reactions (H 80)

The *reduction of alkenyl- or alkynylpyrazines to alkylpyrazines* has been covered in Section 3.2.1.4. The remaining reactions in this category comprise nuclear reduction or N-debenzylation, as illustrated in the following examples:

- 2,5-Dibenzylpyrazine (264) gave 2,5-dibenzylpiperazine (265) [H₂ (135 atm), PtO₂, EtOH, 20 $^{\circ}$ C, 18 h: 77%, consisting or three separable stereoisomers].²⁹⁴
- 2,3,5,6-Tetramethylpyrazine gave the corresponding piperazine $(266, R = H)$, characterized as $2,3,5,6$ -tetramethyl-1,4-dinitrosopiperazine (266, R = NO) [NaBH₄, H₂O, hv, 20°C, 40 h; then separation and nitrosation (NaNO₂, HCl): two isomers, 13 and 10%].¹⁰⁰⁰

- 1-Benzyl-2-carboxymethyl-4-methylpiperazine (**267**) gave 2-carboxymethyl-4 methylpiperazine (268) [H₂ (4 atm), Pd/C, EtOH, 20°C, 18 h: 92%].¹⁶⁴⁷
- 4-Benzyl-1-phenyl-2,6-piperazinedione $(269, R = CH_2Ph)$ gave 1-phenyl-2,6piperazinedione (269, R = H) [H₂ (<5 atm), Pd/C, MeOH, 20°C, 60%].⁶³⁶

Also other examples.215,644,799,1171,1328

3.2.4.3. Extranuclear Halogenation (H 79)

Such halogenation can be done by regular replacement of one or more hydrogen atoms of the alkyl/aryl group or by addition of a halogen or hydrogen halide to an alkenyl or alkynyl group. The following examples illustrate typical reagents and conditions that have been used recently:

Using Elemental Halogen

- *Note:* This process is seldom satisfactory for alkylpyrazines but it can be useful for arylpyrazines.
- 2,5-Dimethylpyrazine $(270, R = H)$ gave 2,5-bis(bromoethyl)pyrazine $(270, R = H)$ $R = Br$) (Br₂, K₂CO₃, Bz₂O₂, hv, CCl₄, reflux, ? h: 7.5% after separation from several other products).⁵¹³
- 1-(2,5-Dimethoxyphenyl)piperazine (271, $R = H$) gave 1-(3-bromo -2,5dimethoxyphenyl)piperazine (271, R = Br) (Br₂, AcOH—HBr, $0 \rightarrow 20^{\circ}C$, 4 h: reasonable yield as dihydrochloride).⁶¹⁰ Analogues likewise.¹⁰⁶⁶

Using N-Halogenosuccinimide (and Dibenzoyl Peroxide or Irradiation)

Note: Even with careful control of reactant ratios and conditions, this route invariably gives two or more products that involve chromatographic or other separatory processes.⁵¹³

- 2-Methylpyrazine gave 2-chloromethylpyrazine (**272**) (*N*-chlorosuccinimide, Bz₂O₂, A, CCl₄, reflux, 24 h: 89% after purification by TLC).^{205;cf.428,674,938,} 1353,1664
- 2-Benzylpyrazine gave $2-(\alpha$ -bromobenzyl)pyrazine (273) (NBS, Bz_2O_2 , CCl₄, 20 $^{\circ}$ C, ? h: 32% after chromatography).³⁶⁶
- 2,3,5,6-Tetramethylpyrazine gave 2,3,5,6-tetrakis(dibromomethyl)pyrazine (**274**) (NBS, CCl₄, hv, ? h: 70%).³³
- 1-Benzyl-5-chloro-3-ethyl-2(1*H*)-pyrazinone gave 1-benzyl-3-(1-bromoethyl)- 5-chloro-2(1*H*)-pyrazinone (275) (NBS, Bz₂O₂, CCl₄, reflux, <6 h: 89%).³⁹¹ Also other examples.29,395,431,513,547,550,676,957,1059,1094,1446, 1481

Using Miscellaneous Halogenation Reagents

- 2,5-Dimethylpyrazine gave 2,5-bis(trichloromethyl)pyrazine (276) (PCl₃, POCl₃, 5° C \rightarrow reflux, 90 min: 26% ⁵² or 2-chloromethyl-5-methylpyrazine (277) (SO₂Cl₂, dilauroyl peroxide, CCl₃, reflux, 1 h: 38% as hydrochloride).²²¹
- 1,3,5,5-Tetramethyl-5,6-dihydro-2(1*H*)-pyrazinone gave 3-chloromethyl-1,5,- 5-trimethyl-5,6-dihydro-2(1*H*)-pyrazinone (278) (Bu^{*t*}OCl, CH₂Cl₂, N₂, 0°C, dark, 90 min: 99% (crude and unstable).¹⁵⁸
- 2-(Dichloromethyl)pyrazine $(279, R = H)$ gave 2-(trichloromethyl)pyrazine (**279**, $R = C1$) (18-crown-6, KOH, CCl₄, 25°C, 4 h: 50%; note abstraction of required chlorine from $CCl₄$).⁴³¹
- 4-Phenyl- gave 4-*p*-iodophenylpiperazine (ICl, AcOH—H₂O, 60^oC, 1 h: 70%).¹³⁶⁹

Using Halogen-Addition Reactions

2-(2-Ethoxycarbonylvinyl)-3-methylthiopyrazine (**280**) gave 2-(1, 2-dibromo-2 ethoxycarbonylethyl)-3-methylthiopyrazine (281) (Br₂, CCl₄, 15^oC, 2 h: $>95\%$).¹¹²⁶

2,5-Dimethyl-3-(pent-1-enyl)pyrazine (**283**) gave 2-(1,2-dibromopentyl)-3,6-dimethylpyrazine (282) (Br₂, CHCl₃, $0 \rightarrow 23^{\circ}$ C, 5 min: >95%)⁸⁶⁸ or 2-(2-bromopentyl)-3,6-dimethylpyrazine (284) [Et₂O, HBr (gas) \downarrow 0°C, 10 min: 89%; also a trace of the 1-bromopentyl isomer].⁸⁶⁸

- 3,6-Dibenzylidene-1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**285**) gave 3 -benzylidene-6-(α -bromobenzyl)-6-hydroxy-1,4-dimethyl-1,4-dimethyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (286) [NBS/H₂O—dioxane (\simeq HOBr), 20^oC, 12 h: erythro and threo isomer, 50 and 33%, respectively, after separation], 1030 also analogous reactions.1036
- Also other examples.811,1239 Also an extranuclear N-I-I charge-transfer complex of confirmed structure.74,75

3.2.4.4. Extranuclear Alkylation (H 74)

The conversion of one (unsubstituted-alkyl) pyrazine into another such pyrazine by extranuclear alkylation has been covered in Section 3.2.1.4. The similar formation of (substituted-alkyl)pyrazines is illustrated here.

2,3-Dimethylpyrazine (**287**) gave 2-(3,3-diethoxypropyl)-3-methylpyrazine (288) [BrCH₂CH(OEt)₂, Pr^{*i*}₂NLi (made *in situ*), Et₂O-C₆H₁₄, 20°C, 4 h: 30%].1249

2-Isopropyl-3-methoxy-5-methylpyrazine gave 2-isopropyl-3-methoxy-5-[3- (pyran-2-yloxy)propyl]pyrazine (**289**) [2-(3-bromopropoxy)pyran, Pr*ⁱ* 2NK (made *in situ*), THF, A, -78° C, 3 h: 83%];²⁹⁸ also analogues likewise.^{295,298}

2-(1-Hydroxybut-2-enyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**290**) gave 2-[(2,3-dimethylcycloprop-1-yl)hydroxymethyl]-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine (291) (MeCHI₂, Et₂Zn, C₆H₁₄, 0 \rightarrow 20^oC, $<$ 3 days: 80%);⁵³⁴ analogues likewise.^{365,534}

Also other examples.¹¹⁴⁰

3.2.4.5. Extranuclear Alkylidenation (H 74)

C-Alkylpyrazines undergo extranuclear alkylidenation by aldehydes (or ketones,) with or without isolation of the intermediate (hydroxyalkyl)pyrazines. Several procedures are illustrated in the following examples:

Two-Stage Alkylidenation

2-Methylpyrazine (**292**) gave 2-(-hydroxy-*p*-methoxyphenethyl)pyrazine (**293**) $(Pr'_2NLi, THF, -40^{\circ}C, N_2, 50 \text{ min}$; then MeOC₆H₄CHO- $p \downarrow$, -20 \rightarrow 20°C, 5 h: 98%), and thence 2-p-methoxystyrylpyrazine (294) (HCl, MeOH-H₂O, reflux, 7 h; 98%).³⁸⁸

- 2-Isopropylpyrazine (295) likewise gave $2-(\beta$ -hydroxy- α , α -dimethylphenethyl)pyrazine (296) (Pr^{*i*}₂NLi, PhCHO, and so on: 21%,⁸⁰¹ clearly precluded from dehydration to a styrylpyrazine.⁸⁰¹
- Also other examples.755,784,801 *Note:* The first stage is sometimes reversable on thermolysis.

Alkylidenation Under Strongly Basic Conditions

2-Methylpyrazine 1,4-dioxide (**297**) gave 2-[2-(pyridin-2-yl)vinyl]pyrazine 1,4 dioxide (298) [2-pyridinecarbaldehyde, NaOH, MeOH-H₂O, N₂, 80°C, 5 min: 96%]; isomers and analogues likewise.⁸¹

2-Methylpyrazine (**300**) gave 2-[2-(1-methylpyrrol-2-yl)vinyl]pyrazine (**299**) [NaH, Me₂NCHO, 60 $^{\circ}$ C, N₂, 1 h: then 1-methyl-2-pyrrolecarbaldehyde \downarrow , 50°C, 5 h: 40%; compare conditions with those required for alkylidenation of the more activated methyl group in substrate (**297**)].1485

The same substrate (300) gave 2-(β-aminostyryl)pyrazine (301) [Pr^{*i*}₂NLi (made *in situ*), THF, -40° C, 1 h; then PhCN \downarrow , 140 \rightarrow 20°C, 1 h: 25%];¹¹⁸⁸ also analogues.1188,1421

Also other examples.^{225,591}

Alkylidenation in the Presence of Anhydrides

- 2,3-Dimethylpyrazine gave 2,3-distyrylpyrazine $(302, Q = R = H)$ [PhCHO, (PrCO)2O, reflux, H2, 37 h: 21%], 2,3-bis(*p*-chlorostyryl)pyrazine (**302**, $Q = R = Cl$) (ClC₆H₄CHO-*p*, likewise: 36%), or 2-(*p*-methoxystyryl)-3methylpyrazine [MeOC₆H₄CHO- p (0.5 mol), Ac₂O, reflux, N₂, 43 h: 21%] and thence 2- $(p$ -cyanostyryl)-3- $(p$ -methoxystyryl)pyrazine (302, $Q =$ OMe, $R = CN$) NCC₆H₄CHO-*p* (excess), Ac₂O, reflux, N₂, 6 h: ?%].⁵⁹⁰
- 2-Methylpyrazine gave 2-[2-(pyridin-3-yl)vinyl]pyrazine (**303**) [3-pyridinecarbaldehyde, Bz_2O (neat), no details].⁷⁵⁶

Also other examples.678,695,1279

3.2.4.6. Extranuclear Acylation or Carboxylation (H 74)

This reaction is a useful way to make some alkyl pyrazinyl ketones or carboxyalkylpyrazines, as illustrated in the following examples:

2,3-Dimethylpyrazine gave 2-hexanoylmethyl-3-methylpyrazine (304) (Pr^{*i*}₂NLi, Et₂O, 175°C, 30 min; EtO₂C(CH₂)₄Me \downarrow , -78°C, 30 min: 70%); analogues likewise.³⁵²

- 2-Methylpyrazine gave 2-ethoxalylmethylpyrazine (305) [(EtO₂C)₂, Bu^{*i*}OK, Et₂O, 20 \degree C, <5 h: 65%].¹¹⁷⁵
- 2,3,5,6-Tetramethylpyrazine gave 2-carboxymethyl-3,5,6-trimethylpyrazine (monolithiation *in situ*; then $CO₂$, Et₂O, 0°C, 39 min: >95%, as the Li salt).1384
- 2,6-Dimethylpyrazine gave 2-acetonyl-6-methylpyrazine (306) (Pr^{*i*}₂NLi, Et₂O, 0°C, 10 min; Me₂NAc \downarrow , 20°C, ? min: 34%).¹⁵⁶⁷

Also other examples. $860,1249$

3.2.4.7. Cyclization

Alkyl-, alkenyl-, and alkynylpyrazines can undergo fascinating cyclization reactions, the diversity of which is indicated in the following examples:

3-Phenylethynyl-2(1*H*)-pyrazinone (**307**) gave 6-phenylfuro[2,3-*b*]pyrazine (308) (KOH, H₂O, reflux, 15 min: 80%).⁴⁸⁴

1,2-Di(pyrazin-2-yl)ethylene (**309**) gave pyrazino[2,3-*f*]quinoxaline (**311**) via the unisolated dihydro intermediate (**310**) [PhH, *h* (350 nm), air, 8 h: 82%];¹⁸⁶ 2-styrylpyrazine likewise gave benzo[f]quinoxaline.⁸⁷⁷

2-Methylpyrazine (**312**) and diethyl phthalate (**313**) gave 2-(1,3-dioxoindan-2 yl)pyrazine (314) (NaOH, MeOCH₂CH₂OMe, reflux, 12 h: 92%); also analogues similarly.⁶⁸²

2-Allyl-5-isopropyl-3,6-dimethoxy-2-(prop-2-ynyl)-2,5-dihydropyrazine (**315**) gave a separable mixture of 8-isopropyl-7,10-dimethoxy-2,3-dimethylene-6, 9-diazaspiro[4.5]deca-6,9-diene (**316**) and 3-isopropyl-2,5-dimethoxy-10 methylene-1,4-diazaspiro[5.5]undeca-1,4,8-triene (317) [Pd(OAc)₂, PPh₃, PhH, A, 20°C, 24 h: 32 and 24%, respectively, after separation]; also analogous reactions.1610

2,3-Diphenyl-5,6-dihydropyrazine (**318**) and diphenylcyclopropenone (**319**) gave 1,6,7,8a-tetraphenyl-3,4,8,8a-tetrahydropyrrolo[1,2-*a*]pyrazin-8-one (**320**) (PhMe, reflux, ? h: 92%).²⁶⁸

2,3-Bis(*p*-chlorostyryl)pyrazine (**321**) underwent self-condensation to the dicyclobutane dimer (**322**) in which (as shown by X-ray analysis) the pyrazine rings lay parallel on one side of the nearly coplanar cyclobutane rings and the benzene rings lay on the other side thereof [solid substrate suspended in H_2O ,

 hv (<300 nm), 20 $^{\circ}$ C, N₂: 76%, after separation from another dimer]; irradiation in solution gave yet other dimeric materials.^{590,1083}

Also other examples of such cyclizations.757,847,1160,1371,1626,1758

3.2.4.8. "Ammoxidation'' of Methyl to Cyano Groups

This process was undoubtedly developed for the manufacture of pyrazinamide (Zinamide, etc.),1696 a second-line drug for *Mycobacterium tuberculosis* infections, resistant to more effective and less toxic agents. Thus a mixture of 2-methylpyrazine (323), ammonia, oxygen, and steam is passed (at \sim 400 $^{\circ}$ C) over an alumina- or pumice-supported catalyst comprising one to three oxides of Ce, Cr, Mo, Mn, P, Sb, Ti, or (most importantly) V: the main product (in up to 90% yield) is 2-pyrazinecarbonitrile (**324**), easily converted into 2-pyrazinecarboxamide (**325**).1062,1206,1258,1261,1285,1292,1294,1297,1577

2,5-Dimethylpyrazine has been converted similarly into 2,5-pyrazinedicarbonitrile^{1263, 1299} and a rapid high-performance liquid chromatographic (HPLC) procedure has been developed to monitor products emerging from such catalytic processes.1384

3.2.4.9. Addition Reactions at Alkenyl or Alkynyl Substituents

The addition of halogens or hydrogen halides to alkenyl- or alkynylpyrazines has been discussed in Section 3.2.4.3. However, such unsaturated substrates also undergo useful additions by water, alcohols, amines, and so on, as illustrated in the following examples:

- 2-Ethynyl-3,6-dimethylpyrazine (**326**) gave 2-acetyl-3,6-dimethylpyrazine (**328**) [HgSO₄, H₂SO₄, H₂O—AcMe, reflux, 2 h: 27%; presumably via the intermediate (**327**)] or 2-(2,2-dimethoxyethyl)-3,6-dimethylpyrazine (**329**) [MeONa, MeOH, reflux, 5 h: 65%; note reverse addition to that with H_2O ²⁰²
- 3-Chloro-5-(hept-1-ynyl)-2,6-pyrazinediamine (**330**) gave 3-chloro-5-heptanoyl-2,6-pyrazinediamine (331) [Na₂S, HCl, H₂O-MeOH, reflux, 30 min: 89%; perhaps via a dimercapto intermediate akin to (**327**)].817

- 2-Methyl-5-vinylpyrazine $(333, R = Me)$ gave 2- $(1,2$ -dihydroxyethyl)-5methylpyrazine (332) (KMnO₄, MgSO₄, H₂O—EtOH, -10^oC, 15 min: 65%).1446
- 2-Vinylpyrazine $(333, R = H)$ gave 2-[2-(ethylamino)ethyl]pyrazine (334) (EtNH₂, MeOH, AcOH, 60°C, 24 h: >90%).¹⁶⁶²

Also other examples.⁸⁴⁷

3.2.4.10. Miscellaneous Reactions

Several minor reactions of alkylpyrazines are illustrated in the following examples:

2,6-Dimethylpyrazine gave 2-methyl-6-trimethylsilylmethylpyrazine (**335**) [Pr^{*i*}₂NLi (made *in situ*), THF, -78°C; then Me₃SlCl \downarrow , -78°C, 3 h: 70%]; somewhat similarly, 2- $[$ (but-3-ynyl)oxymethyl]pyrazine $(336, R = H)$ gave $2-[$ (4-trimethylsilylbut-3-ynyl)oxymethyl]pyrazine (336, R = SiMe₃) (lithiation with PhLi etc.: 74%).³⁶⁶

1,4-Dimethylpiperazine (**337**) gave piperazine dihydrochloride (**339**) [ClC- $(=0)$ OCHClMe, ClCH₂CH₂Cl, reflux, 1 h; residue from evaporation, MeOH, 50°C, 30 min: 96%; proceeds via the diquaternary intermediate (**338**) by loss of 2 MeCl, 2 CO₂, and 2 MeCH(OMe)₂].⁷⁹¹ In a somewhat similar way, 1-benzyl-2,4-dimethylpiperazine (**340**) gave ethyl 2,4-dimethyl-1-piperazinecarboxylate (341) (ClCO₂Et, PhH, reflux, 48 h: 25%; via a monoquaternary intermediate), and thence 1,3-dimethylpiperazine (**342**) (6 M HCl, 48 h: 67%; by hydrolysis and decarboxylation); 149 also other related examples. 1618

1,4-Diacetyl-2,3-bis(indol-3-yl)-1,2,3,4-tetrahydropyrazine (**343**) gave 1,4-diacetylpyrazinediium diperchlorate (**344**) (too unstable for chromatography) and 3-triphenylmethyl-3H-indole (345) $(83%)$ $(Ph₃CCIO₄, MeCN, 10°C, 20)$ min).⁴¹⁷

For an interesting Diels–Alder reaction, see Section 8.4.2.

3.3. *N***-ALKYLPYRAZINIUM SALTS AND RELATED YLIDES**

Pyrazine (see Section 3.1.3) and many of its derivatives may be converted into *N*-alkylpyrazinium or even *N*, *N*-dialkylpyrazinediium salts by treatment with alkyl halides or similar reagents. When such *N*-alkyl groups bear an electron-withdrawing substituent (such as carbonyl), the salts may sometimes be deprived of their gegenion by treatment with a base to afford pyrazinium ylides in which the negative charge resides on a carbon atom of the substituent (see Section 3.1.3 for an example). Quaternary salts and ylides undergo only a few reactions specifically associated with their ionic nature: indeed, any systematic treatment along the usual lines (preparation, properties, reactions) is severely restricted for lack of recent data.

3.3.1. Preparation of *N***-Alkylpyrazinium Salts (***H* **81, 94)**

The quaternization of pyrazines has been done under a wide variety of conditions, as illustrated in Section 3.1.3 and in the following recent examples:

- 2,3-Dimethylpyrazine gave $1,2,3$ -trimethylpyrazinium iodide (346, $R = H$, $X = I$) (neat MeI, reflux, 2 h: 63%),¹³⁷³ 1-ethyl-2,3-dimethylpyrazinium iodide (346, R = Me, X = I) (EtI, likewise: 53%),¹³⁷³ or 2,3-dimethyl-1phenacylpyrazinium bromide $(346, R = Bz, X = Br)$ $(BzCH₂Br, EtOH,$ reflux, 3 h: ?%).1571
- Dimethyl 2,3-pyrazinedicarboxylate gave 1-ethyl-2,3-dimethoxycarbonylpyrazinium tetrafluoroborate (347) (Et₃OBF₄, ClCH₂CH₂Cl, reflux, 2 h: 80%);⁴¹⁵ methyl 2pyrazinecarboxylate gave 3-methoxycarbonyl-1-methylpyrazinium iodide (**348**)
(MeI, Me₂SO, 20 $^{\circ}$ C, 12 h: 94%; note regioselectivity);⁴²⁷ and 2-pyrazinecarboxamide gave 3-carbamoyl-1-methylpyrazinium iodide $(349, R = H)$ (MeI, Me₂SO, 50 $^{\circ}$ C, 24 h: 98%; note regioselectivity)⁴²⁶ or 3-carbamoyl-1-(4-carboxybutyl)pyrazinium iodide (349, $R = CH_2CH_2CH_2CO_2H$) [I(CH₂)₄CO₂H, MeCN, 80° C, <24 h: 55%).⁷¹⁶

- 2-Pyrazinamine gave 3-amino-1-(*p*-bromophenacyl)pyrazinium bromide (**350**) $[BrCH_2C(\equiv O)C_6H_4Br-p, EtOH, reflux, 1 h: 86\%; quaternion at the ring-$ N adjacent to the $NH₂$ group might have been expected on electronic grounds] $.^331$
- 2-Methylpyrazine 1-oxide gave 1,3-dimethylpyrazinium iodide 4-oxide (**351**) (MeI, AcMe, or EtOH?, sealed, 100° C, 4 h: 95%);²⁸⁶ homologues were made likewise;²⁸⁶ and similar treatment of pyrazine 1,4-dioxide gave a separable $(?)$ mixture of 1-methylpyrazinium iodide and its 4-oxide in approximately equal amounts.286

Also other examples.563, 629, 631, 1003, 1262, 1329

3.3.2. Reactions of *N***-Alkylpyrazinium Salts**

The few recently described reactions of *N*-alkylpyrazinuim salts are typified in the following examples:

Reduction

1-Benzyl-3-carbamoylpyrazinium bromide (**352**) was reduced by 1-benzyl-1,2 dihydro-4-pyridinecarboxamide (**353**) to afford 4-benzyl-3,4-dihydro-2pyrazinecarboxamide (**354**) and 1-benzyl-4-carbamoylpyridinium bromide (355) [MeOH, N₂, 20^oC (?), 5 min: 75% of the pyrazine].¹⁴⁴⁷

- 3-Cyano-5-(3,4-dimethoxyphenyl)-1-methylpyrazinium iodide (**356**) gave 6- (3,4-dimethoxyphenyl)-4-methyl-4,5-dihydro-2-pyrazinecarbonitrile (**357**) ["Hantzsch ester" (diethyl 2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate) (1 mol), MeCN, 20° C, 3 h: 80% ; or NaBH₄, MeCN, 20° C, 30 min: 83%], and thence 6-(3,4-dimethoxyphenyl)-4-methyl-1,4,5,6 tetrahydro-2-pyrazinocarbonitrile (**357**a) (repeat procedures for 24 and 3 h, respectively, both affording \sim 72%).¹²⁶²
- Also an unsuccessful attempt to reduce 1-benzyl-2,3-diphenylpyrazinium bromide with $TiCl₃$.¹¹³⁶

Cyclizations

- *Note:* Alkylpyrazinium salts (or corresponding ylides) lend themselves to cyclization or cycloaddition, as typified in these examples.
- 1-Acetonyl-2,3-dimethylpyrazinium bromide (**358**) (made *in situ*) gave 1,8-dimethylpyrrolo[1,2-*a*]pyrazine (359) (NaHCO₃, H₂O, reflux, 30 min: 41%);⁷⁹⁴ also analogues likewise.328,794,1571

Pyrazinium-1-dicyanomethylide (**360**) gave 7,8-bis(trimethylsilyl)pyrrolo[1,2-*a*] pyrazine-6-carbonitrile (**362**) via the dicarbonitrile intermediate (**361**) $(Me₃SiC = CSiMe₃, PhMe, reflux, ? h: 92\%).$ ²⁷¹

1-Ethyl-2,3-dimethoxycarbonylpyrazinium tetrafluoroborate (**363**) gave 7-ethyl-5,6-dimethoxycarbonyl-3-phenyl-3a, 4,7,7a-tetrahydro-1*H*-imidazo[4,5-*b*]pyrazine-2(3*H*)-thione (364) [H₂NC(=S)NHPh, Et₂NH, EtOH, 50 \rightarrow 20^oC, 2 h: 70%);⁴¹⁵ also analogous cyclizations with thiosemicarbazides.⁴²⁰

Generation of Radical Cations

2,3,5,6-Tetramethylpyrazine (**365**) generated the hexamethylpyrazine radical cation (**366**), sufficiently persistent to yield an excellent electron paramagnetic resonance (EPR) spectrum (mixed within the EPR cavity: substrate, Me2SO4, Zn or Bu*^t* 4NBH4, PhH); homologues likewise.184

Pyrazine (**367**) was converted into 1,4-diethylpyrazinediium bis(tetrafluoroborate) (368), the 1,4-diethylpyrazine radical cation iodide (369, $X = I$) (electrolytic reduction; NaI \downarrow), and finally the corresponding tetraphenylborate $(369, X = BPh₄)$ (NaBPh₄: 18%) which was sufficiently stable for elemental and X-ray analysis.⁵⁴⁸

Also other examples.61,285

Other Reactions

- The rates for deuteration of the 2-methyl groups of 2,3-dimethylpyrazinium chloride (**370**) and 1,2,3-trimethylpyrazinium chloride (**371**) have been determined in DC1/D₂O: the quaternary substrate (371) reacted \sim 30 times faster; a similar factor applied to other such pairs of alkylated pyrazines.⁵⁶³
- Quaternary salts of 1,2-bis(pyrazin-2-yl)ethylene (372) underwent $(E \rightarrow Z)$ photoisomerization; the quantum yield for the chloride salt was better than that for the iodide salt. 1165

CHAPTER 4

Halogenopyrazines (*H* **95)**

Whether a halogeno substituent occupies the 2-,3-,4-,or 5-position on the pyrazine ring, it is activated by one adjacent ring nitrogen atom: hence, its reactivity will resemble that in *o*-chloronitrobenzene unless it is affected substantially by any electron-releasing, electron-withdrawing, or sterically bulky substituent(s) present. An extranuclear halogeno substituent is only marginally affected by the pyrazine ring and its reactivity will approximate that in benzyl chloride, unless it is affected in an electronic or steric way by another substituent on the same side chain. Both types of halogenopyrazine continue to be used extensively as convenient intermediates in the preparation of all sorts of other pyrazines. In this respect, the more easily available chloropyrazines are usually employed in preference to other halogenopyrazines, since there is little difference in their relative reactivities.

4.1. PREPARATION OF NUCLEAR HALOGENOPYRAZINES (*H* **95)**

With the exception of those halogenopyrazines made by *primary synthesis* (see Chapters 1 and 2), most chloropyrazines have been made recently by the reaction of tautomeric pyrazinones with a phosphorus chloride or by the reaction of pyrazine *N*-oxides with phosphoryl chloride; in contrast, most other halogenopyrazines have been made by direct halogenation or by transhalogenation of chloropyrazines. A single interesting example of the conversion of a methoxy- into a chloropyrazine is included at the end of Section 4.1.1.

4.1.1. Nuclear Halogenopyrazines from Pyrazinones (*H* **99)**

Although such transformations have usually been done with neat phosphoryl chloride (or bromide), it appears that related reagents or a combination of reagents have proven more effective in individual cases. Recently used procedures are typified in the following classified examples:

Using Neat Phosphoryl Halide

Ethyl 5-oxo-4,5-dihydro-2-pyrazinecarboxylate (**1**) gave ethyl 5-chloro-2 pyrazinecarboxylate (2) (POCl₃, reflux, 90 min: 88%).¹⁶⁸¹

- $2(1H)$ -Pyrazinone gave 2-chloropyrazine (POCl₃, reflux, 50 min: 84%).⁶⁴
- 5-(Furan-2-yl)-2(1H)-pyrazinone gave 2-chloro-5-(furan-2-yl)pyrazine (3) (POCl₃, reflux, 3 h: 66%).¹²⁷¹

3-Methyl-5-phenyl-2(1*H*)-pyrazinone (**4**) gave 2-chloro-3-methyl-5-phenylpyrazine (5) (POCl₃, 175°C, sealed, 18 h: 92%; beware of pressure within the tube even when cooled!);⁵⁷ such a sealed reaction also converted 5-chloro-3phenyl-2(1*H*)-pyrazinone into 2,5-dichloro-3-phenylpyrazine (**6**) (185°C, 5 h: 92%).1382

3-Amino-5,6-dimethyl-2(1*H*)-pyrazinone (**7**) gave 3-bromo-5,6-dimethyl-2 pyrazinamine (8) (neat POBr₃, open vessel, 145° C, 20 min: $\sim 40\%$);¹⁰¹² 3bromo-2-pyrazinamine was made similarly.¹⁰⁰⁸

Also other examples. 80,86,295,825,956,1033,1290,1386,1396

Using Phosphorus Pentachloride in Phosphoryl Chloride

- *Note:* This combination of reagents is usually employed when phosphoryl chloride alone proves too slow or when additional C-chlorination is required. Its recent use in the pyrazine series has been mainly for the conversion of 3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinediones into mono- or dichloropyrazines, as illustrated here.
- 3-*sec*-Butyl-6-isobutyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**9**, R - $=$ Bu^s) gave a separable mixture of 2-*sec*-butyl-6-chloro-5-isobutyl pyrazine (**10**, R $=$ Bu^s), 2-*sec*-butyl-3-chloro-5-isobutylpyrazine (11, R = Bu^s), and 2-*sec*butyl-3,6-dichloro-5-isobutylpyrazine $(12, R = Bu^s)$ (PCl₅, POCl₃, 135°C, sealed, 1 h: 21, 32, and $\frac{9}{2}$, respectively: mechanism unclear). ⁹²
- In a similar manner, 3-isobutyl-6-methyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione $(9, R = Me)$ gave 2-chloro-3-isobutyl-6-methylpyrazine $(10, R = Me)$, 2chloro-6-isobutyl-3-methylpyrazine $(11, R = Me)$, and $2,5$ -dichloro-3isobutyl-6-methylpyrazine $(12, R = Me)$ $(27, 21,$ and 4% , respectively).²⁹⁵
- Also other closely related examples $80,298,312,317,1314$ as well as some more regular cases.1091

Using Phosphoryl Chloride and a Tertiary Base

- *Note:* This useful procedure has been almost ignored recently in the pyrazine series.
- 3-Oxo-3, 4-dihydro-2-pyrazinecarboxamide (**13**) gave 3-chloro-2-pyrazinecarboxamide (14) (POCl₃, pyridine, $40 \rightarrow 80^{\circ}$ C, 4 h: 86%);¹¹¹⁹ also corresponding acid.275

Using Phosphoryl Chloride and Sulfur Monochloride

1,4-Dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**15**) gave a separable mixture of 5,6-dichloro-1,4-dimethyl-2,3(1*H*,4*H*)-pyrazinedione (**16**) and 3,5,6 trichloro-1-methyl-2(1*H*)-pyrazinone (17) (POCl₃, PhH—CH₂Cl₂, 20°C, 30 min; then $S_2Cl_2 \downarrow$, $20 \rightarrow 70^{\circ}C$, 12 h: 19 and <1%, respectively);⁷⁴⁵ the mechanism remains obscure.¹⁶⁴

Using Phenylphosphonic Dichloride

2,3(1*H*,4*H*)-Pyrazinedione (**18**) gave 2,3-dichloropyrazine (**19**) [neat PhP($=$ O)Cl₂, ~160°C, 2 h: >95%; the use of POCl₃ was less satisfactory].¹¹¹⁷

Using Phosgene

3-(2-Methylthioethyl)-5-phenyl-2(1*H*)-pyrazinone (**20**) gave 2-chloro-3-(2 methylthioethyl)-5-phenylpyrazine (21) (COCl₂, PhMe-THF, reflux, 4 h: $>95\%$;³¹⁵ 2-chloro-3-isobutyl-5-phenylpyrazine ($>80\%$) similarly.⁶³²

Using a Vilsmeier Reagent

- *Note:* The most common Vilsmeier reagent, chloromethylenedimethylammonium chloride (ClCH $=$ N⁺Me₂ Cl⁻), may be generated *in situ* from dimethylformamide (DMF) with an acid chloride like phosphoryl, thionyl, oxalyl chloride, and so on.
- Methyl 3-oxo-3,4-dihydro-2-pyrazinecarboxylate (**22**) gave methyl 3-chloro-2 pyrazinecarboxylate (23) (SO₂Cl, trace Me₂NCHO, PhMe, 80^oC, N₂, 3 h: 80%);54 the isomeric substrate, methyl 5-oxo-4,5-dihydro-2-pyrazinecarboxylate, gave methyl 5-chloro-2-pyrazinecarboxylate $(24, R = H)$ (neat POCl₃, trace Me₂NCHO, reflux, 2 h: 68% ;⁸⁵ and the homologous methyl 5-chloro-6methyl-2-pyrazinecarboxylate $(24, R = Me)$ (77%) was made similarly.⁸⁵

5,6-Dioxo-1,4,5,6-tetrahydro-2,3-pyrazinedicarbonitrile gave 5,6-dichloro-2,3 pyrazinedicarbonitrile (25) (SOCl₂, Me₂NCHO, dioxane, 100°C, 5 h: 90%;¹³⁹⁰ likewise but 60°C, 2.5 h: 68%).¹⁰⁴⁹

3-Methoxy-1-phenyl-2(1*H*)-pyrazinone (26, $R =$ OMe) gave 3-chloro-1-phenyl- $2(1H)$ -pyrazinone (26, R = Cl) (POCl₃, Me₂NCHO, $0 \rightarrow 80^{\circ}$ C, 3 h: 85%).³⁷⁰

4.1.2. Nuclear Halogenopyrazines by Direct Halogenation (*H* **95)**

The direct nuclear chlorination, bromination, or iodination of pyrazines is usually done with elemental halogen or *N*-halogeno succinimide but direct fluorination requires a more vigorous approach. All recently used procedures are typified in the following examples, classified according to the entering halogen substituent:

Chlorination

2-Pyrazinamine gave 5-chloro-2-pyrazinamine (27) [substrate, CHCl₃-pyridine, $Cl_2(1.2 \text{ mol})/CHCl_3 \downarrow$ slowly, 20°C, dark, 3 h: 26% after purification].1280

2-Chloromethyl-3-methoxy-5-methylpyrazine 1-oxide $(28, R = H)$ gave 2chloro-6-chloromethyl-5-methoxy-3-methylpyrazine 1-oxide $(28, R = Cl)$ (*N*-chlorosuccinimide, Me₂NCHO, 20°C, 12 h: 90%).³³³

Also other examples.321,599,1460

Bromination

3-Amino-2-pyrazinecarbonitrile $(29, R = H)$ gave regioselectively 3-amino-6bromo-2-pyrazinecarbonitrile $(29, R = Br)$ (substrate, AcOH, Br₂/AcOH- \downarrow slowly, 60°C, 4 h: 85%).⁸⁰²

2-Azidopyrazine $(30, R = H)$ gave 2-azido-6-bromopyrazine $(30, R = Br)$ (substrate, CHCl₃, Br₂/CHCl₃ \downarrow slowly, $0 \rightarrow 20^{\circ}$ C, 2 h: 49%).⁸⁹¹

2-Pyrazinamine gave regioselectively 5-bromo-2-pyrazinamine $(31, R = H)$ [substrate, pyridine—CHCl₃, Br₂(1.2 mol)/CHCl₃ \downarrow slowly, 20°C, dark, 1 h: 42%;¹²⁸⁰ NBS, CH₂Cl₂, 0°C, 24 h: 55%;³⁶¹ or 3-bromo-6-chloroimidazo[1, 2*b*]pyrazine.HBr.Br₂ complex (32) (1.1 mol), CHCl₃, 20 $^{\circ}$ C, 90 min: 36%];¹⁹¹ or 3,5-dibromo-2-pyrazinamine $(31, R = Br)$ [as before but $Br₂ (2.1 mol):$ 54%;¹²⁸⁰ NBS, CHCl₃, 20°C, 12 h, then reflux, 1 h: $\sim 45\%$;¹⁰¹² or complex (**32**) (2.2 mol), as before: 31%].191

- 5-Methyl-2-pyrazinamine 4-oxide $(33, R = H)$ gave 3-bromo-5-methyl-2-pyrazinamine $\overline{4}$ -oxide (33, R = Br) (NBS, Me₂SO—H₂O, 15°C, 4 h: 79%, initially as a complex). 1508
- 3,6-Dihydro-2,5(1*H*, 4*H*)-pyrazinedione underwent *N*, *N*-dibromination to give 1,4-dibromo-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (Br₂, Na₂CO₃, H₂O, 20 \degree C, 2 h: \sim 90%);⁵⁶⁷ like other *N*-halogeno amides, this can be used as a brominating agent.567,569,579

Also other examples.⁹⁹

Iodination

 2 -Pyrazinamine 4-oxide $(34, R = H)$ gave $3,5$ -diiodo-2-pyrazinamine 4-oxide $(34, R = I)$ (I₂, Et₃N, MeCN, reflux, 2 h: 18%; or I₂, Me₂SO, 80°C, 30 min: 97%);²⁷⁸ also analogues.²⁷⁸

3,6-Diethyl-2(1*H*)-pyrazinone (35, $R = H$) gave 3,6-diethyl-5-iodo-2(1*H*)pyrazinone $(35, R = I)$ (*N*-iodosuccinimide, Me₂NCHO, 20^oC, 12 h: $83\%)$;³²¹ analogues likewise.³²¹

2-tert-Butylsulfonylpyrazine $(36, R = H)$ gave its 3-lithio derivative $(36, R =$ Li) [Me₄-piperidine-Li (made *in situ*), THF, 0°C, 20 min], and thence 2-*tert*butylsulfonyl-3-iodopyrazine $(36, R = I)$ $(I_2, -75^{\circ}C, 2 h: 16\%)$;¹⁶⁰² 2,6dichloro-3-iodo- and 2,6-dichloro-3,5-diiodopyrazine were made somewhat similarly;¹⁴⁵⁵ also 2-fluoro-3-iodopyrazine (54%) ⁴⁰⁶

Also other examples.^{817,1613}

Fluorination

- *Note:* Several perfluorinations of pyrazine or piperazine derivatives have been reported: The methods do not lend themselves to limited fluorination.
- Perfluoro(2,5-diisopropylpyrazine) (**37**) underwent further (additive) fluorination to give perfluoro(2,5-diisopropyl-3,6-dihydropyrazine) (38) $(CoF_3 + CaF_2$, 156 \degree C, substrate \downarrow dropwise, N₂: 87%; mechanism discussed).¹⁵

1,4-Dimethylpiperazine (**39**) gave perfluoro (1,4-dimethylpiperazine) (**40**) (substrate + NaF, $F_2 \downarrow$, He, $-78 \rightarrow 25^{\circ}C$: 85%); and piperazine gave perfluoropiperazine (41) (similarly but $-50 \rightarrow -10$ °C: 86%; for details, see original and references cited therein).¹³²⁴

4.1.3. Nuclear Halogenopyrazines by Deoxidative Halogenation of Pyrazine *N***-Oxides (***H* **105)**

The conversion of pyrazine *N*-oxides into *C*-chloropyrazines by phosphoryl chloride, and so on has continued to be widely used recently. It should be noted that the entering chloro substituent does not always become attached to a ring carbon adjacent to the oxide entity: it sometimes enters at another ring carbon or even at the α -position on an alkyl substituent. Typical regular and irregular examples from recent literature follow:

Pyrazine 1-oxide (42) gave 2-chloropyrazine (43) (neat POCl₃, 70^oC, substrate \downarrow portionwise, 2 h: 37%).^{1529,cf.64}

2-Chloro-3-methyl-5-phenylpyrazine 1-oxide (**44**) gave 2,6-dichloro-3-methyl-5-phenylpyrazine (45) (POCl₃, 80°C, 30 min: 93%); analogues likewise.⁵⁷

2,3-Diphenylpyrazine 1,4-dioxide (**46**) gave a separable mixture of 2,3-dichloro-5,6-diphenylpyrazine (**47**) and (unexpectedly) 2-chloro-5,6-diphenylpyrazine 1-oxide (48) (POCl₃, reflux, 1 h: 55 and 36%, respectively);¹²⁵⁰ several p, p' disubstituted substrates behaved similarly.1561

2-Chloro-5,6-dimethylpyrazine 4-oxide (**49**) gave a mixture of 2,3-dichloro-5,6 dimethylpyrazine (**50**) and 2-chloro-5-chloromethyl-6-methylpyrazine (**51**) (POCl₃, reflux, 30 min: 38 and 19%, respectively, after separation).¹²⁷²

2-Phenylpyrazine 4-oxide (**52**) gave a separable mixture of 2-chloro-3-phenylpyrazine (**53**), 2-chloro-5-phenylpyrazine (**54**), and 2-chloro-6-phenylpyrazine (**55**) (POCl3, reflux, 1 h: 39,8, and 38%, respectively).1290,1448, 1574

Also other examples. 80,82,324,503,811,891,1260,1307,1311,1377,1382,1524,1574,1582

4.1.4. Nuclear Halogenopyrazines from Pyrazinamines (*H* **112)**

The conversion of (primary) pyrazinamines into the corresponding halogenopyrazines by one-pot diazotization and treatment with halides has proven reasonably satisfactory for making some chloro-, bromo-, or fluoropyrazines; to date, iodopyrazines have not been so made, although examples may be found in other diazine series.^{1687,} ¹⁶⁸⁸ The actual procedures vary considerably, as evident in the following examples:

3-Amino-2-pyrazinecarbonitrile $(56, R = NH₂)$ gave 3-chloro-2-pyrazinecarbonitrile (56, R = Cl) (NaNO₂, HCl. NaCl, $0 \rightarrow 20^{\circ}$ C, 3 h: 29%).²⁶²

5-Benzyloxy-3-hydroxymethyl-6-isobutyl-2-pyrazinamine 1-oxide (**57**, R - CH₂OH) gave 2-benzyloxy-5-chloro-6-hydroxymethyl-3-isobutylpyrazine 4oxide (58, R = CH₂OH) (BuⁱCH₂ONO, CuCl—CuCl₂, N₂, MeCN, 20°C, 30 min: 75%);848 and methyl 3-amino-6-benzyloxy-5-isobutyl-2-pyrazinecarboxylate 4-oxide $(57, R = CO₂Me)$ gave methyl 6-benzyloxy-3-chloro-5isobutyl-2-pyrazinecarboxylate 4-oxide $(58, R = CO₂Me)$ (likewise but 90 min: 61%).337

Methyl 3-amino- $(59, R = NH₂)$ gave methyl 3-bromo-6-chloro-5-(4methylpiperazin-1-yl)-2-pyrazinecarboxylate $(59, R = Br)$ (NaNO₂, Br₂— HBr-AcOH-H₂O, 5°C, 30 min: 47%).⁶⁴⁵

5,6-Dichloro-3-nitro-2-pyrazinamine $(60, R = NH₂)$ gave 2-bromo-5,6dichloro-3-nitropyrazine (60, R = Br) (BuⁱCH₂ONO, excess CHBr₃, reflux, 8 h; then more $Bu'CH_2ONO$, reflux, 10 h: \sim 50%, crude product; mecha $nism$?).¹³¹³

5-Phenyl-2-pyrazinamine $(61, R = NH₂)$ gave 2-fluoro-5-phenylpyrazine $(61,$ $R = F$) (NaNO₂, HBF₄, H₂O, $-5 \rightarrow 20^{\circ}$ C, 2.5 h: ?%);¹⁴⁵⁷ 2-fluoropyrazine 1-oxide (17%) was made somewhat similarly.²⁷⁶

4.1.5. Nuclear Halogenopyrazines by Transhalogenation (*H* **111)**

This procedure is especially useful for converting easily available chloro- or bromopyrazines into less easily available iodo- or fluoropyrazines. Although neglected of recent years, there are several examples of the transhalogenation of chloro- into iodopyrazines.

- 2-Chloropyrazine gave 2-iodopyrazine (NaI, AcOH, H_2SO_4 , MeCN, reflux, 5 h: 80%).1613
- 2,6-Dichloropyrazine (62) gave 2,6-diiodopyrazine (63) (I₂, TsOH, 15-crown-5, $(CH)_4SO_2$, 150°C, 2 h: 38%;¹⁵⁸⁸ or HI, NaI, AcEt—H₂O, 15-crown-5, reflux, 4 days: 34%).638

- 2-Chloropyrazine $(64, X = C1)$ gave 2-fluoropyrazine $(64, X = F)$ [HF (solution?), 100° C, more HF \parallel continuously, 1 h: 61 with 34% of substrate recovered;¹⁰⁸⁶ neat Bu₄PF.HF, 100°C, 2 h: 93%;³²⁷ neat Bu₄PF.2 HF, 140°C, 23 h: 81%;327 or KF, *N*-Me-pyrrolidinone, reflux, 2.5 h: 80%].406
- 2,6-Dichloropyrazine (**62**) gave 2,6-difluoropyrazine (**65**) (neat Bu4PF.HF, 80°C, 1 h: 85%). 327

2-Chloropyrazine 1-oxide (66) gave 2-fluoropyrazine 1-oxide (67) (KF, Me₂SO, reflux, 2 days: 32%).²⁷⁶

Also other examples.¹³⁰⁷

4.1.6. Nuclear Halogenopyrazines via Trimethylsiloxypyrazines

This convenient indirect process involves conversion of a pyrazinone into the corresponding trimethylsiloxypyrazine, and thence (with phosphorus halide) into the required halogenopyrazine. For example, 5-phenyl-2(1*H*)-pyrazinone afforded crude 2-phenyl-5-trimethylsiloxypyrazine (neat $Me₃SiNHSiMe₃$, ClSiMe₃, reflux, 30 min) that reacted with an appropriate phosphorus halide to furnish 2-bromo- (neat PBr₃, 150 $^{\circ}$ C, 1 h: 77% overall), 2-chloro- (neat PCl₅, 200 $^{\circ}$ C, 1 h: 40%), or 2iodo-5-phenylpyrazine (PI₃, Cl₂CHCH₂Cl, reflux, 24 h: 12%); homologues were made similarly.1726

4.2. REACTIONS OF NUCLEAR HALOGENOPYRAZINES (*H* **121)**

Most halogenopyrazines undergo facile nucleophilic displacement of their halogeno substituent (s) ,¹²⁸⁶, thus making them ideal substrates for the preparation of other pyrazines.

The conversion of *halogeno- into alkyl- or arylpyrazines* has been discussed in Section 3.2.1.2. The other important reactions of halogenopyrazines are summarized in the following subsections.

4.2.1. Aminolysis of Nuclear Halogenopyrazines (*H* **123, 149)**

Aminolysis is the most employed reaction of halogenopyrazines. The reactivity of a halogeno substituent is unaffected by its position on the pyrazine ring and there is little difference in the reactivity of a chloro, bromo, iodo, or even a fluoro substituent. Accordingly, the nature of the attacking amine (e.g., hydrazine $>$ alkylamines $>$ ammonia $>$ arylamines in aminolytic power) and the nature, number, and disposition of other substituents in the substrate are the determing factors in the ease (or otherwise) of an aminolysis. This finding is illustrated, albeit qualitatively, in the following examples that are classified initially according to the passenger substituents in the halogenopyrazines used as substrates:

From Halogenopyrazines without Other Substituents

- 2-Chloropyrazine (69) gave 2-ethylaminopyrazine $(68, R = Et)$ (EtNH₂, EtOH, 125°C, sealed, 11 h: 75%),409 2-(but-3-ynylamino)pyrazine (**68**, $R = CH_2CH_2C \equiv CH)$ (HC=CHCH₂CH₂NH₂, Et₃N, 130°C, sealed, 24 h: $21\%)$,³⁶¹ or 2-(*o*-bromoanilino)pyrazine (68, R = C₆H₄Br-*o*) (neat *o*-BrC₆H₄NH₂, 150°C, N₂, 24 h: 27%).³⁶⁹
- 2-Chloropyrazine (69) gave 2-hydrazinopyrazine $(68, R = NH₂)$ (neat H₂NNH₂, H₂O, reflux, 40 min; then 4° C, 2 days: 70% ⁵⁹³ or H₂NNH₂, EtOH, reflux, 4 h: \sim 65%).⁶²²

- 2-Chloropyrazine (**69**) gave 1,4-di(pyrazin-2-yl)piperazine (**70**) [piperazine (0.4 mol), Et₃N, THF, 8000 atm!, 100 $^{\circ}$ C, 4 days: 96%].⁸⁵⁵
- 2-Chloropyrazine (**69**) and phenothiazine gave 10-(pyrazin-2-yl)phenothiazine (71) (KI, K₂CO₃, Cu, no solvent, 240^oC, 4 days: 80%).¹³¹⁶
- 2,6-Dichloropyrazine $(73, X = C)$ gave 2-chloro-6-hydroxyaminopyrazine (72) $(H_2NOH, EtOH, reflux, 2 h: 35\%).$ ¹¹²¹
- $2,6$ -Diiodopyrazine (73, $X = I$) gave 2-dimethylamino-6-iodopyrazine (74) (Me₂NH, MeOH, reflux, 1 h: 89%).⁶³⁸
- 2,6-Dibromopyrazine $(73, X = Br)$ and ethyl 3-pyrazolecarboxylate gave 2,6bis(3-ethoxycarbonylpyrazol-1-yl)pyrazine (75) [K, THF; then substrate \downarrow , reflux, 2 days: 60%, after separation from 2-bromo-6-(3-ethoxycarbonylpyrazol-1-yl)pyrazine (7%)].⁹⁶³

2,3-Dichloropyrazine (76) gave 2,3-dihydrazinopyrazine (77) (95% H₂NNH₂, EtOH, warm: 66% ;¹¹¹⁷ or H₂NNH₂.H₂O, EtOH, reflux, 90 min: 87%).⁷⁴⁸

3,4,5,6-Tetrachloropyrazine (**78**) gave 2,5-dichloro-3,6-diphthalimidopyrazine (79) (K-phthalimide, Me₂NCHO, 50°C, 16 h: $?%$), and thence 3,6-dichloro-2,5-pyrazinediamine (80) (H₂NNH₂, H₂O, no details but structure confirmed by X-ray analysis; note that regular aminolysis of the same substrate gave a mixture of 5,6-dichloro-2,3- and 3,5-dichloro-2,6- but no trace of 3,6 dichloro-2,5-pyrazinediamine).¹⁶⁵⁶

Also other examples.172,599,625,627,628,680,1034,1445,1513,1562,1569

From Alkyl- or Arylhalogenopyrazines

 2 -Chloro- $(81, R = C1)$ gave 2 -hydrazino-3- $(2$ -methylthioethyl)-5-phenylpyrazine (81, R = NHNH₂) (55% H₂NNH₂—H₂O, BuOH, reflux, 4 h: 92%).³¹⁵

2-Chloro-3,6-dimethylpyrazine $(82, R = C1)$ gave 2,5-dimethyl-3-(*N*-methylhydrazino)pyrazine $(82, R = NMeNH_2)$ (MeHNNH₂, K₂CO₃, BuOH, reflux, 4 h: 51%),⁷² 2-dimethylamino-3,6-dimethylpyrazine (82, R = NMe₂) [neat O=P(NMe₂)₃, N₂, 150°C, 15 h: 49%),⁷⁸⁶ or 1-(3,6-dimethylpyrazin-2-yl) indole (83) (indole, K₂CO₃, CuI, AcNMe₂, reflux, 12 h: 37%).¹⁰²

 2 -Chloro-3,6-diphenylpyrazine $(84, R = C1)$ gave 3,6-diphenyl-2-pyrazinamine $(84, R = NH₂)$ (neat PhCONH₂, K₂CO₃, ~200°C, 1 h: 70%) or 2-acetamido-3,6-diphenylpyrazine (84, $R = NHAc$) (neat AcNH₂, K₂CO₃, reflux, 14 h: 75%; the reasons for loss or retention of the acyl group are discussed); 241 analogous substrates behaved similarly. 241

2-Chloro-5,6-diphenylpyrazine $(85, R = C)$ gave 2-dimethylamino- $(85, R = C)$ $NMe₂$) (Me₂NCHO, KOH, 185 $°C$, 14 h: 78%) or 2-methylamino-5,6diphenylpyrazine (85, R = NHMe) (MeHNCHO, KOH, 155°C, 7 h: 88%).¹⁸⁵

2,3-Dibromo-5,6-diphenylpyrazine $(86, R = Br)$ gave 5,6-diphenyl-2,3pyrazinediamine $(86, R = NH₂)$ (NH₄OH, MeOH, Cu, 140^oC, sealed, 24 h: 77%).558

Also other examples in the foregoing references and elsewhere.^{632, 650}

From Halogenopyrazinamines

- *Note:* The deactivating effect of an electron-releasing amino group upon the halogeno leaving group is evident in the conditions needed for even these monoaminolyses.
- 3,5-Dibromo-2-pyrazinamine (**87**) gave 5-bromo-3-methylamino-2-pyrazinamine (88, R = Me) (MeNH₂, EtOH, 100°C, sealed, 17 h: $\frac{96}{10^{17}}$ or MeNH₂, H₂O, 130°C, sealed, 17 h: 73%),⁶⁴⁰ 5-bromo-3-hydrazino-2-pyrazinamine (88, R = NH₂) (H₂NNH₂.H₂O, H₂O, 95°C, 90 min: $\sim 20\%$),¹⁰¹⁷ or analogous products.1730

3-Bromo-2-pyrazinamine $(89, R = Br)$ gave 2,3-pyrazinediamine $(89, R =$ NH₂) (NH₃, EtOH, Cu, 140°C, sealed, 20 h: \sim 45%), 3-methylamino-2-pyrazinamine (89, R = NHMe) (MeNH₂, EtOH, Cu, 140^oC, sealed, 25 h: \sim 50%), or 3-hydrazino-2-pyrazinamine (89, $R = NHNH_2$) (100% H_2NNH_2 , 20°C, 3 days: \sim 20%).¹⁰⁰⁸

From Halogenopyrazinones

3,5-Dichloro-1-methyl-2(1*H*)-pyrazinone (90, R = Cl) gave 5-chloro-3-diethylamino- (90, $R = NEt_2$) (Et₂NH, dioxane, 50°C, 2 h: 95%),⁸⁶⁵ 5-chloro-3-hydrazino- (90, R = NHNH₂) (H₂NNH₂, dioxane, 20°C, N₂, 3 h: 65%),¹³⁷⁰ or 3-amino-5-chloro-1-methyl-2(1*H*)-pyrazinone (90, $R = NH_2$) [25% NH₄OH, dioxane, 20 $^{\circ}$ C, long standing (?): 83%];¹³⁰⁹ also analogues likewise.^{865, 1370}

1-Benzyl-3,5-dichloro-6-phenyl-2(1H)-pyrazinone $(91, R = Cl)$ gave 1-benzyl-5-chloro-3-(o -iodoanilino)-6-phenyl-2(1*H*)-pyrazinone (91, R = NHC₆H₄I- o) $(H_2NC_6H_4I-0$, NaH, THF, N₂, 20°C, 30 min; substrate \downarrow , reflux, <5 h: 78%);¹⁶⁰⁷ analogues likewise.¹⁶⁰⁷

Also other examples.^{481, 1063}

From Halogenopyrazine N-Oxides

2-Chloropyrazine 4-oxide $(92, R = C)$ gave 2-hydrazinopyrazine 4-oxide $(92,$ $R = NHNH_2$) (H₂NNH₂.H₂O, EtOH, reflux, 90 min: 77%).⁹

 $2,6$ -Dichloropyrazine 4-oxide (93, R = Cl) gave 2-chloro-6-hydrazinopyrazine $4\text{-oxide } (93, \text{R} = \text{NHNH}_2) \ (H_2\text{NNH}_2\text{H}_2\text{O}, \text{EtOH}, 20^{\circ}\text{C}, 24 \text{ h}: 69\%).$ ⁸⁹¹

Also other examples.78,80,276

From Halogenonitropyrazines

- *Note:* The powerful activation of a halogeno substituent by an appropriately placed nitro group is evident in these examples.
- 2-Chloro-3-nitropyrazine (94, R = Cl) gave 2-(2,3-dihydroxypropylamino)-3 $nitropy^i$ razine [94, R = NHCH₂CH(OH)CH₂OH] [H₂NCH₂CH(OH)CH₂OH, Et₃N, PrⁱOH, 20°C, ? h: 83%];¹³¹⁰ 2-chloro-5-nitropyrazine gave the isomeric product, 2-(2,3-dihydroxypropylamino)-5-nitropyrazine (likewise but 18 h: 79%).1310
- 2-Bromo-5,6-dichloro-3-nitropyrazine (**95**) gave 2-chloro-3,5-bis(2-hydroxyethylamino)-6-nitropyrazine (96) (HOCH₂CH₂NH₂, Et₃N, PrOH, $\leq 10 \rightarrow$ 20 \degree C, 1 h: 30%).¹³¹³

From Halogenopyrazinecarbonitriles

3-Chloro-2-pyrazinecarbonitrile $(97, R = C)$ gave a separable mixture of 3-amino- $(97, R = C)$ and 3-methoxy-2-pyrazinecarbonitrile $(97, R = OMe)$ (NH₃, MeOH, $\leq 4^{\circ}$ C, 4 h; then 20[°]C, 25 h: 16 and 67%, respectively).¹⁵⁵⁶

3-Amino-5-chloro-2,6-pyrazinedicarbonitrile (**99**) gave 3-amino-5-hydrazino-2,6-pyrazinedicarbonitrile (98) (H₂NNH₂.H₂O, EtOH, reflux, 5 min: 62%), and thence 3,6-diamino-1*H*-pyrazolo[3,4-*b*]pyrazine-5-carbonitrile (**100**) reflux prolonged to 1 h: 74%).¹¹⁸⁰

5,6-Dichloro-2,3-pyrazinedicarbonitrile (**101**) gave 5-amino-6-chloro- (**102**, $Q = NH_2$, $R = Cl$) [NH₃ \downarrow , Me₂NCHO, -10°C, 15 min: 61%;¹³⁹³ (NH_4) ₂CO₃, Me₂NCHO, 20^o, 8 h: 56%;¹³⁹³ or NH₃, THF, <5 \rightarrow 20^oC, until substrate gone (TLC): 93%],¹⁵⁹⁸ 5-chloro-6-methylamino- (102, Q = Cl, R = NHMe) [MeNH₂, THF, $\leq 5 \rightarrow 20^{\circ}$ C, until substrate gone (TLC): 81%],¹⁵⁹⁸ 5anilino-6-chloro- (102, Q = NHPh, R = Cl) (PhNH₂, likewise: 98%),¹⁵⁹⁸ or 5,6-dimorpholino-2,3-pyrazinedicarbonitrile $[102, Q = R = N(CH_2CH_2)_2O]$ [HN(CH₂CH₂)₂O (excess), dioxane, $5 \rightarrow 20^{\circ}$ C, 5 h: 69%];⁵³⁰ also analogues likewise.530,1289,1301,1598,1639,1745

From Halogenopyrazinecarboxylic Acids or Related Substrates

5,6-Dichloro-2,3-pyrazinedicarboxylic acid $(103, R = C)$ gave 5-amino-6chloro-2,3-pyrazinedicarboxylic acid (103, $R = NH_2$) [NH₃ (liquid), 130°C, autoclave, 24 h: 88%; dangerously close to the critical temperature of ammonia?].⁹⁴⁷

Methyl 3-amino-6-bromo-5-chloro-2-pyrazinecarboxylate $(104, R = C)$ gave methyl 3-amino-6-bromo-5-(2-dimethylaminoethylamino)-2-pyrazinecarboxylate (104, R = NHCH₂CH₂NMe₂) (H₂NCH₂CH₂NMe₂, PrⁱOH, reflux, 24 h: 87%, as hydrochloride; it is interesting that the ester grouping survived such vigorous aminolytic conditions).808

3-Chloro-5-cyano-2-pyrazinecarboxamide (105, R = Cl) gave 5-cyano-3-diethylamino- (105, $R = NEt_2$) (Et₂NH, PhH, reflux, 1 h: 74%; also homologes),⁵⁰⁷ 5-cyano-3-cycloheptylamino- $[105, R = NHCH(CH_2)_6]$ $[H_2NCH(CH_2)_6,$ PhMe, reflux, 1 h: 84%],⁵¹⁰ or 3-anilino-5-cyano-2-pyrazinecarboxamide $(105, R = NHPh)$ (PhNH₂, PhH, reflux, 1 h: 84%; also substituted-anilino analogues).508

2-Benzoyl-3-chloropyrazine (106, R = Cl) gave 3-benzoyl-2-pyrazinamine $(106, R = NH₂)$ (NH₃, EtOH, 120°C, sealed: 63%).¹⁰⁹²

Also other examples.645,1091

4.2.2. Hydrolysis of Nuclear Halogenopyrazines (*H* **138, 150)**

The hydrolysis of halogenopyrazines to pyrazinones has never been used much, perhaps because most halogenopyrazines are themselves made from pyrazinones. Such hydrolysis can be done under acidic or basic conditions but sometimes it seems to be more rewarding to proceed in two stages via an alkoxy intermediate. The following examples illustrate all three hydrolytic procedures:

By Acidic Hydrolysis

2-Chloro-3,6-dipropylpyrazine $(107, R = Pr)$ gave 3,6-dipropyl-2 $(1H)$ -pyrazinone (108, R = Pr) (6 M HCl, reflux, 90 min: 94% ;¹³¹¹ in contrast, 2-chloro-3,6-dimethylpyrazine $(107, R = Me)$ gave 3,6-dimethyl-2 $(1H)$ -pyrazinone $(108, R = Me)$ (likewise: only 9%).¹²⁷²

By Alkaline Hydrolysis

2-Chloro-3-isobutyl-6-isopropylpyrazine 1-oxide (**109**) gave 1-hydroxy-3 isobutyl-6-isopropyl-2(1*H*)-pyrazinone (110) (KOH, H_2O —MeOH, reflux, 2 h: 84%);⁹² homologues likewise.¹²⁵⁰

2-Chloro-3-isobutylpyrazine 4-oxide gave 3-isobutyl-2(1*H*)-pyrazinone 4-oxide $(111, R = Bu^i)$ (5 M NaOH, reflux, 2 h: 39%);⁸⁶ 2-chloro-3-phenylpyrazine 4-oxide gave 3-phenyl-2(1*H*)-pyrazinone 4-oxide (111, $R = Ph$) (KOH, H₂O-EtOH, reflux, 1 h: 30%);¹²⁹⁰ also analogues likewise.¹²⁹⁰

3-Chloro-2-pyrazinecarboxylic acid gave 3-oxo-3,4-dihydro-2-pyrazinecarboxylic acid (0.5 M NaOH, reflux, 1 h: $>95\%$).¹²⁷¹

Also other examples.^{80, 1309, 1565}

By Alcoholysis and Subsequent Hydrolysis

2,5-Dichloro-3,6-diethylpyrazine 1,4-dioxide (**112**) gave 3,6-diethyl-1,4-dihydroxy-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (**114**), presumably via the dimethoxy intermediate (**113**) (MeONa, dioxane, 110°C (reflux?), 4 h; then 10 M HCl \downarrow : 52%).¹²⁸³

2-Chloro-3,6-diisopropylpyrazine gave 3,6-diisopropyl-2-methoxypyrazine [Me-ONa, MeOH (?), 120°C, sealed, 3 h: 99%], and hence 3,6-diisopropyl-2(1*H*) pyrazinone (10 M HCl, reflux, 90 min: 97%).¹³¹¹

4.2.3. Alcoholysis or Phenolysis of Nuclear Halogenopyrazines (*H* **133)**

Alcoholysis of halogenopyrazines is the usual way to make alkoxypyrazines. The alkoxide ion is such a good nucleophile that it tends to replace all halogeno substituents in the substrate, irrespective of their state of activation. However, reasonable selectivity is usually possible by judicious control of the molecular ratio of reactants and of the conditions employed. Phenolysis is often less facile. The following examples illustrate typical conditions required and the relatively small effects of activating or deactivating passenger groups in the halogeno substrate:

From Halogenopyrazines without Other Substituents

2-Chloropyrazine (115) afforded 2-methoxypyrazine $(116, R = OMe)$ (MeONa, MeOH, reflux, 2 h: $92\%)$,²³² 2-tert-butoxypyrazine (116, R = Bu^r) (Bu^rOK, $Me₂NCHO$, $0 \rightarrow 20^{\circ}C$, \sim 1 h: 80%),⁶⁴ 2-(but-3-ynyloxy)pyrazine (116, R = $CH_2CH_2C \equiv CH$ (NaOCH₂CH₂C=CH, HOCH₂CH₂C=CH, 80°C, 2 h: 52%),³⁶¹ or 2-(*o*-bromophenoxy)pyrazine (116, $R = C_6H_4Br-o$) (NaOC₆ H₄Br-*o*, 140°C, 24 h: 47%).³⁶⁹

2,6-Diiodopyrazine $(117, R = I)$ gave 2-iodo-6-methoxypyrazine $(117, R =$ OMe) (MeONa, MeOH, 20°C, 15 h: 98%;¹⁵⁸⁸ or MeONa, MeOH, reflux, 3.5 h: 98%). 638

Also other examples.360,867,1068,1186,1199,1587

From Alkyl- or Arylhalogenopyrazines

 2 -Chloro-3,5-diphenylpyrazine $(118, R = Cl)$ gave 2 -methoxy-3,5-diphenylpyrazine $(118, R = OMe)$ (MeONa, MeOH, reflux, 3 h: 97%); homologues likewise.¹³⁰⁷

 2 -Chloro-3,6-diphenylpyrazine (119, $R = Cl$) gave 2 -ethoxy-3,6-diphenylpyrazine (119, $R = OEt$) (EtONa, EtOH, reflux, 4 h: $89\%)^{82}$ or 2-phenoxy-3, 6-diphenylpyrazine (119, $R =$ OPh) [(PhO)₃PO, KOH, Me₂NCHO, reflux, 1 h: 81%; substituted-phenoxy analogues were made likewise].¹⁹²

- 2-Chloro-3,6-dimethylpyrazine gave 2,5-dimethyl-3-(2,2,2-trifluoroethoxy)pyrazine [NaOCH₂CF₃ (prepared *in situ*), (Me₂N)₃PO, 150°C, 12 h: 54%].⁷⁸⁷
- 2,5-Dichloro-3,6-dimethylpyrazine $(120, R = C)$ gave 2,5-dimethoxy- $(120, R = C)$ OMe) (MeONa, MeOH, 120°C, sealed, 14 h: 73%)¹³⁹² or 2,5-dibenzyloxy-3,6dimethylpyrazine $(120, R = OCH_2Ph)$ (PhCH₂ONa, PhCH₂OH, 160°C, sealed, 7 h: 51%).⁸⁰

Also other examples.295,298,310,312,812,1260,1334,1437,1448,1564,1582,1645

From Halogenopyrazinamines

 3 -Chloro-2-pyrazinamine $(121, R = C1)$ gave 3 -benzyloxy-2-pyrazinamine $(121, R = OCH₂Ph)$ (PhCH₂ONa, PhCH₂OH, "warmed", 72 h: 58%; sometimes accompanied by a separable byproduct, 2-benzylamino-3-benzyloxypyrazine (122) , in small amount.^{1567, cf. 616}

 $3,5$ -Dibromo-2-pyrazinamine $(123, R = Br)$ gave 3-benzyloxy-5-bromo-2pyrazinamine $(123, R = OCH₂Ph) (PHCH₂ONa, PhCH₂OH, reflux, 4 h:$ 51% ;⁶⁶¹ also analogues likewise.⁶⁶¹

Also other examples.1012,1198

From Halogenopyrazinones

3,5-Dichloro-1-methyl-2(1*H*)-pyrazinone (**124**) gave 5-chloro-3-ethoxy- (**125**, $R = Et$) (EtONa, EtOH, 20°C, 2 h: 79%)¹³⁰⁹ or 5-chloro-3-methoxy-1methyl-2(1*H*)-pyrazinone (125, $R = Me$) (MeONa, MeOH, 20 $^{\circ}$ C, 10 min: $>95\%$;³⁷⁰ analogues likewise.³⁷⁰

3,6-Dibromo-1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**126**, R - Br) gave 3,6-dimethoxy-1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione $(126, R = OMe)$ (MeOH, Et₃N, 0°C, ? h: 85%).¹⁰⁷¹

Also other examples.395, 481, 956

From Halogenopyrazine N-Oxides

2-Chloro- $(127, R = C)$ or 2-fluoropyrazine 1-oxide $(127, X = F)$ gave 2methoxypyrazine 1-oxide (**128**) [MeONa, MeOH, reflux 45 min: 85% (from chloro substrate); or MeONa, MeOH, 20°C, 10 min: 91% (from fluoro substrate) $]^{276}$

 2 -Chloro-6-phenylpyrazine 4 -oxide $(129, R = Cl)$ gave 2 -methoxy-6phenylpyrazine 4-oxide (129, R = OMe) (MeONa, MeOH, reflux, 20 h: 86%).46

Also other examples.329, 848, 1272

From Halogenopyrazinecarbonitriles

3-Chloro-2-pyrazinecarbonitrile (**130**) gave 3-(3-*tert*-butylamino-2-hydroxypropoxy)-2-pyrazinecarbonitrile (131) [NaOCH₂CH(OH)CH₂NHBu^t (made *in situ*), Me₂NCHO, 70 $^{\circ}$ C, 18 h: 83% $\frac{1594}{1594}$ or analogous substituted-phenoxy derivatives.¹⁰¹⁰

 3 -Amino-5-chloro-2-pyrazinecarbonitrile $(132, R = Cl)$ gave 3 -amino-5methoxy-2-pyrazinecarbonitrile $(132, R = OMe)$ (MeONa, MeOH, reflux, 6 h: 77%).683

Also other examples.^{608,1256}

From Halogenopyrazinecarboxylic Esters or Amides

Ethyl 5-chloro-2-pyrazinecarboxylate $(133, R = Cl)$ gave ethyl 5-methoxy-2pyrazinecarboxylate (133, R = OMe) (MeONa, MeOH, reflux, 20 min: 40%).1681

Methyl 6-benzyloxy-3-chloro-5-isobutyl-2-pyrazinecarboxylate 4-oxide (**134**, $R = Cl$) gave methyl 6-benzyloxy-5-isobutyl-3-methoxy-2-pyrazinecarboxylate 4-oxide (134, R = OMe) (MeONa, MeOH, 20°C, 30 min: 71%).³³⁷

5-Chloro-2-pyrazinecarboxamide $(135, R = C)$ gave 5-methoxy-2-pyrazinecarboxamide (135, R = OMe) (MeONa, MeOH, reflux, 2 h: 94%).¹⁶⁸¹

Also other examples.¹²⁷¹

4.2.4. Thiolysis of Nuclear Halogenopyrazines (*H* **141)**

The conversion of halogenopyrazines into pyrazinethiones is usually done either with sodium hydrogen sulfide solution or by initial treatment with thiourea and subsequent hydrolysis of the intermediate isothiouronium salt (frequently unisolated). A third method, involving treatment of the halogeno substrate with thiosulfate, has proven promising in some heterocyclic series but not so far in the pyrazines: 2 chloropyrazine did so give $2(1 H)$ -pyrazinethione but only in 20% yield.¹³⁵⁸

Using Sodium Hydrogen Sulfide

3-Chloro-2-pyrazinecarboxamide (**136**) gave 3-thioxo-3,4-dihydro-2 pyrazinecarboxamide (137) (NaHS, EtOH-Me₂NCHO, 100°C, 5 h: 85%);⁵⁰³ the isomeric 6-thioxo-1,6-dihydro-2-pyrazinecarboxamide (84%) was made in a similar way.503

- Methyl 6-chloro-2-pyrazinecarboxylate 4-oxide gave methyl 6-thioxo-1,6-dihydro-2-pyrazinecarboxylate 4-oxide (**138**) (NaHS, EtOH, 20°C, 3 h: 46%).89
- 2-Chloropyrazine gave 2(1*H*)-pyrazinethione [NaHS/MeOH (made *in situ*), reflux, 1 h: 91%].1602

2-Chloropyrazine 1-oxide (**139**) gave a separable mixture of 1-hydroxy-2(1*H*) pyrazinethione (140) and bis (pyrazin-2-yl) sulfide (141) ($Na₂S$) gradually, dioxane, 20° C, ? h: 21 and 33%, respectively).²⁷⁶

Also other examples.262,811,858,1076,1211

Using Thiourea

3,5-Dichloro-1-methyl-2(1*H*)-pyrazinone (**142**) gave 5-chloro-3-isothiouronio-1-methyl-2(1*H*)-pyrazinone hydrochloride (143) $[H_2NC(=S)NH_2, EtOH,$ 20°C, 3 h: 71%], and thence 5-chloro-1-methyl-3-thioxo-3,4-dihydro-2(1*H*) pyrazinone (144) (2.5 M NaOH, reflux, 1 h: 75%);¹³⁸¹ analogues likewise.¹³⁸¹

3-Amino-5-chloro-2,6-pyrazinedicarbonitrile gave an uncharacterized isothiouronium compound $[H_2NC(\equiv S)NH_2, EtOH, reflux, 1 h]$, and thence 3amino-5-thioxo-4,5-dihydro-2,6-pyrazinedicarbonitrile (145) (10% Na₂CO₃, reflux, 1 h: 50% overall).¹¹⁸⁰

2-Chloro-3-phenylpyrazine (**146**) gave 3-phenyl-2(1*H*)-pyrazinethione (**147**) [H₂NC(=S)NH₂, H₂SO₄, EtOH-H₂O, 95°C, 75 min; 10 M NaOH \downarrow to pH 2.5: 80%].1033

Also other examples.¹¹²⁶

4.2.5. Alkanethiolysis or Arenethiolysis of Nuclear Halogenopyrazines (*H* **139)**

Like alcoholysis, alkanethiolysis of halogenopyrazines occurs readily but it is usually possible to achieve regioselectivity from di- or polyhalogenopyrazines. The following examples illustrate typical conditions employed and yields to be expected in the presence of various types of passenger groups:

From Halogenopyrazines without Other Substituents

2-Chloropyrazine (149) gave 2-hexadecylthiopyrazine (148, $R = C_{16}H_{33}$) $[C_{16}H_{33}SNa$ (made *in situ*), Me(OCH₂CH₂)₄OMe, 108[°]C, 3 h: 69%),¹³⁶⁰ 2-cyclohexylthiopyrazine $[148, R = HC(CH_2)_5]$ $[(CH_2)_5CHSNa, MeOH, reflux,$ 5 h: 86%],³¹⁸ or 2-(*o*-aminophenylthio)pyrazine (148, R = C₆H₄NH₂-*o*) (*o*- $HSC_6H_4NH_2$, EtONa, EtOH, reflux, 16 h: 90%).³⁶⁹

2-Chloropyrazine (**149**) gave 2-(pyridin-2-ylthio)pyrazine (**150**) [2(1*H*) pyridinethione, K_2CO_3 , Me₂NCHO, reflux, 4 h: 60%];¹²⁶ several other (heteroarylthio)pyrazines were made by essentially similar reactions.^{111, 684, 698, 871}

2,3-Dichloropyrazine gave 2-(*o*-aminophenylseleno)-3-chloropyrazine (**151**) $[(o-H_2NC₆H_4Se)₂Zn, HCl]$ to pH 3, EtOH, reflux, 5 min: ?%],³⁵¹ 2,3-bis(2dimethylaminoethylthio)pyrazine (152) (Me₂NCH₂CH₂SH.HCl, Bu'OK. Bu^{*t*}OH, reflux, 22 h: \sim 6% as dihydrobromide, after purification), 1033 or other such products.⁶⁰⁰

2,3,5-Trichloropyrazine gave 2-chloro-5,6-bis(4,6-diaminopyrimidin-5-ylthio) pyrazine (153) [4,6-diamino-5-pyrimidinethiol, KOH, AcNMe₂—H₂O, reflux, 4 h: 93% (based on the pyrimidinethiol?)].¹³¹²

Also other examples,¹⁶⁰² including use of K-Selectride $+$ alkanethiol.¹⁷³⁸

From Alkylhalogenopyrazines

 2 -Chloro-3-methylpyrazine (154, $R = Cl$) gave 2-methyl-3-methylthiopyrazine $(154, R = SMe)$ MeSNa, EtOH, $20^{\circ}C \rightarrow$ reflux, 2 h: 92%), 2-ethoxycarbonylmethylthio-3-methylpyrazine $(154, R = \text{SCH}_2\text{CO}_2\text{Et})$ [NaSCH₂CO₂Et (made *in situ*), likewise: 91%), or analogues.¹¹²⁶

 2 -Chloro-3,6-dimethylpyrazine (155, $R = Cl$) gave 2,5-dimethyl-3-phenylthiopyrazine (155, R = SPh) [PhSNa (made *in situ*), Me₂SO, reflux, 5 h: 54%].318

Also other examples.^{956, 1260}

From Halogenopyrazinamines

5-Bromo-2-pyrazinamine (**156**) gave 5-benzylthio-2-pyrazinamine (**157**) [PhCH₂SNa (made *in situ*), Me₂NCHO, 20 $^{\circ}$ C, 48 h: 93%];¹⁵⁶⁵ the same substrate (156) gave bis(5-aminopyrazin-2-yl) sulfide (NaHS, Me₂NCHO, reflux, 24 h : ~ 40%).¹⁵⁶⁵

 $3,5$ -Dibromo-2-pyrazinamine $(158, R = Br)$ gave 5-bromo-3-methylthio-2pyrazinamine (158, R = SMe) (MeSNa, MeOH, 20°C, 3 h: $\sim 60\%$).¹⁰¹² Also other examples.⁶⁰⁵

From Halogenopyrazine N-Oxides

2-Chloro- $(159, X = C)$ or 2-fluoropyrazine 1-oxide $(159, X = F)$ gave 2-ethylthiopyrazine 1-oxide (**160**) (EtSH, Na, THF, 25°C, 10 h: 83%; or EtSH, Na, THF, 25°C, 30 min: 89%; respectively).276

2,5-Dichloropyrazine 1-oxide gave a separable mixture of 2-benzylthio-5 chloropyrazine 1-oxide $(161, R = C)$ and 2,5-bisbenzylthiopyrazine 1-oxide $(161, R = \text{SCH}_2\text{Ph})$ (PhCH₂SH, EtONa, Me₂NCHO, 20^oC, 1 h: 75% and \sim 5%, respectively).¹⁵⁶⁵

From Halogenopyrazinecarboxylic Acid Derivatives

3-Chloro-5-cyano-2-pyrazinecarboxamide (**162**) gave 5-cyano-3-ethylthio- (**163**, $R = Et$) (EtSH, Et₃N, Et₂O, reflux, <7 h: 43%) or 5-cyano-3-phenylthio-2pyrazinecarboxamide $(163, R = Ph)$ (PhSH, Et₃N, PhH, reflux, <7 h: 78%);⁵⁰³ also related products similarly.^{503, 505}

2-Chloro-3-propionylpyrazine (164, R = Cl) gave 2-ethylthio-3-propionylpyrazine (164, R = SEt) (EtSH, EtONa, EtOH, 20°C, 4 h: 87%).⁸¹⁵

5,6-Dichloro-2,3-pyrazinedicarbonitrile (**165**) gave 5,6-bisethylthio- (**166**, R - Et) (EtSH, pyridine, AcMe, 20°C, 18 h: 75%) or 5,6-bisbenzylthio-2,3 pyrazinedicarbonitrile (166, $R = CH_2Ph$) (PhCH₂SH, pyridine, AcMe, 20°C, 2 h: 85%).¹⁰⁴⁹

3-Chloro-5-dimethylaminomethyleneamino- $(167, R = C)$ gave 3-dimethylaminomethyleneamino-5-ethoxycarbonylmethylthio-2,6-pyrazinedicarbonitrile (167, $R = \text{SCH}_2\text{CO}_2\text{Et}$) (HSCH₂CO₂Et, EtONa, MeOH—Me₂NCHO, -70 °C, 1 h: 85%).⁷⁷⁵

Also other examples.858, 1180, 1205, 1211

4.2.6 Azidolysis of Nuclear Halogenopyrazines (*H* **132)**

It should be remembered that nearly all azidopyrazines exist in equilibrium with their tetrazolo[1,5-*e*]pyrazine forms (**168**): however, all such compounds are called azidopyrazines here. The following examples show the conditions and yields for typical transformations of halogeno- into azidopyrazines:

2-Chloro-3,6-dimethylpyrazine (**169**) gave 2-azido-3,6-dimethylpyrazine (**170**) (NaN₃, Me₂NCHO, reflux, 10 h: 83% ;¹³¹⁴ or NaN₃, Me₂NCHO, 100^oC, 24 h: 80%);231 also analogous products.232, 242, 1314

2,6-Dichloro- (171, $R = Cl$) gave 2,6-diazidopyrazine (171, $R = N_3$) (NaN₃, Me₂SO, 60° C, 3 h: 84%; impact/heat explosive);¹¹²⁴ 2,3-dichloro- gave 2,3diazido-5,6-diphenylpyrazine (NaN₃, Me₂NCHO, 20°C, 48 h: 82%;¹⁵⁶¹ or 80°C, 2.5 h: 92%);²³¹ also other analogues likewise.^{231, 1561}

2-Chloro- $(172, R = Cl)$ or 2-fluoropyrazine l-oxide $(172, R = F)$ gave 2-azidopyrazine 1-oxide (172 R = N_3) (NaN₃, H₂O—AcMe, 20°C, 48 h: 72 or 80%, respectively).277

Methyl 3-chloro-2-pyrazinecarboxylate $(173, R = C)$ gave methyl 3-azido-2pyrazinecarboxylate $(173, R = N_3)$ (NaN₃, Me₂NCHO, 120^oC, N₂, 1 h: 68%).⁵⁴

Also other examples.1180, 1678

4.2.7. Hydrogenolysis of Nuclear Halogenopyrazines (*H* **121, 152)**

The displacement of nuclear halogeno substituents in favor of hydrogen is usually done by catalytic hydrogenation in the presence of a base under a variety of conditions. However, it can be done in other ways, notably by treatment with sodium formate in the presence of tetrakis(triphenylphosphino)palladium (the Helquist method¹⁶⁹⁷ for hydrogenolysis of halogenoarenes). The following examples typify the various procedures used recently in the pyrazine series.

3-Bromo-5-methyl-2-pyrazinamine (**174**) gave 5-methyl-2-pyrazinamine (**175**) $(H_2, Pd/C, Et_3N, MeCN, 20^{\circ}C, < 20$ min; or in AcOEt; or in MeOH/KOH; yields all $>97\%$).¹¹²⁵

5-Chloro-3-methoxy-1-phenyl-2(1*H*)-pyrazinone (176, $R = Cl$) gave 3-methoxy-1-phenyl-2(1*H*)-pyrazinone (176, R = H) (H₂, Pd/C, K₂CO₃, MeOH, 20 \degree C, 90 min: >95%).³⁷⁰

Methyl 3-bromo-6-chloro-5-(4-methylpiperazin-1-yl)-2-pyrazinecarboxylate (**177**) gave methyl 6-chloro-5-(4-methylpiperazin-1-yl)-2-pyrazinecarboxylate (178) (H₂, Pd/C, THF, 20 $^{\circ}$ C, 2 days: 70%; note selective debromination and intramolecular supply of the base). 645

2-Chloro-3,6-diisobutylpyrazine (**179**) gave 2,5-diisobutylpyrazine (**180**) $[Pd(PPh_3)_4, HCO_2Na, Me_2NCHO, 100^{\circ}C, A, 2 h: 89\%;$ note lack of H₂]; analogues likewise.²⁴⁵

Both 2-chloro-3,6-diisobutylpyrazine 1-oxide (**181**) and the isomeric 4-oxide (**183**) gave 2,5-diisobutylpyrazine 1-oxide (**182**) $[Pd(PPh_3)_4, HCO_2Na,$ Me₂NCHO, 100° C, A, 2 h: 90 and 87%, respectively; note survival of the oxide entity);²⁴⁵ also analogous dechlorinations.^{245, 317, 1377} However, if HCO₂Na was replaced by $MeCO₂Na$, hydrogen appeared to be necessary for dehalogenation.290

2-Chloropyrazine gave piperazine (Ca, excess of MeOH, reflux, briefly; then 20 $^{\circ}$ C, 12 h: ?%; note additional ring reduction).¹⁴¹³

Also other examples.80, 288, 395, 808, 1286, 1290, 1307, 1396, 1506

4.2.8. Cyanolysis of Nuclear Halogenopyrazines (*H* **144)**

The displacement of a nuclear halogeno substituent by a cyano group can be done fairly readily in the pyrazine series, usually by treatment with cuprous cyanide, potassium cyanide plus cuprous iodide, or potassium cyanide in the presence of a palladium catalyst. The following examples illustrate these procedures:

2-Chloro-3-dimethylamino-6-nitropyrazine (**184**) gave 3-dimethylamino-6-nitro-2-pyrazinecarbonitrile (185) (CuCN, Me₂NCHO, 155°C, 18 h: 62%).¹³¹³

 $3,5$ -Dibromo-2-pyrazinamine (186, $R = Br$) gave selectively 3-amino-6-bromo-2-pyrazinecarbonitrile (186, $R = CN$) (CuCN, NaCN, Me₂NCHO, 120°C, 2.5 h: 64%).²²²

 $3-B$ romo-5-methyl-2-pyrazinamine 4 -oxide $(187, R = Br)$ gave 3 -amino-6methyl-2-pyrazinecarbonitrile 1-oxide $(187, R = CN)$ (CuCN, NaCN, Me₂NCHO, 110^oC, \downarrow reflux, 4 h: 59%).¹⁵⁰⁸

3,5-Dichloro-1-methyl-2($1H$)-pyrazinone (188, R = Cl) gave selectively 6 $chloro-4-methyl-3-oxo-3,4-dihydro-2-pyrazinecarbonitrile$ (188, $R = CN$) [CuCN, 1-methyl-2-pyrrolidinone (solvent), 150°C, 6 h: 68%].³⁷⁰

5-Chloro-2-pyrazinamine (189, R = Cl) gave 5-amino-2-pyrazinecarbonitrile $(189, R = CN)$ (KCN, CuI, 18-crown-6, Me₂NCHO, 20°C, \downarrow reflux, 2 h: 88%).1523

2-Chloro-3,6-diisobutylpyrazine (**190**) gave 3,6-diisobutyl-2-pyrazinecarbonitrile (191) [KCN, Pd(PPh₃)₄, Me₂NCHO, reflux, A, 2.5 h: 77%]; homologues likewise.¹⁹⁰

4.2.9. Miscellaneous Displacement Reactions of Nuclear Halogenopyrazines (*H* **142)**

Several little-used but potentially useful displacement reactions are typified in the following examples:

2-Chloro-3,6-dimethylpyrazine (**192**) gave methyl 3,6-dimethyl-2-pyrazinecarboxylate (193) $\{CO (40 \text{ kg/cm}^2), \text{MeOH}, \text{Et}_3\}$, Pd[PhCH=CHC (=0)CH=CHPh]₂, Ph₃P, 150°C, autoclave, 16 h: 85%}.^{224, cf. 1222}

2-Chloropyrazine (194, $R = Cl$) gave a separable mixture of *N*,*N*-diethyl-2pyrazinecarboxamide $(194, R = \text{CONF}_{t_2})$ and 2-diethylaminopyrazine $(194,$ $R = NEt_2$) (as in preceding example but Et₂NH, 120°C: 85 and 8%, respectively).224, cf. 1222

2-Chloropyrazine gave 2-bis(trifluoromethyl)aminooxypyrazine (**195**) {Hg- $[ON(CF_3)_2]_2$ (made *in situ*), $Cl_2FCCClF_2$ (solvent), 50°C, sealed, 3 days: 22%}.1319

2,6-Dichloropyrazine gave 2-chloro-6- $[m$ -methoxy- α , α -(trimethylenedithio)benzyl]pyrazine (**196**), the acetal of an acylpyrazine [2-(*m*-methoxyphenyl)- 1,3-dithiane anion (made *in situ*), 2-Me—THF, $-100 \rightarrow 20^{\circ}$ C: 14%].¹⁴⁸²

2-Chloropyrazine gave several Ni or Pd complexes.^{566, 581}

Also other examples.374, 882

(**196**)

4.2.10. Fission, Rearrangement, or Cyclocondensation of Nuclear Halogenopyrazines

Halogenopyrazines undergo the occasional ring fission or rearrangement as well as a variety of useful cyclocondensations to afford annelated derivatives. Such reactions are typified in the following examples:

Fission

2,2,5,5-Tetrafluoro-3,6-bis(heptafluoroisopropyl)-2,5-dihydropyrazine (**197**) gave a separable mixture of perfluoro-[3-methyl-2-(methyleneamino)but-1-ene] (**198**) and the gas, perfluoroisobutylronitrile (**199**) $[h\nu(254 \text{ nm}), 2 \text{ weeks: } 38]$ and 35% , respectively].¹⁷

Rearrangement

1,4-Dibromo-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**200**) gave crude 3,6 dibromo-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**201**), characterized by ethanolysis to 3,6-diethoxy-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**202**) [$h\nu$, CH₂Cl₂, 20 $^{\circ}$ C, 8 h: unstable crude solid (identified by NMR and Br analysis); then EtOH, 20°C, 12 h: 3%, after separation from several products of ring fission].569

Cyclocondensations

- 2,3-Dichloropyrazine $(204, R = H)$ gave 1,3-dithiolo $[4,5-b]$ pyrazine-2-thione (203) [(KS)₂C=S (made *in situ*), Me₂NCHO, 45^oC, 3 days: 60%]; analogues likewise.²⁶⁴
- 2,3-Dichloropyrazine $(204, R = H)$ gave 8-chloro-10*H*-pyrazino[2,3-*b*] $[1, 4]$ benzothiazine (205) $[2$ -amino-4-chloro(thiophenol), Et₃N, Me₂NCHO, 20°C, 5 h, then 150°C, 6 h: intermediate 2-(2-amino-4-chlorophenylthio)-

3-chloropyrazine (57%); then neat intermediate, 220 \degree C, 2 h: 47%1: \degree ⁶⁰⁰ also some aza and oxa analogues likewise but without isolation of intermediates.777, 1268

- 5,6-Dichloro-2,3-pyrazinedicarbonitrile $(204, R = CN)$ gave 1,3-diphenyl-1*H*pyrazino[2,3-*e*][1,3,4]oxadiazine-6,7-dicarbonitrile (**206**) (BzHNNHPh, Et₃N, Me₂NCHO, 20^oC, 3 h: 53%),⁷⁶¹ pyrazino[2,3-*b*]pyrazine-2,3,6,7tetracarbonitrile (**207**) via oxidation of its unisolated 1,4-dihydro derivative $[NCC(NH₂)=^C(NH₂)CN: 90%$ (dihydro); then dichlorodicyanobenzoquinone oxidation (for details, see original)],⁸²⁵ or pyrido[1',2':1,2]imidazo[4,5-*b*]pyrazine-2,3-dicarbonitrile (**208**) (2-pyridinamine, dioxane, 20°C, 24 h: 79%; analogues likewise). 1390
- 5-Amino-6-chloro-2,3-pyrazinedicarbonitrile $(210, R = H)$ also gave the foregoing product (**208**) [pyridine, 20°C, 24 h: 73%; perhaps via aerial oxidation of the intermediate (211) ¹³⁹³ or 5,10-dihydrodipyrazino[2,3-*b*:2',3'-*e*]pyrazine $(209, R = H)$ (Et₃N, Me₂NCHO, reflux, 10 h: 78%);¹⁵⁹⁸ several 5,10-dialkyl analogues (209, $R =$ alkyl) were made similarly.¹⁵⁹⁸

3,5-Dibromo-2-pyrazinamine (**212**) and ethyl acetoacetate gave ethyl 2-bromo-6-methyl-5*H*-pyrrolo^{[2,3}-*b*]pyrazine-7-carboxylate (213) (EtONa, Me₂NCHO, 90°C, 2 h: 45% net).965

Also other examples.349, 530, 1277

4.3. PREPARATION OF EXTRANUCLEAR HALOGENOPYRAZINES (*H* **114)**

The formation of halogenoalkyl- or halogenoarylpyrazines by *direct halogenation of alkyl- or arylpyrazines* (Section 3.2.4.3), by *chlorodeoxygenation of pyrazine N-oxides* (Section 4.1.3), by *primary synthesis* (Chapters 1 and 2), or by other *passenger processes* (such as halogenoalkylation: Chapters 3–8) have been discussed elsewhere as indicated. Most other extranuclear halogenopyrazines have been made from the corresponding hydroxy (or acetoxy) derivatives or by minor procedures as detailed in the following subsections.

4.3.1. Extranuclear Halogenopyrazines from Corresponding Hydroxypyrazines

A variety of reagents have been used to achieve this transformation, as illustrated in the following classified examples:

Using Halogen and Triphenylphosphine

3-(2-Hydroxyethyl)- (**214**) gave 3-(2-bromoethyl)-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione (215) (Br₂, PPh₃, Me₂NCHO, $0 \rightarrow 5^{\circ}C$, 12 h: 87%);⁷⁹² 3-benzyl-6-(2-bromoethyl)-3-methyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (**216**) (84%) was made similarly.⁸¹³

Using Halide Ion (on an Acyloxy Substrate)

2-Benzyloxy-3-isobutyl-6-mesyloxymethyl- (**217**) gave 2-benzyloxy-6-iodomethyl-3-isobutyl-5-methoxypyrazine 4-oxide (**218**) (Bu4NI, PhH, 20°C, dark, 90 min: $>95\%$).⁸⁴⁸

2-Isopropyl-3,6-dimethoxy-5-(2-tosyloxyethyl)-2,5-dihydropyrazine (**219**, R - OTs) gave 2-(2-iodoethyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine $(219, R = I)$ (NaI, AcMe, reflux, 2 h: 95%).¹⁶¹⁴

Also other examples.1259

Using Thionyl Halide

 $2-(\alpha$ -Hydroxybenzyl)pyrazine (220) gave $2-(\alpha$ -chlorobenzyl)pyrazine (221) (SOCl₂, CHCl₃, 0°C, 3 h: 82%).¹⁸¹

 $1,4-\text{Bis}$ (hydroxymethyl)- $(222, R = OH)$ gave $1,4-\text{bis}$ (chloromethyl)-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (222, R = Cl) (SOCl₂, CHCl₃, 20° \rightarrow reflux, 3.5 h: 86%).1102

Also other examples.606, 816

Using Other Reagents

 $2,6$ -Bis(3-hydroxymethylpyrazol-1-yl)pyrazine $(223, R = OH)$ gave $2,6$ -bis(3bromomethylpyrazol-1-yl)pyrazine $(223, R = Br)$ PBr₃, MeCN, reflux, 90 min: 85%).963

- 2-(1-Hydroxy-2-methylethyl)- gave 2-(1-fluoro-2-methylethyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine [lithiation; then Et₂NSF₃, CH₂Cl₂, -70 \rightarrow 20 $^{\circ}$ C, 1 h: good yield (crude)];¹⁹⁷ 1,4-dibenzyl-2-fluoromethylpiperazine (70%) was made similarly but without initial lithiation⁶³⁰
- $2-(6-Hydroxymethylpyridin-2-yl)pyrazine$ (224, $R = OH$) gave 2-(6-bromomethylpyridin-2-yl)pyrazine (224, $R = Br$) (CBr₄, PPh₃, CH₂Cl₂, 0°C, \sim 90 min: 95%; this procedure surely deserves wider use).⁸⁷¹

 2 -Benzyloxy-6-hydroxymethyl- $(225, R = OH)$ gave 2-benzyloxy-6-chloromethyl-3-isobutyl-5-methoxypyrazine (225, $R = Cl$) (MeSO₂Cl, Et₂N, CH₂Cl₂, 0^oC, 12 h: 76% ;³²⁹ also an analogous examples using TsCl/BuLi.³³³

4.3.2. Extranuclear Halogenopyrazines by Minor Procedures (*H* **115)**

Although little used in recent years, these minor procedures have considerable potential, as evident from the few examples that follow:

From Extranuclear Aminopyrazines

2-(*o*-Aminophenylthio)pyrazine (**226**, R - $R = NH₂$) gave 2-(o -iodophenylthio)pyrazine (226, $\overline{R} = I$) (NaNO₂, HCl, H₂O, 0°C, 2 h: then KI/H₂O \downarrow , ? min: 56%). 369

From Pyrazine Aldehydes or Ketones

- 2-Pyrazinecarbaldehyde gave 2-(difluoromethyl)pyrazine ($Et₂NSF₃$, $CFCl₃$, A, $0 \rightarrow 20^{\circ}$ C, 12 h: 39%; unstable).⁶³⁰
- 1,4-Diisobutyrylpiperazine gave 1,4-bis(1-chloro-2-methylprop-1-enyl)piperazine (POCl₃, Me₂NCHO, CH₂Cl₂, reflux, 30 h: 78%; presumably via the enolic form of the substrate).¹⁶¹²

By Transhalogenation

 2 -Benzyloxy-6-chloromethyl- $(227, X = C)$ gave 2 -benzyloxy-6-iodomethyl-3isobutyl-5-methoxypyrazine 4-oxide $(227, X = I)$ (NaI, MeOH, reflux, 4 h: 61%).³²⁹

2-(2-Chloroethyl)- gave 2-(2-bromoethyl)- (NaBr, Me₂NCHO, 70 \degree C, 12 h: 88%) or 2-(2-iodoethyl)-5-isopropyl-3,6-dimethoxy-2-methyl-2,5-dihydropyrazine (likewise but NaI: 88%).¹⁶⁰⁸

4.4. REACTIONS OF EXTRANUCLEAR HALOGENOPYRAZINES (*H* **145, 154)**

These halogenopyrazines undergo all the reactions that would be expected of their carbocyclic analogues such as benzyl chloride. Moreover, the reactivity of the halogeno group is hardly affected by the electron-withdrawing nature of the pyrazine ring but it is affected appreciably by any adjacent carbonyl or other grouping on the side chain. Reactions are typified by the classified examples that follow:

Hydrogenolysis

1,4-Bis(6-bromohexyl)-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (**228**) gave 1,4-dihexyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (229) [Bu₃SnH, (= NC_3H_6CN)₂, PhH, 80° C, N₂, 3 h: 95%].⁵⁷²

See also Section 3.2.1.5

Alkanelysis or Arenelysis

2-*o*-Bromophenoxypyrazine (**230**) gave 2-[*o*-(trimethylsilylethynyl)phenoxy] pyrazine (231) [Me₂SiC=CH, Et₃N, Pd(PPh₃)₂Cl₂, CuI, 80^oC, sealed, 24 h: 54%].369

2-Chloromethyl-3-methoxy-5-methylpyrazine 1-oxide (**232**) and indole-1(?)-ylmagnesium bromide (**233**) (made *in situ*) gave 3-(3-methoxy-5-methyl-1-oxidopyrazin-2-ylmethyl)indole (234) (Et₂O—PhMe, $0 \rightarrow 20^{\circ}$ C, 12 h: 77%).³³³ Also other examples.1614

Aminolysis

1-Benzyl-6-bromomethyl-5-chloro-3-methoxy-2(1*H*)-pyrazinone (**235**) gave 1-benzyl-5-chloro-3-methoxy-6-(prop-2-ynylamino)methyl-2(1*H*)-pyrazinone (236) (H₂NCH₂C=CH, Et₃N, THF, 20 $^{\circ}$ C, \sim 2 h: 87%; note preferential attack on the extranuclear halogeno substituent); 395 also many analogues likewise. 395

6-Bromomethyl-5-chloro- $(237, R = Br)$ gave 5-chloro-6-(diethylamino)methyl-3-methoxy-1-phenyl-2(1*H*)-pyrazinone (237, $R = NEt_2$) (Et₂NH, THF, 20°C, 1 h: 95%).⁵³

2-Chloromethyl-5-methylpyrazine $(238, R = H)$ gave 2-methyl-5-(trimethylammoniomethyl)pyrazine chloride (239, R = H) (Me₂NCHO, Me₃N \downarrow , 0°C; then substrate \downarrow , 20°C, 12 h: 36%);^{550, 1481} likewise 2,3,6-trimethyl-5-(trimethylammoniomethyl)pyrazine chloride $(239, R = Me)$ (93%).⁵⁵⁰

Also other examples.259,606,613,726,773,957,963,984,1142,1664

Hydrolysis

Note: Hydrolysis may be done directly or via an acetoxy intermediate, often unisolated. The kinetics for hydrolysis of 2-bromomethyl-3,5,6-trimethylpyrazine have been investigated within the range pH $1-11$.¹²⁶⁶

1-Benzyl-3-bromomethyl-5-chloro-6-phenyl-2(1*H*)-pyrazinone (**240**) gave 1-benzyl-5-chloro-3-hydroxymethyl-6-phenyl-2(1*H*)-pyrazinone (241) (K_2CO_3 , H₂O—dioxane, reflux, 2 h: 68%; note survival of the chloro substituent).³⁹

2-Chloromethyl-5-methylpyrazine (**242**) gave either 2-acetoxymethyl- (**243**) (AcOK, EtOH, reflux, 6 h: 65%) or 2-hydroxymethyl-5-methylpyrazine (**224**) (AcOK, KHCO₃, EtOH, reflux, 6 h: 74%);²²¹ the acetoxymethyl intermediate was confirmed as such by alkaline hydrolysis to the product (**244**) (NaOH, no details: 85%).¹³⁵³

Alcoholysis

Note: This reaction is usually done with alcoholic alkoxide but an alcohol alone may be used (over a much longer period) if some alkoxide-sensitive passenger group is present.

2-Chloromethyl-5-methylpyrazine $(245, R = Cl)$ gave 2-methoxymethyl-5methylpyrazine (245, $R =$ OMe) (MeONa, MeOH, reflux, 1 h: $>71\%$).⁶⁷⁶

2-Chloromethylpyrazine gave 2-(prop-2-ynyloxymethyl)pyrazine $(246, n = 1)$ [NaOCH₂C=CH (made *in situ*), THF, reflux, 3 h: 47%]³⁶⁷ or 2-(but-3-ynyloxymethyl)pyrazine (246, $n = 2$) [NaOCH₂CH₂C=CH (made *in situ*), THF, 40°C, 2 h: 53%].366

5,6-Bis(bromomethyl)-2,3-pyrazinedicarbonitrile $(247, R = Br)$ gave 5,6 bis (propoxymethyl)-2,3-pyrazinedicarbonitrile $(247, R =$ OPr) (PrOH, reflux, 3 days: 53%).984

- 3-Amino-6-chloromethyl- (**248**) gave 3-amino-6-butoxymethyl-2-pyrazinecarbonitrile (249) (BuOH, reflux, 12 days: 77%; or likewise, 2 days: 58%).⁶¹²
- Also other examples;^{53, 391, 871, 957, 1059, 1139} for examples of intramolecular alcoholysis (epoxide formation) see end of this section.

Thiolysis

Note: There appear to be no recent examples of the direct thiolysis of extranuclear halogenopyrazines: All such transformations have been done indirectly via an isothiouronium intermediate (cf. Section 4.2.4).

2-Chloromethylpyrazine (**250**) gave 2-(isothiouroniomethyl)pyrazine chloride (251) $[S=C(NH₂)₂$, MeOH, 1 h; crude solid), and thence 2-(mercaptomethyl)pyrazine (252) (1.3 M NaOH, reflux, N₂, 1 h: $>$ 20% overall);⁶⁷⁴ 2bromomethyl- gave 2-mercaptomethyl-3,5,6-trimethylpyrazine (85%) in a similar way.¹⁵⁵¹

2,3-Bis(chloromethyl)pyrazine gave 2,3-bis(isothiouroniomethyl)pyrazine dichloride $[S=C(NH_2)_2, EtOH, reflux, 12 h]$, and thence 2,3-bis(mercaptomethyl)pyrazine (0.3 M NaOH, reflux, A, 6 h: \sim 25% overall);⁵⁴⁷ the isomeric 2,5- and 2,6-bis(isothiouroniomethyl)pyrazine dichlorides were similarly made from their bischloromethyl analogues $[S=C(NH_2)$, BuOH, 100°C, 10 min: 81 and 84%, respectively] but were not subsequently treated with alkali.⁵⁵⁰

Alkane- or Arenethiolysis

5,6-Bis(bromomethyl)-2,3-pyrazinedicarbonitrile (**253**) gave 5,6-bis(phenylthiomethyl)-2,3-pyrazinedicarbinitrile (**254**) (PhSH, pyridine, AcMe, 20°C, 90 min: 89%).984

5,6-Bis[*p*-(bromomethyl)phenyl]-2,3-pyrazinedicarbonitrile gave 5,6-bis[*p*-(5 methylthio-2-thioxo-1,3-dithiol-4-ylthiomethyl)phenyl]-2,3-pyrazinedicarbonitrile (**255**) [4-benzoylthio-5-methylthio-1,3-dithiole-2-thione, MeONa,MeOH, 40°C, until clear (debenzoylation); then substrate \downarrow , 40°C, 1 h: 52%].¹⁵⁰² Also other examples.200, 470, 496, 1248

Azidolysis

1-Benzyl-6-(1-bromo-2-methylpropyl)-5-chloro-3-phenyl-2(1*H*)-pyrazinone (**256**, $R = Br$) gave 6-(1-azido-2-methylpropyl)-1-benzyl-5-chloro-3-phenyl-2(1*H*)pyrazinone (256, R = N_3) (NaN₃, Me₂NCHO, 60°C, 5 h: 62%).⁵³

 $2-(4-Bromobutyl)-(257, R = Br)$ gave $2-(4-azidobutyl)-3,6-diethoxy-5-iso$ propyl-2-methyl-2,5-dihydropyrazine $(257, R = N_3)$ (NaN₃, Me₂NCHO, 90°C, 13 h: 78%);¹⁶⁰⁹ homologues likewise.¹⁶⁰⁹ Also other examples.152, 228, 1106, 1348

Cyanolysis

2-Chloromethyl-3-phenylpyrazine (**258**) gave 2-cyanomethyl-3-phenylpyrazine (**258**) gave 2-cyanomethyl-3-phenylpyrazine (**259**) (KCN, EtOH, reflux, 4 h: 91%).1272

6-Bromomethyl-5-chloro- $(260, R = Br)$ gave 6-chloro-5-cyanomethyl-3methoxy-1-phenyl-2(1*H*)-pyrazinone (260, $R = CN$) (KCN, 18-crown-6, THF, 20° C, 4 h: 57%).⁵³

Miscellaneous Displacement Reactions

5,6-Bis(bromomethyl)-2,3-pyrazinedicarbonitrile gave 5,6-bis(thiocyanatomethyl)-2,3-pyrazinedicarbonitrile (**261**) (KSCNsAcMe, 20°C, 10 min: 95%).984

2-Chloromethylpyrazine gave *S*-pyrazin-2-ylmethyl disodium phosphorothioate (262) [(NaO)₂PSNa, H₂O, pH 9, 20°C, 40 min: \sim 15%].⁶⁷⁴

4-Bromoacetyl-3-ethoxycarbonylmethyl-2-piperazinone gave a product formulated as 3-ethoxycarbonylmethyl-4-phosphonoacetyl-2-piperazinone (**263**) $[P(OEt)_{3}, PhH, reflux, 4 h; then NaOH—H₂O, 20°C, 3 days: 70%]^{722}$

Cyclization or Ring Expansion Reactions

2, 3-Bis(dibromomethyl)pyrazine (**264**) gave *trans*-7,8-dibromo-2,5-diazabicyclo[4.2.0]octa-1,3,5-triene (**265a**) via the bis(bromomethylene) intermediate (265) (detectable but not isolable as such) (NaI, Me₂NCHO, 60° C, 1 h: 15%).²⁹

3-Chloromethyl-1,5,5-trimethyl-5,6-dihydro-2(1*H*)-pyrazinpne (**266**) underwent self-condensation to give 2,4,4,8,10,10-hexamethyl-3,4,9,10-tetrahydropyrazino[1, 2-*a*:1', 2'-*d*]pyrazine-1,7(2*H*, 8*H*)-dione (267) (EtPr^{*i*}₂N, Me₂NCHO, 90 $^{\circ}$ C, N₂, 15 h: 16%; structure confirmed by X-ray analysis).¹⁵⁸

5,6-Bis(bromomethyl)-2,3-pyrazinedicarbonitrile (**268**) gave 6,7-diphenyl-2,3 quinoxalinedicarbonitrile (269) [PPh₃, PhMe, no details: diphosphonio intermediate; then Bz₂, NaH \downarrow , Me₂NCHO, 20 \rightarrow 120°C, 9 h: 58% (second step)].1624

2-(Chloroacetyl)pyrazine (**270**) gave 2-(2-thioxo-2,3-dihydrothiazol-4-yl) pyrazine (271) ($H_2NCS_2NH_4$, EtOH, 20°C, 15 h: \sim 15%);¹⁰¹⁵ Analogues likewise. 1015

2-Bromomethyl-5-isopropyl-3,6-dimethoxy-2-methyl-2,5-dihydropyrazine (**272**) gave 2-isopropyl-3,7-dimethoxy-6-methyl-2*H*-diazepine (**273**) and/or the isomeric 2-isopropylidene-3,7-dimethoxy-6-methyl-5,6-dihydro-2*H*-diazepine (274) [Bu^{*I*}OK, Me₂SO, 50°C, 1 h: 0 and 75%, respectively; KOH, Me₂SO, 25 \degree C, 24 h: 73% and 6%, respectively; KOH, Me₂SO, 50 \degree C, 5 h: 93% and trace, respectively; the kinetics and mechanism have been studied].⁹²³

2-(4-Chlorobut-2-enyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**275**) gave 6-isopropyl-5,8-dimethoxy-1-vinyl-4,7-diazaspiro[2.5]octa-4,7-diene (276) (BuLi, C₆H₁₄—THF, -70°C, 6 h: 84%).⁵³⁶

6-Benzylidene-3- $(\alpha$ -bromobenzyl)-3-hydroxy-1,4-dimethyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (**277**) gave the epoxide, 6-benzylidene-4,7-dimethyl-2 phenyl-1-oxa-4,7-diazaspiro[2.5]octane-5,8-dione (278) (Et₃N, AcOEt, reflux, 2 h: 78%).¹⁰³⁰

2-(2-Chloro-1-hydroxy-1-methylethyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**279**) gave 2-isopropyl-3,6-dimethoxy-5-(1-methyl-1,2-epoxyethyl)-2,5 dihydropyrazine (280) (NaOH, H₂O-THF, 20°C, 3 h: 92%).⁵²⁰

2-(2-Bromoethyl)-3,6-diethoxy-2,5-dihydropyrazine (**281**) gave 3,6-diethoxy-2,5-diazabicyclo^[2.2.2]octa-2,5-diene (282) (BuLI, THF- C_6H_{14} , -78°C, 3 h: 91%).792

Also other examples.⁹⁹³

Oxidation

2-Chloromethyl-5-methylpyrazine (**283**) gave 5-methyl-2-pyrazinecarboxylic acid (284) [K₂CO₃, H₂O-Bu^{*OH*}, 60°C, electrolysis (freshly made "nickel hydroxide" anode; Ni alloy cathode): 82%; possibly via the hydroxymethyl intermediate but mechanism not elucidated].221

CHAPTER 5

Oxypyrazines (*H* **156, 363)**

The general term *oxypyrazine* is used here to include derivatives such as the cycloamidic tautomeric pyrazinones (**1**), the alcoholic hydroxyalkylpyrazines (**2**), the etherial alkoxypyrazines (**3–5**), the cycloamidic nontautomeric pyrazinones (**6**), and pyrazine *N*-oxides (**7, 8**); in addition, related types like diketopiperazines, acyloxypyrazines, pyrazine quinones, and endoperoxypyrazines are covered as appropriate. Some brief ancillary information on trivial names, natural occurrence, and biological activities of pyrazines (mainly oxy derivatives) is collected in a final Appendix section.

There are no recent general reviews specifically on oxypyrazines but most aspects of 2,5-piperazinediones [3,6-dihydro-2,5(1*H*,4*H*)-pyrazinediones] have been covered in some detail.472,743

5.1. TAUTOMERIC PYRAZINONES (*H* **156, 363)**

There is no longer any real doubt that simple tautomeric pyrazinones like $2(1H)$ pyrazinone (**1**) exist predominantly in their oxo forms. However, largely confirmatory theoretical, $1042,1430,1623,1675$ NMR, 1424 and IR studies¹³⁹⁸ on such pyrazinones have appeared recently; in addition, 2,3(1*H*,4*H*)-pyrazinedione (**9**) appears to exist substantially as such,^{1623,1675} whereas the 2,5-isomer $[2,5(1H,6H)$ -pyrazinedione ?] appears to prefer an equilibrium mixture (**10**) of 2,5-dihydroxypyrazine and 5-hydroxy-2(1*H*)-pyrazinone on theoretical grounds.¹⁴³⁰ Related studies on tautomerism have also appeared.57,465,931,932 An X-ray analysis of 3-carboxymethyl-6-methyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**11**) has confirmed its fine structure in the solid state.¹⁰⁴⁵

5.1.1. Preparation of Tautomeric Pyrazinones (*H* **156, 363, 366, 369)**

Many such pyrazinones have been made by *primary synthesis* (see Chapters 1 and 2) or by *hydrolysis of halogenopyrazines* (Section 4.2.2). Other methods of preparation are illustrated in the following examples, classified according to the type of substrate:

From Primary Pyrazinamines

- Ethyl 5-amino-2-pyrazinecarboxylate (**12**) gave ethyl 5-oxo-4,5-dihydro-2-pyrazinecarboxylate (13) (NaNO₂, H₂SO₄, 3 \rightarrow 45°C, 7 min: 80%; the use of concentrated H_2SO_4 ensured minimal hydrolysis of the ester grouping).¹⁶⁸¹
- 3-Amino-2-pyrazinecarbonitrile gave 3-oxo-3,4-dihydro-2-pyrazinecarbonitrile (14) (NaNO₂, dilute H₂SO₄, 0 \rightarrow 20^oC, 3 h: 58%).¹²⁹⁶
- 5-Benzylthio-2-pyrazinamine gave 5-benzylthio-2(1H)-pyrazinone (15) (NaNO₂, AcOH-H₂O-dioxane, 5°C, 15 min: 46%).¹⁵⁶⁵

Also other examples.54,64,397

From Alkoxypyrazines

Note: This reaction can be done in several ways, as shown in these examples.

Hydrolysis. 2-Methoxy-3-methyl-5-phenylpyrazine (**16**) gave 3-methyl-5 phenyl-2(1*H*)-pyrazinone (17) (6 M HCl, reflux, 3 h: 97%);¹³⁰⁷ other products like 3,6-diisopropyl-2(1*H*)-pyrazinone (18, R = Pr^{*i*}) (97%)¹³¹¹ and 3,6diphenyl-2(1*H*)-pyrazinone (18, R = Ph) $(84\%)^{82}$ were made similarly. Hydriodic acid may also be used. 1307

Trimethylsilyl iodide method. 2,5-Dimethoxy-3,6-dimethylpyrazine (**19**) gave 5 hydroxy-3,6-dimethyl-2(1*H*)-pyrazinone (20) (Me₃SiI, (CH₂)₄SO₂, N₂, 40^oC, 2 h; then H₂O \downarrow , 0 \rightarrow 70°C, 30 min: 84%);¹³⁹² also other examples.⁵⁷

Reductive debenzylation. 2-Benzyloxy-3,6-diisobutyl-5-methoxypyrazine 4-oxide (21) gave 3,6-diisobutyl-5-methoxy-2 $(1H)$ -pyrazinone 4-oxide (22) $(H₂)$, Pd/C, EtOH, ? h: 90%; structure confirmed by X-ray analysis);³¹⁰ 2,5-dibenzyloxy-3,6-diphenylpyrazine likewise gave 5-hydroxy-3,6-diphenyl-2(1*H*) pyrazinone (**23**) (43%).82

Thermolysis. Note: The observation that an alkoxypyrazine can undergo thermolytic conversion into a pyrazinone plus an alkene¹⁶⁹⁹ has been studied kinetically^{59,64,238} but does not appear to have been developed as a preparative procedure. For example, 2-ethoxypyrazine (**24**) gave 2(1*H*)-pyrazinone (**25**) plus ethylene (**26**).238

From Acyloxypyrazines

2-Acetoxy-6-isopropenyl-3-isopropylpyrazine (**27**) gave 6-isopropenyl-3-isopropyl-2(1*H*)-pyrazinone (28) (KOH, MeOH- H_2O , 20 $°C$, 4 h: 94%); also analogues.1377

$$
\begin{array}{ccc}\n\text{Me}(H_2C=)C & N & \text{OAc} \\
\hline\nN & Pr^i & \\
\end{array}
$$
\n
$$
\begin{array}{ccc}\n\text{Me}(H_2C=)C & N & \text{O} \\
\hline\nN & Pr^i & \\
\end{array}
$$
\n
$$
(27)
$$
\n
$$
(28)
$$

2-Acetoxy-3,6-dibenzyl-5-methoxypyrazine gave 3,6-dibenzyl-5-methoxy-2(1*H*) -pyrazinone (29) (K_2CO_3 , MeOH—H₂O, reflux, 30 min: > 95%);³¹² 2,5-diacetoxy-3,6-dimethylpyrazine gave 5-hydroxy-3,6-dimethyl-2(1*H*)-pyrazinone (30) (KHCO₃, MeOH, reflux, 50 min: 53%).¹³⁸⁶

2-Acetoxy-5-benzyl-6-diacetylamino-3-methylpyrazine (**31**) gave 6-amino-5 benzyl-3-methyl-2(1*H*)-pyrazinone (32) (neat H_2NNH_2 , 20°C, 13 h: 67%; note additional *N*-deacetylation).883

Also other examples.304,809,960,1565,1575

From Other Substrates

The dioxime, 1-cyclohexylcarbonyl-3,5-bis(hydroxyimino)piperazine (**33**) gave 4-cyclohexylcarbonyl-2,6-piperazinedione (34) (NaNO₂, AcOH-H₂O, 0°C, 24 h: 83%);1700 analogues like 1-benzoyl-2,6-piperazinedione (**35**) were made similarly.²⁷⁴

2-Pyrazinecarboxylic acid underwent microbiological "hydroxylation" to give 3-oxo-3,4-dihydro- (**36**, R - H) (*Alcaligenes eutrophus:* 70%), 5-oxo-4, 5-dihydro- (**37**) (*Pseudomonas acidovorans:* 96%), or 6-oxo-1,6-dihydro-2-pyrazinecarboxylic acid (**38**) (*Alcaligenes faecalis:* 85%);1091 Similar procedures afforded 5-chloro-3-oxo-3,4-dihydro-2-pyrazinecarboxylic acid (*Alcaligenes eutrophus:* 50%) and 5-oxo-4,5-dihydro-2-pyrazinecarbonitrile (*Agrobacterium* sp: 78%).¹⁰⁹¹

- 2-Pyrazinecarboxamide in humans gave 5-oxo-4,5-dihydro-2-pyrazinecarboxamide and subsequent catabolic products;¹¹⁸³ also with rat liver *in vitro*.⁹⁵²
- 2-Methylpyrazine (39) gave 3-methyl-2(1*H*)-pyrazinone (40) (PhCN \rightarrow O, PhH, reflux, 3 h: $\leq 5\%$ after purification).³⁹⁰

The kinetics and mechanism for photochemical rearrangement of pyrazine 1,4 dioxide (**41**) into 5-hydroxy-2(1*H*)-pyrazinone (**42**) have been studied.869

5.1.2. Reactions of Tautomeric Pyrazinones (*H* **175, 365, 367, 371)**

The important conversion of *pyrazinones into halogenopyrazines* has been covered in Section 4.1.1. An unusual aminolytic cyclization has been reported709 and other reactions are discussed in the subsections that follow.

5.1.2.1. Conversion into Pyrazinethiones (H 175)

This conversion is often done indirectly via an halogenopyrazine although direct thiation of pyrazinones has usually been successful when Lawesson's reagent (**43**) or good quality phosphorus pentasulfide has been employed. The following examples indicate typical conditions used and yields to be expected:

3-Amino-2(1*H*)-pyrazinone (44, $X = O$) gave 3-amino-2(1*H*)-pyrazinethione $(44, X = S)$ (P₂S₅, β -picoline, reflux, 4.5 h: > 80%).¹⁰¹²

- 3-Phenyl-2(1*H*)-pyrazinone (45, $X = O$) gave 3-phenyl-2(1*H*)-pyrazinethione (45, X = S) (P_2S_5 , pyridine, reflux, 2 h: \sim 65%; the 5-phenyl isomer was made similarly.1033
- 3,6-Diethyl-2(1*H*)-pyrazinone (46, X = O) gave 3,6-diethyl-2(1*H*)-pyrazinethione $(46, X = S)$ (Lawesson's reagent, PhMe, reflux, 2 h: 97%);²⁷⁰ the 3,6-dipropyl (94%), 3,6-diisopropyl (98%), and other homologues were made similarly.²⁷⁰

1-Methyl-3-(2,4,5-trimethoxy-3-methylbenzyl)-3, 6-dihydro-2,5(1*H*,4*H*)-pyrazinedione $(47, X = 0)$ gave only 1-methyl-3- $(2, 4, 5$ -trimethoxy-3-methylbenzyl)-5-thioxo-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone (47, $X = S$) (Lawesson's reagent, MeOCH₂CH₂OMe, 20°C, 12 h: 92%; note selective thiation of tautomeric oxo substituent under these conditions).¹⁰³

Also other examples.¹⁴⁵⁰

(**47**)

5.1.2.2. Conversion into O- *and/or N-Alkylated Derivatives (H 175, 193)*

Irrespective of the type of reagent or the conditions used, alkylation of a tautomeric 2(1*H*)-pyrazinone usually gives an N-alkylated pyrazinone, sometimes accompanied by a smaller amount of the isomeric alkoxypyrazine. Occasionally, the alkoxypyrazine may predominate when a diazoalkane or trialkyloxonium tertafluoroborate is used, when the steric and/or electronic factors associated with the reagent or substrate are favorable, or when the substrate's ring is partially reduced.

The following alkylations illustrate the results to be expected from various types of tautomeric pyrazinones and a variety of reagents and conditions. The examples are grouped according to the type of substrate and the given percentages represent isolate yields except when stated otherwise.

From Simple 2(1*H***)-Pyrazinones: O-Alkylation**

5-*p*-Bromophenyl-2(1*H*)-pyrazinone (**48**) gave a separable mixture of 2-*p*-bromophenyl-5-pentyloxypyrazine (**49**) and 5-*p*-bromophenyl-1-pentyl-2(1*H*) pyrazinone (**50**) ($C_5H_{11}Br, K_2CO_3$, Me₂NCHO, 100^oC, 15 min: 23 and 66%, respectively); likewise homologues.735

3-Methyl-2(1*H*)-pyrazinone (**51**) gave a separable mixture of 2-methyl-3- (tetrahydrofuran-2-yloxy)pyrazine (**52**) and 3-methyl-1-(tetrahydrofuran-2 yl)-2(1*H*)-pyrazinone (**53**) [tetrahydrofuran-2-yl chloride (made *in situ*), Et₃N, THF—MeCN, 20°C, 1 h: 86% (of a 2:1 -mixture prior to separa $tion)1⁴⁸⁵$

Also other examples.16,1452

From Simple 2(1*H***)-Pyrazinones: N-Alkylation**

- 3-Ethyl-2(1*H*)-pyrazinone gave only 3-ethyl-1-(pyridin-2-ylmethyl)-2(1*H*)-pyrazinone (54) (NaH, Me₂NCHO, 25 $^{\circ}$ C, 2 h; then 2-chloromethylpyridine \downarrow , 25 $^{\circ}$ C, 18 h: 62%).³²
- 3,5,5-Trimethyl-5,6-dihydro-2(1*H*)-pyrazinone (55, R = H) gave only 1,3,5,5tetramethyl-5,6-dihdyro-2(1*H*)-pyrazinone (55, R = Me) (NaH, THF, 0°C, N_2 , 10 min; then MeI \downarrow , 20°C, 12 h: > 95%).⁷⁷⁹
- 5,6-Diphenyl-2(1*H*)-pyrazinone (**56**, $R = H$) gave 1-ethyl-5,6-diphenyl-2(1*H*)pyrazinone (56, $R = Et$) and a separable trace of the ethoxy isomer ($Et₂SO₄$, MeONa, MeOH, $20^{\circ}C \rightarrow$ reflux, 1 h: $?\%$);²² homologues likewise.^{22,35}

- 6-Methyl-2(1*H*)-pyrazinone (**57**) underwent quaternization to 1-benzyl-3-methyl-5-oxo-4,5-dihydropyrazinium bromide (58) (PhCH₂Br, EtOH, reflux, N₂, 24 h: 80%) that then gave the zwitterionic base, 1-benzyl-5-methylpyrazin-1-ium-3 olate (59) [H₂O—MeOH, (Amberlite IRA-400, HO⁻) column: 97%; this indirect route offers a procedure for N-alkylation on a ring-N that is not adjacent to the oxo substituent];³⁴¹ 1,5-dimethylpyrazin-1-ium-3-olate was made somewhat similarly.¹⁴⁷⁸
- Also other examples,^{1219,585} including an indirect process involving *N*-silylmethylation followed by desilylation by cesium fluoride.¹⁷⁶⁹

From Functionally Substituted 2(1*H***)-Pyrazinones: O-Alkylation**

3,6-Dibenzyl-5-methoxy-2(1*H*)-pyrazinone (60, $R = CH_2Ph$) gave only 2,5 $dibenzyl-3-benzyloxy-6-methoxypyrazine$ (61, $R = CH_2Ph$) (PhCH₂Br, KOH, trace Me₄NBr, H₂O-CHCl₃, ultrasonication, 30°C, 36 h: 80%);³¹² 3,6-diisobutyl-5-methoxy-2(1*H*)-pyrazinone $(60, R = Bu^i)$ gave 2-benzyloxy-3,6-diisobutyl-5-methoxypyrazine $(61, R = Bu^i)$ (likewise: 80%).³¹⁰

Methyl 3-amino-5-isobutyl-6-oxo-1,6-dihydro-2-pyrazinecarboxylate 4-oxide gave methyl 3-amino-6-benzyloxy-5-isobutyl-2-pyrazine carboxylate 4-oxide (62) (PhCH₂Br, KHCO₃, Me₂NCHO, 20^oC, 16 h: 74%).³³⁷

5-Chloro-1-methyl-2,3(1*H*,4*H*)-pyrazinedione (**63**) gave a separable mixture of 5-chloro-3-methoxy-1-methyl-2(1*H*)-pyrazinone (**64**) and 5-chloro-1,4-dimethyl-2,3(1*H*,4*H*)-pyrazinedione (65) (H₂CN₂, Et₂O, ? h: 47 and 34%, respectively).1309

Also other examples.414,455,848,883,1036

From Functionally Substituted 2(1*H***)-Pyrazinones:** *N***-Alkylation**

- 3 -Oxo-3,4-dihydro-2-pyrazinecarbonitrile $(66, R = H)$ gave 4-methyl-3-oxo-3,4-dihydro-2-pyrazinecarbonitrile (66, $R = Me$) [Me₂NCH(OMe)₂, CHCl₃, 20 $^{\circ}$ C, 2 h, then reflux, 5 min: 72%; or MeI, MeONa, Me₂NCHO, 20 $^{\circ}$ C, 45 min: 55%].¹²⁹⁶
- $2(1H)$ -Pyrazinone 4-oxide (67, R = H) gave 1-benzyl-2(1*H*)-pyrazinone 4-oxide $(67, R = CH_2Ph)$ (NaH, Me₂NCHO, 5°C, 1 h; then PhCH₂Cl \downarrow , 80°C, 2 h: 33%); also many analogues somewhat similarly.⁸⁶
- Ethyl 2-ethoxycarbonylmethyl-3-oxo-1-piperazinecarboxylate $(68, R = H)$ gave ethyl 2-ethoxycarbonylmethyl-4-methyl-3-oxo-1-piperazinecarboxylate (**68**, $R = Me$) (MeI, Bu₂NI, KOH, THF, $0 \rightarrow 20^{\circ}$ C, 8 h; then reflux, 1 h: 55%).¹⁴⁴ Also other examples.598,809,1075

From Simple Pyrazinediones: O- and/or N-Alkylation

- *Note:* It appears that all available recent examples in this category have used 3,6-dihydro-2,5(1*H*,4*H*)-pyrazinediones as substrates, simply because most of the products were required for use in the Schöllkopf reaction (see Section 3.2.1.1).
- 3,6-Dihydro-2,5(1*H*,4*H*)-pyrazinedione (**69**) gave 2,5-diethoxy-3,6-dihydropyrazine (**70**) (Et₃OBF₄, CH₂Cl₂, 20°C, 5 days: 88%), and thence 2,5-diethoxypyrazine (71) [*N*-chlorosuccinimide, trace Me₂C(CN)N=NC(CN)Me₂ (?), CCl₄, 80°C, \rightarrow reflux, 12 h: 91%];⁵³⁹ also homologues of the dihydro product (**70**), somewhat similarly.70,512,798

3-Isopropyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**74**) gave a separable 1:2 mixture of 6-isopropyl-5-methoxy- (**72**) and 3-isopropyl-5-methoxy-3,6 dihydro-2(1*H*)-pyrazinone (**73**) [Me₃OBF₄ (1 mol), CH₂Cl₂, 20^oC, N₂, 6 h: - 60% (mixture)] or 2-isopropyl-3,6-dimethoxy-2,5-dihydro pyrazine (**75**) [Me₃OBF₄ (excess), CH₂Cl₂, 20°C, N₂, 4 days: ~ 85%].¹³⁵¹

3,6-Dibenzylidene-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (76, R = H) gave a chromatographically separable mixture of 3,6-dibenzylidene-1,4-dimethyl-3, 6-dihydro-2,5($1H$,4*H*)-pyrazinedione (76, $R = Me$), 3,6-dibenzylidene-5-methoxy-1-methyl-3,6-dihydro-2(1*H*)-pyrazinone (**77**), and 2,5-dibenzylidene-3,6-dimethoxy-2,5-dihydropyrazine (78) (Me₂SO₄, NaOH, EtOH-H₂O, 20 $^{\circ}$ C, 3 h: 80, 10, and 1% respectively).¹⁰²⁸

Also many other examples.^{50,180,204,371,517,522,609,614,792,906,1107,1158,1349}

From Functionally Substituted Pyrazinediones: 0- and/or N-Alkylation

- *Note:* The only examples available from recent literature appear to be 0-alkylations.
- Ethyl 5-isopropyl-3,6-dioxo-2-piperazinecarboxylate (**79**) gave ethyl 3,6-diethoxy-5-isopropyl-2,5-dihydro-2-pyrazinecarboxylate (80) (Et₃OBF₄, CH₂Cl₂, 20^oC, 40 h : $> 80\%$);^{703,1498} also homologous dialkoxy products likewise.⁷⁰³

Also other examples.1036,1217

5.1.2.3. Conversion into 0*- and/or N-Acylated Derivatives (H 180, 367)*

Un1like alkylation, acylation of 2(1*H*)-pyrazinones usually occurs exclusively at oxygen to afford an acyloxy derivative; only occasionally is an *N*-acylpyrazinone formed. The following examples will indicate the conditions, facility, and yields to be expected of such reactions:

Formation of Regular Acyloxypyrazines

- 3,6-Diethyl-2(1*H*)-pyrazinone (**81**) gave 2-acetoxy-3,6-diethylpyrazine (**82**, $R = Me$) (neat Ac₂O, reflux, 90 min:80%)¹³¹¹ or 2-benzoyloxy-3, 6-diethylpyrazine (82, R = Ph) [BzCl, pyridine, $0 \rightarrow 20^{\circ}$ C, 3 h: 61%;¹³¹¹ or BzOH, Et₃N, (EtO)₂P(=O)Cl, 20°C, 3 h; then substrate \downarrow , 20°C, 12 h: 75%];²⁸¹ also homologues likewise.¹³¹¹
- *Note:* Some of the foregoing acyloxypyrazines proved to be selective acylating agents for primary aromatic amines.¹³¹¹

- 6-Methyl-2(1*H*)-pyrazinone gave 2-methyl-6-tosyloxypyrazine (**83**) (TsCl, pyridine, 20°C, 15 h: 52%).¹⁴⁶¹
- 5-Hydroxy-3,6-diphenyl-2(1*H*)-pyrazinone (**84**) gave 2,5-diacetoxy-3,6-diphenylpyrazine (85) (Ac₂O, AcOH, reflux, 4 h: 65%).¹³⁸⁶

Also other examples.118,734,1347,1392,1695

Formation of Alkoxycarbonyloxypyrazines

- 3,6-Diisopropyl-2(1*H*)-pyrazinone (**86**) gave 2-isobutoxycarbonyloxy-3,6-diisopropylpyrazine (87) [ClC(=0)OBu^{*i*}, pyridine, $0 \rightarrow 20^{\circ}$ C, 1 h: >95%; the method of choice when the alkyl chloroformate is readily available].¹³⁷⁵
- The same substrate (**86**) gave 2-*tert*-butoxycarbonyloxy-3,6-diisopropylpyrazine (**89**), indirectly via the unisolated chloroformyloxy, intermediate (**88**) [NaH, dioxane, 20°C, until H₂ \uparrow ceased; then Cl₂COC(=0)Cl \downarrow , 0 \rightarrow 20°C, 12 h; then Bu^{*t*}OH/pyridine \downarrow , 0 \rightarrow 20°C, 15 h: 53%. This method may be used when the required alkyl chloroformate is not readily available].^{1375, 1380}

Also a variety of analogous examples.1375,1380

Note: The foregoing products can be used to alkoxycarbonylate aliphatic amines and amino acids. $1375,1380$

Formation of N-Acylpyrazinones

3,6-Dibenzyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**90**) gave a separable mixture of *cis*- and *trans*-1,4-diacetyl-3,6-dibenzyl-3, 6-dihydro-2,5(1*H*,4*H*) pyrazinedione (91) (neat Ac₂O, reflux, 5 h: 46 and 6%, respectively).¹⁰²⁸

3,6-Dihydro-2,5(1*H*,4*H*)-pyrazinedione (**92**) gave a separable mixture of methyl 2,5-dioxo-1-piperazinecarbodithioate (**93**) and dimethyl 2,5-dioxo-1,4-piperazinebiscarbodithioate (94) [NaH, CS_2 , AcNMe₂, reflux, 5 h; then MeI \downarrow (no further detail): 12 and 19%, respectively].³

Also other examples.44,1773, (cf. 1761)

5.1.2.4. Miscellaneous Reactions

Several rarely used but quite important reactions of tautomeric pyrazinones are typified in the following examples:

O-Silylation

5-Benzylthio-2(1*H*)-pyrazinone (**95**) gave 2-benzylthio-5-trimethylsiloxypyrazine (96) [neat $Me₃SiNHSiMe₃$, trace $(NH₄)₂SO₄$, reflux, 90 min: 93%], and thence, by a modified Hilbert–Johnson reaction, 5-benzylthio-1-(2-deoxy- α -D-ribofuranosyl $)-2(1H)$ -pyrazinone (97).¹⁵⁶⁵

Dimerization and/or Ring Contraction

- 3,5,5-Trimethyl-5,6-dihydro-2(1*H*)-pyrazinone (**98**) gave a separable mixture of *meso*- and *dl*-2,2',6,6,6',6'-hexamethyl-1,1',2,2',5,5',6,6'-octahydrobipyrazine-3,3'(4H, 4'H)-dione (99) [hv, PrⁱOH, -25° C, N₂, 3 weeks: -20% each; also recovered substrate (**98**) (44%) and a ring-contraction byproduct, 1,2,2,4-tetramethyl-3-imidazolin-5-one (**100**) (9%)].780
- In contrast, the same substrate (**98**) gave only 1,2,2,4-tetramethyl-3-imidazolin-5-one (100) (*hv*, H₂O, 32 h: 62%).⁷⁷⁹

Reductive Deoxygenation

6-Hydroxy-4-methyl-3,4-dihydro-2(1*H*)-pyrazinone (**101**) gave 1-methylpiperazine (102) (LiAlH₄, THF, 20°C,→ reflux, 4 h: 70%).¹³³⁶

- 3-Hydroxymethyl-6-isobutyl-3, 6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**103**) gave 2-hydroxymethyl-5-isobutylpiperazine (104) (LiAlH₄, THF, $0 \rightarrow 65^{\circ}$ C, 3 days: 65%; note survival of the extranuclear hydroxy group); also analogues likewise.²²⁹
- The polarographic reduction of 6-methyl-3-phenyl-2(1*H*)-pyrazinone (**105**) has been studied.⁹⁸³

Also other examples.149,843,1653,1726

Addition Reactions

3,6-Dibenzyl-5-hydroxy-2(1*H*)-pyrazinone (**106**) gave the endoperoxide, 1,4 dibenzyl-2,3-dioxa-5,7-diazabicyclo[2.2.2]octane-6,8-dione (107) (hv , O₂ \downarrow , Me₂SO—CH₂Cl₂, trace eosin, 20°C, 45 h: ~80%);⁵ analogues were made similarly²⁷ and such processes have been reviewed.¹¹⁵⁹

6-Hydroxy-3,5-diphenyl-2(1*H*)-pyrazinone (**108**) gave 1,5,6-triphenyl-3,8 diazabicyclo^[3.2.1]oct-6-ene-2,4-dione (109, $Q = Ph$, $R = H$) (PhC=CH, AcOEt, reflux, N_2 , 1 h: 65%), the 1,5,6,7-tetraphenyl homologue (109, $Q = R = Ph$) (PhC=CPh, AcOEt, reflux, N₂, 9 h: 44%), or dimethyl 2,4dioxo-1,5-diphenyl-3,8-diazabicyclo[3.2.1]oct-6-ene-6,7-dicarboxylate (**109**, $Q = R = CO₂Me$) (MeO₂CC≡CCO₂Me, AcOEt, 20°C, N₂, 1 h: 60%).¹³

1,4-Dimethyl-5,6-dihydro-2,3,5,6(1*H*,4*H*)-pyrazinetetrone (**110**) gave 6-(2,3-dimethylbut-2-enyl)-6-hydroxy-1,4-dimethyl-5,6-dihydro-2,3, 5(1*H*,4*H*)-pyrazinetrione (111) (Me₂C=CMe₂, hv, MeCN, 3 h: 64%).⁷⁹⁶

Also other examples.⁹⁵⁹

5.2. EXTRANUCLEAR HYDROXYPYRAZINES (*H* **164, 181)**

These important hydroxyalkyl- and hydroxyarylpyrazines should be considered as regular alcohols or phenols simply because their methods of preparation and their reactions are only minimally affected by the attached pyrazine ring.

5.2.1. Preparation of Extranuclear Hydroxypyrazines (*H* **164)**

Many such hydroxypyrazines have been made by *primary synthesis* (see Chapters 1 and 2), some by *C- or N-hydroxyalkylation procedures* (see Sections 3.1.1.1 and 3.2.2.1), and a few by *hydrolysis of extranuclear halogenopyrazines* (see Section 4.4). Other preparative routes are illustrated in the following classified examples:

By Reduction of Pyrazine Aldehydes or Ketones (*H* **167)**

- *Note:* Such reduction is usually done with sodium borohydride but related agents, for example, AlHBu^{*i*}₂, can sometimes be used to advantage.¹¹⁰⁷
- 1,4-Dimethyl-2-methylthio-3,6-dioxo-2-piperazinecarbaldehyde (**112**) gave 3-hydroxymethyl-1,4-dimethyl-3-methylthio-3, 6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (113) [LiAlH(OBu^t)₃, THF, $-78 \rightarrow 20^{\circ}$ C, 4 h: 92%].⁷⁶⁰

2-Benzoylpyrazine gave $2-(\alpha$ -hydroxybenzyl)pyrazine (114) (NaBH₄, MeOH, $0 \rightarrow 10^{\circ}$ C, 3 h: 93%);¹⁸¹ analogues likewise.²¹⁷

- 2-Isobutyryl-3-methoxypyrazine (**115**) gave 2-(1-hydroxy-2-methylpropyl)- 3-methoxypyrazine (116) (NaBH₄, EtOH, 20°C, 2 h: > 95%).⁸¹⁵
- 3-Amino-5-propionyl-2-pyrazinecarbonitrile gave 3-amino-5-(1-hydroxypropyl)- 2-pyrazinecarbonitrile (117) (Et₃SiH, BF₃. Et₂O, A, 20°C, 48 h: 44%).¹⁵⁰⁶

Also other examples.178,226,306,352,364,396,443,586,896,1030,1107,1123,1506,1564

By Reduction of Pyrazinecarboxylic Acids or Esters

- 5-Methyl-2-pyrazinecarboxylic acid 4-oxide $(118, R = H)$ gave 2-hydroxymethyl-5-methyl pyrazine 4-oxide (119) [BH₃.THF, (MeOCH₂CH₂)₂O, $0 \rightarrow 20^{\circ}$ C, N₂, 4 h: 86%];⁶⁷⁶ methyl 5-methyl-2-pyrazinecarboxylate 4-oxide (118, R = Me) gave the same product (119) (NaBH₄, MeOH-H₂O, $5 \rightarrow 20^{\circ}$ C, 2 h: 77%).⁶⁷⁶ Ethyl 3-amino-6-benzyloxy-5-isobutyl-2-pyrazinecarboxylate 4-oxide (**120**,
- $R = CO₂Et$) gave 5-benzyloxy-3-hydroxymethyl-6-isobutyl-2-pyrazinamine 1oxide (**120**, $R = CH_2OH$) (Bu^{*i*}₂AlH, CHCl₃—C₆H₁₄, -3°C, 45 min: 65%).⁸⁴⁸

- Methyl 6-benzyloxy-5-isobutyl-3-methoxy-2-pyrazinecarboxylate 4-oxide (**121**, $R = CO₂Me$) gave 2-benzyloxy-6-hydroxymethyl-3-isobutyl-5-methoxypyrazine 4-oxide (121, $R = CH_2OH$) [LiAl(OBu^t)₃H, THF, $0 \rightarrow 7^{\circ}C$, 18 h: 38%].337
- $2,6-\text{Bis}(3-\text{ethoxycarbonylpyrazol-1-yl)pyrazine}$ (122, $R = CO_2Et$) gave 2,6 $bis(3-hydroxymethylpyrazol-1-yl)pyrazine$ (122, $R = CH_2OH$) (LiAlH₄, THF, $0 \rightarrow 20^{\circ}$ C, 90 min: 85%).⁹⁶³

Also other examples.^{513,619,644,854,1091,1259,1634}

By Extranuclear Oxidative Hydroxylation

- 2 -Isobutyl-3-methoxypyrazine (123, $R = H$) gave $2-(1-hydroxy-2-methylpropyl)$ -3-methoxypyrazine (123, R = OH) (Pr^{*i*}₂NLi, Et₂O—C₆H₁₄, N₂, -78 \rightarrow 20°C, 2 h; then $O_2 \downarrow .5$ min: 58%).⁸¹⁵
- 2-Acetylpyrazine (**124**) gave 2-(2-hydroxy-1, 1-dimethoxyethyl)pyrazine (**125**) [substrate, KOH, MeOH, 0°C, 30 min; then PhI(OAc)₂ \downarrow , 20°C, 12 h: 62%].²⁸³

By Hydrolysis of Acetoxyalkylpyrazines

- *Note:* The commonly used 2-(1-acetoxyalkyl)pyrazine substrates are usually available by treatment of 2-alkylpyrazine 1-oxides with acetic anhydride (see Section 5.5.2.3).
- 2-Acetoxymethyl- (**126**) gave 2-hydroxymethyl-3-methoxy-5-methylpyrazine (127) (K₂CO₃, MeOH-H₂O, 20^oC, 24 h: 89%).³²⁴

 $2-(1-Acetoxy-2-methylpropyl)-3-chloro-5-isobutylpyrazine (128, $R = Ac$) gave$ 2-chloro-3-(1-hydroxy-2-methylpropyl)-6-isobutylpyrazine (**128**, R - $R = H$ $(K_2CO_3, EtOH-H_2O,$ reflux, 30 min: 93%; note survival of the chloro substituent).⁷⁸

- $2,5-B$ is (acetoxymethyl)-3,6-dichloropyrazine (129, R = Ac) gave 2,5-dichloro-3,6-bis(hydroxymethyl)pyrazine $(129, R = H)$ (KHCO₃, MeOH, 45^oC, 3 h: 67%). 82
- 2-Acetoxy-6-acetoxymethyl-3-isobutyl-5-methoxypyrazine (**130**) gave 6-hydroxymethyl-3-isobutyl-5-methoxy-2(1H)-pyrazinone (131) (K₂CO₃, MeOH-H₂O, 20°C, 30 min: 97%; note hydrolysis of both nuclear and extranuclear acetoxy groupings).329

Also other examples.16,333,1290

By Splitting Alkoxyalkyl- or Aryloxyalkylpyrazines

2-Isobutyl-3-methoxy-5-[3-(tetrahydropyran-2-yloxy)propyl]pyrazine (**132**) gave 2-(3-hydroxypropyl)-5-isobutyl-6-methoxypyrazine (**133**) (TsOH, MeOH, 20°C, ultrasonication, 2 h: $> 95\%$;²⁹⁵ analogues likewise.²⁹⁸

 $2-(p$ -Methoxystyryl)pyrazine (134, $R = Me$) gave $2-(p$ -hydroxystyryl)pyrazine $(134, R = H)$ (BF₃.Me₂S, N₂, 0 \rightarrow 20°C, 36 h: 93%).³⁸⁸

Also other examples.⁸⁴⁸

(**134**)

5.2.2. Reactions of Extranuclear Hydroxypyrazines (*H* **181)**

Extranuclear hydroxypyrazines react as alcohols or phenols according to the type of substituent that bears the hydroxy group. Already covered are their *conversion into alkenylpyrazines by dehydration* (Section 3.2.1.5) or *into extranuclear halogenopyrazines* (Section 4.3.1).

The remaining reactions are illustrated by the following classified examples:

Oxidation to Pyrazine Aldehydes

- 5-Hydroxymethyl-6-methyl-2,3-pyrazinedicarbonitrile (**135**) gave 5,6-dicyano-3-methyl-2-pyrazinecarbaldehyde (136) (activated MnO₂, CH₂Cl₂, 20°C, 22 h: 45%).¹⁵⁹⁹
- 2 -Allyl-2-(2-hydroxyethyl)- (137, $R = CH_2OH$) gave 2-allyl-2-formylmethyl-5isopropyl-3,6-dimethoxy-2,5-dihydropyrazine $(137, R = CHO)$ [Me₂SO, $(COCl)_2$, CH_2Cl_2 , $-60^{\circ}C$, A, 5 min; then substrate \downarrow , $-60 \rightarrow -15^{\circ}C$, 20 min; then Et₃N \downarrow , $-60 \rightarrow 20^{\circ}$ C, \sim 1 h (?): 77%; Swern oxidation].¹⁶¹⁵

Also other examples, 476

Oxidation to Pyrazine Ketones

 $2,6$ -Dichloro-3-(1-hydroxyethyl)pyrazine $(138, R = Me)$ gave 2-acetyl-3,5dichloropyrazine (139, $R = Me$) (fresh MnO₂, PhMe, reflux with H₂O removal, 1 h: 67%);¹⁴⁵⁵ 2,6-dichloro-3-(α -hydroxybenzyl)pyrazine (138, R = Ph) gave 2-benzoyl-3,5-dichloropyrazine $(139, R = Ph)$ (likewise: 84%).¹⁴⁵⁵

 $2-(\beta-Hydroxy-\alpha,\alpha\text{-dimethylphenethyl})\text{pyrazine}$ (140) gave $2-(\alpha,\alpha\text{-dimethyl-}$ phenacyl)pyrazine (141) (CrO₃—H₂SO₄, AcMe, 0°C, 10 min: 71%).⁸⁰¹

Also other examples.364,854,1092,1354,1395

Oxidation to Pyrazinecarboxylic Acids

- 6-Hydroxymethyl-2(1*H*)-pyrazinone 4-oxide (**142**) gave 6-oxo-1,6-dihydro-2 pyrazinecarboxylic acid 4-oxide (143) ("Ni peroxide", NaOH, H₂O, 20°C, 4 h: 40%).⁸⁹
- 2-Hydroxymethyl-5-methylpyrazine $(144, R = CH_2OH)$ gave 5-methyl-2pyrazinecarboxylic acid $(144, R = CO₂H)$ $(KMnO₄, H₂O, <25°C, 1 h:$ $>$ 50%).¹³⁵³

Also other examples.^{988,1340}

O-Alkylation

2-Hydroxymethyl-5-methylpyrazine 4-oxide $(145, R = H)$ gave 2-methoxymethyl-5-methylpyrazine 4-oxide $(145, R = Me)$ (NaH, Me₂NCHO, 20^oC, until $H_2 \uparrow$ ceased, ; then MeI \downarrow , 20°C, 2 h: 77%).⁶⁷⁶

2-(2-Hydroxyethyl)pyrazine (**146**) gave 2-[2-(prop-2-ynyloxy)ethyl]pyrazine (147) (Na, THF, 20 $^{\circ}$ C, 3 h; then BrCH₂C=CH \downarrow , 50 $^{\circ}$ C, 1 h: 21%).³⁶⁶

- 1-(β -Hydroxy-*p*-nitrophenethyl)-4-methylpiperazine (148, $R = H$) gave 1-[β -(ethoxycarbonylmethoxy)-p-nitrophenethyl]-4-methylpyrazine (148, $R = CH_2CO_2Et$) (ClCH₂CO₂Et, PhH, reflux, 10 h: 62%; substrate is sufficiently basic to obviate any need for added base).⁴⁴³
- $2-(1-Hydroxybutyl)$ $(149, R = H)$ gave $2-[1-(benzyloxy)butyl]-5-isobutyl-3,6$ dimethoxy-2,5-dihydropyrazine (149, $R = CH_2Ph$) [Cl₃CC(=NH)OCH₂Ph, CH_2Cl_2 , F₃CSO₃SiMe₃, 0 \rightarrow 20 $^{\circ}$ C, 24 h: 67%].³⁸¹

2-Benzyloxy-5-chloro-6-hydroxymethyl-3-isobutylpyrazine 4-oxide gave 2 benzyloxy-5-chloro-3-isobutyl-6-[(tetrahydropyran-2-yloxy)methyl]pyrazine 4-oxide (150) (3,4-dihydro-2H-pyran, TsOH.H₂O, CH₂Cl₂, 20^oC, 1 h: 95%) 848

Also other examples.329,340,717,896,1551

O-Acylation

- $2-(1-Hydroxy-2-methylpropyl) (151, R = H)$ gave $2-(1-acetoxy-2-methyl-2)$ propyl)-5-isobutylpyrazine 1-oxide $(151, R = Ac)$ $(Ac_2O, AcONa, 95^{\circ}C,$ 90 min: 75%).⁷⁸
- $2-(1,2-Dihydroxyethyl)-5-methylpyrazine$ $(152, R = H)$ gave $2-(1,2-diace$ toxyethyl)-5-methylpyrazine (152, $R = Ac$) (Ac₂O, pyridine, 20°C, 20 h: 71%).1446

2-Benzyloxy-6-hydroxymethyl-3-isobutyl-5-methoxypyrazine 4-oxide (**153**) gave 2-benzyloxy-3-isobutyl-6-(mesyloxymethyl)-5-methoxypyrazine 4-oxide (**154**) (MsCl, Et₃N, CH₂Cl₂, 0^oC, N₂, 30 min: $> 95\%$).⁸⁴⁸ Also other examples.16,324,609,1614

O-Trialkylsilylation

- 2 -Fluoro-3-(hydroxydiphenylmethyl)pyrazine $(155, R = H)$ gave 2 -[diphenyl- (trimethylsiloxy) methyl]-3-fluoro pyrazine (155, $R = \text{SiMe}_3$) [O-lithiation of substrate (*in situ*), then Me₃SiCl \downarrow , THF, -78° C, 60 min: 95%].⁴⁰⁶
- 3-(2-Hydroxyethyl)-1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**156**, $R = H$) gave 3-[2-(*tert*-butyldimethylsiloxy)ethyl]-1,4-dimethyl-3,6-dihydro- $2,5(1H,4H)$ -pyrazinedione (156, R = SiBu^{*I*}Me₂) (Bu^{*I*}Me₂SiCl, trace 4-Me₂Npyridine, Et₃N, CH₂Cl₂, 0 \rightarrow 20°C, 3 days: 98%).⁴⁵³

Indirect Aminolysis

 $2-(3-Hydroxypropyl)-5-isobutyl-6-methoxypyrazine (157, $R = Bu^i$) gave 2$ isobutyl-3-methoxy-5-(3-phthalimidopropyl)pyrazine $(158, R = Bu^i)$ (phthalimide, $EtO_2CN=NCO_2Et$, Ph₃P, A, 20°C, 12 h: 93%), and thence 2-(3-aminopropyl)-5-isobutyl-6-methoxypyrazine $(159, R = Bu^i)$ $(H_2NNH_2.H_2O, EtOH,$ reflux, 4 h: 83%);295 2-(3-aminopropyl)-5-isopropyl-6-methoxypyrazine (**159**, $R = Prⁱ$ ²⁹⁸ and other homologues^{295,298} were made similarly.

A similar sequence of reactions using *N*-hydroxyphthalimide converted 2 hydroxymethylpyrazine (**160**) into 2-(phthalimidooxymethyl)pyrazine (**161**) (65%), and thence 2-(aminooxymethyl)pyrazine (**162**) (uncharacterized material used for further reactions).¹¹⁶⁴

$$
\begin{array}{c}\n\begin{pmatrix}\nN \\
N\n\end{pmatrix} & \xrightarrow{N\text{-hydroxyphthalimide,}} & \begin{pmatrix}\nN \\
N\n\end{pmatrix} & \xrightarrow{CH_2O} N\n\end{array}
$$
\n
$$
(160)
$$
\n
$$
(161)
$$
\n
$$
(162)
$$

Cyclization

1-Benzyl-3-(3-hydroxypropyl)-5-methoxy-2(1*H*)-pyrazinone (**163**) gave 9-benzyl-8-methoxy-2-oxa-7,9-diazabicyclo[4.2.2]dec-7-en-10-one (**164**) (dichlorodicyanobenzoquinone, PhH, reflux, N₂, 90 min: 47% ³⁴ also related cyclizations.168

5.3. NUCLEAR AND EXTRANUCLEAR ALKOXY- OR ARYLOXYPYRAZINES (*H* **168, 182)**

Although both types of pyrazine ethers are easily made, only the nuclear alkoxypyrazines can be used as substrates for nucleophilic displacement reactions. Some epoxides are included in the present discussion. Shape details of *cis*- and *trans*-2,5-dimethoxy-3,6-diphenyl-3,6-dihydropyrazine have been elucidated by X-ray analysis.1243

5.3.1 Preparation of Alkoxy- or Aryloxypyrazines (*H* **168, 189)**

Most alkoxy- or aryloxypyrazines have been made by *primary synthesis* (see Chapters 1 and 2), by *addition of alcohols to alkynylpyrazines* (see Section 3.2.4.9), by *alcoholysis or phenolysis of halogenopyrazines* (see Sections 4.2.3 and 4.4), by *O-alkylation of tautomeric pyrazinones or extranuclear hydroxypyrazines* (see Sections 5.1.2.2 and 5.2.2), or by *epoxidation of alkenylpyrazines* (see Section 3.2.4.1). Some of the few remaining routes (presently of minor preparative value) are illustrated briefly in the following recent examples:

By Alcoholysis of Alkylsulfonylpyrazines

- 5,6-Dimethyl-3-methylsulfonyl-2-pyrazinamine (**165**) gave 3-methoxy-5,6-dimethyl-2-pyrazinamine (**166**) (MeONa, MeOH, reflux, 27 h: ~60%).¹⁰¹²
- 2-Benzoyl-3-methylsulfonylpyrazine $(167, R = SO₂Me)$ gave 2-benzoyl-3methoxypyrazine (167, R = OMe) (MeONa, MeOH, 20°C (?), 3 h: 43%].¹⁵⁶⁴ Also other examples.1507

By Alcoholysis of Pyrazinecarbonitriles

- *Note:* Treatment of a pyrazinecarbonitrile with alkoxide ion may result in addition to afford the corresponding alkyl pyrazinecarboximidate (see Section 8.2.1) or in displacement to give an alkoxypyrazine (as here illustrated).
- 2,3-Pyrazinedicarbonitrile (**169**) gave 3-methoxy-2-pyrazinecarbonitrile (**168**) (MeOH, Et₃N, Me₂NCHO, reflux, 16 h: 30%) or dimethyl 2,3-pyrazinedicarboximidate (170) (MeOH, MeONa, 20°C, 18 h: 64%).¹¹²⁷

5-(3,4-Dimethoxyphenyl)-2,3-pyrazinedicarbonitrile behaved somewhat similarly under a variety of conditions but the factors, that determine whether the addition or displacement reaction predominates, remain unclear.¹³⁷⁹

By Alcoholysis of Alkoxypyrazines (Transalkoxylation)

Note: This potentially useful process is poorly represented in recent papers.

2,5-Dibenzyloxy-3-isobutyl-6-(tetrahydropyran-2-yloxymethyl)pyrazine 4-oxide (**171**) gave 2-benzyloxy-3-isobutyl-5-methoxy-6-(tetrahydropyran-2-yloxymethyl)pyrazine 4-oxide (172) (NaH, Bu₄NBr, MeOH, Me₂NCHO, 20^oC, N₂, 40 min: 91%; the selective transalkoxylation of the 5-benzyloxy group may be due to activation by the adjacent *N*-oxide entity).⁸⁴⁸

5.3.2 Reactions of Alkoxy- or Aryloxypyrazines (*H* **182, 194)**

These pyrazine ethers, both nuclear and extranuclear, undergo several useful reactions. Their *hydrolysis to tautomeric pyrazinones or hydroxyalkylpyrazines* has been covered in Sections 5.1.1 and 5.2.1. Other reactions are illustrated in the following examples:

Dehydrogenation

2,5-Dimethoxy-3,6-dihydropyrazine (**173**) gave 2,5-dimethoxypyrazine (**174**) [dichlorodicyanobenzoquinone, PhMe, reflux, 2 h: 43%;⁷⁰ or Bu'Me₂- $SiOCH₂CH₂C(SiMe₃)$ =CHTs, LiN(C₆H₁₁)₂ (made *in situ*), HF, -40°C, N₂, 2 days: 21% ³⁴

Also other examples.16

C-Deuteration

 2 -Isopropyl-3,6-dimethoxy-2,5-dihydropyrazine $(175, R = H)$ gave 5,5-dideutero-2-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine $(175, R = D)$ (MeOD—D₂O, KOH, reflux, 3 h: 84%; with no upset to chirality). 41

Quaternization

2-Methoxypyrazine gave 3-methoxy-1-methylpyrazinium iodide (**176**) (MeI, no details but confirmed in structure by ^{13}C - and $^{15}N NMR$ spectra).¹²²⁴

Also other examples.³⁶⁷

Aminolysis

2,5-Diethoxy-3,6-dihydropyrazine (**177**) gave 2,5-bisdimethylamino-3,6-dihydropyrazine (178) (neat Me₂NH, 60° C, sealed, 6 h: 77%).⁷⁰

Ethyl 1-benzyl-5-ethoxy-2-piperazinecarboxylate (**179**) gave ethyl 7-benzyl-3-methyl-5,6,7,8-tetrahydroimidazo [1,2-*a*] pyrazine-6-carboxylate (**181**) $(H_2NCH_2C \equiv CH, PhMe, 100^{\circ}C, 7 \text{ h}: ?\%)$, presumably via the primary aminolytic product (180) ; analogues likewise.¹⁴⁶⁸

Also other examples.¹²⁹

Addition/Cyclization Reactions

2,5-Dimethoxy-3,6-dimethylpyrazine (**182**) gave 6,8-dimethoxy-1,4-dimethyl-2,3-dioxa-5,7-diazabicyclo^[2.2.2]octa-5,7-diene (183) (*hv*, O₂, CH₂Cl₂, methylene blue, ? h: ?%), and thence methyl 5-methoxy-2,4-dimethyl-1 imidazolecarboxylate (184) or its isomer $(Ph_3P, THF-H_2O, 20^{\circ}C, 5$ days: 47% ; mechanism suggested).¹⁶⁵

2-(But-3-ynyloxymethyl)pyrazine (**185**) gave 3,4-dihydro-1*H*-pyrano[3,4-*c*]pyridine (**187**), presumably by loss of HCN from an intramolecular Diels–Alder adduct (186) (F_3CCO_2H , reflux, 45 h: 85%); also analogues likewise.³⁶⁷

2,5-Diethoxy-3,6-dihydropyrazine (**188**) and 3,6-bis(trifluoromethyl)-1,2,4,5 tetrazine (**189**) gave 2-ethoxy-5,8-bis(trifluoromethyl)-3,4-dihydropyrazino[2,3 *d*]pyridazine (190) by loss of N_2 and EtOH from an intermediate Diels–Alder adduct (CCl₄, reflux, 1 h: 72%).⁷⁰⁸

Also other examples.^{130,715}

5.4. NONTAUTOMERIC PYRAZINONES AND *N***-ALKYLPYRAZINIUMOLATES (***H* **184)**

Tautomeric pyrazinones may be rendered nontautomeric by O-alkylation to afford alkoxypyrazines (see Section 5.3.1) or by N-alkylation to furnish 1-alkyl-2(1*H*)-pyrazinones or 1-alkylpyrazinium-3-olates (see Section 5.1.2.2).

5.4.1 Preparation of Nontautomeric Pyrazinones (*H* **184)**

Most such pyrazinones have been made by *primary synthesis* (Chapters 1 and 2) or *N-alkylation of tautomeric pyrazinones* (Section 5.1.2.2). The minor route by *rearrangement of alkoxypyrazines* (*H* 184) appears to be unpresented in recent literature, but there are examples of the *hydrolysis of nontautomeric iminopyrazines to corresponding pyrazinones*. Thus 3-imino-4-methyl-3, 4-dihy d ro-2-pyrazinamine hydriodide $(191, R = H)$ (i.e., 2,3-diamino-1-methylpyrazinium iodide) underwent hydrolysis in 2 M sodium hydroxide during 1 h at 100°C to afford 3-amino-1-methyl-2(1*H*)-pyrazinone (192, R = H) (\sim 40%) without any evidence of Dimroth rearrangement to 3-methylamino-2-pyrazinamine;¹⁰⁰⁸ 1-methyl-3-methylamino-2(1*H*)-pyrazinimine (191, $R = Me$) likewise gave 1methyl-3-methylamino-2(1*H*)-pyrazinone (192, R = Me) $(\sim 50\%)$;¹⁰⁰⁸ and other examples have been reported.⁵⁹⁸

5.4.2 Reactions of Nontautomeric Pyrazinones (*H 185*)

Only a few of the recently reported reactions of fixed pyrazinones directly affect the oxo substituent. These and other reactions are illustrated in the following examples:

Oxidative or Reductive N-Debenzylation

1-Benzyl-6-isobutyl-4-*p*-methoxybenzyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**193**) gave 1-benzyl-6-isobutyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (**194**) $[(NH_4)_2Ce(NO_3)_6, MeCN-H_2O, 20°C, 2 h: 96%; note selective removal of$ the *p*-methoxybenzyl group, leaving the *N*-benzyl (or in other examples, an *N*-methyl) group intact.⁵⁷⁶

In contrast, 1-benzyl-6-*m*-methoxybenzyl-2(1*H*)-pyrazinone gave only 6-*m*methoxybenzyl-2(1*H*)-pyrazinone on reductive debenzylation (liquid NH_3 —THF, Na: 49%).⁴⁴

Reduction of Oxo to Hydroxy Substituents

Isopropyl 4-benzyl-2,5-dioxo-6-(2,4,5-trimethoxy-3-methylbenzyl)-3-(2, 4,5 trimethoxy-3-methylbenzylidene)-1-piperazinecarboxylate (**195**) gave isopropyl 4-benzyl-2-hydroxy-5-oxo-6-(2,4,5-trimethoxy-3-methylbezyl)- 3-(2,5-trimethoxy-3-methylbenzylidene)-1-piperazinecarboxylate (**196**) [LiAl(OBu^t)₃H, THF, 0°C, 1 h: 69%]; also related esters likewise.²⁹²

Thiation

Note: Like tautomeric pyrazinones (Section 5.1.2.1), nontautomeric pyrazinones undergo thiation easily.

1-Methyl-5,6-diphenyl-2(1*H*)-pyrazinone (197, $X = O$ gave 1-methyl-5,6diphenyl-2(1*H*)-pyrazinethione (197, $X = S$) (Lawesson's reagent, PhH, reflux, 1 h: 91%).²⁶⁹

Ring Contraction

1,3,5,5-Tetramethyl-5,6-dihydro-2(1*H*)-pyrazinone (**198**) gave 3,5-dimethylimidazolidin-4-one (199) (hv , H₂O, N₂, 4 days: 58%).⁷⁷⁹

Intramolecular Cyclization

1,4-Diethyl-5,6-dihydro-2,3,5,6(1*H*,4*H*)-pyrazinetetrone (**200**) gave 7-ethyl- $2,3,8,8a$ -tetrahydro-5*H*-oxazolo[3,2-*a*]pyrazine-5,6,8(7*H*)-trione (201) (*hv*, MeCN, A, $\lt 4$ h: 55%); homologues likewise.⁷⁹⁶

Dimerization

Irradiation of the light-sensitive crystal form of 1-methyl-5,6-diphenyl-2(1*H*) pyrazinone (**202**) in the solid state gave the *syn-trans*-cyclodimer (**203**) (20 $^{\circ}$ C, <4 h: >86%);¹⁴¹⁷ The anti-trans structure first proposed¹⁴¹⁷ was revised 575 in light of an X-ray analysis.⁶⁰

Also other examples.¹³²⁷

Formation of Endoperoxy Derivatives

1-Methyl-5,6-diphenyl-2(1*H*)-pyrazinone (**204**) gave 5-methyl-4,8-diphenyl-2,3 dioxa-5,7-diazabicyclo[2.2.2]oct-7-en-6-one (205) (*hv*, O₂, Rose Bengal, CH_2Cl_2 , -50° C: 52%), and thence the MeOH adduct, 8-methoxy-5-methyl-4,8-diphenyl-2,3-dioxa-5,7-diazabicyclo[2.2.2]octan-6-one (**206**) (MeOH, 20 $^{\circ}$ C, dark: >95%; or by conducting the irradiation in MeOH).¹⁴²⁰ The subsequent catabolic reactions of these and related endoperoxides have been studied.22,35,1073,1443

Diels–Alder Reactions

3,5-Dichloro-1-phenyl-2(1*H*)-pyrazinone (**207**) and dimethyl acetylenedicarboxylate gave an unisolated adduct (**208**) that immediately underwent competitive retro-Diels–Alder reactions to afford dimethyl 2,6-dichloro-3,4-pyridinedicarboxylate (**209**) and dimethyl 5-chloro-6-oxo-1-phenyl-1,6-dihydro-2,

3-pyridinedicarboxylate (210) (neat MeO₂CC=CCO₂Me, 140^oC, A, 30 min: 78 and 5%, respectively);370 also many analogous reactions, some in solvents and some using unsymmetrical dienophiles.370,1476

1,5-Dimethylpyrazin-1-ium-3-olate (**211**) with methyl acrylate gave methyl 8 methyl-4-methylene-2-oxa-3,8-diazabicyclo[3.2.1]octane-6-carboxylate (**212**) and the isomeric 7-carboxylate (**213**)[reactants, MeCN, reflux, 2 h: Chromatography afforded 6-*exo*-(**212**): 42%; 6-*endo*-(**212**): 13%; and (**213**): 1%];³⁴¹ analogues behaved in a broadly similar way.^{341,1478}

Formation of Radicals

Radicals derived from 1,4-di-*tert*-butyl-5,6-dihydro-2,3(1*H*, 4*H*)-pyrazinedione (**214**),1454 1,4-di-*tert*-butyl-5,6-dihydro-2,3,5,6(1*H*,4*H*)-pyrazinetetrone (215) , ¹⁴⁵⁴ and 1,4-dimethyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (216) (or related diones)⁶⁷ have been studied in some detail.

5.5. PYRAZINE *N***-OXIDES (***H* **59, 116, 149, 186, 239, 302)**

Pyrazine *N*-oxides have continued to attract much attention in recent years, perhaps because the presence of an *N*-oxide entity can substantially modify the properties of the whole system, especially in respect of activities at other positions on the ring. For example, the aromaticity index for 2-methoxypyrazine is decreased by 23% on formation of its 4-oxide;383 and formation of an *N*-oxide activates adjacent positions toward direct bromination,⁷⁸² deuteration,¹⁴⁵⁷ and other electrophilic attack.1078

5.5.1. Preparation of Pyrazine *N***-Oxides (***H* **59, 86, 116, 186, 239, 302)**

Some pyrazine *N*-oxides have been made by *primary synthesis* (see Chapters 1 and 2). Other preparative routes are discussed in the following subsections.

5.5.1.1. From N-Alkoxypyrazinones

This minor route to pyrazine *N*-oxides involves either reductive or hydrolytic debenzylation of 1-benzyloxy-2(1*H*)-pyrazinones, often available by primary synthesis.

For example, 1-benzyloxy-2(1*H*)-pyrazinone (217, $R = H$) afforded 70% of 1hydroxy-2($1H$)-pyrazinone (218, $R = H$) [sometimes written as its tautomer, 2-pyrazinol 1-oxide $(218a, R = H)$ on catalytic hydrogenation over palladium-oncharcoal in methanol for 20 min.588 The homologous 1-benzyloxy-5,6-dimethyl- $2(1H)$ -pyrazinone (217, R = Me) gave 1-hydroxy-5,6-dimethyl-2(1*H*)-pyrazinone $(218, R = Me)$, either by a similar hydrogenation $(76%)$ or by hydrolysis in acetic acid–hydrogen bromide under reflux for 10 min (81%, as hydrobromide).588,1085

5.5.1.2. By Direct N-Oxidation

This reaction is the most used route to pyrazine *N*-oxides. The choice of oxidant is not always clear²⁰⁸ but the following classified examples may afford some help. In each case, the substrate was the corresponding *N*-deoxypyrazine, unless stated otherwise.

Using Potassium Persulfate–Sulfuric Acid

2-Chloro-5,6-diethylpyrazine 1-oxide (219) $(K_2S_2O_8, H_2SO_4, 20^{\circ}C, 24 h:$ 84%);1250 2-chloro-3-isobutyl-6-methylpyrazine 1-oxide (**220**) (likewise: 78%);²⁹⁵ and 2-fluoropyrazine 1-oxide (likewise: 40%).²⁷⁶

Methyl 2-pyrazinecarboxylate 1-oxide (221) and the isomeric 4-oxide $(K_2S_2O_8)$, H_2SO_4 , $10 \rightarrow 20^{\circ}C$, 24 h, chromatographic separation: substrate (37%), 1-oxide (15%), 4-oxide (7%)].¹³⁰⁰

Also other examples.92,298,1283

Using Sodium Perborate–Acetic Acid

- 2,5-Diisopropylpyrazine 1-oxide (**222**) and 2,5-diisopropylpyrazine 1,4-dioxide (223) (NaBO₃, AcOH, AcOH, 80°C, 5 h: 79 and 15%, respectively);²⁰⁸ homologues likewise.²⁰⁸
- 2-Chloro-3,6-dimethylpyrazine 4-oxide (224) and the 1,4-dioxide [NaBO₃, AcOH, 80°C, 24 h: 56% and a trace, respectively; note the difference in orientation of the product (**224**) from that (**220**) obtained from an homologous substrate using persulfate].208

Using Sodium Tungstate–Hydrogen Peroxide

1-Benzyl-2-piperazinone (**225**) gave 1-benzyl-5, 6-dihydro-2(1*H*)-pyrazinone 4-oxide (**226**), perhaps by dehydrogenation of the intermediate shown $(Na_2WO_4. 2 H_2O, H_2O_2, EtOH–H_2O, 20°C, 24 h: 63%)$.^{1539, cf. 156}

Pyrazine 1,4-dioxide (Na₂WO₄, H₂O₂, no details).⁹⁹⁵

Using Hydrogen Peroxide–Formic Acid

2-Pyrazinecarboxamide 4-oxide (227, R = H) (30% H_2O_2 , 90% HCO₂H, ~45°C, 5 h: 66%);¹⁵⁵⁶ 5-methyl-2-pyrazinecarboxamide 4-oxide (227, R = Me) (likewise: 87%).¹⁵⁰⁸

Using Hydrogen Peroxide–Acetic Acid

2,3-Dimethylpyrazine 1-oxide (228) and the 1,4-dioxide (229) $(30\%$ H₂O₂, AcOH, 55 \degree C, 16 h: 46 and 38%, respectively).¹²⁷²

- 2-sec-Butyl-3-methoxypyrazine 1-oxide (230) (30% H₂O₂, AcOH, 75°C, 18 h: 87%).⁷³⁶
- 2-Azido-6-bromopyrazine 4-oxide (231) (30% H₂O₂, AcOH, 20°C, 48 h: 19%).⁸⁹¹ Also other examples.1059,1180,1237,1457

Using Hydrogen Peroxide–Trifluoroacetic Acid

2-*p*-Acetoxybenzyl-3,6-dichloro-5-methylpyrazine 1,4-dioxide (**232**) and an inseparable mixture of the (mono) 1- and 4-oxide [80% H_2O_2 , F_3CCO_2H , 2, 6-Bu^t₂-4-Me-phenol (radical inhibitor), 0°C, 30 min; then substrate \downarrow , 0°C, 24 h: 36% (dioxide) initially but 74% after reoxidation of the mono- N -oxides).¹⁸

See also the last example in the *m*-chloroperoxybenzoic acid group below.

Using Hydrogen Peroxide–Maleic Anhydride

- 2,5-Dibenzyl-3-methoxypyrazine 1-oxide (233) (60% H₂O₂, maleic anhydride, CHCl₃, 20 $^{\circ}$ C, 12 h: 95%);³¹² 3-acetoxymethyl-5-isobutyl-3-methoxypyrazine 1-oxide (**234**) (likewise: 89%).329
- 2-Chloro-3,5,6-trimethylpyrazine 4-oxide (235) (60% H₂O₂, maleic anhydride, CHCl₃, 20°C, 12 h: 74%).¹³⁴⁰

2,3-Diphenylpyrazine 1-oxide (236) and the 1,4-dioxide (237) $(90\%$ H₂O₂, maleic anhydride, CHCl₃, reflux, 2 h: 73 and 23%, respectively).¹²⁷² several analogues likewise.1065, 1272

Also other examples.78,82,295,310,317,324,1307

Using m-Chloroperoxybenzoic Acid

- *Note:* This reagent appears to be convenient, reliable, and widely applicable for the *N*-oxidation of pyrazines.
- 2-Pyrazinamine 1-oxide $(238, R = H)$ $(m-CIC_6H_4CO_3H, HF, Me_2NCHO$ MeOH, 25°C, 30 min: >95%;³⁴² or *m*-ClC₆H₄CO₃H, AcMe, 20°C, 24 h: 63%);¹³⁷⁴ 3-phenyl-2-pyrazinamine 1-oxide (238, R = Ph) (*m*-ClC₆H₄CO₃H, AcMe, 20°C, 24 h: 87%).1374
- 2-Methoxypyrazine 4-oxide (239, $R = H$) (*m*-ClC₆H₄CO₃H, CH₂Cl₂, 20^oC, ? h: $81\%)$;¹²²¹ 2-methoxy-6-methylpyrazine 4-oxide (239, R = Me) (likewise: $68\%)$;¹²²¹ both structures were checked by X-ray analysis.¹²²¹
- 2-Chloro-3,6-dimethylpyrazine 4-oxide (240) (*m*-ClC₆H₄CO₃H, ClCH₂CH₂Cl, 75°C, 30 min: 83%).¹⁵⁹⁴

2-Methoxymethyl-5-methylpyrazine (242) gave its 1-oxide (241) $(36\%$ H₂O₂, F₃CCO₂H, 20^oC, 7 h: 67%);⁶⁷⁶ in contrast, the same substrate (242) gave either 2-methoxymethyl-5-methylpyrazine 4-oxide (243) $[m-CIC₆H₄CO₃H]$ (1 mol) , CHCl₃, reflux, 3 h: 72%] or 2-methoxymethyl-5-methylpyrazine 1, 4-dioxide (244) [m -ClC₆H₄CO₃H, (2.2 mol), reflux, 4 h: 92%].⁶⁷⁶

Also other examples.^{46,89,147,199,231,574,669,1565,1582}

Using Dibenzoyl Peroxide (Indirect Procedure)

Piperazine (245) gave 1,4-dibenzoyloxypiperazine (246) $(Bz₂O₂, CH₂Cl₂,$ reflux, 4 h: 93%), and thence a mixture of *cis*- and *trans*-1,4-dimethylpiperazine 1,4 dioxide (247) (MeOSO₂F, CH₂Cl₂, 20^oC, 10 h: >95%).⁷⁶⁸

5.5.2. Reactions of Pyrazine *N***-Oxides (***H* **88, 149, 191, 242, 303)**

Pyrazine *N*-oxides undergo a variety of reactions. Of these, *deoxydative chlorination to C-chloropyrazines* has been covered in Section 4.1.3; other reactions are discussed in the following subsections.

5.5.2.1. Deoxygenation

Because pyrazines are often converted into their *N*-oxides in order to facilitate other reactions, subsequent removal of the oxide entity without untoward effects has become quite important. The choice of a procedure from several possibilities is clearly governed by the type(s) of passenger groups present. The following examples, classified according to reagent, may assist in this choice:

Using Phosphorus Trichloride

- 2-Isobutyl-5-methylpyrazine from its 4-oxide (248) (neat PCl₃, 100°C, sealed, 30 min: 56% ;²⁹⁵ homologues likewise.²⁹⁸
- 2,5-Distyrylpyrazine from its 1,4-dioxide (249) (neat PCl₃, reflux, 1 h: 81%).⁸¹

- 3-Amino-5,6-diphenyl-2-pyrazinecarbonitrile from its 4-oxide (250) (PCl₃, THF, $0 \rightarrow 20^{\circ}$ C, 45 min: 85%).²⁵⁸
- Ethyl 3-amino-6-phenyl-2-pyrazinecarboxylate from its 4 -oxide (251) $(PCl₃)$ THF, $0 \rightarrow 20^{\circ}$ C, 40 min: 79%).¹⁵²²

Also other examples.544,1339,1517,1530

Using Phosphorus Tribromide

- 2,5-Di-*sec*-butyl-3-*p*-toluoylpyrazine from its 4-oxide (252) (PBr₃, AcOEt, reflux, 1 h: 94%).316
- 2 -sec-Butyl-6-methoxy-5-methylpyrazine from its 4-oxide (253) (PB r_3 , CHCl₃, $0 \rightarrow 20^{\circ}$ C, 2 h: 97%).³¹⁷

Using Trimethyl Phosphite

- 3-Amino-6-dimethoxymethyl-2-pyrazinecarbonitrile from its 4-oxide (**254**) [neat $(MeO)₃P$, reflux, N₂, 4 h: 68%].^{759,767}
- Ethyl 6-amino-2-chloromethyl-5-cyano-2-pyrazinecarboxylate from its 1-oxide (255) [(MeO)₃P, PrOH, 20 \rightarrow 5°C, 12 h: 77%].⁷⁷³

Using Raney Nickel

3-Benzyl-5-*p*-(trifluoromethyl)phenyl-2-pyrazinamine from its 1-oxide (**256**, $R = CF_3$) [Raney Ni catalyst (20 X wt of substrate), EtOH, reflux, H₂ (atm), 90 min: 83% ; it seems doubtful if the H₂ plays any role other than that of an inert atmosphere];73 also 3-benzyl-5-*p*-methoxyphenyl-2-pyrazinamine from its 1-oxide (256, R = OMe) (likewise but at 20° C, 4 days: >90%).³⁹⁷

Also other examples.728,1283

Using Sodium Dithionite

- 3-Amino-6-phenyl-2-pyrazinecarboxamide from its 4-oxide (257) (Na₂S₂O₄, H₂O, reflux, 24 h: 97%);¹⁵¹⁷ also substituted-phenyl analogues likewise.¹⁵¹⁷
- 6-Phenyl-2($1H$)-pyrazinone from its 4-oxide (258) (Na₂S₂O₄, EtOH—H₂O, reflux, 30 min; then more $\text{Na}_2\text{S}_2\text{O}_4$, reflux, 30 min: 59%).⁸⁸

Also other examples.¹⁴⁵⁷

Using Other Reducing Agents

- 1-Hydroxy-6-methyl-3-phenyl-2(1*H*)-pyrazinone from its 4-oxide (259) (TiCl₃, THF, \sim 40°C, N₂, 2 h: 57%);¹²⁵⁰ also analogues likewise in mediocre yields.1250
- 5-Bromo-3,6-diisobutyl-2(1*H*)-pyrazinone from its 4-oxide (**260**) (Zn, NH4Cl, H₂O—THF, 20°C, 20 min: >95%);²³⁴ also analogues.²³⁴
- 2-Dimethylaminopyrazine from its 1-oxide (261) $(47\%$ HI, CHCl₃, 20^oC, 45 min: 78%; also a separable byproduct, 2-dimethylamino-5-iodopyrazine: 19%).278

Also other examples.1594

Note: It should be remembered that deoxygenation of pyrazine *N*-oxides is *not* usually achieved by treatment with hydrogen or formate ion in the presence of palladium or platinum catalysts.290,1283

5.5.2.2. O-Alkylation or O-Acylation (H 193)

It is obvious that simple pyrazine *N*-oxides cannot undergo O-alkylation or acylation. However, tautomeric *N*-oxides, for example, (**262**), can do so. The following examples will illustrate conditions required and results to be expected:

(**262**)

- 1-Hydroxy-5,6-dimethyl-2(1*H*)-pyrazinone (263, R = H) gave 1-benzyloxy-5,6dimethyl-2(1*H*)-pyrazinone (263, $R = CH_2Ph$) (PhCH₂Cl, Et₃N, Me₂SO, 20°C, 24 h: 98%).³⁴⁶
- 1-Hydroxy-5,6-diisopropyl-2(1*H*)-pyrazinone (264, $R = H$) gave 1-benzoyloxy-5,6-diisopropyl-2(1*H*)-pyrazinone (264, $R = Bz$) (BzCl, pyridine, CH₂Cl₂, $5 \rightarrow 20^{\circ}$ C, 12 h: 64%);¹⁵¹⁵ several analogues like 5-chloro-1-(*p*-chlorobenzoyloxy)-6-ethyl-2(1*H*)-pyrazinone (265), were made similarly.^{101,1515}
- *Note: N*-Hyroxypiperazines can also undergo O-acylation.⁸¹⁴

5.5.2.3. Conversion into C-Acyloxypyrazines (H 90, 192)

Unlike the tautomeric pyrazine *N*-oxides considered in the foregoing subsection (5.5.2.2), regular pyrazine *N*-oxides undergo rearrangement with acylating agents to afford *C*-acyloxypyrazines: The new acyloxy group may be attached at any nuclear carbon not already bearing a substituent or at the α -position of a suitably placed alkyl susbtituent. These possibilities are illustrated in the following examples but it is clearly impossible at present to forecast accurately the position of attachment:

Formation of Nuclear C-Acyloxypyrazines

2-Chloro-3,5-diphenylpyrazine 1-oxide (**266**) gave 2-acetoxy-6-chloro-3, 5-diphenylpyrazine (267) (neat Ac₂O, reflux, 1 h: 81%).¹³⁰⁷

2-Phenylpyrazine 4-oxide (**268**) gave a separable mixture of 2-acetoxy-6 phenylpyrazine (**269**), 2-acetoxy-3-phenylpyrazine (**270**), and 2-acetoxy-5 phenylpyrazine (271) $[Ac_2O, Et_3N,$ reflux, A, 6 h: 68, 11, 8% respectively (by NMR), isolated in much lower yields¹⁵⁷⁵

2-Methoxypyrazine 4-oxide (**273**) gave 2-acetoxy-6-methoxypyrazine (**272**) (neat AccO, reflux, A, 2 h: 60%) or 2-acetoxy-3-methoxypyrazine (**274**) $(Ac_2O, Et_3N, reflux, A, 2 h: 63\%).$ ¹⁵⁷⁵

3-Benzyl-5-methyl-2-pyrazinamine 1-oxide (**275**) gave 2-acetoxy-5-benzyl-6-diacetylamino-3-methylpyrazine (276) (Ac₂O-AcOK, reflux, 10 min: 67%).⁸⁸³

2,5-Diisobutyl-3-methoxypyrazine 1-oxide (**277**) gave a separable mixture of 2 acetoxy-3,6-diisobutyl-5-methoxypyrazine (**278**) and 2-(1-acetoxy-2-methylpropyl)-5-isobutyl-3-methoxypyrazine (279) (neat Ac₂O, reflux, 90 min: 73 and 12% , respectively).³¹⁰

Also other examples.1065

Formation of Extranuclear C-Acyloxypyrazines

2,3-Dimethylpyrazine 1-oxide (**280**) gave 2-acetoxymethyl-3-methylpyrazine (281) (neat Ac₂O, reflux, 30 min: 77%);¹²⁷² the isomeric 2,6-dimethylpyrazine 1-oxide gave a separable mixture of 2-acetoxymethyl-6 methylpyrazine $(282, R = Ac)$ and 2-hydroxymethyl-6-methylpyrazine $(282,$ $R = H$), the latter arising presumably by hydrolysis during the work up (neat Ac₂O, reflux, 1 h: 40 and 12%, respectively).¹³⁰⁷

2-Methoxy-3,6-dimethylpyrazine 4-oxide (**283**) gave only 2-acetoxymethyl-3 methoxy-5-methylpyrazine (284) (neat Ac₂O, reflux, 1 h: 88%);³²⁴ in contrast, the homologous substrate, 2,5-dibenzyl-3-methoxypyrazine 1-oxide (**285**), gave a separable mixture of $2-(\alpha\text{-acetoxybenzy} - 5\text{-benzy} - 3\text{-methoxy}$ pyrazine (**286**) and 2-acetoxy-3,6-dibenzyl-5-methoxypyrazine (**287**) (neat Ac₂O, reflux, 90 min: 55 and 20%, respectively). 312

Also other examples.78,329,1047,1340

5.5.2.4. Conversion into C-Amino-, *C*-Azido-, *C-Cyano-, or C-Alkylthiopyrazines*

Just as pyrazine *N*-oxides may be converted into *C*-halogeno- (Section 4.1.3) or *C*-acyloxypyrazines (Section 5.5.2.3), so they can afford *C*-amino-, *C*-azido-, *C*-cyano-, or *C*-alkylthiopyrazines, although such reactions are not well developed yet. The following examples will illustrate such procedures as used in recent literature:

Pyrazine 1-oxide (**288**) gave a 1:1 mixture of 2-chloropyrazine (**289**) and the 1-(pyrazin-2-yl)pyrazinium salt (**290**), of which the second afforded 2-pyrazinamine (291) during mildly alkaline work up [POCl₃, 70 \degree C, 2 h; removal of (**289**); residue to pH 10: 11% of amine (**291**)]; the intermediate salt (**290**) was subsequently isolated and purified (POCl₃, 20°C, 10 min: \sim 70%).⁵⁷⁴

2-Pyrazinamine 4-oxide (292) gave 3-azido-2-pyrazinamine (293) (Me₃SiN₃, Et₂NCOCl, MeCN, reflux, A, 18 h: $>95\%$;⁴⁶ analogues such as 2-azido-3,5-(95%),46 2-azido-5,6- (85%),46 and 2-azido-3,6-diphenylpyrazine (**294**) $(67\%)^{231}$ were made similarly.

- The same substrate (292) gave 3-amino-2-pyrazinecarbonitrile (295) [Me₃SiCl, NaCN, Et₃N, Me₂NCHO, 100°C, 6 h: 98%; Me₃SiCN, Et₃N, MeCN, reflux, 6 h: 93%; or (EtO)₂POCN, Et₃N, MeCN, reflux, 18 h: 49%];^{38,1556} also analogues, like 3-phenyl- $(296, R = CN)$ $(76%)$ or 3-chloro-2-pyrazinecarbonitrile (297) (68%), using slightly modified procedures with ZnBr_2 added.³⁸ The variations of this reaction have been analyzed in terms of mechanism.⁵⁸⁹
- 2-Phenylpyrazine 4-oxide gave a mixture of 2-*p*-methoxybenzylthio-3 phenylpyrazine (296, $R = \text{SCH}_2\text{C}_6\text{H}_4\text{OMe-}p$), its 5-phenyl isomer, and its 6-phenyl isomer [HSCH₂C₆H₄OMe-*p*, Et₂NCOCl, MeCN, reflux, 6 h: 63, 43, 0% (isolated); or likewise with the addition of $ZnBr_2$: 21, 38, 41% (estimated by NMR)]; 43 also other examples, all with the same thiol. 43

5.5.2.5. Miscellaneous Reactions

Pyrazine *N*-oxides undergo several minor reactions, illustrated in the following examples:

Ring Fission

2,2,3,3,5,6-Hexamethyl-2,3-dihydropyrazine 1,4-dioxide (**298**) gave 2,3-dimethyl-2,3-dinitrobutane (299) $[O_2 + O_3]$, CDCl₃, -78°C, 15 min: 93%; diacetyl (300) was also identified in the reaction mixture (by NMR)].⁸⁸⁰

Cyclocondensation

6,6-Diethyl-5-methyl-3,6-dihydro-2(1*H*)-pyrazinone 4-oxide (**301**) gave dimethyl 4,4-diethyl-3a-methyl-6-oxo-4,5,6,7-tetrahydro-3a*H*-isoxazolo[2,3 *a*]pyrazine-2,3-dicarboxylate (302) (MeO₂CC= $CCO₂Me$, CHCl₃, reflux, 3 h: 64%);⁵⁴⁴ homologues likewise.⁵⁴⁴

Reduction

2,2,3,3-Tetramethyl-2,3-dihydropyrazine 1,4-dioxide (**303**) gave 2,2,3,3-tetramethyl-1,4-piperazinediol (304) (NaBH₄, H₂O, 20°C, 24 h: 81%; homologues likewise).702 Also analogous reductions.702

1,5-Dihydroxy-3,6-dimethyl-2(1*H*)-pyrazinone 4-oxide (**305**) gave 1,4-dihydroxy-3,6-dimethyl-2,5-piperazinedione (306) (H₂, PtO₂, MeOH, 40°C, \sim 3 atm, until colorless: 38%; homologues likewise).¹²⁸³

Rearrangement

3,3-Dimethyl-2,3-dihydro-2-pyrazinol 1,4-dioxide (**307**) gave 2,3-dimethylpyrazine 1,4-dioxide (308) (neat HSO₂F-SbF₅, 140°C, 30 min: 87%).⁴³⁹

Metal Complexation

- Pyrazine 1-oxide gave 4-oxidopyrazinium chlorochromate (309) (CrO₃, HCl, 20 $^{\circ}$ C: 70%); for comparison, pyrazine gave the 1:1 complex (310) (CrO₃, CH_2Cl_2 , N₂, 20 \rightarrow 0°C, 4 h: 55%). Both products proved to be mild oxidizing agents for alcohols.279
- 3-[2-(5-Aminopentanoyl)ethyl]-1-benzyloxy-5,6-dimethyl-2(1*H*)-pyrazinone (**311**) and a coligand afforded a gallium complex that showed promise for extraction of primary ammonium ions.¹⁷⁹

5.6. APPENDIX: TRIVIAL NAMES FOR PYRAZINE DERIVATIVES (*H* **1, 6, 8)**

Because most pharmaceutical, agrochemical, and naturally occurring pyrazines are in fact oxypyrazines of one sort or another, $1218,1281$ an alphabetical list of many such recently mentioned pyrazines (under their trivial names, if any) is presented at this point. Each entry includes a chemical name or indication of structure, the type of bioactivity and/or natural source (as appropriate), and the CAS Registrary number and/or leading reference(s) (to facilitate any search for detailed information).

- Acipimox, 5-methyl-2-pyrazinecarboxylic acid 4-oxide, antihyperlipidaemic [51037-30-0].
- Albonoursin, 3-benzylidene-6-isobutylidene-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, antibacterial and antineoplastic [1222-90-8].¹⁷¹⁰
- Amiloride (*H* 9, 279), *N*-amidino-3,5-diamino-6-chloro-2-pyrazinecarboxamide (hydrochloride), K-sparing diuretic and antihypertensive [2906-46-3].^{124,450,} 879,970,986,1245,1281
- Amperozide, 4-[4,4-bis(*p*-fluorophenyl)butyl]-*N*-ethyl-1-piperazinecarboxamide, analgesic and tranquilizer [75558-90-6].¹⁷¹¹
- Arglecin (*H* 7), 6-(3-guanidinopropyl)-3-isobutyl-2(1*H*)-pyrazinone, a *Streptomyces* sp metabolite [34098-41-4].²⁹⁵
- Argvalin, 6-(3-guanidinopropyl)-3-isopropyl-2(1*H*)-pyrazinone, a *Streptomyces* sp metabolite [52159-72-5].298
- Aspergillic acid (*H* 65, 195), 6-*sec*-butyl-1-hydroxy-3-isobutyl-2(1*H*)-pyrazinone, a mycotoxic *Aspergillus* sp metabolite [490-02-8].¹⁰²⁴
- Astechrome, 3-(1-hydroxy-3-methoxy-5-methyl-6-oxo-1,6-dihydropyrazin-2-ylmethyl)-7-(3-methylbut-2-enyl)indole Fe complex, an *Aspergillus* sp metabolite [75310-10-0].⁹⁰
- Atevirdine, 2-[4-(3-ethylaminopyridin-2-yl)piperazin-1-yl]-5-methoxyindole (mesylate), reverse transcriptase inhibitor: anti-HIV [136816-75-6].
- $1,2-\text{Bis}(3,5,6-\text{trimethylpyrazin-2-yl)propene}$, platelet aggregation inhibitor.¹²⁴²
- Cairomycin A, 3-carboxymethyl-6-isopropyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, a *Streptomyces* sp metabolite: antibacterial and antifungal [78859-46-8].
- Cinepazet, 1-ethoxycarbonylmethyl-4-[2-(3,4,5-trimethoxyphenyl)acryloyl]piperazine (and maleate), coronary vasodilator: antianginal [23887-41-4].
- Coelenteramide, 2-benzyl-3-[2-(*p*-hydroxyphenyl)acetamido]-6-*p*-hydroxyphenylpyrazine, light emitter from a jelly fish [50611-86-4].73
- Cryptoechinulin A (also C, G), polysubstituted piperazine–indole structures, *Aspergillus* sps metabolites [55179-54-9, 57944-03-3, 68836-03-3].
- Cyclizine, 1-(diphenylmethyl)-4-methylpiperazine (hydrochloride or tartrate), histamine H_1 -receptor antagonist: sedative and antiemetic [82-92-8].
- Deoxyaspergillic acid (*H* 50, 158), 6-*sec*-butyl-3-isobutyl-2(1*H*)-pyrazinone, an *Aspergillus* sp metabolite [21641-71-4].^{122,980}
- Deoxymutaaspergillic acid (*H* 158, 193), 3-isobutyl-6-isopropyl-2(1*H*)-pyrazinone, an *Aspergillus* sp metabolite [22318-05-4].¹²²
- Dexrazoxane: See Razoxane
- 2,5-Dibenzyl-1,4-dimethylpiperazine, a *Rutaceae* sp metabolite.778
- 3,6-Dibenzyl-5-methoxy-2(1*H*)-pyrazinone, an *Albatrellus* sp mushroom metabolite.742
- 3,6-Di-*sec*-butyl-2(1*H*)-pyrazinone, an *Aspergillus* sp metabolite.980
- Diethylcarbamazine, *N*,*N*-diethyl-4-methyl-1-piperazinecarboxamide, antihelmintic [90-89-1].
- Draflazine, 1-[*N*-(4-amino-2,6-dichlorophenyl)carbamoylmethyl]-4-[5,5-bis (*p*-fluorophenyl)pentyl]-2-piperazinecarboxamide, purine uptake inhibitor: vasodilator and antiarrhythmic [120720-34-3].
- Dragmacidine (dragmacidon) (also A, B, D), 2,5-bis(6-bromoindol-3-yl)-1 methylpiperazine (A), *Dragmacidon* or *Hexadela* sp sponge metabolites [114582-72-8, 128364-31-8, 128629-37-8, 142979-34-8].1704
- Dysamide A-T, 1,4-dimethyl-3,6-bis[2-(trichloromethyl)propyl]-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione (A) and analogues (B-T: for structures, see reference), *Dysidea* sp metabolites $[149377-31-1(A),$ etc.].¹⁶⁵⁸
- Echinulin, a polysubstituted piperazine–indole structure, an *Aspergillus* sp metabolite [1859-87-61].
- Emeheterone, 3,6-dibenzyl-5-methoxy-2(1*H*)-pyrazinone 4-oxide, an *Emericella* sp fungus metabolite [117333-12-7].310,312,cf.1397,1725
- Emimycin (*H* 6, 191), 2(1*H*)-pyrazinone 4-oxide, a *Streptomyces* sp metabolite [3735-46-4].
- Esaprazole, 1-(*N*-cyclohexylcarbamoylmethyl)piperazine, gastric secretion inhibitor: antiucerogenic [64204-55-3].
- Etioluciferamine, 3-[5-amino-6-(3-aminopropyl)pyrazin-2-yl]indole, light emitter from a *Cypridine* sp sponge [7256-95-3].¹⁷⁰⁷
- Flavacol (*H* 6), 3,6-diisobutyl-2(1*H*)-pyrazinone, an *Aspergillus* sp metabolite [495-98-7].122,980
- Flunarizine, 1-[bis(*p*-fluorophenyl)methyl]-4-(3-phenylallyl)piperazine (and hydrochloride), histamine H₁-receptor antagonist and Ca-channel blocker: vasodilator and antimigraine agent [52468-60-7].
- Flutamide, 1-hydroxy-3,5-diisobutyl-3,6-dihydro-2,6-dihydro-2,6(1H)-pyrazinedione (or tautomer), antiandogenic: for prostate cancer [162666-34-3].
- Glipizide (*H* 9), *N*-{*p*-[(cyclohexylcarbamoyl)sulfamoyl]phenethyl}-5-methyl-2 pyrazinecarboxamide, antihyperglycaemic [29094-61-9].851,893,964,1576
- Hydroechinulin, a polysubstituted piperazine–indole structure, an *Aspergillus* sp metabolite [22839-28-7].
- Hydroxyaspergillic acid (*H* 6), 1-hydroxy-6-(1-hydroxy-1-methylpropyl)-3 isobutyl-2(1*H*)-pyrazinone, an *Aspergillus* sp metabolite.⁷²⁷
- Impacarzine, *N*,*N*-diethyl-4-[2-(2-oxo-3-tetradecylimidazolidin-1-yl)ethyl]piperazine-1-carboxamide, virostatic [41340-31-0].¹⁷⁰⁸
- Isoechinulin A-C, complicated piperazine–indole structures, *Aspergillus* sp metabolites [60422-87-9, 60422-88-0, 60422-89-11].
- Lifarizine, 1-diphenylmethyl-4-[(5-methyl-2-*p*-tolylimidazol-3-yl)methyl]piperazine, Na- and Ca-channel blocker: vasodilator [119514-66-8].
- Ligustrazine $(H 4)$, 2,3,5,6-tetramethylpyrazine from processed cocoa beans [1124-11-4].1242
- *N*-Methoxyseptorine, 3-*sec*-butyl-6-*p*-hydroxybenzoyl-1,5-dimethoxy-2(1*H*) pyrazinone, a *Septoria* sp fungus metabolite.740,1354,1695
- N -Methoxyseptorinol, 3-*sec*-butyl-6- $(\alpha, p$ -dihydroxybenzyl)-1,5-dimethoxy-2(1*H*)pyrazinone, a *Septoria* sp fungus metabolite.740,741,1354
- Mutaaspergillic acid (*H* 66), 1-hydroxy-6-(1-hydroxy-1-methylethyl)-3-isobutyl-2(1*H*)-pyrazinone, an *Aspergillus* sp metabolite [15272-17-0].
- Neihumicin, 3,6-dibenzylidene-5-methoxy-3,6-dihydro-2(1*H*)-pyrazinone, a *Micromenospora* sp fungus metabolite: a cytotoxic antibiotic [111451-12-8].^{1156,} 1158,1161,1201
- Neoaspergillic acid (*H* 187), 1-hydroxy-3,5-diisobutyl-2(1*H*)-pyrazinone, an *Aspergillus* sp metabolite [5021-35-2].
- Neoechinulin (also A-D), complicated piperazine–indole structures, *Aspergillus* sps metabolites [25644-25-1, 51551-29-2, 55179-53-8, 55179-54-9 (see Cryptoechinulin A); 55765-86-3].
- Neohydroxyaspergillic acid (*H* 6,193), 1-hydroxy-6-(1-hydroxy-2-methylpropyl)-3-isobutyl-2(1*H*)-pyrazinone, an *Aspergillus* sp metabolite.^{78, 727}
- OPC-15161, 3-[(5-isobutyl-3-methoxy-4-oxido-6-oxo-1,6-dihydropyrazine-2-yl)methyl]indole (X-ray confirmation), a *Thielavia* sp fungus metabolite: inhibitor of superoxide anion generation $[121071-92-9]$ ¹¹⁶⁶
- Perfenazine (perphenazine), 2-chloro-10-{3-[4-(2-hydroxyethyl)piperazin-1-yl]propyl}phenothiazine, antipsychotic and antiemetic [58-39-9].
- Phevalin, 6-benzyl-3-isopropyl-2(1*H*)-pyrazinone, a *Streptomyces* sp metabolite: antineurodegenerative agent [170713-71-0].¹¹⁶⁸
- Picroroccellin, 3, 6-dibenzyl-3-hydroxy-6-methoxy-1(or 4)-methyl-3, 6-dihydro-2, 5(1*H*, 4*H*)-pyrazinedione (revised structure), a *Roccella* sp lichen metabolite [87291-18-7].^{1036,1702}
- Piperafizine A and B, 3, 6-dibenzylidene-1-methyl-3,6-dihydro-2,5(1*H*, 4*H*) piperazinedione (A), a *Streptoverticillium* sp metabolite [130603-59-7, 74720-33-5].1705
- Piperazine (salts, etc.), hexahydropyrazine, antihelmintic.
- Prazosin (hydrochloride), 2-[4-(fur-2-oyl)piperazin-1-yl]-6,7-dimethoxy-4-quinazolinamine, α -adrenoreceptor antagonist: antihypertensive [19216-56-9].
- Preechinulin, a polysubstituted piperazine–indole structure, an *Aspergillus* sp metabolite [21008-43-5].
- Pulcherriminic acid (*H* 6), 1, 5-dihydroxy-3, 6-diisobutyl-2(1*H*)-pyrazinone 4-oxide, a *Candida* sp yeast metabolite, initially as an Fe complex (pulcherrimin) [957-86-8].
- Pyrazinamide (*H* 8), 2-pyrazinecarboxamide [98-96-4], antibacterial and antitubercular.
- Pyrazinoic acid, 2-pyrazinecarboxylic acid [98-97-5].
- Razoxane (dexrazoxane), 1, 2-bis(3, 5-dioxopiperazin-1-yl)propane [21416-87- 5], chelating agent: decreases toxicity of some antineoplastic agents by removal of Fe.
- Septorine, 3-*sec*-butyl-6-*p*-hydroxybenzoyl-5-methoxy-2(1*H*)-pyrazinone, a Septoria sp fungus metabolite: phytotoxic agent [67332-36-9].^{310,317,740,} 1354,1438,1695
- Sildenafil (citrate), a complicated piperazine–pyrazolopyrimidine structure, vasodilator and small muscle relaxant: for erectile dysfunction [139755-83-2].
- Suriclone, a piperidine–1,8-naphthyridine–dithiinopyrazole structure, anxiolytic and hypnotic [53813-83-5].
- Teflutixol, a polysubstituted piperazine–thioxanthene structure, neuroleptic and antipsychotic [55837-23-5].1709
- Tenilsetam, 3-(thien-2-yl)-2-piperazinone, nootropic [86696-86-8].1706
- Terazosin (hydrochloride), 6,7-dimethoxy-2-[4-tetrahydrofuran-2-carbonyl)piperazin-1-yl]-4-quinazolinamine, α -adrenoreceptor antagonist: antihypertensive [63074-08-8].
- Terezine A-D, $6-(\alpha-hydroxybenzyl)-3-isopropyl-5-methoxy-2(1H)-pyrazinone$ (A) and analogues B-D (for structures, see reference) (A), *Sporormiella* sp fungus metabolites [165133-88-0].¹⁴³⁴
- Tiaramide (hydrochloride), a polysubstituted piperazine–benzothiazole structure, cyclooxygenase inhibitor: analgesic, antiinflammatory, and antipyretic [32527-55-2].
- Trimazosin (hydrochloride), 2-[4-(2-hydroxy-2-methylpropoxy)carbonylpiperazin-1-yl]-6,7,8-trimethoxy-2-quinazolinamine, α -adrenoreceptor antagonist: antihypertensive [35795-16-5].
- Trimetazidine (hydrochloride), 1-(2,3,4-trimethoxybenzyl)piperazine, antiischaemic: antianginal [5011-34-7].
- Zopiclone, a polysubstituted piperazine–pyridine–pyrrolopyrazine structure, a benzodiazepam binding-site antagonist: sedative and anticonvulsant [43200- 80-2].
- Zuclopenthixol, a polysubstituted piperazine–thioxanthene structure, antipsychotic [53772-83-1].

CHAPTER 6

Thiopyrazines (*H* **196)**

The general term *thiopyrazines* is used here to cover any pyrazine with a sulfurcontaining substituent that is attached directly or indirectly to the pyrazine ring through its sulfur atom. Relationships with the extended family of thiopyrazines are simple. Thus the parent tautomeric pyrazinethione or pyrazinethiol (both nuclear and extranuclear) may undergo S-alkylation to afford an alkylthiopyrazine (thioether: RSR') that may then undergo oxidation to an alkylsulfinyl- [sulfoxide: $RS(=O)R'$] or alkylsulfonylpyrazine [sulfone: $RS(=O)_2R'$]; alternatively, the parent may suffer oxidation directly to furnish a dipyrazinyl disulfide (RSSR), pyrazinesulfenic acid (RSOH), pyrazinesulfinic acid (RSO₂H), or pyrazinesulfonic acid $(RSO₃H)$. Any recently described nontautomeric pyrazinethiones and dipyrazinyl sulfides are included in appropriate sections of this chapter but thiocyanatopyrazines (RSC \equiv N) are relegated to Chapter 8, wherein the isomeric isothiocyanatopyrazines $(RN=C=S)$ are covered also. In fact, there is little or no recent information on several of the foregoing categories of thiopyrazine.

6.1. PYRAZINETHIONES AND PYRAZINETHIOLS (*H* **196, 198)**

This section is mainly about tautomeric pyrazinethiones but the meagre available information on nontautomeric pyrazinethiones and pyrazinethiols is also included.

Aspects of the tautomerism of tautomeric pyrazinethiones have been studied 931 , 1398, 1424 and the acute toxicities of 2-mercaptomethylpyrazine and bis(pyrazin-2-ylmethyl) disulfide have been determined.674,1204

6.1.1. Preparation of Pyrazinethiones and Pyrazinethiols (*H* **196)**

Most tautomeric pyrazinethiones have been made by *primary synthesis* (see Chapters 1 and 2), *thiolysis of halogenopyrazines* (see Section 4.2.4), or *thiation of tautomeric pyrazinones* (see Section 5.1.2.1); a few nontautomeric pyrazinethiones by *primary synthesis* (see Chapters 1 and 2) or *thiation of nontautomeric pyrazinones* (see Section 5.4.2); and nearly all extranuclear pyrazinethiols by *thiolysis of extranuclear halogenopyrazines* (see Section 4.4). Other routes to such pyrazinethiones and pyrazinethiols are illustrated in the following examples:

From Alkylthiopyrazines

5-Benzylthio-2(1*H*)-pyrazinone (**1**) gave 5-thioxo-3,4,5,6-tetrahydro-2(1*H*) pyrazinone (3) (Na, liquid NH₃, -76° C, 1 h: \sim 70%); a small yield of the intermediate 5-mercapto-2($1H$)-pyrazinone (2) was obtained when the proportion of sodium to substrate was decreased.¹⁵⁶⁵

2,5-Bismethylthio-3,6-dihydropyrazine (**4**) gave 3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedithione (6) by addition of $H₂S$ and subsequent loss of MeSH from the intermediate (**5**) (H₂S \downarrow , pyridine–THF, 0°C, 3 h: 64%).⁷¹⁴

- 3-(p -Methoxybenzylthio)-2-pyrazinamine (8, $R = NH₂$) gave 3-amino-2(1*H*)pyrazinethione (7) (6 M HCl, reflux, 1 h: 38%).⁴³
- 2-Methoxy-3-(p -methoxybenzylthio)pyrazine (8, R = OMe) gave 3-methoxy- $2(1H)$ -pyrazinethione (9) [Hg(OAc)₂, trace anisole, F₃CCO₂H, 0°C, 15 min; residue from evaporation, NaBH₄, H₂O, 20 $^{\circ}$ C, 90 min: 87%; also other exam $ples)$ ⁴³

From Dipyrazinyl Disulfides

Bis(3,6-dioxopiperazin-2-ylmethyl) disulfide (**10**) gave 3-mercaptomethyl-3,6 dihydro-2,5(1*H*,4*H*)-pyrazinedione (11) (HSCH₂CH₂OH, no details).¹⁴⁴⁰

Bis(5-methylamino-6-methylcarbamoylpyrazin-2-yl) disulfide (**12**) gave 6 acetylthio-*N*-methyl-3-methylamino-2-pyrazinecarboxamide (**13**) (NaBH4, CHCl₃—EtOH, 20 \degree C, 4 h; residue from evaporation, AcCl, CHCl₃, 20 \degree C, 15 min: 72%), and thence *N*-methyl-3-methylamino-6-thioxo-1,6-dihydro-2 pyrazinecarboxamide (**14**), isolated and characterized as the Na salt (EtONa, EtOH—CHCl₃, 20°C, 15 min: \sim 90%).⁹⁴⁰

From Acylthiopyrazines (see also the preceding example)

2-Benzoylthio-3,6-diethylpyrazine (**15**) (prepared *in situ*) and benzylamine gave 3,6-diethyl-2(1*H*)-pyrazinethione (**16**) and *N*-benzylbenzamide (**17**) (MeOCH₂CH₂OMe, 20°C, 10 min: \sim 90 and > 95%, respectively);²⁷⁰ also other examples of the use of such acylthiopyrazines as acylating agents for amines, alcohols, and the like.²⁷⁰

6.1.2. Reactions of Pyrazinethiones and Pyrazinethiols (*H* **200)**

The *hydrolysis* and *desulfurization* of these thiones and thiols appear to have escaped attention recently. Other reactions are illustrated in the following examples:

Oxidative Reactions

2-Mercaptomethylpyrazine (18) gave bis(pyrazin-2-ylmethyl) disulfide (19) (I₂, CHCl₃, warm, briefly: $\frac{2\%}{574}$ also other such oxidations.¹²¹¹

2(1*H*)-Pyrazinethione (**20**) gave *N*,*N*-diethyl-2-pyrazinesulfonamide (**21**) (KHF2, Et₂NH, MeOH, Cl₂ \downarrow , 10°C, 45 min: 68%);¹⁶⁰² also analogous examples.¹³⁸¹

S-Alkylation

- 3-Amino-6-bromo-2(1*H*)-pyrazinethione (**22**) gave 5-bromo-3-methylthio-2 pyrazinamine (23) (1 M NaOH, MeI, 20 $^{\circ}$ C, 20 min: $\sim 80\%$).¹⁰¹²
- $2(1H)$ -Pyrazinethione gave 2-(but-3-ynylthio)pyrazine (24) (ICH₂CH₂C=CH, Et₂N, H₂O, 70°C, 3 h: 44%).³⁶¹

3,6-Diisopropyl-2(1*H*)-pyrazinethione gave 2-ethoxycarbonylmethylthio-3,6 diisopropylpyrazine (25) (EtO₂CCH₂Cl, Na₂CO₃, AcMe, 20^oC, 15 h: $> 95\%$).³⁰⁸

5-Chloro-1-methyl-3-thioxo-3,4-dihydro-2(1*H*)-pyrazinone gave 5-chloro-1 methyl-3-{*N*-[*N*-phenyl(thiocarbamoyl)]carbamoylmethylthio}-2(1*H*)-pyrazinone (26) [PhHNC($=$ S)NHC($=$ O)CH₂Cl, K₂CO₃, EtOH, reflux, 4 h: 70%].1381

2-Mercaptomethyl-3,5,6-trimethylpyrazine gave 2-allylthiomethyl-3.5,6-trimethylpyrazine (27) (BrCH₂CH=CH₂, Bu₄NBr, 50% NaOH, 20^oC, ? h: 85%).¹⁵⁵¹

Also other examples.103,297,302,319,547,1015,1033,1138,1180,1233

S-Acylation

- 3,6-Diisopropyl-2(1*H*)-pyrazinethione (**28**) gave 2-isobutoxycarbonylthio-3,6 diisopropylpyrazine (29) (ClCO₂Buⁱ, pyridine, $0 \rightarrow 20^{\circ}$ C, 1 h: >95%);¹³⁷⁵ also the 2-methoxycarbonylthio analogue (likewise but only 35% yield).¹³⁷⁵
- The same substrate (**28**) gave 2-benzyloxycarbonylthio-3,6-diisopropylpyrazine (**31**) by a modified three-stage one-pot procedure, said to involve the intermediate (30) (NaH, dioxane, 20°C, until H₂ \uparrow ceased; then ClCO₂CCl₃ \downarrow , 0 \rightarrow 20°C, 12 h; then PhCH₂OH \downarrow , pyridine \downarrow , 0 \rightarrow 20°C, 15 h: 55%);¹³⁸⁰ also analogues likewise.1375,1380

Note: The foregoing acylthiopyrazines may be used as N-acylating agents for amino acids, and so on.1375

Aminolysis

- *Note:* There appear to be no regular aminolyses in recent literature but the example here amounts to a *de facto* aminolysis of a nontautomeric pyrazinethione.
- 1,4-Dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedithione (**32**) and *p*-toluenesulfonyl azide gave a separable mixture of 1,4-dimethyl-5-tosylimino-3,4,5,6 tetrahydro-2(1*H*)-pyrazinethione (**33**) and 1,4-dimethyl-2,5-bistosyliminopiperazine (34) [xylene, 130° C \rightarrow reflux, 12 h (?): 35 and 13%, respectively).1362

Cyclization Reactions

3-Amino-2(1*H*)-pyrazinethione (36) gave thiazolo[4,5-*b*]pyrazine (35, R = H) [neat (EtO)₃CH, reflux, 3 h: \sim 45%], its 2-methyl derivative (35, R = Me) $[(EtO)₃CMe, likewise: ~ 30%]$, or thiazolo $[4,5-b]$ pyrazine-2(3*H*)-thione (37) (EtOCS₂K, pyridine, reflux, 21 h: \sim 90%);¹⁰¹² also analogous examples.¹⁰¹⁹

2,3(1*H*,4*H*)-Pyrazinediselone (**38**) gave 1,3-diselenolo[4,5-*b*]pyrazine-2-thione (39) ($O=SCl_2$, H₂O, $0 \rightarrow 20^{\circ}C$, 90 min: 29%, based on the dichloro precursor of the substrate);1076 1,3-dithiolo[4,5-*b*]pyrazine-2-thione (**40**) was made similarly.¹⁰⁴⁶

Also other examples.²²⁵

6.2. ALKYLTHIOPYRAZINES AND DIPYRAZINYL SULFIDES (*H* **197)**

Since dipyrazinyl sulfides are simply alkylthiopyrazines in which the alkyl group is replaced with another pyrazinyl group, information on such sulfides is included here. Alkylthiopyrazines are the most frequently encountered thiopyrazines, both as end products and as useful intermediates for other types of pyrazine.

6.2.1. Preparation of Alkylthiopyrazines (*H* **197)**

All the important routes to alkylthiopyrazines have been discussed already: by *primary synthesis* (Chapters 1 and 2), by *alkanethiolysis of halogenopyrazines* (Sections 4.2.5 and 4.4), or by *S-alkylation of pyrazinethiones* (Section 6.1.2). The remaining minor routes are either unrepresented in recent literature or are illustrated in the following examples:

By C-Alkylthiation

2-Iodopyrazine (41) was converted into its lithio derivative (42) (BuLi, Me₄piperidine, THF, $-50 \rightarrow -20^{\circ}$ C, 20 min; substrate \downarrow , -78° C, 5 min), and thence into 2-iodo-3-phenylthiopyrazine (43) (PhSPh \downarrow , -78° C, 1 h: $82\%)$;¹⁶¹³ also analogous examples.^{451,760}

By Nuclear Dehydrogenation

 $2,5$ -Bismethylthio-3,6-dihydropyrazine gave $2,5$ -bismethylthiopyrazine (ClCO₂Me, CH₂Cl₂, 0 \rightarrow 20 $^{\circ}$ C, 12 h: 65%).⁷¹⁴

By Introduction as a Passenger Group

2-Isopropyl-3,6-dimethoxy-5-methyl-2,5-dihydropyrazine (**44**) gave 2-(2-benzylthioethyl)-5-isopropyl-3,6-dimethoxy-2-methyl-2,5-dihydropyrazine (**45**) (lithiation *in situ*, THF; then $ICH_2CH_2SCH_2Ph$, $-70^{\circ}C$, 24 h: 80%).¹⁹⁸

By Intramolecular Dehydration of Sulfoxides

2-Cyclohexylsulfinylpyrazine gave 2-(cyclohex-1-enylthio)pyrazine [(F₃CCO)₂O, MeCN, 20°C, 12 h: 74%];³¹⁸ see also Section 6.2.2.1

6.2.2. Reactions of Alkylthiopyrazines (*H* **200)**

The *dealkylation of alkylthiopyrazines to pyrazinethiones* has been covered already (Section 6.1.1). Of the other possible reactions of alkylthiopyrazines, those represented in recent literature are discussed in the following subsections.

6.2.2.1. Oxidation to Sulfoxides or Sulfones (H 200)

Several peroxyacids or related oxidants have been used to convert alkylthio- into alkylsulfinyl- or alkylsulfonylpyrazines; the choice of reagent appears to be unimportant but the amount of reagent determines whether the major (or only) product is a sulfoxide or a sulfone. The following examples illustrate typical oxidation procedures:

Using m-Chloroperoxybenzoic Acid

2-*tert*-Butylthiopyrazine (**47**) gave 2-*tert*-butylsulfinylpyrazine (**46**) [*m*- $CIC_6H_4CO_3H$ (1.5 mol), THF, $-20^{\circ}C$, 45 min: 70%] or 2-*tert*-butylsulfonylpyrazine (48) $[m-CIC_6H_4CO_3H (3 \text{ mol}), 20^{\circ}C, 90 \text{ min}: 74\%]$;¹⁶⁰² and 2-(but-3-ynylthio)- gave 2-(but-3-ynylsulfonyl)pyrazine (likewise: 63%).³⁶¹

$$
\begin{array}{c}\n\begin{array}{c}\nN \\
N\n\end{array}\n\end{array}\n\longrightarrow\n\begin{array}{c}\nS(=O)Bu' \\
\hline\n\begin{array}{c}\n\text{m-CIC}_{6}H_{4}CO_{3}H \\
\hline\n\begin{array}{c}\n(1.5 \text{ mol}; -20^{\circ}\text{C})\n\end{array}\n\end{array}\n\begin{array}{c}\nN\n\end{array}\n\end{array}\n\begin{array}{c}\nSBu' \\
\hline\n\begin{array}{c}\n\text{m-CIC}_{6}H_{4}CO_{3}H \\
\hline\n\begin{array}{c}\n(3 \text{ mol}; 20^{\circ}\text{C})\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\nN\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\nS(=O)_{2}Bu' \\
\hline\n\begin{array}{c}\n(46)\n\end{array}\n\end{array}
$$

3-Phenylthio-2-pyrazinecarbonitrile gave 3-phenylsulfonyl-2-pyrazinecarbonitrile (49) (*m*-ClC₆H₄CO₃, CHCl₃, 10 \rightarrow 20 $^{\circ}$ C, 3 h: 91%);¹⁵⁰⁷ and 5-bromo-3methylthio- gave 5-bromo-3-methylsulfonyl-2-pyrazinamine (**50**) (likewise, $4 \text{ days:} \sim 70\%)$.¹⁰¹²

Also other examples.¹⁵⁵¹

Using Hydrogen Peroxide–Maleic Anhydride (Peroxymaleic Acid)

- 2-Cyanomethylthio-3,6-diethylpyrazine $(51, R = Et)$ gave 2-cyanomethylsulfinyl-3,6-diethylpyrazine (52, R = Et) (maleic anhydride, 90% H_2O_2 , CHCl₃, 20^oC, 12 h; then reflux, 2 h: 81%);²⁹⁷ the 3,6-diisopropyl (52, R = Pr^{*i*}) (78%) and other homologues were made similarly.²⁹⁷
- 2-Cyclohexylthiopyrazine gave 2-cyclohexylsulfinylpyrazine (53, $R = C_6H_{11}$) (as preceding examples: $66\%)$;³¹⁸ 2-phenylsulfinylpyrazine (**53**, R = Ph) (75%) ,³¹⁸ and many other analogues were made similarly.^{302,308,318,319}

Using Sodium Periodate

- 2-Allylthiomethyl- (**54**) gave 2-allylsulfinylmethyl-3,5,6-trimethylpyrazine (**55**) (NaIO₄, MeOH, \leq 5°C, 12 h: 81%).¹⁵⁵¹
- 2-(But-3-ynylthio)pyrazine gave 2-(but-3-ynylsulfinyl)pyrazine (**56**) (NaIO4, H₂O, 20 $^{\circ}$ C, 24 h: 62%).³⁶¹

Using Other Oxidants

- 2-Benzoyl-3-methylthiopyrazine gave 2-benzoyl-3-methylsulfonylpyrazine (**57**) [Oxone (2 KHSO₅.KHSO₄.K₂SO₄ complex; 2 mol), H₂O-MeOH, 20[°]C, 3 days: 75%].1564
- 2-(6-Methylpyridin-2-ylthio)pyrazine gave 2-(6-methylpyridin-2-ylsulfonyl) pyrazine (58) [Mg(o -HO₂CC₆H₄CO₃)₂.6 H₂O, MeOH, 0°C, 45 min: > 76%].⁸⁷¹
- 3-Ethylthio-2-pyrazinecarbonitrile afforded 3-ethylsulfonyl-2-pyrazinecarbonitrile (**59**) (H_2O_2 —AcOH: for details see original);⁸⁵⁸ also many analogous oxidations.681,858,1211

6.2.2.2. Miscellaneous Reactions

Minor reactions of alkylthiopyrazines are illustrated by the following examples:

Desulfurization

5-Ethylthio-1-methyl-3-(2,4,5-trimethoxy-3-methylbenzyl)-3,6-dihydro-2(1*H*) pyrazinone (**60**) gave 1-methyl-3-(2,4,5-trimethoxy-3-methylbenzyl)-2 piperazinone (61) (Al—Hg, THF—H₂O, 0°C, 4 h: 59%; note concomitant nuclear reduction).103

Metal Complexation

2-(Pyridin-2-ylthio)pyrazine (**62**) with coligand (s) formed several Ru complexes.126

6.3. DIPYRAZINYL DISULFIDES AND PYRAZINESULFONIC ACID DERIVATIVES (*H* **202)**

The formation of such pyrazines by *primary synthesis* has been covered in Chapters 1 and 2; the meagre literature on their formation *by oxidation of pyrazinethiones or pyrazinethiols* is mentioned in Section 6.1.2.

Treatment of 2(1*H*)-pyrazinone (**63**) with thionyl chloride and triethylamine appears to give both 2-oxo-1,2-dihydro-1-pyrazinesulfinyl chloride (**64**) and 5-oxo-4,5-dihydro-2-pyrazinesulfinyl chloride (**65**) (no details).1400 In contrast, 2,3 diphenylpyrazine (66, R = H) with chlorosulfonic acid at 170° C, for ~ 1 h underwent chlorosulfonation to afford 2,3-bis[m-(chlorosulfonyl)phenyl]pyrazine $(66, R = SO₂Cl)$ (83%) ;^{20,1376} this reacted subsequently with methanolic dimethylamine under reflux for 6 h (or with aqueous methanolic dimethylamine at 20°C for 2 h) to furnish 2,3-bis[*m*-(dimethylsulfamoyl)phenyl]pyrazine (**66**, $R = SO₂NMe₂$ (85%),^{20,1376} with methanolic hydrazine hydrate at 20°C for 5 h to give $2,3$ -bis[m-(N-aminosulfamoyl)phenyl]pyrazine (66, $R = SO₂NHNH₂$) (56%) ,¹³⁷⁶ or with sodium azide in aqueous acetone at 20 \degree C for 4 h to give 2,3bis[m-(azidosulfonyl)phenyl]pyrazine (66, R = SO_2N_3) (92%).¹³⁷⁶ Other extranuclear pyrazinesulfonamides have been prepared as antihyperglycaemics.^{859,888}

6.4. PYRAZINE SULFOXIDES AND SULFONES (*H* **202)**

A few such pyrazine derivatives have been made by *primary synthesis* (see Chapters 1 and 2) but the main preparative route is by *oxidation of alkylthiopyrazines*, discussed in Section 6.2.2.1.

The remaining minor routes appear to be represented in recent literature only by the reaction of ethyl 2-pyrazinecarboxylate (**67**) with prelithiated dimethyl sulfoxide (DMSO) in THF at 20°C during 3 h to afford 2-(methylsulfinylacetyl)pyrazine (**68**) (30%);896 and by the reaction of chloropyrazines (**69**) with sodium *p*-acetamidobenzenesulfinate to give the corresponding *p*-acetamidophenylsulfonylpyrazines (**70**).882

Reactions of alkylsulfinyl- and alkylsulfonylpyrazines also have limited representation in recent literature. Their *alcoholysis or phenolysis* is covered in Section 5.3.1; other reactions are illustrated in the following examples:

Aminolysis

3-Phenylsulfonyl-2-pyrazinecarbonitrile (71) gave 3-amino- $(72, R = H)$, 3-methylamino- $(72, R = Me)$, or 3-benzylamino-2-pyrazinecarbonitrile $(72,$ $R = CH_2Ph$) (amine, Et₃N, THF—H₂O, 20°C, for 1–24 h: 82, 84%, or 70% respectively);1507 homologues like 5,6-diphenyl-3-*p*-tolylamino-2-pyrazinecarbonitrile (**73**) (40 h: 34%) were made similarly.1507

-Alkylation

2-Methylsulfonylpyrazine (**74**) gave 2-(2-hydroxypropylsulfonyl)pyrazine (**75**) (lithiation *in situ*, MeCHO \downarrow , THF, -75° C, 30 min: 32%).¹⁵⁹⁷

Intramolecular Dehydration or C-Hydroxylation

Note: Appropriate 2-cyclohexylsulfinylpyrazines, in the presence of trifluoroacetic anhydride, undergo concomitant intramolecular dehydration to 2-

(cyclohex-1-enylthio)pyrazines and C-hydroxylation to 5-cyclohexylthio- $2(1H)$ -pyrazinones.³¹⁸

2-Cyclohexylsulfinylpyrazine $(76, R = H)$ gave mainly 2-(cyclohex-1enylthio)pyrazine (77, $R = H$) with a little 5-cyclohexylthio-2(1*H*)-pyrazinone $(78, R = H)$ [(F₃CCO)₂O, MeCN, 20^oC, 12 h: 74% and a trace, respectively]; in contrast, 2-cyclohexylsulfinyl-3,6-dimethylpyrazine $(76, R = Me)$ gave comparable yields 2-(cyclohex-1-enylthio)-3,6-dimethylpyrazine $(77, R = Me)$ and 5-cyclohexylthio-3,6-dimethyl-2(1*H*)-pyrazinone (**78**, $R = Me$) (likewise: 55:45 mixture but lower isolated yields).³¹⁸ When the 5-position was occupied, only dehydration took place.³¹⁸

Pyrazine Sulfoxides as Reagents

- *Note:* The pyrazinylsulfonyl grouping has been employed as a leaving group in the formation of unsaturated aliphatic compounds and aliphatic or aromatic aldehydes.297,302,308,319
- 2-Cyanomethylsulfonyl-3,6-diisopropylpyrazine (**79**) gave cinnamonitrile (**81**) via the unisolated intermediate (80) (NaH, MeOCH₂CH₂OMe, 10 min; then PhCH₂Br \downarrow , reflux, 15 min: 67%);²⁹⁷ the formation of other such products required significant variations on this procedure.^{297,302,308,319}

The *dipole moments* of six alkylsulfonylpyrazines have been measured in benzene. Their values (4.56–4.63 D) are significantly lower than corresponding alkylsulfonylbenzenes (\sim 4.75) despite the fact that pyrazine (like benzene) is nonpolar.1088

CHAPTER 7

Nitro-, Amino-, and Related Pyrazines (*H* 265)

This chapter covers pyrazines bearing nitrogenous substituents that are joined directly or indirectly to the nucleus through their nitrogen atom; exceptionally, any isocyanato- or isothiocyanatopyrazines are relegated to Chapter 8 in order to be close to pyrazinecarbonitriles and the like.

7.1 NITROPYRAZINES (*H* **237)**

Neither nuclear nor extranuclear nitropyrazines are commonly encountered in the pyrazine literature1638 but some have been made, usually with no subsequent use evident.

7.1.1 Preparation of Nitropyrazines (*H* **237)**

A few nitropyrazines have been prepared by *primary synthesis* (see Chapters 1 and 2). Other routes to nitropyrazines are illustrated in the following examples:

By Direct Nitration

- 3-Amino-5,6-dichloro-2-pyrazinecarboxylic acid (**1**) gave 5,6-dichloro-3-nitro-2-pyrazinamine (2) $(H_2SO_4\rightarrow HNO_3, 15 \rightarrow 20^{\circ}C, 4 \text{ h}: 46\%; CO_2 \uparrow \text{ during}$ the reaction).^{607,1313}
- 2,5-Diethoxy-3,6-dihydropyrazine (**3**) gave 2,5-diethoxy-3,6-dinitropyrazine (**4**) $[N_2O_4, \text{MeCN}, 20 \rightarrow 50^{\circ} \text{C}, ? \text{ h}: \sim 30\%; \text{ or } \text{KNO}_3, (\text{F}_3\text{CCO})_2\text{O}, 20^{\circ} \text{C}, ? \text{ h}:$ \sim 30%; if nuclear dehydrogenation was done before nitration, yields were even lower].¹⁴⁶⁰
- 2-(Thien-2-yl)pyrazine (**5**) gave a mixture of 2-(5-nitrothien-2-yl)- (**6**) and 2-(4 nitrothien-2-yl)pyrazine (7) $(H_2SO_4 \rightarrow HNO_3, 70^{\circ}C, 4 \text{ h: good yield of}$ mixture).560,1134

Also other examples.1458,1636

From Dimethylsulfimidopyrazines via Nitrosopyrazines

Note: Pyrazinamines may be converted into the corresponding dimethylsulfimidopyrazines (sometimes called dimethylsulfiliminopyrazines: neither name is satisfactory!) as outlined in Section 7.3.2.5; these derivatives may be oxidized successively to unstable *C*-nitrosopyrazines and forthwith to nitropyrazines, as illustrated here.

2-Dimethylsulfimidopyrazine $(8, X = H)$ gave 2-nitropyrazine $(10, X = H)$ via unisolated 2-nitrosopyrazine (9) (m -ClC₃H₄CO₃H, CH₂Cl₂, 0°C, 45 min; then $O_2 + O_3 \downarrow$, 2 h: 70%).⁷⁷⁶

2-Chloro-5-dimethylsulfimidopyrazine $(8, X = C)$ likewise gave 2-chloro-5-nitropyrazine (10, X = Cl) (m -ClC₆H₄CO₃H, CH₂Cl₂, -5 \rightarrow 0°C, 40 min; then Me₂S \downarrow , 10 min; then O₃ \downarrow until colorless: 60°C);^{607,1310} similar procedures gave 2-chloro-3-nitropyrazine $(11, Q = H, R = Cl)$ (56%) ,^{607,1310} 2-bromo-5nitropyrazine $(10, X = Br)$ (82%) ,³⁶¹ methyl 3-nitro-2-pyrazinecarboxylate $(11,$ $Q = H$, $R = CO₂Me$) (55%),¹³¹⁰ and methyl 6-chloro-3-nitro-2-pyrazinecarboxylate $(11, Q = Cl, R = CO₂Me)$ (51%) .⁶⁰⁷

By Passenger Introduction of a Nitro Group

Note: This reaction has been done in many ways, such as that indicated here.

Piperazine (12) gave $1,4$ -bis(nitroacetyl)piperazine (13) [MeO₂CCH₂NO₂, imidazole (catalyst), EtOH, reflux, 90 min: 46%].¹¹¹³

7.1.2 Reactions of Nitropyrazines (*H* **237)**

There is little recent information in this area. The fine structure of 3-acetoxy-1, 4-dinitro-2-piperazinol (**14**) has been elucidated by X-ray analysis.1212 Treatment of 5,6-dichloro-3-nitro-2-pyrazinamine (**15**) with refluxing ethanolic sodium cyanide for 4 days induced displacement of the nitro by a cyano group as well as ethanolysis of one chloro substituent to afford 3-amino-6-chloro-5-ethoxy-2-pyrazinecarbonitrile (**16**) in 55% yield.1313 1-Methyl-4-(*p*-nitrobenzoyl)piperazine (**17**) gave 1-(*p*-aminobenzoyl)-4-methylpiperazine (**18**) (75%) on refluxing in ethanolic hydrazine hydrate with a little Raney nickel catalyst for 6 h ;^{135, cf. 1032} other reduction procedures have been reported.^{496,1741}

7.2 NITROSOPYRAZINES

Although nuclear *C*-nitrosopyrazines can be made, they appear to be too unstable for isolation and characterization as such; in contrast, many N-nitrosated derivatives of piperazine or other partially reduced pyrazines are quite stable.

7.2.1 *C***-Nitrosopyrazines**

Despite being inisolable, *C*-nitrosopyrazines have been made in solution by the peroxyacid oxidation of dimethylsulfimidopyrazines for subsequent further oxidation to nitropyrazines (see Section 7.1.1). Such unisolated nitrosopyrazines can also be converted into other derivatives. Thus 2-nitrosopyrazine (**20**) with *p*-chloroaniline in methylene chloride–acetic acid at 20°C, for 12 h gave 2-*p*-chlorophenylazopyrazine (19, $R = Cl$) (63%, including the initial oxidation step);⁷⁷⁶ with *p*-anisidine, it likewise gave 2-*p*-methoxyphenylazopyrazine $(19, R = OMe)$ (64%) ;⁷⁷⁶ and with 2,3-dimethylbuta-1,3-diene in methylene chloride at 20 $^{\circ}$ C for 30 min it gave 4,5-dimethyl-2-(pyrazin-2-yl)-3,6-dihydro-1,2-oxazine (**21**) (40%).776

7.2.2 *N***-Nitrosopiperazines and Related Compounds**

There are several *preparative routes* to *N*-nitrosopiperazines, illustrated by the following examples:

By Regular Nitrosation

2-Piperazinecarboxylic acid $(22, R = H)$ gave 1,4-dinitroso-2-piperazinecarboxylic acid (23, R = H) (substrate. 2 HCl, NaNO₂, H₂O, 20 \rightarrow 45°C, 90 min; then 20° C, 12 h: 69%); the methyl ester $(22, R = Me)$ likewise gave methyl 1,4-dinitroso-2-piperazinecarboxylate $(23, R = Me)$ (substrate. 2HCl, NaNO₂, H₂O, 5°C, 90 min; then to pH 4, 20°C, 12 h: 79%).⁴¹⁸

Also other examples.^{955,1016,1029}

Note: The mechanism of such nitrosations has been studied.⁶⁵

Using Hydroxylamine and Fremy's Salt

Piperazine (25) gave 1-nitrosopiperazine (26) [substrate, $(KSO₃)₂NO$, Na₂CO₃, H₂O—pyridine; H₂NOH.HCl \downarrow , 20°C, 15 min: 98%; the mechanism appears to involve the unisolated complex (**24**)].1074

By Oxidation of N-Aminopiperazines

Note: Although such a procedure was successful in related series, 4-methyl-1-piperazinamine (**27**) failed to give 1-methyl-4-nitrosopiperazine (**28**) on treatment with tri-tert-butylamine oxide in tetranitromethane.¹⁰⁸²

By Nitrosolysis of 1,4-Dialkylpiperazine

 $1,4$ -Dimethyl- (29, R = Me), 1-ethyl-4-methyl- (29, R = Et), 1-isopropyl-4methyl- $(29, R = Pr^t)$, or 1-*tert*-butyl-4-methylpiperazine $(29, R = Bu^t)$ gave 1,4-dinitrosopiperazine (30) (N₂O₄, CCl₄, 0 \rightarrow 50 \rightarrow 20 °C, 15 h: 90, 81, 55, or 8%, respectively).25,30 The conformational structure of the carcinogenic product (**30**) has been determined by X-ray analysis.1210

A few *reactions* of *N*-nitrosopiperazines have been reported recently. At least some such piperazines undergo facile transnitrosation and may be used to nitrosate other secondary bases or the like. For example, 2,6-dimethyl-1,4 dinitrosopiperazine (**31**) with piperidine (**32**), at pH 1.7 in the presence of sodium thiocyanate as catalyst, gave 2,6-dimethyl-4-nitrosopiperazine (**33**) and 1-nitrosopiperidine (**34**).763, cf. 954

The reduction of *N*-nitroso- to *N*-aminopiperazines is sometimes useful. Thus 1 methyl-4-nitrosopiperazine (**35**) afforded 4-methyl-1-piperazinamine (**36**) by refluxing with aluminum hydride in ether for 10 h $(88\% \text{ yield})^{449}$ or by treatment with zinc in acetic acid ($>$ 30% yield).^{1016, cf. 982}

The rodential metabolism of 1,4-dinitrosopiperazine (**37**) gave *N*-nitrosodiethanolamine (**38**) (7%) and *N*-(2-hydroxyethyl)-*N*-nitrosoglycine (**39**) (30%) , as well as other minor products.¹²²⁵

7.3 REGULAR AMINOPYRAZINES (*H* **205)**

This section covers primary, secondary, tertiary, and quaternary aminopyrazines (both nuclear and extranuclear) but not (functionally substituted amino)pyrazines such as hydrazino-, hydroxyamino-, or azidopyrazines. General discussions have appeared on the spectra of 2-pyrazinamine,^{255,257,991} the protonsponge properties of 2,3,5,6-tetra(pyridin-2-yl)pyrazine in relation to its fine structure, 925 the fluorescene properties of 3,6-diamino-2,5-pyrazinedicarboxylic acid derivatives in relation to their fine structures, 1646,1659 the basic properties of aminopyrazines and other such azines in relation to their electronic structures, $4^{12,928}$ and the fine structures of 3-amino-2-pyrazinecarboxylic acid¹³⁴⁰ and 1,4-diacetyl-2,3-diphenylpiperazine.559

7.3.1 Preparation of Regular Aminopyrazines (*H* **205)**

Of the many synthetic routes to aminopyrazines, those already discussed are indicated in the following list that includes the potential scope of each method:

- By *primary synthesis* (nuclear, extranuclear: primary, secondary, tertiary): Chapters 1 and 2.
- By *aminolysis of halogenopyrazines* (nuclear, extranuclear: primary, secondary, tertiary, quaternary): Sections 4.2.1 and 4.4.
- By *aminolysis of alkoxypyrazines* (nuclear: primary, secondary, tertiary): Section 5.3.2.
- By *aminolysis of tautomeric pyrazinethiones* (nuclear: primary, secondary, tertiary): Section 6.1.2.
- By *aminolysis of pyrazine sulfoxides or sulfones* (nuclear: primary, secondary, tertiary): Section 6.4.
- By *reduction of nitropyrazines* (nuclear, extranuclear: primary): Section 7.1.2.
- By *reduction of nitrosopyrazines* (nuclear: primary): Section 7.2.2.

The remaining routes to regular aminopyrazines are illustrated in the following classified examples, where necessary with explanatory notes:

By C-Amination

Note: For nuclear primary, secondary, or tertiary (?) amines.

Pyrazine (**40**) gave 2-pyrazinamine (**42**) via the anionic ammonia adduct (**41**) (KNH₂, liquid NH₃, 10 min; then KMnO₄ \downarrow , 10 min: 65%).¹²⁹⁵

2-Phenylpyrazine (**44**) gave a separable mixture of 5-phenyl- (**43**) and 3-phenyl-2-pyrazinamine (43a) (KNH₂, liquid NH₃, -33° C, 24 h: \sim 40 and \sim 10%, respectively); the same substrate (44) gave only 2-methylamino-5-phenylpyrazine (45) (KNHMe, MeNH₂, -6° C, 3 h: 60%).¹⁴⁵⁷

By N-Amination

Note: For nuclear *N*-aminopyrazinium salts only; the zwitterionic bases have not been isolated.

Pyrazine (46) gave 1-aminopyrazinium nitrate (47) [H₂NOSO₃H, BaO, $Ba(NO₃)₂, H₂O, 100 \rightarrow 20°C, 2 h: 38\%$].⁸⁶²

 $1-(\beta-D-Ribofuranosyl)-2(1H)$ -pyrazinone gave 1-amino-3-oxo-4- $(\beta-D-ribofura-Pb)$ nosyl)-3,4-dihydropyrazinium mesitylenesulfonate (**48**) (*O*-mesitylenesulfonylhydroxylamine: for details, see original).¹²³¹

By Deacylation of Acylaminopyrazines

Note: Such deacylation may be done by hydrolysis or treatment with hydrazine to afford primary or secondary nuclear or extranuclear aminopyrazines.

- 3-Acetamido-*N*-methyl-2-pyrazinecarbohydrazide $(49, R = Ac)$ gave 3-amino-*N*-methyl-2-pyrazinecarbohydrazide $(49, R = H)$ $(5\%$ HCl, 95° C, 30 min: 16%).1265
- 2-Acetoxy-5-benzyl-6-diacetylamino-3-methylpyrazine (**50**) gave 6-amino-5 benzyl-3-methyl-2(1*H*)-pyrazinone (51) neat H₂NNH₂.H₂O, 20^oC, 12 h: 67%; note additional *O*-deacylation).883

Also other examples.⁹⁶⁰

Note: 1/4-Acylpiperazines can give piperazines likewise.¹⁵³⁸

From Alkylideneaminopyrazines

Note: Hydrolysis removes the alkylidene group as an aldehyde or ketone to afford a nuclear or extranuclear primary aminopyrazine; reduction could afford a secondary aminopyrazine of either type, but there appear to be no recent examples.

6-Dimethoxymethyl-3-dimethylaminomethyleneamino-2-pyrazinecarbonitrile 4-oxide (**52**) gave 3-amino-6-dimethoxymethyl-2-pyrazinecarbonitrile 4-oxide (53) [TsOH, (MeO)₃CH, MeOH-H₂O, 20^oC, 7 days: 55%].⁷⁵⁹

By Reduction of Anils or Oximes of Pyrazine Aldehydes or Ketones

Note: For the production of extranuclear primary or secondary aminopyrazines.

5-Methyl-3-methylamino-6-phenyliminomethyl-2-pyrazinecarbonitrile (**54**) gave 6-anilinomethyl-5-methyl-3-methylamino-2-pyrazinecarbonitrile (55) (Et₃SiH, F_3CCO_2H , CH₂Cl₂, 20^oC, 4 h: > 95%).¹⁵⁹⁹

Methyl 3-amino-6-chloro-5-ethoxalyl-2-pyrazinecarboxylate oxime (**56**) gave 3- α -ethoxycarbonylmethyl)-6-chloro-2-pyrazinecarboxylate (57) [Rh/C, H₂ (2 atm), AcONH₄, AcOH—EtOH, 20 $^{\circ}$ C, 2.5 h: 70%].⁸⁰⁸ Also other examples.⁶⁸³

By Hydrolysis of Triphenylphosphoranylideneaminopyrazines

Note: For making nuclear or extranuclear primary aminopyrazines; these substrates are easily made from azidopyrazines (see Section 7.5).

2-Methoxy-3-(triphenylphosphoranylideneamino)pyrazine (**58**) gave 3-methoxy-2-pyrazinamine (59) (THF-H₂O, reflux, 3 days: 79%).²³²

2-Isopropyl-3,6-dimethoxy-5-[4-(triphenylphosphoranylideneamino)but-2-ynyl]- $2,5$ -dihydropyrazine (60, $R = N:PPh_3$) (made *in situ*) gave 2-[4-(benzyloxycarbonylamino)but-2-ynyl]-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**60**, $R = NHCO_2CH_2Ph$ (ClCO₂CH₂Ph, NaHCO₃, H₂O—dioxane, $0 \rightarrow 20^{\circ}C$, 5 h: $>79\%$);¹³⁴⁸ also analogous reactions.²²⁸

By Reduction of Cyanopyrazines

1-Benzyl-4-cyanomethylpiperazine (**61**) gave 1-(2-aminoethyl)-4-benzylpiperazine (62) (LiAlH₄, THF, N₂, 20°C \rightarrow reflux, 24 h: 91%;⁶³⁵ LiAlH₄, THF, N₂, 10° C \rightarrow reflux, 6 h: 80%).⁶⁶⁰

4-Benzyl-1-methyl-2-piperazinecarbonitrile (**63**) gave 2-acetamidomethyl-4-benzyl-1-methylpiperazine (64) (H₂, Raney Ni, Ac₂O, 20°C, until finished: 49%).¹¹⁷

Also other examples.446

By Aminolysis of Nuclear Cyanopyrazines

Note: For the formation of nuclear primary, secondary, or tertiary aminopyrazines.

- $2,3$ -Pyrazinedicarbonitrile (65, $R = CN$) gave 3-methylamino-2-pyrazinecarbonitrile (65, R = NHMe) (MeNH₂, Et₃N, THF—H₂O, 20°C, 5 h: 74%).¹³⁸⁹
- 5-Methyl-6-phenyliminomethyl-2,3-pyrazinedicarbonitrile (**66**) gave selectively 5-methyl-3-methylamino-6-phenyliminomethyl-2-pyrazinecarbonitrile (**67**) (MeNH₂, Et₃N, Et₂O-THF, 20°C, 7 h: 65%).¹⁵⁹⁹

In contrast, 5-(3,4-dimethoxyphenyl)-2,3-pyrazinedicarbonitrile (**68**) gave a separable mixture of 3-butylamino-6-(3,4-dimethoxyphenyl)-(**69**) and 3 butylamino-5-(3,4-dimethoxyphenyl)-2-pyrazinecarbonitrile (**70**) (BuNH₂, MeCN, 20°C, 5 h: 35 and 52%, respectively).¹²⁹⁸

Also other examples.1013,1298

By Reduction of Pyrazinecarboxamides

Note: For the formation of extranuclear primary, secondary, or tetrtiary aminopyrazines; the only available examples gave a primary amine.

4-Methyl-2-piperazinecarboxamide (**71**) gave 2-aminomethyl-4-methylpiperazine (**72**) (LiAlH₄, THF, reflux, 12 h: $\sim 65\%$).¹²⁸

By Hofmann Degradation of Pyrazinecarboxamides

- *Note:* For the preparation of nuclear or extranuclear primary aminopyrazines.
- 3-Chloro-2-pyrazinecarboxamide (**73**) gave 3-chloro-2-pyrazinamine (**74**) [NaOBr (made *in situ*), H₂O, 80°C, 2 h: 83%).¹⁶⁸¹

- 2 -Pyrazinecarboxamide 1-oxide (75, $R = \text{CONH}_2$) gave 2-pyrazinamine 1-oxide $(75, R = NH₂)$ (NaOCl, H₂O, 70°C, 1 h: 78%);¹⁵⁵⁶ also 5-methyl-2-pyrazinamine 4-oxide (likewise: 75%).¹⁵⁰⁸
- 3 -Oxo-6-(pyridin-4-yl)-3,4-dihydro-2-pyrazinecarboxamide (**76**, $R = \text{CONH}_2$) gave 3-amino-5-(pyridin-4-yl)-2(1*H*)-pyrazinone (**76**, $R = NH_2$) [NaOBr (made *in situ*), H₂O, \leq 5°C, 4 h: 63%].³¹⁴

Ammonium 3-carbamoyl-2-pyrazinecarboxylate (**77**) gave 3-amino-2-pyrazinecarboxylic acid (**78**) (NaOCl, H₂O, 20 \rightarrow 80 $^{\circ}$ C, 10 min: 67%).¹³¹⁸

Also other examples.598,1008,1119,1125

By the Curtius Reaction on Pyrazinecarbonyl Azides

Note: Could be used for the preparation of nuclear or extranuclear primary aminopyrazines.

A benzene solution of methyl 3-azidoformyl-2-pyrazinecarboxylate (**80**), obtained by treatment of the chloroformyl ester (**79**) with sodium azide, gave methyl 3-amino-2-pyrazinecarboxylate (81) (reflux, 24 h: >86% overall).¹¹⁸⁵ Also other examples.¹⁶⁷¹

By Reduction of Azidopyrazines

Note: The reduction of azido- to aminopyrazines appears to be somewhat unpredictable but a reasonably good yield can usually be obtained with one or other of the reducing agents mentioned in these examples. For nuclear or extranuclear primary aminopyrazines only.

2-Azido-3,5-diphenylpyrazine (**82**) gave 3,5-diphenyl-2-pyrazinamine (**83**) $(SnCl_2.2 H_2O, HCl, MeOH-H_2O, 60^{\circ}C, 4 h: 86\%; H_2, Pd/C, NH_4OH,$ MeOCH₂CH₂OMe $-H_2O$: 0%);²³¹ in contrast, 2-azido-5,6-diphenylpyrazine $(84, R = N_3)$ gave 5,6-diphenyl-2-pyrazinamine $(84, R = NH_2)$ $(H_2, Pd/C,$ NH₄OH, MeOCH₂CH₂OMe-H₂O, 20°C, 1 h: >95%).²³¹

2,3-Diazidopyrazine (**85**) gave 3-azido-2-pyrazinamine (**86**) (NaBH4, EtOH, 20–55°C, 30 min: 90%), and thence 2,3-pyrazinediamine (87) $(H_2, Pd/C,$ NH₄OH, MeoCH₂CH₂OMe, 20°C, 4 h: 58%).¹¹²⁴

Also other examples.^{228,891,1609}

7.3.2 Reactions of Regular Aminopyrazines (*H* **215)**

Some reactions of aminopyrazines have been discussed already: the *conversion of primary amino- into halogenopyrazines* (Sections 4.1.4 and 4.3.2) and the *conversion of aminopyrazines into pyrazinones* (Section 5.1.1). The many remaining reactions are covered in the subsections that follow.

7.3.2.1 N-Acylation of Aminopyrazines and Subsequent Cyclizations (H 215, 377)

The N-acylation of a primary or secondary aminopyrazine or of a piperazine (at ring-NH) may be carried out for a variety of reasons, one of which is for subsequent intramolecular cyclization. The following examples illustrate the process of acylation (in the widest sense) and a few typical cyclizations:

N-Acylation of Aminopyrazines

3-Amino-6-bromo-2-pyrazinecarboxamide (**88**) gave 3-benzamido-6-bromo-2 pyrazinecarboxamide (**89**) (BzCl, pyridine, 20°C, 10 h: 91%), and thence 6-bromo-2-phenyl-4(3*H*)-pteridinone (**90**) (0.1 M NaOH, reflux, 20 min: 80%).4

2-Pyrazinamine $(91, R = H)$ gave 2-formamidopyrazine $(91, R = CHO)$ [neat HC(NHCHO)₃, 165 $^{\circ}$ C, sealed, 25 min: 59%]²⁴⁶ or 2-benzamidopyrazine (91, $R = Bz$) (BzCl, pyridine—CHCl₃, 20°C, 2 h: 61%).¹⁵²

 $5-p$ -Methoxyphenyl-2-pyrazinamine $(92, R = H)$ gave 2-acetamido-5*p*-methoxyphenylpyrazine (92, R = Ac) (Ac₂O, pyridine, 20 \rightarrow 50°C, 4 h: 81% ⁵⁸⁷ 3-benzyl-5-p-methoxyphenyl-2-pyrazinamine (93, R = H) gave 2-benzyl-6-p-methoxyphenyl-3-pivalamidopyrazine $[93, R = C(.)Bu']$ (Bu^tCOCl, pyridine—CH₂Cl₂, 20°C, 7 h: 90%).³⁹⁷

 $1-(2-Aminoethyl)-4-benzylpiperazine (94, R = H) gave 1-(2-benzamidoethyl)-$ 4-benzylpiperazine $(94, R = Bz)$ (BzCl, Et₃N, THF, 0°C, 5 h: 45%, isolated as dihydrochloride).635

2,3-Pyrazinediamine (**95**) and 2-methoxy-4-methylthiobenzoyl chloride (made *in situ*) gave 2-(2-methoxy-4-methylthiophenyl)-1*H*-imidazo[4,5-*b*]pyrazine (**96**) by loss of water from an unisolated 3-acylamino-2-pyrazinamine [substrate, 2-MeO-4-MeSC₆H₃CO₂H, neat POCl₃, 20 $^{\circ}$ C \rightarrow reflux, 4 h: 45%].⁶⁸¹ Also other examples. 87,261,369,448,648,884,960,1026,1124,1132,1296,1313,1517,1522,1580,1589,1662

1/4-Acylation of Piperazines

Note: This procedure is very common, especially for introducing a piperazinyl or substituted-piperazinyl grouping into parent molecules showing promise of bioactivity.

Piperazine (98) gave 1-(3-hydroxybutyryl)piperazine (97) [MeCH(OH)CH₂CO₂Et, 110°C, 10 h: 90%],¹⁶⁵¹ 1,4-diisobutyrylpiperazine (99) [PrⁱCOCl, pyridine, 1 h, then PhH \downarrow , reflux, 15 min: 65%;¹⁶¹² or Pr^{*i*}, CO (20 atm), Et₃N, MeOH, 80°C, 10 h: 57%],¹⁶⁶⁰ a 3:4 mixture of 1-piperazinecarbothioaldehyde (100, R = H) and 1,4-piperazinedicarbothioaldehyde $[100, R = C(.S)H]$ (for details see original),⁸⁰⁰ 1,4-piperazinedicarbaldehyde (101) [neat $(HO_2C)_2$, 300°C, rapidly: 60°C with loss of CO_2 and H_2O ¹⁹ or diethyl 1,4-piperazinebis(carbodithioate) (102) (substrate, K₃PO₄, Me₂NCHO, 20°C, 20 min; then CS₂ \downarrow , 20°C, 20 min; then EtBr \downarrow , 20°C, until complete by TLC: 84%).^{1674, cf. 430}

1-Methylpiperazine (**104**) gave 1-*o*-iodobenzoyl-4-methylpiperazine (**103**) (*o*-IC₆H₄COCl, CHCl₃, 20^oC \rightarrow reflux, 2 h: 78%, as hydrochloride),⁴⁹⁶ 5-(4methylpiperazin-1-ylsulfonyl)isoquinoline (**105**) (5-isoquinolinesulfonyl chloride, CH₂Cl₂, 20°C, 1 h: 71%),¹¹⁰ 1-chloroacetyl-4-methylpiperazine (**106**) (ClCH₂COCl, Et₃N, PhH, 20°C, 12 h: 62%),¹⁴⁹ or 1-tert-butoxycarbonyl-4-methylpiperazine (107) [Bu^tOC(:O)N₃, THF—H₂O, 35°C, 30 min; then NaOH \downarrow , 20 $^{\circ}$ C, 2 h: > 90%].¹⁴⁷

1-Phenylpiperazine $(108, R = H)$ gave 1-difluoronitroacetyl-4-phenylpiperazine [108, R = C(:O)CF₂NO₂] (O₂NF₂CCO₂Me, 20^oC, 12 h: 60%);¹¹⁰⁴ likewise the 4-*p*-fluorophenyl analogues (70%), confirmed in structure by X-ray analysis.1104

Pyrazine (109) gave 1,4-diacetyl-1,4-dihydropyrazine (110, $R = H$) (Ac₂O, Zn dust, reflux, 75 min: 38%; or Ac₂O, Et₄NBr, Me₂NCHO, N₂, cathodic reduction, 30°C: 44%;514 2,5-bismethylthio-3,6-dihydropyrazine (**111**) gave 1,4-diacetyl-2,5-bismethylthio-1,4-dihydropyrazine (**110**, R - SMe) (Ac₂O, CHCl₃, reflux, 2 h: 75%; note prototropy prior to acetyla $tion).⁷¹⁴$

5,*N*-Dimethyl-2-piperazinecarboxamide $(112, R = H)$ gave 1,4-diacetyl-5,*N*dimethyl-2-piperazinecarboxamide (112, $R = Ac$) ($H₂O$, NaOH to pH 7, $H_2C=CO \downarrow$, 20°C, 30 min; or Ac₂O, NaHCO₃, 80°C, 1 h: ?%).⁴⁷⁷

- 1-Methylpiperazine (**113**) gave tris(4-methylpiperazin-1-yl)methane (**115**), presumably via the diethoxymethyl intermediate (114) [excess substrate, $(EtO)_{3}CH$, trace AcOH, boiled under a short condenser to lose EtOH, 2 h: 71%],⁷⁶²
- Also other examples. 83,95,132,135,142,146,154,209,265,334,393,430,492,498,499,501,502,613,618,621,626, 647,663,672,805,818,824,872,890,982,1018,1020,1053,1066,1100,1113,1133,1149,1154,1176,1179,1189,1342,1356, 1499,1516,1581,1590,1647,1661,1683 – 1685,1749,1754

7.3.2.2 N-Alkylidenation of Aminopyrazines and Subsequent Cyclizations (H 215)

The N-alkylidenation of a primary aminopyrazine is usually done with an eye to a subsequent cyclization of one sort or another: indeed, more often than not, the intermediate Schiff base is unisolated in such a sequence. The following examples indicate typical procedures:
With Isolation of the Schiff Base

3-Amino-2-pyrazinecarbonitrile (**116**) gave 3-dimethylaminomethyleneamino-2 pyrazinecarbonitrile (117) [Me₂NCH(OMe)₂, neat $(?)$, 20° C, $?$ h: 89%], and thence 4-pteridinamine (118) (NH₃, MeOH, 20°C, 7 days: 58%).²⁴³

- 2-Pyrazinamine gave $2-(\alpha$ -amino-*p*-chlorobenzylideneamino)pyrazine (119) $(CIC_6H_4CN-p, Pr'NLi, THF-Me_2SO, 140 \rightarrow 20°C, 2 \text{ days: } 51\%$; confirmed in structure by X-ray analysis). 378
- 2-Pyrazinamine gave 2-(hexafluoroisopropylideneamino)pyrazine (**120**) (hexafluoroacetone; no details), and thence 3-fluoro-2-(trifluoromethyl)imidazo[1, 2-*a*]pyrazine (121) (SnCl₂, THF, 110°C, <48 h: 17%).²¹⁹

Also other examples.253,668,775,982,1592,1657

Without Isolation of the Schiff Base

2-Pyrazinamine (122) gave imidazo $[1,2-a]$ pyrazine (123, $Q = R = H$) (ClCH₂- $CH(OEt)_2$, HCl, dioxane $-H_2O$, reflux, 1 h: 40%),^{1449, cf. 1712} 2-trifluoromethylimidazo $[1,2-a]$ pyrazine $(123, Q = CF_3, R = H) (BrCH_2COCF_3,$ EtOH, reflux, 5 h: \sim 10%),¹³⁸⁷ 3-methoxy-2-methylimidazo[1,2-*a*]pyrazine $(123, Q = Me, R = OMe)$ [MeCOCH(OMe)₂, HCl—MeOH, 20°C, 3 days: \sim 10%],^{737, cf. 827} 3-(1-hydroxyethyl)imidazo[1,2-*a*]pyrazine [**123**, Q = H, $R = CH(OH)Me$]{2,3-epoxybutyraldehyde, Al₂O₃, CH₂Cl₂, N₂, 20^oC, 12 h:

26%; orientation checked by oxidation to 3-acetylimidazo[1,2-*a*]pyrazine $(123, Q = Ac, R = H)$ (MnO₂, AcMe, 20°C, 7 days: 81%) and X-ray analysis thereof $\frac{770}{70}$ or other such derivatives.^{673,675,688}

 3 -Ethoxy-2-pyrazinamine $(125, R = Me)$ gave 8-ethoxy-2-phenylimidazo[1, 2-*a*]pyrazine (124) (PhCOCH₂Br, EtOH, reflux, 6 h: 29%);¹¹⁴⁶ in contrast, 3-methoxy-2-pyrazinamine $(125, R = Et)$ gave 8-methoxy-2-phenylimidazo- $[1,2-a]$ pyrazin-3-o1 (126) (PhCOCHO, trace BF₃.Et₂O, CH₂Cl₂, 20°C, 25 h: 72%);330 and many other imidazo[1,2-*a*]pyrazines were made by broadly similar reactions.²⁰³ 620,641,739,1146,1313,1361,1367

5,6-Diphenyl-2,3-pyrazinediamine $(128, Q = R = Ph)$ gave 2,3-dimethyl-6, 7-diphenylpyrazino[2,3-b]pyrazine (127) (Ac₂, EtOH, reflux, N₂, 30 min: 34%);⁵⁵⁸ 5-bromo-2,3-pyrazinediamine (128, Q = Br, R = H) gave 5-bromo-1*H*-imidazo[4,5-*b*]pyrazine (129) [neat AcOCH(OEt)₂, 143°C, 3 h: \sim 90%];¹⁰¹⁷ and 2,3-pyrazinediamine (128, Q = R = H) gave 7,16-diethyl-5,14-dihydrodipyrazino[2,3-*b*: 2 ,3 -*i*][1,4,8,11]tetraazacyclotetradecine (**130**) (EtOHC=CEtCHO, Me₂NCHO- $C_6H_{11}OH$, reflux, N₂, 4 h: 3% after chromatographic purification).¹⁵²⁹

3-Amino-2-pyrazinecarboxamide (**131**) gave 2-ethoxymethyl-4(3*H*)-pteridinone (**132**) [EtOCH₂C(OEt)₃, Ac₂O, reflux, N₂, 3 h: 44%].⁶⁹¹

Also a variety of other examples.^{504,583,585,604,634,640,1035,1044,1474,1508,1511}

7.3.2.3 N-Alkylation of Aminopyrazines and Subsequent Cyclizations (H 220)

Nuclear primary or secondary aminopyrazines can undergo alkylation on exocyclic nitrogen to give products of the type (**133**) or on ring nitrogen to give products like the imine (**134**); indeed some products (**133**) may be formed by Dimroth rearrangement⁶⁵⁷ of the corresponding imines (134). Extranuclear aminopyrazines usually undergo exocyclic alkylation to give products of the type (**135**).

Such processes are illustrated in the following examples (the analogous 1/4 alkylation of piperazines has been covered fully in Section 3.2.2.1):

Alkylation at the Amino Group

- 2-Pyrazinamine (**137**) gave 2-(2,2-dicyanovinylamino)pyrazine (**136**) [EtOCH= $C(CN)_{2}$, EtOH, 25°C, 24 h: 28%; or H₂C(CN)₂, HC(OEt)₃, 110°C, 10 min: 62%]797 or 2-[1-(phenylhydrazono)acetonylamino]pyrazine (**138**) $(AccCI=NNHPh, Et₃N, EtOH, reflux, 3 h: 40\%).$ ⁵⁷¹
- 3-Methoxy-2-pyrazinamine (**139**) gave 2-(2,2-diethoxycarbonylvinyl)amino-3 methoxypyrazine (140) [neat EtOCH= $C(CO₂Et)$ ₂, 110^oC, 40 min: 75%], and thence ethyl 9-methoxy-4-oxo-4*H*-pyrazino[1,2-*a*]pyrimidine-3-carboxylate (**141**) (Dowtherm A, 250°C, 15 min: 65%).1562

2-Pyrazinamine (**142**) gave 3-benzamido-4*H*-pyrazino[1,2-*a*]pyrimidin-4-one (144) without isolation of the intermediate (143) $[Me₂NCH=CCO₂Me)$ NHBz, AcOH, reflux, 7 h: 30%].¹⁵⁵⁷

Also other examples.360,395,853,1193,1251,1562,1573

Alkylation at Ring Nitrogen

 $2,3$ -Pyrazinediamine $(145, R = H)$ gave 3 -imino-4-methyl-3,4-dihydro-2-pyrazinamine hydriodide $(146, R = H)$ (MeI, MeNO₂, 20^oC, 6 days: \sim 90%), which in alkali underwent hydrolysis to 3-amino-1-methyl-2(1*H*)-pyrazinone $(148, R = H)$ rather than Dimroth rearrangement into 3-methylamino2-pyrazinamine (147, R = H) (2 M NaOH, 95°C, 1 h: \sim 40%);¹⁰⁰⁸ 3-methylamino-2-pyrazinamine $(145, R = Me)$ behaved similarly to give 1-methyl-3methylamino-2(1*H*)-pyrazinimine hydriodide (146, $R = Me$), and thence with alkali, 1-methyl-3-methylamino-2($1H$)-pyrazinone (148 , R = Me)^{.1008}

2-Pyrazinamine (**149**) gave only 3-phenylimino-3*H*-[1,2,4]thiadiazolo[4,3 *a*]pyrazine (**150**) (PhN=CClSCl, Et₃N, CHCl₃, 0 \rightarrow 20 $^{\circ}$ C, 3 H: 44%).²¹⁴ Also other examples.⁵⁹⁸

7.3.2.4 Conversion into Ureidopyrazines or Related Products (H 234)

Primary or secondary aminopyrazines may be converted directly into ureido- or thioureidopyrazines by treatment with isocyanates or isothiocyanates; primary aminopyrazines may also be converted into such products indirectly via the corresponding isocyanato- or isothiocyanatopyrazines; piperazines may be converted into 1/4-carbamoyl- or thiocarbamoylpiperazines by treatment with isocyanates, *N*-nitrourea, or isothiocyanates; and aminopyrazines may be converted into guanidinopyrazines by treatment with *S*-methylisothioureas or cyanamide. These processes (and some subsequent intramolecular cyclizations or other reactions) are illustrated in the following examples:

- 2-Pyrazinamine (**151**) gave 2-*N* -*tert*-butyl(thioureido)pyrazine (**152**) (Bu*^t* NCS, NaH, Me₂NCHO, $0 \rightarrow 20^{\circ}C$, 4 h: 79%), and thence *N-tert*-butyl-*N'*-(pyrazin-2-yl)carbodiimide (153) (MeI, Bu₄NBr, ClCH₂CH₂Cl; then 8 M NaOH \downarrow , reflux, 3 h: 67% ; via the *S*-methyl derivative).¹⁵⁹¹
- The same substrate (**151**) gave pyrazino[1,2-*b*][1,2,4,6]thiatriazin-3(2*H*)-one *S*,*S*-dioxide (**155**) via the unisolated chlorosulfonylureidopyrazine (**154**) (ClO₂SNCO, NeCN, 0° C; the Et₃N \downarrow , conditions?: 50%).²⁴⁰

3-Methylamino-2-pyrazinecarbonitrile gave 4-imino-1,3-dimethyl-3,4-dihydro-2(1*H*)-pteridinone (**156**) without isolation of an intermediate ureido derivative (NaH, THF, N₂, 20°C, 20 min; then MeNCO \downarrow , 20°C, 19 h: 75%).¹³⁸⁹

Methyl 3-amino-2-pyrazinecarboxylate (**157**) gave methyl 3-isothiocyanato-2 pyrazinecarboxylate (158) (SCCl₂, CaCO₃, CH₂Cl₂, 5 \rightarrow 20°C, 48 h: 53%), and thence methyl 3-[*N'*-phenyl(thioureido)]-2-pyrazinecarboxylate (159) (PhNH₂, EtOH, reflux, 4 h: 74%); analogues likewise.¹⁵⁵⁸

- 1-Methylpiperazine (**160**) gave 1-methyl-*N*-*p*-nitrophenyl-4-piperazinecarbothioamide (161) $(p-O_2NC_6H_4NCS, PhH, 20°C, 3 h: 82%)$; also analogues likewise.¹³³
- 1-Phenylpiperazine gave 4-phenyl-1-piperazinecarboxamide $(H₂NCONHNO₂)$, H₂O, 20^oC, until gas \uparrow ceased, then 60^oC, 30 min: 55%).⁹⁷²

1-*p*-Iodophenylpiperazine (**162**) gave 4-*p*-iodophenyl-1-piperazinecarboxamidine (163) [2MeSC(=NH)NH₂, H₂SO₄, Me₂SO, 120°C, 120°C, 1 h: 61%, as sulfate].^{1369, cf. 1066}

- 2-(3-Aminopropyl)-5-isobutyl-6-methoxypyrazine (**164**) gave 2-isobutyl-3 methoxy-5-[3-(3-nitroguanidino)propyl]pyrazine (165) [MeSC(=NH)NHNO₂, EtOH, 40° C, 5 min, then 20° C, 24 h: 85%].²⁹⁵
- Also other examples.144,291,332,448,633,662,689,721,828,966,968,994,1007,1032,1131,1148,1173,1189,1198, 1304,1742

7.3.2.5 Conversion into Trialkylsilylamino-, Triphenylphosphoranylideneamino-, or Dimethylsulfimidopyrazines

These (substituted-amino)pyrazines and piperazines have proved to be useful intermediates for subsequent cyclizations and other reactions. Their formation from aminopyrazines and a few cyclizations are illustrated in the following examples:

Trialkylsilylaminopyrazines and 1/4-Trialkylsilylpiperazines

Methyl 3-amino-2-pyrazinecarboxylate (**166**) gave methyl 3-trimethylsilylamino-2-pyrazinecarboxylate (167) (BuLi, THF, -78° C; then Me₃SiCl \downarrow , 78°C: 98%), and thence 9-methoxypyrazino[2,3-*b*]quinolin-9(5*H*)-one (**168**) [3-methoxybenzyne (generated from *m*-bromoanisole *in situ*), lithiated (167) , -40 °C, 10 min: 31%].³²⁰

2,5-Dimethylpyrazine (**169**) gave 2,5-dimethyl-1,4-bis(triisopropylsilyl)-1,4-dihydropyrazine (**170**) (ClSiPr*ⁱ* 3, K, 20°C, 2 days: 43%; confirmed in structure by X-ray analysis);⁵⁵² analogues likewise or by transtrial kylsilylation.⁵⁵²

1-Methylpiperazine gave methyltris(4-methylpyrazin-1-yl)silane (171) [Cl₃SiMe, Et₂O, 20 $^{\circ}$ C, 6.5 h; then LiN(CH₂CH₂)₂NMe \downarrow , 20 $^{\circ}$ C 10 h: 65%; for more detail see original].553

Also other examples.140,452

Triphenylphosphoranylideneaminopyrazines

- 2 -Pyrazinamine (172, $R = H$) gave 2-triphenylphosphoranylideneaminopyrazine $(173, R = H)$ (PPh₃, Et₃N, C₂Cl₆, MeCN, 20^oC, 12 h, then reflux, 6 h: 64%;²³⁰ PPh₂, Et₃N, C₂Cl₆, PhH, reflux, N₂, 3.5 h: 64%;⁴⁰⁵ or PPh₃, Et₃N, CCl₄, MeCN, $40 \rightarrow 20^{\circ}$ C, 12 h: 79%).⁹²⁷
- Methyl 3-amino-2-pyrazinecarboxylate $(172, R = CO₂Me)$ gave methyl 3-triph- enylphosphorany lideneamino-2-pyrazinecarboxylate (173, $R = CO_2Me$) (PPh₃, Et₃N, C₂Cl₆, PhH, reflux, 5 h: 96%), and thence 2-methoxy-3-phenyl-4(3*H*)-pteridinone (174) (PhNCO, PhH, 20 $^{\circ}$ C, 12 h; then MeOH \downarrow , reflux, 3 h: 70%; without isolation of intermediates).^{54,1089}

Also other examples.974,1652

Dimethylsulfimidopyrazines

Note: These entities have been used almost exclusively to make nitroso- or nitropyrazines bearing halogeno or other hydrolysis-sensitive passenger groups (see Sections 7.1.1 and 7.2.1).

- 3-Chloro-2-pyrazinamine (**175**) gave 2-chloro-3-dimethylsulfimidopyrazine (**176**) [Me₂SO, P₂O₅, 25^oC, 1 h; then substrate \downarrow , 25^oC, 3 h: 76%;⁴²⁹ or Me₂SO, $(F_3CSO_2)_2O$, CH_2Cl_2 , $-78^\circ C$, N₂, then substrate \downarrow , $-78 \rightarrow -55^\circ C$, 3 h: 79%].607,1427
- 5-Bromo-2-pyrazinamine gave 2-bromo-5-dimethylsulfimidopyrazine (**177**, $X = Br$) [Me₂SO, (F₃CSO₂)₂O, MeCN, -75°C, N₂, 30 min; then substrate \downarrow , $-75 \rightarrow -40^{\circ}$ C, 4 h: 85%];³⁶¹ 2-chloro-5-dimethylsulfimidopyrazine (177, $R = Cl$) was made similarly in 79% yield.¹³¹⁰

Also other examples.212,776

7.3.2.6 Miscellaneous Minor Reactions

Aminopyrazines undergo a variety of reactions that must be considered as minor when judged by recent usage. The following classified examples illustrate such reactions:

Transamination

2-(2-Dimethylaminovinyl)pyrazine (**178**) gave 2-formylmethylpyrazine oxime (179) (H₂NOH.HCl, MeOH, 20°C, 15 min: 78%).^{1276,1593}

Also other examples.1771

Unusual Displacement Reactions

2-Dimethylaminomethyleneaminopyrazine (180) and 2-phenyl- Δ^2 -oxazolin-5one (181) gave 2-phenyl-4-[*N*-(pyrazin-2-yl)iminomethyl]-Δ²-oxazolin-5-one that (according to NMR data) exists as the tautomeric 2-phenyl-4- [*N*-(pyrazin-2-yl)aminomethylene]- Δ^2 -oxazolin-5-one (182) (Ac₂O, 70°C, 2 h: 46%).²⁹⁹

2-Methyl-5-(trimethylammoniomethyl)pyrazine hydroxide (**183**) (made *in situ* from the corresponding chloride and silver oxide) gave among other products two separable dimeric isomers of the general formula (**184**) (PhMe, trace of phenothiazine, reflux with water removal, 8 h: low yields; for details and related products, see originals).550,1481

Reactions with Dienophiles

5-Chloro-3-diethylamino-1-phenyl-2(1*H*)-pyrazinone (**185**) and dimethyl acetylenedicarboxylate gave dimethyl 2-cyano-5-diethylamino-6-oxo-1 phenyl-1,6-dihydro-3,4-pyridinedicarboxylate (**187**) by loss of HCl from the unisolated Diels–Alder adduct (**186**) (PhMe, 60°C, 3 h: 95%); analogues likewise.⁸⁶⁵

1-Benzyl-3-(but-3-ynylamino)-5-chloropyrazine (**188**) gave 6-benzyl-7-oxo-2,3,6,7-tetrahydro-1*H*-pyrrolo[2,3-*c*]pyridine-5-carbonitrile (**190**) by loss of HCl from the unisolated intramolecular Diels–Alder adduct (**189**) (PhBr, reflux, 2 days: 93%).⁴⁸¹

Ring Fission

1,4-Diacetyl-2,3-di(indol-3-yl)-1,2,3,4-tetrahydropyrazine (**191**) isomerized into 1-[*N*-(2-acetamidovinyl)acetamido]-1,2-di(indol-3-yl)ethylene (**192**) (KOH, EtOH, reflux, 10 min: 66%).⁴²¹

Metal Complexation

- $2,3-\text{Bis}(4-\text{amino-6-ani}$ lino-1,3,5-triazin-2-yl)pyrazine (193) formed a Pd₂Br₄ complex.177
- 1,4-Dimethyl-2-phenyl-3-(pyridin-4-yl)piperazine (**194**) with coligands produced some interesting Re complexes.468

Diazotization

2-Pyrazinamine 1-oxide gave $1,3$ -bis(1-oxidopyrazin-2-yl)triazene (NaNO₂, 40% HF, 0°C, 48 h: structure of unstable product postulated on spectral grounds).277

7.4 PREPARATION AND REACTIONS OF HYDRAZINOPYRAZINES (*H* **205)**

The major preparative routes to hydrazinopyrazines have been covered already: by *primary synthesis* (see Chapters 1 and 2) and by *hydrazinolysis of halogenopyrazines* (see Sections 4.2.1 and 4.4). Minor routes (like the hydrazinolysis of alkylthio-, alkylsulfinyl-, alkylsulfonyl-, or mercaptopyrazines) appear to be unrepresented in the recent literature.

The reactions of hydrazinopyrazines often lead to intermediates for subsequent cyclization to heterobicyclic products. The reactions and some resulting cyclizations are illustrated in the following classified examples:

Acylation

2-Hydrazinopyrazine 4-oxide (**196**) gave 2-(*N* -formylhydrazino)pyrazine 4-oxide (**195**) (neat HCO2H, 60°C, 30 min: 56%) or 1,2,4-triazolo[4,3-*a*] pyrazine 7-oxide (197) [neat $HCO₂H$, reflux, 4 h: 27%; or $HC(OEt)_{3}$, xylene, 100–110°C, until EtOH \uparrow ceased: 63%; presumably via the formyl intermediate (**195**)].9

2-Hydrazino-(**198**) gave 2-[*N* -(ethoxycarbonylacetyl)hydrazino]-3-(2-methylthioethyl)-5-phenylpyrazine (199) (EtO₂CCH₂COCl, AcOEt, 0°C, 1 h: 87%), and thence ethyl 8-(2-methylthioethyl)-6-phenyl-1,2,4-triazolo[4,3-*a*]pyrazine-3-carboxylate (**200**) (TsOH, PhMe, reflux, 3 h: 74%).315

Also other examples.303,605,748,1117,1640

Alkylidenation

2-Hydrazino- (**201**) gave 2-benzylidenehydrazino- (**202**) (PhCHO, EtOH, reflux, 2.5 h: 58%), and thence 2-(*N*-benzyl-*N'*-benzylidenehydrazino)-3,6dimethylpyrazine (203) (NaH, THF, 15 min; then PhCH₂Br \downarrow , reflux, 2 h: 66%).⁷²

2-Hydrazinopyrazine 4-oxide (**204**) gave 1,2,4-triazolo[4,3-*a*]pyrazine 7-oxide (**206**) by loss of AcOH from the unisolated intermediate (**205**) [neat AcOCH(OEt)₂, 20 $^{\circ}$ C, 24 h: 43%].⁷⁶⁵

2-Chloro-6-hydrazinopyrazine (**207**) gave 2-(2-benzamidoethylidene)hydrazino-6-chloropyrazine (208) [ClCH=C(NHBz)CO₂H, Et₃N, EtOH, reflux, 11 h: 52%].1192

2-Hydrazinopyrazine (**209**) gave 2-(4-ethoxycarbonylpyrazol-1-yl)pyrazine (211) by loss of H₂O from the unisolated intermediate (210) $[(OHC)₂]$ CHCO₂Et, EtOH, $0 \rightarrow 20^{\circ}$ C, 24 h: 66%].¹⁵⁰⁹

Also other examples.385,664,733,1090,1370

Alkylation

2-Hydrazinopyrazine (**212**) gave 2-[*N*-(2-cyanoethyl)hydrazino]pyrazine (**213**) $(H_2C=CHCN, 2 M NaOH, THF, 30 \rightarrow 60 \rightarrow 20^{\circ}C, 30 min: 38\%).$ ⁶²²

Conversion into Semicarbazidopyrazines

Note: All recent examples appear to be thiosemicarbazidopyrazines.

2,5-Dimethyl-3-(*N*-methylhydrazino)pyrazine (**214**) gave 2,5-dimethyl-3-[1 methyl-4-phenyl(thiosemicarbazido)]pyrazine (215) (PhNCS, Et₂O, 20^oC, 24 h: 69%), and thence the zwitterionic bicyclic product, 1,5,8-trimethyl-1,2,4 triazolo[4,3-*a*]pyrazinium-3-phenylaminide (216) $(H_{11}C_6N=CC=NC_6H_{11},$ AcMe, 20°C, 2 days: 75%); analogues likewise.72

2-Chloro-3-hydrazinopyrazine (**217**) gave 2-chloro-3-[4-(ethoxycarbonylmethyl)- (thiosemicarbazido)]pyrazine (218) (EtO₂CCH₂NCS, CHCl₃, reflux, 1 h: 63%), which underwent cyclization with loss of HCl to afford 3-ethoxycar-

bonylmethylamino- $(219, R = Et)$ or 3-methoxycarbonylmethylamino-1*H*pyrazino $[2,3-e]$ -1,3,4-thiadiazine (219, R = Me) [EtOH, reflux, 30 min: 44%; or MeOH, reflux, 1 h: 40% (including a transesterification step), respectively] or cyclization with loss of $H_2NCH_2CO_2Et$ to afford 3-thioxo-2,3-dihydro-1,2,4-triazolo[4,3-*a*]pyrazin-8(7*H*)-one (**220**) (MeOH, reflux, 3 h: 37%; note hydrolysis of the Cl substituent); 284 also analogous reactions. 284,1144

Conversion into Azidopyrazines

- 2-Chloro-3-hydrazinopyrazine (**221**) gave 2-azido-3-chloropyrazine (**222**) (5 M HCl, NaNO₂, $\leq 5^{\circ}$ C, 30 min: 60%); analogues likewise.⁸⁹¹
- 3-Amino-5-hydrazino-2,6-pyrazinedicarbonitrile $(223, R = NHNH₂)$ gave 3amino-5-azido-2,6-pyrazinedicarbonitrile $(223, R = N_3)$ (4 M HCl, NaNO₂, 0° C, ? min: 53%).¹¹⁸⁰

Also other examples.272

Oxidative Removal of the Hydrazino Group

2-Hydrazino-6-methyl-3-phenylpyrazine 4-oxide gave 2-methyl-5-phenylpyrazine 4-oxide (CuSO₄, AcOH-H₂O, 95°C, 1 h: >42%).⁸⁰

7.5 PREPARATION, STRUCTURE, AND REACTIONS OF AZIDOPYRAZINES

The major and recently used preparative routes to azidopyrazines have been covered already: by *azidolysis of halogenopyrazines* (Sections 4.2.6 and 4.4) and by *treatment of hydrazinopyrazines with nitrous acid* (Section 7.4). In addition, *direct C-azidation of pyrazines* has been used: for example, the lithio intermediate (**225**), generated in THF by treatment of 2-methoxypyrazine (**224**) with lithium 2,2,6,6 tetramethylpiperidine, gave 2-azido-3-methoxypyrazine (**226**) (87%) on subsequent treatment with *p*-toluenesulfonyl azide.²³²

Since the excellent 1973 summary of azido-tetrazolo valence-tautomerism in nitrogenous heterocycles,1713 little has been added to our knowledge of factors governing such tautomerism $(227 \rightleftharpoons 228)$ in the pyrazine series. However, it has been shown by NMR studies that 2-azidopyrazine 4-oxide (**229**) exists as such in chloroform, as tetrazolo[1,5-*a*]pyrazine 7-oxide (**230**) in dimethyl sulfoxide, and as a mixture in acetone.²⁷² For obvious pragmatic reasons, all such compounds are named as azidopyrazines in this book, irrespective of their predominant structures.

The direct and indirect *conversion of azido- into aminopyrazines* has been covered in Section 7.3.1. The remaining reactions of azidopyrazines are illustrated in the following examples:

Conversion into Triphenylphosphoranylideneaminopyrazines

2-Azido-3-methoxypyrazine (**231**) gave 2-methoxy-3-triphenylphosphoranylideneaminopyrazine (232) (PPh₃, PhH, reflux, 65 h: 90%).²³²

2-(4-Azidobut-2-ynyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (**233**) gave 2-isopropyl-3,6-dimethoxy-5-[4-(triphenylphosphoranylideneamino)but-2-ynyl]- 2,5-dihydropyrazine (234) (PPh₃, THF-H₂O, 20 $^{\circ}$ C, 19 h: product isolated but not characterized), and thence 2-[4-(benzyloxycarbonylamino)but-2-ynyl]- 5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine (235) (ClCO₂CH₂Ph, NaHCO₃, H_2O , $0 \rightarrow 20^{\circ}C$, 4.5 h: 79% overall).¹³⁴⁸

Conversion into Triazolylpyrazines

2,6-Diazidopyrazine (**236**) gave a separable mixture of 2-azido-6- (4,5-dimethoxycarbonyl-1,2,3-triazol-1-yl)pyrazine (**237**) and 2,6-bis(4,5 dimethoxycarbonyl-1,2,3-triazol-1-yl)pyrazine (237a) [MeO₂CC=CCO₂Me, MeOCH₂OCH₂OMe(?), reflux, 19 h: 18 and 15%, respectively].¹¹²⁴

Ring Contraction to Imidazoles

2-Azido-3,6-dimethylpyrazine (**238**) gave 2,5-dimethyl-1-imidazolecarbonitrile (239) with loss of N₂ (neat, 230°C, in preheated metal bath, 1 min: 89%);¹³¹⁴ the same substrate (**238**) gave a separable mixture of product (**239**) and 2,

5-dimethylimidazole (**240**) (*h*, EtOH, 20°C, 2 h: 13 and 73%, respectively; the ratio (240:239) increased with irradiation time];¹³¹⁴ and many homologous products were made similarly.242,1314

Also other examples of pyrolysis.¹⁵⁶¹

Ring Expansion to 1,3,5-Triazepines

2-Azido-6-methoxypyrazine (**242**) gave 2,7-dimethoxy-1,3,5-triazepine (**241**) $(hv, \text{MeO}^{-}$, MeOH—dioxane, 25 min: $>40\%$) or 2-diethylamino-7-methoxy-1,3,5-triazepine (243) (hv , Et₂NH, MeOH—dioxane, 25 min: >40%); it appears that the substrate must bear an electron-donating group for this reaction to occur.¹⁷¹

7.6 NONTAUTOMERIC IMINOPYRAZINES

Nontautomeric imino derivatives are only rarely encountered in the pyrazine series.

A few such imines have been made by *primary synthesis* (see, e.g., Section 1.2.1.1) or by *alkylation of aminopyrazines on ring-N* (see Section 7.3.2.3); in addition, 2-formylmethylpyrazine oxime (**244**) gave a little 2-cyanoimino-1-methyl-1,2 dihydropyrazine (**245**) by heating with dimethylformamide dimethyl acetal in refluxing toluene.1276 Products somewhat analogous to these imines, have also been made: for example, treatment of pyrazine with *O*-(mesitylenesulfonyl)hydroxylamine afforded successively the quaternary product, 1-aminopyrazinium mesitylenesulfonate (246) (CHCl₃, $0 \rightarrow 20^{\circ}$ C, 30 min: 85%); the zwitterionic derivative, pyrazinium-1-ethoxycarbonylimide (247) (ClCO₂Et, K₂CO₃, EtOH, 20^oC, 15 h:

65%); and the ring-contracted entity, ethyl 1-pyrazolecarboxylate (**248**) (*h*, AcMe, 3 h: 45%; a rational mechanism for this step was proposed).87

The fine structure of 2,6-bis(hydroxyimino)piperazine has been elucidated by X-ray analysis.⁸⁶⁶

The only reported reaction of nontautomeric iminopyrazines is *hydrolysis to corresponding pyrazinones*, already covered in Section 5.4.1.

7.7 ARYLAZOPYRAZINES

In contrast to the situation in the pyrimidine series,¹⁶⁸⁸ few arylazopyrazines have been reported. However, some have been made easily, either by *condensation of nitrosopyrazines with aromatic amines* (see Section 7.2.1) or by *azo coupling*, as represented in the reaction of 2,6-pyrazinediamine (**249**) with diazotized *p*-anisidine, *p*-toluidine, or aniline to afford 3 -*p*-methoxyphenylazo- (250, $R = OMe$) (96%) , $3-p$ -tolylazo- $(250, R = Me)$ (96%) , or 3 -phenylazo-2,6-pyrazinediamine $(250, R = H)$ (97%), respectively.¹¹²⁴

No examples of the reduction or other reactions of arylazopyrazines appear to have been reported recently.

CHAPTER 8

Pyrazinecarboxylic Acids and Related Derivatives (*H* **247)**

This chapter includes not only nuclear and extranuclear pyrazinecarboxylic acids and anhydrides, but also the related esters, acyl halides, amides, hydrazides, nitriles, aldehydes, ketones, and any of their thio analogues; a few rare isothiocyanatopyrazines and pyrazinecarbonitrile oxides are also included. To avoid repetition, interconversions of these pyrazine derivatives are discussed only at the first opportunity: for example, the esterification of carboxylic acids is discussed as a reaction of carboxylic acids rather than as a preparative route to carboxylic esters, simply because the section on carboxylic acids precedes that on carboxylic esters. To minimize any confusion, many cross-references have been inserted.

8.1. PYRAZINECARBOXYLIC ACIDS (*H* **247)**

As well as the extensive recent literature on the preparation and reactions of pyrazinecarboxylic acids (see following subsections), their ionization constants, vibrational spectra, and electronic spectra have been revisited. $63,1067,1241$

8.1.1. Preparation of Pyrazinecarboxylic Acids (*H* **247)**

Several important preparative routes to pyrazinecarboxylic acids have been discussed already: by *primary synthesis* (Chapters 1 and 2), by *oxidation of alkylpyrazines* (Section 3.2.4.1), by the *indirect (?) oxidation of halogenoalkylpyrazines* (end of Section 4.4), and by *oxidation of hydroxyalkylpyrazines* (Section 5.2.2). The remaining methods of preparation are indicated in the following classified examples:

By Direct Carboxylation

2-Chloropyrazine $(1, X = C)$ gave 3-chloro-2-pyrazinecarboxylic acid $(3, X = C)$ Cl) via the lithio intermediate $(2, X = C1)$ [LiN(CMe₂CH₂)₂CH₂, THF, $-70 \rightarrow 0^{\circ}C$, 30 min; then CO₂ \downarrow , $-70^{\circ}C$, 30 min: 30%];²²⁰ 2-iodopyrazine $(X, X = I)$ likewise gave 3-iodo-2-pyrazinecarboxylic acid $(X, X = I)$ (24%) ¹⁶¹³

- 2-Propionylpyrazine (**4**) gave 2-[2-(dithiocarboxy)propionyl]pyrazine (**5**) (Bu*^t* OK, CS_2 , THF, 20°C, 2 h: ?%, crude material).¹⁴⁸⁷
- Piperazine gave disodium 1,4-piperazinebis(carbodithioate) (6) (CS₂, NaOH, MeOH, 20°C, 96%).⁴³⁰

By Hydrolysis of Pyrazinecarboxylic Esters

- Methyl 3-amino-6-phenyl-2-pyrazinecarboxylate $(7, R = Me)$ gave 3-amino-6-phenyl-2-pyrazinecarboxylic acid $(7, R = H)$ (NaOH, MeOH-H₂O, 20°C, 1 h: 88%).⁵⁹⁹
- Methyl 6-chloro-5-(4-methylpiperazin-1-yl)-2-pyrazinecarboxylate $(8, R = Me)$ gave 6-chloro-5-(4-methylpiperazin-1-yl)-2-pyrazinecarboxylic acid (**8**, $R = H$) (NaOH, EtOH-H₂O, 20°C, 12 h: 96%, isolated as hydrochloride). 645
- 1-Benzyloxy-3-(2-methoxycarbonylethyl)- $(9, R = Me)$ gave 1-benzyloxy-3-(2carboxyethyl)-5,6-dimethyl-2(1*H*)-pyrazinone $(9, R = H)$ (NaOH, MeOH- H_2O , $0 \rightarrow 20$ °C, 6.5 h: 89%).⁸⁹⁷
- Kinetic parameters for the alkaline hydrolysis of methyl⁶⁸ and ethyl 2-pyrazinecarboxylate¹³⁶ have been reported.

Also other examples.^{89,418,850,1123}

By Hydrolysis of Pyrazinecarboxamides

- 5-Methyl-2-pyrazinecarboxamide 4-oxide $(10, R = NH₂)$ gave 5-methyl-2pyrazinecarboxylic acid 4-oxide $(10, R = OH)$ $(2.5 M NaOH,$ reflux, 30 min: 70%).669
- 6-Chloro-2-pyrazinecarboxamide 4-oxide (**11**) gave 6-chloro-2-pyrazinecarboxylic acid 4-oxide (12) (NaNO₂, 50% H₂SO₄, 20°C, 1 h, then 60°C, 1 h: 75%; presumably this indirect method was adopted to avoid hydrolysis of the chloro substituent).⁶⁶⁹

Also other examples.1765

By Hydrolysis of Pyrazinecarbonitriles

- *Note:* Such hydrolyses can be done in acidic or alkaline media: the use of acid tends to increase the risk of subsequent decarboxylation.
- 5-Methyl-2,3-pyrazinedicarbonitrile (**13**) gave 5-methyl-2,3-pyrazinedicarboxylic acid (14) (NaOH, H₂O—EtOH, reflux, 2 h: 60%; a little HCN \uparrow due to a side reaction).477

 $1,4-\text{Bis}(2-\text{cyanoethyl})$ piperazine $(15, R = \text{CN})$ gave $1,4-\text{bis}(2-\text{carboxyethyl})$ piperazine $(15, R = CO₂H)$ (48% HBr, reflux, 30 min: >85%, isolated as dihydrochloride);1345 1-(2-aminoethyl)-4-(2-cyanoethyl)piperazine gave 1-(2-aminoethyl)-4-(2-carboxyethyl)piperazine (10 M HCl, 100°C, 6 h: 87%, as dihydrochloride).⁹³³

2-Cyanomethyl-3-phenylpyrazine (**16**) gave 2-methyl-3-phenylpyrazine (**18**) via the unisolated carboxylic acid (17) (6 M HCl, reflux, 3 h: 66%).¹²⁷²

Also other examples.971,1015,1027

By Oxidation of Pyrazine Aldehydes or Ketones

- 3 -Amino-5-phenyl-2-pyrazinecarbaldehyde $(19, R = H)$ gave 3 -amino-5phenyl-2-pyrazinecarboxylic acid $(19, R = OH)$ (KMnO₄, H₂O, 20^oC, 1 h: 28%).1385
- 2-Acetyl-3,6-diethoxy-5-isopropyl-2-methyl-2,5-dihydropyrazine (**20**) gave potassium 3,6-diethoxy-5-isopropyl-2-methyl-2,5-dihydro-2-pyrazinecarboxylate (**21**, $R = K$) (KOCl, dioxane—H₂O, 4 \rightarrow 20°C, 1 h: crude) that was characterized as the corresponding ester, methyl 3,6-diethoxy-5-isopropyl-2-methyl-2,5-dihydro-2-pyrazinecarboxylate $(21, R = Me)$ (MeI, THF, 0°C, 48 h: 46% overall).^{170,371}

8.1.2. Reactions of Pyrazinecarboxylic Acids (*H* **253)**

The *reduction of pyrazinecarboxylic acids to extranuclear hydroxypyrazines* has been covered in Section 5.2.1. Other reactions are illustrated by the following classified examples:

Decarboxylation

- 3-Amino-5-methyl-2-pyrazinecarboxylic acid $(22, R = CO₂H)$ gave 6-methyl-2-pyrazinamine (22, $R = H$) (tetralin, 202°C, 1 h: 64%;¹¹²⁵ or tetralin, reflux, 30 min: 73%).693
- 2,3-Pyrazinedicarboxylic acid $(23, R = CO₂H)$ gave 2-pyrazinecarboxylic acid $(23, R = H)$ (AcOH- H_2SO_4 , reflux, 2 h: 85%).¹⁴³
- 5-Methyl-2,3-pyrazinedicarboxylic acid $(24, Q = R = CO₂H)$ gave a mixture of 5-methyl-2-pyrazinecarboxylic acid $(24, Q = H, R = CO₂H)$ and 6-methyl-2-pyrazinecarboxylic acid $(24, Q = CO₂H, R = H)$, in which the former predominated (sublimed at 185°C under reduced pressure: 72% before separation as derivatives).477
- 5-Benzoyl-2-pyrazinecarboxylic acid gave 2-benzoylpyrazine (dry distillation of a mixture with Cu powder at 150 \degree C under reduced pressure: 84%).²¹⁷

Also other examples.7,170,711,739,759,1057,1765

Conversion into Anhydrides

- *Note:* Cyclic anhydrides are made easily by dehydration of 2,3-pyrazinedicarboxylic acids but linear anhydrides are rare in the pyrazine series.
- 2,3-Pyrazinedicarboxylic acid $(25, R = H)$ gave 2,3-pyrazinedicarboxylic anhydride (26, R = H) (neat Ac₂O, reflux, 5–10 min: $83-94\%$ ^{185,1318,1572} or $C_6H_4N=$ C $=$ NC $_6H_4$, THF, 20 $^{\circ}$ C, 12 h: 92%).¹⁵⁷²
- 5,6-Dichloro-2,3-pyrazinedicarboxylic acid $(25, R = C)$ gave the corresponding anhydride (26, R = Cl) (neat SOCl₂, reflux, 30 min: 62%).⁴⁶²
- 3,5-Diamino-6-chloro-2-pyrazinecarboxylic acid gave 3,5-diamino-6-chloro-2 pyrazinecarboxylic *N*,*N*-diphenylcarbamic anhydride (27) (Ph₂NCOCl, Et₃N, Me₂NCHO, 20°C, 24 h: ~30%; or Ph₂NCO N⁺(CH)₅ Cl⁻, Et₃N, EtOH, 20° C, 1 h: \sim 40%).¹³¹⁷

Also other examples.^{85,104,107}

Conversion into Acyl Halides

Note: Pyrazinecarbonyl chlorides are often used as reactive intermediates but they are not always characterized as such.

- 2-Pyrazinecarboxylic acid $(28, R = H)$ gave 2-pyrazinecarbonyl chloride $(29,$ $R = H$) (SOCl₂, PhH, reflux, 2 h: 74%).^{639,651}
- 6-Chloro-2-pyrazinecarboxylic acid $(28, R = Cl)$ gave 6-chloro-2-pyrazinecarbonyl chloride $(29, R = Cl)$ (SOCl₂, PhH, reflux, 90 min: 73%);⁵⁰⁵ and 6-phenyl-2-pyrazinecarboxylic acid $(28, R = Ph)$ gave 6-phenyl-2pyrazinecarbonyl chloride $(29, R = Ph)$ (neat $S OCl₂$, reflux, 2 h: uncharacterized product).¹⁰¹⁵

Also other examples.275,477,1091

Esterification

- *Note:* Most of the classical methods for esterification have been used recently in the pyrazine series. The choice of a suitable procedure is often restricted by the passenger group(s) present, as illustrated in these examples.
- 3,6-Dichloro-5-methyl-2-pyrazinecarboxylic acid $(30, R = H)$ gave methyl 3,6dichloro-5-methyl-2-pyrazinecarboxylate $(30, R = Me)$ (CH₂N₂, Et₂O, 20^oC, 30 min: 84%).⁸⁰
- $3,5$ -Diamino-6-chloro-2-pyrazinecarboxylic acid $(31, R = H)$ gave cyanomethyl 3,5-diamino-6-chloro-2-pyrazinecarboxylate $(31, R = CH_2CN)$ (ClCH₂CN, Et₃N, Me₂NCHO, 20°C, 24 h: ~90%).¹³¹⁷
- 2-Pyrazinecarboxylic acid $(32, R = H)$ gave methyl 2-pyrazinecarboxylate $(32,$ $R = Me$) (MeOH, trace H₂SO₄, reflux, 48 h: 85–95%)^{236,460} or the corresponding ethyl ester (82, R = Et) (EtOH, H_2SO_4 , reflux, 7 h: 74%);⁸⁹⁶ 3-amino-2-pyrazinecarboxylic acid gave methyl 3-amino-2-pyrazinecarboxylate (MeOH, H_2SO_4 , 65°C, 2 h: 57%).³³²

5-Methyl-3-oxo-3,4-dihydro-2-pyrazinecarboxylic acid $(33, R = H)$ gave ethyl 5-methyl-3-oxo-3,4-dihydro-2-pyrazinecarboxylate $(33, R = Et)$ (EtOH, HCl gas \downarrow , 0°C; then 20°C, 12 h; then reflux 2 h: 58%).⁶⁴⁶

- N -Carboxymethyl-2-pyrazinecarboxamide $(34, R = H)$ gave *N*-methoxycarbonylmethyl-2-pyrazinecarboxamide (34, R = Me) (MeOH, HCl gas \downarrow , 0°C, 25 min; then 20° C, 15 h: 68%).⁴⁸⁸
- 5-Methyl-2-pyrazinecarboxylic acid 4-oxide $(35, R = H)$ gave methyl 5methyl-2-pyrazinecarboxylate 4-oxide $(35, R = Me)$ $(BF₃.Et₃O, MeOH,$ reflux, 6 h: $\sim 75\%$).⁶⁶⁹

- 2-Pyrazinecarboxylic acid $(32, R = H)$ gave methyl 2-pyrazinecarboxylate $(32, R)$ = Me) (ClSiMe₃, MeOH, 65°C, 1 h: 82%);¹³⁹ in contrast, the same substrate $(32, R = H)$ gave trimethylsilyl 2-pyrazinecarboxylate $(32, R = SiMe₃)$ [neat (?) Me₃SiNHSiMe₃, 20 $^{\circ}$ C, then warmed until violent gas \uparrow ceased: 92%; note that such products are usually considered as esters, although some may disagree $l.^{362}$
- 2-Carboxymethyl-3,5,6-trimethylpyrazine $(36, R = H)$ gave $2,3,5$ -trimethyl-6-[$(1$ $methylallyloxy)$ carbonyl $methyl]pyrazine$ (**36**, $R = CHMeCH : CH₂$) [substrate Li salt, HOCHMeCH=CH₂, pyridine, PhOP(=O)Cl₂, MeOCH₂CH₂OMe, 20 $^{\circ}$ C, N₂, 18 h: 33%].¹³⁸⁴
- 2,3-Pyrazinedicarboxylic anhydride (**37**) gave 3-methoxycarbonyl-2-pyrazinecarboxylic acid (**38**) [MeOH, 20°C, 13 h: 95%; *Note:* Since the anhydride was made from the corresponding dicarboxylic acid (see the first category in this subsection), this procedure provides a good way to monoesterify such a dicarboxylic acid].¹¹⁸⁵

Also other examples.7,85,89,353,619,713,729,846,854,971,1047,1057,1060,1091,1271,1298,1500,1668

Conversion into Pyrazinecarboxamides

Note: The conversion of pyrazinecarboxylic acids into pyrazinecarboxamides is usually done via a more reactive ester (Section 8.2.2), carbonyl chloride (Section 8.3.2), or anhydride (exemplified here). However, direct aminolysis is possible providing it is done in the presence of a suitable condensing agent to facilitate (directly or indirectly) the required aminolysis.

- 3,5-Diamino-6-chloro-2-pyrazinecarboxylic acid (39, R = OH) gave 3,5-diamino-6-chloro-*N*-phenyl-2-pyrazinecarboxamide (39, R = NHPh) [PhNH₂, ethyl 2-ethoxy-1,2-dihydro-1-quinolinecarboxylate, Me₂SO, 30 $^{\circ}$ C, 24 h: 84%; probably via a mixed anhydride]. 1317
- 3-Amino-2-pyrazinecarboxylic acid (40, R = H) gave 3-amino-*N*-(methoxycarbonylmethyl)-2-pyrazinecarboxamide $(40, R = NHCH_2CO_2Me)$ [H₂N- CH_2CO_2Me , $(EtO)_2POCN$, $MeOCH_2CH_2OMe$, Et_3N , $0 \rightarrow 20^{\circ}C$, 2 h: 76–78%].1331, 1652
- 2-Pyrazinecarboxylic acid gave 1-benzyl-4-methyl-6-[*C*-(pyrazin-2-yl)formamido]perhydro-1,4-diazepine (**41**) (1-benzyl-4-methylperhydro-1,4-diazepin-6-amine, *N,N'*-carbonyldiimidazole, Me₂NCHO, $0 \rightarrow 20^{\circ}$ C, 18 h: 71%).¹¹⁹

- 1-Benzyl-3-(2-carboxyethyl)- gave 1-benzyl-3-{2-[*N*-(1-methoxycarbonylethyl) carbamoyl]ethyl}-5,6-dimethyl-2(1*H*)-pyrazinone (42) $[H_2NCHMeCO_2-$ Me.HCl, Me₂NCH₂CH₂CH₂N=C=NEt.HCl, 1-hydroxybenzotriazole, MeN- $(CH_2CH_2)_2O$, Me₂NCHO, $-10 \rightarrow 20^{\circ}C$, 12 h: 71%].⁸⁹⁷
- 2,3-Pyrazinedicarboxylic anhydride gave 3-carbamoyl-2-pyrazinecarboxylic acid (43, R = H) (NH₃ \downarrow , THF, 20°C, 10 min: 95%, as NH₄ salt)¹³¹⁸ or 3-*o*aminophenylcarbamoyl-2-pyrazinecarboxylic acid $(43, R = \text{NHC}_6H_4\text{NH}_2-o)$ $[C_6H_4(NH_2), 0.20^{\circ}C, ?$ min: 88%].⁷¹¹

- 5-Methyl-2-pyrazinecarboxylic acid $(44, R = OH)$ gave *N*,*N*-diethyl-5-methyl-2-pyrazinecarboxamide (44, $R = NEt_2$) (ClCO₂Et, Et₃N, CH₂Cl₂, 15^oC, 10 min; then Et₂NH \downarrow 20°C, 12 h: ~55%; via a mixed anhydride).⁶⁶⁹
- 5,6-Dichloro-2,3-pyrazinedicarboxylic anhydride $(45, X = 0)$ gave 5,6dichloro-*N*-methyl-2,3-pyrazinedicarboximide $(45, X = NMe)$ (MeNH₂.HCl, Ac₂O, 120°C, sealed, 20 min: 94%).⁴⁶²
- Also other examples.104,107,392,462,1650,1679,1721

Conversion into Pyrazine Ketones

2,3-Pyrazinedicarboxylic anhydride (**46**) gave 3-(2,5-difluorobenzoyl)-2-pyrazinecarboxylic acid (47) (AlCl₃, C₆H₄F₂-*p*, reflux, 16 h: 75%).¹⁵⁷²

Cyclizations

2,3-pyrazinedicarboxylic anhydride (**46**) gave pyrazino[2,3-*d*]pyrazine-5,8- $(6H,7H)$ -dione (48, R = H) (H_2NNH_2 : for details, see original) or its 6-methyl derivative $(48, R = Me)$ (MeHNNH₂, likewise).⁸⁴⁴

N-(Carboxymethyl)-2-pyrazinecarboxamide (**49**) gave *N*-(4,6-dimethyl-2-oxo-2*H*pyran-3-yl)-2-pyrazinecarboxamide (50) [Me₂NCMe=CHAc (made *in situ*), Ac₂O, 90°C, 4 h: 11%]; also analogues similarly.¹⁶³⁵

Formation of Salts and Complexes

- *Note:* Some interesting examples of recently described pyrazinecarboxylic acid salts and complexes are listed here.
- Bis(*o*-carboxyanilinium) 2,3-pyrazinedicarboxylate (**51**): X-ray analysis.1238
- *m*-Carboxyanilinium hydrogen 2,3-pyrazinedicarboxylate dihydrate (**52**): X-ray structure.¹²³⁸

- *p*-Carboxyanilinium hydrogen 2,3-pyrazinedicarboxylate (**53**): X-ray structure;1040 also analogous adducts with 3-pyridinol, 1,2,4-triazol-3-amine, and so on.1040
- The system, 2-pyrazinecarboxylic acid (54) + tetrabutylammonium metavanadate $[(Bu_4N)VO_3]$ + hydrogen peroxide, in acetonitrile at ~0°C induced effective oxidation of alkanes or cyclohexane to hydroperoxides, alcohols to aldehydes or ketones, and aromatic hydrocarbons to phenols.1110,1715

8.2. PYRAZINECARBOXYLIC ESTERS (*H* **264, 303)**

This section covers the preparation and reactions of nuclear or extranuclear pyrazinecarboxylic esters, pyrazinecarboximidates, and the like. Pyrazinecarboxylic esters exhibit antimycobacterial activities akin to those of pyrazinecarboxamides;⁶⁵¹ the structure–activity relationship of such esters has been studied.⁶⁵⁶

8.2.1. Preparation of Pyrazinecarboxylic Esters (*H* **264)**

Many such esters have been made *by primary synthesis* (see Chapters 1 and 2), *from halogenopyrazines by displacement* (see Section 4.2.9), or *by esterification of pyrazinecarboxylic acids* (see Section 8.1.2). The remaining methods are illustrated in the following examples:

From Pyrazinecarbonyl Halides

- 2-Pyrazinecarbonyl chloride (**55**) gave propyl 2-pyrazinecarboxylate (**56**, R Pr) (PrOH, pyridine, CH₂Cl₂, $0 \rightarrow 20^{\circ}$ C, 12 h: 46%);⁶³⁹ a similar procedure with appropriate alcohols gave benzyl $(56, R = CH_2Ph)$ (84%) , ⁶⁵¹ 2,2,2trifluoroethyl (**56**, $R = CH_2CF_3$) (79%), allyl (**56**, $R = CH_2CH = CH_2$) (58%) , biphenyl-4-yl $(56, R = C_6H_4Ph-p)$ (39%) ,⁶³⁹ and other alkyl or aryl 2-pyrazinecarboxylates.639, 651
- 1,4-Piperazinedicarbonyl dichloride $(57, R = C)$ gave *S*,*S'*-diethyl-1,4-piperazinedicarbothioate (57, R = SEt) [EtSNa (made *in situ*), EtOH, reflux, 3 h: 96%].1359

From Pyrazinecarbonitriles

- *Note:* The addition of alcohols to pyrazinecarbonitriles gives pyrazinecarboximidic esters ('imino esters'): these undergo facile hydrolysis $864,1068,1127,1256$ to regular esters and/or amides.
- 2,3-Pyrazinedicarbonitrile $(59, R = H)$ gave dimethyl 2,3-pyrazinedicarboximidate (**58**) (MeONa, MeOH, 20°C, 18 h: 64%); in contrast, 5,6-diphenyl-2,3 pyrazinedicarbonitrile $(59, R = Ph)$ gave methyl 3-cyano-5,6-diphenyl-2pyrazinecarboximidate (60) (MeONa, MeOH, \leq 5°C, 4 h: 75%).¹¹²⁷

3,5-Diamino-6-chloro-2-pyrazinecarbonotrile (**61**) gave ethyl 3,5-diamino-6-chloro-2-pyrazinecarboximidate hydrochloride (**62**) (HCl gas, EtOH, $0 \rightarrow 20^{\circ}$ C, 3 days: $> 95\%$).⁵⁹⁵

Also other examples.116,719,864,1068,1186,1256,1379

By Homolytic Alkoxycarbonylation

- Pyrazine (63) gave ethyl 2-pyrazinecarboxylate (64) (EtO₂CAc, 30% H_2O_2 , -5° C, then substrate \downarrow , H₂SO₄, FeSO₄, H₂O - CH₂Cl₂, 0°C, 15 min: 89%³⁵⁹ or EtO₂CCO₂H, H₂SO₄, Na₂S₂O₈, AgNO₃, H₂O-CH₂Cl₂, reflux, 90 min: 86%)¹⁴⁶⁷ or methyl 2-pyrazinecarboxylate (using MeO₂CCO₂H in the second procedure: 93%).¹⁴⁶⁷
- 2-Pyrazinamine gave ethyl 3-amino-2-pyrazinecarboxylate $(65, R = Et)$ $(EtO_2CAc, H_2SO_4, FeSO_4, 30\% H_2O_2, -10 \rightarrow 20^{\circ}C, 1 \text{ h}: 71\%)^{500}$ or methyl 3-amino-2-pyrazinecarboxylate $(65, R = Me)$ (MeO₂CAc, likewise: 72%).⁵⁰⁰

By Other Alkoxycarbonylation Procedures

- 2,6-Dichloro-3-(3,4-dibenzyloxy-5-benzyloxymethyltetrahydrofuran-2-yl)pyrazine $(66, R = H)$ gave ethyl 3,5-dichloro-6-(3,4-dibenzyloxy-5-benzyloxymethyltetrahydrofuran-2-yl)-2-pyrazinecarboxylate $(66, R = CO₂Et)$ [lithiated substrate (generated *in situ*), THF; then EtO₂CCN \downarrow , 1 h: 78%].⁶⁶⁷
- *tert*-Butyl 2-*tert*-butoxycarbamoyl-1,4,5,6-tetrahydro-1-pyrazinecarboxylate (**67**, R = H) gave *tert*-butyl 2-tert-butoxycarbamoyl-4-phenoxycarbonyl-1,4,5,6tetrahydro-1-pyrazinecarboxylate $(67, R = CO_2Ph)$ (PhO₂CCl, NaHCO₃, AcOEt, MeCN, 50°C, 30 min: 79%).¹⁶⁷³
- 2,3-Diphenylpyrazine gave dimethyl 2,3-diphenyl-1,4-dihydro-1,4-pyrazinedicarboxylate (68) (MeO₂CCl, electrolytic reduction: 15%; for details see original).785

1-Methylpiperazine (**70**) gave butyl 4-methyl-1-piperazinecarboxylate (**69**) (BuCl, Bu₂NSO₄H, K₂CO₃, *n*-C₇H₁₆, reflux, \sim 4 h: 75%; note the incorporation of $CO₂$) but only 1-butyl-4-methylpiperazine (71) in the absence of a phase-transfer catalyst (BuBr, K₂CO₃, MeCN, reflux, \sim 2.5 h: 86%).²⁰⁹

Also other examples. $40,831,1728$

By Insertion of Carbon Dioxide into *N***-Trimethylsilylpyrazines**

1,4-Bistrimethylsilyl-1,4-dihydroppyrazine (**72**) gave trimethylsilyl 4-trimethylsilyl-1,4-dihydro-1-pyrazinecarboxylate (73) $[CO₂ (1 atm), 20°C, 2 days:$ ~30%, unstable] or bistrimethylsilyl 1,4-dihydro-1,4-pyrazinedicarboxylate (**74**) [CO₂ (50 atm), 20°C, 3 days: \sim 60% (cis + trans), sufficiently stable for analysis];⁴⁵⁶ the same substrate (72) gave only *O*-trimethylsilyl 4-trimethylsilyl-1,4-dihydro-1-pyrazinecarbothioate (75) [COS (1 atm) , 20° C, 1 h: \sim 30%, isolable and analyzed) or trimethylsilyl 4-trimethylsilyl-1,4-dihydro-1 pyrazinecarbodithioate (76) (CS₂, 20^oC, 24 h: crude only).¹⁴⁵⁶

8.2.2. Reactions of Pyrazinecarboxylic Esters (*H* **266)**

Several reactions of pyrazinecarboxylic esters have been discussed already: *reduction to N-alkylpiperazines* (Section 3.2.2.2), *reduction to extranuclear hydroxypyrazines* (Section 5.2.1), and *hydrolysis to pyrazinecarboxylic acids* (Section 8.1.1). Other reactions to be expected of carboxylic or carboximidic esters are typified in the following classified examples:

Conversion into Pyrazinecarboxamides or Pyrazinecarboxamidines

- *Note:* Carboxylic esters give amides by aminolysis; carboximidic esters give amides and/or esters by hydrolysis but amidines by aminolysis.
- Ethyl 5-methoxy-2-pyrazinecarboxylate (**77**) gave 5-methoxy-2-pyrazinecarboxamide (**78**) (NH₃—EtOH, 20°C, sealed, 12 h: $> 95\%$);¹⁶⁸¹ ethyl 5-oxo-4,5-dihydro-2-pyrazinecarboxylate $(79, R = OEt)$ gave 5-oxo-4,5-dihydro-2pyrazinecarboxamide (79, $R = NH_2$) (NH₄OH, 100°C, sealed, 3.5 h: $>95\%$).¹⁶⁸¹

- Ethyl 3-amino-6-phenyl-2-pyrazinecarboxylate $(80, R = OEt)$ gave 3-amino-Nmethyl-6-phenyl-2-pyrazinecarboxamide $(80, R = NHMe)$ [MeNH₂, H₂O, 80°C, sealed (?), 2 h: 85%];¹⁵²² also many analogues and homologues likewise].1339,1517,1522,1604
- Ethyl 4-methyl-2-piperazinecarboxylate $(81, R = OEt)$ gave 4-methyl-2-piperazinecarboxamide (81, R = NH₂) (NH₃—MeOH, 30°C, 9 days: ~80%).¹²⁸
- *N*-Methoxycarbonylmethyl-2-pyrazinecarboxamide (82, R = OMe) gave *N*-carbamoylmethyl-2-pyrazinecarboxamide $(82, R = NH₂)$ (NH₃—MeOH, 0°C, 2 h: 48%).488

Methyl 3-amino-2-pyrazinecarboxylate $(83, R = OMe)$ gave 3-amino-*N*-hy d roxy-2-pyrazinecarboxamide (83, R = NHOH) (H_2 NOH, EtOH, reflux, 5 h: 24%).1121

- Ethyl 3,5-diamino-6-chloro-2-pyrazinecarboximidate hydrochloride (**84**) gave 3,5 diamino-6-chloro-*N*-cyano-2-pyrazinecarboxamidine (85) $(H₂NCN, K₂CO₃)$, MeOH, 20° C, 30 h: $> 64\%$).⁵⁹⁵
- Dimethyl 2,3-pyrazinedicarboximidate (**86**) gave a mixture of 2,3-pyrazinedicarboxamide (**87**) and methyl 3-carbamoyl-2-pyrazinecarboxylate (**88**) (10 M HCl, 20° C, 8 h: 16 and 15%, respectively, after separation).¹¹²⁷

Also other examples.^{38,89,116,144,488,597,611,648,713,846,971,1011,1047,1068,1256,1555,1668}

Conversion into Pyrazinecarbohydrazides or Pyrazinecarboxamidrazones

Methyl 2-pyrazinecarboxylate (**90**) gave *N*-methyl-2-pyrazinecarbohydrazide (89) without any of the *N*-methyl isomer (91) [MeHNNH₂, EtOH, reflux, 12 h: 81%; the isomer (**91**) can be made from 2-pyrazinecarbonyl chloride: see Section 8.3.2]; analogous esters behaved similarly to give, for example, 3 amino-*N'*-methyl-2-pyrazinecarbohydrazide (71%).¹²⁶⁵

Methyl 3-(pyrrol-1-yl)-2-pyrazinecarboxylate $(92, R = OMe)$ gave 3-(pyrrol-1-yl)-2-pyrazinecarbohydrazide (**92**, $R = NHNH_2$) (H_2NNH_2 . H_2O , EtOH, reflux, 1 h: 54%).⁹⁴

Methyl 2-pyrazinecarboximidate (**93**) gave *N*-(pyridin-2-yl)-2-pyrazinecarboxamidrazone (**94**) [2-hydrazinopyridine, dioxane, rapidly (no details): 62%]; analogues likewise.719

Also other examples.^{488,603,858,941}

Conversion into Guanidinocarbonylpyrazines or Related Derivatives

- *Note:* Guanidinocarbonyl, ureidocarbonyl, and related derivatives might be known more logically as guanidinoformyl or the like. However, in view of established usage (e.g., *H* 270), the carbonyl nomenclature is retained in this book.
- Methyl 2-amino-6-phenoxy-2-pyrazinecarboxylate (**95**) gave 3-guanidinocarbonyl-5-phenoxy-2-pyrazinamine (**96**) [HN = $C(NH_2)_2$, MeOH, 40°C, 5 min: 90%].713

Methyl 3-amino-6-methyl-5-phenyl-2-pyrazinecarboxylate gave 3-guanidinocarbonyl-5-methyl-6-phenyl-2-pyrazinamine (97) [HN=C(NH₂)₂, boiling MeOH, 1 min: 83%].⁹⁴¹

Methyl 2-pyrazinecarboxylate (**98**) gave 2-ureidocarbonylpyrazine (**99**) $(H_2NCONH_2, KH, THF$; then substrate \downarrow , $0 \rightarrow 20^{\circ}C$, 2 h: 78%).¹⁶²⁵

Also other examples.725

Reduction to Pyrazinecarbaldehydes

Methyl 2-pyrazinecarboxylate (**100**) gave 2-pyrazinecarbaldehyde (**101**) (LiAlH₄, THF, -70° C, 45 min: 67% ;^{236,476} HAlBu^{*i*}₂, CH₂Cl₂, no details: 26%).460

Claisen Conversion into Pyrazine Ketones

- *Note:* Reactions of the mixed-Claisen type afford a convenient route from pyrazinecarboxylic esters to some pyrazine ketones.
- Methyl 2-pyrazinecarboxylate $(103, R = Me)$ gave 2-(methoxycarbonylacetyl)pyrazine (102) (AcOMe, NaH, trace MeOH, MeOCH₂CH₂OMe, A, reflux, ≤ 6 h: 33%).⁴¹⁰
- Ethyl 2-pyrazinecarboxylate $(103, R = Et)$ gave 2-(methylsulfonylacetyl)pyrazine (**104**) [Me₂SO₂, NaH, Me₂SO (solvent), 65°C, N₂, 30 min; then substrate \downarrow , THF, 65°C, 1 h: 30%].396
- Methyl 2-pyrazinecarboxylate $(103, R = Me)$ gave 2- $(m$ -trifluoromethylbenzoyl)pyrazine (105) $[m-BrC_6H_4CF_3, BuLi, Et_2O—THF, -80°C, N_2, 2 h; then$ substrate \downarrow , $-80 \rightarrow 20^{\circ}$ C (slowly): 80%].³⁴⁵
- Ethyl 2-pyrazinecarboxylate $(103, R = Et)$ gave 2-acetoacetylpyrazine (106) (AcMe, EtOK, THF, reflux, 6 h: crude), characterized by cyclocondensation with H_2NNH_2 to give 2-(5-methylpyrazol-3-yl)pyrazine (107) (EtOH- H_2O , reflux, 5 h: 44% overall).¹⁵⁰¹

Also other examples.729,837,1022,1057,1122,1563

Typical Cyclocondensations

Methyl 2-pyrazinecarboxylate (**108**) and 3-aminocrotonamide gave 6-methyl-2- (pyrazin-2-yl)-4(3*H*)-pyrimidinone (**109**) (EtONa, EtOH, reflux, 3 h: 25%).¹⁰⁰⁶

Methyl 3-isothiocyanato-2-pyrazinecarboxylate (**110**) and 1,1-dimethylprop-2 ynylamine gave an inseparable 5:6 mixture of the isomers, 8,8-dimethyl-7 methylene-7,8-dihydro-10*H*-thiazolo[2,3-*b*]pteridin-10-one (**111**) and 9,9-dimethyl-9*H*,11*H*-[1,3]thiazino[2,3-*b*]pteridin-11-one (**112**) (MeOH, reflux, 6 h: 62% of mixture).946

1-Ethyl-2,3-dimethoxycarbonylpyrazinium tetrafluoroborate (**113**) and *N*phenyl(thiourea) gave 7-ethyl-5,6-dimethoxycarbonyl-3-phenyl-3a,4,7,7atetrahydro-1*H*-imidazo $[4,5-b]$ pyrazine-2(3*H*)-thione (114) (Et₃N, EtOH, 50°C, 2 h: 70%).⁴¹⁵

Miscellaneous Reactions

2,3,5-Trimethyl-6-(1-methylallyl)oxycarbonylmethylpyrazine (**115**) underwent a Carrol type¹⁷¹⁶ rearrangement with loss of $CO₂$ to give 2,3,5-trimethyl-6-(pent-3-enyl)pyrazine (116) [Ph₂O, 2,6-di-*tert*-butyl-4-methylphenol (radical inhibitor), 200°C, 18 h: 46%].1384

- 1-Ethyl-3,5-bis(methoxycarbonylmethyl)-4-methylpiperazine (**117**) gave 3 ethyl-9-methyl-3,9-diazabicyclo[3.3.1]nonan-7-one (**118**) (Bu*^t* OK, PhH, reflux, ? min; then dilute HCl, reflux, ? min: 64%).¹⁴⁹⁴
- *S*,*S*-Diethyl 1,4-piperazinedicarbothioate (**119**) underwent oxidation to 1,4-bis (ethylsulfonylformyl)piperazine (120) (m -ClC₆H₄CO₃H, CH₂Cl₂, -16 \rightarrow 20°C, 5 h: 97%).1359

8.3. PYRAZINECARBONYL HALIDES (*H* **260, 264)**

These useful intermediates are often used crude without characterization as such. This section also includes some phosphorus analogues.

8.3.1. Preparation of Pyrazinecarbonyl Halides (*H* **260)**

In this category, only the chlorides have been used recently. Their usual preparative route *from pyrazinecarboxylic acids* has been discussed in Section 8.1.2. However, some 1/4-piperazinecarbonyl chlorides have been made by direct introduction or displacement, as illustrated in the following examples:

1-Methylpiperazine (**121**) gave 4-methyl-1-piperazinecarbonyl chloride (**122**) $(COCl₂, CHCl₃, <5°C, 2 h: 78%$ as hydrochloride).¹⁴⁸

1,4-Bis(trimethylsilyl)piperazine (**123**) gave 1,4-piperazinedi(thiocarbonyl) dichloride (**124**) (CSCl₂, CCl₄, $-23 \rightarrow 20^{\circ}$ C: >95%).³⁵⁰

Piperazine gave 1,4-bis(dichlorophosphinyl)piperazine (125) (POCl₃, Et₃N, Et₂O, $-20 \rightarrow 0^{\circ}$ C, 3 h; then 20°C, 30 min: 60%).¹³⁵⁷

Also other examples.^{623,1055}

8.3.2. Reactions of Pyrazinecarbonyl Halides (*H* **264, 275)**

The conversion of such *acyl halides into esters* has been covered in Section 8.2.1. They also undergo other important reactions, illustrated in the following examples:

Conversion into Pyrazinecarboxamides or Pyrazinecarbohydrazides

- 6-Chloro-2-pyrazinecarbonyl chloride (**126**) and 2-pyrazinamine gave 6-chloro-*N*-(pyrazin-2-yl)-2-pyrazinecarboxamide (127) (Et₃N, PhH, 20°C, 30 min: 85%).⁵⁰⁵
- 2-Pyrazinecarbonyl chloride gave 2-(aziridin-1-ylformyl)pyrazine (**128**) [HN(CH₂)₂, Et₃N, PhH—PhMe, $0 \rightarrow 20^{\circ}C$, 2 h: 66%; analogues likewise).⁸

- Methyl 3-chloroformyl-2-pyrazinecarboxylate (**129**) gave methyl 3-carbamoyl-2-pyrazinecarboxylate (130) [HN(SiMe₃)₂, CHCl₃, 0° C \rightarrow reflux, 90 min; then residue from evaporation, H_2O , reflux, 30 min: 75%. Note survival of the ester grouping under these conditions].¹¹⁸⁵
- 1,4-Piperazinedi(thiocarbonyl) dichloride (**131**) gave 1,4-bis[morpholino(thioformyl)]piperazine (132) [neat $O(CH_2CH_2)NH$, warmed briefly: $>95\%$].³⁵⁰

- 2-Pyrazinecarbonyl chloride gave *N*-methyl-2-pyrazinecarbohydrazide (**133**) [MeHNNH₂, Et₂O, $-35 \rightarrow 20^{\circ}$ C, slowly: 36%; the *N'*-methyl isomer (134) can be obtained from methyl 2-pyrazinecarboxylate (see Section 8.2.2)].¹²⁶⁵
- 1,4-Bis(dichlorophosphinyl)piperazine (**135**) gave 1,4-bis[*P*-chloro-*P*-(cyclohexylamino)phosphinyl]piperazine (136, $R = Cl$) [C₆H₁₁NH₂(4 mol), MeCN,

 $0 \rightarrow 20^{\circ}$ C, 1 h: 88%] or 1,4-bis[bis(cyclohexylamino)phosphinyl]piperazine $(136, R = \text{NHC}_6H_{11}) [\text{C}_6H_{11}\text{NH}_2 (8 \text{ mol}), \text{MeCN}, 20^{\circ}\text{C}, 12 \text{ h}: 70\%]$ ^{.1357}

Also other examples.148,477,506,973,1055,1094,1196

Conversion into Pyrazine Ketones

Note: Several different methods are exemplified here.

2-Pyrazinecarbonyl chloride $(137, R = H)$ gave 2-chloroacetylpyrazine $(139, R)$ $R = H$) via the uncharacterized Arndt–Eistert type¹⁷¹⁷ intermediate (138, $R = H$) (CH₂N₂, Et₂O—PhH, <5 \rightarrow 20°C, 12 h; then HCl gas \downarrow until N₂ \uparrow ceased: 87%);¹⁵⁰ 6-phenyl-2-pyrazinecarbonyl chloride (137, R = Ph) likewise gave 2-chloroacetyl-6-phenylpyrazine $(139, R = Ph)$ ($>80\%$).¹⁰¹⁵

- 3-Chloro-2-pyrazinecarbonyl chloride $(140, R = Cl)$ and *N*-(cyclopent-1-en-1yl)pyrrolidine gave 2-chloro-3-[2-(pyrrolidin-1-yl)cyclopent-1-en-1-ylcarbonyl]pyrazine (141) (Et₃N, CH₂Cl₂, ~ -40 °C, N₂, 2 h: 63%).³⁸²
- Methyl 3-chloroformyl-2-pyrazinecarboxylate (140, $R = CO₂Me$ and *p*-dimethoxybenzene gave methyl 3-(2,5-dimethoxybenzoyl)-2-pyrazinecarboxylate (142) (SnCl₄, CH₂Cl₂, 5^oC \rightarrow reflux, 22 h: 41%).¹¹²³
- 2 -Pyrazinecarbonyl chloride $(140, R = H)$ gave 2 -(ethoxycarbonylacetyl)pyrazine (143) [HO₂CCH₂CO₂Et, BuLi, 2,2'-bipyridine (bpy) (catalyst), THF, $-70 \rightarrow -10^{\circ}$ C; substrate \downarrow , -70° C: 91%].¹³⁹⁹

2,3-Pyrazinedicarbonyl dichloride (144) and cyclohexyl isocyanate gave $3-\alpha$ $chloro-\alpha$ -(cyclohexylimino)acetyl]-2-pyrazinecarbonyl chloride (145) (PhH, 20°C, 1 h; then 60° C, 45 min: 54%).⁵²³

Also other examples.275,1091

Miscellaneous Reactions

- 2-Pyrazinecarbonyl chloride (**146**) with benzophenone oxime gave the ester-like intermediate (147) (pyridine, no details: $>75\%$) and thence, by irradiation in benzene, 2-phenylpyrazine (148) ($h\nu$ but no details: 73%);¹⁴³⁶ irradiation in pyridine gave a mixture of 2-(pyridin-2-yl)-, 2-(pyridin-3-yl)-, and 2-pyridin-4-yl)pyrazine.1436
- 3-(Pyrrol-1-yl)-2-pyrazinecarbonyl chloride gave the corresponding azide [substrate (made *in situ*), NaN₃, H₂O—AcMe, 0°C, 2 h: 21% overall].⁹⁴

8.4. PYRAZINECARBOXAMIDES, PYRAZINECARBOXAMIDINES, AND RELATED DERIVATIVES (*H* **275, 305)**

Although they are important in their own right, such derivatives of pyrazine have assumed added interest on account of the antitubercular activity of 2-pyrazincarboxamide (pyrazinamide) and the antihyperglycemic activity of glipizide (see Section 5.6). Thus the X-ray structure of 2-pyrazinecarboxamide has been redetermined in several laboratories, $887,1004,1157$ the X-ray analyses of several other quite complicated pyrazinecarboxamides have been reported, $1232,1733$ and a variety of glipizide analogues has been prepared.705,706,1050

8.4.1. Preparation of Pyrazinecarboxamides and the Like (*H* **275, 305)**

Several routes to such derivatives have been covered already: *by primary synthesis* (Chapters 1 and 2), *from halogenopyrazines by displacement* (Section 4.2.9), *from pyrazinecarboxylic acids* (Section 8.1.2), *from pyrazinecarboxylic esters* (Section 8.2.2), and *from pyrazinecarbonyl halides* (Section 8.3.2). The remaining methods of preparation are illustrated in the following examples:

By Homolytic Carbamoylation

- Pyrazine gave 2-pyrazinecarboxamide (149) (HCONH₂, H₂O₂, FeSO₄, H₂SO₄, $H₂O$, 60 \degree C, 4 h: 96%, allowing for some recovered substrate).³⁵⁶
- 2-Benzyl-5,6-dimethylpyrazine (**150**) gave 3-benzyl-5,6-dimethyl-2-pyrazinecarboxamide (**151**) (HCONH₂, Bu^{*t*}O₂H, FeSO₄, H₂SO₄, H₂O, 10^oC, ? h: 31%).¹⁴⁶²

Also other examples.⁵⁰³

From Pyrazinecarbonitriles

- *Note:* Pyrazinecarbonitriles give pyrazinecarboxamides by H₂O addition, pyrazinecarbothioamides by H2S addition, and pyrazinecarboxamidines directly (or indirectly via carboxamidic esters) by the addition of ammonia or amines.
- 5-Oxo-4,5-dihydro-2,3-pyrazinedicarbonitrile (**153**) gave 5-oxo-4,5-dihydro-2,3 pyrazinedicarboxamide (**152**) (10 M HCl, 20°C, 3 h: 30%) or 3-carbamoyl-6 oxo-1,6-dihydro-2-pyrazinecarboxylic acid (**154**) (2.5 M NaOH, reflux, 10 min: 58%; or 10% Na_2CO_3 , reflux, 8 h: 26%).⁸⁵

5,6-Diphenyl-2,3-pyrazinedicarbonitrile (**155**) gave 3-cyano-5,6-diphenyl-2 pyrazinecarboxamide (156) $(H_2O_2, Na_2MoO_4, H_2O$ —EtOH—AcMe, 60°C, 4 days: 80%);⁷⁵² 3-amino-6-methyl-5-phenyl-2-pyrazinecarbonitrile gave the corresponding carboxamide (H₂O₂, Na₂CO₃, H₂O—AcMe, 20°C, 12 h: 81%, a classical Radziszewski reaction).⁹⁴¹

- 3-Butylamino-6-(3,4-dimethoxyphenyl)-2-pyrazinecarbonitrile (157, R = CN) gave the corresponding carboxamide $(157, R = CONH₂)$ $(A₂O₃, CHCl₃)$ 20 \degree C, 24 h: $>95\%$).¹²⁹⁸
- 5-Cyano-3-diethylamino-2-pyrazinecarboxamide (**158**) gave 3-diethylamino-5 thiocarbamoyl-2-pyrazinecarboxamide (159) (NH₄SH, MeOH-H₂O, 5^oC, 12 h: 75%; homologues likewise).⁵¹⁰

- 3-Oxo-3,4-dihydro-2-pyrazinecarbonitrile (**160**) gave 3-oxo-3,4-dihydro-2 pyrazinecarboxamide oxime (161) (H₂NOH, MeOH, $0 \rightarrow 20^{\circ}$ C, 1 h: 86%).1296
- 3-Amino-6-chloro-5-dimethylamino-2-pyrazinecarbonitrile (**162**) gave the unisolated carboximidate (**163**) (MeONa, MeOH, 20°C, 30 h), and thence 3-amino-6-chloro-*N*-cyano-5-dimethylamino-2-pyrazinecarboxamidine (**164**) $(H_2NCN, 20^{\circ}C, 5 h: \sim 40\%$ overall).⁶¹¹

Also other examples.^{243,262,503,608,747,811,858,1010,1068,1669}

H₂NCN N $Cl \setminus N \setminus C$ (=NH)NHCN NH₂ $Me₂N$

By Miscellaneous Methods

- 2-Pyrazinecarbonyl azide (**165**) gave 2-pyrazinecarboxanilide (**166**) (PhNH2, MeOCH₂CH₂OMe, 20°C, <12 days: 86%).¹¹³⁰
- 1-Methylpiperazine (**167**) gave 4-methyl-1-piperazinecarboxamide (**168**) (KOCN, AcOH-H₂O, 20°C, 4 days: \sim 40%, characterized as its methiodide 624
- $2,2,3,3$ -Tetramethyl-1,4-piperazinediol $(169, R = H)$ gave $2,2,3,3$ -tetramethyl-1,4-bis(phenylcarbamoyloxy)piperazine $(169, R = \text{CONHPh})$ (PhNCO, PhH, reflux, 15 min: 94%).702

Also other examples.⁴⁸⁸

8.4.2. Reactions of Pyrazinecarboxamides and the Like (*H* **279, 306)**

Two important reactions in this category have been covered already: *Hofmann degradation to pyrazinamines* (Section 7.3.1) and *hydrolysis to pyrazinecarboxylic acids* (Section 8.1.1). The remaining reactions of pyrazinecarboxamides and related derivatives are illustrated in the following examples:

Thiation to Pyrazinecarbothioamides

- 6-Chloro-5-propyl-2-pyrazinecarboxamide (**170**) gave 6-chloro-5-propyl-2 pyrazinecarbothioamide (**171**) [Lawesson's reagent (Chapter 5: formula 43), PhMe, 110° C, 4 h: 79%]; homologues likewise.⁵¹¹
- 3-Amino-*N*-methyl-2-pyrazinecarboxamide (**172**) gave 3-amino-*N*-methyl-2 pyrazinecarbothioamide (173) (Lawesson's reagent, OP(NMe₂)₃, 120^oC, 12 h: 15%).⁶⁵⁴
- *Note:* Phosphorus pentasulfide has also been used for such thiations.¹¹³⁷

Dehydration to Pyrazinecarbonitriles

- *Note:* The dehydration of pyrazinecarboxamides may be accomplished with a variety of reagents as exemplified here.
- 2,3-pyrazinedicarboxamide (**175**) gave 3-cyano-2-pyrazinecarboxamide (**174**) [SOCl₂ (1 mol), Me₂NCHO, 45 $^{\circ}$ C, 3 h: 51%]⁴⁷⁴ or 2,3-pyrazinedicarbonitrile (**176**) [SO₂Cl (excess?), Me₂NCHO, $< 0 \rightarrow 20$ °C, (?), 2 days: 32%;¹⁶⁶⁸ or $MeO₂CNSO₂NEt₃$ (Burgess reagent), THF, reflux, A, 3 h: 90%]⁸⁸⁹

2-Pyrazinecarboxamide (177) gave 2-pyrazinecarbonitrile (178) (neat POCl₃, 100 $^{\circ}$ C, 90 min: 85%);⁵⁰⁹ 5-oxo-4,5-dihydro-2-pyrazinecarboxamide gave 5-chloro-2-pyrazinecarbonitrile (**179**) (likewise: 72%; note additional conversion of the oxo into a chloro substutuent);¹⁶⁸¹ and 6-amino-2-pyrazinecarboxamide gave 6-amino-2-pyrazinecarbonitrile $(POCI₃, Me₂NCHO, 50°C,$ 45 min: 55%).38

4-Benzyl-1-piperazinecarboxamide (**180**) gave 4-benzyl-1-piperazinecarbonitrile (**181**) (Et₃N, NaOH, H₂O–CH₂Cl₂, 20^oC, then CHCl₃ slowly, $20 \rightarrow 35 \rightarrow 20$ °C: 31%).⁹⁷²

Miscellaneous Minor Reactions

- 5-Propyl-2-pyrazinecarboxamide $(182, R = H)$ gave 5-propyl-2-pyrazinecarbohydrazide (182, $R = NH_2$) (H₂NNH₂.H₂O; for details see original).¹¹³⁷
- 2,3-Pyrazinecarboxamide gave 2,3-pyrazinedicarboximide (183) (SOCl₂, Me₂N-CHO, 75°C, 3 h: 30%; minimal detail).474

- 2-Pyrazinecarboxamide underwent nuclear reduction to 2-piperazinecarboxamide (184) (H₂, Pd/C, H₂O—EtOH, 50°C, \sim 3 atm, 2 h: 64%).¹³⁵⁵
- 2-Pyrazinecarboxamide underwent Mannich alkylation to afford *N*-(dibenzylaminomethyl)-2-pyrazinecarboxamide (185) [HN(CH₂Ph)₂, CH₂O; for details see original⁹⁶⁷ or N-acylation to give *N*-acetyl-2-pyrazinecarboxamide (186) (Ac₂O: for further details, see original).¹²³⁴
- 3 -Oxo-3,4-dihydro-2-pyrazinecarboxamide oxime $(187, R = H)$ gave *N*-ace $toxy-3-oxo-3,4-dihydro-2-pyrazinecarboxamidine (187, R = Ac) (neat Ac₂O,$ 20° C, 4 h: 70%).¹¹¹⁵

The N-heteroarylation of 2-pyrazinecarboxamide has been reported briefly.¹⁷²⁹

Typical Cyclizations

3-Amino-*N*-methyl-6-phenyl-2-pyrazinecarboxamide (**188**) gave 3-methyl-6 phenyl-4(3*H*)-pteridinone (189) [neat HC(OEt)₃, 145°C, open flask, 6 h: 78%; homologues likewise].¹⁵²²

N-Acetoxy-3-amino-2-pyrazinecarboxamidine (**190**) gave 3-(5-methyl-1,2,4 oxadiazol-3-yl)-2-pyrazinamine (**191**) (AcOH, reflux, 90 min: 72%) that underwent isomerization to 3-acetamido-1*H*-pyrazolo[3,4-*b*]pyrazine (**192**) (EtONa, Me₂NCHO, reflux, 1 h: 60%).¹¹¹⁵

2-Pyrazinecarbothioamide (193) and α -bromo- p , p' -dimethoxydeoxybenzoin (**194**) gave 2-(4,5-bis-*p*-methoxyphenylthiazol-2-yl)pyrazine (**195**) (MeCN, 60°C, 50 min: 42%).108

Also other examples.144,343,823,978,997,1141,1151,1595

8.5. PYRAZINECARBOHYDRAZIDES AND PYRAZINECARBONYL AZIDES (*H* **243)**

Satisfactory treatment of these pyrazine derivatives is precluded by paucity of recent data. However, the brief notes that follow may prove of some use.

PREPARATION. Pyrazinecarbohydrazides have been made *by primary synthesis* (see Chapters 1 and 2), *from pyrazinecarboxylic esters* (see Section 8.2.2), *from pyrazinecarbonyl halides* (see Section 8.2.3), and *by transamination of pyrazinecarboxamides* (see Section 8.4.2).

Pyrazinecarbonyl azides have been made *from pyrazinecarbonyl halides* (see Section 8.3.2) but more usually *from pyrazinecarbohydrazides with nitrous acid* as exemplified here.

- 2-Pyrazinecarbohydrazide (**196**) gave 2-pyrazinecarbonyl azide (**197**) (dilute HCl, NaNO₂, $0 \rightarrow 20^{\circ}$ C, 2 h: ?%).¹¹³⁰
- 3-(Pyrrol-1-yl)-2-pyrazinecarbohydrazide (**198**) gave 3-(pyrrol-1-yl)-2-pyrazinecarbonyl azide (199) (AcOH-H₂O, NaNO₂, 20^oC, 20 min: 32%).⁹⁴

N-(Hydrazinocarbonylmethyl)- (**200**) gave *N*-(azidoformylmethyl)-2-pyrazinecarboxamide (201) (dilute HCl, NaNO₂, 0° C, 1 h: 775).⁴⁸⁸

REACTIONS. Pyrazinecarbohydrazides have been *converted into pyrazinecarbonyl azides* (see preceding paragraph). They also undergo minor reactions illustrated by the following examples:

$$
\begin{array}{ccc}\n\begin{pmatrix}\nN \\
N\n\end{pmatrix} & \text{CONHCH}_2\text{CONHNH}_2 & \text{HNO}_2 \\
\begin{pmatrix}\nN \\
N\n\end{pmatrix} & \text{CONHCH}_2\text{C} = \text{O} \text{N}_3 \\
\begin{pmatrix}\n200\n\end{pmatrix} & \begin{pmatrix}\n201\n\end{pmatrix}\n\end{array}
$$

3-Amino-6-methyl-5-phenyl-2-pyrazinecarbohydrazide (**202**) gave 3-amino-*N* isopropylidene-6-methyl-5-phenyl-2-pyrazinecarbohydrazide (**203**) (AcMe, reflux, 4 h: $> 73\%$).⁹⁴¹

2-Pyrazinecarbohydrazide (**204**) gave *N*-[*N*-phenyl(thiocarbamoyl)]-2-pyrazinecarbohydrazide (205) (PhNCS, for details see original: $>35\%$; also analogues likewise). 1145

2-Pyrazinecarbohydrazide (**204**) and 4-ethoxymethylene-2-phenyloxazolin-5 one (**206**) gave *N*,*N*-bis(2-pyrazinecarbonyl)hydrazine (**207**) and 4-benzamidopyrazolin-3-one (**208**) (dioxane, reflux, 30 min: 90%; the mechanism of hydrogen removal is discussed).¹⁶⁰⁵

3-Amino-2-pyrazinecarbohydrazide (**209**) and benzamidine gave 3-(1,2,4-triazol-3-yl)-2-pyrazinamine (**210**) [PhCl, reflux, 48 h (?): 66%].1480

Also other examples.1009,1184,1187,1227,1257,1265,1633

Pyrazinecarbonyl azides may be *converted into pyrazinamines* (see Section 7.3.1) or *into pyrazinecarboxamides or pyrazinecarboxanilides* (see Section 8.4.1). In addition, two molecules of 3-(pyrrol-1-yl)-2-pyrazinecarbonyl azide (**211**) in warm water for 15 min have been reported to give *N*,*N*-bis[3-(pyrrol-1-yl)pyrazin-2-yl]urea (212) in 32% yield.⁹⁴

8.6. PYRAZINECARBONITRILES (*H* **288**)

Pyrazinecarbonitriles are important, especially as convenient intermediates for a variety of other pyrazine derivatives.

Recent general spectral studies of such nitriles include the vibration spectra of 2 pyrazinecarbonitrile and a $(>99\%)$ ¹⁵N-isotopic version;¹¹⁷² the mass spectra of 2,3pyrazinedicarbonitrile, its 5,6-diphenyl derivative, and 2,3,5,6-pyrazinetetracarbonitrile for comparison with those of analogous heterocyclic nitriles;¹⁴⁰⁶ and the ¹⁵C NMR spectra of 2-pyrazinecarbonitrile and the like for correlation with their reactivities toward acetone enolate anions.251 The structure–activity relationship of pyrazinecarbonitriles as herbicides has been reported.1048

8.6.1. Preparation of Pyrazinecarbonitriles (*H* **288, 308)**

All the major routes to pyrazinecarbonitriles have been discussed already: *by primary synthesis* in Chapters 1 and 2; *by cyanolysis of halogenopyrazines* in Sections 4.2.8 and 4.4; *by deoxidative cyanation of pyrazine N-oxides* in Section 5.5.2.4; *by the rare cyanolysis of nitropyrazines* in Section 7.1.2; *by cyanolysis of trimethylammoniopyrazine salts*: no recent examples; *by dehydration of pyrazinecarboxamides* in Section 8.4.2; and *by passenger introduction of a cyano group* in a variety of ways, for example, by cyanoalkylation.

In addition, 1-benzyl-4-methyl-2-piperazinol (**213**) reacted with trimethylsilyl cyanide and boron trifluoride etherate to give 1-benzyl-4-methyl-2-piperazinecarbonitrile (**214**) (72% after separation from an isomer), which underwent partial dehydrogenation by *m*-chloroperoxybenzoic acid to afford 1-benzyl-4-methyl-1,4,5,6 tetrahydro-2-pyrazinecarbonitrile (214a) in 53% yield;⁸²² also, the oxime, 3-amino-6-hydroxyiminomethyl-2-pyrazinecarbonitrile 4-oxide (**215**) underwent

dehydration (and other reactions) on treatment in phosphoryl chloride-dimethylformamide at $0 \rightarrow 20^{\circ}$ C during 12 h to afford 3-chloro-5-dimethylaminomethyleneamino-2,6-pyrazinedicarbonitrile (**215a**) in 46% yield.775

8.6.2. Reactions of Pyrazinecarbonitriles (*H* **290, 308)**

Reactions of pyrazinecarbonitriles already discussed include *photochemical alkanelysis* (Section 3.2.1.3), *reduction to aminomethylpyrazines* (Section 7.3.1), *hydrolysis to pyrazinecarboxylic acids* (Section 8.1.1), *alcohol addition to afford pyrazinecarboximidic esters* (and thence hydrolysis to regular esters) (Section 8.2.1), and *conversion into pyrazinecarboxamides or the like* (Section 8.4.1).

Other reactions of pyrazinecarbonitriles are illustrated in the following classified examples:

Hydrogenolysis

- *Note:* This reaction is usually done by one-pot hydrolysis to the corresponding carboxylic acid and decarboxylation thereof.
- $2-(\alpha$ -Cyanobenzyl)pyrazine (216) gave 2-benzylpyrazine (217) (60% H₂SO₄, reflux, 3 h: 64%).⁶⁹

5-(3,4-Dimethoxyphenyl)-2,3-pyrazinedicarbonitrile (**218**) gave a separable mixture of 5-(3,4-dimethoxyphenyl)- (**219**) and 6-(3,4-dimethoxyphenyl)-2 pyrazineecarbonitrile (220) ($h\nu$, Et₃N, MeCN: 80% of a 6:1 mixture);¹³⁷² also analogous reactions.570,1072,1372,1703

Conversion into Pyrazine Ketones

- *Note:* This reaction is usually done with a Grignard or lithium reagent but oxidative displacement of extranuclear cyano groups may be used in appropriate cases.
- 2-Pyrazinecarbonitrile (**222**) gave 2-acetylpyrazine (**221**) [MeMgI (made *in situ*), Et₂O, 0°C, 1 h: 40%; homologues likewise],^{509,1220} 2-benzolypyrazine (223) [PhMgBr (made *in situ*), Et₂O—PhH, 5–10°C, N₂, 12 h: 70%],¹⁸¹ or 2cyclopropylformylpyrazine (224) [LiCH(CH₂)₂ (made *in situ*), Et₂O, -30° C, A, 3 h, then 20° C, 12 h: 60% ¹⁵⁶⁶
- $2-(\alpha$ -Cyanobenzyl)pyrazine (225) gave 2-benzoylpyrazine (223) (NaH, THF, 20°C, 5 min, then O_2 until colorless: 93%;³⁰⁹ or NaOH, PhCH₂Et₃NCl, PhMe—H₂O, open to air, 20° C, 3 h: 93%].¹⁵¹⁸

Formation of Complexes

- Association constants have been measured for the 1:1 complexes formed from 2,3,5,6-pyrazinetetracarbonitrile and 15-crown-5, 18-crown-6, benzo-15 crown-5, dibenzo-18-crown-6, or dibenzo-24-crown-8 ethers. 475
- Spectral data have been reported for the charge-transfer complexes formed from 2,3,5,6-pyrazinetetracarbonitrile and each of 29 benzene derivatives bearing alkyl, alkenyl, halogeno, or alkoxy substituents.771

Typical Cyclizations

3-Amino-2-pyrazinecarbonitrile (**226**) gave 3-(5-phenyl-2*H*-1,2,4-triazol-3-yl)- 2-pyrazinamine (227) [BzHNNH₂, Ph₂O, reflux, ≤ 6 h (TLC monitored): 35%], and thence 2-phenyl[1,2,4]triazolo[1,5-*c*]pteridin-5(6*H*)-one (**228**) (neat EtO₂CNH₂, reflux, 24 h: 50%).¹⁵⁸⁹

- 5,6-Diethyl-2,3-pyrazinedicarbonitrile (**229**) gave 2,3-diethyl-5,6-bis(tetrazol-5 yl)pyrazine (230) (NaN₃, NH₄Cl, LiCl, Me₂NCHO, 110^oC, 3 days: 76%);⁵³³ several analogues and homologues were made similarly.^{363,533,1181}
- 2-Pyrazinecarbonitrile was converted into crude methyl 2-pyrazinecarboximidate (**231**), and thence with 3,4-pyridinediamine (**232**) into 2-(pyrazin-2 yl)imidazo[4,5-*c*]pyridine (**233**) [MeONa, MeOH, 20°C, 5 h: intermediate; then (232) , MeOCH₂CH₂OMe, reflux, 6 h: 15%, as hydrochloride].⁷¹⁰

2,3-Pyrazinedicarbonitrile $(235, R = CN)$ gave pyrazino $[2,3-d]$ pyridazine-5,8diamine (234) (H₂NNH₂, H₂O, AcOH, 75°C, 3.5 h: 56%);¹¹¹⁸ 3-chloro-2pyrazinecarbonitrile $(235, R = Cl)$ gave $1H$ -imidazo $[3,4-b]$ pyrazin-3-amine (236) (H₂NNH₂.H₂O, EtOH, reflux, 90 min: 53%).¹¹¹⁵

Pyrazinium-1-dicyanomethylide (**237**) with benzyne (generated *in situ*) gave pyrazino[2.1-*a*]isoindole-6-carbonitrile (**238**) ("diphenyliodonium-2-carboxylate monohydrate", MeOCH₂CH₂OCH₂CH₂OCH₂CH₂OMe, 210°C, <2 h: $19\%)$;¹⁵³¹ also analogous reactions.⁵⁸²

5,6-Diphenyl-2,3-pyrazinedicarbonitrile (**239**) gave a cyclic dihydrotetramer, formulated as (240) [Mg, MgSO₄, OC(NH₂)₂, trace (NH₄)₂M₀O₄, 270^oC, 5 h; then demetalation of crude Mg complex by reprecipitation from 96% H₂SO₄: 47%].435

2,5-Bis(1,1-dicyanopent-4-ynyl)pyrazine (**241**) gave a separable mixture of 3-(1,1 dicyanopent-4-ynyl)-5,6-dihydro-7*H*-cyclopenta[*b*]pyridine-7,7-dicarbonitrile (**242**) and 3-(1,1-dicyanopent-4-ynyl)-5,6-dihydro-7*H*-cyclopenta[*c*]pyridine-7,7-dicarbonitrile (243) (PhNO₂, 120^oC, N₂, 2 h: 53 and 35%, respectively) or 1,2,3,5,6,7-hexahydro-s-indacene-1,1,5,5-tetracarbonitrile (244) (PhNO₂, 210^oC, 25 h: 60%); each bicyclic product (**242, 243**) also gave the tricyclic product (244) (PhNO₂, 210^oC, 25 h: 68% from each). These reactions occurred via appropriate Diels–Alder adducts.361

Miscellaneous Reactions

2-Cyanoaminopyrazine (**245**) gave 2-(2-hydroxyguanidino)pyrazine (**246**) (H₂NOH, MeOH, 20°C, 54 h: 43%).¹¹¹⁶

4-(2-Hydroxyethyl)-1-piperazinecarbonitrile (**247**) gave 4-(2-hydroxyethyl)-*N*phenyl-1-piperazinecarboxamidrazone (248) (o -MeC₆H₄NHNH₂.HCl, PrOH, 110° C, N₂, 4 h: 75%).⁶⁸⁷

8.7. PYRAZINECARBALDEHYDES (*H* **294)**

Although most pyrazinecarbaldehydes are reasonably stable toward aerial oxidation, they are often stored or characterized only as their acetals, oximes, hydrazones, or semicarbazones.

8.7.1. Preparation of Pyrazinecarbaldehydes (*H* **294)**

Most of the usual routes to such aldehydes have been covered already: *by primary synthesis* in Chapters 1 and 2, *by oxidation of alkylpyrazines* in Section 3.2.4.1, *by oxidation of hydroxymethylpyrazines*, in Section 5.2.2, and *by reduction of pyrazinecarboxylic esters* in Section 8.2.2.

Pyrazinecarbaldehydes can of course be *recovered from their derivatives*: for example, the acetal, methyl 6-amino-5-cyano-3-diethoxymethyl- (**249**), gave methyl 6-amino-5-cyano-3-formyl-2-pyrazinecarboxylate (**250**) in 85% yield by selective hydrolysis in dilute hydrochloric acid at 20° C during 12 h;⁷⁷³ likewise, the extranuclear acetal, 2-(3,3-diethoxypropyl)-3-ethoxycarbonylmethylpyrazine, gave 2 ethoxycarbonylmethyl-3-(2-formylethyl)pyrazine in 92% yield on hydrolysis in aqueous alcoholic hydrochloric acid at 35° C during 2 h.¹²⁴⁹

The only other preparative method used recently involved *direct C-formylation* by one means or another, as illustrated in the following examples:

By Homolytic Formylation

2-Methoxypyrazine (**251**) gave 3-methoxy-2-pyrazinecarbaldehyde (**252**) $(1,3,5\text{-trioxane}, 3\% \text{ H}_2\text{SO}_4, \text{FeSO}_4, 30\% \text{ H}_2\text{O}_2, 13\%)$, confirmed in structure by X-ray analysis of its 2,4-dinitrophenylhydrazone (**253**).1216

By Formylation of C-Metalated Substrates

2-Fluoropyrazine $(254, X = F)$ gave 3-fluoro-2-pyrazinecarbaldehyde $(255,$ $X = F$) [BuLi, HN(CMe₂CH₂)₂CH₂, THF, $-50 \rightarrow 0^{\circ}C$, A, 20 min; then substrate \downarrow , -78°C, 5 min; then HCO₂Et \downarrow , -78°C, 1 h: 90%];⁴⁰⁶ 2 $chloropy$ razine (254, $X = Cl$) gave 3-chloro-2-pyrazinecarbaldehyde (255, $X = Cl$) (broadly as before: 73%);²²⁰ and 2-iodopyrazine (254, $X = I$) gave 3 -iodo-2-pyrazinecarbaldehyde $(255, X = I)$ [lithiation as before; then $HCO_2Et \downarrow$, or Me₂NCHO \downarrow , (CH₂)₅NCHO \downarrow : 19, 26, or 30%, respectively $l.^{1613}$

1,4-Dimethyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione (256, R = H) gave 1,4-dimethyl-3,6-dioxo-2-piperazinecarbaldehyde $(256, R = CHO)$ (MeONa, THF, 0°C, 5 min; then HCO₂Et \downarrow , 0 \rightarrow 20°C, 1 h, then reflux, 3 h: 96%).⁷⁶⁰ Also other examples.¹⁴⁵⁵

By Formylation with a Vilsmeier Reagent

2-(Pyrrol-1-yl)pyrazine (**257**) gave 2-(2-formylpyrrol-1-yl)pyrazine (**258**) $(POCI₃, Me₂)⁹⁴$ \rightarrow 20 \rightarrow 100^oC, 1 h: 56%).⁹⁴

8.7.2. Reactions of Pyrazinecarbaldehydes (*H* **296)**

Reactions of pyrazinecarbaldehydes already discussed include *reduction to hydroxyalkylpyrazines* (Section 5.2.1) and *oxidation to pyrazinecarboxylic acids* (Section 8.1.1); no *Cannizzaro disproportionations* appear to have been reported recently.

Other reactions are typified by the following classified examples:

Formation of Functional Derivatives

- *Note:* Some categories of these derivatives are not well represented in the recent pyrazine literature.
- 5,6-Dicyano-3-methyl-2-pyrazinecarbaldehyde (**259**) gave the Schiff base, 5 methyl-6-phenyliminomethyl-2,3-pyrazinedicarbonitrile (260) (PhNH₂, A4 molecular sieves, AcOH, EtOH, 20°C, 4 h: ?%).¹⁵⁹⁹

Methyl 6-amino-5-cyano-3-formyl-2-pyrazinecarboxylate 1-oxide $(261, X = 0)$ gave the Schiff base, methyl 6-amino-5-cyano-3-(*p*-ethoxycarbonylphenyliminomethyl)-2-pyrazinecarboxylate 1-oxide $(261, X = p\text{-EtO}_2CC_6H_4N)$: $(EtO₂CC₆H₄NH₂-p, trace TsOH, PhMe, reflux, 1 h: 95%).⁷⁷³$

(**261**)

- 2-Pyrazinecarbaldehyde (**263**) gave the thiosemicarbazone, 2-thiosemicarbazonomethylpyrazine (262) $[H_2NHNC(=S)NH_2, H_2O$ —EtOH: 78%).⁵⁹³
- 2-Pyrazinecarbaldehyde (**263**) gave the hydrazone, 2-hydrazonomethylpyrazine (264) (excess H₂NNH₂.H₂O, trace H₂SO₄, EtOH, 60°C, 3 h: ~80%).⁴⁷⁶

Also other examples.236,460,1216

Conversion into Pyrazinecarboselen- and Pyrazinecarbotelluraldehydes

4-Methyl-1-piperazinecarbaldehyde (**266**) gave 4-methyl-1-piperazinecarboselenaldehyde (265) (Bu^{*i*}₂AlH, Se, PhMe, reflux, A, 1 h: then substrate \downarrow , 65°C, 3 h: 64%) or 4-methyl-1-piperazinecarbotelluraldehyde (**267**) (Bu*ⁱ* 2AlH, Te, PhMe, reflux, A, 1 h; then substrate \downarrow , 25°C, 3 h: 49%); the active reagent appears to be a mixture of several compounds akin to $(Bu^i_2 A I S e)_2$ or the Te equivalent.160

Alkylation to Pyrazine Ketones

2-Pyrazinecarbaldehyde (268) gave 2-acetylpyrazine (269) [CH₂N₂, Et₂O, 20^oC, until no substrate (TLC): 10%].¹²²⁰

Typical Cyclocondensations or Cyclizations

- 2-Pyrazinecarbaldehyde (**270**) and 6-(2,3-diaminophenyl)-5-methyl-4,5-dihydro-3(2*H*)-pyridazinone (**271**) gave 4-(4-methyl-6-oxo-1,4,5, 6-tetrahydropyridazin-3-yl)-2-(pyrazin-2-yl)benzimidazole (272) (33%).^{686, cf. 1718}
- 3-Ethoxycarbonylmethylthio-2-pyrazinecarbaldehyde (**273**) gave ethyl thieno- [2,3-*b*]pyrazine-6-carboxylate (274) (Na₂CO₃, EtOH, reflux, 2 h: 94%).¹¹²⁶

Conversion into (2,2-Dibromovinyl)pyrazines

5-Isopropyl-3,6-dimethoxy-2-methyl-2,5-dihydro-2-pyrazinecarbaldehyde (**275**) gave 2-(2,2-dibromovinyl)-5-isopropyl-3,6-dimethoxy-2-methyl-2,5-dihydropyrazine (276) (CBr₄, PPh₃, CH₂Cl₂, 0°C, A, 30 min; then substrate \downarrow , 4 h: 81%).⁵²⁸

8.8 PYRAZINE KETONES (*H* **297)**

Ketones are well represented in the pyrazine literature, both as final products and as intermediates.

A theoretical/NMR study of keto–enol tautomerism in 2-(2-methoxycarbonylacetyl)pyrazine (**277/278**) and other similarly substituted azines has been undertaken: the foregoing pyrazine exists in its enolic form (**278**) to the extent of 35% in deuterochloroform.411 1,4-Diacetyl-1,4-dihydropyrazine (**279**) gave the persistent radical cation (279)⁺ on one-electron oxidation (cyclic voltammetry in MeCN- Bu_4NClO_4).¹⁶⁷

8.8.1 Preparation of Pyrazine Ketones (*H* **297)**

Several major routes to pyrazine ketones have been covered already: *by primary synthesis* in Chapters 1 and 2, *by oxidation of aralkylpyrazines* in Section 3.2.4.1, *by oxidation of secondary hydroxyalkylpyrazines* in Section 5.2.2, *from pyrazinecarboxylic esters by the Claisen reaction* in Section 8.2.2, *from pyrazinecarbonyl halides* (using several methods) in Section 8.3.2, and *from pyrazinecarbonitriles with a Grignard* (or similar reagent) in Section 8.6.2.

The remaining routes to such ketones are illustrated in the following examples:

By Homolytic Acylation

- *Note:* This method is prone to a lack of regioselectivity and individual yields can be poor, especially when two or more isomers can be formed.
- Pyrazine (281) gave 2-propionylpyrazine (280) (EtCHO, Bu^{*i*}O₂H, H₂SO₄, FeSO4, H2O, 5–15°C, 75 min: 29%)1383 or 2-acetylpyrazine (**282**) [MeCOCH₂CO₂H, AgNO₃, (NH₄)₂S₂O₈, F₃CCO₂H, H₂O-CH₂Cl₂, 40°C, 2 h: 54%].842

$$
\begin{array}{c}\n\begin{bmatrix}\nN \\
N\n\end{bmatrix} & C(=O)Et & \text{Eic} = O \text{ (ex EtCHO)} \\
\begin{bmatrix}\nN \\
N\n\end{bmatrix} & \xrightarrow{Me\dot{C}} = O \text{ (ex AcCH}_2\text{CO}_2\text{H)} & \begin{bmatrix}\nN \\
N\n\end{bmatrix} & C(=O)Me \\
\begin{bmatrix}\n280\n\end{bmatrix} & (280)\n\end{array}
$$

2-Pyrazinecarboxylic acid (**283**) gave 5-benzoyl-2-pyrazinecarboxylic acid (**284**) (PhCHO, Bu'O₂H, FeSO₄, H₂SO₄—AcOH—H₂O, 50 \rightarrow 20°C, 1 h: 14%); also homologues likewise.²¹⁷

3-Amino-2-pyrazinecarbonitrile gave 6-acetyl-3-amino-2-pyrazinecarbonitrile (285) [MeCOCH₂CO₂H, AgNO₃, (NH₄)₂S₂O₈, H₂SO₄, H₂O-CH₂Cl₂, 40^oC, 2 h: 74%]; analogues likewise.1506

Also other examples.55,226,1383

By Acylation of C-Lithiated Substrates

2-Chloropyrazine (**286**) gave 2-benzoyl-3-chloropyrazine (**288**) via the lithiated substrate (287) $[LiN(CMe,CH_2),CH_2]$ (made *in situ*), substrate \downarrow , THF, -78° C, 20 min; then BzNMeOMe \downarrow , -78° C (?), 90 min: 51%]; analogues likewise.¹⁵⁶⁴

2,5-Diethoxy-3-isopropyl-6-methyl-3,6-dihydropyrazine (**289**) gave 2-acetyl-3,6-diethoxy-5-isopropyl-2-methyl-2,5-dihydropyrazine (**290**) (BuLi, THF, -80° C, 20 min; then AcCl \downarrow , -80° C, 2 h: 87%).³⁷¹

2,5-Di-*sec*-butylpyrazine 1-oxide gave 2,5-di-*sec*-butyl-3-*p*-toluoylpyrazine 4 oxide (291) [LiN(CMe₂CH₂)₂CH₂ (prepared *in situ*), THF, -78° C, A, 20 min; then Me₂NCH₂CH₂NMe₂ \downarrow , -78°C, 20 min; then MeC₆H₄CO₂Me-*p* or

MeC₆H₄COCl \downarrow , -78 \rightarrow 0°C, 17 h: 72 or 59%, respectively; several other procedures gave lower yields].316

Also other examples.832,1107,1388

By Acylation with Carbon Monoxide and Ethylene

- *Note:* The Rh-catalyzed C-acylation of reduced pyrazines with carbon monoxide and ethylene appears to offer considerable potential for further development.
- 1-Methyl-4-(pyridin-2-yl)piperazine (**292**) gave 1-methyl-3-propionyl-4-(pyridin-2-yl)-1,4,5,6-tetrahydropyrazine (293) [Rh₄(CO)₁₂, PhMe, H₂C=CH₂ \downarrow to 10 atm, CO \downarrow to 15 atm, 25°C, autoclave; then 160°C, 20 h: 85%]; several *N*alkyl/aryl homologues were made similarly.1404

1-Acetyl (or benzoyl)-4-methylpiperazine (**294**) gave 1-acetyl (or benzoyl)-4 methyl-2-propionyl-1,4,5,6-tetrahydropyrazine (**295**) (as in foregoing example: 71 or 89%, respectively). 1536

8.8.2 Reactions of Pyrazine Ketones (*H* **300)**

Reactions of pyrazine ketones, that have been covered already, include *reductive deoxygenation to alkylpyrazines* (Section 3.2.1.5), *reduction to extranuclear* *hydroxypyrazines* (Section 5.2.1), and *oxidation to pyrazinecarboxylic acids* (Section 8.1.1).

Other reactions that have been used recently are illustrated in the following examples:

Formation of Functional Derivatives

2-Benzoylpyrazine (296) gave its oxime, $2-(\alpha$ -hydroxyiminobenzyl)pyrazine (297) (H₂NOH.HCl, AcONa, EtOH, 20°C, 24 h: 94%).³⁴⁵

- 2-Acetylpyrazine gave its semicarbazone, 2-(1-semicarbazonoethyl)pyrazine (**298**) (H₂NHNCONH₂.HCl, AcONa, EtOH-H₂O, 95[°]C, 15 min: 90%).¹²²⁰
- 2-[2-(Pyrazin-2-yl)acetyl]pyrazine (**299**) and 2-hydrazinopyrazine (**300**) gave 2-[2-(pyrazin-2-yl)-1-(pyrazin-2-ylhydrazono)ethyl]pyrazine (**301**) (EtOH, reflux, 3 h: $\frac{?}{6}$;⁷³⁰ analogues likewise.^{730,731}

Also other examples.283,866

N

Conversion into Pyrazine Thioketones

1-Benzyl-4-*p*-nitrobenzoylpiperazine (**302**) gave 1-benzyl-4-[*p*-nitro(thiobenzoyl)]piperazine (303) (P₂S₅, pyridine, reflux, 2 h: 93%).⁵⁰²

Note: No thiations of regular *C*-acylpyrazines have been reported recently: The foregoing example may be viewed as the thiation of an amide that is a more commonly used procedure (see Section 8.4.2).

Photochemical Isomerizations

2-Propionylpyrazine (304, R = H) gave 2-(1-hydroxycyclopropyl)pyrazine (305, R = H) (hv, BuOH-PhH, 4 h: 80%); 2-(3-methylbutyryl)pyrazine $(304, R = Me)$ gave 2-(1-hydroxy-2,2-dimethylcyclopropyl)pyrazine $(305,$ $R = Me$) (likewise: \sim 90%).⁴⁶¹

Cyclocondensations

2-Cyclopropylformylpyrazine (**306**) gave 2-(1-methylpyrroliden-2-yl)pyrazine (**308**), by a mechanism said to involve rearrangement of the intermediate (307) at some stage (MeHNCHO, MgCl₂, 160°C, A, 18 h: \sim 1% after a lengthy purification).¹⁵⁶⁶

2-(3-*o*-Bromophenylacryloyl)pyrazine (**309**) gave 2-(5-*o*-bromophenyl-1-phenyl-2-pyrazolin-3-yl)pyrazine (310) (PhNHNH₂, Me₄NOH, EtOH-H₂O, ?^oC, ? h: 90%); also analogues likewise. $881,1473$

8.9 PYRAZINE CYANATES, ISOCYANATES, THIOCYANATES, ISOTHIOCYANATES, AND CARBONITRILE OXIDES (*H* **301)**

With two exceptions, these categories of pyrazine derivative have been almost entirely neglected in recent years.

Examples have been given already of the *preparation of isothiocyanatopyrazines from halogenopyrazines* (Section 4.4) or *from pyrazinamines* (Section 7.3.2.4); also of the *reaction of isothiocyanatopyrazines with amines to give thioureidopyrazines* (Section 7.3.2.4).

Pyrazinecarbonitrile Oxides are unstable but they can be generated from pyrazinecarbaldehyde oximes with *N*-chlorosuccinimide and then trapped immediately by appropriate dipolarophiles to afford cyclic adducts, as illustrated in the following examples:

Ethyl 3-amino-6-hydroxyiminomethyl-2-pyrazinecarboxylate (**311**) gave a solution of the carbonitrile oxide (**312**), and thence the cycloadduct, 3-(5-amino-6 ethoxycarbonylpyrazin-2-yl)-3a,4,5,6a-tetrahydrofuro[3,2-*d*]isoxazole (**313**) [*N*chlorosuccinimide, Me₂NCHO, 60°C, N₂, 3 h; then 2,3-dihydrofuran \downarrow , Et₃N \downarrow , $2 \rightarrow 20^{\circ}$ C, 3 h: 55%).⁸³⁶

In a similar way, ethyl 3-amino-6-hydroxyiminomethyl-2-pyrazinecarboxylate 4-oxide (**314**) gave ethyl 3-amino-6-(5-phenylisoxazol-3-yl)-2-pyrazinecarboxylate 4-oxide (315) (as before but using PhC=CH: 55%);⁸³⁶ also many analogues for elaboration to pteridines.836

APPENDIX

Table of Simple Pyrazines

This table is intended as a comprehensive alphabetical list of simple pyrazines described up to the end of 2000. For each compound are recorded (1) melting and/or boiling point(s); (2) an indication of reported spectra or other physical properties; (3) any reported salts or simple derivatives, especially when the parent compound was un- or ill-characterized; (4) an indication of any complexes reported; and (5) direct reference(s) to the original literature from 1978 onward, preceded by any page(s) in parentheses, for example, (*H* 440), on which earlier published data have been reported in Barlin's *Hauptwerk*. 1686

To keep the table within manageable proportions, the following categories of pyrazines have been *excluded* on the grounds that they are not simple.

Fused or nuclear-reduced pyrazines.

- Pyrazines with a cyclic substituent other than an unsubstituted cycloalkyl, morpholino, phenyl, or piperidino group.
- Pyrazines bearing a substituent with more than six carbon atoms, except for an unsubstituted benzoyl or benzyl group.
- Pyrazines with two or more independent functional groups on a single substituent.

The following conventions and abbreviations have been used in the table:

MELTING POINT This term covers not only a regular melting point or melting range but also such variations as "decomposing at" or "melting with decomposition at". The use of the symbol $>$ before a melting point indicates that the substance melts or decomposes above that temperature or that it does not melt or decompose below that temperature. When two differing melting points/ranges are given in the literature, they appear in the table as, for example, "89–92 or 98–100"; when more than two melting points/ranges are given, they are recorded in a form such as "193 to 205".

BOILING POINT Boiling points/ranges are distinguished from melting points /ranges by the presence of a pressure in millimeters of mercury (mmHg) after the temperature: for example, 100–104/1.5.

ABBREVIATIONS FOR PHYSICAL DATA

ABBREVIATIONS FOR SALTS, ASSOCIATED ANIONS, OR SOLVATES

ABBREVIATIONS FOR DERIVATIVES

OTHER NOTES The use of "cf." before a reference usually indicates some inconsistent or mildly relevant information therein. A query mark (?) indicates some reasonable doubt associated with a datum or reference. A dash (–) in the data column indicates that no new physical data were obtained from original references covered for this supplement.
ALPHABETICAL LIST OF SIMPLE PYRAZINES, REPORTED TO THE END OF 2000

ALPHABETICAL LIST *Continued*

Pyrazine	Melting point $(^{\circ}C)$, etc.	Reference(s)
2-Acetoxy-3-methyl-5-phenylpyrazine	70-71, IR, NMR, UV	1307
2-Acetoxy-5-methyl-3-phenylpyrazine	110-112, 134-138/1, IR, NMR, UV	57, 1307
3-Acetoxymethyl-5-phenyl- $2(1H)$ -pyrazinone		(H 404)
5-Acetoxymethyl-3-phenyl-2(1H)-pyrazinone		(H 404)
2-(1-Acetoxy-2-methylpropyl)-3-chloro- 5-isobutylpyrazine	113-123/2, NMR, UV	(H 443) 78
2-(1-Acetoxy-2-methylpropyl)-6-chloro- 5-isobutylpyrazine	$125 - 135/8$ or $149/3$, IR, NMR, UV	(H 443) 78, 79
2-(1-Acetoxy-2-methylpropyl)-6-chloro- 5-isobutylpyrazine 1,4-dioxide	111-112, IR, NMR, UV	(H 452) 78
2-(1-Acetoxy-2-methylpropyl)-3-chloro- 5-isobutylpyrazine 1-oxide	145 – 150/3, IR, NMR, UV	(H 452) 78
2-(1-Acetoxy-2-methylpropyl)-6-chloro- 5-isobutylpyrazine 4-oxide	175–180/3, IR, NMR, UV	(H 452) 78
2-(1-Acetoxy-2-methylpropyl)- 5-isobutyl-3-methoxypyrazine	liq, IR, MS, NMR	310
2-(1-Acetoxy-2-methylpropyl)- 5-isobutylpyrazine 1-oxide	42–43, IR, NMR, UV	(H 453) 78
3-Acetoxymethyl-2-pyrazinamine		(H 422)
2-Acetoxymethylpyrazine	MS	(H 402) 1425
2-Acetoxy-3-methylpyrazine	Crude, NMR	1575
2-Acetoxy-6-methylpyrazine	80/2, IR, NMR	1575
5-Acetoxymethyl-2-pyrazinecarboxylic acid		(H 439)
2-Acetoxymethylpyrazine 1,4-dioxide		(H 453)
2-Acetoxymethylpyrazine 1-oxide		(H 453)
2-Acetoxymethylpyrazine 4-oxide		(H 453)
2-Acetoxymethyl-3,5,6	$120 - 125/3$	$(H 404)$ 1293,
trimethylpyrazine		1340
2-Acetoxy-3-phenylpyrazine	Crude, NMR	1575
2-Acetoxy-5-phenylpyrazine	Crude, NMR	1575
2-Acetoxy-6-phenylpyrazine	135/2, IR, NMR	1575
5-Acetoxy-3-phenyl-2(1H)-pyrazinone	$175 - 178$, NMR	1386, 1392
2-Acetoxypyrazine	liq , IR	(H 402) 304
5-Acetyl-3-amino-2-pyrazinecarbonitrile	214, IR, NMR	1506
5-Acetyl-3-amino-2-pyrazinecarboxamide	231-232, IR, NMR	1506
1-Acetyl-3-benzyl-5-hydroxy- $2(1H)$ -pyrazinone	$195 - 197$ or $197 - 198$, IR, NMR	1158, 1525
2-Acetyl-5-butylpyrazine	$125 - 130/13$, IR, NMR	509
2-Acetyl-5-tert-butylpyrazine	$45-47$, $108-110/10$, IR, NMR	509
2-Acetyl-3-chloropyrazine	46, NMR	220
2-Acetyl-5-chloropyrazine		1091
2-Acetyl-3,5-dichloropyrazine	liq, IR, NMR	1455
2-Acetyl-3,6-dimethoxy-5-methylpyrazine		(H 439)
2-Acetyl-3-dimethylaminopyrazine	liq, NMR	406
2-Acetyl-3,5-dimethylpyrazine		(H392)
2-Acetyl-3,6-dimethylpyrazine	85-87/16, IR, NMR	(H 392) 202
5-Acetyl-3,6-dimethyl-2(1H)-pyrazinone		(H 439)
2-Acetyl-5,6-diphenylpyrazine		(H 392)

ALPHABETICAL LIST *Continued*

Pyrazine	Melting point $(^{\circ}C)$, etc.	Reference(s)
2-Benzylpyrazine	$107 - 108/1.3$ or	69, 199
	150/0.07, NMR	
5-Benzyl-2-pyrazinecarboxamide	$137 - 138$	669
5-Benzyl-2-pyrazinecarboxamide 4-oxide	$185 - 187$	669
Benzyl 2-pyrazinecarboxylate	$38 - 40$	651
5-Benzyl-2-pyrazinecarboxylic acid 4-oxide	$165 - 167$	669
1-Benzyl-2,3 $(1H,4H)$ -pyrazinedione		(H 408)
2-Benzylpyrazine 1-oxide	$89 - 90$	199
3-Benzyl-2(1H)-pyrazinone		(H 404)
1-Benzyl- $2(1H)$ -pyrazinone 4-oxide	93-95, IR, NMR, UV	86
3-Benzyl-2(1H)-pyrazinone 4-oxide	231-234, NMR	86
2-Benzylsulfinyl-3,6-diisopropylpyrazine	148/0.08, IR, NMR	302, 308
2-Benzylsulfonyl-6-chloropyrazine		(H 446)
3-Benzylsulfonyl-2-pyrazinecarbonitrile		858
6-Benzylsulfonyl-2-pyrazinecarbonitrile		(H 442)
3-Benzylsulfonyl-2-pyrazinecarboxamide		(H 442) 858
2-Benzylthio-6-chloropyrazine		(H446)
2-Benzylthio-5-chloropyrazine 1-oxide	141-143, IR, NMR, UV	1565
3-Benzylthio-5-cyano-2-pyrazinecarb- oxamide	179-182, NMR	503
2-Benzylthio-3,6-diisipropylpyrazine	$105 - 112/0.04$, NMR	302, 308
2-Benzylthio-3-(2-ethoxycarbonyl- vinyl) pyrazine	214-220/4, IR, NMR	1126
5-Benzylthio-3-guanidinocarbonyl-		(H 436)
2-pyrazinamine		
6-Benzylthio-N-hydroxy-2-pyrazine-		(H 442)
carboxamide		
6-Benzylthio-N-hydroxy-2-pyrazine-		(H 442)
carboxamidine		
2-Butylthio-3-isopropyl-5,6-dimethylpyrazine		1260
2-Benzylthio-3-methylpyrazine	133-138/3, NMR	1126
5-Benzylthio-2-pyrazinamine	72-74, IR, NMR, UV	1565
2-Benzylthiopyrazine		(H 409)
3-Benzylthio-2-pyrazinecarbaldehyde	97-98, IR, NMR	1126
6-Benzylthio-2-pyrazinecarbohydrazide		(H 442)
3-Benzylthio-2-pyrazinecarbonitrile		858
6-Benzylthio-2-pyrazinecarbonitrile		(H 442)
6-Benzylthio-2-pyrazinecarbothioamide		(H 442)
3-Benzylthio-2-pyrazinecarboxamide		858
6-Benzylthio-2-pyrazinecarboxamide		(H 442)
3-Benzylthio-2-pyrazinecarboxylic acid		858
6-Benzylthio-2-pyrazinecarboxylic acid		(H 442)
3-Benzylthio-2,5-pyrazinedicarboxamide		1233
2-Benzylthiopyrazine 4-oxide	114-115, IR, NMR, UV	1565
5-Benzylthio-2 $(1H)$ -pyrazinone	125-126, IR, NMR, UV	1565
6-Benzylthio-2 $(1H)$ -pyrazinone	161-162, IR, NMR, UV	1565
5-Benzylthio- $2(1H)$ -pyrazinone 4-oxide	229-231, IR, NMR, UV	1565
2-Benzylthio-5-trimethylsiloxypyrazine	143/0.05, NMR	1565
2-Benzyl-3,5,6-trimethylpyrazine	91-93/0.04, MS, NMR	473
3-Benzyl-1,5,6-trimethyl-2(1H)-pyrazinone	liq, NMR	1452

ALPHABETICAL LIST *Continued*

Pyrazine	Melting point (°C), etc.	Reference(s)
2,6-Dibromo-3-phenylpyrazine		(H 401)
3,5-Dibromo-2-pyrazinamine	109 to 118, MS,	(H 421) 191,
	NMR	222, 782,
		1012, 1280,
		1677x
3,5-Dibromo-2-pyrazinamine 1-oxide	$135 - 136$, NMR	782
3,5-Dibromo-2-pyrazinamine 4-oxide	$215 - 216$, NMR	782
2,3-Dibromopyrazine		(H 401)
2,5-Dibromopyrazine		(H 401)
2,6-Dibromopyrazine		(H 401)
3,5-Dibromo-2,6-pyrazinediamine		(H 422)
5,6-Dibromo-2,3-pyrazinediamine		(H 421)
3,5-Dibromo-2(1H)-pyrazinone		(H445)
N,N'-Dibutyl-3,5-bisbutylamino-2,6-		(H 416)
pyrazinedicarboxamide		
2,5-Dibutyl-3-chloropyrazine	$114 - 116/4$, MS,	1314
	NMR, UV	
2,5-Di-sec-butyl-3-chloropyrazine		(H 401) 234
2,5-Di-sec-butyl-3-chloropyrazine 1-oxide	112/3, NMR, UV	1377
3,6-Di-sec-butyl-5-chloro-2(1H)-pyrazinone		(H 445) 321
Dibutyl 3,6-diamino-2,5-	xl st	1659
pyrazinedicarboxylate		
2,5-Dibutyl-3,6-dichloropyrazine	132/4, MS, NMR, UV	1314
2,5-Di-sec-butyl-3,6-dichloropyrazine		(H 401)
2,5-Di-sec-butyl-3,6-dichloropyrazine 1-oxide	104-105, NMR, UV	1377
2,5-Dibutyl-3,6-difluoropyrazine		(H 401)
2,5-Dibutyl-3,6-dimethylpyrazine		(H385)
Di-test-butyl 3,6-dimethyl-2,5-	133–134, NMR	300
pyrazinedicarboxylate		
2,5-Di-sec-butyl-3-(1-hydroxypropyl)pyrazine	90/0.07, MS, NMR	316
2,5-Di-sec-butyl-3-(1-hydroxypropyl)-	$145 - 150/1$,	316
pyrazine 4-oxide	MS, NMR	
3,6-Disic-butyl-1-hydroxy-2(1H)-pyrazinone		(H 454) 247
3,6-Disic-butyl-5-iodo-2(1H)-pyrazinone	91-92, IR, NMR	321
2,5-Di-sec-butyl-3-isovaleryl-6-	Crude, NMR	55
methylpyrazine		
2,5-Di-sec-butyl-3-methyl-6-	Crude, NMR	55
propionylpyrazine		
2,5-Di-sec-butyl-3-methylpyrazine		55
3,6-Di-sec-butyl-5-phenylazo-2(1H)-	83–86/18, NMR	(H 446)
pyrazinone		
3,6-Di-sec-butyl-2-pyrazinamine		
2,5-Dibutylpyrazine		(H388)
		(H385)
2,5-Di-sec-butylpyrazine		(H385)
2,5-Di-tert-butylpyrazine	$105 - 107$ or $109 - 110$,	(H385) 580,
	IR, NMR; pic:	1352
	$99 - 100$	
2,6-Di-sec-butylpyrazine	\overline{a}	(H385)
3,6-Di-sec-butyl-2-pyrazinecarbaldehyde	90–95/1, NMR; dnp:	316
	118–119, NMR	
3,6-Di-sec-butyl-2-pyrazinecarbaldehyde 1-oxide	150-155/3, NMR	316

ALPHABETICAL LIST *Continued*

Pyrazine	Melting point $({}^{\circ}C)$, etc.	Reference(s)
5,6-Dichloro-1,4-dimethyl-2,3(1 <i>H</i> ,4 <i>H</i>)-	$176 - 178$, MS	164, 745
pyrazinedione	NMR, phosphorescence	
2,5-Dichloro-3,6-dimethylpyrazine 1,4-dioxide	$224 - 225$	(H 453) 80
2,5-Dichloro-3,6-dimethylpyrazine 1-oxide	116-117, MS, NMR, UV	(H 453) 80
2,3-Dichloro-5,6-diphenylpyrazine	$182 - 183$ or	(H 401) 1250,
	$190 - 191$	1272
2,5-Dichloro-3,6-diphenylpyrazine	159-160, MS, NMR, UV	(H 401) 82
2,6-Dichloro-3,5-diphenylpyrazine	$95 - 97$ or $100 - 101$, NMR, UV	57, 1307
5,6-Dichloro-1,4-diphenyl-2,3 $(1H,4H)$ -		(H445)
pyrazinedione		
3,5-Dichloro-1,6-diphenyl-2(1H)-pyrazinone	218-220, IR, NMR	374
2,5-Dichloro-3,6-dipropylpyrazine	34, NMR, UV	1250
2,5-Dichloro-3,6-dipropylpyrazine 1,4-dioxide	147-149, NMR, UV	1250
2,5-Dichloro-3,6-dipropylpyrazine 1-oxide	114–120/8, NMR, UV	1250
5,6-Dichloro-3-ethoxycarbonylmethyl-	$109 - 111$, IR,	1308
$2(1H)$ -pyrazinone	NMR	
5,6-Dichloro-3-ethoxy-1-phenyl-		(H445)
$2(1H)$ -pyrazinone		
2,3-Dichloro-5-ethylamino-		(H 437)
6-methoxypyrazine		
5,6-Dichloro-3-ethylamino-1-phenyl-		(H 437)
$2(1H)$ -pyrazinone		
5,6-Dichloro-1-ethyl-3-ethylamino-		(H 437)
$2(1H)$ -pyrazinone		
3,5-Dichloro-6-ethyl-1-methyl-2(1H)-	100, IR, NMR	1309
pyrazinone		
3,5-Dichloro-1-ethyl-6-phenyl-2(1H)-	157, IR, NMR	374
pyrazinone		
5,6-Dichloro-3-formamido-2-		(H 434)
pyrazinecarbaldehyde		
5,6-Dichloro-3-guanidinocarbonyl- 2-pyrazinamine		(H 432)
2,6-Dichloro-3-(1-hydroxyethyl) pyrazine	liq, NMR	1455
2,6-Dichloro-3-(1-hydroxy-2-	liq, NMR	1588
methylpropyl)pyrazine		
2,6-Dichloro-3-(1-hydroxypropyl)pyrazine	liq, NMR	1455
3,6-Dichloro-5-hydroxy-2(1H)-pyrazinone		(H445)
2,6-Dichloro-3-iodopyrazine	89, NMR	1455
2,5-Dichloro-3-isobutyl-6-		(H 401)
isopropylpyrazine		
2,5-Dichloro-3-isobutyl-6-methylpyrazine	79-81/17, MS, NMR	295
2,5-Dichloro-3-isopropyl-6-methylpyrazine	67–68/4, MS, NMR	298
2,3-Dichloro-5-methoxy-6-		(H 437)
methylaminopyrazine		
5,6-Dichloro-3-methoxy-2-pyrazinamine		(H 436)
2,5-Dichloro-3-methoxypyrazine		(H445)
2,6-Dichloro-3-methoxypyrazine 4-oxide		(H 453)
2,3-Dichloro-5-methyl-6-phenylpyrazine	69-70, NMR, UV	(H 401) 1272
2,5-Dichloro-3-methyl-6-phenylpyrazine	76-79, NMR, UV	80

ALPHABETICAL LIST *Continued*

Pyrazine	Melting point $(^{\circ}C)$, etc.	Reference(s)
3-(N-Ethoxycarbonyl-N-methylamino)-		(H435)
N-methyl-5-oxo-4,5-dihydro-		
2-pyrazinecarboxamide		
2-Ethoxycarbonylmethyl-5,6-diphenylpyrazine	96–98, IR, NMR	1582
2-(1-Ethoxycarbonyl-1-methylethyl)-		(H 397)
5-phenylpyrazine		
2-Ethoxycarbonylmethyl-3-(2-formylethyl)-	$Et2$ acetal:	1249
pyrazine	128-134/0.3, IR, NMR	
2-Ethoxycarbonylmethyl-3-methylpyrazine		(H 397)
2-(2-Ethoxycarbonylvinyl)-3,6-diethylpyrazine	$115 - 120/2$, IR, NMR,	1391
	UV	
2-(2-Ethoxycarbonylvinyl)-3,6-	(E) : 110-111, IR, NMR,	1391
diethylpyrazine 4-oxide	UV	
2-(2-Ethoxycarbonylvinyl)-3,6-	127/132/1, IR, NMR,	1391
diisobutylpyrazine	UV	
2-(2-Ethoxycarbonylvinyl)-3,6-	(E) : 116-117, IR, NMR,	1391
diisobutylpyrazine 4-oxide	UV	
2-(2-Ethoxycarbonylvinyl)-3,6-	129–133/2, IR, NMR,	1391
diisopropylpyrazine	UV	
2-(2-Ethoxycarbonylvinyl)-3,6-	(E) : 119-120, IR, NMR,	1391
diisopropylpyrazine 4-oxide	UV	
2-(2-Ethoxycarbonylvinyl)-3,6-	120-123/2, IR, NMR, UV	1391
dimethylpyrazine		
2-(2-Ethoxycarbonylvinyl)-3,6-	(E) : 142, IR, NMR, UV	
dimethylpyrazine 4-oxide		
2-(2-Ethoxycarbonylvinyl)-3, methyl-	135-140/1, IR, NMR	1126
thiopyrazine		
2-Ethoxy-3,6-dimethylpyrazine		(H405)
5-Ethoxy-3,6-dimethyl-2-pyrazinecarbonitrile		(H 441)
5-Ethoxy-3,6-dimethyl-2-pyrazinecarbonitrile		(H 451)
$1/4$ -oxide		
2-Ethoxy-3,6-dimethylpyrazine 4-oxide		(H 454)
5-Ethoxy-1,3-dimethyl-2(1H)-pyrazinone		(H 408)
2-Ethoxy-3,6-diphenylpyrazine	78-79, MS, NMR, UV	82
2-Ethoxy-5,6-diphenylpyrazine	90-92, IR, NMR, UV	27
3-Ethoxy-5,6-diphenyl-2-pyrazinecarbonitrile	$148 - 150$, IR	1127
2-Ethoxy-3-ethoxymethyl-6-methylpyrazine	$\overline{}$	(H 405)
2-(1-Ethoxyethyl)-3-ethylpyrazine		(H 405)
2-Ethoxy-3-ethylpyrazine		(H 405)
5-Ethoxy-1-hydroxy-3,6-dimethyl-2(1H)-		(H 454)
pyrazinone 4-oxide		
2-Ethoxy-3-hydroxymethyl-6-methylpyrazine		(H405)
2-Ethoxy-3-hydroxymethylpyrazine		(H 403)
2-Ethoxy-6-iodopyrazine	36-37, NMR	638
2-Ethoxy-3-isopropyl-5,6-dimethylpyrazine		1260
2-Ethoxymethyl-5-methylpyrazine		(H 405)
2-Ethoxymethylpyrazine		(H 403)
2-Ethoxy-3-methylpyrazine		(H405)
2-Ethoxy-6-methylpyrazine		(H 405)
6-Ethoxy-N-methyl-2-pyrazinecarboxamidine		(H 439)
2-Ethoxy-3-methylpyrazine 4-oxide		(H 454)

ALPHABETICAL LIST *Continued*

Pyrazine	Melting point $(^{\circ}C)$, etc.	Reference(s)
3-Formamido-2-pyrazinecarbonitrile		(H418)
2-(2-Formylethyl)-3-methylpyrazine	Et ₂ acetal: $85 - 92/0.5$, IR, NMR	1249
$2-(N'-Formylhydrazino)pyrazine 4-oxide$	186-188, IR, NMR	9
2-Formylmethyl-3,6-dimethylpyrazine	Me ₂ acetal: 137 – 139/4, NMR	202
6-Formyl-5-methyl-3-methylamino- 2-pyrazinecarbonitrile	PhN=: 182-185, MS, NMR	1599
2-Formylmethylpyrazine	Oxime: 60-79(?), NMR	1593
5-Formyl-6-methyl-2,3-pyrazinecarbonitrile	$115 - 117$, MS, NMR; PhN= $: 148 - 150$, MS, NMR	1599
3-Guanidinocarbonyl-5,6-dimethyl- 2-pyrazinamine		(H 414)
3-Guanidinocarbonyl-5,6-diphenyl- 2-pyrazinamine		(H 414)
3-Guanidinocarbonyl-5-iodo-2-pyrazinamine		(H 432)
3-Guanidinocarbonyl-5-iodo-2,6- pyrazinediamine	NMR	450
3-Guanidinocarbonyl-5-methoxyamino- 2-pyrazinamine		(H 414)
3-Guanidinocarbonyl-6-methoxy- 2-pyrazinamine		(H 435)
3-Guanidinocarbonyl-5-methyl-6-phenyl- 2-pyrazinamine	227, IR, NMR, UV	(H 414) 941
3-Guanidinocarbonyl-6-methyl-5-phenyl- 2-pyrazinamine		(H 414)
3-Guanidinocarbonyl-5-methyl-		(H 414)
2-pyrazinamine 3-Guanidinocarbonyl-6-methyl-		(H 414)
2-pyrazinamine		
3-Guanidinocarbonyl-5-methylsulfonyl- 2-pyrazinamine		(H 436)
3-Guanidinocarbonyl-5-methylthio- 2-pyrazinamine		(H 436)
3-Guanidinocarbonyl-5-phenoxy- 2-pyrazinamine	192-193, NMR	713
3-Guanidinocarbonyl-5-phenyl-		(H 414)
2-pyrazinamine 3-Guanidinocarbonyl-6-methyl- 2-pyrazinamine		(H 414)
3-Guanidinocarbonyl-2-pyrazinamine		(H 414)
3-Guanidinocarbonyl-2-pyrazinamine 1-oxide		(H 450)
3-Guanidinocarbonyl-2,6-pyrazinediamine	NMR	(H 418) 450
3-Guanidinocarbonyl-2(1H)-pyrazinethione		(H443)
3-Guanidinocarbonyl-6-hydroxymethyl-		(H 423)
1-methyl- $2(1H)$ -pyrazinone		
3-(C-Guanidino-C-iminomethyl)-		(H 414)
2-pyrazinamine		
3-Guanidinomethyl-2-pyrazinamine		(H388)

ALPHABETICAL LIST *Continued*

Pyrazine	Melting point $(^{\circ}C)$, etc.	Reference(s)
2-Methyl-5-phenylpyrazine 1,4-dioxide	260–262, NMR, UV	80
2-Methyl-6-phenylpyrazine 1,4-dioxide	187-188, NMR, UV	1307
2-Methyl-3-phenylpyrazine 1-oxide	123–124, NMR, UV	1272, 1410
2-Methyl-3-phenylpyrazine 4-oxide	113-115, NMR, UV	1272, 1410
2-Methyl-5-phenylpyrazine 1-oxide	161-162, NMR, UV	80, 1410
2-Methyl-5-phenylpyrazine 4-oxide	$128 - 129$ or 131,	80, 245
	NMR, UV	
2-Methyl-6-phenylpyrazine 1-oxide	85-86, NMR, UV	290, 1307,
		1410
2-Methyl-6-phenylpyrazine 4-oxide	130–131, NMR, UV	1307, 1410
1-Methyl-5-phenyl-2 $(1H)$ -pyrazinone	132-133, IR, NMR, UV	22
3-Methyl-1-phenyl-2(1H)-pyrazinone	110–111, IR, MS, NMR	374
3-Methyl-5-phenyl-2 $(1H)$ -pyrazinone	$225 - 226$ or $227 - 228$, NMR	(H 407) 57, 1307
5-Methyl-3-phenyl- $2(1H)$ -pyrazinone	149-150, IR, NMR, UV	(H 407) 1307
5-Methyl-6-phenyl-2 $(1H)$ -pyrazinone	181-182, IR, MS,	544, 1272
	NMR, UV	
6-Methyl-1-phenyl-2 $(1H)$ -pyrazinone	193–194, IR, MS, NMR	395
6-Methyl-3-phenyl-2(1H)-pyrazinone	214, IR, MS, NMR,	(H 407) 80,
	pK_a , pol, UV	183, 983
6-Methyl-5-phenyl- $2(1H)$ -pyrazinone	$252 - 254$, IR, MS,	(H 407) 424,
	NMR, UV	1432
3-Methyl-6-phenyl- $2(1H)$ -pyrazinone 4-oxide	247, IR, NMR, UV	80
5-Methyl-1-phenyl-2(1H)-pyrazinone 4-oxide	183-184, MS, NMR	88
6-Methyl-3-phenyl- $2(1H)$ -pyrazinone 4-oxide	257, IR, MS, NMR, UV	80
6-Methyl-5-phenyl- $2(1H)$ -pyrazinone 4-oxide	264-265, NMR, UV	1272
2-Methyl-3-phenylthiopyrazine		(H 410)
Methyl 6-phenylthio-2-pyrazinecarboxylate		
		(H443)
2-Methyl-3-piperidinopyrazine		(H391)
2-Methyl-6-piperidinopyrazine		(H 391)
2-Methyl-6-pivaloylmethylpyrazine		(H 396, 398)
2-(2-Methylprop-1-enyl)pyrazine		(H 387)
Methyl 3-propionamido-2-pyrazinecarboxylate		(H 420)
2-Methyl-3-propionylmethylpyrazine	MS, NMR	352
2-Methyl-5-propionylmethylpyrazine	MS, NMR	352
2-Methyl-6-propionylmethylpyrazine		(H398)
2-Methyl-3-propylpyrazine	$84 - 86/18$	(H 387) 543
2-Methyl-6-propylpyrazine	liq, NMR	(H 387) 1567
1-Methyl-3-propyl-2(1H)-pyrazinone		(H 409)
5-Methyl-3-propyl- $2(1H)$ -pyrazinone		(H 407)
6-Methyl-3-propyl-2 $(1H)$ -pyrazinone		(H 407)
Methyl 6-propylthio-2-pyrazinecarboxylate		(H 443)
3-Methyl-2-pyrazinamine	169–171 or 174,	(H 388) 231, 1125
	IR, MS, NMR	
5-Methyl-2-pyrazinamine	$112 - 116$ or $120 - 121$,	(H 388) 693,
	IR, MS, NMR	1125, 1677ee
6-Methyl-2-pyraziamine	$124 - 125$ or $128 - 129$,	(H 289) 693,
	IR, MS, NMR	1125, 1677u
3-Methyl-2-pyrazinamine 1-oxide	205-207, NMR	1374
3-Methyl-2-pyrazinamine 4-oxide	175–177, NMR	1374
5-Methyl-2-pyrazinamine 1-oxide	221-223, NMR	(H 450) 1374

ALPHABETICAL LIST *Continued*

REFERENCES

In each case, information was obtained from the original publication except where an additional reference to *Chemical Abstracts* is included. Except where otherwise indicated, each citation of a Russian journal or of *Angewandte Chemie* refers to the original Russian or German version, not to the subsequent English translation. The abbreviations for journal titles are those recommended in the *Chemical Abstracts Service Source Index* (1994) and supplements.

- 1. W. F. Keir, A. H. MacLennan, and H. C. S. Wood, *J. Chem. Soc., Perkin Trans. 1*, **1978**, 1002.
- 2. P. D. Croce, M. Toannisci, and E. Licandro, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 330.
- 3. T. Takeshima, M. Ikeda, M. Yokoyama, N. Fukada, and M. Muraika, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 692.
- 4. A. Albert, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 1574.
- 5. J. L. Markham and P. G. Sammes, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 1885.
- 6. J. L. Markham and P. G. Sammes, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 1889.
- 7. R. B. Herbert, F. G. Holliman, P. N. Ibberson, and J. A. Sheridan, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 2411.
- 8. M. M. El-Abadelah, S. S. Sabri, A. A. Jarrar, and M. H. A. Zarga, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 2881.
- 9. C. R. Hardy and J. Parrick, *J. Chem. Soc., Perkin Trans. 1*, **1980**, 506.
- 10. D. E. Ames and M. I. Brohi, *J. Chem. Soc., Perkin Trans. 1*, **1980**, 1384.
- 11. R. E. Busby, M. A. Khan, M. R. Khan, J. Parrick, C. J. G. Shaw, and M. Iqbal, *J. Chem. Soc., Perkin Trans. 1*, **1980**, 1427.
- 12. R. E. Busby, M. A. Khan, M. R. Khan, J. Parrick, and C. J. G. Shaw, *J. Chem. Soc., Perkin Trans. 1*, **1980**, 1431.
- 13. M. E. K. Cartoon, G. W. H. Cheeseman, H. Dowlatshahi, and P. Sharma, *J. Chem. Soc., Perkin Trans. 1*, **1980**, 1603.
- 14. R. D. Chambers, W. K. R. Musgrave, and C. R. Sargent, *J. Chem. Soc., Perkin Trans. 1*, **1981**, 1071.
- 15. R. N. Barnes, R. D. Chambers, R. D. Hercliffe, and W. K. R. Musgrave, *J. Chem. Soc., Perkin Trans. 1*, **1981**, 2059.
- 16. R. O. Cain and A. E. A. Porter, *J. Chem. Soc., Perkin Trans. 1*, **1981**, 3111.
- 17. R. N. Barnes, R. D. Chambers, R. D. Hercliffe, and R. Middleton, *J. Chem. Soc., Perkin Trans. 1*, **1981**, 3289.
- 18. A. K. Göktürk, A. A. E. Porter, and P. G. Sammes, *J. Chem. Soc., Perkin Trans. 1*, **1982**, 953.
- 19. A. R. Katritzky, S. B. Borja, J. Marquet, and M. P. Sammes, *J. Chem. Soc., Perkin Trans. 1*, **1983**, 2065.
- 20. R. J. Cremlyn, O. O. Shode, and F. J. Swinbourne, *J. Chem. Soc., Perkin Trans. 1*, **1983**, 2181.
- 21. C. Howes, N. W. Alcock, B. T. Golding, and R. W. McCabe, *J. Chem. Soc., Perkin Trans. 1*, **1983**, 2287.
- 22. T. Nishio, N. Nakajima, M. Kondo, Y. Omote, and M. Kaftory, *J. Chem. Soc., Perkin Trans. 1*, **1984**, 391.
- 23. M. J. Finn, M. A. Harris, E. Hunt, and I. I. Zomaya, *J. Chem. Soc., Perkin Trans. 1*, **1984**, 1345.
- 24. L. Henn, D. M. B. Hickey, C. J. Moody, and C. W. Rees, *J. Chem. Soc., Perkin Trans. 1*, **1984**, 2189.
- 25. J. H. Boyer and T. P. Pillai, *J. Chem. Soc., Perkin Trans. 1*, **1985**, 1661.
- 26. R. Cameron, S. H. Nicholson, D. H. Robinson, C. J. Suckling, and H. C. S. Wood, *J. Chem. Soc., Perkin Trans. 1*, **1985**, 2133.
- 27. T. Nishio, M. Kondo, and Y. Omote, *J. Chem. Soc., Perkin Trans. 1*, **1985**, 2497.
- 28. M. Cushman, W. C. Wong, and A. Bacher, *J. Chem. Soc., Perkin Trans. 1*, **1986**, 1043.
- 29. M. K. Shepherd, *J. Chem. Soc., Perkin Trans. 1*, **1986**, 1495.
- 30. J. H. Boyer, G. Kumar, and T. P. Pillai, *J. Chem. Soc., Perkin Trans. 1*, **1986**, 1751.
- 31. J.-L. Fourrey, J. Beauhaire, and C. W. Yuan, *J. Chem. Soc., Perkin Trans. 1*, **1987**, 1841.
- 32. T. R. Jones and F. L. Rose, *J. Chem. Soc., Perkin Trans. 1*, **1987**, 2585.
- 33. M. K. Shepherd, *J. Chem. Soc., Perkin Trans. 1*, **1988**, 961.
- 34. I. M. Dawson, J. A. Gregory, R. B. Herbert, and P. G. Sammes, *J. Chem. Soc., Perkin Trans. 1*, 1988, 2585.
- 35. T. Nishio, N. Tokunaga, M. Kondo, and Y. Omote, *J. Chem. Soc., Perkin Trans. 1*, **1988**, 2921.
- 36. J. DiMaio and B. Belleau, *J. Chem. Soc., Perkin Trans. 1*, **1989**, 1687.
- 37. T. Benincori, E. Brenna, and F. Sannicolò, *J. Chem. Soc.,* Perkin Trans. 1, **1991**, 2139.
- 38. N. Sato, Y. Shimomura, Y. Ohwaki, and R. Tageuchi, *J. Chem. Soc., Perkin Trans. 1*, **1991**, 2877.
- 39. E. Fabiano and B. T. Golding, *J. Chem. Soc., Perkin Trans. 1*, **1991**, 3371.
- 40. J. R. Russell, C. D. Garner, and J. A. Loule, *J. Chem. Soc., Perkin Trans. 1*, **1992**, 409.
- 41. J. E. Rose, P. D. Leeson, and D. Gani, *J. Chem. Soc., Perkin Trans. 1*, **1992**, 1563.
- 42. T. Kitano, N. Shirai, M. Motoi, and Y. Sato, *J. Chem. Soc., Perkin Trans. 1*, **1992**, 2851.
- 43. N. Sato, K. Kawahara, and H. Morii, *J. Chem. Soc., Perkin Trans. 1*, **1993**, 15.
- 44. D. A. Peters, R. L. Beddoes, and J. A. Joule, *J. Chem. Soc., Perkin Trans. 1*, **1993**, 1217.
- 45. Y. Kita, S. Akai, H. Fujioka, Y. Tamura, H. Tone, and Y. Taniguchi, *J. Chem. Soc., Perkin Trans. 1*, **1994**, 875.
- 46. N. Sato, N. Miwa, and N. Hirokawa, *J. Chem. Soc., Perkin Trans. 1*, **1994**, 885.
- 47. U. Schöllkopf, *Pure Appl. Chem.*, **1983**, *55*, 1799.
- 48. L. Lankiewicz, B. Nyasse, B. Fransson, L. Grehn, and U. Ragnarsson, *J. Chem. Soc., Perkin Trans. 1*, **1994**, 2503.
- 49. B. Hartzoulakis and D. Gani, *J. Chem. Soc., Perkin Trans. 1*, **1994**, 2525.
- 50. J. E. Rose, P. D. Leeson, and D. Gani, *J. Chem. Soc., Perkin Trans. 1*, **1995**, 157.
- 51. M. S. Ashwood, A. W. Gibson, P. G. Houghton. G. R. Humphrey, D. C. Roberts, and S. H. B. Wright, *J. Chem. Soc., Perkin Trans. 1*, **1995**, 641.
- 52. D. Cartwright, J. R. Ferguson, T. Giannopoulos, G. Varvounis, and B. J. Wakefield, *J. Chem. Soc., Perkin Trans. 1*, **1995**, 2595.
- 53. K. J. Buysens, D. M. Vandenberghe, S. M. Toppet, and G. J. Hoornaert, *J. Chem. Soc., Perkin Trans. 1*, **1996**, 231.
- 54. T. Okawa, S. Eguchi, and A. Kakehi, *J. Chem. Soc., Perkin Trans. 1*, **1996**, 247.
- 55. N. Sato and T. Matsuura, *J. Chem. Soc., Perkin Trans. 1*, **1996**, 2345.
- 56. N. Saito, K. Toshiro, Y. Maru, K. Yamaguchi, and A. Kubo, *J. Chem. Soc., Perkin Trans. 1*, **1997**, 53.
- 57. N. Sato, K. Matsumoto, M. Takishima, and K. Mochizuka, *J. Chem. Soc., Perkin Trans. 1*, **1997**, 3167.
- 58. Y. S. Tsizin, N. L. Sergovskaya, and S. A. Chernyak, *Khim. Geterotsikl. Soedin.*, **1986**, 514.
- 59. T. Konakahara, K. Sato, Y. Takagi, and K. Kuwata, *J. Chem. Soc., Perkin Trans. 2*, **1984**, 641.
- 60. M. Kaftory, *J. Chem. Soc., Perkin Trans. 2*, **1984**, 757.
- 61. W. Kaim, *J. Chem. Soc., Perkin Trans. 2*, **1984**, 1357.
- 62. G. Matsubayashi, Y. Sakamoto, T. Tanaka, and K. Nakatsu, *J. Chem. Soc., Perkin Trans. 2*, **1985**, 947.
- 63. F. Billes and A. Tóth, *J. Chem. Soc., Perkin Trans. 2*, **1986**, 359.
- 64. N. Al-Awadi and R. Taylor, *J. Chem. Soc., Perkin Trans. 2*, **1986**, 1585.
- 65. A. Castro, M. Mosquera, M. F. Rodriguez-Prieto, J. A. Santaballa, and J. Vázquez-Tato, *J. Chem. Soc., Perkin Trans. 2*, **1988**, 1963.
- 66. S. C. Shim and M. S. Kim, *J. Chem. Soc., Perkin Trans. 2*, **1989**, 1897.
- 67. O. J. Mieden and C. von Sonntag, *J. Chem. Soc., Perkin Trans. 2*, **1989**, 2071.
- 68. M. Mišić-Yuković, M. Radojković-Veličković, and V. Jezdić, *J. Chem. Soc., Perkin Trans.* 2, **1990**, 109.
- 69. A. Abbotto, V. Alanzo, S. Bradamante, and G. A. Pagani, *J. Chem. Soc., Perkin Trans. 2*, **1991**, 481.
- 70. U. Eiermann, F. A. Neugebauer, H. Chandra, M. C. R. Symons, and J. L. Wyatt, *J. Chem. Soc., Perkin Trans. 2*, **1992**, 85.
- 71. M. Krejčik, S. Záliš, M. Ladwig, W. Matheis, and W. Kaim, J. Chem. Soc., Perkin Trans. 2, **1992**, 2007.
- 72. D. L. Crabb, D. A. Main, J. O. Morley, P. N. Preston, and S. H. B. Wright, *J. Chem. Soc., Perkin Trans. 2*, **1997**, 49.
- 73. R. Saito, T. Hirano, H. Niwa, and M. Ohashi, *J. Chem. Soc., Perkin Trans. 2*, **1997**, 1711.
- 74. R. D. Bailey, G. W. Drake, M. Grabarczyk, T. W. Hanks, L. L. Hook, and W. T. Pennington, *J. Chem. Soc., Perkin Trans. 2*, **1997**, 2773.
- 75. R. D. Bailey, M. Grabarczyk, T. W. Hanks, and W. T. Pennington, *J. Chem. Soc., Perkin Trans. 2*, **1997**, 2781.
- 76. M. Sakaguchi, Y. Miyata, H. Ogura, K. Gonda, S. Koga, and T. Okamoto, *Chem. Pharm. Bull.*, **1979**, *27*, 1094.
- 77. T. Tsujimoto, T. Nomura, M. Iifuru, and Y. Sasaki, *Chem. Pharm. Bull.*, **1979**, *27*, 1169.
- 78. A. Ohta, Y. Akita, A. Izumida, and I. Suzuki, *Chem. Pharm. Bul.*, **1979**, *27*, 1316.
- 79. A. Ohta, T. Ohwada, C. Ueno, M. Sumita, S. Masano, Y. Akita, and T. Watanabe, *Chem. Pharm. Bull.*, **1979**, *27*, 1378.
- 80. A. Ohta, Y. Akita, and M. Hara, *Chem. Pharm. Bull.*, 1979, *27*, 2027.
- 81. A. Ohta, K. Hasegawa, K. Amano, C. Mori, A. Ohsawa, K. Ikeda, and T. Watanabe, *Chem. Pharm. Bull.*, **1979**, *27*, 2596.
- 82. A. Ohta, Y. Akita, and Y. Nakane, *Chem. Pharm. Bull.*, **1979**, *27*, 2980.
- 83. J. Okada and M. Shimabayashi, *Chem. Pharm. Bull.*, **1980**, *28*, 3315.
- 84. J. Aritomi, S. Ueda, and H. Nishimura, *Chem. Pharm. Bull.*, **1980**, *28*, 3163.
- 85. M. Mano, T. Seo, and K.-I. Imai, *Chem. Pharm. Bull.*, **1980**, *28*, 3057.
- 86. M. Mano, T. Seo, T. Hattori, T. Kaneko, and K.-I. Imai, *Chem. Pharm. Bull.*, **1980**, *28*, 2734.
- 87. T. Tsuchiya, J. Kurita, and K. Takayama, *Chem. Pharm. Bull.*, **1980**, *28*, 2676.
- 88. M. Mano, T. Seo, and K.-I. Imai, *Chem. Pharm. Bull.*, **1980**, *28*, 2720.

- 89. K.-I. Imai, M. Mano, T. Seo, and T. Matsuno, *Chem. Pharm. Bull.*, **1981**, *29*, 88.
- 90. K. Arai, S. Sato, S. Shimizu, K. Nitta, and Y. Yamamoto, *Chem. Pharm. Bull.*, **1981**, *29*, 1510.
- 91. H. Yamanaka, S. Konno, T. Sakamoto, S. Niitsuma, and S. Noji, *Chem. Pharm. Bull.*, **1981**, *29*, 2837.
- 92. A. Ohta and M. Ohta, *Chem. Pharm. Bull.*, **1983**, *31*, 20.
- 93. H. Yamanaka, M. Mizugaki, T. Sakamoto, M. Sagi, Y. Nakagawa, H. Takayama, M. Ishibashi, and H. Miyazaki, *Chem. Pharm. Bull.*, **1983**, *31*, 4549.
- 94. J. C. Lancelot, D. Ladurée, and M. Bobba, *Chem. Pharm. Bull.*, **1985**, *33*, 3122.
- 95. K. Meguro, M. Aizawa, T. Sohda, Y. Kawamatsu, and A. Nagaoka, *Chem. Pharm. Bull.*, **1985**, *33*, 3787.
- 96. Y. Akita, A. Inoue, and A. Ohta, *Chem. Pharm. Bull.*, **1986**, *34*, 1447.
- 97. G. Goto, K. Kawakita, T. Okutani, and T. Miki, *Chem. Pharm. Bull.*, **1986**, *34*, 3202.
- 98. A. Kubo, N. Saito, H. Yamato, and Y. Kawakami, *Chem. Pharm. Bull.*, **1987**, *35*, 2525.
- 99. N. Shimazaki, I. Shima, K. Hemmi, Y. Tsurumi, and M. Hashimoto, *Chem. Pharm. Bull.*, **1987**, *35*, 3527.
- 100. J. E. Gready, in *Chemistry and Biology of Pteridines* (*Proc. 8th Int. Symp.*), Eds B. A. Cooper and V. M. Whitehead, de Gruyter, Berlin, **1986**, p. 85.
- 101. K. Tanaka, K. Matsuo, A. Nakanishi, Y. Katoaka, K. Takase, and S. Otsuki, *Chem. Pharm. Bull.*, **1988**, *36*, 2323.
- 102. Y. Akita, Y. Itagaki, S. Takizawa, and A. Ohta, *Chem. Pharm. Bull.*, **1989**, *37*, 1477.
- 103. N. Saito, N. Kawakami, E. Yamada, and A. Kubo, *Chem. Pharm. Bull.*, **1989**, *37*, 1493.
- 104. E. Makino, N. Iwasaki, N. Yagi, T. Ohashi, H. Kato, and H. Azuma, *Chem. Pharm. Bull.*, **1990**, *38*, 201.
- 105. M. Hori, R. Iemura, H. Hara, A. Ozaki, T. Sukamoto, and H. Ohtaka, *Chem. Pharm. Bull.*, **1990**, *38*, 681.
- 106. C. Rubat, P. Coudert, P. Tronche, J. Bastide, P. Bastide, and A.-M. Privat, *Chem. Pharm. Bull.*, **1989**, *37*, 2832.
- 107. E. Makino, K. Mitani, N. Iwasaki, H. Kato, Y. Ito, H. Azuma, and T. Fujita, *Chem. Pharm. Bull.*, **1990**, *38*, 1250.
- 108. N. Seko, K. Yoshino, K. Yokota, and G. Tsukamoto, *Chem. Pharm. Bull.*, **1991**, *39*, 651.
- 109. K. Otsubo, S. Motita, M. Uchida, K. Yamasaki, T. Kanbe, and T. Shimizu, *Chem. Pharm. Bull.*, **1991**, *39*, 2906.
- 110. A. Morikawa, T. Sone, and T. Asano, *Chem. Pharm. Bull.*, **1992**, *40*, 770.
- 111. J.-F. Lagorce, F. Comby, A. Rousseau, J. Buxeraud, and C. Raby, *Chem. Pharm. Bull.*, **1993**, *41*, 1258.
- 112. K. Fuji, K. Tanaka, and H. Miyamoto, *Chem. Pharm. Bull.*, **1993**, *41*, 1557.
- 113. H. Jing, A. Shimada, A. Maesa, Y. Arai, M. Goto, Y. Aoyagi, and A. Ohta, *Chem. Pharm. Bull.*, **1994**, *42*, 277.
- 114. T. Itoh, H. Hasegawa, K. Nagata, Y. Matsuya, M. Okada, and A. Ohsawa, *Chem. Pharm. Bull.*, **1994**, *42*, 1768.
- 115. M. Ohba, T. Mukaihira, and T. Fujii, *Chem. Pharm. Bull.*, **1994**, *42*, 1784.
- 116. T. Nakajima, T. Izawa, T. Kashiwabara, S. Nakajima, and Y. Munezuka, *Chem. Pharm. Bull.*, **1994**, *42*, 2475.
- 117. T. Morie, S. Kato, H. Harada, N. Yoshida, I. Fujiwara, and J.-I. Matsumoto, *Chem. Pharm. Bull.*, **1995**, *43*, 1137
- 118. H. Taguchi, K. Hirano, T. Yokoi, K. Asada, and Y. Okada, *Chem. Pharm. Bull.*, **1995**, *43*, 1336.
- 119. H. Harada, T. Morie, Y. Hirokawa, H. Terauchi, I. Fujiwara, N. Yoshida, and S. Kato, *Chem. Pharm. Bull.*, **1995**, *43*, 1912.
- 120. T. Yamaguchi, M. Eto, K. Watanabe, N. Kashige, and H. Harano, *Chem. Pharm. Bull.*, **1996**, *44*, 1977.
- 121. H. Taguchi, T. Yokoi, and Y. Okada, *Chem. Pharm. Bull.*, **1996**, *44*, 2037.
- 122. Y. Okada, H. Taguchi, and T. Yokoi, *Chem. Pharm. Bull.*, **1996**, *44*, 2259.
- 123. H. Uchida, T. Kato, and K. Achiwa, *Chem. Pharm. Bull.*, **1997**, *45*, 1228.
- 124. T. Yamamoto, M. Hori, I. Watanabe, H. Tsutsui, K. Harada, S. Ikeda, and H. Ohtaka, *Chem. Pharm. Bull.*, **1997**, *45*, 1282.
- 125. J. D. Crane, D. E. Fenton, J. M. Latour, and A. J. Smith, *J. Chem. Soc., Dalton Trans.*, **1991**, 2979.
- 126. G. Tresoldi, S. L. Schiavo, P. Piraino, and P. Zanello, *J. Chem. Soc., Dalton Trans.*, **1996**, 885.
- 127. T. S. Vasunhara and D. B. Parihar, *J. Chromatogr.*, **1980**, *194*, 254.
- 128. Y. Kandelwal and P. C. Jain, *Indian J. Chem., Sect. B*, **1978**, *16*, 1015.
- 129. K. Bhandari, V. Virmani, V. A. Murti, P. C. Jain, and N. Anand, *Indian J. Chem., Sect. B*, **1979**, *17*, 104.
- 130. K. Bhandari, V. Vermani, V. A. Murti, P. C. Jain, and N. Anand, *Indian J. Chem., Sect. B*, **1979**, *17*, 107.
- 131. P. A. Reddy and V. R. Srinivasan, *Indian J. Chem., Sect. B*, **1979**, *18*, 482.
- 132. S. Abuzar, S. Sharma, and R. N. Iyer, *Indian J. Chem., Sect. B*, **1980**, *19*, 211.
- 133. S. Abuzar and S. Sharma, *Indian J. Chem., Sect. B*, **1981**, *20*, 230.
- 134. B. P. Giri, *Indian J. Chem., Sect. B*, **1981**, *20*, 279.
- 135. R. Agarwal, M. K. Shukla, R. K. Satsangi, and C. Chaudhary, *Indian J. Chem., Sect. B*, **1981**, *20*, 680.
- 136. G. V. Rao, M. Balakrishnan, N. Venkatasubramanian, P. V. Subramanian, and V. Subramanian, *Indian J. Chem., Sect. B*, **1981**, *20*, 793.
- 137. J. Chellappa, K. Pandiarajan, and T. Rangarajan, *Indian J. Chem., Sect. B*, **1982**, *21*, 778.
- 138. S. C. Joshi and K. N. Mehrotra, *Indian J. Chem., Sect. B*, **1983**, *22*, 396.
- 139. A. K. Mandal, *Indian J. Chem., Sect. B*, **1983**, *22*, 505.
- 140. A. Kumar, S. Gurtu, J. N. Sinha, K. P. Bhargava, and K. Shanker, *Indian J. Chem., Sect. B*, **1983**, *22*, 1072.
- 141. G. H. Sayed and L. M. Abd-Elwahab, *Indian J. Chem., Sect. B*, **1983**, *22*, 1156.
- 142. V. K. Agrawal and S. Sharma, *Indian J. Chem., Sect. B*, **1984**, *23*, 650.
- 143. A. V. R. Rao, J. S. Yadav, K. Ravichandran, A. B. Sahasrabudhe, and S. S. Chaurassia, *Indian J. Chem., Sect. B*, **1984**, *23*, 850.
- 144. S. K. Dubey, V. K. Agrawal, S. Sharma, and N. Anand, *Indian J. Chem., Sect. B*, **1985**, *24*, 787.
- 145. S. Rajappa and R. Sreenivasan, *Indian J. Chem., Sect. B*, **1987**, *26*, 107.
- 146. V. K. Agrawal and S. Sharma, *Indian J. Chem., Sect. B*, **1987**, *26*, 550.
- 147. B. Anjaneyulu, *Indian J. Chem., Sect. B*, **1987**, *26*, 657.
- 148. S. Sharma, V. K. Agarwal, S. K. Dubey, R. N. Iyer, N. Anand, R. K. Chatterjee, S. Chandra, and A. B. Sen, *Indian J. Chem., Sect. B*, **1987**, *26*, 748.
- 149. E. S. Charles and S. Sharma, *Indian J. Chem., Sect. B*, **1987**, *26*, 752.
- 150. B. G. Khadse, S. R. Lokhande, R. P. Bhamaria, and S. R. Prabhu, *Indian J. Chem., Sect. B*, **1987**, *26*, 856.
- 151. G. Chattopadhyay and M. Chakrabarty, *Indian J. Chem., Sect. B*, **1990**, *29*, 1.
- 152. T. Sambaiah and K. K. Reddy, *Indian J. Chem., Sect. B*, **1992**, *31*, 444.
- 153. B. P. Pradhan and P. Ghosh, *Indian J. Chem., Sect. B*, **1993**, *32*, 590.
- 154. B. M. Khadikar and S. D. Samant, *Indian J. Chem., Sect. B*, **1993**, *32*, 1137.
- 155. S. I. Kulkarni, M. Subrahmanyan, and A. V. R. Rao, *Indian J. Chem., Sect. A*, **1993**, *32*, 28.

- 156. B. Hinzen and S. V. Ley, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 1.
- 157. H. Hasegawa and Y. Shinohara, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 243.
- 158. D. J. R. Brook, B. C. Noll, and T. H. Koch, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 289.
- 159. M. J. Alvis and T. L. Gilchrist, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 299.
- 160. G. M. Li and R. A. Zingaro, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 647.
- 161. R. D. Chambers, C. R. Sargent, and M. Clark, *J. Chem. Soc., Chem. Commun.*, **1979**, 445.
- 162. W. L. F. Armarego, P. Waring, and J. W. Williams, *J. Chem. Soc., Chem. Commun.*, **1980**, 334.
- 163. R. Grigg, T. R. B. Mitchell, S. Sutthivaiyakit, and N. Tongpenyai, *J. Chem. Soc., Chem. Commun.*, **1981**, 611.
- 164. H. Wamhoff and W. Kleimann, *J. Chem. Soc., Chem. Commun.*, **1981**, 743.
- 165. A. J. O'Connell, C. J. Peck, and P. G. Sammes, *J. Chem. Soc., Chem. Commun.*, **1983**, 399.
- 166. D. Seebach, W. Bauer, J. Hansen, T. Laube, W. B. Schweizer, and J. D. Dunitz, *J. Chem. Soc., Chem. Commun.*, **1984**, 853.
- 167. C. Bessenbacher, R. Gross, and W. Kaim, *J. Chem. Soc., Chem. Commun.*, **1985**, 1369.
- 168. I. M. Dawson, J. A. Gregory, R. B. Herbert, and P. G. Sammes, *J. Chem. Soc., Chem. Commun.*, **1986**, 620.
- 169. A. J. Pearson, P. R. Bruhn, F. Gouzoules, and S.-H. Lee, *J. Chem. Soc., Chem. Commun.*, **1989**, 659.
- 170. N. R. Thomas, V. Sciirch, and D. Gani, *J. Chem. Soc., Chem. Commun.*, **1990**, 400.
- 171. H. Sawanishi and T. Tsuchiya, *J. Chem. Soc., Chem. Commun.*, **1990**, 723.
- 172. K. Matsumoto, S. Hashimoto, and S. Otani, *J. Chem. Soc., Chem. Commun.*, **1991**, 306.
- 173. J. E. Baldwin, R. M. Adlington, B. Bebbington, and A. T. Russell, *J. Chem. Soc., Chem. Commun.*, **1992**, 1249.
- 174. J. E. Baldwin, R. M. Adlington, and M. B. Mitchell, *J. Chem. Soc., Chem. Commun.*, **1993**, 1332.
- 175. H. Taguchi, T. Yokoi, F. Kasuya, Y. Nishiyama, M. Fukui, and Y. Okada, *J. Chem. Soc., Chem. Commun.*, **1994**, 247.
- 176. M. J. Ellis, D. Lloyd, H. McNab, and M. J. Walker, *J. Chem. Soc., Chem. Commun.*, **1995**, 2337.
- 177. C.-W. Chan, M. P. Mingos, A. J. P. White, and D. J. Williams, *Chem. Commun. (Cambridge)*, **1996**, 81.
- 178. M. Keenan, K. Jones, and F. Hibbert, *Chem. Commun. (Cambridge)*, **1997**, 323.
- 179. J. Ohkanda, H. Shibui, and A. Katoh, *Chem. Commun. (Cambridge)*, **1998**, 375.
- 180. S. D. Bull, S. G. Davies, S. W. Epstein, and J. V. A. Ouzman, *Chem. Commun. (Cambridge)*, **1998**, 659.
- 181. P. Melloni, A. Della-Torre, S. de Munari, M. Meroni, and R. Tonani, *Gazz. Chim. Ital.*, **1985**, *115*, 159.
- 182. M. Falorni, G. Giacomelli, and L. Lardicci, *Gazz. Chim. Ital.*, **1990**, *120*, 765.
- 183. T. Pineda, J. M. Sevilla, M. Blázquez, L. J. Nuñez-Vergara, J. A. Squella, and M. Dominguez, *Gazz. Chim. Ital.* **1993**, *123*, 623.
- 184. M. Lucarini, G. F. Pedulli, and L. Valgimigli, *Gazz. Chim. Ital.*, **1994**, *124*, 455.
- 185. T. Watanabe, Y. Tanaka, K. Sekiya, Y. Akita, and A, Ohta, *Synthesis*, **1980**, 39.
- 186. S. C. Shim and S. K. Lee, *Synthesis*, **1980**, 116.
- 187. J. T. Lai, *Synthesis*, **1981**, 40.
- 188. U. Schollköpf, W. Hartwig, K.-H. Pospischil, and H. Kehne, *Synthesis*, **1981**, 966.
- 189. U. Schollköpf, U. Groth, K.-O. Westphalen, and C. Deng, *Synthesis*, **1981**, 969.
- 190. Y. Akita, M. Shimazaki, and A, Ohta, *Synthesis*, **1981**, 974.
- 191. B. Stanovnik, M. Tišler, and I. Drnovšek, *Synthesis*, 1981, 987.

- 192. A. Ohta, Y. Iwasaki, and Y. Akita, *Synthesis*, **1982**, 828.
- 193. U. Schöllkopf and H.-J. Neubauer, *Synthesis*, **1982**, 861.
- 194. U. Groth, U. Schöllkopf, and Y.-C. Chiang, *Synthesis*, **1982**, 864.
- 195. J. Nozulak and U. Schöllkopf, *Synthesis*, **1982**, 866.
- 196. U. Schöllkopf, J. Nozulak, and U. Groth, *Synthesis*, **1982**, 868.
- 197. U. Groth and U. Schöllkopf, *Synthesis*, **1983**, 673.
- 198. U. Schöllkopf and R. Lonsky, *Synthesis*, **1983**, 675.
- 199. A. Ohsawa, T. Kawaguchi, and H. Igeta, *Synthesis*, **1983**, 1037.
- 200. U. Groth and U. Schöllkopf, *Synthesis*, **1983**, 37.
- 201. T. Sakamoto, M. Shiraiwa, Y. Kondo, and H. Yamanaka, *Synthesis*, **1983**, 312.
- 202. T. Sakamoto, Y. Kondo, M. Shiraiwa, and H. Yamanaka, *Synthesis*, **1984**, 245.
- 203. S. Podergajs, B. Stanovnik, and M. Tišler, *Synthesis*, 1984, 263.
- 204. U. Schöllkopf, U. Busse, R. Kilger, and P. Lehr, *Synthesis*, **1984**, 271.
- 205. G. R. Newkome, G. E. Kiefer, Y.-J. Xia, and V. K. Gupta, *Synthesis*, **1984**, 676.
- 206. U. Schöllkopf, J. Nozulak, and M. Grauert, *Synthesis*, **1985**, 55.
- 207. D. Knittel, *Synthesis*, **1985**, 186.
- 208. A. Ohta and M. Ohta, *Synthesis*, **1985**, 216.
- 209. V. Gómez-Parra, F. Sánchez, and T. Torres, *Synthesis*, **1985**, 282.
- 210. J. Barluenga, F. Aznar, R. Liz, and M.-P. Cabal, *Synthesis*, **1985**, 313.
- 211. R. Gull and U. Schöllkopf, *Synthesis*, **1985**, 1052.
- 212. M. D. Coburn, H. H. Hayden, C. L. Coon, and A. R. Mitchell, *Synthesis*, **1986**, 490.
- 213. U. Schöllkopf, D. Pettig, U. Busse, E. Egert, and M. Dyrbusch, *Synthesis*, **1986**, 737.
- 214. K. T. Potts and J. M. Kane, *Synthesis*, **1986**, 1027.
- 215. B. M. Adger, C. O'Farrell, N. J. Lewis, and M. B. Mitchell, *Synthesis*, **1987**, 53.
- 216. R. Lakhan and B. J. Rai, *Synthesis*, **1987**, 914.
- 217. G. Heinisch and G. Lötsch, *Synthesis*, **1988**, 119.
- 218. D. Pettig and U. Schöllkopf, *Synthesis*, **1988**, 173.
- 219. K. Burger, K. Geith, and D. Hübl, *Synthesis*, **1988**, 199.
- 220. A. Turck, L. Mojovic, and G. Quéguiner, *Synthesis*, **1988**, 881.
- 221. G. P. Borsotti, M. Foa', and N. Gatti, *Synthesis*, **1990**, 207.
- 222. N. Sato and R. Takeuchi, *Synthesis*, **1990**, 659.
- 223. W.-X. Chen, J.-H. Zhang, M.-Y. Hu, and X.-C. Wang, *Synthesis*, **1990**, 701.
- 224. R. Takeuchi, K. Suzuki, and N. Sato, *Synthesis*, **1990**, 923.
- 225. J. A. Goodwin, I. M. Y. Kwok, and B. J. Wakefield, *Synthesis*, **1990**, 991.
- 226. W. Ried and T. Russ, *Synthesis*, **1991**, 581.
- 227. E. M. Beccalli and A. Marchesini, *Synthesis*, **1991**, 861.
- 228. W. Hartwig and J. Mittendorf, *Synthesis*, **1991**, 939.
- 229. M. Falorni, G. Giacomelli, M. Satta, and S. Cossu, *Synthesis*, **1994**, 391.
- 230. H. Wamhoff and E. Kroth, *Synthesis*, **1994**, 405.
- 231. N. Sato, T. Matsuura, and N. Miwa, *Synthesis*, **1994**, 931.
- 232. N. Plé, A. Turck, K. Couture, and G. Quéguiner, *Synthesis*, **1996**, 838.
- 233. R. Amici, P. Pevarello, M. Colombo, and M. Varasi, *Synthesis*, **1996**, 1177.
- 234. Y. Aoyagi, T. Abe, and A. Ohta, *Synthesis*, **1997**, 891.
- 235. L. Radom, R. H. Nobes, D. J. Underwood, and W. K. Li, *Pure Appl. Chem.*, **1986**, *58*, 75.
- 236. D. X. West, M. A. Lockwood, and A. Castineiras, *Transition Met. Chem.*, **1997**, *22*, 447.

- 237. T. Konakahara and Y. Takagi, *Heterocycles*, **1978**, *9*, 1733.
- 238. T. Konakahara, K. Kuwata, and Y. Takagi, *Heterocycles*, **1979**, *12*, 365.
- 239. T. Konakahara, K. Gokan, M. Iwama, and Y. Takagi, *Heterocycles*, **1979**, *12*, 373.
- 240. S. Karady, J. S. Amato, D. Dortmund, A. A. Patchett, R. A. Reamer, R. J. Tull, and L. M. Weinstock, *Heterocycles*, **1979**, *12*, 815.
- 241. T. Watanabe, E. Kikuchi, W. Tamura, Y. Akita, M. Tsutsui, and A. Ohta, *Heterocycles*, **1980**, *14*, 287.
- 242. A. Ohta, T. Watanabe, J. Nishiyama, K. Uehara, and R. Hirate, *Heterocycles*, **1980**, *14*, 1963.
- 243. M. Kočevar, B. Stanovnik, and M. Tišler, *Heterocycles*, **1981**, *15*, 293.
- 244. B. Franck and H. Stratmann, *Heterocycles*, **1981**, *15*, 919.
- 245. Y. Akita and A. Ohta, *Heterocycles*, **1981**, *16*, 1325.
- 246. B. Stanovnik, J. Zmitek, and M. Tišler, *Heterocycles*, **1981**, *16*, 2173.
- 247. A. Ohta and M. Ohta, *Heterocycles*, **1982**, *17*, 151.
- 248. H. Kurihara and H. Mishima, *Heterocycles*, **1982**, *17*, 191.
- 249. A. Hassner, B. A. Belinka, and A. S. Steinfeld, *Heterocycles*, **1982**, *18*, 179.
- 250. L. Benadjila-Iguertsira, J. Chastanet, and G. Roussi, *Heterocycles*, **1982**, *19*, 213.
- 251. Y. Terui, M. Yamakawa, T. Honma, Y. Tada, and K. Tori, *Heterocycles*, **1982**, *19*, 221.
- 252. Y. Akita and A. Ohta, *Heterocycles*, **1982**, *19*, 329.
- 253. M. Kočevar, M. Tišler, and B. Stanovnik, *Heterocycles*, **1982**, *19*, 339.
- 254. D. R. Martin, C. R. Merkel, J. U. Mondal, and C. R. Rushing, *Inorg. Chim. Acta*, **1985**, *99*, 81.
- 255. A. K. Kalkar and N. M. Bhosekar, *Spectrochim. Acta, Part A*, **1993**, *49*, 283.
- 256. M. V. Jovanovic, *Spectrochim. Acta, Part A*, **1984**, *40*, 637.
- 257. N. H. Ayachit, K. S. Rao, and M. A. Shashidhar, *Spectrochim. Acta, Part A*, **1986**, *42*, 53.
- 258. H. Junek and M. Mittelbach, *Z. Naturforsch., Teil B*, **1979**, *34*, 280.
- 259. M. A. Abbady and M. M. Kandeel, *Z. Naturforsch., Teil B*, **1979**, *34*, 1149.
- 260. W. Kaim, *Z. Naturforsch., Teil B*, **1981**, *36*, 677.
- 261. R. M. Mohareb and S. M. Fahmy, *Z. Naturforsch., Teil B*, **1985**, *40*, 664.
- 262. P. Jurič, M. Kočevar, B. Stanovnik, M. Tišler, and B. Verček, *Chem. Scr.*, **1984**, 23, 209.
- 263. S. Gronowitz and A. Svensson, *Chem. Scr.*, **1987**, *27*, 249.
- 264. G. C. Papavassiliou, S. Y. Yiannopoulos, and J. S. Zambounis, *Chem. Scr.*, **1987**, *27*, 265.
- 265. G. Süss-Fink, M. Langenbahn, and T. Jenke, *J. Organomet. Chem.*, **1989**, *368*, 103.
- 266. J. A. Marsella, *J. Organomet. Chem.*, **1991**, *407*, 97.
- 267. Y. Okamoto, K. Ogura, and T. Kinoshita, *Polyhedron*, **1984**, *3*, 635.
- 268. M. Takahashi, T. Funaki, H. Honda, Y. Yokoyama, and H. Takimoto, *Heterocycles*, **1982**, *19*, 1921.
- 269. A, Katoh, C. Koshima, and Y. Omote, *Heterocycles*, **1982**, *19*, 2283.
- 270. A. Ohta, M. Shimazaki, N. Tanekura, and S. Hayashi, *Heterocycles*, **1983**, *20*, 797.
- 271. Y. Ikemi, K. Matsumoto, and T. Uchida, *Heterocycles*, **1983**, *20*, 1009.
- 272. M. V. Jovanovic, *Heterocycles*, **1983**, *20*, 1987.
- 273. H. B. Davis, R. M. Sheets, J. M. Brannfors, and W. W. Paudler, *Heterocycles*, **1983**, *20*, 2029.
- 274. D. Fréhel and J.-P. Maffrand, *Heterocycles*, **1984**, *22*, 143.
- 275. D. Ladurée, H. El-Kashef, and M. Robba, *Heterocycles*, **1984**, *22*, 299.
- 276. M. V. Jovanovic, *Heterocycles*, **1984**, *22*, 1105.
- 277. M. V. Jovanovic, *Heterocycles*, **1984**, *22*, 1115.
- 278. M. V. Jovanovic, *Heterocycles*, **1984**, *22*, 1195.
- 279. H. B. Davis, R. M. Sheets, W. W. Paudler, and G. L. Gard, *Heterocycles*, **1984**, *22*, 2029.

- 280. A. Ohta, A. Inoue, and T. Watanabe, *Heterocycles*, **1984**, *22*, 2317.
- 281. A. Ohta, Y. Inagawa, Y. Okuwaki, and M. Shimazaki, *Heterocycles*, **1984**, *22*, 2369.
- 282. A. Ohta, A. Inoue, K. Ohtsuka, and T. Watanabe, *Heterocycles*, **1985**, *23*, 133.
- 283. R. M. Moriarty, O. Prakash, C. T. Thachet, and H. A. Musallam, *Heterocycles*, **1985**, *23*, 633.
- 284. B. Koren, B. Stanovnik, and M. Tišler, *Heterocycles*, **1985**, 23, 913.
- 285. W. Kaim, *Heterocycles*, **1985**, *23*, 1363.
- 286. M. V. Jovanovic, *Heterocycles*, **1985**, *23*, 2299.
- 287. Y. Akita, A. Inoue, K. Yamamoto, A. Ohta, T. Kurihara, and M. Shimizu, *Heterocycles*, **1985**, *23*, 2327.
- 288. A. Ohta, M. Ohta, and T. Watanabe, *Heterocycles*, **1986**, *24*, 785.
- 289. S. Karady, J. S. Amato, R. A. Reamer, and L. M. Weinstock, *Heterocycles*, **1986**, *24*, 1193.
- 290. Y. Akita, A. Inoue, Y. Mori, and A. Ohta, *Heterocycles*, **1986**, *24*, 2093.
- 291. B. Koren, B. Stanovnik, and M. Tišler, *Heterocycles*, **1987**, 26, 689.
- 292. A. Kubo, N. Saito, M. Nakamura, K. Ogata, and S.-I. Sakai, *Heterocycles*, **1987**, *26*, 1765.
- 293. A. Ohta, M. Ohta, Y. Igarashi, K. Saeki, K. Yuasa, and T. Mori, *Heterocycles*, **1987**, *26*, 2449.
- 294. A. Ohta, Y. Okuwaki, T. Komaru, M. Hisatome, Y. Yoshida, J. Aizawa, Y. Nakano, H. Shibata, T. Miyazaki, and T. Watanabe, *Heterocycles*, **1987**, *26*, 2691.
- 295. A. Ohta, Y. Aoyagi, Y. Kurihara, K. Yuasa, M. Shimazaki, T. Kurihara, and H. Miyamae, *Heterocycles*, **1987**, *26*, 3181.
- 296. M. Takahashi, H. Miyahara, and N. Yoshida, *Heterocycles*, **1988**, *27*, 155.
- 297. A. Ohta, K. Okimura, Y. Tonomura, M. Ohta, N. Yasumura, R. Fujita, and M. Shimazaki, *Heterocycles*, **1988**, *27*, 261.
- 298. A. Ohta, Y. Aoyagi, Y. Kurihara, A. Kojima, K. Yuasa, and M. Shimazaki, *Heterocycles*, **1988**, *27*, 437.
- 299. B. Stanovnik, J. Svete, M. Tišler, L. Žorž, A. Hvala, and I. Simonič, *Heterocycles*, **1988**, 27, 903.
- 300. C. K. Zercher and M. J. Miller, *Heterocycles*, 1988, *27*, 1123.
- 301. M. H. Mohamed, N. S. Ibrahim, M. M. Hussien, and M. H. Elnagdi, *Heterocycles*, **1988**, *27*, 1301.
- 302. M. Shimazaki, T. Nakanishi, M. Mochizuki, and A. Ohta, *Heterocycles*, **1988**, *27*, 1643.
- 303. H. S. El-Khadem, J. Kawai, and D. L. Swartz, *Heterocycles*, **1989**, *28*, 239.
- 304. S. Rozen and D. Hebel, *Heterocycles*, **1989**, *28*, 249.
- 305. T. Watanabe, K. Hayashi, J. Sakurada, M. Ohki, N. Takamatsu, H. Hirohata, K. Takeuchi, K. Yuasa, and A. Ohta, *Heterocycles*, **1989**, *29*, 123.
- 306. R. J. Schmiesing and J. R. Matz, *Heterocycles*, **1989**, *29*, 359.
- 307. A. Ohta, R. Itoh, Y. Kaneko, H. Koike, and K. Yuasa, *Heterocycles*, **1989**, *29*, 939.
- 308. A. Ohta, Y. Tonomura, H. Odashima, N. Fujiwara, and M. Shimazaki, *Heterocycles*, **1989**, *29*, 1199.
- 309. H. Yamanaka and S. Ohba, *Heterocycles*, **1990**, *31*, 895.
- 310. A. Ohta, A. Kojima, C. Sakuma, C. Kurihara, and S. Ogasawara, *Heterocycles*, **1990**, *31*, 1275.
- 311. R. H. Bradbury, D. Griffiths, and J. E. Rivett, *Heterocycles*, **1990**, *31*, 1647.
- 312. A. Ohta, A. Kojima, and Y. Aoyagi, *Heterocycles*, **1990**, *31*, 1655.
- 313. E. Ravina, C. Teran, L. Santana, N. Garcia, and I. Estevez, *Heterocycles*, **1990**, *31*, 1967.
- 314. B. Singh and G. Y. Lesher, *Heterocycles*, **1990**, *31*, 2163.
- 315. R. H. Bradbury, *Heterocycles*, **1991**, *32*, 449.
- 316. Y. Aoyagi, A. Maeda, M. Inoue, M. Shiraishi, Y. Sakakibara, Y. Fukui, A. Ohta, K. Kajii, and Y. Kodama, *Heterocycles*, **1991**, *32*, 735.

- 317. A. Ohta, A. Kojima, T. Saito, K. Kobayashi, H. Saito, K. Wakabayashi, S. Honma, C. Sakuma, and Y. Aoyagi, *Heterocycles*, **1991**, *32*, 923.
- 318. M. Shimazaki, M. Hikita, T. Hosoda, and A. Ohta, *Heterocycles*, **1991**, *32*, 937.
- 319. A. Ohta, Y. Tonomura, J. Sawaki, N. Sato, H. Akiike, M. Ikuta, and M. Shimazaki, *Heterocycles*, **1991**, *32*, 965.
- 320. S. P. Khanapure, B. M. Bhawal, and E. R. Biehl, *Heterocycles*, **1991**, *32*, 1773.
- 321. Y. Aoyagi, T. Fujiwara, and A. Ohta, *Heterocycles*, **1991**, *32*, 2407.
- 322. M. Ohba, T. Mukaihira, and T. Fujii, *Heterocycles*, **1992**, *33*, 21.
- 323. Y. Aoyagi, A. Inoue, I. Koizumi, R. Hashimoto, K. Tokunaga, K. Gohma, J. Komatsu, K. Sekine, A. Miyagugii, J. Kunoh, R. Honma, Y. Akita, and A. Ohta, *Heterocycles*, **1992**, *33*, 257.
- 324. A. Ohta, H. Jing, A. Maeda, Y. Arai, M. Goto, and Y. Aoyagi, *Heterocycles*, **1992**, *34*, 111.
- 325. M. L. Gelmi, D. Pocar, and R. Riva, *Heterocycles*, **1992**, *34*, 315.
- 326. Y. Yang and A. R. Martin, *Heterocycles*, **1992**, *34*, 1395.
- 327. Y. Uchibori, M. Umeno, and H. Yoshioka, *Heterocycles*, **1992**, *34*, 1507.
- 328. D. McHattie, R. Buchan, M. Fraser, and P. V. S. K. T. Lin, *Heterocycles*, **1992**, *34*, 1759.
- 329. H. Jing, K. Murakami, Y. Aoyagi, and A. Ohta, *Heterocycles*, **1992**, *34*, 1847.
- 330. M. Doise, D. Blondeau, and H. Sliwa, *Heterocycles*, **1992**, *34*, 2065.
- 331. G. deStevens, M. Eager, and C. Tarby, *Heterocycles*, **1993**, *35*, 763.
- 332. A. Katoh, J. Ohkanda, H. Sato, T. Sakamoto, and K. Mitsuhashi, *Heterocycles*, **1993**, *35*, 949.
- 333. H. Jing, Y. Aoyagi, and A. Ohta, *Heterocycles*, **1993**, *35*, 1279.
- 334. A. Sera, M. Okada, A. Ohhata, H. Yamada, K. Iyoh, and Y. Kubo, *Heterocycles*, **1993**, *36*, 1039.
- 335. N. Kanomata, M. Igarashi, and M. Tada, *Heterocycles*, **1993**, *36*, 1127.
- 336. T. Itoh, H. Hasegawa, K. Nagota, Y. Matsuya, and A. Ohsawa, *Heterocycles*, **1994**, *37*, 709.
- 337. S. Hashizume, A. Sano, and M. Oka, *Heterocycles*, **1994**, *38*, 1581.
- 338. M. Igarashi and M. Tada, *Heterocycles*, **1994**, *38*, 2277.
- 339. Y. S. Lee, C. S. Kim, and H. Park, *Heterocycles*, **1994**, *38*, 2605.
- 340. M. Engelbach, P. Imming, G. Seitz, and R. Tegethoff, *Heterocycles*, **1995**, *40*, 69.
- 341. N. D. Yates, D. A. Peters, P. A. Allway, R. L. Beddoes, D. I. C. Scopes, and J. A. Joule, *Heterocycles*, **1995**, *40*, 331.
- 342. S. Y. Rhie and E. K. Ryu, *Heterocycles*, **1995**, *41*, 323.
- 343. V. Kepe, M. Kočevar, and S. Polanc, *Heterocycles*, **1995**, 41, 1299.
- 344. M. Ohba, M. Imasho, and T. Fujii, *Heterocycles*, **1996**, *42*, 219.
- 345. G. Heinisch, W. Holzer, T. Langer, and P. Lukavsky, *Heterocycles*, **1996**, *43*, 151.
- 346. J. Ohkanda, T. Kumasaka, A. Takasu, T. Hasegawa, and A. Katoh, *Heterocycles*, **1996**, *43*, 883.
- 347. A. R. Tapia-Benavides, H. Tlahuext, and R. Contreras, *Heterocycles*, **1997**, *45*, 1679.
- 348. J. W. Barton, M. C. Goodland, K. J. Gould, J. F. W. McOmie, W. R. Mould, and S. A. Saleh, *Tetrahedron*, **1979**, *35*, 241.
- 349. R. K. Anderson, S. D. Carter, and G. W. H. Cheeseman, *Tetrahedron*, **1979**, *35*, 2463.
- 350. S. Jens-i-Skorini and A. Senning, *Tetrahedron*, **1980**, *36*, 539.
- 351. G. W. H. Cheeseman and G. Rishman, *Tetrahedron*, **1980**, *36*, 2681.
- 352. J. W. Wheeler, J. Avery, O. Olubajo, M. T. Shamim, C. B. Storm, and R. M. Duffield, *Tetrahedron*, **1982**, *38*, 1939.
- 353. M. Kočevar, B. Stanovnik, and M. Tišler, *Tetrahedron*, **1983**, 39, 823.
- 354. U. Schöllkopf, *Tetrahedron*, **1983**, *39*, 2085.
- 355. U. Schöllkopf, J. Nozulak, and U. Groth, *Tetrahedron*, **1984**, *40*, 1409.
- 356. F. Minisci, A. Citterio, E. Vismara, and C. Giordano, *Tetrahedron*, **1985**, *41*, 4157.
- 357. C. W. Bird, *Tetrahedron*, **1986**, *42*, 89.
- 358. R. Flammang, S. Lacombe, A. Laurent, A. Maquestiau, B. Marquet, and S. Novkova, *Tetrahedron*, **1986**, *42*, 315.
- 359. G. Heinisch and G. Lötsch, *Tetrahedron*, **1986**, *42*, 5973.
- 360. G. Tarrago, I. Zidane, C. Marzin, and A. Tep, *Tetrahedron*, **1988**, *44*, 91.
- 361. D. A. de Bie, A. Ostrowicz, G. Geurtsen, and H. C. van der Plas, *Tetrahedron*, **1988**, *44*, 2977.
- 362. F. Effenberger and J. König, *Tetrahedron*, **1988**, *44*, 3281.
- 363. W. Ried and S. Aboul-Fetouh, *Tetrahedron*, **1988**, *44*, 3399.
- 364. H. M. Fales, M. S. Blum, E. W. Southwick, D. L. Williams, P. P. Roller, and A. W. Don, *Tetrahedron*, **1988**, *44*, 5045.
- 365. U. Schöllkopf, T. Tiller, and J. Bardenhagen, *Tetrahedron*, **1988**, *44*, 5293.
- 366. M. Biedrzycki, D. A. de Bie, and H. C. van der Plas, *Tetrahedron*, **1989**, *45*, 6211.
- 367. B. Geurtsen, D. A. de Bie, and H. C. van der Plas, *Tetrahedron*, **1989**, *45*, 6519.
- 368. F. Fontana, F. Minisci, M. C. N. Barbosa, and E. Vismara, *Tetrahedron*, **1990**, *46*, 2525.
- 369. N. Haider and H. C. van der Plas, *Tetrahedron*, **1990**, *46*, 3641.
- 370. N. Tutonda, D. Vanderzande, M. Hendrickx, and G. Hoornaert, *Tetrahedron*, **1990**, *46*, 5715.
- 371. N. R. Thomas and D. Gani, *Tetrahedron*, **1991**, *47*, 497.
- 372. U. Groth, U. Schöllkopf, and T. Tiller, *Tetrahedron*, **1991**, *47*, 2835.
- 373. H. Uno, S.-I. Okada, and H. Suzuki, *Tetrahedron*, **1991**, *47*, 6231.
- 374. P. K. Loosen, M. G. Tutonda, M. F. Khorasani, F. Compernolle, and G. J. Hoornaert, *Tetrahedron*, **1991**, *47*, 9259.
- 375. P. K. Loosen, M. F. Khorasani, S. M. Toppet, and G. J. Hoornaert, *Tetrahedron*, **1991**, *47*, 9269.
- 376. C. W. Bird, *Tetrahedron*, **1992**, *48*, 335.
- 377. K. Busch, U. M. Groth, W. Kühnle, and U. Schöllkopf, *Tetrahedron*, **1992**, *48*, 5607.
- 378. A. D. Redhouse, R. J. Thompson, B. J. Wakefield, and J. A. Wardell, *Tetrahedron*, **1992**, *48*, 7619.
- 379. C. W. Bird, *Tetrahedron*, **1992**, *48*, 7857.
- 380. N. M. Ali, A. McKillop, M. B. Mitchell, R. A. Rebelo, and P. J. Wellbank, *Tetrahedron*, **1992**, *48*, 8117.
- 381. P. Eckenberg, U. Groth, T. Huhn, N. Richter, and C. Schmeck, *Tetrahedron*, **1993**, *49*, 1619.
- 382. R. J. Friary, V. Seidl, J. H. Schwerdt, T.-M. Chan, M. P. Cohen, E. R. Conklin, T. Duelfer, D. Hou, M. Nafissi, R. L. Runkle, T. Pirouz, R. L. Tiberi, and A. T. McPhail, *Tetrahedron*, **1993**, *49*, 7179.
- 383. C. W. Bird, *Tetrahedron*, **1993**, *49*, 8441.
- 384. V. Reznikov and L. B. Volodarsky, *Tetrahedron*, **1993**, *49*, 10669.
- 385. R. Carceller, J. L. Garcia-Navio, M. L. Izquierdo, J. Alvarez-Builla, M. Fajardo, P. Gómez-Sal, and F. Gago, *Tetrahedron*, **1994**, *50*, 4995.
- 386. J. E. Baldwin, R. M. Adlington, D. Bebbington, and A. T. Russell, *Tetrahedron*, **1994**, *50*, 12015.
- 387. W. Karnbrock, H.-J. Musiol, and L. Moroder, *Tetrahedron*, **1995**, *51*, 1187.
- 388. S. A. Haroutounian and J. A. Katzenellenbogen, *Tetrahedron*, **1995**, *51*, 1585.
- 389. H. Taguchi, T. Yokoi, M. Tsukatani, and Y. Okada, *Tetrahedron*, **1995**, *51*, 7361.
- 390. G. Grassi, F. Risitano, and F. Foti, *Tetrahedron*, **1995**, *51*, 11855.
- 391. K. J. Buysens, D. M. Vandenberghe, S. M. Toppet, and G. J. Hoornaert, *Tetrahedron*, **1995**, *51*, 12463.
- 392. J. Ohkanda and A. Katoh, *Tetrahedron*, **1995**, *51*, 12995.
- 393. F. Zaragoza and S. V. Petersen, *Tetrahedron*, **1996**, *52*, 5999.
- 394. B. S. Møller, T. Benneche, and K. Undheim, *Tetrahedron*, **1996**, *52*, 8807.
- 395. K. J. Buysens, D. M. Vandenberghe, and G. J. Hoornaert, *Tetrahedron*, **1996**, *52*, 9161.
- 396. C. Alvarez-Ibarra, R. Cuervo-Rodriguez, M. C. Fernández-Monreal, and M. P. Ruiz, *Tetrahedron*, **1996**, *52*, 11239.
- 397. K. Usami and M. Isobe, *Tetrahedron*, **1996**, *52*, 12061.
- 398. K. Hammer and K. Undheim, *Tetrahedron*, **1997**, *53*, 2309.
- 399. H. Baumgartner and A. C. O'Sullivan, *Tetrahedron*, **1997**, *53*, 2775.
- 400. K. Hammer and K. Undheim, *Tetrahedron*, **1997**, *53*, 5925.
- 401. P. Kremminger and K. Undheim, *Tetrahedron*, **1997**, *53*, 6925.
- 402. K. Hammer and K. Undheim, *Tetrahedron*, **1997**, *53*, 10603.
- 403. R. Faust, C. Weber, V. Fiandanese, G. Marchese, and A. Punzi, *Tetrahedron*, **1997**, *53*, 14655.
- 404. Q. Liu, A. P. Marchington, and C. M. Rayner, *Tetrahedron*, **1997**, *53*, 15729.
- 405. T. Okawa, N. Osakada, S. Eguchi, and A. Kakehi, *Tetrahedron*, **1997**, *53*, 16061.
- 406. N. Plé, A. Turck, A. Heynderickx, and G. Quéguiner, *Tetrahedron*, **1998**, *54*, 4899.
- 407. A. V. Eremeev, R. S. El'kinson, and V. A. Imuns, *Khim. Geterotsikl. Soedin.*, **1979**, 988.
- 408. A. V. Eremeev, R. S. El'kinson, M. Y. Myagi, and E. E. Liepin'sh, *Khim. Geterotsikl. Soedin.*, **1979**, 1352.
- 409. M. F. Marshalkin, V. A. Azimov, L. F. Linberg, and L. N. Yakhontov, *Khim. Geterotsikl. Soedin.*, **1978**, 1120.
- 410. S. A. Stekhova, O. A. Zagulyaeva, V. V. Lapachev, and V. P. Mamaev, *Khim. Geterotsikl. Soedin.*, **1980**, 822.
- 411. S. A. Stekhova, V. V. Lapachev, and V. P. Mamaev, *Khim. Geterotsikl. Soedin.*, **1981**, 530.
- 412. I. V. Sokolova and L. V. Orlovskaya, *Khim. Geterotsikl. Soedin.*, **1981**, 1079.
- 413. B. F. Kukharev, V. K. Stankevich, and V. A. Kukhareva, *Khim. Geterotsikl. Soedin.*, **1982**, 1560.
- 414. L. B. Volodarskii, L. N. Grigor'eva, and A. Y. Tikhonov, *Khim. Geterotsikl. Soedin.*, **1983**, 1414.
- 415. V. N. Charushin, V. G. Baklykov, O. N. Chupakhin, N. N. Vereshchagina, L. M. Naumova, and N. N. Sorokin, *Khim. Geterotsikl. Soedin.*, **1983**, 1684.
- 416. A. Y. Tikhonov, L. B. Volodarskii, and N. V. Belova, *Khim. Geterotsikl. Soedin.*, **1984**, 115.
- 417. K. Y. Lopatinskaya, Z. M. Skorobogatova, A. K. Sheinkman, and T. A. Zaritovskaya, *Khim. Geterotsikl. Soedin.*, **1985**, 810.
- 418. N. N. Kutina, G. P. Zhikhareva, O. S. Anisimova, and L. N. Yakhontov, *Khim. Geterotsikl. Soedin.*, **1985**, 833.
- 419. O. A. Misyluk, V. I. Shibaev, R. P. Ponomareva, and K. A. V'yunov, *Khim. Geterotsikl. Soedin.*, **1985**, 851.
- 420. V. G. Baklikov, V. N. Charushin, O. N. Chupakhin, and N. N. Sorokin, *Khim. Geterotsikl. Soedin.*, **1985**, 960.
- 421. K. Y. Lapatinskaya, N. A. Klyuev, and A. K. Sheinkman, *Khim. Geterotsikl. Soedin.*, **1985**, 1551.
- 422. R. S. El'kinson, A. V. Eremeev, Y. Y. Bleidelis, A. F. Mishnev, and S. V. Belyakov, *Khim. Geterotsikl. Soedin.*, **1985**, 1633.
- 423. L. N. Grigor'eva, A. Y. Tikhonov, S. A. Amitina, L. B. Volodarskii, and I. K. Korobeinicheva, *Khim. Geterotsikl. Soedin.*, **1986**, 331.
- 424. T. I. Reznikova, A. Y. Tikhonov, and L. B. Volodarskii, *Khim. Geterotsikl. Soedin.*, **1986**, 509.
- 425. V. V. Kastron, I. G. Iovel', I. Skrastyn'sh, Y. S. Gol'dberg, M. V. Shimanskaya, and G. Y. Dubur, *Khim. Geterotsikl. Soedin.*, **1986**, 1124.
- 426. V. N. Charushin, I. V. Kasantseva, M. G. Ponizovskii, L. G. Egorova, E. O. Sidorov, and O. N. Chupakhin, *Khim. Geterotsikl. Soedin.*, **1986**, 1380.
- 427. I. M. Sosonkin, G. L. Kalb, I. V. Kazantseva, M. G. Ponizovskii, V. N. Charushin, and O. N. Chupakhin, *Khim. Geterotsikl. Soedin.*, **1987**, 1110.
- 428. K. I. Rubina, I. G. Iovel', Y. S. Gol'dberg, and M. V. Shimanskaya, *Khim. Geterotsikl. Soedin.*, **1989**, 543.
- 429. I. E. Filatov, Y. V. Kulikov, G. L. Rusinov, and K. I. Pashkevich, *Khim. Geterotsikl. Soedin.*, **1989**, 1423.
- 430. R. N. Zagidullin, *Khim. Geterotsikl. Soedin.*, **1989**, 1524.
- 431. K. I. Rubina, I. G. Iovel', Y. S. Gol'dberg, and M. V. Shimanskaya, *Khim. Geterotsikl. Soedin.*, **1990**, 50.
- 432. I. G. Iovel', I. Yansone, Y. S. Gol'dberg, and M. V. Shimanskaya, *Khim. Geterotsikl. Soedin.*, **1990**, 532.
- 433. N. L. Sergovskaya, S. A. Chernyak, O. V. Shekhter, and Y. S. Tsizin, *Khim. Geterotsikl. Soedin.*, **1991**, 1107.
- 434. S. V. Litvinenko, Y. M. Volovenko, V. I. Savich, and F. S. Babichev, *Khim. Geterotsikl. Soedin.*, **1992**, 107.
- 435. M. G. Gal'pern, S. V. Kudrevich, and I. G. Novozhilova, *Khim. Geterotsikl. Soedin.*, **1993**, 58.
- 436. O. V. Shekhter, O. B. Kuklenkova, N. L. Sergovskaya, and Y. S. Tsizin, *Khim. Geterotsikl. Soedin.*, **1993**, 197.
- 437. D. G. Mazhukin, A. Y. Tikhonov, L. B. Volodarskii, and E. P. Konovalova, *Khim. Geterotsikl. Soedin.*, **1993**, 514.
- 438. K. M. Gitis, G. E. Neumoeva, and G. V. Isagulyants, *Khim. Geterotsikl. Soedin.*, **1993**, 1516.
- 439. S. V. Morozov, L. B. Volodarskii, and V. G. Shubin, *Khim. Geterotsikl. Soedin.*, **1993**, 1697.
- 440. P. A. Meksh, A. A. Anderson, and M. V. Shimanska, *Khim. Geterotsikl. Soedin.*, **1994**, 950.
- 441. I. P. Shvedaite, *Khim. Geterotsikl. Soedin.*, **1995**, 73.
- 442. D. Feldman, M. Chervenka, J. Stokh, M. Shlmanska, and J. Khaber, *Khim. Geterotsikl. Soedin.*, **1995**, 90.
- 443. V. S. Misra and V. K. Saxena, *J. Indian Chem. Soc.*, **1978**, *55*, 719.
- 444. M. C. Bindal, H. R. Batra, and N. S. Sekhon, *J. Indian Chem. Soc.*, **1978**, *55*, 905.
- 445. S. D. Samant and R. A. Kulkarni, *J. Indian Chem. Soc.*, **1979**, *56*, 1002.
- 446. S. D. Samant and R. A. Kulkarni, *J. Indian. Chem. Soc.*, **1981**, *58*, 692.
- 447. J. V. d'Souza, *J. Indian Chem. Soc.*, **1984**, *61*, 885.
- 448. S. Ahmed, R. Yasmeen, A. K. Saxena, K. Shanker, and K. P. Bhargava, *J. Indian Chem. Soc.*, **1985**, *62*, 241.
- 449. G. Venkateshwarlu and A. K. Murthy, *J. Indian Chem. Soc.*, **1997**, *74*, 648.
- 450. R. L. Smith, D. W. Cochran, P. Gund, and E. J. Cragoe, *J. Am. Chem. Soc.*, **1979**, *101*, 191.
- 451. R. M. Williams, O. P. Anderson, R. W. Armstrong, J. Josey, H. Meyers, and C. Eriksson, *J. Am. Chem. Soc.*, **1982**, *104*, 6092.
- 452. W. Kaim, *J. Am. Chem. Soc.*, **1983**, *105*, 707.
- 453. R. M. Williams, J.-S. Dung, J. Josey, R. W. Armstrong, and H. Meyers, *J. Am. Chem. Soc.*, **1983**, *105*, 3214.
- 454. M. J. S. Dewar and D. R. Kuhn, *J. Am. Chem. Soc.*, **1984**, *106*, 5256.
- 455. G. Eberlein, T. C. Bruice, R. A. Lazarus, R. Henrie, and S. J. Benkovic, *J. Am. Chem. Soc.*, **1984**, *106*, 7916.
- 456. D. J. Raber and W. Rodriguez, *J. Am. Chem. Soc.*, **1985**, *107*, 4146.
- 457. J. Baumgarten, C. Bessenbacher, W. Kaim, and T. Stahl, *J. Am. Chem. Soc.*, **1989**, *111*, 2126.
- 458. K. B. Wiberg, D. Nakaji, and C. M. Breneman, *J. Am. Chem. Soc.*, **1989**, *111*, 4178.
- 459. M. H. Gelb, Y. Lin, M. A. Pickard, Y. Song, and J. C. Vederas, *J. Am. Chem. Soc.*, **1990**, *112*, 4932.
- 460. P. A. Goodson, A. R. Oki, J. Glerup, and D. J. Hodgson, *J. Am. Chem. Soc.*, **1990**, *112*, 6248.
- 461. S. Prathapan, K. E. Robinson, and W. C. Agosta, *J. Am. Chem. Soc.*, **1992**, *114*, 1838.
- 462. D. J. Cram, H.-J. Choi, J. A. Bryant, and C. B. Knobler, *J. Am. Chem. Soc.*, **1992**, *114*, 7748.
- 463. A. Ogawa, N. Takami, M. Sekiguchi, I. Ryu, N. Kambe, and N. Sonoda, *J. Am. Chem. Soc.*, **1992**, *114*, 8729.
- 464. R. J. Bergeron, O. Phanstiel, G. W. Yao, S. Milstein, and W. R. Weimar, *J. Am. Chem. Soc.*, **1994**, *116*, 8479.
- 465. U. von Krosigk and S. A. Benner, *J. Am. Chem. Soc.*, **1995**, *117*, 5361.
- 466. A. Alexakis, J.-P. Tranchier, N. Lensen, and P. Mangeney, *J. Am. Chem. Soc.*, **1995**, *117*, 10767.
- 467. S. Rajappa and R. Sreenivasan, *Tetrahedron Lett.*, **1978**, 2217.
- 468. L. A. Lucia, D. G. Witten, and K. S. Schanze, *J. Am. Chem. Soc.*, **1996**, *118*, 3057.
- 469. D. A. P. Delnoye, R. P. Sijbesma, J. A. J. M. Vekemans, and E. W. Meijer, *J. Am. Chem. Soc.*, **1996**, *118*, 8717.
- 470. J. C. Phelan, N. J. Skelton, A. C. Braisted, and R. S. McDowell, *J. Am. Chem. Soc.*, **1997**, *119*, 455.
- 471. S. Kobayashi, T. Furuta, T. Hayashi, M. Nishijima, and K. Hanada, *J. Am. Chem. Soc.*, **1998**, *120*, 908.
- 472. M. J. O. Anteunis, *Bull. Soc. Chim. Belg.*, **1978**, *87*, 627.
- 473. I. Flament, P. Sonnay, and G. Ohloff, *Bull. Soc. Chim. Belg.*, **1979**, *88*, 941.
- 474. L. I. M. Spiessens and M. J. O. Anteunis, *Bull. Soc. Chim. Belg.*, **1980**, *89*, 205.
- 475. R. Malini and V. Krishnan, *Bull. Soc. Chim. Belg.*, **1980**, *89*, 359.
- 476. G. Maury, D. Meziane, D. Srairi, J.-P. Paugan, and P. Paugam, *Bull. Soc. Chim. Belg.*, **1982**, *91*, 153.
- 477. M. J. O. Anteunis, N. G. C. Hosten, F. A. M. Borremans, and D. K. Tavernier, *Bull. Soc. Chim. Belg.*, **1983**, *92*, 999.
- 478. M. Regitz, G. Weise, B. Lenz, U. Förster, K. Urgast, and G. Maas, *Bull. Soc. Chim. Belg.*, **1985**, *94*, 499.
- 479. W. L. Collibee and J.-P. Anselme, *Bull. Soc. Chim. Belg.*, **1986**, *95*, 655.
- 480. M. Gelbcke and D. Tytgat, *Bull. Soc. Chim. Belg.*, **1993**, *102*, 67.
- 481. D. M. Vandenberghe and G. J. Hoornaert, *Bull. Soc. Chim. Belg.*, **1994**, *103*, 185.
- 482. G. Hoornaert, *Bull. Soc. Chim. Belg.*, **1994**, *103*, 583.
- 483. Z. Yongxin, E. Roets, R. Busson, G. Janssen, and J. Hoogmartens, *Bull. Soc. Chim. Belg.*, **1997**, *106*, 67.
- 484. C. G. Kruse, P. B. M. W. M. Timmermans, C. van der Laken, and A. van der Gen, *Recl. Trav. Chim. Pays-Bas*, **1978**, *97*, 151.
- 485. C. G. Kruse, F. L. Jonkers, V. Dert, and A. van der Gen, *Recl. Trav. Chim. Pays-Bas*, **1979**, *98*, 371.
- 486. R. E. van der Stoel, H. C. van der Plas, H. Jongejan, and L. Hoeve, *Recl. Trav. Chim. Pays-Bas*, **1980**, *99*, 234.
- 487. C. G. Kruse, J. J. Troost, P. Cohen-Fernandes, H. van der Linden, and J. D. van Loon, *Recl. Trav. Chim. Pays-Bas*, **1988**, *107*, 303.
- 488. M. Kočevar, S. Polanc, B. Verček, and M. Tišler, *Recl. Trav. Chim. Pays-Bas*, 1988, 107, 366.
- 489. J. Raap, C. M. van der Wielen, and J. Lugtenburg, *Recl. Trav. Chim. Pays-Bas*, **1990**, *109*, 277.
- 490. G. D. H. Dijkstra, *Recl. Trav. Chim. Pays-Bas*, **1993**, *112*, 151.
- 491. J. J. Cappon, K. D. Witters, J. Baart, P. J. E. Verdegem, A. C. Hoek, R. J. H. Luiten, J. Raap, and J. Lugtenburg, *Recl. Trav. Chim. Pays-Bas*, **1994**, *113*, 318.
- 492. S. Kaban and N. Öcal, *Recl. Trav. Chim. Pays-Bas*, **1996**, *115*, 377.
- 493. F. Devinsky, I. Lacko, D. Mlynarčik, and L. Krasnec, *Collect. Czech. Chem. Commun.*, 1982, *47*, 1130.
- 494. J. Jilek, J. Pomykáček, Z. Prošek, J. Holubek, E. Svátek, J. Metyšová, A. Dlabač, and M. Protiva, *Collect. Czech. Chem. Commun.*, **1983**, *48*, 906.
- 495. Z. Polivka, J. Holubek, J. Metyš, Z. Šedivý, and M. Protiva, *Collect. Czech. Chem. Commun.*, **1983**, *48*, 3433.
- 496. I. Červena and M. Protiva, *Collect. Czech. Chem. Commun.*, **1984**, 49, 1009.
- 497. R. Kada, V. Knoppová, J. Kováč, and I. Maleňáková, *Collect. Czech. Chem. Commun.*, 1984, *49*, 2496.
- 498. S. Kafka, J. Čermák, T. Novák, F. Pudil, I. Viden, and M. Ferles, *Collect. Czech. Chem. Commun.*, **1985**, *50*, 1201.
- 499. V. Valenta, J. Holubek, E. Svátek, and M. Protiva, *Collect. Czech. Chem. Commun.*, **1987**, *52*, 3013.
- 500. T. Vontor, K. Palát, and A. Lycˇka, *Collect. Czech. Chem. Commun.*, **1989**, *54*, 1306.
- 501. V. Valenta, J. Holubek, E. Svátek, O. Matoušová, J. Metyšová, and M. Protiva, Collect. Czech. *Chem. Commun.*, **1990**, *55*, 1297.
- 502. V. Kmoniček, E. Svátek, J. Holubek, M. Ryska, M. Valchář, and M. Protiva, Collect. Czech. *Chem. Commun.*, **1990**, *55*, 1817.
- 503. K. Dlabal, K. Palát, A. Lycˇka, and Z. Odlerová, *Collect. Czech. Chem. Commun.*, **1990**, *55*, 2493.
- 504. W. Ried and T. Russ, *Collect. Czech. Chem. Commun.*, **1991**, *56*, 2288.
- 505. K. Dlabal, M. Doležal, and M. Macháček, *Collect. Czech. Chem. Commun.*, 1993, 58, 452.
- 506. R. Friary, A. T. McPhail, and V. Seidl, *Collect. Czech. Chem. Commun.*, **1993**, *58*, 1133.
- 507. M. Doležal, J. Hartl, and M. Macháček, *Collect. Czech. Chem. Commun.*, **1994**, 59, 2562.
- 508. M. Doležal, J. Hartl, A. Lyčka, V. Buchta, and Z. Odlerová, *Collect. Czech. Chem. Commun.*, **1995**, *60*, 1236.
- 509. V. Opletalová, A. Patel, M. Boulton, A. Dundrová, E. Lacinová, M. Prevorová, M. Appeltauerová, and M. Coufalová, *Collect. Czech. Chem. Commun.*, **1996**, *61*, 1093.
- 510. M. Doležal, J. Hartl, A. Lyčka, V. Buchta, and Ž. Odlerová, *Collect. Czech. Chem. Commun.*, **1996**, *61*, 1102.
- 511. J. Hartl, M. Doležal, J. Krinková, A. Lyčka, and Ž. Odlerová, Collect. Czech. Chem. Commun., **1996**, *61*, 1109.
- 512. U. Schöllkopf, W. Hartwig, U. Groth, and K.-O. Westphalen, *Liebigs Ann. Chem.*, **1981**, 696.
- 513. H. A. Staab and W. K. Appel, *Liebigs Ann. Chem.*, **1981**, 1065.
- 514. R. Gottlieb and W. Pfleiderer, *Liebigs Ann. Chem.*, **1981**, 1451.
- 515. U. Schöllkopf, U. Groth, and W. Hartwig, *Liebigs Ann. Chem.*, **1981**, 2407.
- 516. U. Groth, Y.-C. Chiang, and U. Schöllkopf, *Liebigs Ann. Chem.*, **1982**, 1756.
- 517. U. Schöllkopf, U. Groth, M.-R. Gull, and J. Nozulak, *Liebigs Ann. Chem.*, **1983**, 1133.
- 518. H. Neunhoeffer, G. Köhler, and H.-J. Degen, *Liebigs Ann. Chem.*, **1985**, 78.
- 519. U. Schöllkopf, R. Lonsky, and P. Lehr, *Liebigs Ann. Chem.*, **1985**, 413.
- 520. H.-J. Neubauer, J. Baeza, J. Freer, and U. Schöllkopf, *Liebigs Ann. Chem.*, **1985**, 1508.
- 521. M. Grauert and U. Schöllkopf, *Liebigs Ann. Chem.*, **1985**, 1817.
- 522. T. Weihrauch and D. Leibfritz, *Liebigs Ann. Chem.*, **1985**, 1917.
- 523. L. Capuano, W. Hell, and C. Wamprecht, *Liebigs Ann. Chem.*, **1986**, 132.
- 524. D. Lloyd, C. Reichardt, and M. Struthers, *Liebigs Ann. Chem.*, **1986**, 1368.
- 525. U. Schöllkopf, U. Busse, R. Lonsky, and R. Hinrichs, *Liebigs Ann. Chem.*, **1986**, 2150.
- 526. U. Schöllkopf and J. Bardenhagen, *Liebigs Ann. Chem.*, **1987**, 393.
- 527. U. Schöllkopf and J. Schröder, *Liebigs Ann. Chem.*, **1988**, 87.
- 528. U. Schöllkopf, K.-O. Westphalen. J. Schröder, and K. Horn, *Liebigs Ann. Chem.*, **1988**, 781.
- 529. U. Schöllkopf, R. Wick, R. Hinrichs, and M. Lange, *Liebigs Ann. Chem.*, **1988**, 1025.
- 530. W. Ried and G. Tsiotis, *Liebigs Ann. Chem.*, **1988**, 1197.
- 531. J. Mittendoff, *Liebigs Ann. Chem.*, **1988**, 1201.
- 532. U. Schöllkopf and T. Beulshausen, *Liebigs Ann. Chem.*, **1989**, 223.
- 533. W. Ried, C.-H. Lee, and J. W. Bats, *Liebigs Ann. Chem.*, **1989**, 497.
- 534. U. Groth, U. Schöllkopf, and T. Tiller, *Liebigs Ann. Chem.*, **1991**, 857.
- 535. T. Beulshausen, U. Groth, and U. Schöllkopf, *Liebigs Ann. Chem.*, **1991**, 1207.
- 536. U. Groth, W. Halfbrodt, and U. Schöllkopf, *Liebigs Ann. Chem.*, **1992**, 351.
- 537. T. Beulshausen, U. Groth, and U. Schöllkopf, *Liebigs Ann. Chem.*, **1992**, 523.
- 538. U. Groth, C. Schmeck, and U. Schöllkopf, *Liebigs Ann. Chem.*, **1993**, 321.
- 539. U. Groth, T. Huhn, B. Porsch, C. Schmeck, and U. Schöllkopf, *Liebigs Ann. Chem.*, **1993**, 715.
- 540. F. R. Heirtzer, M. Neuburger, M. Zehnder, and E. C. Constable, *Liebigs Ann. Chem.*, **1997**, 297.
- 541. V. A. Reznikov and L. B. Volodarsky, *Liebigs Ann. Chem.*, **1997**, 1035.
- 542. G. Schulz and W. Steglich, *Chem. Ber.*, **1980**, *113*, 770.
- 543. K. Heyns, E. Behse, and W. Francke, *Chem. Ber.*, **1981**, *114*, 240.
- 544. H. Gnichtel, B. Schmitt, and G. Schunk, *Chem. Ber.*, **1981**, *114*, 2536.
- 545. S. Tobias, P. Schmitt, and H. Günther, *Chem. Ber.*, **1982**, *115*, 2015.
- 546. H. Langhals and S. Pust, *Chem. Ber.*, **1985**, *118*, 4674.
- 547. B. Lintner, D. Schweitzer, R. Benn, A. Rufińska, and F. W. Hänel, *Chem. Ber.*, **1985**, *118*, 4907.
- 548. H. D. Hausen, A. Schulz, and W. Kaim, *Chem. Ber.*, **1988**, *121*, 2059.
- 549. C. Bassenbacher, W. Kaim, and T. Stahl, *Chem. Ber.*, **1989**, *122*, 933.
- 550. U. Eiermann, C. Krieger, F. A. Neugebauer, and H. A. Staab, *Chem. Ber.*, **1990**, *123*, 523.
- 551. A. Maquestiau, E. Anders, A. Mayence, and J.-J. V. Eynde, *Chem. Ber.*, **1991**, *124*, 2013,
- 552. A. Lichtblau, A. Ehlend, H.-D. Hausen, and W. Kaim, *Chem. Ber.*, **1995**, *128*, 745.
- 553. G. Huber, N. W. Mitzel, A. Schier, and H. Schmidbaur, *Chem. Ber.*, **1997**, *130*, 1159.
- 554. H. Alper and T. Sakakibara, *Can. J. Chem.*, **1979**, *57*, 1541.
- 555. J. Ackrell, E. Galeazzi, J. M. Muchowski, and L. Tökés, *Can. J. Chem.*, **1979**, *57*, 2696.
- 556. R. K. Boyd, J. Comper, and G. Ferguson, *Can. J. Chem.*, **1979**, *57*, 3056.
- 557. B. Marçot, A. Rabaron, C. Viel, C. Bellec, S. Deswarte, and P. Maitte, *Can. J. Chem.*, **1981**, *59*, 1224.
- 558. J. Armand, L. Boulares, K. Chekir, and V. Bellec, *Can. J. Chem.*, **1981**, *59*, 3237.
- 559. J. Armand, C. Bois, M. Philoche-Levisalles, M.-J. Pouet, and M.-P. Simonnin, *Can. J. Chem.*, **1982**, *60*, 349.
- 560. J. Bourguignon, S. Chapelle, A. Granger, and G. Queguiner, *Can. J. Chem.*, **1982**, *60*, 2668.
- 561. R. Beugelmans, L. Benadjila-Iguertsira, J. Chastanet, G. Negron, and G. Roussi, *Can. J. Chem.*, **1985**, *63*, 725.
- 562. M. Comeau, M.-T. Béraldin, E. C. Vauthier, and S. Fliszár, *Can. J. Chem.*, **1985**, *63*, 3226.
- 563. T. W. S. Lee and R. Stewart, *Can. J. Chem.*, **1986**, *64*, 1085.
- 564. M. Muneer, P. V. Kamat, and M. V. George, *Can. J. Chem.*, **1990**, *68*, 969.
- 565. P. Politzer, M. E. Grice, J. S. Murray, and J. M. Seminario, *Can. J. Chem.*, **1993**, *71*, 1123.
- 566. K. Isobe, Y. Nakamura, and S. Kawaguchi, *Bull. Chem. Soc. Jpn.*, **1980**, *53*, 139.
- 567. A. Sera, H. Yamada, and K. Itoh, *Bull. Chem. Soc. Jpn.*, **1980**, *53*, 219.
- 568. T. Kuroi, Y. Gondo, M. Kuwabara, R. Shimada, and Y. Kanda, *Bull. Chem. Soc. Jpn.*, **1981**, *54*, 2243.
- 569. A. Sera, K. Itoh, H. Yamada, and R. Aoki, *Bull. Chem. Soc. Jpn.*, **1981**, *54*, 3453.
- 570. M. Tada, H. Hamazaki, and H. Hirano, *Bull. Chem. Soc. Jpn.*, **1982**, *55*, 3865.
- 571. G. E. H. Elgemeie, H. A. Elfahham, S. A. S. Ghozlan, and M. H. Elnagdi, *Bull. Chem. Soc. Jpn.*, **1984**, *57*, 1650.
- 572. K. Itoh, H. Yamada, and A. Sera, *Bull. Chem. Soc. Jpn.*, **1984**, *57*, 2140.
- 573. H. Tanaka, G.-E. Matsubayashi, and T. Tanaka, *Bull. Chem. Soc. Jpn.*, **1984**, *57*, 2198.
- 574. N. Sato and M. Kobayashi, *Bull. Chem. Soc. Jpn.*, **1984**, *57*, 3015.
- 575. T. Nishio, N. Nakajima, M. Kondo, and Y. Omote, *Bull. Chem. Soc. Jpn.*, **1985**, *58*, 1337.
- 576. M. Yamaura, T. Suzuki, H. Hashimoto, J. Yoshimura, T. Okamoto, and C.-G. Shin, *Bull. Chem. Soc. Jpn.*, **1985**, *58*, 1413.
- 577. K. Kawashiro, S. Morimoto, and H. Yoshida, *Bull. Chem. Soc. Jpn.*, **1985**, *58*, 1903.
- 578. N. Yahiro and S. Ito, *Bull. Chem. Soc. Jpn.*, **1986**, *59*, 321.
- 579. K. Itoh and A. Sera, *Bull. Chem. Soc. Jpn.*, **1986**, *59*, 479.
- 580. H. Suzuki, T. Kawaguchi, and K. Takaoka, *Bull. Chem. Soc. Jpn.*, **1986**, *59*, 665.
- 581. K. Isobe, K. Nanjo, Y. Nakamura, and S. Kawaguchi, *Bull. Chem. Soc. Jpn.*, **1986**, *59*, 2141.
- 582. K. Matsumoto, T. Uchida, Y. Ikemi, T. Tanaka, M. Asahi, T. Kato, and H. Konishi, *Bull. Chem. Soc. Jpn.*, **1987**, *60*, 3645.
- 583. H. Nakamura and T. Goto, *Bull. Chem. Soc. Jpn.*, **1988**, *61*, 3776.
- 584. T. Hieida, M. Maehara, Y. Nibu, H. Shimada, and R. Shimada, *Bull. Chem. Soc. Jpn.*, **1989**, *62*, 925.
- 585. K. Teranishi and T. Goto, *Bull. Chem. Soc. Jpn.*, **1989**, *62*, 2009.
- 586. K. Teranishi and T. Goto, *Bull. Chem. Soc. Jpn.*, **1990**, *63*, 3132.
- 587. Y. Toya, T. Kayano, K. Sato, and T. Goto, *Bull. Chem. Soc. Jpn.*, **1992**, *65*, 2475.
- 588. J. Ohkanda, T. Tokumitsu, K. Mitsuhashi, and A. Katoh, *Bull. Chem. Soc. Jpn.*, **1993**, *66*, 841.
- 589. T. Sakakibara, Y. Ohwaki, and N. Sato, *Bull. Chem. Soc. Jpn.*, **1993**, *66*, 1149.
- 590. A. Takeuchi, H. Komiya, T. Tsutsumi, Y. Hashimoto, M. Hasegawa, Y. Iitaka, and K. Saigo, *Bull. Chem. Soc. Jpn.*, **1993**, *66*, 2987.
- 591. K. Saigo, M. Sukegawa, Y. Maekawa, and M. Hasegawa, *Bull. Chem. Soc. Jpn.*, **1995**, *68*, 2355.
- 592. P. M. Manoury, A. P. Dumas, H. Najer, D. Branceni, M. Prouteau, and F. M. Lefevre-Borg, *J. Med. Chem.*, **1979**, *22*, 554.
- 593. N. E. Springarn and A. C. Sartorelli, *J. Med. Chem.*, **1979**, *22*, 1314.
- 594. J. J. Baldwin, E. L. Engelhardt, R. Hirschmann, G. S. Ponticello, J. G. Atkinson, B. K. Wasson, C. S. Sweet, and A. Scriabine, *J. Med. Chem.*, **1980**, *23*, 65.
- 595. J. W. H. Watthey, M. Desai, R. Rutledge, and R. Dotson, *J. Med. Chem.*, **1980**, *23*, 690.
- 596. D. T. Witiak, B. K. Trivedi, L. B. Campolito, B. S. Zwilling, and N. A. Reiches, *J. Med. Chem.*, **1981**, *24*, 1329.
- 597. H. A. Parish, R. D. Gilliom, W. P. Purcell, R. K. Browne, R. F. Spirk, and H. D. White, *J. Med. Chem.*, **1982**, *25*, 98.
- 598. T.-C. Lee, P. L. Chello, T.-C. Chou, M. A. Templeton, and J. C. Parham, *J. Med. Chem.*, **1983**, *26*, 283.
- 599. W. C. Lumma, R. C. Randall, E. L. Cresson, J. R. Huff, R. D. Hartman, and T. F. Lyon, *J. Med. Chem.*, **1983**, *26*, 357.
- 600. W. S. Saari, D. W. Cochran, Y. C. Lee, E. L. Cresson, J. P. Springer, M. Williams, J. A. Totaro, and G. G. Yarbrough, *J. Med. Chem.*, **1983**, *26*, 564.
- 601. J. W. H. Watthey, T. Gavin, M. Desai, B. M. Finn, R. K. Rodebaugh, and S. L. Patt, *J. Med. Chem.*, **1983**, *26*, 1116.
- 602. W. S. Saari, W. Halczenko, S. W. King, J. R. Huff, J. P. Guare, C. A. Hunt, W. C. Randall, P. S. Anderson, V. J. Lotti, D. A. Taylor, and B. V. Clineschmidt, *J. Med. Chem.*, **1983**, *26*, 1696.
- 603. J. P. Scovill, D. L. Klayman, C. Lambros, G. E. Childs, and J. D. Notsch, *J. Med. Chem.*, **1984**, *27*, 87.
- 604. C. Sablayrolles, G. H. Cros, J. C. Milhavet, E. Rechenq, J.-P. Chapat, M. Boucard, J. J. Serrano, and J. H. McNeill, *J. Med. Chem.*, **1984**, *27*, 206.
- 605. S. W. Schneller, R. D. Thompson, J. G. Cory, R. A. Olsson, E. de Clercq, I.-K. Kim, and P. K. Chiang, *J. Med. Chem.*, **1984**, *27*, 924.
- 606. M. J. Ashton, A. Ashford, A. H. Loveless, D. Riddell, J. Salmon, and G. V. W. Stevenson, *J. Med. Chem.*, **1984**, *27*, 1245.
- 607. G. D. Hartman, R. D. Hartman, J. E. Schwering, W. S. Saari, E. L. Engelhardt, N. R. Jones, P. Wardman, M. E. Watts, and M. Woodcock, *J. Med. Chem.*, **1984**, *27*, 1634.
- 608. H. Foks and M. Janowiec, *Acta Pol. Pharm*, **1978**, *35*, 143; *Chem. Abstr.*, **1979**, *90*, 6352.
- 609. D. T. Witiak, R. V. Nair, and F. A. Schmid, *J. Med. Chem.*, **1985**, *28*, 1228.
- 610. R. A. Lyon, M. Titeler, J. D. McKenney, P. S. Magee, and R. A. Glennon, *J. Med. Chem.*, **1986**, *29*, 630.
- 611. M. G. Bock, R. L. Smith, E. H. Blaine, and E. J. Cragoe, *J. Med. Chem.*, **1986**, *29*, 1540.
- 612. E. C. Bigham, G. K. Smith, J. F. Reinhard, W. R. Mallory, C. A. Nichol, and R. W. Morrison, *J. Med. Chem.*, **1987**, *30*, 40.
- 613. W. G. Eberlein, G. Trummlitz, W. W. Engel, G. Schmidt, H. Pelzer, and N. Mayer, *J. Med. Chem.*, **1987**, *30*, 1378.
- 614. M. Ogata, H. Matsumoto, S. Kida, S. Shimizu, K. Tawara, and Y. Kawamura, *J. Med. Chem.*, **1987**, *30*, 1497.
- 615. S. F. Campbell and R. M. Plews, *J. Med. Chem.*, **1987**, *30*, 1794.
- 616. J. J. Kaminski, J. M. Hilbert, B. M. Pramanik, D. M. Solomon, D. J. Conn, R. K. Rizvi, A. J. Elliott, H. Guzik, R. G. Lovey, M. S. Domalski, S.-C. Wong, C. Puchalski, E. H. Gold, J. F. Long, P. J. S. Chiu, and A. T. McPhail, *J. Med. Chem.*, **1987**, *30*, 2031.
- 617. J. S. New, J. P. Yevich, D. L. Temple, K. B. New, S. M. Gross, R. F. Schlemmer, M. S. Eison, D. P. Taylor, and L. A. Riblet, *J. Med. Chem.*, **1988**, *31*, 618.
- 618. J. Bordner, S. F. Campbell, M. J. Palmer, and M. S. Tute, *J. Med. Chem.*, **1988**, *31*, 1036.
- 619. S. Morishita, T. Saito, Y. Hirai, M. Shoji, Y. Mishima, and M. Kawakami, *J. Med. Chem.*, **1988**, *31*, 1205.
- 620. W. A. Spitzer, F. Victor, G. D. Pollock, and J. S. Hayes, *J. Med. Chem.*, **1988**, *31*, 1590.
- 621. M. P. Wentland, R. B. Perni, P. H. Dorf, and J. B. Rake, *J. Med. Chem.*, **1988**, *31*, 1694.
- 622. F. Haviv, J. D. Ratajczyk, R. W. de Net, F. A. Kerdesky, R. L. Walters, S. P. Schmidt, J. H. Holms, P. R. Young, and G. W. Carter, *J. Med. Chem.*, **1988**, *31*, 1719.
- 623. E. W. Thomas, E. E. Nishizawa, D. C. Zimmermann, and D. J. Williams, *J. Med. Chem.*, **1989**, *32*, 228.
- 624. C. E. Spivak, Y. S. Yadav, W.-C. Shang, M. Hermsmeier, and T. M. Gund, *J. Med. Chem.*, **1989**, *32*, 305.
- 625. J. E. Arrowsmith, S. F. Campbell, P. E. Cross, R. A. Burges, and D. G. Gardiner, *J. Med. Chem.*, **1989**, *32*, 562.
- 626. W. E. Meyer, A. S. Tomcufcik, P. S. Chan, and M. Haug, *J. Med. Chem.*, **1989**, *32*, 593.
- 627. J. R. Bagley, R. L. Wynn, F. G. Rudo, B. M. Doorley, H. K. Spencer, and T. Spaulding, *J. Med. Chem.*, **1989**, *32*, 663.
- 628. M. Abou-Gharbia, J. A. Moyer, U. Patel, M. Webb, G. Schiehser, T. Andree, and J. T. Haskins, *J. Med. Chem.*, **1989**, *32*, 1024.
- 629. S. J. Dominianni and T. T. Yen, *J. Med. Chem.*, **1989**, *32*, 2301.
- 630. C. B. Ziegler, P. Bitha, N. A. Kuck, T. J. Fenton, P. J. Petersen, and Y. I. Lin, *J. Med. Chem.*, **1990**, *33*, 142.
- 631. R. F. Brown, M. D. Kinnick, J. M. Morin, R. T. Vasileff, F. T. Counter, E. O. Davidson, P. W. Ensminger, J. A. Eudaly, J. S. Kasher, A. S. Katner, R. E. Koehler, K. D. Kurz, T. D. Lindstrom, W. H. W. Lunn, D. A. Preston, J. L. Ott, J. F. Quay, J. K. Shadle, M. I. Steinberg, J. F. Stucky, J. K. Swartzendruber, J. R. Turner, J. A. Webber, W. E. Wright, and K. M. Zimmerman, *J. Med. Chem.*, **1990**, *33*, 2114.
- 632. D. A. Roberts, R. H. Bradbury, D. Brown, A. Faull, D. Griffiths, J. S. Major, A. A. Oldham, R. J. Pearce, A. H. Ratcliffe, J. Revill, and D. Waterson, *J. Med. Chem.*, **1990**, *33*, 2326.
- 633. J. J. Howbert, C. S. Grossman, T. A. Crowell, B. J. Rieder, R. W. Harper, K. E. Kramer, E. V. Tao, J. Aikins, G. A. Poore, S. M. Rinzel, G. B. Grindey, W. N. Shaw, and G. C. Todd, *J. Med. Chem.*, **1990**, *33*, 2393.
- 634. A. Mertens, W. G. Friebe, B. Müller-Beckmann, W. Kampe, L. Kling, and W. von der Saal, *J. Med. Chem.*, **1990**, *33*, 2870.
- 635. M. Saxena, S. K. Agarwal, G. K. Patnaik, and A. K. Saxena, *J. Med. Chem.*, **1990**, *33*, 2970.
- 636. J. C. Jaen, L. D. Wise, T. G. Heffner, T. G. Pugsley, and L. T. Meltzer, *J. Med. Chem.*, **1991**, *34*, 248.
- 637. R. A. Glennon, M. Y. Yousif, A. D. Ismaiel, M. B. El-Ashmawy, J. L. Herndon, J. B. Fischer, A. C. Server, and K. J. Burke-Howie, *J. Med. Chem.*, *J. Med. Chem.*, **1991**, *34*, 3360.
- 638. L. J. Street, R. Baker, T. Book, A. J. Reeve, J. Saunders, T. Wilson, R. S. Marwood, S. Patel, and S. B. Freedman, *J. Med. Chem.*, **1992**, *35*, 295.
- 639. M. H. Cynamon, S. P. Klemens, T.-S. Chou, R. H. Gimi, and J. T. Welch, *J. Med. Chem.*, **1992**, *35*, 1212.
- 640. P. A. Bonnet, A. Michel, F. Laurent, C. Sablayrolles, E. Rechencq, J. C. Mani, M. Boucard, and J. P. Chapat, *J. Med. Chem.*, **1992**, *35*, 3353.
- 641. L. C. Meurer, R. L. Tolmam, E. W. Chapin, R. Saperstein, P. P. Vicario, M. M. Zrada, and M. MacCoss, *J. Med. Chem.*, **1992**, *35*, 3845.
- 642. J. S. Ward, L. Merritt, V. J. Klimkowski, M. L. Lamb, C. H. Mitch, F. B. Bymaster, B. Sawyer, H. E. Shannon, P. H. Oleson, T. Honoré, M. J. Sheardown, and P. Sauerberg, *J. Med. Chem.*, **1992**, *35*, 4011.
- 643. E. Carceller, C. Almansa, M. Merlos, M. Giral, J. Bartroli, J. Garcia-Rafanell, and J. Forn, *J. Med. Chem.*, **1992**, *35*, 4118.
- 644. A. Naylor, D. B. Judd, J. E. Lloyd, D. K. Scopes, A. G. Hayes, and P. J. Birch, *J. Med. Chem.*, **1993**, *36*, 2075.
- 645. A. K. Ghosh, W. J. Thompson, M. K. Holloway, S. P. McKee, T. T. Duong, H. Y. Lee, P. M. Munson, A. M. Smith, J. M. Wai, P. L. Darke, J. A. Zugay, E. A. Emini, W. A. Schleif, J. R. Huff, and P. S. Anderson, *J. Med. Chem.*, **1993**, *36*, 2300.
- 646. M. Winn, B. De, T. M. Zydowsky, R. J. Altenbach, F. Z. Basha, S. A. Boyd, M. E. Brune, S. A. Buckner, D.-A. Crowell, I. Drizin, A. A. Hancock, H.-S. Jae, J. A. Kester, J. V. Lee, R. A. Nantei, K. C. Marsh, E. I. Novosad, K. W. Oheim, S. H. Rosenberg, K. Shiosaki, B. K. Sorensen, K. Spina, G. M. Sullivan, A. S. Tasker, T. W. von Geldern, R. B. Warner, T. J. Opgenorth, D. J. Kerkman, and J. F. deBernardia, *J. Med. Chem.*, **1993**, *36*, 2676.
- 647. M. J. Ashton, D. C. Cook, G. Fenton, J.-A. Karlsson, M. N. Palfreyman, D. Raeburn, A. J. Ratcliffe, J. E. Souness, S. Thurairatnam, and N. Vicker, *J. Med. Chem.*, **1994**, *37*, 1696.
- 648. P. Bardel, A. Bolanos, and H. Kohn, *J. Med. Chem.*, **1994**, *37*, 4567.
- 649. N. J. S. Harmat, R. Giorgi, F. Bonaccorsi, G. Cerbai, S. M. Colombani, A. R. Renzetti, R. Cirillo, A. Subissi, G. Alogona, C. Ghio, F. Arcamone, A. Giachetti, F. Paleari, and A. Salimbeni, *J. Med. Chem.*, **1995**, *38*, 2925.
- 650. C. R. Ganellin, S. K. Hosseini, Y. S. Khalaf, W. Tertiuk, J.-M. Arrang, M. Garbarg, X. Ligneau, and J.-C. Schwartz, *J. Med. Chem.*, **1995**, *38*, 3342.
- 651. M. H. Cynamon, R. Gimi, F. Gyenes, C. A. Sharpe, K. E. Bergmann, H. J. Han, L. V. Gregor, R. Rapoli, G. Luciano, and J. T. Welch, *J. Med. Chem.*, **1995**, *38*, 3902.
- 652. T. M. Williams, T. M. Ciccarone, S. C. MacTough, R. L. Bock, M. W. Conner, J. P. Davide, K. Hamilton, K. S. Koblan, N. E. Kohl, A. M. Kral, S. D. Mosser, C. A. Omer, D. L. Pumpliano, E. Rands, M. D. Schaber, D. Shah, F. R. Wilson, J. B. Gibbs, S. L. Graham, G. D. Hartman, A. I. Oliff, and R. L. Smith, *J. Med. Chem.*, **1996**, *39*, 1345.
- 653. J. J. Li, M. B. Norton, E. J. Reinhard, G. D. Anderson, S. A. Gregory, P. C. Isakson, C. M. Koboldt, J. L. Masferrer, W. E. Perkins, K. Seibert, Y. Zhang, B. S. Zweifel, and D. B. Reitz, *J. Med. Chem.*, **1996**, *39*, 1846.
- 654. Y. Naito, F. Akahoshi, S. Takeda, T. Okada, M. Kajii, H. Nishimura, M. Sugiura, C. Fukaya, and Y. Kagitani, *J. Med. Chem.*, **1996**, *39*, 3019.
- 655. Q. Li, D. T. W. Chu, A. Claiborne, C. S. Cooper, C. M. Lee, K. Raye, K. B. Berst, P. Donner, W. Wang, L. Hasvold, A. Fung, Z Ma, M. Tufano, R. Flamm, L. L. Shen, J. Baronowski, A. Nilius, J. Alder, J. Meulbroek, K. Marsh, D.-A. Crowell, Y. Hui, L. Seif, L. M. Melcher, R. Henry, S. Spanton, R. Faghih, L. L. Klein, S. K. Tanaka, and J. J. Plattner, *J. Med. Chem.*, **1996**, *39*, 3070.
- 656. K. E. Bergmann, M. H. Cynamon, and J. T. Welch, *J. Med. Chem.*, **1996**, *39*, 3394.
- 657. D. J. Brown, in *Mechanisms of Molecular Migrations*, vol. 1 (Editor B. S. Thyagarajan), Wiley, New York, 1968, p. 209.
- 658. D. E. Jane, D. J. Chalmers, J. A. K. Howard, I. C. Kilpatrick, D. C. Sunter, G. A. Thompson, P. M. Udvarhelyi, C. Wilson, and J. C. Watkins, *J. Med. Chem.*, **1996**, *39*, 4738.
- 659. A. Thurkauf, J. Yuan, X. Chen, X. S. He, J. W. F. Wasley, A. Hutchison, K. H. Woodruff, R. Meade, D. C. Hoffman, H. Donovan, and D. K. Jones-Hertzog, *J. Med. Chem.*, **1997**, *40*, 1.
- 660. Y. E. Ahmad, E. Laurent, P. Maillet, A. Talab, J. F. Teste, R. Dokhan, G. Tran, and R. Ollivier, *J. Med. Chem.*, **1997**, *40*, 952.
- 661. R. H. Bradbury, C. Bath, R. J. Butlin, M. Dennis, C. Heys, S. J. Hunt, R. James, A. A. Mortlock, N. F. Sumner, E. K. Tang, B. Telford, E. Whiting, and C. Wilson, *J. Med. Chem.*, **1997**, *40*, 996.
- 662. M. Rowley, I. Collins, A. B. Broughton, W. B. Davey, R. Baker, F. Emms, R. Marwood, S. Patel, S. Patel, C. I. Ragan, S. B. Freedman, R. Ball, and P. D. Leeson, *J. Med. Chem.*, **1997**, *40*, 2374.
- 663. J. Stürzebecher, D. Prasa, J. Hauptmann, H. Vieweg, and P. Wikström, *J. Med. Chem.*, **1997**, *40*, 3091.
- 664. J. Easmon, G. Heinisch, G. Pürstinger, T. Langer, J. K. Österreicher, H. H. Grunicke, and J. Hofmann, *J. Med. Chem.*, **1997**, *40*, 4420.
- 665. H. Sugihara, H. Fukushi, T. Miyawaki, Y. Imai, Z.-I. Terashita, M. Kawamura, Y. Fujisawa, and S. Kita, *J. Med. Chem.*, **1998**, *41*, 489.
- 666. A. Cappelli, M. Anzini, S. Vomero, L. Mennuni, M. Makovec, E. Doucet, M. Hamon, G. Bruni, M. R. Romeo, M. C. Menziani, P. G. de Benedetti, and T. Langer, *J. Med. Chem.*, **1998**, *41*, 728.
- 667. J. A. Walker, H. W. Liu, D. S. Wise, J. C. Drach, and L. B. Townsend, *J. Med. Chem.*, **1998**, *41*, 1236.
- 668. C. Corral, J. Lissavetsky, and R. Madronero, *Eur. J. Med. Chem.*, **1978**, *13*, 389.
- 669. V. Ambrogi, P. Cozzi, P. Sanjust, L. Bertone, P. P. Lovisolo, V. Briatico-Vangosa, and R. Angelucci, *Eur. J. Med. Chem.*, **1980**, *15*, 157.
- 670. T. Sekiya, H. Hiranuma, T. Kanayama, and S. Hata, *Eur. J. Med. Chem.*, **1980**, *15*, 317.
- 671. R. Tomatis, S. Salvadori, and G. P. Sarto, *Eur. J. Med. Chem.*, **1981**, *16*, 229.
- 672. D. L. Klayman, J. P. Scovill, J. F. Bartosevich, and C. J. Mason, *Eur. J. Med. Chem.*, **1981**, *16*, 317.
- 673. P.-A. Bonnet, C. Sablayrolles, J.-P. Chapat, B. Soulie, M. Simeon de Bouchberg, G. Dusart, and M. Attisso, *Eur. J. Med. Chem.*, **1983**, *18*, 413.
- 674. J. H. Barnes, M. Fatome, G. F. Esslemont, and C. E. L. Jones, *Eur. J. Med. Chem.*, **1983**, *18*, 515.
- 675. E. Abignente, F. Arena, P. de Caprariis, R. Patscot, E. Marmo, E. Lampa, and F. Rossi, *Eur. J. Med. Chem.*, **1985**, *20*, 79.
- 676. P. Cozzi, A. Pillan, L. Bertone, U. Branzoli, P. P. Lovisolo, and A. Chiari, *Eur. J. Med. Chem.*, **1985**, *20*, 241.
- 677. E. Raviña, G. Garcia-Mera, L. Santana, F. Orallo, and J. M. Calleja, *Eur. J. Med. Chem.*, **1985**, *20*, 475.
- 678. K. G. Grozinger, R. J. Sorcek, and J. T. Oliver, *Eur. J. Med. Chem.*, **1985**, *20*, 487.
- 679. G. L. Regnier, C. G. Guillonneau, J. L. Duhault, F. P. Tisserand, G. Saint-Romas, and S. M. Holstorp, *Eur. J. Med. Chem.*, **1987**, *22*, 243.
- 680. R. J. Ife, K. W. Catchpole, G. D. Durant, C. R. Ganellin, C. A. Harvey, M. L. Meeson, D. A. A. Owen, M. E. Parsons, B. P. Slingsby, and C. J. Theobald, *Eur. J. Med. Chem.*, **1989**, *24*, 249.
- 681. P. Barraclough, R. M. Beams, J. W. Black, D. Cambridge, D. Collard, D. A. Demaine, D. Firmin, V. P. Gerskowitch, R. C. Glen, H. Giles, A. P. Hill, R. A. D. Hull, R. Iyer, W. R. King, D. J. Livingstone, M. S. Nobbs, P. Randall, G. Shah, S. J. Vine, and M. V. Whiting, *Eur. J. Med. Chem.*, **1990**, *25*, 467.
- 682. S. Robert-Piessard, D. Leblois, P. Kumar, J. M. Robert, G. le Baut, L. Sparfel, B. Robert, E. Khettab, R. Y. Sanchez, J. Y. Petit, and L. Welin, *Eur. J. Med. Chem.*, **1990**, *25*, 737.
- 683. G. Ferrand, H. Dumas, and J. Decerprit, *Eur. J. Med. Chem.*, **1992**, *27*, 309.
- 684. J. F. Lagorce, F. Comby, J. Buxeraud, and C. Raby, *Eur. J. Med. Chem.*, **1992**, *27*, 359.
- 685. J. J. Bosc, C. Jarry, A. Carpy, E. Panconi, and P. Descas, *Eur. J. Med. Chem.*, **1992**, *27*, 437.
- 686. R. Jonas, H. Prücher, and H. Wurziger, *Eur. J. Med. Chem.*, **1993**, *28*, 141.
- 687. I. Érczi, G. Rablóczky, A. Varró, I. G. Somogy, M. Kürthy, and I. Bódy, *Eur. J. Med. Chem.*, **1993**, *28*, 185.
- 688. E. Abignente, P. de Caprariis, M. G. Rimoli, L. Avallone, L. Gomez-Paloma, F. Rossi, M. d'Amico, V. Calderaro, and C. Parrillo, *Eur. J. Med. Chem.*, **1993**, *28*, 337.
- 689. O. G. Todoulou, A. E. Papadaki-Valiraki, E. C. Filippatos, S. Ikeda, and E. de Clercq, *Eur. J. Med. Chem.*, **1994**, *29*, 127.
- 690. C. Rognon and M. Chastrette, *Eur. J. Med. Chem.*, **1994**, *29*, 595.
- 691. G. Ferrand, H. Dumas, J. C. Depin, and Y. Quentin, *Eur. J. Med. Chem.*, **1996**, *31*, 273.
- 692. P. Zlatoidsky´ and T. Maliar, *Eur. J. Med. Chem.*, **1996**, *31*, 669.
- 693. M. G. Rimoli, L. Avallone, P. de Caprariis, E. Luraschi, E. Abignente, W. Filippelli, L, Berrino, and R. Rossi, *Eur. J. Med. Chem.*, **1997**, *32*, 195.
- 694. R. Perrone, F. Berardi, N. A. Colabufo, V. Tortorella, M. G. Fornaretto, C. Caccia, and R. A. McArthur, *Eur. J. Med. Chem.*, **1997**, *32*, 739.
- 695. C. T. Bahner, L. M. Rives, S. W. McGaha, D. Rutledge, D. Ford, E. Gooch, D. Westberry, D. Ziegler, and R. Ziegler, *Arzneim.-Forsch.*, **1981**, *31*, 404.
- 696. A. Kreutzberger and R. Kochanowski, *Arzneim.-Forsch.*, **1987**, *37*, 999.
- 697. S. Gubert, M. A. Brasó, A. Sacristán, and J. A. Ortiz, *Arzneim.-Forsch.*, **1987**, *37*, 1103.
- 698. J. F. Lagorce, T. Moulard, and C. Raby, *Arzneim.-Forsch.*, **1992**, *42*, 314.
- 699. C. Ochoa, J. Rodriguez, M. López-Garcia, A. Ramón-Martinez, and M. Mercedes-Martinez, *Arzneim.-Forsch.*, **1996**, *46*, 643.
- 700. K.-H. Ongania, *Arch. Pharm. (Weinheim, Ger.)*, **1979**, *312*, 958.
- 701. K. Therling and P. Tinapp, *Arch. Pharm. (Weinheim, Ger.)*, **1979**, *312*, 1042.
- 702. J. Schmidt and G. Zinner, *Arch. Pharm. (Weinheim, Ger.)*, **1980**, *313*, 174.
- 703. P. Pachaly and H.-J. Pelzer, *Arch. Pharm. (Weinheim, Ger.)*, **1983**, *316*, 653.
- 704. H. Mertens, R. Troschütz, and H. J. Roth, *Arch. Pharm. (Weinheim, Ger.)*, **1986**, *319*, 161.
- 705. H. Egg, I. Ganzera, H. Leibetseder, A. Patzak, and U. Sperl, *Arch. Pharm. (Weinheim, Ger.)*, **1986**, *319*, 682.
- 706. H. Egg, U. Gnauer, and B. Hambrusch, *Arch. Pharm. (Weinheim, Ger.)*, **1987**, *320*, 673.

- 707. S. Corsano, G. Strappaghetti, and L. Brasili, *Arch. Pharm. (Weinheim, Ger.)*, **1988**, *321*, 171.
- 708. G. Seitz and H. Wassmuth, *Arch. Pharm. (Weinheim, Ger.)*, **1990**, *323*, 89.
- 709. P. Barraclough, J. W. Black, D. Cambridge, V. P. Gerskowitch, R. A. D. Hull, R. Lyer, W. R. King, C. O. Kneen, M. S. Nobbs, G. P. Shah, S. Smith, S. J. Vine, and M. V. Whiting, *Arch. Pharm. (Weinheim, Ger.)*, **1990**, *323*, 501.
- 710. P. Barraclough, J. W. Black, D. Cambridge, D. A. Demaine, V. P. Gerskowitch, H. Giles, A. P. Hill, R. A. D. Hull, R. Lyer, W. R. King, D. J. Livingstone, M. S. Nobbs, P. Randall, G. P. Shah, and M. V. Whiting, *Arch. Pharm. (Weinheim, Ger.)*, **1990**, *323*, 507.
- 711. M. A. Hassan, S. E. Zayed, W. N. El-Gaziri, and S. A. Metwally, *Arch. Pharm. (Weinheim, Ger.)*, **1991**, *324*, 185.
- 712. A. Alivert, F. Canals, J.-J. Bonet, V. Gómez-Parra, and F. Sánchez-Alonso, *Arch. Pharm. (Weinheim, Ger.)*, **1991**, *324*, 559.
- 713. T. Russ, W. Ried, F. Ullrich, and E. Mutschler, *Arch. Pharm. (Weinheim, Ger.)*, **1992**, *325*, 761.
- 714. K. Hartke, and A. Brutsch, *Arch. Pharm. (Weinheim, Ger.)*, **1993**, *326*, 63.
- 715. J. J. Bosc, I. Forfar, C. Jarry, M. Laguerre, and A. Carpy, *Arch. Pharm. (Weinheim, Ger.)*, **1994**, *327*, 187.
- 716. J. Easmon, G. Heinisch, W. Holzer, and B. Matuszczak, *Arch. Pharm. (Weinheim, Ger.)*, **1995**, *328*, 307.
- 717. K. Kiec-Kononowicz, X. Ligneau, H. Stark, J.-C. Schwartz, and W. Schunack, *Arch. Pharm. (Weinheim, Ger.)*, **1995**, *328*, 445.
- 718. P. Frohberg, M. Wiese, and P. Nuhn, *Arch. Pharm. (Weinheim, Ger.)*, **1997**, *330*, 47.
- 719. D. Ranft, G. Lehwark-Yvetot, K.-J. Schaper, and A. Büge, *Arch. Pharm. (Weinheim, Ger.)*, **1997**, *330*, 169.
- 720. M. W. Majchrzak, A. Kotelko, R. Guryn, J. B. Lambert, A. Szadowska, and K. Kowalczyk, *J. Pharm. Sci.*, **1983**, *72*, 304.
- 721. M. J. Kornet and J. Y.-R. Chu, *J. Pharm. Sci.*, **1983**, *72*, 1213.
- 722. P. L. Dutta and W. O. Foye, *J. Pharm. Sci.*, **1990**, *79*, 447.
- 723. C. Yamagami, N. Takao, and T. Fujita, *J. Pharm. Sci.*, **1991**, *80*, 772.
- 724. C. Yamagami, N. Takao, and T. Fujita, *J. Pharm. Sci.*, **1993**, *82*, 155.
- 725. A. W. Cuthbert and J. M. Edwardson, *J. Pharm. Pharmacol.*, **1979**, *31*, 382.
- 726. H. Rosowsky, R. A. Forsch, S. F. Queener, and J. R. Bertino, *Pteridines*, **1997**, *8*, 173.
- 727. M. J. Perry, J. F. Makins, M. W. Adlard, and G. Holt, *J. Gen. Microbiol.*, **1984**, *130*, 319.
- 728. O. Shimomura, B. Musiki, and Y. Kishi, *Biochem. J.*, **1989**, *261*, 913.
- 729. S. J. Chavan, W. G. Bornmann, C. Flexner, and H. J. Prochaska, *Arch. Biochem. Biophys.*, **1995**, *324*, 143.
- 730. A. A. Schilt, N. Mohamed, and F. H. Case, *Talanta*, **1979**, *26*, 85.
- 731. A. A. Schilt, P. C. Quinn, and C. L. Johnson, *Talanta*, **1979**, *26*, 373.
- 732. H. Lutz and W. Pfleiderer, *Croat. Chem. Acta*, **1986**, *59*, 199.
- 733. S. W. Schneller, J. L. May, and E. de Clercq, *Croat. Chem. Acta*, **1986**, *59*, 307.
- 734. J. W. Brown, D. T. Hurst, J. P. O'Donovan, and D. Coates, *Liq. Cryst.*, **1994**, *17*, 689.
- 735. J. W. Brown, D. T. Hurst, J. P. O'Donovan, D. Coates, and J. D. Bunning, *Liq. Cryst.*, **1995**, *19*, 765.
- 736. S. Mihara, H. Masuda, O. Nishimura, and H. Tateba, *J. Agric. Food Chem.*, **1990**, *38*, 465.
- 737. G. B. Barlin, I. L. Brown, L. Golič, and V. Kaučič, *Aust. J. Chem.*, **1982**, 35, 423.
- 738. G. B. Barlin, D. J. Brown, Z. Kadunc, A. Petrič, B. Stanovnik, and M. Tišler, *Aust. J. Chem.*, **1983**, *36*, 1215.
- 739. G. B. Barlin, L. P. Davies, S. J. Ireland, M. M. L. Ngu, and J. Zhang, *Aust. J. Chem.*, **1992**, *45*, 877.

- 740. M. Devys, M. Barbier, A. Kollmann, and J.-F. Bousquet, *Phytochemistry*, **1992**, *31*, 4393.
- 741. M. Barbier, M. Devys, J.-F. Bousquet, and A. Kollmann, *Phytochemistry*, **1994**, *35*, 955.
- 742. H. Kawagishi, A. Tanaka, K. Sugiyama, H. Mori, H. Sakamoto, Y. Ishiguro, K. Kobayashi, and M. Uramoto, *Phytochemistry*, **1996**, *42*, 547.
- 743. S. Rajappa and M. V. Natekar, *Adv. Heterocycl. Chem.*, **1993**, *57*, 187.
- 744. G. W. H. Cheeseman and R. A. Goswin, *J. Chem. Soc. (C)*, **1971**, 2977.
- 745. T. Hino and T. Sato, *Chem. Pharm. Bull.*, **1974**, *22*, 2866.
- 746. D. L. Evans, D. K. Minster, U. Jordis, S. M. Hecht, A. L. Mazzu, and A. I. Meyers, *J. Org. Chem.*, **1979**, *44*, 497.
- 747. Y. Ohtsuka, *J. Org. Chem.*, **1979**, *44*, 827.
- 748. T. Huynh-Dinh, R. S. Sarfati, C. Gouyette, J. Igolen, E. Bisagni, J.-M. Lhoste, and A. Civier, *J. Org. Chem.*, **1979**, *44*, 1028.
- 749. S. K. Vohra, G. W. Harrington, D. E. Zacharias, and D. Swern, *J. Org. Chem.*, **1979**, *44*, 1128.
- 750. A. F. Sowinski and G. M. Whitesides, *J. Org. Chem.*, **1979**, *44*, 2369.
- 751. V. Bhat and M. V. George, *J. Org. Chem.*, **1979**, *44*, 3288.
- 752. Y. Ohtsuka, E. Tohma, S. Kojima, and N. Tomita, *J. Org. Chem.*, **1979**, *44*, 4871.
- 753. R. J. Bergeron and P. Hoffman, *J. Org. Chem.*, **1980**, *45*, 161.
- 754. R. J. Bergeron and P. G. Hoffman, *J. Org. Chem.*, 1980, *45*, 163.
- 755. Y. Houminer, *J. Org. Chem.*, **1980**, *45*, 999.
- 756. J. Vansant, G. Smets, J. P. Declercq, G. Germain, and M. van Meerssche, *J. Org. Chem.*, **1980**, *45*, 1557.
- 757. J. Vansant, S. Toppet, G. Smets, J. P. Declercq, and M. van Meerssche, *J. Org. Chem.*, **1980**, *45*, 1565.
- 758. S. Fujii, M. Matsumoto, and H. Kobatake, *J. Org. Chem.*, **1980**, *45*, 1693.
- 759. E. C. Taylor and D. J. Dumas, *J. Org. Chem.*, **1980**, *45*, 2485.
- 760. R. M. Williams and W. H. Rastetter, *J. Org. Chem.*, **1980**, *45*, 2625.
- 761. A. J. Elliott and M. S. Gibson, *J. Org. Chem.*, **1980**, *45*, 3677.
- 762. R. A. Swaringen, J. F. Eaddy, and T. R. Henderson, *J. Org. Chem.*, **1980**, *45*, 3986.
- 763. S. S. Singer, G. M. Singer, and B. B. Cole, *J. Org. Chem.*, **1980**, *45*, 4931.
- 764. T. N. Wade and R. Khéribet, *J. Org. Chem.*, **1980**, *45*, 5333.
- 765. W. W. Paudler and R. M. Sheets, *J. Org. Chem.*, **1980**, *45*, 5421.
- 766. D. R. Carver, A. P. Komin, J. S. Hubbard, and J. F. Wolfe, *J. Org. Chem.*, **1981**, *46*, 294.
- 767. E. C. Taylor and D. J. Dumas, *J. Org. Chem.*, **1981**, *46*, 1394.
- 768. Y. Shvo and E. D. Kaufman, *J. Org. Chem.*, **1981**, *46*, 2148.
- 769. C. Temple, J. D. Rose, and J. A. Montgomery, *J. Org. Chem.*, **1981**, *46*, 3666.
- 770. W. C. Lumma and J. P. Springer, *J. Org. Chem.*, **1981**, *46*, 3735.
- 771. S. Fukuzumi and J. K. Kochi, *J. Org. Chem.*, **1981**, *46*, 4116.
- 772. P. A. Jacobi, M. Martinelli, and E. C. Taylor, *J. Org. Chem.*, **1981**, *46*, 5416.
- 773. E. C. Taylor and D. J. Dumas, *J. Org. Chem.*, **1982**, *47*, 116.
- 774. M. A. Fox, D. M. Lemal, D. W. Johnson, and J. R. Hohman, *J. Org. Chem.*, **1982**, *47*, 398.
- 775. E. C. Taylor and L. A. Reiter, *J. Org. Chem.*, **1982**, *47*, 528.
- 776. E. C. Taylor, C.-P. Tseng, and J. B. Rampal, *J. Org. Chem.*, **1982**, *47*, 552.
- 777. C. O. Okafor, *J. Org. Chem.*, **1982**, *47*, 592.
- 778. J. A. Grina, M. R. Ratcliffe, and F. R. Stermitz, *J. Org. Chem.*, **1982**, *47*, 2648.
- 779. D. L. Kleyer and T. H. Koch, *J. Org. Chem.*, **1982**, *47*, 3145.

- 780. D. L. Kleyer, R. C. Haltiwanger, and T. H. Koch, *J. Org. Chem.*, **1983**, *48*, 147.
- 781. L. A. Carpino, E. M. E. Mansour, C. H. Cheng, R. W. Williams, R. MacDonald, J. Knapczyk, M. Carman, and A. Lopusi´nski, *J. Org. Chem.*, **1983**, *48*, 661.
- 782. W. W. Paudler and M. V. Jovanovic, *J. Org. Chem.*, **1983**, *48*, 1064.
- 783. D. R. Carver, T. D. Greenwood, J. S. Hubbard, A. P. Komin, Y. P. Sachdeva, and J. F. Wolfe, *J. Org. Chem.*, **1983**, *48*, 1180.
- 784. R. L. Basfield and Y. Houminer, *J. Org. Chem.*, **1983**, *48*, 2130.
- 785. J. Armand, C. Bellec, L. Boulares, and J. Pinson, *J. Org. Chem.*, **1983**, *48*, 2847.
- 786. J. T. Gupton, J. P. Idoux, G. Baker, C. Colon, A. D. Crews, C. D. Jurss, and R. C. Rampi, *J. Org. Chem.*, **1983**, *48*, 2933.
- 787. J. P. Idoux, J. T. Gupton, C. K. McCurry, A. D. Crews, C. D. Jurss, C. Colon, and R. C. Rampi, *J. Org. Chem.*, **1983**, *48*, 3771.
- 788. G. D. Hartman, R. D. Hartman, and D. W. Cochran, *J. Org. Chem.*, **1983**, *48*, 4119.
- 789. T. Fukunaga and R. W. Begland, *J. Org. Chem.*, **1984**, *49*, 813.
- 790. C. L. Klein, R. J. Majeste, A. E. Luedtke, W. J. Ray, E. D. Stevens, and J. W. Timberlake, *J. Org. Chem.*, **1984**, *49*, 1208.
- 791. R. A. Olofson, J. T. Martz, J.-P. Senet, M. Piteau, and T. Malfroot, *J. Org. Chem.*, **1984**, *49*, 2081.
- 792. D. S. Kemp and P. E. McNamara, *J. Org. Chem.*, **1984**, *49*, 2286.
- 793. Y. Houminer, *J. Org. Chem.*, **1985**, *50*, 786.
- 794. R. Buchan, M. Fraser, and P. V. S. K. T. Lin, *J. Org. Chem.*, **1985**, *50*, 1324.
- 795. E. M. Beccalli, A. Manfredi, and A. Marchesini, *J. Org. Chem.*, **1985**, *50*, 2372.
- 796. H. Aoyama, M. Ohnota, M. Sakamoto, and Y. Omote, *J. Org. Chem.*, **1986**, *51*, 247.
- 797. B. Podányi, I. Hermecz, and A. Horváth, *J. Org. Chem.*, **1986**, *51*, 2988.
- 798. P. K. Subramanian and R. W. Woodward, *J. Org. Chem.*, **1987**, *52*, 15.
- 799. G. Lunn, *J. Org. Chem.*, **1987**, *52*, 1043.
- 800. E. K. Moltzen, M. P. Kramer, A. Senning, and K. J. Klabunde, *J. Org. Chem.*, **1987**, *52*, 1156.
- 801. Y. Houminer, R. A. Fenner, H. V. Secor, and J. T. Seeman, *J. Org. Chem.*, **1987**, *52*, 3971.
- 802. E. C. Taylor and P. S. Ray, *J. Org. Chem.*, 1987, *52*, 3997; **1988**, *53*, 3396.
- 803. W. Hartwig and L. Born, *J. Org. Chem.*, **1987**, *52*, 4352.
- 804. T. P. Holler, A. Spaltenstein, E. Turner, R. E. Klevit, B. M. Shapiro, and P. B. Hopkins, *J. Org. Chem.*, **1987**, *52*, 4420.
- 805. J.-F. Peyronel, O. Samuel, and J.-C. Fiaud, *J. Org. Chem.*, **1987**, *52*, 5320.
- 806. E. C. Taylor and P. S. Ray, *J. Org. Chem.*, **1988**, *53*, 35.
- 807. Y. Kamitori, M. Hojo, R. Masuda, T. Fujitani, S. Ohara, and T. Yokoyama, *J. Org. Chem.*, **1988**, *53*, 129.
- 808. W. J. Thompson, J. H. Jones, P. A. Lyle, and J. E. Thies, *J. Org. Chem.*, **1988**, *53*, 2052.
- 809. A. Kubo, N. Saito, H. Yamato, K. Masubuchi, and M. Nakamura, *J. Org. Chem.*, **1988**, *53*, 4295.
- 810. R. J. Chorvat and K. J. Rorig, *J. Org. Chem.*, **1988**, *53*, 5779.
- 811. E. C. Taylor and A. L. Sabb, *J. Org. Chem.*, **1988**, *53*, 5839.
- 812. I. R. Green and G. R. Delpierre, *S. Afr. J. Chem.*, **1977**, *30*, 183; *Chem Abstr.*, **1979**, *90*, 6349.
- 813. P. K. Subramanian, D. M. Kalvin, K. Ramalingam, and R. W. Woodard, *J. Org. Chem.*, **1989**, *54*, 270.
- 814. S. M. Rida, A. S. Issa, and Y. A. Beltagy, *Pharmazie*, **1978**, *33*, 711; *Chem. Abstr.*, **1979**, *90*, 103920.
- 815. Y. Houminer, E. W. Southwick, and D. L. Williams, *J. Org. Chem.*, **1989**, *54*, 640.
- 816. G. V. Shishkin and V. I. Vysochin, *Izv. Sb. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk*, **1978**, 113; *Chem. Abstr.*, **1979**, *90*, 121541.
- 817. M. J. Chapdelaine, P. J. Warwick, and A. Shaw, *J. Org. Chem.*, **1989**, *54*, 1218.
- 818. S. Groszkowski and L. Korzycka, *Pol. J. Chem.*, **1978**, *52*, 2229; *Chem. Abstr.*, **1979**, *90*, 137767.
- 819. T. P. Holler, F. Ruan, A. Spaltenstein, and P. B. Hopkins, *J. Org. Chem.*, **1989**, *54*, 4570.
- 820. V. Y. Temkina, T. M. Sushitskaya, N. V. Tsirul'nikova, and S. V. Rykov, *Tr. Vses. Nauchno-Issled. Inst. Khim. Reakt. Osobo Chist. Khim. Veshchestv*, **1977**, *39*, 3; *Chem. Abstr.*, **1979**, *90*, 151528.
- 821. F. Minisci, E. Vismara, and F. Fontana, *J. Org. Chem.*, **1989**, *54*, 5224.
- 822. P. Garner, F. Arya, and W.-B. Ho, *J. Org. Chem.*, **1990**, *55*, 412.
- 823. H. Foks and M. Janowiec, *Acta Pol. Pharm.*, **1978**, *35*, 281; *Chem. Abstr.*, **1979**, *90*, 168536.
- 824. E. A. Castro and C. Ureta, *J. Org. Chem.*, **1990**, *55*, 1676.
- 825. K. Mitsuhashi, T. Yanigida, A. Murakami, K. Oda, and S. Shiraishi, *Seikei Daigaku Kogakubu Kogaku Hokoku*, **1978**, *26*, 1867; *Chem. Abstr.*, **1979**, *90*, 168545.
- 826. M. Gorczyca, B. Lucka-Sobstel, A. Zejc, I. Zgorniak-Nowosielska, M. Marcieszewska, and A. Gatkiewitz, *Acta Pharm. Jugosl.*, **1978**, *28*, 143; *Chem. Abstr.*, **1979**, *90*, 186861.
- 827. B. Alcaide, J. Plumet, and M. A. Sierra, *J. Org. Chem.*, **1990**, *55*, 3143.
- 828. K.-C. Wang, S.-F. Lin, and T.-S. Wu, *Tai-wan Yao Hsueh Tsa Chih*, **1977**, *29*, 112; *Chem. Abstr.*, **1979**, *90*, 186903.
- 829. T. Tsuda, T. Kiyoi, and T. Saegusa, *J. Org. Chem.*, **1990**, *55*, 3388.
- 830. S. Yamashita, *Hoshi Yakka Daigaku Kiyo*, **1978**(20), 45; *Chem. Abstr.*, **1979**, *91*, 5198.
- 831. T. Izumi and A. Kasahara, *Yamagata Daigaku Kiyo, Kogaku*, **1979**, *15*, 213; *Chem. Abstr.*, **1979**, *91*, 32078.
- 832. R. J. Mattson and C. P. Sloan, *J. Org. Chem.*, **1990**, *55*, 3410.
- 833. H. Foks, *Acta Pol. Pharm.*, **1978**, *35*, 525; *Chem. Abstr.*, **1979**, *91*, 107954.
- 834. F. Freeman and D. S. H. L. Kim, *J. Org. Chem.*, **1991**, *56*, 657.
- 835. S. Baloniak, H. Blaszczak, E. Linkowska, A. Lukowski, A. Mroczkiewicz, and I. Zyczynska-Baloniak, *Ann. Pharm. (Poznan)*, **1978**, *13*, 69; *Chem. Abstr.*, **1980**, *92*, 41888.
- 836. E. C. Taylor and P. S. Ray, *J. Org. Chem.*, **1991**, *56*, 1812.
- 837. R. Tomatis, S. Salvadori, and M. Guarneri, *Farmaco, Ed. Sci.*, **1979**, *34*, 698; *Chem. Abstr.*, **1979**, *91*, 158092.
- 838. E. C. Taylor and R. Dötzer, *J. Org. Chem.*, **1991**, *56*, 1816.
- 839. G. Büchi and J. Galindo, *J. Org. Chem.*, **1991**, *56*, 2605.
- 840. N. F. Tyupalo, L. F. Budennaya, I. M. Nosalevich, V. A. Yakobi, and I. V. Romanov, *Vopr. Khim. Khim. Tekhnol.*, **1979**, *54*, 15; *Chem. Abstr.*, **1980**, *92*, 58731.
- 841. G. Cignarella, M. Loriga, and G. Paglietti, *Farmaco, Ed. Sci.*, **1979**, *34*, 817; *Chem. Abstr.*, **1980**, *92*, 76450.
- 842. F. Fontana, F. Minisci, M. C. N. Barbosa, and E. Vismara, *J. Org. Chem.*, **1991**, *56*, 2866.
- 843. G. Cignarella and G. Pirisano, *Farmaco, Ed. Sci.*, **1979**, *34*, 824; *Chem. Abstr.*, **1980**, *92*, 76451.
- 844. I. Zyczynska-Baloniak, R. Czajka, and E. Linkowska, *Pol. J. Chem.*, **1978**, *52*, 2461; *Chem. Abstr.*, **1980**, *92*, 94345.
- 845. T. Shono, N. Kise, E. Shirakawa, H. Matsumoto, and E. Okazaki, *J. Org. Chem.*, **1991**, *56*, 3063.
- 846. H.-C. Chiang and H.-S. Lin, *Hua Hsuch*, **1978**(3), 88; *Chem. Abstr.*, **1980**, *92*, 110959.
- 847. S.-C. Shim and J.-H. Cho, *Taehan Hwahakhoe Chi*, **1979**, *23*, 325; *Chem. Abstr.*, **1980**, *92*, 128091.
- 848. Y. Ito, H. Sato, and M. Murakami, *J. Org. Chem.*, **1991**, *56*, 4864.

- 849. H. Masuda, M. Tanaka, T. Akiyama, and T. Shibamoto, *J. Agric. Food Chem.*, **1980**, *28*, 244; *Chem. Abstr.*, **1980**, *92*, 128857.
- 850. F. Graviña, A. M. Costero, M. R. Andreu, and M. D. Ayet, *J. Org. Chem.*, **1991**, *56*, 5417.
- 851. E. Norris, *Adv. Exp. Med. Biol.*, **1978**, 119; *Chem. Abstr.*, **1980**, *92*, 190842.
- 852. K. Gollnick, S. Koegler, and D. Maurer, *J. Org. Chem.*, **1992**, *57*, 229.
- 853. L. Thunus, C. L. Lapiere, and A. Ghys, *Ann. Pharm. Fr.*, **1979**, *37*, 451; *Chem. Abstr.*, **1980**, *92*, 215232.
- 854. F. Piera, E. Seoane, and R. Mestres, *An. Quim.*, **1979**, *75*, 899; *Chem. Abstr.*, **1980**, *93*, 8131.
- 855. H. Tsukube, H. Minatogawa, M. Munakata, M. Toda, and K. Matsumoto, *J. Org. Chem.*, **1992**, *57*, 542.
- 856. M. Misra, J. C. Agarwal, V. K. Verma, K. Shanker, J. N. Sinha, K. Kishor, and K. P. Bhargava, *Indian J. Pharm. Sci.*, **1979**, *41*, 215; *Chem. Abstr.*, **1980**, *93*, 26384.
- 857. F. Freeman and D. S. H. L. Kim, *J. Org. Chem.*, **1992**, *57*, 550.
- 858. D. Pancechowska-Ksepko, J. Sawlewicz, J. Samulska, and M. Janowicz, *Acta Pol. Pharm.*, **1979**, *36*, 289; *Chem. Abstr.*, **1980**, *93*, 46589.
- 859. F. Gajewski and Z. Brzozowski, *Acta Pol. Pharm.*, **1979**, *36*, 283; *Chem. Abstr.*, **1980**, *93*, 46590.
- 860. D. E. Bierer, J. F. O'Connell, J. R. Parquette, C. M. Thompson, and H. Rapoport, *J. Org. Chem.*, **1992**, *57*, 1390.
- 861. L. S. Petrova, L. R. Davidenkov, and S. S. Medved, *Zh. Prikl. Khim. (Leningrad)*, **1980**, *53*, 199; *Chem. Abstr.*, **1980**, *93*, 46598.
- 862. G. A. Olah, M. B. Sassaman, M. Zuanic, C. B. Rao, G. K. S. Prakash, R. Gilardi, J. Flippen-Anderson, and C. George, *J. Org. Chem.*, **1992**, *57*, 1585.
- 863. K. Hirai, T. Ishiba, H. Sugimoto, and T. Fujishita, *Fukusokan Kagaku Toronkai Keon Yoshishu, 12th*, **1979**, 191; *Chem. Abstr.*, **1980**, *93*, 47171.
- 864. H. Foks and M. Janowiec, *Acta Pol. Pharm.*, **1979**, *36*, 155; *Chem. Abstr.*, **1980**, *93*, 95238.
- 865. M. G. Tutonda, S. F. Vandenberghe, K. J. van Aken, and G. J. Hoornaert, *J. Org. Chem.*, **1992**, *57*, 2935.
- 866. C. Miravitlles, X. Solans, G. Germain, and J. P. Declercq, *Cryst. Struct. Commun.*, **1980**, *9*, 621; *Chem. Abstr.*, **1980**, *93*, 141297.
- 867. J. J. Barlow, M. H. Block, J. A. Hudson, A. Leach, J. L. Longridge, B. G. Main, and S. Nicholson, *J. Org. Chem.*, **1992**, *57*, 5158.
- 868. A. S. Guram and R. F. Jordan, *J. Org. Chem.*, **1992**, *57*, 5994.
- 869. H. Kawata, S. Niizuma, and H. Kokubun, *J. Photochem.*, **1980**, *13*, 261; *Chem. Abstr.*, **1980**, *93*, 238247.
- 870. T.-S. Li and C.-K. Tai, *K'o Hsueh T'ung Pao*, **1980**, *25*, 593; *Chem. Abstr.*, **1981**, *94*, 30609.
- 871. J. Uenishi, T. Tanaka, K. Nishiwaki, S. Wakabayashi, S. Oae, and H. Tsukube, *J. Org. Chem.*, **1993**, *58*, 4382.
- 872. S. Zikolova, A. Bashikarova, and G. Sheikova, *Tr. Nauchnoizsled. Khim.-Farm. Inst.*, **1978**, *10*, 47; *Chem. Abstr.*, **1981**, *94*, 30707.
- 873. S. Zikolova, *Tr. Nauchnoizsled. Khim.-Farm. Inst.*, **1978**, *10*, 33; *Chem. Abstr.*, **1981**, *94*, 30706.
- 874. B. Alcaide, Y. Martin-Cantalejo, J. Rodriguez-López, and M. A. Sierra, *J. Org. Chem.*, **1993**, *58*, 4767.
- 875. J.-H. Zhao and M.-H. Wang, *Chung Ts'ao Yao*, **1980**, *11*, 198; *Chem. Abstr.*, **1981**, *94*, 65623.
- 876. W. ten Hoeve, C. G. Kruse, J. M. Luteyn, J. R. G. Thiecke, and H. Wynberg, *J. Org. Chem.*, **1993**, *58*, 5101.
- 877. S. C. Shim and S. K. Lee, *Bull. Korean Chem. Soc.*, **1980**, *1*, 68; *Chem. Abstr.*, **1981**, *94*, 102452.
- 878. S. Jung, S.-H. Lin, Y.-P. Che, J.-Y. Wang, and C.-Y. Wu, *Hua Hsueh Tung Pao*, **1980**, 341; *Chem. Abstr.*, **1981**, *94*, 103301.
- 879. H. L. Macfie, C. L. Colvin, and P. O. Anderson, *Drug Intell. Clin. Pharm.*, **1981**, *15*, 94; *Chem. Abstr.*, **1981**, *94*, 131724.
- 880. J. L. Gagnon, T. R. Walters, W. W. Zajac, and J. H. Buzby, *J. Org. Chem.*, **1993**, *58*, 6712.
- 881. J. Zamocka, D. Dvorackova, J. Heger, A. Nagy, and D. Mlynarcik, *Chem. Zvesti*, **1980**, *34*, 550; *Chem. Abstr.*, **1981**, *94*, 139741.
- 882. N. Desideri, F. Manna, M. L. Stein, F. Arena, E. Luraschi, and E. Cifra, *Farmaco, Ed. Sci.*, **1980**, *35*, 902; *Chem. Abstr.*, **1981**, *94*, 156462.
- 883. J. J. Voegel, U. von Krosigk, and S. A. Benner, *J. Org. Chem.*, **1993**, *58*, 7542.
- 884. E. Abignente, F. Arena, P. de Caprariis, R. Nuzzetti, E. Marmo, E. Lampa, F. Rosatti, and R. Ottavo, *Farmaco, Ed. Sci.*, **1981**, *36*, 61; *Chem. Abstr.*, **1981**, *94*, 156866.
- 885. M. Iovu and E. Ionescu, *Rev. Chim. (Bucharest)*, **1980**, *31*, 957; *Chem. Abstr.*, **1981**, *94*, 174494.
- 886. A. Mukherjee, S. A. M. Duggan, and W. C. Agosta, *J. Org. Chem.*, **1994**, *59*, 178.
- 887. R. K. Tiwari, N. Deo, and T. P. Singh, *J. Sci. Res, (Bhopal)*, **1980**, *2*, 161; *Chem. Abstr.*, **1981**, *94*, 183819.
- 888. F. Gajewski and Z. Brzozowski, *Acta Pol. Pharm.*, **1980**, *37*, 261; *Chem. Abstr.*, **1981**, *94*, 192269.
- 889. C. J. Rao and W. C. Agosta, *J. Org. Chem.*, **1994**, *59*, 2125.
- 890. C. Shim, *Kogaku Kenkyusho Shoho (Kanagawa Daigaku)*, **1980**, *3*, 9; *Chem. Abstr.*, **1981**, *94*, 192277.
- 891. B. Stanovnik, M. Tišler, N. Trček, and B. Verček, *Vestn. Slov. Kem. Drus.*, 1981, 28, 45.
- 892. H. Wild, *J. Org. Chem.*, **1994**, *59*, 2748.
- 893. R. N. Brogden, R. C. Heel, G. E. Pakes, T. M. Spreight, and G. S. Avery, *Drugs*, **1979**, *18*, 329; *Chem. Abstr.*, **1980**, *92*, 15007.
- 894. Y. V. Subba-Rao, S. J. Kulkarni, M. Subrahmanyam, and A. V. Rama-Rao, *J. Org. Chem.*, **1994**, *59*, 3998.
- 895. U. T. Mueller-Westerhoff and M. Zhou, *J. Org. Chem.*, **1994**, *59*, 4988.
- 896. C. Alvarez-Ibarra, R. Cuervo-Rodriguez, M. C. Fernández-Monreal, and M. P. Ruiz, *J. Org. Chem.*, **1994**, *59*, 7284.
- 897. J. Ohkanda and A. Katoh, *J. Org. Chem.*, **1995**, *60*, 1583.
- 898. J. A. Zoltewicz and M. P. Cruskie, *J. Org. Chem.*, **1995**, *60*, 3478.
- 899. N. Plé, A. Turck, K. Couture, and G. Quéguiner, *J. Org. Chem.*, **1995**, *60*, 3781.
- 900. G. Shapiro, D. Buechler, M. Marzi, K. Schmidt, and B. Gomez-Lor, *J. Org. Chem.*, **1995**, *60*, 4978.
- 901. T. Chiba, H. Sakagami, M. Murata, and M. Okimoto, *J. Org. Chem.*, **1995**, *60*, 6764.
- 902. R. Beugelmans, A. Bigot, M. Bois-Choussy, and J. Zhu, *J. Org. Chem.*, **1996**, *61*, 771.
- 903. D. Ramaiah, M. Muneer, K. R. Gopidas, P. K. Das, N. P. Rath, and M. V. George, *J. Org. Chem.*, **1996**, *61*, 4240.
- 904. M. Bois-Choussy, N. Neuville, R. Beugelmans, and J. Zhu, *J. Org. Chem.*, **1996**, *61*, 9309.
- 905. U. Schöllkopf, W. Hartwig, and U. Groth, *Angew. Chem.*, **1980**, *92*, 205.
- 906. U. Schöllkopf, W. Hatrwig, and U. Groth, *Angew. Chem.*, **1979**, *91*, 922.
- 907. W. Kaim, *Angew. Chem.*, **1980**, *92*, 940.
- 908. W. Kaim, *Angew. Chem.*, **1981**, *93*, 620.
- 909. W. Kaim, *Angew. Chem.*, **1981**, *93*, 621.
- 910. U. Schöllkopf, U. Groth, and C. Deng, *Angew. Chem.*, **1981**, *93*, 793.
- 911. U. Schöllkopf and U. Groth, *Angew. Chem.*, **1981**, *93*, 1022.
- 912. R. Gompper and W. Breitschaft, *Angew. Chem.*, **1983**, *95*, 727.
- 913. W. Kaim, *Angew. Chem.*, **1984**, *96*, 609.
- 914. R. Gross and W. Kaim, *Angew. Chem.*, 1984, *96*, 610.
- 915. G. Heinisch, G. Lötsch, and F. Vieböck, *Angew. Chem.*, **1985**, *97*, 694.
- 916. U. Schöllkopf, H.-J. Neubauer, and M. Hauptreif, *Angew. Chem.*, **1985**, *97*, 1065.
- 917. U. Schöllkopf, M. Hauptreif, J. Dippel, M. Nieger, and E. Egert, *Angew Chem.*, **1986**, *98*, 187.
- 918. U. Schöllkopf, R. Hinrichs, and R. Lonsky, *Angew. Chem.*, **1987**, *99*, 137.
- 919. U. Schöllkopf, W. Kühnle, Egert, and M. Dyrbusch, *Angew. Chem.*, **1987**, *99*, 480.
- 920. U. Schöllkopf, S. Grüttner, R. Anderskewitz, E. Egert, and M. Dyrbusch, *Angew. Chem.*, **1987**, *99*, 717.
- 921. U. Schöllkopf, D. Pettig, E. Schulze, M. Klinge, E. Egert, B. Benecke, and M. Noltemeyer, *Angew. Chem.*, **1988**, *100*, 1238.
- 922. J. Sundermeyer and H. W. Roesky, *Angew. Chem.*, **1988**, *100*, 1417.
- 923. U. Schöllkopf and J. Mittendorf, *Angew. Chem.*, **1989**, *101*, 633.
- 924. H. Wild and L. Born, *Angew. Chem.*, **1991**, *103*, 1729.
- 925. H. Bock, T. Vaupel, C. Näther, K. Ruppert, and Z. Havlas, *Angew. Chem.*, **1992**, *104*, 348.
- 926. A. Kiener, *Angew. Chem.*, **1992**, *104*, 748.
- 927. J. Bödeker and P. Köckritz, *J. Prakt. Chem.*, **1978**, *320*, 1043.
- 928. M. I. Terekhova, E. S. Petrov, M. A. Mikhaleva, O. P. Shkurko, V. P. Mamaev, and A. I. Shatenshtein, *Zh. Org. Khim.*, **1982**, *18*, 9.
- 929. A. T. Soldatenkov, M. V. Bagdadi, P. K. Radzhan, O. S. Brindkha, S. L. Edogiaverie, A. A. Fomichev, and N. S. Prostokov, *Zh. Org. Khim.*, **1983**, *19*, 1326.
- 930. O. P. Shvaika, N. I. Korotkikh, A. Y. Chervinskii, and V. N. Artemov, *Zh. Org. Khim.*, **1983**, *19*, 1728.
- 931. O. P. Petrenko, V. V. Lapachev, and V. P. Mamaev, *Zh. Org. Khim.*, **1988**, *24*, 1799.
- 932. O. P. Petrenko and V. V. Lapachev, *Zh. Org. Khim.*, **1988**, *24*, 1806.
- 933. R. N. Zagidullin, *Zh. Org. Khim.*, **1989**, *25*, 2198.
- 934. A. A. Bakibaev, A. Y. Yagovkin, and V. D. Filimonov, *Zh. Org. Khim.*, **1991**, *27*, 1512.
- 935. D. D. Nekrasov, S. V. Kol'tsova, and Y. S. Andreichikov, *Zh. Org. Khim.*, **1995**, *31*, 591.
- 936. L. V. Saloutina, A. Y. Zapevalov, M. I. Kodess, and V. I. Saloutin, *Zh. Org. Khim.*, **1997**, *33*, 299.
- 937. A. Inada and H. Heimgartner, *Helv. Chim. Acta*, **1982**, *65*, 1489.
- 938. C. Petermann and J. L. Fauchère, *Helv. Chim. Acta*, **1983**, *66*, 1513.
- 939. M. Barbier, *Helv. Chim. Acta*, **1986**, *69*, 152.
- 940. A. Heckel and W. Pfleiderer, *Helv. Chim. Acta*, **1986**, *69*, 708.
- 941. M. Lang, J.-P. Schoeni, C. Pont, and J.-P. Fleury, *Helv. Chim. Acta*, **1986**, *69*, 793.
- 942. M. Lang, A. Lacroix, C. Pont, and J.-P. Fleury, *Helv. Chim. Acta*, **1986**, *69*, 1025.
- 943. A. Heckel and W. Pfleiderer, *Helv. Chim. Acta*, **1986**, *69*, 1095.
- 944. M. Hugener and H. Heimgartner, *Helv. Chim. Acta*, **1989**, *72*, 172.
- 945. G. Bold, T. Allmandinger, P. Herold, L. Moesch, H.-P. Schaer, and R. O. Duthaler, *Helv. Chim. Acta*, **1992**, *75*, 865.
- 946. U. Urleb, R. Neidlein, and W. Kramer, *Helv. Chim. Acta*, **1993**, *76*, 431.
- 947. C. A. Obafemi and W. Pfleiderer, *Helv. Chim. Acta*, **1994**, *77*, 1549.
- 948. M. Hugener and H. Heimgartner, *Helv. Chim. Acta*, **1995**, *78*, 1490.
- 949. M. Hugener and H. Heimgartner, *Helv. Chim. Acta*, **1995**, *78*, 1823.
- 950. M. S. Ouali, M. Vaultier, and R. Carrié, *Bull. Soc. Chim. Fr.*, **1979**, II, 633.
- 951. L. Rondahl, *Acta Pharm. Suec.*, **1980**, *17*, 292; *Chem. Abstr.*, **1981**, *94*, 175044.
- 952. D. Pitre, R. M. Facino, M. Carini, and A. Carlo, *Pharmacol. Res. Commun.*, **1981**, *13*, 351; *Chem. Abstr.*, **1981**, *95*, 35194.
- 953. M. Baboulène, J.-L. Torregrosa, V. Spéziale, and A. Lattes, *Bull. Soc. Chim. Fr.*, **1980**, II, 565.
- 954. S. S. Singer, *IARC Sci. Publ.*, **1980**, *31*, 111; *Chem. Abstr.*, **1981**, *95*, 36813.
- 955. J. Casado, A. Castro, M. A. López-Quintela, and F. M. Lorenzo-Barral, *Bull. Soc. Chim. Fr.*, **1987**, 401.
- 956. H. Masuda, M. Yoshida, and T. Shibamoto, *J. Agric. Food. Chem.*, **1981**, *29*, 944; *Chem. Abstr.*, **1980**, *95*, 115454.
- 957. C.-Y. Yang and X.-M. Huang, *Fu-tan Hsueh Pao, Tzu Jan K'o Hsueh Pan*, **1980**, *19*, 390; *Chem. Abstr.*, **1981**, *95*, 132813.
- 958. M. Hugener and H. Heimgartner, *Helv. Chim. Acta*, **1995**, *78*, 1863.
- 959. T. Tanaka, *Ibaraki Daigaku Kogakubu Kinkyi Shuho*, **1980**, *28*, 117; *Chem. Abstr.*, **1981**, *95*, 187199.
- 960. J. Voegel and S. A. Benner, *Helv. Chim. Acta*, **1996**, *79*, 1863.
- 961. J. J. Brophy, G. W. K. Cavill, and W. D. Plant, *Insect Biochem.*, **1981**, *11*, 307; *Chem. Abstr.*, **1981**, *95*, 200804.
- 962. L. Natova, D. Mondeshka, and L. Zhelyazkov, *God. Vissh. Khim.-Tekhnol. Inst. Sofia*, **1978**, *24*, 47; *Chem. Abstr.*, **1981**, *95*, 220040.
- 963. J. C. Rodriguez-Ubis, R. Sedano, G. Barroso, O. Juanes, and E. Brunet, *Helv. Chim. Acta*, **1997**, *80*, 86.
- 964. T. G. Skillman, J. M. Feldman, and J. Z. Yetiv, *Recent Adv. Clin. Ther.*, **1981**, *1*, 121; *Chem. Abstr.*, **1982**, *96*, 45718.
- 965. C. Sablayrolles, A. Contastin, B. Ducourant, A. Fruchier, and J. P. Chapat, *Bull. Soc. Chim. Fr.*, **1989**, 467.
- 966. C. Drugarin and A. Drugarin, *Pharmazie*, **1981**, *36*, 647; *Chem. Abstr.*, **1982**, *96*, 52268.
- 967. A. A. Bilgen, *Doga, Seri C*, **1980**, *4*, 26; *Chem. Abstr.*, **1981**, *96*, 52270.
- 968. C. Drugarin and A. Drugarin, *Pharmazie*, **1981**, *36*, 647; *Chem. Abstr.*, **1982**, *96*, 52269.
- 969. D. Person and M. Le Corre, *Bull. Soc. Chim. Fr.*, **1989**, 673.
- 970. D. G. Vidt, *Pharmacotheraph (Carlisle, MA)*, **1981**, *1*, 179; *Chem. Abstr.*, **1982**, *96*, 62406.
- 971. T. Tsuda, K. Fujishima, and H. Ueda, *Agric. Biol. Chem.*, **1981**, *45*, 2129; *Chem. Abstr.*, **1982**, *96*, 68939.
- 972. W. Schroth, H. Kluge, R. Frach, W. Hodek, and H. D. Schädler, *J. Prakt. Chem.*, **1983**, *325*, 787.
- 973. S. L. Pendalwar, D. T. Chaudhari, and M. R. Patel, *Bull. Haffkine Inst.*, **1980**, *8*, 102; *Chem. Abstr.*, **1982**, *96*, 122757.
- 974. J. Bödeker, A. Köckritz, P. Köckritz, and R. Radeglia, *J. Prakt. Chem.*, **1985**, *327*, 723.
- 975. Y. Gok and O. Bekaroglu, *Synth. React. Inorg. Met.-Org. Chem.*, **1981**, *11*, 621; *Chem. Abstr.*, **1982**, *96*, 173303.
- 976. W. Freyer, *J. Prakt. Chem.*, **1994**, *336*, 690.
- 977. H. Cui and Y. Li, *Shenqwu Huaxue Yu Shengwu Wuli Jinzhan*, **1981**, *37*, 44; *Chem. Abstr.*, **1982**, *96*, 195977.
- 978. S. Zikolova and R. Konstantinova, *Farmatsiya (Sofia)*, **1981**, *31*, 1; *Chem. Abstr.*, **1982**, *96*, 199633.
- 979. D. Lindauer, R. Beckert, T. Billert, M. Döring, and H. Görls, *J. Prakt. Chem.*, **1995**, *337*, 508.
- 980. R. L. Buchanan and W. M. Houston, *J. Food Sci.*, **1982**, *47*, 779; *Chem. Abstr.*, **1982**, *97*, 3252.
- 981. M. M. Kessels and B. Qualmann, *J. Prakt. Chem.*, **1996**, *338*, 89.
- 982. B. Leszczynska and K. Niewiadomski, *Acta Pol. Pharm.*, **1981**, *38*, 539; *Chem. Abstr.*, **1982**, *97*, 72327.

- 983. J. A. Squella and L. J. Nunez-Vergara, *J. Chem. Phys. Phys.-Chim. Biol.*, **1982**, *79*, 295; *Chem. Abstr.*, **1982**, *97*, 81589.
- 984. E. H. Mørkved and C. Wang, *J. Prakt. Chem.*, **1997**, *339*, 473.
- 985. X. Zhang, G. Li, Z. Dai, Y. Qian, and L. Chen, *Yaoxue Xuebao*, **1981**, *16*, 415; *Chem. Abstr.*, **1982**, *97*, 109953.
- 986. J. H. Laragh, *Curr. Ther. Res.*, **1982**, *32*, 173; *Chem. Abstr.*, **1982**, *97*, 155686.
- 987. D. L. Boger, J. Zhou, R. M. Borzilleri, S. Nukui, and S. L. Castle, *J. Org. Chem.*, **1997**, *62*, 2054.
- 988. S. Fujii, T. Takagi, and M. Seki, *Agric. Biol. Chem.*, **1982**, *46*, 2169; *Chem. Abstr.*, **1982**, *97*, 163375.
- 989. S. B. Kartha, *Can. J. Spectrosc.*, **1982**, *27*, 1; *Chem. Abstr.*, **1982**, *97*, 205157.
- 990. J. A. Zolterwicz, N. M. Maier, and W. M. F. Fabian, *J. Org. Chem.*, **1997**, *62*, 3215.
- 991. N. H. Ayachit and M. A. Shashidhar, *Indian J. Phys., B*, **1982**, *56*, 187; *Chem. Abstr.*, **1982**, *97*, 205188.
- 992. S. Zikolova and K. Ninov, *Tr. Nauchnoizsled. Khim.-Farm. Inst.*, **1982**, *12*, 35; *Chem. Abstr.*, **1982**, *98*, 126031.
- 993. U. M. Fernandez-Paniagua, B. Illescas, N. Martin, C. Seoane, P. de la Cruz, A. de la Hoz, and ´ F. Langa, *J. Org. Chem.*, **1997**, *62*, 3705.
- 994. S. Zikolova and R. Konstantinova, *Tr. Nauchnoizsled. Khim.-Farm. Inst.*, **1982**, *12*, 47; *Chem. Abstr.*, **1983**, *98*, 126032.
- 995. W. E. Acree, J. R. Powell, S. A. Tucker, M. D. M. C. Ribeiro da Silva, M. A. R. Matos, J. M. Goncalves, L. M. N. B. F. Santos, V. M. F. Morais, and G. Pilcher, *J. Org. Chem.*, **1997**, *62*, 3722.
- 996. M. Y. Khuhawar, R. B. Bozdar, and I. Arain, *J. Chem. Soc. Pak.*, **1982**, *4*, 137; *Chem. Abstr.*, **1983**, *98*, 143373.
- 997. H. Foks and M. Janowiec, *Acta Pol. Pharm.*, **1982**, *39*, 79; *Chem. Abstr.*, **1983**, *98*, 198158.
- 998. Y. Gao, P. Lane-Bell, and J. D. Vederas, *J. Org. Chem.*, **1998**, *63*, 2133.
- 999. N. Ayachit and M. A. Shashidhar, *Indian J. Phys., B*, **1982**, *56*, 313; *Chem. Abstr.*, **1983**, *98*, 206795.
- 1000. D. J. Bell, I. R. Brown, R. Cocks, R. F. Evans, G. A. Macfarlane, K. N. Mewett, and A. V. Robertson, *Aust. J. Chem.*, **1979**, *32*, 1281.
- 1001. M. A. Acuna de Molina, M. N. Loncharich, J. I. Giminez de Paez, and Y. P. W. Lobo, *An. Asoc. Quim. Argent*, **1982**, *70*, 1043; *Chem. Abstr.*, **1983**, *98*, 215112.
- 1002. Y. Hashimoto, H. Aoyagi, M. Waki, T. Kato, and N. Izumiya, *Int. J. Pept. Protein Res.*, **1983**, *21*, 11; *Chem. Abstr.*, **1983**, *98*, 215972.
- 1003. L. W. Deady and M. S. Stanborough, *Aust. J. Chem.*, **1981**, *34*, 1295.
- 1004. R. K. Tiwari, T. C. Patel, and T. P. Singh, *Indian J. Phys., A*, **1982**, *56*, 413; *Chem. Abstr.*, **1983**, *98*, 225674.
- 1005. S. L. Srivastava, ?, Rohitashava, and A. N. Pandey, *Indian J. Pure Appl. Phys.*, **1983**, *21*, 258; *Chem. Abstr.*, **1983**, *99*, 61128.
- 1006. D. J. Brown and W. B. Cowden, *Aust. J. Chem.*, **1982**, *35*, 1203.
- 1007. A. Missir, V. Zolta, J. Soare, I. Charita, I. Petrea, and A. Stan, *Farmacia (Bucharest)*, **1982**, *30*, 225; *Chem. Abstr.*, **1982**, *30*, 225.
- 1008. G. B. Barlin, *Aust. J. Chem.*, **1982**, *35*, 2299.
- 1009. A. Catto, R. Cappelletti, A. Leonardi, F. Maggi, A. Tajana, and D. Nardi, *Farmaco, Ed. Sci.*, **1983**, *38*, 559; *Chem. Abstr.*, **1983**, *99*, 98817.
- 1010. D. Pancechowska-Ksepko, H. Foks, and M. Janowiec, *Acta Pol. Pharm.*, **1983**, *40*, 15; *Chem. Abstr.*, **1983**, *99*, 175713.
- 1011. F. Gajewski and I. Kozakiewicz, *Acta Pol. Pharm.*, **1982**, *39*, 21; *Chem. Abstr.*, **1983**, *99*, 139898.
- 1012. G. B. Barlin, *Aust. J. Chem.*, **1983**, *36*, 983.
- 1013. H. Hamazaki and M. Tada, *Rikogaku Kenkyusho Hokoku Waseda Daigaku*, **1983**, *103*, 35; *Chem. Abstr.*, **1984**, *100*, 5477.
- 1014. S. Zikolova, S. Slavova, and D. Stefanova, *Tr. Nauchnoizsled. Khim.-Farm. Inst.*, **1983**, *13*, 15; *Chem. Abstr.*, **1984**, *100*, 6454.
- 1015. G. B. Barlin, *Aust. J. Chem.*, **1984**, *37*, 1049.
- 1016. S. Zikolova, R. Konstantinova, and M. Zhelyazkova, *Tr. Nauchnoizsled. Khim.-Farm. Inst.*, **1983**, *13*, 25; *Chem. Abstr.*, **1984**, *100*, 6455.
- 1017. G. B. Barlin and S. J. Ireland, *Aust. J. Chem.*, **1984**, *37*, 1057.
- 1018. A. Kazakov, L. Dashkevich, V. Pechenyuk, and D. Stefanova, *Tr. Nauchnoizsled. Khim-Farm. Inst.*, **1983**, *13*, 61; *Chem. Abstr.*, **1984**, *100*, 6456.
- 1019. G. B. Barlin, S. J. Ireland, and B. J. Rowland, *Aust. J. Chem.*, **1984**, *37*, 1729.
- 1020. A. Kazakov, L. Dashkevich, V. Pechenyuk, D. Stefanova, and L. Daleva, *Tr. Nauchnoizsled. Khim-Farm. Inst.*, **1983**, *13*, 71; *Chem. Abstr.*, **1984**, *100*, 6457.
- 1021. S. M. Marcuccio and J. A. Elix, *Aust. J. Chem.*, **1984**, *37*, 1791.
- 1022. W. Schwaiger, J. M. Cornelissen, and J. P. Ward, *Food Chem.*, **1984**, *13*, 225; *Chem. Abstr.*, **1984**, *100*, 174781.
- 1023. Y. Jiang, U. Groth, and U. Schöllkopf, *Huaxue Xuebao*, **1984**, *42*, 86; *Chem. Abstr.*, **1984**, *100*, 210372.
- 1024. C. P. Gorst-Allman and R. Vleggaar, *Dev. Food Sci.*, **1984**, *8*, 387; *Chem. Abstr.*, **1984**, *101*, 49576.
- 1025. J. H. Hodgkin, *Aust. J. Chem.*, **1984**, *37*, 2371.
- 1026. E. Toja, A. Omodei-Sale, and N. Corsico, *Farmaco, Ed. Sci.*, **1984**, *39*, 450; *Chem. Abstr.*, **1984**, *101*, 90876.
- 1027. A. Nakamura, M. Ono, H. Segawa, and T. Takematsu, *Agric. Biol. Chem.*, **1984**, *48*, 1009; *Chem. Abstr.*, **1984**, *101*, 105679.
- 1028. S. M. Marcuccio and J. A. Elix, *Aust. J. Chem.*, **1984**, *37*, 2397.
- 1029. S. Kamiya, *Eisei Shikensho Hokoku*, **1983**, *101*, 119; *Chem. Abstr.*, **1984**, *101*, 110868.
- 1030. S. M. Marcuccio and J. A. Elix, *Aust. J. Chem.*, **1985**, *38*, 1785.
- 1031. J. Irurre-Perez, M. Sanchez-Rosell, and R. Herbera-Espinal, *Afinidad*, **1984**, *41*, 161; *Chem. Abstr.*, **1984**, *101*, 171669.
- 1032. S. Abuzar and S. Sharma, *Indian J. Chem., Sect. B*, **1984**, *23*, 73; *Chem. Abstr.*, **1984**, *101*, 211095.
- 1033. G. B. Barlin, D. J. Brown, B. J. Cronin, and M. Ngu, *Aust. J. Chem.*, **1986**, *39*, 69.
- 1034. A. Chimirri, S. Grasso, P. Monforte, and G. Fenech, *Farmaco, Ed. Sci.*, **1984**, *39*, 797; *Chem. Abstr.*, **1984**, *101*, 222101.
- 1035. C. F. Shey, C. T. Chen, J. M. Horng, and C. H. Wang, *Shih Ta Hsueh Pao (Taipei)*, **1984**, *29*, 631; *Chem. Abstr.*, **1984**, *101*, 230476.
- 1036. J. A. Elix, G. D. Fallon, S. M. Marcuccio, and I. D. Rae, *Aust. J. Chem.*, **1986**, *39*, 1141.
- 1037. D. T. Hurst, U. B. Thakrar, C. H. L. Wells, and J. Wyer, *Aust. J. Chem.*, **1989**, *42*, 1313.
- 1038. A. M. Gazaliev, E. P. Sim, Y. A. Matveev, and A. D. Kagarlitskii, *Izv. Akad. Nauk. Kaz. SSR, Ser. Khim.*, **1984**, 78; *Chem. Abstr.*, **1985**, *102*, 6423.
- 1039. M. V. Burmistr, I. A. Zanina, and N. V. Kovtun, *Vopr. Khim. Khim. Tekhnol.*, **1983**, *73*, 80; *Chem. Abstr.*, **1985**, *102*, 78243.
- 1040. D. E. Lynch, G. Smith, K. A. Byriel, C. H. L. Kennard, and A. K. Whittaker, *Aust. J. Chem.*, **1994**, *47*, 309.
- 1041. Z. Yang, X. Chen, and X. Zhang, *Yiyao Gongye*, **1984**(11), 27; *Chem. Abstr.*, **1985**, *102*, 166699.
- 1042. G. LaManna and F. Biondi, *J. Mol. Struct.*, **1989**, *188*, 199.

- 1043. S. Buøen, J. Dale, and J. Krane, *Acta Chem. Scand., Ser. B*, **1984**, *38*, 773.
- 1044. A. Chimirri, S. Grasso, G. Fenech, P. Monforte, C. Circosta, F. Occhiuto, and S. Ragusa, *Boll. Chim. Farm.*, **1984**, *123*, 416; *Chem. Abstr.*, **1985**, *103*, 6263.
- 1045. C. H. Görbitz, *Acta Chem. Scand., Ser. B*, **1987**, *41*, 83.
- 1046. G. C. Papavassiliou, S. Y. Yiannopoulos, and J. S. Zambounis, *Mol. Cryst. Liq. Cryst.*, **1985**, *120*, 333; *Chem. Abstr.*, **1985**, *103*, 104924.
- 1047. T. Vontor, K. Palat, J. Oswald, and Z. Odlerova, *Cˇesk. Farm.*, **1985**, *34*, 74; *Chem. Abstr.*, **1985**, *103*, 104927.
- 1048. A. Nakamura, *Shokubutsu no Kagaku Chosetsu*, **1984**, *19*, 132; *Chem. Abstr.*, **1985**, *103*, 136951.
- 1049. E. H. Mørkved, L. T. Holmaas, H. Kjøsen, and G. Hvistendahl, *Acta Chem. Scand.*, **1996**, *50*, 1153.
- 1050. S. N. Pandeya and V. Srivastava, *Pharmacol. Res. Commun.*, **1985**, *17*, 699; *Chem. Abstr.*, **1985**, *103*, 205565.
- 1051. K. Hammer, T. Benneche, H. Hope, and K. Undheim, *Acta Chem. Scand.*, **1997**, *51*, 392.
- 1052. B. Pilarski and K. Osmialowski, *Int. J. Quantum Chem.*, **1985**, *28*, 239; *Chem. Abstr.*, **1985**, *103*, 214707.
- 1053. R. J. Cremlyn and K. Patel, *Indian J. Chem., Sect. B*, **1985**, *24*, 273; *Chem. Abstr.*, **1985**, *103*, 215391.
- 1054. J. Bergman and H. Vallberg, *Acta Chem. Scand.*, **1997**, *51*, 742.
- 1055. Q. Yao and R. Liu, *Shenyang Yaoxueyuan Xuebao*, **1985**, *2*, 128; *Chem. Abstr.*, **1986**, *104*, 148590.
- 1056. S. Rødbotten, T. Benneche, and K. Undheim., *Acta Chem. Scand.*, **1997**, *51*, 873.
- 1057. S. Tsai, Z. Chang, W. Wang, M. Chang, and S. Ji, *Nanjing Daxue Xuebao Kexue*, **1984**, 245; *Chem. Abstr.*, **1986**, *104*, 168437.
- 1058. J. Rfskind, T. Benneche, and K. Undheim, *Acta Chem. Scand.*, **1997**, *51*, 942.
- 1059. C. Yang, G. Chen, and G. Xu, *Huaxue Xuebao*, **1986**, *44*, 299; *Chem. Abstr.*, **1986**, *105*, 208828.
- 1060. T. Vontor, K. Palat, and Z. Odlerova, *Cˇesk. Farm.*, **1985**, *34*, 441; *Chem. Abstr.*, **1986**, *105*, 226486.
- 1061. A. Lehse, B. V. Ernholt, and M. Bols, *Acta Chem. Scand.*, **1998**, *52*, 499.
- 1062. L. Forni, *Appl. Catal.*, 1986, *20*, 219; *Chem. Abstr.*, **1986**, *105*, 226487.
- 1063. B. K. Bhattacharaya and G. Hoornaert, *Bokin Bobai*, **1985**, *13*, 395; *Chem. Abstr.*, **1987**, *106*, 4972.
- 1064. W. Hammerschmidt, A. Baiker, A. Wokaun, and W. Fluhr, *Appl. Catal.*, **1986**, *20*, 305; *Chem. Abstr.*, **1987**, *106*, 4973.
- 1065. A. Ohta, M. Inoue, J. Yamada, Y. Yamada, T. Kurihara, and T. Honda, *J. Heterocycl. Chem.*, **1984**, *21*, 103.
- 1066. Z. Zhou, Y. Ye, Y. Wang, D. Shen, F. Fan, Y. Wang, and Q. Ji, *Hejishu*, **1985**, 31; *Chem. Abstr.*, **1987**, *106*, 4977.
- 1067. F. Billes and A. Tóth, *J. Mol. Struct.*, **1984**, *114*, 367.
- 1068. B. Milczarska, H. Foks, and A. Serafin, *Acta Pol. Pharm.*, **1985**, *42*, 534; *Chem. Abstr.*, **1987**, *106*, 138401.
- 1069. P. K. Subramanian and R. W. Woodard, *Pept. Struct. Funct., Proc. Am. Pept. Symp., 9th*, **1985**, 437; *Chem. Abstr.*, **1987**, *106*, 33438.
- 1070. J. F. Arenas, J. T. Lopez-Navarrete, J. I. Marcos, and J. C. Otero, *J. Mol. Struct.*, **1986**, *142*, 423.
- 1071. S. Nakatsuka, K. Sasaki, K. Yamaguchi, and T. Goto, *Chem. Lett.*, **1981**, 695.
- 1072. M. Tada and K. Tsuzuki, *Chem. Lett.*, **1984**, 415.
- 1073. T. Nishio, N. Nakajima, M. Kondo, and Y. Omote, *Chem. Lett.*, **1985**, 223.
- 1074. M. P. Vasquez-Tato, L. Castedo, and R. Riguera, *Chem. Lett.*, **1985**, 623.

- 1075. C. Shin, T. Nakano, Y. Sato, and H. Kato, *Chem. Lett.*, **1986**, 1453.
- 1076. G. C. Papavassiliou, S. Y. Yiannopoulis, J. S. Zambounis, K. Kobayashi, and K. Umemoto, *Chem. Lett.*, **1987**, 1279.
- 1077. M. Nohara, M. Hasegawa, C. Hosokawa, H. Tokailin, and T. Kusumoto, *Chem. Lett.*, **1990**, 189.
- 1078. P. Lane, J. S. Murray, and P. Politzer, *J. Mol. Struct.*, **1991**, *236*, 283.
- 1079. L. Carballeira, R. A. Mosquera, M. A. Rios, and C. A. Tovar, *J. Mol. Struct.*, **1989**, *193*, 263.
- 1080. H. M. Niemeyer, *J. Mol. Struct.*, **1979**, *57*, 241.
- 1081. H. Lumbroso, J. Curé, T. Konakahara, and Y. Tagaki, *J. Mol. Struct.*, **1980**, *68*, 293.
- 1082. A. M. Krishnan, L. T. Wolford, and J. H. Boyer, *Chem. Lett.*, **1991**, 569.
- 1083. T. Tsutsumi, A. Takeuchi, Y. Hashimoto, M. Hasegawa, and Y. Iitaka, *Chem. Lett.*, **1991**, 1533.
- 1084. Y. Takikawa, S. Hikage, Y. Matsuda, K. Higashiyama, Y. Takeishi, and K. Shimada, *Chem. Lett.*, **1991**, 2043.
- 1085. A. Katoh, J. Ohkanda, Y. Itoh, and K. Mitsuhashi, *Chem. Lett.*, **1992**, 2009.
- 1086. T. Fukuhara and N. Yoneda, *Chem. Lett.*, **1993**, 509.
- 1087. K. Mizuno, G.-I. Konishi, T. Nishiyama, and H. Inoue, *Chem. Lett.*, **1995**, 1077.
- 1088. H. Lumbroso, J. Curé, T. Konakahara, and K. Sato, *J. Mol. Struct.*, **1983**, *98*, 277.
- 1089. T. Okawa and S. Eguchi, *Synlett*, **1994**, 555.
- 1090. K. Cuček and B. Verček, *Synlett*, **1994**, 667.
- 1091. A. Kiener, J.-P. Roduit, A. Tschech, A. Tinschert, and K. Heinzmann, *Synlett*, **1994**, 814.
- 1092. K. Jones, M. Keenan, and F. Hibbert, *Synlett*, **1996**, 509.
- 1093. H. Nakamura, D. Takeuchi, and A. Murai, *Synlett*, **1995**, 1227.
- 1094. I. Mallik and S. Mallik, *Synlett*, **1996**, 734.
- 1095. H. Uchida and H. Achiwa, *Synlett*, **1996**, 969.
- 1096. H. Nakamura, M. Aizawa, and A. Murai, *Synlett*, **1996**, 1015.
- 1097. S. Kobayashi, M. Matsumura, T. Furuta, T. Hayashi, and S. Iwamoto, *Synlett*, **1997**, 301.
- 1098. G. Y. Kondrat'eva, M. A. Aitzhanova, V. S. Bogdanov, and Z. N. Ivanova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1978**, 1111.
- 1099. S. I. Zav'yalov and A. G. Zavozin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1978**, 2417.
- 1100. U. M. Dzhemilev, R. N. Fakhretdinov, A. G. Telin, and G. A. Tolstikov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1979**, 2158.
- 1101. S. I. Zav'yalov and A. G. Zavozin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1980**, 1067.
- 1102. T. A. Mastryukova, A. E. Shipov, Z. O. Mndzhoyan, S. A. Roslavtseva, Y. S. Kagan, E. A. Ershova, P. V. Petrovskii, and M. I. Kabachnik, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1983**, 469.
- 1103. S. I. Zav'yalov, L. V. Sitkareva, O. V. Dorofeeva, and E. E. Rumyantseva, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1987**, 1887.
- 1104. V. K. Brel', M. V. Dodonov, A. N. Chekhlov, and I. V. Martynov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1988**, 890.
- 1105. L. V. Saloutina, A. Y. Zapevalov, M. I. Kodess, and V. I. Saloutin, *J. Fluorine Chem.*, 1998, *87*, 49.
- 1106. V. N. Berezhnaya, R. P. Shishkina, and E. P. Fokin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1988**, 2822.
- 1107. G. A. Tolstikov, I. V. Kresteleva, A. Y. Spivak, A. A. Fatykhov, and V. R. Sultanmuratova, *Izv. Akad. Nauk, Ser. Khim.*, **1993**, 590.
- 1108. V. A. Reznikov and L. B. Volodarskii, *Izv. Akad. Nauk, Ser. Khim.*, **1993**, 927.
- 1109. V. A. Reznikov, L. A. Vishnivetskaya, and L. B. Volodarskii, *Izv. Akad. Nauk, Ser. Khim.*, **1993**, 931.
- 1110. G. B. Shul'pin, A. N. Druzhinina, and G. V. Nizova, *Izv. Akad. Nauk, Ser. Khim.*, **1993**, 1394.
- 1111. A. I. Yurtanov, S. K. Baidildaeva, A. N. Chekhlov, and N. S. Zefirov, *Izv. Akad. Nauk, Ser. Khim.*, **1994**, 872.
- 1112. V. A. Reznikov, I. A. Gutorov, Y. V. Gatilov, T. V. Rybalova, and L. B. Volodarskii, *Izv. Akad. Nauk, Ser. Khim.*, **1996**, 400.
- 1113. I. M. Lyapkalo, S. L. Ioffe, Y. A. Strelenko, and V. A. Tartakovskii, *Izv. Akad. Nauk, Ser. Khim.*, **1996**, 2363.
- 1114. A. L. Rusanov, M. L. Keshtov, N. M. Belomoine, A. K. Mikitaev, G. B. Sarkisyan, and S. V. Keshtova, *Izv. Akad. Nauk, Ser. Khim.*, **1997**, 810.
- 1115. M. Kočevar, B. Verček, B. Stanovnik, and M. Tišler, *Monatsh. Chem.*, 1982, 113, 731.
- 1116. B. Verček, B. Ogorevc, B. Stanovnik, and M. Tišler, *Monatsh. Chem.*, 1983, 114, 789.
- 1117. S. W. Schneller and J. L. May, *J. Heterocycl. Chem.*, **1978**, *15*, 987.
- 1118. T. Suzuki, N. Katou, and K. Matsuhashi, *J. Heterocycl. Chem.*, **1978**, *15*, 1451.
- 1119. M. Botta, F. de Angelis, and R. Nicoletti, *J. Heterocycl. Chem.*, **1979**, *16*, 193.
- 1120. A. Mendel and G. J. Lillquist, *J. Heterocycl. Chem.*, **1979**, *16*, 617.
- 1121. A. Tomazˇicˇ, M. Tisˇler, and B. Stanovnik, *J. Heterocycl. Chem.*, **1979**, *16*, 861.
- 1122. F. H. Case and A. A. Schilt, *J. Heterocycl. Chem.*, **1979**, *16*, 1135.
- 1123. J. D. Warren, V. J. Lee, and R. B. Angier, *J. Heterocycl. Chem.*, **1979**, *16*, 1617.
- 1124. J. T. Shaw, C. E. Brotherton, R. W. Moon, M. D. Winland, M. D. Anderson, and K. S. Kyler, *J. Heterocycl. Chem.*, **1980**, *17*, 11.
- 1125. N. Sato, *J. Heterocycl. Chem.*, **1980**, *17*, 143.
- 1126. J. Bourguignon, M. Lemarchand, and G. Quéguiner, *J. Heterocycl. Chem.*, **1980**, *17*, 257.
- 1127. T. Kojima, F. Nagasaki, and Y. Ohtsuka, *J. Heterocycl. Chem.*, **1980**, *17*, 455.
- 1128. Y. Houminer and E. B. Sanders, *J. Heterocycl. Chem.*, **1980**, *17*, 647.
- 1129. J. P. Chupp and K. L. Leschinsky, *J. Heterocycl. Chem.*, **1980**, *17*, 711.
- 1130. B. Stanovnik, M. Tišler, V. Golob, I. Hvala, and O. Nikolič, *J. Heterocycl. Chem.*, **1980**, *17*, 733.
- 1131. E. Honkanen, A. Pippuri, P. Kairisalo, H. Thaler, M. Koivisto, and S. Tuomi, *J. Heterocycl. Chem.*, **1980**, *17*, 797.
- 1132. L. Landriani, D. Barlocco, D. Cignarella, M. M. Curzu, V. Anania, and M. S. Desole, *Farmaco, Ed. Sci.*, **1987**, *42*, 191; *Chem. Abstr.*, **1987**, *107*, 51381.
- 1133. G. Jenner, G. Bitsi, and E. Schleiffer, *J. Mol. Catal.*, **1987**, *39*, 233; *Chem. Abstr.*, **1987**, *107*, 134169.
- 1134. J. Bourguignon, M. Lemarchand, and G. Quéguiner, *J. Heterocycl. Chem.*, **1980**, *17*, 1019.
- 1135. A. Gilbert, G. Krestonosich, C. Martinez, and C. Rivas, *Rev. Latinoam. Quim.*, **1987**, *18*, 40; *Chem. Abstr.*, **1987**, *107*, 154298.
- 1136. J. Armand, K. Chekir, and J. Pinson, *J. Heterocycl. Chem.*, **1980**, *17*, 1237.
- 1137. T. Vontor, K. Patel, and Z. Odlerova, *Cˇesk. Farm.*, **1987**, *36*, 277; *Chem. Abstr.*, **1987**, *107*, 190357.
- 1138. D. Pancechowska-Ksepko, H. Foks, E. Landowska, M. Janowiec, and Z. Zwolska-Kwiek, *Acta Pol. Pharm.*, **1986**, *43*, 116; *Chem. Abstr.*, **1987**, *107*, 198246.
- 1139. W. O. Lin, J. A.-de-A. Figueira, and H. G. Alt, *Monatsh. Chem.*, **1985**, *116*, 217.
- 1140. A. R. Katritzky, K. Yannakopoulou, J. Thompson, F. Saczewski, and B. Pilarski, *J. Chem. Eng. Data*, **1987**, *32*, 479; *Chem. Abstr.*, **1987**, *107*, 198253.
- 1141. W. Wendelin and R. Riedl, *Monatsh. Chem.*, **1985**, *116*, 237.
- 1142. W. Cai and D. Xu, *Yiyao Gongye*, **1987**, *18*, 62; *Chem. Abstr.*, **1987**, *107*, 236661.
- 1143. Y. Fan, Y. Ji, Z. Huang, and H. Chen, *Yaoxue Xuebao*, **1987**, *22*, 185; *Chem. Abstr.*, **1988**, *108*, 5971.
- 1144. B. Koren, B. Stanovnik, and M. Tišler, *Monatsh. Chem.*, **1988**, *119*, 83.
- 1145. W. Rudnicka, H. Foks, M. Janowiec, and Z. Zwolska-Kwiek, *Acta Pol. Pharm.*, **1986**, *43*, 523; *Chem. Abstr.*, **1988**, *108*, 131695.
- 1146. L. Avallone, M. G. Rimoli, and E. Abignente, *Monatsh. Chem.*, **1996**, *127*, 947.
- 1147. S. Zikolova, S. Slavova, and M. Nedkova, *Tr. Nauchnoizsled. Khim.-Farm. Inst.*, **1986**, *16*, 9; *Chem. Abstr.*, **1988**, *108*, 131747.
- 1148. T. Vontor, K. Palat, and J. Danek, *Cˇesk. Farm.*, **1988**, *37*, 29; *Chem. Abstr.*, **1988**, *108*, 179605.
- 1149. M. Arimoto, T. Hayano, T. Soga, Y. Yoshioka, H. Tagawa, and M. Furukawa, *J. Antibiot.*, **1986**, *39*, 1243.
- 1150. P. K. Subramanian and R. W. Woodard, *Int. J. Pept. Protein Res.*, **1986**, *28*, 579; *Chem. Abstr.*, **1988**, *108*, 187243.
- 1151. D. Pancechowska-Ksepko, H. Foks, M. Janowiec, and Z. Zwolska-Kwiek, *Acta Pol. Pharm.*, **1986**, *43*, 211; *Chem. Abstr.*, **1988**, *108*, 204593.
- 1152. Y. L. Chen, C.-W. Chang, K. Hedberg, K. Guarino, W. M. Welch, L. Kiessling, J. A. Retsema, S. L. Haskell, M. Anderson, M. Manousos, and J. F. Barrett, *J. Antibiot.*, **1987**, *40*, 803.
- 1153. F. Maio, X. Liu, S. Zhang, Z. Jiang, and S. Wang, *Wuli Xuaxue Xuebao*, **1988**, *4*, 20; *Chem. Abstr.*, **1988**, *108*, 214378.
- 1154. L. I. Mastafanova, G. P. Zhikhareva, N. H. Kutina, A. S. Siroko, I. F. Faermark, R. D. Syubaev, G. Y. Shvarts, M. D. Mashkovskii, and L. N. Yakhontov, *Khim.-Farm. Zh.*, **1988**, *22*, 428; *Chem. Abstr.*, **1988**, *109*, 48005.
- 1155. Z. Winiarski, W. Markowski, and T. Tkaczynaki, *Acta Pol. Pharm.*, **1987**, *44*, 47; *Chem. Abstr.*, **1988**, *109*, 92946.
- 1156. R.-Y. Wu, L.-M. Yang, T. Yokoi, and K.-H. Lee, *J. Antibiot.*, **1988**, *41*, 481.
- 1157. K. Nakata and Y. Takaki, *Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon*, **1987**, *36*, 93; *Chem. Abstr.*, **1988**, *109*, 139642.
- 1158. L.-M. Yang, R.-Y. Wu, A. T. McPhail, T. Yokoi, and K.-H. Lee, *J. Antibiot.*, **1988**, *41*, 488.
- 1159. T. Nishio, M. Kondo, T. Nishiyama, and Y. Omote, *Stud. Org. Chem. (Amsterdam)*, **1988**, *33*, 145; *Chem. Abstr.*, **1988**, *109*, 210916.
- 1160. M. Hasegawa, T. Katsumata, Y. Ito, K. Saigo, and Y. Iitaka, *Macromolecules*, **1988**, *21*, 3134; *Chem. Abstr.*, **1988**, *109*, 211567.
- 1161. T. Yokoi, L.-M. Yang, T. Yokoi, R.-Y. Wu, and K.-H. Lee, *J. Antibiot.*, **1988**, *41*, 494.
- 1162. G. Agnes, M. G. Felicioli, G. Ribaldone, and C. Santini, *Chim. Ind. (Milan)*, **1988**, *70*, 70; *Chem. Abstr.*, **1988**, *109*, 230945.
- 1163. N. V. Dulepova, L. B. Volodarskii, A. Y. Tikhonov, and M. M. Shakirov, *Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk*, **1988**, 103; *Chem. Abstr.*, **1989**, *110*, 23838.
- 1164. M. Arimoto, S. Yokohama, M. Sudou, Y. Ichikawa, T. Hayano, H. Tagawa, and M. Furukawa, *J. Antibiot.*, **1988**, *41*, 1795.
- 1165. S. C. Shim and M. S. Kim, *J. Photochem. Photobiol., A*, **1988**, *45*, 29; *Chem. Abstr.*, **1989**, *110*, 31233.
- 1166. Y. Nakano, T. Kawaguchi, J. Sumitomo, T. Takizawa, S. Uetsuki, M. Sugiwara, and M. Kido, *J. Antibiot.*, **1991**, *44*, 52.
- 1167. G. Jenner and G. Bitsi, *J. Mol. Catal.*, **1988**, *45*, 165; *Chem. Abstr.*, **1989**, *110*, 95161.
- 1168. M. E. Alvarez, C. B. White, J. Gregory, G. C. Kydd, A. Harris, H. H. Sun, A. M. Gillum, and R. Cooper, *J. Antibiot.*, **1995**, *48*, 1165.
- 1169. G. Candiano, G. M. Ghiggeri, R. Gusmano, L. Zetta, E. Benfenati, and G. Icardi, *Carbohydr. Res.*, **1988**, *184*, 67; *Chem. Abstr.*, **1989**, *110*, 154848.
- 1170. H. M. Fahmy, M. A. F. Sharaf, and M. F. Aboul-Char, *Ann. Chim. (Rome)*, **1988**, *78*, 703; *Chem. Abstr.*, **1989**, *110*, 162386.
- 1171. S. Ram and L. D. Spicer, *Synth. Commun.*, **1987**, *17*, 415.
- 1172. M. J. Martin-Delgardo, F. Marquez, M. I. Suero, and J. I. Marcos, *J. Raman Spectrosc.*, **1989**, *20*, 63; *Chem. Abstr.*, **1989**, *110*, 181893.
- 1173. T. Sambaiah, P. J. Rao, and K. K. Reddy, *Sulfur Lett.*, **1988**, *8*, 131; *Chem. Abstr.*, **1989**, *110*, 212765.
- 1174. J. Daniel and D. N. Dhar, *Synth. Commun.*, **1991**, *21*, 1649.
- 1175. Z. Rok and M. Tišler, *Synth. Commun.*, **1992**, 22, 2245.
- 1176. A. N. Osman, S. Botros, Z. Isaac, and M. A. Khayyal, *Egypt. J. Pharm. Sci.*, **1988**, *29*, 131; *Chem. Abstr.*, **1989**, *110*, 231580.
- 1177. M. Ungureanu, C. Radu, and M. Petrovanu, *Rev. Med.-Chir.*, **1988**, *92*, 585; *Chem. Abstr.*, **1989**, *111*, 4092.
- 1178. J. Daniel and D. N. Dhar, *Synth. Commun.*, **1993**, *23*, 2151.
- 1179. A. Li, Y. E, Z. Li, and W. Liu, *Yiyao Gongye*, **1988**, *19*, 490 and 501; *Chem. Abstr.*, **1989**, *111*, 23480.
- 1180. A. E. El-Shafei, A. M. El-Sayed, G. Abdel-Ghany, and A. M. M. El-Saghier, *Synth. Commun.*, **1994**, *24*, 1895.
- 1181. W. Ried and G. Tsiotis, *Chem.-Ztg.*, **1988**, *112*, 385; *Chem. Abstr.*, **1989**, *111*, 39339.
- 1182. D. Damour and S. Mignani, *Synth. Commun.*, **1994**, *24*, 2017.
- 1183. C. Lacroix, T. Phan-Hoang, J. Nouveau, C. Guyonnaud, G. Laine, H. Duwoos, and O. Lafont, *Eur. J. Clin. Pharmacol.*, **1989**, *36*, 395; *Chem. Abstr.*, **1989**, *111*, 49831.
- 1184. D. Pancechowska-Ksepko, H. Foks, M. Janowiec, and Z. Zwolska-Kwiek, *Acta Pol. Pharm.*, **1988**, *45*, 373; *Chem. Abstr.*, **1989**, *111*, 97185.
- 1185. J. J. Chen, J. M. Hinkley, D. S. Wise, and L. B. Townsend, *Synth. Commun.*, **1996**, *26*, 617.
- 1186. B. Milczarska, H. Foks, M. Otfinowski, and M. Janowiec, *Acta Pol. Pharm.*, **1988**, *45*, 201; *Chem. Abstr.*, **1989**, *111*, 153904.
- 1187. D. Pancechowska-Ksepko, H. Foks, M. Janowiec, and Z. Zwolska-Kwiek, *Acta Pol. Pharm.*, **1988**, *45*, 193; *Chem. Abstr.*, **1989**, *111*, 194714.
- 1188. J. Lehuede, Y. Mettey, and J.-M. Vierfond, *Synth. Commun.*, **1996**, *26*, 793.
- 1189. Z. Ryznerski, A. Zejc, P. Chevallet, B. Cebo, and J. Krupinska, *Pol. J. Pharmacol. Pharm.*, **1989**, *41*, 191; *Chem. Abstr.*, **1990**, *112*, 91607.
- 1190. J. L. Gagnon and W. W. Zajac, *Synth. Commun.*, **1996**, *26*, 837.
- 1191. G. T. Fedolyak, L. A. Krichevskii, and A. D. Kagarlitskii, *Izv. Akad. Nauk Kaz. SSR, Ser. Khim.*, **1989**(5), 50; *Chem. Abstr.*, **1990**, *112*, 178890.
- 1192. K. Čuček, I. Mušič, and B. Verček, *Synth. Commun.*, **1996**, *26*, 1135.
- 1193. A. Hvala, I. Simonic, B. Stanovnik, J. Svete, J. Tihi, and M. Tišler, *Vestn. Slov. Kem. Drus.*, **1989**, *36*, 305; *Chem. Abstr.*, **1990**, *112*, 178893.
- 1194. E. Vassileva, M. Shopova, C. Fugier, and E. Henig-Basch, *Synth. Commun.*, **1997**, *27*, 1669.
- 1195. F. S. Babichev, A. I. Grinevich, Y. M. Volovenko, S. V. Litvinenko, E. V. Roshchupkina, and V. Y. D'yachenko, *Farm. Zh. (Kiev)*, **1989**(5), 53; *Chem. Abstr.*, **1990**, *112*, 198312.
- 1196. T. Vontor, K. Palat, J. Danek, and A. Lycka, *Cˇesk. Farm.*, **1989**, *38*, 393; *Chem. Abstr.*, **1990**, *112*, 210530.
- 1197. H. G. Jaisinghani, B. R. Choudhury, and B. M. Khadilkar, *Synth. Commun.*, **1998**, *28*, 1175.
- 1198. K. Wisterowicz, H. Foks, M. Janowiec, and Z. Zwolska-Kwiek, *Acta Pol. Pharm.*, **1989**, *46*, 101; *Chem. Abstr.*, **1990**, *112*, 216860.
- 1199. H. Masuda and S. Mihara, *Agric. Biol. Chem.*, **1989**, *53*, 3367; *Chem. Abstr.*, **1990**, *112*, 216865.
- 1200. A. W. M. Braam, J. C. Eikelenboom, G. van Dijk, and A. Vos, *Acta Crystallogr., Sect. B*, **1981**, *37*, 259.
- 1201. R. Y. Wu, L. M. Yang, T. Yokoi, A. T. McPhail, T. Yokoi, and K. H. Lee, *Chung Yang Yen Chiu Yuan Chih Wu Yen Chiu So Chuan K'an*, **1989**(8), 19; *Chem. Abstr.*, **1990**, *113*, 17408.
- 1202. R. Belcher, M. Y. Khuhawar, and W. I. Stephen, *J. Chem. Soc. Pak.*, **1989**, *11*, 185; *Chem. Abstr.*, **1990**, *113*, 40625.
- 1203. P. Mekss, A. Andersons, V, Stonkus, and M. V. Shimanskaya, *Latv. PSR Zinat. Akad. Vestnis, Kim. Ser.*, **1990**, 302; *Chem. Abstr.*, **1990**, *113*, 115254.
- 1204. G. A. Burdock and R. A. Ford, *Acute Toxic. Data*, **1990**, *1*, 4; *Chem. Abstr.*, **1991**, *114*, 1962.
- 1205. K. Dlabal, K. Palat, M. Machacek, and Z. Odlerova, *Cˇesk. Farm.*, **1990**, *39*, 210; *Chem. Abstr.*, **1991**, *114*, 42731.
- 1206. Y. S. Kwon, S. E. Park, and Y. K. Lee, *Taehan Hwahakhoe Chi*, **1990**, *34*, 445; *Chem. Abstr.*, **1991**, *114*, 80937.
- 1207. G. T. Fedolyak, A. V. Morozov, A. D. Kagarlitskii, and L. A. Krichevskii, *Izv. Akad. Nauk Kaz. SSR, Ser. Khim.*, **1990**(6), 85; *Chem. Abstr.*, **1991**, *114*, 101944.
- 1208. A. W. M. Braam, A. Eshuis, and A. Vos, *Acta Crystallogr., Sect. B*, **1981**, *37*, 730.
- 1209. Y. Kitano, T. Ashida, A. Ohta, T. Watanabe, and Y. Akita, *Acta Crystallogr., Sect. C*, **1983**, *39*, 136.
- 1210. K. Sekido, K. Okamoto, and S. Hirokawa, *Acta Crystallogr.*, *Sect. C*, **1985**, *41*, 741.
- 1211. K. Dlabal, K. Palat, M. Machacek, and Z. Odlerova, *Farm. Obz.*, **1990**, *59*, 249; *Chem. Abstr.*, **1991**, *114*, 114639.
- 1212. J. L. Flippen-Anderson, R. Gilardi, and C. George, *Acta Crystallogr., Sect. C*, **1987**, *43*, 2022.
- 1213. M. Kirihata, I. Ichimoto, and U. Schöllkopf, *Chem. Express*, **1991**, *6*, 169; *Chem. Abstr.*, **1991**, *114*, 229322.
- 1214. N.-T. Huang, E. T. Pennington, and J. T. Petersen, *Acta Crystallogr., Sect. C*, **1991**, *47*, 2011.
- 1215. R. Andreozzi, V, Caprio, M. G. d'Amore, and A. Insola, *Ozone: Sci. Eng.*, **1990**, *12*, 329; *Chem. Abstr.*, **1991**, *114*, 247235.
- 1216. D. A. Peters, R. L. Beddoes, P. S. Allway, and J. A. Joule, *Acta Crystallogr., Sect. C*, **1991**, *47*, 2588.
- 1217. S. A. Kanber, A. H. Ibraheim, L. A. Jamil, and M. M. Barbooti, *Thermochim. Acta*, **1991**, *177*, 329; *Chem. Abstr.*, **1991**, *115*, 29251.
- 1218. D. T. Witiak and Y. Wei, *Prog. Drug Res.*, **1990**, *35*, 249; *Chem. Abstr.*, **1991**, *115*, 63814.
- 1219. Y. Mori, A. Hayakawa, and K. Maeda, *Acta Crystallogr., Sect. C*, **1992**, *48*, 123.
- 1220. A. Shafiee, A. Ebrahimian-Tabrizi, and S. Tajarodi, *J. Sci. Islamic Repub. Iran*, **1990**, *1*, 289.
- 1221. D. A. Peters, R. L. Beddoes, and J. A. Joule, *Acta Crystallogr.*, *Sect. C*, **1992**, *48*, 307.
- 1222. R. Takeuchi, K. Suzuki, and N. Sato, *J. Mol. Catal.*, **1991**, *66*, 277; *Chem. Abstr.*, **1991**, *115*, 114463.
- 1223. K. Okamoto, S. Fujii, K.-I. Tomita, S. Arai, and Y. Tsutsumi, *Acta Crystallogr., Sect. C*, **1992**, *48*, 1518.
- 1224. M. Liu, R. D. Farrant, J. C. Lindon, and P. Barraclough, *Spectrosc. Lett.*, **1991**, *24*, 665; *Chem. Abstr.*, **1991**, *115*, 183238.
- 1225. A. R. Tricker, T. Kaelble, and R. Preussmann, *Cancer Lett. (Shannon, Irel.)*, **1991**, *59*, 165; *Chem. Abstr.*, **1991**, *115*, 222680.
- 1226. K. Matsumoto, S. Hashimoto, M. Toda, M. Hashimoto, and S. Otani, *Chem. Express*, **1991**, *6*, 775; *Chem. Abstr.*, **1991**, *115*, 256118.
- 1227. R. Wang, L. Jin, X. Wu, Y. Huang, C. Wu, and Y. Wang, *Zhongguo Yaoke Daxue Xuebao*, **1991**, *22*, 233; *Chem. Abstr.*, **1991**, *116*, 6514.
- 1228. B. Greaves and H. Stoeckli-Evans, *Acta Crystallogr., Sect. C*, **1992**, *48*, 2269.
- 1229. L. Forni and R. Miglio, *Stud. Surf. Sci. Catal.*, **1991**, *59*, 367; *Chem. Abstr.*, **1992**, *116*, 21021.
- 1230. M. Ehsan, *Sci. Int. (Lahore)*, **1991**, *3*, 217; *Chem. Abstr.*, **1992**, *116*, 106181.
- 1231. M. Bobek, P. Tuntiwachwuttikui, I. Pittaya, M. M. Ismail, and T. J. Bardos, *Nucleosides Nucleotides*, **1991**, *10*, 1657; *Chem. Abstr.*, **1992**, *116*, 106677.
- 1232. N. Rodier, O. Rideau, J.-M. Robert, and G. Le Baut, *Acta Crystallogr., Sect. C*, **1994**, *50*, 1960.
- 1233. K. Dlabal, K. Palat, M. Machacek, and Z. Odlerova, *Cˇesk. Farm.*, **1991**, *40*, 152; *Chem. Abstr.*, **1992**, *116*, 151724.

- 1234. Z. Z. Liu, X. D. Guo, L. E. Straub, G. Erdos, R. J. Prankerd, R. J. Gonzalez-Rothi, and H. Schreier, *Drug Des. Discovery*, **1991**, *8*, 57; *Chem. Abstr.*, **1992**, *116*, 181008.
- 1235. R. D. Bailey and W. T. Pennington, *Acta Crystallogr., Sect. B*, **1995**, *51*, 810.
- 1236. S. C. Shim, M. S. Kim, K. T. Lee, B. M. Jeong, and B. H. Lee, *J. Photochem. Photobiol. A*, **1992**, *65*, 121; *Chem. Abstr.*, **1992**, *117*, 121275.
- 1237. S. Cai, T. Zhao, D. Sun, D. Zhang, and Y. Bao, *Gaodeng Xuexiao Huaxue Xuebao*, **1992**, *13*, 70; *Chem. Abstr.*, **1992**, *117*, 171374.
- 1238. G. Smith, D. E. Lynch, K. A. Byriel, and C. H. L. Kennard, *Acta Crystallogr., Sect. C*, **1995**, *51*, 2629.
- 1239. X. Zhao, *Gaodeng Xuexiao Huaxue Xuebao*, **1992**, *13*, 485; *Chem. Abstr.*, **1993**, *118*, 38877.
- 1240. A. J. Dobson and R. E. Gerkin, *Acta Crystallogr., Sect. C*, **1996**, *52*, 1512.
- 1241. F. Marquez, M. I. Suero, and M. J. Martin-Delgardo, *Spectrosc. Lett.*, **1993**, *26*, 57; *Chem. Abstr.*, **1993**, *118*, 89784.
- 1242. M. L. Nelson, L. Salganicoff, F. J. Ricciardi, and P. H. Doukas, *Med. Chem. Res.*, **1992**, *2*, 434; *Chem. Abstr.*, **1993**, *118*, 183054.
- 1243. B. Benecke and M. Bolte, *Acta Crystallogr., Sect. C*, **1996**, *52*, 2586.
- 1244. I. G. Iovel and M. V. Shimanakaya, *Zh. Prikl. Khim. (S.-Peterburg), Chem. Abstr.*, **1993**, *118*, 236374.
- 1245. E. J. Cragoe, T. R. Klemam, and L. Simchowitz (Eds), *Amiloride and Its Analogs*, V. C. H., New York, 1992; *Chem. Abstr.*, **1993**, *119*, 8700.
- 1246. D. Sun, S. Cai, T. Zhao, and Y. Bao, *Huaxue Shiji*, **1993**, *15*, 37; *Chem. Abstr.*, **1993**, *119*, 95473.
- 1247. M. Graf and H. Stoeckli-Evans, *Acta Crystallogr., Sect. C*, **1996**, *52*, 3073.
- 1248. E. K. Yu and S. R. Ryu, *J. Korean Chem. Soc.*, **1993**, *37*, 131; *Chem. Abstr.*, **1993**, *119*, 96087.
- 1249. Y. Houminer, *J. Heterocycl. Chem.*, **1981**, *18*, 15.
- 1250. A. Ohta, S. Nasano, M. Tsutsui, F. Yamamoto, S. Suzuki, H. Makita, H. Tamamura, and Y. Akita, *J. Heterocycl. Chem.*, **1981**, *18*, 555.
- 1251. Y. C. Tong, *J. Heterocycl. Chem.*, **1981**, *18*, 751.
- 1252. X. A. Zang, M. M. Campbell, and D. W. Brown, *Chem. Res. Chin. Univ.*, **1992**, *8*, 377; *Chem. Abstr.*, **1993**, *119*, 96099.
- 1253. B. Weidmann, *Chimia*, **1992**, *46*, 312; *Chem. Abstr.*, **1993**, *119*, 181185.
- 1254. A. Neels and H. Stoeckli-Evans, *Chimia*, **1993**, *47*, 198; *Chem. Abstr.*, **1993**, *119*, 261459.
- 1255. S. Jerumanis and A. Lemieux, *J. Heterocycl. Chem.*, **1981**, *18*, 779.
- 1256. B. Milczarska, H. Foks, M. Janowiec, and Z. Zwolska-Kwiek, *Acta Pol. Pharm.*, **1992**, *49*, 41; *Chem. Abstr.*, **1994**, *120*, 244968.
- 1257. H. Foks, C. Orlewska, and M. Janowiec, *Acta Pol. Pharm.*, **1992**, *49*, 37; *Chem. Abstr.*, **1994**, *120*, 270310.
- 1258. S. Shimizu, *Shokubai*, **1993**, *35*, 22; *Chem. Abstr.*, **1994**, *120*, 273429.
- 1259. Y. Ito, H. Sato, and M. Murakami, *Tennen Yuki Kagobutsu Toronkai Koen Yoshishi*, **1992**, *34*, 687; *Chem. Abstr.*, **1994**, *120*, 323453.
- 1260. D. Sun, S. Cai, D. Zhao, D. Zhang, and Y. Bao, *Huaxue Shiji*, **1993**, *15*, 329; *Chem. Abstr.*, **1994**, *121*, 9334.
- 1261. A. D. Kagarlitsky, L. A. Krichevsky, and B. V. Suvorov, *Khim.-Farm. Zh.*, **1993**, *27*(3), 45; *Chem. Abstr.*, **1994**, *121*, 300854.
- 1262. H. Hirano and M. Tada, *J. Heterocycl. Chem.*, **1981**, *18*, 905.
- 1263. A. K. Amirkhanova, L. A. Krichevskii, and A. D. Kagarlitskii, *Kinet. Katal.*, **1994**, *35*, 907; *Chem. Abstr.*, **1995**, *122*, 239638.
- 1264. K. Takehara, K. Isomura, K. Yamada, S. Ide, and T. Haraguchi, *Kitakyushu Kogyo Koto Senmon Gakko Kenkyu Hokoku*, **1995**, *28*, 85; *Chem. Abstr.*, **1995**, *122*, 314515.

- 1265. G. M. Shutske, *J. Heterocycl. Chem.*, **1981**, *18*, 1017.
- 1266. D. Ye, S. Wang, C. Yang, and J. Jin, *Huadong Ligong Daxue Xuebao*, **1995**, *21*, 244; *Chem. Abstr.*, **1995**, *123*, 169038.
- 1267. S. Yamamoto, I. Toida, N. Watanabe, and T. Ura, *Antimicrob. Agents Chemother.*, **1995**, *39*, 2088; *Chem. Abstr.*, **1995**, *123*, 193434.
- 1268. C. O. Okafor, *J. Heterocycl. Chem.*, **1981**, *18*, 1445.
- 1269. Z. E. Lu, B. Zhao, J.-P. Zou, R.-S. Zeng, and K.-Q. Chen, *Youji Huaxue*, **1995**, *15*, 289; *Chem. Abstr.*, **1995**, *123*, 228111.
- 1270. J. Raap, W. N. E. Wolthuis, J. J. J. Hehenkamp, and J. Lugtenburg, *Amino Acids*, **1995**, *8*, 171; *Chem. Abstr.*, **1995**, *123*, 286593.
- 1271. N. Sato and S. Arai, *J. Heterocycl. Chem.*, **1982**, *19*, 407.
- 1272. A. Ohta, S. Masano, S. Iwakura, A. Tamura, H. Watanabe, M. Tsutsui, Y. Akita, T. Watanabe, and T. Kurihara, *J. Heterocycl. Chem.*, **1982**, *19*, 465.
- 1273. K. Sekido, K. Okamoto, and S. Hirokawa, *Mem. Natl. Def. Acad.*, *Math., Phys., Chem. Eng.*, **1994**, *34*, 15; *Chem. Abstr.*, **1995**, *123*, 339993.
- 1274. J. Madera and L. Cerveny, *Chem. Listy*, **1995**, *89*, 694; *Chem. Abstr.*, **1996**, *124*, 28241.
- 1275. K. Takehara, K. Isomura, K. Yamada, S. Ide, T. Haraguchi, M. Yoshizumi, and H. Taniguchi, *Kitakyushi Kogyo Koto Senmon Gakko Kenkyu Hokoku*, **1994**, *27*, 87; *Chem. Abstr.*, **1996**, *124*, 86935.
- 1276. B. Stanovnik, A. Stimac, M. Tišler, and B. Verček, *J. Heterocycl. Chem.*, **1982**, *19*, 577.
- 1277. D. J. Yoo, Y. H. Jeon, D. W. Kim, G. S. Han, and S. C. Shim, *Bull. Korean Chem. Soc.*, **1995**, *16*, 1212; *Chem. Abstr.*, **1996**, *124*, 145670.
- 1278. S. Wang and G. Dai, *Huaxue Shijie*, **1995**, *36*, 471; *Chem. Abstr.*, **1996**, *124*, 242281.
- 1279. J.-Y. Jaung, M. Matsuoka, and K. Fukunishi, *Dyes Pigm.*, **1996**, *31*, 141; *Chem. Abstr.*, **1996**, *125*, 89144.
- 1280. N. Sato, *J. Heterocyclic Chem.*, **1982**, *19*, 673.
- 1281. L. G. Palmer and T. R. Kleyman, *Handb. Exp. Pharmacol.*, **1995**, *117*, 363; *Chem. Abstr.*, **1996**, *125*, 157574.
- 1282. T. Yamaguchi, N. Kashige, N. Mishiro, F. Miake, and K. Watanabe, *Biol. Pharm. Bull.*, **1996**, *19*, 1261.
- 1283. A. Ohta, F. Yamamoto, Y. Arimura, and T. Watanabe, *J. Heterocycl. Chem.*, **1982**, *19*, 781.
- 1284. M. Mittelbach and H. Junek, *J. Heterocycl. Chem.*, **1982**, *19*, 1021.
- 1285. V. M. Bondareva, T. V. Andrushkevich, L. G. Detusheva, and G. S. Litvak, *Catal. Lett.*, **1996**, *42*, 113; *Chem. Abstr.*, **1997**, *126*, 8076.
- 1286. J. Xiang and Z. Xie, *Huaxue Shiji*, **1996**, *18*, 279; *Chem. Abstr.*, **1997**, *126*, 31290.
- 1287. N. Sato, in *Comprehensive Heterocyclic Chemistry II*, Ed. A. J. Boulton, Elsevier, Oxford, 1996, vol. 6, p. 233 and 1177; *Chem. Abstr.*, **1997**, *126*, 144164.
- 1288. K. Takehara, K. Isomura, K. Yamada, S. Ide, and T. Haraguchi, *Kitakyushi Kogyo Koto Senmon Gakko Kenkyu Hokoku*, **1997**, *30*, 107; *Chem. Abstr.*, **1997**, *126*, 171561.
- 1289. J.-M. Xiang, Z. Xie, and B.-N. Ying, *Youji Huaxue*, **1997**, *17*, 188; *Chem. Abstr.*, **1997**, *126*, 264079.
- 1290. A. Ohta, T. Watanabe, Y. Akita, M. Yoshida, S. Toda, T. Akamatsu, H. Ohno, and A. Suzuki, *J. Heterocycl. Chem.*, **1982**, *19*, 1061.
- 1291. J.-Y. Jaung, M. Matsuoka, and K. Fukunishi, *Dyes Pigm.*, **1997**, *34*, 255; *Chem. Abstr.*, **1997**, *127*, 264191.
- 1292. C.-H. Shin, T.-S. Chang, D.-H. Cho, D.-K. Lee, and Y.-K. Lee, *Kongop Hwahak*, **1997**, *8*, 749; *Chem. Abstr.*, **1997**, *127*, 293191.
- 1293. X. Liu, W. Ge, L. Xu, J. Zhang, H. Wang, and S. Pan, *Shandong Yike Daxue Xuebao*, **1997**, *35*, 80; *Chem. Abstr.*, **1997**, *127*, 331374.

- 1294. V. M. Bondareva, T. V. Andrushkevich, and G. A. Zenkovets, *Kinet. Catal. (Transl. of Kinet. Katal.)*, **1997**, *38*, 657; *Chem. Abstr.*, **1997**, *127*, 333063.
- 1295. H. Hara and H. C. van der Plas, *J. Heterocycl. Chem.*, **1982**, *19*, 1285.
- 1296. M. Kočevar, B. Stanovnik, and M. Tišler, *J. Heterocycl. Chem.*, **1982**, *19*, 1397.
- 1297. V. M. Bondareva, T. V. Andrushkevich, L. M. Plyasova, E. B. Burgina, O. B. Lapina, and A. A. Altynnikov, *Kinet. Catal. (Transl. of Kinet. Katal.*), **1997**, *38*, 662; *Chem. Abstr.*, **1997**, *127*, 333064.
- 1298. H. Hirano, R. Lee, and M. Tada, *J. Heterocycl. Chem.*, **1982**, *19*, 1409.
- 1299. A. K. Amirkhanova, L. A. Krichevskii, and A. D. Kagarlitskii, *Izv. Minist. Nauki—Akad. Nauk Resp. Kaz., Ser. Khim.*, **1997**(2), 84; *Chem. Abstr.*, **1997**, *127*, 346357.
- 1300. N. Sato, *J. Heterocycl. Chem.*, **1983**, *20*, 169.
- 1301. J. Xiang, Z. Xie, and B. Ying, *Huaxue Yanjiu Yu Yingyong*, **1997**, *9*, 374; *Chem. Abstr.*, **1998**, *128*, 3670.
- 1302. J. A. Walker, J. J. Chen, J. M. Hinkley, D. S. Wise, and L. B. Townsend, *Nucleosides Nucleotides*, **1997**, *16*, 1999; *Chem. Abstr.*, **1998**, *128*, 75624.
- 1303. M. E. Kaiser, A. Cousson, and W. Paulus, *Z. Kristallogr.—New Cryst. Struct.*, **1998**, *213*, 79; *Chem. Abstr.*, **1998**, *128*, 82413.
- 1304. B. Dhawan and P. L. Southwick, *J. Heterocycl. Chem.*, **1983**, *20*, 243.
- 1305. J.-Y. Jaung, M. Matsuoka, and K. Fukunishi, *Dyes Pigm.*, **1998**, *36*, 395; *Chem. Abstr.*, **1998**, *128*, 218366.
- 1306. M. Chastrette, C. El-Aidi, and D. Cretin, *SAR QSAR Environ. Res.*, **1997**, *7*, 233; *Chem. Abstr.*, **1998**, *128*, 282032.
- 1307. A. Ohta, A. Imazeki, Y. Itoigawa, H. Yamada, C. Suga, C. Takagai, H. Sano, and T. Watanabe, *J. Heterocycl. Chem.*, **1983**, *20*, 311.
- 1308. Y. C. Tong and H. O. Kerlinger, *J. Heterocycl. Chem.*, **1983**, *20*, 365.
- 1309. S. Vekemans, C. Pollers-Wieërs, and G. Hoornaert, *J. Heterocycl. Chem.*, **1983**, *20*, 919.
- 1310. G. D. Hartman and J. E. Schwering, *J. Heterocycl. Chem.*, **1983**, *20*, 947.
- 1311. A. Ohta, M. Shimazaki, H. Tamamura, Y. Mamiya, and T. Watanabe, *J. Heterocycl. Chem.*, **1983**, *20*, 951.
- 1312. C. O. Okafor, R. N. Castle, and D. S. Wise, *J. Heterocycl. Chem.*, **1983**, *20*, 1047.
- 1313. G. D. Hartman and R. D. Hartman, *J. Heterocycl. Chem.*, **1983**, *20*, 1089.
- 1314. T. Watanabe, J. Nishiyama, R. Hirate, K. Uehara, M. Inoue, K. Matsumoto, and A. Ohta, *J. Heterocycl. Chem.*, **1983**, *20*, 1277.
- 1315. M. A. E. Khalifa, E. M. Zayed, M. H. Mohamed, and M. H. Elnagdi, *J. Heterocycl. Chem.*, **1983**, *20*, 1571.
- 1316. M. V. Jaovanovic and E. R. Biehl, *J. Heterocycl. Chem.*, **1983**, *20*, 1677.
- 1317. K. L. Shepard and W. Halczenko, *J. Heterocycl. Chem.*, **1979**, *16*, 321.
- 1318. P. R. Buckland, *J. Heterocycl. Chem.*, **1980**, *17*, 397.
- 1319. R. E. Banks, C. M. Irvin, and A. E. Tipping, *J. Fluorine Chem.*, **1981**, *17*, 99.
- 1320. R. E. Banks, M. G. Barlow, and M. Mamaghani, *J. Fluorine Chem.*, **1981**, *17*, 197.
- 1321. D. J. Brauer, H. Bürger, and G. Pawelke, *J. Fluorine Chem.*, **1985**, *27*, 347.
- 1322. R. E. Banks, M. G. Barlow, and I. M. Madany, *J. Fluorine Chem.*, **1985**, *28*, 413.
- 1323. H. Grützmacher, H. W. Roesky, M. Noltemeyer, N. Keweloh, and G. M. Sheldrick, *J. Fluorine Chem.*, **1988**, *39*, 357.
- 1324. W.-H. Lin and R. J. Lagow, *J. Fluorine Chem.*, **1990**, *50*, 15.
- 1325. B.-N. Huang and J. T. Liu, *J. Fluorine Chem.*, **1993**, *64*, 37.
- 1326. G. J. Chen and L. S. Chen, *J. Fluorine Chem.*, **1995**, *73*, 113.

- 1327. T. Tanaka and M. Ohta, *Nippon Kagaku Kaishi*, **1978**, 1421.
- 1328. T. Tanaka, H. Onuma, and M. Ohta, *Nippon Kagaku Kaishi*, **1978**, 1661.
- 1329. T. Tanaka, K. Kubota, Y. Watanabe, and A. Kawamura, *Nippon Kagaku Kaishi*, **1980**, 600.
- 1330. F. Kanetani, K. Negoro, S. Nakano, and R.-J. Lee, *Nippon Kagaku Kaishi*, **1983**, 1783.
- 1331. T. Okawa and S. Eguchi, *Tetrahedron Lett.*, **1996**, *37*, 81.
- 1332. S. Tokita, M. Kojima, N. Kai, K. Kurogi, H. Nishi, H. Tomoda, S. Saito, and S. Shiraishi, *Nippon Kagaku Kaishi*, **1990**, 219.
- 1333. T. Kobayashi and M. Nitta, *Nippon Kagaku Kaishi*, **1985**, 451.
- 1334. M. Matsumoto, Y. Sano, T. Nagaishi, S. Yoshinaga, K. Isomura, and H. Taniguchi, *Nippon Kagaku Kaishi*, **1992**, 1203.
- 1335. J. I. DeGraw, V. H. Brown, and I. Uemura, *J. Labelled Compd. Radiopharm.*, **1979**, *16*, 559.
- 1336. H. U. Shetty, E. M. Hawes, and K. K. Midha, *J. Labelled Compd. Radiopharm.*, **1981**, *18*, 1633.
- 1337. T. de Paulis, D. A. Davis, H. E. Smith, D. H. Malarek, and A. A. Liebman, *J. Labelled Compd. Radiopharm.*, **1988**, *25*, 1027.
- 1338. H. R. Howard, K. D. Shenk, T. A. Smolarek, M. H. Marx, J. H. Windels, and R. W. Roth, *J. Labelled Compd. Radiopharm.*, **1994**, *34*, 117.
- 1339. J. I. DeGraw, K. J. Ryan, M. Tracy, W. T. Colwell, J. R. P. Arnold, and G. C. K. Roberts, *J. Labelled Compd. Radiopharm.*, **1989**, *27*, 1127.
- 1340. M. Maeda, C. Sakuma, S. Kawachi, K. Tabei, A. Kerim, T. Kurihara, and A. Ohta, *J. Labelled Compd. Radiopharm.*, **1995**, *36*, 85.
- 1341. W. F. J. Karstens, H. J. F. F. Berger, E. R. van Haren, J. Lugtenburg, and J. Raap, *J. Labelled Compd. Radiopharm.*, **1995**, *36*, 1077.
- 1342. E. Lukevits, E. Liepin'sh, E. P. Popova, V. D. Shatts, and V. A. Belikov, *Zh. Obshch. Khim.*, **1980**, *50*, 388.
- 1343. K. V. Chernitskii, V. A. Bobylev, F. Y. Sharikov, and N. Y. Veselkov, *Zh. Obshch. Khim.*, **1990**, *60*, 617.
- 1344. R. N. Zagudullin and Z. M. Baimetov, *Zh. Obshch. Khim.*, **1991**, *61*, 978.
- 1345. V. B. Ukraintsev and B. A. Krasnov, *Zh. Obshch. Khim.*, **1993**, *63*, 167.
- 1346. C. H. Archer, N. R. Thomas, and D. Gani, *Tetrahedron: Asymmetry*, **1993**, *4*, 1141.
- 1347. N. Sewald, L. C. Seymour, K. Burger, S. N. Osipov, A. F. Kolomiets, and A. V. Fokin, *Tetrahedron: Asymmetry*, **1994**, *5*, 1051.
- 1348. D. Heerding, P. Bhatnagar, M. Hartmann, P. Kremminger, and P. LoCastro, *Tetrahedron: Asymmetry*, **1996**, *7*, 237.
- 1349. V. Favero, G. Porzi, and S. Sandri, *Tetrahedron: Asymmetry*, **1997**, *8*, 599.
- 1350. G. Porzi, S. Sandri, and P. Verrocchio, *Tetrahedron: Asymmetry*, **1998**, *9*, 119.
- 1351. S. D. Bull, S. G. Davies, and W. O. Moss, *Tetrahedron: Asymmetry*, **1998**, *9*, 321.
- 1352. M. Nakajima, C. S. Loeschorn, W. E. Cimbrelo, and J. P. Anselme, *Org. Prep. Proced. Int.*, **1980**, *12*, 265.
- 1353. I. Iovel, Y. Goldberg, and M. Shymanska, *Org. Prep. Proced. Int.*, **1991**, *23*, 188.
- 1354. M. Devys, M. Barbier, J. F. Bousquet, and A. Kollmann, *Org. Prep. Proced. Int.*, **1993**, *25*, 696.
- 1355. P. Pevarello, G. Scappi, and M. Varasi, *Org. Prep. Proced. Int.*, **1994**, *26*, 366.
- 1356. M. Hedayatullah and A. Guy, *Phosphorus Sulfur*, **1979**, *7*, 95.
- 1357. R. J. Cremlyn and N. Akhtar, *Phosphorus Sulfur*, **1979**, *7*, 247.
- 1358. W. O. Foye, N. Abood, J. M. Kauffman, Y.-H. Kim, and B. R. Patel, *Phosphorus Sulfur*, **1980**, *8*, 205.
- 1359. S. J. I. Skorini and A. Senning, *Phosphorus Sulfur*, **1980**, *9*, 193.
- 1360. S. D. Pastor, H. K. Naraine, and R. Sundar, *Phosphorus Sulfur*, **1988**, *36*, 111.

- 1361. A. O. Abdelhamid, F. A. Khalifa, and S. S. Ghabrial, *Phosphorus Sulfur*, **1988**, *40*, 41.
- 1362. F. Boberg, G. Nink, B. Bruchmann, B. Korall, and R. Weber, *Phosphorus, Sulfur Silicon Relat. Elem.*, **1991**, *61*, 145.
- 1363. P. Frøyen, *Phosphorus, Sulfur Silicon Relat. Elem.*, **1991**, *63*, 283.
- 1364. M. S. Singh and R. J. Rao, *Phosphorus, Sulfur Silicon Relat. Elem.*, **1992**, *68*, 115.
- 1365. A. Ohta, M. Inoue, J. Yamada, Y. Yamada, T. Kurihara, and T. Honda, *J. Heterocycl. Chem.*, **1984**, *21*, 103.
- 1366. J. Matsumoto, T. Miyamoto, A. Minamida, Y. Nishimura, H. Egawa, and H. Nishimura, *J. Heterocycl. Chem.*, **1984**, *21*, 673.
- 1367. C. Párkányi, A. O. Abdelhamid, J. C. S. Cheng, and A. S. Shawali, *J. Heterocycl. Chem.*, **1984**, *21*, 1029.
- 1368. J. Barluenga, C. Jiménez, C. Nájera, and M. Yus, *J. Heterocycl. Chem.*, **1984**, *21*, 1733.
- 1369. R. N. Hanson, S. Hariharan, and R. Astik, *J. Heterocycl. Chem.*, **1985**, *22*, 47.
- 1370. B. K. Bhattacharya and F. R. Eirich, *J. Heterocycl. Chem.*, **1985**, *22*, 229.
- 1371. Y. Houminer and D. L. Williams, *J. Heterocycl. Chem.*, **1985**, *22*, 373.
- 1372. M. Tada, H. Hamazaki, and K. Tsuzuki, *J. Heterocycl. Chem.*, **1985**, *22*, 977.
- 1373. S. J. Gumbley, T. W. S. Lee, and R. Stewart, *J. Heterocycl. Chem.*, **1985**, *22*, 1143.
- 1374. N. Sato, *J. Heterocycl. Chem.*, 1985, *22*, 1145.
- 1375. A. Ohta, Y. Inagawa, M. Inoue, M. Shimazaki, and Y. Mamiya, *J. Heterocycl. Chem.*, **1985**, *22*, 1173.
- 1376. R. J. Cremlyn, F. J. Swinbourne, and O. Shode, *J. Heterocycl. Chem.*, **1985**, *22*, 1211.
- 1377. M. Inoue, R. Abe, H. Tamamura, M. Ohta, A. Asami, H. Kitani, H. Kamei, Y. Nakamura, T. Watanabe, and A. Ohta, *J. Heterocycl. Chem.*, **1985**, *22*, 1291.
- 1378. M. Tada and H. Momose, *J. Heterocycl. Chem.*, **1985**, *22*, 1357.
- 1379. K. Tsuzuki and M. Tada, *J. Heterocycl. Chem.*, **1985**, *22*, 1365.
- 1380. A. Ohta, Y. Inagawa, and C. Mitsugi, *J. Heterocycl. Chem.*, **1985**, *22*, 1643.
- 1381. B. K. Bhattacharya, *J. Heterocycl. Chem.*, **1986**, *23*, 113.
- 1382. N. Sato, *J. Heterocycl. Chem.*, **1986**, *23*, 149.
- 1383. Y. Houminer, E. W. Southwick, and D. L. Williams, *J. Heterocycl. Chem.*, **1986**, *23*, 497.
- 1384. K. F. Podraza, *J. Heterocycl. Chem.*, 1986, *23*, 581.
- 1385. H. Sladowska, A. van Veldhuizen, and H. C. van der Plas, *J. Heterocycl. Chem.*, **1986**, *23*, 843.
- 1386. J. Adachi and N. Sato, *J. Heterocycl. Chem.*, **1986**, *23*, 871.
- 1387. E. Abignente, P. de Caprariis, R. Patscot, and A. Sacchi, *J. Heterocycl. Chem.*, **1986**, *23*, 1031.
- 1388. V. Mettey and J.-M. Vierfond, *J. Heterocycl. Chem.*, **1986**, *23*, 1051.
- 1389. K. Tsuzuki and M. Tada, *J. Heterocycl. Chem.*, **1986**, *23*, 1299.
- 1390. T. Suzuki, Y. Nagae, and K. Mitsuhashi, *J. Heterocycl. Chem.*, **1986**, *23*, 1419.
- 1391. Y. Akita, T. Noguchi, M. Sugimoto, and A. Ohta, *J. Heterocycl. Chem.*, **1986**, *23*, 1481.
- 1392. N. Sato and Y. Kato, *J. Heterocycl. Chem.*, **1986**, *23*, 1677.
- 1393. K. Mitsuhashi, Y. Nagae, and T. Suzuki, *J. Heterocycl. Chem.*, **1986**, *23*, 1741.
- 1394. J. E. Johnson, J. A. Maia, K. Tan, A. Ghafouripour, A. de Meester, and S. S. C. Chu, *J. Heterocycl. Chem.*, **1986**, *23*, 1861.
- 1395. M. Tada, T. Ito, and K. Ohshima, *J. Heterocycl. Chem.*, **1986**, *23*, 1893.
- 1396. S. Mihara and H. Masuda, *J. Agric. Food Chem.*, **1990**, *38*, 1032.
- 1397. N. Kawahara, K. Nozawa, S. Nakajima, and K.-I. Kawai, *Phytochemistry*, **1988**, *27*, 3022.
- 1398. L. Lapinski, M. J. Nowak, J. Fulara, A. Les´, and L. Adamowicz, *J. Phys. Chem.*, **1992**, *96*, 6250.
- 1399. W. Wierenga and H. I. Skulnick, *Org. Synth.*, **1983**, *61*, 5.

- 1400. M. Ogata, S. Shimizu, and H. Matsumoto, *Chem. Ind. (London)*, **1982**, 200.
- 1401. N. S. Ibrahim, M. H. Mohamed, and M. H. Elnagdi, *Chem. Ind. (London)*, **1988**, 270.
- 1402. G. R. Newkome, V. K. Gupta, and F. R. Fronczek, *Organometallics*, **1982**, *1*, 907.
- 1403. S.-I. Ikeda, N. Chatani, and S. Murai, *Organometallics*, **1992**, *11*, 3494.
- 1404. Y. Ishii, N. Chatani, F. Kakiuchi, and S. Murai, *Organometallics*, **1997**, *16*, 3615.
- 1405. C. Sakuma, M. Maeda, K. Tabei, and A. Ohta, *Magn. Reson. Chem.*, **1996**, *34*, 567.
- 1406. G. Holzmann and H. W. Rothkopf, *Org. Mass Spectrom.*, **1978**, *13*, 636.
- 1407. J. J. Brophy, C.-M. Sun, B. Tecle, and R. F. Toia, *Org. Mass Spectrom.*, **1989**, *24*, 609.
- 1408. T. Wansler, J. T. Nielsen, E. J. Pedersen, and K. Schaumburg, *J. Magn. Reson.*, **1981**, *43*, 387.
- 1409. L. Stefaniak, J. D. Roberts, M. Witanowski, and G. A. Webb, *Org. Magn. Reson.*, **1984**, *22*, 201.
- 1410. M. Matsuo, S. Matsumoto, T. Kurihara, Y. Akita, T. Watanabe, and A. Ohta, *Org. Magn. Reson.*, **1980**, *13*, 172.
- 1411. R. D. Chambers, R. S. Matthews, W. K. R. Musgrave, and P. G. Urben, *Org. Magn. Reson.*, **1980**, *13*, 363.
- 1412. F. Ogura, Y. Hama, Y. Aso, and T. Otsubo, *Synth. Met.*, **1988**, *27*, B295.
- 1413. H. Neunhoeffer and G. Köhler, *Tetrahedron Lett.*, **1978**, 4879.
- 1414. A. Inada, H. Heimgartner, and H. Schmid, *Tetrahedron Lett.*, **1979**, 2983.
- 1415. T. Kanmera, S. Lee, H. Aoyagi, and N. Izumiya, *Tetrahedron Lett.*, **1979**, 4483.
- 1416. G. Alvernhe, S. Lacombe, and A. Laurent, *Tetrahedron Lett.*, **1980**, *21*, 1437.
- 1417. T. Nishio, N. Nakajima, and Y. Omote, *Tetrahedron Lett.*, **1980**, *21*, 2529.
- 1418. J. M. Kane and A. A. Carr, *Tetrahedron Lett.*, **1980**, *21*, 3019.
- 1419. J.-P. Mayer and J.-P. Fleury, *Tetrahedron Lett.*, **1980**, *21*, 3759.
- 1420. T. Nishio, N. Nakejima, and Y. Omote, *Tetrahedron Lett.*, **1981**, *22*, 753.
- 1421. J.-M. Vierfond, Y. Mettey, L. Mascrier-Demagny, and M. Miocque, *Tetrahedron Lett.*, **1981**, *22*, 1219.
- 1422. T. C. Gallagher and R. C. Storr, *Tetrahedron Lett.*, **1981**, *22*, 2905.
- 1423. A. McKillop, A. Henderson, P. S. Ray, C. Avendano, and E. G. Molinero, *Tetrahedron Lett.*, **1982**, *23*, 3357.
- 1424. S. Tobias and H. Gunther, *Tetrahedron Lett.*, **1982**, *23*, 4785.
- 1425. C.-K. Shu and B. M. Lawrence, *Spec. Publ. -R. Soc. Chem.*, **1994**, *151*, 140.
- 1426. E. Leete, J. A. Bjorklund, G. A. Reineccius, and T. B. Cheng, *Spec. Publ. -R. Soc. Chem.*, **1992**, *95*, 75.
- 1427. G. D. Hartman, J. E. Schwering, and R. D. Hartman, *Tetrahedron Lett.*, **1983**, *24*, 1011.
- 1428. H. P. Erb and T. Bluhm, *Org. Magn. Reson.*, **1980**, *14*, 285.
- 1429. N. K. Sanyal, S. I. Srivastava, A. Devi, and T. Nath, *J. Mol. Spectrosc.*, **1979**, *78*, 335.
- 1430. W. M. F. Fabian, *J. Comput. Chem.*, **1991**, *12*, 17.
- 1431. H. D. Hausen, O. Mundt, and W. Kaim, *J. Organomet. Chem.*, **1985**, *296*, 321.
- 1432. G. Alvernhe, A. Laurent, A. Masroua, and Y. Diab, *Tetrahedron Lett.*, **1983**, *24*, 1153.
- 1433. G. Queguiner, F. Marsais, V. Snieckus, and J. Epsztajn, *Adv. Heterocycl. Chem.*, **1991**, *52*, 187.
- 1434. Y. Wang, J. B. Gloer, J. A. Scott, and D. Malloch, *J. Nat. Prod.*, **1995**, *58*, 93.
- 1435. J.-C. Depezay, A. Duréault, and T. Prange, *Tetrahedron Lett.*, **1984**, *25*, 1459.
- 1436. M. Hasebe, K. Kogawa, and T. Tsuchiya, *Tetrahedron Lett.*, **1984**, *25*, 3887.
- 1437. R. S. Dainter, H. Suschitzky, and B. J. Wakefield, *Tetrahedron Lett.*, **1984**, *25*, 5693.
- 1438. M. Barbier and M. Devys, *Tetrahedron Lett.*, 1985, *26*, 733.
- 1439. S. R. Tulyaganov, *Dokl. Akad. Nauk Uzb SSR*, **1981**(11), 44; *Chem. Abstr.*, **1982**, *97*, 5885.
- 1440. P. R. Bernstein, R. D. Krell, D. W. Snyder, and Y. K. Yee, *Tetrahedron Lett.*, **1985**, *26*, 1951.

- 1441. R. E. Walkup and J. Linder, *Tetrahedron Lett.*, **1985**, *26*, 2155.
- 1442. T. Fukuyama, R. K. Frank, and A. A. Laird, *Tetrahedron Lett.*, **1985**, *26*, 2955.
- 1443. R. S. Handley, A. J. Stern, and A. P. Schaap, *Tetrahedron Lett.*, **1985**, *26*, 3183.
- 1444. S. Ram and R. E. Ehrenkaufer, *Tetrahedron Lett.*, **1985**, *26*, 5367.
- 1445. P. J. Steel and E. C. Constable, *J. Chem. Res.*, **1989**, *Synop*. 189, *Minipr*. 1601.
- 1446. A. J. Boulton, A. McKillop, and P. M. Rowbottom, *J. Chem. Res.*, **1989**, *Synop*. 59, *Minipr*. 559.
- 1447. A. Nuvola, G. Paglietti, P. Sanna, and R. M. Acheson, *J. Chem. Res.* **1984**, *Synop.* 356, *Minipr.* 3245.
- 1448. N. Sato, *J. Chem. Res.*, **1984**, *Synop.* 318, *Minipr.* 2860.
- 1449. P. A. Bonnet, C. Sablayrolles, and J.-P. Chapet, *J. Chem. Res.*, **1984**, *Synop.* 28, *Minipr.* 468.
- 1450. R. Isaksson, T. Liljefors, and J. Sandström, *J. Chem. Res.*, **1981**, *Synop.* 43, *Minipr.* 664.
- 1451. N. Sato and H. Mizuno, *J. Chem. Res.*, **1997**, *Synop.* 250.
- 1452. T. Yokoi, H. Taguchi, Y. Nishiyama, K. Igarashi, F. Kasuya, and Y. Okada, *J. Chem. Res.*, **1997**, *Synop.* 10, *Minipr.* 171.
- 1453. M. Orena, G. Porzi, and S. Sandri, *J. Chem. Res.*, **1993**, *Synop*. 318, *Minipr.* 2125.
- 1454. P. Brix and J. Voss, *J. Chem. Res.*, **1993**, *Synop.* 322, *Minipr.* 2218.
- 1455. A. Turck, D. Trohay, L. Majovic, N. Plé, and G. Quéguiner, *J. Organomet. Chem.*, **1991**, *412*, 301.
- 1456. A. Ehland, H.D. Hausen, W. Kaim, A. Lichtblau, and W. Schwarz, *J. Organomet. Chem.*, **1995**, *501*, 283.
- 1457. K. Breuker, H. C. van der Plas, and A. van Veldhuizen, *Isr. J. Chem.*, **1986**, *27*, 67.
- 1458. I. V. Oleinik and O. Zagulyaeva, *Mendeleev Commun.*, **1994**, 50.
- 1459. O. V. Shishkin, A. S. Polyakova, Y. T. Struchkov, and S. M. Desenko, *Mendeleev Commun.*, **1994**, 182.
- 1460. I. L. Yudin, A. B. Sheremetev, O. P. Shitov, and V. A. Tartakovskii, *Mendeleev Commun.*, **1995**, 196.
- 1461. J.-B. Regnouf de Vains, J.-M. Lehn, N. E. Ghermani, O. Dusausoy, Y. Dusausoy, A.-L. Papet, A. Marsura, P. Friant, and J. L. Rivail, *New J. Chem.*, **1994**, *18*, 701.
- 1462. L. Désaubry, C. G. Wermuth, A. Boehrer, C. Marescaux, and J.-J. Bourguignon, *Bioorg. Med. Chem. Lett.*, **1995**, *5*, 139.
- 1463. N. F. Tyupalo, V. A. Belobarodov, and Y. B. Vysotskii, *Dokl. Akad. Nauk SSSR*, **1983**, *269*, 377.
- 1464. G. Maier and F. Fleischer, *Tetrahedron Lett.*, **1991**, *32*, 57.
- 1465. Y. Kita, S. Akai, H. Fujioka, Y. Tamura, H. Tone, and Y. Taniguchi, *Tetrahedron Lett.*, **1991**, *32*, 6019.
- 1466. M. Cushman and E. S. Lee, *Tetrahedron Lett.*, **1992**, *33*, 1193.
- 1467. F. Coppa, F. Fontana, E. Lazzarini, F. Minisci, G. Pianese, and L. Zhao, *Tetrahedron Lett.*, **1992**, *33*, 3057.
- 1468. G. A. McCort and J. C. Pascal, *Tetrahedron Lett.*, **1992**, *33*, 4443.
- 1469. D. Guillerm and G. Guillerm, *Tetrahedron Lett.*, **1992**, *33*, 5047.
- 1470. D. A. Smith, S. Cramer, S. Sucheck, and E. Skrzypczak-Jankun, *Tetrahedron Lett.*, **1992**, *33*, 7765.
- 1471. U. T. Mueller-Westerhoff and M. Zhou, *Tetrahedron Lett.*, **1993**, *34*, 571.
- 1472. V. A. Basyuk, T. Y. Gromovoi, A. A. Chuiko, V. A. Soloshonok, and V. P. Kukhar, *Dokl. Akad. Nauk SSSR*, **1991**, *318*, 905.
- 1473. J. Zámocká, D. Dvořáčková, and J. Heger, *Z. Chem.*, **1980**, *20*, 57.
- 1474. A. D. Dunn, K. I. Kinnear, and R. Norrie, *Z. Chem.*, **1986**, *26*, 290.
- 1475. H. D. Burrows, J. Ige, and S. A. Umoh, *J. Chem. Soc., Faraday Trans. 1*, **1982**, *78*, 947.
- 1476. M. Tutonda, D. Vanderzande, J. Vekemans, S. Toppet, and G. Hoornaert, *Tetrahedron Lett.*, **1986**, *27*, 2509.
- 1477. H.-J. Zeiss, *Tetrahedron Lett.*, **1987**, *28*, 1255.
- 1478. M. Kiss, J. Russell-Maynard, and J. A. Joule, *Tetrahedron Lett.*, **1987**, *28*, 2187.
- 1479. A. Luedtke, K. Meng, and J. W. Timberlake, *Tetrahedron Lett.*, **1987**, *28*, 4255.
- 1480. J. E. Francis, L. A. Gorczyca, G. C. Mazzenga, and H. Meckler, *Tetrahedron Lett.*, **1987**, *28*, 5133.
- 1481. V. Eiermann, C. Krieger, F. A. Neugebauer, and H. A. Staab, *Tetrahedron Lett.*, **1988**, *29*, 3655.
- 1482. P. A. Allway, J. K. Sutherland, and J. A. Joule, *Tetrahedron Lett.*, **1990**, *31*, 4781.
- 1483. J. F. Arenas, J. T. Lopez-Navarrete, J. C. Otero, J. I. Marcos, and A. Cardenete, *J. Chem. Soc., Faraday Trans. 2*, **1985**, *81*, 405.
- 1484. E.-Z. M. Ebeid, R. M. Issa, S. A. El-Daly, and M. M. F. Sabry, *J. Chem. Soc., Faraday Trans. 2*, **1986**, *82*, 1981.
- 1485. S. Bradamante, A. Facchetti, and G. A. Pagani, *J. Phys. Org. Chem.*, **1997**, *10*, 514.
- 1486. M. F. Sammelhack and H. Rhee, *Tetrahedron Lett.*, **1993**, *34*, 1395.
- 1487. T. J. Curphey and H. H. Joyner, *Tetrahedron Lett.*, **1993**, *34*, 3703.
- 1488. C. L. L. Chi and D. M. Page, *Tetrahedron Lett.*, **1993**, *34*, 4373.
- 1489. G. Shapiro, D. Buechler, V. Ojea, E. Pombo-Villar, M. Ruiz, and H.-P. Weber, *Tetrahedron Lett.*, **1993**, *34*, 6255.
- 1490. D. Askin, K. K. Eng, K. Rossen, R. M. Pyrick, K. M. Wells, R. P. Volante, and P. Reider, *Tetrahedron Lett.*, **1994**, *35*, 673.
- 1491. Y. Okada, H. Taguchi, Y. Nishiyama, and T. Yokoi, *Tetrahedron Lett.*, **1994**, *35*, 1231.
- 1492. V. Ojea, M. Ruiz, G. Shapiro, and E. Pombo-Villar, *Tetrahedron Lett.*, **1994**, *35*, 3273.
- 1493. G. S. Poindexter, M. A. Bruce, K. L. LeBoulluec, and I. Monkovic, *Tetrahedron Lett.*, **1994**, *35*, 7331.
- 1494. J. A. Gregory, A. J. Jennings, G. F. Joiner, F. D. King, and S. K. Rahman, *Tetrahedron Lett.*, **1995**, *36*, 155.
- 1495. S. B. Singh, *Tetrahedron Lett.*, **1995**, *36*, 2009.
- 1496. J. Tulinsky, S. A. Mizsak, W. Watt, L. A. Dolak, T. Judge, and R. B. Gammill, *Tetrahedron Lett.*, **1995**, *36*, 2017.
- 1497. S. Sano, Y. Kobayashi, T. Kondo, M. Takebayashi, S. Maruyama, T. Fujita, and Y. Nagao, *Tetrahedron Lett.*, **1995**, *36*, 2097.
- 1498. S. Sano, X.-K. Lin, M. Takebayashi, Y. Kobayashi, K. Tabata, M. Shiro, and Y. Nagao, *Tetrahedron Lett.*, **1995**, *36*, 4101.
- 1499. K. Rossen, S. A. Weissman, J. Sager, R. A. Reamer, D. Askin, R. P. Volante, and P. J. Reider, *Tetrahedron Lett.*, **1995**, *36*, 6419.
- 1500. I. Iriepa, B. Gil-Alberdi, E. Galvez, J. Sanz-Aparicio, I. Fonseca, A. Orjales, A. Berisa, and C. Labeaga, *J. Phys. Org. Chem.*, **1998**, *11*, 125.
- 1501. W. R. Thiel and J. Eppinger, *Chem.–Eur. J.*, **1997**, *3*, 696.
- 1502. C. Wang, M. R. Bryce, A. S. Batsanov, and J. A. K. Howard, *Chem.–Eur. J.*, **1997**, *3*, 1679.
- 1503. J. J. Chen, J. A. Walker, W. Liu, D. S. Wise, and L. B. Townsend, *Tetrahedron Lett.*, **1995**, *36*, 8363.
- 1504. A. Turck, N. Plé, D. Trohay, B. Ndzi, and G. Quéguiner, *J. Heterocycl. Chem.*, **1992**, *29*, 699.
- 1505. J. H. Hall, J. Y. Chien, J. M. Kauffman, P. T. Litak, J. K. Adams, R. A. Henry, and R. A. Hollins, *J. Heterocycl. Chem.*, **1992**, *29*, 1245.
- 1506. N. Sato and H. Kadota, *J. Heterocycl. Chem.*, **1992**, *29*, 1685.
- 1507. N. Sato and N. Matsui, *J. Heterocycl. Chem.*, **1992**, *29*, 1689.
- 1508. N. Sato and H. Suzuki, *J. Heterocycl. Chem.*, **1993**, *30*, 841.

- 1509. W. Holzer and G. Seiringer, *J. Heterocycl. Chem.*, **1993**, *30*, 865.
- 1510. Y. Okada, H. Taguchi, and T. Yokoi, *Tetrahedron Lett.*, **1996**, *37*, 2249.
- 1511. J. M. Mellor and H. Rataj, *Tetrahedron Lett.*, **1996**, *37*, 2619.
- 1512. T. J. Guzi and T. L. Macdonald, *Tetrahedron Lett.*, **1996**, *37*, 2939.
- 1513. C. Z. Ding and A. V. Miller, *Tetrahedron Lett.*, **1996**, *37*, 4447.
- 1514. C. F. Masaguer and E. Raviña, *Tetrahedron Lett.*, **1996**, *37*, 5171.
- 1515. Y. Okuwaki, Y. Inagawa, H. Tamamura, T. Suzuki, H. Kuwana, M. Tahara, K. Yuasa, and A. Ohta, *J. Heterocycl. Chem.*, **1987**, *24*, 187.
- 1516. A. A. Carr, M. W. Dudley, E. W. Huber, J. M. Kane, and F. P. Miller, *J. Heterocycl. Chem.*, **1987**, *24*, 239.
- 1517. J. W. G. De Meester, H. C. van der Plas, and W. J. Middelhoven, *J. Heterocycl. Chem.*, **1987**, *24*, 441.
- 1518. C. K. F. Hermann, Y. P. Sachdeva, and J. F. Wolfe, *J. Heterocycl. Chem.*, **1987**, *24*, 1061.
- 1519. W. Liu, J. A. Walker, J. J. Chen, D. S. Wise, and L. B. Townsend, *Tetrahedron Lett.*, **1996**, *37*, 5324.
- 1520. M. Ruiz, V. Ojea, and J. M. Quintela, *Tetrahedron Lett.*, **1996**, *37*, 5743.
- 1521. V. Ojea, M. C. Fernández, M. Ruiz, and J. M. Quintela, *Tetrahedron Lett.*, **1996**, *37*, 5801.
- 1522. J. W. G. De Meester, W. Kraus, H. C. van der Plas, H. J. Brons, and W. J. Middelhoven, *J. Heterocycl. Chem.*, **1987**, *24*, 1109.
- 1523. N. Sato and M. Suzuki, *J. Heterocycl. Chem.*, **1987**, *24*, 1371; **1991**, *28*, 2075.
- 1524. J. B. Neilsen, H. S. Broadbent, and W. J. Hennen, *J. Heterocycl. Chem.*, **1987**, *24*, 1621.
- 1525. A. R. Kareitzky, W.-Q. Fan, M. Szajda, Q.-L. Li, and K. C. Caster, *J. Heterocycl. Chem.*, **1988**, *25*, 591.
- 1526. P. Y. Boamah, N. Haider, G. Heinisch, and J. Moshuber, *J. Heterocycl. Chem.*, **1988**, *25*, 879.
- 1527. Y. Akita, H. Kanekawa, T. Kawasaki, I. Shiratori, and A. Ohta, *J. Heterocycl. Chem.*, **1988**, *25*, 975.
- 1528. M. Tada and S. Totoki, *J. Heterocycl. Chem.*, **1988**, *25*, 1295.
- 1529. M. Hashimoto, N. Izuki, and K. Sakata, *J. Heterocycl. Chem.*, **1988**, *25*, 1705.
- 1530. N. Sato and N. Saito, *J. Heterocycl. Chem.*, **1988**, *25*, 1737.
- 1531. K. Matsumoto, T. Uchida, K. Aoyama, M. Nishikawa, T. Kuroda, and T. Okamoto, *J. Heterocycl. Chem.*, **1988**, *25*, 1793.
- 1532. M. J. I. Andrews and A. B. Tabor, *Tetrahedron Lett.*, **1997**, *38*, 3063.
- 1533. K. Rossen, J. Sager, and L. M. DiMichele, *Tetrahedron Lett.*, **1997**, *38*, 3183.
- 1534. U. Bhatt, N. Mohamed, G. Just, and E. Roberts, *Tetrahedron Lett.*, **1997**, *38*, 3679.
- 1535. M. Falorni, G. Giacmelli, F. Nieddu, and M. Taddei, *Tetrahedron Lett.*, **1997**, *38*, 4663.
- 1536. Y. Ishii, N. Chatani, F. Kakiuchi, and S. Murai, *Tetrahedron Lett.*, **1997**, *38*, 7565.
- 1537. H. Nakamura, C. Wu, D. Takeuchi, and A. Murai, *Tetrahedron Lett.*, **1998**, *39*, 301.
- 1538. T. Uno, T. Okuno, N. Taguchi, K. Iuchi, Y. Kawahata, M. Sotomura, and G. Tsukamoto, *J. Heterocycl. Chem.*, **1989**, *26*, 393.
- 1539. R. C. Bernotas and G. Adams, *Tetrahedron Lett.*, **1996**, *37*, 7339.
- 1540. T. J. Kress, *Prog. Heterocycl. Chem.*, **1989**, *1*, 255.
- 1541. T. J. Kress and D. L. Varie, *Prog. Heterocycl. Chem.*, **1990**, *2*, 196.
- 1542. T. J. Kress and D. L. Varie, *Prog. Heterocycl. Chem.*, **1991**, *3*, 217.
- 1543. T. J. Kress and D. L. Varie, *Prog. Heterocycl. Chem.*, **1992**, *4*, 197.
- 1544. D. T. Hurst, *Prog. Heterocycl. Chem.*, **1993**, *5*, 234.
- 1545. G. Heinisch and B. Matuszczak, *Prog. Heterocycl. Chem.*, **1994**, *6*, 243.

- 1546. G. Heinisch and B. Matuszczak, *Prog. Heterocycl. Chem.*, **1995**, *7*, 237.
- 1547. M. P. Groziak, *Prog. Heterocycl. Chem.*, **1996**, *8*, 243.
- 1548. M. P. Groziak, *Prog. Heterocycl. Chem.*, **1997**, *9*, 257.
- 1549. M. P. Groziak, *Prog. Heterocycl. Chem.*, **1998**, *10*, 262.
- 1550. M. P. Groziak, *Prog. Heterocycl. Chem.*, **1999**, *11*, 265.
- 1551. B. Chen, C.-Y. Yang, and D.-Y. Ye, *Tetrahedron Lett.*, **1996**, *37*, 8205.
- 1552. J. E. Baldwin, M. R. Spyvee, and R. C. Whitehead, *Tetrahedron Lett.*, **1997**, *38*, 2771.
- 1553. M. Nishiyama, T. Yamamoto, and Y. Koie, *Tetrahedron Lett.*, **1998**, *39*, 617.
- 1554. J. J. McNally, M. A. Youngman, and S. L. Dax, *Tetrahedron Lett.*, **1998**, *39*, 967.
- 1555. J. G. Breitenbucher, C. R. Johnson, M. Haight, and J. C. Phelan, *Tetrahedron Lett.*, **1998**, *39*, 1295.
- 1556. N. Sato, *J. Heterocycl. Chem.*, **1989**, *26*, 817.
- 1557. B. Stanovnik, H. van de Bovenkamp, J. Svete, H. Hvala, I. Simonič, and M. Tišler, *J. Heterocycl. Chem.*, **1990**, *27*, 359.
- 1558. U. Urleb, R. Neidlein, and W. Kramer, *J. Heterocycl. Chem.*, **1990**, *27*, 433.
- 1559. N. Sato, A. Hayakawa, and R. Takeuchi, *J. Heterocycl. Chem.*, **1990**, *27*, 503.
- 1560. D. Gopal, D. V. Nadkarni, and L. M. Sayre, *Tetrahedron Lett.*, **1998**, *39*, 1877.
- 1561. T. Watanabe, I. Ueda, N. Hayakawa, Y. Kondo, H. Adachi, A. Iwasaki, S. Kawamata, F. Mentori, M. Ichikawa, K. Yuasa, A. Ohta, T. Kurihara, and H. Miyamae, *J. Heterocycl. Chem.*, **1990**, *27*, 711.
- 1562. F. Dennin, D. Blondeau, and H. Sliwa, *J. Heterocycl. Chem.*, **1990**, *27*, 1639.
- 1563. J. P. Chupp, G. C. Leo, and J. M. Molyneaux, *J. Heterocycl. Chem.*, **1991**, *28*, 613.
- 1564. J. S. Ward and L. Merritt, *J. Heterocycl. Chem.*, **1991**, *28*, 765.
- 1565. P. Tuntiwachwuttikul, T. J. Bardos, and M. Bobek, *J. Heterocycl. Chem.*, **1991**, *28*, 1131.
- 1566. A. R. Howell, W. R. Martin, J. W. Sloan, and W. T. Smith, *J. Heterocycl. Chem.*, **1991**, *28*, 1147.
- 1567. J. B. Paine, *J. Heterocycl. Chem.*, **1991**, *28*, 1463.
- 1568. R. Zupet, M. Tišler, and L. Golič, *J. Heterocycl. Chem.*, **1991**, 28, 1731.
- 1569. M. MacCoss, L. C. Meurer, K. Hoogsteen, J. P. Springer, G. Koo, L. B. Peterson, R. L. Tolman, and E. Emini, *J. Heterocycl. Chem.*, **1993**, *30*, 1213.
- 1570. D. Hou, A. Oshida, and M. Matsuoka, *J. Heterocycl. Chem.*, **1993**, *30*, 1571.
- 1571. A. C^{opar}, B. Stanovnik, and M. Tišler, *J. Heterocycl. Chem.*, **1993**, *30*, 1577.
- 1572. A. P. Krapcho, M. J. Maresch, A. L. Helgason, R. E. Rosner, M. P. Hacker, S. Spinelli, E. Menta, and A. Oliva, *J. Heterocycl. Chem.*, **1993**, *30*, 1597.
- 1573. F. Gatta, M. R. Del Giudice, A. Borioni, and C. Mustazza, *J. Heterocycl. Chem.*, **1994**, *31*, 81.
- 1574. N. Sato and M. Fujii, *J. Heterocycl. Chem.*, **1994**, *31*, 1177.
- 1575. N. Sato, N. Miwa, H. Suzuki, and T. Sakakibara, *J. Heterocycl. Chem.*, **1994**, *31*, 1229.
- 1576. C. R. Shuman, *Am. J. Med.*, **1983**, *75*(Nov. 30), 55.
- 1577. J. Okada, S. Morita, Y. Miwa, and T. Tashima, *Yakugaku Zasshi*, **1978**, *98*, 1491.
- 1578. S. Takano, H. Ochiai, J. Nitta, M. Komatsu, H. Taki, M. Tai, T. Yasuda, and I. Saikawa, *Yakugaku Zasshi*, **1979**, *99*, 371.
- 1579. T. Kamiyama, S. Enomoto, and M. Inoue, *Yakugaku Zasshi*, **1981**, *101*, 20.
- 1580. J. Yamahara, T. Sawada, H. Fujimura, and M. Okamoto, *Yakugaku Zasshi*, **1985**, *105*, 249.
- 1581. N. Yokoo, E. Hattori, M. Hirata, K. Watanabe, F. Sato, M. Nagakura, and S. Fujii, *Yakugaku Zasshi*, **1987**, *107*, 732.
- 1582. S. Konno, Y. Matsuya, M. Kumazawa, M. Amano, T. Kokubo, M. Sagi, and H. Yamanaka, *Yakugaku Zasshi*, **1993**, *113*, 40.
- 1583. A. Chakma and A. Meisen, *J. Chromatogr.*, **1988**, *457*, 287.
- 1584. S. Husain, P. N. Sarma, S. M. Sajjad, R. Narsimha, and M. Subrah-Manyam, *J. Chromatogr.*, **1990**, *513*, 83.
- 1585. P. Mátyus, E. Kasztreiner, E. Diesler, A. Behr, I. Varga, J. Kosáry, G. Rabloczky, and L. Jaszlits, *Arch. Pharm. (Weinheim, Ger.)*, **1994**, *327*, 543.
- 1586. A. Rinaldi, M. Pelligrini, C. Crifò, and C. De Marco, *Eur. J. Biochem.*, **1981**, *117*, 635.
- 1587. A. S. Kende, F. A. Ebitina, W. B. Drendel, M. Sundarlingam, E. Glover, and A. Poland, *Mol. Pharmacol.*, **1985**, *28*, 445.
- 1588. A. Turck, N. Plé, D. Dognon, C. Harmoy, and G. Quéguiner, *J. Heterocycl. Chem.*, **1994**, *31*, 1449.
- 1589. M. R. Del Giudice, A. Berioni, C. Mustazza, and F. Gatta, *J. Heterocycl. Chem.*, **1994**, *31*, 1503.
- 1590. R. Martinez, M. F. Rubio, R. A. Toscano, X. Villalobos, and M. A. Brito, *J. Heterocycl. Chem.*, **1994**, *31*, 1521.
- 1591. G. Heinisch, B. Matuszczak, G. Pürstinger, and D. Rakowitz, *J. Heterocycl. Chem.*, **1995**, *32*, 13.
- 1592. M. Aljaž-Rožič, J. Svete, and B. Stanovnik, *J. Heterocycl. Chem.*, **1995**, *32*, 1605.
- 1593. A. Copar, B. Stanovnik, and M. Tišler, *J. Heterocycl. Chem.*, **1996**, 33, 465.
- 1594. N. Sato and T. Matsuura, *J. Heterocycl. Chem.*, **1996**, *33*, 1047.
- 1595. V. Kepe, M. Kočevar, and S. Polanc, *J. Heterocycl. Chem.*, 1996, 33, 1707.
- 1596. N. Plé, A. Turck, A. Heyndernickx, and G. Quéguiner, *J. Heterocycl. Chem.*, **1997**, *34*, 551.
- 1597. A. Turck, N. Plé, P. Pollet, L. Mojovic, J. Duflos, and G. Quéguiner, *J. Heterocycl. Chem.*, **1997**, *34*, 621.
- 1598. J.-Y. Jaung, K. Fukunishi, and M. Matsuoka, *J. Heterocycl. Chem.*, **1997**, *34*, 653.
- 1599. M. Tada, Y. Asawa, and M. Igarashi, *J. Heterocycl. Chem.*, **1997**, *34*, 973.
- 1600. A. Ohta and Y. Aoyagi, *Yakugaku Zasshi*, **1997**, *117*, 1; *Chem. Abstr.*, **1997**, *126*, 104024.
- 1601. A. Ohta and Y. Aoyagi, *Yakugaku Zasshi*, **1997**, *117*, 32; *Chem. Abstr.*, **1997**, *126*, 171394.
- 1602. A. Turck, N. Plé, P. Pollet, and G. Quéguiner, *J. Heterocycl. Chem.*, **1998**, *35*, 429.
- 1603. S. V. Ley, M. H. Bolli, B. Hinzen, A.-G. Gervois, and B. J. Hall, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 2239.
- 1604. T. Okawa, M. Kawase, S. Eguchi, A. Kakehi, and M. Shiro, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 2277.
- 1605. V. Kepe, F. Pozğan, A. Golobič, S. Polanc, and M. Kočevar, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 2813.
- 1606. P. Gros and Y. Fort, *J. Chem. Soc., Perkin Trans. 1*, **1998**, 3515.
- 1607. A. Tahri, K. J. Buysens, E. V. van der Eycken, D. M. Vandenberghe, and G. J. Hoornaert, *Tetrahedron*, **1998**, *54*, 1324.
- 1608. M. Lange and K. Undheim, *Tetrahedron*, **1998**, *54*, 5337.
- 1609. M. Lange, A. L. Pettersen, and K. Undheim, *Tetrahedron*, **1998**, *54*, 5745.
- 1610. B. Møller and K. Undheim, *Tetrahedron*, **1998**, *54*, 5789.
- 1611. M. Beller and C. Breindl, *Tetrahedron*, **1998**, *54*, 6359.
- 1612. L. Ghosez, I. George-Koch, L. Pating, M. Houtekie, P. Bovy, P. Nshimyumukiza, and T. Phan, *Tetrahedron*, **1998**, *54*, 9207.
- 1613. N. Plé, A. Turck, A. Heynderickx, and G. Quéguiner, *Tetrahedron*, **1998**, *54*, 9701.
- 1614. S. D. Bull, A. N. Chernega, S. G. Davies, W. O. Moss, and R. M. Parkin, *Tetrahedron*, **1998**, *54*, 10379.
- 1615. K. Hammer, C. Rømming, and K. Undheim, *Tetrahedron*, **1998**, *54*, 10837.
- 1616. P. Chedera, C. Avendaño, and J. C. Menéndez, *Tetrahedron*, **1998**, *54*, 12349.
- 1617. M. McCarthy and P. J. Guiry, *Tetrahedron*, **1999**, *55*, 3061.
- 1618. M. W. Miller, S. F. Vice, and S. W. McCombie, *Tetrahedron Lett.*, **1998**, *39*, 3429.

- 1619. T. Hirano, Y. Ohmiya, S. Maki, H. Miwa, and M. Ohashi, *Tetrahedron Lett.*, **1998**, *39*, 5541.
- 1620. A. R. Katritzky, D. Feng, and M. Qi, *Tetrahedron Lett.*, **1998**, *39*, 6835.
- 1621. W.-R. Li and S.-Z. Peng, *Tetrahedron Lett.*, **1998**, *39*, 7373.
- 1622. N. Mohamed, U. Bhatt, and G. Just, *Tetrahedron Lett.*, **1998**, *39*, 8213.
- 1623. A. M. El-Nahas, *J. Chem. Res.*, **1998**, *Synop*. 222, *Minipr*. 1014.
- 1624. J.-Y. Jaung, M. Matsuoka, and K. Fukunishi, *J. Chem. Res.*, **1998**, *Synop*. 284, *Minipr*. 1301.
- 1625. S. Masiero, F. Fini, G. Gottarelli, and G. P. Spada, *J. Chem. Res.*, **1998**, *Synop*. 634, *Minipr*. 2736.
- 1626. J. H. Kim, M. Matsuoka, and K. Fukunishi, *J. Chem. Res.*, **1999**, *Synop*. 132.
- 1627. G. Jia, Z. Lim, and Y. Zhang, *Heteroat. Chem.*, **1998**, *9*, 341; *Chem. Abstr.*, **1998**, *129*, 4626.
- 1628. T. Abellán, C. Nájera, and J. M. Sansano, *Tetrahedron: Asymmetry*, **1998**, *9*, 2211.
- 1629. K. Shirai, A. Yanagisawa, H. Takahashi, K. Fukunishi, and M. Matsuoka, *Dyes Pigm.*, **1998**, *39*, 49; *Chem. Abstr.*, **1998**, *129*, 15007.
- 1630. A. H. Fauq, C. Ziani-Cherif, and E. Richelson, *Tetrahedron: Asymmetry*, **1998**, *9*, 2333.
- 1631. T. Wei and S. Gu, *Xibei Shifan Doxue Xuebao, Ziran Kexueban*, **1998**, *34*(3), 93; *Chem. Abstr.*, **1998**, *129*, 216909.
- 1632. S. Sano, M. Takabayashi, T. Miwa, T. Ishii, and Y. Nagao, *Tetrahedron: Asymmetry*, **1998**, *9*, 3611.
- 1633. M. A. Hassan, M. T. Youssef, A. S. Alkafahi, H. D. Tabba, and I. M. Labouta, *Acta Pharm. Turc.*, **1998**, *40*(2), 53; *Chem. Abstr.*, **1998**, *129*, 230693.
- 1634. S. Sano, T. Miwa, X.-K. Liu, T. Ishii, T. Takehisa, M. Shiro, and Y. Nagao, *Tetrahedron: Asymmetry*, **1998**, *9*, 3615.
- 1635. V. Kepe, S. Polanc, and M. Kočevar, *Heterocycles*, 1998, 48, 671.
- 1636. A. Luk'yanov, T. G. Mel'nikova, and M. E. Shagaeva, *Russ. Chem. Bull.*, **1998**, *47*, 1130; *Chem. Abstr.*, **1998**, *129*, 230695.
- 1637. A. Turck, N. Plé, A. Leprêtre-Gaguère, and G. Quéguiner, *Heterocycles*, **1998**, *49*, 205.
- 1638. O. A. Zagulyaeva and I. V. Oleinik, *Chem. Heterocycl. Compd. (N.Y.)*, **1998**, *34*, 127; *Chem. Abstr.*, **1998**, *129*, 290074.
- 1639. J. Xiang, *Huaxue Shiji*, **1998**, *20*, 238; *Chem. Abstr.*, **1998**, *129*, 343466.
- 1640. V. Kepe, V. Kozjan, S. Polanc, and M. Kočevar, *Heterocycles*, **1999**, 50, 315.
- 1641. G. V. Isagulyants and K. M. Giyis, *Chem. Ind. (Dekker)*, **1998**, *75*, 443; *Chem. Abstr.*, **1999**, *130*, 81485.
- 1642. X. Chen, D. J. Kempf, H. L. Sham, B. E. Green, A. Molla, M. Korneyeva, S. Vasavanonda, N. E. Wideburg, A. Saldivar, K. C. Marsh, E. McDonald, and D. W. Norbeck, *Bioorg. Med. Chem. Lett.*, **1998**, *8*, 3531.
- 1643. S. Hayden, and J. A. Sowa, *Chem. Ind. (Dekker)*, **1998**, *75*, 627; *Chem. Abstr.*, **1999**, *130*, 81486.
- 1644. S. Bourrain, I. Collins, J. G. Neduvelil, M. Rowley, P. D. Leeson, S. Patel, S. Patel, F. Emms, R. Marwood, K. L. Chapman, A. E. Fletcher, and G. A. Showell, *Bioorg. Med. Chem.*, **1998**, *6*, 1731.
- 1645. Z. Gao, *Guangzhou Huagong*, **1998**, *26*, 15; *Chem. Abstr.*, **1999**, *130*, 139315.
- 1646. J. H. Kim, S. M. Shin, M. Matsuoka, and K. Fukunishi, *Dyes Pigm.*, **1998**, *39*, 341; *Chem. Abstr.*, **1999**, *130*, 140492.
- 1647. D. Manetti, A. Bartolini, P. A. Borea, C. Bellucci, S. Dei, C. Ghelardini, F. Gualtieri, M. N. Romanelli, S. Scapecchi, E. Teodori, and K. Varani, *Bioorg. Med. Chem.*, **1999**, *7*, 457.
- 1648. G. Fukata, T. Kanai, and S. Mataka, *Kyushu Daigaku Kino Busshitsu Kagaku Kenkyushu Hokoku*, **1997**, *11*, 125; *Chem. Abstr.*, **1999**, *130*, 168047.
- 1649. S. Hünig, N. Klaunzer, and H. Wenner, *Chem. Ber.*, **1994**, *127*, 165.
- 1650. B. Gaede, *Org. Process Res. Dev.*, **1999**, *3*, 92; *Chem. Abstr.*, **1999**, *130*, 182057.

- 1651. W.-C. Chou, C.-W. Tan, S.-F. Chen, and H. Ku, *J. Org. Chem.*, **1998**, *63*, 10015.
- 1652. T. Okawa, M. Kawase, and S. Eguchi, *Synthesis*, **1998**, 1185.
- 1653. K. Adachi, E. Tsuru, E. Banjyo, M. Doe, K. Shibata, and T. Yamashita, *Synthesis*, **1998**, 1623.
- 1654. J.-Y. Jaung, M. Matsuoka, and K. Fukunishi, *Dyes Pigm.*, **1999**, *40*, 11; *Chem. Abstr.*, **1999**, *130*, 210790.
- 1655. A. A. Tomashevskii, V. B. Sokolov, and A. A. Potekhin, *Russ. J. Org. Chem.*, **1998**, *34*, 583; *Chem. Abstr.*, **1999**, *130*, 223246.
- 1656. T. M. Barclay, A. W. Cordes, R. T. Oakley, K. E. Preuss, and H. Zhang, *Acta Crystallogr., Sect. C*, **1998**, *54*, 1018.
- 1657. K. L. Ziyaev, F. G. Kamaev, N. I. Baram, L. Biktimirov, and A. I. Ismailov, *Khim. Prir. Soedin.*, **1997**, 703.
- 1658. X. Fu, M. L. G. Ferreira, F. J. Schmitz, and M. Kelly-Borges, *J. Nat. Prod.*, **1998**, *61*, 1226.
- 1659. J. H. Kim, S. R. Shin, M. Matsuoka, and K. Fukunishi, *Dyes Pigm.*, **1999**, *41*, 183; *Chem. Abstr.*, **1999**, *130*, 339351.
- 1660. I. Ryu, K. Nagahara, N. Kambe, N. Sonoda, S. Kreimerman, and M. Komatsu, *Chem. Commun. (Cambridge)*, **1998**, 1953.
- 1661. T. Suzuki, H. Nagaoka, Y. Kondo, T. Takahashi, M. Takeuchi, H. Hara, M. Saito, T. Yamada, K. Tomioka, M. Hamada, and T. Mase, *Chem. Pharm. Bull.*, **1998**, *46*, 1468.
- 1662. D. P. Sahu, *Indian J. Chem., Sect. B*, **1998**, *37*, 1149.
- 1663. T. W. Stringfield, Y. Chen, and R. E. Shepherd, *Inorg. Chim. Acta*, **1999**, *285*, 157.
- 1664. R. Wietzke, M. Mazzanti, J.-M. Latour, J. Pécaut, P.-Y. Cordier, and C. Madic, *Inorg. Chem.*, **1998**, *37*, 6690.
- 1665. K. N. Robertson, P. K. Bakshi, S. D. Lantos, T. S. Cameron, and O. Knop, *Can. J. Chem.*, **1998**, *76*, 583.
- 1666. C. Ma, X. Liu, S. Yu, S. Zhao, and J. M. Cook, *Tetrahedron Lett.*, **1999**, *40*, 657.
- 1667. T. Hofmann, W. Bors, and K. Stettmaier, *J. Agric. Food Chem.*, **1999**, *47*, 379.
- 1668. Y. Suenaga, T. Kuroda-Sowa, M. Munakata, and M. Maekawa, *Polyhedron*, **1999**, *18*, 191.
- 1669. J. Spychala, *Tetrahedron Lett.*, **1999**, *40*, 2841.
- 1670. M. Ruiz, T. M. Ruanova, V. Ojea, and J. M. Quintela, *Tetrahedron Lett.*, **1999**, *40*, 2021.
- 1671. S. Sunami, T. Sagara, M. Ohkubo, and H. Morishima, *Tetrahedron Lett.*, **1999**, *40*, 1721.
- 1672. J. Tulinsky, B. V. Cheney, S. A. Mizsak, W. Watt, F. Han, L. A. Dolak, T. Judge, and R. B. Gammill, *J. Org. Chem.*, **1999**, *64*, 93.
- 1673. R. Kuwano and Y. Ito, *J. Org. Chem.*, **1999**, *64*, 1232.
- 1674. R.-T. Li and M.-S. Cai, *Synth. Commun.*, **1999**, *29*, 65.
- 1675. A. M. El-Nahas and K. Hirao, *J. Mol. Struct.*, **1999**, *459*, 229.
- 1676. K. Hinterding, P. Hagenbuch, J. Rétey, and H. Waldmann, *Chem. — Eur. J.*, **1999**, *5*, 277.
- 1677. O. Cedar, S. von Augerer, and M. Bohle, in *Methods of Organic Chemistry (Houben-Weyl)*, 4th Edition, Vol. E9b/Part 1, (Ed. E. Schaumann), Thieme, Stuttgart, 1998, pp 250–373; (a) 264, (b) 266, (c) 267, (d) 269, (e) 271, (f) 272, (g) 274, (h) 275, (i) 276, (j) 277, (k) 279, (l) 281, (m) 284, (n) 288, (o) 294, (p) 295, (q) 297, (r) 306, (s) 310, (t) 312, (u) 313, (v) 315, (w) 316, (x) 318, (y) 320, (z) 323, (aa) 325, (bb) 327, (cc) 328, (dd) 329, (ee) 331, (ff) 332, (gg) 334, (hh) 335, (ii) 341, (jj) 342, (ll) 343.
- 1678. H. Rutner and P. E. Spoerri, *J. Heterocycl. Chem.*, **1966**, *3*, 435.
- 1679. C. Jeanmart and C. Cotrel, *C. R. Hebd. Seances Acad. Sci., Ser. C*, **1978**, 287; *Chem. Abstr.*, **1979**, *90*, 137765.
- 1680. Y. Jiang, U. Schöllkopf, and U. Groth, *Sci. Sin., Ser. B (Engl. Ed.)*, **1984**, *27*, 566; *Chem. Abstr.*, **1985**, *102*, 132431.
- 1681. G. Palamidessi, A. Vigevani, and F. Zarini, *J. Heterocycl. Chem.*, **1974**, *11*, 607.
- 1682. A. Nakazato, K. Ohta, Y. Sekiguchi, S. Okuyama, S. Chaki, Y. Kawashima, and K. Hatayama, *J. Med. Chem.*, **1999**, *42*, 1076.
- 1683. A. Leonardi, G. Motta, C. Boi, R. Testa, E. Poggesi, P. G. de Benedetti, and M. C. Menziani, *J. Med. Chem.*, **1999**, *42*, 427.
- 1684. Y. Zhang, W. Williams, C. Torrence-Campbell, W. D. Bowen, and K. C. Rice, *J. Med. Chem.*, **1998**, *41*, 4950.
- 1685. L. Sun, N. Tran, F. Tang, H. App, P. Hirth, G. McMahon, and C. Tang, *J. Med. Chem.*, **1998**, *41*, 2588.
- 1686. G. B. Barlin, *The Pyrazines*, Wiley-Interscience, New York, 1982.
- 1687. D. J. Brown, *The Pyridazines: Supplement I*, Wiley, New York, 2000.
- 1688. D. J. Brown, R. F. Evans, W. B. Cowden, and M. D. Fenn, *The Pyrimidines*, 2nd edition, Wiley, New York, 1994.
- 1689. D. J. Brown, *Fused Pyrimidines: Pteridines*, Wiley, New York, 1988.
- 1690. R. D. Chambers and C. R. Sargent, *J. Chem. Soc., Chem. Commun.*, **1979**, 446.
- 1691. C. W. Bird, *Tetrahedron*, **1985**, *41*, 4109.
- 1692. R. F. Jordan and A. S. Guram, *Organometallics*, **1990**, *9*, 2116.
- 1693. U. Schöllkopf, *Top. Curr. Chem.*, **1983**, *109*, 65.
- 1694. R. M. Williams, *Synthesis of Optically Active α-Amino Acids*, Pergamon, Oxford, 1989, pp. 1–33.
- 1695. M. Devys, M. Barbier, A. Kollmanh, and J.-F. Bousquet, *Tetrahedron Lett.*, **1982**, *23*, 5409.
- 1696. I. K. M. Morton and J. M. Hall, *Concise Dictionary of Pharmacological Agents*, Klewer, Dortrecht, 1999.
- 1697. P. Helquist, *Tetrahedron Lett.*, **1978**, 1963.
- 1698. D. Lloyd and H. McNab, Personal communication (July 2000).
- 1699. T. Konakahara and Y. Tagaki, *Bull. Chem. Soc. Jpn.*, **1977**, *50*, 2734.
- 1700. D. Fréhel and J.-P. Maffrand, *Heterocycles*, **1983**, *20*, 1731.
- 1701. O. Lerman, Y. Tor, D. Hebel, and S. Rozen, *J. Org. Chem.*, **1984**, *49*, 806.
- 1702. S. M. Marcuccio and J. A. Elix, *Tetrahedron Lett.*, **1983**, *24*, 1445.
- 1703. M. Tada, H. Hamazaki, and H. Hirano, *Chem. Lett.*, **1980**, 921.
- 1704. S. A. Morris, and R. J. Andersen, *Tetrahedron*, **1990**, *46*, 715.
- 1705. H. Kamei, M. Oka, Y. Hamagishi, K. Tomita, M. Konishi, and T. Oki, *J. Antibiot.*, **1990**, *43*, 1018.
- 1706. M. E. Amato, G. Bandoli, A. Grassi, A. Marletta, and B. Perly, *Eur. J. Med. Chem.*, **1991**, *26*, 443.
- 1707. T. P. Karpetsky and E. H. White, *Tetrahedron*, **1973**, *29*, 3761.
- 1708. E. F. Kaleta, K. Pressler, and O. Siegmann, *Fortschr. Veterinaermed.*, **1982**, 310; *Chem. Abstr.*, **1982**, *97*, 353.
- 1709. I. M. Nielsen, A. V. Christensen, and J. Hyttel, *Arzneim.-Forsch.*, **1976**, *26*, 1090.
- 1710. K. Fukushima, K. Yasawa, and T. Arai, *J. Antibiot.*, **1973**, *26*, 175.
- 1711. A. K. Bjoerk, K. K. Anders, K. G. Olsson, A. L. Albramo, and E. G. Christensson, US Pat. 4,385,057 (1983); *Chem. Abstr.*, **1983**, *99*, 88232.
- 1712. M. F. dePompei and W. W. Paudler, *J. Heterocycl. Chem.*, **1975**, *12*, 861.
- 1713. M. Tišler, *Synthesis*, **1973**, 123.
- 1714. B. R. Lahue and J. K. Snyder, *Prog. Heterocycl. Chem.*, **2000**, *12*, 282.
- 1715. G. B. Shul'pin, D. Attanasio, and L. Suber, *Izv. Akad. Nauk, Ser. Khim.*, **1993**, 64.
- 1716. M. F. Carroll, *J. Chem. Soc.*, **1940**, 704.
- 1717. F. Arndt, B. Eistet, and W. Partale, *Ber. Dtsch. Chem. Ges.*, **1927**, *60*, 1364.
- 1718. R. Jonas, M. Klockow, I. Lues, H. Prücher, H. J. Schliep, and H. Wurziger, *Eur. J. Med. Chem.*, **1993**, *28*, 129.

- 1719. R. Wagner, M. Czerny, J. Bielohradsky, and W. Grosch, *Z. Lebensm.-Unters. Forsch. A*, **1999**, *208*, 308; *Chem. Abstr.*, **1999**, *131*, 115520.
- 1720. F. Micheli, R. Di Fabio, and C. Marchioro, *Farmaco*, **1999**, *54*, 461; *Chem. Abstr.*, **1999**, *131*, 310815.
- 1721. Y. Okada, A. Fukumizu, M. Takahashi, T. Yokoi, Y. Tsuda, S. D. Bryant, and L. H. Lazarus, *Chem. Pharm. Bull.*, **1999**, *47*, 1193.
- 1722. P. Weber and J. R. Reimers, *J. Phys. Chem. A*, **1999**, *103*, 9821.
- 1723. M. Doležal, J. Hartl, M. Miletin, M. Macháček, and K. Kral'ova, *Chem. Pap.*, 1999, 53, 126; *Chem. Abstr.*, **1999**, *131*, 214257.
- 1724. E. D. Morgan, R. R. Do Nascimento, S. J. Keegans, and J. Billen, *J. Chem. Ecol.*, **1999**, *25*, 1395; *Chem. Abstr.*, **1999**, *131*, 211796.
- 1725. K. Matoba, H. Tone, K. Shinhama, F. Goto, M. Sakai, and J. Minamikawa, *Yuki Gosei Kagaku Kyokaishi*, **1999**, *57*, 407; *Chem. Abstr.*, **1999**, *131*, 5199.
- 1726. N. Sato and N. Narita, *J. Heterocycl. Chem.*, **1999**, *36*, 783.
- 1727. Y. Lee and R. B. Silverman, *J. Am. Chem. Soc.*, **1999**, *121*, 8407.
- 1728. J. Efskind, C. Rømming, and K. Undheim, *J. Chem. Soc., Perkin Trans. 1*, **1999**, 1677.
- 1729. C. V. Shabadi, B. A. Shelar, and A. R. Shelar, *Indian J. Chem. Sect. B*, **1999**, *38*, 508.
- 1730. O. Vitse, F. Laurent, T. M. Pocock, V. Bénézech, L. Zanik, K. R. F. Elliott, G. Subra, K. Portet, J. Bompart, J.-P. Chapat, R. C. Small, A. Michel, and P.-A. Bonnet, *Bioorg. Med. Chem.*, **1999**, *7*, 1059.
- 1731. B. Löhr, S. Orlich, and H. Kunz, *Synlett*, **1999**, 1139.
- 1732. M. A. Montañez, I. L. Tocón, J. C. Otero, and J. I. Marcos, *J. Mol. Struct.*, **1999**, *482-483*, 201.
- 1733. K. O. Klepp, A. S. Cuthbertson, P. M. Fischer, J. Sandosham, M. Hartmann, J. Hiebl, H. Kollmann, P. Kremminger, and F. Rovenszky, *Z. Naturforsch., B*, **1999**, *54*, 1027.
- 1734. P. Viček, Z. Havlas, and Z. Pavlicek, *Collect. Czech. Chem. Commun.*, 1999, 64, 633.
- 1735. M. Bolte, B. Benecke, and E. Egert, *Acta Crystallogr., Sect. C*, **1999**, *55*, 964.
- 1736. R. Bartnik, R. Faure, and K. Gebicki, *Acta Crystallogr., Sect. C*, **1999**, *55*, 1034.
- 1737. M. Bolte, B. Benecke, and E. Egert, *Acta Crystallogr., Sect. C*, **1999**, *55*, 968.
- 1738. E. Takahashi, Y. Nakamura, and K. Fujimoto, *Tetrahedron Lett.*, **1999**, *40*, 5565.
- 1739. S. Sano, T. Ishii, T. Miwa, and Y. Nagao, *Tetrahedron Lett.*, **1999**, *40*, 3013.
- 1740. A. Sápi, J. Fetter, K. Lempert, M. Kajtar-Peredy, and G. Czira, *Collect. Czech. Chem. Commun.*, **1999**, *64*, 190.
- 1741. R. J. Abdel-Jilil, A. Al-Qawasmeh, W. Voelter, P. Heeg, M. M. El-Abadelah, and S. S. Sabri, *J. Heterocycl. Chem.*, **2000**, *37*, 1273.
- 1742. K. Shirai, K. Fukunishi, A. Yanagisawa, H. Takahashi, and M. Matsuoka, *J. Heterocycl. Chem.*, **2000**, *37*, 1151.
- 1743. M. J. Alves, M. A. Carvalho, and F. J. R. P. Proenca, *J. Heterocycl. Chem.*, **2000**, *37*, 1041.
- 1744. Y. Hatashi, S. Orikasa, K. Tanaka, K. Kanoh, and Y. Kiso, *J. Org. Chem.*, **2000**, *65*, 8402.
- 1745. K. Shirai, D. Hou, K. Fukunishi, and M. Matsuoka, *J. Heterocycl. Chem.*, **2000**, *37*, 1299.
- 1746. P. Darkins, M. Groarke, M. A. McKerrey, H. M. Moncrieff, N. McCarthy, and M. Nieuwenhuyzen, *J. Chem. Soc., Perkin Trans. 1*, **2000**, 381.
- 1747. N. Sato and S. Fukuya, *J. Chem. Soc., Perkin Trans. 1*, **2000**, 89.
- 1748. J. S. Davies, M. Stelmach-Diddams, R. Fromentin, and R. Cotton, *J. Chem. Soc., Perkin Trans. 1*, **2000**, 239.
- 1749. P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, K. M. Averill, D. M. T. Chan, and A. Combs, *Synlett*, **2000**, 674.
- 1750. F. Rübsam, R. Mazitschek, and A. Giannis, *Tetrahedron*, **2000**, *56*, 8481.

- 1751. I. Gómez, E. Alonso, D. J. Ramón, and M. Yus, *Tetrahedron*, **2000**, *56*, 4043.
- 1752. N. A. Petasis and Z. D. Patel, *Tetrahedron Lett.*, **2000**, *41*, 9607.
- 1753. K. V. Subba Rao, B. Srinivas, A. R. Prasad, and M. Subrahmanyam, *Chem. Commun.*, **2000**, 1533.
- 1754. L. Williams, *Chem. Commun.*, **2000**, 435.
- 1755. B. Vivet, F. Cavelier, and J. Martinez, *Eur. J. Org. Chem.*, 2000, 807.
- 1756. J. Shangde, P. Wassig, and J. Liebscher, *Eur. J. Org. Chem.*, **2000**, 1993.
- 1757. D. L. Boger, J. Goldberg, S. Satoh, Y. Ambroise, S. B. Cohen, and P. K. Vogt, *Helv. Chim. Acta*, **2000**, *83*, 1825.
- 1758. M. Manoharan, F. De Proft, and P. Geerlings, *J. Org. Chem.*, **2000**, *65*, 7971.
- 1759. P. Cledera, C. Avendaño, and J. C. Menéndez, *J. Org. Chem.*, **2000**, *65*, 1743.
- 1760. D. C. Beshore and C. J. Dinsmore, *Tetrahedron Lett.*, **2000**, *41*, 8735.
- 1761. A. Corsico-Coda and G. Tacconi, *Gazz. Chim. Ital.*, **1984**, *114*, 131.
- 1762. T. Abellán, R. Chinchilla, N. Galindo, C. Nájera, and J. M. Sansano, *J. Heterocycl. Chem.*, **2000**, *37*, 467.
- 1763. J. Liebscher, S. Jin, A. Otto, and K. Woydowski, *J. Heterocycl. Chem.*, **2000**, *37*, 509.
- 1764. G. Quéguiner, *J. Heterocycl. Chem.*, **2000**, *37*, 615.
- 1765. N. Sato and M. Ono, *J. Heterocycl. Chem.*, **2000**, *37*, 419.
- 1766. V. R. Thalladi, A. Gehrke, and R. Boese, *New J. Chem.*, **2000**, *24*, 463.
- 1767. F. Berst, A. B. Holmes, M. Ladlow, and P. J. Murray, *Tetrahedron Lett.*, **2000**, *41*, 6649.
- 1768. C. J. Dunsmore and C. B. Zartman, *Tetrahedron Lett.*, **2000**, *41*, 6309.
- 1769. A. R. Bassindale, D. J. Parker, P. Patel, and P. G. Taylor, *Tetrahedron Lett.*, **2000**, *41*, 4933.
- 1770. X. Lin, H. Dorr, and J. M. Nuss, *Tetrahedron Lett.*, **2000**, *41*, 3309.
- 1771. V. Kepe, V. Kozjan, S. Polanc, and M. Kočevar, *Heterocycles*, **2000**, 52, 443.
- 1772. S. Hanessian and R. Sharma, *Heterocycles*, **2000**, *52*, 1231.
- 1773. A. Corsaro, U. Chiacchio, V. Pistarà, and G. Perrini, *Heterocycles*, **2000**, *53*, 69.
- 1774. B. Jiang and X.-H. Gu, *Heterocycles*, **2000**, *53*, 1559.
- 1775. K. J. McCullough, in *Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds*, vol. IV, pts *I/J*, ed. M. F. Ansell, Elsevier, Amsterdam, **1995**, p. 93.

Index

This index covers the text but neither the Appendix (Table of Simple Pyrazines) nor the Glance Indices (appended to Chapters 1 and 2).

The page number(s) following each primary entry refer to synthesis or general information. Although each number indicates that the subject is treated on that (and possibly subsequent pages), the actual word(s) of the primary entry may appear only in an abbreviated form.

Some unusual terms have been employed extensively as succinct secondary entries. For example, the term alkanelysis has been used to indicate the direct replacement of appropriate functional groups by an alkyl substituent, so mimicing conventional terms such as aminolysis, hydrolysis, and so on.

2-Acetamido-3-benzylpyrazine, 81

- 3-(2-Acetamido-5-bromophenyl)-5,6
	- dihydro-2(1*H*)-pyrazinone, 61
- 2-Acetamido-3,6-diphenylpyrazine, 152
- 2-Acetamido-5-*p*-methoxyphenylpyrazine, 274
- 2-Acetamidomethyl-4-benzyl-1 methylpiperazine, 269
- 3-Acetamido-*N*-methyl-2 pyrazinecarbohydrazide, 66 deacylation, 267
- 3-*o*-Acetamidophenyl-5,6-dihydro-2(1*H*) pyrazinone, 61
- 2-*o*-Acetamidophenyl-5,5-dimethyl-5,6 dihydro-2(1*H*)-pyrazinone, 62
- 3-*o*-Acetamidophenyl-6,6-dimethyl-5,6 dihydro-2(1*H*)-pyrazinone, 62
- *p*-Acetamidophenylsulfonylpyrazine derivatives, 255
- 2-Acetamidopyrazine, *C*-alkylation, 81
- 3-Acetamido-1*H*-pyrazolo- [3,4-*d*]pyrazine, 327
- 2-Acetoacetylpyrazine, 315 cyclocondensation, 315
- 1-Acetonyl-2,3-dimethylpyrazinium bromide, cyclization, 133
- 2-Acetonyl-5,6-diphenylpyrazine, 99
- 2-Acetonyl-6-methylpyrazine, 126
- 2-Acetonyl-3-phenylpyrazine, 81
- 2-Acetonylpyrazine, 95
- alkylation, 81
- 2-Acetoxy-6-acetoxymethyl-3-isobutyl-5-methoxypyrazine, deacylation, 211
- *N*-Acetoxy-3-amino-2-pyrazinecarboxamidine, cyclization, 327
- $2-(\alpha$ -Acetoxybenzyl)-5-benzyl-3methoxypyrazine, 236
- 2-Acetoxy-5-benzyl-6-diacetylamino-3 methylpyrazine, 235 deacylation, 195, 267
- 2-*p*-Acetoxybenzyl-3,6-dichloro-5-methylpyrazine 1,4-dioxide, 228
- 2-*p*-Acetoxybenzyl-3,6-dichloro-5-methylpyrazine 1/4-oxide (mixture), 228
- 2-Acetoxy-6-chloro-3,5-diphenylpyrazine, 234
- 2-Acetoxy-3,6-dibenzyl-5 methoxypyrazine, 236
- 2-Acetoxy-3,6-dibenzyl-5-methylpyrazine, hydrolysis, 194
- 2-Acetoxy-3,6-diethylpyrazine, 203
- 2-Acetoxy-3,6-diisobutyl-5-methoxypyrazine, 235
- 3-Acetoxy-1,4-dinitro-2-piperazinol, X-ray analysis, 261
- 2-Acetoxy-6-isopropenyl-3-isopropylpyrazine, hydrolysis, 194
- 2-Acetoxy-3-methoxypyrazine, 235
- 2-Acetoxy-6-methoxypyrazine, 235
- 3-Acetoxymethyl-5-isobutyl-3 methoxypyrazine 1-oxide, 228
- 2-Acetoxymethyl-3-methoxy-5-methylpyrazine, 236 deacylation, 210
- 2-Acetoxymethyl-3-methylpyrazine, 236
- 2-Acetoxymethyl-5-methylpyrazine, 118, 184
	- hydrolysis, 185
- 2-Acetoxymethyl-6-methylpyrazine, 236

2-Acetoxy-3-(5-methyl-1,2,4-oxadiazol-3-yl)pyrazine, 63 2-(1-Acetoxy-2-methylpropyl)-3-chloro-5-isobutylpyrazine, deacylation, 211 2-(1-Acetoxy-2-methylpropyl)-5-isobutyl-3-methoxypyrazine, 235 2-(1-Acetoxy-2-methylpropyl)-5-isobutylpyrazine 1-oxide, 215 *N*-Acetoxy-3-oxo-3,4-dihydro-2-pyrazinecarboxamidine, 337 2-Acetoxy-3-phenylpyrazine, 234 2-Acetoxy-5-phenylpyrazine, 234 2-Acetoxy-6-phenylpyrazine, 234 2-Acetoxypyrazine, 79 6-Acetyl-3-amino-2-pyrazinecarbonitrile, 342 1-Acetyl-3-benzylidene-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 84 2-Acetyl-3,5-dichloropyrazine, 212 2-Acetyl-3,6-diethoxy-5-isopropyl-2 methyl-2,5-dihydropyrazine, 342 oxidation, 302 Acetyl dimethyloxosulfonium 5,6 diphenylpyrazin-2-ylmethylide, 99 desulfurization, 99 2-Acetyl-3,6-dimethylpyrazine, 129 3-Acetylimidazo[1,2-*a*]pyrazine, 279 X-ray analysis, 279 1-Acetyl-3-*m*-methoxybenzylidene-3,6 dihydro-2,5(1*H*,4*H*)-pyrazinedione, 84 1-Acetyl-3-*p*-methoxybenzylidene-6 methyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 85 2-Acetyl-3-methyl-1,4-di-*p*-tolyl-1,4 dihydropyrazine, 16 1-Acetyl-4-methylpiperazine, acylation, 343 as a solvent, 116 1-Acetyl-4-methylpiperazine dimethyl acetal, cyclocondensation, 114 1-Acetyl-4-methyl-2-propionyl-1,4,5,6 tetrahydropyrazine, 343 2-(2-Acetyl-1-phenylethyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 88 2-Acetylpyrazine, 332, 339, 341 hydroxylation, 210 to the semicarbazone, 344 *N*-Acetyl-2-pyrazinecarboxamide, 326 6-Acetylthio-*N*-methyl-3-methylamino-2 pyrazinecarboxamide, 247 deacylation, 247 Acipimox, 240 Acylaminopyrazines, 273 cyclization, 273 deacylation, 267

Acyloxypyrazines, 210 as acylating agents, 203, 204 deacylation, 194, 210 from hydroxyalkylpyrazines, 215 from pyrazine *N*-oxides, 234 from pyrazinones, 203 *N*-Acylpiperazines, deacylation, 267 reduction, 112 Acylpyrazines, reduction, 103 reduction of oximes or anils, 268 *N*-Acylpyrazinones, 205 Acylthiopyrazines, as acylating agents, 247, 250 by *S*-acylation, 249 deacylation, 247 Albonoursin, 240 Alkoxypyrazines, 159 alkanelysis, 92 from alkylsulfonylpyrazines, 217 from alkynylpyrazines, 128 aminolysis, 219 cyclization, 220 deuteration, 219 from halogenopyrazines, 159, 184 from hydroxyalkylpyrazines, 213 to hydroxyalkylpyrazines, 211 oxidation, 219 from pyrazinecarbonitriles, 218 from pyrazinones, 198 to pyrazinones, 193 quaternization, 219 thermolysis, 194 transalkoxylation, 218 Alkylideneaminopyrazines, to pyrazinamines, 267 Alkyl *N*-piperazinecarboxylates, reduction, 112 *C*-Alkylpiperazines, *see* Alkylpyrazines *N*-Alkylpiperazines, 105 by alkylation, 106 by miscellaneous routes, 113 nitrosoylsis, 263 by reduction, 112 Alkylpyrazines, 75, 79, 104 ω -acylation, 125 by alkanelysis, 93, 101 by alkylation, 80 ω -alkylidenation, 123 ammoxidation, 128 from ants, 116 carboxylation, 125 cyclization, 126 complexes, 115

fluorescence, 116 ω -halogenation, 120 from heteroarylpyrazines, 104 interconversion, 101, 122 ionization, 77, 116 MS study, 116 NMR study, 115 properties, 114 prototropy, 102, 115 to pyrazinecarbaldehydes, 116 to pyrazinecarboxylic acids, 117 reactions (addition), 128 reactions (minor), 130 reactions (reductive), 119 in Schôllkopf reaction, 86 from (substituted-alkyl)pyrazines, 102, 181, 182 *N*-Alkylpyraziniumolates, *see* Pyrazinones (nontautomeric) *N*-Alkylpyrazinium salts or ylides, 131 preparation, 131 reactions, 132 Alkylsulfinylpyrazines, 255 to alkylpyrazines, 104 from alkylthiopyrazines, 252 to alkylthiopyrazines, 252 as reagents, 257 with trifluoroacetic anhydride, 256 Alkylsulfonylpyrazines, 255 to alkoxypyrazines, 217 ω -alkylation, 256 to alkylpyrazines, 104 from alkylthiopyrazines, 252 aminolysis, 256 dipole moments, 257 Alkylthiopyrazines, 166, 251 from alkylsulfinylpyrazines, 252 by alkylthiation, 251 complexation, 254 desulfurization, 254 from halogenopyrazines, 166, 185 oxidation, 251 from pyrazine *N*-oxides, 237 from pyrazinethiols, 248 from pyrazinethiones, 248 to pyrazinethiones, 246 by reactions (passenger), 252 2-Allyl-3,6-diethoxy-2,5-dihydropyrazine, 82 3-Allyl-5-dimethylamino-6,6-dimethyl-3-phenyl-3,6-dihydro-2(1*H*) pyrazinone, 51 3-Allyl-5,6-diphenyl-2-pyrazinecarbonitrile, 100

2-Allyl-2-formylmethyl-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 212 2-Allyl-2-(2-hydroxyethyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine, 87 oxidation, 212 2-Allyl-5-isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, alkylation, 87 2-Allyl-5-isopropyl-3,6-dimethoxy-2- (prop-2-ynyl)-2,5-dihydropyrazine, cyclization, 127 3-Allyl-5-phenyl-2(1*H*)-pyrazinone, 25 Allyl 2-pyrazinecarboxylate, 309 2-Allylsulfinylmethyl-3,5,6 trimethylpyrazine, 253 2-Allylthiomethyl-3,5,6-trimethylpyrazine, oxidation, 253 2-Allylthio-3,5,6-trimethylpyrazine, 249 Amiloride, 240 3 -Amino-5-(α -amino- α -ethoxycarbonylmethyl)-6-chloro-2-pyrazinecarboxylate, 268 3-Amino-5-azido-2,6-pyrazinedicarbonitrile, 294 1-(*p*-Aminobenzoyl)-4-methylpiperazine, 261 6-Amino-5-benzyl-3-methyl-2(1*H*) pyrazinone, 195, 267 3-Amino-1-(*p*-bromophenacyl)pyrazinium bromide, 132 3-Amino-6-bromo-2-pyrazinecarbonitrile, 142, 173 alkanelysis, 93 3-Amino-6-bromo-2-pyrazinecarboxamide, acylation, 273 3-Amino-6-bromo-2(1*H*)-pyrazinethione, alkylation, 248 3-Amino-6-butoxymethyl-2 pyrazinecarbonitrile, 185 3-Amino-*N*-butyl-5,6-di(thien-2-yl)- 2-pyrazinecarboxamide, 64 3-Amino-6-*p*-carboxyanilinomethyl-2-pyrazinecarboxylic acid, 64 $2-(\alpha$ -Amino-*p*-chlorobenzylideneamino)pyrazine, 278 X-ray analysis, 278 3-Amino-6-chloro-*N*-cyano-5 dimethylamino-2 pyrazinecarboxamidine, 323 3-Amino-6-chloro-5-dimethylamino-2-pyrazinecarbonitrile, to a carboxamidine, 323 3-Amino-6-chloro-5-ethoxy-2-pyrazinecarbonitrile, 261

3-Amino-6-chloromethyl-2-pyrazinecarbonitrile, alcoholysis, 185 3-Amino-5-chloro-1-methyl-2(1*H*) pyrazinone, 154 2-(2-Amino-4-chlorophenylthio)-3 chloropyrazine, 176 cyclization, 176 3-Amino-5-chloro-2-pyrazinecarbonitrile, alcoholysis, 163 3-Amino-5-chloro-2,6-pyrazinedicarbonitrile, 9 aminolysis, 156 thiolysis, 165 5-Amino-6-chloro-2,3 pyrazinedicarbonitrile, 156 cyclocondensation, 177 5-Amino-6-chloro-2,3-pyrazinedicarboxylic acid, 157 3-Amino-6-cyano-5-thioxo-4,5 dihydro-2-pyrazinecarboxamide, 37 2-Amino-5,6-dichloro-2-pyrazinecarboxylic acid, nitration, 259 3-Amino-5-dimethoxymethyl-2 pyrazinecarbonitrile, 14, 232 3-Amino-6-dimethoxymethyl-2 pyrazinecarbonitrile 4-oxide, 36, 267 deoxygenation, 232 3-Amino-5,6-dimethyl-2(1*H*)-pyrazinone, halogenolysis, 138 3-Amino-5,6-diphenyl-2-pyrazinecarbonitrile, 231 3-Amino-5,6-diphenyl-2-pyrazinecarbonitrile 1-oxide, 37 3-Amino-5,6-diphenyl-2-pyrazinecarbonitrile 4-oxide, deoxygenation, 231 3-Amino-5,6-di(thien-2-yl)-2 pyrazinecarboxamide, 64 5-(2-Amino-1-ethoxycarbonylprop-1 enyl)-6-chloro-3-nitro-2 pyrazinamine, 95 5-Amino-6-ethoxycarbonyl-2 pyrazinecarbonitrile oxide, 346 isolation as a cycloadduct, 346 3-(5-Amino-6-ethoxycarbonylpyrazin-2-yl)-3a,4,5,6a-tetrahydrofuro- [3,2-*d*]isoxazole, 346 1-(2-Aminoethyl)-4-benzylpiperazine, 269 N-acylation, 274 1-(2-Aminoethyl)-4-(2-carboxyethyl) piperazine, 301 1-(2-Aminoethyl)-4-(2-cyanoethyl) piperazine,hydrolysis, 301

3-Amino-6-(furan-2-yl)-2 pyrazinecarbonitrile 4-oxide, 36 3-Amino-5-hydrazino-2,6-pyrazinedicarbonitrile, 156 to the 5-azido analogue, 294 cyclization, 156 3-Amino-6-hydroxyiminomethyl-2 pyrazinecarbonitrile 4-oxide, with a Vilsmeier reagent, 330 3-Amino-5-(1-hydroxypropyl)-2-pyrazinecarbonitrile, 209 3-Amino-*N*-hydroxy-2 pyrazinecarboxamide, 312 3-Amino-*N*-isopropylidene-6-methyl-5 phenyl-2-pyrazinecarbohydrazide, 329 3-Amino-*N*-(methoxycarbonylmethyl)-2 pyrazinecarboxamide, 306 3-Amino-5-methoxy-2-pyrazinecarbonitrile, 163 1-(2-Amino-1-methylethyl) piperazine, 109 2-Aminomethyl-4-methylpiperazine, 270 3-Amino-6-methyl-5-phenyl-2-pyrazinecarbohydrazide, *N* alkylidenation, 329 3-Amino-6-methyl-5-phenyl-2-pyrazinecarbonitrile, water addition, 322 3-Amino-*N*-methyl-6-phenyl-2-pyrazinecarboxamide, 312 cyclocondensation, 327 3-Amino-6-methyl-5-phenyl-2-pyrazinecarboxamide, 322 3-Amino-*N*-methyl-2-pyrazinecarbohydrazide, 267 3-Amino-*N*-methyl-2-pyrazinecarbohydrazide, 313 3-Amino-6-methyl-2-pyrazinecarbonitrile 1-oxide, 174 3-Amino-*N*-methyl-2-pyrazinecarbothioamide, 324 3-Amino-*N*-methyl-2-pyrazinecarboxamide, thiation, 324 3-Amino-5-methyl-2-pyrazinecarboxylic acid, 63 decarboxylation, 302 3-Amino-1-methyl-2(1*H*)-pyrazinone, 281 1-Benzyl-4-methyl-6-[*C*-(pyrazin-2 yl)formamido]perhydro-1,4 diazepine, 306 1-(1-Amino-2-nitrovinyl)-4-methylpiperazine, 109 $1-Amino-3-oxo-4-(\beta-D-ribofuranosyl)$ -3,4-dihydropyrazinium mesitylenesulfonate, 290

2-(Aminooxymethyl)pyrazine, 219 3-[2-(5-Aminopentanoyl)ethyl]-1 benzyloxy-5,6-dimethyl-2(1*H*) pyrazinone, to a gallium complex, 240 3-*o*-Aminophenylcarbamoyl-2-pyrazinecarboxylic acid, 306 3-Amino-5-phenylethynyl-2-pyrazinecarbonitrile, 93 2-(5-Amino-3-phenylisoxazol-4-yl) pyrazine, to 2-phenylethynylpyrazine, 104 3-Amino-5-phenyl-2-pyrazinecarbaldehyde, 65 oxidation, 65 3-Amino-6-phenyl-2-pyrazinecarbonitrile 4-oxide, 36 3-Amino-6-phenyl-2 pyrazinecarboxamide, 232 3-Amino-6-phenyl-2-pyrazinecarboxamide 4-oxide, deoxygenation, 232 3-Amino-5-phenyl-2-pyrazinecarboxylic acid, 65, 302 3-Amino-6-phenyl-2-pyrazinecarboxylic acid, 300 2-(*o*-Aminophenylseleno)-3-chloropyrazine, 167 2-(*o*-Aminophenylthio)pyrazine, 166 to the iodophenyl analogue, 180 3-Amino-5-propionyl-2-pyrazinecarbonitrile, reduction, 209 2-(3-Aminopropyl)-5-isobutyl-6 methoxypyrazine, 216 with a nitroamidine, 284 2-(3-Aminopropyl)-5-isopropyl-6 methoxypyrazine, 216 1-(2-Aminopropyl)piperazine, 109 3-Amino-2-pyrazinecarbohydrazide, with benzamidine, 329 3-Amino-2-pyrazinecarbonitrile, 155, 238, 256 acylation, 342 alkylidenation, 278 cyclization, 333 halogenation, 142 to the 3-halogeno analogue, 147 to the 3-oxo analogue, 192 5-Amino-2-pyrazinecarbonitrile, 174 6-Amino-2-pyrazinecarbonitrile, 325 3-Amino-2-pyrazinecarboxamide, cyclocondensation, 280 6-Amino-2-pyrazinecarboxamide, dehydration, 325 3-Amino-2-pyrazinecarboxylic acid, 271 to a carboxamide, 306

esterification, 304 fine structure, 265 3-Amino-2(1*H*)-pyrazinethione, 197, 246 cyclocondensation, 250 1-Aminopyrazinium mesitylenesulfonate, 297 to the zwitterion, 297 1-Aminopyrazinium nitrate, 267 3-Amino-2(1*H*)-pyrazinone, thiation, 197 3-Amino-5-(pyridin-4-yl)-2(1*H*) pyrazinone, 271 $2-(\beta$ -Aminostyryl)pyrazine, 125 3-Amino-5-thioxo-4,5-dihydro-2,6 pyrazinedicarbonitrile, 37, 165 Amperozide, 241 5-Anilino-6-chloro-2,3-pyrazinedicarbonitrile, 156 3-Anilino-5-cyano-2-pyrazinecarboxamide, 157 5-Anilinomethyl-5-methyl-3-methylamino-2-pyrazinecarbonitrile, 268 3-*p*-Anisidino-5-ethoxycarbonylmethyl-2(1*H*)-pyrazinone, 59 Arglecin, 241 Argvalin, 241 Arylazopyrazines, 298 by azo-coupling, 298 from nitrosopyrazines, 262 reduction, 298 Arylpyrazines, *see* Alkylpyrazines Aspergillic acid, 241 Astechrome, 241 Atevirdine, 241 Azepines, to pyrazines, 47 Azetes, to pyrazines, 48 2-Azido-6-bromopyrazine, 142 2-Azido-6-bromopyrazine 4-oxide, 228 2-(4-Azidobutyl)-3,6-diethoxy-5 isopropyl-2-methyl-2,5 dihydropyrazine, 186 2-(4-Azidobut-2-ynyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, to triphenylphosphoranylideneamino analogue, 295 2-Azido-3-chloropyrazine, 294 2-Azido-6-(4,5-dimethoxycarbonyl-1,2,3 triazol-1-yl)pyrazine, 296 2-Azido-3,6-dimethylpyrazine, 170 ring contraction, 296 2-Azido-3,5-diphenylpyrazine, 237 reduction, 272 2-Azido-3,6-diphenylpyrazine, 237 2-Azido-5,6-diphenylpyrazine, 237 reduction, 272

N-(Azidoformylmethyl)-2-pyrazinecarboxamide, 328 2-Azido-3-methoxypyrazine, 294 to triphenylphosphoranylideneamino analogue, 295 2-Azido-6-methoxypyrazine, ring expansion, 297 6-(1-Azido-2-methylpropyl)-1-benzyl-5 chloro-3-phenyl-2(1*H*)-pyrazinone, 186 3-Azido-2-pyrazinamine, 237, reduction, 272 2-Azidopyrazine, halogenation, 142 2-Azidopyrazine 1-oxide, 171 2-Azidopyrazine 4-oxide, equilibrium with tetrazolo[1,5-*a*]pyrazine 7-oxide, 295 Azidopyrazines, by azidation, 294 from halogenopyrazines, 170, 186 from hydrazinopyrazines, 294 to pyrazinamines, 272 from pyrazine *N*-oxides, 237 reduction, 272 ring contraction, 296 ring expansion, 297 to triazolylpyrazines, 296 to triphenylphosphoranylideneaminopyrazines, 295 valence-tautomerism, 295 2-(Aziridin-1-ylformyl)pyrazine, 318 Azirines, to pyrazines, 48 Azocines, to pyrazines, 51 G. B. Barlin, ix, 63 3-Benzamido-6-bromo-2-pyrazinecarboxamide, 273 cyclization, 273 1-(2-Benzamidoethyl)-4 benzoylpiperazine, 274 2-(2-Benzamidoethylidene)hydrazino-6 chloropyrazine, 292 2-Benzamidopyrazine, 61, 273 3-Benzamido-4*H*-pyrazino[1,2-*a*] pyrimidin-4-one, 281 Benzo[*f*]quinoxaline, 126 2-(Benzo[*b*]thien-2-yl)-3,6-dimethylpyrazine, desulfuri zation, 104 3-Benzoyl-6-benzylidene-1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 70 2-Benzoyl-5-bromo-2-pyrazinamine, alkanelysis, 96 2-Benzoyl-3-chloropyrazine, 342 aminolysis, 157 2-Benzoyl-3,5-dichloropyrazine, 212

1-Benzoyl-2,5-dimethyl-6-methylamino-1,2,5,6-tetrahydro-2-pyrazinecarboxylic acid, 15 2-Benzoyl-3-methoxypyrazine, 217 1-Benzoyl-4-methylpiperazine, acylation, 343 1-Benzoyl-4-methyl-2-propionyl-1,4,5,6 tetrahydropyrazine, 343 2-Benzoyl-3-methylsulfonylpyrazine, 254 alcoholysis, 217 2-Benzoyl-3-methylthiopyrazine, oxidation, 254 3-Benzoyl-5-(naphthalen-2-yl)- 2-pyrazinamine, 96 2-Benzoyloxy-5-chloro-6-hydroxymethyl-3-isobutylpyrazine 4-oxide, 147 2-Benzoyloxy-3,6-diethylpyrazine, 203 1-Benzoyloxy-5,6-diisopropyl-2(1*H*) pyrazinone, 234 5-Benzoyloxy-3-hydroxymethyl-6 isobutyl-2-pyrazinamine 1-oxide, to the 2-halogeno analogue, 147 3-Benzoyl-5-phenyl-2-pyrazinamine, 96 1-Benzoyl-2,6-piperazinedione, 195 3-Benzoyl-2-pyrazinamine, 157 2-Benzoylpyrazine, 79, 303, 332 to the oxime, 344 reduction, 209 5-Benzoyl-2-pyrazinecarboxylic acid, 342 decarboxylation, 303 3-Benzoyl-5-(thien-2-yl)- 2-pyrazinamine, 96 2-Benzoylthio-3,6-dimethylpyrazine, deacylation, 247 2-Benzylamino-3-benzyloxypyrazine, 161 3-Benzylamino-2-pyrazinecarbonitrile, 256 2-(*N*-Benzyl-*N*-benzylidenehydrazino)- 3,6-dimethylpyrazine, 291 1-Benzyl-3-(1-bromoethyl)-5-chloro-2(1*H*)-pyrazinone, 121 3-Benzyl-6-(2-bromoethyl)-3-methyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 178 1-Benzyl-6-bromomethyl-5-chloro-3-methoxy-2(1*H*)-pyrazinone, aminolysis, 182 1-Benzyl-3-bromomethyl-5-chloro-6-phenyl-2(1*H*)-pyrazinone, hydrolysis, 183 1-Benzyl-6-(1-bromo-2-methylpropyl)- 5-chloro-3-phenyl-2(1*H*)-pyrazinone, azidolysis, 186

4-Benzyl-*N*-*tert*-butyl-1-formyl-2 piperazinecarboxamide, 19

1-Benzyl-3-(but-3-ynylamino)-5-chloropyrazine, intramolecular Diels-Alder reaction, 288

1-Benzyl-3-carbamoylpyrazinium bromide, reduction, 132

1-Benzyl-3-(2-carboxyethyl)-5,6 dimethyl-2(1*H*)-pyrazinone, to a carbamoylethyl analogue, 306

1-Benzyl-2-carboxymethyl-4-methylpiperazine, debenzylation, 119

- 1-Benzyl-5-chloro-3-ethyl-2(1*H*) pyrazinone, 98 ω -halogenation, 131
- 1-Benzyl-5-chloro-3-hydroxymethyl-6-phenyl-2(1*H*)-pyrazinone, 183
- 1-Benzyl-5-chloro-3-(*o*-iodoanilino)- 6-phenyl-2(1*H*)-pyrazinone, 154
- 1-Benzyl-5-chloro-3-methoxy-6-(prop-2-ynylamino)methyl-2(1*H*) pyrazinone, 182
- 1-Benzyl-5-chloro-3-methyl-2(1*H*) pyrazinone, 98
- 1-Benzyl-5-chloro-3-phenyl-2(1*H*) pyrazinone, 99
- 1-Benzyl-4-cyanomethylpiperazine, 106 reduction, 269
- 1-Benzyl-4-cyclohexylformyl-3,4,5,6 tetrahydro-2(1*H*)-pyrazinone, 18
- 1-Benzyl-3,5-dichloro-6-phenyl-2(1*H*) pyrazinone, aminolysis, 154
- 1-Benzyl-3,5-dichloro-2(1*H*)-pyrazinone, alkanelysis, 99
- 1-Benzyl-3,6-dichloro-2(1*H*)-pyrazinone, alkanelysis, 98
- 4-Benzyl-3,4-dihydro-2-pyrazinecarboxamide, 132
- 1-Benzyl-5,6-dihydro-2(1*H*)-pyrazinone 4 oxide, 227
	- cyclocondensation, 62
- 3-Benzyl-5-dimethylamino-6,6-dimethyl-3,6-dihydro-2(1*H*)-pyrazinone, 50
- 1-Benzyl-2,4-dimethylpiperazine, to the 1-ethoxycarbonyl analogue, 130
- 6-Benzyl-1,4-dimethyl-2,3,5-piperazinetrione, 119
- 2-Benzyl-5,6-dimethylpyrazine, carbamoylation, 322
- 3-Benzyl-5,6-dimethyl-2-pyrazinecarboxamide, 322
- 1-Benzyl-2,5-diphenylpiperazine, 110
- 3-Benzyl-5,6-diphenyl-2-pyrazinecarbonitrile, 100
- 4-Benzyl-6-hydroxy-1-*o*-methoxyphenyl-3,4-dihydro-2(1*H*)-pyrazinone, 6
- 1-Benzyl-3-(3-hydroxypropyl)-5 methoxy-2(1*H*)-pyrazinone, cyclization, 217
- 5-Benzyl-6-hydroxy-2,3(1*H*,4*H*) pyrazinedione, 28
- 3 -Benzylidene-6- $(\alpha$ -bromobenzyl)-6hydroxy-1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 122 cyclization, 189
- 6-Benzylidene-4,7-dimethyl-2-phenyl-1 oxa-4,7-diazaspiro[2.5]octane-5,8 dione, 189
- 2-Benzylidenehydrazino-3,6-dimethylpyrazine, 291 N-benzylation, 291
- 1-Benzyl-6-isobutyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione,222
- 1-Benzyl-6-isobutyl-4-*p*-methoxybenzyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, debenzylation, 222
- 3-Benzyl-6-isobutyl-2(1*H*)-pyrazinone, 8
- 1-Benzyl-6-*m*-methoxybenzyl-2(1*H*) pyrazinone, debenzylation, 222
- 1-Benzoyl-3-{2-[*N*-(1-methoxycarbonylethyl)carbamoyl]ethyl}-5,6 dimethyl-2(1*H*)-pyrazinone, 306
- 3-Benzyl-6-methoxycarbonylmethylene-2,5-piperazinedione, 101
- 9-Benzyl-8-methoxy-2-oxa-7,9 diazabicyclo[4.2.2]dec-7-en-10-one, 217
- 3-Benzyl-5-*p*-methoxyphenyl-2 pivalamidopyrazine, 286
- 3-Benzyl-5-*p*-methoxyphenyl-2-pyrazinamine, 232 N-acylation, 274
- 3-Benzyl-5-*p*-methoxyphenyl-2-pyrazinamine 1-oxide, 36 deoxygenation, 232
- 1-Benzyl-3-methyl-5-oxo-4,5-dihydropyrazinium bromide, 199 to the zwitterion, 199
- 1-Benzyl-4-methyl-2-piperazinecarbonitrile, 330 oxidation, 330
- 4-Benzyl-1-methyl-2-piperazinecarbonitrile, reduction, 269
- 1-Benzyl-4-methyl-2-piperazinol, to the 2-carbonitrile, 330
- 3-Benzyl-5-methyl-2-pyrazinamine 1-oxide, 36 with acetic anhydride, 235
- 1-Benzyl-5-methylpyrazin-1-ium-3-olate, 199
- 1-Benzyl-4-methyl-1,4,5,6-tetrahydro-2-pyrazinecarbonitrile, 330
- 4-Benzyl-3-methyl-3,4,5,6-tetrahydro- $2(1H)$ -pyrazinone, 106
- 1-Benzyl-4-*p*-nitrobenzoylpiperazine, thiation, 344
- 1-Benzyl-4-[*p*-nitro(thiobenzoyl)] piperazine, 344
- 6-Benzyl-7-oxo-2,3,6,7-tetrahydro-1*H* pyrrolo[2,3-*c*]pyridine-5 carbonitrile, 288
- 3-Benzyloxy-5-bromo-2 pyrazinamine, 161
- 2-[1-(Benzyloxy)butyl]-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 214
- 2-[4-(Benzyloxycarbonylamino)but-2 ynyl]-5-isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, 269, 295
- 2-Benzyloxycarbonylthio-3,6-diisopropylpyrazine, 249
- 1-Benzyloxy-3-(2-carboxyethyl)-5,6 dimethyl-2(1*H*)-pyrazinone, 300
- 2-Benzyloxy-5-chloro-6-hydroxymethyl-3-isobutylpyrazine 4-oxide, alkylation, 214
- 2-Benzyloxy-5-chloro-3-isobutyl-6-[(tetrahydropyran-2-yloxy)methyl]pyrazine 4-oxide, 214
- 2-Benzyloxy-6-chloromethyl-3-isobutyl-5 methoxypyrazine, 180
- 2-Benzyloxy-6-chloromethyl-3-isobutyl-5 methoxypyrazine 4-oxide, transhalogenation, 181
- 2-Benzyloxy-3,6-diisobutyl-5-methoxypyrazine, 200
- 2-Benzyloxy-3,6-diisobutyl-5 methoxypyrazine 4-oxide, debenzylation, 193
- 1-Benzyloxy-5,6-dimethyl-2(1*H*) pyrazinone, 26, 234 debenzylation, 226
- 2-Benzyloxy-6-hydroxymethyl-3-isobutyl-5-methoxypyrazine, halogenolysis, 180
- 2-Benzyloxy-6-hydroxymethyl-3-isobutyl-5-methoxypyrazine 4-oxide, 210 acylation, 215
- 5-Benzyloxy-3-hydroxymethyl-6-isobutyl-2-pyrazinamine 1-oxide, 209
- 2-Benzyloxy-6-iodomethyl-3-isobutyl-5 methoxypyrazine 4-oxide, 178, 181
- 2-Benzyloxy-3-isobutyl-6-mesyloxymethyl-5-methoxypyrazine 4 oxide, 215 hydrogenolysis, 178

2-Benzyloxy-3-isobutyl-5-methoxy-6- (tetrahydropyran-2-yloxymethyl) pyrazine 4-oxide, 218 1-Benzyloxy-3-(2-methoxycarbonylethyl)- 5,6-dimethyl-2(1*H*)-pyrazinone, 26 hydrolysis, 300 1-Benzyloxy-5-methyl-2(1*H*) pyrazinone, 25 3-Benzyloxy-2-pyrazinamine, 161 1-Benzyloxy-2(1*H*)-pyrazinone, debenzylation, 226 1-Benzyl-3-phenacyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone, 62 4-Benzyl-1-phenyl-2,6-piperazinedione, debenzylation, 119 3-Benzyl-5-phenyl-2-pyrazinamine 1-oxide, 36 1-Benzylpiperazine, *N*-alkylation, 106, 109 4-Benzyl-1-piperazinecarbonitrile, 325 4-Benzyl-1-piperazinecarboxamide, dehydration, 325 6-Benzyl-2,3,5-piperazinetrione, alkanelysis, 101 1-Benzyl-2-piperazinone, N-oxidation, 227 2-(4-Benzylpiperazin-1-yl)-4(3*H*) quinazolinone, 109 3-Benzyl-2-pyrazinamine, 81 2-Benzylpyrazine, 102, --halogenation, 121 Benzyl 2-pyrazinecarboxylate, 309 1-Benzyl-2(1*H*)-pyrazinone 4-oxide, 201 2-Benzylthio-5-chloropyrazine 1-oxide, 169 5-Benzylthio-1- $(2$ -deoxy- α -Dribofuranosyl)-2(1*H*)-pyrazinone, 205 2-(2-Benzylthioethyl)-5-isopropyl-3,5 dimethoxy-2-methyl-2,5 dihydropyrazine, 252 5-Benzylthio-2-pyrazinamine, 168 to the 2-pyrazinone, 192 5-Benzylthio-2(1*H*)-pyrazinone, 192 debenzylation, 246 silylation, 205 2-Benzylthio-5-trimethylsiloxypyrazine, 205 Hilbert-Johnson reaction, 205 3-Benzyl-5-*p*-(trifluoromethyl)phenyl-2-pyrazinamine, 232 3-Benzyl-5-*p*-(trifluoromethyl)phenyl-2-pyrazinamine 1-oxide, deoxygenation, 232 F. Bergmann, v Biphenyl-4-yl 2-pyrazinecarboxylate, 309 2,5-Bis(acetoxymethyl)-3,6-dichloro-

pyrazine, deacylation, 211

2,3-Bis(4-amino-6-anilino-1,3,5-triazin-2 yl)pyrazine, palladium complex, 289 2,5-Bis(4-aminobutyl)pyrazine, 58 2,5-Bis(6-aminohexyl)pyrazine, 51 3,6-Bis(aminooxymethyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 55 2,5-Bis(5-aminopentyl)pyrazine, 47 2,5-Bis(3-aminopropyl)pyrazine, 58 Bis(5-aminopyrazin-2-yl) sulfide, 168 2,3-Bis[*m*-(*N*-aminosulfamoyl) phenyl]pyrazine, 255 2,5-Bis(3-anilinopropyl)-3,6 diphenylpyrazine, 52 2,3-Bis[*m*-(azidosulfonyl)phenyl] pyrazine, 255 5,6-Bisbenzylthio-2,3-pyrazinedicarbonitrile, 170 2,5-Bisbenzylthiopyrazine 1-oxide, 169 1,4-Bis[bis(cyclohexylamino)phosphinyl] piperazine, 319 1,4-Bis(6-bromohexyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, hydrogenolysis, 181 1,4-Bis(2-bromo-2-methylpentyl)-3,6 dihydro2,5(1*H*,4*H*)-pyrazinedione, 113 5,6-Bis[*p*-(bromomethyl)phenyl]-2,3 pyrazinedicarbonitrile, 25 alkanethiolysis, 186 2,5-Bis(bromomethyl)pyrazine, 120 5,6-Bis(bromomethyl)-2,3 pyrazinedicarbonitrile, alcoholysis, 184 alkanethiolysis, 185 cyclization, 188 to the thiocyanatomethyl analogue, 187 2,6-Bis(3-bromomethylpyrazol-1-yl) pyrazine, 179 3,6-Bis(carbamoylmethyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 58 Bis(*o*-carboxyanilinium) 2,3 pyrazinedicarboxylate, X-ray analysis, 308 2,5-Bis(2-carboxyethyl)-3,6-dihydropyrazine, 31 oxidation, 31 1,4-Bis(2-carboxyethyl)piperazine, 301 2,5-Bis(2-carboxyethyl)pyrazine, 31 1,4-Bis[*P*-Chloro-*P*-(cyclohexylamino)phosphinyl]piperazine, 319 Bis[4-chloro-2-(3,6-dichloropyrazin-2 ylamino)phenyl] diselenide, 69 1,4-Bis(chloromethyl)-3,6-dihdyro-2,5(1*H*,4*H*)-pyrazinedione, 179

1,4-Bis(1-chloro-2-methylprop-1-enyl)piperazine, 181 2,3-Bis(chloromethyl)pyrazine, thiolysis, 185 2,3-Bis(*p*-chlorostyryl)pyrazine, 125 dimerization, 127 2,3-Bis(*p*-chlorostyryl)pyrazine (dimer), 127 X-ray analysis, 127 2,3-Bis[*m*-(chlorosulfonyl)phenyl] pyrazine, 255 aminolysis, 255 azidolysis, 255 1,4-Bis(2-cyanoethyl)piperazine, 51 hydrolysis, 301 2,3-Bis(dibromomethyl)pyrazine, cyclization, 188 1,4-Bis(dichlorophosphinyl)piperazine, 318 aminolysis, 319 2,5-Bis(1,1-dicyanopent-4-ynyl) pyrazine, 101 cyclization, 335 2,6-Bis(4,5-dimethoxycarbonyl-1,2,3 triazol-1-yl)pyrazine, 296 2,5-Bisdimethylamino-3,6 dihydropyrazine, 219 2,3-Bis(2-dimethylaminoethylthio) pyrazine, 167 2,3-Bisdimethylamino-5,5,6,6 tetrakis(trifluoromethyl)-5,6 dihydropyrazine, 38 2,5-Bis(dimethylamino)-3,3,6,6 tetramethyl-3,6-dihydropyrazine, 48 1,4-Bis(dimethylphosphinothioyl)-1,4 dihydropyrazine, 78 2,3-Bis[*m*-(dimethylsulfamoyl) phenyl]pyrazine, 255 Bis(3,6-dioxopiperazin-2-ylmethyl) disulfide, 6 reduction, 246 2,5-Bis(2-ethoxycarbonylethyl)-3 isopropylpyrazine, 54 2,5-Bis(2-ethoxycarbonylethyl)pyrazine, 54 2,6-Bis(3-ethoxycarbonylpyrazol-1-yl) pyrazine, 156 reduction, 210 1,4-Bis(ethylsulfonylformyl)piperazine, 317 5,6-Bisethylthio-2,3-pyrazinedicarbonitrile, 170 3,6-Bis(*o*-hydroxybenzyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 33 1,4-Bis(2-hydroxyethyl)piperazine, 12, 70 X-ray analysis, 115 2,3-Bis(hydroxyimino)-1,4-diphenylpiperazine, 28

- 2,6-Bis(hydroxyimino)piperazine, X-ray analysis, 298 1,4-Bis(hydroxymethyl)-3,6-dihydro-
- 2,5(1*H*,4*H*)-pyrazinedione, halogenolysis, 179 2,6-Bis(3-hydroxymethylpyrazol-1-yl)-
- pyrazine, 210 halogenolysis, 179
- 2,3-Bis(isothiouroniomethyl)pyrazine dichloride, 185 hydrolysis, 185
- 2,5-Bis(isothiouroniomethyl)pyrazine dichloride, 185
- 2,6-Bis(isothiouroniomethyl)pyrazine dichloride, 185
- 2,3-Bis(mercaptomethyl)pyrazine, 185
- 1,4-Bis(methoxycarbonylmethyl)-3,6 dihydro-2,5(1*H*,4*H*)-pyrazinedione, 34
- 3,6-Bis(methoxycarbonylmethyl)-3,6 dihydro-2,5(1*H*,4*H*)-pyrazinedione, 33
- 2,3-Bis(*p*-methoxyphenyl)-5,6-dihydropyrazine, 26 oxidation, 26
- 1,4-Bis(*p*-methoxyphenyl)-5,6-dimethyl-2,3(1*H*,4*H*)-pyrazinedione, 48
- 2,3-Bis(*p*-methoxyphenyl)-5,6-diphenylpyrazine, 56
- 2,3-Bis(*p*-methoxyphenyl)pyrazine, 26
- 2,5-Bis(*p*-methoxyphenyl)pyrazine, fluorescence, 116
- 1,4-Bis(*p*-methoxyphenyl)-2,3(1*H*,4*H*) pyrazinedione, 48
- 2-(4,5-Bis-*p*-methoxyphenylthiazol-2 yl)pyrazine, 327
- Bis(5-methylamino-6-methylcarbamoylpyrazin-2-yl) disulfide, reduction, 247
- Bis(5-methylamino-6-methylpyrazin-2-yl) disulfide, 64
- 2,5-Bis(5-methylaminopentyl)pyrazine, 47
- 2,5-Bismethylthio-3,6-dihydropyrazine, cyclization, 276
- thiolysis, 246 5,6-Bis[*p*-(5-methylthio-2-thioxo-1,3 dithiol-4-ylthiomethyl)phenyl]-2,3-
- pyrazinedicarbonitrile, 186 1,4-Bis[morpholino(thioformyl)]-
- piperazine, 319
- 1,4-Bis(nitroacetyl)piperazine, 261
- 1,3-Bis(1-oxidopyrazin-2-yl)triazene, 290
- 2,6-Bis(perfluorooctyl)pyrazine, 96
- 5,6-Bis(phenylthiomethyl)-2,3 pyrazinedicarbonitrile, 185
- 5,6-Bis(propoxymethyl)-2,3 pyrazinedicarbonitrile, 184 *N*,*N*-Bis(2-pyrazinecarbonyl)hydrazine, 329 1,2-Bis(pyrazin-2-yl)ethylene quaternary salts, photoisomerization, 135 Bis(pyrazin-2-ylmethyl) disulfide, 248 toxicity, 245 Bis(pyrazin-2-yl) disulfide, 165 *p*-Bis[2-(pyrazin-2-yl)vinyl]benzene, as a laser dye, 116 *N*,*N*-Bis[3-(pyrrol-1-yl)pyrazin-2 yl]urea, 330 2,5-Bis(1,2,3,4-tetrahydroxybutyl) pyrazine, 30 5,6-Bis(thiocyanatomethyl)-2,3-pyrazinedicarbonitrile, 187 1,4-Bis(2,3,3-trichloroallyl)piperazine, 107 Bis(2,2,2-trichloroethyl) 2,3-diallyl-1,2, 3,4-tetrahydro-1,4-pyrazinedicarboxylate, 78 2,5-Bis(trichloromethyl)pyrazine, 121 2-Bis(trifluoromethyl) aminooxypyrazine, 175 2,3-Bis(trifluoromethyl)-1,2,5,6 tetrahydro-2-pyrazinol, 17, 57 1,4-Bis(trimethylgermyl)-1,4 dihydropyrazine, Xray analysis, 114 1,2-Bis(3,5,6-trimethylpyrazin-2 yl)ethane, 102, 118 1,2-Bis(3,5,6-trimethylpyrazin-2-yl) propene, 241 1,4-Bis(trimethylsilyl)-1,4-dihydropyrazine, 78 with carbon dioxide, 79, 311 with carbon disulfide, 311 with carbon oxysulfide, 311 X-ray analysis, 115 Bistrimethylsilyl 1,4-dihydro-1,4 pyrazinedicarboxylate, 79, 311 1,4-Bis(trimethylsilyl)piperazine, to the bischlorosulfonyl analogue, 318 7,8-Bis(trimethylsilyl)pyrrolo[1,2-*a*] pyrazine-6-carbonitrile, 134 4-Bromoacetyl-3-ethoxycarbonylmethyl-2 piperazinone, to a phosphonoacetyl analogue, 187 3-(*o*-Bromoanilino)pyrazine, 150 2-*p*-Bromobenzyl-5-isopropyl-3,6 dimethoxy-3,6-dihydropyrazine, 86 $2-(\alpha$ -Bromobenzyl)pyrazine, 121 2-(4-Bromobutyl)-3,6-diethoxy-5 isopropyl-2-methyl-2,5-dihydropy-

razine, azidolysis, 186

2-Bromo-5,6-dichloro-3-nitropyrazine, 147 aminolysis, 155 5-Bromo-3,6-diisobutyl-2(1*H*) pyrazinone, 233 alkanelysis, 99 5-Bromo-3,6-diisobutyl-2(1*H*)-pyrazinone 4-oxide, deoxygenation, 233 1-(3-Bromo-2,5-dimethoxyphenyl) piperazine, 120 3-Bromo-5,6-dimethyl-2-pyrazinamine, 138 2-Bromo-5-dimethylsulfimidopyrazine, 287 2-Bromo-6-(3-ethoxycarbonylpyrazol-1-yl)pyrazine, 151 2-(2-Bromoethyl)-3,6-diethoxy-2,5 dihydropyrazine, cyclization, 190 3-(2-Bromoethyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 178 2-(2-Bromoethyl)-5-isopropyl-3,6 dimethoxy-2-methyl-2,5 dihydropyrazine, 181 2-Bromo-5-formamidopyrazine, alkanelysis, 98 5-Bromo-3-hydrazino-2-pyrazinamine, 153 5-Bromo-1*H*-imidazo[4,5-*b*]pyrazine, 279 5-Bromo-3-methylamino-2-pyrazinamine, 153 6-Bromomethyl-5-chloro-3-methoxy-1-phenyl-2(1*H*)-pyrazinone, aminolysis, 183 cyanolysis, 187 2-Bromomethyl-5-isopropyl-3,6 dimethoxy-2-methyl-2,5 dihydropyrazine, ring expansion, 189 1-(2-Bromo-2-methylpentyl)-3,6-dihydro-2, 5(1*H*,4*H*)-pyrazinedione, 113 3-Bromo-5-methyl-2-pyrazinamine, hydrogenolysis, 172 3-Bromo-5-methyl-2-pyrazinamine 4 oxide, 143 cyanolysis, 174 2-(6-Bromomethylpyridin-2-yl) pyrazine, 180 5-Bromo-3-methylsulfonyl-2-pyrazinamine, 253 5-Bromo-3-methylthio-2-pyrazinamine, 168, 248 oxidation, 253 2-Bromomethyl-3,5,6-trimethylpyrazine, hydrolysis, 183 thiolysis, 185 2-Bromo-5-nitropyrazine, 260 alkanelysis, 101 2-(2-Bromopentyl)-3,6-dimethylpyrazine, 122

2-(*o*-Bromophenoxy)pyrazine, 160 alkanelysis, 182 2-(*o*-Bromophenylacryloyl)pyrazine, cyclocondensation, 346 2-*p*-Bromophenyl-5-pentyloxypyrazine, 198 5-*p*-Bromophenyl-1-phenyl-2(1*H*) pyrazinone, 198 2-(5-*o*-Bromophenyl-1-phenyl-2 pyrazolin-3-yl)pyrazine, 346 6-Bromo-2-phenyl-4(3*H*)-pteridinone, 273 2-Bromo-5-phenylpyrazine, 149 5-*p*-Bromophenyl-2(1*H*)-pyrazinone, 25 alkylation, 198 7-Bromo-3-(piperazin-1-yl)-1,2 benzoisothiazole, 108 3-Bromo-2-pyrazinamine, 138 aminolysis, 154 5-Bromo-2-pyrazinamine, 143 alkanethiolysis, 168 to the dimethylsulfimido analogue, 298 5-Bromo-2,3-pyrazinediamine, cyclocondensation, 279 2-(But-3-enyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine, 86 alkylation, 86 2-(But-3-enyl)-5-isopropyl-3, 6 dimethoxy-2-(prop-2-ynyl)-2,5 dihydropyrazine, 86 1-*tert*-Butoxycarbonyl-4 methylpiperazine, 275 2-*tert*-Butoxy-3,6-diisopropylpyrazine, 204 2-*tert*-Butoxypyrazine, 160 3-Butylamino-5-(3,4-dimethoxyphenyl)-2 pyrazinecarbonitrile, 270 3-Butylamino-6-(3,4-dimethoxyphenyl)-2 pyrazinecarbonitrile, 270 water addition, 323 3-Butylamino-6-(3,4-dimethoxyphenyl)- 2-pyrazinecarboxamide, 323 3-(3-*tert*-Butylamino-2-hydroxypropoxy)- 2-pyrazinecarbonitrile, 163 *tert*-Butyl 4-benzyl-2,5-diphenyl-1 piperazinecarboxylate, 110 debutoxycarbonylation, 110 *tert*-Butyl 2-*tert*-butoxycarbamoyl-4 phenoxycarbonyl-1,4,5,6-tetrahydro-1-pyrazinecarboxylate, 310 *tert*-Butyl 2-*tert*-butoxycarbamoyl-1,4,5,6-tetrahydro-1-pyrazinecarboxylate, alkoxycarbonylation, 310 *tert*-Butyl 4-*p*-chlorobenzyl-1 piperazinecarboxylate, 106 dealkoxycarbonylation, 106

2-*sec*-Butyl-3-chloro-5 isobutylpyrazine, 139 2-*sec*-Butyl-6-chloro-5 isobutylpyrazine, 139 5-*tert*-Butyl-6-chloro-2,3 pyrazinedicarbonitrile, 95 2-*sec*-Butyl-3,6-dichloro-5 isobutylpyrazine, 139 2-Butyl-3,6-diethoxy-2,5 dihydropyrazine, 92 2-Butyl-3,6-diisobutylpyrazine, 105 2-*sec*-Butyl-5,6-dimethylpyrazine, 84 2-[7-(*tert*-Butyldimethylsiloxycarbonyl) heptyl]-3,6-diethoxy-5-isopropyl-2,5 dihydropyrazine, 87 desilylation, 87 3-[2-(*tert*-Butyldimethylsiloxy)ethyl]-1, 4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 215 3-[3-(*tert*-Butyldimethylsiloxy)propyl]- 1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 82 *tert*-Butyl 2,5-diphenyl-1 piperazinecarboxylate, 4-alkylation, 110 3-*sec*-Butyl-6-isobutyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, halogenolysis and halogenation, 139 2-*sec*-Butyl-6-methoxy-5 methylpyrazine, 231 oxidation, 117 2-*sec*-Butyl-6-methoxy-5-methylpyrazine 4-oxide, deoxygenation, 231 5-*sec*-Butyl-3-methoxy-2 pyrazinecarbaldehyde, 117 2-*sec*-Butyl-3-methoxypyrazine 1 oxide, 228 3-*sec*-Butyl-6-methyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 12 1-Butyl-4-methylpiperazine, 310 1-*tert*-Butyl-4-methylpiperazine, nitrosolysis, 263 Butyl 4-methyl-1 piperazinecarboxylate, 310 2-Butyl-3-methylpyrazine, 67 *tert*-Butyl 1-piperazinecarboxylate, *N*-alkylation, 106 2-Butylpyrazine, 78 2-*tert*-Butylpyrazine, 104 5-*tert*-Butyl-2-pyrazinecarbonitrile, 81 5-*tert*-Butyl-2-pyrazinecarboxamide, 81 *N*-*tert*-Butyl-*N*-(pyrazin-2-yl) carbodiimide, 283 2-*tert*-Butylsulfinylpyrazine, 252

2-*tert*-Butylsulfonyl-3-iodopyrazine, 144 2-*tert*-Butylsulfonylpyrazine, 252 halogenation, 144 pyrolysis to pyrazine, 76, 104 2-*tert*-Butylthiopyrazine, oxidation, 252 2-*N*-*tert*-Butyl(thioureido)pyrazine, 283 to a carbodiimide, 283 2-(But-3-ynylamino)pyrazine, 150 2-[(But-3-ynyl)oxymethyl]pyrazine, 184 cyclization, 220 ω -silylation, 130 2-(But-3-ynyloxy)pyrazine, 160 2-(But-3-ynylsulfinyl)pyrazine, 253 2-(But-3-ynylsulfonyl)pyrazine, 252 2-(But-3-ynylthio)pyrazine, 248 oxidation, 252, 253 Cairomycin A, 241 3-Carbamoyl-1-(4-carboxybutyl) pyrazinium iodide, 132 *N*-Carbamoylmethyl-2 pyrazinecarboxamide, 312 3-Carbamoyl-1-methylpyrazinium iodide, 132 3-Carbamoyl-6-oxo-1,6-dihydro-2 pyrazinecarboxylic acid, 322 3-Carbamoyl-2-pyrazinecarboxylic acid, 306 Hofmann degradation, 271 *p*-Carboxyanilinium hydrogen 2,3 pyrazinedicarboxylate, X-ray analysis, 308 *m*-Carboxyanilinium hydrogen 2,3 pyrazinedicarboxylate dihydrate, X-ray analysis, 308 3-(4-Carboxy-5,6-dimethyl-1,3-thiazolidin-2-yl)-6-phenyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 68 2-(7-Carboxyheptyl)-3,6-diethoxy-5 isopropyl-2,5-dihydropyrazine, 87 3-Carboxymethyl-6-methyl-3,6-dihydro-2,5(1*H*, 4*H*)-pyrazinedione, X-ray analysis, 191 2-Carboxymethyl-4-methylpiperazine, 119 1-(1-Carboxy-2-methylpropyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 68 *N*-Carboxymethyl-2-pyrazinecarboxamide, cyclocondensation, 307 esterification, 305 4-Carboxymethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone, 6 2-Carboxymethyl-3,5,6 trimethylpyrazine, 126 esterification, 305

1-Chloroacetyl-4-methylpiperazine, 275 2-Chloroacetyl-6-phenylpyrazine, 320 2-(Chloroacetyl)pyrazine, 320 cyclocondensation, 189 1-*p*-Chlorobenzylpiperazine, 106 $2-(\alpha$ -Chlorobenzyl)pyrazine, 179 2-Chloro-5,6-bis(4,6-diaminopyrimidin-5-ylthio)pyrazine, 167 2-Chloro-3,5-bis(2-hydroxyethylamino)- 6-nitropyrazine, 155 2-(4-Chlorobut-2-enyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, cyclization, 189 5-Chloro-1-(*p*-chlorobenzoyloxy)-6-ethyl-2(1*H*)-pyrazinone, 234 2-Chloro-6-chloromethyl-5-methoxy-3-methylpyrazine 1-oxide, 142 2-Chloro-5-chloromethyl-6 methylpyrazine, 146 6-Chloro-5-cyanomethyl-3-methoxy-1-phenyl-2(1*H*)-pyrazinone, 187 3-Chloro-5-cyano-2-pyrazinecarboxamide, alkanethiolysis, 169 aminolysis, 157 2 -Chloro-3-(α -cyano- α -tosylmethyl)pyrazine, 95 3 -[α -Chloro- α -(cyclohexylimino)acetyl]-2-pyrazinecarbonyl chloride, 320 1-(8-Chlorodibenzo[*b*,*f*]thiepin-10-yl)- 4-(2-hydroxybutyl)piperazine, 109 1-(8-Chlorodibenzo[*b*,*f*]thiepin-10 yl)piperazine,4-alkylation, 109 5-Chloro-6-(diethylamino)methyl-3-methoxy-1-phenyl-2(1*H*) pyrazinone, 183 5-Chloro-3-diethylamino-1-methyl-2(1*H*) pyrazinone, 154 5-Chloro-3-diethylamino-2(1*H*) pyrazinone, to a pyridine, 288 2-Chloro-3,6-diethylpyrazine, alkanelysis, 93, 97 2-Chloro-5,6-diethylpyrazine 1-oxide, 226 1-Chloro-3,6-diisobutylpyrazine, alkanelysis, 93 cyanolysis, 174 hydrogenolysis, 172 2-Chloro-3,6-diisobutylpyrazine 1-oxide, hydrogenolysis, 173 2-Chloro-3,6-diisobutylpyrazine 4-oxide, hydrogenolysis, 173 5-Chloro-3,6-diisobutyl-2(1*H*) pyrazinone, alkanelysis, 99 2-Chloro-3,6-diisopropylpyrazine, alcoholysis, 159

alkanelysis, 97 hydrolysis, 159 2-Chloro-5-dimethylaminomethyleneamino-2,6-pyrazinedicarbonitrile, 331 alkanethiolysis, 170 2-Chloro-3-dimethylamino-6 nitropyrazine, cyanolysis, 173 2-Chloro-3,6-dimethylpyrazine, alcoholysis, 161 alkanelysis, 94, 98 alkanethiolysis, 168 azidolysis, 170 to the 2-carboxy analogue, 175 hydrogenolysis, 98 hydrolysis, 158 5-Chloro-1,4-dimethyl-2,3(1*H*,4*H*) pyrazinedione, 200 2-Chloro-3,6-dimethylpyrazine 1,4-dioxide, 227 2-Chloro-3,6-dimethylpyrazine 4-oxide, 227, 229 alkylation, 82 aminolysis, 152 2-Chloro-5,6-dimethylpyrazine 4-oxide, deoxidative halogenation, 146 2-Chloro-3-dimethylsulfimidopyrazine, 287 2-Chloro-5-dimethylsulfimidopyrazine, 287 to the 5-nitro analogue, 259 2-Chloro-3,5-diphenylpyrazine, alcoholysis, 160 2-Chloro-3,6-diphenylpyrazine, alcoholysis, 160 alkanelysis, 94 aminolysis, 152 2-Chloro-5,6-diphenylpyrazine, alkanelysis, 99 aminolysis, 153 2-Chloro-5,6-diphenylpyrazine 1-oxide, 146 with acetic anhydride, 234 2-Chloro-3,6-dipropylpyrazine, hydrolysis, 158 2-Chloro-3-[4-(ethoxycarbonylmethyl)- (thiosemicarbazido)]pyrazine, 293 cyclization, 293 5-Chloro-3-ethoxy-1-methyl-2(1*H*) pyrazinone, 162 2-(2-Chloroethyl)-5-isopropyl-3,6 dimethoxy-2-methyl-2,5 dihydropyrazine, transhalogenation, 181 2-(2-Chloroethylthio)-3,3,6,6-tetramethyl-2,5-diphenyl-1,2,3,6 tetrahydropyrazine, 49

5-Chloro-6-(*N*-formylanilino)methyl-2,3 pyrazinedicarbonitrile, 95 2-Chloro-5-(furan-2-yl)pyrazine, 138 3-Chloro-5-heptanoyl-2,6 pyrazinediamine, 134 3-Chloro-5-(hept-1-ynyl)-2,6 pyrazinediamine, to the heptanoyl analogue, 129 5-Chloro-3-hydrazino-6-methyl-2(1*H*) pyrazinone, 154 2-Chloro-3-hydrazinopyrazine, to the azido analogue, 294 to a semicarbazido analogue, 293 2-Chloro-6-hydrazinopyrazine, alkylidenation, 292 2-Chloro-6-hydrazinopyrazine 4-oxide, 155 2-Chloro-6-hydroxyaminopyrazine, 151 1-(3-Chloro-6-hydroxybenzyl)- 4-methylpiperazine, 111 2 -Chloro-3- $(\alpha$ -hydroxydiphenylmethyl)pyrazine, 83 2-Chloro-3-(1-hydroxyethyl)pyrzzine, 83 2-(2-Chloro-1-hydroxy-1-methylethyl)- 5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine, cyclization, 190 2-Chloro-3-(1-hydroxy-2-methylpropyl)- 6-isobutylpyrazine, 211 2-Chloro-3-isobutyl-6-isopropylpyrazine 1-oxide, hydrolysis, 158 2-Chloro-3-isobutyl-6-methylpyrazine, 139 2-Chloro-6-isobutyl-3-methylpyrazine, 139 2-Chloro-3-isobutyl-6-methylpyrazine 1 oxide, 226 2-Chloro-3-isobutylpyrazine 4-oxide, hydrolysis, 158 2-Chloro-5-isopentyl-3,6 dimethylpyrazine, 82 2-Chloro-5-isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, 91 alkanelysis, 91 tin complex, 91 5-Chloro-3-isothiouronio-1-methyl-2(1*H*) pyrazinone (salt), 165 hydrolysis, 165 5-Chloro-3-methoxy-1-methyl-2(1*H*) pyrazinone, 162, 200 5-Chloro-3-methoxy-1-phenyl-2(1*H*) pyrazinone, hydrogenolysis, 172 2-Chloro-6-[m -methoxy- α, α -(trimethylenedithio)benzyl] pyrazine, 175 5-Chloro-6-methylamino-2,3 pyrazinedicarbonitrile, 156

2-Chloromethyl-3-methoxy-5-methylpyrazine 1-oxide, alkanelysis, 182 halogenation, 142 2-Chloromethyl-5-methylpyrazine, 121 alcoholysis, 184 aminolysis, 183 dehydrohalogenation, 103 hydrolysis, 184 oxidation, 190 to the triphenylphosphoniomethyl analogue, 103 6-Chloro-4-methyl-3-oxo-3,4-dihydro-2 pyrazinecarbonitrile, 174 5-Chloro-3-methyl-1-phenethyl-2(1*H*) pyrazinone, 99 2-Chloromethyl-3-phenylpyrazine, cyanolysis, 186 2-Chloro-3-methyl-5-phenylpyrazine, 138 2-Chloro-3-methyl-5-phenylpyrazine 1 oxide, deoxidative halogenation, 145 5-Chloro-1-methyl-3-{*N*-[*N*-phenyl- (thiocarbamoyl)]carbamoylmethylthio}-2(1*H*)-pyrazinone, 249 6-Chloro-5-(4-methylpiperazin-1-yl)-2 pyrazinecarboxylic acid, 300 2-Chloromethylpyrazine, 121 alcoholysis, 184 to a phosphorothioate, 187 thiolysis, 185 2-Chloro-3-methylpyrazine, 54 alkanethiolysis, 167 5-Chloro-1-methyl-2,3(1*H*,4*H*) pyrazinedione, alkylation, 200 2-Chloro-3-(2-methylthioethyl)-5 phenylpyrazine, 140 aminolysis, 152 5-Chloro-1-methyl-3-thioxo-3,4 dihydro-2(1*H*)-pyrazinone, 165 S-alkylation, 249 3-Chloromethyl-1,5,5-trimethyl-5,6 dihydro-2(1*H*)-pyrazinone, 121 self condensation, 188 2-Chloro-3-nitropyrazine, 260 aminolysis, 155 2-Chloro-5-nitropyrazine, 260 aminolysis, 155 5-Chloro-3-oxo-3,4-dihydro-2 pyrazinecarboxylic acid, 195 2-*p*-Chlorophenylazopyrazine, 262 2-Chloro-3-phenylpyrazine, 82, 146 thiolysis, 166 2-Chloro-5-phenylpyrazine, 146, 149 2-Chloro-6-phenylpyrazine, 146

2-Chloro-3-phenylpyrazine 4-oxide, hydrolysis, 158 2-Chloro-6-phenylpyrazine 4-oxide, alcoholysis, 162 3-Chloro-1-phenyl-2(1*H*) pyrazinone, 141 5-Chloro-3-phenyl-2(1*H*)-pyrazinone, halogenolysis, 138 2-Chloro-3-propionylpyrazine, alkanethiolysis, 169 6-Chloro-5-propyl-2 pyrazinecarbothioamide, 324 6-Chloro-5-propyl-2-pyrazinecarboxamide, thiation, 324 3-Chloro-2-pyrazinamine, 271 alcoholysis, 161 to the dimethylsulfimido analogue, 287 5-Chloro-2-pyrazinamine, 142 cyanolysis, 174 2-Chloropyrazine, 138, 145, 237 acylation, 342 alcoholysis, 160 alkanelysis, 95, 96, 97, 98 alkanethiolysis, 166 alkylation, 82, 83 aminolysis, 150, 151, 175 to an aminooxy analogue, 175 to the 2-carbamoyl analogue, 175 carboxylation, 299 complexation, 175 formylation, 337 hydrogenolysis, 173 thiolysis, 164, 165 transhalogenation, 148, 149 3-Chloro-2-pyrazinecarbaldehyde, 337 3-Chloro-2-pyrazinecarbonitrile, 147, 238 alcoholysis, 155, 163 aminolysis, 155 5-Chloro-2-pyrazinecarbonitrile, 325 cyclization, 334 3-Chloro-2-pyrazinecarbonyl chloride, to a ketone, 320 6-Chloro-2-pyrazinecarbonyl chloride, 304 to an amide, 318 3-Chloro-2-pyrazinecarboxamide, 139 Hofmann degradation, 271 thiolysis, 164 5-Chloro-2-pyrazinecarboxamide, alcoholysis, 164 6-Chloro-2-pyrazinecarboxamide 4-oxide, hydrolysis, 301 3-Chloro-2-pyrazinecarboxylic acid, 139, 299 hydrolysis, 159

6-Chloro-2-pyrazinecarboxylic acid, to the acid chloride, 304 6-Chloro-2-pyrazinecarboxylic acid 4-oxide, 301 5-Chloro-2,3-pyrazinedicarboxylic acid, 67 2-Chloropyrazine 1-oxide, alcoholysis, 162 alkanethiolysis, 168 azidolysis, 171 thiolysis, 165 transhalogenation, 149 2-Chloropyrazine 4-oxide, aminolysis, 154 8-Chloro-1O*H*-pyrazino[2,3-*b*][1,4] benzothiazine, 176 6-Chloro-*N*-(pyrazin-2-yl)-2 pyrazinecarboxamide, 318 2-Chloro-3-[2-(pyrrolidin-1-yl)cyclopent-1-en-1-ylcarbonyl]pyrazine, 320 2-Chloro-3-trifluoromethylpyrazine, 96 2-Chloro-3,5,6-trimethylpyrazine 4 oxide, 228 Cinepazet, 241 1-Cinnamyl-4-[2-(2,5-dimethoxyphenoxy)ethyl]piperazine, 107 1-Cinnamylpiperazine, 107 4-alkylation, 107 1-Cinnamyl-4-piperazinecarbaldehyde, 107 deacylation, 107 Coelenteramide, 241 Contents tables, xi Cryptoechinulin A (also C, G), 241 2-Cyanoaminopyrazine, hydroxylamine addition, 335 $2-(\alpha$ -Cyanobenzyl)pyrazine, 95, 100 to 2-benzoylpyrazine, 332 hydrogenolysis (indirect), 331 5-Cyano-3-cycloheptylamino-2 pyrazinecarboxamide, 157 5-Cyano-3-diethylamino-2 pyrazinecarboxamide, 157 hydrogen sulfide addition, 323 3-Cyano-5-(3,4-dimethoxyphenyl)- 1-methylpyrazinium iodide, reduction, 132 2-Cyano-5,6-diphenyl-1,6-dihydro-2-pyrazinecarboxamide, 9 oxidation, 10 3-Cyano-5,6-diphenyl-4,5-dihydro-2-pyrazinecarboxamide, 9 oxidation, 10 3-Cyano-5,6-diphenyl-2 pyrazinecarboxamide, 10, 2-[*N*-(2-Cyanoethyl)hydrazino] pyrazine, 292 1-(2-Cyanoethyl)-4-phenylpiperazine, 108

5-Cyano-3-ethylthio-2 pyrazinecarboxamide, 169 2-Cyanoimino-1-methyl-1,2 dihydropyrazine, 297 Cyanomethyl 3,5-diamino-6-chloro-2 pyrazinecarboxylate, 304 2-Cyanomethyl-3-phenylpyrazine, 186 hydrolysis and decarboxylation, 302 2-Cyanomethylsulfinyl-3,6 diethylpyrazine, 253 2-Cyanomethylsulfinyl-3,6 diisopropylpyrazine, 253 as a reagent, 257 2-Cyanomethylthio-3,6-diethylpyrazine, oxidation, 253 5-Cyano-3-phenylthio-2 pyrazinecarboxamide, 169 4-(3-Cyanopropyl)-2 pyrazinecarboxamide, 106 3-Cyano-2-pyrazinecarboxamide, 325 2-(*p*-Cyanostyryl)-3-(*p*-methoxystyryl) pyrazine, 125 2-(2-Cyanovinyl)-3,6-diethylpyrazine, 93 Cyclizine, 241 2-(Cyclohex-1-enylthio)-3,6 dimethylpyrazine, 257 2-(Cyclohex-1-enylthio)pyrazine, 252, 257 1-Cyclohexylcarbonyl-3,5 bis(hydroxyimino)piperazine, hydrolysis, 195 4-Cyclohexylcarbonyl-2,6 piperazinedione, 195 2-Cyclohexyl-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine, 91 2-Cyclohexylsulfinyl-3,6 dimethylpyrazine, dehydration, 257 rearrangement, 257 2-Cyclohexylsulfinylpyrazine, 253 dehydration, 252, 257 rearrangement, 257 2-Cyclohexylthiopyrazine, 166 oxidation, 253 5-Cyclohexylthio-3,6-dimethyl-2(1*H*) pyrazinone, 257 5-Cyclohexylthio-2(1*H*)-pyrazinone, 257 2-Cyclopropylformylpyrazine, 332 cyclocondensation, 345 Deoxyaspergillic acid, 241 Deoxymutaaspergillic acid, 241 Dexrazoxane, 241 2,5-Diacetoxy-3,6-dimethylpyrazine, hydrolysis, 194 2,5-Diacetoxy-3,6-diphenylpyrazine, 204

2,6-Diazidopyrazine, 177 to triazolylpyrazines, 296 2,5-Dibenzoyl-3,6-diphenylpyrazine, 50 1,4-Dibenzoyloxypiperazine, 230 to 1,4-dimethylpiperazine 1,4 dioxide, 230 *N*-(Dibenzylaminomethyl)-2 pyrazinecarboxamide, 326 2,5-Dibenzyl-3-benzyloxy-6 methoxypyrazine, 199 3,6-Dibenzyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 33 acylation, 205 3,6-Dibenzyl-3,6-dihydroxy-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 60 dehydration, 60 2,5-Dibenzyl-1,4-dimethylpiperazine, 241 3,6-Dibenzyl-1,4-dimethyl-2,5 piperazinedione, oxidation, 119 1,4-Dibenzyl-2,3-dioxa-5,7 diazabicyclo[2.2.2]octane-6,8 dione, 207 1,4-Dibenzyl-2 fluoromethylpiperazine, 180 3,6-Dibenzyl-5-hydroxy-2(1*H*) pyrazinone, endoperoxidation, 207 3,6-Dibenzylidene-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 60, 84 alkylation, 202 2,5-Dibenzylidene-3,6-dimethoxy-2,5 dihydropyrazine, 202 3,6-Dibenzylidene-1,4-dimethyl-3,6 dihydro-2,5(1*H*,4*H*) pyrazinedione, 202 ω -halogenation, 122 3,6-Dibenzylidene-5-methoxy-1-methyl-3,6-dihydro-2(1*H*)-pyrazinone, 202 2,5-Dibenzyl-3-methoxypyrazine 1 oxide, 228 with acetic anhydride, 244 3,6-Dibenzyl-5-methoxy-2(1*H*) pyrazinone, 194, 241 alkylation, 199 2,5-Dibenzyloxy-3,6-dimethylpyrazine, 161 2,5-Dibenzyloxy-3,6-diphenylpyrazine, debenzylation, 193 2,5-Dibenzyloxy-3-isobutyl-6- (tetrahydropyran-2 yloxymethyl)pyrazine 4-oxide, transalkoxylation, 218 2,5-Dibenzylpiperazine, 119 2,5-Dibenzylpyrazine, reduction, 119 2,3-Dibenzyl-5,6-di-*p*-tolylpyrazine, 39

1,4-Dibenzylpiperazine, 38, 70

- 2,6-Dichloro-3-(3,4-dibenzyloxy-5 benzyloxymethyltetrahydrofuran-2 yl)pyrazine, alkoxycarbonylation, 310 2,5-Dichloro-3,6-diethylpyrazine, alkanelysis, 97 2,5-Dichloro-3,6-diethylpyrazine 1,4 dioxide, hydrolysis, 159 2,6-Dichloro-3,5-diiodopyrazine, 144 2,3-Dichloro-5,6-dimethylpyrazine, 146 2,5-Dichloro-3,6-dimethylpyrazine, alcoholysis, 161 5,6-Dichloro-1,4-dimethyl-2,3(1*H*,4*H*) pyrazinedione, 140 2,3-Dichloro-5,6-diphenylpyrazine, 146 azidolysis, 171 2,5-Dichloro-3,6 diphthalimidopyrazine, 151 deacylation, 151 5,6-Dichloro-3-ethoxycarbonylmethyl-2(1*H*)-pyrazinone, 61 $2,6$ -Dichloro-3-(α -hydroxybenzyl)pyrazine, oxidation, 212 2,6-Dichloro-3-(1-hydroxyethyl)pyrazine, oxidation, 212 2,6-Dichloro-3-iodopyrazine, 144 alkanelysis, 93 2,5-Dichloro-3-isobutyl-6 methylpyrazine, 139 2,6-Dichloro-3-methyl-5 phenylpyrazine, 145 2-(Dichloromethyl)pyrazine, ω -halogenation, 121 3,6-Dichloro-5-methyl-2 pyrazinecarboxylic acid, esterification, 304 5,6-Dichloro-*N*-methyl-2,3 pyrazinedicarboximide, 306 3,5-Dichloro-1-methyl-2(1*H*) pyrazinone, 20 alcoholysis, 162 aminolysis, 154 cyanolysis, 174 thiolysis, 165 with thiourea, 165 5,6-Dichloro-3-nitro-2-pyrazinamine, 259 alcoholysis, 261 alkanelysis, 95 cyanolysis, 261 to the trihalogeno analogue, 147 3,5-Dichloro-1-phenethyl-2(1*H*) pyrazinone, alkanelysis, 99 4,6-Dichloro-2-phenyl-2,5 diazabicyclo[2.2.2]oct-5-en-3-one, 86 2,6-Dichloro-3-phenylethynylpyrazine, 93
- 2,5-Dichloro-3-phenylpyrazine, 138 3,5-Dichloro-1-phenyl-2(1*H*)-pyrazinone, 3,6-bridging alkylation, 86 Diels-Alder reactions, 224 2,3-Dichloropyrazine, 140 alkanelysis, 95 alkanethiolysis, 167 aminolysis, 151 cyclocondensation, 176 2,6-Dichloropyrazine, alkanelysis, 96 aminolysis, 151 azidolysis, 171 cyclization, 175 transhalogenation, 148, 149 3,5-Dichloro-2,6-pyrazinediamine, 152 3,6-Dichloro-2,5-pyrazinediamine, 151 X-ray analysis, 151 5,6-Dichloro-2,3-pyrazinediamine, 152 5,6-Dichloro-2,3-pyrazinedicarbonitrile, 141 alkanelysis, 95 alkanethiolysis, 170 aminolysis, 156 cyclocondensation, 177 5,6-Dichloro-2,3-pyrazinedicarboxylic acid, 67 aminolysis, 157 to the anhydride, 303 5,6-Dichloro-2,3-pyrazinedicarboxylic anhydride, 303 to a dicarboximide, 306 2,5-Dichloropyrazine 1-oxide, alkanethiolysis, 169 2,6-Dichloropyrazine 4-oxide, aminolysis, 155 5,6-Dicyano-3-methyl-2 pyrazinecarbaldehyde, 212 to a Schiff base, 338 3-(1,1-Dicyanopent-4-ynyl)-5,6-dihydro-7*H*-cyclopenta[*b*]pyridine-7,7 dicarbonitrile, 335 3-(1,1-Dicyanopent-4-ynyl)-5,6-dihydro-7*H*-cyclopenta[*c*]pyridine-7,7 dicarbonitrile, 335 2-(2,2-Dicyanovinylamino)pyrazine, 280 Didehydropyrazine, fine structure, 71 5,5-Dideutero-2-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine, 219 2-(2,2-Diethoxycarbonylvinyl)amino-3 methoxypyrazine, 280 cyclization, 280 3,6-Diethoxy-2,5-diazabicyclo[2.2.2]octa-2,5-diene, 190 2,5-Diethoxy-3,6-dihydropyrazine, 201 alkylation, 82, 83

aminolysis, 219 cyclocondensation, 221 nitration, 259 oxidation, 201 3,6-Diethoxy-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 176 2,5-Diethoxy-3,6-dinitropyrazine, 251 2,5-Diethoxy-3-(1-hydroxy-1 methylethyl)-3,6-dihydropyrazine, 83 oxidation, 83 2,5-Diethoxy-3-(1-hydroxy-1 methylethyl)pyrazine, 83 dehydration, 102 2,5-Diethoxy-3-isopropenylpyrazine, 102 2,5-Diethoxy-3-isopropyl-3,6 dihydropyrazine, alkylation, 87, 89, 91 2,5-Diethoxy-3-isopropyl-6-methyl-3,6 dihydropyrazine, acylation, 342 3,6-Diethoxy-5-isopropyl-2-methyl-2,5 dihydro-2-pyrazinecarboxylic acid, 198 esterification, 302 2,5-Diethoxy-3-isopropyl-6-(2,3,4,5 tetraacetoxy-1-hydroxypentyl)-3,6 dihydropyrazine, 91 2,5-Diethoxy-3-isopropyl-6-(3 trimethylsilylprop-2-ynyl)-3,6 dihydropyrazine, 89 2-(2,5-Diethoxyphenyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 91 4-[3-(Diethoxyphosphinyl)propyl]- 2-piperazinecarboxamide, 106 2-(3,3-Diethoxypropyl)-3 ethoxycarbonylmethylpyrazine, to the free aldehyde, 336 2-(3,3-Diethoxypropyl)-3 methylpyrazine, 122 2,5-Diethoxypyrazine, 201 alkylation, 92 2-Diethylamino-7-methoxy-1,3,5 triazepine, 297 5-Diethylamino-6-methyl-2,3 pyrazinedicarbonitrile, 21 2-Diethylaminopyrazine, 175 3-Diethylamino-5-thiocarbamoyl-2-pyrazinecarboxamide, 323 2,3-Diethyl-5,6-bis(tetrazol-5-yl) pyrazine, 333 Diethylcarbamazine, 241 7,16-Diethyl-5,14-dihydrodipyrazino[2,3 *b*:2,3-*i*][1,4,8,11]tetraazacyclodecine, 279 1,4-Diethyl-5,6-dihydro-2,3,5,6(1*H*,4*H*) pyrazinetetrone, 18 cyclization, 223

3,6-Diethyl-1,4-dihydroxy-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 159 Diethyl 2,5-dimethyl-1,4 piperazinedicarboxylate, 29 2,3-Diethyl-5,6-dimethylpyrazine, oxidation, 117 2,5-Diethyl-3,6-dimethylpyrazine, 97 Diethyl 3,6-dimethyl-2,5 pyrazinedicarboxylate, 30 3,6-Diethyl-5-iodo-2(1*H*)-pyrzzinone, 144 6,6-Diethyl-5-methyl-3,6-dihydro-2(1*H*) pyrazinone 4-oxide, cyclocondensation, 238 2,5-Diethyl-3-methylpyrazine, 97 *N*,*N*-Diethyl-5-methyl-2 pyrazinecarboxamide, 306 Diethyl 1,4-pioerazinebis- (carbodithioate), 275 *N*,*N*-Diethyl-2-pyrazinecarboxamide, 175 5,6-Diethyl-2,3-pyrazinedicarbonitrile, 81 cyclization, 333 *S*,*S*-Diethyl 1,4-piperazinedicarbothioate, 309 oxidation, 317 1,4-Diethylpyrazinediium bistetrafluoroborate, 77, 135 to a radical cation, 135 1,4-Diethylpyrazine radical cation (tetraphenylborate), 135 X-ray analysis, 135 1,4-Diethylpyrazine radical cation (iodide), 135 to a stable tetraphenylborate, 135 *N*,*N*-Diethyl-2-pyrazinesulfonamide, 248 3,6-Diethyl-2(1*H*)-pyrazinethione, 197, 247 3,6-Diethyl-2(1*H*)-pyrazinone, acylation, 203 halogenation, 144 thiation, 197 2,5-Diethyl-3-styrylpyrazine, 93 3-(2,5-Difluorobenzoyl)-2 pyrazinecarboxylic acid, 307 1,2-Difluoro-1,2-bis(3,5,6-trifluoropyrazin-2-yl)ethylene, 57 2-(Difluoromethyl)pyrazine, 181 1-Difluoronitroacetyl-4-*p*fluorophenylpiperazine, 276 X-ray analysis, 276 1-Difluoronitroacetyl-4 phenylpiperazine, 276 2,6-Difluoropyrazine, 149 1,4-Dihexyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 181 2,3-Dihydrazinopyrazine, 151

1-(2,3-Dihydro-1,4-benzodioxin-5-yl) piperazine, conformation, 115 5,10-Dihydrodipyrazino[2,3-*b*:2,3-*e*] pyrazine, 177 1-(1,2-Dihydrophenyl)-4 methylpiperazine, 112 1-(1,4-Dihydrophenyl)-4 methylpiperazine, 112 3,4-Dihydro-1*H*-pyrano[3,4-*c*]pyridine, 220 1,4-Dihydropyrazine, conformation, 76, 115 3,6-Dihydro-2,5(1*H*,4*H*)-pyrazinedione, 34 acylation, 205 alkylation, 201 halogenation, 143 3,6-Dihydro-2,5(1*H*,4*H*) pyrazinedithione, 246 5,6-Dihydro-2,3,5,6(1*H*,4*H*) pyrazinetetrone, 67 1,4-Dihydroxy-3,6-dimethyl-2,5 piperazinedione, 239 1,5-Dihydroxy-3,6-dimethyl-2(1*H*) pyrazinone 4-oxide, reduction, 239 2-(1,2-Dihydroxyethyl)-5 methylpyrazine, 129 acylation, 215 2-(2,3-Dihydroxypropylamino)-3 nitropyrazine, 155 2-(2,3-Dihydroxypropylamino)-5 nitropyrazine, 155 2,3-Diiodo-2-pyrazinamine 4-oxide, 143 2,6-Diiodopyrazine, 148 alcoholysis, 160 aminolysis, 151 2,5-Diisobutyl-3-methoxypyrazine 1 oxide, with acetic anhydride, 235 3,6-Diisobutyl-5-methoxy-2(1*H*) pyrazinone, alkylation, 200 3,6-Diisobutyl-5-methoxy-2(1*H*) pyrazinone 4-oxide, 193 X-ray analysis, 193 3,6-Diisobutyl-5-phenyl-2(1*H*) pyrazinone, 99 2,5-Diisobutylpyrazine, 172 3,6-Diisobutyl-2-pyrazinecarbonitrile, 174 2,5-Diisobutylpyrazine 1-oxide, 173 2,5-Diisobutyl-3-(thien-2-yl)pyrazine, desulfurization, 105 2,5-Diisobutyl-3-trimethylsilylethynylpyrazine, 93 1,4-Diisobutyrylpiperazine, 275 to the bis(chloromethylpropenyl) analogue, 181 2,5-Diisopropyl-3-methoxycarbonylthiopyrazine, 249

3,6-Diisopropyl-2-methoxypyrazine, 159 hydrolysis, 159 2,5-Diisopropyl-3-phenylpyrazine, 97 2,5-Diisopropylpyrazine 1,4-dioxide, 227 2,5-diisopropylpyrazine 1-oxide, 227 3,6-Diisopropyl-2(1*H*)-pyrazinethione, 197 acylation, 249 alkylation, 248 3,6-Diisopropyl-2(1*H*)-pyrazinone, 159, 193 acylation, 204 1-(3,5-Dimethoxybenzoyl)piperazine, reduction, 113 3-(3,4-Dimethoxybenzyl)-3-methyl-3,6 dihydro-2,5(1*H*,4*H*)-pyrazinedione, 6 1-(3,5-Dimethoxybenzyl)piperazine, 113 2-(Dimethoxycarbonylmethyl)-5 isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, 91 2,5-Dimethoxy-3,6-dihydropyrazine, oxidation, 219 3,6-Dimethoxy-1,4-dimethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 162 6,8-Dimethoxy-1,4-dimethyl-2,3-dioxo-5,7 diazabicyclo[2.2.2]octa-5,7-diene, 220 to an imidazole, 220 2,5-Dimethoxy-3,6-dimethylpyrazine, 161 endoperoxidation, 220 hydrolysis, 193 2,5-Dimethoxy-3,6-diphenyl-3,6 dihydropyrazine, X-ray analysis, 217 2-(2,2-Dimethoxyethyl)-3,6 dimethylpyrazine, 129 6-Dimethoxymethyl-3 dimethylaminomethyleneamino-2 pyrazinecarbonitrile 4-oxide, dealkylidenation, 267 2,6-Dimethoxy-3-methylpyrazine, 82 6-(3,4-Dimethoxyphenyl)-4-methyl-4,5 dihydro-2-pyrazinecarbonitrile, 133 reduction, 133 6-(3,4-Dimethoxyphenyl)-4-methyl-1,4,5,6-tetrahydro-2 pyrazinecarbonitrile, 133 1-(2,5-Dimethoxyphenyl)piperazine, 11 ω -halogenation, 120 5-(3,4-Dimethoxyphenyl)-2 pyrazinecarbonitrile, 332 6-(3,4-Dimethoxyphenyl)-2 pyrazinecarbonitrile, 332 5-(3,4-Dimethoxyphenyl)-2,3 pyrazinedicarbonitrile, alcoholysis, 218 aminolysis, 270 hydrogenolysis, 332

2,5-Dimethoxypyrazine, 219 2,6-Dimethoxypyrazine, alkylation, 82 5,6-Dimethoxy-1,4,5,6-tetrahydro-2,3 pyrazinedicarbonitrile, 21 to 2,3-pyrazinedicarbonitrile, 21 2,7-Dimethoxy-1,3,5-triazepine, 297 2,5-Dimethoxy-3-(2,2,2 trifluoroethoxy)pyrazine, 161 2-Dimethylamino-3,6 dimethylpyrazine, 152 2-Dimethylamino-5,6 diphenylpyrazine, 153 2-Dimethylamino-5-iodopyrazine, 233 2-Dimethylamino-6-iodopyrazine, 151 5-Dimethylamino-3-isopropyl-6,6-dimethyl-3,6-dihydro-2(1*H*)-pyrazinone, 51 3-Dimethylaminomethyleneamino-5 ethoxycarbonylmethylthio-2,6 pyrazinedicarbonitrile, 170 2-Dimethylaminomethyleneaminopyrazine, a displacement reaction, 287 3-Dimethylaminomethyleneamino-2 pyrazinecarbonitrile, 278 cyclization, 278 3-Dimethylamino-6-nitro-2 pyrazinecarbonitrile, 173 2-Dimethylaminopyrazine, 233 2-Dimethylaminopyrazine 1-oxide, deoxygenation, 233 2-(2-Dimethylaminovinyl)pyrazine, transamination, 287 6,6-Dimethyl-2,2-bipyrazine, 104 2,5-Dimethyl-1,4-bis(triisopropylsilyl)- 1,4-dihydropyrazine, 285 X-ray analysis, 285 3,5-Dimethyl-*N*,*N*-bis(6-methylpyridin-2-yl)-2,5-pyrazinedicarboxamide, 32 2,5-Dimethyl-3,6-bis[1-methyl-2- (trimethylsilyl)vinyl]pyrazine, 85 1,4-Dimethyl-2,5-bistosyliminopiperazine, 250 6-(2,3-Dimethylbut-2-enyl)-6-hydroxy-1,4-dimethyl-5,6-dihydro-2,3,5(1*H*,4*H*)-pyrazinetrione, 208 Dimethyl 5-chloro-6-oxo-1-phenyl-1,6 dihydro-2,3-pyridinedicarboxylate, 224 Dimethyl 2-cyano-5-dimethylamino-6 oxo-1-phenyl-1,6-dihydro-3,4 pyridinedicarboxylate, 288 2-[(2,3-Dimethylcycloprop-1-yl) hydroxymethyl]-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 123 Dimethyl 2,6-dichloro-3,4 pyridinedicarboxylate, 224

cyclization, 293

5,6-Dimethyl-3-methylsulfonyl-2 pyrazinamine, alcoholysis, 217 1,4-Dimethyl-2-methylthio-3,6-dioxo-2 piperazinecarbaldehyde, reduction, 208 2,6-Dimethyl-4-nitrosopiperazine, 264 2,5-Dimethyl-3-(oxazol-5-yl)pyrazine, 94 *N*-(4, 6-Dimethyl-2-oxo-2*H*-pyran-3-yl)-2 pyrazinecarboxamide, 307 Dimethyloxosulfonium 5,6 diphenylpyrazin-2-ylmethylide, 99 cyclization, 99 2,5-Dimethyl-3-(pent-1-enyl)pyrazine, 85 halogen addition, 122 oxidation, 119 $2-(\alpha, \alpha)$ -Dimethylphenacyl)pyrazine, 213 2,5-Dimethyl-3-phenacylpyrazine, 104 2,3-Dimethyl-1-phenacylpyrazinium bromide, 131 2,3-Dimethyl-5-phenethylpyrazine, 81 Dimethyl 1-phenyl-1,4-dihydro-2,6 pyrazinedicarboxylate, 2 2,5-Dimethyl-3-phenylethynylpyrazine, reduction, 101 1,4-Dimethyl-2-phenyl-3-(pyridin-4 yl)piperazine, rhenium complex, 289 1,4-Dimethyl-2-phenyl-1,4,5,6 tetrahydropyrazine, 54 2,5-Dimethyl-3-phenylthiopyrazine, 168 1,3-Dimethylpiperazine, 130 1,4-Dimethylpiperazine, 12, 109 demethylation, 130 halogenation, 145 ionization, 116 nitrosolysis, 263 5,*N*-Dimethyl-2-piperazinecarboxamide, acylation, 277 1,4-Dimethylpiperazine 1,4-dioxide, 230 2,3-Dimethyl-5-propylidene-5,6 dihydropyrazine, 84 2,3-Dimethyl-5-propylpyrazine, 84 2,3-Dimethylpyrazine, 67 ω -acylation, 125 alkylation, 81, 122 ω -alkylidenation, 125 conformation, 115 quaternization, 131 X-ray analysis, 114 2,5-Dimethylpyrazine, 32, 98 alkylation, 85 alkylidenation, 102 ammoxidation, 128 conformation, 115 ω -halogenation, 120, 121

IR study, 116 oxidation, 118 reductive silylation, 285 UV study, 115 X-ray analysis, 114 2,6-Dimethylpyrazine, ω -acylation, 126 conformation, 115 IR study, 116 ω -silylation, 130 X-ray analysis, 114 3,6-Dimethyl-2-pyrazinecarboxylic acid, 175 Dimethyl 2,3-pyrazinedicarboximidate, 218, 309 hydrolysis, 313 Dimethyl 2,3-pyrazinedicarboxylate, quaternization, 131 5,6-Dimethyl-2,3-pyrazinedicarboxylic acid, 67 decarboxylation, 67 2,3-Dimethylpyrazine 1,4-dioxide, 228, 239 2,3-Dimethylpyrazine 1-oxide, 228 with acetic anhydride, 236 2,5-Dimethylpyrazine 1-oxide, 118 2,6-Dimethylpyrazine 1-oxide, with acetic anhydride, 236 2,3-Dimethylpyrazinium chloride, deuteration, 135 1,3-Dimethylpyrazinium iodide 4 oxide, 132 1,5-Dimethylpyrazin-1-ium-3-olate, 199 Diels-Alder reaction, 225 3,6-Dimethyl-2(1*H*)-pyrazinone, 158 2-(3,6-Dimethylpyrazin-2-yl) benzothiazole, 94 4,5-Dimethyl-2-(pyrazin-2-yl)-3,6 dihydro-1,2-oxazine, 262 1-(3,6-Dimethylpyrazin-2-yl)indole, 152 2-(3,6-Dimethylpyrazin-2-yl)indole, 94 3-(3,6-Dimethylpyrazin-2-yl)- 1-tosylindole, 94 1,8-Dimethylpyrrolo[1,2-*a*]pyrazine, 133 2,5-Dimethyl-3-(pyrrol-2-yl)pyrazine, 94 2,5-Dimethyl-3-styrylpyrazine, 101 Dimethylsulfiliminopyrazines, *see* Dimethylsulfimidopyrazines 2-Dimethylsulfimidopyrazine, to the 2 nitro analogue, 260 Dimethylsulfimidopyrazines, 286 to nitropyrazines, 260 to nitrosopyrazines, 262 Dimethyl 3,3,6,6-tetraethoxycarbonyl-1,4 dimethyl-2,5-piperazinedicarboxylate, 48

1,2-Dimethyl-2,3,5,6-tetraphenyl-1,2 dihydropyrazine, 114 9,9-Dimethyl-9*H*,11*H*-[1, 3]thiazino- [2,3-*b*]pteridin-11-one, 316 2,5-Dimethyl-3-(thiazol-5-yl)pyrazine, 94 2,5-Dimethyl-3-(thien-2-yl)pyrazine, 94 1,4-Dimethyl-5-tosylimino-3,4,5,6 tetrahydro-2(1*H*)-pyrazinethione, 250 2,5-Dimethyl-3-(trimethylsilylethynyl) pyrazine, desilylation, 104 5,6-Dimorpholino-2,3 pyrazinedicarbonitrile, 156 2,5-Di(naphthalen-1-yl)pyrazine, fluorescence, 116 2,5-Di(naphthalen-2-yl)pyrazine, fluorescence, 116 1,4-Dineopentylpiperazine, 41 1,4-Dinitrosopiperazine, 263 metabolism, 264 X-ray analysis, 263 1,4-Dinitroso-2-piperazinecarboxylic acid, 262 2,3-Dioxa-5,7-diazabicyclo[2.2.2]octanes, to pyrazines, 60 2-(1,4-Dioxaspiro[4.5]dec-2-yl) hydroxymethyl-5-isopropyl-3,6 dimethoxy-2-5-dihydropyrazine, 90 5,6-Dioxa-1,4-di-*p*-tolyl-1,4,5,6 tetrahydro-2-pyrazinecarbonitrile, 18 2-(1,3-Dioxoindan-2-yl)pyrazine, 127 5,6-Dioxo-l,4,5,6-tetrahydro-2,3 pyrazinedicarbonitrile, 18 halogenolysis, 141 1-(Diphenylacetyl)piperazine, 4 alkylation, 111 1-(Diphenylacetyl)-4-[1-(pyridin-3-yl) ethyl]piperazine, 111 2,3-Diphenyl-5,6-dihydropyrazine, cyclocondensation, 127 oxidation, 85, 119 silver nitrate complex, 114 X-ray analysis, 114 2,3-Diphenyl-5,6-di-*p*-toluidino-2,3 dihydropyrazine, 17 2,5-Diphenyl-1,4-di-*p*-tolyl-1,4 dihydropyrazine, 31 rearrangement, 31 2,5-Diphenyl-1,6-di-*p*-tolyl-1,2 dihydropyrazine, 31 2,6-Diphenyl-1,4-di-*p*-tolyl-1,4 dihydropyrazine, 13 3-[*N*-(Diphenylmethyl)amidino]-6-phenyl-2(1*H*)-pyrazinone, 53

4,6-Diphenyl-2-(4-phenylpiperazin-1 yl)methyl-3(2*H*)-pyridazinone, 111 1,4-Diphenylpiperazine, 70 2,3-Diphenylpiperazine, 10 photoisomerization, 115 3,6-Diphenyl-2,2,5,5 piperazinetetracarbonitrile, 42 3,5-Diphenyl-2-pyrazinamine, 272 3,6-Diphenyl-2-pyrazinamine, 152 5,6-Diphenyl-2-pyrazinamine, 272 2,3-Diphenylpyrazine, 85 alkoxycarbonylation, 310 chlorosulfonation, 255 X-ray analysis, 114 2,5-Diphenylpyrazine, 33, 40, 41, 49, 50, 55 2,6-Diphenylpyrazine, 40 5,6-Diphenyl-2,3-pyrazinediamine, 1139 cyclocondensation, 279 5,6-Diphenyl-2,3-pyrazinedicarbonitrile, alkanelysis, 100 to a dihydrotetramer, 334 mass spectral study, 330 to a pyrazinedicarboximidic ester, 309 water addition, 322 2,3-Diphenylpyrazine 1,4-dioxide, 229 deoxidative halogenation, 146 2,3-Diphenylpyrazine 1-oxide, 229 1,5-Diphenyl-2(1*H*)-pyrazinone, 5 3,6-Diphenyl-2(1H)-pyrazinone, 193 5,6-Diphenyl-2(1*H*)-pyrazinone, 50 alkylation, 199 1,3-Diphenyl-1*H*-pyrazino[2,3-*e*]- [1,3,4]oxadiazine-6,7 dicarbonitrile, 177 2-(3,6-Diphenylpyrazin-2-yl)indole, 94 6,7-Diphenyl-2,3-quinoxalinedicarbonitrile, 188 5,6-Diphenyl-3-*p*-tolylamino-2 pyrazinecarbonitrile, 256 2-[Diphenyl(trimethylsiloxy)methyl]-3 fluoropyrazine, 215 3,6-Dipropyl-2(1*H*)-pyrazinethione, 197 3,6-Dipropyl-2(1*H*)-pyrazinone, 158 Dipyrazinyl disulfides, 255 from thiols or thiones, 248 1,2-Di(pyrazin-2-yl)ethylene, cyclization, 126 1,4-Di(pyrazin-2-yl)piperazine, 151 Dipyrazinyl sulfides, *see* Alkylthiopyrazines 2,3-Di(pyridin-2-yl)pyrazine, X-ray analysis, 114 2,5-Di(pyridin-2-yl)pyrazine, complexes, 114 X-ray analysis, 114

1,3-Diselenolo[4,5-*b*]pyrazine-2 thione, 250 2,3-Distyrylpyrazine, 125 2,5-Distyrylpyrazine, 102, 231 2,5-Distyrylpyrazine 1,4-dioxide, deoxygenation, 231 2-[2-(Dithiocarboxy)propionyl] pyrazine, 300 1,3-Dithiolo[4,5-*b*]pyrazine-2-thione, 176, 250 1,4-Ditosyl-2-vinylpiperazine, 21 1-Dodecylpyrazinium iodide, 77 Draflazine, 241 Dragmacidine, 241 Dragmacidon, 241 Dysamide (A-T), 242 Echinulin, 242 Emeheterone, 242 Emimycin, 242 2-(1,2-Epoxypentyl)-3,6 dimethylpyrazine, 119 Esaprazole, 242 2-Ethoxalylmethylpyrazine, 126 2-Ethoxy-5,8-bis(trifluoromethyl)-3,4 dihydropyrazino[2,3-*d*]pyridazine, 221 2-[*N*-(Ethoxycarbonylacetyl)hydrazino]- 3-(2-methylthioethyl)-5 phenylpyrazine, 290 cyclization, 290 2-(Ethoxycarbonylacetyl)pyrazine, 320 4-(2-Ethoxycarbonylethyl)-1 piperazinecarbaldehyde, 108 1-[β -(Ethoxycarbonylmethoxy-pnitrophenethyl]-4-methylpyrazine, 214 3-Ethoxycarbonylmethylamino-1*H*pyrazino[2,3-*e*]-1,3,4-thiadiazine, 293 2-(4-Ethoxycarbonyl-1-methylbut-2-enyl)- 5-isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, 88 2-Ethoxycarbonylmethyl-6,6-dimethyl-3,4,5,6-tetrahydro-2(1*H*) pyrazinone, 16 2-Ethoxycarbonylmethyl-3-(2 formylethyl)pyrazine, 336 3-Ethoxycarbonylmethyl-4 phosphonoacetyl-2-piperazinone, 187 2-Ethoxycarbonylmethylthio-3,6 diisopropylpyrazine, 248 2-Ethoxycarbonylmethylthio-3 methylpyrazine, 167 3-Ethoxycarbonylmethylthio-2 pyrazinecarbaldehyde, cyclization, 340

2-(4-Ethoxycarbonylpyrazol-1-yl) pyrazine, 292 3-(4-Ethoxycarbonylsemicarbazido)- 2(1*H*)-pyrazinethione, 66 2-(2-Ethoxycarbonylvinyl)-3,6 diethylpyrazine, 93 2-(2-Ethoxycarbonylvinyl)-3 methylthiopyrazine, 103 halogen addition, 121 2-Ethoxy-3,6-diphenylpyrazine, 160 2-Ethoxy-5,6-diphenylpyrazine, 199 5-Ethoxy-3-methoxy-5-methyl-6 phenyl-4,5-dihydro-2 pyrazinecarbonitrile, 15 oxidation, 15 2-Ethoxymethyl-4(3*H*)-pteridinone, 280 8-Ethoxy-2-phenylimidazo[1,2-*a*] pyrazine, 279 3-Ethoxy-2-pyrazinamine, cyclocondensation, 279 2-Ethoxypyrazine, thermolysis, 194 Ethyl 3-amino-6-benzyloxy-5-isobutyl-2 pyrazinecarboxylate 4-oxide, reduction, 209 Ethyl 6-amino-3-chloromethyl-5-cyano-2 pyrazinecarboxylate, 232 Ethyl 6-amino-3-chloromethyl-5-cyano-2 pyrazinecarboxylate 1-oxide, 37 deoxygenation, 232 Ethyl 3-amino-5,6-dimethyl-2 pyrazinecarboxylate, 26 2-[2-(Ethylamino)ethyl]pyrazine, 129 Ethyl 3-amino-6-hydroxyiminomethyl-2 pyrazinecarboxylate, to a carbonitrile oxide, 346 Ethyl 3-amino-6-hydroxyiminomethyl-2 pyrazinecarboxylate 4-oxide, to a carbonitrile oxide derivative, 347 Ethyl 3-amino-5-isobutyl-6-oxo-1,6 dihydro-2-pyrazinecarboxylate 4 oxide, 8, 37 Ethyl 3-amino-6-(5-phenylisoxazol-3-yl)- 2-pyrazinecarboxylate 4-oxide, 347 Ethyl 3-amino-6-phenyl-2 pyrazinecarboxylate, 231 aminolysis, 312 Ethyl 3-amino-6-phenyl-2 pyrazinecarboxylate 4-oxide, deoxygenation, 231 2-Ethylaminopyrazine, 150 Ethyl 3-amino-2-pyrazinecarboxylate, 310 Ethyl 5-amino-2-pyrazinecarboxylate, to the 5-oxo analogue, 192

Ethyl 1-benzyl-5-ethoxy-2 piperazinecarboxylate, aminolysis and cyclization, 220 Ethyl 1-benzyl-5-ethoxy-1,2,3,6 tetrahydro-2-pyrazinecarboxylate, 7 Ethyl 2-benzyl-4-methyl-3-oxo-1,2,3,4 tetrahydropyrazinecarboxylate, 4 Ethyl 7-benzyl-3-methyl-5,6,7,8 tetrahydroimidazo[1,2-*a*]pyrazine-6 carboxylate, 220 1-Ethyl-3,5-bis(methoxycarbonylmethyl)- 4-methylpiperazine, 11 cyclization, 317 Ethyl 2-bromo-6-methyl-5*H*-pyrrolo- [2,3-*b*]pyrazine-7-carboxylate, 199 Ethyl 2- $[\alpha$ -(*t*-butyldimethylsiloxy)benzyl]-3,6-diethoxy-5-isopropyl-2,5 dihydro-2-pyrazinecarboxylate, 92 Ethyl 5-chloro-2-pyrazinecarboxylate, 138 alcoholysis, 163 Ethyl 6-cyano-3- $(\alpha$ -cyano--*-*ethoxycarbonylmethyl)- 5-oxo-4,5-dihydro-2 pyrazinecarboxylate, 35 Ethyl 3,5-diamino-6-chloro-2 pyrazinecarboximidate, 309 aminolysis, 313 Ethyl 1,4-dibenzyl-3-oxo-2 piperazinecarboxylate, 20 Ethyl 3,5-dichloro-6-(3,4-dibenzyloxy-5 benzyloxymethyltetrahydrofuran-2 yl)-2-pyrazinecarboxylate, 310 Ethyl 3,6-diethoxy-5-isopropyl-2,5 dihydro-2-pyrazinecarboxylate, 203 alkylation, 92 2-Ethyl-3,6-diisopropylpyrazine, 97 7-Ethyl-5,6-dimethoxycarbonyl-3 phenyl-3a,4,7,7a-tetrahydro-1*H*imidazo[4,5-*b*]pyrazine-2(3*H*) thione, 134, 316 1-Ethyl-2,3-dimethoxycarbonylpyrazinium tetrafluoroborate, 131 cyclocondensation, 134, 316 Ethyl 2,4-dimethyl-1 piperazinecarboxylate, 130 dealkoxycarbonylation, 130 2-Ethyl-3,6-dimethylpyrazine, 98 2-Ethyl-3,6-dimethylpyrazine 1-oxide, 98 1-Ethyl-2,3-dimethylpyrazinium iodide, 131 1-Ethyl-5,6-diphenyl-2(1*H*)-pyrzzinone, 199 Ethyl 1,4-diphenyl-1,4,5,6-tetrahydro-2 pyrazinecarboxylate, 53 Ethyl 2-ethoxycarbonylmethyl-4-methyl-3-oxo-1-piperazinecarboxylate, 201

Ethyl 2-ethoxycarbonylmethyl-3-oxo-1 piperazinecarboxylate, alkylation, 201 3-Ethylidene-6-isobutyl-1-methyl-3,6 dihydro-2,5(1*H*,4*H*)-pyrazinedione, 13 3-Ethyliminomethyl-6-phenyl-2 pyrazinamine, 65 3-Ethyl-6-isobutyl-5-methyl-2(1*H*) pyrazinone, 5 1-Ethyl-5-isobutyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone, 50 Ethyl 5-isopropyl-3,6-dioxo-2 piperazinecarboxylate, alkylation, 203 Ethyl 9-methoxy-4-oxo-4*H*-pyrazino- [1,2-*a*]pyrimidine-3-carboxylate, 280 Ethyl 5-methoxy-2-pyrazinecarboxylate, 163 to the carboxamide, 312 3-Ethyl-9-methyl-3,9 diazabicyclo[3.3.1]nonan-7-one, 317 Ethyl 5-methyl-3-oxo-3,4-dihydro-2 pyrazinecarboxylate, 304 1-Ethyl-4-methylpiperazine, nitrosolysis, 263 Ethyl 4-methyl-2-piperazinecarboxylate, aminolysis, 312 Ethyl 5-methyl-2-pyrazinecarboxylate 4 oxide, 35 Ethyl 8-(2-methylthioethyl)-6-phenyl-1,2,4-triazolo[4,3-*a*]pyrazine-3 carboxylate, 290 2-[1-Ethyl-1-(methylthio)propyl]-5 isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, 90 Ethyl 5-oxo-4,5-dihydro-2 pyrazinecarboxylate, 192 halogenolysis, 138 to the carboxamide, 312 Ethyl 2-pyrazinecarboxylate, 304, 310 Claisen reaction, 315 with dimethyl sulfoxide, 255 hydrolysis, 300 5-Ethyl-2,3-pyrazinedicarbonitrile, 81 3-Ethyl-2(1*H*)-pyrazinone, alkylation, 199 Ethyl 1-pyrazolecarboxylate, 298 3-Ethyl-1-(pyridin-2-ylmethyl)-2(1*H*) pyrazinone, 199 3-Ethylsulfonyl-2-pyrazinecarbonitrile, 254 7-Ethyl-2,3,8,8a-tetrahydro-5*H*oxazolo[3,2-*a*]pyrazine-5,6,8(7*H*) trione, 223 Ethyl 5,5,6,6-tetramethyl-3-oxo-3,4,5,6 tetrahydro-2-pyrazinecarboxylate, 27 Ethyl thieno[2,3-*b*]pyrazine-6 carboxylate, 340

Ethyl 3-(thien-2-yl)-1-piperazinecarboxylate, reduction, 113 5-Ethylthio-1-methyl-3(2,4,5-trimethoxy-3-methylbrnzyl)-3,6-dihydro-2(1*H*) pyrazinone, desulfurization, 254 2-Ethylthio-3-propionylpyrazine, 169 3-Ethylthio-2-pyrazinecarbonitrile, oxidation, 254 2-Ethylthiopyrazine 1-oxide, 168 2-Ethynyl-3,6-dimethylpyrazine, 104 to the 2-acetyl analogue, 134 2-Ethynyl-5-isopropyl-3,6 dimethoxy-2-methyl-2,5 dihydropyrazine, 103 Etioluciferamine, 242 Flavicol, 242 Flunarizine, 242 2-Fluoro-3-(hydroxydiphenylmethyl) pyrazine, silylation, 215 2-(1-Fluoro-2-methylethyl)-5-isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, 180 1-(*p*-Fluorophenyl)-4 phenethylpiperazine, 108 1-(*p*-Fluorophenyl)piperazine, 4 alkylation, 108 2-Fluoro-5-phenylpyrazine, 148 2-Fluoropyrazine, 149 formylation, 337 3-Fluoro-2-pyrazinecarbaldehyde, 337 2-Fluoropyrazine 1-oxide, 149 alcoholysis, 162 alkanethiolysis, 168 azidolysis, 171 3-Fluoro-2-(trifluoromethyl)imidazo- [1,2-*a*]pyrazine, 278 Flutamide, 242 2-Formamido-5-phenylpyrazine, 98 2-Formamidopyrazine, 273 2-Formamido-5-(thien-2-yl)pyrazine, 98 2-(*N*-Formylhydrazino)pyrazine 4-oxide, 290 cyclization, 290 4-Formyl-6-hydroxy-3,4-dihydro-2(1*H*) pyrazinyne, 13 deacylation, 13 2-Formylmethylpyrazine oxime, 287 to a cyanoiminopyrazine, 297 1-Formylpiperazine, *see* 1-Piperazinecarbaldehyde 2-(2-Formylpyrrol-1-yl)pyrazine, 338 Furans, to pyrazines, 52 2-(Furan-2-yl)-3,6-dimethylpyrazine, 94

5-(Furan-2-yl)-2(1*H*)-pyrazinone, 25 halogenolysis, 134 Furo[2,3-*b*]pyrazines, to pyrazines, 60 Glance index, pyrazines from aliphatic or carbocyclic synthons, 42 pyrazines from heterocyclic synthons, 71 Glipizide, 242 analogues, 321 antihyperglycemic activity, 321 3-Guanidinocarbonyl-5-methyl-6-phenyl-2-pyrazinamine, 314 3-Guanidinocarbonyl-5-phenoxy-2 pyrazinamine, 314 Guanidinocarbonylpyrazines, from pyrazinecarboxylic esters, 314 Guanidinoformylpyrazines, *see* Guanidinocarbonylpyrazines Halogenopyrazines (extranuclear), 120, 137, 178 alcoholysis, 184 alkanelysis, 182 alkanethiolysis, 239 from alkylpyrazines, 120 aminolysis, 182 from ω -aminopyrazines, 180 azidolysis, 186 cyanolysis, 186 cyclization, 188 dehydrohalogenation, 103 hydrogenolysis, 181 hydrolysis, 183 from ω -hydroxypyrazines, 178 oxidation, 190 from pyrazine aldehydes or ketones, 181, 340 from pyrazine *N*-oxides, 145 reactivity, 137, 181 to thiocyanato analogues, 187 thiolysis, 185 transhalogenation, 181 Halogenopyrazines (nuclear), 137 alcoholysis, 159 alkanelysis, 93 alkanethiolysis, 166 aminolysis, 150 azidolysis, 170 cyanolysis, 173 cyclocondensations, 176 displacements (minor), 174 fission, 176 by halogenation, 141 hydrogenolysis, 98, 171

hydrolysis, 158 from pyrazinamines, 146 from pyrazine *N*-oxides, 145 from pyrazinones, 137 reactions, 149 reactivity, 137 rearrangement, 176 to sulfonylpyrazines, 255 thiolysis, 164 transhalogenation, 148 from trialkylsiloxypyrazines, 149 2-(Hept-1-enyl)-3-methylpyrazine, 103 Hexadecylthiopyrazine, 166 2-(Hexafluoroisopropylideneamino)pyrazine, 278 cyclization, 278 1,2,3,5,6,7-Hexahydro-*s*-indacene-1,1,5,5 tetracarbonitrile, 335 2,2,3,3,5,6-Hexamethyl-2,3 dihydropyrazine 1,4-dioxide, ring fission, 238 2,2,3,5,5,6-Hexamethyl-2,5 dihydropyrazine, 29, 60 X-ray analysis, 29 2,2',6,6,6',6'-Hexamethyl- $1', 2, 2', 5, 5', 6, 6'$ -octahydrobipyrazine-3,3(4*H*,4*H*)-dione, 206 1,2,3,4,5,6-Hexamethylpyrazine radical cation, 134 2,4,4,8,10,10-Hexamethyl-3,4,9,10 tetrahydropyrazino[1,2-*a*,1',2'-*d*]pyrazine-1,7(2*H*,8*H*)-dione, 188 X-ray analysis, 188 2-Hexanoylmethyl-3-methylpyrazine, 125 2,2,3,3,5,6-Hexaphenyl-2,3 dihydropyrazine, 38 *N*-(Hydrazinocarbonylmethyl)-2 pyrazinecarboxamide, to the azido analogue, 328 2-Hydrazino-3,6-dimethylpyrazine, alkylidenation, 291 2-Hydrazino-6-methyl-3-phenylpyrazine 4 oxide, oxidative dehydrazination, 294 2-Hydrazino-3-(2-methylthioethyl)-5 phenylpyrazine, 152 acylation, 290 3-Hydrazino-2-pyrazinamine, 154 2-Hydrazinopyrazine, 150 alkylation, 292 alkylidenation, 292, 344 2-Hydrazinopyrazine 4-oxide, 154 acylation, 290 alkylidenation, 291

Hydrazinopyrazines, 290. *See also* Pyrazinamines acylation and cyclization, 290 alkylation, 292 alkylidenation and cyclization, 291 to azidopyrazines, 294 dehydrazination, 294 preparative routes, 290 to semicarbazidopyrazines etc., 293 $3-(\alpha$ -Hydrazonobenzyl)amino-2pyrazinecarboxamide oxime, 65 3-(Hydrazonomethyl)amino-2 pyrazinecarboxamide oxime, 65 2-Hydrazonomethylpyrazine, 339 Hydroechinulin, 242 3-(*N*-Hydroxyamidino)-2(1*H*)-pyrazinone, cyclization, 63 Hydroxyaspergillic acid, 242 $2-(\alpha$ -Hydroxybenzyl)-5-isopropyl-3,6dimethoxy-2,5-dihydropyrazine, 91 $2-(\alpha$ -Hydroxybenzyl)pyrazine, 209 hydrogenolysis, 179 2-(1-Hydroxybut-2-enyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 91 ω -alkylation, 123 oxidation, 118 2-(1-Hydroxybutyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 91 alkylation, 214 6-(1-Hydroxybutyl)-3-isopropyl-3,4,5,6 tetrahydro-2(1*H*)-pyrazinone, 7 1-(3-Hydroxybutyryl)piperazine, 275 2-(1-Hydroxycyclopropyl)pyrazine, 345 6-Hydroxy-3,4-dihydro-2(1*H*) pyrazinone, 14 1-Hydroxy-5,6-diisopropyl-2(1*H*) pyrazinone, acylation, 234 2-(2-Hydroxy-1,1-dimethoxyethyl) pyrazine, 210 2-(1-Hydroxy-2,2-dimethylcyclopropyl) pyrazine, 345 6-Hydroxy-3,5-dimethyl-3,4-dihydro-2(1*H*)-pyrazinone, 9 $2-(\beta-Hydroxy- α , α -dimethylphenethyl)$ pyrazine, 124 oxidation, 213 1-Hydroxy-5,6-dimethyl-2(1*H*) pyrazinone, 226 alkylation, 234 5-Hydroxy-3,6-dimethyl-2(1*H*) pyrazinone, 193, 194 5-Hydroxy-3,6-diphenyl-2(1*H*) pyrazinone, 27, 193 acylation, 204

- 6-Hydroxy-3,5-diphenyl-2(1*H*) pyrazinone, with acetylenes, 207
- 2-(1-Hydroxy-2,3-epoxybutyl)-5 isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, 118
- 3-(2-Hydroxyethyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, halogenolysis, 178
- 3-(2-Hydroxyethyl)-1,4-dimethyl-3,6 dihydro-2,5(1*H*,4*H*) pyrazinedione, 83 trialkylsilylation, 215
- 3-(1-Hydroxyethyl)imidazo[1,2-*a*] pyrazine, 278 oxidation, 278
- 2-(1-Hydroxyethyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 91
- 6-(2-Hydroxyethyl)-*N*-methyl-3 methylamino-2 pyrazinecarboxamide, 66
- 1-(2-Hydroxyethyl)-4-methylpiperazine, 12
- 4-(2-Hydroxyethyl)-*N*-phenyl-1-piperazinecarboxamidrazone, 336
- 1-(2-Hydroxyethyl)piperazine, 109
- 4-(2-Hydroxyethyl)-1 piperazinecarbonitrile, to a carboxamidrazone, 336
- 2-(1-Hydroxyethyl)pyrazine, 78
- 2-(2-Hydroxyethyl)pyrazine, alkylation, 214
- 2-(2-Hydroxyguanidino)pyrazine, 335
- 2-(2-Hydroxyheptyl)-3-methylpyrazine, dehydration, 103
- $2-(\alpha$ -Hydroxyiminobenzyl)pyrazine, 344
- 1-Hydroxy-3-isobutyl-6-isopropyl-2(1*H*) pyrazinone, 158
- $2-(\beta-Hydroxy-p-methoxyphenethyl)$ pyrazine, 123 dehydration, 123
- 6-Hydroxy-4-methyl-3,4-dihydro-2(1*H*) pyrazinone, deoxygenation, 206
- 3-Hydroxymethyl-1,4-dimethyl-3 methylthio-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 208
- 2-(1-Hydroxy-2-methylethyl)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine, 90 halogenolysis, 180
- 2-(1-Hydroxy-1-methylethyl)-5-isopropyl-3,6-dimethoxy-2-methyl-2,5 dihydropyrazine, 90
- 2-Hydroxymethyl-6-isobutyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, reductive deoxygenation, 207
- 6-Hydroxymethyl-3-isobutyl-6-methoxy-2(1*H*)-pyrazinone, 211
- 2-Hydroxymethyl-5-isobutylpiperazine, 207 2-Hydroxymethyl-3-methoxy-5 methylpyrazine, 210 6-Hydroxy-1-methyl-4- (methylcarbamoyl)methyl-3,4 dihydro-2(1*H*)-pyrazinone, 14 2-Hydroxymethyl-5-methylpyrazine, 118, 184 oxidation, 213 2-Hydroxymethyl-6-methylpyrazine, 236 5-Hydroxymethyl-6-methyl-2,3 pyrazinedicarbonitrile, 81 oxidation, 212 2-Hydroxymethyl-5-methylpyrazine 4 oxide, 209 alkylation, 213 1-Hydroxy-6-methyl-3-phenyl-2(1*H*) pyrazinone, 233 1-Hydroxy-6-methyl-3-phenyl-2(1*H*) pyrazinone 4-oxide, deoxygenation, 233 2-(1-Hydroxy-2-methylpropyl)-6-iodo-3 methoxypyrazine, dehydration, 102 2-(1-Hydroxy-2-methylpropyl)-5 isobutylpyrazine 1-oxide, acylation, 215 2-(1-Hydroxy-2-methylpropyl)-3 methoxypyrazine, 209, 210 2-Hydroxymethylpyrazine, with *N*hydroxyphthalimide, 216 6-Hydroxymethyl-2(1*H*)-pyrazinone 4 oxide, oxidation, 213 2-(6-Hydroxymethylpyridin-2-yl)pyrazine, halogenolysis, 180 6-Hydroxymethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrazinone, 3 2-Hydroxymethyl-3,5,6 trimethylpyrazine, 118 1-(β-Hydroxy-*p*-nitrophenethyl)-4methylpiperazine, alkylation, 214 5-Hydroxy-6-phenyl-2,3(1*H*,4*H*) pyrazinedione, 28 2-(3-Hydroxypropyl)-5-isobutyl-6 methoxypyrazine, 211 acylaminolysis, 216 2-(2-Hydroxypropylsulfonyl)pyrazine, 256 Hydroxypyrazines (extranuclear), 208 from acetoxy analogs, 210 acylation, 215 from alkoxypyrazines, 211 alkylation, 213 aminolysis (indirect), 216 cyclization, 217 dehydration, 102 from halogeno analogues, 183

to halogeno analogues, 178 oxidation, 212, 213 by oxidative hydroxylation, 210 from pyrazinecarbaldehydes, 208 from pyrazinecarboxylic acids, 209 from pyrazine ketones, 208 silylation, 215 1-Hydroxy-2(1*H*)-pyrazinethione, 165 1-Hydroxy-2(1*H*)-pyrazinone, 23, 226 5-Hydroxy-2(1*H*)-pyrazinone, 196 structure, 191 2-(*p*-Hydroxystyryl)pyrazine, 212 1-Hydroxy-5,6,6-trimethyl-3,6-dihydro- $2(1H)$ -pyrazinone, 5, 11 Imidazoles, to pyrazines, 53 1*H*-Imidazo[3,4-*b*]pyrazin-3-amine, 334 Imidazo[1,2-*a*]pyrazine, 278 Imidazo[1,2-*a*]pyrazines, to pyrazines, 61 4-Imino-1,3-dimethyl-3,4-dihydro-2(1*H*) pteridinone, 283 3-Imino-4,6-dimethyl-5-phenyl-3,4 dihydro-2-pyrazinecarbonitrile, 14 3-Imino-4-methyl-3,4-dihydro-2 pyrazinamine, 221, 281 hydrolysis, 221, 281 Impacarzine, 242 Indoles, to pyrazines, 61 1-*o*-Iodobenzoyl-4-methylpiperazine, 275 5-Iodo-3,6-diisobutyl-2(1*H*)-pyrazinone, alkanelysis, 99 2-(2-Iodoethyl)-5-isopropyl-3,6 dimethoxy-2-methyl-2,5 dihydropyrazine, 181 2-(2-Iodoethyl)-5-isopropyl-3,6 dimethoxy-2,5-dihydropyrazine, 179 2-Iodo-5-methoxy-6-(2-methylprop-1 enyl)pyrazine, 102 2-Iodo-6-methoxypyrazine, 160 4-*p*-Iodophenylpiperazine, 121 with methylthioformamidine, 284 4-*p*-Iodophenyl-1 piperazinecarboxamidine, 284 2-Iodo-5-phenylpyrazine, 149 2-(*o*-Iodophenylthio)pyrazine, 180 2-Iodo-3-phenylthiopyrazine, 251 alkanelysis, 96 2-Iodopyrazine, 79 alkylthiation, 251 carboxylation, 299 formylation, 337 3-Iodo-2-pyrazinecarbaldehyde, 337 3-Iodo-2-pyrazinecarboxylic acid, 299 1-Isobutoxycarbonylmethyl-6-isopropyl-

3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 69 2-Isobutoxycarbonyloxy-3,6 diisopropylpyrazine, 204 2-Isobutoxycarbonylthio-3,6 diisopropylpyrazine, 249 3-Isobutyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 6, 36 2-Isobutyl-3-methoxy-5-[3- (nitroguanidino)propyl]pyrazine, 284 2-Isobutyl-3-methoxy-5- (phthalimidopropyl)pyrazine, 216 deacylation, 216 2-Isobutyl-3-methoxypyrazine, hydroxylation, 210 2-Isobutyl-3-methoxy-5-[3- (tetrahydropyran-2-yloxy) propyl]pyrazine, to the hydroxypropyl analogue, 211 3-Isobutyl-6-methyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, halogenolysis and halogenation, 139 2-Isobutyl-3-methylpyrazine, 24 2-Isobutyl-5-methylpyrazine, 231 2-Isobutyl-5-methylpyrazine 4-oxide, deoxygenation, 231 3-Isobutyl-5-phenyl-2(1*H*)-pyrazinone, 13 3-Isobutyl-2(1*H*)-pyrazinone 4-oxide, 158 2-Isobutyryl-3-methoxypyrazine, reduction, 209 Isoechinulin (A-C), 242 6-Isopropenyl-3-isopropyl-2(1*H*) pyrazinone, 194 Isopropyl 4-benzyl-2,5-dioxo-6-(2,4,5 trimethoxy-3-methylbenzyl)-3- (2,4,5-trimethoxy-3-methylbenzylidene)-1-piperazinecarboxylate, reduction, 222 Isopropyl 4-benzyl-2-hydroxy-5-oxo-6- (2,4,5-trimethoxy-3-methylbenzyl)-3- (2,4,5-trimethoxy-3 methylbenzylidene)-1-piperazinecarboxylate, 222 3-Isopropyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 6, 7 alkylation, 202 2-Isopropyl-3,6-dimethoxy-2,5 dihydropyrazine, 202 alkylation, 83, 86, 88, 89, 90, 91 chlorination, 91 deuteration, 219 8-Isopropyl-7,10-dimethoxy-2,3 dimethylene-6,9-diazaspiro[4.5]deca-6,9-diene, 127

- 2-Isopropyl-3,6-dimethoxy-5-(2 methoxycarbonyl-1-methylethyl)-2,5 dihydropyrazine, 88
- 2-Isopropyl-3,6-dimethoxy-5-(2 methoxycarbonyl-1-phenylethyl)-2,5 dihydropyrazine, 83
- 2-Isopropyl-3,7-dimethoxy-6-methyl-2*H*diazepine, 189
- 2-Isopropyl-3,6-dimethoxy-5-methyl-2,5 dihydropyrazine, alkylation, 252
- 5-Isopropyl-3,6-dimethoxy-2-methyl-2,5 dihydro-2-pyrazinecarbaldehyde, to the dibromovinyl analogue, 340
- 2-Isopropyl-3,6-dimethoxy-5 methylenecyclopropylmethyl-2,5 dihydropyrazine, 89
- 3-Isopropyl-2,5-dimethoxy-10-methylene-1,4-diazaspiro[5.5]undeca-1,4,8 triene, 127
- 2-Isopropyl-3,6-dimethoxy-5-(1-methyl-1,2 epoxyethyl)-2,5-dihydropyrazine, 190
- 2-Isopropyl-3,6-dimethoxy-5-(1-methyl-2 nitroethyl)-2,5-dihydropyrazine, 88
- 2-Isopropyl-3,6-dimethoxy-5-[4- (oxocyclohex-1-enyl)methyl]-2,5 dihydropyrazine, 88
- 2-Isopropyl-3,6-dimethoxy-5-phenyl-2,5 dihydropyrazine, 88
- 2-Isopropyl-3,6-dimethoxy-5-(2 tosyloxyethyl)-2,5-dihydropyrazine, halogenolysis, 179
- 2-Isopropyl-3,6-dimethoxy-5-[4- (triphenylphosphoranylideneamino) but-2-ynyl]-2,5-dihydropyrazine, 295 hydrolysis, 166, 295
- 6-Isopropyl-5,8-dimethoxy-1-vinyl-4,7 diazaspiro[2.5]octa-4,7-diene, 180
- 6-Isopropyl-3,5-dimethyl-2(1*H*) pyrazinone, 55
- 2-Isopropylidene-3,7-dimethoxy-6-methyl-5,6-dihydro-2*H*-diazepine, 189
- 3-Isopropyl-5-methoxy-3,6-dihydro-2(1*H*)-pyrazinone, 202
- 6-Isopropyl-5-methoxy-3,6-dihydro-2(1*H*)-pyrazinone, 202
- 2-Isopropyl-3-methoxy-5-methylpyrazine, ω -alkylation, 123
- 2-Isopropyl-3-methoxy-5-[3-(pyran-2 yloxy)propyl]pyrazine, 123
- 1-Isopropyl-4-methylpiperazine, nitrosolysis, 263
- 2-Isopropylpyrazine, ω -alkylation, 124
- 2-(Isothiouroniomethyl)pyrazine salt, 185 hydrolysis, 185

Isoxazoles, to pyrazines, 55 Isoxazolo[2,3-*a*]pyrazines, to pyrazines, 62 Isoxazolo[4,5-*b*]pyrazines, to pyrazines, 63 Lifarizine, 242 Ligustrazine, 242 2-Mercaptomethyl-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 246 2-Mercaptomethyl-1,4 dimethylpiperazine, 59 2-Mercaptomethylpyrazine, 185 oxidation, 248 toxicity, 245 2-Mercaptomethyl-3,5,6 trimethylpyrazine, 185 alkylation, 249 Mercaptopyrazines (extranuclear), *see also* Pyrazinethiones acylation, 249 alkylation, 248 cyclization, 250 desulfurization, 248 from disulfides, 246 from halogeno analogues, 185 hydrolysis, 248 oxidation, 248 5-Mercapto-2(1*H*)-pyrazinone, 246 6-*m*-Methoxybenzyl-2(1*H*) pyrazinone, 222 2-*p*-Methoxybenzylthio-3 phenylpyrazine, 238 2-*p*-Methoxybenzylthio-5 phenylpyrazine, 238 2-*p*-Methoxybenzylthio-6 phenylpyrazine, 238 3-(*p*-Methoxybenzylthio)-2-pyrazinamine, dealkylation, 246 2-(2-Methoxycarbonylacetyl)pyrazine, 315 tautomerism, 341 $1-(\alpha$ -Methoxycarbonylbenzyl)-3-methyl-4*o*-nitrobenzenesulfonyl-3,4,5,6 terrahydro-2(1*H*)-pyrazinone, 2 3-Methoxycarbonylmethylamino-1*H*pyrazino[2,3-*e*]-1,3,4-thiadiazine, 294 *N*-Methoxycarbonylmethyl-2 pyrazinecarboxamide, 305 aminolysis, 312 3-Methoxycarbonyl-1-methylpyrazinium iodide, 131 3-Methoxycarbonyl-2-pyrazinecarboxylic acid, 305 3-Methoxy-5,5-dimethyl-6-phenyl-4,5 dihydro-2-pyrazinecarbonitrile, 14

3-Methoxy-5,6-dimethyl-2 pyrazinamine, 217 2-Methoxy-3,6-dimethylpyrazine 4-oxide, with acetic anhydride, 236 2-Methoxy-3,5-diphenylpyrazine, 160 2-Methoxy-3-(*p*-methoxybenzylthio) pyrazine, S-dealkylation, 246 8-Methoxy-5-methyl-4,8-diphenyl-2,3 dioxa-5,7-diazabicyclo[2.2.2]octan-6-one, 224 catabolism, 224 3-Methoxy-2-methylimidazo[1,2 *a*]pyrazine, 278 2-Methoxymethyl-5-methylpyrazine, 184 N-oxidation, 230 2-Methoxymethyl-5-methylpyrazine 1,4 dioxide, 230 2-Methoxymethyl-5-methylpyrazine 1-oxide, 230 2-Methoxymethyl-5-methylpyrazine 4-oxide, 213, 230 3-(3-Methoxy-5-methyl-1-oxidopyrazin-2 ylmethyl)indole, 182 2-Methoxy-3-methyl-5-phenylpyrazine, hydrolysis, 193 3-Methoxy-5-methyl-6-phenyl-2 pyrazinecarbonitrile, 15 2-Methoxy-6-methylpyrazine 4-oxide, 229 X-ray analysis, 229 3-Methoxy-1-methylpyrazinium iodide, 219 2-(2-Methoxy-6-methylthiophenyl)-1*H*imidazo[4,5-*b*]pyrazine, 274 2-*p*-Methoxyphenylazopyrazine, 262 3-*p*-Methoxyphenylazo-2,6 pyrazinediamine, 298 8-Methoxy-2-phenylimidazo[1,2-*a*] pyrazin-3-ol, 279 1-*o*-Methoxyphenyl-4 methylpiperazine, 109 2-Methoxy-3-phenyl-4(3*H*)-pteridinone, 286 5-*p*-Methoxyphenyl-2-pyrazinamine, acylation, 274 3-Methoxy-6-phenyl-2 pyrazinecarbonitrile, 15 2-Methoxy-6-phenylpyrazine 4-oxide, 162 3-Methoxy-1-phenyl-2(1*H*)-pyrazinone, 172 halogenolysis, 141 3-Methoxy-2-pyrazinamine, 268 alkylation, 280 cyclocondensation, 279 2-Methoxypyrazine, 160 alkanelysis, 100 aromaticity, 225 C-azidation, 294

formylation, 337 quaternization, 219 3-Methoxy-2-pyrazinecarbaldehyde, 337 3-Methoxy-2-pyrazinecarbaldehyde 2,4 dinitrophenylhydrazone, X-ray analysis, 337 3-Methoxy-2-pyrazinecarbonitrile, 218 5-Methoxy-2-pyrazinecarboxamide, 164, 312 2-Methoxypyrazine 1-oxide, 162 2-Methoxypyrazine 4-oxide, 229 with acetic anhydride, 235 aromaticity, 225 X-ray analysis, 229 3-Methoxy-2(1*H*)-pyrazinethione, 246 9-Methoxypyrazino[2,3-*b*]quinolin-9(5*H*) one, 285 *N*-Methoxyseptorine, 242 *N*-Methoxyseptorinol, 242 2-(*p*-Methoxystyryl)-3-methylpyrazine, 125 ω -alkylidenation, 125 2-(*p*-Methoxystyryl)pyrazine, 123 to the hydroxystyryl analogue, 212 2-Methoxy-3-(triphenylphosphoranylideneamino)pyrazine, 295 hydrolysis, 268 Methyl 3-amino-6-benzyloxy-5-isobutyl-2 pyrazinecarboxylate 4-oxide, 200 to the 3-halogeno analogue, 147 Methyl 3-amino-6-bromo-5-chloro-2 pyrazinecarboxylate, aminolysis, 157 Methyl 3-amino-6-bromo-5-(2 dimethylaminoethylamino)-2pyrazinecarboxylate, 157 Methyl 3-amino-6-chloro-5-ethoxalyl-2 pyrazinecarboxylate oxime, reduction, 268 Methyl 3-amino-6-chloro-5-(4 methylpiperazin-1-yl)-2 pyrazinecarboxylate, to the 3 halogeno analogue, 147 Methyl 6-amino-5-cyano-3 diethoxymethyl-2 pyrazinecarboxylate, to the 3-formyl analogue, 336 Methyl 6-amino-5-cyano-3-(*p*ethoxycarbonylphenyliminomethyl)- 2-pyrazinecarboxylate 1 oxide, 338 Methyl 6-amino-5-cyano-3-formyl-2 pyrazinecarboxylate, 336 Methyl 6-amino-5-cyano-3-phenyl-2 pyrazinecarboxylate 1-oxide, to a Schiff base, 338 2-Methylamino-5,6-diphenylpyrazine, 153

Methyl 3-amino-5-isobutyl-6-oxo-1,6 dihydro-2-pyrazinecarboxylate 4-oxide, 8 alkylation, 200 Methyl 3-amino-6-methyl-5-phenyl-2 pyrazinecarboxylate, with guanidine, 314 Methyl 2-amino-6-phenoxy-2 pyrazinecarboxylate, with guanidine, 314 2-Methylamino-5-phenylpyrazine, 266 Methyl 3-amino-5-phenyl-2 pyrazinecarboxylate, 8 Methyl 3-amino-6-phenyl-2 pyrazinecarboxylate, hydrolysis, 300 3-Methylamino-2-pyrazinamine, 154, 282 alkylation, 282 3-Methylamino-2-pyrazinecarbonitrile, 256, 270 with methyl isocyanate, 283 Methyl 3-amino-2-pyrazinecarboxylate, 272, 304, 310 aminolysis, 312 to the 3-isothiocyanato analogue, 283 silylation, 285 to the triphenylphosphoranylideneamino analogue, 286 Methyl 3-azidoformyl-2 pyrazinecarboxylate, 272 Curtius reaction, 272 Methyl 3-azido-2-pyrazinecarboxylate, 171 Methyl 6-benzyloxy-3-chloro-5-isobutyl-2-pyrazinecarboxylate 4-oxide, 147 alcoholysis, 164 Methyl 6-benzyloxy-5-isobutyl-3-methoxy-2-pyrazinecarboxylate 4-oxide, 164 reduction, 210 Methyl 1,4-bis(trifluoroacetyl)-2 piperazinecarboxylate, 17 Methyl 3-bromo-6-chloro-5-(4 methylpiperazin-1-yl)-2 pyrazinecarboxylate, 147 hydrogenolysis, 172 2-(3-Methylbutyryl)pyrazine, isomerization, 345 Methyl 3-carbamoyl-2 pyrazinecarboxylate, 313, 319 Methyl 3-chloroformyl-2 pyrazinecarboxylate, azidolysis, 272 to the 3-carbamoyl analogue, 319 to a ketone, 320 Methyl 6-chloro-5-(4-methylpiperazin-1-yl)-2-pyrazinecarboxylate, 172 hydrolysis, 300

Methyl 5-chloro-6-methyl-2 pyrazinecarboxylate, 141 Methyl 6-chloro-3-nitro-2 pyrazinecarboxylate, 260 Methyl 3-chloro-2-pyrazinecarboxylate, 141 azidolysis, 171 Methyl 5-chloro-2-pyrazinecarboxylate, 141 Methyl 6-chloro-2-pyrazinecarboxylate 4-oxide, thiolysis, 165 Methyl 3-cyano-5,6-diphenylcar-2 pyrazineboximidate, 309 Methyl 3,5-diamino-6-iodo-2 pyrazinecarboxylate, alkanelysis, 99 Methyl 3,5-diamino-6-phenylethynyl-2 pyrazinecarboxylate, 99 Methyl 3,6-dichloro-5-methyl-2 pyrazinecarboxylate, 304 Methyl 3,6-diethoxy-5-isopropyl-2 methyl-2,5-dihydro-2 pyrazinecarboxylate, 302 3-Methyl-3,6-dihydro-2,5(1*H*,4*H*) pyrazinedione, 7 Methyl 3-(2,5-dimethoxybenzoyl)-2 pyrazinecarboxylate, 320 Methyl 1,4-dinitroso-2 piperazinecarboxylate, 262 Methyl 2,5-dioxo-1 piperazinecarbodithioate, 205 5-Methyl-4,8-diphenyl-2,3-dioxa-5,7 diazabicyclo[2.2.2]octa-7-en-6-one, 224 catabolism, 224 methanol addition, 224 1-Methyl-5,6-diphenyl-2(1*H*) pyrazinethione, 223 1-Methyl-5,6-diphenyl-2(1*H*)-pyrazinone, endoperoxidation, 224 photodimerization, 223 thiation, 223 1-Methyl-5,6-diphenyl-2(1*H*)-pyrazinone cyclodimer, 223 X-ray analysis, 223 Methyl 1,4-diphenyl-1,4,5,6-tetrahydro-2 pyrazinecarboxylate, 53 Methyl 3-isothiocyanato-2 pyrazinecarboxylate, 283 cyclocondensation, 316 to a thioureido derivative, 283 Methyl 5-methoxy-2,4-dimethyl-1 imidazolecarboxylate, 220 5-Methyl-3-methylamino-6 phenyliminomethyl-2 pyrazinecarbonitrile, 270 reduction, 268

1-Methyl-3-methylamino-2(1*H*) pyrazinimine, 282 hydrolysis, 221, 282 1-Methyl-3-methylamino-2(1*H*) pyrazinone, 221, 282 *N*-Methyl-3-methylamino-6-thioxo-1,6 dihydro-2-pyrazinecarboxamide, 247 Methyl 8-methyl-4-methylene-2-oxa-3,8 diazabicyclo[3.2.1]octane-6 carboxylate, 225 Methyl 8-methyl-4-methylene-2-oxa-3,8 diazabicyclo[3.2.1]octane-7 carboxylate, 225 1-Methyl-*N*-*p*-nitrophenyl-4 piperazinecarbothioamide, 284 Methyl 5-methyl-2-pyrazinecarboxylate 4 oxide, 305 reduction, 209 1-Methyl-4-(4-methylthio-1,6 diphenylsilolan-3-yl)piperazine, 113 2-Methyl-3-methylthiopyrazine, 167 oxidation, 117 1-Methyl-4-neopentylpiperazine, 112 1-Methyl-4-(*p*-nitrobenzoyl)piperazine, reduction, 261 Methyl 3-nitro-2-pyrazinecarboxylate, 260 1-Methyl-4-nitrosopiperazine, reduction, 264 3-(5-Methyl-1,2,4-oxadiazol-3-yl)-2 pyrazinamine, 327 isomerization, 327 4-Methyl-3-oxo-3,4-dihydro-2 pyrazinecarbonitrile, 201 Methyl 3-oxo-3,4-dihydro-2 pyrazinecarboxylate, halogenolysis, 141 Methyl 5-oxo-4,5-dihydro-2 pyrazinecarboxylate, halogenolysis, 141 5-Methyl-3-oxo-3,4-dihydro-2 pyrazinecarboxylic acid, esterification, 304 4-Methyl-3-oxo-2-phenylhydrazono-1,2,3,4-tetrahydro-1 pyrazinecarbaldehyde, 53 4-(4-Methyl-6-oxo-1,4,5,6 tetrahydropyridazin-3-yl)-2- (pyrazin-2-yl)benzimidazole, 340 Methyl 5-pentyl-2-pyrazinecarboxylate, 101 2-Methyl-3-pentyl-1,4,5,6 tetrahydropyrazine, 19 Methyl 5-(pent-1-ynyl)-2 pyrazinecarboxylate, reduction, 101 3-Methyl-4-(1-phenylethyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, 12

5-Methyl-6-phenyliminomethyl-2,3 pyrazinedicarbonitrile, 338 aminolysis, 270 1-Methyl-4-phenylpiperazine, 110 3-Methyl-6-phenyl-4(3*H*)-pteridinone, 327 2-Methyl-3-phenylpyrazine, 302 2-Methyl-5-phenylpyrazine, 23 2-Methyl-6-phenylpyrazine, 23 5-Methyl-6-phenyl-2,3 pyrazinediamine, 68 2-Methyl-5-phenylpyrazine 4-oxide, 294 3-Methyl-5-phenyl-2(1*H*)-pyrazinone, 193 halogenolysis, 138 5-Methyl-6-phenyl-2(1*H*)-pyrazinone, 2 6-Methyl-3-phenyl-2(1*H*)-pyrazinone, reduction, 207 6-Methyl-5-phenyl-2(1*H*)-pyrazinone, 50 Methyl 3-[*N*-phenyl(thioureido)]-2 pyrazinecarboxylate, 283 4-Methyl-1-piperazinamine, 264 oxidation (failure), 263 1-Methylpiperazine, 109, 206 4-acylation, 275, 277 alkoxycarbonylation, 310 4-alkylation, 109, 110, 111, 112, 310 chloroformylation, 317 with cyanate ion, 324 with an isothiocyanate, 284 silylation, 286 4-Methyl-1-piperazinecarbaldehyde, selenation and telluration, 339 4-Methyl-1-piperazinecarbonyl chloride, 317 4-Methyl-1-piperazinecarboselenaldehyde, 339 4-Methyl-1-piperazinecarbotelluraldehyde, 339 4-Methyl-1-piperazinecarboxamide, 322 4-Methyl-2-piperazinecarboxamide, 312 reduction, 271 Methyl 2-piperazinecarboxylate, nitrosation, 262 4-Methylpiperazin-1-yl magnesium bromide, to the 1-alkyl analogue, 113 2-(4-Methylpiperazin-1-yl)-4 phenylpyrido[2,3-*d*]pyridazine, 114 5-(4-Methylpiperazin-1-ylsulfonyl) isoquinoline, 275 2-(4-Methylpiperazin-1-yl)-5,6,7,8 tetrahydroquinoline, 110 1-Methyl-4-pivaloylpiperazine, reduction, 112 1-Methyl-3-propionyl-4-(pyridin-2-yl)- 1,4,5,6-tetrahydropyrazine, 343

5-Methyl-2-pyrazinamine, 172 6-Methyl-2-pyrazinamine, 302 5-Methyl-2-pyrazinamine 4-oxide, 271 halogenation, 143 2-Methylpyrazine, 20, 67, 104 ω -acylation, 126 ω -alkylation, 102 ω -alkylidenation, 123, 124, 125 ammoxidation, 128 conformation, 115 cyclocondensation, 127 ω -halogenation, 121 hydroxylation, 196 IR spectral study, 116 UV spectral study, 115 X-ray analysis, 114 *N*-Methyl-2-pyrazinecarbohydrazide, 313, 319 *N*-Methyl-2-pyrazinecarbohydrazide, 313, 319 5-Methyl-2-pyrazinecarboxamide 4 oxide, 227 hydrolysis, 301 Methyl 2-pyrazinecarboximidate, 333 aminolysis, 314 cyclocondensation, 333 Methyl 2-pyrazinecarboxylate, 304, 305, 310 aminolysis, 313, 319 Claisen reaction, 315 cyclocondensation, 316 hydrolysis, 300 quaternization, 131 reduction, 315 with urea, 314 Methyl 2-pyrazinecarboxylate 1-oxide, 227 Methyl 2-pyrazinecarboxylate 4-oxide, 227 5-Methyl-2-pyrazinecarboxylic acid, 118, 190, 213, 303 to a carboxamide, 306 6-Methyl-2-pyrazinecarboxylic acid, 303 5-Methyl-2-pyrazinecarboxylic acid 4-oxide, 301 esterification, 305 reduction, 209 5-Methyl-2,3-pyrazinedicarbonitrile, 3, 23 alkylation, 81 hydrolysis, 301 5-Methyl-2,3-pyrazinedicarboxylic acid, 301 decarboxylation, 303 5-Methyl-2,3(1*H*,4*H*)-pyrazinedione, 4 2-Methylpyrazine 1,4-dioxide, ω alkylation, 124

2-Methylpyrazine 1-oxide, ω -alkylidenation, 102 quaternization, 132 1-Methylpyrazinium halide, 77, 132 1-Methylpyrazinium iodide 4-oxide, 132 3-Methyl-2(1*H*)-pyrazinone, 196 alkylation, 198 6-Methyl-2(1*H*)-pyrazinone, 25 acylation, 204 alkylation, 199 6-Methylpyrazino[2,3-*d*]pyrazine-5,8(6*H*,7*H*)-dione, 307 3-[(5-Methylpyrazin-2-yl)methyl] indole, 104 6-Methyl-2-(pyrazin-2-yl)-4(3*H*) pyrimidinone, 316 2-(5-Methylpyrazol-3-yl)pyrazine, 315 1-Methyl-4-(pyridin-2-yl)piperazine, acylation, 343 2-(6-Methylpyridin-2-yl)pyrazine, 104 2-(6-Methylpyridin-2-ylsulfinyl)pyrazine, with a Grignard, 104 2-(6-Methylpyridin-2-ylsulfonyl) pyrazine, 254 1-Methyl-4-(pyridin-2-yl)-1,2,3,4 tetrahydropyrazine, 4 2-(6-Methylpyridin-2-ylthio)pyrazine, oxidation, 254 2-(1-Methylpyrroliden-2-yl)pyrazine, 345 Methyl 3-(pyrrol-1-yl)-2 pyrazinecarboxylate, aminolysis, 313 2-[2-(1-Methylpyrrol-2-yl)vinyl] pyrazine, 124 1-Methyl-4-[spiro(1,3-benzodioxole-2,1 cyclohexan)-4-yl]piperazine, 112 2-(Methylsulfinylacetyl)pyrazine, 255 2-(Methylsulfonylacetyl)pyrazine, 315 2-Methylsulfonylpyrazine, ω -alkylation, 256 pyrolysis to methylpyrazine, 104 2-Methyl-3-(tetrahydrofuran-2 yloxy)pyrazine, 198 3-Methyl-1-(tetrahydrofuran-2-yl)-2(1*H*) pyrazinone, 198 3-Methyl-3,4,5,6-tetrahydro-2(1*H*) pyrazinone, 4-alkylation, 106 2-Methyl-2,3,5,6-tetraphenyl-1,2 dihydropyrazine, 114 2-Methylthiazolo[4,5-*b*]pyrazine, 250 1-Methyl-3-(thien-2-yl)piperazine, 113 3-(2-Methylthioethyl)-5-phenyl-2(1*H*) pyrazinone, 25 halogenolysis, 140 3-Methylthio-2-pyrazinecarbaldehyde, 117 with a Wittig reagent, 103

Methyl 6-thioxo-1,6-dihydro-2 pyrazinecarboxylate 4-oxide, 165 2-Methyl-5-tosyloxymethylpyrazine, with a Grignard, 104 2-Methyl-6-tosyloxypyrazine, 204 to a dimethylbipyrazine, 104 1-Methyl-3-(2,4,5-trimethoxy-3 methylbenzyl)-3,6-dihydro-2,5(1*H*,4*H*)-pyrazinedione, thiation, 197 1-Methyl-3-(2,3,4,5-trimethoxy-3 methylbenzyl)-2-piperazinone, 254 1-Methyl-3-(2,4,5-trimethoxy-3 methylbenzyl)-5-thioxo-3,4,5,6-tetrahydro-2(1*H*) pyrazinone, 197 2-Methyl-5-(trimethylammoniomethyl) pyrazine chloride, 183 to the hydroxide, 288 2-Methyl-5-(trimethylammoniomethyl) pyrazine hydroxide, from the chloride, 288 to dimers, 288 Methyl 3-trimethylsilylamino-2 pyrazinecarboxylate, 285 cyclocondensation, 285 2-Methyl-5-trimethylsilylmethylpyrazine, 130 2-Methyl-5-triphenylphosphoniomethylpyrazine chloride, 103 to the 5-vinyl analogue, 103 Methyl 3-triphenylphosphoranylideneamino-2-pyrazinecarboxylate, 286 cyclocondensation, 286 Methyltris(4-methylpyrazin-2-yl)silane, 286 2-Methyl-5-vinylpyrazine, 103 ω -hydroxylation, 129 Mutaaspergillic acid, 242 2-[2-(Naphthalen-2-yl)vinyl]pyrazine, photoisomerization, 115 Neihumicin, 243 Neoaspergillic acid, 243 Neoechinulin (also A-D), 243 Neohydroxyaspergillic acid, 243 1-(*p*-Nitrophenyl)piperazine, 107 2-Nitropyrazine, 260 Nitropyrazines, 259 alkanelysis, 100 cyanolysis, 261 from dimethylsulfimidopyrazines, 260 by nitration, 259 from nitrosopyrazines, 262

by passenger reactions, 261

reactions, 261 reduction, 261 1-Nitrosopiperazine, 263 *N*-Nitrosopiperazines, 262 from *N*-alkylpiperazines, 263 from *N*-aminopiperazines (failure), 263 metabolism, 264 as nitrosation agents, 264 by nitrosation, 262, 263 reduction, 264 2-Nitrosopyrazine, cyclocondensation, 262 to phenylazopyrazines, 262 *C*-Nitrosopyrazines, 262 to arylazopyrazines, 262 from dimethylsulfimidopyrazines, 262 oxidation, 262 2-(4-Nitrothien-2-yl)pyrazine, 259 2-(5-Nitrothien-2-yl)pyrazine, 259 OPC-15161, 243 1-Oxa-4-azaspiro[4.5]decanes, to pyrazines, 70 1-Oxa-4,7-diazaspiro[2.5]octanes, to pyrazines, 70 3-(1,2,4-Oxadiazol-3-yl)-2(1*H*) pyrazinone, 63 Oxazoles, to pyrazines, 56 4-Oxidopyrazinium chlorochromate, 240 as an oxidizing agent, 240 2-(1-Oxidopyridin-3-yl)pyrazine, 98 Oxirenes, to pyrazines, 56 2-(2-Oxocyclopentyl)pyrazine, 95 3-Oxo-3,4-dihydro-2 pyrazinecarbonitrile, 63, 192 alkylation, 201 hydroxylamine addition, 323 5-Oxo-4,5-dihydro-2 pyrazinecarbonitrile, 195 3-Oxo-3,4-dihydro-2 pyrazinecarboxamide, 22 halogenolysis, 139 5-Oxo-4,5-dihydro-2 pyrazinecarboxamide, 196, 312 catabolism, 196 dehydration, 325 3-Oxo-3,4-dihydro-2 pyrazinecarboxamide oxime, 323 acylation, 326 3-Oxo-3,4-dihydro-2-pyrazinecarboxylic acid, 159, 195 5-Oxo-4,5-dihydro-2-pyrazinecarboxylic acid, 195 6-Oxo-1,5-dihydro-2-pyrazinecarboxylic acid, 195

6-Oxo-1,6-dihydro-2-pyrazinecarboxylic acid 4-oxide, 213 5-Oxo-4,5-dihydro-2,3 pyrazinedicarbonitrile, water addition, 322 5-Oxo-4,5-dihydro-2,3 pyrazinedicarboxamide, 322 2-Oxo-1,2-dihydro-1-pyrazinesulfinyl chloride, 255 5-Oxo-4,5-dihydro-2-pyrazinesulfinyl chloride, 255 5-Oxo-6-phenacyl-4,5-dihydro-2,3 pyrazinedicarbonitrile, 52 3-Oxo-6-(pyridin-4-yl)-3,4-dihydro-2 pyrazinecarboxamide, Hofman degradation, 271 Oxypyrazines, 191 reviews, 191 Perfenazine (Perphenazine), 243 Perfluoro(2,5-diisopropyl-3,6 dihydropyrazine), 144 fission, 176 Perfluoro(2,5-diisopropylpyrazine), halogenation (additive), 144 Perfluoro(1,4-dimethylpiperazine), 145 Perfluoropiperazine, 145 Phenazines, to pyrazines, 69 2-Phenoxy-3,6-diphenylpyrazine, 160 3-Phenylazo-2,6-pyrazinediamine, 298 2-Phenylethynylpyrazine, 104 3-Phenylethynyl-2(1*H*)-pyrazinone, 61 cyclization, 126 5-Phenylethynyl-6-(triisopropylsilyl) ethynyl-2,3-pyrazinedicarbonitrile, 25 6-Phenylfuro[2,3-*b*]pyrazine, 126 2-[1-(Phenylhydrazono) acetonylamino]pyrazine, 280 3-Phenylimino-3*H*-[1,2,4]thiadiazolo[4,3 *a*]pyrazine, 282 1-Phenylpiperazine, 12, 56 4-acylation, 276 4-alkylation, 108, 110, 111 conformation, 115 ω -halogenation, 121 with nitrourea, 284 4-Phenyl-1-piperazinecarboxamide, 284 1-Phenyl-2,6-piperazinedione, 119 6-Phenyl-5-(piperazin-1-yl)-3(2*H*) pyridazinone, 108 3-Phenyl-2-pyrazinamine, 27, 266 5-Phenyl-2-pyrazinamine, 266 to the 5-halogeno analogue, 148 3-Phenyl-2-pyrazinamine 1-oxide, 229

amination, 266 3-Phenyl-2-pyrazinecarbonitrile, 238 6-Phenyl-2-pyrazinecarbonyl chloride, 304 to a ketone, 320 6-Phenyl-2-pyrazinecarboxylic acid, to the carbonyl chloride, 304 2-Phenylpyrazine 4-oxide, with acetic anhydride, 234 deoxidative alkylation, 238 deoxidative halogenation, 146 3-Phenyl-2(1*H*)-pyrazinethione, 166, 197 5-Phenyl-2(1*H*)-pyrazinethione, 197 3-Phenyl-2(1*H*)-pyrazinone, thiation, 197 5-Phenyl-2(1*H*)-pyrazinone, 24 O-trialkylsilylation, 149 6-Phenyl-2(1*H*)-pyrazinone, 232 3-Phenyl-2(1*H*)-pyrazinone 4-oxide, 158 6-Phenyl-2(1*H*)-pyrazinone 4-oxide, deoxygenation, 232 2-Phenyl-4-[*N*-(pyrazin-2-yl)aminometh y lene]- Δ^2 -oxazolin-5-one, 287 2-Phenylsulfinylpyrazine, 253 3-Phenylsulfonyl-2-pyrazinecarbonitrile, 253 aminolysis, 256 *N*-[*N*-Phenyl(thiocarbamoyl)]-2 pyrazinecarbohydrazide, 329 3-Phenylthio-2-pyrazinecarbonitrile, 22 oxidation, 253 2-Phenylthio-3-trifluoromethylpyrazine, 96 2-Phenyl[1,2,4]triazolo[1,5-*c*]pteridin-5(6*H*)-one, 333 3-(5-Phenyl-2*H*-1,2,4-triazol-3-yl)-2 pyrazinamine, 333 cyclization, 333 2 -[α -Phenyl- α -(trimethylsiloxy)benzyl]pyrazine, 105 2-Phenyl-5-trimethylsiloxypyrazine, 149 to 5-halogeno analogue, 149 Phevalin, 243 2-(Phthalimidooxymethyl)pyrazine, 216 deacylation, 216 Picroroccellin, 243 Piperafizine, 243 Piperazine, 3, 21, 76, 130, 173, 243 N-acyloxylation, 230, 275 N-alkylation, 107, 108, 109 carboxylation, 300 conformations, 76 halogenation, 145 nitroacylation, 261 nitrosation, 263 oxidation, 21 with phosphoryl chloride, 318

2-Phenylpyrazine, 24, 52, 96, 321

1,4-Piperazinebis(carbodithioic acid), 300 1-Piperazinecarbaldehyde, N-alkylation, 107, 108 1-Piperazinecarbothioaldehyde, 275 2-Piperazinecarboxamide, 326 4-alkylation, 106 2-Piperazinecarboxylic acid, nitrosation, 262 1,4-Piperazinedicarbaldehyde, 275 1,4-Piperazinedicarbonyl dichloride, alkanethiolysis, 309 1,4-Piperazinedicarbothioaldehyde, 275 1,4-Piperazinedi(thiocarbonyl) dichloride, 301 with morpholine, 319 Piperazines, N-acylation, 273, 275 Prazosin, 243 Preechinulin, 243 2-Propionylpyrazine, 341 carboxylation, 300 isomerization, 345 5-Propyl-2-pyrazinecarbohydrazide, 326 5-Propyl-2-pyrazinecarboxamide, to the carbohydrazide, 326 Propyl 2-pyrazinecarboxylate, 309 2-[2-(Prop-2-ynyloxy)ethyl]pyrazine, 214 2-(Prop-2-ynyloxymethyl)pyrazine, 184 4-Pteridinamine, 278 Pteridines, to pyrazines, 63 Pulcherriminic acid, 243 Pyrazinamide (Zinamide), 128, 243 as an antibacterial, 128 2-Pyrazinamine, 237, 266 N-acylation, 273 alkoxycarbonylation, 310 C-alkylation, 81 N-alkylation, 280 N-alkylidenation, 278 cyclocondensation, 278, 281, 282 halogenation, 142, 143 with isocyanates etc., 283 quaternization, 132 spectra, 265 to the triphenylphosphoranylideneamino analogue, 286 2-Pyrazinamine 1-oxide, 229, 271 diazotization, 290 2-Pyrazinamine 4-oxide, deoxidative azidation, 237 deoxidative cyanation, 238 halogenation, 143 Pyrazinamines, 265 from acylaminopyrazines, 267 acylation, 273 from alkoxypyrazines, 219

alkylation and cyclization, 280 alkylidenation and cyclization, 277 from alkylideneaminopyrazines, 267 from alkylsulfonylpyrazines, 256 by C-amination, 266 by N-amination, 266 from anils or oximes, 268 from azidopyrazines, 272 basicities, 265 complexation, 289 diazotization, 289 with dienophiles, 288 to dimethylsulfimidopyrazines, 286 displacements (minor), 287 from halogenopyrazines, 150, 180, 182 to halogenopyrazines, 146 from hydroxypyrazines, 216 from nitropyrazines, 261 from nitrosopyrazines, 264 from pyrazinecarbonitriles, 269, 270 from pyrazinecarbonyl azides, 272 from pyrazinecarboxamides, 270, 271 from pyrazine *N*-oxides, 237 to pyrazinones, 192 ring fission, 289 transamination, 287 trialkylsilylation, 285 from triphenylphosphoranylideneaminopyrazines, 268 to triphenylphosphoranylidene derivatives, 286 to ureidopyrazines etc., 282 Pyrazine, 20, 21, 30, 52, 75, 76, 104 acylation, 79, 341 acyloxylation, 79 additions, 78 alkoxycarbonylation, 310 alkylation, 78 amination, 266 aromaticity, 76 carbamoylation, 322 chromates, 240 complexes, 77, 79 crystal phases, 76 electron distribution, 76 halogenation, 79 ionization, 77 monograph, 76 NMR spectra, 77 N-oxidation, 79 quaternization, 77, 297 to a radical cation, 135 reactions, 77 reduction, 76

reductive cyclization, 276 spectra (electronic), 77 2-Pyrazinecarbaldehyde, 315 ω -alkylation, 339 cyclocondensation, 340 to difluoroacetylpyrazine, 181 to the hydrazone, 339 to the thiosemicarbazone, 312 Pyrazinecarbaldehydes, 336. *See also* Acylpyrazines ω -alkylation, 339 from alkylpyrazines, 117 Cannizzaro reactions, 338 cyclization, 340 to dibromovinyl analogues, 340 by C-formylation, 336 to functional derivatives, 338 to halogenoalkylpyrazines, 181 from hydroxymethylpyrazines, 212 oxidation, 302 from pyrazinecarboxylic esters, 315 recovery from derivatives, 336 reduction, 208 selenation and telluration, 339 with Wittig reagents, 103 2-Pyrazinecarbohydrazide, to the carbonyl azide, 328 to a di(pyrazinylcarbonyl)azine, 329 with phenyl isothiocyanate, 329 Pyrazinecarbohydrazides, 328. *See also* Pyrazinecarboxamides N-alkylidenation, 328 cyclization, 328 to pyrazinecarbonyl azides, 328 from pyrazinecarbonyl halides, 318 from pyrazinecarboxamides, 326 from pyrazinecarboxylic esters, 313 reactions (minor), 328 2-Pyrazinecarbonitrile, 128, 325 to 2-acylpyrazines, 332 alkylation, 81 to the carboximidate, 333 hydration, 128 NMR study, 330 vibration spectra, 330 Pyrazinecarbonitrile oxides, 346 generation, 346 cycloadduct formation, 346 Pyrazimecarbonitriles, 330 alcohol addition, 218 alcoholysis, 218 alkanelysis, 100 aminolysis, 270 complex formation, 333

cyclization, 333 from halogenopyrazines, 173, 186 as herbicides, 330 hydrogenolysis (indirect), 331 hydrolysis, 301 from methylpyrazines, 128 from nitropyrazines, 261 preparative routes (minor), 330 properties, 330 from pyrazinecarboxamides, 24 to pyrazinecarboxamides, 322 to pyrazinecarboxamidines, 322 to pyrazinecarboximidic esters, 309 to pyrazine ketones, 332 from pyrazine *N*-oxides, 237 reactions (minor), 332 reduction, 269 2-Pyrazinecarbonyl azide, 328 to the carboxanilide, 324 Pyrazinecarbonyl azides, 328 Curtius reaction, 272 from pyrazinecarbohydrazides, 328 from pyrazinecarbonyl chlorides, 321 to pyrazinecarboxamides, 324 reactions (minor), 330 2-Pyrazinecarbonyl chloride, 304 alcoholysis, 309 aminolysis, 313, 318, 319 to arylpyrazines, 321 to a ketone, 320 Pyrazinecarbonyl halides, 317 azidolysis, 321 by halogenoformylation, 317 to pyrazinecarbohydrazides, 318 to pyrazinecarboxamides, 318 from pyrazinecarboxylic acids, 303 to pyrazinecarboxylic esters, 309 to pyrazine ketones, 320 reactions (minor), 321 from trialkylsilylpyrazines, 317 2-Pyrazinecarbothioamide, cyclocondensation, 327 2-Pyrazinecarboxamide, 128, 322 acylation, 326 alkylation, 81, 326 antitubercular activity, 321 dehydration, 325 hydroxylation (biological), 196 quaternization, 132 reduction (nuclear), 326 X-ray analysis, 321 2-Pyrazinecarboxamide 1-oxide, Hofmann degradation, 271 2-Pyrazinecarboxamide 4-oxide, 227

Pyrazinecarboxamides, 321 N-acylation, 326 N-alkylation, 326 by carbamoylation, 322 cyclization, 327 dehydration, 324 from halogenopyrazines, 174 Hofmann degradation, 270 hydrolysis, 301 preparative routes (minor), 324 to pyrazinecarbohydrazides, 326 from pyrazinecarbonitriles, 322 from pyrazinecarbonyl azides, 324 from pyrazinecarbonyl halides, 318 from pyrazinecarboxylic acids, 305 from pyrazinecarboxylic esters, 312 reactions (minor), 326 reduction, 270 thiation, 324 Pyrazinecarboxamidines, 321 cyclization, 327 from pyrazinecarbonitriles, 322 from pyrazinecarboximidic esters, 312 Pyrazinecarboxamidrazones, from pyrazinecarboximidic esters, 313 2-Pyrazinecarboxanilide, 324 Pyrazinecarboximidic esters, from pyrazinecarbonitriles, 218, 309 to pyrazinecarboxamidines, 312 to pyrazinecarboxamidrazones, 313 to pyrazinecarboxylic esters, 309 2-Pyrazinecarboxylic acid, 66, 302 acylation, 342 to the carbonyl chloride, 304 to a carboxamide, 306 esterification, 304, 305 hydroxylation (microbiological), 195 vanadium complex as an oxidizing agent, 308 2-Pyrazinecarboxylic acid 1-oxide, 117 Pyrazinecarboxylic acids, 299 from alkylpyrazines, 117 to anhydrides, 303 by carboxylation, 299 cyclization, 307 decarboxylation, 302 esterification, 304 family of derivatives, 299 from halogenoalkylpyrazines, 190 from hydroxyalkylpyrazines, 213 ionization and spectra, 299 from pyrazinecarbaldehydes, 302 from pyrazinecarbonitriles, 301

to pyrazinecarbonyl halides, 303 from pyrazine carboxamides, 301 to pyrazinecarboxamides, 305 from pyrazinecarboxylic esters, 300 from pyrazine ketones, 302 to pyrazine ketones, 307 reduction, 209 salt or complex formation, 308 Pyrazinecarboxylic esters, 308 by alkoxycarbonylation, 310 as antimycobacterials, 308 by carbon dioxide insertion, 311 Carrol rearrangement, 316 cyclization, 317 cyclocondensation, 316 with dimethyl sulfoxide, 255 to guanidinocarbonylpyrazines, 314 from halogenopyrazines, 174 hydrolysis, 300 oxidation, 316 to pyrazinecarbohydrazides, 313 from pyrazinecarbonitriles, 309 from pyrazinecarbonyl halides, 309 to pyrazinecarboxamides, 312 from pyrazinecarboxylic acids, 304 to pyrazine ketones, 315 reduction, 209 Pyrazine cyanates, 346 2,3-Pyrazinediamine, 68, 154, 272 acylation and cyclization, 274 alkylation, 281 cyclocondensation, 279 2,6-Pyrazinediamine, with diazotized amines, 298 2,3-Pyrazinedicarbonitrile, 21, 324 alcoholysis, 218 alkylation, 81 aminolysis, 270 to a carboximidic ester, 309 cyclization, 334 2,5-Pyrazinedicarbonitrile, 128 mass spectral study, 330 2,3-Pyrazinedicarbonyl dichloride, to a ketone, 320 2,3-Pyrazinedicarboxamide, 313 dehydration, 325 to the dicarboximide, 326 2,3-Pyrazinedicarboximide, 326 2,3-Pyrazinedicarboxylic acid, 22, 66 to the anhydride, 303 decarboxylation, 66, 302 2,6-Pyrazinedicarboxylic acid, 35 2,3-Pyrazinedicarboxylic anhydride, 303 cyclization, 307

esterification, 305 to a ketone, 307 to monocarboxamides, 306 1,4-Pyrazinediium bis(dicyanomethylide), 78 2,3-(1*H*,4*H*)-pyrazinedione, 4 halogenolysis, 140 structure, 191 Pyrazine 1,4-dioxide, 79, 227 quaternization, 132 rearrangement, 196 2,3(1*H*,4*H*)-pyrazinediselone, cyclocondensation, 250 Pyrazine 1-ethoxycarbonylimide, *see* Pyrazinium 1-ethoxycarbonylimide Pyrazine isocyanates, 346 Pyrazine isothiocyanates, 346 Pyrazine ketones, 341. *See also* Acylpyrazines by acylation, 341 from alkylpyrazines, 125 cyclocondensation, 345 to functional derivatives, 344 to halogenoalkylpyrazines, 181 from hydroxyalkylpyrazines, 212 isomerization, 345 oxidation, 302 from pyrazinecarbaldehydes, 339 from pyrazinecarbonitriles, 332 from pyrazinecarbonyl halides, 320 from pyrazinecarboxylic acids, 307 from pyrazinecarboxylic esters, 315 thiation, 344 Pyrazine 1-oxide, deoxidative amination, 237 deoxidative halogenation, 145, 237 metal complexation, 240 Pyrazine *N*-oxides, 225 activity to electrophiles, 225 O-acylation or alkylation, 233 to *C*-acyloxypyrazines, 234 from *N*-alkoxypyrazinones, 226 cyclocondensation, 238 deoxidative alkylthiation, 237 deoxidative amination, 237 deoxidative azidation, 237 deoxidative cyanation, 237 deoxidative halogenation, 145 deoxygenation, 231 by N-oxidation, 226 rearrangement, 239 reduction, 239 ring fission, 238 Pyrazines, aromaticity, 76

conformations, 76 dipole moments, 75 NMR spectra, 77 nomenclature, ix partition coefficients, 75 primary syntheses, 1, 47 trivial names, 240 reviews, 1, 47, 75 Pyrazine sulfones, *see* Alkylsulfonylpyrazines Pyrazinesulfonic acid derivatives, 255 Pyrazine sulfoxides, *see* Alkylsulfinylpyrazines 2,3,5,6-Pyrazinetetracarbonitrile, charge transfer complexes with benzene derivatives, 333 complexes with crown ethers, 333 mass spectral study, 330 2,3,5,6-Pyrazinetetracarboxylic acid, 69, 117 Pyrazine thiocyanates, 346 Pyrazinethiols (extranuclear), *see* Pyrazinethiones 2(1*H*)-Pyrazinethione, 164, 165 alkylation, 248 oxidation, 248 Pyrazinethiones, 245 acylation, 249 from acylthiopyrazines, 247 alkylation, 248 from alkylthiopyrazines, 246 aminolysis, 250 cyclization, 250 desulfurization, 248 from disulfides, 246 from halogenopyrazines, 164 hydrolysis, 248 oxidation, 248 from pyrazinones, 196, 222 tautomerism, 245 Pyrazinimines (nontautomeric), 297 hydrolysis, 221 preparative routes, 297 Pyrazinium-1-dicyanomethylide, cyclocondensation, 134, 334 Pyrazinium-1-ethoxycarbonylimide, ring contraction, 297 Pyrazino[2,3-*b*][1,4]benzoselenazines, to pyrazines, 69 Pyrazinoic acid, 243 Pyrazino[2,1-*a*]isoindole-6-carbonitrile, 315 2(1*H*)-pyrazinone, 194 halogenation, 138 with thionyl chloride, 255

2(1*H*)-Pyrazinone 4-oxide, 23 alkylation, 201 Pyrazinones (nontautomeric), 221 cyclization, 223 N-debenzylation, 222 Diels-Alder reactions, 224 dimerization, 223 endoperoxidation, 224 from pyrazinimines, 221 from pyrazinones, 198 radical formation, 225 reduction, 222 ring contraction, 223 thiation, 222 Pyrazinones (tautomeric), 158, 191 acylation, 203 from acyloxypyrazines, 194 addition reactions, 207 alkanelysis, 100 from alkoxypyrazines, 193 alkylation, 198 deoxygenation, 206 halogenolysis, 137 from halogenopyrazines, 158 irradiation products, 206 from minor substrates, 195 from pyrazinamines, 192 silylation, 205 tautomerism, 191 thiation, 196 Pyrazino[2,3-*d*]oxazines, to pyrazines, 66 Pyrazino[2,3-*d*]pyrazine-5,8(6*H*,7*H*) dione, 307 Pyrazino[2,3-*b*]pyrazine-2,3,6,7 tetracarbonitrile, 177 Pyrazino[2,3-*d*]pyridazine-5,8-diamine, 334 Pyrazino[2,3-*f*]quinoxaline, 126 Pyrazino[2,3-*e*][1,3,4]thiadiazines, to pyrazines, 66 Pyrazino[1,2-*b*][1,2,4,6]thiatriazin-3(2*H*) one *S*,*S*-dioxide, 272 2-[2-(Pyrazin-2-yl)acetyl]pyrazine, to a hydrazone, 344 2-(Pyrazin-2-yl)imidazo[4,5-*c*]pyridine, 333 *S*-Pyrazin-2-ylmethyl disodium phosphorothioate, 187 5-(Pyrazin-2-yl)indole, 97 10-(Pyrazin-2-yl)phenothiazine, 151 1-(Pyrazin-2-yl)pyrazinium salt, 237 hydrolysis, 237 2-[2-(Pyrazin-2-yl)-1-(pyrazin-2 ylhydrazono)ethyl]pyrazine, 344 Pyridazines, to pyrazines, 57 Pyridines, to pyrazines, 57

1-(Pyridin-4-yl)piperazine, conformation, 115 2-(Pyridin-2-yl)pyrazine, 321 2-(Pyridin-3-yl)pyrazine, 321 2-(Pyridin-4-yl)pyrazine, 321 *N*-(Pyridin-2-yl)-2 pyrazinecarboxamidrazone, 314 2-(Pyridin-2-ylthio)pyrazine, 166 2-[2-(Pyridin-2-yl)vinyl]pyrazine, 125 2-[2-(Pyridin-2-yl)vinyl]pyrazine 1,4 dioxide, 124 Pyrido[1,2:1,2]imidazo[4,5-*b*]pyrazine-2,3-dicarbonitrile, 177 Pyrroles, to pyrazines, 58 2-(Pyrrol-1-yl)pyrazine, formylation, 338 3-(Pyrrol-1-yl)-2-pyrazinecarbohydrazide, 313 to the carbonyl azide, 328 3-(Pyrrol-1-yl)-2-pyrazinecarbonylazide, 321, 328 to a urea derivative, 330 3-(Pyrrol-1-yl)-2-pyrazinecarbonyl chloride, azidolysis, 321 Quinoxalines, to pyrazines, 66 Radical cations, generation from pyrazines, 134 Razoxane, 243 $1-(\beta$ -D-Ribofuranosyl)-2(1*H*)-pyrazinone, N-amination, 267 Schöllkopf synthesis, 80 C-alkylation step, 86 1,2,5-Selenadiazoles, to pyrazines, 58 2-(1-Semicarbazonoethyl)pyrazine, 344 Septorine, 243 Sildenafil, 244 2-Styrylpyrazine, cyclization, 126 2-Styrylpyrazine 1-oxide, 102 NMR spectral study, 115 oxidation, 117 Suriclone, 244 Teflutixol, 244 Tenilsetam, 244 Terazosin, 244 Terazine (A-D), 244 2,3,5,6-Tetrabenzylpyrazine, 41 2,3,5,6-Tetrabromopyrazine, 28 2,3,5,6-Tetra-*tert*-butylpyrazine, 57, 60 2,3,5,6-Tetrachloropyrazine, alkanelysis, 95 aminolysis, 151, 152 Tetradehydropyrazine, fine structure, 77

2,3,5,6-Tetraethylpyrazine, 32, 40, 41 2,2,5,5-Tetrafluoro-3,6- (heptafluoroisopropyl)-2,5 dihydropyrazine, *see* Perfluoro(2,5 diisopropyl-3,6-dihydropyrazine) 2,3,5,6-Tetrafluoropyrazine, 57 1,2,3,4-Tetrahydropyrazine, conformations, 76 2,3,5,6-Tetraisopropylpyrazine, 40 2,3,5,6-Tetrakis(benzofuran-2-yl) pyrazine, 40 2,3,5,6-Tetrakis(2,2-bipyridin-6-yl)pyrazine, 40 X-ray analysis, 40 2,3,5,6-Tetrakis[bis(trifluoromethyl) amino]pyrazine, 38 2,3,5,6-Tetrakis(dibromomethyl) pyrazine, 121 2,2,3,3-Tetramethyl-1,4 bis(phenylcarbamoyloxy) piperazine, 324 2,2,3,3-Tetramethyl-2,3-dihydropyrazine 1,4-dioxide, 23 reduction, 239 1,3,5,5-Tetramethyl-5,6-dihydro-2(1*H*) pyrazinone, 199 ω -halogenation, 121 ring contraction, 223 2,3,5,6-Tetramethyl-1,4 dinitrosopiperazine, 119 2,2,5,5-Tetramethyl-3,5-diphenyl-2,5 dihydropyrazine, 49 2,3,6,6-Tetramethyl-2,5-diphenyl-1,2,3,6 tetrahydro-2-pyrazinamine, 49 1,2,3,4-Tetramethyl-3-imidazolin-5-one, 206 2,3,5,6-Tetramethylpiperazine, 119 N-nitrosation, 119 2,2,3,3-Tetramethyl-1,4-piperazinediol, 239 with phenyl isocyanate, 324 3,3,5,5-Tetramethyl-1-propyl-3,4,5,6 tetrahydro-2(1*H*)-pyrazinone, 22 2,3,5,6-Tetramethylpyrazine, 30, 39, 41 ω -alkylation, 102 ω -carboxylation, 126 ω -halogenation, 121 oxidation, 118 to a radical cation, 134 reduction, 119 X-ray analysis, 114 2,3,5,6-Tetramethylpyrazine 1,4-dioxide, 26 2,3,5,6-Tetramethylpyrazine polyiodides, X-ray analyses, 114 1,2,4,5-Tetramethyl-2,3,5,6 tetraphenylpiperazine, 114

1,5,6,7-Tetraphenyl-3,8 diazabicyclo[3.2.1]oct-6-ene-2,4 dione, 207 2,3,5,6-Tetraphenylpyrazine, 9, 39, 40, 49, 54, 58 reductive methylation, 114 X-ray analysis, 114 1,6,7,8a-Tetraphenyl-3,4,8,8atetrahydropyrrolo[1,2-*a*]pyrazin-8-one, 127 2,3,5,6-Tetra(pyridin-2-yl)pyrazine, 41 as a proton sponge, 265 X-ray analysis, 114 Tetrazolo[1,5-*a*]pyrazines, *see* Azidopyrazines 4-Thia-1-azabicyclo[3.2.0]heptanes, to pyrazines, 67 1,2,5-Thiadiazoles, to pyrazines, 59 [1,2,5]Thiadiazolo[3,4-*b*]pyrazines, to pyrazines, 68 Thiazolo[4,5-*b*]pyrazine, 250 Thiazolo[3,2-*a*]pyrazines, to pyrazines, 68 Thiazolo[3,4-*a*]pyrazines, to pyrazines, 69 Thiazolo[4,5-*b*]pyrazine-2(3*H*)-thione, 250 2-(Thien-2-yl)piperazine, 24 2-(Thien-2-yl)pyrazine, nitration, 259 Thiirenes, to pyrazines, 59 Thiocyanatopyrazines, from halogenopyrazines, 187 Thiopyrazines, 245 2-Thiosemicarbazonomethylpyrazine, 339 3-Thioxo-3,4-dihydro-2 pyrazinecarboxamide, 164 6-Thioxo-1,6-dihydro-2 pyrazinecarboxamide, 164 2-(2-Thioxo-2,3-dihydrothiazol-4-yl) pyrazine, 189 3-Thioxo-2,3-dihydro-1,2,4-triazolo- [4,3-*a*]pyrazin-8(7*H*)-one, 294 5-Thioxo-3,4,5,6-tetrahydro-2(1*H*) pyrazinone, 246 Tiaramide, 244 3-*p*-Tolylazo-2,6-pyrazinediamine, 298 2-*o*-Tolylpyrazine, 78 5-*p*-Tolyl-6-trifluoromethyl-2,3 pyrazinedicarbonitrile, 25 Tosyloxypyrazines, to alkylpyrazines, 104 Trialkylsiloxycarbonylpyrazines, ω -alkylation, 105 Trialkylsiloxypyrazines, to halogenopyrazines, 149 from hydroxyalkylpyrazines, 215 from pyrazinones, 149, 205 Trialkylsilylaminopyrazines, 285

Trialkylsilylpyrazines, to the chloroformyl analogues, 317 desilylation, 104 1,2,4-Triazolo[4,3-*a*]pyrazine 7-oxide, 290, 291 3-(1,2,4-Triazol-3-yl)-2-pyrazinamine, 329 2,3,5-Trichloro-6-dicyanomethylpyrazine, 95 2-(Trichloromethyl)pyrazine, 121 3,5,6-Trichloro-1-methyl-2(1*H*) pyrazinone, 140 2,3,5-Trichloropyrazine, alkanethiolysis, 167 2,2,2-Trifluoroethyl 2-pyrazinecarboxylate, 309 2-(*m*-Trifluoromethylbenzoyl)pyrazine, 315 2-Trifluoromethylimidazo[1,2-*a*] pyrazine, 278 1-[*m*-(Trifluoromethylthio) phenyl]piperazine, 12 Trimazosin, 244 Trimetazidine, 244 3,5,5-Trimethyl-5,6-dihydro-2(1*H*) pyrazinone, 27 alkylation, 199 irradiation products, 206 3,6,6-Trimethyl-5,6-dihydro-2(1*H*) pyrazinone, 27 5,6,6-Trimethyl-3,6-dihydro-2(1*H*) pyrazinone, 35 2,3,5-Trimethyl-6-[(1-methylallyloxy) carbonylmethyl]pyrazine, 305 rearrangement etc., 316 2,3,5-Trimethyl-6-(pent-3-enyl) pyrazine, 316 2,3,5-Trimethylpiperazine, 85 2,3,5-Trimethylpyrazine, 1 reduction, 85 X-ray analysis, 114

1,2,3-Trimethylpyrazinium chloride, deuteration of 2-methyl group, 135 1,2,3-Trimethylpyrazinium iodide, 131 2,5,6-Trimethyl-2(1*H*)-pyrazinone, 4 $2-[α -$ (Trimethylsiloxy)benzyl]pyrazine, 105 2-[(4-Trimethylsilylbut-3 ynyl)oxymethyl]pyrazine, 130 2-[*o*-(Trimethylsilylethynyl) phenoxy]pyrazine, 182 Trimethylsilyl 2-pyrazinecarboxylate, 305 with aldehydes or ketones, 105 Trimethylsilyl 4-trimethylsilyl-1,4-dihydro-1-pyrazinecarbodithioate, 311 *O*-Trimethylsilyl 4-trimethylsilyl-1,4 dihydro-1-pyrazinecarbothioate, 311 Trimethylsilyl 4-trimethylsilyl-1,4 dihydro-1-pyrazinecarboxylate, 311 1,5,8-Trimethyl-1,2,4-triazolo[4,3-*a*] pyrazinium-3-phenylaminide, 293 2,3,6-Trimethyl-5-(trimethylammoniomethyl)pyrazine chloride, 183 1,5,6-Triphenyl-3,8-diazabicyclo[3.2.1] oct-6-ene-2,4-dione, 207 2-Triphenylphosphoranylideneaminopyrazine, 286 Triphenylphosphoranylideneaminopyrazines, 268, 286, 295 from azidopyrazines, 295 hydrolysis, 268 1,2,4-Triphenyl-1,4,5-tetrahydropyrazine, 21 Tris(4-methylpiperazin-1-yl)methane, 277 2-Ureidocarbonylpyrazine, 314 Ureidopyrazines (and the like), 282 2-Vinylpyrazine, amine addition, 129

Zopiclone, 244 Zuclopenthixol, 244