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Foreword

The behavior of ions in solutions has been progressively understood by the ef-
forts of great pioneers: Debye, Onsager. Soon after, Verwey, Overbeek, Landau,
Derjagin, established a basic picture of elastic properties near an interface. Later
came the discussion of transport phenomena, normal or parallel to the interface: the
present authors have contributed significantly to this field. They combine (at least)
three forms of culture: (i) a practical knowledge of the relevant physical chemistry:
colloids, polyelectrolytes, etc.; (ii) a broad view of the experimental techniques re-
quired to probe the statics and the dynamics; (iii) a strong practice of computational
methods derived from the theory of liquids: calculation of correlation functions, in-
corporation of backflows, simulations. These calculations require a lot of care, but
they do provide the tools required to describe many subtle effects: the deformation
of the ionic cloud around a moving object is one fascinating example.

This book is not easy: it requires an attentive reader. But such a reader, if he is
interested in a novel feature, will find in the text all the theoretical instruments which
he needs. And there is a lot to think about: on nanoparticles, on polyelectrolytes,
on mixed systems with polymers and colloids, we are still learning surprising facts
every year. This book will help some of us to understand them better.

P.G. de Gennes
Paris, December 1998
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Aim and Scope

We intend to provide a modelistic and modern discussion of electrolytes at in-
terfaces aimed at theoretical physical chemists, chemists and theoretically oriented
experimentalists in these areas - we will discuss primarily the structural and ther-
modynamic properties, in relation to simple and also realistic model.

We will also summarize the status of the experimental knowledge of the chemical
physics of these systems. The current and open problems of the field, will be analysed
in detail taking into account the recently published experimental and theoretical
work.

There has been, in recent times, a big surge in the amount of experimental and
theoretical works in the areas of interfacial electrochemistry, colloidal chemistry,
polyelectrolytes and Langmuir-Blodgett films.

The understanding of the structural aspects of this rather diverse body of data
relies on simple models, which work well in some cases, and are still insufficient for
others.

The basic idea of embedding a hard core into the traditional theories like the
Debye-Hiickel theory, (bulk electrolytes or Gouy-Chapman theory, metal-electrolyte
interfaces), leads to tractable, and in some cases (colloidal suspensions) good theo-
ries, provided that we can ignore the effect of the structure of the solvent by using
a continuum dielectric model (primitive model).

When the molecular structure of the solvent plays an important role, then the
situation is not so clear, and there is a genuine need for further theoretical develop-
ment.

An elementary way of taking into account the granularity of the solvent is the
hard sphere-point dipole model, which accounts for the excluded volume effects
and part of the polarization effects of the solvent. Unfortunately, even with modern
vectorized computers, it is difficult to simulate these systems, even in the bulk phase.

We discuss the exact sum rules for the more complex, and realistic models, such
as the contact theorem, which gives the amount of ions in the interface as a function
of the excess charge, and the screening theorems, which are conditions on the charge
distributions in an inhomogeneous system.



Xiv AIM AND SCOPE

We intend to discuss also dynamic aspects related to transport processes such as
diffusion and electrophoresis, however, at a more phenomenological level.

We will also discuss some important new experimental aspects such as the
Israelachvili experiments measuring the forces between two plates, as well as other
experiments in which the forces between colloidal particles are directly measured by
direct optical microscopy.

We are deeply indebted to Professor Lesser Blum who was closely involved in a
first version of this book.

We are grateful to O. Bernard for the communication of several personal doc-
uments and for his helpful discussions and to L.-H. Jolly for his devotion to the
practical and technical achievement of this book.

The Authors
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Chapter 1

Hydrodynamic properties

The description of the transport properties of electrolyte solutions requires some
basic information on the hydrodynamic interactions between the solute particles.

This chapter is aimed at giving a concise presentation of the necessary tools.
The first section of this chapter is devoted to the basic principles of hydrodynamics.
In the second section, a description of hydrodynamic interactions between moving
particles in a fluid is presented. Limitation is made to the level of the Navier-Stokes
theory commonly used in the theory of electrolyte solutions.

1.1 Introduction

Two questions may be asked at the beginning of this chapter:
* What is a hydrodynamic interaction ?
* To what extent must it be taken into account ?

The first question can be answered by the presentation of a simple experiment.
Consider a rigid spherical particle of macroscopic size (radius R) and mass m, im-
mersed in a large volume of a fluid. The fluid and the sphere are at rest. The fluid
viscosity is denoted by 1.
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At time ¢ = 0, a force F,,, ' is applied to the sphere. The latter is therefore
accelerated, according to Newton’s law, until it reaches a constant velocity. Then
the applied force is balanced by a friction force F

F o Fapp!' —_ 0

The Stokes’s law states that the force F is proportional to the velocity v of the
sphere and to its size. It reads

F=-6nRnv (1.1)

If another sphere moves in the opposite direction on a rectilinear trajectory parallel
to the first sphere it will interact with the first sphere and cause a decrease in the
velocity v if the two spheres are close enough, at a distance smaller than a few radii
R.

This interaction is what may be called a “wake effect”. It is well known from
common experience, as in the case of a fast truck passing a cyclist or a boat coming
in the vicinity of a launch.

Based on this observation a preliminary answer can be given to the second ques-
tion: wake effects should be taken into account when the particle concentration
corresponds to a mean interparticle distance D of only a few particle diameters d.
The critical concentrations C,, and distances D, may therefore be related by

Cuw=D3" (1.2)
D, =nd (1.3)

where n is a small number depending on the solvent viscosity 7, which is an en-
hancing factor for the wake effect (see the Section “Microscopic origin of viscosity”
below). Moreover, the number nshould be independent of the mean particle velocity
if relative velocity changes are considered.

A rough estimation for aqueous solutions shows that n = 3 is a reasonable
assumption, so that we get

O(C.) = (3d)* (1.4)

with the symbol O(X ) meaning an estimation of the order of magnitude of a quantity
X. Taking ¢ = 8 A for the hydrated ion diameter yields

O(C,,) =0.1mol dm™3

The distance D, here D, ~ 25 A, seems a sound estimation for the cut-off distance
above which wake effects may be neglected in water.

'vectors will be denoted by bold type characters throughout
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1.2 General aspects of hydrodynamics

In hydrodynamics the description of fluid properties is based usually on a continu-
um hypothesis. Comprehensive treatments are given in Refs. [1-3] The elementary
volumes have side lengths in the micrometer scale and hence are very large in com-
parison with the particle sizes. Such elementary volumes contain about 10 particles
forming a continuum.

Two methods are commonly used to study a fluid, the Lagrangian and the Eu-
lerian picture. The Lagrangian description considers the trajectories r(t} of “fluid
points” as a function of time, which would be observed if very small iron filings par-
ticles were present in the fluid. Although intuitive, this description leads generally
to a rather cumbersome analysis and is not the more appropriate one. In lieu of
this approach the Eulerian method is preferred, investigating the motion of the fluid
at fixed points of the space as a function of time. In this theory the velocity field
v(r,t) is the basic studied quantity.

Here, only incompressible fluids will be considered. This model is sufficiently
close to real liquids and solutions.

1.3 Inviscid fluids

The inviscid fluid, though an idealized system, yields a suitable reference frame in
which real fluids can easily be taken up. This model is in use since the 18th century.
It has achieved the first step for the extension of classical mechanics to deformable
media.

In the particular case of incompressible fluids the continuity equation, given by
the relation

o . _
%t div(pv) =0 (1.5)

where div denotes the divergence operator, is greatly simplified since the density p
is a constant. One gets

divv=10 (1.6)

This equation means that, as the magnetic field in electrodynamics, the velocity
vector has no sources in incompressible fluids.
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1.3.1 Time derivative of velocity

Following the motion of a fluid, the increment of velocity dv in the Eulerian specifi-
cation results not only from a local increase at point r but also from the displacement
of the elementary volume of the fluid during the interval of time dz. Taking into
account the defining relation of velocity

vdt =dr (1.7)
yields the relation

dv _ v(r+vdtt+dt)—v(r,t) Ov

—_— = = — 4+ (Vv.V :
dt dt o TNV (L:8)
where the operator (v.V) is the scalar product of the velocity vector by the gradient
operator. In cartesian coordinates (x, y, z) this product is given by the expression

v.V = 9,0, + v,0, + v.0,
with the notation 5
dz
Similarly to eq 1.8 the following relation can be obtained

d a
-(E -— EE-FV.V (1.9]

O =

1.3.2 The Euler’s equation

The net force on a volume ¥ of an inviscid fluid, bounded by a surface S, arising

from a pressure gradient is
I _ff ik US (1.10)
s

with p the pressure on the surface and n the unit vector perpendicular to the surface
locally and oriented outwards. This equation can be transformed by use of the
Ostrogradski’s theorem to yield

Fy = —f/ VP v (1.11)

This equation means that the force per unit volume of fluid is simply —Vp.
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Applying the Newton’s law gives the Euler’s equation: consider an elementary
volume of fluid of density p experiencing a pressure gradient and placed in an external
field of intensity g per unit of mass; then we have that

dv
PR = ~Vp+pg (1.12)

Eq 1.12 is valid for an ideal inviscid liquid. It was established by Euler in 1755.
Using eqs 1.8 and 1.12 leads to

ov 1
5?+(V'V)v: ﬁ;Verg (1.13)

This equation constituted the first main equation of hydrodynamics.

1.3.3 Bernoulli’s theorem
An interesting class of flows is that of stationary flows, for which

0

% 0

1]

Using the vectorial identity
(v.V)v =V (»?/2) = v x curl v (1.14)

where the symbol X denotes the vector (also: outer or cross) product.
Then Euler’s equation reduces to

vi op
v xeurly = V{'2— + ; + U) {115)

when taking into account that p is constant for incompressible liquids and g can be
represented as the gradient of a potential U, g = ~V U.

Following a streamline, i.e. a line such that the velocity is tangent to this line
at each point, eq 1.15 can be multiplied by the unit vector, that is tangent to the
streamline, to yield )

a . v P
—(=+=+U)=0
85( 2 p )
where s is the curvilinear abscissa along the line, from which Bernoulli’s theorem is

deduced: the quantity
P p
H=—+% 1.
7+ p +U (1.16)
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is a constant along each streamline.

From eq 1.15 also follows that the quantity H is constant all throughout the fluid
if curl v is zero everywhere in the liquid. In particular, if the action of gravity can
be neglected, if for instance the pressure gradient is dominant, then the quantity
(v?/2 + p/p) is a constant showing that the points where the pressure is maximum
are the stagnation points where v = 0.

1.3.4 Vorticity

Upon application of the curl operator to eq 1.13, and with the use of eq 1.14, one
gets

0 curl
0—3:3 = curl(v x curl v) (1.17)
The quantity curl v is called the vorticity

w=curlv (1.18)

The vorticity is a vectorial quantity which informs about the local rotational char-
acter of the vector field v.

In particular, ifa flow initially (£ = 0) shows no vorticity (w = 0) then, by virtue
of eq 1.17, the vorticity will remain zero subsequently. In other words, if the flow of
an inviscid fluid is initially irrotational, i.e. no vortices exist in the fluid, then no
vortex can be created at any time.

A closer analysis of this problem would reveal more complex situations, such
as a fluid flowing around a solid body. In that case the streamlines may take off
behind the body at the limit of zero viscosity of the fluid. However, all fluids exhibit
some viscosity and no such phenomenon can be observed. Experiments show that
vorticity is generally generated in a thin boundary layer, close to a solid surface. It is
propagated from the wall by both viscous diffusion and convection. The vortices are
transported with the fluid; they are observable for some time after their appearance.
If the experiment is made with a circular cylinder moving at a constant velocity, the
eddies appear in the wake of the body and their regular distribution constitutes the
famous, as well as beautiful, Karman “vortex street”.
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1.4  Viscous incompressible fluids

1.4.1 Preliminary remarks

If fluids were moving freely in the space one would not have to consider expressly the
influence of their viscosity. However, in most natural and experimental situations
the fluids are bound by solid surfaces, close to which their velocity is much less than
in the bulk of the fluid. In fact, the requirement of zero velocity near to a solid wall
has been confirmed both by direct observation and the correctness of theoretical
approaches. This yields the no-slip condition

v=0 (1.19)

close to a solid wall. The no-slip condition is a boundary condition for the flow
equations of a real fluid. As shown previously, vorticity is created in a boundary
layer close to the wall. As far as eddies are confined to that region the bulk flow will
not be affected. If more drastic conditions are applied to the system, the whole flow
may be perturbed by a turbulent motion generated at the wall. This phenomenon
is generally the origin of increased resistances to the motion, e.g. for flying objects
in the air or for liquids in pipes. However, some exceptions exist for which the
turbulence created reduces the drag on the object, as is the case for golf balls in a
certain range of speed.

A flow, or a part of it, is said to be laminar if it is not perturbed by turbulent
motions. The particularity of a laminar flow is to appear regular and ordered where-
as a turbulent flow is intermittent and disordered. Laminar flows usually exhibit
vortex-free patterns that can be made visible by optical interference methods or,
more easily, by placing particles of visible size in the liquid.

1.4.2 Microscopic origin of viscosity

The phenomenon of viscosity is related to the transport of momentum between
contiguous layers of fluid, moving at different velocities.

In order to illustrate this assertion it is convenient to consider a particular motion
in which a liquid between two flat parallel plates is moved under the action of one
of the plates. This mobile plate moves at a constant velocity in the x direction. For
this simple shearing motion the layers of the fluid slide on each other. The fluid
has a constant velocity at every altitude z. The velocity has components [v(z), 0, 0]
relative to the orthogonal rectilinear axes.

Two kinds of coupling between adjoining layers cause the exchange of momentum
between them: (i) intermolecular forces between the particles are the origin of a
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direct tangential stress; (i) thermal agitation brings particles of higher velocity
from the upper to the lower layer, resulting in a force acting on the layers.

For a gas, only the latter effect should be expected to be important. Although
we are rather concerned here with the case of liquids, the consideration of gases is
very instructive so as to highlight the microscopic origin of viscosity. Besides, gases
and liquids are very similar in that their velocity distributions are both Maxwellian
at equilibrium (local equilibrium in a layer).

So, let us denote by L the length of the mean free path of the molecules in a
gas phase, i.e. the mean distance of particles between two successive collisions, by
n the number density of the particles and m their mass. The problem is to compute
the total momentum passing from a layer at altitude z to the layer below during an
interval of time At through the interface area S between the layers (Figure 1.1).

The assumption is made that the particles at distances of the order of L from
the interface carry their horizontal momentum into the contiguous layer, before they
experience a new collision with the surrounding particles, by which they transfer
their excess of momentum. Then the horizontal momentum transfer downwards in
a time At is

p- = a [n(kT/m)2SAt] [mv(z + 2L/3)) (1.20)

In eq 1.20 the coefficient o can be calculated from the kinetic theory of gases. The
first term in brackets is an estimate of the number of particles crossing the interface
S during the interval of time At: it is known from statistical mechanics that the
mean kinetic energy of a particle is kT/2 per degree of freedom; hence (kT /m)*/? is
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an estimate for the mean vertical velocity of particles. In the second term in brackets
the mean position of the particles coming downwards is taken to be z+2L/3: taking
into account the probability P(r) = exp(-~r/L) that a molecule has experienced no
collision after a distance r, it can be shown that the mean distance to the surface S
of the particles which cross the interface is 2L /3.

In the same way the momentum transported upwards is

py = a [n(kT/m)'2SAt) [mv(z — 2L/3)]

then the net amount of horizontal momentum transferred vertically is
d
Ap = py = p_ = a [n(kT/m)"*mSAL] [m(dL/S)Et—J} (1.21)
2
and the force per unit of surface, @, exerted on a layer is therefore given by
1/2 dv
o = —an(kT/m) m(4L/3)d— (1.22)
z

which is usually called the stress exerted across an element of surface. In the present
case it is applied in only one direction. The comparison with Newton’s equation of

internal friction
dv

g =

(1.23)

yields the viscosity
n = an(mkT)"*(4L/3) (1.24)

or, introducing the mean velocity ¥ and taking for « the value yielded by the kinetec
theory of gases

7 = (8kT/xm)"? and a = (27)"/?
leads to 1
nzgnmr}L (1.25)

This law was first demonstrated, and then verified experimentally, by Maxwell
around 1860. It constituted one of the first great successes of statistical mechanics.

In particular it allowed description of two unexpected and remarkable properties,
that we consider now. For a perfect gas the mean free path is approximately related
to the radius R of the gas molecules by

n(rRIL) ~ 1 (1.26)
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expressing the fact that a molecule experiences one collision in the volume wR?L
Therefore, using eq 1.24, one gets

1
n R—z(mk’}“)'ﬂ (1.27)

in which the symbol &x means “proportional to”. This relation thus leads to the
two above-mentioned consequences that (i) the viscosity should be independent of

the number density » and (i) in contrast with liquids, the viscosity increases with
temperature.

Moreover, this theory can give reasonable values for real gases, as shown now.
First, a more rigorous calculation of the mean free path, taking into account the
relative motion of the molecules, leads to

42 n(7R’L) = 1 (1.28)
Therefore, by substituting this relation into eq 1.24, one finds
n = (mkT/m)"?/(67R?) (1.29)

An estimate of 5 for oxygen may illustrate the validity of this molecular theory: eq
1.29 yields n = 2.08 x 107* g em ™! s~! at 25 °C , whereas the experimental value is
2.05x 107" gem™! 571

1.4.3 Equation of motion of a viscous liquid

In a layer of thickness dz, much larger than the mean free path L, and an area dS
in the direction of the flow, the force applied to an element of volume of the fluid
can be simply expressed by the difference of the viscous stresses, eq 1.23, on each
side of the layer

dv dv
dF = [na(z +dz) — na(z)] ds
Then the force exerted in the x direction per unit volume is
aF
av M4z
In the general case of a velocity field v(r,t) it might be expected that the force
exerted on an element of fluid can be expressed with the help of a vector operator of

the gradient type. Equation 1.30 suggests that this operator is the Laplace operator
A, yielding the vectorial identity

(1.30)

Av =iAv; + jAvy + kAv,
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and that the force per unit volume is

_dF
T dv
Then the equation of motion of a viscous liquid is obtained from Euler’s equation
1.13 for inviscid liquids by adding f to yield

Ov+(v.V)v = =V(p/p) + g + (n/p)Av (1.32)

Equation 1.32 was first established by Navier in 1822 and by Poisson in 1829, and
later by Saint-Venant in 1843 and by Stokes in 1845. This relation is nowadays
known as the Navier-Stokes equation. The parameter 7 is called the dynamic vis-
cosity. It is often expressed in poise [g cm™! s7!] in the cgs system: the viscosity of
water isca. 107* Poise at 20°C.

In eq 132 appears a new quantity, the ratio 7;/p, called the kinematic viscosity

f =7nAv (1.31)

v =n/p (1.33)
The kinematic viscosity is a diffusivity for the velocity v, in analogy to the diffusivity
of matter which appears in Fick’s law and, like a diffusion coefficient, it has the
dimension of m?s~". The name of “dynamic viscosity” for 7 reminds that this is the
physical parameter used to express the force acting on an element of fluid.

A glance to eq 1.32 shows that v can be the relevant quantity to describe the
flow if no pressure gradient and no volume force (such as gravity) is applied. This
conclusion is entirely true in fact only if moreover no boundary condition is imposed
involving an applied stress. This happens for instance when a fluid in motion goes
back freely to rest (the only boundary condition is then the no-slip condition).

The dynamic viscosity 7 is the relevant parameter in stationary flows where the
velocity varies perpendicularly to the velocity vector. Then both terms of the left
hand side of eq 1.32 vanish. A typical example is the stationary flow of a liquid
through a circular pipe of constant cross section. The velocity ef the fluid at a
distance 7 from the axis of the pipe is given by Poiseuille formula

v(r) = Ap(R? —r?)/(4nl) (1.34)

where Ap/l is the pressure gradient applied to move the fluid and R is the radius of
the pipe.

1.4.4 Dynamical similarity: the Reynolds number

Nowadays wind-tunnel experiments are currently performed by airplane or car en-
gineers to test the aerodynamicity oftheir machines. The physical principle of these
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experiments is the dynamical similarity of flows.
For the present discussion it is sufficient to use the Navier-Stokes equation 132
in a reduced form by neglecting the contributions of the volume forces

v + (v.V)v = =V(p/p) + (n/p)Av (1.35)
which can be transformed with the help of the dimensionless variables
o =ofU v=¢v/L ¥=tWU/L o =p/(pP)

where L is a characteristic length and U is a characteristic velocity. If, for example,
the motion of a rigid sphere in a liquid is considered, L may be the diameter of the
sphere and U its speed.

With the help of these new variables, the reduced Navier-Stokes equation is
transformed to yield

1
opv' + (V' V)W = -V + we A'v (1.36)
where the superscript ’ indicates differential operators corresponding to the variable
r’ =r/L, and Re is the Reynolds number defined by

Re=UL/v (1.37)

Re is a dimensionless parameter. Its definition constitutes a powerful tool for the
transfer of information from experiments performed at the laboratory scale on vari-
ous hydrodynamic phenomena to very large (e.g. airplanes) or very small (particles)
scales. Via eq 1.36 Re also provides the possibilty of further simplification of the
Navier-Stokes equation if the value of Re is very large or very small.

The discussion of electrolyte solutions requires the estimation of the Reynolds
number for the particular case where L is of the order of the mean diameter of
the particles, i.e. 0.1 nm. All liquids commonly used as solvents show dynamic
viscosities of the order of 1 cPoise and densities of the order of 1 g em™3. Then the
order of magnitude of Re can be evaluated if for U an estimate of the hydrodynamic
velocity of the sphere in the liquid can be made. The order of magnitude of U can be
derived from the linear transport theory, where the motion of a particle in a liquid
is described at a local level by the action of a friction force F (eq 1.1). In the steady
state of motion this force is supposed to equilibrate the “thermodynamic force”

Fopot = =Vu
derived from the chemical potential per particle

p = u® +kT In(yC)
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Equation 1.1 may be rewritten in the form

V= ”F/C = FapPI/C (1‘38)

for a particle of microscopic size, with ( the friction coefficient, to yield the stationary
velocity of the particle. Thus, we have that

kT
Fapp.i - “—? V(" (] 39)

if we assume an ideal solution where the activity coefficient y is unity. Making use
of Einstein’s relation

D =kT/¢
where D is the diffusion coefficient of the particle, we obtain
D D
v = ﬁ Fapp{ = "'E vC (14{])

The estimation of ((F) and O(v) may be based on the assumption that, typically,
VC ~ C/l, with | =1 cm and D is of the order of 10~5¢m? s~'. Then follows a
hydrodynamic velocity of the order of 10~°cm s~! and a Reynolds number of

O(Re) = 1071

Such very small Reynolds numbers are typical for the motion of particles, ions
and molecules, in a liquid, even under the action of an external field (e.g. in an
electrophoresis experiment). They permit to simplify the Navier-Stokes equation by
neglecting the non-linear convective term (v.V)v . The resulting relation is known
as the Stokes approximation.

1.5 The Stokes approximation

1.5.1 Flow due to a moving sphere at small Reynolds num-
bers

At low Reynolds numbers the Navier-Stokes equation for a stationary flow, dv/dt =
0, is

Vp = nAv (1.41)
ifmoreover g={, The application of the curl operator to eq 1.41 entails disappear-
ance of the term ¥ p

Acurlv=0 (1.42)
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This equation and the continuity equation for an incompressible liquid, eq 1.6, de-
termine completely the flow of the liquid.

The vector field v(r, f) is free of sources meaning that it can be discussed with
the help of its accompanying rotational field, defined by a vector A(r,t) related to
v(r,t)

v = curl A (1.43)

Here A is an axial vector (or pseudovector) whereas v is a polar vector. Axial vec-
tors show the particularity of being changed to their opposites upon inversion of the
coordinate system, in contrast to polar vectors (this is the case of the magnetic field
in Electromagnetism).

1.5.2 Velocity field around a sphere

Due to the symmetry of a moving sphere of radius R, the velocity v of the fluid only
depends on the distance variable r (the origin of the coordinate system is taken at
the center of the sphere) and on the velocity of the sphere U, and so does the vector
A. The only axial vector that can be obtained with r and U is the vectorial product
r % U. Therefore A must be of the form

A=9g(r)nxU with n=r/r (1.44)

where g () is a function of 7 and n is the unit vector along r.

The quantity g(r)n also can be written in the form of V f(r). Then g(r) is the
derivative of f(») with respect to » and curl A in eq 1.43 can be expressed more
simply with help of the relation

[V f(r)] x U = curl[f(r)U] (1.45)
which holds because U is constant. Then relation 1.43 is transformed to
v = curl (curl[f(r)U]) (1.46)
The velocity v satisfies eq 1.42 when it is given by eq 1.46
curlv = curl(curl (curl[f(r)U])) = (Vdiv — A)(curl [f(r)U])

= —Acurl[f(r)U) (1.47)

for div(curl G) = 0 for any vector G.
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Thus expression 1.42 may be transformed to
A? curl [f(r)U] = 0 (1.48)

The use of eq 1.45 where U is the constant particle velocity and f(r) is a function
only of r permits the reduction of eq 1.48 to

A%V f(r)] = V[A*f(r)] = O (1.49)
After some algebra in spherical coordinates, integration of this equation and taking
into account the fact that v = () at large distance leads to
b
f(r) = ar + z (1.50)

Substituting this expression into eq 1.46 and using the no-slip condition on the
sphere leads to the components of v

3R 1R,
Y = Ucoaff[a? - 2(r” (1.51)

3R 1R,
s = 0 (1.53)

with the velocity U directed along the axis 8 = 0 (Figure 1.2).

The relations 1.51 and 1.52 can be advantageously expressed in intrinsic coordi-
nates (k,n) with k=U/U and n as defined by eq 1.44 (then k.n = cos#),as

5 = ¢(r)k + ¥(r) (k.n) n (1.54)
with SR 1 ,R 3SR 3 R
$(r) = i + i (?)3 ; Y(r) = i E(*)S (1.55)

Egs 1.54, 155 (and r>R) show that v.k> 0, meaning that the fluid is everywhere
moved in the direction of U.
It is convenient to denote by h the vector

h = (k.n)n (1.56)
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The scalar product k.n equals the sum of k1, in an arbitrary Cartesian coordinate
system for which the components of k are k; and those of n are n;. It is a common
convention to write k.n= k,n;, meaning that if an index appears twice in a product,
then the sum is performed implicitly with respect to that index, here subscript .
Then the vector h can be written alternatively by expressing the components A, of
h

b = (kjnj)m = (njn)k;
or
}3.1 = le kj (1.57]
in which the sum is performed on the index j, with

le = n;m (1.58)

The components of the matrix Nj; given by eq 1.58 define a tensor of second-rank
N which is the dyadic product n® n

rer

N=n®n= = (1.59)
Using these notations the vector h may be written in the form
h = Nk (1.60)
and eq 1.54 takes the form
5 = ¢(r)k + Y(r) Nk (1.61)
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Equation 1.61 describes the flow of the liquid around the moving sphere, the medium
being at rest at infinity. Since U = Uk, eq 1.61 can be rewritten as

v=AU (1.62)

where

A=)+ y(r)N (1.63)
with [ the second-rank unit tensor.
1.6 Interaction between moving spheres
Two spheres, S, and S;. are supposed to move at velocities v, and v, with respect

to the coordinate system in which the fluid is at rest at infinity. The spheres are
located at time t at positions r, and ry, respectively. The situation is depicted on

Figure 1.3.
ki
’ \ vb

T o

Figure 1.3: Interaction between two moving spheres.

Then the velocity of the medium at 1, is not simply given by an equation of
the type of eq 1.63 because now the fluid is moving with respect to the coordinate
system at r, as a consequence of the motion of S,. Let us denote by vy(r) the
velocity of the fluid at position r and v,(a) the relative velocity of S. with respect
to the fluid at r,. The two spheres are not necessarily of equal radii; H,is the radius
of S, and M, that of S,. Hence the actions of the spheres on the fluid are different.
Different tensors A (eq 1.63) must be considered for S, and S,

Awsp = ¢o(r) T + tha(r) N (1.64)
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where ¢,(r) and 3, (r) stand for the functions defined by eq 1.55 if R = R,; N is
given by eq 1.59 where n must be replaced by ng,, the unit vector in the direction of
r, — r,. Then eq 1.64 reproduces the hydrodynamic action of S,on S, Vice versa,

Apra = $o(r) T + Py(r) N (1.65)

reproduces the hydrodynamic action of Sy on S,. The same tensor NV is used. The
reason is given by its definition, eq 1.59.

The velocity of the sphere S, with respect to the fluid, ie. the velocity w,(b),
modified by the ‘wake-effect’ can be calculated with the help of the simple following
model: the relative velocity of a sphere is supposed to be the difference between the
velocity expressed in the coordinate system in which the fluid is at rest at infinity
and the velocity that the fluid would have if the sphere were not existent. With
regard to the sphere Sy follows

vo(b) = vs — v;(b) (1.66)

This approximation holds the better, the larger the distance between the two
spheres. When the distance between the spheres is very large in comparison with
their radii, the velocity field of the fluid in the vicinity of point ry,in the absence of
the sphere Sy, is approximately uniform.

Then the sphere moves at that position as if the liquid had a constant velocity
vy(b) at infinity. According to this model eq 1.62 is modified to

v/(b) = Aosp v, (a) (1.67)
and vy(a) is given by an analogous equation
vi(a) = Apsave(b) (1.68)
where
vi(a) = va — vy(a) (1.69)

The combination of eqs 1.66-1.69 yields

Vi) = Aass [Va = Avsa(vs — v4(0))] (1.70)
or, after rearrangement of the terms
v}'(b) = {f ks “ia-’b fib-—m)_l Aa—rb (va e Ab--m Vb) (171)

Eq 1.71 permits the development of a complete theory of the Oseen tensor. How-
ever, in the framework of this study it is sufficient to keep only the first order
approximation and neglect the higher order terms. So,



1.6. INTERACTION BETWEEN MOVING SPHERES 21

* the products fia_.;, fib—»a and flb. ya Vo are terms of higher order in R, and R,
* the first order terms of.4, ,zin R, and R, are based on the approximations

3R,
o(ri;) = v(ry) = ar,
yielding
Ay 5&(5 + Na)
a—+bh — 4 Tab ab
and
3R, )
Vf(b) = -——U + Ngy ®nab) Vg (1?2)
4 Tab
Setting
(see eq 1.1) permits to write eq 1.72 in the form
v7(b) = o Tap Va (1.74)
where
T = : (T + ng ® ngy) (1.75)
ab S?T‘-‘?Tnb ab ab .

is the Oseen tensor.
In presence of the sphere S, the liquid exerts on the sphere Sp the friction force

Fb = _Cﬁ' [Vb = V!(b)] (176)
whereas the absence of the sphere S, yields a force —(yv)
Then
QFb = C‘i, Av,,; Avb = Vf(b) (177)

is the additional force acting on the moving sphere S, produced by the presence of
the moving sphere S,, A suitable expression for AF,is obtained from Eqgs. 1.74
and 1.77.

It should be emphasized that the name “Oseen tensor”, in chemical physics
attributed commonly to the tensor expressed by eq 1.75 is somewhat misleading.
In hydrodynamics, the Oseen approximation refers to a second-level approximation,
see Egs. 1.71 and subsequent remarks on the approximations. Oseen introduced his
second-level approximation in 1910 to get a reliable description of the velocity field
at distances greater than R/Re, where R is the radius of the flow. However, since the
Reynolds numbers for the systems investigated in solution chemistry generally are
particularly low, it follows that the first-level description presented here is entirely
satisfying.

For a more detailed description of this topic the reader can be referred to Refs.
[4-8].
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Chapter 2

Electrostatics

2.1 Introduction

The aim of this paragraph is to recall the basic principles of electrostatics and
their application to electrolytes and interfaces. After presenting the quasi static
electric fields, we discuss some dielectric properties. We emphasize then the Poisson-
Boltzmann equation and its solutions for different symmetries, giving the Gouy-
Chapman, the Debye-Hiickel and the Lifson-Katchalsky approximations.

In this chapter we follow the treatment given by Russell, Saville and Schowalter

[8].

2.2 Electrostatic fields

We begin with Maxwell’s equations, simplified for electrostatics (see Feynman,
Leighton and Sands 1964 [1] ):

(e}
VB (2.1)

Eo
and

23
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VxE=0 (2.2)

The fundamental entities introduced here are the electric field E, the total electric
charge per unit volume p'*), and &, the primitivity of vacuum. Combining 2.1 with
the divergence theorem, relates the electric field on a closed surface S, to the charge
0, enclosed in the volume V, as

fE -ndS = if pOdV = Q (2.3)
s Eo Jv

Eo

Here n is the outer unit normal. Consequently, for a spherical surface of radius
r centered on a point charge in vacuum,

Q
E:n= 2.4
- drre,r? (24
indicating that
_ @
—mr (25)

where r is centered on the point charge. Since the electric field is defined as the
force per unit charge, the force exerted by one point charge on another at relative
position ryy (Coulomb’s law) is

@1Q2

Fl? = ElQ‘Z = 47750":1;2

2 (2.6)

Note that SI system is used here.
According to equation 2.2, the electric field is conservative, i.e. the line integral

of E - t (where t is tangent to a closed curve) is zero. Thus, there exists a potential
function such that

E=-Vy (2.7)

The potential must satisfy (see equation 2.1)
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(e
Vi = -2 (28)

For example, around an isolated point charge O, in three dimensions,

19 ,0¢0
with 1 — 0 when r — o<
and
. o Q
] —dS = —— 2.1
o) Br 43 Eo (2.10)
The solution for the potential
_Q 4
P = 4_“01" (2.11)

corresponds to the electric field of equation 2.3.

The effect of matter on the electrostatic field can be described in an empirical
manner by the use of a dielectric constant . Let us consider the particular case of a
capacitor containing a dielectric medium. Consider a spherical conductor of radius
a. Equation 2.2 connects charge and potential in vacuum, so that the potential of
the sphere i, which is the work to bring in a unit charge from infinity, and the
sphere charge Q, are related by

Q = 4mea, (2.12)

The factor 4w a is the capacity of the sphere.

If the vacuum is replaced by a dielectric medium, the capacity of the sphere
increases because of polarization of the dielectric. Electric fields polarize matter in
two ways: by orienting molecules with permanent dipoles and by deforming electron
clouds of each molecule. The polarization vector P is related to the characteristics
of individual dipoles by the relation:

P = NQd (2.13)
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N represents the number of dipoles per unit volume, Q is the magnitude of the
charge separated to produce the dipole, and d is a vector describing the average
orientation of the dipole and the charge separation distance. In linear materials,
polarization from incident field is expressed as

P = Nasg,E (2.14)

where « is the polarisability of the molecule, with dimension L*®. The product
N is called the dielectric susceptibility of the material, y.

The polarization vector is then used to define the volumetric polarization charge
density p® as

V.-P=—p» (2.15)

Combining equations 2.1, 2.14 and 2.15 yields

£,V - (1+ x)E = pl@ — p = ) (2.16)

If the free charge density p!/) is zero and the dielectric homogeneous, then equa-
tions 2.1 and 2.16 together, indicate that the volumetric polarization charge is also
zero. Note that, however, a polarization charge will appear at surface.

Now we examine a spherical capacitor immersed in a homogeneous dielectric. If
the dielectric has no free charge, then

eV - (1+x)E=0 (2.17)

and since the field is still irrotational, a potential exists viz.

b= Ar~! (2.18)

However the situation at the surface differs from that in vacuum, owing to the
polarization charge. From equation 2.15, the divergence theorem applied to the
Gaussian surface, defined as the surface enclosing the free charge plus the polariza-
tion charge at the surface of the dielectric, we have

Q(P}

4ma?

Pn=

(2.19)
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where (7! is the polarization charge on the surface of the dielectric. Applying
equation 2.3 to the Gaussian surface yields

Q + Q'

dre a?

E-n (2.20)

since the total electric charge consists of the free charge on the capacitor Q, plus
the polarization charge on the surface of the dielectric )%/,
Thus

—~xE:n (2.21)

This determines the integration constant 4 and

Q = 4me, (1 + x)a), (2.22)

Hence the capacity increases by the factor (1 + x) compared with the situation
in vacuum; (1+y) is often designed the dielectric constant £. Similarly we can show
that the electric field at a distance r from a point charge in a uniform dielectric in
equation 2.5 and the Coulomb force in equation 2.6 are each divided by a factor &.

2.3 Boundary conditions

At this point we have a mathematical structure that describes fields in bulk mat-
ter. A complementary description of conditions prevailing at interfaces between two
materials can be derived by applying the same balance equations to a disc-shaped
volume of area ma* and height 4 in each material and to a simple closed curve
of height % in each material and side S. Using the divergence theorem and the
disc-shaped volume with equation 2.1, we have in the limit as & —+ 0

g[(E-n); + (E-n)] =g¢ (2.23)
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where the subscripts indicate the side of the interface on which the quantity in
parenthesis is evaluated, and ¢ stands for the total charge per unit area. From the
expression for the polarization equation 2.15

(P-n), + (P-n); = —¢® (2.24)

and so

[(€.E + P) - n]; + [(e,E + P) - nj; = ¢V (2.25)

Here ¢!/ stands for the free charge ¢ —¢®, beyond that due to polarization, i.e.,

charge positioned at the interface by means other than polarization. Thus for linear
dielectrics

[eo(1 + X)E - 1)1 + [e,(1 + X)E - 0], = ¢ (2-26)

For the system defined above, equation 2.26 yields

Charge =~ &,[(E - n),ma® + (E - n),7a® + (E - n),2nah) (2.27)

where the subscript k indicates the lateral side of the cylindrical surface under
consideration.

If only one of the materials is a conductor a current normal to the surface must
be zero so the corresponding electrostatic field vanishes.

A condition on the tangential component of the field at the interface is ob-
tained by evaluating the line integral of E - t.around a rectangular path in a plane
perpendicular to the surface. Taking the limiting circuit where the path length is
perpendicular to the surface shrinks to zero shows using equation 2.2, that

(E-t)y+(E-t)2=0 (2.28)

For the particular closed circuit described here we get

(B-t)uh+ (E-t),S + (B-t)sh+ (E-t),S =0 (2.29)
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where the subscripts u and h indicates upward and downward orientations re-
spectively.

Here t is any vector tangent to the interface and it follows that the potentials
on either side of the interface differ by at most a constant. If no work is done in
transferring charge across the interface, the constant is zero.

2.4 Electric stress tensor

The study of interactions between macroscopic bodies requires the force per unit
area, i.e. the stress that an external field exerts on a surface.

We will see first the expression of the stress tensor in a homogeneous fluid, then
illustrate its application to a sphere immersed in an uncharged dielectric.

The derivation of the stress in a fluid dielectric containing free charge is not
straightforward, in part because of the difficulty in establishing how the presence
of the electric field contributes to the pressure and thereby alters the stress. The
derivation below is based on that of Landau and Lifshitz (1960) [2].

First the force due to the electric field acting on an isolated dipole is derived.
Consider a pair of charges, Q0 and —Q, at relative position d. The electrical force
on the pair is

~QE(x) + QE(x + d) (2.30)

Expanding the second term yields

—-QE(x)+QE(x) +Qd - VE + ........... (2.31)

and taking the limit d —+ 0 with Od fixed produces the expression

(Qd) - VE (2.32)

for the force on an individual dipole. For N such dipoles per unit volume the
force will be as in equation 2.6

P-VE (2.33)



30 CHAPTER 2. ELECTROSTATICS

Accordingly, the force per unit volume acting on the free charge and dipole is

/ME+P-VE (2.34)

These are body forces and must be balanced by the pressure gradient ¥p*
At equilibrium

-Vp' + pE4+P.VE=0 (2.35)

With the expressions relating charge and dipole density to field strength, e-
quations 2.14 and 2.15, we can transform this expression into one involving the
divergence of a tensor as

1
—-Vp* + V- (ee,EE — §EOE -Ed)=0 (2.36)

The pressure p* differs from that in the absence of an electric field owing to
electrical modifications to the short-range intermolecular forces. Accordingly, we
identify the “pressure” due to kinetic energy and short-range intermolecular forces
without electrical effects as p and write

o _luge % .
p —p+§£o[e—1 p(ag)g]E E (2.37)

Here p denotes the density of the material
and the derivative (9e/8p) is taken at constant temperature 7. Now , the diver-
gence of the total stress yields

1 p,0e .
Vp+ V- {eg,EE — 55‘60[1 - E(ap)T]E -Ed} =0 (2.38)

The electric stress tensor reduces to what is known as the Maxwell form for the
vacuum where £ = 1, Equation 2.38 also can be written in the form

1 1
~Vip - Eeop(_—g%)TE ‘E] - 56,E-EVe + JVE =0 (2.39)
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to recover the force arising from the action of the field on the local free charge.

To illustrate use of the electric stress tensor, a familiar result is derived: the
force on a conducting sphere. A conducting sphere is immersed in a uniform (non-
conducting) dielectric in the presence of a uniform field E.,. The free charge in the
dielectric is zero, while the surface charge found on the conductor is Q. Clearly, the
force must emerge as (JE.,, since the sphere appears as a point when wieved on a
large length scale and Coulomb’s law must apply.

From equation 2.17 and the uniformity of the dielectric, we deduce the form of
the potential as

v=-—(1+Ar*)Ey -x+ Br! (2.40)

The field must have the requisite behavior far from the sphere. Since the sphere
is a conductor with charge Q, the boundary conditions show that A = —a® and
B = Q/4ree,.

The electric stress is calculated from the potential but the force on the sphere also
includes a contribution from the inhomogeneous pressure generated by the electric
field. Integrating equation 2.39 shows that

p— %gap(%%)r]i} - E = constant (2-41)

Thus the pressure variation due to the field is cancelled by electrical effects and
the net force is

F = / eco(EE — %E .Ed) - nr’dQ (2.42)
s

with dQ? = sinfdfd¢. Use of the divergence theorem converts the integral to
one over a spherical surface with an infinitely large radius. Now we need only those
parts of this integral that survive the limiting process and the force on the sphere is

F = QE, (2.43)

As expected, the force is the same as that on a concentrated point charge placed
in an undisturbed field.
A final point worth noting concerns the term
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1 de
§€op{a—p)rE -E (2.44)

For problems involving rigid bodies immersed in incompressible, homogeneous
materials, reference to this term can be avoided by absorbing it into a modified
pressure.

2.5 The Gouy-Chapman model of the diffuse lay-
er

The investigation of detailed structure of the electrostatic field requires knowledge of
ion distribution because the field produces a net charge in the electrolyte adjacent
to the interface. lons whose charge is opposite to the sign of the charge on the
interface will be attracted and the others will be repulsed. At the same time, each
ion participates in the randomizing thermal motion in solution. It follows that the
fluid adjacent to the charged interface contains a charge which balances the surface
charge, making the combination of surface and solution electrically neutral. The
region containing the surface charge is often called the compact or Stern layer, while
the region where ions move freely under the influence of electrical and thermal forces
is termed the diffuse layer. Together, these make up the electric double layer. Our
task is to describe the structure of this double layer, especially the diffuse region.
According to the earlier development, the electrostatic potential must satisfy

1
Vi =-—p 2.45
EEap ( )

for a homogeneous linear dielectric, so the first task is to describe the ion con-
centrations that produce the free charge density p/). Because the ions in the diffuse
region are in equilibrium, the force which equals the gradient of the electrochemical
potential must vanish as

kTV Inn* + 2"V =0 (2.46)

Thus the ions follow the Boltzmann distribution
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n* = n¥ exp(—ez*y/kT) (2.47)

It should be noted that the potentials appearing in equations 2.45 and 2.47 are,
strictly speaking different. The potential in the Boltzmann equation represents the
potential of mean force, whereas in the Poisson equation it is the local average
potential '. Nevertheless, to simplify matter, differences are ignored.

Recognizing that the free-charge density equals the local excess of ionic charge
arising from N ionic species, i. e.

N
oY) = Z ezFnk (2.48)
1

and combining the various expressions leads to the Poisson-Boltzmann equation
describing the electrostatic potential in ionic solutions,

N
1
Ap=——eY 2*nfexp(-e* ;
Y " : 2"n; exp(—ez*yY /kT) (2.49)

This equation is the basis of the Gouy-Chapman model of the diffuse charge cloud
adjacent to a charged surface. It was discovered by the french physicist Gouy from
Lyon in 1910 [4] and rediscovered in 1913 by Chapman [5] (not the same Chapman
as for Chapman-Enskog approximation).

The principal assumptions thus far are that the electrolyte is a solution ideal
for other aspects, with uniform dielectric properties, the ions are point charges, and
the potential of mean force and the average electrostatic potential are identical.
A considerable amount of work has been done to identify limitations of this equa-
tion. However, more detailed formulations, ranging from analytical modifications to
Monte-Carlo calculations, lead to the conclusion that the Poisson-Boltzmann equa-
tion provides very accurate results for the conditions of interest here, i.e. electrolyte
concentrations that do not exceed 1M and surface potential less than 200mV. In this
regard see Haydon (1964) [6], Sparnaay (1972) [7], Russel (1989) [8], Hunter (1993)
[9] for summaries of other investigations.

'The potential of mean force is the potential whose gradient gives the average force acting on
an ion, whereas the local average potential is the canonical ensemble average of the electrostatic
potential (see Mc Quarrie 1976) [3]
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Another condition is required to complete the specification of the potential. At
the interface, the relation between the charge and the potential can be established
from equation 2.45 as

Q(f}
wa-nd,S+ =0 (2.50)
5 £a

where QU) is the free charge enclosed by the surface. If all the charge is on the
interface, ()'/! is equal to the surface charge Q, and for a uniform surface

vw-n+€i:0 (2.51)

o

where ¢ is the charge density on the surface (charge per unit area).

2.5.1 Diffuse layer near a plate

Next we investigate some solutions of the equations embodied in the Gouy-Chapman
model. For a flat interface and a z—z symmetrical electrolyte e.g. KCI, the Poisson-
Boltzmann equation becomes

dt 2ez . | exy ;
a;i = ZS—;nb smh(ﬁ) (252)

where z is the valence of the cationic species. Linearization of the sinh function
for small dimensionless potentials, ey0/kT'leads to the Debye-Hiickel approximation,
ie.

d*y _ 2e22%n,

i ity e S 2.
dx? ee,kT : (2:53)

The expression (e€,kT/2¢%2%n,)"/2 represents the Debye screening length, sym-
bolized by ! . The solution of equation 2.53 gives

1 = s exp(—kz) (2.54)
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Where 1. represents the potential at the surface ir = (). Hence the potential and
space charge are non-zero in a region of thickness x~!adjacent to the interface.

The exact solution of the non linearized Poisson-Boltzmann equation 2.52 can
be obtained explicitly under an analytical form, this property being closely related
to the one dimensional character of the present problem . By multiplying both sides
by «3)/da one obtains exact differentials which, after integrating twice and applying
the boundary conditions yields

1 + exp(—«z) tanh(; ¥,)

v =21 2.55
e exp(—xz) tanh (V) (2:53)
where W = ez /kT. The surface charge follows from equation 2.51 as
q = 2(2ee,kTn,)"/? Sillll(%ws) (2.56)

From equation 2.55 we recover the Debye-Hiickel approximation for ¥,/4 << 1.
The factor ; accounts for the numerical accuracy of the Debye-Hiickel formula for
dimensionless potentials somewhat larger than unity. For large positive surface

potentials ¥, >> 1, and z > 0,

U~ 921n l_'HfM
1 — exp{—kz)

(2.57)

leaving the local potential independent of the surface potential away from the
interface. For negative potentials, the negative and positive signs in front of the
exponentials are reversed. Similarly, for kz >> 1, exp(—«z)is small and the general
solution 2.55 of the Gouy-Chapman equation reduces to

U~ 4t.anh(£l1{,)exp(—mc) (2.58)

and so the decay is always exponential far from the surface. Thus, for large
surface potentials, there is a saturation effect, and viewed from a large distance, the
surface potential is 4.
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2.5.2 Diffuse layer around a sphere

We turn now to the spherical geometry, where curvature complicates

matters and precludes analytical solution in the general case. However, approxi-
mate solutions depict qualitative features accurately. For a z—z electrolyte we must
solve

2elny . ez
4 r’)r)_ €€, bmh(_ﬁ)

19, ,0¢
—=—(r‘=— 2.59
r20r ( ( )

subject toh =%, at r=a and Yy = 0 at r = oo

No analytical solution exists, leaving numerical calculations for specific situations
or asymptotic solutions to describe limiting behavior.

For thin double layers, i.e. Ka >> 1, we can rescale the equations with

r = a[l +y/(xa)]

ez
W=
to obtain
d* 2 dv
— 4t —————————— =ginh ¥ 2.60
a7 " a1 + y/(ea)] dy &)
with
UY=U,aty=0

¥ 30asy— o0

For ka — oo, we recover a description pertinent to a flat interface. Thin double
layers, therefore, exhibit a saturation effect similar to that for planar layers, i.e. for
¥, >>1

W~ 4exp(—y)

so the potential decays as an exponential. Loeb, Overbeek and Wiersema (1961)
[10] gave the first comprehensive numerical treatment of spherical systems and tab-
ulated extensive results for both symmetrical and unsymmetrical electrolytes (the
LOW Tables). The LOW Tables also include numerous comparisons between exact
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(numerical) results and approximate formulas of one sort or another. For example,
the formula

q = @ EE"kT.‘c[Z sinh{lws) + 3 Lanh(lll’s]] (2.61)
z 2 Ka 4

4ma? e

adapted from LOW Tables, gives the surface charge density to within 5 per cent
for kg > 0.5 for any surface potential.

The numerical results also demonstrate that saturation effect at high potential
is a general feature of spherical double layers. Because the potential diminishes
with distance from the surface, linearization becomes appropriate and the decay is
exponential, viz.

U~ ‘11,42 exp(—k(r — a)) (2.62)

Numerical results from the LOW Tables show how the saturation potential W4
depends on ka. Many analytical approximations have been developed for the spheri-
cal diffuse layer, but the advent of fast, efficient numerical schemes (HNC, hypernet-
ted chain equation), as well as that of the mean spherical approximation (MSA) has
diminished their utility (see further parts of this monograph). Moreover MSA and
HNC approximations can be applied to the evaluation of most practical transport
coefficients of electrolytes in a large variety of experimental situations, as it will be
seen in other parts of this book.

It should be noticed that other works in the field of electrolytes have been made
recently by Fisher and his group, for equilibrium and static properties. Transport
or dynamic properties where not considered by them for the moment.

They revisited the main topics of electrolyte theory [11] [12] [13], giving formula-
tions, including ion association in electrolytes [14] [15] and counterion condensation
on polyelectrolytes and charged surfaces [16] [17] [18] [19] [20].

The interested reader should look at those papers which cannot be presented in
details in the framework of this introductory chapter. More details on HNC and
MSA and their applications to bulk electrolytes can be found in the monograph of
Barthel et al. [21].
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2.5.3 Repulsion between charged plates

To calculate the repulsive force, we need the local electrostatic potential and the
local stress. Combining the equilibrium expression 2.39 with the Gouy-Chapman
model of the diffuse layer and integrating yields the general relation

N
p+ kaZ ng[l — exp(—ez“¢Y/kT)] = py (2.63)
1

From this equation and from that for the total stress cf. equation 2.38, we
calculate the repulsive force per unit area, F, on either of two identical parallel
plates, immersed in an ionic solution. A force balance is constructed on a system
bounded by the midplane (parallel to the two interfaces) and a parallel surface far
away. The forces on the system consist of the force on the plate, F, the pressure
on the system boundary at infinity, and the force on the midplane, where, because
of symmetry, the electric field vanishes. Since the electric stress on the midplane is
zero, the force per unit area follows as

N
F= kTZ nflexp(—ez*v,/kT) — 1] (2.64)
1

Here the potential ¥, is evaluated in the midplane. The expression in brackets
is simply the excess ionic concentration at the midplane, so the repulsive force per
unit area is equal to the osmotic pressure.

For low potentials the force is proportional to the square of the potential viz.

. e’y
F= W%‘ (2.65)
Then, ignoring interactions between the plates and simply adding potentials from
two isolated plates equation 2.61 yields

F = 64kTny tanhg(élﬁs]exp(—nh] (2.66)

This non-linear superposition approximation clearly requires that the plate separa-
tion, A, be large compared with the Debye length.
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To obtain accurate values for the variation of the repulsive force with separation,
equation 2.52 must be solved. Constant-charge and constant-potential boundary
conditions furnish bounds on the force-distance relation for surfaces that regulate
their charge according to the mass action equilibria studied in connection with the
isolate plate.

For a z — z electrolyte, the Poisson-Boltzmann equation can be integrated once
analytically.

A second integration yields

f(:(ﬁ'* = -

¢ = cosh (ezyp/kT) (2.68)

and the subscript indicates conditions at the midplane.This expression can be eval-
uated numerically with either constant charge or constant potential at the surface
z = h/2. Then, using the potential at the miplane, the osmotic pressure or repulsive
force is calculated.

Note that at small separations the constant charge results begin to diverge,
reflecting the singular interaction at contact.

At this point it is important to recognize that interactions between surfaces
with unequal charges or potentials differ from those just studied. The force can
be calculated in much the same way but the lack of symmetry about the midplane
introduces an additional stress,

bl

(8- G)#dB = Vo, (2.67)

where

- %EEQE -E. (2.69)

The linearized form of the force

2 2
5 ez 1 oy
F = kT — 1 = =gy | =— 2.70

nb(kT)a 2 0(83: 3 2:70)
illustrates how the additional stress counteracts the osmotic repulsion. This stress
alters the interaction qualitatively as well as quantitatively

All this is illustrated by the solution of the Debye-Hckel equation for a z — z
electrolyte between two plates separated by a distance 4. The potential is
ez

¥ = TS Acoshky + Bsinhky, (2.71)

and so the force is simply
F = kTn,(A® — B?) (2.72)



40 CHAPTER 2. ELECTROSTATICS

The constants 4 and B follow the boundary conditions.
For constant potentials, i.e.,

- lI"+|y: h’/2
= {‘p_, A (2.73)
btai
weonm NS AL e s
2 cosh ikh’ ~ 2sinh ikh’ i

Thus, for surfaces at different potentials, repulsive interactions at large separations
can change to attraction at small separations if the surface potentials are held con-
stant. The behavior at close separations results from a change in the sign of the
charge on one of the plates.

Similarly, for surfaces where charges are held constant, i.e.,

4+, Yy = h’/2! =

= 2.75

Q' q_‘ y e __h/g} ( )
19y +g- 1gqy—q-

= bR oy Wb T 2.76

2sinh jkh’ 2cosh 3xh (2.76)

Here g, and q_ denote surface charges scaled on egq kT'k/ez. These formulas show
clearly the singular behavior of the force as two plates with identical charges are
brought close together. Furthermore, depending on the relative magnitude of the
two charges, the force can change from attraction to repulsion as the plates are
brought together. Interactions between particles with dissimilar charges are at the
core of the subject of heterocoagulation

2.6 Repulsion between charged spheres

Given the case of single spheres, the absence of closed-form solutions for the two-
sphere problem comes as no surprise. Moreover, because of curvature, the repulsive
force derives from both osmotic pressure and an electric stress. We can use the
general relation, equation 2.63, along with the equilibrium condition, to show that
the repulsive force can be obtained from an integration over the central plane as

N
F= fkTZnﬁ{exp(—ez*wﬂ/kT) - 1)ndS + /seo[EE— %E-Ed]-nds (2.77)
8 1 L]
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A variety of approximations provides insight into the qualitative and quantitative
behavior. The Derjaguin approximation, for example, is applicable for separations
small compared with the radius of the spheres (Derjaguin, 1934). Under such con-
ditions, elements on each sphere interact as parallel plane elements at the same
separation; the total interaction is a sum over the infinitesimal elements. To pro-
ceed formally, we adopt a polar cylindrical coordinate system with its axis joining
the centers of the spheres of radius a, separated by the distance 4 and centered at
midpoint.

r is the interparticular distance on the midplane and z the distance on the center
to center axis.

A sphere surface is defined by

. %hﬂ[l R ! (2.78)
Scaling distances as
2 =Kz, 1= (ka)'*r,/a (2.79)
and expanding the potential as
U = U, (r, 2) + (ka) " Wy(r, 2) + ..., (2.80)
leads to o
1 .
;T sinh ¥, (2.81)
for a Z — Z electrolyte, with
o,
— = 2.82
0z ¢ (382)
at the midplane where Z = 0. On the surface of the sphere, Z = g(r), the condition
is
¥, =¥, or %‘I;—l =g, (2.83)
where i i
g(r) = Skh+ Er“, (2.84)

and the charge is scaled on e€gkTk/ez.

The problem has been reduced to one dimension but further analytical progress
requires linearization of the differential equation, i.e. small potentials. The force
derived from equation 2.77,

KT\* s (0%\?
F~ MEED (;:‘-) ﬂ I:(KG)‘PI + (—5—) ]?‘d?", (285)
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i P
AT) Kaq® sxpl_rh) (2.86)

Constant charge : I = 2mzzg (-:(— = (z){p(—nh)
Extensions of the analytical solution show that the error for constant potential
boundary conditions remains small as the gap is diminished. Conversely, the terms
neglected in the constant charge calculation grow without bound, showing that this
approximation is invalid when the gap is much smaller than the Debye thickness.
This problem stems from the radial gradients in the potential neglected in equation
2.80.
Linear superposition of single sphere potentials also provides a useful approxim-
ation for the repulsive force. From the Debye-Hckel solution around a single sphere,
equation 2.62, we find

KT\? . 1+&(h+2
Fz-rrfso(j;-) EW';—LWZQQW(—R;;J (2.87)

for the force. For spheres with thin double-layers, equation 2.59 yields

Ty 2
F = 32mese, (*—f) ra tanh?( % U,) exp(—rh) (2.88)
By solving the linearized Poisson-Boltzmann equation through a multipole expan-
sion, Russel et al. mapped out regions where the Derjaguin and linear superposition
approximations are valid with small potentials.

For thin double-layers, the situation for which it is intended, the Derjaguin ap-
proximation produces very accurate results for constant-potential boundary condi-
tions when the potential is derived from the one-dimensional non-linear Poisson-
Bolzmanri equation.

Attention has been centered on the repulsive force due to electrostatic inter-
actions since this is measured directly in many experiments. However, it is also
necessary to know the electrostatic interaction energy, ®,defined as

oP
F=—-——. 2.89
oh ( )
Interaction energies
Geometry Constraint Force i
expression

Two fiat plates Superposition (2.66) G64hT k™" t.auh"*(%\lls)exp(—ﬁh)
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Two spheres ~ Constant potential  (2.85) ez (—{) r.r\IJ" In(1 + e~

Two spheres  Constant charge (2.86) ~2mze ("T) ar; In{1 — ¢™"")

Two spheres Linear superposition (2.87) dreeg (_—r) T W2 exp(—rh)

Two spheres  Superposition (2.88) 32neey (AL )_’ atanh®(0,) exp(—rh)

This energy can be calculated from repulsive force by integration. Interaction en-
ergies (or potentials) are used extensively when dealing with colloid stabilly. The
Table lists approximate forms.
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Chapter 3

Van der Waals forces

3.1 Introduction

Microscopic observations of colloidal particles in the nineteenth century have shown
their tendency to form persistent aggregates, even for uncharged particles with-
out specific reactive site. This behaviour indicates attractive interparticle force.
This attraction arises from dipolar interaction: local fluctuations in the polarization
within one particle induces correlated response in the others via the propagation of
electromagnetic waves. A general description, with many-body interaction, is very
complicated. Thus, de Boer [1] and Hamaker [2] assumed the intermolecular forces
to be strictly pairwise additive. Later, Lifshitz et al [3] proposed a continuum theory
where many-body effects are taken into account by treating the particles and the
subphase as individual macroscopic phases characterized by their dielectric prop-
erties. The basis of this treatment lies in quantum electrodynamic theory but an
easier description was reformulated by van Kampen et al [4] and the first quantita-
tive implementation of the theory to real systems began with Parsegian and Ninham
[5]. In vacuum, the solution of Laplace’s equation for the electric potential due to a
point dipole p, is given by

Sil) = b,V (1) (3.1)

4me, T

If a second dipole of moment p, is placed in this field at position r, an interaction
energy U results which reads
U =p2Ve (3.2)

Molecules that do not possess permanent dipole posses a non-zero instantaneous
dipole moment because of fluctuations caused for instance by electromagnetic ra-
diation fields. Then instantancous values of dipolar moment must be taken into

47
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account: Py This dipole can then induce a dipolar moment p,,4 in a second
molecule which is a function of its polarisability «. Also, this kind of interaction
exists even for unpolar molecules.

Let us go back to the definition of the electric dipolar moment p,,, in a molecule.
The instantaneous configuration of a molecule consisting of a set of nuclei and elec-
trons with charges g; at positions r;. The net charge is given by

Q=) u (3.3)
i
and the electric dipole moment is defined as

p= Zq,-r,-. (3.4)

When two molecules 4 and B are brought from an infinite separation to a distance
R, the charges on each particle will interact. The interaction energy Vi, (R)is
defined by

Vie(R) = E*P(R) - E§ — Eg (3.5)

with EZ and EF the ground state energy of each particle and EAB(R) the energy
of the new system. The interaction energy operator, V;,, in the total Hamiltonian
of the system can be written as

_afe? q,
Vint = 4m Z Z T (3.6)

in a vacuum, with R the position of the center of mass of the molecule B relative
to the center of mass of the molecule 4. We suppose here that there is no spin-spin
interaction and that the electromagnetic interaction is an electrostatic one.

If the intermolecular distance R is greater than |rf‘| and ]rj-Bl the last equation can
be expanded in powers of 1/H.

For neutral particles,
Y a=0) q=0 (3.7)
i j

and the terms with only r; or r; are equals to zero and

Vint = el (PA Pn__3w_(ﬂﬂ+o(i_)) (3.8)

dmeg R3 RS
If A and B are polar molecules,

(P)g=n#0 (3.9)
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with pu the permanent dielectric moment.
If 4 and B are non-polar molecules, it is necessary to calculate E4Z(R) to the
second order i.e. to consider how V,,, causes the internal state of each molecule to

change.
At this approximation order,
2
(2.) |(0$0|‘/|'ntln1 m)l 3
10
Vin (R) = n;éaEg+Ef—E§—E§ e
where
Im,n) = |m?) |n?) (3.11)
If 4 and B are symmetrical, we can rewrite eq. 3.10 as
_C
2) AB
Vit (R) = -5 (3.12)
where _— f4 o
e
C = 0OmJ0n (313)
AB o2m2 (dmeg)? i Witnwin (Wi, + win)
with h
s o —-34 7.-1 3.14
h= o h = 6.62610"% Js (3.14)
and
Wom = (Em = Eﬂ) /h (315)

is the pulsation of the electromagnetic radiation that would cause the transition
from ground state |0) to the excited state |m) of the isolated molecule.

_ 2mewom
f Om — ﬁe2

p. is the z co-ordinate of the dipole moment operator with a spherical assumption
{0|pz|m) = (0lpylm) = (O|p,|m). This expression of Vini(R) is the first term of the

infinite series C
llig
Vine(R) = Z Z Rl +2+1) (3.17)

211321

|0l |m))* (3.16)

Concerning colloidal science, it has been shown that the term {; = l3 = 1 is the
leading term [6]. A description of the unsymmetric case has been given in the same
reference.

The next picture gives the main interaction formulas for charged and uncharged
particles.
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3.2 Interaction between polar molecules (smal-
1 particles)

Wo can rewrite the interaction free energy as :
V(T) = _C,IZ/I""ﬁ e {C'md + Corimf. + ("ch.sp}/"r‘!i (318)

where the coefficients due to the induction (Ci,q),the orientation (Clypeni)and the
dispersion (Cysp) are given by:

Cina = (02 + pdon) /(4meo)? (3.19)
C"nﬂem = (Hfﬂ%) / (SkBT(4?T€D)2) (320)

and
Casp = (Bhvyvoap agy) / (2(1/, + VQ)(d?TEQ)z) (3.21)

In most cases, the dispersion forces are dominant except for small and highly polar
molecules like water. These expressions are in good agreement with experimental
data and when the studied interaction arises between dissimilar molecules 1 and 2,
()4 is close to the geometric mean of Cy; and Cyy,

The important case of water does not obey this empiric law because it is an highly
polarised molecule.

The London theory assumes that molecules have only one single ionization potential
and therefore one absorption frequency and it does not handle the effect of the
solvent to the particle interaction potential.

In 1963, McLachlan [7, 8] gave a new expression for the Van der Waals free energy
of two small particles (1 and 2) in a medium (3):

V(T) =

3kpT a1(0)az(0)  6kpT i‘*"(*”ﬂ)“i“’_") (3.22)

 (4me)?2 15 €2(0)  (4mep)? 1O e2(wy)

n=1

where «;(14,) is the polarisability of the molecule j at the imaginary frequency w,
and €5 (114,) is the relative dielectric permitivity of the medium at the same frequency
and

vy = n (kgT/R) (3.23)

All these quantities can be measured independently.
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If we consider only the zero frequency and a particle j with a permanent dipole
moment f,, a, (i) is reduced to the Debye-Langevin equation:

#.
O{J(U) - Sk;T + Qo (324)

In vacuum equation 3.22 becomes:

. 3kpgT
(4meg)? 78
-?)kBT FI51

= - _H2_ 5
= T lne)? o (3;:31" ® “‘”) (3;:37" * “"2) (3:28)

And we find again the equation 3.18.

V(r)

a1 (0)az(0)

Van der Waals forces have peculiar properties. As the polarisability is generally
anisotropic (except for ideal spherical particles), Van der Waals forces are anisotropic
too. However, the orienting effects of the anisotropic dispersion forces are usually
less important than other forces like dipole-dipole interactions. Another problem
in the description of these forces for a system is that Van der Waals forces are not
generally pairwise additive. This property is very important for large particles and
surfaces in a medium. The last specificity is the retardation effect. Concerning the
dispersion energy: as the speed of the interaction between particles is limited by
the speed of light (= 3108 ms~! in a vacuum), the states of the fluctuating dipoles
are not the same when the fisrt one sends the information as when the second one
receives it. The consequence is that the power law could be closer to —1/¢ than
—1/rf, This latter effect is more important in a medium where the speed of light is
slower than in the vacuum and can become very important for macroscopic bodies.
When the size of the body becomes greater than a distance where this decay induces
a change in the power law, retardation effect must be taken into account.

For a more detailed description on this topic the interested reader can be referred
to refs [9, 10]

3.3 Interaction between surfaces (big particles)

The three most important forces for the long range interaction between macroscopic
particles and a surface are steric-polymer forces, electrostatic interactions and Van
der Waals forces. If we assume than the Van der Waals interactions between two
atoms in a vaccuum are non-retarded and additive, we saw in the previous chapter
that the form of the Van der Waals pair potential is: w = —C/D® where C is the
coefficient in the atom-atom pair potential and D is the distance between the two
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atoms. We can then integrate the energy of all the atoms wich form the surface and
the studied atom. In the same way, we can calculate interactions between surfaces
with different geometries making the integration for all the atoms on each surface.
The resulting interaction law is given for different geometries in the next figures
where the Hamaker constant is introduced:

A = mCpip, (3.26)

where p; is the atom density (number of atom per unit volum) of each body.

D

Figure 3.2: Non-retarded van der Waals interaction free energy w between two
atoms. w = —C/D® where C is the coefficient in the atom-atom pair potential
(eq. 3.18).
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Chapter 1

Introduction

1.1 Introduction

We study electrolytic solutions in which the ions are represented by charged
hard spheres and the solvent (water in most cases) by neutral hard spheres with
a charge distribution or a continuum. We are mainly interested in models that
admit analytical solutions in some approximations. This is certainly the case with
the mean spherical approximation (MSA), which is connected to the Debye Hiickel
limiting law (DHLL) since both are solutions of the linearized Poisson Boltzmann
equation. The main simplifying assumption of the DHLL is that the ions in the
neutralizing ionic cloud around each ion are taken as point ions. The MSA is the
solution of the same linearized Poisson Boltzmann equation but with finite size
ions in the cloud. The mathematical solution of the proper boundary conditions of
this problem is much more complex. However, simple variational derivations exist
nowadays [1, 2, 24].

The analytic solution of the MSA shares with the DHLL the remarkable simplic-
ity of being a function of a single screening parameter ' [3] for an arbitrary neutral
mixture of ions, and also for a variety of non spherical associated charged [4, 5]
objects. The expressions of the thermodynamic excess functions are formally very
similar to those of the DHLL. The MSA can be derived from first principles of statis-
tical mechanics. Better approximations are the HNC equation and its improvements
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but they need to be solved numerically for every individual system, which is often
impractical. The MSA has been solved for the so-called ‘primitive’ model [6], in
which the solvent is regarded as a dielectric continuum, and for the non-primitive’
model [7]-[12] in which the solvent is discrete and modeled as a collection of hard
spheres with embedded point dipoles.

Calculations of departures from ideality in ionic solutions using the MSA have
been published in the past by a number of authors. Effective ionic radii have been
determined for the calculation of osmotic coefficients for concentrated salts [13], in
solutions up to 1 mol/L [14] and for the computation of activity coefficients in ionic
mixtures [15]. In these studies, for a given salt, a unique hard sphere diameter was
determined for the whole concentration range. Also, thermodynamic data were fitted
with the use of one linearly density-dependent parameter (a hard core size a(C).,
or dielectric parameter £()), up to 2 mol/L, by least-squares refinement [16]-[18],
or quite recently with a non-linearly varying cation size [19] in very concentrated
electrolytes.

Liquid state theories like the MSA (mean spherical approximation) and the HNC
(hypernetted chain approximation) can be derived as variational problems [1, 2] for
the free energy functional, which is written in terms of a single screening parameter [’
and which interpolates between the low coupling Debye-Hiickel and high coupling,
high density [1, 20, 21], and low density [22, 23, 24] limits for systems of hard
objects in general, and hard spheres in particular, and which can be mapped onto
the solution of the OZ (Ornstein-Zernike) equation of the MSA (mean spherical
approximation) [25, 26, 27, 3]. The idea, furthermore is that in the MSA, both
the thermodynamics and the structure can be represented by a simple geometrical
model consisting of a capacitor, generally spherical, but also of any given shape.

We are interested in simple yet realistic models of ionic solutions. These models
admit analytic solutions, and in general with simple expressions. They can be
classified in three categories:

1. The primitive model, in which the ions are charged spheres, and the solvent
is a dielectric continuum,;

2. the elementary model, in which the solvent is a point dipole in a hard sphere;

3. the basic model, in which we add a potential of tetrahedral octupolar symmetry
to mimic the hydrogen bonds.

We will address only the first category here. However, the parametrization of
experimental data will keep in mind the consequences of (2) and (3), namely that
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the dielectric screening will depend on all solutes. The current status is that (1) is
well understood, (2) is being developed and (3) is just barely being being started,
but we have good indications that these models give good agreement with structural
data.

Ionic solutions are liquids consisting of a solvent formed from neutral, polar
molecules, and a solute that dissociates into positive and negative ions. They vary
widely in complexity: in the classic electrolyte solutions, the cations and anions
are of comparable size and absolute charge, whereas macromolecular ionic solutions
contain both macroins (charged polymer chains or coils, micelles, charged colloidal
particles etc.) and microscopic counterions [28]. We will discuss only the classic
ionic solutions.

In the asymptotic limit of strong Coulomb interactions between the charged par-
ticles , that is the limit in which either the charge goes to infinity or the temperature
goes to zero, is the starting point of our present discussion [29]: The free energy
and the internal energy diverge to the same order in the coupling parameter while
the entropy diverges at a slower rate. In this asymptotic limit, the free energy and
the energy coincide, and furthermore, the mean spherical approximation (MSA) and
the hypernetted chain approximation (HNC) coincide. In the asymptotic limit the
excess electrostatic energy is identical to the exact Onsager lower bound, which is
achieved by immersing the entire hard core system in an infinite neutral and perfect-
ly conducting ( liquid metal) fluid. The Onsager process of introducing the infinite
conductor, naturally decouples all the components in the system which may differ
in size, shape, charge distribution and relative orientation in space. As a result, the
variational free energy functional in the high coupling limit diagonalizes, and the
mathematical solution of the asymptotic problem is given in terms of geometrical
properties of the individual particles in the system.

As an illustration, consider the charges induced on the surface of each particle
when placed in an infinite conductor. Then the direct correlation function in the
asymptotic strong coupling limit (Onsager picture) is obtained directly from the
electrostatic interaction of the charges of the particles smeared on the surface of
those particles. The calculation of the bridge function, ( the part missing in the
HNC approximation) involves the construct of Onsager molecules for the potential
of mean force. Another asymptotic limit is the high density limit, in which the com-
pressibility tends to zero because of the tight packing of the particles. In this case
the MSA solution is also obtained from a simple geometric argument by computing
the overlap volume of the particles as a function of their distance and their relative
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orientation. These two distinct limits provide the set of basis functions for the rep-
resentation of the direct correlation function, which can be shown to be sufficient
to represent the dcf of the complete MSA solution. In other words, these two limits
provide the full functional basis set for the exact solution o an asymptotic approx-
imation of the HNC solution for all densities and temperatures, for hard charged
objects. This enables us to replace a functional variational problem by a variational
problem in which the basis functional set is fixed, and known, and where we only
need to find the weights of these basis functions. The asymptotic Onsager state of
the system is essentially the analog of the diagonalizable reference Hamiltonian of
quantum mechanics, when the Schroedinger equation has to be solved. In our case
the basis functions for the functional expansion of the direct correlation function
arc obtained from linear combinations of overlap functions, such as the volume, the
surface and the convex radius, and the electrostatic interaction between surface s-
meared charges. The full solution is obtained by associating free parameters with
various parts of the basis functions. By proper manipulation of the free parameters,
and by a judicious selection of the basis set of trial functions, one can obtain, as
in quantum mechanics, different levels of approximations. The physically intuitive
meaning of the basis functions in the representation of the dcf is particularly illu-
minating in the formulation of perturbation treatments. The use of the asymptotic
basis set of functions ensures that at all levels of the perturbation approximation,
the resulting free energy has the desired property of interpolating between two exact
lower bounds, the DH result (which is effective at weak coupling) and the Onsager
result, ( which is effective at high coupling). These two limits pin the free energy.
The seemingly complex direct correlation function for the MSA of ionic mixtures
obtained by Hiroike [30] can be written in terms of the basis functions mentioned
above. We then provide more insight into the nature and physical meaning of the
solution as represented in the resulting free energy. Finally we point out possible
directions along which free energy models of the inhomogenous fluid can be con-
structed.

The only condition imposed on the system is the electroneutrality condition:

ipizi:(} (1.1)

where p; is the number density of spheres of type i with diameter a; and charge z,
in electron units, and m the total number of species.
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1.1.1 The primitive model and Debye-Hiickel (DH) theory.

Consider a neutral mixture of charged hard spheres of diameter &,, charge z,¢
(where e is the charge of the electron), number density p, = %* (where N, is the
number of ions of species i enclosed in a volume V). The number of species is s. where
p, 1s expressed in number of particles per cubic angstrom and v, is the stoichiometric
coefficient. We will use Boltzmann’s constant kg and write 3 = A—h

The charge distribution around ion i is

qi(r) = ('.szpﬁﬂ(r) (1.2)
=1

where pg’”)(r'] is the conditional density of ions j in the neighborhood of i. In sta-
tistical mechanics this function is usually expressed in terms of the pair correlation
function » i
A0 ) 1

9i5(r) - 95(r) o (1.3)
which is a symmetric function in the exchange of particles i and j From a simple
analogy to the atmospheric pressure equation, the density p(r) of the atmosphere is
given by

p(r) = poe=Pme" (1.4)
where the term mgr represents the potential energy of a particle of mass m at a
height », g is the acceleration of gravity.

More generally p(r) becomes pgi}(r): particle i is the earth.

We define the potential of mean force w;;(r) such that
gi5(r) = 7P (1.5)
Our central problem will be to determine this potential of mean force . There are a

number of requirements on it, however.

We write:
wi;(r) = ezjpi(r) + Gij(7) (1.6)
where the first term is purely electrostatic and (;(r) contains all the remaining
contributions, such as excluded volume. In other words

aulr) = ePen)
1 - Bezypn(r). (1.7)

R
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If we assume (,(r) = 0, then the electrostatic potential must satisfy the Poisson
equation in the form (the Poisson equation is valid also when ;, # 0)

; 47
vzwl(r) — _\-_QI(T) (]-‘8)

€0

and using (1.2) and (1.5)
2 an O ~Bez,,(r)
Vip,(r) = ——e)_pize Y (1.9)
0 <
Jj=1

which is the Poisson-Boltzmann or Milner equation [31]. Even for the simplest
possible case the equal size and equal charge electrolyte (0, = 0_ =0, z, = —z_)
this equation cannot be solved in closed form. But there are asymptotic regimes in
which we can solve it. If ¢ is very small the conditional probability density must be
of the form:

c]ri—I{(I} p(o) = e~Perwilr) (1.10)

where tp?(r) = £ is the bare Coulomb interaction, or in other words, when two

charges come very close, their own interaction will dominate over the interactions
of the other surrounding charges.

Another limiting case is when the central ion is very large. Then ¢;(r) must be
small, and we know that, for r — oo then:

gi(r) = 1
Wi; = 0
py(r) = 0 (1.11)

and, following Debye and Hiickel (DH) we can expand the exponential in Eq. (1.9),
the result being [32]:

V2pi(r) = k?pi(r) (1.12)
where i Be?

3. e 2

R > pizl (1.13)

which defines the Debye screening length. There are several ways of solving the Eq.
(1.12). Consider, for simplicity only the restricted case in which all ions are of equal
size. Then, the distance of closest approach is ¢. We have to transform the gradient
to spherical coordinates, but since, ¢ does not depend on the angles, we simply get:

1 2
;a—rgfﬁﬂi(r) = k’pi(r) (1.14)
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The general solution of this equation is:
rei(r) = A=) 4 B, (1.15)

The only way to satisfy boundary condition (1.11) is to require that B; = 0.
The value of A, is obtained form Gauss's theorem, or more simply, from boundary
condition (1.10), since for r — ()

m—(r):if( 1 ) (1.16)

€ \1 + ko

The full solution for the potential is

»p p—K{r—o)
zie e
s L W 1.17
#ilr) €0 (1 + ko) 12}
and according to (1.8) and (1.14) the charge density is:
ol v e SORSO AR Z’Pd —r(r—a)
{?t[T) = 471-v L}"l(r}_' 4rrd'r WL
- 2
= ZHEK —n(r-o) (1.18)
47 7
This charge distribution satisfies the electroneutrality condition
—Q,e:/drq,(r) (1.19)
which can be verified by integration: substitution of (1.18) into (1.19) leads to
{s o]
Y 2w f drrhii(r)p, = —= (1.20)
P 0

This is a completely general, and rigorous sum rule[33] , that must be obeyed
by the distribution functions of any good theory of electrolytic solutions. It means
that the charge of the ionic cloud surrounding a given ion just has enough charge to
neutralize that ion. The charge distribution, in our theory, is exponentially decaying
with a mean distance of decay equal to 1.

The excess energy of charging up the system is from (1.18) and Coulomb’s for-

mula (1.10 ff)
i 1 [4me? :
ag* = 3 ]Z.,wf%/d”‘“gi-fm;

_Zpt(ez: (1.21)

2¢g o+

[
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which is the energy of a system of a spherical capacitors of radius (g + :‘;)' The
internal energy has a lower bound, due to Onsager [34]; imagine that we increase K
(eq. (1.13)), either by charging up the ions (z, — o) or by letting the temperature
drop (/} — nc) and letting the density p, — oc. Physically, this is equivalent to
inmersing all our ions in liquid metal. Then the screening length l—is zero: the
system is a perfect screening system, and the energy

! pi(czi)z
AE(.;‘J i Fi\=®1) 1.9
2(_(]0 ( 22)

is a rigorous lower bound for the energy of any system of hard charged ions.
From

AA = AE-TAS (1.23)
0AA . p
(’)—T = —AS (1.24)
BAA/T (
sy = AF (1.25)
we get
1 A
AA = 'B_f dB'AE(B) (1.26)
[{]

From equation (2.22)in the infinite dilution limit we get the Debye-Hiickel excess

charging energy

K3

AFE = ———
B 8rf3

substituting into (1.26) leads to

K3 53 K3 K.3
+—. (1.27)

AA = _ - — AE
1278~ 878 | 2arp 2478

And from (2.24)
3
24nT"

The excess osmotic coefficient, defined by.

AS = —

AP
L PeR

p=1 (1.28)
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with p =salt concentration = p, for the restricted case, can be obtained from the
free energy, using the relation

OAA
( 57 )T = —AP. (1.29)

After a few operations we get:

The excess Gibbs free energy is:
AG AA AP
K _ _ 1.31
IR S A S e

and using (1.29) and (1.30) we get for the mean electrostatic activity coefficient 4
the following relation:

AG BAE &

Inyy = = = — (1.32)
b b 813 i
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Chapter 2

The mean spherical approximation
(MSA) for the equal size primitive
model

In the previous section we discussed the simplest possible theory, in which the po-
tential of mean force wy,(r), see (1.6), was set equal to the electrostatic potential.
This means that we ignore all the other contributions to the ionic interactions, no-
tably the hard-core, which accounts for two very important effects.

a) They prevent the collapse of the system: classical neutral Coulomb (ionic)
systems are unstable, because the (+) and the (-), form pairs of unbounded nega-
tive energy. This is a rigorous result in statistical mechanics.

b) The excluded volume effect: only one ion can be placed in a given position
in space. In the DH theory, the ions of the screening cloud are points, and do not
exclude each other. Clearly, the size of the screening cloud of finite size ions must
be larger than the DH cloud.

What we want to do now is to include the hard core effects into the calculation
of the structure of the ionic cloud. Or, what is equivalent, to charge up a system
of hard spheres. This is the basic idea of the mean spherical approximation. A
convenient treatment of mixtures of neutral hard spheres is provided by the Percus-
Yevick(PY) theory.
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Consider now the following approximation: take the OZ equation
by (1) — €y (r Zpkfrirlftlk T1)cky(|r = 11}) (2.1)
and use:

i) The hard core condition for separations v < o

hip(r) = ~1 (2.2)
ii) The “Debye-Hiickel” (really, MSA) boundary condition for r > o

2
e z,2;
¢y(r) = —Buy(r) = ~B= 22, (2.3)
In the Debyn-Hiickel limit of zero ionic zips the Eq. (2.1) can be written
Be? z,zJ 2z;
hiy(r) = ———— — drihi(r1) 24

using Eq. (1.7) for hy,(r) we get the integral form of the Poisson Boltzmann equation
(1.9) (see also 6.1)

2,24€ 3
—Bzjepi(r) = ﬁ — —Zpk/drl beza wi(r1) (2.5)

ol =] ¥

The mathematical solution follows the steps outlined for the case of neutral hard
spheres. There is, however, one problem in using the Wiener-Hopf factorization [1]:
if we take the Fourier transform of Eq. (2.3), we get

lkr 1
f dré— = = (2.6)

which has a double pole at the origin,that is, on the real axis. This violates one of
the conditions for the factorization. We may, however get around this difficulty by
shifting the poles away from the origin. This is done using

? e_ﬂlrl
cii(r) = — :z,z, lim ——— b

We can check, that, just as in Eqgs. (6.30) and (6.31), (see 6.1), the Fourier
transform of (2.7) is

(2.7)

322’,‘2" 1
B 34“—-—“2 lu—so (2.8)
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which has two poles located at £ = +iu. The Fourier transform of the Ornstein-
Zernike equation

i . 4??,882 iz
gglnik]&m + pehan (R8s — prc; + —— 5l =y, (2.9)

k2

This is a matrix equation and, therefore, complicated. If we restrict our analysis
to the symmetric 1-1 electrolyte of equal size ions then, we have the symmetries

hwu = h22: hlz = hrzl

P=p=p (2.10)

In that case the OZ equation can be written as
hyy Ry e 2 hin Ay ) ( cu G2 )
z, = * 2.11
( har  has Co €22 P\ has he Ca1 C22 (231)
where (*) denotes the convolution integral:
* —F /d‘f’g h(?’la) C(Tag). (212)

Because ofthe symmetries (2.10) the OZ equation can be diagonalized by a similarity
transformation using

B N, b 1 FL
s=5(41) =50 7) e
It is easy to verify that, for example:
hiy hi ) = ( hiy + hyo 0 )
S S = 2.14
( har  ho 0 hyy = hag ()

Therefore, the OZ equation (2.11) becomes a system of two uncoupled, OZ equations.
If we define:

ho T') —[hu + h]z(?‘)} (2.15)
h(r) = hy1(r) — hia(r) (2.16)

Then we get one “normal” equation,

W) = () = 20 [ die (e = rie(ry) (2.17)
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which has the normal boundary conditions for hard spheres and another “special”
equation for the charge interactions:

hr)—e(r)=p [drlr:[]r — 1| )h(ry) (2.18)

in which the boundary conditions now have changed. In fact, it is easy to verify
that

h(r) =0 r<o (2.19)
e(r) = —%: T>0 (2.20)

where

8?1’(362 4?:',3&2
2 _ - § r 2
K= s : P2 (221)

is the Debye screening parameter. Instead of (2.9) we now have:

.‘f.2
lim{1 + ph(k)][1 ~ pe(k) + 7] = 1. (2.22)

+ u

We follow now, step by step, the procedure used in solving the hard sphere case.
We write

1= k) + g = (14 pQU) + =E5] (1= pQU-R) + L) (229

— ik

The inverse Fourier transform of this expression yields:

K2 e Hr 3
S0+ S5 = - QO+ A+s [ Qe Q-
= ﬂf dTlQ(’*"l)A"P/ dri AQ(ri — )
+ oSl (2.24)

If we take the limit g — (), then (2.24) requires that
K= ptA? (2.25)

and, furthermore, S(r) = 2 ["dssc(s) is zero at v = ¢, from where we deduce
that, due to continuity,

Qo) =0. (2.26)
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Consider now the equation for the pair distribution function

pA N .
[+ ?J::] 1 ' K220

T 1-pQ=k) + 2&

[1+ ph(R)][1 — pQ(K) +
The Fourier inversion is exactly that of the hard sphere case. We get:

Jr)=Qr)—A+p fm dry J(r — ) Q(r)) — p/m dry J(r — ) A (2.28)
0 r

since now g(r) has become Q(r) — A, where A is a constant over the range of 7
from 0 to oo. The last term is apparently divergent. Let us write it in the form:

/md?“l .)r(?‘ == Tl) = —ff d'ﬁ J(T == T1} +-[de| J(T = T[). (229]
r 0 0

but remember that: -
J(r) = 2??/ dssh(s) (2.30)

so that the last term becomes

00 00 o0 oo
p[ dryJ(r)) = p[ dryJ(r—r) = 21rp/ dr, / ds s h(s)
r i} 0 T

- pr/ ds s h(s) f dry = 2';7,0/ ds F Rl 2 (2.31)
1] ] 1] 2

where the last identity is a consequence of the electroneutrality sum rule for the
correlation function fi{r) (1.20). Putting it all together yields

J(r)=Q(r) - % + p[o dri J(r —r) Q(ry) — pA fr dry J(r —r) (2.32)

Using the condition (2.19), we find the surprisingly simple result
J(r) = Zﬂ[ dssh(s)=by, for r<o (2.33)

(we should later see that b is in itself an interesting quantity, namely the excess
internal energy E.)
Now (2.32) is

A o
bo = Q(r) — 0} + pbg/ dry Q(ry) — pAbgr (2.34)
0
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so that
0=0Q'(r) — pAby (2.35)
and because of the requirement (2.26)
Q(r) = pAbo(r — o) (2.36)
so that, taking (2.34) at r =1
A Abgo?
by = —pAbso — = — pby2Z (2.37)
2 2
2bypo
Ao = ————— = :
pAc (T oo} KO (2.38)
to make connection with the Debye- Hiickel theory, we define
by = — 5
pho= - (2:39)
so that we get, from (2.39)
ko = 2l'o(1 +ol) (2.40)

or
(1+2l'¢)? = (1 + 2k0)

and the physical root for I' is (a comparison between I'and K is given in reference

(2D)
2lo=vV1+2ko -1 (2.41)
1

Removing the: 7 singularity, and taking derivatives of (2.24) we get the direct cor-

relation function:

2

2rre(r) = —Q'(r) + p/o driQ'(r1)Q(r — r1) + pAQ(r) — %_ -

L4 2
= —pAby + pQAbnpAbgf dri(ri—r —0)— &g—- + (pA)2by(r — o)
r

or 2202 Ac)? bor
pA? {”b; £ o ] = ("02) bor (1 + f’—2°— (2.42)

I

this later expression leads to

8 1 ( o )
2me(o) = —— 14+ —=
(@) PO+ & 200+ ¢)
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This function can be represented by an electrostatic model: It is the electrostatic
energy of two spheres around each of the ions as they slide into each other, (see

6.2) We can compute the excess pair correlation function by taking the derivative
of (2.32)

=2mrh(r) = Q'(r) — 27p /ua dry Q(ry) (r = ) h(r — r1) ~ pA J(0) (2.43)

but now h(r — ry) is zero for r — r; < o, so that, since '(r) and (r) are zero for

2nrh(r) = pAby + 2?”)/0?--0 dry Q(ry) (r — ri) h(r — m1). (2.44)

This equation can be solved by Laplace transformation (which, in the complex plane,
is equal to the half-plane Fourier transform (FT))

h(s) = fdre‘“rh(r). (2.45)

We get
2I%s e

p 82+ 25 + 2I?(1 — exp(—s0)]

which should be contrasted to the DH expression pri—y for the FT of the corre-

sponding function. For small concentrations we get, for the more general case, the
symmetric expression:

h(s) = — (2.46)

ﬁ&z 2i24 —(r—a;,)0
T L, R 2.4
his(r) €oor (1 4+ Toy)(1 + Foj)P (247)

which is exponentially decaying, but with a different screening length. In general,
however, the function h{r) will be oscillating, modulated by the hard core diameter
.
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Chapter 3

Thermodynamic properties

The excess energy can be computed with the help of the pair distribution function
[1,10,11] from equation (1.21):

AE =2 /mdrwzzppg {1)212"62 {31)
=27 3 Ll : 3.
i — + Py 9y reé
Using (3.13)-(3.14) and (3.2) manipulations becomes
dre? , [* 2e2p?
AE =T p2/ drrh(r) = 2L b, (3.2)
€o 0 €0
and, using the definition of by in (2.33),
2¢? . 2 1
AE =gy = -0 (3.3)
€ € 3+

where we have also used the relation for &g. The new screening length 2I is clearly
that of the MSA. The same picture emerges as in the DH theory: The energy of
charging up the system is that of a collection of spherical capacitor of radius ¢ + 3.
This, in spite of the complicated form of the pair correlation functions. The same
simple result is true for the general mixture of arbitrary size ions.

Using formula (1.26) we can compute the free energy excess of the ionic system

Kl [ﬁ dB, AE(B,) = = /r ar' 22 Ap) (3.4)
T By YRSy T ar ' '
Now we know that, from equation (2.40)
2
K= Sme"en = 4I*(1 4+ I'o)?

€
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or
nelp 3B .
o Or =T'(1+Te)(1 + 2I'0). (3.5)
Substituting (3.3) and (3.5) into (3.4) yields:
AA . jrdr' I (1+2l"0) : [21‘3 + ol (3.6)
=—-—— c)=——|z o 5
78 Jo 33
or
AA =AFE y 3.7
= +— :
378 (3.7)

which should be compared to (1.27). Indeed they are the same if we substitute 2I"
for x using (1.28), (1.29) and

ar mRe? 1

8p ~ 2¢ I'(1+To)(1+2l0) (3.8)
we get the very simple result S
r
Finally, the Gibbs free energy per molecule, i. e., the chemical potential x = -Z—E,
can be calculated: 1 q
Inyy = 56A +¢—1= Eﬁ&E. (3.10)

This completes the derivation of these properties of ionic solutions in the MSA.
Comparison of the thermodynamic properties to computer simulations show that
for low valence and high concentrations, the MSA is comparable to the HNC (Hy-
pernetted Chain Equation) for the activity and osmotic coefficients. For low concen-
trations and high valence it is not very good [1]. There are a large number of papers
in which different ways of correcting this are proposed. A recent approximation,
which gives very good results (comparable to the HNC) for 2-2 salts over a range of
concentrations varying from 0.00625 M to 2M [1], consists in writing

g(r) = Aexp(h"*4(r))S(z) + g"*4(r)(1 - S(2)) (3.11)

where S(x) is a switching function (generally linear) which also ensures that the
electroneutrality condition (1.20) is satisfied. The nice feature of the MSA is that
the simplicity of the results for the equal size case persists for arbitrary mixtures.
So, we get to a good approximation:

ar2 = 4B > s\ (3.12
& - B 1+ To; 42)
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which is now a higher degree algebraic equation. Often, one can use the equal size
equation (1.32) with the mean diameter

Y nd
5 = 2l (3.13)
Z: pizg'
as our initial guess for the solution. The excess internal energy is [1]
e pi2?
AE = -—T . 3.14
€@ “1+o ()

which again is the sum of the charging energies of a collection of spherical capacitors.
The Helmholtz free energy yields, as before

I".'l-
AA=AE+ 315 (3.15)
and, just as before, -
¢—-1= “TYa (3.16)
and
M B e O Pizy (3.17)

ik @X,p4t1+4Ta

The general solution of the MSA is very useful in many cases to represent the
properties of a large variety of eletrolytes and its mixtures, form concentrations
ranging from very dilute to almost molten salts [1].

The remarkable fact is that these simple expressions remains true for the case of
associatingions [2].
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3.1 Variational derivation of the MSA

These results reveal the physical meaning of the MSA solution as an inter-
polation between two exact lower bounds, the Debye lower bound, effective when
K — 0,

y MSA oo y e f)tz;z 2 DH 2
BREMEA e rzm N BAE®"® ~ —g (3.18)
t
Similarly we get for the entropy
ASMSA0 o 3 o, _ 32 ASPH® | (3.19)

Therefore, in the Onsager limits [3, 4], for the MSA we have

AEMSA.&:)

ASMSAco (3'20)
which are correct. The DH theory also goes to the correct limits, since

AEDH,DU

We can conceive the MSA as a variational problem [5], in which the free energy AA
is minimal

S[AAMSA] =0 (3.22)
which means that, since this is a function of a single parameter
aAAMS'."!
i R | :
50 (3.23)

is exactly equivalent to the MSA closure. This immediately suggests a rather sim-
ple and interesting way of generalizing the MSA Consider a variational free energy
functional, which has the parameter A, = zru the capacitance length, as the varia-
tional parameter. With hindsight we can construct the MSA solution using only
dimensional analysis, as follows: (a) Write the excess free energy density in the
general form

AA(N) = AE()) — TAS(A) (3.24)

where the expression for the energy dens1ty

— 2(0 Zpi R,, + X (3.25)
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defines the role of this system averaged length scale A., and where we have assumed

that the term S(A.) depends only on A.. This is an important assumption, and as

a result, and in order to have the correct dimensionality of [AA(\.)] we write
S(A) = kA® (3.26)

where k is a constant to be determined by adjusting the behavior at low concentra-
tions to the DH picture. The variational equation [5]

OAA(N)

=( 3.2
o ) (3.27)

yields

X 4

o = GAfngI ZP‘ R,+A \8.28)

in the limit & - () we expect the DH result to hold. This limit corresponds to
A. — 00, which yields

1 e? ;
= ;22 3.29
Al 6;;50;:31*2‘0 2 (3.29)
from where we see that k = —kp/24w.
Which again is equivalent to

; 4?1',66 2
% = r 3.30
& Z (1 + l'o; ) ( )

The generalization to a more general case by minimization of a functional which
is identical to the MSA excess free energy AAMSA requires that the excess energy
be of the form [6, 7]

Zw« A — (3.31)

where X, satisfies an equation of the type

> M) X = 2, (3.32)
k

where

[Muk] = (1 + Log) Tk + Lk (3.33)
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where f; and I, are not dependent on I'. for spherical ions

2
2 — N0y

Xi= i
1+ e,

(3.34)

in which the an approximate (the so-called ring sum) free energy AAM54is minimal

3]

S{AAMSA = 0. (3.35)
Since this is a function of the single parameter I', the derivative must be zero

aAAMSA

—r = 0. (3.36)

Differentiation of Eq. (3.23) yields
GAAMSA PGAEMSA  grAgMSA

ar or ar (9:37)
Consider now the following generalization of Eq. (3.32)
S Ml Xe=2,  [Mu]=(1+Top)bi + Ti, (3.38)
k

where Tj is a matrix which does not depend on the temperature. Then, using E-
q. (3.31)

6AEMSA Z§ 6X'
S - p‘-;“_?f. (3.39)
Using the matrix relation
M|t -1 0[M -
[ 3F1 =-[M" —gr pg (3.40)
and Eq. (3.38) we obtain
aAEM.S‘A
—gF ZP.‘[X«]Q- (3.41)
Putting it all together yields
ileX)?  TI?
0=—Z¥+? (3.42)

which is an algebraic equation for the new scaling parameter I', andis the correct
closure equation for the MSA. A similar result was derived by direct calculation in
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the similar case of a collection of charged sticky spheres by Herrera and Blum [2].
The simplest closure is obtained by ignoring the matrix [T] in Eq. (3.38), which
yields a good approximate solution for the MSA for ionic solutions,

Zi:pi(zz‘)g [(1 +Lir)2] - [; (3.43)

For low concentrations we get back the DH theory. At infinite coupling we get

IV, (344

which means that our approximations will always satisfy the Onsagerian condition
31,
lim ——— = 0. (3.45)

In the last decades the progress of statistical mechanics has opened the possibility
of treating quantitatively the effect of ionic interactions at the Mc-Millan Mayer level
for clusters [8] [9] [10]. It is possible to include the non ideal contribution in the
statistical formulation of the thermodynamic properties of ionic solutions [11] [12]
[13]. This can be done combining the concept of ionic association to the evaluation
of excess thermodynamic properties.
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Chapter 4

Ion association in the M SA

Ionic association was first discussed by Bjerrrum [1] in conjunction with the DHLL.
The extension to the MSA was discussed by [2, 3, 4, 5, 6, 7, 8], but with the assump-
tion that the system was a mixture of ion pairs and free ions which are in chemical
equilibrium. It should be noticed that a fundamental distinction exists between the
completely dissociated reference state generally used in statistical mechanics, where
the excess thermodynamic properties are evaluated taking the ideal gas of ions as the
reference system, and the association model in which one postulates the existence
of one given state ( at least), with a well defined chemical potential. This reference
state has to be changed in the regular formalism when the limit of full association
is reached. However, a new formalism, developed by Wertheim [9, 10] does include
the not only fully associated reference state but also the correct DHLL for the fully
associated ions [11, 12].  Implicit in our work is the variational approach to the
statistical mechanics of fluids of charged hard objects discussed recently [13]. In
the MSA the correlation functions can be considered as variational trial functions
of the Free Energy functional. Since, to a very good first approximation, the free
energy can be written as the sum of the hard core excluded volume term and an
electrostatic term, we can take the diameters of the chemical moeities as different
in both terms. This has been done, to a certain extent, in the so called soft MSA
[14, 15] with excellent results.

The general theory in which all association processes are properly taken into
account using the Wertheim Ornstein Zernike equation (WOZ) [16, 17, 18, 19, 20,
21]has shown that this theory yields very good numerical agreement with comput-
er experiments. The full scaling solution of the binding MSA for (BIMSA)[22, 23]
yields the same simple and explicit results in term of a siingle screening parameter
I". However, this theory includes effects such as the Debye- Falkenhagen effect where
the chemical association constant K depends on the ionic strength of the solution.
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And it is derived from the same variational principle explained above.

4.1 Chemical equilibrium in non ideal solutions:
classical theory

The correct expression of the chemical equilibrium and the corresponding mass
action law in solution requires the minimization of the full free enthalpy of the
solution, which includes the solvent contribution [24]. We need to minimize the free
energy of the solute pair formation equilibrium

A+ B < AB (4.1)
The free energy of the solute is given by
A= Napa +NMpUB + NABLAR — 184 (42)

where the p; ’s are the chemical potential of each species and IT is the osmotic
pressure and n,; the particle number of species i. For convenience we define

A
A= VEsT (4.3)
Dividing Eq.(4.2 by VkgT the function to be minimized is
A = B(patta + paip + papap — II) (4.4)

where p; is the number density and B = 1/kgT If we write the excess .4 and II
A= A"+ A= (4.5)
and _ _ .

I = I 4 1% = 1" + (¢ — 1)1 (4.6)
where A™is the ideal free energy and A*®F is the excess free energy. Similar notation
is used for the osmotic pressure I[T. The osmotic coefficient is

=V
NkgT

¢-1= (4.7)

We have
pi = g + kpTnp; + kpTIny, = p' + p (4.8)
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we have then

A = po 8B + ppiiB + pastissB — (pa + P8 + pan) (4.9)

The excess free energy .A** and osmotic coefficient ¢ can be computed for the
Coulomb [21] and hard sphere parts at the MSA level. we have

fhy = g—i =y + kT Iny; (4.10)
and
AT =3 plngt (0-1) o (4.11)
Subject to the constraints imposed by material the balance relations
0=1pa+pa — po = & (4.12)
0=pB+pap— Po = ¢2 (4.13)

where p, is the initial electrolyte concentration. The minimum of A Eq. (4.4)
subject to the constraints Eq.(4.12) (4.13), is found using the method ofthe Lagrange
multipliers. Consider the function

f=A+ o+ Aage (4.14)

which is minimized with respect tor pa, pg, pap and I'. This last parameter is the
MSA screening parameter. The MSA approximation corresponds to the variational
minimum of the electrostatic part of the excess free energy with respect to it [25]
and

A = AS(T) + A (4.15)

The corresponding conditions are

of _ of _of _9of _

— = === 4.16
Opa Opas Opp 0T (4.16)
The Lagrange multipliers are
dy A gy (4.17)
kgT dpa

kgT Opg
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They are essentially the chemical potentials and lead to the mass action law

{J‘Ab‘f.w
= —— 4.19
pafapsfi ( )
where

—kgTIn K = [pSp — (1% + 1%)] (4.20)

and A° flny; 99

0A™ ny; ;
Inf,=——=1Iny, - -1 — 4.21
- op Y @ HZJ:{JJ( Ap, 5,0:) o

The three last terms in this equation cancel out because of the Gibbs-Duhem rela-
tion. We have

BACI
Inf; = =Iny, (4.22)
Op;
The condition af /0T = 0 gives
Bf a‘.!Ae::
== 2l £l 4.23
ar =" Z""arap{ (4.23)
This is equivalent the minimization relation
BABI
=0 4.24
5T (4.24)
with A" = AL + Aj which can be considered as another definition of the MSA

approximation [25]. In any case all excess contributions can be evaluated by an
appropriate model like the MSA, taking as the reference state the ideal solution of
free ions and the pairs at their actual concentrations.

The free energy minimization leads, as required, to the law of mass action , and
therefore, we can use any technique to achieve this goal. It should be noticed that
except for very simple models, such as the restricted primitive model (RPM) of
electrolytes without the hard sphere contributions of the ion pairs, this cannot be
done analytically even if explicit expressions of 4 are available, but requires the use
of computers. From the free energy minimization we obtain the degree of association
.

pa = po(l —a); pp = po(1 — Q) ; pan = poc (4.25)
From this free energy, we can separate the excess part by remembering that in this
case, the reference state is the partially associated system ( 3PM ). To compare with



4.1.  CHEMICAL EQUILIBRIUM IN NON IDEAL... 91

the 2PM case, we have to remember that the number of particles is not the same in
the reference state, e.g. the osmotic coefficient is now given by

(b'ZPM - (l _ %) ¢3PM (426)
because the 2PM reference state involves 2 particles while the 3PM reference state
involves 2 — o particles per mole of dissolved electrolyte. In the same way we get
for the activity coefficient

Iny3™ =In(1 - a) + Iny3*¥ (4.27)
where y¥5" = y2FM is the activity coefficient of the pairs in the 3PM molar scale.
Since the present work deals with simplified models convenient for data fitting, we
will take for the excess terms in the free energy average diameters in the case of
non restricted primitive model (different ionic radii). They give more tractable
expressions, but we have to use two different average diameters: one for the MSA
and the other for the hard sphere exclusion part. It has been shown [26] for the
electrostatic part that the MSA contribution can be evaluated with an average
diameter

el Zi p‘igizt?
L 7 3 -
we have then for the electrostatic part of the mean activity coefficient
B (z¢)> T
1 = =— 4.29
MY = okeT ~  ekgT 1+ Loy (4.29)
and \ re
I'rp
BB 4.30
B 4m(1+ Coy) t (430}
The electrostatic part of the osmotic coefficient is given by
3
A‘ﬁet — _37“:9 (431)
with
=) pk(ox)" (4.32)
k
and 5
4me
2 = 4.33
& T eksT )
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The total osmotic coefficient is split into electrostatic and hard sphere contributions

¢ =14 Adet + Aips (4.34)

The condition 8.A%F /AT = 0, calculated with this value of ALf gives

L

KD

s T2 (1 + o)’ (4.35)

which is identical to the restricted primitive model I', equation for the average
diameter

T, = [(1+2kpoa)'’? — 1] /(202) (4.36)

The free energy minimization procedure for the chemical equilibrium gives new
physical insights for the MSA .

In the same way, the hard sphere contribution can be simplified taking an average
diameter which is different from o, and is given by an easy to compute expression.
At low densities the Percus Yevick compressibility PY), approximation is an accurate
enough to represent the equation of state of hard spheres. We search an expression
of the diameter which makes the one component and multicomponent expressions
of the PY, equation of state numerically identical. This is not possible for a single
value of ay,, but rather as an expansion of the form

Ohs = 05, + 108, +n20%, + ... (4.37)

We are looking for the value of 7 which will make ' the P¥; one component osmotic
coefficient

P 149+7°
Phs = 1+ Adps = L e 2 (4.38)
p (1—-mn)
where

n=(n/6)oj ) o (4.39)

'In the mass action law case, we have given the complete Carnahan-Starling expression of the
activity coefficient which is valuable for any diameter and any density or packing fraction, here we
present a simplified expression with an average diameter and correct for a packing fraction n < 0.3
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equal to the PY,, multicomponent term

aP ! 3X. Xa 3x3
e e o :
Ons =1+ A 0-Xa)  X(1-X) @ X,(1=Xa)

(4.40)

with &
Xe =% Z pio* (4.41)

A naive identification of n and X3, based on the idea that the excluded volume of
individual particles has to be the same, would give

O = [Zl‘pig‘?}lf:j
N Z,‘ Pi

This approximation takes only into account the singularity as 7 goes to 1, but gives
neither the correct low density nor at high density limits of the osmotic coefficient.
For the low volume fractions typical of ionic solutions, identifying the second virial
coefficients of the one component and that of the multicomponent models, one finds
for the average diameter

(4.42)

1/3
o = [Pl ot 3] s

4X,

This expression constitutes the correct low density approximation for the average
hard sphere diameter can be extended to high density [25] For the hard sphere con-
tribution, a convenient and complete expression seems to be a relationship following
from the PY theory of hard spheres mixtures [27].

3X,+ 302X, +30: X, 303X 1 Xo+ 202X2  303X3
lny?’:—ln(l—X3)+U‘ ol e i 5 St i

1- X3 (1 - Xs)? (1 —X3)*
(4.44)
in the case of an average diameter, (4.44) becomes
n 3n° 3’
InyM = —In(l —n) + + + 4.45
W=l T e - i

Obviously this method can be extended to mixtures of an arbitrary number of
ions just by adding their contributions to the ideal and excess parts of the free energy.
The excess parts have been given by expressions (4.44), (4.30), (4.38), (4.40), since
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the ideal contribution corresponds to a term p,(u°/kpT + 1n p,). If species i is not a
reactant protagonist in the association reaction, it will contribute only in the excess
free energy part, when one minimizes the free energy with respect to the proportion
of pairs, but not in the direct evaluation of concentrations. This model allows to
understand the so-called redissociation effects observed in 2 — 2 electrolytes in water
[4] [5]. This effect comes in naturally in the case of a negative excess free energy,
but it should be noticed that in the case of positive free energy, which happens for
weak electrolytes of large molecular size and high concentrations, the opposite can
occur, ie. reassociation.
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Chapter 5

Thermodynamic excess properties
of ionic solutions in the primitive

MSA

5.1 Introduction

The representation of the departures from ideality in ionic solutions has applications
in various domains such as geochemistry, solution chemistry and chemical industry.
It is useful for the design of absorption heat pumps or apparatus involved in desali-
nation or nuclear wastes reprocessing.

It is also an interesting information for the study of interfaces in presence of at
least one bulk ionic solution.

Because of its wide range of applications, the thermodynamic properties of elec-
trolytes have been the subject of much interest even in recent literature [1, 2, 3].
Certainly, among physical chemists, the most popular expressions have been the
Debye-Hiickel limiting laws (DHLL), and expressions derived therefrom [4]. Among
others, geochemists, have used extensively Pitzer's modifications of DHLL to de-
scribe departures from ideality in concentrated ionic mixtures (typically up to 6
mol/kg [5], and up to 10-20 mol/kg, between 0 and 170°C, for solutions of volatile
weak electrolytes [6]). Also solubilities of minerals in natural waters can be predict-
ed accurately [7].

Pitzer’s treatment is based on the DH theory. It uses the DHLL plus a virial type
series correction.

Another theory that is fundamentally connected to the DHLL is the mean spher-
ical approximation (MSA) [8]-[9]. In the DHLL the linearized Poisson Boltzmann
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equation is solved for a central ion surrounded by a neutralizing ionic cloud. The
main simplifying assumption of the DHLL is that the ions in the cloud are point
ions. The MSA is the solution of the same linearized Poisson Boltzmann equation
but with finite size ions in the cloud. The mathematical solution of the proper
boundary conditions of this problem is much more complex. However, simple vari-
ational derivations exist nowadays [10].

Calculations of departures from ideality in ionic solutions using the MSA have
been published in the past by a number of authors. Effective ionic radii have been
determined for the calculation of osmotic coefficients for concentrated salts [11], in
solutions up to 1 mol/L [12] and for the computation of activity coefficients in ionic
mixtures [13]. In these studies, for a given salt, a unique hard sphere diameter was
determined for the whole concentration range. Also, thermodynamic data were fitted
with the use of one linearly density-dependent parameter (a hard core size o),
or dielectric parameter £(C')), up to 2 mol/L, by least-squares refinement [14]-[16],

or quite recently with a non-linearly varying cation size [17] in very concentrated
electrolytes.

Parametrization of the thermodynamic properties of pure electrolytes has been
obtained [18] with use of density-dependent average diameter and dielectric param-
eter. Both are ways of including effects originating from the solvent, which do not
exist in the primitive model. Obviously, they are not equivalent and they can be
extracted from basic statistical mechanics arguments: it has been shown [19] that,
for a given repulsive potential, the equivalent hard core diameters are functions of
the density and temperature; Adelman has formally shown [20] (Friedman extended
his work subsequently [21]) that deviations from pairwise additivity in the potential
of average force between ions result in a dielectric parameter that is ion concentra-
tion dependent. Lastly, there is experimental evidence [22] for & being a function of
concentration. There are two important thermodynamic quantities that are com-
monly used to assess departures from ideality of solutions: the osmotic coefficient
and activity coefficients. The first coefficient refers to the thermodynamic properties
of the solvent while the second one refers to the solute, provided that the reference
state is the infinitely dilute solution. These quantities are classic and the reader is
referred to other books for their definition [1, 4].
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5.2 Strong electrolytes in the MSA

The thermodynamic properties of electrolytes in the primitive MSA have been given
elsewhere [23, 24]. For the sake of generality, we will discuss individual ionic excess
thermodynamic properties. The single ion activity coefficients for fixed diameters
were discussed by several authors [25]-[27]. In all previous work the implicit depen-
dence of the sizes and dielectric constants on the concentration was not, taken into
account. The discussion below [28] corrects this issue.

The thermodynamic properties can be derived from the Helmholtz energy density
A. The excess energy can be split into two terms. One defines

AA = AAMSA L A QRS (5.1)

where AAMSA i the electrostatic contribution that can be calculated in the MSA;
AAMY is the ion hard sphere contribution.

Electrostatic contribution
Thermodynamic integration (equivalent to Guntelberg charging process) yields
an expression for the MSA contribution to A.

One has - s
: AE
BAAMEIA — GAEMSA f dF’{J(F’)% (5.2)
0
where 8 = 1/kgT. One gets [29]
3
HAAM,E:A ,B&EMSA r (53)

37

The expression for the excess MSA internal energy AEMS4 (per unit volume) [24]
can be rewritten in the following different form.

AEMSA = ZAE‘“” (5.4)
with
S5A e?
AE,M' . _?ptlea (5.5)
with e is the elementary charge and
Tz
N, = _‘?ﬂ (5.6)

1+ Ta,



100 CHAPTER 5. THERMODYNAMIC EXCESS PROPERTIES OF...

— 1w PkTkZk -
7T Q28 24 1+4To, (5:1)
Q=1+ P (5.8

. 2A r 1+ er 3 }

—q._n 3 &

B =l ;pkgk (5.9)

The excess osmotic coefficient A¢M94 is calculated from the thermodynamic relation

‘?_ [BQAMSA]
I'=const

QGSMSA = p
Ope Pt

(5.10)

where

pe= p (5.11)
1
In eq 5.10 the derivative is taken at constant I', because it is known [10, 29] that

BAAM.S‘A
ar

This result simplifies greatly all the expressions derived hereafter. The single ion
activity coefficient reads

=0 (5.12)

ABAAMSA

AlngyMs4 = [ o, ]Hm (5.13)
Let us define the mean activity coefficient of the mixture by
AlnyMsa = %Zpiﬂlny:"‘s’" (5.14)
i
It is easy to show [30] that
AlnylS4 = o + ApMSA (5.15)

P

and by differentiation with respect to p, one gets the Gibbs-Duhem relation in the
form
JA |nyf3.-1 _ AquSA P 8&:&“‘”

Ope Pt Ope

(5.16)
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It, is observed that one needs only one derivative in all the calculations

a&AMSA aAEMSA
[T] = {_ 5 } (5.17)
P IM'=const [ I'=const

Remember that both the diameters and the dielectric parameter are a function
of the concentration: a;({p,}),e({pi}). for i from 1 to n, where n is the number of
ions. Using standard implicit function differentiation one gets

TMSA MSA
9p: Colk#i)oee 9o Cponlkits)e LOPi
OB AEMSA de .
; [“36 ] [a’] (5.18)
Cypkoi P
After some tedious but straightforward algebra one gets
Iz} 22, —no? no?
Al MSA _ ik 1 . 1 1 ot et 53
nY [1+l"or,-+na=(1+l"ori 3 3)]
+ Z 0i; + paEMsag % (5.19)
147 apt_ *
with Be?
€
= 5.2
4mege (5-20)
with €g the permittivity of a vacuum. Besides
2z no?(2 — I'’o?) — 2z;
4 = Y s (5.21)
(1 +ay) (14 Tay)

From this result one finds also, with eq 5.14

BAEMSA e 2'! AEMSA
ﬂ'"yf‘“= ﬁ i e ZpJQJD(UJ) ﬁ' o =

eD(e™) (5.22
Pt € 'fTP P A ) | )

with the notation 5
D= — 5.23
Ek Pk O ( )
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and using eqs 5.3, 5.15 and 5.22 one gets

P Bigt 1 BAEMSA ;
— 2L 4 — Y paD(o) + ————eD(e) (5.24)
3w T I M

t

A(’)M HA _

These expressions include the contributions due to the density variation of the di-
ameters and the dielectric constant.

Let us recall that, " satisfies the closure equation
0 2 -
2 /(z)) = Zpi [(z,- — nof)/(l + Fo,)] (5.25)

Usually, eq 5.25 is easily solved by iteration starting with the initial value 2T"; = &,
where k is the Debye screening parameter

1/2
K= (4mz p,-zf) (5.26)

With the mean ionic diameter approximation o; = oeq 5.25 becomes

I = [(1+2x0)"/* 1] /(20) (5.27)

Hard sphere contribution
The hard sphere contribution BAA¥S is calculated from the Carnahan-Starling

approximation [31, 32]. One has that
3X, X, X
1-X3  X3(1- X3)?

3
g{mA”S - (X—g - X(,) In(1 — X3) + (5.28)

The corresponding contribution to the activity coefficient is calculated in a way
similar to eq 5.18. After some algebra one obtains

. do
Ayl = M+ Y Qo2 (529)

with
M;=—-Inz+0;F, +0’F, + ol F;

Qi = F, +20,F, + 302F;
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and -~
=2
7
. X, X211 _x3?
Fop=— m 3?-—+3\ulnr
X 3X X, — X3/X2 X3 X3
f«t:X—‘f-—. ‘*"2—- 2% n
where

” ?r n
- 53 pt
k
:II:I-X3

From eq 5.29 the mean hard sphere activity coefficient can be calculated in the
same way as in eq 5.14

X3 X XM142K— X3 X0 X
Al HS s 2 ) 1 _3 + 2 3 3 112 3
Vs (xgxg L XX T X
1
+p_ ZPJQJ‘D(UJ) (5.30)
t
3

and since eq 5.15 also holds for the hard sphere part one finds

X 3X, X X33 -
sl 2 ke 343 X3
¢ 1 -— X:j + X{](l Fis XS)Q + XQ X;](l =5 X3 ZPJQJ Gj (5‘31)

5.3 Applications to experiment

5.3.1 Lewis-Randall and McMillan-Mayer description levels

In contrast to Pitzer’s work, which is given in molalities (Lewis-Randall theory
(LR)), the MSA naturally expresses thermodynamic quantities in terms of concen-
trations, in the framework of the McMillan-Mayer (MM) theory of solutions [33].
Thus, the data have to be converted from Lewis-Randall to McMillan-Mayer scale
for adjusting the model to experiment. The basic ingredients of the LR-to-MM
conversion have been given [34] and recently an approximate simple conversion has
been tested [35]. The great advantage of this transformation is that it keeps the
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thermodynamic consistency for the activity and osmotic coefficients, in the sense
that these quantities verify the Gibbs-Duhem relation on both LR and MM levels.

It must be underlined that this conversion should be performed in any study
using the primitive MSA because, in this framework, the thermodynamic excess
functions are calculated at the MM level. The MM framework is characterized by
two features: the solvent is regarded as a continuum which manifests itself through
its permittivity, and the thermodynamic properties are calculated at constant solvent
chemical potential. Although the effect of the conversion is negligible at relatively
low concentrations it becomes significant as concentration is increased, typically
above 1-2 mol/kg [35].

The relation between LR and MM osmotic coefficients may be expressed [35] as

pIR = gMM) (1 _ CV,) (5.32)

where ¢“f) and ¢™Mi are the total osmotic coefficients at the LR and MM level,
respectively.

For activity coefficients one may use the following relationship

In y}Lm =y .oV, gMM) (5.33)

inwhich yEMM’ is given by eq 5.37, V; is the partial molal volume of species i, and
wf“‘- is the LR activity coefficient in the molarity scale, i.e. [4]

R = PV dy (5.34)

with ,Y:(LH) the experimental activity coefficient on the molality scale and dy the
density of pure solvent.
In these expressions C is the total solute concentration

C=m/V
with m the total solute molality
m= z m;
i
and V is the volume of solution per mass of solvent in the LR system; Vi is the

mean solute partial molal volume that can be calculated simply [36] from density as

M-d

V = ——— .
T d-Cd (5.35)
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where i
M= E Zm,Mi
or

M = %;msM‘g

in which the subscript S indicates a salt, ms its molality, Mg its molar mass, and

| 0d
d‘[@@]z.

at constant mole fractions x,

For comparison with experiment the quantities are calculated at the MM level
as the sum of the electric (MSA) and hard sphere contributions

oMM = 1 4 AgMSA + AgHS (5.36)

and
Iny™MM) = AlnyMS4 4 Alny#S (5.37)

5.3.2 Results

Assumptions

The following assumptions have been made [28, 36] about the ion size variation
and the permittivity. The anion size was kept constant (equal to its crystallographic
value for simple anions or it was adjusted in the case of complex anions) and the
diameter of the cation and €' were chosen as linear functions of the concentration,

=0 400 Cg - (5.38)

etew =1+aCs (5.39)

where Cg is the molar concentration of the salt, ey is the relative permittivity of
pure water and @, o()) and « are parameters.

It is worth noting that common values of a{?), the cation size at infinite dilution
which includes hydration water, could be determined [36] for the salts containing
the same cation.
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It follows from relations 5.38 and 5.39 that
D(o) = o — o (5.40)

eD(e™) =1 —¢/ew (5.41)
where D is defined by eq 5.23.

Strong Electrolytes

Then the model could be fitted to literature thermodynamic data. Some results
for strong electrolytes are shown on Figure 1. Generally the description can be
performed [36] to the maximum concentration to which data are available: 16 mol/kg
for HCI, 19 mol/kg for LiCl, 20 mol/ke for LiBr....

45 T T T i

4

35

3

25

2

Osmotic Coefficient

LS

0 5 LD LS 20
m / (molfkg)

Figure 5.1: LR experimental and calculated osmotic coefficients for LiCl (¢), LiBr
(+), and LiNO; (0O), as a function of the salt molality.
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Associating  Electrolytes

Subsequently, the model has been extended [37, 38] to the case of associated
electrolytes by using a recent model for associating electrolytes[39]. Unlike the
classic chemical model of the ion pair the effect of the pairing association is included
in the computation of the MSA screening parameter I'. Simple formulas for the
thermodynamic excess properties have been obtained in terms of this parameter
when a new EXP approximation is used. The new formalism based on closures
of the Wertheim-Ornstein-Zernike equation (WOZ)[40, 41 does accommodate; all
association mechanisms (coulombic, covalent and solvation) in one single association
parameter, the association constant. The treatment now includes the fraction of
particles that are bonded, which is obtained by imposing the chemical equilibrium
mass action law. This formalism was shown to be very successful for ionic systems,
both in the HNC approximation and MSA [42, 43, 44, 45, 46, 47].

The full solution of the binding MSA for dimer association was discussed else-
where (BIMSA)[48, 39]. Imposing an exponential closure reminiscent of Bjerrum’s
approximation [39] for the contact pair distribution function results in simple ana-
lytic expressions for the excess thermodynamic quantities.

Figure (5.2) shows the result for two salts up to very high concentration.

095 } -
09 ¥
0.85
08
0.75
0.7
0.65
0.6

Usmotic Loetnicient

0.55
0.5

0 5 10 15 20 25 30 35
m / (mol/kg)

Figure 5.2: Calculated and experimental osmotic coefficients for ammonium nitrate
(/) and potassium nitrite (CJ) up to very high concentrations. Notice the sinuous
profile in the case of potassium nitrite which is described perfectly by the fit.
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Solutions of NaOH and nitric acid, MgSQOj,... could be described to high con-
centration. A description for sulfuric acid has been obtained at low concentration
(below 0.1 mol kg ') with an association constant which compares well with the lit-
erature value. Another description has been made for high concentrations (between
6 and 28 mol kg ') by using a chemically plausible model and a realistic value for
the size ofthe HS(); ion. In most cases the association constant is of the same order
of magnitude as the literature value when available.

2.2 T T ™ dl,

5 f |
§ 18} _
L=
g
5 1.6 .
£
3
E 14l g

m/ (mol/ke)

Figure 5.3: LR experimental and calculated osmotic coefficients for the mixture
LiCI+LiNOjy, for 3 values of z, the fraction of LiNO3: z= 0.3066 (&), z= 0.4662
(x) and z= 0.6414 (+), as a function of the total molality. Lines are the calculated
curves. The results for the pure salts LiCl and LiNO; are recalled: z= 0 (¢) and
z=1 (0O).

Electrolyte Mixtures
Mixtures of strong and associating electrolytes have been described also [36, 38].
For mixed electrolytes a natural extension of eqs 5.38 and 5.39 is

ok =0} +0%) Ca+05.,Ca (5.42)
e ew =14+ aaCa+apCph (5.43)

where a cross term is included, aﬁl_é, to account for the effect of salt B on the size

of cation k& which belongs to salt A. No cross term is added to the permittivity, for
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Figure 5.4: LR experimental and calculated osmotic coefficients for the mixture
MgCly, + MgSOy for three values of the MgCl, ionic strength fraction z : z= 0.246
(), z= 0.493 (A) and z= 0.752 (O), as a function of the total ionic strength. The
results for the pure salts MgCl, and MgSQy, from the same reference [49], are also
given: z= 0 (+) and z= 1 (x). Lines are the calculated curves.

which eq 539 may be regarded as a first-order expansion of e~' in powers of the
concentration.
Mixtures have been described within this model [38] by using eqs 5.42 and 5.43.

5.3.3 Particular features

The following comments can be made about the results found for the parameters
introduced in the model.

e The common values of #!* are in decreasing order in the series of the alkali
cations:
cO(Li*) > 6@ (Na*) > a0 (K™)
The halides of Rubidium and Cesium ions could be described by taking the
crystallographic diameter and imposing ') = ()} for these ions.

s In nearly all cases, the adjustments have resulted in values for the parameters
that have the following satisfying properties:
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gt <0

a >0

The first relation is interpreted by a decrease in hydration as concentration is
increased. The second relation is consistent with theoretical and experimental
studies of the dielectric properties of solutions.

For associating electrolytes the values adjusted for K are of the same order of
magnitude as the literature values, when available.

A nice feature of eqs 5.42 and 5.43 is that no new adjustable parameter is
required for mixed electrolytes with a common cation. The parameters of the
pure electrolytes will normally suffice:

O = o,{‘m - JE)C;. + O’S)CH (5.44)
where electrolytes A and B share cation k.
Using this procedure, predictions could be made for mixtures with a common
cation, without any new parameter. Figures 3 and 4 show the results for such
mixtures. The agreement with experimental data was generally excellent.
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Chapter 6

Mathematical background

6.1 Integral and Fourier representation

The solution procedure of the linearized Poisson-Boltzmann equation used above is
not suited to include hard core effects of the ions, the most we can do is to give a
size to the central ion, but that makes the pair distribution function asymmetric. To
include the hard core effects in a symmetric way, we have to change the formalism.
We notice, first, that Poisson’s equation (1.8) relates the potential y;(r) to the
charge distribution ¢;(r). We can formally integrate this equation to yield:

@i(r) = é}'[drl E‘q{ir)l-l (6.1)

which is equivalent to adding up the Coulomb potential at r produced by all the
charges in the system. Clearly, (6.1) must be the same as (1.8). Therefore:

1 1
Vipi(r) = = [ dry gi(r,) V2 6.2
o) =+ [ aniate) 2 [ =) (62)
For this to be true we must have:
. 1
d : 2 N | R i v
f ry ¢i(ry) V; Lr - rll] 4mqi(r) (6.3)
We introduce the Dirac § function:
_J 0 ifz#0
8(z) = { o ifzx=0 (6-4)
so that "
f dzé(z) = 1. (6.5)
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And in three dimensions:

é(r) = 6(z)é(y)d(z) (6.6)
which means that if: 1
Then (6.3) reads:
/dn gi(ry) [-47mé(r — ry)] = —dnrqi(r;) (6.8)

which is what we wanted.

We notice that if we multiply (6.7) by = ’—‘—l we get Poisson’s equation for a point
charge, the charge density being g,(r) = z,ed{r,‘-

We would like to separate the contribution to the potential due to the central
particle. In this case (6.1) reads:

1 .
pi(r) = W /dfl alF =l Zj:pj zje gij(r1)- (6.9)
In the DH approximation g (r), or also the new quantity
hij(r) = gi(r) = 1 (6.10)
is written
hij(r) = —Bezi p;(r). (6.11)
Now substituting (6.11) into (6.9) and using the electroneutrality condition
Z Pizi = 0 (612)
i
we get
16:;,::JI Be? Peziz
—Bzyepi(r) = Z px | dry ——— et — 11| wi(r1) (6.13)
or
hij(r) = ¢,y (r Zpk f dry cgi(r — i) hik(ry) (6.14)

where we have made the 1dent1ﬁcat10n

‘Bez Z,'Zj,'

C-'j{?") = = = —ﬁ“n'j(f)< (6.15)
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Equation (6.14) can be derived for a much more general class of distributions

and is know under the name of Ornstein-Zernike (OZ) equation.

In the discussion of the solution of the OZ equation it will be necessary to unify
both descriptions of the Poisson equation: this can be achieved by using the FT
technique. Our discussion of the FT will also serve as an introduction to the math-

ematical techniques used in solving the MSA.

The FT of a function is defined by:

foy= [ dvet f(a).
The inverse FT is given by:

1@ =52 [ ake k)

substituting (6.16) into (6.17):

f(x) = % /w dk ¢ f_m dzy e*™ f(ay)

-0
which is true, since

Sz —m) = %/ dk e*a-71)

is a representation of Dirac’s delta function. In three dimensions:

F(k) = [w dre™r F(r)

1 ikt [
now take the Laplacian of F(r)

V2F(r) = %/dk(—k?)e-**ﬁ(ky

Consider now the Poisson equation:

Vip,(r) = —4—” [a:(r) — ed(r)]

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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where we have now included the point charge corresponding to the central ion. In

the linearized Bolzmann approximation:

; ; 4m !
Vi (r) = &2ou(r) + - zed(r).
1]

@lk) = /dr eik.r‘Pi(?']

= 4—ﬂf drr sin(kr) o, (r)
k Jo

@k) = 4ﬁf0w dr cos(kr) /de.mp,-(s}.

/ dre**5(r) = 1

[tk 9 = <K o).

5 4mz;e
k2, (k) = K Gulk) + ——=
0

i drzie 1
A

@ (r)

1 ap dmzie 1
st § deee T __
i) 87r3f 6 k%4 K?
There are two ways of doing this:
(1) Compare to the FT of £°Z

P

(6.24)

(6.29)

(6.30)

(6.31)

(6.32)

(2) Use contour integration: to do that we must close a contour around the lower
half complex k-plane, where we get a contribution only from the pole located at

k= —ik.
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On other hand, the Fourier Transform of Eq. (6.13) yields

ze K2

D, == - ==
= eok? k2

@ (k) (6.33)

where we have used the property of the Fourier Transform of the convolution of two
functions. We remember that the Fourier convolution [ # y of two functions f{x)
and g(x) is defined by the integral

fro = [ fe- o (6.34)
In terms to FT we have
FT(f*g(z)) = FT(f)FT(g)- (6.35)
and
—_ _1_ ,
FI‘(;) = (6.36)
Therefore se 1
@i(k) = _;—ﬂm (6.37)

which is the same results that obtained from the differential equation (6.31).

6.2 Direct correlation functions in terms of
geometry and electrostatics

We consider an arbitrary mixture of charged hard spheres. The general so-
lution of the MSA [1] yields simple expressions for the thermodynamics and pair
correlation functions. The dcf was obtained by Hiroike [2]: For a system of hard
spheres of radius R; = o;/2 charges z; and number density p; = N;/V, the dcf ¢;;(r)
can be written

ciy(r) = cffS(r) + cif*"**(r) (6.38)

where
i 6.39
Yo = cokaT (6.39)
is the Landau length of the system, measuring the relative importance of the elec-
trostatic contributions. When 7, = (), that is when either the dielectric constant ¢

or the temperature T go to oo, or when the charges are shutoff by formally letting
the electron charge e to be zero, the system corresponds to a neutral uncharged
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hard sphere mixture for which the dcf cgs(r) is that of the Percus-Yevick theory.
An important step in constructing a free energy model for the hard sphere mixture

begins by casting the known ('fjs r)in geometric form [3]

—cl3(r) = X¥AV,(r) + XPAS,;(r) + XVAR,, (r) + x00,4(r) (6.40)

obeying the MSA closure
i’ >R +R)=0 (6.41)

For two spheres of radius R; and fi; at a distance r,

AVi;(r) is the overlap volume,
AS,,(r) is the overlap surface area,

AR;(r) = 0[r — (R; + R;)](R, + R;—(mean radius of convex

envelope of the union of two spheres)) (6.42)
AS,,(r)

= mwkny HOlr — (Ri+ R;))(R:R;)/(R: + R;)
©y(r) = 8[r — (Ri + R;)]

e o _ 995((6)
X'= peae. (6.43)
where ]
X9 = =& (6.44)
XM = {1—_&{—3]2 (6.45)
= i e s
X = 1 —Eﬂ'fs]2 ’ [12?2]3 ! (1/477)&3[_1_1—63}4 e
are the inverse compressibility coefficients in the expansion
x = Dxl(enrs = 2T (6.48)
P i
and &, are the fundamental measure variables
& =) pR (6.49)
7

with R,? =V, 5;, R, 1 for ¢ = 3,2,1, 0, respectively
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Our first step is to rewrite the dcf of the MSA as written by Hiroike in terms
of the geometric and/or electrostatic forms, for the charge part ¢**™%(r). We shall
present expressions for core overlap configurations, r < (R, + R,) recalling that the
MSA closure is

g (r) = —' r> (Ri+ Ry) (6.50)
After some manipulations Hiroike’s dcf can be cast in the form

¢ (r) = (4/m)nP AVy(r)
(ER )[1(Xe + X;) — (NiN;)|W35(r) (6.51)
‘|"2[N X — no; 3]6‘-3-(1')

where W,(r) is the electrostatic interaction of two charged hard spheres of unit
charge smeared on the surface. The spheres are of radius [, f2; and they are sepa-
rated by a distance ». The other parameter of the direct correlation functions are
given in terms of a scaling parameter I' [1], the sizes and charges of the hard spheres,
and their concentrations. A new system parameter 7 , defined by

Pi0iz 1
= Z 1+l - pia; \6:52)
C/m(1 - &)+ ¥, 2

This parameter is related to the symmetry of the solution: In the restricted case, in
which all the diameters of the ions are equal, 1 = (. A less restrictive case, in which
pair of ions have the same diameter, which however may change from pair to pair,
also yields n equal to zero. In terms of these parameters we get

2
2 — o
Xi=="—"-—" "
T 14T, (6:53)
'z + no;
Nij=—0— 6.54
].+I‘O',' ( )

The important single parameter of the solution is the capacitance length (2')~! =
Ae, whose role and name will become apparent when we will discuss the thermody-
namics of the system in the next section. Before we proceed, however, note that the
prefactor of ©;; in Eq.(6.51) is also symmetric

iji = -[7}0ng + TJJJ'X,' + FX:XJ (655)

Unlike the case of the neutral hard spheres, where there is a unique way of writing
down the dcf, because of the fact that Wy;(r) can be written as a linear combination of
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the geometric overlap functions, there is no unique way to perform the factorization
of the charge dcf. This is in part one of the technical problems that need to be
overcome. Specifically, the following relations are true:

RiR,Y,, (R, R);7) = (R, + &) (R, +d))¥, (R + di, R, + d;;7)
—d,, r< R;j— R; (6.56)
—(d: +d,)/2, r>R,—R;

for any positive d,, d,,

AR
V,i(R, R;) = =2
AS, Oy;
- + 6.57
4mR;R,(R; + R;) R+ R; ( )
e (NN (210,)(2n0)
v sy —lady i 1051\ &ngi
2[N; X; — no. X;] = o + N (6.58)
We can also write for core overlap configurations
4[7}{)(1 + X) - (!\",‘J’V )] XX
charge - \n? 1 3 AS,i(r ] ei
CU (T’) (4/7,—)7? AV;J(T') g 4‘”(& + ‘[{j) J(?)_‘_ (}?4 & R}} (J(T)]
6.59

or, if we take into account the boundary condition of the MSA Eq.(6.50) and in view
of the Onsager limit, we can write

52O (r) = —22Vy5(r) + (4/m)P AV (r)
(X, + X,) — (NN)] o XX
TRR R+ Ry) )T ot By

2iZy

RiR;

Rii(r) + Oi5(r) (6.60)

Recalling the results for uncharged hard spheres, we see that independently
of the particular decomposition in terms of geometric electrostatic basis ’weighted-
densities” characterising the geometry of individual particles play the same vital
role in the present ”charged” case. In the uncharged case we had the scaled particle
theory as a guide, and we followed the MSA-compressibility route to the thermody-
namics. For the “charge part” we must follow the energy route, so that the result
is in a mixed representation, which is more cumbersome.
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Chapter 1

Introduction

1.1 Introduction

The study of the interface between two phases which are charged and or con-
ducting is of relevance to a number of systems which occur in nature: colloids, mi-
celles, membranes, solid-solution interfaces in general and metal solution interfaces
in particular. These form a bewildering array of systems of enormous complexity.
The investigation of the structure of these systems poses considerable difficulties,
both experimentally as well as theoretically. The experimental problem is that the
interface has 10~® particles relative to the bulk, solid or liquid phases. For this rea-
son one needs a surface specific method, which is able to discriminate between the
signal from the surface from the rest. Electrons do not penetrate into solids and for
that reason have been used extensively for the ex-situ determination of the surface
structure of solids. They must be used in vacuum and that precludes their use in the
in-situ study of the liquid solid interface. The study of electrode surfaces removed
from the liquid cell under various conditions has provided an enormous wealth of
useful data which we will not try to review here. The only way to understand the
relation between the ex-situ and in-situ structures is to measure both, something
that only nowadays is becoming feasible [1].

1.2 Structure determination

The scanning tunneling microscope (STM) [2] and the atomic force microscope [3]
are fascinating new techniques which enable us to see directly the structure of the
interfaces. The application of these techniques to electrochemistry is far from trivial,
and much progress has been achieved from the initial experiments [4, 5], in which
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the resolution was relatively poor, until the more recent, rather spectacular pictures
[6, 7, 8,9, 10] with atomic resolution.

While the atomic force microscope (AFM) is a relative newcomer [11, 12], it has
some advantages over the STM because it does not measure currents, and therefore
does not interfere with the electrochemistry.

The scanning probe microscopes work by moving a sensor needle on the surface
to be studied. The sensor tip naturally varies, and is a hard metal needle for the
STM , generally tungsten, but Pt-Ir points have also been tried. For the AFM
a nonconducting material, such as Si3/Vy have been employed. The interaction of
the tip and the sample is monitored as the tip is moved across the sample by a
three dimensional piezoceramic actuator, who provides the scanning motion in the
x and y directions, and is moved up and down in the z direction, so as to keep the
interaction with the surface constant. This motion is recorded for every position in
the x,y plane, and fed into a computer, which then generates 3 dimensional images.

In STM the tips are held 1-2 nanometers above the surface of the electrodes.

If the tip is close enough to the surface there will be a tunneling current, which
is an exponential function of the tip to surface distance. This causes very strong
variations in current intensity when the tip is moved up or down, the current may
typically vary by an order of magnitude when the tip is moved 0.1 nm ( 1 angstrom)
in the z direction. This means that the vertical resolution can be as much as 0.001
nm. The image provided by the STM is really more an electron density map of the
surface, and the real positions of the atoms are related to this map through form
factors that are known to a certain approximation.

Low resolution scans are certainly less sensitive to these form factors and provide
extremely useful morphology information.

In electrochemical environments, the STM is modified to include an integral
bipotentiostat which controls independently the voltage of the tip and the surface
relative to a given reference electrode. The metal tip is maintained in a potential
region in which faradaic processes at the tip are kept to a minimum. In most STM’s
the working electrode potential is scanned over a certain voltage range, and the tip
potential is kept constant. The faradaic current at the tip is kept to a minimum by
insulating the sides of the tip, and leaving only the point uncovered. This is a very
important detail in electrochemical STM.

The AFM works by a different principle: The tip is mounted on a spring or
cantilever, and the force between the tip and the sample is recorded.

In the most popular version of the AFM the deflection of the cantilever is mon-
itored by an optical device consisting of a diode laser focused onto the end of the
cantilever and reflected to a split or sectored photodiode. As the cantilever moves
the amount of light deflected by the two sectors changes, and generates a current
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proportional to the deflection of the cantilever. This in turn activates a feedback
mechanism that will change the height of the tip so as to bring the cantilever back to
its original state. Thus, the height of the tip is adjusted so as to keep the pressure
on the surface constant. As in the STM, the height is recorded before the tip is
moved to a new X,y position, and the process is re-started. All the information is
then fed to a computer, who generates a three dimensional plot.

In electrochemistry, the sample and the tip are immersed in the electrolyte, and
it is the electrode that is moved in the solutions. A proper design insures that the
proper electrical conections are kept, and no leaks occur during the scanning of the
surface.

The tip is one of the most important elements of the AFM. For electrochemical
experiments it is made of microfabricated pyramidal Si;/Ny which is attached to a
quarz cantilever. The tips are chemically inert and tolerate 1 N strong acid solutions
for long times. Basic media and HF containig solutions cannot be studied with this
device.

As in the STM, the AFM does not measure directly the position of the atoms on
the surface. It measures the force between the tip and the surface, which is caused
by the overlap between the electon clouds of the atoms at the tip and those at the
surface. It is clear that the interaction involves not only the atom at the very tip
of the needle, but also the neighbors. A detailed theory of the forces in the AFM is
not available at the present time.

The STM and the AFM are complementary techniques, and each has advantages
of its own. The AFM has the advantage that it does not interfere with the electro-
chemistry, since the tip is nonconducting and inert. Therefore, measurements can
be made even when large faradaic currents are flowing. The AFM can also be used
for surfaces other than metals.

The STM provides single atom imaging in electrochemical environment. Steps,
single atom defects and other fine details can be seen with the STM. This cannot
be done with the AFM, where all of these features appear blurred. The reason for
this is that the interaction energy is much lower for the STM, since extremely small
currents can be measured, and therefore, it causes less distrubances to the sample.
In general, however, there is good agreement between the STM and AFM when the
same systems have been observed.

One major drawback of both of these techniques is that although they provide
atomic images, there is no way of telling which are the atoms that are seen. There-
fore complementary experiments and theoretical interpretations are important to
elucidate the structures.

A large number of very interesting experiments have been made recently:

* Direct observation of underpotentially deposited of Cu on Au(111) in the p-
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resence of H,SOy [6], provides beautiful pictures of the ordered /3 x /3
structures that are attributed to the bisulfate overlayer.

Surface reconstruction of metals: One of the discoveries of recent times is that
the surfaces of many metals even noble metals undergo reconstruction. One of
these is Au(111) which undergoes a slow reconstruction to a fishbone structure
[13]

Dynamical processes such as, for example the oxydation of Au(111) surfaces in
perchloric acid solutions [14], give direct evidence on the changes in the surface
morphology during this process. The formation and dissolution of UPD layers
of Pb on Au(111) were also followed by STM [15]: Substantial roughening is
observed during the deposition and subsequent stripping of the UPD layer.

Interactions of small molecules with electrode surfaces can be studied with
these techniques: Compression structures of CO on Pt(111) electrode surfaces
were exqmined by STM in the presence of H2S(0y. Several structures were
observed, depending on the potential and on the concentration of CO.

The structure of catalysts is also of considerable interest. The relation of the
structure to the chemical reactivity of a catalytic surface is of importance in
chemistry. A system thaqt hqs been recently studied is the UPD layer of Bi on
Au(111). Chen and Gewirth [12] showed using the AFM that the catalytically
active phase was a (2 x 2) monolayer of Bi on the Au surface, while the more
densely packed monolayer was inactive.

1.2.1 X-Ray techniques

X-rays have some unique characteristics for in situ studies in electrochemistry:

1. Hard X-rays of high energy, (around 5 to 10 keV) are of a wavelength compa-

rable to atomic dimensions, and therefore are a probe of the atomic structure
of the interface.

2. The hard X-rays have large penetration depths in aqueous solutions ( larger

than 1mm), so that the electrolyte above the electrode has little effect on the
beam.

3. The cross section for X-rays are low, which on one side is an advantage because

unlike the STM or even more,the AFM ( where the influence of the tip on the
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substrate can be noticeable), they will produce a minimal disturbance to the
interface. On the other hand, this is a disadvantage, because the signals are
also small. The problem of surface sensitive structure determination is that
the number of atoms at the surface is roughly 10} while the number of atoms
in the bulk is 10*". Therefore we have to measure a signal that in principle is of
the order of 10 ®compared to the background. However, in all the techniques
mentioned above, this goal can be achieved by a combination of extremely
powerful X-ray sources and rather specialized detection devices and methods.

It is clear that the Synchrotron radiation sources is the reason that these experiments
can be performed. Synchrotron radiation is produced when electrons travelling at
almost the speed of light are deflected by a magnetic field perpendicular to the
electron beam. From the theory of relativity it can be shown that this will produce
a highly polarized, highly collimated and bright beam, which is between 10° to 1('*
times brighter than a conventional X-ray source.

Another important characteristic is the range of energies arid wavelengths avail-
able from synchrotron radiation. This is very important in EXAFS and XANES
experiments, where the energy is scanned rather than the angle.

The study of the electrode interface with X-Rays comprises four powerful meth-
ods of structural determination:

» Extended X-Ray absorption fine structure (EXAFS) is a technique in which
the sample is submitted to an intense X-ray radiation field, which causes the
emission, and subsequent reabsorption of photoelectrons. These electrons are
the real probe used by this method: The backscattering gives information
not only about the distance of the neighbors of the target atom, but also the
near edge structure (X-ray absorption near edge structure, XANES) yields
information about state of oxidation and chemical binding of the adsorbates.

 Surface X-ray diffraction is an extension of conventional X-ray diffraction, and
is the most accurate and least invasive, (disturbing of the sample) method of
structure analysis. It requires crystalline samples of a certain minimum size.
However, it can only give accurate measurement of the tangential x-y structure
of the electrode surface.

* Low angle X-ray reflectivity (LAXR). The intensity of specularly reflected
electromagnetic waves depends on the electron density profile of the surface.
The theory of Fresnel [16] is used. At a low angle above the metallic electrode
surface, the X-rays are reflected because the refractive index of the metals is
slightly lower than 1. Since the interface is rough at the atomic level, there are
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both reflected and refracted waves that interfere, and produce an oscillating
interference pattern.

» Standing waves (XSW) is a technique closely related to LAXR: The incident
X-ray beam interferes with a strongly Bragg diffracted or totally reflected
beam to create a stationary standing wavefield. The intensity of this field is
of the form

I = Asinlaz + ) (1.1)

where the period a depends on the wavelength of the incident X-rays and the
crystal used as electrode, but the phase ¢ changes with the angle of incidence
x. Thus rocking of the surface makes the stationary waves maxima scan the
z direction. This technique is the most difficult experimentally because it has
very demanding allignement requirements.[17]

1.2.2 EXAFS

EXAFS measures either the absorption coefficient or the fluorescence from the target
atoms, produced by a beam of x-rays of variable energy. This energy is scanned from
slightly less to about 1 keV higher than the absorption edge of one of the atoms
at the interface to be studied. When the energy crosses the absorption edge, then
photoelectrons are emitted, some of which are backscattered and reabsorbed by the
target atom. Both the absorption coefficient and the fluorescence produced by the
target atom are proportional to the backscattered intensity. For practical reasons
electrochemical EXAFS [20, 18, 19] is done with X-rays of about 8 to 10 keV, which
means that very light elements are inaccessible to EXAFS, notably oxygen, chlorine,
sulphur. Metals like copper, Nickel can be studied using the 1s shells (K edge), and
for heavier elements, such as lead, 2p levels (L edge) has to be used. One requisite
of SEXAFS is that a certain specific atom has to be adsorbed on the surface as a
monolayer. This means that underpotential deposited (UPD) monoatomic films are
ideally suited to this technique. In particular the first succesful SEXAFS experiment
[20] was performed on a UPD film of Cu on Au(111). The spectra shows a large
increase in the signal when the energy crosses the photoionization energy of the
target element. The shape of the edge is characteristic of the chemical bonding state
of the target atom. The near edge region structure is accounted for by transitions of
the photoelectrons to empty states near the Fermi level and to multiple scattering
by atoms in the neighborhood of the target atom.[21] Although the theory is in
general complicated, the near edge structure yields direct information about the
ionization state and bonding of the target atom, which cannot be obtained by any
other method. For example the near edge spectra of Cu and of Cu'* are shown in
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Figure 1.1: Raw spectra of UPD Cu monolayer Au [111].

Figures 1.1 and 1.2 which show the sometimes rather dramatic changes produced by
shifts in chemical bonding. When the energy of the photoelectron is bigger than 50
eV, then it ceases to be influenced by the chemistry and the scattering cross section
can be explained in terms of the backscattering from the neighboring atoms. This
means that although X-rays are used as the primary probe in the experiment, it is
the electrons that actually do the structure probing, or in other words, EXAFS is
really an electron scattering method, much like EELS, for example, and the X-rays
are simply the means of production of the electrons. Therefore, the wavelength of
the probe is the wavelength of the photoelectron

A=2n/k
where the wave number £ is given by

k= 2
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Figure 1.2: Raw spectra of CuSQ;,.

where h is Planck’s constant over 2m, m is the mass of the electron, E is the energy
and Ejy is the energy of the edge. In a fluorescence experiment the intensity is given
by
x(K) = S A;(k) sin[2kR; + 6;(K)) (L3)
1

where the sum is over the j neighbors of the target atom, R; is the distance of that
neighbor, ¢,(k) is the phase shift of the photoelectron, which is a function of both
the target and the neighbor as well as k. As it happens in electron scattering in
general, the structural information depends crucially on the quality and accuracy of
both ¢;(k)and the amplitude A,(k), which is a complicated but known function of
the backscattering neighbor electron density distribution, geometric factors and the
Debye-Waller term of the form
exp(—k*o?)
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Figure 1.3: Schematic representation of an apparatus for surface diffraction experi-
ment

where og; is the mean square displacement of the neighbor from its equilibrium po-
sition. This factor implies a strong attenuation of the intensity for atoms thatare
loosely bound to the surface. In other words, it will be very hard to see physisorbed

molecules of water adsorbed on an electrode by EXAFS. Only chemisorbed atoms
will show a sufficiently strong response.

The interpretation of the EXAFS data is therefore not unique, and great care
should be exerted in the analysis. But on the other hand it provides information
that cannot be obtained in any other way.

1.2.3 Surface diffraction

Figure 1.3 gives a schematic representation of an apparatus for surface diffrac-
tion experiment.

The wave vectors of the incident and diffracted beams are k and k'. Since we
only deal with elastic scattering they are both of the same magnitude

k=k =2r/\
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where A is the wavelength of the X-rays. The intensity of the diffraction spots ( or
rods) depends on

Q=k -k
The magnitude of Q is given by
4
Q= T”sine (1.4)

where 28 is the angle between k and k'
For crystalline bulk materials the X-ray diffraction pattern consists of a series of
spots or Bragg peaks [22], with an intensity given by

1(Q) = 2Re [Z f(n)eﬂ"'q] (1.5)

where Q is a function of Q and the sample orientation, f(n) is the form factor of
atom n and R its position given by the angles X and ¢.

In Eq.(1.5) f, is the form factor for atom i, which is proportional to the square
of the atomic number, or the number of electrons. This means that the cross section
for oxygen is 64 times larger than that of hydrogen, and for example, lead, with an
atomic number of almost 100, has a cross section of about 100,000 times that of
hydrogen. This illustrates very dramatically the fact that only heavy elements are
accessible to surface diffraction by X-rays.

The peak positions are at the projections of the positions of the points of the re-
ciprocal lattice of the crystal that is studied. The peak positions determine the unit
cell’s size and symmetry, while a careful analysis of the intensities of the different
reflections yields the positions of the atoms within the unit cell.

When a highly perfect crystal pattern is observed, very faint streaks between
the diffraction spots can be observed, which are the so called diffraction rods. The
observation of these diffraction rods is facilitated by the glancing angle technique,
which consists in shining the X-ray beam at the critical angle at which total reflec-
tion occurs ( remember that the index of refraction of metals to X-rays is lower than
1, so that for small angles of the order of 0.1 degrees total reflection occurs). At this
angle there is a strong enhancement of the refracted beam that will travel along the
surface. This is known as the surface enhancement.

The truncation rods therefore are truly two dimensional scattering patterns which
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contain 2 dimensional sums rather than 3 dimensional sums as in the bulk case.

The intensity of the trunction rods is influenced by the structure of the crystal
near the surface as well as that of the overlayer, or fluid near the electrode. The
measurement of the truncation rods permits the determination of the structure of
the adsorbed atoms relative to the positions of the substrate atoms, and also the
rough features of the density distribution above the electrode.

Experimental results are available for the diffraction rods and structure of an
overlayer of Pb on Ag(111)[23, 24]. Since these measurements are very accurate it is
also possible to measure the compression of the UPD overlayer of Pb as the potential
is changed[25, 26]. The compressibility is certainly related to the electrosorption
valency, discussed in another section of this book.

1.2.4 Other in-situ methods

Other in-situ techniques give information that is thermodynamic in nature
since it comprises the average over a number of atoms. One technique that has
been established recently is the quarz microbalance[27]: this instrument can measure
small changes in the mass of a metallic electrode that is attached to a quarz oscillator.
It has the disatdvantage of not being able to de-couple the dynamics of the inner
double layer from that of the diffuse double layer. The electrosorption valency, for
example can be calculated directly,by measuring the mass deposited at the electrode
and the amount of charge from voltammogram. The interpretation of the results
of this instrument requires electrode surfaces that have large molecularly smooth
regions. The spectroscopic methods using ultraviolet, visible or Raman spectroscopy
[28] are very useful in situ probes because a large number of organic molecules can
be studied . Interesting information about changes in bonding, and symmetry can
be extracted. The optical spectroscopic methods do not require special installations
such as the synchrotron, and are most useful for complex molecular species. The
techniques are the surface enhanced Raman ,surface infrared spectroscopy, second
harmonic generation , which permits to discriminate between different geometries
of the adsorbates on single crystal surfaces.

Amongst the optical techniques there are also the more traditional methods such
as the ellipsometry, electroreflectance and particularly, surface plasmons , where
experimental and theoretical advances have made it possible to offer a picture of the
surface electronic states of the metal in some selected cases, such as the silver (111)
phase. We should mention here the measurement of image potential induced surface
states by electroreflectance spectroscopy . In this case, besides the normal surface
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states which arise from the termination of the crystal lattice, there are discrete states
due to the existence of an image potential for charges near the conducting interface.

A method that has yielded very interesting information about the structure and
interactions in the diffuse part of the double layer is the direct measurement of
forces between colloidal particles [29].The forces between two mica plates are mea-
sured directly in the presence of different solutions: These forces show pronounced
oscillations of a period similar to the dimensions of the molecules enclosed between
the plates. And last, but certainly not least, there is a very extensive and important
literature on the differential capacitance of solutions near either solid (polycrystalline
or single crystal) or liquid (mercury) electrodes which we will not try to cover . We
should mention the recent work on the influence of the crystallographic orientation
of silver on the potential of zero charge of the electrodes, in which a detailed map-
ping of the influence of the crystal face on the differential capacitance of the inner
layer is made [30].

1.3 Theory

The complexity of the system described by the experimental methods defies
any simple theoretical interpretation. Yet these are needed for the understanding of
what is actually going on at the charged interface. It is clear that the simplest theory
should include in the discussion two kinds of forces : the long ranged Coulomb forces
and the short ranged forces that are at the origin of the chemical bonds and are also
responsible of the repulsion between atomic cores. There are important quantum
effects at the interface due to the quantum nature of the electrons in a metal[31].
These effects are very difficult to compute in a proper way, and in most theoretical
discussions only very sketchy models of the liquid side of the interface is discussed
when attempting to describe the metal side of the interface.

For this reason we have organized the theoretical discussion starting with very
simple model systems about which a lot is known, and to systems which are much
more realistic but difficult to handle . The emphasis of the theoretical treatment will
be on the structure functions, or distribution functions p(1), p(1,2), ... which give
the probability of finding an ion(s) or solvent molecule(s) at specified position(s)
near the interface. The properties of the interface can then be calculated from
these distribution functions. One of the very interesting theoretical developments of
recent years has been the exactly solvable model developed by Jancovici, Cornu and
co-workers . This is a two dimensional model at a particular value of the reduced
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temperature, and is particularly useful to elucidate the subtle properties of the long
ranged Coulomb forces. For the non primitive model with solvent molecules there
is a one dimensional exactly solvable model . Exactly solvable models serve as
benchmarks for approximate theories and to test exact and general sum rules.

We start with the simplest model of the interface, which consists of a smooth
charged hard wall near a ionic solution that is represented by a collection of charged
hard spheres, all embedded in a continuum of dielectric constant ¢, This system is
fairly well understood when the density and coupling parameters are low. Then we
replace the continuum solvent by a molecular model of the solvent. The simplest of
these is the hard sphere with a point dipole[32], which can be treated analytically
in some simple cases. More elaborate models of the solvent introduce complications
in the numerical discussions. A recently proposed model of ionic solutions uses
a solvent model with tetrahedrally coordinated sticky sites. This model is still
analytically solvable. More realistic models of the solvent, typically water, can
be studied by computer simulations, which however is very difficult for charged
interfaces. The full quantum mechanical treatment of the metal surface does not
seem feasible at present. The jellium model is a simple alternative for the discussion
of the thermodynamic and also kinetic properties of the smooth interface [33, 34,
35, 36, 37, 38, 39, 40].

1.3.1 Exact results and theorems

There are a number of exact sum rules that the density profiles neqr electrodes
have to satisfy. One set of these rules is due to the special long range nature of the
Coulomb forces, which give rise to the screening of the charges in conducting media.
The second set of sur rules originates from force balance requirements, and are the
dynamic sum rules.

The screening sum rules

The screening sum rules, are specific to Coulomb forces. Because of the very
long range of the electrostatic forces, the stability of the system requires that all
charges surround themselves with a neutralizing cloud. The surface charge satisfies
the electroneutrality condition

o0 m
= / dz Y ep(z) =eEy/dm (1.6)
0 i=1
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where Fj is the external or applied field In homogeneous systems of molecules
interacting with Coulomb forces the screening of charges and multipoles by the con-
ducting media is intuitive because of the isotropy of the system. In a homogeneous
solution every charge is surrounded by an ionic cloud of exactly the opposite charge.
But also every dipole ( or for that matter any arbitrary neutral charge distribution)
is surrounded by a charged cloud that has a dipole moment ( charge distribution)
exactly opposite that of the original dipole, and in general, one can show [41, 42, 43]
for any charge distribution in an homogeneous system. The fact is that it is al-
so true in the inhomogeneous case, which is not intuitively obvious, and has been
confirmed by the beautiful work of Jancovici [44, 45, 46, 47, 48, 49], for an exactly
solvable two dimensional model. The demonstration of these theorems is based on
the Born-Green-Yvon hierarchy (BGY) and the an assumption on the clustering
of the correlation functions. In electrically neutral systems any fixed arrangement
of charges is screened by the mobile charges of the system. In homogeneous bulk
phase this is an intuitively natural fact, because if the long ranged Coulomb forces
would not be screened then the partition function would not exist (it would diverge),
and matter would not be stable[50]. This is expressed by the fact that the charge
distribution around a given charge e is of equal value but opposite sign. In the
homogeneous bulk phase this is a natural fact:

= /d2Zeij-h‘-_j(l,2) (17)
J

Rotational invariance in bulk fluids requires that not only charges but also mul-
tipole of arbitrary order should be screened by the mobile charges of the media
[41, 42]. This fact is much less intuitive in the neighborhood of charged objects,
in particular in the neighborhood of a charged electrode. However the theorems
hold and in classical mechanics, at least, perfect screening of all multipoles occurs,
in the homogeneous or inhomogeneous systems. However, perfect screening of al-
1 multipoles does not occur in quantum systems or in systems out of equilibrium
[51]. As a consequence of the screening the second moment of the pair distribution
function must be normalized. This is the Stillinger-Lovett [52] moment relation .
Outhwaite[53],has shown that it can be written as a normalization condition for the
electrostatic potential

Blr) = 1/¢ [ﬂ/r Eon [ s ”"J_ ’";ID} (1)

which satisfies the sum rule

1= 1/kTZejpjj dry3, (1) (1.9)
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Carnie and Chan [54] have shown that this normalization condition is also valid for
the inhomogeneous systems of charged particles.

For flat hard electrode surfaces there are number of other sum rules. A relevant
sum rule for the calculation of density profiles in the electric double layer is the
dipole rule [55]

kToln p;(1)/0FE, = /d?ZchJ Yhay (1,2) (21 — 22) (1.10)

where Ej is the bare field at the electrode surface. The differential capacity, which
is defined by

Ca = Bg,/0A® (1.11)

where ¢, is the surface charge,q, = %'f, and A is the potential drop, satisfies the
sum rule

1/Cy = _s dleZe e;0:(1)p;(2)hy;(1,2)(21 — 29)* (1.12)

Dynamic Sum rules

These sum rules are derived from balance of forces considerations. Systems
interacting with conservative forces must satisfy momentum conservation and force
balance. This apparently trivial requirement is not satisfied by some of the approxi-
mate theories used in the description of the electrode interface. We consider a system
which is limited by an arbitrary surface, which could be planar, but also a rough
surface which is planar in the average. We include single crystal metal surfaces,
but also macroscopically smooth, but microscopically rough interfaces. The precise
mathematical requirement is that there is a prism with an arbitrarily large cross
section area S , and height L ( the volume V' = SL), such that the force through
the walls parallel to z is of O(S'~%), where 4 — (), as § — oo. In our notation
r = (z,¥,2), 7,y are the coordinates in the electrode plane, and z is normal to the
electrode plane.

We integrate the force balance equation in the volume of a prism of the same sec-
tion S but smaller height L; < L, summing over all ionic and neutral species i, For
central forces in the average over the surface S the pair interactions are cancelled
out exactly. At the plane L; these forces will contribute to the bulk pressure P.
The statement of dynamic balance is that

P=p (1.13)
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where p is the normal pressure at the electrode wall:

e

B 1 Ow,(r)
= —kT —f dxd /dz i 1.14
p ; g dzdy . B pi(r) ( )

The interaction of the molecules in the fluid and the electrode are represented
by w,(r]. This function is in the most general case the sum of two contributions,
a Coulomb or electrostatic term plus a non electrostatic, covalent term such as van
der Waals, hard core, etc.

wi(r) = wf(r) + w*(r) (1.15)
Consider different situations:

1. The flat electrode face a primitive model (continuum dielectric) electrolyte. In
this case

w,(r) = w(r) + we(r) (1.16)

The hard core potential is best represented by it force

he
3"’52{3) = —kpT5(0,/2 — 2) (1.17)

while the electrostatic contribution is

wi*(z) = —eiFyz (1.18)
where e; is the charge of i, E° is the bare electric field. Using the
trality relation Eq.(1.48) we immediately get

m
F
P = kgTZ]ﬂ,‘(O’g/?) = S_TT[E012 (]19]
1=
which expresses the fact that the total pressure must be equal to the kinetic
term due to the collisions of the molecules at the wall minus the attractive

. . . . . . __ ¢E
electrostatic contribution of a planar capacitor with charge density gs = 2.

2. The flat electrode face a non primitive model electrolyte. If the solvent consists
of hard spherical neutral molecules with a dipole ( or higher multipoles ),
there will be no net force since the dipoles interact with the gradient of the
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applied field VEg, which in this case is zero. Therefore, only the hard repulsive

interactions count

¥ he
”“.)( - —kpTé(o/2 — 2) (1.20)
gz

and we get now

P=§ksT Zp (0:/2) + ps(os/2) [b(}] (1.21)
1=1
Notice that now the dielectric constant has disappeared from this relation.
This means that the electrostatic contribution in a solvent of high dielectric
constant like water, is now much smaller than in the primitive model, and that
the hard core term plays a much larger role in the makeup of the concentration
profile near the electrode.

The rough or structured electrode near a primitive electrode. The situation
is now more complicated since the charge distribution at the electrode surface
will not be uniform, and therefore, both the contact density (for hard surfaces
as well as for soft surfaces), will be functions of z as well as the position on the
surface x, y. There will be a simple relation only for average quantities such
as the average contact density near a hard plane,

5,(0) = 1/S f dz\dyipu(E1, 31, 25) (1.22)

It is clear that the electrostatic forces along the surface are of vanishing mag-
nitude for a random rough surface, or zero for a periodic crystal surface.

Using Poisson’s equation

v‘*w(t)=$ en(1) = Vi - B() (1.23)

and integrating by parts, we get

m

/dlzclp,(l][Ez( = —E/B?dezldy!-/ ) d[Edil)l

+£/4?r/ dx,dydz [Ez(l)dEI(I)
v Oz,

I e Lt (1.24)

J0E,(1) ]
dyy
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The second term of the right hand side is zero: For a periodic interface in the
x and y directions, if we take S to be the surface of a unit cell, the terms like
0F,(1)
azl

will be of equal magnitude but of opposite sign for neighboring cells. For the
general random interface we conjecture that this term is finite: then in the
limit § — oc the contribution vanishes. We have

m

J/S/dl Zc,p,-[l]Ez{l) = —¢/8m < [E.(1))? >¢ (1.25)
=1
where the average square field in the z direction is

< [E,(1))? >s= I/S/dxldylEf(Il.yl,zs) (1.26)
S

The other single particle term containig the short range interactions between
the molecules and ions and the wall, yields

owi (1)
a

21

< pi(1) >g= 1/.5'/deldylp,-(l) 1 w(1) (1.27)

where

cov Ly cov
& p‘{l)M >g= I/Sfd:cldylf dzipl(l)M (1.28)
0z s z(z1,31) 0z

Putting it all together yields the general contact theorem for a planar on the
average, but not necessarily smooth, surface

P=kpTY_pi(0:/2) - ¢/8n < [E;(1)]" >5

i=1

m
Jwse(1
-y < p,-(l)'—(-)— >g (1.29)
= 631
=1
This theorem is a generalization of the previously derived contact theorems to
the realistic case of non smooth electrode surfaces. It contains the previous
results as particular cases.
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When the walls are soft, then
Cﬂv(l) "
Z < pi( >g —€/81 < [E.(1))* >5 (1.30)

For a surface with an array of sticky adsorption sites, such as in the case
of the sticky site model, (SSM) model discussed elsewhere [56, 57, 58] , the
adsorption potential has the form

¢~ Bualr) :'1 + Aa(R)4(2) (1.31)
with
M
Aa(R) = Y AS(R - myay — naag) (1.32)
ning

Here R = z,y is the position at the electrode surface, and z the distance to
the contact plane, which is at a distance ¢ /2 from the electrode. In Eq.(1.32),
1y, e are entire numbers, there are M sites on the electrode of area S, and
a;,ap are the lattice vectors of the adsorption sites on the surface. The pa-
rameter A, represents the fugacity of an adsorbed atom of species a. Define
now the regular part of the density function

w(1) = (p:(1)/pi)e™ "V (1.33)
Replacing into the general contact theorem Eq.(1.29) gives [55]

i e U M, By:(1)
P =kgT Y pi(0i/2) — €/87 < [E4(1) A P

i=1 i=1

> p, (1.34)

4. The rough electrode near a non primitive (for example with a solvent of dipolar
hard spheres) electrolyte. Now we have to include the effect of electric field
gradients, which are not zero near the electrode. The total electrostatic force
is[60]

Owg’(r)
Jr

where p, is the dipole moment of «, g, its quadrupole moment, and so on.
We remark that now the single particle density p,(1] is not only a function of
r;, but also of the orientation of the molecules with respect to the electrode,
which in the case of the linear dipoles is given by #,, ¢,. Therefore we expand

1)—Zpsm m81‘¢1 _psﬂ+szm (136)

ILm

= eaEo + fa-(VEp) + (1/6)qq : (VVEy) (1.35)
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The dipole contribution to the pressure is

dw?* (1) Ay /m : / dEy(1) o
< p.(l Boges el I 1/S | daidy ps(1)— 1.3
ps(1) B2 O 3 ), / L dyips(1) 32, (1.37)

which after a short calculation leads to

™

P = kyT [Z Gi(0,/2)) + ﬁx(rr,/Q))} —(1/87) < [E.(1)]? >¢
=1

m

dwv(1) 4 s, , OEL, (r1)
= IZI < p‘(l) (')2’1 >g — 3 - gﬂs‘an >g (138)
where
1
f)s{a.q/jg) = E-‘FS} /dcr)ld(:r}.s'&d:rldyips(l) {139)
and
Eo(1) = Y El(ri)el, (1.40)

where e}, are the polar components of the unit vector.

The last term of Eq.(1.38) corresponds to a new electrostriction effect which
vanishes for uniform external field Ejy

5. The rough electrode near a non primitive electrolyte. This is a case relevant
to computer simulations of realistic solvent models near a model of a metallic
surface such as the silver(111) surface, for which experiments have recently
been reported [61]. Most models of water employed in the computer simula-
tions consist of neutral molecules with embedded point charges.

The surn over the charges ¢, in each molecule is indicated by the index v, and
is zero for each molecule. Each of these charges is located at the position b,
relative to a molecular reference frame.. From Eq.(1.29) we get

P =kgT | pu(0./2)) + fa(02/2) | - (1/87) < [Eo(1)] >5

=1

T

a dw(1 JE,(r; +b,)
E L < p(1)— 6—21—() >¢+ < ;JS(I)ZQV— alZI—-—--— >g (1.41)

=1
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where p4(0,/21 is now defined for the orientation dependent density function
of the solvent, with embedded charges. Again, if there are only soft wall forces,
we get

m

P /gﬂ' l))) > _Z <p 1)(?“,?0 } -

JE,(r1 +b,
+ <psmzqyf~%‘rl - (1.42)

This relation points to the importance of using a model potential for liquid
water that has the correct equation of state (pressure) rather than the correct
bulk density (off may be by a few percent) when computing density profiles
near planar or rough electrodes.

1.3.2 The smooth interface

Basic definitions: Gouy-Chapman theory

We have a mixture of ions of density p;, charge e; and diameter ;. p;(2)is
the number density profile of i at a distance z from the electrode, which is always
assumed to be flat and perfectly smooth. The singlet distribution function is

pi(z)

¢(z) = —— =hi(z) +1 (1.43)
Pi
The charge density ¢(z) is given by
m
a(2) =Y enl2) (1.44)
i=1

where m is the number of ionic species. The electrostatic potential ¢ is obtained by
integration of Poisson’s equation

: _ d’¢(2) _ —dmq(2)
Ch -

This equation can be integrated to obtain the alternate relation between the charge
and potential profiles

(1.45)

8) = ["1a - tatwae (1.46)
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The total potential drop A¢ is obtained from Eq.(1.46) by either letting z = 0 or
z — oo, depending on the reference potential of the model. In general the latter
choice is adopted. An important quantity is the differential capacitance Cy which
defined by

_ 94
~ dAg
where ¢, is the surface charge on the electrode. This quantity is difficult to measure
directly, and is inferred from either surface tension measurements, or frequency
dependent AC measurements of the capacitance. The surface charge satisfies the
electroneutrality condition

Ca

(1.47)

0 Eye
qs = -/D- q(z)dz = fﬂ— (1.48)

where [ is the external or applied field.

Consider the Poisson equation Eq.(1.45). If we approximate the density of the
ions by Boltzmann’ distribution formula [62, 63]

pi(z) = pie Pt (1.49)

replacing into Eq.(1.45) we obtain the Poisson Boltzmann equation

V2(2) = I—f—" Z eip; e Perdl?) (1.50)

i=1

A first integral of this differential equation can be obtained multiplying both sides
by 7¢(z). For the planar electrode this yields

Ee? = [0o(2) = =2 3 eipi{e 8 — 1)74(2) (151)
: i=1

Using the definition of Cq and the electroneutrality relation Eq.(1.48) we get the
formula for the differential capacitance

2 m .n:le Jﬁe|¢{0}!
Co=f 21 _Lizieple 70T (1.52)
kf' 2i=l € [e‘ﬁel¢(0) — 1]

where ¢(0) = ¢(z)|,—0 = A¢ is the potential at the origin, and is equivalent to the
total polarization potential of the electrode. At this point it is convenient to make
a change in the variable

¥(2) ot (1.53)
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where &, = z;e. e is the elementary charge and z2; is the electrovalence of species i.
We integrate equation Eq.(1.51) to get

8:?.03

/X{Z) \/
x(0) X\/Si,P: W — ppA fkr

where X and A are integration constants. The electrovalence z, is always a small
number and the integration of the left hand side is always possible in terms of elliptic
functions [64]. When 2z, = —2 = 1 the radicand of the left hand side of Eq.(1.54)
is a perfect square and the integral can be performed explicitly. For the potential
drop A¢ we obtain the implicit relation

ﬂeu

ZQ (154)

= 2sinh[Ag¢ef /2] (1.55)

The density profile is given by

[1+ zce™*
i(z) = 1.56
)= 2 (1.56)
where .
= 47r/ckTZp,-ef (1.57)
defines the Debye screening parameter and «is given by
a = tanh[AgeS/4] (1.58)

There are several remarks about the Gouy-Chapman theory: In spite of the
apparent oversimplification the Poisson Boltzmann equation satisfies an overall dy-
namic equilibrium condition, that fixes the contact density at the electrode surface.
This is the contact theorem

m m
1 € . eal E
k1 ;p,—([}) = gﬁoﬁ + KT ;p, (1.59)
This contact theorem, as well as other sum rules that are valid for the charged
interface will be discussed in the next section. The density profiles obtained from
the Gouy-Chapman theory are monotonous, that is they show no oscillations. Since
in this theory the contact theorem and the electroneutrality condition are satisfied,
then, p;(2) is pinned at the origin, and has a fixed integral, so that the density profile
cannot deviate too much from the correct result. When the contact theorem is not
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satisfied, such as in the case of mixtures of unequal size ions at low electrode charge
or for high density, when the profiles oscillatory, we expect deviations from the GC
theory. This is also true for the non-primitive model in which the solvent is a fluid
of finite size molecules.

In the regime of low density and high temperature (or large dielectric constant)
the Gouy-Chapman theory is quite accurate in spite of its simplifications because
it satisfies both the contact theorem Eq.(1.29) asymptotically for E; — oo, and
the electroneutrality condition. Thus, the density profile is basically pinned at the
electrode wall at the correct point, and the integral is also fixed to the correct value.
However in real systems with molecular solvents the density and coupling constant
are large, significant deviations from the behavior predicted by the GC theory oc-
cur, because in this case the dominant term in the contact theorem is not the charge
term, but the solvent hard core term. For this reason it is interesting to assess the
accuracy of the integral equations for the primitive model for high coupling con-
stants beyond the parameters that correpond to experimental situations, because it
will indicate which theory can be used for the non- primitive model of the electric
double layer.

These theories can be formulated as integral equations for the density profile
p(l), or as a differential or integrodifferential equation for the potential ¢(1}, or
can be derived from a functional @(1), which is dependent on the position. All of
these theories can be derived using functional differentiation: The central quantity
of our discussion is [65] the one particle direct correlation function, from which the
integral equations will be deduced:

¢i(1) =In [-&} + fwi(1)

2

= In [p;(1)] + Blwi(1) — pi(1)] (1.60)

where (1) is the one particle direct correlation function, z;is the fugacity of species
i, and u,(1) is the external potential. Furthermore

z = M) (1.61)

The function ¢,(1) is a member of the family of direct correlation functions
¢i;.(1,2,..), which is the sum of all irreducible graphs with density factors pm(1)
for every field point (For a detailed discussion of correlation functions see for ex-
ample Hansen and McDonald [66]). The integral equations can be obtained by
differentiation of this magnitude. Functional series differentiation[67, 68] produces
approximations, such as the Hypernetted Chain (HNC) and its modifications, and
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the Mean Spherical (MSA) and its modifications that are used in conjunction with
the Ornstein Zernike equation. A different set of approximations is obtained by spa-
tial differentiation of ¢;(1) , which gives the Born Green Yvon (BGY) and Wertheim
Lovett Mou Buff equations (WLMB) . Finally the Kirkwood equation is obtained
by differentiation with respect to the chemical potential.

The BGY equation [69, 70] can be derived from the one particle direct correlation
function (1), Consider again Eq.(1.71): letting the gradient V act on the f of the
graphical expansion of ,(]), we get the BGY equation: The first member of this
hierarchy is:

m

_.kPVIpl(l) = pn[”Vlu: +Z/d2iou(l 2)V1“t}(1 2) (162)

Using Eq.(1.74) and Eq.(1.77) to eliminate the long ranged terms, we obtain
Eq.(1.62) in a different form

-kT 71 pi(1) = pi(1) ¥1 uf (1) + eps(1) 71 6(1)

} Z/d2913(1 2) v [ufj(1,2)] p,(l)e,zejfd2pj(2)h,3(] 2) 7 [L] (1.63)

Tij

This equation can be integrated from z to oo, to yield

Ing:(2)] = —ei[6(2) + ¥u(2)] + Ji(2) (1.64)

which together with Poisson equation Eq.(1.45) forms a closed system of equations
that is very convenient for numerical solutions. The right hand side term consists of
three contributions: The potential (1), which is determined by the single particle
distribution function py(z), and the terms w;(z) and J; which are functions of the
pair distribution function hy;(1,2). From Eq.(1.63) we get

oo m 1
)y = d i 1 i i d2p;(2 fl,‘,' 1,2 1 1.65
W = [ p()Zf PRI - (6)
Ji(2) = f dzIZ/dilpu 1,2) vi ud(1,2) (1.66)

We remark that in Eq.(1.63) (and also in Eq.(1.64), if the fluctuation terms J,(z)
and v4(z) are neglected, then we get back the Gouy Chapman equation Eq.(1.50),
which has a known analytical solution. In the BGY based theories the pair cor-
relationfunction h;;(1,2) must be given by some approximation. The interesting
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feature of the BGY equation is that for no matter which closure, the contact the-
orem Eq.(1.29) is satisfied. Different approximations for the inhomogeneous pair
correlationfunctions h,,(1,2) have been studied: Torrie and Valleau [71, 72] have
made the comparison to the computer simulations for a 1-1 salt near a flat electrode
with surface charge o* = g,0%/e = 0.7 [73, 74].

The comparison to the Monte Carlo simulations is good, this method yields for
the test case with the observed density oscillations in the profile of the counterions.
Another integral equation is derived from the one particle direct correlation func-
tion ,(1) Eq.(1.72) by introducing relative coordinates for all field in the diagram
representation and taking the derivatives with respect to those coordinates. This
yields and exact hierarchy of equations that is related to thy BGY hierarchy. The
first member of the Wertheim-Lovett-Mou-Buff (WLMB) equation is

V1pi(1) + Bpi(1) V1 w(1) = pi(1) Z/(ﬂcu(la?] V2 p5(2) (1.67)

This equation contains long range, divergent terms. Introducing the local potential
¢(1) Eq.(1.46), we have

Vi Inp(1) + 871 6i(1) = / 4265 (1,2) V2 p5(2) (1.68)

This equation has been studied by Henderson and Plischke [75, 76, 77, 78] in detail.
It yields very good results for the test case of ¢* = g,0%/e = 0.7.

The calculations were performed solving both the HNC2 closure for the inho-
mogeneous pair correlation function, and also the MSA2 closure in a few cases. A
simplified version of the WLMB equation that produces reasonably good results was
studied by Colmenares and Olivares [77, 78].

Hypernetted chain equations

At the interface between an electrode and a fluid the density of the fluid is
a function of the distance of the point to the surface p,(z). The Ornstein Zernike
equation for this system can be obtained as a limit of a system that is a homogeneous
mixture in which there are some large ions, ofradius H,, — oo ,such that p,R,° — 0.
In this limit the planar [79, 80] HAB (Henderson-Abraham-Barker) OZ equation is

hi(1) — (1) = i/d?hﬂ?)pﬁﬂ{h?) (1.69)
j=l1



1.3. THEORY 153

where h;(1) is the density profile correlation function of ion i, ¢[(1)is not the single
particle direct correlation function ¢,(1), but a different magnitude defined below
Eq.(1.71), and ¢, (l 2) is the bulk direct correlation function.

Rty =gl = "’“’T‘” (1.70)

The function r.'f;k__(l,2,3..) is a much more complicated object, and in general does
not admit a simple diagram expansion. The understanding of the meaning of this
function is clarified using a functional series expansion: Consider the functional
power series expansion of In p;(1) around the uniform density [67, 68] p,

Bu; (1) + Inp;(1) = Inp; + Z / d?h_,-(2)pjcg(1,2)
1=1

+Zl/n' Z P; Pk /d?d&.hj(2)hk(3)cf;k_‘(l,2,3..) (1.71)

1.k=1
the direct correlation functions are defined by the functional derivative
e B(l)
60;(2)0pk(3)-..

The superscript B stands for the bulk functions. We now introduce the function
c¥(1), defined by

c,.(1,2,3.) = (1.72)

¢’ (1) = =Bui(1) — Ingi(1) + hi(1)
+> [pjpk.‘/d2d3hj(2]hk( )e2i(1,2,3)| + (1.73)

jik=1

The inhomogeneous potential is of the form
ui(1) = ud(1) + wi(1) (1.74)

with u?(1) the short ranged and for a hard, smooth charged electrode, the electro-
static part is

w[(l) = —B;'E[)Z'[/z (175)
Combining this definition with the functional expansion Eq.(1.71) we get the HNCI
equation for the flat wall electrode

T

—Bw;(1) — In p;(1 ijfd% cf(1,2) (1.76)
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Equation Eq.(1.76) has a deceivingly simple aspect, hut because of the long range
character of u;, (1) is not convergent, and therefore not amenable to numerical solu-
tion. We write now

ey (imial) = € (Irial) — wyy (r1al) (1L.77)
with B
wy(|ral) = fl:u; (1.78)

and replacing into Eq.(1.76) yields

m

~Be,d(1) 1np,(1)_zpjfd2hj ¢f:(1,2) (1.79)
where ¢(1) is defined by
#(1) = Eoz +/dzz ’:’:]2 (1.80)

1=1

This equation is the plane electrode version of the Hypernetted Chain equation,
called the HNC1 [81]. It is completely defined in terms of short ranged quantities,
which is not the case for the first form of the equation Eq.(1.76). The HNCI is
the theory that has the closure with the largest number of graphs. It satisfies
the electroneutrality relations and the Stillinger Lovett sum rules. One important
observation about the HNCI is that it does not satisfy the contact theorem Eq.(1.29),
but rather

: i € . P
KT p(0) = g Eo’ + poOP/0py (1.81)
where =
i=1

For high fields and low concentrations the fact that we get the compressibility rather
than the pressure is not very important and the HNCI is still a reasonably good
theory, as will be shown below. However for dense systems this is a rather severe
shortcoming. Specifically, when we are dealing with a molecular (dipolar) solvent
the density is very large and the dielectric constant ¢ is of the order of one (instead
of 80 in water) which makes the electrostatic term in satisfies the contact theorem
Eq.(1.29) small in comparison to the contact density term. The consequence is
that the HNCI1 will put more counter ions near the electrode than the exclusion of
the hard cores will permit. Eventually thermodynamic stability conditions will be
violated, and we get a negative capacitance, reflected by a decreasing potential drop
A¢ with increasing applied external field FEy.
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The HNC is the most accurate theory for bulk electrolytes. One would expect
that this fact would remain true in the plane electrode limit. However, because
of the inaccuracy of the HNC for uncharged hard sphere fluids the HNC1 does no
do well in representing the exclusion volume of the ions, and is not on the whole,
such a good approximation for the electric double layer. The bulk direct correlation
function

cp(lrial) (1.83)

which should be used in solving the HNCI1 equation Eq.(1.79) is that obtained
of the bulk HNC equation for the same system. This however, sometimes called
the HNC/HNC approximation, yields poor results when compared to computer
simulations[81]. Generally better results are obtained if instead of the HNC bulk
direct correlation function the corresponding MS A functions are used, the general a-
greement with computer simulations improves [82, 83, 84, 85, 86, 87]. The next term
to be considered is the third term of Eq.(1.71) which is a three particle contribution.
The three particle direct correlation function is in general a very complex function,
and must be approximated. The simplest of these approximations is to include the
first diagram of the density expansion of the three point direct correlation function
, the bridge diagram [89]. Ballone, Pastore and Tosi[88] performed this calculation
with good success . The density profile for the 1M, 1 — 1 electrolyte at a surface
charge o* = g,0%/e = 0.7, which will be the test case used for comparisons. This
is the highest surface density simulated, and shows charge oscillations due to the
hard core of the electrolyte. In this calculation the bridge diagrams were computed
directly from the product of the three bulk pair correlation functions, which is first
term in the density expansion of the bulk triplet direct correlation function

cP(1,2,3) = h3(1,2)hE(1,3)hE.(3,2) (1.84)

Since there are no adjustable parameters, the agreement is very good. An al-
ternative less laborious procedure was suggested by Rosenfeld and Blum [89], but
actual calculations were not performed. Another way of inmproving the HNCI ap-
proximation was introduced by Forstmann and co-workers [90, 91, 92, 93, 94]. In
their method the HNCI equation is used as described above, but instead of tak-
ing the bulk direct correlation function, as prescribed by Eq.(1.79), a local density
dependent cg(r, p) is taken. The local density is defined by

246 402

1
_i = — d:c d A 1_ 5
pi(z) = 206 J,_, . ypi(y) (1.85)

where o is the diameter of the ion and § is an adjustable parameter. The bulk
correlation function is then

el (Irizl)|p=pica) (1.86)
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For the test case with surface charge o* = .7, the results of this method are very
good.

Kirkwoods equation

An interesting approach has been suggested by Kjellander and Marcelja (95,
96, 97], based on the observation that for the HNC approximation the chemical
potential can be obtained explicitly as a function of the pair potential h;;(|ri2|)
for an homogeneous fluid. Then, within the HNC the function ¢;(1),c(1) can be
explicitly evaluated. The central idea is to slice the three dimensional space into
two dimensional layers that are homogeneous. The three dimensional OZ equation
can be mapped into coupled set of N two dimensional OZ equations for a mixture of
N components, each component is an ion in a different layer. The particles interact
with a species dependent interaction pair potential. In the limit ofan infinite number
of layers this procedure yields the correct inhomogeneous OZ equation. The chemical
potential p,(c) of the ith ion in the o layer is given by Kirkwoods equation:

J’\u
,ul(a) kT In ,01(0‘) + In Az

+Vi() + 3 pi(6) fo D) / dRgy(R, of; N)
3[9’5;‘(3, Ofﬁ; ,\)]

2 (1.87)

where X\ is the coupling parameter, Az is the thickness of the layer, Ap is the ideal
gas fugacity, V() is the interaction between a particle in layer o and the wall; R
is the two dimensional distance. In the HNC closure

cij(R,aB) = —Bwi;(R, af) + hi;(R, af) — Ingi;(R, af) (1.88)
Kirkwoods equation can be integrated to yield
Az
pi(a) = _:‘\_n-
cxnlBiu(@) + 3 2,(0) [ AR(/DI (R, aB) - ci(R,0P) = by (R, aB)
B.a=1
~[(1/2) In[gi;(R, aB)] — Bwi;(R, aB)/2) r=0 — i()}inn (1.89)
where ®,(a) is the average potential for layer c.
2me?
@(a) = == pilB)12a = 7l (1.90)

B
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Density functionals

The density functional method has proven to be one of the more succesful and
versatile technique to study interfacial and bulk phenomena. The central quantity
in the density functional is the excess ( over ideal gas) free energy which originates
from the interactions amongst the particles. In classical mechanics it is a uniquely
defined functional of the spatially varying one particle density p(r), from which
many equilibrium properties of the fluid can be derived. The most succesful density
functionals are the non local free energy density functionals, which employ weighted
or locally averaged densities that are constructed to fit available structural and
thermodynamic properties of the homogeneous fluid.

A remarkable functional expansion for the inhomogeneous fluids was developed by
Rosenfeld [98, 99, 100, 101].

In this approach liquid state theories like the MSA and the HNC can be derived
as variational problems of the free energy functional, which is written in terms of
the Ornstein-Zernike direct correlation functions of order 1,2, Eq.(1.60) . [98, 99,
100, 101] These correlation functions can be expressed in terms of a reduced set of
basis functions which are related to the geometry of the molecules in the fluid. In
the asymptotic limit of strong Coulomb interactions between the charged particles ,
that is the limit in which either the charge goes to infinity or the temperature goes
to zero, [102] the free energy and the internal diverge to the same order in the the

coupling parameter that is
o e 1 1.91
AF — (1.91)
while the entropy diverges at a slower rate. In this asymptotic limit, the free energy
and the energy coincide, and furthermore, the mean spherical approximation (MSA)
and the hypernetted chain approximation (HNC) concide. This is a very gratifying
feature, because the HNC, which from the diagram expansion (and numerous test
cases) point of view is the more accurate theory, is in general difficult to solve ,
while the MSA is analytical in most cases, and in the asymptotic limit, of a rather
surprisingly simple form. In the asymptotic limit the excess electrostatic energy
is identical to the exact Onsager lower bound, which is achieved by immersing the
entire hard core system in an infinite neutral and perfectly conducting (liquid metal)
fluid. The Onsager process of introducing the infinite conductor, naturally decouples
all the differeint components in the system which may differ in size, shape, charge
distribution an relative oreintation in space.

The direct correlation function in the asymptotic strong coupling limit (Onsager
picture) is obtained directly from the electrostatic interaction of the charges of the
particles smeared on the surface of those particles.

Another asymptotic limitis the high density limit, in which the compressibility
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tends to zero because of the tight packing of the particles. In this case the MSA
solution is also obtained from a simple geometric argument by computing the overlap
volume of the particles as a function of their distance and their relative orientation.
These two distinct limits provide the set of basis functions for the representation
of the direct correlation function, which can be shown to be sufficient to represent
the dcf of the complete MSA solution. In other words, these two limits provide
the full functional basis set for the exact solution of the MSA equations and also an
asymptotic approximation of the HNC solution for all densities and temperatures, for
hard charged objects. The basis functions for the functional expansion of the direct
correlation function are obtained from linear combinations of overlap functions, such
as the volume,the surface and the convex radius, and the electrostatic interaction
between surface smeared charges. By proper manipulation of the free parameters,
and by ajudicious selection of the basis set of trial functions, one can obtain, different
levels of approximations. The physically intuitive meaning of the basis functions
in the representation of the dcf is particularly illuminating in the formulation of
perturbation treatments. The use of the asymptotic basis set of functions ensures
that at all levels of the perturbation approximation, the resulting free energy has
the desired property of interpolating between two exact lower bounds, the Debye
Hueckel result (which is effective at weak coupling) and the Onsager result, ( which
is effective at high coupling). These two limits pin the free energy.

The interpolation between the low and high density limits, which is inherent to
this variational approach, leads in a very natural way to the scaled particle theory for
the structure and thermodynamics of isotropic fluids of hard particles. This unifies,
for the first time the Percus Yevick theory, which is based on diagram expansions,
and the scaled particle theory of Reiss, Frisch and Lebowitz, and, at the same time
yields the analytical expressions of the dcf conformal to those of the hard spheres. It
provides an unified derivation of the most comprehensive analytic description avail-
able of the hard sphere thermodynamics and pair distribution functions as given by
the Percus Yevick and scaled particle theories, and yields simple explicit expressions
for the higher direct direct correlation functions of the uniform fluid.

Hard sphere fluids

For the inhomogeneous fluid of hard spheres characterized by the set of of one
particle densities p;(r) the free energy functional is

F = Fid 4 o= (1.92)

where

Fd = Z/drp,-(r) [,\f log pi(r) — 1] (1.93)
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Fee = [ dr®({nq(r)}] (1.94)

where ®[{n,(r)}] is the excess free energy density, which is a function of the system’s
averaged geometric measures

Ra(x) = 3 / depelu® (s — %) (1.95)
The functional @ that reproduces the scaled particle theory and the Percus-Yevick
copressibility equation of state for uniform hard sphere liquids is

3
n1n2 n;

P = —nglog(l —ny) + (0 —ng) T 24n(1 —ny)? (1.96)
where
ne=Y pR® (1.97)
* | 9
ng = (47 /3) Zi:p,-Rf ny = (47) Xi:p,-Rf Z 5;% (1.98)

a
m=( YTk m=Y a0 (199)
From Eq.(1.95), we deduce

ong
bpi(r1)
so that one possible set of weight functions is

= w{®(r) (1.100)

w®(r) = 0(R: - |r)
@) =4

w; = 0(Ri — |r])
wi(r) = (1/8m)8'(Ri — |r)
w(r) = ~(1/8m)8"(R; — |r]) — (1/27r)[8'(R: ~ Ir]) (1.101)

The thermodynamic properties of hard sphere mixtures are expressed in terms
of the basis n, | For example it is verified that the PY compressibility pressure is

o ng nny n3

. -ty " O—nel | 120l — ) (L.202)

BP
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In the uniform fluid the free energy density obeys the scaled particle differential
equation

%
AP=Y" = thifig — B (1.103)

which can be verified directly.
The chemical potential can also be expressed in terms of &:

5}% = a(1) = In[pi(1)] + Blwi(1) — (1)) (1.104)
Else
6,0(,-5;1:'1) = Al (1.105)
ad  on,
B Z Bngq pi(rl) (1.106)
or, in other words
(1) =3 %wf“)(rl) (1.107)

The charged case

Consider the electrostatic charge part of the excess free energy F¢5[{p;(r)}] and use
the functional expansion formalism to expand around the bulk density [{p;}] The
variable in this case is

Api(r) = pi(r) — p;

We get, up to second order,

PN = Fl{pd) - /) T & [{a) [ ardn(e)

~(1/28)3 / drdr’c?* [{p:})(Ir — ') Api(r) Api(r') (1.108)

Here we have used the defining relations

dFes
bpi(ry)

o} (r)]) = -8 (1.109)
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and
(2) s 62Fes
z_;: I{pt'}](rhr'ZJ ==t 6 ( 5)0}(1‘2) (].].].0)

The one point electrostatic direct correlation functlon is minus the excess chem-
ical potential,

o [{oi}] = ~Buil{o:}] (1.111)

while the two point direct correlation function in Eq.(1.108)

eI - 1)

is taken at the uniform densities of the bulk fluid.

Using the complete free energy functional Eq.(1.92) for the hard core part and
the truncated expansion for the charge part, we obtain the functional

Fe*(r) = F*(r) + F*(r = 00) — (1/5) Zcf”'”‘[{p,-}l j drApi(r)

2CL)D [ @ todiie — ¥DAR®sLE)  (1112)

An alternative derlvatlon was given by Kierlik and Rosinberg [103], following es-
sentially that of Sluckin and Evans [104]

F(r) = F(r) + (1/2) / drq¥(r) +Z f drpy(r)[w (r) — w) (1.113)

where FM(r) is the full functional for the hard core interaction w®(r) is the non
electrostatic part of the external potential; Furthermore

g(r) =g+ ) _ ezpi(r) (1.114)

i=1

is the total charge density. The potential W(r)

1 q(r')
¥(r) = - [ d(r')—"= 1.115
0 =1 [ )2 (1.115)
The functional inverse of this equation is Poisson’s equation
4m

Vi(r) = -——E—q(r') (1.116)
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Requiring that

IF
dpi(r)
implies the Euler-Lagrange equations
ic
U(r) + wi(r) = 1.117
5o, ( j + ez, ¥(r) + wi®(r) = w, ( )
The variational requiremenl.3. THEORY 161t
oF
590 0

which from Eq.(1.113) is equal to

q(r) + /d 5"(") (r') =0 (1.118)
but we have the relation of the functional derivatives and their inverse
bq(r) 6¥(r')
d(r' =6(r—1r" 1.11

but from Eq.(1.115) and Eq.(1.116) we have that

ao(r) 1 1
8q(r") e (|r” —r']) (1.120)
" dq(r) _ 4
qr) _ T oy P
) - el e (1.121)

from where we can show that, indeed, Eq.(1.118) is equivalent to Eq.(1.116).
Fel(pd) = [ dra=((oh)+ i [ drnto

RUEaDD [ardeessitonie - DABEABE)  (1122)

where we have used the relationships between the functional derivatives of £ and
the non Coulomb parts of the direct correlation functions. Furthermore,

T = 47 _ ez, 0(bulk) (1.123)
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is the contribution from the excess chemical potential arising from the non Coulomb
terms, and ¢°* is the Helmholtz excess free energy density of the uniform ionic
mixture minus the electrostatic self energy. We write

e {o}] = esl{m}] + ¢85 [{n}] (1.124)

where ¢ is the direct correlation function of the uniform hard spheres fluid. Up to
quadratic terms, then

Fi{p}] = F*{{p:}] + / drlg({p:}] — FP({p}] + [~ ] drApi(r)

07203 [ dear G loN(e - ¥DAR@AKE) (1129

where ph¢ and fI' are the chemical potentials and the Helmholtz free energy of the
uniform hard sphere fluid. From this equation we get the Euler-Lagrange equation
for the equilibrium density profiles

il 1)) + le) = | o= ]

+ez,[¥(r) — U(bulk)] — (1/B8) Z f dr' ¢ [{p})(Ir = =) Ap; (') (1.126)

This equation can be obtained by integration of the WLMB equation, and in fact,
it can be shown that the Rosenfeld theory of the MSA bulk is exactly equivalent to
the WLMB.
The results of the Rosenfeld density functional theory are shown in figure 1.4.
As can be seen in the figure 1.4, it yields very good results for the test case of
o* =q,0%fe=0.T.

MSA for ion-dipole mixtures

A very simple picture of the structure and fields near the electrode surface can
be obtained from the MSA [105, 106, 107, 108, 109]. The solution of the MSA is
completely explicit for very dilute solutions. We get for the charged interface

ﬁZtEEe K{z—a,:) (1‘127)
K

gi(z) = g"(z) -
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where o; is the hard ion diameter and g"*(z)is the hard spheres against a hard wall
profile [109] The profile of the dipoles is

9s(z,0) = g"*(z) — \/3Ah,(z) cos § (1.128)
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The potential difference across the interface is
O (s =}
V= 41?(:2 z,p"[ th(t)dt + 4?r/\/3ps;15/ hy(t)dt = I + I, (1.129)
- 0 0

where p; and p, are the densities of the ions of species i and solvent s; p,is the
solvent dipole moment. The first integral yields

I = E(1 4 koo /2) /Ko (1.130)
while the second yields
I, =E(1-1/€)[1 + xkeo/2(1 — 1/A)]/ ko (1.131)

The parameter A is calculated from the dielectric constant € using Wertheim’s
formula

A (A +1)* = 16¢ (1.132)

from where we get the MSA result for the potential drop

E Fo e~ 1
= — 4 — 1.133
1% Py (1+ 5 )+ ( )

It is to be noted that there has been a cancellation between terms of order 1
and (1 — €)/e to produce a term of order 1/¢, The capacitance for the linearized
Guoy-Chapman theory then yields

1/C = dV/dE = V/E = 4= {mg + (0/2€) (1 + %)] (1.134)

The MSA predicts that the capacitance is equivalent to that of two capacitors in
series, and that Cj, the solvent term

1/Cy = 2n(o/e) (1+ é/_\l) (1.135)
is independent of concentration. This result is true also for systems with different
sizes ions and dipoles. A full nonlinear extension of this treatment is available from
Patey and Torrie.

A nonlinear treatment using the HNC approximation is an attractive possibility.
Recently, Patey et al.[111] have solved this equation for the bulk electrolyte.
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1.3.3 Adsorption at structured interfaces

A simple model of chemisorption on structured interfaces, such as crystals
or biological molecules ,is one in which the binding process of individual atoms
is described by an adsorption site with a binding free energy or affinity, as first
proposed by Langmuir. This will neglect the details of the adsorption process, but
will generate a model with a complete description of the cooperative effects that take
place at the surface[56, 57, 55] via a mean field. This model, the sticky site model
(SSM), is a combination of the sticky potential model, first proposed by Boltzmann,
but developed by Baxter[112], and the adsorption site model of Langmuir. It is a
natural way to embed the smooth interface discussed in last section in the discrete
structure of the adsorbate.

Consider the case of sticky spheres: The sticky potential has the form

ﬁ—ﬁu(rJ =1+ /\6(1" - ff_-), {1.136)

where (3 = 1/kT is the usual Boltzmann thermal factor, u(r) is the intermolecular
potential, ) is the stickiness parameter, r = (z,y, 2) is the relative position of the
center of the molecules, and ¢ is the diameter of the molecules. The right hand side
term represents the probability of two molecules being stuck by the potential u(r).
this occurs only when the two molecules are in contact, and for this reason we use
the Dirac delta function é(r — ¢~), which is zero when the molecules do not touch,
is infinity when they do, but the integral is normalized to one. The parameter X
represents the likelyhood of adsorption of an individual molecule onto the surface.

The Langmuir adsorption sites can be represented by a collection of sticky
sites of the same form as was suggested by Baxter. Only that now we do not have a
sphere covered uniformly by a layer of glue, but rather a smooth, hard surface with
sticky points, which represent adsorption sites where actual chemical bonding takes
place. For a regular crystal lattice face, Eq.(1.136) has to be changed to

e~PUN — 1 4 A(R)S(2), (1.137)
with
AR) = Y A(R - may — naay). (1.138)
N

Here z is the distance to the contact plane, which is at a distance ¢/2 from the
electrode, and R = (z,y) is the position of a point on the planar surface at z. In
Eq.(1.138), my,ny are natural numbers, and a;,a; are lattice vectors of a lattice A(z)
on the surface at z.The lattice of sticky adsorption sites at the electrode surface is
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A(—0c/2). The requirement of point adsorption sites rather than extended regions
around the sites is not essential to our discussion. It is clear that phase transitions
will occur even in smooth surfaces, simply because the two dimensional gas does
undergo such phase transitions. Less localized forms of the adsorption potential can
be includes as long as the soft potential does not overlap neighboring sites. The
model as it stands includes every interaction of the adsorbed atoms: The solvent
mediated potentials of mean force as well as the quantum effects at metallic surfaces

Consider then a fluid of only one kind of particle of diameter ¢, near a smooth,
hard wall with sticky sites. The fluid has N particles and the volume of the system
is V. The Hamiltonian of the system is

H=Hy+ Hs, (1159}

where Hpy is the Hamiltonian of the system in the absence of the sticky sites on the
hard wall, and Hg is the sticky sites interaction

N
Hg =Y U’(ry), (1.140)

i=1

where [/*(r;) is the sticky interaction of Eq.( 1.137). The canonical partition function
of this model is

i
Z= (1/N!)fdr*"e—ﬂ”ﬂﬂ[1 + A(Ry)d(z)]. (1.141)

Expanding the product in Eq.(1.141) and integrating the Dirac delta functions we
get, using the single component notation to avoid heavy and unnecessarily complex
equations, ( with the understanding that in the multi component case N is a vector
quantity with components Ny, Ny, ..., N, , the necessary modifications of N'and the
integrations have to be made),

N
Z=2y) (\*/n)) > A(Ri,Ra, . Ra), (1.142)

n=0 {R.JCA(0)

where A(0) is the triangular lattice at the contact plane, and where

PA(r1, Ty .y By) = (Zo(N - n)!)'lfdrn+1.,.drNe_ﬂH°, (1.143)
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= g3(r1,ra, o) [ [ P2(r0). (1.144)
=1

Here ¢2(ry,ry,...,ry) is the n-body correlation function, and Ar,) = pl(z)is the
singlet density of the inhomogeneous smooth wall problem. The partition function
is

Zy = {1/N!)fdrNe—5”°, (1.145)

In the sticky sites model (SSM), the excess properties of the interface depend
only on the correlation functions of the smooth interface. Introducing the potentials
of mean force wn(R;, Ry, ..., Ry)

LR, R, ..., Ry) = e PnfrRac.Ra) (1.146)

Combining these expressions we arrive at

N

Z/Z=7y_ (DA /) Y ePenlBaRacRa), (1.147)

n=0 {R:}CA(0)
which is the central quantity of our work. The excess free energy is
-1
= 54
where A is the area of the interface. We also deduce the fraction of occupied sites
6, (113]

Aft In(2/2,), (1.148)

ABAOAf?
Al éx
Eq.(1.147) shows that the SSM model maps the adsorption on a flat surface onto

a two dimensional lattice problem of a very general kind, which is in general not

amenable to analytic treatment. It can be simplified by introducing the Kirkwood
superposition approximation

g =

(1.149)

gg(Ri;Rz‘---‘ R'ﬂ) == H gg(R’hRj)! (1150)
where
92(Ri, R;) = g2(|R: — R;)) (1.151)

is the pair correlation function.
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The partition function can then be written as

Z/7° = Zeﬁp L ot-Bul, . tity t;,=0,1, (1.152)
{t.}
where 8 = 1/kT ,
Bw = — In|g,), (1.153)
¢ = 3R, R;) [i,j = nearest neighbors), (1.154)
Bu = InAn2(0)]. (1.155)

The behaviour of the adsorbed film in this approximation depends on only two
parameters, y; the adsorption affinity and w or more generally w;j;, the potential
of mean force of two adsorbate moeties, 7,j. The first quantity is obtained from
the smooth wall approximation discussed in the previous section. The potential of
mean force w determines the behaviour of the adsorbed film: Ifit is attractive, then
first order phase transitions may occur. If it is repulsive then second order phase
transitions can take place, such as order-disorder rearrangements. Ifthe interaction
is strongly repulsive not allowing first nearest neighbors on the triangular lattice
then this becomes equivalent to the hard hexagon problem solved exactly by Baxter
[59]

Further restriction of the interactions to nearest neighbors makes this problem
equivalent to that of the Ising model with nearest neighbor interactions. Then the
partition function can be mapped onto an Ising model with spin variables s; = +1
by means of the transformation

s, =2t — 1. (1.156)

which has been solved exactly for several lattices[59].

Then there is a phase transition when w < 0,
p=wgq/2 (1.157)
or
A0 (0) = [g2) 2, (1.158)

where ¢ is the number of nearest neighbors of the lattice, 4 for the square lattice
and 6 for the triangular lattice. The critical line for the first order phase transition
for the triangular lattice [114] yields the expression
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_ _ 1692 ‘I‘ 5
6= (1/2) (11(1 TR [ TR 1)3(92+3)) ) (1.159)

Setting # = (1/2), this equation yields the condition

92 |ere= 3, (1.160)

and the value for the critical sticky parameter Ais

Ap1(0) lerie= 1/27. (1.161)

The contact pair correlation function in the bulk for ions of equal sign is prac-
tically zero, because of the Coulomb repulsion which prevents ions of equal sign
to approach each other. In the adsorbed layer the interactions of these ions must
be attractive, if the formation of a layer occurs suddenly, and therefore the state
of chemical bonding, or more precisely the electrovalence, must change during the
adsorption process.

When we turn off the interactions in the surface, then w = 0 and Eq.(1.152)
becomes

VAR D IS (1.162)
{t.}

or

Z/Z° = (1 4 eP#)IM, (1.163)
and using Eq.(1.149), we get

9:A£ln(1+eﬁ“). (1.164)

oA
Furthermore since
e = Ap(0), (1.165)

we get the Langmuir isotherm

__ARR(0)
6 = ﬁ;\T‘,’(OF)' (1.166)
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The underpotential deposition of copper on gold

Phase transitions occuring during electrode processes have been studied using
a model in which the electrode is a planar wall with sticky adsorption sites. This
model is used to explain [115] of underpotential deposited films on perfect single
crystal surfaces [116, 117] contain sharp spikes . In earlier work, we discussed the
possibility of explaining these spikes as the result of first order phase transitions oc-
curing in the surface [56, 57]. There are a number of conditions that have to be met
to obtain experimentally sharp spikes in a voltammogram. These include chemical
equilibrium, the degree of perfection of the substrate (a single crystal in most cases),
and the scanning rate of the voltammogram. Ideally perfect single crystal surfaces
with large domains, fast kinetics and diffusion should produce narrow spikes. Slow
voltage scanning rates would be best to observe these spikes. The area under the
spike is proportional to the change transferred, not to the coverage of the surface,
because the charge per adatom on the surface is not necessarily an entire number,
equal to the stoichiometric electrovalence [118]. However, sharp spikes are not the
only interesting features of the voltammograms. New advances in ex and in situ sur-
face analysis make it possible to determine and discriminate the origin of broadening
effects. The case of the UPD, of Cu on Au(lll) in the presence of H3S0),; has been
extensively studied in recent times both experimentally [120, 20, 121, 1, 6, 11, 122]
and also theoretically [123]. The picture that emerges shows that the broad foot
observed in the voltammogram is not due neither to kinetic effects, nor domain size
effects, nor to surface reconstruction, and is completely reversible. Therefore it is
due to genuine statistical effect, that has to be accounted for. The broad foot of the
first spike in the Cu-Au voltammogram can be explained by a second order surface
phase transition, similar to the so called hard hexagon phase transition [59].

We assume that in the initial stages of the process there is a strong coadsorption
of copper with the bisulfate. At positive potentials (V' > .4 volts with respect of
standard (4g/AgCl) electrode, the bisulfate is strongly adsorbed onto the clean
Au(111) surface. We assume, in accordance with chemical common knowledge, that
it retains its charge, and therefore , the bisulfate-bisulfate interaction is both long
ranged and repulsive. If we assume, as we have done in our previous work [58, 123],
that the HSOj sits in a tripod position, that is with its three oxygen atoms directly
atop of the Au atoms of the surface, then the adsorption of one .H S0, necessarily
excludes nearest neighbor occupation.

This makes the short ranged part of the surface interaction mathematically iso-
morphic to the hard hexagon problem, solved some years ago by Baxter[59]. Ac-
cording to this work, there will be a second order, order-disorder phase transition
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when
b > 6, =0.2764. (1.167)

where ¢ is the fraction of the Au(111) lattice adsorption sites that is occupied by
the bisulfate.

Condensed phases in the ad layers are observed in electrochemistry. In particular
the under potential deposition of some metals on electrodes occurs at certain very
well defined values of the potential bias [121]. For example, the deposition of Cu
on the Au(111) face forms two phases according to the deposition potential. These
phases have been observed ex-situ [121] and in situ [20, 6, 11]. At a lower potential
a dilute ordered phase is formed. At a higher potential a dense commensurate phase
is formed. It is clear from the above considerations that in the dense ad layer case
the ions must be discharged, because then they would form a metallic bond, which
makes w negative, and therefore ferromagnetic. This is supported by the features of
the EXAFS spectra. In the high density phase the near edge structure corresponds
to that of metallic copper, which has a characteristic double peak.

In the electrosorption of ions, the charge of the ions can be neutralized by the
electons in the metal electrode substrate. If this happens, then the normally repul-
sive effective interaction between equally charged ions can become attractive because
of the formation of a metallic bond. The charge is known as the electrosorption va-
lency, and has been studied extensively by Schultze and coworkers [118] and will
be discussed in the next section. From the structure of Eq.(1.158) and Eq.(1.159)
it is clear that no first order phase transition will occur if the adsorbed ions keep
their charge and their repulsive interaction as the potential changes. The conclusion
is that the addions, in this case Cu, attract each other in the adsorbed layer, and
therefore are chemically different in the adlayer than in the bulk solution.

The contact density p;(Q) is a function of the electric potential: an estimate of
the contact density can be obtained using the expression used

p2(0, %) = e~ 0(0,0), (1.168)

where 2, is the electrovalence and p%(0,0) is the contact density of ioni. Wis the
adimensional potential bias with reference to the potential of zero charge, and is
given by

U = Be[$(0) — Ypuc)s (1.169)
where e is the elementary charge, § = 1/kT, 9(0) is the potential at the electrode

surface, and .. is the potential of zero charge. Although Eq.(1.168) is certainly
consistent with the classic Gouy-Chapman theory, and experimental evidence [124]
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shows that Eq.(1.168) holds even in systems where the assumptions of the Gouy-
Chapman theory do not apply , and where we know that the discrete nature of the
solvent will produce oscillatory charge profiles [29]. Yet contact theorems of the
type
€
kTY p2(0,¥) = —E* + P 1.170
Zp‘g (Os } 87 o+ g, ( )

where € is the dielectric contant of the medium, Fyis the bare electric field at the
surface, and Pp is the bulk pressure, are valid for irregular surfaces with arbitrary
interactions [119] in the mean field sense.

We consider the adsorption of a single ion only, always the counterion ¢ = 1,
which has a fugacity

z=p)(0, W)X = e ¥ p2(0,0). (1.171)

The resummed series is just Langmuir’s adsorption isotherm, which is indeed

the correct physical limit of # given by Eq.(1.166) when the lateral interactions are

turned off. This immediately suggests the form of the Padé approximant for general
z and g3 = 1/u. For low fugacities

_ z+2(92—1)P(g2, 2)
" 1+ 2+ 2(g92— 1)P(g2,2)’

; (1.172)

and for high fugacities
1

O = T /el + (11208 (02 = D P o /o8

(1.173)

Using the dependence of z on the applied potential bias ¥ as given previously,
it is possible to get the adsorption isotherms as a function of W for fixed values of
z; and p3(0,0)\. For the case p9(0,0)A = 0.1and # = 1 (monovalent counterion).

A phase transition occurs when y = 1/(zg¢3) = 1.

A phase transition will appear in the voltammogram as a sharp peak. The
charge potential curve of the voltammogram can be obtained by differentiation:

88 dy(0)
IY) = ———.
W) =350
If the scanning rate is constant and we neglect diffusion and double layer effects
[115], Eq.(1.169) and Eq.(1.174) yield

(1.174)

I(y) = ~fzg— (1.175)
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A final observation is that the mean field result can also be cast in the form of
a modified Langmuir adsorption isotherm:

0
g 29
= =
1+ 2¢3

(1.176)

Consider a model in which there are three species, which for brevity we will call
E (empty sites), C (copper) and S ( bisulfate). In our lattice model of the surface
there is no interaction between E and the other adsorbates, S strongly repells S,
and S-C and C-C are strongly attractive. Models in which three components are
adsorbed where recently discussed in the literature [125, 126, 127, 113], but only
nearest neighbor configurations were taken into consideration. In our case at least
second neighbors need to be included.

Theory

The underpotential deposition (UPD) [116, 117] of metals frequently involves
phase transitions that are observed in the voltammograms as sharp spikes [128, 30].
In earlier work [56, 57] we introduced a sticky adsorption site model to study phase
transitions that occur when the adsorbate is commensurate with the substrate. This
situation is known to occur, for example in the UPD of copper on gold (111) in
the presence of bisulfate ions. As has been shown in earlier work [58, 129, 130]
the particular structure of this voltammogram is due to a sequence of first and
second order transitions taking place on the surface. To obtain sharp spikes in
a voltammogram the substrate surface must be a perfect single crystal with large
domain size. Slow scanning rates are also required. This immediately suggests that
thermodynamic equilibrium and reversibility are necessary for the occurence of these
spikes, which are associated with first order phase transitions in the adsorbate layer
[56, 57].

We should mention in this context the early work of Bewick and Thomas [131]
who studied the case of UPD of Pb on Ag (111), and the work of Buess-Hermann[132]
on the adsorption of alcohols on mercury. In both cases the mean field Frumkin’s
isotherm [133] was used to interpret the observations. We observe here that in both
cases the adsorbed layer is incommensurate with the substrate, and in our theory the

adsorbate must, be commensurate. For the commensurate case Frumkin’s isotherm
corresponds to the mean field theory, which is known to be very inaccurate. The
coexistence curve is of the form y = x'/2 for Frumkin, while the exact lattice result is
y = 2/ [134], This has important consequences for the shape of the curves and for
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the sensitivity of the voltammogram to the interaction parameter of the adsorbate.
In the case of the exact lattice gas isotherm the occupancy €, changes suddenly
from an almost Langmuir type behaviour to a phase transition at the critical value
of the interaction parameter ¢,. In the mean field theory the change is much more
gradual.

For the incommensurate case, or for the liquid mercury electrode, Frumkin's
isotherm describes a gas-liquid transition, and not the solid-liquid transition [135].
This opens interesting possibilities about different types of transitions that are pos-
sible, and that we hope to discuss in the future. In the voltammogram the area
under the spike is proportional to the charge transferred, not to the coverage of the
surface, because the charge per adatom on the surface is not necessarily an entire
number equal to the stoichiometric electrovalence [118].

The model

The case of the UPD of Cu on Au(111) in the presence of }H,S(),has been
extensively studied in recent times both experimentally [136, 20, 137, 138, 120, 121,
1, 139, 140, 122] and theoretically [123]. We should also mention that two recent
studies of the kinetics of this system [141, 142] clearly indicate that in the shape of
the voltammogram the first peak can be derived from equilibrium considerations,
as was done in our earlier work, while in the second the kinetics is much slower and
therefore observable from the analysis of the voltammogram.

In recent papers [58, 129] a model for the underpotential deposition of Cu on
Au(111) in the presence of bisulfate ions was proposed. We summarize here the
main results of our previous work.

In our model for the underpotential deposition of Cu on Au(111) in the presence
of sulfuric acid, we assume that a well defined sequence of events takes place:

« Bisulfate ions are adsorbed at very positive potential, forming a /3 x /3
lattice on the gold surface. These bisulfate ions are desorbed as the potential
is decreased, undergoing a hard hexagon like second order phase transition.

» Copper ions are then adsorbed on the free adsorption sites. The adsorption
of copper produces a reabsorption of the bisulfate ions, which eventually will
undergo the hard hexagon transition to rebuild the v/3 x /3 lattice on the gold
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surface. This forms a honeycomb lattice for the adsorption of the remainder
of the copper of the first peak.

* In the second peak the adsorbed bisulfate ions are displaced by copper ions
from the v/3 x v/3 positions. However, they could still remain bound to the
copper, which now forms a full monolayer on top of the Au(111) surface.

We assume that the bisulfate binds to the gold (111) surface in such a manner
that the sulfur is directly on top of the adsorption site for the copper, three of the
bisulfate oxygens being above and directly associated with the three gold atoms of
the surface, which form a triangle about the adsorption site. Packing considerations
indicate that two bisulfate groups cannot be adsorbed onto neighboring adsorption
sites. The bisulfate ions will thus form a /3 x /3 film by occupying one of the
three triangular sublattices Ay of the full triangular lattice of adsorption sites, with
a maximum coverage of 1/3.

Bisulfate adsorption

In our model it was assumed that the bisulfate ion formed a /3 x \/I_}template.
This template leaves a honeycomb lattice of free sites for the adsorption of copper.
The clear implication is that the first peak has 2/3 of a monolayer of Cu. The second
peak corresponds to the replacement of the bisulfate by copper in the adlayer. We
showed also that the broad foot of the first peak is due to a second order hard
hexagon like transition, which is seen experimentally by Itaya[136] and Kolb [143].
We believe that the interpretation that the first peak corresponds to only 1/3 of a
monolayer, based on the STM and LEED observations, is consistent with our model
if it is the bisulfate ion that is seen.

In our model [58, 129] the broad foot of the first spike in the Cu-Au voltammo-
gram is due a second order surface phase transition, similar to the hard hexagon
phase transition [59]. This transition was actually observed by Itaya [136] and by
Kolb [143].

In our theory in the initial stages of the process there is a strong coadsorption
of copper with the bisulfate. At positive potentials (V' > 0.45 volts with respect
to the standard (Ag/AgCl) electrode), the bisulfate is strongly adsorbed onto the
clean Au(111) surface. This means that there is an ordered /3 % /3 structure for
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these very positive potentials observable by STM or AFM. We assume that it re-
tains its charge, and therefore, the bisulfate-bisulfate interaction is both long ranged
and repulsive. The F15(); sits in a tripod position, that is with its three oxygen
atoms almost directly atop the Au atoms of the substrate, so that the adsorption
of one HS(J; necessarily excludes nearest neighbor occupation. This makes the
short ranged part of the surface interaction mathematically isomorphic to the hard
hexagon problem, solved mathematically by Baxter[59]. There will be a second
order, order-disorder phase transition when

0s > 0, = 0.2764, (1.177)

where 85 is the fraction of the Au(111) lattice adsorption sites that are occupied by
the bisulfate.

Consider a model in which there are three species, which for brevity we will call
E (empty sites), Cu(copper) and S ( bisulfate). In our lattice model of the surface
there is no interaction between E and the other adsorbates, S strongly repels S, and
S-Cu and Cu-Cu are strongly attractive. Models in which three components are
adsorbed were recently discussed in the literature [125, 126, 127, 113].

We define [56, 57] the inner layer equivalent fugacity z, for the adsorption of the
bisulfate

zs = As(¥)p%(0,%) (1.178)

where the sticking coefficient can be interpreted as Ag(y) = exp[Bus], with pg as
the free energy change that occurs when a bisulfate ion binds to the gold surface,
removing in the process the adsorbed water. p%(0,1) is the inner layer local density
of bisulfate for a local potential ).

We assume the simple exponential form [115] for the fugacity

Z5 = ,\gpg(o’o)e—(sﬂe(w—wg‘) (1.179)

where 8 = 1/kT is the Boltzmann thermal factor, the electrosorption valency of the
bisulfateis (¢ = —1, and ¢ is the electrosorption reference potential, that depends
on the nature of the substrate.

The adsorption isotherm for the hard hexagon model has been derived by Joyce
[144]. His results can be fitted to Padé approximants [129]. For the high density,
ordered phase

0.2764 + 0.155(zs — 11.09) + 0.01(zs — 11.09)?
1+ 0.5(z5 — 11.09) + 0.03(z5 — 11.09)2

gk = zg > 11.09.  (1.180)
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For the low density, disordered phase,

gev = ————2——— & e < 1L00 (1.181)

Consider now the adsorption of bisulfate onto Au(111) in the absence of copper.
Using Eq. (1.179) with the effective charge of the adsorbed bisulfate (g = —1,

zg = A%p%(0, 0)Pe¥-—v8") = ;0 ghelv—ug") (1.182)

where we take

P = 0.388V (1.183)
and the bisulfate fugacity zsis (2% =1, T = 298.16K)

i esaazz[w-mg-—j, (1.184)

The bisulfate is desorbed as the potential turns less positive. With these param-
eters the S lattice becomes disordered at about 0.45 V, which is when the copper
starts to deposit. As long as the S template is disordered, the Cu is adsorbed
randomly (probably next to the bisulfate).

The copper will start depositing at around 3 = 0.4V, but since the bisulfate is in
its disordered phase, there should be no cooperative effects due to the copper-copper
attraction on the surface, and therefore, to a first approximation we may assume
that the electrodeposition of copper follows a Langmuir-like ( or Frumkin-Langmuir
[115]) adsorption isotherm

b = —2%— s < 6% = 0.2764 (1.185)
14 2oy
where " is the electrodeposition reference potential of Cu on gold (111), and (¢
is the effective electrovalence (certainly related to the electrosorption valency ) of
Cu (see the discussion below, Eq.(1.203)).

The electrosorption of bisulfate on polyerystalline copper [145, 146] shows that
it binds much more strongly than to gold. We may assume that the electrosorption
potential of the bisulfate varies linearly with the amount of copper in the surface.
Thus, guided by the work of Trasatti on the influence of the anion on the potential
of zero charge [147], we take

Ps < Piv. (1.186)
In our model, then
zg = Zg(.—{qﬁr:{w vs) (1.187)
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with
s = Y5 00, + (1 — Oy )i, (1.188)
In the presence of copper the bisulfate is then readsorbed. Eventually, the frac-
tion of occupied sites will again surpass the critical value of 0.2764 (which corre-
sponds to 83% of the occupancy of the template /3 % /3 lattice), and then there
will be a first order transition for the copper on the honeycomb Ilattice of the Cu
sites.[148] If we assume that the occupancy of copper 8, = 1/3 at the transition,
we get that ¥$* = — 302V, which is in qualitative agreement with Wieckowski
[145, 146].

The fugacity of copper

We recall that in the using the sticky site model [56, 57], there are two basic
parameters that determine the phase behaviour of the adsorbed layer:

* The local fugacity z = Z¢, of the two dimensional adsorbate gas is the product
of the sticking probability Ac, and the contact density pl, (0,1)of the ion i,

Zou = Acuply (0,9) (1.189)
» The lateral interaction parameter g
g2 = g5(R,, R;) [t,7 = nearest lattice neighbors), (1.190)

where R,, R, are the positions of the neighboring lattice sites i,j, and g3(r)is
the pair correlation function in the electrode plane, but in the absence of the
adsorption sites.

Both of these parameters depend on the applied potential 2. Consider first the
fugacity: The sticking probability is a function the bonding free energy e, of the
adsorbate to the binding site. This quantity is independent of the ionic strength of
the electrolyte, for a given potential. However, it will depend on the potential bias
[115] at the surface. We write

Ao = AL ePe0u, (1.191)

where the binding energy of the Cu ion depends on the potential bias of the metal
substrate, or electrode,

£cu = Coull — V&2, (1.192)

where e is the elementary charge, ¥ is the potential at the electrode surface, and w,rf:tf?;i‘1
is the electrosorption reference potential. (¢, is the effective charge of the adsorbed
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species at the surface, not necessarily equal to the electrovalence in solution.

The contact density p%,(0,%1 is a also function of the potential bias. As a first
approximation we will assume that the contact density is given by

PEu(0,9) = p2,(0,0)ePeveud (1.193)
where pg,(0,0) is the contact density at zero potential v, which for the Gouy-

Chapman theory is equal to the bulk density pe,, and ey, is the full charge of the
Cu ion. Therefore

Sou = A%upgu (0, O)Bﬁf[((c:u—Vc‘u}ll'«'—Ccuwgﬁ] (1194)
Similarly, we write for the lateral interaction parameter go
— o—Buz
g2=e ; (1.195)
where wy is the potential of mean force between moeties adsorbed in neighboring
sites. Since we know that the charges of these moeties change with (39, 40], w,
must also be a function of the potential bias 4. ( A detailed theory of a model which

calculates this effect will be presented separately.)

Therefore we may expand about 2¢

wy = wy +eafy — P& + ... (1.196)
where
10w
a==|=— (1.197)
e| oy P=yhe

As was discussed in earlier work [56, 57], the coexistence curve is given by the
exact condition

i = 2[gg]%/? = 1, (1.198)

where ¢, is the number of neighbors of the lattice, 6 for the triangular (center filled
regular hexagons) lattice and 3 for the honeycomb ( empty center hexagons). If the
parameter % is less than unity then we are in the 1 phase region. If it is larger than
1, then we arc in the two phase region. The coexistence curve is obtained setting
=1 in Eq.(1.198). For the triangular lattice [114]
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. _ 1692 %
Or = (1/2) (lﬂ:(l (92_1)3(92+3}) ) (1.199)

with a critical value gI = 3. For the honeycomb lattice [148]

3/2 3/2
1692{ (1 +92I )

(42 1) (02 = 1)°

on=1/2) |1+ |1- : (1.200)

/
with a critical value g = (2 + /3)? ~ 13.93.

As it was shown in earlier work, [57] the adsorption isotherm can be expressed
as a generalized Langmuir adsorption isotherm of the form

Az, )
T 1+ A, 0) ( )
where A(Z,4) = A is a polynomial in Z and #. For the case in which there is a
phase transition, f¢, is practically a step function which was represented by an
error function in our previous work. A very simple and useful alternative form is

A=2+(go—1)a", (1.202)

where n is some entire number. The width of the transition spike is inversely pro-
portional to n (actually to n/4) , and will play the same role as the width parameter
of our previous work[149]. It is related to instrumental width, substrate domain size
and defects on the surface.

Combining Eq.(1.194)- Eq.(1.196) and Eq.(1.198), we get that at the transition
point,

ficy = /\g:upﬂCu (0, O)eﬁe[(CCu ~vou=qref/2pr—(Cou—qra/2WES —qLwd/2e] _ i (1.203)

The relation of the parameters in this formula to the electron transfer coefficients
will be discussed in future work.
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The current in the voltammogram

Consider the electrode interface, in which a current flows. We have specifically
in mind the case of the UPD of Cu onto Au(111). In this case there are two ions
that participate in the transport of charge:

* The bisulfate, that carries a negative charge which it keeps when adsorbed
onto the surface. Therefore, it will contribute only to the capacitive current
density j.. The other contribution to j. is from the diffuse layer.

* The copper, which is adsorbed and discharged to some extent. It’s electrova-
lence will change from v, in the bulk phase to (¢, at the electrode interface.
Furthermore, (¢4, should be a function of the potential 4.

Therefore, the total current density is ( for a recent discussion see, for example the
work of De Levie [150] and Lantelme [151])

Jr=Jjc+Ir (1.204)
where j; is the total current density, j. is the capacitive contribution and jy is the
Faradaic contribution. If we neglect double layer effects, then the capacitive current

is due to the bisulfate, and the faradaic current almost exclusively to the discharge
of the copper ions. Then

) dc‘] i (1.205)

Jc = (1/A) [G%—wdﬂ) T

gives the current due to the discharge of the capacitor as well as its change in inte-
gral capacitance C;. A4 is the area of the electrode.

The current associated with the cation (in this case the copper ) can be written

as
. d/lj)
jr=(M/A)e "—gr:n—da— + (vou — CC“)_d'le dt

where M is the number of adsorption sites per area 4, e is the elementary charge,
{er, 1s the actual charge of the adsorbed copper and % the potential.

d¢.Cu dbo 4,268

In accordance with the quantum theory [39, 40], the charge of the adsorbate
will change with the applied potential because the electron density at the surface is
changing. Intuitively we take the exponential form

Gilt) = g9, (1.207)

where w¢ and () are adjustable parameters.
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Geometry of the model

We discuss now some geometrical properties of our model. We recall that we
assumed that the bisulfate ion formed a /3 x /3 template. This template leaves a
honeycomb lattice of free sites for the adsorption of copper. The clear implication
is that the first peak has 2/3 of a monolayer of Cu. In this section we want to show
that the bisulfate actually protrudes from the surface, and therefore the 1/3 of a
monolayer seen by the STM and LEED observations is consistent with our model.

The vertical distance between the substrate Au(111) plane and the adsorbed
copper can be estimated to be 2.22 A , by taking the mean distance in metallic
gold and in metallic copper. From early EXAFS experiments [20, 137, 138] and
recent theory [123] we know that the gold (or copper ) distance to the oxygens in
the bisulfate is between 1.95A and 2.1 A , so that from the dimensions of the
bisulfate ions, it should be between 1.84A and, if we count the hydrogen of the
bisulfate, 2.13A higher than the plane where the copper lies. Assuming the same
geometry on a clean Au(111) surface the bisulfate layer should stand about 4.06-4.35
A above the Au surface. However, the STM cannot measure absolute heights, and
therefore, both cases appear as a V3 x V3 overlayer.

An observation to be made is that the Cu — 0 distances appear at 1.81 A if
we assume an undistorted bisulfate ion and copper honeycomb lattice. This is a
bit lower than the expected value of 1.95A . Therefore we would expect that the
adsorbed ion be deformed so that the oxygens lie about .2 A below the line of
the copper atoms, which would relieve the stress, but at the same time create a
activation energy barrier for the desorption of the copper. This again is consistent
with the experimental observations.

The proposed coordinates are shown in Table 1.1.

Concentration dependence and electrovalence

If all the parameters stay the same as the concentration of copper is changed,

a shift in the concentration will necessarily imply a shift in the transition potential
kT

AP = Aln[pc.(0,0)). 1.208

"= o aual2— oy e 0) e

For a tenfold increase in concentration the potential shift is

App = — , (1.209)
Vegr

where sy is theeffective charge obtained directly from the equation Eq.(1.203)

Veff = Veu + qraf2 — (e (1.210)
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[ undistorted-stressed | distorted-relaxed
) X y [z X y Z

Aul 0 -1.66 |0

Au2,3 +1.44 | 0.88 0

Cul,2 +2.88 |0 2.22

Cu3,4,5,6 | +1.44 | £2.49 | 2.22

01 0 -1.39 [ 2.09 {0 -1.32 | 1.9

02,3 +1.21 | 0.70 2.09 +1.15 | 0.66 | 1.9

04 0 0 4.065

S 0 0 2.58

u-l 0 090 |4.35

Table 1.1: Structure of the adlayer with 1/3 coverage of bisulfate and 2/3 of Cu.
The stressed structure was made using an undistorted bisulfate ion. In the relaxed
structure the bisulfate ion was squeezed so that the O — O distance is shortened
from 2.42 A to 2.30 A , while the copper- oxygen goes from 1.81 to 1.87 A

We are now in position to discuss the recent experiments of Omar et al. [142] and
Holzle et al [141]. Using the results of the local kinetic theory [153] we can estimate
the positions of the peaks in the experiment of Omar et al. We notice that the
relative shift of the bulk deposition edge corresponds exactly to the electrovalence
of copper, 2. We should remark that this a bit surprising, since one would expect
that it should scale to the activity of the copper, not its concentration. However this
also means that the contact density pcu(0,%) in our model scales almost exactly to
the Gouy- Chapman estimate Eq.(1.193), which is nontrivial and reassuring. We
recall that our interface is not planar, our solution is molecular, and the position at
which pe,(0,) is taken is some average over the positions in the metal electrolyte
interface. We know that the contact theorems are satisfied by these averages, and
this is probably the reason why the Gouy-Chapman estimate is so accurate.

If we use the shifts of the edge to compute the effective charge Eq.(1.210) for the
peaks in the voltammogram we find that the effective charge for the second peak is
20 % higher than 2, and that for the first peak we get about 1, which is very difficult
to explain in terms of individual fugacities or the Nernst equation [142].

The inclusion of the variation of the pair correlation functions between adsorbed
particles with ¢ removes these difficulties. The results of table 1.2 show that the
remarkable accuracy of the Gouy-Chapman estimate holds also for other transition
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points. However the actual values of the charges cannot be reconciled with the other
experimental evidence.

For the second peak a charge bigger than two cannot be explained in any other
way but by including the variation of g, with potential 1. The value & = (.14 seems
reasonable.

The apparent charge for the first peak vy = 1is definitely inconsistent with
the experimental evidence and in particular with the integrated charge, where the
ratio of the charges of both peaks is very closely 1, so that each peak corresponds
to 50% of the monolayer charge. If we assume only 1/3 coverage by copper as has
been indicated in the literature [136, 143], the charge would be only 16% of the
monolayer, clearly impossible. The explanation that the remainder of the charge
is due to desorption of the sulfate is inconsistent with the EXAFS experiment [20],
with the radiotracer experiment[145], and with the microbalance experiment, all of
which indicate that there is strong bisulfate adsorption even after the full monolayer
is deposited.

The situation improves if we take the 2/3 monolayer coverage predicted the-
oretically [58, 129]. We get 50 % of the monolayer for each peak’s charge when
vouw —Cow = 1.0 and ¢y = 1.0 . The value (¢, = 0.5, which implies vepp — (ou = 1.5
satisfies the 60% for the first peak charge requirement of Kolb’s votarnmogramm,
and produces a neutral film near the expected value of the point of zero charge for
this system. We believe that this last one is a more plausible value of the charge,
since charge neutrality explains the lifting of the reconstruction of the gold surface
by the adsorbed copper layer.

Exp.(mV) Shifts(mV) e
F1 | #2 | #3 | #2-#1 | #3972 | EAChg. | Real.Chg. |
Edge 299 | 270 | 241 | 29 29 2.04 0
Foot 557 | 500 | 458 | 57 42 -
Ist. peak | 554 | 496 | 444 | 58 52 1.02/1.14 | 0.5 -0.33/-0.25
2st. peak | 352 [ 327 | 303 | 25 24 2.37/247 | 0 0.14

Table 1.2:  Shifts of the voltammogram’s peaks with concentration from Omar
et al [142]. Experiment # 1 : 9.107?H,S50,, 5.1072CuSO,, Experiment #
2: 9.1072H,80,, 5.1073CuS0,4, Experiment # 3 : 9.1072H,50,, 5.1074CuS0;.
The effective charge is evaluated using Eq.(1.210). « is evaluated using (¢, = 0.5
for the first peak, and (¢, = 0 for the second peak. = The foot corresponds to the
hard hexagon transition, which we cannot estimate accurately from the graphs.
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1.4 Quantum mechanical treatment

The quantum mechanical treatment of the metallic surface has been devel-
oped to a large extent for metal-vacuum interfaces. Similar techniques should be
applicable to the metal electrolyte interface. The main difference is that the fluid
contributes not only to the electric fields in the metal surface, but also to specific
chemical bonding interactions.

It is important in the quantum mechanical treatment of the electrode interface,
therefore, to have a good knowledge of the structure of the electrolyte near the
electrode, and also, of the electric fields at the interface.

1.4.1 Quantum mechanical treatment of the interface

The quantum theory of the metal interface with vacuum has been well de-
veloped. Most of the succesful treatments are based on functional density theory
[152, 154, 155]. General reviews are available [156, 157]. The metals of interest
in electrochemistry are the noble metals and mercury. These are sp and d band
metals. The valence electrons of an sp-metal are delocalized and can be considered
as a Fermi fluid interacting with the lattice of metal ions. In the jellium model, the
interaction of the electrons with the ions is simplified by smearing out the positive
ionic charge into a background of constant density, which terminates at the metal
surface. Since in this average the information about the structure of the ionic lat-
tice is lost, the jellium model is applicable to liquid metals or to polyerystralline
surfaces, but it is still a useful model. The electron cloud spills over outside the
metal surface, and the extent of this spill depends on the potential drop between
the metal surface and the bulk electrolyte. The results of Lang and Kohn [155] are
particularly interesting.

The electronic density n(x) satisfies the Budd-Vannimenus sum rule [158], which
is the quantum mechanics version of the dynamic balance equation

n(~00)[#(0) — $(~00)] = —p(-00) ~ 21¢? (1.211)

where ¢(z) is the electrostatic potential, p(z) is the pressure. The bulk jellium
pressure is obtained from Wigner’s equation

0.079673

—~00) = (k%/2) |0.4 — 0.0829r, - ———
p(—00) = (k3/2) 0.4 — 0.0829r .+ 78)

(1.212)

where
kp = (3n°n,)'/?
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is the Fermi momentum and
7o = [3/(d47wny)])H?
is the Wigner-Seitz radius. The electron density can be parametrized as
n(z) = ny[1 — Ae®® cos(yz + 6))0(—2) + n, Be #6(z) (1.213)

which gives a fair representation of the density profile as computed by more accurate
methods [155]. Of the six parameters of this equation, four can be obtained from
the Budd Vanneminus sum rule, charge balance, and the continuity of the electronic
density n(z} and its derivative at z = ()

The density profile changes as the potential is changed. If we plot the charge
outside of the metal B as a function of the potential difference [¢(0) — ¢p(—o0)]. We
find that the electron density spill increases with the potential bias.

1.4.2 Electrosorption on metal electrodes

It was first recognized by Lorenz and Salie [159] that when an ion is adsorbed
on an electrode the charge that is transferred need not be a whole multiple of the
unit charge. This partial charge transfer can be represented by the stoichiometric
equation

84 de” = §i7 (1.214)

There is no direct way of measuring the partial charge transfer A, the most di-
rect experimental evidence comes from NEXAFS experiments. It is related to the
electrosorption valency [160].

We consider a nonadsorbing suporting electrolyte of high concentration, so that
the charges in the interfacial region are well screened. Then, we define the elec-

trosorption valency as
1 [ oji
s [t 1.215
TF {aAmL e

where [; is the electrochemical potential of 7, Ay is the potential drop, [y
is the surface concentration of the adsorbate, and F is Faraday's constant. The
electrosorption valency is the surface analog of the Nernst valency for the reaction

ZU,‘S,‘ + ne = {] (1216]

forwhich

_ 1 [ op
vifn = 7 [BAw] . (1.217)
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and we identify 1, /n to the electosorption valency =,
Consider the surface Gibbs Duhem relation

udl + TdAp + ... =0 (1.218)

that in the presence of a supporting electrolyte

1 [ oq
=1 [Eﬂ“ad]w (1.219)
from where 5 s
=8 |
=7 'yF[ 5 Lw (1.220)

so that clearly the electrosorption valency is related to the charge transfer. In order
to obtain a precise relation we need to introduce a non thermodynamic quantity,
the geometric factor g

= éad - ¢’s

where ¢,, = ¢(—00) is the potential in the metal, ¢, = ¢(o0) is the potential
in the solution, and ¢,q4 is the potential at the adsorbed layer, which is the non
thermodynamic quantity. At the potential of zero charge we get

Y(0) = 29 + M1 — g) + Haa — Viw (1.222)

where o4 is the dipole moment of the adsorbate, u,, that of water, zis the elec-

trovalence, ofwhich A is transferred to the electrode according to Eq.(1.214). Thus,
the charge transfer is related to the electrosorption valency by non thermodynamic
quantities.

Electrostatic potential at a metal/electrolyte interface gives the effect of the ionic
charge number, z, which is transported over a fraction g of the potential difference
Y, — ¥,

1.4.3 Theoretical discussion of the electrosorption valency

Consider the case where only one valence orbital is involved in the adsorption bond.
We are interested in the energy of this level relative to the Fermi level of the metal,
which will determine to which extent the energy levels are occupied.
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Since we are interested in equilibrium phenomena, fluctuations, and in particu-
lar, those of the solvation layer can be neglected.
To determine the change in the free energy, AE} , required to transfer an electron
from of the metal to the ion in the bulk of the solution. We decompose the electron
transfer process from the metal into separate steps:

e~ (metal) — e (outside — metal) AG=9

e (outside — metal) — e~ (outside — solution) AG = —ey[V; — U]
S*(solution) — S*(outside — solution) AG = ~AG! (5?)
S* + e (outside — solution) — S* '(outside — solution) AG =1
S*~(outside — solution) — S*~!(solution) AG = -AGL (57

Here “outside” means a position which is close enough to the phase (metal or
solution) that potential is equal to the outer potential but which is far enough so
that image forces are negligible. @ is the work function of the metal, ¥, and ¥,
are are the outer potentials of the solution and the metal, respectively. AG? ,(S*)
is the freee energy of solvation of S*, which is known experimentally. Finally I is
the ionization energy of the solute, generally not measured directly and e, is the
electron charge. The total change in free eenrgy is

AG® = @ ~ e[ ¥, — U] — AGY(S*) + AGL (S* 1) -1 (1.223)

As an ilustration, we consider C'st and C!~ in aqueous solution near a polycrys-
talline gold electrode. We assume that both the metal and the solution are at the
same outer potential. Then we get for Cs* [161]

AG® = 4.80 + 2.94 — 3.89 = 3.85¢V

For Cl~
AG® = 4.80 — 3.07 — 3.61 = —1.88eV

These values merely confirm the well known fact that both ions are stable in the
neighborhood of gold at the point of zero charge.

1.4.4 Model Hamiltonian

Electrosorption is similar to adsorption from the vacuum, and can be treated
using the same techniques. The presence of the solution has to be included, which
necessarily complicates the calculations. The Anderson-Newns model (for a review,
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see Refs [162, 163]), which is the standard theory for adsorption on the metal-vacuum
interface has been extended to the etal solution interface [164, 165]

We follow the treatment of Kornyshev and Schmickler [165]. We consider a single
atom adsorbed at a metal/electrolyte interface. Only one adatom orbital interacts
with the metal, therefore, all collective interactions are neglected, and in particular,
all surface phase, transitions. We denote the adatom electronic energy by e, The
total Hamiltonian of the system is composed of three terms,

H,=H, + Hp, + H, (1.224)

The first term corresponds to the valence electrons of the adatom

Ho = Z[(—anaa + UngoNa—o) (1.225)

Here U is the Coulomb repulsion energy of two valence electrons, @ is the spin
occupation number operator, and the index ”a” stands for adsorbate.

The interaction of the metal electrons and the adsorbate is

Hm =) _lexnko + Vi(ch,Cao + hec.)] (1.226)
ko

where k denotes a set of quantum numbers for the metal electrons ,Vj is the matrix
element for the electron exchange exchange between the metal and the adsorbate,
and ¢t and ¢ denote creation and anhilation operators for the states indicated by
the subindex. h.c. denotes hermitian conjugate.

In considering the adatom-solvent interaction, we follow the theories of electron
transfer reactions in solution (for a review, e.g., Ref.[166]) and distinguish between
the librational and vibrational modes of the solvent, which are slow compared to
the rate of electron exchange, and the polarizability of the solvent molecules. In
the harmonic approximation, we can write for the slow solvent modes and their
interaction with the adsorbate in the following expression

H, = 1/22"—1‘90(3)3 0 Q‘E) + {z . Znaa) (Z hwvgav(?u) (]227)

Here, the v labels are for the slow solvent modes of frequency v, momentum
p, and coordinate ¢,. g, is the coupling constant for the interaction with the
adsorbate, which couples electronic energy to the solvent coordinates g, . Instead
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of using previous models, one can also model the solvent as an ensemble of hard
dipoles.

To calculate the equilibrium properties of the system, we follow Kratsov and Mal-
shukov [167], who consider the ¢, as external parameters of the electronic Hamilto-
nian, and determine the solvent configuration for which the electronic energy of the
system is minimal. Using the Helmholtz-Feynman theorem we obtain the condition

< dH,/8q, >=10 (1.228)

From this, we can calculate the expectation values of the solvent coordinates in

< gy >=(z— Zna,,)gm, (1.229)

Substituting Eq.(1.229) into Eq.(1.225) to Eq.(1.227), we see that the slow sol-
vent modes contribute a term

Ho=) |z=Y <naw >) Y hwg?, | e (1.230)

to the electronic Hamiltonian.

Consider now the interaction of the adatom with the fast modes of the interface.
Normally, both the surface plasma modes of the metal and the electronic solvent
modes are faster than the electron exchange between the metal and the adsorbates
[168]. Then these interactions simply shift the adsorbate energy level energy €, and
the correlation energy U (Hewson and Newns [169]). Estimates for the shifted values
&, and U are given below.

The model Hamiltonian now has is of the standard form of the Anderson model
and we can use the standard theory. Due to the interaction with the metal, the
adsorbate level has a width

Aw) =7 [Varl?s(w — €x0) (1.231)
A
The width A is related to the self energy X, which is defined by

(w) :PZM (1.232)
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where P denotes the principal part of the sum, which excludes the term with
W = €.
The effective energy of the adsorbate is then
E,=¢6,+U<n>+2(z-2<n>)E, + Z(w) (1.233)

where < n > is the average occupation number of the adsorbate molecule electronic
level, and the factor 2 stems from the sum over the two spin states, which are
assumed to be equally occupied. The solvent energy is, from Eq.(1.230)

E,=(1/2))_ hw,gl, (1.234)

which is the energy of the solvent reorganization in Marcus theory.

A = 0.5V A=1.0V

System [Vac [a=1/3[a=2/3|Vac [a=1/3]a=2/3]w
K*/Hg 0.15 | 0.12 0.08 0.30 | 0.25 0.16 0.12
Rbt/Hg |0.15 {0.12 0.08 0.29 |0.24 0.16 0.15
Cs*t/Hg |0.14 | 0.11 0.07 0.27 |0.23 0.16 0.18
Cl~/Hg |-0.21]-0.17 -0.10 -0.32 | -0.27 -0.19 0.2
Br~/Hg |-0.26 | -0.20 -0.12 -0.38 | -0.32 -0.22 0.34
I-/Hyg -0.34 | -0.38 -0.17 -0.47 | -0.41 -0.30 0.45
Cut*t/Pt | 1.85 | 1.42 1.09 190 | 1.77 1.16 1.80
Agt/Au | 0.73 | 0.47 0.12 0.80 |0.68 0.26 0.6
Tt /Pt 0.26 |0.19 0.10 0.42 [0.35 0.21 0.85
Pbt+/Ag | 1.81 | 1.83 1.70 1.69 | 1.71 _1.45 2.0

Table 1.3: Calculated values for the partial charge transfer,A — z - z, ,i.e., the
charge number z of the ion minus that of the adsorbate 2z,[31].

Assuming that the energy width, A , is constant, the occupation probability
< n > is given by

A

<n>= (l/w)/f(w}F—— ~ (1/2) cot™! [

BE,-E
AEWY 7‘1 (1.235)

A
where f(w) is the Fermi-Dirac distribution, Er the Fermi energy of the metal, andin

Eq. (1.235), the Fermi-Dirac distribution was replaced by a step function which im-
plies A >> kgT, which is generally true. From < n > we can estimate the partial
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charge transfer A in Eq.(1.214)

The Anderson-Newns model yields a intuitive first principles picture of the charge
transfer process in terms of parameters that need to be evaluated from some specific
models. We reproduce some of the values of the charge transfer coefficients in the
following table.

The calculations were performed near the potential of zero charge, when the outer
potential of the metal and solution are equal. The charge transfer coefficients were
calculated for energy widths of A = 0.5eV andA = —1eV, which is a reasonable
range for weak adsorption. The degrees of adatom adsorption were set at & = 1/3
and @ = 2/3. a = 0, which corresponds to the vacuum is also shown. Experimental
values of the electrosorption valencies 7y are shown in the last column of the table.
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From the table we see that both the alkali ions on mercury, and the halides on
mercury keep most of their charges when they are adsorbed, a fact which is in
agreement with the recent in-situ experiments [170].

The transition metals such as Cu, Ag and Pb are neutralized to a large extent,
also in agreement with the near edge EXAFS experiments. The values for Tl however
are much lower than expected.

The adatorns adsorbed at the interface interact amongst themselves and modify
the adatom-adatom interactions. They modify also the amount of charge transferred
to the metal substrate.

To illustrate this point we show calculations performed for C's™ and I~ on mer-
cury [171] figures 1.5 and 1.6.
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Chapter 2

Ions at liquid/air and liquid/liquid
interfaces

Interfacial properties of electrolyte solutions have been studied experimentally and
theoretically. In this chapter, we first present basic notions about capillarity . Then
we consider the theoretical models available and, last, we list the main experimental
results reported in the literature concerning liquid/air and liquid/liquid interfaces.

2.1 Capillarity: basic concepts

The aim of this section is to present basic concepts on capillarity phenomena. The
reader is referred to other books [1, 2] for extensive accounts of the subject.

2.1.1 Surface tension

Everyone has played with soap bubbles. And everyone has noticed that one has
to blow air into the bubble so as to form it. Moreover, if one creates two bubbles
and connects them with a small tube, then the smaller of the two bubbles shrinks
while the other enlarges (Figure 2.1); at the end of the process the small bubble just
covers the mouth of the tube and its radius is equal to that of the large bubble.

These simple experiments show that the air pressure inside the bubble is larger
than atmospheric pressure, by an amount Ap and that the latter increases when the
bubble radius r decreases.

Thus, work is necessary to increase the area of a liquid film. The physical origin
of this phenomenon is at the microscopic level: work is required to bring molecules
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Figure 2.1: The smaller bubble shrinks until its radius is equal to that of the larger
bubble.

from the inside to the surface where the molecules are less bonded to the other
solvent molecules.

Mathematically the work necessary to increase the interfacial area by d4 can be
expressed as

W =~ dA (2.1)

where < denotes the surface tension. The SI unit for 7y is Joules per square meter
{d m’2) or Newton per meter (N m~'). In the literature many values can be found
in the cgs unit system: surface tensions given in dyn cm ™' have the same numerical
value as those given in mN m~.

Eq 2.1 is valid for liquid/air, liquid/solid and liquid/liquid interfaces.
For a soap bubble in equilibrium, eq 2.1 leads to

Ap = dyfr (2.2)

if the film is not too thin and bearing in mind that the liquid film has two liquid/air
interfaces.

2.1.2 The Gibbs dividing plane

A liquid surface is the location of violent agitation on the molecular scale with
molecules passing rapidly back and forth between the interfacial zone and the bulk
phase(s). If we consider the concentration of one of the phases, denoted arbitrary
by 1, we will find that this quantity varies continuously in space from a value C-',m'
in the region where it is the major component to a value C-':'“’ in the other region.
This is illustrated in Figure 2.2.
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Figure 2.2: Variation of density in the interfacial region.

The interfacial zone is therefore a blurred region for which mention of a definite
“interface” requires a suitable definition. This can be achieved by reference to the
so-called Gibbs procedure: it is simply denned in Figure 2.2 in which the vertical
line ¥, is such that the two hatched zones have equal areas.

An interesting consequence of this definition is that it can be used to define
univocally surface excess amounts. As shown in Figure 2.3, where the case of an
amphiphilic compound adsorbed at a liquid/liquid interface is considered, it can
be defined as the algebraic sum of the hatched zones. Classically this quantity is
denoted by l"f-” for a compound i, with reference to solvent 1. The unit for I" is
moles per square meter (mol m~2).

As a consequence, we find that the definition of the Gibbs dividing plane ¥,
entails

ri =0 (2.3)

Since the phase chosen as a reference generally determines the value for I';, it should
be clearly mentioned in each study aimed at assessing surface excess concentrations.

2.1.3 Thermodynamics: the Gibbs equation

The Gibbs convention presented in the previous section can be applied to extensive
thermodynamic functions. So, the total internal energy of a system composed of
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two phases 1 and 2 in contact may be written as
U=U+U,+ U, (2.4)

in which U, represents the excess surface energy with the choice of the Gibbs dividing
plane as given above (for instance with respect to phase 1).
For an homogeneous multicomponent bulk phase one has that

U=TS -pV + Z n, (2.5)

with T the temperature, S the entropy, p the pressure, V the volume, i, the chemical
potential of species i and n; the number of moles.

By using eqgs 2.1, 2.4 and 2.5 for each phase, it is easy to show that a similar
relation exists for U, inwhich vA replaces —pV, that is

U, =T8;+ Z g + 7A (2.6)

in which n,, is the excess surface number of moles of 2.
Then, the Gibbs-Duhem relation that expresses the relation between the inten-
sive surface excess thermodynamic variables reads

SedT + Y " nigdps, + Ady = 0 (2.7)
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For a small change at constant temperature we get from eq 2.7
dy = — Z [ dp, (2.8)
1

For a two-component system eq 2.8 further reduces to

S(1) fr)'}'
L === (R); (2.9)

with the convention given by eq 2.3. In this equation pus is the chemical potential of
the solute; it can be estimated experimentally by various methods.

Eqgs 2.8 constitutes the Gibbs equation that is of uppermost importance in surface
chemistry. It can be used to derive surface excess amounts from experimental surface
tension studies.

2.2 Theoretical descriptions

The first theoretical work was proposed by Wagner [3] in 1924 in the early days
of the Debye-Hiikkel (DH) theory. Subsequently in 1934, on the basis of Wagner’s
work, Onsager and Samaras [4] (OS) succeeded in deriving analytical expressions.
The OS calculation constitutes an important benchmark description of the surface

tension of a simple primitive model electrolyte solution. Further studies have then

been aimed at improving the OS treatment. The latter was first reexamined in 1956

by Buff and Stillinger [5], using a virial expansion method. But it is at the end of

the 70’s that appeared a renewed interest in understanding the surface properties of
electrolyte solutions. The theoretical tools that have been used include the Born-

Green-Yvon hierarchy, the random phase approximation (RPA) and the Poisson-
Boltzmann equation. All these theories have been developed at the level of the
primitive model of ionic solutions, consisting of charged hard spheres in a dielectric
continuum.

Besides, computer simulations, based on molecular dynamics calculations, have
been performed, with a first study in 1989 [6]. In contrast with the former descrip-
tions, these simulations were aimed at a better account of the solvent effects close
to the interface.

The surface tension of Debye-Hiickel electrolytes:
OS theory

The OS model was developed in a framework proposed earlier by Wagner [3], in
which the ions in the vicinity of the interface are repelled from the latter by electro-
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static image forces (see Figure 2.4).
Image charge ¢’

Air

Water

Charge q O

Figure 2.4: Repulsion of a charge ¢ by its image charge.

The range of exclusion is approximately given by the Debye screening length,
which expresses that the repulsion forces are screened out at this distance by the
effect of the ionic atmosphere.

Because it represents an important reference in the field we give a short account
of the OS theory.

The electrostatic potential ¢ was assumed to obey the Debye-Hiickel equation

Ay — kP =0 (2.10)
in which & is the Debye screening parameter given by

K2 =470 pizt (2.11)
i

in the MKS unit system, with p; the number density of species i, & its valence
number and
A = e?/(4megekpT) (2.12)

the Bjerrum distance (ca. 7 Ain water at 25°C), in which e is the unit charge,
€o the permittivity of a vacuum, e the relative permittivity of the solvent, kg the
Boltzmann constant and 7 the temperature.

Since the ions are repelled from the interface, £ is a function of the distance from
the interface. In order to simplify the problem the authors made the approximation

k(z) ~ k(o) = K (2.13)



2.2. THEORETICAL DESCRIPTIONS 213

where x is the distance from the interface and & is the value in the bulk solution.
They showed that the corresponding error was small for dilute solutions.
Then, for a charge ¢, the valence of its image charge is

i ]
8 j—:
? e+1

g~q (2.14)

because £ = 1 for water, and the electrostatic potential at the point where the
charge ¢g is located, caused by the charge ¢’ is

g exp(—kr)

= 2.15
4megpe T [#15)

where r = 2z. Therefore, the electrostatic energy W of the charge ¢ caused by the
fictitious image charge ¢’, or the potential of mean force on an ion near the surface,
is

W(z) = % qy (2.16)
or
AW (z) = A (3)2 E‘R(Z_;iz_) (2.17)

with A given by eq 2.12 and f# = 1/kgT. It has the form of the repulsive potential
of the ion’s own image, screened by an exponential factor typical of DH theory.

This energy was defined as the adsorption potential: it represents also the amount
of work that has to be provided to bring a charge ¢ from the interior of the solution
to a point at a distance x from the interface.

Thus the concentration of either ion was expressed by the Maxwell-Boltzmann
formula

C(z) = Cexp[-8W(z)) (2.18)

with the use of eq 2.17 and with C = C(z = o0o) the bulk concentration.
Then the adsorbed amount reads

F:fﬂm[C(:r)—-C] dz (2.19)

Upon integration and applying the Gibbs equation to a 1:1 electrolyte led to the
following limiting law

80.00

£

Y=y = Clog,,[1.130 x 107 3(eT)?*/C] (2.20)
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. . . . P -1
where the solute concentration C is expressed in moles per liter and 4 isinmNm ™,

or dynes cm'. Moreover, this expression [5] included more recent values for the
physical constants.

For higher concentrations expressions were derived that accounted also for the
finite size of the ions. This was done in the DH approximation by replacing eq 2.15
by an expression that includes a mean distance of approach for the ions. It was
found that the result for v was weakly sensitive to the precise value of this distance.

This result was regarded as a confirmation of the experimental observation that
“for a given concentration the increase in surface tension is the same for all uni-
umvalent electrolytes examined, within the limits of the experimental error”. Be-
sides, the numerical results from the model were in qualitative agreement with ex-
perimental results [7, 8] reported by Schwenker and Heydweiller: Schwenker’s values,
likely to be the more reliable ones, were about 20-30% in excess over the theoretical
OS values.

It must be underlined here that a more recent work [9] concluded to the possibility
of a different dependence of the surface tension on concentration: this effect was
traced to the nonzero relative solubility of the salt between the coexisting phases,
even for a vapor phase, and to the dissymmetric ion-solvent interactions m both
phases. Then the surface tension was predicted to decrease proportional to the
square root of the concentration, as (''/? instead of CIn C, in the limiting region of
low concentrations. This result was regarded as a possible justification for the fact
that experimental data are sometimes empirically fitted with such a power law.

Lastly, the influence of ion polarizabihty has been approached recently [10].

Ion-free layer model

In this simple picture, a layer of arbitrary thickness § at the upper limit of the liquid
phase was assumed [11] to be ion-free (ions being excluded by an infinite potential
barrier). The ion distribution below this layer was calculated by a method similar
to OS. The formula obtained was

; kT
¥ ~ 7 = 107 N4kTS vme + m!g(?ﬁn) (221)
with N4 the Avogadro’s number, m the molality, v the number of ions produced
by one solute molecule, ¢ the molal osmotic coefficient of the solution and Iy an
integral tabulated by the author.
The first term of the r.h.s. of this equation represents the contribution of the
ion-free layer, as can be shown simply by use of the Gibbs equation for the solvent
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in which the surface excess of solvent is proportional to 4. The second term is the
increment due the deficit of ions beyond the ion-free layer.

At very low concentrations the first term becomes negligible in comparison with
the second term and the OS limiting law is recovered. Physically this is because, at
very low concentrations, the surface zone is free from ions in the OS theory.

Virial expansion method

Here [5], the molecular distribution functions were calculated by linearization of a
generalized form of Kirkwood’s integral equation [12, 13] and the increase in surface
tension was computed from the molecular theory of Buff [14, 15] for this property.
The ions were taken as point charges. The singlet and pair distribution functions
were evaluated for very dilute ionic solutions. Then they were introduced into the
statistical mechanical formulas for surface tension.

The results of the theory were in better agreement with the experimental results
of Schwenker [7] than the earlier OS calculation. So, at 0.16 mol L™, the theoretical
value was smaller than the experimental value by about 10% as compared to 30%
for the OS value.

Use of the Born-Green-Yvon hierarchy

The Born-Green-Yvon (BGY) integral equation approach was used [16] for dilute
electrolyte solution, with a modification which ensures electroneutrality (BGY+EN).
Ions were taken as hard charged spheres of the same diameter, corresponding to the
closest ionic approach distance and to twice the closest approach distance to the
interface (restricted pritive model, see Figure 2.5).

The results were compared with results from Monte-Carlo and hypernetted-chain
(HNC) computations. It was concluded that the BGY+EN theory yielded density
profiles in close agreement with Monte-Carlo computations, even for a 1 mol L'
1:1 electrolyte. In comparison with these, the OS result was found to underestimate
the ion depletion and therefore the increase of surface tension caused by the ions.

In a subsequent work [17], more extensive calculations using the BGY equation
were reported. Surface tensions were derived from this treatment and a comparison
to experimental data was made in the range 0.1-1.5 mol [,=*, This theory is inter-
nally consistent, in contrast with the Buff-Stillinger theory [5] (the virial expansion
method described above) which is not, probably because of the linearization approx-
imation. Besides, this study incorporated an additional “soft” interaction of the ion
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Figure 2.5: Restricted primitive model; closest approach distance to the interface
(dashed line).

with the wall (the interface), which accounted reasonably for the rearrangement of
solvent structure as an ion approached the interface. The corresponding potential
was chosen as being proportional to the volume of hydration sheath that has to be
displaced, as shown in Figure 2.6.

A proportionality constant & was introduced as an adjustable parameter, char-
acteristic of the binding energy per water molecule. With these assumptions the
experimental values of Johansson and Eriksson [18], for KCl and KI, could be de-
scribed precisely with the choice of suitable values for «.
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Random phase approximation

A theory [19] was developed, in the framework of the random phase approximation
(RPA), for the salt concentration profile and ion-ion correlations near surfaces of
dilute electrolyte solutions. The formulation of the problem was based on the study
of the cluster integral contributions: the chain diagrams for the correlation functions
and the ring diagrams for the thermodynamic properties. The way in which these
quantities are altered by the influence of the surface was examined. It was possible
to lift completely the OS approximation that the ratio f of the image charge ¢'to
the charge ¢ is equal to unity. This property allows to study the thermodynam-
ics of interfaces between coexisting phases of more comparable dielectric constants
than aqueous liquid-vapor solutions: near critical surfaces of electrolyte solutions,
solutions bounded by semi-conductor surfaces or ice-aqueous electrolyte solution in-
terface. Results for f % 1 were compared with those from OS theory: here too, it
was found that the OS theory leads to an underestimation of the ion depletion near
the surface.

In a later work [20], the theory was extended to treat higher concentration so-
lutions. A new analytical treatment of the RPA was obtained. The results were
compared with available computer simulation data and the agreement was excellen-
t. Besides, a compensation effect was detected in the improved treatment of the
RPA, which provided an explanation for the fact that the OS profiles are closer to
the computer experimental results for 1.0 mol L~! than they are for 0.1 mol L.

Modified Poisson-Boltzmann approximation

The Poisson-Boltzmann (PB) equation [21] combines the Poisson’s equation for the
electrostatics with the Boltzmann’s equation for the thermodynamic fluctuations.
It yields the DH equation upon linearization of the exponential terms.

The modified Poisson-Boltzmann (MPB) approximation is the product of many
theoretical investigations into improvements of the PB approach of Gouy and Chap-
man based on classical statistical mechanics [22, 23] for the description of the electric
double layer at a charged plane interface. These extensions originated in a work of
Kirkwood [24] who used the Giintelberg charging process to examine the fluctuation
terms neglected in the DH theory of electrolytes.

The MPB approximation has been used recently, in 1991, by Bhuiyan et al
[25] for the surface tension problem. The excess surface tension was determined
by numerical integration of the Gibbs adsorption isotherm (the Gibbs equation),
with the electrolyte activity obtained from the bulk MPB approximation. A simple
model of the interface, used previously in another study [16], was adopted. In
an earlier study [26], this version of the MPB equation had been reported to be
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thermodynamically consistent to a very good approximation and of comparable
accuracy to the HNC theory. Here too, the ions experience volume exclusion forces:
interionic repulsion for r < @ and exclusion from the interfacial region for r < a/2,
with x the distance from the wall and ¢ the common ionic diameter of both ions
(restricted case). The case of symmetric z : z electrolytes was considered.

The calculated wall/ion density profiles were compared with the corresponding
Monte-Carlo data for 1:1 and 2:2 valency type electrolytes, and the results for the
excess surface tension were compared with the experimental values for LiCl, NaCl,
KCI, NH4CI as 1:1 electrolytes and MgSO4 and ZnSO4 as 2:2 electrolytes up to con-
centrations of 1.8 mol L"!. Good agreement with the MC simulations were observed
at low concentration, typically 0.1 mol L~!; however, with increasing concentration
(up to 1 mol L") the deviations became more pronounced but were generally small-
er than those observed with the RPA approximation [20]. The MPB distributions
for the divalent ions revealed much stronger image repulsion from the wall while the
thickness of the desorption layer was reduced due to enhanced screening of image
interactions.

The MPB computed surface tension for 1:1 electrolytes yielded a limiting be-
haviour that was similar to those from RPA and OS theories. However, at finite
concentration, the MPB approximation predicted excess surface tensions that were
appreciably bigger than than that found by the other two theories. A set of MPB
calculations was carried out using the mean ionic diameters fitting the DH theory to
the bulk thermodynamic properties in experimental systems. The agreement with
the experimental data was remarkably good for all the systems studied. In the case
of the two 2:2 salts considered the agreement was excellent with a value for the
closest approach distance that was somewhat smaller (5 A) than the DH value (5.45
A); in this case the surface tension increment was greater than 4 mN m ' at the
highest concentration of ca. 1.8 mol L™

Computer experiments

Here computer experiments refer exclusively to equilibrium molecular dynamics
(MD) calculations.

MD simulations of the structure of water at the interface between pure water and
its vapor have shown [27]-[31] that the molecular dipoles of water tend to lie parallel
to the surface, though with a net dipole moment of the interfacial layer which points
into the liquid and persists several molecular layers into the bulk. Similar preferred
orientations have been observed experimentally [32]. Besides, MD calculations have
been used [33] to interpret [34] (electrostatic) surface potential measurements.
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The first MD study including a solute was done by Wilson, Pohorille and Pratt
in 1989, about the interactions of a sodium ion with a water liquid-vapor interface
at 320 K. They presented results for the density profile of Na in a lamella of liquid
water, ca. seven molecular layers thick (a compromise between bulk and interfacial
scales), in coexistence with its vapor. The model taken for the water was similar to
those in previous calculations on the liquid-vapor interface of pure water [28, 29]: the
so-called TIP4P pair potential model was adopted for intermolecular forces between
water molecules and a corresponding potential was used for the interaction between
the sodium ion and the water [35, 36]. The system consisted of one sodium ion
immersed in a assembly of 342 water molecules. The liquid-vapor interface was
created by expanding one edge of a cubic simulation box from 21.7 A to 65.1 A.
The main results were as follows. The water density profiles were the same as for
pure water. The ion density profile was found to disagree with the profile derived
from a simple dielectric continuum model, with the latter extending too close to
the interface. The data suggested that dielectric models should locate the dielectric
surface (at which the model profile may match the MD data) at least two molecular
diameters inside the liquid phase. However, appreciable ion concentration can be
anticipated beyond this dielectric surface, near the interface. The quantity

~kT In[pion (2)/ ion(2')] (2.22)

may be interpreted as the free energy cost, or minimum work, required to translate a
sodium ion from a depth 2z’ to z, pon being the ion number density. Therefrom, the
work required to push an ion from the interface toward the inside of the lamella was
found to be significantly smaller when calculated from MD than from the model.

This work was extended later [37] to the case of anions F~ and Cl~ in presence
of the Nat ion. Here too, the system consisted of 342 water molecules and 1 ion,
either Nat, F~ or Cl~. Periodic boundary conditions were applied in all directions
and the TIP4P model was used. As suggested by experimental work in which
surface potentials were measured [38], an ionic double layer was found where anions
penetrate closer to the interface than do cations. Correspondingly less free energy
is needed to move the anions Cl~ and F~ to the interface than to move the cation
Na', This difference arises from the asymmetric orientational distribution of water
molecules at the pure water liquid-vapor interface, mentioned at the beginning of
this section: the interaction of the interfacial water molecules with the anions is
more favorable than with Na‘t because the polarization which develops around the
anions perturbs the interfacial water structure much less than does the polarization
around the cation. The free energy curves were compared with predictions of simple
dielectric models and, again, these models were shown to give a poor description.
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Moreover, the ions were found to retain their first hydration shell at the interface;
the anions retain also part of their second shell, while Nat does not. Besides, the
mobilities of the ions were estimated: they led to the observation of an increase in
mobility (by factors greater than 2), particularly for Na*this result was in satisfying
agreement with the prediction of a simple hydrodynamic model [39], in which the
quasisteady Stokes equation was solved for a sphere approaching a surface capable
of slight deformation.

Similar conclusions have been reported at the same time in another work [40].

MD simulations have also been developed to understand some equilibrium prop-
erties of liquid/liquid interfaces.

The interface between two nonpolar atomic solvents interacting through
Lennard-Jones-type potentials has been studied [41]: diffusion in the interfacial
region was found to be anisotropic.

MD calculations have been used to simulate the water/1,2-dichloroethane (D-
CE) interface [42]. The most important result was that a molecularly sharp interface
was found, with capillary wavelike distortions whose structure and dynamics closely
resembled those expected from the capillary wave model; this result was in contrast
with assumptions made by other authors [43] to explain ion transport dynamics at
this interface. Moreover, the calculations demonstrated the existence of 2-3 layers
of water molecules whose dipoles were parallel to the interface. However, the broad
orientational distribution of these layers made it quite unlikely that they could con-
stitute a significant interfacial barrier to transport in that region. It was suggested
that the rate-limiting step in the ion transport is the necessary switching of the
solvation shell from one liquid to the other; the presence of a very rough interfacial
structure may assist with this process. Finally, the DCE gauche-trans isomerization
reaction was investigated at the interface and a continuum electrostatic model for
the torsional potential of mean force was developed: this model was found to be on-
ly qualitatively adequate and solvent structure was determined to play a significant
role although the sharp interface might have increased the merit of a continuum
dielectric model.

2.3 Experimental studies

Experiments on electrolytes at liquid/air and liquid/liquid interfaces can be classified
either as using indirect methods, such as interfacial tension measurements, or more
direct ones, such as spectroscopic methods.
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2.3.1 Interfacial tension measurements

Information on the properties of ions at liquid/air or liquid/liquid interfaces can be
obtained experimentally through the determination of interfacial tensions. This con-
clusion is drawn from the Gibbs equation that relates excess amounts to interfacial
tension (see the Section Capillarity).

Let us notice that, generally, the term “surface tension” refers to the liquid/air
interface, while “interfacial tension” relates to liquid/liquid interfaces. However the
latter should designate any type of interface.

There are at least two remarks that can be made in the first place. First, for
a long time, these measurements have been questionable because of experimental
difficulties. Clearly, measurements at low concentrations can be perturbed by small
amounts of surface active impurities. Second, it might be said that, for a long
time, experimentalists and theoreticians have had diverging viewpoints as to the
origin of surface tension variation with concentration: generally, experimentalists
have not considered the effect of image forces as the main responsible effect. So,
the following statement [44] may illustrate this widespread opinion: “One must
remember that, notwithstanding the immense sophistication of the mathematical
treatments of electrolyte solutions by Onsager and coworkers, one here deals with
another case where the highly developed mathematical treatment is applied only
to an obviously oversimplified conceptual model. This model neglects, among other
things, the detailed structural features of the solvent (the water), and this neglect can
only result in a treatment which can hardly be any better than an approximation”.
Thus, in most experimental papers, the discussions about the variation of interfacial
tension with concentration were expressed in terms of solvent effects rather than
dielectric polarization effects of the OS type. In this respect, it is interesting to
notice that the recent MD calculations described in the previous section have been
developed in the same concern.

The experimental techniques used have been of various types, among which one
may cite:

* The capillary rise method, generally considered to be one of the best and most
accurate absolute methods, good to a few hundredths of a percent in precision.
On the other hand, a zero contact angle on the wall of the capillary is required,
which can be a practical limitation and a source of uncertainty.

* The maximum bubble pressure method, in which bubbles of an inert gas are
blown in the liquid by means of a tube. This method is accurate to a few
tenths of a percent and does not depend on contact angle.
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* Detachment methods:

1. The drop weight method is fairly accurate and very convenient for labora-
tory use. Its principle is to form drops of the liquid at the end of a tube until
they fall; their weight is related to the surface tension. However, empirical
corrections must be applied which limit the accuracy of this technique.

2. The ring method, attributed to du Noily, has been widely used. It involves
the determination of the force necessary to detach a ring or loop of wire from
the surface of the liquid, or interface between the liquids. This method is of
good precision. A zero or near zero contact angle is necessary. Otherwise, a
Teflon or polyethylene ring may be used.

* The Wilhelmy slide method requires no correction, in contrast with the pre-

vious techniques, and is simple to use. It is based on the principle that a
thin plate immersed vertically in the liquid supports a meniscus whose weight,
measured statically or by detachment, is given very accurately by the equation

W = Whiae +1p (2.23)

where p is the perimeter of the plate. This equation holds to within 0.1%.
Another procedure is to level gradually the liquid until it just touches the
plate. The increase in weight is then

W — Woiate =7 p cosb (2.24]

where @ is the contact angle that can be determined accurately.

* Methods based on the shape of static drops or bubbles include the pendant

drop method and the sessile drop or bubble method. The general procedure
is to make certain measurements of the dimensions or profile. It is accurate
to a few tenths of a percent.

* Dynamic methods study the relaxation properties of interfaces. They include

the flow methods and the study of capillary waves.

We now examine some of the experimental results for interfacial tension mea-
surements.

“Anomalies”

We first evoke some peculiarities of surface tension that were, at a time, the
subject of debate.
Jones-Ray effect.
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These authors studied [45] the surface tension of very dilute solutions of elec-
trolytes using the capillary rise method. They observed a lowering of surface tension
of water upon adding KC1, K,SO, and CsNO;, with a minimum between 0.001 and
0.002mol L' The relative decrease amounted to about 2x 10~* for the three solu-
tions. After having passed through the minimum, the surface tension increased as
the concentration increased and attained the relative value of 1 at about 5.5 x 1073
molar. For concentrations up to 0.01 molar the increase followed the OS theory.

This effect has been the subject of considerable controversy. Subsequent studies
using various methods were not conclusive as to the reality of the effect. Langmuir
has proposed [46] that the anomalous results were due to a change in the effective
diameter of the silica capillary owing to a layer of electrolyte immediately adjacent
to the capillary wall, related to the zeta potential. Onsager [47] made an extended
theoretical investigation of this effect and developed a quantitative theory of the
influence of the zeta-potential on the capillary rise. His theory accounted for most
of the Jones and Ray results and led to an accurate determination of the zeta-
potential of quartz. An attempt to interpret the results as a pure surface tension
effect has also been made [48]. Besides, it has been suggested recently [9] that an
initial decrease in the surface tension could be attributed to a nonzero solubility of
the salt in the vapor.

Anomalies in the temperature dependence of the surface tension of water.

The dependence of the surface tension of pure water was found to exhibit anoma-
lies [44] in the sense that the corresponding curve showed inflection points at several
temperatures (15, 30, 45, 60°C,...). Anomalies, also called “kinks”, were also found
for other properties of pure water, such as viscosity, compressibility or magnet-
ic susceptibility; besides, “polywater” has been the subject of much interest [49].
However, more careful studies have finally [38] pointed to the absence of “kinks” in
the behavior of pure water; the anomalies described previously are now believed to
have resulted from some artefacts or to have been within experimental error.

Concentration and temperature dependence

For the simple inorganic electrolytes early studies [7, 8] showed that in very
dilute solutions equivalent concentrations of electrolytes of the same valence type
gave similar surface tension increments A<, while at higher concentrations specific
differences appeared. At concentrations below 0.01 molar A~ is very well described
by the OS theory but, above it, the theoretical curve falls well below the experimental
curves. At higher concentrations Schmutzer’s equation 2.21 was found to account
well for the experimental data up to 0.1 molar, with a layer thickness & of 3.2 A.
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More recent studies have been concerned with measurements in concentrated
solutions, of the order of 14 molar, with special care in the experimental measure-
ments. A variety of electrolytes has been studied.

The surface tension of a range of alkali and alkali metal chlorides, ammonium
chloride and tetramethyl ammonium chloride has been measured [50] at 21°C be-
tween 0 and 4 molar. The Wilhelmy technique with a mica or platinum plate was
used. The agreement with available data, generally taken from the International
Critical Tables (edition of 1928), was quite good. New values were obtained for
CsCl, (CH;3)4NC1, MgCl, and CaCl,. The results were discussed in terms of the
structure alteration caused by cations in the interfacial layer: a structure-breaker
ion like Cs" was thought to be more easily accomodated in the interface than Lit,
a structure maker, due to the fact that it introduces more disorder in the structured
region at the air-water interface.

In a similar work [18], the surface tension, and its temperature derivative d+/dT,
were measured by means of Wilhelmy slide techniques for dilute (< 1.5 molar)
aqueous solutions of NaCl, KC1, Nal and KI. The data were used to determine the
characteristics of a surface phase containing only the water component. The results
showed that the distance of approach to the Gibbs dividing plane was approximately
independent of the salt concentration and that it was smaller for the iodide ions than
for the chloride ions due to differing modes of interaction with the surface zone water
molecules: it was noticed that the iodide ion is larger than the chloride ion and it
has a greater polarizability and lower polarizing ability; thus, the iodide ion can
approach the Gibbs plane more closely because it can couple more readily with
surface zone water molecules so as to compensate for its sterical disturbance of the
surface-induced water structure.

Later, [51] the surface tensions of aqueous electrolytes and their interfacial ten-
sions against n-dodecane were determined at 20°C using the drop weight method.
The salts studied were LiCl, NaCl, KC1, KBr, NaBr, KI and Na,SO,4. For the alkali
metal chlorides and Na,SO, the surface and interfacial tensionincrements (dvy/dm’
were similar for a given electrolyte. The corresponding increments for KBr, NaBr
and KI however were found to differ considerably. The results were discussed in
terms of both electrostatic theory and dispersion force theory of interfaces. A salt-
free layer of water was assumed near the interface and its thickness was estimated
as previously [18]; both results were in good agreement when available. Apart from
KI which is positively adsorbed at the dodecane/water interface, all the salts were
negatively adsorbed at the liquid/vapor and the liquid/liquid interfaces. The dif-
ference between the interfacial tension increment and the surface tension increment
for a given electrolyte was equated with the work of adhesion between the water
and the alkane phases; this work was estimated in the framework of the dispersion
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forces theory of Israelachvili [52, 53] for the van der Waals attraction between two
macroscopic media.

Further surface tension measurements [54] have been conducted for aqueous so-
lutions of some 1:1 electrolytes: NaF, KF, NaNO; and KNOj, between 280 and
310 K up to 1.5 molar, by means of the ring detachment method. The data were
interpreted by considering the free energy of hydration of the salt in the interfacial
region: there, the lower number-density of water molecules leads to a free energy of
hydration that is less negative than in the bulk, yielding a depletion of solute in the
surface region. The extent of this depletion was expected to correlate with the bulk
thermodynamic parameters of hydration. A simplified but reasonable calculation
led the authors to plot the quantity dv/day, with aythe mean activity of the salt
in the bulk, against the standard enthalpy of hydration of the electrolyte: the scatter
of points was rather large but a significant tendency to correlate emerged from the
plot.

Quite recently, systematic surface tension measurements have been performed
[55] on 34 electrolytes of 1:1, 1:2, 1:3 and 2:2 valence type, between 0 and 1 mo-
lar at room temperature, using the maximum bubble pressure method. The ex-
periments were concerned with the determination of the surface tension gradient
dA~/dC (with C the electrolyte concentration), which was found to vary between
20 and 30°C within the experimental error. For this reason the temperature was
not precisely controlled. Graphs of surface tension relative to water vs. electrolyte
concentration gave straight lines, of slope dA~+/dC. The results gave positive and
negative values of dA+y/dC. Negative values were found for HC1, HNO3, HCIO,,
CH;COOH, CH3COO(CHj;)4N and mixtures of NaCl and HC104. The electrolytes
were classified according to their dAy/dC value: if the absolute value of dA«/dC
was greater than 1 then both ions of the electrolyte were classified as either positive-
ly or negatively adsorbed; electrolytes for which the cation was negatively adsorbed
and the anion was positively adsorbed, or vice versa, were considered to give a
dA7/dC value between -1 and +1. The value of 1 was chosen arbitrarily to dis-
tinguish between a strong (< —1 or > +1) or a weak (-1 to +1) affinity of the ions
as an ion-pair for the interface. No such systematic study had been reported before.
The trends in dA+y/dC were examined for a wide range of chloride electrolytes and
the standard molar entropies of hydration of the countercations were plotted against
dA~/dC: a very good correlation was observed. Entropy of hydration was regarded
as being an indicative and sensitive measure of the extent of ionic hydration. So,
the negative adsorption of strongly hydrated cations (and anions) from the interface
was explained by the hydration free energy dominating the free energy required for
a “bare” ion to exist in the bulk solution or at the interface. Positive adsorption was
rather explained by forces such as van der Waals forces or hydrophobic attraction;
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for example, the gas/water interface is negatively charged (with a potential of about
-15 mV) and behaves like a hydrophobic surface [56]; hence cations and ions with
hydrophobic functionality (e.g. acetate and tetramethylammonium ions) may be
attracted toward the gas/water interface.

Subsequently the same authors have reported [57] on their experiments with
more details, in the same experimental conditions. A correlation was found between
dA~v/dC and the Jones-Dole viscosity coefficient B defined by the relation

n/mw =1+ AVC + BC + ...

in which the coefficient 4 is due to interionic electrostatic forces and the coefficient
B is representative of the retardation of solution flow due to hydration of ions.
Besides a good correlation was found between dA«y/dC' and the exponential decay
coefficient for oxygen solubility in 8 cationic chloride solutions (oxygen solubility
decreases exponentially with increasing electrolyte concentration).

Direct probes of interfaces

Development of several experimental techniques has recently allowed to probe lig-
uid/air and liquid/liquid interfaces on a molecular scale.

Among these techniques, particularly powerful are the sum frequency generation
SFG [63, 64, 65] and second harmonic generation (SHG) [66, 67, 68] techniques:

* SFG is a nonlinear optical method which was pioneered by Shen [65]. It is
based on the second-order optical phenomenon (see Figure 2.7) which consists
of illuminating the surface of a solid or liquid with two overlapping pulsed laser
beams of different frequencies w; and wy. At the surface, the intense optical
fields induce a second-order polarization of the medium at w; +ws. The latter
results in the production of a coherent optical field, which for SFG is at the
frequency wy + ws . The SF light is produced in both reflectance and trans-
mittance at angles a few degrees from the linear reflection and transmission
angles.

* Similarly, SHG is the non linear conversion of two photons of the same fre-
quency w to a single photon of frequency 2.

A related method, which seeks to minimize the excitation of bulk molecules,
involves an evanescent wave technique, i.e. total internal reflection (TIR). Generally,
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Interface

Figure 2.7: Principle of sum-frequency generation experiments.

this method is not interface specific because the evanescent wave penetrates to a
distance of the order of half the light wavelength into the bulk solution. However,
when the adsorption of a probe molecule to the interface is so strongly favored that
there is only a very small bulk concentration the signal originating from the bulk
molecules can be neglected. This property has been used in particular for a TIR-
SFG method; the maximum intensity then occurs at the critical angles for both
incoming fundamental beams.

The reason that SFG and SHG can selectively probe interfaces, without being
overwhelmed by bulk species, is that these second-order processes are electric dipole
forbidden in centrosymmetric media. So, the ability of noncentrosymmetric crystals
to produce SHG has led to their implementation as frequency doublers in a variety of
laser systems. SFG and SHG can be produced by the break in symmetry that occurs
at the interface between two centrosymmetric media. Only the first few atomic or
molecular layers on either side of the interface participate in this symmetry breaking
because they experience different interactions in the “up” vs the “down” directions.
Thus, these techniques can be used as a highly surface-selective optical probe of
interfaces.

Liquid/air interface

Neutron reflectivity with isotopic substitution has been used [58] to determine the
structure of triethylene glycol monododecyl ether adsorbed at the air/water inter-
face. Besides, X-ray diffraction and reflection studies [59] have provided structural
details on an angstrom level about molecular packing at the interface. Optical
techniques such as Fourier transform-infrared [60], Brewster angle microscopy [61],
fluorescence microscopy [62], SFG [63, 64, 65] and SHG [66, 67, 68] have provided
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information about the phase behavior and structure and orientation of molecules.

An interesting application of optical techniques has been the study of chemical
reactions at the air/water interface. So, an acid-base reaction has been investigated:
using SHG,p-nitrophenol (denoted by HA) was shown [69] to be much less dissociated
in the interfacial region; it was estimated that the ratio of A~ to HA was at least
50-100 times smaller than in the bulk solution. The same tendency was found in
subsequent studies for hexadecylanilinium [70], showing that the interface favors the
neutral over the charged form in acid-base equilibria. Besides, the dynamics of a
photoisomerization reaction has been found [71] to be faster at the interface than
in the bulk liquid, which phenomenon was suggested to be associated with lower
friction at the interface for motion along the isomerization coordinates.

The adsorption kinetics of a long-chain surfactant has been followed [72] by
measuring the time dependence of a SHG signal. The kinetics did not obey a #!2
dependence, but the data could be fit to a Langmuir adsorption model.

Liquid/liquid interface

Progress has been much slower in understanding the molecular structure at the inter-
face between two bulk liquids because of inapplicability or lack of surface specificity
of most surface techniques for probing this interface.

Neat alkane/water interfaces have been investigated. For example, a series of
neat n-alkane/water interfaces has been studied by TIR-SHG [73]. Surface nonlin-
ear susceptibility measurements suggested a significant degree of molecular ordering.
Surprisingly, a higher degree of ordering was found for the alkane/water systems
consisting of even numbered hydrocarbon chains relative to the odd numbered hy-
drocarbons.

Studies have been done to investigate the orientation and adsorption of surface
active dyes at the oil/water interface using fluorescence [74, 75], resonance Raman
scattering [76, 77]. Neutron reflectivity has been used [78] to determine the thickness
of a surfactant (monodecyl tetraglycol ether) layer at the octane/water interface and
the interfacial roughness, which was large (ca. 90 A) due to the very low interfacial
tension (y = 0.08 mN m™!).

The molecular orientation of surfactants has been determined by SHG: the first
detailed study was performed [79] for the adsorption of sodium 1-dodecylnaphtalene-
4-sulfonate (SDNS) at the aqueous/decane and aqueous/CCly interfaces; the results
showed that the molecular orientation depends on the nature of the nonaqueous
phase. Recent advances have used SHG to probe surfactants containing an aromat-
ic head group at the water/dichloroethane interface in an electrochemical cell [80];
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by varying the potential across the cell the population of the charged form of the
surfactant at the interface could be varied; measurement of the magnitude of the
SH signal showed that the interface population did vary with potential, while mea-
surement of the polarization of the SH light showed that the surfactant orientation
did not change with the applied potential.

A similar study has been conducted using TIR-SFG [81] on the conformation-
al order of sodium dodecyl sulfate (SDS) adsorbed at the D,O/CCl, interface. A
change in conformation of the alkyl chain with increased surface coverage was ob-
served. Polarization studies indicated that the terminal methyl group axis was
oriented primarily along the surface normal.

SFG studies have also allowed the description of the structure of interfacial wa-
ter and how it is affected by the presence of charged surfactants [64, 82]. The
vibrational structure of both the interfacial water molecules and adsorbed surfac-
tant were probed in these studies as increasing amounts of surfactant were added
to the aqueous phase. The most striking result occurred in the O-H stretching re-
gion corresponding to interfacial water: with increased surfactant concentration, a
strong enhancement in the ice-like peak was observed relative to the surfactant-free
interface. This enhancement has been attributed [83] to increased orientation of wa-
ter molecules in the double-layer region, which is induced by the large electrostatic
field created by the charged surfactant and counterion. lonic strength studies have
supported this conclusion: increasing amounts of NaCl have been shown to decrease
the response from the O-H band, which could be ascribed to a screening effect that
limited the number of interfacial water molecules affected by the electrostatic field
[82]. The water molecules were found to align in opposite directions depending on
the cationic or anionic character of the surfactant.
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Chapter 3

Solute transfer Kkinetics at a
liquid/liquid interface

Solute transfer kinetics across the interface between two immiscible liquids has rel-
evance in several areas of physical chemistry, chemical engineering and biology.
Examples include ion extraction at free [1] or polarized interfaces [2, 3] and ion
transport in biological membranes [4, 5, 6].

This chapter is concerned with the study of kinetics of solute transfer at free
liquid/liquid boundaries. This process has found many applications in separation
science [1] with developments in hydrornetallurgy (e.g. Cobalt/Nickel separation),
nuclear fuel reprocessing, pharmaceutical industry and supported liquid membrane
technology. indexTransfer kinetics

The literature is now abundant in this field. However, the mechanisms of the ex-
traction processes are still the subject of speculation and controversy. Nevertheless,
this situation is probably beginning to change as new experimental techniques are
now able to study liquid interfaces on a molecular scale: optical second harmonic
and sum frequency generation (SHG and SFG) are described in chapter 2 of this
book. In particular, these techniques may have the potential to obtain dynami-
cal information in the future, as has been demonstrated already for the water/air
interface [7].

The aim of this chapter is to give an overview of this subject, with focus on
the fundamentals of liquid/liquid extraction kinetics. This chapter will not examine
the chemical and practical aspects of the problem. The reader is referred to other
publications (e.g. [1, 8]) for detailed accounts of these points.
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3.1 Basic aspects of the problem

Extraction systems
There are roughly two classes of extraction systems. The situtation is depicted
in Figure 3.1.

Case 1 Case 2

S N
Aqueous

SRR R SRR
/3 o ? Organic

E — - —_—

Figure 3.1: Simplified picture showing the two categories of liquid /liquid extraction
systems. Case 1: Homogeneous phases A and B; Case 2: An extractant E is present
in the organic phase to solubilize species S in organic B.

In the first case, transfer consists simply of a desolvation-resolvation process of
the solute at the interface between two homogeneous phases. In the second case,
the solute is solubilized in the organic phase by an extractant E added to a diluent;
generally the extractant has amphiphilic, surface active, properties that enhance its
extracting properties, and the solute is not soluble in the diluent. In both cases the
species is generally in an electrically neutral form in the organic phase, in most cases
where the latter has a low dielectric permittivity. Therefore, if the species is an ion,
it will either be complexed by the extractant in its ionized form or associate with a
counterion taken from the aqueous phase.

To the first class belong systems such as alkanoic acids, methylnicotinate, salicylic
acid and urea extracted by liquid hydrocarbons or big esters such as isopropyl-
tetradecanate (isopropyl-myristate (IPM)).

The second class concerns a wide variety of compounds and extractants, among
which one may quote the following systems: metal cations such as Cobalt(II), Nick-
el(I1), Zinc(II) or lanthanides extracted by di-(2-ethylhexyl) phosphoric acid denoted
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by HDEHP or D2EHPA, a widely used extractant for industrial applications; and
nitric acid HNOj; or uranyl ion extracted by tributylphosphate (TBP).

Interfacial reaction vs. bulk transport

The transfer process of a solute S from a liquid A to a liquid B consists at least
of 3 steps:

1. Transport of S from the bulk of A to the interface region.
2. A-to-B interfacial transfer.
3. Transport of S from the interface to the bulk of B.

which are depicted on Figure 3.2.
Phase A | | | PhaseB

® -

N

Interfacial zone

Figure 3.2: Overall transfer process, consisting of at least 3 steps (transport from

the bulk of phase A to interface, reaction in interfacial zone and transport to the
bulk of B).

Therefore, the interfacial kinetics (step 2) may be determined by subtracting the
transport contributions 1 and 3 from the overall process, or by making them very
small.

Two limiting cases may be encountered in practical situations:
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* The transport contribution is very small in comparison with the chemical
reactions contribution. Then the system is said to be in a kinetic regime, or
kinetically controlled, and the process is limited by the kinetics of the chemical
reaction(s).

* The opposite case corresponds to a diffusional regime.

3.2 Basic modelling of extraction process

Rate constant and characteristic reaction time

Consider a very thin lamella of a liquid A formed on a flat solid (Figure 3.3).
This phase contains a species S which is allowed to be transferred to another phase
B. At the interface A/B the extraction process is supposed to be irreversible, and
the lamella is so thin that the process is assumed to be controlled by the interfacial
transfer.

The concentration of the species is supposed to be sufficiently low, so that the
interfacial flux density (the number of moles of S crossing a surface of unit area)
may be written

j=kC (3.1)
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where C is the molar concentration of S in A and k is the interfacial reaction rate;
constant.

This equation shows that k has the dimension of ms™'. Moreover, k must be a
constant as long as C is not too high. Above some critical concentration eq 3.1 can
be expected not too hold any longer because of nonlinearities due to interactions
between solute particles S at, or near, the interface.

Thus the equation verified by C for such a reaction is

e

dC
V— = 4 bmt (32}

dit

with V the volume of A and S,,; the interfacial area. Since V = LS;,, where L is
the thickness of the lamella, we get from eqs 3.1 and 3.2
dc k
—=—-=C :
dt L L

from which the characteristic reaction time can be defined as
T=L[k (3.4)

which shows that, for such an heterogeneous reaction, the characteristic time is
related to the size of the donor phase.

Sequential process in stationary conditions

As mentioned above, the global extraction process consists of a series of steps
involving transport and chemical reactions. This type of process is sequential by
nature.

Some systems operate in a stationary regime. In the more simple case, the
solute must cross a diffusive barrier in the donor phase A, then the interface and
lastly another diffusive barrier in B. This is for instance the case of the Lewis cell
described below: both phases are stirred but more “quiescent” liquid layers exist
near the interface. The process is described in Figure 3.4.

Very often, transport in a liquid near the interface is modelled as a purely dif-
fusive process in a stagnant layer of some thickness &. Generally this thickness has
differentvalues 4 and g in phases A and B. The concept of stagnant layer was
introduced by Nernst at the beginning of this century and it constituted the basis
of the two-film theory proposed by Whitman[9]. The parameter & represents the
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1

- Phase A— - —PhaseB ———
) /_,lnwﬁxe
Bulk (stirred) kf_ Bulk (stirred)

i kg

N

“*Quiescent”’ liquid layers

Figure 3.4: Transfer of solute from A to B, through liquid layers in A and B, plus
interfacial reaction.

diffusion layer thickness for the particular type of diffusive transport process cre-
ated near the interface. However, the main difficulty associated with this quantity
is that it cannot be estimated independently as a function of the physico-chemical
parameters of the system.

Application of first Fick’s law gives the corresponding flux density

j=D Ac (3.5)
é

with D the diffusion coefficient and because, in stationary state, the concentration
profile is linear in this unstirred liquid layer and the concentration gradient dC'/8x
can be replaced by AC/é with AC the concentration drop on the distance 4.

Comparison of egs 3.1 and 3.5 shows that diffusive transport can mimic [10, 11]
an interfacial reaction, of equivalent rate constant

D \
kd:‘f‘f = -3- (3.6)

In the following we will denote by k4 and kp the two corresponding “diffusive” rate
constants in A and B, that is
Dy Dg
ko= — and kp = —
4 6/‘1 = 6”
where L4, D and &4, dp stand for the diffusion coefficients and diffusion layer
thicknesses in A and B, respectively.

(3.7)
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Then, for the stationary process described in Figure 4, the flux density may be
expressed as

J=kalCa = Cay) = kCou, — ke Cpy = kp(Ch, — C'y) (3.8)

with Cy the concentration of species S in the bulk of phase X= A or B; Cyx,, the
concentration of S in phase X, close to the interface; kf and k_ the forward (A — D)
and reverse (B—A) rate constants for the reactions occurring at the interface.

The latter equation can also be written as

J=kapCx — kp_aCg (3-9]

in which k,__p and ky_ 4 denote the forward and reverse effective rate constants
for the processes involving both interfacial reaction and transport, which are the
observed rate constants in a practical experiment.

By making successively C'y = () and C'4 = 0 eqs 3.8 and 3.9 can be easily solved
to yield

]
kalp=ki'+ A7+ —=kp! 3.10
amp = k3! + A7+ =k (3.10)
and
kgl =k5' + 7P 4+ KRG (3.11)
with K the B-to-A partition coefficient defined through
Bt
KN=-42 3.12
= (3.12)

with the superscript “eq” denoting an equilibrium value.
By virtue of eqs 3.8 and because j = () at equilibrium it follows that.

K= % (3.13)
so that eqgs 3.10 and 3.11 can be rewritten as
kilp =47 (L ky/ha+ ke/kp) (3.14)
and
kptoa=k' QQ + ke /ha + ko /k5) (3.15)

Egs 3.10 and 3.11 are sometimes interpreted in terms of resistance to transfer.
So, the global resistance to transfer from the bulk of A to the bulk of B is defined

by

Rap=kily
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and it is the sum of the resistances of the successive steps of the process:
Rasp=Ra+ Ry + Ry (3.16)

where the resistance due to transport in B includes the distribution ratio K.
An important consequence of eqs 3.14, 3.15 is that k4, and kp_,, may be
equated with k; and k., respectively, if the following conditions are fulfilled

ky < ka and k. < ky (3.17)

in which case the system can be said to operate in a regime controlled by the kinetics
of the chemical reaction occurring in the interface region.

3.3 Experimental techniques

3.3.1 Two categories

The various available methods may be grouped into two categories:

* Those techniques which allow direct contact of the phases. Usually, the phases
are stirred to accelerate mass transfer. Unfortunately, the influence of trans-
port in either phase is poorly known. For this reason, it has been tried to
minimize the transport contribution by vigorous stirring, to reach a regime
controlled by the kinetics.

* The techniques which try to palliate this shortcoming by imposing controlled
hydrodynamic conditions. This imposes the use of a third medium, generally
a membrane containing one of the phases.

3.3.2 The techniques

Among the available techniques one may cite the following ones:

Category 1 includes the Lewis cell [12] and its modifications (e.g. the Armollex
cell [13] and the Nitsch cell [14] ) the highly stirred tanks (e.g. the AKUFVE
apparatus [15]) and the moving drop technique [16].

To category 2 belong the rotating diffusion cell (RDC) [17], the short-time phase-
contacting method [18], the rotating stabilized cell (RSC) [21] and the rotating mem-
brane cell (RMC) [22, 23].
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Those methods which belong to the first category suffer mainly from a lack of
control of the hydrodynamics. Moreover, it is difficult [8, 24] to determine the
interfacial area for highly stirred tanks in which small size droplets of one phase are
produced inside the other phase. Generally, the first difficulty has been circumvented
by the use of the following criterion: it is observed in many cases that the extraction
rate increases as stirring is increased and then levels off above some stirring rate;
the plateau value reached by the extraction rate is then interpreted as the limiting
rate obtained in a kinetic regime. Here, it is intuitively assumed that the resistance
to mass tranfer due to transport can be reduced to zero by increasing agitation.
However stirring is in fact produced by propellers and identifying the degree of
stirring with the rotation speed of these elements can be misleading: it has been
underlined [25] that efficiency of stirring can be lost due to a “slip effect” of the
fluids on the blades of the propellers. Besides, further possible side effects (such as
droplet coalescence and insufficient internal drop circulation with the use of highly
stirred tanks [8]) lead to the conclusion that “a plateau value in the extraction rate
vs. stirring speed can be originated by physical phenomena which have nothing to
do with the occurrence of a kinetic regime” [8]. Besides, Hughes and Rod [26] have
shown formally that a plateau region may arise from mass transfer in which chemical
kinetics and diffusion control the process. This empirical criterion therefore appears
questionable. Other criteria have been proposed, which have been reviewed recently
[27].

Difficulties associated with the methods of the second category may originate
from the use of a membrane, which introduces a third constituent in the system.
This membrane must interact as little as possible with the species that constitute
the system: it must be chemically inert, exhibit low adsorption properties and it
must not interfere with the extraction process at the interface.

Lewis-type cells

Figure 3.5 shows a sketch of a Lewis-type cell, which is probably still the most
widely used technique.

In this type of cell the liquids are in direct contact. They are stirred indepen-
dently, in turbulent motion and care is taken for not breaking up the interface. So,
the interfacial area is well defined. Extraction is followed by sampling the phases.
When this type of cell is used the data are sometimes described in the framework
of the two-film theory [9, 27], which assumes that two stagnant layers of fluid exist
on either side of the interface. However, the thickness of these layers cannot be
calculated theoretically because the liquids are in turbulent motion, with undefined
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hydrodynamic characteristics. Besides, it seems [24] that no empirical approach has
been tried to correlate the concentration boundary layer thickness to measurable
system parameters. Other phenomenological descriptions have been used such as
the penetration theory [28, 29], which was developed in an attempt to account better
for the turbulent nature of the flow.

Generally the extraction process has been described by rate laws of the type of
eq 3.9 in which the interfacial reaction was assumed to be the rate-determining step,

so leading to
aC
A de = —Q(k;Ca — k,.Cp) (3.18)

with V, the volume of phase A and Q the interfacial area. This relation shows that
the rate of variation of Cy is proportional to the specific interfacial area

a=Q/Vy (3.19)

Rotating diffusion cell (RDC)
This method has been proposed by Albery in 1974 [30] and improved later [17].

A diagram of the RDC is given in Figure 3.6. The RDC has always been operated
with laminar flow in the phases.

The flow is created by the rotation of a microporous membrane, impregnated
with one phase and mounted on a hollow cylinder, at a definite speed. The pur-
pose of the baffle is to prevent the inner solution from rotating with the motion
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of the cylinder. Mass transfer occurs from the inside of the cylinder, through the
membrane, and into the outer liquid. The method offers the possibility of imposing
various configurations, depending on which phase (aqueous or organic) is placed
within the filter and in the two compartments.

The RDC has constituted the first decisive attempt to control the hydrodynam-
ics. This control was achieved by adaptation of the rotating-disk electrode used in
electrochemistry. Description of the hydrodynamic motion of a fluid near a rotat-
ing disk was first approached by von Karman in 1921 [31] and it was reconsidered
then by Levich [32], who extended this theory to convective-diffusive transport to
a rotating disk. The Levich theory has been analyzed in detail subsequently and
corrections have been proposed [33, 34], which however are commonly very small in
practice.

Expressions have been derived [17] for the global rate constant of the process in
stationary conditions. The “sandwich” configuration corresponds to the case where
the membrane contains the organic phase with the same aqueous solutions on either
side of the membrane. For this configuration, the global resistance was found to be
[17]

k™' =2k + 2(cks) ™" + (0ky) ! (3.20)

in which o designates the membrane surface porosity (the ratio of the area of the
pores to the membrane area), A is the aqueous phase and B is organic, k' is the
resistance of the diffusion layer and k4 is given by eq 3.6

ka=Da/0a (3.21)
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with DA the diffusion coefficient of the species in A and the diffusion layer' thickness
44 expressed by [32]

84 = 1.612 (vafw)"? Sc;'/? (3.22)

with v the kinematic viscosity of A, w the rotation speed (in rads ')and Scy the
Schmidt number

SCA = UA/DA {323)

!'is the membrane resistance defined by

Moreover, in eq 3.20, &,

km = ch_f/DH (3'24)

with L.s the effective path length [35, 23], taking into account the effect of mem-
brane tortuosity.

It has been pointed out [24, 27] that although “the inner chamber is baffled
to promote rotating-disk hydrodynamics, no studies have shown conclusively that
the flow inside the cylinder is the same as flow outside the cylinder”, in which
rotating-disk hydrodynamics is created. Besides, the main difficulties with this type
of technique are associated with the use of the filter. They can be of physical
or chemical nature: so, in the original work of Albery [17] and other subsequent
studies [35, 36], L has been approximated by the membrane thickness; this parameter
can be determined by a conductimetric method [23]. The porosity, for which the
manufacturer generally gives an approximate value, can be measured independently.
Besides, in most studies using the RDC [17, 35, 37, 38, 39], a Millipore MF membrane
composed of mixed cellulose esters (nitrate and acetate) was used. This type of
membrane is known to be poorly compatible with some chemical species, such as
esters, organic acids and strong concentrated acids; precisely the ester IPM and
the organophosphoric acid HDEHP have been used in experiments with the RDC.
Although in a number of studies the filters were treated with special preparations
(e.g. to render it hydrophobic) no mention about the compatibility of the filter with
the chemicals used in RDC extraction experiments seems to have been made.

Despite these potential side effects the use of the RDC technique has permitted
the accumulation of important information on the kinetic properties of extraction
systems. So, a significant and noteworthy example is provided by a kinetic study
[19] of salicylic acid extraction by liquid hydrocarbons. In this latter work, it was

'A confusion is sometimes made in which this layer is identified with the hypothetical Nernst
stagnant layer appearing in the classic film theory[9]. In fact, the diffusion layer appearing in the
Levich theory is not “quiescent”. Moreover, the concentration profile is not linear in that layer,
even if the diffusion layer thickness & is defined by eq 3.5 as in the stagnant layer model, and the
diffusion layer thickness given by eq 3.22 depends on the diffusion coefficient of the species, which
is not the case in the film model.



3.3.  EXPERIMENTAL TECHNIQUES 247

observed that the rate constants in both directions were significantly less for in-
terfaces between water and even-numbered hydrocarbons than those formed with
odd-numbered hydrocarbons. It was concluded that a more structured interfacial
region in the former systems could account for this observation. Worth of note is
the fact that this amazing phenomenon has been observed also in a recent study [20]
of alkane/water interfaces using the TIR-SHG technique (see end of chapter 2).

Lastly, it may be noticed that metal extraction experiments with the RDC have
been performed generally at one given rotation speed w. Sometimes the inverse of
the hydrogen ion flux has been plotted against..w~'/# and a linear correlation has
been found [38, 40, 42], but it has been pointed out [42] that this type of Koutecki-
Levich plot [41] is relevant only in the case of an interfacial mechanism. Therefore
new information might be provided by studying complex extraction systems with
the RDC along the rotation speed coordinate, which is an important “degree of
freedom” allowed in this type of technique.

Short-time phase-contacting method

This method has been devised and used by russian workers [8, 18, 43]. It used
an aqueous phase supported on a filter, which was introduced into an organic phase
and transfer was allowed to occur for a short lapse of time (less than 1 s). The
organic outer phase was not stirred. The amount of species extracted was followed
by measuring the change in the conductivity of the aqueous phase.

This method operates fundamentally in non-stationary regime. Assuming that
the organic phase was totally at rest diffusion equations could be solved analytically
and the flux of matter could be expressed as a function of time. The reaction
at the interface was considered as irreversible and characterized by a first-order
aqueous-to-organic extraction rate constant k. It was found that the amount of
matter extracted at time ¢ after phase contact was a linear function of /2 with an
intercept proportional to D/k, with D the diffusion coefficient of the species in the
aqueous phase.

An interesting feature of this technique was that the system operated in a regime
mainly controlled by the chemical reaction because, for very short contact times,
diffusion is not limiting [25] and then the effect of the kinetics is highlighted at
the very beginning of the transfer process. This result was in contrast with other
methods in which the stationary regime imposes a difficult separation between the
diffusive and kinetic contributions.

However, it has been underlined [27] that this technique, in which the amount
of matter is followed by a conductimetric method, cannot be used for concentrated
solutions and when several species are implied in the extraction reaction.

Rotating membrane cell (RMC)
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As in the case of the short-time phase-contacting method described above, this
technique operates in a transient, non-stationary, regime that highlights the role of
the chemical reaction. Moreover, this technique shares with the rotating diffusion
cell (RDC) the capability of control of the hydrodynamics.

A first version of this method has been proposed in 1991 [21] in which a gel
was used to immobilize the aqueous phase. This rotating stabilized cell (RSC) is
described in Figure 3.7.

The RSC consists of a perspex cylinder of diameter ca. 1.2 cm through which
a bore of ca. 6 mm diameter and 1 mm length was drilled. The cylinder can be
mounted on a rotating-electrode spindle and can be set to rotate at a definite speed.
The aqueous phase A is placed in the bore of the cylinder and it is stabilized with
a gel of polyacrylamide. The presence of the gel prevents convectional motion in
this phase. The pores of the gel are on the order of 0.02 pgm [44]. Attime ¢ = (),
the cylinder, rotating at a known speed, is immersed into a definite volume of the
organic solvent B. The extraction of the species is followed by sampling the organic
phase at given times. At the end of the experiment the activities of the samples and
that of the cylinder are measured, from which the percentage of matter extracted
as a function of time can be found.

The RSC technique has been used [45] to study extraction kinetics with con-
trolled turbulent hydrodynamics in the outer phase B. A non-phenomenological
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description, based on principles of turbulent hydrodynamics, was developed to in-
terpret the data.

However, it has been found recently [23] that, in some cases, the transfer process
can be blocked by some reaction involving the three constituents: the element to be
extracted, the gel and the organic phase. This happened for instance with Nickel(II)
and Zinc(II) ions, but not with Cobalt(Il) [21], used together with HDEHP as the
extractant.

In order to overcome this problem, the RSC technique has been modified by
replacing the gel by a membrane: a diagram of the rotating membrane cell (RMC)
[22, 23] is shown in Figure 3.8.

The membrane was a Millipore hydrophilic PVDF membrane (HVLP type). Ac-
cording to the manufacturer, this type of membrane exhibits good chemical com-
patibility with acid solutions and aliphatic solvents and its average pore size is 0.45
pm. It was glued on the base of a cylinder made of perspex, using a polyurethanne
mastic which was selected for its excellent chemical resistance to organic solvents.
The diameter of the membrane was about 0.8 cm and its thickness was ca. 120 pmi,
giving a volume of about 4 uL. The species to be extracted was taken in radiola-
belled form and the extracted amount of matter was followed in the course of time
by counting the radioactivity of samples taken from organic phase.
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Expressions have been given for the proportion of matter extracted as a func-
tion of time, P(¢), in the case of pseudo-first-order rate law for a purely interfacial
reaction; the reverse stripping reaction was accounted for in this treatment. An
expression was derived [21] for the case of observation times smaller than the char-
acteristic diffusion time within the membrane, defined by

7a = L*/(3D,) (3.25)

where L is the membrane thickness and D, the effective diffusion coefficient in the
membrane (modified by membrane tortuosity).

However, the characteristics of the membrane lead to a value for 74 of the order
of 10 s, which is quite small. Besides, the transport equations cannot be solved in
closed form in the non-stationary regime produced by this experimental technique.
However, the difficulty could be circumvented with the use of the average-reaction-
time approach [46, 47] which can be stated in the present case as

P(t) ~ 1 —exp(-t/T) (3.26)

inwhich 7 is the mean-passage time of the species for the overall transfer process.
By virtue of eq 3.26 this time is defined by

Fim l "1 - P dt (3.27)
It was shown that the mean-passage time 7 splits naturally into 3 terms as follows
T=Ta+ T+ 7B (3.28)
with
T = Lk

7p = oLép /(K Dg)

in which 7y is the characteristic time for the interfacial forward reaction, Tais the
mean diffusion time in the membrane (eq 3.25), o is the membrane’s surface porosity
and 7p is the mean residence time of the species in the diffusion layer, which results
in part from the competition between stripping (at a rate ok,) and removal by
dilution in B (at a rate Dg/dg).

In eq 3.28 K is the B-to-A distribution ratio (eqs 3.12,3.13) and A is the diffusion
layer thickness in outer phase B, given by an expression analogous to eq 3.22 [32]

6p = 1.612 (vg/w)"/? Scz'/* (3.29)
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with Vp the kinematic viscosity of B, w the rotation speed of the cell (in rad s7')
and Scgthe Schmidt number in B

Scg = vg/Dp
It is interesting to notice that eq 3.28 can be written in a way similar to eq 3.10
as
Kt =kt + k7! +%k§1 (3.30)
in which
ka=3D4u/L
kg = Dp/dp

with a different dependence with respect to the porosity ¢ due to the different role
of the membrane (separator in the RDC and support for phase A in the RMC). The
resistance in B is multiplied by @ < 1 in eq 3.30 because the stripping reaction occurs
here at a rate ok,, instead of k, when phases are in free direct contact. Moreover,
eq 3.30 shows that, in the case of a purely interfacial extraction process, the mean-
passage-time approach leads to a “mean” resistance for the overall process that is
identical to the resistance obtained for a stationary regime.

The experimental data obtained with the RSC and RMC methods have been
analyzed as follows. Assuming that the reaction takes place at the interface, the
rate parameter ky can be determined as a function of the rotation speed, by a
one-parameter fit (all other parameters being determined independently). If the
rate-determining step is really at the interface, then the parameter kjshould be
independent of the rotation speed w. As expected, this has been shown [23, 48] to
be the case for the extraction of acetic acid by isopropyl myristate. In contrast,
the extraction of zinc and nickel by HDEHP led to values for kj that increased
noticeably with w. So this technique might constitute a way to identify true inter-
facial reactions. However, further experimental results are required to confirm the
potential of this method.

3.4 Theoretical studies

3.4.1 Locale of the extraction reaction: interfacial vs. aque-
ous bulk chemical reaction

So far in this chapter it has been implicitly assumed that the extraction reaction
occurs at the interface.
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In fact, it has been thought for a long time that the rate-determining step in
metal complexation was the formation of an intermediate metal chelate complex in
the bulk aqueous phase [49]. However, the introduction of high molecular weight
extractants led some workers to consider the special role of the interface: it was
suggested [50] 20 years ago that in such a case interfacial kinetics could have a
dominant effect relatively to homogeneous reaction rates.

Such a mechanism may be expected to occur with systems involving a very hy-
drophobic extractant but this situation is not met often in liquid/liquid extraction
systems. Although some systems may approximately be described by a model which
assumes all reaction to take place at the interface, many systems may involve a mech-
anism which would lie halfway between bulk phase reaction and interfacial reaction
mechanisms [51]: “A more probable situation is of reaction taking place in a zone in
the aqueous phase adjacent to the interface. This would picture a certain amount of
extractant dissolving in the aqueous phase at the interface and then diffusing into
the bulk phase, reacting on the way with the solute. The solute-extractant complex
would then diffuse back into the solvent phase. This situation is more likely in the
case of metals extraction than that of a reaction zone in the solvent as the latter
would assume free cations transferring into an organic phase” (Abramzon and Ko-
gan’s postulate [52]). These arguments constitute the basis of the so-called mass
transfer with chemical reaction (MTWCR) model. Various versions of this model
have been proposed [51, 53, 54, 57] and applied primarily to copper extraction stud-
ies. The MTWCR hypothesis was supported by the observation that extractants
with high extractant solubilities often extract at greater rates [51]; a correlation has
also been observed between extractant partitioning kinetics and overall extraction
kinetics [58].

Let us notice that a criterion has been often used to distinguish between inter-
facial and aqueous bulk reactions. It is based [27] on the dependence of extraction
rates upon the specific area of the system, defined by eq 3.19: for an aqueous bulk
reaction the extraction rate should be independent of this parameter, because the
rate is governed by homogeneous chemical reactions if the transport of the extrac-
tant to the aqueous phase, and of the chelated species back to the organic, are not
rate determining; on the other hand, for an interfacial reaction the extraction rate
should vary in proportion to a as shown by eq 3.18. However, for reactions that
would occur in a thin film close to the interface (MTWCR hypothesis) application
of this criterion would wrongly point to a true interfacial reaction.

Thus, in many cases, the determination of the locale of the rate-determining step
has been the subject of much debate and controversy. Significant examples may be
represented by (i) the case of the extraction of zinc (IT) by a thiocarbazone (dithizone)
which has been reported to be controlled either by an interfacial mechanism in some
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studies or by a bulk reaction in other studies [8] and (i) the extraction of copper by
an hydroxyoxime (LIX65N) described by an interfacial process [55] or a MTWCR
process [61]. However, in some particular cases, an interfacial mechanism has been
determined: for the extraction of acetic acid by isopropyl myristate [23] consisting
only of a change of solvation at the interface; for the extraction of germanium by
Kelex 100S (8-hydroxyquinoline) [56] leading to a very slow process.

3.4.2 MTWCR model

The more popular version of the MTWCR model seems to have been that of Rod
[57]. It has been used to describe the case of divalent metal extraction by an acidic
extractant [38, 58, 59, 60, 61]. Its basic ingredients are the following.

Basic assumptions

Let HR denote the acid extractant, M?* the metal ion and MR, the extracted
complex. Then the extraction reaction is considered to proceed according to the
following steps

Step 1: HR = HR
Step 22 HR = H* + R~

: k
Step 3: M2* + R~ = MR*
Step 4: MRt + R~ = MR,
Step 5: MR; = MR,

where the bar notation indicates an organic phase species and its absence refers
to an aqueous phase species.

In the above reactions the first step describes the fast partitioning of the extrac—
tant in the aqueous phase followed by fast dissociation of the extractant in step two;
the third and fourth steps describe the formation of the metal complexes; the last
step involves the rapid partitioning of the metal complex into the organic phase.

Some acid extractants, such as D2EHPA, are strongly dimerized in the organic
phase and consequently step 1 should be replaced by HR, = 2 HR[62] in that case;
it has been also assumed sometimes [61] that in this case the complexation reaction
in the aqueous phase involved the species HRZ

We now present the main equations and results given in ref. [57]. The ingredients
of this MTWCR model do not seem to have been reviewed so far.
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The MTWCR model presented below was first proposed by Rod [57]. Due to
the complexity of the problem, the following assumptions were adopted

The model was developed in the framework of the two-film model [9]. It was
therefore assumed that the species diffuse in a quiescent layer in the aqueous
phase with chemical reactions described by steps 2, 3 and 4.

The system operates in a stationary regime.
All reactions in the bulk phase are fast and therefore equilibrated.

Step 3 is the rate-determining step, with forward rate constant kz. Steps 2
and 4 are very fast and the related local concentrations are in equilibrium.

The net flux of the active species R in all forms is zero at each location in the
layer.

Concentrations of the species R~ and MR are low compared to those of HR
and H"; the fluxes of the species R~ and MR" are much smaller than those
of the other species.

Moreover, it was implicitly assumed that

The system is thermodynamically ideal: activity coefficient effects are not
considered.

The interfacial concentrations of the extractant HR and the metal complex
MR?2 are equilibrated. The finite fluxes of these species at the interface do not
modify the organic-to-aqueous interfacial concentration ratios.

The flux of an ionic species k is written as

; dC,
jk=-D d—; (3.31)

i.e. the purely diffusive flux given by Fick’s law. Electric diffusive coupling
[63, 64], arising from electrostatic interactions between ions, was not taken
into account. Although this effect may be neglected in presence of a support
electrolyte which screens out the electrostatic interactions, it might constitute
a crude approximation in absence of support electrolyte.

Typical concentration profiles [59] for the MTWCR model are shown in Figure

3.9.



3.4. THEORETICAL STUDIES 255

Basic equations

The transport continuity equation for the species HR in the aqueous quiescent
layer gives

2 ER oy (3.32)

inwhich oy p denotes the chemical reaction rate term for the production of HR (in
step 2), which is

OHR = —Op- = —kRCMHCR— + k’RCMR*‘ (333)

with k% the reverse rate constant of step 2 which is related to the equilibrium
association constant of step 3 by

K3 = kp/kly = Cup+ [(Cpp2+Cr-) (3.34)
The other equilibrium constants are defined by
K-z = CHR/(CH+CR—) (335)

Ky = Cpmr, [(Crr+Cr-) (3.36)
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and the partition coefficients for steps 1 and 5 are defined as the organic-to-aqueous
distribution ratios

K, =Curi/Curys (3.37)
Ks = CMRyu/Crirya (3.38)

in which the notation s, denotes the concentration of a species S on the organic
side of the interface.
Then the equilibrium constant for the overall reaction

2 HR + M?* = MR, + 2 H*

is

g A
K* = K_;j, K (3.39)
with
Koy = K3 K4/ K; (3.40)
With these notations eqs 3.32 and 3.33 can be rewritten as
d*C k
HR dng . KQ(;EH+ [CHRCMH - C},wCMR,/{KeqCHR)] (3.41)

Besides, it was stated that under the above assumptions the following relations
held

dC+ dCisr
D d;" 4+ 3D d"; =0 (3.42)
dCriz .. Gk,
2 =0 3.43
Dir dz i dz ( )
dc A .
—D;;R—d;:R + 2D+ d: = JHR, (344]

However these relations were given without explicit proof and we may try now
to justify them.

* Eq 3.42 may be shown as follows. The combination of steps 2, 3 and 4 shows
that the reaction of one metal ion M?* is accompanied by the release of 2
protons H'. Then, if the reaction is fast, the two fluxes should compensate
locally. This result can be shown by assuming a quasi-stationary state for the
local concentrations of R and MR", which entails

o = 0= o)+, 1ol
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meaning that the total production rate of R~ comes from steps 2, 3 and 4,

and
(3) (4)

(J'L?R+ =0= -0y, +0p-
Combining these last two equations yields
o +2%,. =0

Then, using this relation and the two continuity equations for H' and M*"

ICy+ d jp+ @
R e
6CM?+ d JIM“ (3)
=0=—-———+4
ot dr M+

gives

d

— (Ju+ + 2jp2+) =0
dz

and since there is no ionic flux to the organic phase at the interface (boundary
condition, eq 3.47 below) one obtains

Ju+ + 2jm2+ =0 (3.45)
which, by virtue of assumption 3.31, gives eq 3.42.

Eq 3.43 results from the above assumption that the net diffusive flux of species
R is zero and that the fluxes of species R” and MR can be neglected.

The conservation of the flux of species H (i.e. H' and HR) leads to
Ju+ + jHR = JHR:

because the flux of H originates only from the interfacial flux density of HR,
denoted by jyx ;. Then, by virtue of this equation and eqs 3.31, 3.45 we obtain
eq 3.44.

The last relation given in ref. [57] was

Keq = Crt Ry buthCi+ otk / (Cr p puak CM2+ putic) (3.46)

It results from the assumption that the chemical reactions are equilibrated in the
bulk aqueous phase (steps 2+3+4). In this equation the aqueous bulk concentrations
of MR, and HR are not zero, as might be deduced from the last relation of eq 3.43
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and the last boundary condition of eqs 3.48, because of transfer of these species
during the first stage of the extraction process, before establishment of the stationary
regime.

The boundary conditions for this problem were written as

Atz =0: C”R = CHH,:: CMR«‘- = CMR:,:’; dCM‘J+/d$ =0 (3,4?)

Atz =4: C”+ = C_L,f+_bum; CMH = (}M"H bulks dC”R/dI = (3‘18)

with § the thickness of the aqueous film. In eq 3.47 the condition on the concentra-
tion gradient of M#* expresses the fact that this ion cannot be transferred in this
form to the organic phase. In eq 3.48 the similar condition on the flux of HR means
that it is assumed that passage of HR to the bulk aqueous phase is not allowed.

Results
The interfacial flux of the species M, giving the extraction flux of M, is given by

the relation
1

jMRQ.i = § jHR,i (3‘49)

where jyr; appears in eq 3.44.

The solution to eqs 3.41-3.48 cannot be obtained in closed form. Approximate
solutions were obtained in limiting cases. In particular, an expression was given [65]
in the case of an “instantaneous” reaction, indicated by the dimensionless parameter

M = krDyrCur+ putk/ (Kt g ag K2C+ puik) (3.50)

being much greater than unity (the criterion given in ref. [57] was M — o0). In
this equation k yr represents the mass transfer coefficient in the aqueous layer of
thickness &

ktraq = Dugr/6 (3.51)

In that case eq 3.41 was approximated by the following equation

d’Cur __kr
dz? K2CH+I1'

[Crr+ i = Che \OMRa i/ (KeaChipi)] Chir (3.52)

after correction of a misprint. Derivation of eq 3.52 was not justified in ref. [57].
However this relation may be obtained by linearization of eq 3.41 in which the
concentration Cp is factorized and the remaining concentrations are replaced by
their interfacial values.
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Then eq 3.52, together with the boundary conditions, was solved, which led to
[65]

‘ o 24 CQ+ -CMR 1 e 2
ey S f B PR o 3.53
JHRA 1 Oy ( K'C?m,;cwta ( HR nn‘.) (3.53)

in which the notation ' denotes the concentration of a species on the organic side
of the interface (MR, and HR concentrations are not continuous at the interface).

. 1/2
5 6.C 6,C\* " ) ,
CHR,.‘ = —2T -+ [(QT) + C(CMR2,1 + QQCH’RJ)} (554)
with
61 = krDyr/(K{K>) (3.55)
02 = DyrKs/(2Dyvr, K1) (3.56)
C = Clit puar/ (K*Cprr+ put) (3.57)
and interfacial concentrations were given by
Chri = CHrbuk — JHR[KHRorg (3.58)
B o 1.
Cumrari = Oy putk + EJHR,:‘/kMRg,org (3.59)
Cmr+ s = Cm2+ putk — JHRi/KM2+ aq (3.60)
L.
Cu+, = Ch+ putk + 'Z"Jffﬁ,i/km,aq (3.61)

where the parameters ky,, and ky,, denote mass transfer coefficients defined as
ineq 3.51.

In refs. [59, 61, 68] the last two equations 3.60, 3.61 were written in a different
way as

Cumr+; = Crprt puak — JuRi/ (2km2+ og) + [Dur/(2Dp+ K1)|(Chr, — Cr,s) (3.62)

Cr+i = Cr+puk + JHRi[ki+.0q — [DHR/(QDH+K1)](C_'HR,1' — CHH,-} (3.63)

Therefore the model predicts an overall extraction rate (eqs 3.53-3.61) which
shows a complex non-linear dependence on concentrations.

The accuracy of these approximate results has been examined [57] by comparing
them with results from a numerical analysis of eqs 3.41-3.48, for some parameter
values: it was found that the mean deviation of the approximate result from the
numerical one was about 3 %, with a maximum deviation of the order of 10%.
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The thickness of the reaction zone has been given [59] as

Sp =~ g Dur (C”H _pm ol ) (3.64)

JHR.: kHR.org

Let us notice lastly that, in refs. [59, 68], it was stated that eq 3.53 could be
obtained by Astarita’s method [66], used previously in a pioneering MTWCR model
[51]. The use of Astarita’s method within the MTWCR model of Rod has been
explained in a PhD thesis [67],

Application of the MTWCR model

First, in at least two studies [38, 58] various interfacial mechanisms have been
found inadequate for describing the experimental data, which led the authors to use
the MTWCR model.

The MTWCR model introduced by Rod has been used to interpret mainly ex-
periments performed with the RDC of Albery because this technique allows an
estimation of the diffusion layer thickness. However, since the latter depends on the
species considered through its diffusion coefficient (cf. eq 3.22), it is not clear which
value was taken for the film thickness, which is supposed to be unique for a given
phase in the film model, for all the species involved (cf. Figure 9).

The experiments fitted with the model included the extraction of copper by
hydroxyoximes (LIX64N, P5000,...) [59, 61, 65] and dialkylphosphoric acids [61],
of zinc, cobalt and nickel by HDEHP [38, 60, 62] or HEHEHP [58]. In most cases
the model could be fitted to the experimental results, by the adjustment of the
parameters f#;,8; and K*, defined by eqs 3.39, 3.55, 3.56. The sensitivity of the
model to the grouped parameter §5 has been found to be low [65, 59, 61].

However, in some cases (e.g. [38]) the model was not successful. This happened in
the case of the extraction of zinc and nickel with HDEHP using the RDC technique,
and this was interpreted as follows: in the case of zinc the transfer was found to be
controlled by mass transfer alone because the chemical reaction was too fast to limit
the kinetics; in the case of nickel the reaction was too slow and much extractant
was partitioning to the aqueous phase without complexing the metal cation, thus
making it impossible to use the MTWCR model of Rod [57] presented above.

When the model could be fitted to experimental data values for the rate constant
kg could be estimated from the adjustment of #, value (eq 3.55) and measurements
or estimations of the parameters Dyr, K; and K, These kr values were regarded
as representative of the complex formation rate constants for water replacement on
the ion by water soluble extractant anions. So, values of 26 m? (kmol s)~! and
0.00468 m* (kmol s)~' have been found [58] for the complexation of cobalt and
nickel by HEHEHP, and (2-9)x10'® m® (kmol s)~! for the reaction of copper with
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the hydroxyoxime P50 [61]. Besides, in this latter study, the reaction zone thickness
dn (eq 3.64) was found to be 0.7 pum for the Cu??*/HDEHP /heptane system and
13 A for the Cu**/P50/heptane system, giving in the latter case a reaction zone
of microscopic dimension, indicating probably an interfacial reaction in agreement
with a very low solubility of P50 in the aqueous phase and with a previous work of
Albery et al. [42].

3.4.3 Numerical studies

A few molecular dynamics computer simulations have been undertaken in the last
decade. The interest of this type of calculation lies in its ability to study systems at
a microscopic level [70] and some striking new results are now beginning to emerge
from such studies.

A model of immiscible Lennard-Jones atomic solvents has been used to study
the adsorption of a diatomic solute [71]. Subsequently, studies of solute transfer
have been performed for atoms interacting through Lennard-Jones potentials [69]
and an ion crossing an interface between a polar and a nonpolar liquid [72]. In
both cases the potential of mean force experienced by the solute was computed; the
results of the simulation were compared with the result from the transition state
theory (TST) in the first case, and with the result from a diffusion equation in the
second case. The latter comparison has led to the conclusion that the rate calculated
from the molecular dynamics trajectories agreed with the rate calculated using the
diffusion equation, provided the mean-force potential and the diffusion coefficient
were obtained from the microscopic model.

A more realistic system has been approached recently [73], concerning the trans-
fer of small ions (such as C1-, Na“,...) across the water/1,2-dichloroethane interface.
No artificial constraints were necessary to ensure solvent immiscibility, which was
the result of the hydrogen-bonding forces in the water. So, the contact of the two
liquids gave a sharp interface, deformed by internal capillary waves. Transfer of the
ion was helped by application of an external electric field, in the range 0.1-0.3 V/A,
of a magnitude comparable to the fields commonly used in voltammetric studies. In
another similar work [74], some results have been reported for the case of no field
applied. The first main result was that the ion solvation state should be included as
a new coordinate when describing the transfer by a barrier crossing; thus the trans-
fer can be viewed as a transport process on a two-dimensional free energy surface
(the distance from the interface and the solvation coordinate). Next, examination
of the ion trajectories showed the following phenomena: the transfer from the wa-
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ter to the organic phase showed clearly that, on the time scale of the simulation,
the ion dragged its hydration shell into the organic phase, with a “chain” of water
molecules connecting the hydrated ion to the water phase; reversly, the transfer from
the organic phase to the water was found to be effected by the interaction of the
ion with a water “finger” extending out of the water phase into the organic phase.
These “fingers” were associated with the interfacial capillary waves; the amplitude
of these water protrusions was on average 6 A long and could be as long as 10 A, so
yielding an appreciable interface roughness. Moreover, the transfer was examined
at the energy level: for an ion starting in the dichloroethane, the rate-limiting step
was determined to be its ability to find a water molecule which, although attached
to the water phase, is capable of hydrating the ion; this process was observed to
be facilitated by the presence of water “fingers” whose head water molecule is more
loosely connected to the other water molecules. In contrast with a previous work
[69] the switching of the first solvation shell was found to be fast and not activated,
and the barrier to transfer was suggested to have an entropic part associated with
the need for matching the ion with a water “finger” plus an energetic part related to
the breaking of some hydrogen bonds for the creation of such a “finger”. However,
it was pointed out that the transfer of such small ions, exhibiting large energies of
transfer, could be facilitated by the formation of ion pairs such as NaCl.

Recently, various real extraction systems have also been studied using an Amber
software [75].
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Chapter 4

Electrokinetic phenomena

4.1 Introduction

Electrokinetic phenomena designate the transport phenomena involving electrolytes
near charged interfaces.

Obviously the boundary conditions have a considerable influence on the observed
transport processes.

If the electrolyte flow moves perpendicularly to the interface, it will be stopped by
it, except if some particular event such as an electrochemical reaction occurs, giving
a source (or a well) of solute. Moreover, in this situation, the solvent, which is in
most liquids uncompressible, will have to escape (or to arrive) in another direction
and then to move in a direction parallel to the interface.

The most common situation concerning the motion of electrolytes near interfaces
is then that concerning a motion parallel to the interface. This will involve not only
the solute flow, but also the solvent flow.

Since most interfaces in contact with a liquid bear a superficial charge, the com-
bination between hydrodynamic and electrostatic conditions will be the key of the
observed processes, which are known as eletrokinetic phenomena.

In this chapter, we recall briefly some features of ionic transport in solutions [1].
Since the basic concepts of electrostatics and hydrodynamics have been presented
before, we will directly present their application to electrokinetic phenomena after
this first presentation.

269
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4.2 Transport in ionic liquids

4.2.1 Limiting velocity

Under the action of forces due to other particles j, or to external fields, a, given
particle i is accelerated as:

dV;
m,a = z Fj
J

Due to the solvent, a friction force —(,v; appears. For a particle submitted to
the action of an external electrical field, we have:

7”,‘% = Z{EE = CiVi

The particle takes a limiting velocity

Aim __ Zi' eE
3 = —
Gi

This velocity is reached in an exponential manner

22 (1= exp(-t/n)

where the characteristic time 7; is given by

vi(t) =

my

G

T =

4.2.2 Diffusion

External forces on particles can be of origins other than electrostatic. Let us con-
sider, as another example, the case of diffusion forces.
Diffusion forces derive from macroscopic chemical potentials. In the simplest
case, of an ideal solution we have
e = w4 kT Ing,
Ve,
F| = _V}J-g = PkT_(‘_-
i
The velocity taken under the action of the diffusion force by particle i is then:

kT Ve,

Vv o
' Ci G
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4.2.3 Flow of particles

We now consider the flow of particles generated by diffusion.
This flow will be related to the local concentration ¢;, of species i
n
Vv
In a cylinder of section S and length [, let we denote by J; the number of particles

crossing S by time unit.
if § = 1 surface unit, then V' = |v,|and |J;| = n, = ¢V and J, = ¢v;

g =

Diffusion flow

In this paragraph the basic relation between diffusional flow and concentration gra-
dient (Fick’s law), is presented.
Introducing the diffusion velocity in the flow gives

kT
‘]i = 4V, = — VC{
Gi
We define the diffusion coefficient as
kT
D, = —
Gi
And get the first Fick’s law
J,‘ = —D,'_VC,

Charged particles

The same evaluation can be done for charged particles and will give the relation
between electrical and diffusional transport known as Nernst’Einstein relation. The
expression of the charge flow will also give Ohm's law for ionic transport in an
electrolyte.

The velocity is due to the action of the electric field

E
vi = Zie— = yE
g.

)
The relation between the diffusional and electrical mobility is then
Zie D,

= u = Ze

G kT
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or

U, Ze

which is Nernst Einstein’s relation.
We have for the flow of charged particles

dy =G = Z.EC,E

and for the corresponding flow of charges

I = Zed, = z:’e‘-*%E

13

I =3 = (Z z;?e‘-'i) E =1E
which is simply Ohm’s law

Inertial time

Einstein’s relation allows for the explicit expression of the inertial time , as a
function of the diffusion coefficient D,

kT _ p, = ™ _ Dim
G ' YT G kT

Its order of magnitude for most ions (m; ~ 100 gram per mol, D; ~ 10~° em?s™!)
is a picosecond:

n ~ 1071%

Equivalent conductivity

For the sake of simplicity, let us consider a simple symmetrical 1-1 electrolyte such
as NaCl.
The charges and concentrations are

Z]:l, 222—21:—']
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and the conductivity

ff‘z
G = E_‘ (D+ + DHJC

el
% = 7D+ + D_) = A

is the equivalent conductivity
For practical systems, as will be seen in the part on transport with MSA (mean
spherical approximation), the equivalent conductivity varies with concentration.

Mutual diffusion, junction potentials

The notion of charge flow can also be applied to a situation without external electric
field. Besides the static electroneutrality condition

Z,'BC; =0
>,

which represents the local electroneutrality we have to introduce a dynamic elec—
troneutrality condition, which prevents any macroscopic charge separation. This
condition is introduced at a semi-macroscopic level and expresses simply the fact
that the flows of charges have to be balanced to keep the local electroneutrality.

Y Zedi =0
i

This condition can be satisfied only by introducing a local internal electric field,
which prevents any dynamic charge separation

o A
Ji = —DiVe; + Jiek—T"CxEmt

The dynamic electroneutrality condition can then be satisfied only by the pres-
ence of a local internal field

kT 3, Z; DiVe;

B = —
e >.;Z%Djc

This expression is known as Henderson’s formula.
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Electrolyte diffusion

As for the electric conductivity, the obtained results are very simple for 1-1 elec-
trolytes

g _ k(D' - D)Ve
mT e (DY + D)e

This internal electric field derives from the junction potential

F
‘I)}um: = _/ Ein!-dx
I

\Pjrmn =

RT (D*-D)  cr
— — n —_—
F (D"‘ +D ) C

The diffusion flow can be rewritten in a more compact form

kKT 22,D;2,V¢;, D,
e Zh ZE(:hDh ¥ kt ™

becomes then for a binary electrolyte

J, = =D\Ve, +

2D+ D
J, =J. = —— Ve
® D+ + D- .
The coefficient of Ve, Dyy is known as the Nernst-Hartley or mutual diffusion
coefficient of the binary electrolyte

4.3 Electrokinetic phenomena

We give in this section a very simplified presentation of electrokinetic phenomena,
limiting us to the basic definitions and concepts [2].

At the end of this chapter, a bibliography is given.

Electrokinetic phenomena can be classified according to the nature of the acting
field and to that of the response of the system. Another important classification
comes from the geometry of the systems and from the nature and symmetry of the
boundary conditions.
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4.3.1 Electroosmosis

One first considers [3] the simple system consisting of an infinite charged plane, bear-
ing fixed charges of one sign (they will be very often negative, as in silica, silicates
and silicon, corresponding to glass, clay and chromatographic tubes). Obviously,
mobile counterions of opposite sign will be located in the solution, in the vicinity of
the fixed charges. They form together the double layer, which has been presented
in the chapter dealing with electrostatics.

An external electric field E is applied parallel to the wall in the x direction,
whereas the y direction, is counted positively perpendicular to the wall which is
located at y = 0.

The basic equation of motion is the Navier Stokes Equation

i}
p%— + pv.gradv = pg — VP + nAv + f¢
C

where £ is the electric force density.
For low flow rates (low Reynolds numbers), and stationary flows the left-hand
terms vanish.

In a first approach we neglect the gravity and pressure effects and get

nAv = —f¢ = —p*E

where p® is the charge density and E the external applied electric field

Av = —-lp”‘E
Ui
E = E;i
v = gl

The external electric field is applied along the x direction, as well as the resulting
velocity of the solvent.

P = ()
v, .
Mg = ~p*(y)E;

Poisson’s equation relates the charge density and the potential
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276
el
AY = - L
E[]Er
0%, 6“@E
N = —
r'ay-z EpEr ayg z

This equation can be integrated as

EoEr
ve(y) = n V(y)E, + Ay + B
for symmetry reasons 4 = 0.
The boundary conditions are:
Y 0
v = 0 | atthe inter face
L' U,
€
vy =0 =0= X"y, E, +B
then
B =-2I9,E,
n
w(y = o0) = =7 B (Vo — 0,)

where ¥(y = o0) = Wy is the potential of the solution.
Far from the plane one has

9:(?} = 00) = Umaz

EgE
= o ('I’G =2 "I’a) Ea:
n
Yo — ¥, = C
This defines the zeta potential as the potential difference in the double layer; we

U‘!TII‘.II

have then the simple relation
EgEr
n

for the electroosmotic velocity of the solvent.
The corresponding phenomenon (displacement of the solvent along a charged

Umaz =

CE;

interface), is known as electroosmosis.
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Charge density on the interface

In this paragraph the ( potential will be presented by analogy to the charge of a
plane capacitor, corresponding to the charged interface plus its counterions.
If we consider the wall as a capacitor C

g9 .0

U ¢
where Q is the charge of the interface and U the potential difference in the double
layer
If the area of the double layer is 4 and its thickness ¢

O = —
EpEr s
we get
Qs
C =
epErA
and
6
Umazx = E_Ez
n

where o = (/A is the charge density on the interface.

For a dilute electrolyte, 4 is close to 1/k, where 1/k is the Debye length. This
Debye length behaves as 1/v/C, C being the molar concentration of the added
electrolyte.

The electroosmotic velocity has then a variation as 1/+/C' which is the basic fea-
ture of electroosmosis, in the total contradiction with the simple chemical argument
where the flow of solvent would be due simply to the solvation of the mobile ions.

Electrophoresis

Electrokinetic phenomena occur not only for fixed interfaces and mobile counterions
but also for mobile particles in suspension, either bearing a defined electric charge
(and characterized by an electrophoretic mobility) or surrounded by a double layer,
whatever could be the physical origin of this double layer. In this latter case the
particle will undergo, under the action of an electric field, the same type of motion
as in electroosmosis, with the noticeable difference that the motion is that of the
particle in the fixed solvent.
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The purpose of the present paragraph is to establish the basic relations between
the electrophoretic and the electroosmotic mobility, for a spherical particle.

In electrophoresis, the velocity taken in a medium of viscosity 77 by a spherical
particle of radius R and electric charge ze , under the action of an electric field E
electric field is given by

1 _ z¢E
6rnR~  6mnR

Notice that the 6n coefficient is relative to sticking boundary conditions for the
motion of the sphere in the solvent. This corresponds to wetting boundary conditions
for the particle (good solvent).

Other features are possible for the contact between the moving sphere and the
solvent. For the unwetting case, or slipping boundary conditions, the previous adi-
mensional factor is replaced by 4. This lower factor correspond to the lower friction
in the slipping case. As simple way to express the relation to electroosmosis is as
follows:

Assuming that the particle is equivalent to a spherical capacitor

Q

ze
= == —(— = 4?1'5(}5,-1[1).

v =wF =

U

The corresponding charge is

€ = 47TCEDE;-R

and the electroosmotic velocity for sticking conditions

v— gagerq E
&
The adimensional factor 2/3 being replaced by 1 for slipping conditions.

In this last case the result for the velocity is exactly that of simple electroosmosis
for plane symmetry

e eoer(E
n

4.3.2 Influence of boundary conditions

The measurement of { potential is in practice related to the particular set of bound-
ary conditions used.
We distinguish the following cases
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* open
* stationary
* closed

Open system

The liquid volume transported by time unit for a cylinder of diameter ¢ = 2rand
length / is

D= — = ynr?
t

where v is the electrosmotic velocity
Substituting the expression for the electroosmotic velocity

e S0 (nr’E
n

In a porous medium the determination of the electric field is not easy and E can
be expressed in a different way. Taking the current intensity one obtains

= U EIl
R R
since the measurable quantities are the intensity and the electric resistance and

the conductance 7 of the solution. Ohm’s law writes simply

1 I
— E o — T —
sl S ar?
and
I =yrr’E
and for the flow
D - EOEF Cl
f L

This expression allows for the determination of { neither knowing the radius of
the pores nor that of the capillaries. The measurement of a flow combined to that
of intensity and electric conductance, allows for the determination of {potential in
the porous medium with a charged double layer.
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Open system: steady state

The experimental device is here very analogous to an osmosis apparatus, consisting
in two open compartments communicating by a porous material. In the present case,
an electric field is applied to the porous material and this substance is permeable
to both solute and solvent particles. Moreover the porous material is supposed
to be charged on surface. When a current passes through the porous medium, a
difference Ah in liquid height takes place between the two compartments. This
phenomenon ceases when the current stops. A difference Ap in pressure between
the two compartments corresponds to Ah

Ap = Ahpg

Ap can be related to the flow Dp by Poiseuille’s law

_V _ Apnrt

D o
=1 8nl

Since the system is open, by applying an electric field, the liquid goes from one
side to the other, until the undergoing of a stationary state.

This steady state corresponds to a balance between the electroosmotic flow and
the Poiseuille flow.

The electroosmotic flow is

Dg = “Lr(nr’E
n
then equating Pp and Dg yields
+CIE
Sy g&of ¢

2
The electric field can be replaced as for strictly open conditions in terms of the

electric current, giving

_ gEoerCl

Ap z
ymr

This method is very convenient to measure ¢ potential for porous media, under
laboratory conditions, whereas the strictly open conditions correspond more to in
situ situations
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Closed system: steady state

1. Rectangular symmetry

For closed systems, the electroosmotic flow will undergo the influence of the
boundary conditions. Since on the wall the flow will be oriented by the direc-
tion of the field and the charge of the mobile counterions, on the bottom of
the cell this flow will be redirected in the opposite direction. A counterflow
will then be produced in the middle of the cell and solvent flow loops will be
established between the electrodes.

The distance / between the two electrodes (direction of the field E, along the
horizontal x axis),will be supposed to be very large by respect to the other
dimensions of the electrophoretic cell, respectively 26 in the vertical y direction
and 2/ in the other horizontal direction z, perpendicular to x.

2h << 2b << |

The origin of the coordinates is taken in the middle of the cell. The boundary
effects such as the electrode reactions and the closing of the hydrodynamic
loops are negligible in this region.

The velocity profile can be expressed as follows:

* in the vicinity of the wall in a boundary layer of thickness 6 =~ 1/« the
velocity of the solvent goes rapidly from zero to the Smoluchowski value

EpE
v = —(E,
i

» after this rapid variation the velocity decreases in the direction of the
middle of the cell, taking a negative value (by respect to that on the
wall), in the middle. An important location will be that for which this
velocity vanishes, somewhere between the wall and the middle of the cell.
One of the goals of the present study will be to locate this location in
z(v = 0). This generates a plane for which the electroosmotic velocity is
zero. This plane is known as the Smoluchowski plane.

» from the center of the cell to the opposite wall the phenomenon is exactly
symmetrical: the velocity goes from a negative value to wvg (chosen as
positive), and then the velocity decreases to zero in the opposite double
layer.
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The velocity profile is then an even function by respect to the middle of the
cell in the z direction.

The linearized steady state Navier-Stokes equation writes then as

pg — VP + nAv + f' =0

The velocity is directed as the field, along the x axis and has non vanishing
components only in this direction, except at the electrode boundaries. More-
over, since the y dimension of the cell is much more larger than that in z the
shorter hydrodynamic loops will be in this z direction.

This vector equation has the following components:

e T
otv, 0%, oP
o Yoz om
oy
oP
—pg — 35—0
* Z
oP
_EZO

This last equation means simply that P is independent from z

The y component is simply

P = ~pgy + cste(z)

Since the velocity v, varies mainly as a function of z, the x component reduces
then to:

%v, % _
9z  0dr

The solution of the problem will be obtained only by setting a supplementary
hypothesis for the pressure gradient ‘;-i:.

Ui

. . a _
The simplest hypothesis would be 4= = 0.



4.3. ELECTROKINETIC PHENOMENA 283

However this hypothesis would lead to

v(2) = Az+ B

a profile in contradiction with the even character of the velocity.

The second simplest hypothesis for the pressure gradient is to consider it as a

constant
aP -
oz p
and
vy

The solution of this equation is

val(z) = 2%,-:2 +Ciz+C

C, vanishes for symmetry reasons and C, will be determined by taking the
condition

V(2 =68) 2 v(2 =0) =y

the electroosmotic velocity.

h2
Co=vp — %
and
v.(2) = Eit-;}(z2 —h®) + v

It remains to determine the value of the constant p.

The condition of zero total flow across the cell in the z direction writes

[hh v(2)dz =0
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Substituting v,(z) gives

and g
vy(2) = —-}1—2(3452 - h?)

This parabolic Poiseuille-like profile gives a stationary plane for

h
2z, = +— = £0.577
V3
When b is not infinitely larger than A the physics remains, identical, but the
stationary planes are called Komagata planes, and are located closer from the
wall.

For b/h = 10 then z,/h = 0,612 and for b/h = 100 then z,/h = 0, 58.

2. Cylindrical system

The case of cylindrical symmetry remains physically identical to the previous
one, but gives other mathematical difficulties.

Taking as before the approximation of an infinite tube, and integrating the
corresponding Navier-Stockes equation gives the velocity profiles

2r?
= vp(— —1
(2) = (5~ 1)
The Komagata surfaces are then located at
h
Zy=—==0T1
L] \/5

4.3.3 Streaming potential

This phenomenon is the reverse effect from electroosmosis: a velocity field is applied
along an interface and one observes the appearance of an electric field (or a an electric
potential difference)associated to the flow.

The mathematical formulation of this effect will depend on the boundary condi-

tions of the problem, as for electroosmosis [4].

In this paragraph only one example of such phenomena will be considered, in

relation with the previous parts on electroosmosis.



4.3. ELECTROKINETIC PHENOMENA 285

Consider a cylindrical capillary with charged walls, through which a liquid is
pushed under the action of an applied pressure Ap. A parabolic Poiseuille flow is
then produced:

R? r

v(r) = 4 (1= ()9

where R is the radius of the capillary of length { (I > a).

This flow drags counterions by respect to the fixed charged sites and then a
streaming electric current is produced.

R R
v
Ly = 217/ v(r)p®(r)dr = —ﬂ—p/ (R? — %) p®(r)rdr
0 2n Jo
The exact solution of this problem with the correct symmetry will require the
use of the cylindrical form of the Poisson equation for the charge density p®(r).
If the capillary is large enough ( large &R ), the one dimensional form of the

Poisson equation can be used

d*¥
el .
P (T') = —Epkr dy2
where y is the distance from the internal surface of the capillary.
Moreover, a very thin layer close to the interface contributes to the charge trans-
port, since the bulk has no space charge. Then only the distance close to r = R

have to be considered:

R? —r*~2R(R—-r)=2Ry
Then the intensity can be rewritten as
€0ermR R oy £0€,mR? /R d*v
Ly = —Rdy = \% —d
str - fonydngy - P YVgz®
This integral can be calculated by parts

R 42y R 4w dv R qp
—d :/ d— = —R-f —d.
fo Var ™= J, Yy yd_u'" o dy Y

In the last equality the first term is zero because for r = 0, %‘5 = 0and for r = R,
y =0
The last term is simply the ¢ potential
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The streaming intensity is then

goe,mR?
Is!r — —r"‘_”vP(
n
This streaming intensity corresponds to an electric field Eg, deriving from a
streaming potential which can be expressed by considering the conductance -+ of the
capillary as for electroosmosis.

. Ler
Jstr = % = YEg,

EgE
Esr = . rvpC
ny
Streaming potentials appear also in porous media and are now of fundamental
importance for the study of geological materials and are used commonly to charac-

terize their evolution such as the occurence of earth quakes and volcanic eruptions.

4.3.4 Applications of electrokinetic phenomena

Electrokinetic phenomena are sometimes hindered in practical applications such as
filtration processes or separation by ion exchanging membranes [5] [6].

They are used as powerful separation methods in new methods such as capillary
electrophoresis and electrokinetic decontamination. Those two applications will be
rapidly presented, letting the interested reader explore these new tracks by himself.

Capillary electrophoresis

Capillary electrophoresis apparatus consist in a very long capillary tube, generally
in silica or in a siliconated material, whose diameter is of some pm. A very strong
electric field is applied to the extremities of this device which contains an electrolyte
solution, generally dilute.

The strong electric field acts on the mobile positive counterions located on the
wall of the negatively charged capillary tube, creating a huge electroosmotic solvent
flow.

If one introduces by a chromatographic injection technique, a solution of par-
ticles, they will be submitted to the electric field and take a velocity which is the
balance between their own electric mobility and the electroosmotic flow. If two par-
ticles i and j have intrinsic mobilities w; = w — Aw and w; = w + Aw, under the
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application of the electric, field they can move in opposite directions if

S
)

i.e. if the intrinsic mobility of the particles is close to the opposite of the elec-
troosmotic velocity.

In the present example one will separate negatively charged particles. In order
to apply this technique to positive particles, it should be noticed that the charge of
the wall can be inverted by the following technique. By putting in the solution an
ionic surfactant positively charged (e.g. dodecyl trimethylammonium bromide), the
polar heads of the surfactant will neutralize the negative sites of the capillary wall,
forming a surfactant layer on it. Other surfactant molecules will be trapped by the
hydrophobic tails, constructing a bilayer on it. The net charge density of the wall
will then be positive, creating an electroosmotic flow directed in a direction opposite
to the previous one, which can be used to separate cations.

This constitutes the schematic principle of operation for capillary electrophoresis,
which is now a commonly used chromatographic technique.

Electrokinetic decontamination

A soil like clay contaminated by heavy metal pollution, can be considered as a porous
medium containing water and ions adsorbed (heavy metals cations) on negatively
charged sites (silicates). By applying a moderate electric field and injecting an
appropriate solvent, one will obtain an electroosmotic flow of solvent containing the
heavy metal ions to eliminate.

This method has been applied with some success, to the removal of As, Cd, Hg,
C's, Pu from contaminated industrial sites. since the required fields are relatively
low (some volts by meter), the main expanses will come from the cost of the solvent.

Another difficulty in old polluted industrial sites comes from the fact that hidden
solid metallic objects and residues are often present in the soil.

A last application of electrokinetic phenomena is the concentration of industrial
muds. Here also, with a small expanse in energy, elimination of water by electroos-
mosis allows to concentrate muds from 70% of water (a liquid like mud), to 20% of
water (a solid, clay rock like).

The role of electrokinetic phenomena in environment and environmental tech-
nologies is then crucial and promising.
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Chapter 5

Description of electrolyte
transport using the MSA for
simple electrolytes,
polyelectrolytes and micelles

Description of the concentration dependence of the transport coefficients of elec-
trolytes is one of the oldest open problem in physical chemistry. Since the early
papers of Onsager et al in 1926 [1] and in 1932 [2], where limiting laws for the con-
ductance were given, and later extended to the self diffusion for single ions [3] and
ionic mixtures [4], progress has been difficult.

In 1957 Onsager et al. [4] made an attempt to extend the validity of the conductivity
limiting law to higher concentrations, using the Debye-Hiickel equilibrium pair dis-
tribution functions [6]. At the same level, concentration dependence for self-diffusion
was obtained [7, §8].

Ebeling et al [9, 10] used the restricted primitive model (equal size ions in a dielectric
continuum) to describe the variation of conductance with concentration. They used
MSA distribution functions to compute the relaxation contribution.

Some groups have recently formulated a linear response theory in which Onsager’s
continuity equations were combined with the MSA equilibrium correlation functions,
using the Green’s response functions formalism. They have used a primitive model
description, in which solvent effects are averaged. This yields concentration indepen-
dent potentials, generally valid in the 0-1 M concentration range. This approach has
been applied to self-diffusion [11], acoustophoresis [12], conductance of two simple
ionic species [13] for non-associating electrolytes. The treatment has been extended
to associated electrolytes for conductance and self-diffusion [14, 15], using a chem-
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ical model of association. They also extended the theory to the conductance of
electrolytes with three ionic species and to ionic micellar systems.
We present here the basis of the development and the main results.

5.1 General theory

The dominant forces that determine deviations from ideal behaviour of transport
processes in electrolytes are the relaxation and electrophoretic forces [16]. The
first of these forces was discussed by Debye [6, 17]. When the equilibrium ionic
distribution is perturbed by some external force in an ionic solution, electrostatic
forces appear, which will tend to restore the equilibrium distribution of the ions.
There is also a hydrodynamic effect. It was first discussed by Onsager [2, 3]. Different
ions in a solution will respond differently to external forces, and will thus tend to
have different drift velocities: The hydrodynamic (friction) forces, mediated by the
solvent, will tend to equalize these velocities. The electrophoretic ( hydrodynamic)
correction can be evaluated by means of Navier-Stokes equation [18, 19]. Calculating
the relaxation effect requires the evaluation of the electrostatic drag of the ions by
their surroundings. The time lag of this effect is known as the Debye relaxation
time.
Before going to the calculations, the various forces, namely the relaxation and elec-
trophoretic forces, which are corrections to the main driving forces, are schematically
depicted in fig. 5.1, when an electric field is applied.
We start with the hydrodynamic continuity equations [16]
,a_'hl'—V(f,. i Vv s 5

6t T 1 !jUtJ) 2E 2(}'31”3!) {‘Jl)
where wv;; is the velocity of an ion j in the vicinity of an ion 7 and fj;is the two-
particle density, related to the pair distribution function g;;(r, )

fij(r,t) = pipjgij (7, t) (5.2)

Where r is the distance between ions i and j, ¢ is the time and p; is the particle
density (ions/volume).
The pair distribution function is related to the total distribution function hy;(r,t)

g"j('f’, t) =1+ h,‘j(?’, t) (5‘3)

In the linear response theory, the total pair distribution is expressed as the sum of
an equilibrium part (superscript ) and a part that is proportional to the external
perturbation (superseript .

h,‘j{?‘, t) = hgj(?‘) + hij(‘."', t) (54)
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The velocity v,, of an ion of species i in the vicinity of an ion of species j is given
by
Uji = ‘U: + ul-(K_,‘ — kgTV In f}i] (55)

where the generalized mobility w; of the ion 7 is related to its diffusion coefficient I;
by the relation w, = D, /kgT (kp 1s the Boltzmann constant and 7 is the absolute
temperature), v is the average relative velocity of the solvent with respect to the
ion of species i and K,, is the force acting on an ion of species 7 in the neighbourhood
of species j

KJ',' =k; (1 + Tk‘.) — & v 'f,!r)} (56)

1

In equation (5.6) k; is the external (diffusive or electrostatic) force on an ion i. In
the conductance case, the external force is the applied electrostatic field. For the
self—diffusion of a tracer, the external force is the gradient of the chemical potential
created by the gradient of (isotopic) concentration of the diffusing tracer. In the
acoustophoresis, it is the sound pressure wich induces a differential displacement of
each ion so that an induced electric field appears.
ok, is the relaxation force [20, 21]

Zp, / V(VS® + VA*)hldr (5.7)
where V%" is the Coulomb potential and V¥ is the hard sphere potential
iy )
hs _ | 00 if r<o
Vi _{ 0 if >0y (5.8)

oy is the sum of the effective radii of the two ions i and j, oi; = (0; + 05)/2. Let
us denote by %; the electrostatic potential around an ion j. In the linear response
theory it can be expressed as the sum of an equilibrium part and a part that is
proportional to the external perturbation.

Yi(r,t) = tb?{r) + ”(,b;(r, t) (5.9)

In the absence of external forces the pair distribution functions (pdf) are the equi-
librium ones; They must satisfy the symmetry relation

g?,- = 9?1' (5.10)
and the excluded volume condition

gy(r)=0 if F i (5.11)
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The equilibrium pdf’s can be computed nowadays very accurately by theories
such as HNC [22] and some of its improved versions [23]. The MSA [24, 25] is the
simplest theory that satisfies all of the above conditions. It is the Debye-Hiickel
theory, but solved with the condition (5.11) for all pairs of ions. The final result
introduces a new screening parameter [" (intead of the Debye screening parameter
k) which is calculated from an algebraic equation [26, 27, 28]. It was found that the
MSA is sufficiently accurate, in all of the studied cases.

The basic assumption is that the excess non-equilibrium potential ) also satisfies
the Poisson equation even if the equilibrium state is not established. It means that:

1 1
A} =~ ——g}(r) = —— 3 pesh, (512

€o€r €o€r

where q}‘{r) is the non equilibrium charge excess density around an ion j. In this
equation the permittivity of the vacuum ¢g is 8.8542 - 10712 F m~! in SIunits, ¢, is
the relative dielectric permitivity, and e; the charge of the ion j.

The continuity equations are expressed as the sum of equilibrium terms plus a per-
turbation. The form of this perturbation depends on the type of transport phe-
nomenon studied. In all cases the continuity equations can be written in the form
of an inhomogeneous differential equation such as:

(A — k%) h(r) = F(r,k) (5.13)

where £, is a dynamic screening parameter that depends on the individual ionic
mobilities and F(r, k) is a generalized driving force.
For self-diffusion and conductivity of binary ionic mixtures, it was found that mean
electrostatic and hard sphere diameters [28, 29] reduce the complexity of the formu-
las, without reducing the accuracy ofthe equations. The mean electrostatic diameter

is given by:
o= (Z zfﬂsoi) / (Z zfﬂs) (5.14)

Equation (5.13) can be solved up to first—order, or second—order in the perturbing
force. Two kinds of terms are obtained:

i) terms yielding the limiting laws in /¢ when the Debye Hiickel equilibrium pair
distribution functions are used [6].

ii) higher order terms in concentration with the same distribution functions
(second—order terms).
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The contribution of the second-order terms is always small for concentrations lower
than 0.5 M for most 1-1 electrolytes in water. It can then be neglected as a first
approximation.

We discuss particular transport processes in the next sections.

5.2 Self-diffusion

In this case the relaxation forces are the only relevant contributions and the hydro-
dynamic interactions do not play a significant role in the range of concentration of
0-2 M except for low viscosity solvents [30]. Neglecting hydrodynamic interactions,
equation (5.13) gives, to the first order approximation:

ki1 Df cos © 3. pe; d

2 | . [
AXII — K‘-fl ‘YI = kBT_ par m 53;1(?] (510]
where O is the angle between de gradient concentration and the position vector and
X{ =D peihy (5.16)
i

Here the subscript 1 indicates the tracer ion. The function k] is related to X} by
the first-order non-equilibrium correlation functions.
The solution of equation (5.15) yields the following expression

A (P r) (1)
ki 6ekgTo (1+ T'o)? (K3, + 2TkKg, + 202 (1 — e *a7)]
where the MSA Laplace transform of 4 is used [27] and 1/T is the MSA screening

length parameter [26, 27]. It is convenient to use the average diameter [28] o to
compute this parameter from Debye’s «:

(5.17)

o 4me?
EkBT
Furthermore, the dynamic Debye parameter is
2 - 4me? o Z=De
dy T o
' ekpT &~ D} + D3

S paZl =4T*(1+T0)? (5.18)

(5.19)

The formal expression of the diffusion coefficient becomes then

kl
D, =D? (1 + %l) (5.20)
1
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5.3 Conductance of two simple ionic species

In a conducting solution, anions and cations move in opposite directions, and both
the relaxation effects and the hydrodynamic interactions must be taken into account.

5.3.1 Relaxation

In this case equation (5.13) becomes

RS gl o B0F G
3~ Rl = o T(De + D)

The solution of equation (5.21) yields the following expression

E VQ_?:‘

oki  Oky E . —5362 | 2122 |
ki k2 E  3¢kpTo(1+T0o)?

(3,'6'}'
e~k

" T+ 2Tk, + 202 (1 — ee0)]

with

{sinh(nqa) _ gl (cosh(mqo) -

(5.21)

sinh(:cqof)
KqO

(5.22)
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, 4me* p;ZlD? + ijJ?D;-’

“T ksT ~ Dr+ DS

(5.23)

and

k,‘ = Z,‘BE (524)

where Z; is the valence of the ion j and e is the elementary charge (=
16102

5.3.2 Electrophoretic effect

The electrophoretic effect is due to hydrodynamic interactions between the ions (cf
fig. 5.1). To the first order approximation one gets :

00
e =Y pye; f K. (r) TE dr (5.25)
j 1]



5.3. CONDUCTANCE OF TWO SIMPLE IONIC SPECIES 297

where T is the Oseen tensor [31]

1 r@r
T(r) = e (I +— ) (5.26)

where 5, is the viscosity of pure solvent and Z is the unity tensor.
In this case the MSA pair distribution functions yield a simple extension of Henry’s
law for electrophoretic mobility [18]

fu kT T

= e 5.27
v  3mn,D{1+Te i)

Where u¢and D? are the electrophoretic mobility and the diffusion coefficient of an
ion i at infinite dilution.
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5.3.3 Expression of the conductance and comparison with
experiment

The total equivalent conductance is A = ), A; where

2 Sudt §E
A= X (1 o ) (1 + —E—) (5.28)

1

with A? the individual equivalent conductance of the i** ion at infinite dilution,

D? |z | F?
A= 2 i
i BT (5.29)

where F is the Faraday constant, z, the charge number of ion i and R is the gas
constant.
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At this approximaton order (first-order term and mean cut-off distance) the
conductance is then given by:

2

dut kyT w
Aey = X : -
Ae =D N (1 b ) (1 G DO (LT [‘,,}z) (5.30)

=1 t

This quantity is experimentally known with high precision. The closest-approach
distance o is calculated by fitting to the expression for the equivalent conductivity
the conductance data of a given salt. The fitted o is, in all studied cases, slightly
larger than the sum of the anion’s and the cation’s crystallographic radii o... At
low concentrations (< 10~% mol/L), theoretical results converge asymptotically to
the ideal behaviour.

Next figures give some examples for simple non-associated electrolytes. Concerning
2-1 salts, equivalent concentration and conductivity was chosen.

5.4 Conductance in electrolyte mixtures:
Case with three simple ionic species

Conductance of solutions containing more than two ion species was first theoretically
studied in a systematic way by Onsager and Kim in 1957 [4].

They used Debye-Hiickel equilibrium pair distribution functions whose range of va-
lidity is lower than 0.01 mol/L. Also, their theoretical expressions (limiting laws),
are in agreement with experiment up to salt concentrations of 0.01 mol/L.

Later Quint and Viallard [32, 33] were able to extend this limit to 0.1M, by introduc-
ing finite ionic size corrections (extended limiting law). This change allowed them
to increase by a factor of 10, the range of validity of the Onsager-Kim treatment
with respect to concentration.

It is crucial to have good equilibrium pair distribution functions up to concentrations
at least as high as 1M, in order to be able to calculate transport properties up to these
concentrations. It is the case when the Laplace transforms of the MSA distribution
functions [27] are used in place of the Debye-Hiickel distribution functions.

In this section, new results [34] concerning the theoretical description of conduc-
tance for solutions containing three simple ionic species are presented. It is the
application of a transport model to the conductance of ionic mixtures, with MSA
equilibrium pair distribution functions. The model has been tested on NaCl/KCl
and NaCl/MgCl; mixtures and reproduces well the experimental values within a
wide concentration range.
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5.4.1 Evaluation of the relaxation terms
The continuity equation to first order perturbation is

1 :
AR Eif‘aﬁ%b,- == cjwj-‘ﬁﬂfjl

- 0 _
" kpT (w, + w,) = A Vhy, (5.31)

kiw, — k;w,

kpT (w; + w_?-]
where k, is the external electrostatic force acting on ion i.
We consider only two-body interactions; moreover, symmetry requires that: hj, =
~h}, and hj; = 0 [2]. The problem is then reduced to a system of three equations
with three unknowns. h},, hj; and h}; or alternatively 9], 93 or ¥} since those last
quantities are related by Poisson’s equation(5.12).

Equations (5.12) and (5.31) lead to a system of three differential equations, one for
each one of the three species j:

A, = (5.32)

3 3
AY; - k' (Y;'Z(i:/bu) =7 (m/bb-)) =T (5.33)
=1 =1
Where
Vi = nieAy) (5.34)
3
t, = nietwi/ (Zn;efw,) (5.35)
(=1
] 3
3 2
= 2. ne; (5.36)
bkj = wi+uwg (537)
1 =[a
L = > [gf (kiwr = k;w;) V (a4 3’:)] (5.38)
EoEr =1 Lo
a = ni€ (5.39)
@ = Z,u,,w, (5.40)
i=1
w, = D?Y/(kgT) (5.41)
Taking into account
3
Y Y, =0 (5.42)
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the problem reduces to a system of two equations which can be solved by Fourier
transformations.

If we assume that the direction of the external applied field is along the axis z
(E = E z) the projection of the forces along z is given by :

5k:ﬂi)z ) 'm, Za 1 L‘Zifm (GEI(K+) G'zi(-‘i_))
+ Ly (C’I! *"fri)(fir - ) + Gy (k) (1‘52_ ‘_fil))}

okg), = %’ Z: {Lufor (Gu (k) — Gu (k)
+ Ly (Gﬂ (k) (f21 - n+) + Gy (K-) (*‘C_ - f'ﬂ))}

dki%), = 3,,3 QL $8 . {Lu (Gu(s4) (82 = (fur + f1)) + Gu(s=) ((fur + fa1) — £2))
+ Loy (Gu (1) (K% — (o + fa2)) + Gt (62) ((frz + fa2) — 62)) }

where

Cy = 1/ (eoerksT (k2 — K3)) (5.43)
k_ and k. are the roots of the determinant of the system eqgs. (5.33) and (5.42).

Furthermore D D

€ — €y
LJ'; = ﬁ TVET;€;) (5-44)
and
fu = (FP@f (W + wi)) 1+t (ws —wi) /(w1 +ws)) (5.45)
f].'z = —ﬂzaa‘tl( 1/b13) — I/blg)) (5‘46)
fa = — K2ty ((1/bas) = (1/b12)) (5.47)
fo = (Fo/ (W + ws)) (1+1 (ws —wa) / (wy +w2)) (5.48)
and

Gij (k) = Gji(k) =
e;e; sinh (koy;) exp (koy;)
{oi,4meoe kgT (1 +To;) (14 To;) [k2 + 2Tk + 2I2 (1 — & Zi:l nia? exp (—kay))] }

For the very asymmetric case, individual ionic radii must be used to calculate I'
with the equations of Blum et al. [26, 27]

2

2 2
il € :kBT dom [(z,— % 2—%1’“03) /(1+ l‘o.r)] (5.49)
o-r i
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where
Po = (1/9) Tg (nkorze/ (1+ o)) (5.50)
Q= 1+4(x/20)3,_, (mkad/ (14 Top)) (5.51)
A= 1—(7/6) 3., o (5.52)

5.4.2 Hydrodynamic correction
The hydrodynamic (or electrophoretic) contribution can be written as:
okt = ¢, svhvd (5.53)

where the correction on the velocities is [13, 31]:

v == 3oy [ (6 T() ky dr (5.54)

i=1
with T(r) the Oseen’s tensor.

Bernard et al.[18] made the evaluation of this contribution from the excess internal
energy [26]. We report their result: here, In this case, the sum is made over three
species instead of two.

hya _ _ &E r T _bBa 7 - 5
4% 37, (1 + Lo ¥ 24 7z (1 + T'oy) T Z ;n’zﬂ" (%)

In this expression, the last two terms in this expression arise from the asymetry of
size of the ions.

5.4.3 Explicit expression for the conductance and
comparison with experiment

The expression for the specific conductivity is

2 3
XAl tem ) = 1(;: ,?,”‘ Zc,szf (1 + §yhvd /v;’) (1+ 6k7 /k;) (5.56)
B i=1
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where ¢; is the molar concentration of ion i, Df its diffusion coefficient at infinite
dilution and v{ is the velocity at infinite dilution (without ionic strength correction),

v} = ¢ ED?/(kgT) (5.57)

We express now the conductance as the specific conductivity x,p divided by the
common ion concentration ¢z (molar conductivity).

A (em*Q 'mol™") = 1000xs, / c2 (5.58)

Some examples of the application of this theory are given in the next figures.
There are very few experimental data available in the literature for the conduc-
tivity of electrolyte mixtures at moderate and high concentration. This fact is cer-
tainly a consequence of lack of theoretical models in both the dilute and concentrated
regions. We present here results for two mixtures, NaCl/KCl and NaCl/MgCls.
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In order to describe properly assymmetric systems, three distances are considered
for each mixture. Two sets of values are presented: the crystallographic radii (min-
imum size values) and the radii r, (o; = 2r;) which give better reproduction of
experimental results for single pairs. The three figures (fig. 5.6-5.8) are the results
obtained for the conductivity of NaCl, KC1 and MgCl, in water. Whereas the On-
sager treatment [4] is limited to 0-0.01 mol/L concentration range, this theory is in
agreement with experiment in the range 0-1 mol/L using the radii: ry.+ = 1.3A,
rer- = 1.81Aand ThMg2+ = 1.82A. These values were then used to describe the
conductivity of the two mixtures. Some improvementss in the high ionic strength
domain could be obtained with a second order expansion.

Concerning the mixture NaCl/KCl, figures 5.9-5.11 present the conductance as a
function of the proportion of one of the salts (KCl), for different total salt concen-
trations. One test of the theory is the asymptotic convergence of the results at low
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concentration to those of Onsager-Kim. Both results must verify the ideal limiting
law at very low concentration. We present therefore Onsager-Kim limiting law for
the lowest concentrations, as well as the ideal law (no interaction) (fig. 5.9). All
curves merge at vanishing concentration.

It can be noticed that on figure 5.9 both choices of distance are in good agreement
with experiment, due to the small contribution of hard sphere interactions at low
concentrations. For a total concentration of 0.5 molal (fig. 5.10) and 0.75 molal (fig.
5.11), we observe a notable difference between the two sets of ionic radii, whereas
the ideal and limiting law models are too different from the experimental data to be
represented on the figures.

Figure 5.12 presents results obtained for the mixture of a 1-1 salt with a 2-1 salt
(NaCl/MgCly) at a total concentration of 0.5 mol/L. The curvature of the experi-
mental points is due to the variation of the ionic strength. At this concentration of
0.5 mol/L the ideal and limiting law models are also out of the frame of the figure.
As the result obtained with MgCly is very sensitive to the chosen radii, important
differences between the two curves obtained with the cristallographic radii and with
this set of radii was observed in the left part of the figure where the MgCl, con-
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centration is higher than that of NaCl. As might be expected, the Mg?** radius is
very large compared with its crystallographic radius due to its important hydration
shell. At lower total concentration, the curves merge again.

Taking the chosen set of radii, very good agreement between theory and experiment
was obtained without the need of introducing the concept of ion association for the
description of the variation of the conductivity with concentration of an electrolyte
solution in the case of 3 different simple ionic species (strong electrolytes). This
model provides analytical expressions which are easy to use. However, above the
limit of 1 mol/L in total concentration, its validity becomes questionable. A further
extension of the theory should involve a modification in the equilibrium model.
One possibility would be the use of the HNC model or of other improvements of
MSA (softs- MSA, exp- MSA, ....). The problem is then the connection to the low
concentration (limiting laws) and the increase in adjustable parameters. Moreover,
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at those concentrations (up to 1M), peculiar physico-chemical phenomena such as
ion association could appear.

5.5 Conductance in electrolyte mixtures: Case of
micellar systems

An interesting application is the description of the conductivity of charged micellar
systems, where, for concentrations above the critical micellar concentration (cmc),
at least three species are present in the solution. It is well known that surfactants
in water form aggregates above the cmc. In the case of ionic surfactants, below the
cmc, the solution consists of surfactant monomer ions and their counterions. Above
the cmc, there is an effective loss of ionic charges through ion condensation onto
the micellar surface. three types of charged species may be then considered in the
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solution: the surfactant monomer, the free counterions not bound to the micellar
particles and the micelles. The consequence of the formation of micelles is a sudden
change in the conductivity versus surfactant concentration. This change indicates
the cmc and the ratio of the linear portion of the curve above and below the cmc
is proportional to the degree of counterion condensation. Up to the present time,
theories used for the surfactant conductivity were not adequate since they were
restricted to the small concentration domain (usually below 0.01 M). This problem
was partially solved using better pair distribution functions and the concentration
domain could be extended. It is now possible to describe the conductivity of this
type of ionic mixtures below and above the cmc.

An important problem in the case of micellar solutions is that the various species
have very different sizes and electric charges. The MSA may not be valid under such
conditions as concentration is increased. Finally, the introduction of an excluded
volume in the relaxation terms instead of a real hard-sphere interaction potential
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may be inadequate. Being aware of these limitations, a comparison between the
previous model to experimental data available in the literature for various ionic
surfactants are presented: three anionic surfactants: sodium dodecylsulfate (SDS)
up to a concentration of 0.1 mol/L, sodium octylsulfate up to 0.8 mol/L, sodium
octanoate up to 1.5 mol/L as well as results concerning a cationic surfactant: dode-
cyltrimethylammonium bromide (DTAB) up to 0.1 M. At the highest concentration,
the solute volume fraction is 0.1, a value for which the approximations should still
be valid.

The first problem is to choose the proper parameters. The data are represented
the data as conductance versus the total concentration of monomers as it is done
by most authors. The latter quantity is the only one that can be experimental-



310 CHAPTER 5. DESCRIPTION OF ELECTROLYTE TRANSPORT ...

ly controlled. All other possibilities depend upon the type of micelle, the micelle
aggregation number and the degree of counterion condensation. The conductance
is the ratio of the conductivity to the total monomer concentration. Results using
MSA are compared with the ideal conductance A,y and Onsager’s result. The ideal
conductance is defined as the sum of the conductance of the ions at infinite dilu-
tions multiplied by the concentration of each ionic species and divided by the total

"
monomer concentration ¢y, ..

3
Aid — (Z r"!)‘?) /Cinan {5'59)
i=1

Onsager’s conductance is that calculated from Onsager’s theory [4]. The diffusion
coefficient at infinite dilution D?,or its conductance at infinite dilution A?, for each
ionic species and the electrolyte minimum distance of approach o were used. For
the counterions, Na* and Br -, these two parameters are known. For the monomer
surfactant, reasonable radii are chosen. The assumption is that these radii are close
to the hydrodynamic radii extracted from the monomeric diffusion coefficient using
the approximation of perfect sticking. Then, for an ion; :

r¥* = kpT/(6mn,DY) (5.60)

where 7, is the viscosity of the pure water. The diffusion coefficients at infinite
dilution can either be taken from the literature or considered as adjustable parame-
ters. The hydrodynamic radii are also deduced from the diffusion coefficient through
eq.5.60. In effect, below the cmc, besides the minimum distance of approach, the
diffusion coefficient at infinite dilution is the only unknown in these expressions.
Concerning micelles (above the cmc), in addition to the diffusion coefficient and its
minimum distance of approach, the aggregation number (the number of monomer
per micelle), a quantity which may vary with concentration, and the apparent charge,
which is directly related to the degree of ion condensation, must be known. In or-
der to simplify the model, we assume that all these parameters remain constant as
the surfactant concentration varies. Then, the concentration of the various ionic
constituents: monomers, micelles, counterions are easily defined.

The surfactants used are 1-1 electrolytes, so that, below the cmc, the monomer con-
centration is equal to the counterion concentration. Above the cmc, any additional
surfactant was considered to be incorporated to the micelles, as required by the
pseudo-phase model of micelle formation. Experimentally, however, the monomer
concentration ¢, is known to decrease somewhat with surfactant concentration
above the cmc. In this treatment it is assumed that as micelles are formed, the
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monomer concentration remains constant whereas a fraction of the counterions will
condense onto the micelles.

Ifitayq is the micelle aggregation number and %% the apparent charge of the micelle,
the concentrations of the various constituents are:

Cmon = CMC
¥ = t ;
Cmic = (cmon g CTn(')/na.gg
; e a;
Ceounterion — CMC+ ! Zvr ! Cre

where Ceounterion, 1S the counterion concentration, ¢ is the micellar concentration
and ef is the total monomer concentration.

LR

The values of all the parameters used are found on figure captions.

Fig. 5.13 shows a comparison between theory and experiment for the cationic sur-
factant. The experimental results are very reasonably reproduced. Only D2 . was
fitted. All the other parameters were taken from Walrand et al. [53]. They were
deduced from quasi-elastic light-diffusion experiments.

Fig. 5.14 presents the same comparison for the anionic surfactant, SDS. The ex-
periment values were taken from the literature [54]. We observe again a very good
agreement between theory and experiment. No adjustable parameter was necessary
here since the D values for monomers and micelles were available from Lindman
et al. [55]. These data had been obtained from Fourier Transform Proton NMR
experiments ("H FT NMR) and tracer-diffusion.

Fig. 5.15 presents the results obtained for sodium octylsulfate. This surfactant has
a high cmc (= 0.135M). The agreement between the theory and experiment [57]
is satisfactory below the cmc. Above the cme, experimental and calculated values
deviate rapidly. Finally Fig. 5.16 presents the results obtained for sodium octanoate
as a function of total monomer concentration. The cmc is very high (& 0.4M) and
there is also a divergence between experiment and theory above the cmc. There is
one fitting parameter: the charge of the micelle.

The effect of changing the values of the different parameters which have to be in-
troduced in the theory is interesting. Small variations have little consequences on
the shape of the curves. The largest effect arises from changes in the aggregation
number. Experimentally it has been shown [59] that for SDS, the aggregation num-
ber varies from approximately 70 at the cmc to 150 at 0.1M. We find, theoretically,
that at this concentration the conductance decreases from 18.3 ¢crn?Q~'mol ! for an
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aggregation number of 70 to 12 em?Q " mol™! for ngy, = 150. As all other param-
eters remaining unchanged, the increase of n,g, reflects the decrease of the micelle
concentration. Experimentally it is observed that n,,, varies less with concentra-
tion for anionic micelles than for cationic ones. This may be the consequence of
the somewhat better description of the DTAB than of SDS system. This result was
predictable. The cmc of DTAB is equal to 0.016 M, whereas that of SDS is 0.0081
M. Our description of the surfactant behavior below the cmc raises no problem,
contrary to the micelle/counterion interaction.

Thus the theoretical treatment is certainly better for higher cmec.
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Direct application of the theory developed for three simple ions to ionic micellar
solutions stresses the following points.

(i.) The description, albeit restricted, is reasonable provided that it is applied to

low volume fractions and/or large cmc’s and that the interactions between
surfactant and counterion are predominant.

(ii.) At the highest surfactant volume fractions, the structure of the micellar sys-
tem changes (increase in micellar size, transition from spherical to cylindrical
symmetry). Micelle/micelle interactions and micelle/counterion interactions
become important and the approach departs too much from reality.
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This latter point is known and has been addressed before [60, 61]. However, a correct
description of the system implies not only improvements by taking into consideration
the hard-sphere terms but also the variation of the charge, of the aggregation number
and consequently on the radius of the micelle. If such changes can be made, then
a finer description of the effect of ionic strength may be expected. As it stands
today, this theory describes satisfactorly the concentration zone below and slightly
above the cmc. An obvious application of this calculation is the determination
of the surfactant diffusion coefficient below the cmc and, at or slightly above the
cmc, the evaluation of the micelle diffusion coefficient, the aggregation number or
the apparent charge. The latter quantity is generally obtained, using conductance



5.6.  ACOUSTOPHORESIS OF SIMPLE SALTS 315

versus concentration plots, as recalled above, from the ratio of the slopes below
and above the cmc. This evaluation implies an ideal situation (no interaction).
Using these same experimental quantities this approach should give an analytical
expression for a more realistic calculation of the apparent micellar charge.

5.6 Acoustophoresis of simple salts

In previous transport phenomena, the time dependence was neglected. Concern-
ing acoustophoresis, this approximation is not valid cause the signal originates from
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inertial effects. Acoustophoresis was originally described by Debye in 1933 [5]. Basi-
cally, the phenomenon can be pictured as follows: when an ultrasonic wave is applied
to a liquid, the dilation/compression induces the motion of the solvent molecules.
In a 1-1 electrolyte solution for instance, the two ions move differently in the sol-
vent’s velocity field, because they have different masses and frictional coefficients.
This causes local heterogeneities of charges. This effect creates a macroscopic elec-
tric field and associated potential differences can be measured in the solution. An
illustration is given in the next picture (Fig. 5.17).

Since 1933, acoustophoresis has been extensively studied from the experimental
point of view, in the case of electrolyte solutions [62, 63] and colloids [64]. Also,
commercial apparatuses have been devised for the purpose of measuring surface
electric charges of colloids ({-potential) [65].

Since the basic Debye’s treatment was based on an ideal solution approximation,
workers attempted to take into account the various departures from ideal behaviour
[66, 67, 68], namely:

a- For electrolyte solutions, corrections, as applied in the Debye-Onsager theory
of conductance [17], were introduced [66]. This approach is questionable for
two reasons:

i— the expressions are derived from the Debye-Hiickel theory, and thus
they are valid only up to 10-2M for 1-1 electrolytes and below for 2-1 salts,

ii— phenomenological electrophoretic and relaxation corrections were in-
troduced in the equations of the acoustophoretic effect with the only justifi-
cation that, since the observed effect is an electric potential, it involves the
same kind of corrections as for electric conductance. These phenomenological
corrections do not take into account the specific features of acoustophoresis.

b- Concerning colloidal suspensions, the cell model introduced to describe the
effect of ionic interactions is based on the solution of the Poisson-Boltzmann e-
quation around a central colloid particle [69]. Although such a model describes
properly counterion-polyion interactions, it is less convincing for polyion-
polyion interactions, and does not hold at high polyion molar fractions.

Therefore, it appeared interesting to revisit the theory of acoustophoresis, starting
with IVP. Besides, at a practical level, a precise calculation of IVP is useful because
IVP can contribute appreciably to the acoustophoresis signal when a mixture of a
colloidal suspension with a salt is studied.

Moreover, it is a good example of a time dependent phenomenon. For the same
reasons as before, the MSA is used to describe the equilibrium. To understand the
physical phenomenon, we present first the Debye’s approach of the acoustophoresis.
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5.6.1 Debye’s treatment

In 1933 Debye [5] postulated that the application of a sinusoidal acoustic wave to
an electrolyte solution gives rise to a local potential ®

® = @, exp i (wt — pzr — A)] (5.61)

where x is the direction of propagation, wis the pulsation of the wave, p is the wave
number and A is the phase shift.
The basic ingredients of Debye treatment are the following: Newton’s law,

F + FI" = m,—L (5.62)
is written for each ion j, where m, is the apparent mass of the ion j, with

Fe' = ¢;E (5.63)

the electric force, with e, the charge of the ion j and E the local electric field.
Moreover

F{" = —¢(v; — v,) (5.64)
is the friction force, with {; the friction coefficient of the particle j, v, the velocity

of the solvent and wv; the velocity of the particle j.
Combining eq.(5.62) with the hydrodynamic continuity equation for each ion:

r')c',- + 3(6’,‘1-'];) -

ot oz

where ¢, is the concentration of species j, and with the Poisson equation (in cgs
units)

0 (5.65)

OE Ax

— = —) ¢je 5.66

o £ : Rk | { )
3

where ¢ is the relative dielectric constant of the solvant and the propagation direction

is along x. From these equations,

A vy [om 0 kBTD? . 4m - 0~ 2
E = e [Zc:Jejmj (D_1 - e ) / 1—1CkBTwZchjej (5.67)

1=l j=1

with DY = kgT /(; the diffusion coefficient of the species j at infinite dilution given
by the Nernst-Einstein relation.
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And using the fact that

ad
E=—=—=414 5.
B tpP (5.68)
the potential amplitude follows:
. . o\ 2 1/2
4r Cje;m, 4r cj€;
= — At 1 — — ;
P = gsVso |~ 35—.1 G | [ |1+ (wE 3-521 2 (5.69)

where n is the number of ionic species, g, is the sound velocity, w4, the solvent
velocity amplitude which depends on the power of the acoustic ultrasonic wave and
¢, is the equilibrium concentration of species ;.

For a 1-1 salt, the potential ®, becomes:

¥ A 1 \?]"”
&, = c—0" / [1 # (——) ] (5.70)
w WTp
where c¢ is the equilibrium concentration and 7p is the Debye relaxation time defines
a 1
drce? [ 1 1 ) ] E
Tp = — + — 5.71
. [ € (C+ ¢- (&)
and

AT = |1y — 1| (5.72)

where 7, and 7. are the inertial times respectively of the cation and of the anion

= % (5.73)
J
with § = 4, — and i
W T (5.74)
£

with e the charge of the proton.

The potential given by eq.(5.69) is concentration dependent: at low concentration,
it increases with the concentration and above some critical concentration (above
10-3M) it reaches a plateau value.

Eq.(5.70) shows that there are two limiting cases:
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i. when wrp > 1 (lowe), ®, =~ cATY /w
ii. when wrp <« 1 (high¢), &, = c7p AT .

Consequently, at large ¢ (low wrp) &, is independent of ¢, which yields the plateau
value.

For instance, in the case of NaCl, we have that 7p =~ 5.5107!''/¢ (in s with ¢ in
mol/L) Tye+ = 1.2310° M, 7¢- = 291107 s, at w = 1.2610°s™!, A =0.7cm
and g, = 1.410° cm/s.

So, Debye’s treatment leads to a plateau for the potential &,, at high c. However,
it is observed experimentally that some salts do not exhibit any plateau, but rather
a continuously decreasing pattern. As the frequency is typically on the order of
100 kHz for a wave lenght of 1 cm and a pressure amplitude around 0.1 Atm in
water, absorption effect or the ionic association could not explain this decreasing.
The consideration of non ideal terms gives an explanation of this behaviour.

5.6.2 Calculation of non ideal terms

In addition to relaxation and electrophoretic forces (fig. 5.1), which are correc-
tions to the main driving forces, the diffusion must be taken into account. Indeed,
acoustic wave induces concentration gradients and then, diffusion effect appears.
This effect will be taken into account after the calculation of ralaxation and hydro-
dynamic corrections. MSA is again used to describe the equilibrium state.

Relaxation

The main driving force to be included in the calculation of the relaxation effect
is the electric force. Following Onsager’s formalism [2], and assuming that the non-
equilibrium time-dependent two particle correlation function is of the form

hay (1, 1) = A3, (r) + hoy(r) exp(iwt) (5.75)

where h, stands for the equilibrium two particle correlation function, it is found
that f,, (7) obeys
Ahy — K2hy = A VA (5.76)

with 5
. 41 nyela; + naejaz ; w
€ D{ + D} DY + D

(5.77)

q
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A, = Wi‘ﬁg [a1(e1E(r1) + G1vy(r1)) — az(eaE(rz) + (avs(r2))] (5.78)

where n, is the mean number density, D? is the self-diffusion coefficient, e; is the
charge, r; and r, are the positions of ions 1 and 2 and

a = (G + imw)™ (5.79)

for each species i.

Lastly, h9, is replaced by its MSA expression [70, 26, 27], which leads after some
algebra, and expanding the results in a first-order power series of myw / ¢ (typically
of the order of 107%), to the relaxation correction force

6k = ;o E + i e,w P v, (5.80)
with
Re[rcﬁ} ) ekgT . KqBij exp(—kK,0)
G = 3 (EU(NQU) g Y KqO .ll(mqg)) Kg +2FK.¢ + 2r? (1 — exp{—.‘cqa])
(5.81)
4 2| GeymiD? ( ekpT . )
- = io(Ke0) — KqO®.
P 3¢kpT Y1y D? olte?) e £1(5e0)
kqBij exp(—kq0)
5.82
K2 + 2Ky + 2I'% (1 — exp(—+k40)) (pise)
with el
B i (5.83)

4% kaT(L+ o)

where Re (z) is the real part of the complex z, ' is the MSA parameter, x theinverse
Debye screening length, ¢ the mean closest-approach distance

sinh(kq0)
KqO

io(1eq0) = (5.84)
cosh(keo)  sinh(k,0)

252
KqO Kio

(5.85)

i1(kq0) =
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Hydrodynamic correction

The velocity increment JV;LW induced on a particle j by the motion of the sur-
rounding particles i can be found by the use of the Oseen tensor [31]. The result

reads \
5‘,;‘!!“ . Z L / hg:(r) T(l‘) ':i(vx i Vs) dr
i=1 r

where 7 is the Oseen tensor given by:
1 rer
= U+
T 8mnr ( r? )

with U the unit tensor and 7 the viscosity of the solvent.
Finally:

JV;‘yd =e¢goE + iewfhv,

with

K
Y T T 6mn(l+Tlo)?
9 2
= 3nekgT (14 To)? iZ:;CiBimi/ﬁ

and the electrophoretic force is given by:

Sk = ¢; ovhve

Result

The diffusion force is taken as

; dln(c;)
i ..
Fi' = _kﬁT_'_——az - x

which, setting ¢; = & + d¢, with d¢; < &, becomes

T
F?‘f = q Eg—péc{x

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)
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where x is the unit vector in the propagation direction x.
Now, the various corrections are included in eq.(5.62), namely:

d 1 T i re
m St = B+ FY 4 FE v o
kgT Oc;
iwmivi = eE — ( {v,—vs—évfyd) - Bf%x + 6k (5.94)
é Ox

and the same procedure as followed by Debye [5] is used, which yields after some
calculations

4z v, kT D?
- I lzﬂe i (w. - )

2
4 ;
1—4 Getw, 5.95
/ l € kgTw ; } ( )

kBTK,
6mrn D? (1 + Fo]z]
Where ¢ is given by eq.(5.81). Eq.(5.96) is similar to eq.(5.67) found by Debye,
with w; in lieu of DY, except for the diffusion correction.

Using eq.(5.68), it follows that the potential amplitude is given by

with

w; = D?(l +ﬁ'k) [1 — (596)

g o kpT D?\ 12 2 - 2\ /2
AT g,vs0 [2,—1 cieym; (Re(wi) - )] + [Zt,:l C,-e‘-m,-im(w,-}]
wekpT [1 + 53 2, Getlm(w;) ] + [(kBTW ¥ c‘,-e?Re(w,]]
(5.97)

where Im(z) is the imaginary part of the complex z.

Eq.(5.97) contains three unknowns: the closest-approach distance ¢, the mass of
the solvated anion, and that of the solvated cation.
We can see in eq.(5.97) that in the denominator of ¢, the main contribution is the
specific conductance, as in the Debye’s treatment. This quantity is known with a
very good precision. In order to have a model consistent with this quantity, the
closest-approach distance ¢ is calculated by fitting the conductance data of a given
salt by the expression for the equivalent conductivity

2
] kBTK,
A = Z N(1+ap) [1 ~ G D L+ To) (5.98)

where a; = Re(ax) and X! is the equivalent conductance at infinite dilution for
the species i, and it is given by
0 2

g = (5.99)
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where F is the Faraday constant, z, the charge number of ion i and R is the gas
constant.

Eq.(5.98) is derived from the expression reported in ref. [13] which contained
individual cut-off distances and second-order terms. It is a simplification of the
latter in the sense that it is limited to the first-order term and it is written as a
function of a mean cut-off distance. It is this simplified expression which was used
in the subchapter “ Conductance of two simple ionic species .

Concerning the masses of the ions, it can be noticed that, after the original work
of Debye, some authors [67, 68] proposed to correct the masses from a buoyancy
effect. In the equation of motion of an ion a term was added to allow for a pressure
gradient on an ion. However a question arises about this correction. Although it
would be suitable for particles of macroscopic size, like colloids, its applicability to
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simple ions is questionable because the latter have a size comparable to that of the
water molecules. Some authors [71] related the apparent mass of the ions W} to
the volume of the ions and that of the bound solvent. They expressed therefore
their results in terms of ionic partial molar volumes. Here, results are described
in term of solvation numbers, which may be compared to other results obtained
from other techniques. Moreover, it may be expected that the rigorous correction
should be smaller than that used previously (buoyancy correction). In the absence
of a reliable expression not to introduce any correction originating from the pressure
gradient effects was preferred. This work describes the motion effects in terms of an
effective mass M{"" = M? + M} where M is the mass of the bare ion and M is
the mass of solvent bound to the ion.

We present just two results from ref. [12]. The two salts are BaCl; and CsCl where
the chloride ion is assumed un-hydrated [72, 73, 74]. The only fitting parameter is
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then the hydration number of the cation.

The plots of the scaled signal ®,/u,,are given as a function of the concentration for
each salt.

The plots relative to BaCls, show an appreciable decrease in this concentration
range. The data are fitted with eq.(5.97). In fact, the agreement with Millner’s
experimental results [63] is excellent. Like conclusions can be drawn in the case
of other 2-1 salts (SrCl, and CaCly): good fit of Millner’s experimental results has
been obtained [12].

Results concerning CsCl exhibit a clear plateau. Zana’s data [71] include mea-
surements at very low CsCl concentration, down to 10™® mol/L. Surprisingly good
agreements of theoretical result with the experimental data is found, even at low
CsCl concentration. The fact that no decrease of the signal occurs at high concen-
tration originates from the closeness of the cation’s and anion’s diffusion coefficients.
This particularity makes the hydrodynamic and relaxation corrections almost equal
for each ion, as can be seen in eq.(5.95), the total effect negligible. The same effect is
found for RbCI salt wherereas other studied 1-1 salts exhibit decreases [12, 63, 71].
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Chapter 6

Polyelectrolytes

6.1 Introduction

Polyelectrolytes are highly charged nanoscopic objects or macromolecules. Their
electric charge density appears as more or less continuous, when it is seen from
distances to the macromolecule equal to several times to the intercharge distance,
giving them the polyelectrolytic character. Obviously, their properties will be ex-
tremely different according to their geometry. Massive spherical objects will behave
like colloids, whereas linear flexible objects will keep some of the macromolecular
polymeric character.

In the present short chapter only linear polyelectrolytes will be considered, s-
ince the globular objects will be analogous, as regards their interfacial electrolytic
properties, to charged colloids, which are examined in other chapters.

As a first approximation the charge effects of coulomb interactions are taken
into consideration in their short range character which appears in the so called
condensation phenomena [1]. Experimental examples are reported in [7].

The polyelectrolyte solution is composed of: polymers, counterions and salt.
Examples: polyacids (DNA), polybases (PSSNa, PSSTMA), proteins above or below
their isoelectric point. These examples give an idea of the huge biological importance
of polyelectrolytes.

Polyelectrolytes are by no way a mere superposition of electrolytes and polymers
properties. New and rather unexpected behaviours are observed:

e Whereas polymers exhibit only excluded volume effects, the long ranged
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coulomb ionteractions, which are present in polyelectrolytes give rise to new
critical exponents.

e The main difference with electrolytes is that one kind of ions, the counterions
are stuck together along a chain, the collective contribution of the charged

monomers causes a strong field in the vicinity of the chain, even at very low
dilution.

6.2 Counterion condensation

In this very basic presentation Manning-Onsager’s argument will be followed.

Consider an infinitely thin rod , whose linear charge density is A = —e/A. There
may be some salt added and the valence of the counterions is Z > 0. Let call r,, the
distance of the n'* counterion from the rod and look at a configuration where the
1* counterion is at 1y < rg << K ! whereas any other counterion is farther than
kL

For 7 < ry the screening is negligible so that the potential energy of the 1%
counterion is merely

2Zé*
B = freed

For j > 2 the screened potential is

In(ry)

Ep(r1) =~ Ko(kr;)
where Kj is the modified Bessel function and « is the Debye Hckel parameter
K =4n1Q()_nZ;)
a
and

__pe

4ATepE,

the sum runs over each ionic species a.
The partition function of the system is

Zny = /dﬁ.,./drNeXD[—ﬁ; EP(TJ)]
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og

> /'rld‘r] exp[‘ﬁEp(ﬁ”[/ rdr exp(~BE,(r)]" ™!

To

= fto) [ i~

with § = % is the ratio of the Bjerrum length by the charge separation.

If2Z€ > 2, the partitionfunction Zy is diverging, so that for £ > 1/Z the system
presents a phase transition.

For water at 25C, one has Q = 714pm

Manning assumes that condensation of counterions occurs to prevent the diver-
gence of this partition function. The net result will be to reduce the apparent charge
density on the polyion, until the value of £ after condensation will be equal to the
critical value 1/Z. In the case of DNA, two consecutive pairs of phosphates are
separated by 4 = 170pm, then £ = 4.2, so that any ion, regardless to its charge will
condense on DNA, until the effective value of £ will be reduced to 1/Z.

This very simple argument leads to prediction in good agreement with most
experimental data and can be generalized for more complicated situations by inte-
grating the Poisson Boltzmann equation with the proper symmetry.

The main criticisms on this simple model concern

o the behaviour in very dilute solution where entropy considerations would imply
some kind of mass action law giving some decondensation.

e the fact that real polyelectrolytes have a finite diameter. The previous treat-
ment does not apply anymore in this case.

Anyway, the success of Manning-Onsager’s argument makes this model very pop-
ular and shows the predominant role of Coulomb interactions for polyelectrolytes.

The introduction of ionic interactions for polyelectrolyte solutions, at least at
the Debye-Hiickel level, is another problem, which can be considered either for e-
quilibrium or for dynamic properties.

Recent important progresses have been made in this direction, for the theory
of static and equilibrium properties of polyelectrolytes by Barbosa and Levin. The
interested reader will find all required details which are out the scope of this chapter
in the original papers. [2] [3] [4] [5] [6].

It should be noticed that those approaches do not apply to either transport or dy-
namic applications, whereas MSA and related tools have been applied to counterion
and polyion dynamics [7] [8] [9] [10] [11].
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Acoustophoretic potential divided by the solvent velocity amplitude
against BaCly salt concentration. ®: Millner’s experimental results
[63]: f =170kHz and T = 22°C. M: fitted curve with a mass
for Ba** of 304 g/mol (hydration number of 9.3) and Mg~ = 35.5
g/mol. Mi: corresponding ideal curve. . ... ... ....... ...
Acoustophoretic potential divided by the solvent velocity amplitude
against CsCl salt concentration. ®: Zana’s experimental results [71]:
f=220kHzand T = 25°C. Z: fitted curve with a mass for Cs*
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corresponding ideal curve. . ... ... ... ... ... ... ... ..
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