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Preface to the Second Edition

The first edition of this book was well received by both students and
teachers. The second edition, therefore, has required only minor
changes to the first seven chapters. In these I have put more emphasis
on the idea of the basis of a reducible representation and have
clarified a few small ambiguities which reviewers have pointed
out. The diagrams have also been completely re-drawn. The major
addition in this edition is a completely new chapter on linear
combinations. This not only introduces the projection operator
method as the rigorous approach to finding the form of vibrations,
wave functions, etc., but goes on to develop a simplified approach
to the subject making direct use of the character table. Again the
emphasis is on the application of the techniques to real chemical
problems rather than on the mathematics of the method. I hope
that this will give readers an enthusiasm for symmetry methods and
encourage them to learn more via the excellent advanced texts cited in
the bibliography.

Finally I would like to thank the (often anonymous) reviewers whose

comments have been helpful in the process of revision and all the staff

at John Wiley & Sons for their patience as I failed to meet various
deadlines.

Alan Vincent

Kingston University

2000






How to use the Programmes

Each programme starts with a list of learning objectives, and a
summary of the knowledge you will need before starting. You should
study these sections carefully and make good any deficiencies in
your previous knowledge. You may find it helpful at this stage to
look at the revision notes at the end of the programme which give a
summary of the material covered. The test, also at the end, will
show you the sort of problems you should be able to tackle after
working through the main text (but don’t at this stage look at the
answers!).

The body of each programme consists of information presented in
small numbered sections termed frames. Each frame ends with a
problem or question and then a line. You should cover the page
with a sheet of paper or card and pull it down until you come to
the line at the end of the frame. Read the frame and write down your
answer to the question. This is most important — your learning will be
much greater if you commit yourself actively by writing your answer
down. You can check immediately whether or not your answer is
right because each frame starts with the correct answer to the
previous frame’s question.

If you work through the whole programme in this way you will be
learning at your own pace and checking on your progress as you go.
If you are working at about the right pace you should get most of the
questions right, but if you get one wrong you should read the frame
again, look at the question, its answer, and any explanation offered,
and try to understand how the answer was obtained. When you are
satisfied about the answer go on to the next frame.



X How to use the Programmes

Learning a subject (as opposed to just reading a book about it) can be
a long job. Don’t get discouraged if you find the programmes taking a
long time. Some students find this subject easy and work through
each programme in about an hour or even less. Others have been
known to take up to four hours for some programmes. Provided
the programme objectives are achieved the time spent is relatively
unimportant.

After completing each programme try the test at the end and only
proceed to the next programme if your test score is up to the standard
indicated.

Each programme finishes with a page of revision notes which should
be helpful either to summarise the programme before or after use, or

to serve as revision material later.

I hope you find the programmes enjoyable and useful.



Programme 1

Symmetry Elements and
Operations

Objectives

After completing this programme, you should be able to:

1. Recognise symmetry elements in a molecule.
2. List the symmetry operations generated by each element.

3. Combine together two operations to find the equivalent
single operation.

All three objectives are tested at the end of the programme.

Assumed Knowledge

Some knowledge of the shapes of simple molecules is assumed.



Programme 1

Symmetry Elements and Operations

1.1

The idea of symmetry is a familiar one, we speak of a shape
as being ‘“‘symmetrical”’, ‘“‘unsymmetrical” or even ‘‘more
symmetrical than some other shape”. For scientific purposes,
however, we need to specify ideas of symmetry in a more
quantitative way.

Which of the following shapes would you call the more sym-
metrical?

A B

1.2

If you said A, it shows that our minds are at least working
along similar lines!

We can put the idea of symmetry on a more quantitative
basis. If we rotate a piece of cardboard shaped like A by
one third of a turn, the result looks the same as the starting
point:

1 3
rotate
A clockwise - A
3 2 2 1
A A

Since A and A’ are indistinguishable (not identical) we say
that the rotation is a symmetry operation of the shape.

Can you think of another operation you could perform on a
triangle of cardboard which is also a symmetry operation?
(Not the anticlockwise rotation!)




1.3

Symmetry Elements and Operations 3

Rotate by half a turn about an axis through a vertex i.e. turn
it over

How many operations of this type are possible?

1.4

Three, one through each vertex.

We have now specified the first of our symmetry operations,
called a PROPER ROTATION, and given the symbol C.
The symbol is given a subscript to indicate the ORDER of
the rotation. One third of a turn is called Cs, one half a turn
C,, etc.

What is the symbol for the operation:

1 2 4 1

C,. It is rotation by 1 of a turn.

A symmetry operation is the operation of actually doing
something to a shape so that the result is indistinguishable
from the initial state. Even if we do not do anything, how-
ever, the shape still possesses an abstract geometrical
property which we term a symmetry element. The element
is a geometrical property which is said to generate the opera-
tion. The element has the same symbol as the operation.

What obvious symmetry element is possessed by a regular
six-sided shape:
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1.6 Cs, a six-fold rotation axis, because we can rotate it by % ofa
turn
1 6
6 2 5 1
_—
5 3 4 2
4 3

One element of symmetry may generate more than one
operation e.g. a C; axis generates two operations called Cs
and C3:

1 c 3 c 2
3Az 3 2%1 3 1A3
\_3/’

What operations are generated by a Cs axis?

1.7 Cs, C2, C3,

P!
Cs @
cz/
4 3 2
O ety
! P s s—4

What happens if we go one stage further i.e. C3?
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Symmetry Elements and Operations 5

We get back to where we started i.e.

The shape is now more than indistinguishable, it is
IDENTICAL with the starting point. We say that C3, or
indeed any C;=E, where E is the IDENTITY
OPERATION, or the operation of doing nothing. Clearly
this operation can be performed on anything because every-
thing looks the same after doing nothing to it! If this sounds
a bit trivial T apologise, but it is necessary to include the
identity in the description of a molecule’s symmetry in
order to be able to apply the theory of Groups.

We have now seen two symmetry elements, the identity, E,
and a proper rotation axis C,. Can you think of a symmetry
element which is possessed by all planar shapes?

1.9

A plane of symmetry.

This is given the symbol o (sigma). The element generates
only one operation, that of reflection in the plane.

Why only one operation? Why can’t we do it twice — what is
2
o°?

1.10

o> = E, the identity, because reflection in a plane, followed
by reflection back again, returns all points to the position
from which they started, i.e. to the identical position.

Many molecules have one or more planes of symmetry. A flat
molecule will always have a plane in the molecular plane e.g.

H,O, but this molecule also has one other plane.

Can you see where it is?
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Programme 1

AT THIS STAGE SOME READERS MAY NEED TO MAKE
USE OF A KIT OF MOLECULAR MODELS OR SOME SORT
OF 3-DIMENSIONAL AID. IN THE ABSENCE OF A PROPER
KIT, MATCHSTICKS AND PLASTICINE ARE QUITE GOOD,
AND A FEW LINES PENCILLED ON A BLOCK OF WOOD
HAVE BEEN USED.

You were trying to find a second
plane of symmetry in the water

molecule:

o is the plane of the molecule,
o’ is at right angles to it and

9 reflects one H atom to the
0O
e ' other.

The water molecule can also be brought to an indistinguish-
able configuration by a simple rotation. Can you see where
the proper rotation axis is, and what its order is?

1.12

C,, a twofold rotation axis, or rotation by half a turn.
G!

C,
(&)

A C, axis passing through space is the hardest of all sym-
metry elements to see. It will be much easier to visualise if
you use a model of the molecule.

This completes the description of the symmetry of water. It
actually has FOUR elements of symmetry — one of which is
possessed by all molecules irrespective of shape. Can you list
all four symmetry elements of the water molecule?
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E C, o0 o' Don’t forget E!

Each of these elements generates only one operation, so the
four symbols also describe the four operations.

Pyridine is another flat molecule like water. List its symmetry

elements.
O ct. H H
\O/

N

1.14

E C, 0 ¢’ ie. the same as water.

Many molecules have this set of symmetry elements, so it is
convenient to classify them all under one name, the set of
symmetry operations is called the C,, point group, but more
about this nomenclature later.

There is a simple restriction on planes of symmetry which is
rather obvious but can sometimes be helpful in finding
planes. A plane must either pass through an atom, or else
that type of atom must occur in pairs, symmetrically either
side of the plane. Take the molecule SOCI,, which has a
plane, and apply this consideration. Where must the plane
be?

Through the atoms S and O because there is only one of
each:

o \a
Cl

The molecule NH; possesses planes. Where must they lie?




1.16

/O\
H
A B

Programme 1

Through the nitrogen (only one N), and through at least one
hydrogen (because there is an odd number of hydrogens).
Look at a model and convince yourself that this is the case.

A further element of symmetry is the INVERSION CENTRE,
1. This generates the operation of inversion through the centre.
Draw a line from any point to the centre of the molecule, and
produce it an equal distance the other side. If it comes to an
equivalent point, the operation of inversion is a symmetry
operation. e.g. ethane in the staggered conformation:

H

H
A _amH
N.B. The operation of \C//

inversion cannot be
physically carried

out on a model. &«
H/

Which of the following have inversion centres

S

1.17

Only B and D e.g., for C, the operation i would take point x
to point y which is certainly not equivalent: X

An inversion centre may be: y
a. In space in the centre of a molecule (ethane, benzene); or
b. At a single atom in the centre of the molecule (D above).

If it is in space, all atoms must be present in even numbers,
spaced either side of the centre. If it is at an atom, then that
type of atom on/y must be present in an odd number. Hence a
molecule AB; cannot have an inversion centre but a molecule
AB, might possibly have one.

Use this consideration to decide which of the following
MIGHT POSSIBLY have a centre of inversion.

NH; CH, GH, C,H, SOCl, SO,Cl,
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CH,, C,H,, C,Hy, SO,Cl, fulfil the rules, i.e. have no atoms
present in odd numbers, or have only one such atom.

Which of these actually have inversion centres?
| |
H
AN
Ceer. H-C=C-H C S— 0
H/ \ “H / N\ Cl /
H Cl

1.19

Only C,H, and C,H,. Both have an inversion centre midway
between the two carbon atoms.

What is the operation i*?

1.20

i = E, for the same reason that o> = E (Frame 1.10).

We now have the operations E, o, C,, i. Only one more is
necessary in order to specify molecular symmetry completely.
That is called an IMPROPER ROTATION and is given the
symbol S, again with a subscript showing the order of the
axis. The element is sometimes called a rotation-reflection
axis, and this describes the operation very well.

The S, operation is rotation by 1/n of a turn, followed by
reflection in a plane perpendicular to the axis, e.g. ethane in
the staggered conformation has an Sg axis because it is
brought to an indistinguishable arrangement by a rotation
of 1/6 of a turn, followed by reflection:

H 6H v : ITI 2H B

~_ C// ~_ C//

‘ rotate clockwise by 1/6 turn ‘
then reflect in a plane

5 perpendicular to axis 5H

H:i-C - C
v Ty oo T~
III H

N.B. Neither C¢4 nor o are present on their own.

In this example the effect of the symmetry operation has been
shown by labelling one corner of the drawing. Draw the posi-
tion of the label after the S¢ operation is applied a second time.
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Programme 1

Now consider what single symmetry operation will take this
molecule from state I direct to state III i.e. what single opera-
tion is the same as S2?

1.22

S% = C;j, rotation by one third of a turn, because the mole-
cule has been rotated by 2/6 of a turn (= C;) and reflected
twice (0* = E).

What happens to the marker if Sy is applied once more, i.e.
what single operation has the same effect as S (use a model
or the diagram above).

1.23

S; =1i. In general SE/Z =11if n is even and n/2 is odd. The
operation SE/ 2 is then not counted by convention. If S, (n
even) is present, and n/2 is odd, i is present but the converse
is not necessarily true.

Now apply S¢ once more, so that it has been applied four
times in all.

What other operation gives the same result as Sg?




1.24

Symmetry Elements and Operations 1

S¢ = C3 for the same reason that S? = C; (Frame 1.22) i.e.
we have now rotated by 1/6 of a turn 4 times (= C3), and
reflected 4 times (= E)

Sg is a unique operation, and S¢ = E. This is again true for
any S, of even n.

Let us now look at S, of odd n because the case is rather
different from even n. It may at first seem rather a trivial
operation, because the C, axis and a perpendicular plane
must both be present, but it is necessary to include it to
apply Group Theory to symmetry.

Use as the model a flat equilateral triangle with one vertex
“labelled’’; this label is only to help us to follow the effect of
the operations, for example the application of S; moves the
label as shown:

Write down the result

of applying S; clockwise
S once, twice and then
3 three times.

1.25

Start <
[ N8 s
ﬁ& L@

In contrast to S¢ and Cs, applying the operation n times,
where n is the order of the axis does not bring us back to
the identity.

Keep going, then, when do we get E?




12
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Programme 1

This result is quite general, for n odd S2" = E, because we
have rotated through two whole circles, and reflected an even
number of times.

The equilateral triangle also has E, C;, and o among its
elements of symmetry. Many of the operations we have gen-
erated by using the S; element of symmetry could have been
generated by using other elements e.g., S3 = C3. Write these
equivalents underneath the symbol S5 where appropriate:

S; S3 S3 st oS3 s
e.g. C%

1.27

S; S5 S si sy oSS
C3 o G E

By convention, only S; and S3 are counted as distinct opera-
tions generated by the S; symmetry element.

Do a similar analysis for the symmetry element C4 (proper
rotation axis) of benzene, which also has C; and C, axes
colinear with the Cq. Clearly C; = C; since rotation by two
sixths of a turn is the same as rotation by one third of a turn.
Write the operations which have the same effect as C4 C2 C3
C¢ C; and C8.
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Cs Ci C; Ci C; C§
CG C G E

Again, by convention, only the operations Cq and C; are
counted, the others are taken to be generated by C; and C,
axes colinear with Cg.

We have just been looking at the operations generated by
a particular symmetry element, let us now turn to the identi-
fication of symmetry elements in a molecule. You must first
be quite sure you appreciate the difference between a sym-
metry element and the symmetry operation(s) generated by
the element. If you are not confident of this point, have
another look at frames 1.5 to 1.13.

Some molecules have a great many symmetry elements, some
of which are not immediately obvious e.g. XeF,:

5 Xe i C, also E, i
E~ A op, (molecular plane)
C, “C 20 vertically through C,
C, 20" vertically through CJ
S,

Hence the complete list of symmetry elements is:
E C4 C2 S4 1 2C2, 2C£/ Op 20 20',
List the symmetry elements of the following molecules:

H CH,

Cl
N \C/ (assume CHj;
[

B / \\ C groups
H PN o
Cl/ AN cl H H  CH, u spherical)

If there is a set of, say, three equivalent planes, write them as
30, but if there are three non-equivalent planes, write 0 o’ ¢”.
Similarly for other elements.
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Programme 1

BCl;: E C; S; 3C, 30 o (asomewhat similar
NH;: E G 3o case to XeF,)
Butene: E C, o 1

We will now look at what happens if two symmetry opera-
tions are combined, or performed one after the other. The
result is always the same as doing one symmetry operation
alone, so we can write an equation such as:

0Cy =o'

This equation means that the operation C, followed by the
operation o gives the same result as the operation ¢’. Note
that the order in which the operations are performed is from
right to left. I apologise for the introduction of back to front
methods, but this is the convention universally used in the
mathematics of operators, and the reason for it will become
evident when we begin to use matrices to represent symmetry
operations.

Confirm that this relationship is in fact true for the water
molecule. It may help to put a small label on your model to
show the effect of applying the operations:

o’

Tols
H g5 H "~¢

C,

Draw the position of the arrow after applying C,, and then
after applying o to the result. Hence confirm that 0 C, = o'.

1.30

X COk Colk
u M u1%m S

o

What is the effect of reversing the order of the operations? i.e.
what is the product C,o (o followed by C,)?
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1.31 el
(6}
£ C
Ol 8 P 7 2 a4 L
H M a1 H%w
v
G,
o’ S
In this case the two operations COMMUTE i.e., 0 C, = Cso,
but this is not always true.
Use this diagram with an arrow to set up a complete multi-
plication table for the symmetry OPERATIONS of the water
molecule, putting the product of the top operation, then the
side operation, in the spaces:
E G, o o’

E
G
g

!
o

1.32 E G, o o
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You should now be able to:

A. Recognise symmetry elements in a molecule.
B. List the operations generated by each element.
C. Combine together two operations to find the equivalent single

operation.

I'm afraid the next page is a short test to see how well you have
learned about elements and operations. After you have done it,
mark it yourself, and it will give you some indication of how well
you have understood this work.
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Symmetry Elements and Operations Test

1. List the symmetry elements of the molecules.
A CH, CH,
\ C=cC (assume CH ; spherical)
H H
B Cl i
H,N I NH,
Co (assume N H; spherical)
H,N T NH,
Br
C C|1 N
en Coﬁ en
|
Cl1
D HC——CH
/ ©) \
HC CH

e

17
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Set up the multiplication table for the operations of the mole-
cule trans but-2-ene. Apply the top operation then the side
operation:

CH 3 E C2 g 1

Cc=C E

/7 '\
CH, H C
g

In this question you have to state the single symmetry opera-
tion of XeF, which has the same effect as applying a given
operation several times. The diagram below shows the location
of the symmetry elements concerned.

s,
E i F
X:e ~0
F C:4 F
CZ

What operation has the same effect as:

A. S E. C}
B. S F. Cj
C. Si G. o
D. C: H. i
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Answers

Give yourself one mark for each underlined answer you get right.
(The others are so easy, they are not worth a mark!)

1. AL E G o o’
B E G G 20 20’
c E G &} G i o o o
D E Cs 535G, fos 50’ Ss
Total = 20
2 Cz (o 1
E E C2 g 1
C, C, E 1 a
o o i E G
1 i a G E
Total = 9
3. A Si=GC E. Ci=C;
B. S;=5; F. Ci=E
C. Si=E G. =E
D. Ci=G, H i*=E
Total = 8§

Grand Total = 37
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To be able to proceed confidently to the next programme you should
have obtained at least:

Question 1 (Objective 1) 15/20 (Frames 1.1-1.20)
Question 2 (Objective 2) 7/9 (Frames 1.28-1.32)
Question 3 (Objective 3) 4/8 (Frames 1.6-1.10, 1.19-1.28).

If you have not obtained these scores you would be well
advised to return to the frames shown, although a low
score on question 3 is less serious than the other two.
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Symmetry Elements and Operations

Revision Notes

The symmetry of a molecule can be described by listing all the sym-
metry elements of the molecule. A molecule possesses a symmetry
element if the application of the operation generated by the element
leaves the molecule in an indistinguishable state. There are five differ-
ent elements necessary to completely specify the symmetry of all
possible molecules:

E the identity

C, proper rotation axis of order n

o a plane of symmetry

i an inversion centre

S improper (or rotation-reflection) axis of order n.

Each of the elements E, o, 1 only generates one operation, but C, and
S, can generate a number of operations because the effect of applying
the operation a number of times can count as separate operations
e.g., the C5 element generates operations C; and C%. Some such multi-
ple applications of an operation have the same effect as a single
application of a different operation. In these cases only the single
case is counted, e.g., C3 = C,, and only C, is counted.

If two operations are performed successively on a molecule, the result
is always the same as the application of only one different operation.
It is therefore possible to set up a multiplication table for the sym-
metry operations of a molecule to show how the operations combine
together.

When writing an equation to represent the successive application of
symmetry elements it is necessary to remember that o ¢’ C, means Cy
followed by o', followed by o.



Programme 2

Point Groups

Objectives

After completing this programme you should be able to:

1. State the point group to which a molecule belongs.

2. Confirm that the complete set of symmetry operations of a
molecule constitutes a group.

3. Arrange a set of symmetry operations into classes.

The first of these objectives is vital to the use of group theory and is
the only one tested at the end of the programme.

Assumed Knowledge

A knowledge of simple molecular shapes, and of the contents of
Programme 1 is assumed.
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Point Groups

2.1 Write down the symbols of the FIVE elements needed to
completely specify molecular symmetry.
2.2 E C S o i
What are the names of these five elements of symmetry?
2.3 E — The identity element
C — Proper rotation axis
S — Improper rotation (or rotation-reflection) axis
g — Plane .Of symmetry cl 1
1 — Inversion centre N/
B
List all the symmetry elements of Cll
24 E C3 3C2 g 30'/ S3
If you have got these three questions substantially correct
you may proceed, otherwise return to Programme 1-
Symmetry Elements and Operations. o oy
S
List all the symmetry elements of N\ I(i/
25 E C3 3C2 g 30', S3

i.e. exactly the same as BCly

There are many other examples of several molecules having
the same set of symmetry elements, e.g. list all the symmetry
elements of

N
T

O
/N
H H

c=c
HOOC COOH
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2.6 All three of these molecules (and many more!) have the
elements
E C o o
In the same way all square planar molecules contain the
elements E C; Cy(= Ci) 4C, o 40’ i S4, regardless of
the chemical composition of the molecule e.g.
F F N N

C

N\ NS
/X< /Ni\ etc.
FoF SIS
It is convenient to classify all such molecules by a single
symbol which summarises their symmetry. This symbol for
a flat square molecule is Dyy,.
Can you suggest the symbol for a flat
hexagonal molecule like benzene:

2.7 Dy, the symmetry is similar to that of the square planar case,

but the principal axis is a 6-fold axis not a 4-fold axis.
The symmetry symbol consists of three parts:

The number indicates the order of the principal (i.e. highest
order) axis. This is conventionally taken to be vertical.

The small letter h indicates a horizontal plane.

The capital letter D indicates that there are n(= 6 for
benzene) C, axes at right angles to the principal C, axis
(C¢ for benzene):

Two-fold axes

How many two-fold axes like this are there in a flat square
molecule like XeF,?
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Four

What are the symmetry elements labelled X, Y, and Z?

2.9

X = C; axis
Y = C, axes
Z = plane of symmetry

The principal Cj axis is taken, conventionally to be vertical,
so the plane is a horizontal plane (0y,), and there are three C,
axes at right angles to the principal axis.

What, therefore, is the symmetry symbol of the BCl; mole-
cule? (frame 2.7 may help).
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2.10

Programme 2

D3,
C, C3 C,
Cl\/ cr
B
/
Cl \Gh
C;

Point group symbol:  Djy,

/ \ horizontal plane

3C, axes 3-fold principal
(horizontal) axis (vertical)

The molecule is said to belong to the D3, POINT GROUP.

Let us now get a bit more general, and call the principal axis
C,, so that its order, n, can be any number.

If there is no horizontal plane of symmetry, but there are n
vertical planes as well as nC, axes, the point group is D 4.

The D and the number mean the same as before but the small
d stands for DIHEDRAL PLANES, because the n vertical
planes lie between the nC, axes.

Ethane in the staggered conformation belongs to a D4 point
group. Decide on the value of n from the following diagram
(looking down the principal axis), and hence state the point
group to which ethane belongs.

H
H/ ‘\H
H
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D34, a model will help to convince you of the elements of
symmetry in this case, but the following diagram is looking
down the principal, vertical, 3-fold axis:

Oy /Cz
Dy
P>

3-fold principal axis

3 vertical planes (Of )

3C, axes

This is another case like frame 1.12 in which the C, axis
passes through space and not along a bond. These axes are
quite difficult to see and a molecular model may be necessary.

In the eclipsed conformation ethane has an additional ele-
ment of symmetry. Can you see from the diagram (or a
model) what the extra element is?

2.12

A horizontal plane of symmetry, oy,

What does this make the point group of ethane in the
eclipsed conformation?

H

Hil\c/

H

H7C\

H

2.13

Djy, i.e. in the eclipsed conformation the horizontal plane
takes precedence over the dihedral planes in describing the
symmetry.

Some molecules have a principal C, axis, and nC, axes at
right angles, but no horizontal or vertical (dihedral) planes.

There is then no need to include h or d in the symmetry
symbol. If the principal axis is a 3-fold axis what is the sym-
metry symbol in this case?
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D; i.e., it has a 3-fold axis and three C, axes at right angles,
hence Ds, but no oy, or a o4, so no additional symbol is
necessary.

An example of an ion of this symmetry is:

en
N
|

n Co

| en

You will probably need a model of the ion to see the axes,
although an alternative diagram of the structure shows its
symmetry very well:

(en = NH2CH2CH2NH2)

If the principal C,, axis is not accompanied by nC, axes, the
first letter of the point group is C. A horizontal plane is
looked for first, and is shown by a little h. If o}, is not present,
n vertical planes are looked for and are shown by a small v.

o C,, no C, at right angles no oy,
V2N but 20, .". point group C,,
H i H

: N
© /TN
H H

What is the point group of

e.g.

2.15

C;, 1.e. it has a principal C; axis and T

3 vertical planes.

o O——H
Remember that all flat molecules
\B /

have a plane of symmetry in the
molecular plane. Try to decide '
the point group of a free boric

acid molecule which has no /
vertical planes or horizontal C, axes.

(0]
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2.16 Csy, 1.e. it has a principal C; axis, no horizontal C, axes, and
a horizontal plane
What is the point group of the flat ion:
2.17 Dy, i.e. it has a Cs (vertical), 5 C, axes at right angles, and a
horizontal plane.
List the four symmetry H COOH
elements of fumaric acid: \C= C/
(CARE! There is again a / AN
C, axis through space). HOOC H
2.18 E, C,, oy, i. What does this make the point group symbol?
2.19 C,, 1.c. it has a C, axis and a horizontal plane.

The molecule H,O, and the ion cis[Co(en),Cl,]" both have
only the identity and one proper axis of symmetry. They both
belong to the same point group. Can you say which one it is?

(A model, or the diagrams below, might help.)
e%| .
0—X | cl

(N O

en\| c1
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C,. They both have a C, axis:

O—O
/ o\ &
H { H

C en\l Cl
We have so far seen the point groups, Dy, Dpg Dy Cons Cov
and C,. These groups cover many real molecules, even simple
linear ones which have an infinity-fold axis e.g.

H H
| | G

C cl
l

There are three additional groups for highly symmetrical
molecules, octahedral molecules belong to the group Oy,
tetrahedral molecules to T4, and icosahedral structures to Iy,.
You must realise that T4 refers to the symmetry of the whole
molecule e.g. CH, and CCl, both belong to the T4 group, but

CHCI; does not. Ili

C
e '\
What is the point group of CHCI;? a cl Cl (cf. NH;)

2.21

C3V
Some rather rare molecules possess only two elements of
symmetry, and these are given a special symbol:

E and i only C;
E and o only C;
E and S, only S,

Many molecules have no symmetry at all (i.e. their only
symmetry element is the identity, E. Such molecules belong
to the C; point group.

. A. B.
The following are examples of C‘l ‘F
molecules with only one or two /c\ /c\
symmetry elements. F \ H B \ H
H Cl

What are their point groups?




2.22

Point Groups 31
A. Cs
B. C;

There is a simple way of classifying a molecule into its point
group, and a sheet at the end of this programme gives this.
You will see that the tests at the bottom of the scheme are
similar to those used to introduce the nomenclature in this
programme. The scheme does not test for all the symmetry
elements of a molecule, only certain key ones which enable
the point group to be found unambiguously.

Have a look at the sheet, and try to follow it through for the
ion:

Oh— | C2 stage 4
......... CO nncz

/U

C;— stage 2

Cl

Stage 1 — it is not one of these special groups

Stage 2 — there is a C, axis — .. n =2

Stage 3 — there is no S colinear with C,

Stage 4 — there are two C, axes at right angles, there is a
horizontal plane.

What point group have you arrived at? (Remember the value
of n found in Stage 2.)
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2.23 Dy,
Use the scheme to find the point group of each of the follow-
ing: (C, E, F and G are a bit tricky without a model, but
you may get C, F and G right by analogy with ethane as
discussed in frames 2.10-2.13).
0
N SN S N
AN
A Cc-¢ B c-¢ C o Mn—©
/N /N N
H CH, CH, CH, Co
OC S~ 0 — CO
o/\ I\\I\ i S
Cl H H o
PO G
> -
224 A.Cy B.C,, C. Dy D.C, E.C, F.Ds, G. Dy

The hardest of these examples are probably C and G which
are both D4 molecules. It is often very difficult to see the n
2-fold axes on such a molecule and you may need to ask
advice on this. Frame 2.11 shows the axes in the case of a
D34 molecule. The corresponding diagram, looking down the
principal 4-fold axis of Mn,(CO),, is:
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A simple rule to remember is that any n-fold staggered
structure (like C,Hg, Mn,(CO);, etc) belongs to the
point group D4, and you may find it easier simply to
remember this rule.

We have said that the symbol represents the POINT
GROUP of the molecule. This is because all the symmetry
elements of a molecule always pass through one common
point (sometimes through a line or a plane, but always
through a point).

Where is the point for examples A and G above?

2.25

A — the centre of the C=C double bond
G — the Fe atom

At this stage, the programme begins to look at what mathe-
maticians call a GROUP. If you have had enough for one
sitting, this is a convenient place to stop, but in any case it is
not absolutely vital for a chemist to know about the rules
defining a group, although I strongly recommend you to
work through the rest of the programme. You should now
be able to classify a molecule into its point group, which is
absolutely vital to the use of Group Theory, and the test at
the end of the programme tests only this classification.

The term GROUP has a precise mathematical meaning, and
the set of symmetry OPERATIONS of a molecule constitutes
a mathematical group. A group consists of a set of members
which obey four rules:

a. The product of two members, and the square of any

member is also a member of the group.

There must be an identity element.

Combination must be associative i.e. (AB)C = A(BC).

d. Every member must have an inverse which is also a
member i.e. AA™! = E, the identity, if A is a member,
A" must also be.

o o

N.B. Some texts use the word element for the members of a group.
This convention has not been followed here in order to avoid con-
fusion with the term symmetry element. It is the set of symmetry
operations which form the group.
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Let us take the C,, group (e.g. H,O) and confirm these rules.
The group has four operations, E, C,, o, 0’

C;

We have already seen the effect of combining two operations
in the programme on elements and operations.

Set up the complete multiplication table for the group opera-
tions (in Programme 1 you used a little arrow on H to help
do this).
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2.26 E G, o o'
E E (&} o o'
C2 C2 E 0'/ g
o o o’ E G,
o’ o’ o (@) E
If you did not get this result, look back at the first pro-
gramme, frames 1.29-1.32.
We can see immediately from this table that rules a and b are
true for this set of operations.
What about rule d? What is the inverse of o', i.e. what multi-
plies with ¢’ to give E?
227 o', it is its own inverse, c'c’ = E. This is true for all the
operations of this group.
Consider the C; element in a Dj, molecule. What is the
inverse of the C; operation, or what operation will bring
the shape back to the starting point (I'd rather you didn’t
say Cj in the opposite direction!).
1 3
G
—_—
clockwise
3 2 2 1
2.28 C3, i.e. apply the C; operation clockwise a further two times.

Thus C3C; = C3 = E. (Remember that this means C; fol-
lowed by C3.)

Note particularly that it is the symmetry OPERATIONS,
not the elements which form a group.

Confirm rule ¢ for the elements C,, o, and ¢’ of the C,,
group, i.e. work out the effect of (C,0) o’ and of C, (o0”).
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(Cyo)o' =0'c’ =E
Cz(G’O’I) = C2C2 =E

i.e. the operations are associative.

The C,, point group only has four operations, so it is a
simple matter to set up the group multiplication table.
There is, however, a further feature of groups which can
only be demonstrated by using a rather larger group such
as Cs,. Ammonia belongs to the Cs;, group. Can you write
down the five symmetry elements of ammonia?

AN

H HH

2.30

E Cy 3o

What operations do these elements generate?

2.31

E C C o o o" (or3o0)
We can set up the 6 x 6 multiplication table for these opera-
tions by considering the effect of each operation on a point
such as P in the diagram below, which has the C; axis
perpendicular to the paper:

G”

The C; and C%
operations are clockwise

(¢} e}

Draw the position of point P after applying C; and then ¢’
(call the new position P').
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2.32 "

What single operation would take P to P'?

233 o

i.e. 0'Cy = ¢” (remember that this means C; followed by o’
has the same effect as ¢” — we write the operations in reverse
order).

What happens if we do it the other way round, i.e. what is o’
followed by C; (= C30')?
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o
In this case o' C; does not equal Cy0’ — we say that these two
operations do not COMMUTE.

Use the effect of the group operations on the point P to see
which of the following pairs of operations commute:

Ciyand C3 ocand C; cando’ Eand C3

2.35

C;C3=E; C3C;=E ie. C;and C3 commute
0Cy=0'; Ciyo=0" 1ie. oand C;do not commute
o0’ =C;y; o'o=C3 1ie. oand o’ donot commute
EC3 =C3; C3E=C3 ie. Eand C3 commute

It should be obvious that E commutes with everything —it does
not matter if you do nothing before or after the operation!

We will now consider briefly the subject of CLASSES of
symmetry operations. Two operations A and B are in the
same class if there is some operation X such that:

XAX' =B (X'is the inverse of X, i.e. XX ' = E)

We say that B is the similarity transform of A, and that A and
B are conjugate.

Since any o is its own inverse we can perform a similarity
transformation on the operation C; by finding the single
operation equivalent to 0Cso.

Work out the position of point P after carrying out these
three operations.

C; is clockwise
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2.36 P
ie.
What single operation is the same as 0C;0?
2.37 C3. Thus C; and C3 are in the same class.
What is the inverse of C3?
2.38 C3. Work out the similarity transform of o by Cj, i.e. decide

the operation equivalent to C30C;.

G”
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C30Cy =0

Thus ¢ and ¢” are in the same class

The complete set of symmetry operations of the Cs, point
group, grouped by classes, is as follows:

E (always in a class by itself)
C, G

l "
g g g

The operations are commonly written in classes as:
E 2C; 30

It is not necessary to go through the whole procedure of
working out similarity transformations in order to group
operations into classes. A set of operations are in the same
class if they are equivalent operations in the normally
accepted sense. This is probably fairly evident for the example
above.

The D;, group (e.g. BCly) consists of the operations
E C G C C C o S3 8 oo of o

Group these operations into their six classes

CQ’GT
G
B Clommn c,C,
.CI
G
- S5

C: Cv
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E
2C,
3G,
Oh
28,

30, (all equivalent but different from oy,)

You should now be able to:

State the point group to which a molecule belongs.
Confirm that a set of operations constitutes a group.
Arrange a set of operations into classes.

The assignment of a molecule to its correct point group is a
vital preliminary to the use of group theory, and this is the
subject of the test which follows. The other two objectives of
this programme are not tested because it is known in all cases
that the symmetry operations of a molecule do constitute a
group, and the tables (character tables) which are used in
working out problems show the operations grouped by
classes.



42 Programme 2
Point Groups Test

Classify the following molecules and ions into their point group. You
may use molecular models and the scheme for classifying molecules.

1. CHCI,

H\/\/
/\/\

3. Cyclohexane (chair) W
(use a model) _ \/
4, Cyclohexane (boat) Qi 7

Cl
P
5 O = P—=m(Cl
Tl
Fe i 11.  CBr
P—F
6. el 12. SF
13. CO,
”— h\f 14. OCS
7. \N/
H
8. o
C> (staggered)
— 5
0X |
9. / Clr ox = oxalate (a model is
[ almost essential)
00X
H,0 |
10. Clr (a model is valuable)
|
H2O | %)x
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Answers

One mark each.

. Cy 8. Dgy
2. Dy, 9. D
3. Dy 10. C,
4. Cy 1. T,
5. Cyy 12. O,
6. Dy 13. Dy,
7. G, 14. C.,

To be able to proceed confidently to the next programme you should
have obtained at least 10 out of 14 on this test, and you should
understand the assignment of the point group in any cases you got
wrong.

If you are in any doubt about the assignment of point groups, return
to frames 2.7 to 2.24.
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Revision Notes

The set of symmetry operations of any geometrical shape forms a
mathematical group, which obeys four rules:

i.  The product of two members of the group, and the square of
any member, is also a member of the group.

ii.  There must be an identity element.

iii. Combination must be associative, i.e. (AB)C = A(BC)

iv. Every member must have an inverse, i.e. if A is a member,
then A~! must also be a member, where AA~! = E.

Symmetry operations do not necessarily commute, i.e. AB does not
always equal BA.

A molecule can be assigned to its point group by a method which
does not require the listing of all symmetry operations of the mole-
cule; the method merely involves looking for certain key symmetry
elements. The symbol for most molecular symmetry groups is in three
parts e.g.

Csy Con Diy Dgg
These have the following meanings:

1.  The number indicates the order of the principal (highest
order) axis. This axis conventionally defines the vertical
direction.

ii. The capital letter is D if an n-fold principal axis is accom-
panied by n two-fold axes at right angles to it; otherwise the
letter is C.

iii. The small letter is h if a horizontal plane is present. If n
vertical planes are present, the letter is v for a C group but
d (= dihedral) for a D group. (N.B. h takes precedence over v
or d.) If no vertical or horizontal planes are present, the small
letter is omitted.
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Systematic Classification of Molecules into
Point Groups

C = rotation axis 1 = inversion centre
S = improper axis (alternating axis) o = plane of symmetry
1. Examine for special groups

Linear, no o perpendicular to molecular axis — C,
Linear, o perpendicular to molecular axis — D,
Tetrahedral — Ty

Octahedral — Oy,

Dodecahedral or icosahedral — I,

oacow

2.  Examine for a C, axis —I

C, present C, absent

. . |
Find C of highest n o present — C,
or a unique C_ — this axis is then i present — G

taken to be‘ vertical no symmetry elements
by convention other than E— C;

3. Examine for 82 colinear with C
l n n

[
S2 , bresent S, n] absent

No ojcher symmetry elements
present, except i S

2n

Other symmetry
elements present

4., Examine for n horizontal 02 axes

1 )
nC, Iaxes present n C, axes absent
Horizontal plane (6 n) present —D, Horizontal plane (6, )
present — C .
n Vertical planes (dihedral planes, n vertical planes present
dg4- bisecting angles between C, axes) (6,) — C_,

present —Dn d
Absent — Dn Absent —C_
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Non-degenerate
Representations

Objectives

After completing this programme you should be able to:

1. Form a non-degenerate representation to describe the effect
of the symmetry operations of a group on a direction such
as X.

2. Reduce a reducible representation to its component irredu-
cible representations.

Both objectives are tested at the end of the programme.
Assumed Knowledge

A knowledge of the shapes of p and d atomic orbitals, and of the
contents of Programmes 1 and 2 is assumed.
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Non-degenerate Representations

3.1 What are the point groups of the following molecules?
H
A. - \o B. C.
! | N
B H
NG ‘
Cl/ \Cl T © H g H
H
3.2 A. Dy,
B. Cy
C. Gy

If you are quite happy about point groups, continue with this
programme, if not, return to Programme 2 — Point Groups.

We are now going to progress one stage further in the quan-
titative description of molecular symmetry by using numbers
to represent symmetry operations. These numbers are called
REPRESENTATIONS (not unreasonably!),and in this pro-
gramme we shall be mainly concerned with the numbers +1
and —1 so your maths should not be strained too far!

We shall initially use atomic p orbitals to illustrate the
features of representations, but you must remember that
the features we discover apply to many other directional
properties as well.

Let us look at the effect on a p, orbital of a C, rotation about
the z axis:

zZ z
The sign of the p, orbital is changed, so how can the opera-
tion be represented, by +1 or —1?
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33 —1. px becomes —p, or:
C2px = _1px
Let us look at the effect of various reflections on the py
orbital — consider first a reflection in the xz plane which
passes through the orbital:
z
X
What does the orbital look like after applying the o(xz)
operation?
34 Just the same, because the plane passes through the middle of
both lobes.
What number will represent the operation o(xz)?
3.5 +1 i.e. o(xz) p, = lpy
What about the reflection in the yz plane — what is the result
of o(yz)py, and hence what number represents o(yz)?
4 y
AT
3.6 o(yz)py = —py, hence o(yz) is represented by —1:

What number represents the effect of the identity operation,
E?
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3.7 + 1
We have now looked at the numbers representing the four
operations E C, o(xz) o(yz).
These four operations form a group, can you remember
which one it is?

3.8 (&%

We say that the four numbers form the B, representation of
the C,, group:

Cy, ‘ E G, o(xz) o(yz)

Don’t worry at this stage about the nomenclature B; — the
symbol does carry information, but you can regard it simply
as a label for the present.

We also say that x belongs to the B; representation of C,,
because this set of numbers represents the effect of the group
operations on a p, orbital, or indeed anything with the same
symmetry properties as the x axis.

If our set of numbers represents the group operations, it
should also represent the way the group operations combine
together. Use a little arrow on the water molecule to find the
product of the two operations C, and o(xz) like you did in an
earlier programme:

Y

G
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Cyo(xz) = 0(x2)C, = o(yz)

(See Programme 1 frames 1.29-1.31 if you did not get this
result.)

Is this multiplication paralleled by the multiplication of the
numbers representing the operations?

Yes —1x1 =-1
C, x o(xz) = o(yz)

The complete multiplication table for C,, is:

Cyy E C, o(xz)  olyz)
E E C, o(xz)  olyz)
C, C, E o(yz)  o(xz)
o(xz) | olxz) o(yz) E C,
olyz) | olyz) o(xz) G E

Write out the corresponding table for the numbers forming
the B, representation.

B, 1 -1 1 -1
1 1 -1 T
-1 | -1 1 -1 1
1 1 -1 1 -1
-1 | -1 R 1

Wherever C, or o(yz) appear in the first table, —1 appears in
the second table, so the set of numbers is a genuine repre-
sentation of the group.

Find the effect of the group operations on a p, orbital, and
hence derive a set of numbers which represent the effect of
the operations on p,.
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3.12 E p, = py E is represented by 1
Cz Py _ 7py C2 " " U
o(xz) py = —p, o(xz) " " "1
o(yz) py=py olyz) " " "ol
We say that y (or a py orbital) is SYMMETRIC to E and
o(yz) and ANTISYMMETRIC to C, and o(xz) in C,, sym-
metry. The py orbital thus belongs to the B, representation:
Cy | E G olg) oy
B, ‘ 1 -1 -1 1 y
Set up the multiplication table for the B, representation, and
confirm that it is a true representation (c.f. frame 3.11).
3.13 B, 1 -1 —1 1
1 1 -1 -1 1
-1 -1 1 1 -1
-1 -1 1 1 -1
1 1 -1 -1 1

Wherever C, or o(xz) appear, there is —1.
Wherever E or o(yz) appear, there is 1.

The By and B, representations are representations for two
reasons:

i.  The numbers represent the effect of the group operations
on certain directional properties.

ii. The numbers multiply together in the same way as the
group operations.

Find the representation of the C,, point group to which a p,
orbital belongs, and confirm that the numbers multiply
together in the same way as the operations:
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Z
(i)
q, X E C, (about z) o(xz) o(yz)
&
3.14 Cy, E G, o(xz) o(yz)
A ‘ 1 1 1 1 z

The p, orbital belongs to the TOTALLY SYMMETRIC or
A, representation of the C,, point group, because the p,
orbital is not changed by any of the group operations.

There is one further set of numbers called the A, representa-
tion which fulfills the two conditions given above for the C,,
point group. The full set of representations is included in a
table called the CHARACTER TABLE of the group:

Gy | E G oxz) olyz)

A |1 1 1 | z
A, |1 1 -

B, | 1 -1 1 -1 X
B, |1 -1 -1 1 y

The numbers in this table should strictly be called the
CHARACTERS of the IRREDUCIBLE REPRESENTA-
TIONS of the group. The meaning of this long title will
become apparent in time.

Let us now try a slightly more complicated orbital, 3d,,. To
which of the four representations of C,, does this belong?

y
‘A

‘ E C, (about z) o(xz) o(yz)
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A, E dy = d,, representation 1
Cdy, = d
o(xz) dyy = —dyy

o(yz) dyy = —dy, representation —1

« representation 1

representation —1

It is also possible to find the representation to which other
directional properties belong, e.g. a rotation about the x axis.
If you hold a pencil horizontally in front of you and rotate it
on its own axis (x), then, still rotating it, give it a half turn
rotation about a vertical axis, its direction of rotation about
its own axis will appear to have been reversed (try doing it!)
Thus rotation about x is (symmetric/antisymmetric) to C,.

3.16

Antisymmetric.

You need a particularly twisted mind to assign rotations to a
symmetry class, and you may need to ask someone to explain
it to you if you are not prepared to accept it.

The information we have just deduced is included in the full
character table e.g.:

Cy | E G olxz) oly2)

A4 1 1 1 1 z Xt —y: 7
A, 1 1 -1 -1 R, «xy

B, 1 -1 1 -1 x Ry xz

B, 1 -1 -1 1 y Ry yz

This shows the transformation properties of d orbitals as well
as the x, y, and z directions and the three rotations about the
X, y, and z axes called Ry, Ry and R,. Some character tables
may show even more — e.g. the representations to which f
orbitals and polarisability components belong, but this is
sufficient for our purposes now.

Is the set of numbers 3 3 1 1 a representation of C,, in the
sense we have been discussing representations? (Yes or no.)
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3.17 No. Because E x E =E but 3 x 3 =9 etc.
The numbers are, however, a set of CHARACTERS OF A
REDUCIBLE REPRESENTATION of the C,, group.
Again, the meaning of this long title will become apparent
later, but we may (rather loosely) abbreviate the title and
call the set of numbers simply a REDUCIBLE
REPRESENTATION.
The reducible representation 3 3 1 1 has been obtained sim-
ply by adding the representations 2A; + A,:
A 1 1 1 1
A 1 1 1 1
A, 1 I -1 -1
2A+A, 3 3 1 1
Can you see how the reducible representation 3 —1 —1 —1 is
obtained?

318 A2+B1 +B2 1e

Ay+B, +B, 3 -1 -1 -1

We say that the reducible representation 3 —1 —1 —1 can be
reduced to its component irreducible representations

A, +B, +B,

Much of the use of Group Theory to solve real problems
involves generating a reducible representation, and then
reducing it to its constituent irreducible representations.

In the example above this could be done by inspection, but
many examples are far too complex, and a REDUCTION
FORMULA has to be used. This formula is:
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Number of times an 1
irreducible representation = — E XR X X1 X N
occurs in the reducible over all

. classes
representation

where h = order of the group (= number of operations in
the group)
xr = character of the reducible representation
x1 = character of the irreducible representation
N = number of symmetry operations in the class
(i.e. the number of equivalent operations. See
frames 2.35-2.40)

In the example in frame 3.17 h =4, xg = 3 for E, 3 for C,,
and 1 for each o.

For the A, representation xj is 1 for each operation, hence:

xx x1 N
NN\
Number of Ay =33 x I x1+3x1x]1
T E C,
h

+lx1Ixl4+1Ix1Ixl]=2
o(xz) o(yz)

For the A, representation, the values of xj are 1, 1, —1, —1,
hence:

Number of Ay =4 [(3x 1 x 1)+ (3 x1x1)

E C,
+(Ix(-)xD)+(Ix(-1)x]=1
o(xz) o(yz)

Do the same thing to find the number of B; and B, species.
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Number of By =1[3x I x 1)+ (3 x (=1) x 1)

+(IxIx)+(Ix(=1)x1)]=0

Number of By =[(3 x 1 x 1)+ (3 x (1) x 1)
+(Ax (=) x)+(Ix1x1]=0
i.e the reducible representation reduces to 2A;| + A,.

Let us consider the representation of C;, labelled T',
(reducible representations are commonly designated by a
capital gamma, I'):

Gy | E 26 3o,
4

I, ‘ | -2

In this case, the number of operations in the class (= N in the
formula) is two for the rotations and three for the reflections.
The reduction is therefore performed using the character
table as follows:

| E2G 30,
4

N.B. Do not worry about
the figure 2 in the character
C3v E @C3 30 v table — its significance will
be come clear later. I

A1 1 ( ) 1 N apologise for the
nomenclature which uses E
A2 1 1 ~1 for a} repr.esentati.or.l and for
the identity but it is a
standard convention.

Number of Aj|=1[(4x1x1)+|{(I1x1x2)+(=2x1x3)]=0
L1 7
Number of Ay =¢[(4x I x 1)+ (1x1x2)+(=2x —1x3)]=2

Number of E =7
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H@x2x1)+ (1 x-1x2)+(=2x0x3)]=1
i.e. I'y reduces to 2A, + E

Confirm this by adding these representations.

3.21

A, 11 -1
A, 11 -1
E 2 -1 0

N
—_
|
)

2A, +E

The next few frames are practice at the very vital business of
reducing reducible representations. For this you should use
the character tables printed at the back of the book.

Reduce the representation (Cs,)

‘ E ZC'; 30’V

r, | 4 1 0

3.22

Number of Aj = [4x 1 x1)+ (I x1x2)+0]=1
Ay=¢[@x1Ix)+(1x1x2)+0]=1
E=1[dx2x1)+(1x—-1x2)+0]=1
Ih=A, +A,+E

What is the order h of the C,, and C,;, groups?

3.23

4 in each case, i.e. both groups have 4 operations.
Reduce the representation:

C2v ‘ E CZ U(XZ) O’(yZ)

r, | 2 o 0 -2
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Numberof A; =2[2x1x1)+0+0+4+(-2x1x1)] =
Ay =12x1x1)+0+0+(-2x—-1x1)]=
=H2x1x1)+0+0+(-2x—-1x1)]=
B, =1[2x1x1)+04+0+(-2x1x1)]=0
Ty = A, + B,

As mentioned earlier, the reduction of reducible representa-
tions is vital to the use of group theory. The following six
examples are included for practice and can be omitted if you
feel really confident.

Reduce the following reducible representations:

C | E G okxz) oly)
T, 3 1 ~1 -3
s | 30 0 0 10
C2h E Cz 1 Oh

Ty 20 -2 0

r, | 30 0 0 10

C3V ‘ E 2C3 3O'V

Ty 5 2 1

Ty 7 -2 1
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T, =2A, + B,
T's = 10A, + 5A, + 5B, + 10B,
T's = A, + B,

T, = 10A, + 5B, + 5A, + 10B,
Iy =2A,+A, +E

Ty=A, +3E

Let us now turn to the group C,, of which the following
complex is an example:

What are the operations of the C,, group? (Remember that
an axis can generate several operations.)

3.26

E C, C C

Two vertical planes passing through the NH; groups (o)
and two vertical planes passing between the NH;3 groups (oy).

We usually group the operations in classes as:
E 2C, Cy(=Ci) 20, 204

Taking the z axis as being vertical, what number represents
the operation C, on an arrow in the z direction?

3.27

1. ie. zis symmetric to C,
What numbers represent the effect of the other opera-
tions on z?
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3.28 E 2C, C, 20, 204
1 1 1 1 1
i.e. z belongs to the totally symmetric or A; representation of
the Cy4, group.

What happens to an arrow along the y axis when a C, opera-
tion is performed on it clockwise?

3.29 It points along the x axis, i.e. y is converted to x by C;. Now

we have problems! There is no simple number which will
convert y to x (and also x to —y), so the representation
cannot be a simple number. The only way to represent the
transformations x — —y and y — X is to use a matrix, and
the next programme is about matrices as representations of
operations.
We can, however, draw a useful conclusion at this stage
from a simple symmetry argument. What effect does applica-
tion of the C, operation have on the total energy of the
[Co(NH;),CIBr]" ion?

3.30 None at all. If C4 is a symmetry operation, it leaves the
molecule indistinguishable, and that includes its energy.
What happens to the py orbital z y
on application of a clockwise Cy4
about the z axis? X

e,

3.31 It becomes a p, orbital: z y

If application of a symmetry X

operation does not change the total
energy but interconverts two orbitals,
what can we say about the energies
of the two orbitals?
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They must be identical, i.e. degenerate.

We will be seeing that the p, and p, orbitals both belong to
the same DEGENERATE REPRESENTATION of Cy,
and this indicates directly that the two orbitals are degener-
ate. So far we have only been looking at non-degenerate
representations — hence the title of the programme.

Are the py and py orbitals degenerate in C,, symmetry? Look
at a C,, character table to see the representations to which x
and y belong.

3.33

The two orbitals are not degenerate in C,, because x belongs
to By and y to B,.

In this case they belong to different representations, and we
can tell from symmetry alone that p, and py are of different
energy in a C,, molecule. This can be seen readily for the
water molecule because one orbital is largely in the molecular
plane, and the other is out of it. Their energies will therefore
be affected to a different extent by the two hydrogen atoms:

(7 s
0 Lo

Symmetry alone will never tell us the extent of any energy
split, it will only tell us if the energy difference is precisely
zero (px and py in Cy,) or not zero (py and py in Cy,). In the
same way we can use symmetry to find if a spectroscopic
transition has a finite probability (is allowed) or has a pre-
cisely zero probability (is forbidden). Symmetry will not tell
us the intensity of the transition, i.e. it will not tell us the
actual value of the probability, only that it is or is not zero.

You should now be able to form a simple non degenerate
representation to describe the effect of the symmetry opera-
tions of a group on a direction such as x, and you should be
able to reduce a reducible representation to its component
irreducible representations. The importance of being able to
reduce a reducible representation cannot be over emphasised.
There now follows a short test to show you how well you can
form simple representations and reduce less simple ones.
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Non-degenerate Representations Test

The C,, character table is, in part:

Cn | E G i o
A, 1 1 1 1
B, | 1 —I 1 -1
A, |1 1 -1 -1
B, S (R 1

Taking the C, axis as the z axis, and oy, to be the xy plane, to
what representations do X, y, and z belong in C,;, symmetry?

To what representations do the d
belong in Cy, symmetry?

xy» dy, and dy, orbitals

Reduce the following reducible representations:

C2h ‘ E C2 1 Op
Iy | 80 6 2
T, | 3 1 -3 1

Tys | 17 3 13 1
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Answers
la x belongs to B, 1 mark
y belongs to B, 1 mark
z belongs to A, 1 mark
b Xy belongs to A, 1 mark
xz belongs to B, 1 mark
yz belongs to B, 1 mark
2. I'yp =4A, + 3B, + B, 1 mark
', =2A,+B, 1 mark
', =2A,+2E 1 mark
I';=A+2A,+3E 1 mark
F14 = 2B1 + B2 1 mark
F15 = 2A1 + 8A2 + 7B2 1 mark

Total 12 marks

Before you proceed to the next programme you should have
obtained at least:

Question 1 (objective 1) 3/6 (Frames 3.2-3.16)
Question 2 (objective 2) 5/6 (Frames 3.17-3.24)

If you have not obtained this score on question 2 in parti-
cular, you would be well advised to return to the frames
shown. Ask somebody to construct some reducible represen-
tations for you (by adding irreducible representations), and
practice the use of the reduction formula until you have
mastered it.
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Revision Notes

The symmetry operations of a group can be represented by sets of
numbers termed irreducible representations which:

1. represent the effect of the group operations on certain direc-
tional properties e.g. x xz R, etc.
il. multiply together in the same way as the group operations.

The use of group theory frequently involves producing a reducible
representation which is the sum of a number of the irreducible repre-
sentations in the character table. This reducible representation then
has to be reduced to its component irreducible representations either
by inspection or by using the reduction formula:

Number of times an

. . . 1
irreducible representation =— E XR X X1 X N
) ) h
occurs in the reducible over all
. classes
representation

where h = the order of the group (= number of operations in
the group)
xr = character of the reducible representation
X1 = character of the irreducible representation
N = number of symmetry operations in the class

In some point groups (those with proper axes of order greater than 2),
a symmetry operation causes two directional properties to mix. These
directional properties must then be degenerate, and the operation
must be represented by a matrix, termed a degenerate representation.
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Matrices

Objectives

After completing this programme you should be able to:

Combine two matrices.
2. Set up a matrix to perform a given transformation.

3. Find the character of a matrix representing a symmetry
operation, using any given basis.

All three objectives are tested at the end of the programme.
Assumed Knowledge

You should be able to plot a point, or visualise how it is plotted, in
three dimensions, i.e. given X, y and z co-ordinates.
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Matrices
4.1 We left the previous programme on representations at the

point where a symmetry operation had the effect of inter-
converting x and y. Such an operation cannot be represented
by a single number, but we shall see in this programme that
the operation can easily be represented by a matrix. The
programme will not go deeply into the subject of matrix
algebra but it will be necessary to learn how to combine
two matrices so that the effect of two successive symmetry
operations can be represented in matrix form.

A matrix is an array of numbers enclosed within either
square or rounded brackets, e.g.

1 4 7
1 0
—6 3 or
0 -1
8 0 5

Each number is termed an element of the matrix.

These are examples of square matrices because the number of
columns equals the number of rows in each case, but a matrix
may have any number of columns or rows.

A matrix, unlike a determinant, does not have a numerical
value — its use is in the effect it has on another matrix which
can represent a point or a direction.

Write down a one column matrix to represent the co-
ordinates of the point (3, 1,2)ie.x=3y=1z=2.

4.2

or
2 2

This column matrix represents either the co-ordinates (3, 1, 2)
or a line (vector) starting at the origin and finishing at (3, 1, 2).
We shall be looking at the effect of rotating this line about
the z axis, and the way in which matrices can represent the
rotations.

Write down a row matrix representing the vector from the
origin to (3, 1, 2).
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G 1 2

Note that the matrix has no commas, unlike the set of co-
ordinates. 3 3

If we can convert our matrix | 1 | to the matrix | —1 | we
2 2

shall have changed our line to one pointing from the origin to
the point (—3, —1 2). Looking down the z axis, our original
column matrix represents the line OA:

-3
-1
2

4.4

The line OA’ can be obtained from OA by rotating OA by
half a turn about the z axis. Thus whatever it is that changes

3 =3

the matrix | 1 | to | —1 | can be said to represent the
2 2

operation of rotation by half a turn about the z axis.

Draw the line OA” obtained by rotating OA by } turn (clock-
wise) about the z axis.

4.5

What is the value of the new x co-ordinate?
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1 i.e. the new x co-ordinate is the same as the old y co-ordinate.
What is the value of the new y co-ordinate?

4.7

—3 i.e. the new y co-ordinate is minus the old x co-ordinate.
What, then, is the matrix representing OA"?

4.8

1

-3

2
We can make this more general by saying that the new x co-
ordinate equals the original y, the new y co-ordinate equals

minus the original x and the z co-ordinate is left alone. The
new co-ordinates are therefore (y, —x, z).

Write down the matrix representing the general set of new
co-ordinates.

4.9

y
—X
z

Thus in the general case, the operation of a }—1 turn rotation

X y
can be represented by a matrix M where M| yv | = | —x
z z

The matrix M is then a representation of the C, rotation in
the same way as we used +1 and —1 as representations in the
previous programme.

The equation above raises two questions which will now be
examined:

a. How can matrices be combined?
b. How can a matrix like M be set up?

Matrices can be combined or multiplied provided the two
matrices are conformable. Two matrices (x) and (y) are con-
formable if the number of columns in (x) is equal to the
number of rows in (y).

a b ¢
Write down a suitable matrix (y) if matrix (x) is (d f)
e
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4.10 g h
1] or any other 3-row matrix.
k 1
The product of any two matrices is easily formed by remem-
bering the letters R C. An element in the rth row and the cth
column of the product is formed by multiplying together the
elements from the rth row of matrix 1 and the cth column of
matrix 2 and summing the products, e.g.
r s t
a b c A B C
u v ow|=
d e f D E F
X y z
Note that the product matrix has two rows (the same as the
first matrix) and three columns (the same as the second
matrix). This result is quite general.
The value of the element A which is in Row 1 and Column 1
of the product is obtained by working along Row 1 of the
first matrix, down Column 1 of the second; and summing the
products.
Row 1 of st matrix
A= (a'xr)+ (bxu)+{cxx)
Column 1 of 2nd matrix.
What is the value of element D in Row 2, Column 1 of the
product?
4.11 Row 2 of 1st matrix
D= (d xr)+ (e xu)+ (f xx)
Column 1 of 2nd matrix
What is the value of element E?
412 E=(dxs)+(exv)+(fxy)

You should now be able to write down the whole of the
product matrix.
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4.13 ar+bu+cx as+bv4cy at+bwtcz
Product =
dr+eu+fx ds+ev+fy dt+ew+1z
Now a simple numerical example:
1 2 5 6 T\
3 4 8§ 9 10/
Row 1 of 1st matrix
7N
(Ix542%x8 1x6+2x9 1x7+2x10)
/ /
Column 3 of 2nd matrix
Complete the second row of this matrix.
4.14 21 24 27
3x54+4x8 3x6+4x9 3xT+4x10
21 24 27
= Row 2 of Ist  Column 3 of 2nd
47 54 61
1 2 1 1
Calculate the product:
3 4 2 2
4.15 5 5
< 11 11 >
Now try them the other way round:
11 12\
2 2 3.4)
4.16

8

This is quite common. If the order of multiplication is impor-
tant, the matrices are said not to commute. In some cases the
order of the matrices does not affect the result, in which case
they do commute or are commutative matrices.

One clear case of non 1
commutation occurs with the matrices | 2 | and 3 2 1)

3

4 6
( 12) i.e. the order of multiplication affects the result.
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Remember that the product has the same number of rows
as the first matrix and the same number of columns as
the second. How many rows and columns are there in the
product:

1
2| 3 2 1y
3

4.17

3 rows (same as 1st matrix).
3 columns (same as 2nd matrix).

When evaluating this product, there is only one element in
each row of matrix 1 and only one element in each column of
matrix 2, so no addition is necessary.

1
Evaluate | 2 3 2 1
3

4.18

321
6 4 2
9 6 3 |

Now try them the other way round: (3 2 1) 2
3

How may rows and columns will the product have?

4.19

1 row and 1 column, i.e. it will be a single number.

[N

Evaluate 3 2 1)

4.20

3x1+2x2+1x3)=(10)
Evaluate the product:

010 3
-1 0 0 1
0 0 1 2
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4.21 1
-3
2
010
i.e. the matrix -1 0 0 represents one of the
0 0 1

operations on the line OA. Which one? (see frame 4.5)

422 Clockwise rotation by § turn about z i.e. OA becomes OA":

Evaluate the product: y A
0 1 0 X X
-1 0 0 y
0 0 1 z
AU
4.23 y
—X
z

i.e. our matrix converts x to y, and y to —x in any general
case. It is therefore a quite general representation of the
% turn operation, and is not specific to the set of co-ordinates

(3, 1, 2).
Evaluate the products:
-1 0 0 3 -1 0 0 X
0 -1 0 1 and 0 -1 0 y
0 0 1 2 0 0 1 z
4.24 -3 —X
—1 and -y
2 Z
-1 0 0
i.e. the matrix 0 -1 0 | is a general representation
0 0 1

of an operation on OA. Which operation?
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4.25 Rotation by half a turn about z.
We will now turn to the second question raised in frame 4.9,
namely how can we generate a matrix which will perform the
X
required operation on | y |? This is very simple if we write
z
in symbolic form the statements:
“New x becomes —1 x old x + zero times old y + zero x old z”
or: X = —1x 4+ 0y + 0z etc.
For the % turn operation, the full set of equations is:
x=(-x+ 0y+0z
y= 0x+(-1)y+0z
z= 0x + Oy+ 1z
And the matrix can be written down by inspection as
-1 0 0
0 -1 0
0 o0 1
For a clockwise rotation of% of a turn about the z axis, the
new x co-ordinate is the same as the old y co-ordinate. Work
out the values of the new y and z co-ordinates and write out
the equations for the rotation.
4.26 x= 0x+1ly+0z
y=—1x+0y+0z
z= 0x+4+0y+1z
Work out the effect on the x, y and z co-ordinates of reflec-
tion in the xy plane, and hence write out the set of equations
for this reflection operation.
4.27 x= x+0y+ 0z

y= 0x+1y+ 0z
z= 0x+0y+ —1z

Because the reflection changes the sign of z, but leaves x and
y unchanged.

What is the corresponding matrix?
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4.28 1 0 0
0 1 0
0 0 -1
Write out the full matrix equation showing the operation of
reflection in the xy plane on the point (x, y, z).
4.29 1 0 o0
0 1 0 = y
0 0 -1 zZ -z
Matrix algebra is a fairly complex subject but it is not neces-
sary to go into it in great detail for our present purposes. We
shall, however, be making use of some of the results which
come from a study of matrix algebra and many of these
results can be expressed in terms of the character of a square
matrix. The character (sometimes called the trace) of a
square matrix is simply the sum of the diagonal elements
from top left to bottom right.
What is the character of:
1 0 0
1 0 -1 0 -1 0
0 1 0] and and and
0 -1 -2 -1 0 -1
0 0 -1
4.30 1 0o -2 =2

Express the following transformation in matrix form, and
work out the character of the matrix:

X:@+__ly
2 2
1x \/§y

2 2
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431 V3
V31
i.e. the matrix is 2 2 and the character is
1 V3
V3 V3 2l
3 3
Y2, V23
2 * 2 V3
It should be clear that the character is dependent only on the
two terms v/3 /2 which express the extent to which x is con-
verted to itself and y is converted to itself in the original two
equations. This result is very important and will allow us to
greatly simplify much of the routine application of group
theory.
Use this result to write down the character of the matrix
representing the transformation:
a=2a—+ .cooouun. + 10d
b=..4+6b+...
cC= . —4c+ ........
d= ... + 3d
4.32 Character = 7

=246—-4+3 ie.itdepends only on the extent
to which a is converted to a,
b to b, etc.

We have so far used cartesian co-ordinates to generate
matrices representing operations, but we can use other
terms e.g. we can represent the operation of a half turn rota-
tion on the O-H bonds of water as:

q 1/Zturn((:z)
/O\

!

H’ becomes Hie. new H =0 xold H + 1 x old H
H becomes H' etc.

(1) =)

What is the matrix M representing the transformation?
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4.33 <O 1 )
1 0
. 0 1 H’ H
1.€. =
1 0 H H'

We say that the O—H bonds have been used as a basis for a
representation of the rotation.

Use the small arrows shown as a basis for the same half turn

rotation.
',')C2 Hint:
B 0O The positive direction
ﬁ/ \ﬁ of the arrows is upwards.
4.34 < 0 —1)
-1 0
i.e. new a; = —old a, (pointing the other way)
new a, = —old a,

0 -1 a| . —d)
-1 0 a) N —a)
Use a; and a, as a basis for a representation of a reflection in
the molecular plane.

R
(-

What is the character of this representation of reflection?
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Character = -2

When considering molecular vibrations it is necessary to
work out the cartesian representation by using the x, y and
z directions on each atom as a basis. This basis for the water
molecule, looks like:

2

ZT /Yz

Z O—x

T / \ The molecular plane
v, 'y Y3 is the xz plane.
Hi:x1 H i: X;

If we apply a % turn rotation about z,, then the new x; equals
—X3, the new y; equals —y;, the new z; equals z;3 etc.

The half turn rotation will be represented by a 9 x 9 matrix
which carries out all these transformations i.e.

X —X3
Y1 Y3
Al Z3
X2
M|y, | =] etc
Z
X3
Y3
Z3

What is the character of the 9 x 9 matrix M? If you can work
this out by using the important simplification in frame 4.31
then do so. The answer gives the full matrix equation for the
transformation.
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Character = —1.

The arrows on hydrogen are completely moved, and contri-
bute nothing to the character.

X, and y, are reversed and contribute —1 each.
7, is unaffected and contributes +1.

The full equation is:

00 00 0 0-1 0 0\ /x X3
00 0 0 0 0 0-1 0]y, —ys
00 0 0 0 0 0 0 1f]z +2
00 0-1 0 0 0 0 0f]x —X,
00 0 0-1 00 0 0f|ly,|=]-v
00 0 0 0 1 00 0f]z +25

1 0 0 0 0 0 0 0 0f]x —x,
0-1 0 0 0 0 0 0 0f]y, ~y
00 1 00 0 0 0 0/ \z +z7;

It is clearly an advantage not to have to write out the whole
matrix if at all possible!

The number of possible representations of an operation is
clearly very large, and depends only on our ingenuity in
devising bases to generate representations.

Generate a representation of the two fold rotation, using the
four arrows shown as the basis:

The full matrix equation is
a3, ) & shown in the answer.
; 4
P iy (N.B. a, and aj are perpen-
H . H dicular to the plane, a; and
/) 1/2 turn rotation a4 are in lt)
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4.38 Character = 0 (all four arrows are shifted by the operation)
0 0 0 1 a dy
0 0 -1 0 d) —ajz
= Character =0
0 -1 0 0 as —ay
1 0 0 o0 ay a
Use the same four arrows as the basis of a representation
of the operation of reflection in the plane of the molecule.
Write out the matrix equation and find the character of the
representation.
4.39 1 0 0 0 a a
0 -1 0 O a —a
S - : Character =0
0 0 -1 0 as —ajz
0 0 0 1 dy dy

You should now be able to:

i.  Combine two matrices.

ii.  Set up a matrix to perform a certain transformation.

iii. Find the character of a matrix representing an opera-
tion, using any given basis.

All of these are important in the application of molecular
symmetry to a wide range of problems.

The following test should show you how much you have
learned about matrices.
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Matrices Test
1. What is meant by the statement “Two matrices (A) and (B)
commute’”?
) 1 2 0 2
2. Show whether or not the matrices and
commute 0 1 20
a b
3. Which of the following can be combined with | ¢ d
e f
1 4
1 2 3 4
A) D)|2 5
56 7 8
36
1 5
2 6 1 2
B) E)
3 7 3 4
4 8
1 23
©)
4 5 6
4. Combine the following matrices:
1 0o 2 2 1 4
A) | 4 1 -3 3 0 6]|=
2 3 0 0 -1 2
2 00 X
Byl 0 0 y | =
0 0 4 z
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Set up the matrices which will perform the following trans-
formations:

v e (2)

X X
B) ( ) to <y> (i.e. leave the original unchanged)

y

X —V2y
Oly]| to V2y

z —X

X -y
D) |y to X

z -z

Write down the character of each of the matrices derived in
question 5.

Use the following diagrams for questions 7, 8 and 9:

Ry,
2 turn
1/4 turn

(N
X 1/2 tum

basis: a, to a, basis: a, to a

- 1/4 turn

Write down the characters of the matrices representing the
quarter turn rotation, using the bases A and B shown.

Write down the characters of the matrices representing the
operation of reflection in the xy plane, using the bases shown.

Write down the characters of the matrices representing the
half turn rotation about the x axis using the bases shown.
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Answers

L (A)(B) = (B)(A) 1 mark
: <(1) T)(g i)(g 3) 2 marks
(0 2)(0 )= (52 e do motcommur

3. Any matrix with two rows, i.e. A, 1 mark
C, 1 mark
E. 1 mark
2 -1 8
4 A | 11 7 16 1 mark
13 2 26
2x
B) X 1 mark
4z
22 42
O) 1 mark
32 56
0 -1
5 A) ( ) 1 mark
-1 0
1 0
B) 1 mark
0 1
0 —vV2 0
O) 0 V2 0 1 mark
-1 0 0
0 -1 0
D) |1 0 0 1 mark
0 0 -1
6. A 0 1 mark
B 2
C V2
D -1
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7 A 0 1 mark
B 0 1 mark
8 A 4 1 mark
B 0 1 mark
9 A 2 1 mark
B -4 1 mark

Total = 20 marks

In order to proceed to the next programme you should have obtained
at least:

Question 4 (objective 1) 2/3 (Frames 4.9-4.23)
Question 5 (objective 2) 3/4 (Frames 4.20—4.29)
Question 6 (objective 3) 1/1 (Frame 4.29)
Question 7 (objective 3)

Question 8 (objective 3) p 5/6 (Frames 4.29-4.39)
Question 9 (objective 3)

If you have obtained less than these scores you should return to
the frames shown and ask somebody to set you some questions com-
parable to those you got wrong.



84 Programme 4

Matrices

Revision Notes

A matrix is an array of numbers, containing any number of rows and
any number of columns. Unlike a determinant, it does not have a
numerical value.

Two matrices (X) and (Y) can be combined in that order if the
number of columns in (X) equals the number of rows in (Y). If this
condition holds, the matrices are said to be conformable.

Combination of matrices is effected by working along the rows of the
first matrix and down the columns of the second. An element in the
rth row and the cth column of the product is formed by multiplying
together the elements from the rth row of the first matrix and the cth
column of the second and summing the products, e.g.

(1 4> 23 B I x24+4%x5 1x34+4x7 B 22 31
6 8)\5 7) \6x2+8x5 6x3+8x7) \52 74
A symmetry (or other) operation converts a set of vectors into a new
set of vectors. If the original and the new set are written as column

matrices, the operation can be represented by the square matrix
which interconverts the two.

The character of a square matrix is the sum of the numbers on its
principal diagonal.

For a matrix representing an operation the character is equal to the
extent to which the basis vectors are converted to themselves by the
operation (N.B. this may be a negative extent if directions are
reversed.)



Programme 5

Degenerate Representations

Objective

After completing this programme you should be able to find the
characters of a set of representations generated by using a set of
degenerate vectors as a basis.

This objective is tested at the end of the programme.

Assumed Knowledge

A knowledge of the contents of the earlier programmes is assumed.

Note

This programme is the last one before the ones which deal with the
applications of molecular symmetry. In many ways it seeks to link
together the contents of the earlier programmes rather than to intro-
duce radically new material.
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Degenerate Representations

5.1 What are the point groups of the following?
O\ /O -
A. CH; B. Benzene C. cC—C D. CHCl;
O/ \O
5.2 A. Ty
B. D¢, (Programme 2)
C. Dy,
D. GCs,
The character table for the C,, point group is (in part):
Cun | E G i on(xy)
A, 1 1 1 1
B, 1 -1 1 -1 N.B. z is vertical
A, 1 1 -1 -1
B, 1 -1 -1 1
Decide whether the x direction is symmetric or antisymmetric
to the four group operations, and hence decide the symmetry
species to which x belongs.
5.3 Symmetric to E and o(xy)

Antisymmetric to C, and i

". x belongs to the B, representation (Programme 3).
Use the four arrows shown as a basis for generating a matrix
to represent the operations i, o(xy) and C,(x) on the oxalate
ion.
Find the character of each matrix.

0«1  &*0
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1: 001 0 a as i.e. new a; = old
000 1]|]a a, | 2 cte
= Character = 0
1 0 0 0 a3 a
0 1 00 dy d)
o(xy): (1 0 0 0\ [ a
01 00 a, a, Ch ) 4
001 0 o |~ 0 aracter =
0 0 0 1 ay ay
Cz(X): 0 1 0 O a ay
1 0 0 O a
) K = : Character =0
000 a3 4 (Programme 4)
0 01 0 ay a3

If you have got these questions substantially correct, you can
proceed with this programme; if not, you should return to
the appropriate earlier programme to make good any defi-
ciency.

We left the programme on non-degenerate representations at
the point where we were considering the species to which x
and y belonged in Cg4, symmetry.

If we take the ion:

z

)

+

4) ) y
H,N NH;

C
|
P | /
Co
e @
H,N NH

| 3
Br \X

which has C4, symmetry, and consider the effect of the group
operations on a directional property such as a vector in the x
direction, we find that x and y are interconverted by some of
the group operations.

The group operations are E, 2C,;, C, (= Cﬁ), 20,, 204,
where each o, includes either the x or y axis and each o4 lies
between the axes. Which of the operations cause “mixing’” of
arrows along the x and y directions?
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5.5 2C4, ZUd
What effect does a clockwise C4 have on the NH3 molecules
on the x and y axes?
5.6 new ‘x — NHsy’ = old ‘y — NHsy* (NH; numbered (1))
new ‘y — NHy’ = —old ‘x — NH3> (NH3; numbered (4))
What about an anticlockwise C4? (This is the same as C3.)
5.7 new ‘x — NH3’ = —old ‘y — NH3> NH; (3)
new ‘y — NH3’ = old ‘x — NH3’ NH3 (2)
Write down the two matrices which represent these two
transformations.
What are their characters?
5.8

Cy: 0 1\/x y

-1 0 y =

0 -1 X\ [-y

1 0 y B X
Character = 0 in both cases
You should now realise why we use the term CHARACTER
TABLE. The numbers are the CHARACTERS of the
matrices which represent the group operations. In our simple
examples of non-degenerate representations the matrices
were all single numbers and the number was the same as
the character of the matrix. Many of the theorems of
Group Theory only involve the characters of the matrix
representations of operations, so these are all that are
included in the character table. Operations are grouped
together in classes because all operations in the same class
can be represented by matrices of the same character. (For a
treatment of classes see Programme 2, frames 2.35-2.40.)

Use the x and y directions as a basis for representations of
the two reflections o4 Use the following convention:

(z is vertical)
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o4 0 1 new x =old y
1 0 new y = old x

oy’ 0 —1> new x = —old y
-1 0 new y = —old x
In both cases the character is zero. This does not prove that

the two operations are in the same class, but if they are in the
same class, the characters of the two matrices must be equal.

Construct the matrices to represent the two o, operations,
o(xz) and o(yz)

5.10

o(xz): 1 0 o(yz): -1 0
(0 —1> ( 0 1)

In both cases the character is zero, but the o, operations are
not in the same class as the o4 operations because there are
other representations where they have different characters.

What effect does the operation C4 have on the total energy of
a C4, molecule?

5.11

None at all. It is a symmetry operation, so leaves the mole-
cule indistinguishable.

We have seen that directional properties along x and y are
interconverted by C4 (e.g. px and py orbitals), so what can we
say about the relative energies of py and p, orbitals if they
can be interconverted by a symmetry operation?

5.12

They must be identical, i.e., degenerate.

This was just a short reminder of something we have met
already, and is the reason why the representation to which
x and y both belong in Cg4, is termed a DEGENERATE
REPRESENTATION.

Use the transformation properties of the x and y axes to
construct the matrices which represent all the operations of
the C4, group, namely

E. Ci Ci G (=C), o(x2). o(y2), o, and o
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Programme 5

E Cy C, O’V(XZ) 0d
1 0 0 1 —1 0 1 0 0 1
o ) o) o )G ) o)

Ci oy(yz) o4

0 -1 -1 0 0 -1

1 0 0 1 -1 0
Write down the group operations, and under each operation
write the character of the matrix representing the operation.

The result should be a row of the Cy4, character table, i.e. the
species to which both x and y belong.

5.14

E 2Cy G, 20, 20y (Note the grouping
2 0 -2 0 0 into classes.)

This is labelled the E representation (do not confuse it with
the identity element). We can now think a little about the
meaning of some of the labels used for symmetry species — A
and B both refer to 1-degenerate representations, E to a 2-
degenerate representation, where e.g., x and y are mixed, and
T refers to a 3-degenerate representation where e.g., X, y and
z are all mixed.

The matrix representing the identity must combine with
another matrix to leave it unchanged. For a 1-degenerate
representation the identity matrix is (1) i.e., (1) (x)=(X).
What is the square matrix (M) which represents the identity
in a 2-degenerate representation? i.e., (M) (;) = (;) What is
its character?

5.15

(M) = ((1) ?) character:Zi.e.((l) ?)(?) = (i)

What is the identity matrix in a 3-degenerate representation?
What is its character?
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) character = 3
0
1
0

S O =

0
1
0

|

We now have a quick and easy way of finding the degeneracy
of a representation directly from the character table. Can you
see what it is?

[
oS O
>
I
>

—_
N <
N

5.17

The degeneracy equals the character of the matrix represent-
ing the identity.

In the Cy4, character table, x, y, xz, yz, rotation about x and
rotation about y all belong to the E representation. They are
not all mixed, however, by the group operations (we can
obviously not mix an x direction with a rotation). In the
character table, therefore, they are grouped together in
brackets according to the way they mix, e.g.

C4v E 2C4 C2 2O'V 20'd

E \2 0 20 0 (x, )Ry, Ry)(xz, yz)

This tells us that xz and yz are degenerate with each other in
this symmetry, but not with x or y which are, however,
degenerate with each other.

In frames 5.2 and 5.3 we saw that x belongs to the B, repre-
sentation of Cyy,.

Decide whether the y direction is symmetric or antisymmetric
to the four group operations of C,, and hence decide the
symmetry species to which y belongs.

5.18

Byie. Ey =y

Cy =-y

iy =-y

oxy)y=y
Thus x and y both belong to the same representation of Cy;,.
Does this necessarily mean they are degenerate?
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5.19 No, because the group operations do not interconvert x and
y, they merely happen to belong to the same representation.
This sort of thing happens a lot because there are many
directional properties, but only a limited number of irredu-
cible representations. In the character table for C,, x and y
are put on the same line but are not bracketed together e.g.
C2h E C2 1 Op
B, 1 -1 -1 1 X,y
Let us now return to our matrix representations of Cg4,. We
have seen in an earlier programme that representations are
called representations for two reasons:

i. They represent the effect of the group operations on
certain directional properties.

ii. Can you remember the second reason (about combina-
tion)?

5.20 They combine together in the same way as the group opera-
tions. Let us check this for a few of the operations of Cy,.

What is the effect of applying C,4 clockwise about z, followed
by o4 on the point A? (Call the new point A’, and decide
which single operation would take A to A’))

(z is vertical)

5.21

() =G
(2) = o4

A is taken to A’ by o(yz) i.e. 04C4 = o(yz) (remember we write 04C,4
to mean C, followed by o4). Multiply together the two matrices (see
frame 5.13) representing C4 and o4 in the order 04Cy to see if they
give the matrix representing o(yz).
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5.22
0 1 0 1\ /-10
1 o)\-1 0/ \ 0 1
J4 C4 = U(yZ)
Do C4 and o4 commute?
5.22A. If they commute, then 04C4 = C404 remember?
5.23 They do not commute,
(1) =04
2) =C4
C40’d = O’(XZ)
Does this agree with the matrix representation?
5.24 Of course,
0 1 0 1\ /1 0
-1 0/\1 0) \0o -1
Cy oqg =o0(xz)

Try the same thing for the two operations C; and o(yz).
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SRR CHE

o(yz) C<31 = 04 Ci o(yz) = g4
y y
1y A d

@

’
5 A X

(1)=GCj
(2) = a(yz)

You could, if you wish, set up the whole 8 x 8 multiplication
table for the group, using the E representation, but it is not
really worth it — the representation is a genuine one, and any
combination of symmetry operations is paralleled by the
corresponding combination of matrices, taken in the correct
order.

What is the point group of the molecule CH,4?

5.26

Ty, the tetrahedral group. Find its character table in the
book of tables. Let us set up a representation of T4 using
as a basis the four C—H bonds of methane:

Ho

.
/ \\H(z)

Hw Ho

What is the order of the T4 group?

5.26A

The order is the number of operations in the group, remem-
ber? Now count them up, using the character table.




Degenerate Representations 95

5.27 24
A complete set of representations will therefore consist of
twenty four 4 x 4 matrices. This is a bit much but we can
simplify the problem in two ways.
What property of a square matrix can we often use instead of
the full matrix?
5.28 Its character.
The eight C;5 operations are all in the same class. What does
this tell you about the characters of all the eight matrices
representing the C; operations?
5.29 The characters are all the same, because all eight operations
are in the same class.
We need, therefore, consider only one representative opera-
tion in each class. Let us take the clockwise rotation about
bond 1. What effect does this have on each bond? i.e. what
bond moves to position (4) to become the new bond (4) etc.?
5.30 New bond 1 = old bond 1
New bond 2 = old bond 3
New bond 3 = old bond 4
New bond 4 = old bond 2
Write this in matrix form and find the character.
5.31 1 0 0 0\ /B, B,
0 01 0 B, B;
= Character = 1
0 0 01 B; B,
01 00 By B,

Can you remember a quick way to find the character of such
a matrix from the information in frame 5.30 above?
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The character equals the number of bonds unshifted by the
operation, i.e., the character is only influenced by the extent
to which a bond is transformed to itself. This is the second of
our simplifications.

How many bonds are unshifted by:

1. The identity?
ii. One of the three C, operations?

H H

N1/

5.33

i. Four
ii None

Hence what are the characters of the representations of E
and C, using the four-bond basis?

5.34

4 and 0 respectively.

We have already seen that the character of the matrix
representing Cs is 1. How many bonds are left unshifted by:

i. One of the six S; operations (S, axis is colinear with
Cy)?

ii. One of the six planes (the plane of the paper in frame
5.32 above)?

Hence complete the representation:

’ E 8C3 3C2 6S4 60'd
4

r, | 1 0
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’ E 8C3 3C2 6S4 60'd
4

r, | 1 0 0 2

Is this a representation in the T4 character table?

5.36

No. It is a reducible representation (strictly a set of
characters of a reducible representation).

Reduce it, then, using the Ty character table.

5.37

I' = Ay + T, (Programme 3)

If we look at the character table, we can see that the py, py
and p, orbitals belong to T,. Which orbital do you think
belongs to the totally symmetric representation A, i.e.,
what type of orbital is unaffected by any symmetry opera-
tion?

5.38

An s orbital which is spherically symmetrical and hence sym-
metric to all operations of any group.

We have found that our reducible representation contains
the irreducible representations to which s and the three p
orbitals belong. Thus if we combine an s and three p orbitals,
we will get a set of hybrid orbitals pointing towards the
corners of a tetrahedron, i.e., an sp3 set is a set of tetrahedral
hybrids — symmetry theory is producing results at last!

The set of p orbitals is not the only set belonging to T,. What
is the other set?

5.39

The d orbitals dyy dy, dy,

Thus from symmetry alone we cannot distinguish a set of sp”
hybrids from a set of sd® hybrids. This is another example of
how symmetry will give us so much information but no
more. We need further calculations to tell us that sp® hybrids
are likely to be important in CH,, but sd* hybrids are likely
to be more important in MnOy .
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This programme has been partly a linking together of a lot of
the previous work, but you should also be able to find the
characters of a set of representations generated by using a set
of degenerate vectors as a basis. The following test will show
you how well you have learned this.
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Degenerate Representations Test

1. A.
B.
2 A.
B.
3 A.
B.
4 A.
B.

Write out the characters of the representation of Cyy
using x and anything degenerate with x as basis. The
group operations are given below, all axes are vertical
and colinear,

E Cy Cx(=CS) C° i S o4 S4
With what, if anything, is x degenerate?

As question 1A using a d,, orbital and anything degen-
erate with it as basis.
With what, if anything, is d,, degenerate?

As question 1A using x and anything degenerate with it
as a basis for Dy,. The group operations are:

E 2C4 C2 2C2/ ZCZN i 2S4 Oh 20’V 20'd
(2C4, C, and 28, are vertical. 2C,” and 20, include an x
or y axis 2C,” and 204 lie between the x and y axes).

With what, if anything, is x degenerate?

As question 1A using a d,, orbital and anything degen-
erate with it as a basis for Dy,
With what, if anything, is d,, degenerate?
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Answers

One mark for each underlined answer you get right.

E C4 C2 C43 1 S43 Op S4
LA, 2 0 =20 =2 0 2 0
2A. 2 0 =20 2 0 =20
1.B. y — I mark
2.B. yz — I mark

E 2C4 C2 2C2/ 2C2// 1 2S4 Op 20'v 20’d
3A. 2 0 =20 0 =2 0 2 0 0
4A. 2 0 =20 0 2 0 =2 0 0
3.B. y — I mark
4.B. yz — I mark

Total 40 marks

The test score on this programme is very much less critical than the
others, but a score below 30 indicates that you have not really under-
stood the material very well. The average score of the students who
tested the programme before publication of the first edition was 36.



Degenerate Representations 101

Degenerate Representations

Revision Notes

If a group includes a proper axis with an order of 3 or more, the
application of some symmetry operations causes one directional
property to be converted to another. If there is an energy associated
with the directional properties, e.g. the energy of ps and p, orbitals,
these energies must be identical, i.e. symmetry tells us directly that
two directional properties which are mixed by symmetry must be
degenerate.

If two directional properties are mixed by symmetry operations, the
operations can only be represented by matrices, whose character
appears in the character table. The directional properties mixed by
symmetry operations are bracketed together in the character table,

e.g. (x,y); (xz, yz) etc.

The degeneracy of a degenerate representation is equal to the char-
acter of the identity matrix.

One-degenerate representations are labelled A or B.
Two-degenerate representations are labelled E.
Three-degenerate representations are labelled T.



Programme 6

Applications to Chemical
Bonding

Objectives

After completing this programme you should be able to:

1. Find sets of hybrid orbitals with given directional properties.
2. Determine the orbitals suitable for m-bonding in a molecule.
3. Find the symmetries of LCAO molecular orbitals.

4. Construct simple MO correlation diagrams.

All four objectives are tested at the end of the programme.

Assumed Knowledge

A knowledge of the contents of Programmes 1-5 is assumed.
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Applications to Chemical Bonding

6.1

If you have worked through, and understood, the five
preceding programmes on Group Theory, you should now
be ready to tackle either of the programmes on applications.
If not, you should go back and be sure you understand the
theory before trying to apply it.

We will look at four applications of Group Theory in this
programme:

i.  Construction of hybrid orbitals (frames 6.2—6.10).

ii. Finding orbitals suitable for w-bonding (frames 6.10—
6.17).

iii. Determination of the symmetry of LCAO molecular
orbitals (frames 6.17—6.22).

iv. Construction of qualitative molecular orbital correla-
tion diagrams (frames 6.22-6.36).

(A dashed line separates each section of the programme.)

In most cases the use of Group Theory can be summarised in
three rules:

i.  Use an appropriate basis to generate a reducible repre-
sentation of the point group.

il.  Reduce this representation to its constituent irreducible
representations.

iii.  Interpret the results.

(The construction of correlation diagrams is a little more
complicated than this.)

Do you understand all the italicised terms in the above rules?

6.2

If there are any of these terms you do not understand, return
to the appropriate earlier programme:

Basis: Programme 4 frames 4.33-4.39.

Reducible Representation: Programme 3 frames 3.17-3.25.
Point Group: Programme 2 frames 2.1-2.24.

Reduce: Programme 3 frames 3.18-3.25.

Irreducible Representation: Programmes 3 and 5.
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We will start with the construction of a set of hybrid orbitals.
We have already seen in the previous programme (frames
5.26-5.39) how to do this for a tetrahedral set, so for this
example we will use a trigonal plane shape, and find which
orbitals can be hybridised to produce a set of three trigonal
planar o bonds.

What is the point group whose character table we shall need
to use?

6.3 D3y, the point group of a trigonal planar molecule like BCl;.
What set of vectors could represent a set of trigonal planar
bonds?

6.4 A set of three vectors as follows:

4,
a{)\ a,

We can use this set of vectors as a basis to generate a redu-
cible representation of the Ds;, point group.

The operations of D5y, are:
E 2C'; 3C2 Oh 2S3 30'v
Can you remember the simple way of finding the character of
a matrix representing a particular operation?

6.5 The character equals the extent to which the vectors are
transformed to themselves, or in this simple case the number
of vectors unshifted by the operation.

Use this simplification to write down the characters of the
representations of E, C; and C,. The answer gives the char-
acters and the full matrix equations.

6.6 E, Character =3 1 00 a; a;

01 0 ) = )
0 0 1 as aj
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0 1 0 a; a,
Cjs, (clockwise), x =01 0 0 1 a | = | a;
1 0 0 az ap
1 0 0 a; a;
C,, (through a;), x =110 0 1 a | = | a3
01 0 a3 a,

Now go on and find the characters of the representations of
the other operations.

6.7

on, X =3 All vectors remain unshifted.

S;, x =0 All vectors are shifted.

oy, x =1 The plane passes through one arrow and leaves
it unshifted.

The complete set of characters is thus:

D3h ‘ E 2C3 3C2 Oy 2S3 30'V

F1‘3 0 1 3 0 1

This is a set of characters of a reducible representation of
D3;,. In previous programmes we loosely called such a set
of numbers a reducible representation. It is vital to the use
of Group Theory that you should be able to reduce such a
representation, so use the character table to reduce it.

6.8

I =A{+E'

e.g. number of A = 34+ 0+34+3+0+3)=1
number of Ay =5(3+0-3+3+0-3)=0
number of E' =5 (6+0+0+6+0+0) =1 etc.

If you have not achieved this result, it is essential that you
return to the reduction formula in Programme 3 frame 18 to
refresh your memory.

Look at the right-hand side of the Dj;y, character table to
decide which orbitals belong to the symmetry species Aj
and E’.
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A| includes either the d, or the spherically symmetrical s
orbital. E‘/ includes py and py together or dp_» and d,
together, i.e. we know that p, and p, are degenerate, as are
d>_y> and dyy because they are bracketed together in the two-

degenerate E' representation.

What, then is the most likely set of hybrids to form a trigonal
set of bonds in a first row element like boron?

6.10

S Px Py i.e. an sp2 set. The plane is conventionally taken to be
the xy plane, z is vertical.

We have now been through all the stages outlined in frame
6.1.

i.  The basis of our reducible representation was a set of
vectors representing the bonds.

ii. We reduced it to A{ +E’.

iii. We interpreted the results to mean hybridisation of s, py
and p, orbitals.

The most crucial step in this process is the first one. The
correct choice of basis is vital. It must reflect the question
we are asking the theory to answer. Get the basis right and
everything else follows easily.

Note that there is no reason why hybridisation of d 2, dy_,2,
and dy, should not be equally acceptable on symmetry
grounds — Group Theory will only take us so far in a calcula-
tion, we have then to do further calculations or at least select
the most reasonable of the alternatives given by symmetry.
Let us now see which orbitals would be suitable for w-bond-
ing in a D3, molecule. Remember that a w-bond has a wave
function whose sign differs in the two lobes:

),

>

Draw an arrow which could represent the symmetry proper-
ties of this orbital. (Call the point of the arrow the positive
end.)
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T - represents the symmetry of the m-orbital. Remember
that each pair of atoms could be linked by two w-bonds at
right angles, and draw a suitable set of six arrows to act as a
basis for a representation of the possible if m-bonds in a D3y,
molecule of formula ABs.

6.12

These are in two sets, a;, a,, a3 — the “out of plane” set, and
a4, as, a6 — the “in plane” set. The two sets will clearly not be
mixed by any of the group operations, so we can consider
each separately.

Consider the extent to which a;, a,, and a3 are converted to
themselves by the group operations (remember that upwards
is the positive direction), and hence write down the charac-
ters of the representation generated by the “out of plane” set
of arrows. The group operations are:

E ZC‘; 3C2 Onh 2S3 3O'V

6.13

‘ E 2C3 3C2 Oh 253 3O'V

I, ‘ 3 0 -1 -3 0 1

6.14

‘ E 2C3 3C2 Onh 283 3O'V

Reduce I'; and I'4

6.15

', (out of plane) = AY +E”
I'; (in plane) = A} + E’

Look at the character table to decide which orbitals are
suitable for n-bonding of the two types.




108

Programme 6

6.16 Out of plane: p, (dy,, dy,) together.

In plane: (px, py) together or (dy_,2, dyy) together.
(N.B. there is no orbital of symmetry AJ.)

For a first row element such as boron, there are no energe-
tically available d orbitals. The py and p, orbitals, although
m-orbitals in a local diatomic sense, are involved in o-bond-
ing in a molecule like BCl; (frame 6.10), so we are left with
only one orbital which is a true w-orbital with respect to the
whole molecular plane.
Which orbital is this?

6.17 The p, orbital e.g. BCls:

/ pZ
() ()
\
B Cl
a— [~
one of three sp,p,hybrids

Again, we have used the same procedure to solve the
problem. A different basis was used for this particular
example but the reduction process should by now be second
nature and the interpretation of the results needed a little
care. The crucial step, however, was again the selection of
the correct basis to reflect the orbitals we wished to find.

The result we obtained using group theory suggests that in
BCl;, and indeed in the other boron trihalides, there would
be some m-bonding. This would involve electrons being given
from a filled chlorine orbital to the empty p, orbital of boron.
Some aspects of the chemistry of the boron halides provide
strong evidence for the existence of this bonding. Many
advanced inorganic chemistry texts include a discussion of
these aspects.
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We will now turn to the question of the symmetries of LCAO
molecular orbitals. These are made by taking linear combin-
ations of the constituent atomic orbitals (LCAO), and the
atomic orbitals form a convenient basis for the reducible
representation of the group. We will again use a Dgy
molecule as an example, and will find the symmetries of
the m-molecular orbitals of the radical:

Use the transformation properties of these three atomic
orbitals to find the characters of a representation of Djy,:

D3h E 2C3 3C2 Op 2S3 3O'V

6.18

D3h ‘ E 2C3 3C2 Oq 2S; 30'v

Iy ‘ 3 0 -1 -3 0 1

Reduce this representation.
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T, = Azl/ +E”

i.e. I'y is the same as I',, formed from the out of plane -
bonds of a molecule like BCl;. (This is a result you may have
expected from a consideration of the two bases used.) This
result tells us that the molecular orbitals consist of a doubly
degenerate pair (E”) and one singly degenerate orbital (A5).
The result tells us nothing about the energy difference
between the Aj and the E” orbitals nor does it tell us any-
thing of the absolute energies of any of the orbitals.

The energies of the orbitals can be readily calculated using
Huckel molecular orbital theory in terms of the energies «
and 3. Details of the theory are outside the scope of this
book, but « and (8 are both negative amounts of energy so
that an orbital of energy (« + () is a very low energy orbital.
Huckel theory applied to the cyclopropenyl ion gives the
orbital energies as (a + 203), (o« — 8) and (a — ), i.e. a single
orbital (A)) and a degenerate pair (E”). We can follow the
same procedure for the hypothetical molecule cyclobuta-

diene:
() 9

o o
O )

What is the point group of this molecule?

6.20

Dy, The group operations are:

E 2C; Cy(=C») 2C5 2CY i 2S84 on 20, 204

—
) B

Write down the reducible representation of Dy, formed by
using the four atomic p orbitals as a basis.
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6.21 D4h‘E 2C, C, 2C; 2Cy i 2S84 o 20, 204
|4 0 0 —2 0 0 0 —4 2 0
Use the Dy, character table to reduce this representation.
622 FSZEg+A2u+B2u

i.e. there are two singly degenerate orbitals and a degenerate
pair. This again agrees with simple calculations which show
the energies to be (a+20), a (twice), (o —205). The E,
orbitals clearly have energy «, and the other two correspond
to the singly degenerate ones.

Again a suitable choice of basis enabled us to generate a
representation of the group to solve the problem.

In the final section of this programme we will consider the
subject of molecular orbital correlation diagrams. These dia-
grams show the energies and symmetries of molecular orbi-
tals and of the atomic orbitals from which they are
constructed. As in other applications involving energy, sym-
metry considerations tell us nothing about energy differences
— these have to be the subject of separate calculations. A
knowledge of symmetry, however, does help when reading
published accounts of molecular orbital calculations since
orbitals are commonly labelled with their symmetry species.

A correlation diagram for water (C,,) is shown below:

2H H,0 o)
atomic orbitals | molecular orbitals atomic orbitals
a*
atb, |~ .»—bl kY
b,
ar P

The energy levels on the outside of the diagram represent the
s and p orbitals in the outer shell of the oxygen atom, and the
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s orbital of each hydrogen atom. We will now see how the
symmetry labels are assigned, and the molecular orbitals in
the centre of the diagram are derived.
Look at a Cy, character table and decide on the symmetry
species of a p, orbital of oxygen.
6.23 B, — the same as the x direction.
Hence the p, orbital is labelled b, lower case letters being
commonly use for particular orbitals.
Similarly decide on the labels of the s, p, and p, orbitals of
the oxygen.
6.24 s is labelled a,
py is labelled b,
p. 1s labelled a,
These labels are included in the correlation diagram.
When we come to the two hydrogen atoms, it is necessary to
consider the two Is orbitals.
Use the two Is orbitals ¢; and ¢, as the basis of a representa-
tion of the C,, group:
o
E C o o
o is molecular plane
Z1 @2
6.25

Reduce this representation.
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1—‘6:A1+B1

The two linear combinations are therefore labelled a;, and b,
on the correlation diagram.

The actual wave functions of these two linear combinations
are shown below:

1/11—%(@7”252) 7#2—%(%—(251)

ORONENORD
Use the transformation properties of ¢; and v, under the

operations of the C,, group to decide which is A; and which
is B].

6.27

1)y is symmetric to all the operations .. it is A;
1, 1s symmetric to E and o
antisymmetric to C, and ¢’ .". it is B,

Draw the p orbital of oxygen which belongs to the B;
representation of C,, i.e. has the same symmetry as 1, above.

6.28

OROR

An interaction can occur between orbitals of the central and
outside atoms provided those orbitals have matching sym-
metry. In this case, we can add the two orbitals together to
produce a low-energy bonding molecular orbital or subtract
them to produce a high-energy antibonding orbital. Orbital
combination of this type cannot, of course, change the total
number of orbitals, so combining the two orbitals produces
two molecular orbitals as a result.

Both of the resulting molecular orbitals have B; symmetry
and are labelled b} for the antibonding orbital.

Draw the b} orbital obtained by subtracting the 2p, orbital
from the combination of hydrogen orbitals.
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OROR

The crux of the symmetry aspect of molecular orbital theory
is that atomic orbitals on different atoms will only interact if
they belong to the same irreducible representation of the
point group. In our water example, there is one orbital
which does not match up with any from the other atom.
Can you see which orbital this is?

6.30

The 2py orbital on oxygen labelled b,.

This orbital does not intereact at all with the hydrogen orbi-
tals — it remains non bonding, and is labelled on the correla-
tion diagram b3.

We have so far looked at orbitals of B; and B, symmetry.
The only ones left are of A; symmetry. In this case there are
two oxygen orbitals and only one from the combined Is orbi-
tals of hydrogen. Calculations show that in this case there are
three molecular orbitals, one bonding, one antibonding, and
one non bonding. These are labelled on the diagram.

In general we cannot tell from symmetry arguments anything
about the relative energies of orbitals. By their nature, how-
ever, bonding orbitals are of low energy; antibonding orbi-
tals are of high energy and non bonding orbitals are in
between. We can, therefore, draw a reasonable correlation
diagram for the water molecule as shown below:

2H H,0 0
atomic orbitals| molecular orbitals atomic orbitals
*

a'l

a, tb,
§ ———




Applications to Chemical Bonding 115

Our final job in describing the electronic structure of the
water molecule is to put electrons into the molecular orbitals.
How many electrons will there be from the Is orbitals of two
hydrogens and the 2s and 2p orbitals of oxygen?

6.31

Eight. i.e. one from each hydrogen
six from the oxygen

Put these into the molecular orbitals starting from the lowest
energy orbital.

H,0

6.32

21 } anti bonding
44—, }
%al

b } bonding
%731

non bonding

This description of the molecule puts two pairs of electrons
in bonding orbitals and two into non bonding orbitals i.c. a
very similar description to the valence bond description:

Kibonding
H:O'H
;non bonding

Finally, we will go through a slightly more complicated cor-
relation diagram, that for the o bonds in an octahedral
complex ion like [Co(NH3)s]*". We shall need to consider
the irreducible representations to which the 3d, 4s and 4p
orbitals of cobalt belong. Look these up in the Oy, character
table.
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6.33 3d: (x> —y? and 7°) E,
(xy, xz, and yz) To,
4s: Alg
4p: (X, y, and z) T
The ligand orbitals which can form ¢ bonds can be repre-
sented by six arrows from the ligands to the metal:

Try using this set of six arrows as a basis for a representation
of Oy. This is quite difficult without some guidance so do not
spend too long on it. The group operations are:

O, E 8C; 6C, 6C, 3Ci(=C2) i 6S, 8Ss 30y, 60y

6.34 Oh‘E 8C; 6C, 6C; 3C,(=C3) i 6S4 8S¢ 30y 604

1}‘6 0 o0 2 2 0 0 0 4 2

Reduce this reducible representation.

6.35 I'y=A, +E;, +T;, We now have the start of our cor-
relation diagram.

Co” 6NH,
b

4p

4 e
G + tZg

3d— A et 1y,

There is again one set of orbitals without any matching sym-
metry orbital on the other side of the diagram. Which is this?
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The T, set of three metal ion orbitals.

These remain non bonding while in all other cases the orbi-
tals combine to produce bonding and antibonding molecular
orbitals:

Co Co(NH,); | NH,

*
b

4P :.4 anti bonding

} bonding

The complex Co(NH3)2+ has eighteen eclectrons in the
orbitals under consideration. These will fill the molecular
orbitals up to the non bonding t», level, giving six pairs of
bonding electrons and six non bonding electrons which
belong essentially to the metal. We can label the gap between
the ty, and ef levels A and the picture is then remarkably
similar to the ligand field theory picture of the bonding.

You should now be able to use Group Theory to find simple
sets of hybrid orbitals, to determine the orbitals suitable for
m-bonding in a molecule to find the symmetries of LCAO
molecular orbitals and to construct simple MO correlation
diagrams. The test overleaf consists of one problem on each
of these applications.
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1. Find the hybrid orbitals of a central atom suitable for form-
ing a set of square planar bonds. Use the Dy, character table.

2. Find the orbitals suitable for “out of plane” m-bonding in a
square planar molecule.

3. Find the symmetries of the LCAO m-molecular orbitals of
the open chain Cj system: use the C,, character table. How
many different energy levels will there be in the system?

4, Set up the correlation diagram for the CH4 molecule,
Consider the 2s and 2p orbitals of carbon and the 1s orbital
of each hydrogen atom.
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Answers

1. Reducible representation:

D4h‘E 2C4 C2 2C£ ZCé/ 1 2S4 Op ZO'V 20'd

T,04 0 0 2 0 00 4 2 0 2marks
This reduces to: A, + Bjg + E, 2 marks
Suitable orbitals are: A, —s or d,

B,

)
)
g~ dxzfyz ) 1 mark
)
)

E, — p, and p, together

Hence a set of dsp® hybrid orbitals.

2. Reducible representation:

Dy| E 2C, C; 2C3 2CY i 28, oy 20, 2oq

F‘40 0 -2 0 0 0 —4 2 0 2marks

This reduces to:  E, + Ay, + By, 2 marks
Suitable orbitals are: E, —d,,, d, )
)
Asy — D, ) 1 mark
)
B,, — none )
3. Reducible representation:
sz E C2 g O'/
r ‘ 3 -1 =3 1 1 mark
This reduces to: A, + 2B, 1 mark

i.e. 3 orbitals, all of different energy 1 mark
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4. Carbon orbitals: A; + T,
Ty ‘E 8C; 3C, 6S; 60yq

Is of 4H ‘4 1 0 0 2

This reduces to: A; + T,

Hence:

*

t

\

ty

Ya,t

4

s Total

t

ap

1 mark

1 marks

1 mark

2 marks

18 marks
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Applications to Chemical Bonding

Revision Notes

The application of Group Theory to many chemical problems can be
summarised in three rules:

1.

ii.

iii.

Use an appropriate basis to generate a reducible representation
of the point group.

Reduce this representation to its constituent irreducible repre-
sentations.

Interpret the results.

The initial choice of the basis is crucial. In essence this determines the
question we are asking the theory to answer. If this is correct, the rest
of the process follows virtually automatically.

The following applications require the bases shown:

L.
il.

1.
1v.

Hybrid orbitals — arrows representing the bonds.

Orbitals suitable for w-bonding — arrows (two per pair of atoms)
representing 7w-bonds.

LCAO molecular orbitals — the constituent atomic orbitals.
MO correlation diagrams — atomic orbitals of any central atom
are allowed to interact with linear combinations of the orbitals
of outer atoms which have the same symmetry.
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Applications to Molecular
Vibration

Objectives

After completing this programme you should be able to:
1. Find the symmetry species of the normal modes of vibra-
tion of a molecule of a given symmetry.

2. Find the number of infrared and Raman active vibrations
in a molecule.

3.  Find the number of active vibrations in a characteristic
region of the infrared or Raman spectrum of a molecule.

All three objectives are tested at the end of the programme.
Assumed Knowledge

A knowledge of the contents of Programmes 1-5 is assumed. Some
familiarity with vibrational spectroscopy will be found helpful.
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Applications to Molecular Vibration

7.1

If you have worked through, and understood, Programmes 1
to 5 on Group Theory, you should now be ready for this one.
If not, you should go back and be sure you understand the
underlying theory before trying to apply it.

In this programme, we shall look at the use of Group Theory
to find the symmetries of® the vibrational modes of mole-
cules, and we shall see which of the vibrations are observable
in the infrared and Raman spectra. The programme is in
three sections, separated by dashed lines.

The use of Group Theory can be summarised in the follow-
ing three rules:

i.  Use an appropriate basis to generate a reducible repre-
sentation of the point group.

ii.  Reduce this representation to its constituent irreducible
representations.

iii.  Interpret the results.

Do you understand all the italicised terms in the above rules?

7.2

If there are any of these terms which you do not understand,
return to the appropriate earlier programme:

Basis: Programme 4 frames 4.33-4.39

Reducible Representation: Programme 3 frames 3.17-3.25
Point Group: Programme 2 frames 2.1-2.24

Reduce: Programme 3 frames 3.18-3.25

Irreducible Representation: Programmes 3 and 5

Group Theory can be an enormous help in deciding the
infrared or Raman activity of different molecular vibrations,
but before considering spectra we must look more generally
at the subject of vibrations.

Any movement of an atom in a molecule can be resolved into
three components along the x, y, and z axes. If, therefore, there
are n atoms in a molecule there are 3n possible movements of
its atoms. Of these, 3 will be concerted movements of the whole
molecule along the three co-ordinate axes, i.e. translations,
and 3 (or 2 for a linear molecule) will be concerted rotations
about the axes. The remaining 3n — 6 (or 3n — 5 for a linear
molecule) must therefore be molecular vibrations.

How many vibrations will there be for the molecule XeF,?
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9, i.e. there are 5 atoms and 3 x 5—-—6=09.

We can find the symmetries of all the possible molecular
motions by using x, y, and z directions on each atom as a
basis for a reducible representation of the group. For an n-
atom molecule, this will produce a representation of order
3n, i.e. the character of the identity representation will be 3n,
and all the matrices involved will be 3n x 3n matrices. This
will obviously make it quite impracticable to set up the whole
matrix for large molecules so we will need to use a quick
means of finding the character of the matrix.

What is the quick way of finding the character of a matrix
generated by any basis?

7.4

The character is equal to the extent to which the vectors in
the basis are left unshifted by the operation.

Let us now use this procedure for the water molecule. The
basis of the representation is the set of nine arrows:

Y2

b T/‘ ? Pl
‘/O”XZ

H—»Xl H > X3

Y1

What is the point group of the water molecule, and what
symmetry operations are there in the group? (Use the scheme
in Programme 2 if you are not sure.)

7.5

CZV 4 TTCZ

E C o ¢ O
H-T" Mo

Remember our quick way of finding the character of a matrix
generated by a particular basis, and write down the charac-
ters of the 9 x 9 matrices representing E and C,, using the
nine-arrow basis shown. Remember that the arrows start at
the atom, so could be reversed by some operations (i.e. give
the contribution of —1 to the character).
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E: x =9 (all arrows unshifted)

C,: x = —1 (all arrows on atoms 1 and 3 are shifted,

X, becomes —x,
y, becomes —y,
7, becomes +z,)

Work out the characters of the representations of o and ¢’ in
the same way.

7.7

o: x = 3 (all x and z unshifted, all y become —y)

o't x =1 (y, and z, unshifted, x, becomes —x,)

Thus the complete set of characters of the reducible repre-
sentation is:

C2 ‘ E C2 g O'/
9

Because of the basis used, this is termed a Cartesian repre-
sentation. Reduce this representation using the C,, character
table.

7.8

Fl - 3A1 +A2 +3B1 +2B2

These are the symmetry species of all nine possible molecular
movements. From these nine we must now remove the trans-
lations and rotations. The translations must belong to A;, B,
and B, because they must be affected by the group opera-
tions in the same way as the x, y, and z directions.

To what species do the three rotations belong?

7.9

A, By and B,. (R,, Ry and R, in the character table)

We therefore remove A, A,, 2B, and 2B, from our nine
species obtained already and we are left with:
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2A, + B,

These are the symmetries of the three vibrational modes of
the water molecule (or of any other triatomic C,, molecule).

We can summarise what we have done so far as:

Symmetries of all molecular motions: 3A; + A, + 3B; + 2B,
Symmetries of translations A + B+ B,
Symmetries of rotations A+ B+ B,

". Symmetries of vibrations 2A, + By

Do the same analysis for the planar XeF, molecule. It
belongs to the Dy, group and the group operations are
given below. What is the reducible representation generated
by the set of 15 vectors along the x, y, and z directions for
this molecule?

| |
(Z)F/ T mF\/A' l/ X
cd Ch ﬁ\Xc /4 T~

(O]

y

o C;""""(S’F ~. @OF ~

Dy, E 2C, Cy(=C3) 2C} 2C¥ i 2S4 o, 20, 204

7.11

D4h‘E 2C, Cy(=Cj) 2C5 2¢) i 284 oy 20, 204

I, ’15 1 -1 -3 -1 -3 -1 5 3 1

Reduce this representation using the Dy, character table.
(This may take some time, but it is worthwhile practice.)

7.12

Ty = A + Agy + Big + By + By + 2A5, + By, + 3E,

What is the total degeneracy of I',, remembering, that A and
B are 1-degenerate species, E is 2 degenerate?
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15 i.e. the degeneracy equals the number of vectors in the
original basis. This is always true.

Our present 15-degeneracy equals 3 x 5 for a five-atom
molecule. There are, however three translations and three
rotations to be removed to leave 3n — 6 =9 vibrational
modes. What are the symmetry species of the translations?

7.14

A,, + E, i.e. a singly degenerate translation along z and two
equivalent translations along x and y which belong together
to the 2-degenerate E, representation.

What are the symmetry species of the rotations?

7.15

Asy +E,

Take the translations and rotations away from the total I',,
and check that the result has a total degeneracy of nine.

) = Ay + Agy + Byg + By + E, + 2A,, + By, + 3E,

7.16

I = Alg + A2g + Blg + B2g + Eg + 2A5, + By, + 3E,

Translations = Aoy + E,
Rotations =
Ay, +E,
*. Vibrations =
Alg +B1g+B2g + A2u +B2u +2Eu

Total degeneracy = 9 for vibrations (= 3n — 6)

The irreducible representations we have produced so far
represent the symmetries of the nine vibrational modes of
the XeF, molecule. One of these, for example, is the ““breath-
ing” mode in which all four fluorines move out together and
then in together. This mode of vibration clearly maintains
the full symmetry of the molecule and therefore belongs to
the A,, irreducible representation. Other modes of vibration
cause distortion of the molecule and are therefore described
by other representations.

We now need to determine which, if any, of these modes of
vibration are active in the infrared and Raman spectra of the
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molecule. This is very simple to do if you are prepared to
accept a statement of how to do it, rather than to follow a
proof. The proof involves calculating the probability of tran-
sition in terms of the transition moment integral, and more
information on this can be obtained from more advanced
textbooks of group theory or spectroscopy.

The rules are simple:

i. A vibration will be infrared active if it belongs to the
same symmetry species as a component of dipole
moment, i.e. to the same species as either x, y, or z.

Which of the vibrations of H,O and of XeF, are infrared
active?

H,O vibrations 2A| + B;
XeF4 vibrations Alg + Blg =+ B2g =+ A2u + B2u + 2Eu

7.17

H,O: all three are active, because z belongs to A; and x
belongs to B;.

XeF,: A,, +2E, are active, i.e. in both molecules there
should be three i.r. active bands. N.B. 2A; indicates two
different vibrations (non degenerate) of the same symmetry.
2E, indicates again two bands, but each one consists of two
degenerate vibrations.

The Raman rule is as follows:

ii. A vibration will be Raman active if it belongs to the
same symmetry species as a component of polarisability,
i.e. to one of the binary products, X2, y2, z, Xy, Xz, yZ or
to a combination of products such as — y2.

Which vibrations of H,O and of XeF, are Raman active?

7.18

H,O0: all three are active because x>, y°, and z° belong to A,
and xz belongs to B,

XeFy4: Ajg, By, By, are Raman active.
We may summarise tnese results as follows:

H,O0: 3i.r., 3 Raman, 3 coincidences, i.e. the frequency of the
i.r. absorptions and of the Raman shifts are identical.

XeF,?
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XeF,: 3i.r., 3 Raman, no coincidences, i.e. the frequencies of
the i.r. absorptions and of the Raman shifts do not coincide
at all.

This is an example of a general effect called the exclusion
rule, Raman shifts and i.r. frequencies never coincide in a
molecule with a centre of symmetry. This occurs because the
X, y, and z directions are always antisymmetric to inversion
through the centre, and belong to representations given a
subscript u, while the binary products are always symmetric
to 1 and belong to g representations.

Group Theory can also be used to find the nature of the
vibrational mode belonging to each irreducible representa-
tion. This topic is dealt with in the next programme.

We will now look at a vibrational analysis of the ammonia
molecule since this illustrates a further feature of the applica-
tion of Group Theory to molecular vibrations. The 12-arrow
basis for our Cartesian representation is:

z

"

IT\J y
I/ ‘TXT ,
. H— Yy
2) (1

3)
1

Cy, E 2C; 3o,

What are the characters of the representation of E and of
one of the planes (chose the xz plane passing through H(1)
and N).

7.20

E: 12 (all arrows are unshifted).
o: 2 (x and z are unshifted on two atoms, y becomes —y).

The C; operation clearly shifts all the arrows on the hydro-
gens, so we only need to consider the arrows on nitrogen.
The z arrow is clearly unaffected and will contribute +1 to
the character. Try to work out the character of the represen-
tation of C;. (Do not take too long if you get stuck — its
rather tricky!)
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7.21 Cs: 0
We have already seen that z contributes +1 to this, so x and
y together must contribute —1. On rotation by a third of a turn
(120°), the arrows, looking down the z axis, appear as follows:
5
X
The new y co-ordinate of a point is then dependent on both
the old x and the old y co-ordinates, and can be obtained by
resolution as:
new x = xcos 120° — ysin 120°
new y = xsin 120° 4+ y cos 120°
Remember that z is unshifted by the C; operation,
and write out the full 3 x 3 matrix which operates y
on the matrix 7
7.22 cos 120° —sin120° 0 X x’
sin 120° cosl20° O ||y =1y
0 0 1 z z'
Since cos 120° = — %, this matrix has a character of zero, and

the complete set of characters of the Cartesian representation
is:

C3v E 2C3 30
r, 12 0 2

Rotation about z through any angle 6 can be represented by
a matrix
cosf —sinf 0
sin 6 cosf 0
0 0 1

but it is rather troublesome to work out the sines and cosines
for each individual case. It is easier to consider the atoms in
two sets for each symmetry operation:
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i. Atoms which are shifted by the operation contribute
nothing to the character of the Cartesian representation.
ii. Each atom unshifted by the operation contributes an
amount f(R) to the character of the Cartesian represen-
tation where f(R) depends on the operation as follows:

Operation: E ¢ i G G C G G

f(R) 03 1 -3 -1 0 1 1.618 2
Operation: S; S, S;s Se Sg
f(R) =2 —1 0382 0 0414

2
For any C,, f(R) = 1 +2cos f

2
For any S,, f(R) = -1+ 2cos f

This table has been worked out by using similar considera-
tions to those used above for the ammonia molecule.

Use the table to set up the characters of the Cartesian repre-
sentation of ammonia:

C3v ‘ E 2C3 3O'V

7.23

I'; ‘ 12 0 2

E : 4 atoms unshifted, f(R)=3, =4x3=12
Cs: 1 atom unshifted, f(R)=0, =1x0= 0
oy: 2 atoms unshifted, f(R)=1, =2x1= 2

Use the table to set up the characters of the Cartesian repre-
sentation of CHy:

T, | E 8C 3G, 68, 6o
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T, | E 8C; 3G, 68 6o

r, | 15 0 -1 -1 3

If you require further practice at setting up Cartesian repre-
sentations, you could use the table to set up the representa-
tions for water and xenon tetrafluoride discussed earlier.

If you require further practice at finding the number of infra-
red and Raman bands predicted for a particular molecule,
you could confirm that ammonia has four infrared and four
coincident Raman bands while methane has two infrared and
four Raman bands, two of which are coincident with the
infrared bands.

In the final section of this programme we shall look at a
particular vibration, such as a carbonyl stretch, occurring
in a well defined part of the spectrum, and use Group
Theory to predict the number of active bands in this parti-
cular region.

The substituted metal carbonyl shown below will undoubt-
edly absorb in the 1700-2000cm ™" region, the question we
wish to answer is, how many bands will there be in the C—O
stretching region?

a, c’!
AN L e OS2
OC i C O — ay
MO Gd’ CZ”
a, oC { C o
“ L T,

The four-arrow basis shown can be used to represent the
carbonyl stretching vibrations. Find the set of characters of
the representation obtained by using this basis:

Dy, E 2C, C,(=C}) 2C} 2CY i 2S84 o, 20, 204
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D%‘E 2C, Cy(=Cj) 2C5 2C% i 284 oy 20, 204

r, |4 0 0 2 0 0 0 4 2 0
This type of problem is easier than generating the Cartesian
representation because the arrows can never be transformed

into minus themselves.

Reduce this representation.

7.26

FS :Alg+B1g+Eu

Our basis (a; to as) only included stretching of the C-O
bonds, so these three irreducible representations are the
representations to which the various C-O stretches belong.
We do not in this case need to remove translations or vibra-
tions simply because we did not put them in when setting up
the basis of the representation.

Decide, from the character table, how many infrared and
Raman active bands there will be in the C-O stretching
region.

7.27

1 infrared band (E,)
2 Raman bands (A}, and B,,)

Do the same analysis for the cis isomer of the same complex,
find how many bands it will have in the C-O region:

a4y

f
0

L § 0
\l\lo % C,

» +- 00—
@)
o

Cy E C o ¢
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4 infrared bands.
4 Raman bands (all coincident).

sz ‘ E C2 g O'l
4

I'e=2A,+B; +B,
All these vibrations are active in both infrared and Raman.

Finally, consider the two possible isomers of a metal tri-
carbonyl:
L

cO L cO

I I
U N
M M

™~

L

T C C
oo o

3

oN—
on—

C3v E 2C3 30 C2v E C2 g O'/

Use the method just developed to find the number of Raman
and infrared bands in each isomer.

7.29

C;,: 2 infrared bands .

> Raman bands coincident, A; + E
C,,: 3 infrared bands .

3 Raman bands coincident, 2A; + B,
In general, a set of n CO groups will give rise to n possible
C-O stretching modes. The number of observed spectral
bands, however, may well be less than n if symmetry
makes some modes degenerate or inactive. The use of
Group Theory simply formalises this statement and allows
precise calculations to be made.
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You should now be able to use Group Theory to find
the number of infrared and Raman active vibrations in a
molecule, and to find the number of active vibrations in a
characteristic region of the infrared or Raman spectrum.
These topics are the subject of the test which follows.
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(You may, if you wish, use the table of f(R) in frame 7.22.)

1. Find the number, and symmetry species, of the Raman and
infrared active vibrations of the fumarate ion (Cyy,):

(6]
(S}
0—¢ H The ion lies in the
/C = C\ xy plane. The C,

H c—o0 axis is the z axis.
)
(6]

2. Find the number, and symmetry species, of the Raman and

infrared active vibrations of boron trichloride (Dsy,):

Cl

B

Cl/ \Cl

3. Find the number of terminal B-H stretching vibrations
which are active in the infrared and Raman spectra of dibor-
ane (Dyy):

H H H
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Answers

1. Reducible representation:

C2h ‘ E Cz 1 Oh

1 mark
‘ 30 0 0 10
This reduces to:  10A, + 5B, + 5A, + 10B, 1 mark
Rotations A, + 2B,
Translations A, + 2B,
.. Vibrations 9A, + 3B, +4A, + 8B, 1 mark
L.r. active 4A, + 8B, 1 mark
Raman active 9A, + 3B, 1 mark
2. Reducible representation:

D3h ‘ E 2C3 3C2 Oph 2S3 3O'V

‘ 12 0 -2 4 -2 2
1 mark

This reduces to:  A{ + A, +3E' +2A) +E” 1 mark

Rotations A +E”

Translations E'+Af

.. Vibrations Aj +2E' +A) 1 mark

i.r. active 2E' + A7) 1 mark

Raman active A{ +2E’ 1 mark
3. Reducible representation:

Dan|E Gy(2) Goly) Go(x) i a(xy) o(xz) o(yz)
4 0 0 o0 0 4 0 o0

1 mark
This reduces to: Ay + By, + By, + By, 1 mark
L.r. active By, + Bs, 1 mark
Raman active A, + By, 1 mark

Total 14 marks
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Revision Notes

The application of Group Theory to molecular vibrations can be
summarised in three rules:

1. Use an appropriate basis to find a set of characters of a
reducible representation of the point group.

il. Reduce this representation to its constituent irreducible
representations.

1il. Interpret the results.

The initial choice of the basis is crucial. In essence this determines the
question we are asking the theory to answer. If this is correct the rest
of the process follows easily.

A complete vibrational analysis starts with a set of three Cartesian
displacement vectors on each atom as the basis. It is then necessary to
subtract the irreducible representations to which translations and
rotations belong, in order to find the irreducible representations to
which the vibrations belong.

If an atom is moved by a symmetry operation, that atom contributes
nothing to the character of the resulting reducible representation. If,
however, an atom is unshifted by a symmetry operation, the contri-
bution of that atom to the character of the reducible representation is
given by the quantity f(R). A table of, values of f(R) for various
symmetry operations appears in frame 7.22.

The irreducible representations to which specified vibrations (e.g.
C-O stretches) belong can be found by taking C-O bond stretching as
the basis of the representation. In this case it is not necessary to
remove translations or rotations because they are not included in
the basis.

Molecular vibrations are:

1. Infrared active if they belong to the same irreducible repre-
sentation as X or y or z.
il. Raman active if they belong to the same irreducible repre-

sentation as a binary product such as xy, 7, x> — y etc.
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Linear Combinations

Objectives

After completing this programme you should be able to:

1. Find the combinations of bond stretching vibrations which
form the bond stretching vibrational modes of a molecule.

2. Find the symmetry adapted linear combinations of orbitals
suitable for combining with the atomic orbitals of a central
atom to form molecular orbitals.

3. Find the form of the wave functions of hybrid orbitals.

Normalise any of the above functions.

5. Confirm the orthogonality of normalised functions.

>

All five objectives are tested at the end of the programme.

Assumed Knowledge

A knowledge of the preceding programmes is assumed.
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Up to now we have not looked in great depth at topics like
orbitals or molecular vibrations. We have, for instance, seen
that a set of sp® hybrids is needed to form a triangular set of
bonds but we have not found the wave functions of each
orbital. We have found the symmetry properties of various
molecular vibrations and have decided on their infrared and
Raman activities. We have not, however, worked out the
actual form of each vibrational mode. Symmetry theory
can help us solve these problems if we extend the mathe-
matics a little using a technique known as the projection
operator method.

This approach will be illustrated by a simple example.

Use the stretching of the O—H bonds of water as the basis for
a reducible representation of the C,, point group.

e N The molelcular plane is
L N the xz plane.

Gy, E G, oy(x2) oy (yz)

8.2

Cyy E G, oy(xz) 9 \i (yz)

Tow | 2 0 2 0

Reduce this representation using the C,, character table.

8.3

FOH :A1+B1

One way in which the O—H bonds can vibrate is for both
hydrogens to move out together and both to move in
together:

SN

H H Mode 1: Symmetric stretch.
e N

Suggest another way in which the atoms could vibrate.
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0
T

/ H Mode 2: Antisymmetric stretch.

As one atom moves out the other moves in.

Use the character table to find the symmetry species of each
of these vibrational modes.

8.5

Symmetric stretch: A (the distorted molecule looks the same
after applying any of the group operations).

Antisymmetric stretch: B; (the phase of the vibration is
reversed by the operations C, and o,(yz) which are repre-
sented by —1 in the character table).

We have therefore found the form of the two O—H stretching
modes of vibration of the water molecule. Moreover, we can
see that the A; mode will cause an oscillating dipole moment
in the z direction and the B; mode will cause an oscillating
dipole moment in the x direction. An oscillating dipole
moment is a requirement for infrared activity and the direc-
tions of these correspond to the directional properties of A;
and B; shown in the character table.

For a simple molecule like water it is a very easy matter to see
intuitively the forms of the vibrational modes and to check
these from the character table. For more complex molecules,
however, we must use a more rigorous approach called the
projection operator method. We will look at this in three
steps:

Step 1: Draw the set of vectors which formed the basis of the
reducible representation.
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Step 2: Select one of these vectors as a generating vector and
find the result of operating on it by each of the group opera-
tions. We will use the arrow a; as our generating vector.

We now need the result of applying each of the group opera-
tions to a;. In this case the identity operation leaves a;
unchanged but the C, rotation moves a; over to a:

Cyy ‘ E ) JV(XZ) U\l/(yz)

Vector a; becomes: ‘ a; a

Complete this row.

8.6

Coy ‘ E ) oy (xz) oy(yz)

Vector a; becomes: ‘ aj a a; a

Step 3: For each irreducible representation we now multiply
each of the above results by the character of the irreducible
representation in the character table and sum the results.

For example, the form of the A; vibration is found by multi-
plying each result by the character of the A; representation in
the character table and summing the result:

Cyy ‘ E G, oy(xz) oy(yz)

‘ a a aj a

Character table:

Gy, E G, oy (xz) aé(yz)
A 1 1 1 1
A, 1 1 —1 —1
B, 1 -1 1 -1
B, 1 —1 -1 1

A vibration: a; x | +a, x 1 +a; x  +a, x 1 =2a; 4 2a,
Similarly:
A, vibration: a; X 1 +a, x 1 +a; x (—=1)+a,(=1)=0

Complete this calculation for B; and B».
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B, vibration:
ap x I +ay;x (—1)+a; x 1 +a, x (—1) =2a; —2a,
B, vibration:

arx l+ayx(=1)4+a;x(=1)+a;x1=0

The result: This shows that we have an A; and a B, vibration
but no A, or B, bond stretching modes, as expected. In
general if there is no mode of vibration with a particular
symmetry, the result of applying the above procedure will
be to produce an answer of zero. This is a useful check on
our arithmetic!

You may be concerned that the projection operator
procedure has produced modes of vibration described as
(2a; + 2a,) rather than just (a; + a,). This matter is easily
resolved because all such combinations of bond stretches
must be normalised, i.e. the sum of the squares of the coeffi-
cients of the vectors must equal 1. We can achieve this by
making each coefficient % i.e. the vibrational modes are:

Ay \/Lz(al + a,)
B, : \/li(al —a)

Try to normalise the following vibrations of an octahedral
molecule:

A]gl (al+az+a3+a4+a5+a6)
E,: (—a;+a, —az+ay)

EgZ (—'d] —ap; — ajz —a4+2a5+2a6)
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A : (a1 +ay +az + a4 +as + ag)

: —(a;+ay+aytagt+as+a

gt g (@At as dagtas+a
1

E,: 3 (—a; +a, — a3 +ay)

g" ﬁ(—al—az—a3—a4+2a5+2a6)
In each case the sum of the squares of the coefficients equals
one, i.e.

Al :l

_|_

Al— O
+

Foto+

N —
_|_
N —

g .

A|l— O =
Bl—= O =

B)— O\ =
+

E .

g —1

+

. 1 1 1 1 4 4
Eg. E+E+E+E+E ﬁ—l
The projection operator method can be used to solve other
problems beside molecular vibrations. For example, let us set
up the molecular orbitals of the water molecule formed by
the combination of hydrogen 1Is orbitals with the atomic
orbitals of oxygen.

We must first find the combination of hydrogen 1s orbitals
which transform according to the different symmetry species
of the C,, point group. As Step 1, therefore, we choose the
two hydrogen 1s orbitals as our basis. This will give a repre-
sentation reducible to A; + B,. For Step 2, we choose orbital
¢1 as our generating vector:

T

0)

—X

Cyy ’ E G, oy(xz) oy(yz)

Orbital ¢, becomes: ‘ ol o))

Complete this table.
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C2v ‘ E CZ Oy (XZ) U\// (yZ)

Orbital ¢, becomes: ‘ ¢ ®2 ¢4 o3}

It should now be apparent that the result is just the same as
the O—H bond vibration example worked through earlier and
will give as the two combined orbitals:

1
A W (¢1 + ¢2)

1
V2

These will overlap with the oxygen orbitals of the same sym-
metry as follows:

2s
; + )>O< - ?pr

% (61 + 62) % (61— 62)

Bi: (61 — )

We will now use the projection operator method on a system
where the end result is rather less obvious. We shall try to
find the form of the bond stretching vibrations of a flat
triangular molecule such as BCI; or an ion such as C0327
or NO; ™.

What is the point group of these examples?
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8.10 D3y, If you are still unsure of this basic idea, have another
look at frame 2.22.
If we are interested in the bond stretching vibrations of BCls,
Step 1 requires us to use a set of vectors representing the
bond stretches as the basis for our reducible representation
as we did in frames 7.24 to 7.29.
a
a4
a3
Use these arrows to set up a reducible representation of Djy,
by completing the following:
E 2C3 3C2 Oy 2S3 30’V
Ty | 3 0
8.11 E 2C, 3G, op 2S; 30,
Ig_q 3 0 1 3 0 1
Reduce this to its irreducible representations.
8.12 I'gc=A +E’

This tells us that B—CI stretching gives rise to three modes of
vibration, one of A{ symmetry and a degenerate pair of E’
symmetry. We now wish to find the form of these vibrational
modes.

As Step 2, let us use a; as the generating vector for the
projection operator method. Unfortunately it is not possible
to group the symmetry operations into classes; rather we
shall have to consider the effect of each of the 12 operations
of the group individually. We shall therefore consider the
rotations C; and S; to be anticlockwise and will label the
C, rotations and vertical planes as Cy(1), o,(1) etc. to
indicate the relevant axis or plane.
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2 2
\C; L oo

2%

. c,o, oW

a3

[

3 3
C,, o®

Applying each operation to a; we obtain:

Dy [E G G G(I) G2) GEB) an S5 8 ol) ou(2) 0y(3)

a; becomes ‘ a;  a a3 a3 a3

Complete this table.

55 by B ¢ ¢ G 6o o) e s s a) a0 a0

a becomes‘al a, a a a3 a, a; a, a3 a az a,

We can now move to Step 3 and use the character table to
find the form of each mode of vibration generated by this
vector. This is quite a long business but the following will
give you a start:

Dy [E G G G GO GE) o S ST o) a2 00)
Af:|ayx1 ayx1l ayx1 a;x1 a;x]l
Sum =
Aj | a a a3 —a; —aj —a, a; a, a3 —a —a;  —a,
Sum =0
E': | 2a, —a, —a; 0 0 0 2a,
Sum =
Al
Al
E":

Complete this calculation.
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The result: the result of this should be that only two symme-
try species give a non-zero result:

A{ = 4a; +4a, + da,
E/ = 431 — 2'&2 — 2'613

Normalise these results i.e. express them in a form such that
the sum of the squares of the coefficients equals unity.

8.15

1
Al =—=(a; +a,+as)

>

1

E =

NG

This gives us the form of two modes of vibration, the totally
symmetric A| or “breathing” mode and an E’ mode:

(2a; —a; —ay)

Aj E’

What is the degeneracy of a representation labelled E’?
(HINT: the character of the identity operation will help
here.)

8.16

Two. There is therefore another E’ mode of vibration which
has an identical vibrational frequency but in which the atoms
move differently. Our problem now is to find this mode.

The initial temptation is to select another vector (say a,) as
the generating vector and repeat the above procedure. Don’t
go all through this but try to write down the result you would
expect this to give.
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We would expect this to give a similar result rotated through
one third of a turn, i.e.

N N

2 A J 24

This result is not acceptable, partly because we could go on
to generate a third E' mode and it is only 2-degenerate, but
also because the different E’ modes would not be orthogonal
to each other. We will discuss orthogonality later but for now
we must introduce another step in the procedure:

Step 3A: if there is a degenerate representation in the group,
select another generating vector at right angles (orthogonal)
to the first and repeat Steps 2 and 3 for the degenerate repre-
sentation only.

To do this we shall need to add a few more vectors to our
diagram including one at right angles to a; which we shall use
as the second generating vector.

a, / Second generating vector

-a, < \: a;  First generating vector
a;-a, -3

a3 -a,

In this diagram, the vector —a; is pointing in the opposite
direction to a;. The vector pointing between —a;, and a; is
their resultant and can be labelled (a; — a;). Note that this
notation merely describes the direction of the vector. The
length is unimportant at this stage since we shall apply the
normalisation condition to all our results later.

Using this nomenclature, what is the second generating
vector?
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8.18 It is (a, — a3) since it lies between a, and -a; and is their
resultant.

Use the vector (a, —a3) to apply the projection operator
method as you did in frame 8.12 by completing the table:
(you may need to add and label additional vectors).

D}h‘ E G G GO GR GEB) 0SS’ o) o2) ov(3)

a, —az becomes‘+az —as +a; —ap —az+a, —aytaz

8.19
D3h‘ E (&) G G(l) G(2) GB)

a,—az becomes ‘ +ay—as+az—a;+a;—a,—a,+as—a;+a,—az+a,

o Sy Sy o(l) (2 oy(3)

+a2—a3 +a3 —a) —I—al —az—a2+a3 —aj +a2—a3 +al

We now only need to multiply this by the characters in the E’
representation in the character table to obtain the form of the
second E’ mode of vibration. This gives us:

D3h‘ E G G G GRGBa S S o) o)

‘232*233 —ay+a, 0 —az+a; 0

Complete this table

8.20

D3y, E G G’ G(1) G(2) G3) Oh S; $°  ay(1) 0v(2) 0,(3)

‘2a272a37a3+a]7a1+a2 0 0 0 +2a,—-2a3;—az+a;—a;+a, 0 0 0

Now add up the result to find how many a; how many a, and
how many a3 describe the mode of vibration.

8.21 The result: the sum is (6a, — 6as)

Normalise this result.
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8.22  The second E’ mode is:

! (a, —az) i.e
\/E 2 3 .C.
Our complete set of bond stretching vibrations is therefore:
y
[ *— [ ] o [ J [ ] X
Af E'(x) E'(y)
1 1 1
ﬁ(al +a; +a3) 76(231 —ay —a3) NG (ay —as)

Degenerate

The character table for D5, shows that the A{ mode is not
infrared active but that the E’ modes are since they belong to
the same representation as the x and y directions. Using the
axes shown above we can see that the first E’ mode of vibra-
tion will give rise to an oscillating dipole moment in the x
direction. Bond 1 is oscillating purely along the x axis; bonds
2 and 3 have components along y which cancel out but a
small component along x. The second E’ mode gives rise to
an oscillating dipole moment along the y direction since the x
components of bonds 2 and 3 cancel out.

The vibrational modes shown above are, of course, only
schematic. When a real molecule or ion vibrates, its centre
of gravity remains in the same place, so the central atom
must move as well as the outer ones. The extent of this move-
ment will depend on the relative masses of the atoms con-
cerned. Thus the NOs~ ion, containing atoms of similar
masses, will behave differently from BCl; where the central
atom is very light. The symmetries and general form of the
vibrational modes are, however, the same in both cases.
Readers wishing to explore the topic of molecular vibrations
in more detail should refer to the excellent books by
Woodward and by Wilson, Decius and Cross given in the
bibliography.
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As a final check on the form of our vibrational modes we
must ensure that two conditions are satisfied. One is that we
have overall used each bond equally and the other is that the
functions describing the modes of vibration are orthogonal
to each other. These two checks are easily done if we write
out the matrix of coefficients of a;, a, and as:

a a, as

E'l) =

If we add the squares of the coefficients of a; we obtain:
=1

Add up the squares of the coefficients of a, and a3 in the same
way.

8.23

ay tyiilog ay yiilog

376 2 376 2

This shows that all three bonds contribute equally to the
total picture of the bond stretching vibrations of the
molecule as they must since they are all equivalent.

The second condition is that the vibrational modes are ortho-
gonal to each other. To check this we select two modes (say
A{ and E’(x)), multiply together the coefficients of each
vector and sum the result:
‘ a| a) a3
1 2 1 -1 1 -1
— X — —X—— =X
V3 Ve V3 Ve V36

The result should be zero for any pair of vibrational modes.

Al x E'(x) Sum =0
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Check the orthogonality of the other two pairs of modes in
the same way:

’ a] a a3
Al x E'(y) —IXO el Sum =
RV A 3 2 -
E'(x) x E'(y) Sum =
8.24 . 0 2
1 1 1 1 -1
AI/XE/(y) EXO ﬁxﬁ %Xﬁ Sum:O
2 -1 1 -1 -1
E'(x) xE’ — X0 —=X—= —x— Sum=0
WEW ] 77 XA v

So our results are mutually orthogonal.

In frames 8.12 to 8.22 we used the three vectors a;, a, and a;
to represent bond stretches and found the combination
which had the correct symmetry to describe the bond stretch-
ing vibrations of BCls. It should be clear that a set of chlorine
p-orbitals has the same directional properties as our set of

three vectors:
OCl ¢z

+

5 (o)

@, @ A

o

So, without working through the arithmetic again, we can

make up the same linear combination of chlorine p-orbitals

to combine with the orbitals of boron and form o-molecular
orbitals.

Which boron orbital would interact with the totally sym-
metric combination of chlorine orbitals?

o
Aj :7§(¢1 + 2+ ¢3)
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8.25 The spherically symmetrical 2s orbital:

Draw the corresponding diagram for the E’(x) combination
interacting with the 2p, orbital of boron.

E/(x) = 7% (261 — b — 3)

8.26

Q
c1-9 The orbital on Cl(;y has been
- made larger because its
coefficient in the wave
B@ Cl(‘) function is twice as large
@, as the others.

3 Cl
)

Draw the corresponding diagram for the other combination,

E'(y) =7;<¢2 )
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B Cl

A further use of our set of linear combinations is to regard
them as hybrid orbitals of the central boron atom made up of
a mixture of 2s, 2ps and 2p, atomic orbitals. The 2s orbital
has A| symmetry and the character table shows us that the
2p (x and y) orbitals have E’ symmetry. We can therefore
write:

1
s=—(a;+a,+a ... 8.1
\/§(1 2 3)
= 1(2&1 —a, — a3) 8.2
Px NG 1 2 3
1
py:ﬁ(az—ag) ...8.3

Where s, py and p, represent the wave functions of the
atomic orbitals.

Rearranging equations 8.1 and 8.2 we obtain:
\/§S = + ay + aj
\/pr =2a; —a; —a3

Add together these equations and find a value for a;.
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8.28
V3s+6p, = 3a,
1 V2 1
A =—=S+-=py=—7=(s+V2
1 \/§ \/§ Px \/§ ( px)
This is the form of the wave function of the sp> hybrid orbital
of boron pointing along a;. The equations can be solved to
find the other hybrid orbitals as follows:
1
a) = V2s — x T V3
2 \/6 ( p py)
1
a3 = 76 (\/55 —Px — \/gpy)
Complete the matrix of coefficients of s, px and py to start the
two checks described in frames 8.22 and 8.23.
S Px Py
1 V2
a — 0
V3 V3
. -1
? V6
as
8.29 S Px Py
1 V2
a —= — 0
V3 V3
. 1 -1 V3
IV Ve Ve
. 1 -1 -3
V3 Ve Ve

Sum the squares of the coefficients of each orbital to demon-
strate that each orbital contributes equally to the set of
hybrids, i.e.

s—l—i—l-i-l—l
303 3
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8.30
2y
Px=37T5 6~
3 03
—04242=1
Py =0+575

Now check that all pairs of functions are orthogonal by
multiplying the corresponding coefficients and showing that
they sum to zero, e.g.

_IX_I+Q -1
V3 V3 V3 V6

a; X a, = +0_O

8.31 The other products are:

1 1 V2 -1
a; X a3 = X—=+-—72=X—=+0=0
R ATVE VBT VG
1 -1 -1 V3 =3
dy X az = =0

ffo\ff

The three hybrid orbitals, a; a, and a3 are therefore ortho-
gonal and the three atomic orbitals, 2s, 2px and 2p, contri-
bute equally to them.

A Simplified Procedure

In frames 8.10 to 8.12 we used three vectors pointing towards the
corners of a triangular molecule as a basis for a reducible representa-
tion of the group Djy,. This can be used to find the symmetries of the
bond stretching vibrations of a molecule like BCl; or to demonstrate
that a set of sp> hybrids is triangular. Most of the programme, how-
ever, has been used to show how the projection operator method can
be used to find linear combinations of functions. These linear combi-
nations then give us the explicit forms of vibrational modes, hybrid
orbitals or molecular orbitals. The projection operator method was
just about manageable with the twelve operations of the D3y, group



158 Programme 8

but becomes unwieldy with groups containing more operations. In
the next section, therefore, we shall try to work intuitively from the
character table to find the correct combinations without working
through the full arithmetic. We shall stay with the D3, group for
this as we have already seen the results for this group.

We start from the fact that the set of three vectors, a;, a, and a3 is the
basis for a representation which reduces to A{ + E’ (frame 8.12).

We now ask ourselves what combination of a;, a, and as, could have
A{ symmetry? The character table shows that A{ is the totally sym-
metric representation. What combination of a;, a, and a; maintains
the full symmetry of the molecule?

8.32 Any combination in which they are equally represented, i.c.
a; +a; + aj.

Write this in normalised form.

8.33
1
— (a1 + ) + 33)

V3

We now look at the character table for D5y, and note that the
E’ representation is the one to which both x and y belong.

a,

60"

I
I
e mm— - —
I
I
v
R
A
e

a4
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The contribution of each vector along the x direction is
simply the projection of that vector onto the x axis which is:

for a;: =a
-1
for a,: = —a, cos 60° = — a,
. -1
for as: = —aj cos 60° = &

Add these three components together and normalise the
result.

8.34

1 1 1
aj—-a,——az or —(2a; —a,—a;)

29272 NG

i.e. the same result as E’(x) obtained previously.

Now let us look at the projection of the vectors onto the y-
axis. This is easier because a; makes no contribution at all.

Yy

Write down the projection of a, and a; along the y-axis and
normalise the result.

8.35

a,cos 30° — a3 cos 30° or, in normalised form, — (a, — a3)
as obtained previously for E’(y). V2

This approach obviously has much to commend it especially
for groups such as Dy, with 16 operations, T4 with 24 or Oy,
with 48.

Let us look at the application of this less formal method to a
tetrahedral set of vectors. The problem is greatly eased by a
careful choice of co-ordinate system which relies on the fact
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that we can construct a tetrahedron by putting one corner at
every other corner of a cube.
Use the four vectors a;, a, a3 and a4 as a basis for a repre-
sentation of the T4 group. These vectors could represent the
C—H bonds of a methane molecule.
y
. |
\ _xZ
]
M
\ N
a,
Ty ‘ E 8C; 3C, 6S, 604
Fcon ‘ 4 1
8.36
Td ‘ E 8C3 3C2 6S4 60'd
Iy ‘ 4 1 0 0 2
Reduce this representation.
837 FC*H = Al + T2

If you did not obtain this result, look back at frames 5.26 to
5.30 which go over the process in detail.

We now want to find the combinations of a;, a,, a; and a4
which will make our A; and T, representations. The A;
case should by now be trivial. Write down the normalised
combination.
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1
Ali E(a1+a2+a3+a4)

The other cases are also quite straightforward because the
three degenerate T> combinations represent the x, y and z
directions and the projection of each vector onto the x, y or z
axis is simply half the length of side of the cube in each case.
We can therefore take this as our unit of length and only
consider whether the projection is along the +ve or —ve
direction of the axis. Thus the combination corresponding
to T,(x) is:

1
T, (x): E(al +a,—az—ay)

Write down the combinations corresponding to T,(y) and
Tz(Z).

8.39

—_—

T, (y): (—a; +a, +a; —ay)

2
1
T, (2): E(al —a, +az —ay)

We can now write out the matrix of coefficients as:

a ay

[~}
(98]

[~
&~

|
N — N — N’—‘NI—‘
Lol ol
= o= o= o —

|

N — N‘H = N —
||

Y B N T T

from which it is easy to demonstrate that all four combina-
tions are orthogonal to all others.
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We can then go on to use this result to find the form of the
bond stretching vibrations of the CH,4 molecule, to construct
combinations of hydrogen orbitals or to find the wave
functions of the sp> hybrid orbitals of carbon. This exercise
is left to the reader but the answers are given at the end of the
programme.

We will finally apply the less formal method to a square
planar system belonging to the Dun point group. We will
choose axes such that the four vectors point along the co-
ordinate axes.

a; <

P
v
b
>

We saw in frames 7.24 to 7.26 that this set of vectors formed
the basis of a representation of Dy, which could be reduced
to A, + By + E,. The A, (totally symmetric) combination
is again § (a; + a, + a3 + a4). The character table tells us that
the B,, combination has the same symmetry as x> — y* which
must mean that we make a; and a3, which point along the x
axis, positive but a, and a4, pointing along the y axis, nega-
tive:

1
Blg5§(a1 —ay+az—ay)

Try to work out the combinations of a;, a,, a3 and a, which
have E,(x) and E,(y) symmetry.
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E,(x): 7; (a1—a;)  Ey(y) 7; (ag — )

The matrix of coefficients is then:

g

d) a3 day

I
o N"—‘ | —

—1

V2 V2

=] &"—‘ N — N =
Si
=) = = N =

from which the orthogonality condition can be seen easily.

Draw the forms of the infrared active E,(x) and E,(y) modes
of vibration of a square planar molecule by using the coeffi-
cients of a;, a,, a3 and a4 in the above table. Remember that a
negative sign means that the direction of the movement of an
atom is the reverse of the direction of the original vector.

8.41

E,(x): -4, a, >X Ey(y):

7% (a; —a3) 7; (ag —ay)

Both modes of vibration cause obvious oscillating dipole
moments in the direction of the axis.

We can, however, reasonably ask why the following modes
of vibration do not emerge from this analysis:
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1
2

(a; +ay —az —ay)

N —

(a; —a; —az +ay)

Both give obvious oscillating dipoles in the directions shown.
The answer is that these combinations would have emerged if
we had chosen axes at 45° to the ones used. Alternatively,
they can be derived as normalised linear combinations of
E,(x) and E,(y):

Eu(x) + Eu(y) =

(a; —ay —az+ay)

Ey(x) = Ey(y) =5 (a; +a, — a3 — ay)

N — N =

Such linear combinations are perfectly acceptable solutions
to our problem but only two orthogonal results may be used.

You should now be able to use the projection operator
method to find the form of molecular vibrations, to set up
linear combinations of orbitals suitable for the formation of
molecular orbitals or to find the form of the wave functions
of hybrid orbitals. These topics are the subject of the test
which follows.

Conclusion

There is much more to Group Theory than can be covered in a simple
introductory text such as this. The subject can also be used to give
further insights into the aspects of chemistry considered. You should,
however, now be able to tackle some of the more advanced books
listed in the bibliography and make reasonably rapid progress with
them.
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Linear Combinations Test

1. a. Find the symmetry adapted linear combinations of the
C—H bond stretches of ethene (D) and hence find the
modes of vibration of the C—H bonds. Use the following
co-ordinate system:

<

b. Normalise your result
c. Show that the different modes are all orthogonal to each
other.

2. a. Show that Mn(CO)sCl (C4,) has 2A; + B, +E C—O
stretching modes.

b. Find the normalised symmetry adapted linear combina-
tions of the C—O stretches which have these symmetry
properties. For the two A; modes, find one involving
bond 5 only and one involving bonds 1, 2, 3, and 4 only.

c. Find linear combinations of the two A; modes.

d. Show that your results are mutually orthogonal.

z
/ ’
N, Cl 0]
® N c-G
Mn/ 20, lie in the xz and yz planes
C “ |\ 204 lie between the x and y axes
Oﬂ) c C
®) O
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Answers
1. a. and b.

D2h ‘ E Cz(z) Cz(y) Cz(x) i J(xy) U(xz) U(yz)

Tewl4 0 0 0 0 0 0 4
= Ag+B3g+B1u+B2u 1 mark

Normalised linear combinations:

A,: totally symmetric L(ay +ay+ay+ay)

L

1 mark

Bs,: same symmetry properties as yz. This function is +ve
when y and z are both +ve or both —ve, but —ve if either y or
Z is —ve:

1
3 o 2 (ay —ay+a3 —ay)

1 mark

Bi.: same symmetry properties as z. Hence net displacements
along the z direction:

%(31 +a, —az — ay)

1

1 mark

B,,: same symmetry properties as y. Hence net displacements
along the y direction:

%(al —ay — a3y +ay)

)¢

1 mark
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c. Matrix of coeflicients:

a ar as ay
1 1 1 1
A Z Z _ Z
& 2 2 2 2
1 1 1 1
By |3 =3 3 73
1 1 1 1
B Z Z _Z _Z
R ) 2 2 2
1 1 1 1
B Z _Z __ Z
S ) 2 2 2
Orthogonality test
1 1 1 1
Ag XB3g:Z_Z+Z_Z:0
I 1 1 1
AgXBlu—Z—FZ—Z—Z:O etc. 2 marks
a. C4V E 2C4 C2 20'V 20'd
Tco \ 5 1 1 3 1
= 2A1 + Bl + E 1 mal‘k
b. First A; mode (Bond 5 only): as
Second A; mode
(Bonds 1, 2, 3 and 4) I(a; +ay +a; +ay)

1 mark
B, mode (same symmetry properties as (x> — y*) i.e. +ve

displacement along both directions of the x axis and —ve
displacement along both directions of the y axis):

X

Cl 7

%(—al + A, — ay + 34) 1 mark
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E modes (same symmetry properties as x and y, i.e. dis-
placements along the x or y directions):

Cl /v X
1
E(x): —(a, —a 1 mark
(x) \/Z( 2 —ay)
\Y
Cl1 / S
1
E(y): —(a;—a 1 mark
(y) \/Z( 1 3)
\y
c. Linear combinations of the A; modes are:
First 4+ Second:
1
— (a;+a,+a3+as;+2a 1 mark
\/g( 1 2 3+ ay 5)
First — Second:
1
— (a; +a,+a3+ay —2a 1 mark
NG (a1 2t azt+ay 5)
d. Orthogonality can be shown from either of the matrices of
coefficients:
aj a as ay as
A, 1
1 1 1 1
A Z Z Z Z
: 2 2 2 2
1 1 1 1
B _ Z _Z Z
! 2 2 2 2
1 1
E(x — -
(x) 7 7
1 1
E - -
(¥) 7 7
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ay a) as ay as
A 1 1 1 1 2
VB VB VB VBB
A, L1 112
VB VB VB VBB
B 1 1 1 1 1 mark
! 2 2 2 2
1 1
B R
1 1
E(y) 7 VG

Total 15 marks

A score of about 10 or more shows a reasonable understand-
ing of the subject but ultimately you should try to get com-

pletely correct answers to problems.

Look back now at frames 8.36 to 8.39 in which we started

and try to find:

a. the form of the C—H stretching vibrational modes of

methane;

b. the linear combinations of hydrogen 1s orbitals which are
needed to form molecular orbitals of methane;
c. the wave functions of the sp’ hybrid orbitals of carbon.

The answers to all these problems are closely related and are

given in the following pages.
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Results of the Tetrahedral Case

In frame 8.39 we saw that the symmetry adapted combination of four
bond vectors in a tetrahedral molecule such as methane gave the

matrix of coefficients:

a; a, a3 ay

1 1 1 1
Ay 5 2 32 2
Wl o3 o
w4 44 -
Ts(2) % —% % —%

The forms of the bond stretching vibrations are therefore:
A (totally symmetric or ‘breathing’ mode):

a3

53

T,(x):
(oscillating dipole

a

moment along
the x direction):

Ty (y):

>

Ty(2):

___.VZ

%(al +a2+a3+a4)

%(31 +ay —a; —ay)

%(—31 +ay + a3 —ay)

S(ay —ay +a; —ay)
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In each of these modes, two atoms move in and two move out. If we
add together the three T, combinations and normalise the result, we
obtain a linear combination: 1
Ta(x,y,2): Nip (a; +ay + a3 — 3ay)
This represents three atoms moving out while the fourth moves in. The
resulting oscillating dipole moment lies in the direction of one of the
bonds. This result is a perfectly valid vibrational mode of the molecule
but the two other T, modes whose oscillating dipoles are at right angles
(orthogonal) to it are more complex than the set described above.

The combination of hydrogen 1s orbitals that will form molecular
orbitals with the central carbon atom can also be obtained from the
matrix of coefficients. The A; combination will interact with the
spherical 2s orbital while the other combinations will interact with
the 2p orbitals, e.g.

U r
e

s 0

Ty (x) = %(‘f’l + ¢y — 3 — ba)

The wave functions of the four sp’ hybrid orbitals of carbon can also
be obtained by rearranging the equations to find values for a;, a,, a3
and ay4, giving the result:

1
¢1 :E(S+px_py+pz)
1
¢z=§(8+px+py—pz)
1
¢3:§(S*px+py+pz)
1
¢4 =5 (5 =Px =Py~ Ps)
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Linear Combinations

Revision Notes

The explicit form of molecular vibrations, hybrid orbitals or the
combinations of atomic orbitals suitable for forming molecular
orbitals can be found by applying the projection operator method.
The steps in this method are as follows:

Step 1:

Step 2:

Step 3:

Step 3A:

The result:

Choose a set of vectors forming the basis of the reducible
representation.

Select one of these as a generating vector and find the
result of operating on it by each of the group operations.

For each symmetry species:
Multiply each of the above results by the character of
the irreducible representation in the character table
and sum the result.

If there is a degenerate representation in the group, select
another orthogonal vector and repeat steps 2 and 3 for
the degenerate representation only.

The resulting linear combination of vectors gives the form
of each irreducible representation.

Sets of linear combinations must be normalised and orthogonal.

This process can become very long winded for groups with many
symmetry operations, so it can often be shortened as follows:

1. Choose a set of vectors to represent the problem to be solved,
use these as a basis of a reducible representation of the group
and reduce this to its irreducible representations (i.e. the
normal procedure covered in Programmes 6 and 7).

2. Using the character table, write down combinations of the
basis vectors having the same symmetry properties as the
irreducible representations found above. If necessary, use
the projection of the basis vector along a specified direction.

3. Normalise the resulting combinations and check for ortho-
gonality.
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Mathematical Data for use
with Character Tables

1. Character Tables containing Complex Numbers
In some character tables the two-degenerate, E representation
consists of two lines of numbers, some of which are complex

e.g.:
C; ‘ E C; C3
A 1 1 1

{ 1 exp(2mi/3) exp(—2mi/3)
1 exp(—2mi/3) exp(27i/3)
This is done so that the characters do, in fact, satisfy various
theorems of group theory. In practical use, however, the two

lines are added up and the following relationships will be
found helpful:

e =exp(2mi/n) = cos(27/n) +isin(27/n)
e* = exp(—2wi/n) = cos(27/n) — isin(27/n)

Hence: exp(2ni/n) 4 exp(—2ni/n) = 2 cos(2w/n)

The table can therefore be used as if it read:

C; | E C; C3

A 1 1 1

E 2 2cos(2m/3) 2cos(27/3)
je. © E G C3

A 1 1 1

E 2 -1 -1
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Character Tables for Groups containing a C5 Axis

Groups containing a five fold axis have character tables con-
taining cos 72° (27/5) and cos 144° (4xw/5) or exponentials
which adds up to give these quantities. The following
relationships will avoid the necessity of working with
cumbersome decimal numbers:

2cos72°=71—1

2cos 144° = —7

where 7 is the “golden ratio” of antiquity which satisfies the
equations:

?=r+1

1

and =7-1

The actual value of 7is 1 (v/5+ 1) = 1.6180339....

Values of f(R) for Various Operations

The quantity f(R) is the contribution to the character of
the Cartesian representation by each atom unshifted by an
operation.

Operation f(R) Operation f(R)
E 3 S, -2
o 1 S, —1
i -3 Ss T—2
C, —1 S3 . —
C, 0 S! —1-7
C, 1 S? )
Cs T Se 0
C? 1—7
Ci -7 ck 1 4+ 2cos(2rk/n)

Cs 2 Sy —1 4 2cos(27k/n)




Character Tables for Chemically
Important Symmetry Groups

1. The Nonaxial Groups

o E

A 1

“1F ] | “l1F 1 |

A1 1l x,p, R | x%p% A |1 1| Re, Ry, R | x2, 3%, 27
, Xy Xy, Xz, yz

A1 —=1| 2z, R, R, | yz, xz A1 —1 | x,» 2

2. The C, Groups

C, | E C, ‘

A |1 1|z R. x* y?, 2% xy

B 1 —1 | x,5,Rs, R, | yz,xz

C:| E Cs Ci?

‘ e =exp (27i[3)

A
E

z, R,
(x, »)(R«, R))

XZ+ y2’ 22

(x* — y*, xp)(yz, x2)
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Ca E C, C, G
A 1 1 1 1 | z,R: x¥4 y? z?
B| 1 —1 1 -1 x? =y xy
. jl i =1 —i
E o o i | G P(Rs, Ry | vz, x2)
Cs |E Cs C* Cs* Cs* ‘ ¢ = exp (2mi/S)
A 11 1 1 1 z, R, xr 4 y?, 2
1 ¢ g2 g g*
El {1 £* 2% g2 P (xs y)(nyRy) (yZ, XZ)
1 e* g ¢ e*
Ea {1 e ¢ % g? (% = y% xy)
Cs E Cs Cs C, C;? Ce® & = exp (27i/6)
A 1 1 1 1 1 1 z, R, x?+y2, 22
B 1 —1 1 —1 1 -1
1 € —e* -1 —¢ el | (x, ) )
E, :1 g% —e¢ —1 —e* € (R, R,) (xz,y2)
jl —e* —¢ 1 —e* —¢ s .
E 1 —e —g* 1 —e —&* o =% )
C,|E C C* C? C* G5 GF e = exp (2mi/7)
A 11 1 1 1 1 1 z, R, x4 y?, 22
1 ¢ 2 g3 g g ¥ x, »)
E, 1 £* gk g3k g3 &2 e (R:, R,) (xz, yz)
1 52 83* 8* € 83 62*
E, {] £2% g3 e £* £33 g2 (x> —y% xy)
J1 &3 &% & e e £3*
Ey |1 &* e e2* g2 g*  g?
Cg E Cs Cis C: C4* Ce® Cs° Cy’ & = exp (2771’,‘/8)
A I 1 11 1 1 11 z, R. x4y 22
B 1 —1 11 1—-1 —1 —1
I e i—1 —i—¢g*—¢ ¢ |(x)
Ecllt er i —1 - —e* ¢ (R, R) (xz, y2)
I R T A .
Exlll =i =1 1 =1 i —i i (x*=y% xy)
1 —e i =1 —i &* g —¢*
E; | —e* —i —1 [ & g% —¢ }
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3. The D, Groups

D, | E Ciz) Ciy) Cax) | ‘

A 1 i 1 1 x2, y?, 72?2

B, |1 1 —1 —1 z, R. | xy

B, |1 —1 i —1 », R, | xz

B; |1 —1 —1 1 x, R. | yz

D; | E 2C, 3C,

A |1 1 | x? 4 y?, z?

A; | ] 1 —1 |z R;

E 2 —1 0 | (x, Y)Rx, Ry | (x* — % xp)xz, yz)

D4 E 2C4 Cz(:C42) ZC; ZC;

A |1 1 1 1 1 x? eyt 2
A, |1 1 1 —1 —1 z, R.

B, 1 —1 1 | —1 x?—y?
B, |1 —1 1 1 1 xy

E |2 0 -2 0 0 | (x, ¥R+, R) | (xz,p2)
Ds | E 2Cs 2Cs? 5C,

A |1 1 1 1 x2 4 y?, 22
A |1 1 1 —1 1|z R,

E. |2 2cos72° 2 cos 144° 0| (x, ¥)(Rs, R,) | (xz,y2)

E, |2 2cosl44> 2cos72° 0 (x* — y%, xy)
Dy |E 2C, 2C, C. 3Cj 3C,

A |1 1 1 1 1 1 x? 4 y? z?
A, |1 1 1 1 -1 —1 z, R,

B |1 —1 1 —1 1 -1

B, |1 —1 1 —1 —=1 1

E |2 I =1 =2 0 0 (x, (R, Ry | (xz,y2)

E, |2 -1 -1 2 0 0 (x*—y2, xy)
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4. The C,, Groups

Cow | E C:  ofxz) oiyz)

A, 1 1 1 1 z x2, y?, z*?

A 1 1 —1 —1 R. Xy

B, 1 —1 1 1 x, R, Xz

B, 1 —1 —1 1 y, R yz

Cse | E 2C, 3o,

A, 1 1 1]z x% 4 y? z?

A, |1 1 —1|R

E |2 0| (x, (R« R) | (6% —y?%, xy)xz, yz)

Ci | E 2Cs C; 20, 204

A, 1 1 1 1 1]z x4 y? 72

A, 1 1 1 -1 —1 | R,

B, 1 —1 1 1 —1 x? —y?

B, 1 —1 1 -1 1 Xy

E 2 0 -2 0 0] (x,»R., R) | (xz,¥2)

Cs, | E 2Cs 2Cs*? 50,

Ay 1 1 1 1 x* 4 p2, 22
A, 1 1 1 —1 -

E, 2 2cos72°  2cos 144° 0| (x, ¥R, R)) | (xz,yz)
E, |2 2cosl44° 2cos72° 0 (x* —y2, xy)
Ceo | E 2C¢ 2C5; C, 30, 3o0u

A, 1 1 1 1 1 1|z x2 4 y? 2z
A4, |1 It 1 —1 —1|R

B, 1 —1 I —1 1 —1

B, 1 —1 1 —1 —1 1

E |2 I —t =2 0 0 (x,»)(R:, R) | (xz,y2)

E, |2 —1 —1I 2 0 0 (x* — % x»)

179
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5. The C,, Groups

a0
zzx
zv,,zv”)
3
| BN
o s
= = 2X2x 2
Sl X b
~ R —_—
o~ % ~
5 ¢ o =
n )
I i & -
o | R X e n >
&L X
2 7
- - R P ——
~ = : o
b » g [ [
NS & X = “© | I
A A
e — | ——_———
X % 5 .
L — % w oo - —— N e T
o “ ! o N
w2 - R -
RN K “© L - [
— 34 “].-_tr!llAll
lll,.l & [ @) - I
|
- |
miairin Gl =% o=t © ! I
- R kit Rl
l.l.l.H ) 18*515*5 ) | ' |
i
—— v- _— — _
5 3
S o 3 3 ~ -~ X o (=Y = £
AR Ol x iy W Ol < W < w

)
S 2
-
& | <
(2) «~
-
R REN = N
L | =
([ o i
w | ® X =
~
X
[
_
= X
uo 7
X zm
———
o * ~NonN * NN
P S TR VL T P A
“ i
x M
- A 2 Aa o«
%15555[5655
? [
* *
~ NN NN X
n\.ﬂl"tee.clrn(tus
‘ [
* *
- o d &
%) le.cffla,tawtﬂcﬂ
Pob
e m—m—— e ———
© [

Cs? Cs3 it

E Cs

N o~ *
—_ W W W W

*

~

*

~
W oW oW W

NN NoNx
—_N W R W W W W W

CSh

o _-
Bl ™ 2
SN o
a ~ A
N
5 MT ~ |
II * N
© X X
—
=
~
& . =
& N3
- * ¥ CRER
S —_— W W W e W W W W
| [ i
5 R SR N
: [ T I
el —mmm
[ | I
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“ P
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“ | |1 I
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6. The D,;, Groups

Dan | E Cilz) Cily) Gl i
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alxy) alxz) o(y2) | |

A(I
By,

o 1 1

o1 -1

PN B 1

B |1 -1 =1 1

A oo 1 1

S T B
-1 1
1

—1 -1 1

™

~

9
w

3C,

1 x4 22
H Xy
xz
. | vz

1
—1
1
—1
—1
1
—1
1

1
1
0
1
1
0

N = e B — —

tm

x4 y2, 22
R

(x.») 2

(x* - y2 %)

z
(Rev R | (xz,32)

204 | ‘

r]

2,2
X2yt 2

R

[ S e

2C

1
1
1
1
0
1
1
1
1
0

5

I N

(x, )

Tn

(Rys R))

X — y?

Xy

(xz,y2)

w
Q
<

|

1
1

1
1

[ S R N

E

2 cos 72°
2 cos 144° 2 cos 72°

2cos72° 2
2cos 144° 2

2

cos 144°
cos 72°
1
1
cos 144°

C2

3¢,

1 1
1 i
2 cos 72° 2 cos 144°
2 cos 144° 2 cos 72°
—1 —1
—1 —1
—2c0s72° —2cos 144°
—2cos 144°  —2cos 72°

1
1
2
2
—1
—1

-2
—2

0
0

i i

w
q

S
w
Q

<

COoO—=— OO ——

R,
(x, »)

X2+ oyt 2t

(x? -y, xp)

z
(Rx, Ry) \ (x2,y2)

PO RO e = B DD e = —

1
1 -
—1
—1
-2

-
Z

1

1

1

1

0

0

1 1
1 1
—1 1
—1 1
—2 0
0

|
O . OO — = ——
I

o= R R

|
[ O N N
| |
|

(Rx. Ry

(x, »)

(xz, y2)
(x* yixy)
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E 2C; 2Ci 2C, C, 4C) 4C) @ 28y 287 28, o, 4o, 4o,
1 1 1 11 1 11 1 (S TS TS X427
1 1 1 1 1 -1 -1 1 1 I 1 1 -1 -1 |R
1 -1 -1 11 1 -1 1 -1 -1 1 1 1 -1
1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -1 1
20 2 =2 0 =2 0 0 2 2 =2 0 =2 0 0| (R,R) | (xzy2)
2 0 0 -2 2 0 0 2 0 0 -2 2 0 0 (> =2, xy)
2 -2 Y2 0 =2 0 0 2 —/2 2 0 -2 0 0
1 1 111 1 1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 1 -1 -1 -1 -1 -1 =1 =1 1 1|z
1 -1 -1 11 1 -1 -1 1 I -1 -1 -1 1
1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1
20 2 =2 0 =2 0 0 -2 =2 2 0 2 0 0|(xy
2 0 0 -2 2 0 0 -2 0 0 2 -2 0 0
2 -2 Y2 0 =2 0 0 -2 2 —J/2 0 2 0 0
7. The D,,; Groups

Dy | E 25, G 2G 20, |

4, 111 11 X472

A |1 1 1 -1 -1 |R

B 1 -1 1 1 -1 X —)?

B, |1 -1 1 -1 1]z xy

E 2 0 -2 0 0 | (x,»); (xz,yz)

(R\’~Ry)

Dy | E 2C; 3C, i 285 3o,

A |1 1 1 1 1 1 X427

Ay |1 1 -1 1 1 —1|R

E, |2 -1 0 2 -1 0|(R.,R)| (=" x),

(xz,z)

A, |1 1 1 -1 -1 -1

Ay |1 1 -1 -1 -1 1|z

E, |2 -1 0 =2 1 0](xy)

Dy | E 28 2C, 25i G, 4C3 4oy

A, 1 1 1 11 1 1 X +3% 2

4, |1 11 1 1 -1 -1 |R

B 1 -1 1 -1 1 1 -1

B, |1 -1 1 -1 1 -1 1|z

E |2 V2 0 —/2 =2 0 0] (xy)

E |2 0 -2 0 2 0 0 (> =2, xy)

Es 2 =2 0 V2 =2 0 0 | (R, R,) | (xz,yz2)
Ds; | E 2Cs 22 5C, i 253 2810 50,
A, |1 1 1 11 1 1 1 X% 2
Ay |1 1 1 -1 1 1 1 -1 | R
Ey, | 2 2cos72° 2cosl44° 0 2 2cos72° 2cos 144° 0 | (R,Ry) | (xz,p2)
E,, | 2 2cosld44® 2cos72° 0 2 2cosl4d®  2cos72° 0 (2% =%, xy)
Ay, |1 1 1 1 -1 -1 -1 -1
Ay |1 1 1 -1 -1 -1 -1 1|z
E;, | 2 2cos72° 2cos144° 0 -2 —2cos72° —2cosld4® 0 | (x,»)
E, 2 2cos144° 2cos72° 0 -2 —2cosl44® —2cos72° 0
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The D,,; Groups (continued)

183

Dgy | E 2S5, 2C¢ 28, 2C; 25, C, 6C3 6o,
A, 1 1 1 1 1 11 11 X442
4, |1 11 11 1 1 -1 —-1|R
B |1 -1 1 -1 (R T B
B |1 -1 1 -1 1 -1 1 -1 1]z
E |2 V3 1 0 -1 —/3 =2 0 0] (xy
E, |2 1 -1 -2 -1 1 2 0 0 (=2, xy)
E |2 0 -2 0 2 0 -2 0 0
E, |2 -1 -1 2 -1 -1 2 0 o0
Es 2 -3 1 0 -1 V3 =2 0 0 | (R,R,) | (xz,yz2)
8. The S, Groups
S | E S ¢ 83 ‘ ‘
A 1 1 1 1 R, X +)%, 7
B 1 -1 1 -1 z X = yz, Xy
1 i -1 —i
R P S O R  SH e
Se E ¢ &G i S Se e = exp (27i/3)
A, 11 1 11 1 R. X+ 2
1 e ¢* 1 € e* (=% xyp);
g | bl rar)
1 e* ¢ 1 e* € (xz,yz)
A, 11 -1 -1 -1 z
1 & & -1 -—¢ —e*
E, X,y
“ { I e* ¢ -1 —&* —¢ } (x.7)
Sg E S C, S; c S5 G Sy e = exp (27i/8)
A 11 11 11 1 R, X242 27
B 1 -1 1 -1 1 -1 1 -1 z
£ { 1 e i —e* -1 —e i g* } (x,9);
¢ 1 e —i —e -1 —e* i ¢ (R, R))
1 A 1 i -1 —i 2 2
E X° =y, Xy
¢ { | 1 —i -1 } o =rw)
1 —e* —i e -1 e* i —e
E Xz,yz
< { 1 —¢ i e* —1 ¢ —i —c* } (xz32)

9. The Cubic Groups

T ‘E 4C; 4C3 3G, ‘

‘ e =exp (2mi/3)

A 1 1 1 1
|- e* 1
E{ 1 e* ¢ 1
T 3 0 0 -1 (Rx*,Rvaz); (vaaz)

R

(222 - x2 - }727
X = yz)
(xy,xz,z)
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Character Tables for Chemically Important Symmetry Groups

The Cubic Groups (continued)

T, | E 4Cy 4C3* 3C, i A4S 4565 3o, | | e=exp (27i/3)
A, 1 1 1 1 1 1 1 1 x2+ y2 4 22
A, 1 1 1 1 -1 -1 -1 —1
E 1 ¢ &* 1 1 & £* 1 (222 — x2— »2,
9 ) B £ 1 1 &* & 1 x%—y?)
E | S e* 1 —1 —& —¢e* —1
“ 1 e € 1 —1 —&* —¢ —1
T, 3.0 0 —1 1 0 0 -1 (Re, Ry, R;) (xz, yz, xy)
Tu 3 0 0 —1 —1 0 0 1 (x,y,z2)
Ty E 8C; 3C, 654 604
A, 1 1 1 1 1 x2 4 y2 4 22
A |11 1 —1 —1
E 2 —1 0 0 222 — x2 — y?,
x*—y?)
T, |3 0 —1 1 —1 | (R,R,,R)
T, | 3 0 —1 —1 1 e, 3, 2) (xy, xz, yz)
O | E 6C, 3Cy(=Cs?) 8C; 6C,
A, i 1 1 1 1 x2 4 p24 22
A, |1 —1 1 1 -1
E 2 0 2 —1 0 (222 — x%— y2,
x*—y?)
T, | 3 1 -1 0o —1 (Re, Ry, R); (x, 3, 2)
T, 3 —1 -1 0 1 (xy, xz, yz)
Oy |E 8C; ~6C;, 6C, 3C,(=Ca) i 6S, 8Ss 3o, 6o,
Ayl 1 1 1 1 1 1 1 1 1 1 x2 4 y24 22
Ayl 1 —1 —1 1 1 -1 1 1 —1
E, |2 =1 0o o 2 2 0 -1 2 o0 Q22— x%—y
x2—p?)
T, |3 0 —1 1 —1 3 1 0 —1 —1|(R,R,,R)
Ty | 3 0 1 -1 —1 3 —1 0 —1 1 (xz, yz, xy)
A, |1 1 1 1 1 -1 -1 -1 —1 -1
Azu | 1 1 -1 -1 1 —1 1 —1 —1 1
Eu 2 —1 0 0 2 -2 0 1 =2 0
Tw|3 0 —1 1 —1 -3 -1 0 1 1| (xmp2
Tou | 3 0 1 -1 —1 -3 1 0 1 —1 :
10. The Groups C,,, and D, for Linear Molecules
Coou ‘ E  2C,° wa, | |
Ag=2X+ 1 1 1 z x2 4 y2? 22
A, =X 1 1 -1 R,
E, =II 2 2cos® 0 (6 ¥)5 (Re, Ry) (xz, yz)
E,=A 2 2cos2® 0 (x2— y2, xy)
E; =0 2 2cos3® [\]
D, E 2C.° o, i 25,°% ©C,
P 1 1 1 1 1 1 x2 4y, 22
" 1 1 -1 1 1 1 R,
II, 2 2cos® 0 2 —2cos® - 0 Ry, Ry | (xz,y2)
A, 2 2cos2d 0 2 2 cos 29 0 S (x2— 2 xp)
Tt 1 1 1 —1 —1 —1 z
X 1 1 -1 —1 —1 1
11, 2 2cos® 0 -2 2 cos @ 0 (x, y)
Ay 2 2cos2® 0 —2 —2cos2® 0




11. The Icosahedral Groups*

1, E  12Cs 12Cs2 20C; 15C, i 12510 1250 20Ss 150

4, | 1 1 1 1 1 1 1 1 1 1 x? 4y z?

T, | 3 ¥1+V3 a-vsH 0 —1 3 30-V35  +Vs 0 —1 |[(RoR,R)

Tso 3 11-V35) M1+V5) 0 -1 3 (1+V3  —-vs o o0 -1

G, 4 -1 -1 1 0 4 —1 —1 1 0

H, 5 0 0 -1 1 5 0 0 -1 1 (22% — x? — y?,
x?—y?,
Xy, ¥z, 2X)

A, 1 1 1 1 1 —1 -1 -1 -1 -1

T | 3 314V5 1-v5 0 -1 -3 —M1=V5 —11+VS 0 1 |y

T | 3 1I-VS) 1+VS) 0 —1 -3 —1+VE) —4-Vs 0 1

" 4 —1 -1 1 0 —4 1 1 —1 0

H, 5 0 0 —1 1 -5 0 0 1 -1

* For the pure rotation group I, the outlined section in the upper left is the character table; the g subscripts should, of course, be
dropped and (x, y, z) assigned to the T, representation.

sdnoun AnjpwwAg ueliodw) Ajeoiway) Joj sa|qe| Jaoeieyd)

g8l
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N.B. Numbers such as 3.27 are frame numbers.
Numbers such at 4T refer to the test at the
end of the given programme.

A representation, 5.14

Allyl system, LCAO MO treatment, 6T

«, (energy from Huckel theory), 6.19

Alternating (improper) axis, 1.20

Ammonia, point group Cs,, 2.21
vibrations of, 7.19-7.24

Antibonding orbital, 6.28, 6.36

Antisymmetric, 3.12

Antisymmetric stretch, 8.4

Associative, 2.25

B representation, 5.14

Basis, 4.33

Benzene, point group Dy, 2.6

B, (energy from Huckel theory), 6.19

Bonding Orbital, 6.28, 6.36

Boron trichloride, see Triangular planar molecules

C,y, molecule, 8T

C,, definition, 1.4

Cartesian representation, 4.36, 7.3
character of, 7.22

Centre of symmetry, 1.16
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Character table, 3.14
collection of, 174-85
Classes of symmetry operations, 2.35
Classification of molecules into point groups, 2.1-2.24
problems, 2.23, 2T
systematic procedure for, end of Prog. 2
Commute, 2.34, 4.16, 5.22
Complexes, MO treatment, 6.32
Conjugate operations, 2.35
Correlation diagrams, 6.22
Cyclobutadiene, LCAO MO treatment, 6.19
Cyclopropenyl system, LCAO MO treatment, 6.17

Degenerate representation, 3.32, 5.12

A\, origin in MO theory of complexes, 6.36
Diborane, 7T

Dihedral plane, 2.10

E, identity element, 1.8
E representation, 5.14
Energy level, 6.19, 6.22
allyl system, 6T
cyclobutadiene, 6.22
cyclopropenyl, 6.19
diagrams, 6.22
Equivalent operations, 2.39
Ethene (linear combinations), 8T
Exclusion rule for vibrational transitions, 7.19

Ferrocene, point group D54, 2.23
Fumarate ion, 7T

Generating vector, 8.5
Group,
definition of, 2.25
multiplication table, 2.25

Huckel MO theory, 6.19
Hybrid orbitals, 6.3-6.10
square, 6T
tetrahedral, 5.38, 8T
trigonal, 6.3, 8.27-8.28
Hydrogen peroxide, point group C,, 2.19



188 Index

Identity element, 1.8
Identity matrix, 5.14
Identity operation, 1.8
Improper rotation, 1.20
Infrared activity, 7.16
Inverse of symmetry operation, 2.25
Inversion centre, 1.16
Irreducible representation, 3.14
number in a given reducible representation, 3.18

LCAO MO method, 6.17

Linear combinations
C,4, molecule, 8T
ethene, 8T
projection operator method, 8.5
simplified method, 8.31
square planar molecule, 8.39
tetrahedral molecule, 8.35, 8T
triangular molecule, 8.31

Matrices,
character of, 4.29
combination of, 4.10-4.16
commutation of, 4.16
conformable, 4.9
definition, 4.1
multiplication of, 4.10-4.16
as representations, 4.21
Modes of vibration, see Vibrational modes
Molecular orbitals, 6.17-6.36
allyl system, 6T
antibonding, 6.28, 6.36
bonding, 6.28, 6.36
of complexes, 6.32
correlation diagram, 6.22
cyclobutadiene, 6.19
cyclopropenyl system, 6.17
non bonding, 6.32
of water, 6.22, 8.8
Molecular vibrations, 7.2-7.16, and see Vibrational modes

n-fold staggered structures, 2.24
Non bonding orbital, 6.32



Index

Normal modes of vibration, see Vibrational modes
Normalisation, 8.7

Octahedral complexes, 6.32
Operations, see Symmetry operations

Orbitals, see various types e.g. hybrid, bonding, etc.

Order of a group, 3.18

of a rotation axis, 1.4
Orthogonality, 8.23
Oscillating dipole moment, 8.5

p orbitals, transformation properties, 3.2
m-bonding, 6.10
Plane of symmetry, 1.9
dihedral, 2.10
Point group, 2.10
problems in assignment of, 2.23, 2T
symbol for, 2.7, 2.11

systematic classification of molecules into, end of Prog. 2

Product of symmetry operations, 1.29
Projection operator method

C,, molecule, 8.5

D3, molecule, 8.10

degenerate systems, 8.17

simplified approach, 8.31
Proper rotation, 1.4

Raman activity, 7.17
Reciprocal (inverse) of a symmetry operation, 2.25
Reducible representation, 3.17
Reduction of reducible representations, 3.18
problems and examples, 3.24, 3T
Representations of operations,
A,B,Eand T, 5.14
Cartesian, 4.36, 7.3
characters of, 3.14
character of Cartesian, 7.22
degenerate, 3.32, 5.12
irreducible, 3.14
matrices as, 4.21
properties of, 3.13
reducible, 3.17

189
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reduction of, 3.18-3.24

totally symmetric, 3.14
Rotation,

improper, 1.20

proper, 1.4
Rotation-reflection axis, 1.20

S, definition, 1.20
o orbitals, hybrid sets of, 6.3-6.10
Selection rules,
infrared, 7.16
Raman, 7.17
Similarity transform, 2.35
Square planar molecules,
hybrid orbitals, 6T
LCAO MO treatment, 6.19
m-bonding in, 6T
vibration of, 7.10, 8.39
Staggered, n-fold structures, 2.24
Symmetric, 3.12
Symmetric stretch, 8.3
Symmetry axes,
improper, 1.20
proper, 1.4
Symmetry element, 1.5
Symmetry group, see Point group
Symmetry operations
combination of, 1.29, 1T
definition, 1.5
distinction from elements, 1.5-1.13
identity, 1.8
improper rotation (rotation-reflection), 1.20
inversion, 1.16
proper rotation, 1.4
reflection in plane, 1.9
Symmetry plane, 1.9

T representation, 5.14

Tetrahedral molecules,
hybrid o orbitals, 5.38
vibrations of, 7.24

Triangular planar molecule
projection operator method, 8.9
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Triangular planar molecules,
hybrid o orbitals, 6.3
LCAO MO treatment, 6.17, 8.24
m—bonding in, 6.10
vibrations of, 7T, 8.15-8.22

Unit matrix, (identity matrix), 5.14

Vectors,
representing m-orbitals, 6.11
representing o-orbitals, 6.4
representing carbonyl stretching vibrations, 7.24
representing molecular movements, 7.3
Vibrational modes,
of ammonia, 7.19-7.24
of boron trichloride, 7T
of diborane, 7T
of fumarate ion, 7T
infrared activity of, 7.16
of methane, 7.24
number in a molecule, 7.3-7.10
Raman actitity of, 7.17
specified type (e.g. carbonyl), 7.24-7.27
symmetry species of, 7.3-7.10
of water, 7.3-7.10
of xenon tetrafluoride, 7.10-7.16

Wave functions, 6.26

Xenon tetrafluoride, see Square planar molecules
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