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Subject: physical chemistry
“Is this subject hard?”

—The entire text of a Usenet posting to sci.chem, September 1, 1994

WHAT THIS PERSON’S QUESTION LACKED IN LENGTH, it made up for in angst.
I spent almost an hour composing a response, which I posted. My

response generated about half a dozen direct responses, all supporting my state-
ments. Curiously, only half of the responses were from students; the other half
were from professors.

Generally, I said that physical chemistry isn’t inherently harder than any
other technical subject. It is very mathematical, and students who may have for-
mally satisfied the math requirements (typically calculus) may still find physi-
cal chemistry a challenge because it requires them to apply the calculus. Many
instructors and textbooks can be overly presumptuous about the math abilities
of the students, and consequently many students falter—not because they can’t
do the chemistry, but because they can’t follow the math.

Also, in some cases the textbooks themselves are inappropriate for the level
of a junior-year course (in my opinion). Many textbooks contain so much
information that they blow the students away. Many of them are great books—
for reference, on a professor’s bookshelf, or for a graduate student studying for
cumulative exams. But for undergraduate chemistry and chemical engineering
majors taking physical chemistry for the first time? Too much! It’s like using the
Oxford English Dictionary as a text for English 101. Sure, the OED has all the
vocabulary you would ever need, but it’s overkill. Many physical chemistry texts
are great for those who already know physical chemistry, but not for those who
are trying to learn physical chemistry. What is needed is a book that works as a
textbook, not as an encyclopedia, of physical chemistry.

This project is my attempt to address these ideas. Physical Chemistry is meant
to be a textbook for the year-long, calculus-based physical chemistry course for
science and engineering majors. It is meant to be used in its entirety, and it does
not contain a lot of information (found in many other physical chemistry
books) that undergraduate courses do not cover. There is some focus on math-
ematical manipulations because many students have forgotten how to apply
calculus or could use the review. However, I have tried to keep in mind that this
should be a physical chemistry text, not a math text.

xv

Preface
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Most physical chemistry texts follow a formula for covering the major top-
ics: 1/3 thermodynamics, 1/3 quantum mechanics, and 1/3 statistical thermo-
dynamics, kinetics, and various other topics. This text follows that general for-
mula. The section on thermodynamics starts with gases and ends in electro-
chemistry, which is a fairly standard range of topics. The eight-chapter section
on quantum mechanics and its applications to atoms and molecules starts on a
more historical note. In my experience, students have little or no idea of why
quantum mechanics was developed, and consequently they never recognize its
importance, conclusions, or even its necessity. Therefore, Chapter 9 focuses on
pre-quantum mechanics so students can develop an understanding of the state
of classical science and how it could not explain the universe. This leads into an
introduction to quantum mechanics and how it provides a useful model.
Several chapters of symmetry and spectroscopy follow. In the last six chapters,
this text covers statistical thermodynamics (intentionally not integrated with
phenomenological thermodynamics), kinetic theory, kinetics, crystals, and sur-
faces. The text does not have separate chapters on photochemistry, liquids,
molecular beams, thermal physics, polymers, and so on (although these topics
may be mentioned throughout the text). This is not because I find these topics
unimportant; I simply do not think that they must be included in an under-
graduate physical chemistry textbook.

Each chapter opens with a synopsis of what the chapter will cover. In other
texts, the student reads along blindly, not knowing where all the derivations and
equations are leading. Indeed, other texts have a summary at the end of the
chapters. In this text, a summary is given at the beginning of the chapter so the
students can see where they are going and why. Numerous examples are
sprinkled throughout all of the chapters, and there is an emphasis on the units
in a problem, which are just as important as the numbers.

Exercises at the end of each chapter are separated by section so the student
can better coordinate the chapter material with the problem. There are over
1000 end-of-chapter exercises to give students an opportunity to practice the
concepts from the text. Although some mathematical derivations are included
in the exercises, the emphasis is on exercises that make the students use the con-
cepts, rather than just derive them. This, too, has been intentional on my part.
Many answers to the exercises are included in an answer section at the back of
the book. There are also end-of-chapter exercises that require symbolic mathe-
matics software like MathCad or Maple (or even a high-level calculator), to
practice some manipulations of the concepts. Only a few per chapter, they
require more advanced skills and can be used as group assignments.

For a school on the quarter system, the material in physical chemistry almost
naturally separates itself into three sections: thermodynamics (Chapters 1–8),
quantum mechanics (Chapters 9–16), and other topics (Chapters 17–22). For
a school on the semester system, instructors might want to consider pairing the
thermodynamics chapters with the later chapters on kinetic theory (Chapter
19) and kinetics (Chapter 20) in the first term, and including Chapters 17 and
18 (statistical thermodynamics) and Chapters 21 and 22 (crystalline solids and
surfaces) with the quantum mechanics chapters in the second term.

Professors: For a year-long sequence, you should be able to cover the entire
book (and feel free to supplement with special topics as you see fit).

Students: For a year-long sequence, you should be able to read the entire
book. You, too, can do it.

If you want an encyclopedia of physical chemistry, this is not the book for
you. Other well-known books will serve that need. My hope is that students and
teachers alike will appreciate this as a textbook of physical chemistry.

xvi P R E F A C E
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1

11

MUCH OF PHYSICAL CHEMISTRY CAN BE PRESENTED IN A 
DEVELOPMENTAL MANNER: one can grasp the easy ideas first and

then progress to the more challenging ideas, which is similar to how these
ideas were developed in the first place. Two of the major topics of physical
chemistry—thermodynamics and quantum mechanics—lend themselves nat-
urally to this approach.

In this first chapter on physical chemistry, we revisit a simple idea from gen-
eral chemistry: gas laws. Gas laws—straightforward mathematical expressions
that relate the observable properties of gases—were among the first quantifi-
cations of chemistry, dating from the 1600s, a time when the ideas of alchemy
ruled. Gas laws provided the first clue that quantity, how much, is important
in understanding nature. Some gas laws like Boyle’s, Charles’s, Amontons’s, and
Avogadro’s laws are simple mathematically. Others can be very complex.

In chemistry, the study of large, or macroscopic, systems involves thermo-
dynamics; in small, or microscopic, systems, it can involve quantum mechan-
ics. In systems that change their structures over time, the topic is kinetics. But
they all have basic connections with thermodynamics. We will begin the study
of physical chemistry with thermodynamics.

1.1 Synopsis
This chapter starts with some definitions, an important one being the ther-
modynamic system, and the macroscopic variables that characterize it. If we are
considering a gas in our system, we will find that various mathematical rela-
tionships are used to relate the physical variables that characterize this gas.
Some of these relationships—“gas laws”—are simple but inaccurate. Other gas
laws are more complicated but more accurate. Some of these more complicated
gas laws have experimentally determined parameters that are tabulated to be
looked up later, and they may or may not have physical justification. Finally,
we develop some relationships (mathematical ones) using some simple calcu-
lus. These mathematical manipulations will be useful in later chapters as we
get deeper into thermodynamics.

1.1 Synopsis
1.2 System, Surroundings, and

State
1.3 The Zeroth Law of

Thermodynamics
1.4 Equations of State
1.5 Partial Derivatives and 

Gas Laws
1.6 Nonideal Gases
1.7 More on Derivatives
1.8 A Few Partial Derivatives
1.9 Summary

Gases and the Zeroth Law 
of Thermodynamics
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1.2 System, Surroundings, and State
Imagine you have a container holding some material of interest to you, as in
Figure 1.1. The container does a good job of separating the material from
everything else. Imagine, too, that you want to make measurements of the
properties of that material, independent from the measurements of everything
else around it. The material of interest is defined as the system. The “everything
else” is defined as the surroundings. These definitions have an important func-
tion because they specify what part of the universe we are interested in: the sys-
tem. Furthermore, using these definitions, we can immediately ask other ques-
tions: What interactions are there between the system and the surroundings?
What is exchanged between the system and the surroundings?

For now, we consider the system itself. How do we describe it? That depends
on the system. For example, a glass of milk is described differently from the in-
terior of a star. But for now, let us pick a simple system, chemically speaking.

Consider a system that consists of a pure gas. How can we describe this sys-
tem? Well, the gas has a certain volume, a certain pressure, a certain tempera-
ture, a certain chemical composition, a certain number of atoms or molecules,
a certain chemical reactivity, and so on. If we can measure, or even dictate, the
values of those descriptors, then we know everything we need to know about
the properties of our system. We say that we know the state of our system.

If the state of the system shows no tendency to change, we say that the sys-
tem is at equilibrium with the surroundings.* The equilibrium condition is a
fundamental consideration of thermodynamics. Although not all systems are
at equilibrium, we almost always use equilibrium as a reference point for un-
derstanding the thermodynamics of a system.

There is one other characteristic of our system that we ought to know: its
energy. The energy is related to all of the other measurables of our system (as
the measurables are related to each other, as we will see shortly). The under-
standing of how the energy of a system relates to its other measurables is called
thermodynamics (literally, “heat movement’’). Although thermodynamics
(“thermo’’) ultimately deals with energy, it deals with other measurables too,
and so the understanding of how those measurables relate to each other is an
aspect of thermodynamics.

How do we define the state of our system? To begin, we focus on its physi-
cal description, as opposed to the chemical description. We find that we are
able to describe the macroscopic properties of our gaseous system using only
a few observables: they are the system’s pressure, temperature, volume, and
amount of matter (see Table 1.1). These measurements are easily identifiable
and have well-defined units. Volume has common units of liter, milliliter, or
cubic centimeter. [The cubic meter is the Système International (SI) unit of
volume but these other units are commonly used as a matter of convenience.]
Pressure has common units of atmosphere, torr, pascal (1 pascal � 1 N/m2 and
is the SI unit for pressure), or bar. Volume and pressure also have obvious min-
imum values against which a scale can be based. Zero volume and zero pres-
sure are both easily definable. Amount of material is similar. It is easy to spec-
ify an amount in a system, and having nothing in the system corresponds to
an amount of zero.

2 C H A P T E R  1 Gases and the Zeroth Law of Thermodynamics

System: the part of the:
universe of interest to you

Su oou did nini s: ver thi g lse

Figure 1.1 The system is the part of the uni-
verse of interest, and its state is described using
macroscopic variables like pressure, volume, tem-
perature, and moles. The surroundings are every-
thing else. As an example, a system could be a re-
frigerator and the surroundings could be the rest
of the house (and the surrounding space).

*Equilibrium can be a difficult condition to define for a system. For example, a mixture
of H2 and O2 gases may show no noticeable tendency to change, but it is not at equilibrium.
It’s just that the reaction between these two gases is so slow at normal temperatures and in
the absence of a catalyst that there is no perceptible change.
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The temperature of a system has not always been an obvious measurable of
a system, and the concept of a “minimum temperature” is relatively recent. In
1603, Galileo was the first to try to quantify changes in temperature with a wa-
ter thermometer. Gabriel Daniel Fahrenheit devised the first widely accepted
numerical temperature scale after developing a successful mercury thermome-
ter in 1714, with zero set at the lowest temperature he could generate in his lab.
Anders Celsius developed a different scale in 1742 in which the zero point was
set at the freezing point of water. These are relative, not absolute, temperatures.
Warmer and colder objects have a temperature value in these relative scales
that is decided with respect to these and other defined points in the scale. In
both cases, temperatures lower than zero are possible and so the temperature
of a system can sometimes be reported as a negative value. Volume, pressure,
and amount cannot have a negative value, and later we define a temperature
scale that cannot, either. Temperature is now considered a well-understood
variable of a system.

1.3 The Zeroth Law of Thermodynamics
Thermodynamics is based on a few statements called laws that have broad ap-
plication to physical and chemical systems. As simple as these laws are, it took
many years of observation and experimentation before they were formulated
and recognized as scientific laws. Three such statements that we will eventually
discuss are the first, second, and third laws of thermodynamics.

However, there is an even more fundamental idea that is usually assumed
but rarely stated because it is so obvious. Occasionally this idea is referred to
as the zeroth law of thermodynamics, since even the first law depends on it. It
has to do with one of the variables that was introduced in the previous section,
temperature.

What is temperature? Temperature is a measure of how much kinetic energy
the particles of a system have. The higher the temperature, the more energy a
system has, all other variables defining the state of the system (volume, pres-
sure, and so on) being the same. Since thermodynamics is in part the study of
energy, temperature is a particularly important variable of a system.

We must be careful when interpreting temperature, however. Temperature
is not a form of energy. Instead, it is a parameter used to compare amounts of
energy of different systems.

1.3 The Zeroth Law of Thermodynamics 3

Table 1.1 Common state variables and their units

Variable Symbol Common units

Pressure p Atmosphere, atm (� 1.01325 bar)

Torricelli, torr (� �
7

1
60
� atm)

Pascal (SI unit)

Pascal, Pa (� �
100

1
,000
� bar)

Millimeters of mercury, mmHg (� 1 torr)

Volume V Cubic meter, m3 (SI unit)

Liter, L (� �
10

1
00
� m3)

Milliliter, mL (� �
10

1
00
� L)

Cubic centimeter, cm3 (� 1 mL)

Temperature T Degrees Celsius, °C, or kelvins, K

°C � K � 273.15

Amount n Moles (can be converted to grams using molecular weight)
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Consider two systems, A and B, in which the temperature of A is greater
than the temperature of B (Figure 1.2). Each is a closed system, which means
that matter cannot move in or out of each system but energy can. The state of
each system is defined by quantities like pressure, volume, and temperature.
The two systems are brought together and physically joined but kept separate
from each other, as shown. For example, two pieces of metal can be brought
into contact with each other, or two containers of gas can be connected by a
closed stopcock. Despite the connection, matter will not be exchanged between
the two systems or with the surroundings.

What about their temperatures, TA and TB? What is always observed is that
energy transfers from one system to another. As energy transfers between the
two systems, the two temperatures change until the point where TA � TB. At
that point, the two systems are said to be at thermal equilibrium. Energy may
still transfer between the systems, but the net change in energy will be zero and
the temperature will not change further. The establishment of thermal equi-
librium is independent of the system size. It applies to large systems, small sys-
tems, and any combination of large and small systems.

The transfer of energy from one system to another due to temperature dif-
ferences is called heat. We say that heat has flowed from system A to system B.
Further, if a third system C is in thermal equilibrium with system A, then 
TC � TA and system C must be in thermal equilibrium with system B also. This
idea can be expanded to include any number of systems, but the basic idea 
illustrated by three systems is summed up by a statement called the zeroth law
of thermodynamics:

The zeroth law of thermodynamics: If two systems (of any size) are in 
thermal equilibrium with each other and a third system is in thermal 
equilibrium with one of them, then it is in thermal equilibrium with 

the other also.

This is obvious from personal experience, and fundamental to thermodynamics.

Example 1.1
Consider three systems at 37.0°C: a 1.0-L sample of H2O, 100 L of neon gas
at 1.00 bar pressure, and a small crystal of sodium chloride, NaCl. Comment
on their thermal equilibrium status in terms of the varying sizes of the sys-
tems. Will there be any net transfer of energy if they are brought into contact?

Solution
Thermal equilibrium is dictated by the temperature of the systems involved,
not the sizes. Since all systems are at the same temperature [that is, T(H2O) �
T(Ne) � T(NaCl)], they are all in thermal equilibrium with each other. To
invoke the zeroth law, if the water is in thermal equilibrium with the neon
and the neon is in thermal equilibrium with the sodium chloride, then the
water is in thermal equilibrium with the sodium chloride. No matter what
the relative sizes of the systems are, there should be no net transfer of energy
between any of the three systems.

The zeroth law introduces a new idea. One of the variables that defines the
state of our system (the state variables) changes its value. In this case, the tem-
perature has changed. We are ultimately interested in how the state variables
change and how these changes relate to the energy of our system.

4 C H A P T E R  1 Gases and the Zeroth Law of Thermodynamics

T � ?

System A System B

TA TB

System A System B

Figure 1.2 What happens to the temperature
when two individual systems are brought together?
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The final point with respect to the system and its variables is the fact that
the system does not remember its previous state. The state of the system is dic-
tated by the values of the state variables, not their previous values or how they
changed. Consider the two systems in Figure 1.3. System A goes to a higher
temperature before settling on T � 200 temperature units. System B goes di-
rectly from the initial conditions to the final conditions. Therefore, the two
states are the same. It does not matter that the first system was at a higher tem-
perature; the state of the system is dictated by what the state variables are, not
what they were, or how they got there.

1.4 Equations of State
Phenomenological thermodynamics is based on experiment, on measurements
that you might make in a lab, garage, or kitchen. For example, for any fixed
amount of a pure gas, two state variables are pressure, p, and volume, V. Each
can be controlled independently of each other. The pressure can be varied while
the volume is kept constant, or vice versa. Temperature, T, is another state vari-
able that can be changed independently from p and V. However, experience has
shown that if a certain pressure, volume, and temperature were specified for a
particular sample of gas at equilibrium, then all measurable, macroscopic prop-
erties of that sample have certain specific values. That is, these three state vari-
ables determine the complete state of our gas sample. Notice that we are im-
plying the existence of one other state variable: amount. The amount of material
in the system, designated by n, is usually given in units of moles.

Further, arbitrary values for all four variables p, V, n, and T are not possible
simultaneously. Again, experience (that is, experiment) shows this. It turns out
that only two of the three state variables p, V, and T are truly independent for
any given amount of a gas. Once two values are specified, then the third one
must have a certain value. This means that there is a mathematical equation into
which we can substitute for two of the variables and calculate what the re-
maining variable must be. Say such an equation requires that we know p and V
and lets us calculate T. Mathematically, there exists some function F such that

F(p, V) � T at fixed n (1.1)

1.4 Equations of State 5

p � 1
V � 1
T � 100

System A

p � 3
V � 1
T � 300

p � 2
V � 1
T � 200

p � 1
V � 1
T � 100

System B

Same state

p � 2
V � 1
T � 200

Figure 1.3 The state of a system is determined by what the state variables are, not how the
system got there. In this example, the initial and final states of the two Systems (A) and (B) 
are the same, regardless of the fact that System (A) was higher in temperature and pressure in the
interim.
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where the function is written as F(p, V ) to emphasize that the variables are
pressure and volume, and that the outcome yields the value of the temperature
T. Equations like equation 1.1 are called equations of state. One can also define
equations of state that yield p or V instead of T. In fact, many equations of state
can be algebraically rearranged to yield one of several possible state variables.

The earliest equations of state for gases were determined by Boyle, Charles,
Amontons, Avogadro, Gay-Lussac, and others. We know these equations as the
various gas laws. In the case of Boyle’s gas law, the equation of state involves
multiplying the pressure by the volume to get a number whose value depended
on the temperature of the gas:

p � V � F(T) at fixed n (1.2)

whereas Charles’s gas law involves volume and temperature:

�
V

T
� � F(p) at fixed n (1.3)

Avogadro’s law relates volume and amount, but at fixed temperature and
pressure:

V � F(n) at fixed T, p (1.4)

In the above three equations, if the temperature, pressure, or amount were kept
constant, then the respective functions F(T), F(p), and F(n) would be con-
stants. This means that if one of the state variables that can change does, the
other must also change in order for the gas law to yield the same constant. This
leads to the familiar predictive ability of the above gas laws using the forms

p1V1 � F(T) � p2V2 or p1V1 � p2V2 (1.5)

Similarly, using equations 1.3 and 1.4, we can get

�
V

T1

1� � �
V

T2

2� (1.6)

�
V

n1

1� � �
V

n2

2� (1.7)

All three gas laws involve volume, and they can be rewritten as

V � �
p

1
�

V � T

V � n

where the symbol � means “is proportional to.’’ We can combine the three pro-
portionalities above into one:

V � �
n

p

T
� (1.8)

Since p, V, T, and n are the only four independent state variables for a gas, the
proportionality form of equation 1.8 can be turned into an equality by using
a proportionality constant:

V � R � �
n

p

T
� (1.9)
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where we use R to represent the proportionality constant. This equation of
state relates the static (unchanging) values of p, V, T, and n, not changes in
these values. It is usually rewritten as

pV � nRT (1.10)

which is the familiar ideal gas law, with R being the ideal gas law constant.
At this point, we must return to a discussion of temperature units and in-

troduce the proper thermodynamic temperature scale. It has already been men-
tioned that the Fahrenheit and Celsius temperature scales have arbitrary zero
points. What is needed is a temperature scale that has an absolute zero point
that is physically relevant. Values for temperature can then be scaled from that
point. In 1848, the British scientist William Thomson (Figure 1.4), later made
a baron and taking the title Lord Kelvin, considered the temperature-volume
relationship of gases and other concerns (some of which we will address in fu-
ture chapters) and proposed an absolute temperature scale where the mini-
mum possible temperature is about �273°C, or 273 Celsius-sized degrees be-
low the freezing point of water. [A modern value is �273.15°C, and is based on
the triple point (discussed in Chapter 6) of H2O, not the freezing point.] A scale
was established by making the degree size for this absolute scale the same as the
Celsius scale. In thermodynamics, gas temperatures are almost always expressed
in this new scale, called the absolute scale or the Kelvin scale, and the letter K is
used (without a degree sign) to indicate a temperature in kelvins. Because the
degree sizes are the same, there is a simple conversion between a temperature
in degrees Celsius and the same temperature in kelvins:

K � °C � 273.15 (1.11)

Occasionally, the conversion is truncated to three significant figures and be-
comes simply K � °C � 273.

In all of the gas laws given above, the temperature must be expressed in
kelvins! The absolute temperature scale is the only appropriate scale for thermo-
dynamic temperatures. (For changes in temperature, the units can be kelvins
or degrees Celsius, since the change in temperature will be the same. However,
the absolute value of the temperature will be different.)

Having established the proper temperature scale for thermodynamics, we
can return to the constant R. This value, the ideal gas law constant, is proba-
bly the most important physical constant for macroscopic systems. Its specific
numerical value depends on the units used to express the pressure and volume,
since the units in an equation must also satisfy certain algebraic necessities.
Table 1.2 lists various values of R. The ideal gas law is the best-known equa-
tion of state for a gaseous system. Gas systems whose state variables p, V, n,
and T vary according to the ideal gas law satisfy one criterion of an ideal gas
(the other criterion is presented in Chapter 2). Real gases, which do not follow
the ideal gas law exactly, can approximate ideal gases if they are kept at high
temperature and low pressure.

It is useful to define a set of reference state variables for gases, since they can
have a wide range of values that can in turn affect other state variables. The
most common set of reference state variables for pressure and temperature is
p � 1.0 atm and T � 273.15 K � 0.0°C. These conditions are called standard
temperature and pressure, abbreviated STP. Much of the thermodynamic data
reported for gases are given for conditions of STP. SI also defines standard am-
bient temperature and pressure, SATP, as 273.15 K for temperature and 1 bar for
pressure (1 bar � 0.987 atm).

1.4 Equations of State 7

Figure 1.4 William Thomson, later Baron
Kelvin (1824–1907), a Scottish physicist. Thomson
established the necessity of a minimum absolute
temperature, and proposed a temperature scale
based on that absolute zero. He also performed
valuable work on the first transatlantic cable.
Thomson was made a baron in 1892 and bor-
rowed the name of the Kelvin River. Because he
left no heirs, there is no current Baron Kelvin.

©
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n

Table 1.2 Values for R, the ideal gas 
law constant

R � 0.08205 L�atm/mol�K

0.08314 L�bar/mol�K

1.987 cal/mol�K

8.314 J/mol�K

62.36 L�torr/mol�K
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Example 1.2
Calculate the volume of 1 mole of an ideal gas at SATP.

Solution
Using the ideal gas law and the appropriate value for R:

V � �
nR

P

T
� �

V � 22.71 L

This is slightly larger than the commonly used molar volume of a gas at STP
(about 22.4 L), since the pressure is slightly lower.

1.5 Partial Derivatives and Gas Laws
A major use of equations of state in thermodynamics is to determine how one
state variable is affected when another state variable changes. In order to do
this, we need the tools of calculus. For example, a straight line, as in Figure
1.5a, has a slope given by �y/�x, which in words is simply “the change in y as
x changes.” For a straight line, the slope is the same everywhere on the line.
For curved lines, as shown in Figure 1.5b, the slope is constantly changing.
Instead of writing the slope of the curved line as �y/�x, we use the symbol-
ism of calculus and write it as dy/dx, and we call this “the derivative of y with
respect to x.”

Equations of state deal with many variables. The total derivative of a func-
tion of multiple variables, F(x, y, z, . . .), is defined as

dF � ��
	

	

F

x
��y,z, . . .

dx � ��
	

	

F

y
��x,z, . . .

dy � ��
	

	

F

z
��x,y, . . .

dz � � � � (1.12)

In equation 1.12, we are taking the derivative of the function F with respect to
one variable at a time. In each case, the other variables are held constant. Thus,
in the first term, the derivative

��
	

	

F

x
��y,z, . . .

(1.13)

is the derivative of the function F with respect to x only, and the variables y, z,
and so on are treated as constants. Such a derivative is a partial derivative.
The total derivative of a multivariable function is the sum of all of its partial

(1 mol)(0.08314 �
m
L�

o
b
l
a
�K
r

�)(273.15 K)
����

1 bar
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y

x
(b)

dy
dxSlope �

y

x
(a)

�y
�xSlope � m �

y � mx � b y � F (x)

dy
dxSlope �

dy
dxSlope �

Figure 1.5 (a) Definition of slope for a straight line. The slope is the same at every point on
the line. (b) A curved line also has a slope, but it changes from point to point. The slope of the
line at any particular point is determined by the derivative of the equation for the line.
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derivatives, each multiplied by the infinitesimal change in the appropriate vari-
able (given as dx, dy, dz, and so on in equation 1.12).

Using equations of state, we can take derivatives and determine expressions
for how one state variable changes with respect to another. Sometimes these
derivatives lead to important conclusions about the relationships between the
state variables, and this can be a powerful technique in working with thermo-
dynamics.

For example, consider our ideal gas equation of state. Suppose we need to
know how the pressure varies with respect to temperature, assuming the vol-
ume and number of moles in our gaseous system remain constant. The partial
derivative of interest can be written as

��
	

	

T

p
��V,n

Several partial derivatives relating the different state variables of an ideal gas
can be constructed, some of which are more useful or understandable than
others. However, any derivative of R is zero, because R is a constant.

Because we have an equation that relates p and T—the ideal gas law—we
can evaluate this partial derivative analytically. The first step is to rewrite the
ideal gas law so that pressure is all by itself on one side of the equation. The
ideal gas law becomes

p � �
n

V

RT
�

The next step is to take the derivative of both sides with respect to T, while
treating everything else as a constant. The left side becomes

��
	

	

T

p
��V,n

which is the partial derivative of interest. Taking the derivative of the right side:

�
	

	

T
���

n

V

RT
�� � �

n

V

R
� �

	

	

T
�T � �

n

V

R
� � 1 � �

n

V

R
�

Combining the two sides:

��
	

	

T

p
��V,n

� �
n

V

R
� (1.14)

That is, from the ideal gas law, we are able to determine how one state variable
varies with respect to another in an analytic fashion (that is, with a specific
mathematical expression). A plot of pressure versus temperature is shown in
Figure 1.6. Consider what equation 1.14 is telling you. A derivative is a slope.
Equation 1.14 gives you the plot of pressure (y-axis) versus temperature (x-axis).
If you took a sample of an ideal gas, measured its pressure at different tem-
peratures but at constant volume, and plotted the data, you would get a straight
line. The slope of that straight line should be equal to nR/V. The numerical
value of this slope would depend on the volume and number of moles of the
ideal gas.

Example 1.3
Determine the change of pressure with respect to volume, all else remaining
constant, for an ideal gas.

1.5 Partial Derivatives and Gas Laws 9

nR
VSlope �

P
re

ss
ur

e

Temperature, absolute

Figure 1.6 Plotting the pressure of a gas ver-
sus its absolute temperature, one gets a straight
line whose slope equals nR/V. Algebraically, this
is a plot of the equation p � (nR/V) � T. In cal-
culus terms, the slope of this line is (	p/	T)V,n

and is constant.
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Solution
The partial derivative of interest is

��
	

	

V

p
��T,n

which we can evaluate in a fashion similar to the example above, using

p � �
n

V

RT
�

only this time taking the derivative with respect to V instead of T. Following
the rules of taking derivatives, and treating n, R, and T as constants, we get

��
	

	

V

p
��T,n

� ��
n

V

R
2

T
�

for this change. Notice that although in our earlier example the change did
not depend on T, here the change in p with respect to V depends on the in-
stantaneous value of V. A plot of pressure versus volume will not be a straight
line. (Determine the numerical value of this slope for 1 mole of gas having a
volume of 22.4 L at a temperature of 273 K. Are the units correct?)

Substituting values into these expressions for the slope must give units that
are appropriate for the partial derivative. For example, the actual numerical
value of (	p/	T)V,n, for V � 22.4 L and 1 mole of gas, is 0.00366 atm/K. The
units are consistent with the derivative being a change in pressure (units of
atm) with respect to temperature (units of K). Measurements of gas pressure
versus temperature at a known, constant volume can in fact provide an exper-
imental determination of the ideal gas law constant R. This is one reason why
partial derivatives of this type are useful. They can sometimes provide us with
ways of measuring variables or constants that might be difficult to determine
directly. We will see more examples of that in later chapters, all ultimately de-
riving from partial derivatives of just a few simple equations.

Finally, the derivative in Example 1.3 suggests that any true ideal gas goes to
zero volume at 0 K. This ignores the fact that atoms and molecules themselves
have volume. However, gases do not act very ideally at such low temperatures
anyway.

1.6 Nonideal Gases
Under most conditions, the gases that we deal with in reality deviate from the
ideal gas law. They are real gases, not ideal gases. Figure 1.7 shows the behav-
ior of a real gas compared to an ideal gas. The behavior of real gases can also
be described using equations of state, but as might be expected, they are more
complicated.

Let us first consider 1 mole of gas. If it is an ideal gas, then we can rewrite
the ideal gas law as

�
p

R

V�
T
� � 1 (1.15)

where V� is the molar volume of the gas. (Generally, any state variable that is
written with a line over it is considered a molar quantity.) For a nonideal gas,
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this quotient may not equal 1. It can also be less than or greater than 1.
Therefore, the above quotient is defined as the compressibility factor Z:

Z � �
p

R

V�
T
� (1.16)

Specific values for compressibility depend on the pressure, volume, and tem-
perature of the real gas, but generally, the farther Z is from 1, the less ideally
the gas behaves. Figure 1.8 shows two plots of compressibility, one with respect
to pressure and another with respect to temperature.

It would be extremely useful to have mathematical expressions that provide
the compressibilities (and therefore an idea of the behavior of the gas toward
changing state variables). These expressions are equations of state for the real
gases. One common form for an equation of state is called a virial equation.
Virial comes from the Latin word for “force” and implies that gases are non-
ideal because of the forces between the atoms or molecules. A virial equation
is simply a power series in terms of one of the state variables, either p or V�.
(Expressing a measurable, in this case the compressibility, in terms of a power
series is a common tactic in science.) Virial equations are one way to fit the be-
havior of a real gas to a mathematical equation.

In terms of volume, the compressibility of real gases can be written as

Z � �
p

R

V�
T
� � 1 � �

V

B

�
� � �

V�
C

2
� � �

V�
D

3
� � � � � (1.17)

where B, C, D, . . . are called the virial coefficients and are dependent on the na-
ture of the gas and the temperature. The constant that would be labeled A is
simply 1, so the virial coefficients “start” with B. B is called the second virial
coefficient; C is the third virial coefficient, and so forth. Because the denomi-
nator, the power series in V�, gets larger and larger as the exponent increases,
successive coefficients make a smaller and smaller contribution to the com-
pressibility. The largest single correction is due to the B term, making it the
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Figure 1.7 The p � V behavior of an ideal gas compared to a real gas.
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most important measure of the nonideality of a real gas. Table 1.3 lists values
of the second virial coefficient of several gases.

Virial equations of state in terms of pressure instead of volume are often
written not in terms of compressibility, but in terms of the ideal gas law itself:

pV� � RT � B
p � C
p2 � D
p3 � � � � (1.18)

where the primed virial coefficients do not have the same values as the virial
coefficients in equation 1.17. However, if we rewrite equation 1.18 in terms of
compressibility, we get

Z � �
p

R

V�
T
� � 1 � �

B

R




T

p
� � �

C

R


p

T

2

� � �
D

R




T

p3

� � � � � (1.19)

At the limit of low pressures, it can be shown that B � B
. The second virial
coefficient is typically the largest nonideal term in a virial equation, and many
lists of virial coefficients give only B or B
.

Example 1.4
Using equations 1.17 and 1.19, show that B and B
 have the same units.

Solution
Equation 1.17 implies that the compressibility is unitless, so the second vir-
ial coefficient must cancel out the unit in the denominator of the second
term. Since volume is in the denominator, B must have units of volume. In
equation 1.19, compressibility is again unitless, so the unit for B
 must can-
cel out the collective units of p/RT. But p/RT has units of (volume)�1; that is,
units of volume are in the denominator. Therefore, B
 must provide units of
volume in the numerator, so B
 must also have units of volume.
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Figure 1.8 (a) Compressibilities of various gases at different pressures. (b) Compressibilities
of nitrogen at different temperatures. Note that in both graphs, the compressibilities approach 1
at the limit of low pressure. (Sources: (a) J. P. Bromberg, Physical Chemistry, 2nd ed., Allyn &
Bacon, Boston, 1980. Reprinted with permission of Pearson Education, Inc. Upper Saddle River,
N.J. (b) R. A. Alberty, Physical Chemistry, 7th ed., Wiley, New York, 1987.)

Table 1.3 Second virial coefficients B
for various gases (in cm3/mol,
at 300 K)

Gas B

Ammonia, NH3 �265

Argon, Ar �16

Carbon dioxide, CO2 �126

Chlorine, Cl2 �299

Ethylene, C2H2 �139

Hydrogen, H2 15

Methane, CH4 �43

Nitrogen, N2 �4

Oxygen, O2 �16a

Sulfur hexafluoride, SF6 �275

Water, H2O �1126

Source: D. R. Lide, ed., CRC Handbook of Chemistry and
Physics, 82nd ed., CRC Press, Boca Raton, Fla., 2001.

aExtrapolated
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Because of the various algebraic relationships between the virial coefficients
in equations 1.17 and 1.18, typically only one set of coefficients is tabulated
and the other can be derived. Again, B (or B
) is the most important virial co-
efficient, since its term makes the largest correction to the compressibility, Z.

Virial coefficients vary with temperature, as Table 1.4 illustrates. As such,
there should be some temperature at which the virial coefficient B goes to zero.
This is called the Boyle temperature, TB, of the gas. At that temperature, the
compressibility is

Z � �
p

R

V�
T
� � �

V�
0
� � � � �

where the additional terms will be neglected. This means that

Z � �
p

R

V�
T
�

and the real gas is acting like an ideal gas. Table 1.5 lists Boyle temperatures of
some real gases. The existence of Boyle temperature allows us to use real gases
to study the properties of ideal gases—if the gas is at the right temperature,
and successive terms in the virial equation are negligible.

One model of ideal gases is that (a) they are composed of particles so tiny
compared to the volume of the gas that they can be considered zero-volume
points in space, and (b) there are no interactions, attractive or repulsive, be-
tween the individual gas particles. However, real gases ultimately have behav-
iors due to the facts that (a) gas atoms and molecules do have a size, and (b)
there is some interaction between the gas particles, which can range from min-
imal to very large. In considering the state variables of a gas, the volume of the
gas particles should have an effect on the volume V of the gas. The interactions
between gas particles would have an effect on the pressure p of the gas. Perhaps
a better equation of state for a gas should take these effects into account.

In 1873, the Dutch physicist Johannes van der Waals (Figure 1.9) suggested
a somewhat corrected version of the ideal gas law. It is one of the simpler equa-
tions of state for real gases, and is referred to as the van der Waals equation:

�p � �
a

V

n
2

2

��(V � nb) � nRT (1.20)

where n is the number of moles of gas, and a and b are the van der Waals con-
stants for a particular gas. The van der Waals constant a represents the pressure
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Table 1.4 The second virial coefficient 
B (cm3/mol) at various 
temperatures

Temperature (K) He Ne Ar

20 �3.34 — —

50 7.4 �35.4 —

100 11.7 �6.0 �183.5

150 12.2 3.2 �86.2

200 12.3 7.6 �47.4

300 12.0 11.3 �15.5

400 11.5 12.8 �1.0

600 10.7 13.8 12.0

Source: J. S. Winn, Physical Chemistry, HarperCollins, New
York, 1994

Table 1.5 Boyle temperatures for
various gases

Gas TB (K)

H2 110

He 25

Ne 127

Ar 410

N2 327

O2 405

CO2 713

CH4 509

Source: J. S. Winn, Physical Chemistry, Harper
Collins, New York, 1994

Figure 1.9 Johannes van der Waals (1837–1923),
Dutch physicist who proposed a new equation 
of state for gases. He won a 1910 Nobel Prize for
his work.
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correction and is related to the magnitude of the interactions between gas par-
ticles. The van der Waals constant b is the volume correction and is related to
the size of the gas particles. Table 1.6 lists van der Waals constants for various
gases, which can be determined experimentally. Unlike a virial equation, which
fits behavior of real gases to a mathematical equation, the van der Waals equa-
tion is a mathematical model that attempts to predict behavior of a gas in terms
of real physical phenomena (that is, interaction between gas molecules and the
physical sizes of atoms).

Example 1.5
Consider a 1.00-mole sample of sulfur dioxide, SO2, that has a pressure of
5.00 atm and a volume of 10.0 L. Predict the temperature of this sample of
gas using the ideal gas law and the van der Waals equation.

Solution
Using the ideal gas law, we can set up the following expression:

(5.00 atm)(10.0 L) � (1.00 mol)�0.08205 �
m

L�

o

a

l

t

�

m

K
��(T)

and solve for T to get T � 609 K. Using the van der Waals equation, we first
need the constants a and b. From Table 1.6, they are 6.714 atm�L2/mol2 and
0.05636 L/mol. Therefore, we set up

�5.00 atm � �(10.0 L � 1.00 mol)�0.05636 �
m

L

ol
��

� (1.00 mol)�0.08205 �
m

L�

o

a

l

t

�

m

K
��(T)

Simplifying the left-hand side of the equation:

(5.00 atm � 0.06714 atm)(10.0 L � 0.05636 L)

� (1.00 mol)�0.08205 �
m

L�

o

a

l

t

�

m

K
��(T)

(5.067 atm)(9.94 L) � (1.00 mol)�0.08205 �
m

L�

o

a

l

t

�

m

K
��(T)

Solving for T, one finds T � 613 K for the temperature of the gas, 4° higher
than the ideal gas law.

The different equations of state are not always used independently of each
other. We can derive some useful relationships by comparing the van der Waals
equation with the virial equation. If we solve for p from the van der Waals
equation and substitute it into the definition of compressibility, we get

Z � �
p

R

V�
T
� � �

V�
V�
� b
� � �

RT

a

V�
� (1.21)

which can be rewritten as

Z � �
1 �

1

b/V�
� � �

RT

a

V�
�

�6.714 �
a

m

tm

o

�

l

L
2

2

��(1 mol)2

���
(10 L)2
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Table 1.6 Van der Waals parameters for
various gases

a b
Gas (atm�L2/mol2) (L/mol)

Acetylene, C2H2 4.390 0.05136

Ammonia, NH3 4.170 0.03707

Carbon dioxide, 3.592 0.04267
CO2

Ethane, C2H6 5.489 0.0638

Ethylene, C2H4 4.471 0.05714

Helium, He 0.03508 0.0237

Hydrogen, H2 0.244 0.0266

Hydrogen chloride, 3.667 0.04081
HCl

Krypton, Kr 2.318 0.03978

Mercury, Hg 8.093 0.01696

Methane, CH4 2.253 0.0428

Neon, Ne 0.2107 0.01709

Nitric oxide, NO 1.340 0.02789

Nitrogen, N2 1.390 0.03913

Nitrogen dioxide, 5.284 0.04424
NO2

Oxygen, O2 1.360 0.03183

Propane, C3H8 8.664 0.08445

Sulfur dioxide, 6.714 0.05636
SO2

Xenon, Xe 4.194 0.05105

Water, H2O 5.464 0.03049

Source: D. R. Lide, ed., CRC Handbook of Chemistry and
Physics, 82nd ed., CRC Press, Boca Raton, Fla., 2001.
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At very low pressures (which is one of the conditions under which real gases
might behave somewhat like ideal gases), the volume of the gas system will be
large (from Boyle’s law). That means that the fraction b/V� will be very small,
and so using the Taylor-series approximation 1/(1 � x) � (1 � x)�1 � 1 �
x � x2 � � � � for x ��, we can substitute for 1/(1 � b/V�) in the last expres-
sion to get

Z � 1 � �
V�
b
� � ��

V�
b
��

2

� ��
RT

a

V�
� � � � �

where successive terms are neglected. The two terms with V� to the first power
in their denominator can be combined to get

Z � 1 � �b � �
R

a

T
���

V�
1
� � ��

V�
b
��

2

� � � �

for the compressibility in terms of the van der Waals equation of state. Compare
this to the virial equation of state in equation 1.17:

Z � �
p

R

V�
T
� � 1 � �

V

B

�
� � �

V�
C

2
� � � � �

By performing a power series term-by-term comparison, we can show a cor-
respondence between the coefficients on the 1/V� term:

B � �b � �
R

a

T
�� (1.22)

We have therefore established a simple relationship between the van der Waals
constants a and b and the second virial coefficient B. Further, since at the Boyle
temperature TB the second virial coefficient B is zero:

0 � b � �
R

a

TB

�

we can rearrange to find that

TB � �
b

a

R
� (1.23)

This expression shows that all gases whose behavior can be described using
the van der Waals equation of state (and most gases can, at least in certain
regions of pressure and temperature) have a finite TB and should behave
like an ideal gas at that temperature, if higher virial equation terms are neg-
ligible.

Example 1.6
Estimate the Boyle temperature of the following. Use the values of a and b
from Table 1.6.
a. He
b. Methane, CH4

Solution
a. For He, a � 0.03508 atm�L2/mol2 and b � 0.0237 L/mol. The proper nu-
merical value for R will be necessary to cancel out the right units; in this case,
we will use R � 0.08205 L�atm/mol�K. We can therefore set up
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TB � �
b

a

R
�

�

All of the liter units cancel, as well as the mole units. The atmosphere units
also cancel, leaving the unit of K (kelvins) in a denominator of the denomi-
nator, which makes it in the numerator. The final answer therefore has units
of K, which is what is expected for a temperature. Numerically, we evaluate
the fraction and find that

TB � 18.0 K

Experimentally, it is 25 K.
b. A similar procedure for methane, using a � 2.253 atm�L2/mol2 and b �
0.0428 L/mol, yields

� 641 K

The experimental value is 509 K.

The fact that the predicted Boyle temperatures are a bit off from the experi-
mental values should not be cause for alarm. Some approximations were made in
trying to find a correspondence between the virial equation of state and the van
der Waals equation of state. However, equation 1.23 does a good job of estimat-
ing the temperature at which a gas will act more like an ideal gas than at others.

We can also use these new equations of state, like the van der Waals equa-
tion of state, to derive how certain state variables vary as others are changed.
For example, recall that we used the ideal gas law to determine that

��
	

	

T

p
��V,n

� �
n

V

R
�

Suppose we use the van der Waals equation of state to determine how pressure
varies with respect to temperature, assuming volume and amount are constant.
First, we need to rewrite the van der Waals equation so that pressure is all by
itself on one side of the equation:

�p � �
a

V

n
2

2

��(V � nb) � nRT

p � �
a

V

n
2

2

� � �
V

n

�

RT

nb
�

p � �
V

n

�

RT

nb
� � �

a

V

n
2

2

�

Next, we take the derivative of this expression with respect to temperature.
Note that the second term on the right does not have temperature as a vari-
able, so the derivative of it with respect to T is zero. We get

2.253 �
a

m

tm

o

�

l

L
2

2

�
����
0.0428 �

m

L

ol
� � 0.08205 �

m

L�

o

a

l

t

�

m

K
�

0.03508 �
a

m

tm

o

�

l

L
2

2

�
����
0.0237 �

m

L

ol
� � 0.08205 �

m

L�

o

a

l

t

�

m

K
�
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��
	

	

T

p
��V,n

� �
V �

nR

nb
�

We can also determine the volume derivative of pressure at constant tempera-
ture and amount

��
	

	

V

p
��T,n

� ��
(V

n

�

RT

nb)2� � �
2

V

an
3

2

�

Both terms on the right side survive this differentiation. Compare this to the
equivalent expression from the ideal gas law. Although it is a little more com-
plicated, it agrees better with experimental results for most gases. The deriva-
tions of equations of state are usually a balance between simplicity and ap-
plicability. Very simple equations of state are often inaccurate for many real
situations, but to accurately describe the behavior of a real gas often requires
complicated expressions with many parameters. An extreme example is cited
in the classic text by Lewis and Randall (Thermodynamics, 2nd ed., revised by
K. S. Pitzer and L. Brewer, McGraw-Hill, New York, 1961) as

p �

RTd � �B0RT � A0 � �
C

T
0��d2 � (bRT � a)d3 � a�d6 � �

c

T

d
2

2

�(1 � d2)e�d2

where d is the density and A0, B0, C0, a, b, c, �, and  are experimentally de-
termined parameters. (This equation of state is applicable to gases cooled or
pressurized to near the liquid state.) “The equation . . . yields reasonable agree-
ment, but it is so complex as to discourage its general use.” Maybe not in this
age of computers, but this equation of state is daunting, nonetheless.

The state variables of a gas can be represented diagrammatically. Figure 1.10
shows an example of this sort of representation, determined from the equation
of state.

1.6 Nonideal Gases 17

(�V/�p)T0

p1 p

p0

T2T0

p2

(�V/�T)p0

(�V/�p)T2

V

T

(�V/�T)p2

Figure 1.10 The surface that is plotted represents the combination of p, V, and T values that
are allowed for an ideal gas according to the ideal gas law. The slope in each dimension repre-
sents a different partial derivative. (Adapted with permission from G. K. Vemulapalli, Physical
Chemistry, Prentice-Hall, Upper Saddle River, N.J., 1993.)
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1.7 More on Derivatives
The above examples of taking partial derivatives of equations of state are rel-
atively straightforward. Thermodynamics, however, is well known for using
such techniques extensively. We therefore devote this section to a discussion of
partial derivative techniques that we will use in the future. The expressions that
we derive in thermodynamics using partial derivation can be extremely useful:
the behavior of a system that cannot be measured directly can instead be cal-
culated through some of the expressions we derive.

Various rules about partial derivatives are expressed using the general vari-
ables A, B, C, D, . . . instead of variables we know. It will be our job to apply
these expressions to the state variables of interest. The two rules of particular
interest are the chain rule for partial derivatives and the cyclic rule for partial
derivatives.

First, you should recognize that a partial derivative obeys some of the same
algebraic rules as fractions. For example, since we have determined that

��
	

	

T

p
��V,n

� �
n

V

R
�

we can take the reciprocal of both sides to find that

��
	

	

T

p
��V,n

� �
n

V

R
�

Note that the variables that remain constant in the partial derivative stay the
same in the conversion. Partial derivatives also multiply through algebraically
just like fractions, as the following example demonstrates.

If A is a function of two variables B and C, written as A(B, C), and both
variables B and C are functions of the variables D and E , written respectively
as B(D, E) and C(D, E), then the chain rule for partial derivatives* is

��
	

	

A

B
��C

� ��
	

	

D

A
��E��

	

	

D

B
��C

� ��
	

	

A

E
��D��

	

	

B

E
��C

(1.24)

This makes intuitive sense in that you can cancel 	D in the first term and 	E
in the second term, if the variable held constant is the same for both partials
in each term. This chain rule is reminiscent of the definition of the total de-
rivative for a function of many variables.

In the cases of p, V, and T, we can use equation 1.24 to develop the cyclic
rule. For a given amount of gas, pressure depends on V and T, volume depends
on p and T, and temperature depends on p and V. For any general state vari-
able of a gas F, its total derivative (which is ultimately based on equation 1.12)
with respect to temperature at constant p would be

��
	

	

T

F
��p

� ��
	

	

T

F
��V��

	

	

T

T
��p

� ��
	

	

V

F
��T��

	

	

V

T
��p

The term (	T/	T)p is simply 1, since the derivative of a variable with respect
to itself is always 1. If F is the pressure p, then (	F/	T)p � (	p/	T)p � 0, since
p is held constant. The above expression becomes

0 � ��
	

	

T

p
��V

� ��
	

	

V

p
��T��

	

	

V

T
��p
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*We present the chain rule here, but do not derive it. Derivations can be found in most
calculus books.
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We can rearrange this. Bringing one term to the other side of the equation, we get

��
	

	

T

p
��V

� ���
	

	

V

p
��T��

	

	

V

T
��p

Multiplying everything to one side yields

��
	

	

T

p
��V��

	

	

V

p
��T��

	

	

V

T
��p

� �1 (1.25)

This is the cyclic rule for partial derivatives. Notice that each term involves p,
V, and T. This expression is independent of the equation of state. Knowing any
two derivatives, one can use equation 1.25 to determine the third, no matter
what the equation of state of the gaseous system is.

The cyclic rule is sometimes rewritten in a different form that may be eas-
ier to remember, by bringing two of the three terms to one side of the equa-
tion and expressing the equality in fractional form by taking the reciprocal of
one partial derivative. One way to write it would be

��
	

	

T

p
��V

� � (1.26)

This might look more complicated, but consider the mnemonic in Figure 1.11.
There is a systematic way of constructing the fractional form of the cyclic rule
that might be useful. The mnemonic in Figure 1.11 works for any partial de-
rivative in terms of p, V, and T.

Example 1.7
Given the expression

��
	

	

T

p
��V,n

� ���
	

	

V

p
��T,n��

	

	

V

T
��p,n

determine an expression for 

��
	

	

V

p
��T,n

Solution
There is an expression involving V and p at constant T and n on the right side
of the equality, but it is written as the reciprocal of the desired expression.
First, we can take the reciprocal of the entire expression to get

��
	

	

T

p
��V,n

� ���
	

	

V

p
��T,n��

	

	

V

T
��p,n

Next, in order to solve for (	V/	p)T,n, we can bring the other partial deriva-
tive to the other side of the equation, using the normal rules of algebra for
fractions. Moving the negative sign as well, we get

���
	

	

T

p
��V,n��

	

	

V

T
��p,n

� ��
	

	

V

p
��T,n

which provides us with the necessary expression.

��
	

	

V

T
��p

�

��
	

	

V

p
��T
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Figure 1.11 A mnemonic for remembering
the fraction form of the cyclic rule. The arrows
show the ordering of the variables in each partial
derivative in the numerator and denominator.
The only other thing to remember to include in
the expression is the negative sign.
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Example 1.8
Use the cyclic rule to determine an alternate expression for

��
	

	

V

P
��

T

Solution
Using Figure 1.11, it should be easy to see that

��
	

	

V

p
��T

� �

You should verify that this is correct.

1.8 A Few Partial Derivatives Defined
Many times, gaseous systems are used to introduce thermodynamic concepts.
That’s because generally speaking, gaseous systems are well behaved. That is,
we have a good idea how they will change their state variables when a certain
state variable, controlled by us, is changed. Therefore gaseous systems are an
important part of our initial understanding of thermodynamics.

It is useful to define a few special partial derivatives in terms of the state
variables of gaseous systems, because the definitions either (a) can be consid-
ered as basic properties of the gas, or (b) will help simplify future equations.

The expansion coefficient of a gas, labeled �, is defined as the change in vol-
ume as the temperature is varied at constant pressure. A 1/V multiplicative fac-
tor is included:

� � �
V

1
� ��

	

	

V

T
��p

(1.27)

For an ideal gas, it is easy to show that � � R/pV.
The isothermal compressibility of a gas, labeled �, is the change in volume as

the pressure changes at constant temperature (the name of this coefficient is
more descriptive). It too has a 1/V multiplicative factor, but it is negative:

� � ��
V

1
� ��

	

	

V

p
��T

(1.28)

Because (	V/	p)T is negative for gases, the minus sign in equation 1.28 makes
� a positive number. Again for an ideal gas, it is easy to show that � � RT/p2V.
For both � and �, the 1/V term is included to make the quantities intensive
(that is, independent of amount*).

Since both of these definitions use p, V, and T, we can use the cyclic rule to
show that, for example,

��
	

	

T

p
��V

� �
�

�
�

��
	

	

T

p
��

V
�

��
	

	

V

T
��p
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*Recall that intensive properties (like temperature and density) are independent of
amount of material, whereas extensive properties (like mass and volume) are dependent on
the amount of material.
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Such relationships are particularly useful for systems where, for example, it
might be impossible to keep the volume of the system constant. The constant-
volume derivative can be expressed in terms of derivatives at constant temper-
ature and constant pressure, two conditions that are easy to control in any lab-
oratory setting.

1.9 Summary
Gases are introduced first in a detailed study of thermodynamics because their
behavior is simple. Boyle enunciated his gas law about the relationship between
pressure and volume in 1662, making it one of the oldest of modern chemical
principles. Although it is certain that not all of the “simple” ideas have been
discovered, in the history of science the more straightforward ideas were de-
veloped first. Because the behavior of gases was so easy to understand, even
with more complicated equations of state, they became the systems of choice
for studying other state variables. Also, the calculus tool of partial derivatives
is easy to apply to the behavior of gases. As such, a discussion of the proper-
ties of gases is a fitting introductory topic for the subject of thermodynamics.
A desire to understand the state of a system of interest, which includes state
variables not yet introduced and uses some of the tools of calculus, is at the
heart of thermodynamics. We will proceed to develop such an understanding
in the next seven chapters.

1.9 Summary 21
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1.2 System, Surroundings, and State

1.1. A bomb calorimeter is a sturdy metal vessel in which
samples can be ignited and the amount of heat given off can
be measured as the heat warms up surrounding water. Draw
a rough sketch of such an experimental setup and label (a)
the system and (b) the surroundings.

1.2. Differentiate between a system and a closed system. Give
examples of both.

1.3. Use the equalities listed in Table 1.1 to convert the given
values to the desired units. (a) 12.56 L to cm3 (b) 45°C to K
(c) 1.055 atm to Pa (d) 1233 mmHg to bar (e) 125 mL to 
cubic centimeters (f) 4.2 K to °C (g) 25,750 Pa to bar

1.4. Which temperature is higher? (a) 0 K or 0°C (b) 300 K
or 0°C (c) 250 K or �20°C

1.3 & 1.4 Zeroth Law of Thermodynamics;
Equations of State

1.5. A pot of cold water is heated on a stove, and when the
water boils a fresh egg is placed in the water to cook. Describe
the events that are occurring in terms of the zeroth law of
thermodynamics.

1.6. What is the value of F(T) for a sample of gas whose vol-
ume is 2.97 L and pressure is 0.0553 atm? What would the vol-
ume of the gas be if the pressure were increased to 1.00 atm?

1.7. What is the value of F(p) for a sample of gas whose tem-
perature is �33.0°C and volume is 0.0250 L? What tempera-
ture is required to change the volume to 66.9 cm3?

1.8. Calculate the value of the constant in equation 1.9 for a
1.887-mol gas sample with a pressure of 2.66 bar, a volume
of 27.5 L, and a temperature of 466.9 K. Compare your an-
swer to the values in Table 1.2. Are you surprised with your
answer?

1.9. Show that one value of R, with its associated units, equals
another value of R with its different associated units.

1.10. Use the two appropriate values of R to determine a con-
version between L�atm and J.

1.11. Calculations using STP and SATP use (the same? differ-
ent?) value(s) of R. Choose one phrase to make the statement
correct and defend your choice.

1.5 More on Ideal Gases

1.12. Pressures of gases in mixtures are referred to as partial
pressures and are additive. 1.00 L of He gas at 0.75 atm is
mixed with 2.00 L of Ne gas at 1.5 atm at a temperature of
25.0°C to make a total volume of 3.00 L of a mixture. Assuming
no temperature change and that He and Ne can be approxi-
mated as ideal gases, what are (a) the total resulting pressure,
(b) the partial pressures of each component, and (c) the mole
fractions of each gas in the mix?

1.13. Earth’s atmosphere is approximately 80% N2 and 
20% O2. If the total atmospheric pressure at sea level is about

14.7 lb/in.2 (where lb/in.2 is pounds per square inch, a com-
mon but non-SI unit of pressure), what are the partial pres-
sures of N2 and O2 in units of lbs/in.2?

1.14. The atmospheric surface pressure on Venus is 90 bar
and is composed of 96% carbon dioxide and approximately
4% various other gases. Given a surface temperature of 730 K,
what is the mass of carbon dioxide present per cubic cen-
timeter at the surface?

1.15. What are the slopes of the following lines at the point 
x � 5? at x � 10? (a) y � 5x � 7 (b) y � 3x2 � 5x � 2 
(c) y � 7/x.

1.16. For the following function, evaluate the derivatives in
a–f below.

F(w, x, y, z) � 3xy2 � �
w
3

3

2
z
y

3

� � �
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2z3

�
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��
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1.17. Determine the expressions for the following expres-
sions, assuming that the ideal gas law holds.
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��
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V
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p
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n,V
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n
p
��

T,V

1.18. Why do you think that none of the above exercises ask
you to take a derivative with respect to R? Is it the same rea-
son that we do not define the derivative of R with respect to
any other variable?

1.19. When a given amount of air is let out of an automobile
tire, it changes its volume and pressure simultaneously, and as
a result of this the temperature of the air changes. Write a de-
rivative that stands for this change. (Hint: it will be a double
derivative as in 1.16e above.)

22 Exercises for Chapter 1
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1.6 Real Gases

1.20. Liquid nitrogen comes in large cylinders that require
special tank carts and hold 120 L of liquid at 77 K. Given the
density of liquid nitrogen of 0.840 g/cm3, use the van der
Waals equation to estimate the volume of the nitrogen gas af-
ter it evaporates at 77 K. (Hint: because V shows up in two
places in the van der Waals equation, you will have to do an
iteration procedure to estimate V. Neglect the an2/V2 term ini-
tially and calculate V; then substitute this into the an2/V2 term,
evaluate the pressure term, resolve for V, and repeat until the
number doesn’t change. A programmable calculator or spread-
sheet program might be useful.)

1.21. Calculate the Boyle temperatures for carbon dioxide,
oxygen, and nitrogen using the van der Waals constants in
Table 1.6. How close do they come to the experimental val-
ues from Table 1.5?

1.22. Determine the expression for (	p/	V)T for a van der
Waals gas and for the virial equation in terms of volume.

1.23. What are the units of the virial coefficient C? of C
?

1.24. Table 1.4 shows that the second virial coefficient B for
He is negative at low temperature, seems to maximize at a 
little over 12.0 cm3/mol, and then decreases. Do you think it
will become negative again at higher temperatures? Why is it
decreasing?

1.25. Use Table 1.5 to list the gases from most ideal to least
ideal. What trend or trends are obvious from this list?

1.26. What is the van der Waals constant a for Ne in units of
bar�cm6/mol2?

1.27. By definition, the compressibility of an ideal gas is 1. By
approximately what percentage does this change for hydro-
gen upon inclusion of the second virial coefficient term? How
about for water vapor? Give the conditions under which you
make this estimate.

1.28. The second virial coefficient B and the third virial coef-
ficient C for Ar are �0.021 L/mol and 0.0012 L2/mol2 at 273
K, respectively. By what percentage does the compressibility
change when you include the third virial term?

1.29. Use the approximation (1 � x)�1 � 1 � x � x2 � � � �
to determine an expression for C in terms of the van der Waals
constants.

1.30. Why is nitrogen a good choice for the study of ideal gas
behavior around room temperature?

1.7 & 1.8 Partial Derivatives and Definitions

1.31. Write two other forms of the cyclic rule in equation
1.26, using the mnemonic in Figure 1.11.

1.32. Use Figure 1.11 to construct the cyclic rule equivalent
of (	p/	p)T. Does the answer make sense in light of the origi-
nal partial derivative?

1.33. What are the units for � and �?

1.34. Why is it difficult to determine an analytic expression
for � and � for a van der Waals gas?

1.35. Show that � � (T/p)� for an ideal gas.

1.36. Determine an expression for (	V/	T )p,n in terms of �
and �. Does the sign on the expression make sense in terms
of what you know happens to volume as temperature changes?

1.37. Density is defined as molar mass, M, divided by molar
volume:

d � �
M
V�

�

Evaluate (	d/	T )p,n for an ideal gas in terms of M, V�, and p.

1.38. Write the fraction �/� in a different form using the
cyclic rule of partial derivatives.

(Note: The Symbolic Math Exercise problems at the end of
each chapter are more complex, and typically require addi-
tional tools like a symbolic math program—MathCad, Maple,
Mathematica—or a programmable calculator.)

1.39. Table 1.4 gives different values of the second virial co-
efficient B for different temperatures.  Assuming standard pres-
sure of 1 bar, determine the molar volumes of He, Ne, and Ar
for the different temperatures.  What does a graph of V versus
T look like?

1.40. Using the van der Waals constants given in Table 1.6,
predict the molar volumes of (a) krypton, Kr; (b) ethane,
C2H6; and (c) mercury, Hg, at 25°C and 1 bar pressure.

1.41. Use the ideal gas law to symbolically prove the cyclic
rule of partial derivatives.

1.42. Using your results from exercise 1.39, can you set up
the expressions to evaluate � and � for Ar?

Exercises for Chapter 1 23
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2
THE PREVIOUS CHAPTER ESTABLISHED THAT MATTER BEHAVES

ACCORDING TO CERTAIN RULES called equations of state. We can
now begin to understand the rules by which energy behaves. Even though we
will primarily be using gases as examples, the ideas of thermodynamics are ap-
plicable to all systems, whether solid, liquid, gas, or any combination of phases.

Thermodynamics was developed mostly in the nineteenth century. This was
after the acceptance of the modern atomic theory of Dalton but before the
ideas of quantum mechanics (which imply that the microscopic universe of
atoms and electrons follow different rules than the macroscopic world of large
masses). Therefore, thermodynamics mostly deals with large collections of
atoms and molecules. The laws of thermodynamics are macroscopic rules. Later
in the text we will cover microscopic rules (that is, quantum mechanics), but
for now remember that thermodynamics deals with systems we can see, feel,
weigh, and manipulate with our own hands.

2.1 Synopsis
First, we will define work, heat, and internal energy. The first law of thermo-
dynamics is based on the relationship between these three quantities. Internal
energy is one example of a state function. State functions have certain proper-
ties that we will find useful. Another state function, enthalpy, will also be in-
troduced. Changes in state functions will be considered, and we will develop
ways to calculate how internal energy and enthalpy change during a physical
or chemical process. We will also introduce heat capacities and Joule-Thomson
coefficients, both of which are related to temperature changes in systems. We
will end the chapter by recognizing that the first law of thermodynamics is lim-
ited in its predictions, and that other ideas—other laws of thermodynamics—
are needed to understand how energy interacts with matter.

2.2 Work and Heat
Physically, work is performed on an object when the object moves some dis-
tance s due to the application of a force F. Mathematically, it is the dot prod-
uct of the force vector F and the distance vector s:

24

2.1 Synopsis
2.2 Work and Heat
2.3 Internal Energy and the First

Law of Thermodynamics
2.4 Stae Functions
2.5 Enthalpy
2.6 Changes in State Functions
2.7 Joule-Thomson Coefficients
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2.12 Biochemical Reactions
2.13 Summary

The First Law of
Thermodynamics
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work � F � s � �F � �s� cos � (2.1)

where � is the angle between the vectors. Work is a scalar, not vector, quantity.
Work has magnitude, but not direction. Figure 2.1 shows a force acting on an
object. In Figure 2.1a, the object is not moving, so the amount of work is zero
(despite the amount of force being exerted). In Figure 2.1b, an object has been
moved, so work was done.

Work has units of joules, like energy. This is not without a reason: work is
a way to transfer energy. Energy is defined as the ability to do work, so it makes
sense that energy and work are described using the same units.

The most common form of work studied by basic thermodynamics involves
the changing volume of a system. Consider Figure 2.2a. A frictionless piston
confines a sample of a gas in an initial volume Vi. The gas inside the chamber
also has an initial pressure pi. Initially, what keeps the piston at a fixed position
is the external pressure of the surroundings, pext.

If the piston moves out, Figure 2.2b, then the system is doing work on the
surroundings. That means that the system is losing energy in the form of work.
The infinitesimal amount of work dw that the system does on the surround-
ings for an infinitesimal change in volume dV while acting against a constant
external pressure pext is defined as

dw � �pext dV (2.2)

2.2 Work and Heat 25

Initial position

F

s � 0

Work � 0

F

s � 0

Work � 0

Initial position

(a) (b)

Figure 2.1 When a force is exerted on an object, no work is done unless the object moves. (a)
Since the wall does not move, no work is done. (b) Work is done because the force is acting
through a distance.

pext

Vi, pi 

(a)

dw � �pext dV:
work done by system 
on surroundings
(system loses energy)

(b)

dw � �pext dV:
work done on system 
by surroundings
(system gains energy)

(c)

Figure 2.2 (a) A frictionless piston with an enclosed gas is a simple example of how 
gases perform work on systems or surroundings. (b) The work is done on the surroundings.
(c) The work is done on the system. The mathematical definition of work remains the same,
however.
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The negative sign indicates that the work done contributes to a decrease in the
amount of energy of the system.* If the piston moves inward, Figure 2.2c, then
the surroundings are doing work on the system, and the amount of energy in
the system is increased. The infinitesimal amount of work done on the system
is defined by equation 2.2, but because the volume change dV is in the oppo-
site direction, the work now has a positive value. Notice that our focus is the
system. The work is positive or negative with respect to the system, which is
the part of the universe of interest to us.

If we add up all of the (infinite) infinitesimal changes that contribute to an
overall change, we get the total amount of work done on or by the system.
Calculus uses the integral to add up infinitesimal changes. The total amount
of work, w, for a change as represented in Figure 2.2 is therefore

w � ��pext dV (2.3)

Whether this integral can be simplified or not depends on the conditions of
the process. If the external pressure remains constant throughout the process,
then it can be removed to outside the integral and the expression becomes

w � ��pext dV � �pext�dV � �pext � V�Vi

Vf

In this case, the limits on the integral are the initial volume, Vi, and the final
volume, Vf , of the process. This is reflected in the last expression in the equa-
tion above. Evaluating the integral at its limits, we get

w � �pext(Vf � Vi)

w � �pext � �V (2.4)

If the external pressure is not constant throughout the process, then we will
need some other way of evaluating the work in equation 2.3.

By using pressures in units of atm and volumes in units of L, we get a unit
of work in L�atm. This is not a common work unit. The SI unit for work is the
joule, J. However, using the various values of R from the previous chapter, it
can be shown that 1 L�atm � 101.32 J. This conversion factor is very useful to
get work into its proper SI units. If volume were expressed in units of m3 and
pressure in pascals, units of joules would be obtained directly since

Pa � m3 � �
m

N
2� � m3 � N � m � J

Example 2.1
Consider an ideal gas in a piston chamber, as in Figure 2.2, where the initial
volume is 2.00 L and the initial pressure is 8.00 atm. Assume that the piston
is moving up (that is, the system is expanding) to a final volume of 5.50 L
against a constant external pressure of 1.75 atm. Also assume constant tem-
perature for the process.
a. Calculate the work for the process.
b. Calculate the final pressure of the gas.

26 C H A P T E R  2 The First Law of Thermodynamics

*It is easy to show that the two definitions of work are equivalent. Since pressure is force
per unit area, equation 2.2 can be rewritten as work � �

f
a
o
r
r
e
c
a
e

� � volume � force � distance,
which is equation 2.1.
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Solution
a. First, the change in volume is needed. We find it as follows:

�V � Vf � Vi � 5.50 L � 2.00 L � 3.50 L

To calculate the work against the constant external pressure, we use equa-
tion 2.4:

w � �pext �V � �(1.75 atm)(3.50 L) � �6.13 L�atm

If we want to convert units to the SI units of joules, we use the appropriate
conversion factor:

�6.13 L�atm � �
1

L

0

�

1

a

.3

tm

2 J
� � �621 J

That is, 621 joules have been lost by the system during the expansion.
b. Because of the assumption of an ideal gas, we can use Boyle’s law to cal-
culate the final gas pressure. We get

(2.00 L)(8.00 atm) � (5.50 L)(pf)

pf � 2.91 atm

Figure 2.3 illustrates a condition that occasionally occurs with gases: the ex-
pansion of a gas into a larger volume which is initially a vacuum. In such a
case, since the gas is expanding against a pext of 0, by the definition of work in
equation 2.4 the work done by the gas equals zero. Such a process is called a
free expansion:

work � 0 for free expansion (2.5)

Example 2.2
From the conditions and the given definitions of the system, determine
whether there is work done by the system, work done on the system, or no
work done.
a. A balloon expands as a small piece of dry ice (solid CO2) inside the bal-
loon sublimes (balloon � system).
b. The space shuttle’s cargo bay doors are opened to space, releasing a little
bit of residual atmosphere (cargo bay � system).
c. Gaseous CHF2Cl, a refrigerant, is compressed in the compressor of an air
conditioner, to try to liquefy it (CHF2Cl � system).
d. A can of spray paint is discharged (can � system).
e. Same as part d, but consider the spray to be the system.

Solution
a. Since the balloon is increasing in volume, it is undoubtedly doing work:
work is done by the system.
b. When the shuttle’s cargo bay doors are opened in space, the bay is being
opened to vacuum (although not a perfect one), so we are considering rela-
tively free expansion. Therefore no work is done.
c. When CHF2Cl is compressed, its volume is decreased, so work is being
done on the system.
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p � 0p � 0

p � 0p � 0
Figure 2.3 No work is performed if a sample
of gas expands into a vacuum.
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d, e. When a can of spray paint is discharged, the can itself usually does not
change in volume. Therefore, if the can itself is defined as the system, the
amount of work it does is zero. However, work is done by the spray itself as
it expands against the atmosphere. This last example shows how important it
is to define the system as specifically as possible.

If it were possible, we could change the volume of the gas inside the piston
chamber in infinitesimally small steps, allowing the system to react to each in-
finitesimal change before making the next change. At each step, the system
comes to equilibrium with its surroundings so that the entire process is one of
a continuous equilibrium state. (In reality, that would require an infinite num-
ber of steps for any finite change in volume. Sufficiently slow changes are a
good approximation.) Such a process is called reversible. Processes that are not
performed this way (or are not approximated this way) are called irreversible.
Many thermodynamic ideas are based on systems that undergo reversible
processes. Volume changes aren’t the only processes that can be reversible.
Thermal changes, mechanical changes (that is, moving a piece of matter), and
other changes can be modeled as reversible or irreversible.

Gaseous systems are useful examples for thermodynamics because we can
use various gas laws to help us calculate the amount of pressure-volume work
when a system changes volume. This is especially so for reversible changes, be-
cause most reversible changes occur by letting the external pressure equal the
internal pressure:

pext � pint for reversible change

The following substitution can then be made for reversible changes:

wrev � ��pint dV (2.6)

So now we can determine the work for a process in terms of the internal
pressure.

The ideal gas law can be used to substitute for the internal pressure, be-
cause if the system is composed of an ideal gas, the ideal gas law must hold.
We can get

wrev � ���
n

V

RT
�dV

when we substitute for pressure. Although n and R are constants, the temper-
ature T is a variable and may change. However, if the temperature does remain
constant for the process, the term isothermal is used to describe the process,
and the temperature “variable” can be taken outside of the integral sign.
Volume remains inside the integral because it is the variable being integrated.
We get

wrev � �nRT��
V

1
� dV

This integral has a standard form; we can evaluate it. The equation becomes

wrev � �nRT (ln V �Vi

Vf)
The “ln” refers to the natural logarithm, not the base 10 logarithm (which is
represented by “log”). Evaluating the integral at its limits,

wrev � �nRT (ln Vf � ln Vi)

28 C H A P T E R  2 The First Law of Thermodynamics
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which, using the properties of logarithms, is

wrev � �nRT ln �
V

V
f

i

� (2.7)

for an isothermal, reversible change in the conditions of an ideal gas. Using
Boyle’s law for gas, we can substitute the expression pi/pf for the volumes in the
logarithm and also see that

wrev � �nRT ln �
p

p

f

i� (2.8)

for an ideal gas undergoing an isothermal process.

Example 2.3
Gas in a piston chamber kept in a constant-temperature bath at 25.0°C ex-
pands from 25.0 mL to 75.0 mL very, very slowly, as illustrated in Figure 2.4.
If there is 0.00100 mole of ideal gas in the chamber, calculate the work done
by the system.

Solution
Since the system is kept in a constant-temperature bath, the change is an
isothermal one. Also, since the change is very, very slow, we can presume that
the change is reversible. Therefore we can use equation 2.7. We find

wrev � �(0.00100 mol)�8.314 �
mo

J

l�K
��(298.15 K)�ln �

7

2

5

5

.

.

0

0

m

m

L

L
��

wrev � �2.72 J

That is, 2.72 J is lost by the system.

Heat, symbolized by the letter q, is more difficult to define than work. Heat
is a measure of thermal energy transfer that can be determined by the change
in the temperature of an object. That is, heat is a way of following a change in
energy of a system. Because heat is a change in energy, we use the same units
for heat as we do for energy: joules.

Even historically, heat was a difficult concept. It used to be thought that heat
was a property of a system that could be isolated and bottled as a substance in
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n � 0.001 mol

Constant
temperature
bath

Slowly 75.0 mL

25.0°C

25.0 mL

Figure 2.4 A piston chamber in a constant-temperature bath, undergoing a reversible change
in volume. See Example 2.3.
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its own right. This substance was even given a name: “caloric.” However, around
1780 Benjamin Thompson, later Count Rumford, kept track of the production
of heat during the boring of cannon barrels and concluded that the amount of
heat was related to the amount of work done in the process. In the 1840s, care-
ful experiments by the English physicist James Prescott Joule (Figure 2.5) ver-
ified this. A brewer at the time, Joule used an apparatus like the one shown in
Figure 2.6 to perform the work of mixing a quantity of water using a weight
on a pulley. By making careful measurements of the temperature of the water
and of the work being performed by the falling weight (using equation 2.1),
Joule was able to support the idea that work and heat were manifestations of
the same thing. (In fact, the phrase “mechanical equivalent of heat” is still used
occasionally and emphasizes their relationship.) The SI unit of energy and
work and heat, the joule, is named in Joule’s honor.

The older unit of energy and heat and work, the calorie, is defined as the
amount of heat needed to raise the temperature of exactly 1 mL of water by
1°C from 15°C to 16°C. The relationship between the calorie and the joule is

1 calorie � 4.184 joules (2.8)

Although joules are the accepted SI unit, the unit of calorie is still used often,
especially in the United States.

Heat can go into a system, so that the temperature of the system increases,
or it can come out of a system, in which case the temperature of the system
decreases. For any change where heat goes into a system, q is positive. On the
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Figure 2.5 James Prescott Joule (1818–1889),
English physicist. His work established the inter-
conversion of heat and work as forms of energy,
and laid the foundation for the first law of
thermodynamics.

Figure 2.6 Joule used this apparatus to measure what was once
called the “mechanical equivalent of heat.”

©
 C

OR
BI

S/
Be

ttm
an

n

Sc
ie

nc
e 

&
 S

oc
ie

ty
 P

ic
tu

re
 L

ib
ra

ry
, S

ci
en

ce
 M

us
eu

m
, L

on
do

n

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



other hand, if heat comes out of a system, q is negative. The sign on q there-
fore tells one the direction of the heat transfer.

The same change in temperature requires a different amount of heat for dif-
ferent materials. For example, a system composed of 10 cm3 of iron metal gets
hotter with less heat than does 10 cm3 of water. In fact, the amount of heat
necessary to change the temperature is proportional to the magnitude of the
temperature change, �T, and the mass of the system m:

q 	 m � �T

In order to convert a proportionality to an equality, a proportionality constant
is needed. For the above expression, the proportionality constant is represented
by the letter c (sometimes s) and is called the specific heat (or specific heat 
capacity):

q � m � c � �T (2.9)

The specific heat is an intensive characteristic of the material composing the
system. Materials with a low specific heat, like many metals, need little heat 
for a relatively large change in temperature. Table 2.1 lists some specific heats
for selected materials. Units for specific heat are (energy)/(mass�temperature) or
(energy)/(moles�temperature), so although the SI units for specific heat are
J/g�K or J/mol�K, it is not unusual to see specific heats having units of
cal/mol�°C or some other set of units. Notice that, because equation 2.9 in-
volves the change in temperature, it does not matter if the temperature has
units of kelvins or degrees Celsius.

Heat capacity C is an extensive property that includes the amount of mate-
rial in the system, so equation 2.9 would be written as

q � C � �T

Example 2.4
a. Assuming that 400. J of energy is put into 7.50 g of iron, what will be the
change in temperature? Use c � 0.450 J/g�K.
b. If the initial temperature of the iron is 65.0°C, what is the final tempera-
ture?

Solution
a. Using equation 2.9:


400. J � (7.50 g)(0.450 J/g�K)�T

Solving for �T:

�T � 
118 K

The temperature increases by 118 K, which is equal to a temperature change
of 118°C.
b. With an initial temperature of 65.0°C, an increase of 118°C brings the sam-
ple to 183°C.

Example 2.5
With reference to Joule’s apparatus in Figure 2.6, assume that a 40.0-kg
weight (which experiences a force due to gravity of 392 newtons) falls a dis-
tance of 2.00 meters. The paddles immersed in the water transfer the decrease
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Table 2.1 Specific heat capacities of
various materials

Material c (J/g�K)

Al 0.900

Al2O3 1.275

C2H5OH, ethanol 2.42

C6H6, benzene (vapors) 1.05

C6H14, n-hexane 1.65

Cu 0.385

Fe 0.452

Fe2O3 0.651

H2 (g) 14.304

H2O (s) 2.06

H2O (�), 25°C 4.184

H2O (g), 25°C 1.864

H2O, steam, 100°C 2.04

Hg 0.138

NaCl 0.864

O2 (g) 0.918
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in potential energy to the water, which heats up. Assuming a mass of 25.0 kg
of water in the vat, what is the expected temperature change of the water?
The specific heat of water is 4.18 J/g�K.

Solution
Using equation 2.1, we can calculate the work done on the water by the falling
weight:

work � F � s � (392 N)(2.00 m) � 784 N�m � 784 J

where we are using the fact that 1 joule � 1 newton � 1 meter. If all of this
work goes into heating the water, we get

784 J � (25.0 kg)��11

00

k

0

g

g
��(4.18 J/g�K) �T

�T � 0.00750 K

This is not a large change in temperature. In fact, Joule had to drop the weight
many times before a detectable temperature change was noted.

2.3 Internal Energy and the First Law 
of Thermodynamics

Work and heat are manifestations of energy, but so far we have not discussed
energy directly. That will change here, and from now on energy and energy re-
lationships will be a major focus of our discussion of thermodynamics.

The total energy of a system is defined as the internal energy, symbolized
as U. The internal energy is composed of energy from different sources, like
chemical, electronic, nuclear, and kinetic energies. Because we cannot com-
pletely measure all types of energy in any system, the absolute total internal
energy of any system cannot be known. But all systems have some total en-
ergy U.

An isolated system does not allow for passage of matter or energy into
or out of the system. (A closed system, on the other hand, allows for passage of
energy but not matter.) If energy cannot move in or out, then the total energy
U of the system does not change. The explicit statement of this is considered
the first law of thermodynamics:

The first law of thermodynamics: For an isolated system,
the total energy of the system remains constant.

This does not mean that the system itself is static or unchanging. Something
may be occurring in the system, like a chemical reaction or the mixing of two
gases. But if the system is isolated, the total energy of the system does not
change.

There is a mathematical way of writing the first law, using the internal
energy:

For an isolated system, �U � 0 (2.10)

For an infinitesimal change, equation 2.10 can be written as dU � 0 instead.
The equation 2.10 statement of the first law has limited utility, because in

studying systems we usually allow matter or energy to pass to and from the sys-
tem and the surroundings. In particular, we are interested in energy changes of
the system. In all investigations of energy changes in systems, it has been found
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that when the total energy of a system changes, the energy change goes into
either work or heat; nothing else. Mathematically, this is written as

�U � q + w (2.11)

Equation 2.11 is another way of stating the first law. Note both the simplicity
and the importance of this equation. The change in the internal energy for a
process is equal to the work plus the heat. Only work or heat (or both) will ac-
company a change in internal energy. Since we know how to measure work and
heat, we can keep track of changes in the total energy of a system. The follow-
ing example illustrates.

Example 2.6
A sample of gas changes in volume from 4.00 L to 6.00 L against an external
pressure of 1.50 atm, and simultaneously absorbs 1000 J of heat. What is the
change in the internal energy of the system?

Solution
Since the system is absorbing heat, the energy of the system is being increased
and so we can write that q � 
1000 J. Using equation 2.4 for work:

w � �pext �V � �(1.50 atm)(6.00 L � 4.00 L)

w � �(1.50 atm)(2.00 L) � �3.00 L�atm � �
1

L

0

�

1

a

.3

tm

2 J
�

w � �304 J

The change in internal energy is the sum of w and q:

�U � q + w � 1000 J � 304 J

�U � 696 J

Note that q and w have opposite signs, and that the overall change in inter-
nal energy is positive. Therefore, the total energy of our gaseous system in-
creases.

If a system is insulated well enough, heat will not be able to get into the
system or leave the system. In this situation, q � 0. Such systems are called
adiabatic. For adiabatic processes,

�U � w (2.12)

This restriction, that q � 0, is the first of many restrictions that simplify the
thermodynamic treatment of a process. It will be necessary to keep track of
these restrictions, because many expressions like equation 2.12 are useful only
when such restrictions are applied.

2.4 State Functions
Have you noticed that we use lowercase letters to represent things like work
and heat but a capital letter for internal energy? There is a reason for that.
Internal energy is an example of a state function, whereas work and heat are not.

A useful property of state functions will be introduced with the following
analogy. Consider the mountain in Figure 2.7. If you are a mountain climber
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and want to get to the top of the mountain, there are many ways to go about
it. You can go straight up the mountain, or you can spiral about the mountain,
as two possibilities. The advantage to going straight up is that the path is
shorter, but it is also steeper. A path spiraling around the mountain is less
steep, but much longer. The amount of walking you end up doing is depen-
dent on the path you take. Such quantities are considered path-dependent.

However, whichever path you take, you ultimately end up at the top of the
mountain. Your altitude above the starting point is the same at the end of the
climb regardless of which path you take. Your final altitude is said to be path-
independent.

The change in altitude for your mountain climb can be considered a state
function: it is path-independent. The amount of walking up the mountain is
not a state function, because it is path-dependent.

Consider a physical or chemical process that a system undergoes. The process
has initial conditions and final conditions, but there are any number of ways
it can go from initial to final. A state function is any thermodynamic property
whose value for the process is independent of the path. It depends only on the
state of the system (in terms of state variables like p, V, T, n), not on its his-
tory or how the system got to that state. A thermodynamic property whose
value for the process does depend on the path is not a state function. State
functions are symbolized by capital letters; non-state functions are symbolized
by lowercase letters. Internal energy is a state function. Work and heat are not.

State functions are different in another way. For an infinitesimal change in
a system, the infinitesimal changes in the work, heat, and internal energy are
represented as dw, dq, and dU. For a complete process, these infinitesimals are
integrated from initial to final conditions. However, there is a slight difference
in notation. When dw and dq are integrated, the result is the absolute amount
of work w and heat q for the process. But when dU is integrated, the result is
not the absolute U but the change in U, �U, for the process. Mathematically,
this is written as
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(a) (b)

Figure 2.7 Analogy for the definition of a state function. For both path (a) straight up a
mountain and path (b) spiraling up the mountain, the overall change in altitude is the same and
so is path-independent: the change in altitude is a state function. However, the overall length of
the path is path-dependent, and so would not be a state function.
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� dw � w

� dq � q (2.13)

but � dU � �U

The same relationship exists for most of the other state functions as well.
(There is one exception, which we will see in the next chapter.) The differen-
tials dw and dq are called inexact differentials, meaning that their integrated
values w and q are path-dependent. By contrast, dU is an exact differential,
meaning that its integrated value �U is path-independent. All changes in state
functions are exact differentials.

Another way to illustrate equations 2.13 is to note that

�U � Uf � Ui

but: w�wf � wi and q � qf � qi

The equations 2.13 imply that, for an infinitesimal change in a system,

dU � dq + dw

which is the infinitesimal form of the first law. But when we integrate this
equation, we get

�U � q + w

The difference in the treatment of q and w versus U is because U is a state func-
tion. We can know q and w absolutely, but they are dependent on the path that
the system takes from initial to final conditions. �U does not, although we can-
not know the absolute value of U for the initial and final states of a system.

Although these definitions might not seem useful, consider that any ran-
dom change of any gaseous system might not be simply described as isother-
mal, adiabatic, and so on. However, in many cases, we can go from initial con-
ditions to final conditions in small, ideal steps, and the overall change in a state
function will be the combination of all of the steps. Since the change in a state
function is path-independent, the change in the state function calculated in
steps is the same as the change in the state function for a one-step process. We
will see examples of this idea shortly.

If no work† is performed during the course of a process, then dU � dq and
�U � q. There are two common conditions where work equals zero. The first
is for a free expansion. The second is when the system does not change volume
for a process. Since dV � 0, any expression that gives the work of the process
will also be exactly zero. The relationship with heat under these conditions is
sometimes written as

dU � dqV (2.14)

�U � qV (2.15)

where the subscript V on q implies that the volume of the system during the
change remains constant. Equation 2.15 is important because we can measure
q values directly for many processes. If these processes occur at constant vol-
ume, we therefore know �U.
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†Although we focus initially on pressure-volume work, there are other types of work, like
electrical or gravitational work. Here we are assuming that none of these other types of work
are performed on or by the system.
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Example 2.7
A 1.00-L sample of gas at 1.00 atm pressure and 298 K expands isothermally
and reversibly to 10.0 L. It is then heated to 500 K, compressed to 1.00 L, and
then cooled to 25°C. What is �U for the overall process?

Solution
�U � 0 for the overall process. Remember that a state function is a variable
whose value depends on the instantaneous conditions of the system. Since 
the initial and final conditions of the system are the same, the system has the
same absolute value of internal energy (whatever it might be), so that the
overall change in the internal energy is zero.

2.5 Enthalpy
Although the internal energy represents the total energy of a system, and the
first law of thermodynamics is based on the concept of internal energy, it is not
always the best variable to work with. Equation 2.15 shows that the change in
the internal energy is exactly equal to q—if the volume of the system remains
constant for a particular process. However, the experimental condition of con-
stant volume can be difficult to guarantee for many processes. Constant pres-
sure, considering that many experiments occur exposed to the atmosphere, is
often an easier experimental parameter.

Enthalpy is given the symbol H. The fundamental definition of enthalpy is

H � U + pV (2.16)

The pressure in equation 2.16 is the pressure of the system, pint. Enthalpy is
also a state function. Like internal energy, the absolute value of the enthalpy is
unknowable, but we can determine changes in the enthalpy, dH:

dH � dU + d(pV) (2.17)

The integrated form of this equation is

�H � �U + �(pV) (2.18)

Using the chain rule of calculus, we can rewrite equation 2.17 as

dH � dU + p dV + V dp

For a constant pressure process (which is more common in laboratory exper-
iments), the V dp term is zero because dp is zero. Using the original definition
of dU, the equation becomes

dH � dq + dw + p dV

dH � dq � p dV + p dV

dH � dq (2.19)

In terms of overall changes to a system, equation 2.19 can be integrated to get

�H � q

Since the process occurs at constant pressure, the last equation is written like
equation 2.15 as

�H � qp (2.20)
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Because the energy changes of so many processes are measured under con-
ditions of constant pressure, the change in enthalpy for a process is usually
easier to measure than the change in internal energy. As such, although the
internal energy is the more fundamental quantity, the enthalpy is the more
common.

Example 2.8
Indicate which state function is equal to heat for each process described.
a. The ignition of a sample in a bomb calorimeter, an unyielding, heavy metal
chamber in which samples are burned for heat content analysis
b. The melting of an ice cube in a cup
c. The cooling down of the inside of a refrigerator
d. A fire in a fireplace

Solution
a. From the description, one can guess that a bomb calorimeter is a constant-
volume system; therefore, the heat generated by the ignition of a sample
equals �U.
b. If the cup is exposed to the atmosphere, it is subject to the (usually) con-
stant pressure of the air and so the heat of the process is equal to �H.
c. A refrigerator does not change volume as it cools food, so the loss of heat
from the inside equals �U.
d. A fire in a fireplace is usually exposed to the atmosphere, so the heat gen-
erated is also a measure of �H.

Example 2.9
A piston filled with 0.0400 mole of an ideal gas expands reversibly from 
50.0 mL to 375 mL at a constant temperature of 37.0°C. As it does so, it ab-
sorbs 208 J of heat. Calculate q, w, �U, and �H for the process.

Solution
Since 208 J of heat is going into the system, the total amount of energy is
going up by 208 J, so q � +208 J. In order to calculate work, we can use
equation 2.7:

w � �(0.0400 mol)�8.314 �
mo

J

l�K
��(310 K) ln��5

3

0

7

.

5

0

m

m

L

L
��

w � �208 J

Since �U equals q + w,

�U � +208 J � 208 J

�U � 0 J

We can use equation 2.18 to calculate �H, but we need to find the initial and
final pressures so we can determine �(pV). Using the ideal gas law:

pi �

pi � 20.3 atm

(0.0400 mol)(0.08205 �
m
L�

o
a
l
t
�

m
K

�)(310 K)
����

0.050 L
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and similarly:

pf � � 2.71 atm

To calculate �(pV), multiply the final pressure and volume together, then
subtract the product of the initial pressure and volume:

�(pV) � (2.71 atm)(0.375 L) � (20.3 atm)(0.0500 L) � 0

as expected for what is basically a Boyle’s-law expansion of an ideal gas.
Therefore �H � �U and so

�H � 0 J

Although the changes in the two state functions are equal (and zero) in this
example, this is not always the case.

Because �H is a common state function, we base the definitions of some
terms on enthalpy, not internal energy. The term exothermic is applied to any
process where �H for the process is negative. In such cases, energy is being
given off by the system into the surroundings. The term endothermic refers to
any process where �H is positive. In these cases, energy is being absorbed by
the system from the surroundings.

2.6 Changes in State Functions
Although we stated that we can know only the change in internal energy or
enthalpy, so far we have mostly dealt with the overall change of a complete
process. We have not considered infinitesimal changes in H or U in much
detail.

Both the internal energy and the enthalpy of a given system are determined
by the state variables of the system. For a gas, this means the amount, the pres-
sure, the volume, and the temperature of the gas. We will initially assume an
unchanging amount of gas (although this will change when we get to chemi-
cal reactions). So, U and H are determined by p, V, and T alone. But p, V, and
T are related by the ideal gas law (for an ideal gas), so knowing any two you
can determine the third. There are therefore only two independent state vari-
ables for a given amount of gas in a system. If we want to understand the in-
finitesimal change in a state function, we need only understand how it varies
with respect to two of the three state variables of p, V, and T. The third one
can be calculated from the other two.

Which two do we pick for internal energy and enthalpy? Although we can
pick any two, in the mathematics that follow there will be advantages to pick-
ing a certain pair for each state function. For internal energy, we will use tem-
perature and volume. For enthalpy, we will use temperature and pressure.

The total differential of a state function is written as the sum of the deriv-
ative of the function with respect to each of its variables. For example, dU is
equal to the change in U with respect to temperature at constant volume plus
the change in U with respect to volume at constant temperature. For the
change in U written as U(T, V) → U(T + dT, V + dV), the infinitesimal change
in internal energy is

dU � ��
�

�

U

T
��V

dT + ��
�

�

U

V
��T

dV (2.21)

(0.0400 mol)(0.08205 �
m
L�

o
a
l
t
�

m
K

�)(310 K)
����

0.375 L
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Thus dU has one term that varies with temperature and one term that varies
with volume. The two partial derivatives represent slopes in the plot of U ver-
sus T and V, and the total infinitesimal change in U, dU, can be written in
terms of those slopes. Figure 2.8 illustrates a plot of U and the slopes that are
represented by the partial derivatives.

Recall that there is another definition for dU: dU � dq + dw � dq � p dV.
If we equate these two definitions of dU:

��
�

�

U

T
��V

dT + ��
�

�

U

V
��T

dV � dq � p dV

Solving for the change in heat, dq:

dq � ��
�

�

U

T
��V

dT + ��
�

�

U

V
��T

dV + p dV

Grouping the two terms in dV gives

dq � ��
�

�

U

T
��V

dT + ���
�

�

U

V
��T

+ p� dV

If our gaseous system undergoes a change in which the volume does not
change, then dV � 0 and the above equation simplifies to

dq � ��
�

�

U

T
��V

dT (2.22)

We can also rewrite this by dividing both sides of the equation by dT:

�
d

d

T

q
� � ��

�

�

U

T
��V

The change in heat with respect to temperature, which equals the change in
the internal energy with respect to temperature at constant volume, is defined
as the constant volume heat capacity of the system. (Compare this definition
to that of equation 2.9, where we define the heat in terms of the change in
temperature using a constant we called specific heat.) In terms of the partial
derivative above,

��
�

�

U

T
��V

� CV (2.23)

where we now use the symbol CV for the constant volume heat capacity.
Equation 2.22 can therefore be written as

dq � CV dT (2.24)
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U

V

T
�U
�V )

T
(

�U
�T )

V
(

Figure 2.8 An illustration that the overall change in U can be separated into a change with re-
spect to temperature [labeled (�U/�T)V] and a change with respect to volume [labeled (�U/�V)T].
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To evaluate the total heat, we integrate both sides of this infinitesimal equation
to get

qV � �
Ti

Tf

CV dT � �U (2.25)

where the final equality is taken from the fact that �U � q for a constant-
volume change. Equation 2.25 is the most general form for a constant-volume
change. However, if the heat capacity is constant over the temperature range
(for small temperature ranges not involving changes in phase, it is), it can be
taken out of the integral to yield

�U � CV �
Ti

Tf

dT � CV(Tf � Ti) � CV �T (2.26)

For n moles of gas, this is rewritten simply as

�U � nC�V� �T (2.27)

where C�V� is the molar heat capacity. If the heat capacity does vary substantially
with temperature, some expression for CV in terms of temperature will have to
be substituted in equation 2.25 and the integral evaluated explicitly. If this is
the case, the temperatures for the integral limits must be expressed in kelvins.

If the heat capacity is divided by the mass of the system, it will have units
of J/g�K or J/kg�K and is referred to as the specific heat capacity or, commonly,
the specific heat. Care should be taken to note the units of a given heat capac-
ity to determine if it is really a specific heat.

Example 2.10
Evaluate �U for 1.00 mole of oxygen, O2, going from �20.0°C to 37.0°C at
constant volume, in the following cases. (�U will have units of J.)
a. It is an ideal gas with C�V� � 20.78 J/mol�K.
b. It is a real gas with an experimentally determined C�V� � 21.6 + 4.18 �
10�3T � (1.67 � 105)/T2.

Solution
a. Because we are assuming that the heat capacity is constant, we can use
equation 2.27, where the change in temperature is 57°:

�U � nC�V� �T � (1.00 mol)�20.78 �
mo

J

l�K
��(57.0°) � 1184 J

Here, we are using the unit for C�V� that includes the mole unit in the de-
nominator.
b. Since the heat capacity varies with temperature, we have to integrate the
expression in equation 2.25. We must also convert our temperatures to kelvins:

�U � �
Ti

Tf

CV dT �

310 K

253 K

� �21.6 + 4.18 � 10�3T � �
167

T

,0
2

00
�� dT

Integrating term by term:

�U � 21.6 T + �
1

2
� � 4.18 � 10�3T2 + �

167

T

,000
� �

310

253

and evaluating at the limits:

�U � 6696.0 + 200.0 + 538.7 � 5464.8 � 133.8 � 660.1 � 1176.8 J
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Notice the slight difference in the answers. Such slight differences may be lost
in the significant figures of a calculation (as they would in this case), but in
very precise measurements these differences will be noticed.

There is one further conclusion about internal energy changes. Consider the
change in �U for the process illustrated in Figure 2.9: an insulated system in
which an ideal gas is in one chamber, and then a valve is opened and the gas
expands into a vacuum. Because this is a free expansion, work is zero. The in-
sulation keeps any heat from being exchanged between the system and the sur-
roundings, so q � 0 also. This means that �U � 0 for this process. By equa-
tion 2.21, this means that

0 � ��
�

�

U

T
��V

dT 
 ��
�

�

U

V
��T

dT

Barring the possible coincidence that the two terms might cancel each other
out exactly, the right side of the equation will be zero only if both of the terms
themselves are zero. The derivative in the first term, (�U/�T)V, is not zero be-
cause temperature is a measure of energy of the system. As the temperature
changes, of course the energy changes; this is what a nonzero heat capacity im-
plies. Therefore dT, the change in temperature, must equal zero and the process
is isothermic. Consider the second term, however. We know that dV is nonzero
because the ideal gas expands, and in doing so changes its volume. In order for
the second term to be zero, then, the partial derivative (�U/�V)T must be zero:

��
�

�

U

V
��T

� 0 for an ideal gas (2.28)

This derivative says that the change in internal energy with respect to volume
changes at constant temperature must be zero for an ideal gas. Because we as-
sume that in an ideal gas the individual particles do not interact with each other,
a change in the volume of the ideal gas (which would tend to separate the in-
dividual particles more, on average) does not change the total energy if the tem-
perature remains constant. In fact, equation 2.28 is one of the two criteria for
an ideal gas. An ideal gas is any gas that (a) follows the ideal gas law as an equa-
tion of state, as discussed in Chapter 1, and (b) has an internal energy that does
not change if the temperature of the gas does not change. For real gases, equa-
tion 2.28 does not apply and the total energy will change with volume. This is
because there are interactions between the atoms and molecules of real gases.

One can do similar things with the infinitesimal for enthalpy, dH. We have al-
ready mentioned that we will use temperature and pressure for enthalpy. Hence,

dH � ��
�

�

H

T
��p

dT + ��
�

�

H

p
��T

dp (2.29)

If a change occurs at constant pressure, then dp � 0 and we have

dH � ��
�

�

H

T
��p

dT

where we can now define a constant-pressure heat capacity Cp just as we defined
CV. Only now, we define our heat capacity in terms of H:

Cp � ��
�

�

H

T
��p

(2.30)
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Vacuum

Insulated system

Closed

Gas

Open

Figure 2.9 An adiabatic, free expansion of an
ideal gas leads to some interesting conclusions
about �U. See text for discussion.
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Equation 2.30 means we can substitute Cp in the previous equation, so we get

dH � Cp dT

and integrate to get the total change in enthalpy for the temperature change:

�H � �
Ti

Tf

Cp dT � qp (2.31)

where again we use the fact that �H equals q for a change that occurs under
constant pressure. Equation 2.31 must be used if the heat capacity varies with
temperature (see Example 2.10). If Cp is constant over the temperature range,
then equation 2.31 can be simplified to

�H � Cp �T � qp (2.32)

The comments regarding units on CV also apply to Cp (that is, you should keep
track of whether a specific amount, in units of grams or moles, is specified or
if it is actually part of the calculation). We can also define a molar heat capac-
ity C�p� for a process that occurs under constant pressure conditions.

Do not confuse the heat capacity at constant volume for heat capacity at
constant pressure. For a gaseous system, they can be very different. For solids
and liquids, they are not so different, but for solids and liquids the heat capacity
can also vary with temperature. For a change in a gaseous system, you must
know whether the change is a constant pressure change (called an isobaric
change) or a constant volume change (called an isochoric change) in order to
determine which heat capacity is the correct one for the calculation of heat,
�U, �H, or both.

Finally, it can also be shown that for an ideal gas,

��
�

�

H

p
��T

� 0 (2.33)

That is, the change in the enthalpy at constant temperature is also exactly zero.
This is analogous to the situation for U.

2.7 Joule-Thomson Coefficients
Although we have been working with a lot of equations, all of them are ulti-
mately based on two ideas: equations of state and the first law of thermody-
namics. These ideas are ultimately based on the definition of total energy and
various manipulations of that definition. In addition, we have seen several
cases in which the equations of thermodynamics are simplified by the specifi-
cation of certain conditions: adiabatic, free expansion, isobaric, and isochoric
conditions are all restrictions on a process that simplify the mathematics of
thermodynamics. Are there other useful restrictions?

Another useful restriction based on the first law of thermodynamics is de-
scribed by the Joule-Thomson experiment, illustrated in Figure 2.10. An adia-
batic system is set up and filled with a gas on one side of a porous barrier. This
gas has some temperature T1, a fixed pressure p1, and an initial volume V1. A
piston pushes on the gas and forces all of it through the porous barrier, so the
final volume on this side of the barrier is zero. On the other side of the bar-
rier, a second piston moves out as the gas diffuses to the other side, where it
will have a temperature T2, a fixed pressure p2, and a volume V2. Initially, the
volume on the right side of the barrier is zero. Since the gas is being forced
through a barrier, it is understood that p1  p2. Even though the pressures on
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either side are fixed, it should be understood that the gas experiences a drop
in pressure as it is forced from one side to the other.

On the left side, work is done on the gas, which contributes positively to the
overall change in energy. On the right side, the gas does work, contributing
negatively to the overall change in energy. The net work wnet performed by the
system after the first piston is completely pushed in is

wnet � p1V1 � p2V2

Since the system is adiabatic, q � 0, so �Unet � wnet , but we will write �U as
the internal energy of the gas on side 2 minus the internal energy of the gas
on side 1:

wnet � U2 � U1

Equating the two expressions for wnet:

p1V1 � p2V2 � U2 � U1

and rearranging:

U1 
 p1V1 � U2 
 p2V2

The combination U + pV is the original definition of H, the enthalpy, so for
the gas in this Joule-Thomson experiment,

H1 � H2

or, for the gas undergoing this process, the change in H is zero:

�H � 0

Since the enthalpy of the gas does not change, the process is called isenthalpic.
What are some consequences of this isenthalpic process?

Although the change in enthalpy is zero, the change in temperature is not.
What is the change in temperature accompanying the pressure drop for this
isenthalpic process? That is, what is (�T/�p)H? We can actually measure this
derivative experimentally, using an apparatus like the one in Figure 2.10.

The Joule-Thomson coefficient �JT is defined as the change in temperature
of a gas with pressure at constant enthalpy:

�JT � ��
�

�

T

p
��H

(2.34)

A useful approximation of this definition is

�JT 	 ��
�

�

T

p
��H

2.7 Joule-Thomson Coefficients 43

Side 2:
T2, p2

Side 1:
T1, p1

Gas forced
through by

piston

Piston in Piston out

Adiabatic system

Porous
barrier

Figure 2.10 The isenthalpic experiment of Joule and Thomson. A description is given in 
the text.
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For an ideal gas, �JT is exactly zero, since enthalpy depends only on tempera-
ture (that is, at constant enthalpy, temperature is also constant). However, for
real gases, the Joule-Thomson coefficient is not zero, and the gas will change
temperature for the isenthalpic process. Remembering from the cyclic rule of
partial derivatives that

��
�

�

T

p
��H��

�

�

H

T
��p��

�

�

H

p
��T

� �1

we can rewrite this as

��
�

�

T

p
��H

� �

and, recognizing that the left side is �JT and the denominator of the fraction
is simply the heat capacity at constant pressure, we have

�JT � � (2.35)

This equation verifies that �JT is zero for an ideal gas, since (�H/�p)T is zero
for an ideal gas. Not for real gases, however. Further, if we measure �JT for real
gases and also know their heat capacities, we can use equation 2.35 to calcu-
late (�H/�p)T for a real gas, which is a quantity (the change in enthalpy as pres-
sure changes but at constant temperature) that is difficult or impossible to
measure by direct experiment.

Example 2.11
If the Joule-Thomson coefficient for carbon dioxide, CO2, is 0.6375 K/atm,
estimate the final temperature of carbon dioxide at 20 atm and 100°C that is
forced through a barrier to a final pressure of 1 atm.

Solution
Using the approximate form of the Joule-Thomson coefficient:

�JT 	 ��
�

�

T

p
��H

�p in this process is �19 atm (the negative sign meaning that the pressure is
going down by 19 atm). Therefore, we have

���1

�

9

T

atm
��H

� 0.6375 K/atm

Multiplying through:

�T � �12 K

which means that the temperature drops from 100°C to about 88°C.

The Joule-Thomson coefficient of real gases varies with temperature and
pressure. Table 2.2 lists some experimentally determined �JT values. Under
some conditions, the Joule-Thomson coefficient is negative, meaning that as

��
�

�

H

p
��T

�
Cp

��
�

�

H

p
��T

�

��
�

�

H

T
��p
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the pressure drops the temperature goes up: it gets hotter upon expansion! At
some lower temperature, the Joule-Thomson coefficient becomes positive, and
then as pressure drops, the temperature of the gas drops as well. The temper-
ature at which the Joule-Thomson coefficient goes from negative to positive is
called the inversion temperature. In order to cool gases down using the Joule-
Thomson method, a gas must be below its inversion temperature.

The Joule-Thomson effect is used to liquefy gases, since one can engineer a
system where a gas is repeatedly compressed and expanded, decreasing its

2.7 Joule-Thomson Coefficients 45

Table 2.2 Joule-Thomson coefficients of various gases (K/atm)

p (atm) T � �150°C �100°C �50°C 0°C 50°C 100°C 150°C 200°C

Air, no water or carbon dioxide

1 — 0.5895 0.3910 0.2745 0.1956 0.1355 0.0961 0.0645

20 — 0.5700 0.3690 0.2580 0.1830 0.1258 0.0883 0.0580

60 0.0450 0.4820 0.3195 0.2200 0.1571 0.1062 0.0732 0.0453

100 0.0185 0.2775 0.2505 0.1820 0.1310 0.0884 0.0600 0.0343

140 �0.0070 0.1360 0.1825 0.1450 0.1070 0.0726 0.0482 0.0250

180 �0.0255 0.0655 0.1270 0.1100 0.0829 0.0580 0.0376 0.0174

200 �0.0330 0.0440 0.1065 0.1090 0.0950 — — —

Argon

1 1.812 0.8605 0.5960 0.4307 0.3220 0.2413 0.1845 0.1377

20 — 0.8485 0.5720 0.4080 0.3015 0.2277 0.1720 0.1280

60 �0.0025 0.6900 0.4963 0.3600 0.2650 0.1975 0.1485 0.1102

100 �0.0277 0.2820 0.3970 0.3010 0.2297 0.1715 0.1285 0.0950

140 �0.0403 0.1137 0.2840 0.2505 0.1947 0.1490 0.1123 0.0823

180 �0.0595 0.0560 0.2037 0.2050 0.1700 0.1320 0.0998 0.0715

200 �0.0640 0.0395 0.1860 0.1883 0.1580 0.1255 0.0945 0.0675

Carbon dioxide

1 — — 2.4130 1.2900 0.8950 0.6490 0.4890 0.3770

20 — — �0.0140 1.4020 0.8950 0.6375 0.4695 0.3575

60 — — �0.0150 0.0370 0.8800 0.6080 0.4430 0.3400

100 — — �0.0160 0.0215 0.5570 0.5405 0.4155 0.3150

140 — — �0.0183 0.0115 0.1720 0.4320 0.3760 0.2890

180 — — �0.0228 0.0085 0.1025 0.3000 0.3102 0.2600

200 — — �0.2480 0.0045 0.0930 0.2555 0.2910 0.2455

Nitrogen

1 1.2659 0.6490 0.3968 0.2656 0.1855 0.1292 0.0868 0.0558

20 1.1246 0.5958 0.3734 0.2494 0.1709 0.1173 0.0776 0.0472

60 0.0601 0.4506 0.3059 0.2088 0.1449 0.0975 0.0628 0.0372

100 0.0202 0.2754 0.2332 0.1679 0.1164 0.0768 0.0482 0.0262

140 �0.0056 0.1373 0.1676 0.1316 0.0915 0.0582 0.0348 0.0168

180 �0.0211 0.0765 0.1120 0.1015 0.0732 0.0462 0.0248 0.0094

200 �0.0284 0.0587 0.0906 0.0891 0.0666 0.0419 0.0228 0.0070

Heliuma

p (atm) 160 K 200 K 240 K 280 K 320 K 360 K 400 K 440 K

�200 �0.0574 �0.0594 �0.0608 �0.0619 �0.0629 �0.0637 �0.0643 �0.0645 

Source: R. H. Perry and D. W. Green, Perry’s Chemical Engineers’ Handbook, 6th ed., McGraw-Hill, New York, 1984.
aBelow 200 atm, there is little variation in the value of �JT for helium. (Also note that the helium data use Kelvin 

temperatures.)
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temperature, until the temperature drops so low that it condenses into a
liquid. Liquid nitrogen and oxygen are commonly prepared that way, on a vast
industrial scale. However, a gas must be below its inversion temperature in or-
der for the Joule-Thomson effect to work in the proper direction of decreas-
ing temperature! Gases that have very low inversion temperatures must be
cooled before using a sort of Joule-Thomson expansion to liquefy them. Before
this was widely realized, it was thought that some gases were “permanent
gases,” because they could not be liquefied by “ordinary” means. (Such gases
were first described by Michael Faraday in 1845, because he was unable to
liquefy them.) They included hydrogen, oxygen, nitrogen, nitric oxide, methane,
and the first four noble gases. Nitrogen and oxygen were easily liquefied by
performing a cyclic Joule-Thomson expansion on them, and the other gases
soon followed. However, the inversion temperatures of hydrogen and helium
are so low (about 202 K and 40 K, respectively) that they have to be precooled
substantially before any kind of Joule-Thomson expansion will cool them
further. Hydrogen was finally liquefied by the Scottish physicist James Dewar
in 1898, and helium in 1908 by the Dutch physicist Heike Kamerlingh-Onnes
(who used liquid helium to discover superconductivity).

2.8 More on Heat Capacities
Recall that we defined two different heat capacities, one for a change in a sys-
tem kept at constant volume, and one for a change in a system kept at constant
pressure. We labeled them CV and Cp. What is the relationship between the two?

We start with an equation that eventually yielded equation 2.22. The rele-
vant equation is

dq � ��
�

�

U

T
��V

dT + ���
�

�

U

V
��T

+ p� dV (2.36)

where p is the external pressure. We have defined the derivative (�U/�T)V as
CV, so we can rewrite the equation as

dq � CV dT + ���
�

�

U

V
��T

+ p� dV

So far, we have imposed no conditions on the system in deriving the above ex-
pression, other than the sample being an ideal gas. We now impose the addi-
tional condition that the pressure be kept constant. Nothing really changes,
since the infinitesimal change in heat dq is expressed in terms of a change in
temperature, dT, and a change in volume, dV. We can therefore write the above
equation as

dqp � CV dT + ���
�

�

U

V
��T

+ p� dV

where dq now has the subscript p. If we divide both sides of the equation by
dT, we get

��
�

�

T

q
��p

� CV + ���
�

�

U

V
��T

+ p� ��
�

�

V

T
��p

Note that the derivative �V/�T has a p subscript, due to our specifying that
this is for constant-pressure conditions. Also note that the expression is a par-
tial derivative, because the quantities in the numerators depend on multiple
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variables. (Other derivatives have also been expressed as partial derivatives.)
Since dH � dqp, we can substitute on the left side of the equation to get

��
�

�

H

T
��p

� CV + ���
�

�

U

V
��T

+ p���
�

�

V

T
��p

The term (�H/�T)p has already been defined as the heat capacity at constant
pressure, Cp. We now have a relationship between CV and Cp:

Cp � CV + ���
�

�

U

V
��T

+ p���
�

�

V

T
��p

(2.37)

If the system is composed of an ideal gas, this is straightforward to evaluate.
The change in internal energy at constant temperature is exactly zero (that’s
one of the defining features of an ideal gas). We can also use the ideal gas law
to determine the derivative (�V/�T)p:

��
�

�

V

T
��p

� �
n

p

R
�

Substituting into equation 2.37:

Cp � CV + (0 + p) �
n

p

R
�

Cp � CV + nR

or, for molar quantities:

C�p� � C�V� + R (2.38)

for an ideal gas. This is an extremely simple and useful result.
The kinetic theory of gases (to be considered in a future chapter) leads to

the result that, for a monatomic ideal gas,

C�V� � �
3

2
�R � 12.471 �

mo

J

l�K
� (2.39)

Therefore, by equation 2.38,

C�p� � �
5

2
�R � 20.785 �

mo

J

l�K
� (2.40)

Gases like Ar and Ne and He have constant-pressure heat capacities around
20.8 J/mol�K, which is not surprising. The lighter inert gases are good approx-
imations of ideal gases.*

Ideal gases have a temperature-invariant heat capacity; real gases do not.
Most attempts to express the heat capacity of real gases use a power series, in
either of the two following forms:

Cp � a + bT + cT 2

Cp � a + bT + �
T

c
2�

where a, b, and c are experimentally determined constants. Example 2.10, along
with equation 2.31, illustrates the proper way to determine changes in state
functions using heat capacities of this form.
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*Kinetic theory of gases also predicts that for ideal diatomic or linear molecules, C�V� �
�
5
2

�R; for ideal nonlinear molecules, C�V� � �
7
2

�R. C�p� is thus �
7
2

�R and �
9
2

�R, respectively. (We include
this to illustrate that thermodynamics isn’t just applicable to monatomic gases!)
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Recall that, for an adiabatic process,

dU � dw

because heat is exactly zero. From equation 2.21, we also know that

dU � CV dT + ��
�

�

U

V
��T

dV � CV dT for an ideal gas

where the final equality recognizes that the partial derivative (�U/�V)T equals
zero for an ideal gas. Therefore, for an infinitesimal adiabatic process,

dw � CV dT

Integrating for the overall adiabatic process,

w � �
Ti

Tf

CV dT (2.41)

For a constant heat capacity,

w � CV �T (2.42)

For anything other than 1 mole, we must use the molar heat capacity, C�V�:

w � nC�V� �T (2.43)

If the heat capacity is not constant over the temperature range, equation 2.41
must be used with the proper expression for CV to calculate the work of the
change.

Example 2.12
Consider 1 mole of an ideal gas at an initial pressure of 1.00 atm and initial
temperature of 273.15 K. Assume it expands adiabatically against a pressure
of 0.435 atm until its volume doubles. Calculate the work, the final temper-
ature, and the �U of the process.

Solution
The volume change of the process must be determined first. From the initial
conditions, we can calculate the initial volume, and then its change:

(1.00 atm)Vi � (1 mol)�0.08205 �
m

L�

o

a

l

t

�

m

K
��(273.15 K)

Vi � 22.4 L

If the volume is doubled during the process, then the final volume is 44.8 L,
and the change in volume is 44.8 L � 22.4 L � 22.4 L.

The work performed is calculated simply by

w � �pext �V

w � �(0.435 atm)(22.4 L)��1L

0

�

1

a

.3

tm

2 J
�� � �987 J

Because q � 0, �U � w, so that

�U � �987 J

The final temperature can be calculated using equation 2.43, recognizing that
for an ideal gas the heat capacity at constant volume is �

3
2

�R, or 12.47 J/mol�K.
Therefore,
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�987 J � (1 mol)�12.47�
mo

J

l�K
�� �T

�T � �79.1 K

With an initial temperature of 273.15 K, the final temperature is about 194 K.

For an adiabatic process, the infinitesimal amount of work done can now
be determined from two expressions:

dw � �pext dV

dw � nC�V� dT

Equating the two:

�pext dV � nC�V� dT

If the adiabatic process is reversible, then pext � pint and we can use the ideal
gas law to substitute for pint in terms of the other state variables. We get

��
n

V

RT
� dV � nC�V� dT

Bringing the temperature variables to the right side, we find that

��
V

R
� dV � �

C�
T

V�� dT

The variable n has canceled. We can integrate both sides of the equation 
and, assuming that C�V� is constant over the change, we find (recognizing 
that � 1/x dx � ln x) that

�R ln V �Vi

Vf � CC�V� ln T �Ti

Tf

Using the properties of logarithms and evaluating each integral at its limits,
we get

�R ln �
V

V
f

i

� � C�V� ln �
T

T
f

i

� (2.44)

for an adiabatic, reversible change in an ideal gas. Again using properties of
logarithms, we can get rid of the negative sign by taking the reciprocal of the
expression inside the logarithm:

R ln �
V

V

f

i� � C�V� ln �
T

T
f

i

�

Recognizing that C�p� � C�V� + R, we rearrange it as C�p� � C�V� � R and substitute:

(C�p� � C�V�) ln �
V

V

f

i� � C�V� ln �
T

T
f

i

�

Dividing through by C�V�:

�
(C�p�

C�
�

V�
C�V�)

� ln �
V

V

f

i� � ln �
T

T
f

i

�

The expression (C�p� � C�V�)/C�V� is usually defined as �:

� � �
(C�p�

C�
�

V�
C�V�)

� (2.45)
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We can rearrange the equation relating volumes and temperatures above to get

��
V

V

f

i��
�

� �
T

T
f

i

� (2.46)

It can be shown that � equals �
2
3

� for a monatomic ideal gas.* Thus,

��
V

V

f

i��
2/3

� �
T

T
f

i

� (2.47)

for an adiabatic, reversible change of a monatomic ideal gas. If we did this in
terms of pressure instead of volume, we would find that
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� (2.48)

If equations 2.47 and 2.48 were combined algebraically, one would derive

p1V1
5/3 � p2V2

5/3 (2.49)

which is a special case of Boyle’s law for ideal gases undergoing reversible, adi-
abatic processes. However, in this case, it is not assumed that the temperature
is held constant.

Example 2.13
For an adiabatic, reversible change in 1 mole of an inert monatomic gas, the
pressure changes from 2.44 atm to 0.338 atm. If the initial temperature is
339 K, what is the final temperature?

Solution
Using equation 2.48,

��02
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m

m
��
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� �
33

T

9
f

K
�

Solving:

Tf � 154 K

2.9 Phase Changes
So far, we have considered only physical changes of gaseous systems. We have
not yet considered changes in phase, nor chemical changes. We introduce the
application of the ideas discussed so far to those kinds of processes now, start-
ing with changes in phase.

In most cases, changes in phase (solid liquid, liquid gas, solid gas)
occur under experimental conditions of constant pressure, so that the heat
involved, q, is also equal to �H.† For example, for the melting of ice at its
normal melting point of 0°C:

H2O (s, 0°C) → H2O (�, 0°C)

a certain amount of heat is required per gram or per mole in order to change
the phase. However, during the phase change, the temperature does not change.

QPQPQP
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*C�p� and C�V� have different values for ideal polyatomic gases, so � also has a different value
in those cases. We won’t consider this topic further here.

†Changes in pressure can also cause phase changes. We will consider this in Chapter 6.
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H2O can exist at 0°C as either a solid or a liquid. Because there is no �T, equa-
tion 2.9 does not apply. Instead, the amount of heat involved is proportional
to the amount of material. The proportionality constant is called the heat of
fusion, �fusH, so that we have a simpler equation:

q � m � �fusH (2.50)

The word fusion is a synonym for “melting.” If amount m is given in units of
grams, �fusH has units of J/g. If the amount is given in units of moles, equa-
tion 2.50 is more properly written as

q � n � ��f�u�s�H� (2.51)

and ��f�u�s�H� is a molar quantity with units of J/mol. Since freezing and melting
are simply opposite processes, equations 2.50 and 2.51 are valid for both
processes. The process itself dictates whether the label exothermic or en-
dothermic is appropriate. For melting, heat must be put into the system, so the
process is endothermic and the value of �H for the process is positive. For
freezing, heat must be removed from the system, so freezing is exothermic and
the value for �H is negative.

Example 2.14
The heat of fusion �fusH for water is 334 J/g.
a. How much heat is required to melt 59.5 g of ice (about one large ice cube)?
b. What is the value of �H for this process?

Solution
a. According to equation 2.50,

q � (59.5 g)(334 J/g)

q � 1.99 � 104 J

b. Because heat must be put into the system in order to go from solid to
liquid, the �H for this process should reflect the fact that the process is
endothermic. Therefore, �H � 1.99 � 104 J.

Changes in volume when going from solid to liquid, or from liquid to solid,
are usually negligible, so that �H 	 �U. (Water is an obvious exception. It
expands approximately 10% when freezing.) On the other hand, the change in
volume in going from a liquid to a gas (or a solid to a gas) is considerable:

H2O (�, 100°C) → H2O (g, 100°C)

In going from a liquid to a gas, a process called vaporization, again the tem-
perature stays constant while the phase change occurs, and the amount of heat
necessary is again proportional to the amount. This time, the proportionality
constant is called the heat of vaporization, �vapH, but the form of the equation
for calculating the heat involved is similar to equation 2.50:

q � m � �vapH for amounts in grams (2.52)

or equation 2.51:

q � n � ��v�a�p�H� for amounts in moles (2.53)
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The heat involved in the reverse process, condensation, can also be calculated
with equations 2.52 and 2.53 with the understanding that once again we will
have to keep track of which direction heat is going. When determining work
for a vaporization or sublimation, it is common to neglect the volume of the
condensed phase, which is usually negligible. The following example illustrates.

Example 2.15
Calculate q, w, �H, and �U for the vaporization of 1 g of H2O at 100°C and
1.00 atm pressure. The �vapH of H2O is 2260 J/g. Assume ideal gas behavior.
The density of H2O at 100°C is 0.9588 g/cm3.

Solution
Using equation 2.52, the heat and �H for the process are straightforward:

q � (1 g)(2260 J/g) � 2260 J into the system

q � �H � +2260 J

In order to calculate the work, we need the volume change for the vaporiza-
tion. For the process H2O (�) → H2O (g), the change in volume is

�V � Vgas � Vliq

Using the ideal gas law, we can calculate the volume of the water vapor at
100°C � 373 K:

Vgas �
1.00 atm

Vgas � 1.70 L

The volume of liquid H2O at 100°C is 1.043 cm3, or 0.001043 L. Therefore,

�V � Vgas � Vliq � 1.70 L � 0.001043 L 	 1.70 L � Vgas

In this step, we show that the volume of the liquid is negligible with respect
to the volume of the gas, so to a very good approximation �V � Vgas. To cal-
culate the work of the vaporization:

w � �pext �V

w � �(1.00 atm)(1.70 L)��11
0

L

1

�

.

a

3

t

2

m

J
��

w � �172 J

Since �U � q + w,

�U � 2260 J � 172 J

�U � 2088 J

This is an example where the change in enthalpy does not equal the change
in internal energy.

Table 2.3 lists some values for �fusH and �vapH for various substances.
The values for �fusH and �vapH are indicative of how much energy is neces-
sary to change the phase, and as such are related to the strength of the in-
teratomic or intermolecular interactions in the materials. Water, for example,
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Table 2.3 �fusH and �vapH for various
substances (J/g)

Material �fusH �vapH

Al 393.3 10,886

Al2O3 1,070

CO2 180.7 573.4 (sublimes)

F2 26.8 83.2

Au 64.0 1,710

H2O 333.5 2,260

Fe 264.4 6,291

NaCl 516.7 2,892

C2H5OH, ethanol 188.99 838.3

C6H6, benzene 127.40 393.8

C6H14, hexane 151.75 335.5

(0.0555 mol)(0.08205 �
m
L�

o
a
l
t
�

m
K

�)(373 K)
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has an unusually large heat of vaporization for such a small molecule. This
is caused by the strong hydrogen bonding between water molecules. It takes
a lot of energy to separate the individual water molecules (which is about
what happens during the vaporization process), and the high heat of vapor-
ization reflects that fact.

2.10 Chemical Changes
When a chemical reaction occurs, the chemical identities of the system are
changing. Although most of the equations and definitions we have considered
so far are still directly applicable, we need to expand the applicability of �U
and �H.

It should be understood that all chemical substances have a total internal
energy and enthalpy. When a chemical change occurs, the change in the inter-
nal energy or enthalpy that accompanies the chemical change is equal to the
total enthalpy of the final conditions, the products, minus the total enthalpy of
the initial conditions, the reactants. That is,

�rxnH � Hf � Hi

�rxnH � Hproducts � Hreactants

where we are using �rxnH to indicate the change in enthalpy for the chemical
reaction. �rxnU is the equivalent for internal energy. Figure 2.11 illustrates this
idea. In each graph, one line represents the total enthalpy of the products; the
other is the total enthalpy of the reactants. The difference between the lines
represents the change in enthalpy for the reaction, �rxnH. In one case, Figure
2.11a, the amount of enthalpy in the system is going down. That is, the system
is giving off energy into the surroundings. This is an example of an exother-
mic process. In the other case, Figure 2.11b, the amount of enthalpy in the sys-
tem is going up. This means that energy is going into the system, so this is an
example of an endothermic process.

The change in energy of a chemical process depends on the conditions of
the process, like temperature and pressure. The standard condition of pressure
is 1 bar (which is almost equal to 1 atm, so use of 1 atm as the standard con-
dition of pressure does not impart too much error). There is no defined stan-
dard temperature, although many thermodynamic measurements are reported
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H

(a)

Total enthalpy of reactants

�rxnH

Total enthalpy of products

H

(b)

Total enthalpy of reactants

�rxnH

Total enthalpy of products

Figure 2.11 A graphical interpretation of the statement that �rxnH for a chemical process is
the difference between the total enthalpies of the products minus the total enthalpies of the re-
actants. (a) An exothermic reaction, since the total energy of the system is going down (meaning
that energy is given off). (b) An endothermic reaction, since the total energy of the system is go-
ing up (meaning that the energy is entering the system).
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for 25.0°C. To indicate that the energy change is meant to imply standard con-
ditions, a ° superscript is attached to the symbol. We therefore speak of �rxnH°,
�rxnU°, etc. Temperatures are usually specified as well.

Although we have defined �rxnH for a chemical process, values of �rxnH are
not determined by evaluating the difference Hf � Hi. This is because absolute val-
ues for enthalpy cannot be determined. Only relative values, changes in enthalpy,
can be measured. What we need is a set of chemical reactions whose �rxnH val-
ues can serve as standards against which all other �rxnH values can be measured.

The method for determining �rxnH for chemical processes is based on the
ideas of the chemist Germain Henri Hess (1802–1850), who was born in
Switzerland but spent most of his life in Russia. Hess can be considered the
founder of the subtopic of thermodynamics called thermochemistry. Hess stud-
ied the energy changes (in terms of heat, mostly) of chemical reactions.
Ultimately, he realized that several key ideas are important in studying the
energy changes that accompany chemical reactions. In a modern form (Hess
lived before the field of thermodynamics was fully established), they are:

• Specific chemical changes are accompanied by a characteristic change in
energy.

• New chemical changes can be devised by combining known chemical
changes. This is done algebraically.

• The change in energy of the combined chemical reaction is the equiva-
lent algebraic combination of the energy changes of the component
chemical reaction.

The above ideas are collectively known as Hess’s law and are the fundamen-
tal basis of thermodynamics as applied to chemical reactions. Because we are
treating chemical equations algebraically, we need to keep the following two
thoughts in mind as we combine their energy changes algebraically.

• When a reaction is reversed, the energy change of the reaction reverses
sign. This is a consequence of enthalpy being a state function.

• When multiples of a reaction are considered, the same multiple of the
energy change must be used. This applies to fractional as well as whole-
number multiples. This is a consequence of enthalpy being an extensive
property.

Hess’s law means that we can take the measured changes in energy for re-
actions and combine them in whatever way we need, and the change in energy
for the overall reaction is just some algebraic sum of the known energies.
Measured energy changes for chemical reactions can be tabulated, and for the
appropriate combination of chemical reactions, we need only consult the ta-
bles and perform the proper algebra. Hess’s law is a direct consequence of en-
thalpy being a state function.

The question now is, what reactions should we tabulate? There is an inex-
haustible supply of possible chemical reactions. Do we tabulate the energy
changes of all of them? Or of only a selected few? And which few?

Enthalpy changes of only one kind of chemical reaction need to be tabulated
(although it is not uncommon to see tables of enthalpy changes of other reac-
tions, like combustion reactions). A formation reaction is any reaction making 
1 mole of a product using, as reactants, the product’s constituent elements in
their standard states.* We use the symbol �fH to stand for the enthalpy change
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*The standard state of an element is the pure substance at 1 bar (previously, 1 atm) and
having the specified allotropic form, if necessary. Although there is no specified standard
temperature, many references use 25.0°C as the designated temperature.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



of a formation reaction, called the enthalpy of formation or (more loosely) the
heat of formation. As an example,

�
1
2

�N2 (g) + O2 (g) → NO2 (g)

is the formation reaction for NO2. As a counterexample,

2NO2 (g) + �
1
2

�O2 (g) → N2O5 (g)

is not the formation reaction for N2O5 because the reactants are not all the el-
ements that compose N2O5. For tabulation purposes, most of the �fH values
are measured with respect to the standard state of the reactants, so they are
usually �fH° (with ° to indicate standard state).

Example 2.16
Determine whether the following reactions are formation reactions or not, and
if not, why. Assume that the reactions are occurring under standard conditions.
a. H2 (g) + �

1
2

�O2 (g) → H2O (�)
b. Ca (s) + 2 Cl (g) → CaCl2 (s)
c. 2 Fe (s) + 3S (rhombic) + 4O3 (g) → Fe2(SO4)3 (s)
d. 6C (s) + 6H2 (g) + 3O2 (g) → C6H12O6 (s) (glucose)

Solution
a. Yes, this is the formation reaction for liquid water.
b. No. The “standard form” of chlorine is a diatomic molecule.
c. No. The “standard form” of elemental oxygen is the diatomic molecule. The
O3 in the formula is the allotrope ozone.
d. Yes, this is the formation reaction for glucose.

Notice that, by definition, the enthalpy of formation for elements in their
standard state is exactly zero. This is because, no matter what the absolute
enthalpies of the product and reactant are, they are the same, so the change in
enthalpy for the reaction is zero. For example,

Br2 (�) → Br2 (�)

is the formation reaction for elemental bromine. Since there is no change in
the chemical identity over the course of the reaction, the enthalpy change is
zero and we say that �fH° � 0 for elemental bromine. The same situation ex-
ists for all elements in their standard states.

The reason we focus on formation reactions is because it is the changes in
enthalpy for formation reactions that are tabulated and used to determine en-
thalpy changes for chemical processes. This is because any chemical reaction
can be written as an algebraic combination of formation reactions. Hess’s law
therefore dictates how the �fH° values are combined.

As an example, let us examine the following chemical reaction:

Fe2O3 (s) + 3SO3 (�) → Fe2(SO4)3 (s) (2.54)

What is the �rxnH° for this chemical reaction? We can separate this reaction
into formation reactions for every reactant and product in the process:

Fe2O3 (s) → 2Fe (s) + �
3
2

�O2 (g) (a)

3[SO3 (�) → S (s) + �
3
2

�O2 (g)] (b)

2Fe (s) + 3S (s) + 6O2 (g) → Fe2(SO4)3 (s) (c)

2.10 Chemical Changes 55

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Reaction a is the reverse reaction for the formation of Fe2O3; therefore, the
change in enthalpy for a is ��fH° [Fe2O3]. Reaction b is the reverse reaction
for the formation of SO3 (�), and is multiplied by 3. Therefore, the change in
enthalpy for b is �3 � �fH° [SO3 (�)]. Reaction c is the formation reaction for
iron (III) sulfate. The change in enthalpy for c is �fH° [Fe2(SO4)3]. You should
verify that the reactions a–c yield equation 2.54 when added together 
algebraically.

The algebraic combination of the �fH° values therefore yields the �rxnH°
for equation 2.54. We get

�rxnH° � ��fH[Fe2O3] � 3 � �fH[SO3 (�)] + �fH[Fe2(SO4)3]

Looking up the values in tables shows that �fH° [Fe2O3], �fH° [SO3 (�)], and
�fH° [Fe2(SO4)3] are �826, �438, and �2583 kJ per mole of compound, re-
spectively. So the �rxnH° for the reaction in equation 2.54 is

�rxnH° � �443 kJ

for the formation of 1 mole of Fe2(SO4)3 from Fe2O3 and SO3 at standard
pressure.

The above example shows that the �fH ° values of the products are used
directly, that the �fH° values of the reactants have changed sign, and that the
coefficients of the balanced chemical reaction are used as multiplicative factors
(the multiplier 3 for �fH for SO3 and the 3 preceding SO3 in the balanced
chemical reaction is not a coincidence). An understanding of these ideas allows
us to develop a short-cut that we can apply to the evaluation of the change in
enthalpy for any chemical reaction. (Or any other state function, for that mat-
ter, although so far we have internal energy as the only other state function.)
For a chemical process,

�rxnH � 
 �fH (products) � 
 �fH (reactants) (2.55)

In each summation, the number of moles of each product and reactant in the
balanced chemical equation must be included. Equation 2.55 applies for any
set of conditions, as long as all �fH values for all species apply to the same con-
ditions. We can also define the change in internal energy for a formation reac-
tion as �fU. This energy change, the internal energy of formation, has a paral-
lel importance to �fH and is also tabulated. There is also a simple
products-minus-reactants expression for the change in internal energy for any
chemical process, also based on the �fU values:

�rxnU � 
 �fU (products) � 
 �fU (reactants) (2.56)

Again, the general expression applies for both standard and nonstandard con-
ditions, as long as all values apply to the same set of conditions. Appendix 2
contains a large table of (standard) enthalpies of formation. This table should
be consulted for problems that require energies of formation reactions.
Equations 2.55 and 2.56 eliminate the need to perform a complete Hess’s-law
type of analysis on every chemical reaction.

Example 2.17
The oxidation of glucose, C6H12O6, is a basic metabolic process in all life. In
cells, it is performed by a complex series of enzyme-catalyzed reactions. The
overall reaction is

C6H12O6 (s) + 6O2 (g) → 6CO2 (g) + 6H2O (�)
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If the standard enthalpy of formation of glucose is �1277 kJ/mol, what is the
�rxnH° for this process? You will need to get �fH° values from Appendix 2.

Solution
The �fH values for CO2 (g) and H2O (�) are �393.51 and �285.83 kJ/mol,
respectively. Therefore, we use equation 2.55 and find

�rxnH° � 6(�393.51) + 6(�285.83) � (�1277) kJ for the process

� �fH° (products) � �fH° (reactants)

In expressions like these, it is important to keep track of all of the negative
signs. Evaluating:

�rxnH° � �2799 kJ

By noting that the coefficients from the balanced chemical reaction are the
number of moles of products and reactants, we lose the moles in the denomi-
nator of the �rxnH°. Another way to consider it is to say that 2799 kJ of energy
are given off when 1 mole of glucose reacts with 6 moles of oxygen to make 6
moles of carbon dioxide and 6 moles of water. This eliminates the question
“moles of what?” that would be raised if a kJ/mol unit were used for �rxnH°.

The products-minus-reactants tactic is a very useful one in thermodynamics. It
is also a useful idea to carry along with respect to other state functions: the change
in any state function is the final value minus the initial value. In Example 2.17
above, the state function of interest was enthalpy, and by applying Hess’s law and
the definition of formation reactions, we were able to develop a procedure for de-
termining the changes in enthalpy and internal energy for a chemical process.

What is the relationship between �H and �U for a chemical reaction? If one
knows the �fU and �fH values for the products and reactants, one can simply
compare them using the products-minus-reactants scheme of equations 2.55
and 2.56. There is another way to relate these two state functions. Recall the
original definition of H from equation 2.16:

H � U + pV

We also derived an expression for dH as

dH � dU + d(pV)

dH � dU + p dV + V dp

where the second equation above was obtained by applying the chain rule. There
are several ways we can go with this. If the chemical process occurs under con-
ditions of constant volume, then the p dV term is zero and dU � dqV (because
work � 0). Therefore,

dHV � dqV + V dp (2.57)

The integrated form of this equation is

�HV � qV + V �p (2.58)

Since dU � dq under constant volume conditions, this gives us one way to cal-
culate how dH differs from dU. Under conditions of constant pressure, the
equation becomes

�Hp � �U + p �V (2.59)

and we have a second way of evaluating �H and �U for a chemical process.
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If the chemical process occurs isothermally, then by assuming the gases in-
volved are acting ideally,

d(pV) � d(nRT) � dn � RT

where dn refers to the change in the number of moles of gas that accompanies
the chemical reaction. Since both R and T are constant, the chain rule of cal-
culus does not provide additional terms. Therefore, for isothermal chemical
processes, equations 2.58 and 2.59 can be written as

�H � �U + RT �n (2.60)

For equation 2.60, pressure and volume are not constrained to be constant.

Example 2.18
One mole of ethane, C2H6, is burned in excess oxygen at constant pressure
and 600°C. What is the �U of the process? The amount of heat given off by
the combustion of 1 mole of ethane is 1560 kJ (that is, it is an exothermic
reaction).

Solution
For this constant-pressure process, �H � q, so �H � �1560 kJ. It is nega-
tive because heat is given off. In order to determine RT �n, we need the bal-
anced chemical reaction. For the combustion of ethane in oxygen, it is

C2H6 (g) + �
7
2

�O2 (g) → 2CO2 (g) + 3H2O (g)

The fractional coefficient is necessary for oxygen in order to balance the re-
action. The water product is listed as a gas because the temperature of the
process is well above its boiling point! The change in the number of moles of
gas, �n, is nproducts � nreactants � (2 + 3) � (1 + �

7
2

�) � 5 � 4.5 � 0.5 mole.
Therefore,

�1560 kJ � �U + (0.5 mol)�8.314 �
mo

J

l�K
��(873 K)��1

1

00

k

0

J

J
��

Solving:

�1560 kJ � �U + 1.24 kJ

�U � �1561 kJ

In this example, �rxnU and �rxnH are only slightly different. This shows that
some of the change in the total energy went into work, and the rest went 
into heat.

2.11 Changing Temperatures
For a process that occurs under constant pressure (which includes most
processes of interest to the chemist), the �H of the process is easy to measure.
It is equal to the heat, q, of the process. But the temperature of the process can
change, and we expect that �U and, more importantly, �H will vary with the
temperature. How do we figure �H for a different temperature?

Since enthalpy is a state function, we can select any convenient path to de-
termine �H for the reaction at the desired temperature. We can use an idea
similar to Hess’s law to determine the change in the state function �H for a
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process that occurs at a temperature different from that cited by available data
(usually 25.0°C). In addition to �H at 25.0°C, we need to know the heat ca-
pacities of the products and reactants. Given that information, �HT , where T
is any temperature, is given by the sum of:

1. The heat, q, needed to bring the reactants to the temperature specified by
the data (usually 298 K)

2. The heat of reaction, �H, at that temperature (which can be determined
from tabulated data)

3. The heat, q, needed to bring the products back to the desired reaction
temperature

Using �H1, �H2, and �H3 to label the three heat values listed above, we can
write expressions for each step. Step 1 is a change-in-temperature process that
uses the fact that �H1 � qp � m � c � �T. The heat capacity used in this ex-
pression is the combined heat capacity of all of the reactants, which must be
included stoichiometrically. That is, if there are 2 moles of one reactant, its heat
capacity must be included twice, and so on. One must consider whether �H1

represents an exothermic (heat out; �H is negative) or an endothermic (heat
in; �H is positive) change. For step 2, �H2 is simply �rxnH°. For step 3, �H3

is similar to �H1, except that now it is the products that must be taken from
the specified temperature to whatever final temperature is necessary (again,
keeping track of whether the process is endothermic or exothermic). In this
third step, the heat capacities of the products are needed. The overall �HT is
the sum of the three enthalpy changes, as Hess’s law and the fact that enthalpy
is a state function require. The following example illustrates.

Example 2.19
Determine �H500 for the following reaction at 500 K and constant pressure:

CO (g) + H2O (g) → CO2 (g) + H2 (g)

The following data are necessary:

Substance Cp �fH (298 K)

CO 29.12 �110.5

H2O 33.58 �241.8

CO2 37.11 �393.5

H2 29.89 0.0

where the units for Cp are J/mol�K and the units for �fH are kJ/mol. Assume
molar quantities.

Solution
First, we have to take CO and H2O from 500 K to 298 K, a �T of �202 K.
For one mole of each, the heat (which equals the enthalpy change) is

�H1 � q

� (1 mol)�29.12 �
mo

J

l�K
��(�202 K) + (1 mol)�33.58 �

mo

J

l�K
��(�202 K)

�H1 � �12,665 J � �12.665 kJ

For the second step, we need to evaluate �H for the reaction at 298 K. Using
the products-minus-reactants approach, we find
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�H2 � (�393.5 + 0) � (�110.5 + �241.8) kJ

�H2 � �41.2 kJ

Finally, the products of the reaction need to be brought to 500 K; the heat in-
volved in that step, �H3, is

�H3 � q

� (1 mol)�37.11 �
mo

J

l�K
��(
202 K) + (1 mol)�29.89 �

mo

J

l�K
��(
202 K)

where now �T is positive 202 K:

�H3 � +13,534 J � 13.534 kJ

The overall �rxnH is the sum of the three parts:

�rxnH � �H1 + �H2 + �H3

� �12.665 + (�41.2) + 13.534 kJ

�rxnH � �40.3 kJ

Figure 2.12 shows a diagram of the processes used to estimate �H500.

The answer in the above example is not much different from the �rxnH°,
but it is different. It is also an approximation, since we are assuming that the
heat capacities do not vary with temperature. If one compares this to the ex-
perimental value of �H500 of �39.84 kJ, one sees that we are not far off. It is,
then, a good approximation. To be more accurate, an expression for Cp is nec-
essary instead of a constant, and an integral between 500 K and 298 K must be
evaluated for the �H1 and �H3 steps, as illustrated in Example 2.10.
Conceptually, however, this is no different than the above example.

2.12 Biochemical Reactions
Biology, the study of living things, is based on chemistry. Although biological
systems are very complex systems, their chemical reactions are still governed
by the basic concepts of thermodynamics. In this section, we review the thermo-
dynamics of some important biochemical processes.

In Example 2.17, we considered the oxidation of glucose:

C6H12O6 (s) + 6O2 (g) → 6CO2 (g) + 6H2O (�)

The change in enthalpy of this reaction is �2799 kJ per mole of glucose oxi-
dized. The first point to make is that it doesn’t matter if the glucose is burned
in air or metabolized in our cells: for every 180.15 g (� 1 mol) of glucose that
reacts with oxygen, 2799 kJ of energy are given off. The second point is to rec-
ognize that this is a lot of energy! It’s enough to raise the temperature of
80.0 kg of water (the approximate mass of a human body) by over 8°C! The
molar volume of glucose is about 115 mL, illustrating that our cells are using
a very compact form of energy.

Photosynthesis is the process by which plants make glucose from carbon
dioxide and water. The overall reaction is

6CO2 (g) + 6H2O (�) → C6H12O6 (s) + 6O2 (g)
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Cool to
298 K

298 K

Warm to
500 K

q = H1 q = H3

�rxnH = H2

�H500 = H1 + H2 + H3

CO2 � H2CO � H2O

500 K

�H500
CO2 � H2CO � H2O

Figure 2.12 A graphical representation of how
one determines the �rxnH at nonstandard tem-
peratures. The total change in enthalpy is the sum
of the enthalpy changes for the three steps.
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This is the reverse of the reaction for glucose oxidation/metabolism. By Hess’s
law, the enthalpy change of this reaction is the negative of the enthalpy change
for the original process: �rxnH � +2799 kJ per mole of glucose produced. For
both processes, the individual steps in the overall, complex biochemical reac-
tion are ignored. Only the overall reaction is needed to determine the enthalpy
change.

One very important biochemical reaction is the conversion of adenosine
triphosphate (ATP) to adenosine diphosphate (ADP) and vice versa (Figure
2.13). We can summarize this process as

ATP + H2O ADP + phosphate (2.61)

Here, “phosphate” refers to any of several inorganic phosphate ions (H2PO4
�,

HPO4
2�, or PO4

3�), depending on the ambient conditions. This conversion is
a major energy storage/utilization process at the subcellular level.

These reactions occur in cells, not in the gas phase, so the specification of
the conditions of the reaction are different. A biochemical standard state in-
cludes the requirement that an aqueous solution be neutral (that is, neither
acidic nor basic), with a pH of 7.* We use the prime symbol � on a state func-
tion to imply that it refers to a reaction at the biochemical standard state. For
the ATP → ADP reaction in equation 2.61, the �rxnH°� is �24.3 kJ per mole
of ATP reacted.

This is not a large enthalpy change. However, it is enough energy to fuel
other biochemically important chemical reactions. Details can be found in
most biochemistry textbooks.

JQPJ
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Figure 2.13 Hydrolysis of adenosine triphosphate (ATP) to make adenosine diphosphate
(ADP) and inorganic phosphate.

*A more detailed discussion of pH is in Chapter 8.
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We end this section with a warning, however. Many biochemistry texts sim-
plify the reaction in equation 2.61 as

ATP ADP + phosphate �rxnH°� � �24.3 kJ (2.62)

(It is not uncommon in organic or biological chemistry for complex chemical
processes to be written using only the important chemical species.) For the
uninitiated, the reaction written in equation 2.62 suggests that an ATP mole-
cule is breaking apart into ADP and phosphate molecules, and 24.3 kJ of en-
ergy is given off. However, in basic chemistry we should learn that it always re-
quires energy to break a chemical bond; this reaction should be endothermic,
not exothermic. How can a chemical bond be broken and energy be given off?

The reason for the confusion is the absence of the H2O molecule. More
bonds are being broken and formed than equation 2.62 implies, and with the
inclusion of water (as in equation 2.61), the overall enthalpy change of the
ATP → ADP conversion is negative. Confusion arises when complex reactions
are simplified and an unsuspecting reader does not recognize the implications
of the simplification.

The lesson? Even complex biochemical processes are governed by the con-
cepts of thermodynamics.

2.13 Summary
The first law of thermodynamics concerns energy. The total energy of an iso-
lated system is constant. If the total energy of a closed system changes, it can
manifest itself as either work or heat, nothing else. Because the internal energy
U is not always the best way to keep track of the energy of a system, we define
the enthalpy, H, which can be a more convenient state function. Because many
chemical processes occur under constant-pressure conditions, enthalpy is of-
ten more convenient than internal energy.

There are many mathematical ways of keeping track of the energy changes
of a system. The examples we have presented in this chapter are all based on
the first law of thermodynamics. Many of them demand a certain condition,
like constant pressure, constant volume, or constant temperature. Although
this might seem inconvenient, by defining the changes in a system in these
ways, we can calculate the change in energy of our system. This is an impor-
tant goal of thermodynamics. As we will see in the next chapter, it is not the
only important goal.

The other task in thermodynamics is embodied in the question “What
processes tend to occur by themselves, without any effort (that is, work) on our
part?” In other words, what processes are spontaneous? Nothing about the first
law of thermodynamics helps us answer that question unequivocally. That’s be-
cause it can’t. A lot of exploration and experimentation showed that energy is
not the only concern of thermodynamics. Other concerns are also important,
and it turns out that those concerns play major roles in how we view our
universe.

JQPJ
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2.2 Work and Heat

2.1. Calculate the work performed by a person who exerts a
force of 30 N (N � newtons) to move a box 30 meters if the
force were (a) exactly parallel to the direction of movement,
and (b) 45° to the direction of movement. Do the relative
magnitudes make sense?

2.2. Explain in your own words why work done by the sys-
tem is defined as the negative of p �V, not positive p �V.

2.3. Calculate the work in joules when a piston moves re-
versibly from a volume of 50. mL to a volume of 450. mL
against a pressure of 2.33 atm.

2.4. Calculate the work in joules needed to expand a balloon
from 5 mL to 3.350 L against standard atmospheric pressure.
(Your lungs provide that work if you are blowing it up your-
self.) Assume a reversible process.

2.5. Consider exercise 2.4. Would the work be more or less if
it were performed against different external pressures found
(a) at the top of Mount Everest, (b) at the bottom of Death
Valley, (c) in space? (d) What if the process were performed
irreversibly?

2.6. Calculate the heat capacity of a material if 288 J of en-
ergy were required to heat 50.5 g of the material from 298 K
to 330 K. What are the units?

2.7. Liquid hydrogen fluoride, liquid water, and liquid am-
monia all have relatively high specific heats for such small mol-
ecules. Speculate as to why this might be so.

2.8. A 7.50-g piece of iron at 100.0°C is dropped into 25.0 g
of water at 22.0°C. Assuming that the heat lost by the iron
equals the heat gained by the water, determine the final tem-
perature of the iron/water system. Assume a heat capacity of
water of 4.18 J/g�K and of iron, 0.45 J/g�K.

2.9. With reference to Joule’s apparatus in Figure 2.6, assum-
ing a mass of 100. kg of water (about 100 L), a weight with
a mass of 20.0 kg, and a drop of 2.00 meters, calculate how
many drops it would take to raise the temperature of the wa-
ter by 1.00°C. The acceleration due to gravity is 9.81 m/s2.
(Hint: see Example 2.5.)

2.10. Some people have argued that rocket engines will not
work because the gaseous products of a rocket engine, push-
ing against the vacuum of space, do not perform any work,
and therefore the engine will not propel anything. Refute this
argument. (Hint: consider Newton’s third law of motion.)

2.11. Verify equation 2.8.

2.3 Internal Energy; First Law 
of Thermodynamics

2.12. The statement “Energy can be neither created nor de-
stroyed” is sometimes used as an equivalent statement of the
first law of thermodynamics. There are inaccuracies to the
statement, however. Restate it to make it less inaccurate.

2.13. Explain why equation 2.10 is not considered a contra-
diction of equation 2.11.

2.14. What is the change in internal energy when a gas con-
tracts from 377 mL to 119 mL under a pressure of 1550 torr,
while at the same time being cooled by removing 124.0 J of
heat energy?

2.15. Calculate the work for the isothermal, reversible com-
pression of 0.245 mole of an ideal gas going from 1.000 L to
1 mL if the temperature were 95.0°C.

2.16. Calculate the work done when 1.000 mole of an ideal
gas expands reversibly from 1.0 L to 10 L at 298.0 K. Then,
calculate the amount of work done when the gas expands ir-
reversibly against a constant external pressure of 1.00 atm.
Compare the two values and comment.

2.17. Suppose a change in a gaseous system is adiabatic and
isothermal. What do you think the change in internal energy
would be for such a change?

2.4 & 2.5 State Functions; Enthalpy

2.18. The distance between downtown San Francisco and
downtown Oakland is 9 miles. However, a car driving between
the two points travels 12.3 miles. Of these distances, which
one is analogous to a state function? Why?

2.19. Is temperature a state function? Defend your answer.

2.20. A piston reversibly and adiabatically contracts 3.88
moles of ideal gas to one-tenth of its original volume, then ex-
pands back to the original conditions. It does this a total of
five times. If the initial and final temperature of the gas is
27.5°C, calculate (a) the total work and (b) the total �U for
the overall process.

2.21. Many compressed gases come in large, heavy metal
cylinders that are so heavy that they need a special cart to
move them around. An 80.0-L tank of nitrogen gas pressur-
ized to 172 atm is left in the sun and heats from its normal
temperature of 20.0°C to 140.0°C. Determine (a) the final
pressure inside the tank and (b) the work, heat, and �U of the
process. Assume that behavior is ideal and the heat capacity
of diatomic nitrogen is 21.0 J/mol�K.

2.22. Under what conditions will �U be exactly zero for a
process whose initial conditions are not the same as its final
conditions?

2.23. A balloon filled with 0.505 mole of gas contracts re-
versibly from 1.0 L to 0.10 L at a constant temperature of
5.0°C. In doing so, it loses 1270 J of heat. Calculate w, q, �U,
and �H for the process.

2.24. It takes 2260 J to vaporize a gram of liquid water to
steam at its normal boiling point of 100°C. What is �H for this
process? What is the work, given that the water vapor expands
against a pressure of 0.988 atm? What is �U for this process?

2.6 Changes in State Functions

2.25. If the infinitesimals of internal energy were taken with
respect to pressure and volume, what would be the equation
for the infinitesimal change in internal energy dU? Write a sim-
ilar expression for dH, assuming the same variables.
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2.26. A refrigerator contains approximately 17 cubic feet, or
about 480 liters, of air. Assuming it acts as an ideal gas with a
C�V� of 12.47 J/mol�K, what is the change in U in cooling the air
from normal room temperature (22°C) to refrigerator temper-
ature (4°C)? Assume an initial pressure of 1.00 atm.

2.27. What are the units on each term of the equation for CV

given in part b of Example 2.10?

2.28. Starting with equation 2.27 and the original definition
of enthalpy, derive the fact that C�p� � C�V� + R.

2.29. Derive the fact that (�H/�p)T is also zero for an ideal gas.

2.30. Define isobaric, isochoric, isenthalpic, and isothermal.
Can a change in a gaseous system be isobaric, isochoric, and
isothermic at the same time? Why or why not?

2.7 Joule-Thomson Coefficients

2.31. Starting from the cyclic rule involving the Joule-
Thomson coefficient, derive equation 2.35.

2.32. The ideal gas law is the equation of state for an ideal
gas. Why can’t it be used to determine (�T/�p)H?

2.33. For a gas that follows the van der Waals equation of
state, the inversion temperature can be approximated as 2a/Rb.
Using Table 1.6, calculate the inversion temperatures of He
and H2 and compare them to their values of 40 K and 202 K,
respectively. What are the implications of these inversion tem-
peratures with regard to liquefaction of these two gases?

2.34. Estimate the final temperature of a mole of gas at 200.00
atm and 19.0°C as it is forced through a porous plug to a fi-
nal pressure of 0.95 atm. The �JT of the gas is 0.150 K/atm.

2.35. With regard to exercise 2.34, how accurate do you
think your answer is, and why?

2.36. Someone proposes that the Joule-Thomson coefficient
can also be defined as 

�JT � ��
(�U

C
/�

V

p)T�

Is this definition valid? Why or why not?

2.8 Heat Capacities

2.37. Why is equation 2.37 written in terms of CV and Cp and
not C�V� and C�p�?

2.38. What are the numerical values of the heat capacities C�p�
and C�V� of a monatomic ideal gas, in units of cal/mol�K and
L�atm/mol�K?

2.39. In a constant-pressure calorimeter (that is, one that ex-
pands or contracts if the volume of the system changes), 0.145
mol of an ideal gas contracts slowly from 5.00 L to 3.92 L. If
the initial temperature of the gas is 0.0°C, calculate the �U
and w for the process.

2.40. What is the final temperature of 0.122 mole of ideal gas
that performs 75 J of work adiabatically if the initial tempera-
ture is 235°C?

2.41. Derive equation 2.44 from the previous step.

2.42. Show that (C�p� � C�V�)/C�V� equals �
2
3

� for a monatomic 
ideal gas.

2.43. What is � for an ideal diatomic gas? (See footnote in
section 2.8.)

2.44. In orbit about Earth, a weather balloon jettisons a weight
and ascends to a higher altitude. If the initial pressure inside
the balloon is 0.0033 atm and it ascends to an altitude where
the pressure is 0.00074 atm, by what fraction does the ab-
solute temperature change? Assume that the balloon is filled
with helium, a good approximation of an ideal gas, and that
the change is adiabatic.

2.9 & 2.10 Phase and Chemical Changes

2.45. Take the volume change into account and calculate �H
and �U for exactly 1 g of ice melting into 1 g of water at stan-
dard pressure. The density of ice at 0° is 0.9168 g/mL; the
density of water at 0° is 0.99984 g/mL.

2.46. How much work is performed by 1 mole of water freez-
ing to 1 mole of ice at 0°C at standard pressure? Use the den-
sities from the previous exercise.

2.47. Why are steam burns so much worse than water burns
even if the H2O is at the same temperature for both phases?
(Hint: consider the heat of vaporization of water.)

2.48. How many grams of water at 0°C will be melted by the
condensation of 1 g of steam at 100°C?

2.49. Citrus farmers sometimes spray their trees with water if
the temperature is expected to go below 32°F, in the hopes
that this will keep the fruit from freezing. Why would farmers
think that?

2.50. Draw a diagram like Figure 2.11 that illustrates the
change in enthalpy for the chemical reaction

C (s) + 2H2 (g) → CH4 (g)

which is exothermic by 74.8 kJ/mol.

2.51. Determine the �rxnH (25°C) of the following reaction:

H2 (g) + I2 (s) → 2HI (g)

2.52. Determine �rxnH (25°C) for the following reaction:

NO (g) + �
1
2

�O2 (g) → NO2 (g)

This reaction is a major participant in the formation of smog.

2.53. Using Hess’s law, write out all of the formation reactions
that add up to, and calculate �rxnH (25°C) for, the following
reaction:

2NaHCO3 (s) → Na2CO3 (s) + CO2 (g) + H2O (�)

(This reaction occurs when one uses baking soda to smother
a fire in the kitchen.)

2.54. The thermite reaction combines aluminum powder and
iron oxide and ignites the mixture to make aluminum oxide
and iron. So much energy is given off that the iron product
frequently is molten. Write a balanced chemical reaction for
the thermite process and determine its �H (25°C) .

2.55. Benzoic acid, C6H5COOH, is a common standard used
in bomb calorimeters, which maintain a constant volume. If
1.20 g of benzoic acid gives off 31,723 J of energy when
burned in the presence of excess oxygen at a constant tem-
perature of 24.6°C, calculate q, w, �H, and �U for the reaction.
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2.56. 1.20 g of benzoic acid, C6H5COOH, is burned in a
porcelain dish exposed to the air. If 31,723 J of energy is given
off and the system temperature is 24.6°C, calculate q, w, �H,
and �U. (Compare your answers to those from the previous 
problem.)

2.11 Changing Temperatures

2.57. Assuming constant heat capacities for products and re-
actants, determine the �H (500°C) for 2H2 (g) + O2 (g) →
2H2O (g). (Hint: be careful which data you use for water!)

2.58. Use the heat capacities of the products and reactants of
the thermite reaction and the calculated �H of the process to
estimate the temperature of the reaction. Assume that all of
the heat generated goes to increasing the temperature of the
system.

2.59. The following are values of heat capacity for nitrogen
gas:

Temp (K) CV (J/mol�K)
300 20.8
400 20.9
500 21.2
600 21.8
700 22.4
800 23.1
900 23.7

1000 24.3
1100 24.9

Using the general formula CV � A + BT + C/T2, find values of
A, B, and C that fit the given data.

2.60. What is �U for 1 mole of N2 gas going from 300 K to
1100 K at constant volume? Use the expression for CV you de-
termined from exercise 2.59, and evaluate �U numerically.

2.61. Consider a gas undergoing a reversible, adiabatic
change in volume. Such changes are not isothermal, but you
can still use the special case of Boyle’s law in equation 2.49.
Plot the final pressure of 1.00 mole of ideal gas at 1.00 bar ini-
tial pressure as the volume increases. Also plot the isothermal
final pressure as volume increases from the same initial condi-
tions (that is, Boyle’s law). How do these two plots compare?
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3
ALTHOUGH THE MATHEMATICAL AND CONCEPTUAL TOOLS

PROVIDED BY THE ZEROTH AND FIRST LAWS OF THERMO-
DYNAMICS ARE VERY USEFUL, we need more. There is a major question
that these laws cannot answer: Will a given process occur spontaneously?
Nothing in the previous chapters addresses spontaneity, which is an important
concept. Thermodynamics helps to understand the spontaneity of processes—
but only once we add more of its tools. These tools are called the second and
third laws of thermodynamics.

3.1 Synopsis
As useful as the first law of thermodynamics is, we will see that it is limited.
There are some questions that it cannot answer. First, we will consider some of
the limitations of the first law. We will then introduce efficiency and see how
it applies to engines, which are devices that convert heat into work. The sec-
ond law of thermodynamics can be expressed in terms of efficiency, so we will
introduce the second law at this point.

Our treatment of engines will suggest a new state function, called entropy.
Using its initial definition as a start, we will derive some equations that allow
us to calculate the entropy changes for various processes. After considering a
different way of defining entropy, we will state the third law of thermodynam-
ics, which makes entropy a unique state function in thermodynamics. Finally,
we will consider entropy changes for chemical reactions.

In this chapter, we focus almost exclusively on the entropy of the system,
not the surroundings. Most processes of interest to us involve some sort of in-
teraction between the system and the surroundings, but the system itself re-
mains the part of the universe of interest to us.

3.2 Limits of the First Law
Will a chemical or physical process occur spontaneously? A process occurring
inside a system is spontaneous if the surroundings are not required to perform
work on the system. For example, if you drop a rock from a waist-high height,
the rock will fall spontaneously. When the plunger of a spray can of hair spray
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is pressed, gas comes out spontaneously. When metallic sodium is placed in a
jar filled with chlorine gas, a chemical reaction occurs spontaneously, making
sodium chloride as a product.

However, a rock on the ground does not jump up to waist height sponta-
neously. Hair spray does not spontaneously rush back into the can at high
pressure, and sodium chloride does not spontaneously react into metallic
sodium and diatomic chlorine gas. These are examples of nonspontaneous
changes. These changes can be made to occur, by performing some sort of
work. For example, sodium chloride can be melted and an electric current run
through it, generating sodium and chlorine, but in such a case we are forcing
a nonspontaneous process to occur. The process is not occurring on its own.
As a final example, consider the isothermal, adiabatic free expansion of an ideal
gas. The process is spontaneous, but it occurs with no change in energy of the
gas in the system.

How can we predict which processes are spontaneous? Consider the three
cases used above. When a rock falls, it goes to a lower gravitational potential
energy. When high-pressure gas goes to a lower pressure, it occurs with a de-
crease in energy. When sodium and chlorine react, the exothermic reaction
means that energy is given off and the overall system has gone to a lower en-
ergy. We therefore make the following suggestion: spontaneous processes 
occur if the energy of the system decreases. Is this a sufficient definition and
an able predictor of a spontaneous process? Is this general statement univer-
sally applicable to all spontaneous processes?

Consider the following process:

H2O
NaCl (s) → Na� (aq) � Cl� (aq)

which is the dissolution of sodium chloride in water. The change in enthalpy
for this process is an example of a heat of solution, �solnH. This particular
process, which occurs spontaneously (since sodium salts are soluble), has a
�solnH (25°C) of �3.88 kJ/mol. It is an endothermic process, yet it occurs
spontaneously. Consider the chemical reaction of a common chemical demon-
stration:

Ba(OH)2 � 8H2O (s) + 2NH4SCN (s) →
Ba(SCN)2 (s) + 2NH3 (g) + 10H2O (�)

This reaction absorbs so much energy from the surroundings (that is, it is so
endothermic) that it can freeze water into ice, which is the major point of
the demonstration. The system (that is, the chemical reaction) is increasing in
energy, but it too is spontaneous.

The conclusion is that a decrease in the energy of a system is insufficient in
itself to predict whether a process in that system will be spontaneous. Most
spontaneous changes, but not all, are accompanied by a decrease in energy.
Therefore, a decrease in energy for a change is not sufficient to determine
whether or not the change is spontaneous.

Unfortunately, the first law of thermodynamics deals with changes in energy
only. But we have seen that consideration of energy changes alone is insuffi-
cient for determining whether or not changes in the system are spontaneous.
Does this mean that the first law of thermodynamics is wrong? No! It only
means that the first law alone cannot address this particular question.

Thermodynamics does provide other tools with which to study processes.
The consideration of these tools not only broadens the applicability of ther-
modynamics, but goes a long way toward answering the question, “Is this
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process spontaneous?” We will introduce and develop the tools in this chapter,
and consider a very specific answer to the question in the next chapter.

3.3 The Carnot Cycle and Efficiency
In 1824, a French military engineer named Nicolas Leonard Sadi Carnot (his
third name is borrowed from a Persian poet, and his surname is pronounced
kar-NO) published an article that ultimately played a major—though round-
about—role in the development of thermodynamics. It was ignored at the
time. The first law of thermodynamics had not even been established yet, and
heat was still thought of as “caloric.” It was not until 1848 that Lord Kelvin
brought the attention of the scientific world to the work, 16 years after Carnot’s
early death at age 36. However, the article introduced a lasting concept, the de-
finition of the Carnot cycle.

Carnot was interested in understanding the ability of steam engines—
known for almost a century by that time—to perform work. He was apparently
the first to understand that there was a relationship between the efficiency of a
steam engine and the temperatures involved in the process. Figure 3.1 shows a
modern diagram of how Carnot defined an engine. Carnot realized that every
engine could be defined as getting heat, qin, from some high-temperature
reservoir. The engine performed some work, w, on the surroundings. The en-
gine then disposed of the leftover heat in a reservoir that has some lower
temperature. The engine is therefore emitting some heat, qout, into the low-
temperature reservoir. Although the engines of today are much different
from those of Carnot’s time, every device we have for performing work can be
modeled in this fashion.

Carnot proceeded to define the steps for the operation of an engine in such
a way that the maximum efficiency could be achieved. These steps, collectively
called the Carnot cycle, represent the most efficient way known to get work out
of heat, as energy goes from a high-temperature reservoir to a low-temperature
reservoir. The engine itself is defined as the system, and a schematic of the
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Engine

System

High-temperature
reservoir, T1

Surroundings

Supplies heat, qin, � 0

Does work, w1, � 0

Low-temperature
reservoir, T2

Emits heat, qout, � 0

Figure 3.1 A modern diagram of the type of engine that Carnot considered for his cycle. The
high-temperature reservoir supplies the energy to run the engine, which produces some work and
emits the remainder of the energy into a low-temperature reservoir. The values of qin, w1, and
qout are greater or less than zero with respect to the system.
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cycle is shown in Figure 3.2. The steps of a Carnot cycle are, for an ideal
gaseous system:

1. Reversible isothermal expansion. In order for this to occur, heat must be
absorbed from the high-temperature reservoir. We shall define this
amount of heat as q1 (labeled as qin in Figure 3.1) and the amount of
work performed by the system as w1.

2. Reversible adiabatic expansion. In this step, q � 0, but since it is expan-
sion, work is done by the engine. The work is defined as w2.

3. Reversible isothermal compression. In order for this step to be isother-
mal, heat must leave the system. It goes into the low-temperature reser-
voir and will be labeled q3 (this is labeled as qout in Figure 3.1). The
amount of work in this step will be called w3.

4. Reversible adiabatic compression. The system (that is, the engine) is re-
turned to its original conditions. In this step, q is 0 again, and work is
done on the system. This amount of work is termed w4.

Since the system has returned to the original conditions, by definition of
a state function, �U � 0 for the overall process. By the first law of thermo-
dynamics,

�U � 0 � q1 + w1 + w2 + q3 + w3 + w4 (3.1)

Another way of writing this is to consider the entire work performed by the
cycle, as well as the entire heat flow of the cycle:

wcycle � w1 + w2 + w3 + w4 (3.2)

qcycle � q1 + q3 (3.3)
so that

0 � qcycle + wcycle

qcycle � �wcycle (3.4)

We now define efficiency e as the negative ratio of the work of the cycle to the
heat that comes from the high-temperature reservoir:

e � ��
w

q
cy

1

cle
� (3.5)

Efficiency is thus a measure of how much heat going into the engine has been
converted into work. The negative sign makes efficiency positive, since work
done by the system has a negative value but heat coming into the system has a
positive value. We can eliminate the negative sign by substituting for wcycle

from equation 3.4:

e � �
qc

q
y

1

cle� � �
q1

q

+

1

q3� � 1 + �
q

q
3

1

� (3.6)

Since q1 is heat going into the system, it is positive. Since q3 is heat going out
of the system (into the low-temperature reservoir of Figure 3.1), it is negative.
Therefore, the fraction q3/q1 will be negative. Further, it can be argued that the
heat leaving the engine will never be greater than the heat entering the engine.
That would violate the first law of thermodynamics, that energy cannot be
created. Therefore the magnitude �q3/q1� will never be greater than 1, but it will
always be less than or (if no work is done) equal to 1. Combining all these
statements, we conclude that

The efficiency of an engine will always be between 0 and 1.
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Step 4
Step 1

A

D

B

C

Step 2

Step 3

Volume

P
re

ss
ur

e

Figure 3.2 A representation of the Carnot 
cycle performed on a gaseous system. The steps
are: (1) Reversible isothermal expansion. (2)
Reversible adiabatic expansion. (3) Reversible
isothermal compression. (4) Reversible adiabatic
compression. The system ends up at the same
conditions it started at; the volume inside the
four-sided figure is representative of the p � V
work performed by the cycle.
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Example 3.1
a. Determine the efficiency of a Carnot engine that takes in 855 J of heat, per-
forms 225 J of work, and gives off the remaining energy as heat.
b. Draw a diagram like Figure 3.1 showing the exact amounts of heat and
work going from place to place in the proper direction.

Solution
a. Using both definitions of efficiency, and recognizing the proper signs on
the heat and work:

e � ��
�

�

2

8

2

5

5

5

J

J
� � 0.263

e � 1 + �
�(855

85

�

5 J

225) J
� � 1 + (�0.737) � 0.263

b. The drawing is left to the student.

There is another way to define efficiency in terms of the temperatures of the
high- and low-temperature reservoirs. For the isothermal steps 1 and 3,
the change in the internal energy is zero because (�U/�V)T � 0. Therefore,
q � �w for steps 1 and 3. From equation 2.7, for an ideal gas,

w � �nRT ln �
V

V
f

i

�

For a reversible, isothermal process, the heats for steps 1 and 3 are

q1 � �w1 � nRThigh ln �
V

V

A

B� (3.7)

q3 � �w3 � nRTlow ln �
V

V
D

C

� (3.8)

The volume labels A, B, C, and D represent the initial and final points for each
step, as shown in Figure 3.2. Thigh and Tlow are the temperatures of the high-
temperature and low-temperature reservoirs, respectively. For the adiabatic
steps 2 and 4, we can use equation 2.47 to get

��
V

V

C

B��
2/3

� �
T

T

h

lo

ig

w

h

�

��
V

V

D

A��
2/3

� �
T

T

h

lo

ig

w

h

�

Equating the two volume expressions, which both equal Tlow/Thigh:

��
V

V

D

A��
2/3

� ��
V

V

C

B��
2/3

Raising both sides to the power of 3/2 and rearranging, we get

��
V

V
A

B

�� � ��
V

V
D

C

��
Substituting for VD/VC in equation 3.8, we get an expression for q3 in terms of
volumes VA and VB:

q3 � nRTlow ln �
V

V
A

B

� � �nRTlow ln �
V

V

A

B� (3.9)
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Equations 3.7 and 3.9 can be divided to get a new expression for the ratio q3/q1:

�
q

q
3

1

� � � ��
T

T

h

lo

ig

w

h

�

Substituting into equation 3.6, we get an equation for efficiency in terms of the
temperatures:

e � 1 � �
T

T

h

lo

ig

w

h

� (3.10)

Equation 3.10 has some interesting interpretations. First, the efficiency of an
engine is very simply related to the ratio of the low- and high-temperature
reservoirs. The smaller this ratio is, the more efficient an engine is.* Thus, high
efficiencies are favored by high Thigh values and low Tlow values. Second, equa-
tion 3.10 allows us to describe a thermodynamic scale for temperature. It is a
scale for which T � 0 when the efficiency equals 1 for the Carnot cycle. This
scale is the same one used for ideal gas laws, but it is based on the efficiency of
a Carnot cycle, rather than the behavior of ideal gases.

Finally, unless the temperature of the low-temperature reservoir is absolute
zero, the efficiency of an engine will never be 1; it will always be less than 1.
Since it can be shown that absolute zero is physically unobtainable for a macro-
scopic object, we have the further statement that

No engine can ever be 100% efficient.

When one generalizes by recognizing that every process can be considered an
engine of some sort, the statement becomes

No process can ever be 100% efficient.

It is statements like this that preclude the existence of perpetual motion ma-
chines, devices that purportedly have an efficiency greater than 1 (that is,
	100%), producing more work out than the energy coming in. Carnot’s study
of steam engines helped establish such statements, and so much faith is placed
in them that the U.S. Patent Office categorically does not consider any patent
application claiming to be a perpetual motion machine (although some appli-
cations for such machines are considered because they disguise themselves to
cover the fact). Such is the power of the laws of thermodynamics.

The two definitions of efficiency can be combined:

1 + �
q

q
3

1

� � 1 � �
T

T

h

lo

ig

w

h

�

�
q

q
3

1

� � ��
T

T

h

lo

ig

w

h

�

�
q

q
3

1

� + �
T

T

h

lo

ig

w

h

� � 0

�
T

q

lo

3

w

� + �
T

q

hi

1

gh

� � 0 (3.11)

Notice that q3 is the heat that goes to the low-temperature reservoir, whereas
q1 is the heat that comes from the high-temperature reservoir. Each fraction

nRTlow ln �
V

V

A

B�

��
�nRThigh ln �

V

V

A

B�
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*In practice, other factors (including mechanical ones) reduce the efficiency of most 
engines.
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therefore contains heats and temperatures from related parts of the universe
under consideration. Note that equation 3.11 includes all of the heats of the
Carnot cycle. The fact that these heats, divided by the absolute temperatures of
the two reservoirs involved, add up to exactly zero is interesting. Recall that the
cycle starts and stops at the same system conditions. But changes in state func-
tions are dictated solely by the conditions of the system, not by the path that
got the system to those conditions. If a system starts and stops at the same con-
ditions, overall changes in state functions are exactly zero. Equation 3.11 sug-
gests that for reversible changes, a relationship between heat and absolute tem-
perature is a state function.

3.4 Entropy and the Second Law 
of Thermodynamics

We define entropy, S, as an additional thermodynamic state function. The in-
finitesimal change in entropy, dS, is defined as

dS � �
dq

T
rev� (3.12)

where “rev” on the infinitesimal for heat, dq, specifies that it must be the heat
for a reversible process. The temperature, T, must be in kelvins. Integrating
equation 3.12, we get

�S � � �
dq

T
rev� (3.13)

where �S is now the change in entropy for a process. As indicated in the pre-
vious section, for the Carnot cycle (or any other closed cycle) �S must be zero.

For an isothermal, reversible process, the temperature can be taken out of the
integral and the integral can be evaluated easily:

�S � �
T

1
� � dqrev � �

q

T
rev� (3.14)

Equation 3.14 demonstrates that entropy has units of J/K. These may seem like
unusual units, but they are the correct ones. Also, keep in mind that the
amount of heat for a process depends on the amount of material, in grams or
moles, and so sometimes the unit for entropy becomes J/mol�K. Example 3.2
shows how to include amount in the unit.

Example 3.2
What is the change in entropy when 1.00 g of benzene, C6H6, boils reversibly
at its boiling point of 80.1°C and a constant pressure of 1.00 atm? The heat
of vaporization of benzene is 395 J/g.

Solution
Since the process occurs at constant pressure, �vapH for the process equals
the heat, q, for the process. Since vaporization is an endothermic (that is,
energy-in) process, the value for the heat is positive. Finally, 80.1°C equals
353.2 K. Using equation 3.14:

�S � �
3

�

5

3

3

9

.2

5

K

J
� � �1.12 �

K

J
�
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for 1 g of benzene. Since this represents the entropy change for 1 g of ben-
zene, we can also write this �S as �1.12 J/g�K. The entropy of the system—
the benzene—is increasing in this example.

Other cyclic processes having different steps or conditions can be defined.
However, it has been found that no known process is more efficient than a
Carnot cycle, which is defined in terms of reversible steps. This means that any
irreversible change is a less efficient conversion of heat to work than a re-
versible change, since a Carnot cycle is defined in terms of reversible processes.
So, for any arbitrary process:

earb 
 eCarnot

where earb is the efficiency for that arbitrary cycle and eCarnot is the efficiency
of a Carnot cycle. If the arbitrary process is a Carnot-type cycle, then the
“equals” part of the sign applies. If the cycle is an irreversible cycle, the “less
than” part of the sign applies. Substituting for efficiency:

1 + �
q

q
o

i

u

n

t

,a

,a

r

r

b

b� 
 1 + �
q

q
3

1

,

,

C

C

a

a

r

r

n

n

o

o

t

t

�

�
q

q
o

i

u

n

t

,a

,a

r

r

b

b� 
 �
q

q
3

1

,

,

C

C

a

a

r

r

n

n

o

o

t

t

�

where the 1s have canceled. The fraction on the right is equal to �Tlow/Thigh,
as demonstrated earlier. Substituting:

�
q

q
o

i

u

n

t

,a

,a

r

r

b

b� 
 ��
T

T

h

lo

ig

w

h

�

and rearranging:

�
q

q
o

i

u

n

t

,a

,a

r

r

b

b� + �
T

T

h

lo

ig

w

h

� 
 0

This equation can be rearranged to get the heat and temperature variables that
are associated with the two reservoirs into the same fractions (that is, qin with
Thigh and qout with Tlow). It is also convenient to relabel the temperatures
and/or the heats to emphasize which steps of the Carnot cycle are involved.
Finally, we will drop the “arb” designation. (Can you reproduce these steps?)
The above expression thus simplifies to

�
T

q3

3

� + �
T

q1

1

� 
 0

For the complete cycle of many steps, we can write this as a summation:

�
0

all steps

�
T

qs

s

t

t

e

e

p

p

� 
 0

As each step gets smaller and smaller, the summation sign can be replaced by
an integral sign, and the above expression becomes

� �
d

T

q
� 
 0 (3.15)

for any complete cycle. Equation 3.15 is one way of stating what is called
Clausius’s theorem, after Rudolf Julius Emmanuel Clausius, a Pomeranian
(now part of Poland) and German physicist who first demonstrated this rela-
tionship in 1865.
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Consider, then, the two-step process illustrated in Figure 3.3, where an irre-
versible step takes a system from a set 1 of conditions to a set 2 of conditions,
and then a reversible step takes it back to the original conditions. As a state
function, the sum of the steps equals the overall change for the entire process.
But from equation 3.15, the overall integral’s value must be less than zero.
Separating the integral into two parts:

�
2

1

�
dq

T
irrev� + �

1

2

�
dq

T
rev� � 0

The expression inside the second integral is, by the definition in equation 3.12,
dS. If we reverse the limits on the second integral (so both terms refer to the
same process going in the same, not opposite, directions), it becomes �dS. We
therefore have

�
2

1

�
dq

T
irrev� + �

2

1

(�dS) � 0

or

�
2

1

�
dq

T
irrev� � �

2

1

dS � 0

The integral of dS is �S, so for this step we have

�
2

1

�
dq

T
irrev� � �S � 0

�
2

1

�
dq

T
irrev� � �S

Reversing and generalizing for any step, we simply remove the specific limits:

�S 	 � �
dq

T
irrev� (3.16)

If we want to keep this in terms of infinitesimals (that is, without integral signs)
as well as include the original definition of dS from equation 3.12, this becomes

dS � �
d

T

q
� (3.17)

where again the equality is applicable to reversible processes, and the inequal-
ity is applicable to irreversible processes.

But consider that a spontaneous process is an irreversible process.
Spontaneous processes will occur if they can. With that in mind, we have the
following generalizations:

dS 	 �
d

T

q
� for irreversible, spontaneous processes

dS � �
d

T

q
� for reversible processes
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System with initial
set of conditions

(p1, V1, T1)

System with initial
set of conditions

(p2, V2, T2)

Step 1: IRREVERSIBLE

Step 2: REVERSIBLE

Figure 3.3 A representation of a process that has an irreversible step. See text for discussion.
Most real processes can be described like this, giving entropy a meaningful place in the under-
standing of real processes.
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Equation 3.17 also implies

dS � �
d

T

q
� not allowed

The last statement is particularly important: the infinitesimal change in S will
not be less than dq/T. It may be equal to or greater than dq/T, but it will not
be less than that.

Consider, then, the following description. A process occurs in an isolated
system. Under what conditions will the process occur? If the system is truly
isolated (there is no transfer of energy or matter between system and sur-
roundings), then the process is adiabatic, since isolation implies that q � 0, and
by extension dq � 0. Therefore, dq/T is equal to zero. We can therefore revise
the above statements:

dS 	 0 if the process is irreversible and spontaneous

dS � 0 if the process is reversible

dS � 0 is not allowed for a process in an isolated system

We conceptually collect the above three statements into one, which is the sec-
ond law of thermodynamics:

The second law of thermodynamics: For an isolated system, if a 
spontaneous change occurs, it occurs with a concurrent increase in 

the entropy of the system.

If a spontaneous change does occur, entropy is the sole driving force for that
change because both q and w are zero—and therefore �U is zero—under the
stated conditions.

3.5 More on Entropy
In Example 3.2, we calculated the entropy change for an isothermal process.
What if the process were not isothermal? For a given mass

dq � C dT

where C is the heat capacity, we can substitute for dq in the infinitesimal
change in entropy:

dS � �
dq

T
rev� � �

C

T

dT
�

and then integrate:

�S � � dS � � �
C

T

dT
� � C � �

d

T

T
� � C ln T �Ti

Tf

for a constant heat capacity. Evaluating at the temperature limits and using the
properties of logarithms:

�S � C ln �
T

T
f

i

� (3.18)

For n moles, this equation becomes �S � nC� ln(Tf /Ti) and C� will have units
of J/mol�K. If C has units of J/g�K, then the mass of the system is necessary. If
the heat capacity is not constant over the specified temperature range, then the
temperature-dependent expression for C must be included explicitly inside the
integral and the function must be evaluated on a term-by-term basis.
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Fortunately, most expressions for heat capacity are simple power series in T,
whose integrals are easy to evaluate on a term-by-term basis.

There is no V or p subscript on the symbol for the heat capacity in equa-
tion 3.18. That’s because it depends on the conditions of the process. If it oc-
curs under conditions of constant volume, use CV. If it occurs under condi-
tions of constant pressure, use Cp. Usually the particular process involved
dictates the choice.

Now consider gas-phase processes. What if the temperature were constant
but the pressure or the volume changed? If the gas is ideal, �U for the process
is exactly zero, so dq � �dw � �p dV. Substituting again for dq, then:

dS � �
d

T

q
� � �

p

T

dV
�

�S � � dS � � �
p

T

dV
�

At this point, we can substitute for either p or dV using the ideal gas law. If we
substitute for p in terms of V (that is, p � nRT/V):

�S � � �
nR

V

T

T

dV
� � � �

nR

V

dV
� � nR � �

d

V

V
�

�S � nR ln �
V

V
f

i

� (3.19)

Similarly, for a change in pressure one gets:

�S � �nR ln �
p

p
f

i

� (3.20)

Because entropy is a state function, the change in entropy is dictated by the
conditions of the system, not how the system arrived at those conditions.
Therefore, any process can usually be broken down into smaller steps, the en-
tropy of each step can be evaluated using the growing number of expressions
for �S, and the �S for the overall process is the combination of all of the �S ’s
of the individual steps.

Example 3.3
Determine the overall change in entropy for the following process using 
1.00 mole of He:

He (298.0 K, 1.50 atm) → He (100.0 K, 15.0 atm)

The heat capacity of He is 20.78 J/mol�K. Assume the helium acts ideally.

Solution
The overall reaction can be divided into two parts:

Step 1: He (298.0 K, 1.50 atm) → He (298.0 K, 15.0 atm)
(change in pressure step)

Step 2: He (298.0 K, 15.0 atm) → He (100.0 K, 15.0 atm)
(change in temperature step)

The change in entropy for step 1, the isothermal step, can be determined from
equation 3.20:
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�S1 � �nR ln �
p

p
f

i

� � �(1.00 mol)�8.314 �
mo

J

l�K
�� ln �

1

1

5

.5

.0

0

a

a

t

t

m

m
�

�S1 � �19.1 �
K

J
�

For the second step, the isobaric step, we use equation 3.18:

�S2 � C ln �
T

T
f

i

� � (1.00 mol)�20.78 �
mo

J

l�K
�� ln �

1

2

0

9

0

8

.

.

0

0

K

K
�

�S2 � �22.7 �
K

J
�

The overall change in entropy is the sum of the two, just as the overall process
is the combination of the two steps. We get �S � �19.1 + (�22.7) J/K �
�41.8 J/K.

Consider the system illustrated in Figure 3.4a. A container is divided into
two systems having volumes V1 and V2, but both systems have the same pres-
sure p and the same absolute temperature T. The number of moles of differ-
ent ideal gases in side 1 and side 2 are n1 and n2, respectively. A barrier sepa-
rates the two sides. We will assume that the systems are isolated from the
surroundings so that q is zero for the following process (that is, it is adiabatic).

At some point, the barrier is removed while maintaining the overall pres-
sure and temperature. Since the process is adiabatic, q � 0. Since the tem-
perature is constant, �U � 0 also. Therefore, w � 0. However, the two gases
mix so that our final system looks like Figure 3.4b: two mixed gases occupy-
ing the same volume. (This agrees with our conventional wisdom regarding
the behavior of gases: they expand to fill their container.) Since there is no
energy change to cause the mixing, then it must be entropy that is causing
the process.

Entropy is a state function, so the change in entropy is path-independent.
Consider that the mixing process can be broken down into two individual
steps, as illustrated in Figure 3.5. One process is the expansion of gas 1 from
V1 to Vtot, and the other process is the expansion of gas 2 from V2 to Vtot. Using
�S1 and �S2 to represent the changes in entropies for the steps, we have

�S1 � n1R ln �
V

V
to

1

t�

�S2 � n2R ln �
V

V
to

2

t�

Since Vtot is greater than V1 or V2 (because both gases are expanding), the log-
arithms of the volume fractions will always be positive. (Logarithms of num-
bers greater than 1 are positive.) The ideal gas law constant is always positive,
and the number of moles of each gas is also positive. Therefore, the individual
entropy changes will be positive overall, and the combination of the two com-
ponents to get �S for the mixing process

�S � �S1 + �S2 (3.21)

will always be positive. Therefore, by the second law of thermodynamics, the
mixing of two (or more) gases is always a spontaneous process if it occurs in
an isolated system.
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Remove barrier:
gases mix

(a)

(b)

Vtot � V1 � V2

ntot � n1 � n2

V1

n1

V2

n2

T1 � T2

p1 � p2

p, T

Figure 3.4 The adiabatic mixing of two gases.
(a) On the left side is gas 1 with a certain volume
and amount, and on the right side is gas 2 with
its own volume and amount. (b) After mixing,
both gases occupy the complete volume. Since
there is no energy change to cause the gases to
mix, the mixing must have been caused by en-
tropy effects.
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There is another way of generalizing equation 3.21. If two or more gas sam-
ples have the same pressure and temperature, then their volumes are directly
proportional to the number of moles of gas present. The mole fraction of gas i,
xi, is defined as the ratio of the number of moles of gas i, ni, and the total num-
ber of moles of gas, ntot:

xi � �
n

n

to

i

t

� (3.22)

It can be shown that

�
V

V

to

i

t

� � �
n

n

to

i

t

� � xi

so that the expression for the overall entropy can be expressed as

�S � (�n1R ln x1) � (�n2R ln x2)

The negative signs are introduced because in order to substitute the mole frac-
tion into the expression, we have to take the reciprocal of the volume fraction.
For any number of gases being mixed:

�mixS � �R �   �
no. of gases

i � 1

ni ln xi (3.23)

where �mixS is referred to as the entropy of mixing. Because xi is always less
than 1 (for two or more components), its logarithm is always negative. The
negative sign as part of equation 3.23 means that the entropy of mixing is
always a sum of positive terms and the overall �mixS is always positive.

Example 3.4
Calculate the entropy of mixing 10.0 L of N2 with 3.50 L of N2O at 300.0 K
and 0.550 atm. Assume that the volumes are additive; that is, Vtot � 13.5 L.

Solution
We need to determine the number of moles of each component in the re-
sulting mixture. Given all of the conditions, we can use the ideal gas law to
calculate them:
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Remove barrier

Gas 1

n

V1V1V

n

Remove barrier

+

Gas 2

VV

n

V2V2V

n2

Figure 3.5 The mixing of two gases can be separated into two individual processes, where 
gas 1 expands into the right side and gas 2 expands into the left side.
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nN2
� �

R

pV

T
� � � 0.223 mol N2

nN2O � �
R

pV

T
� � � 0.078 mol N2O

Since the total number of moles is 0.223 mol + 0.078 mol � 0.301 mol, we
can now calculate the mole fractions of each component:

xN2
� �

0

0

.

.

2

3

2

0

3

1

m

m

o

o

l

l
� � 0.741

xN2O � �
0

0

.

.

0

3

7

0

8

1

m

m

o

o

l

l
� � 0.259

(Note that the sum of the mole fractions is 1.000, as required.) We can use
equation 3.23 to determine �mixS:

�mixS � �8.314 �
mo

J

l�K
� (0.223 mol � ln 0.741 + 0.078 mol � ln 0.259)

The mol units cancel and we evaluate to find

�mixS � �1.43 �
K

J
�

Notice that this problem uses two different values for R, the ideal gas law con-
stant. In each case, the choice was dictated by the units that were necessary
to solve that particular part of the problem.

3.6 Order and the Third Law of Thermodynamics
The preceding discussion of the entropy of mixing brings us to a useful gen-
eral idea regarding entropy, that of order. Having two pure gases on either side
of a barrier is a nice, neat, relatively ordered arrangement. Mixing the two of
them, a process that occurs spontaneously, is a more random, less ordered
arrangement. So this system proceeds spontaneously from a more ordered
system to a less ordered system.

In the mid- to late-1800s, the Austrian physicist Ludwig Edward Boltzmann
(Figure 3.6) began applying the mathematics of statistics to the behavior of
matter, especially gases. In doing so, Boltzmann was able to determine a dif-
ferent definition for entropy. Consider a system of gas molecules that all have
the same chemical identity. The system can be broken up into smaller micro-
systems whose individual states contribute statistically to the overall state of
the system. For any particular number of microsystems, there are a certain
number of ways of distributing the gas molecules into the microsystems. If the
most probable distribution has  different ways of arranging the particles,*

(0.550 atm)(3.50 L)
���
(0.08205 �

m
L�

o
a
l
t
�

m
K

�)(300.0 K)

(0.550 atm)(10.0 L)
���
(0.08205 �

m
L�

o
a
l
t
�

m
K

�)(300.0 K)
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*For example, say you have a simple system consisting of two balls and four shoe boxes.
There are 10 possible arrangements for putting the balls in the boxes: four arrangements
with both balls in a single box (the other three are empty), and six arrangements with one
ball in each of two boxes (the other two are empty). The most probable arrangement is one
ball in each of two boxes, and there are six different ways of getting that arrangement.
Therefore,  equals 6 in this case. Chapter 17 gives more details on this and other concepts
relating to Boltzmann’s interpretation of entropy.

Figure 3.6 Ludwig Edward Boltzmann (1844–
1906), Austrian physicist. Boltzmann used the
relatively young idea of atoms to develop a statis-
tical mathematical description of matter, which
eventually introduced the concept of order as a
measure of entropy. Although his work is of
profound importance in thermodynamics, the
wrangling over ideas and critiques at that crucial
period in the history of science is thought to have
been a contributing factor in his suicide.
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Boltzmann found that the absolute entropy S of the system is proportional to
the natural logarithm of the number of possible combinations:

S � ln 

To make a proportionality an equality, a proportionality constant is necessary:

S � k ln  (3.24)

where k is known as Boltzmann’s constant.
There are several important ramifications of equation 3.24. First, it intro-

duces the concept that an absolute entropy can be determined. Entropy thus
stands alone among state functions as the only one whose absolute values can
be determined. Therefore, in large thermodynamic tables of �U and �H values,
parallel entries for entropy are for S, not �S. It also implies that the entropies
found in tables are not zero for elements under standard conditions, because
we are now tabulating absolute entropies, not entropies for formation reac-
tions. We can determine changes in entropies, �S’s, for processes; up to now we
have dealt exclusively with changes in entropy. But Boltzmann’s equation 3.24
means that we can determine absolute values for entropy.

Second, equation 3.24 brings up an intriguing notion. Consider a system
where all species (atoms or molecules) of the component are in the same state.
One way of illustrating this is to assume that it is in the form of a perfect
crystal, implying perfect order. If this was the case, then  (the number of
possible combinations of conditions that would have this arrangement) would
be 1, the logarithm of  would be zero, and thus S would be zero. It seems un-
likely that such a circumstance might exist under normal conditions.

However, science has the ability to dictate the conditions of systems under
study. In the late 1800s and early 1900s the properties of matter at extremely
low temperatures were being investigated. As the thermodynamics of materials
were measured at temperatures approaching absolute zero, the total entropy
of cold, crystalline materials—which could be measured experimentally using
expressions like equation 3.18—began approaching zero. Since entropy is an
obvious function of T for all substances, the following mathematical statement
became obvious:

lim
T → 0K

S(T) � 0 for a perfectly crystalline material (3.25)

This is the third law of thermodynamics, which can be stated verbally as
follows:

The third law of thermodynamics: Absolute entropy approaches zero 
as the absolute temperature approaches zero.

Thus, this statement provides entropy with an absolute minimum value of zero
and establishes the ability to determine absolute entropies. Equation 3.24,
defining a statistical origin of entropy, is such a fundamental idea in science
that it is carved on Ludwig Boltzmann’s tombstone in Vienna. (See Figure 3.7.)

Boltzmann’s constant is, interestingly enough, related to the ideal gas law
constant R. It can be shown that

R � NA � k (3.26)

where NA is Avogadro’s number (� 6.022 � 1023). The constant k therefore
has a value of 1.381 � 10�23 J/K. Its relative magnitude implies that there are
an enormous number of possible combinations of states that atoms and mol-
ecules of macroscopic samples can adopt, as seen in the following example.
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Figure 3.7 Above the bust of Boltzmann,
you might be able to make out the equation 
S � k ln .
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Example 3.5
The absolute entropy of Fe (s) at 25.0°C and standard pressure is 27.28 J/mol�K.
Approximately how many possible combinations of states are available to a
collection of 25 Fe atoms under those conditions? Does the answer suggest
why the system is being limited to only 25 atoms?

Solution
Using Boltzmann’s equation for entropy:

� � 27.28 �
mo

J

l�K
� � �1.381 � 10�23 �

K

J
��(ln )

Solving, we find

ln  � 82.01

 � 4.12 � 1035

which is an incredible number of possible states for just 25 atoms! However,
the sample is at a relatively high temperature, 298 K. We will see in later chap-
ters how this implies a huge kinetic energy for such a small system.

Example 3.6
Rationalize the following order of absolute molar entropies at 298 K:

S�[N2O5 (s)] � S�[NO (g)] � S�[N2O4 (g)]

Solution
If we apply the idea that entropy is related to the number of states accessible
to the system, then we can argue immediately that a system of a solid phase
should have fewer states accessible to it. Therefore, it should have the lowest
entropy of the three materials given. Of the remaining two, both materials are
gases. However, one gas is composed of diatomic molecules while the other
is composed of molecules with six atoms. It can be argued that the diatomic
molecule will have fewer states available to it than will a hexatomic molecule,
so S�[NO (g)] will probably be less than S�[N2O4 (g)]. You can verify this order
by consulting a table of experimental entropies for compounds (like the one
in Appendix 2).

3.7 Entropies of Chemical Reactions
We have already used the idea of combining the changes in entropy of various
individual steps to determine the change in entropy of the combination of those
steps. We can use such ideas to determine the changes in entropy that occur
with chemical reactions. The situation is only slightly different, because we can
determine the absolute entropies of the chemical reactants and products. Figure
3.8 illustrates the concept for a process where �S is negative, that is, entropy is
going down. As such, we do not need to rely on formation reactions but can
state that the change in entropy of a chemical reaction equals the combined en-
tropies of the products minus the combined entropies of the reactants. Thus,

�rxnS � �
0

products

S � �
0

reactants

S (3.27)

25 atoms
���
6.022 � 1023 atoms/mol
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where the S(products) and S(reactants) represent the absolute entropy of the
chemical species involved in the process. If standard conditions apply, every
entropy term can have a degree symbol ° appended:

�rxnS° � �
0

products

S° � �
0

reactants

S°

Changes in entropy for chemical processes can be considered using the above
Hess’s-law type of approach.

Example 3.7
Using the table in Appendix 2, determine the change in entropy for the fol-
lowing chemical reaction occurring at standard pressure and the stated tem-
perature:

2H2 (g) + O2 (g) → 2H2O (�)

Solution
From the table, S°[H2 (g)] � 130.7 J/mol�K, S°[O2 (g)] � 205.1 J/mol�K, and
S°[H2O, (�)] � 69.91 J/mol�K. Keeping in mind that the balanced chemical
reaction gives molar ratios of reactants and products, equation 3.27 yields

�rxnS° � [2 � 69.91] � [2 � 130.7 � 205.1] J/K

�
0

products

S° �
0

reactants

S°

where the entropies of the products and reactants are labeled. The mol units
cancel because we are including the stoichiometry explicitly: 2 mol H2O as
products, and 2 mol H2 and 1 mol O2 as reactants. Evaluating:

�rxnS° � �326.7 J/K

That is, during the course of the reaction, the entropy is decreasing by 326.7 J/K.
Does this make sense, in terms of entropy as a measure of the number of
accessible states? The balanced chemical reaction is showing 3 moles of gas
reacting to make 2 moles of liquid. It can be argued that a condensed phase
will have fewer accessible states than a gas will, and the actual number of
molecules is decreasing. Therefore, a decrease in entropy is understandable.

As with �H, there are many times when �S needs to be determined for a
process that occurs at different temperatures and pressures. Equation 3.18, or
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S

Total entropy of reactants

�rxnS � Sproducts � Sreactants

Total entropy of products

Figure 3.8 Entropy can change for a reaction, just like enthalpy can change. In this case, the
entropy of the products is less than that of the reactants, so the �rxnS is negative.
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its form in terms of number of moles of substance, gives us a way to determine
�S for a process where temperature is changing:

�S � nC� ln �
T

T
f

i

� (3.18)

Just like evaluating �H at different temperatures, we have a scheme for deter-
mining �S at different temperatures:

1. Use equation 3.18 to evaluate the change in entropy for the reactants as they
go from their initial temperature to a reference temperature, usually 298 K.

2. Use the entropies from the tabulated data to determine the entropy
change of the reaction at the reference temperature.

3. Use equation 3.18 again to evaluate the change in entropy for the products
as they go from the reference temperature to the original temperature.

The entropy change at the specified temperature is the sum of these three
entropy changes. We are taking advantage of the fact that entropy is a state
function: the change is dictated by the change in the conditions, not how the
system got there. Therefore, our three-step process, which is equivalent to per-
forming the change in a single step at the stated temperature, has the same en-
tropy change as the one-step process. (The assumption is that the heat capac-
ity, C, does not vary with temperature. It does, but for small �T values this
assumption is a very good approximation.)

Gas-phase processes occurring under nonstandard pressures are also easily
calculated in terms of either the changing pressures or volumes of the system.
The following two equations were derived earlier in this chapter.

�S � nR ln �
V

V
f

i

� (3.19)

�S � �nR ln �
p

p
f

i

� (3.20)

These equations can also be used in a stepwise fashion as described above for
nonstandard temperature.

Example 3.8
What is the entropy change of the reaction

2H2 (g) � O2 (g) → 2H2O (�)

at 99°C and standard pressure? Treat the heat capacities of H2, O2, and H2O
as constant at 28.8, 29.4, and 75.3 J/mol�K, respectively. Assume molar quan-
tities based on the balanced chemical reaction and ideal gas behavior.

Solution
1. The first step is to determine the change in entropy as the reactants, 2 moles

of H2 and 1 mole of O2, change temperature from 99°C to 25°C (which is
372 K to 298 K). This is labeled �S1. It is, according to equation 3.18:

�S1 �

(2 mol)�28.8 �
mo

J

l�K
��ln �

2

3

9

7

8

2

K

K
� + (1 mol)�29.4 �

mo

J

l�K
��ln �

2

3

9

7

8

2

K

K
�

�S1 � �19.3 �
K

J
�
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2. The second step is to evaluate the change in entropy at the reference tem-
perature, 298 K. We will label this �S2. This was, in fact, calculated in
Example 3.7. It is

�S2 � �326.7 �
K

J
�

3. The third step is to evaluate the change in entropy as we bring the prod-
ucts from the reference temperature to the specified reaction temperature
(that is, from 298 K to 372 K). This entropy change is labeled �S3. According
to equation 3.18:

�S3 � (2 mol)�75.3 �
mo

J

l�K
��ln �

3

2

7

9

2

8

K

K
�

�S3 � 33.4 �
K

J
�

The overall entropy change is the sum of the three individual entropy values:

�rxnS � �19.3 � 326.7 � 33.4 �
K

J
�

�rxnS � �312.6 �
K

J
�

Although the change in entropy is similar to that at 25°C, it is slightly differ-
ent. This is an example of a relatively minor change in conditions. If the
temperatures were hundreds of degrees different from the reference temper-
ature, large changes in �S would be seen. If this were the case, temperature-
dependent functions would have to be used for the heat capacities, since their
being constant is also an approximation.

Example 3.9
What is the entropy change of the reaction

2H2 (g) � O2 (g)  → 2 H2O (�)

at 25°C and 300 atm? Assume molar quantities based on the balanced chem-
ical reaction. Assume also that a pressure change does not affect the entropy
of the liquid water product (that is, �S3 � 0).

Solution
This example is similar to Example 3.8, except that the pressure is non-
standard. Since �S3 is approximated as zero, we need only evaluate the �S’s
of the first two steps:

1. The change in entropy as the pressure of the reactants goes from 300 atm
to the standard pressure of 1 atm is

�S1 �

�(2 mol)�8.314 �
mo

J

l�K
��ln �

3

1

00

at

a

m

tm
� � (1 mol)�8.314 �

mo

J

l�K
��ln �

3

1

00

at

a

m

tm
�

where the first term is for the hydrogen and the second term is for the oxy-
gen. Solving:

�S1 � �142.3 �
K

J
�
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2. The second part is for the reaction at standard conditions. Again, that has
already been evaluated in Example 3.7, and is

�S2 � �326.7 �
K

J
�

3. The third part is assumed to be zero:

�S3 � 0 �
K

J
�

The overall �rxnS is the combination of the three:

�rxnS � �142.3 � 326.7 + 0 �
K

J
�

�rxnS � �184.4 �
K

J
�

The effects of entropy are seen at a biological level, as well. The joining of
two single strands of RNA or DNA is accompanied by a small decrease in en-
thalpy (about 40 kJ/mol per base pair), as expected for hydrogen-bonding in-
teractions. There is also a nontrivial entropy change, about �90 J/mol�K per
base pair. Compare this value to the entropy of combustion in Example 3.9.

3.8 Summary
In this chapter, we have introduced a new state function: entropy. It will have
a unique impact on our study of thermodynamics. It is not an energy, like in-
ternal energy or enthalpy: it is a different kind of state function, a different
quantity. One way to think of it, as introduced by Boltzmann, is as a measure
of the number of states available to a system.

The definition of entropy ultimately brings us to an idea that we call the
second law of thermodynamics: that for an isolated system, any spontaneous
change occurs with a concurrent increase in the entropy of the system. The
mathematical definition of entropy, in terms of the change in heat for a re-
versible process, allows us to derive many mathematical expressions we can use
to calculate the entropy change for a physical or chemical process. The concept
of order brings us to what we call the third law of thermodynamics: that the
absolute entropy of a perfect crystal at absolute zero is exactly zero. We can
therefore speak of absolute entropies of materials at temperatures other than
0 K. Entropy becomes—and will remain—the only thermodynamics state
function for a system that we can know absolutely. (Contrast this with state
variables like p, V, T, and n, whose values we can also know absolutely.)

We began this chapter with the question of spontaneity. Will a process oc-
cur by itself? If the system is isolated, we have an answer: it will if the entropy
increases. But most processes are not truly isolated. Many systems allow for en-
ergy to move in and out (that is, are closed, not isolated, systems). In order to
have a truly useful spontaneity test, we have to consider changes in energy as
well as changes in entropy. We will introduce such considerations in the next
chapter.
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3.2 Limits of the First Law

3.1. Decide whether the following processes will be sponta-
neous, and why. The “why” can be general, not specific. 
(a) Ice melting at �5°C (b) Ice melting at �5°C (c) KBr (s)
dissolving in water (d) An unplugged refrigerator getting 
cold (e) A leaf falling from a tree to the ground (f) The reac-
tion Li (s) � �

1
2

�F2 (g) → LiF (s) (g) The reaction H2O (�) →
H2 (g) � �

1
2

�O2 (g)

3.2. Try to find one additional example of a spontaneous
process that is in fact endothermic; that is, it occurs with an
absorption of heat.

3.3 Carnot Cycle and Efficiency

3.3. Consider the following quantities for a Carnot-type cycle:
Step 1: q � �850 J, w � �334 J. Step 2: q � 0, w � �115 J.
Step 3: q � �623 J, w � �72 J. Step 4: q � 0, w � �150 J.
Calculate the efficiency of the cycle.

3.4. Consider the following quantities for a four-step cycle:
Step 1: q � �445 J, w � �220 J. Step 2: q � 0, w � �99 J.
Step 3: q � �660 J, w � �75 J. Step 4: q � 0, w � �109 J.
Under what additional conditions for each step will this be a
Carnot-type cycle? What is the efficiency of this process?

3.5. At what temperature is the low-temperature reservoir of
a process that has an efficiency of 0.440 (44.0%) and a high-
temperature reservoir at 150°C?

3.6. What is the efficiency of an engine whose Thigh is 100°C
and whose Tlow is 0°C?

3.7. Superheated steam is steam with a temperature greater
than 100°C. Explain the advantages of using superheated
steam to run a steam engine.

3.8. The Carnot cycle is defined as having a certain specific
first step, the isothermal expansion of a gas. Can a Carnot 
cycle start at step 2, the adiabatic expansion? Why or why
not? (Hint: See Figure 3.2.)

3.9. How does a perpetual motion machine violate the first
law of thermodynamics?

3.10. A refrigerator is the reverse of an engine: work is per-
formed to remove heat from a system, making it colder. The
efficiency of a refrigerator (often termed the “coefficient of
performance”) is defined as q3/wcycle � Tlow/(Thigh � Tlow).
Use this definition to determine the efficiency needed to halve
the absolute temperature. What does your answer imply about
attempts to reach absolute zero?

3.11. Efficiency is given by equations 3.5, 3.6, and 3.10.
Although we deal mostly with ideal gases in the development
of thermodynamics, experimentally we are confined to real
gases. Which of the definitions of e are strictly applicable to
processes involving real gases as well as ideal gases?

3.4 & 3.5 Entropy and the Second Law

3.12. What is the entropy change for the melting of 3.87
moles of bismuth at its melting point of 271.3°C? The heat of
fusion of solid Bi is 10.48 kJ/mol. (Bismuth is one of the few
materials, including water, that is less dense in solid form than
in liquid; therefore, solid Bi floats in liquid Bi, like ice floats in
water.)

3.13. Explain why the statement “No process is 100% effi-
cient” is not the best statement of the second law of thermo-
dynamics.

3.14. What is the change in entropy of 1.00 mole of water as
it is heated reversibly from 0°C to 100°C? Assume that the
heat capacity is constant at 4.18 J/g�K.

3.15. The heat capacity of solid gold, Au, is given by the ex-
pression

C � 25.69 � 7.32 � 10�4T � 4.58 � 10�6 T2 �
mo

J
l�K
�

Evaluate the change in entropy for 2.50 moles of Au if the
temperature changes reversibly from 22.0°C to 1000°C.

3.16. One mole of He warms up irreversibly at constant vol-
ume from 45°C to 55°C. Is the change in entropy less than,
equal to, or greater than 0.386 J/K? Explain your answer.

3.17. A normal breath has a volume of about 1 L. The pres-
sure exerted by the lungs to draw air in is about 758 torr. If
the surrounding air is at exactly 1 atm (� 760 torr), calculate
the change in entropy exerted on a breath of air due to its be-
ing inhaled into the lungs. (Hint: you will have to determine
the number of moles of gas involved.)

3.18. A sample of (ideal) gas from a compressed gas cylinder
goes from 230 atm to 1 atm, with a concurrent change of vol-
ume wherein 1 cm3 expands to 230 cm3 in volume. Assume
that the temperature remains (or becomes) the same for the
initial and final states. Calculate the change in entropy for 
1 mole of the gas undergoing this process. Does your answer
make sense? Why or why not?

3.19. If a 1-mole sample of a real gas from a compressed gas
cylinder goes from 230 atm to 1 atm and from a volume of 
1 cm3 to 195 cm3, what is the entropy change for the ex-
pansion if it is assumed to be isothermal? Does this agree with
the second law of thermodynamics?

3.20. Derive equation 3.20. How does the minus sign show
up?

3.21. In Example 3.3, a heat capacity of 20.78 J/mol�K was
used, which is 5/2 R. Is this value of the heat capacity justi-
fied? Why?

3.22. What is the entropy of mixing to make 1 mole of air
from its constituent elements? Air can be assumed to be 79%
N2, 20% O2, and 1% Ar. Assume ideal gas behavior.
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3.23. 4.00 L of Ar and 2.50 L of He, each at 298 K and 
1.50 atm, were mixed isothermically and isobarically. The mix-
ture was then expanded to a final volume of 20.0 L at 298 K.
Write chemical reactions for each step, and determine the
change in entropy for the complete process.

3.24. Dentists might use a mixture of 40% N2O and 60% O2

as an initial anesthetic of nitrous oxide (although the exact
proportions may vary). Determine the entropy of mixing for 
1 mole of such a mixture. Assume ideal gas conditions.

3.25. A 5.33-g piece of Cu metal is heated to 99.7°C in boil-
ing water, then dropped into a calorimeter containing 99.53 g
of H2O at 22.6°C. The calorimeter is sealed to the outside en-
vironment, and temperature equalizes. Cp[Cu (s)] � 0.385 J/g�K,
Cp[H2O] � 4.18 J/g�K. (a) Discuss the process that occurs in-
side the calorimeter in terms of the zeroth and first laws of
thermodynamics. (b) What is the final temperature inside
the system? (c) What is the entropy change of the Cu (s)?
(d) What is the entropy change of the H2O (�)? (e) What is
the total entropy change in the system? (f) Discuss the
process that occurs inside the calorimeter in terms of the
second law of thermodynamics. Do you expect it to be spon-
taneous?

3.26. In the last exercise, neither Cu nor H2O is an ideal gas.
Comment on the expected reliability of your answers for �S
for parts c, d, and e. (Hint: consider the derivation of the equa-
tion you used to calculate �S.)

3.27. The first law of thermodynamics is sometimes stated
“You can’t win” and the second law is stated similarly as “You
can’t even break even.” Explain how these two statements can
be considered apt (though incomplete) viewpoints for the first
and second laws of thermodynamics.

3.28. Trouton’s rule states that the entropy of boiling at the
normal point is 85 J/mol�K. (a) Does the data from Example
3.2 support Trouton’s rule? (b) H2O has a heat of vaporization
of 40.7 kJ/mol. Does the �vapS for H2O at its normal boiling
point support Trouton’s rule? Can you explain any deviation?
(c) Predict the boiling point of cyclohexane, C6H12, if its �vapH
is 30.1 kJ/mol. Compare your answer to the measured normal
boiling point of 80.7°C.

3.6 Order and the Third Law 
of Thermodynamics

3.29. Argue from Boltzmann’s definition for entropy that S
can never have a negative value. (Hint: see equation 3.24.)

3.30. Calculate the value of Boltzmann’s constant in units of
(a) L�atm/K and (b) (cm3�mmHg)/K.

3.31. Which system has the higher entropy? (a) A clean
kitchen or a dirty kitchen? (b) A blackboard with writing on
it or a completely erased blackboard? (c) 1 g of ice at 0°C or 
10 g of ice at 0°C? (d) 1 g of ice at 0 K or 10 g of ice at 0 K?
(e) 10 g of ethyl alcohol, C2H5OH, at 22°C (roughly room
temperature) or 10 g of ethyl alcohol at 2°C (the approximate
temperature of a cold drink)?

3.32. Which system has the higher entropy? (a) 1 g of solid
Au at 1064 K or 1 g of liquid Au at 1064 K? (b) 1 mole of CO
at STP or 1 mole of CO2 at STP? (c) 1 mole of Ar at a pres-
sure of 1 atm or 1 mole of Ar at a pressure of 0.01 atm?

3.33. The element helium is thought to remain a liquid at
absolute zero. (Solid helium can be made only by exerting
a pressure of about 26 atm on a liquid sample.) Is the en-
tropy of liquid helium at absolute zero exactly zero? Why or
why not?

3.34. Order the following substances in order of increasing
entropy: NaCl (solid), C (graphite), C (diamond), BaSO4 (solid),
Si (crystal), Fe (solid).

3.7 Entropies of Chemical Reactions

3.35. Why isn’t the entropy of elements in their standard
pressure at normal (that is, room) temperatures equal to zero?

3.36. Determine the entropy of formation, �fS, of the follow-
ing compounds. Assume 25°C. (a) H2O (�) (b) H2O (g) 
(c) Fe2(SO4)3 (d) Al2O3 (e) C (diamond)

3.37. The thermite reaction has solid aluminum powder re-
acting with iron(III) oxide to make aluminum oxide and iron.
The reaction is so exothermic that the iron product is usually
molten initially. Write the balanced chemical reaction for the
thermite reaction and determine the �rxnS for the process.
Assume standard conditions.

3.38. In place of iron(III) oxide in the thermite reaction in the
previous problem, chromium(III) oxide can be used in its place,
generating chromium metal and aluminum oxide as products.
Calculate �rxnH and �rxnS for this thermite-type reaction.
Assume standard conditions.

3.39. Determine the differences in the �rxnS under standard
conditions for the two following reactions:

H2 (g) + �
1
2

�O2 (g) → H2O (�)

H2 (g) + �
1
2

�O2 (g) → H2O (g)

and justify the difference.

3.40. What is the change in entropy when 2.22 mol of water
is heated from 25.0°C to 100°C? Assume that the heat capac-
ity is constant at 4.18 J/g�K.

3.41. Estimate the entropy change of an 800-lb engine (1 lb
� 2.2 kg) that goes from normal environmental temperature,
about 20°C, to an average operational temperature of 650°C.
The heat capacity of iron (the major component of most en-
gines) is 0.45 J/g�K.

3.42. Calculate the molar entropy change of the gas that ac-
companies the bursting of a balloon if the initial pressure is
2.55 atm and the external pressure is 0.97 atm.

3.43. A normal breath is about 1 L in volume. Assume you
take a breath at sea level, where the pressure is 760 mmHg.
Then you instantly (this is a thought experiment, after all) go
to Los Alamos, New Mexico, located in the mountains where
the normal atmospheric pressure is 590 mmHg, and you ex-
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hale. Assuming ideal gas behavior, what’s the change in en-
tropy of the air? Assume a temperature of 37°C.

3.44. Set up expressions to calculate the work and heat for
the four steps of a Carnot cycle. Define initial conditions for
pressure and volume of a given amount (say, 1 mole) of an
ideal gas, and calculate w and q for each step in the cycle and
the total work and heat of the cycle. Show that �S � 0 for
the cycle if it is done reversibly. You may have to specify other
variables.

3.45. Numerically determine �S for the isobaric change 
in temperature of 4.55 g of gallium metal as it is heated 
from 298 K to 600 K if its molar heat capacity is given by 
the expression Cp � 27.49 � 2.226 � 10�3T � 1.361 �
105/T2. Assume standard units on the expression for heat 
capacity.

3.46. Plots of Cp/T versus T are used to determine the entropy
of a material, as the entropy value would be the area under

the curve. For sodium sulfate, Na2SO4, the following data are
available:

T (K) Cp (cal/K)
13.74 0.171

16.25 0.286

20.43 0.626

27.73 1.615

41.11 4.346

52.72 7.032

68.15 10.48

82.96 13.28

95.71 15.33

Source: G. N. Lewis and M.
Randall, Thermodynamics, rev.
K. Pitzer and L. Brewer, McGraw-
Hill, New York, 1961

Extrapolate to 0 K using a function f(T) � kT3, where k is some
constant. Using your plot, numerically evaluate the experi-
mental entropy of Na2SO4 at 90 K.

88 Exercises for Chapter 3

Symbolic Math Exercises

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



4

8989

WE STARTED THE LAST CHAPTER with the question, “Will a process
occur spontaneously?’’ Although we introduced the concept of en-

tropy as a basis for answering that question, we did not completely answer it.
The second law of thermodynamics is strictly applicable to an isolated system,
in which no other discernible change in a thermodynamic state function occurs.
For such systems, spontaneous processes do occur if they are accompanied by
an increase in the entropy of a system. But most systems are not isolated (in
fact, the only truly isolated system is the entire universe), and most changes
involve more than a change in entropy. Many processes occur with a simulta-
neous change in energy. You may recall the idea that most spontaneous changes
are exothermic. Many endothermic changes are also spontaneous. A proper
thermodynamic definition of a spontaneous process takes both energy and
entropy changes into account.

4.1 Synopsis
We will begin the chapter by discussing the limitations of entropy. We will then
define the Gibbs free energy and the Helmholtz energy. What we will ulti-
mately show is that for most chemical processes, the Gibbs free energy provides
a strict test for the spontaneity or nonspontaneity of that process.

The Gibbs and Helmholtz energies, both named after prominent thermo-
dynamicists, are the last energies that will be defined. Their definitions, coupled
with the appropriate use of partial derivation, allow us to derive a rich set of
mathematical relationships. Some of these mathematical relationships let the
full force of thermodynamics be applied to many phenomena, like chemical
reactions and chemical equilibria and—importantly—predictions of chemical
occurrences. These relationships are used by some as proof that physical
chemistry is complicated. Perhaps they are better seen as proof that physical
chemistry is widely applicable to chemistry as a whole.

4.2 Spontaneity Conditions
The derivation of the equation

�S � 0 (4.1)

4.1 Synopsis
4.2 Spontaneity Conditions
4.3 The Gibbs Free Energy and

the Helmholtz Energy
4.4 Natural Variable Equations

and Partial Derivatives
4.5 The Maxwell Relationships
4.6 Using Maxwell Relationships
4.7 Focus on �G
4.8 The Chemical Potential 

and Other Partial 
Molar Quantities

4.9 Fugacity
4.10 Summary

Free Energy and 
Chemical Potential
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as a measure of spontaneity is limited in application, since it applies to isolated
systems on which no work is done and which are adiabatic, so that both w and
q are zero. We recognize, however, that many processes occur with w � 0
and/or q � 0. What we really want is a way to determine spontaneity for ex-
perimental conditions that are common in real life. These conditions are con-
stant pressure (because many processes occur when exposed to atmospheric
pressure, which is usually constant over the course of the experiment) and
constant temperature (which is the easiest state variable to control).

Internal energy and enthalpy can also be used to determine spontaneity un-
der appropriate conditions. Consider equation 4.1. Since w � 0 and q � 0, the
process is occurring at constant U, and we can label the infinitesimal change
in entropy dS with these constant state variables:

(dS)U,V � 0 (4.2)

where the subscripts U, V indicate what variables are held constant. Let us de-
termine different spontaneity conditions for different conditions. The Clausius
theorem for a spontaneous change is:

�
dq

T
rev� � dS

We can rewrite this as

�
dq

T
rev� � dS � 0 

and since we know that dU � dqrev � pext dV, or dqrev � dU 	 pext dV,

�
dU 	

T

prev dV
� � dS � 0

The “equal to” part of the sign applies if the process is reversible. Multiplying
through by T, we get for a spontaneous change,

dU 	 p dV � T dS � 0

If the process occurs under conditions of constant volume and constant en-
tropy, that is, dV and dS are zero, this equation becomes

(dU)V,S � 0 (4.3)

as a spontaneity condition. Because this condition depends on volume and en-
tropy staying constant, V and S are called the natural variables of internal en-
ergy. The natural variables of a state function are the variables for which
knowledge of how the state function behaves with respect to them allows one
to determine all thermodynamic properties of the system. (This will become
clearer with examples later on.)

Why did we not introduce equation 4.3 as a spontaneity condition earlier?
First, it depends on our definition of entropy, which we did not get to until the
previous chapter. Second—and more importantly—it requires a process that is
isentropic; that is, where dS � 0 infinitesimally and �S � 0 for the overall
process. One can imagine how difficult it must be to perform a process on a
system and ensure that the order, on an atomic and molecular level, does not
change. (Contrast that with how easy it is to devise a process where dV is zero
or, equivalently, �V for the entire process equals 0.) To put it bluntly, equation
4.3 is not a very useful spontaneity condition.

Since dH � dU 	 d(pV), we can substitute for dU in equation 4.3:

dH � p dV � V dp 	 p dV � T dS � 0
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For clarity, we are dropping the “ext” label on the pressure variable. The two 
p dV terms cancel to give us

dH � V dp � T dS � 0

for a spontaneous change. If this change were to occur under conditions of
constant pressure and constant entropy, then dp and dS both equal 0, so the
spontaneity condition becomes

(dH)p,S � 0 (4.4)

Again, this is not a useful spontaneity condition unless we can keep the process
isentropic. Because p and S must be constant in order for the enthalpy change
to act as a spontaneity condition, p and S are the natural variables for enthalpy.
Equation 4.4 does suggest why many spontaneous changes are exothermic,
however. Many processes occur against a constant pressure: that of the atmo-
sphere. Constant pressure is half of the requirement for enthalpy changes to
dictate spontaneity. However, it is not sufficient, because for many processes
the entropy change is not zero.

Notice a certain trend. Equation 4.1, the spontaneity condition for entropy,
states that the entropy change is positive for spontaneous processes. That is,
entropy increases. On the other hand, the spontaneity conditions for both in-
ternal energy and enthalpy, both measures of the energy of a system, require
that the change is less than zero: the energy of the system decreases in sponta-
neous changes. Changes toward increased entropy and decreased energy are
generally spontaneous if the proper conditions are met. However, we still lack a
specific spontaneity test for constant pressure and temperature, our most use-
ful experimental conditions.

Example 4.1
State whether or not the following processes can be labeled spontaneous un-
der the following conditions.
a. A process in which �H is positive at constant V and p
b. An isobaric process in which �U is negative and �S is 0
c. An adiabatic process in which �S is positive and the volume does not
change
d. An isobaric, isentropic process in which �H is negative

Solution
a. Spontaneity requires that �H be negative if pressure and entropy are con-
stant. Since we do not know the constraints on p and S, there is no require-
ment that this process must be spontaneous.
b. An isobaric process has �p � 0. We are also given a negative �U and 
�S � 0. Unfortunately, the negative �U spontaneity condition requires an
isochoric (that is, �V � 0) condition. Therefore, we cannot say that this
process must be spontaneous.
c. An adiabatic process implies q � 0, and with volume not changing we have
�V � 0; therefore w � 0 and thus �U � 0. The constant U and V allow us to
apply the strict entropy spontaneity test: if �S � 0, the process is spontaneous.
Since we are given that �S is positive, this process must be spontaneous.
d. Isobaric and isentropic imply �p � �S � 0. These are the proper variables
for using the enthalpy spontaneity test, which requires that �H be less than
zero. This is in fact the case, so this process must be spontaneous.
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Note that in the above example, all of the processes may be spontaneous.
However, only the last two must be spontaneous by the laws of thermody-
namics as we know them. The difference between “may” and “must” is impor-
tant for science. Science recognizes that anything might occur. It focuses, how-
ever, on what will occur. These spontaneity conditions help us determine what
will occur.

4.3 The Gibbs Free Energy and the 
Helmholtz Energy

We now define two more energies. The definition of the Helmholtz energy, A, is

A � U � TS (4.5)

The infinitesimal dA is therefore equal to

dA � dU � T dS � S dT

which becomes, for a reversible process,

dA � �S dT � p dV

where we have used the definition of dU and the entropy for a reversible
process as substitutions. Parallel to the above conclusions regarding dU and
dH, their natural variables, and spontaneity, we state that the natural variables
of A are T and V, and that for an isothermal, isochoric process,

(dA)T,V � 0 (4.6)

is sufficient to ensure the spontaneity of a process. Again, the “equal to” part
of the sign applies to processes that occur reversibly. This definition has some
application, since some chemical and physical processes do occur under con-
ditions of constant volume (for example, bomb calorimetry).

We also define the Gibbs energy, or the Gibbs free energy, G, as

G � H � TS (4.7)

The infinitesimal dG is

dG � dH � T dS � S dT

Substituting for the definition of dH and again assuming a reversible change,
we get

dG � �S dT 	 V dp

This equation implies certain natural variables, namely T and p, such that the
following spontaneity condition is

(dG)T,p � 0 (4.8)

This is the spontaneity condition we have been looking for! We therefore make
the following, perhaps premature, statements. Under conditions of constant
pressure and temperature:

If �G 
 0: the process is spontaneous

If �G � 0: the process is not spontaneous (4.9)

If �G � 0: the system is at equilibrium

Since G (and A) are state functions, these statements reflect the fact that 
� dG � �G, not G.
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The state functions U, H, A, and G are the only independent energy quan-
tities that can be defined using p, V, T, and S. It is important to note that the
only type of work we are considering at this point is pressure-volume work. If
other forms of work are performed, then they must be included in the defini-
tion of dU. (Usually, they appear as dwnon-pV. We will consider one type of
non-pV work in a later chapter.)

Furthermore, it must be understood that the condition �G 
 0 defines only
spontaneity, not speed. A reaction may be thermodynamically favorable but
might proceed at a snail’s pace. For example, the reaction

2H2 (g) 	 O2 (g) → 2H2O (�)

has a very negative �G. However, hydrogen gas and oxygen gas can coexist in
an isolated system for millions of years before all of the reactant gas has con-
verted into liquid water. At this point, we cannot address the speed of the re-
action. We can address only whether it can occur spontaneously.

The Helmholtz energy is named after the German physician and physicist
Hermann Ludwig Ferdinand von Helmholtz (Figure 4.1). He is known for the
first detailed, specific enunciation of the first law of thermodynamics in 1847.
The Gibbs free energy is named for Josiah Willard Gibbs, an American math-
ematical physicist (Figure 4.2). In the 1870s, Gibbs took the principles of ther-
modynamics and applied them mathematically to chemical reactions. In doing
so, Gibbs established that the thermodynamics of heat engines was also ap-
plicable to chemistry.

The usefulness of the Helmholtz energy, A, can be demonstrated by starting
with the first law:

dU � dq 	 dw

Since dS � dq/T, we can rewrite the equation above as

dU � T dS � dw

If dT � 0 (that is, for an isothermal change), this can be written as

d(U � TS) � dw

Since the quantity inside the parentheses is the definition of A, we can substitute:

dA � dw

which we integrate to get

�A � w (4.10)

This says that the isothermal change in Helmholtz energy is less than or, for
reversible changes, equal to the work done by the system on the surroundings.
Since work done by the system has a negative value, equation 4.10 means that
the �A of an isothermal process is the maximum amount of work a system can
do on the surroundings. The connection between work and the Helmholtz en-
ergy is the reason that Helmholtz energy is represented by A. It comes from the
German word Arbeit, meaning “work.”

A similar expression can be derived for the Gibbs free energy, but using a
slightly different understanding of work. So far, we have always discussed work
as pV work, work performed by expanding gases against external pressures.
This is not the only kind of work. Suppose we define a sort of work that is non-
pV work. We can write the first law of thermodynamics as

dU � dq 	 dwpV 	 dwnon-pV

4.3 The Gibbs Free Energy and the Helmholtz Energy 93

Figure 4.1 Hermann Ludwig Ferdinand von
Helmholtz (1821–1894), German physicist and
physiologist. In addition to studying various as-
pects of physiology including sight and hearing,
Helmholtz made important contributions to the
study of energy. He was one of the first people to
clearly enunciate what became the first law of
thermodynamics.
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Figure 4.2 Josiah Willard Gibbs (1839–1903),
American physicist. Gibbs applied the mathemat-
ics of thermodynamics to chemical reactions in a
rigorous fashion, thereby extending the applica-
bility of thermodynamics from engines to chem-
istry. However, his work was so much over the
heads of his contemporaries that it took almost
20 years for his contributions to be recognized.

Ph
ot

o 
by

 G
en

. S
ta

b.
 L

lt.
 A

ns
t, 

AI
P 

Em
ili

o 
Se

gr
è 

Vi
su

al
 A

rc
hi

ve
s

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Making the same substitution for dS � dq/T, and also substituting for the de-
finition of pV work, we get

dU 	 p dV � T dS � dwnon-pV

If temperature and pressure are constant (the crucial requirements for a use-
ful G state function), then we can rewrite the differential as

d(U 	 pV � TS) � dwnon-pV

U 	 pV is the definition of H. Substituting:

d(H � TS) � dwnon-pV

Also, H � TS is the definition of G:

dG � dwnon-pV

which we can integrate to get

�G � wnon-pV (4.11)

That is, when non-pV work is performed, �G represents a limit. Again, since
work performed by a system is negative, �G represents the maximum amount
of non-pV work a system can perform on the surroundings. For a reversible
process, the change in the Gibbs free energy is equal to the non-pV work of the
process. Equation 4.11 will become important to us in Chapter 8, when we
discuss electrochemistry and electrical work.

Example 4.2
Calculate the change in the Helmholtz energy for the reversible isothermal
compression of 1 mole of an ideal gas from 100.0 L to 22.4 L. Assume that
the temperature is 298 K.

Solution
The process described is the third step in a Carnot-type cycle. Since the
process is reversible, the equality relationship �A � w applies. Therefore we
need to calculate the work for the process. The work is given by equation 2.7:

w � �nRT ln �
V

V
f

i

�

Substituting for the various values:

w � �(1 mol)�8.314 �
mo

J

l�K
��(298 K) ln ��1

2

0

2

0

.4

.0

L

L
��

w � 3610 J

Since for this reversible process �A � w, we have

�A � 3610 J

Since many processes can be made to occur isothermally (or at least re-
turned to their original temperatures), we can develop the following expres-
sions for �A and �G:

A � U � TS

dA � dU � T dS � S dT

dA � dU � T dS for an isothermal change
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or, integrating:
�A � �U � T �S (4.12)

Similarly, for the Gibbs free energy:

G � H � TS

dG � dH � T dS � S dT

dG � dH � T dS for an isothermal change

We integrate to get

�G � �H � T �S (4.13)

Both equations 4.12 and 4.13 are for isothermal changes. They also allow us to
calculate �A or �G if changes in other state functions are known.

Just as we can determine �U, �H, and �S for chemical processes using a
Hess’s-law approach, we can also determine �G and �A values for chemical re-
actions using a products-minus-reactants scheme. Because �G is a more use-
ful state function, we focus on that. We define free energies of formation �fG
similarly to the enthalpies of formation, and tabulate those. If the �fG values
are determined at standard thermodynamic conditions, we use the ° superscript
and label them �fG°. We can then determine the �G of a reaction, �rxnG, just
like we did the enthalpies of reactions. However, with �G we have two ways to
calculate the free energy change for a reaction. We can use the �rxnG values and
a products-minus-reactants approach, or we can use equation 4.13. The choice
of which to use depends on the information given (or the information you are
able to get). Ideally, both approaches should give you the same answer.

Note that the above paragraph implies that �fG for elements in their stan-
dard states is exactly zero. The same is true for �fA. This is because a forma-
tion reaction is defined as the formation of a chemical species from its con-
stituent chemical elements in their standard states.

Example 4.3
Determine �rxnG (25°C � 298.15 K) for the following chemical reaction us-
ing both methods for determining �rxnG, and show that they yield the same
answer. Assume standard conditions. Appendix 2 in the back of the book lists
the various thermodynamic data.

2H2 (g) 	 O2 (g) → 2H2O (�)

Solution
The following data were obtained from Appendix 2:

H2 (g) O2 (g) H2O (�)

�fH, kJ/mol 0 0 �285.83

S, J/mol�K 130.68 205.14 69.91

�fG, kJ/mol 0 0 �237.13

We begin by calculating �rxnH:

�rxnH � 2(�285.83) � (2 � 0 	 1 � 0)

�rxnH � �571.66 kJ

Now, we calculate �rxnS:

�rxnS � 2(69.91) � (2 � 130.68 	 205.14)
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The 2s are from the stoichiometry of the balanced chemical reaction. We get

�rxnS � �326.68 J/K

(Is this reasonable, knowing what you should know about entropy?) In com-
bining �rxnH and �rxnS, we need to make the units compatible. We convert
�rxnS into kilojoule-containing units:

�rxnS � �0.32668 kJ/K

Using equation 4.13, we calculate �rxnG:

�G � �H � T �S

�G � �571.66 kJ � (298.15 K)(�0.32668 kJ/K)

Notice that the K temperature units cancel in the second term. Both terms
have the same units of kJ, and we get

�G � �474.26 kJ

using equation 4.13. Using the idea of products-minus-reactants, we use the
�fG values from the table to get

�rxnG � 2(�237.13) � (2 � 0 	 0) kJ

�rxnG � �474.26 kJ

This shows that either way of evaluating �G is appropriate.

4.4 Natural Variable Equations and 
Partial Derivatives

Now that we have defined all independent energy quantities in terms of p, V,
T, and S, we summarize them in terms of their natural variables:

dU � T dS � p dV (4.14)

dH � T dS 	 V dp (4.15)

dA � �S dT � p dV (4.16)

dG � �S dT 	 V dp (4.17)

These equations are important because when the behaviors of these energies
on their natural variables are known, all thermodynamic properties of the sys-
tem can be determined.

For example, consider the internal energy, U. Its natural variables are S and
V; that is, the internal energy is a function of S and V:

U � U(S, V)

As discussed in the last chapter, the overall change in U, dU, can be separated
into a component that varies with S and a component that varies with V. The
variation of U with respect to S only (that is, V is kept constant) is represented
as (U/S)V, the partial derivative of U with respect to S at constant V. This is
simply the slope of the graph of U plotted against the entropy, S. Similarly, the
variation of U as V changes but S remains constant is represented by (U/V)S,
the partial derivative of U with respect to V at constant S. This is the slope of
the graph of U plotted versus V. The overall change in U, dU, is therefore

dU � ��




U

S
��V dS 	 ��





U

V
��S

dV
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But from the natural variable equation, we know that

dU � T dS � p dV

If we compare these two equations, the terms multiplying the dS must be
equal, as must the terms multiplying the dV. That is,

��




U

S
��V

dS � T dS

��




U

V
��S

dV � �p dV

We therefore have the following expressions:

��




U

S
��V

� T (4.18)

��




U

V
��S

� �p (4.19)

Equation 4.18 states that the change in internal energy as the entropy changes at
constant volume equals the temperature of the system. Equation 4.19 shows that
the change in internal energy as the volume changes at constant entropy equals
the negative of the pressure. What fascinating relationships! It means that we do
not have to actually measure the change in internal energy versus volume at con-
stant entropy—if we know the pressure of the system, the negative value of it
equals that change. Since these changes represent slopes of plots of internal en-
ergy versus entropy or volume, we know what those slopes are for our system. So,
if we know how U varies with S and V, we also know T and p for our system.

Furthermore, many such partial derivatives can be constructed that cannot
be determined experimentally. (Example: Can you construct an experiment in
which the entropy remains constant? That can sometimes be extremely diffi-
cult to guarantee.) Equations like 4.18 and 4.19 eliminate the need to do that:
they tell us mathematically that the change in internal energy with respect to
volume at constant entropy equals the negative of the pressure, for example.
There is no need to measure internal energy versus volume. All we need to
measure is the pressure.

Finally, in many derivations, partial derivatives like these will show up.
Equations like 4.18 and 4.19 allow us to substitute simple state variables for
more complicated partial derivatives. This will be extremely useful in our fur-
ther development of thermodynamics and accounts partially for its real power.

Example 4.4
Show that the expression on the left-hand side of Equation 4.18 yields units
of temperature.

Solution
The units of U are J/mol, and the units of entropy are J/mol�K. Changes in
U and S are also described using those units. Therefore, the units on the de-
rivative (which is a change in U divided by a change in S) are

�
J/

J

m

/m

o

o

l�

l

K
� � �

1/

1

K
� � K 

which is a unit of temperature.
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Other relationships can be derived from the other natural variable equa-
tions. From dH:

��




H

S
��p

� T (4.20)

��




H

p
��S

� V (4.21)

From dA:

��




A

T
��V

� �S (4.22)

��




V

A
��T

� �p (4.23)

and from dG:

��




G

T
��p

� �S (4.24)

��




G

p
��T

� V (4.25)

If we know that G is a function of p and T, and we know how G varies with p
and T, we also know S and V. Also, knowing G and how it varies with p and
T, we can determine the other state functions. Since

H � U 	 pV
and

G � H � TS

we can combine the two equations to get

U � G 	 TS � pV

Substituting from the partial derivatives in terms of G (that is, equations 4.24
and 4.25), we see that

U � G � T��




G

T
��p

� p��




G

p
��T

The differential form of this equation is

dU � dG � ��




G

T
��p

dT � ��




G

p
��T

dp (4.26)

We already know dG, and by knowing the two partial derivatives, we can de-
termine U as a function of T and p. Expressions for the other energy state func-
tions can also be determined. The point is, if we know the values for the proper
changes in one energy state function, we can use all of the equations of ther-
modynamics to determine the other changes in energy state functions.

Example 4.5
What is the expression for H, assuming one knows the behavior of G (that is,
the partial derivatives in equations 4.24 and 4.25)?

Solution
We can use the equation

G � H � TS
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to get H:
H � G 	 TS

If we know how G behaves with respect to its natural variables, we know
(G/T)p. This partial derivative is equal to �S, so we can substitute to get

H � G � T��




G

T
��p

which gives us H.

It is worth stating again how useful the natural variable equations are. If we
know how any one of the energies varies in terms of its natural variables, we
can use the various definitions and equations from the laws of thermodynam-
ics to construct expressions for any other energy. The mathematics of thermo-
dynamics is becoming powerful indeed.

4.5 The Maxwell Relationships
The equations involving partial derivatives of the thermodynamic energies can
be taken a step further. However, some definitions are necessary.

We have repeatedly made the point that some thermodynamic functions are
state functions, and that changes in state functions are independent of the ex-
act path taken. In other words, the change in a state function depends only on
the initial and final conditions, not on how the initial conditions became the
final conditions.

Consider this in terms of the natural variable equations. They all have two
terms, a change with respect to one state variable, and a change with respect to
the other state variable. For instance, the natural variable equation for dH is

dH � ��




H

S
��p

dS 	 ��




H

p
��S

dp (4.27)

where the overall change in H is separated into a change as the entropy S varies,
and a change as the pressure p varies. The idea of path-independent changes
in state functions means that it does not matter which change occurs first. It
does not matter in what order the partial derivatives in H occur. As long as
both of them change from designated initial values to designated final values,
the overall change in H has the same value.

There is a mathematical parallel to this idea. If you have a mathematical
“state function” that depends on two variables F(x, y), then you can determine
the overall change in F by setting up a “natural variable” equation for the over-
all change in F as

dF � ��




F

x
��y

dx 	 ��




F

y
��x

dy (4.28)

The function F(x, y) changes with respect to x and with respect to y. Suppose
you were interested in determining the simultaneous change of F with respect
to x and y; that is, you wanted to know the second derivative of F with respect
to x and y. In what order do you perform the differentiation? Mathematically,
it does not matter. This means that the following equality exists:

��




x
���





F

y
��x�y

� ��




y
���





F

x
��y�x

(4.29)
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The derivative with respect to x of the derivative of F with respect to y is equal
to the derivative with respect to y of the derivative of F with respect to x. If
this is the case, then the original differential dF in equation 4.28 satisfies one
requirement of an exact differential: the value of the multiple differential does
not depend on the order of differentiation.* Equation 4.29 is known as the
cross-derivative equality requirement of exact differentials. In the application
of the double derivatives in equation 4.29 to real thermodynamic equations,
the partial derivatives may have some other expression, as the following ex-
ample shows.

Example 4.6
Is the following expression considered an exact differential?

dT � �
R

p
� dV 	 �

V

R
� dp

Solution
Using equation 4.28 as a template, we can figure by analogy that

��




V

T
��p

� �
R

p
�

and that

��




T

p
��V

� �
V

R
�

Taking the derivative of the first partial with respect to p, we get

�




p
���





V

T
��p

� �
R

1
�

and taking the derivative of the second partial with respect to V we get

�




V
� ��





T

p
��V

� �
R

1
�

By definition, the original differential is an exact differential. Therefore, it
doesn’t matter in which order we differentiate T(p, V), since the double de-
rivative gives us the same value either way.

In the evaluation of exact differentials, the order of differentiation does not
matter. For state functions, the path of change does not matter. All that mat-
ters is the difference between the initial and final conditions. We submit that
the conditions are parallel and that the conclusions are transferable: the dif-
ferential forms of the natural variable equations for the thermodynamic ener-
gies are exact differentials. Therefore, the two ways of taking the mixed second
derivatives of U, H, G, and A must be equal. That is,

��




p
���





H

S
��p�S

� ��




S
���





H

p
��S�p

(4.30)
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from equation 4.29. Similarly, for the other energies:

��




V
���





U

S
��V�S

� ��




S
���





U

V
��S�V

(4.31)

��




V
���





A

T
��V�T

� ��




T
���





V

A
��T�V

(4.32)

��




T
���





G

p
��T�p

� ��




p
���





G

T
��p�T

(4.33)

For each of these relationships, we know the inside partial derivative on both
sides of the equations: they are given in equations 4.18–4.25. Substituting for
the inside partial derivatives from equation 4.30, we get

��




p
�T�S

� ��




S
�V�p

or rather,

��




T

p
��S

� ��




V

S
��p

(4.34)

This is an extremely useful relationship, as we no longer need to measure the
change in volume with respect to entropy at constant pressure: it equals the
isentropic change in temperature with respect to pressure. Notice that we have
lost any direct relationship to any energy.

Using equations 4.31–4.33, we can also derive the following expressions:

��




V

T
��S

� ���




p

S
��V

(4.35)

��




V

S
��T

� ��




T

p
��V

(4.36)

��




p

S
��T

� ���




V

T
��p

(4.37)

Equations 4.34–4.37 are called Maxwell relationships or Maxwell relations, af-
ter the Scottish mathematician and physicist James Clerk Maxwell (Figure 4.3),
who first presented them in 1870. (Although the derivation of equations
4.34–4.37 may seem straightforward now, it wasn’t until that time that the ba-
sics of thermodynamics were understood well-enough for someone like
Maxwell to derive these expressions.)

The Maxwell relationships are extremely useful for two reasons. First, all of
them are generally applicable. They are not restricted to ideal gases, or even
just gases. They apply to solid and liquid systems as well. Second, they express
certain relationships in terms of variables that are easier to measure. For ex-
ample, it might be difficult to measure entropy directly and determine how
entropy varies with respect to volume at constant temperature. The Maxwell
relationship in equation 4.36 shows that we don’t have to measure it directly.
If we measure the change in pressure with respect to temperature at constant
volume, (p/T)V, we know (S/V)T. They are equal. The Maxwell relation-
ships are also useful in deriving new equations that we can apply to thermo-
dynamic changes in systems, or in determining the values of changes in state
functions that might be difficult to measure directly by experiment. The fol-
lowing examples use the same Maxwell relationship in two different ways.
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Figure 4.3 James Clerk Maxwell (1831–1879),
Scottish mathematician. Maxwell made many 
important contributions before his untimely
death just before his 48th birthday. Among them
is the Maxwell theory of electromagnetism, which
even today forms the basis of electrical and mag-
netic behavior. He also contributed to the kinetic
theory of gases and the development of the sec-
ond law of thermodynamics. He was one of the
few people to understand Gibbs’s work.

AI
P 

Em
ili

o 
Se

gr
è 

Vi
su

al
 A

rc
hi

ve
s

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Example 4.7
What is (S/V)T for a gas that follows a van der Waals equation of state?

Solution
The Maxwell relationship in equation 4.36 shows that (S/V)T is equal to
(p/T)V. Using the van der Waals equation,

p � �
V

n

�

RT

nb
� � �

a

V

n
2

2

�

Taking the derivative of p with respect to T at constant volume gives

��




T

p
��V

� �
V �

nR

nb
�

Therefore, by Maxwell’s relationships,

��




V

S
��T

� �
V �

nR

nb
�

We do not need to measure the entropy changes experimentally. We can get
the isothermal change in entropy versus volume from the van der Waals pa-
rameters.

Example 4.8
In Chapter 1, we showed that

��




T

p
��V

� �
�

�
�

where � is the expansion coefficient and � is the isothermal compressibility.
For mercury, � � 1.82 � 10�4/K and � � 3.87 � 10�5/atm at 20°C. Determine
how entropy changes with volume under isothermal conditions at this tem-
perature.

Solution
The derivative of interest is (S/V)T, which by equation 4.36 is equal to
(p/T )V. Using the expansion coefficient and the isothermal compress-
ibility:

��




T

p
��V

� �
3

1

.8

.8

7

2

�

�

1

1

0

0
�

�

5/

4

a

/

t

K

m
� � 4.70 �

at

K

m
�

These do not seem to be appropriate units for entropy and volume. However,
if we note that

�
at

K

m
� � �

1

L

0

�

1

a

.3

tm

2 J
� � 101.32 �

J/

L

K
�

we can convert our answer into more identifiable units and find that

��




V

S
��T

� 476 �
J/

L

K
�
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4.6 Using Maxwell Relationships
The Maxwell relationships can be extremely useful in deriving other equations
for thermodynamics. For example, since

dH � T dS 	 V dp

then if we hold T constant and divide everything by dp, we get

��
d

d

H

p
��T

� ��




H

p
��T

� T��




p

S
��T

	 V

Measuring the change in entropy with respect to pressure is difficult, but us-
ing a Maxwell relationship we can substitute some other expression. Since
(S/p)T equals �(V/T)p, we get

��




H

p
��T

� V � T��




V

T
��p

(4.38)

where we have switched the order of the terms. Why is this equation useful?
Because once we know the equation of state (for example, the ideal gas law),
we know V, T, and how V varies with T at constant pressure—and we can use
that information to calculate how the enthalpy varies with pressure at constant
temperature, all without having to measure the enthalpy.

The enthalpy derivative in equation 4.38 can be used with the Joule-
Thomson coefficient, �JT. Recall that by the cyclic rule of partial derivatives,

�JT � ���




T

p
��H

� ���




H

T
��p��





H

p
��T

� ��
C

1

p

���




H

p
��T

We can now substitute for the differential (H/p)T from equation 4.38 and get

�JT � ��
C

1

p

��V � T��




V

T
��p� (4.39)

� �
C

1

p

��T��




V

T
��p

� V�
and now we can calculate the Joule-Thomson coefficient of a gas if we know its
equation of state and its heat capacity. Equation 4.39 does not require any knowl-
edge of the enthalpy of the system, beyond its heat capacity at constant pressure.
These are just two examples of how useful the Maxwell relationships are.

Example 4.9
Use equation 4.39 to determine the value of �JT for an ideal gas. Assume 
molar quantities.

Solution
An ideal gas has the ideal gas law as its equation of state:

pV� � RT

In order to evaluate equation 4.39, we need to determine (V�/T )p. We
rewrite the ideal gas law as

V� � �
R

p

T
�
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and can now evaluate (V�/T)p:

��




V�
T
��

p

� �
R

p
�

Substituting:

�JT � �
C

1

p

��T�
R

p
� � V�� � �

C

1

p

���
R

p

T
� � V��

But RT/p equals V�, according to the ideal gas law. Substituting:

�JT � �
C

1

p

�(V� � V�) � �
C

1

p

�(0) � 0

which shows once again that the Joule-Thomson coefficient for an ideal gas
is exactly zero.

Example 4.10
Starting with the natural variable equation for dU, derive an expression for
the isothermal volume dependence of the internal energy, (U/V)T, in terms
of measurable properties (T, V, or p) and � and/or �. Hint: you will have to
invoke the cyclic rule of partial derivatives (see Chapter 1).

Solution
The natural variable equation for dU is (from equation 4.14)

dU � T dS � p dV

In order to get (U/V)T, we hold the temperature constant and divide both
sides by dV. We get

��




U

V
��T

� T��




V

S
��T

� p

Now we use a Maxwell relationship and substitute for (S/V)T, which ac-
cording to Maxwell’s relationships equals (p/T)V. Therefore,

��




U

V
��T

� T��




T

p
��V

� p

Now we invoke the hint. The definitions for �, �, and the partial derivative
(p/T)V all use p, T, and V. The cyclic rule for partial derivatives relates the
three possible independent partial derivatives of any three variables A, B, C:

��




A

B
��C��





C

B
��A��





C

A
��B

� �1

For the variables p, V, and T, this means that

��




V

T
��p��





T

p
��V��





V

p
��T

� �1

� V� � � �
V

1
� �

�

1
�

where we are showing how the coefficients � and � relate to the derivatives
in this cyclic-rule equation. The middle partial derivative involves p and T at
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constant V, which is what we are trying to substitute for; we substitute and
rearrange as follows:

(V�)���
V

1
� �

�

1
�� � ���





T

p
��V

where we have brought the partial derivative we need to substitute for to the
other side of the equation. In doing so, we get the partial derivative of pres-
sure with respect to temperature. On the left side, the volumes cancel, and the
negative signs on both sides cancel. We gather everything together to get

��




T

p
��V

� �
�

�
�

Substituting into our equation for (U/V)T:

��




U

V
��T

� T �
�

�
� � p

where we now have what is required: an equation for (U/V)T in terms of
parameters easily measured experimentally: the temperature T, the pressure
p, and the coefficients � and �.

Example 4.10 above actually has an important lesson. The ability to math-
ematically derive expressions like this—which provide us with quantities in
terms of experimentally determined values—is a major talent of the mathe-
matics of thermodynamics. The mathematics of thermodynamics is a useful
tool. Yes, it can get complicated. But there is a lot we can know and say about
a system using these tools, and ultimately that is part of what physical chem-
istry is all about.

4.7 Focus on �G
We have found how U, H, and S vary with temperature. For the two energies,
the changes with respect to temperature are called heat capacities, and we de-
rived several equations for the change in S with respect to temperature (like
equation 3.18, �S � n � C� � ln(Tf /Ti), or the integral form previous to equa-
tion 3.18 for a nonconstant heat capacity). Since we are making the point that
G is the most useful energy state function, how does G vary with temperature?

From the natural variable equation for dG, we found one relationship be-
tween G and T:

��




G

T
��p

� �S (4.40)

As temperature changes, the change in G is equal to the negative of the entropy
of the system. Notice the negative sign on the entropy in this equation: it im-
plies that as temperature goes up, the free energy goes down, and vice versa.
This might seem intuitively wrong at first glance: an energy goes down as the
temperature increases? But recall the original definition of the Gibbs free en-
ergy: G � H � TS. The negative sign in front of the term that includes tem-
perature does indeed imply that as T increases, G will be lower.

There is another expression that relates the temperature-dependence of G,
but in a slightly different fashion. If we start with the definition of G:

G � H � TS
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we remember that �S is defined by the partial derivative in equation 4.40.
Substituting:

G � H 	 T ��




G

T
��p

where the minus signs have canceled. We rearrange this by dividing both sides
of the equation by T, and get

�
G

T
� � �

H

T
� 	 ��





G

T
��p

Now we further rearrange by bringing all terms in G to one side:

�
G

T
� � ��





G

T
��p

� �
H

T
� (4.41)

Although this might look intractable, we will introduce a simplifying substitu-
tion in a roundabout way. Consider the expression G/T. The derivative of this
with respect to T at constant p is

�




T
���

G

T
��p

� ��
T

G
2���





T

T
��p

	 �
T

1
���





G

T
��p

by strict application of the chain rule. T/T equals 1, so this expression sim-
plifies to

�




T
���

G

T
��p

� ��
T

G
2� 	 �

T

1
���





G

T
��p

If we multiply this expression by �T, we get

�T � �




T
���

G

T
��p

� �
G

T
� � ��





G

T
��p

Note that the expression on the right side of the equation is the same as the
left side of equation 4.41. We can therefore substitute:

�T � �




T
���

G

T
��p

� �
H

T
�

or

�




T
���

G

T
��p

� ��
T

H
2� (4.42)

This is an extremely simple equation, and when expanding our derivation to
consider changes in energy, it should not be too difficult to derive, for the over-
all process:

�




T
���

�

T

G
��p

� ��
�

T

H
2� (4.43)

for a physical or chemical process. Equations 4.42 and 4.43 are two expressions
of what is called the Gibbs-Helmholtz equation. By using substitution [that is,
let u � 1/T, du � �(1/T2) dT, and so on], you can show that equation 4.43
can also be written as

��
�

T

G
��p

� �H (4.44)
�

T

1
�

The form given in equation 4.44 is especially useful. By knowing �H for a
process, we know something about �G. A plot of �G/T versus 1/T would be
equal to �H as a slope. (Remember that a derivative is just a slope.) Further, if
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we make the approximation that �H is constant over small temperature ranges,
we can use equation 4.44 to approximate �G at different temperatures, as the
following example illustrates.

Example 4.11
By approximating equation 4.44 as

���
�

T

G
��p

	 �H
��

T
1

�

predict the value of �G (100°C, 1 atm) of the reaction

2H2 (g) 	 O2 (g) → 2H2O (�)

given that �G (25°C, 1 atm) � �474.36 kJ and �H � �571.66 kJ. Assume
constant pressure and �H.

Solution
First, we should evaluate �(1/T). Converting the temperatures to kelvins, we
find that

��
T

1
� � �

37

1

3 K
� � �

29

1

8 K
� � �0.000674/K

Using the approximated form of equation 4.44:

� �p
	 �571.66 kJ 

��
�

T

G
� � 0.386 �

k

K

J
�

Writing �(�G/T) as (�G/T)final � (�G/T)initial, we can use the conditions
given to get the following expression:

��37

�

3

G

K
��final

� ���4

2

7

9

4

8

.3

K

6 kJ
��initial

� 0.386 �
k

K

J
�

�Gfinal � �G (100°C) � �450. kJ

This compares to a value of �439.2 kJ obtained by recalculating �H (100°C)
and �S (100°C) using a Hess’s-law type of approach. The Gibbs-Helmholtz
equation makes fewer approximations and would be expected to produce
more accurate values of �G.

What is the relationship between pressure and G? Again, we can get an ini-
tial answer from the natural variable equations:

��




G

p
��T

� V

We can rewrite this by assuming an isothermal change. The partial derivative
can be rearranged as

dG � V dp

We integrate both sides of the equation. Because G is a state function, the in-
tegral of dG is �G:

�G � 

pi

pf

V dp

��
�

T
G
�

��
�0.000674/K

4.7 Focus on �G 107

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



For ideal gases, we can use the ideal gas law and substitute for V: V � nRT/p,
so

�G � 

pi

pf

�
nR

p

T
� dp � 


pi

pf

nRT �
d

p

p
� � nRT 


pi

pf

�
d

p

p
�

From calculus, we know that �(dx/x) � ln x. Applying this to the integral in
the above equation and evaluating at the limits, we get

�G � nRT ln �
p

p
f

i

� (4.45)

which is applicable only for isothermal changes.

Example 4.12
What is the change in G for a process in which 0.022 mole of an ideal gas
goes from 2505 psi (pounds per square inch) to 14.5 psi at a room tempera-
ture of 295 K?

Solution
Direct application of equation 4.45 yields

�G � (0.022 mol)�8.314 �
mo

J

l�K
��(295 K) ln �

2

1

5

4

0

.5

5

p

p

s

s

i

i
�

�G � �278 J

Would this be considered a spontaneous process? Since the pressure is not
kept constant, the strict application of �G as a spontaneity condition is not
warranted. However, gases do tend to go from high pressure to low pres-
sure, given the opportunity. We might expect that this process is in fact
spontaneous.

4.8 The Chemical Potential and Other Partial
Molar Quantities

So far, we have focused on changes in systems that are measured in terms of
the system’s physical variables, like pressure and temperature and volume and
the like. But in chemical reactions, substances change their chemical form. We
need to begin to focus on the chemical identity of a material and how it might
change during the course of a process.

It has been assumed that the number of moles, n, of a substance has re-
mained constant in all of the changes considered so far. All of the partial de-
rivatives should also have an n subscript on the right side to indicate that
the amount of material remains constant: for example, (U/V )T,n. How-
ever, there is no reason that we can’t consider a derivative with respect to
amount, n.

Because of the importance of the Gibbs free energy in spontaneity consid-
erations, the majority of derivatives with respect to n concern G. The chemical
potential of a substance, �, is defined as the change in the Gibbs free energy
with respect to amount at constant temperature and pressure:

� � ��




G

n
��T,p

(4.46)
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For systems that have more than one chemical component, we will have to give
the chemical potential a label (typically a number or a chemical formula) to
specify which component. The chemical potential for a single component �i

assumes that only the amount of the ith component, ni, varies, and the amounts
of all other components nj, j � i, remain constant. Equation 4.46 is therefore
written

�i � ��




n

G

i

��T,p,nj(j�i)
(4.47)

If we want to consider the infinitesimal change in G now, we must broaden it
by considering possible changes in amount of substance, too. The general ex-
pression for dG now becomes

dG � ��




G

T
��p,n’s

dT 	 ��




G

p
��T,n’s

dp 	 �
0

i
��





n

G

i

��T,p,nj(j�i)
dni

or

dG � �S dT 	 V dp 	 �
0

i

�i dni (4.48)

where the summation has as many terms as there are different substances in
the system. Equation 4.48 is sometimes referred to as the fundamental equa-
tion of chemical thermodynamics, since it embodies all state variables of condi-
tions and amounts.

The chemical potential �i is the first example of a partial molar quantity. It
expresses the change in a state variable, the Gibbs free energy, versus molar
amount. For pure substances, the chemical potential is simply equal to the
change in the Gibbs free energy of the system as the amount of material
changes. For systems of more than one component, the chemical potential
does not equal the change in free energy of the pure material because each
component interacts with the other, which affects the total energy of the sys-
tem. If all components were ideal, this wouldn’t happen, and partial molar
quantities would be the same for any component in any system.*

Because of the relationships between the various energies defined by ther-
modynamics, chemical potential can also be defined in terms of the other en-
ergies, but with different state variables held constant:

�i � ��




n

U

i

��S,V,nj(j�i)
(4.51)
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*Partial molar quantities can be defined for any state variable. For example, the partial
molar change in entropy S�i is defined as

S�i � ��




n

S

i

��nj(j�i)
(4.49)

and for whatever other conditions remain constant. Similarly, a partial molar volume V�i� is
defined as

V�i � ��




n

V

i

��T,p,nj(j�i)
(4.50)

The partial molar volume is an especially useful concept for condensed phases. It is also the
reason why the mixing of 1 L of water and 1 L of alcohol yields a solution whose volume
is not 2 L (it’s a little less than 2 L): from the strict thermodynamic sense, volumes are not
directly additive, but partial molar volumes are. [Note that partial molar quantities (except
for �) have the same symbolism as molar quantities, that is, the line over the variable. Thus,
care should be exercised when using these two quantities.]
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�i � ��




H

ni

��S,p,nj(j�i)
(4.52)

�i � ��




n

A

i

��T,V,nj(j�i)
(4.53)

However, given the usefulness of G, the free energy–based definition of � will
be most useful to us.

Chemical potential is a measure of how much a species wants to undergo a
physical or chemical change. If two or more substances exist in a system and
have different chemical potentials, some process would occur to equalize the
chemical potentials. Thus, chemical potential allows us to begin a considera-
tion of chemical reactions and chemical equilibrium. Although we have con-
sidered chemical reactions in some examples (mostly from a products-minus-
reactants change in energy or entropy), we have not focused on them. This will
change in the next chapter.

4.9 Fugacity
We preface our application of thermodynamics to chemical reactions by defin-
ing fugacity, a measure of the nonideality of real gases. First, let us justify the
need to define such a quantity.

In developing theory, we assume ideal materials, and we have done just
that in thermodynamics. For example, the use of the “ideal gas” is common
throughout these chapters. However, there is no such thing as a truly ideal
gas. Real gases do not obey the ideal gas law and have more complex equa-
tions of state.

As expected, the chemical potential of a gas varies with pressure. By anal-
ogy to equation 4.45:

�G � nRT ln �
p

p
f

i

�

we might also submit that, because chemical potential is defined in terms of
G, we have a similar equation for the change � for an ideal gas:

�� � RT ln �
p

p
f

i

� (4.54)

We can write both of these equations in a different fashion, by recognizing 
that the � signs on G and � represent a change, so we can write �G or �� as
Gfinal � Ginitial or �final � �initial:

Gfinal � Ginitial � nRT ln �
p

p
f

i

�

�final � �initial � RT ln �
p

p
f

i

�

Suppose that for both equations, the initial state is some standard pressure, like
1 atmosphere or 1 bar. (1 atm � 1.01325 bar, so very little error is introduced
by using the non-SI-standard 1 atm.) We will denote the initial conditions with
a ° symbol, and bring the initial energy quantity over to the right side of the
equation. The “final” subscripts are deleted, and the equations are now written
as G or � at any pressure p, calculated with respect to G° and �° at some stan-
dard pressure (that is, 1 atm or 1 bar):
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G � G° 	 nRT ln �
p

p

°
� (4.55)

� � �° 	 RT ln �
p

p

°
� (4.56)

The second equation shows that the chemical potential varies with the natural
logarithm of the pressure. A plot of � versus p would have a general logarith-
mic form, as shown in Figure 4.4.

However, measurements on real gases show that the relationship between �
and p isn’t so exact. At very, very low gas pressures, all gases approach ideal be-
havior. At moderate pressures, for a given chemical potential, the pressure is
lower than expected. This is because real gas molecules do attract each other
slightly, and the measured pressure is lower than ideal. At very high pressures,
for a given chemical potential the pressure is higher than expected, because the
gas molecules become so densely packed that they begin to repel each other.
The actual behavior of the chemical potential versus the real pressure of a gas
is shown in Figure 4.5.

For real gases, thermodynamics defines a scaled pressure called fugacity, f, as

f � � � p (4.57)

where p is the pressure of the gas and � is called the fugacity coefficient. The
fugacity coefficient is dimensionless, so fugacity has units of pressure. For real
gases, the fugacity is the proper description of how the gas behaves, and so the
equation in terms of the chemical potential is better written as

� � �° 	 RT ln �
p

f

°
� (4.58)

As the pressure gets lower and lower, any real gas behaves more and more ide-
ally. In the limit of zero pressure, all gases act as ideal gases and their fugacity
coefficient equals 1. We write this as

lim
p→0

(f ) � p; lim
p→0

� � 1

How do we determine the fugacity experimentally? We can start with the
fundamental thermodynamic equation given in equation 4.48:

dG � �S dT 	 V dp 	 �
0

i

�i dni

For a single component (so that the summation is just one term) undergoing
an isothermal process, this becomes

dG � V dp 	 � dn

Since dG is an exact differential (see section 4.5), we get the relation �/p �
V/n. The second expression is the partial molar volume of the substance, V�.
That is,

�




�

p
� � V�

which leads to

d� � V� dp

For an ideal gas, this would be

d�ideal � V�ideal dp
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�

p

Figure 4.4 An idea of what a plot of the chem-
ical potential � versus pressure p should look like
for an ideal gas.

�

p

Ideal

Actual

Figure 4.5 For real gases, at high pressures the
chemical potential is higher than expected due to
intramolecular repulsions. At intermediate pres-
sures, the chemical potential is lower than ex-
pected due to intramolecular attractions. At very
low pressures, gases tend toward ideal behavior.
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(We will see in a minute why ideal gases are brought up again.) Subtracting
these two:

d� � d�ideal � (V� � V�ideal) dp

where we have factored dp out of both terms on the right. Integrating:

� � �ideal � 

p

0

(V� � V�ideal) dp

� � �ideal � 

p

0

V� dp � 

p

0

V�ideal dp (4.59)

If we understand that equation 4.56 gives the chemical potential of an ideal gas
�ideal in terms of pressure and equation 4.58 gives the chemical potential of
our real gas � in terms of fugacity, we can use them to evaluate � � �ideal:

� � �ideal � �° 	 RT ln �
p

f

°
� � ��° 	 RT ln �

p

p

°
��

� RT�ln �
p

f

°
� � ln �

p

p

°
��

� RT ln �
p

f/

/

p

p

°

°
� � RT ln �

p

f
�

Therefore, substituting into the left side of equation 4.59:

RT ln �
p

f
� � 


p

0

V� dp � 

p

0

V�ideal dp

Rearranging:

ln �
p

f
� � ln � � �

R

1

T
��


p

0

V� dp � 

p

0

V�ideal dp� (4.60)

This might seem to be a complicated expression, but consider what it is. An in-
tegral is an area under a curve. The first integral is the area under a plot of the
partial molar volume versus pressure. The second integral is the area under a
plot of the ideal molar volume versus pressure. The subtraction of the two in-
tegrals, then, is simply the difference in areas of the two plots between p � 0 and
some nonzero value of p. Divide this value by RT and you have the logarithm
of the fugacity coefficient �. Fugacities are therefore determined by simply
measuring the volumes of known quantities of gases under isothermal con-
ditions and comparing them to the expected ideal volume. Figure 4.6 is an
example of what a graphical representation of such an investigation might
look like.

Equation 4.60 can also be evaluated in terms of the compressibility Z for a
real gas. We won’t derive it here but simply present the result. (For a deriva-
tion see P. W. Atkins and J. de Paulo, Physical Chemistry, 7th ed., Freeman, New
York, 2002, p. 129.)

ln � � 

p

0

�
Z �

p

1
� dp (4.61)

If you know the equation of state for a gas and its compressibility in terms of
the equation of state, you can substitute for Z in equation 4.61 and evaluate
the integral. Or, the compressibility can be plotted and the integral determined
by numerically measuring the area under the plot of (Z � 1)/p versus p.
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V

p
p

0

Ideal

Actual

Figure 4.6 A simple way of determining the
fugacity coefficient of a real gas is to plot the real
volume of the gas at various pressures and com-
pare it to the expected ideal volume of the gas.
The fugacity coefficient is related to the difference
in the area under the curves (indicated by the
shaded portion of the diagram). See equation 4.60.
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Figure 4.7 shows such a plot for neon at 150 K. The fugacity of neon at any
pressure is the area under this curve from zero to that pressure.

Example 4.13
Calculate the fugacity of 100. atm of argon gas at 600. K assuming its com-
pressibility is adequately represented by the truncated virial equation Z �
1 	 B�p/RT. B� for Ar at 600 K is 0.012 L/mol (from Table 1.4). Comment on
the answer.

Solution
Using equation 4.61:

ln � � 

100 atm

0

dp � 

100 atm

0

dp � 

100 atm

0

�
R

B

T

�
� dp

� �
B

R

�

T

p
��

0

100 atm

� �
B�(10

R

0

T

atm)
�

By substituting B� � 0.012 L/mol, R � 0.08205 L�atm/mol�K and T �
600 K, we have

ln � � � 0.024

Therefore, ln � � 0.024, so � � 1.024. Since f � �p, this means that f �
102. atm. This argon gas acts as if it had a slightly larger pressure than it ac-
tually does. This should be considered approximate, since the virial coeffi-
cient B� should be applicable to conditions of 100. atm and 600. K.

To illustrate how fugacity varies with pressure, Table 4.1 lists the fugacities
of nitrogen gas. Note how the fugacity almost equals the pressure at p � 1 atm,
but by the time p � 1000 atm, the fugacity is almost twice the pressure.

(0.012 �
m

L
ol
�)(100 atm)

���
(0.08205 �

m
L�

o
a
l
t
�

m
K

�)(600 K)

�
B
R
�

T
p

�

�
p

1 	 �
B
R
�

T
p

� � 1
��

p
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Figure 4.7 On a plot of (Z � 1)/p versus pressure for a real gas, the area under the curve be-
tween 0 and some pressure p gives the logarithm of the fugacity coefficient � for the gas at that
pressure. The data plotted here are for neon at 150 K.

Table 4.1 Fugacities of nitrogen gas at 0°C

P (atm) Fugacity (atm)

1 0.99955

10 9.956

50 49.06

100 97.03

150 145.1

200 194.4

300 301.7

400 424.8

600 743.4

800 1196

1000 1839

Source: G. N. Lewis, M. Randall. Thermodynamics, revised by
K. S. Pitzer and L. Brewer, McGraw-Hill, New York, 1961.
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4.10 Summary
We have introduced the last two energy quantities, the Helmholtz energy and
the Gibbs free energy. Both are related to the maximum amount of work a sys-
tem can perform. When all four energies are written in terms of their natural
variables, a startling number of useful relationships can be developed by judi-
cious application of partial derivatives. These derivatives, Maxwell’s relation-
ships among them, are very useful because they allow us to express quantities
that are difficult to measure directly in terms of changes in state variables that
can be easily measured.

We defined the chemical potential �. It is called a partial molar quantity be-
cause it is a partial derivative with respect to the number of moles of material
in our system. We can define other partial molar quantities; � is the first one
defined, because of its usefulness as we look into chemical reactions and chem-
ical equilibria.

Finally, we defined fugacity as a necessary description of real gases and
showed how we can determine fugacity experimentally in a somewhat simple
fashion. It is relatively simple because we have been able to derive a lot of ex-
pressions from the basic ideas of thermodynamics and use them to obtain
otherwise inaccessible information about our system.

114 C H A P T E R  4 Free Energy and Chemical Potential

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



4.2 Spontaneity Conditions

4.1. Explain why conditions for using �S � 0 as a strict spon-
taneity condition imply that �U and �H both equal zero.

4.2. Explain how the equation

�
dU 	

T
p dV
� � dS � 0

is consistent with the idea that spontaneous changes occur
with a decrease in energy and an increase in entropy.

4.3. Explain why the spontaneity conditions given in equa-
tions 4.3 and 4.4 are in terms of the general derivatives dU
and dH and not some partial derivative of U and H with re-
spect to some other state variable.

4.4. Prove that the adiabatic free expansion of an ideal gas is
spontaneous.

4.3 Gibbs and Helmholtz Energies

4.5. Derive equation 4.6 from equation 4.5.

4.6. Derive equation 4.8 from equation 4.7.

4.7. The third part of equation 4.9 mentions a condition
called equilibrium, in which there is no net change in the
state of a system. What are the equilibrium conditions for dU,
dH, and dA?

4.8. Calculate �A for a process in which 0.160 mole of an
ideal gas expands from 1.0 L to 3.5 L against a constant pres-
sure of 880 mmHg at a temperature of 37°C.

4.9. What is the maximum amount of non-pV work that can
be done by the reaction

2H2 	 O2 → 2H2O 

if �fG (H2O) � �237.13 kJ/mol, and �fG (H2) � �fG (O2) � 0?

4.10. Consider a piston whose compression ratio is 10:1; that
is, Vf � 10 � Vi. If 0.02 mole of gas at 1400 K expands re-
versibly, what is �A for one expansion of the piston?

4.11. When one dives, water pressure increases by 1 atm
every 10.55 m of depth. The deepest sea depth is 10,430 m.
Assume that 1 mole of gas exists in a small balloon at that
depth at 273 K. Assuming an isothermal and reversible process,
calculate w, q, �U, �H, �A, and �S for the gas after it rises to
the surface, assuming the balloon doesn’t burst!

4.12. Calculate �G° (25°C) for the following chemical reac-
tion, which is the hydrogenation of benzene to make cyclo-
hexane:

C6H6 (�) 	 3H2 (g) → C6H12 (�)

Would you predict that this reaction is spontaneous at con-
stant T and p? Use data in Appendix 2.

4.13. Thermodynamic properties can also be determined for
ions. Determine �H, �S, and �G for the following two reac-
tions, which are simply reactions of dissolution:

NaHCO3 (s) → Na	 (aq) 	 HCO3
� (aq)

Na2CO3 (s) → 2Na	 (aq) 	 CO3
2� (aq)

Assume standard conditions (standard concentration is 1 M
for ions in aqueous solution), and consult the table of ther-
modynamic properties in Appendix 2. What similarities and
differences are there?

4.14. Calculate �G in two different ways for the following
dimerization of NO2:

2NO2 (g) → N2O4 (g)

Are the two values equal?

4.15. Determine �G for the following reaction at 0°C and
standard pressure:

H2O (�) → H2O (s)

Is the reaction spontaneous? Why are the thermodynamic val-
ues from Appendix 2 not strictly applicable to this reaction un-
der these conditions?

4.16. Batteries are chemical systems that can be used to gen-
erate electrical work, which is one form of non-pV work. One
general reaction that might be used in a battery is

M (s) 	 �
1
2

�X2 (s/�/g) → MX (crystal)

where M is an alkali metal and X2 is a halogen. Using Appendix
2, construct a table that gives the maximum amount of work
that a battery can provide if it uses different alkali metals and
halogens. Do you know if any of these types of batteries are
actually produced?

4.17. Example 4.2 calculated �A for one step of a Carnot cy-
cle. What is �A for the entire Carnot cycle?

4.4–4.6 Natural Variables, Partial Derivatives,
and Maxwell Relationships

4.18. Can CV and Cp be easily defined using the natural vari-
able expressions for dU and dH? Why or why not?

4.19. Analogous to equation 4.26, what is the expression for
U, assuming one knows the behavior of A as it varies with re-
spect to temperature and volume?

4.20. Show that

dS � �
�

�
� dV 	 �

(
(




T
S
/
/




p
P)
)
T

V
� dT

where � is the thermal expansion coefficient and � is the
isothermal compressibility. Hint: Write a natural variable ex-
pression for dS in terms of V and T and substitute for some of
the expressions. You will have to use Maxwell’s relationships
and the chain rule of partial derivatives.
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4.21. Show that the units in equation 4.19 are consistent on
either side of the equation.

4.22. Derive equations 4.35–4.37.

4.23. Derivatives of which of the following functions are ex-
act differentials?

(a) F(x, y) � x 	 y

(b) F(x, y) � x2 	 y2

(c) F(x, y) � xnyn, n � any integer

(d) F(x, y) � xmyn, m � n, m, n � any integer

(e) F(x, y) � y � sin(xy).

4.24. Show that (S/p)T � ��V.

4.25. Starting with the natural variable equation for dH,
show that

��




H
p
��T

� V(1 � �T)

4.26. When changes in the conditions of a system are infini-
tesimal, we use the  or d symbol to indicate a change in a
state variable. When they are finite, we use the � symbol to
indicate the change. Rewrite the natural variable equations
4.14–4.17 in terms of finite changes.

4.27. Equation 4.19 says that

��




U
V
��S

� �p

If we are considering the variation of �U, the change in the
change of the internal energy, we can write that as (see the
previous problem for an analogous argument)

��(


�

V
U)
��S

� ��p

Show that this is entirely consistent with the first law of ther-
modynamics.

4.28. For an isentropic process, what is the approximate
change in �U if a system consisting of 1.0 mole of gas goes
from 7.33 atm and 3.04 L to 1.00 atm and 10.0 L? Hint: see
the previous problem.

4.29. Use the ideal gas law to demonstrate the cyclic rule of
partial derivatives.

4.30. Show that for an ideal gas,

�Cp � ��




U
T
��p

� ��




H
p
��S ��





p
T
��V� � 0

4.31. Show that

�
�

�
���





V
S
��T

� 1

where � is the expansion coefficient and � is the isothermal
compressibility.

4.32. Evaluate (U/V)T for an ideal gas. Use the expression
from Example 4.10. Does your answer make sense?

4.33. Determine an expression for (p/S)T for an ideal gas
and for a van der Waals gas.

4.7 Focus on �G

4.34. Determine the value of the derivative {[(�G)]/T}p for
the solid-state reaction

2Al 	 Fe2O3 → Al2O3 	 2Fe

(Hint: see exercise 3.37.)

4.35. Derive the equivalent of the Gibbs-Helmholtz equation,
but for the Helmholtz energy A.

4.36. A plot of 1/T versus �G/T has what slope?

4.37. A 0.988-mole sample of argon expands from 25.0 L to
35.0 L at a constant temperature of 350 K. Calculate �G for
this expansion.

4.38. Verify the manipulation of equation 4.41 into equation
4.42. Can you see how the chain rule of derivatives plays an im-
portant role in the derivation of the Gibbs-Helmholtz equation?

4.39. Use equation 4.45 as an example and find an expres-
sion for �A as the volume varies.

4.8 & 4.9 The Chemical Potential and Fugacity

4.40. Why is there no n variable in equation 4.54 like there is
in equation 4.45?

4.41. What is the change in the chemical potential of a system
if 1 mole of O2 were added to a system already containing 
1 mole of O2? Probably the best answer is ‘’no change.’’ Why?

4.42. Is � an extensive or intensive variable? What about the
partial molar volume? The partial molar entropy?

4.43. Write the fundamental equation of chemical thermody-
namics for a system that contains 1.0 mole of N2 and 1.0 mole
of O2.

4.44. Calculate the molar change in chemical potential of 
an ideal gas that expands by 10 times its original volume at
(a) 100 K, and (b) 300 K.

4.45. Calculate the change in chemical potential of an ideal
gas that goes from 1.00 atm to 1.00 bar at 273.15 K. How
large an absolute amount of change do you think this is?

4.46. Can equation 4.61 be used to calculate � for an ideal
gas? Why or why not?

4.47. Which of the following in each pair of systems do you
think has the greater chemical potential? (a) 1.0 mole of H2O (�)
at 100°C or 1.0 mole of H2O (g) at 100°C? (b) 10.0 g of Fe
at 25°C or 10.0 g of Fe at 35°C? (c) 25.0 L of air at 1 atm
pressure or the same amount of air but compressed isother-
mally to 100 atm pressure?

4.48. Use equation 4.46 to argue that the absolute chemical
potential � for any substance has a positive value.

4.49. Of helium and oxygen gases, which one do you expect
to have a larger deviation from ideality at the same high pres-
sure? Is this the same gas that you would expect to have a
larger deviation from ideality at moderate pressure? How about
at very low pressure?
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4.50. Suppose a gas has an equation of state that resembles
a shortened version of the van der Waals equation of state:

p(V 	 nb) � nRT

Derive an expression for � for this gas. (See Example 4.13.)

4.51. Use equation 4.39 to determine a numerical value for
the Joule-Thomson coefficient, �JT, for sulfur dioxide, SO2, at
25°C, assuming that it acts as a van der Waals gas. Van der
Waals constants can be found in Table 1.6.

4.52. The following table lists the compressibilities of nitro-
gen gas, N2, versus pressure at 300 K.

Pressure (bar) Compressibility
1 1.0000

5 1.0020

10 1.0041

20 1.0091

40 1.0181

60 1.0277

80 1.0369

100 1.0469

200 1.0961

300 1.1476

400 1.1997

500 1.2520

Source: R. H. Perry and D. W. Green, Perry’s Chemical
Engineers’ Handbook, 6th ed., McGraw-Hill, New York,
1984).

Evaluate the fugacity coefficient �, and compare the value you
get to the value of � found in Example 4.13.
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5
AMAJOR THEME IN CHEMISTRY is chemical equilibrium: that point

during the course of a chemical reaction where there is no further net
change in the chemical composition of the system. One of the triumphs of
thermodynamics is that it can be used to understand chemical equilibria.

When you stop and think about it, very few chemical processes are actually
at chemical equilibrium. Consider the chemical reactions going on in your
body’s cells. If they were at equilibrium, you wouldn’t even be alive! Many
chemical reactions that occur on the industrial scale aren’t at equilibrium, or
else chemical producers wouldn’t be making new chemicals for sale.

Then why do we put so much stock in equilibria? For one thing, a system
in equilibrium is a system we can understand using thermodynamics. Also,
though almost all chemical systems of interest aren’t at equilibrium, the idea
of equilibrium is used as a starting point. The concept of chemical equilibrium
is the very basis for understanding systems that are not at equilibrium. An
understanding of equilibrium is a central part of understanding chemistry.

5.1 Synopsis
In this introductory chapter, we will define chemical equilibrium. The Gibbs
free energy is the energy that is most useful to us, because processes at con-
stant T and p (conditions that are easily established) have dG as a spontaneity
condition. Therefore, we will relate the idea of chemical equilibrium to the
Gibbs free energy. Chemical reactions go only so far toward completion, and
we will define extent as a means of expressing how far a reaction proceeds as
pure reactants proceed towards products. We will use extent to help define
chemical equilibrium.

Since G is related to the chemical potential, we will see how chemical po-
tential is related to equilibrium. We will see how the equilibrium constant be-
comes a characteristic for any chemical process. We will find out why solids
and liquids do not contribute numerically to values of most equilibrium con-
stants, and why concentrations of solutes in solutions do. Finally, we will
consider the fact that the values of equilibrium constants do change with

118

5.1 Synopsis
5.2 Equilibrium
5.3 Chemical Equilibrium
5.4 Solutions and Condensed

Phases
5.5 Changes in Equilibrium

Constants
5.6 Amino Acid Equilibria
5.7 Summary

Introduction to 
Chemical Equilibrium

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



conditions. We will find some straightforward ideas for understanding how
pressure and temperature changes affect the value of the equilibrium constant
and the extent of the reaction at equilibrium.

5.2 Equilibrium
The rock on the side of the mountain in Figure 5.1a is not at equilibrium be-
cause, according to the laws of physics, it should spontaneously roll down the
mountain. On the other hand, the rock in Figure 5.1b is at equilibrium because
we don’t expect any additional, spontaneous change. Rather, if we want to
change this system, we will have to put work into the system, but then the
change is not spontaneous.

Now consider a chemical system. Think about a 1-cm3 cube of metallic
sodium in a beaker of 100 mL of water. Is the system at equilibrium? Of
course not! There ought to be a somewhat violent, spontaneous chemical re-
action if we try to put a cubic centimeter of sodium in water. The state of
the system as described originally is not at chemical equilibrium. However,
it’s not a question of gravitational potential energy now. It is a question of
chemical reactivity. We say that this Na-in-H2O system is not at chemical
equilibrium.

The sodium metal will react with the water (which is in excess) via the fol-
lowing reaction:

2Na (s) � 2H2O (�) → 2Na� (aq) � 2OH� (aq) � H2 (g)

Once that reaction is over, there will be no further change in the chemical
identity of the system, and the system is now at chemical equilibrium. In a
sense, it is very much like the rock and mountain. The sodium in water rep-
resents a rock on the side of a mountain (Figure 5.1a), and the aqueous
sodium hydroxide solution (which is an accurate description of the products
of the above reaction) represents the rock at the bottom of the mountain
(Figure 5.1b).

Consider another chemical system, this one a sample of water, H2O, and
heavy water, D2O, in a sealed container. (Recall that deuterium, D, is the
isotope of hydrogen that has a neutron in its nucleus.) Is this a description
of a system at equilibrium? Interestingly, this system is not at equilibrium.
Over time, water molecules will interact and exchange hydrogen atoms, so
that eventually most of the molecules will have the formula HDO—a result
that can easily be verified experimentally using, say, a mass spectrometer.
(Such reactions, called isotope exchange reactions, are an important part of
some modern chemical research.) This process is illustrated in Figure 5.2.
Other processes like precipitation of an insoluble salt from aqueous solution
are also examples of equilibrium. There is a constant balance between ions
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(a) (b)

Figure 5.1 (a) A rock on the side of a mountain represents a simple physical system that is
not at equilibrium. (b) Now the rock is lying at the bottom of the mountain. The rock is at its
minimum gravitational potential energy. This system is at equilibrium.
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precipitating from solution and ions dissociating from the solid and going into
solution:

PbCl2 (s) → Pb2� (aq) � 2Cl� (aq)

Pb2� (aq) � 2Cl� (aq) → PbCl2 (s) 

No net change: chemical equilibrium

The rock on the side of the hill that becomes the rock at the bottom of the
hill is an example of an equilibrium, but this is an equilibrium where nothing
is happening. This is an example of a static equilibrium. Chemical equilibria
are different. The chemical reactions are still occurring, but the forward and
reverse reactions are occurring at just the same rate so that there is no overall
change in the chemical identity of the system. This is called a dynamic equilib-
rium. All chemical equilibria are dynamic equilibria. That is, they are con-
stantly moving, but going nowhere.

Example 5.1
Describe the following situations as either static or dynamic equilibria.
a. The level of water in a fishtank, as the water is constantly passing through
a filter
b. A rocking chair that has stopped rocking
c. Acetic acid, a weak acid, that is ionized only to the extent of about 2% in
aqueous solution
d. A bank account that maintains an average monthly balance of $1000 de-
spite numerous withdrawals and deposits

Solution
a. Since there is constant motion of the material at equilibrium—the water—
this is an example of a dynamic equilibrium.
b. A stopped rocking chair isn’t moving at all at the macroscopic level, so this
situation is an example of a static equilibrium.
c. The ionization of acetic acid is a chemical reaction, and like all chemical
reactions at equilibrium, it is a dynamic one.
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Figure 5.2 Sometimes it is difficult to know whether a system is at chemical equilibrium. An
equimolar mixture of H2O and D2O—water and heavy water—might appear to be at equilib-
rium when mixed initially, since both substances are simply water. But in reality, hydrogen ex-
change occurs to mix the isotopes of hydrogen among the water molecules. At equilibrium, the
predominant molecule is HDO.
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d. Because money is moving in and out of the account, even though the av-
erage monthly balance maintains the equilibrium amount of $1000, it is a
dynamic equilibrium.

Why does any system come to equilibrium? Consider the rock on the side
of the mountain in Figure 5.1a. From physics, we know that gravity is at-
tracting the rock, and the slope of the mountain is not sufficient to counter
that attraction and keep the rock from moving. So the rock tumbles down
the side of the mountain until it gets to the bottom (Figure 5.1b). At this po-
sition, the ground counteracts the force of gravity, and the situation becomes
a stable, static equilibrium. One way of considering this system is from the
perspective of energy: a rock on the side of the hill has excess gravitational
potential energy that it can get rid of by moving down the side of the hill.
That is, the rock will spontaneously move to a position that decreases its
(gravitational potential) energy. From a physical standpoint, the minimum-
energy equilibrium is described in terms of Newton’s first law of motion.
There are balanced forces acting on the rock, so it remains at rest: at equi-
librium.

What about chemical reactions? Why do chemical systems eventually reach
equilibrium? The answer is analogous to that for the rock: there are balanced
“forces” acting on the chemical species in the system. These forces are actually
energies—chemical potentials of the different chemical species involved in the
system at equilibrium. The next section introduces chemical equilibrium in
those terms.

5.3 Chemical Equilibrium
For a chemical reaction occurring in a closed system, species that have some
initial chemical identity (“reactants”) change to some different chemical iden-
tity (“products”). In the previous chapter, we made the point that the Gibbs
free energy is dependent on the amount of any substance, and defined the
chemical potential as the change in the Gibbs free energy with respect to
amount:

�i � ��
�

�

n

G

i

��T,p,nj( j�i)

Since G varies with each ni, it should be no surprise that during the course of
a chemical process, the total Gibbs free energy of the entire system changes.

We now define the extent 	 as a measure of the progress of a reaction. If the
number of moles of the ith chemical species in the system at time t � 0 is ni,0,
the extent 	 is given by the expression

	 � �
ni �


i

ni,0� (5.1)

where ni is the number of moles at some time t and 
i is the stoichiometric
coefficient of the ith chemical species in the reaction. (Remember that 
i is
positive for products and negative for reactants.) The possible numerical
values of 	 may vary depending on the initial conditions and the reaction
stoichiometry, but at any point in a reaction 	 will have the same value no
matter which species is used in equation 5.1.
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Example 5.2
The following reaction is set up with the initial amounts of each substance
listed below.

6H2 � P4 → 4PH3

18.0 mol 2.0 mol 1.0 mol

In each of the following scenarios, show that no matter which species is used
to determine 	, the value for 	 is the same.
a. All the P4 reacts to form products.
b. All the PH3 reacts to form reactants.

Solution
a. If 2.0 mol P4 reacts, no P4 will be left, so nP4

� 0.0 mol. Of the H2,
12.0 mol will have reacted, leaving 6.0 mol H2 (nH2

� 6.0). This produces 
8.0 mol PH3, which in addition to the 1.0 mol initially will give nPH3

�
9.0 mol. Using the definition of 	 and the appropriate values for each chem-
ical species:

	 � � 2.0 mol using H2

	 ��
0.0 mol

�

�

1

2.0 mol
� � 2.0 mol using P4

	 ��
9.0 mol

�

�

4

1.0 mol
� � 2.0 mol using PH3

Note that we have used positive or negative values of 
i, as appropriate, and
that extent has units of mol.
b. If all of the PH3 reacts, nPH3

would be zero and H2 and P4 would have
gained 1.5 mol and 0.25 mol, respectively. Therefore,

	 � � �0.25 mol using H2

	 � � �0.25 mol using P4

	 ��
0.0 mol

�

�

4

1.0 mol
� � �0.25 mol using PH3

These examples should convince you that 	 has the same value no matter
which species is used and therefore is a consistent way to follow the course of
a chemical reaction. In addition, we also see that 	 is positive when a chemical
process moves to the right side of the reaction, and negative when it moves to
the left side of a reaction.

When a reaction proceeds, the amounts ni change. The infinitesimal change
in each amount, dni, can be written in terms of the extent using the relation-
ship in equation 5.1:

dni � 
i d	 (5.2)

As the ni value changes, so does the Gibbs free energy of the system, according
to equation 4.48 from the last chapter:

dG � �S dT � V dp � �
0

i

�i dni

2.25 mol � 2.0 mol
���

�1

19.5 mol � 18.0 mol
���

�6

6.0 mol � 18.0 mol
���

�6
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At constant temperature and pressure, this becomes

(dG)T,p � �
0

i

�i dni

Substituting for dni from equation 5.2, this becomes

(dG)T,p � �
0

i

�i
i d	

Since the extent variable is the same for all species, we can divide both sides by
d	 to get

��
�

�

G

	
��T,p

� �
0

i

�i
i (5.3)

In equations 4.9, we stated that a system was at equilibrium if �G � 0 or,
equivalently for an infinitesimal process, dG � 0. For chemical equilibrium, we
require that the derivative in equation 5.3, defined as the Gibbs free energy of
reaction �rxnG, be zero:

��
�

�

G

	
��T,p

� �rxnG � �
0

i

�i
i � 0 for chemical equilibrium (5.4)

Figure 5.3 illustrates the meaning of equation 5.4. At some extent of reaction,
the overall G of the system reaches some minimum value. At that extent, we
say that the system has reached chemical equilibrium. (We recognize that de-
rivatives also equal zero at curve maxima. However, we will not encounter such
situations in our discussion of thermodynamics.)

Example 5.3
The following reaction is set up in a sealed container:

2NO2 (g) → N2O4 (g)

Initially, there are 3.0 mol NO2 present and no N2O4. Write two expressions
for the extent of the reaction, and one expression that must be satisfied in or-
der for chemical equilibrium to exist.

Solution
An expression for 	 can be written in terms of either NO2 or N2O4:

	 � �

Chemical equilibrium will exist if the following expression, written in terms
of the chemical potentials of NO2 and N2O4, is satisfied:

�N2O4
� 2�NO2

� 0

This expression comes directly from equation 5.4.

Consider a general gas-phase reaction:

aA → bB

For this process, equation 5.4 would be written as

�rxnG � b�B � a�A

nN2O4�
�1

nNO2
� 3.0 mol

��
�2
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Extent of reaction, �

Equilibrium extent
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� 0)(G
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Figure 5.3 Over the course of the reaction 
(labeled “extent of reaction” on the x-axis), the
overall Gibbs free energy comes to a minimum. At
this point, the reaction is at chemical equilibrium.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



where a and b are the coefficients of the balanced chemical reaction. The
chemical potentials can be written in terms of the standard chemical potential
�° and a term involving a nonstandard pressure. If we assume ideal-gas be-
havior, we can use equation 4.56 to rewrite the above equation as

�rxnG � b��B° � RT ln �
p

p
B

°
�� � a��A° � RT ln �

p

p
A

°
��

We can rearrange this expression algebraically and use properties of logarithms
to get

�rxnG � (b � �B° � a � �A°) � RT ln �
(

(

p

p

A

B/

/

p

p

°

°

)

)

b

a
� (5.5)

The standard Gibbs free energy of reaction, �rxnG°, is defined as

�rxnG° � b � �B° � a � �A° (5.6)

As with H and S, we also define �fG° for formation reactions. Because G is a
state function, equation 5.6 can be written in a more useful form in terms of
the standard Gibbs free energies of formation:

�rxnG° � b � �fG°prod � a � �fG°react

The quotient [(pB/p°)b]/[(pA/p°)a] is defined as the reaction quotient Q:

Q � �
(

(

p

p

A

B/

/

p

p

°

°

)

)

b

a�

We therefore write equation 5.5 as

�rxnG � �rxnG° � RT ln Q (5.7)

The definitions of �rxnG° and Q can be generalized for any number of reac-
tants and products.

�rxnG° � ��fG° (products) � ��fG° (reactants) (5.8)


0

i products

(pi /p°)�
i�

Q � ��� (5.9)


j reactants

(pj /p°)�
j �

Absolute values are used for the 
’s because we are writing Q explicitly as a
fraction. Using equation 5.8, standard Gibbs free energies of reactions can be
determined from the Gibbs free energies of formations. The �fG° values are
tabulated, along with the �fH values and absolute entropies. The stoichiome-
try of the chemical reaction must be used when applying equation 5.8, since
�fG ’s are typically given as molar quantities (that is, as ��f�G�).

We should clearly differentiate between �rxnG and �rxnG°. �rxnG can have
various values, depending on what the exact conditions of the system are and
what the extent of the reaction is. �rxnG°, on the other hand, is the change in
Gibbs free energy between products and reactants when all reactants and prod-
ucts are in their standard states of pressure, form, and/or concentration (and
typically for a specified temperature, like 25°C). �rxnG° is a characteristic of a
reaction, whereas �rxnG depends on what the exact state of the system is, or
what the individual states of the reactants and products are. For instance, equa-
tion 5.7 allows us to determine �rxnG for any reaction under conditions other
than standard pressures, as shown in the following example.
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Example 5.4
For molar amounts, the standard Gibbs energy of reaction for the following
reaction at 25°C is �457.14 kJ:

2H2 (g) � O2 (g) → 2H2O (g)

In a system where pH2
� 0.775 bar, pO2

� 2.88 bar, and pH2O � 0.556 bar, de-
termine �rxnG. Use 1.00 bar as the standard pressure.

Solution
First, we construct the proper expression for Q. Using equation 5.9, the bal-
anced chemical reaction, and the conditions given:

� �
2

��01
.5

.0

5

0

6

b

b

a

a

r

r
��

2

Q � � �
2

� � � ��01
.7

.0

7

0

5

b

b

a

a

r

r
��

2

��21
.

.

8

0

8

0

b

b

a

a

r

r
��

Q � 0.179

Using equation 5.7 and solving:

�rxnG � �457.14 kJ � 8.314 �
K

J
� (298 K) (ln 0.179) �

1

1

00

k

0

J

J
�

�rxnG � �461 kJ

Note the conversion from joules to kilojoules in the solution. Note that the
unit on �rxnG is simply kJ, since we are considering molar stoichiometric
amounts of reactants and products. If we want to report �rxnG in terms 
of unit molar amounts of reactants or products, it would be given as 
�231 kJ/mol H2, �461 kJ/mol O2, or �231 kJ/mol H2O.

For chemical equilibrium, �rxnG � 0. Equation 5.7 becomes

0 � �rxnG° � RT ln Q

�rxnG° � �RT ln Q

Because �rxnG° has a characteristic value for a chemical process, the value of
the reaction quotient Q at equilibrium will have a characteristic value as well.
It is called the equilibrium constant for the reaction and is given the new sym-
bol K. We therefore write the above equation as

�rxnG° � �RT ln K (5.10)

Since K is defined in terms of pressures of products and reactants at equilib-
rium, the standard Gibbs free energy of a reaction gives us an idea of what the
relative amounts of products and reactions will be when the reaction reaches
chemical equilibrium. Large values of K suggest more products than reactants
at equilibrium, whereas small values of K suggest more reactants than prod-
ucts. Equilibrium constants are never negative. Using the �rxnG° value from
Example 5.4, we can calculate a value of K of 1.3 � 1080, implying a large
amount of product and a minuscule amount of reactants when the reaction
reaches equilibrium.

Remember that a chemical equilibrium is a dynamic process. Chemical
processes do not stop when the G value of the system has been minimized.

pO2�
1.00 bar

pH2�
1.00 bar

pH2O�
1.00 bar
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Rather, a forward process is balanced by a reverse process. To emphasize that
forward and reverse reactions are occurring simultaneously, the double arrow
sign is typically used when writing a reaction, instead of a single arrow.

Equilibrium constants can be used to determine extents of reactions, as
shown in the following example.

Example 5.5
For the gas-phase reaction

CH3COOC2H5 � H2O CH3COOH � C2H5OH
ethyl acetate water acetic acid ethanol

the equilibrium constant is 4.00 at 120°C.
a. If you start with 1.00 bar of both ethyl acetate and water in a 10.0-L con-
tainer, what is the extent of the reaction at equilibrium?
b. What is �rxnG at equilibrium? Explain.
c. What is �rxnG° at equilibrium? Explain.

Solution
a. The following chart shows initial and equilibrium amounts of the sub-
stances involved in the equilibrium:

Pressure (bar) CH3COOC2H5 � H2O CH3COOH � C2H5OH

Initial 1.00 1.00 0 0

Equilibrium 1.00 � x 1.00 � x �x �x

The expression for the equilibrium constant can be constructed from the
chemical reaction, and the values from the final row of the chart are substi-
tuted. We get

K � � 4.00

4.00 � � �
(1.00

x

�

2

x)2
�

This expression can be expanded and solved algebraically using the quadratic
formula. When we do this, we get two numerical answers for x, which are

x � 0.667 bar or x � 2.00 bar

We examine each of those roots, keeping in mind the reality of the situation.
If we are starting with only 1.00 bar of reactant, we cannot lose 2.00 bar.
Therefore we reject x � 2.00 bar as not a physically real answer. So in terms
of final amounts of reactants and products, we use the x � 0.667 bar as the
change in amount to get the equilibrium amounts

pCH3COOC2H5
� 0.333 bar pH2O � 0.333 bar

pCH3COOH � 0.667 pC2H5OH � 0.667 bar

The extent of the reaction at equilibrium can be calculated using any of the
reaction species, after converting the amounts to moles. Using H2O and the
ideal gas law:

nH2O,init � 0.306 mol nH2O,equil � 0.102 mol

(�x)(�x)
���
(1.00 � x)(1.00 � x)

(pCH3COOH/p°)(pC2H5OH/p°)
���
(pCH3COOC2H5

/p°)(pH2O/p°)

QP

JQPJ

QP
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	 �

	 � 0.204 mol

You should be able to verify the value of 	 using any of the other three sub-
stances in the reaction.
b. At equilibrium, �rxnG equals zero. Why? Because that’s one way to define
equilibrium: the instantaneous change in the Gibbs free energy is zero when
the reaction is at equilibrium. This is what the equality means in equations 4.9.
c. �rxn G°, on the other hand, is not zero. �rxnG° (note the ° sign) is the dif-
ference in the Gibbs free energy when reactants and products are in their
standard state of pressure and concentration. �rxnG° is related to the value of
the equilibrium constant by equation 5.10:

�rxnG° � �RT ln K

Given a temperature of 120°C (393 K) and an equilibrium constant value of
4.00, we can substitute:

�rxnG° � ��8.314 �
mo

J

l�K
��(393 K)(ln 4.00)

Evaluating:

�rxnG° � �4530 J/mol

Because our equilibrium constant has been defined in terms of partial pres-
sures, we will have to convert to those values if some other unit of amount is
used, such as moles or grams. The following example illustrates a more com-
plex problem.

Example 5.6
Molecular iodine dissociates into atomic iodine at relatively moderate tem-
peratures. At 1000 K, for a 1.00-L system that has 6.00 � 10�3 moles of I2

present initially, the final equilibrium pressure is 0.750 atm. Determine the
equilibrium amounts of I2 and atomic I, calculate the equilibrium constant,
and determine 	 if the relevant equilibrium is

I2 (g) 2I (g)

Assume ideal-gas behavior under these conditions. Use atm as the standard
unit for pressure.

Solution
Since this example is a bit more complicated, let us map out a strategy before
we begin. We assume that some of the molecular iodine will dissociate—call
the amount x—and the amount of atomic iodine, given by the stoichiometry
of the reaction, will be �2x. In a volume of 1.00 L at 1000 K, we can use the
ideal gas law to determine partial pressures. We have to constrain any possi-
ble answer to the fact that pI2

� pI must equal 0.750 atm.
We can construct a chart for this example:

Amount I2 2I

Initial 6.00 � 10�3 mol 0 mol

Equilibrium 6.00 � 10�3 � x �2x

QP

JQPJ

0.102 mol � 0.306 mol
���

�1
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These equilibrium amounts are in terms of moles, not in terms of pressure.
We are given the total pressure at equilibrium as well as the temperature. We
can use the ideal gas law to convert the moles of each species into pressures
of each species, then sum the pressures and require that this sum equals 0.750
atm. Thus, at equilibrium, we have

Pressure (atm) I2 2I

Equilibrium

where we have left the units off the variables for clarity. You should be able
to recognize the units that go with each value. These pressures represent the
partial pressures of the species at equilibrium for this reaction. We use them
in the expression for the equilibrium constant:

K � �
(p

p
I

I

/

2
/

p

p

°

°

)2

�

We can substitute the partial pressures into the above expression and get

K � � �
K �

K � � �
2

which is subject to the condition that

� � 0.750

It is this second equation, where it is understood that the units are atm, that
is most immediately solvable. By evaluating each fractional expression, we
find that

0.4923 � 82.05x � 164.1x � 0.750

82.05x � 0.258

x � 3.14 � 10�3

where in the last step we have limited our final answer to three significant fig-
ures. If we want the equilibrium amount of I2 and I atoms, we need to solve
the appropriate expressions. For the number of moles of reactants and prod-
ucts, we have

mol I2 � 6.00 � 10�3 � x � 6.00 � 10�3 � 3.14 � 10�3

� 2.86 � 10�3 mol I2`

mol I � �2x � 2(3.14 � 10�3) � 6.28 � 10�3 mol I

To get the equilibrium partial pressures, in terms of which the equilibrium
constant is written, we need to use the following expressions:

pI2
� � 0.235 atm

pI � � 0.515 atm
(6.28 � 10�3)(0.08205)(1000)
����

1.00

(2.86 � 10�3)(0.08205)(1000)
����

1.00

(2x)(0.08205)(1000)
���

1.00

(6.00 � 10�3 � x)(0.08205)(1000)
����

1.00

(6.00 � 10�3 � x)(0.08205)(1000)
����

1.00

(2x)(0.08205)(1000)
���

1.00

(2x)(0.08205)(1000)
���

1.00

(6.00 � 10�3 � x)(0.08205)(1000)
����

1.00

QP
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where again we omit the units for clarity. It is easy to see that the sum of the
two partial pressures equals 0.750 atm. The equilibrium constant is calculated
using these pressures:

K � �
(p

p
I

I

/

2
/

p

p

°

°

)2

� � �
(0

0

.

.

5

2

1

3

5

5

)2

� � 1.13

The value of the equilibrium constant suggests that there is about the same
amount of products as reactants. The molar amounts as well as the equilib-
rium partial pressures also support this.

The extent 	 can be determined from the initial and equilibrium amounts
of molecular iodine:

	 �

	 � 0.00314 mol

This is consistent with a reaction whose equilibrium positions itself about
halfway between pure reactants and pure products.

5.4 Solutions and Condensed Phases
Up to this point the equilibrium constants have been expressed in terms of
partial pressures. However, for real gases the fugacities of the species should be
used. If the pressures are low enough, the pressures themselves can be used,
since at low pressures the pressure is approximately equal to the fugacity. But
many chemical reactions involve phases other than the gas phase. Solids, liq-
uids, and dissolved solutes also participate in chemical reactions. How are they
represented in equilibrium constants?

We answer this by defining activity ai of a material in terms of its standard
chemical potential �°i and its chemical potential �i under nonstandard pres-
sures:

�i � �°i � RT ln ai (5.11)

Comparison of this equation with equation 4.58 shows that for a real gas, ac-
tivity is defined in terms of the fugacity as

agas � �
f

p
ga

°
s

� (5.12)

Reaction quotients (and equilibrium constants) are more formally written in
terms of activities, rather than pressures:


i products

a�
i�

Q � �� (5.13)


j products

aj
�
j �

This expression applies no matter what the state of the individual reactant or
product.

For condensed phases (that is, solids and liquids) and dissolved solutes,
there are different expressions for activity, although the definition from equa-
tion 5.11 is the same for all materials. For condensed phases, the activity of a

2.86 � 10�3 mol � 6.00 � 10�3 mol
����

�1
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particular phase at a specified temperature and standard pressure is repre-
sented by �°i. In the last chapter, we found that

��
�

�

�

p
i��T

� V�i

where V�i is the molar volume of the ith material. We rearrange this into

d�i � V�i dp

The differential of equation 5.11 at constant temperature is

d�i � RT (d ln ai)

Combining the last two equations and solving for d ln ai:

d ln ai � �
V�

R
i

T

dp
�

Integrating both sides from the standard state of ai � 1 and p � 1:

�
1

a

d ln ai � �
1

p

�
V�

R
i

T

dp
�

ln ai � �
R

1

T
� �

1

p

V�i dp

If the molar volume V�i is constant over the pressure interval (and it usually
is to a good approximation unless the pressure changes are severe), this inte-
grates to

ln ai � �
R

V�
T
i�(p � 1) (5.14)

Example 5.7
Determine the activity of liquid water at 25.0°C and 100 bar pressure. The
molar volume of H2O at this temperature is 18.07 cm3.

Solution
Using equation 5.14, we set up the following:

ln ai � (100 bar � 1 bar)

A conversion factor between liters and cubic centimeters is included in the
numerator. Solving:

ln ai � 0.0722

ai � 1.07

Notice that the activity of the liquid is close to 1, even at a pressure that is
100 times that of standard pressure. This is generally true for condensed phases
at pressures that are typically found in chemical environments. Therefore, in
most cases the activities of condensed phases can be approximated as 1 and
they make no numerical contribution to the value of the reaction quotient or

�18.07 �
c

m

m

o

3

l
����100

1

0

L

cm3��
���

�0.08314 �
m

L�

o

b

l

a

�K

r
��(298 K)
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equilibrium constant. Note that this is not the case in conditions of extreme
pressures or temperatures.

For chemical species that are dissolved in solution (usually water), activities
are defined in terms of the mole fraction:

ai � �ixi (5.15)

where �i is the activity coefficient. For solutes, the activity coefficient ap-
proaches 1 as the mole fraction approaches zero:

lim
xi→0

�i � 1 lim
xi→0

(ai) � xi

Mole fractions can be related to other defined concentration units. The
strictest mathematical relationship is between mole fraction and molality, mi,
and is

mi � �
(1 �

10

x

0

i

0

)

x

�
i

Mi

�

where Mi is the molecular weight of the solute in grams per mole, and the 1000
factor in the numerator is for a conversion between grams and kilograms. For
dilute solutions, the mole fraction of the solute is small compared to 1, so the
xi in the denominator can be neglected. Solving for xi, we get

xi � mi � �
1

M

00
i

0
�

Thus, the activity for solutes in dilute solution can be written as

ai � �i � mi � �
1

M

00
i

0
�

Using equation 5.11, we substitute for the activity to get

�i � �i° � RT ln ��i � mi � �
1

M

00
i

0
��

Since Mi and 1000 are constants, the logarithm term can be separated into two
terms, one incorporating these constants and the other incorporating the ac-
tivity coefficient and the molality:

�i � �i° � RT ln��1
M

00
i

0
�� � RT ln (�i � mi)

The first two terms on the right side of the equation can be combined to make
a “new” standard chemical potential, which we will designate �i*. The above
equation becomes

�i � �i* � RT ln (�i � mi)

Comparing this to equation 5.11 gives us a useful redefinition of the activity
of dissolved solutes:

ai � �i � mi (5.16)

Equation 5.16 implies that concentrations can be used to express the effect of
dissolved solutes in reaction quotient and equilibrium constant expressions. In
order that ai be unitless, we divide the expression by the standard molal con-
centration of 1 mol/kg, symbolized by m°:

ai � �
�i

m

�

°

mi� (5.17)
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Because for dilute aqueous concentrations the molality is approximately
equal to the molarity, it is not uncommon to write equilibrium concentrations
in units of molarity. (In fact, this is how it is usually done in introductory
courses.) However, this adds an additional approximation in our expression of
reaction quotients and equilibrium constants.

Example 5.8
What is the proper expression for the equilibrium constant, in terms of pres-
sures, for the following chemical equilibrium? Assume that conditions are
near standard pressures.

Fe2(SO4)3 (s) Fe2O3 (s) � 3SO3 (g)

Solution
The correct expression for the equilibrium constant is

K � � (aSO3
)3 � ��

p

p
SO

°
3��

3

The other species in the equilibrium are condensed phases and, if we are close
to standard pressures, do not affect the numerical value of K.

Example 5.9
What is the proper expression for the equilibrium constant for the following
chemical equilibrium in terms of concentration and partial pressures? This
equilibrium is partly responsible for the atmospheric production of acid rain.

2H2O (�) � 4NO (g) � 3O2 (g)  4H� (aq) � 4NO3
� (aq) 

Solution
The proper equilibrium expression is

K � � �
4

� �
4

K �

� �
4

� �
3

As a condensed phase, H2O (�) does not appear in the expression.

5.5 Changes in Equilibrium Constants
Despite their names, the numerical values of equilibrium constants can vary
depending on conditions, usually with varying temperatures. The effects of
temperature on equilibria are easy to model. In the last chapter, we derived the
Gibbs-Helmholtz equation as

�
�

�

T
���

�

T

G
��p

� ��
�

T

H
2�

When applied to a chemical reaction under conditions of standard pressure, it
can be rewritten it as

�
�

�

T
����rx

T
nG°
��p

� ��
�r

T
xn

2

H°
�

pO2�
p°

pNO�
p°

�NO3
�mNO3

�

��
m°

�H�mH�

�
m°

JQPJ

(aSO3
)3aFe2O3��

aFe2(SO4)3

JQPJ

132 C H A P T E R  5 Introduction to Chemical Equilibrium

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Since �rxnG° � �RT ln K, we can substitute for (�rxnG°/T) and get

�
�

�

T
�(�R ln K)p � ��

�r

T
xn

2

H°
�

R is a constant, and the two negative signs cancel. This equation rearranges to
yield the van’t Hoff equation:

�
�

�

ln

T

K
� � �

�

R
rx

T
nH

2

°
� (5.18)

A qualitative description of the changes in K depends on the sign of the en-
thalpy of reaction. If �rxnH is positive, then K increases with increasing T and
decreases with decreasing T. Endothermic reactions therefore shift towards
products with increasing temperatures. If �rxnH is negative, increasing tem-
peratures decrease the value of K, and vice versa. Exothermic reactions there-
fore shift toward reactants with increasing temperatures. Both qualitative
trends are consistent with Le Chatelier’s principle, the idea that equilibria that
are stressed will shift in the direction that minimizes the stress.

A mathematically equivalent form of the van’t Hoff equation is

�
�

�

(1

ln

/T

K

)
� � ��

�rx

R
n H°
� (5.19)

This is useful because it implies that a plot of ln K versus 1/T has a slope of
�(�rxnH °)/R. Values of �rxnH can be determined graphically by measuring
equilibrium constants versus temperature. (Compare this with the analogous
plot of the Gibbs-Helmholtz equation. What differences and similarities are
there in the two plots?) Figure 5.4 shows an example of such a plot.

A more predictive form of the van’t Hoff equation can be found by moving
the temperature variables to one side of equation 5.18 and integrating both
sides:

d ln K � �
�r

R
x

T
nH

2

°
�dT

�
K1

K2

d ln K � �
T1

T2

�
�

R
rx

T
nH

2

°
�dT
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Figure 5.4 Plot of the van’t Hoff equation as given in equation 5.19. Plots like this are one
graphical way of determining �rxnH.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



If �rxnH° is assumed to not vary over the temperature range, it can be removed
from the integral along with R, and the expression becomes

ln �
K

K
2

1

� � �
�rx

R
nH°
� ��

T

1

1

� � �
T

1

2

�� (5.20)

Using this expression, we can estimate the values of equilibrium constants at
different temperatures, knowing the standard enthalpy change. Or, we can es-
timate the standard enthalpy change knowing the equilibrium constant at two
different temperatures, rather than plotting data as suggested by equation 5.19.

Example 5.10
The dimerization of a protein has the following equilibrium constants at the
given temperatures: K (4°C) � 1.3 � 107, K (15°C) � 1.5 � 107. Estimate
the standard enthalpy of reaction for this process.

Solution
Using equation 5.20 and remembering to convert our temperatures into
kelvins:

ln �
1

1

.

.

3

5

�

�

1

1

0

0

7

7� � ��28

1

8K
� � �

27

1

7 K
��

Solving for the enthalpy of reaction:

�rxnH° � 8630 J/mol � 8.63 kJ/mol

How do we rationalize the effect of pressure on an equilibrium? Let us con-
sider a simple gas-phase reaction between NO2 and N2O4:

2NO2 N2O4

The equilibrium constant expression for this reaction is

K �

If the volume is decreased isothermally, the pressures of both NO2 and N2O4

increase. But the value of the equilibrium constant doesn’t change! Because the
partial pressure in the denominator is squared as a result of the stoichiometry
of the expression, the denominator increases faster relative to the numerator
of K as the volume is decreased. In order to compensate, the denominator has
to decrease its relative value, and the numerator has to increase its relative
value, in order for K to remain constant. In terms of the reaction, this means
that the partial pressure of N2O4 (the product) goes up and the partial pres-
sure of NO2 (the reactant) goes down. Generally speaking, the equilibrium
shifts toward the side of the reaction that has the lower number of gas mole-
cules; this is the simple expression of the Le Chatelier principle for pressure
effects. Inversely, lowering the pressure (for example, by increasing the volume
isothermally) will shift the reaction to the side with more gas molecules.

Example 5.11
In Example 5.6, the equilibrium partial pressures of I2 and I in the gas phase
were 0.235 and 0.515 atm, with an equilibrium constant value of 1.13. Suppose

pN2O4
/p°

��
(pNO2

/p°)2

JQPJ

�rxnH°
��
8.314 �

mo
J
l�K
�
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the volume were suddenly decreased to 0.500 L at the same temperature, ef-
fectively doubling the pressure. The equilibrium then shifts to relieve the
stress of the increased pressure. What are the new equilibrium partial pres-
sures? Are the new values consistent with Le Chatelier’s principle?

Solution
If the pressure is suddenly decreased to 0.500 L isothermally, then the partial
pressures of I2 and I double to 0.470 and 1.030 atm, respectively. In response
to this stress, the equilibrium will shift to re-establish the proper value of the
equilibrium constant, which is 1.13. Our initial and equilibrium amounts are:

Pressure (atm) I2 2 I

Initial 0.470 1.030

Equilibrium 0.470 � x 1.030 � 2x

Notice in this example that we are working directly with partial pressures.
We can substitute the equilibrium partial pressures into the equilibrium con-
stant expression:

K � �
(p

p
I

I

/

2
/

p

p

°

°

)2

� � �
(1

0

.0

.4

3

7

0

0

�

�

2

x

x)2

� � 1.13

Using the known value for the equilibrium constant, we can simplify the
fraction and multiply through. Simplifying, we get the quadratic equation

4x 2 � 5.25x � 0.5298 � 0

which has two roots: x � 1.203 and x � 0.110. The first root is not physically
possible because then we would have a negative pressure for I. Thus, x � 0.110
is the only acceptable algebraic solution, and our final pressures are

pI � 1.030 � 2(0.110) � 0.810 atm

pI2
� 0.470 � 0.110 � 0.580 atm

You can verify that these values still give the correct equilibrium constant
value. Note that the partial pressure of I has gone down from its original, in-
stantaneously doubled pressure, and that the partial pressure of I2 has gone
up—in accordance with Le Chatelier’s principle.

Finally, let us note that if an inert gas is added to a gas-phase equilibrium,
one of two things happens depending on the conditions. If the addition of in-
ert gas does not change the partial pressures of the gas-phase species (say, the
total volume increases instead), the position of the equilibrium does not
change. However, if the inert gas pressure does change the partial pressures of
the gas-phase species, then the equilibrium position does change as illustrated
in Example 5.11.

5.6 Amino Acid Equilibria
As section 2.12 and Example 5.10 show, the principles of thermodynamics are
applicable even to the complex reactions that occur in living cells. The topic of
equilibrium is also applicable, even though living cells are not isolated or even
closed systems.

First, we should point out the seldom-recognized idea that most chemical
reactions in cells are not at chemical equilibrium. If an organism or cell were

QP
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at chemical equilibrium, it would be dead! Nevertheless, the concepts of equi-
librium are useful in biochemical reactions. Applications include equilibria of
weak acids and bases in aqueous solution, buffer equilibria, and temperature
effects on equilibrium, among others.

Amino acids contain the organic acid (or carboxyl) group, –COOH, and a
basic amino group, –NH2. The carboxyl group can ionize to –COO� and H�,
and the amino group can accept an H� and become the –NH3

� group. In solid
or neutral aqueous phase, the overall neutral amino acid is actually a doubly
charged species called a zwitterion:*

RC(NH2)COOH → RC(NH3
�)COO�

where R represents the different R groups that distinguish different amino
acids. For all amino acids, a series of equilibria between different ions will ex-
ist whose equilibrium extents depend on the presence (or absence) of free H�

ions from other sources (like other acids):

K1 K2
RC(NH3

�)COOH RC(NH3
�)COO� RC(NH2)COO� (5.21)

The equilibrium constant K1 is the equilibrium constant for the acid dissocia-
tion involved in the ionization of the –COOH group. The equilibrium constant
K2 is the equilibrium constant for the acid dissociation in the loss of H� from
the –NH3

� group. (The H� ions have been left out of equation 5.21 for clar-
ity.) The presence or absence of H�, though, will dictate the extent of each
equilibrium in equation 5.21.

For simplicity’s sake, typically the negative logarithm of the K values are tab-
ulated. The negative logarithm (base 10) of the equilibrium constant is labeled
the pK (spoken as “pea-kay”):

pK � �log K (5.22)

Values of the pK’s for the amino acids in proteins are listed in Table 5.1. When
the pH of the solution is such that the amino acid exists as the zwitterionic
form, this pH is called the isoelectric point of that amino acid. In many cases,
the isoelectric point is midway between the two pK’s, but for amino acids that
have other acidic or basic groups, this is not the case. As Table 5.1 indicates,
amino acids have varying behavior in aqueous solution. The point here is that
equilibrium processes are important for amino acid chemistry and, by exten-
sion, protein chemistry.

The concept of equilibrium is also important in biochemical processes such
as O2/CO2 exchange in hemoglobin (for example, see exercise 5.7 at the end of
this chapter), the binding of small molecules to DNA strands (as might occur
in the transcription process), and the interaction of substrates and enzymes.
Temperature effects are important in protein denaturation process. Clearly, the
ideas established in this chapter are widely applicable to all chemical reactions,
even very complex ones.

5.7 Summary
Chemical equilibrium is defined in terms of a minimum of Gibbs free energy
with respect to the extent of a reaction. Because the Gibbs free energy is related
to the chemical potential, we can use equations involving chemical potential to
derive some equations that relate to equilibrium and nonequilibrium conditions

JQPJJQPJ
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*The word zwitterion comes from the German word zwitter, meaning “hybrid.”

Table 5.1 pK values for amino acids

Amino acid pK1 pK2

Alanine 2.34 9.69

Arginine 2.17 9.04

Asparagine 2.02 8.80

Aspartic acid 1.88 9.60

Cysteine 1.96 10.28

Glutamic acid 2.19 9.67

Glutamine 2.17 9.13

Glycine 2.34 9.60

Histidine 1.82 9.17

Isoleucine 2.36 9.60

Leucine 2.36 9.60

Lysine 2.18 8.95

Methionine 2.28 9.21

Phenylalanine 1.83 9.13

Proline 1.99 10.60

Serine 2.21 9.15

Threonine 2.09 9.10

Tryptophan 2.83 9.39

Tyrosine 2.20 9.11

Valine 2.32 9.62
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of a chemical process. In these expressions, a reaction quotient appears, which
is a construction involving the reactants and products of the reaction. For gas-
phase reactions, the reaction quotient includes the partial pressures or fugaci-
ties of the species. By defining activity, we can expand the reaction quotient to
include solids and liquids (although their activities are close enough to 1 that
their influence on Q can be ignored) and solutions. For solutions, the molal
concentration of solutes is the convenient variable for Q.

At equilibrium, Q has a value that is characteristic of the chemical reaction,
because there is a characteristic change in the Gibbs free energy for any par-
ticular chemical reaction. This characteristic value of Q is called the equilib-
rium constant, K. Equilibrium constants are convenient measures of the extent
of the reaction at the minimum Gibbs free energy, that is, at equilibrium.
Equilibrium constants can change with changes in conditions of a system, but
the mathematics of thermodynamics gives us tools to model those changes.
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5.2 & 5.3 Equilibrium and 
Chemical Equilibrium

5.1. Can a battery that has a voltage be considered a system
at equilibrium? How about a dead battery? Justify each con-
clusion.

5.2. What is the difference between a static equilibrium and
a dynamic equilibrium? Give examples different from the ex-
amples in the text. What is similar for the two types of equi-
libria?

5.3. Which system in each pair best represents equilibrium
species under standard conditions of temperature and pres-
sure? Be prepared to justify your choice.

(a) Rb & H2O or Rb� & OH� & H2

(b) Na & Cl2 or NaCl (crystal)

(c) HCl & H2O or H� (aq) & Cl� (aq)

(d) C (diamond) or C (graphite)

5.4. Supersaturated solutions can be made in which more
solute is dissolved in solution than would normally dissolve.
These solutions are inherently unstable, however. A seed crys-
tal of calcium acetate, Ca(C2H3O2)2, precipitates the excess
solute from a supersaturated solution of calcium acetate. When
the excess solute has finished precipitating, a chemical equi-
librium is established. Write the chemical equations for that
equilibrium, and write the net chemical reaction that occurs
overall.

5.5. Following is a chemical reaction between zinc metal and
hydrochloric acid in a closed system:

Zn (s) � 2HCl (aq) → H2 (g) � ZnCl2 (aq)

If the initial amounts present are 100.0 g of zinc and 150.0 mL
of 2.25 M HCl, determine maximum and minimum possible
values of 	 for this reaction.

5.6. The following is a reaction with its initial conditions
(amounts of each substance):

6H2 � P4 → 4PH3

10.0 mol 3.0 mol 3.5 mol

(a) Determine 	 if 1.5 mol of P4 reacts to make products. 

(b) Is it possible for 	 to equal 3 in this case? Why or why not?

5.7. The hemoglobin in blood establishes an equilibrium with
oxygen gas very quickly. The equilibrium can be represented as

heme � O2 heme�O2

where “heme” stands for hemoglobin and “heme�O2” stands
for the hemoglobin-oxygen complex. The value for the equi-
librium constant for this reaction is about 9.2 � 1018. Carbon
monoxide also binds with hemoglobin by the following re-
action:

heme � CO heme�CO

This reaction has an equilibrium constant of 2.3 � 1023. Which
reaction’s equilibrium lies farther toward products? Does your
answer justify the toxicity of CO?

JQPJ

JQPJ

5.8. 1.00 g of sucrose, C12H22O11, dissolves completely in
100.0 mL of water. However, if 200.0 g of sucrose were added
to the same amount of water, only 164.0 g would dissolve.
Write the equilibria reactions for both systems and comment
on their differences.

5.9. If N2, H2, and NH3 gases were contained in a system
such that the total pressure were 100.0 bar, then the p° terms
in equation 5.9 would be equal to 100.0 bar. True or false?
Explain your answer.

5.10. Determine �rxnG° and �rxnG for the following reaction
at 25°C, using data in Appendix 2. The partial pressures of the
products and reactants are given in the chemical equation.

2CO (g, 0.650 bar) � O2 (g, 34.0 bar)
2CO2 (g, 0.0250 bar)

5.11. In atmospheric chemistry, the following chemical reac-
tion converts SO2, the predominant oxide of sulfur that comes
from combustion of S-containing materials, to SO3, which can
combine with H2O to make sulfuric acid (and thus contribute
to acid rain):

SO2 (g) � �
1
2

�O2 (g) SO3 (�)

(a) Write the expression for K for this equilibrium. (b) Calculate
the value of �G° for this equilibrium using the �fG° values in
Appendix 2. (c) Calculate the value of K for this equilibrium.
(d) If 1.00 bar of SO2 and 1.00 bar of O2 are enclosed in a
system in the presence of some SO3 liquid, in which direction
would the equilibrium move?

5.12. Assume that a reaction exists such that equilibrium oc-
curs when the partial pressures of the reactants and products
are all 1 bar. If the volume of the system were doubled, all of
the partial pressures would be 0.5 bar. Would the system still
be at equilibrium? Why or why not?

5.13. Show that K � K1/2 if the coefficients of a balanced
chemical reaction are all divided by two. Give an example.

5.14. The balanced chemical reaction for the formation of
ammonia from its elements is

N2 � 3H2 (g) 2NH3 (g)

(a) What is �rxnG° for this reaction? (b) What is �rxnG for this
reaction if all species have a partial pressure of 0.500 bar at
25°C? Assume that the fugacities are equal to the partial pres-
sures.

5.15. The answers in exercise 5.14 should show that chang-
ing the partial pressure changes the instantaneous �rxnG even
though the ratio of partial pressures stays the same (that is,
1�1�1 for standard pressure conditions is equal to 0.5�0.5�0.5
for the given conditions). This suggests the interesting possi-
bility that at some equal partial pressure p of all components,
the reaction reverses; that is, the instantaneous �rxnG becomes
negative. Determine p for this equilibrium. (You will have to
use the properties of logarithms as mentioned in the chapter
to find the answer.) Is your answer of value to those who work
with gases at high pressures, or at low pressures? What is your
reasoning?

JQPJ

JQPJ

JQPJ
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5.16. At a high enough temperature, the equilibrium con-
stant is 4.00 for the gas-phase isotope exchange reaction

H2 � D2 2 HD

Calculate the equilibrium partial pressures if 0.50 atm of H2

and 0.10 atm of D2 were initially present in a closed system.
What is the extent of reaction at equilibrium?

5.17. If 0.50 atm of krypton were part of the equilibrium in
exercise 5.16, would the value of the equilibrium constant be
the same or different if the volume were kept the same? Is this
case different from Examples 5.6 and 5.11? 

5.18. Nitrogen dioxide, NO2, dimerizes easily to form dinitro-
gen tetroxide, N2O4:

2NO2 (g) N2O4 (g)

(a) Using data in Appendix 2, calculate �rxnG° and K for this
equilibrium. 

(b) Calculate 	 for this equilibrium if 1.00 mol NO2 were pre-
sent initially and allowed to come to equilibrium with the
dimer in a 20.0-L system. 

5.19. Another nitrogen-oxygen reaction of some importance is

2NO2 (g) � H2O (g) → HNO3 (g) � HNO2 (g)

which is thought to be the primary reaction involved in the
production of acid rain. Determine �rxnG° and K for this re-
action.

5.20. Suppose the reaction in Example 5.5 occurred in a 
20.0-L vessel. Would the amounts at equilibrium be different?
How about 	 at equilibrium?

5.4 Solutions and Condensed Phases

5.21. Write proper expressions for the equilibrium constant
for the following reactions.

(a) PbCl2 (s) Pb2� (aq) � 2Cl� (aq)

(b) HNO2 (aq) H� (aq) � NO2
� (aq)

(c) CaCO3 (s) � H2C2O4 (aq)
CaC2O4 (s) � H2O (�) � CO2 (g)

5.22. The �fG° of diamond, a crystalline form of elemental
carbon, is �2.90 kJ/mol at 25.0°C. Give the equilibrium con-
stant for the reaction

C (s, graphite) C (s, diamond)

On the basis of your answer, speculate on the natural occur-
rence of diamond.

5.23. The densities of graphite and diamond are 2.25 and
3.51 g/cm3, respectively. Using the expression

�rxnG � �rxnG° � RT ln �
a
a

g

d

r

ia

a
�

and equation 5.14, estimate the pressure necessary for �rxnG
to equal zero. What is the stable high-pressure solid phase of
carbon?

5.24. Buckminsterfullerene, C60, is a spherical molecule com-
posed of hexagons and pentagons of carbon atoms reminis-

JQPJ

QP
QP
QP

JQPJ

JQPJ

cent of a geodesic dome. It is currently the focus of much
scientific study. For C60, �fG° is 23.98 kJ/mol at 25.0°. Write
the balanced formation reaction for 1 mole of buckminster-
fullerene and calculate the equilibrium constant for the for-
mation reaction.

5.25. The bisulfate (or hydrogen sulfate) anion, HSO4
�, is a

weak acid. The equilibrium constant for the aqueous acid re-
action

HSO4
� H� � SO4

2�

is 1.2 � 10�2. 

(a) Calculate �G° for this equilibrium. 

(b) At low concentrations, activity coefficients are approxi-
mately 1 and the activity of a dissolved solute equals its mo-
lality. Determine the equilibrium molalities of a 0.010-molal
solution of sodium hydrogen sulfate.

5.5 Changes in Equilibrium Constants

5.26. For the reaction

2Na (g) Na2 (g)

the following values of K have been determined (C. T. Ewing
et al., J. Chem. Phys. 1967, 71, 473):

T (K) K
900 1.32

1000 0.47
1100 0.21
1200 0.10

From these data, estimate �rxnH° for the reaction.

5.27. For a reaction whose standard enthalpy change is
�100.0 kJ, what temperature is needed to double the equi-
librium constant from its value at 298 K? What temperature is
needed to increase the equilibrium constant by a factor of 10?
What if the standard enthalpy change were �20.0 kJ?

5.28. Consider the following equilibrium:

2SO2 (g) � O2 (g) 2SO3 (g)

What is the effect on the equilibrium of each of the following
changes? (You may need to calculate some standard enthalpy
or Gibbs free energy changes to answer these.) (a) The pres-
sure is increased by decreasing the volume. (b) The tempera-
ture is decreased. (c) The pressure is increased by the addi-
tion of nitrogen gas, N2.

5.29. Show that equations 5.18 and 5.19 are equivalent.

5.6 Amino Acid Equilibria

5.30. Of the amino acids listed in Table 5.1, which one should
have an isoelectric point closest to 7, the pH of neutral water?

5.31. Determine the concentrations of the three ionic forms
of glycine present if 1.0 mol of glycine is used to make 1.00 L
of aqueous solution. pK1 � 2.34, pK2 � 9.60. Do you need to
make any other assumptions to simplify the calculation?

JQPJ

JQPJ

JQPJ
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5.32. Consider the balanced chemical reaction

CH4 (g) � Br2 (g) → CH2Br2 (g) � 2HBr (g)

A system starts with 10.0 mol CH4 and 3.75 mol Br2, and
0.00 mol of the two products. Plot 	 versus amount of each
product and reactant. Comment on the differences in the plot.

5.33. For the gas-phase reaction

2H2 � O2 → 2H2O

�rxnG° is �457.18 kJ. What does a graph of �G versus ln Q
(ln Q varying from �50 to �50) look like at 25°C? Change the

temperature and find out if the graph looks substantially dif-
ferent at different temperatures.

5.34. Simple equilibrium problems can get mathematically
complicated when the coefficients are different small whole
numbers. For the balanced reaction

2SO3 (g) → S2 (g) � 3O2 (g)

the equilibrium constant has a value of 4.33 � 10�2 at some
elevated temperature. Calculate the equilibrium concentra-
tions of all species if the initial amount of SO3 were (a) 0.150
atm, (b) 0.100 atm, (c) 0.001 atm.
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THE PREVIOUS CHAPTER introduced some of the concepts of equilib-
rium. This chapter and the next will expand on those concepts as we

apply them to certain types of chemical systems. Here, we focus on the sim-
plest of systems, those that consist of a single chemical component. It may
seem strange that we would spend much effort on such simple systems, but
there is a reason. The ideas we develop using simple systems apply to more
complicated systems. The more thoroughly the basic concepts are developed,
the more easily they can be applied to real systems.

6.1 Synopsis
Very few kinds of equilibria can be considered for single-component systems,
but they provide the basis for our understanding of the equilibria of multi-
component systems. First, we will define component and phase. We will use
some of the mathematics from the previous chapter to derive new expressions
that we can use to understand the equilibria of single-component systems. For
such simple systems, graphical methods of illustrating these equilibria—phase
diagrams—are useful. We will explore some simple examples of phase dia-
grams and discuss the information that they provide. Finally, we will introduce
a simplifying equation called the Gibbs phase rule, which is useful for multi-
component systems as well.

6.2 A Single-Component System
Suppose you have a system you want to describe thermodynamically. How do
you do it? Perhaps most important in your description is what’s in the system;
that is, the components of the system. For our purposes, a component is de-
fined as a unique chemical substance that has definite properties. For example,
a system composed of pure UF6 has a single chemical component: uranium
hexafluoride. Granted, UF6 is composed of two elements, uranium and fluo-
rine, but each element lost its individual identity when the compound UF6 was
formed. The phrase “chemically homogeneous” can be used to describe single-
component systems.

6.1 Synopsis
6.2 A Single-Component System
6.3 Phase Transitions
6.4 The Clapeyron Equation
6.5 The Clausius-Clapeyron

Equation
6.6 Phase Diagrams and the 

Phase Rule
6.7 Natural Variables and

Chemical Potential
6.8 Summary

Equilibria in 
Single-Component 
Systems
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On the other hand, a mixture of iron filings and sulfur powder is composed
of the two components iron and sulfur. The mixture may look like a single
component, but a close enough inspection reveals two distinct materials in the
system that have their own unique properties. This Fe/S mixture is therefore a
two-component system. The phrase “chemically inhomogeneous” is used to de-
scribe multicomponent systems.

A solution is a homogeneous mixture. Examples of solutions include salt
water [NaCl (s) dissolved in H2O] and the alloy brass, which is a solid solution
of copper and zinc. Solutions are a little more difficult to consider, because the
isolated components might not have the same chemical identity when in solu-
tion. For example, NaCl (s) and H2O (�) are two chemical components, but
NaCl (aq) consists of Na� (aq) and Cl� (aq) ions as well as excess H2O sol-
vent. When we use solutions as an example of a system, we will be explicit in
defining the components of the system. Even though they are homogeneous,
properties of solutions will not be considered in this chapter.

In this chapter, we are considering single-component systems—that is, sys-
tems that have the same chemical composition throughout. However, there is
another way to describe the state of the system in addition to its chemical com-
position. We recognize that matter can exist in different physical forms. A phase
is a portion of matter that has a uniform physical state and is distinctly sepa-
rated from other phases. Chemically, we recognize the solid, liquid, and gas
phases. We also recognize that one chemical substance may have more than
one solid form, and that each form is a different solid phase. Single-component
systems can exist in one or more phases simultaneously, and we will apply the
concepts of equilibrium from the last chapter to understanding the phase tran-
sitions in these systems.

Example 6.1
Identify the number of components and phases that exist in each system.
Assume no component other than the ones given exists in each system.
a. A system containing ice and water
b. A 50�50 solution of water and ethanol, C2H5OH
c. A pressurized tank of carbon dioxide that contains both liquid and gas
d. A bomb calorimeter containing a pellet of benzoic acid, C6H5COOH (s),
and 25.0 bar of O2 gas
e. The same bomb calorimeter after the explosion, in which the benzoic acid
is converted to CO2 (g) and H2O (�), and assuming excess oxygen

Solution
a. Ice water contains H2O in both solid and liquid forms, so there is a single
component and two phases.
b. Both water and ethanol are liquids, so there is one phase of two com-
ponents.
c. Just like the ice water, the pressurized carbon dioxide with liquid and gas
in a tank consists of a single chemical component in two phases.
d. In an unexploded bomb calorimeter, the solid pellet and oxygen gas are
two components and two phases.
e. After the explosion, the benzoic acid combusts to make carbon dioxide gas
and liquid water. In the presence of excess O2, there are therefore three com-
ponents in two phases.
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Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Now we consider something that is usually so obvious to us that we do not
really think about it. The stable phase of a single-component system depends
on the conditions of the system. Let us use water as an example. When it is cold
outside, it might snow (we see solid H2O), but when it’s warmer it rains (we
see liquid H2O). To make spaghetti, we have to boil water (make gaseous H2O).
The temperature of the system determines the stable phase of the H2O. This
idea is obvious to most of us. What might not be so obvious is that the phase
of any single-component system depends on all of the conditions of the sys-
tem. Those conditions are the pressure, temperature, volume, and amount of
material in the system.

A phase transition occurs when a pure component changes from one phase
to another. Table 6.1 lists the different types of phase transitions, most of which
should already be familiar to you. There are also phase transitions between dif-
ferent solid forms of a chemical component, which is a characteristic called
polymorphism. For example, elemental carbon exists as graphite or diamond,
and the conditions for phase transitions between the two forms are well known.
Solid H2O can actually exist as at least six structurally different solids, de-
pending on the temperature and pressure. We say that water has at least six
polymorphs. (In application to elements, we use the word allotrope instead of
polymorph. Graphite and diamond are two allotropes of the element carbon.)
In mineral form, calcium carbonate exists either as aragonite or calcite, de-
pending on the crystalline form of the solid.

Under most conditions of constant volume, amount, pressure, and temper-
ature, a single-component system has a unique stable phase. For example, a
liter of H2O at atmospheric pressure and 25°C is normally in the liquid phase.
However, under the same conditions of pressure but at 125°C, a liter of H2O
would exist as a gas. These are the phases that are thermodynamically stable
under these conditions.

For an isolated single-component system having fixed volume and amount,
at certain values of pressure and temperature, more than one phase can exist
simultaneously in the system. If the state variables of the system are constant,
then the system is at equilibrium. Therefore, it is possible for two or more phases
to exist in a system at equilibrium.

If the system is not isolated but simply closed, then heat can enter or leave
the system. In that case, the relative amounts of each phase will change. For ex-
ample, in a system containing solid dimethyl sulfoxide (DMSO) and liquid
DMSO at 18.4°C and atmospheric pressure, when heat is added to the system,
some of the solid phase will melt to become part of the liquid phase. The sys-
tem is still at chemical equilibrium, even though the relative amounts of phases
are changing (which is a physical change). This is true of other phase transi-
tions as well. At atmospheric pressure and 189°C, liquid DMSO can exist in
equilibrium with gaseous DMSO. Add or remove heat, and DMSO will go from
liquid to gas phase or from gas to liquid phase, respectively, while maintaining
a chemical equilibrium.

For a given volume and amount, the temperature at which these equilibria
can occur varies with pressure, and vice versa. It is therefore convenient to
identify certain benchmark conditions. The normal melting point is that tem-
perature at which a solid can exist in equilibrium with its liquid phase at 1 atm
pressure.* Because the solid and liquid phases are so condensed, the melting
point of single components are affected only by large pressure changes. The

6.2 A Single-Component System 143

Table 6.1 Phase transitionsa

Term Transition

Melting (or fusion) Solid → liquid

Boiling (or vaporization) Liquid →gas

Sublimation Solid → gas

Condensation Gas → liquid

Condensation (or deposition) Gas → solid

Solidification (or freezing) Liquid → solid
aThere is no specific term for a solid phase → solid phase
transition between two solid forms of the same component.

*We note the disparity that “normal” boiling and melting points are defined in terms of
a non-SI unit.
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normal boiling point is that temperature at which a liquid can exist in equilib-
rium with its gas phase at 1 atm. Since the behavior of one of the phases—the
gas phase—is strongly dependent on the pressure, boiling points can vary
greatly with even small pressure changes. Therefore, we need to be certain that
we know the pressure when we discuss a boiling, sublimation, or condensation
process.

If the presence of two different phases in a single-component, closed sys-
tem represents a process at equilibrium, then we can use some of the ideas
and equations from the previous chapter. For example, consider the chemical
potentials of each phase for, say, a solid-liquid equilibrium as illustrated in
Figure 6.1. We are assuming constant pressure and temperature. The natural
variable equation for G, equation 4.48, must be satisfied, so we have

dG � �S dT � V dp � �
0

phases

�phase � dnphase

At equilibrium, dG is equal to zero at constant T and p. The dT and dp terms in
the above equation are also zero. Therefore, for this phase equilibrium, we have

�
0

phases

�phase � dnphase � 0 (6.1)

For our solid-liquid equilibrium, this expands into two terms:

�solid � dnsolid � �liquid � dnliquid � 0

For a single-component system, it should be obvious that if the equilibrium
changes infinitesimally, then the amount of change in one phase equals the
amount of change in the other phase. However, as one goes down, the other
goes up, so there is also a negative numerical relationship between the two
infinitesimal changes. We write this mathematically as

dnliquid � �dnsolid (6.2)

We can substitute for either of the infinitesimal changes. In terms of the solid
phase, we get

�solid dnsolid � �liquid(�dnsolid) � 0

�solid dnsolid � �liquid dnsolid � 0

(�solid � �liquid) dnsolid � 0

Although the infinitesimal dnsolid is indeed infinitesimally small, it is not zero.
In order for this equation to equal zero, the expression inside the parentheses
must therefore be zero:

�solid � �liquid � 0

We typically write that at the equilibrium between the solid and liquid phase,

�solid � �liquid (6.3)

That is, the chemical potentials of the two phases are equal. We expand on this
theme and state that at equilibrium, the chemical potentials of multiple phases of
the same component are equal.

Since we are considering a closed system with a single component, there are
two other implicit conditions for a system at equilibrium:

Tphase1 � Tphase2

pphase1 � pphase2

144 C H A P T E R  6 Equilibria in Single-Component Systems

Figure 6.1 Two different phases of the same
component can exist together in equilibrium with
each other. However, the conditions at which this
can occur are highly specific.
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If an equilibrium is established and then the temperature or the pressure is
changed, the equilibrium must shift: that is, the relative amounts of the phases
must change until equation 6.3 is re-established.

What if the chemical potentials of the phases are not equal? Then one (or
more) of the phases is not the stable phase under those conditions. The phase
with the lower chemical potential is the more stable phase. For example, at
�10°C, solid H2O has a lower chemical potential than liquid H2O, whereas at
�10°C, liquid H2O has a lower chemical potential than solid H2O. However,
at 0°C at normal pressure, both solid and liquid H2O have the same chemical
potential. They can therefore exist together in the same system, at equilibrium.

Example 6.2
Determine whether the chemical potentials of the two phases listed are the
same or different. If they are different, state which one is lower than the other.
a. Liquid mercury, Hg (�), or solid mercury, Hg (s), at its normal melting
point of �38.9°C
b. H2O (�) or H2O (g) at 99°C and 1 atm
c. H2O (�) or H2O (g) at 100°C and 1 atm
d. H2O (�) or H2O (g) at 101°C and 1 atm
e. Solid lithium chloride, LiCl, or gaseous LiCl at 2000°C and normal pres-
sure (The boiling point of LiCl is about 1350°C.)
f. Oxygen, O2, or ozone, O3, at STP

Solution
a. At the normal melting point, both solid and liquid phases can exist in equi-
librium. Therefore, the two chemical potentials are equal.
b. At 99°C, the liquid phase of water is the stable phase, so �H2O,� � �H2O,g.
c. 100°C is the normal boiling point of water, so at that temperature, the
chemical potentials are equal.
d. At 101°C, the gas phase is the stable phase for H2O. Therefore, �H2O,g �
�H2O,�. (See what a difference 2° makes?)
e. Since the stated temperature is above the boiling point of LiCl, the chem-
ical potential of gas-phase LiCl is lower than solid-phase LiCl.
f. Since diatomic oxygen is the stablest allotrope of oxygen, we expect that
�O2

� �O3
. Note that this example doesn’t involve a phase transition.

6.3 Phase Transitions
Having established that different phases of the same component can exist si-
multaneously at equilibrium, we might ask what affects that equilibrium.
Among other things, the movement of heat into or out of the system affects
the equilibrium. Depending on the direction of heat transfer, one phase grows
in amount while the other phase simultaneously decreases in amount. This is
what happens in a phase transition. Most people are probably aware of the fol-
lowing processes that occur with the stated direction of heat flow:

solid liquid

liquid gas (6.4)

solid gasJJKJJJJQPJKJJJJJ
heat in (endothermic)

heat out (exothermic)

JJKJJJJQPJKJJJJJ
heat in (endothermic)

heat out (exothermic)

JJKJJJJQPJKJJJJJ
heat in (endothermic)

heat out (exothermic)
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During the phase transition, the temperature of the system remains con-
stant: phase transitions are isothermal processes. Only when all of one phase
has completely changed to another phase will the heat act to change the tem-
perature of the system. Because each chemical component requires a charac-
teristic amount of heat for a fusion (or melting), vaporization, or sublimation
process, we can define heats of fusion, �fusH, heats of vaporization, �vapH, and
heats of sublimation, �subH, for pure compounds. Since these processes usu-
ally occur under conditions of constant pressure, these “heats” are in fact en-
thalpies of fusion, vaporization, or sublimation. Many of these changes are ac-
companied by a change in volume, which can be large for transitions involving
a gas phase.

Enthalpies of phase transitions are formally defined for the endothermic
process. Hence they are all positive numbers. But, since each process above
occurs under the same conditions except for the direction of heat flow, these
enthalpies of phase transition also apply to phase transitions in the opposite
direction. That is, the heat of fusion is used for the freezing process as well as
the melting process. A heat of vaporization can be used for a vaporization or
the reverse condensation process, and so on. For the exothermic processes, the
negative of the enthalpy is used, as Hess’s law requires us to negate the enthalpy
change when we consider the reverse process.

For a phase transition, the amount of heat absorbed or given off is given by
the well-known expression

q � m � �transH (6.5)

where m is the mass of the component in the system. We are using the “trans”
label to stand for any phase transition: fusion, vaporization, or sublimation.
Typically, it is the problem solver’s responsibility to understand the inherent
direction of heat flow, that is, exothermic or endothermic, and use the appro-
priate sign on �transH.

In terms of moles, equation 6.5 is written as

q � n � �transH�

The units on the enthalpy of phase transition are typically kJ/mol or kJ/g.
A short table of enthalpies of phase transition is given in Table 6.2. Note

their units listed in the footnote, and be sure to express the amounts of the
components in the appropriate units when working problems.

We must remember that phase transitions themselves are inherently
isothermal. Furthermore, we have already established that at the melting point
or the boiling point of a substance,

�phase1 � �phase2

This implies that for a system where the amount of material is constant and
both phases exist in equilibrium,

�transG � 0 (6.6)

This is applicable only to the isothermal phase transition. If the temperature
changes from the normal melting or boiling point of the substance, equation
6.6 does not apply. For example, for the isothermal phase transition

H2O (�, 100°C) → H2O (g, 100°C)

the �G value is zero. However, for the nonisothermal process

H2O (�, 99°C) → H2O (g, 101°C)
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the �G value is not zero. This process is not just the phase transition. It in-
cludes a change in temperature as well.

One consequence of equation 6.6 comes from the equation for the isother-
mal �G:

�G � �H � T �S

If �G is zero for an isothermal phase transition, then we have

0 � �transH � Ttrans � �transS

Rewriting, we have

�transS � 	
�

T
tr

t

a

r

n

an

sH

s

	 (6.7)

Since �transH represents the �vapH and �fusH values that are commonly tabu-
lated, it is relatively easy to calculate the change in entropy that accompanies a
phase transition. However, �vapH and �fusH values are usually tabulated as
positive numbers. This implies an endothermic process. Only fusion and va-
porization are endothermic; condensation phase transitions (gas to liquid and
gas to solid) and crystallization or solidification phase transitions are exother-
mic. When using equation 6.7 to calculate the change in entropy, the endo- or
exothermicity of the process must be determined to get the correct sign on
�transS. Example 6.3 illustrates this.

Example 6.3
Calculate the change in entropy for the following phase transitions.
a. One mole of mercury liquid, Hg, freezes at its normal melting point of
�38.9°C. The heat of fusion of mercury is 2.33 kJ/mol.
b. One mole of carbon tetrachloride, CCl4, vaporizes at its normal boiling point
of 77.0°C. The heat of vaporization of carbon tetrachloride is 29.89 kJ/mol.
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Table 6.2 Values for enthalpy and entropy of phase transitionsa

Substance �fusH �vapH �subH �fusS �vapS �subS

Acetic acid 11.7 23.7 51.6 (15°C) 40.4 61.9 107.6 (�35 � 10°C)

Ammonia 5.652 23.35 28.93 97.4 

Argon 1.183 6.469 74.8 

Benzene 9.9 30.7 33.6 (1°C) 38.0 87.2 133 (�30 � 5°C)

Carbon dioxide 8.33 15.82 25.23 

Dimethyl sulfoxide 13.9 43.1 52.9 (4°) 

Ethanol 5.0 38.6 42.3 (1°C) 109.8 

Gallium 5.59 270.3 286.2 18.44 

Helium 0.0138 0.0817 4.8 19.9 

Hydrogen 0.117 0.904 8.3 44.6 

Iodine 15.52 41.95 62.42 

Mercury 2.2953 51.9 61.38 92.92 

Methane 0.94 8.2 73.2 91.3 (� �190°C)

Naphthalene 19.0 43.3 72.6 (10°C) 82.6 167

Oxygen 0.444 6.820 8.204 8.2 75.6

Water 6.009 40.66 50.92 22.0 109.1 

Sources: J. A. Dean, ed. Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, New York, 1992; D. R. Lide, ed., CRC
Handbook of Chemistry and Physics, 82nd ed., CRC Press, Boca Raton, Fla., 2001.
aAll �H’s are in kJ/mol and all �S’s are in J/(mol�K). All values are applicable to the normal melting and boiling
points of the substances. Sublimation data are applicable to standard temperature unless otherwise noted.
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Solution
a. The specific chemical process that is the freezing of mercury is

Hg (�) → Hg (s)

which occurs at �38.9°C or 234.3 K. When the liquid phase goes to the solid
phase, heat must be lost, so the process is inherently exothermic. Therefore
�transH is actually �2.33 kJ/mol, or �2330 J/mol (not the positive 2.33 kJ/mol
given for �fusH for Hg). To determine the entropy change, we have

�S � 	
�2

2

3

3

3

4

0

.3

J/

K

mol
	 � �9.94 	

mo

J

l�K
	

The entropy change is negative, meaning the entropy decreases. This is what’s
expected for a liquid-to-solid phase transition.
b. The vaporization of carbon tetrachloride is represented by the reaction

CCl4 (�) → CCl4 (g)

which at normal atmospheric pressure occurs at 77.0°C, or 350.2 K. In order
to go from the liquid phase to the gas phase, energy must be put into the
system, which means that this change is inherently endothermic. Therefore
we can use �vapH directly. For the entropy change, we have

�S � 	
�29

3

,

5

8

0

9

.

0

2

J

K

/mol
	 � �85.35 	

mo

J

l�K
	

It was noted as early as 1884 that many compounds have a �vapS of around
85 J/mol�K. This phenomenon is called Trouton’s rule. Deviations from
Trouton’s rule are marked for substances that have strong intermolecular in-
teractions, like hydrogen bonding. Table 6.2 gives a list of �vapH and �vapS
values for some compounds. Hydrogen and helium have very small entropies
of vaporization. Compounds that have strong hydrogen bonding, like water
(H2O) and ethanol (C2H5OH), have higher entropies of vaporization than ex-
pected. Table 6.2 also lists �fusH and �fusS values for these compounds.

6.4 The Clapeyron Equation
The previous discussion detailed general trends in the behavior of equilibria.
In order to get more quantitative, we need to derive some new expressions.

Equation 6.3, when generalized, states that the chemical potential of two
phases of the same component are equal at equilibrium:

�phase1 � �phase2

By analogy to the natural variable expression for G, at a constant total amount
of substance the infinitesimal change in �, d�, as pressure and temperature
change infinitesimally is given by the equation

d� � �S� dT � V� dp (6.8)

(Compare this to equation 4.17.) If the multiphase equilibrium experienced an
infinitesimal change in T or p, the equilibrium would shift infinitesimally but
would still be at equilibrium. This means that the change in �phase1 would
equal the change in �phase2. That is,

d�phase1 � d�phase2
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and using equation 6.8, we get

�S�phase1 dT � V�phase1 dp � �S�phase2 dT � V�phase2 dp

Because the temperature change dT and pressure change dp are experienced by
both phases simultaneously, there is no need to put labels on them. However,
each phase will have its own characteristic molar entropy and molar volume,
so each S� and V� must have a label to distinguish it. We can rearrange to col-
lect the dp terms and the dT terms on opposite sides:

(V�phase2 � V�phase1) dp � (S�phase2 � S�phase1) dT

We write the differences inside the parentheses as �V� and �S�, since they rep-
resent the changes in molar volume and entropy from phase 1 to phase 2.
Substituting,

�V� dp � �S� dT

which is rearranged to get the following equation:

	
d

d

T

p
	 � 	

�

�

V

S

�
�
	 (6.9)

This is called the Clapeyron equation, after Benoit P. E. Clapeyron, a French
engineer who worked out this relationship in 1834. (See Figure 6.2.) The
Clapeyron equation relates pressure and temperature changes for all phase
equilibria in terms of the changes in molar volumes and entropies of the
phases involved. It is applicable to any phase equilibrium. It is sometimes es-
timated as

	
�

�

T

p
	 � 	

�

�

V

S

�
�
	 (6.10)

One very useful application of the Clapeyron equation is to estimate the pres-
sures necessary to shift phase equilibria to other temperatures. The following
example illustrates this.

Example 6.4
Estimate the pressure necessary to melt water at �10°C if the molar volume
of liquid water is 18.01 mL and the molar volume of ice is 19.64 mL. �S� for
the process is �22.04 J/K and you can assume that these values remain rel-
atively constant with temperature. You will need this conversion factor:
1 L�bar � 100 J.

Solution
The change in molar volume for the reaction

H2O (s) H2O (�)

is 18.01 mL � 19.64 mL � �1.63 mL. In units of liters, this is �1.63 

10�3 L. �T for this process is �10°C, which is also �10 K. (Recall that
changes in temperature have the same magnitude in kelvins as they have
in degrees Celsius.) �S� is given, so we use the Clapeyron equation and get

	
�

�

10

p

K
	 �

22.04 	
K
J
	

		
�1.63 
 10�3 L

JQPJ
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Figure 6.2 Benoit P. E. Clapeyron (1799–1864),
French thermodynamicist. Using principles laid
down by Carnot, Clapeyron deduced concepts of
entropy that eventually led to the second law of
thermodynamics.
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The temperature units cancel to give us, after rearranging,

�p � 	
�

(�

1.

1

6

0

3

)




(22

1

.

0

0
�

4
3

J)

L
	

We have to use the given conversion factor to get a recognizable unit of
pressure:

�p � 	
�

(�

1.

1

6

0

3

)




(22

1

.

0

0
�

4
3

J)

L
	 
 	

1

1

L

0

�

0

ba

J

r
	

The units of J and L cancel, leaving units of bar, which is the standard unit
of pressure. Solving:

�p � 1.35 
 103 bar

Since 1 bar equals 0.987 atm, it takes about 1330 atm to lower the melting
point of water to �10°C. This is an estimate, since �V� and �S� would be
slightly different at �10° than at 0°C (the normal melting point of ice) or at
25°C (the common thermodynamic temperature). However, it is a very good
estimate, since both �V� and �S� do not vary much over such a small tem-
perature range.

The Clapeyron equation can be applied to substances under extreme con-
ditions of temperature and pressure, since it can estimate the conditions of
phase transitions—and therefore the stable phase of a compound—at other
than standard conditions. Such conditions might exist, say, at the center of a
gas giant planet like Saturn or Jupiter. Or, extreme conditions might be applied
in various industrial or synthetic processes. Consider the synthesis of dia-
monds, which normally occurs deep within the earth (or so it is thought). The
phase transition from the stable phase of carbon, graphite, to the “unstable”
phase, diamond, is a viable target for the Clapeyron equation, even though the
two phases are solids.

Example 6.5
Estimate the pressure necessary to make diamond from graphite at a tem-
perature of 2298 K, that is, with �T � (2298 � 298) K � 2000 K. (This
conversion was first achieved industrially by General Electric in 1955.) Use
the following information:

C (s, graphite) C (s, diamond)

S� (J/K) 5.69 2.43

V� (L) 4.41 
 10�3 3.41 
 10�3

Solution
Using the Clapeyron equation, we find that

	
20

�

00

p

K
	 � 	

1

1

L

0

�

0

ba

J

r
	

where we have included the conversion factor from J to L�bar. Solving for �p,
we get

�p � 65,200 bar

(2.43 � 5.69)	
K
J
	

				
(3.41 
 10�3 � 4.41 
 10�3) L

QP
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as the pressure needed to promote the conversion from graphite to diamond.
This is over 65,000 times atmospheric pressure. In reality, much higher pres-
sures, on the order of 100,000 bar, are used to produce synthetic diamonds
at these temperatures.

The Clapeyron equation also works for liquid-gas and solid-gas phase tran-
sitions, but as we will see shortly, some approximations can be made that allow
us to use other equations with minimal error.

Recall that for phase equilibria, �G � 0, so that

0 � �transH � T �transS

This rearranges to

�transS � 	
�tr

T
ansH	

If we assume molar amounts, we can substitute for �S� in equation 6.9. The
Clapeyron equation becomes

	
d

d

T

p
	 � 	

T

�

�

H�
V�

	 (6.11)

where again we have dropped the “trans” label from �H�. Equation 6.11 is par-
ticularly useful because we can bring dT over to the other side of the equation
where temperature is a variable:

dp � 	
T

�

�

H�
V�

	 dT

Rearranging, we get

dp � 	
�

�

H

V
�
�
	 	

d

T

T
	

We can now take the definite integral of both sides, one with respect to pres-
sure and one with respect to temperature. Assuming �H� and �V� are inde-
pendent of temperature, we get

�
pi

pf

dp � 	
�

�

H

V
�
�
	 �

Ti

Tf

	
d

T

T
	

The integral on the pressure side is the change in pressure, �p. The integral on
the temperature side is the natural logarithm of the temperature, evaluated at
the temperature limits. We get

�p � 	
�

�

H

V
�
�
	 ln 	

T

T
f

i

	 (6.12)

This expression relates changes in phase-change conditions, but in terms of the
molar quantities �transH� and �transV�.

Example 6.6
What pressure is necessary to change the boiling point of water from its
1.000-atm value of 100°C (373 K) to 97°C (370 K)? The heat of vaporization
of water is 40.7 kJ/mol. The density of liquid water at 100°C is 0.958 g/mL
and the density of steam is 0.5983 g/L. You will have to use the relationship
101.32 J � 1 L�atm.

6.4 The Clapeyron Equation 151

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Solution
First, we calculate the change in volume. For 1.00 mole of water that has a mass
of 18.01 g, the volume of the liquid is 18.01/0.958 � 18.8 mL. For 1.00 mole
of steam, the volume is 18.01/0.5983 � 30.10 L. �V� is 30.10 L � 18.8 mL �
30.08 L per mole of water. (Notice the units on the volumes.) Using equation
6.12, we find

�p � 	
4

3

0

0

,

.

7

0

0

8

0

L

J
	 ln 	

3

3

7

7

0

3

K

K
	

Notice that we have converted �H� into units of J. The temperature units can-
cel; we get

�p � 1353 J/L (�0.00808)

�p � �10.9 J/L

At this point, we invoke our conversion factor between J and L�atm:

�p � �10.9 	
L

J
	 	

1

1

0

L

1

�

.

a

3

t

2

m

J
	

The J and L units cancel, leaving units of atm, which are units of pressure:

�p � �0.108 atm

This is the change in pressure from the original pressure of 1.000 atm; the actual
pressure at which the boiling point is 97°C is therefore 1.000 � 0.108 atm �
0.892 atm. This would be the pressure about 1000 meters above sea level, or
about 3300 feet. Since many people live at that altitude or higher around the
world, substantial populations experience water with a boiling point of 97°C.

6.5 The Clausius-Clapeyron Equation
If a gas is involved in the phase transition, we can make a simple approxima-
tion. The volume of the gaseous phase is so much larger than the volume of
the condensed phase (as Example 6.6 showed) that we introduce only a tiny bit
of error if we simply neglect the volume of the condensed phase. We simply
use V�gas in equation 6.11 and get

	
d

d

T

p
	 � 	

T

�

�V�
H�

gas

	

If we also assume that the gas obeys the ideal gas law, we can substitute RT/p
for the molar volume of the gas:

	
d

d

T

p
	 � 	

�

T

H�
� R

�

T

p
	 � 	

�H

R
�

T

�
2

p
	

Rearranging, we get

	
d

p

p
	 � 	

�

R

H�
	 � 	

d

T

T
2	

Recognizing that dp/p is equal to d(ln p), we have

d(ln p) � 	
�

R

H�
	 � 	

d

T

T
2	 (6.13)
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which is one form of the Clausius-Clapeyron equation. This equation can also
be integrated between two sets of conditions, (p1, T1) and (p2, T2). If we as-
sume constant �H� over the temperature range, we get

ln 	
p

p
1

2

	 � �	
�

R

H�
	�	

T

1

1

	 � 	
T

1

2

	� (6.14)

The Clausius-Clapeyron equation is very useful in considering gas-phase equi-
libria. For example, it helps predict equilibrium pressures at differing temper-
atures. Or it can predict what temperature is necessary to generate a particu-
lar pressure. Or pressure/temperature data can be used to determine the change
in enthalpy for the phase transition.

Example 6.7
All liquids have characteristic vapor pressures that vary with temperature. The
characteristic vapor pressure for pure water at 22.0°C is 19.827 mmHg and
at 30.0°C is 31.824 mmHg. Use these data to calculate the change in enthalpy
per mole for the vaporization process.

Solution
We must convert temperatures to kelvins, so those become 295.2 and 303.2 K.
Using equation 6.14:

ln 	
1

3

9

1

.

.

8

8

2

2

7

4

m

m

m

m

H

H

g

g
	 � � �	295

1

.2 K
	 � 	
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1

.2 K
	�

Evaluating:

�0.47317 � �	
8.31

�

4

H�
J/mol
	 (8.938 
 10�5)

�H� � 	
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�

1
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4
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)
	 J/mol � 44,010 J/mol

The heat of vaporization, �vapH, of water is 40.66 kJ/mol at its normal boil-
ing point of 100°C. At 25°C, it is 44.02 kJ/mol—very close to what is pre-
dicted by the Clausius-Clapeyron equation. (Note, however, that �vapH varies
by more than 3 kJ/mol over a temperature range of 75°, illustrating that
�vapH does vary with temperature.)

Example 6.8
The vapor pressure of mercury at 536 K is 103 torr. Estimate the normal
boiling point of mercury, where the vapor pressure is 760 torr. The heat of
vaporization of mercury is 58.7 kJ/mol.

Solution
Using the Clausius-Clapeyron equation, we have

ln 	
1

7

0

6

3

0

t

t

o

o

r

r

r

r
	 � �	

8
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J
	 �	53

1

6 K
	 � 	

T

1
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	�
where TBP represents the normal boiling point. Rearranging and canceling
the appropriate units, we get

0.000283 K�1 � 0.00187 K�1 � 	
T

1

BP

	

�H�
	
8.314	

mo
J
l�K
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Solving for the boiling point:

TBP � 632 K

The measured boiling point of mercury is 629 K.

The previous example illustrates how well the Clausius-Clapeyron equation
works, despite the assumptions used in deriving it. It also shows that the va-
por pressure of a substance is related by its logarithm to the absolute temper-
ature. That is,

ln(vapor pressure) � T (6.15)

Another way of stating this is by taking the inverse logarithm of both sides
to get

vapor pressure � eT (6.16)

As the temperature increases, the vapor pressure increases faster and faster, and
many plots of vapor pressure versus temperature have an exponential look to
them. Equations 6.15 and 6.16 do not conflict with the ideal gas law (in which
p is directly proportional to T) because these two equations apply to phase
equilibria and are not meant to be taken as equations of state for the vapor
phase.

6.6 Phase Diagrams and the Phase Rule
Although phase transitions can seem complicated, there is a simplification: the
phase diagram. Phase diagrams are graphical representations of what phases
are stable under various conditions of temperature, pressure, and volume.
Most simple phase diagrams are two-dimensional, with pressure on one axis
and temperature on the other.

The phase diagram itself is composed of lines that indicate the temperature
and pressure values at which phase equilibrium occur. For example, Figure 6.3
is a partial phase diagram of H2O. The diagram shows the stable phase in each
region of the diagram. The lines on the phase diagram represent the phase
transitions. Any point on a line represents a particular pressure and tempera-
ture at which multiple phases can exist in equilibrium. Any point not on a line
indicates a phase that is the predominant stable phase of the compound H2O
under those conditions.

Consider the points labeled in Figure 6.3. Point A represents a value for
pressure pA and temperature TA in which the solid form of H2O is stable. Point
B represents a set of pressure and temperature conditions pB and TB where
melting occurs: solid can exist in equilibrium with liquid. Point C represents
pressure and temperature conditions in which liquid is the stable phase. Point
D represents pressure and temperature conditions in which liquid can exist in
equilibrium with the gas: boiling occurs. Finally, point E represents a set of
pressure and temperature conditions in which the stable phase of H2O is
gaseous.

The phase diagram implies that under many conditions solid and liquid can
exist in equilibrium, and under many conditions liquid and gas can exist in
equilibrium. This is certainly the case. But what are these lines giving us? Since
they are a plot of how the pressure changes with change in temperature for the
phase equilibria, the lines represent dp/dT. This quantity can be calculated using
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Figure 6.3 A qualitative, partial phase diagram
(pressure versus temperature) of H2O. Specific
points in a phase diagram (like points A, B, C, D,
and E here) indicate conditions of pressure and
temperature and what phase(s) of the component
are stable under those conditions.
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the Clapeyron or the Clausius-Clapeyron equations. Single-component phase
diagrams are nothing more than plots of the Clapeyron equation or the Clausius-
Clapeyron equation for a substance. This is true for pressure-temperature phase
diagrams, which is what we will consider almost exclusively here. For a phase
diagram where volume as well as pressure and temperature varies, a three-
dimensional plot would be necessary and the equation of state for all phases
would be needed.

Example 6.9
The line between the solid and liquid phases for the H2O phase diagram in
Figure 6.3 is a fairly straight line, indicating a constant slope. Use the answers
to Example 6.4, the melting of ice, to calculate the value for the slope of that
line.

Solution
Recall that one definition of the slope of a line is �y/�x. The y-axis repre-
sents pressure and the x-axis represents temperature, so for �p/�T we expect
a slope where the units are bar/K or atm/K. Example 6.4 showed that it
takes 1.35 
 103 bar to change the melting point of water by �10°C,
which is �10 K. Therefore, �p/�T is equal to (1.35 
 103 bar)/(�10 K) or
�1.35 
 102 bar/K. This is a fairly large slope.

One other thing to notice from the example is that the slope is negative.
Almost all compounds have a positive slope for the solid-liquid equilibrium
line, because solids have less volume than the same amount of liquid. The neg-
ative slope is a consequence of the increase in volume experienced by H2O
when it solidifies.

The solid-gas equilibrium line represents those conditions of pressure and
temperature where sublimation occurs. For H2O, obvious sublimation occurs
at pressures lower than those that are normally experienced. (Sublimation of
ice does occur slowly at normal pressures, which is why ice cubes get smaller
over time in your freezer. The so-called freezer burn of frozen foods is caused
by sublimation of ice from the food. This is why it’s important to wrap frozen
food tightly.) However, for carbon dioxide, normal pressures are low enough
for sublimation. Figure 6.4 shows a phase diagram for CO2, with the 1-atm
position marked. Liquid CO2 is stable only under pressure. Some gas cylin-
ders of carbon dioxide are high enough in pressure that they actually con-
tain liquid CO2.

The liquid-gas equilibrium line represents conditions of pressure and tem-
perature where those phases can exist at equilibrium. Notice that it has the
form of an exponential equation; that is, p � eT. This is consistent with equa-
tion 6.16. The vaporization line in the phase diagram is a plot of the Clapeyron
equation or the Clausius-Clapeyron equation. Notice, however, that this line
ends at a particular pressure and temperature, as shown in Figure 6.5. It is the
only line that doesn’t have an arrow on its end to indicate that it continues.
That’s because beyond a certain point, the liquid phase and the gas phase be-
come indistinguishable. This point is called the critical point of the substance.
The pressure and temperature at that point are called the critical pressure pC

and critical temperature TC. For H2O, pC and TC are 218 atm and 374°C. Above
that temperature, no pressure can force the H2O molecules into a definite liquid 
state. If the H2O in the system exerts a pressure higher than pC, then it cannot
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Figure 6.4 A phase diagram for carbon diox-
ide, CO2. Notice that as the temperature of solid
CO2 is increased at standard pressure, the solid
goes directly into the gas phase. Liquid CO2 is
stable only at increased pressure.
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exist as a definite liquid or gas. (It can exist as a solid if the temperature is low
enough.) The state of the H2O is called supercritical. Supercritical phases are
important in some industrial and scientific processes. In particular, there is a
technique called supercritical fluid chromatography in which compounds are
separated using supercritical CO2 or other compounds as a “solvent.” (TC and
pC for CO2 are about 304 K and 73 bar.)*

One other point in the phase diagram is worthy of mention. Figure 6.5 in-
dicates a set of conditions where solid, liquid, and gas are in equilibrium with
each other. This is called the triple point. For H2O, the triple point is 0.01°C,
or 273.16 K, and 6.11 mbar, or about 4.6 torr. Because H2O is so common, the
triple point for H2O is recognized internationally as a verifiable temperature
standard. All materials have triple points, a unique set of pressure and tem-
perature conditions in which all three phases can exist in equilibrium with
each other. Table 6.3 lists conditions of critical points for some substances.

The phase diagram for H2O is commonly used as an example for several
reasons: it is a common material, and the phase diagram shows some unusual
characteristics. Figure 6.6 shows a more expansive phase diagram for the
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*One method of decaffeinating coffee beans is by using supercritical CO2.
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Figure 6.3. Notice that there are several possible crystal structures of solid H2O, most of which
exist only at high pressures. Two forms of solid H2O have only recently been discovered.

Table 6.3 Critical temperatures and 
pressures for various substances

Substance TC (K) pC (bar)

Ammonia 405.7 111

Hydrogen 32.98 12.93

Methane 191.1 45.2

Nitrogen 126 33.1

Oxygen 154.6 50.43

Sulfur 1314 207

Water 647.3 215.15
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compound H2O. One of the noteworthy points is that there are actually several
types of solid H2O, that is, ice. Note the pressure and temperature scales, how-
ever. We are not likely to experience these forms of ice outside the laboratory.

Figure 6.7 shows a phase diagram of helium. Because helium is a gas at
temperatures down to 4.2 K, the temperature axis on this diagram does not
have a large temperature range. At the other extreme, Figure 6.8 shows a phase
diagram of carbon. Notice the regions where diamond is the stable phase.

Although pressure and temperature are the common variables for phase
diagrams in chemistry, volume can also be plotted on an axis in a phase dia-
gram, as shown in Figure 6.9. There are also three-dimensional phase dia-
grams that plot pressure, volume, and temperature; Figure 6.10 shows an ex-
ample of that.

Phase diagrams are very useful in helping to understand how single-
component systems act under a change in condition: simply plot the change on
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Figure 6.8 A phase diagram of carbon, showing where
the graphite allotrope is stable and where the diamond 
allotrope is stable.

Figure 6.9 An example of a temperature-volume phase diagram. At a certain pres-
sure P, the phase diagram specifies what phase must be present except between V1 and
V2 (for the given pressure). Under these conditions, a varying amount of liquid phase
(shaded area) may be present and still satisfy the given conditions of T and P. In part
because of this ambiguity, temperature-volume phase diagrams aren’t as common as
pressure-temperature phase diagrams.
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the phase diagram and observe which phase transitions occur for that change.
Single-component phase diagrams are especially easy to interpret.

Example 6.10
Use the phase diagram of CO2, Figure 6.4, to describe the changes in phase
as one makes the following changes in conditions.
a. 50 K to 350 K at a pressure of 1.00 bar
b. 50 K to 350 K at a pressure of 10 bar
c. 1 bar to 100 bar at a temperature of 220 K

Solution
a. Figure 6.11 shows the change in conditions for this isobaric process.
Starting at point A, the temperature is increased as we move from left to right,
indicating that we are warming the solid CO2, until we reach the line at point
B indicating the equilibrium between solid and gas phases. At this point, the
solid CO2 sublimes directly into the gas phase. (This occurs at about 196 K,
or �77°C.) As the temperature increases to 350 K, we are warming gaseous
CO2 until we reach point C, the final conditions.
b. Figure 6.12 shows the change in conditions for the isobaric warming of
CO2 at 10 bar. In this case, we start with a solid at point A, but since we are
above the critical point for CO2, at point B we are in an equilibrium with
solid and liquid CO2 present. As we add heat, solid melts until all solid be-
comes liquid, and then the liquid CO2 warms. We continue warming until
point C is reached, which represents the conditions where CO2 liquid is in
equilibrium with CO2 gas. When all of the liquid is converted to gas, the gas
warms until the final conditions at point D are reached.
c. Figure 6.13 illustrates the isothermal process. The starting point A is at low
enough pressure that the CO2 is in the gas phase. However, as the pressure is
increased, the CO2 passes into the liquid phase (briefly) and then into the
solid phase. Note that if the temperature were only a few degrees lower, this
change would have occurred on the other side of the triple point and the
phase transition would have been a direct gas-to-solid condensation.

Phase diagrams of single-component systems are useful in illustrating a
simple idea that answers a common question: How many variables must be
specified in order to determine the phase(s) of the system when it’s at equilib-
rium? These variables are called degrees of freedom. What we need to know is
how many degrees of freedom we need to specify in order to characterize the
state of the system. This information is more useful than one might think.
Because the position of phase transitions (especially transitions that involve
the gas phase) can change quickly with pressure or temperature, knowing how
many state variables must be defined is important.

Consider the two-dimensional phase diagram for H2O. If you knew that
only H2O was in the system at equilibrium and that it was in the solid
phase, then any point in the shaded region of Figure 6.14 would be possi-
ble. You would have to specify both the temperature and the pressure of the
system. However, suppose you knew that you had solid and liquid H2O in
the system at equilibrium. Then you know that the condition of the system
must be indicated by the line in the phase diagram that separates the solid
and liquid phase. You need only specify temperature or pressure, because
knowing one gives you the other (because the system—with two phases in
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Figure 6.11 An illustration of the isobaric
change for CO2 specified in Example 6.10a.
Compare this to Figure 6.12.

Figure 6.12 An illustration of the isobaric
change for CO2 specified in Example 6.10b.
Compare this to Figure 6.11.

Figure 6.13 An illustration of the change 
specified in Example 6.10c.
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equilibrium—must have conditions corresponding to that line). The num-
ber of degrees of freedom has dropped because the number of phases in
your system has increased.

Suppose you know that you have three phases of H2O in your system at
equilibrium. You don’t have to specify any degrees of freedom because there
is only one set of conditions in which that will occur: for H2O, those condi-
tions are 273.16 K and 6.11 mbar. (See Figure 6.5: there is only one point
on that phase diagram where solid, liquid, and gas exist in equilibrium, and
that is the triple point.) There is a relationship between the number of
phases occurring at equilibrium and the number of degrees of freedom nec-
essary to specify the point in the phase diagram that describes the state of
the system.

In the 1870s, J. Willard Gibbs (for whom Gibbs free energy is named) de-
duced the simple relationship between the number of degrees of freedom and
the number of phases. For a single-component system,

degrees of freedom � 3 � P (6.17)

where P represents the number of phases present at equilibrium. Equation 6.17
is a simplified version of what is known as the Gibbs phase rule. In this rendi-
tion, it assumes that one of the state variables of the system, usually the vol-
ume, can be determined from the others (via an equation of state). You should
verify that this simple equation provides the correct number of degrees of free-
dom for each situation described above.

6.7 Natural Variables and Chemical Potential
We have implied previously that the conditions of the phase equilibrium de-
pend on the state variables of the system, namely volume, temperature, pres-
sure, and amount. Usually we deal with changes in systems as temperature and
pressure vary. It would therefore be useful to know how the chemical potential
varies with respect to temperature and pressure. That is, we want to know
(��/�T) and (��/�p). The chemical potential is the change in the Gibbs free
energy with respect to amount. For a pure substance, the total Gibbs free en-
ergy of a system is

G � � � n

where n is the number of moles of the material having chemical potential �.
[This expression comes directly from the definition of �, which is (�G/�n)T,p.]
From the relationship between G and � presented in Chapter 4, and know-
ing how G itself varies with T and p (given in equations 4.24 and 4.25), we
can get

�	
�

�

�

T
	�p,n

� �S� (6.18)

and

�	
�

�

�

p
	�T,n

� V� (6.19)

The natural variable equation for d� is

d�� �S� dT � V� dp (6.20)

This is similar to the natural variable equation for G. We can also write the
derivatives from equations 6.18 and 6.19 in terms of the change in chemical
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potential, ��. This will be more relevant when we consider phase transitions.
Equations 6.18 and 6.19 can be rewritten as

		�(

�

�

T

�)
	
p

� ��S� (6.21)

		�(

�

�

p

�)
	
T

� �V� (6.22)

We can use these equations to predict what direction an equilibrium will
move if conditions of T or p are changed. Consider the solid-to-liquid phase
transition. Liquids typically have greater entropy than solids, so going from
solid to liquid is an increase in entropy, and the negative sign on the right of
equation 6.21 implies that the slope of the � versus T plot is negative. Thus,
as temperature increases, the chemical potential decreases. Since chemical po-
tential is defined in terms of an energy—here, the Gibbs free energy—and
since spontaneous changes have negative changes in the Gibbs free energies,
as the temperature increases the system will tend toward the phase with the
lower chemical potential: the liquid. Equation 6.21 explains why substances
melt when the temperature is increased.

The same argument applies for the liquid-to-gas phase transition. In this case,
the slope of the curve is usually higher because the difference in entropy between
liquid and gas phases is much larger in magnitude than the difference in S be-
tween solid and liquid phases. However, the reasoning is the same, and equation
6.21 explains why liquids change to gas when the temperature is increased.

The effects of pressure on the equilibrium depend on the molar volumes of
the phases. Again, the magnitude of the effect depends on the relative change
in the molar volume. Between solid and liquid, volume changes are usually
very small. That is why pressure changes do not substantially affect the posi-
tion of solid-liquid equilibria, unless the change in pressure is very large.
However, for liquid-gas (and solid-gas, for sublimation) transitions, the change
in molar volume can be on the order of hundreds or thousands of times.
Pressure changes have substantial effects on the relative positions of phase
equilibria involving the gas phase.

Equation 6.22 is consistent with the behavior of the solid and liquid phases
of water. Water is one of the few substances whose solid molar volume is larger
than its liquid molar volume.* Equation 6.22 implies that an increase in pres-
sure (�p is positive) would drive a phase equilibrium toward the phase that has
the lower molar volume (since for spontaneous changes, the Gibbs free energy
goes down). For most substances, an increase in pressure would drive the equi-
librium towards the solid phase. But water is one of the few chemical sub-
stances (elemental bismuth is another) whose liquid is denser than its solid. Its
�V� term for equation 6.22 is positive when going from liquid to solid, so for
a spontaneous process (that is, �� negative), an increase in pressure translates
into going from solid to liquid. This is certainly unusual behavior—but it is
consistent with thermodynamics.

Example 6.11
In terms of the variables in equations 6.21 and 6.22, state what happens to
the following equilibria when the given changes in conditions are imposed.
Assume all other conditions are kept constant.
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*Another way to say this is that a given amount of liquid is denser than the same amount
of solid.
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a. Pressure is increased on the equilibrium H2O (s, V� � 19.64 mL) H2O
(�, V� � 18.01 mL).
b. Temperature is decreased on the equilibrium glycerol (�) glycerol (s).
c. Pressure is decreased on the equilibrium CaCO3 (aragonite, V� � 34.16 mL)

CaCO3 (calcite, V� � 36.93 mL).
d. Temperature is increased on the equilibrium CO2 (s) CO2 (g).

Solution
a. The change in molar volume for the reaction as written is �1.63 mL. Since
�p is positive and a spontaneous process is accompanied by a negative ��,
the expression ��/�p will be negative overall. Therefore, the equilibrium will
move in the direction of the negative �V�, so the equilibrium will go toward
the liquid phase.
b. Since �T is negative and a spontaneous process is accompanied by a neg-
ative ��, the expression ��/�T will be positive. Therefore, the reaction will
proceed in the direction that provides a negative �S� (as a consequence of the
negative sign in equation 6.21). The equilibrium will move in the direction
of the solid glycerol.
c. �p is negative, so the reaction will spontaneously move in the direction of
the positive change in volume. The equilibrium will move toward the calcite
phase.
d. �T is positive, and �� for a spontaneous transition must be negative, so
the equilibrium moves in the direction of increased entropy: toward the gas
phase.

Let us interpret these expressions in terms of phase diagrams and the
phase transitions that they represent. First, we recognize the general magni-
tudes of the entropy of the various phases as S�solid � S�liquid � S�gas. We also
recognize the general magnitude of the volumes of the various phases as
V�solid � V�liquid � V�gas. (However, see our discussion of water below.)

In considering the change in chemical potential as temperature changes but
at constant pressure (equation 6.21), we are moving across the horizontal line
in Figure 6.15, from point A to point B. The derivative in equation 6.21, which
describes this line, suggests that as T increases, the chemical potential must de-
crease so that the entropy change, �S�, is negative. For a phase transition that
involves solid to liquid (melting), solid to gas (sublimation), or liquid to gas
(boiling), the entropy always increases. Therefore, the negative of �S� for these
processes will always have a negative value. In order to satisfy equation 6.21,
phase transitions accompanying an increase in temperature must always occur
with a simultaneous decrease in the chemical potential. Since chemical poten-
tial is ultimately an energy—it was originally defined in terms of the Gibbs free
energy—what we are saying is that the system will tend toward a state of min-
imum energy. This is consistent with the idea from the last chapter that sys-
tems tend toward the state of minimum (free) energy. We have two different
statements pointing to the same conclusion, so there is self-consistency in ther-
modynamics. (All good theories must be self-consistent in such situations.)

But the basic statement, one that agrees with common experience, is sim-
ple. At low temperatures, substances are solids; as you heat them, they melt into
liquids; as you heat them more, they become gases. Such common experiences
are consistent with the equations of thermodynamics. [You should recognize
by now that the existence of the liquid phase depends on the pressure. If the
pressure of the system is lower than the critical pressure, the solid will sublime
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(as CO2 commonly does). If the temperature is higher than the critical tem-
perature, then the solid will “melt” into a supercritical fluid. The A → B line
in Figure 6.15 was intentionally selected to sample all three phases.]

Equation 6.22 is related to the vertical line in Figure 6.15 that connects
points C and D. As the pressure is increased at constant temperature, the chem-
ical potential also increases because for (almost) all substances, the relation
V�solid � V�liquid � V�gas applies. That is, the volume of the solid is smaller than
the volume of the liquid, which is in turn smaller than the volume of the gas.
Therefore, as one increases the pressure, one tends to go to the phase that has
the smaller volume: this is the only way for the partial derivative in equation
6.22 to remain negative. If systems tend to go to lower chemical potential, then
the numerator �(��) is negative. But if �p is positive—the pressure is in-
creased—then the overall fraction on the left side of equation 6.22 represents
a negative number. Therefore, systems tend to go to phases that have smaller
volumes when the pressure is increased. Since solids have lower volumes than
liquids, which have smaller volumes than gases, increasing the pressure at con-
stant temperature takes a component from gas to liquid to solid: exactly what
is experienced.

Except for H2O. Because of the crystal structure of solid H2O, the solid
phase of H2O has a larger volume than the equivalent amount of liquid-phase
H2O. This is reflected in the negative slope of the solid-liquid equilibrium line
in the phase diagram of H2O, Figure 6.3. When the pressure is increased (at
certain temperatures), the liquid phase is the stable phase, not the solid phase.
H2O is the exception, not the rule. It’s just that water is so common, and its
behavior so accepted by us, that we tend to forget the thermodynamic impli-
cations.

There is also a Maxwell relationship that can be derived from the natural
variable equation for chemical potential �. It is

�	
�

�

S

p
�
	�T

� ��	
�

�

V

T
�
	�p

(6.23)

However, since this is the same relation as equation 4.37 from the natural vari-
able equation for G, it does not provide any new, usable relationships.

6.8 Summary
Single-component systems are useful for illustrating some of the concepts of
equilibrium. Using the concept that the chemical potential of two phases of the
same component must be the same if they are to be in equilibrium in the same
system, we were able to use thermodynamics to determine first the Clapeyron
and then the Clausius-Clapeyron equation. Plots of the pressure and temper-
ature conditions for phase equilibria are the most common form of phase
diagram. We use the Gibbs phase rule to determine how many conditions we
need to know in order to specify the exact state of our system.

For systems with more than one chemical component, there are additional
considerations. Solutions, mixtures, and other multicomponent systems can 
be described using some of the tools described in this chapter, but because of
the presence of multiple components, more information is necessary to de-
scribe the exact state. We will consider some of those tools in the next chapter.
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6.2 Single-Component Systems

6.1. Determine the number of components in the following
systems: (a) an iceberg of pure H2O; (b) bronze, an alloy of
copper and tin; (c) Wood’s metal, an alloy of bismuth, lead,
tin, and cadmium (it is used in sprinkler systems for fire con-
trol); (d) vodka, a mixture of water and ethyl alcohol; (e) a
mixture of sand and sugar.

6.2. Coffee is an extract of a roasted bean, made with hot wa-
ter. It has many components. Some companies market instant
coffee, which is made by freeze-drying brewed coffee. Explain
from a components perspective why instant coffee rarely has
the quality of freshly brewed coffee.

6.3. How many different single-component systems can be
made from metallic iron and chlorine gas? Assume that the
components are chemically stable.

6.4. Explain how solid and liquid phases of a substance can
exist in the same closed, adiabatic system at equilibrium. Under
what conditions can solid and gas phases exist at equilibrium?

6.5. Liquid water at room temperature is placed in a syringe,
which is then sealed. The plunger of the syringe is drawn back,
and at some point bubbles of H2O vapor are formed. Explain
why we can state that the water is boiling.

6.6. If a system is not adiabatic, then heat leaves or enters the
system. What is the immediate response of a system (a) in liq-
uid-gas equilibrium if heat is removed? (b) in solid-gas equi-
librium if heat is added? (c) in liquid-solid equilibrium if heat
is removed? (d) composed entirely of solid phase if heat is
removed?

6.7. How many values of the normal boiling point does any
pure substance have? Explain your answer.

6.8. Write equation 6.2 in a different, yet algebraically equiv-
alent way. Explain why this is an equivalent expression.

6.3 Phase Transitions

6.9. Identify and explain the sign on �transH in equation 6.5
if it is used for (a) a solid-to-gas phase transition (sublima-
tion), (b) a gas-to-liquid phase transition (condensation).

6.10. Calculate the amount of heat necessary to change 
100.0 g of ice at �15.0°C to steam at 110°C. You will need
the values of the heat capacity for ice, water, and steam, and
�fusH and �vapH for H2O from Tables 2.1 and 2.3. Is this process
exothermic or endothermic?

6.11. Citrus farmers sometimes spray water on the fruit trees
when a frost is expected. Use equations 6.4 to explain why.

6.12. What is the numerical change in chemical potential of
1 mole of carbon dioxide, CO2, as it changes temperature?
Assume that we are considering the infinitesimal change in
chemical potential as the temperature changes infinitesimally
starting at 25°C. Hint: See equation 4.40.

6.13. What is �S for the isothermal conversion of liquid ben-
zene, C6H6, to gaseous benzene at its boiling point of 80.1°C?
Is it consistent with Trouton’s rule?

6.14. Estimate the melting point of nickel, Ni, if its �fusH is 
17.61 kJ/mol and its �fusS is 10.21 J/mol�K. (Compare this to
a measured melting point of 1455°C.)

6.15. Estimate the boiling point of platinum, Pt, if its �vapH
is 510.4 kJ/mol and its �vapS � 124.7 J/mol�K. (Compare this
to a measured melting point of 3827 100°C.)

6.16. In ice skating, the blade of the skate is thought to ex-
ert enough pressure to melt ice, so that the skater glides
smoothly on a thin film of water. What thermodynamic prin-
ciple is involved here? Can you perform a rough calculation to
determine whether this is indeed the active mechanism in ice
skating? Would skating work if it were performed on other
solids and this were the mechanism involved?

6.4 & 6.5 The Clapeyron and Clausius-
Clapeyron Equations

6.17. The integration of equation 6.11 to get 6.12 uses what
assumption?

6.18. Does the expression d�phase1 � d�phase2 in the deriva-
tion of the Clapeyron equation imply that only a closed sys-
tem is being considered? Why or why not?

6.19. Sulfur, in its cyclic molecular form having the formula
S8, is an unusual element in that the solid form has two easily
accessible solid phases. The rhombic crystal solid is stable 
at temperatures lower than 95.5°C, and has a density of 
2.07 g/cm3. The monoclinic phase, stable at temperatures
higher than 95.5°C and less than the melting point of sulfur,
has a density of 1.96 g/cm3. Use equation 6.10 to estimate
the pressure necessary to make rhombic sulfur the stable phase
at 100°C if the entropy of transition is 1.00 J/mol�K. Assume
that �transS does not change with changing conditions.

6.20. Refer to exercise 6.19. How applicable is �transS at stan-
dard pressure to the extreme condition of pressure necessary
for the stated phase transition? How accurate do you think
your answer to exercise 6.19 is?

6.21. State whether or not the Clausius-Clapeyron equation
is strictly applicable to the following phase transitions. 

(a) Sublimation of ice in your freezer

(b) Condensation of steam into water

(c) Freezing of cyclohexane at 6.5°C

(d) Conversion of ice VI to ice VII (see Figure 6.6)

(e) Conversion of diatomic oxygen, O2 (g), to triatomic
ozone, O3 (g)

(f) Formation of diamonds under pressure

(g) Formation of metallic solid hydrogen, H2, from liquid 
hydrogen. (The transformation to metallic hydrogen occurs 
under megabars of pressure and may be part of gas giant
planets like Jupiter and Saturn.)

(h) Evaporation of mercury liquid, Hg (�), from a broken ther-
mometer.
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6.22. In words, explain what slope the Clapeyron equation
can calculate. That is, a plot of what measurement with re-
spect to what other measurement can be calculated by equa-
tion 6.9?

6.23. Consider the sulfur solid-state phase transition in exer-
cise 6.19. Given that �transH for the rhombic-to-monoclinic
phase transition is 0.368 kJ/mol, use equation 6.12 to estimate
the pressure necessary to make the rhombic phase stable at
100°C. Additional necessary data is given in exercise 6.19.
How does this pressure compare to the answer in 6.19?

6.24. If it takes 1.334 megabars of pressure to change the
melting point of a substance from 222°C to 122°C for a change
in molar volume of �3.22 cm3/mol, what is the heat of fusion
of the substance?

6.25. Reusable hot-packs sometimes use the precipitation of
supersaturated sodium acetate or calcium acetate to give off
heat of crystallization to warm a person. Can the conditions of
this phase transition be understood in terms of the Clapeyron
or the Clausius-Clapeyron equation? Why or why not?

6.26. Four alcohols have the formula C4H9OH: 1-butanol, 2-
butanol (or sec-butanol), isobutanol (or 2-methyl-1-propanol),
and tert-butanol (or 2-methyl-2-propanol). They are examples
of isomers, or compounds that have the same molecular for-
mula but different molecular structures. The following table
gives data on the isomers:

Compound �vapH (kJ/mol) Normal boiling point (°C)
1-Butanol 45.90 117.2
2-Butanol 44.82 99.5
Isobutanol 45.76 108.1
tert-Butanol 43.57 82.3

Using the Clausius-Clapeyron equation, rank the isomers of
butanol in order of decreasing vapor pressure at 25°C. Does
the ranking agree with any conventional wisdom based on the
�vapH values or the normal boiling points?

6.27. What is the rate of change of pressure as temperature
changes (that is, what is dp/dT) for the vapor pressure of naph-
thalene, C10H8, used in mothballs, at 22.0°C if the vapor pres-
sure at that temperature is 7.9 
 10�5 bar and the heat of va-
porization is 71.40 kJ/mol? Assume that the ideal gas law holds
for the naphthalene vapor at that temperature and pressure.

6.28. Using the data in the previous problem, determine the
vapor pressure of naphthalene at 100°C.

6.29. In high-temperature studies, many compounds are va-
porized from crucibles that are heated to a high temperature.
(Such materials are labeled refractory.) The vapors stream out
of a small hole into an experimental apparatus. Such a crucible
is called a Knudsen cell. If the temperature is increased linearly,
what is the relationship to the change in the pressure of the
vaporized compound? Can you explain why it is important to
be careful when vaporizing materials at high temperatures?

6.30. At what pressure does the boiling point of water be-
come 300°C? If oceanic pressure increases by 1 atm for every
10 m (33 ft), what ocean depth does this pressure correspond
to? Do ocean depths that deep exist on this planet? What is
the potential implication for underwater volcanoes?

6.31. For liquid droplets, the unequal interactions of the liq-
uid molecules with other liquid molecules at a surface give rise
to a surface tension, �. This surface tension becomes a com-
ponent of the total Gibbs free energy of the sample. For a
single-component system, the infinitesimal change in G can
be written as

dG � �S dT � V dp � �phase dnphase � � dA

where dA represents the change in surface area of the droplet.
At constant pressure and temperature, this equation becomes

dG � �phase dnphase � � dA

For a spherical droplet having radius r, the area A and vol-
ume V are 4�r2 and 	

4
3

	�r3, respectively. It can therefore be
shown that

dA � 	
2

r
dV
	 (6.24)

(a) What are the units on surface tension �?

(b) Verify equation 6.24 above by taking the derivative of A
and V.

(c) Derive a new equation in terms of dV, using equation 6.24.

(d) If a spontaneous change in phase were to be accompa-
nied by a positive dG value, does a large droplet radius or a
small droplet radius contribute to a large dG value?

(e) Which evaporates faster, large droplets or small droplets?

(f) Does this explain the method of delivery of many perfumes
and colognes via so-called atomizers?

6.6 & 6.7 Phase Diagrams, Phase Rule, and
Natural Variables

6.32. Explain how glaciers, huge masses of solid ice, move.
Hint: see equation 6.22.

6.33. Show that the units on either side of equations 6.18
and 6.19 are consistent.

6.34. Use a phase diagram to justify the concept that the
liquid phase can be considered a “metastable” phase, de-
pending on the pressure and temperature conditions of the
system.

6.35. Use the phase diagram of water in Figure 6.6 and
count the total number of phase transitions that are repre-
sented.
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6.36. Figure 6.16 is the phase diagram of 3He at very low
temperatures:

Figure 6.16 Phase diagram of 3He. Source: Adapted from W. E. Keller,
Helium-3 and Helium-4, Plenum Press, New York, 1969.

Notice that the slope of the solid-liquid equilibrium line below
about 0.3 K is negative. Interpret this surprising experimental
finding.

6.37. If a phase diagram were designed to have only a single
axis, what would be the form of the phase rule for a single com-
ponent? How many parameters would you have to specify to
indicate the conditions of (a) a phase transition, or (b) the crit-
ical point?

6.38. If a material sublimes at normal atmospheric pressure,
does one need higher or lower pressures to get that material
in a liquid phase? Justify your answer.

6.39. Defining the critical point of a substance requires two
degrees of freedom. (Those degrees of freedom are the criti-
cal temperature and the critical pressure.) Justify this fact in
light of the Gibbs phase rule.

6.40. Refer to Figure 6.3, the unexpanded version of the
phase diagram of H2O. Label each line in the phase diagram
in terms of what derivative it represents.

6.41. Repeat the previous exercise, only this time using Figure
6.6, the more complete phase diagram for H2O.

Temperature (K)

P
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)

Liquid

Solid I

Solid III

Solid II

Gas

0.32 17.8

28.9

6.42. The phase diagram for elemental sulfur is shown in
Figure 6.17.

Figure 6.17 Phase diagram of elemental sulfur.

(a) How many allotropes are shown? (b) What is the stable
allotrope of sulfur under normal conditions of temperature
and pressure? (c) Describe the changes to sulfur as its tem-
perature is increased from 25°C while at 1 atm pressure.

6.43. Consider the phase diagram of sulfur in the previous
exercise. If one starts at 25°C and 1 atm pressure (which is
about equal to 1 bar) and increases the temperature, com-
ment on the entropy change as the sulfur goes from rhombic
to monoclinic solid phases. Is it positive or negative? On the
basis of the second law of thermodynamics, is the phase tran-
sition expected to be spontaneous?

6.44. Rearrange the Clausius-Clapeyron equation, equation
6.14, in terms of the pressure p2 of a material. Plot the 
vapor pressures of H2O (the boiling point is 100°C, �vapH �
40.71 kJ/mol), neon (the boiling point is �246.0°C, �vapH �
1.758 kJ/mol), and Li (the boiling point is 1342°C, 
�vapH � 134.7 kJ/mol). Although these three materials are
very different, are there any similarities in the behavior of
the vapor pressures as the temperature increases?

Temperature (K)
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Liquid

Gas

      Mono-
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298

1
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7
IN THE PREVIOUS CHAPTER, we introduced some important concepts

that we can apply to systems at equilibrium. The Clapeyron equation, the
Clausius-Clapeyron equation, and the Gibbs phase rule are tools that are used
to understand the establishment and changes of systems at equilibrium.
However, so far we have considered only systems that have a single chemical
component. This is very limiting, since most chemical systems of interest have
more than one chemical component. They are multiple-component systems.

We will consider multiple-component systems in two ways. One way will be
to extend some of the concepts of the previous chapter. We will do that only
in a limited fashion. The other way will be to build on the previous chapter’s
ideas and develop new ideas (and equations) that apply to multiple-component
systems. This will be our main approach.

7.1 Synopsis
We start by extending the Gibbs phase rule to multiple-component systems, in
its most general form. We will confine our development of multiple-component
systems to relatively simple ones, having two or three components at most.
However, the ideas we will develop are generally applicable, so there will be
little need to consider more complicated systems here. One example of a sim-
ple two-component system is a mixture of two liquids. We will consider that,
as well as the characteristics of the vapor phase in equilibrium with the liquid.
This will lead into a more detailed study of solutions, where different phases
(solid, liquid, and gas) will act as either the solute or solvent.

The equilibrium behavior of solutions can be generalized by statements like
Henry’s law or Raoult’s law, and can be understood in terms of activity rather
than concentration. Changes in certain properties of all solutions can be under-
stood simply in terms of the number of solvent and solute particles. These
properties are called colligative properties.

Throughout the chapter, we will introduce new ways of graphically repre-
senting the behavior of multicomponent systems in an efficient visual way.
New ways of drawing phase diagrams, some simple and some complex, will be
presented.
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7.2 The Gibbs Phase Rule
In the previous chapter, we introduced the Gibbs phase rule for a single com-
ponent. Recall that the phase rule gives us the number of independent vari-
ables that must be specified in order to know the condition of an isolated sys-
tem at equilibrium. For a single-component system, only the number of stable
phases in equilibrium is necessary to determine how many other variables, or
degrees of freedom, are required to specify the state of the system.

If the number of components is greater than one, then more information is
necessary to understand the state of the system at equilibrium. Before we con-
sider how much more information is necessary, let us review what information
we do have. First, since we are assuming that the system is at equilibrium, then
the system’s temperature, Tsys, and the system’s pressure, psys, are the same for
all components. That is,

Tcomp.1 � Tcomp.2 � Tcomp.3 � � � � � Tsys (7.1)

pcomp.1 � pcomp.2 � pcomp.3 � � � � � psys (7.2)

We also have the requirement, from the previous chapter, that the temperatures
and pressures experienced by all phases are the same: Tphase1 � Tphase2 � � � �
and pphase1 � pphase2 � � � � . Equation 7.2 is not meant to imply that the par-
tial pressures of individual gas components are the same. It means that every
component of the system, even gaseous components, are subject to the same
overall system pressure. We will also assume that our system remains at con-
stant volume (is isochoric) and that we know the total amount of material,
usually in units of moles, in our system. After all, the experimenter controls the
initial conditions of the system, so we will always begin by knowing the initial
amount of material.

With this understanding, how many degrees of freedom must be specified
in order to know the state of a system at equilibrium? Consider a system that
has a number of components C and a number of phases P. To describe the rel-
ative amounts (like mole fractions) of the components, C � 1 values must be
specified. (The amount of the final component can be determined by subtrac-
tion.) Since the phase of each component must be specified, we need to know
(C � 1) � P values. Finally, if temperature and pressure need to be specified,
we have a total of (C �1) � P � 2 values that we need to know in order to de-
scribe our system.

But if our system is at equilibrium, the chemical potentials of the different
phases of each component must be equal. That is,

�1,sol � �1,liq � �1,gas � � � � � �1,other phase

and this must hold for every component, not just component 1. This means
we can remove P � 1 values for every component C, for a total of (P � 1) � C
values. The number of values remaining represents the degrees of freedom, F :
(C � 1) � P � 2 � (P � 1) � C, or

F � C � P � 2 (7.3)

Equation 7.3 is the more complete Gibbs phase rule. For a single component,
it becomes equation 6.17. Note that it is applicable only to systems at equilib-
rium. Also note that although there can be only one gas phase, due to the
mutual solubility of gases in each other, there can be multiple liquid phases
(that is, immiscible liquids) and multiple solid phases (that is, independent,
nonalloyed solids in the same system).
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168 C H A P T E R  7 Equilibria in Multiple-Component Systems

What are the degrees of freedom that can be specified? We already know that
pressure and temperature are common degrees of freedom. But for multiple-
component systems, we also need to specify the relative amounts of each com-
ponent, usually in terms of moles. Figure 7.1 illustrates this for a simple system.

If a chemical equilibrium is present, then not all of the components are
truly independent. Their relative amounts are dictated by the stoichiometry of
the balanced chemical reaction. Before applying the Gibbs phase rule, we need
to identify the number of independent components. This is done by removing
the dependent component from consideration. A dependent component is one
that is made from any other component(s) in the system. In Figure 7.1, the
water and ethanol are not in any chemical equilibrium involving both these
compounds, so they are independent components. However, for the equilibrium

H2O (�) H� (aq) � OH� (aq)

the amounts of hydrogen and hydroxide ions are related by the chemical re-
action. Thus, instead of having three independent components, we have only
two: H2O and either H� or OH� (the other can be determined by the fact
that the reaction is at equilibrium). Examples 7.1 and 7.2 illustrate degrees of
freedom.

Example 7.1
Consider a mixed drink that has ethanol (C2H5OH), water, and ice cubes in
it. Assuming that this describes your system, how many degrees of freedom
are necessary to define your system? What might the degrees of freedom be?

Solution
There are two individual components: C2H5OH and H2O. There are also two
phases, solid (the ice cubes) and liquid (the water/ethanol solution). There are
no chemical equilibria to consider, so we don’t have to worry about depen-
dencies among the components. Therefore, from the Gibbs phase rule, we have

F � C � P � 2 � 2 � 2 � 2

F � 2

What might be specified? If the temperature is specified, then we know the
pressure of the system, because we also know that liquid and solid H2O are
in equilibrium. We can use the phase diagram of H2O to determine the nec-
essary pressure if the temperature is given. Another specification might be an
amount of one component. We usually know a total amount of material in a
system. By specifying one component’s amount we can subtract to find the
other component’s amount. By specifying these two degrees of freedom, we
completely define our system.

Example 7.2
Iron(III) sulfate, Fe2(SO4)3, decomposes upon heating to make iron(III) ox-
ide and sulfur trioxide by the following reaction:

Fe2(SO4)3 (s) Fe2O3 (s) � 3SO3 (g)

Using the phase labels given in the equilibrium reaction, how many degrees
of freedom does this equilibrium have?

JQPJ

JQPJ

System

H2O
C2H5OH

C2H5OH
C2H5OH

H2O

C2H5OH

H2O

Degrees of freedom at equilibrium:

• Temperature
• Pressure
• Amount (mole fraction) of one component
  (mole fraction of other can be determined)

∴ 3 degrees of freedom

From Gibbs phase rule:

F � 2 � 1 � 2 � 3 degrees of freedom

C P
Figure 7.1 A simple multiple-component 
system of water and ethanol. The Gibbs phase
rule applies to this system, too.
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Solution
There are three distinct phases in this equilibrium, a solid ferric sulfate phase,
a solid ferric oxide phase, and a gaseous phase. Therefore, P � 3. As with the
H2O dissociation, there are only two independent components in this equi-
librium. (The amount of the third component can be determined from the
stoichiometry of the reaction.) Therefore C � 2. Using the Gibbs phase rule,

F � 2 � 3 � 2

F � 1

7.3 Two Components: Liquid/Liquid Systems
An understanding of the Gibbs phase rule for multicomponent systems al-
lows us to consider specific multicomponent systems. We will focus on two-
component systems for illustration, although the concepts are applicable to
systems with more than two components.

Let us consider a binary solution that is composed of two liquid compo-
nents that are not interacting chemically. If the volume of the liquid is equal
to the size of the system, then we have only one phase and two components,
so the Gibbs phase rule says that we have F � 2 � 1 � 2 � 3 degrees of free-
dom. We can specify temperature, pressure, and mole fraction of one compo-
nent to completely define our system. Recall from equation 3.22 that the mole
fraction of a component equals the moles of some component i, ni, divided by
the total number of moles of all components in the system, ntot:

mole fraction of component i � xi � � �
n

n

to

i

t

� (7.4)

The sum of all of the mole fractions for a phase in a system equals exactly 1.
Mathematically,

�
i

xi � 1 (7.5)

This is why we need specify only one mole fraction in our binary solution. The
other mole fraction can be determined by subtraction.

If, however, the volume of liquid is less than the volume of the system, then
there is some “empty” space in the system. This space is not empty but filled
with the vapors of the liquid components. In all systems where the liquid vol-
ume is less than the system volume, the remaining space will be filled with each
component in the gas phase, as shown in Figure 7.2.* If the system has a single
component, then the partial pressure of the gas phase is characteristic of only
two things: the identity of the liquid phase, and the temperature. This equilib-
rium gas-phase pressure is called the vapor pressure of the pure liquid. In a two-
component liquid solution in equilibrium with its vapor, the chemical poten-
tial for each component in the gas phase must be equal to the chemical potential
in the liquid phase:

�i (�) � �i (g) for i � 1, 2

ni�
�
all i

ni
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*In many cases, the same statement applies if the system has a solid phase that does not
completely fill the system. “Freezer burn” is one example of this happening to solid H2O.

System

H2O (g)
�

C2H5OH (g)

H2O (  )
�

C2H5OH (  )

Figure 7.2 Systems with more volume than
condensed phase will always have a vapor phase
in equilibrium with that condensed phase.
Although we usually picture liquid in equilib-
rium with vapor, in many cases solid phases also
exist in equilibrium with a vapor phase.
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According to equation 4.58, the chemical potential of a real gas is related to
some standard chemical potential plus a correction factor in terms of the fu-
gacity of the gas:

�i (g) � �i° (g) � RT ln �
p

f

°
� (7.6)

where R and T have their usual thermodynamic definitions, f is the fugacity of
the gas, and p° represents the standard condition of pressure (1 bar or 1 atm).
For liquids (and, in appropriate systems, solids as well) there is an equivalent
expression. However, instead of using fugacity, we will define the chemical po-
tential of a liquid in terms of its activity, ai, as introduced in Chapter 5:

�i (�) � �i° (�) � RT ln ai (7.7)

At equilibrium, the chemical potentials of the liquid and the vapor phases
must be equal. From the above two equations,

�i (g) � �i (�)

�i° (g) � RT ln �
p

f

°
� � �i° (�) � RT ln ai i � 1, 2 (7.8)

for each component i. (At this point, it is important to keep track of which
terms refer to which phase, g or �.) If we assume that the vapors are acting as
ideal gases, then we can substitute the partial pressure, pi, for the fugacity, f, on
the left side. Making this substitution into equation 7.8:

�i° (g) � RT ln �
p

p

°
i� � �i° (�) � RT ln ai (7.9)

If the system were composed of a pure component, then the liquid phase would
not need the second corrective term that includes the activity. For a single-
component system, equation 7.9 would be

�i° (g) � RT ln �
p

p
i*

°
� � �i° (�) (7.10)

where pi* is the equilibrium vapor pressure of the pure liquid component.
Substituting for �i° (�) from equation 7.10 into the right side of equation 7.9,
we get

�i° (g) � RT ln �
p

p

°
i� � �i° (g) � RT ln �

p

p
i*

°
� � RT ln ai

The standard chemical potential �° (g) cancels. Moving both RT terms to one
side, this equation becomes

RT ln �
p

p

°
i� � RT ln �

p

p
i*

°
� � RT ln ai

We can cancel R and T from the equation, and then combine the logarithms
on the left side. When we do this, the p°’s cancel. We get

ln �
p

p

i*
i� � ln ai

Taking the inverse logarithm of both sides, we find an expression for the ac-
tivity of the liquid phase of the component labeled i:

ai � �
p

p

i*
i� i � 1, 2 (7.11)
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where pi is the equilibrium vapor pressure above the solution and pi* is the
equilibrium vapor pressure of the pure liquid. Equation 7.11 lets us determine
the activities of liquids using equilibrium vapor pressures of gases.

Referring back to equation 7.9, the right side of the equation is simply the
chemical potential, �i (�). For a two-component liquid in equilibrium with its
vapor, each component must satisfy an expression like equation 7.9:

�i (�) � �i° (g) � RT ln �
p

p

°
i� i � 1, 2 (7.12)

where we have reversed equation 7.9 as well as substituted �i (�). If the solu-
tion were ideal, then the amounts of vapor pi of each component in the vapor
phase would be determined by how much of each component was in the liq-
uid phase. The more of one component in the liquid mixture, the more of its
vapor would be in the vapor phase, going from pi � 0 (corresponding to hav-
ing no component i in the system) to pi � pi* (corresponding to all compo-
nent i in the system). Raoult’s law states that for an ideal solution, the partial
pressure of a component, pi, is proportional to its mole fraction of the com-
ponent in the liquid phase. The proportionality constant is the vapor pressure
of the pure component pi*:

pi � xipi* i � 1, 2 for binary solution (7.13)

Figure 7.3 shows a plot of the partial pressures of two components of a solu-
tion that follows Raoult’s law. The straight lines between zero partial pressure
and pi* are characteristic Raoult’s-law behavior. (As required by the straight-
line form of equation 7.13, the slope of each line is equal to the equilibrium
vapor pressure of each component. The intercepts also equal pi* because the
x-axis is mole fraction, which ranges from 0 to 1.) The following of Raoult’s
law is one requirement for defining an ideal solution; other requirements of an
ideal solution will be presented at the end of this section.

If the solution is ideal, we can use Raoult’s law to understand chemical po-
tentials for liquids in equilibrium with their vapors in two-component sys-
tems. We rewrite equation 7.12 by substituting into the numerator for pi:

�i (�) � �i° (g) � RT ln �
x

p
ip

i°
i*� (7.14)

We can rearrange the logarithm term, isolating the characteristic values pi* (the
equilibrium vapor pressure) and pi° (the standard pressure):

�i (�) � �i° (g) � RT ln �
p

p
i*

i°
� � RT ln xi

The first two terms on the right side are characteristic of the component and
are constant at a given temperature; we group them together into a single con-
stant term �i� (g):

��i (g) � �i° (g) � RT ln �
p

p
i*

i°
� (7.15)

Substituting, we find a relationship for the chemical potential of a liquid in an
ideal solution:

�i (�) � �i� (g) � RT ln xi i � 1, 2 (7.16)

Chemical potentials of liquids are thus related to their mole fractions in
multiple-component systems.
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p*1

P
ar

tia
l p

re
ss

ur
e

0.5

Mole fraction of component 1 (x1)
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Partial pressure
of component 1

Partial pressure
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Figure 7.3 Raoult’s law states that the partial
pressure of a component in the gas phase that is
in equilibrium with the liquid phase is directly
proportional to the mole fraction of that compo-
nent in the liquid. Each plot of partial pressure is
a straight line. The slope of the straight line is pi*,
the equilibrium vapor pressure of the pure liquid
component.
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Raoult’s law is useful in understanding the vapor-phase behavior of ideal
solutions. If the vapor phase is treated as an ideal gas, then Dalton’s law of par-
tial pressures says that the total pressure is the sum of the individual partial
pressures. For our two-component system, this becomes

ptot � p1 � p2

From Raoult’s law, this becomes

ptot � x1p1* � x2p2*

However, x1 and x2 are not independent: since the sum of the mole fractions
of the liquid phase must equal 1, we have x1 � x2 � 1, or x2 � 1 � x1. We can
substitute:

ptot � x1p1* � (1 � x1)p2*

We can algebraically rearrange this:

ptot � p2* � (p1* � p2*)x1 (7.17)

This expression has the form of a straight line, y � mx � b. In this case, x1

represents the mole fraction of component 1 in the liquid phase. If we plot
total pressure versus mole fraction of component 1, we would get a straight
line as shown in Figure 7.4. The slope would be p1* � p2*, and the y-intercept
would be p2*. Figure 7.4 suggests that there is a smooth, linear variation in
total vapor pressure from p1* to p2* as the composition of the solution varies.
Figure 7.4 also shows, in dotted lines, the individual partial pressures. Compare
this to Figure 7.3.

Example 7.3
An ideal solution can be approximated using the liquid hydrocarbons hexane
and heptane. At 25°C, hexane has an equilibrium vapor pressure of 151.4 mmHg
and heptane has an equilibrium vapor pressure of 45.70 mmHg. What is the
equilibrium vapor pressure of a 50�50 molar hexane and heptane solution (that
is, x1 � x2 � 0.50) in a closed system? It does not matter which liquid is labeled
1 or 2.

Solution
Using Raoult’s law, we have

p1 � (0.50)(151.4 mmHg) � 75.70 mmHg

p2 � (0.50)(45.70 mmHg) � 22.85 mmHg

By Dalton’s law, the total vapor pressure in the system is the sum of the two
partial pressures:

ptot � 75.70 � 22.85 mmHg � 98.55 mmHg

Since boiling of a liquid occurs when the vapor pressure of a liquid equals
the surrounding pressure, liquid solutions will boil at different temperatures
depending on their composition and the vapor pressures of the pure compo-
nents. The next example illustrates how this idea can be used.
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Example 7.4
In analogy to ice baths, there are vapor baths that are kept at constant tem-
perature by the equilibrium between the liquid and gas phases. A hexane/
heptane solution is used to establish a constant 65°C temperature in a closed
system that has a pressure of 500.0 mmHg. At 65°, the vapor pressures of
hexane and heptane are 674.9 and 253.5 mmHg. What is the composition of
the solution?

Solution
If we are seeking the composition of the solution, we need to determine one
of the mole fractions of the liquid phase, say x1. We can find x1 by rearrang-
ing equation 7.17 algebraically:

x1 � �
p

p
t

1*
ot

�

�

p

p

2*
2*�

We have all the information needed: p1* � 674.9 mmHg, p2* � 253.5 mmHg,
and ptot � 500 mmHg. Substituting and solving:

x1 � � �
2

4

4

2

6

1

.

.

5

4

m

m

m

m

H

H

g

g
�

Notice that the units of mmHg will cancel, leaving a unitless value. Mole frac-
tions are unitless, so this is as it should be. We get

x1 � 0.5850

which suggests that our liquid mixture is a little over half hexane. The mole
fraction of heptane would be 1 � 0.5850 � 0.4150, just less than half.

What are the mole fractions of the two components in the vapor phase?
They are not equal to the mole fractions of the liquid phase. We use the vari-
ables y1 and y2 to represent the vapor-phase mole fractions.† They can be de-
termined using Dalton’s law, the idea that the mole fraction of a component in
a gas mixture is equal to its partial pressure divided by the total pressure:

y1 � �
p

p

to

1

t

� � �
p1

p

�
1

p2

� � �
x1p1*

x

�
1p1*

x2p2*
� (7.18)

In the last expression, we used Raoult’s law to substitute in terms of p1* and p2*.
Again, we note that x2 � 1 � x1, so we can substitute into equation 7.18 to get

y1 �

which rearranges to

y1 ��
p2* � (

x

p
1

1*

p

�
1*

p2*)x1

� (7.19)

Similarly, the mole fraction of component 2 is

y2 � �
x1p1*

x2

�

p2*

x2p2*
� (7.20)

x1p1*��
x1p1* � (1 � x1)p2*

500.0 mmHg � 253.5 mmHg
����
674.9 mmHg � 253.5 mmHg
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†For solutions and their vapor phases, the convention is to use xi to represent the solu-
tion-phase mole fractions, and yi to represent the vapor-phase mole fractions.
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Similar substitutions can be made into equation 7.20 to get an expression like
equation 7.19. As an example, for the 0.5850/0.4150 mixture of hexane and
heptane in Example 7.4, the gas-phase mole fractions are 0.790 and 0.210, re-
spectively, using equations 7.19 and 7.20. Note how different the mole fractions
in the gas phase are from the mole fractions in the liquid phase.

We can take a slightly different perspective and derive an expression for the
total pressure ptot above the solution in terms of vapor-phase composition. For
ideal gases, the partial pressure of a gas in a mixture is equal to the total pres-
sure times the gas’s mole fraction:

pi � yiptot (7.21)

We can combine this with Raoult’s law and its definition of the partial pres-
sure of a gas-phase component to get

yiptot � xipi*

This equation relates the total pressure ptot, the vapor pressure of the ith com-
ponent pi*, and the mole fractions of the ith component in the liquid phase (xi)
and the gas phase (yi). Solving for ptot:

ptot � �
xi

y

p

i

i*� (7.22)

To be consistent with Figure 7.4, let us assume that i � 1. If we solve equation
7.19 for x1, we get

x1 ��
p1* � (

y

p
1

2*

p

�
2*

p1*)y1

� (7.23)

We do this because we want to be able to express ptot in terms of the mole frac-
tions of the vapor, not the liquid, so we need to eliminate x1. Substituting equa-
tion 7.23 into equation 7.22, we find that

ptot �

ptot �

The y1 terms in the numerator and denominator cancel, and we have for our
final expression

ptot ��
p1* � (

p

p
2*

2*

p

�
1*

p1*)y1

� (7.24)

A similar expression can be determined in terms of y2 instead of y1.
There is a key point about equation 7.24. It is similar to equation 7.17 in

that we can plot the total pressure of the vapor phase with respect to the mole
fraction of one component, y1. However, it is not an equation for a straight
line! Instead, it is an equation for a curved line, and if ptot is plotted versus y1

on the same scale as Figure 7.4, this line typically lies underneath the straight
line of ptot versus x1. Figure 7.5 shows what this plot of ptot versus y1 looks
like relative to ptot versus x1. The plot of ptot versus x1, the liquid mole frac-
tion, is called the bubble point line whereas the plot of ptot versus y1, the va-
por mole fraction, is called the dew point line. Diagrams like Figure 7.5, which
plot vapor pressure versus mole fraction, are called pressure-composition phase
diagrams.

y1p2*p1*���
[p1* � (p2* � p1*)y1]y1

�
p1* � (

y

p
1

2*

p

�
2*

p1*)y1

� pi*

���
y1

174 C H A P T E R  7 Equilibria in Multiple-Component Systems

p*2

p*1

P
ar

tia
l p

re
ss

ur
e

0.5
x1, y1

ptot vs. x1: the bubble point line

ptot vs. y1: the dew point line

0.0 1.0

Figure 7.5 The mole fractions in the vapor
phase are not the same as in the liquid phase.
The bubble point line gives total pressure versus
liquid-phase mole fraction, xi. The dew point line
gives total pressure versus vapor-phase mole frac-
tion, yi. The two lines would coincide only if both
components had the same pure vapor pressure.
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Say you have a system with a particular liquid-phase composition. It will
have a characteristic vapor-phase composition, determined by the expressions
above. We can use pressure-composition phase diagrams like Figure 7.5 to rep-
resent the connection between the liquid-phase composition and the vapor-
phase composition. A horizontal line in a diagram like Figure 7.5 represents a
constant-pressure or isobaric condition. Figure 7.6 shows a horizontal line,
segment AB, connecting the bubble point line and the dew point line for a liq-
uid that has a certain mole fraction x1. For a liquid having the composition in-
dicated, the equilibrium vapor pressure for that liquid is found by going up the
diagram until you intersect the bubble point line at point B. However, at that
equilibrium pressure, the composition of the vapor phase is found by moving
horizontally until you intersect the dew point line at point A. Such graphical
representations are very useful in understanding how liquid-phase and vapor-
phase compositions are related.

Example 7.5
At some particular temperature, the vapor pressure of pure benzene, C6H6,
is 0.256 bar and the vapor pressure of pure toluene, C6H5CH3, is 0.0925 bar.
If the mole fraction of toluene in the solution is 0.600 and there is some
empty space in the system, what is the total vapor pressure in equilibrium
with the liquid, and what is the composition of the vapor in terms of mole
fraction?

Solution
Using Raoult’s law, we can determine the partial pressures of each component:

pbenzene � (0.400)(0.256 bar) � 0.102 bar

ptoluene � (0.600)(0.0925 bar) � 0.0555 bar

The total pressure is the sum of the two partial pressures:

ptot � 0.102 bar � 0.0555 bar � 0.158 bar

We could also have used equation 7.17, letting toluene be component 1:

ptot � 0.256 � (0.0925 � 0.256)0.60

ptot � 0.158 bar

In order to determine the composition of the vapor (in mole fraction), we
can use Dalton’s law of partial pressures to set up the following:

ytoluene � �
0

0

.0

.1

5

5

5

8

5

b

b

a

a

r

r
� � 0.351

ybenzene � �
0

0

.

.

1

1

0

5

2

8

b

b

a

a

r

r
� � 0.646

(The two mole fractions do not add up to exactly 1 because of truncation
errors.) Notice that the vapor phase has been enriched in benzene over the
original solution. This should make sense, given that benzene has a much
higher vapor pressure than toluene.

Referring to Figure 7.6, note that point B is not the boiling point of the so-
lution having that composition. It is simply the vapor pressure of the solution
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composition phase diagram like this connects the
liquid-phase composition with the composition
of the vapor phase that is in equilibrium.
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at that composition. Only when the vapor pressure reaches the surrounding
pressure will the two-component liquid be at its boiling point. (This detail is
important only for systems that are open and exposed to some external pres-
sure pext.)

Line AB in Figure 7.6 is called a tie line. It connects the liquid-phase com-
position with the resulting vapor-phase composition of the two components
in the system.

Suppose your system is set up in a way that you can condense the vapor
phase in a smaller subsystem. What would the composition of the new liq-
uid phase be? If you’re just condensing the vapors, then the composition of
the new liquid phase would be exactly the same as the original vapor phase.
Figure 7.7 shows that this new liquid phase can be represented on the bub-
ble point line at point C. But now this subsequent liquid phase also has an
equilibrium vapor phase, whose composition is given by the tie line CD in
Figure 7.7. This second vapor phase is even more enriched in one compo-
nent. If your system is set up to allow for multiple evaporations and con-
densations, each step between the bubble point line and the dew point line
generates a vapor and subsequent liquid phase that are progressively richer
and richer in one component. If the system is set up properly, ultimately you
will get liquid and vapor phases that are essentially pure single component.
The steps leading to this pure component are shown in Figure 7.8. What has
happened is that we have started from the two-component mixture and have
separated one component from the other. Such a procedure is called frac-
tional distillation, and it is particularly common in organic chemistry. Each
individual step, represented by a pair of horizontal and vertical lines, is called
a theoretical plate. In practice, systems that are set up to perform fractional
distillations can have as few as three or as many as tens of thousands of theo-
retical plates.

Figure 7.9 shows three setups for performing fractional distillations. The first
two are apparatus that you might see in lab, using either macroscale or microscale
glassware. The last is a fractional distillation apparatus on an industrial scale.

176 C H A P T E R  7 Equilibria in Multiple-Component Systems

p*2

p*1

P
ar

tia
l p

re
ss

ur
e

0.5

B
A

C
D

x1, y1

0.0 1.0

Composition
of second

vapor phase

Composition
of first vapor

and subsequent
liquid phase

Composition
of initial
liquid phase

Figure 7.7 A vapor phase will condense into a
liquid having the exact same composition, line
AC. But that new liquid will not vaporize into a
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Figure 7.8 With repeated condensations and
evaporations, eventually a pure liquid can be 
separated from the system. This is called frac-
tional distillation.
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Fractional distillations are among the most important and energy-demanding
processes, especially in the petrochemical industry.

Phase diagrams can also be plotted in terms of temperature—usually the
boiling point (BP) of the liquid—versus composition. However, unlike the
pressure-composition phase diagram, there is no simple straight-line equation
to express one of the lines, so in temperature-composition phase diagrams
both bubble point and dew point lines are curved. An example is shown in
Figure 7.10, which corresponds to Figure 7.5. Notice that the higher compo-
nent of vapor pressure, component 2, has the lower boiling point for the pure
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Figure 7.9 Some fractional distillation apparatus. (a) A laboratory scale fractional distillation
apparatus. (b) A microscale fractional distillation setup. Microscale equipment uses small
amounts, so it is appropriate when only small amounts of material are available. (c) Fractional
distillation on an industrial scale is a common process. This shows the hardware for large-scale
distillations.
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component. Also note that the bubble point line and the dew point line have
switched places.

Fractional distillations can also be illustrated using temperature-composition
phase diagrams. A solution of initial composition vaporizes into a vapor having
a different composition. If this vapor is cooled, it condenses into a liquid hav-
ing the same composition. This new liquid can establish an equilibrium with
another vapor having a more enriched composition, which condenses, and so
on. Figure 7.11 illustrates the stepwise process. Three theoretical plates are
shown explicitly.

Raoult’s law is one requirement for an ideal liquid solution. There are a few
other requirements for an ideal solution. When two pure components are
mixed, there should be no change in the total internal energy or enthalpy of
the components:

	mixU � 0 (7.25)

	mixH � 0 (7.26)

If the solution is mixed under conditions of constant pressure (which is usu-
ally an applicable restriction), then equation 7.26 implies that

qmix � 0

Mixing is usually a spontaneous process, which means that 	mixS and 	mixG
for the process must have the proper magnitudes. Indeed, in analogy to gas
mixtures, for ideal liquids they are

	mixG � RT �
i

xi ln xi (7.27)

	mixS � �R �
i

xi ln xi (7.28)

for constant-temperature processes. Since xi is always less than 1, the loga-
rithms of xi are always negative, so 	mixG and 	mixS will always be nega-
tive and positive, respectively. Mixing is a spontaneous, entropy-driven
process. When one uses equations 7.27 and 7.28 and the units come out as
joules per mole, the “per mole” part refers to the moles of components in
the system. To calculate a total quantity, the amount per mole must be
multiplied by the number of moles in the system, as shown in the follow-
ing example.

Example 7.6
What are 	mixH, 	mixU, 	mixG, and 	mixS for a system that mixes 1.00 mol
of toluene and 3.00 mol of benzene? Assume ideal behavior and 298 K.

Solution
By definition, 	mixH and 	mixU are exactly zero. The total number of moles
in our system is 4.00 mol, so for 	mixG, we use x1 � 0.250 and x2 � 0.750.
Therefore,

	mixG � �8.314 �
mo

J

l�K
��(298 K)(0.250 � ln 0.250 � 0.750 � ln 0.750)

	mixG � �1390 J/mol � 4.00 mol � �5560 J
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ences between the two representations of the same
process?
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Similarly, for 	mixS:

	mixS � ��8.314 �
mo

J

l�K
��(0.250 � ln 0.250 � 0.750 � ln 0.750)

	mixS � 4.68 �
mo

J

l�K
� � 4.00 mol � 18.7 J/K

Both state functions show that mixing will be spontaneous.

Notice that 	mixG and 	mixS satisfy the general equation

	mixG � 	mixH � T 	mixS

With 	mixH � 0 for an ideal solution, this equation simplifies to

	mixG � �T 	mixS (7.29)

There is usually one other requirement for the mixing of ideal solutions:

	mixV � 0 (7.30)

Of all requirements for an ideal solution, it is probably equation 7.30 that is
most easily demonstrated to fail for most real liquid solutions. Most people are
familiar with the example of pure water and pure alcohol. If 1.00 L of pure
water is mixed with 1.00 L of pure alcohol, the resulting solution will be some-
what less than 2.00 L in volume.

7.4 Nonideal Two-Component Liquid Solutions
Even simple two-component mixtures are not ideal, as suggested by the com-
ment about 	mixV for solutions. Molecules in a liquid interact with each other,
and molecules interact differently with liquid molecules of another species.
These interactions cause deviations from Raoult’s law. If the individual vapor
pressures are higher than expected, the solution shows a positive deviation from
Raoult’s law. If the individual vapor pressures are lower than expected, then the
solution shows a negative deviation from Raoult’s law. The liquid-vapor phase
diagrams for each case show some interesting behavior.

Figure 7.12 shows a liquid-vapor phase diagram for positive deviations from
Raoult’s law. Each component has a higher-than-expected vapor pressure, so
the total pressure in equilibrium with the liquid solution is also higher than
expected. Ethanol/benzene, ethanol/chloroform, and ethanol/water are systems
that show a positive deviation from Raoult’s law. Figure 7.13 shows a similar
diagram, but for a solution that shows a negative deviation from Raoult’s law.
The acetone/chloroform system is one example that exhibits such nonideal
behavior.

For plots of xi and yi versus composition, it is sometimes easier to use 
temperature-composition phase diagrams rather than pressure-composition
phase diagrams. Figure 7.14 shows a positive deviation from Raoult’s law. (Be
sure to keep track of what the “positive” means: that the vapor pressure is
higher than expected from Raoult’s law. With the temperature and pressure 
being inversely related, a positive deviation from Raoult’s law leads to a lower
temperature for the boiling point, which is what Figure 7.14 illustrates.)
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Figure 7.13 A nonideal solution showing a
negative deviation from Raoult’s law. Compare
this, too, to Figure 7.4.

Figure 7.12 A nonideal solution showing a
positive deviation from Raoult’s law. Compare
this to Figure 7.4.
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Figure 7.14 shows plots of composition of liquid and vapor phase versus
temperature. The curious thing about this plot is that the bubble point line and
the dew point line touch each other at one point, then separate again. At this
point, the composition of the liquid and the composition of the vapor in equi-
librium with the liquid have the exact same mole fraction. At this composition,
the system is acting as if it were a single, pure component. This composition
is called the azeotropic composition of the solution, and the “pure component”
having this composition is called the azeotrope. In the case of Figure 7.14, since
the azeotrope has a minimum temperature, it is called the minimum-boiling
azeotrope. For example, H2O and ethanol have a minimum-boiling azeotrope
that boils at 78.2°C and is 96% ethanol and 4% water. (The normal boiling
point of pure ethanol is just slightly higher at 78.3°C.)

Figure 7.15 shows a temperature-composition phase diagram for a negative
deviation from Raoult’s law. Again, there is a point where the bubble and dew
point lines touch, in this case forming a maximum-boiling azeotrope. Since we
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Figure 7.14 Temperature-composition phase diagram for a nonideal solution showing a pos-
itive deviation from Raoult’s law. Notice the appearance of a point in which liquid and vapor have
the same composition.
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Figure 7.15 Temperature-composition phase diagram for a nonideal solution showing 
negative deviation from Raoult’s law. The azeotrope is maximum-boiling, rather than minimum-
boiling as shown in Figure 7.14.
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are limiting our systems to two components, these azeotropes are all binary
azeotropes, but in systems that have more than two components, there are also
ternary azeotropes, quaternary azeotropes, and so forth. Almost all real systems
have azeotropes in their liquid-vapor phase diagrams, and there is always only
one unique composition for an azeotrope for any set of components.

Fractional distillation for a system that has an azeotrope is similar to the
process illustrated in Figure 7.11. However, as the tie lines move from one
composition to another, eventually either a pure component is reached, or an
azeotrope is reached. If an azeotrope is reached, then there will be no further
change in the composition of the vapor, and no further separation of the two
components will take place by means of distillation. (There are other ways to
separate the components of an azeotrope, but not by straightforward distilla-
tion. Such is the conclusion of thermodynamics.)

Example 7.7
Using a temperature-composition phase diagram like Figure 7.14, predict the
general composition of the ultimate distillation product if a solution having
a mole fraction x1 of 0.9 is distilled.

Solution
Refer to Figure 7.16. Using the tie lines to connect the vapor composition for
each liquid phase composition, we ultimately find ourselves at the minimum-
boiling azeotrope. Therefore, the azeotrope is our ultimate product and no
further separation can be performed using distillation.

As an additional example, what is the expected outcome if the solution has
an initial mole fraction x1 of 0.1?

Example 7.8
Using a temperature-composition phase diagram like Figure 7.15, predict the
general composition of the ultimate distillation product if a solution having
a mole fraction x1 of 0.5 is distilled.
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Figure 7.16 See Example 7.7. If one starts with a liquid having the composition indicated, the
minimum-boiling azeotrope is the ultimate product.
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Solution
Refer to Figure 7.17. Using the tie lines to connect the vapor composition
for each liquid phase composition, we ultimately find ourselves at a compo-
sition consisting of x1 � 0. Therefore, the pure component 2 is our ultimate
product.

As an additional example, what is the expected outcome if the solution had
an initial mole fraction x1 of 0.1? Is your conclusion the same as the conclu-
sion for the additional example in Example 7.7?

If deviations from ideality are large enough, then two liquids won’t even
make a solution at certain mole fractions: they will be immiscible. As long as
there is enough of each component to establish an equilibrium with a vapor
phase in the system, the pressure-composition phase diagram will look some-
thing like Figure 7.18. Between points A and B, we are implying that the two
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immiscibility. The vapor pressure is constant in that range.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



liquids are immiscible, so the total pressure in equilibrium with the liquids is
simply the sum of the two equilibrium vapor pressures.*

7.5 Liquid/Gas Systems and Henry’s Law
Gases can dissolve in liquids. In fact, liquid/gas solutions are important to us.
One example is a soft drink, which has carbon dioxide gas dissolved in water.
Another example is the ocean, where the solubility of oxygen is crucial to fish
and other animal life, and the solubility of carbon dioxide is important for algae
and other plant life. In fact, the ability of the oceans to dissolve gases is largely
unknown but is thought to be a major factor in the weather conditions of the
troposphere (the layer of the atmosphere closest to the surface of the earth).

Liquid/gas solutions range between extremes. Hydrogen chloride gas, HCl,
is very soluble in water, making solutions of hydrochloric acid. By contrast, the
solubility of 1 bar of pure oxygen in water is only about 0.0013 M.

Since liquid/gas solutions are nonideal, Raoult’s law does not apply. This is
illustrated in Figure 7.19, in which the vapor pressure of some gaseous com-
ponent is plotted versus mole fraction. The figure shows a range of mole frac-
tion where Raoult’s law gives good predictions when compared to reality.
However, this region is concentrated at large values of mole fraction; for most
compositions, Raoult’s law disagrees with real measurements.

However, Figure 7.19 does show that in regions of low mole fraction, the
vapor pressure of the gas in the equilibrium vapor phase is proportional to
the mole fraction of the component. This proportionality is illustrated by an
approximately straight dotted line in the plot of pressure versus xi at low mole
fractions. Since the vapor pressure is proportional to the mole fraction, we can
write this mathematically as

pi 
 xi
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*Here we are assuming that both liquids are exposed to some space within the system
and can come to equilibrium with their vapor phases. In systems where a denser immisci-
ble liquid is completely covered by a less dense liquid, its vapor pressure will be suppressed.
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Figure 7.19 If a gas is one of the components, Raoult’s law does not hold at low mole frac-
tions of gas. However, there is a region of proportionality. This region can be described using
Henry’s law.
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The way to make a proportionality an equality is to define a proportionality
constant Ki, so now we have

pi � Kixi (7.31)

where the value of the constant Ki depends on the components and also the
temperature. Equation 7.31 is called Henry’s law, after the British chemist
William Henry, who was a contemporary and friend of John Dalton (of mod-
ern atomic theory and Dalton’s law of partial pressures fame). Ki is called the
Henry’s law constant.

Notice the similarity and difference between Raoult’s law and Henry’s law.
Both apply to the vapor pressure of volatile components in a solution. Both say
that the vapor pressure of one component is proportional to the mole fraction
of that component. But whereas Raoult’s law defines the proportionality con-
stant as the vapor pressure of the pure component, Henry’s law defines the
proportionality constant as some experimentally determined value. Some
Henry’s law constants are listed in Table 7.1.

Many applications of Henry’s law define the system from a different per-
spective. Instead of specifying the solution composition, the liquid phase and
the equilibrium gas component pressure are specified. Then the question is
asked, what is the equilibrium mole fraction of the gas in the resulting equi-
librium solution? The following example illustrates.

Example 7.9
The Henry’s law constant Ki for CO2 in water is 1.67 � 108 Pa (Pa � pascal;
1 bar � 105 Pa) at some particular temperature. If the pressure of CO2 in
equilibrium with water were 1.00 � 106 Pa (which equals 10 bar, or about 10
atm) at that temperature, what is the mole fraction of CO2 in the solution?
Can you estimate the molarity of the CO2 solution?

Solution
In this example, we are specifying the equilibrium partial pressure of the gas
in the gas phase, and determining the mole fraction in the liquid solution
(rather than the other way around, which has been the habit so far). Using
equation 7.31, we have

1.00 � 106 Pa � (1.67 � 108 Pa) � xi

Solving, we find that

xi � 0.00599

Notice that the units have canceled. This is expected for a mole fraction, which
is unitless. Since the mole fraction of CO2 is so small, we will assume that the
volume of 1 mole of solution is the molar volume of water, which is 18.01 mL
or 0.01801 L. We further approximate that the mole fraction of H2O mole-
cules is about 1.00, so that the number of moles of CO2 dissolved in the wa-
ter is 0.00599 mole. Therefore, the approximate molarity of the solution is
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m
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� � 0.333 M

The higher number for the molar concentration of this solution belies the
tiny mole fraction in the liquid phase. Carbonated beverages are typically
made by using this pressure of gaseous carbon dioxide.
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Table 7.1 Some Henry’s law constants for
aqueous solutionsa

Compound Ki (Pa)

Argon, Ar 4.03 � 109

1,3-Butadiene, C4H6 1.43 � 1010

Carbon dioxide, CO2 1.67 � 108

Formaldehyde, CH2O 1.83 � 103

Hydrogen, H2 7.03 � 109

Methane, CH4 4.13 � 107

Nitrogen, N2 8.57 � 109

Oxygen, O2 4.34 � 109

Vinyl chloride, CH2�CHCl 6.11 � 107

aTemperature is 25° C.
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7.6 Liquid/Solid Solutions
In this section, we will consider only solutions in which the liquid component
has the majority mole fraction (the solvent) and the solid component has the
minority mole fraction (the solute). We will also assume that the solid solute is
non-ionic, because the presence of oppositely charged ions in solution affects
the properties of the solution (which will be considered in the next chapter).
There is also a consideration that is implicit in specifying a solid component:
it contributes nothing to the vapor phase that is in equilibrium with the solu-
tion. One way of speaking of this is to state that the solid is a nonvolatile com-
ponent. Solutions of this sort are therefore easy to separate by simple distilla-
tion of the only volatile component, the solvent, rather than the more
complicated fractional distillation. Figure 7.20 shows two experimental setups
for simple distillation. Compare these to Figure 7.9.

Having mentioned the liquid-gas phase change for the liquid component,
what about the liquid-solid phase change? That is, what happens when the so-
lution is frozen? Typically, the freezing point of a solution is not the same as
the freezing point of the pure liquid, which is a topic discussed shortly. However,
when liquid solidifies, pure solid phase is formed. The remaining liquid phase
becomes more concentrated in solute, and this increase in concentration con-
tinues until the solution is saturated. Any further concentration causes precip-
itation of solute along with solidification of the solvent. This continues until
all of the solute is precipitated and all of the liquid component is pure solid.

Most liquid/solid solutions do not make solutions in infinite ratios.
Typically, there is a limit to how much solid can be dissolved in a given
amount of liquid. At this limit, the solution is said to be saturated. The solu-
bility represents the amount of solid that is dissolved in order to make a sat-
urated solution, and is given in a wide variety of units. [A common unit for
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solubility is (grams of solute)/(100 mL of solvent).] Most of the solutions we
work with are unsaturated, having less than the maximum amount of solute that
can dissolve. Occasionally, it is possible to dissolve more than the maximum. This
is typically done by heating the solvent, dissolving more solute, then cooling the
solution carefully so that the excess solute does not precipitate. These are super-
saturated solutions. However, they are not thermodynamically stable.

For an ideal liquid/solid solution, it is possible to calculate the solubility of
the solid solute. If a saturated solution exists, then saturated solution is in equi-
librium with excess, undissolved solute:

solute (s) � solvent (�) solute (solv) (7.32)

where the solute (solv) refers to the solvated solute, that is, the dissolved
solid.

If this equilibrium does exist, then the chemical potential of the undissolved
solid equals the chemical potential of the dissolved solute:

�°pure solute (s) � �dissolved solute (7.33)

The undissolved solute’s chemical potential has a ° superscript because it is a
pure material, whereas the chemical potential of the dissolved solute is part of
a solution. However, if the dissolved solute can be considered as one compo-
nent of a liquid/liquid solution (with the other liquid being the solvent itself),
then the chemical potential of the dissolved solute is

�dissolved solute � �°dissolved solute (�) � RT ln xdissolved solute (7.34)

Substituting for �dissolved solute in equation 7.33:

�°pure solute (s) � �°dissolved solute (�) � RT ln xdissolved solute (7.35)

This can be rearranged to find an expression for the mole fraction of the dis-
solved solute in solution:

ln xdissolved solute � (7.36)

The expression in the numerator of equation 7.36 is the chemical potential
of the solid minus the chemical potential of the liquid for a pure solute,
which equals the change in the molar Gibbs free energy for the following
process:

solute (�) → solute (s) (7.37)

That is, the numerator refers to the change in free energy for a solidification
process. The Gibbs free energy for this process would equal zero if it occurred
at the melting point. If T is not the melting-point temperature, then 	fusG is
not zero. Equation 7.37 is the reverse of the melting process, so the change in
G can be represented as �	fusG. Therefore, equation 7.36 becomes

ln xdissolved solute � �
�	

R
f

T
usG� � (7.38)

Here, we are substituting for 	fusG, again noting that 	fusH and 	fusS repre-
sent the changes in enthalpy and entropy at some temperature T, which is not
the melting point.

Now we will add zero to the last expression in equation 7.38, but in an un-
usual way: by adding (	fusGMP)/RTMP, where 	fusGMP is the Gibbs free en-
ergy of fusion and TMP is the melting point of the solute. At the melting

�(	fusH � T 	fusS)
���

RT

�°pure solute (s) � �°pure solute (�)���
RT

JQPJ
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point, 	fusGMP equals zero, so we are simply adding zero to equation 7.38.
We get

ln xdissolved solute � � �
	

R
fu

T
sG

M

M

P

P�

� �

ln xdissolved solute � ��
	

R
fu

T
sH� � �

	f

R
usS� � �

	

R
fu

T
sH

M

M

P

P� � �
	fu

R
sSMP�

Again, we are using the subscript MP to indicate that these 	H and 	S values
are for the melting-point temperature. If, however, the changes in enthalpy and
entropy do not change much with temperature, we can approximate 	fusH �
	fusHMP and 	fusS � 	fusSMP. We substitute to eliminate 	fusHMP and 	fusSMP.

ln xdissolved solute � ��
	

R
fu

T
sH� � �

	f

R
usS� � �

	

RT
fu

M

sH

P

� � �
	f

R
usS�

Then, we note that the two terms in 	fusS cancel. The two terms in 	fusH can
be combined and factored; the final equation is

ln xdissolved solute � ��
	f

R
usH���

T

1
� � �

TM

1

P

�� (7.39)

This is the basic equation for calculating solubilities of solids in solutions. As
usual, all temperatures must be in units of absolute temperature. Note that the
solubility is given in terms of the mole fraction of the dissolved solute in
the solution. If a solubility in terms of molarity or grams per liter is desired,
the appropriate conversions must be applied.

Example 7.10
Calculate the solubility of solid naphthalene, C10H8, in liquid toluene,
C6H5CH3, at 25.0°C if the heat of fusion of naphthalene is 19.123 kJ/mol and
its melting point is 78.2°C.

Solution
Using equation 7.39, we get

ln xdissolved solute � � ��298.

1

15 K
� � �

351.

1

35 K
��

Notice that we have converted the value for R into kJ units, and also the tem-
perature values into absolute temperature. All of the units cancel algebraically,
as they should. We get

ln xdissolved solute � �2300.1(0.0033542 � 0.0028461)

ln xdissolved solute � �1.1687

Now we take the inverse natural logarithm:

xdissolved solute � 0.311

Experimentally, the mole fraction xdissolved solute is 0.294 for naphthalene 
dissolved in toluene. Note the good agreement between the calculated and 

19.123 �
m
k
o
J

l
�

��
0.008314 �

mo
k

l
J
�K
�

	fusHMP � TMP 	fusSMP���
RTMP

�(	fusH � T 	fusS)
���

RT

�(	fusH � T 	fusS)
���

RT
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experimental values, especially considering the assumptions made in deriv-
ing equation 7.39.

Example 7.11
Use equation 7.39 to justify the effect on solubility for a compound if the
temperature is increased. Assume that the temperature is lower than the melt-
ing point of the pure solute.

Solution
If 	fusH is positive (and by definition, it is), then the term �(	fusH)/R is neg-
ative. When the temperature is increased, 1/T gets smaller, so the value of
[(1/T � (1/TMP)] gets smaller. (When T � TMP, 1/T  1/TMP. So as 1/T gets
smaller, the difference [(1/T) � (1/TMP)] gets smaller.) Therefore, the prod-
uct [�(	fusH)/R][1/T) � (1/TMP)] becomes a smaller negative number as T
increases. The inverse logarithm of a smaller negative number is a larger dec-
imal number. So, as T increases, xdissolved solute increases. In other words, as the
temperature is increased, the solubility of the solute increases. This is consis-
tent with almost all solutes. (There are a few solutes that decrease in solubil-
ity with increase in temperature, but they are rare.)

7.7 Solid/Solid Solutions
Many solids are actually solutions of two or more solid components. Alloys are
solid solutions. Steel is an alloy of iron, and there are many kinds of steel whose
properties depend on the other components of the solution as well as their
mole fraction, as shown in Table 7.2. Amalgams are alloys of mercury. Many
dental fillings are amalgams, which are alloys of mercury (although the per-
ceived danger—not the actual danger!—of mercury poisoning is making amal-
gam fillings less popular). Bronze (an alloy of copper and tin), brass (an alloy
of copper and zinc), solder, pewter, colored glass, doped silicon for semicon-
ductors—are all examples of solid solution.

188 C H A P T E R  7 Equilibria in Multiple-Component Systems

Table 7.2 Examples of solid/solid solutionsa

Name Composition Uses

Alnicob 12 Al, �20 Ni, 5 Co, remainder Fe Permanent magnets

Monimax 47 Ni, 3 Mo, remainder Fe Wire for electromagnets

Wood’s metal 50 Bi, 25 Pb, 12.5 Sn, 12.5 Cd Fire sprinkler systems

Solder 25 Pb, 25 Sn, 50 Bi Low-melting solder

Stainless steel #304 18–20 Cr, 8–12 Ni, 1 Si, 2 Mn, A standard stainless steel
0.08 C, rest Fe 

Stainless steel #440c 16–18 Cr, 1 Mn, 1 Si, 0.6–0.75 C, High-quality stainless steel
0.75 Mo, rest Fe 

Babbitt metal 89 Sn, 7 Sb, 4 Cu Bearing friction reduction

Constantan 45 Ni, 55 Cu Thermocouples

Gunmetal 90 Cu, 10 Sn Guns

Sterling silver 92.5 Ag, 7.5 Cu (or other metal) Durable silver items 
aAll numbers are in weight percent.
bThere are several different alnico compositions, some of which have other metallic components.
cThere are dozens of types of stainless steel, each with its own unique properties.
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Solid solutions should be distinguished from composites, which are mate-
rials formed from two or more solid components that never actually dissolve.
Recall that a solution is a mixture that has a consistent composition through-
out the system. For example, salt water has a consistent composition at a
macroscopic level, even though it is composed of H2O and NaCl. However,
plywood does not, since it is easy to see that it is composed of layers of differ-
ent material. Composites are not true solid solutions.

For solid/solid solutions, the interesting phase change occurs between pos-
sible different solid phases and between solid and liquid phases. In fact, there
is a similarity between liquid-gas phase changes and solid-liquid phase changes,
which is that the compositions of the phases in a system at equilibrium are not
necessarily the same. For solid/solid solutions, the composition of a liquid
phase in equilibrium with a solution is a point that must be considered.

The following example shows that the Gibbs phase rule holds for solid so-
lutions as well.

Example 7.12
For a temperature-composition phase diagram of a two-component solid so-
lution, how many degrees of freedom are necessary to describe the system in
the following cases?
a. The system is completely solid.
b. There is an equilibrium between solid and liquid phases.
In each case, suggest what variables the degrees of freedom might be.

Solution
a. Using the Gibbs phase rule, for a one-phase solid solution we would have

F � C � P � 2 � 2 � 1 � 2

F � 3

The degrees of freedom might be pressure, temperature, and mole fraction of
one component. (The other mole fraction is determined by subtraction.)
b. For the case of a solid in equilibrium with a liquid phase, we have

F � C � P � 2 � 2 � 2 � 2

F � 2

In this case, we might specify temperature and mole fraction of one compo-
nent. Since we know that there are two phases in equilibrium, the pressure is
dictated by the phase diagram and the equilibrium line between solid and
liquid phases at a particular composition and temperature.

An understanding of temperature-composition phase diagrams for solid-
liquid phase changes (the most common type) of solid solutions includes an
issue brought up in the last section. When a liquid solution reaches a temper-
ature at which solidification occurs, usually a pure phase solidifies from the so-
lution. In doing so, the remaining liquid becomes more concentrated in the
other component. This sounds like fractional distillation, and suggests that a
phase diagram like Figure 7.10 or 7.11 might be applicable to solid-liquid
phase changes, also. However, it is a little more complicated than that.

First of all, it should be understood that the addition of any solute lowers
the freezing point of any solvent—a topic considered in more detail later. For
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example, we can start with two pure components A and B, which have specific
melting points (MPs), as shown in the temperature-composition phase dia-
gram in Figure 7.21a. These mole fractions are represented by xA � 1 and xA

� 0, respectively. Starting from each side of the diagram, as each pure com-
ponent gets impure—that is, as we move from each side toward the middle of
the phase diagram—the melting point drops (Figure 7.21b). The phase dia-
gram represents this as a boundary line between a solid phase—either pure B
or pure A—in equilibrium with a liquid phase, as marked. As we get more and
more impure from either side, eventually the two solid-liquid equilibrium lines
will meet, as shown in Figure 7.21c. At this point, both solids A and B will
freeze.

Starting from either side of the phase diagram, the situation is very much
like a liquid-vapor phase change: one component will preferentially change
phase, and the other component will become more and more concentrated
within the remaining liquid. Until, that is, a certain composition labeled x E is
reached: then the two components will freeze simultaneously, and the solid
that forms will have the same composition as the liquid. This composition is
called the eutectic composition. At this composition, this liquid acts as if it were
a pure component, so the solid and liquid phases have the same composition
when in equilibrium at the eutectic temperature TE. This “pure component” is
called the eutectic. The eutectic is similar to the azeotrope in liquid-vapor
phase diagrams. Not all systems will have eutectics, some systems may have
more than one, and the composition of the eutectic(s) of a multicomponent
system is characteristic of the components. That is, you cannot predict a eu-
tectic for any given system.

Figure 7.21c therefore shows the behavior of the solid mixture of A and B
and how the solid and liquid phases behave with change in temperature. Below
the eutectic temperature TE, the system is a solid. Above the eutectic tempera-
ture, it may be either only a liquid phase (if at the eutectic composition), or a
combination of pure solid plus a liquid mixture.

Example 7.13
Figure 7.22a shows a phase diagram of two components, A and B. It also
shows two initial points, the dots M and N.
a. Explain the behavior of the components as the system starts at point M
and cools.
b. Explain the behavior of the components as the system starts at point N and
warms.

Solution
a. Point M represents a liquid having mostly component B, since the mole
fraction of A is approximately 0.1. As you go down the phase diagram verti-
cally, the two-component liquid drops in temperature until it reaches the
solid-liquid equilibrium line. At this point, pure component B solidifies, and
the remaining liquid actually gets more concentrated in component A. When
it reaches 0.2 mole fraction in A, the eutectic composition is reached and the
liquid solidifies as if it were a pure substance, continuing to cool as a eutec-
tic solid of A and B. Figure 7.22b shows a dotted-line path indicating these
changes.
b. Point N represents a solid phase having roughly equal parts of A and B. As
the temperature increases, eventually a point is reached in which component
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Figure 7.21 Construction of a simple solid-
liquid phase diagram for a solid solution. (a) The
pure solid components have well-defined melting
points. (b) Moving in from either side, as some of
the other component is introduced, the melting
point drops. Above each line segment, the system
is in the liquid state. Below each line segment,
there is some liquid and some of the majority
component is freezing. (c) At some point, the two
lines will meet. Below this point, the system is
solid. The phase diagram can thus be divided into
areas of all solid, solid � liquid, and liquid. The
two “solid � liquid” regions have different com-
positions, however.
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A begins to melt. This reduces the amount of A in the solid (indicated by the
dotted line above the solid line in Figure 7.22b). When enough A melts that
the solid has the eutectic composition, the solid melts evenly as if it were a
pure compound. After the solid melts evenly, the system is composed of a
single liquid phase.

As with azeotropes, eutectics may be ternary, quaternary, and so on, but
their phase diagrams get very complex very quickly. A few important eutectics
have an impact on ordinary life. Ordinary solder is a eutectic of tin and lead
(63% and 37%, respectively) that melts at 183°C, whereas the melting points
of tin and lead are 232°C and 207°C. Wood’s metal is an alloy of bismuth, lead,
tin, and cadmium (50�25�12.5�12.5) that melts at 70°C (lower than the boil-
ing point of water!) that can be used in overhead fire sprinkler systems. NaCl
and H2O make a eutectic that melts at �21°C, which should be of some in-
terest to communities that use salt on icy roads in the winter. (The composi-
tion of this eutectic is about 23 weight percent NaCl.) An unusual eutectic ex-
ists for cesium and potassium. In a 77�23 ratio, this eutectic melts at �48°C!
This eutectic would be a liquid metal at most terrestrial temperatures (and be
very reactive toward water).

In many cases, the solid-liquid equilibria are much more complicated than
Figures 7.21 and 7.22 suggest. This is due to two factors. First, solids may not
be “soluble” in all proportions, so there may be regions of immiscibility in the
temperature-composition phase diagram. Second, two components may form
stoichiometric compounds that can act as pure components. For example, in the
phase diagram for Na and K solutions, a “compound” having the stoichiome-
try Na2K can form. The presence of this stoichiometric compound can further
complicate the phase diagram. Figure 7.23 shows this in a temperature-
composition phase diagram for a Na/K solid/liquid solution. Other phase dia-
grams can get much more complicated, as shown in Figure 7.24.
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Figure 7.22 The phase diagram described in
Example 7.13.
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Engineering Design and Analysis: An Introduction,
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One important application of the detailed understanding of solid solution
phases is called zone refining, which is a method for preparing very pure ma-
terials. It is especially useful in the semiconductor industry, where the produc-
tion of ultrapure silicon is the crucial first step in making semiconductors.
Figure 7.25 shows a temperature-composition phase diagram for silicon and
silicon oxides. “Pure” silicon, which would have a composition very near the
zero value for weight percent of oxygen in Figure 7.25, still has enough impu-
rities to cause problems with the electrical properties of silicon, so it must be
purified further.

A solid cylinder of Si, called a boule, is slowly passed through a cylindrical
high-temperature furnace, as shown in Figure 7.26. (Silicon melts at 1410°C.)
When it slowly resolidifies, it does so as very pure silicon, and the impurities
remain in the melted phase. As the boule passes further through the furnace,
this impure layer collects more of the impurities as the ultrapure silicon crys-
tallizes. In the end, as seen in Figure 7.26, the entire boule has passed through
the furnace and the impurities are concentrated in one end, which is cut off.
What remains is a cylinder of ultrapure crystalline silicon that can be cut into
thousands or millions of semiconductors. Other crystals, including synthetic
gemstones, can be fashioned in this way.
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7.8 Colligative Properties
Consider the solvent of a solution. It is typically defined as the component with
the majority mole fraction, although with concentrated aqueous solutions this
definition is often relaxed. Compare the properties of a solution with a non-
volatile solute with the same properties of the pure solvent. In certain cases,
the physical properties are different. These properties differ because of the
presence of solute molecules. The properties are independent of the identity of
the solute molecules, and the change in the property is related only to the num-
ber of solute molecules. These properties are called colligative properties, where
the word colligative comes from the Latin words meaning “to bind together”
which is what the particles of solute and solvent are doing, in a sense. The four
common colligative properties are vapor pressure depression, boiling point el-
evation, freezing point depression, and osmotic pressure.

We have already addressed vapor pressure depression, in the form of Raoult’s
law. The vapor pressure of a pure liquid is lowered when a solute is added, and
the vapor pressure is proportional to the mole fraction of the solvent:

psolv � xsolvp*solv

where psolv is the true pressure of the solvent, p*solv is the vapor pressure of the
pure solvent, and xsolv is the mole fraction of the solvent in the solution. Since
mole fractions are always 1 or less, the vapor pressure of a solvent in a solu-
tion is always less than the vapor pressure of the pure liquid. Notice, too, that
Raoult’s law doesn’t care what the solute is, it only depends on the mole frac-
tion of the solvent. This is one of the characteristics of a colligative property.
It’s not what, but how much.

Before considering the next colligative properties, we recall the concentration
unit molality. The molality of a solution is similar to molarity except that it is
defined in terms of the number of kilograms of solvent, not liters of solution:

molality � (7.40)

Molality, abbreviated molal or m, is useful for colligative properties because
it is a more direct ratio of molecules of solute to molecules of solvent. The
unit molarity automatically includes the concept of partial molar volumes
because it is defined in terms of liters of solution, not liters of solvent. It is
also dependent on the amounts of solvent and solute (in mole and kilogram
units), but independent of volume or temperature. Thus, as T changes, the
concentration in molality units remains constant while the concentration

number of moles of solute
����
number of kilograms of solvent
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Heating coil

(a) (b)

Purified
material

Collected
impurities

Figure 7.26 In zone refining of silicon, a heating coil melts a small part of the boule at a time.
As the liquid slowly solidifies, impurities remain concentrated in the liquid phase. As the molten
zone passes along the boule, eventually the impurities are collected at one end, which can then
be removed from the pure material.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



in molarity units varies due to expansion or contraction of the solution’s
volume.

The next colligative property is boiling point elevation. A pure liquid has a
well-defined boiling point at a particular pressure. If a nonvolatile solute were
added, then to some extent those solute molecules would impede the ability of
solvent molecules to escape from the liquid phase, so more energy is required
to make the liquid boil, and the boiling point increases.

Similarly, nonvolatile solvents will make it harder for solvent molecules to
crystallize at their normal melting points because solidification will be im-
peded. Therefore, a lower temperature will be required to freeze the pure sol-
vent. This defines the idea of freezing point depression. A pure liquid will have
its freezing point lowered when a solute is dissolved in it. (This idea is a com-
mon one for anyone who has tried to synthesize a compound in a lab. An im-
pure compound will melt at a lower temperature because of the freezing point
depression of the “solvent.”)

Because the liquid-gas and liquid-solid transitions are equilibria, we can
apply some of the mathematics of equilibrium processes to the changes in
phase transition temperatures. In both cases the argument is the same, but here
we will concentrate on the liquid-solid phase equilibrium and then apply the
final arguments to the liquid-gas phase change.

In some respects, the freezing point depression can be considered in terms
of solubility limits, which we discussed in the previous section. This time, in-
stead of the component of interest being the solute, the component of interest
is the solvent. However, the same arguments and equations apply. By analogy,
we can adapt equation 7.39 and say that

ln xsolvent � ��
	f

R
usH���

T

1
� � �

TM

1

P

�� (7.41)

where 	fusH and TMP refer to the heat of fusion and melting point of the sol-
vent. If we are considering dilute solutions, then xsolvent is very close to 1. Since
xsolvent � 1 � xsolute, we can substitute to get

ln(1 � xsolute) � ��
	f

R
usH���

T

1
� � �

TM

1

P

�� (7.42)

Using a one-term Taylor series expansion of ln (1 � x) � �x,* we substitute
for the logarithm on the left side of the equation and get

xsolute � �
	f

R
usH���

T

1
� � �

TM

1

P

�� (7.43)

where the minus signs have canceled. This equation is rewritten by algebraically
rearranging the temperature terms:

xsolute � �
	f

R
usH� �

T

T
M

�
P

T

�

MP

T
� (7.44)

We make one last approximation. Since we are working with dilute solutions,
the temperature of the equilibrium is not much different from the normal
melting point temperature TMP. (Recall that the freezing point and the melt-
ing point are the same temperature and that the phrases “freezing point” and
“melting point” can be used interchangeably.) Therefore, we substitute TMP for
T in the denominator of equation 7.44, and define 	Tf as TMP � T: the change
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*The multiterm expansion is ln(1 � x) � �x � �
1
2

�x2 � �
1
3

�x3 � �
1
4

�x4 � � � �.
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in temperature of the equilibrium melting or freezing process. Equation 7.44
becomes

xsolute � �
R

	

T
fu

2
M

sH

P

� 	Tf (7.45)

The relationship between molality and mole fraction is simple. If Msolvent is the
molecular weight of the solvent, then the molality of the solution is

msolute � �
xs

1

ol

0

ve

0

n

0

t �

�

M

xso

so

lu

lv

te

ent

� (7.46)

The 1000 in the numerator of equation 7.46 represents a conversion from
grams to kilograms, so there is an implicit g/kg unit on it. Remember that the
mole fraction of the solvent is close to 1, so we further approximate by substi-
tuting 1 for xsolvent. We then rearrange equation 7.46 in terms of xsolute, substi-
tute into equation 7.45, and then rearrange the equation to get an expression
for 	Tf, the amount that the freezing point is depressed. We get

	Tf � ��M1
s

0
o

0
lv

0
en

�
t �

	

R

fu

T

sH

2
MP��msolute (7.47)

All of the terms relating to properties of the solvent have been grouped inside
parentheses, and the only term relating to the solute is its molal concentration.
Notice that all of the terms inside the parentheses are a constant for any par-
ticular solvent: its molecular weight Msolvent, its melting point TMP, and its heat
of fusion 	fusH. (1000 and R are also constants.) Therefore, this collection of
constants represents a constant value for any solvent. Equation 7.47 is more
commonly written as

	Tf � Kf � msolute (7.48)

where Kf is called the freezing point depression constant for the solvent. It is also
called the cryoscopic constant for the solvent.

Example 7.14
Calculate the cryoscopic constant for cyclohexane, C6H12, given that its heat
of fusion is 2630 J/mol and its melting point is 6.6°C. What are the units for
the constant?

Solution
The molecular weight of cyclohexane is 84.16 g/mol. The melting point,
which must be expressed in absolute temperature, is 6.6 � 273.15 � 279.8 K.
Comparing equations 7.47 and 7.48, we see that the expression for Kf is

Kf � �
M

10
so

0
lv

0
en

	
tR

fu

T

sH

2
MP�

Substituting for the variables:

Kf �

Working out the units, everything cancels but K�kg/mol

Kf � 20.83 �
K

m

�k

o

g

l
�

These units seem unusual until one remembers that the unit molality is
defined in terms of mol/kg. Since the above unit has the reciprocal of this

(84.16 �
m

g
ol
�)(8.314 �

mo
J
l�K
�)(279.8 K)2

����
1000 �

k
g
g
� � 2630 �

m
J
ol
�
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expression, this implies that the unit molality can be substituted in the de-
nominator. Therefore, the final answer is

Kf � 20.83 �
m

K

olal
�

This unit makes more sense if one is using equation 7.48 to determine the
freezing point depression. Cyclohexane has one of the larger Kf values for a
common solvent.

There is an analogous derivation for the difference in the boiling point for
a solvent that has a nonvolatile solute dissolved in it. Rather than repeat the
derivation in its entirety, only the final result is presented:

	Tb � ��M1
s

0
ol

0
ve

0
nt

	

�

va

R

p

T

H

2
BP��msolute (7.49)

where TBP and 	vapH now refer to the boiling point and heat of vaporization
of the solvent. Again, the terms inside the parentheses are constants for any sol-
vent, so equation 7.49 can be rewritten as

	Tb � Kb � msolute (7.50)

where Kb is the boiling point elevation constant for the solvent. It is sometimes
called the ebullioscopic constant.

One thing that the expressions for the change in the freezing point and boil-
ing point do not address: the direction of the change. Although the formal
mathematics indicate the direction of 	Tf and 	Tb, they are lost in equations
7.48 and 7.50. That is, they tell us only the magnitude of the change, not the
direction. It is incumbent on us to remember: freezing points go down, but
boiling points go up.

The final colligative property of solutions we will consider is called osmotic
pressure. Although we treat it last, it is probably one of the most important,
because many biological systems like our own cells are influenced by it.

Pressure is defined as force per unit area. Pounds per square inch (psi) is a
common (though non-SI) unit of pressure in the United States. A pressure is
exerted on any object that has liquid above it, as experienced divers know. The
first barometers invented were tubes of water—and later mercury—that were
set up to act against the pressure of the atmosphere. See Figure 7.27.

Consider a system constructed in two parts that are separated by a semi-
permeable membrane, as shown in Figure 7.28. A semipermeable membrane is
a thin film that allows some molecules to pass through it and not others.
Cellophane and other polymers are examples. Cell walls can be considered
semipermeable membranes. Let the system be filled with a solution on the left
side, and the pure solvent on the right side, but to the same height (Figure
7.28a). The tube on either side is open to some external pressure, labeled P.

Curiously, this system is not at equilibrium. In time, solvent (usually water)
molecules, which can easily pass through many semipermeable membranes,
will go from the right side to the left side, further diluting the solution. In doing
so, the heights of the liquids on either side of the membrane change. At some
point, the system achieves equilibrium. That is, the chemical potential of the
solvent on either side of the membrane is equal:

�solvent,1 � �solvent,2

At this point, however, the liquid levels on the two sides of the system are dif-
ferent, as shown in Figure 7.28b. The column of liquid on the left side exerts a
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Closed-end tube
containing liquid

Force due to
column of liquid

(�Fliq)

Force due to
atmosphere

(�Fatm) Some liquid
(water, alcohol,
mercury, etc.)

At equilibrium, F liq � Fatm

Figure 7.27 An illustration of how opposing
pressures act against each other. In this example,
the opposing pressures are the pressure of the at-
mosphere and the pressure of the liquid column
in the long tube. At equilibrium, the two pres-
sures balance each other. (This diagram repre-
sents a simple barometer.)
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different pressure than the column on the right side. The difference in the two
pressures, represented by the difference in column heights, is called the osmotic
pressure, which is given the symbol �. Therefore, at equilibrium the left side is
exerting a total pressure P � � and the right side is now exerting pressure P.
Therefore, the equality of the two chemical potentials can be written as

�(P � �) � �°(P) (7.51)

where a capital P is used to differentiate this variable from the lowercase p used
for gas pressure. The chemical potential of the solution that has a mole frac-
tion of solute, xsolute, is related to the standard chemical potential as given by
equation 7.35, but in slightly different notation:

�(P � �) � �°(P � �) � RT ln xsolute (7.52)

To determine an expression for �, we begin with the natural variable expres-
sion for d�:

d�� �S� dT � V� dp

At constant temperature:

d�� V� dp

To find �, we integrate both sides of the equation from one pressure extreme
to the other. In this case, the pressure extremes are P and P � �. We get

	
P+�

P

d� � 	
P+�

P

V� dp

If we actually perform the integration on the left side of this expression, we get

�solvent,solution(P � �) � �°solvent,pure(P) � 	
P+�

P

V� dp (7.53)

We have embellished the �’s with subscripts: the side where the total liquid
pressure is P � � has the solvent combined with a solute, whereas the side
where the total liquid pressure is P has the pure solvent (hence the superscript °).
Using equation 7.52 to substitute for �(P � �) in equation 7.51:

�°(P � �) � RT ln xsolute � �°(P)

Next, rearrange:

�°(P � �) � �°(P) � �RT ln xsolute

The left side of this equation is the same as the left side of equation 7.53 (but
without the subscripts). We can substitute and get:

�RT ln xsolvent,solution � 	
P+�

P

V� dp (7.54)

If we assume that the molar volume remains constant between pure solvent and
solution, V� can be removed from the integral and the answer is straightforward:

�RT ln xsolvent,solution � V� 	
P+�

P

dp

� V� � p�P
P��

� V� (P � � � P)

�RT ln xsolvent,solution � V� � � (7.55)
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Figure 7.28 The two-part system is filled with
pure solvent on one side and a dilute solution on
the other. (a) Initially, the liquid levels are even
with each other. However, it is not at equilibrium.
Solvent will pass through the semipermeable
membrane in a preferential direction. (b) At equi-
librium, the two levels are uneven. The difference
between the two levels is defined as the osmotic
pressure �.
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Again, consider that ln xsolvent,solution � ln(1 � xsolute) � �xsolute. Making one
final substitution:

xsoluteRT � V� � �

This is usually rearranged to read as

�V� � xsoluteRT (7.56)

This equation, which is a remarkable parallel to the ideal gas law, is called the
van’t Hoff equation, after Jacobus van’t Hoff, a Dutch physical chemist who an-
nounced this equation in 1886.* (He was also one of the originators of the con-
cept of the tetrahedral carbon atom, and was the first recipient of the Nobel
Prize for Chemistry in 1901.) The equation relates the osmotic pressure of a
solution to the mole fraction of the solute in the solution. It is strictly valid
only for very dilute solutions (reminiscent of many ideal gas systems), but is
also a useful guide for more concentrated ones.

Example 7.15
What is the osmotic pressure of a 0.010-molal solution of sucrose in water?
If this solution were placed in a system as illustrated in Figure 7.28, how
high would the column of diluted sucrose be at equilibrium if the tube has
a surface area of 100.0 cm2? Assume 25°C, and that the density of the so-
lution is 1.01 g/mL. Some necessary conversions are 1 bar � 105 pascal, and
1 pascal � 1 N/m2 (newton of force per square meter of area), and re-
member that F � ma for converting a mass into its equivalent force. (In this
case, a will be the acceleration due to gravity, which is 9.81 m/s2.)

Solution
A 0.010-molal solution contains 0.010 mole of sucrose in 1.00 kg, or 1000 g,
of water. In 1.00 kg of H2O, there are 1000 g/(18.01 g/mol) � 55.5 mol H2O.
Therefore, the mole fraction of sucrose is

�
55.5

0

�

.01

0

0

.010
� � 0.000180 � xsolute

The molar volume of water is 18.01 mL, or 0.01801 L. Using the van’t Hoff
equation:

�(0.01801 L) � 0.000180�0.08314 �
m

L�

o

b

l

a

�K

r
��298 K

� � 0.248 bar

This is a substantial osmotic pressure for such a dilute solution! In order to
know how high the column will be, we convert this into N/m2:

0.248 bar � �
105

1

p

b

a

a

s

r

cals
� � �

1

1

p

N

a

/

s

m

ca

2

l
� � 2.48 � 104 N/m2

For a surface area of 100.0 cm2 � 1.00 � 10�2 m2, this pressure is caused by
a force determined as

2.48 � 104 �
m

N
2� � 1.00 � 10�2 m2 � 248 N
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*This is different from the van’t Hoff equation introduced in Chapter 5.
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Using the equation F � ma, this force corresponds to a mass of

248 N � m � 9.81 �
m

s2�

m � 25.3 kg

where we have used the fact that 1 N � 1 kg�m/s2. At a density of 1.01 g/mL,
this is

25.3 kg � �
1

1

00

k

0

g

g
� � �

1

1

.0

m

1

L

g
� � �

1

1

c

m

m

L

3

� � 2.50 � 104 cm3

where we have used the equality 1 cm3 � 1 mL in the last step. For an area
of 100.0 cm2, this corresponds to a column having a height of

�
2.5

1

0

0

�

0.0

10

cm

4 c
2

m3

� � 250. cm

That’s almost 8 feet high! Figure 7.29 gives you an idea how high this is.
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Figure 7.29 The osmotic pressure of a 0.010-molal solution will support a 100-cm2 column
of solution that is about the height of a baby giraffe!
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Although 0.010 molal is not a very concentrated solution, the predicted
osmotic pressure effects are substantial.

Osmotic pressure considerations have some important applications. One is
in biology. A cell membrane is a semipermeable membrane. Therefore, osmotic
pressures on either side of the membrane must be very close to equal, or the
effects of osmotic pressure may cause cells to either collapse or expand due to
transfer of H2O from regions of low concentrations to high concentrations.
Either expansion or collapse can kill the cell. Figure 7.30 shows photographs
of red blood cells in solutions of higher, equal, and lower osmotic pressures.
Osmotic pressure effects also explain why people stranded in lifeboats on the
ocean cannot safely drink the seawater. Its osmotic pressure is too high, and
drinking it will cause one’s cells to literally dehydrate, rather than hydrate.

Osmotic pressure is also a factor in delivering water from the roots of trees
to the leaves in their tops, which might be dozens or even hundreds of feet
from the ground. It is also important in keeping nonwoody plants sturdy and
upright, and uncooked vegetables crisp and crunchy.

Osmotic pressure can be used to determine the average molecular weights
of macromolecules and polymers. As Example 7.15 showed, significant os-
motic pressure effects do not require a large concentration. Relatively dilute
solutions can show measurable osmotic effects, which allow one to calculate
the molality of the solution and, stepwise, the molecular weight of the solute.
Of course, if the high-molecular-weight polymer is even slightly impure, the
number of presumably lower-molecular-weight impurities will dramatically
affect the final determination. Again, this is because osmotic pressure is a
colligative property, which depends only on the number of molecules, not their
identities, in the solution.

Example 7.16
An aqueous poly(vinyl alcohol) solution that is made by dissolving 0.0100 g of
polymer in 1.00 L of water has an osmotic pressure of 0.0030 bar. What is the
average molecular weight of the polymer? Assume 298 K, and also assume that
the volume of the solvent does not change appreciably when the solute is added.

Solution
Using the van’t Hoff equation, we set up the following expression:

(0.0030 bar)V� � xsolute�0.08314 �
m

L�

o

b

l

a

�K

r
��298 K

We still need V� and xsolute. But since the mole fraction of the solute is so
small, we can approximate that

�
xso

V�
lute� � �

V

n

so

so

lu

lu

ti

t

o

e

n

� � molarity of solution

(Notice that we are no longer using the molar volume, V�.) We can therefore
determine the molarity of the solution by rearranging the equation to

molarity � �
nso

V
lute� �

Working out the numbers and the units, we find that

molarity � 0.000123 �
m

L

ol
�

0.0030 bar
���
(0.08314 �

m
L�

o
b
l
a
�K
r

�)298 K
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Figure 7.30 Demonstration of the effects of
osmotic pressure on red blood cells. If the os-
motic pressures inside and outside the cell are
equal, the cells look normal. However, if the os-
motic pressure outside the cell is too low, the cells
swell; if it is too high, the cells shrivel. Neither sit-
uation is good for the body.
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Using the fact that 0.0100 g was used to make 1.00 L of solution, we have the
relationship

0.000123 �
m

L

ol
� � 0.0100 �

L

g
�

The liter units cancel, giving

0.000123 mol � 0.0100 g

Solving for molecular weight, which has units of g/mol, we find that the mol-
ecular weight is

815,000 �
m

g

ol
�

This is not an unusual average molecular weight for a polymer.

The osmotic pressure of a solution can be counteracted by exerting addi-
tional pressure on the side of the membrane that has the more concentrated
solution. In fact, if pext is greater than �, then the osmosis process will occur
in the opposite direction. Such “reverse osmosts” processes have some extremely
practical benefits. Perhaps the most important is the production of fresh
water from seawater in desalinization plants. In the Middle East, these plants
produce drinkable water from the very salty water of the gulfs and seas in the
area. The process is a product of technology, but is much less energy-intensive
than distillation.

The van’t Hoff equation assumes that the solute dissolves molecularly. That
is, every molecule of solid solute dissolves into a single molecule of solute in a
solvated form. For compounds that dissolve into multiple solvated species
(mainly ionic compounds), the number of species that the solute dissolves into
must be taken into account. For such compounds, the van’t Hoff equation
becomes

�V� � N � xsoluteRT (7.57)

where N represents the number of individual species a compound separates
into when it dissolves.

7.9 Summary
Solutions, even binary solutions, can be complicated in their behavior. The
equations of thermodynamics help us understand this behavior. Liquid/liquid
solutions can establish equilibria with vapor phases, and the equations of
thermodynamics help us understand how the composition of the vapor phase
is related to the composition of the liquid phase. We can do the same thing
for solid/solid solutions and the liquid phase that will exist when such a so-
lution melts. Both phase changes have a special composition that acts as a
pure phase: an azeotrope or a eutectic. Both special compositions affect our
everyday life.

Phase diagrams are useful graphical representations of the phase changes
and compositions of solutions. Not only do they represent instantaneous
conditions, but they can be used to predict the behavior of a solution as
conditions change. Properly labeled and interpreted, a phase diagram indicates
the exact composition of the different phases that appear as conditions like

7.9 Summary 201

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



temperature or pressure change. Phase diagrams for real solutions show how
azeotropes and eutectics can’t be avoided.

Colligative properties address the changes in the physical properties of the
solution with respect to the major component—the solvent. Raoult’s law sum-
marizes the change in the vapor pressure of a volatile solvent. Freezing points
and boiling points change. But osmotic pressure may be the most underrated
colligative property. It is a factor in biological cells and our ability to make
fresh water from seawater. Luckily, the equations of thermodynamics provide
an understanding of all of these phenomena.
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7.2 The Gibbs Phase Rule

7.1. Consult Example 7.1 and assume that now your mixed
drink has an olive in it. Now how many degrees of freedom are
there? What might you select as the variables to be specified?

7.2. Referring to Example 7.2, how many degrees of freedom
are specified when there is only Fe2(SO4)3 in the system?

7.3. How many phases are necessary in a three-component
system if you want no degrees of freedom?

7.4. Can there ever be a negative number of degrees of freedom
for any possible one-component physical system at equilibrium?

7.5. For the following chemical equilibrium in an enclosed
system, how many degrees of freedom are there?

2NaHCO3 (s) Na2CO3 (s) � H2O (�) � CO2 (g)

7.6. The production of nitrogen gas for automobile airbags
takes advantage of the following chemical reaction:

4NaN3 (s) � O2 (g) → 6N2 (g) � 2Na2O (s)

If this reaction were in equilibrium, how many degrees of free-
dom would be necessary to describe the system?

7.3 Liquid/Liquid Systems

7.7. Assuming that the vapors act like an ideal gas, what is the
minimum amount of H2O needed in a 5.00-L system at 25.0°C
to ensure that there is a liquid phase in equilibrium with a va-
por phase? What is the minimum amount of CH3OH needed
to ensure a liquid phase and vapor phase under the same con-
ditions? The equilibrium vapor pressures of H2O and CH3OH at
this temperature are 23.76 and 125.0 torr, respectively.

7.8. For a solution of H2O and CH3OH in which xH2O � 0.35,
what are the mole fractions of H2O and CH3OH in the vapor
phase? Use conditions and data from exercise 7.7.

7.9. What is the activity of liquid H2O of a multicomponent
solution in which the vapor pressure of H2O is 748.2 mmHg
at 100.0°C?

7.10. Derive equation 7.19.

7.11. Derive equation 7.19 but in terms of y2, not y1.

7.12. Determine the total equilibrium pressure of the vapor
in equilibrium with a 1�1 molar ratio of hexane (C6H14) and
cyclohexane (C6H12) if the equilibrium vapor pressures of the
two components are 151.4 and 97.6 torr, respectively.

7.13. Many police departments use breath tests to check for
drunk drivers. What would be the approximate partial pressure
of ethanol in expired breath if the blood alcohol content is ap-
proximately 0.06 mole % (that is, xethanol � 0.0006)? The
equilibrium vapor pressure of C2H5OH at 37°C is 115.5 torr.
Use your answer to comment on the necessary sensitivity of
the test.

7.14. A solution of methanol (CH3OH) and ethanol (C2H5OH)
has a vapor pressure of 350.0 mmHg at 50.0°C. If the equi-
librium vapor pressures of methanol and ethanol were 413.5
and 221.6 mmHg, respectively, what is the composition of the
solution?

JQPJ

7.15. Derive equation 7.23 from equation 7.19.

7.16. Determine the mole fractions of each component in the
vapor phase of the vapor in equilibrium with a 1�1 molar 
ratio of hexane (C6H14) and cyclohexane (C6H12) if the equi-
librium vapor pressures of the two components are 151.4 and
97.6 torr, respectively.

7.17. Use equation 7.24 to show that lim
y1�0

ptot � p2* and 
lim
y2�0

ptot � p1*.

7.18. Why could one not use equation 7.24 directly to de-
termine the total pressure of the vapor in Example 7.5?

7.19. What are 	mixG and 	mixS for the combination of 
1.00 mol of toluene and 1.00 mol of benzene at 20.0°C?
Assume that they mix to make an ideal solution.

7.4 Nonideal Liquid/Liquid Systems

7.20. Why is acetone used to rinse out wet glassware? (Hint:
Water has a boiling point of 100.0°C and acetone has a boil-
ing point of 56.2°C. There is also a low-boiling azeotrope com-
posed of the two molecules.)

7.21. Repeat Example 7.7, but assume that you start with a
solution that has x1 � 0.1 using Figure 7.14 as the phase 
diagram.

7.22. Repeat Example 7.7, but assume that you start with a
solution that has x1 � 0.4 using Figure 7.15 as the phase 
diagram.

7.23. How might you be able to distinguish an azeotrope
from a pure compound by purely physical means? (Hint: con-
sider other possible phase changes.)

7.24. Ethanol prepared by distillation is only about 95% pure
because it forms a low-boiling binary azeotrope with water.
“100%” ethanol can be made by adding a specific amount of
benzene to form a ternary azeotrope that boils at 64.9°C.
However, this ethanol should not be ingested! Why?

7.25. Figure 7.31 shows a phase diagram of H2O and ethyl-
ene glycol. Explain why this mixture, in an approximately
50�50 mixture, is used as a coolant and antifreeze in auto-
mobile engines.
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7.5 Liquid/Gas Systems and Henry’s Law

7.26. Convert the units of the Henry’s law constant for CO2,
in Table 7.1, to units of mmHg, atm, and bar. In which case(s)
does the numerical value of the constant change?

7.27. What is the difference between hydrogen chloride and
hydrochloric acid? Do you expect that either of them acts as
an ideal substance?

7.28. The Henry’s law constant for methyl chloride, CH3Cl, in
aqueous solution is 2.40 � 106 Pa. What pressure of methyl
chloride is necessary to establish a mole fraction of 0.0010 in
an aqueous solution?

7.29. The mole fraction of CCl2F2, a compound once used as
a refrigerant, in an aqueous solution was found to be 4.17 �
10�5 at normal pressure. What is the approximate molarity of
this solution and what is the Henry’s law constant for this gas?
Use a density of 1.00 g/cm3 for water.

7.30. At 25°C, the mole fraction of air in water is about 
1.388 � 10�5. (a) What is the molarity of this solution? 
(b) What is the Henry’s law constant for air? (c) Would you
expect the solubility of air to increase or decrease with an in-
crease in temperature? Compare your numerical answers to
the constants for nitrogen and oxygen in Table 7.1.

7.31. At 25°C, the mole fraction of nitrogen, N2 (g), in water
is 1.274 � 10�5. (a) Compare this with the number in the
previous problem and comment. (b) Calculate the solubility
of oxygen, O2 (g), in water given the fact that air is approxi-
mately 80% nitrogen and 20% oxygen. (c) Calculate the
Henry’s law constant for oxygen. Compare your answer to the
number in Table 7.1.

7.32. Does a higher Henry’s law constant mean that a gas is
more soluble in a liquid, or less soluble? Be able to defend
your answer.

7.6 & 7.7 Liquid/Solid and 
Solid/Solid Solutions

7.33. What is the approximate molarity of a saturated solu-
tion of phenol, C6H5OH, for which 87.0 g can be dissolved in 
100 mL of water? The density of phenol is 1.06 g/cm3; assume
ideal behavior with respect to the total volume of the solution.

7.34. Calculate the solubility of phenol, C6H5OH, in water at
25°C if 	fusH for phenol is 11.29 kJ/mol and its melting point
is 40.9°C. Compare the calculated solubility with the numbers
from the previous exercise. Can you explain any deviations?

7.35. (a) Convert the calculated mole fraction of naphtha-
lene dissolved in toluene from Example 7.10 into molarity, as-
suming that the volumes are strictly additive. The density of
toluene is 0.866 g/mL and the density of naphthalene is 1.025
g/mL. Assume the volumes are additive.

(b) Estimate the solubility, in g/100 mL and molarity, of naph-
thalene in n-decane, C10H22, which has a density of 0.730
g/mL.

7.36. Will equation 7.39 work for the solubility of gases in liq-
uids? Why or why not?

7.37. Consider the following solutions:

Sodium chloride (s) in water
Sucrose (s) in water
C20H42 (s) in cyclohexane
Water in carbon tetrachloride

For which solution(s) do you think that a calculated solubility
will be close to the experimental solubility? Explain your rea-
soning.

7.38. Determine how ideal the following solutions are by cal-
culating the mole fraction of solute in each solution, and com-
paring that to the expected mole fractions. All data are for
25.0°C.

(a) 14.09 weight percent of I2 in C6H6, MP of I2 is 112.9°C
(sublimes), and 	fusH � 15.27 kJ/mol

(b) 2.72 weight percent of I2 in C6H12, MP of I2 is 112.9°C
(sublimes), and 	fusH � 15.27 kJ/mol

(c) 20.57 weight percent of para-dichlorobenzene, C6H4Cl2,
in hexane, MP of C6H4Cl2 is 52.7°C, and 	fusH � 17.15 kJ/mol

7.39. Iron metal has a 	fusH value of 14.9 kJ/mol and is solu-
ble in mercury to the level of xFe � 8.0 � 10�3 at 25.0°C.
Estimate the melting point of iron. Compare the estimate to
the literature value of 1530°C.

7.40. How many degrees of freedom are required to specify
the eutectic for a two-component system?

7.41. Do communities that use salt in the winter use enough
to form the low-melting eutectic between NaCl and H2O, or
are they taking advantage of the freezing-point depression
phenomenon in general? How can you tell?

7.42. Starting from xNa � 0.50 in Figure 7.23 in the liquid re-
gion, describe what happens as the temperature is decreased
until the entire solution is solid.

7.43. Construct a qualitative phase diagram for the Sn/Sb
system, which has binary eutectics at 92% and 95% Sn that
melt at 199°C and 240°C, respectively. The melting points of
tin and antimony are 231.9°C and 630.5°C.

7.44. Explain why zone refining, used to make ultra-pure sil-
icon, would not be a practical method of making ultra-pure
carbon.

7.45. Estimate the solubility of Na in Hg at 0°C. The heat of
fusion of sodium is 2.60 kJ/mol and its melting point is 97.8°C.

7.46. Show how the formula of the stoichiometric compound
in Figure 7.23 was determined.

7.8 Colligative Properties

7.47. Explain how the unit molarity automatically includes
the concept of partial molar volumes.

7.48. Why do you think people who live at high altitudes are
advised to add salt to water when boiling food like pasta?
What mole fraction of NaCl is needed to raise the boiling point
of H2O by 3°C? Does the amount of salt added to water (typ-
ically about one teaspoon to four quarts of water) substantially
change the boiling point? Kb (H2O) � 0.51°C/molal.
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7.49. Estimate the osmotic pressure, freezing point, and boil-
ing point of seawater, which you can approximate as equiva-
lent to a 1.08-molal solution of NaCl. Use equations 7.47 and
7.49 to calculate Kf and K b for H2O, and use 	fusH [H2O] �
6.009 kJ/mol and 	vapH [H2O] � 40.66 kJ/mol. From what you
know about seawater, what assumptions are we making?

7.50. Calculate the freezing point depression of mercury
caused by dissolved sodium if the mole fraction of Na is 0.0477.
The normal freezing point of Hg is �39°C and its heat of fu-
sion is 2331 J/mol.

7.51. Use the system in exercise 7.45 to calculate the osmotic
pressure of the mercureous solution of sodium at 0°C. Assume
a volume of 15.2 cm3.

7.52. Use the system in exercise 7.45 to calculate the vapor
pressure depression of mercury from the solution. The normal
vapor pressure of Hg at 0°C is 0.000185 torr. 

7.53. Calculate the cryoscopic and ebullioscopic constants for
liquid bromine, Br2. You will need the following data:

	fusH: 10.57 kJ/mol MP: �7.2°C

	vapH: 29.56 kJ/mol BP: 58.78°C

7.54. A 200,000-amu average molecular weight polymer is
contaminated with 0.5% of a 100-amu impurity, presumably
the monomer. Determine the error in the molecular weight
determination if a 1.000 � 10�4 molal aqueous solution is
used. Assume a temperature of 25.0°C.

7.55. Consider an aqueous solution of a polymer that has an
average molecular weight of 185,000 amu. Calculate the mo-
lality that is needed to exert an osmotic pressure of 30 Pa at
37°C. How many grams per kilogram of solvent is this?

7.56. Derive equation 7.49.

7.57. The vapor pressures of benzene and 1,1-dichloroethane
at 25.0°C are 94.0 and 224.9 mmHg, respectively. Plot the 
total pressure versus the mole fraction of benzene in the solu-
tion. Plot the total pressure versus the mole fraction of 1,1-
dichloroethane.

7.58. The vapor pressures of benzene and 1,1-dichloroethane
at 25.0°C are 94.0 and 224.9 mmHg, respectively. What does
a plot of total pressure versus the mole fraction of benzene in
the vapor look like? What does a plot of total pressure versus
the mole fraction of 1,1-dichloroethane look like? Compare
these plots with your plots from exercise 7.57.

7.59. Consider your plots from 7.57 and 7.58 above. (a)
Identify the dew point line(s). (b) Identify the bubble point
line(s). (c) Using a combination of two appropriate lines, trace
the fractional distillation of a 50�50 mole ratio of benzene and
1,1-dichloroethane, draw the theoretical plates, and predict
the composition of the initially distilled product.

7.60. Tabulate the solubility of naphthalene in toluene be-
tween �50°C and 70°C in 5° increments. The heat of fusion
of C10H8 is 19.123 kJ/mol and its melting point is 78.2°C.
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MUCH OF CHEMISTRY INVOLVES SPECIES that have charge.
Electrons, cations, and anions are all charged particles that interact

chemically. Often electrons move from one chemical species to another to form
something new. These movements can be spontaneous, or they can be forced.
They can involve systems as simple as hydrogen and oxygen atoms, or as com-
plex as a million-peptide protein chain.

The presence and the value of discrete charges on chemical species intro-
duces a new aspect that we must consider, the fact that like charges repel and
opposite charges attract. In considering how charged particles interact, we have
to understand the work involved in moving charged particles together and
apart, and the energy required to perform that work. Energy, work—these are
concepts of thermodynamics. Therefore, our understanding of the chemistry
of electrically charged particles, electrochemistry, is based on thermodynamics.

Few people realize the widespread application of electrochemistry in modern
life. All batteries and fuel cells can be understood in terms of electrochemistry.
Any oxidation-reduction process can be considered in electrochemical terms.
Corrosion of metals, nonmetals, and ceramics is electrochemistry. Many vitally
important biochemical reactions involve the transfer of charge, which is electro-
chemistry. As the thermodynamics of charged particles are developed in this
chapter, realize that these principles are widely applicable to many systems and
reactions.

8.1 Synopsis
First, we will review the physics of charge interaction, which was understood
fairly early in the development of modern science. It is easy to relate thermo-
dynamic quantities, especially �G, to the work and energy involved in moving
charged species. We can divide every electrochemical reaction into an oxida-
tion part, in which some species loses electrons, and a reduction part, in which
some species gains electrons. We will find that we can keep these parts sepa-
rate and combine them to generate new electrochemical processes.

Electrochemical reactions are dependent on the quantity of charged species
present, but because opposite charges attract each other, the simple specifica-
tion of concentration does not necessarily correlate with behavior. The concepts
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of ionic strength, activity, and activity coefficients help us correlate the amount
of charge with the behavior of the system.

It is also important to understand why ionic solutions behave the way they
do. A few simple assumptions lead us to the Debye-Hückel theory for the de-
scription of ionic solutions. Even brief descriptions of these ideas will help us
recognize why we devote an entire chapter to the interaction and chemistry of
charged solutes.

8.2 Charges
Perhaps one of the earliest understandings of the scientific world is the con-
cept of charge. In about the seventh century B.C., the Greek philosopher Thales
found that a resinous substance called elektron—which we call amber—attracted
light objects like feathers and thread after it had been rubbed. Through the
centuries, people learned that amber rods or glass rods repel each other after
being rubbed, but an amber rod and a glass rod attract each other. However,
after touching, they immediately lose their attraction. In or around 1752,
multitalented American Benjamin Franklin performed his (perhaps apoc-
ryphal) key and kite experiment with lightning, showing that it could induce
the same properties in amber as rubbing it. It was Franklin who suggested that
this phenomenon called electricity had opposing properties, which he labeled
positive and negative. Franklin suggested that when one rubs a glass rod, elec-
tricity flows into it to make it positive. When one rubs an amber rod, electric-
ity flows out of it, making it negative. When two oppositely charged rods
touch, there is an exchange between the two until the amount of electricity is
equalized. Two rods of the same charge, positive or negative, would avoid, or
repel, each other. (Though amazingly prescient, Franklin was wrong about the
charge that actually moved. However, vestiges of Franklin’s definitions—espe-
cially with respect to the direction of current flow in an electrical circuit—are
still common today.)

In the century that followed Franklin, other researchers like Coulomb,
Galvani, Davy, Volta, Tesla, and Maxwell placed an understanding of electrical
phenomena on solid experimental and theoretical grounds. This section re-
views some of those grounds.

In 1785, the French scientist Charles de Coulomb (Figure 8.1) made very ac-
curate measurements of the force of attraction or repulsion between small
charged spheres. He found that the direction of the interaction—that is, attrac-
tion or repulsion—is dictated by the types of the charges on the spheres. If two
spheres have the same charge, either positive or negative, they repel each other.
If, however, the two spheres have different charges, they attract each other.

Coulomb also found that the magnitude of the interaction between any two
spheres is dependent on the distance between the two small spheres. The force
of attraction or repulsion, F, between two charged spheres varies inversely with
the square of the distance, r, between the spheres:

F � �
r

1
2� (8.1)

It was found that the force between charged objects is also proportional to the
magnitude of the charges, represented by q1 and q2, on the objects. Equation
8.1 becomes

F � �
q1

r

�
2

q2� (8.2)
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Figure 8.1 Charles-Augustin de Coulomb
(1736–1806) was a French physicist who used
very delicate (for the time) instrumentation to
make measurements on the force of attraction
between charged bodies.
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This equation is known as Coulomb’s law. In order to get the correct unit of
force, newtons, from equation 8.2, an additional expression is included in the
denominator of the equation. The complete SI form of Coulomb’s law is

F � �
4�

q1

�0

�

�

q2

r2� (8.3)

where q1 and q2 are in units of C and r is in units of m. The term 4� in the de-
nominator is due to the three-dimensionality of space.* The term �0 (“epsilon
naught”) is called the permittivity of free space. Its value is 8.854 	 10
12 C2/(J�m),
and its units allow for the proper algebraic conversion from units of charge and
distance to units of force. Because the q’s can be positive or negative, by conven-
tion F is positive for forces of repulsion and negative for forces of attraction.

Example 8.1
Calculate the force between charges in the following cases.
a. �1.6 	 10
18 C and �3.3 	 10
19 C at a distance of 1.00 	 10
9 m
b. �4.83 	 10
19 C and 
3.22 	 10
19 C at a distance of 5.83 Å

Solution
a. Using equation 8.3, we substitute:

F �

The coulomb units cancel, as does one of the meter units. The joule unit is
in the denominator of the denominator, which ultimately places it in the nu-
merator. Evaluating the numerical expression, we find that

F � �4.7 	 10
9 �
m

J
� � �4.7 	 10
9 N

In the final step, we have used the fact that 1 J � 1 N�m. The positive value
for the force indicates that it is a force of repulsion. This is a very small
force for macroscopic objects, but a very large force for atom-sized systems,
like ions.
b. A similar substitution yields

F �

where the distance of 5.83 Å has been converted to standard units of meters.
Solving:

F � 
4.1 	 10
9 N

In this case, because the force is negative, it represents a force of attraction
between the two charged bodies.

(�4.83 	 10
19 C)(
3.22 	 10
19 C)
�����

4� � 8.854 	 10
12�
J

C

�m

2

� � (5.83 	 10
10 m)2

(�1.6 	 10
18 C)(�3.3 	 10
19 C)
�����

4� � 8.854 	 10
12�
J

C

�m

2

� � (1.00 	 10
9 m)2
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*Actually, 4� is related to the three-dimensional coordinate system used to define space,
and the fact that the force is spherically symmetric and depends only on the distance be-
tween particles. This factor will appear again in our discussion of spherical polar coordi-
nates in Chapter 11.
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Equations 8.2 and 8.3 involve the force due to electrical charges in a vac-
uum. If the electrical charges are in some medium other than vacuum, then a
correction factor called the dielectric constant, �r, of that medium appears in
the denominator of the equation for the force. Equation 8.3 becomes

F � �
4��

q

0

1

�

�

�

q

r

2

� r2� (8.4)

Dielectric constants are unitless. The higher the dielectric constant, the smaller
the force between the charged particles. Water, for example, has a dielectric
constant of about 78.

The electric field E of a charge q1 interacting with another charge q2 is de-
fined as the force between the charges divided by the magnitude of the charge
itself. Therefore, we have

E � �
q

F

1

� � �
4��

q

0

2

� r2� (8.5)

in a vacuum. (Again, for a nonvacuum medium, we would add the dielectric
constant of the medium in the denominator.) The magnitude of the electric
field �E � (the electric field is technically a vector) is the derivative with respect
to position of some quantity called the electric potential �:

�E � � 
�




�

r
�

Electric potential represents how much energy an electric particle can acquire
as it moves through the electric field. We can rewrite this equation and inte-
grate with respect to position r :


�E � � dr � d�

�(
�E � � dr) � � d�

� � 
� �E � � dr

Since we have an expression for E in terms of r (equation 8.5), we can substitute:

� � 
� �
4��

q

0

2

� r2� dr

This integral is solvable, since it is a function of r (that is, r to the second power
in the denominator; all other variables are constant). We get

� � 
�
4�

q2

�0

� � �
r

1
2� dr

Evaluating:

� � �
4�

q

�
2

0r
� (8.6)

The units for electric potential, based on this expression, are J/C. Since we will
be working with electric potentials quite a bit, we define a new unit, volt (V),
such that

1 V � 1 J/C (8.7)

The unit volt is named in honor of the Italian physicist Alessandro Volta, who
enunciated many fundamental ideas about electrochemical systems.
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8.3 Energy and Work
How are these ideas related to energy, the principal quantity of thermody-
namics? Let us consider work. We usually define work in terms of pressure-
volume work. This is not the only kind of work that can be defined. For work
involving charges, the definition is different. The infinitesimal amount of elec-
trical work, dwelect, is defined as the infinitesimal change in amount of charge,
dQ, moving through some electric potential �:

dwelect � � � dQ (8.8)

Since electric potential has units of V and charge has units of C, equation 8.7
shows that the unit for work using equation 8.8 is joules. Now that we are con-
sidering a new kind of work, we must remember to include this as part of the
total change in internal energy under the first law of thermodynamics. That is,
the infinitesimal change in the internal energy is now

dU � dwpV � dq � dwelect

This is not a change in the definition of internal energy. It is simply including
another type of work. There are actually many contributions to work, and so
far we have considered only pressure-volume work. Other types of non-pV
work include not just electrical (that is, potential-charge), but also surface
tension–area, gravitational-mass, centrifugal-mass, and others. However, we
will consider only electrical work in this chapter.

Electrical work is performed by the movement of electrons, which are the
charged particles that move around in the course of chemical reactions. (The
proton has exactly the opposite charge, but in normal chemical reactions, it re-
mains confined to the nucleus.) One of the properties of a single electron is that
it has a specific charge, about 1.602 	 10
19 C. This value is symbolized by the
letter e. (For an electron, the charge is symbolized as 
e, and for the oppositely
charged proton, the charge is �e.) In molar quantities, e � NA (NA � Avogadro’s
number) equals about 96,485 C/mol. This quantity is called Faraday’s constant
(in honor of Michael Faraday) and is symbolized by F. Ions that have a positive
charge of �z therefore represent z � F of positive charge per mole of ions, and
ions having a negative charge of 
z represent 
z � F of negative charge per mole.

The infinitesimal change in charge dQ is related to the infinitesimal change
in moles of ions, dn (where n is the number of moles of ions). Using the ex-
pressions from the previous paragraph, we can say that

dQ � z � F � dn

Substituting this expression for dQ into equation 8.8, the infinitesimal amount
of work is

dwelect � � � z � F � dn (8.9)

For multiple ions, the amount of work required to change the number of
charged species labeled with an i subscript is

dwelect � �
0

i

�i � zi � F � dni (8.10)

In a system where there is a transfer of charge, the number of species hav-
ing any particular charge is changing, so in equation 8.10, dni is not zero. If we
want to consider the infinitesimal change in G, we have to modify the natural
variable equation for G, given by equation 4.48:

dG � 
S dT � V dp � �
0

i

�i dni
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to include the change in work due to the electric charges. We get

dG � 
S dT � V dp � �
0

i

�i dni � �
0

i

�i � zi � F � dni (8.11)

Under conditions of constant temperature and pressure, this equation becomes

dG � �
0

i

�i dni � �
0

i

�i � zi � F � dni

which can be rearranged algebraically because both of the sums are summing
over the same index (the component i) and the same variable (the change in
amount, dni):

dG � �
0

i

(�i � �i � zi � F ) � dni (8.12)

If we redefine the quantity inside the parentheses in equation 8.12 as �i,el:

�i,el � �i � �i � zi � F (8.13)

then we have

dG � �
0

i

�i,el � dni (8.14)

�i,el is called the electrochemical potential, rather than the chemical potential.
For electrochemical equilibrium, the equation analogous to equation 5.4
(��i�i � 0) is

�
0

i

ni � �i,el � 0 (8.15)

This is the basic equation for electrochemical equilibrium.
Any reaction that involves a transfer of charge (that is, electrons) is an

oxidation-reduction reaction, or redox reaction. Since an oxidation process
and a reduction process always occur together, let us adopt a Hess’s-law ap-
proach by considering each individual process independently, and then con-
sider the overall process as the sum of the two individual reactions. Species
A is being oxidized; the general chemical reaction can be represented as

A → An� � ne


where species A has lost n electrons, symbolized ne
. Species B is being re-
duced. The general chemical reaction for this can be represented as

Bn� � ne
 → B

The overall chemical reaction is

A � Bn� → An� � B

Keeping in mind that the ni values are positive for the reactants and negative
for products, equation 8.15 becomes

0 � �An�,el � �B,el 
 �A,el 
 �Bn�,el

Using equation 8.13, and recognizing that we are requiring the same charge n
on the ionic species, we have

0 � �An� � �B � nF �red 
 �A 
 �Bn� 
 nF �ox (8.16)

where we are now labeling each � as the potential from either the oxidation
reaction (“ox”) or the reduction reaction (“red”). Since the species A and B
have no charge, there is no electrical work term (that is, equation 8.10) on their
chemical potentials.
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The oxidation and reduction electric potential terms do not cancel from
equation 8.16. The electric potential of An� is not going to be the same as the
electric potential from Bn�. (Consider the following comparison. Will the elec-
tric potential of an Li� ion be the same as that for a Cs� ion only because they
have the same charge? Of course not. Li� has completely different properties
from Cs�.)

Rearranging equation 8.16:

nF �ox 
 nF �red � �An� � �B 
 �A 
 �Bn�

nF (�ox 
 �red) � �An� � �B 
 �A 
 �Bn�

By convention, we rewrite the left side of the equation by substituting 

(�red 
 �ox) for (�ox 
 �red):


nF (�red 
 �ox) � �An� � �B 
 �A 
 �Bn� (8.17)

All of the terms on the right side of equation 8.17 are constant for a given
state (pressure, temperature, and so on) of a system. Therefore, the entire right
side of equation 8.17 is a constant. This means that the left side of equation
8.17 must be constant, also. The variables n and F are constants for the chem-
ical reaction. Therefore, the expression (�red 
 �ox) must also be a constant
for the reaction.

We define the electromotive force, E, as the difference between the reduction
reaction’s electric potential and the oxidation’s electric potential:

E � �red 
 �ox (8.18)

Because � values are expressed in units of volts, electromotive forces are ex-
pressed in units of volts. The letters EMF are sometimes used to stand for
electromotive force. EMFs are not true “forces” in the scientific sense. Rather,
they are changes in electric potential.

Equation 8.17 becomes


nF E � �An� � �B 
 �A 
 �Bn� (8.19)

Now consider the right side of equation 8.19. It is the chemical potential of
the products minus the chemical potential of the reactants. This equals the
change in the Gibbs free energy of the reaction, �rxnG. Equation 8.19 can be
rewritten as

�rxnG � 
nF E (8.20)

Under standard conditions of pressure and concentration, this is

�rxnG° � 
nF E° (8.21)

This is the basic equation for relating changes in electric potential with changes
in energy. This equation also takes advantage of the definition that 1 J � 1 V�C.
The variable n represents the number of moles of electrons that are transferred
in the balanced redox reaction. Because completed redox reactions do not usu-
ally show the balanced number of electrons explicitly, we might have to figure
this out from the redox reaction itself.

Example 8.2
a. What is the number of electrons transferred in the course of the following
simple redox reaction? 

2Fe3� (aq) � 3Mg (s) → 2Fe (s) � 3Mg2� (aq)
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b. If the standard change in the Gibbs free energy of the molar reaction in
part a is 
1354 kJ, what is the difference between the reduction reaction’s
electric potential and the oxidation reaction’s electric potential?

Solution
a. The easiest way to determine the number of electrons transferred is to sep-
arate the individual oxidation and reduction processes. This is easily done:

2Fe3� (aq) � 6e
 → 2Fe (s)

3Mg (s) → 3Mg2� (aq) � 6e


The two reactions show that 6 electrons are transferred in the course of the
balanced redox reaction. In molar units, there would be 6 moles of electrons
transferred.
b. Using equation 8.21 after converting the units on �rxnG° to joules:


1,354,000 J � 
(6 mol e
)�96,485 �
mo

C

l e
�� � E°

E° � 2.339 V

The unit of volts follows from equation 8.7.

There is one thing to notice about the signs on the electromotive force.
Because �G is related to the spontaneity of an isothermal, isobaric process
(that is, �G is positive for a nonspontaneous process, negative for a sponta-
neous process, and zero for equilibrium) and because of the negative sign in
equation 8.21, we can establish another spontaneity test for an electrochemical
process. If E is positive for a redox process, it is spontaneous. If E is negative,
the process is not spontaneous. If E is zero, the system is at (electrochemical)
equilibrium. Table 8.1 summarizes the spontaneity conditions.

Just because a redox reaction occurs doesn’t mean that anything electro-
chemically useful is happening. In order to get something useful from a redox
reaction (besides the chemical outcome), a redox reaction must be set up prop-
erly. But even if a redox reaction is set up properly, how much can we expect
to get out of the differences in the electric potentials?

The answer lies in the fact that E, the difference in electric potentials, is re-
lated to the change in the Gibbs free energy of the reaction, equation 8.21.
Furthermore, we showed in Chapter 4 that if some non-pressure-volume type
of work is performed on or by the system, �G for that change represents a limit
to the amount of non-pV work that can be performed:

�G � wnon-pV

This was equation 4.11. Since electrical work is a type of non-pV work, we can
state that

�G � welect (8.22)

Since work done by the system has a negative numerical value, we can restate
equation 8.22 by saying that �G for a redox reaction represents the maximum
amount of electrical work that the system can do on the surroundings.

How do we extract this work? Figure 8.2a shows a solution containing Cu2�

ions and some zinc metal. In Figure 8.2b, zinc has been added to the 
solution. The colored Cu2� ions have reacted to make solid Cu metal, while
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Table 8.1 A summary of spontaneity con-
ditions

If �G is If E is Then the process is

Negative Positive Spontaneous

Zero Zero At equilibrium

Positive Negative Not spontaneous

Figure 8.2 (a) Zinc metal is added to a blue
solution containing Cu2� ions. (b) The zinc has
reacted to make colorless Zn2� ions and the blue
Cu2� ions have reduced to Cu metal. Although a
redox reaction has occurred, no useful work has
been obtained from this physical system.
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the zinc metal has reacted to colorless Zn2� ions. The spontaneous redox re-
action is

Zn (s) � Cu2� → Zn2� � Cu (s) E° � �1.104 V

However, in this example, the reaction occurred spontaneously and we were
not able to extract any useful work out of the reaction.

Suppose we were to set up the same reaction, but with the oxidation and re-
duction half-reactions physically separated, as in Figure 8.3. On the left side,
zinc metal can be oxidized to zinc ions, and on the right side the copper ions
are reduced to copper metal. The two half-reactions aren’t completely sepa-
rated. A salt bridge connects them to maintain an overall charge balance. The
salt bridge allows positive ions to flow into the reduction side of the system,
and negative ions to flow into the oxidation side of the system. In both cases,
this acts to preserve the electrical neutrality of each side.* Some conducting
medium, usually a wire, connects the two metal electrodes. If we attach some
electrical device such as a voltmeter or a lightbulb to the wire, we can operate
the device: we can extract work from the spontaneous electrochemical reaction,
as shown in Figure 8.3. By separating the individual half-reactions, we can get
energy in terms of electrical work from the spontaneous chemical reaction.
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*Other methods besides salt bridges are also used to maintain charge balance.

Figure 8.3 The same redox reaction as in Figure 8.2 is shown, but now each half-reaction is
physically separate from the other. As this redox reaction occurs, we can extract useful work from
the transfer of electrons, as shown.
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The two independent, physical systems that contain the reactions are called
half-cells. The half-cell that contains the oxidation reaction is called the anode,
and the half-cell containing the reduction reaction is called the cathode. The
two half-cells together make up a system that, for a spontaneous reaction, is
called a voltaic cell or galvanic cell. All batteries are voltaic cells, although their
redox chemistry and construction may not be as simple as the battery illus-
trated in Figure 8.3. (The zinc/copper voltaic cell is called a Daniell cell after
the English chemist John Daniell, who developed it in 1836. At the time, it was
the most reliable source of electricity.) Figure 8.4 shows a detailed diagram of
a modern voltaic cell.

Systems in which nonspontaneous reactions are forced to proceed by the
intentional introduction of electrons are called electrolytic cells. Such cells are
used for electroplating metals onto jewelry and metalware, among other uses.

Keep in mind that the calculated value of �G for an electrochemical process
represents the maximum amount of electric work that the reaction can do. In
reality, less than that maximum is actually extracted. This is a consequence of
the less than 100% efficiency of all processes.

8.4 Standard Potentials
Recall that E, the electromotive force, is originally defined as the difference be-
tween the reduction potential and the oxidation potential. Do we know the ab-
solute electromotive force for any individual reduction or oxidation process?
Unfortunately, we don’t. The situation is very much like internal energy, or any
other kind of energy. We understand that there is some absolute amount of
energy in a system, we accept the fact that we can never know exactly how
much energy there is in a system, but we do know that we can follow changes
in the energy of a system. It is the same thing with E.

In order to keep track of the energies of a system, we defined certain stan-
dards, like the heats of formation of compounds, with the recognition that the
heats of formation of elements in their standard states are exactly zero. We do
something similar for electromotive forces. The conventions we use for defin-
ing standard potentials are as follows:

• We consider the separate half-reactions rather than balanced redox reac-
tions. This way, any redox reaction can be constructed by algebraically
combining the appropriate two (or more) half-reactions.

• Typically, we speak of the potential for a half-reaction as that half-reaction
written as a reduction reaction. When combining two (or more) reac-
tions, at least one must be reversed to express it as an oxidation reaction.
When reversing a reaction, the standard potential changes sign.

• For standard potentials, the standard thermodynamic conditions of pres-
sure and concentration are presumed, and are usually given at the com-
mon reference temperature of 25°C. That is, if we are using a standard
potential for a half-reaction, it is assumed that the reaction is occurring
at 25°C, a fugacity of 1 for gaseous species, and an activity of 1 for dis-
solved species. (A common approximation is 1 atm or 1 bar for gases and
1 M for dissolved species.)

• The standard potential for the reduction half-reaction

2H� (aq) � 2e
 → H2 (g) (8.23)

is defined as 0.000 V. This is the reaction of the standard hydrogen elec-
trode, or SHE (Figure 8.5). All other standard potentials are defined with
respect to this half-reaction.
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Figure 8.4 A modern battery is more compli-
cated than a simple Daniell cell, but the electro-
chemical principles are the same.

Figure 8.5 The standard hydrogen electrode.
The half-reaction occurring in this electrode has
been assigned a standard reduction potential of
exactly 0.000 V.

Seal

Carbon rod (cathode)

Moist paste containing
MnO2(s), NH4Cl (aq)
and an inert filler.

Zinc can (anode)

Insulation

Wire connection
to other half cell

Pt electrode

Glass tube

H� (aq)

aH
� �1.00

H2 gas

H2 �1.00 atm
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These points define the standard electrochemical reduction potentials, rep-
resented by E°. A list of standard reduction potentials is given in Table 8.2. You
should know and be able to apply these conventions in order to successfully
work with electrochemistry.

As an aside, it should be pointed out that conventions do change occasion-
ally. It used to be the convention to list half-reactions as oxidation reactions,
not reduction reactions. You may occasionally find an old book or table that
lists half-reactions in that manner, and you should be cautious. Also, the SHE
is not the only possible standard electrode against which other half-reactions
can be measured. Another common one is the saturated calomel electrode,
which is based on the half-reaction

Hg2Cl2 � 2e
 → 2Hg (�) � 2Cl
 (8.24)

E° � �0.2682 V versus SHE

(The common name for mercury(I) chloride is calomel.) This half-reaction is
sometimes preferable because it doesn’t use hydrogen gas, which is a potential
explosion hazard. If it is used, then all of the standard reduction potentials are
shifted by 0.2682 V from the standard reduction potentials listed with respect
to SHE.

In order to use the standard potentials for an electrochemical reaction of
interest, simply separate the reaction into its half-reactions, find the standard
potential from a table, reverse one (or more) of the reactions to make it an
oxidation reaction, and negate (that is, change the sign of) its E° value. A prop-
erly balanced redox reaction has no leftover electrons, so one or more of the
reactions must be multiplied by some integral constant so that the electrons
cancel. However, the E° values are not multiplied by that same constant. E’s are
electric potentials and are intensive variables, which are defined as independent
of the amount (as opposed to extensive variables, which are dependent on the
amount).

Finally, standard potentials are strictly additive only for overall electro-
chemical reactions in which there are no unbalanced electrons. If there are un-
balanced electrons in the overall reactions, the E° values are not strictly addi-
tive. Consider as an example the following:

rxn 1Fe3� � 3e
 → Fe (s) E° � 
0.037 V

rxn 2Fe (s) → Fe2� � 2e
 E° � �0.447 V

overall rxn                          ?
Overall rxn: Fe3� � e
 → Fe2� E° � �0.410 V

A look at Table 8.2 shows that the reduction reaction Fe3� � e
 → Fe2� has
an E° of 0.771 V, nowhere close to the predicted 0.410 V. E° values are not ad-
ditive if electrons do not cancel.

However, by Hess’s law, energies are additive. What must be done for the
above example is to convert each E° into an equivalent �G°, add the �G° val-
ues together for the overall reaction as allowed by Hess’s law, and then convert
the final �G° into a final E° for the new half-reaction. For the above example,
we get

Rxn 1: �G° � 
(3 mol e
)�96,485 �
mo

C

l e
��(
0.037 V) � 10,700 J

Rxn 2: �G° � 
(2 mol e
)�96,485 �
mo

C

l e
��(�0.409 V) � 
86,300 J
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Table 8.2 Standard reduction potentials

Reaction E° (V)

F2 � 2e
 → 2F
 2.866

H2O2 � 2H� � 2e
 → 2H2O 1.776

N2O � 2H+ � 2e
 → N2 � H2O 1.766

Au� � e
 → Au 1.692

MnO4

 � 4H� � 3e
 → 1.679

MnO2 � 2H2O

HClO2 � H� � 3e
 → 1.63
�
1
2

�Cl2 � 2H2O

Mn3� � e
 → Mn2� 1.5415

MnO4

 � 8H� � 5e
 → 1.507

Mn2� � 4H2O

Au3� � 3e
 → Au 1.498

Cl2 � 2e
 → 2 Cl
 1.358

O2 � 4H� � 4e
 → 2H2O 1.229

Br2 � 2e
 → 2Br
 1.087

2Hg2+ � 2e
 → Hg2
2� 0.920

Hg2� � 2e
 → Hg 0.851

Ag� � e
 → Ag 0.7996

Hg2
2� � 2e
 → 2Hg 0.7973

Fe3� � e
 → Fe2� 0.771

MnO4

 � e
 → MnO4

2
 0.558

I3

 � 2e
 → 3I
 0.536

I2 � 2e
 → 2I
 0.5355

Cu� � e
 → Cu 0.521

O2 � 2H2O � 4e
 → 4OH
 0.401

Cu2� � 2e
 → Cu 0.3419

Hg2Cl2 � 2e
 → 2Hg � 2Cl
 0.26828

AgCl � e
 → Ag � Cl
 0.22233

Cu2� � e
 → Cu� 0.153

Sn4� � 2e
 → Sn2� 0.151

AgBr � e
 → Ag � Br
 0.07133

2H� � 2e
 → H2 0.0000

Fe3� � 3e
 → Fe 
0.037

2D� � 2e
 → D2 
0.044

Pb2� � 2e
 → Pb 
0.1262

Sn2� � 2e
 → Sn 
0.1375

Ni2� � 2e
 → Ni 
0.257

Co2� � 2e
 → Co 
0.28

PbSO4 � 2e
 → Pb � SO4
2
 
0.3588

Cr3� � e
 → Cr2� 
0.407

Fe2� � 2e
 → Fe 
0.447

Cr3� � 3e
 → Cr 
0.744

Zn2� � 2e
 → Zn 
0.7618

2H2O � 2e
 → H2 � 2OH
 
0.8277

Cr2� � 2e
 → Cr 
0.913

Al3� � 3e
 → Al 
1.662

Be2� � 2e
 → Be 
1.847

H2 � 2e
 → 2H
 
2.23

Mg2� � 2e
 → Mg 
2.372

Na� � e
 → Na 
2.71

Ca2� � 2e
 → Ca 
2.868

Li� � e
 → Li 
3.04
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Applying Hess’s law, the overall �G value for the process is

�G°overall � �G° (Rxn 1) � �G° (Rxn 2) � 10,400 
 75,600 J

�G°overall � 
68,500 J

Converting this into an equivalent E gives


68,500 J � 
(1 mol e
)�96,485 �
mo

C

l e
�� � E°overall

E°overall � �0.783 V

which is much closer to the number from the standard reduction potential
table. (The difference is related to the differing activities of the iron ions in the
solutions.) The key point is that electric potentials are strictly additive only if
the electrons cancel completely. However, energies are always additive.

Example 8.3
a. What is E° for the following unbalanced reaction?

Fe (s) � O2 (g) � 2H2O (�) → Fe3� � 4OH


(The ultimate products are FeO(OH) and H2O, but they are formed by a
nonredox reaction. The hydrated FeO(OH) is what we know as rust.)
b. Balance the reaction.
c. What are the conditions of the above process?

Solution
a. With the help of Table 8.2, we find that the above reaction can be separated
into the two half-reactions

Fe (s) → Fe3� � 3e
 E° � �0.037 V

O2 (g) � 2H2O (�) � 4e
 → 4OH
 E° � �0.401 V

We do not have to balance the reaction yet, since we can determine the over-
all E° value by combining the two E° values above. We get

E° � �0.438 V

The reaction is spontaneous, and actually represents a summary reaction for
the corrosion of iron.
b. Electrons must cancel in a balanced electrochemical (that is, redox) reac-
tion. Since the oxidation reaction involves three electrons and the reduction
reaction involves four, the lowest common multiple is 12 and we get

4Fe (s) � 3O2 (g) � 6H2O (�) → 4Fe3� (aq) � 12OH
 (aq)

as the balanced chemical reaction.
c. Because of the ° superscript on the E, we must assume that the following
conditions apply to the reaction: 25°C, a fugacity of 1 for O2 and an activity
of 1 for Fe (s), H2O (�), Fe3� (aq), and OH
 (aq). [Again, these conditions
are usually approximated by 1 bar (or atm) pressure for the gaseous reactants,
and 1 M concentration for the aqueous, dissolved ions.]

As you might suspect, in real life the corrosion of iron does not occur at
standard conditions, especially standard conditions of concentration. We
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need additional tools to determine the electromotive force at nonstandard
conditions.

Many complex biochemical reactions are electron-transfer processes, and as
such have a standard reduction potential. For example, nicotinamide adenine
dinucleotide (NAD�) accepts a proton and two electrons to become NADH:

NAD� � H� � 2e
 → NADH E° � 
0.105 V

under standard conditions. The potentials for one-electron reductions of iron
in myoglobin (E� � �0.046 V) and cytochrome c (E� � 0.254 V) listed here
are for biochemical standard states (that is, pH � 7; 37°C). Thus, when con-
sidering biochemical processes, it is crucial to understand what the conditions
are for the reactions of interest.

8.5 Nonstandard Potentials and 
Equilibrium Constants

Example 8.3 assumed that the conditions of the reaction were standard ther-
modynamic conditions. However, in reality this is almost never the case.
Reactions occur in highly variable conditions of temperature, concentration,
and pressure. (Indeed, many electrochemically based reactions occur at tiny
concentrations of ions. Consider the rusting of your car.)

Standard and nonstandard E’s for electrochemical reactions follow the same
rules as energies: if it is a standard E, then the symbol E has the ° on it.
However, if the E is simply some instantaneous electromotive force for any im-
mediate set of conditions, then the ° sign is left off: E.

The most well-known relationship between E and E° is the Nernst equation,
derived by the German chemist Walther Hermann Nernst (Figure 8.6) in 1889.
(Among other achievements, Nernst was the principal enunciator of the third
law of thermodynamics, was the first to explain explosions in terms of branch-
ing chain reactions, and invented the Nernst glower, a useful source of infrared
radiation. He received the 1920 Nobel Prize in Chemistry for his contributions
in thermodynamics.) Having recognized the validity of the following two
equations:

�G � 
nF E

�G � �G° � RT ln Q

(these are equations 8.20 and 5.7, respectively), one can combine them to yield


nF E � 
nF E° � RT ln Q

Solving for E, the nonstandard electromotive force:

E � E° 
 �
R

nF
T
� ln Q (8.25)

which is the Nernst equation. Recall that Q is the reaction quotient, which is
expressed in terms of the instantaneous (nonequilibrium) concentrations,
pressures, activities, or fugacities of reactants and products.

Example 8.4
Given the nonstandard concentrations for the following reaction, calculate
the instantaneous E of the Daniell cell.

Zn � Cu2� (0.0333 M) → Zn2� (0.00444 M) � Cu
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Figure 8.6 Walther Hermann von Nernst
(1864–1941), a German chemist who first formu-
lated an equation relating the potential of an elec-
trochemical reaction to the instantaneous condi-
tions of the products and reactants. His Nobel
Prize, however, was awarded in honor of his 
pioneering work to establish the third law of
thermodynamics.
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Solution
The expression for Q is

Q � � �
[

[

C

Zn

u

2

2

�

�

]

]
�

which is 0.00444/0.0333 � 0.133. Given that the voltage under standard con-
ditions, E°, is 1.104 V, we have

E � 1.104 V 
 ln (0.133)

All of the units cancel except for the expression J/C, which equals the unit
volt. Solving:

E � 1.104 V 
 (
0.0259 V)

E � 1.130 V

This is slightly greater than the standard voltage.

The Nernst equation is very useful for estimating the voltage of electro-
chemical cells at nonstandard conditions of concentration or pressure. But
despite the fact that the Nernst equation contains temperature, T, as a variable,
it has limited use at temperatures other than 25°C, the common reference tem-
perature. That’s because E° itself varies with temperature. We can estimate how
E° varies with temperature by considering the following two expressions:

�G° � 
nF E°

��




G

T
��p

� 
S or ��(



�

T

G)
�	p

� 
�S

Combining them, we find that

��(�

T

G°)
�	p

� 
nF ��




E

T

°
��p

� 
�S°

where we have now included the ° symbol on G, E, and S. Solving for the change
in E° with respect to the change in temperature (that is, E°/T), we get

��




E

T

°
��p

� �
�

n

S

F
°

� (8.26)

The derivative (E°/T)p is called the temperature coefficient of the reaction.
Equation 8.26 can be rearranged and approximated as

�E° � �
�

n

S

F
°

� �T (8.27)

where �T is the change in temperature from the reference temperature (usu-
ally 25°C). Keep in mind that this is the change in the EMF of a process, so the
new EMF at the nonreference temperature is

E � E° � �E° (8.28)

These equations are approximations, but fairly good ones. We aren’t even consid-
ering the change in �S° as the temperature changes—those can be substantial, as
we saw in previous chapters. But equations 8.26 and 8.27 do provide a rough

(8.314 �
mo

J
l�K
�)(298 K)

���
(2 mol e
)(96,485 �mo

C
l e
�)

�
m

m
Zn

°

2�

�

�
�
m

m
Cu

°

2�

�

8.5 Nonstandard Potentials and Equilibrium Constants 219

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



guide about the behavior of an electrochemical system as temperature changes.
Since F is a relatively large number, the change in E° is slight as the temperature
changes, but there can be a noticeable effect for some common electrochemical
reactions.

Example 8.5
Estimate E for the following reaction at 500 K:

2H2 (g) � O2 (g) → 2H2O (g) 

This is the chemical reaction for fuel cells, which among other uses provide
electrical power to the space shuttle.

Solution
First, we determine E° under standard conditions. The above reaction can be
broken down into the half-reactions

2 	 (H2 (g) → 2H� � 2e
) E° � 0.000 V

O2 (g) � 4H� � 4e
 → 2H2O (�) E° � 1.229 V

The standard EMF for the reaction is therefore 1.229 V.
�S° for the reaction is determined by looking up S° values for H2, O2, and

H2O (all in the gaseous state) in Appendix 2. We get

�rxnS° � 2(188.83) 
 [2(130.68) � (205.14)] �
K
J
�

�rxnS° � 
88.84 �
K
J
�

for the molar reaction. The change in temperature is 500 K 
 298 K �
202 K. Using equation 8.27, we can estimate the change to E°:

�E° � �
�

n

S

F
°

� �T � (202 K)

�E° � 
0.0465 V

so that the approximate voltage of the reaction at 500 K is

E � 1.229 
 0.0465

E � 1.183 V

This is a slight but noticeable decrease.

We can easily rearrange equation 8.26 to get an expression for �S°:

�S° � nF �




E

T

°
� (8.29)

Now that we have expressions for �G° and �S° , we can find an expression for
�H°. Using the original definition for �G (that is, �G � �H 
 T �S), we get


nFE° � �H° 
 T �nF �




E

T

°
��

We rearrange this algebraically to get

�H° � 
nF �E° � T�




E

T

°
�� (8.30)

This equation allows us to calculate �H° for a process using electrochemical
information.


88.84 �
K
J
�

���
(4 mol e
)(96,485 �mo

C
l e
�)
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Example 8.6
Consider the following formation reaction for H2O (�):

2H2 (g) � O2 (g) → 2H2O (�)

If �H° � 571.66 kJ at 25°C and n � 4 for this reaction, determine the tem-
perature coefficient of the standard potential E°.

Solution
We can use equation 8.30 to determine E°/T, which is the temperature co-
efficient of interest. Using Table 8.2, we can determine that E° for the reac-
tion is 1.23 V. Substituting into the equation for the known quantities:

571,660 J � (4 mol e
)(96,500 C/mol e
)�1.23 V � (298 K)�




E

T

°
�	

The “mol e
” units cancel, and when we divide by Faraday’s constant we get
J/C as a unit, which equals a volt. We get

1.481 V � �1.23 V � (298 K)�




E

T

°
�	

0.25 V � (298 K)�




E

T

°
�

�




E

T

°
� � 8.4 	 10
4 V/K

The final units are appropriate for a temperature coefficient of electromotive
force.

Changes in E versus pressure aren’t normally considered, since the expression

��




G

p
��T

� V

implies that

��(�

p

G°)
��T

� 
nF ��




E

p

°
��T

� 
�V

and rearranging:

��




E

p

°
��T

� �
�

nF
V
� (8.31)

Since most voltaic cells are based in some condensed phase (that is, liquid or
solid), the change in volume of this condensed phase is very small unless pres-
sure changes are very, very high. Since �V values are typically very small and
F is numerically very large, we can ignore the pressure effects on E °. However,
partial pressure variations of gaseous products or reactants involved in the
electrochemical reaction can have a large effect on E°. These effects are usually
handled with the Nernst equation, since the partial pressure of a reactant or
product contributes to the value of the reaction quotient Q.

Finally, the relationship between the equilibrium constant and the EMF of
a reaction should be considered. This relationship is commonly used to make
measurements on various systems, by measuring the voltage across some con-
trived electrochemical cell. Using the relationships

�G° � 
nFE°

�G° � 
RT ln K
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we can easily combine these two equations and derive the expression

E° � �
R

nF
T
� ln K (8.32)

This expression can also be derived from the Nernst equation by considering
the following: at equilibrium, E � 0 (that is, there is no potential difference be-
tween the cathode and the anode). But also at equilibrium, the expression Q is
exactly the equilibrium constant K for the reaction. Therefore, the Nernst
equation becomes

0 � E° 
 �
R

nF
T
� ln K

which rearranges to

E° � �
R

nF
T
� ln K

which is equation 8.32. Voltages of reactions at standard conditions can there-
fore be used to determine the equilibrium position of that reaction (at which
point E equals 0).

Example 8.7
Using electrochemical data, what is the solubility product constant, Ksp, of
AgBr at 25°C?

Solution
The chemical reaction representing the solubility of AgBr is

AgBr (s) Ag� (aq) � Br
 (aq)

This can be written as the combination of two reactions from Table 8.2:

AgBr (s) � e
 → Ag (s) � Br
 (aq) E° � 0.07133 V

Ag (s) → Ag� (aq) � e
 E° � 
0.7996 V

Therefore, for the overall reaction E° is 
0.728 V. Using equation 8.32 (and
assuming molar quantities):


0.728 V � ln Ksp

Convince yourself that n � 1 in this example. All of the units on the right
side except J/C cancel, and we should recognize this fraction to be equal to a
volt unit, which cancels with the volt unit on the left side of the equation.
Rearranging to isolate the natural logarithm of Ksp:

ln Ksp � � 
28.4

Taking the inverse logarithm of both sides, we get our final answer:

Ksp � 4.63 	 10
13

At 25°C, Ksp for AgBr is measured as 5.35 	 10
13, giving you an idea how
closely it can be calculated using the electrochemical values.

(
0.728)(1)(96,485)
���

(8.314)(298)

(8.314 �
K
J
�)(298 K)

���
(1 mol e
)(96,485 �mo

C
l e
�)

JQPJ
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The relationship between E and the reaction quotient Q has a practical use
in modern analytical chemistry. Consider the standard reduction reaction for
hydrogen:

2H� (aq) � 2e
 → H2 (g)

Its defined E° is zero, but at nonstandard conditions of concentration, E for
this half-reaction will be determined by the Nernst equation. We will have,
since E° is zero:

E � 
�
R

2F
T
� ln Q � 
�

R

2F
T
� ln �

(a

f

H

H

�

2

)2� � 
�
R

2F
T
� ln �

[H

pH
�

2

]2�

Assume we are working at standard pressure so that pH2
� 1 bar. Further, using

the definition of pH � 
log[H�] � 
�
2.3

1
03
� ln [H�] and the properties of loga-

rithms, we can rearrange the equation for E using these expressions and get

E � 
2.303 � �
R

F
T
� � pH (8.33)

At the common reference temperature of 25.0°C, the expression 2.303 (RT/F )
equals 0.05916 V. Equation 8.33 can be rewritten as

E � 
0.05916 � pH volts (8.34)

Thus, the reduction potential of the hydrogen electrode is directly related to
the pH of the solution. What this means is that we can use the hydrogen elec-
trode, coupled with any other half-reaction, to determine the pH of a solution.
The voltage of the electrochemical cell that is made by the proper combination
of such half-cells is given by the combination of the two E values of the reac-
tions. Therefore,

E � (
0.05916 V � pH) � E° (other half-reaction) (8.35)

where each term on the right has units of V. The value of “E ° (other half-
reaction)” depends, of course, on what that reaction is as well as whether it is
an oxidation reaction or a reduction reaction. The point is that the voltage of
such cells can easily be measured and the pH of the solution determined us-
ing electrochemical means.

Because hydrogen electrodes are cumbersome, other electrodes are typically
used to measure pH. All of them use similar electrochemical principles and a
measurement of a voltage to determine the pH of a solution of interest. The
most well known is the glass pH electrode, Figure 8.7. A porous glass tube has
a certain buffer solution and a silver/silver chloride electrode. The Ag/AgCl
half-reaction is

AgCl (s) � e
 → Ag (s) � Cl
 E° � 0.22233 V

The buffer solution in the electrode is set so that E � 0 when the pH is about
7, and the electronics that monitor the voltage of the electrode can be adjusted
to calibrate the system so that E � 0 at pH 7.00 exactly. Such electrodes are
common in laboratories around the world.

The hydrogen ion is not special when it comes to electrochemical measure-
ment of this type. Virtually every ionic species can take part in oxidation-
reduction reactions, so the concentration of virtually any ion can be detected
with a similar electrode. These ion-specific electrodes have some half-reaction
inside and, across a porous glass shell, set up an electrochemical cell whose
voltage can be measured and used to “back-calculate” the concentration of a
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particular ion. Figure 8.8 shows an ion-specific electrode. For the most part,
they resemble pH electrodes, so care should be exercised to identify the exact
ion an electrode detects.

Example 8.8
What is the pH of the solution phase of a hydrogen electrode that is con-
nected to an Fe/Fe2� half-reaction if the voltage of the spontaneous reaction
is 0.300 V? Assume that the concentration of Fe2� is 1.00 M and all other
conditions are standard.

224 C H A P T E R  8 Electrochemistry and Ionic Solutions

Figure 8.7 Electrochemistry is the basis of pH
measurement by instrumental means. Shown here
is a glass pH electrode, whose E value is sensitive
to the concentration of the H� ion.

Figure 8.8 H� is not the only ion whose con-
centration can be measured electrochemically.
Shown here is a different ion-specific electrode.
All of them use the instantaneous E of some elec-
trochemical process to determine the concentra-
tion of the specific ion.
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Solution
According to the half-reactions in Table 8.2, the only possible spontaneous
reaction is the oxidation of Fe to Fe2� and the reduction of H� to H2 gas:

Fe (s) � 2H� (aq, ?? M) → Fe2� (aq) � H2 (g)

Because we are reversing the Fe standard reduction reaction, the value for “E°
(other half-reaction)” that we use in equation 8.35 is the negative of

0.447 V, or �0.447 V. Using equation 8.35, we have

0.300 V � (
0.05916 V � pH) � 0.447 V

Solving for pH:


0.147 � 
0.05916 � pH

pH � 2.48

This is a fairly acidic pH, corresponding to an approximate concentration of
3.3 mM.

8.6 Ions in Solution
It is oversimplified to think that ions in solution behave “ideally” even for di-
lute solutions. For molecular solutes like ethanol or CO2, interactions between
solute and solvent are minimal or are dominated by hydrogen bonding or some
other polar interaction. However, we usually assume that individual solute
molecules do not strongly affect each other.

For ions in dilute solution, the presence of oppositely charged ions will af-
fect the expected properties of the solution. Dilute ionic solutions have con-
centrations of 0.001 M or even less. (That’s one-thousandth of a molarity
unit. For comparison, seawater can be considered as about 0.5 M.) At such
low concentrations, the molarity is almost numerically equal to the molality,
which is the preferred unit for colligative properties (because then the solu-
tion properties do not depend on the identity of the solute). Therefore, we can
shift from molarity concentration units to molality concentration units, and
submit that dilute ionic solutions will have concentrations of 0.001 m or less.

In addition, the charge on the ion will also be a factor. Coulomb’s law, equa-
tion 8.2, says that the force between charges is directly related to the product
of the magnitudes of the charges. Therefore, the force of interaction between
charges of �2 and 
2 will be four times as great as between charges of �1 and

1. Thus, the behavior of dilute NaCl should be different from the behavior
of dilute ZnSO4, even if they are the same molal concentration.

As with other nonideal chemical systems, in order to better understand
ionic solutions we will go back to the concepts of chemical potentials and ac-
tivities. In Chapter 4, we defined the chemical potential �i of a material as the
change in the Gibbs free energy versus the molar amount of that material:

�i � ��




n

G

i

��T,p
(8.36)

We also defined the activity ai of a component in a multicomponent system as
some nonideal parameter that defines the actual chemical potential �i in terms
of the standard chemical potential �i°:

�i � �i° � RT ln ai (8.37)
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In the case of gas mixtures, we defined activity as related to the partial pres-
sure pi of the gas. For ions in solution, the activity of the ionic solute is related
to the concentration of the solute, in this case the molality:

ai � mi (8.38)

We do the same thing mathematically with equation 8.38 as we have done with
previous proportionalities. In order to remove the unit of molality, we divide
the right side of equation 8.38 by some standard concentration m°, which we
set at exactly 1 molal. We also use the proportionality constant �i, called the
activity coefficient, for an ion:

ai � �i � �
m

m

°
i� (8.39)

The value of the activity coefficient �i varies with concentration, so we must
either tabulate the values versus concentration or have a way of calculating
them. However, in the limit of infinite dilution, ionic solutions should behave
as if their molal concentration is directly related to the chemical potential;
that is,

lim
mi→0

�i � 1 (8.40)

As concentrations of ions get larger, �i gets smaller, and the activity gets pro-
gressively smaller and smaller than the true molal concentration of the ions.

The subscript i on the variables in the above equations implies that each in-
dividual species has its own molality, activity, activity coefficient, and so on.
For example, in a 1.00-molal solution of sodium sulfate (Na2SO4),

mNa� � 2.00 m

mSO4
2
 � 1.00 m

(Notice how we are subscripting the molal symbol with the appropriate ion.)
The fact that the total positive charge must equal the total negative charge

implies a relationship between the charges on the ions and their molal con-
centrations. For a simple binary salt An�

Bn

, where n� and n
 are the formula

subscripts for the cation and anion, respectively, ionic solutions require that
the molalities of the cation and anion satisfy the formula

�
m

n�

�� � �
m

n



� (8.41)

It is easy to verify this expression using our sodium sulfate solution. From the
formula Na2SO4, we find by inspection that n� � 2 and n
 � 1 :

�
2.0

2

0 m
� � �

1.0

1

0 m
�

Substituting for the activities of the cation a� and the anion a
 in equation
8.37, the chemical potentials of the cation and anion are

�� � �°� � RT ln �� �
m

m
�

°
�

�
 � �°
 � RT ln �
 �
m

m



°
�

Because the �° values and molalities of the positive and negative ions are not
necessarily the same, the chemical potentials of the cation and anions will
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probably be different. The total chemical potential of the ionic solution de-
pends, of course, on the number of moles of each ion, which are given by the
ionic formula variables n� and n
. The total chemical potential is

� � (n� � ��) � (n
 � �
) (8.42)

Substituting for �� and �
 from above:

� � (n� � �°�) � (n
 � �°
) � �n� � RT ln �� �
m

m
�

°
�� � �n
 � RT ln �
 �

m

m



°
��

This equation is simplified by defining the mean ionic molality m� and the
mean ionic activity coefficient �� as

m� � (m�
n� � m


n
)1/(n��n
) (8.43)

�� � (��
n� � �


n
)1/(n��n
) (8.44)

Further, if we define n� � n� � n
 and �°� � n��°� � n
�°
, we can rewrite
the expression for total chemical potential as

� � �°� � n� RT ln �� �
m

m
�

°
� (8.45)

By analogy to equation 8.37, using the properties of logarithms we can define
the mean ionic activity a� of an ionic solute An�

Bn

as

a� � ��� �
m

m
�

°
��n�

(8.46)

These equations indicate how ionic solutions will really behave.

Example 8.9
Determine the mean ionic molality and activity for a 0.200-molal solution of
Cr(NO3)3 if its mean activity coefficient �� is 0.285.

Solution
For chromium(III) nitrate, the coefficients n� and n
 are 1 and 3, re-
spectively, so that n� is 4. The ideal molality of Cr3� (aq) is 0.200 m, and
the ideal molality of NO3


 (aq) is 0.600 m. The mean ionic molality is
therefore

m� � (0.2001 � 0.6003)1/4 m

m� � 0.456 m

Using this and the given mean activity coefficient, we can determine the
mean activity of the solution:

a� � �0.285 � �
0

1

.4

.0

5

0

6

m

m
��

4

a� � 2.85 	 10
4

The behavior of this solution is based on a mean activity of 2.85 	 10
4,
rather than a molality of 0.200. This makes a big difference in the expected
behavior of the solution.
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Solutions containing ions that have larger absolute charges have greater
coulombic effects affecting their properties. One way to keep track of this is by
defining the ionic strength, I, of the solution:

number of

I � �
1

2
� �

ions

i�1

mi � z i
2 (8.47)

where zi is the charge on the ith ion. Ionic strength was originally defined in
1921 by Gilbert N. Lewis. Recall that for ionic solutes that do not have a 1�1
ratio of cation and anion, the individual molalities mi will not be the same. The
following example illustrates.

Example 8.10
a. Calculate the ionic strengths of 0.100 m NaCl, Na2SO4, and Ca3(PO4)2.
b. What molality of Na2SO4 is needed to have the same ionic strength as
0.100 m Ca3(PO4)2?

Solution
a. Using equation 8.47, we can find that

INaCl � �
1
2

�[(0.100 m)(�1)2 � (0.100 m)(
1)2] � 0.100 m

INa2SO4
� �

1
2

�[(  2 � 0.100 m)(�1)2 � (0.100 m)(
2)2] � 0.300 m
↑

n��2

ICa3(PO4)2
� �

1
2

�[(  3 � 0.100 m)(�2)2 � ( 2 � 0.100 m)(
3)2] � 1.50 m
↑ ↑

n��3 n
�2

Notice how high the ionic strength gets when the charges on the individual
ions increase.
b. This part asks what molality of Na2SO4 is needed to get an ionic strength
the same as 0.100 m Ca3(PO4)2, which we found in part a to be 1.50 m. We
can set up the INa2SO4

ionic strength expression, but use 1.50 m for the value
and set the molality as the unknown. We have

INa2SO4
� 1.50 m � �

1
2

�[(2 � m)(�1)2 � (m)(
2)2]

1.50 m � �
1
2

�(2m � 4m) � �
1
2

� � 6 m � 3 m

Therefore,
m � 0.500 m

So we need a solution of Na2SO4 with five times the molality to have the same
ionic strength as Ca3(PO4)2. As an exercise, what molality of NaCl would be
needed to have this same ionic strength?

As with any other chemical species, solvated ions also have enthalpies and
free energies of formation, and entropies. From equation 8.23, we can see that

�
1
2

�H2 (g) → H� (aq) � 1e
 E° � 0.000 V

This is (almost) the formation reaction of H� (aq) from its elements, and using
the relationship between E and �G, we might suggest that �fG[H�(aq)] � 0.
However, this argument presents a problem. First of all, the presence of the
electron as a product is problematic in terms of defining this equation as the
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formation reaction of H�. Second, in reality the formation of cations like H�

is always accompanied by the formation of anions.
Just as we have defined the �fH values of elements to be zero and used

them as benchmarks to determine the heats of formations of compounds,
we make a similar definition for ions. We define the standard enthalpy of
formation and the standard free energy of formation of the hydrogen ion
as zero:

�fG°[H�(aq)] � �fH°[H�(aq)] � 0 (8.48)

Thus, the enthalpies and free energies of formation of other ions can be mea-
sured relative to the aqueous hydrogen ion.

The same issue exists for entropies of ions: again, the entropy of any one
ion cannot be experimentally separated from the entropy of an oppositely
charged ion that must be present. Again, we get around this problem by defin-
ing the entropy of the hydrogen ion as zero:

S[H�(aq)] � 0 (8.49)

Entropies of other ions are determined with respect to this benchmark.
The concept of free energies, enthalpies, and entropies of ions are com-

plicated by the fact that these ions are forming in some solvent (most com-
monly, water). The values of �fH, �fG, and S have contributions from the
solvent molecules rearranging due to the presence of the ion. Enthalpies and
free energies of formation, and even entropies, may be higher or lower than
those for H� (aq) (that is, they may be positive or negative) depending in
part on the solvation effects. Trends in thermodynamic values for ions may
be difficult to explain unless these effects are taken into account. Note, too,
that this implies that entropies of ions may be negative, in apparent contra-
diction with the very concept of absolute entropy and the third law of ther-
modynamics. You must keep in mind that the entropies of ions are deter-
mined with respect to those of H� and, as such, ions may have higher or
lower entropies.

Example 8.11
a. Determine �fH°[Cl
(aq)] if the enthalpy of reaction for

�
1
2

�H2 (g) � �
1
2

�Cl2 (g) → H� (aq) � Cl
 (aq)

is 
167.2 kJ.
b. Determine �fH°[Na� (aq)] if the enthalpy of reaction for

NaCl (s) → Na� (aq) � Cl
 (aq)

is �3.9 kJ. Use �fH°[NaCl] � 
411.2 kJ. Assume standard conditions for all
species in both reactions.

Solution
a. If standard conditions are assumed, we know that �fH °[H2(g)] �
�fH °[Cl2(g)] � 0. By definition, �fH °[H�(aq)] � 0, so if we know that
�rxnH is 
167.2 kJ, we have


167.2 kJ � � �fH[prods] 
 � �fH[reacts]


167.2 kJ � (�fH[Cl
(aq)] � 0) 
 (0 � 0)


167.2 kJ � �fH[Cl
(aq)]
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b. Using the enthalpy of formation of Cl
 (aq) from part a, we can apply the
same tactic to the dissolution of sodium chloride:

�3.9 kJ � � �fH[prods] 
 � �fH[reacts]

�3.9 kJ � [�fH[Na�(aq)] � (
167.2)] 
 (
411.2)


240.1 kJ � �fH[Na�(aq)]

Entropies and free energies of formation for ions are determined similarly.

8.7 Debye-Hückel Theory of Ionic Solutions
Ionic strength is a useful concept because it allows us to consider some general
expressions that depend only on ionic strength and not on the identities of the
ions themselves. In 1923, Peter Debye and Erich Hückel made some simplify-
ing assumptions about all ionic solutions. They assumed that they would be
dealing with very dilute solutions, and that the solvent was basically a contin-
uous, structureless medium that has some dielectric constant �r. Debye and
Hückel also assumed that any deviations in solution properties from ideality
were due to the coulombic interactions (repulsions and attractions) between
the ions.

Applying some of the tools of statistics and the concept of ionic strength,
Debye and Hückel derived a relatively simple relationship between the activity
coefficient �� and the ionic strength I of a dilute solution:

ln �� � A � z� � z
 � I1/2 (8.50)

where z� and z
 are the charges on the positive and negative ions, respectively.
Note that the charge on the positive ion is itself positive, and the charge on the
negative ion is itself negative. The constant A is given by the expression

A � (2�NA�solv)1/2 � ��4��

e

0

2

�rkT
��

3/2

(8.51)

where:

NA � Avogadro’s number

�solv � density of solvent (in units of kg/m3)

e � fundamental unit of charge, in C

�0 � permittivity of free space

�r � dielectric constant of solvent

k � Boltzmann’s constant

T � absolute temperature

Equation 8.50 is the central part of what is called the Debye-Hückel theory
of ionic solutions. Since it strictly applies only to very dilute solutions (I � 0.01
m), this expression is more specifically known as the Debye-Hückel limiting
law. Because A is always positive, the product of the charges z� � z
 is always
negative, so ln �� is always negative. This implies that �� is always less than 1,
which in turn implies that the solution is not ideal.

There is one important thing to observe about the Debye-Hückel limiting
law. It depends on the identity of the solvent, since the density and dielectric
constant of the solvent are part of the expression for A. But the limiting law
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has no variable dictated by the ionic solute except for the charges on the ions!
It is seemingly independent of the identity of the solute. This implies that, for
example, dilute NaCl and dilute KBr solutions have the same properties, since
they are composed of ions having the same charges. However, dilute NaCl and
dilute CaSO4 would have different properties, despite both being 1�1 ionic
salts, since the charges on the respective cations and anions are different.

For more precise calculations, the size of the ions involved is a factor also.
Rather than calculating an average activity coefficient ��, individual ionic
activity coefficients �� and �
 are considered here. A more precise expres-
sion from Debye-Hückel theory for the activity coefficient of an individual
ion is

ln � � 
�
1

A

�

�

B

z2

�

�

å

I

�

1

I

/2

1/2� (8.52)

where z is the charge on the ion, å represents the ionic diameter (in units of
meters), and B is another constant given by the expression

B � ��e
2

�

N

0�
A

r

�

k
s

T
olv��

1/2

(8.53)

All of the variables were defined above. I still represents the ionic strength of
the solution, which contains contributions from both ions. Because z2 is posi-
tive whether z is positive or negative, the negative sign in equation 8.52 ensures
that ln � is always negative, so that � is always less than 1. Equation 8.52 is
sometimes called the extended Debye-Hückel law.

Equation 8.52 is like equation 8.50 in that the activity coefficient (and there-
fore the activity) is dependent only on properties of the solvent and the charge
and size of the ion, but not the chemical identity of the ion itself. It is there-
fore not uncommon to see tables of data in terms of å and the ionic charge
rather than the individual ions themselves. Table 8.3 is such a table. In using
data from tables like this, you must be extremely careful to make sure the units
work out properly. All units should cancel, leaving a unitless number for the

8.7 Debye-Hückel Theory of Ionic Solutions 231

Table 8.3 Activity coefficients by charge, ionic size, and ionic strength

Ionic strength I a

å (10
10 m) 0.001 0.005 0.01 0.05 0.10

�1-charged ions 

9 0.967 0.933 0.914 0.86 0.83

7 0.965 0.930 0.909 0.845 0.81

5 0.964 0.928 0.904 0.83 0.79

3 0.964 0.925 0.899 0.805 0.755

�2-charged ions 

8 0.872 0.755 0.69 0.52 0.45

6 0.870 0.749 0.675 0.485 0.405

4 0.867 0.740 0.660 0.445 0.355

�3-charged ions 

6 0.731 0.52 0.415 0.195 0.13

5 0.728 0.51 0.405 0.18 0.115

4 0.725 0.505 0.395 0.16 0.095

Source: J. A. Dean, ed., Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, New York, 1992.
aValues in this section are for the activity coefficient, �.
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logarithm of �. However, you may have to apply appropriate conversions in
order for the units to cancel properly.

How well do these equations work? First, we will consider equation 8.50, the
simplified Debye-Hückel limiting expression. The experimental values for
�� for 0.001-molal HCl and CaCl2 at 25°C are 0.966 and 0.888, respectively.
The ionic strengths of the two solutions are 0.001 m and 0.003 m. In aqueous
solution, the value for A is

A � (2�NA�solv)1/2��4��

e

0

2

�rkT
��

3/2

� �2� � 6.02 	 1023mol
1 � 997�
m

kg
3�)1/2 	

� �3/2

where we have used the density of water as 997 kg/m3 at 25°C and a dielectric
constant of 78.54, and the rest of the variables are fundamental constants that
can be obtained from tables.

Ultimately, the units work out to kg1/2/mol1/2, which is the reciprocal of the
square root of the molality unit, (molal)
1/2. Numerically, the overall value of
A comes out as

A � 1.171 molal
1/2 (8.54)

(This value of A is good for any aqueous solution at 25°C.) For HCl, in which
z� � �1 and z
 � 
1, we have

ln �� � (1.171 molal
1/2) � �1 � 
1 � 
0.001 m�olal�

Notice how the square root of the molal units cancel. Numerically we have

ln �� � 
0.03703

Therefore,

�� � 0.964

This value is very close to the experimental value of 0.966. For CaCl2, we have

ln �� � (1.171 molal
1/2) � �2 � 
1 � 
0.003 m�olal� � 
0.1283

�� � 0.880

which is again very close to the experimental value of 0.888. Even the simple
form of the Debye-Hückel limiting law works very well for dilute solutions.
The more precise expression for the Debye-Hückel law is really necessary only
for more concentrated solutions.

Using Debye-Hückel theory, we can determine the activity coefficients of
ionic solutions. From these activity coefficients, we can determine the activi-
ties of ions in a solution. The activities of ions, in turn, are related to the mo-
lalities—that is, the concentrations—of ions in a solution. We must therefore
modify our approach in our understanding of the behavior of ionic solutions.
(Indeed, this idea applies to all solutions, but we are considering only ionic
solutions here.) Rather than relating the concentration of a solution to its
measurable properties, it is more accurate to relate the measurable properties
of an ionic solution to the activities of the ions. Thus, equations like equation
8.25 are better expressed as

(1.602 	 10
19 C)2

�������

4� � 8.854 	 10
12 �
J

C

�m

2

� � 78.54 � 1.381 	 10
23 �
K

J
� � 298 K
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E � E° 
 �
R

nF
T
� ln Q

� E° 
 �
R

nF
T
� ln �

�

�
i

ja

a

j

i

(

(

r

p

e

r

a

o

c

d

t

s

s

)

)

�

�

i

j
� (8.55)

where we have redefined Q, the reaction quotient, as

Q � �
�

�
i

ja

a

j

i

(

(

r

p

e

r

a

o

c

d

t

s

s

)

)

�

�

i

j
� (8.56)

where ai(prods) and aj(reacts) are the activities of the product and reactant
species, respectively. The exponents �i and �j are the stoichiometric coefficients
of the products and reactants, respectively, from the balanced chemical equa-
tion. The values for � in Table 8.3 suggest that as ionic solutions become more
concentrated, properties like E for an electrochemical reaction are less accu-
rately predicted using concentrations but more accurately predicted using ac-
tivities. The following example illustrates the difference.

Example 8.12
a. Approximate the expected voltage for the following electrochemical reac-
tion using the given molal concentrations.

2Fe (s) � 3Cu2� (aq, 0.050 molal) → 2Fe3� (aq, 0.100 molal) � 3Cu (s)

b. Again approximate the expected voltage, but this time use the calculated
activities according to the Debye-Hückel theory.

The reaction occurs at 25.0°C. The value for B at this temperature is 
2.32 	 109 m
1 � molal
1/2. A is still 1.171 molal
1/2.

Assume that the molal concentrations are close enough to molar concen-
trations that they can be used directly. Additionally, assume that the anion is
NO3


, that is, that we are in reality considering 0.050-molal Cu(NO3)2 and
0.100-molal Fe(NO3)3 solutions. Also, use the fact that the average ionic radii
for Fe3� and Cu2� are 9.0 Å and 6.0 Å, respectively.

Solution
Using Table 8.2, we can easily determine that E° � 0.379 V and that the num-
ber of electrons transferred in the course of the molar reaction is 6.
a. Using the molal concentrations in the Nernst equation:

E � 0.379 V 
 ln �
(

(

0

0

.

.

0

1

5

)

)

2

3�

E � (0.379 
 0.00188) V � 0.377 V

b. If, however, we use the Debye-Hückel formula, we first have to calculate
the activity coefficients of the ions:

ln �Fe3� �




where we have converted the ionic radius of Fe3� to units of meters and have
used the calculated ionic strength of a 0.100-molal Fe(NO3)3 solution. We get

ln �Fe3� � 
3.119

�Fe3� � 0.0442

1.171 molal
1/2 � (�3)2 � (0.600 molal)1/2

��������
1 � 2.32 	 109 m
1 � molal
1/2 � 9.00 	 10
10 m � (0.600 molal)1/2

(8.314 �
mo

J
l�K
�)(298 K)

���
(6 mol e
)(96,485 �mo

C
l e
�)
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This means that the activity of Fe3� is

aFe3� � 0.0442 �
0

1

.1

.0

0

0

0

m

m

o

o

l

l

a

a

l

l
� � 0.00442

Similarly, we can calculate that the activity coefficient for Cu2� is

�Cu2� � 0.308

Therefore, the activity for Cu2� is

aCu2� � 0.308 �
0.

1

0

.

5

0

0

0

0

m

m

o

o

la

l

l

al
� � 0.0154

Using activities instead of concentrations, we find that

E � 0.379 V 
 ln �
(

(

0

0

.0

.0

0

1

4

5

4

4

2

)

)
3

2

�

E � (0.379 
 0.00718) V � 0.372 V

Surely, the difference in the two calculated E values is not a large difference
in voltages. But it is an easily measurable one, and for precise measurements
the difference can have a big impact on the predicted properties of the ionic
solution. For example, it is necessary to consider activity factors when using
pH and other ion-selective electrodes, because the exact voltage of the electro-
chemical cell that is made in the course of the measurement is dependent on
the activity of the ions involved, not their concentration. Activity, like fugacity,
is a more realistic measure of how real chemical species behave. For precise cal-
culations, activity must be used for ionic solutions, not concentration.

8.8 Ionic Transport and Conductance
One additional property that solutions of ionic solutes have and solutions of
non-ionic solutions don’t is that ionic solutions conduct electricity. The word
electrolyte is used to describe ionic solutes, for that reason. (The word nonelec-
trolyte is used to describe those solutes whose solutions do not conduct elec-
tricity.) This property of electrolytes had deep ramifications in the basic un-
derstanding of ionic solutions, as demonstrated by Svante Arrhenius in 1884.
Arrhenius (Figure 8.9) actually proposed in his doctoral thesis that electrolytes
are compounds composed of oppositely charged ions that separate when
they dissolve, thereby allowing them to conduct electricity. He passed with
the lowest possible grade. However, with the increasing evidence of the elec-
trical nature of atoms and matter, he was awarded the third Nobel Prize in
Chemistry, in 1903, for his work.

The conductivity of ionic solutions is due to movement of both cations and
anions. They move in opposite directions (as might be expected), and so we
can consider a current due to positive ions, I�, and a current due to negative
ions, I
. If we consider the current as the change in the amount of ions pass-
ing through a cross-sectional area A per unit time, as shown in Figure 8.10,
then we can write the current as

I� � �




q

t
��

I
 � �




q

t

�

(8.314 �
mo

J
l�K
�)(298 K)

���
(6 mol e
)(96,485 �mo

C
l e
�)
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Figure 8.9 Svante Arrhenius (1859–1927), a
Swedish chemist who laid the groundwork for the
understanding of ionic solutions. Although he
barely passed his doctoral examination, this same
work won him a Nobel Prize in Chemistry.
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In molar amounts, if we recognize that the total charge (positive or negative)
equals the magnitude of the charge times the fundamental unit of charge (e)
times the number of moles of ions, we can rewrite the above equations as

Ii � e � �zi � � �




N

t
i� (8.57)

where Ni represents the number of ions of species i. The absolute value on the
charge of the ion ensures that the current will be positive.

Assuming that the ions are moving with some velocity vi through the cross-
sectional area A, and expressing the concentration of the ion as N/V (that is,
amount divided by volume), we can write the change in amount per unit time,
Ni/t, as the concentration times the area times the velocity, or

�




N

t
i� � �

N

V
i� A � vi

Substituting into equation 8.57:

Ii � e � �zi� � �
N

V
i� � A � vi

Ions conducting current in solution are moving in response to an electro-
motive force acting across the solution. Recall from equation 8.5 that there is
a relationship between force F and the electric field E:

Fi � qi � E

which we can rewrite using e and the charge on the ion:

Fi � e � �zi � � E

Newton’s second law says that if a force is acting on an object, the object ac-
celerates and increases its velocity. If there is some ever-present force due to
the electric field, then an ion should accelerate forever (or until it physically
hits an electrode). However, in solution, there is also a force of friction due to
movement through the solvent (just like a swimmer feels a “drag” from the wa-
ter in a pool). This force of friction always works against the direction of mo-
tion, and is proportional to the velocity of the ion. Therefore, we can write

force of friction on ion � f � vi

where f is the proportionality constant. The force on the ion, Fi, becomes

Fi � e � �zi � � E 
 f � vi (8.58)

Because of the force of friction, at some velocity the net force on the ion will
drop to zero and the ion will no longer accelerate. Its velocity will remain
constant. According to equation 8.58, this terminal velocity can be derived as
follows:

0 � e � �zi � � E 
 f � vi

vi � �
e � �z

f
i � � E
� (8.59)

But what is f, the frictional proportionality constant? According to Stokes’
law, the frictional constant of a spherical body with radius ri moving through
a fluid medium with a viscosity � is

f � 6��ri (8.60)
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Figure 8.10 Ionic current travels in two direc-
tions, and is measured in terms of how many ions
pass through some cross-sectional area A per unit
time.
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Viscosity is typically measured in units of poise, where

1 poise � 1�
cm

g

�s
�

Using the expression for Stokes’ law, the velocity of the ions becomes

vi � �
e �

6�

�zi

�

�

r

�

i

E
�

Substituting into the expression for current, Ii becomes

Ii � e2 � �zi �
2 � �

N

V
i� � A � �

6�

E

�ri

� (8.61)

This equation shows that the ionic current is related to the square of the
charge on the ion. For virtually all ionic solutions, the ionic currents of the
positive and negative ions I� and I
 will be different. In order to maintain
overall electrical neutrality, the oppositely charged ions have to move at dif-
ferent velocities.

Finally, the basic relationship between the voltage V across a conductor and
the current I flowing through the conductor is known as Ohm’s law:

V � I (8.62)

The proportionality constant is defined as the resistance, R, of the system:

V � IR

Measurements of the resistances of ionic solutions show that the resistance is
directly proportional to the distance, �, between two electrodes and inversely
proportional to the area A of the electrodes (which usually are the same size):

R � � � �
A

�
� (8.63)

The proportionality constant � is called the specific resistance or the resistivity
of the solution, and has units of ohm�meter or ohm�cm. We also define 
the conductivity � (also called the specific conductance) as the reciprocal of the
resistivity:

� � �
�

1
� (8.64)

Conductivities have units of ohm
1�m
1.* Resistivities or conductivities are
extremely easy to measure experimentally using modern electrical equipment.
However, as one might expect, they are quite variable because � would depend
not only on the charge on the ions but on the concentration of the solution.
It is better to define a quantity that takes these factors into account. The equiv-
alent conductance of an ionic solute, �, is defined as

� � �
N

�
� (8.65)

where N is the normality of the solution (� is the capital Greek letter lambda).
Recall that normality is defined in terms of number of equivalents per liter of
solution. The use of equivalents rather than moles takes ionic charge into
account.
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*The unit siemen (abbreviated S) is defined as ohm
1, so conductivity values are some-
times given in units of S/m.
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Again, as expected, the equivalent conductance changes with concentra-
tion. However, it was noted by early investigators that for dilute (less than
about 0.1 normal) solutions, � varied with the square root of the concentra-
tion, and the y-intercept of the straight line of � versus 
N� was a value of �
that was characteristic of the ionic solute. This characteristic, infinitely diluted
value is given the symbol �0. Various values of �0 are listed in Table 8.4.
Mathematically, the relationship between the equivalent conductance versus
concentration can be expressed as

� � �0 � K � 
N� (8.66)

where K is a proportionality constant that relates the slope of the straight line.
Equation 8.66 is called Kohlrausch’s law after Friedrich Kohlrausch, a German
chemist who first proposed it in the late 1800s after a detailed study of the elec-
trical properties of ionic solutions. Debye and Hückel, and later the Norwegian
chemist Lars Onsäger, derived an expression for K:

K � 
(60.32 � 0.2289�0) (8.67)

When combined, equations 8.66 and 8.67 are called the Onsäger equation for
the conductance of ionic solutions.

8.9 Summary
Ions play a key role in many thermodynamic systems. Because ionic solutions
can carry a current, chemical changes not considered in previous chapters
might occur spontaneously. Some of those changes are very useful, because we
can extract electrical work from those systems. Some of these changes are
spontaneous but not inherently useful. For example, corrosion is one electro-
chemical process that is by definition an undesirable process. We can undo or
reverse these undesirable processes, of course—but the second law of thermo-
dynamics says that each of those processes will be inefficient to some degree.
The laws of thermodynamics do allow us to determine how much energy we
can get from (or must put into) a process, and we have been able to define
standard electrochemical potentials to aid in those calculations.

The application of thermodynamics to electrochemical systems also helps
us understand potentials at nonstandard conditions and gives us a relationship
with the equilibrium constant and reaction quotient. However, we understand
now that concentration is not necessarily the best unit to relate to the proper-
ties of a solution. Rather, activity of ions is a better unit to use. Using Debye-
Hückel theory, we have ways of calculating the activities of ions so we can more
precisely model the behavior of nonideal solutions.
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Table 8.4 Some values of �0 for ionic salts

Salt �0 (cm2/normal�ohm)

NaCl 126.45

KCl 149.86

KBr 151.9

NH4Cl 149.7

CaCl2 135.84

NaNO3 121.55

KNO3 144.96

Ca(NO3)2 130.94

HCl 426.16

LiCl 115.03

BaCl2 139.98
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8.2 Charges

8.1. What is the charge on a small sphere that is attracted 
to another sphere having charge 1.00 C if the spheres are
100.0 m apart and the force of attraction is 0.0225 N?

8.2. The force of attraction due to gravity follows an equation
similar to Coulomb’s law:

F � G � �
m1

r
�
2

m2�

where m1 and m2 are the masses of the objects, r is the dis-
tance between the objects, and G is the gravitational constant,
which equals 6.672 	 10
11 N�m2/kg2.

(a) Calculate the force of gravitational attraction between
Earth and the sun if the mass of Earth equals 5.97 	 1024 kg,
the mass of the sun is 1.984 	 1030 kg, and the average dis-
tance between them is 1.494 	 108 km. 

(b) Assuming that the sun and Earth would have the same
magnitude but opposite charges, what charge is necessary to
provide a coulombic force that equals the gravitational force
between the sun and Earth? How many moles of electrons is
that? To put your answer in perspective, consider that if Earth
were composed of pure iron, it would contain about 1026

moles of Fe atoms.

8.3. Two small metallic bodies are given opposite charges,
with the negatively charged body having twice the charge of
the positively charged body. They are immersed in water (di-
electric constant � 78) at a distance of 6.075 cm, and it is
found that the force of attraction between the two metal
pieces is 1.55 	 10
6 N. (a) What are the charges on the
pieces of metal? (b) What are the electric fields of the two
bodies?

8.4. In the centimeter-gram-second (cgs) system of units, a
statcoulomb is a unit of charge such that (1 statcoulomb)2/
(1 cm)2 � 1 dyne, the cgs unit of force. How many stat-
coulombs are there in a coulomb?

8.5. What is the force of attraction between a negatively
charged electron and a positively charged proton at a distance
of 0.529 Å? You will need to look up the charge on the elec-
tron and proton (which have the same magnitude but oppo-
site sign charges), and use the fact that 1 Å � 10
10 m.

8.3 & 8.4 Energy, Work, and 
Standard Potentials

8.6. How much work is required to move a single electron
through a constant electric field of 1.00 V? (This amount of
work, or energy, is defined as an electron volt.)

8.7. Explain why an electromotive force is not, in fact, a force.

8.8. Explain why E°1/2 values are not necessarily strictly addi-
tive. (Hint: consider the properties of intensive and extensive
variables.)

8.9. For each of the following reactions, determine the over-
all balanced electrochemical reaction, its standard electric po-
tential, and the standard Gibbs free energy of the reaction.
You may have to add solvent molecules (that is, H2O) to bal-
ance the reactions. Consult Table 8.2 for the half-reactions. 

(a) MnO2 � O2 → OH
 � MnO4



(b) Cu� → Cu � Cu2�

(c) Br2 � F
 → Br
 � F2

(d) H2O2 � H� � Cl
 → H2O � Cl2

8.10. On the left side of equation 8.21, �G° is extensive (that
is, dependent on amount) whereas on the right side of equa-
tion 8.21, E° is intensive (that is, independent of amount).
Explain how the intensive variable can be related to the ex-
tensive variable.

8.11. Is the disproportionation reaction Fe2� → Fe � Fe3�

spontaneous? What is �G° for the reaction?

8.12. A process requires 5.00 	 102 kJ of work to be per-
formed. Which of the following reactions might be used to
provide that work?

(a) Zn (s) � Cu2� → Zn2� � Cu (s)

(b) Ca (s) � H� → Ca2� � H2

(c) Li (s) � H2O → Li� � H2 � OH


(d) H2 � OH
 � Hg2Cl2 → H2O � Hg � Cl


8.13. If a calomel electrode is used instead of a standard hy-
drogen electrode, are the E ° values shifted up or down by
0.2682 V? Justify your answer by determining the voltages of
the spontaneous electrochemical reactions of each standard
electrode with the half-reactions Li� � e
 → Li (s) and with
Ag� � e
 → Ag.

8.14. Determine E° and �G for each of the following reactions. 

(a) Au3� � 2e
 → Au�

(b) Sn4� � 4e
 → Sn

8.15. Conventional chemical wisdom states that metallic ele-
ments are more reactive on the lower left side of the periodic
table, and nonmetallic elements are more reactive on the up-
per right side of the periodic table. Electrochemically, this sug-
gests that fluorine and cesium would have the extreme values
of E°. Fluorine does have a very positive E° with respect to the
SHE, at 2.87 V. However, lithium has one of the highest E° val-
ues for a metal, at 
3.045 V. (Cesium’s is only 
2.92 V.) Can
you explain this?

8.16. Under biochemical standard states, the potential for the
reaction

NAD� � H� � 2e
 → NADH

is 
0.320 V. If the concentrations of NAD� and NADH are 
1.0 M, what is the concentration of H� under these condi-
tions? See the end of section 8.4 for E° for this reaction.
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8.5 Nonstandard Potentials and 
Equilibrium Constants

8.17. What is the Zn2��Cu2� ratio on a Daniell cell that has
a voltage of 1.000 V at 25.0°C? Can you say what the indi-
vidual concentrations of Zn2� and Cu2� are? Why or why not?

8.18. The thermite reaction can act as the basis of an elec-
trochemical cell:

2Al (s) � Fe2O3 (s) → Al2O3 (s) � 2Fe (s)

Estimate the electrochemical potential of this reaction at
1700°C if E° is 1.625 V. You will need to look up thermody-
namic data in Appendix 2.

8.19. A concentration cell has different concentrations of the
same ions, but because of the different concentrations there is
a very small voltage between the cells. This effect is especially
problematic for corrosion. Consider the following overall reac-
tion, which is assumed to occur in the presence of metallic
iron:

Fe3� (0.08 M) → Fe3� (0.001 M)

(a) What is E°?

(b) What is the expression for Q? 

(c) What is E for the concentration cell? 

(d) Should concentration cells be considered another type of
colligative property? Explain your answer.

8.20. (a) What is the equilibrium constant for the following
reaction?

H2 � 2D� D2 � 2H�

E° for 2D� � 2e
 → D2 is 
0.044 V. (b) Based on your an-
swer, which isotope of hydrogen prefers to be in the �1 state
in aqueous solution?

8.21. Estimate the temperature needed for the reaction in ex-
ercise 8.20 to have an E° of 0.00 V. Assume that S[D�(aq)] � 0.

8.22. Redo Example 8.5 by correcting the entropies for tem-
perature from 298 K to 500 K using the appropriate ther-
modynamic equations. By how much does the final answer
differ?

8.23. Determine an expression for �Cp°, the change in the
constant-pressure heat capacity, for an electrochemical
process. Hint: see equation 8.30 and use the definition of heat
capacity.

8.24. Derive equation 8.33.

8.25. Determine E for the concentration cell whose net reac-
tion is Cu2� (0.035 m) → Cu2� (0.0077 m).

8.26. Determine the ratio of molarities necessary to have E
equal to 0.050 V for a concentration cell composed of 
(a) Fe2� ions; (b) Fe3� ions; (c) Co2� ions. (d) Compare your
answers and explain the differences or similarities.

8.27. Determine Ksp for AgCl using electrochemical data.

JQPJ

8.28. What is the solubility product constant of Hg2Cl2, which
dissociates into Hg2

2� and Cl
 ions?

8.29. What is the pH of a hydrogen ion solution if an H
electrode is connected to a MnO4


/Mn2� half cell with
[MnO4


] � 0.034 m and [Mn2�] � 0.288 m? E � 1.200 V.
Assume pH2

� 1 bar. See Table 8.2 for E ° data.

8.30. Using the cell from Example 8.8, determine whether
the oxidation of Fe (the major reaction in the corrosion of
iron) to Fe2� is promoted by high pH (basic solutions) or low
pH (acidic solutions).

8.31. What is the equilibrium concentration of Cl
 in a stan-
dard calomel electrode? (Hint: you will need to determine the
Ksp for Hg2Cl2.)

8.6 & 8.7 Ions in Solution; 
Debye-Hückel Theory

8.32. Show that a� can be written as ��
n� � mn� � n�

n� � n

n
,

where m is the original molality of the ionic solution.

8.33. Determine ionic strengths for the following solutions.
Assume that they are 100% ionized. (a) 0.0055 molal HCl,
(b) 0.075 molal NaHCO3, (c) 0.0250 molal Fe(NO3)2, (d)
0.0250 Fe(NO3)3

8.34. Although it is not an ionic solute, a 1.00-molal solution
of ammonia, NH3, is actually a weak electrolyte and has an
ionic strength of about 1.4 	 10
5 molal. Explain.

8.35. Calculate the molar enthalpy of formation of I
 (aq) if
that of H2 (g) � I2 (s) → 2H� (aq) � 2I
 (aq) is 
110.38 kJ.

8.36. The entropy of formation of Mg2� (aq) is 
138.1 J/mol�K.
Explain (a) why this value doesn’t violate the third law of ther-
modynamics, and (b) from a molecular level, why the entropy
of formation of any ion might be negative.

8.37. Hydrofluoric acid, HF (aq), is a weak acid that is not
completely dissociated in solution. 

(a) Using the thermodynamic data in Appendix 2, determine
�H°, �S°, and �G° for the dissociation process. 

(b) Calculate the acid dissociation constant, Ka, for HF (aq) at
25°C. Compare it to a handbook value of 3.5 	 10
4.

8.38. Determine �H°, �S°, and �G° for the dissolution reac-
tions for NaHCO3 and Na2CO3. (See Appendix 2 for data.)

8.39. Verify the value and unit for equation 8.54.

8.40. The mean activity coefficient for an aqueous 0.0020-
molal solution of KCl at 25°C is 0.951. How well does the
Debye-Hückel limiting law, equation 8.50, predict this coeffi-
cient? As an additional exercise, calculate � using equations
8.52 and 8.53 [where å (K�) � 3 	 10
10 m and å (Cl
) �
3 	 10
10 m] and �� using equation 8.44.

8.41. Human blood plasma is approximately 0.9% NaCl.
What is the ionic strength of blood plasma?
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8.42. Approximate the expected voltage for the following
electrochemical reaction using (a) the given molal concentra-
tions and (b) the calculated activities using simple Debye-
Hückel theory. The value of å for both Zn2� and Cu2� is 6 	
10
10 m.

Zn (s) � Cu2� (aq, 0.05 molal) →
Zn2� (aq, 0.1 molal) � Cu (s)

Explain why you get the answers you do.

8.43. (a) Explain why it is important to specify an identity of
the anion in Example 8.12 even though it is a spectator ion. 

(b) Recalculate part b of Example 8.12, assuming that the
salts are both sulfate salts rather than nitrate salts. Consider
the concentrations given in the example as the resultant cation
concentration, not the concentration of the salt itself.

8.44. Is equation 8.40 supported by Table 8.3? Explain your
answer.

8.8 Transport and Conductance

8.45. Show that equation 8.61 gives units of amperes, a unit
of current. You will have to use equation 8.5 to get proper
units for the electric field E.

8.46. (a) The salt NaNO3 can be thought of as NaCl �
KNO3 
 KCl. Demonstrate that �0 values show this type of
additivity by calculating �0 for NaNO3 from the �0 values of
NaCl, KNO3, and KCl found in Table 8.4. Compare your cal-
culated value with the �0 value for NaNO3 in the table. (b)
Predict approximate �0 values for NH4NO3 and CaBr2 using
the values given in Table 8.4.

8.47. In a galvanic cell, determine whether I� and I
 are
moving toward the cathode or the anode. How about for an
electrolytic cell?

8.48. What is the estimated velocity for Cu2� ions moving
through water in a Daniell cell in which the electric field is
100.0 V/m? Assume that å for Cu2� is 4 Å and the viscosity of
water is 0.00894 poise. Comment on the magnitude of your
answer.

8.49. Set up an expression that evaluates the force on two
unit charges of opposite sign at varying distance in vacuum
and in a medium having some dielectric constant �r. Then,
evaluate the force between the two charges at distances rang-
ing from 1 Å to 25 Å in 1-Å increments. How do the values
vary between a vacuum and some medium with a nonzero di-
electric constant? Do the same evaluations for charges of same
sign, and compare the results with charges of opposite sign.

8.50. A Daniell cell is constructed with all standard concen-
trations except for Zn2�. The concentration of the zinc ion has
values of 0.00010 M, 0.0074 M, 0.0098 M, 0.0275 M, and
0.0855 M. What are the E values of the cell? What trend do
the E values show?

8.51. Ionic salts are composed of ions that can have charges
of up to 4� and 3
. Construct a table of ionic strengths that
tabulate I versus ion charge for every possible combination, as-
suming a 1-molal solution of each salt.

8.52. Calculate (a) the solubility product constant for Ag2CO3

and (b) the value for Kw using the following data:

Ag2CO3 (s) � 2e
 → 2Ag (s) � CO3
2
 (aq)

E1/2 � 0.47 V

Ag� (aq) � e
 → Ag (s) E1/2 � 0.7996 V

O2 (g) � 2H2O (�) � 4e
 → 4OH
 (aq) E1/2 � 0.401 V

O2 (g) � 4H� (aq) � 4e
 → 2H2O (�) E1/2 � 1.229 V
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AS SCIENCE HAS MATURED, it has developed the perspective that the
physical world is regular and that its behavior follows certain rules and

guidelines. By the 1800s, chief among these rules were the laws of mechanics
that explained the motion of bodies of matter; specifically, Newton’s three laws
of motion. Scientists felt confident that they were beginning to understand the
natural world and how it worked.

Early in the 1800s, and certainly by the middle and end of the century, how-
ever, little hints began to appear suggesting that scientists really didn’t under-
stand what was going on. Or, rather, that the accepted physical laws neither ap-
plied to nor predicted certain events. Toward the end of the nineteenth century,
it was obvious to a few radical thinkers that a new theory describing the be-
havior of matter would be necessary in order to understand the nature of the
universe. Finally, in 1925–1926, a new theory named quantum mechanics was
shown to accurately account for the new observations that did not fit with the
earlier, classical mechanics.

In order to fully appreciate quantum mechanics and what it provides for
chemists, it is crucial to review the state of physical science immediately before
quantum mechanics. In this chapter, we review classical mechanics and discuss
the phenomena that classical mechanics did not explain. Although it may not
seem like chemistry at first, remember that a major goal in physical chemistry
is to model the behavior of atoms and molecules. Since the chemically most im-
portant parts of the atom are the electrons, a proper understanding of electron
behavior is absolutely necessary to any understanding of chemistry. Because
the electron had been shown to be a piece of matter, classical scientists tried to
use classical equations of motion to understand the behavior of the electron.
However, they soon discovered that the old models didn’t work for such a small
piece of matter. A new model had to be developed, and quantum mechanics
was that model.

9.1 Synopsis
In this chapter, we start with a review of how scientists classify the behavior of
the motion of matter. There are several mathematical ways to describe motion,
Newton’s laws being the most common. A quick historical review shows that

9.1 Synopsis
9.2 Laws of Motion
9.3 Unexplainable Phenomena
9.4 Atomic Spectra
9.5 Atomic Structure
9.6 The Photoelectric Effect
9.7 The Nature of Light
9.8 Quantum Theory
9.9 Bohr’s Theory of the

Hydrogen Atom
9.10 The de Broglie Equation
9.11 Summary: The End of

Classical Mechanics

Pre-Quantum Mechanics
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several phenomena could not be explained by the scientific thinking of the
1800s. Most of these phenomena were based on the properties of atoms that
were only then being examined directly. These phenomena are described here
because they will be considered later in light of new theories such as quantum
mechanics. Of course, since most matter is ultimately studied using light, a
proper understanding of the nature of light is necessary. This understanding
began to change dramatically with Planck and his quantum theory of black-
bodies. Proposed in 1900, quantum theory opened a new age of science in
which new ideas began replacing the old ones—not because of lack of appli-
cation (classical mechanics is still a very useful topic), but because these old
ideas lacked the subtlety to explain newly observed phenomena properly.
Einstein’s application of quantum theory to light in 1905 was a crucial step.
Finally, Bohr’s theory of hydrogen, de Broglie’s matter waves, and other new
ideas set the stage for the introduction of modern quantum mechanics.

9.2 Laws of Motion
Throughout the Middle Ages and the Renaissance, natural philosophers stud-
ied the world around them and tried to understand the universe. Foremost
among these natural philosophers was Isaac Newton (Figure 9.1), who in the
late 1600s and early 1700s deduced several statements that summarize the mo-
tion of bodies of matter. We know them as Newton’s laws of motion.

Briefly, they are:

• The first law of motion: An object at rest tends to stay at rest, and an ob-
ject in motion tends to stay in motion, as long as no unbalanced force
acts on that object. (This is sometimes known as the law of inertia.)

• The second law of motion: If an unbalanced force acts on an object, that
object will accelerate in the direction of the force, and the amount of ac-
celeration will be inversely proportional to the mass of the object and di-
rectly proportional to the force.

• The third law of motion: For every action, there is an equal and opposite
reaction.

Newton’s second law should be considered more closely, since it is perhaps
the most familiar of the laws. Force, F, is a vector quantity, having magnitude
and direction. For a single object of mass m, Newton’s second law is usually ex-
pressed in the form*

F � ma (9.1)

where the boldfaced variables are vector quantities. Note that the acceleration
a is also a vector, since it too has magnitude and direction. Typical units 
for mass, acceleration, and force are kg, m/s2, and newton (where 1 N �
1 kg�m/s2). Equation 9.1 assumes that mass is constant.

Equation 9.1 can be written in a different way using the symbolism of cal-
culus. Acceleration is the change of the velocity vector with respect to time, or
dv/dt. But velocity v is the change in position with respect to time. If we rep-
resent the position by its one-dimensional coordinate x, then we can write ac-
celeration as the time derivative of the time derivative of position, or

a � �
d

dt

2x
2

� (9.2)
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Figure 9.1 Sir Isaac Newton (1642–1727). In
1687, he published Principia Mathematica, in
which his three laws of motion were first stated.
They are still the most widespread way to de-
scribe the motion of objects. Knighted in 1705,
Newton received this honor not for his scientific
achievements, as is usually assumed, but for his
political activities.

*Its most general form is F � dp/dt � dmv/dt, but the form in equation 9.1 is probably
the most common way to express Newton’s second law.
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This means that Newton’s second law can be written

F � m�
d

dt

2x
2

� (9.3)

It is not uncommon to ignore the vector character of force and position and
express equation 9.3 as

F � m�
d

dt

2x
2

�

Note two things about Newton’s second law. First, it is a second-order ordi-
nary differential equation.† This means that in order to understand the motion
of any object in general, we must be willing and able to solve a second-order
differential equation. Second, since position is also a vector, when we consider
changes in position or velocity or acceleration we are not only concerned about
changes in the magnitude of these values but changes in their direction.
A change in direction constitutes an acceleration since the velocity, a vector
quantity, is changing its direction. This idea has serious consequences in the
consideration of atomic structure, as we will see later.

Though they took time to be accepted by contemporary scientists, Newton’s
three laws of motion dramatically simplified the understanding of objects in
motion. Once these statements were accepted, simple motion could be studied
in terms of these three laws. Also, the behavior of objects as they moved could
be predicted, and other properties such as momentum and energies could be
studied. When forces such as gravity and friction were better understood, it
came to be realized that Newton’s laws of motion properly explained the mo-
tion of all bodies. From the seventeenth through the nineteenth centuries, the
vast applicability of Newton’s laws of motion to the study of matter convinced
scientists that all motion of all physical bodies could be modeled on those 
three laws.

There is always more than one way to model the behavior of an object. It is
just that some ways are easier to understand or apply than others. Thus,
Newton’s laws are not the only way of expressing the motion of bodies. Lagrange
and Hamilton each found different ways of modeling the motion of bodies. In
both cases the mathematics of expressing the motion are different, but they are
mathematically equivalent to Newton’s laws.

Joseph Louis Lagrange, a French-Italian mathematician and astronomer
(Figure 9.2), lived a hundred years after Newton. By this time the genius of
Newton’s contributions had been recognized. However, Lagrange was able to
make his own contribution by rewriting Newton’s second law in a different but
equivalent way.

If the kinetic energy of a particle of mass m is due solely to the velocity 
of the particle (a very good assumption at that time), then the kinetic en-
ergy K is

K � �
m
2
� (ẋ2 � ẏ2 � ż2) (9.4)

where ẋ � dx/dt, and so on. (It is a standard notation to use a dot over a vari-
able to indicate a derivative with respect to time. Two dots indicates a second
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†Recall that an ordinary differential equation (ODE) has only ordinary, but not partial,
differentials, and that the order of an ODE is the highest order of the differentials in the
equation. For equation 9.3, the second derivative indicates a second-order ODE.

Figure 9.2 Joseph Louis Lagrange (1736–
1813). Lagrange reformulated Newton’s laws in a
different but equivalent way. Lagrange was also
an astronomer of some repute. In 1795, he and
several other prominent French scientists devised
the metric system.
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derivative with respect to time, and so on). Further, if the potential energy V
is a function only of position, that is, the coordinates x, y, and z:

V � V(x, y, z) (9.5)

then the Lagrangian function L (or simply “the Lagrangian”) of the particle is
defined as

L(ẋ, ẏ, ż, x, y, z) � K(ẋ, ẏ, ż) � V(x, y, z) (9.6)

L has units of joules, which is the SI unit of energy. (1 J � 1 N�m � 1 kg�m2/s2)‡

Understanding that the coordinates x, y, and z are independent of each other,
one can now rewrite Newton’s second law in the form of Lagrange’s equations
of motion:

�
d
d
t
���

�

�

L
ẋ
�� � �

�

�

L
x
� (9.7)

�
d
d
t
���

�

�

L
ẏ
�� � �

�

�

L
y
� (9.8)

�
d
d
t
���

�

�

L
ż
�� � �

�

�

L
z
� (9.9)

We are using partial derivatives here, because L depends on several variables.
One of the points to notice about the laws of motion equations (9.7–9.9) is
that the equations have exactly the same form regardless of the coordinate.
One can show that this holds true for any coordinate system, like the spheri-
cal polar coordinate system in terms of r, �, and 	 that we will use later in our
discussion of atoms.

Lagrange’s equations, mathematically equivalent to Newton’s equations, rely
on being able to define the kinetic and potential energy of a system rather than
the forces acting on the system. Depending on the system, Lagrange’s differen-
tial equations of motion can be easier to solve and understand than Newton’s
differential equations of motion. (For example, systems involving rotation
about a center, like planets about a sun or charged particles about an oppo-
sitely charged particle, are more easily described by the Lagrangian function
because the equation that describes the potential energy is known.)

Irish mathematician Sir William Rowan Hamilton was born in 1805, eight
years before the death of Lagrange. Hamilton (Figure 9.3) also came up with a
different but mathematically equivalent way of expressing the behavior of mat-
ter in motion. His equations are based on the Lagrangian and they assume
that, for each particle in the system, L is defined by three time-dependent co-
ordinates q̇j, where j � 1, 2, or 3. (For example, they might be ẋ, ẏ, or ż for a
particle having a certain mass.) Hamilton defined three conjugate momenta for
each particle, pj, such that

pj � �
�

�L
q̇j

�, j � 1, 2, 3 (9.10)

The Hamiltonian function (“the Hamiltonian”) is defined as

H(p1, p2, p3, q1, q2, q3) � ��
3

j�1

pj � q̇j� � L (9.11)
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‡Equations 9.4 and 9.5 embody the definitions of kinetic and potential energies: kinetic
energy is energy of motion, and potential energy is energy of position.

Figure 9.3 Sir William Rowan Hamilton
(1805–1865). Hamilton reformulated the law of
motion of Newton and Lagrange into a form that
ultimately provided a mathematical basis for
modern quantum mechanics. He also invented
matrix algebra.
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The utility of the Hamiltonian function depends on the kinetic energy K,
which is a function of the time derivatives of position, that is, the velocities. If
K were to depend on the sum of the square of velocities:

K � �
N

j�1

cjq̇j
2 (9.12)

(where the cj values are the expansion coefficients of the individual compo-
nents of K) then it can be shown that the Hamiltonian function is

H � K � V (9.13)

That is, H is simply the sum of the kinetic and potential energies. The kinetic
energy expressions that we consider here are indeed of the form in equation
9.12. The Hamiltonian function conveniently gives the total energy of the sys-
tem, a quantity of fundamental importance to scientists. The Hamiltonian
function can be differentiated and separated to show that

�
�

�

H
pj

� � q̇j (9.14)

�
�

�

H
qj

� � �ṗj (9.15)

These last two equations are Hamilton’s equations of motion. There are two
equations for each of the three spatial dimensions. For one particle in three di-
mensions, equations 9.14 and 9.15 give six first-order differential equations
that need to be solved in order to understand the behavior of the particle. Both
Newton’s equations and Lagrange’s equations require the solution of three 
second-order differential equations for each particle, so that the amount of cal-
culus required to understand the system is the same. The only difference lies
in what information one knows to model the system or what information one
wants to get about the system. This determines which set of equations to use.
Otherwise, they are all mathematically equivalent.

Example 9.1
Show that, for a simple one-dimensional Hooke’s-law harmonic oscillator
having mass m, the three equations of motion yield the same results.

Solution
For a Hooke’s-law harmonic oscillator, the (nonvector) force is given by

F � �kx

and the potential energy is given by

V � �
1
2

�kx 2

where k is the force constant.
a. From Newton’s laws, a body in motion must obey the equation

F � m�
d
dt

2x
2�

and the two expressions for force can be equated to give

m�
d
dt

2x
2� � �kx
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which can be rearranged algebraically to yield the second-order differential
equation

�
d
dt

2x
2� � �

m
k
�x � 0

This differential equation has the general solution x(t) � A sin 
t � B cos

t, where A and B are constants characteristic of the particular system (de-
termined, for example, by the initial position and velocity of the oscilla-
tor) and


 � ��
m
k
��

1/2

b. For Lagrange’s equations of motion, we need the kinetic energy K and the
potential energy V. Both are the classical expressions

K � �
1
2

�m ��
d
d
x
t
��

2

� �
1
2

�mẋ2

V � �
1
2

�kx2

The Lagrangian function L is thus

L � �
1
2

�mẋ2 � �
1
2

�kx2

The Lagrange equation of motion for this one-dimensional system is

�
d
d
t
� ��

�

�

L
ẋ
�� � �

�

�

L
x
� � 0

where equation 9.7 has been rewritten to equal zero. Recalling that ẋ is the
derivative of x with respect to time, we can take the derivative of L with re-
spect to ẋ as well as the derivative of L with respect to x. We find that

�
�

�

L
ẋ
� � mẋ �

�

�

L
x
� � �kx

Substituting these expressions into the Lagrange equation of motion, we get

�
d
d
t
� (mẋ) � kx � 0

Since mass does not change with time, the derivative with respect to time af-
fects only ẋ. This expression then becomes

m �
d
d
t
� (ẋ) � kx � 0

which can be rearranged as

�
d
dt

2x
2� � �

m
k
�x � 0

This is the exact same second-order differential equation found using
Newton’s equations of motion. It therefore has the same solutions.
c. For Hamilton’s equation of motion, in this example the general coordinate
q is simply x, and q̇ equals ẋ . We need to find the momentum as defined by
equation 9.10. It is

p � mẋ
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Since we are confining motion to one dimension, only one momentum needs
to be defined. Using the Lagrangian defined above, we can substitute into the
one-dimensional Hamiltonian

H � p � ẋ � L

(See equation 9.11.) Substituting for p and L:

H � mẋ � ẋ � ��
1
2

�mẋ2 � �
1
2

�kx2�
� �

1
2

�mẋ2 � �
1
2

�kx2

where in the last equation we have combined the first two terms. Because we
will need to solve the differential equations given by equations 9.14 and 9.15,
it will be easier for the first derivative if we rewrite the Hamiltonian as

H � �
2
1
m
�p2 � �

1
2

�kx2

Applying equation 9.14 to this expression, we get

�
�

�

H
p
� � 2��

2
1
m
��p � �

m
1
�mẋ � ẋ

which is what this derivative should be. We have not gotten anything new out
of this expression. However, upon evaluating the derivative in 9.15 using the
rewritten form of the Hamiltonian, we find:

�
�

�

H
x
� � kx

which, by equation 9.15, must equal �ṗ:

kx � �ṗ

or

kx � ��
d
d
t
�p

kx � ��
d
d
t
�mẋ

kx � �m�
d
dt

2x
2�

This can be rewritten as

�
d
dt

2x
2� � �

m
k
�x � 0

which is the same differential equation that we found upon applying both
Newton’s and Lagrange’s equations of motion.

Example 9.1 illustrates that the three different equations of motion produce
the same description for the motion of a system, only by different routes. Why
present three different ways of doing the same thing? Because all three ways are
not equally easy to apply to all situations! Newton’s laws are most popular for
straight-line motion. However, for other systems (like systems involving revo-
lution about a center) or when knowledge of the total energy of a system is 
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important, the other forms are more appropriate to use. We will find later that
for atomic and molecular systems, the Hamiltonian function is used almost 
exclusively.

Before we leave this topic, it is important to recognize what these equations
of motion provided. If one could indeed specify the forces acting on a parti-
cle, or a group of particles, one could predict how those particles would be-
have. Or if one knows the exact form of the potential energy of the particles
in the system, or if one wants to know what the total energy of the system is,
one could still model the system. Nineteenth-century scientists were compla-
cent in their feeling that if the proper mathematical expressions for the poten-
tial energy or forces were known, then the complete mechanical behavior of
the system could be predicted. Newton’s, Lagrange’s, and Hamilton’s equations
endowed scientists with a feeling of certainty that they knew what was going
on in the world.

But with what type of systems were they dealing? Macroscopic ones, like a
brick, a metal ball, a piece of wood. Since Dalton had enunciated his version
of the modern atomic theory, the objects of matter called atoms must follow
the same equations of motion. After all, what were atoms but tiny, indivisible
pieces of matter? Atoms should behave no differently than regular matter does
and would certainly be expected to follow the same rules. However, even as the
Hamiltonian function was introduced as a new way to describe the motion of
matter, some scientists started looking a little more closely at matter. They
could not explain what they saw.

9.3 Unexplainable Phenomena
As science developed and advanced, scientists began to study the universe
around them in different and new ways. In several important instances, they
were not able to explain what they observed using contemporary ideas. It
seems easy in hindsight to suggest that new ideas would be necessary. However,
at that point no phenomena had been observed that would not be understood
using the known science of the time. One must also understand the nature of
the people who did the work: educated in the shadow of an assumed under-
standing of nature, they expected that nature would follow these rules. When
unusual experimental results were measured, explanations were attempted
based on classical science. It soon became clear that classical science could not
explain certain observations, and cannot even to this day. It remained the task
of a new generation of scientists to understand and explain the phenomena
(with several important exceptions, almost everyone involved in the develop-
ment of quantum mechanics was relatively young).

The unexplained phenomena were the observation of atomic line spectra,
the nuclear structure of the atom, the nature of light, and the photoelectric ef-
fect. Certain experimental observations in these areas did not conform to the
expectations of classical mechanics. But to really see why a new mechanics was
necessary, it is important to review each of these phenomena and understand
why classical mechanics did not explain the observations.

9.4 Atomic Spectra
In 1860, the German chemist Robert Wilhelm Bunsen (of Bunsen burner
fame) and the German physicist Gustav Robert Kirchhoff invented the spec-
troscope. This apparatus (Figure 9.4) used a prism to separate white light into
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its component colors and pass this colored light through a chemical sample.
The sample absorbed some wavelengths of light, not others, resulting in a dark
line superimposed on a continuous spectrum of colors. Heated samples that
gave off light would have this light analyzed through the spectroscope, show-
ing only lines of light that appeared in the same relative positions as the dark
lines. Bunsen and Kirchhoff eventually noticed that each element absorbed or
emitted only characteristic wavelengths of light, and proposed that this might
be a technique to identify the chemical elements. Figure 9.5 shows several char-
acteristic spectra of some vapors of elements. Note that they are all different.
In 1860, the proposal was put to the test by an analysis of a mineral whose
spectrum showed new lines never before measured. Bunsen and Kirchhoff an-
nounced that the novel spectrum must be due to an undiscovered element. In
this way, the element cesium was discovered, and its discovery was eventually
confirmed by chemical analysis. In less than a year, rubidium was also discov-
ered the same way.

Each element, then, had its characteristic spectrum, whether absorption (if
light was passed through a gaseous sample of the element) or emission (if the
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Figure 9.4 An example of an early spectroscope, like that invented by Bunsen and Kirchhoff.
The two discovered several elements (cesium and rubidium among them) by detecting their char-
acteristic light with a spectroscope. A. Spectrometer box. B. Input optics. C. Observing optics.
D. Excitation source (Bunsen burner). E. Sample holder. F. Prism. G. Armature to rotate prism.

Figure 9.5 Line spectra of several elements. Note the relatively simple spectra for H and He.
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sample was energetically stimulated so that it emitted light). Many of these
spectra were complicated, but for some reason the spectrum of hydrogen was
relatively simple (see Figure 9.5). Hydrogen was the lightest known element
and probably the simplest, a fact that could hardly have been missed in the at-
tempts to interpret its spectrum. In 1885, the Swiss mathematician Johann
Jakob Balmer showed that the positions of the lines of light from hydrogen in
the visible portion of the spectrum could be predicted by a simple arithmetic
expression:

�
�

1
� � R ��

1
4

� � �
n

1
2
�� (9.16)

where � is the wavelength of the light, n is an integer greater than 2, and R is
some constant whose value is determined by measuring the wavelengths of the
lines. The simplicity of the equation is startling, and it inspired other scientists
to analyze the spectrum of hydrogen in other regions of the spectrum, like the
infrared and ultraviolet regions. Although several other people (Lyman,
Brackett, Paschen, Pfund) were to discover other simple progressions of lines
in the hydrogen spectrum, in 1890 Johannes Robert Rydberg successfully gen-
eralized the progressions into a single formula:

�
�

1
� � �̃ � RH ��

n
1
2
2

� � �
n
1
2
1

�� (9.17)

where n1 and n2 are different integers, n2 is less than n1, and RH is known as
the Rydberg constant. The variable �̃ is the wavenumber of the light and has
units of inverse centimeters, or cm�1, indicating the number of light waves per
centimeter.* Interestingly enough, thanks to the precision with which the hy-
drogen atom spectrum can be measured, the Rydberg constant is one of the
most accurately known physical constants: 109,737.315 cm�1.

Example 9.2
Determine the frequencies in cm�1 for the first three lines for the Brackett
series of the hydrogen atom, where n2 � 4.

Solution
If n2 � 4, the first three lines in the Brackett series will have n1 � 5, 6, and
7. Using equation 9.17 above and substituting for RH and n2, we get

�̃ � 109,737.315 ��
4
1
2� � �

n
1
2
1

�� cm�1

Substituting 5, 6, and 7 for n1 above, we calculate 2469 cm�1 (n1 � 5), 3810
cm�1 (n1 � 6), and 4619 cm�1 (n1 � 7).

But the questions remained: Why was the hydrogen spectrum so simple?
And why did Rydberg’s equation work so well? Although it was tacitly under-
stood that hydrogen was the lightest and simplest atom, there was absolutely
no reason to assume that a sample of this matter would give off only certain
wavelengths of light. It didn’t matter that the spectra of other elements were a
little more complicated and could not be described by any straightforward
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mathematical formula. The fact that the spectrum of hydrogen was so simple
and so unexplainable caused a problem for classical mechanics. It turned out,
about 30 years later, that classical mechanics could not explain it. Other theo-
ries were necessary.

9.5 Atomic Structure
In the fourth century B.C., Democritus suggested that matter was composed of
tiny parts called atoms. However, experience suggests that matter is smooth.
That is, it is continuous and not broken into individual pieces. Faced with
mounting evidence, especially from the study of gases, John Dalton (Figure
9.6) revived the atomic theory in a modern version that gradually came to be
accepted. Implicit in this theory was the idea that atoms are indivisible.

In the 1870s and 1880s, certain phenomena were investigated by passing an
electrical current through an evacuated tube having a small quantity of gas in
it. In the 1890s J. J. Thomson (Figure 9.7) performed a series of experiments
in evacuated tubes and showed that the electrical discharge was not composed
of electromagnetic radiation—mistakenly referred to as cathode rays—but was
instead a stream of particles formed from some residual gas left in the tubes.
Further, these particles had electric charges on them, indicated by a deflection
of the stream by a magnetic field. Measurements of the charge-to-mass ratio,
e/m, which could be measured by the amount of magnetic deflection of the
stream, were extraordinarily high. This indicated either a huge charge or a tiny
mass. Thomson speculated that the charge could not be large, leaving the tiny
mass as the only possibility.

The mass of this particle, called the electron, had to be less than one-
thousandth of that of a hydrogen atom (whose mass was known). But this in-
dicated that some particles of matter are smaller than atoms, an idea that was
supposedly precluded by the modern atomic theory. Obviously, this negatively
charged particle was only a piece of an atom. The implication was that atoms
were not indivisible.

Experiments by Robert Millikan between 1908 and 1917 established the ap-
proximate magnitude of the charge, which was then used with Thomson’s e/m
ratio to determine the mass of the electron. In his famous oil drop experiment,
diagrammed in Figure 9.8, Millikan and coworkers introduced tiny oil droplets
in between charged plates, subjected them to ionizing radiation (X rays), and
varied the voltage over the plates to try to electrostatically levitate the drops.
Knowing the density of the oil, the voltage difference between the plates, the
radius of the droplets, and correcting for air buoyancy, Millikan calculated an
approximate charge of 4.77  10�10 electrostatic units (esu) or about 1.601 
10�19 coulombs (C). From the e/m, Millikan was able to calculate the mass of
the electron as about 9.36  10�31 kg, about 1/1800 of the mass of a hydro-
gen atom. (The modern accepted value for the mass of an electron is 9.109 
10�31 kg.) Since there are negatively charged particles in atoms, there should
also be positively charged particles, so that matter would be electrically neu-
tral. The proton, a positively charged particle, was identified by Ernest
Rutherford in 1911.

Following Rutherford and Marsden’s classic experiments with metal foil
scattering in 1908, Rutherford proposed the nuclear model for atoms. In 
the nuclear model the majority of the mass—consisting of the protons and the
later-discovered neutrons—is concentrated in a central region called the 
nucleus, and the smaller electrons revolve around the nucleus at some rela-
tively great distance. The experiment and the resulting model are illustrated in
Figure 9.9.
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Figure 9.6 John Dalton (1766–1844). In 1803,
Dalton restated the atomic theory of Democritus
(fourth century B.C.) in a more modern form that
with only slight modification is still considered
valid today. In his honor, another name for an
atomic mass unit is the dalton. Also in his honor,
since he was the first person to write a descrip-
tion of color blindness, this affliction is some-
times referred to as daltonism. The original
records of his experiments were destroyed by
bombing in World War II.

Figure 9.7 Sir Joseph John Thomson (1856–
1940). Thomson is usually credited as the discov-
erer of the electron, although many people con-
tributed to its identification as a basic building
block of matter. Seven of his research assistants,
who were also heavily involved in understanding
the structure of matter, would eventually win
Nobel Prizes.
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Although the nuclear atom fit the dramatic results of the experiment, there
was a major problem: According to Maxwell’s electromagnetic theory, such an
atom shouldn’t be stable. (The equations of electrodynamics summarized by
James Clerk Maxwell in the 1860s were another major advance in under-
standing nature.) Any time a charged particle is accelerated, any time it changes
its speed or direction (since acceleration is a vector quantity), it should radiate
energy. If an electron is attracted to a proton (and it was known then that op-
posite charges attract), it should accelerate toward the proton, and as it moves
it should radiate energy. Eventually all of the energy of the particles should be
radiated, they would have no energy, so the particles should collapse together
and electrically neutralize each other. But they didn’t.

If Maxwell’s theory of electromagnetism, which worked so well with macro-
scopic bodies, also worked for atoms and subatomic particles, then electrons
and protons—matter as we know it—shouldn’t even exist! They would con-
stantly be radiating energy, losing energy, and eventually collapsing together.
But these investigators did not doubt the fact that matter was stable. The cur-
rent theories of electromagnetism and classical mechanics simply did not ex-
plain the existence of atoms. Their very composition as separated charged par-
ticles flew in the face of the accepted understanding of the universe. (The
eventual discovery of the uncharged neutron, announced by Chadwick in
1932, did not figure into this problem, since the neutron is electrically neutral.)
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Figure 9.8 A representation of the Millikan oil drop experiment, in which the exact charge on
the electron was determined. Using that information along with the charge-to-mass ratio (deter-
mined from experiments using magnets), the mass of the electron was determined to be much
smaller than that of an atom. Dalton’s atomic theory was not destroyed, just revised. An under-
standing of the behavior of the electron was the central focus of modern quantum mechanics.

Figure 9.9 (a) A schematic of Rutherford and Marsden’s experimental apparatus with platinum
foil. (b) The nuclear model of the atom, based on the experiments. Three paths of alpha particles
through the atom show how the alpha particles are influenced by a massive and heavily charged
nucleus. Although some details of the model have been modified, the general idea remains intact:
a massive nucleus with lighter electrons moving around it.

Electrons

Nucleus

Most of the
� particles

Some of the
� particlesA few of the

� particles

�

Lead shield

Alpha particle
source

Film/ZnS
scintillation

screen
Pt foil

�

�

�

�

�

(b)(a)

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



The study of radioactivity, beginning with Antoine-Henri Becquerel’s dis-
covery in 1896, was another problem relating to atomic structure. In fact, ra-
dioactivity was another enigma not explained by classical mechanics. Studies
showed that atoms spontaneously gave off three distinct types of radiation, of
which two were eventually shown to be particles of matter. The alpha particle
(�) was identical to a doubly ionized helium atom, and the beta particle 
(�) was identical to an electron. [The third type of radiation, gamma (�) 
radiation, is a form of electromagnetic radiation.] However, no known 
chemical process could eject particles from atoms in the manner indicated by
radioactivity.

9.6 The Photoelectric Effect
In 1887 Heinrich Hertz, who is better known for his discovery of radio waves,
noticed in his investigations of evacuated tubes that when light was shined on
a piece of metal in a vacuum, various electrical effects were produced. Given
that the electron was yet to be discovered, an explanation was not forthcom-
ing. After the discovery of the electron, however, reinvestigation of this phe-
nomenon by other scientists, especially the Hungarian-German physicist
Philipp Eduard Anton von Lenard, indicated that the metals were indeed emit-
ting electrons upon illumination. Ultraviolet light was the best light to use, and
in a series of experiments several interesting trends were noticed. First, the fre-
quency of light used to illuminate the metal made a difference. Below a certain
frequency, called the threshold frequency, no electrons were given off; above that
certain frequency, electrons were emitted. Second and more inexplicable, a
greater intensity of light did not cause electrons to come off at greater speed,
it increased the number of electrons that were emitted. However, a shorter
wavelength (that is, a higher frequency) of light did cause the electrons to come
off at greater speeds. This was unusual, for the modern theory of waves (espe-
cially sound waves) suggested that the intensity was directly related to the en-
ergy of the wave. Since light is a wave, a greater intensity of light should have
a greater energy. The emitted electrons, however, did not come off at any
greater kinetic energy when the intensity of the light was increased. The kinetic
energy (equal to �

1
2

�mv2) of the electrons did increase when the frequency of the
light was increased. The current understanding of light, waves, and electrons
did not supply any reasonable justification for these results.

9.7 The Nature of Light
Since the time of Newton, the question “What is light?’’ has been debated,
mostly because of conflicting evidence. Some evidence showed that light acted
as a particle, and some evidence indicated that light acted as a wave. However,
Thomas Young’s double-slit experiment in 1801 (Figure 9.10) demonstrated
conclusively the diffraction patterns caused by constructive and destructive in-
terference of light. It seemed clear that light was a wave of extremely small
wavelength, about 4000–7000 Å depending on the color of the light. (One
angstrom, 1 Å, equals 10�10 meters. Anders Jonas Ångström was a Swedish
physicist and astronomer.)

After the introduction of the spectroscope, scientists began studying the in-
teraction of light and matter to understand how light was emitted and ab-
sorbed by bodies of matter. Solid bodies heated to glowing emitted a continu-
ous spectrum composed of all wavelengths of light. The intensities of the
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different wavelengths of light emitted were measured and plotted. The inten-
sity distribution presented much fuel for debate.

The easiest bodies of matter to treat theoretically were called blackbodies. A
blackbody is a perfect absorber or emitter of radiation. The distribution of ab-
sorbed or emitted radiation depends only on the absolute temperature, not on
the blackbody material. A blackbody can be approximated as a small, hollow
cavity with only a tiny hole for light to escape (Figure 9.11). Light emitted by
blackbodies is sometimes referred to as cavity radiation.

When scientists began measuring the intensity or “power density” of light
given off as a function of wavelength I(�) at various temperatures, they made
some interesting observations:

1. Not all wavelengths of light are emitted equally. At any temperature, the
intensity of emitted light approaches zero as the wavelength approaches
zero. It increases to some maximum intensity Imax at some wavelength,
and then decreases back toward zero as the wavelength increased. Typical
plots of the power density versus � at specific temperatures are shown in
Figure 9.12.

2. The total power per unit area, in units of watts per square meter (W/m2),
given off by a blackbody at any temperature is proportional to the fourth
power of the absolute temperature:

total power per unit area � �T 4 (9.18)

where � is the Stefan-Boltzmann constant, whose value is determined ex-
perimentally to be 5.6705  10�8 W/m2�K4. This relationship was mea-
sured experimentally by the Austrian physicist Josef Stefan in 1879 and
deduced by his countryman Ludwig Boltzmann several years later.

3. The wavelength at the maximum intensity, �max, varies indirectly with
temperature such that

�max � T � constant (9.19)
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Figure 9.10 Thomas Young’s “proof” that light is a wave. (a) When light is passed through a
tiny slit, a single bright line is observed on a screen opposite the slit. (b) When light is passed
through two closely spaced slits, a pattern of bright and dark lines is observed on the screen. This
pattern is due to constructive and destructive interference of light waves.

Figure 9.11 A good approximation of a black-
body is made by constructing a cavity with a very
small hole in it. Defined as a perfect absorber or
emitter of radiation, blackbodies do not absorb
or emit radiation equally at all wavelengths. This
diagram shows a blackbody’s ability to absorb all
radiation. Light that enters the small hole of the
blackbody reflects off the inside surfaces, but has
a very small chance of escaping the cavity before
it is absorbed.
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absorbed

Light in

Blackbody
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where the value of this constant is approximately 2898 �m�K; the wave-
length is in units of micrometers. This equation, enunciated by Wien in
1894, is known as the Wien displacement law. (This relationship is still
used today to estimate the temperature of hot bodies, using an optical
device called a pyrometer to determine intensities of light given off at
certain wavelengths of light.)

Example 9.3
a. What is the total power per unit area emitted by a blackbody at a temper-
ature of 1250 K?
b. If the area of the blackbody is 1.00 cm2 (0.000100 m2), what is the total
power emitted?

Solution
a. Using equation 9.18 and the value of the Stefan-Boltzmann constant from
above, one finds

total power per unit area � (5.6705  10�8 W/m2�K4)(1250 K)4

The K4 units cancel to yield

total power per unit area � 1.38  105 W/m2

b. Since the total power per unit area is 1.38  105 W/m2, for an area of
0.0001 m2 the power emitted is

power � (1.38  105 W/m2)(0.0001 m2)

power � 13.8 W � 13.8 J/s

The definition of the unit “watt” has been used for the final equality to show
that 13.8 joules of energy are emitted per second.
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Figure 9.12 The experimentally determined behavior of blackbodies. This plot shows the in-
tensity of light at different wavelengths for different temperatures of the blackbody. Explaining
these curves theoretically was a major problem for classical mechanics.
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Example 9.4
A lightbulb filament at 2500 K emits light having a maximum intensity at
what wavelength?

Solution
Using the Wien displacement law, one determines

�max � 2500 K � 2898 �m�K

�max � 1.1592 �m or 11,592 Å

This wavelength of light is in the infrared region, very close to the visible light
region. This does not imply that no visible light is emitted, only that the
wavelength maximum of the emitted light lies in the infrared region of the
spectrum.

There were several attempts to model blackbody radiation behavior to ex-
plain these relationships, but they were only partially successful. The most suc-
cessful of these started with an assumption by the English baron Lord John 
W. S. Rayleigh that light waves come from tiny oscillators within the blackbody.
Rayleigh assumed too that the energy of the light wave is proportional to its
wavelength, so that the smaller wavelengths would be emitted more easily by
these tiny oscillators. Using the equipartition principle from the kinetic theory
of gases (see Chapter 19), Rayleigh proposed and later James Hopwood Jeans
corrected a simple formula for the infinitesimal amount of energy per unit vol-
ume d� (also known as an energy density) in a blackbody in a wavelength in-
terval d� as

d� � ��8�

�

k
4

T
�� d� (9.20)

In this expression, k is Boltzmann’s constant, � is the wavelength, and T is the
absolute temperature. The total energy per unit volume at a particular tem-
perature is given by the integral of the above expression. Equation 9.20 is
known as the Rayleigh-Jeans law.

Though it is an important first step in trying to model the behavior of light,
the Rayleigh-Jeans law has its limitations. It fits the experimentally observed
blackbody intensity curves such as those shown in Figure 9.12, but only at high
temperatures and only in long-wavelength regions of the spectrum. Most
problematic is the short-wavelength intensity predicted by the Rayleigh-Jeans
law: it indicates that as the wavelength gets smaller, the energy density d� given
off in the wavelength interval d� goes up by a factor of the fourth power. (This
is a consequence of the �4 term in the denominator of equation 9.20.) The fi-
nal result is shown in Figure 9.13, which compares the Rayleigh-Jeans equation
with the known blackbody behavior: the intensity predicted by the Rayleigh-
Jeans law approaches infinity as the wavelength of the light approaches zero.
In terms of Rayleigh’s assumption, it suggests that the smaller the wavelength
of the light, the less the energy of the light, and so the easier it should be for a
blackbody to radiate that light. Infinite intensities, however, are impossible to
obtain! It was obvious from experiments of the time that the intensity of light
at shorter wavelengths does not approach infinity. Instead, the intensities ta-
pered off to zero as the wavelength shortened. The Rayleigh-Jeans law predicts
an ultraviolet catastrophe that does not occur.

Other attempts were made to explain the nature of light in terms of black-
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body radiation, but none were any more successful than the Rayleigh-Jeans
law. The matter remained unsolved until 1900. All of the above unexplained
phenomena remained unexplained by the accepted theories of the time. It 
wasn’t that these theories were wrong. After hundreds of years of applying the
scientific method, scientists were developing confidence that they were begin-
ning to understand the way the universe acted. These theories were, though,
incomplete. Experiments of the last 40 years of the 1800s began probing parts
of the universe never before seen—the atomic universe—that could not be ex-
plained by the ideas of the time. New ideas, new theories, new ways of think-
ing about the universe were required.

9.8 Quantum Theory
The first step to a better understanding of the universe came in 1900 when the
German physicist Max Karl Ernst Ludwig Planck (Figure 9.14) proposed a rel-
atively simple equation to predict the intensities of blackbody radiation. There
is some speculation that Planck came up with an equation that fit the data and
then reasoned out a justification, rather than supposing a new idea and work-
ing it up to see what would happen. No matter. For our purposes, all that is
important is that he was correct.

Planck was a thermodynamicist, and having studied under Kirchhoff (of
spectroscope fame) in Berlin, he was aware of the blackbody problem and ap-
proached it from a thermodynamic point of view. The exact derivation is not
difficult but is omitted here; texts on statistical thermodynamics include it as
a matter of course. Planck treated light as interacting with electric oscillations
in matter. He supposed that the energy of these oscillations was not arbitrary,
but proportional to their frequency �:

E � h� (9.21)

where h is the proportionality constant. Planck called this amount of energy a
quantum, and we consider that the energy of the oscillator is quantized. He
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Figure 9.13 Early attempts at modeling the behavior of a blackbody included the Rayleigh-
Jeans law. But as this plot illustrates, at one end of the spectrum the calculated intensity grows
upward to infinity, the so-called ultraviolet catastrophe.

Figure 9.14 Max Karl Ernst Ludwig Planck
(1858–1947). Planck’s quantum theory, proposed
in 1900, marks the beginning of modern science.
Trained as a thermodynamicist, he based his the-
ory on thermodynamic arguments. It is said that
he had some misgivings about the truth of his
own ideas until experimental evidence was found
in support of them. The Kaiser Wilhelm Society
was renamed the Max Planck Institute in his
honor in 1930 and is still a major institution in
Germany. He received the Nobel Prize in 1918.
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then used statistics to derive an expression for the energy density distribution
of blackbody radiation. The modern form of the equation that Planck pro-
posed is

d� � �
8�

�5

hc
� ��ehc/�k

1
T � 1
�� d � (9.22)

where � is the wavelength of the light, c is the speed of light, k is Boltzmann’s
constant, and T is the absolute temperature. The variable h represents a con-
stant, which has units of J�s (joules times seconds) and is known as Planck’s
constant. Its value is about 6.626  10�34 J�s. Equation 9.22 is referred to as
Planck’s radiation distribution law, and it is the central part of Planck’s quan-
tum theory of blackbody radiation.

An alternate form of Planck’s equation is given not in terms of the energy
density but in terms of the infinitesimal power per unit area, or the power flux
(also known as emittance, which is related to the intensity). Recall that power
is defined as energy per unit time. In terms of the infinitesimal power per unit
area d� emitted over some wavelength interval d�, Planck’s law is written as
follows (we omit the derivation):

d� � �
2�

�

h
5

c2

� ��ehc/�k

1
T � 1
�� d � (9.23)

Plots of equation 9.23 are shown in Figure 9.15. Note that they are the same
as the plots of blackbody radiation, but understand that Planck’s equation pre-
dicts the intensity of blackbody radiation at all wavelengths and all tempera-
tures. Thus, by predicting the intensities of blackbody radiation, Planck’s quan-
tum theory correctly models a phenomenon that classical science could not.

Planck’s equation can also be integrated from � � 0 to � in a straightfor-
ward manner to obtain

� � ��1
2
5
�

c

5

2

k
h

4

3�� T4 (9.24)
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Figure 9.15 A plot of the intensity of radiation versus wavelength at different temperatures
for a blackbody, assuming Planck’s radiation law is correct. Predictions based on Planck’s law
agree with experimental measurements, suggesting a correct theoretical basis—no matter what
its implications are.
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where � is the total power flux (in units of J/m2�s, or W/m2) and the constants
have their usual meaning. The groups of constants in parentheses illustrate
that the total power flux is proportional to the fourth power of the absolute
temperature. That is, Planck’s equation produces the Stefan-Boltzmann law
(equation 9.18) and predicts the correct value, in terms of fundamental con-
stants, of the Stefan-Boltzmann constant �. This was another prediction of
Planck’s derivation that was supported by observation.

Collectively, these correspondences suggested that Planck’s derivation could
not be ignored, and that the assumptions made by Planck in deriving equa-
tions 9.22 and 9.24 should not be discounted. However, many scientists (in-
cluding Planck himself, initially) suspected that Planck’s equations were more
of a mathematical curiosity and did not have any physical importance.

Planck’s quantum theory was a mere mathematical curiosity for only five
years. In 1905, the 26-year-old German physicist Albert Einstein (Figure 9.16)
published a paper about the photoelectric effect. In this paper, Einstein applied
Planck’s quantized-energy assumption not to the electrical oscillators in mat-
ter but to light itself. Thus, a quantum of light was assumed to be the energy
that light has, and the amount of that energy is proportional to its frequency:

Elight � h�

Einstein made several assumptions about the photoelectric effect:

1. Light is absorbed by electrons in a metal, and the energy of the light in-
creases the energy of the electron.

2. An electron is bound to a metal sample with some characteristic energy.
When light is absorbed by the electron, this binding energy must be
overcome before the electron can be ejected from the metal. The charac-
teristic binding energy is termed the work function of the metal and is la-
beled �.

3. If any energy is left over energy after overcoming the work function,
the excess energy will be converted to kinetic energy, or energy of
motion.

Kinetic energy has the formula �
1
2

�mv2. By assuming that each electron ab-
sorbs the energy of one quantum of light, Einstein deduced the relationship

h� � � � �
1
2

�mv2 (9.25)

where the energy of the light, h�, is converted into overcoming the work func-
tion and into kinetic energy. Needless to say, if the energy of the light is less
than the work function, no electrons will be ejected because kinetic energy
cannot be less than zero. The work function therefore represents a threshold
energy for the photoelectric effect. Because the intensity of light is not part of
the equation, changing the intensity of light does not change the speed of the
ejected electrons. However, increasing the light intensity means more photons,
so one would expect a greater number of electrons to be ejected. However, if
the frequency of the light on the sample were increased, the kinetic energy of
the ejected electrons would increase (meaning that their velocity would in-
crease), since the work function � is a constant for a particular metal. If one
plotted the kinetic energy of the ejected electrons versus the frequency of light
used, one should get a straight line as indicated by Figure 9.17. Using available
data (Einstein was not an experimentalist!), Einstein showed that this inter-
pretation indeed fit the facts as they were known regarding the photoelectric
effect.
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Figure 9.16 Albert Einstein (1879–1955).
Einstein’s work had an enormous role in the de-
velopment of modern science. His 1921 Nobel
Prize was awarded for his work on the photoelec-
tric effect and the application of Planck’s law to
the nature of light itself. (His work on relativity
was still being evaluated by experimentalists.)

Figure 9.17 A simple diagram of the kinetic
energy of an ejected electron (directly related to
its speed) versus the frequency of light shined on
a metal sample. Below some threshold frequency
of light, no electrons are emitted. This threshold
frequency, �, is called the work function of the
metal. The higher the frequency of light, the more
kinetic energy the emitted electron has, so the
faster it moves. Einstein related the frequency of
the light to the kinetic energy of the ejected elec-
trons using Planck’s ideas about quantized ener-
gies, and in doing so provided an independent
physical basis for Planck’s radiation law as well as
the concept of the quantization of light energy.
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Example 9.5
a. What is the energy of one quantum of light that has a wavelength of
11,592 Å? You will need to use the relationship c � �� to convert the wave-
length to a frequency. Use c � 3.00  108 m/s.
b. What is the energy of one quantum of light whose frequency is given as
20,552 cm�1?

Solution

a. 3.00  108 m/s � 11,592 Å � ��1
1
01

m
0Å
�� � �

� � 2.59  1014 s�1

Now, using Planck’s formula from equation 9.21:

E � 6.626  10�34 J�s  2.59  1014 s�1

E � 1.71  10�19 J

This is not a lot of energy. Understand, however, that this is only the energy
of a single quantum of light.
b. The frequency 20,552 cm�1 must be converted to units of s�1 in order to
use Planck’s constant directly. With these units,

wavenumber � �
�

1
�

so one can rearrange to get

� � �
waven

1
umber
�

� � �
20.552

1
cm�1�

� � 4.8728  10�5 cm � 4.8728  10�7 m

Using c � �� or � � c/�:

� ��
4
3
.8
.0
7
0
28





10
1

8

0�

m
7

/
m
s

�

� � 6.16  1014 s�1

Using Planck’s constant in conjunction with this frequency:

E � (6.626  10�34 J�s)(6.16  1014 s�1)

E � 4.08  10�19 J

This again is not a lot of energy.

Example 9.6
Work functions, �, are usually listed in units of electron volts, eV, where 
1 eV � 1.602  10�19 J. What is the velocity of an electron emitted by Li 
(� � 2.90 eV) if light having a frequency of 4.77  1015 s�1 is absorbed?
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Solution
Calculating the energy of the light:

E � (6.626  10�34 J�s)(4.77  1015 s�1)

E � 3.16  10�18 J

Using Einstein’s equation for the photoelectric effect and substituting:

h� � � � �
1
2

�mv2

3.16  10�18 J � (2.90eV)(1.602  10�19 J/eV) � �
1
2

�(9.109  10�31 kg) � v2

3.16  10�18 J � 4.646  10�19 J � (4.555  10�31 kg) � v2

v2 � 5.92  1012 m2/s2

v � 2.43  106 m/s

Verify that the units do work out to units of velocity, m/s. This velocity is
about 1% of the speed of light.

This independent experimental support of Planck’s radiation distribution
(and Einstein’s application of it to light) was not lost on the scientific com-
munity, and since 1905 this has been generally accepted as the correct under-
standing of light. Planck’s and Einstein’s work reintroduced the idea that light
can be treated as a particle—a particle having a certain amount of energy.
There was no denying the fact that light acts like a wave. It reflects, refracts, in-
terferes as only a wave can. But there can also be no denying that light has par-
ticle properties. Light can be treated as a stream of individual particles, each of
which carries a certain amount of energy whose value is determined by its
wavelength.

More proof of the particle nature of light came in 1923 when Arthur
Compton showed that the scattering of monochromatic (same-wavelength; lit-
erally, “same-color”) X rays by graphite caused some of the X rays to shift to a
slightly longer wavelength. The only way to account for this was to assume that
the monochromatic X rays acted as a particle with a specific energy, and that
the collision of a particle of light with an electron caused energy to be trans-
ferred between the two particles, lessening the energy of the light particle and
therefore increasing its wavelength. (There were also momentum considera-
tions, as we will see later.) In 1926, G. N. Lewis proposed the word photon as
the name for a particle of light.

The value of h is approximately 6.626  10�34 J�s. The unit of h, joules
times seconds, is necessary so that when h is multiplied by a frequency, which
has units of s�1, the product yields the unit of joules, which is a unit of en-
ergy. (Other values of h are used that have different units, but the idea is the
same.) The numerical value of h is extremely small: on the order of 10�34. The
implication is that one will not even notice the packaging of energy into quanta
unless one is looking at the behavior of extremely small objects, like atoms and
molecules and photons. It wasn’t until the late 1800s that science developed the
tools (like spectroscopes) to do that, so it wasn’t until then that scientists no-
ticed the difference between discrete bundles of energy and so-called continu-
ous energy.

Finally, the units of h, joule�second (or J�s), is a combination of energy and
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time. Energy multiplied by time yields a quantity known as action. Earlier in
history, scientists developed something called the principle of least action,
which is an important concept in classical mechanics. In quantum mechanics,
we will find that any quantity that has units of action is intimately related to
Planck’s constant.

Planck’s quantum theory answered one of the great unknowns of earlier sci-
ence, that of blackbody radiation. There were still several unanswered ques-
tions, but quantum theory was the first breakthrough and is typically regarded
as the boundary between classical and modern physics. Any development be-
fore 1900 is considered classical science; after 1900, modern. It was after 1900
that a new understanding of atoms and molecules—the basis of all chem-
istry—was formulated.

9.9 Bohr’s Theory of the Hydrogen Atom
The next step toward an understanding of electrons in atoms was announced
by Danish scientist Niels Henrik David Bohr (Figure 9.18) in 1913 in consid-
ering Rydberg’s general formula, equation 9.17, for the emission lines of the
hydrogen atom spectrum. However, Bohr was considering the Rydberg equa-
tion in light of two new ideas about nature: the nuclear theory of the atom, re-
cently proposed by Rutherford, and the idea of the quantization of a measur-
able quantity, the energy of a photon. (Bohr and Einstein are generally
considered the two most influential scientists of the twentieth century. Which
is more influential is an ongoing debate.)

The nuclear theory of the atom assumed that the negatively charged elec-
tron was in orbit about a more massive nucleus. However, Maxwell’s theory of
electromagnetism requires that when charged matter changes its direction, it
must emit radiation as it accelerates. But electrons in atoms don’t emit radia-
tion as they orbit the nucleus, as far as scientists could tell.

Bohr reasoned that perhaps energy was not the only quantity that could be
quantized. If a particle were traveling in a circular orbit about a nucleus, sup-
pose its angular momentum were quantized?

Bohr made certain assumptions, statements that were not to be justified
but assumed as true, and from these statements he derived certain mathemat-
ical expressions about the electron in the hydrogen atom. His assumptions
were:

1. In the hydrogen atom, the electron moves in a circular orbit about the
nucleus. Mechanically, the centripetal force that curves the path of the
electron is provided by the coulombic force of attraction between the op-
positely charged particles (the negatively charged electron and the posi-
tively charged proton in the nucleus).

2. The energy of the electron remains constant as the electron remains in
its orbit about the nucleus. This statement was considered a violation of
Maxwell’s theory of electromagnetism regarding accelerating charges.
Since it seems apparent that this “violation” does occur, Bohr suggested
accepting that it is so.

3. Only certain orbits are allowed, each orbit having a quantized value of
its angular momentum.

4. Transitions between orbits are allowed, but only when an electron ab-
sorbs or emits a photon whose energy is exactly equal to the difference
between the energy of the orbits.

262 C H A P T E R  9 Pre-Quantum Mechanics

Figure 9.18 Niels Henrik David Bohr (1885–
1962). Bohr’s work was vital in the development
of modern science. Bohr made the leap from
quantized energy to the quantization of other
measurables; specifically, angular momentum of
subatomic particles like electrons. Bohr and
Einstein argued over many interpretations of the
new theories, but Bohr won most of the argu-
ments. Bohr almost died being smuggled out of
Europe during World War II. He survived to as-
sist in the development of the atomic bomb.
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Assumption 1, regarding the relationship between forces, can be written as

Fcent � Fcoul (9.26)

where Fcent and Fcoul are the centripetal force and coulombic force, respectively.
Expressions for each of these quantities are known from classical mechanics,
and substituting them yields

�
m

r
ev

2

� � �
4�

e
�

2

0r 2� (9.27)

where r is the radius of the circular orbit, e is the charge on the electron, me

is the mass of the electron, v is the velocity of the electron, and �0 is a physi-
cal constant called the permittivity of free space (and equals 8.854  10�12

C2/J�m). The total energy of a system is simply the sum of the kinetic energy
K and the potential energy V:

Etot � K � V (9.28)

The expressions for the kinetic energy of a moving electron, �
1
2

�mev
2, and the po-

tential energy of two charged, attracting particles, �e2/4��0r, are also known,
giving

Etot � �
1
2

�mev
2 � �

4�

e
�

2

0r
� (9.29)

If we rewrite Bohr’s equivalence of centripetal force and coulombic force,
equation 9.27, as

mev
2 � �

4�

e
�

2

0r
� (9.30)

we can substitute for the kinetic energy term in equation 9.29 and combine the
two terms to get

Etot � ��
1
2

� �
4�

e
�

2

0r
� (9.31)

Now Bohr’s assumption 3 can be applied. Classically, if an object of mass m is
traveling in a circular path with radius r about a center, the magnitude* of the
angular momentum L is

L � mvr (9.32)

In the SI system of units, mass has units of kg, velocity has units of m/s, and
distance (the radius) has units of m. Angular momentum therefore has units
of kg�m2/s. But also recognize that J�s can be rewritten as

J � s � N � m � s � �
kg

s
�
2

m
� � m � s � �

kg �

s
m2

�

That is, Planck’s constant has the same units as angular momentum! Or, re-
stated, angular momentum has units of action. As hinted earlier, any quantity
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*Angular momentum is a vector whose formal definition includes the cross product of
the velocity vector, v, and the radius vector, r:

L � mr  v

Equation 9.32 relates the magnitude of the angular momentum only, and assumes that the
velocity vector is perpendicular to the radius vector.
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that has units of action can be related to h, and Bohr did just that. He assumed
that the possible quantized values of the angular momentum were some mul-
tiples of h:

L � mevr � �
2
n
�

h
� (9.33)

where h is Planck’s constant and n is some integer (1, 2, 3, . . .) indicating that
the angular momentum is some integral multiple of Planck’s constant. The
value of n � 0 is not allowed, because then the electron would have no mo-
mentum and wouldn’t be orbiting the nucleus. The 2� in the denominator of
equation 9.33 accounts for the fact of a complete circle having 2� radians, and
Bohr assumed that the orbits of the electron were circular.

Equation 9.33 can be rewritten as

v � �
2�

n
m
h

er
�

and we can substitute for velocity in equation 9.30, which is derived from
Bohr’s first assumption about forces. Performing this substitution and rear-
ranging the expression to solve for the radius r, we get

r � �
�

�
0

m
n2

e

h
e2

2

� (9.34)

where all variables are as defined above. It is easy to show that this expression
has units of length. Note that this equation implies that the radius of the or-
bit of an electron in the hydrogen atom will be a value determined by a col-
lection of constants: �0, h, �, me, e, and the integer n. The only variable that
can change is n, but it is restricted by Bohr’s assumption 3 to be a positive in-
teger. Therefore the radius of the electron orbits in the hydrogen atom can only
have certain values, determined solely by n. The radius of the orbits of the elec-
tron is quantized. The integer denoted as n is termed a quantum number. A di-
agram of Bohr’s hydrogen atom having specific radii for the electron orbits is
shown in Figure 9.19.

Before leaving discussion of the radius, there are two other points to con-
sider. Note that the expression for r depends on Planck’s constant h. If Planck
and others had not developed a quantum theory of light, the very concept of
h would not exist, and Bohr would not have been able to rationalize his as-
sumptions. A quantum theory of light was a necessary precursor to a quantum
theory of matter—or at least, a theory of hydrogen. Second, the smallest value
of r corresponds to a value of 1 for the quantum number n. Substituting val-
ues for all of the other constants, whose values were known in Bohr’s time, one
finds that for n � 1:

r � 5.29  10�11 m � 0.529 Å

This distance ends up being an important yardstick for atomic distances and
is called the first Bohr radius. This meant, by the way, that the hydrogen atom
was about 1 Å in diameter. At that time, science (including theoretical work by
Einstein on Brownian motion) was just beginning to estimate the size of atoms.
This predicted radius fell exactly where it should be from experimental 
considerations.

The total energy of a system is of paramount interest, and by using the ex-
pression for the quantized radius for the electron in a hydrogen atom, one can
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substitute for the radius in the expression for the total energy, equation 9.31,
to obtain

Etot � ��
8�

m
2
0n

ee
2

4

h2� (9.35)

or the total energy of the hydrogen atom. It is simple to demonstrate that this
expression has units of energy:

�
(C2/J

k
�m
g�C

)2

4

(J�s)2� � �
kg�

C
C

4

4

J2

J
s

2

2

m2

�

� �
kg

s
�
2

m2

� � J

Again, note that the total energy, like the radius, is dependent on a collection
of constants and a number, n, that is restricted to integer values. The total en-
ergy of the hydrogen atom is quantized.

Finally, Bohr’s assumption 4 dealt with changes in energy levels. The differ-
ence between a final energy, Ef, and an initial energy, Ei, is defined as �E:

�E � Ef � Ei (9.36)
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Figure 9.19 The Bohr model of the hydrogen atom—shown here with its three lowest-energy
states—is not a correct description, but it was a crucial step in the development of modern quan-
tum mechanics.
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Bohr stated that this �E must equal the energy of the photon:

�E � h� (9.37)

Now that Bohr had derived an equation for the total energies of the hydrogen
atom, he could substitute into equations 9.36 and 9.37:

�E � h� � Ef � Ei � ���
8�

m
2
0n

ee

f
2

4

h2� � �
8�

m
2
0n

ee

i
2

4

h2��
� �

8
m
�

e
2
0

e
h
4
2� ��

n
1

i
2� � �

n
1

f
2�� (9.38)

For emission, �E is negative (that is, energy is given off), and for absorption
�E is positive (energy is absorbed). In terms of wavenumber �̃, equation 9.38
becomes

�̃ � �
8
m
�2

0

e

h
e4

3c
� ��

n
1

i
2� � �

n
1

f
2�� (9.39)

Compare this with Rydberg’s equation, 9.17. It is the same expression! Bohr
therefore derived an equation that predicts the spectrum of the hydrogen
atom. Also, Bohr is predicting that the Rydberg constant RH is

RH � �
8
m
�2

0

e

h
e4

3c
� (9.40)

Substituting for the values of the constants as they were known at that time,
Bohr calculated from his assumptions a value for RH that differed less than
7% from the experimentally determined value. Current accepted values for
the constants in equation 9.40 yield a theoretical value for RH that differs by
less than 0.1% from the experimental value. (This can be made even closer 
to experimental values by using the reduced mass of the H atom, rather 
than the mass of the electron. We will consider reduced masses in the next
chapter.)

The importance of this conclusion cannot be overemphasized. By using
some simple classical mechanics, ignoring the problem with Maxwell’s elec-
tromagnetic theory, and making one single new assumption—the quantization
of angular momentum of the electron—Bohr was able to deduce the spectrum
of the hydrogen atom, a feat unattained by classical mechanics. By deducing
the value of the Rydberg constant, an experimentally determined parameter,
Bohr was showing the scientific community that new ideas about nature were
crucial to the understanding of atoms and molecules. Scientists of his time
were unable to shrug off the fact that Bohr had come up with a way to under-
stand the spectrum of an atom, whatever the source of the derivation. This
crucial step, regarding other measurable quantities like angular momentum as
quantized, was what made the Bohr theory of the hydrogen atom one of the
most important steps in the modern understanding of atoms and molecules.

The limitations of Bohr’s conclusion, however, also cannot be forgotten. It
applies to the hydrogen atom, and only the hydrogen atom. Therefore it is lim-
ited, and it is not applicable to any other element that has more than one elec-
tron. The Bohr theory is, however, applicable to an atomic system that has only
a single electron (which means that the systems involved were highly charged
cations), and the ultimate equation for the energy of the system is revised to

Etot � ��
8
Z
�

2

2
0

m
n2

ee
h

4

2� (9.41)
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where Z is the charge on the nucleus. So Bohr’s theory is applicable to U91�,
which has all but one of its electrons stripped from its nucleus. (However, rel-
ativistic effects will be present, so applicability of Bohr’s equation is even more
limited.) Unfortunately, most matter of interest to chemists is not composed
of single-electron atoms, and the Bohr theory is inherently limited.

But it opened the eyes of contemporary scientists to new ideas: ideas that
some measurable quantities, called observables, are not continuous in their
possible values, like positions in a number line. Rather, they are discrete or
quantized, and can have only certain values. This idea became one of the cen-
tral tenets of the new quantum mechanics.

9.10 The de Broglie Equation
Between the introduction of Bohr’s theory and the development of quantum
mechanics, there was very little in the way of new contributions to the under-
standing of matter—except for an important idea put forth by Louis de Broglie
in 1924. De Broglie, a scientist whose family was part of the French aristocracy,
hypothesized that if a wave like light can have particle properties, why can’t
particles like electrons, protons, and so on have wave properties?

We can understand de Broglie’s hypothesis by equating the expression for
energy from special relativity and from quantum theory:

E � mc2

E � h�

Therefore

mc2 � h�

Since c � �� (that is, the speed of light equals its frequency times its wave-
length; this is a standard conversion), we can substitute for the frequency �:

mc2 � �
h
�

c
�

Canceling c out of both sides and realizing that c is a velocity and that mass
times velocity is momentum p, we can rearrange:

� � �
m
h

c
� � �

h
p

�

De Broglie suggested that this relationship applied to particles, for which the
momentum equals mass times velocity (p � mv). The de Broglie equation is
written for particles as

� � �
m
h
v
� � �

h
p

� (9.42)

This equation states that the wavelength of a particle is inversely proportional
to its momentum, mv, and the proportionality constant is h, Planck’s constant.
That is, de Broglie’s equation implies that a particle of mass m acts as a wave.
Only a wave, remember, can have a wavelength.

That photons have momentum was hinted at experimentally only one year
before when Compton announced the change of energy of X rays upon de-
flection by graphite. This Compton effect involves a simultaneous transfer of
energy and momentum when a photon collides with an electron. An under-
standing of the conservation of energy as well as the conservation of momen-
tum allowed one to correctly predict not only the new energies of the photons

9.10 The de Broglie Equation 267

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



but also their new directions of motion. If waves have particle properties, per-
haps it is not too far-fetched to consider that matter can have wave properties.

Consider two examples that illustrate the importance of the de Broglie
equation. First, if a baseball having a mass of 150 grams (which is 0.150 kg)
were traveling at a speed of 150 kilometers per hour (which is 41.6 meters per
second), its de Broglie wavelength would be

� � � 1.06  10�34 m

A wavelength of a millionth of a billionth of a billionth of an angstrom is
undetectable even under modern conditions. The wavelength of the baseball
would never be noticed, not by scientists of the late nineteenth century (or
even a baseball player).

The second example is an electron, which is much smaller than a baseball.
Since the de Broglie wavelength is inversely proportional to mass, we would ex-
pect that the de Broglie wavelength of a particle gets larger as the particle gets
smaller. For an electron moving at the same speed as the baseball, its de Broglie
wavelength is

� � � 1.75  10�5 m

which is 17.5 microns. This “wavelength’’ corresponds to the infrared region of
light! Even in the late nineteenth century, this wavelength could have been detected.

Electrons typically move at higher speeds than this, and their de Broglie
wavelengths are typically shorter, in the range equivalent to X rays. Since X rays
were known by then to be diffracted by crystals, why not diffract electrons? In
1925, Clinton Joseph Davisson did just that. After accidentally breaking a vac-
uum tube with a nickel sample in it, Davisson reconditioned the nickel sam-
ple by heating it and formed large nickel crystals. Aware of de Broglie’s ideas,
Davisson (with coworker Lester H. Germer) exposed a nickel crystal to elec-
trons and found a diffraction pattern exactly as one would expect if electrons
were indeed waves. This diffraction of particles showed that the particles did
have wave properties, as predicted by de Broglie. Additional work confirming
the wave nature of electrons was performed later that year by G. P. Thomson,
the son of J. J. Thomson, who in 1897 had discovered the electron as a parti-
cle. The wave-particle dual nature of particles (as well as photons) has been a
cornerstone of modern science ever since.

Example 9.7
Calculate the de Broglie wavelength of a 1000-kg automobile traveling at 100
kilometers per hour and of an electron traveling at 1% of the speed of light
(0.01c � 3.00  106 m/s).

Solution
For the automobile:

� �

� � 2.39  10�38 m

6.626  10�34 J�s
�����
(1000 kg)(100 km/hr)(1 hr/3600 s)(1000 m/km)

6.626  10�34 J�s
����
(9.109  10�31 kg)(41.6 m/s)

6.626  10�34 J�s
���
(0.150 kg)(41.6 m/s)
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For the electron:

� �

� � 2.43  10�10 m or 2.43 Å

The de Broglie wavelength of the automobile is unnoticeable even using
modern methods. The de Broglie wavelength of the electron is similar to that
of X rays, which are certainly noticeable under the right conditions.

De Broglie’s insight and the Davisson-Germer experiment ultimately pointed
out that matter has wave properties. For large pieces of matter, the wave prop-
erties can be ignored, but for small pieces of matter like electrons, they cannot.
Because classical mechanics did not consider matter as waves, it was inadequate
to describe the behavior of matter.

9.11 Summary: The End of Classical Mechanics
By 1925 it was realized that the classical ideas that described matter didn’t work
at the atomic level. Some progress—Planck’s quantum theory, Einstein’s appli-
cation of quantum theory to light, Bohr’s theory of hydrogen, de Broglie’s re-
lationship—had been made, but it was all very specific and not generally ap-
plied to atoms and molecules.

It took a generation for new thinkers, exposed to the new and fantastic ideas
of the last quarter century, to propose the new theories. It has been debated
philosophically whether new thinkers were required; would older scientists still
be bound by the old theories and be unable to come up with totally new ideas?

In 1925–1926, the German physicist Werner Heisenberg and the Austrian
physicist Erwin Schrödinger independently and from different perspectives
published initial works announcing the formation of quantum mechanics, a
new way of thinking of electrons and their behavior. From their basic argu-
ments, an entirely new concept of atoms and molecules was constructed. Most
importantly, this picture of atoms and molecules survives because it answers
the questions about atomic and molecular structure, and it does so in a more
complete way than any theory before or since. As with most theories, quantum
mechanics is based on a set of assumptions called postulates. Some of these
postulates seem, and certainly seemed to fellow scientists in 1925, a totally new
way of thinking about nature. But as one concedes the success of quantum me-
chanics, it becomes easier to accept the postulates as factual and then try to
come to grips with what they mean.

Before we consider quantum mechanics itself, it is important to understand
that we will be applying quantum mechanics to atomic and molecular behav-
ior, not to the behavior of large macroscopic objects. Ordinary, classical me-
chanics can be used to understand the behavior of a baseball, but not an elec-
tron. It is completely analogous to using Newton’s equations to understand the
velocity of a car going 100 km/hr, but using Einstein’s equations of relativity
to understand the velocity of a car at near the speed of light. Although one
could use relativity equations to model very slow speeds, it is impractical
within the limits of measurement. So it is with quantum mechanics. It applies
to all matter, but it is not needed to describe the behavior of something the size
of a baseball. By the end of the nineteenth century, scientists began probing
matter the size of atoms for the first time, and their observations couldn’t be
explained using classical mechanics. That’s because they were assuming that

6.626  10�34 J�s
����
(9.109  10�31 kg)(3.00  106 m/s)
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atoms behaved in the manner described by Newton, and they don’t. Individual
electrons and atoms require a different model to explain their behavior.

Most basic quantum mechanics was developed by 1930. However, the de-
velopment of quantum mechanics as applied to electrons also led to new the-
ories of the nucleus, all of which today inherently contain quantum assump-
tions. Today, quantum mechanics encompasses the entire behavior of the
atom. Because chemistry starts with atoms, quantum mechanics provides the
very basis of modern chemical science.
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9.2 Laws of Motion

9.1. For an object having mass m falling in the z direction,
the kinetic energy is �

1
2

�mż2 and the potential energy is mgz,
where g is the gravitational acceleration constant (approxi-
mately 9.8 m/s2) and z is the position. For this one-
dimensional motion, determine the Lagrangian function L and
write the Lagrangian equation of motion.

9.2. For the system in Exercise 9.1, determine the Hamiltonian
equation of motion.

9.3. For Exercise 9.2, verify that equations 9.14 and 9.15 are
valid for the Hamiltonian you derived.

9.4. (a) A block of wood being pushed up an inclined plane
has certain forces acting on it: the force of pushing, the force
of friction, the force due to gravity. Whose equations of mo-
tion are best suited to describing this system, and why? 
(b) Answer the same question but now for a rocket whose 
velocity and altitude above ground are constantly being 
monitored.

9.3–9.7 Unexplainable Phenomena

9.5. Draw, label, and explain the functions of the parts of a
spectroscope.

9.6. Convert (a) a wavelength of 218 Å to cm�1, (b) a fre-
quency of 8.077  1013 s�1 to cm�1, (c) a wavelength of
3.31 �m to cm�1.

9.7. What conclusion can be drawn from the fact that two
spectra of two different compounds have certain lines at ex-
actly the same wavelengths?

9.8. Explain why no lines in the Balmer series of the hydro-
gen atom spectrum have wavenumbers larger than about
27,434 cm�1. (This is called the series limit.)

9.9. What are the series limits (see the previous problem) for
the Lyman series (n2 � 1) and the Brackett series (n2 � 4)?

9.10. The following are the numbers n2 for some of the se-
ries of lines in the hydrogen atom spectrum:

Lyman: 1 Balmer: 2 Paschen: 3 Brackett: 4 Pfund: 5

Calculate the energy changes, in cm�1, of the lines in each of
the stated series for each of the given values for n1: (a) Lyman,
n1 � 5; (b) Balmer, n1 � 8; (c) Paschen, n1 � 4; (d) Brackett,
n1 � 8; (e) Pfund, n1 � 6.

9.11. Given that the wavelengths of the first three lines of the
Balmer series are 656.2, 486.1, and 434.0 nm, calculate an av-
erage value of R.

9.12. From the numbers determined by Millikan, what was
the value of the charge-to-mass ratio, e/m, in units of C/kg?

9.13. (a) Using the identities of alpha (a helium nucleus) and
beta (an electron) particles as well as the masses of the pro-
ton, neutron, and electron, estimate how many beta particles
it takes to make up the mass of one alpha particle. (b) From
this result, would you expect an alpha particle or a beta par-
ticle of the same kinetic energy to be the faster-moving ra-
dioactive emission? (c) Does your answer to part b justify the

experimental observation that beta particles are more pene-
trating than alpha particles?

9.14. (a) How much radiant energy is given off, in watt/
meter2, by an electric stove heating element that has a tem-
perature of 1000 K? (b) If the area of the heating element is
250 cm2, how much power, in watts, is being emitted?

9.15. Stefan’s law, equation 9.18, suggests that any body of
matter, no matter what the temperature, is emitting energy.
At what temperature would a piece of matter have to be in or-
der to radiate energy at the flux of 1.00 W/m2? At the flux of
10.00 W/m2? 100.00 W/m2?

9.16. An average human body has a surface area of 0.65 m2.
At a body temperature of 37°C, how many watts (or J/s) of
power does a person emit? (Understanding such emissions is
important to NASA and other space agencies when designing
space suits.)

9.17. The surface temperature of our sun is about 5800 K.
Assuming that it acts as a blackbody: (a) What is the power
flux radiated by the sun, in W/m2? (b) If the surface area of
the sun is 6.087  1012 m2, what is the total power emitted
in watts? (c) Since watts are J/s, how many joules of energy
are radiated in one year (365 days)? (Note: The sun is actually
a very poor approximation of a blackbody.)

9.18. The slope of the plot of energy versus wavelength for
the Rayleigh-Jeans law is given by a rearrangement of equa-
tion 9.20:

�
d
d

�

�
� � �

8�

�4
kT
�

What are the value and units of this slope for a blackbody hav-
ing the following temperatures and at the following wave-
lengths? (a) 1000 K, 500 nm; (b) 2000 K, 500 nm; (c) 2000 K,
5000 nm; (d) 2000 K, 10,000 nm. Do the answers indicate
the presence of an ultraviolet catastrophe?

9.19. (a) Use Wien’s law to determine the �max of the sun if
its surface temperature is 5800 K. (b) The human eye sees
light most efficiently if the light has a wavelength of 5000 Å
(1 Å � 10�10 m), which is in the green-blue portion of the
spectrum. To what blackbody temperature does that corre-
spond? (c) Compare your answers from the first two parts and
comment.

9.8 Quantum Theory

9.20. The slope of the plot of energy versus wavelength for
Planck’s law is given by a rearrangement of equation 9.22:

�
d
d

�

�
� � �

8�

�5
hc
� ��ehc/�k

1
T � 1
��

Give the value and units of this slope for a blackbody having
the following temperatures and at the following wavelengths:
(a) 1000 K, 500 nm; (b) 2000 K, 500 nm; (c) 2000 K, 5000 nm; 
(d) 2000 K, 10,000 nm; (e) Compare these results to those
for problem 9.18. (f) At what temperatures and spectral re-
gions will the Rayleigh-Jeans law be close to Planck’s law?
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9.21. Integrate Planck’s law (equation 9.23) from the wave-
length limits � � 0 to � � � to get equation 9.24. You will
have to rewrite the expression by redefining the variable (and
its infinitesimal) and use the following integral:

��

0
�
ex

x
�

3

1
� dx � �

1
�

5

4

� (9.43)

9.22. Calculate the power of light in the wavelength range 
� � 350–351 nm (that is, let d� be �� � 1 nm in Planck’s law,
and let � be 350.5 nm) at temperatures of 1000 K, 3000 K,
and 10,000 K.

9.23. Verify that the collection of constants in equation 9.24
reproduces the correct (or close to it) value of the Stefan-
Boltzmann constant.

9.24. Work functions � are typically given in units of electron
volts, or eV. 1 eV equals 1.602  10�19 J. Determine the min-
imum wavelength of light necessary to overcome the work
function of the following metals (“minimum” implies that the
excess kinetic energy, �

1
2

�mv2, is zero): Li, 2.90 eV; Cs, 2.14 eV;
Ge, 5.00 eV.

9.25. Determine the speed of an electron being emitted by
rubidium (� � 2.16 eV) when light of the following wave-
lengths is shined on the metal in vacuum: (a) 550 nm, 
(b) 450 nm, (c) 350 nm.

9.26. The photoelectric effect is used today to make light-
sensitive detectors; when light hits a sample of metal in a
sealed compartment, a current of electrons may flow if the
light has the proper wavelength. Cesium is a desirable com-
ponent for such detectors. Why?

9.27. Calculate the energy of a single photon in joules and
the energy of a mole of photons in J/mol for light having
wavelengths of 10 m (radio and TV waves), 10.0 cm (mi-
crowaves), 10 microns (infrared range), 550 nm (green light),
300 nm (ultraviolet), and 1.00 Å (X rays). Do these numbers
explain the relative danger of electromagnetic radiation of dif-
fering wavelengths?

9.9 Bohr’s Theory of Hydrogen

9.28. Show that both sides of equation 9.27 reduce to units
of force, or N.

9.29. Use equation 9.34 to determine the radii, in meters and
angstroms, of the fourth, fifth, and sixth energy levels of the
Bohr hydrogen atom.

9.30. Calculate the energies of an electron in the fourth, fifth,
and sixth energy levels of the Bohr hydrogen atom.

9.31. Calculate the angular momenta of an electron in the
fourth, fifth, and sixth energy levels of the Bohr hydrogen
atom.

9.32. Show that the collection of constants given in equation
9.40 gives the correct numerical value of the Rydberg 
constant.

9.33. Equations 9.33 and 9.34 can be combined and re-
arranged to find the quantized velocity of an electron in the
Bohr hydrogen atom. (a) Determine the expression for the ve-
locity of an electron. (b) From your expression, calculate the
velocity of an electron in the lowest quantized state. How does
it compare to the speed of light? (c � 2.9979  108 m/s) 
(c) Calculate the angular momentum L � mvr of the electron
in the lowest energy state of the Bohr hydrogen atom. How
does this compare with the assumed value of the angular mo-
mentum from equation 9.33?

9.34. (a) Compare equations 9.31, 9.34, and 9.41 and pro-
pose a formula for the radius of a hydrogen-like atom that has
atomic charge Z. (b) What is the radius of a U91� ion if the
electron has a quantum number of 100? Ignore any possible
relativistic effects.

9.10 The de Broglie Equation

9.35. The de Broglie equation for a particle can be applied to
an electron orbiting a nucleus if one assumes that the electron
must have an exact integral number of wavelengths as it cov-
ers the circumference of the orbit having radius r: n� � 2�r.
From this, derive Bohr’s quantized angular momentum 
postulate.

9.36. What is the wavelength of a baseball having mass 
100.0 g traveling at a speed of 160 km/hr? What is the wave-
length of an electron traveling at the same speed?

9.37. What velocity must an electron have in order to have a
de Broglie wavelength of 1.00 Å? What velocity must a pro-
ton have in order to have the same de Broglie wavelength?

9.38. Plot Planck’s law of energy density versus wavelength at
various temperatures. Integrate it to show that you can get the
Stefan-Boltzmann law and constant.

9.39. Determine under what conditions of temperature and
wavelength the Rayleigh-Jeans law approximates Planck’s law.

9.40. Using the second-order differential equation for the
motion of a harmonic oscillator, find solutions to the equation
and plot them versus time.

9.41. Construct a table of the first 50 lines of the first six se-
ries of the hydrogen atom spectrum. Can you predict the se-
ries limit in each case?

272 Exercises for Chapter 9

Symbolic Math Exercises

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



10

273273

NEW DISCOVERIES PROMPTED THE NEED for a better theory to de-
scribe the behavior of matter at the atomic level, as indicated in the

previous chapter. This better theory, called quantum mechanics, represented
a completely new way of modeling nature. Quantum mechanics ultimately
showed that it provides a better basis for describing, explaining, and pre-
dicting behavior at the atomic and molecular level. As with any theory in sci-
ence, quantum mechanics is accepted by scientists because it works. (It is,
quite frankly, one of the most successfully tested theories devised by science.)
That is, it provides a theoretical background that makes predictions that
agree with experiment. There may be certain conceptual difficulties at first.
A common question from a student is “Why is quantum mechanics this
way?” The philosophy of quantum mechanics is left to the philosopher. Here,
we want to see how quantum mechanics is defined and how to apply it to
atomic and molecular systems.

Quantum mechanics is based on several statements called postulates. These
postulates are assumed, not proven. It may seem difficult to understand why
an entire model of electrons, atoms, and molecules is based on assumptions,
but the reason is simply because the statements based on these assumptions
lead to predictions about atoms and molecules that agree with our observa-
tions. Not just a few isolated observations: over decades, millions of measure-
ments on atoms and molecules have yielded data that agree with the conclu-
sions based on the few postulates of quantum mechanics. With agreement
between theory and experiment so abundant, the unproven postulates are ac-
cepted and no longer questioned. In the following discussion of the funda-
mentals of quantum mechanics, some of the statements may seem unusual or
even contrary. However questionable they may seem at first, realize that state-
ments and equations based on these postulates agree with experiment and so
constitute an appropriate model for the description of subatomic matter, es-
pecially electrons.

10.1 Synopsis
Quantum mechanics is sometimes difficult at first glance, partly because some
new ideas and some new ways of thinking about matter are involved. These

10.1 Synopsis
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ideas will be discussed in detail in the sections that follow. Briefly, however, it
might be useful to summarize these ideas so that the reader will understand
where the material is headed. Remember that the ultimate goal is to have a
theory that proposes how matter behaves, and that predicts events that agree
with observation; that is, to have theory and experiment agree. Otherwise, a
different theory is necessary to understand the experiment.

The main ideas are:

• The behavior of electrons, by now known to have wavelike properties,
can be described by a mathematical expression called a wavefunction.

• The wavefunction contains within it all possible information that can be
known about a system.

• Wavefunctions are not arbitrary mathematical functions, but must sat-
isfy certain simple conditions. For example, they must be continuous.

• The most important condition is that the wavefunction must satisfy 
the time-dependent Schrödinger equation. With certain assumptions,
time can be separated from the wavefunction, and what remains is a
time-independent Schrödinger equation. We focus mainly on the time-
independent Schrödinger equation in this text.

• In the application of these conditions to real systems, wavefunctions are
found that do indeed yield information that agrees with experimental
observations of these systems: quantum mechanics predicts values that
agree with experimentally determined measurements. The simplest real
system to understand, covered in the next chapter, is the hydrogen
atom, a system that Rydberg and Balmer and Bohr had studied with
different degrees of success. To the extent that quantum mechanics not
only reproduces their success but also extends it, quantum mechanics
is superior to their theories trying to describe the behavior of sub-
atomic particles.

The rest of this chapter expands on the above ideas. A proper understand-
ing of quantum mechanics requires an understanding of the principles that it
uses. An adequate familiarity with these principles is essential, even irreplace-
able. In your dealings with these principles, do not lose sight of that last state-
ment in the above synopsis: quantum mechanics properly describes the be-
havior of matter, as determined by observation.

10.2 The Wavefunction
The behavior of a wave can be expressed as a simple mathematical function.
For example,

y � A sin (Bx � C) � D (10.1)

is a general expression for the amplitude, y, of a sine-type (or sinusoidal) wave
traveling in the x dimension. The constants A, B, C, and D have certain values
that specify exactly what the sine wave looks like.

Since de Broglie indicated that matter should have wave properties, why not
describe the behavior of matter using an expression for a wave? The first pos-
tulate of quantum mechanics is that the state of a system can be described by
an expression called a wavefunction. Wavefunctions in quantum mechanics are
typically given the symbol � or � (the Greek letter psi). For various physical
and mathematical reasons, these �’s are limited, or constrained, to being func-
tions that are:
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1. Single-valued (that is, a wavefunction must have only one possible F(x)
value for each and every value of x.)

2. Continuous
3. Differentiable (that is, there must be no mathematical reasons why the

derivative of � cannot exist.)*

Among other things, this last restriction prohibits functions that approach
either positive or negative infinity, except maybe for individual points in the
function. Another way to state this is that the function is bounded. For what-
ever variable(s) exist in the wavefunctions, these limitations must be satisfied
for the entire variable range. In some cases, the range of the variable may be
�� to ��. In other cases, the variables may be limited to a certain range.
Functions that meet all these criteria are considered acceptable wavefunc-
tions. Those that do not may not provide any physically meaningful conclu-
sions. Figure 10.1 shows some examples of acceptable and unacceptable
wavefunctions.

The final part of this first postulate is that all possible information about
the various observable properties of a system must be derived from the
wavefunction. This seems an unusual statement at first. Later in the chapter
we can fully develop this idea. But the point should be made immediately
upon introduction of the wavefunction: All information must be deter-
mined solely from the function that is now defined as the wavefunction of
the particle. This fact gives the wavefunction a central role in quantum me-
chanics.

Example 10.1
Which of the following expressions are acceptable wavefunctions, and which
are not? For those that are not, state why.
a. f (x) � x2 � 1, where x can have any value
b. f (x) � ��x�, x � 0 

c. � � 	
�

1

2�
	 sin 	

2

x
	, �	




2
	 � x � 	




2
	

d. � � 	
4 �

1

x
	, 0 � x � 10

e. � � 	
4 �

1

x
	, 0 � x � 3

Solution
a. Not acceptable, because as x approaches positive or negative infinity, the
function also approaches infinity. It is not bounded.
b. Not acceptable, because the function is not single-valued.
c. Acceptable, because it meets all criteria for acceptable wavefunctions.
d. Not acceptable, because the function approaches infinity for x � 4, which
is part of the range.
e. Acceptable, because the function meets all criteria for acceptable wave-
functions within that stated range of the variable x. (Compare this to the con-
clusion reached in part d.)
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*Many �’s must also be square-integrable; that is, the integral of ���2 must also exist.
However, this is not an absolute requirement.

�

To �

(a)

�

(b)

�

(c)

�

(d)

Figure 10.1 (a) An acceptable wavefunction is
continuous, single-valued, bounded, and inte-
grable. (b) This function is not single-valued and
is not an acceptable wavefunction. (c) This func-
tion is not continuous and is not an acceptable
wavefunction. (d) This function is not bounded
and is not an acceptable wavefunction.
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10.3 Observables and Operators
When studying the state of a system, one typically makes various measurements
of its properties, such as mass, volume, position, momentum, and energy. Each
individual property is called an observable. Since quantum mechanics postulates
that the state of a system is given by a wavefunction, how does one determine
the value of various observables (say, position or momentum or energy) from
a wavefunction?

The next postulate of quantum mechanics states that in order to determine
the value of an observable, you have to perform some mathematical operation
on a wavefunction. This operation is represented by an operator. An operator
is a mathematical instruction: “Do something to this function or these num-
bers.” In other words, an operator acts on a function (or functions) to produce
a function. (Constants are special types of functions, ones that do not change
value.)

For example, in the equation 2 � 3 � 6, the operation is multiplication and
the operator is �. It implies, “Multiply the two numbers together.” In fancier
terms, we can define the multiplication operation with some symbol, desig-
nated M̂ (a, b). Its definition can be “Take two numbers and multiply them to-
gether.” Therefore,

M̂ (2, 3) � 6

is our fancy way of writing multiplication. M̂ is our multiplication operator,
where the ^ signifies an operator.

Operators can operate on functions as well as numbers. Consider the dif-
ferentiation of a simple function, F(x) � 3x3 � 4x2 � 5, with respect to x :

	
d

d

x
	(3x3 � 4x2 � 5) � 9x2 � 8x

This could also be represented using simply F(x) to represent the function:

	
d

d

x
	F(x) � 9x2 � 8x

The operator is d/dx, and can be represented by some symbol, say D̂ , so that
the above expression can be simplified to

D̂ [F(x)] � 9x2 � 8x

The operator operated on a function and generated another function. It
is common to use a symbol to represent an operator, because some opera-
tors can have relatively complex forms. In applying a more complicated
mathematical operation, say (�h2/8
2m)(d2/dx2), to a wavefunction �, we
could write

	
8

�




h
2m

2

	 	
d

d

x

2

2	�

or, by defining the operator (�h2/8
2m)(d2/dx2) as T̂ , we can rewrite the
above as simply

T̂ �

which is much more compact. The above expression simply means “Take the
group of mathematical operations indicated by (�h2/8
2m)(d2/dx2) and per-
form them on the wavefunction indicated by �.” Performance of an operation
typically yields some expression, either a number or a function.
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Example 10.2
For each of the following combinations of operator and function, write the
complete mathematical operation and evaluate the expression.

Ô � 	
d

d

x
	 B̂ � 	

d

d

x

2

2	 Ŝ � exp ( ) [raising 2.7182818 . . . to some power]

�1 � 2x � 4 �2 � �3 �3 � sin 4x

a. Ŝ �2

b. Ô �1

c. B̂ �3

Solution
a. Ŝ �2 � exp(�3) � e�3 � 0.04978 . . .

b. Ô �1 � 	
d

d

x
	(2x � 4) � 2

c. B̂ �3 � 	
d

d

x

2

2	(sin 4x) � 	
d

d

x
	(4 cos 4x) � �16 sin 4x

In the examples above, the combination of operator and function yield an
expression that could be mathematically evaluated. However, suppose the def-
initions are L̂ � ln ( ) and � � �10. The expression L̂ � cannot be evaluated
because logarithms of negative numbers do not exist. Not all operator/function
combinations are mathematically possible, or yield meaningful results. Most
operator/function combinations of interest to quantum mechanics will have
meaningful results.

When an operator acts on a function, some other function is usually gen-
erated. There is a special type of operator/function combination that, when
evaluated, produces some constant or group of constants times the original
function. For instance, in Example 10.2c, the operator d2/dx2 is applied to the
function sin 4x, and when the operator is evaluated, a constant times sin 4x is
produced:

	
d

d

x

2

2	(sin 4x) � 	
d

d

x
	(4 cos 4x) � �16 sin 4x

If we want to use the more concise symbolism for the operator and the func-
tion, the above expression can be represented as

B̂ � � K� (10.2)

where K is a constant (in this case, �16). When an operator acts on a function
and produces the original function multiplied by any constant (which may be
1 or sometimes 0), equation 10.2 is referred to as an eigenvalue equation and
the constant K is called the eigenvalue. The function is called an eigenfunction
of the operator. Not all functions are eigenfunctions of all operators. It is a rare
occurrence for any random operator/function combination to yield an eigen-
value equation. In the example above, the eigenvalue equation is

	
d

d

x

2

2	(sin 4x) � �16(sin 4x)

where the parentheses are used to isolate the original function. The eigenfunc-
tion of the operator is sin 4x and the eigenvalue is �16.

10.3 Observables and Operators 277

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Example 10.3
Which of the following operator/function combinations would yield eigen-
value equations? What are the eigenvalues of the eigenfunctions?

a. 	
d

d

x

2

2	�cos 	
4

x
	�

b. 	
d

d

x
	 (e�4x)

c. 	
d

d

x
	(e�4x2

)

Solution
a. Since 

	
d

d

x

2

2	�cos 	
4

x
	� � �	

1

1

6
	 cos 	

4

x
	

this is an eigenvalue equation with an eigenvalue of �1/16.
b. Since

	
d

d

x
	(e�4x) � �4(e�4x)

this is an eigenvalue equation with an eigenvalue of �4.
c. Since 

	
d

d

x
	(e�4x2

) � �8x(e�4x2

)

this is not an eigenvalue equation because although the original function is
reproduced, it is not multiplied by a constant. Instead, it is multiplied by an-
other function, �8x.

Another postulate of quantum mechanics states that for every physical ob-
servable of interest, there is a corresponding operator. The only values of the
observable that will be obtained in a single measurement must be eigenvalues
of the eigenvalue equation constructed from the operator and the wavefunction
(as shown in equation 10.2). This, too, is a central idea in quantum mechanics.

Two basic observables are position (usually—and arbitrarily—in the x di-
rection) and the corresponding linear momentum. In classical mechanics, they
are designated x and px. Many other observables are various combinations of
these two basic observables. In quantum mechanics, the position operator x̂ is
defined by multiplying the function by the variable x :

x̂ � x  (10.3)

and the momentum operator px̂ (in the x direction) is defined in differential
form as

px̂ � �i�	
�

�

x
	 (10.4)

where i is the square root of �1 and � is Planck’s constant divided by 2
, h/2
.
The constant � is common in quantum mechanics. Note the definition of mo-
mentum as a derivative with respect to position, not with respect to time as
with the classical definition. Similar operators exist for the y and z dimensions.
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The postulate regarding eigenfunctions and eigenvalue equations gets more
specific: the only possible values of the observables are those that are eigen-
values of the wavefunction when operated upon by the corresponding oper-
ator. No other values will be observed. Frequently, as we will see, this implies
that many observables on the atomic scale are quantized. In addition, not all
experimental quantities are determined by any given wavefunction. Rather, a
given wavefunction is an eigenfunction of some operators (and so we can de-
termine the values of those observables) but not an eigenfunction of other
operators.

Example 10.4
What is the value of the momentum observable if the wavefunction �
is e�i4x?

Solution
According to the postulate stated above, the momentum is equal to the eigen-
value produced by the expression

�i�	
�

�

x
	e�i4x

When this expression is evaluated, we get

�i�	
�

�

x
	e�i4x � (�i�)(�i4)e�i4x � �4�e�i4x

or, more succinctly,

�i�	
�

�

x
	e�i4x � �4�e�i4x

where we have used i � i � �1 to get the final expression. This is an eigen-
value equation with an eigenvalue of �4�. Therefore, the value of the 
momentum from this wavefunction is �4�. Numerically, �4� equals
(�4)(6.626 � 10�34 Js)/2
� �4.218 � 10�34 Js � �4.218 � 10�34 kgm2/s.

In quantum mechanics, the eigenvalue equations that we will consider have
real numbers as values of eigenvalues. Although we have already seen eigen-
functions and operators with the imaginary root i in them, when solving for
the eigenvalue itself these imaginary parts must cancel out to yield a real
number for the eigenvalue. Hermitian operators are operators that always have
real (nonimaginary) numbers as eigenvalues (that is, K in equation 10.2 will
always be a real number or a collection of constants that have real values). All
operators that yield quantum mechanical observables are Hermitian opera-
tors, since in order to be observed a quantity must be real. (Hermitian oper-
ators are named after Charles Hermite, a nineteenth-century French mathe-
matician.)

10.4 The Uncertainty Principle
Perhaps the most unusual part of quantum mechanics is the statement called
the uncertainty principle. Occasionally it is called Heisenberg’s uncertainty
principle or the Heisenberg principle, after the German scientist Werner
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Heisenberg (Figure 10.2), who announced it in 1927. The uncertainty principle
states that there are ultimate limits to how exact certain measurements can be.
This idea was problematic for many scientists at the time, because science it-
self was concerned with finding specific answers to various questions. Scientists
found that there were limits to how specific those answers could be.

Classically, if you know the position and momentum of a mass at any one
time (that is, if you know those quantities simultaneously), you know everything
about the motion of the mass because you know where it is and where it is go-
ing. If a tiny particle of mass has wave properties and its behavior is described
by a wavefunction, how can we specify its position with a high degree of accu-
racy? According to the de Broglie equation, the de Broglie wavelength is related
to a momentum, but how can we simultaneously determine the position and the
momentum of something with wave behavior? As scientists developed a better
understanding of subatomic matter, it was realized that there are some limits to
the precision with which we can specify two observables simultaneously.

Heisenberg realized this and in 1927 announced his uncertainty principle.
(The principle can be derived mathematically, so it is not a postulate of quan-
tum mechanics. We will not cover the derivation here.) The uncertainty prin-
ciple deals only with certain observables that might be measured simultane-
ously. Two of these observables are position x (in the x direction), and
momentum px (also in the x direction). If the uncertainty in the position is
given the symbol �x and the uncertainty in the momentum is termed �px,
then Heisenberg’s uncertainty principle is

�x  �px � 	
�

2
	 (10.5)

where � is h/2
. Note the greater-than-or-equal-to sign in the equation. The un-
certainty principle puts a lower bound on the uncertainty, not an upper bound.
The units of position, m (meters), times the units of momentum, kgm/s, equals
the units on Planck’s constant, Js, which can also be written as kgm2/s.

Since the classical definition of momentum p is mv, equation 10.5 is some-
times written as

�x  m  �v � 	
�

2
	 (10.6)

where the mass m is assumed to be constant. Equation 10.6 implies that for
large masses, the �v and �x can be so small that they are undetectable. However,
for very small masses, �x and �p (or �v) can be so relatively large that they
can’t be ignored.

Example 10.5
Determine the uncertainty in position, �x, in the following cases:
a. A 1000-kg race car traveling at 100 meters per second, and v is known to
within 1 meter per second.
b. An electron is traveling at 2.00 � 106 meters per second (the approximate
velocity of an electron in Bohr’s first quantum level) with an uncertainty in
velocity of 1% of the true value.

Solution
a. For an auto traveling at 100 meters per second, an uncertainty of 1 meter
per second is also a 1% uncertainty. The equation for the uncertainty princi-
ple becomes
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Figure 10.2 Werner Karl Heisenberg (1901–
1976). Heisenberg’s uncertainty principle com-
pletely changed the way science understands the
limitations in the ability to measure nature. In
World War II, Heisenberg was in charge of the
German atomic bomb project, which he appar-
ently purposely delayed to minimize the chance
that the Nazis would develop an atomic bomb.
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�x  (1000 kg)(1 m/s) �	
6.626

2

�

 2

1



0�




34 Js
	

where all of the values of the variables have been substituted into equation
10.5. Solving for �x:

�x � 5.27 � 10�38 m

You may want to verify not just the numbers but how the units work out.
This minimum uncertainty is undetectable even using modern measure-
ments of position and so this lower limit on the measurement would never
be noticed.
b. For a small electron, using the same equation but different numbers:

�x(9.109 � 10�31 kg)(2.00 � 104 m/s) �	
6.626

2

�

 2

1



0�




34 Js
	

where we have used the mass of the electron and, for 1% of the velocity of
the electron, [0.01(2.00 � 106) � 2.00 � 104]. Solving for �x :

�x � 2.89 � 10�9 m � 2.89 nm � 28.9 Å

The uncertainty in the position of the electron is at least 3 nanometers, sev-
eral times larger than atoms themselves. It would be easy to notice experi-
mentally that one couldn’t pin down the position of an electron to within
3 nm!

The above example illustrates that the idea of uncertainty cannot be ignored
at the atomic level. Certainly, if the velocity were known to lower precision, say,
to one part in ten, the corresponding minimum uncertainty in the position
would be lower. But the uncertainty principle states mathematically that as one
goes up, the other goes down, and neither can be zero for simultaneous deter-
minations. The uncertainty principle does not address a maximum uncer-
tainty, so the uncertainty can be (and usually is) larger. But some measure-
ments have a fundamental limit to how exactly they can be determined
simultaneously with other observables.

Finally, position and momentum are not the only two observables whose
uncertainties are related through an uncertainty principle. (In fact, another
mathematical form of the uncertainty principle is expressed in terms of the op-
erators for the observables, like equations 10.3 and 10.4, and not the observ-
able values themselves.) There are many such combinations of observables, like
multiple components of angular momentum. There are also combinations of
observables for which an uncertainty-principle relationship does not apply,
implying that those observables can be known simultaneously to any level of
precision. Position and momentum are commonly used to introduce this con-
cept, but the concept is not limited to x and px.

10.5 The Born Interpretation of the
Wavefunction; Probabilities

What we have are two seemingly incompatible ideas. One is that the behavior
of an electron is described by a wavefunction. The other is that the uncertainty
principle limits the certainty with which one can measure various combina-
tions of observables, like position and momentum. How can we discuss the
motion of electrons in any detail at all?

The German scientist Max Born (Figure 10.3) interpreted the wavefunc-
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tions in terms that accepted the uncertainty principle, and the Born interpre-
tation is generally considered to be the correct way of thinking of �. Because
of the uncertainty principle, Born suggested that we not think of � as indi-
cating a specific path of an electron. It is very difficult to establish absolutely
that a particular electron is in a particular place at a particular time. Rather,
over a long period of time, the electron has a certain probability of being in a
certain region. The probability can be determined from the wavefunction �.
Specifically, Born stated that the probability P of an electron being in a certain
region between points a and b in space is

P � �
a

b

�*� d� (10.7)

where �* is the complex conjugate of � (where every i in the wavefunction is
replaced with �i), d� is the infinitesimal of integration covering the dimen-
sional space of interest [dx for one dimension, (dx dy) for two dimensions,
(dx dy dz) for three dimensions, and (r2 sin � dr d� d�) for spherical polar co-
ordinates], and the integral is evaluated over the interval of interest (between
points a and b, in this case). Note that �* and � are simply being multiplied
together (which is sometimes written as ���2). The operation of multiplication
is assumed the way the integrand (the part inside the integral sign) is written.
The Born interpretation also requires that a probability be evaluated over a
definite region, not a specific point, in space. Thus, we should think of � as an
indicator of the probability that the electron will be in a certain region of space.

The Born interpretation affects the entire meaning of quantum mechanics.
Instead of � giving the exact location of an electron, it will provide only the
probability of the location of an electron. For those who were content with un-
derstanding that they could calculate exactly where matter was in terms of
Newton’s laws, this interpretation was a problem since it denied them the abil-
ity to state exactly how matter was behaving. All they could do was state the
probability that matter was behaving that way. Ultimately, the Born interpreta-
tion was accepted as the proper way to consider wavefunctions.

Example 10.6
Using the Born interpretation, for an electron having a one-dimensional
wavefunction � � �2� sin 
x in the range x � 0 to 1, what are the follow-
ing probabilities?
a. The probability that the electron is in the first half of the range, from 
x � 0 to 0.5
b. The probability that the electron is in the middle half of the range, from 
x � 0.25 to 0.75

Solution
For both parts, one needs to solve the following integral:

P � �
a

b

(�2� sin 
x)*(�2� sin 
x) dx

but between different initial and final limits. Since the wavefunction is a real
function, the complex conjugate does not change the function, and the inte-
gral becomes

P � 2 �
a

b

sin2 
x dx

where the constant 2 has been taken outside the integral sign. This integral
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Figure 10.3 Max Born (1882–1970). His in-
terpretation of the wavefunction as a probability
rather than an actuality changed the common
understanding of quantum mechanics.
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has a known solution. It is

�
a

b

sin2 
x dx � 	
2

x
	 � 	

4

1



	 sin 2
x�b

a

where we have substituted into the general form of the integral for the con-
stants in this particular example (you should verify this substitution yourself).
a. Evaluating for the region x � 0 to 0.5:

P � 2[0.25 � 0 � (0 � 0)]

P � 2(0.25)

P � 0.50

which as a percentage is 50%. This should, perhaps, be expected: in one-half
of the region of interest, the probability of the electron being there is one half,
or 50%.
b. For x � 0.25 to 0.75:

P � 2�0.375 � 	
4

1



	(�1) � �0.125 � 	

4

1



	1��

P � 2(0.409)

P � 0.818

which means that the probability of finding the electron in the middle half
of this region is 81.8%—much greater than half! This result is a consequence
of the wavefunction being a sine function. It also illustrates some of the more
unusual predictions of quantum mechanics.

The Born interpretation makes obvious the necessity of wavefunctions be-
ing bounded and single-valued. If a wavefunction is not bounded, it approaches
infinity. Then the integral over that space, the probability, is infinite.
Probabilities cannot be infinite. Since probability of existence represents a
physical observable, it must have a specific value; therefore, �’s (and their
squares) must be single-valued.

Because the wavefunction in this last example does not depend on time, its
probability distribution also does not depend on time. This is the definition of
a stationary state: a state whose probability distribution, related to ��(x)�2 by
the Born interpretation, does not vary with time.

10.6 Normalization
The Born interpretation suggests that there should be another requirement for
acceptable wavefunctions. If the probability for a particle having wavefunction
� were evaluated over the entire space in which the particle exists, then the
probability should be equal to 1, or 100%. In order for this to be the case,
wavefunctions are expected to be normalized. In mathematical terms, a wave-
function is normalized if and only if

�
��

��

�*�d� � 1 (10.8)

The limits �� and �� are conventionally used to represent “all space,” al-
though the entire space of a system may not actually extend to infinity in both
directions. The integral’s limits would be modified to represent the limits of
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the space a particle inhabits. What equation 10.8 usually means is that wave-
functions must be multiplied by some constant so that the area under the
curve of �*� is equal to 1. According to the Born interpretation of �, nor-
malization also guarantees that the probability of a particle existing in all space
is 100%.

Example 10.7
Assume that a wavefunction for a system exists and is �(x) � sin (
x/2),
where x is the only variable. If the region of interest is from x � 0 to x � 1,
normalize the function.

Solution
By equation 10.8, the function must be multiplied by some constant so that
�1
0 �*� dx � 1. Note that the limits are 0 to 1, not �� to ��, and that d�

is simply dx for this one-dimensional example. Let us assume that � is mul-
tiplied by some constant N:

� → N�

Substituting for � into the integral, we get

�
1

0

(N�)*(N�) dx � �
1

0

N*N�sin 	



2

x
	�*�sin 	




2

x
	� dx

Since N is a constant, it can be pulled out of the integral, and since this sine
function is a real function, the * has no effect on the function (recall it
changes every i to �i, but there is no imaginary part of the function in this
example). Therefore, we get

�
1

0

N *N�sin 	



2

x
	�*�sin 	




2

x
	� dx � N2 �

1

0

sin2 	



2

x
	 dx

Normalization requires that this expression equal 1:

N2 �
1

0

sin2 	



2

x
	 dx � 1

The integral in this expression has a known form and it can be solved, and
the definite integral from the limits 0 to 1 can be evaluated. Referring to the
table of integrals in Appendix 1, we find that

� sin2 bx dx � 	
2

x
	 � 	

4

1

b
	 sin 2bx

In our case, b � 
/2. Evaluating the integral between the limits, we find that
the normalization requirement simplifies to

N2�	
1

2
	� � 1

Solving for N:

N � �2�

where the positive square root is assumed. The correctly normalized wave-
function is therefore �(x) � �2�[sin (
x/2)].
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The wavefunction in the above example has not changed. It is still a sine
function. However, it is now multiplied by a constant so that the normaliza-
tion condition is satisfied. The normalization constant does not affect the
shape of the function. It only imposes a scaling factor on the amplitude—a
very convenient scaling factor, as we will find. For the remainder of this text,
all wavefunctions must be or will be normalized unless stated otherwise.

Example 10.8
The wavefunction � � �2� sin 
x is valid for the range x � 0 to 1. Verify
that an electron has a 100% probability of existing in this range, thus verify-
ing that this wavefunction is normalized.

Solution
Evaluate the expression

P � 2 �
1

0

sin2 
x dx

and show that it is identically equal to 1. This integral has a known solution,
and substituting that solution, we get

P � 2�	
2

x
	 � 	

4

1



	 sin (2
x)�10�

� 2�	
1

2
	 � 0 � �	

0

2
	 � 0��

where the limits have been substituted into the expression for the integral.
Solving:

P � 1

which verifies that the wavefunction is normalized. Thus, from the Born in-
terpretation, the probability of finding the particle in the range x � 0 to 1 is
exactly 100%.

10.7 The Schrödinger Equation
One of the most important ideas in quantum mechanics is the Schrödinger
equation, which deals with the most important observable: energy. A change
in the energy of an atomic or molecular system is usually one of the easiest
things to measure (usually by spectroscopic methods, as discussed in the pre-
vious chapter), so it is important that quantum mechanics be able to predict
energies.

In 1925 and 1926, Erwin Schrödinger (Figure 10.4) brought together many
of the ideas presented in Chapter 9 as well as in earlier sections of this chap-
ter, ideas like operators and wavefunctions. The Schrödinger equation is based
on the Hamiltonian function (section 9.2), since these equations naturally pro-
duce the total energy of the system:

Etot � K � V

where K represents the kinetic energy and V is the potential energy. We will
start with a one-dimensional system. Kinetic energy, energy of motion, has a
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Figure 10.4 Erwin Schrödinger (1887–1961).
Schrödinger proposed an expression of quan-
tum mechanics that was different from but
equivalent to Heisenberg’s. His expression is use-
ful because it expresses the behavior of electrons
in terms of something we understand—waves.
The Schrödinger equation is the central equa-
tion of quantum mechanics.
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specific formula from classical mechanics. In terms of linear momentum px,
kinetic energy is given by

K � 	
2

p

m
x
2

	

Schrödinger, however, thought in terms of operators acting on wavefunctions,
and so he rewrote the Hamiltonian function in terms of operators. Using the
definition of the momentum operator,

px̂ � �i�	
�

�

x
	

and supposing that the potential energy is a function of position (that is, a
function of x) and so can be written in terms of the position operator,

x̂ � x 

Schrödinger substituted into the expression for the total energy to derive an
operator for energy named (for obvious reasons) the Hamiltonian operator Ĥ :

Ĥ � �	
2

�

m

2

	 	
�

�

x

2

2	 � V̂ (x) (10.9)

This operator Ĥ operates on a wavefunction � and the eigenvalue corre-
sponds to the total energy of the system E :

��	
2

�

m

2

	 	
�

�

x

2

2	 � V̂ (x)�� � E� (10.10)

Equation 10.10 is known as the Schrödinger equation and is a very impor-
tant equation in quantum mechanics. Although we have placed certain re-
strictions on wavefunctions (continuous, single-valued, and so on), up to now
there has been no requirement that an acceptable wavefunction satisfy any par-
ticular eigenvalue equation. However, if � is a stationary state (that is, if its
probability distribution does not depend on time), it should also satisfy the
Schrödinger equation. Also note that equation 10.10 does not include the vari-
able for time. Because of this, equation 10.10 is more specifically referred to as
the time-independent Schrödinger equation. (The time-dependent Schrödinger
equation will be discussed near the end of the chapter and represents another
postulate of quantum mechanics.)

Although the Schrödinger equation may be difficult to accept at first, it
works: when applied to ideal and even real systems, it yields the values for the
energies of the systems. For example, it correctly predicts changes in energy of
the hydrogen atom, which is a system that had been studied for decades before
Schrödinger’s work. Quantum mechanics, however, uses a new mathematical
tool—the Schrödinger equation—for predicting observable atomic phenom-
ena. Because the values of atomic and molecular observables are properly pre-
dicted by using the Schrödinger equation and wavefunctions, they are consid-
ered the proper way of thinking about atomic phenomena. The behavior of
electrons is described by a wavefunction. The wavefunction is used to deter-
mine all properties of the electrons. Values of these properties can be predicted
by operating on the wavefunction with the appropriate operator. The appro-
priate operator for predicting the energy of the electron is the Hamiltonian op-
erator.

To see how the Schrödinger equation works, the following example illus-
trates how the Hamiltonian operates on a wavefunction.
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Example 10.9
Consider an electron confined to some finite system. The state of the electron
is described by the wavefunction � � �2� sin k
x, where k is some constant.
Assume that the potential energy is zero, or V(x) � 0. What is the energy of
the electron?

Solution
Since the potential energy is zero, the electron has only kinetic energy. The
Schrödinger equation reduces to

��	
2

�

m

2

	 	
�

�

x

2

2	�� � E�

We rewrite it as

�	
2

�

m

2

	 	
�

�

2

x

�
2	 � E�

We need to evaluate the second derivative of �, multiply it by the appropri-
ate set of constants, and regenerate the original wavefunction and find out
what constant E is multiplying �. That E is the energy of the electron.
Evaluating the second derivative:

	
�

�

x

2

2	(�2� sin k
x) � �k2
2(�2� sin k
x) � �k2
2�

Therefore, we can substitute �k2
2� into the left side of the Schrödinger
equation:

�	
2

�

m

2

	(�k2
2�) � 	
�2

2

k

m

2
2

	�

From this expression, we should see that the energy eigenvalue has the ex-
pression

E � 	
k2

2

�

m

2
2

	

The kinetic energy part of the Hamiltonian has a similar form for all sys-
tems (although it may be described using different coordinate systems, as we
will see in rotational motion). However, the potential energy operator V̂ de-
pends on the system of interest. In the examples of systems using the
Schrödinger equation, different expressions for the potential energy will be
used. What we will find is that the exact form of the potential energy deter-
mines if the second-order differential equation is exactly solvable. If it is, we
say that we have an analytic solution. In many cases, it is not solvable analyti-
cally and must be approximated. The approximations can be very good, good
enough for their predictions to agree with experimental determinations.
However, exact solutions to the Schrödinger equation, along with specific pre-
dictions of various observables like energy, are necessary to illustrate the true
usefulness of quantum mechanics.

Among the quantum mechanical operators presented so far, the Hamiltonian
is probably the most important one. As a summary, a short list of quantum-
mechanical operators and their classical counterparts is provided in Table 10.1.
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10.8 An Analytic Solution: The Particle-in-a-Box
Very few systems have analytic solutions (that is, solutions that have a specific
mathematical form, either a number or an expression) to the Schrödinger
equation. Most of the systems having analytic solutions are defined ideally,
much as an ideal gas is defined. This should not be a cause for despair. The few
ideal systems whose exact solutions can be determined have applications in the
real world, so they are not wasted on ideality! Several of these systems were rec-
ognized by Schrödinger himself as he developed his equation.

The first system for which there is an analytic solution is a particle of mat-
ter stuck in a one-dimensional “prison” whose walls are infinitely high barri-
ers. This system is called the particle-in-a-box. The infinitely high barriers cor-
respond to potential energies of infinity; the potential energy inside the box
itself is defined as zero. Figure 10.5 illustrates the system. Arbitrarily, we are
setting one side of the box at x � 0 and the other at some length a. Inside this
box the potential energy is 0. Outside, the potential energy is infinity.

The analysis of this system using quantum mechanics is similar to the analy-
sis that we will apply to every system. First, consider the two regions where the
potential energy is infinity. According to the Schrödinger equation

��	
2

�

m

2

	 	
�

�

x

2

2	 � ��� � E�

must hold true for x � 0 and x � a. The infinity presents a problem, and
in this case the way to eliminate infinity is to multiply it by zero. Thus, �
must be identically zero in the regions x � 0 and x � a. It does not matter
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Table 10.1 Operators for various observables and their classical counterpartsa

Observable Operator Classical counterpart

Position x̂ � x  x

And so forth for coordinates 

other than x

Momentum (linear) px̂ � �i�	
�

�

x
	 px � mvx

And so forth for coordinates 

other than x

Momentum (angular) Lx̂ � �i��ŷ 	
�

�

z
	 � ẑ 	

�

�

y
	� Lx � ypz � zpy

Kinetic energy, 1-Db K̂ � �	
2

�

m

2

	 	
d

d

x

2

2	 K � 	
1

2
	mvx

2 � 	
2

p

m
x
2

	

Kinetic energy, 3-Db K̂ � �	
2

�

m

2

	�	
�

�

x

2

2	 � 	
�

�

y

2

2	 � 	
�

�

z

2

2	� K � 	
1

2
	m(vx

2 � vy
2 � vz

2)

� 	
px

2 �

2

p

m
y
2 � pz

2

	

Potential energy:

Harmonic oscillator V̂ � 	
1

2
	kx2  V � 	

1

2
	kx2

Coulombic V̂ � 	
q

4
1






�0

q

r
2	  V � 	

q

4
1






�0

q

r
2	

Total energy Ĥ � �	
2

�

m

2

	�	
�

�

x

2

2	 � 	
�

�

y

2

2	 � 	
�

�

z

2

2	� � V̂ H � 	
2

p

m

2

	 � V

aOperators expressed in x, y, and/or z are Cartesian operators; operators expressed in r, �, and/or � are spherical po-
lar operators.
bThe kinetic energy operator is also symbolized by T̂ .
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what the eigenvalues for the energy are, because with � identically zero, by
the Born interpretation the particle has a zero probability of being in those
regions.

Consider the region where x ranges from 0 to a. The potential energy is de-
fined as zero in this region and so the Schrödinger equation becomes

��	
2

�

m

2

	 	
�

�

x

2

2	�� � E�

which is a second-order differential equation. This differential equation has a
known analytic solution. That is, functions are known that can be substituted
into the above second-order differential equation to satisfy the equality. The
most general form of the solution to the above differential equation is

� � A cos kx � B sin kx

where A, B, and k are constants to be determined by the conditions of the
system.*
Since we know the form of �, we can determine the expression for E by sub-
stituting � into the Schrödinger equation and evaluating the second deriva-
tive. It becomes

E � 	
k

2

2

m

�2

	

Example 10.10
Show that the expression for the energy of a particle in a box is E � k2�2/2m.

Solution
All that needs to be done is to substitute the wavefunction � � A cos kx �
B sin kx into the Schrödinger equation, remembering that the potential en-
ergy V is zero. We get
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x � ax � 0
x- axis

V � �V � �

V � 0

E
ne

rg
y

Figure 10.5 The particle-in-a-box is the simplest ideal system that is treated by quantum 
mechanics. It consists of a region between x � 0 and x � a (some length) where the potential
energy is zero. Outside of this region (x � 0 or x � a), the potential energy is �, so any particle
in the box will not be present outside the box.

*Acceptable solutions can also be written in the form

� � A�eikx � B�e�ikx

This form is related to � � A cos kx � B sin kx via Euler’s theorem, which states that 
ei� � cos � � i sin �.
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�

2m

�2

	 	
�

�

x

2

2	(A cos kx � B sin kx) � 	
�

2m

�2

	 	
�

�

x
	(kA cos kx � kB sin kx)

� 	
�

2m

�2

	(�k2A cos kx � k2B sin kx)

Factoring �k2 out of the terms in parentheses, we can get our original wave-
function back:

� 	
�(�

2m

k2)�2

	(A cos kx � B sin kx)

The two negative signs cancel, and the collection of terms multiplying the
wavefunction are all constants. We have thus shown that operation of the
Hamiltonian operator on this wavefunction yields an eigenvalue equation;
the eigenvalue is the energy of a particle having that wavefunction:

E � 	
k

2

2

m

�2

	

Note that at this point, we have no idea what the constant k is.

In the above example, the wavefunction determined is deficient in a few re-
spects, specifically the identities of several constants. Up to this point, nothing
has constrained those constants to any particular value. Classically, the con-
stants can have any value, indicating that the energy can have any value.
However, quantum mechanics imposes certain restrictions on allowed wave-
functions.

The first requirement of the wavefunction is that it must be continuous.
Since we recognize that the wavefunction in the regions x � 0 and x � a must
be zero, then the wavefunction’s value at x � 0 and x � a must be zero. This
is certainly true when approaching these limits of x from outside the box, but
the continuity of the wavefunction requires that this must also hold when ap-
proaching these limits from inside the box. That is, �(0) must equal �(a)
which must equal zero. This requirement, that the wavefunction must be a cer-
tain value at the boundaries of the system, is called a boundary condition.*

The boundary condition �(0) is applied first: since x � 0, the wavefunction
becomes

�(0) � 0 � A cos 0 � B sin 0

Since sin 0 � 0, the second term places no restriction on the possible value(s)
of B. However, cos 0 � 1, and this is a problem unless A � 0. So, in order to
satisfy this first boundary condition, A must be zero, meaning that the only ac-
ceptable wavefunctions are

�(x) � B sin kx

Now we apply the other boundary condition: �(a) � 0. Using the wavefunc-
tion from above:

�(a) � 0 � B sin ka

where a has been substituted for x. We cannot require that B equal zero. If it
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*Boundary conditions are also apparent for some classical waves. For example, a vibrat-
ing guitar string has a wave motion whose amplitude is zero at the ends, where the string is
tied down.
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were, then � would be zero between 0 and a, and then it would be zero every-
where and the particle would not exist anywhere. We reject that possibility,
since the particle’s existence is unquestioned. In order for the wavefunction to
equal zero at x � a, the value of sin ka must be zero:

sin ka � 0

When is sin ka equal to 0? In terms of radians, this occurs when ka equals 0,

, 2
, 3
, 4
, . . . or at all integral values of 
. We reject the value 0 because
sin 0 equals 0 and so the wavefunction would not exist anywhere. We thus have
the following restriction on the argument of the sine function:

ka � n
 n � 1, 2, 3, . . .

Solving for k,

k � 	
n

a



	

where n is a positive integer. Although there is no mathematical reason n can’t
be a negative integer, use of negative integers adds nothing new to the solution,
so they are ignored. This will not always be the case.

Having an expression for k allows us to rewrite both the wavefunction and
the expression for the energies:

�(x) � B sin 	
n


a

x
	

E � 	
n

2

2

m


2

a

�
2

2

	 � 	
8

n

m

2h

a

2

2	

where the definition for � has been substituted in the last expression for en-
ergy. The energy values depend on some constants and on n, which is restricted
to positive integer values. This means that the energy cannot have just any
value; it can have only values determined by h, m, a, and—most importantly—
n. The energy of the particle in the box is quantized, since the energy value is
restricted to having only certain values. The integer n is called a quantum
number.

The determination of the wavefunction is not complete. It must be nor-
malized. It is assumed to be multiplied by some constant N such that

�
a

0

(N�)*(N�) dx � 1

The limits on the integral are 0 to a because the only region of interest for
the nonzero wavefunction is from x � 0 to x � a. The infinitesimal d� is sim-
ply dx.

We will assume that the normalization constant is part of the constant B that
multiplies the sine part of the wavefunction. The integral to be evaluated is

�
a

0
�N sin 	

n


a

x
	�*�N sin 	

n


a

x
	� dx � 1

The complex conjugate does not change anything inside the parentheses, since
everything is a real number or real function. A function similar to this was
evaluated in Example 10.7. By following the same procedure as in that exam-
ple (and you should verify that the procedure has the following result), we find
that N � �2/a�. Since both the wavefunction and the energy are dependent on
some quantum number n, they are usually given a subscript n, like �n and En,
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to indicate this dependence. The acceptable wavefunctions for a one-dimensional
particle-in-a-box are written as

�n(x) � 		
2

a
	
 sin 	

n


a

x
	, n � 1, 2, 3, 4, . . . (10.11)

The quantized energies of the particles in this box are

En � 	
8

n

m

2h

a

2

2	 (10.12)

What do these wavefunctions look like? Figure 10.6 shows plots of the first
few wavefunctions. All of them go to zero at the sides of the box, as required
by the boundary conditions. All of them look like simple sine functions (which
is what they are) with positive and negative values.

Example 10.11
Determine the wavefunctions and energies of the first four levels of an elec-
tron in a box having a width of 10.0 Å; that is, a � 10.0 Å � 1.00 � 10�9 m.

Solution
Using equation 10.11, the expressions of the wavefunctions are straightforward:

�1(x) � 		
2

a
	
 sin 	




a

x
	

�2(x) � 		
2

a
	
 sin 	

2


a

x
	

�3(x) � 		
2

a
	
 sin 	

3


a

x
	

�4(x) � 		
2

a
	
 sin 	

4


a

x
	

Using equation 10.12, the energies are

E1 � 	
8

1

m

2h

ea

2

2	 � � 6.02 � 10�20 J

E2 � 	
8

2

m

2h

ea

2

2	 � � 24.1 � 10�20 J

E3 � 	
8

3

m

2h

ea

2

2	 � � 54.2 � 10�20 J

E4 � 	
8

4

m

2h

ea

2

2	 � � 96.4 � 10�20 J

The exponents on the magnitudes of the energies have been intentionally
kept the same, 10�20, to illustrate how the energy changes with quantum
number n. Note that whereas the wavefunctions depend on n, the energies
depend on n2. You should verify that the units in the above expression do
yield units of joules as the unit of energy.

42(6.626 � 10�34 Js)2

				
8(9.109 � 10�31 kg)(1.00 � 10�9 m)2

32(6.626 � 10�34 Js)2

				
8(9.109 � 10�31 kg)(1.00 � 10�9 m)2

22(6.626 � 10�34 Js)2

				
8(9.109 � 10�31 kg)(1.00 � 10�9 m)2

12(6.626 � 10�34 Js)2

				
8(9.109 � 10�31 kg)(1.00 � 10�9 m)2
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n � 5�

n � 4�

n � 3�

n � 2�

n � 1�

Figure 10.6 Plots of the first few quantum-
mechanically acceptable particle-in-a-box wave-
functions.
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10.9 Average Values and Other Properties
There are other common observables in addition to energy. One could oper-
ate on the wavefunction with the position operator, x̂ , which is simply multi-
plication by the coordinate x, but multiplying the sine functions of the parti-
cle-in-a-box by the coordinate x does not yield an eigenvalue equation. The �’s
of equation 10.11 are not eigenfunctions of the position operator.

This should not be cause for concern. The postulates of quantum mechan-
ics do not require that acceptable �’s be eigenfunctions of the position oper-
ator. (They require a special relationship with the Hamiltonian operator, but
not any other.) This does not imply that we cannot extract any information
about the position from the wavefunction, only that we cannot determine
eigenvalue observables for position. The same is true for other operators, like
momentum.

The next postulate of quantum mechanics that we will deal with concerns
observables like this. It is postulated that although specific values of some ob-
servables may not be forthcoming from all wavefunctions, average values of
these observables might be determined. In quantum mechanics, the average
value or expectation value �A� of an observable A whose operator is Â is given
by the expression

�A� � �
a

b

�*Â � d� (10.13)

Equation 10.13, which is another postulate of quantum mechanics, assumes
that the wavefunction is normalized. If it is not, the definition of an average
value expands slightly to

�
a

b

�*Â � d�

�A� � 		

�
a

b

�*� d�

An average value is just what it says: if one were to take repeated measurements
of the same quantity and average them together, what would that average value
be? Quantum mechanically, if one were able to take an infinite number of mea-
surements, the average value would be the average of all of those infinite mea-
surements.

What is the difference between an average value as determined by equation
10.13 and the single eigenvalue of an observable determined from an eigen-
value equation? For some observables, there is no difference. If you know that
a particle-in-a-box is in a certain state, it has a certain wavefunction. According
to the Schrödinger equation, you know its exact energy. The average value of
that energy is the same as its instantaneous energy, because while in the state
described by that wavefunction, the energy does not change. However, some
observables cannot be determined from all wavefunctions using an eigenvalue
equation. The wavefunctions for the particle-in-a-box, for example, are not
eigenfunctions of the position or momentum operators. We cannot determine
instantaneous, exact values for these observables. But we can determine aver-
age values for them. (Recognize that although the uncertainty principle denies
us the opportunity to know the specific values of the position and momentum
of any particle simultaneously, there is no restriction on knowing average val-
ues of the position or the momentum.)
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Example 10.12
Determine �x�, the average value of the position of an electron having the
lowest energy level (n � 1) in a particle-in-a-box.

Solution
By definition, the average value of the position �x� for the lowest energy level is

�x� � �
a

0
�		

2

a
	
 sin 	




a

x
	�*  x  �		

2

a
	
 sin 	




a

x
	� dx

where all of the functions inside the integral sign are being multiplied to-
gether, the limits of the system are 0 to a, and d� is dx. Because the function
is real, the complex conjugate doesn’t change anything and the expression be-
comes (because multiplication is commutative)

�x� � 	
2

a
	 �

a

0

x  sin2 	



a

x
	 dx

This integral also has a known solution (see Appendix 1). On solving, this ex-
pression becomes

	
2

a
	�	

x

4

2

	 � 	
4

x




a
	 sin 	

2


a

x
	 � 	

8

a




2

2	 cos 	
2


a

x
	��a0

When this is evaluated, the average value for the position is

�x� � 	
2

a
	

Thus, this particle having the given wavefunction has an average position
in the middle of the box.

The above example illustrates two things. First, average values can be deter-
mined for observables that cannot be determined using an eigenvalue equation
(which a postulate of quantum mechanics requires of its observables); and sec-
ond, average values should make sense. It would be expected that for a parti-
cle bouncing back and forth in a box, its average position be the middle of the
box. It should spend as much time on one side as on the other, so its average
position would be right in the middle. This is what equation 10.13 provides,
at least in this case: an intuitively reasonable value. There are many examples
in quantum mechanics where a reasonable average is produced, albeit from a
different argument than classical mechanics. This simply reinforces the applic-
ability of quantum mechanics. The average value of the position of the parti-
cle in a box is a/2 for any value of the quantum number n. Evaluate, as an ex-
ercise, the average value of the position observable for 

�3(x) � 		
2

a
	
 sin 	

3


a

x
	

where the subscript on � indicates that this wavefunction has the quantum
number n � 3. The solution for the integral used for the average value shows
that the quantum number n, whatever it is, has no effect in the determination
of �x�. (These conclusions only apply to stationary states of the particle-in-a-
box. If the wavefunctions are not stationary states, �x� and other average values
would not necessarily be intuitively consistent with classical mechanics.)
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Other properties can also be determined from � for the particle-in-a-box.
We point them out because they are properties that can be determined for
all of the systems that will be considered. The energy of a particle having a
particular wavefunction has already been discussed. Example 10.12 shows
that the observable position can be determined, although only as an average
value. The average value of the (one-dimensional) momentum can also be
determined using the momentum operator. Figure 10.6, which shows plots
of the first few wavefunctions of the particle in a box, illustrates other fea-
tures of the wavefunctions. For example, there are positions in the box where
the wavefunction should be identically zero: at the limits of the box, x � 0
and x � a, in all cases. For �1, those are the only positions where � � 0.
For larger values of the quantum number n, there more positions where the
wavefunction goes to zero. For �2, there is one more position in the center
of the box. For �3, there are two additional positions along with the bound-
aries; for �4, there are three. A node is a point at which the wavefunction is
exactly zero. Not including the boundaries, for �n there are n � 1 nodes in
the wavefunction.

More information is available from a plot of �*�, which is related to the
probability density that a particle exists at any particular point in the box (al-
though probability densities are evaluated only for regions of space, not indi-
vidual points in space).† Such plots for some particle-in-a-box wavefunctions
are shown in Figure 10.7. These plots imply that a particle has a varying prob-
ability of existing in different regions of the box. At the boundaries and at
every node, the probability of the particle existing at that point is exactly zero.
At the boundaries this causes no problem, but at the nodes? How can a parti-
cle be on one side of a node and also the other without having any probabil-
ity of existing at the node itself? That’s like being inside a room and then out-
side a room and never being in the doorway. This is the first of many oddities
in the interpretation of quantum mechanics.

The other thing to notice about the plot of probability densities is that as
one goes to higher and higher quantum numbers, the plot of ���2 can be ap-
proximated as some constant probability. This is an example of the correspon-
dence principle: at sufficiently high energies, quantum mechanics agrees with
classical mechanics. The correspondence principle was first stated by Niels
Bohr and puts classical mechanics in its proper place: a very good first approx-
imation when applied to atomic systems in high-energy or high-quantum-
number states (and, for all practical purposes, absolutely correct when applied
to macroscopic systems).

Before we leave this section, we point out that this “ideal” system does have
an application in the real world. There are many examples of large organic
molecules that have alternating single and double bonds, a so-called conju-
gated double bond system. In such cases, the electrons in the double bonds are
considered to move somewhat freely from one side of the alternating system
to the other, acting as a sort of particle-in-a-box. The wavelengths of light ab-
sorbed by the molecules can be very well approximated by applying expres-
sions derived for the particle-in-a-box system. Although it is not a perfect fit
between theory and experiment, it is close enough that we acknowledge the
usefulness of the particle-in-a-box model.
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†Sometimes the expression �*� is written as ���2, indicating that it is a real (that is,
nonimaginary) value.

n � 2���2

n � 5���2

n � 18���2

n � high���2

Figure 10.7 The plots of ���2 illustrate the
correspondence principle: for large quantum
numbers, quantum mechanics begins to approx-
imate classical mechanics. At large n, the particle-
in-a-box looks as if the particle were present in all
regions of the box with equal probability.
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Example 10.13
�-Carotenes are highly conjugated polyenes found in many vegetables. They
can be oxidized and used to synthesize pigments that play important roles in
the chemistry of mammalian vision. The parent compound, �-carotene, has
a maximum absorption of light that occurs at 480 nm. If this transition cor-
responds to an n � 11 to n � 12 transition of an electron in a particle-in-a-
box system, what is the approximate length of the molecular “box”?

Solution
First, we should convert the wavelength of the light absorbed into the equiv-
alent energy in joules:

E � 	
h

�

c
	 � � 4.14 � 10�19 J

Next, using this value for the change in energy for the transition and the ex-
pression for the particle-in-a-box energy values, we can set up the following
relationship:

�E � E12 � E11

� 	
8

1

m

22

e

h

a

2

2	 � 	
8

1

m

12

e

h

a

2

2	 � (144 � 121)	
8m

h

e

2

a2	 � 23	
8m

h

e

2

a2	 � 4.14 � 10�19 J

In the last step, we are equating the energy difference between the two energy
levels with the energy of the light absorbed. We know the value of h and me,
so we can substitute and solve for a, the length of the molecular “box.” We get

� 4.14 � 10�19 J

a2 �

All units cancel except for m2 in the numerator. (You have to decompose the
J unit to get this, however.) Evaluating:

a2 � 3.35 � 10�18 m2

a � 1.83 � 10�9 m � 18.3 Å

Experimentally, we find that a �-carotene molecule has a length of about
29 Å—not perfect agreement, but still good enough to be used for qualita-
tive purposes, especially in comparing similar molecules of different conju-
gation lengths.

10.10 Tunneling
We have assumed in the particle-in-a-box model that the potential energy out-
side the box is infinity, so that the particle has absolutely no chance of pene-
trating the wall. The wavefunction is identically zero at any position where the
potential energy is infinity. Suppose the potential energy weren’t infinity, just
some very large value K? What if it weren’t so large after all, just some value
higher than the energy of the particle? If the wall were limited in width (that
is, if some area on the other side had V � 0 again), how would that affect the
wavefunction?

23  (6.626 � 10�34 Js)2

					
8  (9.109 � 10�31 kg)  4.14 � 10�19 J

23  (6.626 � 10�34 Js)2

			
8  (9.109 � 10�31 kg)  a2

(6.626 � 10�34 Js)(2.9979 � 108 m/s)
					

4.8 � 10�7 m
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This system is illustrated in Figure 10.8, and actually describes a large num-
ber of physically real systems. For example, a very fine metal point can be
brought very close—within several angstroms, but still not in physical con-
tact—to a clean surface. The gap between the two pieces of matter represents
a finite potential energy barrier whose height is higher in energy than the en-
ergy of the electrons on either side.

The acceptable wavefunctions of an electron on one side of the system must
be determined by application of the postulates of quantum mechanics. In par-
ticular, the Schrödinger equation must be satisfied by any wavefunction that a
particle can have. Inside the regions in Figure 10.8 where the potential energy
is zero, the wavefunctions are similar to the particle-in-a-box. But for the re-
gion where the potential energy has a nonzero, noninfinite value,

�	
2

�

m

2

	 	
�

�

x

2

2	� � V̂ � � E�

must be solved. Assuming that the potential energy V is some constant indepen-
dent of x but larger than E, this expression can be algebraically rearranged into

	
2m(V

�2

� E)
	� � 	

�

�

x

2

2	�

This second-order differential equation has a known analytic solution. The
general wavefunctions that satisfy the above equation are

� � Aekx � Be�kx (10.14)

where

k � �	2m(V

�2

� E)
	�

1/2

Note the similarity of the wavefunction in equation 10.14 and the exponential
form of the wavefunctions for the particle-in-a-box (shown in the first foot-
note in Section 10.8). In this case, however, the exponentials have real expo-
nents, not imaginary exponents.

Without additional information about the system, we cannot say much
about the exact form (in terms of A and B) of the wavefunctions in this region.
For example, � over the entire space must be continuous, and that places some
restrictions on the values of A and B in terms of the length of the zero-poten-
tial region and the wavefunctions in that region. But there is one thing we can
note immediately: the wavefunction is not zero in the region of Figure 10.8
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x � ax � 0
x- axis

V � �

V � K (��)

V � 0V � 0

E
ne

rg
y

Figure 10.8 A potential energy diagram where tunneling can occur. Many real systems mimic
this sort of potential energy scheme. Tunneling is an observable phenomenon that is not pre-
dicted by classical mechanics.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



where the potential energy is high, even if the potential energy is greater than
the total energy of the particle. Furthermore, the mathematical form of this
wavefunction guarantees that it will not equal zero for any finite value of x.
This means that there is a nonzero probability that a particle with this wave-
function will exist at the other side of the box, even though the total energy of
the particle is less than the potential barrier. This is illustrated qualitatively in
Figure 10.9. Classically, if the barrier were higher than the total energy, the par-
ticle couldn’t exist on the other side of the barrier. Quantum mechanically, it
can. This is called tunneling.

Tunneling is a simple yet profound prediction of quantum mechanics. After
these conclusions were announced, in 1928 Russian scientist George Gamow
used tunneling as an explanation of alpha decay in radioactive nuclei. There
had been speculation about exactly how the alpha particle (a helium nucleus)
could escape the huge potential energy barrier of the other nuclear particles.
More recently, we have seen the development of the scanning tunneling mi-
croscope (STM). This simple device, illustrated in Figure 10.10, uses tunneling
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x � ax � 0
x- axis

V � �V � K (��)

� � 0

�

V � 0V � 0

E
ne

rg
y

Figure 10.9 Due to the noninfinite height and
depth of the potential energy barrier, the wave-
function has a nonzero probability of existing on
the other side of the barrier. Alpha particle decay
and small gaps between two surfaces are two sys-
tems where tunneling occurs.

Data processing
and display

Control voltages for piezotube

Distance control
and scanning unit

Tunneling
current

amplifier

Piezoelectric tube
with electrodes

Tunneling
voltage

Tip

Sample

Figure 10.10 A commercial scanning tunnel-
ing microscope (STM). Invented in the early 1980s,
STMs take advantage of a quantum-mechanical
phenomenon.
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of electrons to pass a very, very small gap between a sharp tip and a surface.
Since the amount of tunneling varies exponentially with distance, even very
small distance changes can yield very large differences in the amount of elec-
tron tunneling (measured as a current, since current is the flow of electrons).
The extreme sensitivity of the STM allows one to make pictures of smooth sur-
faces on an atomic scale. Figure 10.11 shows an image measured by an STM.

Tunneling is a real, detectable phenomenon. It is not predicted by classical
mechanics (and would be forbidden by it) but it arises naturally out of quan-
tum mechanics. Its existence is the first real-life example given here of the
strange and wonderful world of quantum theory.

10.11 The Three-Dimensional Particle-in-a-Box
The one-dimensional particle-in-a-box can be expanded to two and three di-
mensions very easily. Because the treatments are similar, we consider just the
three-dimensional system here (and we trust that the student will be able to
simplify the following treatment for a two-dimensional system; see exercise
10.53 at the end of this chapter). A general system, showing a box having its ori-
gin at (0, 0, 0) and having dimensions a � b � c, is illustrated in Figure 10.12.
Once again we define the system with V � 0 inside the box and V � � outside
the box. The Schrödinger equation for a particle in a three-dimensional box is

	
�

2m

�2

	�	
�

�

x

2

2	 � 	
�

�

y

2

2	 � 	
�

�

z

2

2	�� � E� (10.15)

The three-dimensional operator �2/�x2 � �2/�y2 � �2/�z2 is very common and
is given the symbol �2, called “del-squared” and referred to as the Laplacian
operator:

�2  	
�

�

x

2

2	 � 	
�

�

y

2

2	 � 	
�

�

z

2

2	 (10.16)

The 3-D Schrödinger equation is usually written as

	
�

2m

�2

	�2� � E�

In the rest of this text, we use the symbol �2 to represent the Laplacian for a
particular system that operates on � in the Schrödinger equation.

We determine the acceptable wavefunctions for this system by trying an-
other assumption. Let us assume that the complete three-dimensional �(x, y,
z), which must be a function of x, y, and z, can be written as a product of three
functions, each of which can be written in terms of only one variable. That is:

�(x, y, z) � X(x)  Y(y)  Z(z) (10.17)

where X(x) is a function only of x (that is, independent of y and z), Y(y) is a
function solely of y, and Z(z) is a function solely of z. Wavefunctions that can
be written this way are said to be separable. Why make this particular assump-
tion? Because then in the evaluation of the del-squared part of the Schrödinger
equation, each second derivative will act on only one of the separate functions
and the others will cancel, making an ultimate solution of the Schrödinger
equation that much simpler.

We also simplify the notation by dropping the parenthetical variables on the
three functions. The Schrödinger equation in equation 10.15 becomes

	
�

2m

�2

	�	
�

�

x

2

2	 � 	
�

�

y

2

2	 � 	
�

�

z

2

2	�XYZ � E  XYZ
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Figure 10.11 An STM image of a ring of Fe
atoms on a copper surface.

(0, 0, c)

(0, 0, 0)

(a, 0, 0)

(0, b, 0)

V � 0

V � �

z

y

x

Figure 10.12 The three-dimensional particle-
in-a-box. An understanding of its wavefunctions
is based on the wavefunctions of the 1-D particle-
in-a-box, and it illustrates the concept of separa-
tion of variables. Generally, a � b � c, although
when a � b � c the wavefunctions may have some
special characteristics.
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Now we distribute the product XYZ to all three derivatives in the Hamiltonian
operator:

	
�

2m

�2

	�	
�

�

x

2

2	XYZ � 	
�

�

y

2

2	XYZ � 	
�

�

z

2

2	XYZ� � E  XYZ

Next we take advantage of a property of partial derivatives: they act on the
stated variable only and assume that any other variables are constant. In the
first derivative term, the partial derivative is taken with respect to x, meaning
that y and z are held constant. As we defined it above, only the X function de-
pends on the variable x; the functions Y and Z do not. Thus, the entire func-
tion Y and the entire function Z—whatever they are—are constants and can
be removed to outside the derivative. The first term then looks like this:

YZ  	
d

d

x

2

2	X

The same analysis can be applied to the second and third derivatives, which
deal with y and z, respectively. The Schrödinger equation can therefore be
rewritten as

	
�

2m

�2

	�YZ	
d

d

x

2

2	X � XZ	
d

d

y

2

2	Y � XY	
d

d

z

2

2	Z� � E  XYZ

Finally, let us divide both sides of this expression by XYZ and bring ��2/2m
to the other side. Some of the functions will cancel from each term on the left
side, leaving us with

�	
X

1
	 	

d

d

x

2

2	X � 	
Y

1
	 	

d

d

y

2

2	Y � 	
Z

1
	 	

d

d

z

2

2	Z� � �	
2

�

m
2

E
	

Each term on the left side depends on a single variable: either x, or y, or z. Every
term on the right side is a constant: 2, m, E, and �. In such a case, every term
on the left side must also be a constant—this being the only way that the three
terms, each dependent on a different variable, could sum up to a constant
value. Let us define the first term as �(2mEx)/�2:

	
X

1
	 	

d

d

x

2

2	X  �	
2m

�2

Ex	

where Ex is the energy of the particle that derives from the X part of the over-
all wavefunction. Similarly, for the second and third terms:

	
Y

1
	 	

d

d

y

2

2	Y  �	
2m

�2

Ey	

	
Z

1
	 	

d

d

z

2

2	Z  �	
2m

�2

Ez	

where Ey and Ez are the energies derived from the Y and Z parts of the overall
wavefunction. These three expressions can be rewritten as

�	
2

�

m

2

	 	
d

d

x

2

2	X � ExX

�	
2

�

m

2

	 	
d

d

y

2

2	Y � EyY (10.18)

�	
2

�

m

2

	 	
d

d

z

2

2	Z � EzZ
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In comparing these three equations with the original Schrödinger equation for
this system, it is not too difficult to see that

E � Ex � Ey � Ez (10.19)

We have seen expressions of the form given in equations 10.18: they have
the same form as the Schrödinger equation for the one-dimensional particle-in-a-
box. Rather than having to re-derive solutions for the three-dimensional case,
we can simply use the same functions, but with the appropriate labels for a
three-dimensional system. Therefore, the solution for the x dimension is

X(x) � 		
2

a
	
 sin 	

nx

a


x
	

where nx is 1, 2, 3, 4 . . . and is a quantum number (note the x subscript on the
quantum number). The quantized energy, Ex, can also be taken from the one-
dimensional box system:

Ex � 	
8

n

m
x
2h

a

2

2	

This analysis can be repeated for the other two dimensions. It should be
readily apparent that the answers are similar:

Y(y) � 		
2

b
	
 sin 	

ny

b


y
	

Z(z) � 		
2

c
	
 sin 	

nz

c


z
	

Y and Z depend only on the coordinates y and z respectively. The constants b
and c represent the lengths of the box in the y and z direction, and the quan-
tum numbers ny and nz refer to the corresponding dimension only. Remember,
however, that the wavefunction � is the product of X, Y, and Z, so that the
complete 3-D wavefunction is

�(x, y, z) � 		
a

8

bc
	
 sin 	

nx

a


x
	  sin 	

ny

b


y
	  sin 	

nz

c


z
	 (10.20)

where the constants have all been grouped together. The total energy for a par-
ticle in this three-dimensional box is

E � 	
8

n

m
x
2h

a

2

2	 � 	
8

n

m
y
2h

b

2

2	 � 	
n

8m
z
2h

c2

2

	 � 	
8

h

m

2

	�	
n

a2
x
2

	 � 	
n

b2
y
2

	 � 	
n

c2
z
2

	� (10.21)

Although the wavefunctions of the 3-D particle-in-a-box are qualitatively
similar to those for the 1-D particle-in-a-box, there are some differences. First,
every observable has three parts: an x part, a y part, and a z part. (See the 
expression for E in equation 10.21.) For example, the momentum of a particle
in a 3-D box is more properly referred to as a momentum in the x direction,
denoted px; a momentum in the y direction, py; and a momentum in the z
direction, pz. Each observable has a corresponding operator, which in the 
momentum example is either px̂ , pŷ , or pẑ :

px̂ � �i�	
�

�

x
	

pŷ � �i�	
�

�

y
	 (10.22)

pẑ � �i�	
�

�

z
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Despite the separated wavefunctions in one dimension each, it is important to
understand that the operator must operate on the entire wavefunction.
Although the entire wavefunction is in three dimensions, the one-dimensional
operator acts only on the part that depends on the coordinate of interest.

Also, it needs to be understood that average values are treated differently in
the 3-D case than in the 1-D case, because of the additional dimensions. Because
each dimension is independent of the other, an integration must be performed
over each dimension independently. This triples the number of integrals to be
evaluated, but since the wavefunction can be separated into x, y, and z parts, the
integrals are straightforward to evaluate. Since this system is three-dimensional,
the d� for the integration must have three infinitesimals: d� � dx dy dz. For nor-
malized wavefunctions, the average value of an observable is thus given by

�A� � �
x

�
y

�
z

�*Â � dx dy dz (10.23)

For wavefunctions and operators that are separable into x, y, and z parts, this
triple integral ultimately separates into the product of three integrals:

�A� � �
x

�*xAx̂ �x dx  �
y

�*y Aŷ �y dy  �
z

�*z Aẑ �z dz

Each integral has its own limits, depending on the limits of the particular sys-
tem in that dimension. If the operator does not include a certain dimension,
then it has no influence on the integral over that dimension. The following ex-
ample illustrates.

Example 10.14
Although the particle-in-a-box wavefunctions are not eigenfunctions of the
momentum operators, we can determine average or expectation values for
the momentum. Find �py� for the 3-D wavefunction

�(x, y, z) � 		
a

8

bc
	
 sin 	

1


a

x
	  sin 	

2


b

y
	  sin 	

3


c

z
	

(This wavefunction has nx � 1, ny � 2, and nz � 3.)

Solution
In order to determine �py�, the following integral must be evaluated:

�py� � �
x

�
y

�
z
		

a

8

bc
	
 sin 	

1


a

x
	  sin 	

2


b

y
	  sin 	

3


c

z
	

� � �i�	
�

�

y
	�		

a

8

bc
	
 sin 	

1


a

x
	  sin 	

2


b

y
	  sin 	

3


c

z
	� dx dy dz

Although this looks complicated, it can be simplified into the product of three
integrals, where the normalization constant will be split appropriately and the
operator, affecting only the y part of �, appears only in the integral over y :

�py� � �
a

x�0
		

2

a
	
 sin 	

1


a

x
			

2

a
	
 sin 	

1


a

x
	 dx

� � �
b

y�0
		

2

b
	
 sin 	

2


b

y
	  �i�	

�

�

y
			

2

a
	
 sin 	

2


b

y
	 dy

� � �
c

z�0
		

2

c
	
 sin 	

3


c

z
	 		

2

c
	
 sin 	

3


c

z
	 dz
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This product of three integrals is relatively easy to evaluate, despite its length.
The x and z integrals are exactly the same as the one-dimensional particle-in-
a-box wavefunctions being evaluated from one end of the box to the other,
and they are normalized. Therefore the first and the third integrals are each 1.
The expression becomes

�py� � 1  �
b

y�0
		

2

b
	
 sin 	

2


b

y
	  �i�	

�

�

y
			

2

a
	
 sin 	

2


b

y
	 dy  1

For the y part, evaluation of the derivative part of the operator is straight-
forward, and rewriting the integral, bringing all constants outside the integral
sign, yields

�py� � 	
2

b
	  	

2

b



	  �i� �

b

y�0

sin 	
2


b

y
	  cos 	

2


b

y
	 dy

Using the integral table in Appendix 1, we find that this integral is exactly
zero. Therefore,

�py� � 0

This should not be too much of a surprise. Although the particle certainly has
momentum at any given moment, it will have one of two opposite momen-
tum vectors exactly half the time. Because the opposing momentum vectors
cancel each other out, the average value of the momentum is zero.

The above example illustrates that although the triple integral may look dif-
ficult, it separates into more manageable parts. This separability of the integral
is directly related to our assumption that the wavefunction itself is separable.
Without separability of �, we would have to solve a triple integral in three
variables simultaneously—a formidable task! We will see other examples of
how separability of � makes things easier for us. Ultimately, the issue of sep-
arability is paramount in the application of the Schrödinger equation to real
systems.

10.12 Degeneracy
For the one-dimensional particle-in-a-box, all of the energies of the eigen-
functions are different. For the general 3-D particle-in-a-box, because the to-
tal energy depends on not only the quantum numbers nx, ny, and nz but also
the individual dimensions of the box a, b, and c, one can imagine that in some
cases the quantum numbers and the lengths might be such that different sets
of quantum numbers {nx, ny, nz} would yield the same energy for the two dif-
ferent wavefunctions.

This situation is very possible in systems that are symmetric. Consider a cu-
bical box: a � b � c. Using the variable a to stand for any side of the cubical
box, the wavefunctions and energies now become

�(x, y, z) � 		
a

8
3	
 sin 	

nx

a


x
	  sin 	

ny

a


y
	  sin 	

nz

a


z
	 (10.24)

E � 	
8
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x
2h

a

2

2	 � 	
8
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m
y
2h

a

2

2	 � 	
8

n

m
z
2h

a

2

2	 � 	
8m

h2

a2	(nx
2 � ny

2 � nz
2) (10.25)

The energy depends on a set of constants and the sum of the squares of the
quantum numbers. If a set of three quantum numbers adds up to the same
total as another set of three different quantum numbers, or if the quantum

10.12 Degeneracy 303

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



numbers themselves exchange values, the energies would be exactly the same
even though the wavefunctions are different. This condition is called degener-
acy. Different, linearly independent wavefunctions that have the same energy
are called degenerate. A specific level of degeneracy is indicated by the number
of different wavefunctions that have the exact same energy. If there are two, the
energy level is called twofold (or doubly) degenerate; if there are three wave-
functions, it is threefold (or triply) degenerate; and so on.

From equation 10.25, the specific energy is determined by what values the
quantum numbers have. We can label each energy as Exyz where the x, y, and z
labels indicate what the appropriate quantum numbers are. Thus,

E111 � 	
8m

h2

a2	(1 � 1 � 1) � 3  	
8m

h2

a2	

E112 � 	
8m

h2

a2	(1 � 1 � 4) � 6  	
8m

h2

a2	

E113 � 	
8m

h2

a2	(1 � 1 � 9) � 11  	
8m

h2

a2	

and so forth. (It is easier to illustrate this point by leaving the energies in terms
of h, m, and a instead of evaluating their exact values in terms of joules.) E112

is the eigenvalue of the wavefunction that has nx � 1, ny � 1, and nz � 2. We
also have the following two wavefunctions:

�121 � 		
a

8
3	
 sin 	

1


a

x
	  sin 	

2


a

y
	  sin 	

1


a

z
	

�211 � 		
a

8
3	
 sin 	

2


a

x
	  sin 	

1


a

y
	  sin 	

1


a

z
	

where we are now starting to label the wavefunctions as �xyz, like the energies.
These are different wavefunctions. You should satisfy yourself that they are dif-
ferent. (One has the quantum number 2 in the x dimension and the other has
the quantum number 2 in the y dimension.) Their energies are

E121 � 	
8m

h2

a2	(1 � 4 � 1) � 6  	
8m

h2

a2	

E211 � 	
8m

h2

a2	(4 � 1 � 1) � 6  	
8m

h2

a2	

E121 and E211 are the same as E112, even though each energy observable corre-
sponds to a different wavefunction. This value of energy is threefold degenerate.
There are three different wavefunctions that have the same energy. (Degenerate
wavefunctions may have different eigenvalues of other observables.)

This example of degeneracy is a consequence of a wavefunction in three-
dimensional space where each dimension is independent but equivalent. This
might be considered degeneracy by symmetry. One can also find examples of
accidental degeneracy. For example, a cubical box has wavefunctions with the
sets of quantum numbers (3, 3, 3) and (5, 1, 1), and the energies are

E333 � 	
8m

h2

a2	(9 � 9 � 9) � 27  	
8m

h2

a2	

E511 � 	
8m

h2

a2	(25 � 1 � 1) � 27  	
8m

h2

a2	
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Here is an example of degeneracy by accident. The corresponding wavefunc-
tions have no common quantum numbers, but their energy eigenvalues are ex-
actly the same. If we recognize that E151 and E115 also have the same energy,
the level of degeneracy in this example becomes fourfold. A diagram of the en-
ergy levels of the 3-D particle-in-a-box is shown in Figure 10.13 and illustrates
the degeneracies of the energy levels.

Example 10.15
Write the four wavefunctions of a cubical box that have energy of 27(h2/8ma2)
to show that they are indeed different eigenfunctions.

Solution
Using the combinations of quantum numbers (3, 3, 3), (5, 1, 1), (1, 5, 1), and
(1, 1, 5) in the 3-D particle-in-a-box wavefunction:

�333 � 		
a

8
3	
 sin 	

3


a

x
	  sin 	

3


a

y
	  sin 	

3


a

z
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(nx  � ny  � nz) �

30

E
ne

rg
y 

(in
 u

ni
ts

 o
f h

2 /8
m

a
2 )

(3,3,3), (5,1,1), (1,5,1), (1,1,5)

(4,3,1), (4,1,3), (3,4,1), (3,1,4), (1,4,3), (1,3,4)

(4,2,2), (2,4,2), (2,2,4)

(3,3,2), (3,2,3), (2,3,3)

(4,2,1), (4,1,2), (2,4,1), (2,1,4), (1,4,2), (1,2,4)

(3,3,1), (3,1,3), (1,3,3)

(4,1,1), (1,4,1), (1,1,4)

(3,2,2), (2,3,2), (2,2,3)

(3,2,1), (3,1,2), (1,3,2), (1,2,3), (2,3,1), (2,1,3)

(2,2,2)

(3,1,1), (1,3,1), (1,1,3)

(2,2,1), (2,1,2), (1,2,2)

(1,1,2), (1,2,1), (2,1,1)

(1,1,1)

Distinct energy levels [with (nx, ny, nz)  labels]

25

20

15

10

5

3

Figure 10.13 The energy levels of the 3-D particle-in-a-(cubical)-box. In this system, differ-
ent wavefunctions can have the same energy. This is an example of degeneracy.
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�511 � 		
a

8
3	
 sin 	

5


a

x
	  sin 	

1


a

y
	  sin 	

1


a

z
	

�151 � 		
a

8
3	
 sin 	

1


a

x
	  sin 	

5


a

y
	  sin 	

1


a

z
	

�115 � 		
a

8
3	
 sin 	

1


a

x
	  sin 	

1


a

y
	  sin 	

5


a

z
	

(Here we are writing the quantum number 1 to illustrate the point; typically,
1 values aren’t written explicitly.) It should be obvious that these four wave-
functions are all different, having integer quantum numbers that are either
different or in different parts of the wavefunction.

10.13 Orthogonality
One other major property of wavefunctions needs to be introduced. We should
recognize by now that a system has not just a single wavefunction but many
possible wavefunctions, each of which has an energy (obtained using an eigen-
value equation) and perhaps other eigenvalue observables. We can summarize
the multiple solutions to the Schrödinger equation by writing it as

Ĥ �n � En�n n � 1, 2, 3, . . . (10.26)

Equation 10.26, when satisfied, usually yields not just a single wavefunction
but a set of them (perhaps even an infinite number), like those for the parti-
cle-in-a-box. Mathematically, this set of equations has a very useful property.
The wavefunctions must be normalized, for every �n:

�
all

�*n�n d� � 1

space

This is the expression that defines normalization. If, on the other hand, two dif-
ferent wavefunctions were used in the above expression, the different wave-
functions �m and �n have a property that requires that the integral be exactly
zero:

�
all

�*m�n d� � 0 �m � �n (10.27)

space

It does not matter in what order the wavefunctions are multiplied together.
The integral will still be identically zero. This property is called orthogonality;
the wavefunctions are orthogonal to each other. Orthogonality is useful be-
cause, once we know that all wavefunctions of a system are orthogonal to each
other, many integrals become identically zero. We need only recognize that the
wavefunctions inside an integral are different and we can apply the orthogo-
nality property: that integral equals zero. Both wavefunctions must be for the
same system, they must have different eigenvalues,† and there must be no op-
erator in the integral sign (there may be a constant operator, but constants
can be removed from inside the integral and what remains must satisfy equa-
tion 10.27).
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†Equation 10.26 does not apply if the two wavefunctions �m and �n have the same 
energy eigenvalue (that is, if they are degenerate). Other considerations are necessary to 
circumvent this, but we will not discuss that here.
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The orthogonality and normality properties of wavefunctions are usually
combined into a single expression termed orthonormality:

0 if m � n� �*m�n d� � � (10.28)
1 if m � n

Example 10.16
Demonstrate explicitly that for the 1-D particle-in-a-box, �1 is orthogonal
to �2.

Solution
Evaluate the following integral:

	
2

a
	 �

a

0

sin 	
1


a

x
	 sin 	

2


a

x
	 dx

(The 2/a constant has been pulled outside the integral, and the limits of in-
tegration are properly set as 0 to a.) Using the integral table in Appendix 1:

	
2

a
	 �

a

0

sin 	
1


a

x
	 sin 	

2


a

x
	 dx � 	

2

a
	  � � � �a0

sin (	
1
a


	 � 	

2
a


	)x

		
2(	

1
a


	 � 	

2
a


	)

sin (	
1
a


	 � 	

2
a


	)x

		
2(	

1
a


	 � 	

2
a


	)

10.13 Orthogonality 307

� 	
2

a
	  � � � �a0

Substituting the limits 0 and a into this expression and evaluating:

� 	
2

a
	  � � � � 	

2

a
	  � � �

sin (	
3
a


	)  0

		
(	

6
a


	)

sin (�	
1
a


	)  0

		
(�	

2
a


	)

sin (	
3
a


	)  a

		
(	

6
a


	)

sin (�	
1
a


	)  a

		
(�	

2
a


	)

sin (	
3
a


	)x

	
(	

6
a


	)

sin (�	
1
a


	)x

		
(�	

2
a


	)

� 	
2

a
	  � � � � 	

2

a
	  � � �sin 0

	
(	

6
a


	)

sin 0
	
(�	

2
a


	)

sin (3
)
	

(	
6
a


	)

sin (�
)
	

(�	
2
a


	)

� 	
2

a
	  � � � � 	

2

a
	  � � � � 0

Therefore,

	
2

a
	 �

a

0

sin 	
1


a

x
	 sin 	

2


a

x
	 dx � 0

which is exactly as it should be for orthogonal functions. You should satisfy
yourself that you get the same answer if you evaluate the integral when you
take the complex conjugate of �2 instead of �1.

Orthonormality is a very useful concept. Integrals whose values are ex-
actly 0 or exactly 1 make mathematical derivations much easier, and it is im-
portant that you develop the skill to recognize when integrals are exactly 1
(because the wavefunctions in the integrand are normalized) or exactly 0
(because the wavefunctions in the integrand are orthogonal). Finally, note
that the orthonormality condition requires that no operator be present inside
the integral. If an operator is present, the operation must be evaluated be-
fore you can consider whether the integral can be exactly 0 or 1.

0
	
(	

6
a


	)

0
	
(�	

2
a


	)

0
	
(	

6
a


	)

0
	
(�	

2
a


	)
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10.14 The Time-Dependent Schrödinger Equation
Although the time-independent Schrödinger equation is heavily utilized in this
chapter, it is not the fundamental form of the Schrödinger equation. Only sta-
tionary states—wavefunctions whose probability distributions do not vary over
time—provide meaningful eigenvalues using the time-independent Schrödinger
equation. There is a form of the Schrödinger equation that does include time.
It is called the time-dependent Schrödinger equation, and has the form

Ĥ �(x, t) � i�	
��

�

(x

t

, t)
	 (10.29)

where the x- and t-dependence on � are written explicitly to indicate that �
does vary with time as well as position. Schrödinger postulated that all wave-
functions must satisfy this differential equation, and it is the last postulate we
will consider, if only briefly. This postulate is what establishes the prime im-
portance of the Hamiltonian operator in quantum mechanics.

One common way to approach equation 10.29 is to assume the separability
of time and position, similar to our separation of x, y, and z in the 3-D box.
That is,

�(x, t) � f(t)  �(x) (10.30)

where part of the complete wavefunction depends only on time and part de-
pends only on position. Although it is fairly straightforward to derive, we will
omit the derivation and simply present the following statement of acceptable
solutions of �(x, t):

�(x, t) � e�iEt/�  �(x) (10.31)

where E is the total energy of the system. This solution for the time-dependence
of a wavefunction places no restriction on the form of the position-dependent
function �(x). With respect to wavefunctions, we are right back where 
we started at the beginning of the chapter. With this assumption, the time-
dependence of the total wavefunction is rather simple in form, and the posi-
tion dependence of the total wavefunction needs to be considered for the sys-
tem of interest. If t can be separated from position in �(x, t) and the wave-
function has the form from equation 10.31, then the time-dependent
Schrödinger equation simplifies into the time-independent Schrödinger equa-
tion, as shown below.

Example 10.17
Show that solutions for � given in equation 10.31, when used in the time-
dependent Schrödinger equation, yield the time-independent Schrödinger
equation.

Solution
Using the separated solution for �(x, t):

Ĥ [e�iEt/�  �(x)] � i�	
�

�

t
	[e�iEt/�  �(x)]

Taking the derivative of the exponential with respect to time [the derivative
does not affect �(x), since it doesn’t depend on time]:

Ĥ [e�iEt/� �(x)] � i�  �(x)  	
�

�

iE
	  [e�iEt/�]
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On the right, � cancels, and the minus sign cancels i2. Since the Hamiltonian
operator does not include time, the exponential on the left side can be re-
moved to outside the operator. Then we have:

e�iEt/�  Ĥ �(x) � E  �(x)  e�iEt/�

The exponentials on both sides cancel each other, and what is left is

Ĥ �(x) � E�(x)

which is the time-independent Schrödinger equation.

The above example shows how the time-dependent Schrödinger equation
produces the time-independent Schrödinger equation, assuming a certain
form of �(x, t) and a time-independent Ĥ . It is therefore more correct to say
that equation 10.29 is the fundamental equation of quantum mechanics, but
given the separability assumption, more attention in textbooks is devoted to
understanding the position-dependent part of the complete, time-dependent
Schrödinger equation. It is easy to show that wavefunctions of the form in
equation 10.31 are stationary states, because their probability distributions do
not depend on time. Some wavefunctions are not of the form in equation
10.31, so the time-dependent Schrödinger equation must be used.

10.15 Summary
Table 10.2 lists the postulates of quantum mechanics (even those not specifi-
cally discussed in this chapter). Different sources list different numbers of pos-
tulates, some broken into independent statements and some grouped together.
Hopefully, you can see how we applied these statements to the first ideal sys-
tem, the particle-in-a-box.
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Table 10.2 The postulates of quantum mechanics

(Section 10.14) (If it is assumed that � is separable into functions of
time and position, we find that this expression can be rewritten to get
the time-independent Schrödinger equation, Ĥ � � E�.) (section 10.7)

Postulate V. The average value of an observable, �O�, is given by the ex-
pression

�O� � �
all

�*Ô � d�

space

for normalized wavefunctions. (Section 10.9)

Postulate VI. The set of eigenfunctions for any quantum mechanical
operator is a complete mathematical set of functions.

Postulate VII. If, for a given system, the wavefunction � is a linear
combination of nondegenerate wavefunctions �n which have eigen-
values an:

� � �
n

cn�n and Â �n � an�n

then the probability that an will be the value of the corresponding 
measurement is �cn�

2. The construction of � as the combination of
all possible �n’s is called the superposition principle.

Postulate I. The state of a system of particles is given by a wavefunction
�, which is a function of the coordinates of the particles and the time.
� contains all information that can be determined about the state of
the system. � must be single-valued, continuous, and bounded, and
���2 must be integrable. (Discussed in section 10.2)

Postulate II. For every physical observable or variable O, there exists a
corresponding Hermitian operator Ô . Operators are constructed by
writing their classical expressions in terms of position and (linear) mo-
mentum, then replacing “x times” (that is, x ) for each x variable and
�i�(�/�x) for each px variable in the expression. Similar substitutions
must be made for y and z coordinates and momenta. (Section 10.3)

Postulate III. The only values of observables that can be obtained in a
single measurement are the eigenvalues of the eigenvalue equation con-
structed from the corresponding operator and the wavefunction �:

Ô � � K  �

where K is a constant. (Section 10.3)

Postulate IV. Wavefunctions must satisfy the time-dependent
Schrödinger equation:

Ĥ � � i�	
�

�

�

t
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Although no particle truly exists in a box having infinite walls, the particle-
in-a-box illustrates all of the important aspects of quantum mechanics: satis-
fying the Schrödinger equation, normalization, orthogonality, quantized en-
ergy values, degeneracy. All other systems, real and ideal, also have these
properties. We will continue the application of quantum mechanics to other
ideal and real systems in the next chapter, where we will assume that the reader
is familiar with these topics. If you are not, review the material in this chapter.
It contains all of the preliminary background necessary to apply the quantum
mechanical theory of atoms and molecules to any system, from the ideal par-
ticle-in-a-box to a DNA molecule. Although some new concepts will be pre-
sented in the following chapters, most of the basic components of quantum
mechanics have already been covered. Any discussion of quantum mechanics
is fundamentally based on the material in this chapter.
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10.1. State the postulates of quantum mechanics introduced
throughout the chapter in your own words.

10.2 Wavefunctions

10.2. What are four requirements for any acceptable wave-
function?

10.3. State whether the following functions are acceptable
wavefunctions over the range given. If they are not, explain
why not. 

(a) F(x) � x2 � 1, 0 � x � 10

(b) F(x) � �x� � 1, �� � x � ��

(c) f(x) � tan(x), �
 � x � 


(d) � � e�x2

, �� � x � ��

(e) � � ex2

, �� � x � ��

(f) F(x) � sin 4x, �
 � x � �


(g) x � y2, x � 0

(h) The function that looks like this:

(i) The function that looks like this:

10.3 Observables and Operators

10.4. What are the operations in the following expressions? 

(a) 2 � 3 

(b) 4 � 5

(c) ln x2

(d) sin (3x � 3)

(e) e��E/kT

(f) 	
d
d
x
	�4x3 � 7x � 	

7
x

	�
10.5. Evaluate the operations in parts a, b, and f in the pre-
vious problem.

f (x)

x

f (x)

x

10.6. The following operators and functions are defined:

Â � 	
�

�

x
	( ) B̂ � sin ( ) Ĉ � 	

(
1
)

	 D̂ � 10( )

p � 4x3 � 2x�2 q � �0.5 r � 45xy2 s � 	
2
3

x
	

Evaluate: (a) Â p (b) Ĉ q (c) B̂ s (d) D̂ q (e) Â (Ĉ r) (f) Â (D̂ q)

10.7. Multiple operators can act on a function. If Px̂ acts on
the coordinate x to yield �x, Pŷ acts on the coordinate y to
yield �y, and Pẑ acts on the coordinate z to yield �z, evalu-
ate the following expressions written in terms of 3-D Cartesian
coordinates: 

(a) Px̂ (4, 5, 6) (b) Pŷ Pẑ (0, �4, �1) 

(c) Px̂ Px̂ (5, 0, 0) (d) Pŷ Px̂ (
, 
/2, 0) 

(e) Does Px̂ Pŷ equal Pŷ Px̂ for any set of coordinates? Why or
why not?

10.8. Indicate which of the following expressions yield eigen-
value equations, and indicate the eigenvalue.

(a) 	
d
d
x
	 sin 	




2
x
	 (b) 	

d
d
x

2

2	 sin 	



2
x
	

(c) �i�	
�

�

x
	 sin 	




2
x
	 (d) �i�	

�

�

x
	 eimx, where m is a constant

(e) 	
�

�

x
	(e�x2) (f) �	�2m

�2

	 	
d
d
x

2

2	 � 0.5� sin 	
2
3

x
	

10.9. Why is multiplying a function by a constant considered
an eigenvalue equation?

10.10. Relating to the question above, some texts consider
multiplying a function by zero to be an eigenvalue equation.
Why might this be considered a problematic definition?

10.11. Using the original definition of the momentum oper-
ator and the classical form of kinetic energy, derive the one-
dimensional kinetic energy operator

K̂ � 	
�

2m
�2

	 	
d
d
x

2

2	

10.12. Under what conditions would the operator described
as multiplication by i (the square root of �1) be considered a
Hermitian operator?

10.13. A particle on a ring has a wavefunction

� � 	
�

1
2
�
	eim�

where � equals 0 to 2
 and m is a constant. Evaluate the an-
gular momentum p� of the particle if 

p�̂ � �i�	
�

�

�
	

How does the angular momentum depend on the constant m?
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10.4 Uncertainty Principle

10.14. Calculate the uncertainty in position, �x, of a baseball
having mass 250 g going at 160�2 km/hr. Calculate the un-
certainty in position for an electron going at the same speed.

10.15. For an atom of mercury, an electron in the 1s shell has
a velocity of about 58% (0.58) of the speed of light. At such
speeds, relativistic corrections to the behavior of the electron
are necessary. If the mass of the electron at such speeds is 
1.23 me (where me is the rest mass of the electron) and the
uncertainty in velocity is 10,000 m/s, what is the uncertainty
in position of this electron?

10.16. How is the Bohr theory of the hydrogen atom incon-
sistent with the uncertainty principle? (In fact, it was this in-
consistency, along with the theory’s limited application to
non-hydrogen-like systems, that limited Bohr’s theory.)

10.17. Though not strictly equivalent, there is a similar un-
certainty relationship between the observables time and energy:

�E  �t � 	
2
�

	

In emission spectroscopy, the width of lines (which gives a
measure of �E) in a spectrum can be related to the lifetime
(that is, �t) of the excited state. If the width of a spectral line
of a certain electronic transition is 1.00 cm�1, what is the min-
imum uncertainty in the lifetime of the transition? Watch your
units.

10.5 Probabilities

10.18. For a particle in a state having the normalized wave-
function 

� � 		
2
a

	
 sin 	



a
x
	

in the range x � 0 to a, what is the probability that the par-
ticle exists in the following intervals? 

(a) x � 0 to 0.02 a (b) x � 0.24a to 0.26a

(c) x � 0.49a to 0.51a (d) x � 0.74a to 0.76a

(e) x � 0.98a to 1.00a?

Plot the probabilities versus x. What does your plot illustrate
about the probability?

10.19. A particle on a ring has a wavefunction � � eim�,
where � � 0 to 2
 and m is a constant. 

(a) Normalize the wavefunction, where d� is d�. How does
the normalization constant depend on the constant m? 

(b) What is the probability that the particle is in the ring in-
dicated by the angular range � � 0 to 2
/3? Does this answer
make sense? How does the probability depend on the con-
stant m?

10.20. A particle having mass m is described as having the
(unnormalized) wavefunction � � k, where k is some con-
stant, when confined to an interval in one dimension, that in-
terval having length a (that is, the interval of interest is x � 0
to a). What is the probability that the particle will exist in the
first third of the interval, that is, from x � 0 to (1/3)a? What
is the probability that the particle will be in the third third of
the box, that is, from x � (2/3)a to a?

10.21. Consider the same particle in the same box as in the
previous problem, but the (unnormalized) wavefunction is dif-
ferent. Now, assume � � kx, where the value of the wave-
function is directly proportional to the distance across the box.
Evaluate the same two probabilities, and comment on the dif-
ferences between the probabilities in this case and the previ-
ous one.

10.6 Normalization

10.22. What are the complex conjugates of the following
wavefunctions? (a) � � 4x3 (b) �(�) � ei
� (c) � � 4 � 3i
(d) � � i sin 	

3
2

x
	 (e) � � e�iEt/�

10.23. Normalize the following wavefunctions over the range
indicated. You may have to use the integral table in Appendix 1. 

(a) � � x2, x � 0 to 1

(b) � � 1/x, x � 5 to 6

(c) � � cos x, x � �
/2 to 
/2

(d) � � e�r/a, r � 0 to �, a is a constant, d� � 4
r2 dr

(e) � � e�r 2/a, r � �� to �, a is a constant. Use d� from 
part d.

10.24. For an unbound (or “free”) particle having mass m in
the complete absence of any potential energy (that is, V � 0),
the acceptable one-dimensional wavefunctions are � �
Aei(2mE)1/2x/� � Be�i(2mE)1/2x/�, where A and B are constants and
E is the energy of the particle. Is this wavefunction normaliz-
able over the interval �� � x � ��? Explain the significance
of your answer.

10.7 The Schrödinger Equation

10.25. Why does the Schrödinger equation have a specific
operator for kinetic energy and only a general expression, V,
for the potential energy?

10.26. Explain the reason that the kinetic energy operator
part of the Schrödinger equation is a derivative whereas the
potential energy operator part of the Schrödinger equation is
simply “multiplication times a function V.”

10.27. Use the Schrödinger equation to evaluate the total en-
ergy of a particle having mass m whose motion is described
by the constant wavefunction � � k. Assume V � 0. Justify
your answer.

10.28. Evaluate the expression for the total energies for a par-
ticle having mass m and a wavefunction � � �2� sin 
x, if the
potential energy V is 0 and if the potential energy V is 0.5 (as-
sume arbitrary units). What is the difference between the two
eigenvalues for the energy, and does this difference make sense?

10.29. Explain how the Hamiltonian operator is Hermitian.
(See section 10.3 for the limitations of Hermitian operators.)

10.30. Verify that the following wavefunctions are indeed
eigenfunctions of the Schrödinger equation, and determine
their energy eigenvalues. 

(a) � � eiKx where V � 0 and K is a constant

(b) � � eiKx where V � k, k is some constant potential energy,
and K is a constant

(c) � � 		
2
a

	
 sin 	



a
x
	, where V � 0
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10.31. In exercise 10.30a, the wavefunction is not normal-
ized. Normalize the wavefunction and verify that it still satis-
fies the Schrödinger equation. The limits on x are 0 and 2
.
How does the expression for the energy eigenvalue differ?

10.8 Particle-in-a-Box

10.32. Verify that equation 10.11 satisfies the Schrödinger
equation, and that equation 10.12 gives the values for energy.

10.33. The electronic spectrum of the molecule butadiene,
CH2�CH–CH�CH2, can be approximated using the one-
dimensional particle-in-a-box if one assumes that the conju-
gated double bonds span the entire four-carbon chain. If the
electron absorbing a photon having wavelength 2170 Å is
going from the level n � 2 to the level n � 3, what is the
approximate length of the C4H6 molecule? (The experimen-
tal value is about 4.8 Å.)

10.34. How many nodes are there for the one-dimensional
particle-in-a-box in the state described by �5? by �10? by
�100? Do not include the sides of the box as nodes.

10.35. Draw (at least roughly) the wavefunctions for the first
five wavefunctions for the particle-in-a-box. Now draw the
probabilities for the same wavefunctions. What similarities are
there between the wavefunctions and their respective proba-
bilities?

10.36. Show that the normalization constants for the general
form of the wavefunction � � sin (n
x/a) are the same and
do not depend on the quantum number n.

10.37. Evaluate the probability that an electron will exist at the
center of the box, approximated as 0.495a to 0.505a, for the
first, second, third, and fourth levels of a particle-in-a-box. What
property of the wavefunction is apparent from your answers?

10.38. Is the uncertainty principle consistent with our de-
scription of the wavefunctions of the 1-D particle-in-a-box?
(Hint: remember that position is not an eigenvalue operator
for the particle-in-a-box wavefunctions.)

10.39. From drawings of the probabilities of particles existing
in high-energy wavefunctions of a 1-D particle-in-a-box (like
those shown in Figure 10.7), show how the correspondence
principle indicates that, for high energies, quantum mechan-
ics agrees with classical mechanics in that the particle is sim-
ply moving back and forth in the box.

10.40. Instead of x � 0 to a, assume that the limits on the 
1-D box were x � �(a/2) to �(a/2). Derive acceptable wave-
functions for this particle-in-a-box. (You may have to consult
an integral table to determine the normalization constant.)
What are the quantized energies for the particle?

10.9 Average Values

10.41. Explain how � � �2/a� sin(n
x/a) isn’t an eigenfunc-
tion of the position operator.

10.42. Evaluate the average value of position, �x� , for �2 of
a particle-in-a-box and compare it with the answer obtained
in Example 10.12.

10.43. Evaluate �px� for �1 of a particle-in-a-box.

10.44. Evaluate �E� for �1 of a particle-in-a-box and show
that it is exactly the same as the eigenvalue for energy ob-
tained using the Schrödinger equation. Justify this conclusion.

10.45. Assume that for a particle on a ring the operator for
the angular momentum, p�̂, is �i�(�/��). What is the eigen-
value for momentum for a particle having (unnormalized) �
equal to e3i�? The integration limits are 0 to 2
. What is the
average value of the momentum, �p�� for a particle having this
wavefunction? How are these results justified?

10.46. Mathematically, the uncertainty �A in some observ-
able A is given by �A � ��A2� �� �A�2�. Use this formula to de-
termine �x and �px for � � �2/a� sin (
x/a) and show that
the uncertainty principle holds.

10.11 & 10.12 3-D Particle-in-a-Box;
Degeneracy

10.47. Why do we define (1/X)(d2/dx2)X as (�2mE/�2) and
not simply as E?

10.48. What are the units on (1/X)(d2/dx2)X? Does this help
explain your answer to the previous question?

10.49. Verify that the wavefunctions in equation 10.20 satisfy
the three-dimensional Schrödinger equation.

10.50. An electron is confined to a box of dimensions 2Å �
3Å � 5Å. Determine the wavefunctions for the five lowest-
energy states.

10.51. Assume a particle is confined to a cubical box. For
what set of three quantum numbers will there first appear de-
generate wavefunctions? For what sets of different quantum
numbers will there first appear degenerate wavefunctions?

10.52. Determine the degeneracies of all levels for a cubical
box from the lowest-energy wavefunction, described by the
set of quantum numbers (1, 1, 1) to the wavefunction de-
scribed by the quantum number set (4, 4, 4). Hint: you may
have to use quantum numbers larger than 4 to determine
proper degeneracies. See Example 10.15.

10.53. From the expressions for the 1-D and 3-D particles-in-
boxes, suggest the forms of the Hamiltonian operator, ac-
ceptable wavefunctions, and the quantized energies of a par-
ticle in a two-dimensional box.

10.54. What are �x�, �y�, and �z� for �111 of a 3-D particle-in-
a-box? (The operators for y and z are similar to the operator
for x, except that y is substituted for x wherever it appears, and
the same for z.) What point in the box is described by these
average values?

10.55. What are �x2�, �y2�, and �z2� for �111 of a 3-D particle-
in-a-box? Assume that the operator x2̂ is simply multiplication
by x2 and that the other operators are defined similarly. Check
the integral table in Appendix 1 for needed integrals.

10.13 Orthogonality

10.56. Show that �111 and �112 for the 3-D particle-in-a-box
are orthogonal to each other.
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10.57. Verify that � �1*�2 dx � � �2*�1 dx � 0 for the 1-D
particle-in-a-box, showing that the order of the wavefunctions
inside the integral sign does not matter.

10.58. Evaluate the following integrals of the wavefunctions
of particles-in-boxes by using equation 10.28 instead of solv-
ing the integrals: 

(a) � �4*�4 d� (b) � �3*�4 d�

(c) � �4*Ĥ �4 d� (d) � �4*Ĥ �2 d�

(e) ��� �*111�111 d� (f) ��� �*111�121 d�

(g) ��� �*111Ĥ �111 d� (h) ��� �*223Ĥ �322 d�

10.14 Time-Dependent Schrödinger Equation

10.59. Substitute �(x, t) � e�iEt/�  �(x) into the time-
dependent Schrödinger equation and show that it does solve
that differential equation.

10.60. Write �(x, t) � e�iEt/�  �(x) in terms of sine and co-
sine, using Euler’s theorem: ei� � cos � � i sin �. What would
a plot of �(x, t) versus time look like?

10.61. Evaluate ��(x, t)�2. How does it compare to ��(x)�2?

10.62. Construct plots of the probabilities of the first three
wavefunctions for a particle in a one-dimensional box having
length a. Identify where the nodes are.

10.63. Numerically integrate the expression for the average
value of position for �10 for a particle-in-a-box and explain the
answer.

10.64. Construct a table of energies of a particle in a 3-D
box versus the quantum numbers nx, ny, and nz, where the
quantum numbers range from 1 to 10. Express the energies
in h2/8ma2 units. Identify all examples of accidental degen-
eracies.

10.65. Numerically integrate the 1-D particle-in-a-box wave-
function product �3*�4 over all space and show that the two
functions are orthogonal.
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11

315315

THE PREVIOUS CHAPTER INTRODUCED the basic postulates of quan-
tum mechanics, illustrated key points, and applied the postulates to a

simple ideal system, the particle-in-a-box. Although it is an ideally defined
model system, the particle-in-a-box ideas are applicable to compounds having
carbon-carbon double bonds like ethylene, and also to systems that have mul-
tiple conjugated double bonds, like butadiene, 1,3,5-hexatriene, and some dye
molecules. The electrons in these systems do not act as perfect particles-in-a-
box, but the model does a credible job of describing the energies in these mol-
ecules, certainly better than classical mechanics could describe them. Consider
what quantum mechanics has provided so far: a simple, approximate, yet ap-
plicable description of electrons in some � bonds. This is more than anything
classical mechanics provided.

Other model systems can be solved mathematically and exactly using the
time-independent Schrödinger equation. In such systems, the Schrödinger
equation is solved analytically; that is, by deriving a specific expression that
yields exact answers (like the expressions for the wavefunctions and energies
of the particle-in-a-box). Only for a few systems can the Schrödinger equation
be solved analytically, and we will consider most of those. For all other systems,
the Schrödinger equation must be solved numerically, by inserting numbers or
expressions and seeing what answers come out. Quantum mechanics provides
the tools for doing that, so don’t let the rarity of analytic solutions shake the
knowledge that quantum mechanics is the best theory for understanding the
behavior of electrons and, therefore, atoms and molecules and chemistry in
general.

11.1 Synopsis
We will consider the following systems, the behavior of which have exact, an-
alytic solutions for � in the Schrödinger equation:

• The harmonic oscillator, wherein a mass moves back and forth in a
Hooke’s-law type of motion and whose potential energy is proportional
to the square of the displacement

11.1 Synopsis
11.2 The Classical Harmonic

Oscillator
11.3 The Quantum-Mechanical

Harmonic Oscillator
11.4 The Harmonic Oscillator

Wavefunctions
11.5 The Reduced Mass
11.6 Two-Dimensional Rotations
11.7 Three-Dimensional Rotations
11.8 Other Observables in

Rotating Systems
11.9 The Hydrogen Atom: A

Central Force Problem
11.10 The Hydrogen Atom: The

Quantum-Mechanical
Solution

11.11 The Hydrogen Atom
Wavefunctions

11.12 Summary

Quantum Mechanics: 
Model Systems and the
Hydrogen Atom
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• Two-dimensional rotational motion, which describes motion in a circu-
lar path

• Three-dimensional rotational motion, which describes motion on a
spherical surface

We will conclude this chapter with a discussion of the hydrogen atom. Recall
that Bohr’s theory described the hydrogen atom, and correctly predicted its spec-
trum. However, Bohr’s theory was based on some assumptions that, when applied,
provided the right answer. Quantum mechanics has its postulates, and we will see
that it, too, predicts the same spectrum for the hydrogen atom. In order to be a
superior theory, quantum mechanics must not only do the same things as earlier
theories but do more. In the next chapter, we will see how quantum mechanics is
applied to systems larger than hydrogen (and most systems of interest are consid-
erably larger than hydrogen!), thereby making it a better description of matter.

11.2 The Classical Harmonic Oscillator
The classical harmonic oscillator is a repetitive motion that follows Hooke’s law.
For some mass m, Hooke’s law states that for a one-dimensional displacement
x from some equilibrium position, the force F acting against the displacement
(that is, the force that is acting to return the mass to the equilibrium point) is
proportional to the displacement:

F � �kx (11.1)

where k is called the force constant. Note that both F and x are vectors, and the
negative sign in the equation indicates that the force and displacement vectors
are opposite in direction. Since force has typical units of newtons or dynes and
displacement has units of distance, the force constant can have units like N/m
or, in other units that sometimes yield more manageable numbers, millidynes
per angstrom (mdyn/Å).

The potential energy, denoted V, of a Hooke’s-law harmonic oscillator is re-
lated to the force by a simple integral. The relationship and final result are

V � � � F dx � �
1
2

�kx2

To simplify our presentation, we ignore the vector characteristic of the posi-
tion and focus on its magnitude, x. Since x is squared in the expression for V,
negative values of x don’t need to be treated in any special fashion. The re-
sulting working equation for the potential energy of a harmonic oscillator is
more simply written as

V � �
1
2

�kx2 (11.2)

The potential energy does not depend on the mass of the oscillator. A plot of
this potential energy is shown in Figure 11.1.*

Classically, the behavior of the ideal harmonic oscillator is well known. The
position of the oscillator versus time, x(t), is

x(t) � x0 sin ���
m

k
��t � ��

where x0 is the maximum amplitude of the oscillation, k and m are the force
constant and mass, t is time, and � is some phase factor (which indicates the

316 C H A P T E R  11 Quantum Mechanics: Model Systems and the Hydrogen Atom

*An anharmonic oscillator is one that does not follow Hooke’s law and, ultimately, does
not have a potential energy as defined in equation 11.2. Anharmonic oscillators are dis-
cussed in a later chapter.

x

kx2V �
1
2

Figure 11.1 A plot of the potential energy 
diagram V(x ) � �

1
2

�kx2 for an ideal harmonic 
oscillator.
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absolute position of the mass at the starting time, when t � 0). We get this
equation by solving the appropriate equations of motion, whether expressed in
Newton’s or Lagrange’s or Hamilton’s format.

It takes a certain time, 	 seconds, for the oscillator to complete one full 
cycle. Therefore, in 1 second, there will be 1/	 oscillations. In a sinusoidal 
motion, one cycle corresponds to an angular change of 2�. The frequency of
the oscillator in number of cycles per second or simply 1/second (s�1; another
SI-approved name for s�1 is hertz, or Hz) is defined as 
 (Greek nu) and is
equal to


 � �
1

	
� � �

2

1

�
���

m

k
�� (11.3)

The frequency 
 is independent of the displacement. Such relationships have
been known since the late 1600s. Familiar harmonic oscillators include masses
on springs and clock pendulums.

Example 11.1
Assuming units of N/m for the force constant and kg for mass, verify that
equation 11.3 yields units of s�1 for frequency.

Solution
Recall that newton is a composite unit and that

1 N � 1 �
kg

s

�
2

m
�

The basic units for k are therefore

�
kg

s

�
2

m
� � m � �

k

m

g

�

�

s

m
2� � �

k

s2

g
�

Since the 1/2� term doesn’t have any units associated with it, the units from
equation 11.3 become

��
kg

k

/

g

s2

�� � ��
s

1
2�� � �

1

s
� � s�1

thus confirming that the frequency 
 has units of s�1.

Example 11.2
a. For small displacements, a clock’s pendulum can be treated as a harmonic
oscillator. A pendulum has a frequency of 1.00 s�1. If the mass of the pen-
dulum is 5.00 kg, what is the force constant acting on the pendulum in units
of N/m? What is this force constant in units of mdyn/Å? 
b. Calculate the similar force constant for a hydrogen atom having mass 
1.673  10�27 kg, attached to an atomically flat metal surface and vibrating
with a frequency of 6.000  1013 s�1.

Solution
a. One need simply substitute into equation 11.3. Using units consistent with
N/m for the force constant, the equation looks like this:

1.00 s�1 � �
2

1

�
���

5.00

k

k�g
��
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The expression is rearranged to solve for k, and the result is 197 N/m. There
are 105 dynes per newton, 1000 mdyn per dyne, and 1010 Å per meter, so it
is easy to show that this is equal to 1.97 mdyn/Å.
b. In the second case, again using equation 11.3:

6.000  1013 s�1 � �
2

1

�
���1.673�

k

10��27 kg
��

Evaluating this, one gets 237.8 N/m, which equals 2.378 mdyn/Å.

11.3 The Quantum-Mechanical 
Harmonic Oscillator

Quantum mechanically, a wavefunction for a one-dimensional harmonic os-
cillator can be determined using the (time-independent) Schrödinger equation

���
2

�

m

2

� �
d

d

x

2

2� � V̂ (x)��� E�

The potential energy for the quantum-mechanical system has the same form
as the potential energy for the classical system. (Generally speaking, since po-
tential energies are energies of position, the quantum-mechanical form of the
potential energy is the same as the classical form. But now because of the form
of the Schrödinger equation, the potential energy operator is multiplied by the
wavefunction �.) The Schrödinger equation for the harmonic oscillator is

���
2

�

m

2

� �
d

d

x

2

2� � �
1

2
�kx2��� E� (11.4)

and acceptable wavefunctions for this one-dimensional system must satisfy this
eigenvalue equation.

This differential equation does have an analytic solution. The method we use
here is one general technique for solving differential equations: we define the
wavefunction as a power series. What we will ultimately find is that in order to
solve the Schrödinger equation, the power series must have a special form.

First, the Schrödinger equation 11.4 will be rewritten using equation 11.3 to
substitute for k. Rearranging equation 11.3, one finds that the force constant k is

k � 4�2
2m (11.5)

and so the Schrödinger equation for a one-dimensional harmonic oscillator
becomes

���
2

�

m

2

� �
d

d

x

2

2� � 2�2
2mx2��� E�

Now we will do three things. First, we define

� 	 �
2�

�


m
�

Second, we divide both sides of the equation by the term ��2/2m. Third, we
bring all terms over to one side of the equation so that we have an expression
equaling zero. The Schrödinger equation becomes

��
d

d

x

2

2� � �2x2�� � �
2

�

m
2

E
��� 0
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or
�
d

d

2

x

�
2� � ��2�

m
2

E
� � �2x2�� � 0 (11.6)

where equation 11.6 has been rearranged from the previous expression to show
in parentheses the two terms that are simply being multiplied by �. The first
term is the second derivative of �.

We now assume that the form of the wavefunction � that satisfies this
Schrödinger equation has the form of a power series in the variable x. That is,
the wavefunction is some function f (x ) that has some term containing x 0

(which is simply 1), some term containing x1, some term containing x2, ad in-
finitum, all added together. Each power of x has some constant called a coeffi-
cient multiplying it, so the form of f (x) (recognizing that x0 � 1) is:

f(x) � c0 � c1x1 � c2x2 � c3x3 � � � �

The c’s are the coefficients multiplying the powers of x. It is more concise to write
the above function using standard summation notation, as in the following:

f(x) � 

�

n�0

cnxn (11.7)

where n is the index of the summation. For now, the summation goes to infin-
ity. This causes a potential problem, because sums that go to an infinite number
of terms often approach infinity themselves unless there is a way for each suc-
cessive term to become smaller and smaller. A partial solution is to assume that
every term in the sum is multiplied by another term that gets much smaller as x
itself (and therefore xn) gets larger. The term that will work in this case is e��x 2/2.
(Note the inclusion of the constant � here. You may wonder why we use this par-
ticular exponential function. At this point, the only justification for using this
function is that it will yield an analytic solution.) This exponential is an exam-
ple of a Gaussian-type function (named after the eighteenth- to ninteenth-century 
mathematician Karl Friedrich Gauss). The wavefunction for this system is now

� � e��x 2/2 � f(x) (11.8)

where f(x) is the power series defined in equation 11.7.
At this point, the first and then the second derivative can be determined

with respect to x. Then the expressions for the second derivative as well as the
original function can be substituted into the proper form of the Schrödinger
equation, equation 11.6. Once we do so, the logic behind the choice of the ex-
ponential function e��x 2/2 will become apparent mathematically. Using the
product rule of differentiation, the first derivative is

�� � (��x)e��x 2/2 � f(x) � e��x 2/2 � f �(x)

where �� and f �(x) refer to the first derivatives of � and f(x) with respect to
x. Using the above equation, the second derivative of � with respect to x can
be determined using the product rule. It is, after doing a little algebra:

�� � e��x 2/2[�2x2f(x) � �f(x) � 2�xf �(x) � f �(x)] (11.9)

Here e��x 2/2 has been factored out of every term in the second derivative.
Substituting the forms of � and �� into the form of the Schrödinger equation
given by equation 11.6 yields

e��x 2/2[�2x2f (x) � �f (x) � 2�xf �(x) � f �(x)] �

��2�

m
2

E
� � �2x2�e��x 2/2 � f(x) � 0 (11.10)
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Every term in equation 11.10 has the exponential e��x 2/2 in it, so it can be al-
gebraically divided out. Its residual influence on equation 11.10, in the form of
the �’s and x’s in the second derivative expression, is obvious. Further, the
terms in f(x), f �(x), and f �(x) can be grouped together and simplified so that
the substituted Schrödinger equation becomes [omitting the (x) part of the
power series f ]

f � � 2�xf � � ��2�

m
2

E
� � �� f � 0 (11.11)

This equation has terms arising from the power series f, its first derivative f �,
and its second derivative f �. The terms in �2x2 � f have canceled. Since we are
assuming that f is a power series, we can actually write out, term by term, what
the derivatives are. Rewriting the original power series first, the derivatives are

f(x) � 

�

n�0

cnxn (from 11.7 above)

f � � 

�

n�1

ncnxn�1

f � � 

�

n�2

n(n � 1)cnxn�2

The constants cn are unaffected by the derivation, since they are constants. The
starting value of the index n changes with each derivative. In the first derivative,
since the first term of the original function f is constant, we lose the n � 0
term. Now the n � 1 term is a constant, since the power of x for the n � 1
term is now 0, that is, x1�1 � x0 � 1. In the second derivative, the n � 1 term,
a constant in the f � expansion, itself becomes zero for the second derivative,
and so the summation starts at n � 2. You should satisfy yourself that this is
indeed the case, and that the above three expressions with the given summa-
tion boundaries are correct (of course, the infinity boundary does not change).

Since the first term in the summation for f becomes 0 in f �, the first deriv-
ative f � does not change if we add a 0 as a first term and then start the sum-
mation at n � 0. Understand that this does not change f �, since the first term,
the n � 0 term, is simply zero. But this does allow us to start the summation
at n � 0 instead of n � 1 (the importance of this will be seen shortly).
Therefore, we can write f � as

f � � 

�

n�0

ncnxn�1 (11.12)

Again, this does not change the power series itself; it only changes the initial
value of the index n. The same tactic can be taken with f �, but mathematically
this will not lead anywhere. Rather, by doing a two-step redefinition of the in-
dex, we can achieve much more. Since the index n is simply a counting num-
ber used to label the terms in the power series, we can shift the index by sim-
ply redefining, say, an index i as i 	 n � 2. Since this means that n � i � 2,
the expression for the second derivative f � can be rewritten by substituting for
every n:

f � � 

�

i�2�2

(i � 2)(i � 2 � 1)ci+2xi�2�2

which simply becomes

f � � 

�

i�0

(i � 2)(i � 1)ci+2xi
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Mathematically, the function f � has not changed. What has changed is the index,
which has shifted by 2. It is the same second derivative function determined
originally.

Of course, it doesn’t matter what letter is used to designate the index. If that
is the case, why not use n? The second derivative f � becomes

f � � 

�

n�0

(n � 2)(n � 1)cn+2xn (11.13)

which is the useful form of the second derivative.
The reason all this manipulation has taken place is so that when the sum-

mations are substituted into the Schrödinger equation, all terms can be grouped
under the same summation sign (and this cannot be done unless the summa-
tion index starts at the same number and means the same thing in all expres-
sions). Now the summations for f, f �, and f � can be substituted into equation
11.11. The resulting equation is



�

n�0

(n � 2)(n � 1)cn+2xn � 2�x 

�

n�0

ncnxn�1 � ��2�

m
2

E
� � ��


�

n�0

cnxn � 0

Because all of the summations in the above equation start at zero, go to infin-
ity, and use the same index, it can be rewritten as a single summation. This is
the reason for getting the indices to be the same for all summations. The equa-
tion becomes



�

n�0
�(n � 2)(n � 1)cn+2xn � 2�xncnxn�1 � ��2�

m
2

E
� � ��cnxn� � 0

This equation can be simplified by recognizing that the x’s in the second term
can be combined so that the power on x becomes n, and further recognizing
that all three terms now have x raised to the power of n. Making the combi-
nation and factoring xn out of all terms yields



�

n�0
�(n � 2)(n � 1)cn�2 � 2�ncn � ��2�

m
2

E
� � ��cn�xn � 0 (11.14)

Now we need to determine the values of the constants cn. Recall that this
equation was determined by substituting a trial wavefunction into the
Schrödinger equation, so that if the harmonic oscillator system has wavefunc-
tions that are eigenfunctions of the Schrödinger equation, those wavefunctions
would be of the form given in equation 11.8 [that is, � � e��x 2/2 � f(x)]. By
identifying the constants, we complete our determination of the wavefunctions
of a harmonic oscillator.

Equation 11.14 is an infinite sum that equals exactly zero. This is a some-
what remarkable conclusion: if one were to add up all infinite terms in the
sum, the total would be exactly zero. The only way to guarantee this for all val-
ues of x is if every coefficient multiplying xn in equation 11.14 were exactly
zero:

(n � 2)(n � 1)cn�2 � 2�ncn � ��2�

m
2

E
� � ��cn � 0 for any n

This does not mean that every coefficient cn is exactly zero [that would imply
that our power series f(x) is exactly zero]. It means that the entire expression
above must be zero. This requirement allows us to rewrite the above equation
to get a relationship between one coefficient cn and the coefficient two places
away, cn�2.
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cn�2 � cn (11.15)

An equation that relates sequential coefficients like this is called a recursion re-
lation. It allows one to determine successive coefficients, knowing the previous
ones. Ultimately, only two constants need be known at the outset: c0, from
which the even-powered coefficients c2, c4, c6, . . . can be determined, and c1,
from which the odd-powered coefficients c3, c5, c7, . . . can be determined.

Now one of the requirements for proper wavefunctions can be applied: they
must be bounded. Although this derivation started by assuming an infinite se-
ries as a solution, the wavefunction cannot be infinite and still apply to reality.
Even the inclusion of the e��x 2/2 term does not guarantee that the infinite sum
will be bounded. But the recursion relation in equation 11.15 provides a way
to get this guarantee. Because the coefficient cn�2 depends on cn, if for some n
the coefficient cn is exactly zero, all successive constants cn�2, cn�4, cn�6, . . . are
also exactly zero. Of course, this does not affect the other coefficients cn�1,
cn�3, . . . . So, in order to guarantee a bounded wavefunction, we must first sep-
arate the odd and even terms into two separate power series:

feven �  

�, even

n�0

cnxn

fodd �  

�, odd

n�1

cnxn

We will require that the wavefunctions themselves be composed of e��x 2/2

times either a sum of only odd terms or a sum of only even terms. For each
sum it is now required that, in order for the wavefunction to not be infinite, at
some value of n the next coefficient cn�2 must become zero. That way, all fur-
ther coefficients will also be zero. Since the coefficient cn�2 can be calculated
from the previous constant cn due to the recursion relation, we can substitute
zero for cn�2:

0 � cn

The only way for the coefficient cn�2 to become identically zero is if the nu-
merator of the fraction in the above equation becomes zero at that value of n:

� � 2�n � �
2

�

m
2

E
� � 0

This expression includes the total energy E of the harmonic oscillator. Energy
is an important observable, so let us detour to consider it. In order for the
wavefunction to be noninfinite, the energy of the harmonic oscillator, when
combined with the other terms like �, n, m, and �, must have only those val-
ues that satisfy the above equation. Therefore, we can solve for what the values
of the energy must be. Substituting also for � 	 2�
m/�, we find a simple
conclusion:

E � (n � �
1
2

�)h
 (11.16)

where n is the value of the index where the next coefficient of the series be-
comes zero, h is Planck’s constant, and 
 is the classical frequency of the oscil-
lator. That is, the total energy of the harmonic oscillator depends only on its
classical frequency (determined by its mass and force constant), Planck’s con-
stant, and some integer n. Since the energy can have values only as determined
by this equation, the total energy of the harmonic oscillator is quantized. The

� � 2�n � 2mE/�2

���
(n � 2)(n � 1)

� � 2�n � 2mE/�2

���
(n � 2)(n � 1)
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index n is the quantum number, and it can have any integer value from 0 to in-
finity. (As we will see from the form of the wavefunction, 0 is a possible value
for the quantum number in this case.)

Before returning to wavefunctions, we have a few points to consider with re-
spect to the total energy. A diagram of the energy levels for different quantum
numbers (assuming the mass and the force constant remain the same) is shown
in Figure 11.2. For an ideal harmonic oscillator, the energy levels are spaced
by the same amount. It is easy to show that the energy levels are separated by
�E � h
. Further, the lowest possible value for energy is not zero. This is seen
by substituting the lowest possible value for the quantum number n, which is
zero. We get

E(n � 0) � (0 � �
1
2

�)h
 � �
1
2

�h


which is a nonzero value for the total energy. This introduces the concept of
zero-point energy. At the minimum value for the quantum number (the ground
state of the oscillator), there is still a nonzero amount of energy in the system.

The frequency, 
, should be in units of s�1. Multiplying s�1 by the units on
Planck’s constant, J�s or erg�s, results in units of J or erg, which are units of en-
ergy. It is common to express the energy difference in terms of the photon used
to excite a system from one energy level to another, since harmonic oscillators
can go from state to state by the absorption or emission of a photon, just as
with Bohr’s hydrogen atom. One characteristic used to describe the photon is
its wavelength. Using the equation c � �
 (where c is the speed of light and �
is its wavelength), one can convert from wavelength to frequency. The follow-
ing examples illustrate.

Example 11.3
A single oxygen atom attached to a smooth metal surface vibrates at a fre-
quency of 1.800  1013 s�1. Calculate its total energy for the n � 0, 1, and 2
quantum numbers.

Solution:
We use equation 11.16 with 
 � 1.800  1013 s�1 and n � 0, 1, and 2:

E(n � 0) � (0 � �
1
2

�)(6.626  10�34 J�s)(1.800  1013 s�1)

E(n � 1) � (1 � �
1
2

�)(6.626  10�34 J�s)(1.800  1013 s�1)

E(n � 2) � (2 � �
1
2

�)(6.626  10�34 J�s)(1.800  1013 s�1)

From the above expressions, we get

E(n � 0) � 5.963  10�21 J

E(n � 1) � 1.789  10�20 J

E(n � 2) � 2.982  10�20 J

The minimum energy of this vibrating oxygen atom, its zero-point energy, is
5.963  10�21 J.

Example 11.4
Calculate the wavelength of light necessary to excite a harmonic oscillator
from one energy state to the adjacent higher state in Example 11.3. Express
the wavelength in units of m, �m (micrometers), and Å.
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n � 4 h�E �
9
2

n � 3 h�E �
7
2

x

E
ne

rg
y

n � 2 h�E �
5
2

n � 1 h�E �
3
2

n � 0 h�E �
1
2

Figure 11.2 A diagram of the energy levels of
an ideal harmonic oscillator, as predicted by the
solutions to the Schrödinger equation. Note that
the lowest quantized level, E(n � 0), does not
have zero energy.
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Solution
The difference in energy of the adjacent states is the same and equals 
h
, or

�E � (6.626  10�34 J�s)(1.800  1013 s�1) � 1.193  10�20 J

Since the energy of a photon is given by the equation E � h
, the calculation
can be reversed to obtain the frequency of the photon necessary. It should be
obvious that the frequency of the photon is thus 1.800  1013 s�1. Using the
equation c � �
:

2.9979  108 m/s � �(1.800  1013 s)

� � 0.00001666 m � 1.666  10�5 m

This corresponds to 16.66 �m or 166,600 Å. Calculations using the equations
E � h
 and c � �
 are common in physical chemistry. Students should al-
ways remember that these equations can be used to convert quantities like E,

, and � to corresponding values with other units.

11.4 The Harmonic Oscillator Wavefunctions
We return to the wavefunction itself. It has already been established that the
wavefunction is an exponential e��x 2/2 times a power series that has been ar-
gued to have a limited, not an infinite, number of terms. The final term in the
sum is determined by the value of the quantum number n, which also speci-
fies the total energy of the oscillator. Further, each wavefunction is composed
of either all odd powers of x in the power series, or all even powers of x. The
wavefunctions can be represented as

�0 � e��x 2/2(c0)

�1 � e��x 2/2(c1x)

�2 � e��x 2/2(c0 � c2x2)

�3 � e��x 2/2(c1x � c3x3) (11.17)

�4 � e��x 2/2(c0 � c2x2 � c4x4)

�5 � e��x 2/2(c1x � c3x3 � c5x5)
.
.
.

It should be pointed out that the c0 constant in �0 does not have the same
value as the c0 in �2 or �4, or other �’s. This is also true for the values of c1,
c2, and so on, in the expansions of the summations. The first wavefunction, �0,
consists only of the exponential term multiplied by the constant c0. This
nonzero wavefunction is what allows a quantum number of 0 to be allowed for
this system, unlike the situation for the particle-in-a-box. All the other wave-
functions consist of the exponential term multiplied by a power series in x that
is composed of one or more terms. Instead of an infinite power series, this set
of terms is simply a polynomial.

Like any proper wavefunction, these wavefunctions must be normalized.
The wavefunction �0 is easiest to normalize since it has only a single term
in its polynomial. The range of the one-dimensional harmonic oscillator is
�� to ��, since there is no restriction on the possible change in position.
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To normalize, the wavefunction �0 must be multiplied by some constant N
such that

N2   �
��

��

(c0e��x 2/2)*(c0e��x 2/2) dx � 1 (11.18)

Since N and c0 are both constants, it is customary to combine them into a
single constant N. The complex conjugate of the exponential does not change
the form of the exponential, since it does not contain the imaginary root i. The
integral becomes

N2   �
��

��

e��x 2

dx � 1

The final change to this integral begins with the understanding that because
the x in the exponential is squared, the negative values of x yield the same val-
ues of e��x 2

as do the positive values of x. This is one way of defining an even
mathematical function. [Formally, f (x) is even if, for all x, f(�x) � f(x). For
an odd function, f(�x) � �f(x). Examples of simple odd and even functions
are shown in Figure 11.3.] The fact that the above exponential has the same
values for negative values of x as for positive values of x means that the inte-
gral from x � 0 to �� is equal to the integral from x � 0 to ��. So instead
of our interval being x � �� to ��, let us take it as x � 0 to �� and take
twice the value of that integral. The normalization expression becomes

2 � N 2  �
��

0

e��x 2

dx � 1

The integral ���

0 e��x 2

dx has a known value, �
1
2

�(�a
�

�)1/2. In this case, a 	 �.
Substituting for this and solving for N, one finds

N � ��
�

�
��

1/4

The complete wavefunction �0 is therefore

�0 � ��
�

�
��

1/4

e��x 2/2

It turns out that the set of harmonic oscillator wavefunctions were already
known. This is because differential equations like those of equation 11.6, the
rewritten Schrödinger equation, had been studied and solved mathematically
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f (x)

f (�x) � f (x)

x

(a)

f (x)

f (�x) � �f (x)

x

(b)

Figure 11.3 Examples of odd and even functions. (a) This function is even, so that changing
the sign on x (from x to �x) yields the same value as for f(x), as the arrow shows. (b) This func-
tion is odd, where changing the sign on x yields �f(x), as the arrow shows.
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before quantum mechanics was developed. The polynomial parts of the har-
monic oscillator wavefunctions are called Hermite polynomials after Charles
Hermite, the nineteenth-century French mathematician who studied their
properties. For convenience, if we define � 	 �1/2x (where � is the Greek let-
ter xi, pronounced “zigh”), then the Hermite polynomial whose largest power
of x is n is labeled Hn(�). The first few Hn(�) polynomials are listed in Table
11.1, and Table 11.2 gives the solutions to an integral involving the Hermite
polynomials. Tables 11.1 and 11.2 should be used with care because of the vari-
able change. The following example illustrates some of the potential pitfalls in
using tabulated Hermite polynomials.

Example 11.5
Using the integrals in Table 11.2, normalize �1 for a quantum-mechanical
harmonic oscillator.

Solution
The integral from Table 11.2 will have to be used with care, because of the
differences in the variables between the equation in the table and the wave-
function �1. If � 	 �1/2x, then d� � �1/2 dx, and after substitution for � and
d� the integral can be applied directly. The normalization requirement means,
mathematically,

�
��

��

�*� dx � 1

The limits on the integral are �� and ��, and the infinitesimal is dx for the
one-dimensional integrand. For the �1 wavefunction of the harmonic oscil-
lator, it is assumed that the wavefunction is multiplied by some constant N
such that

N2   �
��

��

[H1(�1/2x) � e��x 2/2]* � H1(�1/2x) � e��x 2/2 dx � 1

Substituting for � and d�, this is transformed into

N 2   �
��

��

[H1(�) � e��2/2]* � H1(�) � e��2/2 �
�

d
1

�
/2� � 1

The complex conjugate does not change the wavefunction and so can be ig-
nored. �1/2 is a constant and can be moved outside the integral. The func-
tions inside the integral sign are all multiplied together, and so the integral
can be simplified to

�
�

N
1/

2

2� �
��

��

H1(�) � H1(�) � e��2

d�� 1

According to Table 11.2, this integral has a known form and, for n � 1,
equals 211!�1/2 (where ! indicates a factorial). Therefore,

�
�

N
1/

2

2� � 211!�1/2 � 1

N2 � �
2

�

�

1

1

/2

/2�

N � �
�

�

2�

1

�

/4

1/4�
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Table 11.1 The first six Hermite 
polynomialsa

n Hn(�)

0 1

1 2�

2 4�2 � 2

3 8�3 � 12�

4 16�4 � 48�2 � 12

5 32�5 � 160�3 � 120�

6 64�6 � 480�4 � 720�2 � 120 
aIn the treatment of the harmonic oscillator, note that 
� � �1/2x.

Table 11.2 Integral involving Hermite
polynomials

�
��

��

Ha(�)*Hb(�)e��2

d� � 0 if a � b
2aa!�1/2 if a � b
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By convention, only the positive square root is used. The �2� in the expres-
sion above is usually converted into the fourth root of 4 (that is, 4�4�, or 41/4)
so that all of the powers can be combined and the normalization constant can
be rewritten as

N � ��
4

�

�
��

1/4

The complete wavefunction for the n � 1 level is, after resubstituting in
terms of x:

�1 � ��
4

�

�
��

1/4

H1(�1/2x) � e��x 2/2

The normalization constants for the harmonic oscillator wavefunctions �n

follow a certain pattern (largely because the formulas for the integrals involve
Hermite polynomials) and so can be expressed as a formula. The general for-
mula for the harmonic oscillator wavefunctions given below includes an ex-
pression for the normalization constant in terms of the quantum number n:

�(n) � ��
�

�
��

1/4

� ��
2n

1

n!
��

1/2

� Hn(�1/2x) � e��x 2/2 (11.19)

where all of the terms have been previously defined.
Determining whether a function is odd or even can sometimes be useful, since

for an odd function ranging from �� to �� and centered at x � 0, the inte-
gral of that function is identically zero. After all, what is an integral but an area
under a curve? For an odd function, the positive area of one half of the curve is
canceled out by the negative area of the other half. Recognizing this eliminates
the need to mathematically evaluate an integral. Determining whether a product
of functions is odd or even depends on the individual functions themselves, since
(odd)  (odd) � (even), (even)  (even) � (even), and (even)  (odd) �
(odd). This mimics the rules for multiplication of positive and negative num-
bers. The following example illustrates how to take advantage of this.

Example 11.6
Evaluate �x� for �3 of a harmonic oscillator by inspection. That is, evaluate
by considering the properties of the functions instead of calculating the av-
erage value mathematically.

Solution
The average value of the position of the harmonic oscillator in the state �3

can be determined using the formula

�x� � N2   �
��

��

[H3(�) � e��x 2/2]*x̂ [H3(�) � e��x 2/2] dx

where N is the normalization constant and no substitution has been made for
the variable x (and it will not matter). This can be simplified, especially by
remembering that the position operator x̂ is multiplication by the coordinate
x, and all other parts of the integrand are being multiplied together:

�x� � N2   �
��

��

x � [H3(�)]2 � e��x 2

dx
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The Hermite polynomial H3(�) contains only odd powers of x, but upon
squaring it becomes a polynomial having only even powers of x. Therefore,
it is an even function. The exponential has x2 in it, so it is an even function.
The term x itself is an odd function. (The dx is not considered, since it is part
of the integration operation, not a function.) Therefore the overall function
is odd, and the integral itself, centered at zero and going from �� to ��, is
identically zero. Therefore �x� � 0.

This property of odd functions is extremely useful. For even functions, the
integral must be evaluated. Probably the best method of doing so at this point
is to substitute for the form of the Hermite polynomial, multiply out the terms,
and evaluate each term according to its form. Several integrals from Appendix
1 may be useful. However, odd functions integrated over the proper interval
are exactly zero, and such a determination can be made by an inspection of the
function rather than evaluation of the integral—a timesaving routine, when
possible.

Plots of the first few harmonic-oscillator wavefunctions are shown in Figure
11.4. Superimposed with them is the potential energy curve of a harmonic os-
cillator. Although the exact dimensions of Figure 11.4 depend on what m and
k are, the general conclusions do not. Recall that in a classical harmonic oscil-
lator, a mass goes back and forth about a center. When passing the x � 0 cen-
ter, the mass has minimum potential energy (which can be set to zero) and
maximum kinetic energy. It is moving at its fastest speed. As the mass extends
farther away from the center, the potential energy grows until all of the energy
is potential, none is kinetic, and the mass momentarily stops. Then it begins
motion in the other direction. The point at which the mass turns around is
called the classical turning point. A classical harmonic oscillator never extends
beyond its turning point, since that would mean that it has more potential en-
ergy than total energy.

As seen in Figure 11.4, wavefunctions for quantum-mechanical harmonic os-
cillators exist in regions beyond the point where classically all energy would be
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n � 0

n � 1

n � 2

n � 3

n � 4

x
x � 0

kx2V �
1
2

Figure 11.4 Plots of the first five wavefunctions of the harmonic oscillator. They are super-
imposed against the potential energy for the system. The positions where the wavefunctions go
outside the potential energy are called the classical turning points. Classically, a harmonic oscil-
lator will never go beyond its turning point, since it does not have enough energy. Quantum me-
chanically, there is a nonzero probability that a particle acting as a harmonic oscillator will exist
beyond this point.
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potential energy. That is, wavefunctions are nonzero and therefore the oscillator
can exist beyond its classical turning point. This suggests the paradoxical conclu-
sion that the oscillator must have negative kinetic energy! Actually, the “paradox”
aspect is based on classical expectations. This is not the first example of quantum
mechanics proposing something that goes against classical expectations. Tunneling
of a particle through a finite barrier is another, and the wavefunction’s existence
beyond the classical turning point is similar to tunneling. In this case, the “wall”
is a curved potential energy surface, not a straight up-and-down barrier.

Recall that the particle’s probability of existing anywhere along its one-
dimensional space is proportional to ���2. Several plots of ���2 are shown in
Figure 11.5. The top plot has a high quantum number, and its shape is start-
ing to mimic the behavior of a classical harmonic oscillator: it moves very
quickly near x � 0 (and has a lower probability of existence there), but pauses
near the turning point and has a higher probability of being found there. This
is another example of the correspondence principle: for high quantum num-
bers (and therefore high energies), quantum mechanics approaches the expec-
tations of classical mechanics.

Example 11.7
Evaluate the average value of the momentum (in the x direction) for �1 of a
harmonic oscillator.

Solution
Using the definition of the momentum operator, we need to evaluate

�px� � N2   �
��

��

[H1(�1/2x) � e��x 2/2]* � �i��
�

�

x
�[H1(�1/2x) � e��x 2/2)] dx

It would be easier to simply use the form of the Hermite polynomial in terms
of �1/2x instead of � (although it can be done either way; use your judgment
regarding which you prefer). From Table 11.1:

�px� � N2   �
��

��

(2�1/2x � e��x 2/2)* � �i��
�

�

x
�(2�1/2x � e��x 2/2) dx

The complex conjugate does not change anything. Evaluating the derivative
in the right-hand part of the expression, and bringing the constants outside
the integral:

�px� � �4�i�N2   �
��

��

x � e��x 2/2 � (e��x 2/2 � �x2e��x 2/2) dx

which simplifies to

�px� � �4�i�N2   �
��

��

(xe��x 2

� �x3e��x 2

) dx

Both terms inside the parentheses are odd over the range of integration, over-
all. Therefore, their integrals are exactly zero. So

�px� � 0

Given that momentum is a vector quantity and that the mass is traveling back
and forth in both directions, it should make sense that the average value of
the momentum is zero.
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n � 0

n � 1

n � 2

n � 3

n � 4

x
x � 0

kx2V �
1
2

Figure 11.5 Plots of the first five ���2 wave-
functions, superimposed on the potential energy
diagram. As the quantum number increases, the
probability that the particle is in the center of the
potential energy well decreases and the probabil-
ity of its being at the sides of the potential well
increases. At high quantum numbers, quantum
mechanics is mimicking classical mechanics.
This is another example of the correspondence
principle.
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11.5 The Reduced Mass
Many harmonic oscillators are not simply a single mass moving back and
forth, like a pendulum or an atom attached to a massive, unmoving wall. Many
are like diatomic molecules, with two atoms each moving back and forth to-
gether as in Figure 11.6. But to describe such a system as a harmonic oscilla-
tor, the mass of the oscillator isn’t the sum of the two masses of the atoms.
Such a system needs to be defined a little differently.

We will assume that the two masses m1 and m2 in Figure 11.6 have positions
labeled as x1 and x2 but are moving back and forth as a harmonic oscillator.
We will ignore any other motion of these two masses (like translation or rota-
tion) and focus solely on the oscillation. In a purely harmonic oscillation (also
called a vibration), the center of mass* does not change, so that

m1�
d

d

x

t
1� � �m2�

d

d

x

t
2�

The negative sign indicates that the masses are moving in the opposite direc-
tions. By adding the mixed term m2(dx1/dt) to both sides, we get

m1�
d

d

x

t
1� � m2�

d

d

x

t
1� � �m2�

d

d

x

t
2� � m2�

d

d

x

t
1�

(m1 � m2)�
d

d

x

t
1� � m2��

d

d

x

t
1� � �

d

d

x

t
2��

(where on the right side we have switched the order of the derivatives). This is
rearranged to

�
d

d

x

t
1� � �

m1

m

�
2

m2

� ��
d

d

x

t
1� � �

d

d

x

t
2�� (11.20)

It is very convenient in many cases to define relative coordinates instead of ab-
solute coordinates. For example, specifying certain values of Cartesian coordi-
nates is a way of using absolute coordinates. However, differences in Cartesian
coordinates are relative, because the difference doesn’t depend on the starting
and ending values (for example, the difference between 5 and 10 is the same as
the difference between 125 and 130). If we define the relative coordinate q as

q 	 x1 � x2

and thus

�
d

d

q

t
� 	 �

d

d

x

t
1� � �

d

d

x

t
2�

Now we can substitute into equation 11.20 to get

x�1 � �
d

d

x

t
1� � �

m1

m

�
2

m2

� �
d

d

q

t
� (11.21)

where we use x�1 to indicate the time derivative of x. By performing a parallel
addition of m1 dx2/dt to the original center-of-mass expression, we can also get

x�2 � �
d

d

x

t
2� � �

m1

m

�
1

m2

� �
d

d

q

t
� (11.22)

as a second expression.
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*Recall that the center of mass (xcm, ycm, zcm) of a multiparticle system is defined as 
xcm � (�mi�xi)/(�mi), where each sum is over the i particles in the system, mi is the parti-
cle’s mass, and xi is the particle’s x coordinate; and similar expressions apply for ycm and zcm.

(CoM)

m1 m2

x1 x2

Figure 11.6 Two masses, m1 and m2, are mov-
ing back and forth with respect to each other with
the center of mass (CoM) unmoving. This cir-
cumstance is used to define the reduced mass �.
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In considering the total energy of this harmonic oscillation, the potential
energy is the same as for any other harmonic oscillator but the kinetic energy
is the sum of the kinetic energies of the two particles. That is,

K � �
1
2

�m1x� 2
1 � �

1
2

�m2x� 2
2

Using equations 11.21 and 11.22, it is easy to substitute and show that the ki-
netic energy has a simple form in terms of the time derivative of the relative
coordinate q� :

K � �
1

2
� �

m

m

1 �
1m

m
2

2

�q� 2 (11.23)

The reduced mass � is defined as

� 	 �
m

m

1 �
1m

m
2

2

� (11.24)

so that the total kinetic energy is simply

K � �
1
2

��q� 2 (11.25)

which is a simpler expression for the kinetic energy. The reduced mass can also
be determined using the expression

�
�

1
� � �

m

1

1

� � �
m

1

2

� (11.26)

What this means is that the kinetic energy of the oscillator can be represented
by the kinetic energy of a single mass moving back and forth, if that single mass
has the reduced mass of the two masses in the original system. This allows us
to treat the two-particle harmonic oscillator as a one-particle harmonic oscil-
lator and use the same equations and expressions that we derived for a simple
harmonic oscillator. So all of the equations of the previous sections apply, as-
suming one uses the reduced mass of the system. For example, equation 11.3
becomes


 � �
1

	
� � �

2

1

�
���

�

k
�� (11.27)

The Schrödinger equation, in terms of the reduced mass, is

���
2

�

�

2

� �
d

d

x

2

2� � V̂ (x)� �� E� (11.28)

Fortunately, our derivations need not be repeated because we can simply sub-
stitute � for m in any affected expression. The unit of reduced mass is mass,
as is easily shown.

Example 11.8
Show that reduced mass has units of mass.

Solution
Substituting just units into equation 11.24, we get

� � �
kg

kg

�

�kg

kg
� � �

k

k

g

g

2

� � kg

which confirms that the reduced mass has units of mass.
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Example 11.9
The hydrogen molecule vibrates at a frequency of about 1.32  1014 Hz.
Calculate the following:
a. The force constant of the H–H bond
b. The change in energy that accompanies a transition from the n � 1 to 
n � 2 vibrational level, assuming that the hydrogen molecule is acting as an
ideal harmonic oscillator

Solution
a. The mass of a single hydrogen atom, in kilograms, is 1.674  10�27 kg.
Therefore, the reduced mass of a hydrogen molecule is

� � � 8.370  10�28 kg

Using the rearranged equation 11.5 in terms of k and remembering to use the
reduced mass in place of the mass, we find

k � 4�2(1.32  1014 s�1)2(8.370  10�28 kg)

k � 575 kg/s2

which, as explained earlier, is equal to 575 N/m or 5.75 mdyn/Å.
b. According to equation 11.16, the energy of a harmonic oscillator is

E � (n � �
1
2

�)h


For n � 1 and 2, the energies are

E(n � 1) � (1 � �
1
2

�)(6.626  10�34 J�s)(1.32  1014 s�1) � 1.31  10�19 J

E(n � 2) � (2 � �
1
2

�)(6.626  10�34 J�s)(1.32  1014 s�1) � 2.19  10�19 J

The difference in energy is 2.19  10�19 J minus 1.31  10�19 J, or 
8.8  10�20 J.

Example 11.10
The HF molecule has a harmonic vibrational frequency of 1.241  1014 Hz.
a. Determine its force constant using the reduced mass of HF.
b. Assume that the F atom doesn’t move and that the vibration is due solely
to the motion of the H atom. Using the mass of the H atom and the force
constant just calculated, what is the expected frequency of the atom?
Comment on the difference.

Solution
a. Using the masses of H and F as 1.674  10�27 kg and 3.154  10�26 kg
respectively, the reduced mass can be calculated as

� � � 1.590  10�27 kg

Substituting into the same expression as in the previous example, we find
for k:

k � 4�2(1.241  1014 s�1)2(1.590  10�27 kg) � 966.7 kg/s2

(1.674  10�27 kg)(3.154  10�26 kg)
����
1.674  10�27 kg � 3.154  10�26 kg

(1.674  10�27 kg)(1.674  10�27 kg)
����
1.674  10�27 kg � 1.674  10�27 kg
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b. The vibrational frequency expected for a hydrogen atom having a mass of
1.674  10�27 kg and a vibrational force constant of 967 kg/s2 is given by


 � �
2

1

�
���

m

k
��


 � �
2

1

�
���1.67

9

4

66�

.7

1

k

0

g
�

/�s
2

2

7 kg
��


 � 1.209  1014 Hz

This is a somewhat lower frequency, about 2�
1
2

�% lower, than is found experi-
mentally. This illustrates that using the reduced mass does have an effect on
the calculation. The effect is even more obvious when the two particles have
similar masses. Repeat this example using H2 (see example 11.9) and HD,
where D � 2H.

In all cases where multiple particles are moving relative to each other in our
system, the reduced mass must be considered in place of the actual mass. In
the harmonic oscillator, two particles are moving relative to each other, and so
the reduced mass is used. In a purely translational motion, two masses are
moving through space but remain in the same positions relative to each other.
Therefore, the sum of the masses, the total mass, is the correct mass needed to
describe the translational motion.

11.6 Two-Dimensional Rotations
Another model system consists of a mass traveling in a circle. A simplistic di-
agram of such a system is shown in Figure 11.7. The particle having mass m is
moving in a circle having a fixed radius r. There may or may not be another
mass at the center, but the only motion under consideration is that of the par-
ticle at radius r. For this system the potential energy V is fixed and can be ar-
bitrarily set to 0. Since the particle is moving in two dimensions, chosen as the
x and y dimensions, the Schrödinger equation for this system is

��
2

�

m

2

���
�

�

x

2

2� � �
�

�

y

2

2�� �� E� (11.29)

This is actually not the best form for the Schrödinger equation. Since the
particle is moving at a fixed radius and changing only its angle as it moves in
a circle, it makes sense to try and describe the motion of the particle in terms
of its angular motion, not its Cartesian motion. Otherwise, we would have to
be able to solve the above Schrödinger equation in two dimensions simultane-
ously. Unlike the 3-D particle-in-a-box, we cannot separate the x motion from
the y motion in this case, since our particle is moving in both x and y dimen-
sions simultaneously.

To find eigenfunctions for the Schrödinger equation, it will be easier if we
express the total kinetic energy in terms of angular motion. Classical mechan-
ics states that a particle moving in a circle has angular momentum, which was
defined in Chapter 9 as L � mvr. However, we can also define angular mo-
mentum in terms of linear momenta, pi, in each dimension. If a particle is con-
fined to the xy plane, then it has angular momentum along the z axis whose
magnitude is given by the classical mechanics expression

Lz � xpy � ypx (11.30)
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m
r

Figure 11.7 Two-dimensional rotational mo-
tion can be defined as a mass moving about a
point in a circle with fixed radius r.
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where px and py are the linear momenta in the x and y directions. At this time,
we are ignoring the vector property of the momenta (except for its z direction)
for the sake of simplicity.

In terms of the angular momentum, the kinetic energy of a particle having
mass m and revolving at a distance r about a center is

K � �
2m

Lz
2

r2� � �
L

2I
z
2

� (11.31)

where I has been defined as mr2 and is called the moment of inertia. (You
should be aware that there are different expressions for the moment of inertia
of a physical object depending on the shape of the object. The expression I �
mr2 is the moment of inertia for a single mass moving in a circular path.)

Quantum mechanically, since operators for linear momenta are defined, an
operator for the angular momentum can also be defined:

Lẑ � �i��x̂ �
�

�

y
� � ŷ �

�

�

x
�� (11.32)

By analogy, therefore, one can write the Schrödinger equation for this system
in terms of equations 11.31 and 11.32 as

�
L

2
ẑ

I

2

��� E� (11.33)

As useful as the angular operator will be, it is still not in its best form, since
using it in the Hamiltonian will still lead to an expression in terms of x and y.
Instead of using Cartesian coordinates to describe the circular motion, we will
use polar coordinates. In polar coordinates, the entire two-dimensional space
can be described using a radius from the center, r, and an angle � measured
from some specified direction (typically the positive x axis). Figure 11.8 shows
how the polar coordinates are defined. In polar coordinates, the angular mo-
mentum operator has a very simple form:

Lẑ � �i��
�

�

�
� (11.34)

By using this form of the angular momentum, the Schrödinger equation for
two-dimensional rotation becomes

��
�

2I

2

� �
�

�

�

2

2��� E� (11.35)

Equation 11.35 shows that even though we call this system “two-dimensional
motion,” in polar coordinates only one coordinate is changing: the angle �.
Equation 11.35 is a simple second-order differential equation that has known
analytic solutions for �, which is what we are trying to find. The possible ex-
pressions for � are

� � Aeim� (11.36)

where the values of the constants A and m will be determined shortly, � is the
polar coordinate introduced above, and i is the square root of �1. (Do not
confuse the constant m with the mass of a particle.) The astute reader will rec-
ognize that this wavefunction can be written in terms of (cos m� � i sin m�),
but the exponential expression above is the more useful form.

Although the wavefunction above satisfies the Schrödinger equation, proper
wavefunctions must also have other properties. First, they must be bounded.
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�

(r, �)

r

y

x

Figure 11.8 Two-dimensional polar coordi-
nates are defined as a distance from an origin, r,
and an angle � with respect to some arbitrary 
direction. Here, � is the angle made with the 
positive x axis.
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This is not a problem (as inspection of the cosine/sine form of the wavefunc-
tion shows). They must be continuous and differentiable. Again, exponential
functions of this sort are mathematically well behaved.

They must also be single-valued, and this presents a potential problem.
Because the particle is traveling in a circle, it retraces its path after 360° or 2�
radians. When it does so, the ‘’single-valued’’ condition of acceptable wave-
functions requires that the value of the wavefunction be the same when the
particle makes a complete circle. (This is also sometimes called a circular
boundary condition.) Mathematically, this is written as

�(�) � �(� + 2�)

We can use the form of the wavefunction in equation 11.36 and simplify in
steps:

Aeim� � Aeim(��2�)

eim� � eim�eim2�

1 � e2�im

where A and eim� have been canceled out sequentially in each step, and in
the last step the symbols in the exponent have been rearranged. This last
equation is the key. It is probably better followed if we use Euler’s theorem
(ei� � cos � � i sin �) and write the imaginary exponential in terms of sine
and cosine:

e2�im � cos 2�m � i sin 2�m � 1

In order for this equation to be satisfied, the sine term must be exactly zero
(because the number 1 has no imaginary part to it) and the cosine term must
be exactly 1. This will occur only when 2�m is equal to any multiple of 2� (in-
cluding 0 and negative values):

2�m � 0, �2�, �4�, �6�, . . .

This means that the number m must have only whole number values:

m � 0, �1, �2, �3, . . .

Thus, the constant m in the exponential cannot be any arbitrary constant, but
it must be an integer in order to have a properly behaved wavefunction.
Therefore the wavefunctions are not just arbitrary exponential functions, but
a set of exponential functions where the exponents must have certain specified
values. The number m is a quantum number.

In order to normalize the wavefunction, we need to determine d	 and the
limits of the integral. Since the only thing changing is �, the infinitesimal for
integration is simply d�. The value of � goes from 0 to 2� before it starts to
repeat the space it is covering, so the limits of integration are 0 to 2�. The nor-
malization of the wavefunction proceeds as follows.

N2 �
2�

0

(eim�)*eim� d�� 1

For the first time in these model systems, the complex conjugate changes
something in the wavefunction: it affects i in the exponent of the function. The
first exponent becomes negative:

N2 �
2�

0

e�im�eim� d� � 1
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The two exponential functions cancel each other out, leaving only the infini-
tesimal. The normalization is completed:

N2 �
2�

0

d� � 1

N2��0
2� � 1

N2(2�) � 1

N 2 � �
2

1

�
�

N � �
�

1

2��
�

where again only the positive square root is used. The complete wavefunction
for two-dimensional rotational motion, then, is:

�m � �
�

1

2��
� eim� m � 0, �1, �2, �3, . . . (11.37)

The normalization constant is the same for all wavefunctions and does not de-
pend on the quantum number m. Figure 11.9 shows plots of the first few �’s.
The magnitudes of the �’s are reminiscent of circular standing waves, and
these are also suggestive of de Broglie’s picture of electrons in a circular orbital.
It is only suggestive, and this analogy is not meant to hint that this is a true
description of electron motion.

Now the energy eigenvalues of the system can be evaluated. It is given by
the Schrödinger equation, of course:

��
�

2I

2

� �
�

�

�

2

2��� E�

By inserting the general form of the wavefunction given in equation 11.37, we get

�
�

2

�

I

2

� �
�

�

�

2

2����
1

2��
�eim�� � E���

1

2��
�eim��

The second derivative of the exponential is easily evaluated as �m2eim�.
(The constant 1/�2�� is not affected by the derivative.) Substituting and rear-
ranging the constants to keep the terms in the original wavefunction grouped
together:

�
m

2

2

I

�2

����
1

2��
�eim�� � E���

1

2��
� eim��

This shows that the eigenvalue is m2�2/2I. Since the eigenvalue of the
Schrödinger equation corresponds to the energy observable, the conclusion
is that

E � �
m

2

2

I

�2

� (11.38)

where m � 0, �1, �2, etc. A certain specified mass at a fixed distance r has a
certain moment of inertia I. Planck’s constant is a constant, so the only vari-
able in the expression for energy is an integer m. Therefore, the total energy of
a rotating particle is quantized and depends on the quantum number m. The
following example shows how these quantities come together to yield units of
energy.
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Example 11.11
An electron is traveling in a circle having radius 1.00 Å. Calculate the energy
eigenvalues of the first five 2-D rotational wavefunctions; that is, where 
m � 0, �1, and �2.

Solution
First, we calculate the moment of inertia of the electron. Using me �
9.109  10�31 kg and the given radius of 1.00 Å � 1.00  10�10 m, the mo-
ment of inertia is

I � mr2 � (9.109  10�31 kg)(1.00  10�10 m)2 � 9.11  10�51 kg�m2
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�m � � 3

�m � � 2

�m � � 1

�m � � 0

Circular representation Linear representation

0

1
�2�

2��

0

1
�2�

2��

0

1
�2�

2��

0

1
�2�

2��

Figure 11.9 The first four 2-D rotational wavefunctions. The circular representations mimic
the true geometry of the system, and the linear representations clarify what the wavefunctions
look like. Each linear representation represents one circuit (2� radians) of the rigid rotor.
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These are the correct units for the moment of inertia. Now we can consider
the energies of each state. Since m � 0 for the first state, it is easy to see that

E(m � 0) � 0

For the other states, we recall that the energy is dependent on the square of
the quantum number. Therefore, the energy when m � 1 is the same as the
energy when m � �1.

E(m � �1) � � 6.10  10�19 J

E(m � �2) � � 2.44  10�18 J

The (2�)2 terms in the denominators are on account of �. The units come
out to joules, which the following unit analysis illustrates:

�
k

(

g

J�

�

s

m

)2

2� � �
k

J

g

2

�

�

m

s2

2� � �
kg

J�

�

s

m

2

2� ��kg

s

�
2

m2

�� � J

where in the next-to-last step, one of the joule units is broken down into its
basic units.

A diagram of the energy levels of two-dimensional rotational motion is
given in Figure 11.10. As for the particle-in-a-box, the energy depends on the
square of the quantum number, instead of changing linearly with the quantum
number. The energy levels get spaced farther apart as the quantum number m
gets larger.

Because of the square dependence of the energy on the quantum number
m, negative values of m yield the same value of energy as do the positive val-
ues of the same magnitude (as noted in Example 11.11). Therefore, all energy
levels (except for the m � 0 state) are doubly degenerate: two wavefunctions
have the same energy.

This system has one more observable to consider: the angular momentum,
in terms of which the total energy was defined. If the wavefunctions are eigen-
functions of the angular momentum operator, the eigenvalue produced would
correspond to the observable of the angular momentum. Using the polar-
coordinate form of the angular momentum operator:

Lẑ � � �i��
�

�

�
����

1

2��
�eim�� � �i�(im)���

1

2��
�eim��

Lẑ � � m�� (11.39)

The wavefunctions that are eigenfunctions of the Schrödinger equation are
also eigenfunctions of the angular momentum operator. Consider the eigen-
values themselves: a product of �, a constant, and the quantum number m. The
angular momentum of the particle is quantized. It can have only certain values,
and those values are dictated by the quantum number m.

Example 11.12
What are the angular momenta of the five states of the rotating electron from
Example 11.11?

22(6.626  10�34 J�s)2

���
2(9.11  10�51 kg�m2)(2�)2

12(6.626  10�34 J�s)2

���
2(9.11  10�51 kg�m2)(2�)2
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m � 0 E � 0	2/2I � 0
m � 1 E � 1	2/2I

m � 2 E � 4	2/2I

m � 3 E � 9	2/2I

m � 4 E � 16	2/2I

m � 5 E � 25	2/2I

m � 6 E � 36	2/2I

Figure 11.10 The quantized energy levels of
2-D rotation. They increase in energy according
to the square of the quantum number m.
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Solution
According to equation 11.39, the values of the angular momenta are �2�,
�1�, 0, 1�, and 2�. Notice that although the energies are the same for cer-
tain pairs of quantum numbers, the values of the quantized angular mo-
menta are not.

A few comments are necessary about the angular momentum. First, classi-
cal mechanics treats possible angular momentum values as continuous, whereas
quantum mechanics limits angular momentum to discrete, quantized values.
Second, the quantized angular momentum does not depend on mass or mo-
ment of inertia. This is completely counter to the ideas of classical mechanics,
where the mass of a particle is intimately tied to its momentum. This is an-
other example in which quantum mechanics departs from the ideas of classi-
cal mechanics.

Also, because the quantized values of angular momentum depend on m and
not m2, every wavefunction has its own characteristic value of the angular
momentum, as mentioned in Example 11.12. The energy levels may be doubly
degenerate, but each state has its own angular momentum. One state has an
angular momentum value of m�, and the other �m�. Since momentum is a
vector quantity, there is a simple way of rationalizing the differences between
the two states. In one state, the particle is moving in one direction (say, clock-
wise), and in the other, it is moving in the opposite direction (say, counter-
clockwise).

In cases where two masses (say, two atoms) are connected and rotating in a
plane, all of the above equations would apply except that the mass would be
replaced by the reduced mass of the two-mass system. This is consistent with
earlier treatments of two masses moving relative to each other. A system of two
(or more) particles rotating in two dimensions is called a 2-D rigid rotor.

Example 11.13
The bond distance in HCl is 1.29 Å. In its lowest rotational state, the molecule
is not rotating, and so the rigid rotor equations indicate that its rotational en-
ergy is zero. What are its energy and its angular momentum when it is in the
first nonzero energy state? Use the atomic weight of Cl as an approximation for
the mass of the Cl atom.

Solution
Using the masses of H and Cl as 1.674  10�27 kg and 5.886  10�26 kg, the
reduced mass of the molecule is 1.628  10�27 kg. The bond distance, in
units of meters, is 1.29  10�10 m. For this case we will not calculate the mo-
ment of inertia as a separate step, but will substitute the numbers into the en-
ergy formula as appropriate. For the first nonzero rotational energy state:

E(m � 1) �

E(m � 1) � 2.05  10�22 J

Because the molecule can have this energy in the m � 1 state and the 
m � �1 state, the angular momentum of the molecule can be either 1� or
�1�. With the information provided, there is no way to distinguish between
the possibilities.

(1)2(6.626  10�34 J�s)2

�����
2(1.628  10�27 kg)(1.29  10�10 m)2(2�)2
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Planck’s constant h has the same units, J�s, as the angular momentum,
kg�m2/s. This is a different unit from that of linear momentum, where the unit
is kg�m/s. Planck’s constant h has units that classical mechanics would call
units of action. What we will find is that any atomic observable that has units
of action is an angular momentum of a sort, and its value at the atomic level
is related to Planck’s constant. It is relationships like this that reinforce the cen-
tral, irreplaceable role of Planck’s constant in the understanding (indeed, the
very existence) of matter.

Finally, now that we have shown that angular momentum is quantized for
some systems, we bring up an old idea, one that Bohr had when he put forth
his theory of the hydrogen atom. He assumed that the angular momentum was
quantized! By doing so, Bohr was able to theoretically predict the hydrogen
atom spectrum, although the justification of the assumption was highly de-
batable. Quantum mechanics does not assume the quantization of angular
momentum. Rather, quantum mechanics shows that it is inevitable.

Example 11.14
The organic molecule benzene, C6H6, has a cyclic structure where the carbon
atoms make a hexagon. The � electrons in the cyclic molecule can be ap-
proximated as having two-dimensional rotational motion. Calculate the
diameter of this “electron ring” if it is assumed that a transition occurring at
260.0 nm corresponds to an electron going from m � 3 to m � 4.

Solution
First, calculate the energy change in J that corresponds to a photon wave-
length of 260.0 nm, which is 2.60  10�7 m:

c � �


2.9979  108 m/s � (2.60  10 �7 m) � 



 � 1.15  1015 s�1

Therefore, using E � h
:

E � (6.626  10�34 J�s)(1.15  1015 s�1)

E � 7.64  10�19 J

This energy difference should be equal to the energy difference between the
m � 4 and m � 3 energy levels:

�E � 7.64  10�19 J � �
2

4

m

2�

r

2

2� � �
2

3

m

2�

r

2

2�

where mr2 has been substituted for I in the denominators. Substituting for h,
2�, and the mass of the electron:

7.64  10�19 J

� �

7.64  10�19 J � (16 � 9)�
6.104 

r

1
2

0�39 m2

�

r2 � 5.59  10�20 m2

r � 2.36  10�10 m � 2.36 Å

32(6.626  10�34 J�s)2

����
(2�)2 � 2(9.109  10�31 kg) � r2

42(6.626  10�34 J�s)2

����
(2�)2 � 2(9.109  10�31 kg) � r2
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The benzene molecule has a diameter of a little over 3 Å across. The “electron
ring” is assumed to be slightly less than that, on average. This model predicts
a slightly larger diameter (� 2 radii, or �4.7 Å in this case) than is the case.
However, given the approximations that were part of our assumptions in
applying this model to benzene, getting this close should be taken as a pos-
itive sign.

Two-dimensional rotational motion is the last system we consider where the
solution of the wavefunction is derived. Henceforth, major conclusions will be
presented instead of being derived explicitly. The systems considered to this
point have demonstrated sufficiently how the postulates of quantum mechan-
ics are applied to systems and how the results are obtained. After this, we will
concentrate more on the results and what they mean, rather than a step-by-
step derivation of the solutions. If you are interested in the mathematical de-
tails, consult a more advanced reference.

11.7 Three-Dimensional Rotations
It is a trivial step to expand rotation of a particle or rigid rotor to three di-
mensions. The radius of a particle from a center is still fixed, so three-dimen-
sional rotation describes motion on the surface of a sphere, as shown in Figure
11.11. However, in order to be able to describe the complete sphere, the coor-
dinate system is expanded to include a second angle �. Together, the three co-
ordinates (r, �, �) define spherical polar coordinates. The definitions of these
coordinates are shown in Figure 11.12. In order to treat the subject at hand
more efficiently, several statements regarding spherical polar coordinates are
presented without proof (although they can be proven without much effort, if
desired).

There is a straightforward relationship between three-dimensional Cartesian
coordinates (x, y, z) and spherical polar coordinates (r, �, �). They are

x � r sin � cos �

y � r sin � sin � (11.40)

z � r cos �

When one performs integrations in spherical polar coordinates, the form of
d	 and the limits of integration must be considered. The full form of d	 for
integration over all three coordinates (which would be a triple integral, each
integral dealing independently with a single polar coordinate) is

d	� r 2 sin � dr d� d� (11.41)

In the case of 2-D integration over only � and �, the infinitesimal d	 is

d	� sin � d� d� (11.42)

Because two angles are defined, in order to integrate over all space just once,
one angle’s integration limits go from 0 to � while the other angle’s integra-
tion limits range from 0 to 2� (if both limits were 0 to 2�, one would end up
covering all space twice). The accepted convention is that the integration lim-
its on � are from 0 to 2�, and the limits on � go from 0 to �. In cases where
integration in terms of r is considered, the integration limits are 0 to �.

Finally, as in the case of the 2-D rotational motion, the form of the
Hamiltonian is different when using spherical polar coordinates. In the case
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m r

�




r

z

y

x

Figure 11.12 The definitions of spherical po-
lar coordinates r, �, and �. The coordinate r is the
distance between a point and the origin. The an-
gle � is defined with respect to the projection of
the r vector in the xy plane, and is the angle that
this projection makes with the positive x axis
(motion toward the positive y axis being consid-
ered a positive angular value). The angle � is the
angle between the r vector and the positive z axis.

Figure 11.11 Three-dimensional rotations
can be defined as a mass moving along the sur-
face of a sphere having fixed radius r.
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where � and � are varied (but r is still constant!), the Hamiltonian opera-
tor is

Ĥ � ��
�

2I

2

���
�

�

�

2

2� � cot ��
�

�

�
� � �

sin

1
2 �
� �

�

�

�

2

2�� � V̂ (11.43)

where I is the moment of inertia and V̂ is the potential energy operator. As
with two-dimensional rotations, the Hamiltonian can be written in terms of
the angular momentum, but now it must be written in terms of the total
angular momentum, not just in terms of the angular momentum in a single
dimension. The 3-D rotational Hamiltonian is thus also written as

Ĥ � �
L̂

2I

2

� � V̂ (11.44)

By inspecting the two previous expressions, you can see that

L̂ 2 � ��2��
�

�

�

2

2� � cot ��
�

�

�
� � �

sin

1
2 �
� �

�

�

�

2

2�� (11.45)

The square root of the right side of equation 11.45 cannot be taken analytically.
Therefore, an operator for the total angular momentum is not commonly used
in 3-D quantum mechanical systems. Only an operator for the square of the
total angular momentum is common. In order to find the angular momentum,
one must determine the value (ultimately an eigenvalue) of the square of the
angular momentum, then take the square root of that observable.

Again, the potential energy V for 3-D rotational motion can be set to zero,
so acceptable wavefunctions for rotation in three dimensions must satisfy the
Schrödinger equation, which is

�
�

2

�

I

2

���
�

�

�

2

2� � cot ��
�

�

�
� � �

sin

1
2 �
� �

�

�

�

2

2��� � E� (11.46)

Even though the mass is moving in all three Cartesian coordinates, in spheri-
cal polar coordinates we only need � and � to define the motion. The detailed
solution of the above differential equation is long, and will not be presented
here. However, several points can be made before the solution is simply pre-
sented. First, it is assumed that the solution is separable. That is, we assume that
the wavefunctions are products of two functions � and �, each of which de-
pends only on the variables � and �, respectively:

�(�, �) 	 �(�) � �(�)

If we consider the variables � and � in equation 11.46 independently, we see
that only one term in the differential contains �, the last term. If � were held
constant, then the first two differential terms would be identically zero (deriv-
atives are zero if the variable in question is held constant), and the Schrödinger
equation would have the same form as that for 2-D rotational motion.
Therefore, the first part of the solution contains only the variable � and is the
same function derived for the 2-D rotating system:

�(�) � �
�

1

2��
�eim�

The same restrictions on the possible values of m, the quantum number, hold
true in this case, also: m � 0, �1, �2, and so on.

Unfortunately, a similar analysis cannot be done by holding � constant and
varying only � in order to find the function �(�). This is because all three of the
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differential terms in the Hamiltonian contain �, so no simplification is gained.
(The third term is not a differential in terms of �, but it does have the sin2 � term
in the denominator.) The mixing of variables in the third term introduces an-
other twist. The ultimate solution for �(�) will also depend on the quantum
number m. In addition, we will find that the limitations imposed on the accept-
able wavefunctions (that is, they must be bounded) will generate a relationship
between the quantum number m and whatever new quantum number arises.

The � part of the differential in equation 11.46 does have a known solution.
The solution is a set of functions known as associated Legendre polynomials. (As
with the Hermite polynomials, differential equations of the form in equation
11.46 had been previously studied, by the French mathematician Adrien
Legendre, but for different reasons.) These polynomials, listed in Table 11.3,
are functions of � only, but have two indices labeling the functions. One of the
indices, an integer denoted �, indicates the maximum power, or order, of �
terms. (It also indicates the total order of the combination of cos � and sin �
terms.) The second index, m, specifies which particular combination of
sin � and cos � terms are in the Legendre polynomial of that particular order.
For associated Legendre polynomials, the absolute value of m yields the same
polynomial. The possible combinations are limited to those where the absolute
value of m always has a value less than or equal to �. That is, because of the re-
quirements of the associated Legendre polynomials, there is a new quantum
number � whose value must be some nonnegative integer:

� � 0, 1, 2, . . . (11.47)

and the only possible values of the m quantum number associated with any
particular quantum number � are those integers whose absolute value is less
than or equal to �:

�m� � � (11.48)

These constraints are imposed by the forms of the polynomials, which must be
acceptable wavefunctions and eigenfunctions of the Schrödinger equation. Because
of the limit that � puts on m, it is common to use the symbol m� as the label
for this quantum number.

Example 11.15
List the possible values of m� for the first five possible values of �.

Solution
The quantum number � can have integer values starting from zero. Therefore,
the first five possible values of � are 0, 1, 2, 3, and 4. For � � 0, m� can only
be 0. For � � 1, the absolute value of m� must be less than or equal to 1, so
for integers the only possibilities are 0, 1, and �1 (otherwise listed as �1, 0,
1). For � � 2, the possible integer values of m� are �2, �1, 0, 1, and 2. For
� � 3, the possible m� values are �3, �2, �1, 0, 1, 2, and 3. For � � 4, the
possible values of m� are �4, �3, �2, �1, 0, 1, 2, 3, and 4.

Because the quantum number m� can have integer values from �� to � in-
cluding 0, there are 2� � 1 possible values of m� for each value of �.

Table 11.3 lists several of the associated Legendre polynomials. They are rep-
resented here as ��,m�

. It doesn’t matter whether m� is positive or negative; its
magnitude determines which polynomial is needed.
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Table 11.3 The associated Legendre 
polynomials ��,m�

� m� ��,m�

0 0 �
1
2

��2�
1 0 �

1
2

��6� cos �

1 �1 �
1
2

��3� sin �

2 0 �
1
4

��10�(cos 2 � � 1)

2 �1 �
1
2

��15� sin � cos �

2 �2 �
1
4

��15� sin2 �

3 0 �
3
4

��14�(�
5
3

� cos3 � � cos �)

3 �1 �
1
8

��42� sin �(5 cos2 � � 12)

3 �2 �
1
4

��105� sin2 � cos �

3 �3 �
1
8

��70� sin3 �
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Now the two parts of the solution for equation 11.46 can be combined to
get the entire solution for 3-D rotational motion. The acceptable wavefunc-
tions are

� � �
�

1

2��
�eim�� � ��,m�

(11.49)

where the following conditions apply:

� � 0, 1, 2, 3, . . .

�m�� � �

These wavefunctions are functions that were well known to the people who
developed quantum mechanics. They are called spherical harmonics and are la-
beled Y�

m� (or Y�,m�
). Once again, classical mathematics anticipated quantum

mechanics in the solution of differential equations. Although the Legendre
polynomials do not distinguish between positive and negative values of the
quantum number m, the exponential part of the complete wavefunction does.
Each set of quantum numbers (�, m�) therefore indicates a unique wavefunc-
tion, denoted ��,m�

, that can describe the possible state of a particle confined
to the surface of a sphere. The wavefunction itself does not depend on either
the mass of the particle or the radius of the sphere that defines the system.

Example 11.16
Show that the wavefunction �1,1 is normalized over all space. Use the asso-
ciated Legendre polynomial listed in Table 11.3.

Solution
The complete wavefunction consists of the appropriate associated Legendre
polynomial as well as the appropriate (1/�2��)eim�� part. The complete �1,1

wavefunction is

�1,1 � �
�

1

2��
� � ei�1�� � �

1

2
��3� sin �

which simplifies to

�1,1 � �
2�

�
2

3�
��

� � ei� sin �

The normalization requirement is that the integral of the square of the wave-
function over all space equals 1. So, we set up the wavefunction and integrate
it over � and �:

�1,1 � �
2�

��0

�
�

��0
��2�

�
2

3�
��

� � ei� sin ��* �
2�

�
2

3�
��

� � ei� sin � d� sin � d�

where the final sin � term comes from the definition of d	 in this two-
dimensional system.

�1,1 � �
4�

3

2�
� �

2�

��0

�
�

��0

e�i� sin � ei� sin � d� sin � d�

The two exponentials cancel each other. Separating the remaining � and �
parts into their respective integrals:

�1,1 � �
8

3

�
� �

2�

��0

d� �
�

��0

sin3 � d�
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Each integral can be solved separately. The first integral, over �, is easily
shown to be

�
2�

��0

d� � ��0
2� � 2� � 0 � 2�

The second integral, over �, must be either integrated by parts or looked up
in an integrals table. This integral is included in Appendix 1.

�
�

��0

sin3 � d� � ��
1
3

�cos �(sin2 � � 2)�0
�

� ��
1
3

�[(�1)(0 � 2) � (1)(0 � 2)] � �
4
3

�

If we combine all terms from the integral, we find

�1,1 � �
8

3

�
� � 2� � �

4

3
� � 1

confirming that the spherical harmonic wavefunction is indeed normalized.

Using the explicit forms of the spherical harmonics, one can use standard
trigonometric integrals to show that the wavefunctions are also orthogonal to
each other. That is,

� �*�,m�
���,m�� d	� 0 unless � � �� and m� � m�� (11.50)

The energy eigenvalues for 3-D rotational motion can be determined ana-
lytically by putting the spherical harmonics into the Schrödinger equation and
solving for the energy. It is a straightforward mathematical procedure (see ex-
ercise 11.33), but here we are more interested in the analytic expression for the
energy. It is

E 	 E(�) � �
�(� �

2I

1)�2

� (11.51)

The energy of 3-D rotational motion depends on the particle’s moment
of inertia, Planck’s constant, and �. Since the total energy cannot have any
values other than these, the total energy is quantized and depends on the
quantum number �. It does not depend on m�. Therefore, each energy level
is (2� � 1)-fold degenerate.

The expression for the energy of a 3-D rotation is slightly different from the
energy levels of a 2-D rotation. Because of the � � 1 term in the numerator,
the energy of a 3-D rotation goes up slightly faster with the quantum number
� than does the energy of a 2-D rotation versus m. This is illustrated by Figure
11.13, which diagrams the first eight energy levels of both the 2-D and 3-D 
rotations.

A 3-D rigid rotor is a system of more than one particle having fixed rel-
ative positions (that is, a molecule) that is rotating in three-dimensional
space. The only change in any of the expressions derived above is the sub-
stitution of �, the reduced mass, for m, the mass. (Be careful to not con-
fuse mass and rotational quantum number, both of which can be repre-
sented by m.) The wavefunctions, energy eigenvalues, and angular
momentum eigenvalues can be determined using the same expressions af-
ter substitution for �.
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Example 11.17
The carbon molecule buckminsterfullerene, C60, can be approximated as a
sphere, and the electrons of the molecule can be thought of as being confined
to the surface of a sphere. If one of the absorptions of C60 corresponds to an
electron going from the � � 4 state to the � � 5 state, what wavelength of
light would cause this change? Use r � 3.50 Å to calculate the moment of
inertia. (A transition in the C60 spectrum is seen at 404 nm).

Solution
The moment of inertia of an electron in this system is

I � (9.109  10�31 kg)(3.50  10�10 m)2 � 1.12  10�49 kg�m2

The energy of the � � 4 state is therefore

E(� � 4) � � 9.93  10�19 J

and the energy for the � � 5 state is

E(� � 5) � � 1.49  10�18 J
5(5 � 1)(6.626  10�34 J�s)2

����
2 � 1.12  10�49 kg�m2 � (2�)2

4(4 � 1)(6.626  10�34 J�s)2

����
2 � 1.12  10�49 kg�m2 � (2�)2
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m � 0

2-D rotation

m � 1

m � 2

m � 3

m � 4

m � 5

m � 6
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Figure 11.13 A comparison of the 2-D and 3-D rotations’ quantized energies. The drawing is
to scale vertically. 3-D rotations have slightly more energy than 2-D rotations of the same quan-
tum number.
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The difference in the energies is

�E � 4.96  10�19 J

Using E � h
, it can be shown that this energy difference corresponds to the
absorption of a photon having frequency 
 of


 � 7.49  1014 s�1

Using c � �
, this frequency corresponds to a wavelength of

� � 4.00  10�7 m

which is 400. nm. This compares very well to the experimentally measured
absorption appearing at 404 nm.

The above example shows that the 3-D rotational model is applicable to a real
system, just as the particle-in-a-box and 2-D rotational motion can be applied
to real systems. Other transitions of C60 can also be fit to the 3-D rotation equa-
tions, but they are left for exercises. These examples show that even though these
are model systems, they do have application to the real world. The situation is
similar to that of the ideal gas: we have equations to express the behavior of an
ideal gas. And although there is no such thing as an ideal gas, real gases can ap-
proximate ideal gas behavior, so ideal gas equations have a useful purpose in real
life. These equations from quantum mechanics have the same applicability as the
equations for an ideal gas. These model systems do not exist in reality, but some
atomic or molecular systems do exist that can be approximated with these sys-
tems. The quantum mechanical equations work reasonably well. They work
much better than anything that classical mechanics could ever have provided.

11.8 Other Observables in Rotating Systems
There are other observables to consider, starting with the total angular mo-
mentum. The operator is L̂ 2, so the eigenvalue will be the square of the total
angular momentum. Since the total energy can be written in terms of the
square of the total angular momentum, it should be no surprise that the spher-
ical harmonics are also eigenfunctions of (total angular momentum)2. Like the
energy eigenvalues, the analytic demonstration of the eigenvalue equation is
complex. Here, only the ultimate result is presented:

L̂ 2��,m�
� �(� � 1)�2��,m�

(11.52)

The square of the total angular momentum has the value �(� � 1)�2. The
total angular momentum is the square root of this expression, so the total,
three-dimensional angular momentum of any state described by the quantum
numbers � and m� is

L � ��(� ��1)�� (11.53)

The total angular momentum is not dependent on the m� quantum number.
Nor is it dependent on the mass of the particle, or the dimension of the sphere.
These ideas are again counter to the concepts of classical mechanics.

Example 11.18
What are the total angular momenta of an electron in the � � 4 and � � 5
states of C60 (see Example 11.17 above)?
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Solution
According to equation 11.53, the total angular momentum is dependent only
on � and �. For � � 4 and 5, the angular momenta of the electrons are

L(� � 4) � �4(4 ��1)�(6.626  10�34 J�s)/2�

L(� � 5) � �5(5 ��1)�(6.626  10�34 J�s)/2�

Evaluating the above expressions:

L(� � 4) � 4.716  10�34 J�s

L(� � 5) � 5.776  10�34 J�s

There is a third observable of interest. It is the z component of the total an-
gular momentum, Lz. The relationships between angular momentum opera-
tors allow for the simultaneous knowledge of the total angular momentum
(through its square, L2) and one of its Cartesian components. By convention,
the z component is chosen. This is due in part to the spherical polar coordi-
nate system, and the relatively simple definition of the z component of the an-
gular momentum in terms of �, as seen in the discussion of the 2-D rotating
system.

As before, the z component of angular momentum is defined as

Lẑ � �i��
�

�

�
� (11.54)

This is the same operator we used for 2-D rotation. Since the � part of the
3-D rotational wavefunction is exactly the same as for the 2-D rotational wave-
function, it may not surprise you that the eigenvalue equation, and therefore
the value of the observable Lz, is exactly the same:

Lẑ �� m��� (11.55)

The z component of the three-dimensional angular momentum, which has
components in the x, y, and z direction, is quantized. Its quantized value de-
pends on the m� quantum number.

Lz is only one component of the total angular momentum L. The other
components are Lx and Ly. However, the principles of quantum mechanics do
not allow us to know quantized values for these two components simultane-
ously with Lz. Therefore, only one of the three components of the total angu-
lar momentum can have a known eigenvalue simultaneously with the L2 itself.
For convenience, we choose the z component of the angular momentum, Lz,
to be the knowable observable.*

Graphically, the quantized total and z-component angular momenta are il-
lustrated in Figure 11.14. The length of each vector represents the total angu-
lar momentum and is the same for all five vectors where � � 2. However, the
z components of the five vectors are different, each one indicating a different
value of the m� quantum number (from �2 to 2). This figure also illustrates
that all of the momentum cannot be completely in the z direction, since there
is no nonzero integer W such that W � �(W)(W� � 1)�.
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*Technically, we could choose the x or y component of the total angular momentum to
be the knowable observable, but the z component is typically chosen if one dimension is
unique compared to the other two.

Ltot � �6	Lz � 0	

Ltot � �6	

Ltot � �6	

Lz � �1	

Ltot � �6	

Lz � �2	

Ltot � �6	Lz � �2	

Lz � �1	

Figure 11.14 The same quantized value for L
can have different quantized values for Lz. For 
� � 2, there are 2� � 1 � 5 possible values of m�,
each having a different value of Lz.
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Since the values of Lx and Ly are indeterminate for specified � and m�,
the graphical representations of Figure 11.14 are better represented three-
dimensionally as cones instead of vectors. Such a representation is shown in
Figure 11.15. This figure shows the angular momentum vectors superimposed
on a sphere, representing our 3-D surface. Again, the “length” of each cone is
constant. The orientation of each cone with respect to the z-axis is different,
and is determined by the value of the m� quantum number.

Since the energy of 3-D rotational motion depends only on the quantum
number � and � has 2� � 1 possible values of m�, each energy level has a de-
generacy of 2� � 1.

Example 11.19
What are the degeneracies of the � � 4 and � � 5 levels for C60 if the elec-
trons are assumed to behave like particles confined to the surface of a
sphere?

Solution
The � � 4 energy level has 2(4) � 1 � 9 possible values of m�, so this energy
level has a degeneracy of 9. Similarly, the � � 5 energy level has a degener-
acy of 11.

Example 11.20
Construct the complete spherical harmonic for �3,�3 and use the operators
for E, L2, and Lz to explicitly determine the energy, the total angular mo-
mentum, and the z-component angular momentum. Show that the values of
these observables are equal to those predicted by the analytic expressions for
E, L2, and Lz. (The objective of this example is to illustrate that the operators
do in fact operate on the wavefunction to produce the appropriate eigenvalue
equation.)
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Ltot � �6	Lz � 0	

Ltot � �6	

Ltot � �6	

Lz � �1	

Ltot � �6	

Lz � �2	

Ltot � �6	Lz � �2	

z

Lz � �1	

Figure 11.15 Because quantum mechanics does not address the angular momentum compo-
nents in the x or y dimension, the proper diagram relating L and Lz is a cone, where the total 
angular momentum and the z component of the total angular momentum are quantized, but the
x and y components are indeterminate and can have any value.
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Solution
The complete spherical harmonic �3,�3 is given by

�3,�3 � e�3i� sin3 �

Let us consider the total angular momentum first, since we can use the re-
sults of those manipulations to get the total energy. The total angular mo-
mentum can be determined from

L̂ 2� � ��2��
�

�

�

2

2� � cot ��
�

�

�
� � �

sin

1
2 �
� �

�

�

�

2

2���

Taking derivatives first with respect to �, one finds

�
�

�

�
���8

�
�

7

2

0�
��

� e�3i� sin3 �� � �
8

3

�
�

2

7

��
0�

� e�3i� sin2 � cos �

�
�

�

�

2

2���8
�
�

7

2

0�
��

� e�3i� sin3 �� � �
8

3

�
�

2

7

��
0�

� e�3i� (2 cos2 � sin � � sin3 �)

The derivative with respect to � is simply

�
�

�

�

2

2���8
�
�

7

2

0�
��
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Putting all this together, one gets

L̂ 2� � ��2��8
3
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��
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� e�3i�(2 cos2 � sin � � sin3 �)
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� e�3i� sin2 � cos � � �
sin

1
2 �
� �� 9�

8

�
�

7

2

0�
��

� e�3i���
This can be simplified by factoring out the wavefunction constants and the
exponential from all of the terms to get

L̂ 2� � ��2�3(2 cos2 � sin � � sin3 �)

� 3 cot � sin2 � cos � � 9�
sin

1
2�
� sin3 ���8

�
�

7

2

0�
��

� e�3i�

Simplifying all the terms and remembering the definition of the cotangent:

L̂ 2� � ��2(6 cos2 � sin � � 3 sin3 �

� � 3 sin � cos 2 � � 9 sin �)�
8
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2
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� e�3i�

Substituting for the trigonometric identity cos 2� � 1 � sin 2�:

L̂ 2� � ��2[9(1 � sin2 �) sin � � 3 sin3 � � 9 sin �]�
8

�
�

7

2

0�
��

� e�3i�

� ��2(9 sin � � 9 sin3 � � 3 sin3 � � 9 sin �)�
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�
�

7

2

0�
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�70�
�
8�2��
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� ��2(�12 sin3 �) �
8

�
�

7

2

0�
��

� e�3i�

� 12�2�3,�3

So, invoking the postulate that the value of an observable is equal to the
eigenvalue from the corresponding eigenvalue equation:

L̂ 2�3,�3 � 12�2�3,�3

or

L2 � 12�2

Since the eigenvalue of the square of the total angular momentum is 12�2,
the value of the total angular momentum must be the square root of this, or
�12��. This value, numerically, is 3.653  10�34 J�s, or 3.653  10�34 kg�m2/s.
The value for the energy can be determined from

E � �
L

2I

2

�

which is

E � �
12

2

�

I

2

�

The exact numerical value of the total energy will depend on the moment of
inertia of the system (which is not given, so we cannot calculate the energy
numerically). The z component of the angular momentum, Lz, is determined
by the eigenvalue equation

Lẑ � �i��
�

�

�
��3,�3 � �i��
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�
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���8
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2

0�
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� �i�(3i)��8
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��

� e�3i� sin3 �� � 3���8
�
�

7

2

0�
��

�e�3i� sin3 ��
� 3��3,�3

So the value of the z component of the angular momentum is given by the
eigenvalue 3�, which equals 3.164  10�34 J�s.

In all three cases, the predicted observables are the same as those deter-
mined by the analytic formulas of each observable.

It would have been easier (and shorter!) to use the formulas for the energy
and momenta to determine the values of these three quantized observables. But
it is important to understand that these differential equations actually do work
when the wavefunctions are operated on by them. The above example shows
that all of the operators do yield the appropriate values of the observables.

There are a few other analytically solvable systems, but most are variations
on the themes presented here and in the last chapter. For now, we will halt our
treatment of model systems and move on to a system that is more obviously
relevant chemically. But before we do, it is important to re-emphasize a few
conclusions about the systems we have treated so far. (1) In all of our model
systems, the total energy (kinetic � potential) is quantized. This is a result of
the postulates of quantum mechanics. (2) In some of the systems, other ob-
servables are also quantized and have analytic expressions for their quantized
values (like momentum). Whether other observables have analytic expressions
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for their quantized values depends on the system. Average values, rather than
quantized values, may be all that can be determined. (3) All of these model sys-
tems have approximate analogs in reality, so that the conclusions obtained
from the analysis of these systems can be applied approximately to known
chemical systems (much in the same way ideal gas laws are applied to the be-
havior of real gases). (4) Classical mechanics was unable to rationalize these
observations of atomic and molecular systems. It is this last point that makes
quantum mechanics worth understanding in order to understand chemistry.

11.9 The Hydrogen Atom: 
A Central Force Problem

It is a very short jump from the 3-D rigid rotor to the hydrogen atom. Hydrogen
is nothing more than a nucleus (a single proton) and an electron “in orbit”
about the nucleus. For a two-particle system with the motion occurring rela-
tively (that is, the electron is usually considered as moving around the nu-
cleus), the reduced mass must be used in any expression where mass would
appear. Instead of simple electronic motion, it is more properly thought of as
motion of two particles about a common center of mass. (The reduced mass
is very similar to the mass of the electron, but the difference is measurable.)

The final part of the quantum-mechanical description of the hydrogen
atom system deals with the third spherical polar coordinate r. In the 3-D rigid
rotor, we assumed a constant r. In earlier treatments of atoms (specifically, the
Bohr theory of the hydrogen atom), electrons were naively assumed to have
fixed orbits about nuclei. Classical mechanics provided the background for
such an assumption. Consider a rock tied to the end of a rope, swirled above
your head. Since you grip the rope tightly, of course the rock spins at a con-
stant radius! It would be contrary to experience to think that the radius of the
rope changes as the weight spins. Other circular motion reinforces this rea-
soning: merry-go-rounds, Ferris wheels, automobile tires, spinning tops—
almost every circular motion in our experience occurs at some fixed distance
from an axis.

Consider the atomic scale, however. The uncertainty principle suggests that
specifying a certain position of an electron is incompatible with other observ-
ables that we use to describe the state of the electron, like momentum and en-
ergy. Maybe we can’t fix the electron to a certain radius.

A proper quantum-mechanical treatment of H makes no presumptions about
the distance of an electron from a nucleus. Thus, the description of the hydro-
gen atom is the same as for the 3-D rigid rotor except it includes variation of
r, which ranges from 0 to �. This is illustrated in Figure 11.16. The hydrogen
atom is defined like a 3-D rigid rotor, only now the radius can vary also.
Wavefunctions describing the motion of an electron in a hydrogen atom must
therefore satisfy the 3-D spherical polar Schrödinger equation
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�� � V̂ �� 

� E� (11.56)

where the form of the Hamiltonian operator reflects the fact that all three
spherical polar coordinates, r, �, and �, can vary. Note the relationship between
equations 11.56 and 11.46, where the spherical polar coordinate r is not chang-
ing. Also note that we are using the reduced mass � in the Schrödinger equa-
tion, not the mass of the electron.
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Figure 11.16 The hydrogen atom, as defined
in quantum mechanics. This system is defined
similarly to the 3-D rigid rotor (Figure 11.11) ex-
cept now r can vary.
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In the case of the hydrogen atom, the potential energy is not zero. There is
an interaction between the electron and the nucleus for this system. The in-
teraction is electrostatic; that is, it is due to the attraction between the posi-
tively charged nucleus and the negatively charged electron. Fortunately, such
an electrostatic potential energy has a known mathematical formula, based ul-
timately on the ideas of Coulomb:

V � �
4

�

��

e2

0r
� (11.57)

where e � 1.602  10�19 coulombs, �0 is the permittivity of free space and
equals 8.854  10�12 C2/J�m, and r is the distance between the two charged
particles. From this, it is easy to show that the expression for V in equation
11.57 yields units of J, a unit of energy.

The potential energy V depends only on the distance r separating the nu-
cleus and the electron, not the angles � or �. This means that the potential
energy is the same at a fixed r no matter what the values of � or � are. That is
to say, the potential energy is spherically symmetric. The force between the elec-
tron and the hydrogen nucleus is also spherically symmetric. Because of this,
the force is said to be a central force, and the hydrogen atom description in
quantum mechanics is an example of what is generally known as a central force
problem.

The complete Schrödinger equation for this central force problem is thus
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and acceptable wavefunctions for a hydrogen atom must satisfy this Schrödinger
equation. It should be noted that there is another way to write this Schrödinger
equation, using the total angular momentum operator L̂ 2:
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11.10 The Hydrogen Atom: The 
Quantum-Mechanical Solution

A detailed mathematical solution of equations 11.58 or 11.59 is not presented
here, but the approach will be explained. As with the 3-D rotational motion, it
will be assumed that acceptable wavefunctions � are separable into three func-
tions that depend only on r, on �, and on �:

�(r, �, �) � R(r) � �(�) � �(�)

It may not be surprising to learn that the � and � parts of the wavefunction
� are the spherical harmonics, discussed earlier for the 3-D rigid rotor. These
solutions impose two integers called quantum numbers, � and m�, which de-
termine the exact mathematical expression. Because the Schrödinger equation
can be written in terms of the total angular momentum operator L̂ 2, we can
substitute the solutions for that part of the operator into the Schrödinger equa-
tion and get a differential equation in terms of r and R alone:
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The influence of the spherical harmonics part of the complete wavefunction is
seen in the second term on the left. Although this is a differential equation in
terms of r only, the quantum number � is present. This suggests that the solu-
tion to this differential equation depends on the quantum number � just like
the quantum number m� depends on � in the spherical harmonics.

The solutions to the differential equation 11.60 were known, just as the
spherical harmonics were known. One part of the solution of R is an expo-
nential function with a negative exponent, similar to the solution for the har-
monic oscillator. The exponential that works in this case is e�r/na, where n is a
positive integer and a is the collection of constants given by

a � �
4�

�

�

e
0
2

�2

�

where all the constants in the definition of a have their usual meanings. We
will see more of this expression later. These exponentials are multiplying a
polynomial, again in a situation similar to the harmonic oscillator wavefunc-
tions, which composes the rest of the solution to the differential equation
11.60. The polynomial is one of a set of polynomials that have varying num-
bers of terms and are called the associated Laguerre polynomials. A positive in-
teger index labels each associated Laguerre polynomial, and it is usually indi-
cated by the letter n. This n has the same value as the n in the exponential part
of the solution for R. Also, for each n there may be several Laguerre polyno-
mials, each one having a different value of � (the quantum number from 3-D
rotational motion). But not just any value of �: the associated Laguerre poly-
nomials restrict the possible values of � to any integer such that

� � n

Therefore, the integer n restricts the possible integer values of � (with 0 being
the minimum value of �). Since n is a positive integer, there is a simple series
of � values for each n:

n possible �’s

1 0

2 0,1

3 0,1,2

4 0,1,2,3

5 0,1,2,3,4
. .
. .
. .

Since the possible values of m� are restricted by the specific value of �, n ulti-
mately restricts the values of m� also. However, we again see that the restric-
tion arises due to the inherent restrictions on the allowed mathematical solu-
tions of the Schrödinger equation.

The complete wavefunction for the hydrogen atom is a combination of
the spherical harmonic, Y �

m�
� (1/�2��)eim�� � ��,m�

, and the exponential-
associated Laguerre polynomial combination, which is denoted Rn,�:

�(r, �, �) � Rn,� � Y �
m�

� �
�

1

2��
�eim�� � ��,m�

� Rn,� (11.61)

with the following restrictions:

n � 1, 2, 3, . . .

� � n (11.62)

�m�� � �
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For convenience, several of the first few wavefunctions are listed in Table 11.4
along with their respective n, �, and m� quantum numbers. Each characteris-
tic set (n, �, m�) refers to a specific wavefunction. It is easy to show that for any
n, the total number of possible wavefunctions having that value of n is n2.
(This will increase by a factor of 2 when we include the spin of the electron,
but that will be considered in Chapter 12.)

The eigenvalue for energy also has an analytic solution. It is

E � ��
8�

e
2
0

4

h

�
2n2� (11.63)

The energy is negative here. This is due to the convention that the interaction
of oppositely charged particles contributes to a decrease in energy. (Conversely,
the repulsion of similarly charged particles would be positive in energy.) An
energy of zero corresponds to the proton and electron at infinite distance from
each other (so that the potential energy is zero) and having no kinetic energy
with respect to each other. The energy depends on a collection of constants—
the charge on the electron, e , the reduced mass of the hydrogen atom �, the
permittivity of free space �0, Planck’s constant h—and the integer n. The en-
ergy depends on the index n; n is a quantum number and the total energy is
quantized. The energy of the hydrogen atom does not depend on the quantum
numbers � or m�, only on n. The index n is therefore called the principal
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Table 11.4 Complete wavefunctions for hydrogen-like atomsa

n � m� �n,�,m�
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quantum number. Because n2 wavefunctions have the same quantum number
n, the degeneracy of each energy state of the hydrogen atom is n2. (Again, this
will change by a factor of 2.) Each set of wavefunctions having the same value
for the principal quantum number is said to define a shell.

Example 11.21
Calculate the energy values for the first three shells of the hydrogen atom. The
reduced mass of the hydrogen atom is 9.104  10�31 kg.

Solution
Values are substituted into equation 11.63 for n � 1, 2, and 3:

E � �

E � �

E � �

These expressions give

E(n � 1) � 2.178  10�18 J

E(n � 2) � 5.445  10�19 J

E(n � 3) � 2.420  10�19 J

where it can easily be shown that the units are joules:
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Remember that spectroscopy measures the changes in energy between two
states. Quantum mechanics can also be used to determine a change in energy,
�E, for the hydrogen atom:
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where the principal quantum numbers n1 and n2 are used to differentiate be-
tween the two energy levels involved. A little algebraic rearranging yields
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�� (11.64)

This is the same form of equation that Balmer got by considering the spectrum
of hydrogen, and that Bohr got by assuming quantized angular momentum! In
fact, the collection of constants multiplying the quantum number expression
is familiar:

�
8

e

�

4

2
0

�

h2� �

� 2.178  10�18 J

(1.602  10�19 C)4(9.104  10�31 kg)
�����
8[8.854  10�12 C2/(J�m]2(6.626  10�34 J�s)2

(1.602  10�19 C)4(9.104  10�31 kg)
������
8[8.854  10�12 C2/(J�m)]2(6.626  10�34 J�s)232

(1.602  10�19 C)4(9.104  10�31 kg)
������
8[8.854  10�12 C2/(J�m)]2(6.626  10�34 J�s)222

(1.602  10�19 C)4(9.104  10�31 kg)
������
8[8.854  10�12 C2/(J�m)]2(6.626  10�34 J�s)212
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which is easily shown to be, in units of wavenumbers and to four significant
figures,

�
8

e

�

4

2
0

�

h2� � 109,700 cm�1

This is the Rydberg constant, RH, from the hydrogen atom spectrum.* Quantum
mechanics therefore predicts the experimentally determined hydrogen atom spec-
trum. At this point, quantum mechanics predicts everything that Bohr’s the-
ory did and more, and so supersedes the Bohr theory of the hydrogen atom.

Since the spherical harmonics are part of the hydrogen atom’s wavefunc-
tions, it should come as no surprise that the total angular momentum and the
z component of the total angular momentum are also observables that have
known analytic and quantized values. They are

L̂ 2�n,�,m�
� �(� � 1)�2�n,�,m�

Lẑ �n,�,m�
� m���n,�,m�

so that the quantized values for total angular momentum are ��(� ��1)�� and
for the z component are m��. The quantum number � is called the angular
momentum quantum number. The m� quantum number is the z-component
angular momentum quantum number, sometimes called the magnetic quantum
number due to the differing behavior of wavefunctions having different m�

values in a magnetic field (another topic for later). The angular momentum of
the hydrogen atom (due mostly to the electron) is quantized, as Bohr assumed.
However, the exact values of the quantized angular momentum are slightly dif-
ferent than what Bohr assumed. It was not possible to know this in 1913, how-
ever, and though ultimately incorrect, Bohr’s theory should be remembered as
a crucial step in the right direction.

This treatment of the hydrogen atom is also applicable to any atom that has
only one electron. In cases of other atoms, the nuclear charge is different and
the overall atom itself has a charge. The atomic number, Z, and the reduced
mass � are the only changes in any of the equations from above (and the re-
duced mass approaches the mass of the electron as the nucleus gets larger). The
Schrödinger equation for these hydrogen-like ions is
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where Z shows up only in the potential energy. The only other major change
is in the expression for the quantized energy of these ions, which now has the
form

E � ��
8

Z

�

2

2
0

e

h

4

2

�

n2� (11.66)

The wavefunctions themselves also have a Z dependence on them. Table 11.4
gives the complete wavefunctions with their Z dependence already included.
(In our previous treatment of the hydrogen atom, Z was 1.) The angular mo-
menta observables have the same forms as given above. Spectra of the hydro-
gen-like ions, which have been observed experimentally, are as simple as that

11.10 The Hydrogen Atom: The Quantum-Mechanical Solution 357
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RH � 109,677.58 cm�1.
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of the hydrogen atom. The transitions appear at different wavelengths of light,
however.

Example 11.22
Predict the wavelength of light emitted by an excited Li2� ion (Z � 3) as an
electron goes from the n � 4 state to the n � 2 state. Use the mass of the
electron in place of the reduced mass (this imparts a very minor 0.008% er-
ror in the calculation).

Solution
We can use an expression for �E similar to the one in equation 11.64, with
addition of the Z2 term:

�E � �
Z

8�

2e
2
0

4

h

�
2���

n

1
2
2

� � �
n

1
2
1

��
For n2 � 2 and n1 � 4:

�E � ��
2

1
2� � �

4

1
2��

�E � 3.677  10�18 J

Using E � h
 and c � �
 as conversions, we can determine the wavelength
of the photon having this energy:

� � 54.0 nm

This wavelength is in the vacuum ultraviolet region of the spectrum.

11.11 The Hydrogen Atom Wavefunctions
Let us take a closer look at the wavefunctions themselves to finish this chapter.
Each wavefunction of a hydrogen atom is called an orbital. As mentioned, the
energy of an electron in an orbital (that is, an electron having its motion de-
scribed by a particular wavefunction) is dependent only on the principal quan-
tum number n and a collection of physical constants. Each group of wave-
functions having the same value of the quantized energy defines a shell. Each
shell has a degeneracy of n2. Each group of same-� wavefunctions (for every �
there are 2� � 1 wavefunctions, having different values of m�) constitutes a
subshell. In hydrogen and hydrogen-like atoms, all of the subshells within each
shell have the same energy. This is illustrated in Figure 11.17. In labeling shells
and subshells in hydrogen-like atoms (and other atoms, as we will see), we make
use of the quantum numbers n and �. The numerical value of the principal
quantum number is used in the labeling, and for � a letter designation is used:

� Letter designation

0 s

1 p

2 d

3 f

4 g
. .
. .
. .

32(1.602  10�19 C)4(9.104  10�31 kg)
������
8[8.854  10�12 C2/(J �m)]2(6.626  10�34 J�s)2

358 C H A P T E R  11 Quantum Mechanics: Model Systems and the Hydrogen Atom

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Orbitals are designated by pairing the value of the principal quantum number
and the letter representing the value of �: 1s, 2s, 2p, 3s, 3p, 3d, and so forth. A
numerical subscript can be used to label the m� values of the individual or-
bitals: 2p�1, 2p0, 2p�1, and so on. Since the value of n restricts the value of �,
the first shell has only an s subshell (because � can only be 0). The second shell
has only s and p subshells (because � can only be 0 or 1), and so forth. These
restrictions are due to the nature of the mathematical solution of the
Schrödinger equation.

Example 11.23
What are the possible subshells in the n � 5 shell? How many orbitals are in
each subshell? Do not include m� labels.

Solution
For n � 5, � can be 0, 1, 2, 3, or 4. Each subshell has 2� � 1 orbitals. In tab-
ular form:

n, � Label No. of Orbitals

5, 0 5s 1

5, 1 5p 3

5, 2 5d 5

5, 3 5f 7

5, 4 5g 9
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n � 1 E � �109,737 cm�1

n � 2

n � 3

n � 4
n � 5

E � �27,434 cm�1

E � �12,193 cm�1

E � �6,858 cm�1
E � �4,389 cm�1

E � 0

E
ne

rg
y

� 0

� 0

� 0 � 1

� 1

� 2

� 0 � 1 � 2 � 3

Figure 11.17 The energy level diagram for a hydrogen atom, showing the n and � quantum
numbers for the levels. The quantized energy levels are labeled. Degenerate wavefunctions are
shown.
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Wavefunctions for hydrogen-like systems, determined by quantum num-
bers, can be labeled with those quantum numbers. Therefore, it is common to
see �1s, �3d, and so on.

As can be seen from Table 11.4, wavefunctions having a nonzero value for
m� have an imaginary exponential function part. This means that the overall
wavefunction is a complex function. In cases where completely real functions
are desired, it is useful to define real wavefunctions as linear combinations of
the complex wavefunctions, taking advantage of Euler’s theorem. For example:

�2px
	 �

�
1

2�
�(�2p�1

� �2p�1
)

(11.67)
�2py

	 ��
�

i

2�
�(�2p�1

� �2p�1
)

The p wavefunctions defined like this are real, not complex, and so are easier
to work with in many situations. Real wavefunctions for d, f, and other orbitals
are defined similarly. These nonimaginary wavefunctions are not eigenfunc-
tions of Lẑ any longer, since they are composed of parts that have different
eigenvalues of m�. They are still eigenfunctions of the energy and total angu-
lar momentum, however. (In fact, it is only because the original wavefunctions
are degenerate that we are able to take linear combinations, like those in equa-
tion 11.67.)

The behavior of the wavefunctions in space raises some interesting points.
Every s-type orbital has spherical symmetry, since there is no angular depen-
dence in the wavefunction. Because the probability of an electron existing at any
point in space is related to ���2 or, in this case, �R�2, the probability of an s elec-
tron existing in space is spherically symmetric also. Starting from the nucleus
and moving out along a straight line, one can plot the probability of the elec-
tron having a certain value of r versus the radial distance r itself. Such a plot for
�1s is shown in Figure 11.18. This plot shows the surprising conclusion that the
radius of maximum probability occurs at the nucleus, that is, where r � 0.

This analysis is a little misleading. From a spherical polar viewpoint, there is
very little volume of space close to the nucleus, because for all values of � and �
a small value of r sweeps out a very tiny sphere. The total probability of the elec-
tron existing in such a small volume of space should be small. However, as the
radius increases, the spherical volume swept out by the spherically symmetric
wavefunction gets larger and larger, and one would expect an increase in proba-
bility that the electron will be located at greater distances from the nucleus.

Instead of considering the electron probability along a straight line out from
the nucleus, consider the electron probability on a spherical surface around the
nucleus, each spherical surface getting larger and larger. Mathematically, the
spherical surface corresponds not to �R�2, but 4�r2�R�2. A plot of 4�r2�R�2 ver-
sus r for �1s is shown in Figure 11.19. The probability starts at zero (a conse-
quence of the “zero” volume at the nucleus), increases to a maximum, then de-
creases toward zero as the radius gets larger and approaches infinity. Quantum
mechanics shows that an electron doesn’t have a specific distance from the nu-
cleus. Instead, it can have a range of distances having differing probabilities. It
does have a most probable distance. It can be shown mathematically that the
value of r at the most probable distance is

rmax � �
4�

�

�

e

2

2

�0� 	 a (11.68)

a � 0.529 Å (11.69)
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�R �2

Distance from nucleus

0
Distance from nucleus (Å)

Most probable distance � a � Bohr radius

5

4�
r2

�R
�2

4321

Figure 11.19 A plot of 4�r2�R�2 for �1s versus
distance from the nucleus. The 4�r2 contribution
accounts for the spherical symmetry of the 1s
wavefunction about the nucleus. By looking at
the probability of existence in spherical shells
rather than straight away from the nucleus, we
get a more realistic picture of the expected be-
havior of an electron in a hydrogen atom.

Figure 11.18 A plot of the square of the ra-
dial function of �1s versus distance from the nu-
cleus for the hydrogen atom. It suggests that the
electron has a maximum probability of existing
at the nucleus.
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where a is the same constant previously defined for the R functions. Since it is
defined as a group of constants, a itself is a constant and has units of length
(shown in equation 11.69 in units of Å). The constant a is called the Bohr ra-
dius. This most probable distance is exactly the same distance that an electron
of Bohr’s theory would have in its first orbit. Quantum mechanics does not
constrain the distance of the electron from the nucleus as did Bohr’s theory.
But it does predict that the distance Bohr calculated for the electron in its 
lowest energy state is in fact the most probable distance of the electron from 
the nucleus. (It is sometimes written a0, which is defined similarly but uses the
mass of the electron instead of the reduced mass of the hydrogen atom. The
difference is very slight.)

Example 11.24
a. What is the probability that an electron in the �1s orbital of hydrogen will
be within a radius of 2.00 Å from the nucleus?
b. Calculate a similar probability, but now for an electron within 0.250 Å of
a Be3� nucleus.

Solution
a. For a normalized wavefunction, the probability P is equal to

P � �
b

a

�*� d	

where a and b are the limits of the space being considered. For the hydrogen
atom, this becomes the three-dimensional expression

P � �
a3

1

�
� �

2�

0

d� � �
�

0

sin � d� � �
2.00 Å

0

r2e�2r/a dr

where the wavefunction in terms of the Bohr radius a has already been
squared and the expression has been separated into three integrals. The two
angular integrals we have done before, and the integral over r can be found
in Appendix 1. The expression becomes

P � �
a3

1

�
� � 2� � 2�e�2r/a���2

r2a
� � �

r

2

a2

� � �
a

4

3

����02.00Å

If the value of a in units of angstroms, 0.529 Å, is used in the above expres-
sion, then the 2.00-Å limit can be used directly because the quantities are ex-
pressed in the same units. Substituting and evaluating the expression at the
limits:

P � �
(0.529

1

Å)3�
� � 2� � 2[(5.201  10�4)(1.337841)Å3 �

(1)(�3.701  10�2)Å3]

Note that the Å3 units cancel from the expression, and the probability is unit-
less (as it should be). Evaluating this expression, we find that

P � 0.981, or 98.1%

This example shows that the electron has a 98.1% probability of being within
2.00 Å, or slightly under 4 Bohr radii, from the nucleus. You might want to
compare this with Figure 11.19, where the total probability is represented by
the area under the curve. Finally, note that this implies a 1.9% chance that
the electron is farther than 2.00 Å from the nucleus.
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b. For the Be3� nucleus, the solution to the problem is along similar lines but
now the nuclear charge for the beryllium atom must be included explicitly.
For Z � 4, the integrals being evaluated are

P � �
a

4
3

3

�
� �

2�

0

d� � �
�

0

sin � d� � �
0.250Å

0

r2e�8r/a dr

Note that the upper limit on the r integral is now 0.250 Å. These expressions
integrate to yield

P � �
a

6
3

4

�
� � 2� � 2�e�8r/a���8

r 2a
� � �

r

3

a

2

2

� � �
2

a

5

3

6
����00.250Å

which yields

P � �
(0.52

6

9

4

Å)3�
� � 2� � 2[(2.28  10�2)(�0.00690)Å3

� � (1)(�5.78  10�4)Å3]

P � .728 or 72.8%

This is to be expected, since the larger nuclear charge pulls the single electron
in closer to the nucleus. Therefore, there is a 72�% probability of finding a
�1s electron within 0.250 Å of a Be3� nucleus.

Radial probability plots for �2s, �2p, �3s, �3p, �3d, . . . are shown in Figure
11.20. For each wavefunction having quantum numbers n and �, there are 
n � � � 1 points along a spherical radius where the probability of finding an
electron becomes exactly zero. These points are nodes. Specifically, these are 
radial nodes, since we are considering the total electron probability at a spher-
ical shell at each value of the radius.

Although s subshells are spherically symmetric, individual p, d, f, . . . sub-
shells are not and do have angular dependence. There are several ways of con-
veying the angular dependence of subshells. One common way is to draw an
outline within which the probability of the electron’s appearance is 90%. It is
easiest to use the real form of the wavefunctions to illustrate this behavior.
Figure 11.21 shows the 90% boundary surfaces of real (that is, nonimaginary)
p and d subshells of hydrogen. It is these angular distributions of the subshells
that lend the “dumbbell” and “rosette” descriptions to the p and d orbitals.

There are several things to note about these plots. First, for each orbital, dif-
ferent axes are used to illustrate the plot, which means that the orbitals point
in different directions in space even though they look very similar. Each section
of the plots is labeled with a plus or a minus to indicate the sign of the wave-
function in that region. Next, for each p orbital there is one plane that is tan-
gent to all electron probability. As an example, for the pz orbital, the xy plane
is the plane of exactly zero electron probability. For the px orbital, the yz plane
has zero electron probability. For the d orbitals, there are two planes where the
electron probability is zero. These are examples of angular nodes (also called
nodal planes or nodal surfaces). Figure 11.22 shows some of the angular nodes
for p and d orbitals. For the dz2 orbital, the nodal surface is a two-dimensional
cone. For quantum number �, there will be � angular nodes. Combining an-
gular nodes with radial nodes, there will be a total of n � 1 nodes (both radial
and angular) for any wavefunction �n,�.
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Figure 11.20 Plots of 4�r2�R�2 versus distance for other hydrogen atom wavefunctions, as la-
beled. There is a simple relationship between the quantum numbers and the number of radial
nodes.
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Figure 11.21 The 90% boundary plots for the real forms of p and d wavefunctions. The spe-
cific label on the p or d orbital depends on the direction the orbital takes in 3-D space.
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Figure 11.22 Nodal planes for p and d orbitals. Each p orbital has one nodal plane. Each d
orbital has two nodal planes. For the dz2 orbital, the nodal planes are represented by a single con-
ical surface.
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Example 11.25
a. What is the average value of the total angular momentum for �3p for the
hydrogen atom?
b. Is there an easier way to determine this value?

Solution
a. The square of the total angular momentum is defined, so we will assume
that the average angular momentum is the square root of the squared angu-
lar momentum. Therefore, we need to find

�L� � ��L2��

To do this, we need to determine the average value �L2�. This is done with the
following expression:

�L2� � � �*3pL̂ 2�3p d	

It might seem at first that we may have to use the long, complete form of �3p

and the long, complete form of L̂ 2; we don’t, though. Since �3p is an eigen-
function of L̂ 2, we can substitute the eigenvalue for the operator in the inte-
gral above. Since the eigenvalue is �(� � 1)�2, the integral above becomes

�L2� � � �*3p[�(� � 1)�2] �3p d	

where the constants are multiplied with the wavefunctions instead of any
function-changing operation occurring. Multiplicative constants are moved
outside the integral sign, so the above expression becomes

�L2� � �(� � 1)�2 � �*3p�3p d	

The wavefunction is normalized, so the integral is simply 1. Therefore,

�L2� � �(� � 1)�2

and using the value of � � 1 for a p orbital, we can determine the average
value of the total angular momentum �L� as

�L� � ��L2�� � ��(� ��1)�2� � �2�� � 1.491  10�34 J�s

b. The easier way is to realize that L2 is a quantized observable for the 3p
wavefunction of a hydrogen atom. The average value is equal to the quantized
value. This will not always be the case for average values (see exercises 11.58
or 11.60, for example).

11.12 Summary
With the solution of the hydrogen atom, the list of analytically solvable sys-
tems to be considered here is complete. Planck’s quantum theory of light de-
scribed blackbody radiation, and now the simplicity of the spectrum of the hy-
drogen (and hydrogen-like ions) is adequately explained by quantum
mechanics. We will find in the next chapter that although an exact analytic un-
derstanding of the behavior of electrons in larger atoms is not forthcoming,
quantum mechanics does provide the tools for a numerical solution to larger
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systems, like molecules (for smaller molecules in practice, and for larger mol-
ecules at least in theory). Because this is far more than the classical theories of
chemistry and physics could provide, quantum mechanics is accepted as the
superior theory of the behavior of matter at the electronic level. The postulates
of quantum mechanics allow for some seemingly unusual and unexpected be-
havior—like tunneling, quantized angular momenta, and “fuzzy” electron or-
bitals. But so far, the predictions of quantum mechanics have been borne out
when examined experimentally. That is the true test of a theory.
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11.2 Classical Harmonic Oscillator

11.1. Convert 3.558 mdyn/Å into units of N/m.

11.2. A swinging pendulum has a frequency of 0.277 Hz and
a mass of 500.0 kg. Calculate the force constant for this har-
monic oscillator.

11.3. An object having mass m at some height above the
ground h has a gravitational potential energy of mgh, where
g is the acceleration due to gravity (�9.8 m/s2). Explain why
objects moving back and forth under the influence of gravity
(like a clock’s pendulum) can be treated as harmonic oscilla-
tors. (Hint: see equation 11.1.)

11.3 Quantum-Mechanical Harmonic Oscillator

11.4. In equation 11.6, in order to properly subtract the two
terms in parentheses on the left, they must have the same
units overall. Verify that 2mE/�2 and �2x2 have the same units.
Use standard SI units for x (position/distance). Do the same for
the two terms in parentheses in equation 11.11.

11.5. Verify that the three substitutions mentioned in the text
yield equation 11.6.

11.6. Verify that the second derivative of � given by equa-
tion 11.8 gives equation 11.9.

11.7. Derive equation 11.16 from the equation immediately
preceding it.

11.8. Show that the energy separation between any two ad-
jacent energy levels for an ideal harmonic oscillator is h
,
where 
 is the classical frequency of the oscillator.

11.9. (a) For a pendulum having a classical frequency of 
1.00 s�1, what is the energy difference in J between quantized
energy levels? (b) Calculate the wavelength of light that must
be absorbed in order for the pendulum to go from one level
to another. (c) Can you determine in what region of the elec-
tromagnetic spectrum such a wavelength belongs? (d)
Comment on your results for parts a and b based on your
knowledge of the state of science in the early twentieth cen-
tury. Why wasn’t the quantum mechanical behavior of nature
noticed?

11.10. (a) A hydrogen atom bonded to a surface is acting as
a harmonic oscillator with a classical frequency of 6.000 
1013 s�1. What is the energy difference in J between quantized
energy levels? (b) Calculate the wavelength of light that must
be absorbed in order for the hydrogen atom to go from one
level to another. (c) Can you determine in what region of 
the electromagnetic spectrum such a wavelength belongs? 
(d) Comment on your results for parts a and b based on 
your knowledge of the state of science in the early twentieth 
century.

11.11. The O–H bond in water vibrates at a frequency of 
3650 cm�1. What wavelength and frequency (in s�1) of light
would be required to change the vibrational quantum num-
ber from n � 0 to n � 4, assuming O–H acts as a harmonic
oscillator?

11.4 Harmonic Oscillator Wavefunctions

11.12. Show that �2 and �3 for the harmonic oscillator are
orthogonal.

11.13. Substitute �1 into the complete expression for the
Hamiltonian operator of an ideal harmonic oscillator and show
that E � �

3
2

�h
.

11.14. Calculate �px� for �0 and �1 for a harmonic oscillator.
Do the values you calculate make sense?

11.15. Use the expression for �1 in equations 11.17 and nor-
malize the wavefunction. Use the integral defined for the
Hermite polynomials in Table 11.2. Compare your answer with
the wavefunction defined by equation 11.19.

11.16. Simply using arguments based on odd or even func-
tions, determine whether the following integrals involving har-
monic oscillator wavefunctions are identically zero, are not
identically zero, or are indeterminate. If indeterminate, state
why. 

(a) �
��

��

�1*�2 dx (b) �
��

��

�1* x̂ �1 dx

(c) �
��

��

�1*x̂ 2�1 dx, where x̂ 2 � x̂ � x̂

(d) �
��

��

�1*�3 dx (e) ��3*�3 dx

(f) �
��

��

�1*V̂ �1 dx, where V̂ is some undefined potential energy

function.

11.17. Determine the value(s) of x for the classical turning
point of a harmonic oscillator in terms of k and n. There may
be other constants in the expression you derive.

11.5 Reduced Mass

11.18. Compare the mass of the electron, me, with (a) the
reduced mass of a hydrogen atom; (b) the reduced mass of a
deuterium atom (deuterium � 2H); (c) the reduced mass of 
a carbon-12 atom having a �5 charge, that is, C5�. Suggest
a conclusion to the trend presented by parts a–c.

11.19. Reduced mass is not reserved only for atomic systems.
A solar system or a planet/satellite system, for example, can
have its behavior described by first determining its reduced
mass. If the mass of Earth is 2.435  1024 kg and that of the
moon is 2.995  1022 kg, what is the reduced mass of the
Earth-moon system? (This is not to imply any support of a
planetary model for atoms!)

11.20. (a) Calculate the expected harmonic-oscillator fre-
quency of vibration for carbon monoxide, CO, if the force
constant is 1902 N/m. (b) What is the expected frequency of
13CO, assuming the force constant remains the same?

11.21. An O–H bond has a frequency of 3650 cm�1. Using
equation 11.27 twice, set up a ratio and determine the ex-
pected frequency of an O–D bond, without calculating the
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force constant. D � deuterium (2H). Assume that the force
constant remains the same.

11.6 2-D Rotations

11.22. Why can’t the quantized values of the 2-D angular
momentum be used to determine the mass of a rotating sys-
tem, like classical angular momentum can?

11.23. Show that �3 of 2-D rotational motion has the same
normalization constant as �13 by normalizing both wavefunc-
tions.

11.24. What are the energies and angular momenta of the
first five energy levels of benzene in the 2-D rotational motion
approximation? Use the mass of the electron and a radius of
1.51 Å to determine I.

11.25. A 25-kg child is on a merry-go-round/calliope, going
around and around in a large circle that has a radius of 8 me-
ters. The child has an angular momentum of 600. kg�m2/s. (a)
From these facts, estimate the approximate quantum number
for the angular momentum the child has. (b) Estimate the
quantized amount of energy the child has in this situation.
How does this compare to the child’s classical energy? What
principle does this illustrate?

11.26. Using Euler’s identity, rewrite the first four 2-D rota-
tional wavefunctions in terms of sine and cosine.

11.27. (a) Using the expression for the energy of a 2-D rigid
rotor, construct the expression for the energy difference be-
tween two adjacent levels, E(m � 1) � E(m). (b) For HCl, E(1)
� E(0) � 20.7 cm�1. Calculate E(2) � E(1), assuming HCl acts
as a 2-D rigid rotor. (c) This energy difference is determined
experimentally as 41.4 cm�1. How good would you say a 2-D
model is for this system?

11.28. Derive equation 11.35 from 11.34.

11.7 & 11.8 3-D Rotations

11.29. Use trigonometry to verify the relationships between
the Cartesian and spherical polar coordinates as given in equa-
tion 11.40.

11.30. Why can’t the square root of equation 11.45 be taken
analytically? (Hint: consider how you would have to take the
square root of the right side of the equation. Can it be done?)

11.31. For both 2-D and 3-D rotations, the radius of the par-
ticle’s motion is kept constant. Consider a nonzero, constant
potential energy acting on the particle. Show that the form of
the Schrödinger equation in equation 11.46 would be equiv-
alent to its form if V were identically zero. (Hint: use the idea
that Enew � E � V.)

11.32. Can you evaluate �r � for the spherical harmonic Y 2
�2?

Why or why not?

11.33. Using the complete form of �3,�2 (where � � 3 and
m� � �2) for 3-D rotations (get the Legendre polynomial from
Table 11.3) and the complete forms of the operators, evaluate
the eigenvalues of (a) L2, (b) Lz, (c) E. Do not use the ana-
lytic expressions for the observables. Instead, operate on �3,�2

with the appropriate operators and see that you do get the
proper eigenvalue equation. From the eigenvalue equation,
determine the value of the observable.

11.34. A 3-D rotational wavefunction has the quantum num-
ber � equal to 2 and a moment of inertia of 4.445  10�47

kg�m2. What are the possible numerical values of (a) the en-
ergy; (b) the total angular momentum; (c) the z component
of the total angular momentum?

11.35. (a) Using the expression for the energy of a 3-D rigid
rotor, construct the expression for the energy difference be-
tween two adjacent levels, E(� � 1) � E(�).

(b) For HCl, E(1) � E(0) � 20.7 cm�1. Calculate E(2) � E(1),
assuming HCl acts as a 3-D rigid rotor. 

(c) This energy difference is determined experimentally as
41.4 cm�1. How good would you say a 3-D model is for this
system?

11.36. See Example 11.17, regarding the “spherical” C60

molecule. Assuming the electrons in this molecule are experi-
encing 3-D rotations, calculate the wavelength of light neces-
sary to cause a transition from state � � 5 to � � 6 and from 
� � 7 to � � 8. Compare your answers with experimentally
measured absorptions at wavelengths of 328 and 256 nm.
How good is this model for describing C60’s electronic 
absorptions?

11.37. In exercise 11.36 regarding C60, what are the numer-
ical values of the total angular momenta of the electron for
each state having quantum number �? What are the z com-
ponents of the angular momentum for each state?

11.38. Draw graphical representations (see Figure 11.15) of
the possible values for � and m� for the first four energy levels
of the 3-D rigid rotor. What are the degeneracies of each state?

11.39. What is a physical explanation of the difference be-
tween a particle having the 3-D rotational wavefunction �3,2

and an identical particle having the wavefunction �3,�2?

11.9, 11.10, & 11.11 Hydrogen-Like Atoms

11.40. List the charges on hydrogen-like atoms whose nuclei
are of the following elements. (a) lithium, (b) carbon, (c)
iron, (d) samarium, (e) xenon, (f) francium, (g) uranium,
(h) seaborgium

11.41. Calculate the electrostatic potential energy V between
an electron and a proton if the electron is at a distance of 1
Bohr radius (0.529 Å) from the proton. Be careful that the cor-
rect units are used!

11.42. Using Newton’s law of gravity and the relationship be-
tween force and potential energy, the gravitational potential
energy can be written as

V � �G�
m1

r
m2�

Use the masses of the electron and the proton and the gravi-
tational constant G � 6.673  10�11 N�m2/kg2 to show that
the gravitational potential energy is negligible compared to the
electrostatic potential energy at a distance of 1 Bohr radius.

11.43. Show that for constant r and V � 0, equation 11.56
becomes equation 11.46. (Hint: you will have to apply the
chain rule of differentiation to the derivatives in the second
term of equation 11.56.)
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11.44. Calculate the difference between the Bohr radius de-
fined as a and the Bohr radius defined as a0.

11.45. To four significant figures, the first four lines in the
Balmer series in the hydrogen atom (n2 � 2) spectrum appear
at 656.5, 486.3, 434.2, and 410.3 nm. (a) From these num-
bers, calculate an average value of RH, the Rydberg constant.
(b) At what wavelengths would similar transitions appear for
He�?

11.46. What would the wavelengths of the Balmer series for
deuterium be?

11.47. Construct an energy level diagram showing all orbitals
for the hydrogen atom up to n � 5, labeling each orbital with
its appropriate quantum numbers. How many different or-
bitals are in each shell?

11.48. What are the values of E, L, and Lz for an F8� atom
whose electron has the following wavefunctions, listed as
�n,�,m�

? (a) �1,0,0 (b) �3,2,2 (c) �2,1,�1 (d) �9,6,�3.

11.49. Why does the wavefunction �4,4,0 not exist? Similarly,
why does a 3f subshell not exist? (See exercise 11.48 for no-
tation definition.)

11.50. Calculate the total electronic energy of a mole of hy-
drogen atoms. Calculate the total electronic energy of a mole
of He� atoms. What accounts for the difference in the two to-
tal energies?

11.51. What is the probability of finding an electron in the 1s
orbital within 0.1 Å of a hydrogen nucleus?

11.52. What is the probability of finding an electron in the 1s
orbital within 0.1 Å of an Ne9� nucleus? Compare your an-
swer to the answer to exercise 11.51 and justify the difference.

11.53. State how many radial, angular, and total nodes are in
each of the following hydrogen-like wavefunctions. (a) �2s

(b) �3s (c) �3p (d) �4f (e) �6g (f) �7s

11.54. Illustrate that the hydrogen wavefunctions are or-
thogonal by evaluating ��*2s�1s d	 over all space.

11.55. Verify the specific value of a, the Bohr radius, by us-
ing the values of the various constants and evaluating equa-
tion 11.68.

11.56. Show that rmax is given by equation 11.68 for �1s.
Take the derivative of 4�r2�2 with respect to r, set it equal to
zero, and solve for r.

11.57. Use the forms of the wavefunctions in Table 11.4 to
determine the explicit forms for the 2px

and 2py
nonimaginary

wavefunctions.

11.58. Evaluate �Lz� for 3px
. Compare it to the answer in

Example 11.25, and explain the difference in the answers.

11.59. Using equations 11.67 as an example, what would the
combinations for the five real 3d wavefunctions be? Use Table
11.4 to assist you.

11.60. Evaluate �r� for �1s (assume that the operator r̂  is de-
fined as “multiplication by the coordinate r”). Why does �r�
not equal 0.529 Å for �1s? In this case, d	 � 4�r2 dr.

11.61. Graph the first five wavefunctions for the harmonic os-
cillators and their probabilities. Superimpose these graphs on
the potential energy function for a harmonic oscillator and nu-
merically determine the x values of the classical turning points.
What is the probability that an oscillator will exist beyond 
the classical turning points? Do plots of the probability begin
to show a distribution as expected by the correspondence
principle?

11.62. Construct three-dimensional plots of the first three
families of spherical harmonics. Can you identify the values of
� and � that correspond to nodes?

11.63. Set up and evaluate numerically the integral that shows
that Y 1

1 and Y 1
�1 are orthogonal.

11.64. Plot the 90% surfaces of the hydrogen atom 2s and
2p angular wavefunctions in 3-D space. Can you identify nodes
in your graphic?
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12
WE HAVE SEEN HOW QUANTUM MECHANICS provides tools for

understanding some simple systems, up to and including the hydro-
gen atom itself. An understanding of the H atom is a crucial point because it
is real, not a model system. Quantum mechanics showed that it can describe
the hydrogen atom like Bohr’s theory did. It also describes other model sys-
tems that have applications in the real world. (Recall that all of the model
systems—particle-in-a-box, 2-D and 3-D rigid rotors, harmonic oscillators—
could be applied to real systems even if the real systems themselves weren’t
exactly ideal.) As such, quantum mechanics is more applicable than Bohr’s
theory and can be considered “better.” We will conclude our development of
quantum mechanics by seeing how it applies to more complicated systems:
other atoms and even molecules. What we will find is that explicit, analytic
solutions to these systems are not possible, but quantum mechanics does
supply the tools for understanding these systems nonetheless.

12.1 Synopsis
In this chapter, we will consider one more property of the electron, which is
called spin. Spin has dramatic consequences for the structure of matter, con-
sequences that could not have been considered by the standards of classical
mechanics. We will see that an exact, analytic solution for an atom as simple
as helium is not possible, and so the Schrödinger equation cannot be solved
analytically for larger atoms or molecules. But there are two tools for studying
larger systems to any degree of accuracy: perturbation theory and variational
theory. Each tool has its advantages, and both of them are used today to study
atoms and molecules and their reactions.

Finally, we will consider in a simple way how quantum mechanics con-
siders a molecular system. Molecules can get very complicated. However, we
can apply quantum mechanics to molecules. We will finish this chapter with
an introduction to molecular orbitals and how they are defined for a very
simple molecule, H2

�. Simple as this system is, it paves the way for other
molecules.
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12.2 Spin
Not long before quantum mechanics was developed, an important experimen-
tal observation was made. In 1922, Otto Stern and W. Gerlach attempted to
measure the magnetic moment of the silver atom. They passed vaporized sil-
ver atoms through a magnetic field and recorded the pattern that the beam of
atoms made after it passed through the magnetic field. Surprisingly, the beam
split into two parts. The experiment is illustrated in Figure 12.1.

Attempts to explain this in terms of the Bohr theory and quantized angular
momentum of electrons in their orbits failed. Finally, in 1925, George
Uhlenbeck and Samuel Goudsmit proposed that this result could be explained
if it was assumed that the electron had its own angular momentum. This an-
gular momentum was an intrinsic property of the electron itself and not a con-
sequence of any motion of the electron. In order to explain the experimental
results, Uhlenbeck and Goudsmit proposed that components of the intrinsic
angular momentum, called spin angular momentum, had quantized values of
either ��

1
2

�� or ��
1
2

��. (Recall that h has units of angular momentum.)
Since that proposal, it has become understood that all electrons have an in-

trinsic angular momentum called spin. Although commonly compared to the
spinning of a top, the spin angular momentum of an electron is not due to any
rotation about the axis of the particle. Indeed, it would be impossible for us to
determine that an electron is actually spinning. Spin is a property of a parti-
cle’s very existence. This property behaves as if it were an angular momentum,
so for all intents and purposes it is considered an angular momentum.

Like the angular momentum of an electron in its orbit, there are two mea-
surables for spin that can be observed simultaneously: the square of the total
spin and the z component of the spin. Because spin is an angular momentum,
there are eigenvalue equations for the spin observables that are the same as for
L̂ 2 and Lẑ , except we use the operators Ŝ 2 and Sẑ to indicate the spin observ-
ables. We also introduce the quantum numbers s and ms to represent the quan-
tized values of the spin of the particles. (Do not confuse s, the symbol for the
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Figure 12.1 A diagram of the Stern-Gerlach experiment. A beam of silver atoms passed
through a magnetic field splits into two separate beams. This finding was used to propose the ex-
istence of spin on the electron.
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spin angular momentum, with s, an orbital that has � � 0.) The eigenvalue
equations are therefore

Ŝ 2�� s(s � 1)�2� (12.1)

Sz�� ms�� (12.2)

The values of the allowed quantum numbers s and ms are more restricted
than for � and m�. All electrons have a value of s � �

1
2

�. The value of s, it turns
out, is a characteristic of a type of subatomic particle, and all electrons have
the same value for their s quantum number. For the possible values of the z
component of the spin, there is a similar relationship to the possible values of
m� and �: ms goes from �s to �s in integral steps, so ms can equal ��

1
2

� or ��
1
2

�.
Thus, there is only one possible value of s for electrons, and two possible val-
ues for ms.

Spin also has no classical counterpart. Nothing in classical mechanics pre-
dicts or explains the existence of a property we call spin. Even quantum me-
chanics, at first, did not provide any justification for spin. It wasn’t until 1928
when Paul A. M. Dirac incorporated relativity theory into the Schrödinger
equation that spin appeared as a natural theoretical prediction of quantum
mechanics. The incorporation of relativity into quantum mechanics was one
of the final major advances in the development of the theory of quantum me-
chanics. Among other things, it led to the prediction of antimatter, whose ex-
istence was verified experimentally by Carl Anderson (with the discovery of the
positron) in 1932.

Example 12.1
What is the value, in J�s, of the spin of an electron? Compare this to the value
of the angular momentum for an electron in s and p orbitals of an H-like
atom.

Solution
The value of the spin angular momentum of an electron is determined by us-
ing equation 12.1. We must recognize that the operator is the square of the
total spin, and to find the value for spin we will have to take a square root.
We get

spin � �s(s � 1�)�2� � � �
1

2
���

1

2
� �� 1���6.�626 	

2�


10�34

�J�s
��

2�
� 9.133 	 10�35 J�s

The angular momentum of an electron in an s orbital is zero, since � � 0 for
an electron in an s orbital. In a p orbital, � � 1, so the angular momentum is

��(�+ 1�)�� � �1 � 2��
6.626 	

2


10�34 J�s
�� 1.491 	 10�34 J � s

which is almost twice as great as the spin. The magnitude of the spin angu-
lar momentum is not much smaller than the angular momentum of an elec-
tron in its orbit. Its effects, therefore, cannot be ignored.

The existence of an intrinsic angular momentum requires some additional
specificity when referring to angular momenta of electrons. One must now
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differentiate between orbital angular momentum and spin angular momen-
tum. Both observables are angular momenta, but they arise from different
properties of the electron: one from its motion about a nucleus, the other from
its very existence.

The spin angular momentum of an electron can have only certain specific
values. Spin is quantized. Like the z component of orbital angular momentum,
ms has 2s � 1 possible values. In the case of the electron, s � �

1
2

�, so the only
possible values of ms are ��

1
2

� and ��
1
2

�. The specification of an electron’s spin
therefore represents two other quantum numbers that can be used to label the
state of that electron. In practice, however, it is convenient to not specify s,
since it is always �

1
2

� for electrons. This gives us a total of four quantum num-
bers: the principal quantum number n, the orbital angular momentum quan-
tum number �, the orbital angular momentum z component m�, and the spin
angular momentum (z component) ms. These are the only four quantum num-
bers needed to specify the complete state of an electron.

Example 12.2
List all possible combinations of all four quantum numbers for an electron
in the 2p orbital of a hydrogen atom.

Solution
In tabular form, the possible combinations are

Symbol Possible values

n 2

� 1

m� �1 0 1

ms ��
1
2

� or ��
1
2

� ��
1
2

� or ��
1
2

� ��
1
2

� or ��
1
2

�

There are a total of six possible combinations of the four quantum numbers
for this case.

Although not considered until now, the ms of the electron in a hydrogen
atom is either ��

1
2

� or ��
1
2

�. A fascinating astronomical consequence of spin is the
fact that an electron in hydrogen has a slightly different energy depending on
the relative spin orientations of the electron and the proton in the nucleus. (A
proton also has a characteristic spin quantum number of �

1
2

�.) If an electron in
a hydrogen atom changes its spin, there is a concurrent energy change that is
equivalent to light having a frequency of 1420.40575 MHz, or a wavenumber
of about 21 cm�1, as shown in Figure 12.2. Because of the pervasiveness of hy-
drogen in space, this “21-cm�1 radiation” is important for radio astronomers
who are studying the structure of the universe.

Finally, since spin is part of the properties of an electron, its observable val-
ues should be determined from the electron’s wavefunction. That is, there
should be a spin wavefunction part of the overall �. A discussion of the exact
form of the spin part of a wavefunction is beyond our scope here. However,
since there is only one possible observable value of the total spin (s � �

1
2

�) and
only two possible values of the z component of the spin (ms � ��

1
2

� or ��
1
2

�), it is
typical to represent the spin part of the wavefunction by the Greek letters � and
�, depending on whether the quantum number ms is ��

1
2

� or ��
1
2

�, respectively.
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H

2468 cm�1

21 cm�1

Figure 12.2 A very high resolution spectrum
of the hydrogen atom shows a tiny splitting due
to the spin on the electron. This splitting is caused
by the electron spin interacting with the nuclear
spin of the hydrogen atom’s nucleus (a proton).
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Spin is unaffected by any other property or observable of the electron, and the
spin component of a one-electron wavefunction is separable from the spatial
part of the wavefunction. Like the three parts of the hydrogen atom’s electronic
wavefunction, the spin function multiplies the rest of �. So for example, the
complete wavefunctions for an electron in a hydrogen atom are

� � Rn,� � �,m�
� �m�

� �

for an electron having ms of ��
1
2

�. A similar wavefunction, in terms of �, can be
written for an electron having ms � ��

1
2

�.

12.3 The Helium Atom
In the previous chapter, it was shown how quantum mechanics provides an ex-
act, analytic solution to the Schrödinger equation when applied to the hydro-
gen atom. Even the existence of spin, discussed in the last section, does not al-
ter this solution (it only adds a little more complexity to the solution, a
complexity we will not consider further here). The next largest atom is the he-
lium atom, He. It has a nuclear charge of 2�, and it has two electrons about
the nucleus. The helium atom is illustrated in Figure 12.3, along with some of
the coordinates used to describe the positions of the subatomic particles.
Implicit in the following discussion is the idea that both electrons of helium
will occupy the lowest possible energy state.

In order to properly write the complete form of the Schrödinger equation
for helium, it is important to understand the sources of the kinetic and po-
tential energy in the atom. Assuming only electronic motion with respect to a
motionless nucleus, kinetic energy comes from the motion of the two elec-
trons. It is assumed that the kinetic energy part of the Hamiltonian operator
is the same for the two electrons and that the total kinetic energy is the sum
of the two individual parts. To simplify the Hamiltonian, we will use the sym-
bol �2, called del-squared, to indicate the three-dimensional second derivative
operator:

�2 � �
�

�

x

2

2
� � �

�

�

y

2

2
� � �

�

�

z

2

2
� (12.3)

This definition makes the Schrödinger equation look less complicated. �2 is
also called the Laplacian operator. It is important to remember, however, that
del-squared represents a sum of three separate derivatives. The kinetic energy
part of the Hamiltonian can be written as

��
2

�

�

2

��2
1 � �

2

�

�

2

��2
2

where �2
1 is the three-dimensional second derivative for electron 1, and �2

2 is
the three-dimensional second derivative for electron 2.

The potential energy of the helium atom has three parts, all coulombic in
nature: there is an attraction between electron 1 and the nucleus, an attraction
between electron 2 and the nucleus, and a repulsion between electron 1 and
electron 2 (since they are both negatively charged). Each part depends on the
distance between the particles involved; the distances are labeled r1, r2, and r12

as illustrated in Figure 12.3. Respectively, the potential energy part of the
Hamiltonian is thus

V̂ � ��
4


2
�

e

0

2

r1

� � �
4


2
�

e

0

2

r2

� � �
4


e
�

2

0r12

�
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Figure 12.3 Definitions of the radial coordi-
nates for the helium atom.
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where the other variables have been defined in the previous chapter. The 2 in
the numerator of each of the first two terms is due to the 2� charge on the
helium nucleus. The first two terms are negative, indicating an attraction, and
the final term is positive, indicating a repulsion. The complete Hamiltonian
operator for the helium atom is

Ĥ � ��
2

�

�

2

��2
1 � �

2

�

�

2

��2
2 � �

4


2
�

e

0

2

r1

� � �
4


2
�

e

0

2

r2

� � �
4


e
�

2

0r12

� (12.4)

This means that for the helium atom, the Schrödinger equation to be solved is

���
2

�

�

2

��2
1 � �

2

�

�

2

��2
2 � �

4


2
�

e

0

2

r1

� � �
4


2
�

e

0

2

r2

� � �
4


e
�

2

0r12

��� � Etot� (12.5)

where Etot represents the total electronic energy of a helium atom.
The Hamiltonian (and thus the Schrödinger equation) can be rearranged by

grouping together the two terms (one kinetic, one potential) that deal with
electron 1 only and also grouping together the two terms that deal with elec-
tron 2 only:

Ĥ � ���
2

�

�

2

��2
1 � �

4


2
�

e

0

2

r1

�� � ���
2

�

�

2

��2
2 � �

4


2
�

e

0

2

r2

�� � �
4


e
�

2

0r12

� (12.6)

This way, the Hamiltonian resembles two separate one-electron Hamiltonians
added together. This suggests that perhaps the helium atom wavefunction is
simply a combination of two hydrogen-like wavefunctions. Perhaps a sort of
“separation of electrons” approach will allow us to solve the Schrödinger equa-
tion for helium.

The problem is with the last term: e2/4
�0r12. It contains a term, r12, that
depends on the positions of both of the electrons. It does not belong only with
the terms for just electron 1, nor does it belong only with the terms for just
electron 2. Because this last term cannot be separated into parts involving only
one electron at a time, the complete Hamiltonian operator is not separable and
it cannot be solved by separation into smaller, one-electron pieces. In order for
the Schrödinger equation for the helium atom to be solved analytically, it
either must be solved completely or not at all.

To date, there is no known analytic solution to the second-order differen-
tial Schrödinger equation for the helium atom. This does not mean that there
is no solution, or that wavefunctions do not exist. It simply means that we
know of no mathematical function that satisfies the differential equation. In
fact, for atoms and molecules that have more than one electron, the lack of
separability leads directly to the fact that there are no known analytical solutions
to any atom larger than hydrogen. Again, this does not mean that the wave-
functions do not exist. It simply means that we must use other methods to un-
derstand the behavior of the electrons in such systems. (It has been proven
mathematically that there is no analytic solution to the so-called three-body
problem, as the He atom can be described. Therefore, we must approach multi-
electron systems differently.)

Nor should this lack be taken as a failure of quantum mechanics. In this text,
we can only scratch the surface of the tools that quantum mechanics provides.
Quantum mechanics does provide tools to understand such systems. Atoms
and molecules having more than one electron can be studied and understood
by applying such tools to more and more exacting detail. The level of detail de-
pends on the time, resources, and patience of the person applying the tools. In
theory, one can determine energies and momenta and other observables to the
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same level that one can know such observables for the hydrogen atom—if one
has the tools.

Example 12.3
Assume that the helium wavefunction is a product of two hydrogen-like
wavefunctions (that is, neglect the term for the repulsion between the elec-
trons) in the n � 1 principal quantum shell. Determine the electronic energy
of the helium atom and compare it to the experimentally determined energy
of �1.265 	 10�17 J. (Total energies are determined experimentally by mea-
suring how much energy it takes to remove all of the electrons from an atom.)

Solution
Using equation 12.6 and neglecting the electron-repulsion term by assuming
that the wavefunction is the product of two hydrogen-like wavefunctions:

�He � �H,1 	 �H,2

the Schrödinger equation for the helium atom can be approximated as

	���
2

�

�

2

��2
1 � �

4


2
�

e

0

2

r1

�� � ���
2

�

�

2

��2
2 � �

4


2
�

e

0

2

r2

��
�H,1�H,2 � EHe�H,1�H,2

where EHe is the energy of the helium atom. Because the first term in brack-
ets is a function of only electron 1 and the second term in the brackets is a
function of only electron 2, this Schrödinger equation can be separated just
like a two-dimensional particle-in-a-box can be separated. Understanding
this, we can separate the Schrödinger equation above into two parts:

���
2

�

�

2

��2
1 � �

4


2
�

e

0

2

r1

���H,1 � E1�H,1

���
2

�

�

2

��2
2 � �

4


2
�

e

0

2

r2

���H,2 � E2�H,2

where EHe � E1 � E2. These expressions are simply the one-electron
Schrödinger equations for a hydrogen-like atom where the nuclear charge
equals 2. An expression for the energy eigenvalue for such a system is known.
From the previous chapter, it is

E � ��
8

Z

�2
0

2

h

e4

2

�

n2�

for each hydrogen-like energy. For this approximation, we are assuming that
helium is the sum of two hydrogen-like energies. Therefore,

EHe � EH,1 � EH,2

� ��
8

2

�

2

2
0

e

h

4

2

�

n2� � �
8

2

�

2

2
0

e

h

4

2

�

n2� � ��
�2

0

e

h

4

2

�

n2�

where we get the final term by combining the two terms to the left. Keep in
mind that � is the reduced mass for an electron about a helium nucleus, and
that the principal quantum number is 1 for both terms. Substituting the val-
ues of the various constants, along with the value for the reduced mass of the
electron-helium nucleus system (9.108 	 10�31 kg), we get

EHe � �1.743 	 10�17 J

376 C H A P T E R  12 Atoms and Molecules

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



which is low by �37.8% compared to experiment. Ignoring the repulsion
between the electrons leads to a significant error in the total energy of the
system, so a good model of the He atom should not ignore electron-electron
repulsion.

The example above shows that assuming that the electrons in helium—and
any other multielectron atom—are simple combinations of hydrogen-like elec-
trons is naive assumption, and predicts quantized energies that are far from the
experimentally measured values. We need other ways to better estimate the
energies of such systems.

12.4 Spin Orbitals and the Pauli Principle
Example 12.3 for the helium atom assumed that both electrons have a princi-
pal quantum number of 1. If the hydrogen-like wavefunction analogy were
taken further, we might say that both electrons are in the s subshell of the first
shell—that they are in 1s orbitals. Indeed, there is experimental evidence
(mostly spectra) for this assumption. What about the next element, Li? It has
a third electron. Would this third electron also go into an approximate 1s
hydrogen-like orbital? Experimental evidence (spectra) shows that it doesn’t.
Instead, it occupies what is approximately the s subshell of the second princi-
pal quantum shell: it is considered a 2s electron. Why doesn’t it occupy the 1s
shell?

We begin with the assumption that the electrons in a multielectron atom
can in fact be assigned to approximate hydrogen-like orbitals, and that the
wavefunction of the complete atom is the product of the wavefunctions of each
occupied orbital. These orbitals can be labeled with the n� quantum number
labels: 1s, 2s, 2p, 3s, 3p, and so on. Each s, p, d, f, . . . subshell can also be labeled
by an m� quantum number, where m� ranges from �� to � (2� � 1 possible
values). But it can also be labeled with a spin quantum number ms, either �1

2

or �1
2. The spin part of the wavefunction is labeled with either � or �, de-

pending on the value of ms for each electron. Therefore, there are several sim-
ple possibilities for the approximate wavefunction for, say, the lowest-energy
state (the ground state) of the helium atom:

�He � (1s1�)(1s2�)

�He � (1s1�)(1s2�)

�He � (1s1�)(1s2�)

�He � (1s1�)(1s2�)

where the subscript on 1s refers to the individual electron. We will assume that
each individual �He is normalized. Because each �He is a combination of a
spin wavefunction and an orbital wavefunction, �He’s are more properly called
spin orbitals.

Because spin is a vector and because vectors can add and subtract from
each other, one can easily determine a total spin for each possible helium spin
orbital. (It is actually a total z component of the spin.) For the first spin or-
bital equation above, both spins are �, so the total spin is (��

1
2

�) � (��
1
2

�) � 1.
Similarly, for the last spin orbital, the total spin is (��

1
2

�) � (��
1
2

�) � �1. For
the middle two spin orbitals, the total (z-component) spin is exactly zero. To
summarize:
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Approximate wavefunction Total z-component spin

�He � (1s1�)(1s2�) �1

�He � (1s1�)(1s2�) 0

�He � (1s1�)(1s2�) 0

�He � (1s1�)(1s2�) �1

At this point, experimental evidence can be introduced. (The necessity of
comparing the predictions of theory with experiment should not be forgot-
ten.) Angular momenta of charged particles can be differentiated by magnetic
fields, so there is a way to experimentally determine whether or not atoms have
an overall angular momentum. Since spin is a form of angular momentum, it
should not be surprising that magnetic fields can be used to determine the
overall spin in an atom. Experiments show that ground-state helium atoms
have zero z-component spin. This means that of the four approximate wave-
functions listed above, the first and last are not acceptable because they do not
agree with experimentally determined facts. Only the middle two, (1s1�)(1s2�)
and (1s1�)(1s2�), can be considered for helium.

Which wavefunction of the two is acceptable, or are they both? One can sug-
gest that both wavefunctions are acceptable and that the helium atom is dou-
bly degenerate. This turns out to be an unacceptable statement because, in
part, it implies that an experimenter can determine without doubt that elec-
tron 1 has a certain spin wavefunction and that electron 2 has the other spin
wavefunction. Unfortunately, we cannot tell one electron from another. They
are indistinguishable.

This indistinguishability suggests that the best way to describe the electronic
wavefunction of helium is not by each wavefunction individually, but by a
combination of the possible wavefunctions. Such combinations are usually
considered as sums and/or differences. Given n wavefunctions, one can math-
ematically determine n different combinations that are linearly independent.
So, for the two “acceptable” wavefunctions of He, two possible combinations
can be constructed to account for the fact that electrons are indistinguishable.
These two combinations are the sum and the difference of the two individual
spin orbitals:

�He,1 � �
�

1

2�
�[(1s1�)(1s2�) � (1s1�)(1s2�)]

�He,2 � �
�

1

2�
�[(1s1�)(1s2�) � (1s1�)(1s2�)]

The term 1/�2� is a renormalization factor, taking into account the combi-
nation of two normalized wavefunctions. These combinations have the proper
form for possible wavefunctions of the helium atom.

Are both acceptable, or only one of the two? At this point we rely on a pos-
tulate proposed by Wolfgang Pauli in 1925, which was based on the study of
atomic spectra and the increasing understanding of the necessity of quantum
numbers. Since electrons are indistinguishable, one particular electron in he-
lium can be either electron 1 or 2. We can’t say for certain which. But because
the electron has a spin of �

1
2

�, it has certain properties that affect its wavefunction
(the details of which cannot be considered here). If electron 1 were exchanged
with electron 2, Pauli postulated, the complete wavefunction must change sign.
Mathematically, this is written as

�(1, 2) � ��(2, 1)
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The switch in order of writing the labels 1 and 2 implies that the two electrons
are exchanged. Electron 1 now has the coordinates of electron 2, and vice versa.
A wavefunction having this property is called antisymmetric. (By contrast, if
�(1, 2) � �(2, 1), the wavefunction is labeled symmetric.) Particles having
half-integer spin (�

1
2

�, �
3
2

�, �
5
2

�, . . .) are collectively called fermions. The Pauli principle
states that fermions must have antisymmetric wavefunctions with respect to
exchange of particles. Particles having integer spins, called bosons, are restricted
to having symmetric wavefunctions with respect to exchange.

Electrons are fermions (having spin � �
1
2

�) and so according to the Pauli prin-
ciple must have antisymmetric wavefunctions. Consider, then, the two possi-
ble approximate wavefunctions for helium. They are

�He,1 � �
�

1

2�
�[(1s1�)(1s2�) � (1s1�)(1s2�)] (12.7)

�He,2 � �
�

1

2�
�[(1s1�)(1s2�) � (1s1�)(1s2�)] (12.8)

Are either of these antisymmetric? We can check by interchanging electrons 1
and 2 in the first wavefunction, equation 12.7, and get

�(2, 1) � �
�

1

2�
�[(1s2�)(1s1�) � (1s2�)(1s1�)]

(Note the change in the subscripts 1 and 2.) This should be recognized as the
original wavefunction �(1, 2), only algebraically rearranged. (Show this.)
However, upon electron exchange, the second wavefunction, equation 12.8,
becomes

�(2, 1) � �
�

1

2�
�[(1s2�)(1s1�) � (1s2�)(1s1�)] (12.9)

which can be shown algebraically to be ��(1, 2). (Show this, also.)
Therefore, this wavefunction is antisymmetric with respect to exchange of
electrons and, by the Pauli principle, is a proper wavefunction for the spin
orbitals of the helium atom. Equation 12.8, but not equation 12.7, repre-
sents the correct form for a spin-orbital wavefunction of the ground state
of He.

The rigorous statement of the Pauli principle is that wavefunctions of elec-
trons must be antisymmetric with respect to exchange of electrons. There is a
simpler statement of the Pauli principle. It comes from the recognition that
equation 12.8, the only acceptable wavefunction for helium, can be written in
terms of a matrix determinant.

Recall that the determinant of a 2 	 2 matrix written as

�a d �c b

is simply (a 	 b) � (c 	 d), which is remembered mnemonically as
�

�a d� �c 	 d

� c b a 	 b

The proper antisymmetric wavefunction, equation 12.8, for the helium atom
can also be written in terms of a 2 	 2 determinant:

�He � �
�

1

2�
� �1s1� 1s1��1s2� 1s2�

(12.10)
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The term 1/�2� multiplies the entire determinant, like it multiplies the entire
wavefunction in equation 12.8. Such determinants used to represent an anti-
symmetric wavefunction are called Slater determinants, after J. C. Slater, who
pointed out such constructions for wavefunctions in 1929.

The use of Slater determinants to express wavefunctions that are automati-
cally antisymmetric stems from the fact that when two rows (or two columns)
of a determinant are exchanged, the determinant of the matrix becomes
negated. In the Slater determinant shown in equation 12.10, the possible spin
orbitals for electron 1 are listed in the first row and the spin orbitals of elec-
tron 2 are listed in the second row. Switching these two rows would be the same
thing as exchanging the two electrons in the helium atom. When this happens,
the determinant changes sign, which is what the Pauli principle requires for ac-
ceptable wavefunctions of fermions. Writing a wavefunction in terms of a
proper Slater determinant guarantees an antisymmetric wavefunction.

The Slater-determinant form of a wavefunction guarantees something else,
which leads to the simplified version of the Pauli principle. Suppose both elec-
trons in helium had the exact same spin orbital. The determinant part of the
wavefunction would have the form

�1s1� 1s1�� which is exactly 0
1s2� 1s2�

(12.11)

The determinant being exactly zero is a general property of determinants. (If
any two columns or rows of a determinant are the same, the value of the de-
terminant is zero.) Therefore the wavefunction is identically zero and this state
will not exist. The same conclusion can be reached if the spin on both elec-
trons is �. Consider, then, the lithium atom. Assuming that all three electrons
were in the 1s shell, the only two possible determinant forms of the wavefunc-
tion would be (depending on the spin function on the third electron):

�
1s1� 1s1� 1s1�

� �
1s1� 1s1� 1s1�

�1s2� 1s2� 1s2� or 1s2� 1s2� 1s2� (12.12)
1s3� 1s3� 1s3� 1s3� 1s3� 1s3�

Note that in both cases, two columns of the determinant represent the same
spin orbitals for two of the three electrons (1st and 3rd columns for the first
determinant, 2nd and 3rd columns for the second determinant). The mathe-
matics of determinants requires that if any two rows or columns are exactly the
same, the value of the determinant is exactly zero. One cannot have a wave-
function for Li having three electrons in the 1s shell. The third electron, in-
stead, must be in a different shell. The next shell and subshell are 2s.

As we have been assigning a set of four quantum numbers to electrons in
hydrogen-like orbitals, we can do so for the spin orbitals of multielectron
atoms where we are approximating hydrogen-like orbitals. In the first row of
equation 12.11, the two spin orbitals can be represented by the set of four
quantum numbers (n, �, m�, ms) as being (1, 0, 0, �

1
2

�) and (1, 0, 0, �
1
2

�): the same
four quantum numbers. (Can you see how these numbers were determined
from the expression for the spin orbital?) In the first row of equation 12.12,
the three spin orbitals in the first case have the sets (1, 0, 0, �

1
2

�), (1, 0, 0, ��
1
2

�),
and (1, 0, 0, �

1
2

�): the first and third spin orbitals are the same. In the second case,
for the first row, the spin orbitals can be represented by the quantum numbers
(1, 0, 0, �

1
2

�), (1, 0, 0, ��
1
2

�), and (1, 0, 0, ��
1
2

�), with the second and third spin or-
bitals having the same set of four quantum numbers. In all three cases, other
rows of the Slater determinant can have quantum numbers assigned to them,
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and in all cases the determinant is exactly zero, implying that the overall wave-
function does not exist.

On this basis, one consequence of the Pauli principle is that no two electrons
in any system can have the same set of four quantum numbers. (This statement
is sometimes used in place of the original statement of the Pauli principle.)
This means that each and every electron must have its own unique spin or-
bital, and since there are only two possible spin functions for an electron, each
orbital can be assigned only two electrons. Therefore, an s subshell can ac-
commodate two electrons maximum; each p subshell, with three individual p
orbitals, can hold a maximum of six electrons; each d subshell, with five d or-
bitals, can hold ten electrons; and so on. Because this consequence of the Pauli
principle excludes spin orbitals from having more than one electron, Pauli’s
statement is commonly referred to as the Pauli exclusion principle.

Example 12.4
Show for each row of the Slater determinants for Li in equation 12.12 that
the wavefunction represented by the determinant violates the Pauli exclusion
principle.

Solution
By row, the set of four quantum numbers for each spin orbital is listed:

�
1s1� 1s1� 1s1�

�
(1, 0, 0, �

1
2

�) (1, 0, 0, ��
1
2

�) (1, 0, 0, �
1
2

�)
1s2� 1s2� 1s2� (1, 0, 0, �

1
2

�) (1, 0, 0, ��
1
2

�) (1, 0, 0, �
1
2

�)
1s3� 1s3� 1s3� (1, 0, 0, �

1
2

�) (1, 0, 0, ��
1
2

�) (1, 0, 0, �
1
2

�)

�
1s1� 1s1� 1s1�

�
(1, 0, 0, �

1
2

�) (1, 0, 0, ��
1
2

�) (1, 0, 0, ��
1
2

�)
1s2� 1s2� 1s2� (1, 0, 0, �

1
2

�) (1, 0, 0, ��
1
2

�) (1, 0, 0, ��
1
2

�)
1s3� 1s3� 1s3� (1, 0, 0, �

1
2

�) (1, 0, 0, ��
1
2

�) (1, 0, 0, ��
1
2

�)

In each case, two of the three entries in each row have the same set of four
quantum numbers and so the wavefunction is not allowed by the Pauli ex-
clusion principle.

Wavefunctions written in terms of a Slater determinant have a normaliza-
tion factor of 1/�n!�, where n is the number of rows or columns in the deter-
minant (and equals the number of electrons in the atom). This is because the
expanded form of the wavefunction � has n! terms. In constructing Slater de-
terminants, we will follow the custom of writing the individual spin orbitals
going across, two spatial wavefunctions with an � and a � spin wavefunction
each, and listing the electrons sequentially going down. That is:

spin orbitals→
electron 1

�
1s� 1s� 2s� 2s� . . .

�electron 2 1s� 1s� 2s� 2s� . . .
electron 3 . . . . . . . . . . . . . . .

.

.

.

Going across the determinant, the spin part alternates: �, �, �, �, . . . . You also
have to keep track of the n, �, and m� quantum numbers to make sure each
shell and subshell is represented in the proper order and number. The follow-
ing example illustrates the use of this idea.
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Example 12.5
The third electron in Li goes into the 2s orbital. Assuming a (re)normaliza-
tion constant of 1/�6�, construct a proper antisymmetric wavefunction for Li
in terms of a Slater determinant.

Solution
The rows will represent electrons 1, 2, and 3; the columns will represent the
spin orbitals 1s�, 1s�, and 2s� (or 2s�). Following the determinant setup
above, the antisymmetric wavefunction is

�
1s1� 1s1� 2s1�

��Li � �
�

1

6�
� 1s2� 1s2� 2s2�

1s3� 1s3� 2s3�

Because there are two possible wavefunctions for Li (depending on whether
the spin orbital for the last column is 2s� or 2s�), we conclude that this
energy level is doubly degenerate.

12.5 Other Atoms and the Aufbau Principle
We have presumed, more than proved, that multielectron atoms can be con-
ceptually approximated as combinations of hydrogen-like orbitals (even though
our helium example showed that the predicted energies are not very close).
Further, the Pauli principle restricts orbitals to having only two electrons, each
with different spin. As we consider larger and larger atoms, electrons in these
atoms will occupy orbitals described with larger and larger principal quantum
numbers.

Recall that in the hydrogen atom, the principal quantum number is the only
quantum number that affects the total energy. This is not the case with multi-
electron atoms, because interelectronic interactions affect the energies of the
orbitals, and now the subshells within the shells have different energies. Figure
12.4 illustrates what happens to the electronic energy levels of atoms. In the
case of hydrogen, energies of orbitals are determined by a single quantum
number. In multielectron atoms, the principal quantum number is an impor-
tant factor in the energy of an orbital, but the angular momentum quantum
number is also a factor. (To a much lesser extent, the m� and ms quantum num-
bers also affect the exact energy of a spin orbital, but their effect on the energy
is more noticeable in molecules. Their effect on the exact energies of electrons
is practically negligible for atoms outside of magnetic fields. See Figure 12.2
for an example.)

When assigning electrons to orbitals in multielectron atoms, it might be as-
sumed that they will occupy the available shell and subshell having the lowest
energy. This is a misstatement. Electrons reside in the next available spin orbital
that yields the lowest total energy for the atom. The placement is not necessarily
determined by the individual energy of the spin orbital. Instead, the total en-
ergy of the atom must be considered. When an atom’s electrons occupy orbitals
that yield the lowest total energy, the atom is said to be in its ground state. Any
other electronic state, which by definition would have a higher total energy, is
considered an excited state. The electrons in an atom can reach excited states by
absorbing energy; this is one of the basic processes in spectroscopy.

Consider an atom of the element beryllium, which has four electrons. Two
of the electrons occupy the orbital labeled 1s. The two remaining electrons
occupy an orbital in the second shell, but which? The n � 2 shell has � � 0
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and � � 1, so that the possible subshells are 2s and 2p. Because of the slightly
higher energy of the 2p subshell, the electrons occupy the 2s subshell, which
can hold two electrons if they have different spin functions. The occupation of
orbitals in an atom is listed as an electron configuration, using superscripts to
indicate the number of electrons in each individual subshell. It is assumed that
for ground states, the spins of the electrons are appropriate and satisfy the
Pauli exclusion principle. The electron configuration for Be is written as

1s2 2s2

This is an obvious electron configuration, since the 2p subshell is higher in
energy than the 2s, as shown in Figure 12.4. However, as we will see shortly, it
is not always so straightforward to assign an electron configuration.

Example 12.6
Electron configurations are rather abbreviated when compared to the more
complete Slater-determinant form of the antisymmetric wavefunction.
Compare the electron configuration of Be with the Slater-determinant form
of � for Be.

Solution
The electron configuration for Be, given above, is simply 1s2 2s2. Using the rule
from above for constructing Slater determinants, the more complete � is

�
1s1� 1s1� 2s1� 2s1�

�1s2� 1s2� 2s2� 2s2�
� � �

�
1

24�
�

1s3� 1s3� 2s3� 2s3�

�1s4� 1s4� 2s4� 2s4��
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H- like Not H- like

3s, p, d

2s, p

1s

2s

2p

3s

E
ne

rg
y

3p

4p

3d
4s, p, d, f

1s

4s

5s

Figure 12.4 The effect of more than one electron on the electronic energy levels of an atom.
For hydrogen-like atoms, all of the energy levels with the same principal quantum number n are
degenerate. For atoms having more than one electron, the shells are separated by the � quantum
number as well. (Energy axis is not to scale.)
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Written as a determinant, this wavefunction is indeed antisymmetric. If the
determinant were evaluated, it would expand into 24 terms. The electron
configuration, however, is a total of only six alphanumeric characters.
Although the Slater-determinant wavefunction is more complete, the electron
configuration is much more convenient.

As we consider larger and larger atoms, electrons start occupying orbitals of
the 2p subshell. It should be recognized that with three possible p orbitals,
there are several possible ways of, say, two electrons occupying the various p
orbitals. A statement known as Hund’s rule indicates that electrons occupy each
degenerate orbital singly before pairing up orbitals with two electrons of op-
posite spin. (The rule was enunciated by Friedrich Hund in 1925 after detailed
consideration of atomic spectra.) In the absence of any other influence, the or-
bitals are still degenerate, so at this point there is no preference about which p
orbitals are singly, then doubly, occupied. Therefore, one specific electron con-
figuration for the ground state of boron can be listed as 1s2 2s2 2px

1, and a spe-
cific electron configuration for the ground state of carbon can be given as 1s2

2s2 2px
1 2py

1. If Hund’s rule is assumed, a more general electron configuration
of C can be abbreviated as 1s2 2s2 2p2.

Example 12.7
List two other acceptable ground-state electron configurations for B and C.
Give an unacceptable ground-state electron configuration for C.

Solution
Since it does not matter which p orbitals are used, the ground state of B can
also be written as 1s2 2s2 2py

1 or 1s2 2s2 2pz
1. For C, the other acceptable elec-

tron configurations are 1s2 2s2 2py
1 2pz

1 or 1s2 2s2 2px
1 2pz

1. Both of these can
be abbreviated as 1s2 2s2 2p2. An unacceptable ground-state electron config-
uration might be 1s2 2s2 2px

2, since this has the electrons paired in a single p
orbital rather than spread out among the degenerate p orbitals, as required
by Hund’s rule.

The filling of the spin orbitals so far has taken the order 1s, 2s, 2p. As one
considers the electron configurations of larger atoms, electrons continue to oc-
cupy orbitals through 3s and 3p. But at potassium (Z � 19), instead of filling
the 3d orbital, the 4s orbital is occupied first. Only after a second electron oc-
cupies the 4s orbital (for calcium) does the 3d subshell start becoming occu-
pied with electrons.

Why? The naive answer is that the 4s orbital is lower in energy than the 3d
orbital. Since the energies of orbitals in multielectron atoms are determined by
the quantum number � as well as the quantum number n, it must be at this
point that the energy E4s becomes less than the energy E3d. Actually, this argu-
ment is misleading. The reason that the 4s orbital becomes occupied is that the
total energy of the atom is less than it would be if the electron occupied a 3d
orbital.

On the face of it, this seems peculiar. If the 3d orbital were lower in energy,
why shouldn’t it be occupied by an electron first? If it were a hydrogen-like
atom, with only a single electron, then the absolute energy of the orbital would
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be the only factor determining the order of orbital occupation. But in multi-
electron atoms, there is an additional factor. Not only is the absolute energy of
the orbital a factor, but the amount an electron in that orbital interacts with the
other electrons and the nucleus is also a criterion in determining the total en-
ergy of an atom.

To illustrate this point, Figure 12.5 shows the probabilities of the radial
functions in spherically symmetric shells about the nucleus (that is, 4
r2�R�2

versus r) for the 3d and 4s hydrogen-like wavefunctions on the same scale.
Both wavefunctions show a maxima several angstroms from the nucleus.*
However, note that the 4s orbital has three relative maxima before its ab-
solute maximum, and that several of these maxima indicate that an electron
in a 4s orbital has a considerable probability of being closer to the nucleus
than an electron in a 3d orbital. An electron in a 4s orbital is said to pene-
trate inward toward the nucleus. The increased penetration of the negatively
charged 4s electron toward the positively charged nucleus means an addi-
tional energy stabilization of the system as a whole, and as a result the final
electron in K occupies the 4s orbital. This allows the entire K atom to have a
lower total energy. And even though some energy of repulsion erases some
of that energy gain, the last electron of Ca, the next largest atom, also occu-
pies a 4s orbital instead of a 3d orbital, pairing up with the first electron in
the 4s orbital. (However, there are a few exceptions, as a review of electron
configurations will show.) Only with the introduction of another electron, for
an atom of scandium, does the electron occupy a 3d orbital instead of a 
4p orbital.

This building up of electron configurations by placing electrons in orbitals
is called the aufbau principle (the name of the principle comes from the
German word aufbauen, meaning “to build up”). Although it might seem at
this point that there is little regularity in building up electron configurations
of larger atoms, there is some level of consistency. For example, the periodic
table’s shape is dictated by the filling of the orbitals by electrons. The number
of valence electrons almost never exceeds 8, due to the eventual regularity in
the filling of orbitals. There are several mnemonic devices used to remember
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0
Distance from nucleus (Å)
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Figure 12.5 Plots of 4
r2�R�2 for the 3d and 4s wavefunctions. Note that the plots have the
same x-axis, and that the 4s electron has some probability of being rather close to the nucleus.
For multielectron atoms, the penetration of the 4s electron combined with the shielding effect of
the other electrons serves to make the 4s orbital the next one occupied by electrons, rather than
the 3d.

*Actually, in a multielectron atom the maxima would be somewhat farther out because
of a shielding effect on the nucleus by the electrons occupying the inner shells.
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the order in which orbitals are filled by electrons. Perhaps the most common
is shown in Figure 12.6. This ordering of orbitals, and the idea that each sub-
shell is completely filled before electrons occupy the next orbital, is strictly ap-
plicable to the electron configurations of 85 of the first 103 elements. (There
is little or no experimental verification of the electron configurations of ele-
ments 104 or larger to date.) Figure 12.7 shows the relationship between the
aufbau principle and the structure of the periodic table. Table 12.1 lists the
electron configurations of the elements in their lowest electronic states.

12.6 Perturbation Theory
In a previous section, we presumed that the wavefunctions of multielectron
atoms can be approximated as products of hydrogen-like orbitals:

�Z  �H,1 � �H,2 � �H,3 � � � �H,Z (12.13)

where �Z is the wavefunction for an atom having a nuclear charge of Z and
�H,1, . . . . �H,Z are the hydrogen-like wavefunctions for each of the Z elec-
trons. Generally speaking, this is a very useful qualitative description of the
electrons in larger atoms. However, we did see that in the case of He, it is not
a good system for making a quantitative prediction of the total electronic en-
ergy of the system. As noted, there is no known exact solution to the differen-
tial equation that is the Schrödinger equation for the helium atom; it has no
analytic solution. There is no known simple (or complicated, for that matter!)
expression for � that we can substitute into the Schrödinger equation as given
in equation 12.5 and have it satisfied so that an eigenvalue E is produced.

386 C H A P T E R  12 Atoms and Molecules

7s 7p

6s 6p 6d 6f 6g

5s 5p 5d 5f 5g

4s 4p 4d 4f

3s 3p 3d

2s 2p

1s

and so on

6d

5d

**

*

4d

5f

4f

**

*

3d

7s

6s

5s

4s

3s

2s

7p

6p

5p

4p

3p

2p

1s

Figure 12.6 A convenient way to
remember the order of filling of the
subshells in most atoms (1–85).
Simply follow the order of subshells
crossed by the arrows.

Figure 12.7 The aufbau principle rationalizes
the structure of the periodic table. Compare the
order of filling of the subshells in Figure 12.6 with
the labels in the periodic table here. (Note where
the 4f and 5f subshells are filled.)
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H 1s1

He 1s2

Li 1s2 2s1

Be 1s2 2s2

B 1s2 2s2 2p1

C 1s2 2s2 2p2

N 1s2 2s2 2p3

O 1s2 2s2 2p4

F 1s2 2s2 2p5

Ne 1s2 2s2 2p6

Na 1s2 2s2 2p6 3s1

Mg 1s2 2s2 2p6 3s2

Al 1s2 2s2 2p6 3s2 3p1

Si 1s2 2s2 2p6 3s2 3p2

P 1s2 2s2 2p6 3s2 3p3

S 1s2 2s2 2p6 3s2 3p4

Cl 1s2 2s2 2p6 3s2 3p5

Ar 1s2 2s2 2p6 3s2 3p6

K 1s2 2s2 2p6 3s2 3p6 4s1

Ca 1s2 2s2 2p6 3s2 3p6 4s2

Sc 1s2 2s2 2p6 3s2 3p6 4s2 3d1

Ti 1s2 2s2 2p6 3s2 3p6 4s2 3d2

V 1s2 2s2 2p6 3s2 3p6 4s2 3d3

Cr* 1s2 2s2 2p6 3s2 3p6 4s1 3d5

Mn 1s2 2s2 2p6 3s2 3p6 4s2 3d5

Fe 1s2 2s2 2p6 3s2 3p6 4s2 3d6

Co 1s2 2s2 2p6 3s2 3p6 4s2 3d7

Ni 1s2 2s2 2p6 3s2 3p6 4s2 3d8

Cu* 1s2 2s2 2p6 3s2 3p6 4s1 3d10

Zn 1s2 2s2 2p6 3s2 3p6 4s2 3d10

Ga 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p1

Ge 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2

As 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p3

Se 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p4

Br 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5

Kr 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6

Rb 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1

Sr 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2

Y 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d1

Zr 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d2

Nb* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d4

Mo* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d5

Tc 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d5

Ru* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d7

Rh* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d8

Pd* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s0 4d10

Ag* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s1 4d10

Cd 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10

In 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d105p1

Sn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d105p2

Sb 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d105p3

Te 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d105p4

I 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p5

Xe 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d105p6

Cs 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d105p6 6s1

Ba 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d105p6 6s2

La* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 5d1

Ce* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 1 5d1

Pr 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 3

Nd 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 4

Pm 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 5

Sm 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 6

Eu 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 7

Gd* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 7 5d1

Tb 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 9

Dy 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 10

Ho 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 11

Er 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 12

Tm 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 13

Yb 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14

Lu 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d1

Hf 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d2

Ta 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d3

W 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d4

Re 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d5

Os 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d6

Ir 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d7

Pt* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1 4f 14 5d9

Au* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s1 4f 14 5d10

Hg 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10

Tl 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p1

Pb 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p2

Bi 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p3

Po 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p4

At 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p5

Rn 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6

Fr 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s1

Ra 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2

Ac* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 6d1

Th* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 6d2

Pa* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 2 6d1

U* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 3 6d1

Np* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 4 6d1

Pu 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 6

Am 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 7

Cm* 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 7 6d1

Bk 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 9

Cf 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 10

Es 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 11

Fm 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 12

Md 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 13

No 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 14

Lr 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 6d1

Table 12.1 Ground-state electron configurations of the elementsa

aAn asterisk by the symbol indicates that the electron configuration does not exactly conform to the strict rules of the aufbau principle. However, in almost all cases, the variance is
due to a single electron. Only elements up to Z � 103 are included, since the electron configurations for elements beyond that have not been experimentally verified.
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That does not mean that there is no understanding of, or recourse for, such
systems. Nor does it imply that quantum mechanics is a useless theory for
these systems. There are two main tools for applying quantum mechanics to
systems whose Schrödinger equations cannot be solved exactly. Use of either
depends on the type of system under study as well as what information you
want to determine.

The first of these tools is called perturbation theory. Perturbation theory as-
sumes that a system can be approximated as a known, solvable system and that
any difference between the system of interest and the known system is a small,
additive perturbation that can be calculated separately and added on. We will
assume that all of the energy levels under discussion are singly degenerate, so
this tool is more appropriately named nondegenerate perturbation theory. Also,
perturbation theory can be taken to very complex levels. Here, we focus on the
first level of approximation, which is called first-order perturbation theory.

Perturbation theory assumes that the Hamiltonian for a real system can be
written as

Ĥ system � Ĥ ideal � Ĥ perturb � Ĥ ° � Ĥ� (12.14)

where Ĥ system is the Hamiltonian of the system of interest that is being ap-
proximated, Ĥ ° is the Hamiltonian of an ideal or model system, and Ĥ � rep-
resents the small, additive perturbation. For example, in the case of the helium
atom, the ideal part of the Hamiltonian can represent two hydrogen-like atoms.
The perturbation part of the Hamiltonian can represent the coulombic repul-
sion between the electrons:

Ĥ He � (Ĥ H-like � Ĥ H-like) � �
4


e

�

2

0r12

�

(In this case, there are two hydrogen-like Hamiltonians because there are two
electrons. Despite this rewriting, the Schrödinger equation for He has not re-
ally changed and is still analytically unsolvable.) Any number of additive per-
turbations can be combined with an ideal Hamiltonian. It is, of course, easier
to keep the number of terms in the Hamiltonian as small as possible. What is
usually found is that there is a trade-off between the number of terms and the
accuracy of the solution to the Schrödinger equation.

If we assume that the wavefunction � of the real system is similar to the
wavefunction of the ideal system, denoted �(0), then one can say that, approx-
imately,

Ĥ system�(0) � Esystem�(0) (12.15)

where Esystem is the eigenvalue for the energy of the real system. Over the
course of many observations, one eventually determines an average value of
the observable energy, �E�. By using one of the postulates of quantum me-
chanics �E� can be approximated by the expression

�E� � � (�(0))*Ĥ system�(0) d� (12.16)

Given the form of Ĥ system, one can substitute into equation 12.16 and partially
evaluate:

�E� � � (�(0))*(Ĥ ° � Ĥ�)�(0) d�

� � (�(0))*Ĥ °�(0) d� � � (�(0))*Ĥ��(0) d�

� �E (0)� � � (�(0))*Ĥ��0 d� � �E (0)� � �E (1)� (12.17)
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where �E (0)� is the average energy of the ideal or model system (that is, an
eigenvalue energy, usually) and �E (1)� is the first-order correction to the energy.
Thus, the first approximation to the energy of a real system is equal to the ideal
energy plus some additional amount given by � (�(0))*Ĥ ��(0) d�. If this in-
tegral can be evaluated or approximated, then a correction to the energy can
be determined. What equation 12.17 means is that when we write a Hamiltonian
as a perturbed ideal operator, the energy—the observable associated with the
Hamiltonian—is also perturbed from the ideal.

Example 12.8
What is the correction to the energy of the helium atom, assuming that the
perturbation can be approximated as a coulombic repulsion of the two
electrons?

Solution
According to equation 12.17, the perturbation is

�E (1)� � � (�(0))*�
4


e

�

2

0r12

��(0) d�

If some way can be found to evaluate this integral, a correction to the total
energy—and thus a perturbation-theory approximation to the energy of a He
atom—can be approximated.

The integral in the above example can be approximated by mathematical
techniques and substitutions that we will not go into. (A discussion of its so-
lution can be found in more advanced texts.) Approximations and substitu-
tions are possible and the above integral can be estimated as

�E (1)� � �
5

4
���4


e

�

2

0a0

��
where e is the charge on the electron, �0 is the permittivity of free space, and
a0 is the first Bohr radius (0.529 Å). When we substitute the values of the con-
stants into this expression, we get

�E (1)� � 5.450 	 10�18 J

Combining this result with the “ideal” energy, which was determined by as-
suming the sum of two hydrogen electron energies (see Example 12.3), we get
for the total energy of helium

EHe � �1.743 	 10�17 J � 5.450 	 10�18 J � �1.198 	 10�17 J

which, when compared to the experimentally determined energy of the helium
atom (given in Example 12.3 as �1.265 	 10�17 J), is found to be off by only
5.3%. Compared to the hydrogen-like approximation of helium, this is a big
improvement. It points out the usefulness of perturbation theory.

Example 12.9
In a particle-in-a-box having length a, instead of being zero the potential en-
ergy in the box is a linear function of the position. That is,

V � kx
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a. Using perturbation theory, estimate the average energy of a particle having
mass m and whose motion is described by the lowest-energy wavefunction 
(n � 1).
b. The integral in part a can be solved exactly. Explain why this calculated
value is not the exact value for the energy of a particle in this system.

Solution
a. According to perturbation theory, the energy of the particle is

�E� � �E (0)� � �E (1)�

If one assumes that Ĥ ° is the Hamiltonian for the particle-in-a-box, then the
perturbation part Ĥ� of the complete Hamiltonian is kx. According to equa-
tion 12.17, the energy is

�E� � �
8

n

m

2h

a

2

2� � �E (1)�

To evaluate �E (1)�, we must evaluate the integral

�E (1)� � �
2

a
� �

a

0
�sin �




a

x
��* � kx � sin �




a

x
� dx

where the normalization constant has been brought outside of the integral
sign, and d� and the integration limits are for the 1-D particle-in-a-box. This
integral simplifies to

�E (1)� � �
2

a

k
� �

a

0

x � �sin2 �



a

x
�� dx

This integral has a known solution (see the integral table in Appendix 1).
Evaluation of this integral specifically is left as an exercise. Substituting for
the evaluated integral, this expression becomes

�E (1)� � �
a

4

2

� � �
2

a

k
� � �

k

2

a
�

Therefore, the energy of the n � 1 level is

�E� � �
8

n

m

2h

a

2

2� � �
k

2

a
�

b. This is not an exact energy for such a system because the wavefunctions
used to determine the energies were the particle-in-a-box wavefunctions, not
wavefunctions for a box having a sloped bottom. So although the integral for
the perturbation energy is solvable analytically, it does not correct the energy
to the exact value of the true energy because we are not using the eigenfunc-
tions of the defined system. (Nor are we using the complete Hamiltonian
operator for the defined system.) Higher-order perturbation theory, not dis-
cussed in this text, may have a better chance of approaching the exact wave-
function and energy eigenvalues for this system.

As the above example shows, although we have defined a first-order energy
correction, we are still using the ideal forms of the wavefunctions. What we
also need is a correction to the wavefunctions. It is assumed that, as for the en-
ergy correction, the first-order correction to the wavefunction is some correc-
tion added to the ideal wavefunction to approximate the real wavefunction:
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�real � �(0) � �(1) (12.18)

It should be understood by now that there is not just one wavefunction for
a model system. There are a large number. Many times there are an infinite
number of wavefunctions, each with their own quantum numbers. Equation
12.18 can be rewritten to recognize the fact that the many wavefunctions are
all different and should be labeled. For example, using the label n (not to be
confused with the quantum number!):

�n,real � �n
(0) � �n

(1) (12.19)

The entire group of wavefunctions for a model system is considered a complete
set of eigenfunctions. For a model system, the individual wavefunctions are
orthogonal; this fact will be important later. Such a situation is analogous to
the coordinates x, y, and z defining three-dimensional space: the set (x, y, z)
represents a complete set of “functions” used to define any point in space. Any
point in 3-D space can be described as the appropriate combination of so
many x unit vectors, so many y unit vectors, and so many z unit vectors.*

The complete set of wavefunctions is similar. Such a set can be used to de-
fine the complete “space” of a system. The true wavefunction for a real, that is,
nonmodel, system can be written in terms of the complete set of ideal wave-
functions, just like any point in space can be written in terms of x, y, and z.
Using first-order perturbation theory, any real wavefunction �n,real can be
written as an ideal wavefunction plus a sum of contributions of the complete
set of ideal wavefunctions �m

(0):

�n,real � �n
(0) � �

m

am � �m
(0) (12.20)

where am is the coefficient multiplying each ideal �m
(0); they are called expan-

sion coefficients. Each real wavefunction �n,real has a different, unique set of ex-
pansion coefficients that define it in terms of the ideal eigenfunctions. A sum-
mation like equation 12.20 is called a linear combination, because it combines
the ideal wavefunctions, which are assumed to be raised to the first power
(which defines a linear type of relationship).

Although the process is lengthy, it is algebraically straightforward to deter-
mine what the expansion coefficients are for the correction to the nth real
wavefunction, �n,real. Recall that each �n,real is approximated initially by an
ideal �n

(0). The mth expansion coefficient am for the perturbation to the nth real
wavefunction �n,real can be defined in terms of the perturbation operator Ĥ �,
the nth and mth ideal wavefunctions �m

(0) and �n
(0), and the energies En and

Em of the ideal wavefunctions. Specifically,

am ��
� (�

E
m
(

n
(

0

0

)

)

)Ĥ

�

�

E

�

m
(0

n
(

)

0) d�
� m � n (12.21)

The restriction m � n comes from the derivation of equation 12.21. The inte-
gration in the numerator is over the complete space of the system. The re-
quirement that this is nondegenerate perturbation theory also eliminates the
possibility that two energies En

(0) and Em
(0) might be equal due to degenerate

wavefunctions. (The extension of perturbation theory to degenerate wave-
functions will not be discussed here.)
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*The unit vectors in the x, y, and z directions are labeled i, j, and k, respectively, so that
any point in 3-D space can be represented as xi � yj � zk.
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Using equation 12.21, the nth real wavefunction �n,real is written as

�n,real � �n
(0) � �

m
	�� (�

E
m
(

n
(

0

0

)

)

)Ĥ

�

�

E

�

m
(0

n
(

)

0) d�
�
�m

(0) m � n (12.22)

Note the ordering of the terms having m and n indices in the above equation;
it is important to keep them straight. �n,real is still very similar to the nth ideal
wavefunction, but now it is corrected in terms of the other wavefunctions �m

(0)

that define the complete set of wavefunctions for the model system. Real wave-
functions defined in this way are not normalized. They must be normalized in-
dependently, once the proper set of expansion coefficients has been determined.

The presence of the term En
(0) � Em

(0) in the denominator of equation 12.22
is very useful. Although this is just a first correction to the wavefunction, in
principle equation 12.22 can add an infinite number of terms to the wave-
function. However, consider the denominator in the definition of the expan-
sion coefficient. When the difference is small, the value of the fraction—and
therefore am—is relatively large. On the other hand, if the difference En

(0) � Em
(0)

is large, then the fraction and therefore am are small. Negligibly small, some-
times. Consider the four-term linear expansion:

�0,real � �0
(0) � 0.95�1

(0) � 0.33�2
(0) � 0.74�3

(0) � 0.01�4
(0)

The fourth term in the expansion, �4,ideal, has a very small expansion coeffi-
cient. This suggests that either the integral in the numerator of a4 is very small
or that the denominator of a4 is very large (or both). Either way, little of the
approximation is usually lost if that term is simply neglected:

�0,real � �0
(0) � 0.95�1

(0) � 0.33�2
(0) � 0.74�3

(0)

There is little way of knowing beforehand how large the integral in the nu-
merator of the expression 12.21 will be. Although the ideal wavefunctions �m

(0)

and �n
(0) are orthogonal, the presence of the operator Ĥ� may make the value

of the integral nonzero, perhaps even large. But the denominator is in terms 
of only the energies of the model system, Em

(0) and En
(0). Since a model system

typically has known energy eigenvalues, a good (but not necessarily absolute)
rule of thumb is that if the eigenvalue energies of the wavefunctions are far
enough apart, the expansion coefficient will be small. What this implies is that
the most important corrections in the real wavefunction �n,real will be wave-
functions whose energies are close to the ideal wavefunction �n

(0) of the orig-
inal wavefunction approximation. So although the complete set of wavefunc-
tions may have an infinite number of ideal wavefunctions, only those that have
eigenvalues for energy that are close to the energy of the nth state will have a
noticeable impact on the wavefunction correction.

Example 12.10
Because of electronegativity differences, the p electron in a bond between two
different atoms—say in the C�N� ion—does not act exactly like a particle-
in-a-(flat)-box, but like a particle in a box that has a slightly higher potential
energy on one side than the other. Assume, then, a perturbation of Ĥ� � kx
for the ground state �1 of a particle-in-a-box system.
a. Draw the perturbed system.
b. Assuming that the only correction to the real ground-state wavefunction is
the second particle-in-a-box wavefunction �2, calculate the coefficient a2 and
determine the first-order-corrected wavefunction.
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Solution
a. The system looks like this:

where the sloped line indicates the true bottom of the box.
b. In order to determine a2, we need to evaluate the expression

a2 �

where PIAB stands for particle-in-a-box. The wavefunctions and energies for
the particle-in-a-box system are known, so all we need do is substitute for the
wavefunctions and the energies.

a2 �

Since all the functions in the integral are being multiplied together, they can
be rearranged (and the constants removed from the integral sign and the
denominator simplified) to yield

a2 �

In order to integrate this, we need to substitute the trigonometric identity 
sin ax � sin bx � �

1
2

�[cos (a � b)x � cos(a � b)x] and then use the integral
table in Appendix 1. We get:

a2 �

�

Evaluating this at the limits and simplifying, one finds that

a2 � �
1

2

2

7

8




km
2h

a
2

3

�

and so the approximate wavefunction is

�1,real � �1,PIAB � �
1

2

2

7

8




km
2h

a
2

3

� � �2,PIAB

�
a

k
�	�




a2

2� cos �



a

x
� � �

a




x
� sin �




a

x
� � �

9

a




2

2� cos �
3


a

x
� � �

3

a




x
� sin �

3


a

x
�
�a0

�������

��
8

3

m

h

a

2

2�

�
2

a

k
�	�

1

2
� �

a

0
�x cos �




a

x
� � x cos �

3


a

x
�� dx


����

��
8

3

m

h

a

2

2�

�
2

a

k
� �

a

0

x � sin �
2


a

x
� � sin �

1


a

x
� dx

����

��
8

3

m

h

a

2

2�

�
a

0
��

2

a
�� sin �

2


a

x
� � kx � ��

2

a
�� sin �

1


a

x
� dx

����

�
8

1

m

2h

a

2

2� � �
8

2

m

2h

a

2

2�

�
a

0

�*
2,PIAB � kx � �1,PIAB dx

���
E1,PIAB � E2,PIAB

x
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For a cyanide species where the mass is me, k � 1 	 10�7 kg�m/s2, and 
a � 1.15 Å (that is, 1.15 	 10�10 m), we can evaluate the expression above
and get 

�1,real � �1,PIAB � 0.1516 � �2,PIAB

A more complete treatment includes contributions from �3, �4, and so on,
but their contributions become less and less important as the difference be-
tween the ideal energies increases. Finally, recall that a2 for �2,real (or any
other real �) will be different from the a2 calculated above for �1,real.

12.7 Variation Theory
The second major approximation theory used in quantum mechanics is called
variation theory. Variation theory is based on the fact that any test wavefunc-
tion for a system has an average energy that is equal to or greater than the true
ground-state energy of that system. Therefore, the general idea is that the lower
the energy, the better the approximated energy (and therefore, the better the
wavefunction). What one does is to suppose a trial wavefunction that has some
variable parameter in it, determine the expression for the energy of the system
(using the Schrödinger equation or the definition of average energy, �E�), and
then determine what value the variable must have in order to yield the lowest
possible energy. Since the wavefunction should also provide average values for
other observables, those other values can be determined once a minimum en-
ergy is determined for that trial wavefunction.† One of the strengths of varia-
tion theory is that the trial wavefunctions can be any function, as long as the
function meets the standards of wavefunctions in general (that is, continuous,
integrable, single-valued, and so on) and satisfies any inherent requirement
of the system (such as approaching zero as x approaches �� or the system
barriers).

One way of stating the basic idea behind variation theory is the following:
for a system having a Hamiltonian operator Ĥ , true wavefunctions �true, and
some lowest-energy eigenvalue E1, the variation theorem states that for any
normalized trial wavefunction �:

� �*Ĥ � d� � E1 (12.23)

If � is identically equal to �true for the ground state, then equation 12.23 is an
equality. If � is not exactly the ground-state wavefunction, then equation 12.23
is an inequality and the energy produced by the integral is always greater than
the true ground-state energy of the system. Therefore, the lower the predicted
energy, the closer it is to the true ground-state energy and the “better” an
energy eigenvalue it is. Proof of variation theory is left as an exercise at the
end of this chapter. For an unnormalized wavefunction, equation 12.23 is
written as

�
�
�
�

�

*H

*

ˆ

�

�

d

d

�

�
� � E1 (12.24)

Usually, the trial wavefunctions have some set of adjustable parameters
(a, b, c, . . .). The energy is calculated as an expression in terms of those para-

394 C H A P T E R  12 Atoms and Molecules

†However, there is no guarantee that this trial wavefunction will yield accurate values for
other observables.
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meters, and then the expression is minimized with respect to those parameters.
In calculus terms, if the energy is some expression in terms of a single variable
E(a), then the minimum energy occurs when the slope of a plot of E versus a
is zero:‡

	��E

�

(

a

a)
�
at a�amin

� 0

and the energy evaluated at this point is the minimum energy:

E(amin) � Emin

This minimum energy is the “best” energy that this trial wavefunction can pro-
vide. When there are multiple variables in the trial wavefunction, then the ab-
solute minimum with respect to all variables simultaneously is the lowest en-
ergy that such a trial wavefunction produces. Although variation theory does
provide more complicated expressions for the energies of excited states, the
above relatively simple expressions apply only to the ground state of a system.

The trial wavefunctions can have any number of variable parameters, limited
mostly by the efficiency in determining the energy minimum. Variation theory
is best illustrated by example. We will start by using a trial wavefunction with-
out parameters to show that equation 12.23 is satisfied. For the particle-in-a-
box of length a, assume that instead of a sine function, the ground-state wave-
function is instead an upside-down parabola at the center of the box, a/2:

� � ax � x2

This trial wavefunction is shown in Figure 12.8. As you can see, it meets all of
the requirements of a wavefunction for a particle-in-a-box system: it is single-
valued, continuous, integrable, and goes to zero at the boundaries. To calculate
the energy for this trial wavefunction, we need to evaluate

�
a

0

(ax � x2)*Ĥ (ax � x2) dx

where the particle-in-a-box Hamiltonian is �(�2/2m)(d2/dx2). The second de-
rivative of the trial wavefunction is �2, which reduces the integral to

�
�

m

2

� �
a

0

(ax � x2) dx

The expression inside the integral can be integrated, then evaluated between
the limits 0 to a. One gets

�
�

6

2

m

a3

�

This trial wavefunction is not normalized, but one can determine the normal-
ization constant to be �30/a5�. This makes the predicted energy of the ground
state (adjusted by the square of the normalization constant)

Etrial � �
m

5�

a

2

2� � �
4


5
2

h

m

2

a2�

This compares with a true energy for the ground state of the particle-in-a-box
of h2/8ma2, or a difference of 1.32%. The approximated energy is higher than
the true energy by 1.32%.
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‡Maximum energies also meet this criterion, so it is important to verify that the energy
so determined is a minimum, not a maximum.

x � 0 a
Figure 12.8 Trial wavefunctions for a varia-
tion-theory treatment of the ground state of the
particle-in-a-box. The solid line is the trial para-
bolic wavefunction, and the dotted line is the true
wavefunction.
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Example 12.11 shows how variation theory works with a variable that al-
lows one to minimize the energy of a system. It uses the idea that in a multi-
electron atom, the electrons may not experience the full nuclear charge because
of the presence of other electrons. This concept is known as shielding. It also
illustrates a necessity in approaching higher-level quantum mechanics: the
need to be able to evaluate many different types of integrals. A good handbook
of integrals and the ability to determine integrals by numerical methods be-
come very helpful when mathematically evaluating even simple problems in
quantum mechanics.

Example 12.11
In the helium atom, assume that each electron does not experience the full
�2 nuclear charge but instead, due to shielding from the other electron, ex-
periences an effective nuclear charge of Z�. Use Z� as a variable in the form
of the hydrogen-like 1s orbital to obtain the lowest average energy of helium.

Solution
Using normalized hydrogen-like 1s orbitals as trial wavefunctions, the two-
electron � is

� � �



Z

a

�3

3�e�Z�r1/ae�Z�r2/a

where a has been defined in Chapter 11 as 4
�0�2/�e2. Assuming that the nu-
clear charge experienced by each electron is Z�, the initial Hamiltonian for
the helium atom is

���
2

�

�

2

��2
1 � �

4
Z



�

�

e

0

2

r1

�� � ���
2

�

�

2

��2
2 � �

4
Z



�

�

e

0

2

r2

�� � �
4


e
�

2

0r12

�

However, this Hamiltonian is not complete. If the first electron is experienc-
ing an attractive potential of Z�e2/4
�0r1, then the other electron must be ex-
periencing a potential of [(2 � Z�)e2]/4
�0r2. A term like this should appear
for both electrons. The complete Hamiltonian is therefore

���
2

�

�

2

��2
1 � �

4
Z



�

�

e

0

2

r1

�� � ���
2

�

�

2

��2
2 � �

4
Z



�

�

e

0

2

r2

��
� �

(2
4
�


�

Z

0r
�

1

)e2

� � �
(2

4
�


�

Z

0r
�

2

)e2

� � �
4


e
�

2

0r12

�

The terms can be rearranged, and the average energy can be calculated. Since
we are presuming a one-electron system in the first two parenthetical terms,
we can use the energy eigenvalues from the hydrogen atom. We get

�Etrial� � 2�
�

8

Z

�

�
2
0

2

h

e
2

4�
� � �




Z
2

�

a

6

6� � e�Z�r1/ae�Z�r2/a

	 	�(2 � Z�)�
4


e
�

2

0r1

� � (2 � Z�)�
4


e
�

2

0r2

� � �
4


e
�

2

0r12

�
e�Z�r1/ae�Z�r2/a d�

where d� is with respect to electron 1 and electron 2; that is, d� � dr1 dr2.
Using the proper substitutions and manipulations (which will be omitted
here), the integral can be evaluated analytically. Its value is

��8Z� � �
1

8

0
�Z����8�

e
2
0

4

h

�
2�
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The total energy of the helium atom is therefore

�Etrial� � 2�
�

8

Z

�

�
2
0

2

h

e
2

4�
� � ��8Z� � �

1

8

0
�Z����8�

e
2
0

4

h

�
2�

�Etrial� � �2Z�2 � 8Z� � �
1

8

0
�Z����8�

e
2
0

4

h

�
2�

where all terms have had the expression �e4�/8�2
0h2 factored out. In order

for the energy to be a minimum with respect to Z�, we must find the value
of Z� such that

�
�

�

�
Z

E

�

�
� � 0

The only part of �E� that depends on Z� is the first parenthetical part, so the
energy can be minimized by determining when the terms in parentheses are
zero. So,

�
�

�

�
Z

E

�

�
� � � 4Z� � 8 � �

1

8

0
� � 0

�(2Z�2 � 8Z� � �
1
8
0
�Z�)

���
�Z�
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which gives us Z� � 2 � �
1
5
6
�. Therefore, the average nuclear charge “felt” by

each electron in He according to this model is �
2
1

7
6
�, or just under 2. Now that

the effective nuclear charge has been determined, the energy can be evaluated
by substituting for all of the constants and Z�. One finds that

�EHe� � �1.241 	 10�17 J

which, compared to �1.265 	 10�17 J determined experimentally, is high by
1.9%. This is slightly better than the perturbation theory treatment presented
earlier.

The above example shows two things. First, variation theory can provide a
more accurate value for the energy of a system. Second, it comes at a cost: a
cost of effort. However, using computers to do the calculations, the personal
effort can be minimized, so variation theory is particularly well suited for com-
puter applications. In fact, a majority of the effort expended in the modern ap-
plication of quantum mechanics is in the application of computer programs.
Because computers can be programmed with a large number of variables to
change in the course of a calculation, variation problems are almost exclusively
performed on computers.

We have considered the energy of He using several methods. Table 12.2
summarizes the energies using the different methods we have applied in this
chapter, compared with an experimental value. These are not the only meth-
ods possible, and you should understand that the methods used here have been
used in their simplest forms. But Table 12.2 should give you some idea of the
utility of the various tools of quantum mechanics.

Table 12.2 Different energies of the helium atom

E(He) (	 10�17 J) Method

�1.743 H � H approximation

�1.198 Using perturbation theory, e2/4
�0r12

�1.241 Using variation theory, effective nuclear charge 

�1.265 Experiment 
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12.8 Linear Variation Theory
Computer-assisted variation theory is especially powerful when there are a
large number of variables in the trial function. One of the common ways for
this to occur is to assume that the trial function �i is a linear combination of
a set of known functions {�j} called a basis set:

�i � �
j

ci,j�j (12.25)

where �j is an individual basis function (for example, a wavefunction of a
model system or a function that can easily be integrated) and the ci,j values are
the expansion coefficients that must be determined as part of the solution. So
not only is the minimum energy not known yet, but neither are the values of
the expansion coefficients. As stated earlier, in order to find the lowest energy,
the energy must be minimized with respect to all variables simultaneously:

�
�

�

c

E

i,1

� � �
�

�

c

E

i,2

� � �
�

�

c

E

i,3

� � . . . � 0 (12.26)

There turns out to be a way to determine not only the energy but also the co-
efficients. This powerful use of variation theory is called linear variation theory.

This form of variation theory is also best illustrated by example. Although
the same idea can be applied to a trial wavefunction having any number of
terms, a simple example involves the use of a two-term linear combination for
the trial wavefunction:

�a � ca,1�1 � ca,2�2

In this example, the basis set {�j} is composed of the two basis functions
�1 and �2. This form of the trial function can be substituted into equation
12.24 and expanded into several terms, keeping in mind that the ordering of
the basis functions is important because of the complex conjugate operation:

� E1 (12.27)

By making the following simplifying definitions:

H11 � � �*1Ĥ �1 d�

H22 � � �2*Ĥ �2 d�

H12 � H21 � � �2*Ĥ �1 d�
(12.28)

S11 � � �1*�1 d�

S22 � � �2*�2 d�

S12 � S21 � � �2*�1 d�

substitutions can be made into equation 12.27 to yield:

� Etrial � E � E1 (12.29)

The Hij integrals are average energy integrals. The Sij integrals are called over-
lap integrals. For orthonormal wavefunctions, the Sij values are either 0 or 1,
but in many instances non-orthonormal wavefunctions are used. For simplifi-
cation, the subscript on the energy is omitted.

c2
a,1H11 � 2ca,1ca,2H12 � c2

a,2H22����
c2

a,1S11 � 2ca,1ca,2S12 � ca,2
2S22

� (ca,1�1 � ca,2�2)*Ĥ (ca,1�1 � ca,2�2) d�
�����

� (ca,1�1 � ca,2�2)*(ca,1�1 � ca,2�2) d�
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The minimization condition represented by equation 12.26 must now be
fulfilled according to variation theory. Because of the substitutions made to ar-
rive at equation 12.29, the derivatives with respect to ca,1 and ca,2 contain a lot
of terms but are relatively straightforward to determine. We would find (after
substituting for the expression for E itself in the expression for the derivative):

�
�

�

c

E

a,1

� � 0 � (H11 � ES11)ca,1 � (H12 � ES12)ca,2 � 0

(12.30)

�
�

�

c

E

a,2

� � 0 � (H21 � ES21)ca,1 � (H22 � ES22)ca,2 � 0

We get two equations in terms of the coefficients ca,1 and ca,2, which also have
as part of them the energy integrals H11, H12 (which equals H21), and H22, and
also the overlap integrals S11, S12 (which equals S21), and S22. In order for both
derivatives to be zero, each of the equations 12.30 must be satisfied at the same
time. We must solve these two simultaneous equations. You should recognize
that we would have more equations to solve simultaneously if we were using
an example having more terms, and therefore more constants ci,j in it.

For a set of simultaneous equations that are all equal to zero (like equations
12.30), there are mathematical ways of finding solutions. Linear algebra allows
for two possibilities. The first is that all of the constants, in this case ca,1 and
ca,2, are exactly zero. Although this possibility would satisfy the equations
12.30, it provides a useless, or trivial, solution (� � 0 exactly: a wavefunction
that has been rejected previously for its uselessness). The other possibility can
be defined in terms of the coefficients on the c’s in equations 12.30, the ex-
pressions involving the H’s and the S’s. Linear algebra allows for a nontrivial
solution of the simultaneous equations 12.30 if the determinant formed from
the coefficient expressions of equations 12.30 is equal to zero:

�H11 � ES11 H12 � ES12�H21 � ES21 H22 � ES22�
� 0 (12.31)

The above determinant is called a secular determinant. Linear variation theory
rests on equation 12.31: if the secular determinant formed from the energy and
overlap integrals and the energy eigenvalues (which are the unknowns!) is
equal to zero, then the equations 12.30 will be satisfied and the energy will be
minimized.

There seems to have been a change of focus. First we were concentrating on
the coefficients ca,1 and ca,2, and now we are concerned with a determinant in
terms of integrals and energies. This is simply a consequence of linear algebra.
Do not be confused by this change in focus. The minimum energy of the sys-
tem is still the ultimate goal. Recognize, however, that the 2 	 2 determinant
in equation 12.31 can easily be evaluated but will yield an equation that has a
term in E2. Therefore, in solving for E, we will get two answers (using the qua-
dratic formula). The ground-state energy is the lower of the two. Generally, if
one has a trial function �i that has n expansion coefficients, one will get an 
n 	 n secular determinant of the form

�
H11 � ES11 H12 � ES12 . . . H1n � ES1n �H21 � ES21 H22 � ES22 . . . H2n � ES2n
. . . . . . . . . . . .

(12.32)

�Hn1 � ESn1 Hn2 � ESn2 . . . Hnn � ESnn�
� 0

where E is the unknown. (Remember, Hij and Sij are the energy and overlap
integrals in terms of basis functions. The values of these integrals should be
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determinable.) In evaluating this determinant one will get a polynomial of or-
der n, in which the highest power of E will be En. The polynomial will have up
to n solutions of E (some of which may be the same, indicating degenerate
wavefunctions). The lowest value of E is our calculated energy of the ground
state. Although the focus has shifted abruptly from the determining the coef-
ficients to knowing the energy, we must remember that it is the energy of the
system that we are usually most interested in.

If we have the energies, we can determine the coefficients ci,j. In the exam-
ple for a two-term trial function, we will get two energies E1 and E2; the lower
of the two is the lowest-energy state. Using the simultaneous equations 12.30,
it is easy to see that the two coefficients can be expressed as ratios:

�
c

c
a

a

,

,

1

2

� � ��
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1

1

2

1
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(12.33)
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2

2
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�

where E is the energy of either state. The energy and overlap integrals are cal-
culable, and the energies have already been determined by solving the secular
determinant of equation 12.31. Equations 12.33 provide two ratios for ca,1 and
ca,2 that should yield the same ratio for each individual value of energy calcu-
lated from the secular determinant. The exact values of the coefficients are then
adjusted so that � is normalized. If orthonormal basis functions are used, the
normalization condition for the approximate wavefunction is easy to express:

�
j

c2
i,j � 1 (12.34)

That is, the sum of the squares of the coefficients must equal 1. After deter-
mining the coefficients ca,1 and ca,2, the calculation of the ground-state wave-
function is complete for this example. One also gets the approximate energy and
wavefunction for the first excited state. (In general, when one uses n ideal
wavefunctions, one determines n linear combinations for the first n energy lev-
els of an approximated system.) These determinations—the energy and the
wavefunction of the ground state—are the goals of linear variation theory.

If the basis functions themselves are orthogonal to each other, then the trial
wavefunctions determined using variation theory are also orthogonal to each
other. Since the trial wavefunction is expressed in terms of a linear combina-
tion of other functions and it is the integrals of these other functions that must
be evaluated in solving the secular determinant, it is wise to choose such basis
functions so that their integrals can easily be evaluated and so that the deter-
minants and coefficients can be determined for any real system. This idea is the
main thrust for modern calculational quantum mechanics, which is mostly
performed by computer (which can be programmed to perform the various
linear algebraic manipulations of a preset trial wavefunction).

Example 12.12
Assume that, for a real system, a real wavefunction is a linear combination of
two orthonormal basis functions where the energy integrals are as follows:
H11 � �15 (arbitrary energy units), H22 � �4, and H12 � H21 � �1.
Evaluate the approximate energies of the real system, and determine the co-
efficients of the expansion:

�a � ca,1�1 � ca,2�2
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Solution
According to equation 12.31, the nontrivial solution of the simultaneous
equations found by minimizing the energy will be given by

��15 � E � 1 �1 � E � 0� � 0
�1 � E � 0 �4 � E � 1

where we have explicitly included the facts that, for the orthonormal wave-
functions, S11 � S22 � 1 and S12 � S21 � 0. This secular determinant becomes

��15 � E �1 � E � � 0
�1 �4 � E

which can be expanded to get the quadratic equation

E2 � 19E � 59 � 0

Using the quadratic formula, the two possible values of E that will satisfy this
equation are

E1 � �15.09 and E2 � �3.91

What has happened is that one energy level is now slightly lower than the ideal
lowest energy level (given by H11) and the other is now slightly higher than
the higher of the two ideal energy levels (given by H22). The coefficients ca,1

and ca,2 can also be evaluated for the lower-energy state (where E � �15.09):

�
c

c
a

a

,

,

1

2

� � � � �
0.

1

09
�

0.09ca,1 � ca,2

So to normalize the wavefunction:

�
j

c2
i,j � 1 � c2

a,1 � c2
a,2

c2
a,1 � (0.09c2

a,1) � 1

ca,1 � 0.996
and accordingly,

ca,2 � 0.0896

The complete wavefunction for the ground state, where E � �15.09 (which
is the more negative, or lower, energy), is

�a � 0.996�a,1 � 0.0896�a,2

The coefficients for the first excited state are given by using E � �3.91
(which is the higher of the two energy values) in either of the two ratios in
equation 12.33:

�
c

c
a

a

,

,

1

2

� � ��
�

�

4

1

�

�

(

(

�

�

3

3

.

.

9

9

1

1

)

)

(

(

1

0

)

)
�� ��

0.

1

09
�

ca,1 � �0.09ca,2

Normalizing provides the following values for the two coefficients:

ca,1 � �0.0896 and ca,2 � 0.996

The wavefunction whose energy is �3.91 is

�a � �0.0896�a,1 � 0.996�a,2

�1 � (�15.09)(0)
���
�15 � (�15.09)(1)
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Figure 12.9 shows a representation of the energies of the initial basis func-
tions compared to the approximate energies for the linear combination as de-
termined in Example 12.12. The process of taking linear combinations of ideal
wavefunctions is sometimes referred to as mixing wavefunctions. Note that
there has been a slight energy change as the two basis functions combine to
yield an approximate wavefunction for a real system. In this case, the energy
levels spread further apart when going from the ideal system to the real system
approximated by the linear combination of ideal wavefunctions. In all cases of
the mixing of two basis functions, the energies spread apart more. The closer
in energy the ideal levels, the farther apart they spread. Figure 12.10 illustrates
qualitatively how basis functions that are nearly degenerate mix and yield ap-
proximate wavefunctions that are now relatively far apart in energy. However,
the sum of the energies of the two levels—ideal and approximate—remains the
same. (This is true only if basis functions themselves are orthogonal; other-
wise, this is not the case.)

Two-level examples are relatively straightforward. In modern computational
quantum mechanics, dozens or even hundreds of levels can be calculated us-
ing means similar to those described above, although more complex.

12.9 Comparison of Variation and 
Perturbation Theories

Of the two approximation theories, which one is “better”? As with many such
questions, the answer is, it depends. In both cases, the energy can be deter-
mined more accurately than the wavefunction. In variation theory, the basis
functions can be anything, as long as the proposed function fits the require-
ments of wavefunctions in general and satisfies whatever boundary condition
exists. In applications to many large systems, researchers typically use ideal
wavefunctions that bear only a slight resemblance to true wavefunctions but
that can be integrated easily by computer. [For example, Gaussian-type func-
tions (that is, functions based on e�x 2

) are common in variation-theory appli-
cations, even though atomic orbitals are not Gaussian functions.] The idea “the
lower the energy, the better the energy and the wavefunction” provides a ma-
jor yardstick for critical evaluation of the wavefunctions by solving the secular
determinant. But the functions used in the trial wavefunctions may not make
sense in terms of having the form of a true atomic orbital, or may not be eas-
ily visualized. Computers are almost irreplaceable in variation-theory calcula-
tions, because in order to manipulate a large number of equations, the speed
of a computer becomes necessary.

Perturbation theory lacks the guarantee of variation theory. Results from
perturbation-theory calculations may yield an energy that can be either
higher or lower than the true energy. As such, to a certain extent the pre-
dicted energy for a perturbation-theory calculation is always suspect. But the
perturbation Hamiltonians Ĥ can usually be defined so as to make sense in
that their mathematical forms and behaviors are usually well known. For ex-
ample, common perturbations include electric and magnetic interactions,
two- and three-body interactions, dipole-dipole or dipole-induced dipole in-
teractions, or crystal-field interactions—all of which have known mathe-
matical forms and so can easily be included as part of a complete
Hamiltonian. Usually, the perturbation wavefunctions also make sense, since
many of them are simply corrections to ideal, well-known wavefunctions.
Each of the common perturbations listed above can be treated as a separate

402 C H A P T E R  12 Atoms and Molecules

Ideal
wavefunction

energies

Mixed
wavefunction

energies

H22

E
ne

rg
y

E2

H11

E1

Ideal
wavefunction

energies

Mixed
wavefunction

energies

H22

E
ne

rg
y

E2

H11

E1

Figure 12.10 When the wavefunctions being
mixed are almost degenerate, the separation of
the energies upon mixing is much larger than
when the energy eigenvalues are far apart.
Compare this with Figure 12.9.

Figure 12.9 A representation of the change in
energy values when wavefunctions are mixed. The
isolated wavefunction energies, H11 and H22, are
on the left, and the calculated values for the mixed
wavefunction energies, E1 and E2, are on the right.
The lower ideal energy has gone down slightly,
while the higher ideal energy increases.
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part of the overall wavefunction, so the complete wavefunction is the sum of
many simple parts. Computers are also useful in perturbation theory, espe-
cially where the number of perturbations included in a calculation gets large.
However, since many of the perturbations are selected because their mathe-
matical behavior is understood, calculation of perturbed energies by hand is
not inherently difficult.

Researchers in quantum mechanical calculations should understand the
limitations and strengths of each method. Typically, the method used is the one
that provides the information a particular researcher wants about a real sys-
tem. If a well-defined Hamiltonian and wavefunction are desired, then pertur-
bation theory provides that. If the absolute energy is important, variation the-
ory provides a way to get better and better results. The calculational cost is also
a factor. Those with access to supercomputers can work with a lot of equations
in a relatively short time. Those without may find themselves limited to a small
number of corrections to ideal wavefunctions.

An important thing to understand about both of these theories is that when
properly applied, they can be used to understand any atomic or molecular sys-
tem. By using more and more terms in a perturbation-theory treatment or
more and better trial functions in variation-theory treatments, one can do ap-
proximation calculations that yield virtually exact results. So even though the
Schrödinger equation cannot be solved analytically for multielectron systems,
it can be solved numerically using these techniques. The lack of analytic solu-
tions does not mean that quantum mechanics is wrong or incorrect or in-
complete; it just means that analytic solutions are not available. Quantum
mechanics does provide tools for understanding any atomic or molecular system
and so it replaces classical mechanics as a way to properly describe electron
behavior.

12.10 Simple Molecules and the 
Born-Oppenheimer Approximation

Since most chemical systems are molecules, it is important to understand
how quantum mechanics is applied to molecules. When we use the word
molecule, we are usually speaking of some chemically bonded system that ex-
ists as discrete collections of atoms bonded to each other in some specific
way. This contrasts with ionic compounds, which are atoms (or groups of co-
valently bonded atoms, the so-called polyatomic ions) held together by their
opposing charge; that is, they are composed of cations and anions. As one
might expect from the previous discussions about wavefunctions in multi-
electron atoms, wavefunctions of molecules get even more complicated. In
reality there are some useful simplifications, which we will get to in the next
chapter, but a general consideration of a simple diatomic molecule is useful
at this point.

The simplest diatomic molecule is H2
�, the diatomic hydrogen molecule

cation. This system has two nuclei and a single electron. It is illustrated in
Figure 12.11, along with definitions of the coordinates used to describe the po-
sitions of the particles. Because two nuclei are present, we must consider not
only the interaction of the electron with the two nuclei, but also the interac-
tion of the two nuclei with each other. The kinetic energy part of the complete
Hamiltonian will have three terms, one for each particle. The potential energy
part will also have three terms: an attractive electrostatic potential between
the electron and nucleus 1, an attractive electrostatic potential between the
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Figure 12.11 Definitions of the coordinates
for the H2

� molecule.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



electron and nucleus 2, and a repulsive electrostatic potential between nucleus
1 and nucleus 2. The complete Hamiltonian for H2

� is

Ĥ � ��
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��2
p1

� �
2

�

m

2

p

��2
p2

� �
2

�

m

2

e

��e
2 � �

4


e

�

2

0r1

� � �
4


e

�

2

0r2

� � �
4


e

�

2

0R
�

(12.35)

where �2 is the three-dimensional spatial second derivative for each of the
three particles (�2

p1
refers to the first proton, �2

p2
refers to the second proton,

and �e
2 refers to the electron). The first two potential energy terms (the fourth

and fifth terms in equation 12.35) are the attractive potential between the elec-
tron and proton 1 and proton 2, respectively (hence the negative signs), and
the final term is the repulsive potential between the two nuclei (hence the pos-
itive sign). The mp and me are the masses of the proton and electron. The dis-
tances r1, r2, and R are as defined in Figure 12.11.

As might be expected, no known analytic wavefunctions are eigenfunctions
of the Hamiltonian operator in equation 12.35. Some simplifications are
needed in order to determine approximate solutions using perturbation or
variation theory. One of the complications of this system is that there are now
two nuclei, and a proper wavefunction should take into account not only the
behavior of the electron but also the behavior of the nuclei. It should be clear
that if the relative positions of the nuclei change (for example, during a vibra-
tion in which the nuclei are moving alternately closer and farther apart) then
the electronic motion will also change to compensate. Any true wavefunction
for electrons needs to consider nuclear behavior as well.

However, nuclei are much heavier than electrons (a proton has 1836 times
the mass of an electron), so it can be suggested that nuclei move much more
slowly than electrons. In fact, it can be assumed that the nuclei move so much
more slowly than electrons that for all intents and purposes the motion of an
electron can be approximated as if the nuclei were not moving. Although the
nuclei are moving, we treat their motion independently from the motion of
the electrons. This statement is called the Born-Oppenheimer approximation
after Max Born (Figure 12.12) and J. Robert Oppenheimer (Figure 12.13).
Born and Oppenheimer’s statement is the ultimate basis for molecular quan-
tum mechanics.

Mathematically, the Born-Oppenheimer approximation is written as

�molecule � �nuc 	 �el (12.36)

which says that the complete molecular wavefunction is the product of a nu-
clear wavefunction and an electronic wavefunction. This treatment is reminis-
cent of how we solved the 3-D particle-in-a-box and 3-D rotational motion:
separation of variables. The complete Hamiltonian for H2

� can be approxi-
mated by two separate Schrödinger equations. The Schrödinger equation for
the electronic part is

���
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���el � Eel�el (12.37)

where R is the internuclear distance and is fixed at some value. Thus, the last
term in the parentheses represents, for a given value of R, a fixed potential en-
ergy value. The Schrödinger equation for the nuclei has the form

���
2

�

m

2

e

��2
p1

� �
2

�

m

2

e

��2
p2

� Eel(R)��nuc � Enuc�nuc (12.38)
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Figure 12.13 J. Robert Oppenheimer (1904–
1967). With Born, Oppenheimer helped develop
quantum mechanics for application to molecules.
Oppenheimer is probably better known, however,
for leading the Manhattan Project, which devel-
oped the first atomic bombs, during World 
War II.

Figure 12.12 Max Born (1882–1970). Not
only did he develop the probabilistic interpreta-
tion of the wavefunction, but he also devised a
quantum-mechanical description for molecules.
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where �2
p1

and �2
p2

are the Laplacian operators for the two nuclei (which are
just protons) and Eel(R) is the electronic potential energy from the electronic
Schrödinger equation, 12.37. These two equations must be solved simultane-
ously in order to get a complete wavefunction for the molecule.

In the application of the Born-Oppenheimer approximation to diatomic
molecules, often the kinetic energy of the nuclei is neglected and the internu-
clear repulsion is estimated from classical considerations for a particular in-
ternuclear distance R (for example, the equilibrium bond distance). This re-
pulsion is included in the potential energy of the electronic Schrödinger part
of equation 12.37, which is solved using perturbation or variation techniques.
A more complete treatment calculates the internuclear potential at a series of
R’s and then calculates (numerically) the electronic energy at each R. From
this, a plot of electronic energy versus internuclear distance can be constructed,
like the one in Figure 12.14. Such a plot is called a potential energy curve for
the molecule. Figure 12.14 shows a potential energy curve for the ground elec-
tronic state, where the energy of the molecule is lowest at the equilibrium bond
distance. Each electronic wavefunction, which has its own characteristic en-
ergy, will have its own potential energy curve as the internuclear distance
changes. Figure 12.15 shows potential energy curves for ground and excited
states of a simple diatomic system.

12.11 Introduction to LCAO-MO Theory
The previous section points out that the Born-Oppenheimer approximation is
useful in that electronic parts of wavefunctions can be separated from nuclear
parts of wavefunctions. However, it does not assist us in determining what the
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Figure 12.14 A simple potential energy curve
for a diatomic molecule A2. When the nuclei get
too close, nuclear repulsion increases quickly.
When the nuclei get too far apart, the bond breaks
and the molecule separates into two higher-
energy A atoms. The minimum-energy internu-
clear distance, labeled Re, represents the equilib-
rium bond distance of the A–A bond in the stable
molecule.

Figure 12.15 A typical set of potential energy
curves for the ground state and two excited states of
a hypothetical diatomic molecule. The minimum-
energy internuclear distance for the excited state,
Re*, is not necessarily the same as the Re for the
ground state. Potential energy diagrams for real
molecules are much more complicated than this.
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electronic wavefunctions are. Electrons in molecules are described approxi-
mately with orbitals just like electrons in atoms are described by orbitals. We
have seen how quantum mechanics treats atomic orbitals. How does quantum
mechanics treat molecular orbitals? Molecular orbital theory is the most pop-
ular way to describe electrons in molecules. Rather than being localized on in-
dividual atoms, an electron in a molecule has a wavefunction that extends over
the entire molecule. There are several mathematical procedures for describing
molecular orbitals, one of which we consider in this section. (Another per-
spective on molecular orbitals, called valence bond theory, will be discussed in
Chapter 13. Valence bond theory focuses on electrons in the valence shell.)

Consider what happens when a molecule is formed: two (or more) atoms
combine to make a molecular system. The individual orbitals of the separate
atoms combine to make orbitals that span the entire molecule. Why not use
this description as a basis for defining molecular orbitals? This is exactly what
is done. By using linear variation theory, one can take linear combinations of
occupied atomic orbitals and mathematically construct molecular orbitals.
This defines the linear combination of atomic orbitals—molecular orbitals
(LCAO-MO) theory, sometimes referred to simply as molecular orbital theory.

In the case of H2
�, the molecular orbitals can be expressed in terms of the

ground-state atomic orbitals of each hydrogen atom:

�H2
� � c1�H(1) � c2�H(2) (12.39)

where �H(1) refers to a ground-state (that is, 1s) atomic wavefunction from hy-
drogen 1, and �H(2) refers to a 1s atomic wavefunction from hydrogen 2.
Because both hydrogen atoms participate equally in the molecule, it can be ar-
gued that the two constants c1 and c2 have the same magnitude. It can also be
argued that there are two linear combinations are possible, a sum and a dif-
ference of the two atomic orbitals (AOs). Therefore, the two atomic orbitals are
combining to make two molecular orbitals (MOs) having the forms

�H2
�,1 � c1(�H(1) � �H(2))

�H2
�,2 � c2(�H(1) � �H(2))

(12.40)

Remember that when n atomic orbitals are used, there will be n linearly inde-
pendent combinations to describe n molecular orbitals. At this point we can-
not assume that c1 � c2. A graphical representation of the sum and difference
of the two atomic orbitals is shown in Figure 12.16. Each hydrogen wavefunc-
tion is spherically symmetric, although the combination of two atoms makes
a system that is no longer spherically symmetric. However, we note that it does
have cylindrical symmetry, so Figure 12.16 actually represents the magnitudes
of the wavefunctions along the axis of a cylinder, which is the internuclear axis
of the molecule.

Just as in linear variation theory, the coefficients can be determined using
a secular determinant. But unlike the earlier examples using secular determi-
nants, in this case some of the integrals are not identically zero or 1 due to
orthonormality. In cases where there is an integral in terms of �*H(1)�H(2) or
vice versa, we cannot assume that the integral is identically zero. This is because
the wavefunctions are centered on different atoms. The orthonormality condi-
tions to this point are only strictly applicable to wavefunctions of the same sys-
tem. Since the ideal wavefunctions �H(1) and �H(2) are centered on different
nuclei, the orthonormality condition does not automatically apply. The solu-
tion to the secular determinant will therefore be slightly more complicated.

406 C H A P T E R  12 Atoms and Molecules

H1 H2

� (H2
+), 2

� (H2
+), 1

�H �H

±

H

H

H H

or

Figure 12.16 Representations of H2
� molec-

ular orbitals from linear combinations of hydro-
gen atomic orbitals. The MO in the middle plot
is the sum of the two AOs at the top, with elec-
tron density concentrated between the nuclei. The
lower MO is the difference of the two AOs, with
electron density concentrated more outside the
two nuclei.
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Because the molecular orbitals must be normalized, we can determine ex-
pressions for c1 and c2. Normalizing the first equation in 12.40:

��*H2
�,1�H2

�,1 d� � 1 � c2
1 �(�*H(1)�H(1) � 2�*H(1)�H(2) � �*H(2)� H(2)) d�

1 � c2
1(2 � 2 � �*H(1)�H(2) d�)

where the fact that the atomic orbitals on the same atom are normalized has
been used for simplification. The integral � �*H(1)�H(2) d� involves a wave-
function from each atomic center and, as discussed above, cannot be assumed
to be identically zero. This is an example of an overlap integral and is usually
given the abbreviation S12. (We defined overlap integrals in our previous dis-
cussion of linear variation theory.) The normalization of the molecular wave-
function proceeds as

1 � c2
1(2 � 2S12)

c1 � �
�2 �

1

2S�12�
� (12.41)

By performing a similar normalization, the coefficient for the second molecu-
lar orbital can be shown as

c2 � �
�2 �

1

2S�12�
� (12.42)

The two coefficients are not the same as long as S12 is not zero! The complete
wavefunctions are

�H2
�,1 � �

�2 �

1

2S�12�
� (�H(1) � �H(2))

�H2
�,2 � �

�2 �

1

2S�12�
� (�H(1) � �H(2))

(12.43)

Now we will evaluate the average energies of these two molecular orbitals for
H2

�. Using the first wavefunction and assuming the purely electronic
Hamiltonian where the nuclei are separated at some distance R:

E1 � c2
1 �(�*H(1)Ĥ �H(1) � �*H(1)Ĥ �H(2) � �*H(2)Ĥ �H(1) � �*H(2)Ĥ �H(2)) d�

(Note the subscripts on each of the �’s.) We substitute the following defini-
tions from linear variation theory into the above equation:

H11 � H22 � � �*H(1)Ĥ �H(1) d� � � �*H(2)Ĥ �H(2) d�

H21 � H12 � � �*H(1)Ĥ �H(2) d� � � �*H(2)Ĥ �H(1) d�
(12.44)

These integrals are very similar to those in equation 12.28, except that now
wavefunctions from different atoms can interact mathematically. H11 and H22

are simply the energies of the atomic orbitals. H12 and H21, however, represent
a sort of energy of mixing of wavefunctions from two different atoms. These in-
tegrals are called resonance integrals. Integrals of this sort—where one � comes
from one atomic center and the other � comes from another atomic center—
are not predicted by classical mechanics and are of purely quantum-mechanical
origin. The equalities in equation 12.44 arise from the fact that both atoms are
hydrogens. If this were a heteronuclear diatomic system, each resonance inte-
gral H11, H12, H21, and H22 would have its own independent definition.
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With the substitutions, the expressions for the average energies become
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H

12

12�

(12.45)

where E1 is less than E2. Curiously, the sum of molecular orbital energies E1

and E2 is not the same as the sum of the two original atomic orbital energies.
The total energy depends on the magnitudes of H12 and S12; in the case of H2

�,
the sum of the two orbital energies has increased slightly. This is illustrated in
Figure 12.17. The total energy of the system includes not just the energy of the
orbitals but the repulsive energy due to the two nuclei at some distance R. This
total energy must therefore be evaluated to minimize the energy in terms of R,
H12, and S12. The resonance and overlap integrals can be evaluated analytically
using elliptical polar coordinates (instead of spherical polar coordinates).* The
expressions one obtains for the integrals upon application of elliptical polar
coordinates are

H12 � E11S12 � 2E11e�R/a0�1 � �
a

R

0

�� (12.46)

S12 � e�R/a0�1 � �
a

R

0

� � �
3

R

a

2

2
0

�� (12.47)

where E11 is simply the energy of the atomic hydrogen 1s orbital and a0 is the
first Bohr radius, 0.529 Å. The only remaining parameter is R. By varying 
R and calculating the energy, we can find the internuclear distance at which the
energy is minimized. When this is done, an R of 1.32 Å and an energy of
�2.82 	 10�19 J with respect to H � H� are calculated. (The energy of infi-
nitely separated H � H� is arbitrarily set equal to zero. Our result means that
the H2

� system is calculated as being 2.82 	 10�19 J lower in energy than the
two separated atoms, meaning that it is more stable by that amount.) This can
be compared to experimentally determined properties of R � 1.06 Å and 
E � �4.76 	 10�19 J (relative to H � H�). Not bad for a first approximation.

Example 12.13
Comment on the value of S12 as the interatomic distance R goes from 0 to �.

Solution
When R is zero, the two nuclei essentially represent a single atom of charge
2�. Due to orthonormality considerations, the overlap integral S12 should be
equal to 1. As the two nuclei separate, they get farther and farther apart and
the ground-state atomic wavefunctions overlap less and less. At R � �, each
atom is effectively isolated from the other and the overlap integral should es-
sentially be 0. At intermediate distances, S12 can have any value between 0 and
1. This analysis does illustrate why S12 is called an overlap integral. It indi-
cates a relative amount of overlap between the atomic orbitals.
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*In fact, H2
� is a system that can be solved analytically if the Born-Oppenheimer ap-

proximation is imposed on the system first. Otherwise, it is not analytically solvable.
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Figure 12.17 When the AOs of two hydrogen
atoms combine to make MOs of H2

�, the anti-
bonding orbital increases in energy slightly more
than the bonding orbital decreases in energy. (The
energy axis is not to scale.) Expressions like equa-
tions 12.42–12.44 can be used to estimate the dif-
ferences between atomic and molecular orbital
energies.
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Example 12.14
Using R � 1.32 Å, evaluate S12, H12, E1, E2, and the wavefunctions for H2

�.
Use �13.60 eV as the value for the energy of a 1s hydrogen electron, and ex-
press answers in units of eV. (An electron volt, or eV, equals 1.602 	 10�19 J
and is a useful unit for atomic-scale values of energy.)

Solution
Since both R and a0 are in units of Å, it is unnecessary to consider any unit
conversions. Using the expressions above,

S12 � e�1.32Å/0.529Å	1 � �
0

1

.

.

5

3

2

2

9

Å

Å
� � �

3

(

(

1

0

.

.

3

5

2

29

Å

Å

)2

)2�
 � 0.459

H12 � (�13.60 eV)(0.459) � 2(�13.60 eV) � e�1.32Å/0.529Å�1 � �
0

1

.

.

5

3

2

2

9

Å

Å
��

� �14.08 eV

E1 � � �18.97 eV 

E2 � � �0.887 eV

The wavefunctions that have these energies are

�H2
�,1 � 0.585(�H(1) � �H(2) )

�H2
�,2 � 0.961(�H(1) � �H(2))

12.12 Properties of Molecular Orbitals
Consider the wavefunctions determined for the MOs of H2

�. Although they
are very simple molecular orbitals, they do have certain characteristics that can
be used to describe all molecular orbitals. Figure 12.18 shows a representation
of the sum and difference of the two atomic H orbitals and their squares. Since
the probability that the electron will exist in a region is proportional to the
square of the wavefunction, Figure 12.18b indicates the probability for an elec-
tron existing in the molecule. Since the system is cylindrical, so is the proba-
bility (this is similar to our discussion of radial shell probabilities for the hy-
drogen atom). In the lower-energy wavefunction (Figures 12.18a and b), the
probability of the electron in the cylindrical volume between the two nuclei has
increased relative to the original, separate atomic wavefunctions. Since the two
positive nuclei would otherwise repel each other, this increase in electron prob-
ability or electron density serves to lower the repulsion between the nuclei and
stabilize the entire molecular system; that is, it lowers the energy. Any molec-
ular orbital whose energy is lower than the energy of the separated atomic or-
bitals is called a bonding orbital.

The higher-energy molecular orbital (Figures 12.18c and d), on the other
hand, concentrates more electron probability in a cylindrical volume outside
the two nuclei. An electron in this orbital would therefore have a decreased
probability of being found between the nuclei, and the repulsion between pos-
itively charged nuclei would increase, destabilizing the overall system. Any
molecular orbital whose energy is higher than the energy of the separated
atomic orbitals is called an antibonding orbital. This antibonding orbital has a

�13.60 eV � (�14.08 eV)
���

1 � 0.459

�13.60 eV � 14.08 eV
���

1 � 0.459
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� (H2
+), 2

� (H2
+), 1

H

H

H

(d)

H

�� (H2
+), 1�2

H
(b)

H

(a)

(c)

�� (H2
+), 2�2

H H

Figure 12.18 Radial plots of the molecular
orbitals and their probabilities for H2

� . For the
bonding orbital (a), there is an increased proba-
bility for the electrons between the nuclei (b). For
the antibonding orbital (c), there is a decreased
probability between the nuclei (d). The anti-
bonding orbital shows a node between the two
nuclei.
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nodal surface between the nuclei; the electron’s probability of being at that
point is exactly zero. If all atomic orbitals were assumed to combine to make
molecular orbitals, half of the molecular orbitals would be bonding and half
would be antibonding orbitals. (There are also nonbonding orbitals that do not
contribute to molecular bonding, but they will not be considered at this point.)
One useful definition is bond order. If the number of electrons in bonding
orbitals were nbond and the number of electrons in antibonding orbitals were
nantibond, the bond order n is

n � �
nbond �

2

nantibond� (12.48)

Bond order is qualitatively related to the strength and number (that is, single,
double, triple) of bonds between atoms in a molecule.

It has been assumed that our system and our orbitals are cylindrically
symmetric. This makes sense, because our molecular orbitals were spherical
to start with and the combination of two spheres yields a shape that is cylin-
drical about the line connecting the two nuclei. A cylindrical wavefunction
has a magnitude that is symmetric about some axis, in this case defined by
the line drawn directly between the two nuclei. Such a line is often used to
indicate a bond. Any orbital whose behavior or magnitude is cylindrical
about the bond between the two atoms is called a sigma (�) orbital. The com-
bination of the two atomic wavefunctions in H2

� therefore yields one bond-
ing sigma orbital (denoted �) and one antibonding sigma orbital (denoted
�*). Figure 12.19 shows a labeled molecular orbital diagram for the two mol-
ecular orbitals of H2

�.
Since the � orbital for H2

� has a lower energy than the two individual or-
bitals of the separated H atoms, if an electron were residing in that orbital, the
overall energy of the molecular system would be lowered. Lower energies are
more stable, and so the H2

� system would be considered energetically stable
in its ground state. Although it requires special conditions to generate, H2

� is
a stable species relative to separated H � H�. Because there is one electron in
a bonding orbital and none in an antibonding orbital, the bond order of H2

�

is �
1
2

�. This also implies that a bond exists and that the species would be stable.
If, however, the electron in H2

� were to absorb energy and be promoted into
the antibonding orbital, repulsion between nuclei would be increased and the
molecule should break apart into the stabler H � H� species. This is indeed
what happens experimentally.

12.13 Molecular Orbitals of Other 
Diatomic Molecules

The concept of molecular orbitals can be extended to diatomic molecules
larger than the H2

� system. By including a second electron, we can consider
the neutral hydrogen molecule, H2. For the ground electronic state, we can
borrow the molecular orbital diagram for H2

�, which has a single electron in
the bonding � orbital. The second electron in H2 also resides in this orbital,
but its spin must be opposite the spin of the first electron to satisfy the Pauli
exclusion principle. The MO diagram for H2 is shown in Figure 12.20.

The approximate wavefunction for H2 is similar to that for the He atom in
that there are now two electrons that need spatial functions, and the overall
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E

ne
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H2
+

	*

H1
1s 1s

H2

Figure 12.19 A molecular orbital diagram for
H2

�, showing the � and �* labels for the molec-
ular orbitals. (Compare this to Figure 12.17.) In
the ground state, the single electron occupies the
lowest-energy molecular orbital. Since this repre-
sents a lowering of the energy with respect to the
energy of the atoms, the molecule is more stable
than the separated atoms.

	

	*

H1
1s 1s

E
ne

rg
y

H2

H2

Figure 12.20 A qualitative molecular orbital
diagram for H2 is very similar to that of H2

�, ex-
cept for the presence of the second electron with
a spin opposite that of the first.
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spin-orbital wavefunction must be antisymmetric with respect to exchange of
the two electrons. Recall that the wavefunction for the electron in the bonding
orbital of H2

�, from equation 12.43, is

�H2
�,1 � �

�2 �

1

2S�12�
� (�H(1) � �H(2))

The other wavefunction from equation 12.43 is for the antibonding orbital.
Since both electrons can be described with this spatial wavefunction, the spa-
tial wavefunction for the H2 molecule is the product of two such �’s:

�H2
� �

2 �

1

2S12

�[�H(1)(el.1) � �H(2)(el.1)][�H(1)(el.2) � �H(2)(el.2)]

(12.49)

where each linear combination has been labeled as referring to electron 1 or
electron 2 (el.1 or 2). This spatial wavefunction must be multiplied by the anti-
symmetric spin function 1/�2�[�(1)�(2) � �(2)�(1)] to get the complete
wavefunction that satisfies the Pauli principle (that is, is antisymmetric). The
complete wavefunction is

�H2
� �

�
1

2�
� �

2 �

1

2S12

�[�H(1)(el.1) � �H(2)(el.1)] (12.50)

� 	 [(�H(1)(el.2) � �H(2)(el.2)][�(1)�(2) � �(2)�(1)]

The average energy of this wavefunction can also be evaluated versus R
under the Born-Oppenheimer approximation. We can calculate that, with re-
spect to two separated H atoms, the decrease in energy upon bonding is 
4.32 	 10�19 J for the hydrogen molecule (compared to 7.59 	 10�19 J ex-
perimentally), at a minimum-energy R of 0.85 Å (compared to 0.74 Å experi-
mentally). The calculated bond order of H2 is 1, corresponding to the existence
of a single bond.

Because both electrons reside in the � bonding orbital, an “electron config-
uration” of �2 can be used to describe the ground electronic state of H2.
(Because H2 is a homonuclear diatomic molecule, we add a subscript “g” to the
label—�g

2—to indicate the orbital’s symmetry property with respect to the
center of the molecule. Electrons in the antibonding orbital are labeled �*u,
the “u” also referring to the orbital’s symmetry properties.† Symmetry will be
discussed in the next chapter.) To emphasize that the electrons in the � orbital
derive from 1s electrons from H atoms, the more detailed (�g1s)2 label can also
be used.

Larger atoms have more occupied atomic orbitals that can combine into
molecular orbitals. It is common to use the second row of atoms, Li through
Ne, to illustrate the principles. For diatomics having electrons originating from
different atomic electronic shells, we adopt the approximation that only atomic
orbitals of similar energies will combine to make molecular orbitals.

Thus, for Li2, the 1s orbital from one Li atom will interact with the 1s or-
bital from the other Li atom, as we saw occurring in H2. Additionally, the 2s
orbital of the first Li atom will interact with the 2s orbital of the second Li
atom, creating another bonding and antibonding pair of molecular orbitals.
The four 1s electrons will fill the �g1s and �*g1s molecular orbitals, and the two
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†The labels “g” and “u” stand for the German words gerade and ungerade, respectively.
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2s electrons will occupy the �g2s bonding molecular orbital (and have oppo-
site spins). A molecular orbital diagram for Li2 is shown in Figure 12.21.

Example 12.15
Borrowing from the molecular electron configuration of H2, what is the elec-
tronic configuration of Li2?

Solution
Since we have two electrons in the �g1s molecular orbital, two electrons in
the �*g1s antibonding orbital, and two electrons in the �g2s molecular orbital,
the electron configuration is

(�g1s)2(�*g1s)2(�g2s)2

Note that sigma orbitals arise from the combination of the 2s atomic orbitals
as well.

When p orbitals participate in making molecular orbitals, a new considera-
tion arises. Because of the directionality of the p orbitals, there are two possi-
bilities when p orbitals combine. One p orbital from each atom (arbitrarily the
pz orbital) can combine in a head-on, axial fashion (Figure 12.22a). The other
two p orbitals (px and py) must combine in a side-on, off-axis fashion (Figure
12.22b). Although the two side-on-overlapping p combinations are degenerate,
these molecular orbitals do not have the same energy as the axially overlapping
molecular orbital. The axially overlapped molecular orbital, with increased
electron density within the internuclear axis, is also a � orbital; bonding and
antibonding � orbitals are also produced by this combination of two p atomic
orbitals.

The four side-on-overlapping p orbitals make pi (
) molecular orbitals,
whose electron densities exist outside the intermolecular axis. (In fact, the in-
ternuclear axis represents a node for 
 orbitals.) The combination of the four
p atomic orbitals produces two degenerate bonding 
 orbitals and two degen-
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px or pypx or py

	 orbitalpzpz

+

+

� orbital

(a)

(b)

Figure 12.22 (a) The pz atomic orbitals interact head-on, yielding � bonding and antibond-
ing orbitals. (b) The px and py atomic orbitals interact in a side-on fashion, yielding 
 orbitals
whose electron density is outside the internuclear axis. The different shades of the lobes indicate
different phases of the wavefunctions.

	

	*
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2s 2s

E
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y

Li

	

Li2

	*
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1s 1s
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Figure 12.21 A molecular orbital diagram for
Li2, showing that 1s atomic orbitals interact with
1s orbitals, and 2s orbitals interact with 2s or-
bitals. Although this is an additional approxima-
tion, it helps us understand the wavefunctions of
these simple molecules.
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erate antibonding 
 orbitals. (In filling degenerate 
 orbitals, Hund’s rules still
apply.) Because of their symmetry properties, bonding 
 orbitals have the “u”
label and antibonding 
 orbitals have the “g” label for homonuclear diatomics.

The relative energy ordering of � and 
 molecular orbitals from p atomic
orbitals depends on the second-row atoms involved. For Li2 through N2, the
ordering is (
u2px, 
u2py) � �g2pz � (
*g2px, 
*g2py) � �*u2pz. For O2 and F2

(and Ne2, although this species does not exist as a stable molecule), the order-
ing of the bonding molecular orbitals is switched: �g2pz � (
u2px, 
u2py) �
(
*g2px, 
*g2py) � �*u2pz. How can we justify the difference in ordering of mo-
lecular orbitals? First of all, we note that for the smaller atoms, the 2s and 2p
orbitals are closer in energy than they are for the larger atoms of the second-
row atoms. By the reasoning above that only similar-energy atomic orbitals will
interact, the smaller atoms will have more interaction between the 2s orbitals
and the 2p orbitals than the larger atoms. Because of that increased inter-
action, one resulting molecular orbital increases its energy and the other mo-
lecular orbital decreases its energy. In addition, not all three pairs of the 
2p-derived molecular orbitals will interact strongly with the 2s orbital—their
orientations aren’t right for good interaction. (This is a consequence of sym-
metry, which will be discussed in the next chapter.) Only one of the molecular
orbitals has the correct orientation and will interact, altering its expected energy.
This ultimately yields a relative ordering of molecular orbitals for Li2 through
N2 that differs from that in O2 through Ne2.

Perhaps the most obvious experimental observation in support of this
model of molecular wavefunctions is the diamagnetism of O2, caused by one
unpaired electron in each of the two degenerate 
*g molecular orbitals. Figure
12.23 summarizes the occupancies of the molecular orbitals for diatomics of
the second-row elements.

For heteronuclear diatomics, the molecular orbital picture is similar, al-
though the energies of the atomic orbitals are no longer the same. Molecular
orbital diagrams show atomic orbitals at different levels on the vertical energy
scale, as shown in Figure 12.24 for NO and HF. Note in HF that two of the
originally degenerate p atomic orbitals of F do not participate in the bonding
(by this approximation). Thus, they remain in doubly degenerate nonbonding
orbitals. The electron configuration of HF, (�)2(2px

2, 2py
2), does not have atomic

orbital labels for the doubly occupied bonding � orbital making the inter-
nuclear bond. In this case, it is derived from the 1s atomic orbital of H and the
2pz atomic orbital of F.

12.14 Summary
Spin has dramatic consequences for the electronic structure of atoms. Because
of the Pauli principle, at most two electrons can fit in each orbital. Given the
restrictions on the � and m� quantum numbers, this requires that successive
shells about atoms be filled with successive electrons. This gives atoms size. If
the Pauli principle did not apply to electrons, they could all fit into a 1s H-like
orbital. But because only two of them can be allowed in each orbital, one of
each spin, larger and larger shells must be filled as the number of electrons in-
creases. Ultimately, the Pauli principle gives atoms their size.

There are no known analytic solutions to the Schrödinger equation for
systems more complex than the hydrogen atom. This does not imply that
quantum mechanics is not applicable to larger systems. Perturbation theory
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and variation theory are two tools used in quantum mechanics to approxi-
mate the behavior and energy of multielectron systems. Application of either
approximation technique can in principle yield energy eigenvalues as close
to experiment as desired. Recall that this is the true test of a theory: how well
it reproduces and explains experiment (as with the discovery of antimatter,
predicted by Dirac’s relativistic quantum mechanics. Such agreement be-
tween theory and experiment fosters confidence in both). Depending on how
one approaches a system, one can devise a numerical understanding of elec-
tron behavior. We will also find in the next few chapters how quantum me-
chanics can be applied to behavior of not just electrons, but of molecules as
a whole.
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Figure 12.23 Molecular orbitals of Li2 through F2. The energy axis is not to scale, but this di-
agram should provide an idea of how the molecular orbitals are ordered and filled with electrons
for these homonuclear diatomic molecules.
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2p

2s

2p

2s

NON O

1s
2p

HFH F

2s

Figure 12.24 Molecular orbitals of the heteronuclear diatomic molecules NO and HF. The en-
ergy axis is not to scale, and only the valence shell electrons are shown. Compare these diagrams
with those in Figure 12.23.

Our understanding of molecular quantum mechanics begins with mole-
cular orbitals, which are based on atomic orbitals. As with many tools used
to describe nature, we started at the bottom and are working our way up.
The fundamentals of molecular quantum mechanics provide us with the
tools to understand most of matter, at least as we understand it today. The
next few chapters broaden the applications of quantum mechanics to mo-
lecular systems.
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12.2 Spin

12.1. In the Stern-Gerlach experiment, silver atoms were used.
This was a good choice, as it turned out. Using the electron
configuration of silver atoms, explain why silver was a good
candidate for being able to observe the intrinsic angular mo-
mentum of the electron. (Hint: Don’t use the aufbau principle
to determine the electron configuration of Ag, because it’s one
of the exceptions. Look up the exact electron configuration in
a table.)

12.2. Using � and � labels, write two possible wavefunctions
for an electron in the 3d�2 orbital of He�.

12.3. Antimatter and matter destroy each other, giving off
electromagnetic radiation as the total mass of the particles is
converted to energy. Using Einstein’s matter-energy equiva-
lence equation E � mc2, calculate the number of joules of en-
ergy given off when (a) one electron and one positron destroy
each other (the mass of the positron is the same as the mass
of the electron), and (b) 1 mole of electrons destroys 1 mole
of positrons.

12.4. Are the two spin functions � and � orthogonal? Why or
why not?

12.5. (a) Differentiate between the quantum numbers s and
ms. (b) What will the possible values of ms be for a particle
having an s quantum number of 0, 2, and �

3
2

�?

12.3 He Atom

12.6. Are mathematical expressions for the following poten-
tial energies positive or negative? Explain why in each case. 
(a) The attraction between an electron and a helium nucleus
(b) The repulsion between two protons in a nucleus (c) The
attraction between a north and a south magnetic pole (d) The
force of gravity between the sun and Earth (e) A rock perched
on the edge of a cliff (with respect to the base of the cliff)

12.7. Write out the complete Schrödinger equation for Li and
indicate what terms in the operator make the equation un-
solvable exactly.

12.8. (a) Assume that the electronic energy of Li was a prod-
uct of three hydrogen-like wavefunctions with principal quan-
tum number equal to 1. What would be the total energy of Li? 

(b) Assume that two of the principal quantum numbers are 1
and the third principal quantum number is 2. Calculate the es-
timated electronic energy. 

(c) Compare both energies with an experimental value of 
3.26 	 10�17 J. Which estimate is better? Is there any reason
you might assume that this estimate would be better from the
start?

12.4 Spin Orbitals; Pauli Principle

12.9. Spin orbitals are products of spatial and spin wave-
functions, but correct antisymmetric forms of wavefunctions
for multielectron atoms are sums and differences of spatial
wavefunctions. Explain why acceptable antisymmetric wave-
functions are sums and differences (that is, combinations) in-
stead of products of spatial wavefunctions.

12.10. Show that the correct behavior of a wavefunction for
He is antisymmetric by exchanging the electrons to show that
�(1, 2) � �� (2, 1).

12.11. Use a Slater determinant to determine the correctly
behaved wavefunction for the ground state Li�.

12.12. Why does the concept of antisymmetric wavefunc-
tions not need to be considered for the hydrogen atom?

12.13. (a) Construct Slater determinant wavefunctions for Be
and B. (Hint: Although you need only include one p orbital for
B, you should recognize that up to six possible determinants
can be constructed.) 

(b) How many different Slater determinants can be con-
structed for C, assuming that the p electrons spread out among
the available p orbitals and have the same spin? How many
different Slater determinants are there for F?

12.14. Examples in the chapter suggest that the number of
terms in a proper antisymmetric wavefunction given by a Slater
determinant is n!, where n is the number of electrons and !
implies the factorial of n (n! � 1 � 2 � 3 � 4 � � � � � n). Coming
up with the correct terms for a proper wavefunction becomes
a difficult task very quickly; hence the extreme simplicity pro-
vided by a Slater determinant. 

(a) Verify the n! relationship for the examples of He, Li, and
Be given in the text. (Hint: you may have to review rules for
evaluating determinants.) 

(b) Determine the number of terms in an antisymmetric wave-
function for C, Na, Si, and P.

12.5 Aufbau Principle

12.15. Using a periodic table (or Table 12.1), find the ele-
ments whose electron configurations do not follow the aufbau
principle strictly. Comment on any relationship between these
elements or their place within the periodic table.

12.16. Label each electron configuration for the listed atom
as a ground state or an excited state. (a) Li, 1s2 2p1 (b) C,
1s2 2s2 2p2 (c) K, 1s2 2s2 2p6 3s2 3p6 4p1 (d) Be, 1s2 3s2 (e)
U (outer shells only) 7s2 5f 3 7p1

12.17. For each atomic state in exercise 12.16, determine
how many possible ways the electrons in the outermost shell
can occupy spin orbitals and satisfy Hund’s rule, and list them
explicitly. For example, in the case of Li, the outermost shell
has three more specific possibilities: 2px

1 (spin � or spin �), or
2py

1 (spin � or spin �), or 2pz
1 (spin � or spin �), for a total of

six possibilities.

12.6 Perturbation Theory

12.18. In deriving equation 12.17, we stated that the correc-
tion to the energy is an approximation. Why can’t we simply
assume that the integral representing the first-order correction
can be solved analytically, and therefore be exact?

12.19. An anharmonic oscillator has the potential function 
V � �

1
2

�kx2 � cx4, where c can be considered a sort of anhar-
monicity constant. Determine the energy correction to the
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ground state of the anharmonic oscillator in terms of c, as-
suming that HĤ° is the ideal harmonic oscillator Hamiltonian
operator. Use the integral table in Appendix 1 in this book.

12.20. Why would a perturbation Ĥ� � cx3 not work for an
energy correction to a ground-state harmonic oscillator? (Hint:
try evaluating the energy explicitly, then consider how to ar-
rive at the answer without evaluating the integral.)

12.21. Calculate a3 for the real wavefunction in Example 12.10. 

12.22. For a true polyene (that is, an organic molecule hav-
ing multiple conjugated carbon-carbon double bonds), there
may be a small potential energy change on the ends that can
be approximated by V � k(x � a/4)4 where k is some constant.
Apply this perturbation to the ground-state particle-in-a-box
and determine its energy. You will have to multiply the func-
tion out into a polynomial and evaluate each term individually.

12.23. The Stark effect is the change in energy of a system
due to the presence of an electric field (discovered by German
physicist Johannes Stark in 1913). Consider the hydrogen
atom. Its normally spherical 1s orbital distorts slightly when
exposed to an electric field. If the electric field is considered to
be in the z direction, then the field acts to introduce, or mix,
some 2pz character in with the 1s orbital. The atom is said to
be polarizable, and the extent to which it changes is consid-
ered a measure of the atom’s polarizability (which is desig-
nated by the letter �, not to be confused with the spin func-
tion �!). The perturbation Hamiltonian is defined as Ĥ � �
e � E � r � cos �, where e is the charge on the electron, E is the
strength of the electric field, and r and � represent coordinates
of the electron. Evaluate the perturbation energy of the hy-
drogen atom. You will have to integrate all three spherical po-
lar coordinates in your evaluation of Ĥ�. (A similar effect, the
Zeeman effect, exists for magnetic fields. It too can be treated
using perturbation theory.)

12.7 & 12.8 Variation Theory

12.24. Which of the following unnormalized functions can be
used in a variation theory treatment of a particle-in-a-box
having length a?

(a) � � cos (Ax � B), A and B are constants 

(b) � � e�ar (c) � � e�ar3

(d) � � x2(x � a)2 (e) � � (x � a)2

(f) � � a/(a � x) (g) � � sin (Ax/a) cos (Ax/a)

12.25. Confirm equation 12.29 by substituting the defini-
tions in equation 12.28 into equation 12.27.

12.26. Show that a variation theory treatment of H using 
� � e�kr as an unnormalized trial function yields the correct
minimum-energy solution for the hydrogen atom when the
specific expression for k is determined.

12.27. Explain why assuming an “effective nuclear charge,”
as used for our treatment of the helium atom in Example
12.11, is unnecessary for a treatment of the hydrogen atom.

12.28. Show that the two real wavefunctions determined in
Example 12.12 are orthonormal.

12.29. Consider a real system. Assume that a real wavefunc-
tion is a combination of two orthogonal functions such that

H11 � �15, H22 � �4, and H12 � H21 � �2.5 (arbitrary 
energy units). (a) Evaluate the approximate energies of the
real system and evaluate the coefficients of the expansion 
�a � ca,1�1 � ca,2�2. (b) Compare your answer to the an-
swers in exercise 12.12 and comment.

12.30. (a) What does the secular determinant look like for a
system that is described in terms of four ideal wavefunctions?
(b) Comment on the complexity of a secular determinant as
the number of ideal wavefunctions increases. How many H
and S integrals need to be evaluated?

12.31. Prove the variation theorem. Assume that the lowest
possible energy of a system is E1. Then, assume that any trial
wavefunction � can be written as a sum of the true wave-
functions �i of the system:

� � �
i

ci�i where HĤ �i � Ei�i

Determine �E� using � as the trial wavefunction and show that
�E� � E1, equaling E1 if � is identically equal to �1 and greater
than E1 if � is not identically equal to �1.

12.9 Comparing Variation and 
Perturbation Theories

12.32. In introducing both the variation and the perturbation
theories, examples were given that had calculable answers,
leaving the impression that the systems under consideration
have ideal solutions. However, in all cases approximations were
made. Identify the point in each theory introduction where an
approximation is made that ultimately leads to an approxi-
mate, not exact, solution.

12.10 & 12.11 Born-Oppenheimer
Approximation; 
LCAO-MO Theory

12.33. State the Born-Oppenheimer approximation in words
and mathematically, and indicate how the mathematical form
is implied by the statement.

12.34. Consider the diatomic molecules H2 and Cs2. For
which is the Born-Oppenheimer approximation likely to intro-
duce less error, and why?

12.35. Spectroscopy deals with differences in energy between
levels. Derive an expression for �E, the difference in energy,
between the two molecular orbitals of H2

�.

12.36. Repeat the determination of �H2
�,1 and �H2

�,2 as well
as E1 and E2 for R � 1.00, 1.15, 1.45, and 1.60 Å. Combine
these with the determinations from Example 12.14 and con-
struct a simple potential energy diagram for this system.

12.37. What is the bond order for the lowest excited state of
H2

�? From this single result, propose a general statement
about unstable diatomic molecules and bond orders.

12.38. The helium atom was defined as two electrons and a
single nucleus, and the hydrogen molecule ion was defined as
a single electron and two nuclei. It seems that the only differ-
ence is an exchange in the identity of the particles in the sys-
tem; however, their quantum mechanical treatment is com-
pletely different, as are the results. Explain why.
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12.12 & 12.13 Molecular Orbitals; 
More Diatomic Molecules

12.39. Explain how we know that the first � in equation
12.43 is the wavefunction for the bonding orbital, and that
the second � in equation 12.43 is the wavefunction for the an-
tibonding orbital.

12.40. From Figure 12.23, give molecular electronic configu-
rations for all diatomic molecules shown.

12.41. Use Figure 12.23 to determine electron configurations
for O2

2�, O2
�, and O2

2�.

12.42. Use molecular orbital arguments to decide whether or
not the difluoride dianion, F2

2�, should exist as a stable ion.

12.43. What is the bond order for the NO molecule? Use
Figure 12.24 to determine an answer.

12.44. Use a math software program to determine the sym-
bolic determinant of the 4 	 4 determinantal wavefunction for
a Be atom, which has four electrons. Can you write the wave-
functions represented by the individual terms and identify the
quantum numbers for each function?

12.45. Numerically evaluate the integral in Example 12.8 for
�E (1)� and demonstrate how much agreement there is to the
given value of the energy correction of 5.450 	 10�18 J. 

12.46. Use a symbolic math program to evaluate the trial
wavefunction given in Example 12.11. Do you get the same
value for Z�?

12.47. Evaluate the energies of the wavefunctions that are 
linear combinations of three terms whose energy and overlap
integrals have the following values (in arbitrary units):

H11 � 18 S11 � 0.55

H22 � 14 S22 � 0.29

H33 � 13.5 S33 � 0.067

H12 � 2.44 S12 � 0.029

H13 � 1.04 S13 � 0.006

H23 � 0.271 S23 � 0.077

12.48. Evaluate equations 12.46 and 12.47 versus R, as R
varies from 0 to 5 Å. Determine the value of R that minimizes
the energy. What is the value of the energy at this minimum-
energy distance?

418 Exercises for Chapter 12
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13

419419

SYMMETRY IS ONE OF THE MOST POWERFUL TOOLS that can be ap-
plied to quantum mechanics and wavefunctions. Most people are gener-

ally aware of the concept of symmetry: an object is round or square, or the left
side is the same as the right side, or maybe they are mirror images. All of these
statements imply a recognition of symmetry, a spatial similarity due to the
shape of an object. But more technically, symmetry is a powerful mathemati-
cal tool that can potentially simplify our study of quantum mechanics.

Consider a random quadrilateral, a plane figure having four sides. In order
to define a specific quadrilateral, one must specify not only the lengths of each
side, but their order and angles of intersection. Now consider a square. A
square is also a plane figure having four sides. But by definition, the sides are
at 90° angles and all have the same length. A square has more symmetry, and
so is simpler to define.

Such comparisons apply in quantum mechanics, too. Recognizing the sym-
metry of an atomic or molecular system allows one to simplify the quantum
mechanics, sometimes dramatically. We have already seen some aspects of
symmetry: odd and even functions, the spherical nature of the hydrogen atom’s
1s orbital, the cylindrical shape of H2

� and H2. All these are applications of
symmetry. In this chapter, we will develop a general understanding of symme-
try using a mathematical tool called group theory. Then, we can see how sym-
metry applies to some aspects of quantum mechanics.

13.1 Synopsis
This chapter begins with an introduction to group theory, the branch of math-
ematics that considers symmetry. We will find that each symmetry operation
has a corresponding symmetry operator, just like other quantum-mechanical
operators. Symmetry operators move objects, including molecules, in three-
dimensional space into spatially equivalent objects. Every object satisfies a
collection, or group, of symmetry operators. Understanding the characteristics
of that group of operators is an important part of symmetry. At first, there
will be little connection between symmetry and the topics of the previous
chapters, but that will change quickly. Wavefunctions also have symmetry, and
their symmetry can be used to understand their properties and to define and

13.1 Synopsis
13.2 Symmetry Operations and

Point Groups
13.3 The Mathematical Basis 

of Groups
13.4 Molecules and Symmetry
13.5 Character Tables
13.6 Wavefunctions and

Symmetry
13.7 The Great Orthogonality

Theorem
13.8 Using Symmetry in Integrals
13.9 Symmetry-Adapted Linear

Combinations
13.10 Valence Bond Theory
13.11 Hybrid Orbitals
13.12 Summary

Introduction to Symmetry 
in Quantum Mechanics
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describe molecular wavefunctions more easily (like the example of the quadri-
lateral and square above). Symmetry considerations are important in approx-
imating molecular orbitals as linear combinations of atomic orbitals. Finally,
we will consider the shapes of molecules, how their shapes are dictated by the
atomic orbitals of the atoms, and how such orbitals can be better described as
combinations called hybrid orbitals. Symmetry is also applicable to such hybrid
orbitals in a natural way.

13.2 Symmetry Operations and Point Groups
Consider the rectangle in Figure 13.1. When you rotate the rectangle by 180°
or � radians, the resulting figure looks identical to the original. Imagine an axis
through the center of the rectangle and the shape rotating about that axis by
180°. Such an axis is called an axis of symmetry. A shape like a rectangle has
several axes of symmetry; for each one the rotation occurs about a different
spatial axis. The rotation of the rectangle to generate an equivalent rectangle is
an example of a symmetry operation. A symmetry operation is any movement
of an object that leaves the object looking as it did originally. The axis about
which the rotation occurs is an example of a symmetry element. A symmetry
element is a point, line, or plane (or combination thereof).

Rotations are not the only simple symmetry operation. Imagine a plane at
right angles to the rectangle, cutting it in half, as shown in Figure 13.2. Reflect
every point on the rectangle through the plane, as if it were a mirror. The orig-
inal shape is present after the reflection. Such a symmetry operation is called
a reflection plane of symmetry. In this case, the plane is the symmetry element
through which reflection occurs.

Consider the point at the center of the rectangle, Figure 13.3. Take every
point on the rectangle and pass it through the center and place it on the op-
posite side of the center, the same distance away. The resulting rectangle looks
the same as it did originally. This symmetry operation is called inversion, and
a center of inversion is the corresponding symmetry element.

The three examples above represent general types of symmetry operations.
Each general type of symmetry operation is given a symbol to represent it.
An axis of symmetry is denoted Cn, where n is the number of times the oper-
ation has to be repeated in order for the object to return to its original start-
ing position. It can be shown that n � 360°/�, where � is the angle of rotation
needed for the object to look like it originally did. The axis for the rectangle
above is a C2 axis. Planes of symmetry are given the symbol �, and the center
of inversion is indicated by i. (This should not be confused with i, the square
root of �1.)

There are two other types of symmetry operations. The first is called the
identity element, represented by E. Everything has E as a symmetry operation;
it is the symmetry operation due to the object’s very existence. The last sym-
metry operation is an improper axis of symmetry, indicated by Sn. (Cn is more
specifically called a proper rotation.) It is a combination of a Cn rotation (that
is, turning on an axis by 360°/n) followed by reflection through a plane that is
perpendicular to the axis. Figure 13.4 illustrates the Sn symmetry operation. S1

is equivalent to a � symmetry operation, and S2 is equivalent to a center of in-
version, i. The rotational part of the Sn symmetry element may or may not cor-
respond with an existing axis of symmetry.

Molecules also possess symmetry elements. Depending on the identities and
positions of atoms in a molecule, any molecule will have certain symmetry
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180°

�

i

Figure 13.3 A rectangle has a center of inver-
sion, labeled i. Reflection of every point of the
rectangle through the center of inversion pro-
duces a rectangle that is indistinguishable from
the original object. Reflection of only one point
on the rectangle is shown. An object can have
only one center of inversion.

Figure 13.1 A rectangle is a simple example of
an object that has symmetry. For example, rotat-
ing the rectangle 180°, an operation labeled C2,
produces a rectangle that is indistinguishable
from the original object. Can you find two other
axes of rotation for this rectangle?

Figure 13.2 A rectangle has reflection planes
of symmetry, labeled �. Upon reflection of all
points of the rectangle through the plane of sym-
metry, the original object is reproduced. The re-
flection of only one point on the rectangle is
shown. Can you find two other reflection planes
of symmetry for the rectangle?
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elements such that operation on that molecule by the corresponding symme-
try operations will produce a “new” orientation in space that is indistinguish-
able from the original orientation. Figure 13.5 shows the symmetry elements
for a simple molecule, H2O. The ability to recognize symmetry elements in a
molecule will be an important skill to develop.

Real objects, including molecules, do not have any random set of symme-
try elements. Only certain specific groups of symmetry elements are possible
for any physical object. Because all of the symmetry elements of such a group
intersect at a single point in the object, such groups are called point groups. A
point group is usually referred to by a label to indicate that an object contains
that certain set of symmetry elements. For example, the C2v point group, which
describes the symmetry of the water molecule, consists of E, a C2 proper rota-
tion, and two planes of symmetry �. Consider the symmetry elements for H2O
in Figure 13.5. All objects that have C2v symmetry contain these four and no
other symmetry elements. Examples of point groups and their symmetry ele-
ments are listed in the Appendix 3 character tables. The tabulations of point
groups in Appendix 3 contain additional information whose utility will be-
come clearer in the next few sections. For now, you should learn to identify all
the symmetry elements of any given point group.

A real object can possess more than one of the same type of symmetry ele-
ment. For example, benzene has several rotational axes, as shown in Figure
13.6a. In real objects, the proper axis of rotation that has the largest n (an
n-fold axis) is called the principal axis. It is conventional to consider the prin-
cipal axis to be the z-axis in 3-D space. In the identification of axes of rotation,
both directions of rotation (clockwise and counterclockwise) need to be con-
sidered independently, so that a rotation of 90° in a clockwise direction is not
the same as a 90° rotation in the counterclockwise direction.

Finally, there are different types of planes of symmetry. For example, in the
rectangle are three different planes of symmetry, including the plane that the
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S2

C2 �

Figure 13.4 The scroll pictured has an S2 symmetry element. It is the combination of a C2 ro-
tation and a reflection through a plane that is perpendicular to the C2 axis. The C2 operation
switches the curls on the scroll, and the resulting reflection returns the curls’ positions back to
their original orientation. The improper axis of rotation does this as a single symmetry element.
Note that although the scroll has an S2 symmetry element, neither the C2 axis nor a � plane as
indicated are, by themselves, symmetry elements of the object.

and E

H

O

H

�v

C2
�v'

Figure 13.5 The four symmetry operations
present in H2O. The molecule has the E symme-
try element by virtue of its existence. Collectively,
these four symmetry operations define the C2v

point group.
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rectangle is lying in. In real objects, planes that contain the principal axis are
considered vertical planes of symmetry and are given the symbol �v. Planes of
symmetry that are perpendicular to the principal axis are called horizontal
planes and are symbolized �h. If a vertical plane lies exactly in the middle be-
tween two C2 axes that are perpendicular to the principal axis, it is called a di-
hedral plane and is given the symbol �d. (The presence of dihedral planes im-
plies a “higher” symmetry than regular vertical planes.) Figure 13.6b shows
some of the different types of planes in the benzene molecule; not all of the
planes of symmetry are shown, for the sake of clarity. In order to standardize
the labeling of multiple symmetry elements of the same kind in highly sym-
metric systems, different axes and planes are sometimes differentiated with sin-
gle and multiple primes.

It is easy to think of symmetry operations as spatial motions of objects that
reproduce the original object. However, symmetry operations can be defined
mathematically. Consider the point (3, 4) in 2-D Cartesian coordinates shown
in Figure 13.7. Reflection through the y-axis moves this point to (�3, 4). The
x coordinate has changed sign, as shown in Figure 13.7. Although we can con-
clude that reflection through the y-axis, labeled �y, acts to change the sign of
the x coordinate, we need a more general mathematical definition of �y. Matrix
algebra is useful for this. A simple diagonal matrix is used to define the sym-
metry operation so that the multiplication of the symmetry operation and the
original coordinates generates the new coordinates. In this case, we would have

� �� � � � �
where the coordinates are written in columns (“column matrices” or “column
vectors”). Standard matrix multiplication generates the new coordinates. This
implies that the particular symmetry operation �y is defined as

�y � � � (13.1)

and that this symmetry operation is operating on the original coordinates to
generate new coordinates. That is, symmetry operations act as mathematical
operators. In general, the performance of any symmetry operation on a point
can be represented as the matrix multiplication of the symmetry operation
(written in square-matrix form) on that point (written in column vector
form).

This example considers a single point on a graph. Now consider our rec-
tangle, superimposed about the origin in two-dimensional Cartesian space.
Operate on every point of the rectangle with �y and consider the new shape. It
is the same as the original shape, as shown in Figure 13.8. Therefore we can say
that the rectangle has the symmetry element �y, whose operation is defined by
the above two-dimensional expression.

For real systems, three-dimensional space is considered. All symmetry op-
erations can be defined by a specific 3 � 3 matrix. As such, all symmetry op-
erations can act as operators on a set of points to generate a new set of points.
If the new set of points is in exactly the same position as the original, then that
set of points is said to contain the corresponding symmetry element. Table 13.1
lists the matrices that define the symmetry operations. In molecules, the atomic
positions will represent our points in three-dimensional space. Instead of us-
ing a 3 � 3 matrix to describe the symmetry operation, each atom will require
a 3 � 3 “block” of a larger matrix to describe its change in position in space

0
1

�1
0

�3
4

3
4 

0
1

�1
0
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C6

C2

C2

C6

�h

�v

(b)

(a)

�y

y

x

�1
0

0
1[ �3

4[] 3
4 ] ][�

Figure 13.7 Symmetry operations can also be
defined mathematically. Here, the reflection of the
point (3, 4) through the y-axis is equivalent to
the product of two matrices, one representing 
the point and one representing the symmetry 
operation.

Figure 13.6 (a) The benzene molecule has one
sixfold principal axis of symmetry, C6. It also has
several C2 axes of symmetry perpendicular to the
principal axis, in the plane of the molecule. Only
two are shown. Can you find all of the other axes
of symmetry? (b) Reflection planes are vertical
planes if they contain the principal axis of sym-
metry, and horizontal planes if they are perpen-
dicular to the principal axis. There are also dihe-
dral planes, which are vertical planes that bisect
two intersecting C2 axes of symmetry. In the ben-
zene molecule, the vertical planes are actually di-
hedral planes.
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due to the symmetry operation. For a molecule having N atoms, this will require
a 3N � 3N matrix—but there are some major simplifications, as we shall see.

Example 13.1
Show how the equation y � x has a center of inversion at x � 0.

Solution
From Table 13.1, the complete matrix definition of i is

i � � �
Consider any point in the upper right (x, y) quadrant of a standard 2-D
graph. The value of z in this case is zero, so the 3-D coordinate set is (x, y, 0).
Operating on this point with the inversion symmetry operation:

� �� � � � �
Is the point (�x, �y, 0) a point on the line y � x? Yes, it is, for any value of
x. Such points are in the lower left quadrant. Therefore, this equation con-
tains a center of inversion. To convince yourself of this, plot the graph and
repeat the example.

13.3 The Mathematical Basis of Groups
We have established two things about symmetry operations. First, they are op-
erators and expressed mathematically in terms of a 3 � 3 matrix for opera-
tions on a point in 3-D space. Second, we have stated that only certain collec-
tions of symmetry elements, called point groups, are possible for real objects.

The area of mathematics that deals with symmetry and point groups is
called group theory. A group is a certain collection of operations that satisfies
the following conditions:

• The group must have an identity operation such that operation by iden-
tity does not change the object. This operation must be commutative

�x
�y

0

x
y
0

0
0

�1

0
�1

0

�1
0
0

0
0

�1

0
�1

0

�1
0
0
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�y

y

x

Figure 13.8 The rectangle’s symmetry opera-
tions can also be defined mathematically. In this
case, the symmetry operation � operates on the
rectangle to produced an equivalent rectangle.

Table 13.1 General matrix representations of the five types of symmetry operationsa

E � � � Cn � � �, � � 	
36

n

0°
	

�z � � � i � � �
Sn � � �, � � 	

36

n

0°
	

aMatrices are in 3 � 3 form. The rotations are assumed to occur about the z-axis, and the plane is assumed to be
the xy plane so that only the z coordinate is affected.

0
0

�1

sin �
cos �

0

cos �
�sin �

0

0
0

�1

0
�1

0

�1
0
0

0
0

�1

0
1
0

1
0
0

0
0
1

sin �
cos �

0

cos �
�sin �

0

0
0
1

0
1
0

1
0
0
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with all other operations of the group. That is, if A represents the iden-
tity operation and B represents any other operation, then the combina-
tion AB has the same effect as the combination BA which has the same
effect of the B operation by itself.

• An inverse operation must be present for every operation in the point
group that reverses the action of each operation. Some operations are
their own inverse.

• In combinations of more than one operation, the associative law applies.
This means that if you have three symmetry operations labeled A, B, and
C, the combinations (AB)C and A(BC) must yield the same overall effect.

• Every possible combination of more than one operation in the group
must be equivalent to a single operation of the group. This property is
called closure.

We have already defined the identity operation E, which is a member of all
point groups. Consider the inverse operation requirement. Assume that one
can keep track of the individual identity of the hydrogens in the water mole-
cule shown in Figure 13.9. Operation on the molecule by the �v shown switches
the positions of the hydrogens. A second operation on the molecule moves the
hydrogens back to their original positions. This shows that the �v is its own
inverse. All planes of symmetry are their own inverse.

Application of C2 to the water molecule also returns the atoms to their orig-
inal starting points, so C2 is also its own inverse. However, consider NH3

(Figure 13.10). It has a threefold axis C3 passing through the N, but applica-
tion of the C3 operation does not return the atoms to their original positions,
as shown. There are two choices. Either the molecule can be rotated by 120° in
the opposite direction, which would be labeled C3

�1. Or, the molecule can be
rotated by 240°, or two-thirds of a complete circle, which would return the
atoms to their original points. This operation would be labeled C2

3. Each op-
eration is equivalent. It is customary to consider that all rotations about the
same axis are performed in the same direction, so the operation of choice
would be C2

3. What this means is that the NH3 molecule has just one threefold
axis, but two different rotational symmetry operations about that axis. Both
symmetry operations must be defined in order for the symmetry operations to
constitute a mathematical group.

The association requirement and the closure requirement both refer to sit-
uations in which more than one symmetry operation is performed sequen-
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Ha Hb

O

Ha Hb

�v

Figure 13.9 The symmetry operation �v is its own inverse.
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tially. For our purposes, the closure requirement is more important. Any
combination of symmetry operations in a point group is equivalent to a single
operation of that group. Again, consider the molecule NH3, which has the
point group C3v. It consists of E, C3, C2

3, �v, �
v, and ��v. The corresponding
symmetry elements are illustrated in Figure 13.11. What is the consequence of
operating an NH3 molecule with C3 and then �v? Figure 13.12 shows these two
operations with the hydrogens labeled so we can keep track of their relative
positions. Figure 13.12 also shows that performing a single operation, ��v, will
exchange the atoms in NH3 in the same way that the combination of C3 and
�v did. This is an example of the closure requirement for groups. All combi-
nations of symmetry operations in a group behave similarly.

13.3 The Mathematical Basis of Groups 425

H

N

H

H*
H

N

H*

H

H

N

H

H

H*

N

H

H

C3

C3 C3

Figure 13.10 C3 is not its own inverse. The ammonia molecule needs another symmetry op-
eration to rotate to its original position.

H

N
H

H

�v

C3, C 3
2

� v''�v'
and E

Figure 13.11 The six symmetry operations of ammonia, NH3. One N–H bond lies in each
plane of symmetry. Collectively, these six symmetry operations compose the C3v point group.
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Example 13.2
Identify the symmetry elements in ethylene, which has the structure

From the tables in Appendix 3, determine its point group.

Solution
Ethylene has E, three independent C2 axes, three independent planes of sym-
metry, and a center of inversion. This total of eight symmetry elements com-
poses the D2h point group.

The number of individual symmetry operations in a point group is called
the order of the group and is symbolized by the letter h (not to be confused
with Planck’s constant). In the above example, the D2h point group has an
order of 8. Symmetry operations in a point group are occasionally grouped
together for reasons we will see later. For example, the C3v point group treats
C3 and C2

3 together, as well as the three planes of symmetry. As such, it is com-
mon to see that the symmetry operations of the C3v point group are listed as
E, 2C3, and 3�v. Each collection of one or more symmetry operations is called
a class. E is always in its own class. Only similar symmetry operations are
grouped together in classes, but not all of the same symmetry operations can
be grouped together in the same class. For example, the C2v point group lists
�v and �
v separately, indicating that they are not grouped together in the same
class. One can say that the C3v point group has three classes and an order of 6,
and the C2v point group has four classes and h � 4.

C
H

H

H

H
C

426 C H A P T E R  13 Introduction to Symmetry in Quantum Mechanics

H

N

H
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H
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H

N
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Figure 13.12 The closure requirement for a point group means that any combination of mul-
tiple symmetry operations must be equivalent to a single symmetry operation of the group. Here,
the two symmetry operations C3 and �v are shown to be equivalent to the ��v operation of the
C3v point group.
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Finally, some point groups have certain interesting symmetry elements. Any
linear system possesses a C� axis along the system axis. Therefore, there are
C�v and D�h point groups that have this element. Some systems have a large
number of symmetry elements that include several highfold principal axes.
Such point groups are called cubic groups and consist of tetrahedral, octahe-
dral, and similarly named groups. All five of the Platonic solids (tetrahedron,
cube, octahedron, dodecahedron, and icosahedron, as shown in Figure 13.13)
have cubic symmetry. Finally, there is the symmetry group that defines a
sphere, which contains E, arbitrary C� and S� axes, and a center of inversion.
This group is labeled Rh(3) and is called the three-dimensional full rotation
group. It has particular application for atomic wavefunctions, since individual
atoms can be treated as if they were perfect spheres (which take on nonspher-
ical symmetry only when some other influence is imposed: bonding to other
atoms or being surrounded by ions in a crystal, for example). For real objects,
only a finite number of point groups are possible.

13.4 Molecules and Symmetry
All molecules have a structure belonging to one of the recognized point groups.
Although we have used molecules as examples of systems that have symmetry
elements, we have only assumed this idea so far. Most molecules actually pos-
sess very few symmetry elements, and so can be spoken of as having “low”
symmetry. All of them have at least E, and so can be recognized as having an
overall symmetry defined at least by the point group C1. Many molecules,
especially smaller ones, have more symmetry elements and so are said to
have “higher” symmetry. For example, the molecule CH4 has the shape of a
tetrahedron, which has a very high cubic symmetry. Whatever the molecule, its
structure can be assigned to a point group on the basis of its symmetry 
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Tetrahedron

Octahedron

Icosahedron

Cube

Dodecahedron

Figure 13.13 The five Platonic solids—tetrahedron, cube, octahedron, dodecahedron, and
icosahedron. Collectively, these five shapes represent the cubic point groups.
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elements. One can either determine all of the symmetry elements of a given
molecule and compare it to the (relatively short) list of point groups, or one
can use a flowchart like the one reproduced in Figure 13.14.

Example 13.3
Determine the point groups that define the symmetry of the following com-
pounds, whose structures are illustrated in Figure 13.15.
a. Hydrogen sulfide, H2S
b. Sulfur hexafluoride, SF6

c. Acetylene, C2H2

d. Benzene, C6H6

e. The nitrate ion, NO3
� (assume resonance averages the structure into a flat,

triangular species).

Solution
Using Figure 13.14, satisfy yourself that the following point groups are indeed
correct by identifying the individual symmetry elements, if any exist other
than E.
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�h? Cn h
Yes

i ? D�hC�v
YesNo

Cs
Yes

Are there n C2
axes perpendicular to
the principal axis Cn?

One or more
highest-n-fold
Cn axis, n > 1?

�h? Dn h
Yes

YesNo

n �v? Cn v
Yes

n �d? Dn d
Yes

No

i ? Ci

C1

Yes
�?

No

No

2 or more Cn’s,
n > 2?

No

No

I h
Yes

Yes No

i ? Td

O h

No
C 5?

Yes

Yes

A linear structure?

Does the molecule have:

No

No

S2n? S2n Dn
Yes

No

Cn

No

No

Yes – Note value of n.

This axis is the principal
axis. If there are more than 1
highest-n-fold axes, choose

one to be principal axis.

Figure 13.14 Flowchart for determining the point group of a molecule. It does not include
O, T, or Rh(3). Rh(3) is the point group of any single atom or ion. Source: Adapted from P. W.
Atkins, Physical Chemistry, 5th ed., Freeman, New York, 1994.
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a. H2S: C2v, just like H2O.
b. SF6: Oh. This molecule has the shape of an octahedron.
c. C2H2: D�h, since it is linear and symmetric (if it had no center of inver-
sion, it would be C�v).
d. C6H6: D6h.
e. NO3

�: D3h.

The applicability of symmetry to molecules is deeper than just the shape of
the molecule. Mathematical equations also have symmetry properties. We have
already discussed the concept of odd and even functions. This is a symmetry
property. An even function implies that a plane of symmetry exists, typically a
plane that intersects the y-axis. You can verify this by looking at plots of co-
sine, an even function, and sine, an odd function.

As mathematical functions, quantum-mechanical wavefunctions can also
have certain symmetry properties. But what symmetry properties does a wave-
function have? Since a wavefunction determines the distribution of electron
probability in a molecule, and that distribution of electrons ultimately gives a
molecule its shape, we conclude that the wavefunction of a molecule must pos-
sess the same symmetry elements as the molecule itself. Thus, if the symmetry
elements of a molecule are identified, then the wavefunctions of the molecule
should have the same symmetry elements, and belong to the same point group,
as the molecule. It is this idea that makes symmetry a valuable tool in quan-
tum mechanics.

Example 13.4
a. What is the point group of the wavefunction for the 1s orbital of H?
b. What is the point group of the wavefunction for the 2pz orbital of H? (See
Figure 13.16.)

Solution
a. The 1s wavefunction is spherically symmetric, having E, i, and an infinite
number of C� and S� and � symmetry elements. (The � subscript on the C
and S means that the rotation can be any angle and still be a symmetry op-
eration.) It would belong to the special point group Rh(3).
b. The 2pz wavefunction is not spherically symmetric by itself, but it does
have the symmetry elements E, infinite �v’s, and C�. Because of the differ-
ence in sign of the wavefunction on either side of the nodal plane, it does not
have a center of inversion (despite appearances). Therefore it belongs to the
C�v point group. (This does not imply that the hydrogen atom itself has C�v

symmetry; only this particular 2pz atomic orbital.)

Example 13.5
Indicate what symmetries the wavefunctions of the following molecules
must have.
a. Water, H2O
b. Benzene, C6H6

c. Allene, CH2�C�CH2

d. Bromochlorofluoromethane, CHBrClF
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(C6H6)

(Planar; all N–O
bonds equivalent)

S

F (all S–F bonds
equivalent)

F

F F

F F

S

H H

CH HC

N

O O

O

(a) planar (like H2O)

(b) octahedral

(c) linear

(d) planar

(e) planar

Figure 13.15 What are the point groups of
these five molecules? See Example 13.3.

(–)

(+)

z

y

x

Figure 13.16 A 2pz orbital of H. See Example
13.4b.
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Solution
Because wavefunctions for molecules must have the same symmetry as the
molecule, one must identify the molecule’s symmetries. Figure 13.14 can be
used to determine the following point groups of the molecules and, therefore,
their wavefunctions.
a. H2O: C2v

b. C6H6: D6h

c. Allene: D2d

d. CHBrClF: C1

We will return to the application of symmetry to wavefunctions in a later
section. Symmetry in molecules has several immediate consequences. For ex-
ample, the dipole moment of a molecule depends in part on how the atoms in
the molecule are arranged. It can be shown that any molecule whose structure
has a point group symmetry of Cs, Cn, or Cnv , with n  1, is polar, and mol-
ecules that do not have such symmetry are nonpolar. Further, it can also be
shown that any molecule may be chiral if it does not contain an Sn (n � 1)
symmetry element. However, chirality is not guaranteed if the molecule does
not possess an improper axis of symmetry (for example, H2O does not have
an improper rotation axis but is not chiral). Chirality is an important issue in
organic chemistry and is the basis of stereochemistry.

13.5 Character Tables
Now that the importance of symmetry in wavefunctions has been established,
some of the utility of symmetry can be introduced. A water molecule, H2O, is
in the position indicated by Figure 13.17. H2O has all of the symmetry ele-
ments described by the C2v point group, so it has E, C2, and two �v’s, which
we will designate �(xz) and �(yz). Remembering from above that each sym-
metry operation can be defined as a matrix, we can construct matrices to de-
fine the symmetry operations for H2O. However, each atom in the molecule has
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yO

xO

zO

O

yH1

xH1

zH1

H

� (yz)

� (xz)

C2

yH2

xH2

zH2

H

Figure 13.17 The H2O molecule, the Cartesian degrees of freedom of the atoms, and the sym-
metry operations of the C2v point group.
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x, y, and z coordinates, so there are a total of 3N (N � number of atoms) to-
tal coordinates for the molecule. Furthermore, one needs to keep track of the
original positive directions of the x, y, and z axes, as shown in Figure 13.17.
Instead of the 3 � 3 matrices defined above, we therefore have to construct a
9 � 9 matrix to describe the complete spatial effect of each symmetry opera-
tion, shown visually in Figure 13.18:

E(H2O) � �

xH1

yH1

zH1

xO

yO

zO

xH2

yH2

zH2

xH1

yH1

zH1

xO

yO

zO

xH2

yH2

zH2

0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
1
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
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H

yO

xO

zO

O

yH

xH

zH1

H yH

xH

zH2

H

E

yO

xO

zO

O

yH

xH
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H
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Figure 13.18 The effect of the four symmetry
operations of C2v on the degrees of freedom of
the H2O molecule. E does nothing. C2 and �(xz)
exchange the two hydrogens and reverse the di-
rections of some of the coordinate unit vectors.
� (yz) does not move any atoms but reverses some
coordinate vectors. You should be able to recon-
cile the above diagrams with the matrices in equa-
tion 13.2.
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C2(H2O) � �

(13.2)

�(yz)(H2O) � �

�(xz)(H2O) � �

Not only do the hydrogen atoms exchange places in �(xz) and C2, but some
of their unit vectors have also reversed direction. This accounts for the appear-
ance of some negative signs in the product matrices. You should satisfy yourself
that these matrices and the diagrams in Figure 13.18 do coincide with each other.

Each of the 9 � 9 matrices in equation 13.2 is called a representation of the
corresponding symmetry operation. These representations are complete, but
cumbersome. And this just for a molecule that has three atoms. For N atoms,
the 3N � 3N matrix contains 9N2 terms. Therefore the complete representa-
tion for dimethyl ether, (CH3)2O, which also has C2v symmetry, can be defined
by four 27 � 27 matrices with each having 272 � 729 numbers in it! To be
sure, most of them are zero (as they are above), but determining which are ex-
actly zero is a chore. Dimethyl ether is still a rather small molecule. We need a
simpler representation.

The representations above can be dramatically simplified, so they are called
reducible representations. Ultimately we are after the simplest possible repre-
sentations of the symmetry operations of a point group, which are called the
irreducible representations. The trick to defining such irreducible representa-
tions is to recognize the patterns in the 9 � 9 representations above. For ex-
ample, in this case the symmetry operation E multiplies each coordinate by 1:

E(coordinate) � 1 � (coordinate) (13.3)
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As such, why not simply use the number 1 to represent the effect of E on that
coordinate?* In this case, that would work fine. However, for the other sym-
metry operations in the above example, expressions equivalent to equation
13.3 do not exist for all coordinates. For example, in the C2 operation, the xH1

coordinate becomes the xH2 coordinate in the opposite direction, not a con-
stant times the original x coordinate. Thus, imposing the C2 operation on H2O
moves the x coordinate of H1 to the x coordinate of H2, implying a 0 in the 9
� 9 matrix in the appropriate diagonal position and a 1 in the 9 � 9 matrix
in an off-diagonal position. The behavior of the other coordinates upon oper-
ation of C2, or any other symmetry operation, can be analyzed similarly.
Therefore, finding a simpler representation than a 9 � 9 matrix is not as sim-
ple as defining an equation like 13.3 for all symmetry operations.

An inspection of the 9 � 9 matrices in equation 13.2 does show a pattern,
however. In each 9 � 9 matrix is a repeating 3 � 3 “submatrix” that has a cer-
tain set of diagonal elements. In the cases of E and �(yz), these 3 � 3 “sub-
matrices” lie on the main diagonal of the original matrix. In the cases of C2

and �(xz), some of these 3 � 3 matrices do not lie along the main diagonal of
the original matrix. But at least we have identified some characteristic of each
9 � 9 matrix. Recognizing this pattern gives us a way to simplify the matrix
representation of the symmetry operation.

To simplify the representation, one needs to identify the smallest square
“submatrix” pattern that occurs in the same place for all matrix representations
of the symmetry operations. The numbers will be on the main diagonal of
these smaller submatrices. The blocks may have nonzero off-diagonal elements
or sometimes zeros for diagonal elements; that doesn’t matter. In the example
above, a 3 � 3 section in the middle of each matrix, in the same position in
each matrix, will serve. In the case of E, the block is outlined as follows:

(13.4)

The corresponding sections of all 9 � 9 representations above contain the
characteristic 3 � 3 submatrix for each particular symmetry operation.

Consider the set of numbers along the main diagonal for one coordinate
for all the symmetry operations. (For example, consider the set of numbers
corresponding to the behavior of the x coordinate for each of the four sym-
metry operations.) What we find is that only a certain number of possible sets
of numbers for any system has this point group symmetry. Consider the 
symmetry operations for C2v [E, C2, �v(xz), �v(yz)] from the representations
above. We find the following possible sets of numbers: (1, �1, 1, �1), (1, �1,
�1, 1), and (1, 1, 1, 1) for any coordinate. These are the only sets of numbers
represented in the 9 � 9 matrix representation for the symmetry operations
of H2O. The C2v point group has one more possible set of numbers, which

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

13.5 Character Tables 433

*It might help to think of equation 13.3 as an eigenvalue equation, with 1 being the
eigenvalue of the operator E. Although this is a good analogy, it applies strictly only for
groups in which the “eigenvalue” for E is 1.
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would be found if a larger C2v molecule were used as an example. That set
would be (1, 1, � 1, �1). Together, these four sets of numbers represent the
simplest way of defining the symmetry properties of any object that has C2v

symmetry. They are the irreducible representations of the C2v point group.
The numbers themselves are called characters. These characters are not al-
ways 1 or �1. They can be zero, a larger integer (2 and 3 are common for
higher-symmetry point groups), fractions, or exponential functions. Every
point group has a limited number of irreducible representations, each of
which is given some label that refers to that irreducible representation. These
representations are tabulated in character tables. Appendix 3 contains char-
acter tables that list not only the symmetry operations of the point groups,
but the characters that represent the simplest representation of the effects of
those symmetry operations.

Each irreducible representation is labeled with a letter (such as A, B, E, T,
depending on the character of the identity operation), which sometimes has a
subscript, superscript, or primes (
 or �) with it. All of the irreducible repre-
sentations within a point group have different labels. Each label represents the
set of characters in that row of the table. Sometimes irreducible representations
from different point groups have the same label, but it is important to under-
stand that a certain label represents a specific set of characters for a particular
point group. Hence, the A2 irreducible representation in C2v is a different set
of characters from the A2 irreducible representation in D4d. It is necessary that
you be aware of what point group you are working in when you use the labels
of the irreducible representations.

In many point groups, some of the symmetry operations have the same
characters for all of the irreducible representations. They are grouped together
into the same class. For example, in C3v (the point group that describes the
symmetry of NH3), the two C3 symmetry operations are grouped as a class,
and the three �v’s are also grouped in a class. A point group has only as many
irreducible representations as it has classes. Therefore, C2v has four and only four
irreducible representations. C3v has only three. Understand that there are a total
of six symmetry operations in C3v, so one can write a 3 � 6 C3v character table.
(It won’t be 6 � 6 because C3v only has three irreducible representations.)
However, many of the columns will be duplicates, so it is easier to list symme-
try operations by class.

Example 13.6
Write the 3 � 6 character table for C3v.

Solution
Using the 3 � 3 character table from Appendix 3 and separating the opera-
tions of each class:

E C3 C2
3 �v �
v ��v

A1 1 1 1 1 1 1

A2 1 1 1 �1 �1 �1

E 2 �1 �1 0 0 0

As you can see, it is simply more efficient to group the classes together in the
character table.
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Characters of the irreducible representations of a particular point group can
be multiplied by each other. The reason for doing this will be obvious shortly.
However, only characters of the same symmetry operations are multiplied to-
gether. For example, within a certain point group, we will multiply the char-
acter of, say, C3 of the A2 representation by the character of C3 of the E1 rep-
resentation, but we won’t multiply the character of C3 with the character for,
say, �h. By performing these multiplications for all classes, it is easy to show
that the irreducible representations themselves constitute a mathematical
group. For example, the closure requirement is easy to illustrate. Further, if the
products of all the symmetry operations of two different irreducible represen-
tations were summed up, this sum would be exactly zero. (When doing this,
one must include the number of symmetry operations in each class. Otherwise,
the form of the character table in Example 13.6 can be used.) A way of stating
this is that the irreducible representations of a point group are orthogonal to
each other. This is a very useful property of the irreducible representations.
The product of the characters of any irreducible representation with itself
equals h, the order of the point group, which equals the number of symmetry
operations in the group. By using the order of the group as a “normalization
constant,” we can also say that each irreducible representation is normalized.
Mathematically, using the symbol �a to represent any irreducible representa-
tion and the symbol �i to represent the individual characters of �a:

	
h

1
	 �  �

all classes

N � �i � �j � �1 if i � j for all i, j
(13.5)

0 if i � j for all i, j
of �a

where h is the order of the point group and N is the number of symmetry op-
erators in each class. This “orthonormality condition” can be applied to more
than two irreducible representations multiplying each other, which we will
shortly add as a powerful tool to apply to wavefunctions. Although symmetry
operations can be represented by operators, characters are numbers (eigenvalues,
actually), and so their multiplication is commutative.

Example 13.7
a. Show that the individual characters for any two different irreducible rep-
resentations for C3v satisfy the closure property of groups.
b. Show that the sums of the products of the irreducible representations for
C3v are orthonormal.

Solution
(a) For the individual characters of E, 2C3, and 3�v, respectively:

A1 � A2 � 1 � 1 1 � 1 1 � �1 � 1 1 �1
� the A2 irreducible representation

A1 � E � 1 � 2 1 � �1 1 � 0 � 2 �1 0
� the E irreducible representation

A2 � E � 1 � 2 1 � �1 �1 � 0 � 2 �1 0
� the E irreducible representation

These are the only three combinations, since multiplication of characters is
commutative. (A more complete test should include products of the irre-
ducible representations with themselves. Although it is easy to see that A1 �
A1 � A1 and A2 � A2 � A1, the product E � E is not as easy to see. We will
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have to wait until section 13.7 to show that E � E does satisfy the closure
requirement.)
b. For sums of the products of characters:

	
h

1
	 �  �

all classes

N � �A1
� �A1

� 	
1

6
	(1 � 1 � 1 � 2 � 1 � 1 � 3 � 1 � �1)

� 	
1

6
	(1 � 2 � 3) � 0

	
h

1
	 �  �

all classes

N � �A1
� �E � 	

1

6
	(1 � 1 � 2 � 2 � 1 � �1 � 3 � 1 � 0)

� 	
1

6
	(2 � 2 � 0) � 0

	
h

1
	 �  �

all classes

N � �A2
� �E � 	

1

6
	(1 � 1 � 2 � 2 � 1 � �1 � 3 � �1 � 0)

� 	
1

6
	(2 � 2 � 0) � 0

This shows that the irreducible representations are orthogonal. In addition:

	
h

1
	 �  �

all classes

N � �A1
� �A1

� 	
1

6
	(1 � 1 � 1 � 2 � 1 � 1 � 3 � 1 � 1)

� 	
1

6
	(1 � 2 � 3) � 1

	
h

1
	 �  �

all classes

N � �A2
� �A2

� 	
1

6
	(1 � 1 � 1 � 2 � 1 � 1 � 3 � �1 � �1)

� 	
1

6
	(1 � 2 � 3) � 1

	
h

1
	 �  �

all classes

N � �E � �E � 	
1

6
	(1 � 2 � 2 � 2 � �1 � �1 � 3 � 0 � 0)

� 	
1

6
	(4 � 2 � 0) � 1

This shows that the irreducible representations are normalized. Irreducible
representations therefore have some of the same properties as wavefunctions.

All point groups have one irreducible representation that has all 1’s for char-
acters. This representation is called the totally symmetric irreducible representa-
tion and is very important in spectroscopy. By convention, it is the first irre-
ducible representation listed in all character tables. Some irreducible
representations have 2 or 3 for the character of the E element. (This can be re-
lated to degeneracies, in some cases.) Irreducible representations are labeled af-
ter a system devised by Robert S. Mulliken. Irreducible representations that
have a character for E, �E, of 1 are given A or B labels; those that have �E equal
to 2 are labeled E (not to be confused with the symmetry operation E), and
those having �E of 3 are labeled T. Subscripts and superscripts are also used
to indicate the character with respect to other symmetry operation. The char-
acter tables in Appendix 3 use the Mulliken system. Another system, using
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arbitrarily numbered Greek capital letters gamma, �n, is an older system that
is occasionally still seen in the literature.

13.6 Wavefunctions and Symmetry
How does symmetry apply to wavefunctions? First of all, consider the mole-
cule itself. A molecule has a shape that can be described by one of a limited
number of groups of symmetry operations. Such groups contain anywhere
from one symmetry operation (C1, which has E) to many (Oh, which has 48)
to infinite (C�h and D�v, for example, have an infinite number of �v planes of
symmetry).

Wavefunctions of molecules span the entire molecule. This is true even
though we tend to picture localized electrons in molecules, as in a covalent
bond between two atoms. However, strictly speaking, wavefunctions cover—
and so the electron exists over—the entire molecule. (In approximations, many
molecular orbitals may have a very large, almost-unity value for a single atomic
orbital in a linear combination of atomic orbitals, but the basic truth is that 
all orbitals are molecular orbitals.) If molecules have a shape, then the molec-
ular orbitals must have the same shape. This demands that the molecular wave-
functions must have the same symmetry properties as the molecule. We have
noted that there are a limited number of combinations of characters for the
symmetry operations within a point group. Wavefunctions of a molecule must
also have some behavior with respect to the symmetry operations of the point
group. The symmetry behavior of a wavefunction must correspond to one of
the irreducible representations of the point group. It is typical to label a wave-
function with the symbol for that irreducible representation, just as it is to la-
bel the wavefunction with its quantum numbers. Further, the character of the
E symmetry operation for a wavefunction is the same as the degeneracy of
the wavefunction. A review of the character tables in Appendix 3 shows that a
molecule must have at least a C3 axis in order to have doubly degenerate wave-
functions, and more than one highest-order axis in order to have triply de-
generate wavefunctions (although this condition does not guarantee a T irre-
ducible representation).

Example 13.8
Figure 13.19 shows a diagram of the �bonding and �antibonding orbitals of H2

�.
Assuming that the �E is 1 for both, determine the irreducible representations
for each molecular orbital. Assume the highest-order axis is the z-axis.

Solution
The symmetry of H2

� is D�h. Upon operation of the diagram of the bond-
ing orbital with all symmetry operations, one finds that the character for each
operator is 1 (that is, the same orientation of the orbital is reproduced). This
means that the characters for all operations are 1 and so the wavefunction’s
label is A1g (or �g

�). For the antibonding orbital, inversion through the cen-
ter yields a wavefunction that has the negative value of the original �. A sign
change also occurs upon operation of the C2 and S� operations. (You should
satisfy yourself that this is the case, using Figure 13.19.) Therefore, the anti-
bonding wavefunction can be labeled with the A1u (or �u

�) irreducible 
representation.
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�antibonding

HH

(+)

�bonding(+)

(–)

Figure 13.19 A nonrigorous but illustrative
representation of the bonding and antibonding �
orbitals of H2

�. See Example 13.8.
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Wavefunctions can be labeled with appropriate irreducible representation
labels. Therefore, the wavefunction of the bonding molecular orbital for H2

�

would be labeled A1g (that is, �A1g
). Another phrase that means “irreducible

representations” is symmetry species. We say that the symmetry species of this
wavefunction is A1g.

As we saw briefly in the previous chapter, perhaps the simplest way to rep-
resent a molecular orbital is to base it on the atomic orbitals of the atoms in-
volved in the bonding, generally as a linear combination of atomic orbitals
(LCAO-MO). Because a wavefunction has symmetry restraints imposed on it,
the thought of taking a linear combination of atomic orbitals to represent a
molecular orbital becomes a little more tricky, now that linear combination
must have the correct symmetry. Such a requirement suggests that we should
not use just any linear combination of atomic orbitals, although we can. It
would be better to use some symmetry-adapted linear combinations (SALCs) of
atomic orbitals, in order to take advantage of group theory and symmetry con-
siderations. Before we construct SALCs, we must introduce one powerful tool
of group theory.

13.7 The Great Orthogonality Theorem
We showed above that individual symmetry species are orthogonal to each
other. This is a consequence of a more general statement of group theory called
the great orthogonality theorem (GOT, sometimes called the grand orthogonal-
ity theorem). The GOT is a general relationship between all of the matrix ele-
ments of a representation of a symmetry operation (like the matrices in equa-
tion 13.2). Here, we will focus on the application of the GOT to the characters
of the irreducible representations, which will be much simpler than consider-
ing all of the matrix elements.

Since wavefunctions are being combined in linear combinations, one can
also take linear combinations of the irreducible representations and their char-
acters. However, it is more common to be able to determine the set of charac-
ters that represents the entire linear combination, instead of its constituent
parts. This set of characters is almost always a reducible representation. The
question is, what is the linear combination in terms of the irreducible repre-
sentations? How many A1’s in the combination, how many B1’s, how many E’s?
We can apply the great orthogonality theorem to determine the specific con-
tent (that is, the number of each irreducible representation) of a set of char-
acters that represent a linear combination. We will use the capital Greek letter
gamma, �, to represent any one of the irreducible representations of a point
group. The number of contributions any particular � has to a reducible repre-
sentation is given by the following formula:

a� � 	
h

1
	        �

all classes

N � �� � �linear combo (13.6)

of �a

where a� is the number of times the irreducible representation � appears in
the linear combination, h is the order of the group, N is the number of oper-
ations in each class, �� is the character of the class of that irreducible repre-
sentation (from the character table), and �linear combo is the character of the
class for the linear combination. Note that this is similar to the expression in
equation 13.5. Example 13.9 shows how to apply this equation.
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Example 13.9
The following set of characters is for a linear combination of irreducible rep-
resentations for a system having C3v symmetry (say, ammonia):

E 2C3 3�v

�combo 7 1 1

Use equation 13.6 to determine what linear combination of A1, A2, and E
symmetry species is being represented.

Solution
We need the characters for A1, A2, and E from the character table of the C3v point
group. For the number of times A1 appears in the linear combination,

aA1
� 	

1

6
	       �

all classes

N � �A1
� �linear combo

where the summation has three terms. Solving:

�A1
, from

character table

aA1
� 	

1

6
	 1 � 1 � 7 � 2 � 1 � 1 � 3 � 1 � 1

N �linear combo C3 �v

term for E

aA1
� 	

1

6
	(7 � 2 � 3) � 	

1

6
	(12) � 2

so that the A1 symmetry species appears twice in the linear combination.
Similarly, for A2 and E:

aA2
� 	

1
6

	[(1 � 1 � 7) � (2 � 1 � 1) � (3 � �1 � 1)] � 	
1
6

	(6) � 1

aE � 	
1
6

	[(1 � 2 � 7) � (2 � �1 � 1) � (3 � 0 � 1)] � 	
1
6

	(12) � 2

Therefore, this �combo is a sum of two A1, one A2, and two E symmetry
species. This is how the great orthogonality theorem is applied to reduce
character sets into their unique set of irreducible representations.

The mathematical way of illustrating the above combination of symmetry
species is to use the � sign instead of a � sign (which is how linear combina-
tions are usually expressed). One can therefore write �combo from above as

�combo � 2A1 � 1A2 � 2E

The great orthogonality theorem is useful because it allows us to break
down any reducible representation into its irreducible representations. Once
any scheme for determining a representation for a wavefunction is applied, the
GOT can be used to reduce the representation into its irreducible components.
For example, in the case of the Rh(3) spherical point group, the characters
are given as expressions in terms of the angle � of the particular rotation.
The characters for any one representation are transferable to the symmetry
operations of any other point group, which ultimately represent a reducible
representation in the new point group. Using the GOT, one determines the
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symmetry labels of the representation in the new point group. An example is
electron subshells. The quantum number � defines which irreducible repre-
sentation a set of wavefunctions belongs to in the Rh(3) point group, the �th
representation. One must also determine whether the wavefunction is positive
or negative with respect to inversion, which determines whether the label “g”
or “u” is applicable to the irreducible representation. One then determines the
characters in Rh(3), transfers those characters to the symmetry operations of a
new point group, and using the GOT determines the symmetry labels of the
2� � 1 orbitals of that subshell. The following example illustrates how this
might be done.

Example 13.10
Determine the symmetry labels of the hydrogen-like p orbitals in Td symmetry.

Solution
For p orbitals, � � 1, and the sign on the p orbitals changes upon inversion,
so the character for inversion should be negative. In Rh(3), the irreducible
representation for p orbitals is therefore Du

(1). Using the formulas for the char-
acters for the symmetry operations, we can calculate what the characters are
for Td [see the character table for Rh(3)]:

�E � 3

�C3
� 1 � 2 cos � � 1 � 2 cos (120°) � 0

�C2
� 1 � 2 cos � � 1 � 2 cos (180°) � �1

�S4
� 1 � 2 cos � � 1 � 2 cos (90°) � 1

��d
� �1

Since Td does not have a center of inversion, the formula for i is not needed.
The characters for the p orbitals are thus

E 8C3 3C2 6S4 6�d

� 3 0 �1 1 �1

Using the great orthogonality theorem, we can determine what linear
combination of irreducible representations of the Td point group this is. One
finds:

aA1
� 	

2
1
4
	[(1 � 1 � 3) � (8 � 1 � 0) � (3 � 1 � �1) � (6 � 1 � 1) � (6 � 1 � �1)]

� 	
2
1
4
	(0) � 0

aA2
� 	

2
1
4
	[(1 � 1 � 3) � (8 � 1 � 0) � (3 � 1 � �1) � (6 � �1 � 1) � (6 � �1 � �1)]

� 	
2
1
4
	(0) � 0

aE � 	
2
1
4
	[(1 � 2 � 3) � (8 � �1 � 0) � (3 � 2 � �1) � (6 � 0 � 1) � (6 � 0 � �1)]

� 	
2
1
4
	(0) � 0

aT1
� 	

2
1
4
	[(1 � 3 � 3) � (8 � 0 � 0) � (3 � �1 � �1) � (6 � 1 � 1) � (6 � �1 � �1)]

� 	
2
1
4
	(24) � 1

aT2
� 	

2
1
4
	[(1 � 3 � 3) � (8 � 0 � 0) � (3 � �1 � �1) � (6 � �1 � 1) � (6 � 1 � �1)]

� 	
2
1
4
	(0) � 0
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The three p orbitals collectively are assigned to a T1 symmetry species. (This
conclusion could have been reached by comparison of � to the irreducible
representations.) Since the character of the T1 symmetry species is 3, this
indicates that the (hydrogen-like) p orbitals are triply degenerate when a Td

symmetry is imposed on them.

13.8 Using Symmetry in Integrals
The assignment of symmetry species to wavefunctions has some useful conse-
quences for evaluating integrals involving wavefunctions. Consider the integral
having the form

� �*�1��2 d� (13.7)

where �1 and �2 represent the symmetry species of each wavefunction of a
system that has a certain symmetry. This integral, if it is nonzero, is simply
some numerical value. That value does not change if one operates on it with
any symmetry operation, so one can say that the character of the symmetry
operation on a number is 1. (Consider that �v(3) � 1 � 3 � 3.) Therefore, all
numerical values can be assigned to the totally symmetric irreducible repre-
sentation of any point group. Consider the opposite argument. If that integral
is to have a nonzero numerical value, then the irreducible representation of
the combination �*�1��2 has to have totally symmetric symmetry. This im-
plies that

(�1)* � �2 � A1 (13.8)

where A1 in this point group happens to be the totally symmetric irreducible
representation, and the symbol � is used to imply the proper multiplication
of appropriate characters of each representation. (The complex conjugate in
equation 13.8 is rarely invoked, because most characters are real numbers.) If
the product of the two irreducible representations is anything other than A1

(or whatever the totally symmetric representation is), then the integral must be
exactly zero. This is a powerful tool to determine whether an integral must be
zero. (In fact, most combinations of wavefunctions of arbitrary symmetry
species are exactly zero from symmetry considerations. This idea drastically
simplifies the mathematical considerations of molecular wavefunctions if the
wavefunctions have symmetry elements.)

Although equation 13.8 is somewhat general, it does not cover all cases. For
example, in symmetry species that have E or T labels, multiplication of the ir-
reducible representations yields a reducible representation that must be re-
duced using the great orthogonality theorem. In such cases, the integral is
identically zero unless the reducible representation can be broken down into ir-
reducible representations, one of which must be A1 (or whatever the totally
symmetric representation is). Such a reducible representation is said to “con-
tain” A1. Mathematically, this is written as

(�1)* � �2 � A1 (13.9)

where the symbol � means “contains.” This is the most applicable statement
of the requirement that an integral as in equation 13.7 might be nonzero. If
the product of the two irreducible representations does not contain A1, then
the integral must be zero.
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Example 13.11
Determine whether the following integrals are exactly zero or might be
nonzero strictly from symmetry considerations.
a. � �*A1

�A2
d� in a Td molecule

b. � �*A2
�E d� in a C3v molecule

c. � �*E�E d� in a D2d molecule

Solution
In each case, the characters of the irreducible representations must be multi-
plied together and the product evaluated for the presence of the totally sym-
metric representation of the respective point group.
a. In Td, A1 � A2 � A2, which is not the totally symmetric representation.
Therefore the integral must be exactly zero.
b. In C3v, A2 � E � E, which is not the totally symmetric representation.
Therefore the integral must be exactly zero.
c. In D2d, E � E yields a set of characters

E 2S4 C2 2C
2 2�d

E � E 4 0 4 0 0

This is not an irreducible representation and so must be broken down using
the GOT. One can show by applying equation 13.6 that

E � E � A1 � A2 � B1 � B2

which does contain A1. Therefore this integral may be nonzero. This is not a
guarantee that it is nonzero, but there is no symmetry reason requiring that
it be exactly zero.

As in the above example, simple symmetry considerations easily show many
integrals of wavefunctions to be exactly zero. This idea can be simplified further
for some conditions. For the product of only two irreducible representations,
the integral will be exactly zero unless both functions are of the same symmetry
species. In integrals that are combinations of more than two functions (that is,
two wavefunctions and an operator), the combination of two must yield a re-
sulting symmetry species that is the same as the third. Otherwise, the integral
is exactly zero. In showing this, it does not matter which two symmetry species
are combined. Thus, if symmetry considerations are applied first, many inte-
grals can be shown to be identically zero and will not even have to be evaluated.

Example 13.12
For a hydrogen atom whose symmetry is described by the Rh(3) point group,
the 1s orbital has the irreducible representation label Dg

(0). The 2s orbital also
has the irreducible representation label Dg

(0). The electromagnetic (EM) radi-
ation operator that causes an electron to go from the 1s state to any other
state has the irreducible representation Du

(1). Show that the integral

� �*1s � (EM radiation operator) � �2s � d�

is exactly zero, implying that this electronic transition will not occur. You do
not need to consider the symmetry properties of the form of d�. You will have
to consult the character table for the Rh(3) point group.
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Solution
The following table is taken from the Rh(3) character table:

E C� i S�� �

�1s � Dg
(0) 1 1 1 1 1

�2s � Dg
(0) 1 1 1 1 1

�EM op � Du
(1) 3 1 � 2 cos � �3 �1 � 2 cos � 1

The product of any two rows must be equal to or contain the third, else
the integral must be exactly zero by symmetry arguments. It is easiest to de-
termine the product �1s � �2s, which are all simply 1 � 1 for each symme-
try operation. Therefore, we are comparing the two sets of characters:

E C� i S�� �

�1s � �2s 1 1 1 1 1

�EM op 3 1 � 2 cos � �3 �1 � 2 cos � 1

Clearly, 1 does not equal 3 (for the character of E). Clearly, 1 does not
equal 1 � 2 cos � for all values of � (which would be required); and so forth.
Therefore, by showing that �1s � �2s does not equal �EM op, we can say that
the integral

� �*1s � (EM radiation operator) � �2s � d�

is exactly zero. We will find in a later chapter that this is what defines a for-
bidden transition.

Symmetry considerations are especially useful in spectroscopy, where the
operator can also be assigned some symmetry species of the point group.
Polarized light and magnetic fields can be assigned a symmetry species within
the point group of the molecule, and whether or not a spectroscopic transition
will occur can be determined by the idea embodied in equation 13.9. This is
the symmetry basis for selection rules. We will cover such topics in the next few
chapters.

For linear combinations of wavefunctions, the symmetry species of the in-
dividual wavefunctions is very important. One ramification of symmetry con-
siderations is that wavefunctions of different symmetry species do not combine
to, say, make bonds. Since we are seeking linear combinations of atomic wave-
functions, this allows us to conclude that the only useful combinations for
molecules will be of those atomic wavefunctions that belong to the same sym-
metry species of the molecule. The construction of symmetry-adapted linear
combinations utilizes this simplifying idea.

13.9 Symmetry-Adapted Linear Combinations
By keeping symmetry in mind, it is possible to construct appropriate combi-
nations of atomic orbital wavefunctions to approximate molecular orbital
wavefunctions that cover, or span, the entire molecule. The use of symmetry is
the first real restriction we have placed on linear combinations, but it makes
sense. After all, it serves no purpose to use a px atomic orbital in a linear com-
bination of a molecular orbital when the chemical bond points in the z direc-
tion. Symmetry-adapted linear combinations (SALCs) are more intuitively cor-
rect approximations than any random combination of atomic orbitals.
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Character tables and the GOT are crucial elements in determining a proper
SALC of atomic orbitals. The first step is to identify the correct point group of
the molecule, because the wavefunction that describes any molecular orbital
must also have this symmetry. The second step is to identify all of the atomic
orbitals that are being considered for the molecular orbitals. Typically, the nec-
essary atomic orbitals are those that are occupied in the atoms themselves. We
must not forget that there exist three independent p orbitals, five independent
d orbitals, and so on, that can contribute to the bonding. All such orbitals must
be considered. For example, in considering the atomic orbitals that make up
the molecular orbitals of H2O, we include the 1s atomic orbital of hydrogen 1,
the 1s orbital of hydrogen 2, the 1s orbital of O, the 2s orbital of O, and the
2px, 2py, and 2pz orbitals of the O atom. A total of seven individual atomic or-
bitals are used.

It should be understood that only atomic orbitals that belong to the same
symmetry species will combine. At first glance, it can be challenging to deter-
mine which atomic orbitals belong to the same symmetry species, and it may
also be challenging to identify all of the atomic orbitals of any one irreducible
representation. It is sometimes easier to include all atomic orbitals in an initial
treatment. They will separate themselves into the proper groupings when the
symmetry requirements are imposed. Therefore, in the following examples all
of the atomic orbitals will be considered. In the end, we will see how the atomic
orbitals are separated by their symmetry species. (With practice, separation of
atomic orbitals by symmetry species becomes obvious; however, in the begin-
ning, it may seem nonsensical. This is why the more complete treatment is
introduced here.) Determination of SALCs follows a sort of recipe. We will not
go into the specific group theory derivation of the procedure, but there is
mathematical justification for the following steps.

1. Determine which atomic orbitals will be used.
2. Make a table that has each individual atomic orbital listed on one side

(say, the left) and the symmetry operations listed on a perpendicular
side. List the symmetry operations individually, not by class. There
are h symmetry operations in the point group, where h is the order of
the group. There should therefore be h entries for the symmetry op-
erations.

3. Operate on each individual atomic orbital with each symmetry operation
and write the result in the table. The result will be either (1) the orbital
itself or the negative of the orbital itself or, rarely, some fraction of itself,
or (2) some other orbital or the negative of some other orbital or, rarely,
some fraction of another orbital, or (3) not correspond to the position
of any other orbital in the molecule, in which case the result is zero. The
table should be completely filled when finished.

4. Consult the character table of the point group of the molecule. (Note
that in step 2 we have constructed our own table to mimic the structure
of the character table.) Consider each irreducible representation in the
character table. For each individual symmetry operation (you may have
to separate classes of symmetry operations), multiply the character by the
result of the corresponding symmetry operation in each row of your
table.

5. Add all of these products in each column, giving you h sums. Multiply
each sum by a normalization factor of 1/h (h � order of group). The re-
sulting expressions are the SALCs, which will have the symmetry prop-
erties of that irreducible representation.
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6. Do this for all irreducible representations of the point group. This will
yield a large number of linear combinations. Inspect them, for some of
them may be equivalent and so all but one of them can be ignored.
Others may be linear combinations of two (or more) SALCs, and so are
not mathematically independent. Only the unique combinations should
be considered further. (The choice of which are the unique combinations
is often a matter of preference and not an absolute.)

The following example is based on the six preceding steps.

Example 13.13
Determine the symmetry-adapted linear combinations for the molecular or-
bitals of H2O using the atomic orbitals of H1, H2, and O. (The numbers on
the H’s are labels for identification purposes only.)

Solution
H2O has C2v symmetry. Each step from the list above is labeled.

1. The atomic orbitals used to make the SALCs were identified above and
will be labeled 1sH1, 1sH2, 1sO, 2sO, 2px,O, 2py,O, and 2pz,O. These orbitals
are illustrated in Figure 13.20.

2. The following table can be set up:

1sH1 1sH2 1sO 2sO 2 px,O 2py,O 2pz,O

E
C2

�v

�
v

3, 4. The E symmetry operation does not change the orbitals. The C2 and �
v
operations switch the hydrogen 1s orbitals and have varying effects on
the oxygen’s orbitals. The �v does not affect the hydrogen orbitals but
does have the effect of reversing the 2py,O orbital. Each symmetry result
is multiplied by the character for the symmetry operation of that ir-
reducible representation. For the A1 symmetry species, we get the 
following:

1sH1 1sH2 1sO 2sO 2px,O 2py,O 2pz,O

E 1�1sH1 1 � 1sH2 1 � 1sO 1 � 2sO 1 � 2px,O 1 � 2py,O 1 � 2pz,O

C2 1 � 1sH2 1 � 1s H1 1 � 1sO 1 � 2sO 1 � �2px,O 1 � �2py,O 1 � 2pz,O

�v 1 � 1sH1 1 � 1sH2 1 � 1sO 1 � 2sO 1 � 2px,O 1 � �2py,O 1 � 2pz,O

�
v 1 � 1sH2 1 � 1sH1 1 � 1sO 1 � 2sO 1 � �2px,O 1 � 2py,O 1 � 2pz,O

Since the A1 irreducible representation has all 1’s for characters, the re-
sults of the symmetry operations on the atomic orbitals are all being
multiplied by 1.

5. Summing the terms in each column, we get seven linear combinations,
which are in order:

�A1
� 	

1
4

	(1sH1 � 1sH2 � 1sH1 � 1sH2)

�A1
� 	

1
4

	(1sH2 � 1sH1 � 1sH2 � 1sH1)

�A1
� 	

1
4

	(1sO � 1sO � 1sO � 1sO)
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2px

2py

2pz

2s

1s

O

H

1s

H
Figure 13.20 The valence atomic orbitals used
to construct symmetry-adapted linear combina-
tion molecular orbitals of H2O. Although the
atomic orbitals do not have C2v symmetry, the
proper combinations of atomic orbitals will. See
Example 13.13.
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�A1
� 	

1
4

	(2sO � 2sO � 2sO � 2sO)

�A1
� 	

1
4

	(2px,O � 2px,O � 2px,O � 2px,O)

�A1
� 	

1
4

	(2py,O � 2py,O � 2py,O � 2py,O)

�A1
� 	

1
4

	(2pz,O � 2pz,O � 2pz,O � 2pz,O)

The first and second combinations are the same (the terms are simply listed
in different order), and the fifth and sixth combinations are exactly zero. The
unique wavefunctions are, after some algebraic simplification:

�A1
� 	

1
2

	(1sH1 � 1sH2)

�A1
� 1sO

�A1
� 2sO

�A1
� 2pz,O

6. Analogous steps will yield proper wavefunctions with A2, B1, and B2 sym-
metries. They ultimately yield, for the unique combinations,

�B1
� 	

1
2

	(1sH1 � 1sH2)

�B1
� 2px,O

�B2
� 2py,O

There are no nonzero linear combinations that can be labeled with the A2

symmetry species. Although most of the molecular wavefunctions are repre-
sented by a single atomic wavefunction in this case, this will not always be so.
We get seven unique molecular orbitals from the seven atomic orbitals.

Electron spins are not addressed explicitly by MO theory, but they are
treated with respect to the Pauli principle just as atomic orbitals are: only two
electrons can occupy any one orbital, and their spins must be opposite. Just as
in atoms, electrons in molecules fill MOs starting with the lowest-energy MO,
and in order of increasing energy. If two or more MOs are degenerate, one
electron fills each MO before pairing of electrons in orbitals (Hund’s rule).

13.10 Valence Bond Theory
Previously, we have treated orbitals as covering the molecule as a whole, and
have not from the start restricted the orbitals to any one atom. Many molecu-
lar orbitals can be approximated as linear combinations of atomic orbitals.
Another way to consider molecular wavefunctions is in terms of products of
atomic orbitals. This is valence bond theory, and ultimately it is very useful 
for describing the structures of molecules. Valence bond (or VB) theory dates
from 1927, when W. Heitler and F. W. London constructed the first successful
quantum-mechanical approximation of the hydrogen molecule, H2. It was de-
veloped further by J. C. Slater (of Slater determinant fame) and Linus Pauling.

We will use the hydrogen molecule as an example. At infinite interatomic
separation, each hydrogen atom has its own independent wavefunction:

�H1 � 1sH1(1)

�H2 � 1sH2(2)
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where the individual hydrogens and their electrons are labeled as either 1 or 2.
(It is important to keep track of the labels 1 and 2. They will independently re-
fer to the atom and the electron.) The wavefunction of the complete system
(that is, the two individual hydrogen atoms) is the product of the two indi-
vidual wavefunctions:

�system � �H1 � �H2 � 1sH1(1) � 1sH2(2) (13.10)

where we are assuming that each hydrogen atom has its electron in the 1s
atomic orbital. When the two atoms come together to make a hydrogen mol-
ecule, it is assumed that the wavefunction of the molecule also has this sort of
wavefunction. But in the molecule, the individual electrons aren’t tied down to
one particular nucleus. Another possible product of wavefunctions might be
1sH1(2) � 1sH2(1), where each electron is now associated with the other hydro-
gen atom. As done previously with multiple possible wavefunctions, we con-
sider that the best wavefunction is a linear combination of the individual wave-
functions:

�system � 	
	

1

2

	[1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)] (13.11)

where 1/	2
 is a normalization factor for the linear combination. Equation
13.11 actually represents two possible wavefunctions, one being the sum and
the other the difference of the two product wavefunctions. There are two ad-
ditional concerns, however: spin and the Pauli principle. Spin functions must
be included with spatial functions for a complete wavefunction. The Pauli
principle also requires that the complete wavefunction be antisymmetric
upon the exchange of the two electrons [that is, �(1, 2) � ��(2, 1)]. So in
each of the wavefunctions in equation 13.11, a spin function must be in-
cluded and the spin function must be of the proper form so that the com-
plete wavefunction is antisymmetric with respect to exchange of the two
electrons.

There are several possible forms for the spin function of the molecule.
Because there are two electrons, we are going to have to number the spin func-
tions with the electron number to keep track of which electron has what spin
function. One possible molecular spin function is for both electrons to have
the � spin function. The molecular spin function is thus �(1)�(2). Or, they
could both have � spin functions: the molecular spin function is then �(1)�(2).
Or, one electron can have the � function and the other the � function, but
which? Remember that individual electrons are indistinguishable from each
other. Just as for the spatial wavefunction in equation 13.11, there are two 
possible combinations of � and � spin functions, �(1)�(2) and �(2)�(1). The
most appropriate wavefunction is the linear combination of the two:
(1/	2
)[�(1)�(2) � �(2)�(1)]. Again, note that the � sign means that there
are two separate functions here. These are the four possibilities for the spin
part of the total wavefunction. These possibilities must be combined with the
spatial wavefunctions in equation 13.11 to make antisymmetric wavefunctions
for H2.

Since symmetric and antisymmetric properties follow the same rules of
multiplication as odd/even or positive/negative multiplication (that is, sym �
sym � sym, sym � antisym � antisym, antisym � antisym � sym), all we
need to do is identify the symmetry properties of the spatial and spin wave-
functions and combine antisymmetric parts with symmetric parts to get an
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overall antisymmetric wavefunction. The following summarizes the properties,
which can easily be verified:

�spatial � 	
	

1

2

	[1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)] symmetric

�spatial � 	
	

1

2

	[1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)] antisymmetric

�(1)�(2) symmetric

�(1)�(2) symmetric

	
	

1

2

	[�(1)�(2) � �(2)�(1)] symmetric

	
	

1

2

	[�(1)�(2) � �(2)�(1)] antisymmetric

The symmetric spatial function is combined with the antisymmetric spin func-
tion to make a single antisymmetric total wavefunction for H2. Since the en-
ergy of the molecule depends on the spatial wavefunction, this combination
represents a state that has a degeneracy of 1 and so is called a singlet state. The
antisymmetric spatial function can be combined with three symmetric spin
functions to make three additional and individual antisymmetric total wave-
functions for H2. Again, since the total energy depends almost entirely on the
spatial part of the wavefunction, these three different wavefunctions have the
same energy, and so these represent an energy level for H2 that has a degener-
acy of 3. It is called a triplet state. The complete wavefunctions are

	
	

1

2

	[1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)] � 	

	
1

2

	[�(1)�(2) � �(2)�(1)]

	
	

1

2

	[1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)] � �(1)�(2)

(13.12)

	
	

1

2

	[1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)] � 	

	
1

2

	[�(1)�(2) � �(2)�(1)]

	
	

1

2

	[1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)] � �(1)�(2) 

Which state has the lowest energy and represents the ground state? As might
be expected, the sum of two negative numbers (recall that the energy of the
hydrogen atom itself is negative, due to the attraction of the proton and elec-
tron) is lower, or more negative, than the difference of two negative numbers
(where the subtraction of a negative yields, ultimately, an addition process).
There is also experimental evidence that the lowest-energy state of H2 is a sin-
glet state. Therefore the singlet wavefunction in equation 13.12 is the approx-
imation of the valence bond theory for the ground state of H2. The triplet state
is, by definition, an excited state.

In evaluating the energy of the wavefunctions in equation 13.12, one can set
up a perturbational or variational treatment to come up with some expression
for the energy of the molecule. Although we won’t do this in its entirety, we
will illustrate some parts of it that introduce some unique features of molecu-
lar quantum mechanics. Assume that the energy of the ground state is deter-
mined solely by the spatial part of the wavefunction. (As mentioned above, this
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is not a bad approximation.) For the energy of the ground state of H2, one
needs to evaluate

EH2
� 	

1
2

	 �
6

[1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)]*

� Ĥ [1sH1(1) � 1sH2(2) � 1sH1(2) � 1sH2(1)] d�1 d�2

where the 6 on the integral sign means that it is a sixfold integration over the
three coordinates of electron 1 and the three coordinates of electron 2. This in-
tegral can be expanded by multiplying out the terms of the wavefunction. We
get four sextuple-integrals

EH2
� 	

1
2

	��
6

[1sH1(1) � 1sH2(2)]*Ĥ [1sH1(1) � 1sH2(2)� d�1 d�2

+ �
6

[1sH1(2) � 1sH2(1)]*Ĥ [1sH1(1) � 1sH2(2)] d�1 d�2

+ �
6

[1sH1(1) � 1sH2(2)]*Ĥ [1sH1(2) � 1sH2(1)] d�1 d�2

+ �
6

[1sH1(2) � 1sH2(1)]*Ĥ [1sH1(2) � 1sH2(1)] d�1 d�2

As complicated as this looks, each term can be broken down into a number of
one-electron parts that can be approximated using the known solution for the hy-
drogen atom. This is very reminiscent of the earlier treatment of the helium atom.
But just as for the helium atom, the terms that involve the repulsion between the
two electrons cannot be separated and so cannot be evaluated analytically. Those
terms, one from each of the integrals above, have the following forms:

�
6

[1sH1(1) � 1sH2(2)]*	
4�

e

�

2

0r2
12

	[1sH1(1) � 1sH2(2)] d�1 d�

� �
6

[1sH1(2) � 1sH2(1)]*	
4�

e

�

2

0r2
12

	[1sH1(2) � 1sH2(1)] d�1 d�2
(13.13)

� J12

as well as

�
6

[1sH1(2) � 1sH2(1)]*	
4�

e

�

2

0r2
12

	[1sH1(1) � 1sH2(2)] d�1 d�2

� �
6

[1sH1(2) � 1sH2(1)]*	
4�

e

�

2

0r2
12

	[1sH1(1) � 1sH2(2)] d�1 d�2
(13.14)

� K12

Equation 13.13 represents two electrons in defined atomic orbitals. The first
electron is in H1’s atomic orbital and the second electron is in H2’s atomic or-
bital, or vice versa. Since the two hydrogen atoms are the same, the two inte-
grals are equal to each other. The operator is the repulsion due to both elec-
trons having the same, negative charge. Integrals of the form in equation 13.13
are called Coulomb integrals and are represented by the letter J. Since coulom-
bic forces were known by classical mechanics, an integral involving such
coulombic effects is not surprising for multielectron systems (indeed, they ap-
peared in the helium atom).

However, equation 13.14 is something different. The coulombic repulsion
between negatively charged electrons is still a part of the operator, but the
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wavefunctions are different. The integrals involve not only electron 1 on H1
and electron 2 on H2, but electron 1 on H2 and electron 2 on H1. Since the in-
tegrand involves the electrons exchanging atoms, equation 13.14 is the general
form for an exchange integral, denoted by K. Exchange integrals do not have any
classical counterpart. It can be compared to a tug of war with two people on
each side: if the tuggers both change sides, the game is unchanged, right?
Classically, this is so, but quantum mechanically, it is different. The exchange
integrals K affect the total energy of the molecule, even something as simple as
H2, and their existence represents one reason why classical mechanics couldn’t
adequately describe molecules. Classical mechanics completely missed the ex-
change integral contribution to the total energy of a molecular system.

Exchange integrals appear in all systems with more than one electron. Their
contributions to the energy of the system cannot be ignored. In the case of an
excited state of the helium atom having the electron configuration 1s1 2s1, K is
about 1/10 of the Coulomb integral J, indicating that it has a substantial effect
on the predicted energy of the system.

Example 13.14
What are the expected valence bond wavefunctions for lithium hydride, LiH?

Solution
In an initial valence bond approximation, the 1s2 electrons of Li would be ig-
nored, assuming that they don’t participate in the bonding because they aren’t
in the valence shell. (Their presence is accounted for by assuming some con-
stant amount of energy added to the entire diatomic system.) Therefore, we
need to consider only the single 1s electron of H and the single 2s electron in
the valence shell of Li. Of course, the proper spin functions must also be in-
cluded. Analogous to the valence bond wavefunctions for H2, those for LiH are

	
	

1

2

	[1sH(1) � 2sLi(2) � 1sH(2) � 2sLi(1)] � 	

	
1

2

	[�(1)�(2) � �(2)�(1)]

and

	
	

1

2

	[1sH(1) � 2sLi(2) � 1sH(2) � 2sLi(1)] � �(1)�(2)

	
	

1

2

	[1sH(1) � 2sLi(2) � 1sH(2) � 2sLi(1)] � 	

	
1

2

	[�(1)�(2) � �(2)�(1)]

	
	

1

2

	[1sH(1) � 2sLi(2) � 1sH(2) � 2sLi(1)] � �(1)�(2) 

(The spatial parts of the 3�LiH wavefunctions are the same. Only the spin
parts are different.) This example uses LiH because of the correspondence be-
tween its valence bonds and those of H2, as it should be recognized that such
expressions, though useful, can get very complicated very quickly when the
number of valence electrons, and thus the number of valence bond wave-
functions, increases.

13.11 Hybrid Orbitals
The idea of valence orbitals itself does not use much symmetry, which is the
main focus of this chapter. But the idea of hybrid orbitals does, and it also
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makes use of atomic orbitals of the valence-bonding sort. We will assume dur-
ing this discussion that the bonding that occurs between atoms in a molecule
exists between atomic orbitals in the valence shell only.

As an example, consider the methane molecule, CH4. It consists of four hy-
drogens, each of which contributes a 1s valence orbital to the molecule, and a
carbon atom, which in its valence shell has the 2s orbital and three 2p orbitals,
which we represent as 2px, 2py, and 2pz orbitals. The fact that carbon has only
two 2p electrons in that subshell does not mean that there are only two 2p or-
bitals. The mathematics of quantum mechanics requires that p orbitals come
in triplicate. Recall that these p orbitals can point in specific directions arbi-
trarily defined as the x-axis, the y-axis, and the z-axis. The three p orbitals are
perpendicular to each other, 90° apart.

Methane is a covalent molecule known to have the shape of a tetrahedron,
where the bonds make angles of 109.45° with the other bonds.* Figure 13.21
illustrates a potential problem: although the methane molecule has the shape
of a tetrahedron, the valence orbitals of the carbon atom don’t. How can
methane have its shape? This question isn’t confined to organic molecules. The
water molecule is bent at 104.5° and NH3 has 107° bond angles, not the 90° of
the p orbitals.

In the 1930s, the development of valence bond theory (most notably by
Linus Pauling) was extended to include linear combinations of the valence or-
bitals themselves. Such linear combinations are called hybrid orbitals.
Specifically, the combination of a certain number of atomic orbitals provides
linear combination hybrid orbitals that collectively have the proper symmetry.
This single fact is what makes valence bond theory and hybrid orbitals such a
useful interpretational tool in chemistry (whether or not such orbitals actually
exist).

A crucial concept about hybrid orbitals is that the number of hybrid or-
bitals must equal the number of atomic orbitals that are combined. Thus,
two atomic orbitals will combine to make two hybrid orbitals, four atomic
orbitals will combine to make four hybrid orbitals, and so forth. Orbitals that
do not combine to make hybrid orbitals continue to act as regular atomic 
orbitals.

As an example, consider the carbon atom in a methane molecule. The car-
bon atom is making four bonds to the surrounding hydrogen atoms. One s and
three p orbitals make up the valence shell of the carbon atom. Instead of con-
sidering them individually, suppose we assume that they combine in linear
combinations. With four atomic orbitals, we can define four independent lin-
ear combinations. The first, simplest such combination is

�1 � c1s � c2px � c3py � c4pz

where � is the lowercase Greek letter eta. As with any linear combinations, each
wavefunction is multiplied by an expansion coefficient ci (i � 1 to 4, in this
case). The values of these constants need to be determined before the function
is complete, so that �1 is normalized. However, it can be shown that all of the
constants are equal to 	

1
2

	. Therefore,

�1 � 	
1
2

	(s � px � py � pz)
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*In fact, the demonstration of that fact was a major milestone in the advancement of
organic chemistry. The argument was first made by the French chemist Joseph Le Bel and
the Dutch chemist Jacobus van’t Hoff in 1874.

2px

2py

2pz

2s

H

C

H

H

H

Figure 13.21 The atomic orbitals of carbon
do not point in a tetrahedral direction. However,
the methane molecule is known to be tetrahedral.
The proper symmetry-adapted linear combina-
tions of carbon’s atomic orbitals do have tetrahe-
dral symmetry.
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The wavefunction �1 is a hybrid orbital, composed of one part s orbital and
three parts p orbital. The other three hybrid orbitals are

�2 � 	
1
2

	(s � px � py � pz)

�3 � 	
1
2

	(s � px � py � pz) (13.15)

�4 � 	
1
2

	(s � px � py � pz)

(The numbering of the hybrid orbitals is arbitrary.) Because these hybrid or-
bitals are the combinations of one s orbital and 3 p orbitals, they are called sp3

hybrid orbitals. These hybrid orbitals can be represented graphically just as 
hydrogen-like orbitals are. Figure 13.22 shows a cross-section of one orbital,
which resembles a p orbital but has one enlarged lobe and one shrunken lobe.
The plot of the four sp3 orbitals in Figure 13.23 shows the spatial relationship
of the four hybrid orbitals. The larger lobes of the four hybrid orbitals make
the shape of a tetrahedron. When these four orbitals overlap with orbitals of
another atom to make four bonds, the bonds made point in the direction of a
tetrahedron. This accounts for the known tetrahedral shape of methane: the
valence orbitals of the carbon atom can be thought of as not “pure” s and p or-
bitals, but sp3 hybrid combinations that together have a tetrahedral shape.

In considering the hybrid orbitals in the valence shell of an atom, one must
provide a hybrid orbital for each � (sigma) bond (defined in the previous
chapter as a bond having cylindrical electron density between the nuclei mak-
ing the bond) the atom makes as well as nonbonding valence electron pairs. In
the case of methane, in which the carbon atom makes four � bonds, four hy-
brid orbitals are required: the four sp3 hybrids made from the four atomic or-
bitals from the carbon valence shell.

Different atoms make different numbers of bonds, and also have nontetrahe-
dral shapes. The covalent molecule BeH2 is linear, with the two bonds made by
the Be atom pointing in opposite directions. This sounds like one of the p orbitals,
but the ground-state electron configuration of the Be valance shell is 2s2. No p or-
bitals are occupied. However, if the s orbital and one of the p orbitals combine,

�1 � 	
	

1

2

	(s � pz)

(13.16)
�1 � 	

	
1

2

	(s � pz)

then the resulting two hybrid orbitals have relative directions as shown in Figure
13.24: they are oriented 180° from each other. These sp hybrid orbitals can make
� bonds with the hydrogen atoms, yielding a molecule that has a linear shape.
The other two orbitals in Be, the px and the py, are unaffected by the hybridiza-
tion and are unoccupied. (Using the pz orbital in equations 13.16 was arbitrary.)

In cases where three hybrid orbitals are needed, a combination of the one s
orbital and two of the p orbitals is assumed. The choice depends on how one
defines the system. Assuming that one wants a hybrid orbital pointing along
the z-axis, using the pz orbital and (arbitrarily) the px orbital provides three sp2

hybrid orbitals in the xz plane. They have the forms

�1 � 	
	

1

3

	s � �	

2

3
	�pz

�2 � 	
	

1

3

	s � 	

	
1

2

	px � 	

	
1

6

	pz (13.17)

�3 � 	
	

1

3

	s � 	

	
1

2

	px � 	

	
1

6

	pz
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+ =

3 p orbitals1 s orbital

4 sp3 orbitals

Figure 13.23 The four sp3 orbitals, formed by
the combination of the single s and the three p
atomic orbitals, have tetrahedral symmetry. (For
clarity, the small lobes of each orbital are not
shown.) Their spatial geometry makes sp3 orbitals
very useful in explaining the structures of organic
molecules.

Figure 13.22 A single sp3 orbital is reminis-
cent of a p orbital, but with unequal lobes. Like a
p orbital, it does have one angular node.

+ =

1 p orbital1 s orbital

2 sp orbitals

Figure 13.24 The two sp hybrid orbitals,
formed by the combination of one s and one p
atomic orbital, point in opposite directions. They
are used to explain the linear geometries of mol-
ecules like BeH2 and C2H2.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



These three orbitals have the relative spatial orientation shown in Figure 13.25.
They are all in the same plane and make 120° angles with each other. The mol-
ecule BF3, where the boron atom makes three � bonds to fluorine atoms, can
be described as having sp2 hybrid orbitals. The remaining p orbital retains its
original, hydrogen-like form.

Example 13.15
Show that two of the sp2 hybrid orbitals on the same atom are orthogonal.

Solution
Using �2 and �3 from equations 13.17 above, consider the following integral:

� 	
	

1

3

	s � 	

	
1

2

	px � 	

	
1

6

	pz�*	

	
1

3

	s � 	

	
1

2

	px � 	

	
1

6

	pz� d�

Since all of the atomic orbitals are real, the complex conjugate makes no
change. The above expression can be expanded term by term into a sum of
nine simpler integrals:

� 	
	

1

3

	s � 	

	
1

3

	s d� � � 	

	
1

3

	s � 	

	
1

2

	px d� � � 	

	
1

3

	s � 	

	
1

6

	pz d�

� � 	
	

1

2

	px � 	

	
1

3

	s d� � � 	

	
1

2

	px � 	

	
1

2

	px d� � � 	

	
1

2

	px � 	

	
1

6

	pz d�

� � 	
	

1

6

	pz � 	

	
1

3

	s d� � � 	

	
1

6

	pz � 	

	
1

2

	px d� � � 	

	
1

6

	pz � 	

	
1

6

	pz d�

and the constants can be removed to outside the integral. For each resulting
integral, those that have different atomic orbitals are identically zero (because
atomic orbitals themselves are orthogonal). The only remaining nonzero in-
tegrals are

	
1
3

	 � s � s d� � 	
1
2

	 � px � px d� � 	
1
6

	 � pz � pz d�

which, because the atomic orbitals are normalized, yields

	
1
3

	 � 	
1
2

	 � 	
1
6

	 � 0

Since it can be shown that any combination of different hybrid orbitals yields
exactly zero, the hybrid orbitals are in fact orthogonal.

For third-row elements and larger atoms, especially those in the p block, the
existence of d orbitals introduces other possible hybridization schemes where
the d orbitals themselves participate. The inclusion of one d orbital with the s
and the three p orbitals yields five sp3d hybrid orbitals, which collectively have
an overall trigonal bipyramidal shape (like in PCl5). The inclusion of two d or-
bitals with the s and p orbitals yields six sp3d2 hybrid orbitals, which collec-
tively have an octahedral shape (like in SF6).

These are the most common hybridization schemes, as well as the most
ideal. Many real systems are described as having only partial hybrid character.
For example, the H2O molecule has a bond angle of 104.5°, not the 109.45° re-
quired by pure sp3 hybrid orbitals. This is somewhat closer to the 90° angles of
unhybridized p orbitals, suggesting more of a p orbital contribution to the hy-
brid orbital description of the O–H bonds. In fact, based solely on the bond
angle, some equations (not given here) predict a hybrid orbital that is 81% p
orbital and only 19% s orbital (as opposed to 75% p orbital and 25% s orbital
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+ =

2 p orbitals1 s orbital

3 sp2 orbitals

Figure 13.25 The three sp2 hybrid orbitals are
formed by the combination of one s and two p
atomic orbitals. They are arranged in a plane and
have the shape of an equilateral triangle. These
hybrid orbitals are used to explain the trigonal
planar structure of molecules like BF3.
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for a pure sp3 hybrid orbital). However, in most cases a “pure” hybrid orbital
can be assumed and acts as a good enough approximation.

Hybridization and symmetry are intimately connected because of the rela-
tionships seen above: atomic centers in molecules that have certain hybridiza-
tion have specific shape. Atoms that make sp hybrid orbitals impart a linear
shape about that atomic center (which might suggest C�v or D�h point groups,
for simple molecules). Atoms that have sp2 hybrid orbitals make bonds in a
threefold, or trigonal, shape. They also form planar molecules, since the three
� bonds formed by the sp2 hybrid orbitals are in the same plane. Atoms hav-
ing sp3 hybrid orbitals have a tetrahedral molecular shape about that atom.
Such a correspondence between molecular geometry and hybridization,
though approximate, is a powerful tool in understanding the general shape of
molecules.

In determining the irreducible representation labels for the hybrid orbitals,
one must consider all hybrid orbitals as a set and how that set changes when
the various classes of symmetry operations act on the set. If a hybrid orbital is
moved onto itself, it contributes �1 to the character of that symmetry class. If
a hybrid orbital is negated, it contributes �1 to the character. If a hybrid or-
bital is moved to the position of another hybrid orbital, then it contributes 0
(zero) to the character. Although many classes have more than one individual
symmetry operation represented, all symmetry operations in a class have the
same character (which is how we separated symmetry operations into classes
previously). Therefore only one symmetry operation for each class needs to be
considered, and the usual choice is the easiest symmetry operation to visual-
ize. The contributions of all hybrid orbitals are summed up—not all of the
hybrid orbitals will have the same contributions for any particular symmetry
operation (except E, of course). This set of characters is compared to the irre-
ducible representations of the point group. If necessary, the great orthogonal-
ity theorem is applied. This determines the labels for the hybrid orbitals. Since
only orbitals of the same irreducible representation can interact to make mol-
ecules, such labels are indispensable when considering the fine points of atoms
bonding to make molecules.

The following example illustrates this process.

Example 13.16
Determine the irreducible representations for sp3 hybrid orbitals in the Td

point group.

Solution
Figure 13.26 shows the set of four sp3 orbitals, labeled individually (although
we recognize that we can’t label them in reality). Collectively, they have tetra-
hedral or Td symmetry. Each part of Figure 13.26 shows the effect of one
symmetry operation from each of the five classes in the Td point group. For
E, Figure 13.26a shows that each hybrid orbital operates onto itself and so
contributes � 1 to the total character; therefore, �E � 4. Figure 13.26b shows
that a C3 operation keeps one orbital in place (which therefore contributes 
�1) and three others exchanging positions (which therefore contribute 0
each). Therefore, for the set of four orbitals, �C3

� 1. Figure 13.26c shows that
for C2, all of the orbitals are operated onto different orbitals, so that �C2

� 0.
Figure 13.26d shows that the S4 operation has the same effect as C2: moving
all orbitals to the positions of different orbitals. Therefore, �S4

� 0. Finally,
Figure 13.26e shows that a �d plane of symmetry reflects two orbitals onto
themselves (for an overall contribution of �2) and reflects the two other or-
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bitals onto each other (for an overall contribution of 0). The total contribu-
tion to the character is 2, so that ��d

� 2. The complete set of characters is

E 8C3 3C2 6S4 6�d

sp3 4 1 0 0 2 

This is not one of the irreducible representations of Td, so the great orthogo-
nality theorem must be applied. Doing so shows that � above is a combination
of A1 and T2, or rather,

� � A1 � T2
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Figure 13.26 Operation of the symmetry
classes of Td on the sp3 orbitals. The a, b, c, and d
labels are used only to keep track of the individ-
ual hybrid orbitals. The number of hybrid or-
bitals that do not move when a symmetry opera-
tion occurs is listed in the final column. This set
of numbers is the reducible representation � of
the sp3 orbitals. The great orthogonality theorem
is used to reduce � into its irreducible represen-
tation labels.
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Therefore, the four sp3 hybrid orbitals can bond with any other molecular or-
bital or set of molecular orbitals that have either A1 or T2 irreducible repre-
sentation labels in Td symmetry.

The last statement of the above example mentioned a “set of orbitals.” A
similar procedure can be applied to a combination of atomic orbitals, just as
the four sp3 hybrid orbitals above were treated in combination. For example,
in methane the four 1s atomic orbitals of hydrogen, which the symmetry op-
erations in Td move onto each other, represent such a set of orbitals. Perhaps
not so surprisingly, the set of four 1s atomic orbitals can also be labeled as 
A1 � T2 in the Td point group.

13.12 Summary
Symmetry is a powerful and useful tool in chemistry. In this chapter, we have
seen some examples of how symmetry ideas and group theory can be applied
to quantum mechanics. Other topics involving symmetry will be introduced in
future chapters. As illustrated in Example 13.12, symmetry considerations will
be very important in our consideration of the spectroscopy of atoms and mol-
ecules. Symmetry will also be important when considering crystals and sur-
faces, topics covered near the end of the text. Any advanced study of chemistry
must include symmetry and group theory, not only because it can be applied
to wavefunctions, as we did here, but to the three-dimensional structures of all
molecules.
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13.1. In your own words, explain why an object that has
more symmetry elements is said to have “higher symmetry”
than an object with fewer symmetry elements.

13.2 & 13.3 Symmetry Operations 
and Point Groups

13.2. Identify the symmetry elements present in the follow-
ing objects. (a) A blank sheet of paper, no holes. (b) A blank
sheet of three-holed paper. (c) A baseball, including the stitch-
ing. (d) A round pencil, sharpened, with cylindrical eraser. (e)
The Eiffel Tower. (You may have to look up a picture of it if
you don’t remember its shape!) (f) Any book. (g) A human
body, approximately. (Don’t consider internal organs, only
outward appearance.) (h) A perfect starfish. (i) An unpainted
stop sign.

13.3. Identify the point groups of the objects in the previous
problem, where possible.

13.4. Show that S1 � � and S2 � i.

13.5. Without referring to Appendix 3, determine whether
each of the following combinations of symmetry operations
constitutes a complete group. For those that do not, supply
the missing symmetry operation(s). (a) E, C2 (b) E, �h (c) C4,
C2, C3

4 (d) E, C3.

13.6. Any axis of symmetry Cn that rotates an object by 
� � 360°/n about the z-axis can be generalized by the matrix

cos � sin � 0
Cn � ��sin � cos � 0� (13.18)

0 0 1

(See Table 13.1.) Determine the matrix forms of the C2, C3, C6,
and C1 rotation operators.

13.7. Use equation 13.18 in the above exercise to deduce the
general form for (a) the Sn operation and (b) the i operation.

13.8. What are the number of classes and the order of the 
following point groups? (a) C2v (b) D2h (c) D6h (d) S4 (e) Cs

(f) Td (g) O (h) Oh (i) Rh(3)

13.9. (a) Show that the C3v point group satisfies the closure
property of a mathematical group. (b) Show that the C3v

point group satisfies the associative law by evaluating �v(EC3)
and (�vE)C3.

13.10. (a) In the Td point group, an S4
�1 improper rotation is

equivalent to what other improper rotation? (b) In the D6h

point group, the symmetry operation labeled C2
�1 is equiva-

lent to what other symmetry operation?

13.11. Determine which single symmetry operation of the
following point groups is equivalent to the given combination
of multiple symmetry operations. (a) In C2v, C2�v � ? (b) In
C2h, iC2 � ? (c) In D6h, C6�h � ? (d) In D2d, C2C
2 � ? (e) In
Oh, iS4 � ?

13.12. Group theory requires that symmetry operations sat-
isfy the associative law. 

(a) Do they satisfy the commutative law? That is, does a differ-
ent order of the same symmetry operations always yield the
same answer? Provide a specific example to support your answer. 

(b) In matrix algebra, matrix multiplication is not commuta-
tive. For any two given matrices A and B, it is not a certainty
that AB � BA. Does this support or refute your conclusion in
part a, and why?

13.13. Figure 13.27 shows the structure of the molecule por-
phine. Determine the symmetry elements present in the mol-
ecule, and its point group. Does the point group change if an
Fe2� ion is substituted for the two hydrogens in the center of
the porphine ring?

13.14. In Example 13.3e, we are assuming that resonance
structures of NO3

� are “averaging” out the symmetry to an
overall D3h point group. If resonance weren’t assumed, what
point group would define the structure of NO3

�?

13.15. Identify all the symmetry elements present in the tetra-
hedron, the cube, and the octahedron.

13.16. Point groups are called such because all of the sym-
metry elements in the group intersect in one point in space.
For point groups that have i as a symmetry operation, why
must i be at that point?

13.4 Molecules and Symmetry

13.17. Determine the point groups of the following molecules.
(a) Hydrogen peroxide, H2O2 (It is not planar.) (b) Allene,
CH2�C�CH2 (c) D-glycine (Its absolute stereochemistry can
be found in any good organic or biochemistry textbook.) 
(d) L-glycine, and compare with part c above (e) cis-1,2-
dichloroethylene (f) trans-1,2-dichloroethylene (g) Toluene,
C6H5CH3 (h) 1,3-Cyclohexadiene.

13.18. Determine the point groups of the following mole-
cules. (a) Hydrogen selenide, H2Se. (b) Partially deuterated
hydrogen sulfide, or HDS (c) The chair conformer of cyclo-
hexane, C6H12 (d) The boat conformer of cyclohexane, C6H12

(e) Fe(CO)5, which has a trigonal bipyramidal structure 
(f) CO3

2�, which has three resonance structures that con-
tribute to its overall shape (g) The perfectly staggered con-
former of ethane (h) The perfectly eclipsed conformer of
ethane (h) 1,4-Cyclohexadiene

13.19. Identify the point group of the wavefunctions of the
following molecules. (a) Deuterium oxide, D2O (where D � 2H)
(b) Boron trichloride, BCl3 (c) Methylene chloride, CH2Cl2
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Figure 13.27 The structure of porphine. (See exercise 13.13.)
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13.20. Identify the point group of the wavefunctions of the
following molecules. (a) Hydrogen chloride, HCl (b) Sulfur
dioxide, SO2 (c) Sulfur trioxide, SO3

13.21. (a) What would be the formulas of possible molecules
that have carbon atoms in the positions of the vertices of the
five Platonic solids, in the cases where normal valence rules ap-
ply? (That is, C forms four and only four bonds. Any bonds not
made to other C atoms can be used by hydrogen atoms.)
(Note: Not all Platonic solids can be mimicked by carbon atoms
bonding together, because one requires five bonds at each
vertex.) (b) Verify that the two smallest molecules contain the
various symmetry elements of their respective cubic point
group. (Three of the possible hydrocarbons have actually been
synthesized. Can you find them in the chemical literature?)

13.22. Determine if the following species have permanent 
dipole moments. (a) Dichloromethane, CH2Cl2 (b) Chloro-
benzene, C6H5Cl (c) Ammonia, NH3 (d) Carbon dioxide, 
CO2 (e) The carbonate ion, CO3

2� (f) The phosphate ion,
PO4

3� (g) Uranium hexafluoride, UF6 (h) Bromine, Br2

(i) Hydrogen deuteride, HD (D � 2H)

13.23. Which of the following species will not have permanent
dipole moments? (a) Hydrogen cyanide, HCN (b) Carbonyl
sulfide, OCS (c) Phosphorus pentachloride, PCl5 (d) Tri-
methylamine, N(CH3)3 (e) Boron trifluoride, BF3 (f) Diborane,
which has the following structure:

where the bridging hydrogens are perpendicular to the four
terminal hydrogens, which are all coplanar (g) Methane, CH4

(h) Chloromethane, CH3Cl (i) Dichloromethane, CH2Cl2
(j) Trichloromethane (or chloroform), CHCl3 (k) Carbon tetra-
chloride, CCl4 (l) 2,2-Dimethylpropane, CH3C(CH3)2CH3

(m) Cubane (see 13.21 above)

13.24. (a) Unlike methane, bromochlorofluoromethane
(CHBrClF) is chiral. Determine all symmetry elements that are
present in CHBrClF and identify its point group. (b) If the fluo-
rine in this molecule were substituted with a hydrogen, what
is the point group for the new molecule? Is it chiral?

13.5 Character Tables

13.25. Write out explicitly the 12 � 12 matrices that specify
the change in atomic coordinates of NH3 upon operation of
the E symmetry operation and any � symmetry operation.

13.26. For NH3, write out explicitly the three 12 � 12 matri-
ces for all three planes of symmetry �, �
, and ��. How are
they similar, and how are they different?

13.27. Show that the irreducible representations of the D2

point group satisfy the closure requirement.

13.28. Show that the irreducible representations of the D2d

point group satisfy the closure requirement. You will have to use
the great orthogonality theorem to reduce one combination.

B

H

H

H

HH

H

B

13.29. Show that any two of the irreducible representations
of the following point groups are orthogonal to each other.
(a) C2 (b) C2v (c) D2h (d) Oh (e) Td

13.30. Using the character tables in Appendix 3, can you de-
termine which symmetry element must be present in order to
have a two-dimensional irreducible representation (that is, one
that can be labeled using E instead of A or B)?

13.31. Why is it unnecessary to consider whether an irre-
ducible representation from C4h is orthogonal to an irreducible
representation of D6h?

13.32. Explain why the characters for the proper and im-
proper rotations are mathematical expressions instead of num-
bers for C�v and D�h.

13.33. Use the expressions in Rh(3) to determine the charac-
ters of the f orbitals in an octahedral (Oh) environment. For the
set of seven f orbitals, the character of the identity symmetry
operation is 7.

13.6 Wavefunctions and Symmetry

13.34. (a) What are the symmetry elements present in a plot
of the function F(�) � sin �? Assume that all symmetry ele-
ments intersect at the origin. (b) What are the symmetry ele-
ments present in a plot of the function F(�) � cos �, again as-
suming that all elements intersect at the origin?

13.35. What are the symmetry elements present in a plot of
the function F(�) � sin �, assuming that the point of inter-
section for all symmetry elements is on the x-axis at x � �/2?
(Another way of stating this is, What are the symmetry ele-
ments of the function about the point x � �/2?)

13.36. What point group(s) must the wavefunctions of all lin-
ear molecules belong?

13.37. The � bonds in the ethylene molecule can be repre-
sented like this:

where the two lobes are out of the plane made by the atoms.
(In ground-state ethylene, only the bonding orbital is filled.)
Determine the point group of ethylene and assign a symme-
try species to the p bonds.

13.38. Consider the � bonds in ethylene shown in the previ-
ous exercise. In benzene (C6H6), six p orbitals from the six car-
bon atoms combine to make six molecular orbitals. In the 
lowest-energy � orbital, all of the phases assigned to the atomic
p orbitals are the same on each side of the molecular plane; in
the highest-energy � orbital, they alternate phases. Draw these
two � orbitals and determine their symmetry species.

C
H

H

H

H
C

+

–

+

–
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13.7 Great Orthogonality Theorem

13.39. Reduce the following reducible representations using
the great orthogonality theorem. 

(a) In the C2 point group:

E C2

� 5 1

(b) In the C3v point group:

E 2C2 3�v

� 6 0 0

(c) In the D4 point group:

E 2C4 C2 2C2
 2C2�

� 6 �2 2 2 �4

(d) In the Td point group:

E 8C3 3C2 6S4 6�d

� 7 �2 3 1 �1

13.40. Determine the resulting representations for the fol-
lowing products of irreducible representations. 

(a) In C3v, A1 � A2

(b) In C6v, E1 � E2

(c) In D3h, A
2 � A�1 � E�

(d) In D6h, B2g � B2u

(e) In D6h, B1g � B1g

(f) In Td, E � T1

(g) In Td, T2 � T2

(h) In Oh, Eg � T2g

13.8 Using Symmetry in Integrals

13.41. Assume that you are evaluating the integral of prod-
ucts of functions having symmetry labels in exercise 13.40,
parts a–h. Which integrals, if any, are exactly zero due to sym-
metry considerations?

13.42. Assume that x-polarized light can be assigned an E
symmetry species in a system that has C4v symmetry. Can a
transition from a �E state to a �B2

state occur? Why or why not?

13.43. Show that s → s transitions are not allowed in the hy-
drogen atom. To do this, show that the integral � �a(s)*Ô �b(s)
d� is exactly zero where Ô is the operator representing the
light. Assume that light has the symmetry species Du

(1) in this
completely spherical system.

13.44. The five d orbitals in transition metals can be shown
to have the following characters under tetrahedral (Td) sym-
metry:

E 8C3 3C2 6S4 6�d

� 5 �1 1 �1 1

(The character of E being 5 for the five d orbitals is not a co-
incidence!) In Td symmetry, what symmetry species do the d
orbitals have? What are the degeneracies of the symmetry
species?

13.9 SALC-MO Theory

13.45. Construct the symmetry-adapted linear combination
molecular orbitals for hydrogen sulfide, H2S.

13.46. Referring to exercise 13.45: How would the symme-
try-adapted linear combinations for the molecular orbitals of
H2S differ if the core atomic orbitals of S were included?

13.47. In Example 13.13, several of the molecular orbitals for
H2O were found to be simply atomic orbitals. Justify this in
light of the idea that molecular orbitals are orbitals of the mol-
ecule as a whole, and not orbitals of the atoms.

13.48. Should the molecular orbitals for H2O found in
Example 13.13 be orthogonal? Will this always be the case? 

13.49. How many SALCs can be constructed for CH4 using all
valence and core atomic orbitals?

13.10 & 13.11 VB Theory and Hybrid Orbitals

13.50. Construct a list comparing and contrasting VB theory
with MO theory.

13.51. Why might one not be surprised to find that the first
excited state of H2 is represented by three very closely spaced
lines in the spectrum?

13.52. Suppose you use p0, p�1, and p�1 along with s orbitals
to construct hybrid orbitals. Will they be the same hybrid or-
bitals defined by the px, py, and pz orbitals? Justify your answer.

13.53. Show that the individual sp orbitals, as written in equa-
tion 13.16, are orthogonal.

13.54. Show that the individual sp3 orbitals, as written in
equation 13.15, are orthogonal.

13.55. What is the rough hybridization of the carbon orbitals
in the methyl carbonium ion, CH3

�, which is almost perfectly
planar triangular in shape?

13.56. Determine the symmetry species of the D3h point
group for the sp2 hybrid orbitals, assuming that the C3 axis is
coincident with the z-axis and that one of the orbitals lies
along the positive x-axis. (See example 13.16.)

13.57. Determine the D3h symmetry species of the sp3d hy-
brid orbitals, assuming that the C3 axis is coincident with the
z-axis and that one of the orbitals lies along the positive x-axis.
(See Example 13.16.)

13.58. Determine the Oh symmetry species of the sp3d2 hy-
brid orbitals, assuming that the hybrid orbitals are all coinci-
dent with the Cartesian axes.

13.59. In propene (CH3–CH�CH2), the first carbon has sp3

hybrid orbitals and the second carbon has sp2 hybrid orbitals.
These orbitals interact to make a � bond. Why are these hy-
brid orbitals not orthogonal?
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13.60. Using an appropriate software graphics package, in-
put the forms of the s and p hydrogen-like wavefunctions
(from Chapter 10), take the appropriate linear combinations
of them, and verify the spatial orientation of sp, sp2, and sp3

hybrid orbitals. If you can find their forms in another refer-
ence, do the same thing for sp3d and sp3d2 hybrid orbitals.
You will need to use the d wavefunctions from Chapter 10,
also.

13.61. Justify the fact that the nitrogen atom in ammonia is
sp3 hybridized even though it makes only three bonds to three
hydrogen atoms.

13.62. What symmetry species is assigned to the lone p or-
bital for a boron atom that is sp2 hybridized?

13.63. Construct 90% probability surface diagrams for sp,
sp3, and sp3 hybrid orbitals. Use n � 2 hydrogen-like wave-
functions as the bases for the hybrid orbitals.
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461461

VIRTUALLY EVERYTHING WE KNOW about matter comes from the
interaction of matter with electromagnetic radiation. In its most straight-

forward fashion, such interactions define spectroscopy. Spectroscopy had its
origin with Bunsen and Kirchhoff in the early 1860s, as recounted in Chapter
9. Spectroscopy was also an important factor in the development of quantum
mechanics, as shown by the Rydberg equation for the spectrum of the hydro-
gen atom as well as Bohr’s theory of hydrogen.

Spectroscopy probes energy levels of atoms and molecules. Therefore, it is
an application of quantum mechanics. We have already seen that quantum me-
chanics provides exact answers for the energies of several ideal systems. What
we will find is that many of these ideal systems are useful in understanding the
spectroscopy—and therefore the energy levels—of atomic and molecular systems.

Atoms and molecules have energies due to several types of motion. In part,
the Born-Oppenheimer approximation from Chapter 12 will be applied: we
will treat various motions of atoms and molecules, and the energies of those
motions, separately. Electronic, nuclear, rotational, and vibrational energy
levels can and will be treated separately for the most part, although in some
cases we will have types of spectroscopy that involve combinations of these
energy levels.

Conveniently, the transitions that involve the different types of energy levels
(electronic, vibrational, rotational) usually occur in different parts of the elec-
tromagnetic spectrum. This makes it even easier to consider them separately.
We begin our multichapter treatment of spectroscopy by considering rotations
and vibrations of molecules. Such motions are considered first for a reason.
Both types of motions can be understood in terms of relatively simple quan-
tum mechanics. We will also introduce some tools that we can apply to other
forms of spectroscopy.

14.1 Synopsis
First, we explore the idea of selection rules, which are quantum-mechanical
predictions for which energy levels of an atomic or molecular system will par-
ticipate in a spectral transition. We will see that symmetry considerations are
useful for predicting a transition from one energy level to another. Next, we

14.1 Synopsis
14.2 Selection Rules
14.3 The Electromagnetic

Spectrum
14.4 Rotations in Molecules
14.5 Selection Rules for

Rotational Spectroscopy
14.6 Rotational Spectroscopy
14.7 Centrifugal Distortions
14.8 Vibrations in Molecules
14.9 The Normal Modes 

of Vibration
14.10 Quantum-Mechanical

Treatment of Vibrations
14.11 Selection Rules for

Vibrational Spectroscopy
14.12 Vibrational Spectroscopy 

of Diatomic and 
Linear Molecules

14.13 Symmetry Considerations
for Vibrations

14.14 Vibrational Spectroscopy of
Nonlinear Molecules

14.15 Nonallowed and
Nonfundamental 
Vibrational Transitions

14.16 Fingerprint Regions
14.17 Rotational-Vibrational

Spectroscopy
14.18 Raman Spectroscopy
14.19 Summary

Rotational and Vibrational
Spectroscopy
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discuss the electromagnetic spectrum and see how the different forms of spec-
troscopy relate to the energies of photons.

Rotational spectroscopy arises from the quantized rotations of molecules in
three-dimensional space. Atoms do not have rotational spectra. However, di-
atomic molecules have a relatively simple rotational spectrum, since they can
rotate in only two dimensions (a “rotation” about the internuclear axis will not
be observed) and their behavior of rotation is the same for both directions.
Nonlinear polyatomic molecules have one (for highly symmetric molecules) to
three (for most, less-symmetric species) different rotations in space, compli-
cating a rotational spectrum.

Vibrational spectroscopy arises from the vibrations of the individual atoms in
molecules with respect to each other. The atoms are stretching, bending, or twist-
ing about an imagined equilibrium position. Usually such motions occur at higher
frequency than rotations, so vibrational spectra are observed using higher-energy
light than in rotational spectroscopy. As with rotations, individual atoms do not
have vibrational spectra, because two or more atoms bonded together are re-
quired for a vibration. Like rotations, vibrations occur in certain patterns. However,
the symmetry of the molecules has a greater influence on the number of transi-
tions observed in a vibrational spectrum. Transitions between vibrational energy
levels also follow selection rules, which are different from those for rotations.

Spectroscopy is a powerful tool for studying matter. The treatment in this
text cannot do the topic justice—series of books are written on just the topics
in the next three chapters. However, the following material should give you
some idea of how spectroscopy aids our understanding of atoms and molecules.

14.2 Selection Rules
In spectroscopy, an atomic or molecular system having a certain wavefunction
and energy absorbs or emits energy, usually in the form of light, and in doing
so becomes described by a different wavefunction and energy. In all forms of
spectroscopy, it is the difference in energies of the wavefunctions that is the
primary observable of interest. (Hence its overwhelming importance in quan-
tum mechanics.) The law of conservation of energy requires that the light,
usually in the form of a single photon, have the same energy as the difference
in energy of the initial and final states. That is,

E(�final) � E(�initial) � Ephoton

�E � h� (14.1)

Equation 14.1 is written in the original form of the Bohr frequency condition:
the difference in energy of the two quantum states equals the energy of the
photon, which equals h�.

Remember, however, that wavefunctions have symmetry, and so do opera-
tors. The light that causes the system to go from one state to another (either
by absorption or emission) can be assigned an irreducible representation from
the point group of the system of interest. Quantum mechanics defines a spe-
cific expression, called a transition moment, to which the irreducible represen-
tations can be applied. For an absorption or emission of a photon, the transi-
tion moment M is defined as

M � � �*final�̂�initial d� (14.2)

�̂ � �̂x 	 �̂y 	 �̂z �  �
# of   

ei(xi 	 yi 	 zi)

particles
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where �̂ is the electric dipole operator, e is the charge on the particle, and xi, yi,
and zi are the coordinates of the particle. Transitions of this sort are electric
dipole transitions. Transitions between wavefunctions can be prompted by
other interactions (like magnetic dipole or polarization changes), but electric
dipole transitions are the most common.

We can use the conclusions of the previous chapter on symmetry at this
point. In order for the integral in equation 14.2 to have a nonzero numerical
value, the irreducible representations of the three components of the integrand
must contain the totally symmetric irreducible representation of the point
group of the system, usually labeled A1. That is,


�final
� 
�̂ � 
�initial

� A1 (14.3)

The great orthogonality theorem may be needed to determine the irreducible
representations of the product in equation 14.3. If it contains A1, then the in-
tegral may be nonzero and the transition between �initial and �final, caused by
absorption or emission of electromagnetic radiation, is considered allowed. On
the other hand, if the combination of irreducible representations in equation
14.3 does not contain A1, then the integral defined in the transition moment
must be identically zero and the transition cannot occur. It is a forbidden
transition.

In reality, some forbidden transitions do occur, since the above definition
does not take into account the nonideality of an atomic or molecular system.
But forbidden transitions almost always have a much lower probability than
do allowed transitions. This means that in spectral measurements, absorptions
or emissions of radiation due to allowed transitions are typically stronger than
for forbidden transitions. This fact is not only useful in understanding spectra
but also reinforces the usefulness of the predictions of symmetry and quantum
mechanics.

Although the above equations imply that a lot of symmetry analyses must
be performed, that is not always the case. Equations 14.2 and 14.3 allow for the
possibility of broad statements about which transitions will and will not be
allowed for particular atomic or molecular systems. Such general statements,
ultimately based on quantum-mechanics and symmetry, are called selection
rules. Selection rules allow us to easily determine which transitions will occur.
When one is faced with a spectrum to interpret, knowledge of the selection
rules is an indispensable tool in deriving physical information from the spec-
trum. Rotational and vibrational spectroscopy, in this chapter, are simplified to
a large extent thanks to selection rules.

14.3 The Electromagnetic Spectrum
Light can be represented by a wave, like the one shown in Figure 14.1. The
wave has a characteristic frequency � and a wavelength �, and the two are re-
lated to the speed of light, represented by the letter c, by the equation

c � � � � (14.4)

The speed of light in vacuum is constant at 2.9979  108 m/s. The speed of light
in vacuum is a universal constant, like Planck’s constant. All light, no matter what
the frequency or wavelength, travels at this speed in vacuum. The wavelength has
units of length, whereas the frequency has units of 1/s, or s�1. Frequency is
thought of as the number of waves of light passing a certain point per second.

Light travels at different speeds in different media (like air or water), but
since gases are so dispersed the speed of light through air is usually treated as
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Number of waves
passing per second � �

Velocity � c

�

y

x

z

Figure 14.1 Light acts as a wave, with a wave-
length � and a frequency �. In vacuum, all light
has the same velocity, 2.9979  108 m/s. This
value is given the symbol c.
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the same as in vacuum. This assumption is not valid for condensed phases like
water, glass, or any other transparent medium.

The quantum theory of light, discussed in Chapter 9, provides a relation-
ship between the energy of light and its frequency. Recall that light of a par-
ticular frequency � comes in bundles of energy (which we call photons) having
a certain, specific amount given by the formula

E � h� (14.5)

Equations 14.4 and 14.5 allow us to convert between energy, wavelength, and
frequency of light.

It is typical to divide the possible values of wavelength/frequency/energy of
light into various regions. Table 14.1 lists the approximate frequencies, wave-
lengths, and energies of the regions, and Figure 14.2 shows a diagram of a con-
tinuous spectrum and how it is divided. Such divisions have historical as well
as practical reasons. For example, one obvious division is visible light, which is
light that we can see. Visible light is electromagnetic radiation having wave-
lengths from about 7700 Å to 4000 Å (or 7.700  10�7 m to 4.000  10�7 m).
At higher frequencies (and therefore energies) than visible light is ultraviolet
(“higher than violet,” abbreviated UV) radiation, X rays, and gamma radiation.
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Table 14.1 The electromagnetic spectruma

Frequency range Wavelength range Energy range
Region (in s�1) (variable units) (kJ/mol of photons)

Gamma rays �3  1017 �1 nm �120,000

X rays 3  1017–3  1016 ~1–10 nm 12,000,000–12,000

Ultraviolet (UV)b 7.5  1016–7.5  1014 4–400 nm 30,000–300

Visible light 7.5  1014–3.9  1014 400–770 nm 300–155

Infrared (IR)c 3.9  1014–3  1011 770 nm–1000 �m 155–0.12

Microwaves 3  1011–3  108 1 mm–1000 mm 0.12–0.00012

Radio waves �3  108 �1000 mm �0.00012
aBecause the limits on the ranges are inexact, some of the boundaries may overlap.
bOccasionally separated into UVA (320–400 nm) and UVB (280–320 nm) regions.
cOccasionally separated into near IR (770–2500 nm), middle or mid-IR (2500–50,000 nm), and far IR 
(50,000 nm–1000 �m) regions.

� � 1 � 100

(Region limits are approximate)
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Figure 14.2 The electromagnetic spectrum. The top numbers are the approximate frequency
boundaries of the regions, and the approximate wavelength boundaries are listed on the bottom.
The visible portion of the spectrum, shown expanded, is actually a small part of the complete
electromagnetic spectrum.
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At lower frequencies than visible light, there are infrared (“lower than red,” ab-
breviated IR) radiation, microwaves, and radio waves.

A convenience in spectroscopy is that most of the individual types of tran-
sitions (rotational, vibrational, electronic, and so on) occur in characteristic re-
gions of the electromagnetic spectrum. Most pure rotational transitions occur
by absorbing or emitting microwave radiation. Most pure vibrational transi-
tions occur by absorbing or emitting infrared radiation. Similarly, electronic
transitions occur in the presence of visible and ultraviolet light. There are ex-
ceptions, of course: transitions of electrons among the f orbitals (that is, in
rare-earth atoms) can occur in the infrared region, and rotational transitions
can be observed superimposed on a vibrational spectrum, also in the infrared
region. But it is still convenient to refer to a type of spectroscopy by the region
of the electromagnetic spectrum being probed.

Example 14.1
Assuming that the general regions of the various atomic or molecular tran-
sitions above are followed, put pure electronic, rotational, and vibrational
transitions in order of increasing energy.

Solution
Assuming that electronic transitions occur in the visible or UV portion of the
spectrum, the rotational in the microwave region, and the vibrational in the
IR, then rotational transitions are lowest in energy, vibrational transitions are
higher in energy, and electronic transitions are the highest of the three.

Another convenience for spectroscopists (but perhaps not for students!) is
the fact that each type of spectroscopy uses its own units to indicate the en-
ergy changes measured by a spectrum. All units are related to energy, but one
may have to apply c � �� or E � h� to convert into energy units. Often, tran-
sitions in the microwave region are stated in units of frequency (MHz or GHz),
whereas changes in electronic energies are typically expressed in units of nm
or Å. In both cases, the numerical value and unit collectively refer to the pho-
ton that is absorbed or emitted in the course of the transition. Vibrational
spectroscopy, in the infrared region, uses units of micrometers, or microns, to
indicate the wavelength of the photon involved in the transition. (Microns are
typically denoted � instead of the SI-approved �m. Although the micron is not
an SI-approved unit (micrometer is preferred), it is often found in scientific
literature. Therefore, you should be familiar with it.) Commonly, the wavenum-
ber unit is used. It is defined as the number of waves of light per centimeter,
so it has the unit cm�1.* It equals the reciprocal of the wavelength (in centi-
meters) of the light involved. Therefore,

wavenumber � �̃ � �
�

1
� (14.6)

It is easy to show that the wavenumber of any photon is proportional to its fre-
quency, so wavenumber is sometimes referred to as “frequency.” Be careful to
distinguish between �̃, having units of cm�1, and � (no tilde above the letter),
which represents frequency and has units of s�1.
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*The SI-approved unit for wavenumbers is m�1, but cm�1 is used almost exclusively.
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Example 14.2
Water absorbs infrared radiation that has a frequency of 1595 cm�1. Convert
this wavenumber into a wavelength in microns.

Solution
Rearranging equation 14.6 above, one finds

� � �
1

�̃
�

Using the given wavenumber:

� � �
1595

1

cm�1� � 0.0006269 cm � 6.269 microns or 6.269 �

Note how the centimeter unit comes to the numerator of the fraction.

14.4 Rotations in Molecules
Atoms are not considered candidates for rotation. An atom in free space prob-
ably rotates, but how would we be able to tell? At least two atoms, bonded to-
gether and tumbling in space, are necessary in order to consider rotation on a
quantum-mechanical scale. The simplest molecule to consider is a diatomic
gas. Its molecules rotate in space. The rotations are illustrated in Figure 14.3.
Notice that there are only two ways the molecule can rotate, and the two rota-
tions are the same except that the rotational axes are 90° apart. This system is
very much like 3-D rotational motion. The energy levels for the pure rotational
motions of a diatomic molecule are quantized and, to a very good approxi-
mation, given by the expression for the energy of a 3-D rigid rotor from
Chapter 11:

Erot � �
J(J 	

2I

1)�2

� J � 0, 1, 2, . . . (14.7)

where Erot is the rotational energy and I is the moment of inertia of the 
diatomic molecule, which is defined in terms of its reduced mass � and the 
internuclear distance r:

I � �r2

The molecule also has angular momentum, which you would expect it to
have since it is rotating. The quantum number J is used to define the total an-
gular momentum of the molecule rotating in three dimensions. The total an-
gular momentum of a molecule is given by the same eigenvalue equation from
three-dimensional rotational motion:

L̂ 2�� J(J 	 1)�2� (14.8)

The square of the total angular momentum is the formally quantized observ-
able. In order to get the magnitude of the angular momentum, you must take
the square root of the eigenvalue from equation 14.8. There is also a z compo-
nent of the total angular momentum for the diatomic molecule, and this 
z component is also quantized:

L̂ z�� MJ�� �MJ � � J (14.9)
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Figure 14.3 A diatomic (or polyatomic linear)
molecule has only two defined rotational mo-
tions, which are equivalent to each other.
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where now the quantum number for the molecule’s z-component rotational
motion is represented by MJ. MJ is bounded by J, just as m� was bound by �.
The total rotational energy of the molecule, equation 14.7, is determined only
by J and not by MJ, the z component. Each rotational energy level is thus de-
generate by a factor of 2J 	 1. Equations 14.8 and 14.9 are applicable not only
to diatomic molecules but to all linear molecules. (For polyatomic linear mol-
ecules, however, the reduced mass is more difficult to calculate. We will not
deal with such molecules here.)

Nonlinear molecules can rotate in three independent, mutually perpendic-
ular directions, as illustrated in Figure 14.4. However, there is absolutely no
guarantee that the rotation in one dimension is equivalent to rotations in the
other two dimensions. For most molecules, all three rotations are different spa-
tial motions. Also, the moment of inertia I for each dimension of each rota-
tion is usually different. This makes the rotations of nonlinear molecules
somewhat complicated. In general, there will be three different independent
rotations, but even consideration of those can get substantially complicated.
Generally, such asymmetric nonlinear molecules are treated using various 
levels of approximation to more symmetric systems, a sort of perturbation-
theory kind of approach. We will not concern ourselves with such systems here.

Nonlinear molecules that have certain symmetry elements may, however,
qualify for simpler treatment (leading, ultimately, to a better understanding of
their properties). The key is the value of the moment of inertia of the mole-
cule in the three perpendicular directions. One can always define a set of axes
so that the total moment of inertia of the molecule can be described using
three perpendicular components (one of which is exactly zero for linear mol-
ecules). These axes are called the principal inertial axes, or simply principal
axes, of the molecule. One of the principal axes always lies coincident with the
highest-order symmetry axis, if one exists. If all three moments of inertia are
the same, then the molecule is called a spherical top and the rotational energy
of the molecule is quantized and given by

Erot, spherical � �
J(J 	

2I

1)�2

� (14.10)

This is the same expression used to define the energy levels of diatomic (or
other linear) molecules. It can be shown that any molecule that has two or
more noncoincident threefold or higher axes is a spherical top. Examples in-
clude methane (CH4), sulfur hexafluoride (SF6), and cubane (C8H8 ).

If the molecule has three different moments of inertia, it is called an asym-
metric top. The rotations of such molecules are complicated. As mentioned
above, specific treatment is beyond the scope of this text, although this defin-
ition includes most molecules.

If a nonlinear molecule has a single threefold or higher axis, then it will have
two of its three moments of inertia equal. Such molecules are called symmet-
ric tops. There are two types of symmetric tops. If the two equal moments of
inertia are lower than the unique moment of inertia, then the molecule is
called an oblate top. If the two equal moments of inertia are higher than the
unique moment of inertia, then the molecule is called a prolate top. Generally,
oblate tops are flat and round, like a disk, and prolate tops are long and nar-
row, like a cigar. (See Figure 14.5.) Benzene (C6H6) is an oblate top, whereas
ethane (CH3CH3) is a prolate top. The symmetry classification of many mol-
ecules is easy to do by inspection. However, in many cases, explicit calculation
of the moments of inertia are necessary. NH3 is one example since it is difficult
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Figure 14.4 A nonlinear molecule has three
different rotational motions. The symmetry of
the molecule determines whether any or all of
them are equivalent to each other.

H

H

H

CH C C C

(a)

(b)
Figure 14.5 (a) A prolate symmetric top is
long and cylindrical, like methyldiacetylene.
(b) An oblate symmetric top is disk-shaped, like
benzene.
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to visualize all three of the principal axes. (Can you do it?) One axis is the
molecular threefold rotational symmetry axis. The other two axes aren’t so ob-
vious. Calculation of the moments of inertia shows that ammonia is an oblate
symmetric top.

Example 14.3
Classify the following molecules as linear or as spherical, prolate symmetric,
oblate symmetric, or asymmetric tops. Drawing the structure of the mole-
cules will help you visualize them.
a. Water, H2O
b. The all-trans conformation of butane, C4H10

c. Chlorobenzene, C6H5Cl
d. Uranium hexafluoride, UF6

e. Hydrogen cyanide, HCN 
f. Carbonyl sulfide, OCS
g. The sulfate ion, SO4

2�

Solution
a. Water has a single C2 axis and so is an asymmetric top.
b. With its long carbon backbone, butane is a prolate top.
c. Chlorobenzene has C2v symmetry and, like water, is an asymmetric top.
Note how the substitution of one H in benzene with Cl changed the symme-
try and, therefore, the rotational behavior of the molecule.
d. Uranium hexafluoride has several noncoincident C4 axes, so it is a spheri-
cal top.
e. HCN is a linear molecule.
f. OCS is also a linear molecule.
g. SO4

2� is a tetrahedral ion, having several noncoincident C3 rotational axes.
Therefore it is a spherical top.

Example 14.4
From the general shape of the following molecules, define them as either pro-
late or oblate symmetric tops, or neither.
a. Tetrafluoroethylene, CF2�CF2

b. Boron trifluoride, BF3

c. Trimethylamine, N(CH3)3

d. Dimethyldiacetylene, CH3–C�C–C�C–CH3

Solution
a. Though roughly a cigar-shaped molecule, tetrafluoroethylene does not
have a threefold axis of symmetry. Therefore it is not a symmetric top.
b. The planar triangular boron trifluoride is an oblate symmetric top.
c. Borrowing from the statement above that ammonia, NH3, is an oblate sym-
metric top, we might correctly assume that the trimethyl-substituted amine
is also an oblate symmetric top.
d. The roughly linear molecule dimethyldiacetylene is a prolate symmetric top.

In considering the energy of rotation for symmetric tops, it is convenient to
label the moments of inertia in order of magnitude, lowest to highest, using Ia,
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Ib, and Ic (instead of Ix, Iy, and Iz). The definitions for the various types of non-
linear molecules are therefore

Spherical top: Ia � Ib � Ic 

Oblate symmetric top: Ia � Ib � Ic

Prolate symmetric top: Ia � Ib � Ic

Asymmetric top: Ia � Ib � Ic

It also becomes convenient at this point to define the following rotational
constants:

A � �
2

�

I

2

a

� (14.11)

B � �
2

�

I

2

b

� (14.12)

C � �
2

�

I

2

c

� (14.13)

Example 14.5
Assuming standard SI units, what is the unit on the rotational constants A,
B, or C?

Solution
Using just the units for the variables, which are J � s for Planck’s constant and
kg�m2 for the moment of inertia, we have

�
k

(

g

J�

�

s

m

)2

2� � � �
kg

s

�
2

m2

� � J

You should satisfy yourself that the reduction of units from the second step
to the third, which is the crucial one, is indeed valid.

Wavenumbers are commonly used as units to express the positions of rota-
tional transitions. If expressions in terms of cm�1 are desired, equations
14.11–14.13 can be written as

A � �
2 �

�

I

2

ahc
� � �

8�

h
2Iac
�

B � �
2 �

�

I

2

bhc
� � �

8�2

h

I bc
�

C � �
2 �

�

I

2

chc
� � �

8�

h
2Icc
�

where c is the speed of light in units of centimeters per second.
The rotational energy of the molecules can then be expressed in terms of A,

B, and C as well as the rotational quantum number. For spherical tops and lin-
ear molecules:

Erot � BJ(J 	 1) (14.14)

where we have used the rotational constant B as the only necessary constant.

��kg

s

�
2

m2

��
2

� s2

��
kg�m2
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The rotational energies of symmetric tops are further divided into prolate
and oblate symmetric tops. We first look at the prolate symmetric top, which
has Ia � Ib � Ic. There is a total angular momentum quantum number J that
determines the quantized total angular momentum:

total angular momentum � �J(J 	 1�)��

There is an additional quantized value. Recognize that a molecule that is not
spherically symmetric can rotate three different ways. However, symmetric
tops have one unique rotation and two equivalent rotations. The unique axis
is called the figure axis for the molecule. It turns out that the component of the
total angular momentum in the figure axis is also quantized. Since the defini-
tion of the figure axis depends on the molecule (it is molecule dependent), it
can be considered a sort of molecule-defined z-axis. (This is different from an
absolute, spatially defined z-axis.) The letter K is used to indicate the quantized
figure-axis component of the total angular momentum, which follows the same
rules as z-component angular momentum:

L̂ z�mol � K��mol K � 0, �1, �2, . . . �J (14.15)

Note that K is bounded by J (just like m� is bounded by �). Figure 14.6 shows
the differences in the definitions of the figure-axis component and the z com-
ponent of the angular momentum. Angular momenta about both axes are
quantized in symmetric top molecules. Equations 14.9 and 14.15 are both ap-
plicable to the rotations of symmetric top molecules.

It can be shown (we omit the detailed derivation here) that the total rota-
tional energy of a prolate symmetric top is quantized. That energy, in terms 
of the quantum number J for the total angular momentum and the quantum
number K for the figure-axis component of angular momentum, has the fol-
lowing expression:

Erot � BJ(J 	 1) 	 (A � B)K 2 (14.16)

In this case, the energy of the rotating molecule depends on two quantum
numbers. Just as for linear molecules or the original 3-D rigid rotor, the en-
ergy is not dependent on the z component of the angular momentum. It is de-
pendent on the figure-axis component. Because A is always greater than B, the
second term in K is always positive (K 2 is always nonnegative) and represents
an increase in the energy of the rotating molecule relative to a diatomic or
spherical top molecule.

For an oblate symmetric top, a very similar expression for the quantized en-
ergy of rotation is obtained, except that now the lower two moments of iner-
tia are equal and the largest is the unique one. But a similar derivation (again,
omitted here) leads to a similar expression:

Erot � BJ(J 	 1) 	 (C � B)K 2 (14.17)

In this case, since C is always less than B, the second term in equation 14.17
will always be negative, so the second term contributes to an overall decrease
in the rotational energy of the oblate molecule relative to a diatomic or spher-
ical top molecule.

Example 14.6
Ammonia has two defined inertial moments: I � 4.413  10�47 kg�m2 and
I � 2.806  10�47 kg�m2.
a. Label these as Ia, Ib, and Ic.
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MJ K
J

K � 0

J � MJ

H

H

H

CH C C C
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CH C C C

z

(a)

(b)
Figure 14.6 J represents the total angular mo-
mentum of the molecule. MJ is the z component
of J. This z-axis can have any direction, but the
figure axis depends on the structure of the mole-
cule itself. (a) A rotation about the figure axis,
which means the angular momentum quantum
number K has a large value. (b) A rotation out of
the figure axis, which means K equals 0 even
though MJ is nonzero. In both cases, the value of
J is the same.
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b. Calculate the rotational constants A, B, and C.
c. What is the value of the lowest nonzero rotational energy?
d. What is the value of the next lowest nonzero rotational energy?

Solution
a. Ammonia is an oblate symmetric top, having Ia � Ib � Ic. Therefore, the
higher of the two defined inertial moments is the unique one: Ic � 4.413 
10�47 kg�m2. The lower of the inertial moments is both Ia and Ib: Ia � Ib �
2.806  10�47 kg�m2.
b. From equations 14.11–14.13 above (and recognizing that since Ia � Ib,
then A � B):

A � B � �
2

�

I

2

a

� � � 1.982  10�22 J

C � �
2

�

I

2

c

� � � 1.260  10�22 J

c. The lowest nonzero value of the rotational energy has J � 1 and K � 1 for
an oblate top. Therefore, from equation 14.17:

Erot � BJ(J 	 1) 	 (C � B)K 2

� 1.982  10�22 J � 1(1 	 1) 	 (1.260  10�22 J � 1.982  10�22 J)12

Elowest � 3.242  10�22 J

d. The next lowest rotational energy level has the same value for J, but K � 0.
Substituting these quantum numbers into a similar expression, one gets

Enext lowest �
1.982  10�22 J � 1(1 	 1) 	 (1.260  10�22 J � 1.982  10�22 J)02

The second term is zero, making the total energy dependent on only the first
term of the expression:

Enext lowest � 3.964  10�22 J

It is perhaps counterintuitive that a higher quantum number leads to a lower
quantized energy.

14.5 Selection Rules for Rotational Spectroscopy
Given an understanding of the energy levels of molecules due to various types
of motions, it is a simple step to consider the spectroscopy involving those
motions, because spectroscopy involves a transition from one energy level to
another. Spectroscopy uses the Bohr frequency condition, originally proposed
by Neils Bohr in his theory of the hydrogen atom. This was discussed in sec-
tion 14.2. Since the energy levels of rotations for simple molecules are known
from the treatment above, determining the change in the energy levels is
straightforward.

Classically, light is an oscillating electromagnetic field that will interact
with other oscillating electromagnetic fields, much the same as two magnets
or electrical charges will interact with each other. Consider a molecule whose
only motion is rotation so that we can consider a “pure” transition involving
only rotational quantum levels. Such a rotating molecule does not provide an
oscillating electromagnetic field unless the molecule has a permanent dipole

(6.626  10�34 J�s)2

����
(2�)2 � 2 � 4.413  10�47 kg�m2

(6.626  10�34 J�s)2

����
(2�)2 � 2 � 2.806  10�47 kg�m2

14.5 Selection Rules for Rotational Spectroscopy 471

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



moment. If it does, the rotation will provide an oscillating electromagnetic
field on the order of the light’s oscillating field, and then the light and the mol-
ecule will interact. Figure 14.7 illustrates this interaction. In order to observe
absorption or emission of light due to pure rotational transitions, the mole-
cule must have a permanent dipole moment. (The phrase “pure rotational
transitions” is crucial, since the several types of motions of a molecule can in-
teract—“mix”—and seemingly violate such simple statements. We will con-
sider some examples later.) The presence of a permanent dipole moment is
sometimes referred to as a gross selection rule, since it relies on a general prop-
erty of a molecule rather than a specific wavefunction of the molecule. More
specific selection rules, based on wavefunctions, will be considered shortly.

Example 14.7
Which of the following molecules will absorb or emit light due to rotational
energy transitions? 
a. Methane, CH4

b. Hydrogen chloride, HCl
c. Water, H2O 
d. Carbon dioxide, CO2

e. Acetylene, C2H2

f. Hydrogen cyanide, HCN
g. Benzene, C6H6

Solution
a. Methane has no permanent dipole moment; therefore it will not show pure
rotational energy transitions.
b. HCl has a permanent dipole moment and so will exhibit pure rotational
energy transitions.
c. H2O will.
d. CO2 will not.
e. C2H2 will not.
f. HCN will.
g. C6H6 will not.

This gross selection rule is general and considers a general property of the
molecule. What about specific transitions between rotational quantum levels?
Can any two rotational wavefunctions be involved in a transition, or is there a
restriction on what wavefunctions can interact via absorption or emission of a
photon? There is indeed a restriction, and it has to do with the fact that a pho-
ton has angular momentum. (This was alluded to in Chapter 9 when dis-
cussing Arthur Compton’s experiments with X rays and their frequency change
upon interaction with atoms.) Photons have one unit of angular momentum
(they have s � 1), and so the law of conservation of angular momentum re-
quires that the total angular momentum of an initial state (molecule 	 pho-
ton) must equal the total angular momentum of the final state (the molecule
after it has absorbed or emitted the photon). The law of conservation of an-
gular momentum thus requires that the absorption or emission of a photon
must be accompanied by the change of the J quantum number by 1, either an
increase of 1 (for absorption) or a decrease of 1 (for emission). One can write
the following quantum-mechanical selection rule for rotational transitions:

�J � �1 (14.18)
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�rot � � light

Figure 14.7 This series of drawings shows how
the frequency of light and the frequency of rota-
tional motion are equal if light is to be absorbed.
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where �J refers to the change in the J quantum number for the rotational
transition.* This is for an ideal process. Under real conditions, this selec-
tion rule is not strictly adhered to, but variances from equation 14.18 are
rare and such transitions are only weakly absorbing or emitting (and so
practically unnoticeable). Equation 14.18 therefore defines allowed rota-
tional transitions. Other transitions where �J is different from �1 are 
forbidden.

Linear molecules also have the z component of their total angular momen-
tum quantized, and if the total angular momentum is changing by 1 unit, then
that unit may be in the z-axis. But then again, it may not, so the MJ quantum
number might either stay the same or change by 1 unit. Therefore, the selec-
tion rule for MJ is written

�MJ � 0, �1 for linear molecules (14.19)

We have already seen that symmetric top molecules have a second quantum
number, K, used to define the quantized figure-axis component of the angular
momentum. Interaction of the light field with the molecule’s dipole, which
must lie on the figure axis, is such that the electromagnetic field cannot change
the molecule’s rotation with respect to the figure axis. Therefore, the quantum
number K is used to define the selection rule

�K � 0 (14.20)

14.6 Rotational Spectroscopy
Now that the selection rules have been established, the energies of transition
can be determined. We want to determine �E, the change in energy between
two rotational states involved in a transition. For now, we will express �E in
terms of units of energy (usually J).

For a diatomic or linear molecule, �E in a rotational transition is the dif-
ference in energy of two adjacent states. For absorption, the transition can be
labeled as E(J) → E(J 	 1), and the difference in energy is given by the differ-
ence between final and initial states:

�EE(J)→E(J+1) � E(J 	 1) � E(J)

� � �
(J)(J 	

2I

1)�2

�

�EE(J)→E(J+1) � �
(2J 	

2I

2)�2

� � �
(J 	

I

1)�2

� (14.21)

In an equation such as this that contains a quantum number, it is important
to remember which state the quantum number J stands for. In this case, we are
considering absorption, and J stands for the quantum number of the lower-
energy state. To be consistent in this definition of J, for emission the transition
will be written as E(J 	 1) → E(J), and the energy difference will have the same
magnitude but with a negative sign, indicating that energy is lost. J still repre-
sents the quantum number of the lower-energy state. It is typical to use equa-
tion 14.21 for absorption and emission spectroscopy, and just keep track of
whether light is absorbed or emitted.

(J 	 1)(J 	 1 	 1)�2

���
2I
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*In some circumstances, such as in odd-electron molecules like NO, �J � 0 is allowed,
but we will not consider these here.
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Equation 14.21 is commonly rewritten in terms of the rotational constant B.
Factoring out 2 from the terms involving J, equation 14.21 can be rewritten as

�E � 2B(J 	 1) (14.22)

For absorption spectroscopy, the minimum J value is J � 0, so by considering
the specific values of �E versus the value of J:

�E0→1 � 2B(0 	 1) � 2B

�E1→2 � 2B(1 	 1) � 4B

�E2→3 � 2B(2 	 1) � 6B

�E3→4 � 2B(3 	 1) � 8B

�E4→5 � 2B(4 	 1) � 10B
.
.
.

Figure 14.8 shows a graphical representation of a typical rotational spectrum
for a linear molecule. Figure 14.9 shows a diagram of the energy levels, and the
allowed transitions are labeled. Compare the two figures, and you should be
able to find the specific transition in Figure 14.9 that corresponds to the line
in Figure 14.8. As suggested by the above equations, the spectrum consists of
a series of equally spaced lines, spaced by an amount equal to 2B. The spec-
trum will be a series of equally spaced lines only if the unit of display is di-
rectly proportional to energy, like frequency or wavenumber. If the spectrum
were displayed in terms of a quantity inversely proportional to energy (like
wavelength), then the lines of the spectrum would not be equally spaced. This
illustrates the necessity of understanding the unit used to display a spectrum.

The above equations show something else about the rotational spectrum: its
relationship to B, which in turn is related to the moment of inertia. For di-
atomic molecules, the moment of inertia I is defined simply as �r2, where �
is the reduced mass and r is the internuclear separation of the two atoms.
Rotational spectroscopy is therefore useful in calculating the sizes of diatomic
molecules. This is a general capability of rotational spectroscopy, but it is most
easily illustrated for diatomic molecules.

Example 14.8
Some of the lines in the rotational spectrum of HCl appear at 83.03, 104.1,
124.3, 145.0, and 165.5 cm�1. The first line is the J � 3 → J � 4 transition,
so it equals 8B. Determine the average value for B from this data and calcu-
late the length of the HCl bond (which gives a good idea of the size of the
molecule). Assume that these data are for 1H and 35Cl. You will have to con-
vert the units of B from cm�1 to J in order for the units to work properly.

Solution
It is easy to see that the spacing between the lines is on the order of 21 cm�1.
Since the first line is the J � 3 → J � 4 transition, we can make the follow-
ing assignments:

J � 3 → J � 4: line position � 8B � 83.03 cm�1,
therefore B � 10.38 cm�1

J � 4 → J � 5: line position � 10B � 104.1 cm�1,
therefore B � 10.41 cm�1
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J � 6E � 42B

Figure 14.8 A pure rotational spectrum, dis-
played in units directly proportional to energy,
shows a series of equally spaced lines. The energy
separation between the lines equals 2B.

Figure 14.9 An energy-level diagram for the
rotational motion of a diatomic molecule shows
the allowed transitions and their energies.
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J � 5 → J � 6: line position � 12B � 124.3 cm�1,
therefore B � 10.36 cm�1

J � 6 → J � 7: line position � 14B � 145.0 cm�1,
therefore B � 10.36 cm�1

J � 7 → J � 8: line position � 16B � 165.5 cm�1,
therefore B � 10.34 cm�1

The average value for B from this data is 10.37 cm�1. The reciprocal of
this gives an appropriate equivalent wavelength in centimeters, which is
0.09643 cm, or 9.643  10�4 m. Using c � ��, this converts into a frequency
of � � 3.109  1011 s�1, and using the equation E � h�, this converts to an
energy of 2.060  10�22 J. (You should satisfy yourself on the reasons for all
these steps in the conversion to joules.) Since the energy unit is joules, which
is defined in terms of kg, the reduced mass of the 1H35Cl atom must be ex-
pressed in units of kg. The H atom has a mass of 1.66  10�27 kg, and the
Cl atom has a mass of 5.81  10�26 kg. The reduced mass is therefore 
1.61  10�27 kg. The only unknown in the expression

B � �
2

�

�

2

r2�

is the distance r. Substituting for the known values (and not forgetting the 2�
part of �):

2.060  10�22 J �

Rearranging and solving for the radius r:

r � 1.29  10�10 m � 1.29 Å

This is how rotational spectroscopy gives us an idea about the actual sizes of
molecules.

Example 14.9
NO has a bond length of 1.151 Å. Predict where the first four lines of the pure
rotational spectrum of NO will appear, in units of GHz. Refer to Example
14.8 for calculational details.

Solution
The reduced mass of NO is calculated to be 1.24  10�26 kg. We can calcu-
late a value of B:

B �

where we have used the definition 1 Å � 10�10 m to get all the units consis-
tent with each other. We get

B � 6.77  10�23 J

In units of frequency, we need to use E � h� to get � � 1.02  1011 s�1. Since
this can be written as 102  109 s�1 , and since a GHz is 109 Hz, this corre-
sponds to a value of 102 GHz. The first four lines, appearing at 2B, 4B, 6B,
and 8B, are therefore found at 204, 408, 612, and 816 GHz.

(6.626  10�34 J�s)2

�����
(2�)2 � 2(1.24  10�26 kg)(1.151  10�10 m)2

(6.626  10�34 J�s)2

���
(2�)2 � 2(1.61  10�27 kg)r2
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Pure rotational spectra usually occur in the microwave region of the elec-
tromagnetic spectrum, so the phrases “rotational spectra” and “microwave
spectra” are sometimes used synonymously. The lines in rotational spectra are
also expressed using several typical units, as the above examples showed. In the
microwave region, it is typical (for historical, habitual, and practical reasons)
to express transitions in units of frequency. In the microwave region, frequen-
cies are in the megahertz (MHz) or gigahertz (GHz) range. It is not unusual
to see rotational spectra displayed using frequency units. Figure 14.10 shows a
pure rotational spectrum in terms of frequency.

Rotations frequently occur along with vibrations (which is why we use 
the phrase “pure rotational spectra” to differentiate those from rotational-
vibrational spectra), so it is also customary to express the rotational transitions
in a common unit of vibrational transitions, the wavenumber (in cm�1).
Figure 14.11 shows a rotational spectrum in terms of wavenumber. There is a
potential problem when a rotational spectrum is displayed in terms of wave-
length, because wavelength is not directly proportional to energy and the con-
sistent spacing of rotational levels is not obvious. Figure 14.12 shows the same
spectrum as Figure 14.11 but in terms of wavelength units. The equal spacing
isn’t obvious, despite the fact that each spectrum illustrates the same informa-
tion. (This will be discussed further in our treatment of vibrational spectra,
later in this chapter.)
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Figure 14.10 A pure rotational spectrum of sarin (a nerve gas), in units of frequency. Studies
like this are useful in the development of detectors for nerve gas.
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Figure 14.12 The same spectrum as Figure
14.11, but in frequency units. The spacing be-
tween lines is now not equal.

Figure 14.11 A simulated rotational spec-
trum, plotted in wavenumber units. Since wave-
numbers are proportional to energy, the absorp-
tions are evenly spaced.
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Rotational spectra, like those in Figures 14.11 and 14.12, show an interest-
ing intensity pattern. The intensity pattern of rotational spectra is due to the
number of molecules having a certain rotational state. This is called the popu-
lation of the state. Because the population of each rotational state is different,
the number of molecules absorbing radiation and becoming excited to the next
state is different. This population difference is responsible for the varying in-
tensities of each rotational spectral line.

The temperature determines the population of the rotational energy levels.
Rotational levels are close enough in energy that thermal energy is sufficient to
cause some of the molecules to be in excited rotational states. Therefore, there
is an increased probability of a transition from those excited rotational states
to the level next highest in J. At some value of J, however, the ability of the tem-
perature to thermally populate rotational levels decreases. A statistical treat-
ment of the energy levels indicates that the approximate maximum-populated
J quantum number, Jmax, is

Jmax 	 ��
2

kT

B
��

1/2

(14.23)

where k is Boltzmann’s constant (1.381  10�23 J/K), T is the absolute tem-
perature of the sample, and B is the rotational constant (expressed in units of
joules in this equation). This expression is in part due to the fact that the de-
generacy of the rotational levels is 2J 	 1. If it were not, then the lowest rota-
tional state would always be the most populated rotational state, and such in-
tensity patterns as seen in Figures 14.11 and 14.12 would not appear. Equation
14.23 is an approximation. As a quantum number, J is limited to whole num-
bers, so some rounding off is usually necessary when using the above equation.
Equation 14.23 allows one to estimate the temperature of a gas-phase sample
from its rotational spectrum. (The effect of temperature on the population of
energy levels will be a major topic of Chapter 17.)

The energy of each rotational state has a degeneracy of 2J 	 1 due to the
possible values of MJ. However, in the presence of a strong electric field in a
particular direction, molecules rotating with different quantized values of an-
gular momentum in that direction, indicated by the MJ values, will have slightly
different energies. Absorptions or emissions due to rotational state transitions
will appear to split into a larger number of lines, and the particular number of
lines for each transition will be determined by the �MJ � 0, �1 selection rule.
This phenomenon is an example of the Stark effect, discovered by the German
physicist Johannes Stark in 1913. In 1919, Stark was awarded a Nobel Prize for
this discovery. This effect is another case of behavior that classical mechanics
could not explain but quantum mechanics could. Examples of the splitting of
the energy levels, the additional transitions, and a Stark effect spectrum are
shown in Figures 14.13–14.15. It is important to note that the Stark effect de-
pends on the z component of the angular momentum, identified with MJ, and
is not dependent on the figure-axis component of angular momentum, iden-
tified with K.

Molecules that don’t have a permanent dipole moment are rotating, of
course, but they do not follow the gross selection rule for pure rotational spec-
tra. Their rotations cannot be observed directly using microwave spectroscopy.

We now examine the rotational spectra of symmetric top molecules. The
values for the rotational energy levels are given in equations 14.16 and 14.17
for symmetric tops. The specific selection rules for the change in J, K, and MJ

quantum numbers were given above in equations 14.18–14.20. As with linear
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Figure 14.13 An applied electric field splits
the degenerate same-J levels into different energy
levels, depending on the MJ values. This is called
the Stark effect. The changes in the energy levels
are not necessarily to scale, since the change in
energy is dictated by various parameters.
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molecules, since MJ does not affect the rotational energy it will have no effect
on the rotational spectrum unless the molecules are subjected to a strong elec-
tric field (that is, the Stark effect). Since the selection rule for K is that it must
remain unchanged (�K � 0), the difference in the rotational energies is dic-
tated solely by changes in J:

�EE(J)→E(J 	 1) � E(J 	 1) � E(J) � 2B(J 	 1) (14.24)

This equation is for absorption of electromagnetic radiation by either a pro-
late or an oblate top, where B is the rotational constant that appears twice in
the three rotational constants for a symmetric top (remember, one of the ro-
tational constants is unique and different from the other two). This is the same
expression we determined for linear molecules. Again, the quantum number J
refers to the lower-energy state involved in the transition.

This suggests that we can determine little more about the structure of sym-
metric tops other than a single rotational constant, even though symmetric
tops have two distinct rotational constants. If molecules acted like perfect rigid
rotors, this would be the case. But they’re not perfect, and that does allow us
to obtain additional information from a real spectrum. We will get to this in
the next section.

By definition, molecules that are spherical tops do not have a permanent di-
pole moment, so they do not have a pure rotational spectrum. However, un-
der some conditions they may have rotational absorptions superimposed in
their vibrational spectrum.
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Figure 14.14 Imposition of an electric field
can complicate an otherwise “simple” spectrum.
For a diatomic molecule, the selection rule �MJ

now dictates the possible transitions.

Figure 14.15 A real spectrum, showing the Stark effect on benzonitrile, C6H5CN. The 	 and
* signs mark signals that are splitting due to the electric field. Source: Reprinted with permission
from The American Chemical Society.
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14.7 Centrifugal Distortions
Although the above sections suggest that rotational spectra are very simple,
complications arise because molecules are real systems, not ideal ones. Although
application of the ideal 3-D rigid rotor system to molecules works very well, it
does not do a perfect job of describing rotational spectroscopy.

Perhaps the biggest single nonideal factor in rotational spectroscopy is the
fact that molecules are not rigid rotors. It is assumed, for example, that the
molecules have certain specific and unchanging bond distances. This is not
the case. As molecules have larger and larger J quantum numbers (corre-
sponding to higher and higher energies), they distort slightly but enough to
change the energy levels noticeably away from the ideal values. This effect is
called centrifugal distortion.

Consider the diatomic molecule in Figure 14.16a. As it rotates with a relatively
low J quantum number, the chemical bond is strong enough to keep a fairly con-
stant bond length. However, as Figure 14.16b shows, at large J the rotating
molecule is distorted as the spinning atoms experience a sort of centrifugal force,
like we would feel on a fast-spinning merry-go-round. This force contributes to
a slight lengthening of the bond distance. Bond distances appear in the denom-
inator of the rotational constants, used to define I, the moment of inertia. This
lengthening of the bond therefore serves to lower the total energy of the rota-
tional state, so instead of rotational spectral lines being exactly 2B apart, they be-
gin to get less than 2B apart. The centrifugal distortion is thus observed as a
shrinking of the distances between adjacent lines in a rotational spectrum.

The effect on the rotational energy of centrifugal distortion is proportional
to [J(J 	 1)]2 instead of J(J 	 1). Indeed, if the centrifugal distortion depended
on J(J 	 1), it would be worked into the B rotational constant! What is usu-
ally done is to mathematically fit the rotational energies to a general equation
having a form like

Erot � BJ(J 	 1) � DJJ2(J 	 1)2 (14.25)

where DJ is the centrifugal distortion constant. It usually is expressed in the
same units as B, either MHz or GHz for frequency, or cm�1 for wavenumber.
The positions of the rotational spectral lines are therefore given as

EJ+1 � EJ � �Erot � 2B(J 	 1) � 4DJ(J 	 1)3 (14.26)

where as usual the quantum number J refers to the quantum number of the
lower-energy rotational state. Because the centrifugal distortion is less if the di-
atomic molecule bond is stiffer and therefore has a higher vibrational fre-
quency (which will be introduced in the next section), the centrifugal distor-
tion constant is often approximated by the following expression:

DJ 	 �
4

�̃

B
2

3

� (14.27)

where �̃ is the wavenumber of the vibration (in cm�1) and B must also be ex-
pressed in units of cm�1.

Equation 14.26 shows that the energy difference between rotational levels
(energy differences are what spectra measure, after all) deviate from ideality by
a factor based on the third power of the rotational quantum number J. Table
14.2 lists some experimental B values and DJ values for several diatomic mol-
ecules. DJ is typically very small, so effects due to centrifugal distortion are 
usually noticeable only if the spectra are for rotations of small molecules (like
hydrogen), or if very high-energy rotational states are being probed.
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(a) Low J

(b) High J

Figure 14.16 (a) Normal bond length in a di-
atomic molecule. (b) As the rotational quantum
number increases, a centrifugal distortion causes
the bond to stretch. This adds some nonideal
component to the predicted rotational spectrum.

Table 14.2 Rotational constants B and
centrifugal distortion constants DJ for 
selected diatomic moleculesa

Molecule B DJ

H2 60.80 4.64  10�2

D2 30.42 1.159  10�2

HCl 10.59 5.32  10�4

HBr 8.473 3.72  10�4

N2 2.010 5.8  10�6

NO 1.7046 ~5  10�6

O2 1.446 4.95  10�6

aAll numbers have units of cm�1.
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Example 14.10
Find the energy of the J � 10 → J � 11 transition for HCl for two cases: as-
sume a pure rigid rotor behavior, and then include the centrifugal distortion
constant. Use the value for B and DJ from Table 14.2. Compare the two results.

Solution
Using the rigid rotor approximation:

�E � (21.18 cm�1)(10 	 1) � 233.0 cm�1

Using the expression for �E that explicitly includes the centrifugal distortion
constant:

�E � (21.18 cm�1)(10 	 1)
� 4(5.32  10�4 cm�1)(10 	 1)3

233.0 � 0.2575 cm�1 � 232.7 cm�1

where the normal rules for significant figures in calculations have been ap-
plied. Notice that the change in the predicted �E isn’t much, but it does get
progressively larger as the rotational quantum number increases.

Diatomic and linear molecules aren’t the only molecules that experience
centrifugal distortions. Figure 14.17 shows diagramatically what happens to
a water molecule when it rotates at high values of J: the atoms are forced to
spread out somewhat due to centrifugal distortion, and this affects the val-
ues of rotational energy, as depicted in Figure 14.18. For prolate and oblate
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Figure 14.17 Centrifugal effect
on a molecule of H2O. Since water
has three different rotations, it will
have three different DJ values.

Figure 14.18 Effect of centrifugal distortion
on the rotational energy levels. Because the distor-
tion depends on J2(J 	 1)2, higher J values show a
larger deviation from ideal rotational energies.
This figure gives the general behavior of the rota-
tional energy levels and is not to scale for H2O.
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symmetric tops, however, the situation is somewhat more complicated be-
cause there are two different moments of inertia and therefore two series of
rotational spectra. As the molecule is distorted about one rotational axis, it
affects the moment of inertia in another axis. Centrifugal distortions of non-
linear molecules are therefore extremely complicated and will not be consid-
ered here.

14.8 Vibrations in Molecules
For a molecule having N atoms, it is necessary to use an x, a y, and a z coor-
dinate to describe the positions of each of the atoms, and so such a molecule
requires a total of 3N coordinates to describe its position in space. Such a sit-
uation is shown in Figure 14.19.

For changes in position, the number of necessary changes in coordinates is
the same. For a molecule having N atoms, each atom’s change in position can
be broken down into a change in x, a change in y, or a change in z coordinate.
(These changes are simply written as �x, �y, and �z for each of the N atoms.)
These changes in coordinates may have different values, so an N-atom mole-
cule needs a total of 3N changes in coordinates to describe its motion. Such a
situation is shown in Figure 14.20. Note how this corresponds to Figure 14.19.
Because the atoms are free to move in 3N different independent ways, we say
that the molecule has 3N degrees of freedom.

It turns out that we can always choose the coordinates so that the combined
motion of all atoms for three of the 3N ways corresponds to all of the atoms
moving in either the x, the y, or the z direction. That is, they describe transla-
tions of the molecule as a whole. Figure 14.21 shows these three translational
degrees of freedom. Since the entire molecule moves in space, we can describe
these motions as translations of the center of mass of the molecule. In trans-
lational motions, the atoms of the molecule are not moving with respect to
each other.

These same changes in coordinates can simultaneously be chosen so that
two (for a linear molecule) or three (for a nonlinear molecule) of the com-
bined motions of all atoms correspond to rotations of the molecule about a
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Figure 14.20 For any general motion of a mol-
ecule, 3N changes in coordinates are necessary to
describe the motion. Each atom requires a �x, a
�y, and a �z to describe its motion.

Figure 14.19 For a molecule having N atoms,
a total of 3N coordinates is necessary to describe
the position of atoms in the molecule. The four
atoms shown here require 3  4 � 12 total co-
ordinates. Therefore, we say that this molecule
has 12 degrees of freedom.
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molecular axis. Figure 14.22 shows these rotational degrees of freedom for 
linear and nonlinear molecules. For rotations, as for translations, the atoms of
the molecule are moving together in such a way as to move the molecule.
Unlike translations, in rotations the center of mass of the molecule is not mov-
ing in space. However, like the translational degrees of freedom, again the
atoms are not moving with respect to each other.

This leaves either 3N � 5 (for linear molecules) or 3N � 6 (for nonlinear
molecules) combinations of the motions of the atoms of the molecule. In these
combinations, the atoms are moving with respect to each other, but the center
of mass of the entire molecule does not change. These internal atomic motions
are the vibrational degrees of freedom, or more simply the vibrations, of the
molecule.

There are many ways to describe the possible motions of the atoms in a
molecule. However, a mathematical treatment of vibrations shows that there
will always be a way to assign the changes in coordinates such that all of the
possible motions of the atoms can be broken down into 3N � 5 (for linear
molecules) or 3N � 6 (for nonlinear molecules) independent motions where
for each motion the frequency of every atom’s vibration is exactly the same.
Such coordinate changes are called normal modes of vibration, or just the nor-
mal modes.

In vibrational spectroscopy, the frequencies of the vibrating atoms in the
molecule are probed. The changes in the energies of the vibrations are such
that the radiation typically used is in the infrared region of the spectrum.
Hence, IR spectroscopy is usually synonymous with vibrational spectroscopy.
Very low frequency vibrations will be detected in the microwave region of the
spectrum, whereas high-frequency changes impinge on the visible spectrum.
As with rotational spectroscopy, the wavenumber (cm�1) unit is common, but
so is the unit that describes the wavelength of the light involved, usually ex-
pressed as micrometers or microns.

Why do linear molecules have a different term (3N � 5 instead of 3N � 6)?
Recall that linear molecules have no defined rotation about their internuclear
axis, so they lack a rotational degree of freedom. This lack is made up for by hav-
ing an extra vibrational degree of freedom. We will find that linear molecules
have at least one vibration that moves perpendicular to another vibration of the
same frequency (and therefore they have the same energy: they are degenerate).
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Figure 14.22 The rotations in the 3N degrees of freedom are either (a) two for linear, or (b)
three for nonlinear.

Figure 14.21 Three of the 3N degrees of free-
dom correspond to translations of the molecule
as a whole.
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Example 14.11
Determine the number of vibrational degrees of freedom for the following
molecules.
a. Hydrogen chloride, HCl 
b. Hydrogen sulfide, H2S 
c. Benzene, C6H6

d. Acetylene, C2H2

e. The sulfate ion, SO4
2�

f. Hydrogen peroxide, H2O2

Solution
a. By definition, HCl is linear, therefore it has 3(2) � 5 � 1 vibrational de-
gree of freedom.
b. H2S is not linear, so it has 3(3) � 6 � 3 vibrational degrees of freedom.
c. Benzene has 3(12) � 6 � 30 degrees of freedom. Its high symmetry will
simplify matters, though.
d. C2H2 is linear, so it has 3(4) � 5 � 7 vibrational degrees of freedom.
e. The sulfate ion is not linear: 9 vibrational degrees of freedom.
f. Hydrogen peroxide is nonlinear: 6 vibrational degrees of freedom.

The solutions above hint that symmetry has a great deal to do with the num-
ber of truly unique vibrational degrees of freedom. Consider benzene, which is
planar and has D6h symmetry. Because of its symmetry, certain vibrations of
benzene are identical to each other and have the same vibrational frequency.
This means that there will be fewer than 30 unique vibrational frequencies in
this molecule. (There are in fact only 20 unique frequencies.) Symmetry will
have similar ramifications for vibrations in other molecules, too.

14.9 The Normal Modes of Vibration
The vibrations of all molecules can be described in terms of independent mo-
tions such that for each motion the frequency of vibration for all atoms is the
same. These are the normal modes of vibration. Why are the normal modes so
important? There are several reasons, but perhaps the most important one is
this: to a good approximation, the frequencies of light that are absorbed due
to vibrational motions of atoms in molecules are those that have the same fre-
quencies as the normal modes of vibration.

Consider the vibration of the two atoms in the HCl molecule (Figure 14.23).
There is only a single vibrational mode, where the hydrogen and chlorine
atoms are alternately closer and farther away from each other (a “stretching
mode”). For simplicity, the arrows indicating an atom’s direction of motion
point in a single direction only. It is understood that in the course of a full
vibration the atoms move in the opposite direction also. Note too that the
lengths of the arrows are different: the hydrogen atom is shown “moving” far-
ther than the chlorine atom. This preserves the position of the center of mass
of the molecule, so it does not change.

A single vibration agrees with the 3N � 5 expression for the number of vi-
brations in a molecule: for HCl, 3N � 5 is 3(2) � 5, which equals 1. The two
atoms in HCl can be thought of as a classical harmonic oscillator composed of
two masses (the two atoms) connected by a spring (the chemical bond). This
harmonic oscillator vibrates with a frequency of about 8.65  1013 Hz, or
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H Cl

Figure 14.23 The single vibration of HCl has
the hydrogen and chlorine atoms moving alter-
nately back and forth. The hydrogen’s movement
is much larger than the chlorine’s, because of H’s
much higher mass.
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86,500 GHz. Therefore, it absorbs only the light that has the same frequency:
86,500 GHz. Light of this frequency has a wavelength of about 3.46 microme-
ters, or 3.46 microns, which is in the infrared region of the spectrum. In units
of wavenumbers, this light has a frequency of 2886 cm�1.

Consider the possible vibrations of the three atoms in the H2O molecule,
however. This molecule has 3(3) � 6 � 3 vibrational degrees of freedom. What
are they? One can imagine that the three atoms in water move about in a com-
plicated dance that might be difficult to understand. However, the vibrational
spectrum of water shows three and only three distinct absorptions: at 3756,
3657, and 1595 cm�1. These must correspond to the frequencies of the atoms
in the three normal modes of water. The motions of the atoms in these nor-
mal modes (which can be determined mathematically) are illustrated in Figure
14.24. Notice that the vectors illustrated have different lengths so as to keep the
center of mass in the same position. Again, only part of the motion is illus-
trated. The atoms also move in the reverse direction in the course of a single
vibration. The normal vibrational modes of H2O are generally referred to as
(in decreasing order of wavenumber) the asymmetric stretching mode, the
symmetric stretching mode, and the bending mode.

No matter how complicated the molecule, the motions of the atoms with
respect to each other can be treated solely as if those atoms were moving as
shown by the normal modes. This allows us to consider only the normal modes.
More importantly, because of symmetry, some of the normal modes of large
molecules are exactly the same as others. Consider again the C–H stretches of
benzene, C6H6. Because of the sixfold symmetry of benzene, we might expect
that they can be described equivalently, and to a certain extent this is true. As
such, these normal modes have the same vibrational frequency. The total num-
ber of unique normal modes therefore depends on two things: the number of
atoms in the molecule (as indicated by the 3N � 5 or 3N � 6 number of nor-
mal modes) and the symmetry of the molecule. The higher the symmetry, the
fewer the number of independent normal modes.

14.10 Quantum-Mechanical Treatment 
of Vibrations

When one considers a diatomic molecule, it can be compared to the ideal har-
monic oscillator as defined by Hooke’s law:

F � �kx (14.28)

where the force F acting against a displacement x is proportional to x. (We are
ignoring the vector aspects of F and x here.) The proportionality constant, k,
is called the force constant. It has units of force/distance, like N/m or mdyn/Å.
An ideal harmonic oscillator is also defined as having a potential energy of

V � �� F dx � �
1
2

�kx2 (14.29)

A plot of a potential energy versus displacement is shown in Figure 14.25. In
the first approximation, diatomic molecules can be considered in terms of a
quantum-mechanical harmonic oscillator having reduced mass �, which, re-
call, is related to the two masses of the atoms m1 and m2:

� � �
m

m

1

1

	

� m

m
2

2

�

or, equivalently, �
�

1
� � �

m

1

1

� 	 �
m

1

2

�

(14.30)
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Figure 14.24 The three normal modes of
H2O. The lengths of the vectors indicate the rela-
tive distances that each atom moves. The actual
distance that each atom moves is very small, less
than 0.1 Å.

x � 0

kx 2V �
1
2

Figure 14.25 Potential energy diagram for an
ideal harmonic oscillator. Usually, this diagram is
applicable only for low-energy (that is, low quan-
tum number) vibrations.
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By making this ideal harmonic oscillator assumption, we make the wave-
functions and energies for the ideal harmonic oscillator directly applicable
to the diatomic molecule’s vibrations! In particular, since spectroscopy
deals with differences in the energy states, we are particularly interested in
the fact that

Evib � h�(v 	 �
1
2

�) v � 0, 1, 2, 3, . . . (14.31)

where h is Planck’s constant, � is the classical frequency as predicted by Hooke’s
law, and v is the vibrational quantum number.† (Be careful not to confuse �
with v.) That is, we expect that the vibrational energy of the diatomic mole-
cule is quantized and given by equation 14.31 above. If the energies of the
vibrational states are quantized, then the differences in the energies will have
only certain values.

Diatomic molecules are particularly easy to treat quantum-mechanically be-
cause they are easily described in terms of the classical harmonic oscillator. For
example, the expression

� � �
2

1

�
�
�

�

k
�� (14.32)

which relates the classical force constant and reduced mass of the oscillator
to its frequency, is a valid mathematical tool. It is relatively easy to extend
some concepts to other vibrational motions of larger molecules: the vibra-
tions act as ideal harmonic oscillators that have certain wavefunctions and
certain quantized energies. However, normal modes are vibrations of all
atoms in a molecule, not just two, so expressions like equation 14.32 aren’t
directly applicable even if the idea of a force constant for a polyatomic mo-
tion is used. On the other hand, many normal modes are largely motions of
only a few connected atoms of a large molecule, so it is not uncommon to
hear of “C–H stretches” or “CH2 bends” or such localized types of motions
even for large molecules. Technically, such labels are incorrect, but practi-
cally they are useful in qualitatively describing the normal mode of the
molecule.

Example 14.12
Assuming that the vibrational frequency of 2886 cm�1 (8.652  1013 s�1) for
hydrogen chloride is 1H35Cl, predict the vibrational frequencies for 1H37Cl
and 2H35Cl. Assume that the molecule is an ideal harmonic oscillator and that
the force constant does not change upon isotopic substitution. (Such as-
sumptions are common in vibrational spectroscopy.)

Solution
If the molecule is acting like an ideal harmonic oscillator and the force con-
stant is not changing, then for the classical frequency of the 1H35Cl oscillator
we have

8.652  1013 s�1 � �
2

1

�
�
�

�

k
��

and

�* � �
2

1

�
�
�

�

k

*
��

14.10 Quantum-Mechanical Treatment of Vibrations 485

†In Chapter 11, we used n for the quantum number for the harmonic oscillator.
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where the asterisk is used to indicate an isotopic substitution. When we take
a ratio of the above two equations, such treatments will cancel each other and
we can get

�
8.652 

�*

1013 s�1� �

which reduces to

�
8.652 

�*

1013 s�1� � 
�
�

�

*
��

Because the frequency ratio is related to a reduced mass ratio, it doesn’t mat-
ter what units we use to express the reduced mass ratio. Rather than express
the reduced masses in atomic values (on the order of 10�27 kg or so), we can
simply use grams per mole as the unit of mass. The reduced mass of 1H35Cl
is therefore 0.9722 (grams per mole), whereas the reduced mass of 1H37Cl is
0.9737 (grams per mole). The above equation becomes

�
8.652 

�*

1013 s�1� � 
�00
.

.

9

9
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7

2
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2
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o

l

l
��

The units cancel, yielding a ratio that has the same value no matter what units
of mass are used. Evaluating:

�
8.652 

�*

1013 s�1� � 0.9992

This rearranges to �* � 8.659  1013 s�1, or 2884 cm�1 (to four significant
figures). This is a relatively insignificant change, although it is easily de-
tectable. However, for 2H35Cl:

�
8.652 

�*

1013 s�1� � 
�01
.9

.8

7

9

2

1

2� g

g

/

/

m

m

o

o

l�l
��

�
8.652 

�*

1013 s�1� � 0.7170 (unitless)

�* � 6.203  1013 s�1 or 2069 cm�1 (to four significant figures)

This predicts a shift of over 800 wavenumbers. The measured vibrational fre-
quency of 2H35Cl is 2091 cm�1, which agrees with the assumption of an ideal
system.

It is not necessary to convert a wavenumber value into a frequency value
when doing an example like the one above, because the two quantities are di-
rectly proportional to each other. Also, even if a molecule isn’t a diatomic mole-
cule, and even though a normal mode consists of the vibrations of all atoms in
the molecule, in many cases for stretching-type motions a “diatomic approxi-
mation” can be made for isotopic substitution. The next example illustrates.

Example 14.13
If the symmetric O–H stretch for water occurs at 3657 cm�1, predict the fre-
quency of the O–D stretch of D2O (D is 2H) assuming that the O–H stretch
acts as a diatomic species.

�
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�
�
�

�

k

*
��

�

�
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�
�

�

k
��
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Solution
We can use a ratio similar to the one used in Example 14.12, in terms of the
reduced masses of the molecules, and use the wavenumber value directly:

�
3657

�̃

c

*

m�1� � 
�
�

�

*
��

Considering the O–H and O–D bonds, the reduced masses (in units of grams
per mole) substituted into the above expression yield

�
3657

�̃

c

*

m�1� � 
�01
.9

.7

4

7

1

8

2� g

g

/

/

m

m

o

o

l�l
��

�
3657

�̃

c

*

m�1� � 0.7276

�̃* � 2661 cm�1

Experimentally in the vibrational spectrum of D2O, the symmetric O–D
stretch has a vibrational frequency of 2671 cm�1, which shows that the di-
atomic approximation applied to parts of molecules can be very good. Such
approximate calculations are useful in understanding vibrational spectra of
molecules.

14.11 Selection Rules for 
Vibrational Spectroscopy

As with rotational spectroscopy, there are several ways of stating selection rules
for spectral transitions involving vibrational states of molecules. There is a
gross selection rule, which generalizes the appearance of absorptions or emis-
sions involving vibrational energy levels. There is also a more specific, quan-
tum-number-based selection rule for allowed transitions. Finally, there is a
selection rule that can be based on group-theoretical concerns, which were not
considered for rotations.

Recall that light is an oscillating electromagnetic field. It can interact with
other oscillating electromagnetic fields, like the dipole moment of a molecule.
This interaction dictated our gross selection rule for pure rotations: the mole-
cule must have a permanent dipole moment in order to have a pure rotational
spectrum. This is because the rotating dipole acts as an oscillating electric field,
not changing in its magnitude but in its direction. As a vector, the dipole mo-
ment can oscillate by changing either its magnitude, or its direction, or both
in order to be detectable by another oscillating electromagnetic field, the light.

For vibrations, the key to interacting with light is based on the changing
magnitude of the dipole moment of the molecule during the vibration. The di-
pole moment of a molecule is defined as the charge differential times the dis-
tance between the differential charges. The distance between charges changes
as the atoms of the molecule vibrate. As it changes, an oscillating electric field
is created, which can interact with the electromagnetic field of light.

Suppose there is no dipole moment changing its magnitude due to chang-
ing distance. There may be a fleeting, nonpermanent dipole present as a result
of the symmetry-destroying distortions imposed on a molecule during a vi-
brational motion. This will still be enough to interact with light. If, however,
there is not either a change in dipole magnitude or directions, then there is no
oscillating field to interact with the light, and no light is absorbed or emitted.
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Therefore, the gross selection rule for vibrations is the presence of a dipole mo-
ment that changes during the course of the vibration: a varying dipole moment
is required.

Note that this does not imply that the molecule must have a permanent di-
pole moment in order to have a vibrational spectrum. Consider the methane
molecule, CH4. It has no permanent dipole moment, thanks to its tetrahedral
symmetry. However, in the course of the vibrations of the atoms in the mo-
lecule (see Figure 14.26), fleeting dipole moments are present as the atoms dis-
tort the molecule. In this way, not only the magnitude but also the direction
of such fleeting dipole moments is changing. Methane absorbs richly in the in-
frared region of the spectrum due to its vibrations. CO2 is a linear molecule.
It has no permanent dipole moment, but during the course of some of its mo-
lecular vibrations it has a fleeting nonzero dipole moment that allows for light
to be absorbed. However, for one specific normal mode of CO2, there is no net
dipole moment change because both oxygen atoms are moving back and forth
with respect to the carbon atom in phase, by the same amount (this is the
so-called symmetric stretching motion of CO2). This particular vibrational
motion of the molecule is not active in absorbing infrared light. (The vibra-
tional motions of CO2 are particularly important in carbon dioxide’s behavior
as a greenhouse gas. Even though CO2 has no permanent dipole moment, it
absorbs energy in the form of infrared light due to its vibrational motions.)

Homonuclear diatomic molecules do not absorb or emit radiation due to
vibrational state transitions. By definition, homonuclear diatomic molecules
have no dipole moment and no changing dipole moment as the two atoms
vibrate. Other methods are necessary to observe vibrational energy levels
directly.
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Figure 14.26 Normal modes of vibration for methane, CH4. Although methane does not have
a permanent dipole moment, some of the vibrations distort the molecule so that a fleeting di-
pole moment is present. These vibrations absorb infrared light and appear in a vibrational spec-
trum of methane.
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Example 14.14
Which of the following molecules will have pure vibrational spectra?
a. Hydrogen sulfide, H2S 
b. Oxygen, O2

c. Ozone, O3

d. Hydrogen chloride, HCl
e. acetylene, C2H2

Solution
a. Hydrogen sulfide is a bent molecule, like water. It has a permanent dipole
moment varies as the molecule vibrates. It will show a pure vibrational
spectrum.
b. Elemental oxygen, a homonuclear diatomic, will not have a pure vibra-
tional spectrum.
c. Ozone is a bent molecule, which will have a permanent dipole moment. Like
H2S, ozone’s dipole moment will change during the course of a vibration, so
we would expect that ozone will have a detectable vibrational spectrum.
d. Hydrogen chloride is diatomic, but it has a dipole moment whose magni-
tude will change as the two atoms change distance. Therefore, it is expected
to have a vibrational spectrum.
e. Acetylene is linear, but like carbon dioxide it is expected that some of its
vibrations will produce a fleeting dipole moment. We therefore expect that
acetylene will have a pure vibrational spectrum.

There is a more specific selection rule that depends on the quantum num-
ber for the vibrational state, v. Since the normal modes of vibration are inde-
pendent of each other (they are orthogonal to each other), this selection rule
is applicable to one normal mode at a time. That is, we will consider the ap-
plication of this new selection rule to each individual normal mode of vibra-
tion. The selection rule does not address simultaneous changes in more than
one normal mode of vibration. As indicated in section 14.2, such specific se-
lection rules are group-theoretical. The transition moment integral for vibra-
tions is

� �v��̂�v d�

where v and v� represent the vibrational quantum numbers of the two vibra-
tional states involved, and �̂ is the electric dipole operator. In order for this
integral to be nonzero for an allowed transition, the following change in quan-
tum number v is allowed:

�v � �1 (14.33)

This selection rule is applicable to each normal mode of vibration. In absorp-
tion spectroscopy, the change is 	1. This assumes that the normal mode acts
as an ideal harmonic oscillator. Real molecules do not act as ideal harmonic
oscillators, so in some cases it is not uncommon to detect �v � �2, � 3, . . .,
transitions. Such observations are part of what is called overtone spectroscopy.
Partly because of the selection rule in equation 14.33, detection of overtones is
difficult because many such absorptions are only weakly represented in a
vibrational spectrum. Lasers, with their high intensities, are frequently utilized
in overtone spectroscopy. However, the majority of vibrational spectroscopy
deals with transitions following equation 14.33.
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Because of the energy involved in vibrational transitions, almost all vibra-
tional spectra measured at room temperature are probing transitions of vibra-
tions from a v � 0 lowest-energy ground state to the v � 1 first excited state.
Such transitions are called the fundamental vibrational transitions. In some
cases, higher vibrational states are significantly populated due to thermal en-
ergy, either because the vibrational energy state itself is small or the tempera-
ture is large. Under such conditions, transitions like v � 1 → v � 2 or higher
vibrational levels can be probed. Such absorptions are called hot bands.

If the normal mode is acting as an ideal harmonic oscillator, then we can
use the quantum-mechanical expressions that describe its energy. Recall that
for an ideal harmonic oscillator,

E(v) � h�(v 	 �
1
2

�)

where v is the vibrational quantum number, � is the classical frequency of the
oscillator, and h is Planck’s constant. Therefore, it is easy to show that the
change in energy between adjacent energy levels is

E(v 	 1) � E(v) � �E � h� (14.34)

A vibrational spectrum is composed of absorptions that correspond to h�,
where � is the classical frequency of the vibration. Note the very broad applic-
ability of equation 14.34: it is independent of the quantum number v. For an
ideal harmonic oscillator, the allowed transitions occurring for any one normal
mode all have the same �E, and so all will absorb the same frequency of light.

If a molecule shows transitions for �v � �2, �3, . . ., �n, then it is easy to
show that for an n-fold change in the quantum number v,

�E � nh� (14.35)

Changes in vibrational energy should be exact multiples of the �v � 1 transi-
tion. However, real normal vibrations are not ideal (which is why such transi-
tions are observed occasionally in the first place), so absorptions due to over-
tone transitions are usually less than an integral number of h�. This deviation
is a measure of anharmonicity, which we will consider in the next section.
Table 14.3 lists the absorptions due to the fundamental and overtone vibra-
tional transitions for HCl (g). Also listed are the various multiples of the fun-
damental vibrational frequency, and the variance from the multiple as shown
by experiment. Note how the overtone absorptions get farther and farther
from ideal. The fact that �v � 1 is possible (although to a much lesser extent
than �v � 1) and the variance from exact multiples of the fundamental vi-
brational frequency are both reminders that molecules are not true harmonic
oscillators. They are anharmonic oscillators. The use of the ideal harmonic
oscillator system in describing molecular vibrations is an approximation—but
a good approximation.
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Table 14.3 Fundamental and overtone vibrational absorptions of HCl (g)

Transition Frequency (cm�1) Fundamental multiple Variance

v � 0 → v � 1 2,885.98 — —

v � 0 → v � 2 5,667.98 2(2,885.98) � 5,771.96 103.98

v � 0 → v � 3 8,346.78 3(2,885.98) � 8,657.94 311.16

v � 0 → v � 4 10,922.81 4(2,885.98) � 11,543.92 621.11

v � 0 → v � 5 13,396.19 5(2,285.98) � 14,429.90 1,033.71

Source: R. J. Sime, Physical Chemistry: Methods, Techniques, and Experiments, Saunders, Philadelphia, 1990. Referenced
there as D. H. Rank, D. P. Eastman, B. S. Rao, and T. A. Wiggins, J. Opt. Soc. Am., 1962, 52: 1–7.
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14.12 Vibrational Spectroscopy of 
Diatomic and Linear Molecules

For infrared absorption spectroscopy of diatomic molecules, only heteronu-
clear diatomic molecules show a vibrational spectrum. Their spectra are rela-
tively simple, since there is only one vibration: the motion of the two atoms
back and forth about their center of mass. This is a good example of a stretch-
ing vibrational mode. Table 14.4 lists, among other data, the stretching vibra-
tions for a series of gaseous diatomic molecules.

To a first approximation, the vibrations of diatomic molecules can be treated
as harmonic, Hooke’s-law-type oscillators. That is, as the molecules are mov-
ing back and forth about their center of mass, the force opposing the motion
is proportional to the distance away from some minimum-energy, equilibrium
distance. Figure 14.27 shows a plot of the potential energy curve, equal to �

1
2

�kx2,
for ideal oscillators. Superimposed on this potential energy curve are the val-
ues of the vibrational energy for the oscillator. For an ideal harmonic oscilla-
tor, the vibrational levels are spaced equally, which is consistent with equation
14.34. The vibrational force constant, k, is a measure of the curvature of the
potential energy plot. It can easily be shown that

�
�

�

2

x

V
2� � k

Therefore, the larger the force constant, the narrower the potential energy
curve.

However, real molecules are not ideal systems. A more accurate potential en-
ergy curve for the vibration of diatomic molecules resembles the curve for a
real molecule in Figure 14.28. The harmonic potential energy curve is super-
imposed for comparison. At low vibrational energies the curve is close to ideal,
but at higher vibrational energies the potential energy curve is much wider
than for the ideal harmonic oscillator. As a result, the vibrational energy lev-
els, shown in the figure, begin to get closer and closer together. This is the trend
observed in Table 14.3 for the energies of the HCl vibration. In reality, our os-
cillator is not harmonic but anharmonic. Also, at some point the molecule has
enough energy that the two atoms move apart—and never move back toward
each other. The molecule has dissociated, and the amount of energy required
to do this is called the dissociation energy. No quantized vibrational levels ex-
ist above the dissociation energy limit. An ideal harmonic oscillator does not
have a dissociation energy until one gets to v � �.
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Table 14.4 Vibrational parameters of various heteronuclear diatomic moleculesa

Molecule �̃e (cm�1) xe�e (cm�1) Internuclear distance, Å

HF 4138.52 90.07 0.9171

HCl 2989.74 52.05 1.275

HBr 2649.67 45.21 1.413

OH 3735.21 82.81 0.9706

OD 2720.9 44.2 0.9699

NO 1904.03 13.97 1.1508

CO 2170.21 13.46 1.1281

LiH 1055.12 13.22 1.5949

Source: G. Herzberg. Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules. Van Nostrand
Reinhold, New York, 1950.
aSee also Table 14.2
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Figure 14.27 For an ideal harmonic oscilla-
tor, the potential energy equals �

1
2

�kx2 and the quan-
tized energy levels are equally spaced.

Internuclear separation

re

P
ot

en
tia

l e
ne

rg
y

Ideal harmonic
potential

Real molecule

Figure 14.28 A more realistic potential energy
surface for the vibration of a molecule is super-
imposed on the ideal harmonic oscillator curve.
Only at low vibrational quantum numbers does
the ideal potential energy curve adequately ap-
proximate the real system. Note how the vibra-
tional energy levels get closer and closer together
as the vibrational quantum number increases.
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Instead of using V � �
1
2

�kx2 as the vibrational potential energy function of real
diatomic molecules, it is common to use the following expression:

V � De(1 � e�a(r�re))2 (14.36)

This potential is called the Morse potential and is plotted in Figure 14.29, along
with the potential curve for the ideal harmonic oscillator. De is the molecular
dissociation energy as measured to the bottom of the potential energy curve, as
shown in Figure 14.29. The constant a is related to the force constant k of the
molecule by the expression

a � ��
2D

k

e

��
1/2

(14.37)

The constant a has units of (length)�1.

Example 14.15
Predict the value of the Morse potential constant a for HCl if its De is 
445.0 kJ/mol and the force constant is 5.16 mdyn/Å.

Solution
Although a straightforward substitution into equation 14.37 is warranted, the
units for the given values are inconsistent. Consider De first. We need to find
the amount of energy to dissociate a single HCl molecule, not a mole of mol-
ecules. The following steps provide the conversion:

445.0 kJ/mol �
1

1

00

k

0

J

J
� � 7.39  10�19 J

for one molecule. The force constant, 5.16 mdyn/Å, also needs to be con-
verted (105 dynes � 1 newton):

5.16 mdyn/Å �
100

1

0

d

m

yn

dyn
��

10

1
5

N

dyn
� �

1

1

01

m

0Å
� � 516 N/m

Substituting these numbers into equation 14.37, and recalling that a joule
equals a newton � meter:

a � ��2 � 7.

5

3

1

9

6



N/

1

m

0�19 J
��

1/2

� � �
1/2

� ��3.49

m


2

1020

��
1/2

a � 1.87  1010 m�1

In units of Å, this value is 1.87 Å�1. Its magnitude is understandable consid-
ering that in the course of a molecular vibration, the change in bond distance
is on the order of �0.1Å.

De is the dissociation energy with respect to the bottom of the potential en-
ergy curve. However, this is not what is measured experimentally, since mole-
cules have a zero-point vibrational energy even at absolute zero. The energy
that it actually takes to dissociate a diatomic molecule is determined from the
v � 0 vibrational level, which has an energy of �

1
2

�h� higher than the potential
energy minimum. This amount of dissociation energy is labeled D0 (the zero

516 N/m
���
2 � 7.39  10�19 N�m

1 mol
���
6.02  1023 molecules
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Figure 14.29 The Morse potential is a better
fit to the potential energy curve of a real molecule
than is the harmonic oscillator potential energy
surface, superimposed.
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subscript is used as a reminder that this measurement is made with respect to
the v � 0 vibrational state). The relationship between De and D0, for diatomic
molecules, is

De � D0 	 �
1
2

�h� (14.38)

For polyatomic molecules, a factor of �
1
2

�h� from all vibrations must be taken
into account. Since there are 3N � 6 vibrations in a (nonlinear) polyatomic
molecule, the relationship between De and D0 has a sum of 3N � 6 terms:

De � D0 	 �
3N�6

i�1

�
1
2

�h�i

where the sum is over the 3N � 6 (or 3N � 5 for linear molecules) vibrations
of the polyatomic molecule.

There is no theoretical basis for a Morse potential energy curve. Its form
is empirical (that is, based on observation), but it is useful. First, it shows
a dissociation limit, just as real diatomic molecules experience. The disso-
ciation energy, De, appears in two places in the form of the Morse poten-
tial, as a premultiplicative term and as part of the definition of the constant
a. It accurately predicts the observed trend of closer-spaced vibrational levels
as the vibrational quantum number increases. Although diatomic molecules
(and larger molecules also) do not behave as perfect Morse oscillators, the
Morse potential is usually a better fit to the real vibrational behavior of
molecules.

But the form of the Morse potential also allows us to quantify the amount
of nonharmonic behavior of the molecule, or its anharmonicity. Because of
its form, a system whose potential energy is expressed in terms of a Morse
potential has a Hamiltonian that is solvable analytically. (It is one of the few
solvable systems that we did not cover in Chapter 12.*) One finds that the
energy of an oscillator having a Morse potential is quantized (no surprise here)
and has values given by

E � h�e(v 	 �
1
2

�) � h�exe(v 	 �
1
2

�)2 (14.39)

where �e is the harmonic vibrational frequency (not equal to � of the classical
harmonic oscillator!), v is the vibrational quantum number, and xe is a di-
mensionless constant called the anharmonicity constant. Usually it is a small
number. The smaller the number, the less anharmonic the oscillator is. The an-
harmonicity xe is usually so small that in tabulations of anharmonicity data,
not just xe but xe  �e (sometimes written �exe) is tabulated, usually in units
of cm�1. The deviation from the ideal harmonic oscillator energy is related to
the square of the vibrational quantum number.

As part of the solution to the Schrödinger equation, the anharmonicity con-
stant appears as a combination of other constants about the vibration. It is de-
fined as

xe � �
4

�

D
e

e

� (14.40)
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*In case you’re curious, the wavefunctions for an oscillator that has a Morse-type po-
tential energy function are

�n � Nn � e t/2 � t� � �n(t)

where Nn is a normalization constant, t � Ke�ax, K � (8�De/�
2a2)1/2, and �n(t) is a poly-

nomial function of t and K whose degree depends on the quantum number n. Compare this
with the eigenfunctions for the harmonic oscillator from Chapter 11.
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where the units on �e and De are the same so that xe is unitless. Definition of
a diatomic molecule as a Morse potential oscillator is useful because it ties in
several important observables about that oscillator: classical frequency, disso-
ciation energy, force constant, anharmonicity. Such relationships are complex
but increase our understanding of the behaviors of such molecules. Table 14.4
also includes information on the anharmonicities of the various diatomic
molecules.

Example 14.16
Predict where the v � 0 → v � 6 transition for HCl will occur if it acts as an
ideal Morse oscillator. Use the information in Table 14.4.

Solution
Using equation 14.39, we can calculate the following energies for the v � 0
and v � 6 vibrational energy states:

E(v � 0) � h�e(0 	 �
1
2

�) � h�ex e(0 	 �
1
2

�)2

� (6.626  10�34 J�s)(2989.74 cm�1)(2.9979  1010 cm/s)(�
1
2

�)
� � (6.626  10�34 J�s)(52.05 cm�1)(2.9979  1010 cm/s)(�

1
2

�)2

E(v � 0) � 2.94  10�20 J

The term 2.9979  1010 cm/s is the conversion directly from wavenumber
(cm�1) to frequency (s�1). For E(v � 6), similarly:

E(v � 6) � 3.42  10�19 J

The difference in energy between the two vibrational states is 3.13  10�19 J;
using the conversions E � h� and c � �� and converting to wavenumber, this
is equal to a transition occurring at 15,753 cm�1. This is consistent with the
trend of overtone absorptions in Table 14.3.

Diatomic molecules have a relatively simple vibrational spectrum because
they have only one type of vibrational motion: a stretching motion. For linear
triatomic molecules, the number of vibrations is four [3N � 5 � 3(3) � 5 �
4], which is three more than a diatomic molecule. The descriptions of the nor-
mal modes of vibration start getting a little more complicated. This is because
for a normal mode, the center of mass of the molecule does not move. This means
that all of the atoms in the molecule participate in each normal mode so that
the center of mass stays fixed. Ultimately, this implies a more complicated ex-
act description of the vibrational motion.

Although the exact description may be more complicated, an approximate
description is often utilized in vibrational spectroscopy. Figure 14.30 shows the
normal modes of vibration for linear triatomic molecules that are symmetric
(such as CO2) and asymmetric (such as HCN). Although the sets of normal
modes are labeled similarly, using subscripts on the Greek letter � to label the
vibrations, the vibrations themselves are not described similarly. For the sym-
metric triatomic molecule, the vibration labeled �1 has the outside atoms mov-
ing in and out at the same time with respect to the center atom. Thus no over-
all change occurs in the dipole moment during this vibration and it is not
considered IR-active; it is IR-inactive. This motion is called a symmetric stretch-
ing vibration (because both sides move symmetrically). The vibration labeled
�3 is also a stretching vibration, but now the two outside atoms are moving one
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in, one out with respect to the center atom. This type of motion is called an
asymmetric stretching vibration. It is IR-active, because a small dipole moment
is produced during the course of the vibration (where the outside atoms are
different distances from the center). Finally, the vibration labeled �2 has the
center atom moving up-and-down while the outside atoms are moving down-
and-up. The normally linear molecule becomes slightly bent during the course
of this motion, and so this is called a bending motion. It, too, is IR-active: the
molecule becomes bent and the overall dipole moment is no longer eliminated
by symmetry. The interesting thing about this motion is that the bend can be
either up-and-down or in-and-out, two directions that are 90° apart. These
motions are perpendicular to each other and so represent a pair of doubly de-
generate vibrational modes. They have the same frequency of vibration, and the
same irreducible representation label. CO2 is said to have a doubly degenerate
bending motion (IR-active), a symmetric C–O stretching motion (IR-inactive),
and an asymmetric C–O stretching motion (IR-active).

The asymmetric triatomic linear molecule also has a doubly degenerate
bending motion labeled �2. (The numbering of the normal modes follows a
system we won’t get into here.) The other two motions correspond roughly to
a stretching vibration between the left outside atom and the center atom, as
well as a stretching vibration between the right outside atom and the center
atom. So for HCN, we will have a doubly degenerate bending motion, and then
two modes that are roughly described as an H–C stretching vibration and a
C–N stretching vibration.

Because this one vibration is doubly degenerate, it must be counted twice
in the summation that relates D0 and De for polyatomic molecules. In larger
molecules, degenerate vibrations must be summed the appropriate number of
times to get the correct numerical relationship between D0 and De.

Example 14.17
Roughly describe the four normal modes of the following linear molecules.
a. Carbon disulfide, CS2

b. Hydrogen hypochlorite, HClO
c. Beryllium fluoride, BeF2

d. The ethynyl radical, HCC�

Solution
a. CS2 has a symmetric C–S stretch, an asymmetric C–S stretch, and a dou-
bly degenerate bending motion.
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A B A�1 A B C�1

A B A�2 A B C�2

A B A�3 A B C�3

Figure 14.30 Normal modes of vibration for symmetric (ABA) and asymmetric (ABC) lin-
ear triatomic molecules. In both cases, the vibrations labeled �2 are doubly degenerate, since there
are two equivalent vibrations that are perpendicular to each other. For the symmetric molecule,
only �2 is IR-active. For the ABC molecule, all three vibrations are IR-active.
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b. HClO has, roughly, an H–Cl stretch, a Cl–O stretch, and a doubly degen-
erate bending motion.
c. BeF2 has a symmetric Be–F stretch, an asymmetric Be–F stretch, and a 
doubly degenerate bending motion.
d. HCC� would be expected to have an H–C stretch, a doubly degenerate
H–C–C bend, and a C–C stretching vibration.

Keep in mind that these descriptions are rough, not exact. Each atom in the
molecule moves. This point gets lost when one begins to consider larger mol-
ecules, but it is no less true for simple triatomic molecules. Notice that we have
introduced another type of vibrational motion: the bending motion. Such a
motion does not fit the classical definition of a Hooke’s-law system, which as-
sumes that two masses are moving back and forth with respect to each other.
However, even for bending motions, the case is made that the atoms are mov-
ing back and forth about some presumed equilibrium position. As such, we
can assume some sort of force constant such that the farther away the atoms
are from that equilibrium position, the stronger the restoring force. Therefore,
bending force constants can be defined. However, in a bending motion, the con-
cept of reduced mass of the oscillator is much more complicated. Bending mo-
tions in molecules therefore do not follow such simple mathematical relation-
ships as do stretching motions, which were illustrated in Examples 14.12 and
14.13. (They do follow mathematical relationships, but they are a little more
complicated. See G. Herzberg, Molecular Spectra and Molecular Structure. II.
Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold,
New York, 1945.) For example, whereas the O–H and O–D stretches in H2O
are predicted in Example 14.13 to have a frequency ratio of about 0.73, which
corresponds to the square root of the reduced mass ratio of the O–H and O–D
bonds, the C–O–H bending motions of CH3OH and CH3OD have a frequency
ratio of about 0.64, which is substantially less than the O–H/O–D reduced
mass ratio.

Other linear molecules (acetylene, C2H2, for example) have similarly de-
scribed vibrational spectra: either stretching vibrations or bending vibrations.
It is only when a molecule becomes nonlinear that additional complexities
arise. Unfortunately, most molecules are nonlinear. Fortunately, similar rough
descriptions of the vibrations can be applied. Also fortunately, symmetry con-
siderations combine with the change-in-dipole-moment selection rule to limit
the number of IR-active vibrational motions of large, symmetric molecules.
The next few sections will illustrate some of the procedures used to simplify
our understanding of molecular vibrations.

14.13 Symmetry Considerations for Vibrations
A brief aside into symmetry is useful here. Recall that all molecules can be as-
signed a point group describing the symmetric arrangement (if any) of their
atoms. This assumes, however, that the atoms are fixed in space. The very
thought of vibrations suggests that the atoms are not fixed, and that specific
symmetry designations are useless because the atoms are constantly moving
around. Does this mean that vibrations of molecules destroy the symmetry of
a molecule and that symmetry is not as applicable to molecules as we thought?
No, it doesn’t mean that. All normal modes of a molecule oscillate about an
equilibrium position, and the average geometry of a molecule is defined in
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terms of these equilibrium positions. When we realize that (in most cases) the
amount of movement of atoms in a vibration is relatively small, distorting a
molecule very little from its equilibrium symmetry, the definition of a mole-
cule as having a symmetry based on its equilibrium atomic positions is still a
good basis for understanding its behavior.

Consider the vectors that describe the normal vibrations for the H2O mol-
ecule in Figure 14.31, and the effects on those vectors by the various symme-
try elements of the point group of the molecule, C2v. The table on the right
side of the figure shows that the group of eigenvalues produced for the vectors
that describe the �1 vibration is the same as the irreducible representation A1

for the point group. Inspection of the other normal vibrations shows that this
is not a coincidence: the other two normal modes behave like irreducible rep-
resentations of the C2v point group also (A1 and B1, to be exact). Although
proof is beyond our scope, the point should be clear: vibrational modes of
molecules can be assigned a label of one of the irreducible representations of
the molecular point group. The powerful mathematical tools of symmetry and
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� 
A1

E
1

H H H H

C2
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H H H H

�v
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H H H H

�v'
1

H H H H

Figure 14.31 The �1 normal vibration of H2O, and the effects of the symmetry elements of
the C2v point group on the vibration. In this case, operation of all symmetry elements yields a
motion that is exactly the same as the original motion. Therefore, the eigenvalues of the opera-
tions are all 1, and this vibration can be labeled with the A1 irreducible representation of the C2v

point group.
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group theory are therefore applicable to the study of molecular vibrations. We
will use such tools to some extent in the material to come. Group theory is also
applicable to other forms of spectroscopy, as we will find.

Example 14.18
From the representation of the normal modes of a symmetric linear mole-
cule shown in Figure 14.30, draw the changes in the vectors upon operation
of each symmetry element and assign irreducible representation labels to the
normal modes of CO2. You will have to use the D�h character table in
Appendix 3.

Solution
The drawing is left to the student. If the drawings are done properly, it can
be seen that the symmetric stretching vibration can be assigned a label of �g

	;
the asymmetric stretching vibration is assigned to �u

	. The doubly degener-
ate bending motion is �u.

The degeneracy of a vibration is related to its character of the identity ele-
ment of its irreducible representation label. Doubly degenerate vibrations al-
ways have an irreducible representation label having �E � 2. Triply degenerate
vibrations always have an irreducible representation label having �E � 3. There
are no higher degeneracies for vibrations.

14.14 Vibrational Spectroscopy of 
Nonlinear Molecules

Moving on to nonlinear molecules, there are few truly new concepts. The num-
ber of vibrational degrees of freedom is now 3N � 6, and the list of descrip-
tions for the vibrations increases somewhat. Perhaps the biggest difference in
considering nonlinear molecules is how the symmetry of the molecule affects
the number of independent vibrations of the molecule.

Figure 14.32 shows the normal vibrations for the ammonia molecule. They
are numbered �1, �2, �3, and �4. The numbering of the vibrations follows a
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Figure 14.32 The normal modes of vibration for ammonia, NH3. All are IR-active.
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system that is recognized by spectroscopists. All are IR-active, so ammonia will
absorb infrared radiation having four characteristic frequencies.

Figure 14.33 shows the normal vibrations for benzene, C6H6. For benzene,
3N � 6 equals 30, so we expect to have up to 30 different vibrations. Some of
the vibrations are degenerate, so there are less than 30 separate vibrations.
However, only four vibrations are IR-active, since only four of them involve a
changing dipole moment. (With respect to Figure 14.33, the IR-active vibra-
tions are �4, �12, �13, and �14.) This is possible because the benzene molecule
has many symmetry elements. Generally speaking, the higher the symmetry of
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Figure 14.33 The normal modes of vibration for benzene, C6H6. Due to the high symmetry of
benzene, only four of these vibrations are IR-active. Source: Gerhard Herzberg, Molecular Spectra
and Molecular Structure, Vol. II, 1991, Krieger Publishing Company. Adapted with permission.
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the molecule, the fewer unique vibrational frequencies a molecule has, and the
fewer that have a corresponding change in dipole moment.

There is a strict group-theoretical method for determining exactly the num-
ber of allowed vibrational transitions expected to be observed in a vibrational
spectrum. The method is presented here as a sort of recipe to be followed, and
uses the character tables in Appendix 3. Use of the recipe requires two things.
First, the character tables contain more information than we have used so far.
In particular, note the information in the rightmost column of the character
tables. One or more of the irreducible representations of each character table
has an x, y, or z notation at the right (among other things). These mark the ir-
reducible representation(s) of the components of the electric dipole operator
(see equation 14.2) in that particular symmetry. This information will be nec-
essary in our recipe. Second, we need to differentiate between “proper” and
“improper” rotations. In a broad sense, all symmetry operations can be thought
of as rotations. Proper rotations are E and Cn, which have angles of rotation of
0° and 360°/n, respectively. Improper rotations are i, Sn, and all planes of sym-
metry; these have angles of rotation of 180°, 360°/n, and 180°, respectively.
Proper and improper rotations are treated slightly differently in two steps of
the recipe.

The recipe for determining the number of IR-active vibrations of a mole-
cule of known symmetry is given in Table 14.5, in a somewhat abbreviated
fashion. Briefly, it rests on finding a set of characters that describe the vibra-
tional degrees of freedom of a molecule, then using the great orthogonality
theorem to reduce that set of characters into a set of irreducible representa-
tions of the molecule’s symmetry group. Then, by finding the x, y, and z labels
in the character table, we can determine which irreducible representation la-
bels correspond to vibrations that are infrared-active. The following example
goes through the steps in the scheme.
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Table 14.5 Steps for determining the number of infrared-active vibrations of a 
polyatomic molecule

Procedure Formula/expression

Construct a blank table with a column for every symmetry class. In successive lines of the
table, do the following:

1. In the first line, write the number of atoms in the molecule Nstationary

that do not change their position in space under that 
operation.

2. In the next line, determine the angle � of the “rotation” �
of the symmetry operation.a

3. Evaluate the expression (1 	 2 cos �) for each symmetry (1 	 2 cos �)
operation.

4. Evaluate Nstationary  (1 	 2 cos �), and multiply by 	1 for �Nstationary � (1 	 2 cos �)
proper rotations or �1 for improper rotationsb. This is �tot.

5. Evaluate the character for rotations, �r, as (1 	 2 cos �). �r � (1 	 2 cos �)

6. Evaluate the character for translations, �t, as �(1 	 2 cos �) �t � �(1 	 2 cos �)
(depending on whether the operation is proper or improper).

7. Subtract �t and �r from �tot to get the character set for �v � �tot � �t � �r

vibrations, �v.

8. Reduce �v into its irreducible representations using the GOT. �v � �
n

9. Irreducible representations having x, y, or z labels in
character table are IR-active.

aFor i, � � 0°. For S3, � � 60°. For S4, � � 90°. For S6, � � 120°.
bProper rotations are E and Cn; improper rotations are �, i, and Sn.
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Example 14.19
Determine the number of IR-active vibrations of carbon tetrachloride, CCl4,
which has Td symmetry.

Solution
The steps and symbols are taken from Table 14.5. First, we construct a table
by listing the classes of the symmetry operations in Td symmetry:

E 8C3 3C2 6S4 6�d

1. Determine Nstationary for each symmetry class. You should verify that the
following numbers are correct, as this is typically the most challenging
part of the process.

E 8C3 3C2 6S4 6�d

Nstationary 5 2 1 1 3

2. Determine the angle of rotation for all symmetry classes:

E 8C3 3C2 6S4 6�d

Nstationary 5 2 1 1 3

� 0° 120° 180° 90° 180°

3. Evaluate (1 	 2 cos �):

E 8C3 3C2 6S4 6�d

Nstationary 5 2 1 1 3

� 0° 120° 180° 90° 180°

1 	 2 cos � 3 0 �1 1 1

4. Determine �Nstationary(1 	 2 cos �), depending on whether the symme-
try operation is considered a proper rotation or an improper rotation:

E 8C3 3C2 6S4 6�d

Nstationary 5 2 1 1 3

� 0° 120° 180° 90° 180°

1 	 2 cos � 3 0 �1 1 1

�Nstationary(1 	 2 cos �) 15 0 �1 �1 �3

5. Determine �r � 1 	 2 cos � for each symmetry class:

E 8C3 3C2 6S4 6�d

Nstationary 5 2 1 1 3

� 0° 120° 180° 90° 180°

1 	 2 cos � 3 0 �1 1 1

�Nstationary(1 	 2 cos �) 15 0 �1 �1 �3

�r 3 0 �1 1 1

6. Determine �t � �(1 	 2 cos �) for each symmetry class (again, de-
pending on whether it is a proper or an improper rotation):
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E 8C3 3C2 6S4 6�d

Nstationary 5 2 1 1 3

� 0° 120° 180° 90° 180°

1 	 2 cos � 3 0 �1 1 1

�Nstationary(1 	 2 cos �) 15 0 �1 �1 �3

�r 3 0 �1 1 1

�t 3 0 �1 �1 �1

7. Subtract �r and �t from �tot to get �v:

E 8C3 3C2 6S4 6�d

Nstationary 5 2 1 1 3

� 0° 120° 180° 90° 180°

1 	 2 cos � 3 0 �1 1 �1

�Nstationary(1 	 2 cos �) 15 0 �1 �1 3

�r 3 0 �1 1 1

�t 3 0 �1 �1 �1

�v 9 0 1 �1 3 

8. Use the great orthogonality theorem to reduce �v into its irreducible
representations for the Td point group. Upon doing so (and the details
are left to you), one finds that


� 1A1 � 1E � 2T2

9. Check the Td character table in Appendix 3. In the rightmost column,
the T2 irreducible representation has the x, y, and z labels. Therefore,
only the T2-labeled vibrations will be IR-active, and the conclusion is
that CCl4 will have only two IR-active vibrational modes. These modes,
being triply degenerate, represent six of the nine normal vibrations 
of CCl4.

The above example illustrates two things. First, the vibrational spectrum of
a molecule can be enormously simplified because of symmetry. The nine pos-
sible (and presumably different) normal vibrations of CCl4 are reduced to only
two IR-active, triply degenerate vibrations. When you measure a vibrational
spectrum of CCl4, you will expect only two absorptions to appear in the spec-
trum instead of nine. Second, the use of group theory and character tables is
indispensable in quantifying this. Group theory and symmetry are crucial to
the understanding of vibrational spectroscopy in particular and all of spec-
troscopy in general. Although this is the first time we utilize the power of sym-
metry for a specific spectroscopic purpose, it should be understood that sym-
metry considerations and group-theoretical arguments are a fundamental
aspect of spectroscopy.

The majority of molecules have relatively low symmetry, so they can be ex-
pected to have a large number of IR-active vibrations. However, this section
has introduced a powerful concept that can be very useful in spectroscopy, es-
pecially in understanding how the structure of a molecule is related to its vi-
brational spectrum.
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14.15 Nonallowed and Nonfundamental
Vibrational Transitions

Because molecules are not perfect harmonic oscillators, the strict selection
rules are not followed perfectly. In some cases �v � 2, 3, 4, . . . . These transi-
tions are usually much weaker than for �v � 1. In many cases, very bright light
sources like lasers must be used to detect these transitions.

Overtone absorptions can be thought of as two or more vibrational quantum
number steps. These are occasionally written in terms of the vibration num-
ber, for example 2�3 or 2�10 to indicate that the vibrational quantum number
for �3 or �10 of a particular molecule changes by 2. Although also forbidden
formally, it is not unusual to find absorptions in a vibrational spectrum due to
other combinations of the normal vibrations of the molecule. These are called
combination bands and can be the addition of two (or more) normal vibrations
of a molecule or even differences of two (or more) normal vibrations of a mol-
ecule. As might be expected, the larger the molecule, generally the greater the
possibility of the appearance of combination bands. This is true because the
larger the molecule, the less ideal it probably is.

For example, let us consider the vibrational spectrum of methylacetylene,
CH3C�CH. The 15 normal vibrations reduce to 5 A1-labeled motions and 
5 E-labeled motions. Table 14.6 lists the 10 unique vibrational frequencies of
methylacetylene. Also listed are other absorptions that are attributed to vari-
ous overtones and combination bands. The nonideality of the molecule per-
mits some of these combinations to appear with detectable intensity.

Table 14.6 also shows that, for the frequencies of the combination bands and
overtones, the frequencies of the fundamental vibrations are not a perfect ad-
ditive combination. This can make the assignment of combinations and over-
tones particularly tricky, especially for large molecules. Although there are
symmetry rules for determining what vibrational frequencies will interact
with what other vibrational frequencies, careful spectral studies using selective
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Table 14.6 Infrared absorptions detected for methylacetylene

Normal vibration label Symmetry species Vibrational frequency

�1 A1 3334.0

�2 A1 2941.0

�3 A1 2142.2

�4 A1 Not observed

�5 A1 930.7

�6 E 3008.3

�7 E 1452.0

�8 E 1052.5

�9 E 633.2

�10 E 328.0

Combination bands Frequency

�3 	 �10 � �10 2135.0

�3 	 2�10 � 2�10 2128.0

�5 	 �10 � �10 932.2

2�9 	 2�10 � 2�10 1258.2

2�9 	 �10 � �10 1256.8

2�9 1255.0
aSource: D.R.J. Boyd, H. W. Thompson. Trans. Farad. Soc., 1954, 50: 212.
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isotopic substitution (for example, CD3C�CH and CH3C�CD for methyl-
acetylene) is sometimes crucial in determining what normal vibrations con-
tribute to combination bands.

14.16 Fingerprint Regions
Having spent the chapter discussing how vibrations of molecules absorb light
of specific frequencies, we now introduce a useful generalization. Although a
normal vibration involves all atoms in a molecule, in many instances a normal
vibration is mostly due to a simple motion between two or three atoms in one
part of the molecule. One consequence is that it is easy to describe normal mo-
tions by their majority component, like C–H stretch, O–H stretch, CH2 wag,
CH3 deformation, or a similar description.

Another consequence is that all normal motions that can be given the
same general description have similar vibrational energies. An equivalent way
of stating this idea is that similar normal modes absorb infrared light from
similar regions of the spectrum. That is, certain regions of the infrared spec-
trum correspond to characteristic types of vibrational motions of molecules.
Such regions are called group frequency regions or fingerprint regions, and they
typically refer to the fundamental vibration itself, not the overtones or com-
binations.

For example, the fingerprint region for an O–H stretch (say, for a series of
different alcohol molecules) is about 3100–3800 cm�1, depending on the spe-
cific molecule the O–H group is bonded to. Granted, this seems like a large
range. However, it can be virtually guaranteed that such a motion will not be
observed in the 100–500 cm�1 region. The masses of O and H are the same
for all OH groups, and the force constant of the O–H bond does not change
much with a change in the rest of the molecule. C–H stretches show up in the
region 2800–3300 cm�1. C–H bending motions appear in the 1300–1500 cm�1

and 500–900 cm�1 regions of the infrared spectrum. Other fingerprint regions
can be identified. Table 14.7 lists several fingerprint regions that are useful in
vibrational spectroscopy.

A more compact way than Table 14.6 to illustrate the fingerprint regions of
various atomic combinations in molecules is the correlation tables. Correlation
tables, like the one shown in Figure 14.34, can illustrate where certain groups
of atoms will absorb in the vibrational spectrum. Additional correlation tables
are shown in Appendix 4. These tables usually contain qualitative intensity in-
formation, allowing one to make judgments on the strength of an absorption
in a vibrational spectrum. [In correlation tables, usually VS � very strong,
S � strong, M � medium, W � weak, VW � very weak, SP or SH � sharp
(that is, narrow), and BR � broad (that is, wide).] Correlation tables are use-
ful for identifying compounds, because the right set of absorptions in the right
fingerprint region(s) almost guarantees the presence of a certain grouping of
atoms in a molecule. The following example illustrates.

Example 14.20
An unknown compound shows vibrational absorbances occurring at 3287,
2215, and 729 cm�1. Keeping in mind that these are not all of the vibrational
frequencies of the molecule, use the concepts of fingerprint regions and cor-
relation tables to determine whether or not such absorptions are likely for the
following molecules.

504 C H A P T E R  14 Rotational and Vibrational Spectroscopy

Table 14.7 Various infrared fingerprint 
regionsa

Motion type IR region

C–H stretch 2800–3300

O–H stretch 3100–3800

C�C, C�N stretch 2100–2500

C�O stretch 1600–1800

C�C stretch 1600–1700

C–H bend 1300–1500, 500–900

O–H bend 1200–1600

C–O stretch 900–1300

C–C stretch 800–1150
aAll units are cm�1. Limits are approximate, since there are
usually examples of molecules whose motions are outside
the specified range.
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Figure 14.34 A correlation table for assigning infrared spectra. Tables like this are useful in
trying to identify molecules from their vibrational spectrum.
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a. Water, H2O 
b. Methane, CH4

c. Acetylene, C2H2

d. Ethane, CH3CH3

e. Ethynol, CH�COH (that is, the alcohol made from acetylene, or ethyne)

Solution
a. Although the 3287 cm�1 absorption might be due to an O–H motion, nei-
ther of the other two absorptions correspond to any type of motion due to
oxygen and hydrogen bonded together. Therefore, water is probably not a
likely candidate to have this spectrum.
b. The correlation tables show an absorption in the range where 729 cm�1

would fall, but neither of the other two absorptions agree with the tables.
(Although the 3287 cm�1 absorption might seem close, it seems high for an
alkane. Too, the peak at 2215 cm�1 is not near any alkane fingerprint region.)
Therefore, methane is not a likely candidate for such absorptions.
c. The 3287 cm�1 absorption is in the range of an alkyne C–H absorption.
Further, the absorption at 729 cm�1 is close to the region where alkyne C–H
bonds absorb (this is the C–H bending motion). Finally, the absorption at
2215 cm�1 falls in the range of C�C vibrations. The conclusion is that this
could represent a possible (partial) spectrum of acetylene.
d. As for methane, although the C–H fingerprint regions may be represented,
there is no acceptable fingerprint region that could explain the absorption at
2215 cm�1. Therefore, ethane is not a likely candidate for having these ab-
sorptions.
e. Although C–H vibrations and C�C vibrations are represented (as with
acetylene, above), there is no mention of an absorption for an O–H motion.
Therefore, we make a qualified statement that these absorptions might de-
scribe this molecule, but we would need to check for the presence or absence
of absorptions belonging to an O–H group. If such normally medium or
strong absorptions are absent, then identification of the compound as ethynol
might not be the best identification.

The last part of Example 14.20 illustrates a major pitfall in using correlation
tables and fingerprint regions for understanding vibrational spectra. They
help, certainly, but they do not guarantee identification. All substances have
their own characteristic spectra, and a positive identification of a molecule
rests on being able to match a vibrational spectrum exactly, or as closely as pos-
sible. Fingerprint regions and correlation tables provide clues and hints. But in
almost all cases, that is all they provide. Nonetheless, they are useful in mak-
ing general interpretations about the structure of a molecule on the basis of its
vibrational spectrum. For small molecules, where group-theoretical analyses
can also be applied, such tools are indispensable for identification of unknown
molecules.

14.17 Rotational-Vibrational Spectroscopy
Although it is easier to discuss rotations and vibrations of molecules separately,
in reality such motions of molecules occur simultaneously. (Translations are
also occurring, and translational motion accounts for a large part of the kinetic
energy of a molecule in the gas phase. However, translations do not contribute
directly to the topic at hand.) When a sample is in the gas phase, molecules are
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unhindered in their rotational and vibrational motions, and so both occur si-
multaneously. In the liquid phase, vibrational motions occur relatively unhin-
dered but rotational motions may be hindered. In the solid phase, vibrations
are relatively hindered, and with a few exceptions the rotations are quenched.

A gas-phase sample undergoes vibrational and rotational motion. Vibrations
typically absorb in a certain region of the spectrum, the infrared region. Pure
rotational motions absorb energy in the microwave region of the spectrum,
but the energy involved in a rotational state transition is not negligible com-
pared to the vibrational energy. In the process of absorbing vibrational energy,
many molecules can simultaneously undergo a rotational energy transition.
Although the energy difference due to the vibrational state transition is con-
stant (and equals h�), the energy difference due to rotational state transitions
depends on the initial rotational quantum number J. Therefore, the combina-
tion—or superposition—of rotational transitions with a vibrational transition
is also a series of absorptions. Such a series of absorptions, relatively regularly
spaced, typifies rotational-vibrational spectroscopy. Sometimes the term rovi-
brational spectroscopy is used.

The spectrum of gaseous HCl is a classic example of rovibrational spec-
troscopy. An example of an HCl spectrum is shown in Figure 14.35. The series
of absorptions is separated into two distinct regions. From 3100 to 2900 cm�1

is the combination rotational-vibrational change in quantum number (�v � 	1,
�J � 	1), and from 2860 to 2600 cm�1 the quantum number changes are
(�v � 	1, �J � �1). For both regions, or branches, the change in the vibra-
tional quantum number is 	1, because in absorption spectroscopy the vibra-
tional quantum number increases. Normally, in pure rotational absorption
spectra, the change in the J quantum number is also 	1. But when a molecule
changes vibrational states, there is the possibility that the molecule can go to
the next vibrational level but also simultaneously to a lower value for the J
quantum number. Because going to a lower rotational state implies an overall
loss of energy, the (�v � 	1, �J � �1) transitions appear at lower energies
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blet character of each absorption is due to the natural isotopic abundances of 35Cl and 37Cl.
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than do the (�v � 	1, �J � 	1) transitions. All of the �J � 	1 transitions
appear at higher energies than the pure vibrational transition (where �J would
be 0), and all of the �J � �1 transitions appear at lower energies than the pure
vibrational transition. The pure vibrational transition would fall in between
the two branches. The branch where �J � �1 is called the P branch, and the
branch where �J � 	1 is called the R branch. Figure 14.35 shows P and R
branches for the rovibrational spectrum of HCl gas. Figure 14.36 shows a dia-
gram of the individual transitions in the rovibrational spectrum. In the P
branch, it can be seen that the quantum number J decreases by 1 for each tran-
sition. In the R branch, J increases by 1.

Rotational spectra of linear molecules can be related to a rotational constant
B, which in turn is related to the reduced mass and bond length of the mole-
cule. In rovibrational spectra, the excited vibrational state does not necessarily
have the same value for B as the ground rotational state. We therefore need to
differentiate between B0 and B1 for the ground and excited vibrational states,
respectively. Also, there are anharmonicity and centrifugal distortion effects
(characterized by xe�e and DJ constants, respectively) that will determine the
exact wavelength of light that a rovibrational transition will absorb. Such ef-
fects account for (1) the difference in spacing between the absorptions of the
P branch and the absorptions of the R branch, and (2) the small but observ-
able change in the separation of the absorptions within each branch. You
should be able to notice both effects in Figure 14.35. To a very good approxi-
mation, for diatomic molecules having rovibrational spectra, the lines in the
fundamental vibration spectrum (that is, v � 0 → v � 1) can be predicted by
the following equations, which account for changes in v, J, B0 and B1, and the
effects of anharmonicity and centrifugal distortion. For the R branch:

�E � h� � 2xe�e 	 (B1 	 B0)(Jlower 	 1) 	 (B1 � B0)(Jlower 	 1)2

(14.41)
� 4DJ(Jlower 	 1)3

and for the P branch:

�E � h� � 2xe�e � (B1 	 B0)Jlower 	 (B1 � B0)J2
lower 	 4DJJ

3
lower (14.42)

where Jlower indicates that the equation uses the J value of the lower rotational-
vibrational state. Notice the minor differences in signs and the terms in Jlower

in the two equations. These differences are enough to be noticeable in some
rovibrational spectra, like Figure 14.35. Although the above equations assume
the v � 0 → v � 1 fundamental vibrational transition, they do not assume any
particular rotational state. Expressions like equations 14.41 and 14.42 are used
to calculate anharmonicities, rotational constants, and so on from experimen-
tal spectra, since in most cases there are a lot of absorptions to fit to the equa-
tions. Much of the data in Tables 14.2 and 14.4 was determined this way.

There is such a thing as a Q branch, where the change in the J rotational
quantum number is zero; that is, �J � 0. With no change in J, the only effects
on �E for the transition are vibrational, from the change in the harmonic vi-
brational frequency and the effects due to anharmonicity. Q branches are
therefore much more compact than P or R branches. However, Figure 14.35
shows no visible Q branch (which would be expected to occur right between
the P and R branches). Recall the selection rule given in equation 14.18, which
is �J � �1: a �J of 0 is usually forbidden, suggesting that Q branches will not
be seen. This is true for most diatomic molecules. For polyatomic molecules,
linear or nonlinear, Q branches may occur. However, there is no simple selec-
tion rule. Figure 14.37 shows the P, Q, and R branches for carbon dioxide, CO2.

508 C H A P T E R  14 Rotational and Vibrational Spectroscopy

P branch:
�J � �1

R branch:
�J � �1

� � 1

� � 0

J � 4

J � 0

J � 3

J � 2

J � 1

J � 0
J � 1

J � 4

J � 3

J � 2

Figure 14.36 Energy-level diagram showing
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Rovibrational spectra for nonlinear polyatomic molecules are more com-
plicated. For polyatomic molecules that have a permanent dipole moment,
there can be up to three independent rotational lines superimposed on a single
normal vibration of the molecule. Figure 14.38 shows a rovibrational spectrum
of H2O in the gas phase, where the molecules can rotate freely. Even though
we have increased the size of our molecular system by only one atom, the com-
plexity of the spectrum has increased dramatically. But because of the large
amount of molecular data that can be derived from such spectra, the detailed
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study of the rotational-vibrational spectra of nonlinear polyatomic molecules
is as rewarding as it is complex.

Example 14.21
The peaks representing the R branch get closer and closer together as J increases.
a. Use equation 14.41 to estimate at what rotational state the rovibrational
lines will cease to be separated from each other, and will start moving to
lower energy. (This point is called the band head of the series of absorptions.)
To simplify the problem, neglect the centrifugal distortion term. Use B0 �
10.44 cm�1 and B1 � 10.14 cm�1.
b. What is the maximum populated rotational level of HCl at 298K? (Use
equation 14.23.) 
c. On the basis of the previous answer, would one expect to observe the band
head in a spectrum measured at this temperature?

Solution
a. Using the expression from equation 14.41, the separation between two ad-
jacent absorptions, labeled �(�E), is independent of the harmonic vibra-
tional frequency and the anharmonicity and is equal to

�(�E) � (B1 	 B0) 	 (B1 � B0)(2J 	 3)

where �(�E) is the symbol for the difference between the �E values of the
spectrum. Evaluating the sum and difference of the B values in the above ex-
pression:

�(�E) � 20.58 cm�1 � 0.30(2J 	 3) cm�1

This separation is usually positive, since the first term normally overwhelms
the second, negative term. However, at a high enough J value, the second term
will cancel out the first term so that the lines in the spectrum will first over-
lap and then start progressing toward higher energies. We want the value of
J where �(�E) is about zero:

0 � 20.58 cm�1 � 0.30(2J 	 3) cm�1

Solving for J algebraically yields

J � 32.8 	 33

for the approximate position of the band head.
b. Using

Jmax 	 ��
2

kT

B
��

1/2

we will first have to convert one of the B values to appropriate units. We get

B � 10.44 cm�1��2.9979 

s

1010 cm
��6.626  10�34 J�s � 2.074  10�22 J

where we have arbitrarily used the ground-state B0. Substituting:

Jmax 	  �
1/2

All of the units cancel, so that we are taking the square root of a unitless num-
ber. We get

Jmax 	 4.5

(1.381  10�23 J/K)(298K)
���

2(2.074  10�22 J)
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or equal to about J � 4 or 5. (How does this compare with the spectrum in
Figure 14.35?)
c. Given that the band head occurs at around J � 33, we are 28 or so quantum
rotational levels away. Since the spectrum in Figure 14.35 seems to diminish in
intensity rather quickly, it is doubtful that the band head will be observed for
this molecule at this temperature. Chances of observing it would be better if
the temperature were increased. With the inclusion of the centrifugal distor-
tion, however, the band head would be expected to occur at slightly lower J, but
still not low enough to be observed at normal temperatures.

14.18 Raman Spectroscopy
When light is passed through a transparent sample, most of the light is trans-
mitted through the sample. A tiny amount of light (about 1 photon in 104) is
scattered from the sample at some angle and comes off at some angle. This
light has the same frequency as the incoming light, and the extent to which
light is scattered is inversely proportional to the fourth power of its wave-
length.* This phenomenon is called Rayleigh scattering. Rayleigh scattering can
be thought of as elastic collisions between molecules and photons.

An even smaller amount of light (about 1 photon in 107) is scattered but
changes frequency: these can be thought of as inelastic collisions between mol-
ecules and photons. This phenomenon is called Raman scattering, after the
Indian physicist Chandrasekhara Raman, who is credited with discovering the
effect in 1928. Raman scattering is interesting because the energy changes of
the outgoing photons correspond to changes in quantized energy levels of the
molecules in the sample:

�E(photon) � �E(energy levels) (14.43)

Thus, Raman scattering forms the basis for a type of spectroscopy, called
Raman spectroscopy. Today, Raman spectroscopy is performed using lasers as
the incoming light source because the laser light is intense (providing a better
chance to observe photons that have shifted frequency) and monochromatic
(making it easier to find shifted-frequency photons).†

Raman spectroscopy is used to study many different types of spectral
transitions, but for our purposes we focus on the use of Raman scattering to
study the vibrational energy transitions of molecules. Incoming photons will
interact with molecules and, in a small number of cases, lose some of their
energy to the vibrations of the molecules. The outgoing photons, scattered
in all directions, will lose a small amount of energy equal to the difference in
the vibrational energy levels of the molecule. From quantum mechanics, the
energy difference between the incoming and outgoing photon equals the
energy difference in the quantized vibrational energy levels:

�E(photon) � h�i (14.44)

where �i is the classical frequency of the ith vibration of the molecule.
An example of a Raman spectrum of tetrafluoroethylene, C2F4, is shown in

Figure 14.39. There are some differences between a Raman spectrum and an
absorption vibrational spectrum. First, a Raman spectrum is a plot of the
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*Rayleigh scattering is reponsible for the blue color of the sky. Blue light scatters more
than other wavelengths because of its shorter wavelength.

†Raman and his colleagues used sunlight and, later, mercury lamps as light sources.
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energy difference between the incoming light and the outgoing light. Thus, if the
incoming light is in the visible part of the spectrum, the outgoing light is also in
the visible part of the spectrum. It’s the changes in the energy of the photons that
equal the vibrational energy differences (rather than the absolute energies of the
photons). Figure 14.39 shows two scales on the abscissa of the spectrum, an ab-
solute frequency of the light (which shows that the spectrum is being measured
in the visible portion of the electromagnetic spectrum), and a difference in fre-
quency of light (which shows magnitudes that are consistent with vibrations of
molecules). A �� value of 0 is at the frequency of the incoming, excitation light—
in this case, the 632.8-nm wavelength of the red light of a He-Ne laser. There is
a very large peak at that position because of the relatively intense Rayleigh scat-
tering of the incoming light. Some photons appear at lower frequencies, with the
energy shifts corresponding to the vibrational frequencies of C2F4. Thus, this
Raman spectrum is giving us a vibrational spectrum of the sample.

Another difference between Raman spectroscopy and regular absorption
spectroscopy is that occasionally an outgoing photon increases its energy by in-
teracting with a molecule that is energetically excited. In this circumstance, the
photon increases its frequency and we see a spectrum on the higher-energy
side of the excitation light. Because the same energy levels of the molecule are
involved, we see the same—but reflected—vibrational spectrum we see on the
lower-energy side of the excitation line, only less intense (because there are
typically fewer molecules in the excited energy states). This is also shown in
Figure 14.39. The lines of the spectrum on the lower-energy side are called the
Stokes lines, and the lines of the spectrum on the higher-energy side are called
the anti-Stokes lines (after George Gabriel Stokes, an Irish mathematician who
discovered fluorescence in 1852).
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Figure 14.39 A Raman spectrum of tetrafluoroethylene, CF2CF2. The difference between the
frequency of the emitted photon and the excitation photon equals an energy of vibration of
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Raman spectroscopy also has selection rules. The gross selection rule for a
Raman-active vibration is related to the polarizability of the molecule.
Polarizability is a measure of how easily an electric field can induce a dipole
moment on an atom or molecule. Vibrations that are Raman-active have a
changing polarizability during the course of the vibration. Thus, a changing
polarizability is what makes a vibration Raman-active. The quantum-mechan-
ical selection rule, in terms of the change in the vibrational quantum number,
is based on a transition moment that is similar to the form of M in equation
14.2. For allowed Raman transitions, the transition moment [�] is written in
terms of the polarizability � of the molecule:

[�] � � �*final��initial d� (14.45)

where �final and �initial are the final and initial vibrational wavefunctions, re-
spectively. As with vibrations absorbing infrared light, it can be shown that this
integral is exactly zero unless the difference in the quantum numbers of �final

and �initial is �1:

�v � �1 for allowed Raman vibrational transitions (14.46)

IR-active vibrations require a changing dipole moment, which is relatively
easy to visualize by inspection of the normal mode’s atomic vectors. Changes
in polarizability are not as straightforward to visualize. But, as with IR-active
vibrations, we can use the great orthogonality theorem to determine the num-
ber of Raman-active vibrations that a molecule will have. The procedure is the
same as what was done using Table 14.5 in Example 14.19, except for step 9,
in which we use information in the character table to determine which irre-
ducible representations are spectroscopically active. For IR-active vibrations,
we looked for the x, y, and z labels on the irreducible representations. These la-
bels gave us an indication of the irreducible representation of the dipole mo-
ment operator in those point groups. But according to equation 14.45, the op-
erator for the Raman transition moment is �, not �. The polarizability � has
different irreducible representations in the point groups, and those irreducible
representations are labeled with second-order variables: x2, y2, z2, xy, yz, xz, or
other combinations of second-order functions. Such functions are listed in the
character tables in Appendix 3. Vibrations that have irreducible representations
associated with these labels are Raman-active.

Example 14.22
Use the information in Example 14.19 to determine which vibrations of car-
bon tetrachloride, CCl4, are Raman-active.

Solution
According to step 8 of Example 14.19, the vibrations of CCl4 collectively have
the irreducible representations


 � 1A1 � 1E � 2T2

If we check the Td character table in Appendix 3, we find second-order func-
tions listed with A1, E, and T2 irreducible representations. Therefore, all of the
vibrations of CCl4 will be Raman-active, and the Raman spectrum will con-
sist of four signals representing one singly degenerate, one doubly degener-
ate, and two triply degenerate vibrations.
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By comparing the solutions of Examples 14.19 and 14.22, we see that vi-
brational absorption spectroscopy and Raman spectroscopy provide different
information. Absorption and Raman spectroscopies are complementary tech-
niques. In fact, by comparing the results of absorption and Raman spectra and
doing a group-theoretical analysis, one can provide evidence for or against a
particular symmetry for a molecule. (See the end-of-chapter exercises for an
example of this sort of analysis.) Raman spectra can provide additional infor-
mation by analyzing the polarization differences between the incoming and
outgoing light (another advantage of using lasers as a light source). Such analy-
ses are beyond our scope; additional information can be found in more de-
tailed texts about Raman spectroscopy.

Raman spectroscopy can be used to probe other energy levels besides vi-
brational. For example, rotational and electronic energy levels can also be in-
vestigated using Raman scattering. Raman spectroscopy is just one more tool
in the modern chemist’s arsenal for the study of atoms and molecules.

14.19 Summary
This chapter gives a brief introduction of rotational and vibrational spec-
troscopy. It is an enormously powerful subject when applied to the study of
molecules. Performed and analyzed properly, a rotational or vibrational spec-
trum can yield direct information about the structure of a molecule. Pure ro-
tational spectroscopy, which utilizes the microwave portion of the electromag-
netic spectrum, allows us to calculate sizes of molecules that agree with the
atomic scale assumed by Dalton’s atomic theory. Microwave spectroscopy has
also been useful in observing the universe around us. Astronomical observato-
ries have identified specific molecules existing in interstellar space, like H2O,
HCN, H2S, C2H2, even C2H5OH—all from microwave (that is, rotational)
spectra observed by microwave “telescopes.” Such knowledge supports the idea
that the chemicals in our world exist not just here but throughout the universe.

Vibrational spectroscopy also provides valuable information about the
structures of molecules, especially when one combines the complementary
tools of infrared absorption and Raman spectroscopies. Vibrational spectra,
coupled with group theory and symmetry, are indispensable tools for inferring
the structure of a molecule, for determining how atoms in a molecule are
bonded together. Fingerprint regions are also a quick method of establishing
what groups of atoms exist in a molecule. Together, rotational and vibrational
spectroscopy deal with the relative nuclear motions of molecules.
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14.2 & 14.3 Selection Rules and
Electromagnetic Light

14.1. Why won’t a rotational spectrum be observed for the
rotation of a linear molecule about its linear axis?

14.2. Determine if the following integrals can be nonzero if
the molecular or atomic system has the given local symmetry.
Use the great orthogonality theorem if necessary.

(a) � �*Au
Ô B2u

�Au
d� in D2h symmetry

(b) � �*A1
Ô A1

�A2
d� in C3v symmetry

(c) � �*�g
	Ô �g

���g
� d� in D�h symmetry

(d) � �*EÔ A2
�T1

d� in Td symmetry

14.3. What is the frequency of light having the following
wavelengths? (a) 1.00 m (b) 4.77  10�5 m (c) 7894 Å 
(d) 1.903  103 m

14.4. The Cu(H2O)6
2	 complex has octahedral symmetry. Is

a transition from a T2g state to an Eg state allowed if the tran-
sition moment operator has a T1u symmetry label?

14.5. What are the wavelength, speed, and energy of a pho-
ton that has a frequency of 8.041  1012 s�1?

14.6. Show that the wavenumber of any electromagnetic
light is proportional to its frequency.

14.7. Both of the units micron (wavelength) and cm�1 (wave-
number) are common in infrared spectroscopy. Use their def-
initions and relationships to derive a simple equation to con-
vert from one to the other. (Hint: the product of the two values
equals a constant.)

14.4 Rotations

14.8. The silver hydride diatomic molecule, 197Ag1H, has an
internuclear bond distance of 1.617 Å. Predict the energies, in
joules, of its first four rotational levels. (Use I � �r2.)

14.9. Classify the following molecules as linear, spherical tops,
prolate symmetric tops, oblate symmetric tops, or asymmetric
tops.

(a) Dimethylacetylene, CH3–C�C–CH3

(b) Sulfur hexafluoride, SF6

(c) The phosphate ion, PO4
3�

(d) Glycine, CH2(NH2)(COOH)

(e) cis-1,2-Dichloroethylene

(f) trans-1,2-Dichloroethylene

(g) Hexamethylbenzene, C6(CH3)6

(h) Diacetylene, CH�C–C�CH

(i) The cyanide radical, CN�

14.10. Diatomic sulfur, S2, was detected in the tail of Halley’s
comet when it last approached Earth in 1985–86. It has a
bond length of 1.880  10�10 m. Calculate the value of B, in
units of cm�1 and J, for S2.

14.11. Calculate the values for B of SF6 and UF6, which are
both octahedral molecules. The S–F bond distance is 1.564 Å,
and the U–F bond distance is 1.996 Å. Comment on the dif-
ferences between the two B values, keeping in mind that the
atomic weight of S is 32.06 and that of U is 238.0.

14.12. The moments of inertia for phosphine, PH3, are 5.478
 10�47 kg�m2, 5.478  10�47 kg�m2, and 6.645  10�47

kg�m2. Calculate the rotational constants A, B, and C for phos-
phine.

14.13. Show that the degeneracy of rotational levels for sym-
metric tops is 2(2J 	 1) unless K � 0, for which the degener-
acy is 2J 	 1.

14.14. Calculate the values of the first five rotational energy
levels of phosphine, PH3. Use the values of the moments of in-
ertia given in exercise 14.12, above.

14.15. Calculate the values of the first five rotational energy
levels of ethane, CH3CH3, assuming it is in its energetically
minimal staggered conformation. The moments of inertia for
ethane are 1.075  10�46 kg�m2, 4.200  10�46 kg�m2, and
4.200  10�46 kg�m2.

14.5 Rotational Selection Rules

14.16. Which of the following molecules should have pure
rotational spectra?

(a) Deuterium, D2 (D is 2H) (b) Carbon monoxide, CO 

(c) cis -1,2-Dichloroethylene (d) trans-1,2-Dichloroethylene

(e) Chloroform, CHCl3 (f) Buckminsterfullerene, C60

(g) Dimethyltriacetylene, CH3–C�C–C�C–C�C–CH3

(h) Cyanotetraacetylene, H–C�C–C�C–C�C–C�C–C�N
(Such molecules have been detected in interstellar space.) 

(i) Nitric oxide, NO (j) Nitrogen dioxide, NO2.

14.17. The following are sets of rotational quantum numbers
(J, MJ, K). Label each indicated transition as either allowed or
forbidden. Hint: remember the rules for allowed values of the
various quantum numbers.

(a) (0, 0, 0) → (1, 1, 0) (b) (0, 0, 0) → (�1, 0, 0)

(c) (3, 2, 1) → (3, 1, 1) (d) (4, 4, 1) → (2, 4, 1) 

(e) (5, 4, 0) → (3, 6, 0) (f) (8, 2, 2) → (9, 2, 2)

(g) (7, 4, 2) → (7, 4, 2) (h) (4, 2, 5) → (3, 2, 5)

14.6 Rotational Spectroscopy

14.18. Having used a spectrometer to measure a simple ro-
tational spectrum, you plot it in units of wavenumbers, cm�1.
How do you expect the spectrum to look? Convert the ab-
sorption energies to units of wavelength and replot. Are the
absorptions equally spaced? Why or why not?

14.19. The rotational spectrum of 127I35Cl consists of lines
equally spaced by 0.114 cm�1. Calculate the bond distance
for iodine monochloride.
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14.20. Lithium hydride, 7Li1H, is a potential fuel for fusion re-
actors because it is one of the few compounds of very small
elements that exists as a solid, and is therefore more dense
than gaseous fuels even under extreme conditions. LiH in the
gas phase has a pure rotational spectrum consisting of lines
spaced by 15.026 cm�1. Calculate the bond distance in LiH.

14.21. Determine the first four absorptions in the pure rota-
tional spectrum of LiH (see exercise 14.20) in units of GHz.

14.22. Determine the most populated rotational level, Jmax, for
a sample of LiH (see problem above) at (a) 298 K, (b) 1000 K,
(c) 5000 K.

14.23. Given a pure rotational spectrum of the HS radical di-
atomic molecule (r 	 1.40 Å), you notice that the most in-
tense absorption is assigned to the J � 8 → J � 9 transition.
Estimate the sample temperature.

14.24. A gas-phase sample is subjected to an electric field,
and its Stark-effect rotational spectrum is measured. How many 
individual lines will be detected for the following transitions?
(a) J � 0 → J � 1 (b) J � 1 → J � 2 (c) J � 2 → J � 3

14.25. From the data in Table 14.2, predict B for DCl (D 
is 2H).

14.7 Centrifugal Distortions

14.26. Verify equation 14.26.

14.27. An acquaintance remarks that a rotational spectrum of
I2 showing the J � 200 → J � 201 transition is predicted very
closely by the rigid rotor equations from quantum mechanics.
Give two reasons why you should question the validity of that
statement.

14.28. Consider the values in Table 14.2 and remark on the
trend of the magnitudes of B and D versus atomic mass. Does
the trend make sense?

14.29. Using the value of �̃ � 4320 cm�1 for diatomic hy-
drogen and the value of B for H2 from Table 14.2, approxi-
mate DJ and compare it to the values given in Table 14.2.

14.8 & 14.9 Vibrations and Normal Modes

14.30. Determine the number of total degrees of freedom
and the number of vibrational degrees of freedom for the fol-
lowing molecules. (a) Hydrogen fluoride, HF (b) Hydrogen
telluride, H2Te (c) Buckminsterfullerene, C60 (d) Phenyl-
alanine, C6H5CH2CHNH2COOH (e) Naphthalene, C10H8 (f)
The linear isomer of the C4 radical (g) The bent isomer of the
C4 radical

14.31. How many total normal modes of vibration do the
molecules in the previous problem have?

14.32. Methane, CH4, has only two IR-active vibrational modes.
Comment on the expected number of IR-active vibrational
modes of CH3D, where one hydrogen atom is replaced by a
deuterium.

14.10 Quantum Mechanics and Vibrations

14.33. Show that the two expressions in equation 14.30 are
equivalent.

14.34. Verify that the ratio of vibrational frequencies used
originally in Example 14.12 does reduce to �̃*/(2886 cm�1) �
��/�*�.

14.35. Considering reduced mass can sometimes yield useful
approximations even if a replaced atom isn’t an isotope.
Consider CO2 and OCS. The symmetric C�O stretching vi-
bration occurs at 1338 cm�1. Estimate the frequency of the
stretching vibration of the C�S bond assuming that the S
atom is an isotope of oxygen. (It appears at 859 cm�1.) Is this
a good approximation or not?

14.36. The FeH diatomic molecule absorbs infrared light 
having a frequency of 1661.0 cm�1. Assuming that this is 
for 56FeH, calculate the frequency of light that 54FeH would
absorb.

14.11 Vibrational Selection Rules

14.37. Why is nitrogen gas commonly used as a purge gas in
infrared spectrometers?

14.38. From the description in the text of the vibrational mo-
tions of the carbon dioxide molecule, draw arrows on each
atom indicating how the atoms are moving for each normal
mode. Draw a final arrow (if possible) indicating the direction
of any fleeting dipole moment, and state whether each nor-
mal mode will be IR-active. (See Figure 14.30.)

14.39. Differentiate between fundamental vibrations, over-
tone vibrations, and hot bands. What are the selection rules
for the vibrational quantum number for each?

14.40. Are deviations from an ideal harmonic oscillator more
likely to be seen at low energies or high energies? Explain your
answer.

14.12 Vibrations of Diatomic 
and Linear Molecules

14.41. Prove that �2V/�r2 � k, the force constant. Show that
the units on V (energy) and k (N/m) are consistent with this
equation.

14.42. Use Figure 14.29 to comment on the variances be-
tween a Morse oscillator and a true molecular potential energy
curve.

14.43. Using the information in Table 14.4, calculate De and
the Morse potential constant a for HF (k � 965.1 N/m) and
HBr (411.5 N/m). Express the constant a in units of m�1 and
Å�1. Combining your answer with the value of a for HCl in
Example 14.15, do you see any trends?

14.44. Use the equation for the energy of a Morse oscillator
and calculate the values for the five transitions listed for HCl
in Table 14.3. How close are the predicted vibrational transi-
tions to the experimental values in the table?

14.45. Use the �e values from Table 14.4 to calculate anhar-
monicity constants xe and �exe for HBr and CO, and compare
them to the tabulated values. Use D0 (HBr) � 362 kJ/mol and
D0 (CO) � 1071 kJ/mol.
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14.46. In exercise 14.36 above, the vibrational frequency of
FeH was given as 1661 cm�1. That is the observed vibrational
frequency, not the harmonic vibrational frequency. Equation
14.39 can be used to determine that the observed frequency,
�, is related to the harmonic frequency �e and the anhar-
monicity xe�e by the equation

� � �e � 2xe�e

Assume that for a deuterated molecule, the frequency of the
shifted vibration occurs at

�* � ��e � 2�2xe�e

where � is the square root of the ratio of the reduced masses,
��/�*�. FeD absorbs light having a frequency of 1203 cm�1 .
From this information, calculate the harmonic vibrational fre-
quencies and the anharmonicity constants for FeH and FeD.
(Source: A. Dendramis, R. J. Van Zee, W. Weltner, Jr. Astrophys.
J. 1979, 231: 632–36.)

14.47. Derive the two equations used to solve exercise 14.46,
using equation 14.39 and the concept of reduced mass. You
will need to consider equation 14.40 as well.

14.13 & 14.14 Symmetry and Vibrations,
Nonlinear Molecules

14.48. From Figure 14.32, label the normal modes of NH3

with their proper irreducible representation.

14.49. Consider the following two vibrational modes of di-
acetylene, HC�C–C�CH:

Determine their irreducible representation labels. Which (if ei-
ther) of these vibrational modes is expected to be IR-active for
symmetry reasons, and why?

14.50. Each of the following pairs of molecules has the same
number of atoms. In each pair, which one would you expect
to have fewer different vibrational frequencies? You may have
to determine the symmetry of each molecule before you can
make a determination. (a) HCl and Cl2 (b) H2O 2 and C2H2

(c) CH4 and XeF4 (d) PF5 and CH3CN (e) Ca3(PO4)2 and
C6H5OH.

14.51. List the individual symmetry elements for the follow-
ing point groups as either proper rotations or improper rota-
tions. (a) C3v (b) Td (c) D6h (d) S4 (e) D�h (f) O (not Oh!)

14.52. Determine the number of IR-active vibrations for ben-
zene, C6H6. Does it agree with the material in the text?

14.53. Determine the number of IR-active vibrations for the
following molecules. You may have to determine their sym-
metry first. (a) Hydrogen peroxide, H2O2 (b) Oxalic acid,
(COOH)2 (c) Sulfur trioxide, SO3 (d) Formaldehyde, H2CO 
(e) Acetone, (CH3)2CO (assume C2v symmetry)

14.54. Determine the number of IR-active vibrations for the
following molecules. You may have to determine their sym-
metry first. (a) CH4 (b) CH3Cl (c) CH2Cl2 (d) CHCl3 (e) CCl4
Do the answers make sense as you progress from methane to
fully substituted methane?

H C

H C

CC

CC

C H

C H

14.55. How would you determine if KrF4, if it were synthe-
sized, had tetrahedral or square planar geometry?

14.56. Determine the number of IR-active vibrations for the
following molecules. You may have to determine their sym-
metry first. (a) F2O (b) NCl3 (c) N(CH3)3 (assume C3v sym-
metry)

14.57. Verify that cubane, C8H8, has only three IR-active 
vibrations and determine the degeneracies of each. How 
many total vibrations out of the 42 vibrational degrees of free-
dom are thus represented by the three IR-active vibrational
motions?

14.15 & 14.16 Nonallowed, Nonfundamental
Vibrations and Fingerprint
Regions

14.58. Carbon dioxide has the following fundamental vibra-
tional frequencies:

�1 � 667 cm�1 �2 � 1338 cm�1 �3 � 2349 cm�1

According to the literature (K. E. Dierenfeldt, J. Chem. Ed.,
1995, 72: 281–83), the following combination bands appear
in the spectrum: 618, 2337, and 3715 cm�1. Assign these to
the proper combinations of the fundamental vibrations.

14.59. Would you expect the above combination absorptions
to be strong or weak in a spectrum? Why?

14.60. Why is it possible to identify fingerprint regions for
overtone transitions and hot bands but not for combination
bands?

14.61. Dioctyl sulfide, (C8H17)2S, and hexadecane, C16H34,
have very similar vibrational spectra. Use a correlation table to
explain why.

14.62. Where would you expect vibrations for ethyl alcohol,
CH3CH2OH, to appear in a vibrational spectrum?

14.17 Rovibrational Spectroscopy

14.63. Silane, SiH4, has a tetrahedral geometry and a rovi-
brational spectrum consisting of lines spaced by 16.72 cm�1.
Calculate the Si–H bond distance in silane. Could this infor-
mation be obtained by pure rotational spectroscopy? Why or
why not?

14.64. Electronic energy level transitions typically have higher
energies than vibrational energy levels. Would the equivalent
of P, Q, or R branches appear in electronic spectra if �v were
�1, 0, or 1? Justify your answer.

14.65. What are the forms of equations 14.41 and 14.42 if
centrifugal distortion is negligible?

14.66. The table in exercise 14.71 lists some frequencies of
absorptions in a P branch and an R branch. Why is there no
line listed as P(0)?

14.18 Raman Spectroscopy

14.67. Two Raman spectra are measured on the same sam-
ple. One spectrum uses the red He-Ne laser light, at 632.8 nm,
as a source; the other uses the 568.2-nm light from a Kr	 laser.
How are the two spectra different? How are the two spectra
the same?
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14.68. Determine the number of Raman-active vibrations for
the following molecules. You may have to determine their
symmetry first. 

(a) CH4 (b) CH3Cl (c) CH2Cl2 (d) CHCl3 (e) CCl4
Compare your results with the answers to exercise 14.54,
above.

14.69. The mutual exclusion rule states that for certain mole-
cules, vibrations that are IR-active are not Raman-active, and
vice versa. Molecules must have a certain symmetry element
in order for the mutual exclusion rule to apply. Examine the
character tables in Appendix 3 and determine what that sym-
metry element is.

14.70. Is xenon tetrafluoride, XeF4, tetrahedral or square pla-
nar? IR and Raman spectra each show three vibrations. Use the
GOT and analyses like those in Examples 14.19 and 14.22 to
propose a structure for this molecule.

14.71. Several equations can be derived from equations 14.41
and 14.42 and used to determine, graphically or numerically,
the various molecular parameters for a molecule from rovibra-
tional spectral data: Two of them are

� B1 � 2DJ( J2 	 J 	 1)

� B0 � 2DJ( J2 	 J 	 1)

where R( J) is the line in the R branch that originates from the
J rotational level and P( J) is the line in the P branch that orig-
inates from the J rotational level. Use the following data to 

R(J � 1) � P(J 	 1)
���

4( J 	 �
1
2

�)

R(J) � P(J)
��

4( J 	 �
1
2

�)

determine B0, B1, and DJ for HCl. All numbers are in units 
of cm�1.

R(0) 2906.047
P(1) 2864.825 R(1) 2925.814
P(2) 2843.370 R(2) 2944.859
P(3) 2821.433 R(3) 2963.180
P(4) 2798.773 R(4) 2980.777
P(5) 2775.631 R(5) 2997.893
P(6) 2751.765 R(6) 3014.286
P(7) 2727.658 R(7) 3029.955

14.72. Use equation 14.17 to determine the energies of ro-
tation for ammonia, NH3, as the rotational quantum number
J ranges from 1 to 10. (Ia � Ib � 4.413  10�47 kg�m2, Ic �
2.806  10�47 kg�m2) Then, construct an energy level dia-
gram for all of the rotational levels, and label them with J and
K quantum numbers. What are the degeneracies of the levels?

14.73. What are the energy changes for the allowed rota-
tional transitions from the energy level diagram constructed in
exercise 14.72?

14.74. Construct and compare the energy level diagrams for
the rotations of a diatomic molecule assuming it acts as a rigid
rotor (equation 14.21) and a rigid rotor with centrifugal dis-
tortion corrections (equation 14.26). Use HBr as a model sys-
tem, where B � 8.473 cm�1 and DJ � 3.72  10�4 cm�1.
Compare rotational levels up to J � 20.

14.75. Construct and compare energy level diagrams for vi-
brations of an ideal harmonic oscillator and an anharmonic os-
cillator. Use HCl as a model oscillator, and compare levels up
to v � 25. Use �e � 2989.74 cm�1 and �exe � 52.05 cm�1.
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DESPITE THE FACT THAT WE TREATED vibrational and rotational
spectroscopy first, the astute student will recognize that one of the mys-

teries of classical mechanics involved electronic spectroscopy. The inability to
explain the (electronic) spectrum of the hydrogen atom was a major reason for
the development of quantum mechanics. Yet, we have put off a detailed dis-
cussion of it until after considering rotational and vibrational spectra.

The reason for the delay is that a detailed discussion is slightly more com-
plicated for electronic spectra than for rotations or vibrations. Some new ideas
will have to be developed in order to begin to understand the electronic spec-
tra and structures of many-electron systems. (We should recognize that the
electronic spectrum of hydrogen, even in the formalism of quantum mechan-
ics, will be relatively simple.) However, as with rotational and vibrational spec-
troscopy, our treatment of electronic spectroscopy in this chapter is limited by
necessity. Entire books are written on the subject, and we can only introduce
some basic ideas here.

15.1 Synopsis
We will start by considering the selection rules for electronic transitions. Then,
we will consider the electronic spectrum of the hydrogen atom in terms of the
selection rules and quantum mechanics. There will be few if any surprises here,
since the positions of the lines of the hydrogen atom’s spectrum were at least
known (but not completely understood) over a hundred years ago. The elec-
tronic spectrum of helium, the simplest multielectron system, is not so easy
to model mathematically. This is expected, since quantum mechanics cannot
determine analytic expressions for the wavefunctions for the helium atom. An
electronic spectrum, which shows changes in energies, is equally nonanalytic.
However, for helium and larger atoms (and molecules), we will find that cer-
tain regularities in the spectrum can be traced back to the angular momentum
of the electrons in the atom or molecule. Ultimately, the angular momen-
tum—which was central to Bohr’s theory of hydrogen—will have a central role
in our understanding of electronic spectra. We will see how it is utilized in
atomic, diatomic, and (briefly) molecular electronic spectra.

15.1 Synopsis
15.2 Selection Rules
15.3 The Hydrogen Atom
15.4 Angular Momenta: Orbital

and Spin
15.5 Multiple Electrons: 

Term Symbols and 
Russell-Saunders Coupling

15.6 Electronic Spectra of
Diatomic Molecules

15.7 Vibrational Structure and
the Franck-Condon Principle

15.8 Electronic Spectra of
Polyatomic Molecules

15.9 Electronic Spectra of 
� Electron Systems: 
Hückel Approximations

15.10 Benzene and Aromaticity
15.11 Fluorescence and

Phosphorescence
15.12 Lasers
15.13 Summary

Introduction to Electronic
Spectroscopy and Structure
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Some molecules have electronic structures that are more easily described
than others. The � electron system of aromatic molecules is an example, and
we will discuss it briefly—but in enough detail to understand exactly where the
important idea of aromaticity comes from. Fluorescence and phosphorescence
are two electronic phenomena that show how complex the interactions of elec-
tronic wavefunctions can get. Finally, we will introduce lasers. Although laser
action can be due to transitions among vibrational, rotational, chemical, or even
translational energy levels, the original lasers were dependent on electronic
transitions. Given the prevalence of lasers in modern society, it is perhaps only
fitting that we end the chapter with an introduction to these powerful light
sources.

15.2 Selection Rules
As with rotational and vibrational transitions, there is a selection rule for elec-
tronic transitions dictating which electronic wavefunctions participate in al-
lowed transitions. Allowed electronic transitions must have a nonzero transi-
tion moment as given by the expression

M � � �*final�̂�initial d� (15.1)

where now �initial and �final refer to wavefunctions of the system of interest.
�̂ is the electric dipole operator that defines the interaction between light and
matter. In rotational and vibrational spectroscopy, the selection rules we could
derive from equation 15.1 were relatively straightforward in terms of changes
in rotational and vibrational quantum numbers.

Unfortunately, for electronic transitions, gross selection rules are not as
straightforward to define. Therefore, we will consider the selection rules for
electronic transitions as they arise in the discussion of the material. The elec-
tronic spectrum of the hydrogen atom, for example, has a relatively simple se-
lection rule. The electronic spectrum of the benzene molecule, as a counter-
example, follows more complex rules.

There is one assurance with regard to electronic spectra. Recall that allowed
transitions for both rotational and vibrational spectra depend on the presence
of a dipole moment, either a permanent one or a changing one. Allowed elec-
tronic transitions always occur with a change in the electronic charge distri-
bution in an atom or molecule. (This change is sometimes referred to as a
“dipolar shift.”) This statement is easily justified. An electron whose state is
described by an initial wavefunction has probabilities of existing in certain
locations in an atomic or molecular system. When described by a different
wavefunction, the electron has different probabilities of existing in those loca-
tions. The electron probability distribution has changed. Allowed electronic
transitions are therefore intimately tied to the idea of a changing electronic
charge, just like allowed rotational and vibrational transitions.

Specific selection rules for atoms and molecules can also be determined us-
ing group-theoretical analyses of the functions in equation 15.1, exactly as we
did in the previous chapter for allowed IR and Raman vibrational transitions.

15.3 The Hydrogen Atom
Recall that when an electric current is passed through a sample of hydrogen
gas, light is given off and this light has certain specific frequencies. The inter-
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pretation that this light is emitted by electronic transitions was firmly estab-
lished by Bohr, who derived the equation

�
�

1
� � R��

n

1
2
2

� 	 �
n

1
2
1

�� (15.2)

by assuming that the angular momentum of the electron is quantized. � is the
wavelength of the light, R is called the Rydberg constant, and n1 and n2 are
quantum numbers. Quantum mechanics provides a similar equation for the
spectrum of the hydrogen atom (albeit from different assumptions, namely
that the wavefunctions of electrons in hydrogen must satisfy the Schrödinger
equation). Quantum mechanics also determines that the Rydberg constant R is

R � �
8

e




4

2
0

�

h2� (15.3)

where the constants in the above expression have their usual meaning. The
relative simplicity of the spectrum of the hydrogen atom is based on equation
15.2, which is itself based on experiment (that is, observation). And so a 
“selection rule” of sorts can be stated for electronic transitions in the hydro-
gen atom: allowed transitions are dictated by changes in the principal quan-
tum number.

However, this is misleading. Although electronic energy levels are dictated
by the principal quantum number, we should remember that a principal quan-
tum shell in a hydrogen atom has other quantum numbers, namely � and m�.
If the symmetries of the operator and wavefunctions in equation 15.1 were ex-
amined, one would find that it is the angular momentum quantum number �
that dictates the selection rule. The specific selection rule for allowed electronic
transitions in the hydrogen atom (or, for that matter, hydrogen-like atoms) is

�� � �1 (15.4)

Since photons themselves have an angular momentum, this selection rule is
consistent with the law of conservation of angular momentum. There is also a
potential effect on the m� quantum number, since the change in the � quan-
tum number may or may not occur in the z component of the total angular
momentum. Therefore, the accompanying selection rule is

�m� � 0, �1 (15.5)

There is no restriction on the change in n, the principal quantum number. �n
can have any value. Why are the selection rules, equations 15.4 and 15.5, not
obvious from the spectrum of the hydrogen atom? Because the electronic
energy of the hydrogen atom does not depend on the angular momentum
quantum number. It depends only on the principal quantum number, n. The
spatial wavefunctions of the hydrogen atom are n2-fold degenerate because of
variations in the � and m� quantum numbers, so the spectrum of the hydro-
gen atom appears as if the energy differences are due to changes in the princi-
pal quantum number.* In reality, the spectral lines are due to electrons chang-
ing not just their principal quantum number but also, according to the selection
rule, their angular momentum quantum number.

Figure 15.1 shows some of the transitions that are possible according to the
selection rule above. For several of the possible changes in the n quantum
number, the �� changes are different but lead to the same �E (which is what
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*They are 2n2-fold degenerate if the spin of the electron is included.

n � 3

n � 2

n � 1

E
ne

rg
y

� 1� 0 � 2

� 0 � 1

� 0
Figure 15.1 Some of the allowed transitions
of the single electron in the hydrogen atom.
Despite the complexity of the diagram, the hy-
drogen atom’s electronic spectrum is relatively
simple because the subshells within the same
principal quantum number are degenerate.
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a spectrum illustrates). Since the energy of the transition depends on the value
of n and not of �, the different transitions ultimately have the same �E.

Example 15.1
Which pairs of transitions [indicated by the (n, �, m�) quantum numbers] of
the hydrogen atom occur with the same value of �E? 
a. (2, 1, 1) → (3, 2, 2) and (3, 2, 2) → (4, 1, 2)
b. (3, 1, 0) → (5, 2, 1) and (3, 4, 0) → (5, 3, 0)

Solution
a. Since the two transitions are occurring between different values of the
principal quantum number, these two transitions do not have the same �E
value and would be seen at different wavelengths in the spectrum.
b. Even though the � and m� quantum numbers are different, because the
transitions occur between wavefunctions having the same principal quantum
number, the energies of transition are the same.

The above example and selection rules are also applicable to hydrogen-like
ions, which have a single electron. However, such systems are in the vast mi-
nority of atomic species whose spectra need to be understood. Recall that one
of the final failings of classical mechanics was the inability to explain spectra.
Although quantum mechanics does not provide analytic solutions for wave-
functions of multielectron systems, it does provide tools for understanding it.

15.4 Angular Momenta: Orbital and Spin
In the discussion of the 2-D and 3-D rigid rotors, the concept of angular mo-
mentum arose, and in particular we used the fact that the angular momen-
tum of an object in some circular motion is related to its energy. For three
dimensions, the wavefunctions are the spherical harmonics, and the eigen-
value energies E are dependent on an angular momentum quantum number
� such that

E � �
�(� 

2I

1)�2

�

where � is the angular momentum quantum number, � is Planck’s constant di-
vided by 2�, and I is the moment of inertia. In the case of a 3-D rigid rotor,
the angular momentum is a well-understood classical property. In the applica-
tion of the 3-D rigid rotor to the hydrogen atom, the total electronic energy is
determined by the principal quantum number n, but the electron in the hy-
drogen atom has definite angular momentum values due to its orbital angular
momentum.

An electron in a hydrogen atom also has spin. Spin acts like an angular mo-
mentum, so it is proper to speak not only of orbital angular momentum but
also of spin angular momentum. The two different types of angular momenta
of an electron will each generate an intrinsic magnetic field, as will any charged
species that has angular momentum (that is, that accelerates by moving in
some sort of circular motion). These two intrinsic magnetic fields will interact
with each other in such a way that they combine to make an overall angular
momentum. It is this overall angular momentum, the combination of orbital
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angular momentum and spin angular momentum, that determines the total
electronic eigenvalue energy and thus dictates the changes in energy recorded
in an electronic spectrum. It is important, then, to understand how the orbital
and spin angular momenta interact. This interaction is called spin-orbit cou-
pling. Spin-orbit coupling acts to make individual electronic energies slightly
different from the equation above, depending on how the spin angular mo-
mentum is interacting with the orbital angular momentum. The overall effect
is to split the energy levels into a larger number of discrete energy levels. The
net result is that the electronic spectrum of a multielectron atom is more
complicated.

Experiments have indicated that the total angular momentum and the z com-
ponent of the total angular momentum for an electron are quantized. (This
situation is very similar to the rotations of molecules.) As such, the allowed
values for total angular momenta quantum numbers are similar to those for
orbital or spin angular momenta. We will adopt the convention of using the
quantum numbers � and m� to refer to the orbital angular momenta of an
electron, s and ms to label the spin angular momenta, and introduce the quan-
tum numbers j and mj to refer to the total angular momentum and the z com-
ponent of the total angular momentum for a single electron. As with all angu-
lar momenta, mj can have 2j  1 possible values, ranging from 	j to j. We also
adopt the convention of using capital letters for the various quantum numbers
for the total angular momenta of several electrons. We will use �, m�, and so
on for a single electron, but L, ML, S, MS, J, and MJ for the various combined
momenta of more than one electron.

Orbital and spin angular momenta combine (that is, couple) in vector fash-
ion. Consider the electron having � � 0 (that is, an electron in the s subshell)
as shown in Figure 15.2. The spin angular momentum s is always �

1
2

� for an elec-
tron, but it can be oriented in two different directions (corresponding to the
quantum number ms having values of �

1
2

� or 	�
1
2

� ). The total angular momen-
tum, labeled by the quantum number j, is determined from the combination
of the � and s values, or simply �

1
2

�. However, the j vector can have two possible
orientations with respect to the z-axis, corresponding to two different possible
values of mj, as shown in Figure 15.2.

For a single p-subshell electron, j can have two possible values, correspond-
ing to the two possible vector combinations of the � vector (which has mag-
nitude 1) and the s vector (which has magnitude �

1
2

�). This is illustrated in Figure
15.3. For the p electron:

j � �  s or � 	 s (15.6)

� 1  �
1

2
� or 1 	 �

1

2
�

j � �
3

2
� or �

1

2
�

Generally, the possible values of j are

j � �  s → �� 	 s� in integer steps (15.7)

where the arrow means “through.” For j � �
1
2

�, mj can be either 	�
1
2

� or �
1
2

�, just as
for the single s electron. However, for j � �

3
2

�, mj can have values of 	�
3
2

�, 	�
1
2

�, �
1
2

�, or
�
3
2

�. Thus, the single p electron has more possible values for its total angular mo-
mentum, and more possible z components of its total angular momentum,
than a single s electron.
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� �

1
2

mj �
1
2

s �� 0

� �

1
2

mj � �
1
2

s �� 0

� �

3
2

j  �
1
2

s �� 1

� �

1
2

j � 
1
2

s �� 1

Figure 15.3 The combination of the orbital
angular momentum of a p-subshell electron (rep-
resented by a vector) with the spin angular mo-
mentum can also lead to two possible total angu-
lar momenta. Compare with Figure 15.2.

Figure 15.2 The combination of the orbital
angular momentum of an s-subshell electron
(represented by a single dot) with the spin angu-
lar momentum yields a total angular momentum
j of �

1
2

� that can have two possible z orientations,
corresponding to mj � �

1
2

� and mj � 	�
1
2

�, as shown.
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Example 15.2
From the above expressions, determine the possible values of j for the fol-
lowing.
a. A single d electron
b. A single h electron (where � � 5)

Solution
a. For a d electron, � � 2 and s always equals �

1
2

�, so the two possible values of
j for a single d electron are �

5
2

� and �
3
2

�.
b. For an h electron (which would exist as an excited state in, say, the sixth
principal quantum shell), � � 5, so the two possible values of j for a single h
electron are �

1
2
1
� and �

9
2

�.

This example again shows the possible values for the j quantum number as
half-integers. For single electrons j is always a half-integer. For multiple elec-
trons, J can be either integers or half-integers.

Example 15.3
What are the possible values of mj for the d electron in Example 15.2?

Solution
For an angular momentum that follows the normal quantum-mechanical
rules for angular momenta, the possible values of mj range from 	j to j, in
integer steps. Therefore, mj � 	�

5
2

�, 	�
3
2

�, 	�
1
2

�, �
1
2

�, �
3
2

�, and �
5
2

� for the j � �
5
2

� state, and
	�

3
2

�, 	�
1
2

�, �
1
2

�, and �
3
2

� for the j � �
3
2

� state of the d electron. There are six possible
values of mj for j � �

5
2

� and four possible values of mj for j � �
3
2

�.

The point of this example is worth repeating: for an electron that has a
total angular momentum indicated by the quantum number j, the possible
values of mj are

mj � 	j to j in integer steps (2j  1 possible values) (15.8)

The overall energy of an electron is dependent on the value of the j quantum
number. The mj quantum number does not affect the energy of the electron
unless the atom is in the presence of a magnetic or electric field. These state-
ments are consistent with the known effects of � and m� on the energy of a
(hydrogen-like) electron.

Completely filled subshells (not shells, but subshells) contribute no overall
angular momentum to the total angular momentum of the atom. All angular
momenta, orbital and spin, are paired so that there is a net zero effect. However,
if an electron from a filled subshell is excited to a higher-energy state, this
statement no longer applies and the effect on the total angular momentum by
the partially filled subshell as well as the excited electron must be taken into
account.

However, first we ought to be able to obtain some understanding of the
electronic spectra of atoms that have a single electron in their valence subshell.
Such atoms have the electron configurations ns1, np1, nd1, or nf 1 (where n is
some allowed value of the principal quantum number). Because of the lone
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valence electron in such atoms, selection rules are dictated by the allowed
changes in � and m�:

�� � �1

�m� � 0, �1

The values of the j quantum number depend on the values of the � and m�

quantum numbers. In these cases, no selection rule depends on j (although it
is recognized that the value of the j quantum number is dictated by the re-
spective values of � and m�).

Example 15.4
In his pioneering investigations around 1814 into the spectrum of the sun,
Joseph von Fraunhofer labeled an intense yellow line of the spectrum with
the letter D. It was shown that this emission was due to the sodium atom (in-
dicating, by the way, the presence of sodium in the sun), so this was eventu-
ally termed the “sodium D line.” Later work showed that under high resolu-
tion the sodium D line is actually a pair of closely spaced lines, separated by
6 Å. Assuming that in the lower electronic state of the sodium atom the va-
lence electron has the quantum numbers (n, �, j) � (3, 0, �

1
2

�), what are the pos-
sible quantum numbers for the upper electronic state?

Solution
Since there is no selection rule for �n, we cannot say which principal quan-
tum number can be assigned to the upper electronic state. (It is actually due
to an n � 3 to n � 4 transition.) However, we can use the selection rules for
� and m� to determine what the quantum numbers for the upper electronic
state must be for intense—and presumably allowed—transitions. Since � �
0 for the lower state, the upper state must have � � 1 (since � � 	1 is not
possible). This means that the upper electronic state must be a p orbital. Since
the m� quantum number for the lower electronic state must be 0 (� � 0
means that m� must be 0), then the upper electronic state must have an m�

of either 	1, 0, or 1. Such states are degenerate unless a magnetic field is pres-
ent. However, for a single electron, s � �

1
2

�, so from the upper state’s value of
� we can determine that the possible j values are �

1
2

� or �
3
2

�. There are, then, two
possible combinations of quantum numbers for the upper state: (n, �, j) �
(n, 1, �

1
2

�) or (n, �, j) � (n, 1, �
3
2

�). The different quantum numbers—j, in par-
ticular—imply that there will be a slightly different energy for the two upper
states. This is the reason there are two closely spaced lines in the spectrum
of Na.

Although this is a relatively simple example, it points out a key factor in the
understanding of electronic spectra of atoms: the fact that orbital and spin
angular momenta interact, or couple. Coupling is even more important in the
understanding of electronic spectra of atoms that have more than one electron
in their valence subshell, because now the orbital and spin angular momenta
of different electrons can couple with each other. This makes the spectra po-
tentially more confusing. Luckily, there is a procedure for formalizing the cou-
pling possibilities between more than one electron in a valence subshell. That
will be considered in the next section.
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15.5 Multiple Electrons: Term Symbols 
and Russell-Saunders Coupling

Understanding the momentum combinations of lone electrons in a subshell is
straightforward. But what about the majority of atomic systems, neutral or
ionized, that have more than one electron in the outermost subshell? How do
we understand all the possible ways the orbital and spin angular momenta of
multiple electrons can interact?

Two common systems are used to understand multiple-electron spin-orbit
coupling. They are called the Russell-Saunders coupling scheme and the j-j cou-
pling scheme. The Russell-Saunders (or RS) coupling scheme is valid for low-Z
(that is, low atomic number, typically 30 or lower) atoms where spin-orbit cou-
pling is relatively weak. It treats total orbital angular momentum of multiple
electrons separately from the total spin angular momentum. The j-j coupling
scheme is used for high-Z (Z � 30) atoms in which spin-orbit coupling is so
large that a total angular momentum j for each individual electron must be de-
termined first. We will consider the RS coupling scheme exclusively in this text.

Before we consider the coupling scheme, we need to introduce the idea of
the term symbol. We will be working with total orbital angular momenta and
total spin angular momenta, and being vector quantities the individual angu-
lar momenta of two or more electrons can combine. A term symbol is a short-
hand device for indicating the values of the orbital, spin, and total angular mo-
menta of an electronic state (and since the energy of the state depends on the
values of these angular momenta, the term symbol becomes a useful way to la-
bel an electronic state).

If L is the quantum number indicating the vector sum of the orbital angu-
lar momentum of an electronic state, and S represents the vector sum of the
spin angular momentum of the electronic state, and J represents the total an-
gular momentum of the electronic state, then the term symbol would be con-
structed as

2S1LJ (15.9)

Instead of using the numerical value for L, a letter label is used (just like the
s, p, d, f, . . . subshell designations stand for � � 0, 1, 2, 3, . . . in atoms). The
following capital letters are used to indicate the value for L:

L Letter designation

0 S

1 P

2 D

3 F
. .
. .
. .

Such letters are commonly used to refer to various electronic states; that 
is, one hears of S states, P states, and so on. The left superscript is not S but 
2S  1 (for reasons that become clear shortly). The quantity 2S  1 is called
the multiplicity of the state. States that have a multiplicity of 1 are called singlet
states, and states that have multiplicities of 2 are doublet states. There are also
triplet, quartet, and so on, states. The right subscript, J, indicates the total
angular momentum and is determined by L and S, as before. The following
example shows how term symbols are constructed.
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Example 15.5
What are the term symbols for the two higher-energy states in the Na atom’s
D lines? Use the solution to Example 15.4 for the values of the various angu-
lar momenta.

Solution
In this case, the momenta of the single valence electron dictate the total an-
gular momenta; that is, (L, S, J) � (�, s, j). For the two upper electronic states,
the (L, S, J) quantum numbers are (1, �

1
2

�, �
1
2

�) and (1, �
1
2

�, �
3
2

�). (How did we know
that S � �

1
2

�? Because for a single electron, the vector sum of the single spin an-
gular momentum is �

1
2

�.) Since L � 1, both term symbols are P states, and since
S � �

1
2

� for both states, the multiplicities are both 2(�
1
2

�)  1 � 2. Therefore, the
two term symbols are

2P1/2 and 2P3/2

These two term symbols, and others like them, are used to label not only
electronic states but also electronic transitions. For example, upon knowing
that the lowest-energy ground state of the Na atom has a 2S1/2 term symbol
(a fact that can be determined from the electron configuration of its valence
shell), the two transitions involved in the sodium D emission lines are labeled

2P1/2 → 2S1/2
2P3/2 → 2S1/2

Such labels make it easier to express the identities of the electronic states
involved in an electronic transition.

We are beginning to focus on quantum numbers L and S instead of � and
s (the spin for a single electron). This is because for multielectron atoms, the
quantum numbers � and s are not “good” quantum numbers. The quantum
numbers � and s were originally defined in terms of a single electron. Recall
that the concepts of electron shells and subshells were defined using the hy-
drogen atom and then applied as an approximation to larger atoms (“electron
configurations”). For multielectron systems, the eigenvalue equations involv-
ing � and s are not strictly satisfied. Even though we presume to label electrons
as having a principal, orbital angular momentum (total and z-component) and
a spin angular momentum (again, total and z-component) using the aufbau
principle, such a labeling is an approximation. A better description of reality is
that an unfilled shell has a total orbital angular momentum L and a total spin
angular momentum S. L and S, and subsequently J, are the good quantum
numbers.

The situation is not as complicated as it might seem, because L and S are
determined from the vector combinations of the individual � and s quantum
numbers from the electrons in the unfilled shell. Consider the simplest case,
two electrons in the outermost, unfilled subshell. (Remember that filled sub-
shells contribute no net orbital or spin angular momentum.) Two electrons
having individual orbital angular momenta �1 and �2 can couple so that the
net orbital angular momentum can have the possible values

L � �1  �2 → ��1 	 �2� in integral steps (15.10)

where again the arrow means “through.” That is, the possible values of L
range from the integers �1  �2 through ��1 	 �2� in integral increments.
The absolute values imply that L can never be negative. For example, for two
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p electrons (�1 � �2 � 1), the possible values for L are 2, 1, and 0. These pos-
sible values of L indicate the possible vector combinations of the m� quantum
numbers of the two electrons.

For the S of a multielectron, unfilled-subshell atom, a similar relation-
ship applies. For the simple case of two electrons, the possible values of S are
given by

S � s1  s2 → �s1 	 s2� in integral steps (15.11)

For electrons, s � �
1
2

�, so for two electrons the possible values of S are 1 and 0.
These possible values of S correspond to the possible vector combinations of
the ms quantum numbers of the two electrons. The vector combinations of
multiple � and s values are similar to those depicted in Figures 15.2 and 15.3.

How do these rules help us in understanding electronic energy levels of
atoms? The first step is to recognize that an atom can have all combinations of
orbital and spin angular momentum—that is, all possible combinations of L
and S—that are possible. The one immediate additional factor to consider is
the Pauli principle. For example, the carbon atom has a ground-state electron
configuration 1s2 2s2 2p2. Within this electron configuration, the atom can have
several possible combinations of L and S, only one of which is the lowest-energy
ground state. This means that there are excited states of the carbon atom that
still have the electron configuration 1s2 2s2 2p2. Each of these states, ground
and excited, will have its own term symbol, so within this electron configura-
tion several possible term symbols label the individual energy levels. For a car-
bon atom, the possible values of L are 2, 1, and 0 (satisfy yourself that this is
the case), and the possible values for S are 1 and 0 (again, satisfy yourself that
this is true). All possible combinations of L and S lead to the following possi-
ble term symbols, J not included:

1S, 1P, 1D, 3S, 3P, and 3D

Although these are all of the combinations, some of them are ruled out by
the Pauli principle. For example, the term symbol 3D implies that for both
electrons, m� � 1 and that the spins are oriented in the same direction (that
is, the ms for both electrons is the same). This implies that both electrons have
the same set of four quantum numbers, which is forbidden by the Pauli prin-
ciple. Therefore, the 3D term symbol cannot and does not exist for this electron
configuration. A similar argument can be made for the 3S term: both electrons
could have m� � 0 and ms the same, but this is forbidden by the Pauli princi-
ple. Therefore, the 3S term symbol does not exist either.

The 1P term symbol also does not exist, not because of Pauli principle
reasons, but because the remaining term symbols collectively define all the
possible ways the two p electrons can couple their orbital and spin angular
momentum. A 1P term symbol is redundant and therefore unnecessary. So, the
possible term symbols for the ground-state electron configuration are

1S, 1D, and 3P

Again, note the distinction between electron configuration and term symbols.
All three of the above term symbols describe certain states of the two p elec-
trons in the ground-state electron configuration of the carbon atom (or, for
that matter, any atom that has a p2 valence subshell). However, because they
represent different total orbital and spin angular momenta, they represent
states that have different total energies, even though they are for a carbon atom
having a 1s2 2s2 2p2 electron configuration.
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Example 15.6
List all of the possible term symbols (do not neglect any due to Pauli princi-
ple considerations) for a d2 ground-state valence electron configuration.

Solution
Each d electron has an � of 2, so the possible values of L are 4, 3, 2, 1, and 0.
This implies the possible existence of G, F, D, P, and S states. Like the above
example, the two electrons each have an s of �

1
2

�, so the possible values of S are
1 and 0. The resulting values of the multiplicity are 3 and 1. Combining the
multiplicities with the L values, the possible term symbols are 3G, 1G, 3F, 1F,
3D, 1D, 3P, 1P, and 3S, 1S. (The Pauli principle and redundancy will ultimately
eliminate the 3S, 3D, 3G, 1P, and 1F term symbols for these atoms, leaving 1G,
3F, 1D, 3P, and 1S.)

The rules for determining term symbols above (and more importantly, for
excluding certain term symbols) assume that the electrons in the unfilled sub-
shell are in the same atomic subshell. This is why we can apply the Pauli prin-
ciple to exclude certain term symbols. If the electrons are in different subshells
(as in an excited state), then we could not use the Pauli principle in this way,
and more term symbols would be necessary to describe the possible inter-
actions of the angular momenta.

All atoms having an electron configuration with a p2 valence subshell have
the same possible term symbols. A similar statement is possible for any elec-
tron configuration of a valence subshell: atoms having the same configuration
have the same term symbols. Furthermore, it can be shown that atoms having
an electron configuration p4 have the same term symbols as those having a p2

configuration. Atoms having a d 2 configuration have the same term symbols
as a d8 atom, and so on. In general, if a subshell can hold a maximum of m
electrons, then the configuration of m 	 n electrons has the same term sym-
bols as the configuration of n electrons. (For example, d2 and d8 configura-
tions have the same term symbols, d3 and d7 do also, and so on.) What this all
implies is that there are only a limited number of possible term symbols for
electron configurations. Table 15.1 lists those term symbols for electron con-
figurations of various valence subshells. Remember that closed shells do not
contribute any net angular momentum (orbital or spin), so the only subshell
that must be considered is any unfilled subshell.
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Table 15.1 Term symbols for partially filled subshells

Subshell Term symbols

s1 2S

p1, p5 2P

p2, p4 1S, 1D, 3P

p3 2P, 2D, 4S

d1, d9 2D

d2, d8 1S, 1D, 1G, 3P, 3F

d3, d7 2P, 2D, 2D, 2F, 2G, 2H, 4P, 4F

d4, d6 1S, 1S, 1D, 1D, 1F, 1G, 1G, 1I, 3P, 3P, 3D, 3F, 3F, 3G, 3H, 5D 

d5 2S, 2P, 2D, 2D, 2D, 2F, 2F, 2G, 2G, 2H, 2I, 4P, 4D, 4F, 4G, 6S

Note: Atoms having completely filled subshells all have a single 1S term.
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So far, we have not considered the J quantum number in the term symbol,
even though we defined the term symbol as listing a value for J. For each 2S1L
term, the possible values of J are

J � L  S → �L 	 S � in integral steps (15.12)

J is also limited to positive numbers, and it depends on the values of L and S.
Equation 15.12 implies that for each combination of L and S, there are several
possible total angular momenta (as might be expected from the coupling of
quantized angular momentum vectors). Because J is determined from L and S,
tables of term symbols like Table 15.1 typically leave off the J for quantum
number total angular momentum for reasons of clarity.

Now the complete term symbols can be written. For the carbon atom’s p2

configuration that has 1S, 1D, and 3P states:

1S: J � 0  0 → �0 	 0� � 0 Term symbols: 1S0

1D: J � 2  0 → �2 	 0� � 2 Term symbols: 1D2

3P: J � 1  1 → �1 	 1� � 2, 1, 0 Term symbols: 3P2, 3P1, and 3P0

Notice that of the original three states, the two that are singlets (that is, their
multiplicity equals 1) have only a single complete state, and the triplet state is
composed of three individual, complete term symbols. Also, recall that there is
a z component of the total angular momentum J, and it has the same possible
values as any z component of an angular momentum, given in equation 15.8.
As such, there are 2J  1 possible MJ values within each state. Outside of the
presence of a magnetic or an electric field, all of these 2J  1 states are degen-
erate. Therefore, for the p2 electron configuration we have

1S0: degeneracy of 1
1D2: degeneracy of 5
3P2: degeneracy of 5
3P1: degeneracy of 3
3P0: degeneracy of 1

Total: 15 separate possible states

Thus, there are 15 individual electronic states just within the p2 electron
configuration of a carbon atom. Because of the degeneracies, in most cases we
will have only five different energy levels (except in the case of a magnetic or
an electric field). Just as an electron configuration is separated into a group, or
manifold, of L and S states, so the J quantum number separates each L and S
term symbol into a (potential) manifold of individual states, and under the
proper conditions each J level separates into its 2J  1 different MJ states. This
stepwise separation is illustrated in Figure 15.4.

Example 15.7
Determine the total number of states in an atom having the electron config-
uration d2 for the valence subshell. Use Table 15.1 for the term symbols.

Solution
For the d2 electron configuration, the term symbols are 1S0, 1D2, 1G4, 3P2, 3P1,
3P0, 3F4, 3F3, and 3F2. There are 2J  1 values for MJ for each term, so each
state has a degeneracy of 1, 5, 9, 5, 3, 1, 9, 7, and 5, respectively. The total
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Figure 15.4 The identification of electronic
energy levels by J and ultimately MJ quantum
numbers. A p2 electron configuration suggests
only a single state. However, the combination of
L and S vectors yield 5 different J states which,
when separated into MJ states, ultimately yield 15
different states within the p2 electron configura-
tion. See Figure 15.5 for the term symbols of the
5 states.
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number of states is the sum of these degeneracies, which is 45. There are 45
individual electronic states within the d2 electron configuration.

These examples might require a rethinking of the idea of excited states.
Previously, we have considered an excited state as any state above the ground
state, and these excited states have usually been obvious changes in relatively
major quantum numbers for the system. In the case of the hydrogen atom, the
electronic states have a quantized energy dictated by the principal quantum
number n, and the electronic spectrum of hydrogen is due to changes in the n
quantum number (and more specifically to concurrent changes in the � quan-
tum number, but this is not immediately apparent because of the degeneracy of
the hydrogen electronic states). Moreover, we have used a hydrogen-atom ap-
proximation for the labeling of electronic states for multiple-electron atoms, and
so we have used the labels 1s, 2s, 2p, and so on for the orbitals of larger atoms.

One might presume, then, that electronic spectra are due to changes in elec-
trons from one orbital to another, as with the hydrogen atom or even the
sodium atom discussed above (in that case we were treating the single valence
atom of sodium as a hydrogen-like system). However, for atoms with a multi-
electron valence subshell, it is more complicated. For such systems, excited
states occur within the lowest-energy electron configuration. Only one of the
term symbols represents the lowest-energy ground state of the atom. The other
term symbols are, by definition, excited states. This is despite the fact that all
of the states are part of the same electron configuration.

The next question is, then, which of the term symbols represents the ground
electronic state? In 1925–1927, after a detailed examination of spectra, Friedrich
Hund formulated some rules to determine the term symbol for the ground
state. Hund’s rules are:

1. The term(s) having the higher multiplicity are lower in energy. If this
unambiguously determines the term symbol for the ground state, then
stop here.

2. Of the term symbols having the highest multiplicity, the higher the value
of L, the lower the energy.

3. If the valence subshell is less than half-filled, the lower the J, the lower the
energy. If the valence subshell is more than half-filled, the higher the J,
the lower the energy. (Subshells that are exactly half-filled will always
have an S term symbol as the highest-multiplicity state and will therefore
have only one possible value for J.) 

According to these rules, the lowest-energy state for a carbon atom in the p2

configuration is predicted to be 3P0, which is the case. The 3P1 electronic state
is slightly higher in energy (16.4 cm	1), the 3P2 state is slightly higher still
(43.5 cm	1). The 1D2 electronic state is much higher in energy (in fact, it is
10,194 cm	1 above the ground state), and finally the 1S0 state is the highest-
energy state (21,648 cm	1 above the ground state) in the manifold of elec-
tronic states within the p2 electron configuration. Figure 15.5 illustrates the dif-
ferent states of this manifold. (Hund’s rules are also applicable to molecular
electronic states, as we will discuss later in this chapter.)

Example 15.8
Determine the expected ground state of an atom of Ni, which has a d8 va-
lence subshell configuration.
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Figure 15.5 Carbon atoms have five distinct
electronic energy levels within the 1s2 2s2 2p2 elec-
tron configuration, only one of which is the
ground state.
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Solution
The first step is to recognize that the d8 electron configuration will have the
same term symbols as the d2 electron configuration, as stated earlier in this
chapter. Therefore, we can use the results from Example 15.7 directly.
According to Hund’s first rule, one of the triplet states will be the ground
state. Hund’s second rule allows us to choose between the 3P or 3F term sym-
bol by choosing the state having the larger L: the 3F. Finally, Hund’s third rule
allows us to choose which value of J the ground state will have. Since the d8

electron configuration represents a subshell that is more than half full, the
higher value of J will have the lower energy. Therefore, the J � 4 term should
be lowest. The term symbol for the ground state of a Ni atom is therefore 3F4.

Example 15.9
Predict the ground-state term symbol for the tetravalent cation of tech-
netium, Tc4. Assume that its electron configuration has a d3 valence sub-
shell. Use Table 15.1 for the partial term symbols.

Solution
Of the term symbols for a d 3 electron configuration, the highest multiplici-
ties are 4, for the 4P and 4F states (Hund’s first rule). This means that S � �

3
2

�.
The higher of the values of L occurs for the 4F term, so it will be the ground-
state term (Hund’s second rule). The four values of J in the 4F state are 
3  �

3
2

� → 3 	 �
3
2

� or �
9
2

�, �
7
2

�, �
5
2

�, and �
3
2

�. For this less-than-half-filled subshell, the lower
value of J has the lower energy (Hund’s third rule). Therefore, the term sym-
bol of the ground state is 4F3/2. (This example illustrates that atomic ions are
treated the same way neutral atoms are, and also that values of J can be half-
integers. In all cases of an odd number of valence subshell electrons, J will al-
ways be half-integral.)

Finally and briefly, term symbols can also be determined for electronic
states that have more than one unfilled electronic subshell. For example, the
electron configuration 2s1 2p1 is one possible configuration for an excited state
of an He atom. The individual angular momenta of the two electrons (� � 0,
m� � 0 and � � 1, m� � 	1 or 0 or 1) combine vectorially to give L � 1 (the
only possible value for L) and S � 0 or 1 for 3P and 1P terms. Possible values
for J can be determined accordingly. In cases like this, however, the Pauli prin-
ciple does not exclude certain combinations of angular momenta, because the
electrons now have different quantum numbers for angular momentum. If the
excited-state electron configuration were 2s2, the Pauli principle would elimi-
nate certain term symbols as being impossible.

Because additional labels are necessary to specify electronic states of multi-
electron valence shells, additional selection rules are necessary to indicate al-
lowed transitions between the states. The previous selection rules, equations
15.4 and 15.5, are not strictly applicable because � and m� are not considered
good quantum numbers. However, there are related (and perhaps not entirely
surprising) selection rules in terms of L and S, and now one for J:

�L � 0, �1 (15.13)

�S � 0 (15.14)

�J � 0, �1 (but Jinit � 0 → Jfinal � 0 is forbidden) (15.15)
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These three selection rules require several comments. First, a �L � 0 tran-
sition is possible. This seemingly contradicts our earlier �� � �1 selection
rule, but for multielectron atoms it is possible to have transitions where the
change in the approximate � quantum number is 1 or 	1 while the change
in the more rigorous L quantum number is 0. Second, the selection rule 
�S � 0 is useful: electronic energy states that have different multiplicities
should not participate in allowed spectroscopic transitions. This allows us to
separate electronic spectra on the basis of multiplicity into systems that have
the same value of S. Allowed transitions can occur only within a system. This
fact can be useful when trying to interpret an unknown spectrum. (Recall that
this is for allowed electronic transitions. Although transitions where �S � 0
are technically forbidden, they do occur. Phosphorescence is a process in which
such forbidden transitions do occur.)

There is an exception to the selection rule �J � 0: an electronic state having
J � 0 will not participate in an allowed transition with another electronic state
that also has J � 0. This rule comes from the consideration of the symmetry of
wavefunctions for J � 0 states, and we will not go into detail about it here.
Finally, it should be understood that these selection rules of course apply only to
atomic systems where the Russell-Saunders coupling scheme is applicable. For
large atoms (approximately Z � 30, where Z is the atomic nuclear charge), this
coupling system breaks down and the j-j coupling system is more appropriate.

Atomic spectra are occasionally displayed diagrammatically in what are
called Grotrian diagrams, after the scientist Walter Grotrian. Figures 15.6 and
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Figure 15.6 A partial Grotrian diagram for helium. Understand that these are not the only
possible transitions, only a few. Source: Physical Chemistry by Vemulapalli, G. K., © 1993. Adapted
by permission of Prentice-Hall, Inc., Upper Saddle River, NJ.
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15.7 show two Grotrian diagrams, illustrating the allowed transitions. As might
be expected, atoms that have more unpaired valence shell electrons have a
more complicated Grotrian diagram.

The spectra of atoms can be measured by generating the atoms, for exam-
ple by vaporizing them into the gas phase. This can be difficult sometimes, es-
pecially for a substance like tungsten, which has a normal boiling point of
5660°C. However, many atoms and ions exist in the solid state as either metal
complexes or as ionic crystals. Although the imposition of other chemical
species around the atom or ion affects the spectrum (this is known as crystal
field theory), the previous discussion provides the basis for understanding the
electronic transitions of atoms and ions in compounds.

15.6 Electronic Spectra of Diatomic Molecules
The electronic spectra of molecules, even the smallest diatomic molecules, are
more complicated than those of atoms because more than one nucleus is 
present. However, now we can take advantage of molecular symmetry. Just as
with vibrational spectroscopy, electronic spectroscopy of molecules uses group-
theoretical ideas for simplification. Since all diatomic molecules have either
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C�v or D�h symmetry, for the present those two point groups will be impor-
tant. There are also some similarities in electronic spectra and rotational spec-
tra for diatomic molecules, so a review of rotational motions might be useful.

As for atoms, term symbols can be defined for diatomic molecules. The
term symbols for diatomic molecules are determined similarly to the K quan-
tum number for diatomic rotations: the term symbol is determined by the
total orbital angular momentum of electrons about the internuclear axis.
Figure 15.8 shows how this is determined.

The term symbols look very similar to those for atoms, but the quantum
numbers involved are given different labels. Instead of 2S1LJ, the term symbol
for diatomic molecules is

2S1�� (15.16)

where �, �, and S are as illustrated in Figure 15.9. The quantized total angu-
lar momentum vector J is the combination of the orbital angular momentum
of the electrons L (note that electrons paired in molecular orbitals contribute
no overall angular momentum to the total), the spin orbital momentum of the
electrons S (again, paired electrons contribute no overall spin angular mo-
mentum), and the rotational angular momentum of the molecule itself, R.
With the exception of R, which is perpendicular to the axis of the molecule
anyway, all of these angular momenta have components that lie along the mol-
ecular axis. The axial component of L is �, the axial component of S is �, and
the axial component of J is � (see Figure 15.9). These components are quan-
tized, having integer or half-integer (for some cases of S) values of �, like all
angular momenta. It is the values of � and �, along with S, that make up the
term symbol. But just as with L for multielectronic atoms, instead of using the
numerical value of � in the term symbol, a letter is used. Unlike atomic term
symbols, diatomic term symbols use capital Greek letters:

� Letter designation

0 �

1 �

2 �

3 �
. .
. .
. .

Care should be taken to not confuse �, the quantum number for the axial
spin component, with � as a term symbol. As with the quantum number J, the
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Figure 15.8 Electronic spectra of diatomic
molecules are described on the basis of the com-
ponent of electron angular momentum about the
molecular axis, as shown.
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Figure 15.9 Electronic spectra of diatomic
molecules are more specifically defined in terms
of �, � , and S. � is defined in terms of the or-
bital angular momentum of the electrons, L. � is
defined in terms of the total angular momentum,
J. The vector difference between L and J is, of
course, S.
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quantum number � may have several possible values depending on the values
of � and �, but now the restriction on negative values of it is lifted:

� � �  � → � 	 � in integral steps (15.17)

For states other than those having � � 0, the total angular momentum vec-
tor can be moving (“precessing”) about the internuclear axis in two directions,
much the same as the two-dimensional rigid rotor. Therefore, every state with
� � 0 is at least doubly degenerate.

For homonuclear diatomic molecules (which have the point group D�h), an
extra label goes on the term symbol. A homonuclear diatomic molecule has a
center of symmetry, and wavefunctions can be either symmetric with respect
to the center of symmetry, or antisymmetric with respect to the center of sym-
metry. Figure 15.10 illustrates symmetric and antisymmetric molecular wave-
functions. They are analogous to symmetry and antisymmetry labels for atomic
wavefunctions. If a particular electronic state of a homonuclear diatomic mol-
ecule is symmetric with respect to the center of symmetry, the label gerade
(German for “even”) is applied and the letter “g” is added as a right subscript
in the term symbol. If a particular electronic state is antisymmetric with re-
spect to the center of symmetry, the label ungerade (German for “odd”) is ap-
plied and the letter “u” is added to the term symbol. Figure 15.10 has labeled
the example wavefunctions as gerade or ungerade.

Determining term symbols for diatomic molecules follows a procedure sim-
ilar to that for atoms. Consider O2 as an example. The molecular orbitals for
O2, derived from the atomic orbitals of each oxygen atom, are shown in Figure
15.11. In the ground state of the diatomic molecule, the unfilled molecular or-
bitals come from the unfilled subshell of the atoms; in this case, the p4 elec-
trons. For diatomic oxygen, the unfilled molecular orbitals are the �* molec-
ular orbital. As a � orbital, this molecular orbital can be assumed to be similar
to a p atomic orbital and so would have a single unit of orbital angular mo-
mentum. Using the letter � to designate the orbital angular momentum, this
implies that �1 � �2 � 1. (Here we are using the subscripts 1 and 2 to indi-
cate the individual electron. It does not matter which is 1 and which is 2.) In
essence, these two � electrons have angular momenta that couple just like two
p electrons, except that now, for molecules, we use lowercase Greek letters to
indicate the term symbols. However, unlike in an atom, we have only two de-
generate orbitals, not three degenerate orbitals (like we have for atomic p or-
bitals). In this case, this limits the possible combinations of � to �1  �2 and
�1 	 �2.

There is a different way to consider this coupling, and it becomes useful for
polyatomic molecules: use symmetry when possible. Each molecular orbital
can be given a symmetry label that is one of the irreducible representations of
the molecular point group. In the case of the homonuclear diatomic, the point
group is D�h. As we might expect for a doubly degenerate molecular orbital,
the label for these �* orbitals is �, but the D�h point group requires a label
of g or u for each irreducible representation. The diagrams of each molecular
orbital in Figure 15.11 show that the �* orbitals have gerade symmetry with
respect to the center of symmetry, so that each one can be labeled as �g. The
following statement is therefore applicable: the term symbols that label the en-
ergy levels of unpaired electrons in a molecule are determined from the direct
product of the irreducible representations of the molecular orbitals that con-
tain the unpaired electrons. In this case, this means evaluating

�g � �g
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Figure 15.10 Wavefunctions for homonuclear
diatomic molecules are labeled gerade or unger-
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tion upon operation by the symmetry element of
the inversion center.
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Because the D�h point group has a formal order of �, other methods must
be used to determine how this direct product reduces. It does reduce to

�g
 � �g

	 � �g

(One way to rationalize this in the absence of the great orthogonality theo-
rem is that there are three possible ways to write the two electrons in two mo-
lecular orbitals: (1) separate orbitals, spins same direction, (2) separate or-
bitals, spins opposite directions, and (3) same orbital, spins opposite directions
(they cannot be the same direction due to the Pauli principle). The first two
states are singly degenerate. How many ways can you put indistinguishable
electrons in the orbitals in the same or different spins? (Recall that we cannot
differentiate between “spin up” and “spin down” without a magnetic field.)
One way for each spin, therefore two individual � (degeneracy � 1) states.
However, how many ways can you put the two electrons in a single orbital with
different spins? Two ways, because there are two different �* orbitals. Therefore,
a doubly degenerate � state is needed. The total number of ways? Four, the
same as the character of the E symmetry element for a � � � direct product.

The Pauli principle limits the possible spins for the above term symbols.
This is due strictly to the antisymmetry requirement of the Pauli principle. The
 and 	 labels on the sigma (�) states in the direct sum above indicate sym-
metric and antisymmetric spatial symmetry, respectively (specifically, with re-
spect to the vertical reflection planes). Similarly, the � term symbol represents
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Figure 15.11 Molecular orbitals of O2. Simple diagrams like those in Figure 15.10 make it
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a symmetric spatial electronic state (check its character!). Therefore, the sym-
metric spatial states must be paired with antisymmetric spin states, and anti-
symmetric spatial states can be paired with symmetric spin states. When this
is done, the following term symbols are possible:

1�g
, 3�g

	, and 1�g

Hund’s rules are applicable to molecular electronic states as well as atomic
electronic states (which is partly why they are so useful). Therefore, the highest-
multiplicity electronic state, the 3�g

	 state, is predicted to be the ground state.
(It is, as determined experimentally by various means.) The 1�g

 and 1�g elec-
tronic states are excited states within the (�*)2 electronic configuration of the
diatomic molecule (see Figure 15.11).

Example 15.10
Predict the term symbol(s) of the ground electronic configuration of an ex-
cited state of oxygen that has one of its electrons in the �* antibonding or-
bital. See Figure 15.11 for assistance in determining the symmetry label of the
excited electron. Note that you need not know all of the characters of the ir-
reducible representation to determine the necessary characters of the direct
product.

Solution
The excited electron in the �* antibonding orbital is in a molecular orbital
that has �u

 symmetry, and the electron still in the �* orbital has �u sym-
metry. The direct product of these two symmetries is simply �u. (Verify this.)
The �* and �* electrons can have either the same direction spin or different
direction spin (rather, the z components of their spin), so multiplicities of 3
or 1 are possible. Therefore, the term symbols for this excited-state electron
configuration are 3�u and 1�u. � states are doubly degenerate. In this case,
there are two possible, degenerate �* molecular orbitals for the unexcited
electron. Complete term symbols would have values for � included. For the
triplet state, � can be 2, 1, or 0. For the singlet state, � can only be 1. Unlike
atomic term symbols, it is relatively uncommon to see the � values listed ex-
plicitly in the term symbols of diatomic molecules. One would see 3�u to rep-
resent all three individual states, rather than 3�u,2, 3�u,1, and �u,0.

Now we need to consider selection rules. The following rules are applicable
to diatomic molecules only. For allowed electronic transitions:

�� � 0, �1 (15.18)

�S � 0 (15.19)

�� � 0, �1 (15.20)

g ←→ u (for homonuclear diatomics) (15.21)

For � states,  ←→ +, 	 ←→ 	, but not  ←→ 	 (15.22)

where in equations 15.21 and 15.22, an arrow means that states having this
change in label (ungerade to gerade, or gerade to ungerade) are allowed. These
selection rules are qualitatively similar to the selection rules for atoms. Note
once again a restriction on the allowed change in the S quantum number: no
change is allowed. This is the case for diatomic molecules having small atoms.
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As coupling of the angular momenta increases with atomic number, more and
more “forbidden” transitions are observed in the electronic spectra.

Example 15.11
Given that the ground state of O2 is 3�g

	, list the term symbols of the elec-
tronic states that can be accessed by allowed electronic transitions. Do not
consider the changes in �.

Solution
A � state means that its � value is 0, so possible excited states can have 
� � 0 or 1, which will be � or � states. A multiplicity of 3 means that 
S � 1, and since �S � 0 the excited states will also have an S of 1 and a mul-
tiplicity of 3. Since the ground state is gerade, the excited states must be
ungerade. Therefore, possible allowed excited states are 3�u

	 and 3�u. Note
the 	 sign on the � state.

15.7 Vibrational Structure and the 
Franck-Condon Principle

Recall that, generally, electronic states are separated by more energy than are
vibrational states (which are in turn separated by more energy than are rota-
tional states). It is common to consider that every electronic state of a mole-
cule has its own collection, or manifold, of vibrational states. The following dis-
cussion is easiest if one assumes a diatomic molecule (although the ideas are
applicable to all molecules).

When a molecule absorbs a photon that excites an electron to a higher-
energy state, the state of the molecule is described by a different wavefunction.
For the ground-state wavefunction, a diatomic molecule has a certain equilib-
rium bond distance. Even though it is probably vibrating in its lowest vibra-
tional quantum state (recall the existence of zero-point energy for quantized
vibrations), it is presumably vibrating about an average bond distance known
as the equilibrium bond distance. It is usually labeled Re or re.

An excited-state electronic wavefunction is similar. It too has its own low-
est vibrational quantum state and equilibrium bond distance. However, there
is no guarantee that the equilibrium bond distances will be the same. Normally,
equilibrium bond distances change with electronic state. This is illustrated in
Figure 15.12, which shows two electronic states, their respective vibrational
state manifold, and an energy minimum that occurs at different internuclear
distances.

If these two states are involved in an allowed transition, there are several
considerations. First, a Born-Oppenheimer type of approximation is applica-
ble in that an electronic transition occurs so fast (on the order of 10	15 s†) that
the nuclei do not have time to move: that is, translations and vibrational and
rotational motions do not occur on the timescale of electronic transitions. On
a diagram such as Figure 15.12, a system in its ground electronic state would
move to an excited state by moving straight up in the figure. This means that
the internuclear distance does not change. This idea is called the Franck-
Condon principle. (It is named after the German physicist James Franck and
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†Compare this to a single vibration of an H2 molecule, which lasts �8 � 10	15 s, or 8 fs.
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Figure 15.12 Different electronic states have
different minimum-energy internuclear distances
as well as different vibrational energy manifolds
within each. This complicates the electronic spec-
tra of even the simplest, diatomic molecules.
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the American physicist Edward U. Condon. Franck shared a 1925 Nobel Prize
for his work on the interactions between electrons and atoms. Among other
things, Condon worked on the Manhattan Project to develop the nuclear
bomb.) The law of conservation of momentum can be used to justify the
Franck-Condon principle. Since momentum equals m � v, the velocity of the
atoms must be very close in both states in order for a transition to occur (since
masses of the atoms are constant). Molecules whose atoms are moving very
quickly will experience transitions to (vibrational) states in which the atoms
are also moving quickly. Molecules whose atoms are almost at rest (like at the
turning point of a vibration) will experience transitions to higher vibrational
states in which atoms in the excited state are also almost at rest.

A second consideration in electronic spectra is the recognition that elec-
tronic states, usually separated by a relatively large amount of energy, have
within each of them a vibrational manifold of states. High-resolution elec-
tronic spectra such as the one shown in Figure 15.13 reveal a set of lines su-
perimposed on the transition. These lines represent different initial and final
vibrational states of the molecules within the initial and final electronic states.
Such transitions are referred to as vibrational-electronic, or vibronic, transi-
tions. In vibronic spectra, the selection rules for the electronic transition are
given in equations 15.18 to 15.22 (for diatomic molecules). However, there are
no specific selection rules for what vibrational states can participate in the
vibronic transition. This is because the vibrational selection rule, �v � �1, is
applicable only for harmonic-oscillator vibrations within a single electronic
state. It is not applicable to vibrational wavefunctions from differing electronic
states. Any vibrational transitions can participate in a combined vibrational-
electronic transition.

However, not all of them will, and it is the Franck-Condon principle that
justifies the participation of various vibrational levels in a vibronic spectrum.
The Franck-Condon principle requires that an electronic transition be repre-
sented by a vertical move in a diagram such as Figure 15.14. In order for such
a transition to be considered likely, not only must the two particular vibra-
tional states overlap each other vertically, but the overlap must include parts of
the vibrational wavefunctions that have similar probability. Figure 15.14 shows
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Figure 15.13 A high-resolution electronic spectrum of methylaniline, showing a pattern of
lines that is attributable to different vibrational energy levels involved in the electronic transition.
Source: B. Ballesteros and N. Santos, Spectrochim. Acta, Part A, 2002, 58: 1074.

Figure 15.14 Two examples of electronic tran-
sitions that have different probabilities due to the
Franck-Condon principle. The transition labeled
A has a low probability, because it is going from
a maximum probability in the ground-state 
vibrational wavefunction to a minimum proba-
bility in the excited-state vibrational wavefunc-
tion. The transition labeled B has a higher prob-
ability, because it involves two vibrations of more
similar probability at that particular internuclear
separation.
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two examples of a high-probability and a low-probability transition using
Franck-Condon principles. The transition marked A has a low probability, be-
cause the vibrational wavefunctions do not overlap well, and a high-probability
region is in the same nuclear position as a low-probability region. The transi-
tion marked B has a higher probability because high probabilities overlap.

Mathematically, the transition moment of a vibronic transition depends on
an overlap integral in terms of the electronic and vibrational wavefunctions.
The form of the transition moment is

M � � �*el,upper�*vib,upper�̂�el,lower�vib,lower d� (15.23)

where the “el” refers to the electronic wavefunction and “vib” refers to the vi-
brational wavefunction. The operator �̂ is the electric dipole operator. Since
the change in the molecule involves one of its electrons, to a good approxima-
tion the dipole moment operator affects the electronic wavefunction and not
the vibrational wavefunction. The above integral can therefore be separated as

M � � �*el,upper�̂�el,lower d� � �*vib,upper�vib,lower d� (15.24)

The first integral represents a “normal” transition moment. The value of the
second integral is not determined by orthonormality, since it represents dif-
ferent vibrational wavefunctions of different electronic states. This second in-
tegral is known as the Franck-Condon overlap integral, and it is a measure of
the amount of overlap between two different vibrational wavefunctions. The
larger the overlap (see Figure 15.14), the larger the transition probability.

The Franck-Condon principle is applicable to polyatomic molecules also.
However, as might be expected, the potential energy diagrams get more com-
plicated, in part because there are now 3N 	 6 vibrational degrees of freedom
and therefore 3N 	 6 potential energy diagrams to consider for each electronic
state. Many electronic spectra are actually vibronic spectra. In some electronic
spectra, the vibrational structure is visible, in others it is not resolved. Figure
15.15 shows an example of an electronic spectrum at low resolution, so no vi-
brational structure is seen. Compare this with Figure 15.13, which is a much
higher resolution spectrum. See the difference?

15.8 Electronic Spectra of Polyatomic Molecules
Since most chemical species are polyatomic molecules, a discussion of the elec-
tronic spectra of molecules covers most matter. However, the subject is so large
(the saying “books are written about it” is especially true here) that we can
cover only a few specific topics.

The electronic states of polyatomic molecules can be labeled using the irre-
ducible representations of the symmetry point group of the molecule. (This is
another example of how symmetry is important in the understanding of spec-
tra.) As such, the same rule involving the direct product of the irreducible rep-
resentations applies:

�*upper � �operator � �lower � A1 (15.25)

or whatever label is the totally symmetric irreducible representation in that
symmetry point group. Here, �*upper is the (complex-conjugated) irreducible
representation of the upper electronic state, �lower is the lower electronic
state, and �operator is the irreducible representation of the appropriate dipole
moment operator. The irreducible representation labels of the dipole moment
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Figure 15.15 Many electronic transitions have
vibrational structure, which shows up only 
under a high resolving power. Compare the low-
resolution electronic spectrum of C60 with the
higher-resolution spectrum of methylaniline in
Figure 15.13. Source: H. Ajie et al., J. Phys. Chem.,
1990, 94: 8633.
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operator are usually given in the character table, as discussed in the previous
chapter regarding allowed vibrational transitions.

For polyatomic molecules, the point group has enough symmetry elements
(or rather, classes, and so therefore irreducible representations) that the fol-
lowing statement is usually applicable: the ground electronic state and the al-
lowed excited states are usually of different irreducible representation labels.

There are some general rules for electronic spectra of molecules (although
exceptions to such rules are not uncommon). For most molecules that are
composed of atoms of main-group elements that have an electron configura-
tion with a saturated valence shell, most of the low-energy electronic transi-
tions are already relatively high in energy and already require UV light (that is,
higher energy than visible light) for an allowed transition. This is why mole-
cules such as water, ammonia, methane, and so on are colorless. They do not
absorb visible light because the electronic transitions are caused by invisible
UV light.

In molecules that have an atom with an unpaired electron, there is a good
chance that relatively low-energy visible light is energetic enough to cause an
electronic transition. An example is NO2, a rare case of a stable main-group
compound that has an odd number of electrons. It is brown, and is largely re-
sponsible for the color of smog. This idea is particularly applicable to com-
pounds that contain d-block or f-block elements: transition, lanthanide, and
actinide atoms. Consider compounds that have a Cu2 ion in them. Such an
ion has the valence shell electron configuration 3d9. There is a single unpaired
electron. Therefore, one would predict that Cu2 compounds are colored, and
they usually are. However, consider Zn2. It has a valence shell electron con-
figuration of 3d 10, having no unpaired electrons. Zinc compounds are not
known for their colors. (Yes, it is understood that these examples are ions, not
molecules. They are simple examples, and since such cations are never present
without an anion, we are not stretching the definition too much.)

Example 15.12
Predict whether the following molecules would have color. That is, will elec-
tronic transitions occur in the visible region of the spectrum, or will they prob-
ably occur in the invisible UV region of the spectrum? State the reason(s) why.
a. Sodium chloride, NaCl 
b. Iron pentacarbonyl, Fe(CO)5 (Consider the ligands and the metal atom
separately.) 
c. Chloroform, CHCl3
d. Titanium dioxide, TiO2

e. Hemoglobin, which has four iron atoms in it

Solution
a. Both the sodium ion, Na, and the chloride ion, Cl	, have an octet elec-
tron configuration for the valence shell. All the electrons are paired, so one
would expect that sodium chloride would not absorb in the visible region of
the spectrum. Crystalline NaCl is colorless and can be used for optical com-
ponents.
b. Although the ligands have all-paired electrons, the neutral iron atom has a
3d 6 electron configuration, so one might predict that iron pentacarbonyl
would absorb in the visible region of the spectrum. Iron pentacarbonyl is a
volatile liquid at room temperature and has a yellow color.
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c. All of the atoms in chloroform have complete valence shells and all-paired
electrons. This suggests a colorless compound. It is a colorless liquid.
(Although it sometimes has a yellowish tinge, it is generally recognized as 
colorless.) 
d. Ti in the 4 oxidation state has a noble-gas electron configuration, as do
the O2	 ions. Therefore, this compound is not expected to absorb visible
light. Its electronic transitions are expected to occur in the ultraviolet region
of the spectrum. TiO2 is very white. It is extensively used in industry as a
white pigment in everything from paints to various food products. (Does it
surprise you that you occasionally eat an ingredient of paint?)
e. With four transition metal atoms, it might be expected that hemoglobin is
colored. It is responsible for the red color of red blood cells.

15.9 Electronic Spectra of � Electron Systems:
Hückel Approximations

It is difficult to state generalities about the electronic structure of molecules,
because molecules are so diverse. However, for one group of electrons, there is
a relatively easy framework in which to understand electronic energy levels: �
electrons in organic molecules. In particular, we are limiting the following dis-
cussion to molecules that have alternating single and double bonds; that is,
they have conjugated � bonds. In organic molecules, � electrons reside in mo-
lecular orbitals formed by the side-on, nonaxial overlap of atomic orbitals of
the carbon atoms, as shown in Figure 15.16. Such orbitals represent a particu-
larly important aspect of carbon-carbon bonding in organic chemistry. The
chemistry of aromatic organic compounds, which are based on benzene, is in
part dictated by the electrons located in conjugated � orbitals. Nonaromatic
conjugated � electron systems, like 1,3-butadiene, are also relevant molecular
systems. (Recall from organic chemistry that conjugated � bonds, alternating
single and double carbon bonds, have a special stability since adjacent double
bonds can overlap with each other, extending the � electron system. See Figure
15.16 for an illustration.)

An approximate treatment of � electron systems was introduced in 1931 by
Erich Hückel and is called the Hückel approximation of � orbitals. The first
step in a Hückel approximation is to treat the sigma bonds separately from the
pi bonds. Therefore, in a Hückel approximation of a molecule, only the �
bonds are considered. The usual assumption is that the � bonds are under-
stood in terms of regular molecular orbital theory. The � bonds form the over-
all structure of the molecule, and the � bonds spread out over, or span, the
available carbon atoms. Such � bonds are formed from the side-on overlap of
the carbon 2p orbitals. If we are assuming that the � bonds are independent
of the � bonds, then we can assume that the � molecular orbitals are linear
combinations of only the 2p orbitals of the various carbon atoms. [This is a
natural consequence of our earlier linear combination of atomic orbitals—
molecular orbitals (LCAO-MO) discussion.] Consider the molecule 1,3-butadiene
(Figure 15.17). The � orbitals are assumed to be combinations of the 2p atomic
orbitals of the four carbon atoms involved in the conjugated double bonds:

�(MO) � c1�2p,C1  c2�2p,C2  c3�2p,C3  c4�2p,C4

where c1, c2, c3, and c4 are the expansion coefficients and C1, C2, C3, and C4
refer to the individual carbon atoms. The combination of four atomic orbitals
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Figure 15.16 Conjugated � bonds are formed
when alternating single and double bonds be-
tween carbon atoms overlap, allowing the � elec-
trons to traverse the entire span of the double
bonds, instead of being confined between two
particular carbons.
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implies four molecular orbitals, each with its own characteristic values for c1,
c2, c3, and c4, and each with its own energies. Recognize that with two electrons
in each molecular orbital, only the two lowest � molecular orbitals for buta-
diene will be filled. The other two will be empty (and will be considered ex-
cited states of butadiene). Linear variation theory (see section 12.8) indicates
that the energies can be determined from the following secular determinant:

�
H11 	 ES11 H12 	 ES12 H13 	 ES13 H14 	 ES14�H21 	 ES21 H22 	 ES22 H23 	 ES23 H24 	 ES24

H31 	 ES31 H32 	 ES32 H33 	 ES33 H34 	 ES34
� 0

�H41 	 ES41 H42 	 ES42 H43 	 ES43 H44 	 ES44�
which yields a polynomial having E4 as the highest power (and hence yields
four roots). Hxy and Sxy are the normally defined energy integrals, respectively,
and overlap integrals between carbon x and carbon y:

Hxy � � �*xĤ �y d�

Sxy � � �*x�y d�

as defined in equation 12.28. Since the atomic orbitals used in the expansion
are assumed to be normalized, H11 � H22 � H33 � H44, and the value of that
energy integral is usually designated by the Greek letter �. Also, the overlap in-
tegrals S11, S22, S33, and S44 are exactly 1. At this point, no other simplification
can be made without approximating a solution.

Hückel put forth some simplifying assumptions. For a Hückel approximation:

1. All other overlap integrals Sxy are zero.
2. All energy integrals Hxy between nonneighboring atoms are zero.
3. All energy integrals Hxy between neighboring atoms have the same value.

This value is usually designated by the Greek letter �.

When these assumptions are made, the above 4 � 4 determinant takes the
following form (where the values for H11, H22, . . . , and S11, S22, . . . , have
also been substituted):

�
� 	 E � 0 0 

�� � 	 E � 0
0 � � 	 E �

�0 0 � � 	 E �

� 0

This is a much simpler determinant to solve (even if it does still lead to a
polynomial having a fourth power of E). It is called the Hückel determinant for
the � molecular orbitals. The polynomial one gets, when all common terms
are collected, is (� 	 E)4 	 3(� 	 E)2�2  �4 � 0. Algebraic techniques for
finding solutions to such equations eventually provide the following four pos-
sible values for E: � 	 1.618�, � 	 0.618�, �  0.618�, and �  1.618�. These
states are illustrated graphically in Figure 15.18. By convention, � and � are
negative, so the lower-energy states have the  sign and the higher-energy
states have the 	 sign. The four � electrons in butadiene reside in these mo-
lecular orbitals in Hund’s-rule fashion: two in each orbital, opposite spins. The
highest-energy molecular electronic state that has an electron in it is called the
highest occupied molecular orbital, or HOMO. The lowest-energy molecular
electronic state that has no electron in it (when the molecule is in its overall
ground electronic state) is called the lowest unoccupied molecular orbital, or
LUMO. The lowest-energy � electronic transition of a �-electron-containing
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Figure 15.17 The � orbitals of butadiene. �1
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state (see Figure 15.18).
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Figure 15.18 Hückel theory predicts this
arrangement for the four � electrons in butadi-
ene. A comparison (see text) suggests that this
molecule is more stable than expected due to the
conjugation of the � electrons.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



molecule is the HOMO → LUMO transition, which may or may not be an
allowed transition. (It usually is, so the HOMO and LUMO are important in
the electronic spectra of such molecules.)

Example 15.13
Perform a Hückel approximation treatment of ethylene, CH2�CH2.

Solution
This treatment is much simpler than butadiene, because only two carbon
atoms are involved. It should be easy to apply Hückel’s approximations to get
the following 2 � 2 Hückel determinant:

�� 	 E �
� � 	 E � � 0

Upon multiplying out the terms in the determinant, one gets

(� 	 E)2 	 �2 � 0

(� 	 E)2 � �2

(� 	 E) � ��

E � � � �

for the two electronic � orbitals in ethylene. They are illustrated in Figure
15.19, with the lower of the two orbitals having energy �  �. This is the
HOMO of ethylene. The LUMO of ethylene has an energy of � 	 �. The
electronic spectrum of ethylene has an absorption at about 2000 Å that has
been assigned to the transition between the HOMO and LUMO.

If we compare the answers for ethylene and for butadiene, there is a slight
difference from what we might expect. (Ethylene has the simplest � electron
system, so comparisons to its energy levels are common.) If butadiene were
just two ethylenic systems, then the energies of the four � electrons should be
simply 4(�  �) � 4�  4�. However, as seen above, the total energy of the
four butadiene electrons, which occupy the two lowest-energy electronic states,
is 2(�  1.618�)  2(�  0.618�) � 4�  4.472 �, or 0.472� lower in en-
ergy than expected. (Recall that � itself is negative.) This lower total energy is
due to the fact that the � electrons in butadiene are not confined to a single
double bond (a situation termed “localized”) but have some probability of
being found along the entire length of the conjugated system (they are 
“delocalized”). This extra energy stability of the four � electrons of
butadiene, 0.472�, is called the delocalization energy of the � electron system.

Values of � and � are measured spectroscopically, and the electronic spec-
troscopy of many � electron systems shows that the Hückel approximation
works fairly well. Many transitions between � electronic states occur in the 
visible or ultraviolet region of the spectrum. These transitions are the cause 
of color in conjugated � electron systems. In the Hückel approximation, all 
of the � molecular orbitals end up with a value of energy having the form 
E � �  K�, where the value for K depends on the system. Therefore, only the
values of K and � determine the molecule’s � energy level pattern, which is
what is probed in an experimental spectrum. However, because of how it is de-
fined, � has a similar value for most � systems: about 	75 kJ/mol. The value
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Figure 15.19 Hückel theory predicts the above
arrangement for the two � electrons in ethylene.
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for � can be determined from atomic spectra. Since a specific value for � is not
necessary in understanding the pattern of the � electronic states, its value is
not usually a matter of concern. (For carbon atoms, � is about 	1120 kJ/mol,
which is much larger than �.)

15.10 Benzene and Aromaticity
The Hückel approximation is especially useful in understanding the chemical
stability of benzene, and by extension other aromatic compounds. Recall that
benzene (Figure 15.20) is more stable than expected for a “cyclohexatriene,”
and its chemistry is representative of an entire class of aromatic hydrocarbons
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Figure 15.20 The � orbitals of benzene. �1 and the degenerate pair �2 and �3 are occupied
in the ground electronic state (see Figure 15.21).
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as opposed to the nonaromatic aliphatic hydrocarbons. The Hückel approxi-
mation provides some clues for benzene’s distinctions.

Benzene has six carbon atoms arranged in a ring, each contributing one p
electron to the � molecular orbitals. Therefore, the 6 � 6 determinant con-
structed using Hückel’s approximations looks like this:

�
� 	 E � 0 0 0 � 	 E

�� � 	 E � 0 0 0
0 � � 	 E � 0 0
0 0 � � 	 E � 0
0 0 0 � � 	 E ��� 0 0 0 � � 	 E �

� 0 (15.26)

The only real difference between equation 15.26 and the earlier Hückel deter-
minants is the presence of � in the upper right and lower left corners. This is
because the molecule is cyclic and the first carbon atom is adjacent to the sixth
carbon atom.

Evaluating the above determinant requires solving a polynomial that is sixth
order in E (that is, the highest power of E in the polynomial is E6). Upon solv-
ing for the values of E in terms of � and � (which will not be shown here),
one finds the following values for E: �  2�, �  �, �  �, � 	 �, � 	 �,
and � 	 2�. Two of the energies, �  � and � 	 �, are also doubly degener-
ate. An energy level diagram of these molecular orbitals is shown in Figure
15.21, along with the six � electrons in the three lowest orbitals.

There are two points about the � orbitals of benzene. First, all of the net
“bonding” orbitals (the orbitals having lower energy than the 2p electrons in
the carbon atom, which have an energy of �) are completely filled. Therefore,
the benzene molecule experiences the maximum possible decrease in overall
energy—and therefore the maximum possible increase in stability—that it
can. (Indeed, it is somewhat akin to the diatomic nitrogen molecule, which
has three pairs of electrons in bonding molecular orbitals.) Therefore, we ex-
pect that benzene should be more stable than expected, and it is. Second, con-
sider the delocalization energy. The total energy of the six � electrons is 
2(�  2�)  4(�  �) � 6�  8�. Compare this to three units of ethylene
(the system against which all delocalization energies are compared), which for
the six � electrons would have a � electron energy of 6(�  �) � 6�  6�.
Benzene therefore has 2� more of a decrease in energy, representing a delocal-
ization energy of approximately 150 kJ/mol. This is more than four times the
delocalization energy of butadiene, which at 0.472� of delocalization energy
represents a decrease in energy of only �35.4 kJ/mol. Benzene is much more
stable than expected simply on the basis of having three double bonds! This
unexpected (but explainable, in terms of the Hückel approximation) stability
of benzene is given a name: aromaticity. Benzene is aromatic. The name was
derived from the pungent odors of benzene and benzene-related compounds.
It now specifically refers to the increased stability of certain cyclic �-electron-
containing compounds.

Benzene is not the only aromatic compound. That is, six-membered rings
with (nominally) three alternating double bonds are not the only systems that
display the more-stable-than-expected character of aromaticity. A range of
Hückel determinants can be examined and a rule of thumb derived in terms
of maximal filling of bonding � orbitals. It is found that planar cyclic mole-
cules that have 2, 6, 10, 14, . . . , � electrons have all such electrons in lower-
energy bonding molecular orbitals and therefore are considered aromatic like
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Figure 15.21 Hückel theory predicts the above
arrangement for the six � electrons in benzene.
The amount of additional stability in the � or-
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Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



benzene. This generality is called the 4n  2 rule, where n is any nonnegative
integer and the expression 4n  2 yields the number of � electrons in the sys-
tem. (For example, n � 1 predicts 6 � electrons, which is what is found for
benzene.) The rule is of limited value, because in large molecules the deviation
from planarity is large. However, it is useful for predicting whether or not 
heterocyclic compounds (that is, cyclic compounds that have atoms other than
carbon) or ions composed of cyclic carbon rings will be unusually stable.

The ultraviolet spectrum of benzene (and other aromatic compounds) is
dominated by transitions of the � electrons from the lower � orbitals to the
higher-lying, normally unoccupied � orbitals. A strong absorption occurring
at �1800 Å marks the beginning of such transitions. (The electronic spectrum
of benzene has absorptions at lower energies, corresponding to light having
wavelengths of �2600 Å. Such absorptions were historically very well known
and are one of the earliest recognized examples of transitions involving an
electronic transition that is formally forbidden but made allowed by the vi-
brations of the molecule.

The extended Hückel method for molecular orbitals includes a treatment of
all valence electrons (� and �), not just the � electrons. Atomic orbitals from
atoms are used to determine molecular orbital energies by defining the inte-
grals Hxy and Sxy in a fashion similar to that just presented for the � electrons.
Although similar in principle, it requires larger matrices because all valence
electrons are treated. Other concerns preclude a detailed discussion here, but
other references (like J. P. Lowe, Quantum Chemistry, 2nd ed., Academic Press,
Boston, 1993) can be consulted for details.

15.11 Fluorescence and Phosphorescence
In a perfect molecule, electronic transitions would go like this: absorption of a
photon excites a molecule from initial (usually ground) state to excited state;
excited state emits a photon having the same energy/frequency/wavelength and
molecule goes from excited state to previous initial ground state. The first
process, excitation, would be followed by the exact opposite process, called de-
excitation or decay. Such processes would follow quantum-mechanical selec-
tion rules strictly.

In reality, electronic transitions stray somewhat from the ideal selection
rules. In particular, when an excited electronic state decays to a lower electronic
state, a photon having the same energy as the excitation photon might not be
emitted. Instead, the molecule may de-excite by transferring the extra energy
into various vibrational, rotational, or solid-state vibrational (called “phonon”)
modes of the sample. Ultimately, this excess energy is converted into heat en-
ergy. Such processes are called radiationless transitions.

There are other mechanisms for energy loss. The initial excited electronic
state of a molecule is best thought of as a manifold of vibrational and rota-
tional states superimposed on the electronic potential energy curve. (Such a
view has been discussed previously.) In many cases, this manifold overlaps the
energy range of another manifold of rotational and vibrational energies of a
different electronic state (usually having lower electronic energy) that has the
same spin multiplicity. This is an important requirement, because allowed
transitions have the selection rule of �S � 0. Such a system is illustrated in
Figure 15.22. In some cases, the molecule will spontaneously change its state
from the initial electronic state to the lower-energy electronic state of the same
multiplicity without the emission of a photon. In doing so, any excess energy
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Figure 15.22 Many molecules have overlap-
ping singlet (that is, S � 0, so 2S  1 � 1) and
triplet (S � 1, so 2S  1 � 3) electronic states.
Each of these electronic states has its own vibra-
tional state manifold. In some cases, absorbed
electronic energy is simply dissipated by being re-
distributed to the vibrations of the molecules, as
shown. Normally, the singlet manifold of elec-
tronic states does not interact with the triplet
manifold of electronic states via allowed elec-
tronic transitions. The numerical labels in the S
and T states are used to differentiate one singlet
(or triplet) state from another.
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is usually converted into vibrational energy. Such a process is called an inter-
nal conversion, because the electronic state changes within the molecule itself
and does not include any other participant (like solvent, for example). Then,
from this second electronic state, the molecule can emit a photon in a transi-
tion to the ground state. Because the second electronic excited state has lower
electronic energy than the original electronic state, the photon emitted in the
decay process has a lower energy than the photon absorbed in the excitation
process. The exchange in excited states is usually very fast, on the order of
10	10 to 10	6 seconds. Emission of light of lower energy due to such internal
conversions is called fluorescence. Figure 15.23 shows diagramatically the
processes behind fluorescence.

Fluorescence spectra are useful because two excited electronic states are in-
volved: one for the excitation process, and one for the decay process. A knowl-
edge of both photons involved in the overall process is a better identification
tool, and fluorescence spectroscopy is particularly useful in analytical chem-
istry. Since the excitation process must use a photon of higher energy than the
decay process, ultraviolet excitation sources are particularly common in fluo-
rescence spectroscopy. Many large molecules, which have complicated elec-
tronic states, can show fluorescence. Petroleum jelly, teeth, various minerals
like zinc sulfide, and certain dyes fluoresce in the presence of higher-energy
light. Fluorescent paints take advantage of this spectroscopic property. They
absorb the relatively high-energy light and re-emit it as lower-energy photons,
and in doing so appear brighter and, well, fluorescent. Fluorescent lightbulbs
also take advantage of this property by using higher-energy photons emitted
by mercury atoms and converting them into lower-energy visible light. Overall,
the process is more energy-efficient than incandescent lightbulbs, which use
red-hot filaments to generate light. (That is, incandescent lightbulbs are de-
scribed by Planck’s law whereas fluorescent light bulbs are described by quan-
tum mechanics.)

Because fluorescence is a relatively fast process, it ends quickly when the
source of excitation stops: again, on the order of 10	10 to 10	6 seconds. (Such
time intervals are readily measurable with modern equipment, and the mea-
surement of fluorescence processes is common in modern physical chemistry
research.) However, the imposition of reality on molecular systems suggests
that the �S � 0 selection rule is not always followed, and in some cases a for-
mally forbidden internal conversion occurs where �S � 0. In most cases a sin-
glet state (2S  1 � 1) spontaneously transfers into a manifold defined by a
triplet state (2S  1 � 3). Such a conversion is illustrated by Figure 15.24.
These conversions are called intersystem crossings, because electronic states of
differing multiplicity are usually considered different electronic systems of the
same molecule. After transferring to this new electronic state, the molecule
emits a photon and transfers to a lower electronic state, just like in fluores-
cence. However, because intersystem crossings are formally forbidden by quan-
tum mechanics, they usually take more time to occur. Timescales for photon
emission for these processes are on the order of 10	4 to 104 seconds: much
longer than fluorescence processes. This process is called phosphorescence.
Phosphorescence is distinguished from fluorescence in two ways. First, the
electronic states involved require a change in S (usually a forbidden process).
Second, because of the timescale involved, phosphorescence continues even af-
ter the excitation source is turned off. (Strictly speaking, so does fluorescence,
but the timescale implied here is one of human experience. Modern electronics
can detect the decrease in fluorescence after the excitation source is removed,
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Figure 15.23 Fluorescence occurs when an
atom or molecule absorbs a photon, vibrationally
relaxes, and then emits a photon to go back to the
ground state. The emitted photon is always lower
in energy than the absorbed photon. Fluorescence
is a relatively fast process.

Singlet manifold
Triplet manifold

Radiationless
transition

T1

T2

S0

S1

E
xc

ita
tio

n

Fl
uo

re
sc

en
ce

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



but the timescale is much faster than the normal human perception.
Phosphorescence, in terms of our own physical perception, is a much longer
lasting phenomenon than fluorescence.)

Most glow-in-the-dark objects use the phosphorescence phenomenon be-
cause it is longer lasting. (Old watch dials with glow-in-the-dark watch faces
actually relied on the fluorescence phenomenon, where a small amount of
radium was mixed with zinc sulfide (a material that fluoresced) to provide a
permanently glowing timepiece. Such radium-doped products are no longer
made.) Glow-in-the-dark paint is made possible by a phosphorescence phe-
nomenon, whereas Day-Glo or other so-called fluorescent paints take advan-
tage of fluorescence.

15.12 Lasers
Lasers are a widespread and recognizable part of the modern technical soci-
ety. They also represent such an unusual example of how electronic energy
levels are utilized that a discussion of how (some) lasers work should be con-
sidered in this chapter. The very word “laser” is an example of how technol-
ogy affects vocabulary. Originally an acronym for light amplification by stim-
ulated emission of radiation, it has become a word in its own right. The maser
(microwave . . .) preceded the laser, but it worked in the microwave region of
the spectrum and was invisible to the eye and relatively low in energy. The
fundamental theory behind lasers (and masers) was developed by Albert
Einstein (Figure 15.25) around 1917.

In trying to understand the interactions between light and matter, Einstein
defined three mechanisms. In order for an atomic or molecular system to go
from a lower-energy state to an excited energy state, it must absorb a photon
having a certain frequency (or wavelength or energy). Such absorption
processes do not occur spontaneously, but must be stimulated by the presence
of just the right photon. Einstein called this stimulated absorption, and noted
that the rate of absorption must be proportional to the density of photons that
have the right energy, labeled �(�), and the concentration of atoms or mole-
cules in the lower state, clower:

rate � �(�) � clower

The photon density �(�) can be determined from Planck’s theory of light, as-
suming perfect blackbody behavior. Einstein introduced a proportionality con-
stant B, now called the Einstein coefficient of stimulated absorption:

rate of stimulated absorption � B � �(�) � clower (15.27)

In addition, Einstein noted that a photon having the same energy can also in-
duce, or stimulate, a transition in the opposite direction, from higher-energy
state to lower-energy state. In doing so, the photon of just the right frequency
causes a transition that emits another photon having the same energy. Einstein
called this stimulated emission, and by the same arguments that led to equation
15.27 defined the Einstein coefficient of stimulated emission, B�:

rate of stimulated emission � B� � �(�) � chigher (15.28)

where chigher is the concentration of species in the excited state. Einstein was
able to show that B � B�. Finally, he recognized another way a system can
go from an excited state to a lower-energy state, a mechanism that excita-
tions do not have: there could be a spontaneous emission of a photon of the
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Figure 15.24 Phosphorescence occurs when
there is a quantum-mechanically forbidden inter-
system crossing (that is, when �S � 0 occurs)
and a state of different multiplicity is occupied.
Because the transition from the triplet excited
state to the singlet ground state is also formally
forbidden, the transition from the T1 state to the
S0 state takes a long time on the atomic or mole-
cular timescale; phosphorescence is a relatively
slow process.
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right frequency. It is dependent on the concentration of species in the ex-
cited state but independent of the photon density �(�). The rate of sponta-
neous emission is characterized by A, the Einstein coefficient of spontaneous
emission:

rate of spontaneous emission � A � chigher (15.29)

The total emission is the sum of the spontaneous and stimulated emission:

rate of total emission � A � chigher  B � �(�) � chigher
(15.30)

� [A  B � �(�)]chigher

Under normal circumstances, the rate of emission is always greater than the
rate of absorption, so that most atomic and molecular systems are in their
lowest-energy states. The three interactions are illustrated in Figure 15.26.

By thinking of the electronic transition as a “vibration” of an electron,
Einstein derived the mathematical forms of the coefficients A and B as

A � �
(4

8

�

�




2

0

e

)

2

m

�2

ec
3� (15.31)

B � �
(4�


�

0)

e

h

2

me�
� (15.32)

where e is the charge on the electron in coulombs, � is the frequency of the
transition in s	1, me is the mass of the electron in kg, h is Planck’s constant,
and c is the speed of light in m/s. The constant 
0 is necessary to relate the units
of charge, coulombs, to SI units. The ratio A/B is

�
A

B
� � �

8�

c

h
3

�3

� (15.33)
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Figure 15.25 Albert Einstein laid down the
basic theory of lasers in 1917, over 40 years be-
fore they were developed.
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Figure 15.26 (a) Stimulated absorption,
which defines Einstein’s coefficient B. (b) Spon-
taneous emission, which defines Einstein’s coeffi-
cient A. (c) Stimulated emission, which defines
Einstein’s coefficient B�. In stimulated emission,
the two photons have the same wavelength and
phase, as indicated.
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and the only varying factor in this ratio is �, the frequency of the transition.
What this ratio says is that the greater the frequency of the transition, the larger
the chance that spontaneous emission, determined by A, will occur over stim-
ulated emission, which is measured by B.

Example 15.14
Lasers make use of stimulated emission. Using equation 15.33, suggest a rea-
son why red lasers are easy to engineer but blue lasers are more difficult.

Solution
The ratio in equation 15.33 has the third power of the frequency, �, in the
numerator. Therefore, the higher the frequency, the higher the ratio of spon-
taneous emission to stimulated emission. An electronic transition that occurs
in the blue region of the spectrum, which has roughly twice (2�) the fre-
quency of the red region of the spectrum, has a (2)3 � 8 times greater chance
of decaying by spontaneous emission than by stimulated emission. If lasers
depend on stimulated emission, blue lasers are therefore correspondingly
more difficult to produce.

Example 15.15
Determine the ratio of spontaneous to stimulated emission for a transition
that occurs at the following wavelengths.
a. � � 21.0 cm, a wavelength that has implications in astronomy
b. � � 300.0 nm, which is in the middle UVB part of the spectrum.
c. Comment on the difference in the two ratios.

Solution
a. The frequency in s	1 must be determined first:

� � �
�

c
� ��

2.997

2

9

1

�

.0 c

1

m

08 m/s
�� �

10

1

0

m

cm
� � 1.428 � 109 s	1

Substituting into the formula for the ratio A/B:

�
A

B
� � �

8�

c

h
3

�3

� �

� 1.800 � 10	30 kg/(m�s)

This is a very small ratio (whose units are a consequence of equation 15.33).
b. Again, we determine frequency:

� � �
�

c
� ��

2.997

3

9

00

�

.0

1

n

0

m

8 m/s
�� �

109

m

nm
� � 9.993 � 1014 s	1

and substitute it into the formula for A/B:

�
A

B
� � �

8�

c

h
3

�3

� �

� 6.168 � 10	13 kg/(m�s)

c. Although still a small number, the second result is 17 orders of magnitude
larger than the first answer. This means that spontaneous emission is almost

8�(6.626 � 10	34 J�s)(9.993 � 1014 s	1)3

�����
(2.9979 � 108 m/s)3

8�(6.626 � 10	34 J�s)(1.428 � 109 s	1)3

�����
(2.9979 � 108 m/s)3
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a billion billion times more likely for light having wavelength of 300.0 nm
than a wavelength of 21.0 cm.

Before we get to lasers themselves, we need to jump ahead a little (to
Chapters 17 and 18). The basic idea is that thermal energy may be sufficient to
cause excited quantum states to be populated to a significant degree—
depending on the amount of thermal energy available and the amount of energy
necessary to reach the excited state. It will be shown later that if an energy level
is �E energy units (typically, joules) above the ground state, then the fraction of
the total species, labeled F, that is in the excited state is given by the equation

F � e	�E/kT (15.34)

where T is the absolute temperature and k is Boltzmann’s constant. We are as-
suming that the two energy states involved are nondegenerate. Otherwise, de-
generacy must be included (see Chapters 17 and 18). If the molar energy were
used, then the equation would be

F � e	�E/RT

where R is the ideal gas law constant. For example, rotational levels in gas-
phase molecules can be thermally excited, so that the most populated rota-
tional eigenstate is not the J � 0 state (see Chapter 14). Vibrational energy
states are often thermally populated. Electronic energy levels are rarely ther-
mally populated because most ambient temperatures are so low relative to the
amount of excitation energy that practically all systems are in the ground elec-
tronic state. Systems whose atoms or molecules follow equation 15.34 are said
to be at thermal equilibrium. Each possible energy level has a certain fraction
of molecules having that energy level. The energy levels are said to have a cer-
tain population of systems inhabiting that energy. A system at thermal equilib-
rium is illustrated in Figure 15.27.

Now, to lasers. Because there is both spontaneous and stimulated emission,
systems in thermal equilibria usually have more molecules in a lower-energy
electronic state than in a higher-energy electronic state. Suppose, however, that
a certain electronic state decays rather slowly. We call this a long-lived or
metastable excited state. Suppose too that we can excite the atoms or molecules
into the metastable excited state faster than that excited state decays. Under
those circumstances, we can populate the excited state over and above the frac-
tion dictated by thermal equilibrium, which is given by equation 15.34. Such a
situation is called a population inversion and is illustrated in Figure 15.28.
Population inversions can be achieved by light excitation, by electrical dis-
charge, or even by chemical reaction. Typically, at least three energy levels are
needed to establish a population inversion. There is the lowest-energy initial
state (sometimes but not always the ground state), and an initial excited state
that decays rather quickly into a second, lower-energy, long-lived excited state.
It is between the lower-energy excited state and the ground state that the pop-
ulation inversion is established.

Even when a population inversion is established and maintained, both spon-
taneous and stimulated emission still occur. However, the stimulated emission
is the key. A photon of a particular wavelength stimulates the emission of an-
other photon of the same wavelength, which can stimulate the emission of a
photon of the same wavelength, which can stimulate the emission of a photon
of the same wavelength, which can . . . and so the building up of a collection
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Figure 15.27 Thermal equilibrium is charac-
terized by this type of population of excited states
that might be accessed by thermal energy alone.
The higher the energy level, the smaller the pop-
ulation. Statistical analysis indicates that the de-
crease in population of the energy levels is expo-
nential in nature.

Figure 15.28 A population inversion is
achieved when higher energy levels are more pop-
ulated than is predicted by a thermal equilibrium
(see Figure 15.27). Here, the third energy level is
experiencing a population inversion. Population
inversions are not normally encountered, but can
be easily engineered. All lasers require a popula-
tion inversion as part of the laser process.
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of photons, all having the same wavelength (and phase, as it turns out), occurs.
Because all of these photons have the same wavelength, the collection of pho-
tons is called monochromatic (“same color”). (The individual photons usually
have the same phase and specific polarization properties, too, but we will omit
discussion of these properties. They are, however, important for various appli-
cations of lasers.) This process is shown in Figure 15.29. It is called “light am-
plification by stimulated emission of radiation,” which produced the acronym
LASER and later entered the language as laser. The very first laser was built by
the American physicist Theodore Maiman in 1960 using a ruby rod, but the
concept of stimulated emission was first demonstrated by the Columbia
University physicist Charles Townes in 1953. Using ammonia, he and his stu-
dents constructed a device that amplified microwave radiation using a similar
stimulated-emission principle (“microwave amplification . . . ,” leading to the
term “maser”). Realizing a similar process for visible light, Townes and Arthur
Schawlow published such ideas in 1958, and in 1964 Townes shared a Nobel
Prize with the Soviet scientists Alexander Prokhorov and Nikolai Basov, who
developed the theory of lasers independently.

A simplified diagram of a laser is shown in Figure 15.30. Although the pop-
ulation inversion is the key to producing laser action (“lasing”), the engineer-
ing of the laser is also crucial. In most cases, the active material is tubular with
each of the transverse ends of the material meeting a mirror. These two mir-
rors are important because they make the photons travel back and forth
through the laser medium, thereby increasing the chances that they will induce
stimulated emission. Even if one of the mirrors reflects 100% of the photons
and the other reflects only 95–99% of the light (the leftover 1–5% is transmit-
ted), the transmitted light makes a monochromatic beam of very high inten-
sity. This emitted laser beam is a rich source of photons of a particular energy.

A more complete discussion of lasers is beyond our scope. On the other
hand, it is worth discussing a few points using specific lasers as examples. The
very first laser was built around a ruby rod (Figure 15.31). Ruby is crystalline
sapphire, aluminum oxide, Al2O3, that has been doped with a few hundredths
of a percent of Cr3 ions. A partial electronic energy diagram of Cr3 is given
in Figure 15.32. The ground state of Cr3 is 4A2. Pulses of visible light are used
to excite electrons into either an excited 4T2 or 4T1 state. (These term symbols
are actually irreducible representations combined with multiplicities.) Within
10	7 s, there is a nonradiative transition into an E electronic excited state. Since
this transition occurs very quickly, a population inversion is established in

554 C H A P T E R  15 Introduction to Electronic Spectroscopy and Structure

Laser medium

Many monochromatic,
in-phase photons:

a laser beam

Single
photon

Figure 15.29 When a population inversion is
established, stimulated emissions can build until
the number of photons is extremely high, yield-
ing a very bright light. This is called light ampli-
fication by stimulated emission of radiation, or
laser.
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Figure 15.30 Simple diagram of a laser. Photons bounce back and forth inside the lasing
medium, reflected off mirrors on each end, stimulating the production of photons of the same
wavelength and phase. One of the mirrors lets some of the photons out.
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short order and a pulse of lasing action occurs at a wavelength of 694.3 nm,
which is in the red region of the spectrum. Typically, ruby crystals are a few
millimeters wide and several centimeters long, and are still used today in some
lasers. Because three individual electronic states contribute to the laser action,
the ruby laser is an example of a three-level laser system. If the electronic exci-
tation is caused by a pulse of light, the resultant laser action is also a pulse of
laser light. This is an example of a pulsed laser. It can also be operated contin-
uously using constant illumination by an excitation source. In such a configu-
ration, the ruby laser is an example of a continuous-wave (or cw) laser.

Direct electrical excitation using an electrical discharge is used to excite
atoms in the helium-neon or He-Ne (actually pronounced “hee-nee”) laser. An
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Figure 15.31 A ruby laser in operation.
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Figure 15.32 Energy levels of the Cr3 ion involved in the ruby laser, the first laser to be de-
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laser light is produced by stimulated emission. Source: Reprinted with the permission of Simon &
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energy level diagram for this laser is shown in Figure 15.33, with Figure 15.34
showing an example of a He-Ne laser in operation. The He-Ne laser is an ex-
ample of an ion laser, since He and Ne ions are the important electronic sys-
tems. Figure 15.33 shows that two of the excited electronic states of He are
almost coincident with excited electronic states of Ne, thereby increasing the
ability to transfer electrons to Ne excited states and produce a population in-
version. The He-Ne system is an example of an electronic system that has sev-
eral possible lower-energy states that can participate in the lasing process, pro-
ducing different wavelengths of laser light. How does one select which state
produces the laser beam? For the He-Ne system, one can modify the reflectiv-
ity of the mirrors so that only one wavelength of light is effectively reflected
back and forth through the laser medium, stimulating more photons of the
exact same wavelength. In this way, the transition occurring at 632.8 nm, in the
red part of the spectrum, is preferred and is the dominant color of He-Ne
lasers. (Green He-Ne lasers are also available, which lase at 543 nm.) The other
transitions, at 3.39 �m and 1.15 �m, occur in the infrared portion of the spec-
trum but are largely unused. The 1.15-�m laser beam is historically important
because it was the wavelength of the first laser made from a gaseous laser
medium.

Because four energy levels are involved in the laser action of He-Ne lasers
(consult Figure 15.33), they are referred to as four-level laser systems. He-Ne
lasers are perhaps the most common lasers in use, among other things for sur-
veying and for scanning prices in a grocery store. Although not considered
high-energy lasers, they are a very bright light and can cause eye damage if one
looks into the laser beam.

An electrical discharge using the Ar ion also produces laser action at mul-
tiple wavelengths. These lasers are among the more common higher-energy
lasers, producing laser light in the green (� � 514.6 nm) and blue (� � 488.8 nm)
region of the spectrum. Tuning of the laser light frequency is done by chang-
ing the resonance characteristics of the lasing chamber. For example, a prism
can be used to direct one wavelength of light toward a mirror for stimulated
emission, and (because the index of refraction is different for different wave-
lengths of light) to direct other wavelengths in a slightly different direction to
avoid reinforcing them through stimulated emission.

The carbon dioxide laser uses a population inversion based on the rovibra-
tional energy levels of the CO2 molecule (and so technically is not welcome in
a discussion of electronic energy levels). The energy level diagram is shown in
Figure 15.35. The CO2 laser is infamous because it does what lasers are ex-
pected to do in science fiction: blast holes in objects. The wavelength of CO2

lasers is 10.6 �m, which is in the infrared portion of the spectrum. Many solid
objects absorb infrared light very well, and since CO2 laser light is a very po-
tent source of infrared photons, it has the capability of heating up things very
quickly. This is coupled with the �25% efficiency of conversion of the excita-
tion energy into light energy, an efficiency almost unmatched by any other
popular laser medium.

15.13 Summary
Transitions among electronic energy levels are among the most crucial processes
that occur in all of chemistry. For atomic systems, they are fairly well under-
stood. At the very least, there is an established convention for labeling the elec-
tronic energy levels and a rather rigorous understanding of the allowed and
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Figure 15.33 Energy levels of the He-Ne laser,
one of the most prevalent lasers in society (wit-
ness grocery store scanners). Helium atoms are
initially excited, but they transfer energy very ef-
fectively to neon atoms, which participate directly
in the lasing process. Note that several possible
transitions are possible for laser action, each one
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632.8-Å laser, which is bright red. Source: From 
M. J. Beesley, Lasers and Their Applications.
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Figure 15.34 A He-Ne laser in operation.

©
 R

ic
ha

rd
 M

ag
na

/F
un

da
m

en
ta

l P
ho

to
gr

ap
hs

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



forbidden transitions. For molecules, there is a convention based on the char-
acter table for the symmetry point group, but wide-ranging generalities are dif-
ficult (except perhaps for conjugated � electron systems, as described by the
Hückel theory). Most in-depth discussion of electronic transitions of mole-
cules is best confined to a specific discussion of that molecule instead of a gen-
eral discussion of electronic spectroscopy (unlike rotational and vibrational
spectroscopy, which can be well developed without defining the molecular sys-
tem). Transitions among electronic energy levels produce laser beams (as we
know thanks to Einstein’s analysis of electronic transitions), but laser action is
not limited to electronic energy level transitions. In the visible region of the
spectrum, however, a laser represents a superb modern example of how we
have been able to understand and utilize transitions between the electronic
energy levels of atoms and molecules.
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Figure 15.35 Energy levels of the CO2 laser.
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15.2 Selection Rules

15.1. Linearly polarized light can be assigned a specific irre-
ducible representation of a symmetry point group. If the 
electronic ground state of benzene has A1g symmetry and 
y-polarized light has the label E1u, what are the symmetry 
label(s) of allowed excited electronic states? Use the D6h char-
acter table in Appendix 3.

15.2. Explain in your own words why electronic transitions
are considered dipole-moment allowed.

15.3 The Hydrogen Atom

15.3. Determine the value of R for deuterium (2H) and tritium
(3H) using equation 15.3. You will have to look up the masses
of the D and T nuclei. By what percentage do these R values
differ from that for hydrogen?

15.4. Harold Urey discovered deuterium in 1931 by very care-
fully evaporating four liters of liquid hydrogen down to a sin-
gle milliliter and measuring the electronic spectrum. New lines
in the atomic spectrum confirmed the presence of “heavy 
hydrogen” right where quantum theory predicted. Calculate
the expected positions of the four visible lines of the Balmer
series for deuterium atoms. (See Chapter 9 for the details on
the Balmer series for H atoms.)

15.5. Draw a Grotrian-type diagram for the first four lines of
the Lyman series in the hydrogen atom spectrum. Be sure to
include all allowed transitions.

15.6. What is the value of the change in energy, �E, for the
(n, �) transition of the hydrogen atom labeled (3, 2) → (3, 1)?
Justify your answer.

15.4 Orbital and Spin Angular Momenta

15.7. List the possible values of L, ML, S, MS, J, and MJ for the
following: (a) two coupled p electrons, (b) two coupled f
electrons, (c) two coupled electrons, one a p electron and one
a d electron. Remember that the z-component quantum num-
bers depend on the values of the total angular momentum
quantum numbers.

15.8. A proton also has spin of �
1
2

�. What are the possible val-
ues of MS for a hydrogen nucleus? A deuterium nucleus has a
nuclear spin (labeled with the letter I) of 1. Does it have the
same values of MS?

15.9. Low-energy electronic spectra of Al atoms, under high
resolution, appear as multiplets. Suggest a reason for this.

15.10. What are the possible observable values of orbital and
spin angular momenta and their z components for (a) a sin-
gle d electron, (b) a single f electron, (c) a single g electron?
What are the possible values of j and mj for each case?

15.11. The sodium D lines appear at 5890 and 5896 Å. Using
this information, what is the difference in energy between the
j � �

1
2

� and j � �
3
2

� states in sodium?

15.5 Term Symbols; Russell-Saunders Coupling

15.12. What is the term symbol for the ground state of (a) Li,
(b) Al, (c) Sc?

15.13. Show that the maximum multiplicity term symbols for
half-filled subshells will always have an S (that is, L � 0) term
symbol. Do this by considering that L can also be determined
from the sum of the values for the m� quantum numbers of
the electrons in the hydrogen-like orbitals.

15.14. In some tables where the excited states within the 1s2

2s2 2p2 electron configuration of C are labeled with their en-
ergy values, the 3P0 state is not labeled with an energy. Why?

15.15. Determine the term symbols and which is the ground-
state term symbol for a hypothetical element having an h2

electron subshell configuration for its ground state.

15.16. List all of the possible term symbols of allowed excited
states of the atom that has a ground state of 3D1.

15.17. Many times, electronic spectra are measured when
the sample is very cold so that all of the electrons are in the
ground electronic state. For samples that have low-lying ex-
cited states, liquid helium can be used. Ni is one example,
having an excited electronic state at �200 cm	1. If the Ni
atom has a term symbol of 3F2 for its electronic ground state,
what will be the allowed excited states?

15.18. The Co2 ion has a d7 electron configuration and a
ground-state term symbol of 4F9/2. List the possible term sym-
bols for excited states that will participate in allowed transitions.

15.6 Diatomic Molecules

15.19. Why is the total angular momentum of a diatomic
molecule, labeled J, quantized?

15.20. Why do heteronuclear diatomic molecules not use the
labels g and u on their term symbols?

15.21. Use group-theoretical arguments to determine the
term symbols for Li2, which has two unpaired electrons in dou-
bly degenerate �u molecular orbitals.

15.22. In some cases where diatomic oxygen is a product of
a chemical reaction, O2 is formed where both electrons are
paired in the same �g molecular orbital and so are in a 1�
electronic excited state. The decay of this state to the ground
state occurs slowly. Suggest why the decay is so slow.

15.23. Determine the ground-state term symbol of the
acetylide ion, C2

2	. Use the molecular orbital diagram for oxy-
gen for assistance.
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15.7 & 15.8 Franck-Condon Principle and
Polyatomic Molecules

15.24. Figure 15.36 shows two vibronic levels of a molecule.
Indicate which sets of energy levels should have the largest
Franck-Condon overlap integral. Explain your answer.

15.25. Indicate, on the basis of general principles, whether or
not the following polyatomic ions are colored. (a) Nitrate,
NO3

	 (b) Permanganate, MnO4
	 (c) Ammonium, NH4



(d) Dichromate, Cr2O7
2	 (e) Peroxide, O2

2	 (f) Acetylide,
C2

2	

15.26. For an electronic spectrum that has both vibrational
and rotational structure (a rovibronic spectrum), suggest a
form for the complete transition moment.

15.27. Determine the symmetry labels of the allowed excited
states of H2O if the ground electronic state has a symmetry la-
bel of 1A1. (H2O has C2v symmetry.)

15.9 & 15.10 Hückel Approximations 
and Aromaticity

15.28. Justify in words why S11 � S22 � S33 � S44 in the
Hückel approximation of the � orbitals of butadiene.

15.29. What would change in the Hückel approximation of
ethylene if deuterium atoms were substituted for the hydro-
gen atoms in the molecule? Explain your reasoning.

15.30. Construct the Hückel determinants for cyclobutadiene
and cyclopentadiene. In what ways are they alike? In what
ways are they different?

15.31. Explain why cyclopentadiene easily accepts an elec-
tron to become cyclopentadienide (C5H5

	, which is abbrevi-
ated Cp in organic or organometallic chemistry).

15.32. Consider the following molecule:

Why can its stability be attributed to an internal charge sepa-
ration with a  charge in the seven-membered ring and 
a 	 charge in the five-membered ring?

15.33. Within each of the following groups, predict which cy-
clopolyenes will be aromatic: (a) neutral, (b) single negative
charge, and (c) double negative charge.

15.34. Do the same as in exercise 15.33, but for cyclopoly-
enes with (a) a single positive charge and (b) double positive
charge.

15.11 & 15.12 Fluorescence, Phosphorescence,
and Lasers

15.35. Why can a population inversion not be achieved by
simply heating a potentially laser-active material?

15.36. Suggest why phosphorescence spectra are sometimes
better for identifying useful electronic transitions for possible
laser transitions than are fluorescence spectra.

15.37. Would the light from fireflies be considered an exam-
ple of a fluorescence or a phosphorescence process?

15.38. Why is it not possible to obtain blue fluorescence from
a transition that initially absorbs red light?

15.39. CO2 lasers are among the most powerful cw lasers
available; their most commonly emitted wavelength is 10.6
�m. How many 10.6-�m photons are generated each second
from a CO2 laser that emits 300,000 J per second? (That makes
it a 300-kilowatt laser.)

15.40. How many 632.8-nm photons must a He-Ne laser
emit per second to achieve a power of 1 J/s?

15.41. Many high-power lasers emit only a little bit of energy
but in an extremely short pulse. What is the power of a laser
that emits a 300-millijoule pulse in 2.50 nanoseconds?

15.42. Explain why X-ray lasers would be extremely difficult
to build.

Azulene
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16
WE HAVE MADE PASSING MENTION of the effects of magnetic fields

on atomic or molecular energy levels. For example, we have stated
several times that magnetic fields remove the degeneracies of the various m�

levels within a single � value. However, we have not really considered the idea
of magnetic spectroscopy. We have alluded to the fact that magnetic fields can
change the energies of electrons having different m� quantum numbers. You
may also be aware of the medical imaging technique called magnetic resonance
imaging (MRI), which is an important application of magnetic spectroscopy.

The very term “magnetic spectroscopy” is a bit of a misnomer. Although
electricity and magnetism are elements of the same phenomenon (hence the
word electromagnetism), we typically experience electricity as an ability to do
electrical work and magnetism as a sort of static field. Perhaps in an experien-
tial sense, this is accurate. But magnetic fields do affect quantum states at the
atomic and molecular level, and so have an effect in spectroscopy. In magnetic
spectroscopy, a magnetic field is imposed on a sample while it is probed with
electromagnetic radiation. Although the presence of a magnetic field might not
seem to make a lot of difference, we can get a lot more information about the
quantum states of an atom or molecule when we use a magnetic field along
with light. In this chapter, we will consider a few examples of magnetic spec-
troscopy.

16.1 Synopsis
Initially, we will look at magnetic fields and magnetic dipoles and see how they
interact. Even though most of the magnetic spectroscopies we will discuss are
based on quantum mechanics, an understanding of magnetic fields and dipoles
from classical mechanics will be useful. When we get to magnetic spectro-
scopies, we will first consider the Zeeman effect: a splitting of the electronic
energy levels of an atomic system by a magnetic field. Observation of the
Zeeman effect went almost hand in hand with the development of quantum
mechanics and provided some useful and necessary experimental evidence for
the existence of the various quantum numbers. The Zeeman effect is a rela-
tively straightforward and useful type of magnetic spectroscopy. More involved
and more intricate are the various types of magnetic resonance (or MR) spec-
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troscopy. In MR spectroscopy, an experimenter has the opportunity to vary
both the electromagnetic radiation and the magnetic field strength until the
difference between the split energy levels equals the energy of the photon and
so a photon is absorbed: that is, a resonance is established. The two major
forms of MR spectroscopy are nuclear magnetic resonance and electron spin
resonance (also called electron paramagnetic resonance, depending on the type
of atomic or molecular system). As their names suggest, one deals with mag-
netic field interactions with the nucleus and the other deals with magnetic field
interactions with the electrons. Different and useful information can be ob-
tained with both.

16.2 Magnetic Fields, Magnetic Dipoles, 
and Electric Charges

Classically, magnetic fields (more formally called “magnetic inductions”) are
caused by moving charges. If a current I were flowing through a wire in one
direction, then the magnetic field is a circular vector mapping out a cylinder
around the wire and having its center at the wire, as in Figure 16.1. The mag-
netic field strength depends on the distance, labeled r, from the wire. The
magnitude of the magnetic field strength vector, labeled B, is given by the
equation

B � �B� � �
2

�

�
0I

r
� (16.1)

where the � � symbols are used to indicate the magnitude of a vector and �0 is
a physical constant called the permeability of a vacuum. Its value is 4� � 10�7

tesla�meter/ampere, or T�m/amp. The tesla is one unit of magnetic field
strength, and is named after the erratic scientific genius Nikola Tesla (Figure
16.2). In terms of basic units, a tesla is equal to a kg/(coulomb�s). There is an-
other unit of magnetic field strength, the gauss, abbreviated G, which is equal
to 10�4 T.

The direction of the magnetic field vector is given by the “right-hand rule”:
if you point your right hand’s thumb in the direction of the current, the right
hand’s fingers would curl in the direction of the magnetic field. This is illus-
trated in Figure 16.3.

Conversely, consider an electrical current I that is going around in a circle,
a closed loop, as in Figure 16.4. This loop has some area, labeled A. According
to the classical theory of electromagnetism, this loop of current induces a lin-
ear magnetic effect called a magnetic dipole. It is called a dipole because it is a
vector that has a specific direction, which is normally considered the “positive”
or “north” pole of the dipole (the direction the vector is from is considered the
“negative” or “south” pole). For the magnetic dipole vector, labeled �, the mag-
nitude is

� � ��� � I � A (16.2)

The unit of the magnetic dipole is ampere�meter2. The direction of the mag-
netic dipole vector is also given by the right-hand rule. If you curl your fingers
around the closed loop in the direction of the current, your thumb points in
the direction of the magnetic dipole vector (that is, toward the north pole end).
The magnetic dipole vector and the right-hand rule are illustrated in Figure
16.4. At this point, you should be able to differentiate between a magnetic field
and a magnetic dipole. They are two different things.
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Current

Straight wire
B

Figure 16.2 Nikola Tesla (1856–1943) was
born in Croatia and emigrated to the United
States in 1884. Although he ultimately turned into
a rather eccentric character, his work in electric-
ity and magnetism almost earned him the 1912
Nobel Prize. He helped pioneer the use of alter-
nating current (AC) over direct current (DC) in
the fledgling electrical power industry.

Figure 16.1 Current traveling through a
straight wire causes the formation of a cylindri-
cal magnetic field, labeled B.

Current

B

Figure 16.3 The right-hand rule is used to de-
termine the direction of the magnetic field vec-
tors. If the thumb of the right hand is pointed in
the direction of the current, the fingers curl in the
direction of the magnetic field, as shown.
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Currents consist of individual electrical charges, usually electrons. We can
therefore consider the magnetic fields produced by a single electron as it
moves—at least classically.

Example 16.1
For a distance of 1 m from a single straight wire, calculate the magnetic field
produced by each of the following:
a. A single electron passing by a point each second
b. A mole of electrons passing by a point each second

Solution
a. At 1.602 � 10�19 coulombs per electron, the current I in this case is 
1.602 � 10�19 C/s, or 1.602 � 10�19 amp. Substituting into equation 16.1,
one gets

B � � 3.204 � 10�26 T

b. One mole of electrons has a charge of approximately 96,500 C (this is
Faraday’s constant) for a current of 96,500 amps. (In reality, such a current
would probably destroy the wire.) Substituting this value into equation 16.1:

B � � 0.0193 T

Compare the answer from part b to the value for Earth’s natural magnetic
field, which is approximately 0.6 gauss, or 6 � 10�5 T. Common currents
around the home, office, or lab are 15 to 30 amperes, so the magnetic fields to
which one might be exposed from normal electrical wiring are on the order of
magnitude of Earth’s own magnetic field.

Example 16.2
Calculate the magnetic dipole magnitude of the following:
a. 1 ampere of charge in a superconducting ring having a radius of 0.500 m
b. A current of 6.58 � 1015 amperes moving about a ring having a radius of
0.529Å. (This is equivalent to an electron in the first Bohr radius of the Bohr
hydrogen atom.)

Solution
a. The area of the circle is �r2 � (3.14159)(0.5 m)2 � 0.785 m2. Therefore,
the magnetic dipole for 1 ampere at 0.5 m radius is 0.785 amp�m2.
b. The area of this smaller ring is (0.529 � 10�10 m)2 � 2.80 � 10�21 m2.
The magnetic dipole in this case is simply (6.58 � 1015 amp) � (2.80 �
10�21 m2) � 1.84 � 10�5 amp�m2. [Although this is a smaller magnetic di-
pole than that in part a, it is due to a single (classical) electron.]

Magnetic effects like fields and dipoles interact with each other. It’s like two
bar magnets interacting, either both north or south poles interacting to repel
each other, or a north and a south pole of a magnet attracting each other. A
potential energy defines their interaction (a repulsive potential energy or an
attractive potential energy, respectively: see Figure 16.5). It is the same with a

(4� � 10�7 T�m/amp)(96,500 amp)
����

2�(1 m)

(4� � 10�7 T�m/amp)(1.602 � 10�19 amp)
�����

2�(1 m)
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Figure 16.4 Current in a loop causes the for-
mation of a magnetic dipole, which is different
from a magnetic field. However, the right-hand
rule is also used to determine the direction of the
magnetic dipole, as shown.
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magnetic field and a magnetic dipole. When a magnetic dipole � is subjected
to a magnetic field B, there is a potential energy of interaction. The magnetic
potential energy, Emag, is given by

Emag � �� � B � ���� �B� cos 	 (16.3)

where the � between � and B specifies the dot product (or scalar product) of
the two vectors, which is given by the second relationship in equation 16.3.
The potential energy of interaction is a scalar, not a vector. And because of the
cos 	 term in equation 16.3, the potential of interaction is at a minimum when
the magnetic vectors are parallel, the potential is equal to zero when the magnetic
vectors are perpendicular, and the potential is at a maximum when the vectors are
directly opposed to each other (or antiparallel).

Example 16.3
Show that the units for magnetic field and magnetic dipole multiply together
to yield units of energy. Use the fact that 1 T � 1 kg/(s2�amp).

Solution
The cos 	 term has no units; it is simply a number. The magnitudes of � and
B have the units amp�m2 and T, respectively, so the unit of the interaction be-
tween them is, according to equation 16.3,

amp � m2 � T � �
am

s

p
2

�

�

m

am

2

p

� kg
� � �

kg

s

�
2

m2

� � J

J is the SI unit of energy. This illustrates that the interaction between mag-
netic dipoles and fields imposes an energy change on the system.

We have been assuming that electrical charges at the atomic (actually, sub-
atomic) scale behave like macroscopic electrical currents. Actually, this is not
the case, although the examples above illustrate that individual electrons can
be treated like electrical currents. There is another presumption we have been
using. We have been assuming a classical, continuous magnetic field. Because
electromagnetism combines electricity and magnetism, and electricity is quan-
tized (as electrons) and electromagnetic radiation is also quantized (as pho-
tons), we might expect that a quantum theory of magnetism would also be ap-
propriate. Technically, this is indeed the case. However, most of the ideas we
present in this chapter deal with the magnetic field as a classical phenomenon,
not a quantum one. Only in the most advanced cases will a quantized mag-
netic field be considered.

Finally, we can relate the magnetic dipole to another quantity of quantum-
mechanical importance: the angular momentum. Consider a particle with a
charge of q moving around in a circle. It induces a magnetic dipole. If the par-
ticle has a linear velocity v in meters per second and is traveling in a circle hav-
ing radius r meters, then the time necessary for one circular orbit is

time � �
2�

v

r
�

Since current is defined as charge passing a point per second, the current I at
any point in the particle’s orbit is

I � �
2

Q

�

v

r
�
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Figure 16.5 Interactions can be (a) attractive
or (b) repulsive. Attractive interactions contribute
to a lowering of the overall energy, whereas re-
pulsive interactions contribute to an increase in
the overall energy. The interactions of the two bar
magnets shown mimic the interactions of mag-
netic fields and magnetic dipoles.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



where Q is the total charge passing by a point per second. The area of a circu-
lar orbit is �r2. Combining the above equation with equation 16.2, one finds
that the magnetic dipole of this particle is

� � ��� � �
2

Q

�

v

r
� � �r2 � �

Q

2

vr
� (16.4)

Remember that the definition of the angular momentum L is L � mr � v, or in
our magnitude formalism, L � �L� � m �v� �r� � mvr. Substituting, we find that

� � ��� � �
2

Q

m
� �L� (16.5)

where we have now tied the magnetic dipole of a particle in a circular orbit to
its angular momentum. (By analogy, the vectors are also related: � � (Q/2m)L.)

For a single electron, the charge is �e, which equals �1.602 � 10�19 C. In
this case, we have expressly included the minus sign on e because the electron is
considered negatively charged. For a single electron, equation 16.5 is written as

� � ��� � ��
2m

e

e

� �L�

where me is the mass of an electron. Upon multiplying the last fraction by 1,
written as 
/
, we get

� � ��
2m

e


e

� �L�

The Bohr magneton, �B, is defined as

�B � �
2

e

m




e

� (16.6)

so that for an electron, the magnetic dipole can be written

� � ��
�



B� �L� (16.7)

Do not confuse the magnetic dipole, �, for the symbol for the Bohr magne-
ton, �B. The Bohr magneton has a value of about 9.274 � 10�24 J/T (joules
per tesla). It (or similarly defined constants) is a necessary constant for almost
all magnetic spectroscopies.

16.3 Zeeman Spectroscopy
One of the most straightforward and simple types of magnetic spectroscopy is
called Zeeman spectroscopy. Its existence was proposed in 1890 by the Dutch
physicist Hendrik Lorentz. If atoms were composed of electrical charges,
Lorentz said, these charges should be affected by a magnetic field and a change
would be noted in the atomic spectrum. In 1896 a student of Lorentz’s, Pieter
Zeeman, verified this prediction experimentally. For their work, Lorentz and
Zeeman shared a 1902 Nobel Prize.

A simple example of the Zeeman effect is as follows: a single, sharp line in
an atomic spectrum splits into three closely spaced, sharp lines when the sam-
ple is exposed to a magnetic field. The lines are extremely close: less than 1 cm�1

apart. However, the explanation for why the Zeeman effect occurs at all was
left for quantum mechanics to explain.
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For atoms, four quantum numbers describe the energy of an electron: n, �,
m�, and ms. (All electrons have s � �

1
2

�.) For multielectronic atoms, however,
there are more accurate quantum numbers, as explained in the last chapter: J,
L, ML, and MS. The type and magnitude of Zeeman splitting depends on the
possible values of certain of these quantum numbers.

If the electronic transitions involved in an allowed transition are singlet
states (remember that for allowed transitions, �S � 0), then magnetic effects
on electronic spectra are determined exclusively by the orbital angular mo-
mentum, not the spin angular momentum. What is observed is the normal
Zeeman effect: transitions are split as each L state separates into its 2L � 1 pos-
sible different ML values. This is illustrated for a 1S → 1P transition in Figure
16.6. The single transition that occurs without a magnetic field is split into a
triplet of lines when a magnetic field is turned on. The selection rules are the
same as for electronic transitions in multielectron atoms:

�L � 0, 1

�S � 0

�J � 0, 1

�ML � 0, 1 (but ML � 0 → ML � 0 if �J � 0) (16.8)

The final exception (ML � 0 does not change to a different state where ML also
equals 0 if �J � 0) derives from the exact symmetry properties of the wave-
functions (as do all selection rules). Figure 16.6 is relatively simple, since only
one of the states, the excited state, is splitting. The amount of the splitting—
that is, the change in the energy of the state upon turning on the magnetic
field—depends on the strength of the magnetic field B and the value of the 
z-component quantum number ML and is given by

�Emag � �B � ML � B (16.9)

Since ML can have positive or negative values or even be 0, the change in the
energy can be positive, negative, or even zero.

Example 16.4
Calculate the splitting due to a magnetic field of 2.0 T on a 1S → 1P transi-
tion. Assume that only the 1P state will split. (Why?)

Solution
The 1S state will not split because it has L � 0 and so only ML � 0. However,
the 1P state will split due to the presence of degenerate ML � �1, 0, and �1
states. According to equation 16.9,

�Emag [ML � �1] � (�1)(9.274 � 10�24 J/T)(2.0 T) � �1.855 � 10�24 J

The �E value in this case is negative. Convert this into units of cm�1 (using
units of cm/s for the speed of light):

� �0.9338 cm�1

The energy of the transition decreases by just under one wavenumber due 
to the presence of the magnetic field. �Emag [ML � 0] will be zero because
ML � 0. The �Emag [ML � �1] will have the same magnitude as the 

�1.855 � 10�24 J
�����
(6.626 � 10�34 J�s)(2.9979 � 1010 cm/s)
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Figure 16.6 An example of the normal
Zeeman effect. The 1S → 1P electronic transition
is split into a triplet as a magnetic field separates
the individual ML levels in the 1P excited state.
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transition to ML � �1, except it will have the opposite sign. Therefore (and
without the need to do any additional math),

�Emag [ML � �1] � �0.9338 cm�1

The transition will turn into a triplet of equally spaced lines. Thus, the
Zeeman spectrum of this transition will resemble Figure 16.6.

The fact that a single line turns into a trio of lines in the above example is
characteristic of a 1S → 1P transition. Therefore, the normal Zeeman effect gives
spectroscopists clues about the term symbols of the states involved in atomic
spectra. Each combination of term symbols has, for S � 0, a certain number of
allowed transitions that is characteristic of the transition, thanks to quantum
numbers. This information is useful for identifying the quantum numbers of
ground and excited states, which is a crucial part of the understanding of atomic
and molecular structure in the quantum-mechanical formalism.

In cases where S � 0, we do not have a singlet state, and the total angular
momentum quantum number J must be considered. (In the previous case,
J � L.) In this case, magnetic effects on an electronic spectrum are determined
not only by the orbital angular momentum but by the spin angular momen-
tum as well. The spin of an electron also induces a magnetic dipole, whose
value is similar to equation 16.7, but because spin angular momentum is non-
classical, there is another term in the expression. The spin magnetic dipole m
has a magnitude m (not to be confused with the quantum number for the 
z component of orbital angular momentum of

m � �ge �
�



B� �S� (16.10)

where ge is a pure number (that is, no units) called the electron g factor and
equals 2.002319304 . . . for a free electron. It is slightly different for bound elec-
trons, but not enough for concern at this point. It is almost equal to exactly 2
(and is sometimes approximated as 2), and the reasons it is not exactly 2 are
perhaps worth researching on your own. Regardless, the g factor is a necessary
addition in order to explain the effects of electron spin and its magnetic dipole.

For nonsinglet states, all of the good quantum numbers—J, S, L, and MJ —
affect the change in energy of the electronic energy levels. However, because
the pattern of the changes is more complicated, the effect of a magnetic field
on nonsinglet electronic states is called the anomalous Zeeman effect. The
change in the electronic energy levels due to the imposition of a magnetic field
of strength B is given by

�Emag � gJ � �B � MJ � B (16.11)

where gJ is called the Landé g factor. It depends on J, L, and S and is related to
ge by the expression

gJ � 1 � � �(ge � 1) (16.12)

To a very, very good approximation, ge � 1 � 1, so equation 16.12 is some-
times written as

gJ � 1 � (16.13)
J(J � 1) � S(S � 1) � L(L � 1)
����

2J(J � 1)

J(J � 1) � S(S � 1) � L(L � 1)
����

2J(J � 1)
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This simplified version of gJ is off by only about 0.1% from the expression in
equation 16.12. The selection rules in terms of J, L, ML, and S in equation 16.8
above apply. The Landé g factor is named after Alfred Landé, a German scien-
tist who in 1923 (before the development of quantum mechanics) derived
equation 16.13 from a visual inspection of a lot of atomic spectra.

Figure 16.7 shows a simple electronic spectrum with and without a magnetic
field as an example of the anomalous Zeeman effect. Notice that the splitting of
the lines when the sample is exposed to a magnetic field isn’t as simple as with
the normal Zeeman effect. This is one reason it was considered anomalous.

16.4 Electron Spin Resonance
Normally, molecules composed of main-group elements have a ground state
where all of the electrons are spin-paired.* Compounds having all-spin-paired
electrons show no noteworthy magnetic effects in the electronic spectrum due
to spin magnetic dipoles.

In molecules that have unpaired electrons, such as d-block and f-block com-
pounds as well as free radical species, there is a net spin magnetic dipole. In the
presence of a magnetic field, the presence of a spin magnetic dipole creates a
potential energy of interaction, given by equation 16.11. When a single electron
is involved (as is usually the case for main-group free radicals), the total spin
vector S is simply �

1
2

�, and the potential energy of interaction can be rewritten in
terms of the ms quantum number, which is either ��

1
2

� or ��
1
2

�. In terms of ms,

�Emag � ge � �B � ms � B (16.14)

where the g factor for a free electron, ge, is used instead of gJ, and ms can be
either ��

1
2

� or ��
1
2

�. This implies a relatively simple two-level system where the 
ms � ��

1
2

� state goes up in energy and the ms � ��
1
2

� state goes down in energy.
Such a system is illustrated in Figure 16.8. The difference between the two 
energy levels is equal to ge�BB.

What is the difference between equations 16.14 and 16.11? In equation
16.14, we are considering the effect on one electron, whereas equation 16.11 is
a more general case with more than one electron. For a single electron, the
magnetic field effects are determined by ms, whereas for multiple electrons the
effects are better described by J and MJ. Therefore, for multiple electrons gJ and
MJ are the appropriate variables, and for a single electron ge and ms are the rel-
evant variables.

The splitting of the two spin states for the unpaired electron is not a lot in
terms of energy: using equation 16.14, one can see that the splitting between
the two is equal to 1.855 � 10�23 J/tesla, or about 0.934 cm�1 per tesla. If one
wanted to irradiate a sample having an unpaired electron and exposed to a
magnetic field, then radiation of the proper wavelength would cause an elec-
tron lying in a lower, ms � ��

1
2

� state to absorb radiation and move to the up-
per, ms � ��

1
2

� state. When the magnetic-interaction-induced difference in en-
ergy of the two states equals the energy of the photon, absorption of a photon
can occur and we say that a state of resonance is established. The relevant equa-
tion is

�̃res � �
ge�

hc
BB
� (16.15)
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Figure 16.7 When J � L (that is, when S � 0),
the splitting due to a magnetic field is more com-
plicated and is called the anomalous Zeeman ef-
fect. The figure shows a transition in the absence
and in the presence of a magnetic field.

*NO and NO2 are two of the rare exceptions to this statement, each having an odd num-
ber of electrons. The ground state of O2 has two unpaired electrons in degenerate molecu-
lar orbitals, as explained in Chapter 12.
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where �̃res is the frequency of the absorbed light in units of wavenumbers, h is
Planck’s constant, c is the speed of light in units of cm/s, ge is the electron g
factor, �B is the Bohr magneton, and B is the magnetic field strength in units
of T. In units of s�1 or Hz, the equation is rewritten as

�res � �
ge�

h
BB
� (16.16)

Given the magnetic field strengths that are available in most laboratory in-
struments today (�0.3 T), the transitions due to the splitting of the electron
spin states occur in the microwave region of the spectrum (whose frequencies
are usually expressed in units of gigahertz, or GHz). Control of microwaves is
relatively straightforward, and spectrometers are readily available that take ad-
vantage of the resonance condition. Spectroscopy based on this method is
called electron spin resonance, or ESR, spectroscopy. A schematic diagram of an
ESR spectrometer is shown in Figure 16.9.

Example 16.5
In a 0.35-T magnetic field, what is the expected frequency, in GHz, of a free
electron ms � ��

1
2

� → ms � ��
1
2

� transition?

Solution
Using equation 16.16:

�res � � 9.81 � 109 s�1 � 9.81 GHz
(2.002)(9.274 � 10�24 J/T)(0.35 T)
����

(6.626 � 10�34 J�s)
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Figure 16.8 In the absence of a magnetic field
(left), an unpaired electron of a free radical has
the same energy no matter what direction its spin.
However, in the presence of a magnetic field
(right), the two spin directions have different en-
ergies, and electromagnetic radiation can cause a
transition between the two energy levels.
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Figure 16.9 A diagram of an ESR spec-
trometer. A sample is exposed to microwaves
of known wavelength, and a slowly varying
magnetic field is applied. When the resonance
condition is established, microwaves are ab-
sorbed and the transition from ground state to
excited state occurs. The spectrometer detects
the absorption of the microwaves to generate
the spectrum.
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Example 16.6
What magnetic field is necessary for an ms � ��

1
2

� → ms � ��
1
2

� transition to
be in resonance with microwave radiation having a wavelength of 11.8 cm?
(This is the approximate wavelength of the microwaves that are used in some
microwave ovens.)

Solution
A � of 11.8 cm implies a wavenumber �̃ of 1/11.8 cm � 0.0847 cm�1. Using
equation 16.15, we get

0.0847 cm�1 �

where we have used the value for the speed of light in units of cm/s and the
magnetic field strength, B, is the only unknown. Solving for B:

B � 0.0906 T � 906 G

This is a relatively weak magnetic field, although it is more than 1000 times
Earth’s magnetic field.

ESR spectra are usually collected by radiating a sample with monochro-
matic microwave radiation and then varying the magnetic field. It is easier to
do this than to hold the magnetic field constant and vary the frequency of the
microwave radiation. In either case, a resonance condition can be established.
Many (but not all) ESR spectra are a conglomeration of closely spaced, unre-
solved lines; see Figure 16.10a. To emphasize the exact positions of the differ-
ent absorptions, it is conventional to plot an ESR spectrum as a derivative of
the absorption with respect to the varying magnetic field. In this way, the dif-
ferent absorptions are enhanced. Figure 16.10b shows the derivative spectrum
of the absorption spectrum in Figure 16.10a. It is much easier to interpret a
spectrum like Figure 16.10b than one like Figure 16.10a (although they con-
tain the same information).

The above discussion may lead one to think that all electrons absorb the
same microwave radiation at a particular magnetic field. If this were so, then
ESR spectroscopy would have limited use. However, such is not the case.
The exact value of the g factor ge depends strongly on the local environment
of the unpaired electron. This means that the exact frequency of resonant 
absorption depends on the specific molecule of interest. In particular, because
nuclei themselves also have a spin, there is an interaction, or a coupling, be-
tween the unpaired electron’s spin and the spin angular momentum of the in-
dividual nucleus, which is labeled I.

In a molecule having several nuclei with nonzero spin, the nuclear spins can
couple to give a total molecular nuclear spin MI,mol given by 

MI,mol � �
0

nuclei

MI

where MI is the spin of an individual nucleus. The molecule has 2MI,mol � 1
possible orientations of the total nuclear spin in the z dimension, MI,z. Each
orientation couples differently with an unpaired electron. This type of cou-
pling is called hyperfine coupling. Because nuclear spin states are quantized (as
with any angular momentum), the interaction energies are also quantized and

(2.002)(9.274 � 10�24 J/T)B
�����
(6.626 � 10�34J�s)(2.9979 � 1010 cm/s)
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Figure 16.10 (a) ESR spectra plotted as an
absorption spectrum show multiple, unresolved
absorptions. Such spectra are difficult to inter-
pret. (b) ESR spectra plotted as derivative spectra
are easier to interpret, because the individual
peaks are more easily resolved.
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relatively evenly spaced. It is easy to define a hyperfine coupling constant a, hav-
ing units of T (tesla), such that

Blocal environment � Bmag field � a � MI,z (16.17)

The local environment magnetic field B is thus slightly different than the im-
posed magnetic field B by some quantized multiple of the hyperfine coupling
constant. Hyperfine coupling constants are typically on the order of millitesla,
but they are large enough to detect in modern ESR spectroscopy. Figure 16.11
shows an ESR spectrum with a well-defined hyperfine coupling constant. The
hyperfine coupling constant is useful in that the ESR spectrum can indicate
what atom or atoms (since atoms have specific nuclear spins) the unpaired
electron is “on.”

Example 16.7
How many ESR peaks would be present due to a single unpaired electron on
each of the following? (Use the fact that the nuclear spins of H, N, and P are,
respectively, �

1
2

�, 1, and �
1
2

�.)
a. A hydrogen atom
b. An NH3 radical
c. A PH3 radical

Solution
a. A single hydrogen atom has two possible MI values: ��

1
2

� and ��
1
2

�. It will
therefore have two different local magnetic fields (depending on the value of
MI), and so will have two ESR absorptions due to hyperfine coupling.
b. The combination of the single N atom’s spin of 1 and the three hydrogen
atoms’ spins of �

1
2

� means a value of MI,mol of �
5
2

�. Therefore, the z component of
the combined nuclear spins, MI,z, can range from ��

5
2

� to ��
5
2

�. There are six pos-
sible MI,z values and so six ESR absorptions.
c. Similar to part b, the possible total z-component nuclear spins range from
�2 to �2 in integral steps, for a total of five possible MI,z values. This indi-
cates five possible values for the local magnetic field, yielding five ESR ab-
sorptions.

The number of first-derivative peaks seen in an ESR spectrum can provide
a lot of information about a molecule’s structure, because in a molecule any
atom that has a nuclear magnetic moment contributes to the hyperfine cou-
pling. Consider the methyl radical, CH3�. The carbon nucleus has I � 0 and so
does not contribute to the ESR hyperfine splitting. The three hydrogen atoms
each have I � �

1
2

�, and the possible combinations of the nuclear spins MI,z

are ��
3
2

� (all three nuclear spins in the ��
1
2

� direction), ��
1
2

�, ��
1
2

�, and ��
3
2

� (all
three nuclear spins in the ��

1
2

� direction). Therefore, four lines are expected
in the ESR spectrum of the methyl radical, and that is what is seen experi-
mentally. Similarly, for the benzene radical anion there are seven distinct lines
in the ESR spectrum due to the six protons. Nonequivalent nuclei contribute
differently to the hyperfine coupling. Therefore, ESR spectra for polyatomic
molecules can quickly get complicated, but extracting the proper information
from them provides quite a bit of detail about the structure of the ESR-active
species.
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(b)

a a

(a)

Figure 16.11 (a) An unpaired electron on an
atom having a nuclear spin of zero shows a single
absorption in an ESR spectrum. However, (b) an
electron on an atom having a nonzero nuclear
spin shows multiple absorptions due to the inter-
action of the electron spin and the nuclear spin.
This interaction is called hyperfine coupling. The
amount of coupling is measured by the hyperfine
coupling constant, a. Here, the electron is on an
atom having I � 1.
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Example 16.8
In an ESR experiment where the microwave radiation was fixed at 10.0 GHz,
the MI,z � ��

1
2

� absorption of an ESR spectrum of the methyl radical appears
at a magnetic field strength of 0.3376 T, and the MI,z � ��

1
2

� absorption ap-
pears at 0.3353 T. Calculate the hyperfine coupling constant a and predict the
position of the other two absorptions expected for the MI,z � ��

3
2

� and the 
MI,z � ��

3
2

� absorptions.

Solution
The following two equations, based on equation 16.17, need to be satisfied:

0.3376 T � Bmag field � a � ��
1
2

�

0.3353 T � Bmag field � a � ��
1
2

�

There are two equations and two unknowns. They can be solved simultane-
ously using simple linear algebra techniques (that is, substitution). Upon do-
ing so, one finds a value of a � 0.0023 T � 23 G, as well as a Bmag field of
0.3366 T. Using equation 16.17, we can predict the absorptions for MI,z � ��

3
2

�

and MI,z � ��
3
2

� as

0.3366 T � (0.0023 T)(��
3
2

�) � 0.3401 T for MI,z � ��
3
2

�

0.3366 T � (0.0023 T)(��
3
2

�) � 0.3332 T for MI,z � ��
3
2

�

Four equally spaced lines are expected.

Nonequivalent nuclei make a different contribution to the hyperfine split-
ting. If a nucleus having spin I and a different nucleus having spin J are in a
molecule, then one can expect up to (2I � 1)(2J � 1) separate absorptions in
the ESR spectrum. In some cases, lines lie practically on top of each other and
are unresolved, so that fewer lines than expected are seen. ESR spectra can get
complicated. Figure 16.12 shows an example of an ESR spectrum of a relatively
simple compound.

In many organic molecules, the g factor of the electron is about 2. However,
unpaired electrons are also present in many metal compounds, especially metal
compounds having atoms of transition metal or lanthanide or actinide ele-
ments. These unpaired electrons are from d or f orbitals, and the molecules are
not considered free radicals. However, the unpaired electrons do give rise to
signals via a resonance phenomenon. Metals having unpaired electrons in d or
f orbitals are paramagnetic, so when the magnetic resonance technique is ap-
plied to such compounds, it is called electron paramagnetic resonance, or EPR.
Although the general ideas behind the technique are similar, the g values are
different, up to about 4 in some transition metal complexes. Different mi-
crowave regions are used, depending on the g factor, magnetic field strength
available, resolution, and other factors. Microwave frequencies at about 
9.5 GHz, 24 GHz, and 35 GHz are common. Magnetic field strengths must be
consistent with equation 16.11 in order for resonance to occur.

16.5 Nuclear Magnetic Resonance
We considered electron spin resonance spectroscopy before nuclear magnetic
resonance spectroscopy because ESR deals primarily with the subatomic
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75 G

Figure 16.12 The ESR spectrum of the CF3

radical, showing the complexity due to hyperfine
coupling. The cluster of tiny signals in the center
is an impurity. Source: M. T. Rogers and L. D.
Kispert, J. Chem. Phys., 1967, 46: 3193.
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particles most popular in our treatment of quantum mechanics: the electrons.
However, atoms also have nuclei, which have many of the same properties that
electrons have. In particular, many nuclei also have a total spin and a magnetic
dipole.

Although we recognize that nuclei are composed of individual nuclear par-
ticles (protons and neutrons), from our perspective it is simplest to think of a
nucleus as a single particle that has properties determined by all of the nuclear
particles together. A nucleus therefore has a certain total charge, which is typ-
ically denoted Z. A nucleus also has a total spin angular momentum, which in
the previous section was denoted I. The total spin angular momentum (“spin”)
of a nucleus is determined by the number and pairing of the individual nu-
clear particles (whose angular momenta interact using rules similar to those
that govern electrons, but they are not the same and will not be considered
here). For example, the hydrogen nucleus, a single proton, has a nuclear spin I
of �

1
2

�. A deuterium nucleus has a nuclear spin of 1, and a tritium nucleus has a
spin of �

1
2

�. 12C has a nuclear spin of 0, and 13C has a nuclear spin of �
1
2

�. The
metastable isotope 134Cs, which is radioactive and has a half-life of 2.90 hours,
has an I of 8, the largest of any atomic nucleus.

Nuclear spins behave like electron spins in that there is a quantized value
for the total spin, and a quantized value for the z component of the total spin,
symbolized by MI. (We used this idea in the previous section.) For our pur-
poses, it is important to recognize that, just like one or more electrons in an
atom, a nucleus having a nonzero spin has a magnetic dipole associated with
it. A nuclear magnetic dipole can be defined, similarly to the electron’s magnetic
dipole. Starting with the smallest nucleus, that of the hydrogen atom, we have
the nuclear magnetic dipole of the proton, which is given as

�p � gp�
2m

e

p

�Ip (16.18)

which, when multiplied by 
/
, becomes analogous to equation 16.10 for
electrons. Here, Ip is the total spin angular momentum of the proton, which
follows the normal quantum-mechanical rules for total angular momentum:
I2

p � I(I � 1)
2, so Ip � �I(I � 1�)�
. Equation 16.18 also allows us to define
an analogous magneton called the nuclear magneton �N:

�N � �
2

e

m




p

� (16.19)

where e is the charge on the proton (�1.602 � 10�19 C) and mp is the mass
of the proton (1.673 � 10�27 kg). This nuclear magneton has a value of about
5.051 � 10�27 J/T and is used to determine energy changes for all nuclei, not
just the proton. The gp in equation 16.18 is the g factor for the proton, and (for
reasons we won’t go into) has a value of 5.586. Other nuclei have their own
characteristic values for gN. The nuclear magnetic moment of a single proton
is about 2.443 � 10�26 J/T.

Example 16.9
Compare the relative magnitudes of the electron’s magnetic moment and the
proton’s magnetic moment. Why are they different?

Solution
The magnetic moment of the hydrogen atom nucleus, a proton, is 2.443 �
10�26 J/T. The electronic magnetic moment is found by using equation 16.10:
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m � �ge�
�



B� �S� � �ge�

�



B�
	�

1

2
�
�

3

2
���

� �2.002 ��
6.626 �

2

1

�

0�34 J�s)
�	�

3

4
��

� �2.002(9.274 � 10�24 J/T)	�
3

4
��

where we have used the fact that �S� � �S 2� � ��
1
2

�(�
1
2

� ��1)
2

� � 
��
3
4

��. The mag-
netic moment of an electron is thus (�)1.608 � 10�23 J/T. (It is negative, but
in many cases the absolute value of the magnetic moment is used, so the neg-
ative sign is ignored.) The two reasons for the difference in the magnetic mo-
ments are the different g factors and the different masses of the particles.

Because certain nuclei have a magnetic dipole, they experience a potential
energy when they are subjected to a magnetic field. As with electrons, there are
2I � 1 different possible orientations of the nuclear spin when subjected to a
magnetic field, and each orientation has its own change in total energy �Emag.
In the presence of a magnetic field, then, these different potential energies split
into individual levels, and electromagnetic radiation of just the right energy
can cause a nucleus to go from one nuclear-spin orientation to another. The
change in the energy is similar to that for ESR:

�Emag � gN � �N � B � MI (16.20)

where gN is the g factor for the particular nucleus, �N is the nuclear magneton,
B is the magnetic field strength, and MI is the quantum number for the z com-
ponent of the nuclear angular momentum, which can have 2I � 1 possible val-
ues. We are using MI instead of MI,z because we are now considering only a
single nucleus, not a combination of different atomic nuclei. Note how equa-
tion 16.20 is similar to equation 16.14. Table 16.1 lists the nuclear properties
gN and I for various nuclei. Figure 16.13 shows the splitting of the MI nuclear
levels for nuclei having I � 3 and exposed to a magnetic field.

Because different nuclei have different nuclear spins I and different possible
z components of the nuclear spins MI, you might think that a specific formula
for the expected energies of transitions would be difficult to determine, but
that is not the case. There is a selection rule regarding changes in the MI quan-
tum number:

�MI � 1 (16.21)

and for absorption spectra it becomes simply �MI � �1. (We did not formally
consider a selection rule for ESR transitions.) Using this fact, we can come up
with equations similar to equations 16.15 and 16.16 to relate the resonant fre-
quency or wavelength of light that will be absorbed by a nucleus in a magnetic
field. They are

�̃res � �
gN

h

�

c
NB
� (in cm�1) (16.22)

�res � �
gN�

h
NB
� (in s�1) (16.23)

where all of the variables have previously been defined. The first equation
yields a wavelength in units of wavenumbers, and the second equation gives

(9.274 � 10�24 J/T)
���
(6.626 � 10�34 J�s)/2�
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Table 16.1 Two properties of
various nuclei

Nucleus Spin, I Nuclear g factor, gN
1H �

1
2

� 5.586
3He �

1
2

� �4.2548
6Li 1 0.8220
11B �

3
2

� 1.7923
13C �

1
2

� 1.405
19F �

1
2

� 5.2567
31P �

1
2

� 2.2634
209Bi �

9
2

� 0.8975

B � 0B � 0

I � 3

E
ne

rg
y

MI � �3
MI � �2
MI � �1
MI � 0
MI � �1
MI � �2
MI � �3

Figure 16.13 In the presence of magnetic
fields, nuclear spin states split into nondegenerate
energy levels. NMR spectroscopy probes the tran-
sitions between these nuclear energy states.
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units of s�1. Spectroscopy based on the splitting of the MI levels of nuclei by
a magnetic field is called nuclear magnetic resonance, or NMR, spectroscopy.
NMR spectroscopy was developed largely by the efforts of Felix Bloch at
Stanford University and Edward Purcell at Harvard University in 1946. They
shared a 1952 Nobel Prize for their efforts.

Example 16.10
Predict the wavelength of transition for an 19F nucleus exposed to a magnetic
field of 7730 G. 19F has a nuclear spin of �

1
2

� and a gN of 5.2567. Use the nu-
clear magneton �N.

Solution
Since I � �

1
2

�, the only possible values of MI are ��
1
2

� and ��
1
2

�, and the only pos-
sible transition is MI � ��

1
2

� → MI � ��
1
2

�. Using equation 16.23, we find

�res � �
gN�

h
NB
� � � �

10,

1

00

T

0 G
�

�res � 3.098 � 107 Hz � 30.98 MHz

This is in the radio wave region of the electromagnetic spectrum.

Instead of using nuclear g factors, a magnetogyric ratio � can be defined as
the proportionality constant between the nuclear magnetic moment’s z com-
ponent and the MI quantum number:

�z � � � 
 � MI (16.24)

The relationship between the magnetogyric ratio and the nuclear g factor is

� � �
gN �




�N� (16.25)

NMR would be useless if all nuclei of the same element absorbed the same
frequency of light at some particular magnetic field strength (except perhaps
for elemental analysis). However, the local electronic environment around nu-
clei cause different atomic nuclei to experience a slightly different total mag-
netic field. This is because the electrons are also affected by the magnetic field.
(This should be obvious from our earlier treatment of ESR spectroscopy.) In
a particular chemical environment, the total magnetic field experienced by a
nucleus is the sum of B plus an additional, small magnetic field induced by B
on the electrons. The additional magnetic field, �B, is proportional to B and
is given by the expression

�B � ��B (16.26)

where � is a dimensionless constant called the shielding constant. The total
magnetic field experienced by a nucleus is therefore

Btot � B � �B � B(1 � �) (16.27)

The exact frequency of light that is absorbed depends on the total magnetic
field, Btot, not the applied magnetic field B. Shielding constants themselves are
very small, on the order of 1 to 3 � 10�5. Their existence was first demon-
strated by W. D. Knight in 1949, not long after the development of nuclear
magnetic resonance itself.

(5.2567)(5.051 � 10�27 J/T)(7730 G)
����

6.626 � 10�34 J�s
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What equation 16.27 implies is that different nuclei of the same element
experience different total magnetic fields due to their chemical environment,
and so will absorb at slightly different frequencies of radiation. This is best
illustrated by an example such as that in Figure 16.14. The four hydrogen
atoms in methane, CH4, are chemically equivalent. Therefore, they will ab-
sorb the same frequency of radiation in an NMR experiment. The six hydro-
gens in ethane, CH3CH3, are also chemically equivalent and so will also absorb
the same frequency of radiation. However, the protons in propane,
CH3CH2CH3, are not all chemically equivalent. The hydrogens on the end car-
bons are equivalent to each other, but the hydrogens in the middle methylene
carbon are in a different chemical environment than the methyl carbons. They
will experience a slightly different total magnetic field, and so will absorb a dif-
ferent frequency of radiation. This will lead to two separate absorptions in an
NMR spectrum, one for each type of hydrogen (at least in a low-resolution
NMR spectrum). In this manner, structural information about a molecule be-
gins to be obtained.

Example 16.11
How many chemically different hydrogens in each of the following, and how
many NMR absorptions would be expected?
a. Benzene, C6H6

b. Toluene, C6H5CH3
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Figure 16.14 The NMR spectra of the first three alkanes shows that the protons on “differ-
ent” carbons absorb at different points. This is part of the value of NMR spectroscopy.
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Solution
a. The benzene molecule is highly symmetric, and all its hydrogens are envi-
ronmentally equivalent. Therefore, only a single absorption is expected.
b. The addition of a methyl group to the benzene ring changes the environ-
ments of the hydrogens on the ring. Two hydrogens are on the carbon near-
est to the methyl group, two are on the carbons next removed, and one hy-
drogen is directly opposite it. Also, three equivalent hydrogens are on the
methyl group itself, assuming that the methyl group is free to rotate. Therefore,
toluene has four chemically different hydrogens, and one would expect four
absorptions in the NMR spectrum.

A conceptual diagram of an absorption-type NMR spectrometer is shown
in Figure 16.15. The magnetic field strength is usually between 1 and 10 teslas,
depending on the model of spectrometer. Experimentally, it is more conve-
nient to fix the radio frequency and change the magnetic field strength until
resonance conditions are established, and monitor the absorption of the radio
waves versus field strength. A typical low-resolution NMR is shown in Figure
16.16. NMR spectra that detect absorption by hydrogen nuclei are called pro-
ton NMR or 1H NMR spectra. It is typical to measure an NMR spectrum us-
ing some standard reference material as an internal calibration compound, and
plot the values of Btot for the environmentally different nuclei with respect to
the internal standard. For 1H NMR, tetramethylsilane (TMS), Si(CH3)4, is used
as an internal standard. This compound has a very high shielding constant;
most compounds have lower shielding constants than TMS. The difference be-
tween the shielding constant of TMS and another compound is called the
chemical shift, labeled �. Since shielding constants have values in the 10�5 to
10�6 gauss range, it is common to multiply the difference in shielding con-
stants by 106 to yield manageable numbers. In such cases, the chemical shift is
said to have units of parts per million (ppm):

� (in ppm) � (�TMS � �nucleus) � 106 (16.28)

Figure 16.17 shows a low-resolution NMR spectrum in terms of �.
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Figure 16.15 A diagram of a standard NMR spectrometer. The sweep coils vary the magnetic
field in small amounts while radio waves bombard the sample. Any absorption of radio waves
will be detected by the detector circuit. The samples are usually spun to minimize inhomo-
geneities.
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Higher-resolution NMR spectra provide even more information about the
structure of a molecule. This is because nuclei that have magnetic moments
can interact, or couple, with each other. (The mechanism of coupling is actu-
ally through the electrons surrounding the nuclei, but we will not go into that
here.) Since a magnetic moment is caused by the nonzero spin of a nucleus,
this effect is called spin-spin coupling, and its magnitude is given by a spin-spin
coupling constant between nucleus i and nucleus j, labeled Jij. The Jij values have
units of Hz. The net effect of spin-spin coupling is to split an absorption into
multiple individual absorptions, much like the Zeeman effect splits electronic
absorptions. Figure 16.18 shows an example of spin-spin coupling on an NMR
spectrum. Internuclear interactions fall off rapidly with distance. For organic
compounds, most C and O atoms have a zero nuclear spin and so do not con-
tribute to spin-spin coupling. Only hydrogen atoms will interact with other 
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Figure 16.16 A typical low-resolution NMR spectrum of p-acetophenetidide, a simple disub-
stituted benzene derivative that has several chemically different hydrogens.

Figure 16.17 NMR absorptions are typically
measured in units of parts per million, which ul-
timately refer to the chemical shift of the partic-
ular nucleus in gauss units.
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Figure 16.18 A high-resolution spectrum shows the effects of spin-spin coupling, mostly be-
tween hydrogens on adjacent atoms in a molecule. Source: S. E. Sen and K. S. Aniker, J. Chem.
Ed., 1996, 74: 570.
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hydrogen atoms, and ultimately only the hydrogen atoms bonded to adjacent
carbon atoms will participate in spin-spin coupling. (Hydrogens that are at-
tached to the same carbon do couple, but selection rules are such that transi-
tions to such coupled states are not observed. Therefore, the only coupling that
is observed occurs between hydrogens on different carbons.) For nuclei having
spin I � �

1
2

� (which includes 1H and 13C, the two most prevalent nuclei studied
by NMR), the presence of n nuclei induces a splitting of an absorption into 
n � 1 individual absorptions. This splitting occurs whether the nuclei on 
adjacent carbons are equivalent or not.

The split NMR peaks also have a characteristic intensity pattern. A double
peak consists of two peaks of roughly equal intensities. Three peaks have in-
tensity ratios of roughly 1�2�1. A quartet has intensities of roughly 1�3�3�1, and
so forth. The relative intensity patterns are caused by the overlapping of ab-
sorptions that are split by spin-spin coupling, as illustrated in Figure 16.19.

578 C H A P T E R  16 Introduction to Magnetic Spectroscopy

Resulting
spectrum

Coupled to the
third hydrogen

Coupled to the
first hydrogen

Coupled to the
second hydrogen

Coupled to the
first hydrogen

Uncoupled
signal

Coupled to the
second hydrogen

(b)

Resulting
spectrum

Coupled to the
other hydrogen

Uncoupled
signal

(a)

Resulting
spectrum

Uncoupled
signal

(c)

Coupled to the
third hydrogen

Coupled to the
first hydrogen

Coupled to the
second hydrogen

Coupled to the
fourth hydrogen

Resulting
spectrum

Uncoupled
signal

(d)

Figure 16.19 The nuclei of n hydrogens on
adjacent atoms of C or O in a molecule couple
with the proton NMR signal and split the ab-
sorption into n � 1 peaks. These peaks have char-
acteristic intensity ratios, as illustrated for a hy-
drogen having (a) 1, (b) 2, (c) 3, and (d) 4
neighbors.
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These relative intensity ratios are familiar. They are, indeed, the binomial co-
efficients, which are the coefficients of the polynomial expansion (x � 1)n,
where n � 0, 1, 2, 3, . . . . These coefficients are shown in Figure 16.20 in their
most familiar form, called Pascal’s triangle (named after the seventeenth-
century French mathematician Blaise Pascal). Furthermore, the integrated in-
tensity of each set of absorptions is directly proportional to the number of hy-
drogens having that specific chemical environment. Figure 16.21 shows the
same NMR spectra as in Figure 16.17, but at higher resolution. More infor-
mation is available from the high-resolution spectra, which have become the
standard.

Example 16.12
Describe the high-resolution spectrum of each of the following:
a. Methane, CH4

b. Ethane, CH3CH3

c. Propane, CH3CH2CH3

Solution
a. Methane has four hydrogens on one carbon atom. Since the selection rules
do not allow one to observe the coupling between hydrogens on the same car-
bon, there will be only a single NMR absorption even in the high-resolution
spectrum.
b. Ethane has six hydrogens in the same chemical environment, but the cou-
pling between the hydrogens splits the single low-resolution spectrum into 
n � 1 � 3 � 1 � 4 individual lines. This splitting into what is called a quar-
tet of lines is exactly the same for both CH3 groups, so one observes only a
single quartet of absorptions, with intensity ratios of roughly 1�3�3�1, in the
NMR spectrum.
c. There are two different chemical environments in propane. The hydrogens
in each CH3 group couple to the two hydrogens in the CH2 group in the same
way, so the methyl hydrogens are split into three individual peaks (a triplet)
with intensity ratios of 1�2�1. The CH2 protons are also coupling with all of
the hydrogens in the methyl groups, so the absorption from those hydrogens
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Figure 16.21 At higher resolution, the NMR spectrum in Figure 16.17 shows the splitting of
the proton absorptions, with intensity ratios as predicted.

Figure 16.20 Pascal’s triangle, a mnemonic
for remembering the coefficients on the polyno-
mial expansion (x � 1)n. These numbers are
called binomial coefficients, and are also applica-
ble to the intensities of split NMR signals.
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splits into a total of 6 � 1 � 7 individual absorptions (a heptet). The relative
intensities of the triplet/heptet absorptions should be in the ratio of 6�2 (or
3�1), which is the ratio of the number of environmentally equivalent hydro-
gens in the molecule. Figure 16.22 shows NMR spectra of the three com-
pounds.

Just like IR spectra for vibrational motions of molecules, the chemical shifts
seen in NMR spectra are generally characteristic of the type of groups in a
molecule. That is, methyl groups typically show up in an NMR spectrum
shifted about 1 ppm away from TMS, hydrogens on aromatic rings typically
show up about 7–8 ppm away from TMS, and so on. General ranges of posi-
tions due to specific groups are gathered in correlation charts (just like IR spec-
troscopy). An example of an NMR correlation chart for proton NMR is shown
in Figure 16.23.

Modern NMR spectrometers have the capability of measuring the reso-
nance absorption of multiple nuclei, like 1H, 13C, 31P, and other elements.
Modern instruments don’t typically use a straight absorption-of-electromag-
netic-radiation mode of measuring a spectrum. Instead, the spectrometer ex-
poses the nuclei to a static magnetic field, B0, which aligns the magnetic mo-
ments of the nuclei. Then, a second magnetic field B1 that is perpendicular to
B0 is applied to the sample for a short time (1–10 microseconds), as a pulse.
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Figure 16.22 High-resolution NMR spectra of methane, ethane, and propane show the split-
tings of the proton absorbances, as expected by the number of neighboring hydrogen atoms on
each carbon.
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This perpendicular pulse causes the magnetic moments of the nuclei to pre-
cess in a circular path, an effect that can be measured by a detector coil around
the sample. As soon as the pulse stops, the precession decreases as nuclei re-
align with the static B0 magnetic field. This process is called relaxation, and has
several mechanisms that we won’t discuss but that are related to the identity of
the sample. A plot of the signal measured by the detector versus time is called
free induction decay (FID).

A mathematical function called a Fourier transform (FT) is applied to the
FID signal, which converts it into an NMR spectrum. The advantages of such
pulse techniques include the ability to store data digitally in a computer, which
can record multiple spectra and average them together. In this way, noise is re-
duced and a clearer spectrum is possible. In fact, some NMR spectra are so
noisy that magnetic resonance spectra are illegible when performed in a scan-
ning mode, so they must be performed in a pulsed mode. 13C spectra are one
example. An FT-NMR 13C spectrum is shown in Figure 16.24.

NMR has aspects not discussed here that make it one of the most powerful
techniques for studying the structures of molecules that have NMR-active
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nuclei. Many of these aspects are ultimately based on the physical interactions
discussed in this chapter.

NMR has found some use in the medical field (see Figure 16.25), where
large nuclear magnetic resonance spectrometers are set up so that people can
be used as samples. A patient is placed in a magnetic field and bombarded with
harmless radio waves. NMR signals from the protons in the tissues can be an-
alyzed. In this way, the status of the bodily tissues can be determined, and with
the computer control that is available, medical doctors can obtain many per-
spectives of the tissues inside a patient without any sort of invasive procedures.
Problems like tumors, spinal irregularities, and cardiovascular disease can be
evaluated without harm to the patient. However, in the medical field the tech-
nique is referred to as magnetic resonance imaging, or MRI. Apparently the
word “nuclear” is dropped because of its connotations. Be that as it may, MRI
is still NMR, a nuclear spin phenomenon.

16.6 Summary
Besides those presented here, other types of spectroscopy use magnetic fields
to help differentiate among the wavefunctions of molecules. The three types
discussed here—Zeeman, ESR, and NMR—only scratch the surface. Magnetic
spectroscopy is useful in chemistry in part because of its ability to access indi-
vidual wavefunctions that are normally degenerate. An even closer look, with
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Figure 16.25 NMR is used in the medical field to generate pictures of the inside of the body
for diagnostic purposes. In medical terminology, it is called magnetic resonance imaging.
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the appropriate amount of group theory thrown in, would show that magnetic
spectroscopic techniques can determine a lot about atomic and molecular sys-
tems. Because of how the electrons and nuclei interact with each other, we can
derive specific structural information about molecules. Such information,
when combined with information from other sources like vibrational or rota-
tional or electronic spectroscopy, helps give us a perfect picture of what atoms
and molecules look like. All this is based on the theory of quantum mechan-
ics, the explanation for how subatomic particles behave. All of spectroscopy is
a testament to the fact that quantum mechanics works and can give us infor-
mation about the world around us.

16.6 Summary 583
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16.2 Magnetic Fields and Dipoles, 
and Electric Charges

16.1. What is the difference between a magnetic field vector
and a magnetic dipole vector?

16.2. Assuming that you are surrounded by six electrical wires
right now, each 2.00 meters away and that each one is carry-
ing 10 amps of charge in the same direction, what magnetic
field are you exposed to?

16.3. (a) If the electron were to have a positive charge, what
would be the difference in the magnitude calculated in
Example 16.2b for the magnetic dipole caused by an electron
in the hydrogen atom? 

(b) Positronium is very similar to a hydrogen atom except that
instead of a proton in the nucleus, there is a positron. (This
short-lived “element” can be made in the laboratory.) On the
basis of your answer to part a, what is the overall magnetic di-
pole caused by the two particles in mutual orbit about each
other?

16.4. Show that 1 tesla is equal to 1 J/(m2�amp).

16.5. Verify the value and units of the Bohr magneton, �B.

16.3 Zeeman Spectroscopy

16.6. Draw and label the allowed electronic transitions for a
1S → 1P transition with and without a magnetic field. How do
the total number of allowed transitions differ?

16.7. (a) For the above 1S → 1P transition, calculate �E in the
transition energies for each individual transition when a sam-
ple is exposed to a magnetic field of 2.35 T. (b) Repeat the
calculation, but now for a 1P → 1D transition.

16.8. What magnetic field is needed to obtain a �E value of
1.0 cm�1 between the highest and lowest levels of a 1F state?

16.9. Calculate the maximum splitting of the 2P3/2 state of
the hydrogen atom due to Earth’s magnetic field, which you
can take as having a value of 0.6 gauss.

16.10. How many (a) individual transitions and (b) unique
spectral lines (that is, lines having a different energy) are al-
lowed for a 1D → 1 P transition? (See exercise 16.7b.)

16.11. Calculate the Landé g factor for a 5D4 state of the Fe
atom using both equations 16.12 and 16.13 and determine
the deviation introduced by approximating ge � 1.

16.12. (a) Calculate the �E values experienced by the
ground-state energy levels when an atom of V is exposed to a
magnetic field of 5.57 � 103 G. Vanadium has an 4F3/2 ground
state.

16.4 ESR Spectroscopy

16.13. What are the energies in J/photon for the microwave
radiation frequencies used in ESR spectroscopy?

16.14. What magnetic field strengths are necessary to achieve
resonance for each of the microwave frequencies used in ESR
spectroscopy?

16.15. How many ESR signals would be expected from the
amine radical, NH2�?

16.16. How many ESR signals would be expected from the 
cyclopentadienyl radical, C5H5�?

16.17. How many ESR signals would be expected from the 
cycloheptatrienyl radical, C7H7�?

16.18. What magnetic field strength is necessary to achieve
resonance between the two spin states of an electron on a
compound where the difference in the energy levels is 
7.204 � 10�24 J? Assume a ge value of 2.0023.

16.19. What is the wavenumber of the microwave radiation
absorbed by an unpaired electron in a magnetic field of 
3476 gauss that has a ge value of 2.0058?

16.20. Nitrogen makes oxide compounds of varying stoi-
chiometry, including NO, NO2, N2O4, and N2O5. Predict which
of these molecules will be ESR-active in their un-ionized, mo-
lecular form.

16.21. An ESR spectrum of an unknown radical is split into
six lines. Which of the following atoms could be in the radi-
cal? (a) 42K (b) 35Cl (c) 37Cl (d) 67Zn (e) 47Ti (f) 32S (Hint:
A table of nuclear spins is necessary to answer this question.
Such a table is in Appendix 5 of this text.

16.22. The hyperfine coupling constant a for deuterium, D
(which is 2H), is 78 gauss. Predict the ESR spectrum of the ND2

radical at a magnetic field of 3482 gauss.

16.5 NMR Spectroscopy

16.23. Do the NMR transitions from MI � ��
1
2

� to MI � ��
1
2

� ap-
pear at the same wavelengths or different wavelengths from
the MI � ��

1
2

� to MI � ��
3
2

� transition of the same nucleus? Justify
your answer mathematically.

16.24. Which of the following nuclei will have an NMR spec-
trum? (a) 2H (b) 14C (c) 16O (d) 19F (e) 28Si (f) 31P 
(g) 55Mn (h) 238U (Hint: Again, a table of nuclear spins is nec-
essary for this question. See Appendix 5 for the data you need.)
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16.25. Calculate the strength of the magnetic field necessary
to observe NMR signals of the NMR-active nuclei from exer-
cise 16.24 using a spectrometer that generates radiation hav-
ing a frequency of 330 MHz.

16.26. Describe the effect of spin-spin coupling on the pro-
ton NMR absorptions of (a) butane, (b) cyclobutane, and (c)
isobutane (2-methylpropane). How would you tell these com-
pounds apart by their NMR spectra?

16.27. Use the NMR spectra and molecular formulas in Figure
16.26 to determine tentative identifications of the compounds.
Assume the compounds are pure. Use the NMR correlation
chart (Figure 16.23) to assist your identification.

16.28. Calculate the changes in the nuclear energy levels of 
a 35Cl nucleus (I � �

3
2

�) exposed to a magnetic field of 3.45 T.
The gN value for 35Cl is 0.5479.

16.29. Calculate the �E values of the allowed transitions for
a 35Cl nucleus (I � �

3
2

�) exposed to a magnetic field of 3.45 T.
The gN value for 35Cl is 0.5479. Express the answers in MHz.

16.30. Although boron atoms have a nonzero nuclear spin,
boron NMR is more complicated than proton NMR or 13C
NMR. Why?

16.31. A microwave oven emits radiation having a frequency
of 2.45 GHz. What magnetic field is necessary to see NMR
transitions of 119Sn, which has a spin of �

1
2

� and a gN value of
2.0823?

16.32. Make a table of Landé g factors for L, S, and J having
values of up to 4. Comment on the effect of the various g fac-
tors on the magnitude spectra of atoms.
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17
THERMODYNAMICS IS ONE OF THE FEW TOPICS that one can ap-

proach from two completely different perspectives and arrive at the same
answers. One approach, the phenomenological approach, is the subject of the
first eight chapters of this book. It is based on the observation of phenomena,
whose behaviors are generalized by various algebraic and calculus expressions.
Over the course of hundreds of thousands of observations, some generalities
have been used as summaries to describe how all known systems should be-
have. These summaries are known as the three laws of thermodynamics.

There is another way to consider thermodynamic properties: a statistical ap-
proach. Years before the quantum theory of matter was formulated, the atomic
theory was becoming the cornerstone of chemistry. Some people—James Clerk
Maxwell, Ludwig Boltzmann, and J. Willard Gibbs among them—thought that
if atoms and molecules were so small, then perhaps their behavior with respect
to energy could be understood statistically. Many of their scientific contempo-
raries rejected the idea. (In fact, Boltzmann’s suicide is blamed partly on the
negative reception given his ideas.) However, it turns out that we can use sta-
tistics to understand the thermodynamics of atoms and molecules. Ultimately,
we find that the statistical approach allows us to make the same thermody-
namic predictions as with the phenomenological approach. This new approach
is called statistical thermodynamics.

17.1 Synopsis
We will begin with a necessary (but nonchemical) review of some statistics that
we later apply to gaseous systems. (We use gases almost exclusively in our dis-
cussion of statistical thermodynamics.) We will see how we can separate, or
partition, a system into smaller units and define an important quantity called
a partition function. In time, we will see that the partition function is related
to the thermodynamic state functions that define our system.

The partition function is defined in terms of the different possible energies
of the individual particles in a system. The developers of statistical thermody-
namics derived their equations without an understanding of the quantum the-
ory of nature. But now, we recognize that atomic and molecular behavior is
described by quantum mechanics, and our development of statistical thermo-
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dynamics must recognize that. It is why we have put off a discussion of statis-
tical thermodynamics until after our treatment of quantum mechanics.

In this chapter, we will develop the tools and apply them to atomic systems.
The monatomic inert gases (He, Ne, Ar, Kr, Xe) will serve as our examples. The
next chapter will deal with diatomic and larger molecules.

17.2 Some Statistics Necessities
In order to understand statistical thermodynamics, it is necessary to review
some statistical ideas. For example, consider a system that is composed of three
boxes that represent smaller subsystems. How many ways are there of putting
a single black ball into the three identical but separate boxes? There are three
ways, as shown in Figure 17.1. How many ways are there of putting two iden-
tical black balls in the three identical boxes, one ball per box? Again, only three.
(Verify this.)

How many ways are there to distribute a black ball and a white ball in the
three identical boxes? There are six ways. The six possibilities are shown in
Figure 17.2. Because the balls are different, the possible arrangements for our
distributions are different than if the balls were identical.

The two different systems of same- and different-colored balls illustrate the
concepts of distinguishable versus indistinguishable objects. When the objects
that are being partitioned into separate subsystems are distinguishable, there
are more possible ways of arranging the objects in the subsystems. However, if
the objects are indistinguishable, there are fewer unique ways.

In considering the arrangements in Figures 17.1 and 17.2, it is common to
express the population of the subsystems (here, the boxes) in terms of proba-
bilities. In Figure 17.1, for example, in one of three total cases the ball is in the
first box. Therefore, if we are considering all possible arrangements, we might
wonder what the probability is that if any specific arrangement were selected
at random a ball would be in the first box. Since one out of three arrangements
satisfies this criterion, we can say that the probability of finding a ball in the
first box is one out of three, which we can express as �

1
3

� or 33%. Probabilities
are often expressed as percentages.

Example 17.1
Referring to Figure 17.2, what is the probability of finding the following?
a. Any ball in the second box
b. A white ball in the third box

Solution
a. Figure 17.2 has four arrangements out of the six that have a ball in the
second box. Therefore, the probability of finding a ball in the second box is
�
4
6

�, or 67%.
b. If we specify that the ball in the third box must be a white ball, then only
two arrangements out of the six satisfy this criterion. This probability is
therefore �

2
6

�, or 33%.

The number of possible unique groupings of distinguishable objects into
various subsystems is determined by the combination formula. If there are m
subsystems in the system and N objects, and there are n1 objects in subsystem 1,
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Figure 17.1 There are only three ways of
putting a single ball in three identical boxes.

Figure 17.2 If two different balls are placed in
three identical boxes, it turns out that there are
now six possibilities. Compare this with the situ-
ation where the balls are identical: in that case
only three distributions are possible among the
three boxes. This illustrates the difference in num-
ber of possible arrangements for distinguishable
versus indistinguishable objects.
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n2 objects in subsystem 2, and ni objects in the ith subsystem, then the num-
ber of ways of accomplishing this arrangement, labeled C, is given by the com-
bination formula

C � (17.1)

where N! is “N factorial” or 1 � 2 � 3 � 4 � � � � N and the �ni! in the denomi-
nator is the product of all of the ni values. The ni values are called occupation
numbers. By definition, 0! � 1 and 1! � 1.

In our future consideration of atomic and molecular systems, the number
of subsystems N and the occupation numbers will be very large. We would
then have to evaluate N! where N is a very large number, on the order of
Avogadro’s number. However, it is easily shown on a calculator that N! gets
very large, very fast. (A point of calculator trivia is that 69! is just under 10100,
which is the largest factorial that many calculators can evaluate.) We will need
to find some way of evaluating factorials of very large numbers.

There is a method of estimating the natural logarithm of factorials. Stirling’s
approximation says that, for large N,

ln N! � N ln N � N (17.2)

This approximation will be useful when we apply combination statistics to col-
lections of molecules. To give you an example of how well it works, consider
the following table:

N ln N! N ln N � N % error

30 74.66 72.04 3.51

100 363.74 360.52 0.885

5000 37,591 37,586 0.0133

Notice that the percentage error between ln N! and N ln N � N goes down as
N increases. Stirling’s approximation gets better as N increases, so it will be very
useful in considering macroscopic systems of moles of atoms and molecules.

Probabilities can also be used to determine average values of some variable.
Consider a variable u that can have certain possible individual values uj.
Further, we will represent the probability that any particular value uj exists as
Pj. The average value of the variable u, which we designate u�, is given by the
expression

possible

u� � (17.3)

We can illustrate the correctness of this equation with a simple example. A
class of seven students is given a quiz worth up to 10 points. The individual
scores are 7, 9, 9, 4, 2, 10, and 8. What is the average score on the quiz? One
way to determine an average is to add the individual scores, then divide by the
number of scores:

score� � � �
4

7

9
� � 7

7 � 9 � 9 � 4 � 2 � 10 � 8
����

7

�
values

j�1

uj � Pj

��
�

j

Pj

N!
���m
i�1 

ni!
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But we can also use equation 17.3 if we first determine the probabilities of
each score in the grades. Since the score of 0 does not appear in the list of in-
dividual scores, we say that P0 � �

0
7

�. A score of 1 does not appear either, so
P1 � �

0
7

� also. But one score of 2 does appear once out of seven grades, so we
can say that P2 � �

1
7

�. Similarly, we have P3 � �
0
7

�, P4 � �
1
7

�, P5 � �
0
7

�, P6 � �
0
7

�, P7 � �
1
7

�,
P8 � �

1
7

�, P9 � �
2
7

� (there are two 9’s), and P10 � �
1
7

�. (You should verify all these
probabilities.) The individual score (out of 10) is represented by uj, so by equa-
tion 17.3 we have for the average score
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score� �

�
10

j�1

uj � Pj

��
�

j

Pj

We get the same answer for the average score. Although for this example the
probability method is more cumbersome, for large numbers of values (here,
“scores”) it will become easier than the simple averaging method.

For a small number of possible arrangements, it is easy to determine the
total number of possibilities by counting them. For example, if Figure 17.3a
represents the possibilities for various arrangements of a system, the total
number of possible arrangements is determined by adding the individual values
represented by the bars in the graph. However, as the number of possibilities
increases, it becomes progressively more time-consuming, and ultimately im-
possible, to determine the total number of possibilities by adding the discrete
number of arrangements.

However, if the distribution of probabilities can be expressed by a smooth
function as in Figure 17.3b, then the total number of possible arrangements—
equal to the area under the curve—is given by the integral of that probability

�
0 � �

0
7

� � 1 � �
0
7

� � 2 � �
1
7

� � 3 � �
0
7

� � 4 � �
1
7

� � 5 � �
0
7

� � 6 � �
0
7

� � 7 � �
1
7

� � 8 � �
1
7

� � 9 � �
2
7

� � 10 � �
1
7

�

���������
�
0
7

� � �
0
7

� � �
1
7

� � �
0
7

� � �
1
7

� � �
0
7

� � �
0
7

� � �
1
7

� � �
1
7

� � �
2
7

� � �
1
7

�

�
0 � 0 � �

2
7

� � 0 � �
4
7

� � 0 � 0 � �
7
7

� � �
8
7

� � �
1
7
8
� � �

1
7
0
�

�����
�
7
7

�

� � �
7

1
� � 7

�
4
7
9
�

�
1

i

(a)  No. of possibilities � � P(i ) � i

P(i )

i

(b)  No. of possibilities � � P(i ) di

P(i )

Figure 17.3 For a smooth distribution, an integral can be substituted for a summation. This
allows us to use calculus in our derivation of expressions in statistical thermodynamics.
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function over all possible arrangements. For balls in boxes, summing the prob-
abilities is easily done. But for gaseous systems, in which the number of parti-
cles can be on the order of 1020, we will favor the approach of integrating a
smooth function. This perspective implies that the mathematics of calculus
will be useful to us in understanding the statistical behavior of our system.

17.3 The Ensemble
One of the ways that statistical thermodynamics tries to understand the ther-
modynamic state of a large macroscopic system is by separating it into tiny, or
microscopic, parts. These parts are called microsystems. The state of each mi-
crosystem is called the microstate. Understand that each microsystem may have
a different individual microstate, including volume, pressure, temperature, en-
ergy, density, and so on. All of the microstates of the system combine statisti-
cally to generate the overall state, or macrostate, of the system: its overall tem-
perature, pressure, volume, energy, and so on. This is a basic postulate of
statistical thermodynamics. In order to understand how these microstates
combine, we will first have to separate our system into microsystems and de-
termine the microstates of the microsystems.

There are several ways to do this. A convenient way will be chosen for our
purposes. We define the term ensemble as a collection of an undetermined
number of microsystems that collectively make up our macroscopic system.
Figure 17.4 illustrates one way of mentally separating a macroscopic system
into an ensemble of microsystems. Each microsystem in the ensemble has its
own characteristic microstate, defined by a particular number of particles, en-
ergy, volume, pressure, temperature, and so on. It is common to use the terms
“microsystem” and “microstate” interchangeably, although technically the mi-
crostate is the set of conditions that define the state of the microsystem.

A canonical ensemble is an ensemble separated into j individual microstates
such that the numbers of particles in each microstate Nj, the volumes of the
microstates Vj, and the temperatures of the microstates Tj are the same.* As
extensive variables, particle numbers and the volumes are additive over the
microstates, whereas the temperature, an intensive variable, is not additive
over the ensemble. Another way of saying this is by defining the total number
of particles N, the system’s total volume V, and the system’s overall tempera-
ture T as

N � �
j

Nj � j � Nj (17.4)

V � �
j

Vj � j � Vj (17.5)

T � Tj (17.6)

Consider the energy of the particles in an ensemble. From quantum me-
chanics, we recognize that energy can have only certain values for the elec-
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*There are other ways to define ensembles. For example, a microcanonical ensemble is de-
fined as a set of microstates in which the volume, number of particles, and energies of each
microstate are the same. So although equations 17.4 and 17.5 are still valid for a micro-
canonical ensemble, equation 17.6 is not. Rather, for a microcanonical ensemble we have

Esystem � �
j

Ej � j � Ej

Grand canonical ensembles have V, T, and � (chemical potential) the same for all microsystems.

An ensemble of microsystems,
whose overall thermodynamic 

properties are determined from 
the combined states of the 
constituent microsystems

A single
microsystem

p, V, T,
N, . . .

Figure 17.4 This is one hypothetical way of
dividing a large system into an ensemble of
smaller microsystems. The individual states of the
microsystems combine to determine the overall
state of the system.
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tronic, translational, rotational, vibrational, and other quantum states. We will
denote the energy level of the gas particle as 	j: 	0 is the ground (that is, min-
imum-energy) state, 	1 is the first excited state, 	2 is the second excited state,
and so on. If we are going to understand the thermodynamics of the macrostate,
we will need to keep track of how many gas particles have which energy in
which microstate.

If we assume that N0 gas particles are in the energy state 	0, N1 particles are
in energy state 	1, N2 particles are in energy state 	2, and so on, then how many
ways can the particles be distributed with this total energy? This is a combina-
tion type of problem, just like putting balls into boxes. If we denote the num-
ber of ways we can make this arrangement as W, then by applying equation
17.1, we have

W � (17.7)

This is just the number of ways of arranging the right number of particles in
the specified energy states. If we consider the degeneracy of each energy state,
gj, then the total number of possible ways must include the degeneracies as a
factor. If there are Nj particles with degeneracy gj, then the number of ways the
Nj particles can be arranged among these degenerate states is (gj)

Nj. [For ex-
ample, having two particles with doubly degenerate wavefunctions allows for
four possible ways (22) the particles can have particular wavefunctions.] For all
particles and all degeneracies, the total number of arrangements due to de-
generacies is the product of the individual degeneracies:

Wdeg � (g0)N0 � (g1)N1 � (g2)N2 � (g3)N3 � � � � � �
j

(gj
Nj) (17.8)

in which the degeneracy of the ground state, g0, is taken N0 times (for the N0

particles that have energy 	0), and so on. Keep in mind that degeneracies can
be very large; for translational states of a mole of atoms, the degeneracy is on
the order of 1020. The total number of ways these N particles might exist in
that arrangement, denoted 
, is the product of W and Wdeg:


 � W � Wdeg � � �
j

g j
Nj (17.9)

N0, N1, N2, etc., are the occupation numbers for each particular energy level.
As you might expect, 
 is a huge number. Additionally, we have assumed a spe-
cific set of occupation numbers Nj. Can the system have some other set of Nj

values? Of course it can. One of the questions of statistical thermodynamics is
whether it can predict which set of occupation numbers is most probable.

Example 17.2
Assume that you have a three-particle system that has four possible energy
states, as shown in Figure 17.5. Your system has a total of 5 energy units (5 EU’s)
to distribute among the particles. How many different distinguishable distri-
butions can there be? Can you use the occupation numbers to verify equa-
tion 17.7?

Solution
Refer to Figure 17.6. Each drawing shows a way to distribute the particles in
the possible quantum states so that the complete system has 5 EU’s. Under

N!
��

j

Nj!

N!
���
N1! � N2! � N3! � � � �
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E
ne

rg
y

E � 0 EU

E � 1 EU

E � 2 EU

E � 3 EU

Figure 17.5 Refer to Example 17.2. How many
ways are there of distributing three distinguish-
able particles so that there are 5 energy units in
the system?
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each drawing, the occupation numbers N0, N1, N2, and N3 are listed. By ap-
plying equation 17.7, we can see that

W(1, 0, 1, 1) � �
1! � 0!

3

�

!

1! � 1!
� � 6

W(0, 1, 2, 0) � �
0! � 1!

3

�

!

2! � 0!
� � 3

W(0, 2, 0, 1) � �
0! � 2!

3

�

!

0! � 1!
� � 3

Figure 17.6 shows that there are 6, 3, and 3 ways of distributing the particles
among the possible energy levels so that the total energy equals 5.

Referring to Example 17.2, we see that there are 12 possible arrangements
of the particles in three distinct ways, each of which has multiple possibilities.
Which of these 12 ways is preferred? Putting the question another way, if we
have an ensemble of microstates for a system that has 5 energy units, which of
the arrangements in Figure 17.6 will be favored? Statistical thermodynamics
assumes that none of the arrangements is preferred over the others, that all
possible arrangements are equally probable. This is known as the principle of
equal a priori probabilities.

Does this mean that each set of occupation numbers (1, 0, 1, 1), (0, 1, 2, 0),
and (0, 2, 0, 1) will make up a third of the overall system? No, it doesn’t, be-
cause there are six ways of making the occupation numbers (1, 0, 1, 1) and only
three ways each of making (0, 1, 2, 0) and (0, 2, 0, 1). It does mean that �

1
1
2
� of
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(1, 0, 1, 1)(N0, N1, N2, N3) �

3
2
1
0

(1, 0, 1, 1)

3
2
1
0

(1, 0, 1, 1)

3
2
1
0

(1, 0, 1, 1)(N0, N1, N2, N3) �

3
2
1
0

(1, 0, 1, 1)

3
2
1
0

(1, 0, 1, 1)

3
2
1
0

(0, 1, 2, 0)(N0, N1, N2, N3) �

3
2
1
0

(0, 1, 2, 0)

3
2
1
0

(0, 1, 2, 0)

3
2
1
0

(0, 2, 0, 1)(N0, N1, N2, N3) �

3
2
1
0

(0, 2, 0, 1)

3
2
1
0

(0, 2, 0, 1)

3
2
1
0

Figure 17.6 Refer to Example 17.2. These are the only ways of distributing the three particles
(shown as a left, a middle, and a right dot) to get 5 energy units in the system. Notice that there
are six possible combinations of the occupation number set (1, 0, 1, 1) but only three possible
combinations of the occupation number sets (0, 1, 2, 0) and (0, 2, 0, 1).
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the system will be represented by each drawing in Figure 17.6. Because there
are more ways of making a system with the occupation numbers (1, 0, 1, 1),
there will be more microstates having that arrangement. This idea becomes
very important when considering large numbers of gas particles that exist in
any real system.

17.4 The Most Probable Distribution: 
Maxwell-Boltzmann Distribution

Let us now consider a canonical ensemble that describes an isolated system
in which Nj, Vj, and T are the same for all microstates. The energies of each
microstate, Ej, are not equal, but we are still assuming that discrete energy
levels exist, as dictated by quantum mechanics. Previously, we showed that
the number of ways to distribute particles among the energy levels of the
microstates is


 � � �
j

g j
Nj

There are some constraints on this equation. The total energy of the system
must be equal to the energy of each quantized state, 	i, times the number of
particles in that energy level, Ni:

E � �
i

Ni � 	i (17.10)

Furthermore, the sum of all the Ni values must equal the total number of par-
ticles in the system:

N � �
i

Ni (17.11)

(Note the slight difference in the definitions of the number of particles. Ni rep-
resents the number of particles in each energy level, and Nj (different sub-
script) represents the number of particles in each microstate. In a canonical
ensemble, Nj is the same for each microstate, but there is no requirement that
Ni is the same for all microstates.)

There is still the problem that the set of occupation numbers Nj can be any-
thing, according to the principle of equal a priori probabilities. In fact, the to-
tal possible arrangements are truly astronomical, but we will ignore all but one:
the most probable arrangement.

Consider a bar graph that plots the number of ways a combination can be
made versus what we will call the compactness of the arrangement. By “com-
pactness,” we mean a general understanding of how many different microsys-
tems participate in the specific arrangement. For instance, in Example 17.2
there were two particular arrangements in which two energy levels were
populated and one arrangement in which three energy levels were populated.
We can say that the three-level population was less compact than the other
two, which were more compact in either a lower energy level or a higher en-
ergy level. Notice that the less compact arrangement had six possible combi-
nations, but the two more compact arrangements had only three possible
combinations each. If we plot the number of combinations versus the 
compactness—with each side of the plot representing either extreme in com-
pactness and the middle representing the least compact arrangement—we
get a graph like Figure 17.7.

N!
��

j

Nj!
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Figure 17.7 If we plot the number of possi-
bilities versus the set of occupation numbers, we
see the beginnings of a curve. See Figure 17.8 to
see how this curve evolves.

W

(0, 1, 2, 0)(1, 0, 1, 1)

6

3

(0, 2, 0, 1)
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If we increase the number of particles as well as the number of possible mi-
crostates, an interesting situation develops. As long as 
 �� N, the graphs start
looking qualitatively like the curves in Figure 17.8. Of course, as N increases,

 increases dramatically—the graphs in Figure 17.8 are not drawn to the same
scales! But although the absolute heights of the peaks in Figure 17.8 increase
factorially, the widths of the peaks do not increase at the same rate. Therefore,
as N increases, the relative shape of the peaks gets narrower and narrower. This
implies that although the number of possible combinations is growing, the
number of combinations that are populated to any significant extent is getting
progressively smaller. Thus, the combination corresponding to the most prob-
able combination overwhelms any other combination.

What this argument implies is that we don’t have to consider every possible
set of occupation numbers in considering the microstates of an ensemble. For
large N, only the most probable distribution needs to be considered.

If we have an expression for 
 in terms of the Nj values, we can take the de-
rivative of that expression with respect to the set of Nj ’s and set it equal to zero
[recall that at a maximum point in a plot, the derivative (that is, the slope)
equals zero]. We can then derive some expression that might be meaningful.
But we do have an expression for 
 in terms of Nj: equation 17.9. However,
equation 17.9 can’t be maximized by itself. It must be maximized in terms of
the constraints on E (equation 17.10) and N (equation 17.11).

Rather than maximize 
, we instead maximize ln 
. We can do this because
ln 
 increases and decreases as 
 increases and decreases, so a maximum value
of 
 corresponds to a maximum value of ln 
. In addition, by maximizing 
ln 
 we can take advantage of Stirling’s approximation. From equation 17.9,
we evaluate ln 
 as

ln 
 � ln � � �
j

g j
Nj�

Using the properties of logarithms,* we simplify the right side of the equation
to get

ln 
 � ln N! � �
j

(ln g j
Nj � ln Nj!)

By invoking Stirling’s approximation on both factorial terms and applying an-
other property of logarithms,† we get

ln 
 � N ln N � N � �
j

(Nj ln gj � Nj ln Nj � Nj)

We can distribute the summation sign through the three terms to get

ln 
 � N ln N � N � �
j

Nj ln gj � �
j

Nj ln Nj � �
j

Nj

The summation � Nj equals N, the total number of particles, so those two
terms cancel on the right side. Again, we can use properties of logarithms and
rearrange the remaining terms inside the summation to get

ln 
 � N ln N � �
j

Nj ln �
N

gj

j

� (17.12)

N!
��

j

Nj!
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W
(or �)

W
(or �)

W
(or �)

W
(or �)

W
(or �)

W
(or �)

Figure 17.8 When the number of particles
and possible arrangements gets larger and larger,
the plot gets progressively narrower and narrower,
even as the x-axis (representing the possible sets
of occupation numbers) gets larger and larger.

*Specifically, ln (a � b/c) � ln a � ln b � ln c. Another way to express this is ln 
�jNj � �j ln Nj.

†Specifically, ln ab � b � ln a.
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In order to maximize ln 
 in terms of the two constraints, we can combine
the equations for ln 
, N, and E into a single linear combination and maxi-
mize that resulting, three-term sum. However, we do not know the relative
magnitudes of the individual terms in the sum. We will therefore multiply two
of the three terms with a weighting factor. We use  as the weighting factor for
N, and � as the weighting factor for E. This technique is referred to as
Langrange’s method of undetermined multipliers and gives us

ln 
 �  � N � � � E

as the expression to minimize. (The negative sign on the last term is for our future
convenience, and will be justified shortly.) Substituting for 
, N, and E, we get

�N ln N � �
j

Nj ln �
N

gj

j

�� �  � �
i

Ni � � � �
i

Ni � 	i (17.13)

as the expression to minimize.
Since the compactness of a distribution is dictated by the occupation num-

bers, we take the derivative of this expression with respect to the Nj values (all
j of them) and require that they collectively be zero, as befits the maximum
point in the plot of a function:

�
�

�

Nj

���N ln N � �
j

Nj ln �
N

gj

j

�� �  � �
i

Ni � � � �
i

Ni � 	i	 � 0 (17.14)

for each value of Nj. Equation 17.14 thus gives us j expressions that must
equal zero.

The derivative of N ln N with respect to Nj is zero, since N ln N is a con-
stant. Even though Nj and Ni represent different occupation numbers, for a
large enough system there will always be instances in which Ni � Nj. Therefore,
the effect of the derivative in terms of j is to eliminate all the terms in the re-
maining summations except one, the one in which Ni � Nj. What remains are
i equations of the form

ln �
N

gi

i

� � 1 �  � �	i � 0 i � 1, 2, 3, . . . (17.15)

For simplicity, we redefine the undetermined multiplier  as

 
  � 1 (17.16)
Rearranging, we get

ln �
N

gi

i

� � � � �	i

ln �
N

gi

i� �  � �	i

�
N

gi

i� � e��	i

�
N

gi

i� � ee��	i

Ni � gie
e��	i (17.17)

If we sum the values of both sides of equation 17.17 over possible values of i,
we get

�
i

Ni � N � �
i

gie
e��	i
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where we have used the fact that �i Ni � N. Since e is a constant (e is a con-
stant and  is a constant), we factor that term out to get

N � e�
i

gie
��	i (17.18)

Notice what equation 17.18 gives us. The total number of particles N must satisfy
an expression in terms of the degeneracies of the energy levels, gi, and an expo-
nential expression that is related to the energy of the ith quantum state. It is also
dependent on some exponential e and the constant �, whose forms we don’t
know yet. But equation 17.18 suggests that there will be a relationship between
the two constants  and � and the energy and number of particles in the system.

The expression �igie
��	i is going to be a common one in statistical ther-

modynamics, so it is useful to give it a symbol. We define q as

q 
 �
i

gie
��	i (17.19)

This quantity q is called the partition function. It plays a central role in statis-
tical thermodynamics. Because we defined our system as a canonical ensem-
ble, q is commonly called the canonical ensemble partition function.

Even though we don’t know the absolute number of particles Ni in energy
state 	i, we can determine what fraction of the total particles are in that energy
state (and then, if we know the total number of particles, we can calculate the
absolute number Ni.) We do this by using the expressions in equations 17.17
and 17.18. The fraction is given by the expression Ni/N, which according to
those equations is

�
N

N
i� � � �

gi

e

e


e

�

�

q

�	i

�

The exponential e cancels:

�
N

N
i� � �

1

q
� � gie

��	i (17.20)

Consider this expression. For any given distribution (and certainly for the most
probable distribution) of a canonical ensemble, q is a constant that depends on
the temperatures, numbers of particles, and volumes of the microstates.
Degeneracy of the ith energy state is also a constant for a given substance, and
e and � are also constants. Therefore, the only variable so far is 	i, the energy
of the quantum state. The population of any energy level is a negative expo-
nential function of the value of the energy level above the ground state, a func-
tion that looks like Figure 17.9, that is, the population of the energy levels de-
creases exponentially with increasing energy. This type of population
distribution is called the Maxwell-Boltzmann distribution (sometimes more
concisely called the Boltzmann distribution). Notice that the  term is not
present in equation 17.20. The implication here is that  is not much of a con-
cern to us. However, the constant � remains, and determining the value of �
is an important step in the development of statistical thermodynamics.

The partition function q is still a part of equation 17.20, however. We can
eliminate q by determining the ratio of the population of the ith energy level
to the population of the kth energy level:

�

�
1

q
� � gie

��	i

��
�
1

q
� � gke��	k

�
N

N
i�

�
�
N

N
k�

gie
e��	i

��
e�

i

gie
��	i
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x

1

e�x

Figure 17.9 This is the general shape of a neg-
ative exponential, which is the heart of the
Boltzmann distribution. Relating this to equation
17.20, it implies that the higher in energy a state
is, the less it will be populated (as long as degen-
eracy is not considered).
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The N and q terms cancel:

�
N

N

k

i� � �
g

g

k

ie

e

�

�

�

�

	

	

i

k
�

and we can combine the two exponentials algebraically:

�
N

N

k

i� � �
g

g

k

i� � e��(	i�	k)

This expression is usually written as

�
N

N

k

i� � �
g

g

k

i� � e����	 (17.21)

where �	 is the difference in energies of the ith and kth states. Notice how the
degeneracies do not automatically cancel.

A fractional population is numerically equivalent to a probability. The prob-
ability that any individual particle selected at random will be in the ith energy
state is therefore

Pi � �
1

q
� � gie

��	i (17.22)

The reason we point this out is that now we can use some statistical per-
spectives to understand thermodynamic properties. For example, with the
ideas from section 17.2, we can use

possible

u� �

because we have an expression for Pi. Suppose we want to know what the av-
erage energy values of the microstates are. We can rewrite the above equa-
tion as

E� �

where E� is the average energy and 	i is the energy of each individual state.
Because q is a constant for a given set of conditions, it can be factored out of
every term in each sum and then canceled from both the numerator and de-
nominator. Therefore,

E� � (17.23)

Thus, we have a way to calculate the average energy E� from a statistical con-
sideration of the energies of the individual particles in the system. Further, we
postulate that the average energy E� is equal to the thermodynamic energy E of
the system.

We need to determine what � is. In order to do this, we will have to use
some equations from phenomenological thermodynamics. Recall that the first

�
i

	i � gie
��	i

��
�

i

gie
��	i

�
i

	i � �
1

q
� � gie

��	i

��

�
i

�
1

q
� � gie

��	i

�
values

i�1

ui � Pi

��
�

i

Pi
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law of thermodynamics says that the change in energy of a system can be
partitioned into heat and work. Using the variables from this chapter, we can
write it as

dE � dq � dw

(Do not confuse q for heat with q for the partition function. Notice, also, that
in this chapter we are using E for the total (that is, internal) energy and not U
as in Chapters 2 and forward. This is common in statistical thermodynamics.)
For an adiabatic change, dq equals 0, and the pressure-volume work performed
by the system allows us to rewrite the above equation as

dE � �p � dV

If we wanted to bring the dV term to the other side of the equation, we can
derive an expression for the pressure of a system:

p � ��
�

�

V

E
�

For individual microstates in which the number of particles Ni remains the
same, we can rewrite the above equation as

pi � ���
�

�

V

	i

i

��Ni

(17.24)

Since the energy of the microstate, 	i, depends on the microstate, so does the
pressure pi. If pressure is defined like this, then we can take the derivative of
equation 17.23 with respect to Vi and get the average pressure, p�, just like we
determined the average energy:

p� � (17.25)

However, increasing the number of microstates that have the same average
pressure doesn’t change the value for the overall pressure of the system. The
average pressure of the microstates equals the average pressure of the entire
system. That is,

p� � pthermo (17.26)

where pthermo is the phenomenological, macroscopic, measurable pressure of
our system. Equation 17.26 is the first direct connection between statistical
thermodynamics and phenomenological thermodynamics.

In order to determine �, we start by taking the derivative of E� (from equation
17.23) with respect to V, and the derivative of p� (equation 17.25) with respect to
�. In both cases, we have to apply the chain rule of derivation, and certain sub-
stitutions can be made. Ultimately (the steps won’t be given here), we get

��
�

�

V

E�
�� � �p� � �(E�p�) � �E� � p� (17.27)

��
�

�

�

p��� � E� � p� � (E�p�) (17.28)

Substituting and rearranging:

��
�

�

V

E�
�� � ���

�

�

�

p��� � �p� (17.29)
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�
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Compare this equation with another equation that can be derived from ther-
modynamics:

��
�

�

V

E
�� � �

T

1
� ���(1

�

/

p

T)
�	 � �p (17.30)

where we have used E to represent the internal energy. These two equations are
strikingly similar. They imply that � is related to 1/T. � is not equal to 1/T, be-
cause a proportionality factor would cancel from equation 17.30. � is certainly
proportional to 1/T:

� � �
T

1
�

As usual in equations like this, a proportionality can be written as an equality
by introducing the appropriate proportionality constant. But rather than
putting this constant in the numerator, the convention is to put it in the de-
nominator. Giving the proportionality constant the symbol k, we have

� � �
k

1

T
� (17.31)

The constant k is called Boltzmann’s constant and has a value of 1.381 � 10�23 J/K.
The expression for the partition coefficient q becomes

q � �
i

gie
�	i /kT (17.32)

All previous equations with � can be modified accordingly.

Example 17.3
Consider the diagram in Figure 17.5 with the four energy levels. Assuming
that the energy levels are fourfold degenerate (that is, gi � 4) and that the en-
ergy levels have values of 0.00, 1.00, 2.00, and 3.00 � 10�21 J, what is the
value of the partition function at 25°C � 298 K? What is the value for q if
the energy levels are 0.00, 1.00, 2.00, and 3.00 � 10�19 J?

Solution
The summation from equation 17.32 can be set up as

q � 4 � exp�� 	
� 4 � exp� 	
� 4 � exp�� 	
� 4 � exp� 	

q � 4 � 1 � 4 � 0.784 � 4 � 0.615 � 4 � 0.482

q � 11.524

where exp is the same exponential function as e but allows long exponents to
appear in a more readable form. All of the units cancel, and q is just a num-
ber. For the larger values for the energy levels, it can be shown that

3.00 � 10�21 J
���
(1.381 � 10�23J/K)(298 K)

2.00 � 10�21 J
���
(1.381 � 10�23 J/K)(298 K)

1.00 � 10�21 J
���
(1.381 � 10�23 J/K)(298 K)

0.00 � 10�21 J
���
(1.381 � 10�23 J/K)(298 K)
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q � 4 � 1 � 4 � 2.80 � 10�11 � 4 � 7.84 � 10�22 � 4 � 2.19 � 10�32

q � 4

This second example shows how sensitive q is to the values of the energy levels.

For the second set of energy levels in the above example, the fact that q is
approximately equal to the number of levels suggests a molecular interpreta-
tion of the partition function: q is a measure of the number of energy states
that are available to a particle at any particular temperature. Thus, for low-
energy states at a given temperature, many of those states can be populated by
thermal energy. In the above example, approximately 12 of the lower-energy
states (recall that each level is fourfold degenerate) could be populated at 
298 K. But if the higher-energy states are considered, only the ground state 
(degeneracy � 4) is generally populated, so a partition function value of 4 is
consistent with this interpretation of q.

17.5 Thermodynamic Properties from 
Statistical Thermodynamics

Now that we have established the complete form of our partition function,
how can we determine thermodynamic properties from it? We will start with
energy. The total energy of the ensemble is given by equation 17.10:

E � �
i

Ni � 	i

Substituting for Ni from equations 17.20 and 17.31:

E � �
i

�
N

q
� � gie

�	i/kT � 	i

E � N � �
1

q
� � �

i

gie
�	i/kT � 	i (17.33)

Consider briefly the derivative of equation 17.32 with respect to temperature:

�
�

�

T

q
� � �

�

�

T
� �

i

gie
�	i/kT

� �
i

gi � �
�

�

T
� e�	i/kT

� �
i

gi � e�	i/kT � �
k

	

T
i
2�

�
�

�

T

q
� � �

kT

1
2� �

i

gie
�	i/kT � 	i

If we divide both sides by q, we get

�
1

q
� � �

�

�

T

q
� � �

1

q
� � �

kT

1
2� �

i

gie
�	i/kT � 	i

According to the rules of calculus, the left side of the above equation is 
(� ln q/�T). Moving the kT2 term to the left side, we have

kT2�
�

�

ln

T

q
� � �

1

q
� � �

i

gie
�	i/kT � 	i
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The right side of this equation is most of the right side of equation 17.33.
Substituting:

E � NkT 2����

ln

T

q
��V

(17.34)

where we are indicating the constant-volume condition explicitly. Equation
17.34 is an amazing result: if we know how the logarithm of q varies with tem-
perature, we can calculate the energy of our system. This expression demon-
strates the central role that the partition function plays in statistical thermo-
dynamics.

We have already introduced the pressure as a thermodynamic variable. In a
fashion similar to how we got equation 17.34, it can be shown that

p � NkT ����

ln

V

q
��T

(17.35)

From the first-law relationship between the internal energy and H, the enthalpy:

H � E � pV

H � E � NkT

H � NkT 2����

ln

T

q
��V � NkT

from which we can get

H � NkT�T �
�

�

ln

T

q
� � 1� (17.36)

Statistical thermodynamics therefore gives expressions for all of the basic ther-
modynamic state functions, and they all depend on the partition function q.

In order to get expressions for Gibbs free energy G and the Helmholtz en-
ergy A, we will need an expression for the entropy, S. The statistical thermo-
dynamic approach for S is somewhat different. Rather than derive a statistical
thermodynamic expression for S (which can be done but will not be given
here*), we present Ludwig Boltzmann’s 1877 seminal contribution relating en-
tropy S and the distribution of particles in an ensemble 
:

S � ln 
 (17.37)

The proportionality constant is also Boltzmann’s constant, k (the same k used
to define �). This definition of entropy becomes

S � k ln 
 (17.38)

This postulate is so important in the development of statistical thermody-
namics that it is carved on Boltzmann’s tombstone (Figure 17.10).

Using equation 17.38 as a starting point, we can substitute for 
 from equa-
tion 17.9 and get

S � k ln � � �
j

g j
Nj�

� k ln �N! � �
j

�
N

gj
N

j!

j

�� (17.39)

N!
��

j

Nj!

17.5 Thermodynamic Properties from Statistical Thermodynamics 601

*Interested readers can find details in D. McQuarrie, Statistical Thermodynamics,
University Science Books, Mill Valley, Calif., 1973.

Figure 17.10 Boltzmann’s assumption that 
entropy is proportional to the number of possi-
ble arrangements is so important to statistical
thermodynamics that it is engraved on Boltz-
mann’s tombstone in Vienna.
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where the second equation is simply an algebraic rearrangement of the first
one. Rearranging by applying the properties of logarithms (see the footnotes
earlier in this chapter):

S � k �ln N! � �
j

ln g j
Nj � �

j

ln Nj!�
We can now apply Stirling’s approximation to the ln N! and ln Ni! terms:

S � k �N ln N � N � �
j

ln g j
Nj � �

j

(Nj ln Nj � Nj)�
Distributing the last summation through both terms:

S � k �N ln N � N � �
j

ln g j
Nj � �

j

Nj ln Nj � �
j

Nj�
We recognize that � Nj is equal to N, the total number of particles. Therefore,
this summation cancels with the �N term earlier in the brackets. So

S � k �N ln N � �
j

ln gj
Nj � �

j

Nj ln Nj� (17.40)

We can further simplify the above equation by combining the two remaining
summations algebraically, once again taking advantage of the properties of log-
arithms. We get

S � k �N ln N � �
j

Nj ln �
N

gj

j

�� (17.41)

The term ln(gj /Nj) can be expressed in terms of the Boltzmann distribution,
equation 17.20, if we take the logarithm of that equation. This introduces a
term in the energies 	i. Using the fact that �i	i � E, the total energy of the sys-
tem, and recognizing that we have an expression for E in terms of q, we can
show that equation 17.41 is equivalent to

S � Nk �T����

ln

T

q
��V

� ln q	 (17.42)

However, in the case of entropy the identity of the particles is a factor. In
section 17.2 we assumed that we could tell the difference between individual
particles; that is, we assumed they were distinguishable. In fact, at the atomic
level we cannot distinguish between individual, identical particles; atoms and
molecules are macroscopically indistinguishable. This means that we are over-
counting the total number of possible distributions for 
. The factor that fixes
this overcounting is a factor of N! in the denominator of 
. (That is, there are
1/N! times fewer distributions for indistinguishable particles than for distin-
guishable particles.) When this factor is considered, the equations become


indist � �
N

1

!
� � � �

j

g j
Nj

and the final expression for entropy becomes

S � Nk �T����

ln

T

q
��V

� ln �
N

q
� � 1	 (17.43)

This is the more accurate expression for the entropy, S.
It is the statistical thermodynamical approach to entropy that relates this

state function to the well-known and classic relationship with disorder. Disorder

N!
��

j

Nj!
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can be thought of as a measure of the number of possible places objects can
occupy. This is one way of defining 
. And when such a number of places are
possible, statistics shows that they will be occupied: a high disorder content is
directly related to a high absolute entropy. The qualitative relationship is very
useful for predictive purposes. But be aware that the relationship also has di-
rect quantitative consequences. We will be able to determine those quantities
shortly—when we find q, the partition function.

The second and third law of thermodynamics can be understood in terms
of the disorder concept of entropy. For an isolated system in which there is no
transfer of mass or energy, a spontaneous change can be thought of as a change
in which the particles of the system access more possible arrangements. That
is, for a spontaneous process from state 1 to state 2,


 (state 2) � 
 (state 1)

From equation 17.40, which is Boltzmann’s postulate for the definition of S,
we get for the �S of a spontaneous process:

�S � k ln [
 (state 2)] � k ln [
 (state 1)]

�S � k ln �






(

(

s

s

t

t

a

a

t

t

e

e

2

1

)

)
�

which is always a positive number: the fraction [
 (state 2)]/[
 (state 1)] is
always �1, and the logarithm of a number greater than 1 is positive. Thus, a spon-
taneous change occurs with an increase in the total entropy—or “disorder”—of
the system. See Figure 17.11.

For the third law, we can substitute the expression for q into equation 17.42
and take the derivative of q with respect to temperature. We get

S � k ln (� gi � e�	i/kT) � �
T

1
� �

�

�

	i

g

�

i

g

�
i

e

�
�

e
	

�

i/k

	

T

i/kT

�

If we take the limit of this expression as T → 0,* we would find that

lim
T→0

S � k ln g0

where g0 is the degeneracy of the ground state. In the limit of T → 0, the low-
est possible energy states are the only states that are populated.

If the ground state is nondegenerate, then g0 � 1 and S is exactly zero, in
exact agreement with the third law of thermodynamics. This would be strictly
true if there was only a single particle in the system. In most systems, there are
usually enough atoms and molecules that we can speak of their quantities in
molar amounts, that is, on the order of 1020 and greater. Therefore, g0 can be
at least 1020 in real systems. Does this lead to a violation of the third law?

Not really. The logarithm of 1020 is about 46, and multiplying ln (1020) by
Boltzmann’s constant, 1.381 � 10�23 J/K, gives about 6 � 10�22 J/K—an im-
measurably small amount of entropy (especially considering that molar en-
tropies, which are measured, are on the order of dozens or hundreds of J/K,
25 or more orders of magnitude higher). We would need something on the or-
der of 101019

atoms before the entropy at absolute zero would be noticeable,
and to give you an idea of how big that number is, there isn’t room in the vis-
ible universe for that many atoms! Therefore, for all practical purposes, we can
indeed say that S approaches zero as the temperature approaches absolute zero,

17.5 Thermodynamic Properties from Statistical Thermodynamics 603

*The limit can be determined by applying L’Hôpital’s rule from calculus.

? ?

Figure 17.11 Which direction is the sponta-
neous one from a strict disorder perspective? It is
also the spontaneous direction from a strict en-
tropy perspective.
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as long as the other relevant conditions apply to the system. Statistical ther-
modynamics’ definition of entropy is thus consistent with the third law of ther-
modynamics as developed by phenomenological thermodynamics.

Knowing the relationship between q and S, it is simple mathematics to de-
termine what the Helmholtz energy, A, and the Gibbs energy, G, are in terms
of the partition function. They are

A � �NkT ln �
N

q
� (17.44)

G � �NkT �ln �
N

q
� � 1� (17.45)

Notice that both A and G are directly related to q, rather than related to a de-
rivative of q. Although this is an artifact of the mathematics and the definition
of the ensemble, there should be some wonder that the important state func-
tions (G and A) are so intimately related to the partition function q, which be-
comes the central focus in statistical thermodynamics.

Finally, since the chemical potential �i for the ith chemical species is the
basic focus in chemical equilibrium, we can easily define �i in terms of q:

�i � ��
�

�

N

G

i

��
Therefore, from equation 17.45:

�i � �kT ln �
N

q

i

� (17.46)

Chemical potential is also directly related to q.

17.6 The Partition Function: Monatomic Gases
The previous section made it clear that all thermodynamic state functions are
in some way related to the partition function q. This means that in order to
know these state functions, we need to know what q is. How?

First, recall that q is simply a sum of negative exponentials of the discrete
energy levels:

q � �
i

gi � e�	i/kT

Technically this is an infinite sum, because there are an infinite number of pos-
sible energy levels for any particle (which is a general conclusion of both clas-
sical and quantum mechanics). However, because q is defined in terms of neg-
ative exponentials, each successive term gets smaller, so the potentially infinite
number of terms in the summation does not automatically imply that q � �.

Second, if the energy levels are close enough together, then each term in the
summation is infinitesimally close to the previous term, and also infinitesi-
mally close to the next term. It can be well approximated that rather than a
sum of discrete terms, q can be written as an integral of a continuous function:

q � �
i

gi � e�	i/kT → �
�

i�0

gi � e�	i/kT di (17.47)

In order to determine a theoretical value of a partition function, we need an
expression for the energy levels 	i.
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For atomic and molecular systems, we actually have such expressions: they
come from the application of quantum mechanics to the translations, rota-
tions, vibrations, and electronic states of atoms and molecules. Admittedly,
Boltzmann didn’t have quantum mechanics, since he developed the rudiments
of statistical mechanics about 50 years before quantum mechanics was formu-
lated. In fact, some of his expressions are incorrect by not including Planck’s
constant (Boltzmann was unaware of its existence for most of his life). But in
the calculation of thermodynamic values, the Planck’s constants cancel. Their
omission was, ultimately, unnoticed. However, in the material to come, we will
use the quantum-mechanical basis of energy levels.

We start by assuming that our sample consists of a monatomic gas, like He
or Ne (or any other monatomic gas, like Hg vapor). Such a sample has only
three types of energy states: electronic, nuclear, and translational. Of these
three, electronic and nuclear states are states within the atoms. Only transla-
tional energy states relate the position of the atom as a whole, rather than re-
lating the relative positions of the subatomic particles of the atom.

The partition function of a monatomic gas is a product of three separate
partition functions defined by the translational energy levels, the electronic en-
ergy levels, and the nuclear energy levels:

q � qtrans � qelect � qnucl (17.48)

Further, we will presume at this point that the translational partition function,
qtrans, is the major contributor to the thermodynamic properties of a
monatomic gas. (We will justify this by using the kinetic theory of gases, which
is covered in Chapter 19. The relative contributions of qelect and qnuc will be
considered in Chapter 18.) Therefore, for a monatomic ideal gas, we are as-
suming that

q � qtrans

How shall we model the translational motions of monatomic gases? Well,
we can apply the particle-in-a-box approximation to the straight-line motions
of the atoms in three-dimensional space. From Chapter 10, we know that for
a particle in a three-dimensional box, the quantum-mechanically allowed en-
ergy levels are

	 � �
8

h

m

2

���
n

a2
x
2

� � �
n

b2
y
2

� � �
n

c2
z
2

��
The variable m is the mass of the particle in the box, and so in this case rep-
resents the mass of the individual gaseous atom or molecule, not the molar
mass. For simplicity’s sake, we will arbitrarily assume that we are working in a
cubic system, so that a � b � c :

	 � �
8m

h2

a2�(nx
2 � ny

2 � nz
2) (17.49)

In terms of the volume of the system V, if the system is cubic, then V � a3.
Therefore, a2 must equal V2/3. Equation 17.49 becomes

	 � �
8m

h

V

2

2/3�(nx
2 � ny

2 � nz
2) (17.50)

Therefore, our expression for q is (assuming that the translational states are all
singly degenerate)
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q � � exp� �
� � exp���

h2(n

8
x
2

m

�

V

n
2/

y
2

3k

�

T

nz
2)

��
q � �

nz

exp��8m

�

V

h
2

2

/

n
3
x
2

kT
�� � �

ny

exp��8
�

m

h

V

2n
2
y
2

/3kT
�� � �

nz

exp��8m

�

V

h
2

2

/

n
3
z
2

kT
�� (17.51)

where the individual summations are now over the x, y, and z translational
quantum numbers. All levels of one-dimensional particles-in-boxes are singly
degenerate.

Since there is usually no preferential dimension for a three-dimensional sys-
tem (a condition described as “isotropic”), then nx is calculationally equivalent
to ny, which is calculationally equivalent to nz. Also, because the system is as-
sumed to be cubic, the quantized energies will be the same in all three dimen-
sions. This means that the three terms in equation 17.51 can be combined into
the third power of a single term:

q � ��
n

exp��8m

�

V

h
2

2

/

n
3

2

kT
��	

3

(17.54)

We have removed the subscript from the general translational quantum
number n.

We now take the mathematical leap inferred by equation 17.47: if the indi-
vidual terms in 17.52 are close enough together, we can approximate the (in-
finite) sum as an integral:

q � � �
�

n�0

exp��8m

�

V

h
2

2

/

n
3

2

kT
�� dn	

3

(17.53)

The variable in the integral is n, the translational quantum number. This inte-
gral has the form and solution

�
�

x�0

e�ax2

dx � �
1

2
���

�

a
��

1/2

(see Appendix 1), where in the case of equation 17.53 the expression for the
constant a is

�
8mV

h
2

2

/3kT
�

We can therefore substitute a definite expression for the integral. We have

q � ��
1

2
�� �

1/2

	
3

Rearranging all of the terms and distributing through the powers, we get

qtrans � ��2�

h

m
2

kT
��

3/2

� V (17.54)

where the volume variable V has been algebraically removed from the paren-
theses. The “trans” subscript has been added to remind ourselves that we are
determining the partition function with respect to the translation of the atoms.
Again, in equation 17.54 the variable m represents the mass of the individual
gas particle.

�
��

�
8mV

h
2

2

/3kT
�

��
8m

h

V

2

2/3�(nx
2 � ny

2 � nz
2)

���
kT

606 C H A P T E R  17 Statistical Thermodynamics: Introduction

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Equation 17.54 is a useful conclusion. The (translational) partition func-
tion, originally defined as an infinite sum of negative exponentials of the en-
ergy levels, is equal to an expression in terms of the mass of the gas particles,
the absolute temperature, the system volume, and some fundamental univer-
sal constants. This expression lets us calculate explicit values for q, which can
then be used to determine values for energy, entropy, heat capacity, and so on.
These calculated values—determined from a statistical rather than a phenom-
enological perspective—can then be compared to experimental values. We will
thus get the first chance to see how well a statistical approach to thermo-
dynamics compares with experiment.

Remember that q is unitless, since it is simply the sum of exponential func-
tions, so all of the units in equation 17.54 will ultimately cancel. However, we
will have to convert some units, particularly units of volume. Typically, vol-
umes are expressed in units of liters. In order for the units to cancel properly,
it is easiest if volume is expressed in units of cubic meters, m3. Recall that the
liter can be defined as a cube having sides 1.00 decimeter (1.00 dm) in length.
Since a decimeter is 0.1 meter, we will take advantage of the conversion factor

1 L � 0.001 m3 (17.55)

Units will also work out if we express (molar) mass quantities in units of kg, not g.

Example 17.4
Calculate qtrans for 1 mole of He at standard thermodynamic conditions 
(T � 298 K, V � 24.5 L). The molar mass of He is 4.0026 g.

Solution
Keeping equation 17.55 in mind, the volume of 1 mole of He in cubic meter
units is 0.0245 m3. Also, we should express the mass of one atom of He in kg
units: (0.0040026 kg)/(6.02 � 1023) � 6.65 � 10�27 kg. For qtrans, we get

q � � 	
3/2

0.0245 m3

First we will work out the numbers. When we combine all of the numerical
values (not forgetting, of course, the 3/2 power on the brackets), we get

number � 1.90 � 1029

Now we will examine the units. They are

� �
3/2

� m3

Consider the units inside the parentheses first. The units of K cancel in the
numerator, and one of the J units cancels in the numerator and the denom-
inator. We have remaining

�
J

k

�s

g
2�

Remember, however, that the unit joule is a compound unit and equal to
(kg�m2)/s2. Substituting:

� �
kg

k

�

g

m2� � �
m

1
2�

kg
��

�
kg

s

�
2

m2

� � s2

kg � �
K

J
� � K

��
(J�s)2

2 � 3.14159(6.65 � 10�27 kg)(1.381 � 10�23J/K)298 K
������

(6.626 � 10�34 J�s)2
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Raising this unit to the power of 3/2 and including the m3 unit from the vol-
ume term, we have

��
m

1
2��

3/2

� m3 � �
m

1
3� � m3 � 1

That is, all of the units cancel, as they should! Combining the numerical part
of the answer with the units part of the answer, we get

q � 1.90 � 1029

with no units. This is a very large number!

17.7 State Functions in Terms 
of Partition Functions

The importance of the partition function in statistical thermodynamics is that
if we know q, we can determine thermodynamic properties. Indeed, almost all
of the thermodynamic state functions can be written in terms of the change of
the partition function as some state variable, T or V, changes. (Only A and G
depend directly on q, and on the natural logarithm of q at that. This fact does
not obviate the discussion to follow.)

Now that we have an expression for q, we can take those derivatives, since
T and V are part of the expression for q. We can therefore derive expressions
for various state functions.

We start with E, the total energy of our ensemble. According to equation
17.34,

E � NkT2����

ln

T

q
��V

� NkT2��
1

q
� �

�

�

T

q
��V

The derivative of q with respect to T (at constant V) is easy to determine:

�
�

�

T

q
� � �

�

�

T
����2�

h

m
2

kT
��

3/2

� V	
� ��2�

h

m
2

k
��

3/2

V � �
�

�

T
�T3/2

� ��2�

h

m
2

k
��

3/2

V � �
3

2
� � T1/2

If we take this expression and divide by q itself, almost all of the terms will
cancel:

The only thing remaining is 3/2 � 1/T. Therefore, for the energy of the parti-
cles in the system:

E � NkT 2 � �
3

2
� � �

T

1
�

E � �
3

2
�NkT (17.56)

��2�

h

m
2

k
��

3/2

V � �
3

2
� � T1/2

���

��2�

h

m
2

kT
��

3/2

� V

608 C H A P T E R  17 Statistical Thermodynamics: Introduction

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



This is similar to the expression we get using the kinetic theory of gases (which
we will consider in a later chapter). Statistical thermodynamics therefore yields
the same answer as other physical chemical theories.

We can also determine an expression involving pressure, since we know that

p � NkT ����

ln

V

q
��T

� NkT ��
1

q
� �

�

�

V

q
��T

The derivative of q with respect to volume, �q/�V, is simply (2�mkT/h2)3/2.
Substituting:

p � NkT 

p � �
N

V

kT
� (17.57)

This rearranges to

pV � NkT (17.58)

Compare this to the ideal gas law: it is identical provided that

R 
 Nk (17.59)

where R represents the ideal gas law constant. Boltzmann’s constant therefore
provides a statistical thermodynamic foundation for the ideal gas law constant.
In fact, if N � NA (Avogadro’s number),

R � NAk (17.60)

and we have the molar ideal gas law pV� � RT. Of course, for n moles of gas,
this becomes the most general form of the ideal gas law, pV � nRT. The rela-
tionship between R and k is also illustrated by the units used to describe the
two constants.

Example 17.5
Verify equation 17.60, using SI units of energy for R and k, and then deter-
mine the value of k in units of L�atm/K.

Solution
We can use the values of any two of the variables in equation 17.60 and cal-
culate the third and compare our result to a tabulated value. For this exam-
ple, let us pick values for k and NA: k � 1.381 � 10�23J/K and NA �
6.022 � 1023/mol. We find that

R � (6.022 � 1023/mol) � 1.381 � 10�23 �
K

J
�

R � 8.316 �
mo

J

l�K
�

which is off by only 0.02% from the accepted value.
In order to determine k in units of L�atm/K, we will need to use the value

for R that has L�atm units. Using R � 0.08205 L�atm/(mol�K), we substitute
for different constants this time:

��2�

h

m
2

kT
��

3/2

��

��2�

h

m
2

kT
��

3/2

� V
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0.08205 �
m

L�

o

a

l

t

�

m

K
� � 6.022 � 1023/mol � k

k �

The mole units cancel on both sides of the fraction; for k we get:

k � 1.363 � 10�25 �
L�a

K

tm
�

which is a perfectly good value for k if the units are appropriate otherwise.

We have seen that statistical thermodynamics gives the same translational
(that is, internal) energies and pressures that we find from other, phenomeno-
logical perspectives. But values for A and G depend on the entropy of our
gaseous sample. It remains to be seen how (or rather, if!) statistical thermody-
namics’ predictions for S agree with phenomenological values of entropy.

Using equation 17.43:

S � Nk �T ����

ln

T

q
��V

� ln �
N

q
� � 1	

we can make some similar substitutions to get an expression for S. Without go-
ing through the math (which is left to the end-of-chapter exercises), we get

S � Nkln ���2�

h

m
2

kT
��3/2

� �
k

p

T
�	 � �

5

2
�� (17.61)

Equation 17.61 is one form of what is called the Sackur-Tetrode equation. It
provides what is probably the best example of how well statistical thermo-
dynamics applies to gaseous systems, because we can measure absolute en-
tropies. The following example illustrates.

Example 17.6
What is the absolute entropy of 1 mole of He at 25.0°C and 1.000 atm pres-
sure? Compare this with the tabulated value of 126.04 J/(mol�K). Don’t for-
get that proper units are necessary.

Solution
The “proper units” warning was to remind us that masses should be expressed
in units of kg, and that volumes should be expressed in m3. For He, the mass
m � 6.65 � 10�27 kg (see Example 17.4), and 1 m3 � 1000 L. From equa-
tion 17.61, we have

S � (6.022 � 1023/mol)�1.381 � 10�23 �
K

J
��

� �ln � 	3/2

� � �
1

1

00

m

0

3

L
�� � �

5

2
���1.381 � 10�23�

K

J
�)(298 K�

���
(1.000 atm)��1L

0

�

1

a

.3

tm

2 J
��

2�(6.65 � 10�27 kg)(1.381 � 10�23�
K

J
�)(298 K)

�����
(6.626 � 10�34J�s)2

0.08205 �
m

L�

o

a

l

t

�

m

K
�

��
6.022 � 1023/mol
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Note the presence of the liter-to-m3 conversion and the joule-to-L�atm con-
version in the appropriate places. Evaluating this lengthy but straightforward
expression, we get

S � 126.07 �
mo

J

l�K
�

This calculated value of S is virtually the same as the experimental value. (The
variance is 0.02%.)

The experimental value of S and its calculated value using statistical ther-
modynamics in the above example are virtually identical! At this point in our
development of statistical thermodynamics, absolute entropy is our best evi-
dence that the ideas behind statistical thermodynamics are valid and useful in
understanding the thermodynamic behavior of systems (at least systems of
gases). Table 17.1 compares experimental values with calculated values of S for
several monatomic gases. You can see that the agreement is very, very good.

Now that an expression for S has been determined (and verified), we can
derive expressions for G and A in terms of the partition function q. Without
going through the derivations, we have

A � �NkT ln ���2�

h

m
2

kT
��3/2

� �
N

V
�	 (17.62)

G � �NkTln ���2�

h

m
2

kT
��3/2

� �
N

V
�	 � 1� (17.63)

Notice that of the two, the expression for A is simpler. This is a consequence
of the fact that we have defined our system in terms of microstates that have
the same volume, V, and temperature, T. These two variables are the natural
variables for A, the Helmholtz energy. It is not surprising, then, that the ex-
pression for A in statistical thermodynamics is relatively simple. If we instead
defined our ensemble in terms of microstates that have the same pressure and
temperature, we would find that the expression for G, the Gibbs free energy, is
relatively straightforward because p and T are the natural variables for G.

Finally, we define a new parameter. It is not a state function, but a parameter
that has parallels in quantum mechanics. Notice that the part of q in the term

��2�

h

m
2

kT
��3/2

has SI units of 1/m3. Therefore, the term

��2�

h

m
2

kT
��1/2

(which is the cube root of the previous expression) has units of 1/m. The re-
ciprocal of this expression therefore has units of length, meters. We define the
reciprocal of this expression as � (the Greek capital letter lambda), the ther-
mal de Broglie wavelength:

� � ��2�

h

m

2

kT
��

1/2

(17.64)

The original de Broglie wavelength was defined in terms of the momentum,
p, of a particle:

� � �
h

p
� � �

m

h

v
� (17.65)
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Table 17.1 Comparison of calculated and
experimental entropy, S, for
monatomic gasesa

Gas Scalc Sexpt

He 126.07 126.04

Ne 146.22 146.22

Ar 154.74 154.73

Kr 163.98 163.97

Xe 169.58 169.57
aAll values are in units of J/(mol�K) at conditions of
298 K, 1.00 atm.
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where in the second equality we have made a substitution using p � mv.
Comparing equations 17.64 and 17.65, we find that the classical momentum p
is equivalent to (2�mkT)1/2. Actually, this equivalency is only suggestive, not
exact, since the expression for � is ultimately derived from the most probable
distribution and is related more to the average momentum, p�, of the gas par-
ticles. A similar relationship can be determined from the expressions for the
energies of the gas particles. For N particles, equation 17.56 says that

E � �
3
2

�NkT

Classically, the energy of motion for N particles is

E � N � �
2

p

m

2

�

Equating the two expressions and solving for p, we find that p is equivalent to
(3mkT)1/2, which is almost the same expression. Again, this is only suggestive,
not exact, but such relationships are expected if two widely different perspec-
tives on thermodynamics predict similar values for measurable quantities.

Example 17.7
At 298 K, the most probable velocity of an Ar atom is 352.4 m/s. Calculate �,
the thermal de Broglie wavelength, and the most probable value of �, the
(normal) de Broglie wavelength of an Ar atom. Ar has a molar mass of 39.9 g.

Solution
The most probable value for the de Broglie wavelength is inversely propor-
tional to its momentum. We will have to express the mass of a single Ar atom,
in kg units:

� � �
m

h

v
� �

� � 2.8369 � 10�11 m

Now let us calculate the thermal de Broglie wavelength:

6.626 � 10�34J�s
�����

��39.9 �
m

g

ol
����1

1

00

k

0

g

g
����6.02

1

�

mo

1

l

023��	 � 352.4 �
m

s
�
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h

m

2

kT
��

1/2

�  �1/2(6.626 � 10�34 J�s)2

���������
2 � 3.1415926 � ��39.9 �

m

g

ol
����1

1

00

k

0

g

g
����6.0

1

2 �

mo

1

l

023��	 � 1.381 � 10�23 �
K

J
� � 298 K

Note that we have again had to determine the mass of a single Ar atom, in kg
units. Solving:

� � 1.6005 � 10�11 m

The two answers are not that far off from each other (in fact, they differ by
a factor of �1/2).

The thermal de Broglie wavelength actually has some utility in a statistical
approach to the behavior of matter. In order for the equations of the Boltzmann
distribution to apply to a system, it is necessary that the thermal de Broglie
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wavelength be much, much smaller than the distance between the particles. If
this is so, then the thermal de Broglie wavelength of any two particles is neg-
ligible compared to their separation, and the individual gas particles can be
considered truly independent of each other. Therefore, conditions of low pres-
sure and high temperature—both of which contribute to an increased inter-
atomic separation—are desirable when comparing theory with experiment. We
will see examples of how naive predictions of statistical thermodynamics do
not agree with experiment at particularly low absolute temperatures in the
next chapter.

17.8 Summary
The mathematics of statistics are applicable to atoms and molecules, as we have
seen by applying statistical math to a monatomic gas. By considering how
many ways we can distribute energy among many gas particles that are dis-
tributed into an ensemble (a canonical ensemble, in particular), it becomes
clear that the overall properties of the gas can be understood if we know the
properties on only one distribution, the most probable distribution. This un-
derstanding leads to an expression for the partition function. Using the statis-
tical mathematics of averages, we can express measurables like energy and en-
tropy in terms of that partition function. The partition function, q, thus
becomes the central focus of our understanding of the statistical nature of
thermodynamics.

Quantum mechanics and calculus allows us to determine an explicit ex-
pression for q for the three-dimensional motion of the gas particles. Using that
expression, we can determine expressions for E (called U in phenomenologi-
cal thermo), H, and heat capacities. The true test, however, is S: we know
absolute values of S experimentally, so a comparison of S values determined
experimentally with those calculated using statistical thermodynamics is cru-
cial. Table 17.1 shows that the equations derived from a statistical approach to
thermo passed the test.

Boltzmann’s derivations depended on the existence of matter being, ulti-
mately, particulate. This is consistent with modern atomic theory. Boltzmann’s
ideas—including the idea that atoms behave statistically—have been accepted
as a correct understanding of matter.
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17.2 Statistics

17.1. How many ways are there of putting three identical
balls in four separate boxes, with one ball in each box? Does
the number of possibilities agree with equation 17.1? How
many different ways are there if there are no restrictions on
the number of balls in each box?

17.2. How many different ways are there of putting a red, a
blue, and a green ball in four separate boxes? Compare your
answer with exercise 17.1.

17.3. Estimate the value of 1,000,000! (that is, one million
factorial). Express your answer in terms of a power of 10 as
well as a power of e.

17.4. One form of Stirling’s approximation is N!�
(2�)1/2NN�1/2e�N . Show that equation 17.2 can be obtained
from this.

17.5. An even more exact form of Stirling’s approximation is

(N � 1)! �

e�N � NN�1/2 � (2�)1/2 � �1 � �
12

1
N
� � �

288
1
N2� � � � ��

where higher-order terms inside the parentheses are omitted.
Take the natural logarithm of this expression and evaluate 
ln (5000!). Compare your answer with the value given in the
table below equation 17.2. How close are the different values?

17.6. Determine the average score on an exam two different
ways and show that the same average score is obtained. The
scores are 78, 44, 74, 92, 85, 50, 74, 80, 80, and 90.

17.7. For values of some observable that can be represented
by a function, the average value of that observable is the area
under that function (that is, the integral) divided by the inter-
val. Population densities of insects can often be expressed as
a function. Assume that in the first month of a calendar year
interval, two insects are released into a controlled system. As
the year progresses, they have some offspring, which in turn
have some offspring, until by the middle of the year there are
38 insects in the system. Then as the year progresses, insects
die off and at the beginning of the next calendar year there
are only two left. Plotting the number of insects versus the
month, it is found that the population follows the quadratic
equation

No. of insects � �(7 � x)2 � 38

where x is the number of the month in the year (starting with
1). Determine the average number of insects per month in the
system.

17.8. If the ni values are all the same, a shorthand way of 
indicating a combination is C(x, y), which is read, “How 
many combinations are there of x distinguishable objects sep-
arated into systems, each of which have y things?” Evaluate
(a) C(10, 2) (b) C(3, 1) (c) C(6, 3) (d) C(6, 2). (Hint: you
should determine the number of systems you need for each
case first.)

17.3 & 17.4 Ensembles; Most 
Probable Distribution

17.9. A grand canonical ensemble is defined as an ensemble
whose microsystems all have the same volume, temperature,
and chemical potential. Rewrite equations 17.4–17.6 to relate
the states of the microsystems with the state of the overall 
system.

17.10. Redo exercise 17.9, except for a microcanonical en-
semble. The definition of the microcanonical ensemble is in
the text.

17.11. What is the most probable distribution of a three-
particle system having four possible energy levels, as shown in
Figure 17.5, where the system has a total of 5 energy units?
Are the thermodynamic properties of such a system deter-
mined solely by considering that most probable distribution?
Why or why not?

17.12. A common thought experiment is to suppose that all
of the gas molecules in a room may instantaneously cluster in
one corner of the room, killing everyone in the room. Explain
in statistical thermodynamic terms why we don’t need to
worry about this ever happening.

17.13. The derivation of equation 17.15, in which derivatives
are applied to a summation and only a single term remains as
a more simplified expression, is best illustrated by example. A
function � can be expressed in terms of three variables, �1, �2,
and �3 as

� � �
3

i�1
Ci�i

where the Ci values are the coefficients multiplying each vari-
able �.

(a) Write the expression for � explicitly (that is, without the
summation sign) and verify that ��/��1 � C1, ��/��2 � C2,
and ��/��3 � C3. 

(b) Write a general expression for the derivative of � with re-
spect to �i, in which i can be either 1, 2, or 3. Compare this
general expression with equation 17.15 and explain how equa-
tion 17.15 was derived from the expression immediately pre-
ceding it.

17.14. Explain why q is a constant for a given system at a
specified temperature.

17.15. What is the ratio of ground-state nickel atoms (in
which E is defined as zero) to nickel atoms that are in the first
excited state of 200 cm�1 at 298 K? (The spectrum of Ni
atoms is complicated by the existence of such an excited state.
Does your answer explain why?) Assume the two states have
the same degeneracies.

17.16. Using the fact that � � 1/kT, show that equations
17.29 and 17.30 are equivalent.
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17.17. What temperature is necessary to have twice as many
atoms in the ground state as in the first excited state, at 
16.4 cm�1, of C atoms? What temperature is necessary to
have equal populations in the ground state and the second ex-
cited state, at 43.5 cm�1? What temperature is necessary to
have equal populations in the first and second excited states?
The degeneracies of the ground, first, and second excited
states are 1, 3, and 5, respectively. (Note that these equilib-
rium ratios would not be possible at any temperature if the 
degeneracies were equal.)

17.5 Thermodynamic Properties

17.18. Several times it has been mentioned that q is a con-
stant, but the expression for energy (as well as many other
thermodynamic functions) contains the derivative of q (or the
derivative of ln q). The derivatives of constants are zero. Why
aren’t thermodynamic state functions equal to zero, then?

17.19. (a) On the basis of their statistical thermodynamic de-
finition, which energy has the higher absolute value, A or G?
(b) On the basis of their statistical thermodynamic definition,
can you tell which energy has the higher absolute value, E or
G? Why or why not?

17.20. By following the steps outlined in the text, derive
equation 17.42 from equation 17.41.

17.21. For a chemical system with more than one component,
what is the restriction on the derivation of equation 17.46?

17.22. Derive equations 17.44 and 17.45.

17.23. Use statistical thermodynamic arguments to justify the
second-law spontaneity of the following situations. (a) A gas
expands as the volume of a system increases adiabatically. 
(b) Ice is the unstable phase of H2O at 5°C.

17.24. Equations 17.44 and 17.45 for A and G differ only by
the �1 term in the definition of A. Where does this term come
from? (See exercise 17.22 above.)

17.25. Using L’Hôpital’s rule, determine the limit of S as 
T → 0 and show that it equals k ln g0.

17.6 & 17.7 Monatomic Gases and 
State Functions

17.26. Do a strict units analysis of equation 17.53 by break-
ing down all the units of all the quantities into their basic units
and show that they all cancel.

17.27. What change is there in the Sackur-Tetrode equation
if N � NA?

17.28. In calculating thermodynamic properties for 1 mole of
a monatomic gas, we use the mass of a single atom, not the
mass of a mole of atoms. Explain why.

17.29. Verify equation 17.56, starting with equation 17.34.

17.30. Derive the Sackur-Tetrode equation, equation 17.61.

17.31. Calculate the thermal de Broglie wavelength of He at
25 K and 500 K. Are the different values to be expected?

17.32. Explain why the calculated value for the absolute en-
tropy of Kr at 120 K might not be very close to the experi-
mental value, even though the boiling point of Kr is 119.8 K.

17.33. Calculate S for (a) C atoms at 1000 K, (b) Fe atoms
at 3500 K, and (c) Hg atoms at 298 K. Compare your calcu-
lated values to 183.2, 239.6, and 174.9 J/(mol�K), respectively.
Assume 1 atm pressure. Can you explain the trend in agree-
ment between calculation and experiment?

17.34. Use equation 17.56 to determine the change in en-
ergy, �E, when 1 mole of Ar is heated from 298 K to 348 K at
constant volume. Compare this result with the change in en-
ergy calculated using (mass)(specific heat)(change in temper-
ature). You will need to look up the specific heat of argon; see
the table of thermodynamic values in Appendix 2.

17.35. For an electron that has a velocity of 0.01c (where c
is the speed of light), at what temperature will its thermal de
Broglie wavelength equal its quantum-mechanical de Broglie
wavelength? (Note that the original de Broglie wavelength is
not directly dependent on temperature.)

17.36. Use the Sackur-Tetrode equation to derive the rela-
tionship �S � R ln (V2/V1) for an isothermal change and 
�S � CV ln (T2/T1) for an isochoric change.

17.37. Calculate the logarithm of N!, N � 1 to 100, explic-
itly and using Stirling’s approximation, and compare the 
values. At what approximate value of N does Stirling’s ap-
proximation agree with the true value to within 1%?

17.38. Consider a system of five energy levels, each of which
are doubly degenerate. The levels have energies of 0, 
1 � 10�21, 2.5 � 10�21, 4 � 10�21, and 6 � 10�21 J. Calculate
the partition function of this system at 50, 100, 200, 300, 500,
and 1000 K. Do you see a leveling off of the value of q as 
the temperature increases? What is the interpretation of the
values of q?

17.39. Use a symbolic math program to take the symbolic
limit of equation 17.52 as n approaches infinity, and compare
the result to equation 17.54.

17.40. Program the Sackur-Tetrode equation, 17.61, into a
calculator or computer and calculate the molar entropy of all
noble gases at 298 and 1000 K.

Exercises for Chapter 17 615
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18
THE PREVIOUS CHAPTER INTRODUCED some of the basic concepts

that led to the development of a statistical approach to energy and en-
tropy. This is statistical thermodynamics. By the end of the chapter, equations
were applied to monatomic gases, and thermodynamic state functions—mostly
entropy—were calculated whose values were very close to experimental values.
Also, in some of the exercises you were asked to derive some simple expres-
sions that were also derived from phenomenological thermodynamics. For
example, we know from early chapters in this book that the equation �S �
R ln (V2/V1) is applicable for an isothermal change in volume of an ideal gas.
We can also get this expression using the Sackur-Tetrode statistical thermo-
dynamic expression for S. These correspondences are just two examples where
phenomenological and statistical thermodynamics are consistent with each
other. That is, they ultimately make the same predictions about the state func-
tions of a system, and how they change with a process.

We will see more examples of such correspondence in the current chapter,
because we are going to expand our application of statistical thermodynamics
to include molecules in the gas phase. (We will still be considering the gas
phase almost exclusively.) Recall that we established the partition function, q,
as a central figure in the equations of statistical thermodynamics. Also, re-
member that q was originally defined as (and ultimately remains) a summa-
tion of negative exponentials involving the energy levels that the gas particles
of a microstate can occupy. For atomic gas particles, the energy levels were 
limited to translational states, since we ignored electronic and nuclear energy
levels. We will consider the latter two in this chapter, and make the case that 
in most (but not all) systems, these energy levels contribute little to the over-
all q.

But molecules have other energy states that atoms don’t. They have rota-
tional and vibrational energy states that can have an important impact on q.
Indeed, we found in our discussion of rotational spectroscopy that molecules
occupy excited (that is, J � 0) rotational energy levels at normal temperatures!
This suggests, correctly, that the existence of such energy levels has an impact
on q, and correspondingly on the thermodynamic properties of molecular
gases.

616

18.1 Synopsis
18.2 Separating q: Nuclear 

and Electronic 
Partition Functions

18.3 Molecules: Electronic
Partition Functions

18.4 Molecules: Vibrations
18.5 Diatomic Molecules:

Rotations
18.6 Polyatomic Molecules:

Rotations
18.7 The Partition Function of 

a System
18.8 Thermodynamic Properties

of Molecules from Q
18.9 Equilibria
18.10 Crystals
18.11 Summary

More Statistical
Thermodynamics

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Once we establish the complete partition function of a molecular gaseous
species, we will consider one additional application of the partition function:
the chemical change. In the last chapter, a few exercises asked for a determina-
tion of the �(something) of a physical process, like the expansion of a
monatomic gas. However, in chemistry we are often concerned with the change
in the chemical identity of a species—a chemical reaction. It may surprise you
to learn that the partition functions of each chemical species in a balanced
chemical reaction can be used to determine a characteristic property of that
reaction: its equilibrium constant.

18.1 Synopsis
First, we will define electronic and nuclear parts of the partition function,
which were ignored in the previous chapter. It will be demonstrated, though,
that for most systems they can be neglected. We also present counterexamples
in which the electronic or nuclear partition functions can’t be neglected—not
to be confusing, but as a lesson that they shouldn’t be ignored automatically.
In both of these cases, we will find that the partition functions can actually be
expressed in terms of the original definition of q. But for the rotational and vi-
brational partition functions, this is not the case. We will be able to rewrite the
infinite summation over the energy levels to get a new expression for q. These
expressions will be determined with the help of quantum mechanics and the
equations for the quantized energies of an object rotating in three-dimensional
space (the 3-D rigid rotor) or vibrating in a Hooke’s-law type of oscillation
(the harmonic oscillator).

Recognizing that molecules are an important part of chemistry, we will de-
fine a molecular partition function, Q, that is the product of partition func-
tions from various energies of a molecule: translational, vibrational, rotational,
electronic, and nuclear.

A chemical reaction is a process that we can apply statistical thermody-
namics to. The �H or �S value of a process is determined by the H or S value
of the products minus the H or S value of the reactants. In being able to cal-
culate H or S (or any other state function) of product or reactant species, we
should be able to calculate the �H or �S value of the process from a statisti-
cal thermodynamic perspective. We will ultimately find that the very concept
of an equilibrium constant—that is, that a constant defines the long-term ex-
tent of any reaction—comes directly from statistical thermodynamics. This, if
anything, should establish the impact that a statistical approach to atoms and
molecules has on our understanding of chemistry.

There was some attempt to extend these ideas to phases other than gases.
Historically, some of the most useful extensions were to crystals. We will fin-
ish our (nowhere near exhaustive) treatment of “stat thermo” with a discus-
sion of this application. The discussion has its human aspects, because it is an
interesting example of a case in which Einstein was wrong. (Or at least, not as
“right” as others were.)

18.2 Separating q: The Nuclear and 
Electronic Partition Functions

In the previous chapter, we suggested that the overall partition function q for
a monatomic gas is

q � qtrans � qelect � qnuc (18.1)

18.2 Separating q: The Nuclear and Electronic Partition Functions 617
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Further, we approximated q � qtrans, and were able to determine an expression
for q in terms of various quantities, including the masses of the atoms and sev-
eral universal constants. From that q, we were able to derive expressions for E,
S, and related state functions and show that the statistical thermodynamic val-
ues for these state functions were very close to experiment (for S) or agreed
with the values predicted by other theories (like E � �

3
2

�kT for a monatomic gas
as predicted by kinetic theory, which we will consider in a later chapter).

Does this imply that qtrans is the overwhelming contribution to the overall
q and that all other partition functions make negligible contributions? No, not
for all gaseous species. This assumption worked well with monatomic gases
that have all-electron-paired singlet electronic states, and have no vibrations or
rotations (they are, after all, simply atoms). Vibrational and rotational parti-
tion functions don’t exist for atomic species, and since most of the gases of in-
terest have filled orbitals, no electronic states contribute substantially to the
partition function (an issue we will consider in more detail later), and our ap-
proximation of q � qtrans is a very good one.

What about qnuc? What is the contribution of nuclear energy levels to the
overall partition function?

From the definition of partition function, qnuc is defined as

qnuc �    �
�

i�first

gie
��i/kT (18.2)

nuclear level

where the summation explicitly states that it is taken over the possible nuclear
energy levels. Nuclear energy levels are dictated by the arrangement(s) of pro-
tons and neutrons in the nucleus. Nuclear energy levels are on the order of
millions of electron volts, or 1011 joules, per mole! The very idea of nuclear 
energy, and its immense magnitude with respect to chemical energies, sug-
gests that the spacing of nuclear energy levels is very large, so large that if the
first nuclear energy level were arbitrarily set to an energy of zero, equation 18.2
becomes

qnuc � g1 	 �
�

i�second

gie
��i/kT (18.3)

nuclear level

Note that in equation 18.3, the exponential in the first term is equal to 1, and
the summation in equation 18.3 now starts at the second nuclear energy level.
But if even the second nuclear energy level (that is, the first “nuclear excited
state”) is so high in energy, the negative exponential in even the first term of
the summation is very, very small; successive terms are even smaller. We sug-
gest that the i � 2 term, and all higher terms, are so negligible that they can
be ignored. The nuclear partition function is therefore

qnuc � g1 (18.4)

That is, the (effective) nuclear partition function is the degeneracy of the
ground state of the nucleus.

For chemical purposes, the nuclear partition function is ignored. This is for
several reasons. First of all, a degeneracy is likely to be some small whole num-
ber. Although this has the overall effect of multiplying the overall q by that
whole number, it does not really affect the determination of thermodynamic
properties. For one thing, many thermodynamic properties are related to how
q changes with temperature or pressure. Because changes in nuclear energy
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levels are so large, it would take millions or billions of degrees or atmospheres
to have any significant change in qnuc. Since chemistry typically doesn’t con-
sider such extremes, the effect of qnuc can be safely ignored. Furthermore, for
state functions that are directly related to ln q or q, having qnuc as a simple
whole number translates to a small additive correction to the overall value of
the state function, especially when compared to the contributions of the other
q values. Since the correction is relatively small, it can easily be ignored. Also,
for changes in state functions, nuclear states are usually not changed, so this
very small correction cancels in the final-minus-initial value determination. As
such, it never even shows up.

For all these reasons, qnuc is justifiably ignored in chemistry. This reinforces
the minimal influence nuclei have on chemistry, which is more the domain of
electrons. (However, we will soon consider an interesting—and surprising—
effect of nuclear states on chemistry.)

The electronic part of the partition function for an atom (we consider mol-
ecules later) is considered similarly to the nuclear partition function, as an ex-
plicit summation over the negative exponentials of the electronic energy levels:

qelect �    �
�

i�first

gie
��i/kT (18.5)

electronic level

Again, if we define the zero point for electronic energy as the ground electronic
state, equation 18.5 becomes

qelect � g1 	 �
�

i�second

gie
��i/kT (18.6)

electronic level

In many cases, the terms of the summation can be ignored because, like 
excited nuclear levels, excited electronic states are so high in energy compared
to kT that the negative exponential is a negligible number compared to g1, the
degeneracy of the ground state.

However, this is not always the case. Many systems have low-lying electronic
excited states, whose energies above the ground state are not high with respect
to kT. Therefore, the negative exponential is not negligible, especially with de-
generacy of the electronic state (gi) as part of that term in the summation.
Strictly speaking, electronic partition functions must be considered on an in-
dividual basis and term-by-term. Only when additional terms become so small
that they are negligible can the summation be stopped, or truncated. The fol-
lowing examples illustrate.

Example 18.1
The first five electronic states of the carbon atom are:

State Energy (cm�1) Energy (J) Degeneracy

1 0 0 1

2 16.4 3.26 
 10�22 3

3 43.5 8.64 
 10�22 5

4 10,194 2.0249 
 10�19 1

5 21,648 4.3001 
 10�19 1

Determine the value of the electronic partition function qelect using only
the first energy level, then by successively including the second, third, fourth,
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and fifth energy levels. At what energy level can we truncate the summation
for the electronic partition function? Assume standard temperature of 25°C.

Solution
We will evaluate each negative exponential and add successive terms to our
previous value for the partition function, and see how much qelect changes.
Up to the first term, the partition function is easy: it is simply equal to the
degeneracy of the ground electronic state:

qelect,1 � 1

Up to the second term, we need to evaluate one negative exponential. (The
exponential function exp, introduced in Chapter 17, is the same as e except it
allows long or complex exponents to appear in a more legible form.)

3 � exp�� � � 2.77

Therefore, to two terms, qelect is

qelect,2 � 1 	 2.77 � 3.77

Notice that the inclusion of just the first excited electronic state almost
quadrupled the value for qelect. Including the third term:

5 � exp�� � � 4.05

the overall qelect is now 1 	 2.77 	 4.05 � 7.82. Now, for the fourth state:

5 � exp�� � � 2.139 
 10�21

which is 21 orders of magnitude smaller than the previous term. We won’t
even check the last term, because it is obvious that adding this last term to
qelect will not substantially change its value. Therefore, we can say that qelect

for C is 7.82 and can be calculated using only the first three electronic states.

Of course, the temperature of the system will have an effect on which elec-
tronic states will contribute to the electronic partition function. (So will the de-
generacy of the state, but it has a smaller potential effect on qelect.) Generally, if
the ratio E/T has a value of about 10�22 J/K or larger, the negative exponential
is about 0.0007, which is negligible with respect to 1 (the minimum value of
qelect). Usually, these and larger terms can be safely ignored in the calculation of
qelect. Otherwise, that particular electronic state should be included explicitly.

Example 18.2
Nickel atoms have a low-lying excited state at about 200 cm�1 (3.97 
 10�21 J).
Assuming that both electronic states have a degeneracy of 3 and that no
additional low-lying excited states contribute significantly to the electronic
partition function, calculate qelect at 1000 K.

Solution
Checking quickly, we find that the ratio E/T equals (3.97 
 10�23 J)/(298 K) �
1.33 
 10�25 J/K, which is smaller than our estimated cutoff value of 10�22 J/K,

2.0249 
 10�19 J
���
(1.381 
 10�23 J/K)(298 K)

8.64 
 10�22 J
���
(1.381 
 10�23 J/K)(298 K)

3.26 
 10�22 J
���
(1.381 
 10�23 J/K)(298 K)
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so it will have to be included explicitly in the determination of qelect. Therefore,
we have the electronic partition function as the sum of two negative expo-
nentials:

qelect � 3 � exp�� �
	 3 � exp�� �

Note that we are defining the energy of the ground state as 0 J. We get

qelect � 3 � 1.000 	 3 � 0.997

qelect � 5.991

If you were to compare qnuc and qelect with qtrans as determined in the pre-
vious chapter, you would see that qtrans is usually huge compared to qnuc and
qelect, often by a dozen orders of magnitude or more. This suggests that qnuc

and qelect have a very small impact on the overall thermodynamic properties of
gaseous species. This is in fact the case. We have already mentioned how we
can virtually neglect qnuc ; as you might expect, in many cases we can virtually
neglect the contribution of qelect as well. The exception to this is for molecules
that have a large number of low-lying excited states that might have a large de-
generacy (for example, they might be very symmetric molecules). And at very
high temperatures, low-lying electronic states can contribute significantly to
qelect. Generally speaking, it is a good idea to evaluate each system and its rel-
ative characteristics before determining qelect. We will see shortly how much
qelect affects the calculated values of thermodynamic state functions.

18.3 Molecules: Electronic Partition Functions
We explicitly excluded molecules in our earlier treatment of the electronic par-
tition function. Let us consider qelect for molecules now, starting with a di-
atomic molecule and generalizing the result to other molecules.

The key to getting an electronic partition function for molecules depends
on how we define the “zero” position for energy. Virtually all numerical scales
have benchmarks that are used to define certain numerical values. For exam-
ple, for atoms we defined the zero point as the ground electronic state.
Vibrations and rotations have well-defined minimum-energy points that serve
as starting points. But what about electronic energy?

Keep in mind, also, that the electronic potential energy curve isn’t just a
given, specific value. Because all molecules are constantly vibrating, even in
their lowest-energy state, the electronic energy curve is shaped like a (har-
monic-oscillator) potential energy curve. Figure 18.1 shows a representative
curve for a ground electronic and first excited electronic state of a typical di-
atomic molecule. In the ground electronic state, the energy is at a minimum at
some equilibrium distance labeled re. At very small internuclear distances, the
potential energy increases as internuclear repulsion becomes strong. At long
internuclear distances, the bond between the two atoms will become nonexis-
tent and the molecule will actually exist as two separated atoms. This point is
known as the dissociation limit for the molecule.

The depth of the electronic potential energy well is called the dissociation
energy. However, there are two ways to define a dissociation energy. The energy

3.97 
 10�23 J
����
(1.381 
 10�23 J/K)(1000 K)

0 J
����
(1.381 
 10�23 J/K)(1000 K)
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Figure 18.1 The electronic potential energy
diagram for a hypothetical diatomic molecule. In
the ground state, some of the lower vibrational
energy levels are indicated. How is the “zero” point
of energy defined for a molecule that has elec-
tronic energy with this behavior?
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difference between the dissociation limit and the very bottom of the electronic
potential well is labeled De. However, in reality a molecule will also be in its
(presumably) lowest vibrational energy state, which has some nonzero mini-
mum energy. That zero-point energy is �

1
2

�h�, where � is the classical vibrational
frequency of the diatomic molecule. The difference between the dissociation
limit and the ground-vibrational state of the electronic potential energy well is
labeled D0. Thus, the relationship between De and D0 is

De � D0 	 �
1
2

�h� (18.7)

We will be using the De-defined value for the dissociation energy. However,
many tables list D0, so it is important to keep track of which value is being re-
ported. Equation 18.7 can be used to go from one definition to the other. Both
values for dissociation energy are typically given as positive numbers, with D0

having the slightly smaller magnitude. Values are also usually given in terms of
kilojoules per mole of molecules. Remember that in partition functions, val-
ues for individual molecules must be used.

For qelect of diatomic molecules, the benchmark for electronic energy is the
dissociation limit. This means that the dissociation limit is arbitrarily assigned
a value of zero energy. At the minimum of the potential energy surface, the
electronic energy of the molecule is therefore �De. (It is negative because it is
going lower in energy. Also, in this case De is the energy needed for one mole-
cule, not one mole of molecules.) Using the explicit definition of q, we have

qelect � g1eDe/kT 	 g2e��2/kT 	 g3e��3/kT 	 � � �

Because De is typically large and is a positive exponential, the first term in the
equation above typically dominates, and we can approximate the diatomic
molecule’s electronic partition function as

qelect � g1eDe/kT (18.8)

However, if there are low-lying excited states, the explicit summation definition
for qelect must be evaluated, keeping in mind that the zero point for electronic
energy is the dissociation limit of the molecule in its ground electronic state.

Example 18.3
The hydrogen molecule has a D0 of 432 kJ/mol and a vibrational frequency
of 1.295 
 1014 s�1. Calculate H2’s electronic partition function at 298 K.
Assume that the ground electronic state is singly degenerate. Hydrogen’s first
excited electronic state lies �1.822 
 10�19 J above the ground state and has
a degeneracy of 1.

Solution
Because we are given D0, we will have to calculate De. Using equation 18.7,
we have

De � �
4

m

32

o

k

l

J
� � �

1

1

00

k

0

J

J
� �

	 �
1

2
�(6.626 
 10�34 J�s)(1.295 
 1014 s�1)

In the first term, we have converted D0 into number of joules per molecule.
Solving:

De � 7.61 
 10�19 J

1 mol
���
6.02 
 1023 molecules
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Now, calculating the electronic partition function:

qelect � 1 � exp� �
qelect � 2.03 
 1080

Let us check to see if we need to include any contribution of the first excited
state to the value of qelect. Since the De for H2 is 7.61 
 10�19 J, the minimum
on the potential energy curve for the ground electronic state lies at �7.61 

10�19 J with respect to the zero point, and there is an excited electronic state
1.822 
 10�19 J above that. Therefore, with respect to the zero point of en-
ergy, �2 has a value of (�7.61 
 10�19 	 1.822 
 10�19) J, or �5.79 
 10�19

J. (It might be useful to draw some electronic potential energy curves to ver-
ify this.) Evaluation of g2e��2/kT gives us

g2 � exp���
k

�

T
2�� � 1 � exp�� �

� 1.26 
 1061

Granted, this is a large number, but it is still 19 orders of magnitude smaller
than the first term, and is negligible with respect to the first term in qelect.
Thus, it can be ignored, as can the contribution of any additional excited elec-
tronic states.

Since qelect is so large, what effect does it have on thermodynamic state func-
tions? Actually, very little at normal temperatures. The large values of qelect are
just a consequence of where the zero point of energy was selected. For state
functions that are related to the derivative of q with respect to temperature and
pressure, qelect changes only very, very slowly with changes in temperature and
pressure for most systems. Therefore, its effect on state functions is small. For
A and G, which depend directly on q, the practical effect is small because we
are mostly interested in changes in A and G, and the direct numerical conse-
quences of qelect cancel. The translational partition function still has the ma-
jority of influence—but not all, as we will see—on the thermodynamic prop-
erties of diatomic molecules.

Finally, we should generalize qelect for larger molecules. The issue is the
same: what is the zero point against which the electronic energy is measured?
For multiatomic molecules, the zero point of electronic energy is defined in the
same way as for diatomics: the energy where all atoms are separated (techni-
cally, to an infinite distance) from each other. Similar to the dissociation en-
ergy, the atomization energy is defined as the difference between this separa-
tion of atoms and the ground electronic state of the molecule. All other
treatment of q elect for molecules is as previously discussed for diatomics.

18.4 Molecules: Vibrations
In order to complete the definition of the partition function for molecules, we
must consider the two other ways a molecule can have energy. It can have ro-
tational energy, and it can have vibrational energy.

Molecules are composed of multiple atoms that are bonded by covalent
bonds. Quantum mechanics indicates that those atoms are constantly vibrat-
ing about some equilibrium position, even at absolute zero, having some

(�5.79 
 10�19 J)
���
(1.381 
 10�23 J/K)(298 K)

7.61 
 10�19 J
���
(1.381 
 10�23 J/K)(298 K)
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nonzero minimum energy of vibration (the “zero-point energy”). Because vi-
brational motions of molecules represent another form of energy, we can de-
fine a vibrational partition function qvib for a molecule such that

qvib �     �
�

i�first

gie
��i/kT (18.9)

vibrational level

(Vibrational energy levels do not exist for monatomic gaseous species, because
at least two atoms must be bonded together in order to have a vibration.)

We will consider a simple diatomic molecule first, then generalize our final
equations for a polyatomic molecule that has 3N � 6 (or 3N � 5 for linear
molecules) vibrational motions, where N is the number of atoms in the mol-
ecule. If we make the assumption that the single vibration of a diatomic mol-
ecule is an ideal harmonic oscillator, then quantum mechanics gives us an
equation for the quantized energy of that harmonic oscillator:

E � h�(v 	 �
1
2

�) (18.10)

where E is the energy of the harmonic oscillator, h is Planck’s constant, � is the
classical frequency of the oscillator, and v is the vibrational quantum number.
The classical frequency � can be expressed as

� � �
2

1

�
�	�



k
�
 (18.11)

where k is the force constant of the oscillator (in units of N/m) and  is the
reduced mass of the oscillator (in units of kg). Finally, recall that for a diatomic
molecule having two atoms with masses m1 and m2, the definition of reduced
mass is

 � �
m

m

1

1

	

� m

m
2

2

� (18.12)

which can also be written as

�


1
� � �

m

1

1

� 	 �
m

1

2

� (18.13)

Having re-established the definitions of the terms in equation 18.10, we will
use that equation to rewrite our vibrational partition function. Making the
substitution for �i in equation 18.9:

qvib �      �
�

i�first

gi � exp�� � (18.14)

vibrational level

Here, we are using the summation index i as the index on the quantum num-
ber v. Because of the sum of two terms in the power of the exponential, we can
rewrite equation 18.14 as

qvib �     �
�

i�first

gi � exp���
v

k
ih

T

�
�� � exp�� � (18.15)

vibrational level

The exp(��
1
2

�h�/kT) part is the same for all of the infinite terms in the summa-
tion.* Therefore, we can factor it out of the summation (and make the �

1
2

� term

�
1
2

�h�
�
kT

h�(vi 	 �
1
2

�)
��

kT
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*Of course, for real molecules the vibrational quantum number never reaches infinity.
However, the final expressions still do a remarkable job of predicting thermodynamic prop-
erties for molecules.
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a 2 in the denominator of the exponent) and assume that each vibrational level
is singly degenerate so that gi equals 1:

qvib � e�h�/2kT� �
�

i�first

e�vih�/kT� (18.16)

vibrational level

There is no need to approximate the infinite sum in equation 18.16 as an in-
tegral, for it turns out that the summation is a well-known infinite sum that
converges to a known value: (1 � e�h�/kT)�1. We can substitute for the sum-
mation and get as an expression for qvib:

qvib � e�h�/2kT(1 � e�h�/kT)�1 � �
1

e

�

�h

e

�

�

/2

h

k

�

T

/kT� (18.17)

This expression is applicable at any temperature.
There are several ways we can deal with equation 18.17. The first thing to

point out is that in order for the exponent in the exponentials to be unitless,
the expression h�/k must have units of temperature, kelvins. We define the vi-
brational temperature of a diatomic molecule, �v, as

�v � �
h

k

�
� (18.18)

Equation 18.17 can be rewritten as

qvib � �
1

e

�

��

e

v

�

/2

�

T

v/T� (18.19)

Additionally, in the limit of high temperature (and by high we mean at least
well above the vibrational temperature �v), the exponentials in equation 18.19
have small exponents. Under these conditions, exponentials can be approxi-
mated by the Taylor-series expansion

ex � 1 	 x 	 �
x

4

2

� 	 � � �

Truncating at the second term, we have for equation 18.19:

qvib � �
1 �

1

(

�

1

�

�
v/

�

2

v

T

/T)
�

At high temperatures, the �v/2T term is negligible with respect to 1 and is ig-
nored in the numerator, and in the denominator the 1’s cancel. We get

qvib � �
�v

1

/T
�

This is usually rewritten as

qvib � �
�

T

v

� � �
k

h

T

�
� (at high T) (18.20)

This is an extremely simple expression for a partition function. Table 18.1
lists a few �v values for some diatomic molecules. At temperatures well
above �v for each gas-phase molecule, the vibrational partition function is
given simply by equation 18.20. At temperatures near �v or lower, the 
more complete expression in equation 18.19 must be used. (But be careful:
for some of the molecules listed, the stable phase is not the gas phase at 
T � �v!)
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Table 18.1 Vibrational temperatures �v for
some diatomic molecules

Molecule �v (K)

H2 6215

HCl 4227

CO 3100

N2 3374

HBr 3700

Cl2 810

NO 2690

I2 310

O2 2230

HI 3200
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Example 18.4
For I2 (g), �v is 310 K. Calculate qvib for I2 at the following temperatures:
a. 30 K
b. 1000 K

Solution
a. At 30 K, we should probably be using the more explicit expression for qvib,
since we are well below the vibrational temperature. Therefore we would have

qvib �

Evaluating, we have

qvib � 5.70 
 10�3

b. At 1000 K, we are above the vibrational temperature, so we can use the ab-
breviated expression for qvib. Therefore we have

qvib � �
1

3

0

1

0

0

0

K

K
� � 3.23

Interestingly, if we use the more explicit definition of qvib, we get qvib � 3.21.
(Try this yourself and see.) The abbreviated expression for qvib is thus a valid
approximation.

Most molecules have more than two atoms, so there are more vibrations
than one to consider. In Chapter 14, we found that a molecule that has N
atoms will have either 3N � 5 (for linear molecules; at least one of the vibra-
tions will be doubly degenerate) or 3N � 6 (for nonlinear molecules) normal
vibrations that are used to define its possible vibrational motions. (For sim-
plicity’s sake, we assume a nonlinear molecule so we don’t have to consider the
linear-verus-nonlinear issue at every turn, but you should recognize where the
differences will be.) The overall vibrational energy can therefore be separated
into 3N � 6 vibrational parts:

Evib � E�1
	 E�2

	 E�3
	 � � � 	 E�3N�6

The subscripts �1, �2, and so on are the typical labels used to represent the in-
dividual normal modes of vibration. The vibrational partition function for a
polyatomic, nonlinear molecule is, by substituting into equation 18.9,

qvib �     �
�

i�first

gi exp�� � (18.21)

vibrational level

Notice that there are two sums in this expression: a summation over the indi-
vidual vibrational modes (which is the summation in the exponent of the ex-
ponential) and a summation over the possible vibrational levels (which is the
summation indicated by the � sign).

As we did before, we can separate the exponential into individual parts.
Equation 18.21 can be rewritten as

qvib � ��
�

i�1

gie
�E�1

/kT� ��
�

i�1

gie
�E�2

/kT� ��
�

i�1

gie
�E�3

/kT� � � � �

E�1
	 E�2

	 E�3
	 � � � 	 E�3N�6����

kT

exp���
2

3

(

1

3

0

0

K

K)
��

��
1 � exp���

3

3

1

0

0

K

K
��
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up to 3N � 6 terms. One way of writing this is to use the � symbol; qvib can
be written as

qvib � �3N�6

j�1
�
�

i�1

gie
�E�j /kT (18.22)

As complicated as this expression might seem, it is simply the product of
3N � 6 individual vibrational partition functions. Rather than repeat the de-
rivation of the vibrational partition function, we will simply take the result from
the case of the diatomic molecule and state that, for a polyatomic molecule,

qvib � �3N�6

j�1

(18.23)

Because we are considering all 3N � 6 vibrations explicitly, the degeneracies gi

are all 1 and gi no longer appears in equation 18.23. For molecules, we rarely
invoke the high-temperature limit, so equation 18.23 is the preferred expres-
sion for qvib. Nonlinear polyatomic molecules have up to 3N � 6 different vi-
brational temperatures (there can be fewer independent values of �v if the
vibrations are doubly or triply degenerate), so in terms of the �v values equa-
tion 18.23 is

qvib � �3N�6

j�1

(18.24)

Table 18.2 lists a few vibrational temperatures for some small molecules. Note
in equation 18.24 that the vibrational temperatures (�v,j) have two labels, one
to indicate that it is a vibrational temperature, and one to indicate to which
vibration of the molecule it refers.

There are two points to consider in light of equation 18.23 or 18.24. First,
the more atoms a molecule has, the more terms will be in the product (because
as N increases, 3N � 6 increases). Second, since we should suspect that qvib will
have some effect on the thermodynamic properties of the gas, we might also
think that as the number of atoms in the molecule increases, the thermo-
dynamic functions will deviate more from monatomic gas thermodynamic
values. This is indeed the case, as we will see in a few sections. This is one rea-
son why we confined ourselves to monatomic gases as examples in our earlier
treatments. This is also a reason why it was difficult to classically predict ther-
modynamic properties of molecules: molecules have other ways to distribute
energy. This can have a major impact on their thermodynamic properties.

Example 18.5
Determine qvib for H2O at 298 K, given that its normal modes of vibration are
3720, 3590, and 1590 cm�1. Rationalize whether or not the high-temperature
expression for qvib can be used. Assume all frequencies are singly degenerate.

Solution
The first thing to do is to calculate the three �v values for H2O. We use the
definition of �v in equation 18.18, and recognize the fact that we need to
express the three vibrational frequencies in units of s�1. Using h and c ap-
propriately, we find that the three vibrational frequencies are 1.115 
 1014,
1.076 
 1014, and 4.767 
 1013 s�1, respectively. Now, using equation 18.18,

�v,1 � � 5350 K
(6.626 
 10�34 J�s)(1.115 
 1014 s�1)
����

1.381 
 10�23J/K

e��v,j /2T

��
1 � e��v,j /T

e�h�j /2kT

��
1 � e�h�j /kT

18.4 Molecules: Vibrations 627

Table 18.2 Vibrational temperatures �v for
some polyatomic molecules

Molecule �v (K) [degeneracy, if � 1]

H2O 2287, 5163, 5350

CO2 954 [2], 1890, 3360

NH3 1360, 2330 [2], 4800, 4880 [2]

CH4 1870 [3], 2180 [2], 4170, 4320 [3]

CCl4 310 [2], 450 [3], 660, 1120 [3]

NO2 1900, 1980, 2330
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Similarly, the other two vibrational temperatures are 5163 K and 2287 K. All
three �v values are larger than the stated temperature (298 K), so the high-
temperature expression for qvib should not be used. We thus calculate the 
vibrational partition function using equation 18.24. For this molecule,
3N � 6 � 3, so there will be three terms in the product for qvib:

qvib �

qvib � (0.0001263)(0.0001729)(0.02156) � 4.7081 
 10�10

In the above example, the individual vibration’s contribution to the qvib of
the molecule was given to illustrate a point. Note that the lower �v value’s
contribution to qvib is two orders of magnitude larger than that of the two
higher �v values. Because of the negative exponential definition of qvib,
lower-frequency vibrations have a proportionately larger effect on qvib. One
way to consider this in terms of a Boltzmann distribution is that the lower-
frequency (and therefore lower-energy) vibrations are more easily popu-
lated thermally.

18.5 Diatomic Molecules: Rotations
Gas molecules also rotate in three-dimensional space, and quantum mechan-
ics says that rotational energies are also quantized. Therefore, we can also con-
sider a qrot part of the complete partition function of a molecule. Since this is
the last kind of partition function we define, we will suggest that there is a
complete molecular partition function Q defined as

Q � qtrans � qelect � qvib � q rot � qnuc (18.25)

in which the complete molecular partition function is represented by the cap-
ital letter Q and the individually defined partition functions are represented by
the lowercase q’s. We will consider Q further in the next section.

Before we can consider the complete molecular partition function Q, we
need to know what qrot is. By now you may realize that the basic definition of
qrot would be

qrot �     �
�

i�first

gie
�i/kT (18.26)

rotational level

in which gi is the degeneracy of the ith rotational level and �i is the energy of
the ith rotational level.

The energies of rotation of gas-phase molecules can be approximated very
well by the three-dimensional rigid rotor ideal system. In fact, we used this
approximation in Chapter 14 to derive a basic understanding of rotational
spectroscopy. We can apply that understanding to the rotational energy levels
and the rotational partition function. It is easiest to start with the simplest
molecule, a diatomic molecule. Furthermore, we will assume that the molecule
is heteronuclear; that is, there are two different atoms in the molecule. (We will
consider homonuclear diatomic molecules separately, as there are some subtle
but interesting differences.)

exp���
2

2

�

2

2

8

9

7

8

K

K
��

���
1 � exp���

2

2

2

9

8

8

7

K

K
��

exp���
2

5

�

1

2

6

9

3

8

K

K
��

���
1 � exp���

5

2

1

9

6

8

3

K

K
��

exp���
2

5

�

3

2

5

9

0

8

K

K
��

���
1 � exp���

5

2

3

9

5

8

0

K

K
��
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In Chapter 14, we found that the rotational energy of a diatomic molecule is

Erot � �
J(J 	

2I

1)�2

� (18.27)

where J is the rotational quantum number, I is the moment of inertia, and �
is Planck’s constant divided by 2�. In addition, we found that the Jth rotational
state has a degeneracy of 2J 	 1, from the possible values of the z component
of the total angular momentum. Using this in equation 18.26, the rotational
partition function becomes

qrot � �
�

i�first

(2J 	 1) � exp���
J(J 	

k

1

T

)�2/2I
��

rotational level

which can be written as

qrot � �
�

i�first

(2J 	 1) � exp���
J(J

2

	

IkT

1)�2

��
rotational level

where we have rearranged the exponent in the second expression. Like we did
with the expression for the vibrational partition function, we recognize that all of
the constants except T (and the rotational quantum number J) in the exponent
must collectively combine to yield a temperature unit, so that the overall expo-
nent is unitless. Therefore, we can define the following rotational temperature �r:

�r � �
2

�

I

2

k
� (18.28)

and replace the group of constants with �r:

qrot � �
�

i�first

(2J 	 1) � e�J(J+1)�r/T

rotational level

(A diatomic molecule has only one defined rotation and so has only a single
�r.) At high temperatures, the fraction �r/T is small and successive terms in the
summation are close to each other. We can again substitute an integral for the
summation:

qrot � 
�

J�0

(2J 	 1) � e�J(J+1)�r/T dJ (18.29)

where J, the rotational quantum number, is the variable.
This integral may seem problematic because of the presence of J in the body

of the integral as well as the exponent. But note that in the exponent of the ex-
ponential, the expression J(J 	 1) can be written as J 2 	 J. The derivative of
J2 	 J is 2J 	 1. We can perform a classic substitution. Let

x � J 2 	 J

dx � (2J 	 1) dJ

Now substitute: if we rewrite equation 18.29 as

qrot � 
�

J�0

e�J(J+1)�r/T[(2J 	 1) dJ]

we get

qrot � 
�

x�0

e�x�r/T dx (18.30)
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(Note that the limits on the integral stay the same.) The integral in equation
18.30 has a known solution; it has the form �

0
e�ax dx � 1/a. Using this so-

lution, we get

qrot � �
�

T

r

� � �
8�

h

2I
2

kT
� (18.31)

where the definition of � has been used. Equation 18.31 is applicable only if
the temperature of the gas is well above the rotational temperature of the mol-
ecule. If this is so, then the rotational partition function of the heteronuclear
diatomic gas is easy to calculate. Table 18.3 lists several �r values for some het-
eronuclear diatomic molecules. If the temperature is not obviously higher than
�r, then equation 18.31 is not applicable, and an explicit summation using
equation 18.26 is necessary to calculate qrot. Given the low values of �r for most
molecules (H2 is a notable exception), the high-temperature expression for qr

can be used at most temperatures.

Example 18.6
Given that the moment of inertia of hydrogen iodide, HI, is 4.269 
 10�47 kg�m2,
calculate �r and qrot at 310 K. Comment on the units of �r.

Solution
Using the definition of �r, we have

�r �

The (2�)2 term comes from the �2 term in the numerator. One of the joule
units cancels directly, and using the fact that J � kg�m2/s2, we see that the
second joule unit cancels the s2 unit in the numerator and the kg�m2 unit in
the denominator. The only remaining unit, K in the denominator of the de-
nominator, comes up to the numerator. We have

�r � 9.431 K

The final unit of kelvins is appropriate for a rotational temperature. The qrot

is therefore

qrot � �
9

3

.4

1

3

0

1

K

K
� � 32.9

Again, notice that the partition function is a pure number without units, as
it is supposed to be.

For a homonuclear diatomic molecule, there are additional concerns because
we now have identical nuclei. These concerns have to do with the Pauli prin-
ciple, which was introduced in Chapter 12. Recall that the strict form of the
Pauli principle required that a wavefunction of fermions must be antisym-
metric with respect to exchange of two identical particles, and that a wave-
function of bosons must be symmetric with respect to exchange of two iden-
tical particles. In Chapter 12, we were considering only the electronic
wavefunction, so the antisymmetry requirement was stressed. However, in our
consideration of an overall molecular wavefunction, we are now including
other particles: the nuclei of the atoms. Therefore, we must apply the Pauli
principle to other parts of the (homonuclear diatomic) molecule and see how

(6.626 
 10�34 J�s)2

������
(2�)2 � 2 � (4.269 
 10�47 kg�m2)(1.381 
 10�23 J/K)
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Table 18.3 Rotational temperatures �r for
some diatomic molecules

Molecule �r (K)

H2 85.4

N2 2.86

O2 2.07

Cl2 0.346

Br2 0.116

HCl 15.2

HBr 12.1

HI 9.0

CO 2.77

NO 2.42
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that affects the number of possible wavefunctions (that is, the degeneracies),
and thus the partition function. Ultimately, we will see effects on the thermo-
dynamic properties of homonuclear diatomic gases that are caused directly by
restrictions of the Pauli principle.

Recall that we defined the overall molecular partition function as

Q � qtrans � qelect � qvib � q rot � qnuc

We also separate the overall wavefunction of a molecule into similar parts:

�total � �trans � �elect � �vib � �rot � �nuc

Of the five parts of �, �trans and �vib can always be considered symmetric as
far as the Pauli principle is concerned (no matter which type of particle—a
fermion or a boson—the nucleus is). The electronic wavefunction �elect is al-
most always symmetric. For homonuclear diatomic molecules, there is usually
a 	 superscript on the term symbol of the ground electronic state that implies
symmetric behavior; however, some diatomic molecules—O2 is the notewor-
thy one—have a superscript minus (�) in their term symbol, indicating that
the ground electronic state is actually antisymmetric. Ignoring these rare ex-
ceptions (but see the end-of-chapter exercises), ultimately the �rot and the
�nuc partition functions combine to determine the overall symmetry of Q for
the molecule.

If the nuclei of the atoms in the diatomic molecule have integer spins, they
are bosons and the complete wavefunction (translational-nuclear-vibrational-
electronic-rotational) must be symmetric with respect to exchange. If the nu-
clei of the atoms in the diatomic molecule have half-integer spins, then they
are fermions and the complete wavefunction must be antisymmetric upon ex-
change. Given that �trans and �vib are symmetric and �elect is almost always
symmetric for homonuclear diatomic molecules, the overall wavefunction
symmetry behavior dictates what combinations of �rot and �nuc are allowed.
What we find ultimately is that the combinations of �rot and �nuc have dif-
ferent degeneracies, so that the populations of molecules in various rotational
states are skewed from normal expectations.

Nuclei are fermions or bosons depending on whether their spins are half-
integers or integers. For a nucleus that has a spin of magnitude I, there are 
2I 	 1 possible spin states (just as there are 2J 	 1 possible rotational states).
For two nuclei, there are (2I 	 1)(2I 	 1) � (2I 	 1)2 possible combinations.
Some of these combinations will be symmetric, and some will be antisym-
metric. (This is analogous to the consideration of symmetric and antisym-
metric electron spin states for the He atom in Chapter 12.) It turns out that
for all nuclei, boson or fermion, there are 2I2 	 I antisymmetric spin states,
and the remaining states [out of the (2I 	 1)2 states] are symmetric.

Finally, we note that �rot is symmetric for even values of the J rotational
quantum number, and is antisymmetric for odd values of the J rotational
quantum number.

We therefore have the following two scenarios:

Scenario 1: boson nuclei (that is, integer spin nuclei)

�tot � �trans 
 �vib 
 �elect 
 �nuc 
 �rot

sym sym sym sym* sym sym, J even
degen: (I 	 1)(2I 	 1) degen: 2J 	 1

or
antisym antisym, J odd

degen: 2I 2 	 I degen: 2J 	 1

18.5 Diatomic Molecules: Rotations 631
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Scenario 2: fermion nuclei (that is, half-integer spin nuclei)

�tot � �trans 
 �vib 
 �elect 
 �nuc 
 �rot

antisym sym sym sym* sym sym, J odd
degen: (I 	 1)(2I 	 1) degen: 2J 	 1

or
antisym sym, J even

degen: 2I 2 	 I degen: 2J 	 1

The * on �elect serves as a reminder that in some cases the electronic state may
be antisymmetric. Although the degeneracies of the symmetric and antisym-
metric nuclear wavefunctions are the same for fermions and bosons, they are
not equal to each other. This means that a different number of possible total
wavefunctions are available for the homonuclear diatomic molecules, and this
will affect the number of molecules occupying each rotational state! Understand
what the above scenarios imply. If a molecule has a fermion as a nucleus, then
symmetric nuclear states will exist only for odd values of the J rotational quan-
tum number. Similarly, if the nuclei are in an antisymmetric spin state, the
molecules will exist only with symmetric rotational states, that is, even values
of the J rotational quantum number.

What this does is skew the “normal” population of measured rotational
states for homonuclear diatomic molecules, because the degeneracies are dif-
ferent. In fact, in spectra of homonuclear diatomic molecules—and also any
linear molecule that is symmetric with respect to a plane perpendicular to the
molecular axis, like C2H2—there is a profound intensity alternation because of
the different populations of odd and even rotational states, based on the above
analysis. Figure 18.2 shows a spectrum in which the intensity pattern shows
such behavior. This is one of the more spectacular experimental verifications
of the Pauli principle.

Example 18.7
Diatomic hydrogen has nuclei with a spin of �

1
2

�. What would be the expected
ratio of molecules in odd rotational states to molecules in even rotational
states?

Solution
With a spin of �

1
2

�, hydrogen’s nuclei are fermions. Therefore, according to
scenario 2 above, there will be (I 	 1)(2I 	 1) � (�

1
2

� 	 1)(2 � �
1
2

� 	 1) � 3
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Figure 18.2 This vibrational spectrum of
acetylene, C2H2, shows intensity variations that
are due to the effect of the nuclear wavefunction’s
symmetry on the degeneracies of the overall wave-
function of the molecule. This is one of the few
direct consequences of nuclear wavefunctions in
chemistry. Source: L. W. Richards, J. Chem. Ed.,
1996, 43: 645.
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symmetric nuclear wavefunctions and 2I2 	 I � 2(�
1
2

�)2 	 �
1
2

� � 1 antisymmet-
ric nuclear wavefunction. Since all rotational states have the same degener-
acy, 2J 	 1, there will be roughly three times as many H2 molecules in odd
rotational states as there are H2 molecules in even rotational states.

The choice of hydrogen as an example is not random. Because hydrogen’s
rotational temperature is much higher than its boiling point, hydrogen exhibits
unusual thermodynamic properties at low temperatures. This is caused by an
extremely slow conversion between symmetric and antisymmetric nuclear
states, which effectively limits the transitions between adjacent rotational
states. In fact, diatomic hydrogen with the antisymmetric nuclear state is called
para-hydrogen, and diatomic hydrogen with the symmetric nuclear state is
called ortho-hydrogen. Ortho- and para-hydrogen have different thermo-
dynamic properties at low temperatures as a consequence of the population
differences of the rotational levels, and can effectively behave as two different
substances. (For details, consult a statistical thermodynamics textbook.)

For homonuclear diatomic molecules, then, the nuclear and rotational par-
tition functions must be considered together. The only real difference is that
the nuclear partition function introduces an additional degeneracy to the over-
all partition function. Therefore, we have

For boson nuclei:
qrot,nuc �
(2I2 	 I) �

J�odd

(2J 	 1)e�J(J+1)�r/T 	 (I 	 1)(2I 	 1)  �
J�even

(2J 	 1)e�J(J+1)�r/T

For fermion nuclei:
qrot,nuc �
(2I2 	 I)  �

J�even

(2J 	 1)e�J(J+1)�r/T 	 (I 	 1)(2I 	 1) �
J�odd

(2J 	 1)e�J(J+1)�r/T

Notice that the only difference between the two partition functions is the
index on the summations. For boson nuclei, odd J values have a certain nu-
clear degeneracy and even J values have another; for fermion nuclei, the nu-
clear degeneracies are switched.

In the limit of high temperature (T �� �r), we recognize that the summa-
tion over even J values is approximately the same as the summation over odd
J values, so we can rewrite both equations above as

qrot,nuc �
(2I2 	 I)  �

half of

(2J 	 1)e�J(J+1)�r/T 	 (I 	 1)(2I 	 1)  �
half of

(2J 	 1)e�J(J+1)�r/T

the J’s the J’s

and we can factor out the summation from both of the terms:

qrot,nuc � (2I2 	 I) 	 (I 	 1)(2I 	 1)� �
half of

(2J 	 1)e�J(J+1)�r/T�
the J’s

which can be simplified to

qrot,nuc � (2I 	 1)2 � � �
half of

(2J 	 1)e�J(J+1)�r/T�
the J’s

The summation over half of the J values is equal to one-half of the summation
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over all of the J values, so we can substitute �
1
2

� times the summation over all J’s:

qrot,nuc � (2I 	 1)2 � �
1
2

� � �
all J’s

(2J 	 1)e�J(J+1)�r/T

Now we can replace the summation with an integral, and perform the same
simplification of the integral as we did for a heteronuclear diatomic molecule.
We get

qrot,nuc � (2I 	 1)2 � �
1

2
� � �

�

T

r

� � �
(2I 	

2�

1

r

)2 � T
� (18.32)

as the high-temperature limit. This can be separated, approximately, as

qnuc � (2I 	 1)2 (18.33)

qrot � �
2

T

�r

� (18.34)

for homonuclear diatomic molecules. Notice what the additional symmetry
(that is, a plane of symmetry bisecting the molecule) of the homonuclear di-
atomic molecules does to qrot: it introduces a factor of 2 in the denominator
of the partition function. The factor 2 is called a symmetry number. Symmetry
numbers also appear in rotational partition functions of polyatomic mole-
cules. Table 18.3 lists some rotational temperatures for homonuclear diatomic
molecules.

18.6 Polyatomic Molecules: Rotations
In most cases, for polyatomic molecules the nuclear partition function is again
neglected, since it usually has a very small effect on the overall thermodynamic
properties of polyatomic molecules. (Indeed, the only reason why we had to
consider it for diatomic molecules is because it imposes an obvious, measur-
able effect on various observations, like spectra and thermodynamic proper-
ties to be considered in section 18.8.) In the high-temperature limit, a linear
polyatomic molecule has the same rotational partition function as a homonu-
clear diatomic molecule:

qrot � �
�

T

�r

�

where � is the symmetry number, which is 1 for nonsymmetric linear mole-
cules (like OCS) and 2 for symmetric linear molecules (like C2H2). This ex-
pression is essentially the same as equation 18.34 (except for the presence of
�), and ultimately comes from the fact that a linear molecule has only one de-
fined rotational moment of inertia.

A nonlinear polyatomic molecule can have up to three different moments
of inertia, labeled IA, IB, and IC. By convention, IA is less than IB, which is less
than IC. Polyatomic molecules that have some symmetry may have some of
their moments of inertia equal. If all three are equal, then the molecule is called
a spherical top (see Chapter 14) and the rotational partition function can be
written as

qrot � �
�

1
� � �

�

J�1

(2J 	 1)2 exp���
J(J 	

2Ik

1

T

)� 2

�� (18.35)

where the rotational degeneracy for a spherical top is (2J 	 1)2 (for reasons we
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won’t go into). The symmetry number � is ultimately equal to the number of
pure rotational symmetry operations in the point group of the molecule. In
our discussions, symmetry numbers will be given in all examples. In the limit
of high energies, which imply high J values, the “+ 1” in the degeneracy is neg-
ligible and the summation can be replaced with an integral. We therefore have

qrot � �
�

1
� 

�

0

4J2 � exp���
J(J

2

	

IkT

1)�2

�� dJ

This integral has a known solution, and in terms of the variables in the above
expression, the high-temperature limit for qrot of a spherical top becomes

qrot � �
�

�

1/2

���2�

Ik
2

T
��

3/2

(18.36)

If we define the rotational temperature �r for a spherical-top polyatomic mol-
ecule as

�r � �
2

�

I
2

k
� (18.37)

we have

qrot � �
�

�

1/2

���
�

T

r

��
3/2

(18.38)

Although the mathematical processes for symmetric tops and asymmetric
tops are less straightforward, the ultimate expressions for the rotational parti-
tion functions are variants of equation 18.36 (or 18.38). For a symmetric top,
two of the three moments of inertia are equal. The rotational partition func-
tion for a symmetric top is

qrot � �
�

�

1/2

���2Idup

�
lic

2
atekT
����2Iun

�
iq

2
uekT
��

1/2

(18.39)

In equation 18.39, Iduplicate refers to the two moments of inertia that are equal,
and Iunique refers to the unique moment of inertia (either IA or IC, depending
on whether the molecule is a prolate or an oblate top, respectively). Equation
18.39 is applicable to both oblate and prolate tops, with the proper application.
For an asymmetric top in which all three moments of inertia are different,
we have

qrot � �
�

�

1/2

���2I

�
A

2

kT
��

1/2

��2I

�
B

2

kT
��

1/2

��2I

�
C

2

kT
��

1/2

(18.40)

where IA, IB, and IC represent the three different moments of inertia. In terms
of rotational temperatures, equations 18.39 and 18.40 can be written as

qrot � �
�

�

1/2

���
�

T

r,A

����
�

T

r,C

��
1/2

(18.41)

for a symmetric top. For an asymmetric top:

qrot � �
�

�

1/2

���
�

T

r,A

��
1/2

��
�

T

r,B

��
1/2

��
�

T

r,C

��
1/2

(18.42)

� �
�

�

1/2

����r,A � �

T

r,

3

B � �r,C

��
1/2

Table 18.4 lists rotational constants and symmetry numbers for some molecules.
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Table 18.4 Rotational temperatures �r for
some polyatomic molecules

Molecule 
(symmetry number) �r (K)

H2O (� � 2) 13.4, 20.9, 40.1

CO2 (� � 2) 0.561

NH3 (� � 3) 13.6, 13.6, 8.92

CH4 (� � 12) 7.54

CCl4 (� � 12) 0.0823

NO2 (� � 2) 0.590, 0.624, 11.5
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Example 18.8
Calculate the rotational partition function of gaseous NH3 at 1000 K. The ro-
tational temperatures are 13.6 K, 13.6 K, and 8.92 K. The symmetry number
for ammonia is 3.

Solution
Since only two different rotational temperatures are given for ammonia, we
conclude that the molecule is a symmetric top. We can use equation 18.41
to determine qrot, and we must take care that the correct rotational temper-
ature goes in the correct term. Since 13.6 K is repeated twice, it is used for
�r,A. We get

qrot � �
�

3

1/2

���11
0

3

0

.6

0

K

K
����18

0

.9

0

2

0

K

K
��

1/2

Solving:

qrot � 460

Note how all of the units cancel, so that qrot is a pure number.

18.7 The Partition Function of a System
At this point, we have determined the complete partition function Q for a mol-
ecule. It is

Q � qtrans � qelect � qvib � q rot � qnuc

and all of the parts of Q have been evaluated mathematically. This molecular
partition function is strictly applicable to a single molecule. What if we have a
system that has many noninteracting molecules?

We start off by suggesting that the total energy of a system is the sum of the
individual types of energy a molecule can have: electronic, translational, vi-
brational, and so on. The total energy of the system is the sum of the energies
of the individual particles. Thus, due to the original definition of the partition
function, the overall partition function for the system is the product of the in-
dividual partition functions of N molecules:

Qsys � Q1 � Q2 � Q3 � � � � � QN

If the system is composed of only one kind of molecule, then all of the indi-
vidual Qi values are the same, and we simply have Q being multiplied by itself
N times. To write this another way, we have

Qsys � QN

However, this doesn’t account for the fact that the individual molecules in the
system are indistinguishable at the macroscopic level. Recall the examples of
the balls in boxes at the beginning of Chapter 17. We found that there were
fewer possible unique arrangements when the two balls were the same color.
Another way to consider this is that there will be fewer possible arrangements
if we cannot tell which gas molecules are which; that is, if they are indistin-
guishable. (We do know, however, that the molecules are the same compound.
We just can’t tell, say, one molecule of water apart from any other molecule of
water in our system.) Similarly, the above expression for Qsys is overvalued.
Statistics can show that the value is too high by a multiplicative factor of N!
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(N factorial). N, recall, is the number of molecules in the system. For indistin-
guishable particles, then, the overall partition function for the system is

Qsys � �
Q

N

N

!
� (18.43)

For a molecule, we can substitute for Q in several degrees of complexity:
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Qsys �

Qsys � �
N

1

!
� 
 ���2�

h

m
2

kT
��

3/2

� V�
N


 ��
�

�

1/2

���2I

�
A

2

kT
��

1/2

��2I

�
B

2

kT
��

1/2

��2I

�
C

2

kT
��

1/2

�
N


 (g1eDe/kT)N 
 (g1,nuc)
N 
 � �3N*�6

j�1

�
1

e

�

��

e

j

�

/2T

�j/T
��

N

(18.44)

(qtrans � qelect � qvib � qrot � qnuc)
N

����
N!

(with some substitution for special molecules, like homonuclear diatomic
molecules. N* in the vibrational partition function represents the number of
atoms in the molecule, to differentiate it from N, the number of molecules in
the system).

Equation 18.44 is certainly complicated. However, we note two things. First,
virtually all of the information required to evaluate equation 18.44 for a mol-
ecule is available experimentally, mostly using various spectroscopic tech-
niques. Second, because equation 18.44 is independent of the identity of the
molecule, it is a relatively simple task to write a computer program to evalu-
ate Qsys for a given system. As we will see in the next section, once we have an
expression for Qsys, we will be able to derive expressions for various thermo-
dynamic properties. These expressions can also be evaluated by calculator or
computer program. In fact, an important use of these equations of statistical
thermodynamics is not to verify that they yield numbers that agree with ex-
periment, but to predict the thermodynamic properties at different conditions
or for new substances whose thermodynamic properties have not been
measured.

18.8 Thermodynamic Properties 
of Molecules from Q

Recall that the major aim of statistical thermodynamics is to be able to calcu-
late the thermodynamic properties of systems using the mathematics of statis-
tics. It has taken us some time and effort to get to this point, because we first
had to determine the forms of the partition functions for a molecule. Having
done that now, we can turn our attention to thermodynamic properties.

First, we will state that even though the exact expression for the partition
function Q is somewhat expanded from the partition function q for a
monatomic gas, the basic relationships between Q and various thermodynamic
functions are the same. That is,

E � kT2��� �

ln

T

Q
��V

(18.45)

p � kT��� �

ln

V

Q
��T

(18.46)

H � kT��T�
�

�

ln

T

Q
��V

	 1� (18.47)
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S � k�T��� �

ln

T

Q
��V

	 ln Q 	 1� (18.48)

A � �kT (ln Q 	 1) (18.49)

G � �kT ln Q (18.50)

Notice that each expression involves the natural logarithm of Q (or a deriva-
tive of the natural logarithm of Q). Recall also that Q for a molecule is defined
as the product of five independent q’s. Logarithms of products can be rewrit-
ten as the sum of logarithms of the individual terms in the product; that is,

ln Q � ln (qtrans � qelect � qvib � qrot � qnuc) 

ln Q � ln qtrans 	 ln qelect 	 ln qvib 	 ln qrot 	 ln qnuc (18.51)

Equation 18.51 implies that if the partition function Q can be separated into
the sum of individual logarithm terms, then the thermodynamic functions in
equations 18.45 through 18.50 can also be separated into sums of individual
energy, enthalpy, entropy, and so on. For example, we can rewrite the total (that
is, internal) energy E as

Etrans � NkT2��� ln

�

q

T
trans��V

Eelect � NkT2��� ln

�T

qelect��V

Evib � NkT2��� ln

�T

qvib��V
(18.52)

Erot � NkT2��� ln

�T

qrot��V

Enuc � NkT2��� ln

�T

qnuc��V

so that

E � Etrans 	 Eelect 	 Evib 	 Erot 	 E nuc (18.53)

and similarly for each of the other thermodynamic functions.
Since we have derived expressions for each of the partition functions of a

molecule, we can evaluate the expressions in equations 18.52, and similarly for
each of the other thermodynamic functions, for each part of the overall mo-
lecular partition function. These expressions are given in Table 18.5. You should
be able to derive most of the expressions in Table 18.5 by simply performing the
appropriate derivation given in equations 18.52 and the equivalent for the other
thermodynamic properties. (Remember that [(� ln q)/�T] � (1/q)(�q/�T).)

Heat capacities are defined in terms of the change in E or H with respect to
temperature at constant volume or pressure:

CV � ��
�

�

T

E
��V

Cp � ��
�

�

H

T
��p

(Again, remember that we are using the variable E to stand for the internal en-
ergy in this chapter.) From Table 18.5, we can take the derivative of each term
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of E with respect to temperature and come up with a simple expression for the
heat capacity:

CV � Nk� �
3

2
� 	 �

3

2
� 	 �

3N*�6

j�1
��

�

T
j

��
2

� �
(1 �

e�

e

�

�

j/T

�j/T)2�� (18.54)

trans rot vib

The origins of each part of the heat capacity have been labeled under each
term. The derivative in the definition of CV converts the product function
from the vibrational partition function into a summation of terms. Notice
what equation 18.54 implies: translations and rotations contribute the same
amount to the heat capacity of a gaseous molecule, and vibrations also con-
tribute. The greater the number of atoms N* in the molecule, the more vi-
brations, and so the greater the vibrational contribution to CV. Such obser-
vations are indeed made experimentally. An expression for Cp is left as an
exercise.
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Table 18.5 Expressions for the various components of the thermodynamic state 
functions of moleculesa

State function trans nuc elect

E �
3

2
�NkT — �NDe

H �
5

2
�NkT — �NDe 	 NkT

G �NkT�ln ��2�

h

m
2

kT
��

3/2

�
V

N

e
�� 	 NkT — �NDe 	 NkT

S Nk�ln ��2�

h

m
2

kT
��

3/2

�
V

N

e5/2

�� — Nkg1

State function vib, diatomic rot, diatomic

E NkT��
2

�

T
v� 	 �

e�v

�
/T

v/

�

T

1
�� NkT

H NkT��
2

�

T
v� 	 �

e�v

�
/T

v/

�

T

1
� 	 1� 2NkT

G NkT��
2

�

T
v� 	 ln(1 � e��v/T) 	 1� NkT�1 � ln �

�

T

�r

��
S Nk��e�v

�
/T

v/

�

T

1
� � ln(1 � e��v/T)� Nk ln �

�

T

�r

� 	 Nk

State 
function vib, polyatomic rot, polyatomic

E NkT  �
3N*�6

j�1
��

2

�

T
v� 	 �

e�v

�
/T

v/

�

T

1
��

b

�
3

2
�NkT*

H �NkT  �
3N*�6

j�1
��

2

�

T
v� 	 �

e�v

�
/T

v/

�

T

1
��� 	 NkTb �

5

2
�NkT*

G �NkT �
3N*�6

j�1
��

2

�

T
v� 	 ln(1 � e��v/T)�� 	 NkTb �NkT ln �

�

�

1/2

����A

T

�B

3

�C

��
1/2

	 NkT*

S Nk  �
3N*�6

j�1
��e�v

�
/T

v/

�

T

1
� � ln(1 � e��v/T)�

b

Nk ln �
�1/

�

2e3/2

����A

T

�B

3

�C

��
1/2*

aTranslational and electronic contributions are the same for all molecules. Vibrational and rotational contributions
depend on whether the molecule is diatomic or polyatomic. N � number of species in the system; N* � number of
atoms in molecule.
bExpression is different for linear molecules. Consult the text.

{ {               
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Example 18.9
Calculate the constant-volume heat capacity of 1 mole of gaseous water at
727°C and 1 bar pressure. Compare this to a value of 33.0 J/(mol�K) at 727°C
and about 1 atm pressure (where 1 atm � 1.01325 bar) and comment on the
difference.

Solution
The three vibrational temperatures for H2O are 2287, 5163, and 5350 K. (See
Example 18.5.) Our expression for CV becomes

640 C H A P T E R  18 More Statistical Thermodynamics

CV � (6.02 
 1023 mol�1)�1.381 
 10�23 �
K

J
�� 
 ��

3

2
� 	 �

3

2
� 	 ��21

2

0

8

0

7

0

K

K
��

2

�

exp���
2

1

2

0

8

0

7

0

K

K
��

���

�1 � exp���
2

1

2

0

8

0

7

0

K

K
���

2

We get

CV � (8.314�
m

J

ol
�)(3 	 0.658 	 0.154 	 0.137)

CV � 32.8�
mo

J

l�K
�

This is a very good agreement with experiment! The variance comes from the
fact that H2O is certainly not acting as an ideal gas, even at these tempera-
tures and pressures. At higher temperatures and lower pressures, predicted
values are much closer to experiment. Finally, notice how much the vibra-
tions contribute to the heat capacity. The lower-energy vibration, which has
the lower value of �v, contributes much more than the two higher vibrations
combined.

The point of this section is that statistical thermodynamics can derive ex-
pressions for thermodynamic properties of molecules. Many computer pro-
grams are available that use the expressions in Table 18.5 to calculate thermo-
dynamic properties of molecules, given their energy levels (which can be
determined spectroscopically or theoretically). Application of these equations
gives the physical chemist a powerful tool for understanding the thermody-
namic properties of molecules.

18.9 Equilibria
Classical thermodynamics is very useful when applied to chemical or physical
processes that are in a state of equilibrium. How well does statistical thermo-
dynamics apply to equilibrium?

Let us assume a balanced, gas-phase equilibrium:

�AA 	 �BB �CC 	 �DD (18.55)

where A and B represent reactants, C and D are the products, and �A, �B,
�C, and �D are the molar coefficients of the balanced chemical reaction.

JQPJ

	 ��51
1

0

6

0

3

0

K

K
��

2

� 	 ��51
3

0

5

0

0

0

K

K
��

2

� �exp���
5

1

3

0

5

0

0

0

K

K
��

���

�1 � exp��51
3

0

5

0

0

0

K

K
���

2

exp���
5

1

1

0

6

0

3

0

K

K
�

���

�1 � exp��51
1

0

6

0

3

0

K

K
���

2
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Algebraically, we can bring the reactants to the other side of the “equation” and
rewrite equation 18.55 as

�CC 	 �DD � �AA � �BB � 0

(It is the convention to subtract the reactants from the products.) In terms of
classical thermodynamics, chemical equilibrium is given by equation 5.4, which
requires that

�
no. of components

i�1

�i � i � 0

Using the general equation above, we have for this equilibrium

�CC 	 �DD � �AA � �BB � 0 (18.56)

We would like to substitute for i in the equation above. For a mixture of gases,
we will assume that the overall partition function of the system Qsys can be writ-
ten as the product of the molecular partition functions of each component:

18.9 Equilibria 641

Qsys �   �
components

�
(Q

N
i)

i!

Ni

�

� �
QA(N

N
A,

A

V

!

,T)NA

� � �
QB(N

N
B,

B

V

!

,T)NB

� � �
QC(N

N
C,

C

V

!

,T)NC

� � �
QD(N

N
D,

D

V

!

,T)ND

� (18.57)

In this equation, we are labeling each molecular partition function with the la-
bel of the relevant component. Also, we are reminded that each component is
occupying the same volume and has the same temperature (otherwise the sys-
tem is not at equilibrium), but that each component has its own characteris-
tic amount Ni at equilibrium. Statistical thermodynamics gives an expression
for the chemical potential of a component:

i � �kT ln ��
�

�

N

Q

i

��Nj�i,V,T
(18.58)

where in the case of a multicomponent mixture, the partial derivative is taken
with respect to only one component, Ni, and the other components remain as
constants. This has the effect of eliminating all other species’ partition func-
tions from the evaluation of each particular i. After substituting equation
18.57 into equation 18.58 for each of the four components and applying
Stirling’s approximation, we have

i � �kT ln �
Qi(

N

V

i

,T)
� (18.59)

where we have dropped the NA . . ., labels from each Q. Substituting for each
 in equation 18.56, we have

�C��kT ln �
QC

N

(V

C

,T)
�� 	 �D��kT ln �

QD

N

(V

D

,T)
�� � �A��kT ln �

QA

N

(V

A

,T)
�� � �B��kT ln �

QB(

N

V

B

,T)
�� � 0

The �kT terms cancel to yield

�C ln �
QC

N

(V

C

,T)
� 	 �D ln �

QD

N

(V

D

,T)
� � �A ln �

QA

N

(V

A

,T)
� � �B ln �

QB(

N

V

B

,T)
� � 0 

We can use the properties of logarithms to take each coefficient � and make it
an exponent inside the logarithm term. Removing the remaining labels from
Q for clarity gives
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��
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��
�B
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In the next step, we will do two things: bring the A- and B-containing terms
to the other side of the equation, and combine the two logarithms on each side
into one (using the rule that ln a 	 ln b � ln ab):

ln ���
Q

N
C

C

��
�C

� ��
Q

N
D

D

��
�D

� � ln ���
Q

N
A

A

��
�A

� ��
Q

N
B

B

��
�B

�
If the logarithms of two products are the same (as the above equation indi-
cates), then the arguments of the two individual logarithms are the same.
Another way to put this is that we can take the inverse logarithm of both sides
of the above equation and still have an equality:

��
Q

N
C

C

��
�C

� ��
Q

N
D

D

��
�D

� ��
Q

N
A

A

��
�A

� ��
Q

N
B

B

��
�B

(18.60)

At this point, we will rearrange equation 18.60 to bring all of the partition
functions Qi to one side and all of the amounts Ni to the other. The exponents
�i will appear on both sides (as a consequence of the algebra of exponents). By
convention, we will write the expressions with product quantities in numera-
tors and reactant quantities in denominators. We get

�
(

(

Q

Q
C

A

)

)

�

�

C

A

�

�

(

(

Q

Q
D
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)
�

�
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� � �
(

(
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)

)
�

�
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C

�

�

(

(

N

N

B

D)

)

�

�

D

B
� (18.61)

Consider equation 18.61. The partition functions Qi are constants that are
characteristic of each chemical species, and the coefficients �i are characteris-
tic of the balanced chemical reaction. Therefore, the left side of equation 18.61
is some constant that is characteristic of the chemical reaction. Equation 18.61
shows that this characteristic constant is related to the amounts of each chem-
ical species when the reaction reaches chemical equilibrium, even though each
individual Qi itself is defined in terms of the molecule, not any extent of reac-
tion! Since the fraction in terms of the Qi values has a characteristic value, then
the fraction in terms of the amounts Ni at equilibrium must also have a char-
acteristic value. This value is called the equilibrium constant for the reaction.

For an ideal gas, the partition function Q is a simple function of volume
(again, from qtrans) times a more complicated function of temperature (from
several other q’s):

Q � f (T) � V

It is convenient to divide each molecular Q by volume to get a volume-
independent partition function:

�
Q

V
� � f (T)

By substituting this volume-independent partition function into the partition
function expression for the equilibrium constant, we can get an equilibrium
constant, labeled K(T), which is characteristic of the chemical species in the
reaction and dependent solely on T:

K(T) � (18.62)
��

Q

V
C��

�C

� ��
Q

V
D��

�D

��

��
Q

V
A��

�A

� ��
Q

V
B��

�B
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Equation 18.62 shows that statistical thermodynamics can calculate temperature-
dependent equilibrium constants from partition functions. Since the partition
functions themselves are ultimately determined from the energy levels of
the chemical species, we see once again how a knowledge of energy levels—
obtained from spectroscopy—helps us make thermodynamic predictions about
chemical reactions.

A word about units is necessary. It is important to keep track of all units in
equation 18.62, and when comparing calculated results to experimental ones,
units must be consistent. Equation 18.62 is the concentration-based equilib-
rium constant, Kc. Equilibrium constants can also be expressed in terms of the
partial pressures of the gas-phase reactants and products. The pressure-based
equilibrium constant, Kp, is related to Kc by the expression

Kp � Kc � (kT)��i (18.63)

where ��i represents the proper combination of the stoichiometric coefficients
of gas-phase substances in the balanced chemical reaction. Remember that �i

values are positive for products and negative for reactants.

Example 18.10
Of necessity, examples of equation 18.62 must be relatively straightforward.
Calculate the equilibrium at 298 K for the reaction

H2 	 D2 2HD

Assume that the electronic and nuclear partition functions cancel. Compare
the calculated value with the experimental value of 3.26 (unitless).

Solution
Since � �i � 2 � 1 � 1 � 0, Kp � Kc in this case. The remaining three par-
tition functions for each species are calculated as follows:

q H2 D2 HD

trans/V 2.737 
 1030 7.741 
 1030 5.028 
 1030

vib 2.959 
 10�5 6.283 
 10�4 1.197 
 10�4

rot 1.746 3.489 4.656

where qtrans has been divided by volume. For H2 and D2, the rotational par-
tition functions are scaled by a symmetry number of 2. HD has a symmetry
number of 1. We have for the equilibrium constant

JQPJ

18.9 Equilibria 643

K(T) �

�

Notice that the volume terms cancel out of the expression for K(T). We get

(5.028 
 1030 � 1.197 
 10�4 � 4.656)2

���������
(2.737 
 1030 � 2.959 
 10�5 � 1.746) � (7.741 
 1030 � 6.283 
 10�4 � 3.489)

��qtrans � q

V
vib � qrot��2

HD

�����

��qtrans � q

V
vib � qrot��H2

� ��qtrans � q

V
vib � qrot��D2

K(T) � 3.273

This is very close to the experimentally determined value.

Statistical thermodynamics thus provides tools for us to predict equilibrium
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constants of reactions knowing little other than the energy levels of the equi-
librium species. This is a powerful predictive tool, one that chemists use to es-
timate the equilibrium extent of reactions under conditions that might not be
directly measurable.

18.10 Crystals
The success of statistical thermodynamics as applied to gaseous systems in-
spired scientists to try to apply it to other systems. Some of the more instruc-
tive attempts occurred at the beginning of the twentieth century. During this
period, scientists made the first in-depth studies of matter at very low temper-
atures, approaching absolute zero. Hydrogen and helium gases were first lique-
fied in 1898 and 1908, respectively, and the techniques used to generate such
low temperatures were used to cool matter down and investigate its properties.

At such low temperatures, most matter is solid, and the best type of solid
sample to study is a crystal. Studies of crystals showed some intriguing thermo-
dynamic behavior. For instance, in the measurement of entropy it was found
that absolute entropy approached zero as the temperature approached absolute
zero. This is experimental verification of the third law of thermodynamics. But
a measurement of the heat capacity of the solid showed something interesting:
the heat capacity of the solid approached zero as the temperature approached
absolute zero, also. But for virtually all crystalline solids, the heat-capacity-
versus-temperature plot took on a similar shape at low temperatures, typified
by Figure 18.3: the curves have the distinct shape of a cubic function, that is,
y � x3. In this case, the variable is absolute temperature, so experimentally it
was found that the constant-volume heat capacity CV was directly related to T3:

CV � T3 (18.64)

(where � means “directly related” or “proportional to”). How can this behav-
ior be explained?

Scientists attempted to use statistical thermodynamics to understand the
heat capacities of crystals at low temperatures. Given the success of statistical
thermodynamics to gases, in which gas molecules are indistinguishable and
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Figure 18.3 Measurement of the heat capacity of crystals at very low temperatures shows a
curve that looks like a y � kT3 curve. Any theory of heat capacities of crystals should predict this
kind of behavior.
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can be treated statistically, why not apply statistical thermodynamics to crys-
tals, whose atomic contributions to the properties of the solid as a whole can
probably also be treated statistically?

The first person to make serious headway with this approach was Albert
Einstein. In 1907, Einstein proposed to understand the motions of the atoms
in the crystal using Planck’s idea of quantized energy. A crystal is composed of
N atoms, say. These N atoms can vibrate within their crystal lattice in the x,
the y, or the z direction, giving a total of 3N possible vibrational motions.
Einstein assumed that the frequencies of the vibrations were the same, some
frequency labeled �E, or the Einstein frequency. If this were the case, and we are
only considering vibration-type motions of the atoms in the crystal, then the
heat capacity of the crystal can be determined by applying the vibrational part
only of the heat capacity from the vibrational partition function:

CV � �
3N

i�1

k��
h

k

�

T
E��

2

� �
(1 �

e�

e

h

�

�E

h

/

�

k

E

T

/kT)2�

where we are taking the vibrational component of the heat capacity from equa-
tion 18.54 and using the Einstein frequency as the frequency of vibration. Since
the Einstein frequency is constant for all 3N terms in the sum, the heat capac-
ity becomes

CV � 3Nk��
h

k

�

T
E��

2

� �
(1 �

e�

e

h

�

�E

h

/

�

k

E

T

/kT)2�

As is our habit, we define a temperature

�E � �
h

k

�E� (18.65)

where �E is the Einstein temperature of the crystal. Einstein’s expression for the
heat capacity of a crystal is therefore

CV � 3Nk��
�

T
E��

2

� �
(1 �

e�

e

�

�

E/

�

T

E/T)2� (18.66)

Notice how the Einstein temperature and the absolute temperature of the
crystal always appear together as the fraction �E/T. Notice, too, that there is
nothing in equation 18.66 that is sample-dependent other than the Einstein
temperature �E. This means that if the heat capacity of any crystal were plot-
ted versus �E/T, all of the graphs would look exactly the same. This is one ex-
ample of what is called a law of corresponding states. Einstein’s derivation of a
low-temperature heat capacity of crystals was the first to predict such a rela-
tionship for all crystals.

How do we determine the Einstein temperature �E without knowing the
characteristic “vibrational frequency” of the atoms in the crystal? Typically, ex-
perimental data is fitted to the mathematical expression in equation 18.66 and
a value of the Einstein temperature is used to allow for the best possible fit to
experimental results. For example, a plot of experimental measurements of the
heat capacity versus T divided by �E (which is proportional to T, whereas �E/T
is inversely proportional to T and less easy to graph as T → 0 K) is shown in
Figure 18.4. Notice that there is reasonable agreement between experiment and
theory, suggesting that Einstein’s statistical thermodynamic basis of the heat
capacity of crystals has merit. Table 18.6 lists a few experimentally determined
Einstein temperatures for crystals.

However, the Einstein equation deviates from experimental values at very

18.10 Crystals 645

Table 18.6 Einstein temperatures of
various crystals

Material �E (K)

Al 240

C (dia) 1220

Pb 67
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low temperatures, predicting a lower heat capacity than is measured experi-
mentally. In fact, using the mathematics of limits, it can be shown that equa-
tion 18.66 predicts the following:

lim
T→0

CV � 3Nk��
�

T
E��

2

e��E/T (18.67)

This is not the T 3-dependence, as experimental measurements suggest.
Therefore, while Einstein’s application of statistical thermodynamics to crys-
tals was useful, it has its limitations. (It might be considered similar, in some
respects, to Bohr’s attempt to describe electron energy levels by assuming
quantized angular momentum. It worked in some respects—mostly in appli-
cation to hydrogen atoms—but had its deficiencies in a more global sense.)

Peter Debye, a Dutch physical chemist after whom the Debye-Hückel theory
is partly named (see Figure 18.5), expanded on Einstein’s work. Rather than as-
sume that all atoms in a crystal had the same vibrational frequency (as Einstein
had presumed), Debye suggested that the possible vibrational motions of
the atoms in a crystal could have any frequency from zero to a certain maxi-
mum. That is, he suggested that atoms could have a range, or distribution, of
frequencies.

Using an argument similar to that used to determine the number of trans-
lational states for qtrans, Debye deduced that the equation for the distribution
of frequencies, symbolized by g(�), is

g(�) d� � �
(�

9

D

N

)3� � �2 d� (18.68)

where �D is the maximum frequency that the atoms in the crystal can have and
is called the Debye frequency. The distribution function g(�) is a function of the
frequencies �, but is subject to the condition that the total number of vibra-
tions is 3N, where N is the number of atoms in the crystal. The mathematical
way of expressing this restriction is


�D

��0

g(�) d� � 3N

Equation 18.68 is therefore applicable for values of � between 0 and �D. If �
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Figure 18.4 The Einstein theory of heat capacity of crystals agrees reasonably well with ex-
perimental measurements.

Figure 18.5 Peter J. W. Debye (1884–1966)
was a Dutch-American physical chemist who
made important advances in the understanding
of ionic solutions and dipoles in molecules. He
also formulated an acceptable theory of the ther-
modynamic properties of crystals at low temper-
atures. He was awarded the 1936 Nobel Prize in
chemistry for his work.
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were greater than �D, g(�) � 0.
The frequency distribution function in equation 18.68 can be substituted

into the statistical thermodynamic expressions for the various state functions,
and various thermodynamic properties determined for crystals. We are inter-
ested in the expression for the heat capacity. It is (omitting the details of the
derivation):

CV � 9Nk��
h

k

�

T

D

��
3   

h�D/kT

0
��

k

h

T
��

5

��(eh�

e
/k

h

T

�/

�

kT

1)2���4 d�

This is a complicated expression that demands some simplification. First, we
substitute for the expression h�/kT by defining x � h�/kT. Second, we define
the Debye temperature as

�D � �
h�

k
D� (18.69)

The expression for the heat capacity becomes

CV � 9Nk��
�

T

D

��
3  

�D/T

0

�
(ex

x

�

4ex

1)2� dx (18.70)

The integral in equation 18.70 cannot be solved analytically, but its value can
be determined numerically. Just like the Einstein treatment of heat capacities
of crystals, the Debye temperature �D is selected so that the numerical evalua-
tion of equation 18.70 agrees as closely as possible with experimental data.
Figure 18.6 shows curve fits of experimental data, and Table 18.7 lists some val-
ues of �D.

Applying limits to equation 18.70 shows that

lim
T→0

CV � �
12

5

�4

�Nk��
�

T

D

��
3

This expression shows that the low-temperature heat capacity varies with the
cube of the absolute temperature. This is what is seen experimentally (remem-
ber that a major failing of the Einstein treatment was that it didn’t predict the
proper low-temperature behavior of CV), so the Debye treatment of the heat
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Figure 18.6 The Debye theory of heat capacity of crystals agrees better with experimental 
values of heat capacity at low temperatures.

Table 18.7 Debye temperatures of
various crystals

Material �D (K)a

Al 390

C (dia) 1860

Pb 88

Na 150

Ag 215

Au 170

Fe 420

Pt 225

Gd 169

Sc 345
aIt can be shown that �E � �

3
4

��D.
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capacity of crystals is considered more successful. Once again, because absolute
temperature and �D always appear together as a ratio, Debye’s model of crys-
tals implies a law of corresponding states. A plot of the heat capacity versus
T/�D should (and does) look virtually identical for all materials.

Both Einstein’s and Debye’s treatment of crystals are approximations in the
sense that they assume some ideal behavior. Like real gases, real solids do not
behave ideally. Regardless, application of statistical thermodynamics gives us a
starting point for the thermodynamic understanding of these systems, much
as the ideal gas law gives us a starting point for understanding the properties
of real gases.

18.11 Summary
We have seen how statistical thermodynamics can be applied to systems com-
posed of particles that are more than just a single atom. By applying the par-
tition function concept to electronic, nuclear, vibrational, and rotational en-
ergy levels, we were able to determine expressions for the thermodynamic
properties of molecules in the gas phase. We were also able to see how statis-
tical thermodynamics applies to chemical reactions, and we found that the
concept of an equilibrium constant presents itself in a natural way. Finally, we
saw how some statistical thermodynamics is applied to solid systems. Two sim-
ilar applications of statistical thermodynamics to crystals were presented. Of
the two, Einstein’s might be easier to follow and introduced some new concepts
(like the law of corresponding states), but Debye’s agrees better with experi-
mental data.

It was stated at the beginning of the previous chapter that thermodynamics
is one topic in which ideas can be developed from two completely different
perspectives and arrive at the same conclusions. What these different perspec-
tives guarantee is a wide applicability of thermodynamics to virtually every as-
pect of chemistry.
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18.2 Nuclear and Electronic 
Partition Functions

18.1. Using a table of nuclear spin states, determine qnuc for
(a) 12C atoms, (b) 56Fe atoms, (c) 1H atoms, (d) D (D is 2H)
atoms. Explain your answers for parts c and d.

18.2. How many terms would you recommend for the sum-
mation of the electronic partition function for (a) N2 gas; (b)
O2 gas at standard temperature? You may need to consult a
table of electronic energy levels (as in G. Herzberg, Spectra of
Diatomic Molecules, Van Nostrand Reinhold, New York, 1950,
or G. Herzberg and K. P. Huber, Constants of Diatomic Molecules,
Van Nostrand Reinhold, New York, 1979).

18.3. Use equation 18.4 to evaluate the nuclear contributions
to E and S. How do you justify the answers you get?

18.4. Repeat Example 18.1, but this time for T � 10,000 K (a
surface temperature of a hot star). Does your conclusion about
the effect of electronic excited states on qelect change? Why or
why not?

18.5. What is the minimum value of qelect? Why is this so?

18.6. Compare qelect for Ni atoms at 298 K with qelect for Ni
atoms at 1000 K (see Example 18.2). Can you explain why
they are so close? Now compare qelect for Ni atoms at 5.0 K
with qelect at 298 K. Can you explain the difference?

18.3 Molecular Electronic Partition Functions

18.7. The vibrational frequency of H2 (g) is 4320 cm�1. 
What is the change in qelect at 298 K for H2 if D0 is used as the
dissociation energy instead of De? The bond energy in H2

is 432 kJ/mol. Compare your answer with the answer in
Example 18.3.

18.8. What is the electronic partition function for H2O (g) at
373 K if it takes 918 kJ to break both O–H bonds?

18.9. Diatomic helium (He2) exists only in very low tempera-
ture gas samples. Upper limits to its bond energy are esti-
mated at 89.8 J/mol. (a) Calculate qelect for He2 at 4.2 K, the
normal boiling point of He. (b) Comment on whether or not
you would expect He2 to exist at room temperature (�300 K).
Explain your answer.

18.4 Molecular Vibrational Partition Functions

18.10. Consider two identical planets that are the same dis-
tance from their star. One planet has an atmosphere of argon
gas, and the other has an atmosphere of fluorine gas. Assume
that all other physical descriptions of the planets are the same.
From statistical thermodynamic perspectives, which planet
should have the higher atmospheric temperature? Justify your
answer by citing specific equations from the chapter.

18.11. What is the expected ratio of vibrational partition
functions for H2 and D2? Use the high-temperature form of
qvib to estimate your answer.

18.12. Calculate the vibrational partition function for NH3 (g)
at 250 K, 500 K, and 1000 K. Do the changes in qvib show the
expected differences? Consult Table 18.2 for necessary infor-
mation.

18.13. Calculate the vibrational partition function of CH4 (g)
at 298 K. See Table 18.2.

18.14. Use the information in Table 18.2 to calculate the vi-
brational frequencies of carbon tetrachloride in units of cm�1.
How many total vibrational frequencies does CCl4 have?

18.5 & 18.6 Molecular Rotational 
Partition Functions

18.15. What are minimum values for qnuc and qrot for a gas-
phase molecule? What about qvib?

18.16. Determine the temperature at which qrot for HCl equals
the qrot value for HBr at 298 K. See Table 18.3 for necessary data.

18.17. What is the expected ratio of rotational partition func-
tions for H2 and D2? Compare this ratio with the answer from
exercise 18.11.

18.18. Diatomic oxygen, O2, has an antisymmetric ground
electronic state. If oxygen nuclei are bosons (I � 0), what are
the expected symmetry pairings of the nuclear and rotational
wavefunctions?

18.19. The rovibrational spectrum of acetylene, H–C�C–H,
shows intensity variations consistent with expected nuclear de-
generacies. Would you expect D–C�C–H to show similar in-
tensity variations? Why or why not?

18.20. What happens to �r of a diatomic molecule as J in-
creases? Why? (Hint: See section 14.5.)

18.21. Determine qrot for NH3 (� � 3) and CCl4 (� � 12) at
298 K. Consult Table 18.4 for the rotational temperatures.

18.7 & 18.8 Q and Thermodynamic Properties

18.22. Determine an expression for Cp. (Hint: use equations
18.47 and 18.54.)

18.23. Using the expression you determined from the previ-
ous exercise, answer this: of the heat capacities Cp and CV,
which is larger? Will this always be the case? Why or why not?

18.24. Use equation 18.46 to show that pV � NkT.

18.25. Calculate E, H, G, and S for HCl at standard pressure
and 25°C. � equals 1 for this molecule, and De � 431.6 kJ/mol.

18.26. Determine E, H, G, and S for CH4 at standard pressure
and 25°C. � equals 12 for methane and the atomization en-
ergy of CH4 is 1163 kJ/mol. Compare your calculated value of
S with the tabulated (that is, experimentally determined) value
in Appendix 2.
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18.27. Use statistical thermodynamics to determine
�H°(25°C) and �S°(25°C) for the reaction

H2 (g) 	 D2 (g) → 2HD (g)

You should be able to calculate vibrational and rotational tem-
peratures for D2 and HD using the values for H2 and the
changes in the reduced masses of the other gaseous species.

18.28. Use statistical thermodynamics to determine �H° and
�S° for the reaction

2H2 (g) 	 O2 (g) → 2H2O (g)

Compare this with the value of �fS° for H2O (g) from Appendix
2. Note the phase label on the product.

18.29. Verify the expressions for E in Table 18.5 (except for
vibrations).

18.9 & 18.10 Equilibria and Crystals

18.30. The chapter uses the right side of equation 18.61 to
argue that the overall expression must be a constant at equi-
librium. Support such an argument using the left side of equa-
tion 18.61 for a reaction at equilibrium.

18.31. Show that the isotope exchange reaction below should
ideally have high-temperature equilibrium constant of 4.

14N2 	 15N2 214,15N2

Assume that the dissociation energies of the molecules are the
same.

18.32. Determine the equilibrium constant for the following
reaction at 1000 K and 1 atm pressure for each species:

2H2 (g) 	 O2 (g) → 2H2O (g)

� equals 2 for H2O, H2, and O2. De(H2) � 431.8 kJ/mol, 
De(O2) � 493.7 kJ/mol, and De(H2O) � 917.6 kJ/mol. Compare
it with the equilibrium constant at 1000 K determined using
classical thermodynamic means (that is, �G � �H � T �S,
with T � 1000 K, then find the equilibrium constant K from
�G) and explain the difference in the equilibrium constants.
Which one do you think is closer to the experimental value?

18.33. In Chapters 17 and 18 we have derived expressions
for the absolute amounts of the energies H and G. However,
in tables of thermodynamic data, we always tabulate �H and
�G (that is, changes in enthalpy and Gibbs free energy). How
do you explain this apparent discrepancy?

18.34. The Einstein-Debye suggestion that atoms in crystals
“vibrate” has some validity. In fact, the vibrations of atoms in
solids are treated as if they were caused by real particles called
phonons that have characteristic vibrational frequencies. For
solid Al, the frequency of the phonons is about 4.5 
 1012 s�1.
If this phonon were approximated as a stretching type of vi-
bration of a single Al atom, what would be (a) the equivalent

JQPJ

force constant of this “stretch,” and (b) the wavenumber of
light that this phonon would absorb? (c) Many solid materi-
als are very good absorbers of low-energy infrared light. Does
your answer to part b agree with this generality?

18.35. The law of Dulong and Petit states that the CV of ma-
terials approaches 3Nk (which equals 3R) at high tempera-
tures. Can you show that both Einstein’s and Debye’s expres-
sions for the heat capacity of crystals agree with this
generalization at high temperatures?

18.36. Diatomic hydrogen has a vibrational frequency of
4320 cm�1. Evaluate the vibrational partition function at dif-
ferent temperatures and determine the temperature above
which the high-temperature limit for qvib, given by equation
18.20, is valid.

18.37. The rotational temperature of molecular iodine is 310 K.
Evaluate qrot at T � 298 K term by term, listing the cumula-
tive value of qrot for every term. At what number of terms does
the change in qrot become negligible? Repeat the evaluation
for T � 1000 K.

18.38. Write a set of equations (or a small program) to eval-
uate the constant-volume heat capacity for a molecule. Use
this algorithm to determine the heat capacity versus temper-
ature (say from 298 K to 1000 K) for H2O and CH4.

18.39. Silver metal is a very good conductor of heat. The fol-
lowing are heat capacities at different temperatures. Using
equation 18.66, determine a value for the Einstein tempera-
ture �E that best fits this data.

T (K) C [J/(g�K)]
1 7.2 
 10�6

2 2.39 
 10�5

3 5.95 
 10�5

4 1.24 
 10�4

6 3.9 
 10�4

8 9.1 
 10�4

10 0.0018
15 0.0064
20 0.0155
25 0.0287
30 0.0442
40 0.078
50 0.108
60 0.133
70 0.151

Source: D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 82nd ed., CRC
Press, Boca Raton, Fla., 2001.
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WHY DO GASES BEHAVE THE WAY they do? In some of the previous
chapters, we have used gases as examples with an implicit under-

standing that we are modeling their behavior, but we never really got into a
discussion of why they have that behavior.

The basic understanding of how gases behave is called the kinetic theory of
gases. It is based on several assumptions, mostly related to classical mechanics.
In part because of this, most of the basics of the kinetic theory were worked
out in the 1860s by Ludwig Boltzmann and James Clerk Maxwell (two names
that should be familiar by now). It was the culmination of over two centuries
of investigations into the nature of the gas phase, starting with Boyle and con-
tinuing through Gay-Lussac, Charles, Amonton, Dalton, and Graham, among
others.

In this chapter, we will review the kinetic theory of gases, focusing on ideal
gases. This review allows us to revisit some of the topics from Chapter 1 (in
which we discussed the nature of gases in a more phenomenological perspec-
tive) so that we can better apply these ideas when we consider chemical reac-
tions in the gas phase in the next chapter.

19.1 Synopsis
What we will find in this chapter is that the physical behavior of gases can be
understood if some simple assumptions are made. Suppose we treat an indi-
vidual gas particle as a hard piece of matter: What are the properties of a col-
lection of “hard pieces of matter”? It turns out that we can predict some prop-
erties by applying classical, rather than quantum, mechanics. The physical
behavior of gases can be considered as a statistical average of all of the indi-
vidual gas particles, so some of the ideas in this chapter are reminiscent of sta-
tistical thermodynamics. In addition, we will be focusing on the physical be-
havior of gases, not their chemical behavior. Because chemistry depends on
electrons, it is vital to understand how electrons behave in order to understand
how chemicals behave; that is, we need quantum mechanics. But in order to
understand the physical behavior of matter, we are able to use more simple
physical theories of nature. Some of these physical behaviors are relevant to
chemical behavior, as we will see in chemical kinetics.

19.1 Synopsis
19.2 Postulates and Pressure
19.3 Definitions and Distributions

of Velocities of Gas Particles
19.4 Collisions of Gas Particles
19.5 Effusion and Diffusion
19.6 Summary

The Kinetic Theory of Gases
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In this chapter on kinetic theory, we will consider the origin of the pressure
of gases. We will find that the speeds of gas particles can have many values but
the distribution of their speeds can be calculated. So can an average speed—in
several different ways. We will also consider how many times gas particles col-
lide with each other, how far they travel between collisions, and how far they
travel from an arbitrary starting point. One of the more curious things from
kinetic theory is the prediction that gas particles are moving very fast indeed,
but because of all their collisions their net displacements change rather slowly.

19.2 Postulates and Pressure
The kinetic theory of gases is based on several postulates, or statements that
are presumed but not proven. In this respect, it is similar to Dalton’s theory of
the atomic structure of matter, which is also based on certain presumed state-
ments. The kinetic theory of gases is based on the following statements:

1. Gases are composed of tiny particles of mass.
2. These tiny particles are in constant motion when in the gas phase.
3. These tiny particles do not interact with each other, nor with the walls of

the container. That is, there are no forces of attraction or repulsion be-
tween any two particles or a particle and the wall. (We will clarify this
statement shortly.)

4. These tiny particles do collide with each other and the walls of the con-
tainer. However, when a collision occurs, the total energy before the col-
lision equals the total energy after the collision. One way of expressing an
ideal collision like this is that the total energy is conserved (it does not
change) and that collisions are elastic.

From these statements, the mathematics and predictions of the kinetic the-
ory of gases can be determined.

First, let us address a property commonly measured for a gaseous phase: its
pressure. This is one of the basic observable properties of a gas. Where does the
pressure of a gas come from?

If gas particles are constantly moving (which is the second postulate above),
then each gas particle has some kinetic energy. Classically, kinetic energy has
the formula

kinetic energy � �
1
2

�mv2 (19.1)

where m is the mass of the moving body and v is its velocity. Velocity is a vec-
tor (although we are not indicating it as such here), and in three dimensions
we can separate velocity into its three components vx, vy, and vz. If we do this,
equation 19.1 becomes

kinetic energy � �
1
2

�m(vx
2 � vy

2 � vz
2) (19.2)

In a collection of N gas particles in some volume V, each gas particle has its
own particular kinetic energy (because we haven’t constrained the kinetic en-
ergy at all; so far, the kinetic energy of any gas particle could be anything).
Therefore, there are N equation 19.2’s that when added together give the total
kinetic energy of the gas.

As the postulates above mention, the gas particles are constantly moving
and, in the course of some of the motions, are colliding with the wall of the
container that holds the gas. Figure 19.1 shows a diagram of a single gas par-
ticle colliding with the container wall. Before the collision, the particle has
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Gas particle
(vi)

Gas particle
(vf)

Wall

Figure 19.1 A gas particle colliding with the
wall of a container. Initially, the particle has ve-
locity vi. After the collision, the particle has ve-
locity vf. Even if the magnitude of the velocity has
not changed, the gas particle has accelerated be-
cause the velocity’s direction has changed. Kinetic
theory uses this model to understand the pres-
sure of a gas.
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some initial velocity labeled vi, and after the collision it has some final veloc-
ity vf. The change in the velocity, which is a vector quantity, over the period of
time it takes for the collision to occur means that the particle has accelerated.
In terms of the velocities shown in Figure 19.1:

acceleration � �
�

�

v

t
� � �

vf

�

�

t

vi�

If Figure 19.1 represented the infinitesimal change in velocity, the acceleration
would be expressed in derivative form:

acceleration � �
d

d

v

t
�

The force involved in the process illustrated by Figure 19.1 is given by Newton’s
second law:

F � ma

where F is the force, m is the mass of the object, and a is the acceleration. Using
the derivative form for acceleration, this becomes

F � m � �
d

d

v

t
� (19.3)

for a single particle. Newton’s third law says that for every force, there must
be an equal and opposite force, so if a gas particle collides with a wall and a
force on the particle is produced, an equal (and opposite) force is produced
on the wall. F, then, refers to the force on the particle as well as the force on
the wall.

In the above expressions, F represents the force exerted by one gas particle
making one collision on the wall of the container. For a macroscopic sample,
many gas particles are colliding with the walls of the container over an ex-
tended period of time. Therefore, the force on the wall can vary with time, and
it is better to consider F(t), force as a function of time. The average force, Favg,
is the total force over a certain time period divided by the total time period. If
we break time into tiny intervals, this becomes

�
no. of time

F(t)

Favg �

Of course, if the intervals are so small that they are infinitesimal, then the sum-
mation can be replaced with an integral:

Favg � �
to

�
tal

F(

ti

t

m

)

e
� � �

tim

1

e
� � F(t) dt

We can substitute from equation 19.3 to get

Favg � �
tim

1

e
� � m � �

d

d

v

t
� dt

We are dropping the “total” descriptor on the time variable. The dt terms can-
cel, so we get

Favg � �
tim

1

e
� � m dv

intervals F(t)
��

total time
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Since the mass of the particle is constant, it can be removed from the integral,
which is easily evaluated to get

Favg � �
tim

1

e
� � m � �vavg (19.4)

where �vavg is the average change in the velocity of the gas particle. If there are
N gas particles in the container, then the total average force would be

Favg,total � N � �
tim

1

e
� � m � �vavg (19.5)

where �vavg represents the average change in velocity of the N particles.
(Again, we have not constrained the particles to have any particular velocity
yet.) This equation is a potential problem, because velocity is a vector in
three-dimensional space and so is the change in velocity, �vavg. However, the
three-dimensional velocity can be separated into its one-dimensional compo-
nents, and the average force separated into three components that are equiv-
alent to each other. Thus, we can consider a one-dimensional problem, then
apply our conclusions to the other two dimensions. Let us assume that we are
considering the x dimension, corresponding to the dotted line in Figure 19.1.
The total force in the x dimension that is applied to the wall is

Favg,total,x � N � �
tim

1

e
� � m � �vavg,x

But if we resolve the initial and final velocities of the gas particle in Figure 19.1,
we can see that vi � �vf (that is, they have the same magnitude but opposite di-
rections). Therefore, in terms of the initial velocity, �vavg,x � vavg,x � (�vavg,x) �
2vavg,x (where we are adding the x subscript to the initial velocity also). The equa-
tion for the total average force in the x dimension becomes

Favg,total,x � 2 � N � �
tim

1

e
� � m � vavg,x (19.6)

Finally, consider a box having dimensions a � b � c in the x, y, and z dimen-
sions, as shown in Figure 19.2. What is the time amount in equation 19.6?
When the particle is not colliding with the wall, no force is being exerted on
it, nor by it on anything else (that’s one of the postulates). The time can be as
long as it takes for the particle to start at one wall, travel in the x dimension to
collide with the other wall, then travel all the way back to the opposite wall.
This means that the particle travels twice the x dimension, or a distance of 2a.
From the definition of velocity we have

vavg,x � �
ti

2

m

a

e
�

or, rewriting,

time � �
va

2

v

a

g,x

�

If we substitute this expression for time in the denominator of equation 19.6,
we get

Favg,total,x � 2N � � m � vavg,x

Favg,total,x � N � �
1

a
� � m � v2

avg,x � �
N � m

a

� v2
avg,x� (19.7)

1
�
�
va

2

v

a

g,x

�
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c

a

b

Gas particle

x
z

y

Figure 19.2 A gas particle has a three-
dimensional velocity, so an understanding of pres-
sure must consider three dimensions. However, if
we assume that all three dimensions are equiva-
lent, the mathematical derivation of pressure is
much easier.
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We recognize that pressure is defined as force per unit area. If we are moving
in the x dimension, then the wall we are colliding with has dimensions b � c.
(Verify this by looking at Figure 19.2.) The pressure exerted in the x dimen-
sion, px, is therefore

px � �
f

a

o

r

r

e

c

a

e
� � �

Fa

b
vg

�
,tota

c
l,x� � �

N

a

�

�

m

b

�

�

v2
av

c
g,x�

Finally, we note two things. First, in the denominator of the above equation,
a � b � c is the volume of the container, so we will substitute V for the vol-
ume in the denominator. Next, we extend the velocity to three dimensions.
Using a Pythagorean-theorem approach to velocity in three dimensions, we
can show that

v2
avg � v2

avg,x � v2
avg,y � v2

avg,z

where v2
avg is the square of the overall, three-dimensional average velocity.

Furthermore, since there is no reason to favor one dimension over the other,
the components of the average velocity must be equal to each other. Thus

v2
avg � 3v2

avg,x

Using these two ideas, the expression for pressure becomes

p � �
N � m

3V

� v2
avg� (19.8)

This is the basic expression in kinetic theory for the pressure of an ideal gas.
In equation 19.8, pressure has standard SI units of kg/(m�s2), or N/m2 (which
is consistent with the original definition of pressure as a force per unit area).
We define the unit pascal (abbreviation Pa) as 1 N/m2. The pascal is the basic
SI unit of pressure, although the bar (100,000 Pa) and atmosphere (1.01325 bar)
are commonly used.

Example 19.1
For 1 mole of He gas, a volume of 25.00 L of gas exerts a pressure of
0.8770 bar. What is the average velocity of the helium atoms in the system?

Solution
We can substitute the various values directly into the expression in equation
19.8, recognizing that the product of the variables N � m is the molar mass of
He, or 0.004003 kg (in standard units), and that 25.00 L is 25.00(0.001/1) �
0.02500 m3 (again, in standard units):

87,700 �
m

N
2� �

Since 1 N � 1 kg�m/s2, we have

87,700 �
m

k

�

g

s2� ��
(0

3

.0

(

0

0

4

.0

0

2

0

5

k

00

g)

m

(v
3

2
a

)
vg)

�

The various units cancel to give us

1.643 � 106 �
m

s2

2

� � v2
avg

(0.004003 kg)(v2
avg)

���
3(0.02500 m3)

19.2 Postulates and Pressure 655

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Solving, we find that

vavg � 1282 �
m

s
�

or more than 1 km per second. This is a substantial velocity in terms of per-
sonal experience, but not for atoms in the gas phase. Notice that we have con-
verted all units to standard units so that they would cancel.

There is also a simple relationship between the pressure of a monatomic gas
and its kinetic energy, which can be considered solely as energy of translation.
(We are ignoring electronic and nuclear energies, as we did in our original dis-
cussion of partition functions of monatomic gases.) Since the classical expres-
sion for kinetic energy is

kinetic energy � �
1
2

�mv2

we can suggest the following analogous equation for the average kinetic energy
of the gas particles:

Eavg � �
1
2

�m � v2
avg (19.9)

Substituting for mv2
avg in equation 19.8, we find that

p � �
2N

3

E

V
avg�

Rewriting this by bringing the volume variable over to the other side, we have

pV � �
2
3

�NEavg (19.10)

This is beginning to look like part of the ideal gas law. In fact, if we relate equa-
tion 19.10 to the ideal gas law, which says that pV � nRT, we find that

NEavg � �
3
2

�nRT

Finally, if we are considering 1 mole of an ideal gas, N is Avogadro’s number
and NEavg is a molar energy, E�. The variable n in the above equation is 1 mole,
so we have for an ideal gas

E� � �
3
2

�RT (19.11)

where we have defined NA � Eavg as E�, the molar energy of the gas. In Chapter 17,
when we considered the translational energy of a monatomic gas, we found that

E � �
3
2

�NkT

For 1 mole of gas, N � NA. Equating the two equations for energy, we find that

R � NAk (19.12)

which shows the relationship between Boltzmann’s constant and the ideal gas
law constant.

19.3 Definitions and Distributions 
of Velocities of Gas Particles

In the previous section, we were able to relate the average velocity of a sample
of ideal gas to the pressure of that gas. So far, we have not defined what we
mean by “average velocity.”

Actually, there are several ways to define this quantity. First of all, the kinetic
theory of gases does not make any presumption about the velocity of any par-
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ticular gas particle; it could be anything. This does not imply that all possible
velocities will exist in any gas sample at equal proportions! For example, the
velocities of gas particles could be anywhere between zero and the speed of
light. The naive presumption would be that the average velocity is (0 � c)/2 �
�
1
2

�c (where c represents the speed of light in a vacuum). This is clearly not the
case, as illustrated by the answer in Example 19.1 above.

In the following discussion, we sometimes use the terms “speed” and “ve-
locity” interchangeably. This is because in such cases we are interested more in
the magnitude of the quantity, not the direction. However, in cases where di-
rection is important to the discussion, it is pointed out explicitly.

There are several ways of defining an “average” speed, and there are also
ways of determining the distribution of speeds of gas particles in any sample.
First, let us consider the use of average speed from the previous section. We
have two expressions for the kinetic energy of a gas; they are

E� � �
3
2

�RT and NAEavg � NA � �
1
2

�m � v2
avg

(The second equation comes from multiplying equation 19.9 by Avogadro’s
number.) Equating the two expressions for the molar energy of the gas,

�
3
2

�RT � NA � �
1
2

�mv2
avg � �

1
2

�(NA � m) � v2
avg

Since (NA � m) is the molar mass of the gas, we will use M to define the mo-
lar mass and rewrite the above equation as

�
3
2

�RT � �
1
2

�M � v2
avg

We can algebraically rearrange this to solve for vavg. Because we are going to be
taking the square root of the square of the average (or “mean”) speed, we de-
fine this average speed as the root-mean-square speed, or vrms. We get

vrms � ��
3

M

RT
�� (19.13)

This is one way to define an average speed.

Example 19.2
What is the temperature of the He sample in Example 19.1 if the answer is
considered to be vrms?

Solution
The velocity in Example 19.1 was 1282 m/s. Using standard units for all quan-
tities, we have

1282 �
m

s
� �  �

Notice that we have expressed the mass of the gas in kilogram units. This is
necessary for the units to work out properly. We need to decompose the unit
J into kg�m2/s2; when we do this, the expression above becomes

1282 �
m

s
� � �6235.5� � T �

s

m
2��K

2

��
1.6435 � 106 �

m

s2

2

� � 6235.5 � T �
s

m
2�K

2

�

3 � 	8.314 �
mo

J

l�K
�
 � T

���
0.00400 �

m

kg

ol
�
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Canceling all the units but kelvins and solving for T:

T � 264 K

The appropriate units for each variable should be used so that everything
cancels properly, leaving kelvins as the only remaining unit.

A root-mean-square speed for gas particles is easy to define but should not
obscure a key point: gas particles do not all move at the same speed. Also, as
implied at the beginning of this section, not all possible speeds are equally
probable. Rather, there is a particular distribution of different gas speeds in any
sample. What is the mathematical expression that gives us the distribution of
gas speeds?

We start by pointing out that if each dimension is independent, then we can
consider distribution functions for each dimension separately. In the x, y, and
z dimensions, we can define distribution functions (which are also probability
functions) gx(vx), gy(vy), and gz(vz), in which each function focuses on only one
of three dimensions. In terms of these functions, the probability of any gas par-
ticle having a particular three-dimensional velocity is the product of the one-
dimensional probabilities. That is,

probability � gx(vx) dvx � gy(vy) dvy � gz(vz) dvz (19.14)

If these probability functions are in fact functions of velocities, then the pos-
sible range is �� → ��, since we must consider direction as well as magni-
tude. We will require that each individual probability function sum up to 100%
over the entire range of the variable. For the x dimension, this is written math-
ematically as

�
�

vx���

gx(vx) dvx � 1 (19.15)

and similar expressions can be written for gy and gz.
A common way to determine the form of the functions represented by

equation 19.15 is to understand that if the three dimensions can be considered
equivalent, then the overall three-dimensional probability is a function of the
overall three-dimensional velocity. If we use the symbol 	(v) to indicate the
three-dimensional probability function, then this statement implies that

gx(vx) � gy(vy) � gz(vz) � 	(v) (19.16)

In the left side of equation 19.16, the three one-dimensional probability func-
tions are multiplied together to get the overall three-dimensional probability,
but the right side implies that this product must be some function of the three-
dimensional velocity v. Furthermore, we know a relationship between the over-
all velocity and its components:

v2 � vx
2 � vy

2 � vz
2 (19.17)

We focus on a single dimension, the x dimension, and determine the func-
tion gx(vx). If we were to take the derivative of equation 19.16 with respect to
vx, we would still have an equality. The problem is that the left side and the
right side of equation 19.16 are written in terms of different variables. However,
calculus has something called the chain rule, and equation 19.17 gives us a re-
lationship between v and vx, the two variables of interest here. Taking the de-
rivative of each side of equation 19.16 with respect to vx:
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�

[g



x

v

(v

x

x)]
� � gy(vy) � gz(vz) � �


[	


v

(

x

v)]
�

�

[g



x

v

(v

x

x)]
� � gy(vy) � gz(vz) � �


[	




(

v

v)]
� � �







v

v

x

� (19.18)

The right side of the second equation shows the influence of the chain rule.
The left side of the equations above show that the derivative applies only to
the gx function, since it is the only one of the three functions that depends
on vx.

It turns out that we can determine an expression for 
v/
vx using equation
19.17 and determining the total derivative of v:

v2 � vx
2 � vy

2 � vz
2

d(v2) � d(vx
2 � vy

2 � vz
2)

2v dv � 2vx dvx � 2vy dvy � 2vz dvz

In terms of partial derivatives, since all other variables are kept constant, we
have dvy � dvz � 0; therefore,

2v dv � 2vx dvx

�






v

v

x

� � �
v

v
x� (19.19)

This is the desired result. Substituting into equation 19.18, we have

�

[g



x

v

(v

x

x)]
� � gy(vy) � gz(vz) � �


[	




(

v

v)]
� � �

v

v
x�

Using standard calculus notation, we will use a prime to indicate a derivative
with respect to a variable. The above equation becomes, more succinctly,

gx�(vx) � gy(vy) � gz(vz) � 	�(v) � �
v

v
x�

If we divide the above equation by gx(vx) � gy(vy) � gz(vz) � 	(v), we can can-
cel terms on the left and rearrange the variables to get

�
v

1

x

� � �
g

g
x

x

�

(

(

v

v

x

x

)

)
� � �

1

v
� � �

	

	

�

(

(

v

v

)

)
� (19.20)

If we did the same analysis for gy or gz, we would get a similar expression, only
with different subscripts on the left side.

Equation 19.20 is interesting. All of the terms in vx are on one side of the
equation, and all of the terms in v are on the other side of the equation. If
one side of the equation is independent of one variable and the other side of
the equation is independent of the other variable, then neither side depends
on either variable; that is, the expression on each side equals a constant. Using
K to represent this constant, we have

�
v

1

x

� � �
g

g
x

x

�

(

(

v

v

x

x

)

)
� � �

1

v
� � �

	

	

�

(

(

v

v

)

)
� � K (19.21)

Understand that this does not mean that v and vx do not vary, just that the
particular combination of the functions on each side of equation 19.20 does
not vary. Understand also that if we performed this analysis for the other two

19.3 Definitions and Distributions of Velocities of Gas Particles 659

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



dimensions, we would get the same conclusions for y and z, and so we also have
two other relationships with the same constant K:

�
v

1

y

� � �
g

g
y

y

�

(

(

v

v

y

y

)

)
� � K and �

v

1

z

� � �
g

g
z

z

�

(

(

v

v

z

z

)

)
� � K (19.22)

Solving any one expression therefore gives us an understanding of all four
(including 	). Let us confine ourselves to the x dimension. We want to know
what functions satisfy the expression

�
v

1

x

� � �
g

g
x

x

�

(

(

v

v

x

x

)

)
� � K

where K is some constant. To simplify the understanding of the derivation, let
us rewrite gx� explicitly as the derivative with respect to vx:

�
v

1

x

� � � K

We can rearrange this expression by collecting all terms in gx, including the dif-
ferential, on one side and all terms in vx itself, including its differential, on an-
other side. We get, leaving the variable labels off the function gx:

�
d

g

g

x

x� � Kvx � dvx

We integrate both sides of this equation, remembering to include an integra-
tion constant (because we are not integrating between specific limits). The in-
tegral on the left side is simply ln gx, the natural logarithm of the function gx.
The integral on the right side is a simple power function. Because we are try-
ing to isolate a form for gx, we will put the integration constant on the right
side of the equation with the vx terms. We get

ln gx � �
1
2

�Kvx
2 � C

where C is some arbitrary integration constant (whose value will be deter-
mined later). Taking the inverse logarithm of both sides, we have a preliminary
form for gx:

gx � e(1/2)Kvx
2�C � e(1/2)Kvx

2

� eC (19.23)

That is, the distribution function gx is an exponential function involving the
square of the velocity. Since eC is just some constant, we can define eC as the
constant A and write equation 19.23 as

gx � Ae(1/2)Kvx
2

(19.24)

All that remains are two issues. First, we point out that the above derivation
is also applicable to the y and z dimensions, so we can also say that

gy � Ae(1/2)Kvy
2

gz � Ae(1/2)Kvz
2

The constants A and K are the same for all three equations, since we are as-
suming that each dimension is equivalent. Second, we need to determine what
A and K are. It turns out that they are related. For starters, remember that
equation 19.15 requires that

�
�

vx���

gx(vx) dvx � 1

�

g



x

v

(v

x

x)
�

�
gx(vx)
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Using the form of gx in equation 19.24, this means that

�
�

vx���

Ae(1/2)Kvx
2

dvx � 1

We can use the table of integrals in Appendix 1 to show that

A � 	�
�

2�

K
�


1/2

(19.25)

A complete understanding of gx—and by extension, the entire three-dimensional
probability function—depends on determining the constant K.

To determine K, we first use the idea that the velocity in each dimension is
equivalent, that is, the average squared velocity in the x dimension is equal to
the average squared velocity in the y dimension, which is equal to the average
squared velocity in the z dimension:

v2
avg,x � v2

avg,y � v2
avg,z

(We used this idea in the derivation of equation 19.8.) Since the average ki-
netic energy of a single gas particle is

Eavg � �
1
2

�m � v2
avg

we can use the definition of the average squared velocity to get

Eavg � �
1
2

�m(v2
avg,x � v2

avg,y � v2
avg,z)

or, by using the equivalence of the velocity components:

Eavg � �
3
2

�m � v2
avg,x

where we are arbitrarily using the x component of the average squared veloc-
ity. Comparing this with equation 19.11:

Eavg � �
3

2
�m � v2

avg,x � �
N

1
� � �

3

2
�RT

If N were Avogadro’s number of particles, the above equation would give us

�
3
2

�m � v2
avg,x � �

3
2

�kT

(where we have taken advantage of the relationship between R and k).
Rearranging, we get

v2
avg,x � �

k

m

T
� (19.26)

which we can use to determine the constant K.
In finding K, we use an idea that we developed in statistical thermodynamics

about how to calculate an average value for a variable. Recall the definition of
an average value as defined in equation 17.3:

possible

u� � (19.27)

where uj is the particular value of the variable u, Pj is the probability that this
particular value shows up in a group of values, and u� represents the average
value of the variable u. (See the problem worked out near the end of section

�
values

j�1

uj � Pj

��
�

j

Pj
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17.2 for an example of how to use this formula.) For a well-behaved probabil-
ity function, the summation of all probabilities, �

j
Pj in the denominator,

equals 1, so equation 19.27 becomes

possible

u� � �
values

j�1

uj � Pj

Finally, for a function that can have many possible values which are ex-
pressed by a smoothly varying probability function, the above summation can
be replaced with an integral, so we have

u� � �
max

min

uj � Pj du (19.28)

Equation 19.28 was derived using the same conditions describing the distrib-
ution of gas velocities. Therefore, we can use equation 19.28 to set up an inte-
gral for the average squared velocity in the x dimension. The variable is vx

2, and
the probability function Pj is given by equation 19.24 with the subsequent de-
termination of the pre-exponential constant A. Substituting into equation
19.28, we have for the average squared velocity:

v2
avg,x � �

��

��

vx
2 � 	�

�

2�

K
�


1/2

� e(1/2)Kvx
2

dvx (19.29)

Since equation 19.29 is an even function of the variable vx, we can divide the
range in half, from 0 to �� rather than �� to ��, and multiply the value
of that integral by 2. Therefore,

v2
avg,x � 2	�

�

2�

K
�


1/2 ���

0
vx

2 � e(1/2)Kvx
2

dvx (19.30)

where all constants have been removed to outside the integral. The integral in
equation 19.30 has a known form; from Appendix 1, we use ��

0
x2e�bx2/2 dx

(where in equation 19.30, x � vx) equals �1/2/[21/2(�K)3/2]. Substituting into
equation 19.30:

v2
avg,x � 2	�

�

2�

K
�


1/2

�
21/2(

�

�

1/

K

2

)3/2� which must equal �
k

m

T
�

where the last part is taken from equation 19.26. Most of the terms on the K
side cancel. Solving:

�
�

1

K
� � �

k

m

T
�

K � ��
k

m

T
� (19.31)

We therefore have for the distribution function gx:

gx � 	�2�

m

kT
�


1/2

e�mvx
2/2kT (19.32)

Similar one-dimensional distribution functions are easily written for gy and gz.
Equation 19.32, and the two parallel functions for the y and z dimensions,

do not directly give the three-dimensional probability function. We have de-
fined the product of the three unidimensional probabilities as 	:

	(v) � gx(vx) � gy(vy) � gz(vz)
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This is the probability function for the velocities of gas molecules in three
dimensions.

If we want to focus on the scalar part of the velocities of the gas species, we
do not include the fact that velocity as a vector can be positive or negative. We
will get a slightly different probability distribution function. This function,
labeled G(v), also has a normalization requirement:

�
�

0

G(v) dv � 1

In this case, the integration limits are 0 to �, rather than �� to ��. Also, be-
cause the magnitude of any velocity vector is independent of its direction, each
value in G(v) actually represents a spherical shell of possible velocity vectors,
as demonstrated in Figure 19.3. There is thus a 4�v 2 component as part of the
infinitesimal. (This is akin to the argument used to get a physically useful de-
scription for the 1s wavefunction for the hydrogen atom.) Using the linear
probability functions gx, gy, and gz, we get

G(v) dv � 	�2�

m

kT
�


1/2

e�mvx
2/2kT	�2�

m

kT
�


1/2

e�mvy
2/2kT	�2�

m

kT
�


1/2

e�mvz
2/2kT � 4�v2 dv

This equation simplifies by collecting the exponential terms and writing them
as an exponential of the square of the overall velocity, and also by collecting
the (m/2�kT)1/2 terms. We get

G(v) dv � 4�	�2�

m

kT
�


3/2

v2 � e�mv2/2kT dv (19.33)

This three-dimensional probability distribution function of the velocity mag-
nitudes is called the Maxwell-Boltzmann distribution. It can be plotted versus
velocity (much like the Planck distribution of light intensity can be plotted ver-
sus wavelength). This distribution depends on the mass of the gas particle and
the (absolute) temperature. Figure 19.4 shows various plots for different gases
at different temperatures. This expression is a special case of the Maxwell-
Boltzmann distribution mentioned in statistical thermodynamics, where the E
in the exponential refers to the kinetic energies of the particles moving in three
dimensions.
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Figure 19.3 In three dimensions, any infini-
tesimal change in velocity is represented by a
spherical shell about the origin. Therefore, the in-
finitesimal for integrating G(v) from 0 to � must
take the spherical symmetry into account.

Figure 19.4 Distributions of speeds for various gases. Note how the curve for H2 is shifted to
higher velocities at 500 K. These curves are collectively called Maxwell-Boltzmann distributions.
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Now that the probability distribution function has been found, different
“average” speeds can be defined. For example, each plot in Figure 19.4 peaks
at some maximum, implying that there is some speed that has the highest pop-
ulation among the gas particles at any particular temperature. We can find an
expression for this most probable speed by taking the derivative of equation
19.33 with respect to v, setting the derivative to zero (because the slope at a
maximum is equal to zero), and solving for the velocity at this maximum
point. We get

vmost prob � 	�
2

m

kT
�


1/2

(19.34)

where m is the mass of a single gas particle. In molar quantities, this equation is

vmost prob � 	�
2

M

RT
�


1/2

� ��
2

M

RT
�� (19.35)

where M is the molar mass of the gas particles.

Example 19.3
What is the most probable speed of He atoms if the gas temperature is 
264 K? (Notice that this is the temperature calculated from Example 19.2.)

Solution
Using the molar mass of He (in kg units) and equation 19.35:

vmost prob � � �1/2

After decomposing the J unit into its base units, we have

vmost prob � 	1,097,448 �
m

s2

2

�

1/2

vmost prob � 1048 m/s � 1.048 � 103 m/s

The most probable speed is always a little lower than the root-mean-square
speed, as a comparison between equations 19.13 and 19.35 shows. Both defin-
itions of average speeds have only the mass of the particle and the absolute
temperature of the gas as variables. The other terms are constants.

Finally, now that we have a distribution function G(v) for the velocities, we
can determine another average speed. Again, we will use equation 19.28, from
statistics, to determine another average value for the speed. Using the idea that

u� � �
max

min

uj � Pj du

we will use G(v) as our probability function Pj and v, the velocity, for the vari-
able uj. The average (or mean) speed, v�, is found by solving the expression

v� � �
�

v�0

v�4�	�2�

m

kT
�


3/2

� v2 � e�mv2/2kT� dv

2	8.314 �
mo

J

l�K
�
(264 K)

���
0.00400 �

m

kg

ol
�
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Again, this integral can be evaluated using the integral table in Appendix 1. We
find that

v� � 	�
8

�

k

m

T
�


1/2

� 	�
8

�

R

M

T
�


1/2

� ��
8

�

R

M

T
�� (19.36)

where again m is the mass of a single gas particle and M is the molar mass of
the gas sample. This definition of an average speed also varies only with the
mass of the particle and the absolute temperature of the gas.

Example 19.4
Consider a sample of Ar gas. Determine the temperature of the gas if the fol-
lowing velocities were equal to 500.0 m/s:
a. vrms

b. vmost prob

c. v�
d. Do the relative temperatures meet expectations?

Solution
We will need to solve for temperature using each of the expressions for the
average velocity.
a. For vrms, we have

500.0 �
m

s
� � �
T � 400.4 K

b. For vmost prob, we have

500.0 �
m

s
� � �
T � 600.6 K

c. For v�, we have

500.0 �
m

s
� � �
T � 471.7 K

d. These results show that the most probable speed requires the highest tem-
perature, and the average and root-mean-square speeds require lower tem-
peratures to have the same value for the “average.”

Figure 19.5 shows a plot of the probability distribution function of Ar gas
at the same temperature, 500 K. On the plot, the vrms, vmost prob, and v� values
are marked. The relative ordering of average speeds is similar for all gases, and
illustrates the slightly different definitions for each of these quantities. What

8	8.314 �
mo

J

l�K
�
 � T

���
�	0.03995 �

m

kg

ol
�


2	8.314 �
mo

J

l�K
�
 � T

���
0.03995 �

m

kg

ol
�

3	8.314 �
mo

J

l�K
�
 � T

���
0.03995 �

m

kg

ol
�
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this plot should point out is that there is no single useful definition of an
“average speed” of gas particles, and care should be taken to specify exactly
which one is used in any situation.

19.4 Collisions of Gas Particles
One of the statements that define the kinetic theory of gases is that the gas par-
ticles are constantly colliding with each other, and during the course of these
collisions, the overall energy is conserved. The kinetic theory of gases allows us
to understand some of the characteristics of these collisions. In order to un-
derstand these characteristics, we need to define some parameters of the gas
particles themselves.

For a pure gas, we will assume a hard-sphere model. In this model, each gas
particle is treated as a spherical particle having a specific radius within which
no other gas particle can penetrate. (The best analogy might be to think of gas
particles as croquet or billiard balls.) This is illustrated in Figure 19.6. Each gas
particle has a radius labeled r, and because each particle is rigid, the nearest
that the centers of two particles can approach is twice the radius, or the diam-
eter d. (This is labeled in Figure 19.6.) Because the particles are hard spheres,
the presumption is that no two particles can ever get their two centers closer
than 2r � d to each other. One way of writing this is by defining a potential
energy V between any two gas particles:

V � 0 if distance between centers is greater than 2r (that is, no inter- 
action occurs)

V � � if distance between centers is less than 2r (not physically possible)

In terms of interparticle collisions, we would like to be able to know three
things: the number of collisions any one particle experiences in a given time,
the average distance between such collisions, and the net rate of travel of any
gas particle through space. The first and second quantities are useful to people
studying gas-phase chemical reactions (occurring, for example, in the atmo-
sphere or in space or at high temperatures), and the last quantity is useful for
understanding the concepts of diffusion and effusion of gas particles.
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Figure 19.5 In the Maxwell-Boltzmann distribution for argon gas at 500 K, the marks show
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Figure 19.6 In the hard-sphere model of gas
particles, each particle is defined as having an im-
penetrable radius r. Two times r, or the diameter
d, is a parameter that will be used in understand-
ing the behavior of gas particles.
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Suppose we consider a sample of a pure gas. (We will consider gas mixtures
later, briefly.) How often does any one gas particle collide with other gas par-
ticles, and how far does the particle travel between collisions? We can answer
these questions by considering the hypothetical situation of one gas particle
moving while all other particles are stationary. As the moving particle P travels
through space, it will collide with any gas particle whose center gets within 2r
(twice the radius) of the center of particle P. This is illustrated two-dimensionally
in Figure 19.7. In three dimensions, the path of particle P sweeps out a cylin-
der of space, and any other particle whose center is in that space will collide
with particle P. The radius of that cylinder, which is equal to twice the radius
(2r) or the diameter (d) of the particle, is called the collision diameter of the
particle. In three dimensions, the cross section of this cylinder is a circle whose
area is �d2; this area is called the collision cross section of the gas particle.

Exact distances between colliding particles may be long or short (on the
atomic scale), but let us assume that there is some average distance a particle
travels between collisions. We call this average the mean free path (because it is
the average—or mean—distance that the particle is “free” and not colliding
with any other particle) and give it the symbol . The average volume of the
cylinder that is swept out by particle P between collisions is equal to the area
of the cylinder (the collision cross section) times its length (the mean free
path):

average volume between collisions �  � �d 2 (19.37)

But if we have N total number of atoms in some given volume V, then the av-
erage volume per particle is V/N. Over any macroscopic time scale, these aver-
age volumes must be equal:

�
N

V
� �  � �d2

This lets us solve for the mean free path between collisions as

 � �
�N

V

d2� (19.38)

This equation actually provides an estimate for the mean free path, since equa-
tion 19.37 considers a cylindrical volume swept out by travel in one dimension,
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2r

2r

Figure 19.7 In two dimensions, a gas particle P sweeps out an area, colliding with any other
gas particle whose center is within 2r (2r � d) of the center of particle P. In this figure, P will
collide with three other gas particles, but two additional gas particles will remain untouched by
P. In a real gas, a cross-sectional area of �d2 is swept out as particle P travels through space.
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whereas the average volume V/N is more of a three-dimensional average vol-
ume. However, equation 19.38 gives us an idea of how far any one gas particle
will travel on average before colliding with another gas particle. If we use the
ideal gas law to substitute for volume (V � NkT/p) in equation 19.38, we get

 � �
�

k

d

T
2p
� (19.39)

This expression for  shows how the mean free path varies with other observ-
able values of a gas. At higher temperatures (with everything else in equation
19.39 remaining constant),  increases. This is consistent with our understand-
ing that if the temperature increases at constant p, the volume of the gas must
increase, meaning that there will be more room between individual gas particles.
If the pressure increases (with everything else in equation 19.39 remaining con-
stant),  must decrease. Again, this is consistent, since an increase in pressure will
force the gas particles closer together (that is, the volume will decrease) and in-
dividual gas particles will collide more frequently and over a shorter distance.

Example 19.5
Assume that the hard-sphere radius of a krypton atom is 1.85 Å. Estimate the
mean free path of krypton atoms at 20.0°C and 1.00 bar pressure.

Solution
Recall that 1 Å equals 10�10 m. Since the diameter is twice the radius, we will
use d � 3.70 Å � 3.70 � 10�10 m. Setting up the variables in equation 19.39,
we have

 � �
�

k

d

T
2p
� �

The units don’t automatically work out; instead, we must remember that 
100 J � 1 L�bar, and that a liter is defined as (0.1 m)3. Adding these conver-
sion factors:

 � � �
1

1

L

0

�

0

ba

J

r
� � �

(0.

1

1

L

m)3

�

Now the units work out properly, and we calculate  as

 � 9.41 � 10�8 m � 941 Å

In this case, an average krypton atom travels nearly 300 times its diameter be-
fore it collides with another atom. This would be equivalent to a pool ball
traveling the length of about 10 pool tables before it struck another ball (on
average).

Mean free paths are estimates: they are derived using average values, and
they assume that a gas particle is a hard sphere, although many gas molecules
aren’t even spherical. But mean free paths do provide useful quantitative val-
ues for understanding how gas particles interact.

Example 19.6
Assume that a nitrogen molecule acts as a hard sphere with radius 1.60 Å. If
you have a vacuum chamber that is 1.00 m on a side, what pressure would it

(1.381 � 10�23 J/K)(293.15 K)
����
�(3.7 � 10�10 m)2(1.00 bar)

(1.381 � 10�23 J/K)(293.15 K)
����
�(3.70 � 10�10 m)2(1.00 bar)
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have to be pumped down to in order that a nitrogen molecule has a reason-
able chance of not colliding with another nitrogen molecule going from one
side to the other (that is, the mean free path is 1.00 m)? Assume a tempera-
ture of 22.0°C.

Solution
If the radius of the molecule is 1.60 Å, then the diameter d is 3.20 Å. The
question is essentially asking what pressure is necessary for a mean free path
of 1.00 m. Using equation 19.39:

1.00 m �

Again, in order for the units to work out properly, several conversion factors
must be applied (see Example 19.5):

1.00 m � � �
1

1

L

0

�

0

ba

J

r
� � �

(0.

1

1

L

m)3

�

1.00 � � �
1

1

b

0

a

0

r
� � �

(0.

1

1)3

�

Solving for p:

p � 1.27 � 10�7 bar

This pressure, about one ten-millionth of an atmosphere, is easily obtainable
in the laboratory (using oil diffusion pumps, for example).

Now that we know roughly how far a gas particle typically travels between
collisions, we can determine an average collision frequency, which tells us about
how many times a gas particle comes in contact with another gas particle each
second. Collision frequency is a useful concept to apply to gas-phase chemical
reactions. We will start with a simple estimate from classical mechanics. Using
the definition

average speed � �
di

t

s

i

t

m

an

e

ce
�

we can use the mean free path as our distance and one of the definitions of
average speed defined earlier in this chapter. A frequency is usually defined as
the reciprocal of time. In this case, “frequency” is interpreted as the number of
collisions per second, so it will have units of s�1. Using the average speed v�, we
apply the definition of average velocity from equation 19.36 and the mean free
path from equation 19.38 to get an average collision frequency z:

z � �


v�� � � (19.40)

If we recognize that the fraction N/V is the density � of gas (in units of num-
ber of gas particles per m3, or 1/m3), then we can substitute for V and N in
equation 19.40 to get

z �
��d28kT�
��

�m�

�Nd28kT�
��

V�m�
	�

8

�

k

m

T
�


1/2

�
�
�N

V

d 2�

(1.381 � 10�23)(295.15)
���
3.14159(3.20 � 10�10)2 � p

(1.381 � 10�23 J/K)(295.15 K)
����

�(3.20 � 10�10 m)2 � p

(1.381 � 10�23 J/K)(295.15 K)
����

�(3.20 � 10�10 m)2 � p

19.4 Collisions of Gas Particles 669

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



This expression can be made more accurate by recognizing that a collision
of two masses m involves the motion of two particles with respect to each other.
As with any such motion, we should consider the reduced mass � of the par-
ticles involved, not the absolute mass m. For any two equivalent masses m, the
reduced mass is m/2. (Show this.) Therefore, substituting m/2 for m in the
above expression, we get a more realistic equation for the average collision fre-
quency:

z � (19.41)

The total number of collisions per second per unit volume, symbolized by
Z, is related to z times the density of the gas. However, simply multiplying z
and � counts all collisions for all particles. This overcounts the total collisions
by 2, since each collision represents a collision of two particles. Including a fac-
tor of �

1
2

� to make up for this overcounting, we have for Z:

Z � �
1

2
� � z � � � (19.42)

The 2 from the �
1
2

� term cancels with 16� in the numerator to leave 4�, which
equals 2. Because the density unit here is 1/m3, the units on Z are 1/s�m3.

Example 19.7
Xenon has a very large hard-sphere diameter of 4.00 Å. For a 1-mole sample
of Xe gas with a volume of 0.02271 m3, at conditions of 1.000 bar and 
273.15 K, determine the following:
a. The average collision rate
b. The total collision rate per cubic meter
c. The total collision rate

Solution
This example asks for z, Z, and Z times the total volume (to get a collision
rate for all of the gas particles in the sample). The density � is (6.02 � 1023

molecules)/(0.02271 m3) � 2.65 � 1025 m�3 and the mass of a xenon atom
is (0.1313 kg)/(6.02 � 1023) � 2.181 � 10�25 kg.
a. We get

2��2d2 � kT�
��

�m�

��d216kT�
��

�m�
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z �
�(2.65 � 1025 m�3)(4.00 � 10�10 m)216(1.3�81 � 1�0�23 J/�K)(273�.15 K)�
��������

� � 2.1�81 � 1�0�25 k�g�

Consider the units in the radicals in both the numerator and denominator:
they reduce to J�/kg�, and upon decomposing the unit J into more funda-
mental units, become kg�m2/�s2�/kg� � m2/s2� � m/s. All of the meter
units in the numerator cancel, leaving s�1 as the only remaining unit (as it
should be for a frequency).

z � 3.95 � 109 s�1

or almost 4 billion collisions per second.
b. The total collision rate per unit volume is therefore

Z � �
1
2

� � z � � � �
1
2

�(3.95 � 109 s�1)(2.65 � 1025 m�3)

Z � 5.23 � 1034 m�3�s�1

which says that in every cubic meter of sample, 5.23 � 1034 collisions occur
per second.
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c. However, our volume is only 0.02271 m3. The total number of collisions
occurring in 1.000 mol of Xe is therefore

5.23 � 1034 m�3�s�1 � 0.02271 m 3 � 1.19 � 1033 s�1

This total number of collisions is roughly equal to NA gas particles (that is,
1 mole) having four billion collisions per second. (Verify this by multiplying
those two quantities together—and don’t forget the factor of 2!)

If two different gases are present in a sample, then the number of collisions
of any particular gas particle can be divided into collisions with like particles
and collisions with different particles. We can therefore define a mean free path
between collisions of unlike particles as well as a collision rate between unlike
particles. For two particles P1 and P2 that have diameters d1 and d2 (see Figure
19.8) and masses m1 and m2, we give (but do not derive) the mean free path
for a P1 particle hitting a P2 particle, labeled 1→2:

1→2 � ��
m1

m

�
2�m2

�� (19.43)

where N2 is the number of particles of gas P2. Since N2/V is the density of P2

gas particles, we can rewrite this expression in terms of the density �2:

1→2 � ��
m1

m

�
2�m2

�� (19.44)

Similarly, we can define a collision rate for a P1 particle hitting a P2 particle,
labeled z1→2:

z1→2 � (19.45)

where �12 is the reduced mass of the two particles:

�12 � �
m

m

1

1

�

� m

m

2

2

� (19.46)

(Because m1 and m2 are different, we cannot use m/2 here as we did for equa-
tion 19.41.) Mean free paths and collision rates for P2 hitting P1 are found by
simply exchanging the subscripts 1 and 2 where they appear in equations
19.43–19.45. The total number of collisions per second per unit volume can be
determined from equation 19.45 and its counterpart:

Z1→2 � (19.47)

Use of these expressions is left for the end-of-chapter exercises.

19.5 Effusion and Diffusion
An understanding of how gas particles travel within the gas sample itself helps
us understand the effusion and diffusion of gases. Effusion is the passage of gas
particles through a barrier (like a small hole) into a different region where no

��1�2	�d1 �

2

d2�

2

8kT�
���

��12�

��2	�d1 �

2

d2�

2

8kT�
���

��12�

1
��
�	�d1 �

2

d2�

2

�2

V
��
�	�d1 �

2

d2�

2

N2
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d2

P2

P1

d1

Figure 19.8 If the gas particles involved in the
collision are of different types, then two different
masses and diameters enter into the equation for
collision frequencies.
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particles (and usually no gas of any sort) existed previously. It is usually a slow
process, so that the concentration of gas particles in the original system is ap-
proximately constant. Diffusion is the passage of gas particles (or solute species,
if in solution) from one part of a system to another due to unequal concen-
trations of that gas within the system, with the total pressure constant in the
system (that is, the transport isn’t due to pressure gradients). Figure 19.9 illus-
trates the difference.

Effusion can be understood if we consider the velocity of the gas particles
in one dimension. We start by pointing out that the effusion rate must be pro-
portional to the average velocity in that dimension, since we expect that the
faster the gas particles are traveling, the faster they can escape out of a hole in
the system. This idea can be written mathematically as

rate of effusion � vavg

We have already determined a probability density function that describes
the distribution of velocities among the gas particles. It was, for the x di-
mension,

gx � 	�2�

m

kT
�


1/2

e�mvx
2/2kT

If we want to know the number of gas particles that are passing through some
small hole with area A per second (represented as dN/dt), then we need to de-
termine the number of gas particles that are approaching the hole from one di-
rection. This restriction implies that for a chamber filled with gas particles,
these particles are slowly leaking out of the chamber but not back into the
chamber. (See Figure 19.9a.) If we arbitrarily assign the direction toward the
hole in the chamber as the positive direction, the average velocity of the par-
ticles approaching the hole is

average velocity �  �
�

vx�0

vx 	�2�

m

kT
�


1/2

e�mvx
2/2kT � dvx (19.48)
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Barrier
closed

(b)

Barrier
open

(a)

Figure 19.9 (a) Effusion is the movement of
gas particles from a system into the surroundings,
usually through a small hole or holes. Typically,
the surroundings are deficient in gas particles,
and effusion is usually so slow that the pressure
of the gas inside the system can be considered
constant. (b) Diffusion is the movement of gas
particles within a system and is caused by con-
centration differences. For example, two gases
may be separated by a partition, but after that
partition is lifted the two gases will diffuse and
ultimately will become thoroughly mixed.
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This integral has a known form and can be simplified.* We get

average velocity � 	�2
k

�

T

m
�


1/2

(19.49)

Thus we have

rate of effusion � �
d

d

N

t
� � 	�2

k

�

T

m
�


1/2

The only other factors involved are the number (density) of gas particles in the
system, N/V or �, and the area A that the gas particles are actually passing
through. Both factors are directly related to the effusion rate: as either in-
creases, the effusion rate increases. We can therefore write

�
d

d

N

t
� � A�	�2

k

�

T

m
�


1/2

(19.50)

as the rate of effusion of gas particles through an area A. Using the ideal gas
law pV � NkT, we can substitute for N/V and get

�
d

d

N

t
� � A�

k

p

T
�	�2

k

�

T

m
�


1/2

which simplifies to

�
d

d

N

t
� � Ap	�2�m

1

kT
�


1/2

(19.51)

Curiously, a part of this expression is very similar to part of the translational
partition function of a monatomic gas, and is proportional to the thermal de
Broglie wavelength (see Chapter 17).

Example 19.8
Iron metal is confined to a small cell that has a small hole of 0.5 mm diameter.
At a temperature of 2050 K, the vapor pressure of the Fe inside the cell is 
1.00 mmHg. Estimate the number of atoms of Fe that effuse through the hole
per second.

Solution
As with many of these examples, having consistent units is important. The
area of the hole is �[(0.5 mm)/2]2, or 0.196 mm2, which is 1.96 � 10�7 m2.
A pressure of 1.00 mmHg should be converted to pascals (1 Pa � 1 N/m2 �
0.00750 mmHg), making it 133 Pa. Using the mass of a single Fe atom:

19.5 Effusion and Diffusion 673

*Specifically, one would perform a substitution and recognize the resulting integral as
the form

�
�

0

xne�ax p

dx � �
	

p

(

a

k
k

)
� 	k � �

n �

p

1
�


	(k) is called a gamma function and is a well-known mathematical function. By definition,
	(1) � 1. Apply this formula to equation 19.48 and see if you can get equation 19.49. Do
not confuse this use of the gamma variable with the three-dimensional probability function!

�
d

d

N

t
� � (1.96 � 10�7 m2)	133 �

m

N
2�
� �

1/21
�����
2�(9.27 � 10�26 kg)(1.381 � 10�23J/K)(2050 K)
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The units inside the square root term are s2/(kg2�m2), so the square root of
this unit is s/(kg�m). Outside of the square root term, only the unit N (new-
ton) remains. Recalling that N � kg�m/s2, our overall units reduce to 1/s,
which is an appropriate unit for a rate. Solving:

�
d

d

N

t
� � 2.03 � 1017 s�1 or 2.03 � 1017 Fe atoms per second

This is equivalent to 0.3 micromoles per second, or about 16.7 micrograms
per second. At this rate, it would take over 16 hours for 1 gram of Fe to ef-
fuse through the hole.

Because the use of tiny-holed chambers to study the effusion of gases was
pioneered by the Dutch scientist Martin Knudsen in the early 1900s, such
chambers are called Knudsen cells and this type of effusion is termed Knudsen
effusion. Knudsen cells are still used for vaporizing high-melting materials in
vacuum systems; for example, they are used in the semiconductor industry to
manufacture computer chips.

Diffusion is the movement of gas particles through another gas due to con-
centration differences (see Figure 19.9b). It is one example of what is called a
transport property, which describes the net movement of (in this case) matter
or energy through a nonuniform medium. Other transport properties include
viscosity, electrical conductivity, thermal conductivity, and sedimentation of
particles in fluids.

For our purposes, we will assume that two different gases are present in a
system, separated at first. The initial question to consider is similar to that for
effusion: assuming motion in a single dimension (arbitrarily the x dimension),
at what rate are the gas particles approaching a planar surface of area A that is
perpendicular to their direction of travel? The system in question is illustrated
in Figure 19.10. Experiments have shown that the rate of flow of gas particles
P1 across a plane of area A and into a region filled by gas particles P2 is given
by the expression

�
d

d

N

t
1� � �D � A � �

d

d

c

x
1� (19.52)

where dN1/dt is the rate at which gas particles pass through the plane, A is the
area of the plane, dc1/dx is the concentration gradient of gas particles P1 in the
x dimension, and D is a proportionality constant called the diffusion coefficient.
Equation 19.52 is known as Fick’s first law of diffusion. (Fick’s second law of
diffusion involves the change in c1 over time—rather than over distance—and
will not be considered here.) The negative sign in equation 19.52 implies that
the direction of flow of increasing amount of P1 particles is opposite the di-
rection of increasing concentration of P1 particles: that is, particles tend to flow
from high concentrations to low concentrations.

If the concentration c1 has units of amount per volume, the differential
dc1/dx has units (amt/m3)/m. Since area has SI units of m2, the diffusion coef-
ficient must have units of m2/s in order for the diffusion rate dN1/dt to have
units of amount per second. For historical reasons, units for D are typically
given as (non-SI) cm2/s. The specific value of D depends not only on the iden-
tity of the gas P1, but also on the identity of the gas that P1 is diffusing into.
With respect to Figure 19.10, it should be noted that the gas particles P2 are
also diffusing into the left side of the system, but for now we are ignoring this
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Plane; area � A

Gas particles
P1

Gas particles
P2

Figure 19.10 Diffusion is understood by de-
termining the rate at which gas particles P1 move
through some area A and into an area occupied
by gas particles P2.
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and concentrating on the flow of P1 into the right side of the system. (The
equation we will derive will apply to either gas, ultimately.)

An understanding of diffusion therefore centers on determining the diffu-
sion coefficient D. We can actually define two types of diffusion coefficients.
The first one describes the diffusion of a gas particle through itself (the case in
which the gases represented by P1 and P2 are actually the same chemical
species). This is called self-diffusion. There is also the case in which two gases
have different identities, and they diffuse into each other. This is called mutual
diffusion.

In either case, we expect that the diffusion coefficient is related to the aver-
age velocity of the gas particles as well as its mean free path. This is indeed the
case. Without going through the detailed derivation, it can be shown that the
self-diffusion coefficient D is

D � �
3

1

�

6
� �  � v� � �

8d

3
2�
� � ��

�

R

M

T
�� (19.53)

where all variables have been previously defined. Experimental measurements
of diffusion coefficients can be used with the equation to estimate the hard-
sphere diameter, d, for polyatomic gas molecules. As for accuracy, equation
19.53 results compare fairly well with experimental diffusion coefficients, when
using hard-sphere diameters determined from other methods.

For mutual diffusion coefficients, the derivation is even more complicated
because there are three mean free paths to consider, between like gas particles
(there are two like-particle mean free paths, one for each gas) and between dif-
ferent gas particles. The final answer is

D12 � �
3

8
� � ��

2

R

�

T

�
�� � �

(r1 �

1

r2)2�tot

� (19.54)

where � is the reduced (molar) masses of the two gases, r1 and r2 are the hard-
sphere radii of P1 and P2, and �tot is the total particle density of the gases.
Equation 19.54 shows the curious fact, observed experimentally, that the dif-
fusion coefficient does not depend on the mole fractions of each gas in the sys-
tem, as one might expect.

Many diffusion coefficients for gases are on the order of 10�1 cm2/s.
Diffusion coefficients can also be defined for liquid and solid phases. Although
the kinetic theory of gases does not apply directly to these phases, there are
some conceptual similarities. However, diffusion coefficients for condensed
phases are much lower than for gases, especially for solids at normal tempera-
tures. Diffusion coefficients for solids are typically in the range of 10�19 to
10�25 cm2/s.

From the concept of a mean free path, it should be understood that as gas
particles diffuse, they do not travel in a straight line into a new region. Rather,
as they collide with other gas particles, their direction changes continuously
but—as the concentration gradient requires—they ultimately end up moving
in the direction of lower concentration. Such a path is called a random walk
and is illustrated (in two dimensions) in Figure 19.11. In reality, random walks
of individual gas particles are three-dimensional, but the overall result is the
same: a net displacement from one part of the system (of high concentration)
to another part of the system (of low concentration). How long does it take
any one particle to move a certain distance, given this random-walk descrip-
tion of its motion? That is, can we determine the net displacement of a gas
particle?
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Initial
position

Final
position

Net (1-D) distance traveled

Figure 19.11 Over time, a gas particle travels
some net distance. However, in doing so the 
particle doesn’t take a direct path. Rather, its 
actual travel is a complicated “dance” in three-
dimensional space. The true path of any one gas
particle is called a random walk.
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The answers to these questions are the topic of one of Einstein’s seminal
manuscripts that were published in 1905. (Other topics include a rationaliza-
tion of the photoelectric effect in terms of Planck’s theory of light, and special
relativity). In trying to understand the phenomenon called Brownian motion,
Einstein applied kinetic theory and determined an expression for the average
displacement of a particle due to interparticle collisions and mean free paths.
In considering the one-dimensional net displacement of gas particles from
their starting point, we need to recognize that they can travel in either a posi-
tive or a negative direction, so that the average one-dimensional displacement,
�xavg, is simply zero. To get around that, we will consider the average of the
square of the displacement, (�x)2

avg, since by squaring the displacement we
make all values positive.

For the average of the square of the one-dimensional displacement, Einstein
derived the expression

(�x)2
avg � 2 � D � t (19.55)

where D is the diffusion coefficient from Fick’s law of diffusion and t is the
time. This one-dimensional diffusion equation is called the Einstein-
Smoluchowski equation. (Marian Smoluchowski was a Polish physicist who also
considered the theoretical basis of Brownian motion.) The units on (�x)2

avg are
m2 (if meters are the units used in D), so by taking the square root of (�x)2

avg

we get a root-mean-square average distance that a gas particle travels from an
initial point over some time t. Since the total distance is the sum of the dis-
placements in the x, the y, and the z dimensions, it should be easy to general-
ize equation 19.55 to all dimensions, add them, and get an average three-
dimensional displacement as

(3-D displacement)2
avg � 6 � D � t (19.56)

Under controlled conditions where there is no convection, gas particle displace-
ments are not as large as one might think, as the following example shows.

Example 19.9
The diffusion coefficient D12 of NH3 in air is about 0.219 cm2/s at normal at-
mospheric pressures and room temperature. A container of ammonia is
opened at the front of a lecture hall. Assuming that the air is perfectly still
and that diffusion alone accounts for the transport of NH3 in the air, how
long before ammonia molecules can be expected to diffuse 20.0 m away from
the source?

Solution
In this example, we are solving for the time t that it takes for gaseous ammo-
nia molecules to travel 20.0 meters in three dimensions. Using equation 19.56:

(20.0 m)2 � 6	0.219 �
cm

s

2

�
 � t	�10

1

0

m

cm
�


2

The last term in the expression above is needed to convert cm to m. Solving
for time:

t � 3.04 � 106 s

It would take over a month for NH3 molecules to diffuse 20.0 meters! This
example illustrates the importance of convection, rather than diffusion, in the
transport of gas molecules under real conditions.
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Contrary to expectations, gas diffusion is rather slow. For example, in one
minute the average displacement of NH3 molecules under the above condi-
tions is only about 9 cm. The total distance that the ammonia gas molecule
travels in its random walk among the other gas particles, however, is over 
36 km! (This can be estimated by calculating an average speed of NH3 and
multiplying by the total time, which is 60 seconds.) That is, only 0.0002% of
the distance traveled has gone into actually moving away from the original
starting point. Although this may seem strange, it is consistent with our 
understanding of gas behavior on the basis of the kinetic theory.

Finally, note that both equation 19.51, defining effusion, and equations
19.53 and 19.54, which relate to diffusion, are inversely proportional to the
square root of the mass of the gas particle (or the reduced mass of the two-
component system). This idea, expressed as

rate of gas effusion or diffusion � (19.57)

is called Graham’s law. Scottish scientist Thomas Graham discovered this rela-
tionship in 1831, almost 30 years before the development of the kinetic theory.
(Among other things, Graham also studied and defined colloids and proposed
the idea of “denaturing” alcohol so it would not be ingested.) Graham’s law is
a good generality but is often overused, in part because conduction and con-
vection in fluids can so easily and effectively overwhelm pure effusion and dif-
fusion—as Example 19.9 demonstrates. Also, most “examples” of Graham’s
law (like the classic HCl/NH3 vapors-in-a-tube demonstration) use only the
masses of the individual gases themselves. This would be accurate if the ex-
periment were demonstrating effusion. However, as equation 19.54 shows, the
reduced mass � must be used in cases where diffusion through another gas is
considered.

19.6 Summary
One of the goals of physical chemistry is to develop models that explain the
behavior of chemical phenomena. Since quantum mechanics is a crucial model
in chemistry, it is ironic that the physical behavior of gases can be understood
by using only classical mechanics. By assuming that gas particles are constantly
moving, and by treating them as hard spheres, we can apply classical concepts
and calculate how fast they are moving (on average) through space and how
fast they move through other gases. As part of that understanding, we are able
to determine how often gas particles collide with each other, roughly how far
they travel before they collide, and how quickly they propagate from a system
(effusion) or within a system (diffusion). Although this chapter has focused on
the behavior of gases, we can recognize that some of these ideas are also ap-
plicable to condensed phases. Indeed, the behavior of liquids and solids can be
partially understood by applying classical mechanics, also. Such applications
can be found in more advanced texts. The point of this chapter is that the
physical behavior of gases is one of the better-understood phenomena in
chemistry.

1
�
mass�
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19.2 Postulates and Pressure

19.1. Define “postulate” in the scientific sense. You may have
to consult a good dictionary that can define scientific terms
appropriately. Why don’t we try to prove the postulates of the
kinetic theory of gases?

19.2. What is the kinetic energy of a single atom of mercury
that has a speed of 200 m/s? (This is a good speed for Hg
atoms at room temperature.) What is the kinetic energy of a
mole of Hg atoms having that speed?

19.3. Show geometrically that the following vector relation-
ship v2 � vx

2 � vy
2 � vz

2 is correct and, by analogy, v2
avg �

v2
avg,x � v2

avg,y � v2
avg,z.

19.4. At a temperature of 273.15 K and pressure of 1 atm or
1.01325 bar, many gases have an approximate volume of 
22.4 L. (This is a very useful approximation.) What are the av-
erage speeds of (a) He atoms and (b) Kr atoms under these
conditions? Compare your answer for part a with the answer
in Example 19.1.

19.5. Use equation 19.8 and the classical definition of kinetic
energy to argue that the average kinetic energy of a gas is the
same for all gases at the same absolute temperature.

19.6. Interstellar space can be considered as having 10 mol-
ecules of hydrogen per cubic centimeter and an average tem-
perature (far away from stars!) of 2.7 K. Determine (a) the
pressure of hydrogen in interstellar space and (b) the average
speed of the hydrogen molecules. Compare these answers
with values under normal Earth conditions.

19.3 Velocities

19.7. Compare the temperatures required to have an rms-
average speed of 200, 400, 600, 800, and 1000 m/s for Cs
atoms. Note that the average speeds form a pattern. What is
the pattern of the calculated temperatures?

19.8. If relativistic effects were ignored, what temperature is
required for hydrogen atoms to have an rms-average speed of
3.00 � 108 m/s? What do you think is the potential for actu-
ally achieving this temperature?

19.9. Verify equation 19.25. You will need to consult the table
of integrals in Appendix 1, and use the idea that K � �(�K).

19.10. Distinguish between the definitions of g, G, and 	 as
the three probability functions defined in the derivation of the
Maxwell-Boltzmann distribution.

19.11. Show that the constant K, as defined by 1/vx �
gx�(vx)/gx(vx) and 1/v � 	�(v)/	(v), has the same value for 
1/vy � gy�(vy)/gy(vy) and 1/vz � gz�(vz)/gz(vz).

19.12. Derive equation 19.34.

19.13. What is the ratio of vrms/vmost prob for any gas at a
given temperature?

19.14. Use the Maxwell-Boltzmann distribution function to
numerically estimate (that is, do not evaluate the integral) the
percentage of O2 molecules at 300 K moving (a) between 10
and 20 m/s; (b) between 100 and 110 m/s; (c) between
1000 and 1010 m/s; (d) between 5000 and 5010 m/s; and
(e) between 10,000 and 10,010 m/s. Each interval has the
same absolute value. What do your answers tell you about the
distribution of velocities among the gas molecules?

19.15. Current research that focuses on low temperatures
uses crossed laser beams to slow down gas atoms (the phrase
“optical molasses” is a good analogy) so much that their “tem-
perature” is close to absolute zero.

(a) If atoms of Rb are moving at 1 cm/s, what is the approx-
imate “temperature” of the Rb gas? (You can use any defini-
tion of “average temperature” for this estimate.) 

(b) How relevant is the word “temperature” to systems like
the one described? Develop arguments for and against the 
applicability of the term to gas atoms trapped in optical 
molasses.

19.16. Use the form of G(v) to find v�2�, then take the square
root of the answer you get and show that you get the defini-
tion of v rms, the root-mean-square speed.

19.17. Compare relative values of vrms, vmost prob, and v�. Will
they always have the same relative values, or can variations in
conditions like temperature or molar mass change their rela-
tive magnitudes?

19.4 Collisions

19.18. Vacuum systems use some gauges that measure pres-
sures in millitorr (where 760 torr � 1 atm). Express the answer
from exercise 19.6 in units of millitorr.

19.19. Derive equation 19.41.

19.20. Use the conditions of exercise 19.6 to determine the
mean free path between hydrogen molecules in interstellar
space if d � 1.10 Å for hydrogen.

19.21. Explain why the molecular diameter for argon, at 
2.6 Å, is about the same as that for molecular hydrogen, at
2.4 Å, even though hydrogen is a much smaller atom than 
argon.

19.22. Tanks of nitrogen gas are often pressurized to 2400 psi
(pounds per square inch) at room temperature. What is the
mean free path of a nitrogen molecule, d � 3.20 Å, under
these conditions? There are 14.7 psi in 1.00 atm.

19.23. For a given sample of gas (which has a certain molar
mass, collision diameter, and so on), what variable(s) does the
average collision frequency depend on?
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19.24. The vapor pressure of Hg at room temperature (taken
as 22.0° C) is 0.001426 mmHg. What is the average collision
frequency of gaseous Hg atoms in a system that contains only
Hg? Use d � 2.4 Å, and use the ideal gas law to determine
the density of Hg vapors under these conditions.

19.25. A 1.00-mole sample of Xe gas is kept at a tempera-
ture of 298 K. What volume must it have in order to have an
average collision frequency of 1 per second? Assume that the
collision diameter is 4.00 Å.

19.26. What is the total number of collisions per second per
unit volume for the gas system described in the previous 
exercise?

19.27. What is the total number of collisions per second for
the gas system described in the previous exercise? (Note how
this question is different from the earlier one.)

19.28. Determine (a) the mean free paths, (b) the average
collision frequencies, and (c) the total number of collisions be-
tween nitrogen and oxygen molecules in air. Assume standard
thermodynamic conditions (273 K and 1 atm) and use d �
3.15 and 2.98 Å for nitrogen and oxygen, respectively.

19.29. Consider a gas mixture containing equal concentra-
tions of argon and helium. Without performing any calcula-
tions, determine which is higher: the number of collisions be-
tween helium and helium, the number of collisions between
argon and argon, or the number of collisions between helium
and argon?

19.5 Effusion and Diffusion

19.30. In what ways are effusion and diffusion different? In
what ways are they similar?

19.31. Estimate the rate at which Hg effuses out a hole of
area 0.10 mm2 at 295 K. The vapor pressure of Hg at this tem-
perature is 0.0014 mmHg.

19.32. Knudsen effusion cells are used to determine vapor
pressures of high-temperature materials. For example, a
Knudsen cell is filled with tungsten and heated to 4500 K in a
vacuum. Measurements show that the cell loses mass—
assumed to be W vapor—at the rate of 2.113 grams per hour
out of a hole that is 1.00 mm2 in area. Calculate the vapor
pressure of W at 4500 K.

19.33. Knudsen effusion can be used to estimate the amount
of gas entering into a vacuum system from an aperture. If ar-
gon gas at 300 K and 0.100 torr is introduced into a vacuum
system via a tube that had an inner diameter of 0.01625 inches,
how many grams per second of argon are entering the vac-
uum system? (Watch your units on this one!)

19.34. If an atomically clean metal surface is generated in a
vacuum system whose pressure is kept at 1.00 � 10�12 torr,
how many atoms of oxygen per second are colliding with
each square centimeter of the surface? Assume that any resid-
ual gas in the system has the same composition as air, and a
temperature of 295K.

19.35. Using equation 19.54, determine the units of D12.

19.36. Determine D for (a) He and (b) Xe at standard pres-
sure and 25.0°C. Use d � 2.65 and 4.00 Å, respectively.

19.37. Use Fick’s first law to demonstrate why diffusion stops
when a solute (that is, minor component) gas is evenly spread
in a system of solvent (that is, major component) gas.

19.38. Verify the approximate value for D12 in Example 19.9,
using hard-sphere radii of 1.6 Å for ammonia and 1.9 Å as an
estimate for air molecules.

19.39. Calculate the total distance traveled by an ammonia
molecule in 1 minute using the definition of average velocity
from classical mechanics and using an average velocity defined
by kinetic theory. Assume T � 295K.

19.40. Use the D values from exercise 19.36 to determine
how far away from its original position an average atom trav-
els in 1 second if it is He or if it is Xe.

19.41. Consider a variation from the conditions in Example
19.9. Assume that the ammonia is diffusing through an at-
mosphere of (a) helium, or (b) SF6. Will diffusion be faster or
slower than through air?

19.42. Use Graham’s law to determine the ratio of diffusion
through air of HCl and NH3 vapors. First, use only the masses
of HCl and NH3. Then, determine the reduced masses of 
(HCl � air) and (NH3 � air) and determine the ratio of diffu-
sion. Compare the ratios to the experimentally determined 
ratio of about 0.7. Which ratio represents the better model of
reality?

19.43. A recent educational paper claimed that rather than
using HCl or NH3 or other vapors to illustrate diffusion, one
can use soluble salts dropped on either sides of a petri dish
filled with water. As the salts dissolve, their ions “diffuse” and,
with the correct selection of salts, form a precipitate when
cation and anion diffuse to the same point. The ratio of dis-
tances that the ions travel could be related to their masses,
much as Graham’s law does for gases. Critique this “demon-
stration” of diffusion.

19.44. For 1 mole of He at 298 K, compare graphs of gx ver-
sus vx and G(v) versus v. What are the similarities and differ-

ences in the graphs?

19.45. Use the graph of G(v) from exercise 19.44 to deter-
mine what percentage of atoms have a velocity within 1% of
(a) the root-mean-square speed; (b) the most probable speed;
and (c) the mean speed. Are the percentages similar?
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20
ONE MOLECULE OF A REACTANT SPECIES collides with another mol-

ecule, chemical bonds are rearranged all at once, and voilà—molecules
of product species are formed. This is how it works, right?

Not quite.
Why chemical reactions occur is mainly the focus of thermodynamics. Concepts

like energy and entropy are important in understanding whether processes are
spontaneous or nonspontaneous. How they occur is the main focus of kinetics. A
basic understanding of a process includes, foremost, how fast it goes. This is the rate
of the reaction. A deeper understanding of a chemical process includes knowing
why a particular chemical reaction proceeds as fast or as slow as it does: what are
the factors that influence the rate of the reaction? Are the factors controllable, like
concentrations or temperatures or available surface area or presence of catalysts? Or
are the factors inherent to the process, like the chemical identity of the reactants
and products or conditions dictated by thermodynamics? These are all factors that
must be considered in order to understand the kinetics of a chemical process.

First and foremost, it needs to be stressed how thermodynamics and ki-
netics relate to each other. Thermodynamics tries to determine if; kinetics
tries to determine how. Although they occasionally overlap, the two questions
if and how ask two different things. Thermodynamics will tell you if something
might occur, but will not tell you (by itself) how long you might have to wait.
Kinetics will tell you how fast something might occur, but will not tell you (by
itself) if it actually will happen. A proper understanding of any process re-
quires input from both kinetics and thermodynamics.

Kinetics is like classical thermodynamics in that much of it is phenomeno-
logical: it is based on observation. Experimental kinetics requires that a person
make measurements of a chemical process and then try to explain or general-
ize it. However, there has been some progress in theoretical kinetics, which we
will discuss briefly. In this chapter, we will go over some of the framework that
is used to generalize our understanding of chemical kinetics.

20.1 Synopsis
One of the central focuses of kinetics is the determination of rate laws: simple
mathematical expressions that tell us how fast a particular chemical reaction
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will proceed. Rate laws that have similar mathematical forms imply that their
reactions behave a certain way as the reaction proceeds in time; we will con-
sider some of those behaviors. Using the tools of calculus, we will be able to
derive some simple expressions that will help us predict amounts of reactants
and products of reactions that have particular rate laws.

A central part of a rate law for any chemical reaction is its rate constant,
which (as its name implies) is a constant for a particular reaction at a partic-
ular temperature. This statement implies that the rate law constant does change
with temperature, and that’s correct. But we also have some simple models for
how the rate law constant changes with temperature.

Reactions don’t just occur singly; they occur sequentially or in parallel. We
will consider how several processes occurring simultaneously affect the
amounts of products and reactants. Finally, we recognize that most chemical
reactions occur in discrete steps. The overall combination of these steps, called
elementary processes, is what makes up the mechanism of a reaction. A pro-
posed mechanism must be consistent with the experimentally determined rate
law of a reaction. This requirement puts some restrictions on how we can ex-
pect a chemical reaction to occur on an atomic and molecular scale.

Near the end of the chapter, we will consider two interesting types of reac-
tions, branched reactions and oscillating reactions. Not only do such reactions
have interesting kinetics, but they have some fascinating applications. Finally,
we will discuss a little bit of theoretical kinetics, to leave you with the idea that
not all kinetics is phenomenological. More and more, basic physical chemical
principles are applied at the molecular level in attempts to describe adequate
models for chemical reactions—which are, after all, of fundamental interest to
chemists.

20.2 Rates and Rate Laws
One of the most basic descriptions of a chemical reaction is how fast it goes.
But when we speak of how fast a reaction goes, we are not thinking “fast” as in
a velocity in meters per second. Rather, we are thinking about how quickly
amounts (that is, moles) of reactants are converted into amounts (moles) of
products. The “quickness” implies that time (in units of seconds, minutes,
hours, days, and so on) will be a concern also. The rate of a reaction is an in-
dication of how many moles of a reactant or product are reacted or produced
over a period of time.

Rates of reactions are a central issue in kinetics. Understand that it is diffi-
cult to predict before the fact how fast a reaction will be (although we will
explore some of the factors that influence the rate of reactions). A lot of in-
formation about kinetics of reactions is experimentally determined. Reaction
rates also provide the fundamental information needed to deduce the indi-
vidual actions that reactant species take in order to make products. (We will
consider this near the end of this chapter.)

Furthermore, in a closed system, the rates of most reactions change over time.
Typically, amounts of reactants decrease over time. When discussing rates of re-
actions, it is important to indicate at what point along the extent of the reaction
we are. (Extents of reaction, �, were discussed previously in Chapter 5.) It is con-
ventional to define rates of reactions as they would be at the very beginning of
a chemical process, in which only reactants are present, no products. The rate of
a reaction at this extent � � 0 is called the rate of initial reaction or the initial 
reaction rate. In almost all cases, we will be dealing with initial reaction rates.
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As defined above, a rate of reaction can be expressed in the change in amount
of reactant per some amount of time. Expressed mathematically, this is

rate ��
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� (20.1)

where the Greek letter capital delta implies “change.” If amounts were ex-
pressed in moles and time in seconds, a rate would have units of mol/s.

Moles of what? This is a necessary distinction, but one that is easy to forget.
For example, in the balanced chemical reaction

2H2 � O2 → 2H2O (20.2)

there are 2 moles of hydrogen reacting with every mole of oxygen to make
water. If a rate is expressed as 1.00 mol/s, are we talking about 1 mole of
hydrogen gas reacting every second, or 1 mole of oxygen gas? Because of the
stoichiometry in equation 20.2, a rate of 1 mole per second is not specific
enough to communicate what the actual rate of the reaction is.

However, also because of the stoichiometry of the balanced chemical reac-
tion, rates of reactions in terms of individual reactants and products are re-
lated. All one has to do is specify one rate in terms of a single species, and the
rate with respect to any other species in the balanced chemical reaction can be
determined. For a general chemical reaction

aA � bB → cC � dD

where A and B are the reactants, C and D are the products, and a, b, c, and d
are the coefficients of the balanced reaction, one can express the rate of the re-
action in terms of four different changing amounts:
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(20.3)

The convention is to express rates in terms of reactants as negative, since the
concentrations of reactants are decreasing as the reaction progresses.
Conversely, rates expressed in terms of products are positive, since product
amounts are increasing as the reaction proceeds. To remind ourselves of these
facts, we write the � and � signs explicitly in equation 20.3. The brackets [ ]
imply amounts, usually moles or molarity (that is, concentration) units. The
coefficients a, b, c, or d in the denominators are the scaling factors from the
stoichiometry of the balanced chemical equation. These allow a rate to be ex-
pressed as the same numerical value no matter which change in amount is used
to express the rate.

For infinitesimal changes, instead of expressing changes using �, we should
use the differential d. The expressions in equation 20.3 become
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(20.4)

where we are using the variable t to represent time. Again, numerically, these
different ways to express the rate are the same. They simply refer to the change
in amount of different chemical species.
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It is common to express the rate of a reaction in terms of the absolute
change in the amount of one species, then scale the other rates proportionately.
This way, the numerical value of the rate of the reaction differs depending on
the species used to express the rate as well as the coefficients in the balanced
chemical reaction. One of the expressions in equation 20.4 can be rearranged
to get

rate � ��
d[

d

A

t

]
� � ��

a

b
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d[

d

B

t

]
� (20.5)

However, with this convention, the numerical values of the rates with respect
to the different species are no longer the same.

Example 20.1
Referring to equation 20.2, if the reaction proceeds at a rate of �5.00 mol/min
with respect to H2, what are the rates with respect to O2 and H2O?

Solution
Using the balanced chemical reaction and equation 20.5, the rate expressed
in terms of oxygen will be �

1
2

�(�5.00 mol/min) � �2.50 mol/min. The rate ex-
pressed in terms of H2O will be ��

2
2

�(5.00 mol/min) or �5.00 mol/min. Notice
that we are still, by convention, expressing the rate in terms of reactants as
negative and the rate in terms of products as positive. If we wanted to express
the rate of this reaction as an invariant value, it would be 	2.50 mol/min.
(The sign would depend on whether the intent is to express the disappear-
ance of reactants or the appearance of products.)

Rates of reactions can be expressed numerically and usually refer to the rate
at a specific extent of the reaction, typically at the beginning (that is, � � 0).
This numerical rate is accurate only for that point, however. If conditions
change—as the reaction progresses or as the amounts of reactants and prod-
ucts change, or even if the same reaction is set up but with different initial con-
ditions—the numerical value of the rate is usually no longer valid. (We will
discuss an exception to this shortly.) It would be useful to determine the rate
of a reaction in a way that is more applicable to differing conditions, especially
changes in initial concentrations of reactants.

For most reactions, the initial rate is related to the initial amounts of some
or all of the reactants. Experimentally, what is found is that the initial rate is
proportional to the concentration (that is, molarity) of some or all of the re-
actants raised to some exponent. Expressing this concept mathematically, for
some general reaction “aA � bB → products”:

rate 
 [A]m � [B]n (20.6)

In order to make this proportionality an equality, a proportionality constant k
is introduced:

rate � k � [A]m � [B]n (20.7)

The proportionality constant k is the rate constant for the reaction, and is usu-
ally independent of the exact concentrations of A and B (or any other species
whose concentration appears in the algebraic expression) but is usually de-
pendent on temperature. The exponents m and n are called orders; the way
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equation 20.7 is written, m is called the order with respect to A, and n is the or-
der with respect to B, and so on, if other terms exist. Orders are usually small
positive whole numbers, but they may be negative whole numbers, zero, or
even fractions. The sum of all orders of the algebraic expression is the overall
order of the reaction.

The complete expression in equation 20.7 is called a rate law. Rate laws must
be determined experimentally. Sometimes they are simple; sometimes they can
be very complicated. But in all cases, they must be determined by setting up a
chemical reaction under different conditions of initial concentrations, mea-
suring the initial rates by some experimental method, and algebraically de-
ducing the individual orders and the numerical value of the rate constant k.
The rate constant k should also have units that will give a proper unit for the
overall rate (which is usually mol/s or M/s). Although problems involving rate
laws may already be familiar to you, the following example illustrates the math-
ematical tactic for determining a simple rate law from experimental data.

Example 20.2
For a general reaction “aA � bB → products,” the following initial rates are
determined experimentally when reactions are set up with the initial amounts
indicated in units of molarity, M.

[A] (M) [B] (M) Initial rate (M/s)

1.44 0.35 5.37 � 10�3

1.44 0.70 2.15 � 10�2

2.89 0.35 2.69 � 10�3

Assuming that the rate law can be written as

rate � k � [A]m � [B]n

determine the values of m, n, and k.

Solution
The tactic in determining orders is to set up two rate law expressions using
two different sets of numbers, and then divide one expression by the other.
Select the sets so that the concentration of one of the species cancels (as will
k). Then, the order with respect to the other species can be determined by in-
spection or by taking the logarithm of the resulting equation.

Using the first and second sets of data, we can substitute into the general
form of the rate law to get two equations:

5.37 � 10�3 �
M

s
� � k(1.44 M)m � (0.35 M)n

and

2.15 � 10�2 �
M

s
� � k(1.44 M)m � (0.70 M)n

Dividing the first equation by the second, we have
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The units on the left cancel, as do the k’s on the right. Notice that the (1.44 M)m

also cancels on the right side no matter what value m is . We get

0.25 � (0.50)n

k(1.44 M)m � (0.35 M)n

���
k(1.44 M)m � (0.70 M)n
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Since 0.25 is �
1
4

� and 0.50 is �
1
2

�, it is seen by inspection that the exponent n equals
2. (You should verify this.) Using the first and third sets of experimental data,
we can construct a similar comparison:
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Units and k’s cancel to give

2 � (0.50)m

Since 0.50 is equal to �
1
2

�, we can see that m � �1. (You should verify this also.)
Finally, to determine the value of the rate constant k, we can substitute any
set of data into the rate law. It should not matter which data set is used for
this. Using the first set:

5.37 � 10�3 �
M

s
� � k(1.44 M)�1 � (0.70 M)2

Solving:

5.37 � 10�3 �
M

s
� � k � 0.340 M

k � 1.59 � 10�2 s�1

The units on k are appropriate to give a unit of M/s on the rate. Verify that
the second and third sets of experimental data give a similar value for k.

Students should be aware that in real cases the numerical treatment does
not work out as perfectly as it did in the above example. Some level of math-
ematical sophistication, and the application of logarithms, may be necessary to
determine the orders in the rate law. Example 20.6 shows one such case where
use of logarithms is necessary to determine the order of the reaction.

20.3 Characteristics of Specific Initial Rate Laws
There are several simple forms of rate laws, so it is common to discuss them
and their particular characteristics. Although many rate laws depend on the
amounts of more than one component, we will focus on rate laws of the type

rate � k � [A]n (20.8)

in this section. What is the behavior of the rate when the order with respect to
A has various common whole number values?

To apply calculus to equation 20.8, we need to rewrite the quantity “rate” in
terms of a change in amount over some period of time. We do this by using the
forms in equation 20.4. If we are focusing on a reactant species A, the rate is

rate � ��
d[

d

A

t

]
� (20.9)

where the [A] term can be an amount in moles or in concentration units. We
will presume a concentration unit—molarity—at this point. The general equa-
tion whose properties we hope to understand is

��
d[

d

A

t

]
� � k � [A]n (20.10)

k(1.44 M)m � (0.35 M)n

���
k(2.89 M)m � (0.35 M)n
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A first-order reaction is one whose kinetics follow a rate law where the order
is 1; that is,

��
d[

d

A

t

]
� � k � [A]1 (20.11)

All spontaneous radioactive processes and many chemical processes (including
many metabolic processes in the body) are first-order reactions. We can re-
arrange equation 20.11 to isolate all terms in the species A on one side, and all
other variables on the other:

�
d

[

[

A

A

]

]
� � �k � dt (20.12)

In this equation, we are leaving out the 1 exponent, since it is understood to
be present. If we presume that at some initial time ti, the amount of A is rep-
resented as [A]i, and at some final time tf the amount of A is represented as
[A]f, we can integrate both sides of the above equation between the limits of
the respective variable:

�
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d

[

[

A

A

]

]
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t
f

ti

� k � dt

The integral on the left side is the natural logarithm of A, evaluated between
the two limits. The integral on the right side is simply the variable t (time)
evaluated between its two limits. After performing the evaluations on either
side, we get

ln �
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]

]
f

i

� � �k(tf � ti)

The leading negative sign on the right side is usually removed by switching the
numerator and denominator in the logarithm term. (This is a mathematical
property of logarithms.)
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]

f
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The minus signs cancel to yield

ln �
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]

f

i� � k(tf � ti) (20.13)

Typically when measuring a process the initial time is set to 0 and the final time
is simply the elapsed time. We will use the symbol [A]0 to indicate the initial
amount of A at time 0 and [A]t to stand for the amount of A at some time t.
Using these conventions, equation 20.13 is commonly written as

ln �
[

[

A

A

]

]
0

t

� � k � t (20.14)

where t represents the elapsed time. This is the basic equation that relates
how the concentration of A varies over time for a first-order reaction.
Equation 20.14 is known as the integrated form of a first-order rate law (or
more simply, the integrated rate law). Note that [A]0 and [A]t must have the
same units (and can even be percentages, where [A]0 is usually considered
100%, that is, whatever the original amount was). Also, k and t must have the
same units of time.
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Example 20.3
One example of a first-order reaction is the isomerization of hydrogen iso-
cyanide to hydrogen cyanide:

HNC (g) → HCN (g)

If the rate constant at a particular temperature is 4.403 � 10�4 s�1, what
mass of HNC remains after 1.50 hr if a 1.000-gram sample of HNC was pres-
ent at the beginning of the reaction?

Solution
We can use equation 20.14 directly by recognizing that k � 4.403 � 10�4 1/s,
[A]0 � 1.000 g, and t � 1.50 hr, which we must convert to units of seconds:
t � 5400 s. With these numbers, we get
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0

]

0

t

g
� � �4.403 � 10�4 �

1

s
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]

0

t

g
� � 2.378

Taking the inverse logarithm of both sides, we get

�
1.

[

0

A

0

]

0

t

g
� � 238.5

Solving for the final amount:

[A]t � 0.00419 g

Just over 0.4% of the original material remains as the unreacted HNC.

There are two other ways of expressing equation 20.14 mathematically. One
way is to take the inverse logarithm of both sides, then rearrange the variables
so we get an expression for [A]t as the time varies. We get

[A]t � [A]0 � e�kt (20.15)

which shows that the amount at any time t follows a negative exponential func-
tion of time. (You should note that the initial amount, [A]0, is a constant for
a given experiment.) Negative exponential functions have the characteristic of
having a maximum value at the variable t � 0, and declining monotonically
and asymptotically toward zero. Figure 20.1 shows the general trend for [A]t

over time. The speed with which the amount [A]t approaches zero is dictated
by the rate constant k.

Another way to rewrite equation 20.14 is to separate the logarithms of the
numerator and denominator in the fractional term. We can do that and rewrite
the equation as

ln [A]t � ln [A]0 � kt (20.16)

This equation has the form of a straight line y � mx � b, where y is ln[A]t,
the slope m is �k, x is t (the elapsed time), and the y-intercept b � ln[A]0.
(Again, since [A]0 is a constant, so is the logarithm of [A]0. We usually ignore
the units on [A]0 and [A]t —you can take a logarithm only of a pure 
number, not of a unit—but we require that they be expressed in the same
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Figure 20.1 For a first-order reaction, the con-
centration at any time, labeled [A]t, decreases in
a characteristic negative exponential way. The rate
at which it approaches a zero concentration is
dictated by the value of the rate constant.
Mathematically, the plot of [A]t does not reach 0
until t � �.

[A]0

Time

[A
] t
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concentration unit.*) Therefore, a plot of ln[A]t —the natural logarithm of the
amount of A at various times—versus the time will give a straight line, as seen
in Figure 20.2. This line will have a slope of �k, the negative of the rate con-
stant, with ln[A]0, the logarithm of the original amount, as the y-intercept. A
straight-line plot of ln[A]t versus t will be produced only if the reaction is
indeed first-order with respect to A.

Finally, there is a very popular concept connected to first-order reactions:
half-life. The half-life of a first-order reaction is the amount of time necessary
for half of the original amount to react. We can use equation 20.14 to derive a
simple expression for the half-life, t1/2:

ln �
1

5

0

0

0

%

%
� � k � t1/2

t1/2 � �
ln

k

2
� � �

0.6

k

931
� (20.17)

Notice that t1/2 is independent of the original amount [A]0! It is related only
to the first-order rate constant of the reaction. Because all natural radioactive
processes are first-order processes, the concept of half-life is a common one.

Not all reactions are first-order. A second-order reaction is defined by the
rate law

��
d[

d

A

t

]
� � k � [A]2 (20.18)

We can do the same thing for this equation as we did for the first-order rate
law: rearrange the variables in A on one side and the variables in time on the
other side:

��
d

[A

[A

]2

]
� � k � dt (20.19)

Again, integrating both sides of the equation between the final and initial lim-
its, and presuming again that we start at some initial time ti � 0 so that t rep-
resents elapsed time, we get for the integrated second-order rate law

�
[A

1

]t

� � �
[A

1

]0

� � k � t (20.20)

As the concentration of the reactant species A changes with time, its concen-
tration fits the above equation (as long as the reaction follows second-order ki-
netics with respect to the species A). We can rearrange equation 20.20 into a
form that mimics a straight-line equation:

�
[A

1

]t

� � k � t � �
[A

1

]0

� (20.21)

where now y is 1/[A]t, x is time again, the slope m is given by the rate constant
k, and the y-intercept b is represented by 1/[A]0, the reciprocal of the initial
amount of species A. Figure 20.3 shows how a plot of a second-order reaction
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Slope � �k

ln[A]0

Time

ln
[A

] t

Figure 20.2 For a first-order reaction, a plot
of the natural logarithm of [A]t versus time gives
a straight line whose slope is �k and y-intercept
is ln [A]0, the logarithm of the initial amount.
This is characteristic of a first-order reaction; no
other order reaction gives a straight line when
plotting ln [A]t versus time.

*Equation 20.16 can be written as

ln �
con

[

c

A

n

]

u
t

nit
� � ln �

con

[

c

A

n

]0

unit
� � kt

as a way of addressing the units issue. This chapter is simply avoiding overcomplicating the
equations.

1
[A]

0

1 [A
] t

Slope � k

Time
Figure 20.3 For a second-order reaction, a
plot of the reciprocal of [A]t, 1/[A]t, versus 
time gives a straight line whose slope is k and 
y-intercept is 1/[A]0, the reciprocal of the initial
amount. This is characteristic of a second-order
reaction; no other order reaction gives a straight
line when plotting 1/[A]t versus time.
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should look if 1/[A]t were plotted on the y-axis and time were plotted on the
x-axis. Once again, the appearance of a straight line for a plot of 1/[A]t versus
t is specific for a second-order reaction. Plotting these variables will yield a
straight line if and only if the reaction is second order with respect to the
species A.

Example 20.4
What are the units for the rate constant for a second-order reaction that has
the rate law

��
d[

d

A

t

]
� � k � [A]2

if the units on the amounts are molarity?

Solution
The rate itself has units of M/s. If the term [A]2 contributes units of M2 (mo-
larity squared), then the rate constant must have units of 1/(M�s):

M2 � �
M

1

� s
� � �

M

s
�

Although this may seem like a strange unit for a rate constant, it is necessary
for the dimensional analysis to give the proper units for the experimentally
determined rate of the reaction.

Example 20.5
Consider the following reaction:

CS2 (g) � 3O2 (g) → CO2 (g) � 2SO2 (g) 

If the rate law for the reaction can be written as

��
d[C

dt

S2]
� � �3.07 � 10�4 �

M

1

�s
��[CS2]2

how long will it take for the concentration of CS2 to drop to half of the ini-
tial concentration for the following initial concentrations?
a. 0.05000 mol/L
b. 0.00500 mol/L
c. Comment on the answers.

Solution
This is another half-life problem, but it is not as straightforward as it is for
first-order reactions.
a. We can use equation 20.20 by letting [A]0 � 0.05000 mol/L and [A]t �
0.02500 mol/L, which is half of the original concentration:

�
0.02500

1

mol/L
� � �

0.05000

1

mol/L
� � �3.07 � 10�4 �

M

1

�s
�� � t

40.00 �
m

L

ol
� � 20.00 �

m

L

ol
� � �3.07 � 10�4 �

M

1

�s
�� � t

20.00 �
m

L

ol
� � �3.07 � 10�4 �

M

1

�s
�� � t
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The units L/mol cancel with the M unit in the denominator of the right side;
solving for t:

t � 65,100 s

which is over 18 hours.
b. For the initial amount [A]0 � 0.00500 mol/L, if half of the initial amount
reacts, we will have [A]t � 0.00250 mol/L. Using the same equation and rate
constant, we have

�
0.00250

1

mol/L
� � �

0.00500

1

mol/L
� � �3.07 � 10�4 �

M

1

�s
�� � t

400. �
m

L

ol
� � 200. �

m

L

ol
� � �3.07 � 10�4 �

M

1

�s
�� � t

200. �
m

L

ol
� � �3.07 � 10�4 �

M

1

�s
�� � t

The molarity units cancel, and we solve for the time:

t � 651,000 s

which is more than seven days.
c. Notice that the time—the half-life—is much higher for the lower initial
amount. This shows that the half-life for a second-order reaction is not a con-
stant of the reaction, but rather depends on the initial amount.

The previous example shows that the term “half-life” can be applied to any
order of reaction, not just first-order reactions. However, only for first-order
reactions is the half-life independent of the initial amount, and a characteris-
tic of the reaction. For any other order of reaction, a half-life can be defined,
but will always include the initial amount in the expression. For example, for
second-order reactions, the half-life t1/2 can be defined as

t1/2 � �
k �

1

[A]0

� (20.22)

This equation shows (as did the previous example) that as the initial amount
[A]0 gets larger, the amount of time it takes for half of the reactant to react gets
smaller. Such relationships are useful to synthetic and industrial chemists who
are performing chemical processes.

There are a few other simple rate laws, and the integrations of those rate
laws follow the same type of steps we used to find integrated rate laws for first-
and second-order reactions. Rather than repeat such derivations, they will be
left to the student. The discussion will be confined to some more interesting
attributes of other rate laws. For example, a reaction following zeroth-order ki-
netics has a rate law of

��
d[

d

A

t

]
� � k � [A]0 � k (20.23)

That is, the rate of disappearance of A is a constant, the zeroth-order rate con-
stant. These types of reactions are rare, but they do occur: for example, con-
version of ingested ethyl alcohol (CH3CH2OH) into acetaldehyde (CH3CHO)
in the body follows zeroth-order kinetics.

We can consider equation 20.23 in several equivalent ways. Since the rate of
disappearance of reactant A is a constant, a plot of [A]t versus time is a straight
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line, as shown in Figure 20.4. Also, we can integrate equation 20.23 to get the
integrated zeroth-order rate law

[A]0 � [A]t � k � t (20.24)

where t represents elapsed time.
Also, we can again determine an expression for the half-life for a zeroth-or-

der reaction. It is

t1/2 � �
2

[A

�

]

k
0� (20.25)

Note that the half-life depends on the initial amount, as expected. You need to
recognize something else about a zeroth-order reaction: after two half-lives, all
of reactant A is gone and the reaction is finished. (This assumes that the reac-
tion remains zeroth-order at all concentrations and actually goes to comple-
tion.) Thus, a straight-line plot of a zeroth-order reaction will have an 
x-intercept in addition to a y -intercept.

So far, we have focused on reactions whose rate law can easily be written in
terms of a single reactant. Many reactions have rates that are dependent on
more than one concentration, and in the extreme can be very complex. The
simplest of these can be written for the two-species reaction

aA � bB → products

and we can write the rate(s) as

rate � ��
1

a
� �

d[

d

A

t

]
� � ��

1

b
� �

d[

d

B

t

]
� � k � [A][B] (20.26)

This reaction is first-order with respect to A and first-order with respect to B,
but is overall a second-order reaction. To determine the integrated form of this
rate law, we will have to take a double integral over concentrations of A and B.
We present only the final result:

�
b[A]0 �

1

a[B]0

��ln �
[

[

A

B]

]
0

0

� � ln �
[

[

A

B]

]
t

t

�� � k � t (20.27)

This equation can also be written as a straight-line equation (although some
rearrangement is needed), and by plotting the log of the ratio [B]t /[A]t versus
time, one can determine the rate constant k in terms of the initial amounts as
well as the coefficients of the balanced reaction.

Rate laws can get very complicated, very quickly. (Simply browse through a
textbook on kinetics to get an idea of how complex some of them are.)
Experimentally, it is difficult to determine rate laws of complicated reactions
having many concentration terms in the rate law expression unless the exper-
imenter resorts to some simplifying tactics. One such tactic is to perform the
reaction with a large excess of all but one of the reactants. Consider a reaction
that has a rate law

rate � k[A]m[B]n

If the reactant B were present in very large excess with respect to A, then dur-
ing the initial course of the reaction the concentration of B does not change
very much and can be approximated as constant. Any change in the rate of the
reaction is thus related to changes in [A]. We have

rate � k � [A]m � [B]n

measured constant � constant
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t �
k

[A]
0

Slope � �k

[A]0

Time

[A
] t

Figure 20.4 For a zeroth-order reaction, a 
plot of [A]t versus time gives a straight line with
a slope of �k, a y-intercept of [A]0, and an 
x-intercept of [A]0/k. This is characteristic of a
zeroth-order reaction; no other order reaction
gives a straight line when plotting [A]t versus
time. This is also the only graph (for simple rate
laws) that has an x-intercept.

{ {{
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We can combine the two constants on the right side of the equation into a sin-
gle variable, labeled k�:

rate � k�[A]m

The constant k� is called the pseudo rate constant for the rate law. Under these
experimental conditions, it is much easier to determine the rate law and the
rate constant for this simpler rate expression.

Probably the most common usage of this tactic is where the order m equals
1, so that the rate of the reaction follows the approximate expression

rate � k�[A] (20.28)

Reactions that are intentionally set up this way are said to be following pseudo
first-order kinetics, and the constant k� is the pseudo first-order rate constant.
Again, in reality a reaction might have some other, more specific rate law. Only
under special conditions [that is, with a high, almost unchanging concentration
of the other reactant(s)] will the reaction show pseudo first-order kinetics.

Note too that the pseudo first-order rate constant k� has different units than
the true rate constant k of the same reaction. The units on k� are always 1/s,
whereas the units on k depend on the entire rate law. The specific numerical
value of k� depends on how high the concentration of the excess reactant is, as
the following example shows.

Example 20.6
The following data are collected for a chemical reaction at constant temper-
ature, arbitrarily A � B → products.

[A] (M) [B] (M) Initial rate (� 10�7 M/s)

0.00636 0.00384 2.91

0.0108 0.00384 4.95

0.00636 0.00500 4.95

a. Determine the rate law and the value of the rate law constant k.
b. Estimate the value of k�, the pseudo first-order rate law constant, if [B] �
0.500 M and all other conditions are the same.

Solution
a. By performing an analysis like the one shown in Example 20.2, you should
be able to see that the rate law is

rate � k � [A]1[B]2

To get the order with respect to B, you have to use logarithms because the
concentrations and rates are not in exact (or even close!) whole-number ra-
tios. When the first and second trials are used, one gets

�
4

2

.

.

9

9

5

1

�

�

1

1

0

0

�

�

7

7

M

M

/

/

s

s
� � �

(

(

0

0

.

.

0

0

0

0

5

3

0

8

0

4

M

M

)

)

n

n�

1.701 � (1.302)n

In order to determine n, take the logarithm of both sides:

log (1.701) � n � log (1.302)

0.2307 � n � (0.1146)

n � �
0

0

.

.

2

1

3

1

0

4

7

6
� � 2.01 � 2
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In performing an experiment, exact whole-number ratios are difficult to
guarantee, so calculations with logarithms are common. Evaluating the value
of k using the first set of data:

2.91 � 10�7 �
M

s
� � k � (0.00636 M)1(0.00384 M)2

k � 3.103 �
M

1
2�s
�

b. To evaluate k�, we need to recognize that the pseudo first-order rate con-
stant can be approximated by combining the k and the [B]2 terms. If we are
given [B] � 0.500 M, then

k� � �3.103 �
M

1
2�s
�� (0.500 M)2

k� � 0.776 �
1

s
�

where the units for k� work out as expected. The pseudo first-order rate law
would be, under these conditions,

rate � �0.776 �
1

s
�� � [A]

To finish this section, let us briefly consider some of the experimental con-
siderations of rate law determinations. It is typical in deriving physical chemical
expressions to presume that our chemical system will follow the predictions of
these equations (in these cases, [A]t) perfectly. For an ideal kinetics experiment,
one would expect to get a plot like that in Figure 20.5 for a first-order reaction.

However, in reality the data are rarely so perfect. In a real experiment in
a real laboratory, a researcher might get some scatter in the plotted data.
Table 20.1 gives some values of concentrations versus time, which are plot-
ted in Figure 20.6. In this case, it might be obvious that a straight line is the
best fit to the experimental data and that the reaction follows first-order ki-
netics, even though there is some scatter in the plotted points. However, an
experimenter should be careful: consider plotting the same data as if it re-
lated to a second-order reaction. This is shown in Figure 20.7. For the short
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Time

ln
[A

] t

1.05

0.70
0

Time (min)
8

ln
[A

] t

642

1.00

0.95

0.90

0.85

0.80

0.75

Figure 20.5 If a perfect kinetics experiment
were performed on a first-order reaction, your
graph might look like this: all data points on a
line. However, reality isn’t usually this perfect: see
Figures 20.6 and 20.7.

Figure 20.6 Data from Table 20.1 are plotted to see if the reaction fol-
lows first-order kinetics. Note the scatter in the experimental data that
suggests that the fit to a straight line, in this case, is possible but not con-
vincing. Compare with Figure 20.7.

Table 20.1 Kinetic data for Figures 20.6
and 20.7

Time (min) [A]t ln [A]t 1/[A]t

0 2.719 1.000 0.3678

1 2.612 0.9601 0.3829

2 2.586 0.9501 0.3867

3 2.509 0.9199 0.3985

4 2.459 0.8997 0.4066

0.44

0.36
0

Time (min)
8

1/
[A

] t

642

0.43

0.42

0.41

0.40

0.39

0.38

0.37

Figure 20.7 Data from Table 20.1 are plotted to see if the reaction fol-
lows second-order kinetics. Note the scatter in the experimental data that
suggests that the fit to this straight line also does not convince us that this
is a second-order reaction. Compare with Figure 20.6.
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time scale considered, neither plot makes a good case for a particular order
of kinetics.

A good experimenter exploring the kinetics of an unknown reaction needs
to apply care not only in the experimental measurements (here, the [A]t

measurements) but also in the definition of the experimental conditions: the
initial [A], initial [B], elapsed time, and so on. Understand that these condi-
tions are chosen by the experimenter. If we include data from Table 20.1a, we
can extend the time of the experiment and try to make an obvious fit to a
straight line. Figure 20.8 shows plots of all the data. Now it should be more ob-
vious what the rate law of the reaction is.

20.4 Equilibrium for a Simple Reaction
Kinetics describes how reactions proceed, but we should understand from
thermodynamics that virtually all reactions do not proceed to completion.
Instead, in time a reverse reaction begins to occur, and when the rate of the re-
verse reaction equals the rate of the forward reaction, net change ceases and
the system is at a dynamic equilibrium. Although we have stated previously that
thermodynamics and kinetics are separate considerations, the previous state-
ment—that the rate of forward reaction equals the rate of reverse reaction for
a system at equilibrium—suggests that there are some connections between ki-
netics and thermodynamics.

In our discussion of initial rates, we were implicitly confining ourselves to
short periods of time near the beginning of the reaction. That is, we assumed
� was small. For equilibrium conditions, however, we need to consider a dif-
ferent time regime, that where � approaches its maximum value. What this im-
plies is that a reverse chemical process will become important in our under-
standing of how concentrations are changing. This reverse reaction is an
additional consideration that we have so far ignored.

Consider the following simple chemical process:

kf
A B (20.29)

kr

Here, kf is the rate constant for the forward reaction and kr is the rate constant
for the reverse reaction. Furthermore, we will assume that each reaction is first-

JQPJ
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Table 20.1a Additional kinetic data for
Figure 20.8

Time (min) [A]t ln [A]t 1/[A]t

10 2.138 0.7599 0.4677

15 1.855 0.6179 0.5390

20 1.664 0.5092 0.6011

25 1.448 0.3702 0.6907

30 1.276 0.2437 0.7835

1.0

0.0
0

Time (min)
35

ln
[A

] t

30252015105

0.8

0.6

0.4

0.2

0.8

0.3
0

Time (min)
35

1/
[A

] t

30252015105

0.7

0.6

0.5

0.4

Figure 20.8 If the time of the measurements is extended (using data from Table 20.1a), it be-
comes clear that a first-order plot fits the data better than a second-order plot: a straight-line fit
is more obvious for the first-order plot over longer periods of time. In experimental kinetics, it
is extremely important to extend an experiment to a long enough time that the appropriate
straight line—and therefore the correct order of the reaction—is determined conclusively.
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order with respect to its reactant, and that the initial amount of reactant A is
given by [A]0 while [B]0 � 0.

The rate of change of concentration of A is given by

�
d[

d

A

t

]
� � �kf[A] � kr[B] (20.30)

The first term on the right is negative because it relates the disappearance of A,
and the second term is positive because it contributes to an increase in A. At
any time t, we can modify the concentrations in equation 20.30 to show that
the overall rate depends on the concentrations of A and B at any time:

�
d[

d

A

t

]t� � �kf[A]t � kr[B]t (20.31)

Now, [A]t and [B]t imply that the rate is dependent on the instantaneous con-
centrations of A and B at any time. Notice that the rate is also written in terms
of the instantaneous concentration [A]t. Because of the 1�1 stoichiometry in
the balanced chemical reaction and the law of conservation of mass, there is a
relationship between [A] and [B] at any time:

[B]t � [A]t � [A]0 or [B]t � [A]0 � [A]t

Substituting for [B]t and rearranging:

�
d[

d

A

t

]
� � �kf[A]t � kr([A]0 � [A]t) � kr[A]0 � (kr � kf)[A]t (20.32)

Although this equation may look complicated, it is simply a first-order differ-
ential equation in one variable, [A]t. It has a solution that involves exponential
functions, and the equations that satisfy this differential equation (that is, the
“solutions” to the differential equation) are

[A]t � �
(kf

[A

�

]0

kr)
� (kr � kf � e�(kf�kr)t) (20.33)

It is actually fairly easy to show that at the beginning of the process, when the
reverse reaction’s effect is negligible, the above equation reduces to

[A]t � [A]0 � e�kf�t

This is equivalent to equation 20.15.
Another integrated form of the rate law in equation 20.32 has the form

ln ��[[
A

A

]

]
0

t �

�

[

[

A

A

]

]

e

e

q

q�� � (kf � kr) � t (20.34)

which has the form of a straight line—plotting the logarithm term in equation
20.34 versus time—with a slope of (kf � kr) and a y-intercept of zero. Again,
at the limit of initial reaction conditions this plot will turn into the expected
plot for a first-order reaction, but now we are extending the plot to consider
longer time periods in which the reverse reaction has an effect on [A]t.

Figure 20.9 shows a plot of [A]t that illustrates an expected behavior: an ex-
ponential decrease toward some asymptotic minimum. At the same time, the
amount of the product [B]t is shown as increasing toward some asymptotic
maximum. The actual asymptotic values of [A]t and [B]t are dependent on the
initial value [A]0 as well as the values of kf and kr.

But the asymptotic values of [A]t and [B]t over time are the expected equi-
librium concentrations of A and B, labeled [A]eq and [B]eq. There must be
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Figure 20.9 As a reaction approaches equilib-
rium, the amounts of reactant, [A]t, and product,
[B]t, approach their equilibrium values (which
depend on the reaction). Compare this plot of
[A]t with Figure 20.1: at long values for time, the
plots differ. This plot of [A]t follows equation
20.33, not equation 20.15.
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some connection, then. The connection is simple. We define an equilibrium
constant K for this simple reaction as the quotient of the concentration of the
products and the reactants:

�
[

[

A

B]

]
e

e

q

q

� � K (20.35)

With this definition and the relationships between the concentrations of A and
B, it can be shown from equation 20.33 that as t → �:

[A]eq � �
(kf �

kr

kr)
� � [A]0

It follows that for this simple reaction,

[B]eq � 1 � [A]eq � �
(kf �

kf

kr)
� � [A]0

K � �
k

k

r

f� (20.36)

The last equation is especially noteworthy for its simplicity (and its potential
usefulness), although all three equations above are applicable to first-order or
pseudo first-order reactions.* These three expressions (and the concepts used
to derive them) represent one connection between kinetics and thermody-
namics. Other expressions can be derived for higher-order reactions, but they
all mimic similar ideas in mass conservation and the mathematics of differen-
tial equations.

20.5 Parallel and Consecutive Reactions
The previous section used a simple reaction, A → B, to introduce a connection
that does exist between kinetics and thermodynamics. Many chemical equa-
tions are not this simple. For some reactions, more than one product is possi-
ble; these are parallel reactions. And commonly, in other cases, the product of
the first reaction is the reactant of a second reaction, which may in turn be the
reactant of another reaction, and so on. These are examples of consecutive
reactions.

A simple parallel reaction can be illustrated as

k1
A → B

k2

↓
C

in which some reactant A can react to form two possible products, labeled B
or C. The rate constants for each individual reaction are labeled k1 and k2, re-
spectively. As an example, the thermal decomposition of many small hydro-
carbons like CH4 can occur via several pathways simultaneously, constituting
a set of parallel (also called competing or concurrent) reactions.

Consider a system in which the rate laws of both reactions are first-order
with respect to A. If we start such a reaction with only A present, the initial
rate of disappearance of A can be written as
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*Equation 20.36 also applies to any forward-and-reverse reactions whose orders are
equal to the stoichiometric coefficients of the reactants for each process. We won’t be con-
sidering any examples of this application here.
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��
d[

d

A

t

]
� � k1[A]t � k2[A]t � (k1 � k2) � [A]t (20.37)

Because equation 20.37 has only one variable (the concentration of A), it can
be integrated just like any other first-order rate law. In doing so (and in mak-
ing the same assumptions that the initial time is set to zero so that the variable
t stands for elapsed time), we get

[A]t � [A]0 � e�(k1+k2)t (20.38)

This relates the concentration of A over time, and should be no great surprise.
The initial rates of appearances of the two products, B and C, are

�
d[

d

B

t

]
� � k1[A]t

�
d[

d

C

t

]
� � k2[A]t

Substituting for [A]t from equation 20.38, we get

�
d[

d

B

t

]
� � k1 � [A]0 � e�(k1�k2)t (20.39)

�
d[

d

C

t

]
� � k2 � [A]0 � e�(k1�k2)t (20.40)

These expressions can be integrated in order to determine the concentrations
of B and C over time. If it is assumed that the initial amounts of B and C are
zero at some initial time (that is, [B]t � [C]t � 0 at t � 0), these two equa-
tions can be integrated to yield

[B]t � �
k

k
1

1

�

�

[A

k

]

2

0� � (1 � e�(k1�k2)t) (20.41)

[C]t � �
k

k
2

1

�

�

[A

k

]

2

0� � (1 � e�(k1�k2)t) (20.42)

Both of these concentrations depend on negative exponentials, but in these
cases the negative exponential is subtracted from 1. Therefore, as time increases
and the negative exponential gets smaller and smaller, the difference gets larger
and larger, and [B] and [C] increase as the elapsed time increases. Figure 20.10
shows the behavior of [A]t, [B]t, and [C]t for a given set of rate constants.
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Figure 20.10 Plots of [A]t, [B]t, and [C]t

versus time for two parallel reactions in which 
k1 � 0.005 s�1 and k2 � 0.015 s�1. The initial
concentrations of B and C are dictated by the rel-
ative magnitudes of the two rate constants. For a
plot over a long period of time in which equilib-
ria are established, see Figure 20.11.
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Equations 20.41 and 20.42 may look a bit complicated, but the ratio of [B]t

and [C]t has a very simple expression:

�
[

[

C

B]

]
t

t

� � �
k

k
1

2

� (20.43)

This expression is valid for any time t, as long as the reverse reactions are
negligible.

When the reactions approach equilibrium, our analysis of the situation
must change. Near equilibrium, product converts back to reactant, which can
then convert over to product again. But there is no requirement that the reac-
tant molecule react to make the same product! (That is, molecules do not have
memory.) We need to consider the following scheme:

k1
A B

k�1

k2 k�2

C

Not only have we defined forward rate constants k1 and k2, but we also define
reverse rate constants k�1 and k�2. According to the previous section, we can
also define equilibrium constants for each reaction, K1 and K2, as

K1 � �
k

k

�

1

1

�

K2 � �
k

k

�

2

2

�

Without presenting the derivation, we simply state that at equilibrium (that is,
as t → �), the concentrations of products and reactant are

[A]eq � �
K1 �

[A

K

]

2

0

� 1
�

[B]eq � �
K1

K

�
1 �

K

[

2

A

�

]0

1
� (20.44)

[C]eq � �
K1

K

�
2 �

K

[

2

A

�

]0

1
�

Additionally,

�
[

[

C

B]

]
e

e

q

q

� � �
K

K
1

2

� (20.45)

Equation 20.45 can be considered a special case of equation 20.43. At the
limit of small times, the effects of the reverse reactions are negligible and equa-
tion 20.43 is applicable. Only in the case of long times, where reverse reactions
have an appreciable effect on concentrations and equilibria are being estab-
lished, does equation 20.45 become applicable. However, there is no reason to
presume that the ratios [B]t/[C]t, the product ratio at some intermediate time,
and [B]eq/[C]eq, the product ratio at “infinite time,” are the same.

When two parallel reactions begin initially, the reaction that goes faster is
the one with the larger rate constant (assuming that both reactions are simple
first-order reactions). Therefore, the specific ratio of products initially, given
by [B]t/[C]t, will be given by the ratio of the forward rate constants k1/k2.
Because the initial product ratio is determined by the kinetics of the forward
reactions (that is, equation 20.43), we say that the ratio of products is kineti-

J
Q
P
J

JQPJ
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cally controlled. However, over long time intervals, the ultimate ratio of prod-
ucts will depend on the individual equilibrium constants of the separate reac-
tions. Since equilibrium constants are ultimately related to the thermodynam-
ics of the reaction, we say that the ratio of products under these conditions
is thermodynamically controlled.

The ratio of products at any one instant may be completely different de-
pending on whether the ratio is dictated by kinetic control or thermodynamic
control. For example, consider parallel reactions in which k1 � 1 � 10�2 and
k�1 � 1 � 10�4 (which relate to product B) while k2 � 1 � 10�3 and k�2 �
1 � 10�7 (which relate to product C). The two equilibrium constants K1 and
K2, are 100 and 10,000, respectively.

Initially, because k1 is 10 times larger than k2, more of product B is produced
than product C. We say that B is the kinetically favored product. However, as
equilibria are established over a long period of time, the amount of product C
is much larger because its equilibrium favors products much more than the B
product is favored by its independent equilibrium. We say that product C is the
thermodynamically favored product. Figure 20.11 shows a graph of how prod-
uct B is produced in larger quantities at first, and how this changes over longer
periods of time as equilibria are established. If a chemical producer is inter-
ested in product B, the kinetically favored product, a way to remove B from the
system would need to be developed, or else B will re-react and form C, the
thermodynamically favored product.

There are many cases of consecutive reactions, in which the product of a first
reaction is the reactant (or one of the reactants) of a second reaction, and so
on. A simple consecutive reaction scheme can be represented as

k1 k2
A → B → C

Radioactive decay series are good examples of consecutive reactions. Assuming
(as is usually the case) that a system starts out with only A present and no B
or C, the rates of change of concentration of the three species in the above se-
quence are

��
d[

d

A

t

]
� � k1[A]t

�
d[

d

B

t

]
� � k1[A]t � k2[B]t (20.46)

�
d[

d

C

t

]
� � k2[B]t
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Figure 20.11 Plots of [A]t, [B]t, and [C]t for a
long period of time in which equilibria can be 
established. Now the relative concentrations of B
and C are dependent on the equilibrium con-
stants of the individual reactions, not just the rate
constants of the two forward parallel reactions.
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The rate of change in concentrations of A and C should appear reasonable
from inspection of the sequential reaction. The rate of change of concen-
tration of B is a combination of two effects: an increase in [B] due to for-
mation from A, and a decrease in [B] due to the formation of C. The posi-
tivity and negativity of each term reflects the corresponding increase or
decrease.

The three equations 20.46 can be integrated to yield

[A]t � [A]0 � e�k1t

[B]t � �
k

k
1

2

�

�

[A

k

]

1

0� � (e�k1t � e�k2t) (20.47)

[C]t � [A]0�1 � �
k1 �

1

k2

�(k2 � e�k1t � k1 � e�k2t)	
where again, t represents the elapsed time and [A]0 is the original amount of
reactant A in the system. (Remember, we are assuming that the original amounts
of B and C are zero.) The expression for [A]t should look familiar; it is exactly
the same as equation 20.15.

However, the expressions for [B]t and [C]t are more complicated. Both of
them, as a matter of fact, depend on both rate constants for both reactions.
Furthermore, they also depend on the differences in the rate constants (indi-
cated by the k2 � k1 and k1 � k2 terms in the denominators of the expressions).
If, for example, the second reaction is much slower than the first reaction (that
is, k1  k2), there is an initial buildup of product B as shown by the left part
of Figure 20.12. Only over long periods of time will product B eventually re-
act to form the final product C, which is illustrated on the right part of Figure
20.12. (Although there may be some tendency to refer to B as the kinetically
favored product and C as the thermodynamically favored product, this is not
an accurate parallel.)

When k1 �� k2, the second reaction is much faster than the first one and
the penultimate product B reacts to the ultimate product C almost as fast as B
itself is formed. The amounts of products over time are illustrated by Figure
20.13. Notice that very little of B is present at any time. The reaction system
will remain this way unless a large amount of B is favored by the equilibria of
the two reactions.
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Figure 20.12 For consecutive reactions in which k1 is much greater than k2, there is a short-
term buildup of the intermediate product, B. But over longer periods of time, the final product
C is formed. In this plot, k1 � 0.01 s�1 and k2 � 0.0005 s�1.
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Example 20.7
Kinetics of consecutive reactions are easily applicable to nuclear decay
processes, in which a parent isotope produces a radioactive daughter isotope
that also decays. (In fact, in the early twentieth century, such sequential
processes were a major complicating factor in trying to understand this new
phenomenon.) One such example is

t1/2,1 t1/2,2210
83Bi → 210

84Po → 206
82Pb

which are the last two steps in the radioactive decay series starting with 238
92U

and ending in the nonradioactive isotope of Pb. (It is sometimes called the
4n � 2 series because all of the mass numbers of the isotopes involved can be
represented by that general equation.) The half-lives, t1/2,1 and t1/2,2, are 5.01
days and 138.4 days, respectively. Comment on the relative amounts of 210Bi,
210Po, and 206Pb over time.

Solution
The presentation of this example is potentially misleading because the prob-
lem gives half-lives, not rate constants! Equation 20.17 should be consulted
for the relationship between t1/2 and k:

t1/2 � �
0.6

k

93
�

Using this, and keeping track of two different half-lives and their related rate
constants using subscripts, we get

t1/2,1 � 5.01 d � 4.33 � 105 s

t1/2,2 � 138.4 d � 1.196 � 107 s

(where the half-lives have been converted into standard units). Therefore

k1 � �
4.33

0.

�

69

1

3

05 s
� � 1.60 � 10�6 s�1

k2 � �
1.196

0.6

�

93

107 s
� � 5.79 � 10�8 s�1
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Figure 20.13 For consecutive reactions in which k1 is much smaller than k2, there is very
little initial buildup of the intermediate product, B. The final product, C, is formed almost im-
mediately. In this plot, k1 � 0.0005 s �1 and k2 � 0.01 s�1. Compare this to Figure 20.12.
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Here, we can see that k1 is much larger than k2 (that is, 10�6 is two orders
of magnitude higher than 10�8), so we might expect that there would be a
“momentary” buildup of polonium. Then, as time proceeds, the amount of
polonium would decrease as it decays to the stable lead isotope. Figure 20.14
shows a plot of what ultimately happens to 1.00 gram of 210Bi.

The complete 4n � 2 series has 14 nuclear reactions between 238U and
206Pb, with a total of 15 nuclear species. Can you imagine the 15 mathemat-
ical expressions that give their concentrations over time?

20.6 Temperature Dependence
The rates of chemical reactions are strongly affected by temperature. This is
one reason why most declarations of rate constants include a temperature at
which that constant is valid. Common temperatures are 25°C (a common stan-
dard temperature) and 37°C (“normal” human body temperature). Because
temperature is an obvious thermodynamic variable, this section considers an-
other relationship between thermodynamics and kinetics.

Perhaps the most straightforward relationship between temperature and
rate constants was suggested by Svante Arrhenius (Figure 20.15) in 1889. He
used a thermodynamic approach in the form of an analogy. According to an
expression known as the van’t Hoff equation (not the van’t Hoff equation from
osmotic pressure considerations), the temperature variation in the equilibrium
constant of a process is

�
�

�

(

(

l

1

n

/T

K

)

)
� � ��

�r

R
xnH
� (20.48)

where �rxnH is the change in enthalpy of the reaction and R is the ideal gas
law constant. Arrhenius proposed an analogous equation by suggesting an
“equilibrium” between reactant molecules and some transition species that is
higher in energy (that is, less stable) than the reactants. The energy difference
is called the energy of activation or, more simply, the activation energy of the
reaction. The “equilibrium constant” of this so-called equilibrium is the rate
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Figure 20.14 See Example 20.7. This plot shows the concentrations of 210Bi, 210Po, and 206Pb
over time. Note the “temporary” buildup of 210Po, which does start at 0. Note that the x-axis is
in units of seconds, but in this example the right side of the plot is equivalent to a time of
1.9 years.

Figure 20.15 Svante Arrhenius (1859–1927),
a Swedish chemist who—among other things—
came up with a simple relationship between the
rate constant and the absolute temperature.
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constant, k, of the reaction. Using the symbol EA for activation energy, equa-
tion 20.48 becomes

�
�

�

(

(

l

1

n

/T

k

)

)
� � ��

E

R
A�

Rearranging:

�(ln k) � ��
E

R
A� ���

T

1
��

Now both sides of the equation can be integrated:

ln k � ��
R

E

T
A� � (integration constant) (20.49)

It is common to rewrite equation 20.49 by taking the exponential of both sides
of the expression:

k � e�EA/RT � e(integration constant)

The second exponential is some number; it is typically defined as A and the
above equation is written as

k � A � e�EA/RT (20.50)

This is called the Arrhenius equation. The constant A is sometimes referred to
as the pre-exponential factor.

Estimates of EA can be made using experimental values of rate constants de-
termined at different temperatures. Or, if the activation energy is known, its
value can be used to predict rate constants at new temperatures. Also, the nat-
ural logarithm of equation 20.50 can be taken to generate a new form of the
Arrhenius equation:

ln k � ln A � ���
E

R
A�� � �

T

1
� (20.51)

y b m x

where the labels indicate how this form of the Arrhenius equation is written
in the form of a straight line. Pre-exponential factors and activation energies
can be estimated graphically.

Example 20.8
In a recent paper (Orkin et al., J. Phys. Chem., 1997, 101: 174), rate constants
were determined for the reaction between the hydroxyl radical and chloro-
bromomethane:

OH� � CH2BrCl → products

Data that were obtained included the following values of the rate constant k
for the following temperatures:

T (K) k [cm3/(molecule�second)]

298 1.11 � 10�13

313 1.34 � 10�13

330 1.58 � 10�13

Show graphically that the Arrhenius equation is followed (approximately,
since these data are subject to experimental error), and determine A and EA.
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Solution
First, we need to determine the values that we will be plotting: they aren’t the
values right from the table above! We need the following pairs of numbers:

ln k 1/T (K�1)

�29.829 0.00336

�29.641 0.00319

�29.476 0.00303

See Figure 20.16 for a plot of ln k versus 1/T. Although the three points do
not all lie exactly on a straight line, it is a pretty good approximation of one
(again, indicative of the natural variations in experimental measurements).
The slope, which would equal �EA/R, is about �1070, so by multiplying the
ideal gas law constant R through, we get an estimate of EA as 1070 � 8.314
J/mol � 8900 J/mol. (The temperature unit in the denominator of R is at-
tached to the 1/T term.) The y-intercept of the plot is about �26.3, which is
equal to ln A. Therefore, A is about 3.78 � 10�12 cm3/(molecule�second).
Notice that A has the same units as the given rate constants.

Example 20.9
Use the information derived from Example 20.8 to estimate the rate con-
stant at 370 K. Compare it with the experimentally determined value of
2.10 � 10�13 cm3/(molecule�second).

Solution
With an activation energy of 8900 J/mol, we can use the value of A and the
given temperature and equation 20.50 directly:

k � A � e�EA/RT

k � �3.8 � 10�12 �
molecu

c

l

m

e�

3

second
�� � exp�� 	

Note how the units cancel in the exponential, as they should. Solving, we
find that

k � 2.09 � 10�13 �
molecu

c

l

m

e�

3

second
�

This is very close to the experimentally determined value, showing that the
Arrhenius equation is a good model for this reaction.

If we have two sets of conditions, two versions of equation 20.51, labeled
with 1 and 2 subscripts, can be subtracted to get the following expression:

ln �
k

k
1

2

� � ���
E

R
A����

T

1

1

� � �
T

1

2

�� (20.52)

which eliminates the need to know the pre-exponential factor A.
For some reactions, using the van’t Hoff equation as the starting point to

develop the Arrhenius equation is a little simplistic. Rather than assuming that

8900 �
m

J

ol
�

���

�8.314 �
mo

J

l�K
��(370 K)
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Figure 20.16 See Example 20.8. According to
the plot of ln k versus 1/T, the slope is equal to
�EA/R and the y-intercept is equal to the natural
logarithm of the pre-exponential constant.
According to this plot, EA is 8900 J/mol and A is
about 3.78 � 10�12 cm3/(molecule�second). See
text for details.
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n

/T

k

)

)
�� � ��

E

R
A�

—that is, that this derivative has some constant value given by the expression
�EA/R—it is better to assume that the slope of the plot of ln k versus 1/T is
dependent on temperature, also. That is, we also include a temperature term,
so the equation becomes

�
�

�

(

(

l

1

n

/T

k

)

)
� � ��

E

R
A� � m � T (20.53)

It is the convention to use a negative sign on this additional term. When we go
through and do the rearrangements and integrations like we did for equation
20.50, we ultimately get

k � A � Tm � e�EA/RT (20.54)

Defined like this, m is usually some negative number. For m � 0, equation
20.54 reduces into the Arrhenius equation.

How can we justify the Arrhenius equation beyond some energy difference
between the reactants and a transition state? The pre-exponential factor, which
is a constant for a given reaction (that is, it does not depend on temperature)
must have a value that is dictated by the specifics of the reaction itself, like the
nature of the reactants and how they interact on a molecular level.

What are the specific characteristics of a gas-phase molecular interaction
that determine if the molecules react? One of the most obvious is the number
of molecules that are colliding. The number of collisions is calculable from ki-
netic theory; we covered this topic starting in section 19.4. For example, at the
end of that section we showed that the total number of collisions per second
per unit volume, represented by Z, is given by

Z � (20.55)

where d1 and d2 are the diameters of gas particles in species 1 and 2, and � is
the reduced mass of two particles of those species. If we suggest that the effect
of temperature changes is minor compared to the exponential term in the
Arrhenius equation (that is, the e�EA/RT term), and if the densities of the two
species �1 and �2 are converted to concentrations and separated from the rest
of the expression, then we can argue that the rest of the expression is approx-
imately constant:

Z � � �1�2 (20.56)

� constant

This one factor, a collision frequency factor, is one major contribution to the
pre-exponential constant A.

A second contribution to the value of A is the orientation of the two reac-
tant species with respect to each other, and what fraction of collisions are ori-
ented properly so that bond rearrangement might occur (if the molecules have
enough energy—but that’s the consideration of the exponential term in the
Arrhenius equation). Figure 20.17 shows an example of how we can argue for
a steric factor as a contribution to the pre-exponential factor A. In one case, the
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atoms are not arranged properly as they collide. In the other case, orientation
factors are more favorable, and the reaction might proceed (if all other factors
are favorable). Steric factors include not just the size of the collisional cross sec-
tion (discussed in the previous chapter) but also considerations of reactant
structure and geometry. A lot of current research, using molecular beams, is
trying to determine the exact orientational relationships that promote a reac-
tion that forms products. This description of simple chemical reactions is
called collision theory and is a basic theoretical model of the kinetics of chem-
ical reactions.

20.7 Mechanisms and Elementary Processes
Consider the following gas-phase reaction:

2H2 (g) � O2 (g) → 2H2O (g) (20.57)

Does the reaction really proceed like this at the molecular level? No, it does not:
we recognize the above chemical reaction as simply the overall balanced chem-
ical reaction. At the molecular level the individual reactant molecules are in-
teracting in completely different ways; it’s just that overall they react to yield
the above balanced reaction.

The individual steps in any general chemical reaction are called elementary
processes. The overall combination of sequential elementary processes, which
collectively yields the balanced chemical reaction, is called the mechanism of
the reaction. Although balanced chemical reactions are usually easy to deter-
mine, mechanisms of chemical reactions are much more difficult because the
elementary processes are usually very quick and involve unstable species—
transition states, for example—whose existences are difficult to determine,
much less measure.

Because we cannot follow individual molecules from beginning (reactants)
to end (products), it is very difficult to prove a mechanism for a chemical 
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Figure 20.17 A simple example of how steric factors influence the probability of reactions 
occurring. (a) A sodium atom approaches an HCl molecule, but the orientations are not con-
ducive for a reaction to occur, so after colliding they simply go on their way. (b) Here the orien-
tation of the HCl is more conducive to reaction, so upon collision the Cl atom bonds with the
Na atom and new product species are formed.
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reaction. However, we can collect experimental evidence to support a proposed
mechanism, or to show that some proposed mechanism is incorrect. (Thus the
scientific axiom that any multitude of experiments can suggest that a hypoth-
esis is correct, but only one experiment is needed to show that a hypothesis is
incorrect.) Experimental techniques used to try to support a proposed mech-
anism include stopped-flow experiments for solution-phase chemistry and
ultrafast (on a femtosecond timescale; a femtosecond is 10�15 second) laser
spectroscopy for gas-phase reactions. We will not dwell on such techniques
here; rather, we will focus on the elementary processes that such experiments
might study.

For example, in the reaction of hydrogen and oxygen gases, the first ele-
mentary process in the overall reaction might be

H2 � O2 → 2OH� (20.58)

That is, the two diatomic molecules collide in space and rearrange to form two
new molecules, OH. Notice that this is not the hydroxide ion! It is a combina-
tion of one oxygen atom and one hydrogen atom, and as an uncharged di-
atomic molecule it has an odd number of electrons. Such odd-electron species
are rare in main-group compounds. Typically, odd-electron molecules are re-
active and short-lived; they are called free radicals, or more simply, radicals.

This diatomic product, OH�, also violates our “normal” rules of valence. But
we don’t mind in this case, because this is simply the first step in an overall
mechanism and not the balanced chemical reaction. We presume that this prod-
uct will react further with other species to ultimately give the final product of
the reaction. But what you can see is that we are allowed to step outside the
regular rules for making compounds when dealing with mechanisms, because
typically the intermediate chemical species aren’t our final products anyway.

There are some basic guidelines, however. Since chemical species are inter-
acting in three-dimensional space, we presume that individual elementary
processes involve a single species, two species coming together (colliding), and
rarely three species coming together. (Again, we emphasize “rarely”: What are
the odds that three different atoms or molecules will come to the exact point
in three-dimensional space at the exact time in the necessary orientation so
that a reaction will occur? It would be very rare. Elementary processes involv-
ing more than three species in the gas phase are not even seriously considered
as possibilities.) Occasionally, collision with an inert reactant or the wall of the
container can be invoked as part of an elementary process; such mechanisms
are sometimes necessary to remove excess energy from two colliding reactants.
But for the most part, elementary processes will involve one or two (maybe,
but rarely, three) reactant species.

Also, the overall sum of all elementary processes must yield the balanced
chemical reaction. This may seem obvious, but might be easily forgotten when
proposing an overall mechanism.

Finally, the proposed mechanism must be consistent with the overall rate
law of the reaction, which is determined experimentally. This point is impor-
tant and useful. Earlier, we made the point that the exponents on the concen-
trations in the rate law, the orders with respect to each concentration, were not
necessarily equal to the coefficient in the balanced chemical reaction. However,
for elementary processes, the rate law is determined directly from the stoi-
chiometry of the process. Instead of using the term “the order with respect to
the reactants,” we refer to “the molecularity with respect to the individual
species” in the elementary process.
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Example 20.10
What is the expected rate law of the equation below, assuming that it is an el-
ementary process? What is the molecularity with respect to each reactant?

H2 � O2 → 2OH�

Solution
According to the statement in the paragraph before the example, the rate
law for this elementary process is given directly by the stoichiometry of the
reaction. Therefore, we can simply look at the reaction (that is, we can tell “by
inspection”) and state that

rate � k[H2]1[O2]1

Since the exponent 1 is typically not written explicitly, the rate law is usually
written as

rate � k[H2][O2]

The molecularity with respect to H2 is 1, and the molecularity with respect
to O2 is also 1.

There is an additional consideration: is the rate law of this first elementary
process consistent with the experimentally determined rate law of the overall re-
action? Unfortunately, we don’t know this yet, and the determination of this
will be left to the next section. But you should at least be getting an idea of the
factors involved in determining the mechanism of a reaction.

What are other possible elementary processes for this reaction? Below, we
list some possible elementary processes. Note that the lack of charges on the
species is intentional: many of the intermediates from the elementary processes
are radicals.

H2 � O2 → 2OH� (from previously)

OH� � H2 → H2O � H�

H� � O2 → OH� � �O�

OH� � H2 → H2O � H�

H� � �O� → OH�

OH� � H2 → H2O � H�

and so on

The combination of all of these processes, for all of the billions of billions of
molecules in any sample, is

2H2 � O2 → 2H2O

As it should be.
Another example of elementary processes comes from halogenation of

alkanes. For the gas-phase chlorination of methane, the major overall reaction
(ignoring unwanted products) is

CH4 � Cl2 → CH3Cl � HCl
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The individual steps in the mechanism are proposed to be

Cl2 → 2 Cl�

Cl� � CH4 → HCl � CH3�

CH3� � Cl2 → CH3Cl � Cl�

Cl� � CH4 → HCl � CH3�

CH3� � Cl2 → CH3Cl � Cl�

and so on

Again, you can see that some of the products of each individual elementary
process violate our normal rules of valence, but these are meant to be short-
lived, intermediate chemical species. Some of the product species are free
radicals, and others are the ultimate products of the reaction. Overall, the
chemical reaction is

CH4 � Cl2 → CH3Cl � HCl

Again, as it should be.
Once a reaction has been broken down into its hypothetical individual

steps, a normal question to ask is how fast these steps can go. Presumably, the
overall reaction’s rate will be dependent on the rates of the individual elemen-
tary processes. This is certainly the case, and modern chemical experimenta-
tion has actually gotten to the point that rates of certain elementary processes
can be probed individually (for example, using ultrafast laser experiments).
Knowing the rates of these individual steps is enormously helpful in under-
standing the rates of the net reaction.

There is a useful point, however: an overall reaction can go only as fast as its
slowest step. The elementary process that has the slowest rate is the one that con-
trols the rate of the overall chemical reaction. Steps before it get backed up, and
steps after it go faster and deplete their reactants as fast as they are made. It’s like
a slow driver on a one-lane road. Cars behind the driver (like the steps before the
slowest step) are backed up, and cars in front of that driver (like the steps after
the slowest step) can speed away. It is the same idea with individual elementary
processes. Because of this, the elementary process that controls the rate of the
overall reaction is called the rate-determining step (or RDS for short).

In some cases, the RDS is the initial elementary process in a mechanism. If
that’s the case, then the rate law of the entire reaction is simple: it is just the
rate law as dictated by the stoichiometry of the first elementary process.
(Remember, although rate laws of overall reactions aren’t necessarily related to
the stoichiometry of the reaction, they are for elementary processes.) Suppose,
for example, that the formation of water from H2 and O2 has an RDS that is
the first elementary process in the mechanism. That process is

H2 � O2 → 2OH�

In Example 20.10, we showed that the rate of this elementary process is given by

rate � k[H2][O2]

where k is some rate constant. However, if we can show that this step is the
rate-determining step, then the rate for the entire reaction is

rate � k[H2][O2]

which is the same rate law.
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At this point, we need to keep track of what process we are speaking of when
we are referring to a rate. For elementary processes, the rate law can be deter-
mined directly from the stoichiometry of the process. For net balanced chem-
ical reactions, we can’t. However, we have proposed that we can know the rate
of the overall reaction if we know the rate-determining step. We will see in the
next section how we might be able to use the rate-determining step to relate
to a measurable rate law.

(Counter?)Example 20.11
Assume that the rate law for the combination of hydrogen and oxygen is

rate � k[H2][O2]

Show that this is not consistent with the hypothesis that the second elemen-
tary process, which is

OH� � H2 → H2O � H�

is the rate-determining step in this reaction.

Solution
If the second elementary process in our proposed mechanism were the RDS,
we could immediately predict a rate law of

rate � k[OH�][H2]

In this case, we have [OH�] substituting for [O2]. Unless we can be convinced
that the concentration of the hydroxide radical is equal to the concentration
of diatomic oxygen, we would have a difficult time arguing that this rate law
is equivalent to the assumed rate law from the first part of the example. This
would argue against the second step being the RDS.

20.8 The Steady-State Approximation
The preceding example points out one obvious problem, and implies another.
The obvious problem is that rate laws for elementary processes are not imme-
diately transferable to rate laws for the overall reaction.

The implied problem is not so obvious. Typically, we determine rate laws in
terms of amounts we can measure. For example, in the reaction between hy-
drogen and oxygen gases, we would want to express a rate law in terms of the
amounts of H2 and O2. On the other hand, we certainly do not want to express
a rate law in terms of, say, the OH radical. Such a chemical species may be an
intermediate, but its existence is so fleeting that it would be extraordinarily dif-
ficult to measure its concentration at any one time, much less determine the
effect its change in concentration has on a reaction rate. No, we typically ex-
press a rate law in terms of concentrations that are easily measured, like the
concentrations of the reactants (and sometimes the products).

If the rate-determining step is the first step in the mechanism, then the rate
law for the overall reaction is simply the rate law from the elementary process.
(And because the first step does not have any intermediates as reactants, by de-
finition the rate law can be expressed in terms of measurable quantities of
chemical species.) Suppose, however, that the rate-determining step is the sec-
ond step. Consider the following hypothetical two steps:
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A → B (fast)

B → C (slow)

Here, B represents an intermediate product whose concentration is difficult to
determine experimentally. A and C represent normal chemical reactants whose
amounts can be measured. If the second step is the slow, rate-determining step,
then it will force the first step to be backed up like cars on a one-lane road.

However, we do know that no chemical reaction actually ever goes to 100%
completion. Rather, the reverse of the chemical reaction begins to occur and
eventually an equilibrium is established. Since the first step is backed up by the
second step, in many cases the reverse of the first step will begin to occur and
eventually the first step will establish an equilibrium between its products and
reactants. The two-step process is better represented as

A B (fast)

B → C (slow)

where the arrows are used to symbolize an equilibrium. If this first step is
truly in equilibrium, then the concentrations of A, B, and C are relatively
steady and unchanging. Because of this, this model is called the steady-state ap-
proximation of reaction mechanisms.

The steady-state approximation helps us relate the rate law determined
from the RDS with the rate law as determined from experiment. Recall that
the rate law of a mechanism is dictated by the stoichiometry of the RDS, but
how can we know if this rate law is consistent with the experimental rate
law? We can use the fact that the preceding step(s) is/are at equilibrium to
derive a rate law in terms of the original reactants (whose amounts or con-
centrations we can measure). There are two ways to do this. First, we will
adopt a simplified approach. If the first step in the above two-step process
is in fact in equilibrium, then we can write an equilibrium constant expres-
sion for it:

K � �
[

[

A

B]

]
� (20.59)

where we are using molar concentrations as an arbitrary unit of amount.
(Thermodynamically, activities should be used, but using molarity still makes
our point.) If the RDS is the second step, then we can immediately write a rate
law for the reaction as

rate � k[B]

But [B], the concentration of an intermediate species, may not be measurable!
No matter. We will use equation 20.59 to find an expression for [B]:

K � [A] � [B]

[B] � K � [A]

If we substitute this expression for [B] into the rate law, we get

rate � k � K � [A]
constants

Since k and K are both constants, we will combine them into a new k� that is
also some constant. The rate law becomes

rate � k� � [A]

QP
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which is a rate law in terms of A, a species whose concentration is knowable
(as supposed a few paragraphs above).

Now: does this rate law agree with the experimentally determined rate law?
If it does, then this mechanism—and the identification of the rate-determin-
ing step—is plausible. (Not proven, just plausible.) If this rate law does not
agree with the experimentally determined rate law, then the mechanism is
probably incorrect. By using approximations such as the steady-state one, we
can try to judge whether a proposed mechanism is consistent with experi-
mental observations.

In a more detailed approach, we recognize that the forward and reverse re-
actions in the equilibrium have their own characteristic rate constants and rate
laws. For the reaction

k1
A B

k�1

the forward reaction has the rate law

rate � k1[A]

The reverse reaction has the rate law

rate � k�1[B]

If we consider the fact that the intermediate B has a steady-state concentra-
tion, then its concentration is not changing over time. The way to write this
using the tools of calculus is

�
d[

d

B

t

]
� � 0

The concentration of B increases due to the first step’s forward reaction, but
decreases due to the first step’s reverse reaction as well as the rate-determining
step’s forward progress. Since the overall change in [B] is zero by the steady-
state approximation, we can write (using k2 for the rate constant of the second,
rate-determining step)

�
d[

d

B

t

]
� � 0 � � k1[A] � k�1[B] � k2[B] (20.60)

k2(Recall that the RDS is B → C, so the rate of disappearance of B from this
process is simply k2[B].) For a reaction whose rate-determining step gives us
the rate law

rate � k2[B] (20.61)

we can use equation 20.60 to substitute for the concentration of the interme-
diate B:

[B] � �
k�

k

1

1[

�

A]

k2

� � �
k�1

k

�
1

k2

� � [A] (20.62)

Substituting for [B] in equation 20.61, we get for the rate law

rate � k2 � �
k�1

k

�
1

k2

� � [A]

constant

Recognizing that the collection of constants equals some other constant, we
again combine them into a constant k and write the above rate law as

rate � k � [A] (20.63)

JQPJ
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Notice that this is the same overall rate law that we got when we used the equi-
librium constant of the first elementary process, so there is some consistency
between the two mathematical applications of the steady-state approximation.
The particular mathematical approach you might use depends on the infor-
mation available (that is, the value of K or k1 and k�1) as well as what you
might be trying to determine about a particular chemical reaction.

One kind of kinetics that uses the steady-state approximation is applied to
enzyme-catalyzed reactions. Because enzymes (which are proteins) are very
good catalysts, typically only a very small concentration is needed for a bio-
chemical reaction to occur, and determination of the reaction kinetics focuses
on following the change of concentration of the primary reactant, called the
substrate.

The first step in an enzyme-catalyzed process is the combination of the
proper enzyme, labeled E, with the substrate, labeled S. The second step, the
RDS, is the production of some product material P and the simultaneous re-
lease of the unchanged enzyme catalyst. The two elementary steps are repre-
sented as

k1
E � S ES (fast)

k�1

k2
ES → E � P (slow)

where ES represents the intermediate, an enzyme-substrate complex. Because
the second step is the RDS, the first elementary process reaches equilibrium,
and we can apply the steady-state approach to the intermediate ES and derive,
for the rate law,

rate � �
k�

k2

1

�

�

k1

k2

� � [E][S] � k[E][S] (20.64)

where k � k2 � k1/(k�1 � k2). Applying equation 20.62, the amount of enzyme-
substrate complex ES is given by

[ES] � �
k2 �

k1

k�1

�[E][S] (20.65)

We define [E0] as the total amount of enzyme present in any form:

[E0] � [E] � [ES] (20.66)

Using equation 20.65, we can rewrite the expression for [E0] as

[E0] � [E] � �
k2 �

k1

k�1

�[E][S] � [E]�1 � �
k2 �

k1

k�1

�[S]�
Solving for [E], we find that

[E] � ��
k2

[E

�
0](

k

k

�

2

1

�

�

k

k
�

1

1

[

)

S]
�

In terms of [E0], the rate of the equation is

rate � �
k�

k2

1

�

�

k1

k2

� � [E][S]

��
k2

k

�
2 �

k�

k1

1

�

�

[E

k
0

1

]

[S]
�� [S]

[E0]
��
1 � �

k2 �

k1

k�1

�[S]
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By defining V and K as

V � k2[E0] and K � �
k�1

k

�

1

k2� (20.67)

we can write the reciprocal of the rate, 1/rate, as

�
ra

1

te
� � �

V

1
� � �

k2[

K

E0]
� � �

[

1

S]
� (20.68)

A plot of 1/rate versus 1/[S], the inverse of the substrate concentration, gives a
straight line with slope K/(k2[E0]) and y-intercept 1/V. Equation 20.68 is called
the Michaelis-Menten equation, and a plot of 1/rate versus 1/[S] is called a
Lineweaver-Burk plot. An example of such a plot is shown in Figure 20.18.
This is one common application of the steady-state approximation to enzyme
kinetics.

20.9 Chain and Oscillating Reactions
The kinetics of certain kinds of reactions are interesting enough that they de-
serve special attention. In this section, we will consider two interesting kinds
of reaction kinetics.

Consider a gas-phase reaction in which one or two reactant species are con-
verted into species that are very reactive themselves. For example, a molecule
of bromine can be broken into two individual bromine atoms, each with an
unpaired electron:

Br–Br → Br� � Br� (a)

In turn, each of these bromine atoms, which are free radicals, can react with
another species, say a hydrogen molecule:

Br� � H2 → H–Br � H� (b)

A new free radical, in this case a hydrogen atom with an unpaired electron, is
generated. This reactive free radical can now react with an unreacted bromine
molecule to make a product molecule and another free radical:

H� � Br2 → H–Br � Br� (c)

The newly generated bromine atom, a free radical, can react with another hy-
drogen molecule as shown in reaction b, after which the new hydrogen atom
can react with another bromine molecule as given in reaction c, and so forth.
Such a reaction cycle can continue undiminished until one reactant is virtually
depleted, or until two free radicals combine to make a molecule that is rela-
tively unreactive, like each of these:

Br� � Br� → Br–Br

Br� � H� → H–Br (d)

H� � H� → H–H

This series of kinetic steps typifies a chain reaction. A chain reaction is a reac-
tion whose mechanism consists of steps whose products are intermediates that
react to form other intermediates, usually in an apparently cyclical fashion.
Reaction a, which started the chain reaction in this example, is called an initi-
ation reaction (or initiation step). Reactions b and c of this example react one
intermediate and produce another intermediate. They are called propagation
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Figure 20.18 A Lineweaver-Burk plot of a re-
action that follows the Michaelis-Menten equa-
tion. A graph of 1/rate versus 1/[S] should give 
a straight line with slope K/(k2[E0]) and inter-
cept 1/V.
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reactions. The reactions d represent a loss of the intermediates that propagate
the chain reaction. They are called termination steps. All steps can be generally
characterized by the change in the reactive intermediates over the course of the
reaction. Initiation steps form reactive intermediates from reactants, propaga-
tion steps react an intermediate but form another (so there is no net change in
the amount of reactive intermediate), and termination steps decrease the num-
ber of reactive intermediates. A reaction does not have to involve free radicals
to be a chain reaction, although free-radical reactions are the most common
examples of chemical chain reactions.

Many polymerization processes proceed via free-radical mechanisms. Also,
the Cl-atom-catalyzed reactions that contribute to stratospheric ozone depletion
are free-radical reactions that have received a lot of attention in recent years.

Example 20.12
In the discussion of rate-determining steps in section 20.7, the chlorination
of methane, CH4, was postulated to occur by a free-radical mechanism:

Cl2 → 2Cl� (a)

Cl� � CH4 → HCl � CH3� (b)

CH3� � Cl2 → CH3Cl � Cl� (c)

Cl� � CH4 → HCl � CH3� (d)

CH3� � Cl2 → CH3Cl � Cl� (e)

a. Classify each reaction a–e as initiation or propagation.
b. No termination step is given above. Suggest some possible termination
steps for this reaction.

Solution
a. Since the first reaction creates two free radicals where none existed as re-
actant, reaction a is an initiation reaction. All other reactions have a reactive
intermediate (a free radical) as a reactant and as a product, so reactions b
through e are propagation reactions.
b. A termination reaction reduces the number of reactive intermediates. In
this example, a termination reaction would have two radicals combining to
make a stable molecule. There are three possibilities:

Cl� � Cl� → Cl2

Cl� � CH3� → CH3Cl

CH3� � CH3� → CH3CH3

Experimentally, the presence of a small amount of ethane, CH3CH3, is seen
as support of the chain reaction mechanism for this chemical reaction.

Although all reactions proceed with some change in energy, initiation and
termination reactions usually have an obvious energy change. For initiation re-
actions, there is typically some energy input to promote the formation of re-
active intermediates. In other words, many initiation reactions are endother-
mic. Or, the initiation reaction might occur spontaneously from the molecules
from the higher-energy end of the energy distribution (remember from kinetic
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theory that there is a range of energies for molecules at any given temperature).
More formally, an initiation reaction should indicate this energy input, which
can be in the form of heat, light, or some other process:

energy
reactants → intermediates (initiation)

For termination reactions, the formation of a stable product implies that en-
ergy is released (that is, it is an exothermic process). The energy given off must
go somewhere. Typically, the energy is either given off as photons or, more
commonly, a third body is needed to absorb the energy given off as the reac-
tive intermediates react to form a stable product. If the third body is given the
symbol M, then a termination reaction between two free radicals R� can be
written as

R� � R� � M → R–R � M* (termination)

where M* is an energetically excited third body. Third bodies can be reactant
or product molecules, some other species like an inert gas (an example of
homogeneous termination), or even the walls of the container defining the sys-
tem (an example of heterogeneous termination).

Under some conditions, intermediate reactions that actually generate
more reactive intermediates can contribute significantly to the propagation
of the reaction. These reactions are more properly called branching reac-
tions. One example, from the mechanism of the reaction between H2 and O2

gases, is

H� � O2 → HO� � �O� (branching)

In this example, the reaction goes from having one reactive free radical to two
reactive free radicals. These two reactive products can participate in their own
propagation reactions, like

HO� � H2 → H2O � H�

O � HO� → O2 � H�

or other steps. Branching reactions contribute to an increase in the number
of propagation reactions, and if more branching reactions occur, more and
more propagation reactions will occur as a result. Under the right conditions,
branching reactions can contribute to a geometric increase in the number of
propagation processes that occur (that is, 2 → 4 → 8 → 16 → 32 → � � � as
shown in Figure 20.19). Since most propagation reactions are exothermic, a
geometric increase in the number of propagation reactions is accompanied
by a geometric increase in the amount of energy released. The result is an
explosion.

Not all explosions are caused by branching reactions, and not all chain re-
action mechanisms lead to explosions. But a branching chain reaction is one
cause for a gas-phase explosion, under the right conditions. If there are enough
inert bodies or the area of the walls of the container is large enough with re-
spect to the volume, enough termination reactions can occur to minimize the
effect of branching reactions, and no explosion occurs. If the concentrations of
the reactants are not in the right proportions, not enough branching reactions
will occur to cause a geometric increase in the energy given off by the overall
reaction, and no explosion occurs. As an example, the H2/O2 system has been
studied extensively, and the relative partial pressures, temperatures, and other
variables have been mapped to determines conditions under which explosions
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will occur. Figure 20.20 shows a diagram of some of those conditions for
H2/O2 mixtures.

Another example of interesting kinetics is the oscillating reaction. In these
reactions, an apparent oscillation in a concentration of an intermediate is seen
during the course of the reaction. This concentration oscillation can be seen as
a color-change cycle, the periodic formation of a gaseous product, or some
other measurable increase-and-decrease in the concentration of some species.
Oscillating reactions are rare but are particularly fascinating to chemists be-
cause of their seemingly unusual behavior.

Oscillating reactions might seem to violate the laws of thermodynamics,
which suggest that a reaction should proceed toward equilibrium and, once
there, not deviate from equilibrium conditions unless some external influence
is imposed. Oscillating reactions start from some nonequilibrium condition,
appear to pass through some equilibrium concentration of products, then con-
tinue to a different nonequilibrium concentration. At some point, the reaction
reverses and proceeds back toward the equilibrium amounts, again passing
through the equilibrium condition to some other extreme, then reverses again.
The analogy is a clock pendulum swinging back and forth, but the general un-
derstanding of chemical reactions is that they should proceed toward equilib-
rium and then stop, a dynamic equilibrium having been established.

One key in understanding oscillating reactions is that the oscillating concen-
tration is typically one of an intermediate, which may or may not be a final
product of the overall reaction. Another key is the idea that there are two (or
more) pathways that the reaction can take, and that the intermediate is a prod-
uct of one pathway and a reactant of another. Thus, when the intermediate’s
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concentration is low, the intermediate-producing pathway is favored; and when
the intermediate’s concentration is high, the intermediate-consuming pathway
is favored. Eventually, the reaction comes to equilibrium as final products are
formed (ultimately in accordance with thermodynamics).

In 1910–1920, the American biophysicist Alfred Lotka* proposed two sim-
ple mechanisms for oscillating reactions. Using hypothetical reactants and
products, the two mechanisms are as follows:

A → B

B � C → 2C (mechanism 1)

C → D

A � B → 2B

B � C → 2C (mechanism 2)

C → D

In both cases, the overall reaction is simply A → D, with B and C as interme-
diate species. Each individual step in a mechanism has a rate law based on the
stoichiometry of the individual elementary process. Lotka showed that if [A]
is assumed to be constant (that is, it is present in a large excess), the differen-
tial equations that relate the concentrations of A, B, C, and D have mathemat-
ical solutions that predict oscillations in the concentrations of intermediates B
and C if the rate constants have the appropriate values. In mechanism 1, [B]
and [C] follow damped oscillations, and for mechanism 2 the intermediate
concentrations oscillate more evenly. Figure 20.21 shows the concentration be-
haviors of the intermediates versus time.

At the time of Lotka’s work, no chemical reaction was known to follow his
two mechanisms. In 1921, W. C. Bray reported an oscillation in a liquid-phase
reaction between hydrogen peroxide and potassium iodate (H2O2 � KIO3), but
this report was treated with some skepticism. In 1951, the Russian biophysicist
Boris Belousov discovered another example of an oscillating reaction, which
was studied in detail by his fellow Russian biophysicist Anatol M. Zhabotinsky.
Despite initial resistance to the thought of oscillating reactions (Belousov’s ini-
tial work wasn’t published until 1959, and Zhabotinsky’s detailed studies
weren’t done until the mid 1960s), the Belousov-Zhabotinsky (or BZ) reaction
is now the best-known example of an oscillating chemical reaction.

The reaction is actually a group of reactions that have some common in-
gredients. Generally, a BZ reaction is the metal-ion-catalyzed oxidation of cer-
tain carboxylic acids by bromate (BrO3

�) ions. A common catalyst is the
cerium(IV) ion, Ce4�. One example of an overall reaction is

Ce4�

2HBrO3 (aq) � 3 malonic acid →
2 bromomalonic acid � 4H2O � 3CO2 (g) (20.69)

The steps in the mechanism of the BZ reaction are complex (an 18-step mech-
anism has been proposed!), but the two pathways can be summarized as

BrO3
� � Br� → HBrO2 � Br� → products (path I)

BrO3
� � HBrO2 → HBrO2 → Br� � products (path II)
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*Lotka’s models have also been applied to the understanding of animal populations in
ecology. Although animals aren’t molecules, the “kinetics” of their populations follows
similar differential equations!
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Figure 20.21 (a) In Lotka’s first mechanism
for an oscillating reaction, the concentrations of
intermediates B and C oscillate in a damped fash-
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Both pathways react bromate ion to products, but path I has Br� ions as a re-
actant whereas path II has Br� ions as a product. Thus, when enough Br� is
available, path I dominates; when [Br�] is small, path II is favored. Path II then
generates Br� ions, so as [Br�] increases, path I becomes favored, . . . and the
cycle goes on. Ce4� is reduced to Ce3� by some steps in path II, then reoxi-
dized to Ce4� by other steps in the same pathway. As such, the reaction serves
as a Ce(III)/Ce(IV) half-reaction, and the oscillations can be followed electro-
chemically by using the BZ reaction itself as a half cell. Various indicators and
spectroscopic techniques can also be used to follow the changing concentra-
tions of the intermediates. Figures 20.22 and 20.23 show diagrams of how con-
centrations change during the course of a BZ reaction.

Why are chemists interested in oscillating reactions? Not only are they in-
teresting from a kinetic perspective, but some important chemical reactions are
oscillatory in nature. Among the most important ones are the reactions that
cause a heart to beat. Specific chemical processes promote electrochemical re-
sponses that cause the heart to contract, pump blood—and keep us alive. An
understanding of oscillating reactions thus yields a better understanding of the
biochemistry of complex living systems.

20.10 Transition-State Theory
Not all kinetics is phenomenological. In recent years there have been advances
in understanding the kinetics of reactions from a theoretical perspective. In
this section, we will review the basics of some theoretical kinetics.

Collision theory is a simple description of reacting molecules that treats
them as hard spheres. Some of the basic concepts of collision theory were con-
sidered at the end of section 20.6. Although this model does predict some nu-
merical reaction parameters having about the right order of magnitude, its de-
scription of molecules as hard spheres and use of steric factors as “fudge
factors” ignores the complex nature of even simple molecular reactions. A
more realistic approach is necessary.

Transition-state theory (sometimes called activated-complex theory) is a
more realistic model of a bimolecular elementary step in a reaction. It takes
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into account the molecular orientations that are thought necessary to promote
a reaction (and so take into account what collision theory calls the steric fac-
tor) as well as the energy barrier that reactants must overcome to become
products (taking into account what collision theory calls the activation en-
ergy). Two new concepts are needed to understand transition-state theory. The
reaction coordinate is the conceptual pathway taken as the two reactant mole-
cules become products. Plots of total energy of the bimolecular system versus
the reaction coordinate are called reaction profiles, illustrated in Figure 20.24.
The maximum on the reaction profile curve represents the potential energy
barrier the reactants must overcome to react. The transition state (or activated
complex) is the intermediate structure of the two molecules that exists at the
potential energy maximum.†

A key point in transition-state theory is to calculate a theoretical rate con-
stant k for the bimolecular elementary process. In terms of transition-state
theory, the bimolecular elementary process given as

A � B → products 

can be further broken down into two steps involving the transition state C*:

k 
A � B → C* (a)

k*
C* → products (b)

where k and k* represent the rate constants of the two imaginary steps, k for
the bimolecular step a and k* for the unimolecular step b. If the reaction con-
sidered is in fact an elementary process, then from the ideas in section 20.7,
the rate laws can be written in terms of the stoichiometry of the reaction:

rate � k[A][B] � k*[C*] (20.70)

The second equality in equation 20.70 is a basic assumption that species A and
B become some transition state C* on their way to forming products, so the
rate of the elementary process can be expressed in terms of the concentrations
of original reactants or in terms of the amount of the transition state. We can
rewrite equation 20.70 in terms of the elementary process rate constant k as

k � �
k

[A

*[

]

C

[B

*

]

]
� (20.71)

The concentrations in equation 20.71 correspond to a concentration-based
equilibrium constant of the first reaction in the hypothetical two-step process,
so we define a dimensionless Kc* as

�
K

c°
c*� � �

[A

[C

][

*

B

]

]
� (20.72)

where c° represents the standard concentration unit (that is, 1 M or a � 1) to
make the expression unitless. We rewrite the expression for k, equation 20.71, as

k � �
Kc*

c

�

°

k*
�
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Figure 20.24 A reaction profile is a diagram
illustrating the relationship between the energy of
the reactants, the energy of the products, and the
energy of the proposed intermediate species called
the activated complex or the transition state. The
difference between the energies of the reactants
and the transition state is Arrhenius’s proposed
activation energy.

†Although many references use the terms transition state and activated complex inter-
changeably, other references define them differently. For example, some references refer to
the point on the reaction profile as the transition state, and to the molecular species at that
point as the activated complex itself. We will not worry about such subtleties here.
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Thus, if we can determine Kc* and k*, we can calculate the rate of the elemen-
tary process.

The rate constant k* for the second step of our hypothetical two-step process
is relatively easy to express. Consider how a transition state rearranges to a set
of product species: typically, one chemical bond of the transition state will
lengthen as two parts of the transition state separate into the ultimate prod-
ucts. The lengthening of a chemical bond is part of a molecular motion known
as a vibration, just like the vibrations considered for stable molecules in
Chapters 12 and 14. Therefore, we assume that the transition state has some
vibrational frequency �* that “connects” the transition state and the ultimate
products. (Like any polyatomic species, a transition state has other vibrations,
but only one particular vibration represents the movement from the transition
state to the products.) Understanding that a unimolecular rate constant like k*
has units of s�1 (that is, seconds in the denominator), we submit that the rate
constant k* should be proportional to the transition state’s vibrational fre-
quency �* (also units of s�1) that promotes the formation of products. The
variable �, called the transmission coefficient, is defined as the proportionality
constant, yielding

k* � � � �* (20.73)

as our expression for the unimolecular rate constant for step b. Transmission
coefficients are usually assumed to be 1, and k* is simply equal to �*.

We turn our attention to Kc* by applying some results from Chapter 18: we
can use statistical thermodynamics to determine a numerical value for the
equilibrium constant Kc*. For the reaction

k
A � B → C*

the equilibrium constant expression in terms of the partition functions of A,
B, and C* is

Kc* � �
(qA/

q

V
C

)
*

(

/

q

V

B/V)
� (20.74)

(see equation 18.62). Each individual partition function can be separated into
five parts: translational, electronic, vibrational, rotational, and nuclear. Let us
consider two of these parts. First, using equation 18.8, the electronic parts of
the partition function can be written as

�
qel,

q

A

el

�
,C

q
*

el,B

� � � �
e(D

(e
e,

D

A�

e/k

D

T

e

)
,B

C
)/
*
kT� (20.75)

where the De’s in the exponentials refer to the dissociation energies of the re-
spective species. The difference between De of C* and (De,A � De,B) is simply
the difference in the electronic energies of C* and species (A and B), collec-
tively. We will use ���* to represent the difference in the electronic energies;
a negative sign is used by convention and * means that it refers in part to the
transition state. Equation 20.75 becomes

�
qel,

q

A

el

�
,C

q
*

el,B

� � e���*/kT (20.76)

If we use q� to represent the remaining partition functions within each q, equa-
tion 20.74 becomes

Kc* � �
(q�A/

q

V

�C
)
*

(

/

q

V

�B/V)
� � e���*/kT

(eDe/kT)C*���
(eDe/kT)A � (eDe/kT)B
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We also consider the vibrational partition function of C*. It has 3N � 6 (or
3N � 5) terms in it, but one of those terms represents the vibration that tracks
the movement of C* into products. The high-temperature-limit partition
function for this term is (from equation 18.20)

q�* � �
h

k

�

T

*
�

Let us remove this one term from the overall partition function for C* and rep-
resent the leftover partition function (minus this one vibrational term and the
electronic term) as q�. We have, for Kc*:

Kc* � �
(q�A/

q

V

�C
)
*

(

/

q

V

�B/V)
� � e���*/kT � �

h

k

�

T

*
� (20.77)

Combining this expression with the expression for the rate constant k*, equa-
tion 20.73, we can get an expression for the rate constant k for the bimolecu-
lar reaction:

k � �
�

c

�

°

�*
� � �

(q�A/

q

V

�C
)
*

(

/

q

V

�B/V)
� � e���*/kT � �

h

k

�

T

*
�

The �* terms cancel and, if � is presumed to be 1, we get

k � �
c

k

°

T

h
� � �

(q�A/

q

V

�C
)
*

(

/

q

V

�B/V)
� � e���*/kT (20.78)

This last equation is one form of the Eyring equation,† and is used to estimate
k for a bimolecular elementary process. (Careful about the two uses of the vari-
able k in the above equation!) For a given set of reactants A and B and a stated
temperature, all of the quantities in equation 20.78 can be calculated for a given
structure of a transition state C*. Therefore, if you had a known or proposed
transition state, you would be able to calculate ��* and q for the transition
state C*, and for given reactants A and B you should certainly be able to de-
termine the partition functions (since they are typically known, stable mole-
cules). All other parameters are fundamental constants, so the rate constant k
can be calculated.

Note the parallel between equation 20.78 and the Arrhenius equation

k � A � e�EA/RT

According to transition-state theory, the pre-exponential factor A is given by
the expression

A � �
c

k

°

T

h
� � �

(q�A/

q

V

�C
)
*

(

/

q

V

�B/V)
� (20.79)

Thus, we have an opportunity to calculate A from theoretical perspectives and
compare it to experimentally determined values (as determined, for example,
by graphing ln k versus 1/T). Table 20.2 lists some simple reactions and their
experimental and calculated pre-exponential factors. Agreements are typically
about the correct order of magnitude.

Because of the relationship between an equilibrium constant and the Gibbs
free energy, we can use K* to define a �G* value for the formation of the tran-
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†It is named after Henry Eyring, a twentieth-century chemist who did some fundamen-
tal work in kinetics, including enunciation of the steady-state theory.
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sition state, and rewrite the Eyring equation in terms of the Gibbs free energy.
We get

k � �
c

k

°

T

h
� � e��G*/RT (20.80)

where k on the left is the rate constant, whereas k on the right is Boltzmann’s
constant. Since �G can be written in terms of �H and �S, we can rewrite equa-
tion 20.80 as

k � �
c

k

°

T

h
� � e��H/RT � e�S*/R (20.81)

where now we are referring to an enthalpy change for the formation of the
transition state, �H*, and an entropy change for the formation of the transi-
tion state, �S*. Equation 20.81 is similar to the Arrhenius equation, but not
exactly. However, if we write the logarithm of the Arrhenius equation as

ln k � ln A � �
R

E

T
A�

we differentiate with respect to temperature:

�
�

�

ln

T

k
� � �

�

�

ln

T

A
� � �

�

�

T
���

R

E

T
A��

The term (� ln A)/�T is zero (A is a constant, so the derivative is zero), and we
can evaluate the derivative of the activation energy. We get

�
�

�

ln

T

k
� � ��

R

E

T
A

2��
We can rearrange this to

EA � RT2�
�

�

ln

T

k
� � RT2 �

1

k
� �

�

�

T

k
� (20.82)

We can substitute the expression for k from equation 20.81 into equation 20.82
to find that

EA � �H* � 2RT or �H* � EA � 2RT (20.83)

In terms of the activation energy, k can be written as

k � �
c

k

°

T

h
� � e�(EA�2RT)/RT � e�S*/R

� �
c

k

°

T

h
� � e�EA/RT � e�(�2RT)/RT � e�S*/R
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Table 20.2 Experimental and calculated pre-exponential factors

A[cm3/(mol�s)]

Reaction Experimental Calculated

H � H2 → H2 � H 5.4 � 1013 7.4 � 1013

H2 � Br → HBr � H 3 � 1013 1 � 1014

H � CH4 → H2 � CH3 1 � 1013 2 � 1013

CH3 � H2 → CH4 � H 2 � 1012 1 � 1012

ClO � ClO → Cl2 � O2 6 � 1010 1 � 1011

Source: J. Nicholas, Chemical Kinetics: A Modern Survey of Gas Reactions, Wiley, New York, 1976.
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which can be rearranged to

k � �
e

c

2

°

k

h

T
� � e�EA/RT � e�S*/R (20.84)

Equating the activation-energy exponentials in equation 20.84 and the Arrhenius
equation, the rest of the terms in equation 20.81 must be related to the pre-
exponential factor. Thus, using an experimentally known pre-exponential fac-
tor, we can estimate the entropy change that accompanies the formation of the
transition state using the equation

A � �
e

c

2

°

k

h

T
� � e�S*/R (20.85)

Thus, we do find some connections between kinetics and thermodynamics
after all.

Example 20.13
For the two-step process

H � H2 → H3 → H2 � H 

H3 is the transition state for this hydrogen transfer reaction. If the pre-expo-
nential factor were found to be 5.4 � 107 m3/(mol�s) at 25.0°C, predict the
value of �S*. Comment on its sign and magnitude. Use a standard concen-
tration of 1 M � 1 mol/L � (1000 mol)/m3.

Solution
The pre-exponential factor has been expressed in standard units, but as al-
ways we should be careful about the units we use. Using equation 20.85, we
have

5.4 � 107 �
m

m

ol

3

�s
� � �

e

c

2

°

k

h

T
� � e�S*/R

All the fundamental constants have known values, so substituting:

5.4 � 107 �
m

m

ol

3

�s
� �

� exp��8.314

�

J/

S

(m

*

ol�K)
�	

We get, with initial canceling of the joule and kelvin units on the right side:

5.4 � 107 �
m

m

ol

3

�s
� � 4.589 � 1010 �

m

m

ol

3

�s
� � exp��8.314

�

J/

S

(m

*

ol�K)
�	

The units m3/(mol�s) appear on both sides, so they cancel. Rearranging:

1.2 � 10�3 � exp��8.314

�

J/

S

(m

*

ol�K)
�	

Taking the natural logarithm of both sides and solving:

�6.75 � �
8.314

�

J/

S

(m

*

ol�K)
�

�S* � �56.1 �
mo

J

l�K
�

e2(1.381 � 10�23 J/K)(298 K)(m3)
����

1000 mol(6.626 � 10�34 J�s)
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A comment on the result: a decrease in entropy suggests a transition state that
is more organized than the reactants. When you consider that this reaction is
forming a single triatomic complex from two individual species, it makes
sense that the entropy decreases.

20.11 Summary
Exactly how a chemical reaction proceeds may have very little to do with the
balanced chemical equation. Kinetics is the study of exactly how a reaction
proceeds. Kinetics usually focuses on how the rate of a chemical reaction varies
with the concentration of the individual reactants, and tries to determine a
simple mathematical model, a rate law, that describes how fast a reaction will
proceed. Kinetics can also relate the rate of a reaction with the absolute tem-
peratures, using the Arrhenius equation or modifications of this equation.
Also, the more intimate details of a chemical reaction are given by the ele-
mentary processes of a chemical reaction. The combination of all of the ele-
mentary processes, called the mechanism of a reaction, shows us exactly how
a chemical reaction does indeed proceed. Understanding how a reaction pro-
ceeds gives us enormous insight into how chemicals react and gives us handles
on how we might be able to control that reaction. Finally, we are able to apply
some basic theoretical ideas to elementary processes and, using our knowledge
of statistical thermodynamics, estimate the rate constants of simple reactions.
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20.2 Rates and Rate Laws

20.1. Write three additional rate relationships like equation 20.5
using the definition of the rates from equations 20.3 or 20.4.

20.2. The oxidation-reduction reaction between iron metal
and aqueous permanganate ions in acidic solution is

16H� (aq) � 5Fe (s) � 2MnO4
� (aq) →

2Mn�2 (aq) � 5Fe2� � 4H2O (�)

At some temperature, the reaction proceeds at such a rate that
1.00 millimole of H� is consumed in 2 minutes 33.8 seconds.
What is the (invariant) rate of this reaction in units of moles
per second?

20.3. The oxidation-reduction reaction between iron metal
and aqueous permanganate ions in acidic solution is

16H� (aq) � 5Fe (s) � 2MnO4
� (aq) →

2Mn�2 (aq) � 5Fe2� � 4H2O (�)

At some temperature, the reaction proceeds at such a rate that
1.00 millimole of H� is consumed in 2 minutes 33.8 seconds.
What is the rate of this reaction in units of moles of each re-
actant per second and moles of each product per second?
How do these answers differ from the answer in the previous
problem?

20.4. Consider the chemical reaction

A � B � C → products

Determine the order with respect to A, B, and C, and con-
struct the complete rate law (including the value of the rate
law constant) from the following experimental data.

Initial rate (M/s) [A] [B] [C]

6.76 � 10�6 0.550 0.200 1.15

9.82 � 10�7 0.210 0.200 1.15

1.68 � 10�6 0.210 0.333 1.15

9.84 � 10�7 0.210 0.200 1.77

20.5. Explain how a species might be part of a rate law but
not part of a balanced chemical reaction.

20.6. Refer to Example 20.2 and explain whether any useful
information can be obtained by comparing the first and the
third set of data.

20.7. Rate law experiments don’t always give data in the form
of a rate in moles per second. Some of them give an amount
of time necessary for a reaction to proceed to a given point. The
faster the rate, the less time necessary. For the following data,
assume that the time given is to react 0.10 M of A. Determine
the complete rate law for the reaction A � B → products.

Time taken (s) [A] [B]

36.8 0.20 0.40

25.0 0.20 0.60

10.0 0.50 0.60

(A classic chemical reaction/demonstration called the iodine
clock reaction is usually measured this way.)

20.8. A researcher determined the rate law

rate � k � [A]2

for a simple chemical reaction. If the rate was 2.44 � 10�4 M/s
when [A] was 0.167 M, what would [A] be when the rate of
the reaction is 1.55 � 10�6 M/s?

20.9. What must the units on k be for the following rate law?

rate � k � [A]2[B]2

20.3 Characteristics of Rate Laws

20.10. Derive equation 20.15.

20.11. Explain why plotting [A]t versus time, as equation
20.15 might suggest, would not yield a straight-line plot for a
first-order reaction.

20.12. To a very good approximation, the cooling of a hot
body to room temperature follows first-order kinetics. (In this
case, however, the unit that is changing is kelvins, not molar-
ity. This idea is known as Newton’s law of cooling.) If the rate
constant for a body is 0.0344 s�1, how long would it take for
a piece of matter to go from 1000 K to 298 K?

20.13. Assume that thermal decomposition of mercuric ox-
ide, HgO, follows first-order kinetics. It can be followed by the
production of oxygen gas as a product:

2HgO (s) → 2Hg (�) � O2 (g)

At a particular temperature, k � 6.02 � 10�4 s�1. If 1.00 gram
of HgO were present initially, how long would it take to pro-
duce (a) 1.00 mL of O2 (g) at STP; (b) 10.0 mL of O2 (g) at
STP? (STP � standard temperature and pressure for a gas.)

20.14. Assume that thermal decomposition of mercuric ox-
ide, HgO, follows second-order kinetics with the same numer-
ical value given in exercise 20.13 for k (but different units).
Answer (a) and (b) above under that assumption. Compare
the answers with the ones from above.

20.15. Derive equation 20.20 from equation 20.19.

20.16. Derive equation 20.22.

20.17. (a) Write a rate law and an integrated rate law for a
chemical reaction that follows third-order kinetics in one of the
reactants. (b) What would you have to plot on a graph in or-
der to get a straight line for a reaction that follows third-order
kinetics?

20.18. Derive an expression for the half-life of (a) a third-
order reaction; (b) a reaction whose order is �1; (c) a reac-
tion whose order is �

1
2

�. (In these last two cases, examples are
rare but known.)

20.19. What are the slope and y-intercept of a straight line
plotted for a zeroth-order reaction?

20.20. Rewrite equation 20.27 so that it has the form of a
straight-line equation and identify the expected slope(s) and
intercept(s) of two possible plots.
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20.21. Use equation 20.24 to determine the time it takes for
a zeroth-order reaction to come to completion.

20.22. When ionic compounds crystallize from a supersatu-
rated solution, the crystallization front (that is, the barrier be-
tween the crystalline solid and the supersaturated solution)
typically travels at a constant speed through the solution un-
til it reaches the boundaries of the system, then stops. What
order of rate law is described by this behavior?

20.23. An aqueous reaction that uses the solvent H2O as a re-
actant has a given rate law of

rate � k � [H2O][A]

where A is the other reactant species. Explain why, in most cir-
cumstances, this reaction can be defined in terms of pseudo
first-order kinetics. What are the units on the rate constant?

20.24. If a reaction has the same rate constant, what time
does it take for a reactant to decrease by 5% (that is, still near
the beginning of the reaction process) if the kinetics are 
zeroth-order, first-order, and second-order with respect to that
reactant?

20.25. List at least four experimentally determined parame-
ters that you, an experimenter, can define when exploring the
hydrolysis of ethyl benzoate by aqueous sodium hydroxide.

20.26. Will a plot of the base-10 logarithm of the concentra-
tion, log [A]t, versus time give a straight-line plot for a first-
order reaction? If so, what does the slope of this line equal?

20.4 & 20.5 Equilibrium, Parallel, and
Consecutive Reactions

20.27. Explain why a zeroth-order reaction probably won’t
be zeroth-order for two complete half-lives.

20.28. For the reaction A � B C � D, various initial rate
measurements were run using A and B only, and C and D only.
From the data below, calculate the equilibrium constant for
the reaction.

Rate (M/s) [A] [B]

1.081 � 10�5 0.660 1.23

6.577 � 10�5 4.01 1.23

6.568 � 10�5 4.01 2.25

Rate (M/s) [C] [D]

7.805 � 10�7 2.88 0.995

1.290 � 10�6 2.88 1.65

1.300 � 10�6 1.01 1.65

20.29. Show how equation 20.33 reduces to a simpler form
of an integrated first-order rate law when the reverse reaction
of an equilibrium is negligible.

20.30. Write expressions like equation 20.37 for a set of three
parallel reactions from the same reactant. Use k1, k2, and k3

for the three rate constants.

20.31. A trisaccharide is a carbohydrate that is composed of
three sugar (“saccharide”) molecules. Consider a trisaccharide
composed of three different sugars and represented by A-B-C.
In acidic solution, the carbohydrate will hydrolyze in two pos-
sible ways:

QP

k1
A–B–C → A � B–C

k2
A–B–C → A–B � C

If k1 � 4.40 � 10�5 s�1 and k2 � 3.95 � 10�4 s�1, what is
the ratio A–B/B–C initially? Can you determine the ratio
A–B/B–C when the reaction reaches equilibrium?

20.32. Show that the set of three equations 20.44 satisfies
the law of conservation of matter for the stoichiometry of the
general chemical reaction that is used. (Hint: consider that the
initial amount of material is given by [A]0, and show that at
equilibrium the amount of material is still [A]0.)

20.33. For a simple set of two parallel reactions, the decrease
of the initial species A is easy to follow graphically by taking
the logarithm of equation 20.38. What is the slope of this
straight-line graph? Is there an easy way to determine the in-
dividual values from this plot alone?

20.34. Can one determine the forms of straight-line graphs
for equations 20.41 and 20.42, keeping in mind that time, t,
is usually the variable that is plotted on the ordinate (that is,
the x-axis)? Why or why not?

20.35. Consider the answers to the two previous questions.
Now can the two individual rate constants k1 and k2 be de-
termined? How would that be done?

20.36. In Example 20.7, we showed that there will be a “mo-
mentary” buildup of the intermediate product, 210Po.

(a) Use the [B]t expression in equation 20.47 to derive an ex-
pression for the time it takes for the maximum amount of 210Po
to be present. Here’s what to do: take the derivative of the ex-
pression for [B]t with respect to time, set it equal to zero (since
if the amount is at a maximum, the plot of the amount versus
time has a slope of zero), and solve for time t.

(b) Use this value for time and equations 20.47 to determine
the specific amounts of 210Bi, 210Po, and 206Pb when the
amount of 210 Po is at a maximum.

20.37. For what values of time, t, will 210Bi and 206Pb be at
a maximum? (See exercise 20.36.)

20.38. An interesting pair of consecutive reactions involve the
absorption of ethyl alcohol by the body, which is a first-order
process, and the consequent oxidation of alcohol to acetalde-
hyde by liver alcohol dehydrogenase (LADH), which is a zeroth-
order process. The differential changes in the three states of
ethanol can therefore be described as

��
d
d
[A
t
]

� � k1[A]t

�
d
d
[B
t
]

� � k1[A]t � k2

�
d
d
[C
t
]

� � k2

which are slightly modified from equations 20.46. The inte-
grated form of the first equation is the same as for two con-
secutive first-order reactions, but for the second and third re-
actions, they will not be.

(a) What do A, B, and C stand for in this example?
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(b) Determine an integrated form for [B] over time. Do this
by finding an integrated expression for [A]t (Hint: refer to the
chapter!), substitute for [A]t in the second expression, re-
arrange the infinitesimals, and integrate one side over [B] as
the variable and the other side over time, t, as the variable.
The integrations are actually simpler than for the consecutive
first-order reaction example in the chapter itself.

(c) Determine an integrated form for [C] over time.

(d) Rough values of k1 and k2 for people are 3.00 � 10�3 s�1

and 4.44 � 10�5 mol/s, respectively. Use your expressions for
the amounts over time to plot a graph of [A]t, [B]t, and [C]t

versus time. (A graphing calculator or a computer with a
graphing program would be useful.) Use 1.00 mol of C2H5OH
as [A]0. Vary this value and see how it affects the graphs of
[A]t, [B]t, and [C]t.

20.39. Find limiting forms of equations 20.47 for (a) k1 
k2, and (b) k1 �� k2.

20.6 Temperature Dependence

20.40. Express equation 20.48 as if it were referring to a
graph. What is being plotted, and what does the expression
�(�rxnH)/R represent?

20.41. Nitrous oxide, N2O, can be decomposed thermally.
The following values for the rate constant k were determined
(S. K. Ross et al., J. Phys. Chem. A, 1997, 101: 1104) at the fol-
lowing temperatures:

k [cm3/(molecule�second)] T (K)

6.79 � 10�16 2056

8.38 � 10�16 2095

1.03 � 10�15 2132

1.39 � 10�15 2173

Does this reaction follow the Arrhenius equation? What is the
estimated pre-exponential factor?

20.42. Derive equation 20.54 from equation 20.53. Beware
of the 1/T part of the denominator in the derivative.

20.43. One rule of thumb has been that a chemical reaction
doubles in speed for every 10° increase in absolute tempera-
ture from room temperature (nominally 295 K). If this is strictly
true, what is the activation energy of the chemical reaction?

20.44. At room temperature (22°C), the rate constant for
proton transfer between water molecules in solution is about
1 � 1011 s�1, which is one of the fastest known reactions. If
the activation energy for this process equals one-half of the
O–H bond strength of 498 kJ/mol, what is the pre-exponen-
tial factor A for this reaction?

20.45. Recently, researchers studying the kinetics of metal
atom reactions with small gas molecules measured a rate con-
stant for the gas-phase reaction of

Co � NO → products

as 9.9 � 10�12 cm3/s at 1153 K. If the activation energy of
this reaction is 1.9 kJ/mol, what is the value of the pre-expo-
nential factor?

20.46. A reaction has k � 1.77 � 10�6 1/(M�s) at 25.0°C and
an activation energy of 20.0 kJ/mol. (a) What order is the re-
action? (b) What is the value of the rate constant at 100°C?

20.47. A reaction has k � 1.77 � 10�6 1/(M�s) at 25.0°C and
an activation energy of 20.0 kJ/mol. What is the value of the
rate constant at 100° C? Compare this answer to the answer
in part b of the previous exercise and comment on the effect
of the activation energy on rate law constants.

20.48. Scientists use very focused “molecular beams” of gas-
phase atoms and molecules in high-vacuum systems to study
one-step chemical processes. For the gas-phase molecular
beam reaction between sodium atoms and methyl chloride to
make sodium chloride and the methyl radical,

Na � CH3Cl → NaCl � CH3�

the probability of the reaction depends on the orientation of
the methyl chloride molecule with respect to the sodium atom.
Suggest a possible interaction geometry that would account
for this result. Why would the probability for reaction not de-
pend on the orientation of the other reactant?

20.49. Chemical processes that are triggered by photons are
also understood using the kinetics concepts mentioned in this
chapter. The chemistry of vision is one example. The currently
accepted mechanism for vision involves a compound called
rhodopsin, which is composed of a protein molecule (opsin)
attached to a colored polyene molecule called cis-retinal. (Cis-
retinal is chemically related to a class of molecules called
carotenes, which are highly colored compounds responsible
for the colors of carrots and tomatoes. Eating carrots does help
vision, specifically in low light.) The vision process begins when
the cis-retinal absorbs a photon and is isomerized about one
of its double bonds to make trans-retinal:

h�
cis-retinal → trans-retinal

The reaction is energetically favorable; the photon’s energy is
apparently necessary only to overcome an activation energy
barrier.

(a) The least energetic photon that is considered visible light
has a wavelength of 750 nm. What is the activation energy for
the isomerization reaction?

(b) If the rate constant at 37°C is 3 � 1011 s�1, what is the
pre-exponential factor A for this reaction? 

(c) The Antarctic icefish lives in Southern Hemisphere waters
that can reach �2°C. Assuming that this chemical process is
the same in an icefish eye, what is k at this temperature?

20.50. Nitric oxide, NO, is known to break down ozone, O3,
by the following bimolecular reaction:

NO (g) � O3 (g) → NO2 (g) � O2 (g)

If the activation energy of this reaction is 10.5 kJ/mol and the
pre-exponential factor is 7.9 � 1011 cm3/(mol�s), (a) what is
the rate constant of this reaction at 298 K? (b) If the ozone
concentration were 5.4 � 10�12 mol/cm3 and the NO con-
centration were 2.0 � 10�12 mol/cm3 (conditions that might
exist in a high-pollution area), what is the rate of this reaction?
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20.7 & 20.8 Mechanisms and Steady States

20.51. (a) Suggest a mechanism for the bromination of
ethane:

Br2 � CH3CH3 → CH3CH2Br � HBr

(b) Would you expect that this reaction might go faster or
slower than the chlorination of methane? (Hint: consider the
strengths of the bonds involved in the initial steps of the
mechanism.)

20.52. Derive equation 20.62.

20.53. Explain why a “consecutive reaction” analysis would
not be appropriate for a mechanism in which the second step
is the RDS. That is, why can’t we write that mechanism in
terms of A → B → C in this case?

20.54. Determine a rate law for the chlorination of methane
assuming that the first step is the rate-determining step.

20.55. Determine a rate law for the chlorination of methane
assuming that the second step is the rate-determining step
and that the first step can be approximated by the steady-
state approximation. What is the difference between the an-
swer here and the answer for the previous exercise?

20.56. A proposed mechanism for the gas-phase chlorination
of methane is

Cl2 � CH4 → CH4Cl � Cl�

CH4Cl → CH3� � HCl

CH3 � Cl2 → CH3Cl � Cl�

Cl� � CH4 → CH3� � HCl

and so on

Suppose the first step is the RDS. What is the expected rate
law in terms of the original reactants, Cl2 and CH4? How would
you determine if this mechanism might be a potentially cor-
rect (or, for that matter, a potentially incorrect) one?

20.57. Consider the proposed mechanism in the previous
problem. Now assume that the second step is the RDS. Use
the steady-state approximation to determine a rate law in
terms of the original reactants. Now how would you determine
if this mechanism might be correct?

20.58. Many gas-phase reactions require some inert body,
usually represented as M, to absorb or supply energy in a col-
lision in order to proceed. In the spontaneous decomposition
of ozone, O3, we can suggest the mechanism

O3 � M → O3* � M

RDS
O3* → O2 � � O�

�O� � O3 → 2O2

for the overall reaction

2O3 → 3O2

In the mechanism, O3* refers to an ozone molecule in some
energetically excited state that can react spontaneously to form
O2 and O atoms. Determine the rate law of the proposed
mechanism in terms of O3 and M, where the second step is the
rate-determining step. Will adding an inert gas like Ar to a sam-
ple of ozone increase or decrease the rate of the reaction?

20.59. Show that equation 20.68 is equivalent to equation
20.64.

20.60. Carbonic anhydrase, an enzyme whose substrate is
CO2, has a K of 12 mM. When the concentration of CO2 is 
1.4 � 10�4 M, the rate of reaction between carbonic anhy-
drase and CO2 is 2.72 � 10�7 mol/s, and when the concen-
tration of CO2 is 2.2 � 10�4 M, the rate is 4.03 � 10�7 mol/s.
If the reaction follows Michaelis-Menten kinetics, what is V for
this reaction?

20.61. Show that another form of the Michaelis-Menten equa-
tion is

rate � �
K

V
�

[S
[
]
S]

�

20.62. When [S] � K, what is the value of the rate of a reac-
tion that follows Michaelis-Menten kinetics? Considering the
answer, what use do you think this might be?

20.9 Chain and Oscillating Reactions

20.63. Most halogenation reactions of hydrocarbons proceed
via a free-radical chain reaction mechanism. Of the halogens
Cl2, Br2, and I2, which initiation reaction should proceed most
easily? Explain your answer.

20.64. The free-radical reaction H2 � I� → HI � H� has a pre-
exponential factor of 2.4 � 1011 M�1�s�1 and an activation
energy of 142 kJ/mol. Predict its rate constant at 400 K.

20.65. Pyrolysis involves heating compounds to break them
into smaller molecules, and typically involves free-radical chain
reactions. Pyrolysis of crude oil fractions is a common method
of making smaller hydrocarbons from large-chain hydrocar-
bons. Pyrolysis of ethane, C2H6, forms ethylene and hydrogen
gases (C2H4 and H2) as the primary products. Suggest a mech-
anism for this pyrolysis reaction, labeling your reactions as ini-
tiation, propagation, and termination steps.

20.66. Nuclear fission reactions can also proceed by chain re-
action. Consider an ideal nuclear fission reaction as

235U � 1n → 92Kr � 141Ba � 21n

Suggest conditions under which this reaction does not pro-
ceed; conditions under which this reaction maintains a chain
reaction; and conditions under which significant branching
occurs (leading to an explosion).

20.67. Label the elementary processes for the reaction be-
tween H2 and O2 (see section 20.7) as initiation, propagation,
branching, or termination reactions.

20.68. Write the rate laws for elementary processes for the
proposed mechanisms 1 and 2 of oscillating reactions.

20.69. What are the rate laws of mechanisms 1 and 2 for
oscillating reactions if the second reactions were the rate-
determining steps?

20.10 Transition-State Theory

20.70. Estimate �G* for an elementary process whose rate
constant k is 8.5 � 10�1 M�1�s�1 at 450 K.
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20.71. For the following two reactions

H � Cl2 → HCl � Cl

H � Br2 → HBr � Br

the first reaction has a lower value of A than the second reac-
tion. What can one say about the relative properties of the in-
termediates HCl2 and HBr2, just from the relative values of A?

20.72. For the reaction

NaI � Cl → NaCl � I

propose a structure for the transition state and list what data are
needed to determine a value of k using transition-state theory.

20.73. Explain how (or if ) equation 20.84 is consistent with
the general statements of the laws of thermodynamics that 
reactions tend toward lower energy and higher entropy.

20.74. If all other factors are the same, a change in �S* from
�1 J/(mol�K) to �1 J/(mol�K) leads to what percentage change
in the rate constant k?

20.75. Consider a reaction that has two parallel pathways
(both first-order) to products. Pathway 1, leading to product
B, has a rate constant of 1.34 � 10�5 s�1. Product C–
producing pathway 2 has a rate constant of 6.55 � 10�4 s�1.
Plot the concentrations of A, B, and C versus time, and deter-
mine the time necessary to produce the maximum amount of
the kinetically favored product.

20.76. Consider a set of first-order consecutive reactions 
A → B → C. The rate constants are 8.4 � 10�4 s�1 and 
3.02 � 10�5 s�1, respectively. Plot the concentrations of A, B,
and C versus time, and determine the time necessary to pro-
duce the maximum amount of the intermediate product B.
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IT’S A CURIOUS THING that elementary physical chemistry can describe a
molecule-based model of the gas phase (from the various gas laws to the

kinetic theory of gases) and the solid phase, but not the liquid phase. At one
extreme, the behavior of gas particles is so independent and random that we
can model their behaviors statistically. At the other extreme, the crystalline
solid, the individual particles (whether atoms, ions, or molecules) are distrib-
uted so regularly that it takes little knowledge to be able to describe the entire
solid. The liquid phase has neither advantage, so its description is not so sim-
ple and is considered beyond the scope of this book. (In some respects, this is
unfortunate, since many processes that are most important to us—like the
biological processes of life itself—occur in the liquid phase.)

Because of the regularity in a well-ordered solid, we can describe its struc-
ture, properties, and behaviors mathematically. That connects the study of the
solid phase to physical chemistry: we can model our understanding of the solid
state. That’s what physical chemistry does: provide models for understanding
matter. Since much of matter is in (or can be in) the solid state, a model for
understanding the solid phase is useful, just as having a model for the gas phase
is useful. This chapter introduces some of the concepts used to understand the
solid phase.

21.1 Synopsis
First, we will consider the general types of solids. Many solids do not exist as
a random arrangement of atoms and molecules. Some do, but we will focus on
those solids that exist as some regular arrangement of atoms or molecules. We
will find that there are only a few possible ways for regular arrangements,
called crystals, to exist. First, we will describe those ways. It turns out that the
regularity of crystals can be described by a very small arrangement of atoms
and molecules; this very small arrangement, repeated many times in three di-
mensions, can tell us a lot about the properties of the solid.

How do we determine these regular arrangements? As with spectroscopy,
we can use electromagnetic radiation as a probe. But rather than absorbing
or emitting radiation, crystalline solids can diffract radiation under certain
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21.2 Types of Solids
21.3 Crystals and Unit Cells
21.4 Densities
21.5 Determination of 

Crystal Structures
21.6 Miller Indices
21.7 Rationalizing Unit Cells
21.8 Lattice Energies of 

Ionic Crystals
21.9 Crystal Defects and

Semiconductors
21.10 Summary
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conditions. These conditions are dictated by the structure of the crystal, and
there is a simple rule for relating the diffraction effect to the crystal’s structure.

We will also find that the type of crystal a certain compound makes is not
necessarily arbitrary, that there is a recognizable energy of interaction between
the components of certain crystals, that crystals are not perfect, and that soci-
ety actually takes advantage of such imperfections in a big way.

21.2 Types of Solids
Before we can discuss the solid phase, we need to define several different types
of solid phases. The individual particles (atoms, ions, or molecules) that make
up a solid can exist either in random arrangements in three-dimensional space
or in an ordered, repeating arrangement. Randomly arranged solids are called
amorphous (“without shape”) or glassy. As you might expect, glass is one ex-
ample of a solid that is usually amorphous; see Figure 21.1. Many polymers
have no large-scale order and so can also be considered amorphous.

Solids that are arranged in an orderly fashion are called crystalline. Most
solids form large, well-formed crystals if they are prepared carefully enough—
solidified from the liquid or gas phase very slowly, for example. (Even large
biomolecules like hormones, proteins, and DNA can form crystals. For exam-
ple, the hormone insulin was first crystallized by the American biochemist
John J. Abel in 1925.) If not prepared carefully, many solids form a host of tiny
crystals and would be described as polycrystalline.

Crystalline solids are further categorized by type of crystal. Covalently
bonded molecules can form molecular crystals, which are regular three-dimen-
sional arrangements of the individual molecules. One good example is water,
H2O: as a molecular compound, the individual molecules of water have some
regular arrangement in a crystal of H2O. Any covalent compound (like the
large biomolecules mentioned earlier) forms molecular crystals, easily or with
difficulty, given the chance. Molecular crystals are relatively soft and have low
melting points. Figure 21.2 shows an example of one molecular crystal.

Compounds that are composed of ions form ionic crystals. In this case, the
need for opposite charges—cations and anions—to neutralize each other dic-
tates a certain arrangement of ions in a crystal. Ionic crystals are typically very
hard but very brittle (that is, they break easily if subjected to sudden forces).
They also tend to have relatively high melting points. Coulombic attractions
between opposite charges is the strongest known force; it takes a lot of energy,
in the form of temperature, to break those attractions and turn an ionic solid
into a liquid.

A few solids make an almost infinite three-dimensional array of covalent
bonds to neighboring atoms. Such solids are called covalent network solids.
Diamond (a form of carbon), elemental silicon, elemental germanium, and sil-
icon dioxide are examples (see Figure 21.3). Although few solids can be de-
scribed this way, the ones that can have distinctive properties: they are very
hard with high melting points. It takes a lot of energy, either mechanical or
thermal, to break the almost infinite network of covalent bonds.

Finally, certain elements are hard but ductile and malleable, conduct elec-
tricity, are shiny, and have variable but usually high melting points. These ele-
ments are metals, and their collective characteristics are explained by an idea
called metal bonding. In this type of bonding, the electrons of the individual
metal atoms “pool” together to become electrons not of the individual atoms
but of the whole solid. This explains the electrical conductivity of metals, and
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Figure 21.1 Amorphous or glassy materials,
like the ones shown, have randomly arranged
molecules. Crystalline materials, on the other
hand, are solids that are built up of units that re-
peat in three dimensions.

Figure 21.2 Molecules can form crystals, if
they are positioned regularly in three dimensions.
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deeper analysis of this idea explains their other characteristics, too. This is be-
yond our scope, but understand that the interactions between atoms of metals
is a different sort of crystalline bonding that does in fact account for the
unique properties of metals.

In this chapter, we focus on crystalline solids. Although there are techniques
for studying the structure of amorphous solids, they will not be considered here.

21.3 Crystals and Unit Cells
Solids that have some regular, three-dimensional order are examples of crystals.
A crystal is any solid that has a repetitious structure. The repetition can be of
molecules (forming a molecular crystal), ions, or atoms. One can always find
the smallest group of molecules, ions, or atoms that when repeated in three
dimensions reproduces the entire crystal. This smallest group is called the unit
cell of the crystal.

Unit cells themselves are three-dimensional, but it helps to first envision
them in two dimensions. Figure 21.4 shows a two-dimensional array of black
and white dots making a “crystal.” The box shows a unit cell. Notice that the
way the unit cell is marked, it includes only part of each white dot at each cor-
ner and the entire black dot in the center. This is the correct way to draw the
unit cell. Imagine, now, that this cell is copied, moved to the lower right, and
placed adjacent to the original unit cell. Imagine also that the copy is moved
to the upper right and placed adjacent to the original unit cell. Figure 21.5
shows these extensions of the unit cell. By placing these unit cells adjacent to
each other over and over again, the complete two-dimensional crystal can be
reproduced.

Why can’t the unit cell in Figures 21.4 and 21.5 simply consist of two
white dots and two black dots? Because that arrangement ignores the space
between the dots. The correct unit cell must be able to reproduce the entire
crystal, which includes not just the positions of the particles but the space in
between them.

Nor is the unit cell drawn in Figure 21.4 and 21.5 the only possible unit cell.
Figure 21.6 shows a few other possibilities. Which is the correct unit cell?
Convention requires that the unit cell be the smallest part of the crystal that
can reproduce the entire crystal. Therefore, the unit cells depicted in Figure
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Figure 21.3 Some covalently bonded materi-
als, like silicon dioxide, form crystals that are
(practically) infinite, regular arrays of atoms in a
covalent network.

Figure 21.5 Translating the unit cell to adja-
cent positions starts to map out the complete crys-
tal. Although this diagram shows translations to
only two adjacent positions, additional transla-
tions eventually allow us to map out the entire
two-dimensional crystal. Real unit cells do the
same thing, but in three dimensions.

Figure 21.4 A unit cell is the smallest part of a
crystal that when repeated in all directions repro-
duces the complete crystal. Here, the unit cell has
a dark atom in the center and takes a quadrant
out of the four white corner atoms.
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21.4 and the top of Figure 21.6 are considered the unit cells; the two lower cells
in Figure 21.6 are not considered proper unit cells.

Figure 21.7 shows two possible unit cells for a very simple ionic crystal,
CsCl. Again, note that the corners of the unit cell contain only part of the atom
at that corner. In Figure 21.7a, each corner contains �

1
8

� of a cesium atom.
Collectively, the eight corners of the unit cell give 8 � �

1
8

� � 1 Cs atom per cell,
and a single chlorine atom is in the center of the cell. This gives us a 1�1 ratio
of Cs atoms to Cl atoms in the compound, agreeing with the ratio of atoms in
the formula unit CsCl. In Figure 21.7b, the chlorine atoms are at the corners,
but inspection of the unit cell shows that this unit cell also supports CsCl as
the formula unit for this compound.

Figure 21.7 illustrates an important point in the determination of the unit
cell: the same species is typically found at the corners—and, as we will see
shortly, may also be found in other positions. This is necessary so that when
the unit cell is propagated in three dimensions, the partial atoms at the corners
can combine to make the complete atoms that compose the macroscopic crys-
tal. The translation of the unit cell in Figure 21.5 shows that, if the same atom
weren’t at all corners, the unit cell would not make sense as a multidimensional
crystal. This idea holds whether we are talking about simple ionic crystals like
CsCl or complicated molecular crystals like crystalline naphthalene, C8H10.
In order to define a unit cell, the same species in the same orientation (for
molecules) must be present at the corners.

The same species (atom, ion, or molecule) may also be present in other
locations about the unit cell, and they may reside at differing distances and an-
gles depending on the dimension. CsCl, for example, has a very simple unit cell
that can be illustrated as a cubic structure; other compounds are not so sim-
ply described. It can be shown that there are only 14 ways of describing how
similar species (like the Cs� or Cl� ions) will be arranged in three-dimensional
space. These 14 structures can be grouped into seven systems depending on
their symmetry elements; within each system, there can be variations in the ap-
pearance of atoms/ions/molecules at certain positions within the unit cell.

We will focus on the seven systems first; they are listed in Table 21.1. Spatially,
we define the systems in terms of the dimensions of the unit cell, labeled a, b,
and c (where, by convention, a � b � c) and the angles that these dimensions
make with each other, labeled �, 	, and 
. (Again, by convention, � is the an-
gle between b and c, 	 is the angle between a and c, and 
 is the angle between
a and b. See Figure 21.8.) The simplest crystal system is when all dimensions are
equal and all angles are 90°. This defines the cubic crystal system and is exem-
plified by CsCl (see Figure 21.7). There are also systems where the angles are all
still 90° but one dimension of the unit cell is different from the other two
(tetragonal) or all dimensions of the unit cell are different (orthorhombic).
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(b)

(a)

Figure 21.6 Other possible unit cells. However,
convention requires that the smallest reproducible
part of the crystal be considered the true unit cell.
The top unit cell is a true unit cell (compare this
to the unit cell in Figure 21.4!); the bottom two
cells are not.

Figure 21.7 Two possible unit cells for CsCl.
Either can be considered a correct unit cell.

Table 21.1 The seven basic crystal systems

Name Unit cell dimensions Unit cell angles

Cubic a � b � c � � 	 � 
 � 90°

Tetragonal a � b � c � � 	 � 
 � 90°

Orthorhombic a � b � c � � 	 � 
 � 90°

Trigonal a � b � c � � 	 � 
 � 90°

Hexagonal a � b � c � � 	 � 90°; 
 � 120°

Monoclinic a � b � c � � 
 � 90°; 	 � 90°

Triclinic a � b � c � � 	 � 
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Now we consider systems where the angles between a, b, and c are not all
90°. For this set we start with the least restricted case. If all distance and angle
parameters are different, the crystal is triclinic. If two of the angles are 90° and
one not, then the crystal is considered monoclinic. If all three unit cell dimen-
sions are the same (a � b � c) and the angles are equal but not 90°, then the
crystal is described as trigonal or rhombohedral. And last, some crystals have a
sixfold symmetry. Such crystals are called hexagonal.

Finally, within some of the systems are subsystems that have additional
atoms or ions or molecules. These subsystems differ only by having corner
species in other parts of the unit cell, like the sides or the center of the unit cell.
Table 21.2 lists these details, and Figure 21.9 shows examples of the additional
possible cubic, tetragonal, orthorhombic, and monoclinic crystal structures.
These 14 possible crystal structures are called the Bravais lattices, after the
French scientist Auguste Bravais (1811–1863), who first described them in 1848.

The cubic crystal system, for example, is separated into three Bravais lattices
depending on whether the unit cell has species only at the corners (simple or
primitive cubic); at the corners and the center of the unit cell (body-centered
cubic); or at the faces of the unit cell (face-centered cubic). Note that for the
body-centered cubic, the species (atom, ion, or molecule) in the center con-
tributes one full member to the stoichiometry of the cell, and the atoms, ions,
or molecules in the faces of the unit cell contribute �

1
2

� of a member each. (Recall
that species at the corners contribute �

1
8

� of a member each.) For face-centered
cubic unit cells, the facial species contribute, overall, �

1
2

� � 6 � 3 members to
the stoichiometry of the unit cell.

The tetragonal system can also have species in the center of the unit cell.
Orthorhombic crystals can have species in the center (body-centered), in all
faces (face-centered), only in opposing faces (end-centered), or only at the cor-
ners (primitive). Monoclinic unit cells can be either primitive or end-centered,
with species in one set of opposing faces. Triclinic, hexagonal, and trigonal unit
cells are just primitive.

Table 21.2 also lists another standard nomenclature for referring to the
types of Bravais lattice. Generally, the letter P is used to indicate a primitive
lattice, I is used for body-centered lattices, F for face-centered lattices, and C
for end-centered lattices.
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a � b � c

�

�

�

a

b

c

Figure 21.8 Definition of unit cell parame-
ters. The lengths of the unit cell are labeled a, b,
and c, such that a � b � c. The angles between
the unit cell dimensions are �, 	, and 
; they are
defined as shown.

Table 21.2 The fourteen Bravais lattices

Crystal system Bravais lattice Symbol(s)

Cubic Simple (or primitive) cubic sc, P

Body-centered cubic bcc, I

Face-centered cubic fcc, F

Tetragonal Simple (or primitive) tetragonal P

Face-centered tetragonal F

Orthorhombic Simple (or primitive) orthorhombic P

Body-centered orthorhombic I

Face-centered orthorhombic F

End- (or base-) centered orthorhombic C

Trigonala Simple (or primitive) trigonal P

Hexagonal Simple (or primitive) hexagonal P

Monoclinic Simple (or primitive) monoclinic P

End- (or base-) centered monoclinic C

Triclinic Simple (or primitive) triclinic P 
aTrigonal is also known as rhombohedral in some texts.
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Cubic

Tetragonal

Orthorhombic

MonoclinicTriclinic

Rhombohedral

Hexagonal

It might seem that 14 lattices are not enough to describe the possible
arrangements of crystals that might exist. However, they do cover all possibil-
ities. By its very definition, a crystal has a specific three-dimensional symme-
try, and these 14 lattice types cover all possible three-dimensional symmetry
arrangements. Also, if you were to add an atom to a center or face of a lattice
in an attempt to define a new Bravais lattice, you would make a crystal whose
true Bravais lattice can be described by a different (and usually smaller!) unit
cell that would be one of the 14 lattices described.

Figure 21.9 The 14 Bravais lattices that are
possible for the seven crystal systems. Some crys-
tal systems have more than one possible lattice;
others have only one.
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Example 21.1
Figure 21.10 shows a unit cell for NaCl, another simple ionic crystal.
a. Identify the Bravais lattice for NaCl.
d. Determine the stoichiometry of the unit cell. Is it consistent with the for-
mula of this compound?

Solution
a. First, we should confirm that the same species is present at all corners.
Checking Figure 21.10, we see that there are Cl� ions at all corners. (This is
a point that many people do not understand when trying to define the unit
cell for a crystal!) Next, we try to identify Cl� ions at other points in the unit
cell. Cl� ions are also located in all six faces of the unit cell. Therefore, we
would assign a face-centered cubic Bravais lattice to NaCl.
b. The corners contribute �

1
8

� � 8 � 1 atom of Cl, overall, to the formula of
the compound, and the faces contribute �

1
2

� � 6 � 3 atoms of Cl. One Na� ion
is in the center of the unit cell, and on each edge of the unit cell an Na� ion
contributes �

1
4

� of the atom to the unit cell. (Do you see this? Refer to Figure
21.10 and show that only �

1
4

� of each Na� ion actually resides in the unit cell.)
The 12 edge Na� ions therefore contribute �

1
4

� � 12 � 3 sodiums. Adding the
1 Na� in the center, we get a total of 4 Na� ions in the unit cell. Considering
the Na and Cl contributions together, we have a stoichiometry of Na4Cl4,
which in the lowest ratio reduces to NaCl: the expected formula for sodium
chloride. (Note: students who just read this and did not actually refer to
Figure 21.10 and make these observations on their own will have learned
nothing from this example!)

Example 21.2
Explain why the CsCl unit cell is considered simple cubic and not body-
centered cubic despite having an atom in the center of the unit cell. Refer to
Figure 21.7 for the unit cell of CsCl.

Solution
Identification of a unit cell requires that the same species—whether atom,
ion, or molecule—be present at the proper positions in the unit cell. In the
case of CsCl, there are Cs� ions at the corners, which is the minimum re-
quirement for any unit cell, but no Cs� ions in the center (it’s a Cl� ion).
Therefore, the presence of the Cl� ion does not factor into the determination
of the type of unit cell, and the Bravais lattice is identified as a simple cubic
lattice and not a body-centered cubic lattice.

Two crystal lattices deserve some special mention. Consider a monatomic
crystal composed of atoms all the same size. What is the most space-efficient
way to make them into a crystal? Figure 21.11 shows two different ways of plac-
ing atoms most efficiently. On the bottom layer of each diagram, atoms make
a nice, regular lattice. The next-to-bottom layer lies in the natural dips created
by three adjacent, triangularly spaced bottom-row atoms.

For the third layer, there is a choice. On the one hand, and perhaps the
easier choice to illustrate, the atoms in the third layer can be placed directly
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Cl�

Na�

Figure 21.10 A unit cell for sodium chloride,
NaCl. See Example 21.1.

(a)

(b)

Figure 21.11 Two different ways of getting
the most efficient packing of spherical atoms. (a)
Using the bottom layer as a base, the second layer
of atoms lies in the dips made by three adjacent
base atoms. In the third layer, atoms lie in dips
created by the second layer, but they also lie di-
rectly above atoms of the first layer. This is the
ABAB . . . pattern of close-packing. (b) In this
case, atoms in the third layer do not lie directly
above the first layer’s atoms, but rather in differ-
ent relative positions. This is the ABCABC . . .
pattern of close-packing.
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above the atoms in the first layer, as shown in Figure 21.11a. Building the
crystal can be continued by repeating each layer’s position accordingly. If the
first layer is labeled A and the second layer B, we can indicate the building of
this crystal as alternating layers of A, B, A, B, . . . .

On the other hand, the third layer of atoms could be placed in positions that
are different from layer A or layer B; this is shown in Figure 21.11b and the
layer is usually labeled as layer C. In this crystal, the alternating layers can be
listed as A, B, C, A, B, C, . . . .

Both arrangements are the most space-efficient ways of packing atoms, ions,
or molecules. Figure 21.12a shows that the ABAB form of crystal has a hexag-
onal Bravais lattice. The ABCABC . . . form of crystal has a face-centered cu-
bic Bravais lattice (see Figure 21.12b). Both of these crystal lattices represent
the most space-efficient form of crystal; over 50 of the elements themselves,
from noble gases to metals, have either hexagonal or face-centered cubic crys-
tal lattices in their solid form. Because of the efficiency of the hexagonal
crystal lattice, it is sometimes called the hexagonal close-packed (or hcp) lattice.

These space-efficient crystal structures also show up in the real world of
macroscopic objects. For example, stacks of golf balls, basketballs, or baseballs
mimic an hcp or face-centered cubic arrangement. At grocery stores, fruits or
vegetables that are roughly spherical (oranges, apples, pears, citrus fruits) can
be stacked in a close-packed arrangement. Figure 21.13 shows an example of
this. This arrangement is used for its stability and, again, its efficient use of
space.

21.4 Densities
Knowledge of the crystal lattice designation of a crystal implies that we know
how many molecules are in the unit cell. If we have the unit cell parameters
(that is, the three distance parameters a, b, and c, and the three angular para-
meters �, 	, and 
) we can calculate the density of the compound. Comparison
of the calculated density with an experimentally determined density should
yield the same value. (In fact, agreement between calculated densities and ex-
perimental densities was perhaps a final—though unnecessary—supporting
argument for the atomic theory of matter.)

Recall that density is defined as mass per unit volume:

density � �
vo

m

lu

a

m

ss

e
� (21.1)

Typically, the density of solids is given in units of grams/milliliter, abbreviated
g/mL; since a milliliter is equal to a cubic centimeter, densities are also com-
monly expressed in units of g/cm3. A unit cell, however, is very small: typically
on the order of angstroms on a side (where 1 Å � 1 � 10�10 m). Also, in a
unit cell we are considering (usually) a small number of atoms or molecules
per unit cell. The total mass of any one unit cell is therefore very small in an
absolute sense, on the order of 10�26 to 10�27 kg. In fact, it is typical to use
the unit “atomic mass unit,” or amu, to describe masses of individual atoms
and molecules. The amu is defined as

1 amu � 1.6605 � 10�27 kg (21.2)

Thus, we have for a single unit cell

density � �
vo

m

lu

a

m

ss

e
� in units of �

a

Å

m
3

u
�
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A

B

A

(a)

(b)

C

B

A

Figure 21.12 (a) The hexagonal unit cell for
the ABAB . . . pattern of close-packing. (b) The
face-centered cubic unit cell for the ABCABC . . .
pattern of close-packing.

Figure 21.13 Close-packed arrangements in
solids are easily mimicked in macroscopic
arrangements, like this fruit display. Can you
tell if this “crystal” would have a hexagonal or
face-centered cubic unit cell?
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Luckily, going from amu/Å3 to g/mL is simply an exercise in unit conversions.
We can use equation 21.2 along with the fact that

1 mL � 1 cm3 � 1024 Å3 (21.3)

to determine a macroscopic density in measurable units from a microscopic
density in terms of unit cell parameters.

The masses of the atoms and molecules are taken from the cumulative num-
ber of atoms or molecules in the unit cell. The volume of the unit cell is de-
termined from geometry. From geometry, the equation that gives the volume
of a six-sided object with parallel opposing faces (called a parallelepiped) is
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volume � a � b � c � �(1 � c�os2 � �� cos2 	� � cos�2 
 ��2 cos �� cos 	�cos 
)� (21.4)

Equation 21.4 is general; the user should recognize that for some crystal lat-
tices, two or three sides of the unit cell may have the same length, and two or
three of the angles may also be the same (that is, 90°). The definitions of the
angles �, 	, and 
 with respect to the lattice sides should also be remembered.
For a unit cell that has 90° angles, equation 21.4 reduces to

volume � a � b � c

as it should for a right-angle solid. Examples 21.3 and 21.4 show how to relate
macroscopic densities and microscopic information.

Example 21.3
Solid silver exists as a face-centered cubic crystal with a � 4.09 Å. What is the
density of silver? Assume that each silver atom has a mass of 108 amu.

Solution
First, we must determine the number of silver atoms in a face-centered cubic
unit cell. Each corner atom contributes �

1
8

� of an atom to each unit cell. There
are eight corner atoms, contributing a total of �

1
8

� � 1 � 1 silver atom. Each
face contributes �

1
2

� of an atom to each unit cell. Overall, the six faces of the cu-
bic lattice add �

1
2

� � 6 � 3 silver atoms to each unit cell. Each cell therefore has
3 � 1 � 4 silver atoms per cell. If each silver atom has a mass of 108 amu,
then the total mass of each unit cell would be four silver atoms:

mass � 4 � 108 amu � 432 amu

The volume of the unit cell can be determined using equation 21.4, in part
by recognizing that in a cubic cell the angles are all 90°:

volume � a � b � c � 4.09 Å � 4.09 Å � 4.09 Å

volume � 68.4 Å3

Using the definition of density and converting to its more common units:

density � �
vo

m

lu

a

m

ss

e
�

� �
4

6

3

8

2

.4

am

Å3

u
� ��

1.6605

1

�

am

10

u

�27 kg
�� �

1

1

02

c

4

m

Å
3

3

� � �
10

1

0

k

0

g

g
�

density � 10.5 g/cm3

The measured density of silver is 10.5 g/cm3, exactly the same (to three sig-
nificant figures) as the calculated density.
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Example 21.4
Solid nitrogen, N2, has a density of 1.026 g/cm3 at about 20 K. If solid nitro-
gen is known to have some cubic lattice with a length of 5.66 Å, what kind
of cubic lattice does solid N2 have?

Solution
From the length of the lattice, we can determine the volume of the unit cell:

volume � (5.66 Å)3 � 181 Å

From the known density (and a few unit conversions), we can now determine
the amount of mass in each unit cell:

740 C H A P T E R  21 The Solid State: Crystals

mass � density � volume

� 1.026�
cm

g
3� � 181 Å3 ��

1.6605

1

�

am

10

u
�27 kg

�� �
1

1

02

c
4

m

Å

3

3� � �
1

1

00

k

0

g

g
�

mass of unit cell � 112 amu

Each nitrogen molecule, with two nitrogen atoms each, has a mass of 28 amu.
If there are 112 amu per cell, then there are

�
1

2

1

8

2

a

a

m

m

u

u

p

p

e

e

r

r

N

ce

2

ll
� � �

1

2

1

8

2

a

a

m

m

u

u

/

/

N

ce

2

ll
� � �

4

ce

N

ll
2�

or 4 nitrogen molecules per unit cell. (Note how the units work out alge-
braically.) The type of cubic Bravais lattice that has four species per unit cell
is the face-centered cubic lattice, which has �

1
8

� of a species at each of eight cor-
ners (1 molecule overall) and �

1
2

� of a species at each of six faces (3 molecules
overall) for a total of 4 molecules per unit cell. We therefore predict that solid
N2 has a face-centered cubic lattice.

The two previous examples used cubic crystals, which are easier to visual-
ize because of their perpendicular sides. Noncubic crystals are treated similarly.

21.5 Determination of Crystal Structures
How do we know what the crystal lattices are for elements, molecules, and
compounds? The answer is an interesting historical story.

In the late 1800s, scientists were finally realizing that what we call light was
not just visible light but included a lot of invisible light, too. Light could be
thought of as a wave that had varying frequency and wavelength. On the very
short-wavelength and high-energy side of “light” (now better referred to as
electromagnetic radiation) are the X rays, originally named by the German
physicist and discoverer Wilhelm Roentgen in 1895 because of their unknown
nature. X rays were ultimately shown to be a form of electromagnetic radia-
tion having very short wavelength, generally considered to be between 0.01 and
100 Å.

At the same time, it was known to physical science that a series of equally
spaced parallel grooves in a mirrored surface, called a grating, could diffract
light just like a prism could. This effect was especially pronounced if the grooves
were spaced on the order of the wavelength of the light. (Indeed, most modern
dispersive spectrometers use a grating as the dispersive element. Details of in-
strumentation can be found in analytical chemistry or instrumental analysis

Figure 21.14 Max von Laue (1879–1960) was
a German physicist who originally proposed that
crystals, if they were indeed made up of atoms,
should act as gratings to diffract X rays. He was
right, and he won the 1914 Nobel Prize in physics
as a result.
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textbooks.) Matter is usually relatively transparent to X rays to different degrees;
this characteristic is what makes X rays useful for medical purposes. But in or
around 1912, the German physicist Max von Laue (Figure 21.14) reasoned that
in crystals, the rows of atoms (or ions or molecules) were spaced at distances
that corresponded to the wavelength of X rays, so crystals should diffract X rays.
In 1912, experiments with crystals of copper sulfate and, later, zinc sulfide con-
firmed this idea.

This result was furthered by von Laue and also by the father-and-son team
of William Henry Bragg (Figure 21.15a) and William Lawrence Bragg (Figure
21.15b). In particular, in 1915 the Braggs worked out a simple relationship be-
tween the wavelength, �, of monochromatic X rays that are preferentially dif-
fracted by a crystal lattice, the distance, d (sometimes called the d spacing), be-
tween the planes that the crystal lattice makes, and the angle, , between the
crystal planes and the incoming monochromatic X rays. The relationship is

n� � 2d sin  (21.5)

where n is an integer (0, 1, 2, 3, and so on). Equation 21.5 is known as Bragg’s
law of diffraction. For their work on X rays and crystals, von Laue won the 1914
Nobel Prize in physics and the two Braggs won the next year’s prize. (The
younger Bragg was only 25 at the time and still holds the record for the
youngest Nobel laureate. The Braggs’ award-winning work had just been pub-
lished earlier that year.)

If n equals 0, the process is equivalent to reflection of light at a surface,
which is not a new physical phenomenon; it will not be considered further. If
n equals 1, then X rays will be preferentially diffracted only if their wavelength
is equal to 2d times the sine of the angle the X rays make with the plane of the
crystalline species:

� � 2d sin  (21.6)

The physical reason for this preferential diffraction is shown in Figure 21.16.
If monochromatic X rays were approaching a crystal (which again is normally
very transparent to X-ray radiation) at some random angle (Figure 21.16a),
then radiation reflected from multiple planes of crystalline species would
combine destructively and no coherent, measurable diffracted X rays would be
produced.

On the other hand, if the angle  is just right, then the X rays reflected from
multiple planes would constructively interfere, and the X ray would be dif-
fracted, as shown in Figure 21.16b. A detector at just the right angle would
measure X rays coming from the crystal as the crystalline lattice diffracts the
radiation. The 2 is present in equations 21.5 and 21.6 because the radiation
must travel twice the distance between the diffracting layers. The mathemati-
cal relationship between � and  can actually be derived from geometric prin-
ciples (which is what the Braggs did). In Figure 21.16, because there is only one
wavelength of light between adjacent layers of crystal, n equals 1 and this dif-
fraction is called first-order diffraction. (Unless otherwise stated, we will assume
that a diffraction of X rays from crystal is a first-order diffraction.)*

The more general form of Bragg’s law, equation 21.5, allows for different,
but integral, numbers of wavelengths of X rays to satisfy this constructive 
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*Destructive interference can also occur between reflections off different planes that are
a distance of �/2 apart. For example, in face-centered cubic crystals, some diffractions that
satisfy Bragg’s law are not detected because of these destructive interferences.

Figure 21.15 William Henry Bragg (1862–
1942) and William Lawrence Bragg (1890–1971)
were the father-and-son team that took von Laue’s
idea and expressed it in a simple mathematical
form so it could be applied to any crystalline solid.
Their Nobel Prize in physics followed the year 
after von Laue’s. At an age of 25 years, William
Lawrence Bragg is the youngest person to be
named a Nobel laureate.

(b)

(a)
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interference condition. Figure 21.17 shows that the same wavelength of X rays
as in Figure 21.16b will be diffracted at a different angle because now n equals
2: this is called second-order diffraction. There is also third-order diffraction 
(n � 3), fourth-order diffraction (n � 4), and so on. The first-order diffrac-
tion is usually the most obvious, although depending on the crystal the zeroth-
order diffraction (n � 0, simple reflection) may also be very obvious.

The following examples illustrate the use of Bragg’s law.

Example 21.5
A simple cubic lattice has atoms that are spaced by 2.77 Å. If the diffraction is
caused by planes of atoms that are 2.77 Å apart, at what angle are X rays diffracted
in the first order and the second order if they have a wavelength of 1.82 Å?

Solution
Notice that the X-ray wavelength and the distance between diffracting planes
are given in the same units, angstroms. This is important, since these are the
only quantities in Bragg’s law that have units. For first-order diffraction, we
use equation 21.6:

� � 2d sin 

1.82 Å � 2(2.77 Å) � sin 

The only variable is the angle :

�
2 �

1.8

2

2

.7

Å

7 Å
� � sin 

Again, notice that the units of Å cancel algebraically. We get

sin  � 0.329

Taking the inverse of the sine function of both sides, we find that

 � 19.2°

So the angle in Figure 21.16b would be 19.2° in this case. At all other angles,
destructive interference takes place and virtually no intensity of X rays is de-
tectably diffracted.

For the second-order diffraction, we must use n � 2:

2� � 2d sin 

(It was assumed that n is 1 in the first part, so it did not show up in the ex-
pression for Bragg’s law.) We get

2 � 1.82 Å� 2(2.77 Å) � sin 

�
2

2

�

�

1

2

.

.

8

7

2

7

Å

Å
� � sin 

sin  � 0.657

Again, note that the units cancel. Taking the inverse sine of both sides, we find

 � 41.1°

Notice that the angle of the second-order diffraction (41.1°) is not double the
angle of the first-order diffraction (19.2°). That’s because the order of dif-
fraction is dependent on the sine of the angle, not the angle itself.
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Net
reflection

In phase

(b) Constructive interference

�

No net
scattering

Out of phase

(a) Destructive interference    

�

�

	

d

Figure 21.16 (a) At any random angle, X rays
that reflect off sequential layers of atoms in a
crystal destructively interfere to yield, ultimately,
no net intensity of refracted X rays. (b) If the re-
lationship between angle, X-ray wavelength, and
spacing between the layers of atoms is just right,
there are an integral number of wavelengths be-
tween the distance traveled by X rays and there is
constructive interference: a strong diffraction of
X-radiation occurs. The relationship between an-
gle, X ray wavelength, and d spacing is called the
Bragg equation. This equation includes the possi-
bility that there may be more than one wave-
length between adjacent reflections; this is the 
order of the diffraction.

Figure 21.17 When there are two (or more)
additional wavelengths between adjacent reflections
of X rays, it is considered second- (or higher-)
order diffraction. In this case, the variable n in
the Bragg equation equals 2.
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Example 21.6
Monochromatic X rays having a wavelength of 10.4 Å are preferentially dif-
fracted by a crystal at an angle of 25.5°.
a. Assuming that this is the first-order diffraction, what is the d spacing be-
tween the crystalline planes?
b. At what angle would the second-order diffraction be found?

Solution
a. For n � 1 (that is, first-order diffraction), we can set up Bragg’s law as

10.4 Å � 2d sin (25.5°)

and the only unknown in this equation is d, the spacing between crystalline
planes. Solving for d:

d � �
2 si

1

n

0.

(

4

25

Å

.5°)
�

d � 12.1 Å

Notice how the units work out: the only unit is a unit of distance, Å.
b. Knowing the value for d, we can find the angle for the second-order dif-
fraction of these X rays. In this case, n � 2, and we can set up Bragg’s law as

2(10.4 Å) � 2(12.1 Å) sin 

Now the angle  is the only unknown in the expression. Solving for sin :

sin  � �
2

2

(

(

1

1

0

2

.

.

4

1

Å

Å

)

)
�

sin  � 0.859

 � 59.3°

Notice that mathematically, only so many orders of diffraction may be pos-
sible for any given spacing of crystal planes and a given X-ray wavelength. In
the previous example, if you were trying to determine the angle of the third-
order diffraction, you would get to the expression

sin  � �
3

2

(

(

1

1

0

2

.

.

4

1

Å

Å

)

)
�

where the 3 in the numerator represents the order n. Evaluating this fraction,
we get

sin  � 1.289

Sine functions can’t get above a value of 1, so having a sine of 1.289 is physi-
cally impossible. This shows that the given plane of atoms can diffract 10.4-Å
X rays only to the first and second order.

Although Bragg’s law is the fundamental basis of experimental crystallogra-
phy, its simplicity is potentially misleading. For the simplest of cubic lattices
(like many of the solid noble gases), only one type of atom can make a plane
that refracts X rays. Consider a molecular crystalline solid like water, H2O: not
only is the crystal more complicated because it’s a molecular solid, but each
atom in the molecule can be used to define a regular matrix of atoms that can
act as a refracting plane. The diffraction of X rays by any random compound
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is in fact very complex because most compounds, being molecular, will have
many atoms in corresponding unit-cell positions that can contribute to 
diffractions.

There is an additional complication depending on the sample’s form: that
of crystal orientation. A sample of material that exists as one single crystal has
specific unit cell orientations. The refractions of X rays will also have certain
specific orientations (thanks in part to Bragg’s law), and experimental deter-
minations of X-ray diffractions use that specificity to determine the structures
of compounds; computers are extremely useful in back-calculating a molecu-
lar structure from the angles of X-ray diffraction. However, if the sample is
powdered or polycrystalline, each tiny crystal in a sample has its own orienta-
tion with respect to the incoming X rays, and so will impose its own unique
direction to the outgoing, diffracted X rays. X-ray diffraction patterns of pow-
dered samples are usually much more complicated than those of single crystal
X-ray diffractions, although the so-called powder patterns are typically easier
to obtain experimentally. (The exception is for cubic unit cells; because the
unit cells are cubic, it does not matter what orientation each tiny microcrys-
talline fragment has.) As you might expect, scientists who perform X-ray dif-
fraction prefer single-crystal samples to determine the molecular structure of
a compound. This can be difficult to provide, especially if the compound is a
large biomolecule that is hard to crystallize.

21.6 Miller Indices
The previous section considered diffractions of X rays as if they were done
by a single layer of atoms in a crystal. Actually, they aren’t, as illustrated by
Figure 21.16: diffractions are caused by the constructive interference of re-
flections of X rays by sequential planes of atoms in similar unit-cell positions
throughout the crystal. The collection of planes actually makes X-ray dif-
fraction a three-dimensional phenomenon (even though Figure 21.16 shows
it in two dimensions).

However inaccurate the depiction, the idea of X-ray diffraction does bring
up the concept that planes of atoms are important in an understanding of
crystal structures. In the first approximation, individual planes of atoms re-
flect X rays, and the constructive interference of many reflections from many
planes yields refraction of X rays at the right angle. How do we define a plane
of atoms in terms of the unit cell? There is another consideration, too: at some
point, the supposed infinite array of unit cells must, in fact, stop and make
the surface of the crystal. This surface is usually considered planar. (In fact,
many examples of large crystals are used as examples because they have well-
defined planar surfaces. A well-cut diamond, for example, has a very specific
shape in terms of the planes that terminate the unit cells.) It becomes clear
that we must be able to define planes of corresponding atoms within arrays
of unit cells.

We use Miller indices to label the different possible planes that correspond-
ing species can make. (Recall that indices is the plural of index. Although this
system was originally established by William Whewell in 1825, it was popular-
ized in an 1839 crystallography text by William Miller, an English mineralo-
gist.) Miller indices are based on the unit cell dimensions a, b, and c acting as
unit vectors. They are also reciprocal indices in that they relate to the recipro-
cal of the fraction or multiple of unit vectors along each axis where any given
plane intersects.
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Figure 21.18 shows the steps in determining the Miller indices of a plane in
a simple cubic unit cell. (The process is the same for other unit cells; it just
looks more complicated.) In the four unit cells shown, parallel planes of atoms
are indicated. How do we designate these parallel planes in terms of the unit
cell dimensions a, b, and c? We use the following steps:

1. Using any unit cell, pick a corner that will serve as a three-dimensional,
Cartesian-axis origin. An example is indicated in Figure 21.18.

2. Determine the intercepts of the planes in terms of how many a, b, and c
units the intercepts are from the origin. In Figure 21.18, the indicated
plane intercepts the crystal axes at 1 a unit, 1 b unit, and 1 c unit of length
in each of the crystal dimensions. The numbers we collect to represent
the indicated plane are 1, 1, and 1—indicating the number of unit cell
dimensions that represent the axes’ intercepts.

3. Take the reciprocal of each number: in this case, the reciprocals of 1, 1,
and 1 are simply 1, 1, and 1 (but we will consider another example next).

4. Express the Miller indices as the three reciprocal numbers grouped to-
gether inside parentheses, without punctuation: (111). The plane illus-
trated in Figure 21.18 is referred to as the (111) plane for this simple
cubic lattice.

The Miller indices for any plane of crystal positions can be determined by this
method. The general form of expressing Miller indices is (hk�), where h repre-
sents the Miller index along the a unit cell dimension, k is the Miller index along
the b unit cell dimension, and � is for the c unit cell dimension. For cubic unit
cells, there are equivalences among planes that have the same Miller indices, such
that (100) is equivalent to (010), which is equivalent to (001), and so forth.

There are several pitfalls to watch out for. First, there are (maybe obvious)
planes that are in one of the planes of the unit cell itself: Figure 21.19 shows
several. None of these planes intersects the third crystal axis. In this case, the
intercepts are considered to occur at infinite dimensions of the unit cell, and
the reciprocal of � is zero: therefore, the Miller indices of the planes in Figure
21.19 are (100), (110), and (200), respectively. (You should satisfy yourself that
these designations are correct.)

Second, Miller indices can also be numbers greater than 1 (usually integers)
or less than 1 (usually a simple fraction). Figure 21.19c shows a plane of crys-
tal positions that includes an index greater than 1. Again, you should satisfy
yourself that the steps given above give corresponding Miller indices.

Finally, Miller indices are occasionally best described using negative num-
bers. But given the lack of punctuation in the expression (ABC) for a crystal
plane, using a minus sign might cause a problem with interpretation; consider
(A � BC) as a label for a crystal plane! Rather, it is the convention to put a bar
over a Miller index to indicate that it is negative: rather than (A � BC), we
write (AB�C), where B� indicates that the Miller index (as determined from the
steps above) is actually �B. Figure 21.20 shows an example of a crystal plane
defined this way.

Why do we go to such trouble? Because each and every definable plane can
act to diffract X rays to produce constructive interference of radiation. Since
different planes have different d spacings, planes having different Miller indices
will diffract the same X rays at different angles. As we use the phenomenon of
constructive radiation to understand the structures of crystals, we need a sys-
tem to keep track of the planes of atoms (molecules, ions, and so on) that are
reflecting the radiation. The concept of Miller indices shows that there are
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a
c

b
Figure 21.18 How to determine Miller indices
of parallel planes of atoms. See text for details.

(a) (100)

(b) (110)

(c) (200)

a

c

b

a

c

b

a

c

b

Figure 21.19 Miller indices of some planes in
cubic crystals.
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many possible planes, which suggests that X-ray crystallography is rather com-
plicated. In some cases it is; but Miller indices give us a way to model how dif-
ferent crystal planes can interact with radiation.*

Example 21.7
Assuming that there are atoms at the proper positions in the crystal, deter-
mine the Miller indices of the plane illustrated in Figure 21.21. The fact that
the crystal is not cubic is irrelevant! Notice also that only a single unit cell is
shown.

Solution
We will use the lower left-hand corner as our origin. The indicated plane in-
tercepts the a, b, and c crystal axes at 1 unit of a, 1 unit of b, and �

1
2

� unit of c.
Taking the reciprocal of the number of unit vectors, we get �

1
1

�, �
1
1

�, and �
1
1
/2
� as the

Miller indices, or 1, 1, and 2 (respectively). We therefore express the Miller
indices of this crystal plane as (112).

Example 21.8
Cesium chloride, CsCl, has a simple cubic lattice that has a lattice parameter
of 4.11 Å. What wavelength of radiation is primarily diffracted at an angle of
20.0° by the (111) plane of CsCl?

Solution
This is a simple question, but it brings together several ideas. We will apply
Bragg’s law in a straightforward fashion, but first we must determine the dis-
tance, the d spacing, between the parallel (111) planes of CsCl. In order to do
that, we need to use geometry to determine d spacings from the lattice para-
meter. Figure 21.22 shows the sequential steps. From Figure 21.22, we find
that the d spacing between parallel (111) planes is 2.91 Å. Using Bragg’s law:
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Origin

Origin

(100)

(100)

Figure 21.20 This diagram shows how the
(100) plane can be defined using negative Miller
indices.

*For fcc crystals, the (100) planes experience destructive interference of diffracted X rays,
so no net radiation is diffracted. This phenomenon is called systematic extinction. The (110)
and (210) planes in fcc crystals also experience extinction. See Table 21.3 later in this sec-
tion for additional planes that exhibit extinction.

a

c

b

� length

Length

1
2

a

d

c
b

(length)  
 

Step 1. length 
 4.11 Å � �2 
 5.81 Å

Step 2.

Step 3. d 
 one leg of right triangle 
             (the triangle indicated by bold lines)

1
2

(5.81 Å)  
 2.91 Å 
1
2

Other leg 
 2.91 Å, 
hypotenuse 
 4.11 Å

Using Pythagorean theorem:
(4.11 Å)2 
 (2.91 Å)2 � d 2

8.424 Å2 
 d 2

d 
 2.91 Å

Figure 21.22 Determining the diffraction of X rays using Miller indices. Application of a 
little geometry lets us calculate the d spacing from the unit cell parameters. Then we can use the
Bragg equation. See Example 21.8.

Figure 21.21 Atoms in the indicated plane
have what Miller indices? See Example 21.7.
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1 � � � 2(2.91 Å) � sin 20.0°

� � 1.99 Å

The (111) plane will diffract X rays having a wavelength of 1.99 Å at an an-
gle of 20.0°. Notice that this wavelength is smaller than the lattice parameter
itself. This is a consequence of the shorter d spacing that angled planes of
atoms in a crystal have.

The above example should make an important point: all planes of atoms or
ions in a crystal can serve to diffract X rays, not just the simple planes made
by the corners of the repeating unit cells. This suggests that the diffraction of
X rays by any real crystal can be very complex. It is. Figure 21.23 shows the
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MgO CaO Al2O3 NH4ClW

0°

180°

Figure 21.23 Examples of the diffraction of X rays by powdered crystals. Each strip is a piece
of photographic film, encircling the powdered sample, that is exposed only at the certain angles
that X rays are diffracted.
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diffraction of X rays by several simple powdered compounds that have vary-
ing Bravais lattices. The different planes with their different Miller indices dif-
fract X rays at different angles. (In practice, the X rays used are usually very
close to monochromatic, which means that � is the same for all diffractions.
Only the d spacings between the planes and the angles of diffraction differ.)
Even for simple crystals, X-ray diffraction patterns are complicated enough
that computer analysis is useful.

The angles of X-ray diffraction can, however, be expressed in terms of the
Miller indices (which are fractions or multiples of the unit cell dimensions,
after all). The relationship between the Miller indices and the various planes
of reflection is simplest for crystals having perpendicular unit cell axes, as
might be expected. Without deriving it, the relationship between d spacing and
Miller indices of a plane of atoms is

�
d

1
� � ��

h

a2

2

� � �
b

k2

2� � �
�

c2

2

��
1/2

(21.7)

This expression is useful for cubic, orthorhombic, and tetragonal crystals. For
cubic crystals, equation 21.7 can be simplified because a � b � c. In terms of
the d spacing directly, we get

d � (21.8)

The Bragg equation for a cubic crystal is therefore (for the first-order diffrac-
tion, which is typically the strongest):

� � 2 � sin  (21.9)

The angles of diffraction of (monochromatic) X rays by cubic crystals are
thus relatively easily predicted, because the Miller indices themselves are re-
stricted to whole numbers in cubic crystals. Depending on whether the crys-
tal is simple cubic, face-centered cubic, or body-centered cubic, different
planes are defined by the atoms in the crystal, and so different angles of dif-
fraction may be possible. However, the pattern of possible angles is charac-
teristic of the type of cubic crystal, because of the integral possible values of
the Miller indices. Figure 21.24 shows the relative patterns of the diffracted
X rays along with the Miller indices of the unit cell planes that diffracted the
radiation.

Because cubic crystals have such relatively simple X-ray diffractions, it is
common to rewrite equation 21.8 in the forms

�h2 � k�2 � �2� � �
d

a
� or h2 � k2 � �2 � �

d

a2

2� (21.10)

Because h, k, and � are whole numbers, it is easy to construct a table of their
possible values, and therefore the possible values of a/d. Crystals whose X-ray
diffractions appear at these relative values are easily identified as cubic crystals.
Table 21.3 shows such a table for comparative purposes. Because of occasional
destructive interference due to diffracted X rays being exactly 180° out of
phase, only certain combinations of h, k, and � will appear depending on
whether a crystal is primitive, face-centered, or body-centered cubic. The pat-
tern of the possible Miller indices of refracting planes is therefore specific to

a
��
�h2 � k�2 � �2�

a
��
�h2 � k�2 � �2�
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0
�, degrees

Face-centered

Body-centered

Primitive

605040302010

Figure 21.24 The pattern of diffracted X rays
is characteristic of the type of unit cell a crystal
has. Here, the patterns that the three cubic Bravais
lattices cause on the X-ray diffraction is illus-
trated. For all three, we are assuming a unit cell
parameter of 3.084 Å and an X-ray wavelength of
1.542 Å. Compare these patterns with the films in
Figure 21.23: can you detect any correspondences
between these two figures?
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the type of cubic unit cell a crystal has. (For additional details, consult a crys-
tallography text.) Equation 21.10, Table 21.3, and Bragg’s law are used together
to determine the size and type of unit cell a cubic crystal has. The following
example illustrates how to use these three items.

Example 21.9
An unknown crystal has some cubic unit cell. The refractions of X rays by a
powdered sample are seen at the  values of 13.7°, 15.9°, 22.8°, 27.0°, 28.3°,
33.2°, 36.6°, and 37.8°. If the X rays have a wavelength of 1.5418 Å, determine
the following:
a. The d spacings for each refraction
b. The type of cubic unit cell
c. The unit cell parameter a (that is, the length of the cubic unit cell)

Solution
Table 21.3 indicates that only certain combinations of Miller indices are pos-
sible for diffracted X rays. We will perform the following steps:

1. Use Bragg’s law to calculate a d spacing for each angle of diffraction.
2. Square the d spacing and determine its reciprocal. We now have 1/d 2, but

we still don’t know a or the Miller indices.
3. Take the ratio of the two lowest reciprocals.
4. Look at the entries in Table 21.3. If the ratio is 0.5 (or �

1
2

�), it can be ei-
ther primitive or body-centered cubic. To determine which it is, take
the ratio of the seventh and eighth values of 1/d 2. If the ratio is 0.875
(or �

7
8

�), it is body-centered cubic. If the ratio is 0.889 (or �
8
9

�), it is sim-
ple cubic.

5. If the ratio of the two lowest reciprocals is 0.75 (or �
3
4

�), the crystal is face-
centered cubic.
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Table 21.3 Values of (hk�) and (h2 � k2 � �2) that diffract X rays in cubic crystalsa

(hk�) (h2 � k2 � �2), sc (h2 � k2 � �2), bcc (h2 � k2 � �2), fcc

100 1 — —

110 2 2 —

111 3 — 3

200 4 4 4

210 5 — —

211 6 6 —

220 8 8 8

300, 221 9 — —

310 10 10 —

311 11 — 11

222 12 12 12

320 13 — —

321 14 14 —

400 16 16 16 

Source: D. P. Shoemaker, C. W. Garland, and J. W. Nibler, Experiments in Physical Chemistry, 6th ed., McGraw-Hill,
New York, 1996.)
aFor each set of Miller indices, if the value (h2 � k2 � �2) is listed under each type of cubic cell, then that plane of
atoms diffracts X rays. A — indicates that the plane does not diffract X rays (or experiences extinction). The pattern
of diffracted X rays therefore indicates the type of cubic unit cell a crystal has.
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a, b. To determine the crystal structure we construct the following table:

 d (from Bragg’s law; Å) 1/d 2 (Å�2)

13.7 3.25 0.0947

15.9 2.81 0.127

22.8 1.99 0.253

27.0 1.70 0.346

28.3 1.63 0.376

33.2 1.41 0.503

36.6 1.29 0.601

37.8 1.26 0.630

Taking the ratio of the first two reciprocals:

�
0

0

.0

.1

9

2

4

7

7
� � 0.746

which is close enough to 0.75: the crystal is face-centered cubic.
c. To determine the unit cell dimension, we can use equation 21.10:

(h2 � k2 � �2) � �
d

a2

2�

Table 21.3 indicates that the first diffraction, occurring at 13.7°, must have
the Miller indices (111). We therefore substitute, using the corresponding d
spacing from the table above:

(12 � 12 � 12) � �
(3.2

a

5

2

Å)2�

Solving for the unit cell dimension:

a � 5.63 Å

As it turns out, this is the unit cell parameter for sodium chloride, which has
a face-centered cubic unit cell. This kind of procedure is applicable to any
cubic crystal.

For other types of unit cells, the pattern of X-ray diffractions depends on
the exact (nonperpendicular) angles that the unit cell’s sides make with each
other. A general discussion that is applicable to all such crystals is impossible
because of this. However, there is still a relationship between the d spacings of
the atomic planes and the Miller indices; it is just not as simple as for cubic
cells. The equation relating the d spacing with Miller indices, unit cell dimen-
sions, and unit cell angles is complex and will not be considered here.

Details of experimental X-ray crystallography can be obtained from texts on
analytical chemistry or experimental physical chemistry.

Finally, we need to consider the fact that in an X-ray diffraction pattern, not
all diffractions have the same intensity. (See Figure 21.23 as an example.) This
might be considered unusual: the X rays going in have a given intensity; why
is it that the X rays coming out have different intensities?

The answer lies in part with the atoms that are contributing to the individ-
ual diffractions. Not all atoms scatter X rays with the same efficiency. The abil-
ity of an atom to scatter X rays is directly related to the electron density of the
atom. (It is this very concept that makes X rays useful for medical purposes: tis-
sues composed of heavier materials, like bone, scatter X rays more than other
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tissues like organs, muscle, and skin. This allows us to use X-ray photographs
to differentiate body tissues.) We can define a scattering factor fA for atom A as
a way to describe the ability of individual A atoms to scatter X rays. The higher
the scattering factor, the better an atom scatters X rays, and so the stronger the
final diffracted X ray. As you might expect, in general larger atoms have higher
scattering factors than smaller atoms. Figure 21.25 shows diffraction patterns
for NaCl and KCl—two very similar compounds but with ions of different sizes
and, therefore, scattering factors. Although the diffractions show a similar scat-
tering pattern, the intensities of similar diffractions are obviously different.

The intensity of a particular X-ray diffraction also depends partly on phase
effects. Recall that electromagnetic radiation can constructively interfere or de-
structively interfere, as shown in Figure 21.16. For some crystals in which a dif-
fraction from a plane of atoms is expected to occur, it turns out that diffrac-
tion from an adjacent plane contributes X rays of the exact opposite phase: the
result is complete destructive interference, and the intensity of this expected
diffraction is zero. This is the reason that odd values of the sum h2 � k2 � �2

are absent for body-centered unit cells (see Table 21.3). For crystals that are
composed of different atoms having similar scattering factors, there may be ac-
cidental destructive interferences that can dramatically reduce the intensity of
an expected diffraction.

We finish this section on Miller indices by introducing a convenient use
of Miller indices. We like to define a solid crystal as an infinite, regular array
of atoms or molecules. In reality, however, we know that the array is not in-
finite; the crystal stops at some point. It stops at the surface of the crystal. In
many cases, the surface of a crystal is not just some random arrangement of
atoms or molecules making a microscopically rough boundary. For many
crystals, over a large surface area (that is, on a scale of square nanometers or
micrometers) the surface corresponds to a particular plane of atoms or mol-
ecules that can be described by a particular set of Miller indices. Figure 21.26
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KClNaCl

0°

180°

Figure 21.25 NaCl and KCl have the same
unit cell, but the different sizes of the Na� and
K� ions cause a different intensity of some indi-
vidual diffractions.

Figure 21.26 Surfaces of crystals can also
be described using Miller indices. In fact,
the cutting and polishing of many gemstones
follows specific Miller index planes.
Mineralogists, gemologists, and lapidaries
must know these planes in order to properly
cut and polish gemstones.
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shows examples of some crystalline surfaces. With care, large crystals with
specific surface planes can be prepared, and the chemistry that occurs in the
presence of each plane can be specific to that surface. We will consider sur-
faces in the next chapter, and Miller indices will reappear as a way to specify
the arrangement of atoms on a surface.

21.7 Rationalizing Unit Cells
Why do crystalline solids have the unit cells that they do? There is actually
some rationalization for the lattices that certain solid materials have.

We have already mentioned that many atomic elements, that is, elements
whose molecules consist of individual atoms (like Ar and Fe), exist as either
face-centered cubic or hexagonal closed-packed solids. (A substantial number
of the remaining atomic elements are body-centered cubic.) Unit cells that are
fcc or hcp represent the most efficient use of space: for solid-sphere atoms,
about 74% of the available space is taken up by the solid spheres. The remain-
der, about 26%, is simply empty space. Such efficiency of packing was actually
predicted by the astronomer Johannes Kepler in 1611.

Despite an unstated presumption, unit cells are not invariant for a given
compound. Different unit cells may be preferred under different conditions of
temperature and pressure. These are examples of solid-solid phase changes. The
easiest illustrations are for elemental materials. Perhaps one of the best-known
differences in unit cells is for elemental carbon, which has two common forms:
graphite (a hexagonal unit cell, but not hcp) and diamond (face-centered cubic).
Elemental iron, for example, is body-centered cubic below about 910°C, but
between 910° and about 1400°C it becomes face-centered cubic. Metallic tin is
tetragonal at room temperatures, but below about 13°C (which is not much
below room temperature!) it adopts a cubic structure. This causes a major
problem because in doing so, the unit cell increases in volume by over 20%.
Temperature-dependent solid-state phase changes are a major engineering
concern.

For molecular elements and compounds, the reasons for having a particu-
lar unit cell are complex and will not be considered. Generally, such materials
adopt a unit cell that minimizes the overall energy of the compound. The
choice of unit cell is therefore highly dependent on the molecule itself. There
are also some marked solid-solid phase changes in molecular compounds. A
well-known example is H2O. Many unit cells are actually known for solid H2O;
that which we call “ice” is simply the stable crystalline phase at normal condi-
tions of temperature and pressure. If the pressure were increased dramatically,
the crystal structure of solid H2O changes. Figure 21.27 shows a phase diagram
of H2O that illustrates the different crystal structures of H2O.

Other molecular compounds can have equally complicated solid-state
phase diagrams, and a discussion of molecular unit cells will not be pursued
further here.

For simple ionic compounds, however, there are some guidelines. Ionic
compounds are formed by the mutual attractions between cations and anions.
The type of unit cell that is formed is strongly influenced by two factors: the
relative sizes of the ions (which determine their ability to fill three-dimensional
space), and the relative charges (which determine the relative number of
cations and anions that are needed to have an overall electrically neutral com-
pound). The concept of ionic size or ionic radius ultimately derives from crys-
tallography. We cannot measure the size of an ion directly—indeed, quantum
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mechanics and its probabilistic interpretation of wavefunctions do not allow
us to define a certain “size” for the electrons about an ion. But by measuring
the crystalline parameters of unit cells of various crystals, we can determine a
general size that an ion contributes to a crystal lattice and define that as the size
(diameter or radius) of the ion. Table 21.4 lists the experimentally determined
ionic radii for some ions. There are also several entries for polyatomic ions.
Although it is not possible to assign a specific, single radius to polyatomic
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Figure 21.27 Phase diagrams can include dif-
ferent kinds of solid phase, as well as liquid and
gas phase. H2O, for example, has many different
crystalline structures, depending on the tempera-
ture and the pressure. Each region represents a
different solid phase of H2O.

Table 21.4 Crystalline ionic radii for various ions

Ion Radius (Å) Ion Radius (Å)

Ag� 1.26 K� 1.33

Al3� 0.51 Mg2� 0.66

Au3� 1.37 Na� 0.97

Ba2� 1.34 O2� 1.31

Be2� 0.35 Pb2� 1.20

Br� 1.96 S2� 1.84

Ca2� 0.99 Ti4� 0.68

Cl� 1.81 Zn2� 0.74

Cr3� 0.63 NH4
� 1.48

Cs� 1.67 BF4
� 2.28

F� 1.33 SO4
2� 2.30

I� 2.20 
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ions, an “effective ionic radius” can be estimated from crystallography or energy
determinations.

For ionic compounds that have a 1�1 stoichiometric ratio of cation to an-
ion (like NaCl, CsCl, or MgO), the relative sizes of the ions determine whether
the compound will have one of three possible unit cells. We use a label to de-
fine each type of unit cell. The following table summarizes this experimentally
determined generality, in which the ratio in column 1 determines columns 2
and 3:

Radius ratio Unit cell Label

Greater than 0.73 Simple cubic Cesium chloride structure

Between 0.73 and 0.41 Face-centered cubic Sodium chloride structure

Less than 0.41 Face-centered cubic Zincblende structure

Figure 21.28 shows typical unit cells for these 1�1 ionic crystals. The names
of the unit cells are taken from common compounds that typify the general
unit cell structure. “Zincblende” is a common name for zinc sulfide, ZnS,
which typifies the unit cell structure.

What’s the difference between the sodium chloride and zincblende struc-
ture? They are both face-centered cubic structures, and they both have 1�1
ratios of ions in the ionic formula. But, as seen in Figure 21.28, the relative
positions of the ions in the unit cell are different. In the sodium chloride
structure, the ions not defining the unit cell (that is, not at the corners or in
the faces) surround the unit cell–defining ions in the x, y, and z dimensions. If
you were to extend the unit cell in any direction, you would find that each ion
has six oppositely charged ions at equal distances from it. One way of stating
this is that in the sodium chloride structure, each ion has a coordination
number of 6.

However, in the zincblende structure, these other ions are in the body of the
unit cell, and are not on axes that are perpendicular to each other. Although it
might be harder to see, by extending the unit cell in any direction you can show
that every ion has four oppositely charged ions the same distance away, mak-
ing the shape of a tetrahedron about the original ion. In this case, the ions have
a coordination number of 4.

In either case, it is easy to show that the ratio of ions in the unit cell is 1�1.
The two possible face-centered unit cells are consistent with a 1�1 ion ratio in
the formula for the compound. The particular structure, however, depends on
the relative sizes of the ions.

For ionic compounds that have a 1�2 or 2�1 ratio of cation to anion (like
CaF2 or K2O), there are two common unit cell arrangements. Again, one can
usually predict which arrangement a crystal has by considering the relative
sizes of cation and anion. If the ratio rsmaller/rlarger is greater than about 0.73,
the unit cell is labeled the fluorite structure after CaF2 (common name fluo-
rite), which is shown in Figure 21.29a. If the ratio is less than 0.73, then the
rutile structure, Figure 21.29b, is preferred. Rutile is a common name for TiO2,
which typifies the structure. Fluorite unit cells are face-centered cubic, whereas
rutile is tetragonal (all 90° angles, but one unequal unit cell length).

One final note is that these predictions are generalities and do not hold for
all crystals! The only certain way to know the crystal structure of a solid is from
experiment. Example 21.10 illustrates some of the differences between predic-
tion and reality.

rsmaller�rlarger
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Figure 21.28 Typical unit cells for the cesium
chloride, sodium chloride, and zincblende types
of crystals.
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Example 21.10
Predict the structure(s) of the following crystals. Consult Table 21.4 for ionic
radii when necessary.
a. Sodium sulfide, Na2S
b. Lead, Pb
c. Magnesium, Mg
d. Silver bromide, AgBr
e. Ammonium chloride, NH4Cl

Solution
a. From Table 21.4, Na� has a radius of 0.97 Å and S2� has a radius of
1.84 Å. The ratio rsmaller/rlarger is 0.97/1.84 � 0.527, so we predict that this 
2�1 ionic compound has a rutile structure. (It actually has a fluorite struc-
ture.) 
b. Lead is a metallic element that is an atomic solid. We predict that it has
one of the most efficient crystal arrangements, either face-centered cubic or
hexagonal close-packed. (It has an fcc unit cell.) 
c. Magnesium is also a metallic, atomic solid. Again, we predict either fcc or
hcp. (Magnesium is hcp.)
d. From Table 21.4, we find that Ag� has an ionic radius of 1.26 Å and Br�

has a radius of 1.96 Å. The ratio rsmaller/rlarger is 1.26/1.96 � 0.642, suggest-
ing a sodium chloride structure for this 1�1 salt. (AgBr does indeed have the
sodium chloride crystal structure.)
e. Ammonium ions have an effective ionic radius of 1.48 Å, and Cl� ions have
a radius of 1.81 Å. The ratio rsmaller/rlarger is 1.48/1.81, which equals 0.818. We
predict a cesium chloride unit cell for ammonium chloride. (NH4Cl has the
cesium chloride unit cell.)

The above example shows that the generalities for predicting crystalline unit
cells work but are not infallible. Again, the point should be made that experi-
ment is the only way to know for certain what the unit cell of a crystal is.

21.8 Lattice Energies of Ionic Crystals
When ions of opposite charges come together to make a crystal, there is always
a decrease in the overall energy. It is this decrease in energy that makes the
crystal stable with respect to the individual, separated ions. It is also this de-
crease in energy that leads to the idea of the “energy” of an ionic bond.

The amount of energy given off when one formula unit of moles of ions
come together from the gas phase to make a crystal is called the lattice energy
or lattice enthalpy of the crystal. The second term reinforces the relationship to
the enthalpy of the crystal formation process. For example, by definition, the
lattice energy of sodium chloride, NaCl, is represented by the energy change of
the molar reaction

Na� (g) � Cl� (g) → NaCl (s) lattice energy � ��rxnH (21.11)

Notice that the lattice energy is defined as the negative of �rxnH. This is be-
cause it is understood that energy is always given off when separated ions come
together to make ionic crystals. The lattice energy is therefore simply the ab-
solute magnitude of that exothermic process. Table 21.5 lists some experimen-
tal lattice energies of some simple ionic crystals.
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Figure 21.29 Typical unit cells for the fluorite
and rutile types of crystals.
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The data in Table 21.5 suggest some simple trends. The higher the absolute
charges on the ions, the higher the lattice energy. The larger the ion, the lower
the lattice energy.

There must be some reason for these trends, especially considering the
grand simplicity of the interaction of opposite charges. Coulomb’s law states
that the potential energy of two oppositely charged particles at a distance from
each other is

E � �
4

q

�
�

�

�

0

q

�
�

r
� (21.12)

where the absolute charges q� and q� are expressed in units of coulombs (C),
the distance r is expressed in units of meters (m), and �0 is the permittivity of
free space. Note in equation 21.12 that the charge variables q� and q� include
the signs; that is, positive charges have a positive value of q� and negative
charges have a negative value of q�. Therefore, potential energies between op-
posite charges are negative (and therefore contribute to a lowering of energy),
and potential energies between like charges are positive (therefore contribut-
ing to a raising of energy).

Given an understanding of Coulomb’s law, it should be easy to calculate lat-
tice energies given (1) the magnitude of the charge on the ions, and (2) their
separation in the unit cell. It isn’t that easy, though. Coulomb’s law is a model
for the ideal energy of interaction of two and only two charged bodies that
interact at a given distance. An ionic crystal is a conglomerate of many, many
ions that interact over a range of distances. The following example illustrates
the difference between experimental values and the simple coulombic model.

Example 21.11
Sodium chloride, NaCl, has an experimental lattice energy of 769 kJ/mol. If
the distance between Na� ions and Cl� ions in crystalline NaCl is approxi-
mately 2.78 Å, what would Coulomb’s law predict for the energy of interac-
tion of 1 mole of sodium ions with 1 mole of chloride ions?

Solution
Both sodium and chloride ions have unit charges, but of opposite magni-
tudes. In units of coulombs, a unit charge is 1.602 � 10�19 C. For r �
2.78 Å or 2.78 � 10�10 m:

E �

E � �8.297 � 10�19 J

(�1.602 � 10�19 C)(�1.602 � 10�19 C)
�����
4�[8.854 � 10�12 C2/(J�m)](2.78 � 10�10 m)
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Table 21.5 Experimental lattice energies of some ionic crystals

Formula Lattice energy (kJ/mol) Formula Lattice energy (kJ/mol)

LiF 1013 KCl 701

LiCl 834 KBr 671

LiBr 788 CsI 600

NaCl 769 CaF2 2609

NaBr 732 CaCl2 2223

Na2O 2481 CaSO4 2489

K2O 2238 SrSO4 2577

TiO2 12150 BaSO4 2469

K2S 1979 Na2SO4 1827
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This is for a single pair of ions. For a mole of ions, we multiply this answer
by Avogadro’s number:

E (per mole) � �4.995 � 105 J/mol

E � �499.5 kJ/mol

This answer suggests that the lattice energy of NaCl should be about 499 kJ.
The actual lattice energy is substantially higher than that, suggesting that the
two-ion model is not very good.

In fact, the two-ion (perhaps more generally, the single-formula-unit) model
is not very good because it ignores other surrounding ions. If you reconsider
the diagram of the unit cell of NaCl in Figure 21.28, it should be clear why the
two-ion model won’t work: each ion is actually surrounded by six ions of the
opposite charge! Shouldn’t the model take this into consideration? But there’s
more: around each oppositely charged ion are six ions of the same charge as
the central ion. These ions contribute a repulsive component to the overall
ionic interactions and contribute to an increase in the total potential energy of
the crystal. And around each of these like-charged ions are six oppositely
charged ions, contributing to a decrease in the total energy, and around
these . . . and so forth.

A proper model of lattice energy must take into account the layers of op-
positely charged and like-charged ions that compose a crystal. The model also
must take into account the repulsion between the electron clouds of all ions,
no matter what the magnitude or sign of their charges. In fact, it is the balance
between the attractions of opposite charges and the repulsions of electron
clouds that dictates the size of the unit cells.

Without derivation (which can be found in crystallography texts), one ex-
pression for the lattice energy of an ionic crystal is

lattice energy � �
NA �

4

M

��

�

0

Z

� r

2 � e2

� �1 � �
�

r
�� (21.13)

In the above equation, Z is the greatest common divisor of the magnitudes on
the ions (that is, 1 for NaCl, Na2O, and so on, and 2 for MgO, TiO2, ZnS); e is
the charge on the electron; r is the distance between oppositely charged ions
(usually the closest or “nearest-neighbor” ions); and the 4��0 term is the con-
version between non-SI and SI units. NA is Avogadro’s number, so the lattice
energy has units of joules per mole (meaning joules per mole of ionic crystal
formula unit). There are two numerical parameters in equation 21.13: � and
M. The repulsive range parameter � is a distance parameter that relates to the
range of the repulsion between electron clouds. It is typically on the order of
0.1 times the value of r or less, showing that repulsive effects have a noticeable
but small contribution to the lattice energy. The repulsive range parameter �
has units of distance, typically Å.

The parameter M in equation 21.13 is called the Madelung constant for the
crystal. The Madelung constant is the sum of the alternating coulombic at-
tractions and repulsions of successive spheres of alternately charged ions about
any single ion in an ionic crystal. These alternating attractions and repulsions
depend on the arrangement of the ions in the crystal (which is ultimately de-
termined from the crystal’s unit cell) and the unit cell parameters (that is, the
dimensional and angular parameters of the Bravais lattice). Because of this,
you might think that it is easy to calculate the Madelung constant for a crys-
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tal. It’s easy in theory, but not in practice. If you consider a simple system in
which you recede from a central ion by moving through a series of nested
spherical shells, the farther away you get from any one ion, the larger the num-
ber of ions in any spherical shell! The contribution of attraction or repulsion
from each successive shell does not decrease very quickly.

Once the Madelung constant is determined from simple structural argu-
ments, the lattice energy of an ionic crystal can be determined easily. These lat-
tice energies can be used in cycles to evaluate energies of difficult-to-determine
chemical processes. Such cycles are called Born-Haber cycles.

Table 21.6 lists some Madelung constants and repulsive range parameters �
for various ionic compounds. Madelung constants are unitless, whereas repul-
sive range parameters have units of distance. Because Madelung constants can
be determined from purely geometrical arguments, they are usually defined
only for the crystal that typifies the unit cell (for example, any crystal that has
the cesium chloride unit cell—simple cubic—has a Madelung constant of
1.7627). But because repulsive range parameters depend on the ion’s charges
as well as the unit cell dimensions, crystals having the same unit cell have dif-
ferent values for �.

Example 21.12
Calculate the expected lattice energy of NaCl again, this time using equation
21.13 and using a Madelung constant of 1.748 and a repulsive factor of
0.321 Å. The distance between Na� ions and Cl� ions is, again, 2.78 Å.
Compare it to a lattice energy of 769 kJ/mol. Compare your answer with
Example 21.11.

Solution
Recall that NaCl is a 1�1 ionic compound, so the greatest common divisor
variable Z equals 1. If we want to use standard units at the outset, we should
convert our 2.78 Å into meters to get 2.78 � 10�10 m. We will use

lattice energy � �
NA �

4

M

��

�

0

Z

� r

2 � e2

� �1 � �
�

r
��

and substitute for the various constants:
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Table 21.6 Madelung constants and 
repulsive range parameters 
of some ionic crystals

Formula Madelung constant M � (Å)

LiF 0.291

LiBr 0.330

NaCl 1.74756 0.321

NaBr 0.328

KCl 0.326

KBr 0.336

ZnS 1.6381 0.289

TiO2 2.408 0.250

CsCl 1.7627 0.331

lattice energy � �1 � �
0

2

.3

.7

2

8

1

Å

Å
��(6.02 � 1023/mol)(1.748) � 12(1.602 � 10�19 C)2

������
4�[8.854 � 10�12 C2/(J�m)](2.78 � 10�10 m)

Note the slight inconsistency: in the second part of the equation, we still use
r in units of angstroms. This is because the parameter � is given in units of
Å, and to keep units consistent we keep the Å unit for r. As a ratio, it is re-
quired that the units cancel; we could just as easily convert � to units of me-
ters. You should satisfy yourself that the units in the first part of the expres-
sion cancel appropriately to yield units of J/mol. Solving numerically:

lattice energy � 873,000 �
m

J

ol
� � 0.885

lattice energy � 773,000 �
m

J

ol
� � 773 �

m

kJ

ol
�

Compared to an experimental value of 769 kJ/mol, we find that equation 21.13
does a much better job of predicting lattice energies than Coulomb’s law did.
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Equation 21.13 is defined to give positive values for the lattice energy. It
should be understood that when oppositely charged ions come together, total
energy is always decreased. Therefore, the �rxnH values of these processes are
always negative, indicating an exothermic process.

21.9 Crystal Defects and Semiconductors
So far in this chapter, we have been working under the assumption that crys-
talline solids are perfect crystals. Every atom, ion, or molecule is assumed to be
in exactly the right place in every unit cell throughout the entire solid crystal.

In reality, this is not the case. Most real crystals are full of imperfections. Even
crystals that are considered very well ordered have an occasional lapse in crys-
tal structure at the atomic and molecular level. These lapses are called defects.

There are several different kinds of defects in crystals. Depending on the
type and number of defects in any volume of crystal (that is, the type and den-
sity of defects), the physical and chemical properties of the crystal may be al-
tered from the properties of the perfect crystalline form. Defects can be sepa-
rated on the basis of whether they affect a single point, a line of points, or a
plane of points. For simplicity’s sake, we will assume that we are considering
an atomic crystal, but all crystals—atomic, ionic, molecular—exhibit most of
the defects discussed here.

The simplest point defect is when an atom is simply missing from its ex-
pected position. This type of defect is called a lattice vacancy (sometimes also
called a Schottky defect). In another kind of defect, an additional atom is pres-
ent. If the additional atom is crowded in with the rest of the atoms in the unit
cell, then it must squeeze itself in between the normally occupied positions. This
type of defect is called an interstitial defect. If, on the other hand, the additional
atom is a chemically different atom that is taking the place of an atom of the
normal unit cell, then it is considered a substitutional defect. Figure 21.30 shows
a two-dimensional example of these three types of point defects in crystals.

Line and plane defects are more complicated to illustrate. One type of line
defect is found when a line of atoms or unit cells starts suddenly inside a crys-
tal. Figure 21.31 shows a two-dimensional representation of this kind of line
defect. Plane defects are usually seen at the surfaces of crystals or at interfaces
between two smaller crystals in a larger piece of solid material, as seen in
Figure 21.32. Plane defects can also exist between two different Bravais lattices
of the same compound.
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Substitutional defect

Lattice vacancy

New line
of atoms

Figure 21.30 Examples of the common types
of defects in crystals. Even crystals that look very
well ordered macroscopically may have a high
density of such defects.

Figure 21.31 A line defect in a (two-dimensional)
crystal.

Figure 21.32 The surface that separates the
two individual crystals can be considered a type
of plane defect. In a perfect crystal, such an in-
terface wouldn’t exist.
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The very word “defect” has negative connotations, but crystal defects are not
necessarily bad. One area that takes advantage of crystal defects is semiconduc-
tors. For example, many semiconductors are composed mostly of silicon,
whose crystal form is a covalent network solid. Pure silicon is actually non-
conductive, but if a tiny percentage of substitutional defects is present, the
conductivity properties of silicon are changed dramatically. For example, 10 parts
per million of boron substituted in pure silicon increases the conductivity of
the crystalline solid by a factor of 1000! A boron atom does this by substitut-
ing for a Si atom, but in doing so decreases the number of electrons in the solid
by 1; see Figure 21.33a. The unpaired electron on the adjacent silicon atom is
free to conduct electricity (but not very well; hence the semiconductor de-
scription of the doped silicon crystal). An equivalent way of stating this is that
the boron atom “substitutes” a missing electron, called a hole, and it is the hole
that conducts the electricity. (Although the definition of a hole relies on some-
thing that is not there rather than something that is, it is commonly invoked
to discuss the conductivity of semiconductors. Electricity is conducted as elec-
trons move to fill holes.) Semiconductors that are doped to decrease the num-
ber of electrons are called p-type semiconductors, the p standing for positive.
That is, having fewer electrons implies a positive charge on a material. This is
somewhat of a misnomer, because the crystal does not have a positive charge.

Similarly, substituting an atom that has more electrons than a Si atom does
introduces additional electrons, as shown in Figure 21.33b. These excess elec-
trons can also impart some conductivity to the Si crystal. Because of the addi-
tional electrons in the substitutional defect, these semiconductors are called n-
type semiconductors, the n standing for negative using the reverse of the rationale
for the p-type label.

Other substitutions (by different atoms and to different degrees) change the
conductivity of silicon in other ways, and it is this variable conductivity that is
the basis for all solid-state electronics. This intentional introduction of defects
is called doping. In addition to silicon, other materials—properly doped—can
be used as semiconductors. Some of these materials are 1�1 combinations of
p3 and p5 valence shell atoms (Si has a p4 valence shell, so on average the atoms
have a silicon-like valence shell). GaAs and InAs are common materials that are
also used for semiconductors.

21.10 Summary
In this chapter, we have seen how we can model the solid state of matter,
assuming that the solid is well-ordered and composed of crystals. Not-well-
ordered solids can be polycrystalline, or they may be amorphous. But the reg-
ularity of crystals helps us determine models for describing the solid phase.

Central to modeling the solid state is the understanding that there are only
14 basic crystal arrangements, called Bravais lattices. Crystals are ultimately
composed of repeating units called unit cells, all having the same three-
dimensional arrangement of atoms or molecules, all contributing to the entire
crystal. A unit cell is to a crystal as an atom is to an element: it is the basic
building block of the larger material. Also central is the idea that there is a sim-
ple mathematical model to determine how crystal lattices might interact with
electromagnetic radiation, specifically X rays. The Bragg equation shows how
we can relate the diffraction of X rays by a crystal to that crystal’s structure.
Crystals as simple as NaCl or as complicated as DNA can be studied using X-
ray diffraction, and their structures deduced on the basis of their diffracting
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(a) p-Type semiconductor

Si Si Si

Si Si

Si B

Provides
excess � change

Si

(b) n-Type semiconductor

Si Si Si

Si Si

Si As

Provides
excess � change

Si

Figure 21.33 (a) Substituting a boron atom
for a silicon atom in crystalline Si reduces the
number of electrons in the crystal by 1, making a
positively charged “hole” and a so-called p-type
semiconductor. Electrons can occupy these holes,
allowing for electricity to conduct through the
material. (b) Similarly, substituting an As atom
introduces an extra electron, which is free to
move through the solid. This is an n-type semi-
conductor.
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behavior. In fact, one major success of X-ray diffraction techniques was the
successful elucidation of the double-helix structure of DNA in the early 1950s
(see Figure 21.34).

Because of the regularity of atoms and molecules in a crystal, many of the
possible planes of atoms can diffract X rays. We use a system called Miller in-
dices to label which plane of atoms is diffracting X rays, and different Bravais
lattices have different planes, with characteristic Miller indices, that diffract. In
this way, we can differentiate unit cells by their characteristic X-ray diffraction
patterns. In the next chapter, we will find that Miller indices are also useful in
describing the orientation of the surface of the crystal.

Unit cells of compounds are not always arbitrary. For many simple ionic
compounds, the stoichiometry of the compound and the ion sizes contribute
to a favored unit cell. We therefore have some ability to predict the expected
unit cell of a compound. We can also calculate the bond energy of the ionic
compound. Of course, the term bond energy is not strictly correct, since ionic
crystals are held together by coulombic forces acting in three dimensions. The
phrase lattice energy is more appropriate, since the bond energy is actually the
energy released when oppositely charged ions attract each other to form a
three-dimensional lattice. In determining a lattice energy, we must consider
not just the attractions between oppositely charged ions, but the repulsions be-
tween like-charged ions as well.

Finally, we recognize that all crystals are not perfect. We can take advantage
of imperfect crystals, including using some of them as semiconductors. Being
able to take advantage of imperfect crystals depends, however, on an under-
standing of perfect crystals.
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Figure 21.34 Diffraction patterns from crys-
talline DNA were interpreted as DNA having a
double-helix structure. The determination of
the structure of DNA was a major development
in biology.
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21.2 & 21.3 Types of Solids; Unit Cells

21.1. Give an atomic-level reason why ionic crystals are brit-
tle.

21.2. Boron nitride, BN, is a very hard material, harder than
diamond if prepared properly. Explain why it has diamond-like
properties.

21.3. Explain how unit cells can be described for polycrys-
talline materials.

21.4. Figure 21.35 shows a unit cell of diamond. Identify the
atoms that define the unit cell and determine the Bravais lat-
tice of this structure of diamond. How many atoms are in the
unit cell?

21.5. What is the relationship between the unit cell for dia-
mond (Figure 21.35) and the unit cell for zincblende (Figure
21.28)?

21.6. How many different unit cells can a crystal have if the
unit cell (a) has all 90° angles between its crystal axes; (b) has
all of its unit cell dimensions the same length; (c) has at least
one 90° angle between axes; (d) has no perpendicular axes
or equivalent unit cell dimensions?

21.7. A researcher proposes an edge-centered cubic unit
cell. What Bravais lattice would such a unit cell be better de-
scribed as?

21.8. Use geometry and Figure 21.11 to show that in three
dimensions the most efficient packing of hard-shell spherical
atoms will take up about 74% of the space. Can you give a
more exact figure for the amount of space taken up by the
hard-shell spherical atoms?

21.9. Use geometry to determine the largest atom that will
fit in a body-centered cubic unit cell. Express your answer in
terms of the unit cell dimension a.

21.10. What is the maximum percentage volume that can be
taken up by the atoms in a simple cubic unit cell? How much
less is it than close packing?

21.4 Densities

21.11. Prove the relationship in equation 21.3.

21.12. Zinc selenide, ZnSe, is a bright-orange compound
that is sometimes used as a transparent window for infrared
spectroscopy. It has a cubic unit cell with a � 5.669 Å and a
density of 5.263 g/cm3. How many ionic formula units of ZnSe
are in each unit cell? Which cubic unit cell does it have?

21.13. Pyrite is a gold-colored mineral that is also known as
fool’s gold to miners. It is an ionic compound of iron and sul-
fur. It has a cubic unit cell with four formula units in the cell
and a density of 5.012 g/cm3. If the unit cell parameter is
5.418 Å, what is the formula of this material?

21.14. Talc is a complex silicate mineral having the formula
Mg3Si4O10(OH)2. It has a monoclinic unit cell with cell para-
meters a � 5.287 Å, b � 9.158 Å, c � 18.95 Å, and 	 �
99.50°. If there are four formula units in the unit cell, deter-
mine the density of talc.

21.15. One form of quartz, SiO2, has a hexagonal unit cell
(three formula units per cell) with a � 4.914 Å and c �
5.405 Å. Determine the density of quartz.

21.16. Speculate on why the hexagonal unit cell is called
“hexagonal” if the unit cell isn’t a six-sided figure.

21.5 Determination of Crystal Structures

21.17. At least 43 of the elements that are composed of in-
dividual atoms (as opposed to diatomic gases, molecular ele-
ments like sulfur and phosphorus, covalent network elements
like carbon, silicon, and germanium) have either hexagonal
close-packed or face-centered cubic crystal lattices. How would
you rationalize this?

21.18. Explain why zeroth-order X-ray diffraction does not
depend on wavelength but all other orders of diffraction do.
(Consider equation 21.5 and use n � 0.)

21.19. Use geometry to derive a form of Bragg’s law in terms
of the angle made with the perpendicular to the crystal plane,
as opposed to the definition of  shown in Figure 21.16.

21.20. Although first-order diffractions might occur at angles
greater than 30°, if they do there will not be a second-order
(or higher) diffraction. Use Bragg’s law to argue why this is the
case. (Consider the properties of the sine function at angles
greater than 30°.)

21.21. Determine the angle of the first- and second-order dif-
fractions of X rays having wavelength 1.5511 Å by a crystal of
uranium dioxide, UO2, if the d spacing is 5.47 Å.

21.22. Certain X rays generated by bombarding metallic cop-
per have a wavelength of 1.54056 Å. Copper itself is face-cen-
tered cubic with a lattice parameter of 3.615 Å. At what an-
gle does copper diffract its own X rays?
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Figure 21.35 The unit cell of diamond. See exercise 21.4.
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21.23. 56Fe crystallizes in a body-centered unit cell having
sides 2.8664 Å on a side. Its atomic mass is 55.9349 g/mol
and its density is 7.8748 g/cm3. From this information, calcu-
late Avogadro’s number, NA. (This is one of the more accurate
ways of determining NA.)

21.6 Miller Indices

21.24. For a simple cubic lattice, what Miller indices describe
the plane(s) that contain two of the three crystal axes?

21.25. For a simple cubic lattice, what is the ratio of the d
spacings for the (100), (110), and (111) planes?

21.26. For a face-centered cubic lattice, what are the Miller
indices of the plane made by the atoms centered in the faces
of the unit cells as exemplified in Figure 21.36?

21.27. Because crystals exist in three dimensions, 3-D dia-
grams are often necessary to illustrate concepts. Using the sin-
gle unit cell in Figure 21.21, draw a 2 � 2 � 2 set of eight
cubic unit cells and draw the same plane in all unit cells.

21.28. Consider Figure 21.21. If the lower rightmost corner
of the unit cell were selected arbitrarily as the origin, what
would be the Miller indices of the indicated plane? Compare
your answer to the solution of Example 21.7.

21.29. Any one plane can be described by more than one set
of Miller indices, if negative indices are used. For a cubic unit
cell the (11�1) plane is equivalent to what other plane whose
indices are expressed in terms of all positive numbers? You
may have to draw a few unit cells to determine an answer.

21.30. The aluminum-nickel alloy AlNi has a simple cubic lat-
tice with a unit cell parameter of 2.88 Å. If X rays having a
wavelength of 1.544 Å were used, at what angles would the
X rays be diffracted by (a) the (100) plane of atoms; (b) the
(110) plane of atoms; (c) the (210) plane of atoms?

21.31. A powdered sample diffracts X rays (� � 1.5418 Å) at
angles of 15.7°, 18.2°, 26.1°, 31.1°, and 32.6°. What type of
cubic crystal is it, and what is the unit cell parameter?

21.32. Predict the angles of diffraction of X rays having � �
1.54056 Å by KBr, which has the sodium chloride structure
and a unit cell parameter of 6.59 Å. Consult Table 21.3.

21.33. Use geometric arguments to illustrate why the (111)
plane of a body-centered cubic lattice does not cause de-
tectable diffraction of X rays.

21.34. Explain why the X-ray diffraction pattern of CuZn, a
1�1 stoichiometric form of brass that has a body-centered 
cubic unit cell, is sometimes mistakenly interpreted as simple
cubic. (Consider the scattering factors of the atoms.)

21.35. A given X-ray diffraction pattern is composed of dif-
fractions that are roughly the same intensity. Explain whether
or not this sole fact supports the possible identification of the
sample as (a) KBr (b) CsF (c) NaCl (d) MgO.

21.7 Predicting Unit Cells

21.36. Predict the unit cells for the following materials: (a)
potassium bromide, KBr; (b) cesium fluoride, CsF; (c) barium
oxide, BaO.

21.37. Predict the unit cells for the following materials: (a)
titanium sulfide, TiS2; (b) barium fluoride, BaF2; (c) potassium
sulfate, K2SO4.

21.38. Sulfur, S, has some interesting solid-solid phase
changes relatively close to room temperature. At room tem-
perature it has an orthorhombic unit cell, but it is monoclinic
at temperatures not much higher than boiling water. Why isn’t
elemental sulfur hcp or fcc?

21.39. Explain why the element carbon does not have a face-
centered cubic or hexagonal close-packed unit cell even
though we typically designate the element carbon with the
monatomic formula C.

21.40. What is the coordination number in the cesium chlo-
ride cubic structure?

21.41. Determine the coordination number(s) of the ions in
the fluorite and rutile unit cells. Why are there two unequal
coordination numbers, whereas for cesium chloride, sodium
chloride, and zincblende unit cells there is only one coordina-
tion number?

21.42. Which solid phase (that is, which allotrope) of carbon
is more stable, graphite or diamond? (You should consult some
of the tables in the thermodynamics section of this text.) Both
solid phases exist under normal conditions of pressure and
temperature. Explain why this is so, given that one solid phase
is more thermodynamically stable than the other. Do their unit
cells provide any suggestion for their relative stabilities?

21.8 & 21.9 Lattice Energies, Defects, 
and Semiconductors

21.43. Write the specific chemical reactions whose enthalpy
change (or negative thereof) represent the lattice energy of
(a) potassium fluoride, KF; (b) magnesium selenide, MgSe;
(c) sodium oxide, Na2O; (d) sodium peroxide, Na2O2.

21.44. Explain why lattice energy is considered a form of po-
tential energy.

21.45. Write Born-Haber cycles showing the relationship be-
tween the formation reaction and the lattice energy definitions
of each of the ionic compounds in exercise 21.43. You may
need to review the definition of “formation reaction” from ear-
lier in the text.
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Figure 21.36 What are the Miller indices of the indicated plane? See
exercise 21.26.
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21.46. Compare the two-particle coulombic energy of at-
traction with the more precise calculation of the lattice energy
for (a) cesium chloride, CsCl (� � 0.331 Å); (b) zincblende,
ZnS (� � 0.289 Å); and (c) rutile, TiO2 (� � 0.250). Are there
any trends in the discrepancies? Use data from Tables 21.4 
and 21.6.

21.47. The lattice energy for potassium iodide, KI, is 
627.2 kJ/mol. If the ionic separation is 3.533 Å, what is the re-
pulsive range parameter � for KI? You will have to determine
which Madelung constant to use.

21.48. The concept of charge density involves the total charge
of an ion divided by the space that the ion occupies. Using
Table 21.5, determine a trend between charge density of an
ion and the lattice energy of similar ionic crystals. Can you jus-
tify this trend on physical principles?

21.49. Lattice energies can also be defined for atomic ele-
ments like the gases He, Ne, and Ar. (a) Explain why equation
21.13 is not applicable to such crystals. (b) How would a sci-
entist measure the lattice energy of He, Ne, Ar, and so on?
Consider Chapters 1–8 in developing your answer.

21.50. Studies of crystals of He, Ne, Ar, and so on must be
performed in vacuum systems that have an apparatus that can
reach low temperatures so these elements are solids. These
vacuum systems should not have hydrocarbons in them that
might decompose to give off H atoms or H2 molecules into
the vacuum system. Why?

21.51. Solid palladium metal is known to actually absorb hy-
drogen gas, and no other. This behavior is used to make ultra,
ultra-pure hydrogen. (In fact, because of this, hydrogen can
be obtained in purer form than any other element.) What kind
of defect are the hydrogen molecules probably making in the
solid Pd metal? On the basis of your answer, can you ratio-
nalize why hydrogen is absorbed by Pd and no other gas?

21.52. Gallium arsenide (GaAs) can also serve as a basis for a
semiconductor. It has a structure similar to that of elemental
silicon, but with alternating gallium and arsenic atoms. Draw
an electron-dot type of diagram of a unit cell of GaAs as well
as n-type and p-type substitutions for a semiconducting ma-
terial based on GaAs. What can be substituted for Ga for each
type of semiconductor? What can be substituted for As for
each type of semiconductor?

21.53. Suggest dopants for GaAs that would yield (a) a p-
type semiconductor, and (b) an n-type semiconductor.

21.54. Explain how holes conduct electricity.

21.55. Calculate the volume of the unit cells for the com-
pounds in Table 21.7.

21.56. Set up a program or formula to calculate the angles
of diffraction for a cubic crystal in terms of the h, k, and � val-
ues. (a) Calculate these angles for incoming X radiation of
1.5418 Å and a simple cubic lattice having a lattice parame-
ter of 6.46 Å. (b) Use Table 21.3 to determine which diffrac-
tions would be absent if the crystal were body-centered cubic
or face-centered cubic.
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Table 21.7 Parameters for several unit cellsa

Name Lattice a b c � � �

Coloradoite, HgTe Cubic 6.46 90 90 90

Ice, H2O Hexagonal 4.5212 7.366

Hafnia, HfO2 Monoclinic 5.1156 5.17 5.2948 99.18

Turquoise, CuAl6(PO4)4(OH)8�4H2O Triclinic 7.424 7.62 9.910 68.61 69.71 65.08
aLengths a, b, c are in units of Å. Angles �, 	, 
 are in degrees.

Symbolic Math Exercises
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THE READER MIGHT WONDER WHY an entire chapter is devoted to
surfaces. After all, they seem fairly easy to understand: the physical bound-

ary of any condensed-phase object is called a surface, and there doesn’t seem
to be anything special about them. The top of a desk, the blacktop of a road,
are surfaces that we encounter daily, and there does not seem to be any un-
usual behavior associated with them.

Perhaps on a mundane level this is true. But now that we understand that
matter is composed of atoms, that these atoms behave according to the laws of
thermodynamics and quantum mechanics, and that gas and solid phases them-
selves behave in some understandable fashion, we should be willing to think
that surfaces are worthy of special attention. A surface represents a series of
points making a plane where one material ends and another begins. This dis-
continuity of matter means that the bulk properties of the material will not
necessarily be found at the surface. In order to understand how surface prop-
erties differ from bulk properties, we need to consider some of the ways sur-
faces are defined and how they are different from the bulk material.

Therefore, we conclude our presentation of physical chemistry by considering
surfaces. This topic has been placed at the end of the book because many of
the ideas considered in previous chapters are applied here: thermodynamics,
quantum mechanics, kinetics, and the structure of the solid state. Rather than
consider the physical chemistry of surfaces in different chapters as some texts
do, we present it a single chapter and see how the models of physical chem-
istry can be used to understand the behavior of surfaces.

22.1 Synopsis
Surfaces are everywhere, but (or because of this) they are easily ignored.
However, they have a major impact on our understanding of matter and how
matter interacts.

There are several ways we can consider surfaces. First, we can think of a
surface as a thin film, one atom or molecule thick. Second, we can consider a
surface as an interface between two different materials, like the boundary be-
tween two immiscible liquids or between a liquid and a gas or a vacuum, or a
solid and a gas, a liquid, or a vacuum. Third, we can consider surfaces as

22.1 Synopsis
22.2 Liquids: Surface Tension
22.3 Interface Effects
22.4 Surface Films
22.5 Solid Surfaces
22.6 Coverage and Catalysis
22.7 Summary

Surfaces
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terminations of solid crystals, an idea that was mentioned briefly in the previ-
ous chapter.

Surfaces have properties that are different from bulk materials. Why? At
any boundary between two materials, there is an imbalance of interactions that
ultimately affects the properties of the boundary. This is what we will find with
surfaces. There is a property called surface tension that has no bulk equivalent,
yet it can have a major influence on the behavior of liquids. We experience
those influences every day with water. Interfaces, which are boundaries be-
tween phases, have properties that are dictated by surface effects. Curved sur-
faces, like those of liquid droplets, also have unique properties. These will be
explored briefly.

Surfaces of crystalline solids can be specifically defined, thanks to the fact
that planes of atoms in crystals can be specifically defined. Some of the ideas
from the previous chapter on crystals will be applied here. Finally, we recog-
nize the fact that the presence of certain surfaces speeds up, or catalyzes, some
chemical reactions. Again, why? It turns out that there can be an interaction
between the reactants and the surface itself that decreases the activation energy
of the reaction, and therefore speeds up the rate. Catalysis of chemical reac-
tions is an important industrial concern because in industry time is money.
The physical chemistry of surfaces provides the basis for understanding why
catalysis by surfaces occurs.

22.2 Liquids: Surface Tension
Under some circumstances, a material can spread out into a monatomic or
monomolecular layer or film. For example, solutions of stearic or oleic acid
(both long-chain fatty acids) in a hydrocarbon solvent can be carefully dripped
onto water; when the solvent evaporates, the remaining fatty acids can arrange
themselves into a monomolecular film on the water’s surface. Such films have
a definite surface coverage (that is, a definite area) depending on the number
of fatty acid molecules present.

However, the surface layer of atoms/molecules of a liquid can also be
considered such a film, shown diagramatically in Figure 22.1. Further, we
might suggest that this surface layer would have different properties than
the bulk material. This is because the surface layer isn’t really “bulk.” Bulk
atoms or molecules are surrounded on all sides by other molecules of the
same material. At the surface, atoms or molecules are surrounded by the
same molecules on one side but different molecules (or nothing) on the other.
Forces between different materials (or between one material and nothing)
are different, implying that the forces on the single surface layer of mole-
cules are different from those in the bulk. Therefore, surface molecules
aren’t really bulk species and their behavior might not be the same as the
bulk material.

Suppose we want to increase or decrease the amount of surface available,
perhaps by changing the shape of the liquid so that more surface area is ex-
posed. Because of the differing forces acting at the surface, it will require work
to change the surface area. Figure 22.2 shows a diagram of what we are trying
to accomplish for an idealized system. If we want to increase the size of the rec-
tangular surface area, then we have to do work on the liquid and against the
unbalanced forces that exist at the surface. (Again, increasing surface area of a
liquid requires that work be done on the liquid. Conversely, if the surface area
is decreased, work is done by the liquid on the surroundings.) If the magni-

766 C H A P T E R  22 Surfaces

dx

Surface
area

Liquid

F

Figure 22.1 The atoms or molecules at the
surface of a liquid can be considered a film. First
consider the liquid particle in color at the lower
left, below the surface. It interacts with other liq-
uid particles all around it, with an overall balance
of forces. However, a similar particle at the sur-
face has interactions only down and to the sides.
With no liquid particles above the surface layer,
an imbalance of forces occurs that is the ultimate
cause of surface effects.

Figure 22.2 The experimental setup to define
the surface tension �. See text for discussion.
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tude of the unbalanced force is represented by F, then the infinitesimal amount
of work needed to increase the rectangular area by moving one boundary out
by an infinitesimal amount dx is

dw � � F � dx (22.1)

The � sign is written explicitly to emphasize that this is work done on the
liquid. This equation is the exact analogy of the physical definition of work
(that is, work equals force times distance). If we refer to the illustration in
Figure 22.2, the rectangle has a width labeled �. We can define the (unbal-
anced) force per unit distance, or F/�, as the variable �, so that equation 22.1
becomes

dw � � � � � � dx

The product of the width � and the infinitesimal distance dx equals the infin-
itesimal change in area, dA, of the surface. The above equation becomes

dw � � � � dA (22.2)

The variable � is called the surface tension of the liquid.
If the system illustrated in Figure 22.2 were collapsed so that it were a film

of material rather than a bulk liquid, then the work would be twice the amount
predicted from equation 22.2: there are now two surfaces, not one. Figure 22.3
shows a picture of a film in which the work would be twice what equation 22.2
calculates. In this case, the surface tension � would be defined as

� � �
F

2
fi

�
lm� (22.3)

where the factor of 2 in the denominator is there because we want to con-
sider surface tension as a force per length per surface. In this case, Ffilm—the
unbalanced force experienced by the surfaces of the film—is twice the force
for a single surface, so in either case � has the same value. Table 22.1 lists sur-
face tensions of some common liquids. Surface tension has units of force per
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Figure 22.3 A film has two surfaces and so re-
quires twice the force to increase its size.

Table 22.1 Surface tensions of various liquids

Liquid Temperature (°C) Surface tension, � (dyn/cm or erg/cm2)a

Acetic acid 20 27.8

Acetone 20 23.7

Bromine 20 41.5

Chloroform 20 27.1

Diethyl ether 20 17.0

Ethanol 20 22.8

Ethyl ether 50 13.5

Glycerine 20 63.4

Helium �270 0.24

Mercury 25 485.5

Water 0 75.6

Water 10 74.22

Water 20 72.75

Water 60 66.18

Water 100 58.9

Source: D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 82nd ed., CRC Press, Boca Raton, Fla.
aTo convert to units of J/m2, multiply by 1 � 10�3.
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distance or energy per area, and can be expressed in N/m, dyn/cm, erg/cm2,
or J/m2.*

Surface tension is a characteristic of a liquid that varies with temperature,
as might be expected. At the critical temperature—the temperature at which
the distinction between liquid and gas phases disappear—the surface tension
goes to zero.

Because work is done when changing the area of a surface, we should be
able to correlate this work to one of the thermodynamic state functions. Recall
that we found in an earlier chapter that the Gibbs energy is equal to the max-
imum amount of non-pV work that a process could do. Since changing the
area of a surface is not pressure-volume work (just like electrical work isn’t
pressure-volume work), then “surface-tension–area” work must be related to
the Gibbs energy. For a reversible change in surface area that occurs at constant
temperature and pressure, we have

dw � dG � � � dA (22.4)

This equation implies three things. First, we can integrate equation 22.4 to get

w � 	G � � � 	A (22.5)

Second, we can rearrange equation 22.4 to solve for the surface tension in
terms of a partial derivative at constant temperature and pressure:

� � ��






G

A
��T,p

(22.6)

Third, if we want to consider the natural variable equation for dG for a liquid
system whose surface area is changing, we must include the change in the
Gibbs energy due to surface area change:

dG � �S dT � V dp � � dA (22.7)

The surface tension is sometimes also referred to as the Gibbs surface energy of
a condensed phase. It is understood that it is a Gibbs energy per unit area, since
this is consistent with the units used to define �.

Example 22.1
How much work is required to increase the surface area of a container of wa-
ter from 200.0 cm2 to 300.0 cm2? Such work might have to be performed on
the water if, for example, a plastic container deforms and exposes a larger sur-
face area. The surface tension of water is 72.75 erg/cm2 at 20°C.

Solution
Using the integrated expression in equation 22.5, we figure that the change
in area, 	A, is (300.0 � 200.0) cm2 or 100.0 cm2. Using equation 22.5:

w � � � 	A � �72.75 �
c

e

m

rg
2�� � 100.0 cm2

or, simply,

w � 7275 erg
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*A dyne (abbreviation dyn) is the unit of force in the cgs system of units, and is com-
monly used to express surface tensions. 1 N � 100,000 dyn.
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Since an erg equals 1 � 10�7 joules, this work is equal to 0.0007275 J. This is
not a lot of work in an absolute sense, but in a relative sense it does have an
effect on the mechanical properties of the liquid (which we will consider
later).

Example 22.2
In a zero-gravity environment, a sample of mercury has a spherical shape.
Consider a sample that has a 1.000-cm radius. Determine how much work
must be performed to separate the mercury into 10 equal spheres, assuming
that the only work done is related to the change in surface energy. Recall that
the surface area of a sphere is 4�r2 and its volume is �

4
3

��r3. The surface ten-
sion of mercury is 435.5 erg/cm2.

Solution
If the only work that needs to be performed is related to the changing sur-
face area of the drops, then we need to calculate the 	A value for going from
one 1.000-cm drop to 10 equal-volume drops. The single 1.000-cm-radius
drop has a surface area of

A � 4�r2 � 4�(1.000 cm)2 � 12.57 cm2

Its volume is

V � �
4
3

��r3 � �
4
3

��(1.000 cm)3 � 4.189 cm3

If 10 equal drops of mercury were formed, then each drop should have a vol-
ume of �

4.
1
1
0
89
� or 0.4189 cm3. Using the volume equation, we can determine the

radius of a drop having that volume, and then determine its surface area:

0.4189 cm3 � �
4
3

��r3

r � 0.4642 cm

and so the surface area of a smaller drop is

A � 4�r2 � 4�(0.4642 cm)2 � 2.708 cm2

If there are 10 drops of the same size, then the total area is 10 � 2.708 cm2 �
27.08 cm2. The change in area for the process is therefore

	A � (27.08 � 12.57) cm2 � 14.51 cm2

Again, using the integrated equation 22.5, we find the work as follows:

w � � � 	A � �435.5 �
c

e

m

rg
2�� � 14.51 cm2

w � 6319 erg � 6.319 � 10�4 J

Again, this example shows that only a small amount of work is needed, but
it does suggest that work is needed to turn large drops of liquid into an equal
mass of smaller drops of liquid. The reverse argument is that smaller drops of
liquids will turn into the same mass of a smaller number of larger droplets, and
in doing so work/energy will come out of the system. Since going to a lower
energy is usually (but not always) an indication of a preferred, spontaneous
process, the above example suggests that material will prefer—from an energy
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perspective—to be in the form of one body rather than multiple smaller bodies.
This is indeed the case.

The relationship of surface tension to free energy also explains another phe-
nomenon. According to equation 22.5,

	G � � � 	A

In words, this equation says that the change in the Gibbs energy is directly
proportional to the change in area of a liquid. If we consider an isothermal,
isobaric process (that is, dp � 0 and dT � 0; these conditions are necessary
when you consider the natural variable expression in equation 22.7), the
process is spontaneous if 	G is negative. Since surface tension must be a pos-
itive number, this implies that 	A for a spontaneous process must be nega-
tive: a spontaneous process must occur with a corresponding decrease in sur-
face area.

It has long been known that a sphere is the most compact solid object: it
has the minimum surface area for any given volume. Therefore, the effects of
surface tension require that liquids assume a spherical shape if no additional
forces are acting on them. In the absence of gravity, this is indeed what hap-
pens (see Figure 22.4), and it is ultimately caused by the surface tension of the
liquid. In many instances, liquid amounts are large enough that effects due to
gravity distort the ideal spherical shape of liquids. However, for small
amounts—like small drops of water on a plastic surface—the tendency to-
ward a spherical shape can be obvious. Figure 22.5 shows an example of a
phenomenon that is probably familiar—and whose ultimate origin is surface
tension.

Finally, surface tension explains why certain phenomena occur, like insects
walking on water or a needle or razor blade floating on water. It takes work—
energy—to change the area of a surface; it takes work—energy—to pass through
a surface. (In passing through a surface, distortion of the surface must occur.)
If a process occurs without enough work to overcome the surface tension, the
process will not break the surface. Insects typically experience a very tiny area
of contact with a surface, so they float on water. Needles and razor blades can
be placed so lightly that the force due to their gravity does not overcome the
surface tension, so that they too will float on water.

Example 22.3
Show that a razor blade can float on water (which can be demonstrated ex-
perimentally if the system is set up carefully enough). Do this by calculating
the work needed to move a razor blade by a distance equal to its thickness,
and comparing it to the work needed to increase the surface area of water by
the area of the razor blade. A typical double-edged razor blade has dimen-
sions of 19.9 mm by 38.9 mm, a thickness of 0.250 mm, and a mass of
1.1240 g (and therefore experiences a gravitational force of 1.1462 � 10�4

N). Water has a surface tension of 72.75 erg/cm2. Ignore buoyancy effects and
other interactions (although in reality they can have a significant impact).

Solution
We need to show that to make a “hole” in the surface of the water large
enough to pass the razor blade through requires more energy than is gener-
ated by moving the razor blade down by a distance of one thickness. First, we
will calculate the decrease in gravitational potential energy as a 1.1240-g
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Figure 22.5 Even though the effects of gravity
can alter the ideal shape of liquid droplets, the
tendency of small liquid droplets toward a spher-
ical shape is obvious. This tendency is caused by
surface tension.

Figure 22.4 Because of surface tension effects,
liquid droplets that do not experience other ef-
fects adopt a spherical shape.
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razor blade moves down 0.250 mm. To do this, we use the classical physics
definition of work, force times distance:

work � force � distance

work � (1.1462 � 10�4 N) � (0.250 mm) � �
100

1

0

m

mm
� � 2.87 � 10�8 J

Therefore, we will get 2.87 � 10�8 J of gravitational work out of the system
as the razor blade drops 0.250 mm. Is this enough to overcome the energy re-
quired to pass through the water’s surface? In order to do so, the razor blade
must make a “hole” 19.9 mm by 38.9 mm large, or

area � 19.9 mm � 38.9 mm � ��1
1

0

c

m

m

m
��

2

area � 7.74 cm2

Given a surface tension of 72.75 erg/cm2, we can calculate the energy needed
to increase the area of the water by that much:

energy � �72.75 �
c

e

m

rg
2�� � (7.74 cm2) � �

1 �

1

10

J
7 erg
�

We are including the conversion from erg to joule. The energy needed to in-
crease the water’s area is

energy � 5.63 � 10�5 J

This is several orders of magnitude more energy than is given off by the ra-
zor blade dropping through the surface. This suggests that a razor blade will,
indeed, float on the surface of water.

22.3 Interface Effects
In the previous section, we showed that the surface tension was related to some
thermodynamic functions, namely work and the Gibbs energy. What other ther-
modynamic manifestations are there for liquid surfaces? Several of these mani-
festations involve the interactions of two (or more) phases at their surfaces.

One thermodynamic variable, pressure, shows some unusual effects due to
the presence of a surface. Consider a liquid in contact with another phase, like
another liquid or even a gas or vacuum. Let us define region I as the liquid,
and region II as the other phase in contact with the liquid. Together, these two
regions represent our system, to be considered thermodynamically.

If the combination of these two regions is considered an isolated system at
equilibrium, then the overall change in energy of the system, dU, is zero. (This
is directly from the first law of thermodynamics.) We can define dU[I as the
change in internal energy of region I and] dUII as the change in internal energy
of region II. But there is also a surface energy due to surface tension at the
boundary between the two regions. This boundary is called the interface.
Although we previously considered surface tension’s relationship to the Gibbs
free energy, the surface-tension–area work is also equal to the change in inter-
nal energy as long as other thermodynamic variables (S and V, the natural vari-
ables of internal energy) are kept constant:

dU� � � � dA (22.8)

where dU� represents an interfacial internal energy.
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From first law considerations, as mentioned earlier,

dU � 0

for this system. But when we separate the system into subsystems, each of
which has its own internal energy, we can include the surface energy. We have

dU � dUI � dUII � dU� � 0 (22.9)

Note something very interesting about this equation. It requires that the total
internal energy, dU, be zero; it does not require that dU for either region, or
for the interface, be unchanging. By defining a natural variable expression for
each region and using the dU� value for the interface (equation 22.8), we can
rewrite equation 22.9 as

(TI � dSI � pI � dVI) � (TII � dSII � pII � dVII) � (� � dA) � 0

We will leave out the explicit multiplication signs in the next few equations. To
simplify the above expression, we note that the temperatures of each region
must be equal (that is, TI equals TII), and that any infinitesimal entropy change
by one region ought to be balanced by an equal and opposite infinitesimal en-
tropy change by the other region. (This is the same thing as saying that dS �
0 for the entire system under these conditions.) Mathematically, then, the T dS
terms cancel. What is left, after rearranging, is

� dA � pI dVI � pII dVII � 0 (22.10)

Notice that we are not assuming that the pressures in each region are the same!
This is a key point. We will note, however, that if the volume of region I
changes, then the volume of region II must change by the same amount but in
the opposite direction. That is, as one region grows, the other gets smaller, and
by equal magnitudes (and vice versa, but always by equal magnitudes). The
mathematical way of expressing this is

dVI � �dVII (22.11)

Since we are interested in region I (the liquid), we will substitute for dVII to
eliminate it. Equation 22.10 becomes

� dA � pI dVI � pII dVI � 0

and, after rearranging terms,

� dA � (pII � pI)dVI � 0 (22.12)

In equation 22.12, we have factored out the dVI variable from two of the terms.
Equation 22.12 is interesting because we have not presumed that the pressures
in the two regions are equal, and in doing so have derived an equation that re-
lates their difference with the surface tension! We can algebraically rearrange
equation 22.12 to get

(pI � pII) dVI � � dA

(Notice how the two pressures have switched their relative orders, because of
the algebra.) We can combine the two differentials to get

(pI � pII) � ���






V

A

I

�� (22.13)

which relates the pressure difference on either side of an interface with the sur-
face tension and how the area of the liquid changes with volume. Equation

772 C H A P T E R  22 Surfaces

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



22.13 is a fundamental equation for the behavior of an interface and is called
the Laplace-Young equation, after Pierre-Simon Marquis de Laplace, a French
mathematician, and Thomas Young, an English scientist whose work was also
considered in Chapter 9.

How can we use equation 22.13? First, consider a droplet of liquid as shown
in Figure 22.6. Regions I and II are marked for reference. Just by considering
the figure and equation 22.13, there is an implication that the pressure in re-
gion I is greater than the pressure in region II. Consider why this is so. Surface
tension is always positive, and the derivative (
A/
VI) is also positive, always:
as the volume of a region increases, so does its area. Therefore, the right side
of equation 22.13 is always positive, so the difference (pI � pII) must always be
positive. The only way for this to be so is for pI to be greater than pII: the pres-
sure inside the liquid is greater than the pressure outside the liquid.

If the droplet of liquid is in fact spherical, we can use expressions for the
surface area and the volume of a sphere from geometry:

A � 4�r2 V � �
4
3

��r3

where r is the radius of the droplet. Because area and volume are dependent on
another variable, the radius, we can take differentials of A and V in terms of r
and substitute those expressions into the Laplace-Young equation. We find that

dA � 8�r � dr

for the differential of area in terms of radius. For the change in volume,

dV � 4�r2 � dr

Plugging these expressions into the Laplace-Young equation, we find

(pI � pII) � ���4
8

�

�

r

r
2

�

�

d

d

r

r
��

By defining 	p as the change in pressure across the interface, the above equa-
tion simplifies to

	p � �
2

r

�
� (22.14)

If the system under consideration were a bubble (that is, a film with an inner
and an outer surface) instead of a droplet, then both surfaces would contribute
a surface energy (that is, surface tension) and equation 22.14 would be

	p � �
4

r

�
� (22.15)

which is twice that for a droplet.
Equations 22.14 and 22.15 have some interesting applications. If there are

unbalanced pressures in a system, then something usually happens. For exam-
ple, in the case of a simple gas-in-a-piston system, unbalanced internal and ex-
ternal pressures cause irreversible expansions or contractions of the system’s
volume. In the case of liquid droplets, equation 22.14 implies that the smaller
the droplet, the greater the vapor pressure on the gas-phase side of the liquid-
gas interface. This suggests that smaller droplets evaporate faster. This fact has
implications for such differing topics as perfume spraying and gasoline engine
performance. (There are other equations we can use to understand the behav-
ior of liquid droplets further. We won’t consider them here, but see the exer-
cises at the end of the chapter for another example.)
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Region I

Region II

Interface

Figure 22.6 Region I is the liquid and region
II is vacuum or some gas. The interface separates
the two regions. The Laplace-Young equation pre-
dicts some of the properties of the liquid droplet.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



Example 22.4
What is the change in pressure across the surface of a droplet of water having
a radius of 0.100 mm? What if the droplet had a radius of 0.001 mm (that is,
1 m)? The surface tension of water is 72.75 erg/cm2.

Solution
Mathematically, this example is simple from a numerical perspective, but we
must watch our units. Using equation 22.14:

	p � �
2

r

�
� �

We need to revise the units so that they are consistent and work out to units
of pressure. First, convert the mm unit in the denominator to centimeters:

	p � � �
1

1

0

c

m

m

m
� � 1.455 � 104 �

c

e

m

rg
3�

Notice how the complex fraction involving the units simplifies into a simpler
fraction. Additionally, we recognize that 1 dyne, a unit of force, equals 
1 erg/cm. (An erg is a unit of energy.) We substitute:

	p � 1.455 � 104 �
c

d

m

yn
2�

Force per unit area (that is, dyn/cm2) is defined as pressure, but what pres-
sure unit is this? If you consider the units dyne and centimeter, you can show
that 1 dyn/cm2 is one-millionth of a bar, the standard SI unit of pressure.
Converting:

	p � 1.455 � 104 �
c

d

m

yn
2� �

	p � 0.01455 bar

This might not seem like a large pressure difference, less than 2% of an atmo-
sphere. But keep in mind that this is for a drop that’s only 0.100 mm—a tenth
of a millimeter—in radius! This is a substantial pressure difference for such
a small droplet. Using 0.001 mm as a radius and repeating the substitution
and conversions, we can show that

	p � 1.455 bar

This pressure difference is greater than atmospheric pressure!

The above example illustrates how large pressure differentials can be across
an interface. Keeping in mind that pressure differentials will act to force liquid
molecules to vaporize, one can see the advantage to vaporizing a liquid by
separating it into as small a droplet as possible (a process misleadingly called
atomization).

Interfaces also exist between liquid and solid phases. Under certain condi-
tions their behavior is governed by surface tension effects. Consider a small
droplet of a liquid on a surface. The way the droplet behaves depends on the

1 � 10�6 bar
��

1 �
c

d

m

yn
2�

2�72.75 �
c

e

m

rg
2��

��
0.100 mm

2�72.75 �
c

e

m

rg
2��

��
0.100 mm
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surface energies at several interfaces: the liquid-solid interface, the liquid-
vapor interface, and the vapor-solid interface. At each interface, a different sur-
face tension can be defined. Figure 22.7 shows an idealized drop on a surface
and three different interfaces with three surface tensions. They are labeled ��s,
��v, and �sv for the liquid-solid, liquid-vapor, and solid-vapor interfaces, re-
spectively. Note that although the liquid and vapor are the same chemical
species, the solid may be a different chemical species.

Surface tension is a planar effect. It acts at a surface, which at any infinites-
imal point can be marked with a tangent line. For flat liquid-solid and vapor-
solid interfaces, these tangents are coplanar with the interface: the flat surface
is where surface tension exists. For the liquid-vapor interface, because this sur-
face is curved, the surface tension acts colinearly to a tangent to the curve. The
tangent at the edge of the liquid-solid interface (that is, at the edge of the
droplet) is drawn as a solid line in Figure 22.7, and the angle that this tangent
makes with the solid surface is defined as �. This angle � is called the contact
angle.

Why have we defined parameters this way? Consider what Figure 22.7 would
look like if, for example, the surface tension of the liquid-vapor interface was
very, very high compared to the other surface energies. The droplet would take
on an almost spherical shape, as shown in Figure 22.8a. In this case, the con-
tact angle is almost 180°. On the other hand, what if the surface tension of the
liquid-vapor interface was comparable to the other surface energies? The
droplet would then spread out substantially, as shown in Figure 22.8b. In this
extreme, � would be almost 0°. In this second instance, we say that the liquid
is wetting the solid.

The point here is that the behavior of the liquid on the solid will be depen-
dent on the relative magnitudes of the three interfacial surface tensions. In
1805 Thomas Young deduced an expression, later derived by A. Dupré in 1869,
that relates the three surface tensions and the contact angle:

�sv � ��s � ��v cos � (22.16)

This equation is called the Young-Dupré equation. It can actually be considered
as a balance of three vectors: the solid-liquid interfacial tension pulling in one
direction, and the liquid-solid and liquid-vapor tensions pulling in the other
direction. But in the case of the liquid-vapor surface tension, only its compo-
nent along the liquid-solid interface contributes to the balance of forces. The
term cos � accounts for that component.

The Young-Dupré equation is useful in predicting what is necessary to
wet or to not wet a surface with a liquid. In terms of cos �, equation 22.16 is
rewritten as

cos � � �
�sv

�

�

�v

��s� (22.17)

If you want a liquid to wet a surface (that is, � � 0, therefore cos � � 1), a bal-
ance is required between the numerator and denominator of equation 22.17;
that is, �sv � ��s should be approximately equal to ��v. For example, solders
are alloys whose liquids wet other metals because surface tensions have the ap-
propriate values. By the same token, detergents and soaps help water wet solids
(like synthetic fabrics) because they reduce the surface tension of water to the
appropriate point.

Surface tension effects also show themselves in systems where a cylindrical
solid surface is present. A very narrow cylindrical surface is called a capillary.
What happens if a capillary is immersed into a liquid? The surface tension that
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Liquid

Solid

�lv
�sv

�ls

�

Figure 22.7 A liquid on a solid surface has a
behavior dictated by three interfaces: the one be-
tween liquid and solid, the one between liquid
and vapor, and the one between vapor and solid.
The tangential angle that the liquid’s edge makes
with the surface is defined as the contact angle �.

Figure 22.8 (a) If a liquid does not wet a solid
surface at all, the liquid would (ideally, in the ab-
sence of gravity and other effects) be a small
sphere on the solid surface. In this case, the
contact angle approaches 180°. (b) If a liquid
wets a solid surface very well, it would spread out
over the solid and have a contact angle ap-
proaching 0°.

Liquid

Vapor

Solid

(b) �lv very low

Vapor

Solid

(a) �lv very high

Liquid
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exists at the liquid-vapor interface will act according to the Laplace-Young
equation:

	p � �
2

r

�
�

That is, there will be a pressure differential on either side of the liquid surface.
Depending on the wettability of the surface, one of three things will happen.
First, if surface tensions are balanced, nothing might happen; we will not con-
sider this possibility further. Second, if the liquid wets the capillary surface,
then the surface of the liquid in the capillary is curved as shown in Figure
22.9a, and the level of the liquid inside the capillary rises due to 	p, the pres-
sure differential across the curved liquid surface. In fact, the liquid will rise
until its height inside the capillary exerts a pressure equal to the 	p value from
the Laplace-Young equation. This pressure is related to the force due to grav-
ity of the column of liquid divided by the circular area of the capillary. This
pressure is equal to the product of the liquid’s density �, the gravitational con-
stant g, and the height of the column in the capillary h :

	p � �gh

It is therefore easy to determine how high this capillary rise will be:

�gh � �
2

r

�
�

or, rearranging for the height of the capillary rise:

h � �
�

2

g

�

r
� (22.18)

The close-up in Figure 22.9b also shows that we can rewrite equation 22.18 in
terms of the inner radius of the capillary, defined as R. If the surface of the
liquid is spherical, then the radius of the curved meniscus and the radius of
the capillary are related by

R � r cos �

where � is the contact angle. Substituting into equation 22.18:

h � �
2�

�

c

g

o

R

s �
� (22.19)

If surface tensions are known from other measurements, equation 22.19 is an
easy way to determine contact angles of liquids. It also shows that capillary rise
will be larger if the capillary radius R is smaller.

The third possibility is that the liquid does not wet the surface. In that case,
the meniscus of the liquid surface is inverted, as shown in Figure 22.10. Here,
we see that the contact angle is greater than 90° and the cosine of that angle is
negative. Therefore, the height of the column is negative and the liquid expe-
riences a capillary depression. Mercury is a liquid that shows a capillary de-
pression.

Capillary action, either rise or depression, is significant only for cylinders
having small radii. If the capillary is wide enough to provide sufficient flat sur-
face for the liquid, then capillary action is negligible.

Capillary action is found in many everyday settings. Paper towels, coffee fil-
ters, and tea bags work because of capillary action. Certain synthetic fabrics are
uncomfortable in humid weather due to a lack of capillary action. Waterproofed
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Liquid

Capillary

(a)

(b)

r

R �

�

h

Figure 22.9 If a liquid wets a solid, then it will
rise inside a small cylindrical tube of the solid
material. (a) The net effect of capillary action. (b)
The liquid inside the capillary forms a meniscus
that makes a certain contact angle with the wall.
See text for definitions of the variables.

r

R
�

Figure 22.10 Capillary depression is seen
when a liquid does not wet the solid material of
a capillary. In this case, the diagram in Figure
22.9a would show the liquid in the capillary be-
low the level of the liquid in the container. The
meniscus in this case is inverted.
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fabrics are made so by a coating or by using fabric fibers that do not show cap-
illary action. All of these examples are ultimately based on surface effects.

22.4 Surface Films
Some systems can be defined as having a very thin film on the surface of a bulk
material. For example, a tiny drop of oil will spread over a larger amount of
water and produce some wonderful optical effects (caused by interference of
light reflecting off the top and bottom interfaces of the thin oil film). A film
that is one molecule thick is called a Langmuir-Blodgett film. (Irving Langmuir,
an American physical chemist who worked for General Electric, pioneered the
study of monomolecular films in 1918; his work was improved upon by an-
other GE scientist, Katherine Blodgett, in 1934.) If suspended over water, these
films are usually composed of materials that are water-insoluble and have a
negligible vapor pressure.

In the case of a surface film composed of a specific amount of material, a
sort of surface tension can be measured, using an experimental setup similar
to that in Figure 22.2. In this case, however, the “surface tension” measures the
ability of the molecules to compress or spread apart as the area of the film is
changed. For surface films, a surface pressure � is defined as the difference be-
tween the surface tension �° of the pure solvent (usually water) and the sur-
face tension � of the solvent with the surface film on it:

� � �° � � (22.20)

The surface pressure � varies tremendously with the area that a film is con-
strained to; see Figure 22.11 for a plot of � for various materials versus A, the
area of coverage per molecule. In such a plot, a film of a certain amount of ma-
terial is compressed or expanded, and the surface pressure is measured. In re-
gions where each molecule is calculated to cover an area larger than itself, the
surface pressure can be approximated by the equation

�A � RT (22.21)
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Figure 22.11 Surface pressure � versus area. For each material, the x-axis corresponds to the
average area per molecule in the film. Source: Ya. Gerasimov, Physical Chemistry, Mir Publishers,
Moscow, 1974.
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Note the resemblance to the ideal gas law! Note also how the dotted line in Figure
22.11 mimics the hyperbolic curve of an inverse relationship between � and A,
that is, Boyle’s law. In these regions, each molecule can wiggle around indepen-
dently of the others, and can be modeled as a sort of two-dimensional gas.

In regions where each molecule covers an area approximately equal to its
own area, � is relatively constant. The size of these regions is highly dependent
on the molecule making up the film. However, if the film is compressed be-
yond a certain point, the surface pressure increases dramatically, as shown on
the left side of Figure 22.11. In these regions the surface film is forced into a
multimolecular film, instead of a monomolecular film. The surface pressure
thus represents the surface energy needed to force layers of molecules over each
other.

Surface films are very common, although they may be easily overlooked. Oil
on water has already been mentioned as a type of surface film. One very im-
portant surface film is a cell membrane. As seen in Figure 22.12, cell mem-
branes are films of lipids that exist on the surfaces of protoplasm. The physi-
cal and chemical properties of these films are crucial to the ability of the cells
to maintain a living state.

22.5 Solid Surfaces
All solids terminate their structure at some point. This termination is the sur-
face of the solid. Consider the surface of any object near you right now (this
page, for example). At the level of human perception, there seems nothing
strange or unusual about the surface of the solid object.

Partly, that’s because solid surfaces are so familiar to us. We don’t bother to
question whether they have any interesting or unique characteristics. Actually,
many solids don’t have interesting or unique characteristics. Any random ob-
ject has a rather messy surface at the atomic or molecular level. (See Figure
22.13 for a close-up of a surface.) They are multi- or polycrystalline or even
amorphous, yielding a random surface that is so complicated, so random, that
there is very little to be able to understand about its behavior.

Therefore, in physical chemistry we require that the surfaces we study be a
little more regular, a little more ordered. If we want to model a solid surface,
that surface should be described by a relatively simple structure. It should not
be a polycrystalline, random collection of solid particles. Model surfaces should
be simple, regular, and easy to define.

We actually described planes of atoms in Chapter 21. We used Miller indices
to define planes of atoms in a solid crystal. A proper model surface should be
a simple plane of atoms, so we suggest that any good model surface should be
described by the Miller indices of the plane to which the surface atoms belong.

Figure 22.14 shows our point. First, Figure 22.14a shows Miller index planes
inside a solid crystal. The designation (110) is consistent with our under-
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Figure 22.12 In biological cells, the cell mem-
brane is a film. The ability of the cell to function,
or live, is highly dependent on the ability of the
cell membrane to work properly.

Figure 22.13 Any random surface is actually
very messy at the atomic level. This picture shows
the surface of “smooth” stainless steele, magnified
10,000 times.

(110)
Planes

(a)

(110)
Surface

(b)

Figure 22.14 (a) Planes of atoms in a crystal
are defined by Miller indices. (b) An exposed sur-
face plane of atoms can also be described using
the same Miller indices.
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standing of Miller indices, as defined and described in Chapter 21. Suppose we
cut off one side of the crystal so that the atoms in the defined plane are now
the surface of the solid. The Miller indices of that plane of atoms are sufficient
to describe the surface of that solid. In this case, we can say that this surface is
the (XYZ) plane of the crystal.

Miller indices are commonly used to describe surfaces of crystalline solids.
Figure 22.15 shows some examples.

Example 22.5
Refer to Figure 22.16, which illustrates a surface of a body-centered cubic
crystalline solid. What are the Miller indices of the surface indicated?

Solution
Since the crystal is a cubic solid, the unit cell parameters a, b, and c are equal.
The surface plane indicated intercepts the a and b axes at one unit each, and
does not intercept the c-axis at all. Another way of saying this is that the plane
intercepts the c-axis at �. Miller indices are reciprocals of intercepts, so the
Miller indices of this surface plane are (�

1
1

� �
1
1

� �
�

1
�) or (110). This surface is the

(110) surface plane. Other surfaces of crystals can be labeled similarly.

As with liquid surfacces, the surface of a solid is associated with an energy.
However, the term “surface tension” is not usually associated with solid sur-
faces. Instead, the term surface energy is used (although the concept is the
same: it takes energy to increase the surface area of a solid). Table 22.2 lists
some surface energies of solids. Generally, metals have relatively high surface
energies, and ionic compounds have lower surface energies. Generally speak-
ing, solids have higher surface energies than liquids, although a comparison of
Tables 22.1 and 22.2 shows that at least one liquid (mercury) has a higher sur-
face energy (“surface tension”) than solids.

Surface energies for solids also vary depending on the arrangement of atoms
making the surface plane; that is, surface planes having different Miller indices
will have different surface energies.

The idea of different surface energies and an understanding of thermo-
dynamics suggest that surfaces might tend to adopt the surface that has the
lowest surface energy. Indeed they would tend to, but two factors work
against this.

1. It is impossible for any solid except a cubic crystal to have the same
Miller indices for all of its surfaces. This is because for any general solid,
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(a) fcc (111)

(b) hcp (0001)

(c) bcc (110)

(d) fcc (100)
Figure 22.15 Atomic arrangements for some
crystals and the different Miller indices of the
surface. In the diagrams, the darker atoms are
the top layer, which has a different arrangement
depending on the crystal lattice and (hk�).

Figure 22.16 See Example 22.5. What are the
Miller indices of the indicated surface of this
body-centered cubic crystal?

Table 22.2 Surface energies of solids

Solid Temperature (°C) Surface energy (dyn/cm or erg/cm2)a

gold 1027 1410

iron 1400 2150

LiF �195 340

NaCl 25 227

KCl 25 110

MgO 25 1200

CaF2 �195 450

BaF2 �195 280
aTo convert to units of J/m2, multiply by 1 � 10�3.
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the three crystalline axes are spatially different. Even for a cubic crystal,
the exception applies only to the planes that contain the three crystalline
axes of cubic crystals. (However, for planes that are not coincident with
the axes, this exception does not apply.)

2. Solids are, well, solid. Their very definition is that their atoms or mole-
cules are in fixed positions. Therefore, even if a surface is not the lowest-
energy surface, the surface usually remains in that higher-energy struc-
ture. (In some situations, surface rearrangements occur that lower the
surface energy, but we will not consider these in detail here. See Figure
22.17 below and the discussion of it in the text, however.)

In some cases, the second factor can be overcome by heating the solid, a
process called annealing. Annealing implies that a solid is heated to a temper-
ature below its melting point so the formation of a liquid phase is avoided.
However, enough thermal energy is usually present that some of the solid
atoms or molecules can slowly move, or diffuse, a short distance and adopt a
lower-energy structure. The solid is heated and then cooled slowly, giving the
atoms or molecules time to adopt a new structure. Annealing is common in
the production of glass objects, so that the glass molecules can form a stable,
less-strained solid structure. Figure 22.17 shows an example of how annealing
leads to lower-energy solid structures; similar effects are seen in solid surfaces
as well.

So far in our discussion of solid surfaces, we have assumed that the surface
of a solid is actually formed by the solid material itself. For example, a piece of
solid iron metal has a solid surface that is composed of iron atoms, with bulk
iron on one side of the surface and air or atmosphere on the other side, right?
Unfortunately, in this instance and for almost all other surfaces, this is defi-
nitely not the case. In reality, at the atomic and molecular level, solid surfaces
are very messy.

Why is that? Well, look at Tables 22.1 and 22.2 and compare the surface 
energies/tensions of solids and liquids. Note that many liquids—including 
water—have much lower surface energies than solids. Applying the idea that
materials tend toward lower energies, in a system of solid and liquid the surface
will be covered with the lower-surface-energy liquid. Consider what this means
at the atomic and molecular level for a solid surface: when exposed to an envi-
ronment, the “surface” of the solid is actually covered with materials that tend
to lower the total surface energy. Consider a piece of crystalline magnesium
oxide exposed to a moist environment. MgO has a surface energy of about
1200 erg/cm2 and water has a surface energy of about 73 erg/cm2, so the low-
energy scenario has a thin layer of water on the surface of the crystalline MgO.
This water can be as thin as a single monolayer (that is, a surface film) and is
considered adsorbed on the solid. (The word adsorbed should be compared to be
word absorbed, which would mean that one material has been incorporated in-
side something else, like water in a sponge.) Consider all of the surfaces around
you: at the atomic and molecular level, they all have something adsorbed on
them. Thus, what you may be perceiving as the surface of a plastic laminate
tabletop isn’t actually plastic, but a surface that has water or other organic, sili-
cone, fluorocarbon, or other low-energy material as the true “surface” material.

Example 22.6
Consider Tables 22.1 and 22.2. A crystal of sodium chloride, NaCl, is exposed
to an air sample that has water vapors, ethanol vapors, and diethyl ether
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Figure 22.17 Annealing a solid allows the
atoms or molecules to adopt a different, more
stable structure. The first picture shows the solid
(glass) before annealing, and the second picture
shows the same solid after annealing.
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vapors. (Water, ethanol, and diethyl ether are all liquids at room tempera-
ture.) Ignoring the possibility of minimum-energy interactions between the
three vapors (that is, azeotropes and the like), what would you predict to be
the true surface structure of NaCl? (Ignore interactions between the NaCl and
the vapors.)

Solution
If we apply the ideas immediately above, the preferred surface structure
would have the minimum surface energy. Comparing the surface tensions of
the liquid phases associated with the vapors, we find that diethyl ether has the
lowest surface tension. Thus, we suggest that the surface of NaCl might actu-
ally be covered with diethyl ether molecules. (Apart from its instructiveness,
this example is extremely naive. In reality, ion-dipole interactions would con-
tribute considerably to the formation of a molecular film on the surface of
the solid. In extreme cases—like NaOH—energies of solvation are so nega-
tive that enough water is adsorbed to form a solution; such compounds are
described as deliquescent.)

The above example illustrates a point: real surfaces, exposed to real envi-
ronments, are very messy at the molecular level. Just about any surface you can
see is covered with molecules that are not of the material itself.

It actually takes special effort to get surfaces that are clean; that is, free from
adsorbed contaminants. Among other things, it is necessary to expose a surface
to a very, very high vacuum. Ultrahigh vacuums, which are usually considered
to involve pressures less than 1 � 10�8 torr, are necessary to minimize the num-
ber of gas molecules that come in contact with a surface and form a low-surface-
energy layer. This might not sound like an “ultrahigh” vacuum, even though it
represents about one hundred billionth of an atmosphere. From considerations
related to the kinetic theory of gas, we can show that even at about one mil-
lionth of a torr, in about 1 second enough gas molecules strike a surface to form
a single molecular monolayer. A pressure of 1 � 10�8 torr suggests that the
monolayer formation takes about 100 seconds, or less than 2 minutes: not a
clean surface for very long! Pressures of 1 � 10�11 to 1 � 10�12 torr are some-
times necessary, and they require special vacuum technology to achieve.

The term exposure is defined as the product of the pressure of gas in con-
tact with a surface and the time the surface is exposed to that pressure:

exposure � (pressure) � (time) (22.22)

The unit of exposure is the langmuir. A pressure of 1 � 10�6 torr applied for
1 second gives a surface an exposure to molecules that is defined as 1 langmuir
(1 L, not to be confused with 1 liter):

1 langmuir � 1 � 10�6 torr � s (22.23)

For scientists trying to study clean surfaces, this is a useful unit for communi-
cating exposure pressure and time, both of which relate to how long a surface
can really be considered “clean.” Roughly speaking, a monolayer of adsorbed
atoms or molecules forms when a surface experiences an exposure of 1 langmuir.

Example 22.7
A clean surface is exposed to a pressure of 2.0 � 10�11 torr. How long will it
take for about one-half of a monolayer to form on the surface?
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Solution
One-half of a monolayer requires an exposure of approximately 0.5 L. Using
equation 22.22 and the definition from equation 22.23:

0.5 L � (2.0 � 10�11 torr) � (time) � �
1 � 10

1
�

L
6 torr�s
�

The last term is a conversion factor between the units involved and comes
straight from equation 22.23. We solve this equation algebraically for time:

time �

The langmuir and torr units cancel; the only remaining unit, seconds, is in
the denominator of the denominator, which makes it in the numerator.
Solving numerically:

time � 2.5 � 104 s

It will take almost 7 hours for one-half of a monolayer to form. This exam-
ple shows that at such low pressures, surfaces can be kept relatively clean for
quite a while if an ultrahigh vacuum is maintained.

These calculations are approximate because they assume that any gas atom
or molecule that hits a surface will stick there. In reality, this depends on the
identity of the gas species, the identity of the surface, and the temperature of
the gas and/or the surface.

The student should be aware that it takes special vacuum equipment to
maintain an ultrahigh vacuum. First, a clean surface must be inside a special
vacuum chamber that has no leaks—which is easier said than done. In addi-
tion, special vacuum pumps must be used to get to such high vacuums and
stay there. The normal oil-filled rotary vacuum pump can only maintain a vac-
uum of about 10�4 torr or so, a full four orders of magnitude higher than what
is necessary for ultrahigh vacuum. Special vacuum pumps (like turbomolecu-
lar pumps, titanium sublimation pumps, or liquid-helium-based cryopumps)
are needed and can be extremely expensive.

Assume that we do, in fact, have a clean surface. What makes the surface so
special that it has properties different from the bulk? The answer lies in un-
derstanding the chemical nature of a bulk solid. Figure 22.18a shows a two-
dimensional solid in which the atoms are all connected to each other in all di-
rections. That is, they are all bonding to their neighboring atoms. Figure 22.18b
shows what happens when this two-dimensional solid is cracked so that a new
surface is exposed to the environment. The atoms at the surface make bonds
to the atoms in the bulk, but there are no atoms to bond with on the other side
of the surface. The atoms at the surface have atomic orbitals that are not (as
yet) interacting with—bonding to—any other atomic or molecular species.
These empty orbitals, sometimes referred to as “dangling bonds,” are very re-
active and will interact extremely easily with other chemical species. This
model accounts for several properties of surfaces, not just their ability to eas-
ily adsorb molecular species from the surrounding environment. Empty or-
bitals of adjacent atoms sometimes interact with each other, causing a slight
rearrangement of the surface layer(s) so that the surface structure is somewhat
different from the bulk. (This was alluded to earlier in the chapter.) Figure
22.19 shows an example of the structural rearrangement of a surface.

0.5 L
����
(2.0 � 10�11 torr) � �

1 � 10

1
�

L
6 torr�s
�
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Bonds to
neighboring

atoms

(a)

Dangling
bonds at
surface

(b)
Figure 22.18 (a) In the bulk of a solid, atoms
interact with other atoms all around them. The
arrows imply that bonding continues in that di-
rection to other atoms. (b) At the surface, atoms
interact with other atoms in all directions except
one. In that direction, there is an “unsatisfied”
bond called a dangling bond that can easily in-
teract with other chemical species. Compare this
diagram with Figure 22.1, which shows the im-
balance of forces that ultimately cause surface
tension.

Figure 22.19 Sometimes the dangling surface
bonds interact with each other. When they do, the
exact structure of the surface can differ substan-
tially from the bulk structure, as shown. This fig-
ure is merely illustrative; what happens in real
surfaces depends on the material.
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22.6 Coverage and Catalysis
In the 1830s, the Swedish chemist Jöns Jakob Berzelius (Figure 22.20) coined
the term “catalysis” to describe the effect of a substance that increases the speed
of a chemical reaction but is not itself consumed by the reaction. The sub-
stance itself is called a catalyst. (By contrast, an inhibitor is a substance that de-
creases the speed of a reaction.) In modern terms, a catalyst provides a differ-
ent pathway for a chemical reaction to take place, one that has a lower activation
energy, thereby increasing the rate of reaction. Ideally, a catalyst does not ap-
pear in the overall stoichiometry of the reaction and is not used up during the
course of the reaction. In reality, most catalysts eventually lose their effective-
ness due to various mechanisms including poisoning.

Catalysis can be separated into two types, homogeneous catalysis and hetero-
geneous catalysis. The difference depends on the phases of the chemical reaction
and the catalyst. If all substances including the catalyst are in the same phase,
it is considered homogeneous catalysis. Examples include aqueous-solution
reactions that are catalyzed by acid (H� ions) or base (OH� ions), and gas-
phase reactions like the breakdown of ozone, O3, by chlorine atoms in the
upper atmosphere.

If catalysis occurs at a phase boundary because reactants and catalyst are
in different phases, it is heterogeneous catalysis. Examples include the de-
composition of NOx pollutants by catalytic converters in cars and the forma-
tion of H2O from H2 and O2 gases in the presence of finely divided metal
powders.

In both of the examples given for heterogeneous catalysis, gaseous reactants
are interacting with a solid catalyst and making products. The interaction must
be occurring at the surface of the solid. In order to understand how a surface
catalyzes a reaction even in a simplistic sense, we need to understand how to
model interactions between gases and surfaces.

It is a good assumption to think that the rate of the catalyzed reaction is re-
lated to the rate at which the gas reactant(s) interact with that surface. That is,
the rate of the catalyzed reaction must be related to the rate at which reactant
molecules are adsorbed on the surface:

catalyst
gas reactant → gas reactant (adsorbed) Rateads

Let us consider processes that involve the adsorption of a single gaseous species
on a solid surface. We will make two simplifying assumptions. First, we assume
that the gas molecules that are adsorbed directly onto the surface are the ones
that react faster, that is, are catalyzed. From this, we conclude immediately that
the maximum amount of gas that can be adsorbed and catalyzed would be a
complete monolayer of gas molecules. The variable coverage is defined as the
decimal fraction of possible positions on the surface that have an adsorbed gas
molecule on them. Coverage is symbolized by the Greek letter � and varies be-
tween 0 (for no coverage) to 1 (for a complete monolayer of coverage).
Molecules that might be adsorbed on top of a monolayer are assumed to not
experience any catalysis effects of the surface.

Second, we assume that the adsorption of gas molecules is an elemen-
tary process so that the rate of adsorption, Rateads, can be determined di-
rectly from the stoichiometry of the reaction. The rate of adsorption is
therefore directly proportional to the concentration of the gas reactant,
which we will designate [gas]. But the rate of adsorption is also propor-
tional to the amount of surface positions available to adsorb onto. These
surface positions are called sites of adsorption. If the coverage is �, then the
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Figure 22.20 The Swedish chemist Jöns Jakob
Berzelius (1779–1848) was considered a world
authority on chemistry in his time. In 1813, he
suggested the use of alphabetical symbols to stand
for elements in chemical formulas, thereby get-
ting away from alchemical symbols. He also in-
vented the term “catalysis” to describe the speed-
ing up of chemical reactions by the presence of
nonreactive components.
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number of sites available (that is, not covered) is given by (1 � �). We can
therefore write the rate of adsorption as

Rateads � kads � [gas] � (1 � �) (22.24)

After reaction on the surface, the gas molecules have to leave the surface, or
desorb. The rate of desorption is assumed to be a zeroth-order reaction that is
related only to the coverage �:

Ratedes � kdes � �

where the subscript “des” relates the variables to the desorption process. If
the adsorption and desorption rates are equal, the reaction is occurring at
some steady pace and the adsorption and desorption rates are equal to each
other:

Rateads � Ratedes

kads � [gas] � (1 � �) � kdes � � (22.25)

We can use the above equation to algebraically solve for the coverage �:

� ��
kads

k

�
ad

[
s

g

�

as

[

]

ga

�

s]

kdes

� (22.26)

The equilibrium constant for the adsorption/desorption process is given by

K � �
k

k
a

d

d

es

s�

and equation 22.26 can be rewritten in terms of K to get

� � �
K �

K

[

�

ga

[

s

g

]

as

�

]

1
� (22.27)

Equation 22.27 shows that � will always be less than 1 because the numerator
will always be less than the denominator.

Equations 22.26 and 22.27 define what are called Langmuir isotherms. (The
word “isotherm” is used to emphasize a constant-temperature condition in
these types of studies.) Although � is difficult to measure directly, it can be
done indirectly by measuring adsorbed mass (so that the maximum mass ad-
sorbed is equivalent to a � of 1) or by titration methods (so that the amount
of an acid adsorbed can be measured and related to �). A plot of � (or a re-
lated variable) versus [gas] can be made, like the one in Figure 22.21. The
equilibrium constant K can be estimated from the graph; equation 22.27 shows
that for � to equal �

1
2

�, [gas] � 1/K.
Equation 22.27 can also be rewritten in terms of the reciprocal of the cov-

erage � to get

�
�

1
� � �

K �

K

[

�

ga

[

s

g

]

as

�

]

1
� or �

�

1
� � �

K �

1

[gas]
� � 1 (22.28)

The second equation in Equations 22.28 has the general expression for a
straight line, where y equals 1/�, x is 1/[gas], and the slope is 1/K. Thus, 1/� (or
variables proportional to it, like reciprocals of mass adsorbed or acid not
titrated) plotted versus 1/[gas] should give a straight line, as shown in Figure
22.22. In terms of actual measurements, if we define a change in mass of a sur-
face sample, 	m, as proportional to the coverage �:

	m � �
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0

1

1
[gas]

Slope �
1
K

1 �

To 	

[gas]
0

1

� �
1
2

[gas] �
1
K

�

Figure 22.21 If adsorption of a gas (or a dis-
solved solute) on a surface follows the Langmuir
isotherm, a plot of coverage � versus [gas] should
have this shape of curve. At � of 0.50, [gas] should
equal 1/K, in accordance with equation 22.27.

Figure 22.22 Another way to plot the adsorp-
tion of a gas (or dissolved solute) on a surface if
it follows a Langmuir isotherm. In this case, the
straight line should have a y intercept of 1 and a
slope of 1/K. See equation 22.28.
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and then define a proportionality constant � (the Greek letter kappa) to relate
the two:

	m � � � � or �
	

1

m
� � �

�

1
� � �

�

1
�

then we can rewrite equation 22.28 in terms of a measurable parameter:

�
	

1

m
� � �

� � K

1

� [gas]
� � �

�

1
� (22.29)

Equation 22.29 shows that if we plot the reciprocal of the change in mass,
1/	m, as a gas is adsorbed on a surface versus the reciprocal of the concentra-
tion of the gas, we will get a straight line whose y intercept is the reciprocal of
the proportionality constant �. Using this value, we can use the slope of the
plot [which equals 1/(� � K)] to determine the equilibrium constant of the
adsorption/desorption process. Also, instead of 	m, we can use a change in
concentration; the concepts behind equation 22.29 remain the same.

Finally, since the y intercept corresponds to an infinite value of [gas] (so that
1/[gas] equals 0), its value should correspond to a coverage of 1. Knowing the
approximate size of the molecule, we can determine how many molecules are ad-
sorbed as well as the approximate surface area of the solid. The proportionality
constant � thus acts as the conversion factor between mass adsorbed and surface
area of the solid. The following example shows how to use some of these ideas.

Example 22.8
One application of adsorption on surfaces is to measure the ability of acti-
vated charcoal to adsorb acid. (Activated charcoal, a form of treated carbon,
is very porous and is used to adsorb impurities from water. Its use in aquar-
iums typifies this behavior.) In a lab experiment, a student mixes a given
amount of powdered charcoal into a series of acetic acid solutions. The acetic
acid solutions have different initial concentrations. Some of the acid is ad-
sorbed onto the charcoal. By taking aliquots after equilibrium is established,
the student determines the change in acid concentration. Plot a Langmuir
isotherm for the experimental data and determine the equilibrium constant
for the adsorption. The experimental data are as follows:

Original concentration (M) Change in concentration (M)

0.7001 0.00665

0.3694 0.00588

0.1515 0.00553

0.0437 0.00283

0.0169 0.00153

Solution
In order to use equation 22.29 to plot an isotherm and determine a propor-
tionality constant �, we need to plot 1/	c, the inverse of the concentration
change, versus 1/[acid]. The following table is determined from the experimen-
tal data given above:

1/[acid] 1/�c

1.428 150.

2.708 170.

6.601 181

22.9 353

59.2 654
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Figure 22.23 shows a plot of this data, with 1/	c on the y-axis and 1/[acid]
on the x-axis. A best-fit straight line is drawn, showing that the y intercept is
approximately 141. According to equation 22.29, this is the value of 1/�.
Taking the reciprocal, we find that � is �

1
1
41
�, or 0.00709. Our best-fit straight

line also has a slope of 8.45, which equals 1/(� � Keq). Having solved for �,
we use algebra to find a value for K, and get K � 16.7. If we had additional
data—say, the size of the acetic acid molecule or the surface area of the 
charcoal—we could calculate the surface area or the molecule size, respectively.

The Langmuir isotherm is a common way of modeling gas- or liquid-phase
molecules adsorbing on surfaces, but it isn’t the only way. Another way to
model the coverage versus the concentration of the adsorbing species is the
Freundlich isotherm, which follows the equation

� � K � [adsorbing species]c (22.30)

where K and c are experimentally determined constants. This equation is usu-
ally plotted in terms of its logarithm, which makes it

log � � log K � c � log [adsorbing species]

and has the form of a straight line. There are other isotherms defined for differ-
ent heterogeneous systems. (Consult a text on surface science for more details.)

What if a reaction involves the adsorption of two different gas-phase species,
A and B, onto a solid surface? In order to model those processes, we will have
to define two different coverage variables �A and �B. If we assume that the ad-
sorption and desorption of each process are in equilibrium, then we can rewrite
equation 22.25, the equality of the adsorption and desorption rates, for each
gas-phase species:

kads,A � [A] � (1 � �A � �B) � kdes,A � �A

k ads,B � [B] � (1 � �A � �B) � kdes,B � �B (22.31)

By defining two equilibrium constants KA and KB in terms of the adsorption
and desorption rate constants like we did earlier, we can solve for the two cov-
erages. We give their expressions without showing the algebra:

�A � (22.32)

�B �

These expressions define Langmuir-Hinshelwood isotherms. (Cyril Norman
Hinshelwood was a British chemist who won a 1956 Nobel Prize for studying
chemical reaction mechanisms.)

Finally, suppose a diatomic gas is adsorbed on a surface and the first step is
for the molecule to dissociate and occupy two sites, one by each atom:

surface        surface
A2 (g) 2A 2A (adsorbed)

If these processes are in equilibrium, then the stoichiometry of the reaction
would affect the expression for the coverage � by the A atoms. Instead of equa-
tion 22.27, one would get for a Langmuir isotherm

JQPJJQPJ

KB � [B]
���
KA � [A] � KB � [B] � 1

KA � [A]
���
KA � [A] � KB � [B] � 1
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Figure 22.23 Plot of data for Example 22.8.
The y intercept equals 1/�, the inverse of the pro-
portionality constant, whereas the slope equals
1/��K. See Example 22.8 for details.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



� ��
K1

K
/2

1

�

/2

[

�

A

[

2

A

]1
2
/

]
2

1

�

/2

1
� (22.33)

Now that we have a way to model the adsorption of gas species on a sur-
face, we should consider how adsorbed species interact with a surface. There
are two descriptions of molecule-surface interaction, differing mainly in terms
of degree of interaction. In physisorption, molecules interact with surfaces in a
weak and general way. It could be as simple as a van der Waals or dispersion
interaction that keeps a molecule on a surface, like molecules of methane
(CH4) or diatomic nitrogen (N2) on metal surfaces, or organic residues all over
the place. Or, it could be a dipole interaction with a surface atom, which is how
water molecules adsorb so easily on most surfaces.

In chemisorption, the strength of interaction between molecules and a sur-
face is high enough to be considered a bona fide chemical (covalent) bond. It
is not unusual for the strength of chemisorption to rival a true chemical bond.
Diatomic oxygen, for example, adsorbs on many metals with a chemisorption
strength of over 500 kJ/mol!

Chemisorption and physisorption are usually studied by measuring (di-
rectly or indirectly) the coverage of a surface versus the temperature. The lower
the temperature needed to reduce the coverage of a surface, the lower the en-
ergy of interaction between gas molecule and surface. Energies of interactions
are usually listed as heats of adsorption, or 	adsH. They are typically listed as
positive numbers, although in all cases the process itself is exothermic. Table
22.3 lists some 	adsH values for different gases and surfaces; keep in mind that
these are inexact numbers. Differentiation between physisorption and
chemisorption is inexact and is usually judged on the basis of the strength of
interaction as well as structural considerations. For example, the energy of in-
teraction between carbon monoxide, CO, and palladium is large enough to
consider it as chemisorbed, but in many cases the distribution of CO on a sur-
face is seemingly random with respect to the surface features, suggesting that
it is physisorbed.

Chemisorption does differ from physisorption in a significant way. It is not
unusual for chemisorbed molecules to break their chemical bonds and have
the resulting fragments bond directly to surface atoms. By making chemical
bonds to surface atoms, the fragments can satisfy their valence electron re-
quirements. Figure 22.24 shows the difference between physisorption and
chemisorption of a dihydrogen molecule. In Figure 22.24a, the hydrogen mol-
ecule is loosely bound to a surface point (and can have various orientations,
depending on the surface identity, the temperature, and the coverage). However,
in Figure 22.24b, the hydrogen atom’s bond has broken and the individual H
atoms are bonding directly to different surface atoms. The physisorption model
could apply to H2 adsorbing on the Ta(110) surface, where the energy of ad-
sorption is about 40 kJ/mol, whereas the chemisorption model could describe
H2 on a W(111) surface, in which the energy of adsorption is two to three
times higher.

The ability for surfaces to promote bond dissociation is a crucial part of
understanding why surfaces can catalyze reactions. Many gas-phase reactions
have some activation energy that must be overcome before reactants can
form products. However, when interacting with a surface, activation barriers
can be lowered significantly, speeding up the rate of (that is, catalyzing) the
reaction.

The steps occurring at a surface, and their respective changes in energies 	E,
can be simplified and generalized as follows:

22.6 Coverage and Catalysis 787

Table 22.3 Heat of adsorption for gases 
on surfaces

Gas Solid surface 	adsH (kJ/mol)

O2 Cu(110) 205

O2 Pd(110) 200–350

O2 Pt(100) 187–290

H2 Ni(111) 95

H2 Pd(111) 87

H2 Pt(100) �40

H2 Pt(111) 75

H2 W(211) 192

CO Cu(100) 64–48

CO Ni(110) 16–191

CO Ni(111) 98–111

CO Pd(100) 151

CO Pd(111) 125

CO Pt(100) 134

CO Pt(110) 105–133

Source: G. A. Somorjai, Chemistry in Two Dimensions:
Surfaces, Cornell University Press, Ithaca, N.Y., 1981.

HH

(a)

HH

(b)
Figure 22.24 There is a fundamental differ-
ence between physisorption and chemisorption,
shown here diagrammatically. (a) In physisorp-
tion, a molecule of hydrogen remains intact but
is attracted to a surface due to van der Waals
forces, London forces, or the like. (b) In chemi-
sorption, chemical species are virtually bonded
chemically to the surface. In the case of hydrogen,
it is necessary to break the H–H bond for it to be
chemisorbed. This is not always required: for car-
bon monoxide, the CO molecule might be as
strongly bonded to the surface but still retain the
C–O bond.
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surface
gas molecule → physisorbed molecule 	E � 	adsH (exothermic)

surface 
physisorbed molecule → dissociated atoms

	E � bond energies (endothermic)

surface 
dissociated atoms → chemisorbed atoms

	E � bond energies (exothermic)

In the second step, bond energies are broken, which is always endothermic.
Conversely, in the third step bonds are formed, which is always accompanied
by a release of energy (that is, exothermic). At this point, chemisorbed atoms
can react on the surface with little or no activation energy:

surface
chemisorbed atoms → products 	E � bond energies (exothermic)

Desorption of products is the final step of the catalyzed reaction.
In order to get to the last, no-activation-energy step, it is important that in

the first three steps, the exothermicity be greater than the endothermicity.
Otherwise the process is overall endothermic and, if one ignores entropy ef-
fects, not spontaneous. (There are some cases where entropy factors are im-
portant, but we will not discuss them here.) However, in some cases the energy
balance is such that reactant molecules will spontaneously adsorb and dissoci-
ate, allowing them to react with little or no activation energy on the surface.
Two examples are the reactions between H2 and O2 to make H2O and H2 and
N2 to make NH3. In both cases, the presence of the right catalyst surface pro-
vides the right energy balance between endothermic and exothermic processes,
and the reactions proceed relatively quickly. Without a catalyst, the rate of the
reaction is barely perceptible.

Because of the interplay of the energetics of the first three reaction steps
above, what acts as a good catalyst for one reaction may be a very poor cata-
lyst for another! The H2/O2 reaction works well with a palladium or platinum
catalyst, whereas the ammonia reaction uses an iron-based catalyst.
Identification of the right catalyst for the right reaction is still an intense area
of research.

Finally, catalysis is not confined to well-defined, Miller-indexed metal sur-
faces. One area of recent interest is in the use of clay minerals to catalyze re-
actions. You may think of “clay” as a rather gooey and unstructured material,
but in reality it has a highly defined, three-dimensional structure. In some clays
called zeolites, there are pores in which molecules can enter, and then be ad-
sorbed. Figure 22.25 shows a diagram of what a pore within a zeolite clay looks
like. Thanks in part to the three-dimensional structure of the pore, only the
right reactant molecules can be adsorbed and a particular reaction promoted.
In fact, it is thought that clay minerals such as these are the future of designed
catalysts that can be used to promote any given chemical reaction—if the pore
is just right.

22.7 Summary
Surfaces are everywhere, and are more important in physical chemistry than
they seem at first glance. A surface has different thermodynamic properties
than a bulk material does. This is due to an imbalance in forces that are
found at a surface. This imbalance is the root cause of things like surface ten-
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(a)

(b)

Figure 22.25 Certain clay minerals have cat-
alytic properties. Clays are composed of alu-
minum oxide units interspersed with silicon ox-
ide units, and can have pores for molecules to
enter and react. (a) A common building block of
aluminosilicate clays (the open spheres are O, the
dark spheres are Si or Al). (b) Part of a zeolite
structure, which is a common type of clay used in
heterogeneous catalysis.
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sion and capillary action. Surfaces can be as thin as a single molecule, called
a film. The behavior of that film is intimately related to the properties of sur-
faces in general.

For well-defined solids like crystals, the surfaces themselves can be well de-
fined using Miller indices. (Solids are not always so well defined, but it is cer-
tainly easier to understand them when they are.) What we understand about
them includes the fact that they can influence chemical reactions but not ac-
tually participate in the overall chemistry: they act as catalysts. The ability of a
surface to act as a catalyst depends on several factors, including how easily a
reactant molecule adsorbs onto the surface, how easily a molecule on the sur-
face dissociates, and how easily the resulting atoms combine to make products.
The right combination of reaction and surface can have a major influence on
the rate of the reaction.

22.7 Summary 789
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22.2 Surface Tension

22.1. Using the explanation of unbalanced forces as the source
of surface tension, justify why it requires energy to increase the
surface area of a liquid. Is there any circumstance in which
energy is given off when increasing a liquid’s surface area?

22.2. The surface tension of liquid mercury from Table 22.1
is 435.5 N/m. What is the value of �(Hg) in units of dyn/cm?

22.3. The surface tension of chloroform, CHCl3, is 27.1 dyn/cm.
(a) How many joules does it take to increase the surface area
of a pool of chloroform by 50.0 cm2? (b) How many joules
does it take to make a film of chloroform that has an area of
0.010 m2?

22.4. Equation 22.6 defines surface tension in terms of Gibbs
free energy. Borrowing an analogy from chemical potential,
we submit that surface tension can also be defined in terms of
enthalpy, internal energy, or Helmholtz energy. Write partial
derivatives for those definitions.

22.5. In early chapters of this book, we considered expan-
sions and contractions of gases and calculated changes in
thermodynamic quantities for those changes. However, we did
not consider changes in surface energies, as those gases
changed their surface areas. Why not?

22.6. Since energy is given off as small droplets coalesce into
larger ones, maybe we can use that coalescence to perform
useful work. Let’s try a test case. 

How much does the temperature change if two 1.00-nm-ra-
dius water droplets at 20.0°C coalesce into a single droplet?
The surface tension of water is 72.75 erg/cm2. 

22.7. Approximate the surface tension of a liquid that a razor
blade will not float on. Use the data in Example 22.3 to make
your estimates.

22.8. A spherical soap bubble slowly decreases in size. Is work
done on the bubble or by the bubble? Explain your answer.

22.9. (a) As a first approximation, raindrops can be thought
of as small amounts of water in free fall, experiencing no net
gravitational force. What should be their expected shape, and
why?

(b) In reality, falling raindrops are distorted somewhat from
their ideal shape because they are usually falling at some ter-
minal velocity. Just considering that fact, can you predict a
shape of a distorted raindrop?

22.3 Interface Effects

22.10. Explain how equation 22.9 does not violate the first
law of thermodynamics.

22.11. The Laplace-Young equation can be derived in a dif-
ferent and incorrect way by writing the area of a sphere in
terms of volume and then evaluating 
A/
V. Why do you not
get the same expression?

22.12. Show that the right side of equation 22.13, the
Laplace-Young equation, has units of pressure (as required by
the mathematics).

22.13. Can the evaporation of droplets be minimized by in-
creasing the external pressure, like by pressuring region II of a
system (refer to Figure 22.6) with an inert gas? Why or why
not? Assume ideal behavior.

22.14. Researchers in nuclear fusion try to create tiny mi-
crospheres of gold containing deuterium-tritium mixes that
they can heat to very high temperatures and pressures using
focused lasers. Under such conditions, fusion of the nuclei can
occur. Does the Laplace-Young equation suggest that smaller
or larger microspheres would be better targets? Comment on
whether this supports or detracts from the possibility of sus-
tained fusion under these conditions.

22.15. Determine the pressure difference on a droplet of 
mercury with a surface tension of 480 dyn/cm if its radius is
(a) 1.00 mm or (b) 0.001 mm.

22.16. Although the text did not address the effect of tem-
perature on the Laplace-Young equation, what is the expected
effect on 	p as T increases? Does this expected effect agree
with equations 22.14 and 22.15 and the behavior of � with
increasing temperature?

22.17. Redraw Figure 22.8 and draw the three surface-
tension vectors that contribute to equation 22.16. Using this
diagram, rationalize the form of equation 22.16 and show
how the cos � term arises.

22.18. The Kelvin equation is used to calculate the equilibrium
vapor pressure of a droplet of radius r:

ln ��p
p
°
v

v

a

a

p

p

o

o

r

r
�� � �

2
r
�

�

�

RT
V�

�

where pvapor is the vapor pressure of the droplet, p°vapor is the
vapor pressure of the bulk liquid at standard conditions (that
is, 25°C), and V� is the molar volume of the liquid. The vari-
ables R, T, and � have their usual meaning.

(a) Argue that the vapor pressure of a liquid increases as the
radius of the droplet decreases. What implications does this
have for condensation processes (that is, a vapor forming a liq-
uid) and for atmospheric processes like raindrop formation? 

(b) Calculate the vapor of a droplet of water having a radius
of 20.0 nm at 298 K. The vapor pressure of bulk water at this
temperature is 23.77 mmHg.

22.19. Why are capillary rises and depressions not seen for
cylinders with large radii?

22.20. What is the expected contact angle if a capillary of
bore radius 0.200 mm, immersed in water at 25°, shows a
capillary rise of 4.78 cm?

22.4 & 22.5 Surface Films; Solid Surfaces
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22.21. Show that 1 dyn/cm2 equals 1 � 10�6 bar.

22.22. Silicones are polymers of silicon and oxygen chains,
with organic side groups attached to the silicons. They have
many useful properties and are extensively used in society.
Although they have very, very low vapor pressures, they do
have vapor pressures. They also have very low surface energies.
Comment on the potential for silicone’s presence on any real
surface.

22.23. Rationalize the presence of R, the ideal gas law con-
stant, in equation 22.21.

22.24. Atoms on a planar surface have different interatomic
distances depending on the Miller indices of the exposed sur-
face plane. NaCl has a face-centered cubic lattice with a lat-
tice parameter of 5.640 Å. What are the closest Na�–Na� dis-
tances for a surface made by (a) the (100) plane; (b) the
(110) plane; and (c) the (111) plane?

22.25. Atoms on a planar surface have different interatomic
distances depending on the Miller indices of the exposed
plane. In a cubic crystal, what plane or planes have the atoms
closest together?

22.26. Define the term clean as applied to solid surfaces. Why
are clean surfaces so difficult to obtain?

22.27. From the (limited) data in Table 22.2, is there a trend
for the relationship between the surface energy of ionic com-
pounds and the magnitudes of the charges on the ions?

22.28. A china cup breaks when the ionic or covalent bonds
are broken due to shock, stress, or some other influence. Even
if such a cup were broken into two simple pieces, just putting
the pieces back together will not make the bonds re-form.
Why? We need things like glue because of this phenomenon.

22.29. Satellites in space often suffer from vacuum welding,
in which two metal parts in contact tend to stick together
more than expected over a period of time. Why does this phe-
nomenon occur in space and not on Earth?

22.30. Calculate the number of gas atoms or molecules per
cubic centimeter at 273 K if the pressure is 1.00 � 10�8 torr.

22.31. If an oil-filled rotary vacuum pump reaches an ulti-
mate vacuum of 1.0 � 10�4 torr, how long does it take a sur-

face exposed to that pressure to build up a monolayer of ad-
sorbed molecules?

22.32. How many langmuirs is exposure to 1.00 bar for one
second equal to? Does the concept of exposure hold at this
magnitude? Why or why not?

22.6 Coverage; Catalysis

22.33. Are the following processes examples of homoge-
neous or heterogeneous catalysis? (a) Hydrolysis of immiscible
ethyl acetate (�) in an aqueous basic solution. (b) Conversion
of NOx gases to N2 and O2 by platinum metal. (c) Decom-
position of atmospheric ozone by NO gas. (d) Oxidation of
ethyl alcohol, C2H5OH, by the enzyme alcohol dehydroge-
nase, ADH, to acetaldehyde in the body. (e) Solid-state con-
version of C (graphite) to C (diamond) by transition metal ad-
ditives at high pressure.

22.34. Derive equation 22.27 from equation 22.26.

22.35. Early attempts to coat metals with Teflon, poly(tetra-
fluoroethylene), resulted in a polymer layer that peeled off the
surface easily. Later attempts gave coatings that were much
more durable. What type of adsorption processes are being
manifested in either situation? What technical problem had to
be solved in order to develop durable coatings?

22.36. At about 450 K, carbon monoxide has the following
coverages on platinum at the given pressures:

Coverage Pressure (torr)

0.25 1.5 � 10�8

0.45 7.0 � 10�8

0.65 3.5 � 10�7

0.72 8.7 � 10�7

0.78 1.9 � 10�6

0.82 6.8 � 10�6

Show that this data follows a Langmuir isotherm. What is the
equilibrium constant for the adsorption process?

22.37. The individual catalysis steps occurring at a surface leave
out the energy of the desorption of products. Argue that this
step, of necessity, should occur with very little change in energy.

Exercises for Chapter 22 791
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Appendix 1 Useful Integrals
Indefinite Integrals* 

� sin bx cos bx dx � �
1

b
� sin2 bx

� sin ax � sin bx dx � �
sin

2
(
(
a
a

�

�

b
b
)
)

x
� � �

sin
2

(
(
a
a

�

�

b
b
)
)

x
�

� sin2 bx dx � �
2

x
� � �

4

1

b
� sin (2bx)

� cos2 bx dx � �
2

x
� � �

4

1

b
� sin (2bx)

� sin3 bx dx � ��
3

1

b
� cos bx(sin2 bx � 2) 

� x sin2 bx dx � �
x

4

2

� � �
4

x

b
� sin (2bx) � �

8

1

b3
� cos (2bx)

� x cos2 bx dx � �
b

1
2� cos bx � �

b

x
� sin bx

� x2 sin2 bx dx � �
x

6

3

� � ��
4

x

b

2

� � �
8

1

b2�� sin 2bx � �
4

x

b2� cos 2bx

� ebx dx � �
1

b
�ebx

� xebx dx � ebx � �
b

1
2�(bx � 1)

792

1 Useful Integrals
2 Thermodynamic Properties of

Various Substances
3 Character Tables
4 Infrared Correlation Tables
5 Nuclear Properties

Appendixes

*Each expression must be evaluated at particular limits, typically determined by the situation
under consideration.

Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



� x2ebx dx � ebx��
x

b

2

� � �
2

b

x
2� � �

b

2
3��

� xmebx dx � ebx �
m

k�0

(�1)k �
(m

m

�

! �

k)

x

!

m

�

�

b

k

k�1�

Definite Integrals†

�
�

0

e�bx2

dx � �
1

2
���

�

b
��

1/2

�
�

0

xe�bx2

dx � �
1

2
�b

�
�

0

xne�bx dx � �
bn

n
�

!
1�, n � �1, b 	 0 

�
�

��

x2e�bx2

dx � �
1

2
���

b

�
3��

1/2

�
�

0

x2ne�bx2

dx � � ��
�

b
��1 � 3 � 5 � � � � � (2n � 1)

���
2n�1 � bn

Appendix 1 Useful Integrals 793

†Each expression must be evaluated at the limits specified on the integral.
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Appendix 2 Thermodynamic Properties 
of Various Substances


fH° (at 298 K, 
fG° (at 298 K, S° [at 298 K,
Compound in kJ/mol) in kJ/mol) in J/(mol�K)]

Ag (s) 0 0 42.55

AgBr (s) �100.37 �96.90 107.11

AgCl (s) �127.01 �109.80 96.25

Al (s) 0 0 28.30

Al2O3 (s) �1675.7 �1582.3 50.92

Ar (g) 0 0 154.84

Au (s) 0 0 47.32

BaSO4 (s) �1473.19 �1362.3 132.2

Bi (s) 0 0 56.53

Br2 (�) 0 0 152.21

C (s, diamond) 1.897 2.90 2.377

C (s, graphite) 0 0 5.69

CCl4 (�) �128.4 �62.6 214.39

CH2O (g) �115.90 �109.9 218.95

CH3COOC2H5 (�) �480.57 �332.7 259.4

CH3COOH (�) �483.52 �390.2 158.0

CH3OH (�) �238.4 �166.8 127.19

CH4 (g) �74.87 �50.8 188.66

CO (g) �110.5 �137.16 197.66

CO2 (g) �393.51 �394.35 213.785

CO3
2� (aq), 1 M �413.8 �386.0 117.6

C2H5OH (�) �277.0 �174.2 159.86

C2H6 (g) �83.8 �32.8 229.1

C6H12 (�) �157.7 26.7 203.89

C6H12O6 (s) �1277 �910.4 209.19

C6H14 (�) �198.7 �3.8 296.06

C6H5CH3 (�) 12.0 113.8 220.96

C6H5COOH (s) �384.8 �245.3 165.71

C6H6 (�) 48.95 124.4 173.26

C10H8 (s) 77.0 201.0 217.59

C12H22O11 (s) �2221.2 �1544.7 392.40

Ca (s) 0 0 41.59

Ca2� (aq), 1 M �542.83 �553.54 �53.1

CaCl2 (s) �795.80 �748.1 104.62

CaCO3 (s, arag) �1207.1 �1127.8 92.9

CaCO3 (s, calc) �1206.9 �1128.8 88.7

Cl (g) 121.30 105.3 165.19

Cl� (aq), 1 M �167.2 �131.3 56.4

Cl2 (g) 0 0 223.08

Cr (s) 0 0 23.62

Cr2O3 (s) �1134.70 105.3 80.65

Cs (s) 0 0 85.15

Cu (s) 0 0 33.17

D2 (g) 0 0 144.96

D2O (�) �249.20 �234.54 198.34

F� (aq), 1 M �332.63 �278.8 �13.8

F2 (g) 0 0 202.791

Fe (s) 0 0 27.3

Fe2(SO4)3 (s) �2583.00 �2262.7 307.46
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fH° (at 298 K, 
fG° (at 298 K, S° [at 298 K,
Compound in kJ/mol) in kJ/mol) in J/(mol�K)]

Fe2O3 (s) �825.5 �743.5 87.4

Ga (s) 0 0 40.83

H+ (aq), 1 M 0 0 0

HBr (g) �36.29 �53.51 198.70

HCl (g) �92.31 �95.30 186.90

HCO3
� (aq), 1 M �691.99 �586.85 91.2

HD (g) 0.32 �1.463 143.80

HF (g) �273.30 �274.6 173.779

HI (g) 26.5 1.7 114.7

HNO2 (g) �76.73 �41.9 249.41

HNO3 (g) �134.31 �73.94 266.39

HSO4
� (aq), 1 M �909.27 �744.63 20.1

H2 (g) 0 0 130.68

H2O (g) �241.8 �228.61 188.83

H2O (�) �285.83 �237.14 69.91

H2O (s) �292.72 — —

He (g) 0 0 126.04

Hg (�) 0 0 75.90

Hg2Cl2 (s) �265.37 �210.5 191.6

I (g) 106.76 70.18 180.787

I2 (s) 0 0 116.14

K (s) 0 0 64.63

KBr (s) �393.8 �380.7 95.9

KCl (s) �436.5 �408.5 82.6

KF (s) �567.3 �537.8 66.6

KI (s) �327.9 �324.9 106.3

Li (s) 0 0 29.09

Li� (aq), 1 M �278.49 �293.30 13.4

LiBr (s) �351.2 �342.0 74.3

LiCl (s) �408.27 �372.2 59.31

LiF (s) �616.0 �587.7 35.7

LiI (s) �270.4 �270.3 86.8

Mg (s) 0 0 32.67

Mg2� (aq), 1 M �466.85 �454.8 �138.1

MgO (s) �601.60 �568.9 26.95

NH3 (g) �45.94 �16.4 192.77

NO (g) 90.29 86.60 210.76

NO2 (g) 33.10 51.30 240.04

NO3
� (aq), 1 M �207.36 �111.34 146.4

N2 (g) 0 0 191.609

N2O (g) 82.05 104.2 219.96

N2O4 (g) 9.08 97.79 304.38

N2O5 (g) 11.30 118.0 346.55

Na (s) 0 0 153.718

Na� (aq), 1 M �240.12 �261.88 59.1

NaBr (s) �361.1 �349.0 86.8

NaCl (s) �385.9 �365.7 95.06

NaF (s) �576.6 �546.3 51.1

NaI (s) �287.8 �286.1 —

NaHCO3 (s) �950.81 �851.0 101.7

NaN3 (s) 21.71 93.76 96.86

Na2CO3 (s) �1130.77 �1048.01 138.79
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fH° (at 298 K, 
fG° (at 298 K, S° [at 298 K,
Compound in kJ/mol) in kJ/mol) in J/(mol�K)]

Na2O (s) �417.98 �379.1 75.04

Na2SO4 (s) �331.64 �303.50 35.89

Ne (g) 0 0 146.328

Ni (s) 0 0 29.87

O2 (g) 0 0 205.14

O3 (g) 142.67 163.2 238.92

OH� (aq), 1 M �229.99 �157.28 �10.75

PH3 (g) 22.89 30.9 210.24

P4 (s) 0 0 41.08

Pb (s) 0 0 64.78

PbCl2 (s) �359.41 �314.1 135.98

PbO2 (s) �274.47 �215.4 71.78

PbSO4 (s) �919.97 �813.20 148.50

Pt (s) 0 0 25.86

Rb (s) 0 0 76.78

S (s) 0 0 32.054

SO2 (g) �296.81 �300.13 248.223

SO3 (g) �395.77 �371.02 256.77

SO3 (�) �438 �368 95.6

SO4
2� (aq), 1 M �909.3 �744.6 20.1

Si (s) 0 0 18.82

U (s) 0 0 50.20

UF6 (s) �2197.0 �2068.6 227.6

UO2 (s) �1085.0 �1031.8 77.03

Xe (g) 0 0 169.68

Zn (s) 0 0 41.6

Zn2+ (aq), 1 M �153.89 �147.03 �112.1

ZnCl2 (s) �415.05 �369.45 111.46

Source: Data from National Institute of Standards and Technology’s Chemistry Webbook (available online at web-
book.nist.gov/chemistry); D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 82nd ed., CRC Press, Boca Raton,
Fla., 2001; J. A. Dean, ed., Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, New York, 1992.
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Appendix 3 Character Tables
The letters in the final column indicate the irreducible representations of vi-
brations (x, y, and z labels) and rotations (Rx, Ry, and Rz labels) for molecules
having that symmetry. Degeneracies are indicated by more than one label in
parentheses. More than one label but without parentheses indicates that de-
generacy will not necessarily exist (see, for example, the C2h point group).

C1 E

A 1 all

Cs (� C1h) E �h

A� 1 1 x, y, Rz, x2, y2, z2, xy

A 1 �1 z, Rx, Ry, yz, xz

Ci (� S2) E i

Ag 1 1 Rx, Ry, Rz, all second-order functions 

Au 1 �1 x, y, z

C2 E C2

A 1 1 z, Rz, x2, y2, z2, xy

B 1 �1 x, y, Rx, Ry, yz, xz

C3 E C3 C 2
3 � � e2�i/3

A 1 1 1 z, Rz, x2 � y2, z2

E 	1 � �*
1 �* �
(x, y)(Rx, Ry)(x2 � y2, xy)(xz, yz)

C4 E C4 C2 C 3
4

A 1 1 1 1 z, Rz, x2 � y2, z2

B 1 �1 1 �1 x 2 � y2, xy

E        	 1 i �1 �i
1 �i 1 i
(x, y)(Rx, Ry)(xz, yz)

D2 E C2 C2� C2

A 1 1 1 1 x2, y2, z2

B1 1 1 �1 �1 z, Rz, xy

B2 1 �1 1 �1 y, Ry, xz

B3 1 �1 �1 1 x, Rx, yz

D3 E 2C3 3C2

A1 1 1 1 x2 � y2, z2

A2 1 1 �1 z, Rz

E 2 �1 0 (x, y)(Rx, Ry)(x2 � y2, xy), (xz, yz)

D4 E 2C4 C2 2C2� 2C2

A1 1 1 1 1 1 x2 � y2,z2

A2 1 1 1 �1 �1 z, Rz

B1 1 �1 1 1 �1 x2 � y2

B2 1 �1 1 �1 1 xy

E 2 0 �2 0 0 (x, y)(Rx, Ry)(xz, yz)
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S4 E S4 C2 S3
4

A 1 1 1 1 Rz, x2 � y2, z2

B 1 �1 1 �1 z, x2 � y2, xy

E       	 1 i �1 �i 
1 �i �1 i
(x, y)(Rx, Ry)(xz, yz)

C2v E C2 �v �v�

A1 1 1 1 1 z, x 2, y2, z2

A2 1 1 �1 �1 Rz, xy

B1 1 �1 1 �1 x, Ry, xz

B2 1 �1 �1 1 y, Rx, yz

C3v E 2C3 3�v

A1 1 1 1 z, x2 � y2, z2

A2 1 1 �1 Rz

E 2 �1 0 (x, y)(Rx, Ry)(x2 � y2, xy), (xz, yz)

C4v E 2C4 C2 2�v 2�d

A1 1 1 1 1 1 z, x2 � y2, z2

A2 1 1 1 �1 �1 Rz

B1 1 �1 1 1 �1 x2 � y2

B2 1 �1 1 �1 1 xy

E 2 0 �2 0 0 (x, y)(Rx, Ry)(xz, yz)

C6v E 2C6 2C3 C2 3�v 3�d

A1 1 1 1 1 1 1 z, x2 � y2, z2

A2 1 1 1 1 �1 �1 Rz

B1 1 �1 1 �1 1 �1

B2 1 �1 1 �1 �1 1

E1 2 1 �1 �2 0 0 (x, y)(Rx, Ry)(xz, yz)

E2 2 �1 �1 2 0 0 (x2 � y2, xy)

C2h E C2 i �h

Ag 1 1 1 1 Rz, x2, y2, z2, xy

Bg 1 �1 1 �1 Rx, Ry, xy, yz

Au 1 1 �1 �1 z

Bu 1 �1 �1 1 x, y

C3h E C3 C2
3 �h S3 S5

3 � � e2�i/3

A� 1 1 1 1 1 1 Rz, x2 � y2, z2

E� 	 1 � �* 1 � �*
1 �* � 1 �* �
(x, y)(x2 � y2, xy)

A 1 1 1 �1 �1 �1 z

E  	1 � �* 1 � �*
1 �* � 1 �* �
(Rx, Ry)(xz, yz)
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D2h E C2 C2� C2 i �(xy) ��(yz) �(xz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 �1 �1 1 1 �1 �1 Rz, xy

B2g 1 �1 1 �1 1 �1 1 �1 Ry, xz

B3g 1 �1 �1 1 1 �1 �1 1 Rx, yz

Au 1 1 1 1 �1 �1 �1 �1

B1u 1 1 �1 �1 �1 �1 1 1 z

B2u 1 �1 1 �1 �1 1 �1 1 y

B3u 1 �1 �1 1 �1 1 1 �1 x

D3h E 2C3 3C2 �h 2S3 3�v

A1� 1 1 1 1 1 1 x2 � y2, z2

A2� 1 1 �1 1 1 �1 Rz

E� 2 �1 0 2 �1 0 (x, y)(x2 � y2, xy) 

A1 1 1 1 �1 �1 �1

A2 1 1 �1 �1 �1 1 z

E  2 �1 0 �2 1 0 (Rx, Ry)

D4h E 2C4 C2 2C2� 2C2 i 2S4 �h 2�v 2�d

A1g 1 1 1 1 1 1 1 1 1 1 x2 � y2, z2

A2g 1 1 1 �1 �1 1 1 1 �1 �1 Rz

B1g 1 �1 1 1 �1 1 �1 1 1 �1 x2 � y2

B2g 1 �1 1 �1 1 1 �1 1 �1 1 xy

Eg 2 0 �2 0 0 2 0 �2 0 0 (Rx, Ry)(xz, yz)

A1u 1 1 1 1 1 �1 �1 �1 �1 �1

A2u 1 1 1 �1 �1 �1 �1 �1 1 1 z

B1u 1 �1 1 1 �1 �1 1 �1 �1 1

B2u 1 �1 1 �1 1 �1 1 �1 1 �1

Eu 2 0 �2 0 0 �2 0 2 0 0 (x, y)
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D6h E 2C6 2C3 C2 3C2� 3C2 i 2S3 2S6 �h 3�d 3�v

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 � y2, z2

A2g 1 1 1 1 �1 �1 1 1 1 1 �1 �1 Rz

B1g 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1

B2g 1 �1 1 �1 �1 1 1 �1 1 �1 �1 1

E1g 2 1 �1 �2 0 0 2 1 �1 �2 0 0 (Rx, Ry)(xz, yz)

E2g 2 �1 �1 2 0 0 2 �1 �1 2 0 0 (x2 � y2, xy)

A1u 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1

A2u 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 z

B1u 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1

B2u 1 �1 1 �1 �1 1 �1 1 �1 1 1 �1

E1u 2 1 �1 �2 0 0 �2 �1 1 2 0 0 (x, y)

E2u 2 �1 �1 2 0 0 �2 1 1 �2 0 0

D2d E 2S4 C2 2C2� 2�d

A1 1 1 1 1 1 x2 � y2, z2

A2 1 1 1 �1 �1 Rz

B1 1 �1 1 1 �1 x2 � y2

B2 1 �1 1 �1 1 z, xy

E 2 0 �2 0 0 (x, y)(Rx, Ry)(xz, yz)
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D3d E 2C3 3C2 i 2S6 3�d

A1g 1 1 1 1 1 1 x2 � y2, z2

A2g 1 1 �1 1 1 �1 Rz

Eg 2 �1 0 2 �1 0 (Rx, Ry)(x2 � y2, xy)(xz, yz)

A1u 1 1 1 �1 �1 �1

A2u 1 1 �1 �1 �1 1 z

Eu 2 �1 0 �2 1 0 (x, y)

D4d E 2S8 2C4 2S3
8 C2 4C2� 4�d

A1 1 1 1 1 1 1 1 x2 � y2, z2

A2 1 1 1 1 1 �1 �1 Rz

B1 1 �1 1 �1 1 1 �1

B2 1 �1 1 �1 1 �1 1 z

E1 1 �2� 0 ��2� �2 0 0 (x, y) 

E2 1 0 �2 0 2 0 0 (x2 � y2, xy)

E3 1 ��2� 0 �2� �2 0 0 (Rx, Ry)(xz, yz)

Td E 8C3 3C2 6S4 6�d

A1 1 1 1 1 1 x2 � y2 � z2

A2 1 1 1 �1 �1

E 2 �1 2 0 0 (x2 � y2, 2z2 � x2 � y2)

T1 3 0 �1 1 �1 (Rx, Ry, Rz)

T2 3 0 �1 �1 1 (x, y, z)(xy, xz, yz)
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Oh E 8C3 3C2 6C4 6C2� i 8S6 3�h 6S4 6�d

A1g 1 1 1 1 1 1 1 1 1 1 x2 � y2 � z2

A2g 1 1 1 �1 �1 1 1 1 �1 �1

Eg 2 �1 2 0 0 2 �1 2 0 0 (x2 � y2, 2z2 � x2 � y2)

T1g 3 0 �1 1 �1 3 0 �1 1 �1 (Rx, Ry, Rz)

T2g 3 0 �1 �1 1 3 0 �1 �1 1 (xy, xz, yz)

A1u 1 1 1 1 1 �1 �1 �1 �1 �1

A2u 1 1 1 �1 �1 �1 �1 �1 1 1

Eu 2 �1 2 0 0 �2 1 �2 0 0

T1u 3 0 �1 1 �1 �3 0 1 �1 1 (x, y, z)

T2u 3 0 �1 �1 1 �3 0 1 1 �1

C�v E 2C� ��v � � any angle

�� 1 1 1 z, x 2 � y2, z2

�� 1 1 �1 Rz

� 2 2 cos � 0 (x, y)(Rx, Ry)(xz, yz)


 2 2 cos 2� 0 (x2 � y2, xy)

� 2 2 cos 3� 0 
. . . .
. . . .
. . . .

�j 2 2 cos j� 0
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D�h E 2C� �C2 i 2S(��) ��v � � any angle

�g
� 1 1 1 1 1 1 x2 � y2, z2

�g
� 1 1 �1 1 1 �1 Rz

�g 2 2 cos � 0 2 �2 cos � 0 (Rx, Ry)(xz, yz)


g 2 2 cos 2� 0 2 2 cos 2� 0 (x2 � y2, xy)
. . . . . . .
. . . . . . .
. . . . . . .

�j,g 2 2 cos j� 2 (�1)j � 2 cos j� 0

�u
� 1 1 1 �1 �1 �1 z

�u
� 1 1 �1 �1 �1 1

�u 2 2 cos � 0 �2 2 cos � 0 (x, y)


u 2 2 cos 2� 0 �2 2 cos 2� 0
. . . . . . .
. . . . . . .
. . . . . . .

�j,u 2 2 cos j� 0 �2 �(�1)j � 2 cos j� 0
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Rh(3) E C� i S(��) � � � any angle

Dg
(0) 1 1 1 1 1

Dg
(1) 3 1 � 2 cos � 3 1 � 2 cos � �1

Dg
(2) 5 1 � 2 cos � � 2 cos 2� 5 1 � 2 cos � � 2 cos 2� 1

. . . . . .

. . . . . .

. . . . . .

Dg
(2j�1) 2j � 1 1 � �

j

��1

2 cos �� 2j � 1 1 � �
j

��1

(�1)� � 2 cos �� (�1)j

Du
(0) 1 1 �1 �1 �1

Du
(1) 3 1 � 2 cos � �3 �1 � 2 cos � 1

Du
(2) 5 1 � 2 cos � � 2 cos 2� �5 �1 � 2 cos � � 2 cos 2� �1

. . . . . .

. . . . . .

. . . . . .

Du
(2j�1) 2j � 1 1 � �

j

��1

2 cos �� �(2j � 1) �1 � �
j

��1

(�1)� � 2 cos �� �(�1)j
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Legend
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Appendix 5 Nuclear Properties

Nucleus Spin, I Nuclear g factor, gN
1H �

1
2

� 5.586 
2H 1 0.857 
3He �

1
2

� �4.2552 
6Li 1 0.8220 
7Li �

3
2

� 2.1709 
11B �

3
2

� 1.7923 
13C �

1
2

� 1.405 
14C 0
14N 1 0.40375 
15N �

1
2

� �0.5662 
16O 0
17O �

5
2

� �0.7575 
19F �

1
2

� 5.2567 
23Na �

3
2

� 1.4783 
25Mg �

5
2

� �0.3422 
27Al �

5
2

� 1.457 
28Si 0
29Si �

1
2

� �1.1105 
31P �

1
2

� 2.2634
32S 0
33S �

3
2

� 0.429 
35Cl �

3
2

� 0.5479 
37Cl �

3
2

� 0.4560 
39K �

3
2

� 0.26098 
42K 2 NA
43Ca �

7
2

� �0.3763 
47Ti �

5
2

� �0.3154
49Ti �

7
2

� �0.31547 
51V �

7
2

� 1.471 
53Cr �

3
2

� �0.3163 
55Mn �

5
2

� 1.3875
67Zn �

5
2

� 0.3502 
77Se �

1
2

� 1.068 
81Br �

3
2

� 1.5180 
87Rb �

3
2

� 1.8337
87Sr �

9
2

� �0.24289 
95Mo �

5
2

� �0.3654 
109Ag 1 �0.1305
111Cd �

1
2

� �1.1900 
125Te �

1
2

� �1.7744 
127I �

5
2

� 1.1236 
133Cs �

7
2

� 0.7368 
135Ba �

3
2

� 0.5581 
137Ba �

3
2

� 0.6243 
183W �

1
2

� 0.2338 
195Pt �

1
2

� 1.204 
201Hg �

1
2

� �1.1166
238U 0

Source: G.W.C. Kaye, T. H. Laby, Tables of Physical and Chemical
Constants, 15th ed., Longman/Wiley, New York, 1986.
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Chapter 1

1.2. A system is a part of the universe under observation. A
closed system is a system that does not allow for transfer of
matter to or from the surroundings. Energy, however, can
transfer between surroundings and a closed system.

1.3. (a) 1.256 � 104 cm3 (b) 318 K (c) 1.069 � 105 Pa 
(d) 1.64 bar (e) 125 cm3 (f) �268.9°C (g) 0.2575 bar

1.4. (a) 0°C is the higher temperature. (b) 300 K (c) �20°C

1.6. F(T) � 0.164 L�atm; V � 0.164 L.

1.7. F(p) � 1.04 � 10�4
�
K
L

�; T � 643 K.

1.12. (a) ptot � 1.25 atm (b) pHe � 0.250 atm, pNe �
0.100 atm (c) xHe � 0.200, xNe � 0.800

1.13. pN2
� 11.8 lb/in2, pO2

� 2.94 lb/in2

1.14. 0.0626 g CO2 per cm3

1.15. (a) 5 and 5 (b) 25 and 55 (c) �0.28 and �0.07, 
respectively

1.16. (a) 3y2 � �
y2

w
z3

� (b) �
3
3
w
2

2

y
z3

� � �
xy

w

2

2
z3

�

(c) 6xy � �
w
32

3z
y2

3

� � �
xy

w
z3

� (d) ��
3y

w

2z2

�

1.17. (a) ��
n
p
R
2
T

� (b) �
R
p
T
� (c) �

n
p
R
� (d) �

n
V
R
� (e) �

R
V
T
�

1.18. R is a constant, not a variable.

1.19. ��
�

�

p
���

�

�

V
T
��n,p�n,V

or ��
�

�

V
���

�

�

T
p
��n,V�n,p

1.21. TB(CO2) � 1026 K, TB(O2) � 521 K, TB(N2) � 433 K

1.23. Units on C are L2; units on C	 are L/atm (for molar
quantities).

1.25. In order of higher to lower predicted ideality: He, H2,
Ne, N2, O2, Ar, CH4, CO2

1.26. a � 2.135 � 105 bar�cm6/mol2. The cm6 unit comes
from the fact that 1 L � 1000 cm3, and there is an L2 term in
the original unit for a.

1.27. Under “normal” conditions of about 1 atm pressure
and 25°C, V(gas) is approximately 24,500 cm3. Therefore, the
B/V term is about 6.1 � 10�4 for H2, increasing its compress-
ibility by about 0.06%. For H2O, the compressibility is de-
creased by about 4.6%, an easily noticeable deviation from
ideality.

1.30. Nitrogen’s Boyle temperature is very close to room tem-
perature, implying that its second virial coefficient B is close to
zero. Therefore, N2 would be expected to act close to ideally
at room temperature.

1.32. ��
�

�

p
p
��T

� � , according to the cyclic rule. However,

it makes no sense to take the derivative with respect to a vari-
able being held constant, so no useful information can be ob-
tained from this expression. The original expression is also
mathematically useless, since we typically must find the varia-
tion in p with respect to variables other than itself.

1.33. 
 has units 1/(pressure), like 1/atm or 1/bar. � has units
1/(temp), or 1/K.

Chapter 2

2.1. (a) 900 J (b) 640 J

2.3. 0.932 L�atm or 94.4 J

2.4. �3.345 L�atm or �338.9 J

2.6. c � 0.18 J/(g�°C)

2.8. Final temperature � 24.4°C

��
�

�

T
p
��p

�

��
�

�

T
p
��p
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2.9. Approximately 1070 drops of the mass are required to
raise the temperature by 1.00°C.

2.13. Equation 2.10 is applicable to isolated systems (no trans-
fer of matter or energy). Equation 2.11 is applicable to closed
systems, which allow a transfer of energy between system and
surroundings.

2.14. �U � �70.7 J

2.15. w � �5180 J

2.16. w � �5705 J (reversible), w � �912 J (irreversible).
More work is obtained from the reversible expansion.

2.20. (a) wtot � 0 (b) �U � 0

2.21. (a) pfinal � 242 atm (b) w � 0, q � 1.44 � 106 J, 
�U � 1.44 � 106 J

2.22. When q � �w, �U � 0 even if final conditions aren’t
the same as initial conditions.

2.23. w � �2690 J, q � �1270 J, �U � 1420 J, �H �
�1420 J

2.24. �H � 2260 J, w � �172 J, �U � 2088 J

2.26. �U � �4450 J, pfinal � 714 atm

2.27. The units should be J/K, J/K2, and J�K, respectively.

2.33. T(He) � 36K (compared to 40 K measured experimen-
tally), T(H2) � 224 K (compared to 202 K measured experi-
mentally).

2.39. Process is adiabatic: w � �107 J, �U � �107 J

2.40. Tf � 186°C

2.44. The temperature decreases to about 55.0% of its orig-
inal temperature.

2.45. �H � 333.5 J, �U � 333.491 J � 333.5 J (4 sig figs).
Even in the case of H2O, which experiences a 9% change in
volume upon melting, the difference between �H and �U is
negligible for the solid-liquid phase change.

2.46. The system does 0.165 J of work.

2.48. 6.777 g of ice can be melted.

2.55. q � 31723 J, �U � �31723 J, w � 0, �H � �31735 J

2.56. q � 31723 J, �H � �31723 J, w � 0, �U � �31711 J

2.57. �H (�492.9 KJ) � �285.94 kJ, not much different than 
�H (25°C).

Chapter 3

3.1. (a) spontaneous (b) not spontaneous (c) spontaneous
(d) not spontaneous (e) spontaneous (f) spontaneous (g)
not spontaneous

3.3. e � 0.267

3.4. The individual steps must also be carried out under the
proper conditions (i.e., reversible & adiabatic, or reversible &
isothermal). If they are, then according to the data, e � 0.303.

3.5. Tlow � �36°C

3.6. e � 0.268

3.12. �S � 74.5 J/K

3.14. �S � 23.5 J/K

3.15. �S � 100.9 J/K

3.16. Greater than 0.368 J/K

3.18. �S equals zero if the process is reversible. However, in
most cases, release of compressed gas is irreversible, so the
change in entropy should be greater than zero.

3.22. �Smix � 4.6 J/K

3.23. �Smix � 2.20 J/K, �Sexpansion � 3.72 J/K; �Stotal � 5.92
J/K.

3.34. From lowest to highest entropy: Cdia  Cgra  Si 
Fe  NaCl  BaSO4

3.36. (a) �163.29 J/K (b) �44.24 J/K (c) �1074.1 J/K

3.39. The difference between the two values of entropy
change is 118.87 J/K. The difference is due to the phase of the
product, H2O.

3.40. �S � 37.5 J/K

3.41. �S � 9.09 � 105 J/K

Chapter 4

4.8. Since �A is less than or equal to the maximum amount
of work the system can do, calculate work for the given con-
ditions and recognize that �A must be less than that, since the
process is not reversible: �A  517 J.

4.9. The reaction can do up to 237.17 kJ per mole of H2O re-
acted.

4.10. �A � �536 J

4.11. w � �15,700 J, q � 15,700 J, �U � 0, �H � 0, �A �
�15,700 J, �S � 57.5 J/K

4.12. �97.7 kJ

4.13. �2.3 kJ and �138.3 kJ

4.17. �A � 0 (because it’s a state function)

4.23. (a) yes (b) yes (c) yes (d) yes (e) no

4.28. �U should change by approximately 4460 J.

4.34. 38.5 J/K

4.36. slope � �H

4.37. �G � �967 J

4.42. All are intensive variables.

4.44. (a) �1.91 � 103 J (b) �5.74 � 103 J

4.45. �29.7 J

Chapter 5

5.5. The minimum � is 0. The maximum � is 0.169 mol, as
determined by the limiting reagent HCl.

Chapter 5 807
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5.6. (a) � � 1.5 mol (b) � cannot equal 3 in this case, be-
cause H2 will act as a limiting reagent at � � 1.66 mol.

5.9. False. p° is the standard pressure, defined as 1 atm or 
1 bar.

5.10. �rxnG° � �514.38 kJ; �rxnG � �489.49 kJ

5.11. (b) �G° � �68 kJ (c) K � 8.2 � 1011

5.12. The system would not necessarily be at equilibrium, be-
cause the pi or pj values in equation 5.9 now have different
values. Only if there were the same number of moles on either
side of the chemical reaction would these partial pressures
cancel mathematically and the equilibrium constants have the
same value.

5.14. (a) �G° � �32.8 kJ (b) �rxnG � �29.4 kJ

5.15. �G will be zero when all partial pressures are approxi-
mately 1.29 � 10�3 atm.

5.16. p(H2) � 0.4167 atm, p(D2) � 0.0167 atm, p(HD) �
0.1667 atm, � � 0.0833 mol

5.18. (a) K � 6.96 (b) � � 0.393

5.19. �G° � 10.2 kJ, K � 1.63 � 10�2

5.21. (a) K �

(b) (c)

5.22. K � 0.310

5.23. p � 1.49 � 104 atm

5.24. K � 6.3 � 10�5

5.25. (a) �G° � 10.96 kJ (b) mH� � mSO4
2� � 6.49 � 10�3

molal, mHSO4
� � 3.51 � 10�3 molal

5.26. �H° � �77 kJ

5.27. A 5-K temperature drop, to 293 K, increases K by a fac-
tor of 2. Lowering the temperature to 282 K, a drop of 16 K,
increases K by a factor of 10. For �H � �20 kJ, the tempera-
tures necessary are 274 K and 232 K, respectively.

Chapter 6

6.1. (a) 1 (b) 2 (c) 4 (d) 2 (e) 2

6.3. FeCl2 and FeCl3 are the only chemically stable, single-
component materials that can be made from iron and chlo-
rine. Note that we are identifying single components as the
compound, not the elements that make up the compound.

6.6. (a) The equilibrium shifts toward the liquid phase. (b)
The equilibrium shifts to the gas phase. (c) The equilibrium
shifts to the solid phase. (d) No change in phase is expected
(unless there is a stabler solid allotrope or crystal form; metal-
lic tin is one example).

�
p
p
CO

°
2�

���
�
�H2C2O4

m
�

°
mH2C2O4�

�
�H�

m
�

°
mH�

��
�NO2

�

m
�

°
mNO2

�

�

���
�
�HNO2

m
�

°
mHNO2�

�
�Pb�2

m
�

°
mPb�2

����Cl�

m
�

°
mCl���

2

����
�
�HNO2

m
�

°
mHNO2�

6.7. By definition, every pure substance has only one normal
boiling point.

6.8. �dnliquid � dnsolid

6.12. ��/�T � �214 J/K

6.13. �S � 87.0 J/mol

6.14. MP (Ni) � 1452°C

6.15. MP (Pt) � 3820°C

6.17. Assumptions are that �H and �V are invariant over the
temperature range involved.

6.19. A pressure of ~7.3 atm will make the rhombic form of
sulfur the stable phase at 100°C.

6.21. (a) yes (b) yes (c) no (d) no (e) no (f) no (g) no 
(h) yes

6.23. A pressure of ~7.3 atm will make the rhombic form of
sulfur the stable phase at 100°C. This is very similar to the
pressure predicted in equation 6.10.

6.26. The Clausius-Clapeyron equation predicts decreasing va-
por pressures in the following order: tert-butanol (44.7 mmHg),
2-butanol (20.5 mmHg), isobutanol (13.6 mmHg), and 
1-butanol (9.6 mmHg). This order is also the lowest-to-
highest in normal boiling points of the isomers.

6.27. dp/dT � 7.8 � 10�6 bar/K, or about �
10

6
00
� mmHg per de-

gree K

6.28. p � 0.035 bar

6.30. p � 97 atm, corresponding to approximately 800 m
beneath the ocean surface.

6.38. Higher pressures are needed to have a stable liquid
phase for a compound that sublimes under normal pressure.
CO2 is an example.

Chapter 7

7.1. Degrees of freedom � 3

7.3. There would have to be five distinct phases (for example,
you could have three different solid phases).

7.7. Minimum amount of H2O is 6.39 � 10�3 mol (0.115 g);
minimum amount of CH3OH is 3.36 � 10�2 mol (1.08 g).

7.8. yH2O � 0.0928; yCH3OH � 0.907

7.9. a � 0.984

7.12. Total vapor pressure equals 124.5 torr.

7.13. pEtOH � 0.0693 torr

7.14. xMeOH � 0.669, xEtOH � 0.331

7.16. yC6H14
� 0.608, yC6H12

� 0.392 

7.18. Equation 7.24 is written in terms of the vapor-phase
composition, not the liquid-phase composition.

7.19. �mixG � �3380 J (for 2 mol of material), �mixS �
�11.5 J/K (for 2 mol of material)
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7.23. Determine the temperature of phase transition (melt-
ing, boiling) and compare it with pure components.

7.24. Benzene is poisonous and a suspected carcinogen.

7.25. Using a 50�50 mix of ethylene glycol and water lowers
its freezing point to below those of the individual components.

7.26. K � 1.23 � 106 mmHg � 1.62 � 103 atm � 1.64 �
103 bar

7.28. 2.4 � 103 Pa

7.29. Molarity � 0.00232 M; K � 2.43 � 109 Pa

7.30. (a) M � 0.00077 M (b) K � 7.3 � 109 Pa (c) Decrease

7.33. M � 5.08 M

7.34. xphenol � 0.79, suggesting a solubility of over 1900 g of
phenol per 100 g of H2O. The reason for this odd result is that
H2O and phenol do not form an ideal solution.

7.35. (a) 2.78 M (b) 29.7 g/100 mL, or about 1.80 M

7.39. MP (Fe, est) � 1515 K

7.45. xNa � 0.739

7.49. BP � 101.1°C, MP � �4.0°C, � � 52.5 bar

7.50. �(MP) � �9.8°C

7.53. Kf � 8.89°C/molal

Chapter 8

8.1. 2.50 � 10�8 C

8.2. (a) F � 3.54 � 1022 N (b) Charge equals 2.97 �
1017 C, which is approximately 3 � 1012 mol e�. This mass
of this many electrons is approximately 1.7 � 106 kg, 18 or-
ders of magnitude less massive than Earth.

8.3. (a) Charge equals 4.98 � 10�9 C and 9.96 � 10�9 C.
(b) E � 312 and 156 J/(C�m) (or V/m).

8.4. 1 C � 2.998 � 109 statcoulombs

8.5. F � 8.24 � 10�8 N

8.6. w � 1.602 � 10�19 J

8.8. (a) 4 MnO2 � 3O2 � 2H2O → 4MnO4
� � 4H�, E° �

�1.278 V, �G ° � 1480 kJ (b) 2Cu� → Cu � Cu2�, E ° �
0.368 V, �G° � �35.5 kJ

8.12. Only part b could provide enough energy to perform
the task.

8.13. E° values are shifted up or down by 0.2682 V depend-
ing on whether the calomel is used as the reduction reaction
or the oxidation reaction in the cell.

8.14. (a) E° � 1.401 V, �G � �270.3 kJ (b) E° � 0.0067 V,
�G � �2.6 kJ

8.17. [Zn2�]/[Cu2�] � ~3210

8.18. E � 1.514 V

8.19. (a) E° � 0.00 V (b) Q � [Fe3�]/[Fe3�] � �
0
0
.0
.0

0
8
1

� (c) E �
0.0375 V

8.20. K � 3.25 � 10�2

8.23. �Cp � �nF �2�
�

�

E
T
°

� � T �
�

�

2

T
E
2
°

��
8.31. [Cl�] � 1.38 � 10�6 M

8.33. (a) 0.0055 m (b) 0.075 m (c) 0.0750 m (d) 0.150 m

8.40. �� � 0.949, using equation 8.49

8.48. vi � 4.735 � 10�6 m/s, which is over 10,000 times its
radius per second

Chapter 9

9.1. L � �
1
2

�mz�2 � mgz; �mz�/�t � �mg

9.2. H � �
1
2

�mz�2 � mgz

9.4. (a) Newton’s (b) Lagrange’s or Hamilton’s

9.6. (a) 459,000 cm�1 (b) 2690 cm�1 (c) 3020 cm�1

9.7. The two compounds should share at least one constituent
element.

9.8. This “line” corresponds to n1 � �.

9.9. For the Lyman series, the series limit equals 109,700 cm�1.
For the Brackett series, the series limit equals 6856 cm�1.

9.10. (a) 105,350 cm�1 (b) 25,720 cm�1 (c) 5334 cm�1

9.12. e/m � 1.71 � 1011 C/kg (using Milliken’s data from 
the chapter). Modern measurements give this ratio as 1.76 �
1011 C/kg.

9.13. (a) It takes over 7300 e� to equal the mass of an He
nucleus.

9.14. (a) 5.67 � 104 W/m2 (c) 1420 W

9.15. T � 65 K, 115 K, and 205 K, respectively

9.16. 340 W

9.17. (a) 6.42 � 107 W/m2 (b) 3.91 � 1020 W (c) 1.23 �
1028 J per year

9.18. (a) 5.55 � 106 J/m4 (b) 1.06 � 107 J/m4 (c) 1.11 �
103 J/m4 (d) 69.4 J/m4

9.19. (a) 4996 Å

9.20. (a) 5.12 � 10�5 J/m4 (b) 90.5 J/m4 (c) 497.1 J/m4

(d) 47.4 J/m4

9.22. For T � 1000 K, dE � 0.101 W/m2

9.24. For Li, �min � 428 nm

9.25. (a) 1.82 � 105 m/s

9.29. r � 8.47, 13.2, and 19.1 Å, respectively

9.30. E � �1.367 � 10�19, �8.716 � 10�20, and �6.053 �
10�20 J, respectively

9.31. L � 4.22 � 10�34, 5.27 � 10�34, and 6.33 � 10�34 J�s,
respectively

Chapter 9 809
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9.36. �baseball � 1.49 � 10�34 m; �e� � 1.64 � 10�5 m (or
16.4 microns)

9.37. ve� � 7.27 � 106 m/s; vp� � 3.96 � 103 m/s

Chapter 10

10.2. Finite, continuous, single-valued, integrable

10.3. (a) yes (b) no; not bounded (Note that the fact that
the function is imaginary for negative values of x is not an
issue, as functions are not required to be real!) (c) no; not
continuous (d) yes, if it can be normalized (e) no; not bounded
(f) yes (g) no; not single-valued

10.4. (a) multiplication (b) addition (c) natural logarithm
(d) sine (e) exponential function (f) first derivative with re-
spect to x

10.5. (a) 6 (b) 9 (f) 12x2 � 7 � 7/x2

10.6. (a) 12x2 � 4x�3 (b) �2 (c) sin �
2
3
�x
� (d) �

�
1
10�
�

(e) ��
45x

1
2y2�

10.7. (�4, 5, 6) (b) (0, 4, 1)

10.8. (a) no (b) yes; eigenvalue � ��
�

4

2

� (c) no (d) yes;

eigenvalue � �m� (e) no (f) yes; eigenvalue � ��41
�

8

2

m
�2

� � 0.5�
10.13. p� � m�

10.14. �xbaseball � 3.80 � 10�34 m, �xe� � 8.04 � 10�2 m

10.15. �x � 4.71 � 10�9 m

10.17. �t � 2.65 � 10�12 s

10.18. (a) P � 0.0000526 (b) P � 0.0200 (c) P � 0.0400
(d) P � 0.0200 (e) P � 0.0000526

10.19. (a) � � �
�

1
2��
�eim� (b) P � �

1
3

�

10.28. E � �
�

2

2

m
�2

�, �
�

2

2

m
�2

� � 0.5

10.30. (a) E � �
�

2

2

m
K2

� (b) E � �
�

2

2

m
K2

� � k (c) E � �
8
�

m

2�

a

2

2�

10.33. length � 5.74 Å

10.34. 4, 9, and 99 nodes, respectively

10.37. P � 0.0200, 0.000008, 0.01998, 0.000028

10.42. 	x
 � 0.5a

10.43. 	p
 � 0

10.45. p� � 3�, 	p�
 � 3�

10.50. The five lowest energies are, in order, �(1, 1, 1), 
�(1, 1, 2), �(1, 1, 3), �(1, 2, 1), and �(2, 1, 1) (where the
quantum numbers are listed in order of the dimensions given).

10.51. Degeneracy first appears when one of the quantum
numbers equals 2 [i.e., E(1, 1, 2) � E(1, 2, 1) � E(2, 1, 1)].
The first appearance of “accidental” degeneracy occurs for
E(3, 3, 3) � E(5, 1, 1) � E(1, 5, 1) � E(1, 1, 5).

10.54. 	x
 � a/2, 	y
 � b/2, 	z
 � c/2.

10.58. (a) 1 (b) 0 (c) 16h2/8ma2 (d) 0 (e) 1 (f) 0 (g)
h2/8m (1/a2 � 1/b2 � 1/c2) (h) 0

Chapter 11

11.1. 335.8 N/m

11.2. k � 1515 N/m

11.9. (a) �E � 6.63 � 10�34 J (b) � � 3.00 � 108 m

11.10. (a) �E � 3.976 � 10�20 J (b) � � 5.00 � 10�6 m
(c) infrared region

11.11. � � 4.36 � 1014 s, � � 6.88 � 10�7 m

11.14. 	px
 � 0 for both �(0) and �(1)

11.16. (a) zero (b) zero (c) probably not identically zero 
(d) zero (e) indeterminate (f) indeterminate; it depends on
the form of the potential energy, V

11.17. x � ���(2n �

k
1)h�
��1/2

11.18. 9.109 � 10�31 kg versus (a) 9.104 � 10�31 kg, (b)
9.107 � 10�31 kg, (c) ~9.109 � 10�31 kg

11.20. (a) � � 6.504 � 1013 s�1 (b) 6.359 � 1013 s�1

11.21. Approximately 2660 cm�1

11.24. E(0) � 0, E(1) � 2.68 � 10�19 J, E(2) � 1.07 � 10�18 J,
E(3) � 2.41 � 10�18 J, E(4) � 4.28 � 10�18 J

11.26. �(0) � �
�

1
2��
�, �(1) � �

�
1
2��
�(cos � � i sin �), �(2) �

�
�

1
2��
�(cos 2� � i sin 2�), �(3) � �

�
1
2��
�(cos 3� � i sin 3�)

11.27. (b) E(2) � E(1) � 62.1 cm�1

11.32. 	r
 cannot be evaluated for Y2
�2 because r is not a vari-

able of the spherical harmonic.

11.34. (a) E � 7.506 � 10�22 J (b) Ltot � 2.583 � 10�34 J�s
(c) The z component of the total angular momentum could
be �2�, �1�, 0, 1�, or 2�.

11.35. (b) E(2) � E(1) � 41.3 cm�1. (Compare with 11.27.)

11.36. �E (� � 5 → � � 6) � 5.95 � 10�19 J, equivalent to
� � 334 nm (cf. 328 nm experimentally).

11.41. V � �4.36 � 10�18 J

11.42. V � �1.92 � 10�57 J

11.49. � � 4 is not allowed for n � 4.

11.50. EH � �1312 kJ/mol, EHe � �5249 kJ/mol.
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11.51. P � 0.68% for a 1s electron.

11.53. Radial, angular, and total nodes respectively: (a) 1, 0,
and 1 for �2s (b) 2, 0, and 2 for �3s (c) 1, 1, and 2 for �3p

(d) 0, 3, and 3 for �4f.

11.57. �2px
� �

4�
1

2�
���

�

2Z
a

3

3��
1/2

�
Z
a
r
�e�Zr/a sin � cos �

11.60. 	r
 � 1.5a for �1s, where a � 0.529 Å

Chapter 12

12.2. �(3d�2) � �
1

1
62
���

�

Z
a

3

3��
1/2

�
Z
a

2

2
r2
�e�Zr/3a sin2 � � e�2i� � � or

�
1

1
62
���

�

Z
a

3

3��
1/2

�
Z
a

2

2
r2
�e�Zr/3a sin2� � e�2i� � �

12.3. e�/e� annihilation � 1.637 � 10�13 J or 9.860 �
1010 J/mol

12.4. Yes, � and � spin functions are orthogonal.

12.5. (b) ms � 0; ms � �2, �1, 0, �1, or �2; ms � ��
3
2

�, ��
1
2

�,
��

1
2

�, or ��
3
2

�.

12.6. (a) negative (b) positive (c) negative (d) negative 
(e) positive

12.7. Ĥ � ��
2
�

�

2

�(�2
e1 � �2

e2 � �2
e3) � �

4�

3
�

e

0

2

r1
� � �

4�

3
�

e

0

2

r2
� �

�
4�

3
�

e

0

2

r3
� � �

4�

e
�

2

0r12
� � �

4�

e
�

2

0r13
� � �

4�

e
�

2

0r23
�

not separable

12.8. (a) E � �5.883 � 10�17 J (b) E � �4.412 � 10�17 J

12.11. �Li� � �
�
1
2�
�[(1s1�)(1s2�) � (1s2�)(1s1�)]

12.12. H has only a single electron, so there is no antisym-
metry with respect to exchange to consider.

1s1� 1s1� 2s1� 2s1�
1s2� 1s2� 2s2� 2s2�

12.13. (a) �Be � �
�

1
24�
� �1s3� 1s3� 2s3� 2s3��

�1s4� 1s4� 2s4� 2s4��

1s1� 1s1� 2s1� 2s1� 2px,1�
1s2� 1s2� 2s2� 2s2� 2px,2�

�B � �
�1

1
20�
� �1s3� 1s3� 2s3� 2s3� 2px,3��

1s4� 1s4� 2s4� 2s4� 2px,4�
�1s5� 1s5� 2s5� 2s5� 2px,5��

(The last column could be 2px�, or 2py� or �, or 2pz� or �.
Thus, there are six possible determinants for a B atom.) (b) C
has six different possible determinants, as does F.

12.14. C has 720 terms in its antisymmetric wavefunction;
Na has 39,916,800, and Si has 87,178,291,200 terms.

12.16. (a) excited (b) ground (c) excited (d) excited

12.17. (a) Li (1s2 2p1) will have six possible arrangements:
1s2 2px

1�, 1s2 2px
1�, 1s2 2py

1�, 1s2 2py
1�, 1s2 2pz

1�, and 1s2 2pz
1�.

12.18. The correction to the energy won’t be an exact cor-
rection even if the integral can be solved analytically because
the wavefunctions in the integral are for the ideal system, not
the real system.

12.19. 	Eperturb
 � 3c/(4�2), where c is the anharmonicity
constant.

12.20. A correction like cx3 makes the integrand an odd func-
tion, making the numerical value of the integral exactly zero.

12.21. a3 � �15kma2/(16�2h2)

12.24. (a) no (unless both A & B equal zero, which is a triv-
ial wavefunction anyway) (b) no (c) no (d) yes (e) no (f) no
(g) no. Most of these trial functions do not satisfy the bound-
ary conditions for a particle-in-a-box.

12.34. The Born-Oppenheimer approximation is more applic-
able to Cs2, whose nuclei move more slowly than those in H2.

12.35. �E � �
2(H

(
1

1
1S

�
12

S
�
2
12

H
)

12)
�

12.40. For example, B: (�g1s)2(�u*1s)2(�g2s)2(�u*2s)2(�u2px,
�u2py)

12.42. No, F2
2� should not exist according to MO theory.

Chapter 13

13.2. (a) E, C2 (principal axis), 4C2	 (perpendicular to princi-
pal axis), �h, 2�v, i, S2 (b) E, C2, 2�v (c) E, several �’s

13.3. (b) C2v

13.5. (a) Complete group (b) Complete group (c) Incom-
plete group: E missing (d) Incomplete group: C2

3 (the inverse
of C3) missing

13.6. C2 � � �, C3 � � �
13.7. (a) Sn � � � (b) i � � �
13.8. (a) 4 classes, order � 4 (b) 8 classes, order � 8 (c) 12
classes, order � 24 (d) 3 classes, order � 4 (e) 2 classes, or-
der � 2 (f) 5 classes, order � 24

13.10. (a) S3
4, which is classed with the other S4 symmetry

operations in the Td character table (b) C2, which is its own
inverse

13.11. (a) �v	 (b) �h (c) S6 (d) S4 (e) C3
4

13.12. Symmetry elements do not necessarily follow the com-
mutative law (this is more apparent for larger groups).

13.13. Porphine has D2h symmetry as a molecule; substitut-
ing metal ions for the two H’s inside the porphine ring, and
the symmetry becomes D4h.

0
0

�1

0
�1

0

�1
0
0

0
0

�1

sin �
cos �

0

cos �
�sin �

0

0
0
1

�
�
2
3
�

�

��
1
2

�

0

��
1
2

�

��
�
2
3
�

�

0

0
0
1

�1
1
0

1
1
0
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13.14. C2v

13.17. (a) C2 (b) D2d (c) C1 (e) C2v

13.18. (a) C2v (b) Cs (c) D3d (e) D3h

13.19. (a) C2v (b) D3h (c) C2v

13.20. (a) C�v (b) C2v (c) D3h

13.21. (a) C4H4, C8H8, C12H12, and C20H20. The final Platonic
solid cannot exist as a hydrocarbon. All but C4H4 have been
synthesized by organic chemists.

13.22. (a) yes (b) yes (c) yes (d) no (e) no (f) no (g) no
(h) no (i) yes

13.23. c, e, f, g, k, l, and m will not have permanent dipole
moments.

13.24. (a) C1 (i.e., only the E symmetry element is present)
(b) Still Cs, so no longer chiral (for rules in determining chi-
rality, consult an organic chemistry textbook)

13.30. At least one threefold (or higher) rotational axis is 
necessary to have an E irreducible representation.

13.31. The irreducible representations are from different point
groups, and have different symmetry classes and orders.
Therefore, the great orthogonality theorem does not apply.

13.32. In C�v and D�h, any value of � is possible for a proper
or improper rotation.

13.33. �(f orbitals in Oh) � A2u � T1u � T2u

13.34. (a) Sin � has E, �(xy), S2 (the y-axis), and i. (b) Cos �
has E, C2 (the y-axis), and 2�’s (the xy and the yz planes).

13.35. The symmetry elements in this case would be the
same as for cos � in answer 13.34b.

13.36. Either C�v or D�h

13.39. (a) 3 A � 2B (b) A1 � A2 � 2E

13.40. (a) A2 (b) B1 � B2 � E1 (c) E	 (d) A1u

13.41. Of the first four answered above, all of the integrals of
functions with those symmetry labels would be identically zero
because they do not contain the all-symmetric irreducible rep-
resentation (A1 or A	).

13.42. Yes, a transition can occur, because in the C4v point
group the combination E � E � B2 does contain A1.

13.43. The transition is forbidden because Dg
(0) � Dg

(0) � Du
(1)

does not contain Dg
(1).

13.44. The d orbitals have E � T2 irreducible representations;
E is doubly degenerate and T2 is triply degenerate.

13.51. The three closely spaced lines are the three wave-
functions that make up the triplet state (see equation 13.22).

13.55. sp2

13.57. 2A1	 � A2� � E	

Chapter 14

14.1. There is no rotating dipole when a linear molecule ro-
tates about its molecular axis.

14.2. (a) exactly zero (b) exactly zero (c) may be nonzero
(d) exactly zero

14.3. (a) 3.00 � 108 s�1 (b) 6.28 � 1012 s�1 (c) 3.798 �
1014 s�1 (d) 1.575 � 105 s�1

14.4. No, it is not allowed.

14.5. � � 3.728 � 10�5 m, c � 3.00 � 108 m/s, E � 5.328 �
10�21 J

14.7. �(�m) � �~ � 10,000

14.8. E � 0, 2.58 � 10�22 J, 7.74 � 10�22 J, 1.55 � 10�21 J

14.9. (a) prolate symmetric top (b) spherical top (c) spher-
ical top (d) asymmetric top (e) asymmetric top (f) asym-
metric top (g) oblate symmetric top (h) linear

14.10. B � 5.91 � 10�24 J � 0.2979 cm�1

14.11. B(SF6) � 1.80 � 10�24 J, B(UF6) � 1.10 � 10�24 J.
The difference is due to the larger bond distances in UF6; the
S and U atoms themselves do not contribute to the moment
of inertia because they are at the intersection of all symmetry
elements.

14.12. A � B � 1.015 � 10�22 J (� 0.196 cm�1), C �
8.368 � 10�23 J (� 0.237 cm�1)

14.14. E � 0, 1.674 � 10�22 J, 2.030 � 10�22 J, 5.021 �
10�22 J, 6.090 � 10�22 J

14.16. b, c, e, h, i, and j will have pure rotational spectra.

14.17. (a) allowed (b) forbidden (c) forbidden (d) forbid-
den (e) forbidden (f) allowed (g) forbidden (h) allowed

14.19. r � 3.28 Å

14.20. r � 1.60 Å

14.21. 450.5, 900.9, 1351.2, and 1801.6 GHz

14.22. (a) Jmax � 4 (b) Jmax � 7

14.23. T � 1600 K

14.29. D � 4.82 � 10�2 cm�1

14.30. Total degrees of freedom, vibrational degrees of free-
dom: (a) 6, 1 (b) 9, 3 (c) 180, 174 (d) 69, 63 (e) 54, 48

14.32. CH3D should have more IR-active vibrations due to
loss of symmetry.

14.35. �~(est) � 1215 cm�1 (not a good approximation!)

14.36. 1661.6 cm�1

14.43. De(HF) � 47,550 cm�1, a(HF) � 2.26 � 1010 m�1 �
2.26 Å�1

14.45. xe(HBr) � 0.02097, xe�e � 55.57 cm�1
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14.50. (a) same number of vibrations (b) C2H2 should have
a less number of unique vibrations (c) CH4 should have fewer
unique vibrations. (d) PF5 should have fewer unique vibra-
tions.

14.51. (a) proper: E, C3’s; improper: �v’s. (b) proper: E, C3’s,
C2’s; improper: S4’s, �d’s.

14.53. (a) 6 (c) 3 (d) 6

14.54. (a) 2 (b) 6 (c) 8 (d) 6 (e) 2

14.55. The different symmetries will give a different number
of IR-measurable vibrations: tetrahedral symmetry gives 2 IR-
active vibrations; square planar symmetry (i.e., D4h) yields 3
IR-active vibrations.

14.58. 618 cm�1 � �2 � �1, 2337 cm�1 � �3 � �2 � 2�1,
and 3715 cm�1 � 2�1 � �3 or �2 � �3.

14.63. r � 1.00 Å 

14.66. There is no such thing as a P(0) line. P branches are
�J � �1, and a molecule cannot go from J � 0 to J � �1.

Chapter 15

15.1. Possible excited states can only have E1u symmetry.

15.3. R(D) � 109,660 cm�1, R(T) � 109,670 cm�1

15.4. 15,231 cm�1, 20,561 cm�1, 23,029 cm�1, 24,369 cm�1

15.6. �E � 0

15.7. (a) L � 2, 1, 0; ML � �2, �1, 0, 1, 2 (depending on
the value of L); S � 1, 0; MS � �1, 0, 1 (depending on the
value of S ); J � 3, 2, 1, 0 (depending on the values of L and
S ); MJ � �3, �2, �1, 0, 1, 2, 3 (depending on the value
of J ).

15.8. MS � ��
1
2

� or ��
1
2

� for the H nucleus. If the nucleus and
electron angular momenta are coupled, MS can equal �1, 0,
or 1 for the complete atom.

15.9. Aluminum has a single p electron in its highest-filled
subshell.

15.10. (a) � � 2, m� � �2, �1, 0, 1, 2, j � �
5
2

� (mj � ��
5
2

�, ��
3
2

�,
��

1
2

�, �
1
2

�, �
3
2

�, or �
5
2

�) or j � �
3
2

� (mj � ��
3
2

�, ��
1
2

�, or �
1
2

�)

15.11. �E � 4 � 10�22 J

15.12. (a) 2S1/2 (b) 2P1/2 (c) 2D3/2

15.14. 3P0 is the term symbol of the ground electronic state
of C atoms, and is understood to have an energy of 0 with re-
spect to itself.

15.17. 3F2, 3F3, 3D1, 3D2, 3D3, and 3G3

15.20. Heteronuclear diatomic molecules—and their wave-
functions—do not have a center of inversion symmetry ele-
ment, which is required to use gerade and ungerade labels.

15.21. 3 g
�, 3 g

�, 1�g

15.29. There will be no change in the Hückel approximation
of ethylene because the hydrogen atom (any isotope) does
not contribute to the � orbitals.

15.30. For cyclobutadiene: � � � 0

15.31. Cyclopentadiene can accept an electron and have the
maximum possible decrease in energy due to delocalization.
That is, with 6 � electrons, Cp� is aromatic.

15.34. (a) C4n�2H4n�2, n � 0, 1, 2, . . . can be aromatic. 
(b) C4n�1H�

4n�1, n � 1, 2, . . . can be aromatic. (c) C4nH4n
�2,

n � 1, 2, . . . can be aromatic.

15.35. Heating a laser-active material populates energy levels
only thermally, eventually establishing an excited-state popu-
lation dictated by the Boltzmann distribution. Population in-
versions won’t be achieved.

15.39. ~1.60 � 1025 photons per second

15.41. 1.20 � 108 W

15.42. Because the ratio of spontaneous emission to stimu-
lated emission increases proportional to �3 (see equation
15.33), as the frequency increases, spontaneous emission dom-
inates over stimulated emission. This makes it progressively
more difficult to construct a laser for shorter and shorter wave-
lengths of light.

Chapter 16

16.2. 0.06 gauss

16.3. (a) Magnetic dipole would be the same. (b) See
Example 16.2b.

16.7. (a) �E � �2.18 � 10�23 J, 0 J, and �2.18 � 10�18 J

16.8. 0.357 T

16.9. �E (MJ � ��
3
2

� → MJ � ��
3
2

�) � 2.23 � 10�27 J (�1.12 �
10�4 cm�1)

16.11. g � 1.50115 vs. 1.5

16.12. �E � �3.10 � 10�24 J, �1.03 � 10�24 J, �1.03 �
10�24 J, and � 3.10 � 10�24 J

16.15. 5

16.18. 0.388 T

16.19. �~ � 0.325 cm�1

16.22. 7 hyperfine absorptions at 3716, 3638, 3560, 3482,
3404, 3326, and 3248 gauss

16.23. The resonant transitions should occur at the same
wavelength.

16.24. a, d, f, and g have nonzero nuclear spins and so will
show NMR spectra under the right resonant conditions.

16.25. (a) 50.5 T (b) 8.34 T (c) 19.1 T

16.28. �E � �1.432 � 10�26 J, �4.774 � 10�27 J, �4.774 �
10�27 J, and �1.432 � 10�26 J

16.29. �E � �14.41 MHz

�
0
�

� � E

0
�

� � E
�

�
� � E

�
0

� � E
�
0
�
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16.30. Boron NMR are more complex for two reasons: (a)
There are two common isotopes of B, 10B (~20%) and 11B
(~80%); and (b) they have different nuclear spins (3 and �

3
2

�, re-
spectively) and different magnetogyric ratios.

16.31. 154 T

Chapter 17

17.1. One per box: 4 ways. Any number per box: 24 ways.

17.2. 24 ways

17.3. ln (1,000,000!) � 1.281 � 107. Therefore, 1,000,000! �
e1,281 � 107

17.5. ln (5000!) � 37,591, which is the same value as given
in the text (not from Stirling’s approximation)

17.7. On average, there are 25 insects per month over the
course of a year.

17.8. (a) 113,400 (b) 6 (c) 20

17.11. Most probable distribution: 1 ball in each of three
boxes (P � 0.50)

17.15. N1/N0 � 0.38

17.17. 13.2 K for 1�2 E1�E0, 38.9 K for 1�1 E2�E0, 122.5 K for
1�1 E3�E2

17.19. G is always higher than A.

17.28. The development of statistical thermodynamic equa-
tions is based on the statistical behavior of individual particles.
Thus, the masses of those individual particles (i.e., atoms or
molecules) must be used, not the molar mass.

17.31. !(25 K) � 1.745 � 10�10 m, !(500 K) � 3.903 �
10�11 m

17.32. At 120 K, krypton is very close to its liquefaction tem-
perature and is not acting like a real gas.

17.33. (a) 164.9 J/(mol�K) (b) 210.2 J/(mol�K) 
(c) 174.9 J/(mol�K)

17.34. 620 J

17.36. 94,100 K

Chapter 18

18.1. (a) 1 (b) 1 (c) 2

18.4. qelect � 8.96 (not much change from 7.82 at 298 K)

18.5. Minimum qelect � 1

18.6. qelect (Ni, 298 K) � 5.971 vs. qelect (Ni, 1000 K) �
5.991; qelect (Ni, 5.0 K) � 4.688 vs. qelect (Ni, 298 K) � 5.971

18.7. qelect � 5.89 � 1075

18.8. qelect � 10128

18.9. (a) qelect � 13.1 (b) Room temperature has enough
thermal energy (� RT) to break the He2 “bond,” so it proba-
bly won’t exist at 300 K.

18.11. qH2
/qD2

� 1/�2�

18.12. qvib (250 K) � 1.3 � 10�18; qvib (500 K) � 1.3 � 10�9

18.13. qvib � 1.8 � 10�20

18.14. 216 (2), 313 (3), 459, and 779 (3) cm�1 (degenera-
cies in parentheses)

18.15. Minimum qnuc � 1, minimum qrot � 1 (from equation
18.26)

18.16. T � 374 K

18.17. qH2
/qD2

� 1/2

18.18. Even-numbered J states are associated with antisym-
metric nuclear wavefunctions; odd-numbered J states are as-
sociated with symmetric nuclear wavefunctions.

18.20. �r should increase because centrifugal distortions will
increase the moment of inertia I of the molecule.

18.21. qrot (NH3) � 74.8

18.25. For HCl, 298 K: E � �407.8 kJ/mol, H � �397.9 kJ/mol,
G � �456.0 kJ/mol, S � 186.5 J/mol�K

18.34. (a) 35.8 N/m or 3.58 mdyn/Å (b) 150 cm�1

Chapter 19

19.2. 6.66 � 10�21 J; 4.01 kJ/mol

19.4. (a) 1305 m/s (b) 285 m/s

19.6. p � 3.68 � 10�21 atm vavg � 184 m/s

19.7. 213 K, 853 K, 1920 K, 3410 K, 5330 K

19.8. 3 � 1012 K

19.13. ratio � ��
3
2

��

19.14. (a) Using v � 15 m/s and dv � 10 m/s, G(v) �
8.24 � 10�5. (b) Using v � 1005 m/s and dv � 10 m/s, 
G(v) � 5.69 � 10�4. (c) Using v � 10005 m/s and dv �
10 m/s, G(v) � 0.

19.15. T � 5 � 10�7 K

19.20. � � 2.6 � 1012 m

19.22. � � 7.65 � 10�10 m

19.23. For a given gas, density and temperature are the only
variables needed to determine an average collision frequency.

19.24. z � 2110 s�1

19.31. 2.02 � 1014 per second

19.32. p � 664 bar or 4.98 torr

19.33. 2.85 � 10�6 g of Ar per second

19.36. (a) 0.844 cm2/s
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Chapter 20

20.2. rate � 4.06 � 10�7 mol/s

20.3. All rates are 406 � 10�7 mol/s

20.4. rate � (1.12 � 10�4 M�2�s�1)[A]2[B]1[C]0

20.7. rate � (3.34 � 10�2 M�1 �s�1)[A]1[B]1

20.8. [A] � 1.33 � 10�2 M

20.9. M�3�s�1

20.12. 35.2 s

20.13. (a) 32.4 s (b) 356 s

20.14. (a) 32.7 s (b) 397 s

20.17. �
�d

d
[
t
A]

� � k[A]3; �
2[

1
A]t

2� � �
2[

1
A]20
� � kt; plot �

2[
1
A]t

2� vs. t,

slope � k and intercept � �
2[

1
A]20
�.

20.18. (a) t1/2 � �
2k[

3
A]20
� (b) t1/2 � �

3[
8
A
k
]20�

20.19. slope � �k; intercept � [A]0

20.21. t � �
[A

k
]0�

20.26. slope � k/2.303

20.28. K � 2.9 � 101

20.31. Initial ratio of (A � B)/(B � C) � 8.98. Equilibrium 
ratio cannot be determined without knowing the rates of the
reverse reactions.

20.33. slope � �(k1 � k2)

20.43. EA � 51.9 kJ

20.44. A � 1.2 � 1055 s�1

20.45. A � 1.21 � 10�11 s�1

20.46. (a) order � 2 (b) k (100°C) � 2.08 � 10�6 M�1�s�1

20.49. (a) EA � 159 kJ/mol (b) A � 1.8 � 1038 s�1

20.60. V � 2.6 � 10�6 mol/s

20.63. I2 should proceed most easily.

Chapter 21

21.6. (a) 3 unit cells (b) 2 unit cells (c) 6 unit cells (d) 1
unit cell (See Table 21.1 for the crystal systems that fit the
given requirements.)

21.9. rmax � (�3�4)a

21.12. 4 formula units; face-centered cubic

21.13. FeS2

21.14. d � 2.784 g/cm3

21.21. � � 8.2° and 16.5°

21.22. � � 12.3° (or 25.2° or 39.7° or 58.5°)

21.23. NA � 6.0320 � 1023

21.30. (a) 15.5° (b) 22.3°

21.31. fcc, a � 4.933 Å

21.32. KBr diffracts the given X rays at � � 11.7°, 13.5°,
19.3°, 22.8°, 23.9°, and 27.9°.

21.35. The sample could be MgO, since the ions in this com-
pound are isoelectronic and would have similar scattering
factors.

21.36. (a) fcc, NaCl-type (b) sc (c) sc

21.37. (a) rutile (b) fluorite (c) rutile

21.40. coordination number � 8

21.41. coordination number (Ca, fluorite) � 8, coordination
number (F, fluorite) � 4; coordination number (Ti, rutile) � 6,
coordination number (O, rutile) � 3.

21.43. (a) K� (g) �F� (g) → KF (crystal)

21.46. (a) 399 kJ/mol (coulombic) vs. 636 kJ/mol (lattice 
energy)

21.47. " � 0.307 Å

Chapter 22

22.2. 4.355 � 105 dyn/cm

22.3. (a) 1.36 � 10�4 J

22.6. (a) �T � 10.8°C

22.7. �  ~4 � 10�2 erg/cm2

22.15. (a) 9600 dyn/cm2 � 0.72 torr

22.18. (b) pvapor � 25.06 mmHg

22.20. 49.9°

22.24. (a) 3.988 Å

22.30. 3.54 � 108 molecules of gas per cubic centimeter

22.31. ~0.01 s

22.32. 7.5 � 108 L

22.33. (a) heterogeneous (b) heterogeneous (c) homogeneous

Chapter 22 815
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A
acceleration, 653
action, 262
activated-complex theory, 719–725
activation energy, 702–703, 723–724
activity, in chemical equilibrium, 129–132
activity coefficient, 131, 226, 231–233
adenosine triphosphate reaction, thermodynamics, 61–62
adiabatic systems

description, 33, 41, 48–49
entropy, 75, 77
Joule-Thomson coefficients, 42–46, 103–104

adsorption, 783–787
allotrope, 143
alloys, 188, 191
aluminum, Grotrian diagram, 534
amalgams, 188
amino acids, equilibria, 135–136
ammonia, vibrational modes, 498
amorphous solids, 732
angular momentum

central force problem, 352–358, 365
description, 333–334, 338
electronic spectra, 521–525, 534–539
magnetic spectra, 565–566, 569
orbital momentum, 373, 522–525, 535
quantum number, 357, 521–525
rotational spectroscopy, 470
spin angular momentum, 371–372, 522–525, 572
term symbols, 526–534
three-dimensional rotation, 342, 347–351

angular nodes, 362
anharmonicity constant, 491, 493–494
annealing, 780
anode, 215
antibonding orbital, 409–411
anti-Stokes lines, 512
aromaticity, 546–548

Arrhenius, Svante, 234, 702
Arrhenius equation, 703–705, 722–723
associated Laguerre polynomials, 354
atmospheric pressure, units of measure, 3
atomic spectra, see also spectroscopy

classical mechanics, 248–251
atomic structure, classical mechanics, 251–253
atomic theory, see quantum mechanics
atomization

description, 774
energy, 623

atoms, see also specific atoms; specific principles
Aufbau principle, 382–386
LCAO-MO theory, 405–409
linear variation theory, 398–402
overview, 370, 413
Pauli exclusion principle, 377–382, 413, 532, 537, 630–631
perturbation theory, 386–394, 402–403
spin, 371–374
spin orbitals, 377–382
variation theory, 394–397, 402–403

attraction, charged particles, 207–209, 404
Aufbau principle, 382–386
average values, 293–296, 329
Avogadro’s law equation, 6
Avogadro’s number, 80, 210, 609
azeotropes

description, 180–181
in solid/solid solutions, 191

B
Balmer, Johann, J., 250
bar, see also pressure

isobaric change, 42
units of measure, 3

Baron Kelvin, 7
Basov, Nikolai, 554
batteries, 215
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Becquerel, Antoine-Henri, 253
Belousov, Boris, 718
Belousov-Zhabotinsky reaction, 718–719
bending force constants, 496
benzene

aromaticity, 547
electronic spectroscopy, 546–548
Hückel approximation, 546–547
symmetric top, 467–468
vibrational modes, 483, 499

benzonitrile, Stark effect, 478
Berzelius, Jöns J., 783
binary systems, see multicomponent systems
biochemical reactions

electric potential, 218
enzyme-catalyzed reactions, 713–714
thermodynamics, 60–62, 85

blackbody
classical mechanics, 254–257
quantum mechanics, 257–262

Blodgett, Katherine, 777
Bohr, Niels H., 262
Bohr frequency condition, 462
Bohr magneton, 564, 568
Bohr radius, 264, 361
Bohr theory of the hydrogen atom, 262–267
boiling

boiling point elevation, 194, 196
Clapeyron equation, 151
description, 51–53, 143
heat of vaporization, 51–53, 146
normal boiling point, 144

Boltzmann, Ludwig, 79–80, 586, 601, 651
Boltzmann distribution, 593–602, 663, 666
Boltzmann’s constant

in Debye-Hückel Theory, 230–234
description, 80, 599, 603
in rotational spectroscopy, 477

bonding, metals, 732–733
bonding orbital

antibonding orbital, 409–411
description, 409
valence bond theory, 446–450

Born, Max, 282, 404
Born-Haber cycles, 758
Born interpretation, 281–283
Born-Oppenheimer approximation

for electronic transitions, 539
for simple molecules, 403–405

bosons, 379, 631–633
boule, 192–193
boundary condition, 290
Boyle’s gas law equation, 6, 15, 50
Boyle temperature, 13, 15–16

Brackett series, 250
Bragg, William H., 741
Bragg, William L., 741
Bragg’s law of diffraction, 741–744, 749–750
Bravais lattices, 735–737
Bray, W. C., 718
Brownian motion, 676
bubble point line

description, 174
in liquid/liquid systems, 174–178
in nonideal two-component liquid solutions, 180–183

Bunsen, Robert W., 248–249
butadiene, � orbitals, 544

C
calorie, 30
capillary action, 775–777
carbon dioxide

lasers, 556–557
rovibrational spectrum, 509, 556

carbon tetrachloride, vibrational modes, 501–502, 513
Carnot, Nicolas, 68
Carnot cycle

Clausius’s theorem, 73, 90
description, 68–72
Helmholtz energy determination, 94

Cartesian coordinates, spherical polar coordinates
compared, 341–342

catalysis
coverage, 783–788
enzyme-catalyzed reactions, 713–714
surface effects, 783–788

cathode, 215
cavity radiation, 254
central force problem, hydrogen atom, 352–358, 365
centrifugal distortions, in spectroscopy, 479–481
chain reactions, kinetics, 714–719
chain rule, for partial derivatives, 18, 659
change, see also reactions

chemical change, 37, 53–58, 81–85
energy change, 29, 32–34, 67
enthalpy change, 37, 53–60
entropy change, 75–77, 81–85, 102–103
heat change, 29
isobaric change, 42
isochoric change, 42, 92
non-spontaneous changes, 67
phase change, 50–53
state functions, 33–42
temperature change, 58–60

charge
attraction, 207–209, 404
description, 207–209, 561–564
in helium atom, 374–375, 396–397
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repulsion, 207–209, 374, 404
spectroscopy, 561–564
variation theory, 394–397

Charles’s gas law equation, 6
chemical change, see also reactions

enthalpy, 37, 53–58
entropy, 81–85

chemical equilibrium
amino acid equilibria, 135–136
condensed phases, 129–132, 143–144
equilibrium constant, 125–129, 132–135, 218–225, 642,

696
Gibbs free energy relationship, 123–128
in multiple-component systems, 168
overview, 118–129, 136–137
reaction quotient, 124–125, 137
in single-component systems, 143–145
solutions, 129–132
statistical thermodynamics, 642–644

chemical potential
description, 108–110, 114, 225, 604
electrochemical potential, 211–213, 215, 218–225
equilibria, 159–162
Gibbs free energy relationship, 108–110, 114, 118, 121,

604
in ionic solutions, 225–227
in liquid/liquid systems, 170–171
in single-component systems, 144–145, 159–162
statistical thermodynamics, 604

chemisorption, 787–788
Clapeyron, Benoit P. E., 149
Clapeyron equation, for single-component system

equilibria, 148–152, 155
classical mechanics

atomic spectra, 248–251
atomic structure, 251–253
blackbodies, 254–257
Bohr’s theory of the hydrogen atom, 262–267
de Broglie equation, 267–269, 280
harmonic oscillator, 316–318, 624
laws of motion, 242–248, 280, 316–318, 653
light properties, 253–257
overview, 241–242, 269–270
photoelectric effect, 253
unexplainable phenomena, 248

classical turning point, 328
Clausius, Rudolf, 73
Clausius-Clapeyron equation, for single-component system

equilibria, 152–155
Clausius’s theorem, 73, 90
closed systems, 4, 32
colligative properties, in multicomponent systems, 193–202
collisions

average collision frequency, 669–670

collision frequency factor, 705
collision theory, 705–706, 718–719
gas particles, 666–671
hard-sphere model, 666

combination
combination bands, 503
combination formula, 588
linear combination, 391, 443–446

competing reactions, kinetics, 696–702
composites

eutectic composition in solid/solid solutions, 190–192
solid solutions compared, 189

compressibility, isothermal compressibility of gases, 20, 94,
102

compressibility factor Z
description, 10
fugacity determination, 112

Compton, Arthur, 261
Compton effect, 267
concurrent reactions, kinetics, 696–702
condensation, 52, 143
Condon, Edward U., 540
conductance, electrochemistry, 234–237
conjugate momenta, 244
consecutive reactions, kinetics, 696–702
constant-pressure heat capacity, 41–43
constant-volume heat capacity, 39
constructive interference, 742
contact angle, 775
coordinates

Cartesian coordinates, 341–342
spherical polar coordinates, 334, 341–342

coordination number, 754
corrosion, 217–218
Coulomb, Charles-Augustin, 207
Coulomb integrals, 449
Coulombs law, 208–209, 225, 756
coverage, in catalysis, 783–788
critical point, 155–156
cross-derivative equality requirement, 100
cryoscopic constant, 195
crystals

Bravais lattices, 735–737
crystal field theory, 534
densities, 738–740
lattice energies, 755–759
Miller indices, 744–752, 778–780
overview, 731–764, 760–761
in semiconductors, 759–760
statistical thermodynamics, 644–648
structure determination, 740–744
types of, 732–733
unit cells, 733–738, 752–755
X-ray diffraction, 741–752
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current, electrical, 561–564
cyclic rule, for partial derivatives, 19–20, 44, 103–104

D
Dalton, John, 184, 251
Daniell, John, 215
Daniell cell

description, 215
instantaneous electric potential, 218–219

Davisson, Clinton J., 268
de Broglie, Louis, 267
de Broglie equation, 267–269, 280
de Broglie wavelength, 611–612
Debye, Peter J. W., 230, 646
Debye frequency, 646–648
Debye-Hückel theory, 230–234, 646
decay

description, 548
free induction decay, 581
nuclear decay, 688–690, 701–702

de Coulomb, Charles-Augustin, 207
degeneracy

doubly-degenerate wavefunctions, 591
nondegenerate perturbation theory, 386–394, 402–403
particle-in-a-box solution, 303–306, 605
in quantum mechanics, 303–306, 605, 618, 631–632

degrees of freedom
description, 158–159, 167
in multiple-component equilibria, 167–168
rotational degrees of freedom, 482–483
vibrational degrees of freedom, 482–483, 500, 541

de Laplace, Pierre-Simon M., 773
delocalization energy, 545
density

crystal lattice effects, 738–740
description, 738
power density of light, 254, 256

dependent variables, in multiple-component equilibria, 168
deposition, 143
desorption, 784, 786
destructive interference, 742
Dewar, James, 46
dew point line

description, 174
in liquid/liquid systems, 174–178
in nonideal two-component liquid solutions, 180–182

diatomic molecules
electronic partition functions, 621–623
electronic spectroscopy, 534–539
rotational motion, 466, 474, 479, 628–634
rotational temperature, 629–630
vibrational motion, 483–484, 491, 496–497, 623–628
vibrational temperature, 625
wavefunctions, 536, 630

dielectric constant, 209
diffraction

Bragg’s law, 741–744, 749–750
grating, 740
Miller indices, 744–752, 778–780
X-ray diffraction, 741–752

diffusion
diffusion coefficient, 674
Fick’s first law of diffusion, 674, 676
kinetic theory of gases, 671–677
self-diffusion, 675

dipole moment
description, 487–489, 495–496, 499
electric dipole operator, 463
magnetic dipoles, 561–564
nuclear magnetic dipole, 572
polarizability, 513
varying dipole moment, 488

Dirac, Paul A. M., 372
dissociation limit, 621–622
distillation, see fractional distillation; simple distillation
Dupré, A., 775
dynamic equilibrium, 120, 125, see also chemical

equilibrium

E
ebullioscopic constant, 196
efficiency

Carnot cycle, 68–73, 94
temperature relationship, 68–72

effusion, kinetic theory of gases, 671–677
eigenvalue equation

description, 277–279, 290
in rotating systems, 347–352
in spin angular momentum of electrons, 372

Einstein, Albert, 259, 262, 550–551, 676
Einstein temperature, 645–646
electric charges, 561–564
electric current, 561–564
electric dipole operator, 463
electric field E, 209
electric potential, 209
electrochemical potential

biochemical reactions, 218
description, 211–212
electromotive force, 212–213, 215
nonstandard potentials, 218–225

electrochemistry
charges, 207–209, 374–375
conductance, 234–237
Debye-Hückel Theory, 230–234, 646
energy, 210–215
equilibrium constants, 218–225
ionic transport, 234–237
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ions in solution, 225–230
nonstandard potentials, 218–225
overview, 206–207, 237
quantum mechanics, see quantum mechanics
standard potentials, 215–218
work, 210–215

electrolyte, 234
electrolytic cell, 215
electromagnetic spectrum

classical properties, 253–257
description, 463–466
photoelectric effect, 253, 259
in spectroscopy, see spectroscopy

electromotive force
description, 212–213, 215
in nonstandard conditions, 219–221

electron configuration, 383–384
electronic partition functions, statistical thermodynamics,

617–623
electronic spectroscopy, see also rotational spectroscopy;

vibrational spectroscopy
angular momenta, 521–525, 534–539
aromaticity, 546–548
diatomic molecules, 534–539
fluorescence, 548–550
Franck-Condon principle, 539–541
Hückel approximations, 543–546
hydrogen atom, 520–522
lasers, 550–556
multiple electrons, 526–534
overview, 519–520, 556
� electron systems, 543–546
phosphorescence, 548–550
polyatomic molecules, 541–543
Russell-Saunders coupling, 526–534
selection rules, 520
vibrational structure, 539–541

electron paramagnetic resonance, 571
electrons

atomic structure, 251–253
Aufbau principle, 382–386
Bohr’s theory of the hydrogen atom, 262–267
Born-Oppenheimer approximation, 403–405, 539
particle nature, 268
Pauli exclusion principle, 377–382, 413, 532, 537,

630–631
perturbation theory, 386–394, 402–403
quantum mechanics, see quantum mechanics
spin, 371–374
spin orbitals, 377–382
wavefunction, 274–275, 281–283

electron spin resonance, 373, 567–571
electroplating, 215
endothermic processes, 38, 51, 53

energy
atomization energy, 623
Bohr’s theory of the hydrogen atom, 262–267
changes, 29, 32–34, 67
constant-volume condition, 601
delocalization energy, 545
density, 254, 256
electrochemistry, 210–215
energy of activation, 702–703, 723–724
enthalpy, see enthalpy
Gibbs free energy, see Gibbs free energy
heat change, 29, 58–60
Helmholtz energy, 89, 92–96, 114, 604
internal energy, see internal energy
lattice energies of ionic crystals, 755–759
linear variation theory, 398–402
Maxwell relationships, 99–103
molar energy of gases, 656
natural variable equations, 96–99
quantum energy, 257–258
quantum mechanics, see quantum mechanics
Schrödinger equation, see Schrödinger equation
states, see quantum numbers
term symbols, 526–534
thermodynamics, see thermodynamics
transfer, 4
variation theory, 394–397
wavefunctions, see wavefunctions
work relationship, 210–215

ensemble
Maxwell-Boltzmann distribution, 593–602
in microsystems, 590–593
total energy, 600, 602

enthalpy
in biochemical reactions, 60–62, 85
in chemical change, 37, 53–58
constant-pressure heat capacity, 41–43
derivation from partition functions, 638–639
description, 36–38
internal energy relationship, 601
in ionic solutions, 228–230
isenthalpic processes, 43, 90–91
Joule-Thomson coefficients, 42–46, 103–104
lattice energies of ionic crystals, 755–759
of mixing, 78–79
natural variable equations, 91, 96–99
in nonstandard chemical reactions, 220–221
for phase transitions, 55–57, 146–147
spontaneity determination, 90–91
temperature change, 58–60

entropy
absolute entropy, 80–81
change, 75–77, 81–85, 102–103
of chemical reactions, 81–85
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entropy (continued)
in crystals, 644
derivation from partition functions, 638–639
description, 66
disorder concept, 602–603
in ionic solutions, 228–230
isentropic processes, 90–91
of mixing, 78–79
natural variable equations, 96–99
in nonstandard chemical reactions, 220–221
order, 79–81, 602
for phase transitions, 147–148, 160
second law of thermodynamics, 72–79, 81–85, 602
spontaneity determination, 90
statistical thermodynamics, 601–603, 610–611
third law of thermodynamics, 81–85, 602–604

enzyme-catalyzed reactions, steady-state approximation,
713–714

equations of state, 5–9, 11, 100–101, 105, see also specific
states

equilibria
chemical equilibrium, see chemical equilibrium
chemical potential, 159–162
Clapeyron equation, 148–152
Clausius-Clapeyron equation, 152–155
description, 119–121
dynamic equilibrium, 120, 125
electrochemical equilibrium, 211–215
equilibrium constants, 125–129, 132–135, 218–225,

642–644, 696
Gibbs phase rule, see Gibbs phase rule
kinetics, 694–696
in multiple-component systems, 166–205
natural variables, 159–162
overview, 141, 162
partition functions, 640–644
phase diagrams, 154–159, 174–175
phase transitions, 143, 145–148
in single-component systems, 141–165
static equilibrium, 120
statistical thermodynamics, 640–644
thermal equilibrium, 4, 553

ethylene, Hückel approximation, 545
Euler’s theorem, 335
eutectic composition, in solid/solid solutions, 190–192
exact differentials, 35, 100
excitation, 548
exothermic processes

description, 38, 51, 53
phase transitions, 147

expansion coefficient
gases, 20
in perturbation theory, 391–392

experiment, 5, 708, see also specific experiments
explosions, kinetics, 717

extensive variables, 216
Eyring, Henry, 722
Eyring equation, 722–723

F
Faraday, Michael, 46
Faraday’s constant, 210–212
fermions, 379, 631–632
Fick’s first law of diffusion, 674, 676
films, 766, 777–778
fingerprint regions, in vibrational spectroscopy, 504–506
first Bohr radius, 264, 361
first law of thermodynamics

chemical changes, 53–58
enthalpy, see enthalpy
Gibbs free energy, 93
heat capacities, 31, 39–41, 46–50
internal energy, see internal energy
Joule-Thomson coefficients, 42–46, 103–104
limitations, 66–68
overview, 24, 62
phase changes, 50–53
state functions, 33–36, 38–42
temperature change, 58–60
work-heat relationship, 24–32

first-order reactions, rate laws, 686–694
fluorescence, 548–550
forbidden transition, 463
force

bending force constants, 496
charged particles, 207–209
electromotive force, 212–213, 215, 219–221
hydrogen atom central force problem, 352–353, 365
Newton’s second law of motion, 242–243, 653–654
work relationship, 24–25

force constant, 316, 484
formation reactions, 54–55
Fourier transform, in nuclear magnetic resonance, 581
fractional distillation

of azeotropes, 181
description, 176–178

Franck, James, 539–540
Franck-Condon principle, 539–541
Franklin, Benjamin, 207
free energy, see Gibbs free energy
free energy of formation, 95
free induction decay, 581
free radicals, 707, 714–715
freezing

description, 143
freezing point depression, 194–195

frequency
Bohr frequency condition, 462
Debye frequency, 646–648
description, 465
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group frequency regions in vibrational spectroscopy,
504–506

threshold frequency, 253
Freundlich isotherm, 786
frictional proportionality constant, in ionic solutions,

235–236
fugacity

description, 110–114
in liquid/liquid systems, 170

fundamental equation of chemical thermodynamics, 114
fusion

description, 51, 143
heat of fusion, 51, 146

G
galvanic cell, 215
gamma function, 673
gamma rays, 464
Gamow, George, 298
gases

catalysis, 783–788
heat of adsorption, 787
liquid/gas systems, 183–184, 194
phase diagrams, 154–159, 174–175
vaporization, see vaporization
vapor pressure, see vapor pressure

gas laws
Boyle’s gas law, 6, 15, 50
Charles’s gas law, 6
collisions, 666–671
description, 1, 21
diffusion, 671–677
effusion, 671–677
first law of thermodynamics, 26–28
ideal gas constant, 7, 9, 553
ideal gas law, 7, 609, 668
kinetic theory of gases, 47, 651–679
monatomic gases, 604–608
nonideal gases, 10–17
partial derivatives, 8–10, 18–21, 96–99
partition function, 604–608
postulates, 652–656
pressure, 652–656
second law of thermodynamics, 77–78
velocity distributions, 656–666
zeroth law of thermodynamics, 1–23

gauss, 561
Gauss, Karl F., 319
Gaussian-type function, 319
Germer, Lester H., 268
Gibbs, J. Willard, 159, 586
Gibbs, Josiah W., 93
Gibbs free energy

for chemical equilibrium, 123–128

chemical potential relationship, 108–110, 114, 118, 121,
604

derivation from partition functions, 638–639
description, 89, 92–96, 114
in electrochemical reactions, 210–213, 216–217, 221
Eyring equation, 722–723
for ionic solutions, 228–229
isothermic processes, 95, 147
in single-component systems, 159–160
spontaneity determination, 92–93, 108
statistical thermodynamics, 601–602, 610–611
surface tension relationship, 768–771, 779
variation with temperature, 105–108

Gibbs phase rule
for multiple-component systems, 166–169, 189
for single-component systems, 154–159
for solid/solid solutions, 189

Gibbs surface energy, 768–771, 779
glass

annealing, 780
properties, 732

glass pH electrode, 223
Graham, Thomas, 677
Graham’s law, 677
grating, 740
great orthogonality theorem, in group theory, 438–441, 537
gross selection rule, 472, 513, 520
Grotrian, Walter, 533
Grotrian diagrams, 533–534
ground state

configuration of elements, 387
for electron orbitals, 382, 539
in harmonic oscillators, 323
partition functions, 618–619

group frequency regions, in vibrational spectroscopy,
504–506

group theory
great orthogonality theorem, 438–441, 537
in vibrational spectroscopy, 498

H
half-cells, 215
half-life, rate laws, 688–690, 701–702
half-reactions, redox reactions, 214–216
Hamilton, William R., 244
Hamiltonian function

description, 244–248, 285–286, 300
for helium atom, 374–375
kinetic energy relationship, 245, 286–287
in three-dimensional rotations, 341–342
in variation theory, 395–396

hard-sphere model, gas particle collisions, 666
harmonic oscillator

classical harmonic oscillator, 316–318, 624
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harmonic oscillator (continued)
description, 315–329
hydrogen atom, 332–333
ideal harmonic potential, 491
motion equations, 245–246
quantum-mechanical harmonic oscillator, 318–324,

484–487
vibration treatment, 484–485, 490–491, 624
wavefunctions, 321–329

heat
adiabatic systems, 33, 41, 48–49
Carnot cycle, 68–73, 94
changing temperatures, 29, 58–60
description, 4, 24–32
heat of adsorption, 787
heat of formation, 55–57
heat of fusion, 51, 146
heat of sublimation, 146
heat of vaporization, 51–53, 146
mechanical equivalent, 30
specific heat, 31, 40

heat capacity
constant volume heat capacity, 39
of crystals, 644–645
derivation from partition functions, 638–640
entropy change, 75–76
first law of thermodynamics, 31, 39–42, 46–50

Heisenberg, Werner, 269, 279–280
Heisenberg’s uncertainty principle, 279–281
Heitler, W., 446
helium

charge, 374–375, 396–397
Grotrian diagram, 533
lasers, 556
partition function, 604–608
Schrödinger equation, 374–376, 413
wavefunctions, 376–378, 396

Helmholtz energy
description, 89, 92–96, 114
isothermic processes, 92–94
statistical thermodynamics, 601–602, 604, 610–611

Henry, William, 184
Henry’s law, in liquid/gas systems, 183–184
Hermite, Charles, 279, 326
Hermite polynomials, 326–327
Hermitian operators, 279
Hertz, Heinrich, 253
Hess, Germain H., 54
Hess’s law

description, 54, 56, 61
entropy changes, 82
in redox reactions, 216–217

Hinshelwood, Cyril N., 786
Hooke’s-law harmonic oscillator, see Harmonic oscillator

Hook’s law
motion equations, 245–246, 316
vibration treatment, 484

Hückel, Erich, 230, 543
Hückel approximations, in electronic spectroscopy, 543–546
Hund’s rule, 384, 532, 538
hybrid orbitals, symmetry, 450–456
hydrochloric acid, vibrational parameters, 490–491,

507–508, 625
hydrogen atom

Bohr’s theory, 262–267
central force problem, 352–353, 365
electronic spectrum, see electronic spectroscopy
electron spin, 373
harmonic oscillation, 332–333
quantum mechanics, 262–267, 352–365, 373
quantum numbers, 373, 380
symmetry, 442–443, 633
wavefunctions, 355–365

hyperfine coupling, 569–571

I
ideal gas constant, 7, 9, 553
ideal gases

description, 7
fugacity, 110–113
Gibbs free energy variation, 108
ideal gas law, 7, 609, 668
Joule-Thomson coefficients, 44–45, 103–104
kinetics, 651–679
real gases compared, 11

identity element, 420
immiscibility, 182
inertia, moment of inertia, 334
inertial axes, 467–468
inexact differentials, 35
infrared radiation

characteristics, 464–465
fingerprint regions, 504–506
vibrational symmetry, 494–496, 499–501, 503

integrals
Coulomb integrals, 449
overlap integrals, 398, 407
resonance integrals, 407
symmetry, 441–443, 449

integrated rate laws, 686–688
intensive variables, 216
interface effects, 771–777
interference, 742
internal energy

chemical changes, 37, 53–58
in electrochemistry, 210
enthalpy relationship, 601
first law of thermodynamics, 32–33
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ideal liquid solution mixing, 178–179
Joule-Thomson coefficients, 42–46, 103–104
natural variable equations, 96–99, 104
spontaneity determination, 90
state function, 33–36, 38–42

internal pressure, 28
interstitial defect, 759
inversion

center of inversion, 420
inversion temperature, 45

ions
Debye-Hückel Theory, 230–234, 646
electrochemistry, see electrochemistry
ionic crystals, 732, 734, 752–759
ionic radius, 752–754
ionic strength, 228, 230–234
ionic transport, 234–237
ions in solution, 225–234
ion-specific electrodes, 223–224
pH, see pH
redox reactions, see redox reaction

ion-specific electrodes, 223–224
irreversible processes, 28, 74–75
isenthalpy, 43, 90–91
isobaric change, 42
isochoric change

description, 42
Helmholtz energy, 92

isoelectric point, 136
isolated systems, 32, 75
isothermic processes

description, 28–29, 41, 58
entropy, 72–73, 92
Freundlich isotherm, 786
fugacity, 111
Gibbs free energy, 95, 147
Helmholtz energy, 92–94
isothermal compressibility, 20, 94, 102
Langmuir-Hinshelwood isotherms, 786
Langmuir isotherms, 784, 786
phase transitions, 146–147

J
Jeans, James H., 256
j-j coupling scheme, 526
joule, 30
Joule, James P., 30
Joule-Thomson coefficients

description, 42–46, 103–104
inversion temperature, 45

K
Kamerlingh-Onnes, Heike, 46
Kelvin, 7
Kepler, Johannes, 752

kinetic energy
Hamiltonian function relationship, 245, 286–287
harmonic oscillation, see harmonic oscillator
Lagrange’s equations, 246
overview, 243, 259, 652, 656
quantum mechanics, 259
two-dimensional rotations, 334

kinetics
chain reactions, 714–719
collisions, 666–671
consecutive reactions, 696–702
diffusion, 671–677
effusion, 671–677
equilibrium for simple reactions, 694–696
mechanisms, 706–710
oscillating reactions, 714–719
overview, 47, 651–652, 677, 680–681, 725
parallel reactions, 696–702
postulates, 652–656
pressure, 652–656
radioactivity, 688–690, 701–702
rate laws, 681–694
steady-state approximation, 710–714
temperature dependence, 683, 702–706
thermodynamics compared, 680, 694
transition-state theory, 719–725
velocity distributions, 656–666

kinetic theory of gases
collisions, 666–671
diffusion, 671–677
effusion, 671–677
overview, 47, 651–652, 677
postulates, 652–656
pressure, 652–656
velocity distributions, 656–666

Kirchhoff, Gustav R., 248–249, 257
Knudsen, Martin, 674
Knudsen cells, 674
Kohlrausch, Friedrich, 237
Kohlrausch’s law, 237

L
Lagrange, Joseph L., 243
Lagrange function, 244, 246–248
Laguerre polynomials, 354
Landé, Alfred, 567
Landé g factor, 566–567
Langmuir, Irving, 777
Langmuir-Blodgett film, 777
Langmuir-Hinshelwood isotherms, 786
Langmuir isotherms, 784, 786
Langrange’s method of undetermined multipliers, 595
Laplace-Young equation, 773, 776
Laplacian operator, 299, 374
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lasers, 550–557
lattice structure, see crystals
law of corresponding states, 645–646
laws, see also specific laws

description, 3
laws of motion

Brownian motion, 676
classical mechanics, 242–248, 280, 316–318, 653
collisions, see collisions
description, 242–248
Franck-Condon principle, 539–541
momentum, see momentum
Newton’s laws of motion, 242–243, 653–654
Pauli exclusion principle, 377–382, 413, 532, 537,

630–631
quantum mechanics, see quantum mechanics
rotation, see rotation
spin, see spin
vibration, see vibrational spectroscopy

LCAO-MO theory, 405–409
Le Chantelier’s principle, 133
Lewis, Gilbert N., 228, 261
light

characteristics, 464
classical properties, 253–257
photoelectric effect, 253, 259
quantum mechanics, see quantum mechanics

linear combination
in perturbation theory, 391
symmetry-adapted linear combinations, 443–446

linear momentum, 334
Lineweaver-Burk plot, 714
liquids

boiling point elevation, 194, 196
catalysis, 783–788
Clapeyron equation, 151
description, 51–53, 143
heat of vaporization, 51–53, 146
liquid/gas systems, 183–184, 194
liquid/liquid systems, 169–179, 193, 201
multicomponent systems, 169–188
normal boiling point, 144
normal melting point, 143
oscillating reactions, 718
phase diagrams, 154–159, 174–175, 753
phase transitions, 143, 145–148
solutions, see solutions
surface interface effects, 771–777
surface tension, 766–771

London, F. W., 446
Lord Kelvin, 7
Lorentz, Hendrik, 564
Lotka, Alfred, 718

M
macroscopic rules, 24
Madelung constant, 757–758
magnetic resonance imaging, 560, 582
magnetic spectroscopy

electric charges, 561–564
electron spin resonance, 567–571
magnetic dipoles, 561–564
magnetic inductions, 561–564
nuclear magnetic resonance, 571–582
overview, 560–561, 582–583
Zeeman spectroscopy, 560, 564–567

magnetogyric ratio, 574
magnetons

Bohr magneton, 564, 568
nuclear magneton, 572

Maiman, Theodore, 554
Marsden experiment, 251–252
mass, see also momentum

classical turning point, 328
harmonic oscillation, 330–333
reduced mass, 330–333, 339
three-dimensional rotations, 341–347
two-dimensional rotations, 333–341

Maxwell, James C., 101, 252, 586, 651
Maxwell-Boltzmann distribution, 593–602, 663, 666
Maxwell relationships

application, 103–105
derivation from natural variable equation, 162
description, 99–103

mean free path, 667–669
mechanical equivalent of heat, 30
melting, 143
metals, see also specific metals; specific properties

alloys, 188, 191
amalgams, 188
annealing, 780
bonding, 732–733
corrosion, 217–218
electroplating, 215

methane, vibrational modes, 488
methylacetylene, infrared absorption spectra, 503–504
Michaelis-Menten equation, 714
microscopic rules, 24
microsystems, statistical thermodynamics, 590–593
microwaves, 464–465, 514
Miller indices, 744–752, 778–780
Millikan, Robert, 251
Millikan oil drop experiment, 251–252
mixing

enthalpy, 78–79
entropy, 78–79
internal energy of ideal liquid solutions, 178–179

molality, of solutions, 193–194, 226–227
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molar energy, 656
molar heat capacity, 40, 47–48
molar volume, 10
molecularity, 707
molecules

Born-Oppenheimer approximation, 403–405, 539
centrifugal distortions, 479–481
diatomic molecules, see diatomic molecules
electronic partition functions, 621–623
fingerprint regions, 504–506
LCAO-MO theory, 405–409
orbital properties, 409–415
overview, 370, 413
polyatomic molecules, see polyatomic molecules
property derivation from partition functions, 637–640
rotation, see rotation
rotational-vibrational spectroscopy, 506–511
symmetry, 427–430, 482–483, 631
vibration, see vibrational spectroscopy

mole fraction
description, 78
vapor-phase mole fractions, 173–174

moment of inertia, 334
momentum

angular momentum, see angular momentum
average values, 294–295, 329
classical definition, 280
conjugate momenta, 244
de Broglie wavelength relationship, 267–269, 280
harmonic oscillation, see harmonic oscillator
linear momentum, 334
three-dimensional rotations, 341–347
two-dimensional rotations, 333–341

monatomic gases
kinetics, 656
partition functions, 604–608

Morse potential, 492–493
motion, see laws of motion
multicomponent systems, see also single-component systems

colligative properties, 193–202
description, 142
equilibria, 166–205
Gibbs phase rule, 166–169, 189
Henry’s law, 183–184
liquid/gas systems, 183–184, 194
liquid/liquid systems, 169–179, 193, 201
liquid/solid solutions, 185–188, 194
nonideal two-component liquid solutions, 179–183
overview, 166, 201–202
solid/solid solutions, 188–193

N
natural variables

for enthalpy, 91

equations, 96–99, 104, 144
Helmholtz energy, 92
in single-component systems, 144, 159–162
in state functions, 90

negative deviation, in vapor pressure, 179
Nernst, Walther H., 218
Nernst equation, in nonstandard conditions, 218–223
Newton, Isaac, 242
Newton’s laws of motion, 242–243, 653–654
nodes, 362
nondegenerate perturbation theory, 386–394, 402–403
nonideal gases

description, 10–17
fugacity, 110–113

non-spontaneous changes, 67
normality

description, 236
orthonormality, 307

normalization, 283–285, 303, 335–336, 435
nuclear decay, kinetics, 688–690, 701–702
nuclear magnetic dipole, 572
nuclear magnetic resonance, 571–582
nuclear magneton, 572
nuclear partition functions, statistical thermodynamics,

617–621, 633

O
observables

in quantum mechanics, 276–279, 288, 347–352
rotating systems, 347–352

occupation numbers, 588
Ohm’s law, 236
Onsäger, Lars, 237
Onsäger equation, 237
operators, 276–279, 288
Oppenheimer, J. Robert, 404
orbital properties

Aufbau principle, 382–386
Hückel approximations, 543–546
hybrid orbitals, 450–456
LCAO-MO theory, 405–409
molecular orbitals, 409–415
orbital angular momentum, 373, 522–525, 535
� electron systems, 543–546
spin angular momentum compared, 373
spin orbitals, 377–382
symmetry, see symmetry
term symbols, 526–534

order, entropy, 79–81, 602
orders, in rate laws, 683–685
orthogonality

orthogonality theorem, 438–441, 537
wavefunctions, 306–307

orthonormality, 307
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oscillating reactions, kinetics, 714–719
osmotic pressure

applications, 200–201
description, 196–201

overlap integrals, 398, 407
overtone spectroscopy, 489, 503–504
oxidation-reduction reaction, see redox reaction

P
parallel reactions, kinetics, 696–702
partial molar quantity, chemical potential, 108–110, 114
partial pressures, in liquid/liquid systems, 171–175
particle-in-a-box solution

degeneracy, 303–306, 605
description, 288–295
monatomic gases, 605–606
three-dimensional solution, 299–303
in variation theory, 395–396

partition functions
description, 586, 596–600
electronic partition functions, 617–623
equilibria, 640–644
molecular partition function, 628
molecular properties derivation, 637–640
monatomic gases, 604–608
nuclear partition functions, 617–621, 633
rotational partition function, 634–636
of a system, 636–637
in transition-state theory, 721–722

Pascal, units of measure, 3
path-dependent qualities, 34–35, 77
path-independent qualities, 34
Pauli, Wolfgang, 378
Pauli exclusion principle, 377–382, 413, 532, 537, 630–631
� electron systems, Hückel approximations, 543–546
permeability

membranes, 196–197, 200
of a vacuum, 561

permittivity of free space, 208
perturbation theory

in quantum mechanics, 386–394, 402–403
variation theory compared, 402–403

pH
glass pH electrode, 223
ion-specific electrodes, 223–224
isoelectric point, 136
measurement, 223–224

phase changes, first law of thermodynamics, 50–53
phase diagrams

description, 201–202
for liquid/liquid systems, 174–177
in nonideal two-component liquid solutions, 180–183
for single-component systems, 154–159
for solid/solid systems, 190–192

phase rule, see Gibbs phase rule
phase transitions

enthalpy, 55–57, 146–147
entropy, 147–148, 160
Gibbs free energy, 146–147
phase diagrams, 154–159, 174–175
in single-component systems, 143, 145–148

phonon, 548
phosphorescence, 548–550
photoelectric effect

classical mechanics, 253
quantum mechanics, 259

photons
description, 464
fluorescence, 548–550
lasers, 550–556
quantized vibrational energy levels, 511

photosynthesis, thermodynamics, 60–61
physisorption, 787–788
Planck, Max K. E. L., 257
Planck’s constant, 258, 485
Planck’s radiation law, 258–259, 550
point groups, in symmetry operations, 420–435
polar coordinates

description, 334
spherical polar coordinates, 341–342

polarizability, dipole moments, 513
polyatomic molecules

electronic spectroscopy, 541–543
Franck-Condon principle, 541
rotational motion, 466–467, 634–636
vibrational motion, 481–484, 493–494, 500, 541, 626–627

polymorphism, 143
position, Heisenberg’s uncertainty principle, 279–281
position operators, 278, 288
positive deviation, in vapor pressure, 179
postulates

kinetic theory of gases, 652–656
in quantum mechanics, 273, 309–310

potential energy
Born-Oppenheimer approximation, 403–405, 539
central force problem, 353
description, 244
Hamiltonian function relationship, 245
harmonic oscillation, see harmonic oscillator
Lagrange’s equations, 246
lattice energies of ionic crystals, 755–759
Morse potential, 492–493
particle-in-a-box solution, 288–292, 299–303
tunneling, 296–299
vibration treatment, 484–485, 491

power, definition, 255
power density, of light, 254, 256
power flux, 259
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pressure
chemical equilibrium relationship, 125–129
Clapeyron equation, 148–152, 155
common units, 2–3
constant-pressure heat capacity, 41–43
critical pressure, 155–156
equations of state, 5–9, 105
equilibria in single-component systems, 141–165
equilibrium constant, 643
films, 777–778
fugacity relationship, 113
gradients, 672
Henry’s law, 183–184
internal pressure, 28
isobaric change, 42
Joule-Thomson coefficients, 42–46, 103–104
kinetic theory, 655–656
in liquid/gas systems, 183–184
osmotic pressure, 196–201
partial pressures, 171–175
phase diagrams, 154–159, 174–175
SI units, 2–3
standard temperature and pressure, 7–8
surface interface effects, 771–777
vapor pressure, see vapor pressure

principal inertial axes, 467–468
principal quantum number, 355–356
principle of equal a priori probabilities, 592
Prokhorov, Alexander, 554
propagating reactions, kinetics, 714–719
proportionality constant, 257
pseudo rate constant, 692–693

Q
quadratic equation, 401
quantum mechanics

Aufbau principle, 382–386
average values, 293–296, 329
Bohr’s theory of the hydrogen atom, 262–267
Born interpretation, 281–283
Born-Oppenheimer approximation, 403–405, 539
central force problem, 352–358, 365
classical harmonic oscillator, 316–318, 624
de Broglie equation, 267–269, 280
degeneracy, 303–306, 605, 618, 631–632
harmonic oscillator, 315–329
helium atom, 374–378, 396
historical perspectives, 257–262, 269–270
hydrogen atom, 262–267, 352–365, 373
LCAO-MO theory, 405–409
linear variation theory, 398–402
nondegenerate perturbation theory, 386–394, 402–403
normalization, 283–285, 303, 335–336
observables, 276–279, 288, 347–352

operators, 276–279, 288
orbital properties, 409–415
orthogonality, 306–307
overview, 273–274, 309–310, 315–316, 365–366, 370, 413
particle-in-a-box solution, 288–292, 299–303, 605–606
Pauli exclusion principle, 377–382, 413, 532, 537, 630–631
perturbation theory, 386–394, 402–403
postulates, 273, 309–310
pre-quantum mechanics, see classical mechanics
probabilities, 281–283
quantum energy, 257–258, 304–305
quantum-mechanical harmonic oscillator, 318–324, 484–487
reduced mass, 330–333, 339
Schrödinger equation, see Schrödinger equation
selection rules, 462–463, 471–473, 487–490
of spectroscopy, see spectroscopy
spin, 371–374
spin orbitals, 377–382
symmetry, see symmetry
three-dimensional rotations, 341–347
tunneling, 296–299
two-dimensional rotations, 333–341
uncertainty principle, 279–281
variation theory, 394–397, 402–403
of vibration, 484–487
wavefunctions, see wavefunctions

quantum numbers
angular momentum, 357, 521–525
centrifugal distortions, 479–481
description, 264, 291
hydrogen atom, 373, 380
letter designation, 358
Pauli exclusion principle, 377–382, 413, 532, 537, 630–631
principal quantum number, 355–356
rotational spectroscopy, 477–478
rotational-vibrational spectroscopy, 507–508
term symbols, 526–534
vibrational spectroscopy, 90
zero-point energy, 323

R
radial nodes, 362
radiation, see specific types
radiationless transitions, 548
radioactivity

historical perspectives, 253
kinetics, 688–690, 701–702

radio waves, 464–465
Raman, Chandrasekhara, 511
Raman spectroscopy, 511–514
Raoult’s law

in liquid/gas systems, 183
in liquid/liquid systems, 171–174, 178–179, 193
in nonideal two-component liquid solutions, 179–180
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rate laws
first-order reactions, 686–694
half-life, 688–690, 701–702
initial reaction rate, 681
integrated rate laws, 686–688
orders, 683–685
pseudo rate constant, 692–693
rate constant, 683, 720–722
rate-determining step, 709–712
second-order reactions, 688–690, 693–694
steady-state approximation, 710–714
temperature dependence, 683, 702–706
transition-state theory, 719–725

Rayleigh, John W. S., 256
Rayleigh-Jeans law, 256–257
Rayleigh scattering, 511
reaction quotient

in chemical equilibrium, 124–125, 137
in ionic solutions, 233
in nonstandard potentials, 218–223

reactions
Belousov-Zhabotinsky reaction, 718–719
biochemical reactions, 60–62, 85, 218
catalysis, 713–714, 783–788
chain reactions, 714–719
competing reactions, 696–702
concurrent reactions, 696–702
consecutive reactions, 696–702
electrochemical reactions, 210–213, 216–217, 221
elementary processes, 706–710
enzyme-catalyzed reactions, 713–714
equilibrium for simple reactions, 694–696
first-order reactions, 686–694
formation reactions, 54–55
half-reactions, 214–216
initial reaction rate, 681
kinetics, see kinetics
nonstandard chemical reactions, 220–221
nuclear decay, 688–690, 701–702
oscillating reactions, 714–719
parallel reactions, 696–702
propagating reactions, 714–719
rate-determining step, 709–712
rate of reaction, 681–694
reaction profile, 720
redox reactions, 211–215
second-order reactions, 688–690, 693–694
temperature coefficient of reaction, 219
thermodynamics, see thermodynamics

real gases
description, 7
fugacity, 110–113
ideal gas compared, 11

redox reaction, electrochemisty, 211–215

reflection plane, 420
representation of symmetry operations, 432–440
repulsion, charged particles, 207–209, 374, 404
repulsive range parameter, 757–758
resistance, 236
resistivity, 236
resonance integrals, 407
reverse osmosis, 201
reversible processes

Carnot cycle, 68–73, 94
description, 28–29, 75
entropy, 72–74, 92
Helmholtz energy, 92

right-hand rule, 561–562
Roentgen, Wilhelm, 740
root-mean-square speed, 657–658, 664–665
rotation

diatomic molecules, 466, 474, 479, 628–634
hydrogen atom central force problem, 352–353, 365
molecule rotation, 466–471, 482
observables, 347–352
polyatomic molecules, 466–467, 634–636
rotational degrees of freedom, 482–483
rotational temperature, 629–630, 635
three-dimensional rotations, 341–347
two-dimensional rotations, 333–341

rotational spectroscopy, see also electronic spectroscopy;
vibrational spectroscopy

mechanisms, 473–479
molecule rotations, 466–471, 482
overview, 461–462, 514
rotational-vibrational spectroscopy, 506–511
selection rules, 471–473

Russell-Saunders coupling, electronic spectroscopy, 526–534
Rydberg, Johannes R., 250
Rydberg constant, 250, 262, 266, 357, 521

S
Sackur-Tetrode equation, 610
salt bridge, 214
sarin nerve gas, rotational spectrum, 476
saturated calomel electrode, 216
saturated solution, 185
scanning tunneling microscopy, 298–299
Schawlow, Arthur, 554
Schottky defect, 759
Schrödinger, Erwin, 269, 285
Schrödinger equation

for central force problem, 353
description, 285–289
harmonic oscillator, 318–320
for helium atom, 374–376, 413
for hydrogen-like ions, 357
in particle-in-a-box solution, 300–301
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in three-dimensional rotations, 341, 352
time-dependent Schrödinger equation, 286, 308–309, 318
in two-dimensional rotations, 334

second law of thermodynamics
Carnot cycle, 68–73, 94
disorder concept of entropy, 602–603
entropy, 72–79, 81–85, 602
overview, 66

second-order reactions, rate laws, 688–690, 693–694
secular determinant, in linear variation theory, 399–400
selection rules

description, 462–463
for electronic spectroscopy, 520
gross selection rule, 472, 513, 520
for Raman spectroscopy, 513
for rotational spectroscopy, 471–473
for vibrational spectroscopy, 487–490

self-diffusion, 675
semiconductors

crystal defects, 759–760
zone refining, 192–193

semipermeable membrane, 196–197, 200
shells, see also orbital properties

description, 356
term symbols, 526–534

shielding, 396
shielding constant, 574
sigma orbital, 410
silicon, zone refining, 192–193
simple distillation, liquid/solid solutions, 185–186
single-component systems, see also multicomponent systems

chemical potential, 159–162
Clapeyron equation, 148–152, 155
Clausius-Clapeyron equation, 152–154
equilibria, 141–165
Gibbs phase rule, 154–159
natural variables, 144, 159–162
overview, 141–145, 162
phase diagrams, 154–159
phase transitions, 143, 145–148

SI units
pressure, 2–3
temperature, 3, 7
volume, 2–3

Slater, J. C., 446
Slater determinants, 380–382
Smoluchowski, Marian, 676
solids

amorphous solids, 732
chemical equilibrium, 129–132, 143–144, 194
crystals, see crystals
interface effects, 771–777
liquid/solid solutions, 185–188, 194
Miller indices, 744–752, 778–780

phase diagrams, 154–159
phase transitions, 143, 145–148
solidification, 143
solid/solid solutions, 188–193, 752
surfaces, 778–783
types of, 732–733

solubility, 185–188, 222
solute, 185
solutions

boiling point elevation, 194, 196
chemical equilibrium, 129–132, 194
colligative properties, 193–202
Debye-Hückel Theory, 230–234, 646
diffusion, 671–677
freezing point depression, 194–195
ions in solution, 225–230, 234–237
liquid/solid solutions, 185–188, 194
molality, 193–194, 226–227
nonideal two-component liquid solutions, 179–183
osmotic pressure, 196–201
saturated solution, 185
solid/solid solutions, 188–193, 752
solubility, 185–188
solubility product constant, 222
supersaturated solution, 186

solvent, 185, 194
specific heat, 31, 40
specific heat capacity, 40
spectroscopy

angular momenta
electronic spectra, 521–525, 534–539

magnetic spectra, 565–566, 569

rotational spectra, 470

aromaticity, 546–548
centrifugal distortions, 479–481
classical mechanics, 248–251, 253–257
description, 463–466
diatomic molecules, 491–496, 534–539
electric charges, 561–564
electronic spectroscopy, 519–559
electron spin resonance, 567–571
fingerprint regions, 504–506
fluorescence, 548–550
Franck-Condon principle, 539–541
Hückel approximations, 543–546
hydrogen atom, 520–522
lasers, 550–556
linear molecules, 491–496
magnetic dipoles, 561–564
magnetic inductions, 561–564
magnetic spectroscopy, 560–585
molecule vibration, 481–484
multiple electrons, 526–534
nonallowed vibrational transitions, 503–504
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spectroscopy (continued)
nonlinear molecules, 498–502
normal vibration modes, 483–484
nuclear magnetic resonance, 571–582
overtone spectroscopy, 489, 503–504
overview, 461–462, 514, 519–520, 556, 560–561, 582–583
� electron systems, 543–546
phosphorescence, 548–550
photoelectric effect, 253, 259
polyatomic molecules, 541–543
quantum-mechanical treatment, 484–487
Raman spectroscopy, 511–514
rotational spectroscopy, 471–479
rotational-vibrational spectroscopy, 506–511
rotations in molecules, 466–471, 482
Russell-Saunders coupling, 526–534
selection rules, 462–463, 471–473, 487–490, 513, 520
symmetry considerations, 496–498
vibrational spectroscopy, 487–504
vibrational structure, 539–541
Zeeman spectroscopy, 560, 564–567

speed, see also velocity
average speed, 664–665
most probable speed, 664–665
root-mean-square speed, 657–658, 664–665

spherical harmonics, 344–345
spherical polar coordinates

Cartesian coordinates compared, 341–342
description, 341

spherical top, 634
spin

description, 371–374
Pauli exclusion principle, 377–382, 413, 532, 537, 630–631
spin angular momentum, 371–372, 522–525, 572
spin orbitals, 377–382
spin-orbit coupling, 523

spin-spin coupling, 577
spontaneous processes

chemical potential, 108–110, 114
conditions for, 89–92, 108
description, 62, 66, 89
electromotive force relationship, 213
lasers, 550–551
prediction, 67–68

standard internationsl units
pressure, 2–3
temperature, 3, 7
volume, 2–3

standard potentials, in electrochemistry, 215–218
standard reduction potentials, 215–216
standard temperature and pressure, 7–8
Stark, Johannes, 477
Stark effect, 477–478
state, see also quantum numbers

common units, 3
equations of state, 5–9, 11, 100–101, 105
variables, 2–5, 7

state functions
change, 38–42
enthalpy, see enthalpy
entropy, 72–79, 81–85
free energy, see Gibbs free energy
internal energy, 33–36, 38–42
natural variable equations, 90, 96–99
in terms of partition functions, 608–613

static equilibrium, 120
statistical thermodynamics

concepts, 587–590
crystals, 644–648
ensemble, 590–593
equilibria, 640–644
Maxwell-Boltzmann distribution, 593–602, 663, 666
monatomic gases, 604–608
overview, 586–587, 613, 616–617
partition functions, 586, 596–600, 604–613, 617–623,

636–637
rotations, 628–636
state functions, 608–613
thermodynamic properties, 600–604, 637–640
thermodynamic property derivation, 600–604
vibrations, 623–628

steady-state approximation, 710–714
Stefan-Boltzmann constant, 254–255, 259
steric factor, 705–706
Stern-Gerlach experiment, 371
stimulated absorption, 550
stimulated emissions, 550–552
Stirling’s approximation, 588
stoichiometric compounds, in solid/solid solutions, 191
Stokes, George G., 512
Stokes’ law, 235
Stokes’ lines, 512
sublimation

Clapeyron equation, 151
description, 52, 143
heat of sublimation, 146
pressure relationship, 161–162

substitutional defect, 759
supersaturated solution, 186
surfaces

catalysis, 783–788
coverage, 783–788
films, 766, 777–778
interface effects, 771–777
overview, 765–766, 788–789
solid surfaces, 778–783
surface energy, 768–771, 779
surface tension, 766–771
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surface tension
capillary action, 775–777
description, 766–771

surroundings, 2–3
symmetry

character tables, 430–437
great orthogonality theorem, 438–441, 537
hybrid orbitals, 450–456
in integrals, 441–443, 449
mathematical basis, 423–427, 439
molecules, 427–430, 482–483, 631
operations, 420–423, 431–435
overview, 419–420, 456
point groups, 420–435
selection rules in spectroscopy, 462–463, 471–473,

487–490
symmetry-adapted linear combinations, 443–446
symmetry number, 634
valence bond theory, 446–450
vibrations, 494–502
wavefunctions, 429–430, 437–438, 631

systems
adiabatic systems, 33, 41–49, 75, 77, 103–104
closed systems, 4, 32
description, 2–3
equilibrium, see equilibria
isolated system, 32, 75
Joule-Thomson coefficients, 42–46, 103–104
multicomponent systems, see multicomponent systems
observables, 276–279, 288, 347–352
partition functions, 636–637
single-component systems, see single-component 

systems
state variables, 2–5, 7

T
Taylor-series approximation, 15, 625
temperature, see also thermodynamics

boiling, see boiling
Boyle temperature, 13, 15–16
Carnot cycle, 68–73, 94
change, 58–60
Clapeyron equation, 148–152, 155
common units, 3, 7
constant temperature, 41
critical temperature, 155–156
Debye temperatures, 647
description, 3–4
efficiency relationship, 68–72
Einstein temperature, 645–646
equations of state, 5–9, 100, 105
equilibria in single-component systems, 141–165
exact differential, 100
Freundlich isotherm, 786

Gibbs free energy variation, 105–108
heat capacities, see heat capacity
heat of vaporization, 51–53, 146
inversion temperature, 45
Joule-Thomson coefficients, 42–46, 103–104
Langmuir-Hinshelwood isotherms, 786
Langmuir isotherms, 784, 786
normal melting point, 143
phase diagrams, 154–159, 180–182
rate of reaction effects, 683, 702–706
rotational temperature, 629–630, 635
SI units, 3, 7
standard temperature and pressure, 7–8
temperature coefficient of reaction, 219
vibrational temperature, 625

termination reactions, kinetics, 714–719
term symbols, quantum numbers, 526–534
Tesla, Nikolai, 561
tetrafluoroethylene, Raman spectrum, 512
theoretical plate, 176, 178
thermal de Broglie wavelength, 611–612
thermal equilibrium

description, 4
in lasers, 553

thermochemistry, 54
thermodynamics

Carnot cycle, 68–73, 94
chemical changes, 53–58
concepts, 587–590
crystals, 644–648
description, 2, 24
disorder concept of entropy, 602–603
ensemble, see ensemble
enthalpy, see enthalpy
entropy, 72–79, 81–85, 602–604
equations of state, 5–9
equilibria, 640–644
first law of thermodynamics, 24–65
fugacity, 110–114
gas laws, 6–10
Gibbs free energy, 93
heat capacities, 31, 39–41, 46–50
internal energy, see internal energy
Joule-Thomson coefficients, 42–46, 103–104
kinetics compared, 680, 694
limitations, 66–68
Maxwell-Boltzmann distribution, 593–602, 663, 666
Maxwell relationships, 99–103
monatomic gases, 604–608
natural variables, 96–99
nonideal gases, 10–17
order, 79–81, 602
overview, 1, 3–5, 21, 24, 66, 586, 616
partial derivatives, 8–10, 18–21
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thermodynamics (continued)
partition functions, 586, 596–600, 604–613, 617–623,

636–637
phase changes, 50–53
property derivation, 600–604
rotations, 628–636
second law of thermodynamics, 66–88
state, 2–3
state functions, 33–36, 38–42, 608–613
statistical thermodynamics, 586–650
surroundings, 2–3
system, 2–3
temperature change, 58–60
third law of thermodynamics, 66–88
vibrations, 623–628
work-heat relationship, 24–32
zeroth law of thermodynamics, 1–23

third law of thermodynamics
Carnot cycle, 68–73, 94
entropy, 81–85, 602–604
order, 79–81, 602
overview, 66

Thompson, Benjamin, 30
Thomson, G. P., 268
Thomson, Joseph J., 251, 268
Thomson, William, 7
threshold frequency, 253
tie line

description, 176
in nonideal two-component liquid solutions, 180

torr, units of measure, 3
total power flux, 259
Townes, Charles, 554
transition moment

description, 462, 489–490
for electronic transitions, 520
for magnetic transitions, 565–566

transition-state theory, 719–725
transport properties, 674
triple point, 155–156
Trouton’s rule, 148
tunneling, quantum mechanics, 296–299
tunneling microscopy, 298–299
two-component systems, see multicomponent systems

U
ultrahigh vacuums, 781–782
ultraviolet catastrophe, 256
ultraviolet radiation

characteristics, 464–465
electronic transitions for polyatomic molecules, 542

uncertainty principle, 279–281
unexplainable phenomena, classical mechanics, 248
unit cell

description, 733–738
rationalizing, 752–755

V
valence bond theory, symmetry, 446–450
van der Waals, Johannes, 13
van der Waals constants, 13–14
van der Waals equation, 13–14, 16, 102
van’t Hoff, Jacobus, 198
van’t Hoff equation, 133, 198, 201, 702
vaporization

Clapeyron equation, 151
description, 51–53, 143
heat of vaporization, 51–53, 146
vapor-phase mole fractions, 173–174

vapor pressure
description, 153–154
in liquid/liquid systems, 169–179, 193
negative deviation, 179
in nonideal two-component liquid solutions, 179–183
phase diagrams, 154–159, 174–175
positive deviation, 179

variation theory
linear variation theory, 398–402
perturbation theory compared, 402–403
in quantum mechanics, 394–397, 402–403

varying dipole moment, 488
velocity, kinetic theory of gases, 656–666
vibrational spectroscopy, see also electronic spectroscopy;

lasers; rotational spectroscopy
fingerprint regions, 504–506
Franck-Condon principle, 539–541
mechanisms, 487–504
molecule vibration, 481–484
nonallowed transitions, 503–504
nonfundamental transitions, 503–504
normal vibration modes, 483–484
overview, 461–462, 514
quantum-mechanical treatment, 484–487
rotational-vibrational spectroscopy, 506–511
symmetry considerations, 494–498
vibrational degrees of freedom, 482–483, 500, 541
vibrational temperature, 625–627

virial coefficients, 11–12
virial equation, 11
visible light, 464
volt, 209
Volta, Alessandro, 209
voltaic cell, 215, 220–221
volume

Clausius-Clapeyron equation, 152–155
common units, 3
equations of state, 5–9
molar volume, 10
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natural variable equations, 96–99
SI units, 2–3

von Fraunhofer, Joseph, 525
von Helmholtz, Hermann L. F., 93
von Laue, Max, 741
von Lenard, Philipp E. A., 253

W
water molecules

crystal structure, 752–753
phase diagram, 753
reaction mechanisms, 707–708
surface tension, 767–771
vibrational parameters, 497, 509

watt, 255
wavefunctions

antisymmetric wavefunctions, 379–380, 631
average values, 293–296, 329
Born interpretation, 281–283
Born-Oppenheimer approximation, 403–405, 539
degeneracy, 303–306, 605, 618, 631–632
description, 274–275
doubly-degenerate wavefunctions, 591
for harmonic oscillators, 321–329
for helium atoms, 376–378, 396
for homonuclear diatomic molecules, 536, 630
for hydrogen-like atoms, 355–365, 374
linear variation theory, 398–402
for molecular orbitals, 409–415
normalization, 283–285, 303, 335–336
orthogonality, 306–307
particle-in-a-box solution, 288–292, 299–303, 605–606
Pauli exclusion principle, 377–382, 413, 532, 537, 630–631
perturbation theory, 386–394, 402–403
Slater determinants, 380–382
spectroscopy selection rules, 462–463
symmetry, 429–430, 437–438, 631
three-dimensional rotations, 341–347, 353–354
tunneling, 296–299
two-dimensional rotations, 333–341
variation theory, 394–397
vibrational wavefunctions, 541

wavelength, de Broglie equation, 267–269, 280

wavenumber
in rotational spectroscopy, 465, 469, 476
in rotational-vibrational spectroscopy, 507–509

wetting, 775–776
Wien displacement law, 255–256
work

Carnot cycle, 68–73, 94
description, 24–32
electrochemistry, 210–215
energy relationship, 210–215
Gibbs free energy, see Gibbs free energy
Helmholtz energy, see Helmholtz energy
in surface tension, 769–771

work function, 259

X
X-ray diffraction

description, 741–744
Miller indices, 744–752, 778–780

X rays, 464

Y
Young, Thomas, 253–254, 773, 775
Young-Dupré equation, 775

Z
Zeeman, Pieter, 564
Zeeman spectroscopy, 560, 564–567
zeolites, 788
zero-point energy, 323
zeroth law of thermodynamics

equations of state, 5–9
gas laws, 6–10
nonideal gases, 10–17
overview, 1, 3–5, 21
partial derivatives, 8–10, 18–21
state, 2–3
surroundings, 2–3
system, 2–3

Zhabotinsky, Anatol M., 718
zone refining, 192–193
zwitterion, 136
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Physical Constants

Quantity

Speed of light in vacuum

Permittivity of free space

Gravitation constant

Planck's constant

Elementary charge

Electron mass

Proton mass

Bohr radius

Rydberg constant

Avogadro's constant

Faraday's constant

Ideal gas constant

Boltzmann's constant

Stefan-Boltzmann constant

Bohr magneton

Nuclear magneton

m/s

C2/J·m

N·m2/kg2

J·s

C

kg

kg

m

cm–1

mol–1

C/mol

J/mol·K

L·atm/mol·K

L·bar/mol·K

cal/mol·K

J/K

W/m2·K4

J/T

J/T

2.99792458 × 108

8.854187817 × 10–12

6.673 × 10–11

6.62606876 × 10–34

1.602176462 × 10–19

9.10938188 × 10–31

1.67262158 × 10–27

5.291772083 × 10–11

109737.31568

6.02214199 × 1023

96485.3415

8.314472

0.0820568

0.08314472

1.98719

1.3806503 × 10–23

5.670400 × 10–8

9.27400899 × 10–24

5.05078317 × 10–27

c

ε0

G

h

e

me

mp

a0

R

NA

R

k, kB

σ

µB

µN

Symbol Value Unit

Source: Excerpted from Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the 
Fundamental Physical Constants, J. Phys. Chem. Ref. Data, vol. 28, 1999.
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