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Preface to the Fomfth Edition -

This edition of the book has been designed to inc'orporate the latest
recommendations in the field of Physical Chemistry. A few topics 1ncluded in
this book are mentioned here.

The book is restructured so as to include the apphcatlon of pr1n01p1es in
the form.of solved problems and numerrcals There are over 175 such
xamples in this textbook.

The entire subject matter has been presented with the proper subheadmgs
to facilitate the reader to understand the text in a_more systematic manner.

ST units are used throughout..

In the chapter of ‘Gaseous State’, the topics of self d1ffusron effusmn -

process, thermal conduct1v1ty and electncal conduct1v1ty have been added.

In thep chapter of Solid State, an annexure II covering the topics of reciprocal
lattice, Bragg law in the vector form, general expression of ‘interplanar
distances, the expressions of scattering of X-rays by an electron, atom and
a small crystal, and structure factor for a Bragg reﬂectlon from a few crystal

. lattlces have been added

In the chapter of Ionic Equilibria, the topics of general treatment of titration

_of an acid (strong or weak) with a strong base, general treatment of titration

of a diprotic acid- with a strong base, and the concept of conditional

- stability constant have been added.

At the end of the book, a note on changing concepts in Physical Chemistry
covering the recommendations of International Union of Pure and Applied
Chemistry has been added.

Volume I describes states of matter and ions in solution in five chapters, viz.,
gaseous state, physical properties of 11qu1ds the solid state, ionic equilibria and
conductance. : '

1 wish to extend my apprecratlon to the students and teachers of Delhi University
-for the constructive suggestions-in bringing out this edition of the book. I also
. wish to-thank my children Saurabh and Surabhi for many useful suggestions in

improving the presentation of the book.

K L. KAPOOR






' Preface to the First E_di.[tion

In recent years the teaching curriculum of Physical Chemistry ini many Indian
_UniVe;sities has been restructured- with a greater emphasis on a theoretical and
- conceptual methodology and the applications of the underlying basic concepts
and principles. This shift in the emphaé‘is, as [ have observed, has unduly
frightened the undergraduates whose performance in ‘Physical Chemistry has
been otherwise generally far from satisfactory. This poor performance is partly
because of the non-availability of a-comprehensive textbook which also lays
adequate stress on the logical deduct1on and solution of numericals and related
problems:-Naturally, the students find themselves unduly constrained when they -

are forced to refer to various books to. collect the necessary reading material. It
" is primarily to help these students that I have ventured to .present a textbook
which provides a systematic and comprehensive coverage of the theory as well |
as ‘of the illustration of the applications thereof. '

The present book grew out of more than a decade of classroom teaching
through lecture-notes and assignments prepared for my students of B.Sc. (General)
and B.Sc. (Hons). The schematic structure of the book is assigned to cover the
major topics of Physical Chemistry in four different volumes. Volume I discusses
the states of matter and ions in solutions. It comprises five chapters on the
gaseous state, physical properties of liquids, solid state, ionic equilibria and
conductance. Volume II describes the basic principles of thermodynamics and
chemical equilibrium in seven chapters, viz., introduction and mathematical
background, zeroth and first laws of thermodynamics, thermochemistry, second
law of thermodynamics, criteria for equilibrium and A and G functions, systems
of variable composition, and thermodynamics of chemical reactions. Volume III
seeks to present the applications of thermodynamics to the equilibria between
phases, colligative properties, phase rule, solutions, phase diagrams of one-, two-
and three-component systems, and electrochemical cells. Volume IV deals with
quantum chemistry and dynamics of chemical reactions: it focuses on. atomic
structure, chemical bonding, electrical and magnetic properties, molecular
spectroscopy, adsorption, chemical kinetics, catalysis and photochemistry.

"The study of Physical Chemistry is incomplete if the student confines
himself to the ambit of theoretical discussions of the subject. He must grasp the
practical significance of the basic theory in all its ramifications and develop a
~ clear perspective to appreciate various problems and how they can be solved.
It is here that this book merits mention. Apart from having a.lucid style and
simplicity of expression, the book has a wealth of carefully selected examples
and solved illustrations. Further, three types of problems with different objectives
in view are listed at the end of each chapter: (1) Rev1s_1onary Problems, (2) Try
Yourself Problems and (3) Numerical Problems. Under Revisionary Problems,
only those probléms pertain‘ing to the text are included which should afford an
opportunity to the students in self-evaluation. In Try Yourself Problems, the
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- problems related to the text but not.highlighted 'thefejri axe provided. Such

problems will help the students extend their knowledge of the chapter to closely
related problems. Finally unsolved numericals are pieced together for the practlce

‘of the students. -

I wish to acknowledge my greatest indebtedness to my teacher late Prof.
R.P. Mitra, who instilled in me the spirit of scientific inquiry. I also record my
sense of appreciation to my students and colleagues at Hindu College, University

of Delhi, for their comments, constructive. criticism and valuable suggestions -

towards improvement of the book. I am grateful to late Dr. Mohan Katyal (St.

Stephen’s College), Prof. Mastada Satake (Fukui University, Japan) and late -
Prof.- V.R. Shastri (Ujjain University) for the numerous suggestions for the .

improvement of the book. I would like to thank Sh. MM. Jain, Hans Raj
College, for his encouragement during the course of publication of the book.
Finally, my special thanks go to my wife Pratima for her encouragement, patience
and understanding.

The author takes the entlre resp0n31b111ty for any error or amblgulty in fact

or opinion that may have found its way into this book. Comments and criticism -

from readers will therefore be hlghly apprec1ated and incorporated in subsequent
editions.

- KL.KAPOOR -
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Gaseous State

1.1 THE THREE STATES OF MATTER

Ih_t_roduction

Gaseous State

Lithid State

Solid State

Comments on the
Gaseous System

In order to determine experimentally the properties of substances, we deal withi
the aggregates of molecules as they occur in nature. It is the aggregations of
molecules which come within the scope of human experience that constitute
what is known as matter. The various kinds of substances that make up matter

-can be divided roughly into three categories, namely, gases, liquids and solids.

These are called the three states of matter. These states can be considered to arise
as a result of competition between two opposing molecular forces, namely, the
forces of attraction which tend to hold the molecules together and the disruptive
forces due to the thermal energy of molecules.

If the thermal energy is much greater than the forces of attraction, then we have
matter in its gaseous state. Moleculesin the gaseous state move with very large
speeds and the forces of attraction amongst them are not sufficient to bind the
molecules at one place, with the result that the molecules move practically
independent of one another. Because of this feature, gases are characterized by
marked sensitivity of volume change with change in temperature and pressure.
There exists no boundary surface and, therefore, gases tend to fill completely
any available space, resulting in no fixed volume to the gaseous state.

If the forces of attractjon are greater than the thermal energy, we have matter in
the liquid state. Molecules in the liquid state too have kinetic energy but they
cannot go very far away because of the larger forces of attraction amongst them.
Due to this feature, liquids have definite volume, but no definite shape. They

take the shape of the vessel in which they are placed. In general, liquids are more

dense and less compressible than gases.

If the forces of attraction between molecules are much greater than the thermal
energy, the positions of the molecules remain fixed and we have matter in the
solid state. The molecules in the solid state, therefore, do not possess any
translational energy, but have only vibrational energy since they can vibrate

. about their mean positions. Extremely large forces of attraction exist amongst

them. That is why solids differ markedly from liquids and gases in respect of

size, shape and volume. Solids, in general, have definite size, -shape and volume.

Of all the three states of molecular aggregatlon only the gaseous state allows

-a comparatively simple quantitative description. We are generally concerned
~with the relations among four properties, namely, mass, pressure, volume and
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temperature. A system is in a definite state (or condition) {Nhen all the properties
of the system have definite values. It is not necessary to specify each and every
property of the matter as these are interrelated. The relationship which connects
the above four variables is known as the equation of state of the system. For
gases, only three of these must be specified to describe the state, the fourth
automatically has a fixed value and can be calculated from the equation of state
established from the experimental behaviour of the system.

1.2 EXPERIMENTALLY DERIVED GASEOUS LAWS

Boyle’s Law

Grapl‘iical
Representation

Fig. 1.2.1 A Typical
variation of pressure of a
gas with volume

" Charles Law

At constant temperature, the volume of a definite mass of a gas is inversely
proportional to its pressure, that is,
V o 1 ie. V= K- oo pV=K (12.1)
p p ' : ‘
where K is a constant whose value depends upon (i) natu_ré of the gas, (ii)
temperature of the gas, and (iii) mass of the gas. For a given mass of a gas at
constant temperature, Boyle’s law gives

pVi=pY, (122

where V, and V, are volumes at pressures pyand p,, respectively.

Equation (1.2.1) can be represented graphically by plotting pressures as ordinates
and the corresponding volumes as abscissae (Fig. 1.2.1). The nature of the curve
is a rectangular hyperbola. The general term isothermal or isotherm (meaning at
constant temperature) is used to describe these plots.

Charles made measurements of the volume of a fixed mass of a gas at various
temperatures under the condition of constant pressure and found that the
volume of the gas is a linear function of its Celsius temperature. This can be
expressed as | '

V,=a+ bt ' , - (1.23)

where 7 is Celsius temperature and a and b are constants.




Graphical
Representation

Fig. 1.2.2 A typical
variation of volume of a
gas with temperature
expressed in °C.

Alternative Form of
Charles Law

Gaseous State 3

Equation (1.2.3) has been plotted in Fig. 1.2.2. The intercept on the vertical axis
is a and it is equal to V,, the volume at 0 °C. The slope of the plot is the
derivative :

=)

slope = (0V/01),,
Wi ' ‘ _ /27315
1°C

lc—

Experimental data shows that for each Celsius degree rise in temperature, the
volume of a gas expands 1/273.15 of its volume at O °C. If V; is the volume
of a gas at 0 °C, then b is given by

(V21315
| 1°C

With this, Bq. (1.2.3) becomes

V,/2.73.15
Vi=Wt| —e— |t

1°C - |
oV =V[1+ i/°C =V, 27315+1¢/°C (1'.2.4)
273.15 27315
T
or V=V am) (T is kelvin temperature)’

9973.15

"t is convenient to use the absolute temperature scale on which temperatures are measured
in kelvin (K). A reading on this scale is obtained by adding 273. 15 to the Celsius value.
Temperature on the kelvm scale is denoted by T. Thus

T/IK=273.15+1¢°C
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. Vo
Le. Vi=l == T
273.15K

_ Since Vj, the volume of the gas at 0 °C, has a constant value at a given
pressure, the above relatlon can be expressed as

V=K,T ' | o (12.5)

where K, is a constant whose value depends upon the nature, mass and pressure
of the gas.

Equation (1.2.5) is an alternative form of Charles law according to which
the volume of a given mass of a gas at constant pressure is dzrectly Droportional
to its kelvin temperature.

Graphical ~ ‘A typical variation of volume of a gas w1th change in its kelvin temperature is K
Representation shown in F1g 1.2.3. The general term isobar, which means at constant pressure,
is assigned to these plots.

™~
Fig. 1.2.3 Variation of ,
volume of a gas with ¢’
kelvin temperature : T—
Comment on Zero Since volume is directly proportional to kelvin temperature, the volume of a gas
Kelvin , should theoretically be zero at kelvin zero. However, gases liquefy and then

solidify before this low temperature is reached. In fact, no substance exists as
a-gas at a temperature near kelvin zero, though the straight-line plots can be
extrapolated to zero volume. The temperature that corresponds to zero volume

is — 273.15 °C.
Gay-Lussac’s Law: An expression similar to volume dependence of gas on temperature has been
Dependence of derived for the pressure dependence also. The pressure of a given mass of a gas
Pressure on ' “at constant volume varies linearly with Celsius temperature.
Temperature o ' ’ _
p;=a+bt . - (126)

where ‘a = po and b = (9p,/d)y. The value of the latter can be determined



Graphical
Representations

Fig. 1.2.4 A typical
variation of pressure of
a gas with temperature
expressed in °C

Fig. 1.2.5 A typical
variation of pressure of
a gas with kelvin
temperature

-Graham’s Law of
Diffusion

Gaseous State. 5

experimentally and is found to be (p,/273.15 °C). Thus, Eq. (1.2.6) modifies

to
=p, +
p_’ Po [27315]( 70

o 273.15 + (i°C) p
Therefore p‘zp"[ 27315 ]z(ﬁfs—K]T

(12.7)

that is, the pressure of a given mass of a gas at constant volume is directly
proportzonal to its kelvin temperature

or ocT

Equations (1.2.6) and (1.2.7) are shown graphically in Figs. 1.2:4 and 1.2.5,
respectively. The general term isochor (meanmg at constant volume) is given
to the plots of Fig. 1.2.5.

slope = (Op,/0%)y

o Lot _ po/2T3
I°C

[ —>»

The phenomenon of diffusion may be described as the tendency for any substance
to spread uniformly throughout the space avallable to it. Diffusion through fine

_ pores is called effusion.

According to Graham’s law of d1ffus1on the rate of dtﬁ"uszon (or effusion)
of a gas is inversely proportional to the square root of its density or molar mass.
If r; and r, are the rates of diffusion of two gases, whose densities under the
given conditions are p; and p,, respectively, then from Graham’s law,

T, M.
or L=|-2
BRD) M,

(1.2.8)
h P1

where M, and M2 are the respectlve molar masses of the two gases.

1.3 EQUATION OF STATE

'Derivation of
- Equation of State

~

The results of the laws- of Boyle and Charles can be combined into an
expression which represents- the relationship between pressure, volume and
temperature of a given mass of a gas; such an expression is described as an
equation of state.
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Universal Gas
Constant -

Physical
Significancte of
Gas Constant R

Suppose the gas is in the initial state with volume V,, pressure p; and
temperature 7. We then change the state of the gas to a volume V), pressure p,
and temperature T,. Let us carry out this change in two steps. -

(i) First we change the pressure from pitop, keeplng the temperature T
constant. The resultant volume V, as given by Boyle’s law is '
= 2%
D _ .
(ii) Next, temperature is changed from T, to T,, keeping the pressure Do
constant. The final volume V; as given by Charles law is

w_% ie. V,= vih, _ (pV/p)T,

Tz_ L ' I T1

rmi_p% o '

s = : 1.3.1
_or _ Tl T2 ( )

It follows that no matter how we change the state of the given amount of
a gas, the ratio pV/T always remains constant, i.e.

pV

=K
T :

~ The value of K depends on the amount of gas in the system. Since V is an

extensive property (which is mass dependent), its value at constant p and V is
proportional to the amount of the gas present in the system. Then K must also

. be proportional to the amount of gas because p and T are intensive properties

(which have no mass dependence). We can express this by writing K = nR, in
which 7 is the amount of gas in a given yolume of gas and R is independent

- of all variables and is, therefore, a universal constant. We thus have the general

gas law _ : _
pV = nRT _ _ (1.3.2)

The universal gas constant as given by Eq. (1.3.2) is R = pV/nT. Thus, it has the
units of (pressure x volume) divided by (amount of gas X temperature) Now the
dimensions of pressure and volume are,

Pressure = (force/area) = (force/lengthz) = force x length? -

~Volume = length’

N Thus R = (forcexlength™) (length®) _ (force x length)
(amount of gas) (kelvin) ~ (amount of gas) (kelvm)
__ work (or energy)
(amount of gas) (kelvin)

Thus, the dimensions of R are energy per mole per kelvin and hence it -
represents the amount of work (or energy) that can be obtained from one mole
of a gas when 1ts temperature is raised by one kelvin. '
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1.4 APPLICATION OF EQUATION OF STATE

Concept of an Ildeal
Gas '

Characteristics of
an ldeal Gas

Value of Gas
Constant in Sl Units

So far, we have assumed that all gases obey the gas laws under all conditions
of temperature and pressure; however, for real gases this is not true. Real gases
obey ‘these laws only under limited conditions of low pressures and high
temperatures. They exhibit deviations from the gaseous laws and these deviations
are greater when the temperature and pressure are close to the conditions at
which the gas can be condensed into a liquid. Thus Boyle’s law, Charles law,
and the equation of state derived from these two laws may be regarded as
approximations for real gases and are expected to be applicable only at relatively
low pressures and moderately high temperatures. It is, nevertheless, very useful
to postulate a hypothetical ideal gas, defined as a gas to which the laws of Boyle
and Charles are strictly applicable under all conditions of temperatures and
pressures. It is for this reason that Eq. (1.3.2) is commonly referred to-as the ideal
gas equation. Real gases attain ideal behaviour only at very low pressures and
very high temperatures.

Since Egq. (1.3.2) is not applicable to real gases, the evaluation of the universal
gas constant R-cannot be done directly by utilizing the pressure, volume, and
temperature dataof real gases. Equation (1.3.2) is strictly applicable only for
ideal gases and thus if the pressure and volume of one mole of an ideal gas were
known at a definite temperature, it would be a simple matter to evaluate R from
Eq. (1.3.2). However, as no gas behaves ideally, this procedure would appear to

be ruled out. But we know from experiments that gases approach ideal behaviour

as the pressure is decreased. Hence, the extrapolation method (p — 0) on the
data of real gases can be utilized to determine the corresponding properties of
an ideal gas. The data obtained in-this manner, after extrapolation, should be
independent of the characteristics of the actual gas employed for the experiment.
By measuring the volumes of one mole of a real gas at different pressures
and constant temperature, a graph between pV and p can be drawn. On -
extrapolating this graph to zero pressure to correct for departure from ideal
behaviour it is possible to determine the value of pV which is expected to be .
applicable to one mole of an ideal gas. Since this value of pV is expected to
be independent of the nature of the gas, the same value of (pV),_,o would be
obtained irrespective of the gas employed for this purpose. In other words, the
graphs of pV versus p of different gases must yield the same value of (pV),_.
In fact, it is found to be so, as is evident from Fig. 1.4.1. The value of (PV)ps0
at 273.15 K is found to be 22.711 dm® bar. Thus if p = 1 bar, then V =
22.711 dm?, that is, the volume occupied by one mole of an ideal gas at standard
temperature (273.15 K) and 1 bar pressure is 22.711 dm?. :

The value of R in SI units can be worked out as follows.

_ (1 bar) (22711 dm” )
nT (1 mol) 273.15 K)

= 0.083 14 bar dm’ K" mol™

Since 10? kPa = 1 bar, the value of R expressed in kPa dm?® K~! mol™ will be
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T=273.15K

pVibar dm3 —»

22711

Fig. 1.4.1 Plots of pV
versus p of a few gases

p/bar —»

R = 0.083 14 (10? kPa) dm> K~ mol™ :
=8.314kPadm®> K mol™! = 8.314MPacm® K~! mol™
= 8314Pam’ K mol™! = 8.314TK ™ mol™ '

Example 1.4.1 Determine the value of gas constant R when pressure is expressed in Torr and volume
. in dm?. ' '
Solution By definition, 1.01325 bar = 760 Torr. Hence

{(1 bar) [w ]} (22.711dmd)
R PV _ 1.01325 bar

nT (1mol) (273.15 K).
= 62.36 Torr dm® K™ mol ™!

Example 1.4.2 Derive the value of R when (a) pressure is expressed in atmospheres, volume in'cm® and
(b) p in dyn m™ and V in mm’.
Solution

Since pV =22.711 dm?® bar, the volume of an ideal gas at 1 atm (= 1.01325 bar) will be
1.01325 bar
(a) p in atm and V in P J—

=22.414 dm?

oo PV _ (atm) @2 414 em®)
| T~ (Lmol) 273,15K)
(b) p in dyn m™ and V in mm?

= 82.06 atm cm® K~ mol ™!

p=1latm=1.0132x10°dyncm™ = 1.0132x10"° dyn m~2
V=2414cm’ = 22414x10° mm®
oo PV _ (10132x10" dynm™) (22 414 x10° mm’)
nT (1 mol) (273.15K)
=8.314x10" (dyn m2) (mm3) K~ mol™




Avogadro’s Law -

" Avogadro Constant

Equation of State in
Terms of Numbers
of Molecules

 Example 1.4.3

Solution

Gaseous State 9

According to Avogadro’s law, equal number of molecules of different gases
under identical conditions of temperature and pressure occupy the same volume.
When this law is applied to real gases, it is found that the law does not
hold good at ordinary temperatures and pressures. However, when the
measurements are made at low pressures, deviations from the law become less
and thus, like other gaseous laws, Avogadro’s law may be regarded as an
approximation which is expected to be applicable only under conditions of low
pressures and high temperatures. Strictly speakmg, this law would be applicable
only for ideal gases.
~ The fact that Avogadro’s law is applicable to real gases at very low
pressures and high temperatures indicates that the volume occupied by different
gases having the same number of molecules under identical conditions of
temperature and pressure is independént of the nature of the gaseous molecules.
Thus, whether the molecules are heavy (e.g. Br,) or light (e.g. H,), gases with
equal number of molecules would occupy the same volume. This leads to one
of the most important features of gases that the distance between molecules is
much larger than the actual dimensions of molecules, since otherwise, Avogadro’s
law would not have been true. : '

The facts that the behaviour of a real gas approaches that of an ideal gas as
p — 0 and the volume occupied by one mole of an ideal gas at the specified
temperature (273.15 K) and pressure (101.325 kPa) has a fixed value (22.414 dm?)
indicate that the number of molecules contained in one mole of any real gas
should be a constant quantity. This physical quantity has a value of
6.022 x 10* mol™ and is known as Avogadro constant.

The amount of gas co'ntaining N number of molecules is given By

N
n=—
Ny
With this, Eq. (1.3.2) becomes
=nRT = —N—RT _ (1.4.1)
N, _
Avogadro’s law follows directly from the Eq. (1.4.1). We have
Ve [ RT ] N |
PN,

For a fixed condition of pressure and temperature, a gas will have fixed
volume for a fixed number of gaseous molecules.

Estimate the number of gﬁseous molecules left in a volume of 1 mm?® if it is pumped out
to give a vacuum of 10°® mmHg at 298 K.

We are given that

V = 1mm? = 107% dm?
101.235 kPa

=1.333x107" kPa
760 mmHg .

p= 10’6 mmHg'z (10’6 mmHg)[



10 A Textbook of Physiéal Chemistry

Equation of State in

Terms of Mass of a
Gas

Example 1.4.4

Solution

Example 1.4.5

Solution

" Amount of the gas, n =

pV _ (1.333x107 kPa) (107 dm®)
RT  (8.314kPadm’ K ' mol™) (298 K)
=5.38x%1077 mol

Hence, number of molecules

N =nN, =(538x10"" mol) (6.022 x 107 mol %) = 3.240x 107

For a gas of mass m, the amount of gas is given by

m.
n=—
M : _
where M is the molar mass of the gas. With this, Eq. (1.3.2) becomes
pV=nRT=("\RT - I 4o
M = - 442

* When 2 g of gaseous substance A is introduced into an initially evacuated flask kept at

25°C, the pressure is found to be 101.325kPa. The flask is evacuated and 3 g of B is
introduced. The pressure is found to be 50.662 5 kPa at 25 °C. Calculate the ratio M /Mg,

From the ideal gas equation, we have

pV =nRT = [EJRT or M=m L
M 44
| RT RT
H M, =Q¢)—— "> d My=068)
e Ma=COhmsegy ™ M =00 s siea v

M 0.
Thus, —A - 2x05 = 1
B 3 3

A certain mixture of helium and argon weighing 5.0 g occupies a volume of 10 dm? at 25 °C
and 101.325 kPa. What is the composition of the mixture in mass percentage?
Given that m,,, =50g; V=10dm? T=25° =298.15K; p = 101.325kPa
Let the mass of He be x. Therefore

Amount of He = = = _x_l
M (4.0gmol™)
ﬁ _ 50g-x
M (39.95gmol™)
PV _ (101.325kPa) (10dm’)
RT  (3.314kPadm® K mol™!) (298.15K) -

= 0.409 mol '

Hence [ ad ]+( 20g-x ]=0.409In01

Amount of Ar =

Total amount of gases =

40gmol™ )| 30.95gmol™ )~
Solving for x, we get
x = 1.262¢g




Example 1.4.6

Solution

Example 1.4.7

Solution

| Gaseous State 11

1262 g

50g
Mass per cent of Ar=100-25. 24 74.76

-Masspercentof He==""2 x100 = 2524

A flask of 2 dm® capacity contains O, at-101.325 kPa and 300 K. The gas pressure is
reduced to 0.10 Pa by attachmg the flask to a pump. Assuming ideal behaviour, answer

- the following:

() What will be the volume of the gas Wthh is left behind? :
(i) What amount of O, and the corresponding number of molecules are left behmd in
the flask? : :
(i) If pow 2g of N, is 1ntroduced what w111 be the pressure of the flask?

Given that V; = 2 dm?, = 101.325 kPa Dy = 10.10 Pa, = 300K

‘We have the followmg results

() The volume of O, left behind will be the same, i.e. 2 dm
(i) The amount of O2 left behind is given by

PV QORRNQA) g0 g0y
RT  (8314KPadm’ K™ mol™) (300K)

' N=nN, =(8. 109x10_8m01)(6022x1023 morl)
_488><1016

1
iii) 2 fN:—mol.
(iii) g0_2 14

Total amount of gases in flask = %4 mol +8.019 x 107 mol = i mol
Thus, the pressure of the flask is given by

_ 3l -l
pe nRT _ (1mol/14) (8.314kPa dm3 K™ mol™) (300K) _ 89.08 kPa
v | (2dm?)

Two flasks of equal volume connected by a narrow tube (of negligible volume) are at 300 K.
and contain 0.70 mol of H, gas at 50.662 5 kPa pressure. One of the flasks is then
immersed into a bath kept at 400 K, while the other remains at 300 K. Calculate the final
pressure and the amount of H, in each flask.

The final pressure in both the flasks will be the same, since both of them are connected
with each other. Let n; be the amount of the gas in flask 1 (T, = 300 K) and n, in the
flask 2 (T, = 400 K); .

For flask 1, pV = mRTy . For ﬂask 2, pV = n,RT,
‘ n1 T, _400K 4

Therefore, n T, =n T. ie. | -
151 7272 n, T 300K 3

But © . n+ny=0.7mol ‘

Hence n, = 0.4 mol at 300K - mp=03mol at 400K

Volume of each ﬂask 18

nRT _ (0.35 mol) (8.314 kPa dm 3g-1 morl) (300 K)
p ~ (50.662 5 kPa)

V= =17.23 dm?
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" Final pressure is

mRT, _ (04mol)(8314kPa dm’ K mol™) (300 K)
v (17.23 dm’) '

P = =57.90kPa

1.5 CONCEPTS OF PARTIAL PRESSURE AND PARTIAL VOLUME

Definition of Partial
Pressure

Definition of Dalton’s
Law

Partial Pressures in
a Gaseous Mixture

Definition of
Amount (Mole)
Fraction

Partial Volumes:
Amagat’s Law

The relation between the total pressure of a mixture of gases and the pressufe o
of the individual gases was expressed by Dalton in the forms of law of partial
pressures. The partial pressure of a gas in a mixture is defined. as the pressﬁ}é
which the gas would exert if it is allowed to occupy the whole volume of the.
mixture at the same temperature.

According to Dalton’s law of partial pressures, the total pressyre of a mixture
of gases is equal to the sum of the partial pressures of the constituent gases.

Let a mixture of gases have the.amount 7, of the first gas, 7, of the second £as
and so on. Let the corresponding partial pressures be Pis Dy . ... The totai
pressure is given by © : N

-ptotalzpl + P> +_' T

If the gases present in the mixture behave ideally, then, it is possible to

write separately for each gas,

p\V =nRT | R (15.12)

pV=mRT =  (L5.1b)

Hence (p;+p,+---)V=@m+n,+--)RT

ie. Prota V = Pyt RT ' ' (15.2)

where n,, is the total amount of gases in the mixture. Dividing Eqs (1.5.1a) and
(1.5.1b) by Eq. (1.5.2), we get

= —nl = : 7 ' N
Dr- - pt-otal X1Piotal (1532
Py == Pronl =%l ) : (1:5.3b)

total ’

The fractions n/fyyy;, Moy, are called the amount (mole) ffactions of the

respective gases. The amount fraction of a constitient in any mixture (gaseous
b

liquid or solid) is- defined as the amount (or number of molecules) of that
constituent divided by the total amount (or number of molecules) of constituents
in the mixture. If xs are given, it is possible to calculate partial pressures by
using Egs (1.5.3). :

The partial volume of a gas in a mixture is defined as the volume Which the gas
would occupy if it were present alone in a container at .temperaturé T and
pressure p of the mixture. According to the ideal gas equation, this is given by
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RT : : '
e
V, =n, [TT] - (1.5.6b)

Adding, we get

: ' RT RT
oty on o oy ()

From the ideal gas equation

Piotal _p— = Vtotal , ’ 1.5.7)

-we have \/1+\/2+-¢-,=X/total _

which is Amagat’s law of partial volumes according to which the total volume
of a mixture of gases is equal to the sum of the partial volumes of the constituent
" gases. .

Dividing Egs (1.5.6) by Eq. (1.5.7), we get
VisxVey  i=1,2,... | (1.5.8)

Example 1.5.1 - The following reaction is carried out at 101.325 kPa and 383 K,
2CH, + 30, > 2CO + 4H,0

with the initial amounts of CH, and O, as 0.01 mol and 0.03 mol, respectively. All reactants
and products are gaseous at 383 K. A short while after completion of the reaction, the flask
is cooled to 283 K at which temperature H,O is completely condensed. Calculate:

(1) The volume of the flask.
(ii)- Total pressure and partial pressures of various species after the reaction at 383 K and
283 K. _ '
(i) The number of molecules of the various substances before and after the reaction.

Solution ' The reaction is 2CH, + 30, - 2C0 + 4H,0
Amount/mol Temp.
In the beginning 0.01 003 0 0 383K
At the end 00 0015 001 0.02 383K
0.0 - 0.015 0.01 condensed 283K

(i) Volume of the flask

nRT _ (0.04 mol) (8.314 kPa dm’ K™ mol ™) (383 K)

V= : . =1.257dm®
2 . (101.325 kPa) e
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' . 0.045 mol
ii total, 383 K
@ plto R)= (0.040m

](101 325 kPa) =113. 99 kPa

. (0.025mol \( 283
ptotal, 283 K) = [ 2025 mol ) 283K
0.040 mol )| 383K

J(].01.325 kPa) = 46.81kPa

p(CH,,383K) = O

p(0,,383K) = [0015 m°1j(113 99 kPa) = 38.00 kPa
| p(CO,383K) = [001‘“01 ](11399kpa) 2533 kPa

002m01
383 = |(113. 99kP 50 66.kP
P,0. 38310 = ( Dl j( 2= )

p(CH,,283K)=0

0.015 mol
0,,283
PO, 2831 = .[0.05

J(46 81 kPa) 28.09kPa

p(CO,283K) = _O_Olm_d (46,81 kPa) = 18.72 KPa
0.025 mol

- (iii) Number of molecules before the reaction are

- N(CH,) = (0.01 mol) (6!022 x 102 mol™!) = 6.022 x 102!

N(O,) = (0.03 mol) (6.022 x 10% moi—‘) = 1.807 x 10%
‘Number of molecules after the reaction are

N(CH,) = 0 |
N(O,) = (0.015 mol) (6.022 x 10 mol™) = 9.033 x 102!
N(CO) = (0.01 mol) (6.022 x 10% mol™) = 6.022 x 10?*
N(HZO) = (0.02 mol) (6.022 x 102 mol™) = 1.204 x 10?2

1.6 THE KINETIC GAS EQUATION

Postulates of an
ideal Gas -

- After knowing the experimental gas laws, it is of interest to develop a theoretical

model based on the structure of gases, which can correlate the experimental
facts.- Fortunately, such a theory has been developed (known as the kinetic
theory of gases) and based upon certain essential postulates (which are supposed
to be applicable to an ideal gas) it is possible to derive an expression (known
as the kinetic gas equation) from where all these gas laws can be derived. The
essential postulates are:

s A gas consists of a large number of very small spherical tiny particles, which
may be identified with the molecules. The molecules of a given gas are
completely identical in size, shape and mass. o



Derivation of the
Kinetic Gas"
Equation

Fig. 1.6.1 Molecular
velocity and its
- components

Ga_séous State 15

e The volume occup1ed by the molecules is neghg1b1e in comparison to the
total volume of the gas. .
 The molecules are in rapid motion which is completely random. During their
" motjon, they collide with one another and with the sides of the vesse]. The
pressure of the gas is due to the collisions of molecules with the sides of the
vessel: :
¢ The molecules are perfectly elastic, i.e. there occurs no loss of energy when
they collide with one another and with the sides of the vessel.
e The laws of classical mechanics, in particular Newton’s second law of motiop,
are applicable to the molecules in motion.
e There is no force of attraction or repulsion amongst the molecules, i.e, they -
are moving independent of one another.

e At any instant, a given molecule can have energy ranging from a small value

to a very large value, but the average kinetic energy remains constant for 5
given temperature, i.e. the average kinetic energy is pr0p01t10nal to the
absolute temperature of the gas.

Imagine a cube of edge-length J, containing N-molecules, each having a magg
of m. Molecules are moving at random in all directions, with speed covering 5
considerable range of values. _

The velocity u; of any molecule may be resolved into three-componept

‘velocities designated as u,, Uy, and u,. These are in the three directions at right

angles to each other and parallel to the sides of the cube as shown in Fig, 1.6.1
The component velocities are related by the expression

2_ 2., 2, 2 :
W =y U+ U (L6

Considering the x-component motion of a molecule, we will have

Momentum of the molecule before collision with the side ABCD = mu,.

Momentum of the molecule after collision with the side ABCD = —mu
G C
H
E A




16 A Textbook of Physical Chemist}jy

Change of momentum of the molecule in a single collision with the side ABCD
= | 2mu, . ' o '

_ Since [ is the edge length of the cube, the molecule has to travel a distance
21 to arrive back at the wall ABCD. The number of collisions per unit time with
the wall ABCD will be equal to u,/2I. : - '

The total change of momentum per unit time due to such impacts is

2
u_ . mu;
2mu | X | = oE
\ 2l S |
According to Newton’s second law of motion

Force = mass X acceleration

S x &zﬂt}’) = % (mass X velocity)

= %'(momentmn) =rate of change of momenturﬁ

" Hence, total force due to impacts of a single molecule with the wall. ABCD of
the vessel is mu2/l.
The area of the wall is [*. Hence, the pressure exerted due to the collision
- of x-component velocity of a single molecule with the side ABCD is
2 2 :
mu /l  mu :
= == 1.6.2
& 14 (162
where V is the volume of the vessel.

Since each molecule will exert similar pressure, the total pressure exerted
on the wall ABCD will be

N N .
-p=2pu=%z 0 (1.6.3)
i=1 i=1 .

Defining .the mean square speed as

Dy

- 1%, _ :
u? = N% wy | | - (L64)
we can write
mN — ‘ ' |
p= 7% : - (1.6.5)

Since the directions x, y and z are equivalent, we will also have

S =u | (1.6.6)
But from Eq. (1.6.1), we will have

;u

Sl

R . e

<
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From Egs (1.6.6) and (1.6.7), we can write

S |
W =uh =ul = 5u2 - (1.6.8)

Substituting this in Eq. (1.6.5), we get

p:y—wv—{gﬁj or pV=—§mNu_2_ . | | ‘ (1-§-9)

Calculate the pressure exerted by 107 gas particles each of mass 107 g in a container of

volume 1 dm>. The root mean square speed is 10° cm s\,
From the given data, we have

N=10% m=102g=10Pkg V=1dm’ =10"n’

\/u-2 =100 cms?! =10 m s

Therefore, from the kinetic gas equation

_lmNE
P=37y

_ 1(10%kg) (10%) (10’ m s™")?
3 (102 m?3)

we have p

= %(107)'1(;; mls? = % x 107 Pa

1.7 SOME DERIVATIONé FROM THE KINETIC GAS EQUATION

Kinetic Gas
Equation Involving
Kelvin Temperature

The kinetic gas equation (1.6.9) can be used to-derive the various gaseous laws
and to define expressions for some useful quantities such as the root mean
square speed and the average kinetic energy. Before deriving these, it is helpful
to write this equation in the following form:

One of the postulates of the kinetic theory of gases is

Average kinetic energy o T

ie. -lmu_zocT or lm;i'-zKT
2 2

where K is the proportionality constant. Introducing this in Eq (1.6.9) we have

1 .5 2.(1 =) 2 S |
V=-mNi2==N|= = ZNKT - 17.1
Pr=3m =3 (2"’”} 3 o 47

!

- Now, we proceed to derive the various gaseous laws from Eq. (1.7.1).
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Boyle’s Law . The essential conditions for Boyle’s law to be applical__Sle are:

(i) Temperature (T) should remain constant.
(ii) Mass of the gas should remain constant. In other words, the total number -
of molecules (N) remains unchanged.

Under these conditions, ‘Eq. (1.7.1) yields

pV =constant ~ or p o< v - ;
_ which is the expression for Boyle’s Jaw,
Charles Law In this case:

(i) Pressure (p) remains fixed.
(i) Mass of the gas remains unchanged, i.e. N is constant.

With these conditions, Eq. (1.7.1) yields
V= [E &]T ie. V = (constant) T or Ve T
3 p : _
as required by Charles law.

Avogadro’s Law It states that under similar conditions of pressure and temperature, equal
p p q
volume of all gases contain equal number of molecules. Considering two gases, |
we have i

2 2 |
= §N1KT1 and  p,V, = gNzKTz

Since p, = p, and T; = T, therefore

pVi _ QBNKL Vi _ N

pVs  QBNKL TV, N,
If volumes are identical, obviously N; = N,
Graham’s Law of =~ The rate of diffusion or effusion can be assumed to be directly proportional to :
-Effusion the root mean square speed (or any other average speed). Thus _d‘

= — 1
ﬁ- = u:1 ) :
2 \ Uy 1

From Eg. (1.6.9), we have ' ' ' |

u_2 _ 3pV _ q
mN ' _ . 'l
For 1 mol of an ideal gas '
pV=RT

and N=N, - (N, is Avogadro constant)




Root Mean Square
- Speed:

Example 1.7.1

Solution.

Average Kinetic
Energy
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With these, the above equation becomes -
3 _3RT _3RT |
- ..mN, M

where M is the molar mass of the gas.

(1.7.2)

which is Graham’s law of effusion.

Root mean square (rms) speed is defined as the square root of the average of the -
squares of speeds ie. '

/;_\/ul 1l 4+ Uk

N

Accordmg to Eq. (1 1.2), thlS is g1ven as

i = / o o 173
or Ji2 =J3LV | s | : (1.7.4)

Thus, rms speed is directly proportional to the square root of temperature and
inversely proportional to the square root of molar mass. Hence, at a given
temperature lighter molecules (say H,, He) move faster than the heavier molecules
(say O,, N,). There is no effect of change of pressure or volume on the rms speed
since, at a given temperature, pV = constant.

A bulb of capacity 1 dm® contains 1.03 x 10% gaseous hydrogen molecules and the .

- pressure exerted by these molecules is 101.325 kPa. Calculate the average square molecular

speed-and the temperature

Wehave V=1dm’ N=103x10% p=101325kPa
LA 1'03";? — =0.171 mol
Ny (6.022x10% mol™)
. 3y
r 2V _ (101.325 kPa) (1 dm®)_ 127k

| nR (0.171mol) (8.314 kPa dm® K™ mol ™)
3 _3RT _ 3(8.314 T K mol™) (71.27 K)
: M (2.0 x 1073 kg mol ™)
=8.888x10° T kg™l = 8.888x10°(ms™)2

The average kinetic erlergy (KE) is deﬁn.ed-as
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Example 1.7.2

Solution

Example 1.7.3
 Solution

1.8 REAL GASES

Deviation from Ideal
Behaviour

According to Eq. (1.7.1), this is given as
KE=>P2Y
2 N
For 1 mole of an ideal gas _
pV=RT and N=N,
With these, the above equation becomes

KE=2KT 3.7 | - -~ (115)
2N, 2 |

where k = RIN, A ‘and is known as the Boltzmann constant. Its value is given by
R _ 8314JK' mol™
N,  6.022x10% mol™ |
The total kinetic energy for 1 mole of the gasis -

k= =13806x10% K1

Epial = NA(KE)"_Z'RT . o (176)

For a gas containing 10% molecules (each having mass 107%? g) in a volume of 1 dm®,

calculate the total kinetic energy of molecules if their root mean square speed is
10° cm s . What will be its temperature" '

Total kinetic energy
- N[%_mu—z] = (10%) {]5 (107 kg) (10° m s‘l)z}

=0.5x10*kgm?s? =05 x 10*J
Total kinetic energy is also equal to N(3/2)kT. Thus

N[%JkT =05x10%7

' 4 : . 4
Hence. T = 205x10" D) - % (0.5x%107J)

3 Nk (10%) (1.3806x 102 K™
=2414K

Calculate the total kinetic energy of 0.5 mol of an ideal gas at 273 K.

Total Kinetic energy

= r{% RTJ = (0.5 mol) {% (8314 I K 1 mol™) (273 K)} =1702]

Real gases do not obey the ideal gas laws exactly under all conditions of
temperature and pressure. Experiments show that at Jow pressure and moderately -




Fig. 1.8.1 Plot of p

‘versus V of hydrogen,

as compared to that
of an ideal gas

Compression
Factor

Exa)nple 1.8.1

Solution
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high temperatures, gases obey the laws of Boyle, Charles and Avogadro
approximately, but as the pressure is increased or the temperature is decreased,
a marked departure from ideal behaviour is observed. Figure 1.8.1 shows, for
example, the type of dev1at10n that occurs in Boyle’s law for H, at room

. temperature.

ideal gas

Hy

p—>

y —

The curve for the real gas has a tendency to coincide with that of an ideal
gas at low pressures when the volume is large At higher pressures, however,
deviations are observed.

" The deviations can be displayed more clearly, by piotting the ratio of the

observed molar volume V, to the ideal molar volume V 4.,y (= RT/p) as a

~ function of pressure at constant temperature. This ratio is called the compression

factor Z and can be expressed as

Z= Vv—m = Ep?vm | (18.1)
' ideal _

m,

At 273.15 K and under a pressure of 10.132 5 MPa, the compression factor of O, is 0.927.
Calculate the mass of O, necessary to ﬁll a gas cylinder of 100 dm® capacity under the
given conditions.

From the given data, we have
 T=27315K, Z=097, p=101325Mpa
Thus, the molar volume of O, is
v o ZRT _ (0.927) (8.314 MPa cm® K~ mol™) (273.15 K)
™ p _ 10.132 5 MPa
=207.77 cm? mol™ '

The mass of this molar volume will be equal to the molar mass of oxygen, ie.
207.77 cm® weighs 0.032 kg. Thus, the mass of oxygen required to fill a gas cylinder of
100 dm’ G.e. 10° cm®) under the given condition is

2092K8 | (10% em®) = 15.40 kg
207.77 cm '
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Example 1.8.2

Solution

Plots of
Compression
Factor versus

- Pressure

Fig. 1.8.2 Plots of Z
versus p of a few gases

The compression factor (Z = pV/nRT) for N, at 223 K and 81.06 MPa is 1.95 and at

‘373K and 20.265 MPa it is 1.10. A certain mass of N, occupies a volume of 1.0 dm?

at 223 K and 81.06 MPa. Calculate the amount of the gas and the volume occupied by
the same quantity-of N, at 373 K and 20.265 MPa.

For T'= 223 K, p = 81.06 MPa, Z'= 1.95 and V = 1.0 dm® = 10°* cm’, we have

_wvo_ (8106MPa)(103cm)
ZRT (1 95)(8.314 MPa cm® K™ mol ™) (223K)

=2242mol

‘Now at T = 373 K, p =20.265 MPa, Z = 1.10, the volume occupied would be

ZnRT _ (1.10) (2. 42mol)(8 314 MPa cm® K~ mol ™) (373K) _
p - (0265MPa) o

=37740cm’ = 3.774 dm3

V=

For an ideal gas, Z = 1 andis independent of pressure and temperature. For a
real gas, Z = f(T, p), a function of both temperature and pressure. Figure 1.8.2 -

shows a graph between Z and p for some gases at 273.15 K, the pressure range
in this graph is very large. It can be noted that:

(1) Z is always greater than 1 for H,.

(2) ForN,, Z< 1 in the lower pressure range and is greater than 1 at h1gher
pressures. It decreases with increase of pressure in the lower pressure region,
passes through a minimum at some pressure and then increases continuously
with pressure in the higher pressure region. -

(3) For CO,, there is a large dip in the beginning. In fact, for gases which
are easily liquefied, Z dips sharply below the ideal line in the low pressure
region. :

ideal gas

, T . R
0 100 . 200 - - 300
’ p/101.325 bar —»- :




Fig. 1.8.3 Plots of Z
versus p of a single gas at
various temperatures
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Figure 1.8.2 gives an impression that the nature of deviations .depend

upon the nature of the gas. In fact, it is not so. The determining factor is the

temperature relative to the critical temperature (see p. 36) of the particular gas;

near the critical temperature, the pV curves are like those for CO,, but when far
away, the curves are like those for H, (Fig. 1.8.3).

| T,
h>L>5>1

1,0 SO S

7 =

| - L I

0 200 400 600

p/101.325 kPa —»

Provided the pressure is of the order of 1 bar or less, and the temperature
is not too near the point of liquefaction, the observed deviations from the ideal
gas laws are not more than a few per cent. Under these conditions, therefore, the
equation pV = nRT and related expressions may be used.

1.9 VAN DER WAALS EQUATION OF STATE FOR A REAL GAS

Causes of Deviations
from Ideal Behaviour

The ideal gas laws can be derived from the kinetic theory of gases which is
based on the following two important assumptions:

(1) The volume occupied by the molecules is negligible in comparison to the
total volume of the gas. ' ‘
(ii) The molecules exert no forces of attraction upon one another.

It is because neither of these assumptions can be regarded as applicable

- to real gases that the latter show departure from the ideal behaviour.

Evidence for
Molecular Volu.me

The molecules of a gas, however, do occupy a certain volume as can be seen
from the fact that gases can be liquefied and solidified at low temperatures and
high pressures. On decreasing the temperature of a gas, the thermal energy of
molecules is decreased and the effect of applying high pressure is to bring the

‘molecules closer to one another, thereby increasing the forces of attraction

- amongst them. Both these factors favour liquefaction and solidification. In the

solid state, however, there is a considerable resistance to any further attempt at
compression. It is, therefore, apparent that the molecules of a-gas must have  an
appreciable volume, which is probably of the same order as that occupied by

the same number'o‘f molecules in the solid state.
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Evidence for -
Molecular
Attractions

Derivation of Van
Der Waals Equation

Correction for
Volume

Expression of
Excluded
Volume

Fig. 1.9.1 Excluded
volume. per pair of
molecules

The molecules in gases also have weak forces of attraction (called van der Waals
attraction) amongst themselves, as otherwise, the gases could never be liquefied
and'solidified, This is also supported by the fact that when a compressed gas
is passed through a porous plug of silk or cotton in adiabatic condition, the
emerging gas is found to be cooler than the entering gas provided the temperature
of the gas is less than its inversion temperature (Joule- Thomson effect).! This is
because on expansion, some work has to be done against the internal forces of
attraction, which requires energy. This energy comes from the system itself.

Van der Waals was the first to introduce systematically the correction terms due
to the above two invalid assumptions in the ideal gas equation pr1 = nRT His
corrections are given below. .

V 1n the 1dea1 gas equation represents an ideal volume where the molecules can

move freely. In real gases, a part of the total volume is, however, occupied by
the molecules of the gas. Hence, the free volume V; is the total volume V minus
the volume occupied by the molecules. If b represents the effective volume:
occupied by the molecules of 1 mole of a gas, then for the amount 7 of the gas
V; is given by _ :

Vi=V—-nb _ . o (19.0)

where b is called the excluded volume or co- 'volu'me The numerical value of &

-is four times the actual volume occupled by the gas molecules. This can be

shown as follows.

If we consider only .bimolecular collisions'; then the volume occupied by the

. sphere of radius 2r represents the excluded volume per pair of molecules as

shown in Fig. 1.9.1.

I

—2r

]

]

I

]

. 1

excluded H
volume P

1

]

]

1

LT

Thus, excluded volume per pair of molecules

= g-n(2r)3 -;8[%nr3)

t See Section 2.9 of Volume 2 :(-)f this series of book -




Correction for _
~ Forces of Attraction

Fig. 1.9.2 Arrangement

of molecules within and -

near the surface of a
vessel
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Excluded volume 'per molecule

= —%[8[%1&" ﬂ = 4(% o ]: 4 (volume occupied by amolecule)

Since b represents excluded volume per mole of the gas, it is obvious that

~

b;NA[zt(-:-_m’ﬂ' L (192

Consider a molecule A in the bulk of a vessel as shown in Fig. 1.9.2. This

molecule is surrounded by other molecules in a symmetrical manner, with the
result that this molecule on the whole expenences no net force of attraction.’

Now, consider a molecule B néar the side of the vessel, which is about to strike
one of its sides, thus contributing towards the total pressure of the gas. There
are molecules only on one side of the vessel, i.e. towards its centre, with the
result that this molecule experiences a net force of attraction towards the centre
of the vessel. This results in decreasing the velocity of the molecule, and hence
its momentum. Thus, the molecule does not contribute as much force as it would
have, had there been no forces of attraction. Thus, the pressure of a real gas
would be smaller than the corresponding pressure of an ideal gas, i.e.

pi=p+ correctlon term - ; - (1.9.3)
This correction term depends upon two factors: |

(i) The number of molecules per unit volume of the vessel Larger the
number, larger the net force of attraction with which the molecule B is dragged
behind. This results in a greater decrease in the velocity of the molecule' B and
hence a greater decrease in the rate of change of momentum. Consequently, ‘the

~ correction term also has a large value. If 72 is the amount of the gas present in

the volume V of the container, the number of molecules per unit volume of the
container is given. as :

nN : n
A or N' e =

N’ =

- Thus, the correction term is given as:

Correction term o< % ' : ‘ 2 - (1.94a)
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Expression of
Van Der Waals
Equation of State

Values of Van Der

Waals Constants

(ii) The number of molecules striking the side of the vessel per unit time
Larger this number,_ larger the decrease in the rate of change of momentum.
Consequently, the correction term also has a larger value. Now, the number of
molecules striking the side of vessel in a unit time also depends upon the .
number of molecules present in unit volume of the contamer and hence. in the -
present .case:

Correction term o —3 | (1.9.4b)

Taking both these _factors together, we have

Correction term | niz
. VIV

2

or Correction term = a% ' | - (1.9.5)

- where a is the proport10nal1ty constant and is a measure of the forces of ‘

attraction between the molecules. Thus
_ 2 o _ . - o
pi=p+t a? _ o S (1.9.6)

. The unit of the'term an?/V? is the same as that of the pressure. Thus, the

- SI un1t of a is Pa m® mol~ 2I may be. convemently expressed in kPa dm®

1—2

When the expressions as given by Eqgs (1.9.1) and (1.9.6) are substituted in the -
ideal gas equation p,V; = nRT, we get

2
[p + ';—f](V —nb) = nRT _ ' - (197

This equation is apphcable to real gases and is known as the van der Waals
equation. '

The constants @ and b in van der Waals equation are called van der Waals

" constants and their values depend upon the nature of the gas (Table 1.9.1). They

Table 1.9.1 Van Der Waals Constants

a : b ' . a b

Gas - Gas .

: kPa dm®mol?  dm? mol™ . kPa dm® mol?  dm? mo]™
H, 21.764 0.026 61 CH, . 228285 0.042 78
He 3.457 0.023 70 C,Hg 556.173 0.063 80
N, 140.842 . 0.039 13 C;Hg 877.880 0.084 45
0, - 137.802 0.031 83 CH p(n) 1466.173 0.122 6
cl, 657.903 10.056 22 C,H,,(is0) 1304.053 =~ 0.114 2
NO 135.776 0.027 89 CsH,p(n) 1926.188 - 0146 0
NO, 535.401 0.044 24 Co - 150.468 0.039 85

H,O 553.639 0.030 49 CO, 363.959 - 0.042 67
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are characteristics of the gas. The values of these constants are determined by
the critical constants of the gas. Actually, the so-called constants vary to some
extent with temperature and this shows that the van der Waals equatlon is not
a complete solution of the behav1our of real gases.

Calculate the pressure exerted by 22 g of carbon dioxide in 0.5 dm® at 298.15 K using:
(a) the ideal gas law and (b) van der Waals equation. Given:

a = 363.76 kPa dm® mol? and b = 42.67 cm® mol™
22g
_ 44 g mol™
V=05 dm? : T =1298.15 K
a = 363.76 kPa dm® mol? b = 42.67 cm® mol™! = 0.042 67 dm® mol™
(a) From the ideal gas law, p = nRT/V, we have
_ 05 mol) (8.314 kPa dm? K~ mol™) (298.15K)
(o 5dm®)

. Amount of CO, = =0.5mol -

=2.479 x 10° kPa

: 2
(b) From the van der Waals equatxon p= ﬂ _z f , we have
V..

V—nb

(o 5mol) (8.314 kPa dm® K mol™) (298.15K)
o 5dm? ~(0.5mol)(0.042 67 dm> mol ™) -

_ (05mol)*(363.76 kPa dm® mol %)
(0.5dm3)?
-2 58931 kPa — 363.76 kPa = 2 225.55 kPa

Two van der Waals gases have the same value of b but different a values. Which of these
would occupy greater volume under identical conditions? If the gases have the same a value
but different values of b which would be more compressible?

If two gases have same value of b but different values of g, then the gas havmg a larger
value a will occupy lesser volume. This is because the gas with a larger value of a will
have a larger force of attraction, and hence lesser distance between its molecules.

If two gases have the same value of a but different values of b, then the smaller the
value of b, larger will be the compressibility because the gas with the smaller value of b
will occupy lesser volume and hence will be more compressible.

Calculate molecular dlameter d of helium from its van der Waals .constant b
(b = 24 cm® mol™).

Since b = 4 x volume occupied by the molecules in 1 mole of a gas
or b= 4NA[§nr3]

13 | 3 .1 B
3b 3 x 24 cm” mol
therefore r= = >3 I
. 16Nz 70 16(6.022 x 10“° mol™)(3.14)

= 1.335 x 10‘8cm—1335 pm
d=2r = 267 pm
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Example 1.9.4

Solution

Applicability of the
Van Der Waals
Equation

The molar volume of helium at 10.132 5 MPa and 273 K is 0.011 075 of its molar volume
at 101.325 kPa at 273 K. Calculate the radius of helium atom. The value of a may be
neglected.

The van der Waals equation after neglecting a reduces to

p(V,—-b) =RT
Substituting the given d'afa, we have
ar 101.325 kPa:

(101.325 kPa) (V,, - b) = (8.314 kPa dm® X~! mol™) (273 K)
ie. V.- b =224 dm® mol™ = 22.4 x 10° em’® mol” 1)
at 10.132 5 MPa: _

- (10.132 5 MPa) (0.011 075 V,, - b) = (8314 MPa cm® K™ mol™) (273 K)

ie. 0.011 075 V,,— b = 224.00 cm® mol? | : - (2)
Multiplying Eq. (1) by 0.011 075 and then subtracting Eq. (2) from it. we get

b—0.011 075 b = (248.08 — 224) cm’ mol™

b. _ 24.08 cm° mol ™

=24.35cm> mol™
0.988 925 -

Since b=.(g—nr3 ](4NA)

N Vi | 1/3
: 3b 3 x24.35 cm® mol”
we have r= 3
167N 5 16 x 3. 14><6022><10 mol

=1.34x 103 cm=134pm

Since the van der Waals equation is applicable to real gases, it is worth
considering how far this equation can explain the experimental behaviour of
real gases, as represented by Fig. 1 8.2. The van der Waals equation for 1 mole

~of a gas is

[p+V ](V -b)=RT - . | (1.9.8)

At low pressure  'When pressure is low, the volume is sufficiently large and b

can be ignored in comparison to V_, in Eq. (1.9.8). Thus, we have

. a . a
+— V_ =RT or pV_,+ — =RT
or z=1- -2 (1.9.9)
- " V_RT

- From the above equation it is clear that in the low pressure region, Z is less

than 1. On increasing the pressure in this region, the value of the term
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(a/ VRT) increases as V'is inversely proportlonal to p. Consequently, Z decreases
with increase of p.. .

At high pressure When p is large, V,, will be small and one cannot ignore b
in comparison to V. However, the term a/V2 may be considered neghglble in
comparison to p in Eq. (1 9.8). Thus,

p(Vy,—b)=RT
or Z=1+ P o | | (1.9.10)
. -RT .
Here Z is greater than 1 and it increases linearly with pressure. This
explains the nature of the graph . in the high pressure region. '

At high temperature and low pressure If temperature is high, V_ will also be
sufficiently large and thus the term a'/V,%1 will be negligibly small. At this stage,
b may also be negligible in comparison to V. Under these conditions, Eq. (1.9.8) :
reduces to an ideal gas equation of state:

PV =RT

" Hydrogen and helium The value of a is extremely small for these gases as they

are difficult to liquefy. Thus, we have the equation of state as p(V,, — b) =

obtained from the van der Waals equation by ignoring the term a/ V2. Hence,

Z is always greater than 1 and it increases with increase of p.

The van der Waals equation is a distinct improvement over the ideal gas
law. It gives qualitative reasons for the deviations from ideal behaviour. However,
the generality of the equation is lost as it contains two constants, the values of

‘which depend upon the nature of the gas.

1.10 OTHER EQUATIONS OF STATE FOR REAL GASES

Berthelot’s Equation

Dieterici’s Equation

The van der Waals equation is one of the many equations of state suggested in
order to account for the behaviour of real gases. There are two other simple
equations of state which 1nv01ve just two arbitrary constants. The first of these,
due to Berthelot, is '

. 2 :
[p + —](V nb) = nRT (1.10.1)
TV? o

where a and b are constants called the Berthelot’s constants (different from van
der Waals constants) and are characteristics of the gas.

The second equation, due to Dieterici, is

{p exp(nalVRT)} (V - nb) = nRT | (1.102)
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Virial Equation

Physical
Signifance of
the Constant B

All these three equations of state can be expressed- approximately in one common |
form, called the virial equanon of state, which has the following form for 1 mole -

ofa gas
v 1 11
Z=EM =14B—+C—+D—5+ - 1.10.3
RT Vo V2OV ( )

where B, C, . . . are temperature dependent constants known as second, third, etc.,
virial coefficients. These coefficients must be evaluated experimentally at each
different temperature.

The second virial coefficient B may be obtained from the experimental

data Rearranging the virial equation, we gct

Vm %_1 =B+£.+...
RT :

m

Thus, extrapolating the graph between V. {(pV /RT) -1} versus I/V,, to
1/V =0 glves the value of B, i.e.

B= lim Vm l"v—m -1 - ©(1.104)
| /2 RT : , :
The third virial coefficient C would be the slope of this plot if there were

no higher terms in Eq. (1.10.3). These further terms cause the plot to be curved
so that C must be evaluated from the initial slope.

The second virial coefficient B has the unit of volume and may be considered
to be an excluded molar volume as.can be shown by using statistical mechanics.
The term B can be expressed in terms of intermolecular attraction by the
equatlon

B=2N, ru —exp(-OMDFdr (1105)
0

where r is the intermolecular distance, k is the Boltzmann constant and @ is the
potential of molecular interaction. As the simplest example of the use of this
equation, we consider a gas made up of rigid spherical molecules of diameter

- d. We assume that the molecules do not interact unless they touch one another

and thus @ = 0 if r > d. The molecules cannot penetrate one another as they

are rigid; thus @ = oo if r < d. Therefore, we have

) .
B=2mN, J ¥ dr = %nNAd3 =4N, [f;—m?] (1.10.6)
_ 0 S ' :

Hence B is the product of Avogadro constant and the volume excluded per
molecule. | ' _

- In general, the numerical values of the virial coefficients decrease very
sharply with higher powers of volume.
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Problem 1.10.1 Show that at low densities, the van der Waals equation

m

(p + %J(Vm ~b)=RT
and the Dieterici’s equation
p(Vy, —b) = RT éxp( —a/R_TVm)
: give essentially the same value of p. -
Solution  Atlow densities, volume of the gas is large, therefore b may be ignored in comparison

to V.. Moreover, the term a/RTV,, will have small value and thus the term exp( - a/RTV,,)
can be expanded as’ ' '

L a
) —al/RTV_)=1- :
exp( - alRTVy) = 1 - —=

m

Thus, under these approximations we can write van der Waals equation as

a : RT a
+— [(V)=RT or p=—-—
[p VI%I.]( m) p V. V2

and Dieterici’s equation as

Vm m

. Thus, we see that both van der Waals equation and Dieterici’s equation reduce to the same
expression of p at low densities.

1.11 REDUCTION OF VAN DER WAALS EQUATION TO VIRIAL EQUATION

Virial Equation in The van der Waals equation of state for 1 mole of a gas is
Volume ' '

a ' : ‘RT a

+ — |((V_-b)=RT -or = - —

[p V2 ]( wb S A

| Multiplying both sides by V/RT, we get

. . -1
me= Vo % g Z= l—i __ 4
RT Vg, ,-b V,RT V. -V RT

m

In the low pressure region, V,, is large and bV, << 1. Thus, the expression
(1 - b/V_)! can be expanded into a power series in bIV,,: '

b Y b (bY (bY
l-— | =l+—+|—| +|=—| + -
Vi ) Va WWa) U
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Virial Equation in
Pressure

Substituting this in the expression for Z, we get

a1 (bY -
Z =1+ b—-— 4+ — + .-
[ RTJVm [_Vm] NGRS

Thus for the second virial coefficient, we have

B=b_-2%
RT

“Third virial coefficient C = b%, and so on.

An alternative form of the virial equation of state involves the expression of
Z in terms of a power Series in p, i.e.

Z=1+Ap+Ap + - (L112) -

The expressions for A; and A, can be derived as follows:

| ' o 2
Ze1+(p- 2| L (2] 4.
U RV, |\ Ve

- Since Z = pV_,/RT, therefore, 1/V,, = p/RTZ. Hence

2 o
Z=1+|b-2 | 2 p2| 2 | .. C T IL)
RT |RTZ RTZ
Comparing Eqs (1.11.2) and (1:11.3), we get
) | a)p b Y,
1+ Ap+Ap ™+ =1+|b- — =— +| — +
TTAPT AP T [ .RT]RYZ {RTZJ P
2 2
: 5 .. 1 (., a b Yp
or  Ap+APPF - =—|b-— p+|—=| 5 +
or 1P+ 4P " -RYZ[ RTJP (RT] 72

Dividing by p, we get

| ) |
o 1 a bYp
- ATap RTZ[ RTJ [RTJ 2

In the 1imitﬁ1g state of zero pressure, Z = 1 and this equation becomes
1 S a. _
A=—|b-— , : : - (1.11.4)
RT RT )

which is the required expression for A;. Thus

' 1. (bYp
A+Ap+-i=Al=+]— |5+
| T O {Z] [RTJ 72
We repeat the procedure by subtracting A, from both sides of this equation,

dividing by p and taking the limiting value at zero pressure. Note that
(Z~1)lp = A, at zero pressure. Then ' '
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i | ,
b . 2 - a a
Ay =|—| -A 2b— — 1.11.
= [RT] ' (RDY ( 'RT] | (L1L9)
Thus, the expressmn for Z correct up to the third coefflclent is
1 a \. a a
Z=14+—|b-—|p+ 2b - — + - 1.11.6
RT( RT )p (RT){  RT jp 1119

The correct coefﬁcient for p could have been obtained by simply replacing

'V, in Eq. (1.11.1) by the ideal value; however, this would yield incorrect

values of the coefficients of higher powers of pressures.
The slope of Z versus p curve is obtained by differentiating" the above -
virial equation in Z with respect to pressure, keeping the temperature constant,

1e.. o _ _
z) _ 1 a), 2 al |
= ==b-— |+ 2b—— |p+-- 1.11.7
_[ap], . RT( RT] (RT)3{ RTJP —
At p = 0, all higher terms drop out and this derivative simply reduces to
ZY _1(, a) | ‘
— | =—|b-—= ' =0 : 1.11.8
( apl RT[ RT] (p=0) (1113)

The derivative in Eq. (1.11.8) is the initial slope of the plot of Z versus p
(Fig. 1.8.2). Now if b > a/RT, the initial slope is positive and the size effect
(i.e. b factor) will dominate the behaviour of the gas. However, if b < a/RT, the
initial slope is negative and the effect of the attractive forces (i.e. a factor) will
dominate. Thus, the van der Waals equation, which includes both the effects
of size and of intermolecular forces, can interpret both the positive and

- negative slopes of the Z versus p plots. In interpreting Fig. 1.8.2, we can say

that-at O °C, the effect of attractive forces dominate the behaviour of methane
and carbon dioxide, while the molecular size effect dominates the behaviour
of hydrogen.

While interpreting F1g 1.8.3 (graph of Z versus p of the same gas at
different temperatures), we can say that if the temperature is low enough, the
term a/RT will be larger than b and so the initial slope of Z versus p will be
negative. As the temperature rises, a/RT becomes smaller. At a sufficiently
high temperature it becomes less than b, and the initial slope of Z versus p
curve turns positive.

At some intermediate temperature Ty, called Boyle temperature, the initial slope
is zero. This is obtained from Eq. (1.11.8) by putting b — a/RTg = 0, which yields

a
T. =2 °
BT Ry

~ At the Boyle temperature, the Z versus p line of an ideal gas is tangent

(1.11.9)

" to that of a real gas when p approaches zero. The latter rises above the ideal gas

line only very slowly. In Eq. (1.11.6) the second term is zero at Ty and the
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-Example 1.11.1

' Solﬁtion

Problem 1.11.1

remaining terms are small until the pressure becomes very high. Thus, at the
Boyle temperatire, the real gas behaves ideally over a 'wide range of pressure,
because the effects of the size of molecules and intermolecular forces roughly
compensate each other. :

The Boyle temperature of some gases are given below

TyHy) = -156°C - Tp(N,) = 59 °C
Ty(He) = — 249 °C Tp(CH,) = 224 °C
' Ty(NH,) = 587 °C

Thus we can see that for H, and He, the temperature of 0 °C is above their
respective Boyle temperatures and so they have Z values greater than unity. The
other gases at 0 °C are below their respective Boyle temperatures and so they
have Z values less than unity in the low pressure range.

Given that Z = 1.000 54 at 273.15 K and 101.325 kPa pressure and the Boyle temperatute
of the gas is 107 K, estimate the values of a and b

We are given that

Z—100054 T =21315K, p—101325kPa and Tg =107 K

From the expression

z=1+LAp_ 2 |
RTZ| RT

RIZ a
h b=(Z-)—/— +— .
we have ( )p =T

At Boyle temperature, Ty = a/Rb so that.a - RbTy. Therefore,
b=z -1~ RTZ RbTB
p RT
On rearranging, we get
- T Z-1 RTZ
T - TB p
Substituting the values, we have |

_.[ 215K j'('iiooo 54-1

1273.15K 107K )| 101.325 kPa
x (273.15K) (1.000 54)
=0.0199 dm? mol”~ -1

J(s 314 kPadm K"lmol )

Also a =RbTy, =(8.314 kPa dm’® K™ mol™) (0.019 9 dm® mol ™) (107K)
= 17.703 kPa dm® mol

- Express Berthelot and Dieterici equiations in the form of virial equation of state and derive
the eéxpressions for the second virial coefficient of these equatlons Also derive the

expressions for Boyle' temperature
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- Berthelot’s equation

RT a

Vo-b TV2

m

Multiplying by V_/RT, we get

p:

-1
PV Vo @ |- by} a
RT  Vu-b VuRT*> | Vi) VoRT?
2
b b - a
=1+ —+|— | + - = 5
Vo |\ Va V.RT

2
1+ 1 b_.._2 L F oee
Vol RT V.,

The second virial coefficient and Boyle temperature are

a a 1/2
B=|b-—| Ty=|=
[ RTZ] B (Rb] |

Dieterici’s equation

- _RT - exp(~a/VRT)
(Vm—b) -
Therefore,
. 3 ,
me Vm / b- .
=2 M - __ W _exp(—a/V.RT)=|1-—| exp(-a/V..RT
RT n—b pCalVuRT) Vn paltufD)

2 :
=1+i+—b— 4o fl1- =2 +---=1+Lb—i+
o Vo | Va VRT Vo RT

Thus, the second virial coefficient is (b — a/RT) and Boyle temperature Ty is a/Rb.

1.12 CRITICAL CONSTANTS

'Andrews Isotherms

_In 1869, Thomas Andrews carried out an experiment in which p-V relations of

carbon dioxide gas were measured at various temperatures. The types of isotherms
obtained are shown in Fig. 1. 12 1. Other real gases also show the same types of
isotherms.

We observe from Fig. 1.12.1 the following:

(1) At high temperatures, such as T, the 1sotherms look like those of an
ideal gas. '

(2) At low temperatures, the curves have altogether different appearances
Consider, for example, a typical curve abcd. As the pressure increases, the
volume of the gas decreases (curve a to b). At point b liquefaction commences
and the volume decreases rapidly as the gas is-converted to a liquid with a much

 higher density. This conversion takes place at constant pressure p. At the point

¢, liquefaction is complete and thus the line cd represents the variation of V with
p of the liquid state. The steepness of the line cd is evidence of the fact that
the liquid cannot be easily compressed Thus, we note that ab represents the
gaseous state, bc, liquid and vapour in equlhbnum and cd shows the liquid
state only
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Fig. 1.12.1 Andrew’s
graphs of p versus V

Definitions
of Critical
Constants

Characteristics of
Critical Isotherm

4> T3> T,>T,> 1)

\

AY
lc X _ 'l‘:\\\\'TI
\ a

y —

Liquefaction commences at b and is complete at c. At a point between b and

¢, say X, the ratio of liquid to gas is equal to bX/cX. The pressure corresponding

to the line bc is known as vapour pressure of the liquid. :
(3) At still higher temperatures we get a similar type of curve as discussed
in (2) above, except that the width of the horizontal portion is reduced; the
pressure corresponding to this portion being higher than at lower temperatures.
(4) At temperature T, the horizontal portion is reduced to a mere point. At
temperatures higher than T, there is no indication of liquefaction at all.
Thus for every gas, there is a limit of temperature above which it cannot

‘be liquefied, no matter what the pressure is.

Critical temperature T, is the maximum temperature at which a gas can be
liquefied, i.e. the temperature above which a liquid cannot exist.

Critical pressure p, is the minimum pressure required to cause liquefaction at

the temperature 7.

Critical volume V,_ is the volume occupied by one mole of a gas at critical

temperature 7 and cntlcal pressure p..

The point Y in Fig. 1.12.1 represents the gas in its critical state. At this point
the temperature, préssure and volume have critical values. These three are

-known as critical constants. The isotherm corresponding to the temperature 7
is known as critical isotherm. To the left of the point Y on this isotherm, we have

the liquid state whereas to the nght, we have the gaseous state. Thus, at point
Y transition from liquid to gaseous state (or vice versa) takes place and thus. it
is not possible to state whether the substance is in the gaseous form or in the
liquid form. In fact, both the states become indistinguishable at the critical
point. The surface of separation between liquid-and gas disappears. At this point
the various physical properties such as dens1ty, refractlve index, etc., have
identical values for both the states. : :
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Experimental Determmatlon of Critical Constants

Determination of T
and p.

Fig. 1.12.2 Apparatus
used for the
determination of critical
temperature and pressure

Determination of V/,

One of the methods to determine the critical constants T, p.and V, of a gas is
to use the procedure of Andrews, ie. to plot p—V isotherms for a number of
temperatures. Other methods, which are much simpler are also available.

These two can be determined based on the principle that at T, and p, the
densities of liquid and vapour become identical and the surface of separation—
the meniscus between them—disappears.

Bulb A in Fig. 1.12.2, where the substance is placed is attached to a
mercury manometer B.

N

Liquid out <—

Liquid in —»

We adopt the following procedure for obtaining critical values of temperature
and pressure of the gas under examination,
(i) The bulb is cooled so that the surface of separation between the liquid
and vapour is clearly visible. :
(ii) Temperature of the thermostat is gradually increased until the meniscus
just disappears. The temperature and the corresponding pressure are noted down.
(iii) The bulb is cooled slowly and again the temperature and pressure at
which the surface of separation just reappears are noted down.
The mean -values of the above two temperatures and pressures give the
critical temperature and pressure, respectively.

Its determination may be carried out by using the law of rectilinear diameter

(given by L. Cailletal and ‘E. Mathias). According to this law, the mean value

of the densities of any substance in the states of liquid and of saturated vapour

at the same temperature is a linear function of the temperature. These densities

where liquid and vapour are in equilibrium are known as- orthobarzc densztzes
Mathernatlcally, we can write -

—(p1+pv) a+ bt

B ‘where a and b are constants. If a graph is drawn between density and temperature;

one obtains a graph of the type shown in Fig. 1.12.3.
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£
Fig. 1.12.3 Plot of
~ orthobaric densities
versus temperature. AA’, |
BB’ and DD’ represent. '
densities of vapour, liquid |
-and means, respectively temperature —» o 1

The point C, obtained by extrapolating lines AA’, BB’ and DD’, gives the
critical density. S o i

To determine the densities, a. known mass of the liquid is sealed in a
graduated tube and heated to a particular temperature. The volumes V; and V,
of liquid and vapour, respectively, are then read off from the graduation. If p,
and p, are the densities of liquid and vapour, respectively, then

m= lel + vav

The experiment is repeated with another mass and from the resulting
equations the values of p; and p, are obtained.

Values of Critical Table 1.12.1 records the critical constants of a few substances.
n i _ _
Constants . Table 1.12.1 Critical Constants of a few Substances.

Critical Constants - Cri'tical Constants )

Gas Pc _— Ve L Gas Pe Y I E

kPa  dm’mol? K kP2 dm’mol™ K |

- - |

He 228.99 0.057 8 5.3 C,Hg 4 883.87 0.139 305.5 ‘

H, 1 296.96 0.065 0 33.3 C;H, 4 265.78  0.195 370.0 N

--Ne - 2 624.32 0.041 7 44.5 n-Butane  3.647.7 0.250 426
Ar 4 863.60 00752 151 Ethylene 511692 . 0.126 282.8
Xe 5865.70 0.120 2  289.81 Acetylene 6 241.62 0.113 308.6

N, 339439 00% 1 1261 H,;0 22 058.45 0.056 6 647.3 _
0, 503585 00744 1544 NH; 11 368.67 00720 4055 |
CH, 4 640.69 0.0990 190.7 CH,;0H 7 971.24 0.118 - 513.2 '

‘ CO, 737646 00942 3042 | ,

1.13. CONTINUITY OF STATE

In Fig. 1.12.1 end-points of the horizontal lines have been connected with a |
- dotted line. This portion, known as the surface of discontinuity, separates the ’
liquid state on one side and the gas on the other. Within this curve the liquid '



Fig. 1.13.1 Schematic
representation of the
continuity of state
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and the gas coexist. Because of this coexistence curve, it is possible to distinguish
between the two states of matter, namely, gas and:liquid. However, in practice,
this is not always true because it is possible to convert matter from one state into
another without any sharp discontinuity. This can be done as shown in
Fig. 1.13.1.

(i) Increase the temperature of the gas keepmg volume constant. The pressure

~ rises along AL.

(i) Having reached L, the pressure is kept constant and the gas is cooled; this
decreases the volume along the line LD.

pP—>

Thus, we have passed from A to D without the gradual change as it occurs

along the line BC, i.e. condensation in the usual sense of the term did not occur.

Point D could be said to represent a highly compressed gaseous state of the
substance. Whether we refer to the state in the region of point D as liquid state

" or as highly compressed gaseous state depends purely upon which of the two

viewpoints happens to be convenient at the moment. Thus, in the absence of the
surface of discontinuity, there is no way of distinguishing between liquid and
gas. '

1.14 ISOTHERMS OF VAN DER WAALS EQUATION

For one mole of a gas the van der Waals equation -

+— |(Vu—b)=RT
[p 2 )( )
can be written as
v o[ps B2 ay %o (1.14.1)
P p- P

This equation has three roots in V,, for given values of a, b, p and T. It is found
that either all the three roots are real or one is real and the other two are
imaginary (Fig. 1.14.1).
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Fig. 1.14.1 Van der
Waals isotherms

Main Characteristics The main characteristics of Fig. 1.14.1 are given in the following:

‘of Van Der Waals
Isotherms

* At hjghér temperatures such as 75 and in the higher volume region, the

isotherms look much like the isotherms for a real gas.

At a temperature lower than T, the isotherm exhibits a maximum and a
minimum. For certain values of pressure, the equation gives three roots of
volume, e.g., V;, V, and V; at pressure p;. The sections AB and ED of the van
der Waals curve at T, can be realized experimentally. ED represents
supersaturated (or supercooled) vapour and AB represents superheated liquid.
Both these states are metastable. These are realized only when the volume is
changed very slowly. These states are unstable in the sense that slight

disturbances are sufficient to cause the system to revert spontaneously intd

the stable state with the two phases present in equilibrium.

e The section BCD of the van der Waals isotherm cannot be realized
experimentally. In this region the slope of the p—V curve is positive. Increasing

(decreasing) the volume of such a system would increase (decrease) the

~pressure. The line BCD also represents the system in the metastable state.

At the end points of the horizontal line AE, the conversion of gas into liquid
or vice versa has just commenced, the system will have the same value of
Gibbs function at the points A and E. Thus, '

AGp 5 =0

Since dG = Vdp at constant temperature, this leads to the fact that

E
MGy 5 =] Vip=0

Consequently, the line AE which divides the curly curve of van der
Waals isotherm within the discontinuity region into two portions is so placed
that the area ABCA and CDEC have the same value but of opposite s1gn )
that thelr sum is equal to zero.

|
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On increasing the temperature, the three roots such: as A, C and E; become Closer

- to one another and ultimately at critical temperature, they become identical.

Thus, the cubic equation in V,, can be written as
V= V) V= V") (V= V") =0

which at the cn'ticﬂ poiﬁt (where V' = V” = V" = V) becomes
(Vo= VO =0

" Expanding the above expression, we obtain -

V3 V3oVV2 43V, =0 (1.142)

Equation (1.14.1) with p = p, and T = T, and Eq. (1.14.2) must be complé.tély
identical and coefficients of the individual powers of V,; must be the same in

both. Setting the corresponding coefficients equal, we. obtain the followmg three

equations:

R,
¢. . 3yi=2,. Vj_:ﬁ - (1.14.3)

Pe Pe Pc

3V, =b+

Solving these equations for p,, V, and T, in terms of a, b and R, we get

V=3 = al27b%; T, = 8a/21Rb (1.14.4)

Thus, if the values of Po V. and T, for a given gas are known, it is p0331b1e
to calculate the values of a, b and R from the equations

1% ' 8p.V.
b=-%, a=3pV2, R = ZXe’e (1.14.5)
3 . | c'cC 3]10

Since experimentally it is difficult to determine V, accurately, it would be better

if a and b could be obtained from p, and T, only. Thus

1(3RT,) RT, ) 3RT, | _ 21RT,)
= = =—° a=3pc-Vc =3pc | =7
31 8p, - 8p, ' _ 8p, 64p,

(Note that for an ideal gas a = 0 since there exists no forces of attraction between

its molecules. Thus, for such a gas, T, = 0 K. Since the essential condition for
a gas to liquefy is to cool it up to or below its critical temperature, it is obvious
that an ideal gas cannot be liquefied as it is not possible to attain 0 K.)

The value of pV/RT at critical state is

PYe -3 (375 - | (1.14.6)
RT. 8 |

C

If we compare this value with the experimental values (Table 1.14.1), it

“is found that the agreement is very poor. The reason behind this poor agreement

is that the van der Waals equation is not accurate enough to predlct the
behaviour of a gas near its critical state.
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Table 1.14.1 Order of Observed Values of pVIRT, for Some Gases

Type of molecules - Examples Value of p.VJRT,
Molecules with small R He, Ne, Ar, O, Very close to 0.29
symmetrical nature CH,
(nonpolar and slightly polarizable)
Molecules having polarity or . C1,, CS,, CCl,, About 0.26 or 0.27
polarizability - GHy ' :

Molecules having hydrogen bonding ~ NH,, H,0, CH,OH  0.22 to 0.24

Alternative way of Another way of expressing critical constants in terms-of a, b and R is to use the
Expressing Critical condition of maximum slope at the critical state. The slope of p—V curve is
Constants inTerms  negative before and after the critical point and has a maximum value of zero

of Van Der Waals at the critical point (the point of inflection). The condition of slope being equal
Constants to zero is given by
P o (1.14.7)
14 . | ,

and the condition that this slope has a maximum value is

3 [(apN ] _ . - | |
BV{[GV]’}T —.0 (1.14.8).

From the van der Waals equation

__RT a
T V2
d  _RT 22 2 |
we get | P = 2+—‘31 and a,; = 2RT3——6%
WV (Vo =0 Va V2 v.-b Vi
Hence at the critical point,
RT 2 :
B L _‘; -0 (1.14.9)
vV, -b?  V, ‘ |
~ 2RT. 7 ‘
and - 6—2’ =0 : ‘ (1.14.10)
(Vc - b) Vc . : , ’

Solving Egs (1.14.9) and (1.14.10) for V, and T, we gét

V,=3b and T, =»2§;b

(1.14.11)
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‘Substituting the values of V, and T in the van der Waals equation, we‘ha've

RT, a R@a2IRD) a
V,-b V2 (b-b)  (3b)>
_da a _a
T 9p: 27h?

P =

(1.14.12)

The critical constéﬁts for water are 647 K, 22.09 MPa and 0.056 6 dm® mol . CalcUiatg :
the values of a, b and R and explain the abnormal value of R.

‘We have T, =647K; p, =22.09 MPa=22.09x10> kPa; V, =0.0566dm’ mol™*

_ PO B! ' ‘_
Ye _ 0.0566dm” mol =00189 dm’ mol™

’c

3 3

a=3pV; _3(2209x103 kPa)(00566dm mol~ )
=2123KkPa dmS mol2

I'a'-_ 8pV, 8 [ (22090 kPa) (0.056 6 dm® mol ™)
o 73

: 25.1531K ™ mol ™!
3T, 647K _

The value of R is 8314 J K™ mol™.. The experimentally dete.nnined'vahie is much
different from this value. This is due to the fact that simple van der Waals attraction does
not exist at the critical state. :

* The critical temperature and pressure for NO are 177 K and 6.485 MPa, respectively, and

for CCl, these are 550 K and 4.56 MPa, respectively. Which gas (i) has smaller value for
the van der Waals constant b; (ii) has smaller value of constant ¢; (iii) has larger critical
volume; and (iv) is most nearly ideal in behaviour at 3OQ K and 1.013 MPa.

We have T,(NO)=177K . T(CClL)=550K
p.(NO)=6485MPa  p,(CCl,)=4.56 MPa

. : 2
(i) Since P a2 _ R

T, ~ 8a/2TRb  8b
therefore, b = LR
8p,
Thus, b(NO) _ (177K) (8. 314 MPa cm> K~ mol~ ) ~ 2836 cm3 mol ™
®) (6 485 MPa)
and b(CCly) = (550K)(8 314 MPacm® K mol~ ) _ 125 350m mol™!

(8) (4.56 MPa)_

- Hence b(NO) < b(CCly)
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(ii) Since a =27p b*

therefore  a(NO) = (27) (6.485 MPa) (28.36 cm’ mol 1) ,
=140827 MPa cm® mol? = 140.827 kPa dm® mol™?

a(CC14) (27)(4 56 MPa) (125 35cm’ mol ')’
=1934 538 MPa cmn® mol 2 = 1934538kPadm6mol2 '

: :Hence_ aNO) < a(CCly)

(ili) Since V, =3b
therefore, VC(NO)'='5 (28.36 cm® mol ™) = 85.08 cm® mol ™!
Vv, (CCly) =.3 (125.35cm’ mol"l) = 376.05 cm® mol ™ |
Hence V(NO)<V(OC14) o

(iv) NO is more ideal in behaviour at 300 K and 1.013 MPa, because its cntlcal
temperature is less than 300 K, whereas for CCl, the corresponding critical temperature is
greater than 300 K

1.15 THE LAW OF CORRESPONDING STATES

Reduced Equatlon
of State

Van der Waals equatlon can be written in a form which does not contain any
constant characteristics of individual gases. Such an equation will, therefore, be
applicable to all gases. In order to obtain this .equation, we define reduced
pressure, reduced temperature and reduced volume as follows:

P T - Vin ’
== T = — and V=2 1.15.1
pr pc_ o r ]-(1: r ‘/c - ( )
Thus  p=p,p, -T=TT, ad V,=VV,

Substituting these expressions in the van der Waals equation

V. -b)=RT
[p+vm]( )

we obtain (prpc ](VV b) RT. T

l' C

Replacing p,, V, and T 'in terms of a, b and R, we get

- V,(3b) - b} = RT, 8a_
{p " 27p? V2(3b) }{ 30)~b} = 27Rb

ie.  ( +3VHQGV-D=8T 152
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Equatibn (1.15.2), known as the reduced equation of state, does not
contain any constant which is characteristic of a gas and is thusapplicable to
all gases. According to it, if two gases have the same values of reduced pressure
and reduced temperature, they will have the same reduced volume. Thus, they
correspond to each other. This statement is known as the law.of correspondmg
states. '

In actual practice, the above reduced equation of state is not d1rectly used.
One makes use of the graphs between compression factor Z and the reduced
pressure at different reduced témperatures. The same 'graphs'are applicable to all
gases This can be seen from the following consideration.

- Since Z PVo/RT, writing this in reduced terms gives

Z: PV = (Prpc)(Ver) = pG.VC Vi - ?_prVr

c by

(1.153)

Accofding to the law of corresponding stateS_,‘ if two gases have the same .

reduced temperature and reduced pressure they will have the same reduced

volume. Thus, the right hand side of Eq. (1.15. 3) is independent of the nature
of gas and hence the value of Z is same for all gases. )

Any equation of state which involves only two- constants in add1t10n to R can

‘be written in terms of reduced variables only.

Express Berthelot’s constants in terms of cntlcal constants and obtain its reduced equation
of state.

The Berthelot’s equation of state is
RT a . _ .
V. -b T ver (1.154)
m ’ .

‘p=

a_p. =— RT + 2a and 82p ‘: - 2RT _6(1
.Thus A V., -b VT ) (Vo -b  VaT

At critical state

2
D)o ad |22 =0
v, F

RT,  2a’

- =g (1155)
V,-b  VOT,

Thus

2RT, - 6a
3T U4
-by VT,

and

(1.15.6)

Dividing Eq. (1.15.5) by Eq. (1.15:6), we get

RT, (V,-b® 22 VJT,
(Vc "'b)z ' ZRTC ) Vc3Tc- 6a
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ie. Ve ’—.b X
' 2 -3
or . 3V, -3b=2V, or Vc=3b or b= —3— (1.15.7
From Eg. (1.155)
' RT, V3T
a=—=5 _
A by?
Eliminating b, we get
(1.15.8)

.- _RL VT, | _ ORIV,
- )2 2

By

The value of pch/RT of this equation can be obtamed as follows:
" At critical state, Eq. (1.15. 4) modifies to

RT, a
V,~b V7'T

Pc=

Multiplying by VJ/RT,, we get

zo=lle T _a
c - . 2
R, Vo-b VIR

Substituting b and a in the above expression in terms of V, and 7, from Eq. (1.15.7) and
Eq. (1.15.8), we get :

3  O9RT?. 3 9 3 :
7 = el 2 2220375 (1.15.9)
° 3%-b VIR 2 8 8 (159

| Reduced form of Berthelot’s equation of state Replacmg p,V and T in the Berthelot’s
equation of state

V. - —b)=RT
[p+VmTJ( )

in terms of p,, V, and T,, respectively, we get

a .
[Prpc + VrzvczTrTc ](Ver -b)= RTrTc

Further, we replace a and b in terms of V, and T, and gét.

9RTV. v
+——L € [VV.-—< |=RT.T
(Prpc SVrZchTrTc ]( e J rie
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) © ORT, 1Y, o
or +—"=—||V.~ = |V.=RTT
| DrDc -8VrzTer][ T 3J ¢ ric
- - RT, -
or . - pr + 2 .RTc [Vr . _I_J :'Tr c . -
8"1‘ Tr pch 3 pCVC
Subsﬁtuting the value of (RT/p.V.) from Eq. (1.15.9), we get
| 3 1y s o -
+—— (| V.- = |= =T, : (1.15.10)
[Pr VrzTr ]{ r 3] 3T _ : -

which is the reduced form of the Berthelot’s equation of state. -

Problem 1.15.2 | Express Dieterici’s constants in terms of critical cd_nstants and obtain its reduced equation
of state. ' '
'.Solution ' The Dietérici’s equation of state is
(R - L B
p= r_ exp(—a/V,RT) . - (1.15.11)
S\ Vb -

Differentiating with respect to V,, at constant temperature, we get

( o J =— RT 5 exp(—a/V,RT) + _RT 5
T (Vy,—b) (Vm —b) V4RT

exp(-a/VRT)

A
RT ' 1 a
- —~alVuRT)| -
[Vm—b]exP( “ ){ (Vm—b)+Vn2,RT}
R - ' S (115.12)
VIRT ~ (Vyy—b) . |

At the critical state,

»)
. :0

2
L, ViR,

- = or = 1.15.13
V2RT, (V,-b) V.-b ( )

Therefore

Differentiation of Eq. (1.15.12) with respéct of V, at constant temperatufe gives

3%p p a1 ] [ 2a 1
7| = I I —— tp| 3t 7}
V2 |V | VERT ~ (V-0)| | VERT (VD)

2
1 a 1 e 28, 1
P\V2Rr ~ v, +b CLVART (Ve —bY|
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This must be zero at the critical state. Hence

p a1 +p| - 2a '+ 1 _
|\ VIRT V,-b ‘| VRT, (V,-b)*
Since the first term is zero because (dp/dV,,)r = 0, we can write

2a | |
~pr T 7=
V3RT, = (V,-b)

This eives az VeREe - | |
$ gives = 2(Vc—b)2 | - (1.15.14)

Dividing Eq. (1.15.14) by Eq. (1.15.13), we get
-

c

V.

=—¢  je. 2AV.-b)=V. or b=-L : o
2(V, - b) (Ve —b)=Ve 5 | (1.15.15)
Substituting Eq. (1.15.15) in Eq. (1.15.13), we get
= M =4bRT, = ZV RT?
T @b-b)y e Tere _ (1.15,16)

At critical state, Dieterici’s equation becomes

[ _ a -
P —b)e"p[ VCRI;J @b-b)

_ R[ﬁ} exp[_-;]

(2D)R(al4bR)
“which gives p, = —o—
g DPc = 4b262 | . (1.]_5 17)
The value of p.V/RT, can be obtained by substituting a and b from Eqs (1 151 5) a
(LIS.16) into Bg. (115.17). Thus, we have | and.
2V.RT, . pVe 2. :
=—=FL_Ff= je £ =—=02707

Reduced form of Dieterici’s equatwn of state Substltutmg p, V and T in terms of redy

uc
pressure, volume and temperature, respectively, in Dieterici’s equation of state ed

{p exp(a/VmR.T) }(V,,-b)=RT

weget  {p,p exp(@V,V,RT,T,)} (V,V, ~ b) = RTT,
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Substituting a and b in terms of p,, V, and T, we get :

{prpcexp(ZVRT /VVRTT)}[ V_%] RT.T,

thatis  pep@IVT)| Y, - = | = R,
I 2 PcVe
- ' 1 T,
o . p exp(2/Vr-Tr)(Vr - 5] = 2r (1.15.19)

which is the required reduced form of Dieterici’s equation of state.

- Calculate the volume occupied by 2.0 mol of N, at 200.K and 10.132 5 MPa pressure

if pch/RT = 3/8 and p,V/T, = 2.21..

since  P¥e -3 g JAA =221

- RT, 8 T,
therefore _Pg‘i X pr_Vr = 3Ax 221 or % = E x 2.21
_ R, T, 8 8

S 2.
o Vm=(3 X 21]R_T
8 p
3 =1 -1 .
_[3 « 2-21](8.314MPacm K™ mol™)(200 K) —136.0 em® ol
(10.132 5 MPa)

Volume of 2 mol of N, = (2.0 mol) (136.0 cm® mol™) = 272.0 cm®

Compare the values of pCVc/R'T‘ of van der Waals, Berthelot’s and Dieterici’s equations of
state with the experimental values given in Table 1.14.1 and suggest which one is the most
appropriate to be used at the critical state of gases.

The values of p .V/RT, for the three equations of state are

r.V,

van der Waals: £Le = 3 =0.375 (Eq. 1.14.6)

: RT, 8

Berthelot's: PVe o3 o375 (Eq. 1.15.9)
RT, -8 |
.V |

Dieterici’s: PYe _ 2 02707 ' (Bq. 1.15.18)
RT, € ' ) .

. Coinparing these with the values given in Table 1.14.1 reveals that the Dieterici’s equation

of state is the most appropriate to be used at the critical state of gases.

5
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1.16 MAXWELLIAN DISTRIBUTION OF MOLECULAR SPEEDS

Dlstrlbutlon of
Molecular Speeds

Law of Distribution
- of Molecular Speeds

Consequence of -
Distribution of
Speeds

The speed of a molecule of a gas changes continuously as a result of collisions
with other molecules and with the walls of the container. Thus, the net result is
that one cannot speak of the speed of an individual molecule; rather, one must
consider the statistical average of the speeds of the whole collection of gas
molecules. Since the observed properties such as pressure, volume and temperature
of an isolated gaseous sample do not change with time, it is expected that the °
same is also true in the case of distribution of molecular speeds. That is, the
fraction of total number of molecules having speeds between any definite range
must be constant, even though the speeds of individual molecules may be

~ changing as- a result of molecular collisions.

The mainner in which the molecules of a gaS are distributed over the possible

speed ranges, from zero to very high values, was first investigated by J.C. .

Maxwell using the theory of probability. His results are expressed as the law of
distribution of molecular speeds, one form of which is '

M

dN =4nN|
2rRT

32 '
] exp(-Mi/2RT) u?du

m

g 4"N[ 2rkT

This expression gives the number of molecules dN, having speeds between |

u and u + du in terms of the total number N of molecules present, molar mass

M (or mass of a single molecule m) of gas and the temperature. According to this

expression the fraction dN, /N of molecules having speeds between 1 and u + du

for a gas of molar mass M depends only on temperature. Thus, for a given
temperature, this fraction has a constant value

32 ‘
] exp(—muZ/ZkT) w2du : | (L161)

A direct consequence. of the d1str1but10n of speeds is that the average kinetic
energy of a gas is also constant for a given temperature. Qualitatively, thlS may
be verified as follows:

The average kinetic energy is defined as

KE = - lmul2 + lmu§+ +lmu12V
N\2 2 2

1 .
—m(u1 + u2 4o +u12v) = %mu2

2N
Alternativeiy, it may be defined as -
- 1 , ' . |
KE = %[Emz a, ﬁ]:%m(z_ djv" u,?] (1.162)
A i : i y

wh‘eré dN; is the number of molecules having speed equal to u;. _Since the
fraction dN;/N having speed u; (or more precisely between speed range u; and
u; + du) is constant at a given temperature, the right side of Eq. (1.16.2) has a



Plots of Maxweli
Distribution of
Speeds

Fig. 1.16.1 Plots of
(1/N) (dN,/du) versus u

Most Probable
Speed

Gaseous State ’. 51

constant value. Thus, the average kinetic energy: has a constant value at a given
temperature. This is, in fact, one of the assumptions of the klnetlc theory of

© gases.

The Maxwell distribution of speeds is customarily p_ldtted with the fraction
(1/N) (dN,/du) as the ordinate and « as the abscissa. The term (1/N) x (dN,/du)

"= (V/du) (AN,/N) gives the fraction of molecules in the speed range of u to

u + du per unit interval of speed. Roughly speaking, this gives the probability
of finding a molecule with a speed between u and (u + 1 m/s). The distribution
at two temperatures is shown in Fig. 1.16.1. '

n>T

33

-]z

U —» uy .

The curve at any temperature is parabolic near the origin, since the factor
u® is dominant in this region, the exponential function being approximately
equal to unity. At high values of u, however, the exponential factor dominates
the behaviour of the function, causing it to decrease rapidly in value.

As a consequence of the contrasting behaviour of the two factors, the product
function passes through a maximum at a speed known as the most probable
speed, u,,. Thus, the most probable speed is the speed possessed by the maximum
fraction of the molecules. The expression of iy, can be derived mathematically
using the condition of maxima by setting the ﬁrst derivative of ( 1/Ny (dN,/du)
with respect to speed equal to zero. Thus :

1.dN,

‘ 312 _
N du ) _gnl M T |20 exp( <M 2RT)
du kT | |

2 2Mu
+u| -
: 2RT

| an _ _ S _
M . .
41{—M—J Hyp, €XP(= Murznp/ZRT)|:2 _ } =0 . (1.16.3)

J exp(- Mu? /2RT)} .

Hence at u,,, we have

2nRT RT
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General Comments

on the Distribution

of Speeds

Verification of
Maxwell Distribution
Law: Molecular
Beam Method

In fact, any of the terms Uiy exp(—Muﬁlp/ 2RT) and'(2; - Muﬁlp/RT) being equal
to zero will make the whole Eq. (1.16.3) equal to zero. The first two correspond
to the minimum fraction of molecules having speeds zero and infinity,
respectively. The third term gives -

Mu?
2_ mp =0 or .u2 _ 2RT

or JzRT JZkT . (1164

The fraction of molecules having either very low speeds or very high speeds
are small in number (see Fig. 1.16.1). The majority of molecules have speeds
which cluster around. u, in the middle of the range of w.

o The total area under the curve is a measure of the total number of molecules

“in the collection, i.e. the number of molecules comprising all speeds. The
area under the curve between any.two speeds, for example, u; and u,, is-a -
measure of the total number of molecules having speeds between these two -
values.

Figure 1.16.1 gives the distribution of speeds at two temperatures 7; and
T,. Since the total number of molecules is the same at both temperatures, the
area under both the curves will have the same value.

e Since increase in temperature causes an increase in the kinetic energy of
molecules, it follows that the fraction of molecules having lower speed range
decreases whereas the fraction of molecules having higher speed range
increases on increasing the temperature of the gas. This is primarily because
of the exp(=Mu?/2RT) factor in Eq. (1.16.1). This is evident in Fig. 1.16.1.
Also, the curve at the higher temperature T, has its u,, shifted to a higher
value compared with that for T, whereas the corresponding fraction of
molecules has decreased. But at the same time, the curve near Uenp has become
broader at the higher temperature indicating that more molecules possess
speeds near to the most probable speed. In general, the distribution of speeds
is wider at a higher temperature than at a lower temperature.

o The speed distribution also depends on the mass of the molecule. At the same

temperature a heavy gas has a narrower distribution of speeds than a light

| gas. It can be seen from Eq. (1.16.1) that the distribution, in general, depends
upon the value of M/T. Thus, the distribution will be the same for'a gas of -
molar mass 2M at temperature 27 since the ratio remains the same. For
example, the distribution of O, molecules at temperature T will be the same

as those of SO, molecules at temperature 27.

In this method, the gaseous molecules after passing through a pinhole in the
source S are collimated by the slits and then pass through one of the openings
between the cogs in the cogwheel C; (Fig. 1.16.2). The cogwheels C; and C,
are mounted on the same axle which is rapidly rotated. The molecule which has
passed through C; will pass through C, only when the time required for the
particle to come from C; to C, is the samie as that required for the cogwheel C,
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C2 T ale_—
meter

to rotate once, i.e. when C, is exactly in the same position as C, was when the
molecule passed through it." If v is the frequency of rotatlon of cogwheels, then
the time requ1red for one rotation is

Let [ be the distance between the two cogwheels. The speed of -the molecule
which covers this distance in time ¢ is

u=-=»N
t
The molecules with the above speed after passing through the cogwheel C, are
admitted in R where their number is determined from the radiometer deflection.
By changing the frequency of rotation of the cogwheels the number of molecules
having different speeds can be determined.

Calculate the fraction of N, molecules at 101.325 kPa and 300 K whose speeds are in the
range of up, — 0.005uy, to uy, + 0.005u, '

Most probable speed,

' 12
2RT | 2(8.314TK ™ mol™) (300 K)
o =\ (0.028 kg mol ™)

=422.0972 icg‘l’z = 422.09ms™
Since -0.005 4, =(0.005) (422.09ms™) =211 ms™
therefore  dit = (i, + 0005 1) ~ (i ~0.005 1) =422 "]
Maxwell distribution law states
W

M 32
— =dn| —— | u* exp(-Mu*/2RT)du
N 2nRT

: Since the speeds of the molecules are large, this tlme may be made equal to that of the
cogweel to be displaced to the next opemng
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Thus, we have

2MRT 2%3.14%(8.314 T K mol™) (300 K)
=2390x107kg¥? 13?2 = 2.390x10° m3§3

[LT’Z _ { : (0.028 kg mol ™) }3/2

Mu? (0.028 kg mol ™) (422.09 ms™H? |
exp| ~ —— | =expq— =) )
2RT 28.314 TK™" mol™) (300 K)
= exp(-1.000)=0.3679

Hence | % =4x3.14%(2.390x10° m™ 3) (422.09 m s )%(0.367 9) (4 2m s“)

=8303%x107 -
Example 1.16.2 What is the ratio of the number of molecules havmg speeds in the range of 2u,, and
: 2u, + du to the number of molecules having speeds in the range of Uy AN Uy, + du?
Solution ~ If AV, is the number of molecules in the speed range Uy, o Uy, + du and dN, is the =

corresponding number in the speed range 2uy,, to 2u,,, + du, then according to the Maxwell
distribution, we have ' '

’ 32 '
 _ 4n[lj W2, exp (- M /2RT) du

N 2nRT
dN. M 3/2 . )
T

dN,  exp(-4Mul 2RT) )
=4 : il =4 exp (- 3Mu;, /2RT)
Therefore "4y ™ " exp (- MuZ,/2RT) P e

RT dN
Now, since _uﬁlp =", therefore —2=4e>=0.199
M dn;

1.7 DERlVATlON OF SOME. EXPRESSlONS FROM THE MAXWELL DISTRIBUTION

Maxwell distribution expression (Eq. 1.16.1) can be used to denve expressmns
for average speed, root mean square speed, average kinetic energy and the
fraction of molecules possessing kinetic energies greater than some specified

| energy.
Average Speed The average value of speeds is given by the relation
Wty :
n=41"% . 2 " O 17)

Equatlon (1. 17 1) can be written in the form
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ﬁ_:’NJ. udN, _[

where dN, is the number of molecules having' speed u. The summation of
different speeds is replaced by integration since all typés of speed ranging from

(1.17.2)

‘zero to infinity are involved.

Substltutmg dN//N from Eq. (1.16.1) in Eq (1 17. 2) we get

32
=4 _ '[ A2
7] n[ 2nRT) . u exp( Mu /2RT)du

'whlch on 1ntegrat10n yields

AT

The mean square speed is given by

A ru iy L 2 J' W2 N, (1.17.4)
~NJo |

| | N i
Using Eq. (1.16.1), we get

— YL
.uz =4n(2nRT]' Jo u* exp(— Mid /2RT)du

which on integration yields

(J {[%J”%a} L

Thus,  u, —\/7 1’ RT ‘f . _ (1.17.5)

Arrange root mean square, most probable and average speeds in the order of decreasing
value. Discuss the effects of temperature and pressure on these speeds.

From Eqs (1.16.4), (1.17.3) and (1.17.5), we find that

N LT TN o
M : ™ M

\/SRT/M \/ﬁ [3 _1132
_ﬁ- " JBRIIM 8/m 159

\/72 W 3RT/M _ 1732

Miy \/2RT/M ' '2 1.414

Therefore
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Solution

Hence  Vu® 1 :up, ::1.732:1.596: 1.414
From this, it follows that
\/u_2 >u> Uy

It may be concluded that all the three speeds are directly proportional to the square root
of absolute temperature and are independent of pressure of gas.

~ For 0, gas molecules, the root means square speed at Ty, the average speed at T, and most

probable speed at T are all equal to 1.5 x 10* m s7. Calculate Tl, T, and T;.

We can calculate Tl, T, and T; as follows.

\/u=1=,f%=1.5x103ms_1

2 M _ (1.5x10° ms™)?(0.032 kg mol™)

which gives T; = (1.5 x 103ms"1)

3R 38314TK  mol™y
=2887K '
uav' 8:;%-15x103ms L

: 3 -1\2
which gives , =(1.5x103ms”1)2[nM} (15><1_0 ms )“(3. 14><0032kgm01 )

8R 8(8 314JK_ mol ™)
=3399K

_ |2RT 3
u_mp— 7—15)(10 ms

(15x10° ms ™M) (1.5 x 10° m s7)%(0.032 kg mol ™)
2R 2(8314T K mol™)

which gives I =

=4330K

C‘alculaté the temperature at which the average speed of H, equals that of O, at 320 K.

We have  #(0,) =

- ' 12
8RT _ 8R(320K)
M |7(0.032 kg mol ™)

8RT 8RT i
E(Hz) = - { }

™ | 7(0.002 kg mol™)
Since . ®(0,) = u(H,)
8R(320K) 8RT
1(0.032kgmol™)  7(0.002 kg mol™)
which gives T=20K

therefore
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Calculate the root mean square, average and most probable speeds of H, molecules. The |
density of the gas at 101.325 kPa is 0.09 g dm™ (= 0.09 kg m™>). Assume ideal behaviour.

The three speeds can be calculated as follows:

— | 3 172
JZ_ PRT _ Ppve P _ 3(101.325><103 2] PPN
Ve M P (0.09 kg m™)
B SRT [spv_ [8. [3(101.325x10°Pa)]"” '
ﬁ:J—: Plm _ |- : 3a) =1694ms!
Nar N~ \mp | 314009 kgm™) o
KT [2pv. [p [20101325x10°Pay] ">
ump =, |—— = —p m _ —p = .7 3 a) = ISOImS_l
2 Y, p | 0.09kgm?)

The average kinetic energy is given by

=_1_ﬁ2ui2 :ll”_r > dN,
N2T " N2l

Substituting dN,/N from Eq. (1.16.1) and intergrating the resultant expression,
we have

5=1m(3k—T]= 3ir | (1.17.6)
2 m 2 : . :

The Maxwell distribution of speeds (Eq. 1.16.1) can be converted into energy
distribution by substituting

Differentiating, we have

_ 1 "
du= [—] e V2 g¢
2m | - :
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Fig. 1.17.1 Plot of (1/N)
(dN/de) versus €

Fraction of
Molecules
Possessing Kinetic
Energies Greater
than Some Specified
Energy

~ The energy range de corresponds to the speed range dy, and so the number
of particles dN, having speeds between u and u + du CorTesponds to the number
of particles dN, having energies between € and € + de. Replacing u and du in
Eq. (1.16.1) in terms of € and dé, we have

1 3/2 ) . | | .
dN‘9 ZZRN(ﬁJ eV exp(—e/kT)de | | (1.17.7)

Figure 1.17.1 shows the plot of (1/N) (dN/d¢) versus ¢ Shape of this curve _
is different from that of the speed distribution curve. The energy distribution has
a vertical tangent at the origin and thus: it rises much mqpe rapidly than the
speed distribution curve which starts with a horizo_ntal tangent. After passihg the
maximum, the energy distribution falls off more gently 5, does the speed
distribution. As usual, the distribution is broadened at higher temperatures.
‘Thus, a greater- proportion of the molecules possess higher eper gies.

£ —»

The fraction of molecules having energies greater than g’ g given by
N(e) _ Jm dNe \
- "N _(1.17.8)

Substituting dN/N from Eq. (1.17.7) in the above €Xpression. we have

, 32 e
NI(:/: ) = 27:[%] j . g exp(—e/kT) de

which on integration yields

7

NGE) o B2 S
N zz[nkT} exp(~¢/kT), (€">> k) (1.17.9)

Equation (1.17.9) describes how the fraction of molecyjeg having kinetic
energies greater than €’ varies with temperature. Due g the exponentia1
dependence, this fraction varies quite rapidly with temperature, particularly at
low temperatures. This equation is often required in descripip,
of physical chemistry. For example, in the study of effeq;

g many concepts
f temperature on
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reaction rates, we require the fraction of molecules having energies equal to or
greater than some minimum energy (known as threshold energy). It is known
that only those molecules which have energies equal to or greater than the
threshold energy can react chemically. Since this fraction increases with
temperature, the rate of a chemical reaction also increases with temperature.

Calculate the fraction-of N, molecules at 101.325 kPa and 300 K whose kinetic energies
are in the range of £ -0.005& and £ +0.005 .

The average kinetic enérgy at 300 K is

3

£ = EkT = %(1.380 6x10 2 FTK ) (300K) =6.213x 10721 ]

Now de = (F + 0.0058)~ (F - 0.0058) = 0.01F = 6.213x 103 ]

' Equation for energy distributibn is

32
dxe =2n(r]tT] e exp(—e/kT)de -

Therefore, we have

3/2
1 3/2 _ _ 1
kT 314x(1.3806 x 102 JK™) (300 K)
= 6742 x10% 32

'n=21
6213 x 10721 J ] 003

exp(—&/kT) = exp| -
p( ) p[ (1.3806 x 102 JK™) (300 K)

Thus dx £ =2 x3.14x(6.742 x 10% 1% (6.213 x 10721 /2

x (0.223)(6213x 1072 J) = 4.624 x 10

Calculate the number of molecules in one mole of an ideal gas that have energies greater
than four times the average thermal energy at 25 °C and 50 °C. '

The average thermal .energy £ is given as

£=2kT
2

The expression which gives the fraction of molecules having energies greater than £is given
as

172
NE) o £ exple/kT)
Ny kT

Now, £ =4g = 4[%ij=6kT _

Substituting this in the above expression, we have -
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- . : 1/2 172 - f'
NE) =2 KT 1 exp (- 6kT/kT) =2 6 exp (— 6)
NA TEkT ) T

6 12
—2[31] (0.002479) = 6.85%107

Since' Np =6.022 x 102 mol ™ , therefore

N(e) = (6.022 x 10° mol™) (6.85 x 103) = 4.13 x 10% mol™

Since the fraction N(&)/N 18 indépendent of temperature, the same number of molecules -
will have energies greater than four times the average thermal energy at the given temperatures
of 25 °C-and 50 °C. :

1.18 BAROMETRIC DISTRIBUTION LAW

‘Derivation of ~ Barometric distribution law deals with the variation of pressure with height
Distribution Law “produced as a result of the influence of the gravitational field. The pressure at
- any height & is determined by the total Welght of fluid in the column of unit

area of cross-section above that height.
Let F,, be equal to weight of fluid in the column of area of cross-section
A above lieight & and (F, + dF) be equal to weight of fluid in the column above
height .(h + dh). Thus, dF is equal to the weight of fluid in the column between

heights h and (h + dh) (Fig. 1.18.1).

- -

Fig. 1.18.1 Column of

fluid in a gravitational ' ' ' L
el | 4 — h=0

Now,

Weight of the fluid between heights h and (h + dh) = p (A dh)g
where p is the density of the fluid between the heights k and (k + dh). Since
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the Weight of the fluid above any particular height decreases with increase in
the height, it is obvious that dF and dk will have opposite signs. Thus

~dF=pA dh) g or dF = - pgA dh
Now, since  dp = dFIA, therefore  dp = — pg dh ¢1.18.1)

Since density p is independent of pressure, therefore, at height 4 the pressure
1S given by ' ' '

Ph rh
J dp :.J -pgdh
) Jo

that is, ~p,—p,==pgh : (1.18.2)

‘where p, is the pressure at the bottom of the column and p,, is the pressure at

height h above the bottom.

In case of gases, density is a function of pressure. We can assume the gas to be
ideal, such that '

or pV =nRT = %RT

Therefore ™M =
RT 'V

With this, Eq. (1.18.1) modifies to

M
dp=~-—gdh
p RT 8
Separating variables, it yields
P (M), (1.18.3)
D RT

which on integration gives

In(plp®) = ——2-+1 1.18.4)
(p/p°) RT ( '

where p° is the standard unit pressure. Since at k= 0, p = py, therefore, the
constant of integration / is given as

I =1In(py/p°)
Thus, Eqg. (1.18.4) be_:comes N

, ver | | _.
In o |T TRT O P =Doexp(-Mgh/RT) (1.18.5)
0

Equation (1.18.5) is known as the barometric distribution law.
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Alternative Forms of
- Barometric
Distribution Law

Parallelism with
Boltzmann
Distribution Law

Effect of
Temperature on
Distribution

Effect of Height on
Distribution

Two alternative forms of Eq. (1. 18 5) are also commonly used. These are described -
in the following.

In terms of density of gas The dens1ty of a gas is directly proportlonal to its
pressure. Thus, we have :

P =p, .exp(—Mgh'/jRT) | (1.18.6)

In terms of number of particles per unit of volume

Since pV =nRT, therefore
pV = Nerrooor PN, = ERT =NRT
N, _ %4
or p < N

that is, the pressure of gas is dlrectly proportional to the number of PaItlcles per
unit volume. Thus; we have

N’ =N} exp(-Mgh/RT) or N’ =N} exp(-mghkT) (1.18.7)

Equation (1.18.7) is, in fact, the expression of Boltzmann distribution law,
which basically deals with the distribution of molecules in various energy levels
with respect to some reference level. The general form of the expression is

Ny

Vl = exp(—AE/RT) (1. 18.8)
where N; is the number of molecules in the reference level and N, is the
corresponding number in a Jevel whose energy differs from that of a reference

level by an amount AE.

According to Eq. (1.18.5) the value of p/p, at a given height will be larger at
a higher temperature than. that at a lower temperature. Thus, the varation in
pressure with height is less gradual at higher temperatures; if the temperature
were infinite, the pressure would be the same everywhere in the column.
Figure 1.18.2 shows the variation of p/po with A at three different temperatures
where T3 > T, > T;.

In Eq. (1.18.4), if In(p/p°) is plotted against h, one gets a straight line, with the
slope = — Mg/RT as shown in Fig. 1.18.3.

According-to Eq. (1.18.5), the variation of p/p, w1th helght is an
exponent1a1 decay (F1g 1.18.4). One of the characteristics of an exponential
decay is that the relative decrease in pressure —dp/p is directly proportional to
dh (Eq. 1.18.3). Thus, if the pressure is decreased to half (i.e. pipy = 1/2,. ‘say at
a distance x from the ground level), then at a distance x further from this, the
ratio p,/p will again be half. Thus p,/p = 1/2 or p; = p/2 = (1/2) (®y/2), ie.
p; = (/4)p,. Thus, at a distance of 2x from the ground level the value of pressure
will be one-fourth of the pressure at ground level and so on.



Fig. 1.18.2" Plot of p/p,
with height at different
temperatures

Fig. 1.18.3 Plot of
In (p/p°) versus height

Fig. 1.184 Plot of p/p,

versus height

Effect of Molar Mass
on Distribution
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(p/po) —

slope =— Mg/RT

In (p/p°) —»

height—»

The relative decrease in pressure (—dp/p) is directly proportional to the molar
mass of the gas (Eq. 1.18.3). Thus at a specified temperature, the relative
decrease is larger for a gas having a higher .iolar mass than for a gas having
a lower molar mass. For a gaseous mixture, as in the case of air, each of the gases
obeys the distribution law independently of the others, so that

p; = (py); exp(-M,gh/RT)

where (pg); is the partial vapour pressure of the constituent i'at h = 0 and p;, is
the corresponding pressure at the height 4. The total pressure .at any height will

‘be the sum of the partial pressures at that height. It follows that the partial

pressures of the lighter gases, such as H,, He and Ne, decrease less rapidly with
height than do those of the heavier gases, such as O, and N,. Thus, the
composition of air at very great heights is quite different from that at the ground
level, the percentage of the lighter gases being more at greater heights.
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Solution

Example 1.18.2

Solution

Problem 1.18.1

Solution

" we get - p=(101.325kPa) exp{

Determine the molar mass of a gas if its pressure is to fall to\one-half of its value in a
vertical distance of one metre at 298 K.

From the given data, we write -
p=py2, h=1m and g=9.807ms>

Substituting these values in the expression

p =py exp(—Mgh/RT)

ie. M=-"2m 2

e (8314IKmol™) 298K) I [1

¢ M 15 1) 2 1751 kg mol™
wees (9.807 ms2)1m) 2] SO

Calculate the pressure of a barometer 6n an aeroplane which is at an -altitude of 10 km.
Assume the pressure to be 101.325 kPa at sea level and the mean temperature 243 K. Use

the average molar mass of air (80% N, and 20% O,).

From the given data, we have
po=101.325kPa, h=10km=10*m, 7 =243K

M =0.8 (0.028 kg mol ™) +0.2 (0.032 kg mol ™) = 0.028 8 kg mol

Substituting these values in the expression

p =pg exp(-Mgh/RT)

_ (0.0288 kg mol™")(9.807 ms)(10*m) |
| - (8.314J K mo )243K)
= (101.325 kPa) (0.247) = 25.036 kPa

If the cbmpression factor of a gas is Z(p, T), we write equation of state as pV/nRT = Z.

Show how this will affect the equation for the distribution of the gas in a gravitational field.
From the differential equation for the distribution, show that if Z > 1, the distribution is
broader for .a real gas than for an ideal gas and converse is true if Z < 1. If
Z =1 + bp where b is a function of temperature, integrate the equation and evaluate the
constant of integration to obtain the explicit form of the distribution function.

'We have dp=—gp dh

Since pV =ZnRT =ZﬂRT, we obtain M =2 =p |
. o M . ZRT V
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Therefore - fjﬁ = &
- p ZRT

For Z > 1 the term Mg/ZRT for a real gas will be less than the corresponding term for
an ideal gas, hence the distribution will be broader for the real gas. If Z < 1, this term is
greater for a real gas than for an ideal gas and hence the distribution of a real gas is not

- as broad as that of an ideal gas.

IfZ=1+ bp, we have

dp=— p Mgdh or dp[1+bp]#—y‘gdh
' 4

(1+bp) RT RT
or g‘?—+bdp=--1‘—4£'h or M:——Aﬁ&dh
p * RT (p/p° RT

where p° is standard unit pressure. Integrating this, we have

' Mgh
In(p/pH+bp=-——+C
n(p/p°) +bp RT

The value of constant C is obtained by substituting p = p, at k = 0. Thus

C=ln(py/p°) +bpy

The resultant expression becomes

p Mgh
ln - ¢ b _ _ 0
P (P - po) RT

The temperature of air decreases linearly with altitude in accordance with the equation
T = T, — ah, where a is a constant, h is altitude, T, is temperature at ground level and
T is temperature at altitude A. Derive a modified form of the barometric equation taking
into account this temperature dependence on altitude.

We have dp= - pgdh

_PM

atis  dp= — P gdh
that is p RTg
or Jd_R:_%J'%
. D R J T

Now, since T =T — ah, we can write

dT =-adh or dh=dT/(-a)

Replacing dk in terms of dT in the above equation,' we get
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J”?ﬁ__% T 1 dr _ Mg (4T
mp RInca) T aR T

po aR TO

or ln—£=ﬂlnT

In terms of height, we have

J”_Qe __ Mgt dn
P R O(To—ah)
ie. In P _ MQ In E—_ah

~ py . Ra Ty

1.19 MOLECULAR COLLISIONS'IN A GAS

Collision Cross-
Section of
Molecules

Fig. 1.19.1 Collision
cross-section of a
molecule

Exp_réssion of
Number of
Collisions

While considering collisions of the molecules among themselves we assume the
molecules to be rigid, non-interacting, and spherical with diameter o. It is also
assumed that all the molecules move with the same average speed u .

Two identical molecules of diameter o will just touch each other when the
distance separating their centres is 0. Thus, a moving molecule will collide with
other molecules whose centres come within a distance of ¢ from its centre. The.
quantity (mo?) is called the collision cross-section for the rigid spherical molecule.
From Fig. 1.19.1 it is obvious that this collision cross-section is an area of ap
imaginary sphere of radius ¢ around the molecule within which the centre of
another molecule cannot penetrate.

collision cross-section

&

The volume swept by a single molecule in unit time is
— (o7 |
V=mo")u

If N* is the number of molecules per unit volume, then the number of molecules
within the volume V is

N = VN* = (no’it) N*
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Hence, the number of collisions made by a single"molecule in unit time will be -

Z, =N = (no’m) N*

So far, it is assumed that only one molecule is moving and all the others
are stationary. In practice, however, this is not true. In order to account for the
movements of all molecules, one must consider the average velocity along the
line of centres of two colliding molecules instead of the average velocity of a

single molecule. If it is assumed that, on an average, molecules collide while N

approaching each other perpendicularly, then the average velocity along their
centres is 27 as shown below.

=1
N

Number of collisions made by a s1ngle molecule with other molecules per
unit time is given by

=no (il N* = 210’ N* | (1.19.1)
\Upe)

The total number of bimolecular collisions le per unit volume per unit
time is given by

Zy = 5 (2 N9

or Z) = l(\/§7t0'2ﬁN"‘_)N"‘— \}ina uN¥ (1.19.2)

- (Note that the division by two is ‘essential since the simple multiplication of Z
by N* would count every collision twice.)

If the collisions involve two unlike molecules, then the number of collisions
Z;, per unit volume per unit time is given as '

Z,, =m0k [,’%]MNz o (1.19.3)

where N; and N, are the number of molecules per unit volume of the two types
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The Mean Free Path

" Example 1.19.1

Solution

of molecules, 0y, is the average diameter of the twg molecules (i.e. 0), = -

(0; + 0,)/2)-and pt is the reduced mass such that

1 1 1

bomom _
The mean free path is the average distance travelled by a molecule between two
successive collisions. We can express it as follows:

_ Average distance travelled per unit time-
No. of collisions made by a single molecule per unit time

u

4

Substituting Z, from Eq. (1.19.1), we get

a1

A= = -
2o N | J2no2N*

(1.194)

~ Calculate the values of o, 2, Z; and Z;; for oxygen at 298.15 K at the pressure of

101.325 kPa, given van der Waals constant b = 3.183 x 107 dm® mol™..

Number of molecules per unit volume,

NP (101.325x10° Pa)
kT (138061072 JK)(298.15K)

The -van der Waals constant b is

b= 4NA[§nr3]

_ NT: 2.3 1 3
. 3b 3x3.183x10™ dm” mol™
Thus r= = = 7
167N, 1 16x3.14x6.022 x10“ mol .

=1.467 %10~ dm

=246.157%102 m=

Therefore

0=2r=2934x10"° dm=2934x10""m

Average speed,

—_ [8RT _ {8(8.314 TK 1 mol™)(298.15K)

12
: =44425m 57!
M (3.14) (0.032 kg mol ™)

Mean free path,

[
\/EnozN*
._ . 1
T (1.414)(3.14)(2.934 x107° m)?(246.157 %107 m™>

- =1.06x107 m
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Solution

Example 1.19.3

Solution
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x/—nouN*'

= (1 414) 3. 14) (2.934 x 10719 m)? (444 25m s (246.157x 108 m ™3
=4.18x10° s

Zy = —;-ZIN* —(4 18x10° s7)(246.157x10% m=3)

= 5.1'44>_<1034 m™>

Calculate A, Z; and Z;, for oxygen at 298 K and 10 mmHg, Given: 0=3.61 x 10 cm.

From the given data, we have

3
P {10 mmHg)(133 322 Pa/1 mmHg) — 324 %109 m

T (13806x 102 JK (298 K)

=444.1m s

&

_ [BRT {88314 TK ' mol™")(298K)
\ oM (3.14)(0.032 kg mol )

Thus  Z; = /2n0%7 N*

= (1.414) (3.14) (3.61 x 1070 m)? (444.1 m s™)(3.24 x 10° m3)

=8.326x10% 57

7y = SN = 8326 X 10° 1) 324X 10° )

=13.488 x 1022 3l

1 : 1 ,
T 2noNE (1.414)(3.14)(3.61x 10 °m)2(3.24 x 10°m )
=5334x10”m=5.334cm

The mean free path of the molecule of a certain gas at 300 K is 2.6 x 107> m. The collision
diameter of the molecule is 0.26 nm. Calculate (a) pressure of the gas, and (b) number of
molecules per unit volume of the gas.

Here A =2.6x10"m, 6 =0.26x10m, T =300K
Since A= —1—
ﬁnozN*
weget Nt oL - 1
& J2ro?h (1414)(3.14)0.26 x 10°m)*(2.6 x 10~ m)
=1.281x10%m

Now, ° p = N*kT = (1.281 x 10%3m™) (1.380 6 x 1023 J K‘) (300 K)
= 5306x 10 J m™ = 5.306 x 10> Pa
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Effect of Temperature and Pressure on Mean Free Path and Molecular Collisions

Dependence of N*

onpand T

Dependence of i
onT

Effects on Mean ,
Free Path

In order to discuss the effect of temperature and pressure on A, Z; and Z,,, first
we express the pressure and temperature dependence of N* and u . This can be
done as follows. '

According to.the ideal gas equation, we have

N N'Y R ‘N’
=nRT = —RT =|—|—|T=|—kr
Py =nk Ny > P. [V][NA] [V] |

Thus, the number of molecules per unit volume is given by

Nt =P | (1.19.5)
Thus, N*oc 2 (1.19.6)
T _ .
The average speed u is given as
o [8RT _ [8kT
' nM nm
Thus, @oc~T - - (1.19.7)
Now from Eq. (1.19.4), we get |

A= —— 1
V2o N
1
Thus, VRS N

Employing Eq. (1.19.6), we get

Aol | O (1.19.8)
p R

Thus; AT provided p is held constant

and Ao provided T is held constant,
p _ )
Since, accordirig to Gay Lussac’s law, p o T at constant volume, therefore,
Eq. (1.19.8) under these conditions modifies to
A o< (constant)

that is, there will be no effect of changing T or p on Aif the volume of the gas
is kept constant. ‘



Effects of pand T

on Molecular.
Collisions

1.20 VISCOSITY

Introductioh

Gaseous State 71

. From Eq. (1.19.1), we have

=2no? 7 N*
or  Zj<u N¥

Employing Eq. (1.19.6) and Eq. (1.19.7), this modifies to |
P p |
<«(VYT)|= | or oc —— : - 1.19.9
4 AT 4 JT ( )

Thus, Z; o« p when temperature is held constant and Z; o 1INT when pressure
is held constant.

The effect of changing p or T at constant Volume can be described by
making use of Gay-Lussac’s law in Eq. (1.19.9). Thus, we have

o« ——ocA T " (volume constant
L= - (o )

and Z, o< Loc_\/; ' | (volume constant)
From Egq. (1.19.2), we have

z“=inozmv*2 or 7y o N¥

| V2
Employing Eq. (1.19.6) and Eq. (1.19.7), this modifies to

2

2
znoc(ﬁ)[gi] or 7, x#

Thus, Z,, = p* provided temperature is held constant and Z;; o T2

pressure is held constant.
The effect of changing p or T at constant volume can again be described
by making use of Gay-Lussac’s law. Thus

provided

2 _
2y, oc _P o —— T2 T1/2 . 1
W= an % ran (volume constant)

PP
and - Zj < m oc ;FE o< p1/2 (volume constant)

The internal friction which opposes the relative motion of adjacent layers of
a ﬂutd is known as viscosity.
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Viscosity of Gases

Viscosity of Liquids

Definition of
Coefficient of
Viscosity

~ Expression of
Viscosity of Gases

In a laminar flow of a fluid in a cylindrical tube, layers just touching the sides of the
tube are stationary, and velocities of the adjacent layers increase towards the
centre of the tube, the layer in the centre of the tube has a maximum velocity. There
thus exists a velocity gradient amongst different layers of a liquid.

In case of gases, because of their continuous movement, there occurs an
interchange of molecules between two layers, with the result that a fraction of

‘momentum of one layer is passed over to the other layer. The net effect is to

decrease the relative rate of movement of one layer with respect to the other. In
order to maintain a uniform velocity gradient, one has to apply a force along
the direction of movement of the layers. This applied force is a measure of
internal friction or viscosity of the fluid.

In case of liquids, this internal friction arises because of intermolecular attractions.

Molecules in a slower moving layer try to decrease the velocity of the molecules
in a faster moving layer and vice versa, with the result that some tangentlal force

is required to maintain a uniform flow.

The tangential force F required to maintain uniform velocity of layers w1ll
depend upon two factors, viz.,

(i) Area A of contact between the two adjacent layers

(i1) Velocity gradient du/dz
Thus, Foc A% thatis- F = nA% (1.20.1)

dz dz _

where 7 1s known as the coefficient of viscosity (or simply viscosity). It is the
tangential force that must be applied in order to maintain a velocity difference
of unity between two parallel layers unit distance apart and having unit area of
contact. SI unit of the coefficient of viscosity is N m~s. In CGS units, it has
the unit of dyn cm™ s and is known as the poise unit.

Viscosity in case of a gas arises because of transfer of momentum across the
layers of the gas. Consider a layer P-P’ at a height z, (Fig. 1.20.1), moving with
a velocity u,. Let the velocity gradient be du/dz. Let us con51der the molecules
entering and leaving this layer. We assume:

(i) That the flow velocity u, is very small-as compared with the mean gas
velocity . :

(i1) That the only molecules reaching P-P’ are those which, on an average,
have just made their last collision at a distance A from the height z.

(iii) The number of molecules passing downwards or upwards through a unit
area per unit-time = N* /4, where N* is the number of molecules per unit
volume and # is the average speed of gaseous molecules.’

f Assuming statistical motion of molecules, the number of molecules will come out to be
N*u/6 as one sixth of the molecules will be moving along each of the positive and negative
directions of x-, y-, and z-axes. However, the explicit expression of N* iZ/4 can be derived
statistically by using velocity-component distribution function (Eq. 4.14.12 of Volume 5

~of this series of book).
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Fig. 1.20.1 Display of '
velocity gradient with the
height of layer

In the plane P-P’, the amount of horizontal momentum coming up through
a unit area per uhit time is |

)t =m| e |, -2 %
" 4 &
and the amount of horizontal momentum coming down
(ru) b =m| S |, + 2%
4 dz
The net downward flow of x momentum in unit time

| (mu) L —(.mu)T = %N*H mlj—z

Since momentum transfer in unit time is numerically equal to the force, therefore,
the force acting in the x-direction on a unit area of the layer is

F= lmN* ii/'td—u_
2 dz
‘Comparing this with Eq. (1.20.1) with A = unit area; we .get

n= %mN* 7 = % piIA | 1202

where p is the density of the medium. |

—T

~ T'The more rigorous calculations based on the hard sphere model gives the expression of
viscosity as 1 = (51/32) mN*#A. . '
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Effectof pand T
on Viscosity of
Gases

Example 1.20.1

Solution

. 8kT 1
Wehave 1= [— and A=——-—
\f m 2o i N*

Substituting these in Eq. (1.20.2), we have

1 SkT 1 _
= [\/Tn J[ﬁmzm]

_ (mkT)"?

1'53/2 0_2

According to this equation, 7] is independent of pressure. Experimentally
this is found to be true. When the pressure is so low that the mean free path
becomes comparable with the dimensions of the apparatus, the collisions of
molecules are primarily with the walls, and under such circumstanc_es, Eq. (1.20.2)
is not applicable. | '

Equation (1.20.3) shows that 77 should also be independent of density of
gas and this is in agreement with the experimental observations. This equation
also suggests that 77 e« T'2, but a somewhat larger exponent more like 77 is
observed for real gases, partly due to the fact that the cross-sectional diameter
becomes smaller at higher temperatures due to increased penetration of the
potential energy barriér by gas molecules of higher velocities. In contrast. with
the viscosity of ideal gases, the viscosity of liquids decreases with the rise in
temperature. -

or (1.20.3)

The van der Waals constant b for n-heptane is 0.265 4 dm> mol™!. Estimate the coefficient
of viscosity of this gas at 298 K. Calculate ¢ from b assuming molecules to be spherical.

We are given that 5=0.2654 dm? mol™!

Since  b=4N, [%nr3] ,

| 13 S JICE NN L
3 ) [ 3(0.2654dm®mol™)
16N 41 16(6.022 x 10% mol)3.14) |

=0.297 4x10 2 dm

we get rz[

Therefore & =2r = 0.5948x10™ dm
Molar mass of n-heptane = 100 g mol™ = 0.1 kg mol™

n= JmkT  {(0.1kg/6.022x102)(1.3806x 1021 K™1)(298 K)}*
%2 (3.14)*2(0.5948x 10 m)* -

Thus

_ (2.6138x1072 12 kg'?)
(1.9685x10%m?)
=1328x10°Nm™s=1.328 x10*dyncm™s=1328 x 10 poise

=1.328 x10° 1" kg2 m~?

S ey
i




Example 1.20.2

Solution

No.w = kT
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Calculate the number o# collisions per square metre per'slecond of O, molecules with a wall
at a pressure of 101.325 kPa and temperature 298 K. "

Number of collisions per unit area per unit time = lN* Uay
: 4

N#o P 101325x10°Nm™

e - =2463%10® m™
(13806 x 1072 TK")(298K)  \

172
-1 -1
7o ’SRT - 8(8.314 J K™ mol )(2?8K) C =4441m s
M 3.14(0.032 kg mol ™). :

. Hence, Number of collisions

1 ' ' o
= N = %(2.463x1025 m>)@d44.1ms™) =2.734x10” m? 7!

1.21  SELF DIFFUSION AND EFFUSION PROCESSES

Introduction to

Self Diffusion

Expression of
Coefficient of
Diffusion

~ Movement -of molecules from high-density region to low-density region
constitutes the phenomenon of self d1ffus1on Experimentally, the self diffusion
is given by Fick’s law:

J,=-p % | (121.])
dz :

where J, is the net flow of matter per unit area per unit time and D is the
coefficient of diffusion.

Consider a unit area in the gaseous layer atlheight z (Fig. 1.21.1). The number
of molecules per unit volume at height z relative to zero level is given by

N= NO+{8N]z - 1212
0z '

where N, is the number of molecules per unit volume at z = 0.

Also consider two layers at the heights z — A and z + A respectively, where
A is the mean free path of gaseous molecules. Only those molecules will pass
through the layer at the height z who have their last collision at a distance A
from this layer. Hence, the number of molecules passmg downward through a
unit area at the height z per unit time is given by

1 oN
N‘L 4 N = 4[1\’0 [8 J(Z'*‘l)}

Similarly, the number of molecules coming up from the lower layer is

. 1 . _ 1 oNY .. |-
. NT = ZNZ_A* U= Zl:NO + [8—2](2 —/1):|u
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Fig. 1.21.1 Process of
self diffusion

Effect of pand T
on the Diffusion
Coefficient

e [ - / lm
z B / ' /TNT
A

Zero—

The net flow of the molecules in the upward direction is

1 '
NT-Nl= e HNO + [88_1;[](2 —2)} - {NO + (%IZX](Z + A)H

D=1z
2
We have
_ [8kT
U= |—
m
= 1 _ kT

V2ro?N*  2ro?p |

Substituting Egs (1.21.5) and.(1.21.6) in Eq. (1.21.4), we get

BISEAEN,
. 2{\/; ]{ﬁmzp]

Hence, the coefficient of diffusion depends

(1) inversely on pressure at constant temperature, and
(i) directly on T*? at constant pressure.

NT—N#

(1.21.3)

(1.21.4)

(1.21.5):

(1.21.6)

(1.21.7)




Effusion of Gases

Knudsen Method
for the Measurement

of Vapour Pressure

Gaseous State. .77

The process of effusion involves the escaping of gas molecules through a tiny
hole.

Suppose a gas enclosed in a container is placed in vacuum. Let the wall
of the container has a tiny hole of diameter much lesser than the mean free path

~ of gaseous molecules. A molecule that strikes the tiny hole undergoes effusion

and thus is escaped from the container. We know that the number of molecules
striking per unit area of the wall of a container in a unit time is givén by

N= %'ﬁN* | - (121.8)

where 7#(=8RT/ImM) is the averagé speed of gaseous molecules and

N*(=plkT) is its number density (i.e. number of molecules per unit volume).
If A, is the area of tiny hole, then
Number of molecules striking the tiny hole in a unit tlme is given by

' A 1_ ‘ :
N =Ny = [z-” M_JAM 1219)
Hence, the rate of effusion becomes
dN

'
Feffusion = dr =N

12
1. 1(8rTY?( p
[Zu N* ]Ahole = Z( M ] [kT JAhole
1( 8RT Nup PNy Ay
= |2 [ ZAP 4 - PAThole
4[TCM] [ RT ] hole ,_——ZTEMRT . (12110)

Thus, the rate of effusion is inversely proportional to the squaré root of molar
mass of the gas, which is, Graham’s law of effusion.

Equation (1.21.10) forms the basis of determining the vapour pressure of a
liquid or solid. The substance is taken in a closed container of thin wall with
a tiny hole through which the vapours of the substance can escape in vacuum.
The pressure of vapours inside the container remains constant as these are in
equilibrium with the solid or liquid. Consequently, the rate at which vapours
escape through the hole is equal to the rate of evaporation of the substance
in the container. The effusion leads to the loss of mass of the substance in the
container. The rate of loss of mass of the substance is measured. We will have
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Example 1.21.1

SOlution )

Substituting dN/dz from Eq. (121.10), we get,

dm — pN AAhole
N A

dr 2nMRT . ,
12 '
or p=A1 [ (Z](ZT;fT) (12111
hole : . :

Since p remains constant, dmldt may be replaced by Am/At, where Am is the loss
of mass of the substance in a small interval of time, Ar.

To account for the size of the hole, an empmcal parameter C' (known as

~ Clausing factor) is introduced i in Eq. (1.21. 11) to give

o€ (_sm)(2mkT)
A\ A M

The value of C = 1 for l/r ~ 0 and 1 95 for llr = 2, where [ 1 is the length and .

r is the radius of the hole. -

Solid Sc exists in equilibrium with its vapours at 1 690 K in a container with a tiny hole

of diameter.1.763 mm. The container is placed in vacuum. A loss of 10.5 mg was recorded
in 49.5 min. Determine the vapour pressure of Sc at 1 690 K. The molar mass of Sc is
44.96 g mol™.

We have

am _105x10°kg 500 109

1
At 495x60s kes

Ange =T’ = T(d/2)? = (3.14)(1.763 x 10~ m/2)?

=2.44 x 10%m?
' ' 4] 12
M (4496 X107 kg mol ™)
V2T |2 (3.14)(8.314 J X' mol ™) (1690 K)
=7.14x 104m™s

Al (3.535 x 107 kgs™)

AN MI2TRT (244 x107° m?)(7.14 x 107 m™ s)
=203Pa -
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1.22 THERMAL CONDUCTIVITY

Coefficient of
Thermal
Conductivity

Expression of
Thermal
- Conductivity

Fig. 1.22.1 Process of
thermal conductivity

If there exists a temperature gradient in a gaseous system, energy flows from a
high-temperature region to a low-temperature region. The heat flowing through
a unit area of a layer per unit time along the temperature gradient 07/dz is given

by
Q=-—K‘T[8T]

1.22.1
% (1.22.1)

where x is -known as the coefficient of thermal conductivity. It has the unit of
JK' m s

Consider a unit area in a horizontal plane at the height z of the gaseous system
(Fig. 1.22.1). Only those molecules are able to pass through this area that have
suffered the last collision at a distance A (mean free path) from the considered
plane. Thus, we consider two layers at the distance A above and below the layer
at height z, respectlvely (Fig. 1.22.1). '

Low temperature

If £, is the average energy of molecules in the layer at height z, then
Average energy transferred per unit area per unit time from the plane
below the considered plane is

- i)

Similarly, from the plane above the considered plane the average energy
transferred is

e
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Effect of Tand p
on the Coefficient
of Thermal
Conductivity

‘The net flow of energy from below the con31dered plane per unit area per umt
time is

e
-~ o) Sl

1. .. (oT
=—5N”‘-MC[3Z—] C(1222)

‘where ¢ is the average heat capa01ty per gaseous molecule. Comparmg_

Eq. (1 22.2) with Eg. (1 22.1), we get

=%N*mc _ - - : (1.22.3)*
We. have
' ’kT 1
= |—, and A=———
m \/—2—n02N*

Substituting these in Eq. (1.22.3), we get

12
1 8kT 1
Kr = —N¥ . c
) [nm] [\/2750’2]\/*]

(kT)l/Z :
=557 1.22.4)f
M) | (1.22.4)

Hence, the coefficient of thermal conductivity is

(i) independent of pressure of the gas, and
(i) directly proportional to the square root of temperature.

- Though the phenomenon of thermal conductivity requires the presence of
temperature gradient, yet temperature appears in the expression of coefficient of
thermal conductivity due to the average velocity of gaseous molecules. Equation

(1.22.4) is valid if the temperature difference is not large, so that the average -

value of temperature may used to compute the value of average velocity.

* The factor 1/2 in Eq. (1.22.3) is not to be trusted too much in this simplified calculation,
T 1t may be mentioned that the collision diameter ¢ also varies with the temperature as

discussed in Section 1.19. As a result k increases somewhat more rapidly w1th 1ncreas1ng ,
* temperature than is glven by Eq. (1.22. 4).

e )
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Example 1.22.1 Two parallel plates 0.5 cm apart are maintained at 299 K:and 301 K. The space between
the two plates is filled with hydrogen. If o= 190 pm and CV (5/2) R, Calculate the flow
of heat between the two plates.

Solution The expression of flow of heat per unit area per unit time is
0=—x [ oT j
0z
(k1)?e (3T
T 1262 3

(1.38'% 1072 3 K 1300 K)12

8314 7K mol™
2 6.022 x 10 mol™
172
} (190 x 1072 m)?

2K ) -
X )
[0.5)(10 m]

_ 0.002 kg mol ™
3.14) :
©1: 6.022 x 102 mol™

=7675T m2 s

Comment on Ratio Dividing Eq. (1.22.4) by Eq. (1.20.3), we get
K/n

« (knuzc/nyz 2 e
5 - (ka)m Ile? ;,l‘ M
K/n |
Cy/M

-1 (1.22.5)

Experimentally, the above ratio is found to be‘in the range between 1.3 and 2.5.
This discrepancy may be accounted for as the effects due to the distribution of
molecular velocities have not been considered in deriving Eqs (1.22.4) and
(1.225). The faster molecules cross a given plane more frequently than the
slower ones. In thermal conductivity, the faster molecules carry more kinetic
energy but not the greater average x component of momentum. Thus, the ratio
of Eq. (1.22.5) is increased from the value of one.

1.23 ELECTRICAL CONDUCTIVITY

‘Definition If a gaseous system containing charged particles is subjected to an electric field
& there occurs migration of charged particles from the high-potential region to
the low-potential region. The generated electric density (i.e. the average charge
crossing per unit area per unit time) is given by

j,=0,8 - (1.23.1)
where o, is known as electrical conductivity.
Expression of - If U is the average component of velocity of charged particles under the influence

Electrical of electric field in z-direction, then the number of charged particles crossing
Conductivity per unit area (perpendicular to the z-direction) per unit time is given by
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N’ = N*T, R (1.23.2)

Wher_e N* i$ the number of molecules per unit volume of the gaseous system.
If each particle carries a charge e, then the electric density current is given by

J,=N*Ue o ' (1.23.3)

, The drift veloc1ty of the charged particle may be obtamed by using Newton’s

second law of motion. This gives

&
m(—iv— =e& or du, = € ar
at Tt m

which on integrating gives
e&
v, = —1 + constant
- m

If it be assumed that after each collision, the particles restore to thermal
equilibrium, the value of constant may be taken to be zero. Hence,

0, =% | | (1.23.4)

m

The average value of v, is obtained by takmg the average time between
the collisions. Let it be represented by 7. Hence

U, = —7 - (1.23.5)

With this, Eq. (1.23.3) becomes

, _
-jZ=N*e[§TJ: Nre T |&
m m ' - (1.23.6)

Comparing Eq. (1.23.6.) with Eq. (1.23.1), we get

N+ é?
Og=—tr . (1.23.7)
m

1.24 LAW OF EQUIPARTITION OF ENERGY

Classical Law of
Equipartition of
Energy

‘The average energy of a molecule can be calculated with the help of the

classical law of equipartition of energy. The latter may be stated as follows:
If the energy of a molecule can be written in the form of a sum of terms,
each of which is proportional to the square of a velocity component (or to the
square of a position coordinate), then each of these square terms contributes
(1/2)KT to the average energy.
-The above law can be derived by evaluating the average value of the
x-component of average kinetic energy with the help of Maxwell distribution
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law." But here we follow a simple method based on the conceptual analysis
of the average kinetic energy of molecules. According to Eq. (1.7.5), the latter
is given as ' ' :

KE =€ = ~mu” = —=kT .
2 5 (1.24.1)

Now the mean square velocity can be written in terms of its components as

2 _ 2,2, 2
U= Uty U

Since the designation of -the components is arbitrary, it follows that

2 _ 2_ 2
Uy =ty =4,

Thus, Eq. (1.25.1) can be written as

_ 1 5 1 -5 5 75 .3 75 3
€= ~.2—mu = —Z—m(ux +uy +u,)= —z—mux = —2~kT .
which gives
1 > 1 - o
—mu; = —kT ' - 24.2
o Mty = Sk (1.24.2)
Similarly,
1 7.1 . _
—mu, = —kT '
5 u, 5 .(1.24.3)
lmu_ = lkT ' 1.24.4)
My =3 (1.24.

Thus, the average total kinetic energy can be divided into three
components, each of which is proportional to the square of the velocity
component and thus contributes- (1/2)kT to the average energy.

Average Energy of Different Modes of Motion

Translational Motion -

Rotational Motion -

A polyatomic molecule, besides having translational motion, also has rotational
and vibrational motions. The average energy stored in these motions can be
calculated using the law of equipartition of energy as shown in the following.

The 'translational energy of a gas molecule is

1 1
mu’ = —mui + lmu2 + -l—muf
2 27 2

o

trans — ~
2

Since each term is proportional to the square of a velocity component, each

_contributes (1/2)kT to the average energy. Thus, the translational contribution is

1. 1 1 3
g =—kT +—=kT + —kT = =kT 245
2 2 2 2 a )

trans
In order to describe the orientation -of a linear molecule in space, we need to
specify two angles about two axes while for a nonlinear molecule, three angles
are required. Motion in these coordinates corresponds to rotation about two axes

t See Section 4.14 of Vol. 5 of this series of the book.
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for a linear molecule and about three axes for a nonlinear molecule in space.
The equation for the energy of rotation is given by -

Erot = Elxa_’f + EI wa (linear molecule)
: 1o 1. 5 1., . ' '
Erot = Elxwx + 51 y@y t 51 @ (nonlinear molecule)

~ where @,, @,, 0, are angular velocities_ and [, Iy, I, are moments of inertia about
the x-, y-, and z-axes, respectively. Since each term in the above expressions is
proportional to the square of the velocity component, it contributes on an
average (1/2)kT towards the average rotational energy. Thus,
Average rotational energy of a linear molecule

1 - | . |
_hire L car - | (1.24.6)
2 2 | |

Average rotational energy of a nonlinear molecule

1,1, 1. 3 | | .
= —kT + —kT + —kT = —kT - 1.24.7
5 > ) S ( )
- Vibrational Motion If the vibrational motion is assumed to be harmonic, then the energy of each
' vibrational mode is given as :

Eyip = kinetic energy + potential energy

2
1 (dr 1
= E‘U[EJ +Ekf(r—r0)2

where (1 is the reduced mass, k; is the force constant, ry is the equilibrium value
of the coordinate r, and dr/dz is the change of internuclear distance with time.
Since both the terms in the above expression contain square of either the
velocity or the coordinate, it follows that each will contribute (1/2)kT" towards
the total average vibrational energy. Thus, the average energy stored in a
v1brat10na1 motion is :

1 1 :
v1b_2kT+2kT kT B ' (1.24.8)

1.25 DEGREES OF FREEDOM AND THE AVERAGE ENERGY OF A MOLECULE

A system consisting of N particles can be described by specifying three
coordinates for each particle or a total of 3N coordinates. Even when these
particles are undergoing motions, however complicated they may be, the system
at any instant can be described by stating these 3N coordinates. Since any one
of these components can vary by any amount, the system is said to possess 3N
independent components of motion or degrees of freedom. If N particles are
bound together to form a molecule, then the 3N coordinates and components
of motion are conven1ent1y chosen .as follows



Translational Motion

Rotational Motion
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The translational motion of a molecule as a whole can be described by the
motion of its centre of mass. Since three coordinates are required to describe the
position of centre of mass, it follows that the energy (kinetic only) stored in the

" translational motion as described by Eq. (1.24.5) is

- 1 1 1 3 :
Eirans = "2—kT + EkT + EkT = EkT | o (1251)

Linear molecule Since a linear molecule can rotate around two axes, the

energy stored in the rotational motion-as described by Eq. (1.24.6) is

L S | |
w = gk + ST =M . (125.2)

Nonlinear molecule - Since a nonlinear molecule can rotate around three axes,

the energy stored in this motion as described by Eq. (1.24.7) is

1 1 1 3. .
g =—kT + —kT + =kT = —kT 25.
o= KT+ KT+ KT = | a2y

Thus a linear molecule contributes, on an average, kT and a nonlinear molecule
(3/2)kT, towards the total average energy due to rotational motion.

"The remaining (3N — 5) coordinates for a linear molecule and (3N — 6) coordinates

for a nonlinear molecule, describe the bond distances and bond angles within
the molecule. Motion in these coordinates corresponds to the vibrations
(stretching or bending) of the molecule. Thus, linear molecules have (3N — 5)
and nonlinear molecules have (3N - 6) vibrational modes. Vibrational energy
stored in each of the vibrational mode as given by Eq. (1.24.8) is

_ 1 1 )

Thus, each vibrational mode contributes on an average kT towards the total
average energy. Thus, linear molecules contribute (3N — 5)kT and nonlinear
molecules contribute (3N — 6)kT’ towards the total average energy due to their
vibrational motions.

The total average energy contnbutlon due to all the three modes 18:
For linear molecule

é_linear = [%le + {%kT) + {(3N - S)kT) }vib (1255)
rans ot

For nonlinear molecule

: Enmlinear = [% kT] + {%le + {(3N - 6)kT)}vib (1256)
trans ot :
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The total average energy stored by the molecules in one mole of the gas is

_ 3 '

Elinear = NA Elincar = ERT +RT + (3N — 5_)RT : (1257)
= _ 3 3 |

Enonlinear = NA €honlinear = ERT + ERT + (3N - 6)RT ' (1258)

Table 1.26.1 descﬂbes the average energies of molecules of different gases.

Table 1.26.1 Average Energies of Gaseous Molecules

Gas N _ £ _ : E
Monatomic 1 Gk (3/2) RT
Diatomic 2 , © (712) kT (712) RT
Triatomic 3 _ '

Linear (13/2) kT (13/2) RT

Nonlinear o 6 kT ‘6 RT

126  HEAT CAPACITIES

Definition of
Heat Capacities

The change in internal energy of a gaseous system is given by

AU=qg+w | (1.26.1)

where g is the heat absorbed (or released) by the system and w is the work of
expansion (or compression) of the syster_n.T

The work done due to expansion at constant préssure (Fig. 1.26.1) is given by
w=-Fxl=-pAxI) | |

or w=-pAV

. With this, Eq. (1.26.1) becomes

g=AU+pAV (1.26.2)

If heat flows at constant volume condition, then w = 0 and the entire heat is

utilized in increasing the internal energy of the gas, i.e.

gy =AU or dg, =dU . (1.26.3)

“and if the heat flows at constant pressure condition, then it is utilized both in

increasing the internal energy and in doing the work of expansion, i.e.

g, =AU+p AV or dg,=dU+pdV (1264

T Heat is assigned a positive value if it is absorbed by the system, work is assigned a
positive value if it is done on the system. '

. -‘.-?:«::M?
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Heat capacity of a system is defined as the amount of heat required to increase
its temperature by 1 degree Celsius. Thus one can have two heat capacities, (i)
heat capacity C, at constant volume condition and (ii) heat capacity Cp at
constant pressute condition. These are represented as:

_(3) _(eu) 0
Cy = [aTl = [aTl | (1.26.5)

c,=|%) =|¥ +pﬂ 1266
Po\or ), o7 ), "loT ), | o0

If the gas is aésumed to be ideal, then
pV =nRT, p(8V/8T)p =_nR _
Since for an ideal gas, the internal energy U depends only on T, we will have
* (QURT), = QUAT), | |
Thus, for an idéal gas it follows that

C, =Cy+nR (1.26.7)

* For one mole of the gas

Cpm =Cym +R . | (1.26.8)

Molar heat capacity at constant volume of a gas can be obtained by di_ff_erentiaﬁng
the molar energy with respect to temperature. Thus, from Egs (1.25.7) and
(1.25.8), and Table 1.26.1, we have

Monatomic gases

oU 3 5

.
y=2m =2 1667
Vm 3 ‘
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Polyatomic gases

Uy 3.
inear) Cy, =|=—| ==R+R+ (BN -5)R '
(Lln. ) Cym [ 57 ]V 5 + ( ) (1.26.9) |
Uy 3 3 R
Nonlinear) Cy , = | =— | = =R+ =R+ (3N -6)R
(Nonlinear) Cy {BTl 7 2 ( ) (1.26.10)
The molar heat capacities for diatomic and triatomic molecules are as follows:
Diatomic molecule N = 2. Thus ' |
3 7 9
Cyy=—R+R+R=—R; Com=—R
~V.m > 2 p.m 2
Com 9
=20 =2 - 1286
Com 1 (1.26.11)
Triatomic molecule - N = 3. Thus | _
, 3 13 15
Linear Cy .= ER +R+4R = 3R’ Cp,m =R (1.26.12)
Com 1
Soem Dy
Cym 13
: 3 3
Nonlinear Cy , = ER + ER +3R =0R, Com =TR (1.26.13)
Com
y =20 =z = 1.167
V.m - 6 '

-1.27 COMPARISON OF THEORETICAL AND EXPERIMENTAL HEAT CAPACITIES

Comparison
Between
Experimental and

Theoretical Values

Comparison of the theoretical and expenmental heat capacities reveals the
following facts:

(i) Agreement of monatomic gases is perfect, i.e. Cyn/R = 1.5. This value is
independent of temperature over a wide range.

(i) For polyatomic gases, two points of disagreement are found for the
observed heat capacities: (a) they are always substantially Jower than the predicted
values, and (b) they noticeably depend on the temperature. For example, in case
of diatomic molecules, we have

Toss

(CREN)

v.m (calculated) = % +—+1=

- J"*"""?“
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The equipartition principle is a law of classical physics and these
discrepancies of polyatomic molecules indicate that classical mechanics is not
adequate to describe the molecular properties. In fact, one should use quantum
mechanics for this purpose.

It is known that all forms of energies are quantized. The permissible values of
energies in a molecule and the order of energy dlfference between them are

- given below:

n=0,1,2... AE_. =102 (127.])

A - - |
_J(J + l)[ n I] J = O, ]., 2, e AEmt ~ 10—24]‘ (1272)

_ i | o |
Egp = [v + %]2—7“/% v=012... AEy =10%J (1273

where n, J, v are franslational, rotational and vibrational quantlim numbers,
respectively, k is the Planck’s constant, / is the moment of inertia, i is the
reduced mass, k; is the force constant, [ is length of the vessel and m is the mass
of the atom.

The distribution of the molecules in the energy levels is given by the Boltzmann
distribution law

N; = N exp(- Ag,/kT)

where’
N; is the number of molecules in the ith level
N is the number of molecules in the lowest quantum level
Ag; is the energy difference of the ith level from that of the lowest
quantum -level
k is the Boltzmann constant.

The relative population N;/N in any given level depends upon the ratio
Ag;/KT. Tt can be shown that at room temperature (kT = 107! J), many of the
lower translational and rotational levels are populated (since Ag;/kT < 1), whereas
only the lowest vibrational level is thickly populated (since Ag/kT > 1) and
very few molecules are present in the second vibrational level.

It can also be shown that on raising the temperature of the gas by 1 °C, the
number of molecules in the lowest vibrational level remains unaltered, i.e. no
energy is utilized in promoting these molecules to the higher levels. Hence, it
does not contribute towards the heat capacity. Thus at lower temperature, the
contributions to the heat capacity come only through translauonal and rotational
motions giving the value of Cynm s :
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2

C ) R
Y- ()ower temperature) = —;— + 5= 2.5

which agrees with the experimental values of many of the diatomic molecules.

The contribution to the heat capacity from vibrational level comes only
when the temperature is high, since only then the molecules can be excited from
the lowest level to the higher levels, thereby increasing the vibrational energy.
Thus, the discrepancy between the theoretical value and the experimental value
is only due to vibrational motion. Since the difference between translational
levels is too small to be detected experimentally, translational energy, for all
practical purposes, is considered to be- continuous. Since the difference of
energies between translational levels and rotational levels are much less than the
thermal energy 7, one can use classical mechanics without introducing much
error in heat capacities. The contribution from vibrational levels has to be

considered from the view point of quantum mechanics, since here AE;, > kT.

We can calculate the average value of vibrational energy using the
expression '

Zongv ‘ o ’ :
On substituting quantum mechanical expressions for &, and n,, we will get
I |
Eyp = — + o (1.27.5)

2 (th/kT _ 1)

We observe that the average energy is made up of zero point energy Av/2 which
is the lowest energy possible for the molecule, plus a term which depends on
temperature. At very low temperature Av/kT >> 1, hence €T >> 1 so that the

second term is very small and thus

1

E=—hy ) - 6
£ S (1.27.6)

Effectively, all the molecules are in the lowest quantum state with v = 0. At very
high temperature where Av/kT << 1, we may expand the exponential function as
e =~ 1 + hv/kT and thus e"*T — 1 ~ hv/kT and we have
R % hy hv
= — 4 =

— = — +kT : ‘
) hy/kT 7 o - (1.27.7,):

Thus Cy =k

or - Cyn=Rforl mo‘_l of gas - _ o . , (1.27.8)

Thus, it is only at high temperatures th_at the vibrational heat capacity attains

the classical value of R per mole. Substituting 6 = kv/k in Eq. (1.27.5), we get -

W kO
8vib__2_+é_mﬁ




Gaseous State 91

‘ 2 or
Thus  Cy(vib) = (agvibj _ [QJ (ke_

aT T e9/T _ 1)2
: 2 8IT
Cy(vib 6
or - Gy(vib) =|—= % (for 1 molecule)
k T ) @ -1
Cy (vib) (oY T : o
or —_ == for 1 mol of the gas 1.27.9
R T (CG/T _ 1)2 ( g ) ( )
A plot of Cy,,(Vib)/R versus T/6 gives a graph of the type shown in Fig. 1.27.1.
1.0
T 0.8
&
)
z 0.6 -
BN
O
04 -
0.2 |-
I 1 1 ! P ! 1t

Fig. 1.27.1 Variation of
Cy m(vib)/R with T/6

1.28 MISCELLANEOUS PROBLEMS

0 0.2 0.4 0.6 0.8 1.0 1.2 14
76 —>

Problem 1.28.1 Two flasks A and B have equal volumes. A is maintained at 300 K and B at 600 K. While

A contains H, gas, B has an equal mass of CH, gas. Assuming ideal behaviour for both
the gases, find the following and establish your answers quantitatively.

(a) Flask containing greater number of molecules.

(b) Flask in which the pressure is greater.

(¢) Flask in which the molecules are moving faster.

(d) Flask with greater number of collisions with the walls.

(e) Flask with greater mean free path of molecules. (The collision diameter of CH,
may be assumed to be twice as that of H,.) '

(f) Flask in which the viscosity of gas is greater.

(g) Flask with greater molar kinetic energy (KE).

(h) Flask in which the total kinetic energy is greater.

() Flask in which Z, and Z,, are greater.

() Flask in which the compression factor is greater.

Solution (a) Let n, be the amount of H, and ny be the amount of CH,.
We have : '
_ mo _ m
A= 2g mol ™ "B 16g mol !

where m is the mass§ of the gas in each of the two flasks A and B. We can write
" .
A _g
g
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Now, the number of molecules in these ﬂas_ks are given as :

Ny,=——N, Ng=——N; where N is Avogadro
A 2g ol B 16 g mol L g constant
'.Therefore, ﬂ =8
. Np
therefore, 24 = nATA 300 =4

8RT, _ \/ 8R(300 K)-

' ¢) Since (
© ")A \/ nMA n(0.002 kg mol*‘)

’ 8RTB 8R(600 K)
(u v)B = 3
7(0.016 kg mol ™)

therefore, (‘“’)A J300 J

(d) Number of collisions per unit area per unit time, X = [i ](N* Uqy)

1 1
Therefore X, = ZNZ(uaV)A Xp= ZNE(L_‘?W)B

Xa NGy g5 16

Hence
: Xp Nty
(e) Since A, = LAZ and Ag = s
\/ETEO-APA \/—RO'BpB
: 2
therefore, A_A = Tallos|[ P [300][ j 1 = 1
. (makT, )2 (mgkTy)?
(f) Since n, =—2-8-  and =—2_3
A nmai B n3/20_§

2 2 .
- therefore fa _ mA TA E = 300 —| =1
(g) Since KE per mole = —z—RT , therefore

KE per mole of A= %RTA KE per mole of B = %RTB

KEmolof A T, 1
Hence — - A__
KE/molof B Ty 2
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(h) Since Total KE = KE x number of molecules, therefore

3
(Total KE), = ZKTyN 5 (Total KE)p = 2kTBNB

Tota ' '
and hence (ToalKE), _ TpNy = l x8=4
(TowlKE);  TyNgp 2

(i) Since Z; = ;‘j’, therefore

and ZIB = —(uaV)B

Zip An

Hence, ZA:[M][—@J =2x2=4

(”av) B

N* -
Since Zy = TZI’ therefore

Zya _ (NAZIA/Z) [NAJ[ZIAJ 8 x 430
leB (NleB/Z) NB ZlB

(j) Both the gases will have the same compression factor,'i.e. 1, since both of them are
ideal gases. :

Correct the following statements giving reasons, if necessary. _
Note Correction, if necessary, is provided immediately after each statement.
(i) The product of pressure and volume of a fixed amount of a gas is independent of
temperature. -
This statement is incorrect. According to the Boyle’s law the product of pressure and
volume depends upon temperature.
(i) Rise in the compression factor with increasing pressure is due to a or b.
This is due to the factor b. Since :

p+—= |(Vy—b)4 =RT
Vm

Ignoring a/V?, we get '
: p
V.-pb=RT or Z=1+b
PVm—P RT

(iii) A gas can be liquefied at, and (2) T=T, and p < p., and (b) T < T, and p = p..
Statement (a) is incorrect since p should be equal to or greater than p.. Statement (b)
1s correct. : '

(iv) The gas gets heated if its temperature is less than its inversion temperature in Joule-
Thomson effect.

This statement is incorrect. Heating is observed when T>T.

(v) It is possible to 11quefy an ideal gas.

No, since there exist no forces of attractron amongst the molecules of an ideal gas.
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(vi) All molecules in a gas are moving with the same speed.
No, movements of molecules in a gas follow Maxwell’s distribution law.
(vii) Average speed of molecules of a gas in a container moving only in one dimension
will be zero.
- Yes, since otherwise, with time all the molecules will be collected in one djrect on,
(viii) The fraction of mo_lecules having speeds in the range of u to u + du of 5 2as of molar
mass M at temperature T is the same as that of the gas of molar magg op7 at
* temperature 77/2. o

Incorrect, since
N

: 32 '
%% =41r[—2%J W2 exp(-Mi22RT)

This will be so if temperature of the gas of molar mass 2M is 2T,

REVISIONARY PROBLEMS

1.1 (a) Experimentally, it is known that gas laws are not applicable to real gageg under all
conditions of temperature and pressure. Under what conditions are these Jaysg obe
by real gases?

(b) What is an ideal gas? Does it exist in nature?
(c) The equation pV = nRT is strictly applicable to an ideal gas, How would you
determine experimentally the volume occupied by such a gas at STP?
(d) Discuss the nature of gas constant R. Derive its value when
- (i) p is expressed in atm and V in litres,

(i) p is expressed in dyn/cm? and V in cm®,
(e) Does the value of R depend upon the nature of the gas? -
(f) What is the Boltzmann constant? Derive its value in joule kelvin™!,

yed

1.2 (a) Starting from the postulates of kinetic theory of gases, derive the kinetic gas
equation pV =mNu?/3.
(b) Deduce the following gas laws from the kinetic gas equation.
(1) Boyle’s law; (i) Charles law; (iii) Graham’s law of effusion, and @iv)
Avogadro’s hypothesis.
(c) Starting from the kinetic gas equation deduce the expressions for (i) oot mean
square speed, and (ii) average kinetic energy. ’
(d) Why is the simplest kinetic theory applicable only to ideal gases?

1.3 (a) Explain the factors which led van der Waals to modify the idea] gas equation
pV = nRT, and hence derive the van der Waals equation of state

| 2
na
[p + FJ(V—I’I[J) =nRT

(b) What are the units of van der-Waals constants a and b7 Do they have the same
values for all real gases? :

(c) How would you determine the values of a and b for a given gas eXperimentally?
Do these constants depend upon temperature of the gas?-

(d) It is stated that the excluded volume b is approximately four times the actya] vo] ume
occupied by the molecules of one mole of a gas. How would you derjye this
conclusion? -

(¢) From the given value of b for a real gas, how would you estimate the 0] ecular
diameter of a molecule of a given gas? E
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(f) Explain how the van der Waals equation of state accounts for the behaviour of real
gases. L

(g) Two van der Waals gases have the same value of b but different a values. Which
of these would occupy greater volume under identical conditions? If the gases have
the same a value but different b values, which of the two would be more compressible?

(a) What is the virial equation of state? Express the following equations of states.in

the form of virial equation of state:

(i) Van der Waals equation

V -b)=R
[p+vm]( )=RT

(ii) Berthelot’s equation

V. —b)=RT
[p+TVm]( ) .

(iii) Dieterici’s equation
plexp(alV RT)}(V, —b) =RT _
(b) Derive expressions for the second virial coefficient of the above equations of states.

(a) What do you understand by the term ‘compression factor Z* of a gas?

-(b) The slope of Z versus p curve of a real gas at a given temperature ‘can be obtained

by differentiating the virial equation of state in p with respect to pressure keeping the
temperature constant. Show that this slope is given by :

Ll #)
op RT RT (RT) RT

(c) What will be the value of this slope when p = 0?
(d) Show that the initial slope of Z versus p curve (i.e. slope at p = 0) will have the
following characteristics:

(i) Slope is positiveif b > a/RT, i.e. the size effect dominates the behaviour of
the gas. '
(i) Slope is negative if b < a/RT, i.e. the attractive forces dominate the behaviour
of the gas.
(iii) Slope is zero if b = alRT.

(a) What is Boyle temperature? Show that at this temperature the second virial coefficient
is zero. From this condition, calculate the value of Boyle temperature for van der Waals,
Berthélot’s and Dieterici’s equations of states.

(b) Explain why at Boyle temperature the van der Waals gases behave ideally over a
wide range of pressures. Also explain why the initial slope of the compression factor
Z(= pVIRT) versus p curves is (i) positive if a gas is above its Boyle temperature, and
(il) negative if it is below its Boyle temperature.

In the liquefaction of gases, what would you regard the change from gas to liquid—
a continuous- transition or a discontinuous one and why?

(a) Differentiate between the Andrew’s isotherms and the van der Waals isotherms for
carbon dioxide. .
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1.9

1.10

1.11

1.12

1.13

(b) Define the terms critical temperature, critical pressure and critical volume. How are
these quantities determined experimentally?

(c) At the critical state, all the three roots of volume of van der Waals equation are real
and identical. Using this rule, derive the relatlons between van der Waals constants and
critical constants and vice versa.

(a) The slope of critical isotherm has a maximum value.of zero at the critical state.

Using the mathematical condition of maxima, derive the relations between critical -

constants and (i) van der Waals constants, (ii) Berthelot’s constants, and (iii) Dieterici’s
constants, (b) Calculate the value of compression factor at the critical point for the
above thiee equations of states. Compare these values with experimental values and
comment. - ' '

What is the law of corresponding states? Derive the reduced equation of state for
(i) van der Waals equation of state, and (ii) Dieterici’s equation of state.

(a) State Maxwell’s law for the distribution of speeds among molecules of a gas. How
does a change in temperature or pressure of a gas influence this distribution?

(b) Give an experimental method Wthh can demonstrate the distribution of speeds
among molecules.

(c) Follow1ng the Maxwell distribution of molecular speeds derive the expressions for

(1) root mean-square speed, (ii) average speed, and (iii) most probable speed. Arrange

these three speeds in order of increasing magnitude.

(d) Following the Maxwell distribution of molecular speeds, derive the express1ons for
(i) average kinetic energy, and (ii) fraction of molecules having kinetic energy exceedmg
a specified value of &”.

(a) Derive the barometric formula p = p, exp(-Mgh/RT). Under what assumptions is
the above expression applicable?

(b) Explain how would you construct a straight-line graph relating altitude o air
pressure?

(c) Show that the height at which the atmospheric pressure is reduced to half its value
is given by

0.6909RT
Mg

h=

(d) Explain what effects temperature and molar mass of the gas have on the variation
of pressure with height?

(a) If the compression factor of a gas is Z(p, T), the equation of state may be written

as pV/nRT = Z. Show how this affects the equation for the distribution of the gas in

a gravity field. From the differential equation for the distribution, show that if Z > 1,
the distribution is broader for a real gas than for an ideal gas and the converse is true
ifZ<1.IfZ=1 + bp, where b is a function of temperature, integrate the equation
and evaluate the constant of integration to obtain explicit form of the distribution
function. ' ]

(b) The temperature of air decreases linearly with altitude in accordance with the
equation T = Tj,— ah, where a is constant, 4 is altitude, T}, is temperature at the ground

~ level and T is temperature at an altitude k. Derive a modified form of the barometric

1.14

equation taking this temperature dependence into account.

Explain the terms o, A, Z; and Z,,. Discuss the effects of temperature and pressure
on these terms.

TR
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What is the viscosity of a fluid? Discuss how exactly this arises in liquids and gases?
Derive the expression of the coefficient of viscosity of a gas in terms of average speed,

- mean free path and number of molecules per unit volume. Discuss the effects of

temperature and pressure on the viscosity of gases and compare them with those of
liquids. - |

(a) Show that the rate of effusion of a gas through a fine hole in a container placed -

in vacuum is given by '
\

o2 PNA Angle

, ~ \2nMRT
|
where the various symbols have their usual meanings.

(b) Describe Knudsen method to determine the vapour pressure of a liquid or solid:

Define Fick’s law. Show that the coefficient of self diffusion is given by

p=lm
2

What are the effects of pressure and temperature on the coefficient of self diffusion?

(a) Show that the heat ﬂowing per unit area per unit time in the gaseous system having - -
temperature gradient d7/0z is given by

1 or
= - —N*uAc
¢ 2 [az}

where the various symbols have their usual meanings.

(b) What are the effects of temperature and pressure on the coefficient of thermal
conductivity?

Show that the net charge ﬂomng per unit area per unit time in a system containing
charged particles under the influence of electric field & given by

J = [N*e T]g
_m

where the various symbol have their usual meanings.

Define the following terms:
(a) Degrees of freedom. - (b) Principle of equipartition of energy.

(a) How much energy is associated per mole per (i) translational, (ii) rotational, and

(iii) vibrational degrees of freedom of motion? Calculate the value of total average

energies and the corresponding values of molar heat capacities of a mon-, di- and -
triatomic molecules (linear as well as nonlinear).

(b) Explain, why polyatormc gases at low temperature have lower values of C,and Cy

compared with the theoretical values? Why do these values approach the theoretlcal

'values at very high temperatures?

(c) A triatomic molecule has the value of Cy, = 24.9 T K™ mol™ at low temperatures.
Comment upon the geometry of the molecule.
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1.1

1.2

1.3

1.4

1.5

1.6

1.7

TRY YOURSELF PROBLEMS

In an attempt to derive the formula pV = KT, where K is a constant, by combining
the laws of Boyle and Charles, the following argument was proposed:

Vv
G pV=k = V=kip (i) F':k_2 = V=kT

k k
(i) L =k, = —L=pT = pT =constant

p k, _ :
The conclusion that pT = constant is obviously incorrect. What is the error? At what

steps has it been introduced? Give a correct derivation.

‘Derive the value of R when

(a) Pressure is expressed in atm and volume in mm’.

(b) p in cmHg and V in cm®. -
(c) p in dynes/metre® and V in cubic millimetres.

Explain whether a gas would approéch ideal behaviour or deviate from it under the
following conditions: '

(i) Itis compressed to a small volume at a constant temperature.
(i) Temperature is raised keeping the volume constant.
(i) More gas is introduced into the same volume at the same temperature.

At the same T and p, which of the gases wili have higher average kinetic energy per
mole: H,, O,, CH, and SFg? :

Briefly explain the following statements:

(a) An ideal gas is not expected to show any cooling on free expansion.

(b) The mean free path of molecules in a gas increases and the number of collisions
per unit time decreases with the lowering of pressure.

(c) Ideal gas does not exist but is a useful concept.

.(d) CO and N, have the same speed distribution at the same temperature.

Briefly answer the following:

(a) Three different containers of equal volume at 27 °C contain H,, N,, and O,,
respectively. Which one of the gases has the maximum average speed of its molecules?
(b) If u,, uy, and u, denote the components of the velocity of a molecule of a gas in
a container at rest, show qualitatively that the averages

Uy =Uy, =u, =0; u)%:u%:uzz;éO; u2=3u§

(c) Which of the following gases will have higher average energy per molecule at the
same temperature? Give reasons.
(i) CO,, and (ii) H,O vapour.

The deviation of a real gas from an ideal gas can be seen from its compression factor
Z. Show that in a gas obeying van der Waals equation, Z is given by

bp a ab

Z=14+— — + 5
RT  RTV, RTV;

(a) What conclusions do you draw from this equation concerning the behaviour of
gases at low and high pressures? Do they agree with experiments?

(b) How does this equation explain the fact that the real gases are more nearly ideal,
the lower the pressure, and the higher the temperature. -
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(c) Explain the variation of compreésion factor with pressure of N, and H, at (i) the
same temperature and (i) at different temperatures.

Show that at low densities the van der Waals equation

[p + %](Vn; ~b)=RT

m

and the Dieterici’s equation

TV -b

p exp(-a/V,RT)

give essentially the same value of p.

(a) A certain gas has the equation of state

RT a
Vo -bT -v3

pP=

where a and b are constants characteristic of the gas. Show that

QSRR Y,
3 2T,

[

where V, and T are critical constants.
(b) Obtain the reduced- form of the above equation of state.

The acceleration due to gravity g varies in magnitude with distance r from the centre
of the earth in accordance with the formula g = GMg/r, where G is the gravitational
constant and My, is the mass of the earth. Derive a modified form of the barometric
equation that takes into account this variation of g with altitude 4 above the earth’s
surface.

Explain why the viscosity of a gas (i) increases with increasing temperature, (ii)
depends on the diameter of the molecules, and (iii) is independent of pressure at
constant temperature? Why does this independence fail at very low pressures?

Arrange in order of increasing value, the most probable speed, root mean square speed
and average speed of molecules of a gas. Would you expect the difference between
these three to increase, decrease or remain unchanged with increasing temperature?

Derive the explicit formulas for the coefficient of thermal expansion a(=(8V/8T)p/ V)
and the isothermal compressibility k (= ~ (9V/dp){/V) for gases obeying (i) ideal gas
equation, and (ii) van der Waals equation of state.

.Correct the following statements, giving reasons, where necessary.

(i) The product of pressure and volume of a fixed amount of a gas is independent
of temperature.
(i) Rise in the compression factor with increasing pressure is due to a or b or both.
(ii)) A gas can be liquefied at '

T=T,and p<p, and T < T, andp = p,

(iv). The gas gets heated if its temperature is less than its inversion temperature in
Joule-Thomson effect.

(v) Itis possible to liquefy an ideal gas.

(vi) All molecules in a gas move with the same speed.
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1.15

1.16

1.17

1.18

1.19

(vil) Average speed of molecules of a gas in a container at rest moving in any one
direction will be zero. '

(viil) The fraction of molecules having speed in the range of u to u + du of a gas
of molar mass M at temperature T is the same as that of the gas of molar mass
2M at temperature 772.

Two flasks A and B have equal volumes. Flask A containing H, gas is maintained
at 300 K while B containing an equal mass of C,Hg gas is maintained at 900 K.
Assuming ideal behaviour for both the gases, answer the following:

(i) Which flask contains the largest number of molecules? How many times more?
(i) In which flask, and by how many times, is the pressure greater?
(iii) In which flask, and by how many times, are the molecules moving faster?
(iv) In which flask, and by how many times, is the number of colhs10ns with the
wall greater? :

(Hint: Number of collisions with the wall = Nﬂ/4.)
(v) In which flask, and by how many times, is the mean free path of molecules
greater? (The collision diameter of C,Hg gas is four times that of H, gas.)
(vi) In which flask, and by how many times, is the viscosity greater?
(vii) In which flask, and by how many times, is the kinetic energy per mole greater?
(vii) In which flask, and by how many times, is the total kinetic energy greater?
(ix) In which flask, and by how many times, ar¢ Z, and Z,, greater?
(x) In which flask, and by how many times, is the compression factor greater?

Can a van der Waals gas with a = 0 or b = 0 be liquefied? Is the equation p(V — nb)
= nRT suitable near the critical point? Explain mathematically.

Estimate the increase in energy per Celsius degree rise in temperature for:

(a) One mole of a gas consisting of rigid linear polyatomic molecules.

(b) One mole of a solid containing rigid.nonlinear polyatomic molecules, if each
molecule is free to rotate and if each molecule is bound to its position in the solid by
forces that are proportional to the displacement from its equilibrium position.

Show that:
(i) Average kinetic energy of molecules is 1ndependent of the molecular mass.
(i) The distribution of energy amongst the molecules is independent of the molecular
mass. , '
(iii) The most probable kinetic energy is k7/2.

At Boyle temperature, the initial slope of pV versus p is zero, i.e.

' ' 2
M =p v +V=0 o v __Y_ Y
Py P ‘ Py P R

Starting from the van der Waals equation of state and using the above equation, show

~ that the Boyle temperature is given by

(Hint: Write the van der Waals equation in the open form, neglect the term ab/V2.
Differentiate the resultant expression with respect to p at constant T and substitute
(@Vidp)r, =-V2RTy.)

e
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Gaséous State 101
NUMERICAL PROBLEMS

A sample of gas weighing 0.028 6 g occupies a volume of 50 cm? at 76 cmHg and
25 °C. What is the molar mass of the gas? (Ans. 141.33 g mol™)
What is the density of helium at 500 °C and 100 mmHg pressure?
_ (Ans. 235 x 102 g ecm™)
The density of gas X is 1 g cm™ at 135 °C and 50.662 5 MPa. What is the density
at STP? (Ans. 0.463 g cm™)
The density of a mixture of CH, and C,Hg at 100 °C and a pressure of 93. 326 kPa
is 0.694 g dm™. What is the composition of this mixture: (a) by volume, (b) by mass;
(c) in mole per cent? (d) What is the partial pressure of each of the components?
. (Ans. () 484 cm?, 516 cm’®, (b)-0.2313 g, 0.462 7 g, (c) 48.42, 51.48
(d) 339 mmHg, 361 mmHg)
A mixture of H, and N2 weighing 0.116 g is collected over water at 50 °C and occupies
a volume of 275 cm® when the total pressure is 101.325 kPa. Calculate the composition
of the dry mixture in mole per cent. The vapour pressure of water at 50 °C is
12.332 kPa. . (Ans 58.73, 41.27)
A mixture of CH; and C;Hg occupied a volume of 100 cm’ at 25 °C and
50.662 5 kPa. Enough 0, was added to make the pressure 74.660 5 kPa when the
volume was 400 cm’. The mlxture was then ignited and after the temperature returned

10 25 °C, the volume was 300 cm? at 64.928 kPa. Find the composition of the mixture.

(Assume that the combustion was complete. Ignore the volume of liquid water formed
and take the vapour pressure of water at 25 °C to be 3.20 kPa.)
(Ans. n(CH,) = 0.001 557 2 mol, n(C;Hg) = 0.000 488 8 mol)
A 1 dm? gas bulb contains 1.03 x 10? H, molecules. If the pressure exerted by these
molecules is 6.34 mmHg, what must be the average squared molecular speed? What
must be the temperature? (Ans. 7.414 x 10* (cm sy, 0.60 K)
A good vacuum pump will bring a tight system down to 107'* mmHg. How many
gas molecules remain per cm’® at this pressure and at a temperature of 300 K?
(Ans. 1.687 x 10°)
Calculate the root mean square speed of oxygen molecules having kinetic energy of
8.368 kJ mol L. At what temperature would the molecules have this value of root mean
square speed? (Ans. 6.71 K)
Calculate the average and total kinetic energies of 0.6 mol of an ideal gas at 0 °C.
(Ans. 3405 kI, 2.043 kJ)
Three moles of helium are contained in a volume of 20 dm® at a pressure of
506.625 kPa. Calculate (a) the average molecular kinetic energy, and (b) the root mean

square speed of the molecules.  (Ans. (a) 8.40 x 1072 J. (b) 159 x 10°cms?h

The density of mercury is 13.6 g/cm®. Estimate the b value. (Ans. 58.997 cm3)

Using the van der Waals equation, calculate the pressure exerted by 20.0 g of carbon
dioxide in 1 dm? vessel at 25 °C and compare this with the ideal gas value.
(Ans. 1.321 MPa, 1.125 MPa)
Using the van der Waals equation, find the temperature at which 3 mol of SO, will
occupy a volume of 10 dm® at a pressure of 1.52 MPa. Given:
a = 678.88 dm® kPa mol™ and b = 5.6 x 102 dm® mol™ (Ans. 623.3 K)
The density of solid nitrogen at 0 °C and 303.975 MPa is 0.835 g cm™. Calculate the
average distance between the centres of the molecules. How does this compare with the
molecular diameter calculated from van der Waals constant b = 39.1 cm® mol™'? .
(Ans. 382 pm, 314 pm from b)
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1.16

(a) The orthobaric densities of CC1, liquid and vapour at a series of temperatures have
the following values:

Temperature/°C 150 250 270 280
Density, p,/g cm™ 1321 5 0.998 0 0.866 6 0.763 4
Density, p/g cm™  0.030 4 0.175 4 0.271 0 0.359 7
Given that the critical temperature of CCl4 is 283.1 °C, find the critical volume of
CCl,. S (Ans. 276 cm® mol™)

(b) From the value of V obtained above calculate the value of van der Waals constant .

. b and the molecular diameter of CCl,-(assuming the latter to be spherical).

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

(¢) Since p V/RT, = 3/8 for a van der Waals gas, what would be the value of p, for
CC1,?
(d) Estimate the value of van der Waals constant a from the relation pc = a/27b2 or
T, = 8a/27Rb or a = 3p.V>.
The van der Waals constants for HC1 are a = 371.843 kPa dm® mol™ and b = 40.8 cm?
mol™!. Find the critical constants of this substance.

(Ans. 8.273 MPa, 122.4 cm®, 325 K)

The van der Waals constants for gases A, B and C are as follows:

Gas a/dm® kPa mol™? - ~ b/dm® mol™!
A - 405.3 0.027
B : 12159 0.030
C 607.95 0.032
Which gas has (i) the highest critical temperature, (ii) the largest molecular volume, and
(iii) most ideal behaviour around STP? (Ans. () B, (i) C, (iii)) A)

What fraction of molecules in hydrogen gas have a kinetic energy within KE =+ 10
per cent of KE at 25 °C and at 500 °C? What fraction of molecules in mercury vapour
have the above range of kinetic energy at 25 °C?

(Ans. 0.092 4; same fraction in all cases)
(a) Calculate the root mean square, arithmetic mean and the most probable speeds for
oxygen molecules at 25 °C. At what temperatures would these speeds be possessed
by butane molecules?
(b) The escape speed, defined as the speed at whrch molecules can escape the earth’
gravitational field, is approximately 1.1 x 10° cm s™.. At what temperature approximately
will the root mean square speed for H, be equal to its escape speed? -

(Ans. (a) 481.95 m s7, 444.14 m s7', 393.51 m s (b) 1.552 x 10° K)

Calculate the pressure at an altitude of 800 km above the earth assuming that the
atmosphere is isothermal with a temperature of 0 °C and that the average molar mass
is 28.8 g mol™ (80% N, + 20% O,), independent of height.(Ans. 5.926 x 10~ Pa)’
If in Problem 1.21, the composition of air changes with height, what would have been
the pressure at an altitude of 800 km? (Ans. 7.530 x 10738 Pa)

Calculate the mean free path in CO, at 27 °C and a pressure of 10 mmHg. (Take
o to be 460 pm.) . (Ans. 3.93 x 10% cm)
(a) Calculate the number of bimolecular collisions per second per cubic centimeter in
argon at a pressure of 101.325 kPa and a temperature of 100 °C if the collision diameter
is 364 pm.
(b) What would be the collision rate if the argon pressure was doubled and the
temperature was reduced to 50 °C?

(Ans. (a) 5.07 x 10% cm™ 571, (b) 2.52 x 10% cm™ s7\)
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The number of colhsrons per unit t1me between unllke molecules A ang B per unit
volume of gas is ‘

dy +dg\ [8kT
le_nNANB[ A2 B] -

‘where the reduced mass [t = mymg/(m, + mg). In an equimolar mixpure of H, and

I, at 500 Kand 101.325 kPa pressure, calculate the number of collisions per second
per cm® between H, and H,, H, and L, I, and L,. For H, take d = 218§ pm and for
L,, d = 376 pm. :

(Ans. 5.24 x 10% cm™ s7,.1.38 x 102 em™ 57, 1.38 x 102 cm™ s

The collision diameter for helium is 207 pm and for methane, 414 pm. How does
the mean free path for He compare with that for CH, under the same conditions?
~ (Ans. 4)

Calculate the value of o, 4, Z, and Z;, for nitrogen molecules at25 °C and at pressure.
of 107 mmHg, given that b for nitrogen is 39.1 cm® mol™.
(Ans. 157.09 pm, 7.015 cm, 6 742 s7!, 1.09 x 10" em s )

What is the effect on the number of collisions of (i) doubling the absolute temperature
at constant pressure, and (ii) doubling the pressure at constant temperature?
(Ans. (i) 0.353 fold decrease, (ii) 4 fold increase)

Neon and mercury vapours have very nearly equal van der Waals b parameters, which
implies equal atomic volumes and radii. Would you expect any difference in the
viscosities of these gases (at the same temperature)?

(Ans. yes T(Hg)/n(Ne) = {m(Hg)/m(Ne)}'?)
At 280 K the viscosity coefficient of CH, is 105 micropoise. Calculate its collision
diameter, and (ii) the number of bimolecular collisions per second per cubic centimetre

at atmospheric pressure. (Ans. (i) 4.164 x 10 cm, (ii) 1.609 x 10°)
The van der Waals constant b of N,O is 0.044 2 dm> mol™. Estimate the viscosity :
of N,O at 25 °C. (Ans. 1352 x 10 N m25)

A solid exists in equilibrium with its vapours at 400 K in an effusion cell having a
circular hole of diameter 2.50 mm:. If the solid mass is decreased by 104 mg in 24h,
determine its vapour pressure G1ven Molar mass of solid = 260 g mol ™.

(Ans. 0.835 Pa)

A solid exists in equilibrium with its vapours at 500 K in an effusion cell having a
circular hole of diameter 3.50 mm How much mass of the solid is decreased in 10h

if its molar mass is 350 g mol! and vapour pressure of 025 Pa ? (Ans. 0.239-g)

How many Celsius degrees would the temperature of 1 mole of l1qu1d water be raised
by the addition of an amount of energy equal to the translational kinetic energy at
25 °C of 1 mol of water vapour? (Ans. 49 °C)

The heat capacities at constant volume (Cy) of C,N, and AsCl, in gaseous state are
77.82 and 75.31 J K™ mol™! respectively. Assume that all degrees of freedom contribute
to the heat capacity. On the basis of this assumption, what can you say about the
structure of these molecules? (Ans. C,N, linear, AsCl, ‘nonlinear)

Estimate the molar heat capaclty Cy n of the following molecules at low and high
temperatures: CCl,, F,, O3, HCN and HCI.

The specific heat capacity of iodine vapour at high temperatures is 0.115 J g K
Is iodine a monatomic or diatomic gas?
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From the relations between the variables for two gases, given below on the left what
can you conclude regarding the variables on the right?

Given - ) Inference

(>.0r < or =)
(a)_ Equal p, V, T, m; > m, ; _ _ K—E and KE2
(b) Equal p, V, T, my > m, ’ N; and N,
(c) Equal p, V, N, > N, ~ Tyand T,
(d) Equal T, N, p; > py, my > m, Vi and V,
(e) Equal V, N, KE; m; > m, © pandp,
(f) Equal p, Ty = 2T, 0, = 20y ' Ay and A,
(@) Equal T, p, m; = 2m,, 0; = 20, 3 7y and 17,
(3) Equal van der Waals gas constant Tpgy and Tpp

a, b, >b, ' -

137

(AHS. K_El = -ﬁz, N1 = Nz, Tl < TZ’V Vl < V2, pl = p2, A’I > A’Z’ ZI(I) > ZI(Z)’
Znqy > Zyey M < 1M and Tggy < Tp)

The molar mass of a real gas can be determined by utilizing the ideal gas équation in
the form ‘ B

m .

pV—nRT-MRT iee M v ) pRT
where p is the density of the gas at pressure p and temperature T. However, as real
gases do not behave ideally, the ratio p/p varies with the pressure, To overcome this
difficulty, one can make use of the extrapolation method to determine the limiting value
of (p/p),~ from the graph of (p/p) versus p. This is known as the method of limiting -
densities. Following this method, determine the molar mass of nitrous oxide from the
data given below:
p/101.325 kPa _ 1 213 n ' 173
plg cmat 0 °C 1.980 4 1.316 4 0.986 1 0.656 5



2.1 INTRODUCTION

Characteristics of
Liquid State

Physical Properties of Liquids

*In general, liquids can be obtained from gases by cooling the latter below their

respective critical temperatures, followed by the treatment of high pressure. The
effect of cooling-is to decrease the thermal energies of molecules and the effect
of high pressure is to decrease the volume of the system so as to- allow the
molecules to come closer, thereby increasing the forces of attraction amongst
them. Alternatively, liquids can be obtained by heating solids up to or beyond
their melting points. In solids, molecules do not possess any translational energy
but possess only ‘vibrational energy. The forces of attractions amongst them are
very strong. The effect of heating solids is to impart sufficient energy to molecules
so that they can overcome these strong forces of attractions. Thus, we see that
the properties of liquids lie in between those of solids and gases. For example,
liquids are less compressible than gases but a little more compressible than
solids. They are less dense than solids but more dense than gases. The two
important properties of liquids, namely, fixed volume but no fixed shape, arise
mainly because of the following two facts:

(i) The energies binding the molecules are larger than their average thermal
energy.

(i) These binding energies are not strong enough to stop the motion of the
molecules altogether, as is the case in solids, with the result that molecules can
move from one place to another but cannot escape from the liquid unless they

are present at the surface.

In this chapter we will discuss only three properties of liquids, namely,

(i) Vapour pressure, (ii) viscosity, and (iii) surface tension. The origin of these

properties in liquids is-basically due to the existence of strong intermolecular
attractions. The structural aspect of liquids is discussed in the next chapter as
it requires some knowledge about the arrangement of the molecules in solids.

2.2 VAPOUR PRESSURE

Introduction

* Suppose a beaker containing a liquid is placed in an evacuated vessel (Fig. 2.2.1).

Let the latter be connected to a manometer so that any pressure that is developed
in the free space could be measured. After some time, it is found that the
manometer records a constant pressure. This pressure is known as the vapour
pressure of the liquid.’ '
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Fig. 2.2.1 Vapour
pressure of a liquid

Origin of Vapour
Pressure

Fig. 2.2.2 Distribution _

of speeds of molecules

Before making an attempt to understand how the vapour pressure arises, we will
have to consider the following two’ facts: o

(i) The molecules of a liquid, like those of a gas, have different kinetic
energies. The distribution of speeds amongst molecules follows the Maxwell-
Boltzmann distribution. '

Figure 2.2.2 shows such a distribution at two different temperatures. T::e
most important point to be noted in these distribution curves is that the fraction
of molecules having higher speeds increases with the increase in temperature
(shown by the shaded area).

I,>T

U —»

(i1) If we consider a molecule in the bulk of a liquid, it will be surrounded
by other molecules in a symmetrical manner. Thus, the forces of attraction on
this molecule by the molecules present on one side are completely balanced by
the molecules present on the opposite side. Hence, the net force of attraction
experienced by this molecule will, on the whole, be zero. It will move as if there
exists no. force of attraction on it. However, the situation is altogether different
at the surface of the liquid (Fig. 2.2.3). There are larger number of molecules
towards the liquid side of a molecule than towards the open space above it, with
the result that this molecule experiences a net force of attraction in the downward
direction. :

The forces of attraction between the molecules of a liquid are of a stronger
nature and are larger than the average thermal energy of the molecules. However,
because of the Maxwell-Boltzmann distribution, some of the molecules can




Fig. 2.2.3 Arrangement
of molecules within and
at the surface of a liquid
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Pressure
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have thermal energies equal to or greater than the characteristic energy which
is just sufficient to overcome the forces of attraction. If such a molecule happens
to be at the surface, it will overcome the net downward forces of attraction and
will immediately leave the surface and escape to the empty space above. If the

space above the surface is an open one, then the molecules will continue to

escape resulting in the phenomenon of evaporation. Since molecules of higher
thermal energies are leaving the surface of the liquid, it follows, therefore, that

 the average thermal energy of molecules in the liquid will decrease. Consequently,

the temperature of the liquid is reduced and hence cooling is observed.

If the space ‘above the liquid is a closed one, then the molecules escaping from
the surface of the liquid (referred to as vapour molecules) will go on collecting
in‘the empty space. After some time it is observed. that a constant pressure is
registered. This pressure is due to vapour molecules of the liquid and hence it
is known as the vapour pressure of the liquid. Since this pressure is constant,
it follows that there must be a constant number of molecules in the space above
the liquid. This can be true only if the molecules in the space are also returning
to the liquid; otherwise, the pressure in the space would continue to increase.
In fact, when a vapour molecule with a comparatively smaller thermal energy
collides with the surface of the liquid, it sticks to the latter. Thus, there is a two-
way process; the molecules are leaving the liquid and are simultaneously coming

" back to it. We get a state of dynamic equilibrium when the rate of evaporation

of liquid molecules is equal to the rate of condensation of the vapour molecules.
Thus, the vapour pressure of a liquid may be defined as the pressure of the
vapour in equilibrium with the liquid. 1t is the same constant pressure which is
required to convert a gas into a liquid when the former is below its critical
temperature. ' ' '

On raising the temperature, more and more molecules of a liquid will have
energies equal to or greater than the critical energy which is just sufficient to
overcome the forces of attraction between the molecules. As a result, larger
number of molecules can leave the surface of the liquid which will consequently
have higher vapour pressure. Thus, the vapour pressure of a liquid increases
with the increase in temperature. The variation of vapour pressure of liquids
with temperature is of the type shown in Fig. 2.2.4 with the highest and lowest
limits correspond to critical point and triple point, respectively. -
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Clapeyron Equation  The quantitative variation of vapour pressure with temperature is given by
Clapeyron equation, according to which '
dp _ AvapPIm

£ = : 221
dr T(Vm,v ~ V1)

where dp/dT is the rate of change of vapour pressure with temperature, A, Hp
[is the molar enthalpy of vaporization of the liquid, and V,,, and V, , are the
molar volumes of vapour and liquid, respectively. Equation (2.2.1) represents.
the slope of the plot of vapour pressure against the absolute temperature. This
equation can be used to determine the molar enthalpy of vaporization of a liquid
if the rate of change of its vapour pressure with temperature is known. Alternatively,
if the value of A, H, of ‘the liquid is known, the rate of change of its vapour
pressure with temperature can be calculated.

Clausius-Clapeyron Equatioﬁ (2.2.1) can be simplified under the .following approximations as
Equation suggested by R. Clausius.

(1) The molar volume Vm,i of a liquid may be considered to be negligible
in comparison to the molar volume of its vapour. This will be true provided the
temperature is not near the critical temperature.

~ “(11) The liquid’s vapour nay be assumed to obey the ideal gas laws so that

RT
p ‘
With these two approximations, Eq. (2.2.1) modifies to

@ _BDaln AvapHm{dT]

T~ RT*p p R \T?

V.

Ymy =

' Ao Hy (dTY - - .
or d In(p/p®) = &(—] 222
(plp?) = — 2= 2 | e .)
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where p° is the standard unit pressure. Equat1on 2. 2 2) is known as the Clausius-
Clapeyron equation.

~ If the molar enthalpy of vaporization can be regarded as. constant, Eq. (2.2.2)

may be readily integrated to give

or DyapHy [dT

d In(plp°) = —va; = 72
. ALH |
or In (plp®) =~ I§—T +1 (223

where I is the constant of integration. According to this relation a graph between
In(p/p®) and /T will g1ve a stra1ght line w1th a slope of —A,,.H,, /R as shown
in Fig. 2.2.5. \ ‘ '

. >

In (@/p°)

ur——

If p, and p, are the vapoilr pressures at T; and T, respéctively, then Eq. (2.2.2)
can be integrated within the limits to give

Canf2) e

po R 5 T2

or - In

& - Avapf‘[m 1 _l
P R L, T

A, H 1 1 : ’
p2 vapTTm .
log === - =
(_)r g p,  2303R [T le | (2.2.4)
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Example 2.2.1 ' The enthalpy of vaporization of cyclohexane (C;Hy,) at its: boiling point 80.75 °C is
385.15 J gL, The densities of the liquid and vapour at this temperature are 0.719 9 g
cm and 0.002 9 g cm™>, respectively, (a) Calculate the value of dp/dT. (b) Estimate the
boiling point at 740 mmHg. (c) If it is to be distilled at 25 °C, to what value must the
pressure be reduced? :

Solution -~ Given that |
' Molar mass of cyclohexane, M = 84 g mol™
Enthalpy of vaporization per mole of cyclohexane

Ay Hin —(35815Jg1)(84gmol 1) 300846Jmor1

Molar volume of liquid,

= M = (84g—n101_1). = 177cm3 mol_l

™ (07199gem™)

Molar volume of vapour,

-1
Voy =2 = M = 28966 cm’ mol ™
™ py (00029geam™) o

; Ay H -1y
(@) Now 32 = _ Svaflm (30 084.6 J mol” )3 1
AT T(Vpy —Vap)  (353.9K)(28966-117) cm® mol”

=2.947x10%Jem? K™ = 2.947x10° Nm? K™ = 2947 PaK™

(b) dp=74OmmHg—760mmHg=—201'ang-

(133322 Pa

=— (20 mmHg) =-2666.44 Pa
1 mmHg :

Thus, from dp/dT = 2 947 Pa K}, we get

0T = — dp _ —2666.44 Pa

= - =-0905K
2947PaK?  2947PaK

Hence, boiling point at this pressure = 80.75 °C - 0.905 °C = 79.85 °C:

R — (V)] Making_ use of Clahsius-Clapeyron equation, --

) ' lgpz_Avame 1.1
. p 23R\ T,
| Py (30084.6 J mol ') 1 1
t l _— —l 760 = -
we ge og[ Hg] 8 0= S 30363147 K mol ™) 359K ~ 9B.15K

* log(p,/mmHg)=2.050 4
or py =112.3 mmHg
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If the pressure above a liquid is adjusted to a definite value, it is possible to
raise the temperature so that the vapour pressure becomes equal to the external
pressure. At this-stage, bubbles of vapour are formed within the liquid which rise
upwards and escape from the surface. We then say that the liquid has started
boiling and the corresponding temperature is known as the boiling point of the
liquid. Thus, the boiling point of a liquid can be defined as the temperature at
which its vapour pressure is equal to the external pressure. If the latter is
1.013 25 bar (=1 atm), the boiling point is known as the normal boiling point.
Obviously, the boiling point of a liquid can be varied by varying the external
pressure. Increase in the external pressure will increase the boiling point of a
liquid and decrease in external pressure will decrease its boiling point. It is

~evident from this that a plot of the variation of vapour pressure with temperature

also represents the variation of boiling point of a liquid with the external pressure.

The vapour pressure of a liquid invariably decreases with nonvolatile impurities.
This is because of the fact that the surface will now be occupied by the
molecules of both solute and solvent. Thus, there will be lesser number of
molecules of the solvent as compared to those present in the pure liquid.
COnsequent_ly,' lesser number of molecules of the solvent will get a chance to
escape from the surface of the liquid, resulting in lower vapour pressure. Obviously,
boiling point of the liquid will rise as it will now require more heating to make

its vapour pressure equal to the external pressure.

Measurement of Vapour Pressure

The Static Method

The methods generally employed for the measurement of vapour pressure fall
into three categories: (i) the static method, (ii) the dynamic method, and (iii) the
gas saturation method. -

In this method, vapour pressure of a given liquid is measured by a manometer
attached to the open space above the liquid placed in a closed vessel. One of
the simplest procedures is to employ two barometric tubes. A small amount of
the liquid is introduced in one of the tubes until the space above the mercury
is saturated with vapour as shown by a small quantity of liquid remaining on
the surface of mercury. The difference in the levels of mercury in the two tubes
gives the vapour pressure of the liquid. An alternative form of the above method
is due to A. Smith and A.W.C.-Menzies and is known as the isoteniscope method.
In this method, the liquid is introduced in the bulb A and in the attached U-
tube as shown in Fig. 2.2.6. This system, which is known as the isoteniscope,
is connected to a manometer M and to a vessel B which has a large volume in
order to smooth out minor pressure fluctuations. The itheniscope is put in a
thermostat to keep the temperature constant. First of all, the apparatus is evacuated
until the liquid begins to boil and the air between the liquid in the bulb and
the U-tube is removed and contains only the vapour of the liquid. Now air is
introduced slowly until the levels of liquid are same in both the limbs of- the
U-tube. At this stage, the pressure above the liquid in A (vapour pressure) is
equal .td pressure in B. The latter can be read with the help of a manometer
(Fig. 2.2.6).
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Fig. 2.2.6 The
isoteniscope method for
- . the measurement of
vapour pressure

“The Dyn'am-ic
Method

The Gas-Saturation
Method

M

_ thermometer

171llll*lllll

to pump
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In this method, the external pressure is kept constant and temperature of the -
liquid is raised till it starts boiling. By definition, the vapour pressure of the
liquid at this temperature will be equal to the external pressure. In recording the
temperature, the thermometer should be placed in the vapeur phase and not in
the liquid so as to avoid the superfluous temperature recording, which may be

caused due to the superheating of the liquid.

In this method, a known mass of the liquid, whose vapour pressure is to be
determined, is taken in a closed vessel and a known volume of dry air (or any
gas which does not interact with the liquid) is passed repeatedly through it,
keeping its pressure P constant. This way, the air carries along with it some of
the molecules of the liquid and thus there occurs a loss in mass of the liquid.
The gas is continuously passed till no further loss in mass occurs. At this stage,

- the air is saturated with the vapour of the liquid and the partial pressure p of

the vapour in the mixture is equal to the vapour pressure of the liquid. If n; and
n, are the amounts of vapour and dry air, respectively, then

n tn,

If m is the loss in mass of the liquid and M is its molar mass, then

-m
n=—
M .
Assuming -air to be an ideal gas, we have
PV
n2 = —
RT.
PRT :
Thus = p=TWMP ___m - L (225)

m  PV) mRT+PVM
M RT |
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Thus knowing m (the loss in mass of the liquid), V (the volume of air to

start with), P (the pressure at which the gas is being passed), M (the molar mass
of the liquid), the vapour pressure p of the liquid at the given temperature T can
be calculated from Eq. (2.2.5).

A voluﬁle of 10.5 dm> of nitrogen measured at 30 °C and 102.66 kPa pressure is bubbled

through a saturator containing bromobenzene (C¢H;Br) at 40 °C. The mass of the saturator
and its contents is reduced by 0.856 g. Calculate the vapour pressure of bromobenzene at
40 °C. .

pV _ (102.66 kPa)(10.5 dm3)

Amount of nitr , =—=
e ' OBel T2 Ry (8.314 kPa dm> K™ mol1)(303.15K)

=0.4277 mol

313.15K
303.15K

Pressure of nitrogen gas at 40 °C, p=(102.66kPa )[ ] = 106. 05 kPa

Amount of bromobenzene lost, n; = 2 = Lﬁg =0.005 5 mol

M (1569gmol™)

"Total amount in -the mixture, (n, + n,) = 0.005 5 mol + 0.427 7 mol = 0433 2 mol .

m _ 0.0055mol

Mole fraction of bromobenzene in the mixture, x = =
m+ny  0.4332mol

- Vapour pressure of bromobenzene = partial pressure of bromobenzene in the mixture

cxp= L0059 06 05 kPa = 1.347kPa
7 (0.4332)

It is of interest to mention here some of the empirical relations between the
normal boiling point of a liquid and its other physical properties. Two such
relations are given below. '

For most liquids; the ratio of normal boiling point 7} and the critical
temperature 7, is found to be 0.66.

L = 0.66

[+

Trouton’s rule The molar enthalpy of vaporization divided by the normal
boiling point has an approximately constant value of 10.5R, ie.,

Avep T ~ 105R
T, -

This relation holds more clc-)_s.ely for non-associated substances of molar
mass of about 100 g mol™ and having not too high boiling points. For liquids
of low boiling points, e.g., H, and He, the ratio is much less than 10.5R and for

" the associated liquids, such as- water and alcohols, the value is greater.
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2.3 VISCOSITY
Origin of Viscosity

Fig. 2.3.1 Laminar flow
of liquid in a tube

Definition of
Coefficient of
Viscosity

Itisa _corhmon experience of daily life_: that different liquids flow with different
speeds. For example, water flows with greater speed than glycerol. Obviously,
some sort of an internal friction is operating which checks the flow of liquids
and which varies from liquid to liquid. This internal friction in the cagse of
liquids is primarily due to forces of attraction between the molecules. If we have
a laminar flow of a liquid in a tube, then the velocity of the layer just in touch
with the side of the tube is zero and it increases as we proceed towards the centre

of the tube (Fig. 2.3.1). Thus, there exists what is known as the velocity gradient
between different layers of the liquid.

e
_—

Y

Y

Y

_—
—_ .

Due to greater intermolecular attractions amongst molecules of liquid,
the molecules moving in any one layer will tend to impede the movement of
the molecules in the adjacent faster moving layer. As a result, the velocity of
molecules in the faster layer decreases. Unless this decrease is prevented by
applying a force along the layer in the forward direction, the velocity of the
faster moving layer will go on decreasing and ultimately it will become zero.
At this stage the liquid will stop -flowing.

The internal friction which resists the flow of a liquid can be measured in terms
of the tangential force which is needed to keep the speeds of different layers
constant. This force F depends upon the following factors:

(i) It is directly proportional to A, the area of contact of twg adjacent
layers. Larger the area of contact between the two layers, larger the effect of

. intermolecular attractions and hence larger the decrease in speeds. Consequently,

larger force is required to maintain the speeds constant.
@ii) It is directly proportional to du, the velocity difference between two
adjacent layes. Larger the velocity difference, larger the force required to maintain

~the constant velocity difference.

(i) It is inversely proportional to dx, the distance between the two
adjacent layers. Larger the distance, lesser the effect of intermolecular attractions

and thus lesser the decrease in speed. Consequently, lesser force will he required

to maintain the speeds of different layers.
Taking these factors together, we express F in the form,

Foe 43
dx
Removing the proportionality sign, we have
- du F ,
F=nA— ‘ =
n dx or 1 A | - (23.0)
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The constant 17 18 known as the coefficient ‘of viscosity of a liquid or
simply viscosity of a liquid. It may be defined as the force per unit area required
to maintain a velocity difference of unity between two parallel layers of liquid
unit distance apart. The unit of viscosity in CGS units is dyn cm™ s and is
known as the poise unit. The unit of viscosity in SI units is N m™ s (= Pa s).
The unit viscosity in this case is equal to a-unit force (1 N) required to maintain
a velocity difference of unity (1 m s™') between two adjacent layers having unit
area o_f contact (1 m?) and being unit distance (1 m) apart. The viscosities of
most of liquids are small in magnitude. Therefore, these are usually expressed -
in the units of centipoise (107 poise) and millipoise (107 poise). The SI
equivalent of the poise unit may be derived as follows.

Unit of viscosity in CGS units = dyn cm™ s

Units of viscosity in ST units = N m? s = Pas
lpoise=1dyncm2s=1(10°N) 102 m)?s=10" Nm?s
Dimension of 1 The dimension of viscosity 7 can be worked out as
follows: '

. 1 -2 .
0= I:l _ massV :lacielcz;z;?on o m(lt_l) —ml T (232)
438 ppe x Yelocity difference [
dx distance T

Measurement of Viscosity

Ostwald’s
"Viscometer Method

The following two methods are commonly employed for the determination of
viscosity of a liquid. o
This method is based on the Poiseuille’s equation. If the volume v of a liquid
requires the time ¢ to flow through a capillary tube of radius r and length / under
pressure head p, then its coefficient of viscosity as given by Poiseuille’s equation
is
nr pt ' '
n= T | (2.3.3)
The apparatus used, known as Ostwald’s viscometer, is shown in Fig. 2.3.2.
It consists of two bulbs A and B connected through a fine capillary tube. The bulb

A is of bigger size whereas the bulb B is of smaller size. A known volume of liquid

is taken in the bulb'A and the liquid is sucked into the bulb B. The time taken
in seconds for the liquid to flow from the mark a to mark b is noted down. _

In order to avoid measurements of /, v and other factors in Eq. (2.3.3); one
employs the relative method. Here, using the same viscometer, the experiment
is repeated by taking same volume of a liquid whose viscosity is known. Water
is usually employed for this purpose. If 7, and #,, are the times taken by the liquid
and water to flow from mark a to mark b, respectively, we have

4 4
- /R ¥
=gy an = "gp

Dividi.n'g, we get
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‘Fig. 2.3.2 Ostwald
- viscometer

Stokes Falling
Sphere Method

Mo pho | (2.3.4)
nw pwtw ’ v E
" The pressure head because of which the liquid flows through the capillary tube
is numerically equal to the weight of the liquid in the bulb B. Though this pressure
head changes during the flow of the liquid, yet at any instant it may be considered to
be proportional to the density of the liquid. Thus Eq. (2.3.4) modifies to

t
n = |2 I, . (2.3.5)
Puwly | _
Hence if the factors on the right side of Eq. (2.3.5) are known, the value
of 7, can be calculated.

If a steel ball is allowed to fall through a liquid, after some time it acquires a

_constant velocity. This happens when the force responsible for its downward
~ motion (i.e. weight of the ball in the liquid) becomes equal to the frictional

forces (due to the viscosity of ‘the liquid) acting in the opposite direction. The
uniform rate of streamlined fall of a sphere of radius 7 in a liquid is related to
its viscosity through the Stokes relation;

_F
6nnr

where F is the force acting downwards and is equal to the weight of the ball
in air minus the weight of the displaced liquid, i.e.

4 4 4
F= (gnﬁ ]ps g- (-—nr3 jplg = gnr3(ps -P)g

u 2.3.6)

3
Substituting this in Eq. (2.3.6) and rearranging, we have

4
PR G

- - _ 27 —pps 2.3.7)
6TTur 6TTur 9y '

The apparatus used in this method is shown in Fig. 2.3.3.
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A General Comment
on the Viscosity of
Liquids
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The given liquid is taken in a tall cylindrical vessel and its temperature

" is kept constant by surrounding the vessel with a thermostat. A small stainless

steel ball is introduced from the top of the liquid- and the time taken by it to
trave] between two marks A and B on the cylinder with a uniform velocity is
noted down.

Thus in Eq. (2.3.7), u = l/t where [ is the distance between the two marks
A and B. If we know the radius of the ball and densities of the ball and the

- liquid, the coefficient of viscosity of the liquid as given by Eq. (2.3.7) becomes

_ ZFZ(PS ~pg
T o
If the experiment 1s repeated with a liquid (known as the reference liquid) of
known viscosity then r and [ in Eq. (2.3.8) can be eliminated. Thus
mo_ P =Py o 239)
n, Py =Pty
where 71, and 7, are the yiscositiés, p; and p, are the densities, and #; and ¢,
are the times required for the steel ball to travel through the given liquid and
the reference liquid, respectively. Thus by knowing 7, and determining values

(2.3.8)

of t1 and ¢, experimentally, the value of 7, can be calculated by using Eq. (2.3.9.)

The coefficients of viscosity at 20 °C of some of the common liquids are given
in Table 2.3.1.. ' ~

It can be concluded from these values, that, in general, the coefficients of
viscosity of associated liquids are larger than those of non-associated liquids.
For example, 1(C,HsOH) > n(C,H;OC,Hs). This is largely due to the hydrogen
bonding between the molecules of a liquid. Glycerol and ethylene glycol have
comparatively larger values of coefficients of viscosity since they have more
than one hydroxyl group. Because of these hydroxyl groups, a network of
hydrogen bonds is formed between the molecules which extends throughout the
liquid, thus offering greater resistance to flow.
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Table 2.3.1  Coefficients of Viscosity of Some Common Liquids at 20 °C

Coefficient of Coefficient of

Substance viscosity Substance viscosity
(n/poise) x 10° (n/poise) x 10°
. or ' or
(/N m™ s) x 10* ' (/N m? s) x 10*

Acetic acid — 12.29 Ethyl ether : : 233
n-Butyl alcohol 29.5 Acetone . 329
Ethyl alcohol 12.0 Carbon tetrachloride 9.68
"Methyl alcohol 5.92 Chloroform - 5.63
Water 10.02 Benzene 6.47
Nitrobenzene - 2010 Toluene 5.90
Ethylene glycol 199 '
Glycerol - 8500

~ The flow of a liquid can be expres.sed in terms of fluidity ¢, which is reciprocal

of the viscosity, i.e.

o="
- n

The ﬂuidity (or the viscosity) of a liquid depends on various factors, some _
~of which are: :

(i) Heavier and larger molecules flow less easily than the lighter and
smaller molecules.
(@ii) Spherical molecules offer less resistance to flow than the plate-like

molecules. Molecules with flexible chains offer a very high resistance to flow
because of entangling of side chains. '

(iil) Impurities invariably increase the viscosity of a liquid. The presence
of lyophilic colloids, in particular, enhance the viscosity of a liquid to a large
extent. ' :

The viscosity of a liquid decreases with increase in temperature and this decrease
is roughly of the order of 2 per cent per Celsius degree. This is due to the fact
that on raising the temperature of a liquid, the average thermal energy of its

molecules is increased and thus the effect of intermolecular attractions is |

decreased. Before a molecule can take part in liquid flow, it is expected that it

- should have sufficient energy to overcome the forces of intermolecular attraction

due to the surrounding molecules. This energy is known as the activation
energy for viscous flow. It is known that the number of molecules having this
minimum energy or greater than this, increases in proportion to the Boltzmann
factor exp(—E/RT) and hence the resistance to flow of the viscosity may be
expécted to decrease in a reciprocal manner, i.e.,

1 < exp(E/RT) or 1 =A exp(E/RT) _

: E
or In (n/n°) =In(A/7°) + —
(/) = In (/1) + —

T
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versus 1/T
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where 7° is the standard unit viscosity. Thlis," In(n/n°) varies linearly with
(1/T) as shown in Fig. 2.3.4. From the slope, the activation energy for viscous
flow can be calculated. '

slope = E/R

In (n/n°) —»

T —

The fluidity of an ideal mixture which involves similar types of liquids, such
as a mixture of benzene and toluene, is best represented by the following
equations: ‘

O=x,0, + xB¢B | (Bingham’s equation)
log (9/¢°) =x, log (9,/0°) + x5 log (¢g/0°) (Kendall’s equation)
where ¢ ° is the standard unit fluidity. These equations are not applicable to non-
ideal solutions which involve dissimilar type of liquids. If the constituents of
a solution strongly interact with each other then the observed fluidity is less
than the calculated value, i.e., a considerable increase in viscosity occurs in such
a case. One of the examples is the water and ethanol mixture. In this mixture,
a strong interaction between the molecules of water and ethanol takes place due
to the hydrogen bondings. If the mixture involves a polar and a nonpolar liquid

such as alcohol and benzene then the observed fluidities are higher than the
predicted fluidities as obtained by the use of either Bingham or Kendall equation.

24 SURFACETENSION

Infroduction

Surface Energy

It was seen during the study of vapour pressure that the molecules at the surface
of a liquid experience a net inward pull because of the larger number of molecules
towards the liquid side than towards the vapour side. There is a tendency on the
part of surface molecules to go in the bulk of the liquid. The surface of liquid is
therefore in some sort of tension and it tends to contract to the smallest possible
area in order to have the minimum number of molecules at the surface. It is for
this reason that the surface of a liquid is spherically curved, since the surface area
is minimum for a given volume in the case of a sphere. ' '

If the area of the surface is to be extended then one has to bring more molecules
from the bulk of a liquid to its surface. This will require expenditure of some
energy because work has to be done in bringing molecules from the bulk against
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Surface Tension

Equivalency of -
Surface Tension and

Surface Energy

3

- Fig. 24.1 Representation

of surface tension

“Formation of
Bubbles

the inward attractive forces. The amount of work done in increasing the area by
unity is known as the surface energy. Larger the forces of attraction amongst

“the molecules of a liquid, larger the net inward pull, and thus, larger work will

be involved in increasing the area. Hence, the surface energy can be ‘used to
define these net inward pulls. '

It is customary to define these inward pulls in terms of the surface tension. The
latter is defined as the force acting along the surface of a liquid at right angle
to any line of unit length. The surface tension is equal, both numerically and
dimensionally, to the surface energy. This can be proved as follows:

Consider a line of unit length (say, 1 cm) anywhere on the surface of a liquid

(Fig. 2.4.1). ,
_ i [ Elcm

lem

- "o~ lem
oo Tem &7

The surface area of the liquid can be increased by pulling this line perpendicularly
by a force acting along the surface of the liquid. Let this line be extended by
unity so as to enclose a unit area of the surface. Then

amount of work done _ force x distance

Surface energy = =
amount of area extended area

Hence in CGS units, we have

dynxcm dyn )
y — = m_ surface tension

Surface energy =

cm? cm
and in SI units, we have
Nxm -
Surface energy = : =Nm™
A ) . m2.....,_w__~_~..u.

' Obviously, 1 dyn em™ = (105 N) (102 m)™ = 102 N m™!

The surface tension is represented by the symbol ¥.

Dimension of surface tension This can be determined as follows. -

force _ mass x acceleration _ mlt? _ 2
distance B distance T "
The formation of a bubble is basically due to surface tension. It is obvious that
the total pressure acting on a concave side must be larger than the pressure

acting on the convex side. Therefore, the pressure inside a bubble must be larger

’}/:
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Fig. 2.4.2 Formation of
a bubble

Phenomenon of
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than the external pressure. If this excess of pressurg is not balanced by any other
force, then the bubble will not be stable and will collapse immediately. Since
stable bubbles are formed, this excessive pressure must be balanced by certain
forces. These forces are due to surface tension and are called the cementing
forces.

Let a gas bubble in a liquid be cut into two hemispheres by an imaginary. plane
(Fig. 2.4.2). There will be a tendency for the two halves to be driven apart by
a force equal to the inward pressure multiplied by the surface area of. the
hemispheres. This will be prevented by the extemnal forces due to atmospheric
pressure and by the cementing forces acting along the circumference of the
circle. For a stable bubble, the total disruptive forces must be equal to the
binding forces.

We have
Disruptive forces = P(rr?)

Binding forces = p(rr?) + y(2nr)
Thus, for a stable bubble,
P(rr?) = p(n®) + y(2rr) ie. y(Q2mn)=(P -p)nr

o P-p=2L
:

¥ The excessive pressure inside the spherical bubble is thus inversely related

to its radius. From this, it follows that the formation and maintenance of smaller

bubbles will need greater values of excess pressure than the larger ones. This
is, in fact, in agreement with the daily experience of blowing a balloon. It is
difficult to blow a balloon initialy but becomes easier later on as the excess
pressure to be generated inside the balloon is inversely related to its radius:.

When a capillary tube is dipped in a liquid, there occurs either a rise or a fall
of liquid in the tube. This phenomenon is known as capillary action and is
basically due to-surface tension of the liquid. If the forces of attraction between
the molecules of a liquid and those of the solid surface of the tube are greater
than those existing amongst the molecules of the liquid, then the liquid has a
tendency to spread on the solid surface and its meniscus in the tube is concave
upwards. Such types of liquids are known as wetting liquids and they rise in the
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capillary tube. The angle of contact, which is measured within the liquid from
the side of the tube to the tangent drawn at the meniscus touching the surface
of the tube, in this case, is less than 90°. This is shown in Fig. 2.4.3a. If the
cohesive forces in the liquid are greater than the solid-liquid attraction forces,
or if there occurs repulsion between the molecules of the liquid and those of the
solid surface, the liquid detaches from the surface of the solid. The meniscus of
such a liquid in the tube is convex upwards and its level falls within the tube.
The angle of ‘contact, in this case, is greater than 90° as shown in Fig. 2.4.3b.

Fig. 2.4.3 The angle of

contact ‘of the meniscus \__ — — \_;_ N __(

(a) wetting liquid, < 90° -:—__—__—t bl = - ' -:—__—j —-_9 ==

and (b) non-wetting R [~ — - T |

liquid, > 90° (@) , ®)

Expression of As' mentioned.above, the rise and fall of a liquid in a capillary tube is due to
Surface Tension surface tension. Take, for example, the case of a wetting liquid. The surface

tension forces act all around the capillary tube in the direction shown in
Fig. 2.4.4. The liquid rises in the tube because of these upward forces. It continues
to rise till the vertical component of the lifting force becomes equal to the
weight of the liquid in the capillary tube. Thus, '

| Lifting force = (ycos 8) (27r,)
Weight of the liquid in the capillary tube = {(nrcz)h}p g '

At equilibrium, lifting force is equal to the downward force due to weight of the
liquid in the capillary tube. Therefore, ‘

(ycos ) 2nr) =mrlhpg

1 T
= ~hpg—c
o 4 2 pgcos@

(2.4.1)

[

-
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Fig. 2.4.4 Rise of a - =
liquid in a capillary tube - - i
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For most of the wetting liquids, 6 is very ver}'} small and thus cos 6 = 1.
Therefore, the value of y for such liquids is
1 - -
Y= Ehpgrc : (2.4.2)

For non-wetting 1iquid§, Eq. (2.4.1) is still applicable. Here & denotes depression
of the liquid level.

Measurement of Surface Tension -

Method Using
Capillary Action

Fig. 2.4.5 Capillary rise
method for measurement
of surface tension

The phenomenon of capillary action can be used to determine 'sur_face tension
of a liquid. However, to avoid the necessity of determining r, we use the relative
method in which the value of & is also determined for a liquid whose surface
tension is known. Thus

1 - 1 '
"= ghlplgr, and 9, = Ethzg”
Y o ' hpy | . : |
Hence, — =-— or h=——1V (2.4.3)
Y2 hp, [thz] ’

Hence, for known values of 1, hy, p;, h, and p,, the value of ¥ can be
calculated. The accuracy of this method can be further increased by the use of
two capillary tubes of different radii as shown in Fig. 2.4.5. We have

1 oy 1
Y = EhlpgrI or 71 = _Z_hlpg
' 1 1
and Y = =hpgn or L= Zhypg
2 o2
Subtracting, we have
11} 1 1
7{— - —}= —~pghy —hy) = —~pgAh
\n n) 2 2
Ah '
Zl““}
h n
R h ?LAA
B
El !
NNV
i
............ ElL i1
44 l
a}.’li
i
'Z‘E;::_._'___
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A Laboratory

Method

_Fig. 24.6 The
stalagmometer

If the same pair of capillaries, after proper cleaning, are d1pped in two different
liquids one after the other, we w111 have

_.PAS’ A

Ya=—F7—~ ad Y=
h n ' Anh n

Dividing, we get

y, = Palhy | 24.4)
e Ay Pyl - (24
Thus, knowmg the values of various terms on the right side of Eq. (2.4.4),
the value of surface tension of the liquid-A can be determined.

The other method which is commonly employed in laboratories is to use a
stalagmometer (Fig. 2.4.6).

il

A stalagmometer consists of a bulb attached to a fine capillary with a sharp edge.
The liquid is allowed to fall drop by drop through the capillary tube. As the size
of a liquid drop grows, its weight goes on increasing. It remains attached to the
edge because of the forces of surface tension which act around the circumference

———of the tube and in the upward direction. When the ‘downward force, due to

weight of the liquid, becomes infinitesimally greater than the upward forces of
surface tension, the drop detaches from the apparatus and falls down. Thus, the
weight of the drop can be correlated with the surface tension of the liquid:

‘Upward force = 2nr) y
‘Downward force = mg

Thus, = (2nr) y

In order to avoid measurement of r, we use the relative method in which
the experiment is repeated with a liquid whose surface tensmn is known Usually
‘water is employed for this purpose. Thus,
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mg = 2nry, and myg = 27ry,
Dividing and rearranging, we get' '

my
h= Yw
mw

The values of m; and my,, can be determined following either the drop weight
method or the drop number method.

(2.4.5)

In the drop weight method, the mass of about 20 to 30 drops of each liquid is
found accurately, and then the mass of a single drop is calculated.

In the drop number method, the number of drops obtained for the same volume,

. say V, of each hqu1d is counted. Then the mass of a single drop is determined

as follows:
-vl=ﬂ ~and also v1=K
P n.
' _ _ P
Therefore, m; =v,p; = —
. n
Similarly, m, = Y22
G}
and thus, L= = P (24.6)
Y2 My Py

- Table 2.4.1 records the surface tension values at 20 °C for some liquids. |

Table 2.4.1 Surface Tensions of Some Common Liquids at 20 °C

Substance Surface tension Substance Surface tension
y/dyn cm™ y/dyn cm™
or or

yx 10°N m™ yx 10¥N m™
Water 72.8 Acetic acid 2742
Benzene 28.87 Methy] alcohol 22.55
Toluene. .. --28.53 - Ethyl alcohol 2230
‘Carbon disulphide 3225 Ethyl ether 17.05
Chloroform 272 Nitrobenzene 4335
Carbon tetra- n-Butyl alcohol - 24.52
chloride 26.75 n-Propyl alcohol 23.75
Acetone 12332 .0-Xylene 30.03
Ethyl acetate 23.75 p-Xylene 28.31
Methyl acetate 24.8 Chilorobenzene 33.25

 Since the forces of attraction between the molecules of a liquid decrease with

increase in temperature, it follows, therefore, that the surface tension decreases

with increase in temperature. R. von E6tvos proposed the followmg relation

between surface tension and temperature.
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Interfacial Tension

_ y(Mv)QB —a—kt ' (2.4.7)

where a and k are constants and v is the specific volume of the liquid. The factor
M represents the molar volume of the liquid. If the volume is considered to be
spherical, the area of the sphere will be proportional to (Mv)*?. Since yrepresents

~ the surface energy per unit area, the factor y(Mv)??, therefore, represents some

sort of surface energy which according to E6tvds, varies linearly with temperature.
The value of surface energy will be zero at the critical temperature since at this
temperature the surface of separation between a liquid and its vapour disappears.
This fact can be utilized in deriving the value of a in terms of k. At critical
temperature

yMP =0=a -k,

~ Therefore

a=k,

W. Ramsay and J. Shields made a study of E6tvos equation and found that
the experimental results could be better expressed by the relationship:

y(M)? =k(, -1-6 - T (248)

According to this equation, the surface energy becomes zero when

t=t, -6

that is, it becomes zero at a temperature 6 °C below the critical temperature. This
is also supported by experimental observations that for some liquids, the meniscus
disappears at a temperature a few degrees before the critical temperature. For
normal and non-associated liquids the constant k is found to have a value of
2.12. For associated liquids such as water and alcohol, k is found to have a value
less than 2.12.

Consider two immiscible liquids in contact with each other. The molecules at
the surface of either of these liquids will experience an unbalanced force of
attraction in the same way as the molecules at the surface of a liquid experience
when they have the liquid on one side and the vapour on the other. These

unbalanced forces at the surface of separation between the two immiscible

liquids give rise to interfacial tension, which can be defined in the same way
as surface tension. It is thus, the force acting along the surface of a liquid
perpendicular to any line of unit length. According to Antonoff’s rule, the
interfacial tension y,p between two liquids. A and B is equal to the difference
of the respective surface tensions ¥, and.}, i.e.

Yap =17 = 73! - - (2.4.9)
Obviously, the interfacial tension will be smaller than the larger of the

two surface tensions. This is because the attraction across the interface between
the molecules of one liquid and those of the other, tends to reduce the inward
pull of the molecules in the surface by those of the same kind. The numerical
value of the interfacial tension can be determined experimentally by following
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either the capillary rise method or the drop weight method. The interfacial tension
plays a very important role in determining the properties of emulsions, detergents,
etc. - -

When two liquids whose surface tensions do not differ very much are mixed in
various proportions, the surface tension of the resultant mixture varies linearly
with the mole fraction of either of the liquids. Ideal solutions follow this
behaviour; an example of which is the benzene-toluene mixture. If the surface’

‘tension of liquids differ very much, the addition of even a small amount of the

liquid of lower surface tension in the liquid of higher surface tension decreases
the surface tension of the latter to a large extent. This is because such a liquid
has a tendency to accumulate at the surface and thus the surface has a relatively
richer constituent of the lower surface tension as compared to the bulk of the
mixture. In such cases, the variation of surface tension is given by the followmg ‘
expression, prov1ded the solutlon is not very dilute: |

dy
dlnc

In this expression, X is a constant and y* is the surface tension of the pure .
liquid. According to this, the surface tension of the mixture varies linearly with
the logarithm of the concentration of the added liquid. A few examples are
alcohol-water, acetone-water, and acetic acid-water mixtures.

—_ Xy (24100

Certain substances like soap, salts of higher sulphonic acids and of higher
amines, in water decrease the surface tension of the latter to a large extent and
thus are called surface active materials (due to their tendency to accumulate at
the surface.). These substances act as detergents and they have the characteristics
of lowering the interfacial tension between water and grease and thus render
wetting of the latter easier. This also explains why these substances are used to
clean garments. We can now explain the cleansing action of soap as follows.

Most of the dirt or dust sticks on to grease or oily materials which gather on
clothes. As grease is not readily. wetted by water, it is difficult to clean the
garment with water alone. If a soap solution is used, the intefacial tension
between water and grease decreases and thus facilitating the mixing of the two.
This decrease of interfacial tension is due to higher concentration of soap
molecules at thé surface. The orientations of these molecules at the surface is
specific, —COQ groups pointing towards the surface of water and hydrocarbon
chains pointing outwardly. These hydrocarbon chains act as a solvent for the
grease and thus the latter is detached from the cloth along with the dust.

In general, the variation of surface tension of a solvent with the addition of
solute is given by the Gibbs adsorption isotherm:

_cdr - | C@adn

RT dc

where I, is the excessive concentration of the solute at the surface relative to
that existing in the bulk of the solution. According to Eq. (2.4.11), dyis positive

2:
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The Parachor

aroma

if I, is negative, and vice versa. For solutes like acetone, soaps, and detergents,
T, is positive and hence there occurs a decrease in surface tension of water with
addition of such solutes. The solutes like NaCl, KC], etc., have more concentration
in the bulk as compared to that existing at the surface (i.e., I', is negative) and
thus there occurs an increase in the surface tension of water when such electrolytes
are added in this solvent.

D.B. Macleod observed that the surfacé tension of a liquid was related to the
orthobaric densities p; and p, of liquid and saturated vapour, respectively,
through the equation
1/4
14 - C : )
P1 =Py ' :

| where C is a constant, whose value depends upon the nature of the liquid. If the

above equation is multiplied by M, the molar mass of the liquid, then we have

' My " ‘

P1— Py

If the liquid is not very near to its critical temperature, then p; is much greater
than p,, and the approximate form of the above expression becomes

{M}ym =[P] or me1/4 = [P]

=MC = constant = [P]

b
Thus, if the surface tension is unity, the value of the constant [P] is equal to
the molar volume of the liquid. The symbol [P] is known as parachor, meaning
comparative volume, since the comparison of the parachors of different liquids
is equivalent to a comparison of molar volumes under the condition of equal
(unit) surface tension.

Parachor has been found to be largely an additive property and partly a
constitutive property. It is possible to evaluate the parachor equivalents of
various atoms and for various structural units (Table 2.4.2).

Table 2.4.2 Vogel’s Values of Atomic and Structural Parachor

Unit Parachor _ Unit . Parachor
(P1/IPD _ @/
8.6 —OH 30.2
157 —COOH 73.7
19.8 —NO, ' _ 73.8
48.2 - Single bond 0o
1 55.2 Double bond _ 19.9
Br . 6838 Triple bond - 40.6
1 90.3 3-membered ring 12.3
co 444 4-mertibered ring 10.0
' 5-membered ring 14.6
6-membered ring 14

1Pl = 1 cm® mol™ (dyn em ™) = 1078 m® mol™ (10 N m™H¥*
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With the help of these values, we can caipulate the parachor velues. of

different isomers of a given compound. The comparison of these values with the
experimentally determined values can help in dec1d1ng the structure of the
given compound
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2.13

REVISIONARY PROBLEMS

Discuss the general charactenstrcs of liquids and compare them with those of gases
and solids.

What is the vapour pressure of a liquid? How does it arise and what is the effect of
temperature on it?

The variation of vapour pressure with temperature can quantitatively be expressed by
Clapeyron equation

& Ay
&~ TV, - Vi)

Explain the various terms involved in this equation. Discuss the Claus1us approxunatrons
and hence derive the Clausius-Clapeyron equatlon

Draw a graph indicating:

(i) The variation of vapour pressure with temperature. What are the lower and the upper
limits of this graph?

(ii) The variation of In (p/p°) versus 1/T. What is its slope?

Discuss how vapour pressure and boiling point are intimately connected to each other.
Explain how a plot of the variation of vapour pressure with temperature can be
considered to represent a graph of the variation of boiling point of a liquid with the
external pressure.

Describe the methods commonly employed for the measurement of vapour pressure
of a liquid.

(a) Discuss the effects of nonvolatlle impurities on vapour pressure and boiling point
of a liquid. (b) What is Trouton’s rule? _
‘What do you understand by the term viscosity of a liquid? How does it arise and what
are its units? What is the effect of temperature on the viscosity of a liquid?
Describe the methods commonly employed for the measurement of viscosity of a
liquid.

Explain why the viscosity of ethyl alcohol is greater than that of ether.

According to the Arrhenius equation, the variation of v1s0051ty with temperature is
given by

E
In(/n°) = In (A/n°) + —
n(n/n°) = In(A/m°) 'L

Explain the various terms involved in this. Give a schematic plot of In (7)/°) versus
1/T. What is its slope? :

Discuss the origin of surface tension of a liquid. Show that the surface tension and
surface energy have the same dimensions. :

Show that the excessive pressure inside a spherical bubble is given by

. Ap=(P-p)=—

where P and p are the pressures inside and outside the bubble, respectively. With the
help of this, justify the statement:
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Vapour Pressure

Surface Tension

2.14

2.15

2.16

2.1

22

23

24

25

2.6

“The formation and maintenance of smaller bubbles will need greater values of excess
pressure than the larger ones’.

What is capillary action? Derive the formula

L
Y= E(i h)pgr

where positive sign is for wetting liquids and negative sign for nonwetting liquids. '
What is the relation between the angle of contact and the nature of the liquid (both
wetting and nonwetting)?

Discuss the experimental method employed for the determination of surface tension of
a liquid.

Explain the following terms:

(a) Interfacial tension. ' (b) Parachor and its importance,
(c) Surface active materials. _(d) Cleansing action of soap.
NUMERICAL PROBLEMS

The vapour:pressure of water at 90 °C is 70.13-kPa, and the mean enthalpy of
vaporization between 90 °C and 100 °C may be taken as 2.268 kJ g™L. Calculate the -
vapour pressure of water at 100 °C. (Ans. 100.79 kPa)

The vapour pressure of n-butyl alcohol is given by the equation

log (p/kPa) = — w +1218

Calculate: (a) A,,,H,,; and (b) the normal boiling point of alcohol.
(Ans. (a) 46.776 kI mol™, (b) 390.5 K)

The vapour pressure of n-propyl alcohol varies with temperature as follows:
Temperature, /°C 50 60 70 80
Pressure, p/kPa = 11.626 19.600 31.864 50.129
(a) Evaluate A, H,, from a suitable graph of these data.
(b) At what temperature is the vapour pressure 26.665 KPa? ,
(c) What will be the boiling point if the external pressure is 39.997 kPa?

(Ans. (a) 46.16 kJ mol™, (b) 66.4 °C, (c) 75 °C)

At 298 K, l1qu1ds X and Y have vapour pressures of 13.332 kPa and 26.665 kPa,
respectively, and the corresponding enthalpies of vaporization are 43.57 kJ mol™ and
16.74 kJ mol™. Calculate the temperature at which both X and Y have the same vapour
pressure, o (Ans. 328 K)

At25°C, 10 dm3 of dry air is bubbled slowly through 115.2 g of a pure liquid whose
molar mass is 120 g mol™. The remaining liquid weighed 113.1 g. Assuming the
vapour to behave ideally and the volume to be approximately equal to-that of the dry
air, calculate vapour pressure of the liquid. Given: Pext = 101.325 kPa.

: (Ans. 43.57 Pa)

The surface tension of water at 20 °C is 72.75 x 10 N m™.. How high will a column
of water rise in a capillary tube with a radius of 0.005 cm? (Ans. 29.7 cm)
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In the determination of the surface tension of a liquid A by the drop number method,

‘equal volumes of A and water gave 60 and 20 drops, respectively. Calculate the surface

tension of A if p (A) = 0.896 g cm™ and p (water) = 0.964 g cm™ Given: y(H,0)
= 7275 x 10° N m™.. (Ans. 22.54 x 10 N m™)
Benzene has a density of 0.879 g cm™ and has a surface tension of 0.028 88 N

!, What will be the difference of its heights in two capillaries of diameters 0.10 mm
and 0.15 mm, respectively? ' (Ans 2.23 cm)
At 20 °C, pure water with an absolute v130031ty of 1.002 x 102 N m™ s requires
102.2 s to flow through the capillary of an Ostwald viscometer. At 20 °C, toluene
requires 68.9 s. If the densities of water and toluene be 0.998 and 0.866 g cm™
respectively, calculate the viscosity of toluene. (Ans. 5.9 x 104 N m™2 s)
The viscosity of diethyl ether in millipoise is 2.84 at 0 °C, 2.33 at 20 °C and 1.97

_at 40 °C. Calculate: (a) activation energy of diethyl ether for viscous flow; (b) its

2.11

2.12

viscosity at 60 °C. . (Ans.. (a) 6.49 kJ mol™, (b) 1.70 millipoise)
A steel ball of density 7.90 g cm™ and 4 mm diameter requires 55 séconds to fall
through a distance of 1 metre through a liquid of density 1.10 g cm™. Calculate the
viscosity of the liquid in poise. (Ans. 32.58 poise)
The viscosity of an oil is 0.05 N m™ s and its density is 0.97.g cm™ at 298 K. How
long.a given volume of the oil will take to flow through a viscometer if the same
volume of water takes 50 s? Given: n(H,0) = 0000 89 N m™ s. Take p (H,0)
=10 g cm™. (Ans. 3 474 s)



3.1 INTRODUCTION

Characteristics of
Solids '

- Crystals and
Amorphous Solids

The. Solid State

Solids are characterized by their high density and low compressibility compared
with those of the gas phase. The values of these properties for solids indicate

" that the molecules (or ions) in them are relatively close together. Solids can very

easily be distinguished from liquids by their definite shape, considerable
mechanical strength and rigidity. These properties are due to the existence of
very strong forces of attraction amongst the molecules (or ions) of the solids.
It is because of these strong forces that the structural units (atoms, ions, etc.) of

the solid do not possess any translatory motion but can have only vibrational .

motion about their mean positions.

Solids can generally be classified into two broad categories: crystals and
amorphous substances. The outstanding characteristics of a crystal are its sharp
melting point and its flat faces and sharp edges which, in a well developed form,

are usually arranged symmetrically. These properties are the result of a high

degree of internal order which extends throughout the crystal (a definite pattern
constantly repeating in space), i.e. there exists what is known as the long range
order. The pattern is such that having observed it in some small region of the
crystal, it is possible to predict accurately the positions of particles in any region

“of the crystal, however far it may be from the region under observation. But

amorphous solids, such as glass, do not have this ordered arrangement. In many
ways they are more closely related to liquids than to crystalline solids and are,
therefore, regarded as supercooled liquids with high V1sc031ty In this chapter
we shall discuss the subject of crystalline -structure. o s

3.2 FACES, EDGES AND INTERFACIAL ANGLE OF A CRYSTAL

Crystals are bound, as stated earlier, by surfaces which are usually planar. These
surfaces are called faces and where two faces-intersect an edge is formed. The
angle between the normals to the two intersecting faces is the interfacial angle.

In general, the shape of a crystalline solid depends upon the conditions
(temperature, rate of growth, extent of stirring and impurities) which exist during
the period of growth, e.g., NaCl crystallizes in a cubic form from an aqueous

~ solution and in an octahedral form from an aqueous solution containing some urea.
The first quantitative measurements on crystals were made by N. Stensen

e e Y By ot g4 o+ 8 e
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who measured the angles between the faces of quartz crystals of different shapes.
He found that inspite of the differences in shape, the angles between
corresponding faces were always the same. Later, when crystals of many other
substances were observed, each was found to have characteristic angles between
faces. The statement that the angles between the corresponding faces of various
crystals of the same substance are constant is sometimes called the first law of

_ crystallography

3.3 HAQY’S IDEA AND SPACE LATTICE

The Basic Unit of a
Crystal

Space Lattice

Unit Cell

At about the same time as Stensen’s work, Robert Hooke speculated that all
observed forms of crystals could be pictured as consisting of regular arrangements
of small spherical particles. Hooke’s idea was extended by Haiiy. In 1784, as the
result of a fortunate accident, he began a study of the cleavage of calcite crystals

and found that regardless of external appearance of crystals, he would obtain the

rhombohedral unit in each case. Based on similar cleavage studies of many other
crystals, Haiiy concluded that the continued cleavage will result in a basic unit,
the shape of which was related to the external shape of the crystal. The
Macroscopic- crystal can be generated by stacking this basic unit one upon the
other.

Rather than drawing the entire unit of pattern it is much more convenient to
represent the unit of pattern by a point. Each point then represents the position
of an atom, ion, molecule or group of ions or molecules. The regular three-
dimensional arrangement of the identical points in space gives rise to what-is
known as a space lattice. The definition of a space lattice is strictly a geometrical
concept and represents a three-dimensional translational repetition of the centres
of gravity of the units of pattern in the crystal. This means that if a straight line
1s drawn through any two points, it will pass at equal intervals through a
succession of similar points. Since the arrangement of these points is regular, it

" implies that the environment around any point is .the same as that around any

other point in the lattice. It should be kept in mind that the lattice points need
not represent the actual atoms in the crystal but represent the spatial arrangement
of the units of pattern. These units of pattern can be anything, for example:

(1) In metals or inert gases each lattice point may represent the pos1t10n
of each atom.

(i) In a crystal of Inethane each lattice po1nt may represent the centre of
a methane molecule. _

(iii) In ionic crystals, the lattice points may represent ions or ion-pairs. In
the former, it is more convenient to consider a lattice of positive i_bns
independently of a lattice of negative ions; then the two can be interlocked to
give an adequate representation of the crystal. In the ion-pair case, a point
equidistant between a positive and a negative ion can be considered to be a
lattice point, thus having a single lattice to represent the ionic crystal. '

The basic-idea of Haiiy that the crystals can be generated by stacking together
the basic units is equivalent to considering the crystal in terms of a lattice. Thus,
by connection of the lattice points, a series of parallelepipeds of the type shown
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Fig. 3.3.1 Crystal lattice
and unit cell

in Fig. 3.3.1 can be obtained. Each of these parallelepipeds contains a complete
unit of pattern of the crystal. By translation or stacking of the parallelepipeds
the entire crystal structure can be generated. Such a parallelepiped can be drawn
from any crystal lattice, and is called a unit cell.

3.4 CRYSTAL SYSTEMS

Unit Cells in a Two-
Dimensional Lattice

Primitive and
Nonprimitive
Unit Celis

As stated earlier, in a space lattice or a crystal lattice there exist identical points
in space. For example, in a 1-dimensional lattice, we will have a set of points
arranged at equal distances along a straight line. The only parameter in this case
1s the minimum repeat distance. In a 2-dimensional planar lattice, we will have
to specify the values of two basis vectors which give the repeat distances along
two axes and the angle between these axes. From these parameters a unit pattern
or unit cell can be constructed, with which the entire planar lattice can be
formed by repeated translations of the unit cell. The values of the two basis
vectors in a planar lattice may be same or different, and the angle between them
may be 90°, 60° or any value other than these two. These possibilities lead to
the existence of just five possible types of planar lattices, each characterized by
its unit cell as shown in Fig. 3.4.1.

It should be noticed that for some lattices the unit cell can be chosen in more
than one way. This is shown in Fig. 3.4.1(IlT). For the same lattice points, the
unit-cell may be a parallelogram, an equilateral triangle or a regular hexagon
with a lattice point in its centre. In the first two unit cells, namely, parallelogram
and equilateral triangle, all lattice points lie at the corners of the unit cells. Such
unit cells are called primitive unit cells and are represented by the symbol P.
The third one, i.e. hexagon, in which one lattice point also lies at the centre,
is known as nonprimitive unit cell.




Fig. 3.4.1 Five types of
unit cells in planar
lattice

Unit Cells in a
Three-Dimensional
Lattice

Fig. 3.4.2 Three basis
vectors in a
3-dimensional space -
lattice

Seven Crystal
Systems
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In a 3-dimensional space lattice, we need to specify the values of three basis '
vectors which give the three repeat distances along the three axes and three
angles as shown in Fig. 3.4.2.

A

'y/
For a given lattice, there is, in principle, an infinite number of ways in which
the three basis vectors a, b and ¢ might be chosen. The choice of the most

suitable unit vectors is based on symmetry. If there are no symmetry elements,
the three vectors chosen are the shortest ones in three different planes. The

* morphological study of crystals of different symmetries’ showed that they could

be classified into seven crystal systems based on the presence of certain rotation
axes. The results are listed in Table 3.4.1.

iSee Annexure I at the end of this chapter for elementary ideas of symmetry.
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Absence of Five-
Fold Rotation Axis
in Crystal Systems

Table 3.4.1' Seven Crystal Systems.

Crystal system  Minimum Parallelepiped Examples
- Symmetry - dimensions
Triclinic 1 (or 1) atb#c CuSO,-5H,0,
. o # ﬁ * ’y?& 900 K2Cr207
Monoclinic 2 (or 2) azb#c S(monoclinic),
a=pf=90#Y CaSO,2H,0,
Na,SO,10H,0
Orthorhombic 222 (or 222) - a#b#c S(rhombic), BaSO,,
= ﬁ = ’}/: 900 KNO3, K2304
Trigonal or 3 (or §)' a=b=c . 'CaCO3, calcite -
Rhombohedral _ a=p=yz90°
Cubic Four 3 (or a=b=c ' NaCl, diamond,
_ . - Four 3) Ca=f=y=90 ~ Alums, CaF,
Tetragonal 4 (or 4) a=b#%*c TiO,, Sn(white),
: a=p=y=90" ZrS10,
Hexagonal . 6 (or 6) a=b#c SiO,, graphite
Ca=f=90° y=120° Pbl,, Mg, ZnO

tDimensions correspond to maximum possible symmetry of their respective systems.

In the crystal classification shown in Table 3.4.1, it can be seen that there is no
crystal system in which five-fold rotation axis is present. This is due to the fact
that in crystals only those rotation axes are allowed which are consistent with
the translational symmetry. According to the latter, the distance between any two
points should be equal to a unit vector @ or an integral multiple of this vector,
Le. ma. It can be shown that a crystal can never have a five-fold rotation axis
as otherwise the condition of translational symmetry is not fulfilled. This may
be demonstrated by taking a crystal lattice which has a n- -fold rotation axis. It
can be shown that n can never be equal to five. The n-fold rotation axis means
that if a rotation by an angle 360°/n is carried around the rotation axis, then the
new arrangement of points will be completely identical to the old arrangement
of points, i.e. the new configuration will be indistinguishable from the old

~configuration. Let this operation be carried out around an axis passing through

the point P, of ‘the crystal lattice as shown in Fig. 3.4.3 and let the lattice point
P; be thus thrown into P,. Snmlarly, Tlet the lattice point P, be thrown into the
point P, if the rotation operat1on is carried out around the axis passing through
the point P; (Fig. 3.4.3).

~ According to the condition of translational symmetry, the distance between

- the points P; and P, must be an integral multiple of the unit vector a. Thus, we
‘have :

P3P4 = .ma .
As can be seen from Fig. 343, the distance between the pomts Ps and P, is also
given by '




Fig. 343 Absence of
five-fold rotation axis
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Py

Equating this distance to ma, we get -
a(l -2 cos 0) = ma |

_ - 1-m
or cosf = T
By giving an integral value to m,-the corresponding angle of rotation can be
calculated from the above expression. These. are given in Table 3.4.2.

Table 3.4.2 The Allowed Rotation Axis in Crystal Systems

m cos 0 0 ' Value of n, i.e.
order of rotation axis
1 ‘ 360
2z — =6
0 2 60° 60
360
0 ~—=4
1 \ 90° %
2 1 1200 V @ —
) ' 120
3 1 : 1800 @ —
- 180

Higher values cannot be given to m as otherw1se the magnitude of the value of cos 6
becomes greater than 1.

It can be seen from the Table 3.4.2 that the five-fold rotation axis is absent
Thus, it can be concluded that a crystal can never have five-fold rotation axis
if it has to satlsfy the translational symmetry.

3.5 THE FOURTEEN BRAVAIS LATTICES

Cubic System

Consider a cube in which a lattice point exists in the centre of each face as well
as at the corners. This unit cell can be repeated to give a space lattice. This unit
cell, which is known as non-primitive cell, also has the minimum symmetry
elements as that of a s1mple cubic unit cell (four three—fold rotations axes) and
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Tetragonal System

Fig. 3.5.1 Lattice
representing a tetragonal
unit cell

Fig. 3.5.2 Identity of
end-paired tetragonal
lattice with the primitive
lattice

thus it belongs to the cubic crystal system. This céll also satisfies the basic

requirement of identical environments and is known as the face-centred cubic

system. Such a type of system is represented by the symbol F. One can have
another unit cell in which a lattice point is at the centre besides being at the
corners. This also has the minimum symmetry elements (four three-fold rotation

axes), satisfies the condition of identical environments and hence belongs to the
cubic system known as the body-centred cubic system. Such a system 1is -
represented by the symbol I. : . . :

In each of the above cubic lattices, the number of nearest neighbours to
- any lattice point is different from that of the others. In the primitive space lattice,

a given point is surrounded by six nearest neighbours; in a body-centred cubic
lattice it is eight and in face-centred, it is twelve. '

In a tetragonal System, the siimplest lattice can be generated by the translation
of a primitive unit cell as shown in Fig. 3.5.1. We can now consider the
possibility of having body-centred and face-centred tetragonal lattices. By

carrying out the appropriate symmetry operation, it is easily shown that the.

body-centred unit cell is compatible with the symmetry requirements of the
tetragonal system. Thus, it results in a different lattice from the primitive one.
Coming to the face-centred lattice points, at the very outset, it may be noticed

that, unlike the cubic system, all the six faces of a tetragonal are not identical.

In fact, we have two different types of faces. Thus, we can have lattice points
in one or two or all the three pairs of opposite faces of the tetragonal system.

Consider a tetragonal lattice in which only the end pair of faces is centred
(Fig. 3.5.2). However, by rotating the x and y axes by 45°, a new unit cell can
be drawn that is primitive, but smaller than the parent primitive tetragonal cell,
as shown by heavy lines in Fig. 3.5.2. Hence, it must be concluded that this
lattice can still be described by the repetition of a primitive unit cell.




Fig. 3.5.3 Impossibility
of the face-centred
tetragonal lattice

Fourteen Bravais
Lattices

Positions of Lattice
Peoints in Cubic
System
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If, instead, lattice points are placed in the centres of the other four faces,
the unit cell as shown in Fig. 3.5.3 is obtained. This arrangement is compatible
with tetragonal symmetry, but it can be seen by following solid lines that the
points labelled as 1 and 2 do not have the same environment. Thus, the basic
requirement of a space lattice that all the lattice points have the same environment -
is not fulfilled. Hence, this arrangement does not give a new type of tetragonal
lattice. :

Finally, we can ‘place lattice points in the centres of all six faces. If this
is done and the resultant lattice is carefully studied, it can be shown that the
arrangement can be described in terms of a body-centred unit cell. So, agam this
does not lead to a new type of tetragonal lattice.

Thus it can be concluded that in a tetragonal crystal system, only two
distinct lattices exist: (i) primitive space lattice, and (ii) body-centred space
lattice.

The same type of reasoning can be extended to the other crystal systems. This
was done first by Auguste Bravais in 1848. It can be shown that only fourteen

~independent lattices distributed among the seven crystal systems in which all

the points have identical environments .can exist. These are known as the
fourteen Bravais lattices. In contrast to the crystal system, the Bravais lattice

“type cannot be tecognized from the external form of the crystal.

The fourteen Bravais lattices are shown in Fig. 3.5.4. The symbol C is used
for the space lattice when one set of the faces in the unit cell is face-centred.

Throughout this chapter, the cubic system will be explored in some detail
because of its simplicity amongst the fourteen Bravai_s lattices. In this system,
we have three independent Bravais lattices. These are primitive, body-centred
and face-centred. All of them have the symmetry of a cube (four three-fold
rotation axes). These three cannot be distinguished by macroscopic examination
since their lattices are based upon microscopic translations.

A primitive lattice contains one point per unit cell. The position of this
pomt alone can generate the whole of the lattice points since the latter are
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Fig. 3.54 Yourteen
Bravais lattices
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related by translational symmetry. For example, if we assign the coordinates (x,
¥, z) to one point, then the other points will be at (x + 1, y, 2), (x + 2, y, 2), ...,
(x,y+1,2,(6y+2,2), .., %y, z+1), (x,y, 2+2), ..., and s0 on. By convention,

- the coordinates (x, y, z) are assigned as (0, 0, 0).




3.6 POINT GROUPS

Point Symmetry -

Combination of
Symmetry Elements
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A body-centred lattice has two points per q-nit cell, namely, (x, y, 2);
(x+%, y+%,z+%) . These will be related to other points by translational

symmetry. If we have two lattice points at (0, 0, 0) and (%, %%) , then the other

points will be at (1, 0,_0), 2,0,0), ..,0,1,0), (0, 2, 0), ..., (0, 0, 1), (0, 0, 2),
3 1V (51 1 3 -
aany and (—2', '%, —2_)’ (5’ Ea 5) yesey (%, ?: %), (%,%, %—),---, (%, %a %), (%, %, %),... .
A face-centred lattice has four points per unit cell at (x, y, 2),
(x+1,y+L,2),(x,y+1,2+1) and (x+1,y,z+1). By convention, these
are assigned as (0,0,0), (%,%, O), (O, 1, %) and (%, 0, %) . The other points of the

lattice can be generated by translational symmetry of these four points, i.e. by
increasing the coordinates of each by unity each time.

In studying the symmetry of a molecule, we are concerned with the point
symmetry. A point is assigned in the molecule and the symmetry with respect

. to lines and planes passing through this point is considered. Thus when the

symmetry operation is carried out, at least one point does not move from its
position. It is not necessary that there should be a particle or an atom at this
point. In crystals, point symmetry is also found to be of value. But we must
realize that in a crystal, symmetry is not restricted to a point. Rather it extends
in space throughout the crystal. Consequently, the point symmetry permitted in
a crystal is restricted so as to satisfy the requirements of translational symmetry.

The elements that are generally used to describe point symmetry in a crystal are
(i) proper rotation axis, (ii) mirror plane, and (iii) rotation-inversion axis (see
Annexure I at the end of this chapter). These are not the only choices that can
be made. However, all of the point symmetries of a crystal can be expressed in

~ terms of these three elements. For example, a centre of symmetry which exists,

in many geometrical structures is not included here. However, it can be shown
that a centre of symmetry can be represented by a rotation-inversion axis.
These symmetry elements may be combined in the following ways:

Combinations . Symbol used*
Rotation axis only X
Rotation-inversion axis only }?

o ) X
Rotation axis normal to a plane of symmetry ™
Rotation axis with a vertical plane of symmetry Xm
Rotation-Inversion axis with a vertical plane of symmetry Xm-
Rotation axis with a diad axis normal to it X2

. L. . X
Rotation axis with a normal plane and one or more vertical axes —m
m

#X—Order of principal axis, highest rotation order; m—plane of symmetry.
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Classification of .

When the seven crystal systems are studied from the viewpoint of the above

Crystals symmetry combinations, it is found that these can be classified into 32 different
groups, known as 32 crystallographic point groups (point group because after
carrying out the operations, at least one point does not move). These point

- groups are distributed among the seven crystal systems as follows:
Moroclinic : 7 o
Triclinic and Trigonal Tetragonal Hexagonal Cubic
Orthorhombic ' -
X 1 2 . 3 : 4 6 23
_ _ a2
v T 5 3 4 23=23
X 1 2=m 3 6 m
T - | 3 4 6 2

X 13 £l =5 ad = =3=3m

m m m m m m m

Xm Im=2 2m = mm 3m dm = 4mm 6m = 6mm "

_ = 2 = _ _ _ o

Xm Im= - 3m 4m = 42m 6m = §2m 43m

X2 12=2 2 =22 32 42 62 432 = 43

1 = 4 4 6
Zm —m =2m o= mmm —m = 6m —m=—mm  —m=—mm  —3m=m3p
m m m m m m m m

Note: Combinations shown in square borders are the repeated ones.

3.7 SPACE GROUPS

Screw Axis and
Glide Plane

Classification of
Crystals

The vast majority of molecules possess one of the 32 crystallographically
allowed poin{ groups.

In classifying the crystals into different point groups, we consider the operation
of symmetry elements about a chosen point, not necessarily a lattice point.
However, due to the spatial nature of a crystal lattice, we must also consider the
symmetry operations involving translation. Let a given crystal contain a diad
axis (Fig. 3.7.1a). There is another way in which the same external symmetry can
occur, i.e. a rotation through 180° followed by a translation parallel to the axis
as shown in Fig. 3.7.1b. This symmetry operation is called screw axis.

Another type of symmetry operation involving translation is glide plane,
This is shown in Fig. 3.7.1c. It involves reflection across a mirror plane coupled
with a translation parallel to the reflection plane.

The combination of these two translation symmetries _(namely, SCrew axis 'aﬂd
glide plane) with point group symmetry elements gives 230 different groups,
These are known as space groups. Every crystal belongs to one of these space

T




Fig. 3.7.1 (a) Diad axis,
- (b) Screw axis, and
(¢) Glide plane
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groups which completely specifies it symmetry. Every space group is isomorphic
with a point group and morphological examination of the external symmetry of
a crystal will yield only the point group. This means that screw axes give the
same external symmetry as simple rotation axes and glide planes give the same
external symmetry as mitror planes. The actual determination of space groups
of crystals can be done with the help of diffraction techniques.

'The number of point groups and space groups associated with different
seven crystal systems are shown in Table 3.7.1.

Table 3.7.1 Distribution of Bravais Lattices, Point Groups and Space Groups Over the
Seven Crystal Systems

No. of No. of No. and _
Crystal system point space nature of Bravais lattice
group groups groups '
Triclinic 2 2 | P
Monoclinic 3 13 2 P C
Orthorhembic 3 59 4 PCLF
Tetragonal 7 68 2 P 1
Hexagonal 7 27 1 P
Trigonal 5 25 1 P
Cubic 5 36 3 P,LF
Total 32 230 14

3.8 CRYSTAL CLEAVAGE AND DEVELOPMENT OF ITS FACES

The development of faces in a crystal can be correlated with the planes that pass
through lattice points as shown in Fig. 3.8.1. Theoretically, an infinite number
of planes might be drawn through the various lattice points. Any of these planes
could represent a crystal face. Inspite of this, only a few faces are actually
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Fig. 3.8.1 Development
of faces in a crystal

Fig. 3.8.2 Site densities
in different planes and
their interplanar
distances

observed to develop. Qualitatively, this can be explained on the basis of interaction
energy involved in atoms, ions or molecules of a crystal. A regular pattern of
these units in a crystal results in the maximum interaction and thus minimum
energy. Thus, a crystal face with a large surface density would result into more
interaction vis-d-vis minimum energy and hence would show a greater probability
to form a crystal face. It can be seen from Fig. 3.8.1 that the number of lattice

sites falling on various planes may differ greatly. The planes parallel to the
~Cartesian axes have the highest density of points and the density decreases in
- the order of planes from a to e. The probability of forming a crystal face also

decreases in the same order. Thus, we can imagine the development of crystal
faces from- a statistical point of view, and find that only a few faces with the
maximum site density show a high probability of development.

a

It can be seen from Fig. 3.8.2 that the planes with the highest site density
are also planes with the largest distance of separation. On account of this
separation, interatomic interaction between the planes would be minimum. It will
thus be expected that the natural fracture will occur parallel to these faces. It also

~ follows that the cleavage planes would correspond to the normally developed

crystal faces.

17

b
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3.9 DESIGNATION OF PLANES

Weiss Indices

Miller Indices

lllustrations

Fig. 3.9.1 Miller indices
of various sets of planes
parallel to z-axis (only .
their projections on the

x-and y-axes are shown).

In order to discuss the structure -of a crystal, we need to describe the orientation
of planes passing through lattice points of the crystal. The orientation of a
lattice plane can be described by considering the intercepts of the plane on the
three basis vectors of the lattice. According to Haiiy, it is possible to choose the
unit lengths a, b and c along the three basis vectors such that the ratio of each
of the intercepts A, k" and [’ to the corresponding unit length is either an integer
or a ratio of two integers. This statement is known as the law of rational indices.
The three ratios are known as the Weiss indices of the plane.

Instead of using Weiss indices, it is more advantageous to use the Miller indices.
In the latter, we take the reciprocal of the three Weiss indices and then multiply
them by the smallest number (if necessary) to make them all integers. The three
resultant integers are known as Miller indices -and are represented as (hkl). For
example, if the intercept ratios are i'/a = 2, K'/b = 1/3 and I'lc = 1/2, the Miller

_ indices of this plane are (164). If a plane is parallel to one of the basis vectors,
- its intercept on this vector is at infinity and the corresponding Miller

index is 0."

The use of Miller indices to specify the orientation of planes parallel to-z-axis_
as shown in Fig. 3.9.1 is illustrated in the following. :

Set C

b SetA SetB

Set A The three planes shown in Fig. 3.9.1 have intercepts
@ a, b, - (ii) 2a, 2b, (iil) 3a, 3b,

The intercepts are simple multiples of unit lengths a, b, ¢ of the basis

vectors along the crystallographic axes which determine the crystal system.
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Miller indices (hkly of such planes are

225 e LL0 = (10
a b o

w22 o L1y o g
a 2b o 2°2 _

G 2,2 o Llo o o
3a 3b = 3'°3 :

The Miller indices are therefore the same. All planes parallel to these
planes will have the same Miller indices of (1 1_0)- Thus, the Mifer indices
actually define a set of parallel planes, one of which passeg

_ through the origin,
while the others are at q constant distance from each o,

er.
‘Set B Intercepts are

Q) 2a, b, oo (i) 4a, 2b, o (i) 6a, 3p, o
and Miller indices (ki) are | | -
0 ;—agé ie. %,1, 0 = (20)

... a b ¢ ) 11 :

(ii) 1oy e Z’E’Q = (120)

(iif) i,%,i, ie. %,%,0 = (120)
Set C Intercepts are

(i) oo, b, o (ii) oo, 2b, oo

and Miller indices are (010).
Set D Intercepts are |
@) d, oo, oo i) 2a, 0,00

and Miller indices are (100). _
Let us now illustrate the method to cal?ulate the Miller indices of 4 plane
which intercepts all the three crystallographic axes, as sh '

i - 0Wn_in Fig. 3.9.2.
The Intercepts of the shown plane with the three axes are o

W=2a K=4b I'=3c

The intercept ratios are




Fig. 3.9.2 Miller indices
of a plane intersecting all
the three crystallographic
axes

Lattice Planes in a
Cubic System

Fig. 3.9.3 Some of the
lattice planes of cubic
lattice: (I) Primitive
cubic lattice, (IT) Face-
centred cubic lattice,
(I1I) Body-centred cubic
lattice
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I3}

¥y
Multiplication by the minimum -common factor of 12 gives the Miller indices
as (634). o . . : .
' It can be seen here that larger the value of Miller index, the smaller is the

intercept of that plane on that axis. Thus, (222) plane will have an intercept that .
is half of the (111) plane. C

Some of the lattice planes in the .cubic crystals are shown in Fig. 3.9.3.

/NN NN\
A -
I ’}—--%.’-——-/ ’ __/ - ’ U ——/ Uy
- (4 (4 rd rd rd \/ - .
(100) (110) (111)
| \ ! !
/ \ \ 5: :
II (4 (4 rd u _—/ - o
‘/ ” P ‘\/ ’

(200) " (110) ' : (222)
- The distances between planes of a crystal can be determined with the help
of X-ray diffraction measurements. These can, in turn, be used to determi_ne the
system to which the crystal belongs. '
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3.10 INTERPLANAR DISTANCES FOR CUBIC SYSTEMS

A Few T Typlcal
Examples

General Formula

Utility of Interplanar
Distances

Gedmetrical Method

(1) (100) planes D1stance between these planes is equal to the length a of the

side of a cube, 1.e. djy, = a.
(2) (200) planes Distance between these planes is equal to the half length

~al2 of the side of a cube, 1.e. dyyy = al2.

(3) (110) planes Spacing between these planes is one-half of the diagonal of
the square base of the cube, ie. djyy = (,/a +a )2 = al\2

_(4) (111) planes The entire cross diagonal d of a cube spans-three (111)

planes. Thus, the distance between the two of each of these planes is d/3. Now,

: a'=\/az+a2+a2 =\/§a
\/ga a

Therefore d;; = = A

=7

- (5) (222) planes These planes are in between (111) planes. Thus, the distance .

between any two such planes is
dn _

dy = 21t
22% 2\/’

“General formula for the 1nterp1anar spacing in the cubic system (orthogonal

axes) is
_ a

/h2+k2+lz (3.10.1) .

where Rkl are Miller indices of the planes and a is edge length of the cube.

~

It is obvious that if one had a method for determining d,;, experimentally, the

constancy of the quantity dkhp/h2 + k% +1% will not only determine the value

- of a but will also indicate to what cubic system the given crystal belongs.

The ratios of interplanar distances of different faces in the three cubic
lattices (Fig. 3.9.3) are:

Simple _
cubic lattice ] o dlm dllO' dlll = 1 —\/1? . %, i.e. 1 . 0707 . 0.577
““Face-centred 1

cubic lattice  dyyydog dyyy _5 F T ie. 1:0707:1.154

Body-cent{‘ed 1 1 ‘ .
cubic lattice yyy: d110 &y = 2 \/_ 5 f re. 1:1414:0.577

The general formula for the 1nterplanar spacing in a system of orthogonal axes can
be derived geometrically.” As stated earlier, the Miller indices define the set of
parallel planes, one of which passes through the origin. Thus, if a perpendicular

T See Arinexure II at the end of this chapter for the more general expression of interplanar
distances.




Fig. 3.10.1 . Interplanar

distance of the planes
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is drawn'fr‘or_n the origin to the nearest plane of Miller indices. (th, then this
perpendicular distance, represented as dy,;, will be equal to the interplanar

- spacing between planes of Miller indices (hkl) as shown by OD in Fig. 3.10.1.
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If o, B, and y are the angles which this perpendicular makes with the three axes,

then

dyy =OA cosa = [%]Cosa, dyyy =OBcos § = {%]oosﬁ

and dh,d:OCCOSy=[—(lf]cosy

'o_r Cos o = (ﬁ]dhkl’ cos B = [ﬁjdh,d, and cosy = [ijdh]d
a b c

Now since cos @, cos  and cos ¥ are the direction cosines of the perpendicular
line, therefore

cos ot + cos? B +cos?y =1
Substituting their values in terms of d,,,, we have

h22‘ k22 12-2 o
Bl a2+ 5] @y+| 2| a2y =1
(o) o[ e[ ]

L (R (kY (1Y
o di%kl a b) \c

‘For a cubic system a = b = ¢, we have

1 R+ +P : a

= or =
iy a " VR + 2+ 12
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For a tetragonal system, a = b # ¢, we have

1 _RrE P
diiy a* ¢?

For an orthorhombic system a # b # ¢, we have
1 _R KL
d}%kl . a2 . b2 . C2

3.11  DIFFRACTION OF ELECTROMAGNETIC RADIATION

Characteriétics of
Waves

Fig. 3.11.1 Wave
propagation

Constructive and
Destructive
Interferences

Electromagnetic radiation consists of waves that are propagated through space
with the velocity of light. It can be characterized by either frequency or
wavelength. The former gives the number of cycles through which the wave

“moves in one second and the latter gives the distance between two points on

the wave which have gone through a complete cycle. These two, i.e. frequency
and wavelength, are related by the expression

V=
A
Associated with the wave is the amplitude which is the displacement of
the wave in a direction perpendicular to the direction of its propagation. The
wave nature can be represented by either a sine wave or a cosine wave as shown

in Fig. 3.11.1.
I

amplitude

Two waves coming from two different sources having the same wavelength and
same amplitude reinforce each other when their maxima and minima coincide.
On the other hand, they will interfere and exactly cancel each other when their
maxima and minima do not coincide. The former is known as constructive
interference and the latter as destructive interference. The amplitude of the
resultant wave at any point is obtained by the algebraic sum of the amplitudes
of the two individual waves at the point.

This interference phenomenon forms the basis of the diffraction of light
by a diffraction grating. A ‘typical diffraction grating consists of a transparent
medium (such as glass) on-which are ruled a large number of very fine, equidistant,
parallel, opaque lines. When light from a monochromatic source is incident

_ perpendicular on the grating, all the clear spaces will act as secondary sources -

of light and, therefore, will emit light waves in all directions radially outward.




| Flg 3. 11 72' Diffractlon
of hght by a dlffractlon

grating (waves from only

two adjacent’ apertures
-are shown). B—Bright
spot. D—Dark spot

Condition for Bright
Spot

Exampié 3111

SolutiOn B

I\
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- The wavelengths and fr’equencies of the diff‘racted light waves are the same- as -

that of the incident light waves_ The waves from two apertures will cross at some
point beyond the gratmg If "a screen is placed- at this point, a series of bright

‘and dark spots will be observed on the screen. A bright spot is obtained where

the waves from adjacent apertures in the grating reinforce one. another. A dark

. spot arises from the destructive 1nterference of waves at the point. Figure 3.11.2 -
- shows the mterference,(_)f waves from_two adjacent apertures of a grating.

B
& R
. \
d ) . 6\\
=
' D
¢

screen

A bright spot is ebserved when both the waves are in phase. The essential

~ condition for this to be observed is that the extra distance travelled by one of

the waves is an integral multiple of wavelength.

Thus FG =nhA ‘ - n=0,1,2,..

From Fig. 3.11.2, it follows that

__ FG = d sin 6
E.quating these two, we ge’t.
mh=dsin 8 ' n=0,12 ..

A grating with 4,000 ﬁnes'pm_l_ is 111u1mnated w1th Hg greenhne having a wavelength equal
to 546 nm. At what angle will the first and second order diffraction maxima occur?
-

WI——ZSX 10_40II1 25)(10_6
cm

The gratmg spacing, d =

, Therefor_e_, angle of first order diffraction maxima is

-9 . ’
n/l (1) (546x1_(; m) — 02184
d . 2.5 X 107

. sinf =

Cor g =126 R

N
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Example 3112 .

- Solution

Comment

~ Angle of second order diffraétion maxima is o

9 '
@ (546"}? m _ 04368
25x10°m)

sin 6, =

or 02 = 25.90

Calciilate the angle at which the first order maxima occurs if an electromagnetlc wave of
10 nm is exposed to the above gratmg

- The angle at which first order maxima is observed is- given by

(1) (10x107° m)

sinf =
T 25%x10°m

=4.0x107

oo .9=023

The calculated angle of first order maxima in Example 3.11.2 is too close to the
intense beam which occurs at 8 = O and thus cannot be determined accurately.
In order to obtain measurable separation of maxima, it is essentidl that the

- spacing between lines of grating should be approximately equal to the wavelength

of the employed electromagnetic/ rad1at1on

3.12 . DIFFRACTION OF X-RAYS_ BY _CRY.STALSV

Latie Method

Flg 3.121 Laiie
dlffractlon pattern

In 1912, Max von Laiie predicted that since the distances between particles in
a crystal are of the same order of magnitude (= 10 cm) as the wave length of

X-rays, the former could be used as a 3-dimensional diffraction grating and thus

if a beam of non-homogeneous X-rays were passed through a crystal, a diffraction
pattern would be observed. The experiments carried out on various substances
verified Laiie’s prediction. The diffraction pattern can be recorded by placing
a photographic plate behind the crystal as shown in Fig. 3.12.1. On developing
the film, one observes a series of spots arranged in some symmetrical way around
the intense central undiffracted beam. The arrangement of these spots (known
as Laiie spots) is highly characteristic of the structural arrangement of the
crystal. From the position of Laiie spots, it is possible to calculate the size and

- shape of the unit cell. However, the actual analysis of the Laiie dlffractlon

pattern is hlghly complicated and difficult.

polychromatic

X-rays T~

' -crys tal

/ \\

photographic Laiie ﬁpots

plate




Crystal asa .
Reﬂectlon Gratmg

Derlvat|on of _
Bragg S Equatlon

a crystal

Fig 3131 Reflection of -
X-rays from the planes of
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313 BRAGG’S EQUATION

B.H. Bragg and W L. Bragg were of the op1mon that since a crystal is composed o

of a series of equally spaced atomic planes it may be employed not only asa

transnnssmn grating as in the ‘Laiie method, but also as a reflection grating. -
When X-rays. are incident on a crystal | face they penetrate into the crystal and

' suffer reflections on stnkmg the atoms in successive planes as shown i in Fig. 3.13.1.

If the reflected waves frorn successive layers are out of phase, then’ due to the
destructive interference, no diffraction w1ll be observed. If, however, the reflected

* waves are in phase, then due to-the constructive interference, a diffraction spot

will be observed. The ¢ondition for a reﬂect1on to give constructive 1nterference
can be derived from Fig. 3.13:1 as follows '

" Let 6 be the incident angle of monochromatlc X- rays of wavelength A W1th the -

parallel equidistant planes of atoms with 1nterplanar spacing equal to d. The -
" waves are in phase before” stnkmg the planes Two such waves labelled as-wave

1 and“wave 2 are shown in Fig. 3.13:1. After the reflection, the two waves will

“be in phase provided the extra d1stance travelled by wave 2 is-an, integral -

multiple of wavelength A. This extra d1stance can be obtained by dropping
perpendiculars BG and BH from B on to wave 2. It is 0bv1ous from
Flg 3.13.1 that

AB = DG BC=HF, GE=EH=dsin o
Now the extra distance travelled by wave 2 is given as

DEF - ABC = (DG+GE+EH+HF) (AB+BC)
—GE+EH
=2d s1n'6 _

Thus, in order to have wave 1 and wave 2 in phase, we must have

2dsin O=ni n=1,23%. - . (3131
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Alternative Way of
Writing Bragg’s
Equation

Experimental Set-up

Equation (3.13.1) is known as the Bragg’s ‘equation. The constant n gives
the order of reflection and is equal to the number of wavelengths in the path
difference between waves reflected by adjacent planes. Thus, n can- take only
integral values subject to the limitation that sin @ cannot be greater than one.
For fixed values of A and d, we can have more than one reflection at angles
0,, 6,, .. correspondmg to the values of z equal to 1, 2, 3,..., respectively. From
Eg. (3.13. 1), it can be concluded that the higher order reflections will occur at
larger. values of sin 0 and hence at larger angles. Experimentally, it is found that

‘the lower order reflections are the most intense ‘and the intensities of higher

order reflections decreases rapidly.

While dealing with X-ray diffraction, it is more convenient to express higher
order reflections in terms of the first order reflection from planes of higher Miller

indices (kki). For example a second order reflection from (111) planes may be

considered equivalent to the first order reflection from (222) planes. Similarly
a third order reflection from (111) planes may be considered as the first order
reflection from (333) planes. This fact can be mtroduced mto the Bragg equation
nA = 2d sin @by rewriting it as

A= 2(éjsin9 =2dy,;sné
\n

where d,; is the perpendicular distance between adjacent planes having the
indices (hkl).

The reflection angles and the intensities of the reflected beams corresponding
to these angles can be determined with the help of Bragg X-ray spectrometer,
a schematic diagram of which is shown in Fig. 3.13.2. This method consists of
the following steps.

(1) The X-rays are generated in tube A by bombarding cathode rays on
a suitable target B. The most commonly used target metals and their characteristic
wavelengths are copper 154.1 pm, molybdenum 70.9 pm and chromium
229.0 pm.

(2) The generated X-rays are passed through a series of slits and filters (C,
D, etc.) in order to get a sharp monochromatic beam. It is then directed to strike
the face of a crystal placed on a graduated turntable F. The latter may be rotated
to any desired angle of incidence.

~ (3) The reflected beam is passed into an ionization chamber G containing

SO,. The reflected X-rays ionize the SO, gas in proportion to their intensity. The
extent of ionization and hence the intensity of reflection can be determined with
the ‘help of an electrometer. ' ‘

(4) The experiment 1s repeated at various incident angles of X-rays and
the angle at which maximum reflection occurs is determined. -




Fig. 3.13.2 Bragg X-ray

spectrometer

X-ray Diffraction
Pattern

Fig. 3.13.3 X-ray
diffraction - pattern (only
schematic) for a crystal
of tungsten

Scaﬁering Ability
of an Atom
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The X-ray diffraction pattern (only schematic) for a crystal of tungsten is shown
in Fig. 3.13.3. ‘ | :

200

110
211 310

321 400

290 222

intensity of diffracted beam
—_—

/

- — — — — — ~ t

40° 60°  80° . 100° 120° 140° '160°
: angle of incidence —» '

e

The variation in intensity of the diffracted beam for different sets of planes
is due to the variation in density of atoms in these planes. The planes of high

~ atomic deps‘;ity produce better scattering of X-rays which gives a more intense

beam.

If more than\\one kind of atoms are present in the crystal, the atom with the
greater number of electrons has the greater scattering power. For light elements,
the scattering power is directly proportional to the number of electrons around
the atom. It is because of this reason that the scattering ability of hydrogen atom
is very small and thus whatever effect it produces is overshadowed by the effect
of neighbouring atoms which contain larger number of electrons. Thus, the
positions of hydrogen atoms cannot be deduced from X-ray diffraction. However,
their positions can be determined by neutron diffraction since the latter involves
the interaction with the nuclei and this interaction is about the same with all
nuclei. Similarly, from X-ray diffraction, it is not possible to distinguish between
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Example 3.13.1

Solution

atoms which differ only by the possession of additional -electron. Carbon and
nitrogen, for example, are indistinguishable because their scattering ability is

~ about the same.

When a certain crystal was studied by the Bragg technique using X-rays of wavelength
229 pm, an X-ray reflection was observed at an angle of 23°20". (d) What is the
corresponding interplanar spacing? (b) When another X-ray source was used, a reflection

was observed at 15° 26’. What was the wavelength of these X-rays?

(a) Given that
A=29pm  and  0=23°20

Substituting these in the Bragg equation, we have

oA _ - 29pm _ 299pm
M 9sing  2xsin(23°20)  2x0.396
=289.2 pm -

(b) Now @ =15°26', thus
A =2dy,; sin 6 =2(289.2 pm) sin (15°26")
=2(289.2 pm) (0.226 2) = 153.9 pm

3.14 POWDER METHOD

EXp'erimen:téI“_Sgt-up

In the Bragg method, one has to use a fairly large crystal with flat faces carefully
oriented in a number of specific directions. All crystalline substances are not
available in the above needed form. Another method, which is very convenient
to handle, was developed independently by Debye and Scherrer, and Hull. In
this method, known as the powder method, the given substance is taken in
powder form in a thin-walled capillary tube. It is then irradiated - with
monochromatic X-rays. The particles in the powder act as tiny crystals and are
randomly oriented with respect to the incident X-rays. Since the powder contains
a very large number of particles, it is possible that some particles will have their
(100) planes correctly oriented so that the Bragg equation is satisfied. Some
others will have their (110) planes properly oriented, while there may be some
with their (111) planes properly oriented and so on. Thus, the powder provides
all types of lattice planes for the reflection of X-rays and hence may be considered
equivalent to -a single crystal rotated not only about one axis, but -about all
possible axes at once. -

Consider a set of parallel planes making an angle 0 with the incident beam of
X-rays as shown in Fig. 3.14.1. The reflected beam from these planes will make
an angle 26 with the unreﬂected beam. Now, if these planes are rotated around
the incident beam, keeping angle 6 constant, it is obvious that the diffracted
beam will travel over the surface of a cone as shown in Fig. 3.14.2a. Since in-
the powder, a large number of crystals with all types of orientations are available,
the above criterion of é_cryStal to -be rotated around the incident beam is




Fig. 3.14.1 Diffraction
of X-ray by a set of -
parallel planes

Fig. 3.14.2 (a) X-ray
diffraction by a
powdered sample. (b)
Diffraction impressions
T on the film -
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incident beam - y " undiffracted beam

automatically achieved. Thus, one gets a cone of reflected X-rays corresponding
to each and every space lattice planes. If a narrow beam of film is now curved
into a cylinder-around the capillary tube in such a way that the latter lies along

“the axis-of the cylinder, the diffracted beam will leave impressions on the film

in the form of either curved or straight lines which on removing would give the
diffraction pattern very similar to the one shown in Fig. 3.14.2b. The big holes
in the film correspond to the places where the X-ray beam enters or leaves it.

(a)

of( o] ( $ ) }

If s is the distance of a diffracted beam from the centre of the hole and
r is the distance of the film from the capillary tube, the angle 26 of the diffracted
beam with the unreflected beam can be calculated using the expression
20 = s/r. From this, the incident angle @ of X-rays with the planes can be
determined. Thus, knowing the wavelength A of X-rays, we can calculate the
mterplanar spacing d,, using the Bragg equation -

i 2sin@
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Critetion for
Obtaining Sharp
Diffraction Lines

Example 3.14.1

Solution

In order to obtain sharp diffraction lines of-uniform th1ckness the tiny crystals
in the powder must have average dimensions of a few microns. If the crystals.
are too large, relatively few of them will contribute to a diffraction line and thus
the diffraction pattern will consist.of a discontinuous set of spots. If the crystals
are too small, the diffraction lines become broadened. This is due to the fact that

- as-the size of a crystal decreases, the number of its lattice planes and thus the

extent of the orderly arrangement also decreases. The powder method is useful
for the crystal systems that have only one or two lattice parameters to be
determined (cubic, tetragonal, hexagonal “and rhombohedral systems),

A powder diffraction pattern for a given substance was obtained using X-rays from 5 Cu
target where A = 154 pm. The distance from the capillary to the film was 5.0 cm. Diffracted
lines were obtained,. two of which were at distances 1.2 and 3.4 cm from the undeflected
beam. Calculate the spacings for the planes that give rise to these lines.

Since in the powder method, the d1ffracted_ line is observed at angle 26 from the incident
beam, it is obvious that 26 = s/r, where s is the distance of the diffracted beam from the
undiffracted one and r is the distance of the film from the capillary tube.

3.15. DIFFRACTION PATTERN OF A CUBIC SYSTEM

Basic Equation

Thus,  26/radian= 3 = 120
_ r Scm-
' 180°
or = —radlan 0.12 radian = . 12 radian) =6.9°
10 nradian '
For second line 8, = 19.5°
Taking the sine of 6, and 6,, we get
sin 6; = 0120 and sin 6, = 0.334
Substituting these in the Bragg equation, we have
| = 14 pm =640 pm and dy = 154pm =230 pm
2(0.120) 2(0.334)
_Since for a cubic crystal
g = a | | 3
hkl — LD,
R+ R+ ) . (3.15.1)

the Bragg’s equation
a .
R+ K2+
2. .
’12(;12 +k2 +1%)

a

becomes A =2

or sin® G, =

or  sin?Gy =KMh+k*+1%) . (3.15.2)




Primitive Cubic
Lattice

Body-Centred Cubic
Lattice

Face-Centred Cubic
Lattice.
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where K = A%4a?. This has a constant value for a given cubic crystal and for
a given wavelength A of X-rays.

Equation (3.15.2) can be used to predlct the diffraction pattems for the
three types of cubic systems.. These are described in the following.

By assigning consecutive integral values .(O 1,2, ..) to h, k and [, we can
calculate a series of values of d,, and sin’8 by using Egs (3.15.1) and (3.15: 2) :

-respectively. These are listed in Table 3. 15.1

(It can be noted that sin%0 cannot have the value of 7K because there 1s
no way in which the integer 7 can be written in the form of A2 +. k2 + 12 “This

is also true of the integers 15, 23, 28, etc.)

We will observe diffraction lines at angles listed in Table 3.15.1. Thus, the
predicted diffraction pattern consists of a set of six lines which are equally
spaced when plotted against sin?6 followed by a gap and then another series. of
lines. The observation of such a set of diffraction lines shows. directly that the -
crystal under study has a primitive cubic lattice. '

Table 3.15.1 Interplanar Distances and the Corresponding Expected Angles of D1ffract10n
for a Primitive Cublc Lattice

221 _ ,
hkl 100 110 111 200 210 211 220 300 310 311 -222 320 .

, ., 4 @ & a a a a a a a a
g 2 B2 F.% 28 3 T oz s
sinf K 2K 3K 4K 5K 6K 8K 9K 10K 11K 12Kk 13K

The patterns of lines expected from face-centred and body-centred lattices are
different from the pattern of primitive cubic lattice.

It can be seen from Fig. (3.9.3) that in (100) planes of a body-centred
lattice, only half of the atoms lie in these planes, the remainder lie in the (200)

‘planes which are located half-way- between adjacent (100) planes. As a

consequence of this, the X-rays scattered at the Bragg angle for reflection from
the (100) planes will be out of phase with those scattered by the (200) planes,

‘with the result that destructive interference will occur, and the diffraction line

corresponding to the (100) planes will be absent. On the other hand, at the Bragg

~ angle for reflection from the (200) planes all scattered X-rays will be in phase

and thus a strong diffraction line will be observed.

It can be shown, in general, that for a body-centred cubic latt1ce all
diffraction lines for which (h + k + [) is an odd integer must be absent.! Thus,
we will observe diffraction lines at angles listed in Table 3.15.2. '

~ Again from Fig. 3.9.3, it can be seen that only half the atomslie in the (100)

and the (110) planes. Thus, it is expected that the diffraction from these planes

.will be absent. On the other hand, all atoms lie in (111), (200) and (220)

-1 See Annexure II at the end of this chapter for generatmg this criterion from the structure

factor.
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Summary of
Diffraction Pattern
for Cubic Systems

Fig. 3.15.1 A typical
X-ray diffraction pattern
of a cubic system (The
presence of a reflection is
indicated by a line)

Importance of
Missing Reflections -

Table 3.15.2 Angles at which Diffraction Lines are Observed for a Body-Centred Cubic

Lattice
| 221
W 100 110 1117200 210 211 2200 300 310 - 311 222 320
. A a a e & _a_
2 2 Jo 22 4I0 V12
s 2K 4K 6K 8K 10K 12K

planes and thus the corresponding diffraction lines will be observed. It can be
shown, in general, that for a face-centred cubic lattice, the strong diffraction
lines are observed only from those planes for which the values of &, k and [ are
either all even or all odd. Thus, one would observe diffraction lines at angles
listed in Table 3.153.

Table 3.15.3 - Angles at which Drffractron Lines are Observed fora Face Centred Cubic
Lattrce

221

Rl 100 110 111 200 210 211 220 300 310 311‘ 222

d : & a 4 e @
e B2 - 12 Jit V12
sin*@ 3K 4K 8K 11K 12K

The predicted patterns for three types of cubic lattices are also shown in
Fig. 3.15.1.

(=3

(=3

o
O O = O O e~ O = O = o o = <
Plneo.—(-—(Qr—(—«- N N O~ —~= N o o (e}
anes =< =~ ~ QA N 9« N " N o o N ™ o <

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K 16K

iy | | | |

Primitive

Face ‘ ' o ‘

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K 11K 12K 13K 14K 15K 16K

The difference between the three diffraction patterns clearly indicates the
usefulness of missing reflections in distinguishing different lattice types. In
general, the search for missing reflections is an important step in the determination
of crystal structures. It may be mentioned, however, that the distinction between
the primitive and the body-centred cubic systems cannot be made on the basis |




Computing Edge
Length of Unit Cell

‘ Example 3.15.1

Solution

Example 3.15.2

: Solution
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of the first six lines, since spacing cf the lines: in the individual diffraction
pattern will be same (K in case of primitive and 2K in body-centred). If more

Tlines are included only then the distinction can be made since, in the primitive

structure, there will be a gap after the sixth line whereas no such gap will be
observed in the body-centred cubic system.

Once the diffraction pattern has been identified, it is then possible to assign each
and every line with the correct values of k, k, and I. From the measurement of
0 for any one of these l1nes the edge length a of the cube can be computed from
the equation
o= — L @er2eyn
2sin Oy

If the 1ndex1ng of the lines has been done correctly, the same value of a

will be obtained from all values of sin th,

Silver is known to be crystallized in cubic form. The Bragg‘ angles, nsing copper K,
X-rays with A = 154.1 pm, for the first six diffraction lines are as follows: '

0 19.08° 22.17° 22.26° 38.74°  4082° 49.00°

(a) What is the type of cubic crystal' formed by silver?

(b) What is the length of a side of the unit cell?

(c) What is the interplanar distance of the planes a1n?
(a) Type of cubic crystal

6 19.08° 22.17° 32.26° 38.74° 40.82° 49.00°
sin 6 0.326 8 0377 3 0.533 8 0.625 7 06536 0.754 7
sin*0 0.106 7 0.142 4 0.284 8 0.391 5 04272  0.569 7
3K 4K 8K 11K 16K
‘ where K = 0.035 6
Thus, silver crystallizes in the face-centred cubic lattlce
(b) The edge-length of the cube can be calculated from the following expression.
a= L (h2+k2+12)
2sin Oy
The reflection at 19.08° is due to (111) planes. Hence

—M‘/12+12+12.—4086pm

2x0.3268
(c) Distance between (111) planes is
dy = M = 235-9 pm

J3

- Gold has a face-centred cubic lattice with an edge length of the unit cube of 407 pm.
Calculate the diffraction pattern when copper X-rays of wavelength 154 pm is used.

In a face-centred lattice, the reflection of X-rays will occur from the planes for which the

" Miller indices (hkl) are either all even or all odd: Thus, we.will have reﬂectlons from (111),

(200), (220), (311), (222), (400), etc., planes
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Example 3.15.3

Solution

200

-For a cubic crystal, we have -
sin@ = i(hz k2 4+ [H)2
' 2a - :

. Thﬁs, the diffraction pattern of Au will exhibit reflections at the following angles:

. Plane sin 6 ) 6

«/5/1 1.732(154 pim)

1. _0380 ey

2a 2(407 pm)
Ao (340 5704

_a- (407 pm) ' | 220. 14,
220 V20 _ 1414054p) _ o coc 320 50’
o a (407pm) -
V114 3317(154 pm) |
o = =0.627 4 o 517
o 20 2607pm) | 331
- | V124 3.464(154 pm) | .
| = =0.6554 0 51/
o | 2a 2407 pm) | 40° 51
400 - V164 _ AlSdpm) _ 564 4 1Y
, 2a .2(407 pm) _

When an X-ray powdér pattern of crystalline coppér is obtained using X-rays from copper

target (the wavelength of the K -line is 154.05 pm), reflections are found at 21.65°, 25.21°,
37.06°, 44.96°, 47.58° and other angles. '

(a) What is the type of cubic crystal formed by copper?

(b) What is the length of a side of the unit cell?

(c) Determine the value of Avogadro constant if density, of copper is 8.812 g cm™.
(d) Calculate the radius of copper atom. '

() Type of cubic crystal Calculating sin’.6, we have

~ Angle sin @ sin’6
21.65° 0.368 9 0.136 1
25.21° 04258 0.181 3
37.06° - 0.602 4 B 0.362 9
44.96° 0.706 5 -0.499 1

47.58° 0.738 1 0.544 8
Taking the ratios of sm 6, we get - _
0.136 1: 0.181 3 : 0.362 9 : 0.499 1:0544 8 _
or 3x0.045: 4 x 0.045 : 8 x 0.045 : 11 x 0.045 : 12 x 0.045
thatis, 3K:4K:8K:11K: 12K, where K = 0.045 '

From these ratios, it is obvious that copper has face- centred cubic crystal.

- (b) Length of the side’ of the unit cell Since

K=—
4a2




B
|
|
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therefore,

. 1/2 ;
A2 A 1 _15405pm _ 154.05pm _, .
o=l | =TT =363.2

4K 2 x \F045 2x02121

(c) Avogadro constant Since

p= ’;M , thefefore, N A= —’13&
aNA - ) ap

Substituting the values, we have

4(63 54 g mol™)

T =6.02 % 10” mol™
(363.2 x 10 cm)*(8.812 g cm™)

A=

(d) Radius of Cuatom- In a face-centred cubic lattlce atoms touch one another along the
face-diagonal of the cub1c unit call..

Therefore,
4r =2a or r= —@
4
Substituting the values, we have
_ (1.414) (.163.2 pm) = 1283 pm

3.16 CRYSTAL STRUCTURE OF SODIUM CHLORIDE

- Data from

Diffraction Pattern

‘Fig. 3.16.1 Diffraction

pattern (only schematic)
of sodium chloride

Type of Cubic
Lattice_’

The unit lattice of sodium chloride, like the macroscopic crystal, must be a cube
and thus the sodium and chloride ions must be arranged in some combination
of only three possible space-lattices.

Schematic representation of the powder pattern of sodlum chloride is glven in
Fig. 3.16.1.

Table 3.16.1 Records values of the angle 6, sin 6, sin? 6 and the relative
intensities for some of the lines of NaCl using K, line from palladium.

N
N
(g}

It is obi)ious from the ﬁfth éoiumn of Table 3 16.1 that NaCl crystal must belong
to the face-centred cubic crystal. Designation of the plane as given in'the first
column' follows this recognition. This can also be checked by ﬁndmg out the

333,511

=
N
(g}

311
400
420
422
440

ratio of the first three planes (200);’ (220) and _(111). This ratio is
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Table 3.16.1 Details of Diffraction Pattern of NaCl
 Planes 0/degree sin 0 sin’B K =000273  Relative
' Intensities
111 5.2 0.091_ 0.008 2 3K _ 9.0
200 59 0.103 00106 4K 100
220 8.4 - 0.146  0.021 3 8K 504
311 87 0151 0028 11K
2220 105 0.182 0.0336 12K 33.1 Second order .
. ' . reflection of (111)
333 158 0273 00745 27K 0.58 Third order
' : : - reflection of (111)
444 21.3 0.364 0.132'5 48K 2.82 .Fourth order
o » ~ reflection of (111)
555 271 0455 02070 75K - 0.14  Fifth order
‘ reflection of (111)
400 11.9 0208  0.043 2 16K 19.90 Second order ',
' reflection of (200) -
600 18 0.309 00955 36K 4.87 Third order
reflection of (200)
800 243 0.412 0.169 7 64K 0.79 Fourth order
' reflection of (200)
440 17.0 ' 0.292 0.085 3 32K : 6.10 Second order
' ' : reflection of (220)
660 26 0.438 0.191 8 72K 0.71 Third order
- reflection of (220) -
1 1 1
dong 1 Aoog 1 diq = : :
(200 7220 ST 60 (5.99) “sin (8.4°) sin (5.2°)
11 1
0.103 " 0.146 0.090 6
=1:0.705:1.137
‘This agrees with the theoretical ratio given in Section 3.10, thus conﬁrmin'g'
the existence of the face-centred cubic crystal system. The -indicated indexing
of the diffraction lines also lead to a single value of the edge length of the unit
cube. Thus, sodium and chlonde lons are arranged in a crystal as a face centred
cubic lattice. L R x
Arrangei‘i‘]erlt of Na*  The actual arrangement of Na* and Cl in thlS face-centred CllblC lattice can be
_and Crilons = : determined by the relatlve 1nten51t1es of the reﬂectron maxima for the different
orders and planes. '




Fig. 3.16.2 Crystal
structure of sodinm
chloride, Na* black
circles—located at the
corners of the cube and
at the centre of each of
the six faces; CI” open
circles—located halfway
between two sodium ions

.Comment
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- The intensity of a diffracted beam depends upon two factors:

(1) Number of electrons in the atom The scattermg power of atoms for
X- ray depends on the number of electrons in the atom and is roughly proportional
to the atomic number. _

(ii) The order of diffraction Intensity decreases in a definite manner with
increase in the order of reflection.

It can be seen from Table 3.16.1 that in the (200) and (220) planes the
intensities decrease progressively w1th order.

no 1 2 3 4
200) 100 19.90 487 0.79
(220) 50.4 6.10 071

This systematic decrease can be accounted for quantitatively by-assuming
that such planes contain equal numbers of sodium and chloride ions. In the
(111) planes, an alternation of intensities is observed.

n 1 2 3 4 5
(111) 9.0 - 331 0.58 282 014

This can be accounted for by postulating that the planes (111) are composed
alternately of sodium and chloride ions.

The possible arrangement which satisfies the above facts is given in
Fig. 3.16.2. '

N'd

The structure shown in Fig. 3.16.2 suggests that it consists essentially of
two- interpenetrating face-centred cubic lattices, one composed entirely of Na*
ions and the other of CI" ions.

From the above analysis, it is revealed that the designation ‘molecule of sodium
chloride’ loses a great deal of its definitive meaning. It can hardly be said that
any particular chloride ion belongs to any definite sodium ion; rather, each
sodium ion is shared equally by six chloride ions, and each chloride ion by six
sodium ions. All that can be said is that to each sodium corresponds one-sixth
of six chloride ions, so that ‘each sodium has the equlvalent of a chlonde but

- not any one ion exclusively.
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Example 3.16.1

Solution

The first order reflection frbm.(?.OO) planes of NaCl using X- }ays of wavelength 58 pm
(K, line from palladium) occurs at an angle of 5.9°. Calculate (i) edge length of the unit
cell, (i) volume of the unit cell, (iii) molar volume, and (iv) density of solid NaCl

(i) Using Bragg’s law, we have -
/1 = 2 dh]d Sin 6 ‘

A 58pm _ 58pm
2sin@ 2sin(5.9) 2x0.103

Thus dz(x) = =281.6 pm

The edge length of the unit cell = 2 X d,py = 563.2 pm

(i) The volume of unit cell = (563.2 pm)® = 1.786 x 102 m’

(iii) In order to calculate molar volume, we must know the number of molecules of
NaCl which belong to one unit cell. In one unit cell of NaCl, we have the following
arrangements:

(a) Eight Na* (or CI') at the end of edges, each of Wthh is shared by elght such unit
cells. Thus, contribution from the edges is one Na* (or CI°).

(b) Six Na* (or CI") are present in the centres of the faces, each is shared by two cubes,
thus contributing three Na* (or CI") ions.

(c) Twelve CI” (or Na*) are present along the edges, each of which is shared by four
cubes, thus contributing three CI™ (or Na*). -

(d) One CI” (or Na‘) is present at the centre of the cube.

Thus, we have on an average four Na* ions and four CI” ions per unit cell, or a total
equivalent to four molecules of sodium chloride. The volume allotted to these molecules
is the volume of one unit cell. Thus, the molar volume is given by

v = volume of one unit cell XN,
4
(1786 x 10728 m?)

% (6.022 x 102 mol™)

- =2.689x 10~ m= mol™
(iv) The density of NaCl is
_ M _ (s8443gmol)
Vo, (2.689%10° m® mol™)

=2.173x10° gm> =2.173 gem™

- 3.17 CRYSTAL STRUCTURE OF POTASSIUM CHLORIDE

Fig. 3.17.1 Diffraction

pattern (only schematic)

of potassium chloride

The powder pattern. of KCI is shown in Fig, 3.17.1. At first glance the pattern
looks like that of a primitive cubic-lattice since there are six lines followed by a
gap However, KCl has a face-centred cubic lattice like that of NaCl. The

it

200
620
622

— 1 600,442
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resemblance fo a primitive lattice is a consequence of the fact that K* ions and
CI ions have the same number of electrons and ‘thus have the same scattering
power for X-rays. The unit cell of the apparently primitive lattice formed by

_considering K* and CI” ions as 1dent1cal has half the edge length of the actual

face centred unit cell. .

- Another example exhibiting this type of behav1our is provided by RbBr
in the series LiBr, NaBr and' RbBr. All these molecules have face-centred
lattices. However, X-ray diffraction indicates that RbBr has a simple cubic
lattice. This results from the fact that Rb* and Br have the same number of
electrons. - :

3.18 DENSITY OF CUBIC CRYSTALS

Defining Expression
of Density

lllustration

The density based on the structure can be calculated from the mass contained
in a unit cell and its volume. If N is the number of atoms or molecules per unit

- cubic cell of edge length a, then the mass and volume per unit cell are

Mass = [ﬂ ]N Volume = o’
NA ' .

: X mass NM
Therefore, Density = ==
: -volume g’°N A

The value of N for the three cubic cells can be calculated as folIows:

Primitive cubic cell In a primitive cubic cell, atoms are present at the corners
of the cube. There are eight corners of a cube and thus eight atoms are present
at these corners. Now, any particular corner of the cube is actually shared
amongst eight such cubic unit cells-placed adjacent to one another. Thus, the
contribution of the atom placed at one of the comers to the single cubic unit
cell is 1/8. Since there are eight corners of a cube, the number of atoms
associated with a single primitive unit cell is 8/8 = 1 (Fig. 3.18.1a).

Body-centred cubic cell In a body-centred cubic unit cell, besides atoms being
present at the comers, there is one atom in the centre of the cube which belongs
exclusively to this cubic unit cell. Therefore number of atoms per unit cell are
two (Fig. 3.18.1b).

Face-centred cubic cell Here, atoms, besides being at the corners, are also’
present at the centre of the six faces. Each of these atoms is shared between two
such unit cells. Thus, their contribution to the unit cell is 6/2 = 3 atoms, making
a total of 4 atoms per cubic unit cell (Fig. 3.18.1c).

As an example, let us compute the dehsity of silver which has a face-centred
cubic unit cell with edge length equal to 408.6 pm. Since N = 4, we have

' Des sty = - 4(107.9%107 kg morl)
(408.6 10%m)3 (6.022x10% mol ™)

| = 10.50 x 107 kgm™ =1050 gem™
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Example 3.1 8.1

Solution

Example 3.18.2

Solution

1/8th of an atom

Full atom

1/8th of an.

_1/8th of an atom
. atom =

Fig. 3.18. Unit cells of cubic systems -

Molybdenum forms body-centred cubic crystals whose density is 10.3 g cm 3. Calculate:

- (a) edge length of the unit cube, (b) distance between the (110) planes and between the .

(111) planes Molar mass of Mo = 95.94 g mol ™.

(a) Since den51ty of the crystal

: 1/3
p= ];/M , therefore, a= ﬂ
aNy PNy

Now, the number N of atoms per unit body-centred cubic cell = 2

(10.3 g cm™) (6.022 x 102 mol™)
=3.139x 10 cm = 313.9 pm

2(95.94 g mol™ e
Thus, a:{ (95.94 g mol ) }

. - a
(b) Since dh]d = m, wE get
'- a 339pm .
dp=—F7=="—"—-—=2220
E N VIV
a _3139pm _ 0.5 pm

md . dyy = =
w TR T

“The density of potassium chloride is 1.989 3 g cm™ and the length of a side of the unit

cell is 629.082 pm as determined by X-ray diffraction. Calculate the value of Avogadro

constant.

Since den51ty, p= NM , therefore, Ny=—
a N A : ap
Substituting the values, we have
47455 gmol™)
(629.082 x 107 cm)? (1.986 3 g cm™ )

N, = =6.03 x 107 mol™




Example 3.18.3 .

-Solution

Example 3.18.4

Solution

Example 3.18.5

Solution
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Use the data given below to find the type of cubic lattice to which the crystal belongs:

alpm

plg cm™

Now,

For Fe

NM
a3N A

p:

" Thus, we have

(7 86 gcm™) (2.86 % 1<rg cm)® (6.022x 103 morl)

Fe.
286
7.86

VV:.

301

5.96

3
, Therefore, N =-:M
. M

Pd
388
12.16

=1.983=2

(55.85 gmol™)

Hence, the cubic lattice of Fe is body-centred.

For V

(5 96 g cm™) (3.01 x 107 cm)® (6. 22 x 107 mol )

=1921=2

(50.94 g mol ™)

Hence, the cubic lattice for V is body- centred

For Pd

v (2168 cm—3> (3.88x 107 cm)’ (6 022 x 10% mol™)
(1064 gmol™)

Hence, the cubic lattice for Pd is face-centred.

=4.12=4

X-ray analysis shows that the unit cell length in NaCl is 562.8 pm. Calculate the dénsity
you would expect on this basis. Avogadro constant is 6.022 x 10% mol™.

Since density p = 5
A

p=

therefore, we get

4(58 5 gmol™ D)

(5.628 x 1078 cm)® (6.022 x 1023 mol )

=2179gcm™

The X-ray powder pattern for molybdenum has reflections at 8 = 20.25°, 29.30°, 36.82°,
43.81°, 50,69°, 58.80°, 66.30° and other larger angles when K, X-rays from Cu are used
(A= 154 pm).

(a) What is the type of cubic crystal formed by Mo?

(b) What is the length of a side of the unit cell?
(c) What is the density of molybdenum?

(a) Type of cubic crystal The diffraction pattern is

0 L

2025°

29.30°
36.82°

43.81°
150.69°

58.80°
66.30°

sin 0

0.346 0
0.489 4

05990

0.692 3
0.773 6
0.855 4
0915 7

sin? 0
0.119 8
0.239 5

0.358 8
0.479 3

0.598 4
0.731 8

0.838 3

or

or

- or
or.-

or

or

or

1 x0.1198
2x0.1198

3x0.1198.
4x0.1198

5% 01198
6% 01198

7% 01198

or

or -

- or

or
or

or

. or

2 x 0.0599 = 2K
4 % 0.0599 = 4K
6 x 0.0599 = 6K
8 x 0.0599 = 8K
10 x 0.0599 = 10K
12 x 0.0599 = 12K
14 x 0.0599 = 14K
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Example 3.18.6

Solution

Example 3.18.7

Solution

Exa'n_zple 3.18.8

Solution

The above reflection pattern corresponds to body-centred cubic crystal. The primitive.

' one is eliminated from the fact that the reflection corresponding to 7K (which in the present

case is 14K) is present.

- (b) Edge length of unit cell We have

2 : .
K= /1—2 Therefore, a= A
da , _ 2\/E
Substituting the values, we have
' 154pm _ 154pm =347 pm

T 200500  2x0.2447

(c) Density of molybdenum We have
. NM

Densit ==
: y p '(13N A

-Substituting the values, we have _

R -
p= (2) (9594 gmol™) - 102 g/cm3

 (3147x10°® cm)® (6.022 x 107 morl)

The unit cell of alurmmum is a cube with edge length 405 pm The dens1ty of aluminium
is 2.70 g cm™. What is the structure of aluminium crystals?
Since density '

3
];[M , therefore N=P? Ny
alN,

Substituting the given values, we get
N = &T0g em™) (4.05 x 1078 em)® (6.022 x 102 mor‘)
(26.98 g mol ) :

Thus, the unit cell ofsaluminium is face-centred cubic.

p=

A substance forms face-centred cubic crystals. Its density is 1.984 g cm™ and the length
of the edge of the unit is 630 pm. Calculate the molar mass.
pa’Ny

N

Since p= , we get M=

T
.@Ny

Substituting the values, we have

(1.984 gcm ™) (6.30 x 10 cm)® (6.022 x 10% mol™)
\ 4

M=

=74.69 g mol !

From the fact fhat the length of the side of the unit cell for lithium is 351 pm, calculate
its atomic radius. Lithium forms body-centred cubic crystals

In body-centred cubic crystals, atoms touch one another along the cross-diagonal of the
cube.

:@

Thus:. dr = \/§a or y




Example 3.18.9

Solution
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-Substituting the value of g, we have

r= w = 1519 pm

Magnesium oxide (M = 40.0 g mol™) is cubic and has a density of 3.620 g/lem®. An
X-ray diffraction diagram of MgO powder has lines at values of sin 6 = 0.399, 0.461,

- 0.652, 0.764, 0.798 and 0.922. (a) Index the pattern and determine the type of cubic

structure, (b) Calculate the wavelength of X-rays used. Assume that the number of MgO
units per unit cell is the smallest consistent with the structure type.

(a) Type of cubic structure

sin 6. 039 0461 0652 0764 0798 0922
sin? 01592 02125 04250 - 05837 0.6388 0.8500

Obviously the cubic structure is neither primitive nor body-centred since for them the

difference between any two successive values of _sin2 6 is constant. The diffraction

pattern for the face-centred cubic lattice has sin? 6 values at 3K, 4K, 8K, 11K, 12K,

16K, ..., corresponding to the planes (111), (200), (220), (311), (222), (400), . ..

respectively. This pattern is satisfied by the above values of sin? 8 with
- K=0.052 9. Thus, magnesium oxide has a face-centred cubic lattice.

(b) Wavelength of X-rays used
Given that p = 3.620 g cm™

" For a face-centred cubic lattice, n = 4. Therefore,

1/3 1 1/3
Q= NM | _ 4(40 g mol ™) .
PNy (3.62 g cm™) (6.022 x 10% mol™)

=4.187x 102 cm

According to Bragg’s equation

nl=2dsiné

. d) . ) a i
or A=2|— |sinf =2d,,, sinf =2| ———- |sin b
["J " [\/h2 +k2+l2] ‘

Taking sin 6 = 0.399 corresponding to the (111) planes, we have

. [2 (4.187 x1078 cm)

5

](0.399) =1.929x1078 cm =192.9 pm

3.19 CLASSIFICATION OF CRYSTALS BASED ON BOND TYPE

So far, the classification of crystals was done on the basis of crystal symmetry.
This classification does not tell us about the chemical and physical properties
of a given crystalline material. In order to understand. these properties, a
classification based on the bond type is required: '
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_Packing in a Simple
Cubic Lattice -

Fig. 3.19.1 Packing in a
simple cubic lattice

The properties of most of the Crysfals are found to conform to one of the

four general types of chemical bonds, in terms of which'it'is possible to classify

them into four categories, viz., molecular, ionic, covalent and metallic.

Molecular Crystals (or__Van',Der Waals Crystals)

Molecular crystals are those in which the crystalline state is composed of an
aggregate of discrete molecules held together by van der Waals forces. If such
forces are considered to be nondirectional (e.g., in.the nonpolar molecules and

- molecules with small dipole moments), the structure of the solid-should be
. determined by packing efficiency, thus giving the closest approach of the atoms

and therefore the maximum possible interactions. If the molecules are considered
spherical, efficient packing can be obtained by stacking them one after the other
in a systematic manner (Hooke s proposal).

The packing of the spheres can be done in any one of the followmg three
ways:

In a lattice of this type, the sphefes are packed in the form of a square array by
laylng down a base of spheres and then piling upon the base other layers in such
a way that each sphere is immediately above the other sphere as shown in
Fig. 3.19.1. '

In this structure, each sphere is in contact-with six nearest neighbours (four
in the same base, one above and one below). The percentage of occupied

“volume in this structure can be calculated as follows:

The edge length a of the cube will be twice the radius of the sphere, ie. -

‘a = 2r. Since in the primitive cubic lattice, there is only one sphere present in the

unit lattice, the volume occupied by the sphere is

3

V= inr?’ oo V= j‘:n =

3 31\2)

The frac_ﬁ_on of the total volume occupied by the sphere is
4 (g 3 - .

3"2) @ o

¢ ="t = € =0.5236 or = 52.36 per cent
a :




!
{
!
!

Packing in a Body-

Centred Cubic.
I_.attice

Fig. 3.19.2 Packing in a
body-centred cubic lattice

Thus, 4r = \/§a, Le. r=

The Solid State 51.73

Thus, the: structure is relatively open since only 52.36% (1"5/:6)l df' the total
volume is occupied by the spheres. The remainder, i.e. 0.476 4 of the total

volume is -empty space or void volume.

No crystalline element has been found to have this structure.

Here the_‘packing consists of a base of spheres, followed by a second layer where
each sphere rests in the hollow at the junction of four spheres below it, as shown
in Fig. 3.19.2. The third layer then rests on these in arrangement which
corresponds exactly to that in the first layer. In this arrangement, spheres are
touching one another along the cross diagonal of the cube, making its d1stance

' equal to 4r. This must be equal to Ja.

3
—a
4

Volume of the cube = &’

4{«@ Y

Volume of one sphere = i1'tr3 =—T Ta J

3
S1nce there are two spheres in each unit cell, the total volume occupled

) ﬁn[éaf
34 )

The fraction of the th_-lme occupied by the spheres

will be

e 3
4 [JE ]
R _ 2 —T Ta
L J o 00 o 6802
- 9= 3 g - or per cent

In tlﬁs arrangement each sphere has eight nearest neighbours. Only a few

metallic elements are found to have this type of structure.
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Closest Packing

Fig. 3.19.3 (a) Closest-
packed layers of spheres

Fig. 3.19.3. (b) Two
types of packing

In closest packing arrangements, each sphere is in contact with the maximum
possible number of nearest neighbours. Figure 3.19.3 shows a closest packed
layer of spheres. Each “sphere is surrounded by six nearest neighbours lying in

- the plane, three spheres just above it and three below it, thus making the total

number of nearest neighbours equal to twelve. , B

~ If the spheres are packed in the samé plane, then just above these spheres there
exist two different types of voids, pointing in different directions as shown in

Fig. 3.19.3a. Thus, we can have three different types of locations as shown by
A, B and C in Fig. 3.19.3a. Location A is occupied by the spheres while B and
C are the two different types of voids. If a second layer of closest-packed spheres
is placed upon the first layer, the spheres of the second layer can occupy the

‘region above either the B voids or the C voids. But because of the size of the

spheres, both types of voids cannot be occupied simultaneously.
The third layer of closest-packed sphere can be formed in two different
ways. If, for example, we choose to place the spheres of the second layer in B




Types-of Packing

Hexagonal Closest-
Packed Structure

Fig. 3.19.4 Unit cell
formed by ABA packing
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sites, one of the zivail'able sets of voids for the third IaYér will be directly above
the spheres in the original layer. These are A sites. The other set of voids will -
be directly above the voids designated by C in the original layer.

Thus, two types of packing (Fig. 3.19.3b) are possible
ABABA.. .. or ABCABC...

We can have many other varieties of patterns Such as ABCACB...,ABAC...,
etc. But for many of the common substances that form closest-packed structures,
one of the above two symmetrical arrangements is observed. - '

| The packing ABAB. . . is known as a heXagonal closest-packed structure (_HCP).'

The unit cell of HCP is shown in Fig. 3.19.4. _ o

Exploded view Hexagonal closest-packed

The fraction of the volume occupied in HCP can be calculated as described in
the following. : -

The distance C/2 in Fig. 3.19.5 is the distance between the layers A and
B. This distance will be from the centre of a sphere to the plane of the three
spheres that are in contact with it. This distance can be determined with reference
to a face-centred cubic lattice having unit cell length a. In such a lattice, the

- distance between closest-packed layers (Miller indices 111) is one-third of the

body diagonal, i.e. J3al3.

C _ i \

Thus, —=
us 7 3
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Fig. 3.19.5 Hexagonal
“closet-packed structure

Layer A

Layer B

Layer A

l—— a —»

4—2;-‘—»

Now, in the face-centred lattice, spheres touch one another along the face,
diagonal. Thus, we have :

, 4
dr=J2a o a=--r
D)

With this, the distance C becomes

J3 V3 4r 8
= 2[3 ]"2[3 J’] %

The hexagonal base consists of six equilateral triangles, each with side 2r
and with an altitude of 2r sin 60, i.e. J3r. Therefore,

Area of the base = 6[%(\/3 Q2 r)} =63 r?

= 24\/5 P

Volume of the prism = (6+/3 ) {i ’

)
Number of spheres belonging to this prism

() 3 spheres in B layers exclusively belong to this prism.

(ii) 1 from the centre of the base. There are two spheres of this type and each
is shared by two prisms.

(i) 2 from the comers. There are twelve such spheres and each is shared

- amongst six prisms of this type.

Thus, the total number of spheres is 6.
The fraction of volume of the prism actually occupied by the spheres is

4 3
6l =
( tnr ] i
W27 6
Example of HCP are Ca, Cd; Cr, Mg and Zn.

=0.7405 or - 74.05 per cent




Cubical Closest-
Packed Structure

Fig. 3.19.6 Face-centred
cubic unit cell formed by
ABCA packing
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The packing ABCABC, ... is a cubical closest- -packing (CCP) or face-centred
cubic packing (Fig. 3.19.6). The fraction of volume occupled in CCP can be
calculated as follows: -

The radius of the sphere in terms of the unit 1ength of the face-centred
cube is. given by :

e
4

~ since the sphere w111 be touching each other along the diagonal of the face of

the cube. .
In the face- centred cubic lattice, there are four spheres per unit cell.
Therefore, fraction of volume occupied by the spheres is- -

PENET
13| 4 _=\/§n

@ 6

=0.7405 or 74.05per cent

Exploded view ' Cubical closest-packed structure

Out of all these packings, HCP-and CCP are-more common for uniform
spheres. :
In general, the packing fraction, i.e. fractlon of volume occupied, 18

- independent of the radius of the sphere and depends only on the nature of

- packing. From-the values of packing fractions, it follows that the den31ty of a .

substance in HCP and CCP structures will be more than those in the other two
packings. - ' -
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Example 3.19.1

" Solution

Example 3.19.2

~ Solution

In a face-centred cubic arrangement of A and B atoms, where A atoms are at the corners
of the unit cell and B atoms at the face-centres, one of the A atoms is missing from one
corner in each unit cell. What is the simplest formula of the compound?

Number of atoms A from the corners of unit cell = 7/8
Number of atoms B from the faces of unit cell = 3

Thus, A : B :: % : 3, so that we can write the' formula as AqgB;.

Hence, the simplest formula is A;By.

In a face-centred unit cell with all the positions occupied by A atoms, the body—centred'.
octahedral hole in it is occupied by an atom B of an appropriate size. For such a crystal,
calculate the void space per unit volume of unit cell. Also, predict the formula of the

~ compound. -

" Let a be the edge length of the cube so that

4rp =\/§_ .or a_=2x,/5rA

Now, since the atom B is occupied in the body-central octahedral hole, it is obvious that

2 +2g=a or 2ry +2y = War,
or 25 =(W2-2r, or B-\-1=144-1.0=0414
A
Volume of the cube =a® = 16\/§rg

Since there are 4 atoms of A' in the face-centred cube, we will have

Volume occupied by A and B = 4 x g—nrg + %nrg = %n(4rg + rg)

Volume occupied per unit volume of unit cell

4 .3 3 3
¢_ En(4rA+rB) ~ T 4+ r_B
162 1242 A
3.14 | 3.14x 4071

= {4+ (0414} = 2 = 0.7534
12x 1414 T 12x1.414

Formula of the compound: A,B

loniic Crystals

In ionic crystals, basically the structural units are held in position by electrostatic
forces. In most of the ionic crystals, cations have only anions as nearest neighbours
and vice versa. Earlier we have seen the structure of sodium chloride which

consists of the interpenetrating face-centred cubic lattices. Here, each sodium jon
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is surrounded by six equidistant chloride ions and each chloride ion is, in turn,
surrounded by six equidistant sodium ions. The number- of nearest neighbours

- associated with a given ion in a crystal-is known as the coordination number of

the ion. : :
The process of forming an ionic crystal (e.g., NaCl) from the gaseous atoms can
be visualized as follows:
Na(g) - Na*(g) + ¢ Tonization energy
Clg) + & — CI(g) Electron affinity -
~ Na'(g) + CI(g) - NaCl(s)  Lattice energy

The first step involves ionization (easiest for metals); the second step

involves -electron-capture (favoured for nonmetals): the third involves the

interionic attractions and repulsions of ions packed in the lattice, that is, the
lattice energy. ' '

The last term is determined by the arrangement of ions in a crystal. In
general, the crystal structure of ionic crystals is greatly influenced by geometric
factors such as size of the ions. The spatial arrangement of ions in ionic crystals

is basically different from that in metals. With metals, we are concerned with the

packing of spheres of the same size with the same properties; in ionic crystals, ,
though we are still concerned with the packing of spheres, but now the spheres
are of different sizes and have different properties.

The coordination numbers commonly encountered in ionic crystals are 8, 6 and
4. When a cation has a coordination number of 8, the arrangement is like a body
centred cube with the central sphere a cation and the peripheral spheres anions.
A coordination number of 6 involves the octahedral configuration, with the
anions at the corners of an octahedron and a cation at the centre. A coordination
number of 4 involves the tetrahedral arrangement, with the anions at the corners
and cation at the centre. | '

A top view of octahedral coordination is shown in Fig. 3.19.7. In this diagram
the . cation is fairly large so that.the anions can touch the cation and still
maintain their distances from the other anions. As the cation gets smaller the
anions will come close to one another with the corresponding increase in
repulsion. This repulsion becomes quite large when the anions just touch one
another. Hence, in the case shown in Fig. 3.19.8 the cation has shrunk to its
critical size. If the cation gets still smaller, a close approach of anions to the
cation will require interpenetration of anionic charge clouds which causes a

- steep increase in the repulsion energy. Thus, the octahedral configuration becomes

unstable when the cation reaches this critical size. On the other hand, the
tetrahedral configuration with fewer cation-anions bonds but larger anion-anion
distance is the stable: form. Thus, the arrangement of the ions in the crystal is
determined by the relative sizes of cations and anions. One can calculate the
limiting value r,/r,, known as radius ratio, from the packing of the ions.
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Fig. 3.197 A top
view of octahedral

coordination -
For Octahedral From Fig. 3.19.8, the radius ratio for the octahedral arrangement of ions can be
Coordination obtained as follows: ' '

Fig. 3.19.8 Closest
approach of anions in
octachedral coordination

Draw a right angle triangle passing through the centres of the three
anjionic spheres. The cation will lie in the middle of the hypotenuse. The sides
of the triangle are "

Base =2r,

Hypotenuse = 2r, + 2r,

It follows that
Qr+2 P =R +Qr) o 12+ 2np -1 =0
o | 2 | |
ie. [r_c] +2[r—c]—1=0
ra' ra
Solving for r /r, we get

_242“@:'0.414_ - |

%
ra




f
|

Eight Coordinate
(Body-Centred
Cubic Crystal)

Fig. 3.19.9 Arrangement
indicating 8 coordination
number in-a body- ‘

centred cubic crystal
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This gives the lowest value for the radius ratio that will allow six anions
to be arranged octahedrally about the central cation. Whenever the ratio of
cation to anion radii falls below 0.414, transition from an octahedral to a -
tetrahedral configuration is likely to occur.

The critical ratio for the other coordination numbers can be worked out
in a similar manner, which we shall discuss in the following. '

A schematic diagram for the. body-centred ionic - cubic ‘packing is shown in

-Fig.- 3.19.9. It can be seen that each side of the cube has length equal to 2r,. -

The diagonal across each face of the cube=x/§(2ra).' _

 The cross-diagonal of the cube, which contains the body-centréd ions, has |
length equal to (2r_ + 2r,). _ _ '
Using Pythagoras’s theorem, we get

@+ 2m)? = @) + (N2

Squaring and simplifying, we have

2 . 2
42 =2 =0

' —2++/12
R
r ' a

~

r, 2

Again, it should be noted that this ratio corresponds to the minimum ratio,

i.e. it corresponds to the case in which all spheres are in contact. Thus, i_f r, Were
to decrease or r, to increase, the eight spheres would no longer fit about the

~central sphere in this configuration without increased overlap of the electron

clouds of the ions. This overlap will lead to increased repulsive energy and,
therefore, an unstable crystal. :
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Four Coordinate A tetrahedral arrangement can be drawn within a cube as shown in Fig. 3.19.10.

(Tetrahedral The anions 1 and 3 (or 1and 2, 2 and 4, 2 and 3, etc.) will touch each other
Arrangement) and lie on the face-diagonal, the length of which is \/Ea. Thus

nAT, =J2a ‘o A =a/x/§

Fig. 3.19.10 Arrangement'
indicating 4 coordination
number in a tetrahedral -

The central cation M W111 be just in between the cross d1ag0na1 the length of
which is \3a.

Thus  2(r, +r)= Ba o r, 41, =3a2

Dividing this by r,, we get

1+:—C = {_@][QJz 3 =@

2 a 2 1.414

1732 1= 0.318

or T =22 20225
o 1414 1414
Three Coordinate From Fig. 3.19.11? it is obvious that
(Triangular ' ' _ '
Arrangement) AB = AC = BC =72r,
CD=r.+r,
o EC = T,

/CED =90°, /BCD=30°




Fig. 3.19.11 Arrangement .

indicating 3 coordination
number in a triangle

Summary of Critical
Ratio

lonic Crystals and
CIOses_t-Packing
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' CD? =EC? + ED?
| r+r'.2.-
ie (rc+ra)2=raz+(c2a]
or 3(r, +n)* =4
- o
Thus 7 +rn=—"F%
J3
. 2’ ‘ .
‘ <=2 _1=0.155
and ", \/—3-

Thns, the critical ratios are

. 0.732 0414
Cubic (8) === Octahedral (6) é Tetrahedral (4)

0.225

Linear (2)

Tnangular (3)

~ These ratios are -approximate in number, since in actual calculations, we -
must also consider the mutual repulsion and attraction of like and unlike
charges, respectively, as well as the polarization of one ion by another _
Chlorides, bromides and iodides of Li*, K* and Rb* have -structures, hke
that of CI” (Br~ and I") of sodium, i.e. face-centred: cubic. crystal. But the
chloride, bromide and iodide of Cs have the structure of a body-centred: cubic
crystal. It follows that each Cs* ion is surrounded by eight chloride ions and vice
versa since the ratio of rJr, increases in going from ‘RbCl to CsCl.

Itis 1mposs1b1e for both anions and cations to have closest-packed structures but
if one of the ions is much larger than the other it is common for the larger ions

_alone to approach a closest—packed structure and smaller ions to fit into holes
‘in th1s structure (Fig. 3 19.12).
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Anions closely
packed ‘

Cation occupyiﬁg

octahedral void

Fig. 3.19.12 Closest
Packing in Ionic Crystal

Type of Voids In closest-packing two types of holes are observed: (i) tetrahedral hole, and
Present in lonic (i) octahedral hole. - :
Crystals ' The tetrahedral hole is formed when a sphere fits into the depression

formed by three other spheres closest-packed (forming an equilateral triangle)
in two dimensions as shown in Fig. 3.19.13a. In two closest-packed layers, there
is such a hole above each atom.in the first layer and below each atom in the
second layer. In a multilayered closest-packed structure, there is a tetrahedral
hole above and below each atom; hence there are twice as many tetrahedral
holes as there are closest-packed atoms. _ :

The octahedral hole is formed when the three closest-packed spheres of
one layer (forming an equilateral triangle) is put over three closest-packed
spheres of the second layer, their positions being inverted with respect to each -
‘other (Fig. 3.19.13b).

octahedral
. hole

Fig. 3.19.13

(a) Tetrahedral hole
shown by position A and _ —
(b) octahedral hole oo tetrahedral hole : _
shown by position B PR "_'x((.z) SR ®)

In a closest-packed structure, the number of octahedral holes is equal to
the number of atoms present and they are located midway between the two
closest-packed layers. The positions of these two holes relative to those of the
two closest-packed layers are shown below:
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- - — Second closest-packed layer
—_—_—————— —— — Tetrahedral holes
——————— — — — — Qctahedral holes

— — — — — — — — — — — Tetrahedral holes

: ' _Fust elosest—packed layer »

The relation of these holes to the face centred cubic closest-packing is
shown in Figs 3.19. 14 and 3.19. 15 '

/-t 71 VA
AN A | /1
// ! o /’ 1
/4"__:' ———————— }"__:"": _______ , 2 :
A1 | 2 1 s i !
// : ! // : ! - // : ! :
1 [ y . [} 1
Fig. 31914 Tetrahedral ®77[7 777" 70710® i
o 3 1 1 i | ] : -
hole in closed:packed R R Rt o
atoms ! P/ by Loy VA
I L i o | Ls L/
| - T T—_/’ | / ~
| 1 4 1 1
] C ] 1 a0 P
! H : _____L ..___Irl ! : L1
| T i ! 1 T
1 I 1 : 1 {
1 | L
| NN |
. Vi / 1 / )
Fig. 3.19.15 Octahedral v e oy '
]
. hole in closed-packed v/
. I/
atoms =z = &= V. ®

In Fig. 3.19.14, eight small cubes are shown. The atoms in one small cube
actually touch one another. Since these atoms are at alternate corners of the cube
they form a tetrahedron with a hole in the centre. The entire unit cell contains
eight tetrahedral holes, one in each small cube. Since there are four atoms per
cubic unit cell, there will be two tetrahedral holes per closest-packed atom.

The intersections of the lines at M in Fig. 3.19.15 is not occupied by an
atom and this is surrounded. by six atoms at the corners of an octahedron. This
intersection becomes an octahedral hole when the atoms just touch one another:
Besides the intersection M, there are twelve more- intersections at the cetres of
the edges. Since each edge is common to four unit cells, there are onily three
intersections (holes) from edges that belong completely to one unit cell. Thus,
in all we have four octahedral holes in one umt cell and hence one octahedral
hole per closest- packed atom. '

Structures of Common lonic Oxides

Many of the jonic oxides’are formed in which the:oxide anions form a closest-
packed structure and the-cations occupy the holes in this structure. Some of the
common ionic oxides have the following structures:

Rock Salt Unit Anions alone have a cubical closest-packing (CCP) and the cations are present
Cell in the octahedral holes ‘When this occurs, the cations$ by themselves form a face-
centred cuhlc (FCC) unit cell; hence the rock salt unit cell contains alternate
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Anti-Fluorile Unit
- Cell

Zine;Blende |
Structure -

Corundum 'Stru_c_ture

- cations and anions, each occupying a face-centred cubical arrangement. The

general formula of this structure is MX. This can be derived either through the
concept of coordination number or through the concept of a unit cell.

- The number of closest cations around any single anion is six and vice
versa. Thus, the coordination number in this case is six for cation as well as for
anion. Therefore, only 1/6 of a given cation belongs to an anion neighbour and
only 1/6 of the ‘anion ‘belongs to the neighbour cation. Hence, the formula is
M,eX s or MX. The same formula will be obtained if we consider the number

~of cations and anions in a unit cell.

Number of cations: 1 central -atom’ wholly within the cell
3 from 12 edges cations, each being shared by 4 unit cells

Total: 4 cations per unit cell

Number of anions: 1 from 8 corners anions, each being shared by 8 umt cells
' ' 3 from 6 anions situated in the centre of 6 faces, each
being shared by two unit cells

 Total: 4 anions per unlt cell
Thus the formula-is M,X, or MX

Examples are MgO, Ca0, SrO, BaO and all elkali halides except CsCl, CsBr, and
Csl o S

Anidns form CCP and the cations” occupy tetrahedral holes.
Coordination number of cations = 4

Coordination number of anions = 8

‘General formula M, X3 or MpX.

Examples include Li,0, Na,O, K,0 and Rb,0.

~ (In fluorite unit cell, cla.tions form CCP and the anions occupy'letrahedral
holes. General formula is MX,; examples being UO,, ThO,, etc.)

Anions in the FCC posltions anclh'alf of the tetrahedral holes are occupied.
o Coord1nat1on number of catlons = 4 /
: Coord1nat1on number of anions = 4 .

General formula: M,,X,, or MX
Example BeO. ‘

~The closest- packmg of “anions is hexagonal rather than cubic. Not all the
- octahedral holes are occupied; only 2/3 of them contain cations,

' General formula: MjX or M,X,

Enémples: Fe,0s3, A1205, and :C_r203.
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- Spinel Struet'ure

 Example 3.19.3

Solution
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A spinel is-an important class of ox1des contammg two types of metal ions with
the oxide ions arranged in cubical-closest packing: The normal spinel has one-
eighth of the tetrahedral holes occupied by divalent metal ions (A%*) and one-
half of the octahedral holes occup1ed by trivalent metal ions (B3+) In & unit cell,

we have :

]' —
§‘(8) =1

Number of trivalent metal ions, B3 = %(4);2 :

Number of divalent metal ions, A**

* Number of oxide ions, 0> = 4

Hence, formula of normal spinel is'AB,0,

Examples are ZnAl,0,, MgA1204 and ZnFe,0,.

Compute the vo1d space per unit volume of unit cell in the structures d1scussed in common
ionic oxides and Example 3.19.1."

(i) Rock salt.+Anions form cubical-closest packing and cations occupy octahedral holes. |
There are four cations and four anions per unit cell.
~ Fraction of volume occupied per unit volume of unit cell is

4[£nr§’]+ 4(i1trc3] 1‘6—757'3'*‘ Enrg . :
6= 3 3 _3 3 T 1 +[
@) 16327,

Substituting the values, we get

= : 14143
¢ 3x1.414{1+(01 147}

_ 31416
3 1.414
Void volime = 1 - 0.793 =0. 207/ unit volume of unit cell.

31416 . {since Lo 0.414 for octahedral holes]

{1 +0.070 96)=0.793

(ii) Anti ﬂuortte structure Amons form cubical-closest packing and cations occupy-
tetrahedral holes. = = - . . :
There ar¢ four anions and e1ght catlons per unit cell.

Fract1on of volume occup1ed per un1t volume of unit cell is

o 4[£Ttr ]+8{inr3} 16 +§Enr3 : 3
. a c | .
g2 3 = 3 =T 4ol
o (2\/_r )3 N 16\/§ra 3\/5 r

_" 3.1416
“3x1414

=0.749

{1 +2x (o 225)} ' (sinc e L& = 0.225 for tetrahedral holes]
ra. _

. Void vo_lume =1 -0.749 = 0.25.1/unlt volume of unit: cell.
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-(lll) Fluorite structure - Cations: form cubical closest- packmg and anions’ occupyrng
“tetrahedral holes.
Number of catlons — four per ‘unit cell
There are two tetrahedral holes/sphere Hence
Number of anions = elght per unit cell

Fraction of volume occupied'pe_’r’unit volume of unit cell.is

A )

= 348 002257 [ since & = 0.225 for tetrahedral holes
Ix1414 . "
= (.749

Void volume = 1 — 0.749 = 0.251/unit volume of unit cell.

(iv) Zinc blende structure Anions are in FCC positions and half of the tetrahedral holes
are occupied by cations.

Since there are four anions and eight tetrahedral holes per unit cell, the fraction of
volume occupied by spheres/unit volume of unit cell is

¢='v4(:“’ Hg(i 3]‘= Hl{r_cﬂ

162r) 3

ra
= 31416 L 0005y} since ¢ = 0.225 for tetrahedral holes
3x1.414 7,
= (.749

Void volume =1 - 0.749 ='0. 251 Junit volume of unit cell. .

(v) Corundum structure Anions form hexagonal closest-packmg and cations occupy
only two-thirds of octahedral holes. -

Volume of hexagon 24\/— 2r,

' ,There are six anions and six catlons per umt cell
Fraction of volume occupied per unit volume of unit cell is

BB
_ 3 = 1+—(o.4143}
¢ 24\/5ra3 3\/5{ ) .
- 21416 {1+3x'0.070‘96 ‘ﬂ{l 00473} 0.776
3x1414| 3 , -3x1.414

- Void volur'rre = 0.224 /unit volume of unit cell. :
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(v1) Spmel Structure “Oxides form cubical- closest packmg (4ro \/— 2a), A2+ ions occupy

one-eighth of tetra.hedral holes (r, = 0.225 ry) and B> ions occupy one-half of octahedral
holes (g = 0.414 ro) Hence, fraction of volume occupied per unit volume of unit cell is

e 4(:nro}+ (%nrAJ + 2[3nr§}

. o (2\/—2-r0)
4- .o 3 -
B [g“][4fr_(0¢225). + 2(_0.414) ]
\2)?
_ (4.189) (4+0014+0.142) _ 17.398
22.627 22627

=077
(vii) Examplé 3.19.1 There are (7/8) A atom and 3 B atoms per unit cell. Also
2rp + 2rg = J2a or a= ﬁrA +\/§rB

Volume of unit cell = @ = 2ry + 215> = 2420y + 1)’

Fraction of volume occupied/unit volume of unit cell is given by

: T( 4 7T 3 3
¢_437"A]+3(37"B] ) gnrA +4mr

2\/—2_(_rA + rB)3 2\/5(rA + rB)3

7
%nrg +47(0.414r, )’ nrA{ ¢ +40414) }

2V2(ry +(0414r)Y | 242r3(1 +0414)°
_3.141 6(1.166 7 + 0.283 8)
201414

=0.570

Volume unoccupied = 0.430/unit volume of unit cell.

The ionic radii of the alkali metal i ions are Li* 68 pm, Na* 95 pm, K* 133 pm, Rb* 148

pm, Cs* 169 pm, F~ 136 pm, CI" 181 pm Br 195 pm, [T 216 pm. If the radius ratio rules
hold good predict the structures exactly, give the expected cation coord1nat10n number in
each case.

N The radius ratio of various molecules along with the expected coord1nat1on numbers of

cations in parenthe51s are g1ven below:

F | cr Br I

Lit 0.5(6) 0375 7(4) 0348 7(4) 0.314 8(4)
CNg* 0.698 5(6) - 0.524 8(6) 0487 26)  0.439 7(6)
Kt 0978 1(8) 0.734 8(6) 0682 2(6) - 0.615 7(6)
Rb*  1098) 0817 7(8) 0.759°1(8) 0.685 1(6)

C.s"i .. 1.243(8) 0.933 7(8) 0.866 8(8) 0.782 3(8)
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Cohesnve Energy of
lonic Crystals

Computation of
Lattice Energy from
Crystal Geometry

The coheswe energy of an ionic crystal is defined as the energy requlred to

_obtain 1nf1n1tely separated gaseous ions from one mole of an ionic crystal

lattice, accordmg to the following reaction: §
MX(s) - Mf(g) +X(g)

This is negative of the lattice energy which is, by definition, the amount of heat
released when one mole of an ionic crystal lattice is formed starting from the
requisite number of ions in the gaseous state. The value of the lattice energy
(or cohesive energy) is not directly measurable and is, therefore, determined
indirectly using the Born-Haber cycle. |
The energy of formation of an IOHIC crystal can be determined
experimentally. The equation relating to this 1s given by

M(s) + Exz'(g) S MX(s) AfH

This reaction can be obtaine_d by adding the following reactions:

M(s) - M(g) Ay H (sublimation energy)
M@ > Mg) +e Al (ionization energy)
| 1 ' 1 o
EXz(g) — X(g) > AgisH (half of dlss?CIatlon energy) .
X(g)+e - X(g) Ag H - (zzlectron affinity)
M¥(g) + X(g) » MX(s)  ApH (lattice energy)

It follows that

AcH = A H + A

1
1omzH + E AdissH + AEAH'+ ALEH
Knowing A and other parameters, the lattice energy can be calculated. The
cohesive energy will be negative of this lattice energy.

The lattice energy of an ionic compound may be calculated if the crystal
geometry and distances between the ions in the crystal are known. An expression
for the electrostatic interactions of ions may be derived by treating the charges:

- of the ions as point charges located in the centres of the ions. The expression

for potential energy of interaction of two point charges, that is, the energy
associated in bringing the two charges together from infinity to a separation
distance d, may be derived from Coulomb’s law.

_ 00
(4negy) d -

The potential energy is positive (repulsion) if .charges on both the ions
have the same sign (either both positive or both negative) indicating that the
energy is absorbed when the distance between the charges is decreased. On the




lilustration of
“Sodium Chloride

Fig. 3.19.16 A unit cell
of sodium chloride
crystal (A7, C™ are the
chloride ions, B* are the
. sodium ions)
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other hand, if the charges have. unlike signs, the potential energy is negative

(attraction) and thus energy is evolved when the distance between them is
decreased.

‘The potential enérgy of interaction of any ion with other ions can be computed

if the distances between the ion under investigation with other ions are known.

In NaCl crystal, the distance between neighbouring Na* and CI” ions is 280 pm

(henceforth designated as r). With this information, the distance of any Na* from
others and the corresponding potential energy can be computed.

Consider, for example, the unit cell of NaCl (Fig. 3.19.16). We shall
calculate -the potential energy of the sodium:ion in the centre of the cibe. |

Length of the cube = 2r

~This big cube may be considered to be made up of eight smallcr cubes with each _

side of length r. ‘
Face diagonal of the small cube - 2r

Cross diagonal of the small cube = J3r

(1) The nearest neighbours of the reference Na™ ion are the CI™ ions
(labelled as A). There are six Cl” ions and each is situated at a distance r from
the Na* ion. Thus, the potential energy (PE) contributed from these six ions is

PE, 56[(”) - e_)]=— * 6

(Amey) r - (4negy) r

_ (2)-The next nearest neighbours of the centrél Na* ion are the twelve Na*
ions (labelled as B*). Each of these ions is situated at a distance ~/2r from the

central Na ‘The contribution from this group is
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pE, =12 _©@© _ ¢ 1
(4ney) J2r | T (neg) J2
(3) Next come, the eight CI” ions (labelled as C ) which are at a distance
of \/— 3r from the central ion. Thelr contribution is

PE, = (+ e)(-e) e2 8 '
@ﬂquf} r | (dneg) V3
If we continue like this for a-crystal of a more reahstlc size, we would fmd
that there are
6 Na* ions at 2r
24 CI” ions at /5
24 Na* ions at 6 , etc.

Adding up. all the contributions, we get
@ [ 12,8 6 %
(4ney) r J— J_ 2 \/—

Madelung constant The sum of the terms of the infinite series in parentheses is called the Madelung
' constant A. Therefore, we can write

PE=-

2

e
(4neg) r

PE=-A4

If 1 mole of NaCl is involved, it contains N, Na* ions and N, CI” ions,
where N, is Avogadro constant. The total electrostatic energy for the formation
of one mole of NaCl is not 2N, times the above expression, since this procedure
would count each interaction twice, but one half of 2NV, or N, times the above

expression:
&2
PE= N A
(Arey) r
Value of Lgttice For NaCl, A = 1.748 = 1.75 and hence the numerical value of Coulomb energy
Energy for Sodium  fora single NaCl molecule is
Chloride )
PE=-1.75 -
(4megy) r

- (1.60219x1077 C)?
- 4n(8.854x1072 C* N m™) (2 8x10‘1°‘m)
=-1443x1078 Nm=—1443x10"8J
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- Hence, PE per mole is

(~1443x1078 1) (6.022x10% mol ™) = ~ 868975 mol ™
= ~869.0kJ mol

Because of the finite size of the electronic cloud around each ion, there exist
repulsive forces between neighbouring ions which we have not included in our
calculations. The net effect of these repulsions is to make the actual lattice -
energy about 10 per cent less negative than the value given by the Coulomb
forces alone. Thus, the true lattice energy of NaCl is about — 780 kJ mol ™.
Comparing this number with the Coulomb energy of a single sodium chloride
molecule, we get

e 16n19x10™ ¢

Cneg)r 4n(8854x 102 P NTm?) (28x 1070 m)
=-8244x107J

Hence, the Coulomb energy per mol is

- (8 244 x 107°7) (6.022 x 10* mol™) =- — 496 454 T mol™
- =-496.5kJ mol™

which indicates that the crystal is more stable by an approximate amount of
283 kJ mol™L. :

The crystal structures of symmetrical salts such as rock salt, CsCl, zinc blende

~ and wurtzite, are all cubic. If we know the distance r between a cation and the

nearest anion, then the distance between any two ions in the crystal can be
computed- from the geometry of the structure. We write the distance between
ions i-and j as r; = oyr in which ¢; is a numerical factor obtained from the
geometry of the structure Thus

(41t80)ra--

The interaction energy of the 1on i with all the others is- obtamed by
summing this expression, that is,

(4meg) r 155 oy

In every term of this sum z; = £ z; so that we can write

(P 1 |
PE= (41'680)7‘2- [i a.-} - o

J#1 Yy
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Each term in the sum is simply a number determined by geometry, so the sum * !

is a number which we write as S;. Thus

interaction Ey; which is known as Madelung energy.

' PE=E, = (z,@_&

(4meg) r

Made'lung'Ehergy _ Sum of the energles of all the ions in the lattlce yields the total energy of *
e

o

Iv, . @ ¢l 2 _2_2
EM 24 5= (41&90)rZ 3 (z,,:—z,—z)

-(Note the division by 2 since otherwise the interaction between any pair of ions
would have been counted twice.)

The sum 2 S,/2 in the above expression is simply a summation of
i : .

numbers and is found to be negative and proportional to N,. Thus

1
Z_Si.:‘“ANA

where A is Madelung constant. The cohesive energy of the crystal is negatlve
of the interaction energy. Thus

2
E, =—Ey =N,A—%
(4mey) T

Born Repulsion As stated earlier, the experimental value of cohesive energy is about 10 per cent
smaller than the theoretical value. This is a consequence of neglecting the
repulsion which arises at close distances when the electronic cloud of one ion
begins to encroach upon another’s domain. Its nature is the same as those of
neutral atoms and is given by .a term b/r" where b and n are constants, n varying
usually from 6 to 12. This form of repulsion energy was first introduced by M.
Born, and is called the Born repulsion. Thus, the cohesive energy is written as

__NaA@eY b
¢ (47580)7' '_rn ’

Often n can be determined by studying the compressibility coeff1c1ent of the
crystal It is given by :

: _NAA(ze) K

| (avlﬂ
where K=——|—
: Vol op




"Fig. 3.19.17 Variation of
potential energy of
interaction with r

Example 3.19.5

Solution
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The term b can be eliminated from the abbve expression for the lattice
energy by recognizing that at the value of r, for which the crystal is most stable, -
'E is minimum (Fig. 3.19.17) and thus dE/dr = 0. Therefore, on dlfferennatmg
we get
dE, N AA(ze) nb

[

dr (41t80)r _ r"+1

Setting this equal to zero at ry, and solving for B, we obtain

_ NpA(ze) g
(4neg)n
' 2 n—I 2
Thus _E, =- NAA(ze) NAA(ze) _ NA_A(ze) . l
(4meg) 7 (4ney) nry (4me,y) 1y n

The value of 7 is approximétely 10. Thus, we see that the true cohesive
energy is only about 10 per cent different from the value calculated using
Coulomb interaction alone.

including repulsion

',510&1 —

/
/ neglecting repulsion

. Calculate the lattice energy of KCI when .ao = 62_8 pm, n(exponent of repulsion term) = 9

and A = 1.746.:

Substituting the values in the relation -

B N, A(ze)* o1
c - -
Gneg) |
_ (6022 %107 mol™) (1.746) (1 x 1.602 19 x 107 C)2 y 8
4n8.84 x 1072 CP N1 m2) (3.14 x 1070 m)

o |

or E, =6.867 x 10° Jmol ™ = 686.7 kJ mol™
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Diamond Struciure

Void Volume ih
Diamond Crystal

Fig. 3.19.18 A unit cell
of diamond crystal

.Covalent Crystals

Maximum stability in covalent crystals is not obtained with the greatest possible

- number of neighbours, but by forming the allowed number of covalent bonds

in the proper directions. We give in the following a few elementary remarks
about covalent crystals.
‘Few solids are held together exclusively by covalent bonds. The majority

~ of solids incorporating covalent bonds are bound also by either ionic bond or

van der Waals forces. The common occurrence is to find distinct molecules held
together by covalent bonds and the molecules bound in the crystal by van der
Waals forces.’

Only those atoms which form four covalent bonds produce a repetitive three-
dimensional structure using only covalent bonds, e.g., diamond structure. The
latter is based on a face-centred cubic lattice where four out of the eight
tetrahedral holes are occupied by carbon atoms. Every atom in this structure is
surrounded tetrahedrally by four others. No discrete molecule can be discerned
in diamond. The entire crystal is a giant molecule, a unit cell of which is shown
in Fig. 3.19.18. Germamum silicon and grey tin also crystalhze in the same way
as diamond.

From Fig. 3.19.18, we observe that
C—C bond = 2'rc, where r, is the radius of sphere repreéenting carbon -

ZC—C—C = 109° 2%

59° 44’




Example 3.19.6

Solution

Fig. 3.19.19 Positions of
three carbon atoms at

0,0, 0), (3,1,0) and

(%,%,%) of a cubic unit
cell
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Diagonal face of the cube = v2a

This distance will be equal to four times the distance d_ - sin (54° 44’),
that is

- dde_osin (54 44) =a

_ 4d_sin (540 44)
2

or

. o A3
Area of the cube = a3 = {4dC—C sin (54° 44 )}
| 2

Total number of carbon atoms/unit cell = 8

~ Volume occupied by 8 carbons = 8{4n réj —n(dc o

3

4
3 Wde_c )3

{4dc_c sin (54° 44’)}3
V2

Fraction of volume occupied = =0.34

The unit cell of diamond structure'is face- Centred cube with atoms at 0, 0, O; % 0, -%—

1 1.1 1 .33 1.3
035 320 333 23 5 5

Calculate (a) carbon-carbon bond length in dlamond, and (b) bond angle ZCCC.

,%, }1, 17 - The unit cell edge length is 357 pm.

AI»—-

(a) The positions of three carbon atoms are shown in .Fig. 3.19.19

Jcam iy L7 P

ys B”’
o 8,1, 0)
Al X
(0,0, 0)
Distance AB = \/7——0 ]+(O O) ——l—units
V2

2 \2 N
Distance AC = 1—0 l—O + l -0 = ﬁunits
: 4 4 4 4
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Example 3.19.7

Solution

The distance AB is.one-halfvl of the face diagonal AD. Thus, the actual distance

- \/5(357'pm)
— 5

AB

If ige unit 1/4/2 represents a distance of 357 pm/~/2 , the unit V34 will represent a
distance of - g

(357pm (2 |(V3 ) BSTPmMLTR2 _ (o
S N oF

Thus carbon-carbon bond length in diamond = 154.58 pm 7

- .
(b) sing = AX _ 357pm/2v2

= =0.8164
AC ~ 15458pm "

Hence, 0 =5444

ZCCC =20 =109°28

The edge length of the unit cube of diamond is 356.7 pm and this cube contains 8 carbon
atoms. Calculate: (a) the distance d_ between carbon atoms, assuming them to be spheres
in contact; (b) the fraction of the total volume that is occupied by carbon atoms.

(a) Edge length of the cube = 356.7 pm

. Face diagonal of the cube = \/i (356.7 pm) = 504.3 pm

This distance as may be seen from Fig. 3.19.19 is also given by

d = 4(AX) = 4(dc_c sin 54°44') = 4d, (0.816 4)

504.3 pm

ThUS, dC—C = m =1544 pm -

Hence, Radius of carbon = dg /2 = 154.4 pw/2 = 77.2 pm

Volume of the unit cell = (356.7 pm)® = 4.538 x 10°% m’

. 4 4 B
Volume occupied by 8 spheres = 8[51:(77.2 pm)?] = 1544 x10 12 3
=1.542x 107 m®

1542 x 102 m3

=0.34
4538 x 107 m3

Fraction of the volume occupied by carbon atoms =
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Gréphite Structure - Graphite is another allotropic form of carbon and is more stable than diamond,
This has a layer type structure as shown in Fig. 3.19.20.

, | ey ,‘
Fig. 3.19.20 - Crystal S ﬁ /eé //l 1
structure of ‘graphite Q JJL“/ 7

;

In each layer we have carbons attached to each other through the
overlappmo of sp? hybrid orbitals, a stronger bond. Different layers are held by .
weaker joinings, i.e. the n-bondings. The great difference between graphite and
diamond can be understood in terms of the above crystal lattice. The distance
between atoms in the plane is 143 pm, but the distance between the two atomic
layer planes is 335 pm. In two directions the carbon atoms are tightly held as
in the diamond, but in the third direction, the forces of attraction are much less.
As a result of this, one layer can slip over another. The crystals are flaky, and
yet the material is not wholly disintegrated by shearing action. This planar
structure is a part of the explanation of the lubricating action of graphite.

Atoms with a valency of 2 cannot form isotropic three-dimensional
structures. Consequently, we find structures which consist of endless chains of
atoms extending through the crystal, the individual chains being held together
by much weaker forces. Another example is that of rhombic sulphur. Here there
are eight membered rings of sulphur atoms. The bivalence of sulphur is maintained
and-different molecules are held together by the van der Waals attractions.

Generally, the covalent solids have comparatively low densities as a result
of the low coordination numbers. This effect is intensified in those crystals in
which covalently bound structural units are: held in the crystal by van der Waals
forces. The distance between two units held by van der Waals forces is significantly
greater than that between units held by covalent, ionic or metallic bonds; these
large distances result in a low density of the solid. o

r

- Main Characteristics of Different Types of Crystals

Molecular Crystals Forces which hold the constituents of molecular ¢rystals are of van der Waals
type. These are weaker forces because of which molecular crystals are soft and
possess comparatively low melting points. Examples '.are C0,, CCl,, Ar and
most of the organic compounds.
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lonic Crystals

Covalent Crystals

Metallic Crystals

Forces involved here are of electrostatic nature. These are stronger and non-
directional type. Therefore, the ionic crystals are strong and likely to be
brittle. They have very little elasticity and cannot be easily bent. The melting
points are high, which decrease with increasing size of the ions. In ionic
crystals, some of the atoms may be held together by covalent bonds to form
ions having definite positions and orientations in the crystal lattice. Example:
CaCo,.

The forces involved here are of chemical nature (covalent bonds) extended in
three dimensions. They are strong, and consequently the crystals are strong
and hard, with high melting points. Examples: diamond, silicon, etc.

Electrons are held loosely .in these type of crystals. Therefore, they are good
conductors of electricity. Metallic crystals can be bent and are also strong.
Since the forces have non-directional characteristics, the arrangement of atoms
frequently corresponds to the closest-packing of spheres.

3.20 GENERAL DISCUSSION ON STRUCTURE OF LIQUIDS

-Characteristics of
Liquids '

X-ray Diffraction of
- Liquids

. Liquids are neither characterized by the random chaotic motion of molecules,

such as in gases, nor by the perfect orderly molecular arrangement in solids.
They occupy an intermediary position where molecules are more disorderly
than those of a crystalline solid, but much less disorderly than those of a gas.
Because of this fact the enthalpy change when a crystal melts is always
positive, and the corresponding entropy change is also positive. This implies
that there is less of order when a crystal melts. The liquid is thus intermediate
between the complete order of the crystalline state and the complete disorder
of the gaseous state. ' _

On comparing the properties of a substance at temperatures just below

-and just above its melting point, it is found that most of these show very little

change. For example, the molar volume of nearly all substances increases by
only about 10 per cent on melting. Also the entropy of melting is usually
much smaller than the entropy of vaporization. These facts suggest that the
difference in structures between crystals and liquids may be one of degree and
that liquids should have at least some characteristics of the orderly arrangement

of crystals.

The above point of view is supported by observations of Vthe diffraction of

X-rays from liquids. The diffraction pattern of liquid argon at a series of
temperatures is shown in Fig. 3.20.1.

It can be seen that the X-ray diffraction pattern of liquid argon just
above its melting point (curve a) shows only very few broad maxima and
minima which become broader and more diffused as temperature is raised. The
presence of these maxima and minima is highly significant; however, for they
would not be present if the molecular arrangement in the liquid had been
completely random. '




- Fig. 3.20.1  X-ray

diffraction pattern of

liquid argon at a series of .

temperatures. The
ordinate of each curve is

~ shifted relative to the

preceding curve
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Y~ 844K
81.06 kPa (0.8 atm)

— 918K
182.39 kPa (1.8 atm)

Intensity —————»

1267K
1 854.25 kpa (18.3 atm)

144.1K
381995 kPa (37.7 atm)
149.30K .
4742.01 kPa (46.8 atm)

sin /), —»

A completely amorphous structure would have exhibited a continuous
scattering of X-rays without maxima and minima.* The diffraction pattern of
X-rays by liquids show one or more maxima and minima. This indicates that a

~ partially ordered structure exists in the liquid. The range of the order of a typical

liquid molecule never exceeds more than a few multiples of the mean
intermolecular distance. In other words, there exists a short-range order in the
liquids. This way, liquids resemble gases.

~ The X-ray diffraction pattern of a liquid is not a consequence of any
definite arrangement of the atoms (or molecules). Instead, it represents a time
average over all of the positions of the atoms resulting from their translational
motion. It is possible, however, to use this pattern for the calculation of the
radial distribution function 4mr*N(r) which gives the number of atoms whose
centres are at'a distance r from the centre of any atom in the liquid. For a crystal
at 0 K, the radial distribution function would consist of a series of lines at values
of r equal to the distances between the nearest neighbours in the lattice, next
nearest neighbours, and so on. As the temperature ‘is raised, the lines broaden
into narrow bands, with the area under each band proportional to the number
of atoms at that- distance. '

*The width of X-ray diffraction lines in the Debye-Scherrer method depends upon the size
of the particles. As the size decreases, the extent of orderly arrangement decreases and the

diffraction lines become broadened. With particles around 10 nm in diameter, the lines

become diffuse halos, and with still further decrease in particle size, the diffraction maxima
become altogether blurred. '
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_ Radial Distribution
Function

Fig. 3.20.2 Graphs of
the radial distribution
function of argon at a
series of temperatures.
(i) Rising dotted lines are
the graph of 4nr2.

(ii) Curve a shows the
position of the diffraction
bands in crystalline
argon, (iii) Curves h, ¢
and d refer to liquid
argon. (iv) Curve e refers
to gaseous argon

$
H
<

Figure 3.20.2 shows the radial distribution function (as the dotted lines) along
with the X-ray diffraction for argon at different temperatures. Curve a shows the
positions of the diffraction bands in the crystalline argon. Curves b, ¢ and d are
those of liquid argon at different temperatures; curve b is just above the melting
point of argon and the curve d is just below its critical state. Curve e is that of
gaseous argon at just above its critical state.

The following conclusions can be drawn from Fig. 3.20.2.

84K -
81.06 kPa
(0.8 atm)

92K
182.39 kPa
(1.8 atm)

149K
4 742.04 kPa
(46.8 atm)

4mtr2N() -

149 K
4 438.04 kPa
(43.8 atm)

| solid argon

382 543 700

rlpm —

(i) For crystalline argon, a series of bands are observed at r = 389 pm,
543 pm, etc. Since the area under each band is proportional to the number of
atoms present at that distance, the areas under different bands of crystalline
argon indicate the presence of twelve nearest neighbours at a distance 332 pm
and six next nearest neighbours at a distance 543 pm.

(i) For liquid argon, the positions of diffraction bands are shlfted shghtly
to larger values of r and even become broader and shallower as the temperature
is raised. Moreover, -the area under the maximum decreases, 1ndlcat1ng the
presence of fewer number of ordered atoms. For example the first maximum of
the curve b has an area corresponding to about 10.5 atoms. These effects clearly -
indicate that the degree of order in case of 11qu1ds decreases with rise in
temperature. -
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(iii) For gaseous argon at temperature just above its critical state (curve €),
the diffraction pattern is similar to the curve d; the diffraction pattern of liquid
argon just below its critical state: This suggests that the two states show very close
resemblance with each other near the critical state. This fact is in agreement with
the principle of continuity of state (discussed in Chapter 1) according to which
the liquid state close to its critical isotherm may be regarded as the compressed '

gaseous state, since one state can be converted into another without any
discontinuity.

~ The X-ray diffraction of liquid argon revealed that the distance betwéen the

nearest neighbours is of the same order as that of crystalline argon. This is, in
fact, true for most liquids. The decrease in density when a solid: melts can be

explained on the basis that the additional ‘free volume’ is built up as vacancies

in the more or less close-packed liguid lattice. This means that the coordination
number of a liquid molecule must decrease as the liquid expands on warming,
and this is exactly the inference we draw from the area under the nearest
nelghbour hump in the radial distribution function of argon at a series of

- temperatures. It is found there that the coordination number of liquid argon is
~about 10-11 just below its melting point. The comparison of this with the

coordination number of 12 in crystalline argon very nicely explains why liquid
argon is about 12 per cent less dense than solid .argon. As the liquid is warmed,

“its density decreases and the apparent coordination number, as determined by

the X-ray data, decreases to about 4 just below its critical temperature. However,
in all this range the nearest neighbour argon-argon distance is nearly unchanged.
This, together with the lack of order that we infer from X-ray data, leads
us to a representation of a liquid structure very similar to that shown in Fig. 3.20.3.
In the crystailine state, any given molecule has its maximum possible number
of nearest neighbours and hence has maximum intermolecular attractions with
the largest possible stabilization. If, however, we warm such a system, the
molecules acquire, on an average, the amount kT" of kinetic energy. When this
energy becomes high enough, some molecules can migrate through the lattice
forcing other molecules aside and leaving behind a vacancy. It thus produces .
an abnormal coordination number. It is known that even a single abnormal

. coordination among a few hundred atoms is sufficient to produce a long-range
* disorder, which is typical of the liquid state. Thus, if there is any abnormal

coordination at all, there must be quite a lot of it. This fact explains why the
crystals have sharp melting points. When the thermal motions in one region of
a crystal suffice to destroy the regular structure, the irregularity rapidly spreads
throughout the entire specimen. As the temperature of the liquid rises, its volume
increases and the average coordination number becomes smaller and smaller -
because more and more of the molecules acquire sufficient thermal Kinetic
energy and thus migrate through the liquid lattice. Thus, we can view a liquid
as c’oritaining some miolecules that can manifest their kinetic energy by travelling

-through it, and others,-that are confined by their nearest nelghbours and can
have only vibrational energy.
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Fig. 3.20.3 Structures of
(a) crystalline state,

(b) liquid at melting

point, (c) liquid near
critical temperature

Based on the above facts, the ‘Eyring hole theory of liquids was, proposed by
Henry Eyring and his co-workers. According to this, a liquid may be considered
to be a composite 'system of two significant structures, gases on one side and
solids on the other side. In other words, in a 11qu1d some of the molecules have-
gas- like character and the’ others have solid-like character. If we assume that all
the ‘free volume’ in a liquid is arranged in molecule—s1zed vacancies, then any
~ molecule next'to a vacancy can move into it, thereby displaying translational
kinetic energy and acting as a gas molecule. On the other hand, any molecule
 that is completely surrounded and has no vacancy next to it, can only vibrate
and thus acts as a solid molecule. '

If V, and Vj are the respective volumes occup1ed by a liquid and the same
amount of a solid, then the extra volume (V; — V) will appear as the vacancies
of molecular size and if we assume that these vacancies are randomly distributed
in the liquid; the mole fraction of molecules next to a vacancy is (V| — V)IV,.
This is the mole fraction of gas-like molecules. The remaining mole fraction
VJ/V, represents solid-like molecules.

Any physical property of a liquid may thus be considered to be the sum
of a contribution from solid-like molecules and a contribution from gas-like
molecules. For example, suppose we wish to explain the temperature dependence
of the molar heat capacity of liquid argon. The molar heat capacity of argon gas
(predicted on the basis of the law of equipartition of energy) is 3R/2 or 12.47
T K~! mol™. For an idealized solid lattice of argon, the molar heat capacity of
solid argon is 3R or 24.952 ] K~ mol™.. Then, if we wish to predict the molar
heat capacity of liquid argon at any given temperature, we need only to measure
its molar volume V; at that temperature and then add the solid and gas
contributions.

c,i _K"-lmol'1 %24.952 X '(solid—like fraction) + 12.47 x (gas-like fraction)

24952 %o |y ppar| e
|4 4

Figure' 3.21.3 shows the result of this_appreach. The agreement between
experimental and predicted values is.excellent.




Fig. 3204 Comparison

of experimental values of
molar heat capacity of argon
with theoretical values on .
the *basis of hole theory
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REVISIONARY PROBLEMS

Explain the following:

(a) First law of crystallography.-

(b) Haiiy’s idea of unit cell.

(c) Space lattice.

(d) Unit cell (primitive and nonprnmtwe)
(e) Law of rational indices.

Comment upon the following:

(a) Crystal symmetry generates unit cell but not vice versa.

(b) There exists long-range order in crystals.

(c) Lattice points need not be occupied by atoms or ions. The only condition is that
the lattice points must have identical environments.

(d) Normal developed faces of a crystal are those wlnch have maximum site dens1t1es
(¢) The unit cell has orientation but no position.

(a) What do you understand by symmetry elements and symmetry operations? Explain
the following symmetry elements and the associated operations:

" (i) Proper rotation axis,
(i) Mirror plane (horizontal and vertlcal)
(i) Improper rotation axis.

(b) Point out the symmetry elements present in the following compounds: cis and trans

- CH,Cly, BCly, CH,, SFg, B,Clg, H,O and NH,,

(c) How many symmetry axes and planes are present in a s1n1ple cube and in a

~ tetrahedral arrangement?

(d) The allowed axes of rotations in a crystal are those which are consistent with the
translational periodicity; on thls basis, explaln why ﬁve—fold axis of rotation cannot

- exist in crystals.

34

‘(e) If a crystal has more than one triad axis, it necessanly must have four triad axes.

(a) How many unit cells are possible in a planar lattice?
(b) Sketch a two-dimensional lattice of closest- packed identical circles, 1nd1cat1ng a
suitable unit cell.
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35

3.6
3.7

3.8

3.9

3.10

(a) Explain how the classification of crystals into seven crystal classes are done on the
basis of minimum symmetry elements of rotational axis (proper or improper).

(b) The dimensions of these seven crystals correspond to maximum possible symmetry

of their respective systems. Qutline the crystal-dimensions and the symmetry elements
which they possess.

What are 14 Bravais lattices? Explain why face-centred and end- centred Bravais lattice -
are excluded in the tetragonal system. :

What are point groups and space groups? How many point and space groups are

. theoretically possible?

(a) What are the Miller indices for sets of similar planes?
(b) Compute the Miller indices for a face having intercepts on the three axes as

() a:ib:ic L (ii) —%—a:lb:'ooc
() a:b: ' @iv) 2a:2b:3c '
(c) Show, with the help of dlagrams the planes in cubic unit cells having the followmg
Miller 1nd1ces -
(i) Primitive cubic cell (100), (110) and (111)
(i) Face-centred cubic cell (200), (220) and (111)
(iii) Body-centred cubic cell (200), (100) and (222)
(d) Show qualitatively or otherwise that the 1nterplanar distance in a cube having Miller

indices (hkl) is given by

g = g NI/

(R +k“+19)

where a is the edge length of the cube.

(e) Calculate the ratio of d,,, for a given set of planes of cube having the Miller indices
as given in part (c).

(a) Derive the Bragg’s equation
nA=2dsin @

for the reflection of X-rays from the faces of a crystal and show that it can be written
as ' ‘ ‘

(b) Explain why one should employ monochromatic X- -rays in studying the reflections

from the faces of the crystals. What would happen if, instead, polychromatic X-rays '
are employed?

(c) On what factors does the 1ntens1ty of the diffracted beam from different sets of

planes depend? :

There are three principal methods for _ebserving diffraction. These are:

(i) Laiie method Single crystal sample, fixed incident angle, continuous wavelength
range (white radiation). The diffracted beams are observed (usually with photographic
film) in directions where the Bragg equatlon is satisfied for some A and n for some
set of planes.

(ii) Rotating crystal method Single crystal rotation through all incident angles, fixed
wavelength (monochromatic radiation). The diffracted beam is observed at the instant
where the crystal is correctly oriented to satlsfy the Bragg condition for certain set of
planes
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3.12

3.13

3.14

3.15
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(iii) Debye- Scherrer method Powder (or polycrystalline) sample, ﬁxed incident angle,
fixed wavelength The Bragg condition is satisfied for different planes by some of the
randomly oriented grains in the sample. :
Describe the diffraction pattern in each case and indicate the usefulness and weakness
of each method.

Answer the following: '

(a) Explain, why it is not possible to deduce the position of hydrogen atom from
X-ray diffraction. How can this d1fﬂculty be overcome by using the neutron diffraction
method?

(b) Explain, why it is not possible.to distinguish by X-ray diffraction, two different
atoms which differ only by the possession of one additional electron.

(c) Explain, why in the powder method, the crystallites in the powder crystal must have
an average dimension of a few nucrons What would happen if the size is too large
or too small?

(a) Show that reﬂect1ons of X- -rays from the planes of a cube are given by
~ sin? ehk, =K®*+ B2+

where K is a constant, 8 is the incident angle and hkl are the Miller indices. Hence,
show that the reflections for which sin B = TK, 15K, 23K and so on are not
observed.

(b) Explain qualitatively, why the reflections present (1) in body—centred cubic crystals o

are from those planes for which (4 + k + l) is even and (ii) in face-centred CUblC crystals
are from those planes for which hkl are either all odd or all even.

(c) Sketch out the typical reflection patterns that would be obtained for the pnmltlve

body-centred and face-centred cubic systems and on this basis justify-that: ‘From’
missing reflections in the X-ray diffraction pattern, it is possible to distinguish between
different cubic lattices.’

(d) LiBr, NaBr, KBr and RbBr all have the same crystal structure. X-ray diffraction,
however, indicates RbBr to be a simple cubic while the other three have face-centred
cubic lattices. Explain.

Explain the following: : : -
(a) A useful check on the correctness of .a proposed crystal structure is to compare

‘the crystal density computed from its structural lattice with that of the experiment.

{b) How does the relative intensities of the reflection maxima of the different orders
and planes help in deciding that NaCl crystal essentially consists of two interpenetrating
face-centred cubic lattices, one composed entirely of Na* ions and the other of CI” ions?

How many points per unit cell are there in:

(@) Primitive cubic lattice,
(i) Body-centred cubic lattice,
(iif) Face-centred cubic lattice.
How are these pomts des1gnated in crystallography?

Show that the maximum proportion of the available volume which may be filled by
hard spheres in various structures are. :

Simple cubic: E(= 0.52)

/3

Body-centred cublc (BCC) —(— 0. 68)
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3.16

i

Face-centred cubic (FCC) ——(— 0.74)

3

Hexagonal closest packed (HCP): ——(— 0.74)
Diamond: i(= 0.34)
16
What is the percentage of void space in each structire?
(a) What do you understand by the stacking sequenoes
ABAB . -
ABCABC .

What kind of lattices do these sequences lead to?
(b) How many octahedral and tetrahedral holes are present in BCC, FCC and HCP

structures, respectively?

. (c) Is it possible to have patterns like ABCACB. e ABAC. . ., etc.?

3.17

-(a) The arrangement of ions in crystals is p’n'rrlaﬁly determined by the radius ratio of

- cation to anion. Calculate the limiting radius ratio of cation to that of amon in each of

3.18

3.19

the following arrangements:

(i) Body-centred cubical structure, (i) ,‘Octahedral arrangement,
(i) Tetrahedral arrangement, (iv) Square planar arrangement,
(v) Triangular arangement, (vi) Linear arrangement.

(b) What is the coordination number of cations and anions in each of the above
arrangements?

(c) Only metallic, never ionic or covalent substances, form crystals exhibiting the
maximum coordination number of twelve among 11ke sized atoms. Account for this
effect.

(d) LiCl, KCI and RbCl have structures of face-centred cubic crystal while CsCl has
the structure of body-centred cubic crystal. Explain.

Show that in a closest-packed structure:
() The number of octahedral holes is equal to the number of atoms present and these

holes are located midway between the two closest-packed layers. "
(b) The number of tetrahedral holes is twice the number of atoms present and these
are located above each atom in the first layer and below each atom in the second layer.

(a) Compute the molecular formula of the ionic oxides having the following structures:
(i) Rock salt Anions form cubical-closest packing and cations occupying

‘octahedral holes

(i) Anti-fluorite Anions form cub1cal-closest packing and cations occupymg
tetrahedral holes. -

(iti) Fluorite Cations form cubical-closest packing and anions occupying
tetrahedral holes. - o

(iv) Zinc blende Anions are in FCC positions and half of the tetrahedral holes

‘ are occupied.

(v) Corundum Anions form hexagonal-closest packmg and cations occupying
only two-thirds of octahedral holes.

(vi) Spinel Structure Oxide ions form cubical closest packing, 1/8th of tetrahedral
holes occupied by A?* and 1/2 of octahedral holes occupied by B3*.




Miller indices

320

3.21

322

3.23

324

3.1
32
33
3.4

3.5

3.6

3.7

3.8

" (b) Compute the void volume present in the dlamond structure.
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(b) Compute the v01d space per- unit volume of umt cell of the structures given in

part (a).

Discuss briefly the classification and corresponding properties of crystals based on the -
bond type. ‘

(a) Show that the cohesive energy of an ionic crystal is given by

C
I n

where the symbols have their usual meanings.

'(b) How is the cohesive energy determined experimentally using Born-Haber cycle?

(a) Draw the structures of ‘diamond and graphite. What differences are essentially
present in these structures and how do they lead to dlfferent physwal properties of these
two allotropic forms?

How and why does the X-ray diffraction pattern obtained with hqulds differ from those
obtained with solids? Whiat is the significance of radial distribution function in hqu1ds‘7

Discuss, in brief, the Eyring hole theory of liquids.
TRY YOURSELF PROBLEMS .

Explain why a crystal cannot have an axis of greater. than six-fold symmetry.
Show that the face-centred tetragonal is really body-centred tetragonal.
Show that a centre of symmetry can be represented by a rotation-inversion axis.

In studying the diffraction by crystals, one often employs X-rays. Why cannot ultraviolet
light of wavelength, say 10 nm, be used?

Show that a face-centred rhombohedral lattice can also be represented as a thombohedral
lattice. Calculate the rhombohedral angle. (Ans. 60°)

Why is ‘white’ X-radiation (a broad range of wavelengths) necessary for the Laiie
method, while monochromatic X-radiation (a single-wavelength or very narrow range)
is necessary for the powder and rotating-crystal methods?

List all the symmetry elements of each of the following molecules: CHDFCI, CH2C12
(tetrahedral), OCS, Trans-CIBrHC—CHBrCl, Echpsed form of ethane, Boat form of
cyclohexane.

What is the plane of closet packing in following_‘?

(a) Face-centred cubic structure.

~ (b) Body-centred cubic structure

3.1

'NUMERICAL PROBLEMS

Calculate the Miller indices of the faces having the following intercepts with the three
axes perpendicular to each other.

() 8.2, | ‘ - o (Ans. 410)
(i 3a2b1c © . (Ams. 436)
i) 3a,3b,3c - . © (Ans. 665)

(iv) 2a, 3b, 4c . " (Ans. 643)
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X-ray Diffraction

Density

Type of Crystal
Structure

32

33

34

3.5

3.6

3.7

3.8

3.9

3.10
3.11

312

The first order reflection of a beam of X- rays from a given crystal occurs at 5° 15",
At what angle will be the third order reflection? ‘ (Ans. 15° 56)

The first order reflections from (100), (110) and (111) planes of a given cubic crystal-
occur at angles 7° 10°, 10° 12" and 12° 30, respectively. To what type of cubic lattice

does the crystal belong? (Ans: Primitive)
The density of CaF, is 3.18 g cm™ at 20 °C. Calculate the dimensions of a unit cube
of the substance containing 4 Ca2+ and 8 F ions. (Ans. 546 pm)

The effective radius of an iron atom is 124 pm. Iron occurs both in a BCC structure
and a FCC structure. Calculate the densxty of each in g/cm’,

(Ans. BCC 7.9 glem®, FCC 8.6 g/cm)

Calculate the density of diamond from the fact that it has a face-centred cubic structure
with two atoms per lattice point and a unit cell edge of 356.9 pm. '

(Ans. 3.509 g/cm) »

Caesium chloride, bromide and jodide form interpenetrating simple cubic crystals rather
than interpenetrating face-centred cubic crystals like the other alkali halides. The length -
of the side of the unit cell of CsCl is 412.1 + 0.3 pm. Determine:

(a) Density of CsCI.
(b) Ton radius of Cs*, assuming that the ions touch along a diagonal through the unit
cell and that the ionic radius of CI" is 181 pm.
, (Ans. (a) 3.99 glem®, (b) 176 pm)
Metallic aluminium, with one atom per lattlce point and a density of 2.70 g/cm® at 25 °C,
exhibits the first four X-ray reflections at ¢ = 19.25°, 22.38°, 32.58° and 39.15°. If
the wavelength of radiation is 154.2 pm, determine:
(a) The type and size of cubic unit cell.
(b) The atomic mass of Al
(c) The distance between closest Al atoms.
(d) The angle 8 at which (400) reflection occurs.
‘ (Ans. (a) face-centred, edge length 405.03 pm
(b) 27 g mol™, (c) 233.85 pm, (d) 49.59°)

The X-ray spectrum of a cubic metal using radiation of A =154.18 pm gave lines at
the following angles:

21.8°, 25.4°, 37.2°, 45.4°, 47.8°, 58.8°, 68.6° and 72.7°

(a) Index the lines.

(b) Calculate the unit cell edge length.

(c) Identify the type of unit cell. .

(Ans. (a) 111, 200, 220, 311, 222, 400, 331, 420
(b) 360 pm, (c) face-centred])

Titanium has a hexagonal closest-packed structure containing 6 atoms in the unit cell:
a = b= 2953 pm, ¢ = 472.9 pm. Calculate its density. (Ans. 2.132 g cm™)

White tin crystallizes in tetragonal system with a = b = 582 pm and ¢ = 317.5 pm..
Its density is 7.29 glem?. Determine the number of atoms in the unit cell. (Ans. 4)

A ceftain compound, whose density is 4.56 g cm™>, crystallizes in the tetragonal system
with unit lattice distances of a = b =658 pm and ¢ =593 pm. If the unit lattice contains
four molecules, calculate the molar mass of the compound.

: (Ans. 176.29 g mol™)
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The Debye Scherrer plcture of a cubic crystal with X—rays of A=1539 pm dlsplayed
lines at the followmg scattering angles: :

No. of lines 1 2 3 4 5 6 7 8 9
0/deg 1370 15.89. 2275 26.91 2825 33.15 37.00 37.60 41.95
Intensity w Vs S \£ m w oW m ‘m

* Index these lines. Calculate a, for the crystal. Identify the crystal.

3.14

3.15

3.16

317

3.18

3.19

3.20

321

_ (Ans. face-centred, 562.8 pm)
Determine the simplest formula of an.ionic compound in which:

_(a) The unit cell consists of a cube such that there are cations (C) at each corner and

an anion (A) at the centre of the cube;

(b) the unit cell consists of a cube in which there are cations (C) at each corner and
anions (A) at the centre of each face. (Ans. (a) CA, (b) CA;,)

(a)-A spinel is an important class of oxides consisting of two types of metal ions with
the oxide ions arranged in CCP layers. The normal spinel has one-eighth of the
tetrahedral holes occupied by one type of metal ion and one-half of the octahedral holes
occupied by another type of metal ion. Such a spinel is formed by Zn**, AI** and 0>
with Zn?* in the tetrahedral holes. Give formula of the spinel. (Ans. ZnAl,0y)

(b) If all the species in problem 3.15a touch each other, determine the fraction of the
volume occupied in the unit cell. ' ~ (Ans. 0.62)

Determine the location and size of the largest sphere that can exist among identical
spheres in a body-centred structure without disturbing that structure.

(Ans. 0.252 a at (4,1,0))

An oxide of copper crystallizes in a cubic unit cell with oxide atoms at 0, 0, 0 and

111 1 1.133.31 3. 331

4,3.3 . Copper atoms are located at %, 4,43 1,2,2; 2,4,3; and 2,3,7 . Draw the
unit cell showing the positions of all atoms in the cell. How many copper atoms are
there in the unit cell? How many oxide atoms? What is the simplest formula of the

oxide? (Ans. 4, 2, Cu,0)

Caesium bromide crystallizes in the cubic system. Its unit cell has a Cs* ion at the body
centre and Br~ ion at each corner. Its. density is 4.44 g cm™. Determine:

(a) edge length of the unit cell (b) the d,q, distance, and (c) fraction of the volume
per unit cell occupied. (Ans. (a) 430 pm, (b) 215 pm, (c) 0.77)
In the book ‘X-ray Crystal Systems’ Braggs give an example of X-ray analysis as

follows. The first order reflection from (100) planes of KCI occurs at 5° 23" but for

NaCl it occurs at 6° 0 for the rays of same X-rays. If the side of NaCl unit cell is
564 pm, what is the size of KCI unit cell? The densities of NaCl and KCl are 2.17
g cm™ and 1.99 g cm™, respectively. Do these values support the X-ray analysis?

- (Ans. 628.38 pm, yes)

KCl crystallizes in the same type of lattice as does NaCl. The ionic radius of Na* is 0.5

of that of CI, and is 0.7 of that of K*. Calculate (a) the ratio of the side of the unit cell
for KCl to that for NaCl and (b) the ratio of the density of NaCl to that of KC1. (Molar
masses, K = 39 g mol'™'; Na = 23 g mol™ and Cl = 355¢ mol™) ,
' (Ans. (a) 1.143, (b) 1.172)
NH,CI crystallizes in a body-centred cubic lattice with a unit distance’ of 387 pm.
Calculate (a) the distance between the oppositively charged ions in the lattice and (b)
the radius for the NHJ ion, the radius for the CI” ion being 181 pm.
: (Ans. (a) 335.15 pm, (b) 154.15 pm)
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Annexure |

Symmetry Elements
_In Crystallography

Symmetry Elements
of a Cube

Symmetry Elements and Symmetry
Operatmns

The study of symmetry of a molecule is often useful in makmg its theoretical
and experimental treatments simpler. A point in the molecule is chosen and the

. symmetry with respect to lines and planes passing through this point is studied.

Before going into the detail, it is worthwhile to make distinction between the
symmetry element and the associated symmetry operation.

The symmetry element is a geometrical -entity such as a line, a plane or
a point with respect to which the symmetry operation is carried out. The
associated symmetry operation is actually carrying out the operation on the

“object. If on carrying out some operation (rotation, reflection, etc.), the ob]ect

is thrown into a new configuration which is completely indistinguishable from
the previous one, then the object is said to possess the above symmetry operation
and the corresponding symmetry element.

Five types of symmetry elements -are used to describe the symmetry of a
molecule. Table A.I-1 records these symmetry elements and the corresponding
symmetry operations. '

In crystallography, the first three symmetry elements shown in Table A.I-1 are.
usually employed in studying the symmetry of crystals.

As an illustration, we give below a few symmetry elements possessed by a cubic
crystal (Fig. A.I-1).

Proper-rotation axis Three types of rotation axes are present in a cubic crystal.

‘These are:

(a) Tetrad axes There are three such axes, each passing through ‘the
centres of the two opposite faces.
(b) Triad axes There are four such axes, each passing through the opposite

_ cross-comers of the cube.

(c) Diad axes There are six such axes, each passing through the centre
of the:two opposite edges of two opposite faces.

Planes of symmetry There are two types of planes present in a cubic crystal

These are: '
(a) Parallel planes There are_three such planes, each passing through the

middle of the two opposite faces and being parallel to the sides of the cube.

' (b) Diagonal planes- There are six such planes, each passmg through the

* diagonals of the two opposite faces.

Centre of symmetry One centre of symmetry is present at the centre of the
cube.

Thus in all, we have illustrated 13 proper rotation axes, 9 planes of
symmetry and 1 centre of symmetry, making a total of 23 symmetry elements.

~These are shown in Fig. Al




- The Solid State 213

Table A.I-1 Symmetry Elements and As_éociéfed‘Syfnmetry Operations

’Symbol used

Symmetry element - Operation " Harmann-  Schoenflies
' Maugin notation**.
notation* :
(1) Axis of symmetry _ Rotation around the axis n C,

by an angle 360°/n where
n is the order of rotation

axis. _ . _ _
(2) Plane of symmetry Reflection through the | : m o
' plane. :
Three different types of '
planes are ususally obser-
ved. These are
(a) Horizontal mirror Reflection throughthe = /m ' . Oy

plane plane perpendicular to
: the principal axis (axis
~ of highest symmetry).

(b) Vertical mirror . Reflection through the » m c.
plane plane containing the
principal axis.

(c) Diagonal mirror Reflection through the - 0y
plane _ plane containing the
- principal axis and bisecting
the angle formed by '
two horizontal C, axes
which are perpendicular
to the principal axis.

(3) Rotatory-inversion axis Rotation about the axis

n
by an angle 360°n fol-
lowed by an inversion
across a centre.
{4) Rotation-reflection axis Rotation about the axis S,
(Improper axis) by an angle 360°n
. followed by reflection in
a plane perpendicular to
the axis. '
(5) Inversion-centre or A projection through the i
© centre of symmetry inversion centre to an

equal distance on the
other side from the centre.

*Symbols used in crystallography. ‘
- **Symbols used in studying the symmetry of molecules.
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tetrad axis

(three of this type)
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Fig. A.I-1 Symmetry
elements of a cube

triad axis
(four of this type)

centre of symmetry

(six of this type)




A Few Facts
Regarding the

Symmetry Elements

The Solid State 215

- A few facts regarding the symrnetry elements: and operations may be descrrbed

here. . . -
1. A symmetry element may generate more than one symmetry operation. '
For example, the symmetry element triad axis of rotation generates three distinct
operations of rotation around the same rotation axis. These are rotations by angles
120° (= 1 x 360°/3), 240° (= 2 x 360°/3) and 360° (= 3 x 360°/3) and are represented
by the symbols Cs, C3 and’ C3, respectively. The first two operations lead to the -
indistinguishable equ1valent configurations whereas the last one leads to the
completely identical configuration with the original one. The operation of the latter
type is.also known as identity. operation and is represented by the symbol E.

2. A planar molecule has at least one symmetry element which is the
molecular plane of symmetry. :

3. All atoms which do not-lie on a plane of symmetry must occur in even
number -as each one must-occupy an identical point which lies on the other side
of the plane. For examplein H,0 molecule, a-plane of symmetry passing through

- O atom and bisecting the bond angle exists. This does not include H atoms.

4. If a moleculé has more than one symmetry plane and if it has only one
atom of one kind, then this atom must lie on the line of intersection between two
or more planes or at the point of intersection of three or more planes. The examples
include C of CH,, N of NH; and B of BCl,.

5. A linear molecule has infinite number of symmetry planes and a oo-fold
axis of rotation collinear with the molecular axis. _

6. It one atom of a certain. kind lies off a C, axis, then there must be
(n — 1) more or a total of n such atoms. This follows from the fact that the
application of C, successively n times, the first atom is moved to a total of n
different equivalent points. One of the examples is BCl; where C; axis perpendicular
to the molecular plane and passing through the atom B exists. Each of Cl atoms is
thrown into the equivalent position when a rotation of 360°/3 is carried out and thus
there exists 3 Cl atoms. -

.7. The existence of the C, axis and one C, axis perpend1cular to C, axis
means that the other C, axes at angles 1 x 360%n, 2 x 360°/n, ..., must exist. The
number of such C, axis is equal to the order n of rotation axis C,. This follows
from the fact that the application of C, once generates the second C, axis from
the first and application of C? generates the third C2 axis from the first and so
on. Examples include BCl; and benzene.

8. Ina molecule if C, and a perpendicular plane of symmetry exist then a
rotation-reflection axis of the order n (i.e. S,) also exists. The reverse of this fact

- might not be true, i.e. there may. exist S, without the existence of either C, or a

perpendicular plane of symmetry. One of the examples is staggered ethane in which
Se (axis passes through C—C) exists whereas neither Cq nor a perpendicular plane
of symmetry exists.

9. The improper axis may coincide with a proper. axis of rotation. Example
is a regular tetrahedron where S4 axis concides with the C, axis.

10. The app11cat1on of two or more operations one after the other may
produce a net effect whrch can be produced by the application of a third single
operation.
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‘A Few Examples’

Fmally, a few examples with their symmetry elements. and operatlons are hsted

in Table A.I-2

Table A.I-2 Symmetry Elements and Operations of Some Molecules

BC13 (planar (1)
molecule)

(i)

each includes N and one of the H
atoms
A triad axis passing through B and

_ perpendicular to molecular plane

Three diad axes, each in the mole-
cular plane and includes B and one

- of Cl atoms

(iif)
(iv)

)
CH,, CCl, ()

. (tetrahedron)’

(i)

(ii)
(iv)

SF 0)
(octahedron)*
(@)
(iif)
(iv')
)

Three vertical planes of symmetry,
each includes C; axis, atom B and
one of Cl atoms '

One horizontal plane of symmetry,
It is perpendicular to C; axis and
includes molecular plane

One S5 axis coincidence with C;
Three diad axes coinciding with x,
y, and z axes

Four triad axes, each passes through
one apex and the centre of the.
opposite face ,

Six diagonal planes of symmetry
Three S, axes comc1d1ng with x, y,

~and z axes

(There are a total of 24 drstmct operatlons
These are E, 8C,, 3C,, 65, and 6 Oy .).
Three S, axes, each passing ﬂjr_ough

a pair of opposite apices '

Three C2 axes colhnear w1th the S4

Three C, axes collinear with S48

and Cps. ' '

SIX C; axes blsectmg opposrte edges -
Four Sg axes, each passmg through

the centres of a pair of opposite

triangular faces

Molecule Symmetry elements - Symmetry operations
- H,0 (i) A diad axis in the molecular plane C,, C} (=E)
passing through 0] blsectmg HOH
. angle
(i) Two vertical planes of symmetry o,, O,
One includes molecular plane and -
the other perpendicular to it passing - -
. . through O atom :
NH; (@) A triad axis passing through N Cs, C3, C3 (=E)
‘ (i) Three vertical planes of symmetry, 0, Oy, 0,7

G, G5, CF (= )

G, C;, Cz"'
O_v’ O_vl, O.v//
Oy

S,, 82,83 (= E)
3Cy, 3C5 (= E)

4Cy, 4C3, AC3 (= E)

60,
38,, 382 (= Cy), 383,
38; (= E)

3S,, 352 (= C,)

353, 384 (= E)
already accounted for
under (i)

3C,, 3CE (° Cy)

3C3, 3C} (= E)

6C§, 6C'22 (= E)

4Se, 482 (= Cy)

453 (= i), 4S¢ (= Ch
453, 4SS (= E)

(Contd.)




™
~

The Solid State 217 -

3 (Octa.hédron)

Molecule. Symmetry elements .. - © Symmetry operations
(vi) Four C; axes colinear with the Sgs already accounted for
' ' “under (v)
(vii) A centre of symmetry _ - already accounted for
: ' - under (v).
(vii) Three horizontal planes of sym- 30y,
metry which pass through four
. of-the six apices ,
(ix) Six diagonal planes of symmetry 60y
which pass through two apices and '
bisect two opposite edges
(There are a total of 48 operations.
These are E, 8Cy, 6Cy, 6Cy, 3C, (= C3), i, 64, 8Ss, 30, and 60,,.)
~ T(tetrahedron) (A tetrahedron can be drawn within a cube. We choose the rectangular

“axes with origin at the centre of cube and axes parallel to the sides of

cube.) . _ _
(An octahedron can be drawn within the cube. The symmetry operations:
of a cube are the same as those of octahedron.)




218 A Textbook of Physical Chemistry

Annexure I Suppleméhtary Materials'

The Vector Hy,

Characteristics of
the Vector H,,,

The vector H,,, is defined as .
Hhkl—hbl +kb2+lb3 ’ . (1)

where by, b, and b5, known as reczprocal vectors, are defined in terms of the

 primary vectors a;, a, and a; of the three crystallographic axes by the expressions.

=R ®
a - a, xXa

by=—B%4 | 0
a-a,xa -
o xa, . S

by=—1"%_ - SENCY
G- X

(Note that the 1ndlces of the reciprocal vector and the primary vectors in the
numerator run cyclically and the dénominator in all the reciprocal vectors
represents the volume of a unit cell with side lengths a;, a, and a,.)

" The symbols h, k and [ in Eq. (1) represents Miller indices which define
a set of parallel equidistant planes, one of which passes through the origin and
the next makes 1ntercepts a,/h, a,/k and a3/l on the three crystallographic axes
(Fig. 3.10.1).

The primary vectors a;, a, and a; and the reciprocal vectors b, b, and
b, satisfy the normal and orthogonal conditions given by the-expression

a.xb-= 5-- 7 _ ®)

where §; is Kronecker delta (it s equal to one when i = j and is zero when
[ #]). : '

- For examples,

al'bl:ai'M:l . - ' (6)
X . :
a;-a,Xa :

The second expression is zero because the vector a; x a; is perpendlcular to a,

and hence the scalar product of @, and a; x a, will be equal to zero.

The vector Hy,, has the followmg characteristics.
1. Its orientation is perpendicular to the planes Akl
2. Its magnitude is equal to the reciprocal of the interplanar distance d,.

Proof of first characteristic Consider the vectors a,/h — a,/k and aylk - a3/l
which have orlentatlons parallel to the hkl planes (Fig. A. II—I)
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o S afl

:\\ :az/k
- 1 hN : 4G 4
N ]
al/h : '\\.\ :
. ' !.___.__._:.__\ﬁrl
@ | ®
The scalar product of these vectors W1th H i are as follows o
'>a1 .4 a a
—=—=-H — === | (hby + Kby + Ib
[‘h k] " lh_ k]( .
=a b +—-a -b, +—a b,——a b -
: l
“12 b, “;az ~bs
=1+0+0-0-1-0" : (using Eq.5)

= .
(‘%"%)'Hw = [%-073}- (hb, + kb, + Iby)
h N o
= ;%"Ih +a, b, f;az - by ‘7“3"’1

“%‘13 b, _‘13 by

—O+1+O O 0—1
._O )

vectors (al/h az/k) and (az/k - a3/l) Smce both the latter vectors are parallel
to the hkl planes it follows that the vector H hid 18 perpendlcular to the hkl planes.

Proof of second characterzsttc To show that the magnitude | H, wa | 18 equal to
1/d,,;, we consider a unit vector i ‘perpendicular to the planes (Fig. 3.10.1). If
¢ is the angle between the q; axis and the normal vector =, it follows that the
distance dyy between the two successive planes will be given by
gl a o S
dyy=—Lcosg=-L:n - - SR 8)
Wi = = ~C0S ¢ Pt . (

Since the vector Hj, is perpendlcular to the hkl planes, we can define the unit
vector n as
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Reciprocal Lattice

- Bragg Law in the'
Vector Form

Fig. ATI-2 Reflection of
X-rays from hkl planes

Hy _ hb + b, + b,

T IH,,! | Hy | ©)
With this, Eq (8) becomes -
- which in view of Eq. (5) becomes |
dy=—— ie IHyl=-—1 o an
| Hyy | Ay . o

The reciprocal lattice is obtained by. the repetition of reciprocal vectors by, b,

-and b;. The vector from the origin to any point hkl of the lattice represents the

vector Hj,; which has orientation perpendicular to the hkl planes and magnitude
equal to the reciprocal of the interplanar distance dj,;.

Consider the reflection of X-rays from the hk! planes as shown in Fig. AT,

. (s —sg)/A
So/h : _ R o sl
90°-6
, 0
hil
planes

Both the incident X-ray (represented by the unit vector s;) and. the reflected
X-ray (represented by the unit vector s) make equal angle 6 with the hkl planes.
We consider the vectors sy/A and s/A as shown in Fig. A.II-2. From Fig. A.Il-2,
it follows that the vector (s — s,)/A has a direction perpendicular to the hk{ planes
and its magnitude is given by '

5=8|_ 2005;(97(‘)?—,(9).'= 2§m6 12)
, A A '
From Bragg law, ’
| A = 24y, sin 6
weget =m0 1 o o
Since | Hyy, | = 1/d,,, we write the above expression as

2sinf _ "

= Hyl | a4y




Expression of
Interplanar
Distances

'Cor_hpa.ﬁng Eq. (12) with Eq. (14), we get

~which is the vector form of Bragg law.
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| 'i"’/th)Jlf | | (1)

Since both the above vectors have onentatlons perpendlcular to the skl planes,
we can write -~ . °

S—-SO

7 " Hw o L)

Since | Hyy | = Vdy,, we write

— =1 Hhk_l' =Hy, - Hyy,
Rkl

Since | Hyy | = hb; + kb, + Ibs, we get

Qg ‘
= h* (b - b))+ k* (by - by) + 1% (by - by) +2hk (b, - b,)
From the definitions of reciprocal vectors (Egs 2 to 4), we can write the above
expression as
11
duy (a4 Xay) -
+ k(@ x @) - (ay X @) + I (X a,) - (a; X a,)
+2hk (a, Xay) - (a3 X ay) + 2K (ay X @) - (a; X @) |
+ 20h (@) X a2) (a, X a3)] |

2 [hz(az X a3) - (a, X ay)

Usmg the expressmn

(axb) (cxd) (a c)(b d) a-dyo-c

the above expressmn becomes
S U I
di%kl (@, a, % )
- +.k2_{(as-as)(a1-a1-)—(as-aq)(aq-as)}
+P{(4-a) (6 )~ (@ 6)@ @)
+2hk {(a, @) (a5 - @) — (@, - 0,) (4~ @)}
+2H{(ay- @) (0 @) - (@3- 0,) (¢, @)}
+2h{(a-a,) (a4, @) (4 &) (4 )}

=[ 2{("2 @) (4 @)~ (@, a) (a,-,))
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= (al-a;x a,) (K {03_032 — (aya; €08 Oly3 )’
+ K {a32_al2 ~(a3a; €08 0i3;)*) + 1*{a s - (a,a, cos 04,)*}
+ 2hk {(dya; cos 'aZ;) (a5a; COS 0ty,) — (@, COS 0y )al }
+ 2kl {(a4 al" cos 0y3) (aa, cos 0, ) — (a,ay COS Oy, Ya}

+2lh {(a,a, cos 0{12);“'(%(1,j COS Olys ) — (a5, €05 03, )a3 }]

adiay K2 sin® o,y . k* sin” oy, . 1* sin” oy
B 2 2 - . 2 2
(@ -xa)" | 4 ) a
+——(cos a23 COS Oty — -COS Ofyy)
hdy :
2kl
+——(COS O3, COS Oy — COS Oy )
aza3
2k o _
+——(cos 0, cOS Q3 — €OS Oy ) V)]
a4 .

The expression ¢; - a2 X a represents the volume of unit cell. By deﬁmtlon we
have

aaq aqaq -0
@ mxa) =00 -0 @-a
G- G-a a-o

-ddd-ddotay |
~ (@y@y c0s 015) (@t 005 012) 05 — (@y033 005 o) (a3 Cos )]
+(aya cos o)) [(aya, €08 04) (@03 €O ) — @3 (aah €05 03]
'='a12a%a32 [1+2 cdé%du "obs 03 €08 0131 — co‘s2 0y —COS> 0ty — COS> d31]

Subst1tut1ng the above express1on 1n Eq (17) and using the conventional
crystallographic notations

i yal = a; . %3 F:- (94 -

az =¢; Oy =7




“The Solid State - 223

- weget -

! L
di, _[1+2008aCOS,BOOS}/—COSza—cos2[3_00327}
| s’ Ksin’ +z?':sm2y
a b A

_ +%(co‘sacosﬁ-—cosy)+—2—k£(cos[300s7—cosa)
ab bc .
" 2lh, . :
+—(cosycosa=~cosf3) | S
2 S ﬁ)} | o

. -Equation (18) is:applicable to all the seven crystal systems. For triclinic system .
(a#b#c a# B# v+ 90°), Eq. (18) s to be used as written, but for other crystal
systems, simplified expressions deduced by using-the corresponding crystal
paramieters can be used. These are described in the following.

Rhombohedrd_l crystal: a=b =c; == y# 90°

1 (R k% + P)sin? o+ 2 (k + Kl +Ih) (cos® o — cos o)

— 5 , - — 19
: d,fk," ] a2(1+20053a—3cos2a) (_ )
Hexagonal crystal: a = b # ¢; o= =90° y= 120°
1 4R +hk+i?) P |
2z ”[ 2 }—2 . (20)
dyg 3 a ¢ :
Monoclinic crystal: a #b # ¢, a==90°#y -
1 1 (K  k* Psin’y 2hkcos
| Sttt ! @y
d, - sin’y b c ab ,

Orthorhombic crystal: a # b # c; o= B= 7= 90°
1 R KR a
——=—t5+t— o , : (22)

Tetragonal crystal a=b # G o= [3 Y= 90°

LR P

d,%,d' Soa c
Cubic crystal: a =b =c; a = f=y=90°

1 R+ o - -
= — A - | (24)

2 .
di - a

Scattering of X-Rays Crystals exhibit the phenomcnon of d1ffract10n when they are exposed to X-rays.
by Crystals - The - electron -present in atoms/molecules of a crystal under the influence of
' electric component of X -rays experiences acceleration, and accordmg to the
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Scattering by an
Electron

Scattering by an
Atom

Scattering from a
- Small Crystal

classical electromagnetic theory, they emit radiations (know as scattered
radiations) in all directions with the frequency 1dent1ca1 to that of the incident
X-rays. ' '

~ For a beam of polarized X-rays, the 1nten81ty of scattered X-rays at a distance

R from an electron (mass: m, and charge: e) i is given by the expression

4
(A .
I=] ' - -
’0[_(4%0)2"13641?2] | @

where I, is the 'intensity of incident X-rays and c is'the speed of lig_ht.

The scattering of X-rays by an 'ato'm is due to its. electronic charge. Assuming

charge distribution in an atom 'to-be spherical symmetrical, the intensity of

scattered X- rays ata d1stance R from the atom is given by

o ' -
1[(41[8)%64132[2@]} | o (2§>

where the summation is over the number of electrons in the atom and f. represents
the scattering“factor of an electron and is given by the expression

J47tr pr[ krkr

In this expression, p, is the charge density at a distance r from the nucleus
of the atom and k = (4w sin 6)/A, where 8 is half of the angle between the
incident and reflected X-rays.

}dr o @

The intensity of scattered X-rays from a small crystal depends upon the number,
nature and placement of its constituent atoms in the crystal lattice. The expressmn
of intensity of reflected X-rays is given by -

| 4 ‘ 2
I= I 2.2 4p2 FF* s ilel
(4n£ ) mec R sin* x1
The number Nl, N, and N3 in the above expressmn when multiplied by
the magnitude of the respective unit vectors a;, @, and a, give the edges of

crystal along the three crystallographlc axes. The symbols x;, x, and x; are given
by the expression

WD 6-50)-a = o | |
WAs-s0) ;=xp . - Q9)
(n/l)(s so) o x3 - - '

sin N, sin® N :
2’02][ .23x3] 28
sin® X, sin” x3

where 5p and s are the unit vectors pom’ung towards the 1n01dent and reflected

X-rays, respectlvely




© Structure Factor -
of a Unit Cell

Fig. A.II-3 The plot of
function (sin Nx/sin x)?
versus x

The Three Laiie
Equations

‘Equivalency of the

with Bragg Law

The Solid State '22'5 .

- The term F in Eq. (28). is known as the stmcture factor of the unit cell of the

crystal and is given by the expression
F= Z £, exp {(2mi/A) (s = sp) -7, } ' (30)

where r, is the vector represenung the placement of atom in the umt cell of the
crystal, Since

sinNx _ m N cos Nx _ iN- |

x—nn Sin x x—onm  COSX

the term sin® Nx/sin?x has a value of N? near the vicinity of x = an while at other
values of x, the term has a small value near to zero (Fig. A.IL-3). '

VAV 1 : .A/\/\ 1 I\ 1
w2 n 3n/2

Hence, the intensity of the scattered X-rays as given by Eq. (28) will have .
smaller values (near to zero) unless the three quotients are simultaneously close
to their maximum values for which we must have

X, =hm, x,=Kkn and x;=1Irn €1))

where /', K’ and I’ are integers. Since for an average crystal the integrals N,, N,
and N, have large values, the intensities of the scattered X-rays under the
conditions given by Eq. (31) will be much larger than those prevailing at other
values of x;, x, and x,.

Substltntmg Eq. (31) in Eq.A(29), We get

(WA (s —sy) - ay=hn ie. (s~sp) -a;=hA

WA (s ~s9) - a=kn ie. (s-sp)-ay=Kh

(WA (s —5p) a3 =1I'm ie. (s — So) - az=1'A _ _ (32)
These three expressidns are-'known as the 3 Laiie equations.

Under the conditions given 'by Eq. (31), it can be shown that the three expressions

Three Laiie Equations of Eq. (32) are equivalent to Bragg’s law.

Let any arbitrary vector r be written in terms of rec1procal vectors as

T —Plbl + pob, +P3b3 I (33)
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Takin'g the scalar product of Eq. (33) with the pnmary vector'a;, we get:
_ r'dl = (piby + Doy +p3by) -4 o
, =p, S (asa; - b; =9;)
Similarly, it can be shown that 7' '
j"r';"az =p, and 'f'as-5P3' :
With these expressions of p, p, and p3; Eq. (33) Becbmes |
r=(ra)b+roa)b+ra)b, 34

Let r be the vector s — 5. Hence

Cs=sy= (5= 80) - @) brH{(s—50) . ay) by +{(s-5) - a3)) by
which on using the 3 Laiie equations becomes
s—5y = (WA) by + (KA b, + ('A) by
= A(K'by + 1'b; +1b,) |
=A Hyyy - . ' - (35
~ which is Bragg’s law for the reflection from Ak’ planes (Eq. 16).

Structure Factorfor  The structure factor of a unit cell (Eg. 30) is _ : .
a Bragg Reflection : ' o ' ) 1
F=Y f,exp[(2rild) (s~ s0) ;] | 3 i

where f, is the atomic scattering factor, s and s, are the respective unit vectors
directed along the incident and scattered X-rays and r, is the position vector of
the atom in the unit cell.

According to Bragg law (Eq. 16), we have

 5—8y =AHy,; = A(hb +kb, + 1b3) | 37)

The vector r, in terms of components along the crystallographic axes a,, a, and
a;, and the fractional coordinates x,, y, and z, as shown in Fig. A.II-4 is

=X, +Y,a 2,8 | (38)

Fig. AII-4 The vector -
r, in terms of the
fractional coordinates
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b
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Féice-Centr’ed
Cubic Bravais
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Body-Centred
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From Eqs (37) and (38), we can: write

(s —sg) - 1, -k(hb1+kb2+lb3) (xa1+yna2+za3)

which on using the fact a; : b; = §;, we get o
-5 r=Almthytl) (39)
Subst1tut1ng this in Eq. (36), we -get ' "
F= anexp[(an)(hx +ky +lz) | . 40)

Equation (40) provides the structure factor for a reﬂect1on from hkl planes in a
crystal. Its application to a few unit cells is given below.

For a face-centred Bravais lattice, one needs to specify the locations of four
points in its unit cell, conve’ntionally,r- these are taken as

©.0.0% (1:3.0) (3.04) wa (0.4.4)

The other points of the lattice can be generated by translational symmetry
of the four points, i.e. by increasing the coordinates of each by umty each time
The structural factor (Eq. 40) becomes

F=f[1 +exp{rnih+k)+ exp{ﬂ: i(h+ D} +exp{nik+1)] (41) ‘

Since exp(i © m) = cos (T m) + i sin (& m), the value of exp(i & m) will be equal
to (-1)™ for an integral value of m. InEq. (41), m=h + korh+lork+1, ie.
m involves the sum of two Miller indices at one time. The value of m may be
even or odd depending upon the values of hkl indices. The followmg cases may
be distinguished.

. Case 1 The indices hkl are all either odd or even.

In this case, sum of two indices will always be a even number, Hence
Fu=f(+1+1+1)=4f - (42)

Case 2 The indices hkl have mixed even and odd values.
In this case, two of the three sums of two indices will have odd value while the

* third sum will have even value For the former, (-1)™ = -1 and for the latter

(-1)" = +1. Hence B ’
Fyq = fa—1—1+n— | B @3

Intensity of scattered X-rays - Since the 1ntensity of scattered X-ray depends on
the square of F,, the reflections from planes having mixed hkl will be missing

- (as their intensitie$ are zero). -

- For a body-centred Bravais- 1att1ce one needs to specify the locations of two

points in its unit cell. Convent1ona11y, these are taken as

(0,0,0) and (§,4,3) °
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~ Substituting the's.e\ in Eq. (40), we get S

Sug = F 1 +exp{(@i) (h + k +D}] | (44)
Two cases may be distinguished. ' '

Case 1 The sum of A, k and [ indices is even.

In this case, exp{T_t‘ i(h+k+A)} =+ 1. Hence
Fuy=f(1+1)= 2f | o (45)

Case 2 The éum of h k _and [ indices is odd.r

~In this case, exp{m i(h + k + [)} = —1 and hence

| Fru=f(1-1)=0 N O

Intensity of scattered X-rays S1nce the 1ntens1ty of scattered X-rays depends
on the value of F2, the refections from planes for which the sum of indices is
odd will be missing. '

Rock-Salf Structure  The rock- salt structure has face-centred cubic Bravais lattice. In the unit of -
sodium chloride, there are four Na* ions and four CI” ions. Conventlonally, their
locat1ons are taken as follows.

cr 00 (140} (104 (0.4.4)
Na® (30,0 (0.4,0) (0.0.3) (33:3)
The structural factor in this case is
Fyi =fq [l +exp{ri(h +k)} +exp{rni(h + 1)} + exp{mi(k +)}]
+ fnaleXp(r ih) + exp(n ik) + exp(nil) + exp{mi(h + k +D)}] (47)
* Three cases may be distinguished. o

Case 1 The indices hkl are all even.
In this case

Fp=fagQ+1+1+D+ fir,d +1+1+1) _'
=4(fo +/xa) : _.(48)

Case 2 The indices hkl are all odd.
In this case

By =fu(l+ 141+ Dafigcl 11— 1) |
= 4o —faa) ' _ (49) _

Case 3 The indices ikl have mixed even and odd values.
In this case, either two of the three indices have even or odd values. Hence

Fy=0




Caesium Chloride

Zinc-Blende
Structure
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Intensity of scattered X-rays: Slnce the 1ntens1ty of scattered X-rays depends
on the value of F2 We conclude that ‘

(1) The refect1on from the planes for which the 1ndlces hkl have mixed
values is missing. '

(i) The reflection’ from. the planes having all the three indices even has
intensity larger than'those from the planes having all the three indices odd.

Caesium chloride has hody-centred cubic Bravais lattice with Cs* and CI ions
occupying the locations

5" (0,0,0)- and CI"(1,1,1)
The structural factor takes the form

F=fo +foexp{mi(h+k+ D) (50)
The following cases may be distinguished ' ' |
Case. 1 Whenh + k + [ = even
Here  F=fo+fa - 61)
Case 2 Whenh-i_—k+l=c')dd | |

Here F=fo—fa | (52)

The zinc-blende structure has a face-centred cubic Bravais lattice with the
following locations of Zn** and S* ions in its unit cell.

Z 0,005 (4.4 : (0.4
S G G0 (32

The structure factor in this case becomes

Fy =fmll +exp{rni(h+k)} +exp{rni(h + )} +exp{n i(k+D}]
+flexp{mi (b +k+ D2} + exp{m i 3k +3k + )2}
+exp{mi(3h +k+30/2} +exp{ni(h + 3k +3)/2}]
=[l+exp{rni(h +k)} +exp{ni(h + )} +exp{nik + l)}]

X [fzn +fs exp{m(h +k +0D/2}] _ (5§)

The following cases may be distinguished.

Case 1 The indices hkl have nuxed even and odd values.
In this case, two of the three sums of two indices have odd values while the thll‘d
sum has an even value. With these, the first term in Eq. (53) is zero. Hence,

Fa=0 (54)
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Case 2 The indices hkl are all either even or odd. S
In this case, sum of the two indices will al\yays be even and hence each
exponential in the first term of Eq. (53) is equal to + 1. Hence

Fiao =4 [ + fy oxp {m1 (h + k + D/2}]

Since F;, involves imaginary- quantity and the intensity of the scattered X-rays
involves FF*, we write -

FF* =16 [f,, +fgexp (i(h +k+ D2 [y, +fs exp (~mi(h+k+1/2}]
=16 [fz, +fs +2fznfs cos (m(h +k + 1)/2}] o (55)

The folloWing three suBgases may be considered. . .
() When h+k+i=dn - |
Here - FF* =16 (fy + £y - T (56)
(i) When htk+l=4n+2 -
Here  FFF=16(h-f) @D
(i) When the_indices hkl are all odd | - .
Hee  FF*=16 (L +f) s8)

Note: The structure of graphite is similar to that of zinc-blende structure. The
structure factors of unit cell can be obtained from those of zinc-blende
structure by replacing each of f;, and fg by f..




Tonic Equilibria

4.1 THE DISSOLUTION PROCESS

General Principle of
Solubility

Fig. 4.1.1 Jon-dipole
interactions

lonic and Molecular
Solutions -

Most chemical reactions occur in solutions. The study of such solutions
constitutes one of the most important branches of physical chemistry. In general,
if the solubility of solutes in various solvents is analyzed, it is observed that the
polar ‘solutes are more soluble in polar solvents whereas nonpolar solutes are
more soluble in nonpolar solvents. This is the general principle of solubility, i.e.
like dissolves like. For example, sodium chloride is soluble in water whereas it is

- insoluble in carbon tetrachloride. The high dielectric constant and polar nature

of water, makes it one of the most important solvents for ionic solutes. The higher
dielectric constant weakens the forces of attraction between the oppositely
charged ions of the ionic crystals and its polar character generates the ion-dipole
interactions in which the positive ion is attracted by the negative end of the water
dipole, whereas the negative ion is attracted by the positive end of the dipole
as shown in Fig. 4.1.1. The consequence of this is that the ions are pulled out
of the crystal lattice and are drifted into the liquid phase. Ions move in the
solution in the hydrated forms. Certain covalent molecules with relatively high
dipole moment can also dissolve in water to produce an ionic solution because
of the stronger ion-dipole interactions (e.g., hydrochloric acid).

A glven substance on dissolution in a solvent (e.g., water), in general, yields
e1ther an ionic solution or a molecular solution. In the former, the substance splits
up into ions, whereas in the latter, it is .present as such. The formation of these

- two types of solutions can be represented as follows:

MX(s) + aq — M'(aq) + X (aq) - @4.1.12)
- MX(s) + aqg - MX(aq) 3 (4.1.1b)
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Formation of
lonic Solutions

Formation of
Molecular Solution

Illustration

The formation of these two.solutions may be cons1dered through the
following steps. :

Steps 1nvolved in the formation of ionic solutions are given below.
Vaporization of the substance to form gaseous molecules

MX(s) —=— MX(g)

Dissociation of gaseous molecules into atoms

MX(® —575 M(g)+ X(g)

Formation of gaseous ions from these atoms
- . AionizH - + -
M) —— M'(g)+e

X@+e B, x-(g)

Solvation of these gaseous ions

M (g)+aq — 5 M*(aq)

_ AnpH _
X (g) +aq i VR ¢ (aq)

The enthalpy change in the formation of an ionic solution is equal to the

sum of the above changes, i.e.
AH = Ay H + Ay H + Dignigl + AgpH + Ay H + AppH = A H + AH
where AlH AggoH + AgicH + Ao, H + AgpH

i0niz

Steps involved in the formation of molecular solutions are given below.

Vaporization of the substance to form gaseous molecules

MX(s) —=7 5 MX(g)

" Dissolution of MX(g) to give MX(aq)

- Mx(g) —2 5 MX(aq)
with a total enthalpy change AH = A, H + A

vap sol

JH, which corresponds to the

7 ‘enthalpy change in the formatlon of a molecular solution.

The question whether the given substance is soluble or not and whether on
dissolution it forms an ionic or a molecular solution may be answered only from the
consideration of the enthalpies involved in the formation of the solution. This is
illustrated by taking the typical examples of CaCl, and HgCl,. The enthalpies
involved in various steps of formation of the solution are listed in Table 4.1.1.
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Table 4.1.1 Enthalples Involved in the Formatlon of Iomc and Molecular Solutions of
CaC12 and HgCl,

I Foran ionic solution - AHIKJ mol? AH/KJ mol™
: (a) Sublimation : : 209.2 : © 83.78
(b) .Bond breaking - -~ .10042 - 4602
(c) - Ionization o 17154 : 2 815.8
Electron affinity 2 (- 359.8) - 2 (- 359.8)
(d) Cation hydration - 15983 — 1 8451
~ Anion hydration S 2:(-3556) 2 (- 355.6)
Total ~ 1003 838 .
I For a molecular solution o
(a)  Sublimation S 209.2 83.718
(b) Dissolution of . ‘ o '
~ gaseous molecules - . =335 - 669

Total s 168

Comparison of the total enthalpy involved in the formation of the ionic.
solution indicates that this type of solution is more likely to be formed by CaCl,
than by HgCl,. Analysis of the individual enthalpies indicates that though steps
(a) and (b) are more favourable to HgCl, than to CaCl,, the subsequent step (c),
namely, the cation formation, is highly unfavourable to Hg, with the result that
HgCl, does not form an ionic solution. Similar comparison of the total enthalpy
involved in the case of molecular solution indicates that the formation of such
type of solution is very unfavourable for CaCl, and slzghtly unfavourable for
HgCl,.

More precisely, the formation of a solution (a spontaneous process) should
be decided by the change in the value of Gibbs free energy AG given as

AG=AH -TAS

where AH and AS are the respective enthalpy change and entropy change of the
process. The former represents change in the value of heat content at constant
pressure and the latter represents change in the extent of disorderlines of the
system. Since the formation of a solution is always accompained by the increase
‘in entropy, the factor T AS is always positive. For a spontaneous d1ssolut10n AG
should be negative. Both AH and AS favour this for an exothermic reaction,
whereas, for an endothermic reaction, the entropy factor has to outweigh the
enthalpy change. However, this term is usually not large, and does not contribute
more than 30 kJ to the overall free energy change. Nevertheless, it becomes very
important for an endothermic reaction with a very small value of AH as in the
case of HgCl,,
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4.2 CLASSIFICATION OF SUBSTANCES

Classification of
Electrolytes

Limitation of
Classification

- Based on the relat_ivé values of conductivities of aqueous solutions, the dissolved

- nonelectrolytes.

substance can be classified into any one of the following categories.

(@) Strong electrolyte: high conducting
(ii) ' Weak electrolyte: ~ low conducting -
(i) Nonelectrolyte: ~  nonconducting

Table 4.2.1 records a few typical examples of strong, weak and

Table 4.2.1 A Few Typical Examples of Strong, Weak and Nonelectrolytes

Compounds Crystal type Solutions
Halides, hydroxides and

acetates of Gp. 1 and Gp. 2

elements : Tonic Strong electrolytes
Nitrate, chlorate and sulphates - '

of M* and M?* cations Tonic Strong electrolytes
PbBr,, PbCl,, PbAc,, HgCl,, _

Cu(Cl, ' Ionic to molecular Weak electrolytes
HCI, HBr, HI Molecular Strong electrolytes
H,SO,, HCIO,, HNO;, Molecular (H bonding Strong electrolytes
RCOOH, H,CO,4 Molecular : Weak electrolytes
ROH, HCN, other organic

compounds Molecular Nonelectrolytes

The classification of compounds in terms of strong and weak electrolytes is
based on their behaviour in a particular solvent, namely, water. However, such
classification suffers from a great disadvantage in the sense that a particular
electrolyte, though weak in water, might behave as a strong one when dissolved
in some other solvent or vice versa. For example, sodium chloride behaves as a
strong electrolyte and acetic acid as a weak electrolyte when dissolved in water.
However, when acetic acid and sodium chloride are dissolved in ammonia, their
conductivity values are comparable, indicating a strong electrolytic behaviour for
acetic acid (Table 4.2.2).

Table 4.2.2 Molar Conductivity Values

Solute . _ o ~_Solyent

Watei l Ammonia
A/S em? mol™ A/S cm? mol‘1

Sodium chioride . - 106.7(s) - - 284.0(s)
“Acetic acid 47w) E 216.0(s)

Thus, the above classification depends upon the solvent used.




True and Potential
Electrolytes

Another classification Wthh is largely based on the characteristics of the solute

and not on that of the solvent, is to label them as the true electrolyte and the
potential electrolyte. The essential characteristics of true electrolyte is that evep
in the.pure liquid state it is an ionic conductor. In dissolution process, all tha
a polar solvent does is that it uses ion-dipole forces to disengage ions from thejr
lattice sites, solvates them and disperses them into the solution. Examples are
NaCl, KCl, etc. The potential electrolyte, however, does not conduct electricity

in the pure liquid state, though it provides a conductmg solution on dlssolut1on'

in an ionic solvent. Examples are hydrochloric acid, acetic acid, etc.

4.3 THE ARRHENIUS THEORY OF DISSOCIATION

Dissociation of a
Weak Electrolyte

Dissociation in |
Terms of Extent of
Reaction

The increase in molar conductivity with decreasing concentration observed in -

dilute solutions of all electrolytes led Arrhenius to postulate that a chemical

~ equilibrium exists between the molecule of undissociated electrolyte and the ions

that result from dissociation

AB —— A" +B ' : 431

On dilution, more of AB dissociates to give A* and B™, which accounts for the

increase in molar conductivity. In dilute solutions, it is known today that the
above equilibrium is valid only for weak electrolytes. Strong electrolytes are

_ already present in the form of ions in the solid state. Evidence for the existence

of equilibrium in weak electrolytes can be seen from the study of colligative
properties (properties which depend only on the number of species and not on
their nature). Such properties are osmotic pressure, relative lowering of vapour
pressure, elevation of boiling point and depression of freezing point.

For example, if we have 0.01 mol kg™ solutions of CH,OH and NaCl, the
depression of freezing point in the latter is double that of the former. It is because
of the fact that solution of NaCl would be 0.01 mol kg™! with respect to Na* and
0.01 mol kg™! with respect to Cl- and that the total concentration of the species
in solution is 0.02 mol kg™, Thus:

Depression of freezing point in 0.01 mol kg‘l CH,OH = 0.018 6 °C
Depression of freezmg point in 0.01 mol kg™ NaCl = 0.037 2 °C
Similarly, ' B o

Depression of freezing point in.0.01 mol kg AL(SO,); = 0.093 0 °C

The depression of freezing point in case of a weak electrolyte AB (0.01 mol kg™)
is in between the values of 0.018 6 °C and 0.037 2 °C. Thus, the total
concentration of species in the solution is greater than 0.01 mol kg™! but less than

0.02 mol kg™

In generai; if £ (known as extent of reaction) is-the amount of AB that has

dissociated, then the amounts of various species in solution are

AB == A*+B '
0.01 mo! ~ £ E & : _ (4.3.2)

e e
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Dissociation in
Terms of Degree of
Dissociation

Expression of
Equilibrium
Constant

The extent of dissociation of a substance can also be expressed in terms of
" degree of dissociation, which is, by definition, equal to the fraction of the total -
“substance that is present in the form of ions. If & is the degree of dissociation,
it means that the amount ¢ out of 1 mol of the solute is present in the form of

K

Total amount of species in the solution is (0.01 mol + &) and, therefore,
the depression of freezing point will be equal to (0.01 + &/mol) (1.86 °C). h

ions and thus the remaining amo_unt‘of the undissociated species is (1 mol - @).
If ¢ is.the. concentration of the solute AB, then the concentrations of various
species in solution are as follows: '

AB — A" +B" (4.3.3)
» c(l-0o) co ca , .
Similarly, for the electrolyte A,B (assuming single-step dissociation):
. AB = 2A* +B” - (434)
c(l-a) cQa) ca - , .
In general, A,B, == xA’"+)B" 435)

c(l-a) c(xa) c(yo) ,
A chemical equilibrium is a dynamic equilibrium and can be characterized by

an equilibrium constant,* which by definition is

Product of concentrations of species appearing on the right
_ side of equilibrium, each raised to the ggfrespo%ding s%oictﬂometgllilc number

_ Product of conentrations of species appearing on the left
side of equilibrium, each raised to the corresponding stoichiometric number

eq

43.6)f
In the above examples, K, s are
[A™]1[B"]
K., (AB)= ———
eq(AB) T [AB] 4.3.7)

*Concentrations are to be expressed in mol dm™. By convention the ions are written on
the right side of the dissociation reaction.
"In general, a chemical reaction is written as
. 0=2; B . _

where Vg, the stoichiometric number, is positive for products and negative for reactants.
The expression of equilibrium constant is written as ' '

‘ K., =1l [B]®
Taking the example of dissociation of A,B, we have

Equilibrium reaction: 0 ——2A*+B -A,B ie. AB—=2A"+B"
¢ IATB]
o=
[AgB]

Through out the treatment of ionic equilibria, we write equilibrium reaction and its equilibrium
constant the way these are written at the end of the above two expressions.

Equilibrium constant: K, =[A*T [BT][AB]" ie.
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o ATEEY) | ,
Keq(AgB) = AR ) ‘ | (4.3.8)
[AY*TF B P
[A,B,)

The value of the equilibrium constant is a characteristic of a given weak

. electrolyte and depends only on the temperature. It is independent of the

individual concentrations of AB, A" and B™. If a strong electrolyte containing

either A* or B™ is added to the solution of a weak electrolyte AB, even then the

above expression for the equilibrium constant holds good. The effect of a strong

- electrolyte is to suppress the extent of dissociation of the weak electrolyte, i.e.
the degree of dissociation of the weak electrolyte is decreased.

In general, K (A )= 4.3.9)

4.4 EFFECT OF DILUTION ON DEGREE OF DISSOCIA'TIO-N.‘ :

Ostwald Dilution: We write the equ111br1um for a weak electrolyte AB as
Law _ .
AB+ H,0 = A’ (ag) + B (ag)  (44.0)

If o is the degree of dissociation at a given concentration ¢ of AB, then the
concentrations of various species in solution are
[ABl=c(-0a); [A'(gl=co  [B(ag)] =ca

Substituting these in the expression of equilibrium constant, we have

_ BT [AB
“0 " [AB][H,0] [AB](1000gdm~/18 g mol™)
2
co

= 442
(1-a)(55.56 M) #.4.2)
The water concentration will practically remain the same (i.e. 55.56 M)
since only very small quantity of this will combine with A* and B”. Combining
this concentration with K., gives another constant Ky, which is called the
dissociation constant or the ionization constant. Thus

062

(1-a)
Smce o is usually a very small quantity, it is, therefore negl1g1ble in comparison

to umty, ie. (1 — @) = 1. Thus

COC2

Kdiss = _1_

or o= \l dess Y, KdlssV : (4 4. 4)
. C .

where V is the volume _containing 1 mol of the solute. Its unit is taken as dm?
mol . :

Kiies = Keg X(55.56 M) = “43)
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Example 4.4.1

Solution _

It follows from Eq. (4.4.4) that as ¢ decreases (dilution), ¢ increases. In the
limit when ¢ — 0, o will approach 1, ie. at infinite dilution, the whole of the
weak electrolyte gets ionized. This is the Ostwald dilution law.

The expression : '

o =Ky V

1SS

can be used to detenmne the Ky, if the value of « is known at a glven
concentration. The value of @ can be determined by using any other
physwochemlcal technique such as molar conductivity, colligative properties,
etc. A plot of or? versus V will be a stralght line; the slope of the resulting plot
gives the value of K.

—

"At 25 °C, acid dissociation constant of HCN is 4.9 x 1071 M. Calculate the degree of

dissociation of HCN, if its concentrations-are (1) 0 1 M and (i1) O. 01 M. -

If o is the degree of d1ssoc1at10n of HCN, then the concentrations of various spe01es m '

~ solution are

HCN +H,0 = H;0* +CN~

c(l-a) : o o .
Substituting these in the dissociation expression, we have

[H;0)CN"] _ (co)(ca) _ o
diss = - =c
[HCN] c(l-a) 1-a

Kgs _ |49x107°M)
0.1M

C
. 10
@) a= G210 M o0
"~ 00IM |

Thus i o= =7x107

4.5 DISSOCIATION OF PURE WATER

Eduilibrium Constant Pure water is itself a very weak electrolyte and ionizes according to the equation

of Water

lonization Constant
of Water

H,0 + H,0 = H,0* +OH" 45.1)
The equilibrium constant of the reaction is

: 45.2
P @52
The ionization of ‘water may be written as
H,0 — H*+OH™ ' - (453)

for which the ionization constant is given by




lonic Product of
‘Water

Nature of Soluiion
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_ [H][OH]

g =0T ] @.54)
TTTmor | | 28
It is obvious that K; = K, [H,0] (455)

Since water is found to be poorly ionized (degree of dissociation is 1.8 x 107

at 25 °C), concentration of water remains practically the same {(} 000 g dim3)
(18 g mol™) = 55.56 M}. Its concentration can be combined with the ionization
constant K; to give a new constant, known as the ionic product of water, K,,. From
Eq. (4.5.4), we get ' '

K, = K, [H,0] = [H*] [OH] - @556)

The concentration of OH™ in pure water will be the same as that of H;
therefore '

K,=[H7? | 4.5.7)

The value of {H*] in.Water at 25 °C is found to be 1.0 x 10~ M. The value
of ionic product at 25 °C is thus equal to

K, = (10 x 107 M) (1.0 x 10”7 M)
= 1.0 x 1074 M2 | - (4.5.8)

Because of equal concentrations of hydrogen and hydroxyl ions in pure water, -
the latter is neutral in its behaviour.

Acidity or alkalinity of a solution depends upen the concentration of hydrogen
ions relative to that of hydroxyl ions. In any aqueous solution, both hydrogen
and hydroxyl ions coexist in accordance with Eq. (4.5.3). The product of hydrogen

and hydroxyl ion concentrations is given by Eq. (4.5.6), the value of which

depends only on the temperature and not on the individual ionic concentrations.
If the concentration of hydrogen ions exceeds that of the hydroxyl ions, the
solution is said to be acidic; whereas, if concentration of hydroxyl.ions exceeds
that of the hydrogen ions, the solution is said to be alkaline. Taking into
account Eq. (4.5.6), it amounts to

For neutral solution [H'] = [OH] = K,
For acidic solution - [H]>[OH]. or [H*]  > JK,,

For alkaline solution [H']<[OH] or [H*_] < \/E -
At 25 °C, these_ reduce to _
Neutral solution [HY = 107 M
Acidic solution [H]> 107" M
‘Alkaline solution [H1 <107 M -
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46 THE pH-SCALE

Definitions of pH
and pOH

Example 4. 6.1

Solution

Since hydrogen-ion concentrations commonly met within solutions vary
considerably over the range 107 to.1 M, Sorenson introduced a logarithmic
scale for the sake of convenience, and gave it a symbol pH. It is expressed as

_ , v ) N |
pH=—10g10{[H,+]/M} =10g{ } : - (4.6.1)
iy ]/M
Thus, it is equal to the logarithm of the reciprocal of [H*]/M For neutral
water at.25 °C, pH is.given by

pH——log(10x10"7)——(—7) 7 . 4.62)

The pH corresponding to the acidic and alkaline solutions at 25 °C will be
less than and greater than seven, respectively. . - '

In a similar manner, we can define 4 pOH ‘scale as the negative logarithm
of numerical value of the hydroxyl-ion concentration. However, the acidity or
alkalinity of a solution is often expressed in terms of pH of a solution. Both pH
and pOH are related to.each other through the expression

pH + pOH=pK® | 46.3)"

where pK,, like pH and pOH, is equal to — log [K,,/M?}. Tts value at 25 °Cis
equal to 14

The values of ionic product of water at various temperatures are given below. .

6,/°C 0 10 25 40 - 50
K, x 10¥%M? 0114 0.292 1.008 2.919 5474

What are the pH values of the pure water at these temperatures?

Since [H*] = /K|, , therefore
P = — log [H'YM) =~ Iog (K,/M")

Thus, the calculated values of pH at the given temperatures are as follows.

Temperature - pH
0°C  —Llog(0.114x10*)=7472
10°C. © =llog(0292x107)=7267
25°C | ~L1og (1.008x1074) =7.002.
40 °C , | ~110g (2.919x107*) = 6767
socc . —llog(5474x107)=6631

TThrough out, the equ1hbnum constant, K, carries the unit of (mol dm ). The expression
K/(mol dm)*" is written as K° and is spelled as standard equ111bnum constant. It is a

umtless quantity.




- Example 4.6.2

Solution

Example 4.6.3

Solution

Example 4.64

Solution

" Thus K;
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" At 25 °C, the degree_of ionization of water was found:to be 1.8 x 107°. Calculate the
. ionization constant and the ionic product of water at this temperature.

If oris the degree of dissociation of water, then we have

H,0 — H"+0H"

[H']=[OH] = ca
If mass of 1 dm® water is taken as 1000 g, than

, P .
no_ miM - (1000 g)/(183g mol ™) = 5556 M
Vv V 1dm

+ - o) '
- S (e (wsmirga <<
) el

=(55.56 M)(1.8 x 102 =1.8 x 107'°M

and K, =[H"][OH] = (cc)? = {(55.56 M) (18x10°) 2
=1.0x10™ M? -

What is the pH at 25 °C, if a solution which is twice as alkaline (i.e."which contains twice
as many hydroxide ions) as pure water? ' '

For a solution to have twice alkalinity, we have
[OHT] = 2.0 x 107 M 4
Thus pOH = — log {[OH')M} = — log (2.0 x 107) =7 — 0.30 = 6.70

and hence pH = 14 — pOH = 7.30

The jonic product of water at 100 °C is 55 times than that at 25 °C. (i) Calculate the value
of pH of water at 100 °C. (ii) A given solution at 100 °C has a pH value 5.0. Indicate
whether the solution is acidic or alkaline or neutral.

(i) Given that
K,(100°C) = 55 x K,(25°C) = 55 x (1.0 x 107 M?)
Thus . pH(100°C) = —%log (K,M?} =— % log (55 x 1074y =6.13

(ii) Since for a given solution, pH equal to 5.0 is less than the corresponding pH of pure
water at 100 °C, the solution is acidic. :
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4.7 CLASSIFICATION OF ACIDS AND BASES IN WATER

~ Strong and Weak
Acids

Strong and Weak
Bases

A given acid can be classified into a strong acid or a weak acid depending upon
the value of its dissociation constant. For strong acids, K, is much larger than
1 indicating that they are present in solution in an almost ionized form. On the
other hand, K, is much smaller than 1 for weak acids. This implies that weak -
acids are feebly ionized. Table 4.7.1 gives the values of ionization constants of
some of the common acids.

Similarly a given base can be classified into a stronger base (K, >> 1) or a weak
base (K, << 1). Table 4.7.2 records K, for some of the common weak bases.

4.8 EXACTTREATMENT FOR IONIZATION OF A MONOPROTIC ACID

Cbrn'puting
Concentrations of
~ Species in Solution

_Béfore attempting the actual computation of concentrations of various species -

in a solution of an acid (or a base), the problem may be analyzed from a purely
mathematical viewpoint. In order to compute the concentrations of various
species present in solution, we must have equations at least equal to the number
of the unknowns. These equations are obtained from the equilibrium expressions
and from the equations specifying the conservation of charge and mass. The .
mathematical solution of these equations is, in general, very complicated and
the exact solution could only be achieved through the use of a digital computer.
However, under certain conditions, calculations can be simplified through certain
approximations without affecting the results significantly.

Derivation of Exact Expression to Compute [H;0%]

Equilibria Existing in Various equilibria existing in an aqueous solution of a monoprotic acid are

Solution

Condition of Mass
Balance

_ [H,0"1[A7] ‘ '
HA+H,0 — H.0"+A", K =—2>——_—-
: 2 | 3 | a [HA] (481)
H,0+H,0 = H,0'+0H", K,=[H0'][0H] (482
Mass-balance equation is
[HA]p = [HA] + [AT] - - (4.8.3)

where [HA], is the total concentration of the acid and [HA] and'[A;] are-the
concentrations of undissociated and dissociated forms of the acid, respectively.
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Equilibria

K/M

HOOC(CH,),C00” = (CH,C00"), + H*

Acid _
Nitric HNO, — H' + NO; > 10*
Hydrochloric HCl - H + CI > 107
Hydrobromic HBr —» H* + Br > 10°
Hydroiodic HI - H'+ T > 101
Sulphuric H,S0, — H* + HSO; > 1010
Acetic HAc = H' + Ac 1.8 x 107
Benzoic | CH,0,H = H* + CH,0; 6.0 x 1075
Chlorous HCIO; = H* + ClO; 1.1 x 107
Formic " HCOH — H* + HCO; 1.8 x 107
‘Hydrocyanic HCN = H* + CN- 4.0 x 10710
Hydrofluoric HF — H* + F 6.7 x 107+
Hypobromous - HOBr — H* + OBr™. | 2.1'x 107 -
Hypochlorous 'HOCl = H* + OCI 3.2 x 1078
Nitrous HNO, = H* + NO; 4.5 x 10
Arsenic H,AsO, =— H* + H,AsO; 2.5 x 107
H,AsO; — H* + HAsO> 5.6 x 1078
HAsO?™ = H' + AsO}- 3 x 10713
Carbonic CO, + H,0 = H' + HCO; 42 x 107
HCO; — H* + CO¥ 4.8 x 1071
Hydrosulphuric H,S — H" + HS” 1.1 x 107
"HS = H' + 8% 1.0 x 1071
Oxalic H,C,0, = H* + HC,0;. 5.9 x 1072
. HC,0; = H* + C,0% 6.4 x 107
Phosphoric H;PO, — H' + H,P0; 7.5 x 107
H,PO; — H' + HPOZ?" 62 % 107
HPO? = H* + PO} 1 x 10712
Phosphorous HPO, — H* + H,P0; 1.6 x 1072
- ~ H,;PO; = H* + HPO} 7 % 1077
Sulphuricif ) | 'H,S0, » H* + HSO; strong
_HSO; = H* + SOZ 1.3 x 1072
Sulphurous SO,-+ H,0 = H* + HSO; 13 x 1072
; HSO; = H* + SOF 5.6 x 1078
Succinic (CH,COOH), — HOOC(CH,),COO™ + H* - 6.17 x 107 -
! | 229 x 107
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Condition of Charge
Balance

Derivation of Exact
Expression

Table 4.7.2 Ionization Constants of Comtnon Bases at 25 °C

Base Equilibria ' K/M

Amrmonia NH; + H,0 == NH} + OH - 1.8 x 107
Aniline CH;NH, + H,0 == C;H,NH; + OH- 46 x 10710
Dimethylamine - (CH3),NH + H,0 = (CHy),NH; + OH" 7.4 x 107
Hydrazine N,H, + H,0 = N,H} + OH" 9.8 x 1077
Methylamine CH,NH, + H,0 = CH,NH;* + OH" 50 x 10
Pyridine ~°  CHN + H,0 = C;H;NH" + OH™ 1.5 x 107
Trimethylamine (CH,),N + H,0 = (CH,);NH* + OH" 74 x 107

Since_the,- solution is electrically neutral, sum of all the positive charges must
be equal to that of all the negative charges, ie. the charge-balance condition
gives ' |
[H,0%] =[OH] + [A7] (4.8.4)
From Eq. (4.8.2), we have '
| K

[OH ]= —*
[H,0*]

Substituting this in Eq. (4.8.4) and rearranging the resultant expression, we
obtain '

K
A"1=[H,0"]-—X
A7T= (0" - (48.5)
Rewriting Eq. (4.8.3), we have
[HA] = [HA],- [A7]
which on using Eq. (4.8.5) becomes
' [HA] = [HA], - [H;0*] +- Ky - | - (4.8.6)

v [H;0"]
Substituting ,[A"]‘ and [HA] from Eqs (4.8.5) and (4.8;.6) in Eq. (4.8.1), we get

[H3o+]{[H30+_] - }

. O+
K, = [E, ;{ ]. “.8.7)
~[H.0" w
{[HA]O [H; ]+[Ha’0+']} |
| H.0'P —[H 0*1K
or \ LO'T ~[H,0"] X, (4.8.8)

" [H,0'1[HA], - [H,0* > +K, -
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This is a cubic equation in [H;O"] and can be solved for [H;0]. The
concentrations of all other species, e.g., OH™, A~, HA can be expressed in terms
of [H3O+] (Eqs (4.8.2), (4.8.5) and (4 8.6), respectwely) and thus their values can
be determined.

Simplification of Exact Expression

.Fo'r Strong Acids
(a Typical Example
of HCI)

A Direct Method to
Derive Eq. (4.8.10)

Since the exact solution of a cubic equation (or higher degree) involves too.
much of mathematical operations, it would be of interest to determine the
conditions under which such higher order equation could be simplified.

~The following equilibritim exists for a strong acid, HCI]

H,0+HCl == H, 0" + HCI”

with a very large value of the dissociation constant (= 107). Equat10n (4.8.7) for

~ this condition is

1

OF 0*]-
[H; ]{[1{3 ] [H30+]}

' K.
HCl], —[H,0* ¥
{[H bt > ]+[H30+]]f

K_

a =

Rearranging this, we get

+ [H30+] '
[HCI], = {[Hg;O] ——[H% 0+]H K, } 4.89)

Since K, is very large, the term [H;0*]/K,, can be neglected in comparison
to 1. Thus, the above expression becomes. :

K _' :
HCl], = [H,0F] - —¥— : 8.
[HC1]y = [H;07] O] (4810).

This approximation. amounts to the fact that HC is completely dissociated
in the solution. This expression is to be -used whenever the concentration of
H;0" in the solution is less than 10 M. In this case, the contribution of H;O*
obtained from the dissociation of the acid is comparable to that obtained from

the dissociation of water. Thus, we have two sources of contribution of H;O,
namely (i) the dissociation of the acid, and (ii) the dissociation of water. .

Equation (4.8.10) can also be obtained thrb.ughu the charge-balance expression:
[H,0*] = [OH ] + [CI]

But CI'] = [HC1 d [OH ]=—Y¥—
v e [H;07]
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Example 4.8.1

~ Solution

Comment

K -
Thus, [H;07]=—Y— +[HC]] ‘» (4.8.10)
) 3 [H O+] 0 /
) .

If the [H;0"] of the solution > 10 M, the term K,,/[H,0*] < 10 M, and
it can be neglected in comparison to [H;0*]. Thus

HCO~[H0 B @81

This amounts to the fact that if the concentration of HCl > 1078 M, the H,0*
contribution due to the dissociation of water will be negligible in comparison to
the amount-of H;O" contributed by the acid. It is, thus clear that for a very dilute
solution (concentration < 1078 M), Eq. (4.8.11) will not be applicable. In such
cases, we must use Eq. (4.8.10) to calculate the H;O" concentration.

¢
v

Calculate at 25 °C the pH of a solution of (a) 0.01 M HCI and (b) 10”7 M HCL

(a) Since the concentration of HCl > 1076 M, Eq. (4.8.11) can be employed to evaluate
pH. We have

[H:0*] = 0.01 M _
Hence, pH =-log {[H;0'Y/M} = - 1log 0.01) = - (- 2) =

(b) Since the concentration of HCI < 107° M, therefore, we have to use Eq (4.8.10) to
get the value of H;0™ concentration:

[H,0*1* ~ [HCl], [H,0*] - K, = 0

10 = [HCL, + \[HCI + 4K,
;071 =

2

(107 M= +/(107 MY 440 x 1074 M?
| 2

Two solutions are _
[H;07 =162 x 107 M and [H,0%] = - 0.62 x 107 M
Since [H40%] cannot be negative, thus
[H,0'] = 1.62 x 107 M
Now, for pH, we write
pH = - log {[H;0*YM} = - log (1.62 x 107
= — {log (1.62) + log (107)]
=_021-7) =679

The contribution of water increases the [H;0* ] above that due to the acid alone. No

matter how dilute the solution is, the pH of an ac1d solution would always be less than
7 at 25 °C.




Example 4. 8.2 _

Solution

For Weak Acids |
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" At 25 °C, the degree of ionization for water'is 1.8 x,10~. How is this affected in the

presence of 1078 M HCI (assume complete ionization for the acid)? Calculate the total
hydrogen-ion concentration in the presence of the acid. What is the pH of the solution?

In order to compute hydrogen-ion concentration in 107 M HCI, we will have to consider
the contribution of H;0* from the dissociation of water. In such a case, the concentration
of H;O" is given by

. K
H,0%]= W HCI
0= fom I

[H;0" 1° - [HCl [H;0"] - K, =0
[H;0* 1 - (1078 M) [H,07]-1074 M? = 0

o Q0EM) 4410715 M2 + 4.0 1074 M2
[H;0"] = ~— - _

[H,071=1.05x 107 M

This is the total concentration of H;0%, out of which 1.0,x 10 M comes from the
dissociation of HCl and the remaining (1.05 x 107 M - 1.0 x 108 M =95 x 10° M)
from the dissociation of water. . ' - ‘

Thus, 2H,0 — H;0" + OH”
55.56 M 95x108M  95x10°¥M
: (&4 cQo co
[H;0']  (9.5x10°M) _ (9.5x10° M)
c ¢ (55.56 M)
=1.7x107

Degree of ionization of HzO =

Thus, the degrée of ionization of water decreases from 1.8 x 107 to 1.7 x 107
pH of the solution = — log {[H,0*1/M}
= - log (1.05 x 1077) = — log (1.05) - log (107)
=-00212+7= 698

First approximation If [H,0'] = 10° M, then
—KW—+ <108 M,
[H307] -

the term {[H,0"] - K,/[H,0]} could be approximated to [H,0"]. Using this
approximation, Eq. (4.8.7) simplifies to

| -
c _ 0"

.\ = (4.8.12)
[HA]y - [H;07] :

This approximatioh leads to the assumption that the amount of hydronium
ions coming from water is negligible in comparison to that contributed by the
acid. Equation (4.8.12) can be solved for [H;O0"] by using either of the following
two methods. ' ' .
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Example 4.8.3
Solution

(a) As a quadratic equation . Expression (4.8, 12) could be arfanged to
give a quadratic equation

[H,0' + K, [H,0"] - [HA], K, = 0 (4.8.13)

‘and since [H;0%] cannot:be negaﬁve, ther only solution of the equation is

K, + K2 +4HA]) K,
2
| (b) Method of successive approximation In thls method, H;0"

concentration is calculated in an iterative manner. Equatlon (4. 8. 13) can be
rewriften as

[H30%] =  (48.14)

;01,4 =K, ([HAL - [H30*];) (4815

We assume an approximate value of [H,0%] (ie. [H,071) which on
substituting into Eq. (4.8.15), gives a refind value of [H,0™] (i.e. [H;0"]i)- Then .
this refined value of [H;0%] is used to compute a more refined value, and s0 on.

Such an iteration is carried out until the two consecutive values of [H,0"] agree

within a reasonable limit. This is illustrated below:

H;0%], =K, (HA], - [F0"],)
[H,0*], = K, ([HAJy - [H50*T;)
fH30+ = JK, (HA], - [H;0"], ;)

To start the operation, we can assign [H3O+] equal to zero or 10~ M (for pure
water) or any other reasonable value. :

_Second approximation If the solution is fairly concentrated and the value of

the equilibrium constant K, is small, i.e. the extent of digsociation is negligibly
small relative to the amount of acid dissolved, thep

[HA], >> [H;0']
With this, Eq. (4.8.12) reduces to
_ [H;0*7
* 7 [HA,

ThllS, [H30+] = w/Ka[HA]O

© What is the pH of (a) 0.1 M and (b) 0.001 M solution of acetic acid; K, = 1.85 X 10°M.

The type of appfoximations valid for a given problem can be decided from the values of
o and [H;0"] obtained by using the simplest expression, in which, it is assumed that

‘o0 << 1 and that there is no contribution of H,0* from water.




Example 4.8.4

Tonic Equilibria 249
Thus, ‘we have

HAc + HzO = H,0" + AC (vs}here Ac™ stands for acetate ion)
c(l1-a) ca
\ o ’
K, = [Hy0"][Ac”] ='(coz) (cor) AR
- [HAc] cl-a) 1-a

or 05=J_K—a and [H;0"]=ca
~ ¢ .

(a). 0.1 M solution. In this case, we have

5 )
JA85XI07M) _ fres 0 =136x102

(0.1M)
[Hy0"] = (1.36 x 10-2) 0.1 M) = 1.36 x 10“3 M

Thus, it can be seen that for this solution o << 1 and [H;0*] >> 10 M and hence
the use of above express1ons are justified. Hence, pH of the solution is :

pH-—log (1.36 x 10% =-01335+3 =287
(b) 0.001'M solution. Usmg the smplest expression of o, we have

. -5
_jassx107m oo
(0.001 M) S

Here a < 1, a more correct value can be obtained by solving the following quadratic -
equation in . '

cot

* -
co? + Ko - K, =0

_K, ++K2 +4K,c

o=

2c
_(-185x 107 M) + J{(1 85x 107)% + 4(185x 107) 1073 M2
o | 20102 M)
-185x10° M+74335x 108 M2 2541 x 10 M
) 23102 M) T oax10°M
=0.127 -
Therefore,

[H;0%] = ca ="(10° M) (0.127) = 1.27 x 10* M
pH = - log {(H,0*IM} = - log (1.27 x 104)
=-0.103 8 + 4 =390

Given a solution that is 0.5 M CH,COOH. To what volume at 25 °C must one dm?® of -
this solution be diluted in order to. (a) double the pH; (b) double the hydroxide-ion
concentration? Given that K, =18 x 107 M.
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Solution

If oris the degree of dissociation of acetic acid of concentration ¢ then the concentrations
of various speciés in the solution are

CH,COOH +H,0 — CH,C00™ + H;0"
e(l-a) co cx
With these concentrations, the equilibrium constant becomes

_ [CH,CO0™][H;0] _(ew)ea) 2
: [CH,COOH] c(l-a)

or o= ,—
C

' Substituting the values, we have .

S h
g [LBXITM) o 03
'_(O.SM) _

The concentration of hydrogen io'ns. is giveh as |

[H;O =ca=05M) 6x10%=3x10°M
Hence, pH = — log {[H;0*YM} = - log (3 x 107%) = 2.52
(a) To double the pH ' '
Thus, pH = 5.04

* Since pH = — log {[H,0*1/M}, therefore [H;0")/M = 107PH, Substituting the value of
pH, we have ' :

[H,O' 1M = 10°% = 9.12 x 107
Thus, ¢, =9.12x10°M _
In dilution, o will increase, and its value will not be negligible in comparison to one. Thus,

we shall have to use the expression

o g (oo (9.12x10° M)«

a

'cl_(l—oe)__l—a— l-«a R o'
or (1.8 x 10°° M).(l @)= (9.12x 105 M) «
which gives - . '
(912 x 10°M + 1.8 x 10° M) a= 1.8 x 10° M
oo BTV
27.12x10° M

Since  c¢;or = 9.12 x 10° M and o = 0.663 7, therefore,

_9.12x10° M

: = 1.374x10° M
06637

q

Volume to which. the soliition should be"diluted

V(0 B
J L QMR 5 56910 dim
o (I3T4x10°M)
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(b) To a’ouble the hydroxyl-ion concentratzon X i
Since [H;0] in 0.5 M acetic a01d is 3 X 1073 M, therefore
L (1.0x 1074 M2
‘[OH’] Z (1.0x 10 3 M*)
- (3x10” M)

-In the present case, the concentration of hydroxyl ion becomes

' 14 3 g2
[OH"] = 2(1 0x16™ M )_

3 x 10°M)
3
whrch gives [H3O+] M = 1.5 x 10 M
'For this concentrat1on we canv use
K, = c2a2 = (c,0) (0)
_ -5
or o= Ka~ (18XI03M)_1.2x,10f2 '
(€0)  (15x10°M) |
, —3
Ths, ¢ = MZ—M) -0.125M
1.2x 10~

Volume to which the solution should be diluted

' 3
oV _©5M@dm’) _, s
¢, (0.125M)

Example 4.8.5 For propanoic acid K, = 1.34 x 10~ M at 25 °C. Find for a 0.01 M solution of the acid: -
(a) The degree of dissociation. ‘

(b) Hydrogen-ion concentration.
(c) pH and pOH.

Solutiqn (a) If a 1s the degree of dissociation of propanoic acid of concentration ¢, then the
' concentrations of various species in solution are

CH3CH2C®H + H20 \:\ CH3CH2C%_ + H30+

cl-a) co co

With these concentrations, the equilibrium constant becomes

_ [CHyCH,COO™][H;0"] _ (ca)(ca)  ca® 5

. Ra — = ~ col
o [CH3CH2COOH] -0 l-a
- v — : 3 . .
or o= Ky — M 134 x 1073
- c (0.01M)
Thus, . & =366 x 107 o

(b)) [H;0'] = ac. = (3.66 x 10-2) (0 01 M) = 3.66 x 104
(© pH = - log {[H;0"/M]} = - log (3. 66 x 104) =4 - 0.563 = 3.44
pOH = 14 — pH = 10.56 '
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Example 4.8.6

Solution

Glycine HC,H,O,N(HG) is one of the amino acids that méke up body proteins. Its
jonization constant at 25 °C is 1.7 x 1071 M. What i is the value of [H3O+] in a 104 M
solution of glycine?

If we ignore the dissociation of water and assume that [H;0"] of the solution is very much
smaller than the concentratlon of HG, its [H,0%] can then be calculated using the expression

[H30+] JK, [BG] = \/(17x10-1°M)(104M)
=13x107 M

({
This concentration of hydronium ion is smaller than 107° M and, moreover, it is of the

same order as that of pure water. :
Consequently, we cannot ignore the hydrogen ions from the dlssomatlon of water. For
a correct solution, we have to use the following expression:

K
[H3O+] {[H3O+]— W+ } : : . . '
K, = H01) o 4.8.17)
K .
HG], - [H;0"
{[ Jo - [H; J+[H30+]}

Since the expected value of [H;0%] << [HG],, therefore, the denominator in the above
expression can be approximated to [HG],. Hence

[H,0'] {[Hgow— K }
. [H;0']
o [HG],

Thus,  [H;0']=4K, +K, [HGl,

Substituting the values, we get

[H:0*]= (107 M?) + (17 x 107° M) (10~ M)
=\27x 1074 M2 =1.643x 107 M

Note: Without prior knowledge about the type of approximations to be used to simplify
the expression, we can obtain [H3O+] from Eq. (4.8.17), which is a cubic expression
in [H;0%]. The solution to the problem can be carried out by using the method of
successive approximation. The above expression can be written as

[H30%,,; = (Hy0Y; {K,, + K, [HGly} — [H,0'? K, + K K)"

To start with, i.e. for i = 0, [H;0"] is taken to be zero. The first computed value of [H;0%]
is then substituted in the right side of the above .expression and a more refined value of
[H;07] is calculated. This process is repeated till the two consecutive values of [H;07]
agree within a reasonable limit. A few computed values are as follows:
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Cycle (i) [H;0*IM Cycle(i)  [H,0 )M

0 0 5 1.591 x 107 _

1 1.193 x 107 6 1.626 x 1077 -
) 6.815 x 107 7 1.638 x 107
3 1.230 x 107 8 1642 x 107

4 1.493 x 107 9 1.643 x 1077

10 - 1.643 x 107

49 EXACT TREATMENT FOR IONIZATION OF A BASE
' Derivation of Exact Expression to Compute [OHT]

Equilibria Existing Various equilibria existing in an aqueous solution of a base are

in Sofution
k. - B10H7]
[BOH]

H,0+H,0 = H;0"+0H", K, =[H;0'][0H]- (4.9.2)

- BOH —— B*+OH", (4.9.1)

Condition of Mass Mass-balance equation is

Balance _ _ '
[.BOH]O = [BOH] + [B*] ‘ (4.9.3)

where [BOH]O_is the total concentration of a base and [BOH] and [B*] are the
respective concentrations of the undissociated and dissociated forms of the base.

Condition of Charge Electroneutrality (i.e. charge-balance) condition gives

Balance
[B] + [H;0%] = [OH] : : 494)
, _ _ K
or [B*] = [OHT] - [H;0"] = [OH] - —¥ (4.9.5)
: [OH ]
Derivation of Exact  Substituting for [B*] in Eq. (4.9.3), we get
Expression o 7
(BOH] = [BOH], — [OH] + —¥_ | (4.9.6)
S [OH]

Thus, the equilibrium constant of the base (Eq. 4.9.1) becomes

| {[OH‘]— Bw }[OH‘]
. o1

= N CEN))
{[BOH]O ~[OH ]+ —Y¥ }
o [OH"]
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Alternatively, we have.

K ‘ K
¥ _ _[H,0" »
{[H3O+ _'[ 3 ]} [H30*]

S  (498)
+[H30+]} ‘

Equation (4;9.7) (or 4.9.8) is a cubjc expression in [OH] (or [H3O+]) and

b=
- K,
BOH], = —
{[ | ]o [H3O+]

| could be solved for [OH"] (or [H;07]). The concentrations of other species, viz.,

B* and BOH cdn be calculated usmg Eqs 4.9.5) and (4 9.6), respectively.

Simplification of Exact Expression -

" For Strong Bases
(a Typical Example
‘'of NaOH)

A Direct Method to
- Derive Eq. (4.9.9)

: 'Simpliﬁ;_cation

The followmg equlllbnum exists for a strong base NaOH

NaOH — Na* +OH

- with a very large value of the dissociation constant. Equation: (4 9. 7) can be

rewritten as

| [ [OH]
NeOH _{ [OH*]} {H & }

Since K, is very large, the term [OH"]/K}, can be neglected in comparison to 1;
thus the above expression becomes

KW
[OH"]
The above approximation amounts.to the fact that NaOH is completely
dissociated in the solution. This expression is to be used when the concentration

of OH™ in the solution is less than 107° M. In this case, the contribution of OH-

[NaOH], = [OH™] - (4.9.9)

obtained from the dissociation of the base is comparable to ‘that obtained from

the dissociation of water. Thus, we have two souirces of contribution of OH, i.e.
from the dissociation of (i) the base and (ii) water.

Eqdatiqn (4.9.9)_can also be obtained by using the charge-balance expression:

[OH] = [Na*] + [H;0%]

But [Na+] =[NaOH], = and [H3O+] =
L T [OH‘]
Therefore,
[OH] [NaOH], + Ky (Eq. 4.9.9)
[OH ]

If the TOH of the solution > 106 M, the term K JIOH]< 108 M, and can be

neglected in comparison to [OH™ ] Therefore,.




Example 4.9.1
Solution

For Weak Bases
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[OH] = [NaOH], - | 4.9.10) -

- This amounts to the fact that if concentrat_ibn of NaOH > 107% M, then the
amount of OH™ due to dissociation of water will be negligible in comparison .

R to the amount contributed by the alkali. It is thus clear that for a very dilute

solution (congentration < 10° M), Eq. (4.9.10) will not be applicable ard in .
such .cases, one must use Eq. (4.9.9) to calculate the OH™ concentration. -

Calculate at 25 °C the pH of a solutlon of (a) 0.01 ‘M NaOH, and (b) 10‘7 M NaOH.

' (a) Since the concentration of NaOH > 1076 M therefore we have

[OH] = [NaOH], = 10-2 M
Therefore, pOH = — log {[OHTM} =

~ and pPH=14-2=12

-(b) Since the concentration of NaOH < 10’6 M, therefore, we have

[OH? - [NaOH], [OH7] - Kw =0

OH-] = [NaOH], + y[NaOHI + 4K,

2

ie.,

Substituting the values, we will get

[OH] =.1.62 x 107 M _
Therefore, pOH = — log {[OH-JM] = - log (1.62 x 107) = 6.79
and pH = 14 - 6.79 = 7.21

First approximation If [OH] 2 10° M, then K, /JOH] < 10°® M. The term
[OH] - K,/[OH"] could be approximated to [OH]. This amounts to the fact that
[OH"] coming from the dissociation of water is negligible relative to the [OH] due-
to the dissociation of the base. Under this condition, Eq. (4.9.7) yields

| | [ K, ]2
g, = LOHIOHT e ]K - @911
"~ [BOH], — [OH" 7™ pom, - K
' [H;0"]

Equation (4.9.11) is quadratic in [OH™]-which could be solved for [OH]
either by direct method or by using the method of successive approximations.

Second approximation - For a fairly concentrated solution of a relatively weak

bz_ise (i.e. when K, is small), we have
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[BOH, > [HK:)+] or [BOH], > [OH"] -

Hence, Eq. (4.9.11) modifies to

[OH—-]Z, - | ' |
K, = or [OH ]= Kb_[BQH]Q

" [BOH,

In terms of [H3Oi+], we have

(K, /[H;0"])° . K,
K,=—C>—— o [H0]=———= 4.9.12
> = " (BOH], K Bom, )
Ex_arﬁple 4.9.2 _ What is the pH of 10° M solution of NH4OH ('K_b: 1.85 x 1075 M) at 25 °C?
Solution Using the simplest expression for o, we have’
& _(iesxw05m)”
= == =0136
TV [ 0.001M ]

Hére o < 1, A more correct value can be obtained by solving the quadratic expression |
' co? + K oo— K, =0 '

[2
thatis, = _Kb+ Ky + 4Ky c
2c

_—(1.85x 107 M) + \/(1.85 x 10 M)* +4(1.85 x 107 M) (10> M)
2(107 M)

=0.127

Hence, we have _
[OHT = ca = (107 M) (0.127) = 127 x 10 M
' pOH = - log {[OHYM} = — log (127 x 107 = 3.90
~ pH = 14 — pOH = 10.10

410 EXACT TREATMENT FOR I,ONIZATION OF A DIPROTIC ACID

Derivation of Exact Ekpression_

Equilibria Existing In z.m: aqueous solution of a diprotic acid H,A the following equilibria exist:
in Solution : ' S
_ ‘ - HA™][H;0
H2A +H20 jrmeroem— H30+ + HA‘, KI =[_¢_] (4101)
[HaA]
. . . . 2-1r11 '+
e : L A“][H
HA +H20 : H30+ + Az_; K2 = L—M_] .

L 4.10.2) -
[HA™] |

and  H,0+H,0 = H,0"+O0H" K,=[L0'][0H] (4.103)




Condition of Mass
Balance

Condition of Charge
Balance

Derivation of Exact
Expression

Simpilification of
Exact Expression

- Or

Ionic Equilibria 257
Mass-balance condition gives
[H,A], = [H,Al + [HAT] + [A>] a (4.10.4)
The restriction regnrding electroneutrality gives
[H,0"] = [HA]+2[A2‘] +[OH] . @. 105):

The second term of the nght hand s1de 1s multlphed by two, since the

anion A% carries two negative charges.

With the use of Eqs (4 10.1), (4.10. 2) and (4 10. 3), Eq. (4.10.5) becomes

KI[HZA] L 2EK (Al Ky,

H,0"]= o S

Rearranging the avae iequation, we get

omA ok | K
[HO ]— 1+ +— 4.10.6
T O 1[ [Hﬁ*d [H,0'] 4100

The concentration of HyA in terms of the known parameter [H,A], can be
obtained from the mass-balance expression (Eq. 4.10.4) which on using
Eqgs (4.10.1) and (4.10.2), becomes

Ky [H,A] | KiK [HoA]

H-,Aly = [H-A
| [HyAlp = [HaAl+ H,0°] [H3O+]2

_ [HyAly
[H,Al = 5 N kK, = - (4.10.7)

Substituting [H,A] in Eq. (4.10.6), we have

;0] = —L 154l {1; 2K2+}+ Ko -
H;0™T | —K; PRRSLY [H;0*]| [H;0]
|  [H;0'] . [H,0°F |
(4.108)

Equation (4.10. 8) 1s ‘a fourth power expressmn in [H;0%] wh1ch can, however,
be s1mp11ﬁed under certaln approximations, as discussed in the following.

First approximation 1If [H;0"] of the solution is greater than or equal to
10 M, it can' then be assumed that the ionization of water is not an importanit
source of H;O%, i.e. the last term K /[H;0%] is neghg1ble in comparison to

"[H3O+] Thus, Eq. (4 10. 8) is. s1mp11ﬁed to .
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Concentrations of
Other Species

[H,0%]+ K+ —122-| | [H307] |

[H,0%]]

Secbnd approximation For a diprotic acid, in general K, << K; and K, itself |

s very small, the term K,/[H,0*] << 1 and K1K2/[H3O+] << ([H;0"] + K,).

Therefore Eq (4 10.9) gets reduced to

[HoAly Ky
" [H30*]+K

[H O+]

[H;0" )
[HAlp ~[H30"]
which is an expression derived for a monoprotrc acid under the assumption that

water does not contribute significantly towards total . [H3O+] Hence, even for a
drprotlc acid (or, in general, for a polyprotic acid) the hydronium ion concentration

or (4.10.10)

can be calculated from its first equilibrium constant alone, provided K, << K;.

Third approximation If K, extremely small (of the order of 10~ M or less) and
if the concentration of the acid HyA is not too low, the amount of acid that
undergoes ionization is negligible in comparison to the original concentration
of acid. Hence, the term [H,A], - [H;0"] = [H,A],. With this approximation, ’
expression (4.10.10) reduces to -

[H;0%1=K; [HAly (4.10.11)

Concentrations of other species present in the solution can be obtained from the
expressions obtained by combining mass-balance expression (Eq. 4.104) with
the dissociation constants as given by Eqgs. (4.10.1) and (4.10.2). These are

AL,
+ Ky + KK,
[H;0'] [H0*]
A,
[H3O+] +1+ Ky
KI [H3O+]
[H;0'F | [H;0"]
KK, ) Kz

[H,A] = (4.1012) -

- [HAT]=

(41013)

[A*] =

(41014

+1:

Slrnpllflcatlon of Expressnons (4 10.12), (4. 10 13) and (4 10 14)

" (i) If K, is very small, the term containing K, in the numerator w111 have a

negligible value in comparlson to other tefms. Therefore
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Solution

Kl )
+ -
[H;07]

[HyAl=

[HAly
[H3O+]
K

[HA ]=
+1

Al
A= o
[ ] _ [H OT;-]Z + [H3O+]
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(4.10.15)"‘
© (4.10.16)

(4.10.17)

(ii) If K 1 is very small in. companson to [H,0*] of the solution, the concentrations
of various species can then be calculated by using the following expressions:

[HA]=[HA],

| ‘ K
[HA"]=[H,A] 1
¥ 1,0

KK

AT =[H,A 172
[][2_]0[H30+]2

Under these conditions, [H3O+] is given by

[H;0*] = JK; [H,Al

Substituting this in (4.10.19), we have
[H,Aly K)

HA‘ Al =[H;0%]
T R, TV

Thus, [A*]= _[HZA]O uSLY
| © [H30'P

(4.10.18)

- (4.10.19)

(4.10.20)
(Eq. 4.10.11)

(4.10.21)

(4.10.22) |

What are the concentrations of H*, H2C204, HC,04 and CZOZ_ in a 0.1 M solution of oxalic

acid? (K, =.5.9.x 107 M and Ky = 64x 10° M)

Since the solution is fa1rly concentrated and Ki/K = 107 (K, << K,), we can use the

expressmn
___ mo7
15—~ -
[HaAly - [H30+]__ ‘
which gives
[H,0] = K+ JKE +4THGAL K

2 .

" (Eq. 4.10.10)
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Substituting the given values of K; and [H,A}, in the above expression, we get

~(59%102 M) +(5.9x 102 M) +4(0.1M) 59x102 M)
: 5 _
_—(59x107% M)+ (1.645x 10~ M)

[(H30"]=

= 0.052 8M

We can obtain the concentrations of H,C,0,, HC,0; and C,0% in 0.1 M solution of oxalic
acid from the following relations:

[H2C204] = [H2A]0. = . 01 M 2 = 01 M
14K 59x102M | 1+118
[H;07] 528x 102 M-
=0.0472M
[HC,07] = [HAl, _ 0.1M __01M
[H,0*] o1 [528x 1072 M 1 0.8949+1
K, 590x 1072 M
=09.0528 M
[C,07 1= (Al
7 [H0%? .\ [H,0]
K\K, K,
_ 0.1M 0.1M
(5.28 x 1072 M)* , 528 102M 7383 +825.0
(5.9% 102 M) (6.4 x 107 M) 6.4x10° M
= 0.000 064 M
Example 4.10.2 What are the concentrations of H;0%, HS", > and H,S in a 0.1 M solution of hydrogen

sulphide? (K, = 1.1 x 107 M and K, = 1.0 x 107"* M.)

Solution : Since here K itself is small and the solution is fairly concentrated, we can use the s1mplest
o expression to compute [H;0%, i.e.

[H3o*] = JKHA)y = J(110% 107 M) (0.1 M)
=1.0x107* M
As Kl << [H;0%], we can use the simplest expressions to compute concentrations of
various other species in the solution; i.e.
[H,A] = [HAly = 0.1 M
[HAT] = [H,0"] = 1.0 x 10* M
(AT =K, =10x10%M
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Direct Solution Since K for H,S is 1.1 x 1077 M, the small amount of H,S that ionizes is
negligible in comparison to the original concentration of H,S. In addition, the concentrations of
H* and HS™ are not significantly altered by the secondary ionization (K, = 1.0 x 107 Mm).

~Thus, - '

H,S = H' + HS”
0.10M x x

P
K, = HIES )
: " [H,S]

2

=% _=11x10"M
Tol0M

=1.1x107 M

Cx=[H']=[HS"]=10x10*M

These concentrations are also applicable to the secondary ionization.

HS —— H' +8§*

LOx107%M 1.0x10%M ?
. a2 L
Hence, K, = &]'f—] =1.0x10™ M
[HS™] :

which gives [S%] = 1.0 x 1074 M

What are the concentrations of H*, HSO,”, SO? and H,SO, in a 0.20 M solution of
sulphuric acid? Given,

H,50, — H' + HSO,; Strong
HSO; == H*+S07; K,=13x 102 M

Since the first dissociation is strong, therefore, the [H*] due to this dissociation is
0.20 M. Let x be the amount of H*-produced in the second dissociation. Hence,

(B, = 020 M + x
This in equilibrium gives

HSO; — H* " +S80;"

020M-x) (0.20_M +x) x
+ 2— o
g, - HIS0Y] _ 020M4x)®) _ o 0oy
[HSO;] 020M-x)
or 020 M +x) (x) = (13 x 102 M) (020 M - x)

or 2+020M+ 13 x 102 M) x — (1.3 x 102 M) (020 M) = 0
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Example 4.10.4

Solution

“This is a quadratic.equation in x, which gives

~0213M +4/{0213% + 4 (1.3 x 1072) (0.20)} M2
- _

=0.0116 M

X =

_ -0213M+02362M
| 2
Thus,  [H'lgy =02 M+ x=0211 6 M
[HSO; ] = 0.2 M — x = 0.188 4 M
[S03] = x = 00116 M
[H,SO,] = 0 |

. The equilibrium constants for z ammo acids are given in terms of the successive jonization

constants of the protonated form. The equilibrium constants for glycine are

H3N+CHZCOOH — g +H2NCH2COOH
- HGH . HG) .

H,NCH,COOH = H"* +H,NCH,C00"
- HG) - @G
‘The numerical values of the dissociation constants for the above reactions are

. |
L= [H]—[%G] =45x10° M
© [H,G] _
+
0= &M_mm—w
- [HG]

(i) Calculate the pH of 0.01 M glycine in pure water.
(i) Show that the pH at the isoelectric point is

1 o’ o
H= E(PKal +pKyp) -
(i) Since the solution is fairlybconcentrated pH can be calculated using the formula:

(1] = Ky [H,G"]o = {@45x10° M) (102 )2
=67x10° M
~ pH=-log (67 x 107) = 2.17
(11) At the isoelectric point [H2G+] =[G~ 1 Therefore,

| EYHG HYIGT] _ MG _ m P

K, _ -
[H,G'] ~ [HG] [H,G*]

al

Ky '=

Takmg loganthm and multlplymg w1th —1, we have

[PK 1t PKaz]
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411 DISSOCIATION OF POLYPROTIC ACID

. Step-wise lonization - Polyprotic acids are those acids which contain more than one acid hydrogen per
’ molecule.  Examples include sulphuric acid, oxalic acid, phosphoric acid, et.
These acids ionize in steps and each step is characterized by the corresponding
ionization constant. Thus, for a triprotic acid, H;A, the dissociation could be
written as :

[H,A™][H']
[H3A]
HA®[H']
[H,A7]

H;A = HA"+H' K= (4.11.1)

H,A" — HA* +H*  K,= (4.11.2)

: -1+ - _ .
HA® == A +H" K3 AT (4.11.3)
' | [HA ]
In general, for all polyprotic ac1ds the primary 10\mzat10n (Kl) is stronger
than 'the secondary (K,), which: is, in turn, stronger than the tertiary (K;), i.e.
K, << K, < K;. This trend in the values of ionization constants is consistent with
the nature of species that ionizes in each step. One would predict that a proton
would be released more readily by an uncharged molecule than by a uni-
negative ion and more readily by a uni-nggative ion than by a bi-negative ion.
Thus, most of thé [H,0"] in the solution will be due to the primary dissociation.
The [H;0%] coming from the subsequent dlssoc1at10ns will be negligibly small
in comparison. This is justified because of two facts: (i) K; << K, < K|, and (ii)
the hydronium-ion concentration from the first dissociation will suppress the
* subsequent dissociations due to the common-ion effect.
From Eqs (4.11:1)'to (4.11.3), we can write

. - +
K = LA 4.11.4)
[H3A]
. 2- +12 | ,
KK, = HATJIH 1 o (4.11.5)
[H3A] _ . :
AP |H+]3
KiKoK; = (4.11.6)
. Distribution - The mass-balance condition for the acid is _

Functions [H3A] = [H;A] + [H,A7] + [HA™] + [A*]

Making us¢ of Egs (4.11.4) to (4.11.6), we get

Ky [(H3A] | KiKy [H3A] | KiKoKs[H3A]
[H*] [H' HT

[HAly = [HzA]+
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HA] _ 1 o
[H3Aly 1+ (K/[H']) + (K Ko/[H 1) + (K K, K/[HT) -

The ratio [H;A)/ [H3A]0 is represented by the symbol 04. Note that the subscript
3 represents the number of hydrogens attached to A in H;A. Hence

_ B | .'
o = |14 By KiKe | KoK - 4.11.7)
[[H] H'T [HT :

Working similarly, we find

H,A™] _ [HaA] [HpA™ K PP
o, = BB 1 WAL [FhA 1 =L (4.11.8)
[H3Al, [H3Aly [H3A] L [HT]
221 2 :
o = [HA 1_ HA] [HAT ] _ s —Klfzz (4.11.9)
[H3Al, [HzAly [H3A] H™] '
3- : 3-
o = [A™] _ [H3A] [A ] . &213% (4.11.10)
[H3Alp  [HzAlp [H3A] [H'] '
Simplification of Since K; << K, < K, and assuming that K, is also small, we can simplify
Distribution » Egs (4.11.7) to (4.11.10).

Functions »
(1) From Eq. (4.11.7), we get

=1 ie. . [H;A]=[H3A], (4.11.11)
(ii) From Eq. (4.11.8), we get
Kl

K . _
Oy = 1.€. H‘IzA ] = [H3A]0 (4.11.12)
| [H'] P EN
From the primary ionization (Eq. 4.11.1), we can write
[H,A™] = [H] ' (As the ionization of H,A™ will be negligibly

_ small as K; << K, < K/)
Hence, Eq. (4.11.12) becomes ‘
[H,A7] [H*] = K, [H;A], , ,
or [H,A7] = [H*] = (K, [H;Alp)"? | . (411.13)
(iii) From Eq. (4.11.9), we get '
_ KiKy
H'T

KK,
[H' T

o ie. [HAZ]=[H,A]
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.; Using Eq. (4.11.13), we get

[HAZ] = K, . - (4.11.14)
(1v) From Eq (4.11.10), we get :

KKK . -KiKHK
op=—1223  je  [A¥]=[HzAl =2
1P - ' [H']
Using Eq. (4.11.13); we get ' '
[A3—] K2K3 =~ K2K3
H']  (K[HsAl)"?

Calculate H*, H,PO;, HPO}~, PO~ and H;RO, in a 0.10 M solution of phosphoric acid
(K, =75x10° M, K, = 6.2 x 10° M and K3 = 1.0 x 1072 M).

- The principal source of H* is the pnmary 10mzat10n because the H* produced by the other

ionization sources as well as those from the jonization of water are negligible in comparison.
Furthermore H,PO}, derived from the primary ionization is not significantly diminished by

the secondary ionization. Thus, we can write

H;PO, —= H"+H,PO]
©01M-1x) x

[H'1[H,PO;] &

; =75x107°M
H,P0,] ~ (0.1M-x)

1=

"Thus solving the quadratic equation for x, we get

x=[H"]=[H,PO;]1=24x102 M

Therefore, [H,P0,]=0.1M—x=7.6x102M
These [H] and [H,PO,] are applicable to the secondary ionization.

Hence, H,P0; —— H' +HPOT
. 24102 M 24x10%M 9

S T — 2— .
k, = BIHPOLT _ ypo21-62x 108 M
| [H,PO;]
For tertiary ionization _
HPO® —= . H' +PO>
62x10° M 24x10°M - 9
k, < H1POF]
[HPO3 "]
2- -8
[Pog_] K3 [HPO4 ] (1 10_12 M) 6.2X10—2M
[H'] 24x10°M
C=258x0178 M
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" Example 4.11.2 " Calculate the concentrations of HY, H,AsOy, HAsO; AsO} and H;AsO, in a 0.50 M
' , solution of arsenic acid. Given K, =2.5x 10* M, K, = 5. 6 x10®¥Mand K; =3 x 1073 M.
Solution The various equilibria are
HyAsO, == H* +H,As0;; K =[H"][HyAs0;/[H;As0,]
H,AsO; — H*+HAsO}; K, =[H*][HAsO} J[H,AsO;]
HASO} — H' + AsO}; K3 =[H*]1[AsO} [HAsO3 ]

Let [H30+} = [H,As0,] = x. Therefore

' o x2

T 05M-x _

Solving the quadratic Vequation for x, we have..
x=1105x 102 M | |
[H;AsO,] = 0.5 M — 0.011 05 M ~ 0489 M

Secondary dissociation

R _25x10'4M

HzASOZ _\_-‘_‘—\_ H+ + HASO4_
L105x102 M L105x102M - 9.
[HASOZ ] =K, =5.6x 10° M
Tertiary dissociation

HAsO;, — H* + ASO3—
4 , 2
56x10° M 1.105x 102 M ?

’ _h 3—
Ky = A9 15 qpots
[HASO4_]

_(3x107® M) (5.6x 108 M)

[AsO37] o
\ (1,105 x 107 M)

=1521x10"° M

412 SOLUTIONS OF SALTS IN WATER: HYDROLYSIS

Phenomenon of A given salt on dissolving in water may produce acidic, neutral or alkaline
Hydrolysis > solution depending upon its ions. This is due to the fact that certain ions can
- react with water and thereby produce either an a01dlc or an alkaline solution

according to the following reactlons

A" +H0 — HA+OH‘ . | (4.12.1)

B* +2H,0 —— BOH+H3O+ | | (4.12.2)
This phenomenon is known as hydrolysis.*

‘ *See also Section 4.35.




Hydrolysis of
Anions

Hydrolysis of
Cations
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Such hydrolysis equilibria are charactenzed by the following hydrolysis
constants;

[HA][OH]

Ky, = —t—2 123y

ST (4.12.3)
+:

Ky = %E?O] (4.12.4)"

The anion A~ which is a weaker base than OH™ and which has its conjugate acid
HA stronger than water but weaker than H,O* shows the phenomenon of
hydrolysis.* Examples include CH,COO™, CN-, NO3, 82 , etc. The hydrolysis -
constant in such a case is given by :

< [HAJ[OH]
h —
| (A1
Multiplying the numerator and denominator by [H;0*], we have
HA] . |
Ky = _[_—]J,[OH 1[H;07]
[A7]1[H307]

The first term is the reciprocal of the dissociation constant K, of the
conjugate acid HA of A™ and the second term is the ionic product of water. Thus,

K, = —% (4.12.5)

Hence, the value of hydrolysis constant depends upon the value of K,.
Smaller the value of K, larger the value of K, , i.e. the weaker the conjugate acid,
more extensive hydrolysis of the anion. For example, the dissociation constants
of HCN and CH,COOH are 4 x 107 M and 1.8 x 107> M, respectively. Since
the former is smaller than the latter, it is expected that CN~ will be hydrolyzed
to a greater extent than CH;COO™. Consequently, the pH of a solution containing
NaCN would be larger than the solution containing the same amount of
CH,COONa. This fact is in agreement with the observation that pH of 0.1 M .
solution of NaCN is 11.2 whereas that of 0.1 M solution of CH,COONa is 8.9.

The cation B* which is a weaker acid than H;O" and which. has its conjugate
base BOH stronger than water but weaker than OH™ shows the phenomenon of
hydrolysis.* Examples include NHj, CGHSNHQ' , CsH{NH", N,HZ, etc.

"Since the anion acts as a base, the hydrolysis constant K, is often represented as jonization
constant K. : :
iSince the cation acts as an a01d the hydrolysxs constant Kh is often represented as the
ionization constant K. :
1These characteristics follow from the fact that the posmon of equilibrium in Eqs (4.12. 1) and
(4.12.2) favours the formation of a weak acid and a weak base (see, p. 370, 374 and 375).
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Comment on
Hydrolysis

The.hydrolysis constant in.such a case is given by

_ [BOH][H;0"] |
K, = — .
B | .
Multiplying the numerator and denominator by [OH'], we have
BOH] . .,
Ky = —2O(11,0*][0H]
[B"][OH] '

The first term is a reciprocal of the dissociation constant K, of the conjugate
base BOH of B* and the second term is the ionic product of water. Thus,
K, =¥ ' 4.12.
h K, _ - @12 6)

Hence the value of hydroly51s constant depends upon the value of K.,

~ smaller the value of K., larger the value of K., ie. weaker the conjugate base, more

extensive hydrolysis of the cation. For example, the dissociation constants of
aniline and NH,OH are 4.0 x 10" M and 1.8 x 10 M, respectively. Since the
former is smaller than the latter, it is expected that anilinium ion will be
hydrolyzed to a greater extent than ammonium ion. Consequently, the pH of a
solution containing anilinium chloride would be smaller than the solution
containing the same amount of ammonium chloride. This fact is in agreement with
the observation that pH of 0.1 M solution of anilinium chloride is 2.8 whereas that
of 0.1 M ammonium chloride is 5.1.

Whenever a salt is dissolved in water, the nature of the resulting solution
depends upon the extent to which either one or both the ions interact with ‘water.
In the subsequent sections, we discuss the exact treatment to compute [H,0%]
of an aqueous solution of a salt.

Neither of the two ions of a salt formed from a strong acid and a strong
base undergo hydrolysis. Therefore, whenever such a salt is dissolved in water,
its pH remains the same, i.e. the solution remains neutral. Examples include
NaCl, KNO;, etc.

From Egs (4.12.5) and (4.12.6), it follows that the product K,K; or

- K Ky 18 always equal to K,,. Since K may be written as K, or K We can express

this product as K,K; = K, i.e. the product of ionization constants of an acid (or
base)-and its conjugate base (or acid) is always equal K.

413 EXACT TREATMENT OF HYDROLYSIS OF SALT FORMED FROM A WEAK ACID AND
A STRONG BASE

Equilibria Existing.

in the Solution

Only the anion of such a salt will undergo hydrolysis and will produce free

“hydroxyl ions thereby rendering the solution alkaline, i.e. pH > 7 at 25 °C.

Examples include sodium acetate, sodium cyanide potassium nitrite, efc.

Let ¢ be the concentratlon of such a salt (say, NaA) in the solutlon The
following equilibria exist in the solution:




Condition of Mass
Balance

Condition of Charge |

Balance

Derivation of Exact
Expression

Simplification of
Exact Expression
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A” +H,0 == HA +OH"

H2.O + Hzo — H30+ + OH—

These are characterized by the following équilibrium constants,

[HA][OH™] _ [HAI[OH™]1 [H;0'1 _ K,
Kh = = =

[A7] AT [H0"] K,

and K, =[H,0] [OH]

The mass-balance condition gives .. _
| [NaAl, = [A] + [HA] = ¢
The charge-balance condition gives

‘[Na*] + [H,0%] = [OH] + [AT]

Since the salt is completely dissociated, therefore

[Na*]=c

Hence, Eq. (4.13.6) reduces to

KW
[H50]
With this, Eq. (4.13.5) reduces to

[AT]=c+[H;0] -

[HA] = —¥_ _[H,0"]
[H;0%]

Substituting [A7] and [HA] in Eq. (4.13.3), we get

Kw + Kw
_ - [H30' )y —
Ky _ {[Hgoﬂ 3 } [H;0*]

K {c+[H o+].- Ky }
| T mot

or [H,O'P + (c + K,) [H;0*F - K, [H,0"] - K,K,, =0 .

(4.13.1)
(4.13.2)

(4.13.3)

(4.13.4)

| (4.13.5)'

(4.13.6)

@.13.7)

(4.13.8)

| (4.13.9)

(4.13.10)

.Equation (4.13.10) is a cubical expression in [H3.O+]. A simpler expression can
be used to compute [H;O%] under the following approximations:

~ (1) If in the solution [H;0%] < 108 M, then K/ [H3O+] > 107° M. In such

cases, we can assume

- KW+ _[H3o+] ~ KW+
[H507] - [H07]

and [H;0%] can be negleéted in comparison to {c - Kw/{H30+]}.

O S
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Direct Approach to
- Compute pH

~ we have K =

(ii) If the solution is fairly concentrated and the:value of K, is very small
(which is so in most of the cases), then the term K,/{H,0*] will be negligible
in comparison-to c.

With these approximations, Eq. (4.13.9) is reduced to

K, (H;0"
' | KK
or [H30"] = Wca @.13.11)

To express Eq. (4.13.11) in pH form, we write it as

HO'l _ (KM KM | '
[Hy ]=\/( L ) Ky ); (where c°=1M=1m01'dm‘3)

M (c/c®):
M0 1, (K, 1, (KN 1 |
or —log{ M= ——2—log W 2log M +210g[ ]
H'—' ]. 0 ]. o ]- 1 / (] | ’
or pH= EpKw +§.PKa»+§ og (c/c®) - (4.13.12)

It can -be seen that the pH of the soiution, besides depending upon pK?, would
also vary with the solution concentration.

The above two approximations are equivalent to the following two statements:
' (i) The amount of OH™ coming from the dissociation of water is negligible -

" in comparison to that produced due to the hydrolysis of the jon. Thus from

Eq. (4.13.1), we have
[OH] = [HA]

(11) Usually K; is very small. Therefore, the amount of jons that is actually
reacted with-water and converted to HA is negligible in comparison to the total
concentration of the ions dissolved. Thus, the equilibrium concentration of A-
can be approximated to the initial concentration c.

Consider the hydrolysis equilibrium

A”+H,0 — HA+OH"

K, _[HAJOH] _ [OH P
K,© ] ¢

since [HA] = [OH] and [A7] = c. Rearranging the above expression, we get

2
, K |
[OH_]2 = Kh Xc= —KW c or —2-— y = \KW c

’ K [H:0°)" K,

a
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or  [H;0%]= ‘/_KWKa
c

which gives pH= -l—pK:, +lpK;’ e log (clc°)
2 20 %2
an expression identical to Eq. (4.13.12).

The degree of hydrolysis can be .c;omputed as follows: - .

A" +H,0 — HA +OH"

c(l-a) co co

K _ K, _[HA] [OH™]_ (cox)(ca) _ cot
B K, B [A7] T (l-a) l-a

- Under the approximation (ii) stated above, (1 - @) = 1.

Therefore, K, = co’

-k [k S
or = 1/—“ = f—‘” : C (4.13.13)
' Nec K,c

It can be seen from this expression that the degree of hydrolysis increases
with dilution.

Calculate at 25 °C the hydrolysis constant and its degree of hydrolysis in 0.10 M solution
of: (a) sodium acetate, and (b) sodium carbonate. What will be the pH values? (Given:
K,(HAc) = 1.8 x 10° M and K,(HCO3) = 4.7 x 107! M.)

(a) Hydrolysis of acetate ion (Ac”) is
Ac” +Hy0 — HAc+OH"

- Ifit be assumed that the decrease in the concentration of Ac™ ions because of hydrolysis
is negligible in comparison to the original concentration of Ac”, and also, if the contribution
of OH™ from the ionization of water is negligible in comparison to that derived from

" hydrolysis, then we have

[HAc] = [OH] and [Ac] = [AcT]p = 0..1 M

K, (1.0x107%M)
Ky=-¥=>""—0
K, (18x107° M)
' - -2 -2
Al K, = HACIOH']_[OH')” _ [OH]
- [AcT] [AC_]O- - 0.1M -

) 14
Hence [OH]= (O'IM)(I'OXSIO M) 75x106 M
, (1.8x107° M)
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Thus, we see that the decrease in the concentration-of Ac” (= [OH"] =
7.5 x 10° M) due to hydrolysis is negligible as compared to the concentration of
Ac™(0.1 M) and that the concentration of OH™ due to the dissociation of water is just
1.3% {= (107 M/7. 5x 1075 M) x 100} of the concentration of OH derived above,
justifying the above procedure to compute the concentratlon of OH™. Now the concentration
of H_,,O+ would be

_10x 107 M2

K =13x107M

w

[OH"]  75x10°M

: [H3O+] =
Thus pH = - log {[H)/M} = - log (1.3 x 107%) = 8.9

_[OH] _ 7.5x10°M

- =75x% 107
c 0.1M

and
(b) Hydrolysisfdf.CO:%‘ is represented as

_ CO3‘+H 00— HCO3 +OH‘
Here HCOj is an amphiprotic anion, i.e. both a weak acid and a weak base, and its
hydrolysis is negligible.
The hydrolysis constant of the above reaction is
_ [HCO5][OH™]
[CO%]

-Multiplying numerator énd denominator by [H;0%1, we have

_ [HCO3][OH ] [H;0*] _ K,
[CO3"] [H;07] Ky

h=

where K, is the dissociation constant of the reaction .
HCO;5 + H,0 —— H,;0" + CO3~
The numerical value of K, is

(1.0 x 1074 M?)
@.7 x 107'L M)

Since [HCOJ] = [OHT] and [OH7] << [CO57], therefore

=2.127 x 107* M

Kh=

[OH

 Ky=——
[CO3 ]o '

or [OH’]=\/»Kh [COF Ty =4(2.127 X107 M) (0.1 M)
=4.61x10° M _
Now pOH = - log {[OH M} = - log (4.61 x 107) = 2.34

pH = 14 - pOH = 11.66
C[OH]  (4.61 x 10> M)

d o= = =4.61x1072
an c ©.1M)
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It is found that 0.1 M solution of three sodium salts Na{X, NaY and NaZ have pHs 7.0,
9.0 and 11.0, respectively. Arrange the acids HX, HY and HZ in order of increasing
strength Where possrble calculate the ionization constants of the acids.

Hydr01y31s of the anions are _
X'+H20 — HX+OH;  pH=7.0
Y +H,0 — HY +OH"; pH=9.0

Z"+H,0 —— HZ+OH"; ' pH=11.0
Using the expression ‘
pH = lp_KfV + lpK: + l-log (c/c®) .
‘ 2 2 2
we can calculate pK of the conjugate acid as f0110WS' -

(i) Solution of pH = 7. No Hydroly31s therefore X‘ must have con]ugate acid HX
strong.

-(ii) Solution of pH = 9. Using pK; = 2pH - pK{’v - log (c/c®), we have
pKe=18-14+1=5
(iii) Solution of pH = 11
CpK=22-14+1=9

 Thus, K,MHY)=10"M and K,HZ) = 10-9

Acid HZ is weaker than acid HY.

Calculate the hydrolytic constant, degree of hydrolysis and pH of 0.25 M NaCN solution
(K,(HCN) = 4.8 x 107 M).

The hydrolysis reaction of CN™ is
CN™ +H,0 —— HCN +OH"
The value of hydrolysis constant is

) [HCN]J[OH™] _ Ky _ (10X 10714 p2 )

Sl =2.08x10° M
[CN7] K, . (48x100Mm)

Its degree of hydrolysis is

Lo K -\/(2.08 x 1075 M)

=912x 1073
025M) ,

c
Thus the concentratlon of OH™ in the solutlon is

[OH] =.ca = (025 M) (9. 12 x 10-3) = 2.8 x 10-3 M
Thus, pOH = - log {[OH/M]} = 2.64
and - pH =14 -pOH = 11.36
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4.14 EXACT TREATMENT OF HYDROLYSIS OF SALT FORMED FROM A STRONG
ACID AND A WEAK BASE -

The cation of such a salt will interact with water to produce H;0" in solution.
Therefore, an aqueous solution of such a salt will be acidic (i.e. pH <7 at 25 °C).
Examples mclude salts 11ke ammonium chloride, anilinium chlonde etc. '

. Equilibria Existing Let ¢ be the concentrat1on of such a salt (BCI) in the solution. The followmg
~in Solution _ equilibria will exist in the solution. '

B* + 2H20 : BOH + H;0" | (4.14.1)
H20 +H,0 — H3O+ +OH"

These are’ charactenzed by the following equ111br1um constants.

g, - BOHIE0 _ [BOH] H,O'0H] K, .

" = — — - (4.14.2)
[B*] B [oH] K
and K, =[H;0%] [OH] : - (4.14.3)
Condition of Mass The mass-balance condition gives | '
Balance | |
[BCI], = [B*] + [BOH] . _ 4.14.4)
Condition of Charge The charge-neutrality condition gives | _
Balance + At - _ ‘
[B™] + [H;0"] = [CI"] + [OH] (4.14.5)
Derivation of Exact Since the salt is completely dissociated, we have
Expre_ssmrl (CL] =
Hence, Eq. (4.14.5) reduces to
n+ . Kw + : )
[B*]=c+ ~[H307] (4.14.6)
| [H3O+]_ - _
With this, Eq “. 14, 4) reduces to
: KW .
[BOH] [H3O 1o S (4.14.7)
[H;07]
Substituting [B*] and [BOH] in Eq. (4.14.2), we get
[Hy0%] - KW+ [H307]
Ky [H30™]
— = — | (4.14.8)

Ky Ky :
{c+ [H3Q+ — [H30+]}

o [HOTK, + [HOTK, - (K, +0) KJHOT-K2=0 - (4.14.9)
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Equation (4.14.9) is a cubical expression in [H;0*].;A simpler expression can be

_ used to compute the [H;O"] under the following approximations:

(i) If in the resultant solutlon [H,0] 2 10'6 M, then K, /[H;0%] < 10~8 M.

[H,04] - —2w

:[Ho’f_
- [H507] 3. ],

=C— |.H3O ]
30+]} o |
(ii) If the solu_tio_n is fairly concentrated and the value of K; is::s-mjall‘; then

c-[H0=c¢

- With these approximations, Eg. (4.14.8) is reduced to

K, _[HO'T
Kb C
o [H0f]= |mC (4.14.10)
b o
. 1 o 1 o 1. o0 |
ie. pH= EPK —Epr -—log (c/c ) : - (4.14.11)

It can be seen that the pH of the solution, besides depending on Kb, also.
depends on the concentration of the salt in solution.

The above two approximations are equivalent to the following two statements:
(i) The amount of H;0* coming from the dissociation of water is negligible

“in comparison to that produced due to the hydrolysis of the ion, thus making

[BOH] = [H,0*]. |

(ii) Usually K; is very small and, therefore, the concentration of ions that
actually reacted with water and converted into BOH is negligible in comparison
to the: total concentration of the ions dissolved. Thus, the equilibrium concentration

of B* can be approximated to the initial concentrat1on c.

Considering the hydrolysis equ1hbr1um o
B +2H;0 — BOH +H,0™

we have Kj = I;W — [BOHD];;P]I?)O] _ [H3? ] }

“since - [BOH] = [H,0"] and [B*] =c.
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Solution

or pH=

" Calculate the hydrolys1s constant and its degree of hydrolys1s in 1072 M solut10

G

Rearranging, we get -

(0 = [Kwt
Ky,

1 o 1 _o 1 o
EPKW —EPKb ) log (c/c®)

“an expression identical to Eq. (4.14.11). -

The degree of hydrolysis.can be cornputcd as follows:

B* +2H20 = BOH+H3O+

o(i-ay e
oK [BOH] [H30+] () () _ 2
h = + .
Ky B1 0(1 )
o T ke S (4.14.12)

’

We can COnclude_'t_hat the degree of hydrolysis increases with dijyg; on

Calculate the hydrolytic constant of urea hydrochloride salt. G1
=1.5x 1074 M. Ven: K (urea)

The hydrolysis reaction of the cation NH,CONHS is
- NH,CONH} +H,0 == NH,CONH, +H;0"

[NH,CONH, }[H;0%]

| .
Thus, R T NH,CONHY ]
o K= NCONHL] oy - Ew
R [NH2CONH3][OH 1 K,
Substituting the vgllucs, we have
~14 :
K, = 0x10 M . M _ 0666 M
15x 1074 M .

nof
What will be its pH value? Given: K,(NH,OH) = 1.8 x 107° M. of NH,CL

If  is the degree of hydrolysis of NH4, the concentrations of species IHVOIVe din th
hydrolysis reaction are in the
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NH; +2H,0 = NH4OH+H3O+

c(1- a) . : e
The [H;0%] can be computed from the expression
[NH,OH][H;0'] - [Hy0"

Kp = — " o
N[l NHj),

oo [HO']= Ky[NH; Ty
K., (10x10wm)

Now — Ky==-2=22X2 5 5655010y
Ky (8x107 M) .

Thus,  [Hs0%]= \ﬁ 6x 1070 M) (102 M) =239 x 105 M
and pH = — log (2.39»x}10’6) = 5.63
Since [H;0"] = ca, the degree -of hydrolysis of VNH4+ -is given as

_[H;0"]_(239 x 1075 M)
¢ (102 M)

=239 x 107

4.15 EXACT TREATMENT OF HYDROLYSIS OF SALT FORMED FROM A WEAK ACID
' AND A WEAK BASE

Both the cation and the anion of such a salt undergo hydrolysis, in general, to
different extents. An aqueous solution of such a salt may be neutral, acidic or
alkaline depending upon the relative strengths of the conjugate acid and base.
Examples include salts such as ammonium acetate, ammonium cyanide, etc.

Equilibria Existing Let ¢ be the concentration of such a salt (say, B*A") in the solution. The
in Solution following equilibria will exist in the solut1on :

. ) +

B* +2H20_ — BOH+H3O+; th — Kw — (BOH] [H3O ]
. . K +

S - b [B]

A" +H,0 — HA+OH"; K}, = I; [HALEO]H ] (4.15. 2)

a
H,0 +Hy0 == H;0"+OH; K, = [H:O*][OH"]  (4153)

Expression of * The overall hydrolysis is
Overall Hydrolysis : :

B*+A”+H,0 — BOH+HA

The hydrolysis constant of this reaction is given as

‘(4.15.'1) R
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© - [BOHJHA] _  [HA]  [BOH]

[H;0™1[OH"]
"TBYATT (A7)0 (BTI[OH]
| K | -
or Kh :'Ka[“éb _ o . o (4.15.4) -

That is, the hydrolysis constant depends upon both Ka_énd K.
The mass-balance condition givés
[B*] = [B*], - [BOH] = ¢ - [BOH] o - (4.155)
(A7) = (Ao~ [HA] = ¢~ [HA] @nse)
The condition of eleétrbneutfali_ty 'gives | ' R
[B*] + [H:0%] = [A”] + [OH] - S (4.1577)
Substituting for [BOH] from Eq. (4.15_.1) intorEq. (4.15.5), we get -

[B+] =_C_M3+_]
' : Ky[H3;0"]

or [B*]= - CK - (4.1.5.8.)
K, [H;07]

Similarly, substituting for [HA] from Eq. (4.15.2) into Eq. (4.15.6), we get

KelA] _ [H;07][A7]

[AT)=c-
K,[OH"] K,
or A)=—S— : (4.15.9)
) 1+ |}I3O ] ) .
K,

Now substituting Eqs (4.15.8) and:(4.15.9) in Eq. (4.15.7), we have

, L K .
————— +[H30") = ————+ (4.15.10)
K T [H07) [H307)
Ky [H;07] K,

Equation (4.15.10) is a fourth power in [H0*] and, in principle, can be solved
for the given valués of ¢, K, and K,. However, a simpler expression can be used
under the .approximation‘ that H;O" and OH™- concentrations of the resultant
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solution- are negligible in comparison to the unhydrolyzed concentrations of B*
and A7, respectively. This approximation holds good if the amount of the salt
dissolved is-quite large and only a small fraction of the ions is hydrolyzed. With
this, Eq. (4.15.7) reduces to '

[B*]=[AT]
which ‘according to Eqs (4:15.8) and (4.15.9) becomes

- ¢ _ c
1wy O]
- kMO0 K,
o o
or 50, 1+- Ky
K, - Kp[H;0™]
or [H3o+]2':KWKa or [H;0%]= KwKa (4.15.11)
K Kbr
. 1 o o [s] .
or pH= E(pKW +pK, ~pK}) (4.15.12)

It can be seen that Eq. (4.15.11) is independent of concentration of the
salt. We can draw the following conclusions regarding the nature of the solution
at 25 °C:

(i) If K, = K, then [H;0*] = 107 M; neutral solution.
(i) If K, > K, then [H;0*] > 107" M; acidic solution.
(iii) If K, < K, then [H3O+] < 107 M; alkaline solution.

In the hydrolysis of the salt of a weak acid and a weak base such as ammonium
acetate, anilinium acetate, ammonium cyanide, etc., both the ions are hydrolyzed.
If we assume that K, =~ K,, then the hydrolysis of the cation and anion of the
salt occur approximately to equal extent.

For a salt such as NH,CN, K, < K,, it would be expected at a first glance
that CN~ ions hydrolyze to a much greater extent than NH, ions. However, the
hydrolysis of CN™ ions produces OH” ions according to the equation '

" CN™ +H,0 — HCN +O0H~
which can react with NH; ions as “
OH™ +NH} —— NH,0H

This latter reaction causes equilibrium in the former reaction to be displaced
to the right, because OH™ ions are removed from the solution. Also.the production
of OH™ by the former reaction displaces the latter reaction to the right. Therefore,
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the hydrolysis of one ion drags the hYdrolysis of the othe