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Preface

This text provides an introduction to physical chemistry, covering the fundamentals
of thermodynamics, kinetics and quantum chemistry. The selection of contents was
guided by the concept of a two-semester course delivering thermodynamics and
kinetics (Chaps. 1–8) and quantum chemistry (Chaps. 8–13) throughout the second
year of undergraduate studies in the disciplines of chemistry, biochemistry, engi-
neering and neighbouring disciplines.

The compilation of this text was based strongly by teaching and examination
experience of this subject. This includes an appreciation of the fact that students
taking this course might have varying background knowledge and need to be guided
through physical chemistry concepts in a step-by-step manner. Furthermore, while
mathematical analysis is an integral part of physical chemistry, many students taking
this subject are not mathematicians. Particular care has therefore been taken in the
presentation of the algebraic parts of physico-chemical concepts that should allow
the reader to rework the relevant discussion with pen and paper during study time.

Each chapter includes a selection of numerical exercises that serve to revise
particular key concepts as well as apply these concepts to physico-chemical
problems. Detailed solutions for all exercises are included at the end of this text.

I sincerely thank colleagues for their generous provision of images, in particular
Dr Lutz Hammer (Universität Erlangen-Nürnberg, Germany), Prof Chris Rayner
(University of Leeds, UK), Prof Anne Simon (Université Claude Bernard Lyon
1, France), Ms Elysia Cave-Freeman and Dr Agatha Garavelas.

I am most grateful to the editorial team at Springer, Heidelberg, for their advice
during compilation and their efforts with producing this text. Manuscript and figures
for this book have been compiled entirely with open source and academic software
under Linux, and I acknowledge the efforts by software developers and
programmers who make their products freely available.

Constructive comments from all students who use this book within their studies
and from teachers and academics who adopt the book to complement their courses
are most welcome.

Brisbane
November 2016

Andreas Hofmann
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1.1 Periodic Table of the Elements

(Obtained from http://www.nist.gov/pml/data/periodic.cfm, 31.01.14)

# Springer International Publishing AG, part of Springer Nature 2018
A. Hofmann, Physical Chemistry Essentials,
https://doi.org/10.1007/978-3-319-74167-3_1

1
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1.2 Resources and Databases

There are many widely available resources with various physico-chemical data, in
print and online. A selection of resources for general, spectroscopic and structural
data is compiled in Table 1.1.

Table 1.1 Select resources of physico-chemical, spectroscopic and structural data

General physico-chemical data
CRC Handbook of Chemistry and Physics Haynes, W.M. (edt.) (2012) 93rd

edition, CRC Press.
Book

SI Chemical Data Aylward, G. & Findlay, T. (2013)
6th edition, John Wiley & Sons.

Book

National Institute of Standards and
Technology, USA

http://www.nist.gov/srd/onlinelist.
cfm

Public

Mass spectrometry
MassBank (Japan) http://www.massbank.jp/?lang¼en Public

Mass Spectrometry Data Center (NIST) http://chemdata.nist.gov/ Public

m/zCloud (HighChem LLC, Slovakia) http://www.mzcloud.org/ Public

Spectral data
Spectral Database for Organic Compounds
SDBS (National Institute of Advanced
Industrial Science and Technology, Japan)

http://sdbs.db.aist.go.jp/sdbs/cgi-
bin/cre_index.cgi?lang¼eng

Public

Structural data
Cambridge Structural Database (CSD)
Crystal structures of organic compounds

http://www.ccdc.cam.ac.uk/
products/csd/

Licence

Inorganic Crystal Structure Database
Crystal structures of inorganic compounds

http://www.fiz-karlsruhe.de/icsd_
content.html

Licence

CRYSTMET®

Crystal structures of metals and alloys
http://www.tothcanada.com/ Licence

Protein Data Bank (PDB)
Protein and oligosaccharide structures

http://www.rcsb.org/pdb/ Public

Biological Magnetic Resonance Data Bank
(BMRB)
NMR structures of biomolecules

http://www.bmrb.wisc.edu/ Public

Nucleic Acids Data Bank
Structures of oligonucleotides

http://ndbserver.rutgers.edu/ Public

PDF Databases
Powder diffraction data

http://www.icdd.com/ Licence
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1.3 Units and Constants

1.3.1 Decimal Factors

1.3.2 The Greek Alphabet

1.3.3 SI Base Parameters and Units

Table 1.2 Decimal factors Factor Prefix Symbol Factor Prefix Symbol

10�1 deci d 10 deka da

10�2 centi c 102 hekto h

10�3 milli m 103 kilo k

10�6 micro m 106 mega M

10�9 nano n 109 giga G

10�12 pico p 1012 tera T

10�15 femto f 1015 peta P

10�18 atto a 1018 exa E

Table 1.3 The Greek
alphabet

Α, α alpha I, ι iota Σ, σ sigma

B, β beta K, κ kappa T, τ tau

Γ, γ gamma Λ, λ lambda Y, υ upsilon

Δ, δ delta M, μ mu Φ, ϕ phi

Ε, ε epsilon N, ν nu Χ, χ chi

Ζ, ζ zeta Ξ, ξ xi Ψ, ψ psi

H, η eta Π, π pi Ω, ω omega

Θ, θ theta P, ρ rho

Table 1.4 SI base
parameters and units

Symbol Parameter Unit Name

I Electric current 1 A ampere

Iv Light intensity 1 cd candela

l Length 1 m metre

m Mass 1 kg kilogram

n Molar amount 1 mol mole

t Time 1 s second

T Temperature 1 K kelvin
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1.3.4 Important Physico-chemical Parameters and Units

Table 1.5 Important physico-chemical parameters and units

Symbol Parameter Unit Name

b Molality 1 mol kg�1

B Magnetic induction 1 T ¼ 1 kg s�2 A�1 ¼ 1 V s m�2 tesla

c Molar concentration 1 mol l�1

C Electric capacitance 1 F ¼ 1 kg�1 m�2 s4 A2 ¼ 1 A s V�1 farad

E Energy 1 J ¼ 1 kg m2 s�2 ¼ 1 C V joule

ε Molar extinction
coefficient

1 l mol�1 cm�1

ε Permittivity 1 F m�1

F Force 1 N ¼ 1 kg m s�2 ¼ 1 J m�1 newton

F Magnetic flux 1 Wb ¼ 1 kg m2 s�2 A�1 ¼ 1 V s weber

G Electric conductance 1 S ¼ 1 kg�1 m�2 s3 A2 ¼ 1 Ω�1 siemens

H Enthalpy 1 J ¼ 1 kg m2 s�2 joule

η Viscosity 1 P ¼ 0.1 kg m�1 s�1 ¼ 0.1 Pa s poise

i Current density 1 A m�2

j Flux density 1 mol m�2 s�1

κ Conductivity 1 S m�2

L Magnetic inductivity 1 H ¼ 1 kg m2 s�2 A�2 ¼ 1 V A�1 s henry

Λm Molar conductivity 1 S m2 mol�1

M Molar mass1 1 g mol�1 ¼ 1 Da (dalton)

μ Electric dipole moment 1 D ¼ 3.336�10�30 C m debye

ν Frequency 1 Hz ¼ 1 s�1 hertz

p Pressure 1 Pa ¼ 1 kg m�1 s�2 ¼ 1 N m�2 pascal

P Power 1 W ¼ 1 kg m2 s�3 ¼ 1 J s�1 watt

Q Electric charge 1 C ¼ 1 A s coulomb

ρ Density 1 g cm�3

ρ* Mass concentration 1 mg ml�1

R Electric resistance 1 Ω ¼ 1 kg m2 s�3 A�2 ¼ 1 V A�1 ohm

S Entropy 1 J K�1

θ Temperature 1 �C degree
Celsius

u Ion mobility 1 m2 s�1 V�1

U, ϕ, E Electric potential (voltage) 1 V¼ 1 kg m2 s�3 A�1 ¼ 1 J A�1 s�1 volt

V Volume 1 l ¼ 1 dm3

Vm Molar volume 1 l mol�1

v Partial specific volume 1 ml g�1

w Mass fraction
Volume fraction

1 (typically given in %w/w, %w/v or %v/v)

x Mole fraction 1

z Charge number 1
1Note that the molecular mass is the mass of one molecule given in atomic mass units (u, Da). The
molar mass is the mass of 1 mol of molecules and thus has the units of g mol�1
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1.3.5 Important Physico-chemical Constants

1.3.6 Conversion Factors

Table 1.6 Important physico-chemical constants

Symbol Constant Value

c Speed of light in vacuo 2.99792458�108 m s�1

e Elementary charge 1.6021892�10�19 C

ε0 ¼ (μ0�c2)�1 Permittivity in vacuo 8.85418782�10�12 A2 s4 m�3 kg�1

F ¼ e�NA Faraday’s constant 9.648456�104 C mol�1

g Earth’s gravity near surface 9.81 m s�2

ge ¼ 2 μe/μB Landé factor of free electron 2.0023193134

γp Gyromagnetic ratio of proton 2.6751987�108 s�1 T�1

h Planck’s constant 6.626176�10�34 J s

kB ¼ R/NA Boltzmann’s constant 1.380662�10�23 J K�1

me Mass of electron 9.109534�10�31 kg

mn Mass of neutron 1.6749543�10�27 kg

mp Mass of proton 1.6726485�10�27 kg

μ0 Magnetic field constant 4π�10�7 m kg s�2 A�2

μB ¼ e�h/(4π�me) Bohr magneton 9.274078�10�24 J T�1

με Magnetic moment of electron 9.284832�10�24 J T�1

μN ¼ e�h/(4π�mp) Nuclear magneton 5.050824�10�27 J T�1

NA, L Avogadro’s (Loschmidt’s) constant 6.022045�1023 mol�1

pø Standard pressure (IUPAC) 1.00�105 Pa
pnormal Normal pressure (NIST) 1 atm ¼ 1013.25 hPa

R Gas constant 8.31441 J K�1 mol�1

R1 Rydberg’s constant 1.097373177�107 m�1

Tø, θø Standard temperature (IUPAC) 273.15 K, 0 �C
Tnormal, θnormal Normal temperature 298.15 K, 25 �C
u Atomic mass unit 1.6605402�10�27 kg

Vm
ø ¼ R�Tø/pø Molar volume of an ideal gas 22.41383 l mol�1

Table 1.7 Conversion
factors for energy

J cal eV

1 J 1 0.2390 6.24150974�1018
1 cal 4.184 1 2.612�1019
1 eV 1.60217646�10�19 3.829�10�20 1
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1.3.7 Thermodynamic Properties of Select Substances

1.4 Summary of Important Formulae and Equations

Table 1.8 Conversion factors for pressure

Pa bar atm mm Hg (Torr) psi

1 Pa 1 10�5 9.869�10�6 7.501�10�3 1.450�10�4

1 bar 105 1 0.9869 750.1 14.50

1 atm 1.013�105 1.013 1 760.0 14.69

1 mm Hg (Torr) 133.3 1.333�10�3 1.316�10�3 1 1.933�10�2

1 psi 6.895�104 6.897 10�2 6.807 10�2 51.72 1

Table 1.9 Enthalpy of formation, Gibbs free energy of formation and molar heat capacity of select
substances at normal conditions (Tnormal ¼ 298 K, pnormal ¼ 1.013 bar)

Species ΔHf in kJ mol�1 ΔGf in kJ mol�1 Cp,m in J K�1 mol�1

C(graphite) 0 0 8.53

HCO3
�
(aq) �689.9 �586.8

H2(g) 0 0 28.82

H+
(aq) 0

H2O(l) �285.83 �237.14 75.4

H2O(g) �241.83 �228.61 33.58

Ni(OH)2(s) �444

O2(g) 0 0 29.35

O3(g) 142.67 163.19 39.22

OH�
(aq) �230.02 �157.22

Table 1.10 Important formulae and equations

Thermodynamics

p � 1
V

Boyle’s law
The pressure exerted by an ideal gas is inversely
proportional to the volume it occupies if the
temperature and amount of gas remain unchanged
within a closed system.

V � T Charles’ law
Gases tend to expand when heated; at constant
pressure, the volume is directly proportional to the
temperature.

p � T Gay-Lussac’s law
If mass and volume of a gas are held constant, the
pressure exerted by the gas increases directly
proportional to the temperature.

(continued)
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Table 1.10 (continued)

p � V ¼ n � R � T Ideal gas equation
The laws by Boyle, Charles and Gay-Lussac combine
to the ideal gas equation.

psolute ¼ Ksolute � xsolute Henry’s law
For solutions at low concentrations, the vapour
pressure of the solute is proportional to its mole
fraction.

δU

δT

� �
V

¼ CV
Heat capacity at constant volume.

δU

δV

� �
p

¼ p � CV

n � R
Variation of the internal energy of an ideal gas with
volume at constant pressure.

δH

δT

� �
p

¼ Cp
Heat capacity at constant pressure.

Ideal gas:
δH

δp

� �
T

¼ 0

Otherwise:
δH

δp

� �
T

¼ V � T � δV

δT

� �
p

Change of enthalpy of a system with respect to a
pressure change in an isothermal process. For an ideal
gas, there is no change in enthalpy with pressure if the
temperature remains the same.

Cp � CV ¼ n � R Relationship between heat capacities of an ideal gas.

δS

δp

� �
T

¼ � δV
δT

� �
p

δS

δV

� �
T

¼ δp

δT

� �
V

δT

δV

� �
S

¼ � δp

δS

� �
V

δT

δp

� �
S

¼ δV

δS

� �
p

Maxwell relations provide a means to exchange
thermodynamic functions.

δS

δT

� �
p

¼ Cp

T

Entropy change of a system with respect to
temperature change in an isobaric process.

δG

δp

� �
T

¼ ΔV
The pressure dependence of the Gibbs free energy of
an isothermal process defines the volume change of
the system during that process.

δG

δT

� �
p

¼ �ΔS The temperature dependence of the Gibbs free energy
of an isobaric process defines the entropy change
during that process.

dp
dT

¼ ΔSvap
ΔVvap

Clapeyron equation
Change of vapour pressure of a one-component system
with temperature in terms of entropy.

d ln pð Þ
dT

¼ ΔHm,vap

R � T2

Clausius-Clapeyron equation
Change of vapour pressure of a one-component system
with temperature in terms of enthalpy.

dlnK
dT

� �
p

¼ ΔHØ

R � T2

dlnK
dT

� �
V

¼ ΔUØ

R � T2

van’t Hoff equations: reaction isobar and isochore
Change of the equilibrium constant of a chemical
reaction with temperature. The two equations show the
case for isothermal and isobaric, or isothermal and
isochoric reactions.

(continued)
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Table 1.10 (continued)

dlnK
dp

� �
T

¼ �ΔV
Ø

R � T
van Laar-Planck isotherm
Change of the equilibrium constant of a chemical
equilibrium with pressure in terms of the standard
reaction volume.

ΔG ¼ ΔGØ + R � T � ln K Change of the Gibbs free energy of a chemical reaction
with equilibrium constant K and standard Gibbs free
energy ΔGØ.

Colligative properties
Π ¼ i � c � R � T Osmotic pressure

ΔTf ¼ i � Kf � b Freezing point depression

ΔTb ¼ i � Kb � b Boiling point elevation

p ¼ p∗ � x Raoult’s law: vapour pressure depression

Electrochemistry

G ¼ κ � A
l
¼ 1

R
Electrical conductance
The conductance increases with the cross-sectional
area A and decreases with the length l of the conductor;
k is the electrical conductivity. The conductance is the
inverse of the resistance R.

Λm ¼ κ

c
Molar conductivity

m � I � t ¼ Q Faraday’s first law of electrolysis
The mass of a substance altered at an electrode during
electrolysis is directly proportional to the quantity of
electricity transferred at that electrode.

m � M

z
Faraday’s second law of electrolysis
For a given quantity of electric charge, the mass of a
deposited/generated elementary substance is
proportional to the molar mass of that substance
divided by the change in oxidation state (i.e. in most
cases the charge of the cation in the electrolyte).

E ¼ EØ � R � T
z � F � lnK Nernst equation

Concentration dependence of the Redox potential.

ΔGØ
m ¼ �z � F � EØ Change of the standard molar Gibbs free energy of an

electrochemical process with the standard electrode
potential EØ and the charge state z.

pH ¼ pKa þ lg
c A-ð Þ
c HAð Þ

� �
Henderson-Hasselbalch equation
pH of a solution with the buffer system consisting of
the weak acid HA and its conjugated base A�.

Λm ¼ Λ0m � κ � ffiffiffi
c

p
Kohlrausch’s law
The molar conductivity of strong electrolytes increases
with decreasing concentrations (valid for generally
low concentrations).

Kd ¼ α2

1� α � c0 ABð Þ

Kd ¼ Λ2
m

Λ0m � Λmð Þ � Λ0m
� c0 ABð Þ

Ostwald’s law of dilution
The dissociation constant of weak electrolytes is a
function of the degree of dissociation α, and with

α ¼ Λm

Λ0m
, can be expressed in terms of the molar

conductivity.

(continued)

8 1 Physico-chemical Data and Resources



Table 1.10 (continued)

Λ0m ¼ ν+ � λ+ + ν‐ � λ‐ Law of the independent migration of ions
The limiting molar conductivity is comprised of the
two independent limiting molar conductivities of the
anions and cations.

Transport

F ¼ �R � T
c

� δc

δx

� �
p,T

Thermodynamic force
A concentration gradient establishes a thermodynamic
force F.

J ¼ �D � dIN
dx

Fick’s first law of diffusion
Flux of matter is defined by the concentration gradient

along x; IN ¼ N

V
is the molecule density; D is the

diffusion coefficient.

J ¼ �κ � dT
dx

Thermal conduction
Flux of energy along a temperature gradient; κ is the
thermal conductivity.

J ¼ �η � dvx
dx

Flux of momentum
When molecules switch from one flow layer to
another, their momentum is also migrating; η is the
viscosity.

Kinetics

k ¼ A � e�Ea
R�T Arrhenius equation

The rate constants of most reactions depend on the
temperature.

dlnk
dT

� �
¼ Ea

R � T2

The generalised dependency of rate constants on
temperature, which applies to all reactions irrespective
of their adhering to the Arrhenius relation or not.

v ¼ vmax � c0 Sð Þ
c0 Sð Þ þ Km

Michaelis-Menten enzyme kinetics

Surface adsorption

Γ ¼ K � p
K � pþ 1

Langmuir adsorption isotherm without dissociation
The Langmuir constant K is the ratio of the rate

constants for adsorption and desorption: K ¼ kads
kdes

.

Γ ¼
ffiffiffiffiffiffiffiffiffiffi
K � pp

ffiffiffiffiffiffiffiffiffiffi
K � pp þ 1

Langmuir adsorption isotherm with dissociation into
two species

1.4 Summary of Important Formulae and Equations 9



Table 1.11 Kinetic rate laws in their differential and integrated forms, and the derived half lives

Order Differential form Integrated form Half life

0 � 1
νA

� dc Að Þ
dt

¼ k
c(A) ¼ � νA � k � t + c0(A) t1=2 ¼ c0 Að Þ

2 � k
1 � 1

νA
� dc Að Þ

dt
¼ k � c Að Þ � ln c(A) ¼ νA � k � t � ln c0(A) t1=2 ¼ ln 2

k

2 � 1
νA

� dc Að Þ
dt

¼ k � c Að Þ2
1

c Að Þ ¼ νA � k � t þ 1
c0 Að Þ t1=2 ¼ 1

k � c0 Að Þ
3 � 1

νA
� dc Að Þ

dt
¼ k � c Að Þ3

1
c Að Þ2 ¼ 2 � νA � k � t þ 1

c0 Að Þ2 t1=2 ¼ 3

2 � k � c0 Að Þ2

Table 1.12 Interactions between molecules. α: polarisability; ε0: vacuum permittivity; I: first
ionisation potential; μ: dipole moment; r: distance between the two atoms/molecules

Interaction Potential energy Explanation

Order of
magnitude
(kJ mol�1)

Covalent
bond

|V| ¼ 200–800

Coulomb
interaction V ¼ � zA � zB � e2

4π � ε0 � r
Interaction between two
ions

|V| ¼ 40–400

Ion-dipole
interaction

V ¼ � z � e � μ
4π � ε0 � r2

Interaction between ion and
permanent dipole

|V| ¼ 4–40

Keesom
interaction V ¼ �2

3
� μ2A � μ2B
4π � ε0ð Þ2 � r6 �

1
k � T

Interaction between two
permanent dipoles

|V| ¼ 0.4–4

Ion-induced
dipole
interaction

V ¼ �1
2
� α � e2
4π � ε0 � r4

Interaction between ion and
induced dipole

|V| ¼ 0.4–4

Debye force
V ¼ � α � μ2

4π � ε0ð Þ2 � r6
Interaction between
permanent dipole and
induced dipole

|V| ¼ 0.4–4

London
dispersion
force

V ¼ �3
4
� I � α

2

r6
(pure substance)

Interaction between
temporary dipole and
induced dipole

|V| < 0.4

V ¼ �3
2
� IA � IB
IA þ IB

� αA � αB
r6

(mixture of A and B)

|V| < 0.4

Hydrogen
bond

|V| ¼ 4–40

10 1 Physico-chemical Data and Resources
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Thermodynamics 2

2.1 Motivation, Revision and Introduction of Basic Concepts

The description of macroscopic phenomena in the area of chemistry, biology,
physics and geology is of eminent importance to develop an appreciation and
understanding of the molecular processes that give rise to these phenomena. Ther-
modynamics is a systematic theory that is applicable and valid in a truly general
fashion. As such, the knowledge of thermodynamic concepts is a pre-requisite for
many neighbouring disciplines, such as materials science, environmental science,
biochemistry, forensics, etc.

In particular, thermodynamics is concerned with

• how the macroscopic world behaves
• how energy is transferred
• how and under which conditions equilibrium is achieved
• how and into which direction processes develop.

Despite the fact that the complex looking formulae may be obtained and dealt
with at times, the study of thermodynamics is constantly connected to observations
made in the real macroscopic world. The laws of thermodynamics are a prime
example of how the theory is connected with real world experiences.

The types of question we might want to answer may include:

• If we have a fluid in a sealed container, how will the pressure in the container
likely change with temperature?

• Is the solubility of a compound likely to increase or decrease with temperature?

Application of thermodynamic concepts will allow us to answer such questions
qualitatively, but, more importantly, we will also be able to derive quantitative
answers. It is thus necessary to use some algebra and calculus (see Appendix A).

# Springer International Publishing AG, part of Springer Nature 2018
A. Hofmann, Physical Chemistry Essentials,
https://doi.org/10.1007/978-3-319-74167-3_2
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2.1.1 Fundamental Terms and Concepts

It seems appropriate to start with the introduction and revision of vocabulary
frequently used in thermodynamics. Many fundamental terms and concepts are
typically introduced in entry-level chemistry courses, and should thus already be
familiar (Table 2.1).

In the following Sects. (2.1.2–2.1.13), we will expand these fundamental
concepts so that we can start to explore various thermodynamic concepts in more
detail.

All physical measurements are about differences, absolute values of quantities
can not be determined. Therefore, when describing quantities such as functions
(e.g. energy, entropy) and observables (e.g. temperature, pressure), they are typically
characterised by comparing two different states, such as for example the energy
difference between two different states that possess different temperatures. When
such differences are observed macroscopically (i.e. in a typical bench-top experi-
ment), these differences are denoted with a capital Greek delta (Δ). In other words,
the Δ describes the difference between two reasonably spaced discrete points. When
an infinitesimally small difference between two very close points is addressed, the
lower case Greek δ is used instead. For quantities that can be expressed as continu-
ous mathematical functions, the ‘δ’ becomes a ‘d’ to indicate the differential of that
quantity. The differential of a quantity with respect to another can be envisaged as
the slope of the curve in a plot of the two quantities (see Fig. 2.1).

A basic introduction to differentials is given in Appendix A.2. Throughout this
text, we will use ‘Δ’ to denote a macroscopic difference, and ‘δ’ or ‘d’ for infinitesi-
mal small differences. Since differentials (‘d’) allow application of mathematical
formalism and calculus, this will frequently be the notation of choice. It is important
to remember, that any differential can be seen as a difference between two states. The

Fig. 2.1 Comparison of the macroscopic difference Δ between two discrete points and the
differential as a special case of difference where two neighbouring points merged into one
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macroscopic difference of a function X, ΔX, is linked to the many microscopic
differences dX within a range from Xstart to Xend by the mathematical process of
integration:

ΔX ¼
ðXend

Xstart

dX ¼ X½ �Xend
Xstart

¼ Xend � Xstart

System
All scientific study is carried out on a particular system that is the subject of study. A
system is the part of the universe that can be conveniently studied with the methods
at hand. In many cases, most or all of the properties of the system are under the

Table 2.1 Summary of fundamental physico-chemical terms and concepts

Term Description Physico-chemical background

System A part of the universe that can be studied Isolated, closed, open

Equilibrium No macroscopic signs of change

Intensive
parameters

Do not depend on the amount of substance
present in the system

e.g. p, T

Extensive
parameters

Depend on the amount of substance
present in the system

e.g. m, V

Temperature Measure of the average kinetic energy εkin
of particles in a container; state function

T ¼ εkin
kB

;

[T] ¼ 1 K, [θ] ¼ 1 �C
Pressure The force of matter exerted onto a surface;

state function
[p] ¼ 1 N m�2

Ideal gas Obeys the ideal gas law: p � V ¼ n � R � T Volume of particles is negligible;
interactions between particles is
negligible

Partial
pressure

Pressure of a gas component if it was alone
in a container in the same overall state ( p,
V, T )

[pi] ¼ 1 N m�2

Energy Capacity to do work, state function [E] ¼ 1 J

Work Object is moved against an opposing
force; path function.

Wexp ¼ p � V; [W] ¼ 1 J

Heat Energy resulting from temperature; path
function

[Q] ¼ 1 J

Internal
energy

The energy possessed by a system; state
function

U ¼ Q + W; [U] ¼ 1 J

Enthalpy Equal to the heat supplied to a system at
constant pressure if there is no work done
except for expansion/contraction ; state
function

H ¼ U + p � V; [H] ¼ 1 J

Entropy Disorderly dispersal of energy; state
function

ΔS ¼ ΔQ
T ; [S] ¼ 1 J K�1
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control of the observer. A system can be as simple as a container filled with water
that is placed on a heating plate.

Systems can be subdivided based on their boundaries. It may not always be
possible to perfectly reproduce such boundaries in real experiments, but for the
development of concepts, idealised versions are required. Typically, three types of
systems are considered:

• isolated system: can neither exchange energy nor matter with its environment; it
thus cannot elicit any changes in the environment nor can it be changed by its
environment.

• closed system: whereas exchange of energy is allowed between the system and its
environment, it is not possible to exchange matter.

• open system: the exchange of energy as well as matter is possible, as e.g. between
two compartments separated by a semi-permeable membrane.

Equilibrium
A system that has reached equilibrium does not show any macroscopic signs of
change, i.e. there is no change of the state of that system.

Intensive and Extensive Parameters
State variables are parameters that describe particular properties or coordinates of a
system. They can be classified into two groups:

• extensive parameters—depend on the amount of substance present in the system.
The value of extensive parameters can be calculated as the sum of the partial
values when the system is subdivided into parts.

• intensive parameters—do not depend on the amount of substance present in the
system. The value of intensive parameters can be measured at any point within the
system.

Typically, an intensive parameter can be calculated as the quotient of two
extensive parameters.

Temperature
Temperature is a measure for the average kinetic energy ( εkin ) of particles in a
container:

T ¼ εkin
kB

ð2:1Þ

where kB is the Boltzmann constant: kB ¼ R
NA

¼ 1.380662�10�23 J K�1, and εkin is
used to indicate the extensive kinetic energy (since it is measured per particle;
[εkin] ¼ 1 J), as opposed to the intensive quantity Ekin (measured per mol;
[Ekin] ¼ 1 J mol�1).

16 2 Thermodynamics



Temperature is an intensive property and therefore does not depend on the
amount of substance in the container. The temperature indicates the direction of
the flow of energy through a thermally conducting wall. If energy flows from object
A to B when they are in contact, then A is defined to possess higher temperature.
Thermal equilibrium exists, when no energy flow occurs between objects A and B
when they are put into contact by a wall that allows heat to flow.

There are various scales (and thus units) of measurement for temperature
(Table 2.2):

The fix points of the Celsius scale are defined as�273.15 �C ¼ 0 K and the triple
point of water being at precisely 273.16 K and 0.01 �C (at standard pressure). Thus,
the increments on the degree Celsius and kelvin scale are the same, which led to the
recommendation that temperature differences on the degree Celsius scale should be
expressed in kelvin; for example:

Δθ ¼ θ2 � θ1 ¼ 20
�
C� 15

�
C ¼ 5:0K

although this rule has been relaxed by IUPAC (Rossini 1968). According to above
definition, temperatures on the kelvin and degree Celsius scales can be converted as per

θ ¼ T

1K
� 273:15

� �
�C ð2:2Þ

The standard temperature as defined by IUPAC is at

TØ ¼ 273:15 K, i:e: θØ ¼ 0
�
C

as opposed to the normal temperature of

Tnormal ¼ 298:15 K, i:e:θnormal ¼ 25
�
C

which is typically used as a reference temperature for many physico-chemical
processes and chemical reactions.

Pressure
Pressure is defined as the force divided by the area to which the force is applied

Table 2.2 Commonly used temperature scales

Use Symbol Scale Unit

Ambient θ degree Celsius [θ] ¼ 1 �C
degree Fahrenheit [θ] ¼ 1 �F

Thermodynamic (SI unit) T kelvin [T] ¼ 1 K
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p ¼ F

A
ð2:3Þ

Pressure is an intensive property and thus does not depend on the amount of
matter present.

There are various scales (and thus units) of measurement for pressure (Table 2.3):
The IUPAC standard pressure is defined as

pØ ¼ 1bar ¼ 105 Pa ð2:4Þ

The normal pressure (which equals the standard pressure used by the National
Institute of Standards and Technology, NIST, USA) refers to atmospheric pressure
and is defined as

pnormal ¼ 1013:25hPa ¼ 1013:25mbar ¼ 1atm ¼ 760mmHg ¼ 760 torr ð2:5Þ

Mechanical equilibrium exists when a moveable piston between two
compartments filled with gases has no tendency to move.

Boiling points depend on the pressure
Since water boils at a temperature of θb,normal (H2O) ¼ 100 �C at normal
pressure (pnormal ¼ 1 atm ¼ 1.013 bar), the boiling temperature is less at
IUPAC standard pressure (pØ ¼ 1 bar ¼ 0.9869 atm).

Ideal Gas
The behaviour of an ideal gas can be explained by the kinetic gas theory which
requires the following assumptions:

• the gas is composed of particles whose total volume is negligible compared with
the volume of the system

• the interactions between particles are negligible
• the average kinetic energy is proportional to the temperature

Table 2.3 Commonly used pressure scales

Use Scale Unit

SI unit pascal [p] ¼ 1 Pa ¼ 1 N m�2

Historic mm Hg, torr 1 mm Hg ¼ 1 torr ¼ 133.3 Pa

Colloquial atmosphere 1 atm ¼ 1.013�105 Pa
Non-SI unit (European) bar 1 bar ¼ 105 Pa

Non-SI unit (Anglo-
American)

psi (pound-force per square
inch)

1 psi ¼ 6.895�104 Pa
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The ideal gas equation constitutes the equation of state for the ideal gas and
informs about the physical state of the system for given conditions:

p � V ¼ n � R � T ð2:6Þ

The variables and parameters of the ideal gas equation are (Table 2.4):

Partial Pressure
If a system contains more than one gaseous components, the partial pressure
describes the pressure of any particular gas if it would reside there alone, under
the same total pressure and temperature. In case of ideal gases, the ideal gas equation
is valid for each individual gas with its partial pressure:

pi � V ¼ ni � R � T ð2:7Þ

Dalton’s law poses that the pressure exerted by a mixture of gases is the sum of
the partial pressures of the individual gases:

p ¼ p1 þ p2 þ . . .þ pN ¼
XN
i¼1

pi ð2:8Þ

Example of Dalton’s law
If we have a mixture of O2 and N2 in a flask, where the partial pressure of O2 is
p(O2) ¼ 1 Pa, and the partial pressure of N2 is p(N2) ¼ 2 Pa, the total pressure
in the flask is

p ¼ p N2ð Þ þ p O2ð Þ ¼ 1Paþ 2Pa ¼ 3Pa:

Energy
Energy describes the capacity to do work and thus bring about change. Energy is
measured in units of joule: [E] ¼ 1 J.

Table 2.4 Variables and parameters of the ideal gas equation

Pressure [p] ¼ 1 Pa

Volume [V] ¼ 1 m3

Molar amount [n] ¼ 1 mol ¼ 6.022�1023 particles (number of atoms in 12 g of 12C)

Gas constant R ¼ 8.3144 J K�1 mol�1

Temperature [T] ¼ 1 K
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Work
Is a form of energy and can be classified either as mechanical or electrical work.
Mechanical work is defined as the product of a force and the length along which this
force is applied:

W ¼ F � x W½ � ¼ 1 N m ¼ 1 Pa �m3 ¼ 1 J ð2:9Þ

electrical work is done when a current I flows through an electric resistance R over a
particular time t.

W ¼ R � I2 � t W½ � ¼ 1 ΩA2s ¼ 1 V A s ¼ 1 C V ¼ 1 J ð2:10Þ

Differential expressions
Since energy is all about the potential to change the state of a system,
differential expressions are frequently used. The differential expression for
mechanical work tells us how much the value of the work changes (dW ) when
the force F is applied along a particular distance (dx):

dW ¼ F � dx
Differential expressions need to be integrated in order to obtain a definite

value. To integrate this expression, the following integrals need to be resolved:

ðWend

Wstart

dW ¼ W½ �Wend
Wstart

¼ Wend �Wstart ¼ ΔW

ðxend
xstart

F � dx ¼ F �
ðxend

xstart

dx ¼ F � x½ �xendxstart
¼ F � xend � xstartð Þ ¼ F � Δx

The value of the work done is thus:

W ¼ Wend �Wstart ¼ F � xend � xstartð Þ ¼ ΔW ¼ F � Δx

Heat
When energy changes as a result of a temperature difference between the system and
its surroundings, we say there is a flow of heatΔQ. If there is no flow of heat during a
process, this is called an adiabatic process. Heat therefore is an energy due to
temperature; it is measured in units of joule: [Q] ¼ 1 J. Like work, heat is a path
function, i.e. the amount of heat flow depends on the way the change occurs.
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Internal Energy
Internal energy describes the energy possessed by system, in addition to its kinetic
and potential energy:

E ¼ Ekin þ Epot þ U ð2:11Þ

Ekin and Epot are macroscopic parameters of a system and, in general, can be
treated as constant. The internal energy U is an extensive state parameter and
depends on the internal state variables V, T and n. If the external state variables
Ekin and Epot are constant, the change in the energy of a system (ΔE) equals the
change in the internal energy (ΔU ) and comprises of the work done (ΔW ) and the
exchanged heat (ΔQ):

Ekin ¼ const:,Epot ¼ const: ) ΔEkin ¼ 0,ΔEpot ¼ 0

ΔE ¼ ΔU ¼ ΔQþ ΔW ð2:12Þ

If we do not change the amount of substance present in the system
(i.e. n ¼ const.), the ideal gas equation relates the three state variables p, V and T
(and in order to define the state of a system, it is thus sufficient to experimentally
restrain two parameters (e.g. V and T ), as the third one (here: p) will follow suit.
Since for gases, the volume can be controlled rather conveniently, the internal
energy U is generally described as a function of V and T. The internal energy is
measured in units of joule: [U] ¼ 1 J.

Enthalpy
Whereas the volume of gases can be controlled or changed rather readily in an
experimental setting, this is not the case for the condensed phases of liquids and
solids. The thermal extension of the volume of solids and liquids can hardly be
prevented. From an experimental perspective, it is thus easier to characterise the
energy of systems with condensed phases under constant pressure. This is a reason-
able criterion, as the ambient pressure can be considered constant for most laboratory
experiments. This energy function is the enthalpy H, which is defined as

H ¼ U þ p � V ð2:13Þ

The enthalpy is measured in units of joule: [H] ¼ 1 J.

Entropy
Entropy describes the dispersion of energy (‘disorder’) and is defined as

ΔS ¼ ΔQ
T

ð2:14Þ

The entropy is measured in units of joule per kelvin: [S] ¼ 1 J K�1.
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Units of measurement
Efforts to standardise the units of measurement started around 1800 with the
central idea of choosing a natural constant as reference. This resulted in the
metric system whereby the length of 1 m was defined as one 10�7-th of the
length of the quarter meridian of the earth. The current units of measurements
(see Table 1.4) are the result of further efforts into that direction and are
defined in the International System of Units (SI) (Bureau international des
poids at mesures 2006). In the current system of units, the kilogram is defined
by a mass protoype in form of a Pt-Ir cylinder, deposited in the Bureau
International des Poids et Mesures (BIPM). By definition, the mass of this
protoype is 1 kg, but its real mass has changed over time by contamination; it
is estimated to have gained 0.1–0.3 mg as compared to its initial mass. The unit
of the molar amount—the mol—is defined via the carbon isotope 12C whereby
the molar mass of this isotope is set to be 0.012 kg mol�1. Therefore, the
definition of the mol depends on the definition of the kilogram.

In the recent past, it has been debated that a more robust referencing is
required to become independent of protoypes which change over time (Bureau
international des poids at mesures 2013). One of these suggestions proposes
that in the new system, the unit of mol shall be linked to an exact numerical
value of Avogadro’s constant NA, which will make it independent of the
kilogram (which in turn may be defined via an exact numerical value of
Planck’s constant h). Consequently, the unit of 1 mol would be the amount
of exactly 6.02214129�1023 particles (Stohner and Quack 2015).
Conceptually, in this new system, the numerical value of NA would be fixed
and thus no longer carry a statistical uncertainty as in the present system
(estimated at 5�10�7). At the same time, the molar mass of 12C, which
currently is an exact quantity, will become an experimental quantity in the
new system and thus be subject to statistical uncertainty. It is estimated that
this uncertainty will be at the order of 10�9 which needs to be set into relation
with the uncertainty of general molar masses (approx. 10�5). One can thus
anticipate that there will be no substantial changes of atomic masses in the
periodic system if this new system should be instantiated. Nevertheless, the
debate about such changes to the SI are ongoing and, at present, subject to
further evaluation by the International Union of Pure and Applied Chemistry
(IUPAC) (International Union of Pure and Applied Chemistry 2013).

2.1.2 The 0th Law of Thermodynamics

From the empirical quantity temperature and the equilibrium concept, one can
deduce the 0th law of thermodynamics:
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" If two systems (A and B) each are in thermal equilibrium with a third
system (C), then they are also in equilibrium among each other (i.e. A
with B). All three systems share a common property, they have the same
temperature.

This law implies that the boundaries of a system may possess thermal conductiv-
ity. We consider two compartments of a large container that are separated by a
styrofoam (i.e. isolating) wall. If we put hot water into one compartment, and cold
water into the other compartment, the two systems will have different heat, and this
state will not change. If the styrofoam wall is replaced with a metal foil, there will be
a change of the states of both compartments. Heat will flow from the hot to the cold
water compartment. The heat flow will cease, when both systems are in thermal
equilibrium. At that point, both compartments have the same temperature.

2.1.3 Equations of State

The physical state of a system is described by its physical properties. The parameters
describing these properties are called state variables or state functions. State
variables are defined in terms of the various properties we can attribute to a
substance. For example, the state of a pure gas is specified by giving its volume
(measured in liter), the amount (measured in moles), pressure (measured in Pa) and
temperature (measured in K).

There will be a relationship between the different state variables, i.e. they are not
independent from each other. Such relationships are called equations of state. In the
case of a gas, this relationship is given by the ideal gas equation.

p � V ¼ n � R � T ð2:6Þ

It follows from the ideal gas equation that if one specifies three of these four
variables, the fourth one will have one discrete value. Each state variable is thus a
function of the three others:

p ¼ f T ;V ; nð Þ ¼ n � R � T
V

V ¼ f T; p; nð Þ ¼ n � R � T
p

T ¼ f p;V ; nð Þ ¼ p � V
n � R

n ¼ f T ; p;Vð Þ ¼ p � V
n � R

Important state variables in thermodynamics are (Table 2.5):
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2.1.4 Energy

Energy describes the capacity of a system to do work. It is a state function and an
extensive parameter, since its value depends on the amount of substance. It is
measured in units of joule, albeit some reference to the historically used calorie
unit may still be found:

E½ � ¼ 1 J ¼ 1 kg m2s�2 ¼ 0:239 cal

There are various types of energies, including:

• kinetic energy: Ekin ¼ 1
2 � m � v2 (Newtonian mechanics)

• potential energy: Epot ¼ m � g � h; g ¼ 9.81 m s�2 (Newtonian mechanics)
• chemical energy: energy present in the bonds between atoms and molecules
• thermal energy: due to the vibration and movement of the atoms and molecules in

a substance
• electric energy: potential difference between two half-cells with electron

conducting link
• osmotic energy: difference in salt concentration in two half-cells separated by a

semi-permeable membrane

Since potential and kinetic energy refer to the position or movement of the
system, they are considered external, macroscopic parameters of the system. All
other types of energies possessed by the system are combined and constitute its
internal energy.

2.1.5 The 1st Law of Thermodynamics

Energy cannot be made or destroyed. Since the internal energy of a system
comprises all energy that this system possesses, it follows that any change of the
internal energy of a system has to be the result of the work done and the heat
transferred:

Table 2.5 Important
thermodynamic state
variables

Temperature T Internal energy U

Pressure p Enthalpy H

Volume V Entropy S

Mass m Density ρ
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ΔU ¼ ΔQþ ΔW ð2:12Þ

and as such constitutes the 1st law of thermodynamics:

" For a closed system with constant external state variables, the internal
energy U constitutes an extensive state function whose change dU is
composed of the exchanged heat dQ and work dW done on or by the
system.

dU ¼ dQþ dW ð2:15Þ

Whereas above the 1st law is defined for the differential change dU, the same is
true for the macroscopically measurable change ΔU (see Eq. 2.12), which represents
the integrated form of the differential Eq. 2.15.

The integrated form of the differential equation dU ¼ dQ + dW
Differential changes are infinitesimally small changes in variables. Processes
that are observed macroscopically have definite start and end points. It is thus
necessary to integrate the differential equation.ð

dU ¼
ð
dQþ

ð
dW ð2:16Þ

Integration needs to be carried out with respect to each differential variable.
Hence the left side of Eq. 2.16 has one integral (as there is only one differential
variable, dU ), but the right side has two integrals (one integrating dQ and one
integrating dW ).

In order to resolve
Ð
dU, we replace U with x and obtain

Ð
dx. This function

has a known integral (see Appendix A.3.1):

ðxend
xstart

dx ¼ x½ �xendxstart
¼ xend � xstart ¼ Δx, therefore :

ðUend

Ustart

dU ¼ U½ �Uend
Ustart

¼ Uend � Ustart ¼ ΔU:

It is immediately obvious, that
Ð
dQ and

Ð
dW can be resolved in the same

fashion:

(continued)
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ðQend

Qstart

dQ ¼ Q½ �Qend
Qstart

¼ Qend � Qstart ¼ ΔQ

ðWend

W start

dW ¼ W½ �Wend
Wstart

¼ Wend �W start ¼ ΔW

It thus follows:ð
dU ¼

ð
dQþ

ð
dW ¼ ΔU ¼ ΔQþ ΔW

Note that the 1st law contains one important restraint; it is valid for closed
systems which requires that only energy, but no matter can be exchanged. Besides
this restriction, the 1st law is generally applicable and in particular applies to
reversible as well as irreversible changes of state.

In Sect. 2.1.1, we defined isolated systems by the fact that they cannot exchange
any energy with their environment. It follows that the internal energy of an isolated
system remains constant, because:

ΔU ¼ ΔQþ ΔW ¼ 0þ 0 ¼ 0

If there is no change in internal energy (ΔU ¼ 0), the internal energy is constant:
U ¼ const.

2.1.6 Work

Work is done when an object is moved against an opposing force. This could for
example be electrons moving through an electric conductor (electrical work),
molecules moving in space under atmospheric pressure (work of expansion/com-
pression). If a system does work of the value ΔW, its internal energy changes by this
amount of energy:

ΔU ¼ ΔQþ ΔW ð2:12Þ
The amount of work that a system does, depends on how a particular process

occurs. The same final state of the system may be reached by different pathways
which require different amounts of work. Therefore, work is a path function.

The amount of work to be done for contraction or expansion will depend on the
change of the volume of the system (ΔV ¼ Vfinal � Vinitial) and the surrounding
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restrictions presented by the external pressure p¼ pext. The amount of work done by
expansion or contraction can macroscopically be calculated as

ΔW ¼ �p � ΔV ð2:17Þ
If we consider very small changes, we need to move from the macroscopic

difference (Δ) to a differential (d):

dW ¼ �p � dV ð2:18Þ

The integrated form of the differential equation dW ¼ �pext�dV
To initiate integration of this equation, we add the integral sign

Ð
to both sides

of the equation:

ð
dW ¼

ð
�pext � dVð Þ ð2:19Þ

The left side of this equation can be resolved easily byðWend

Wstart

dW ¼ W½ �Wend
W start

¼ Wend �W start ¼ ΔW :

The right side of Eq. 2.19 takes the form of
Ð
(a � dx) where a is a constant

that does not depend on the differential variable dx. The external pressure is
the environmental (ambient) pressure and is not affected by the volume change
of the system under study, which is considered negligibly small compared to
the earth’s atmosphere. The integral

Ð
(a � dx) is resolved as:

ðxend
xstart

a � dxð Þ ¼ a �
ðxend

xstart

dx ¼ a � x½ �xendxstart
¼ a � xend � xstartð Þ ¼ a � Δx

and with a ¼ � pext, x ¼ V we obtain:

ðV end

V start

�pext � dVð Þ ¼ �pext �
ðV end

V start

dV ¼ �pext � V½ �Vend
V start

¼ �pext � V end � V startð Þ

¼ �pext � ΔV
and therefore ð

dW ¼ ΔW ¼
ð

�pext � dVð Þ ¼ �pext � ΔV
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There are two interesting cases of expansion/compression work, we should look
at in more detail. First, if the external pressure is zero (which is the case in a
vacuum), Eq. 2.17 yields:

ΔW ¼ �pext � ΔV ¼ 0 � ΔV ¼ 0

so there is no work done, despite the fact that the system may expand.
Second, if the external pressure is gradually changed by infinitesimal small

amounts so that the internal and external pressures remain equal at all times, the
expansion/compression is carried out reversibly. Changes will occur infinitesimally
slowly, and the system will be at equilibrium with the surroundings at all times. In
that case, the pressure in Eq. 2.18 is no longer constant, but varies with the change in
volume: p ¼ p(V ). The work done in reversible processes is therefore calculated as
per the following integration:

ð
dW rev ¼

ð
�p � dV ¼

ð�n � R � T
V

� dV ð2:20Þ

If we consider an ideal gas, we can express the pressure p as a function of the
volume V using the ideal gas equation. If we further consider that the reversible
volume work is carried out under constant temperature (isothermal process), then the
product n � R � T forms a constant that can be taken outside the integral:

ð
dW rev ¼ �n � R � T

ð
1
V
� dV

The integral
Ð

1
V dV is of the form

Ð
1
x dx ¼ ln xð Þ½ � (see Appendix A.3.1). The

reversible expansion/compression work thus resolves to:

Ð
dW rev ¼ ΔW rev ¼ �n � R � T � lnV½ �V final

V initial

ΔW rev ¼ �n � R � T � lnV final � lnV initialð Þ

ΔW rev ¼ �n � R � T � lnV final þ ln
1

V initial

� �

ΔW rev ¼ �n � R � T � ln
V final

V initial

� �

With the logarithm rule of �logab ¼ logba (Appendix A.1.2), this yields:

ΔW rev ¼ n � R � T � ln
V initial

V final

� �
ð2:21Þ

Figure 2.2 compares the irreversible ( pext ¼ const.) and reversible ( pext is
variable) expansion/compression work under isothermal conditions (T ¼ const.).
The work is represented by the indicated area under the p-V-curve. From this
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comparison, it is evident that the magnitude of the work is maximised in a reversible
process.

2.1.7 Heat Capacity at Constant Volume

The change in the internal energy of a substance when the temperature is raised is
described by the heat capacity at constant volume (indicated by the subscript V):

CV ¼ δU
δT

� �
V

ð2:22Þ

It follows straight from Eq. 2.22 that the internal energy of a system varies
linearly with temperature, if the volume remains constant:

dU ¼ CV � dT ð2:23Þ
If the heat capacity does not change in the temperature range being considered,

then one can use Eq. 2.23 to determine the heat capacity CV by measuring the heat
ΔQV provided to the system. Since we still require the volume to be constant, the
system will not be able to do any expansion/compression work, i.e. ΔWV ¼ 0:

ΔU ¼ ΔQV þ ΔWV ¼ ΔQV þ 0 ¼ CV � ΔT ¼ ΔQV

Fig. 2.2 Work done during isothermal irreversible (left) and reversible (right) expansion pro-
cesses. In irreversible processes, the external pressure is constant and the expansion from V1 to V2

happens in a single step, resulting in an amount of work indicated by the shaded area. In reversible
processes, the external pressure is at all times equal to the pressure of the system ( p), and the
amount of work done can be estimated by small incremental areas. The total amount of work for the
reversible process is larger than that for the irreversible process
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Experimentally, one can provide a defined amount of heat to a system, for
example by electrically heating the system in a bomb and observing the temperature
change in the system. The closed bomb case will ensure that the volume remains
constant during the process. The bomb will also need to be insulated such that there
is no exchange of heat possible with the environment, which is called an adiabatic
system. A plot of ΔQV versus ΔT will yield a line with the slope CV. The instrument
used for this purpose is an adiabatic bomb calorimeter.

The heat capacity is measured in units of joule per kelvin:

CV½ � ¼ 1 J K�1

Since the internal energy U is an extensive function, the heat capacity at constant
volume is extensive, too. Its value increases with the amount of substance in the
system. The corresponding intensive properties of matter are:

• molar heat capacity: heat capacity of 1 mol of substance
• specific heat: heat capacity of 1 g of substance.

2.1.8 Enthalpy

If we consider an open container filled with liquid water that is being heated, we
know from experience that the water will expand its volume as it gets hotter (Fig. 2.3
left). In addition to the heat ΔQ transferred into this system, we further have to
consider the volume work ΔW which the system performs as it pushes back the
atmosphere. Thus, the change in internal energy ΔU during the heating process is

ΔU ¼ ΔQþ ΔW ð2:12Þ

As the expansion/compression work is a frequently occurring step in many
chemical processes, it would help to simplify the description of energy changes of
systems, if this work could be accounted for automatically. Therefore, the enthalpy
H is defined as

H ¼ U þ p � V ð2:13Þ
and is measured in units of joule: [H] ¼ 1 J. This quantity takes into account the
simultaneous loss (or gain) of energy by expansion/compression, when the energy of
the system is changed.

In order to calculate an enthalpy change, we need to differentiate Eq. 2.13:

dH ¼ dU þ d p � Vð Þ
With the product rule (Appendix A.2.3) for differentiation this yields:
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dH ¼ dU þ p � dV þ dp � V
If we assume constant external pressure ( p ¼ const.), which is the case for

processes carried out under ambient pressure, it follows that dp ¼ 0:

dH ¼ dU þ p � dV þ 0 � V ¼ dU þ p � dV ð2:24Þ
If we again consider the open container with water that is getting heated, we know

that this system will expand and thus conduct work against the outside pressure; the
internal energy change is thus:

dU ¼ dQþ dW ¼ dQ� p � dV
from Eqs. 1.15 and 2.18.

Substituting this expression for dU in Eq. 2.24 yields:

dH ¼ dU þ p � dV ¼ dQ� p � dV þ p � dV ¼ dQ ð2:25Þ
Therefore, the enthalpy change of the system during heat transfer under constant

pressure is the same as the transferred heat, if no other work (than expansion/
compression) is done.

Reactions or processes that involve solids or liquids and gas/vapour are typically
characterised by large changes in volume, i.e. dV is not negligible. However, if a
reaction or process involves only liquids and solids, the product p � V is rather small,

Fig. 2.3 Comparison of the energy changes upon heat transfer into a system residing in either an
open or closed container highlights the usefulness of the enthalpy for “everyday experiments”,
typically conducted under ambient (i.e. constant) pressure
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therefore H � U. With ΔH ¼ ΔQ � ΔU, the change in internal energy ΔU can be
measured by evaluating the heat exchange ΔQ.

Enthalpy change of a closed container with liquid upon heating
We again heat a container filled with liquid, but now require that the container
is closed. This means that the volume of the system can not expand during the
heating process (Fig. 2.3 right).

Evaluating the change in enthalpy of this system during the heating process,
we obtain:

H ¼ U þ p � V
dH ¼ dU þ d p � Vð Þ ð2:13Þ

With the product rule (Appendix A.2.3) for differentiation this yields:

dH ¼ dU þ p � dV þ V � dp
Since the container is closed, we know that V ¼ const. and thus dV ¼ 0:

dH ¼ dU þ p � 0þ V � dp
dH ¼ dU þ V � dp ð2:26Þ

For the internal energy of the closed container, the following change arises:

dU ¼ dQþ dW ¼ dQ� p � dV
from Eqs. 2.15 and 2.18

Due to dV ¼ 0 it follows that:

dU ¼ dQ� p � 0
dU ¼ dQ ð2:27Þ

Since the container is closed, the system cannot expand and thus not do any
work; the internal energy equals the transferred heat. This delivers the theoret-
ical basis for the adiabatic bomb calorimeter (Sect. 2.1.7), where the heat
capacity CV of a substance can be determined from the linear relationship
between transferred heat and temperature, based on the fact that dU ¼ dQ.

However, for the enthalpy, we obtain the following expression by combin-
ing Eqs. 2.26 and 2.27:

dH ¼ dQþ V � dp ð2:28Þ
The enthalpy change of the closed container thus comprises more than just

the amount of heat transferred; the pressure change inside the container further
adds to the enthalpy.
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Enthalpy is a thermodynamic potential. Potentials cannot be measured in absolute
terms; rather, one needs to refer to a defined reference point. Practically, one thus
measures only changes in enthalpy, ΔH.

Furthermore, enthalpy is an extensive property, i.e. it depends on the amount of
substance in a system. The corresponding intensive property is the molar enthalpy
Hm, which is normalised with respect to 1 mol: [Hm] ¼ 1 J mol�1.

2.1.9 Heat Capacity at Constant Pressure

Like the internal energy, the enthalpy of a system can vary with temperature, and this
variation is described by the heat capacity. Whereas the heat capacity derived from
the internal energy refers to processes at constant volume (CV), the heat capacity
derived from the enthalpy refers to processes at constant pressure:

Cp ¼ δH
δT

� �
p

ð2:29Þ

Since enthalpy characterises processes at constant pressure, it can be evaluated by
monitoring the change in temperature of a system in cells that are not closed
( p ¼ pext ¼ const.). This type of analysis is called calorimetry. Whereas differential
scanning calorimetry (DSC) evaluates enthalpy changes as a function of temperature
(e.g. to determine the heat capacity Cp), isothermal titration calorimetry (ITC) is used
to monitor enthalpy changes due to chemical processes (binding, reactions) at
constant temperature.

Relationship between heat capacities for an ideal gas
From the definition of the heat capacity at constant pressure (Eq. 2.29), we
obtain by resolving for dH:

dH ¼ Cp � dT
From Eq. 2.24 we know that

dH ¼ dU þ p � dV
Therefore, we obtain

Cp � dT ¼ dU þ p � dV
Using Eq. 2.22 we can substitute for dU:

(continued)

2.1 Motivation, Revision and Introduction of Basic Concepts 33



Cp � dT ¼ dU þ p � dV ¼ CV � dT þ p � dV
Cp ¼ CV þ p � dV

dT

By resolving the ideal gas equation (with the differentials dV and dT )

p � dV ¼ n � R � dT
for p�dV

dT , it becomes clear that

p � dV
dT

¼ n � R

Therefore:

Cp ¼ CV þ p � dV
dT

¼ Cp ¼ CV þ n � R

or

Cp � CV ¼ n � R

2.1.10 Entropy

Entropy describes the disorderly dispersal of energy. The change in entropy is
related to how much energy is reversibly transferred as heat (see Eq. 2.14). A system
that disperses heat into its surroundings without doing any other expansion/contrac-
tion work (dW ¼ 0) therefore changes the entropy of the surroundings by:

dSsurr ¼ dQsurr

T surr
¼ �dQsys

Tsurr
¼ �dSsys ð2:30Þ

For a process at constant pressure, the enthalpy change in the system dHsys can be
used to determine the entropy change of the surroundings, since we know from
Eq. 2.25 that dH ¼ dQ; therefore:

dSsurr ¼ �dHsys

T surr
ð2:31Þ

For reversible adiabatic processes, which do not allow the exchange of heat with
the environment, it follows from Eq. 2.30 that there is no change in entropy:
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dQ ¼ 0 ) dS ¼ 0 for reversible adiabatic processes ð2:32Þ
Reversible processes refer to processes that occur while the system remains at

equilibrium at all times. They are generally hypothetical, unless there is no overall
change occurring in the system. An equilibrium can be considered as a state of the
system where there is cross-over from the forward to the reverse reaction, both of
which occur spontaneously. Obviously, for such processes there will be no change in
the entropy:

dS ¼ 0 for processes in equilibrium ð2:33Þ
Important equilibrium process are those of phase transitions, such as a substance

boiling at its boiling point. The entropy change during this process is defined by the
enthalpy of vapourisation ΔHvap:

ΔSsys ¼ ΔHvap

Tb
; p ¼ const: ð2:34Þ

Similarly, the entropy change of a substance freezing at its freezing point is given
by:

ΔSsys ¼ ΔHfusion

Tm
; p ¼ const: ð2:35Þ

In both Eqs. 2.34 and 2.35, we are using ‘Δ’ instead of ‘d’ to indicate that these
are macroscopically observable changes. As given, both equations are expressions
for the entropy change of the system (ΔSsys) that undergoes the phase transition. One
should keep in mind that the entropy change of the system is related to that of the
surroundings by:

ΔSsys ¼ �ΔSsurr ð2:30Þ

2.1.11 The 2nd Law of Thermodynamics

Observation of general phenomena tells us that there is a direction associated with all
processes, for example a compound dissolving in a solvent or hot coffee getting cold.
It then becomes obvious that no process is possible in which the sole result is the
absorption of heat from a reservoir and its complete conversion into work; energy is
always dissipated. In the example of the hot coffee getting cold, the heat
disappearing from the cup does not result in any useful work. It is rather dissipated
into the environment and cannot be re-captured.

These concepts are summarised in the 2nd law of thermodynamics:
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" The entropy of the universe increases in the course of every natural
change:

ΔSuniverse > 0 ð2:36Þ
As a consequence, this law predicts what direction a process or reaction will

follow. It further produces interesting implications, such as the phenomenon that the
direction of a macroscopic process is always the same. The hot coffee gets colder if it
is let to stand—it never gets hotter.

Another intriguing aspect of social importance and the way science is
communicated is the problem commonly referred to as ‘energy crisis’ which refers
to the dwindling energy resources on earth. A critical appraisal of the 1st law of
thermodynamics shows that such concerns are unwarranted. Energy cannot be
destroyed, so there is no worry that it would be depleted. Rather, it is the way in
which energy is being dispersed that constitutes the problem. By consuming energy,
we increase the entropy (i.e. disperse the energy) and thus destroy its availability. In
this sense, there is an ‘entropy crisis’ rather than an ‘energy crisis’.

2.1.12 The 3rd Law of Thermodynamics

A relationship of practical importance for the determination of entropy changes of
substances at constant pressure can be derived from

dH ¼ dU þ p � dV ¼ dQ� p � dV þ p � dV ¼ dQ ð2:25Þ
and

dS ¼ dQ
T

) dQ ¼ T � dS ð2:30Þ

The enthalpy change during a process can then be expressed by

dH ¼ T � dS ð2:37Þ
whereby the temperature dependence of this process is given by the heat capacity at
constant pressure, Cp:

Cp ¼ δH
δT

� �
p

ð2:29Þ

This yields with Eq. 2.37:
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δH
δT

� �
p

¼ Cp ¼ T � δS
δT

� �
p

ð2:38Þ

and upon integration in the temperature interval from 0 to Tend:

ðSend
S0

dS ¼
ðTend

0

Cp

T
dT

ΔS ¼
ðTend

0

Cp

T
dT

ð2:39Þ

If one knew the entropy of a substance at T ¼ 0 K, it would be possible to
determine absolute entropy values. For this reason, Planck postulated that the
entropy of a pure, homogeneous phases in internal equilibrium at zero temperature
would be zero.

In crystals, which represent pure homogeneous phases, the state of internal
equilibrium is attained when there are no defects in the lattice. This postulate is an
extension of the Nernst heat theorem:

lim T!0 S ¼ 0 ð2:40Þ
which states that the entropy of pure substances in their perfect crystalline state at
T ¼ 0 tends to zero. This forms the basis of the 3rd law of thermodynamics:

" If the entropy of every element in any crystalline state at T ¼ 0 is set to
zero (S0 ¼ 0), then all substances have a positive entropy. At T ¼ 0, the
entropy of substances in their ideal crystalline states is zero.

Since real crystals of substances are virtually impossible to attain, there is a
remaining non-zero entropy of such real systems. A prominent example in this
context includes glasses. In substances, where there is a possibility of varying
molecular orientation within the crystal lattice (e.g. CO: C─O vs. O─C; N2O:
N─N─O vs. O─N─N), a non-zero entropy at T¼ 0 is observed. The same is true
for crystalline mixtures.

2.1.13 Entropy and the Gibbs Free Energy Change

Whether or not a particular process or reaction has a tendency to occur under
specified conditions depends on the value of the total entropy change for this
process. The total entropy change is composed of two parts, the entropy change in
the reaction vessel (dSprocess) and the extent of dispersal into the surroundings
(dSsurr):
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dStotal ¼ dSprocess þ dSsurr ð2:41Þ
We already discussed the extent of energy dispersal into the surroundings (Sect.

2.1.10); for processes at constant pressure it is the enthalpy difference dHsys at a
given temperature T:

dSsurr ¼ �dHsys

T
ð2:31Þ

Therefore:

dStotal ¼ dSprocess � dHsys

T

After multiplying with T on both sides of the equation, this yields:

T � dStotal ¼ T � dSprocess � dHsys

or

�T � dStotal ¼ dHsys � T � dSprocess
The product �T � dStotal describes a new over-arching energy change for the

underlying process and is called the Gibbs free energy change, which is defined as:

dG ¼ �T � dStotal ¼ dH � T � dS ð2:42Þ
Since spontaneously occurring processes have a positive change in total entropy,

the value of the Gibbs free energy change needs to be negative:

dStotal > 0 ) dG < 0 ð2:43Þ

2.1.14 Inter-relatedness of Thermodynamic Quantities

From discussions in the previous sections we come to appreciate that the thermody-
namic functions U, H, S, G and A of a given system vary with changes in the
environmental functions T, p and V (assuming that the composition of the system
remains constant). It also became clear that all thermodynamics properties are inter-
related, and one can therefore describe any property as a function of two others.

A rigorous treatment of this issue reveals that there exist relationships between
properties that are not apparently related. These relationships have been derived
from basic equations of state by James Clerk Maxwell in 1870 and are thus termed
the Maxwell relations. They are of tremendous practical importance when determin-
ing experimental values of quantities that are difficult to measure, such as entropy.
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2.2 Free Energy

2.2.1 The Gibbs Function

In the previous Sect. (2.1.13), we have introduced the Gibbs free energy, by means
of its change during a process. Named after Josiah Willard Gibbs (1839–1903), who
introduced this function in 1875, the free energy acknowledges that not all energy
turned around during a process is intricately linked to molecular and atomic
interactions (and thus ‘free’ to be harvested); there is a component of the entire
energy change that is required to be dissipated into the surroundings.

When we characterised the energy of a system, we found it feasible to distinguish
between two types of processes, those that occur at constant volume, and those occur
under constant pressure. The former situation is best described by the internal
energy U, whereas the latter, more frequently occurring situation is best described
by the enthalpy H. In both cases, we also had to consider that the temperature during
the ongoing process remained constant.

Concomitantly, when establishing the free energy, the same pre-requisites will
need to be applied. The Gibbs free energy is useful for characterising process that
occur under constant pressure and temperature, as it is intimately tied to the enthalpy
change dH during the process.

For the change of the Gibbs free energy during a process we had obtained:

dG ¼ dH � T � dS or, for macroscopic processes : ΔG ¼ ΔH � T � ΔS: ð2:42Þ
The definition of the state function G in terms of the state functions enthalpy and

entropy is thus:

G ¼ H � T � S ð2:44Þ

Differentiation of the Gibbs state function
Differentiation of Eq. 2.36 yields:

dG ¼ dH � d T � Sð Þ ð2:45Þ
For the second term on the right hand side of the equation, the product rule

(see Appendix A.2.3) needs to be applied:

dG ¼ dH � T � dS� S � dT
If we consider processes at constant pressure and temperature:

(continued)
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p ¼ const: ) dp ¼ 0
T ¼ const: ) dT ¼ 0
dG ¼ dH � T � dS� S � 0

which yields the relationship we had established earlier:

dG ¼ dH � T � dS ð2:42Þ
and we emphasise that this is true only for T, p ¼ const., since we made this
assumption during the above calculation.

2.2.2 Gibbs Free Energy and the Entropy of the Universe

Any process that is accompanied by a change in entropy ultimately also changes the
entropy in the universe. The entropy change in the universe with respect to a process
comprises two components, the entropy change in the system and the entropy change
in the surroundings:

dSuniverse ¼ dSsys þ dSsurr ð2:46Þ
We derived in Sect. 2.1.10 that

dHsys ¼ �T � dSsurr ð2:31Þ
and therefore obtain from the above equation:

dSuniverse ¼ dSsys � dHsys

T
ð2:47Þ

Using the relationship that links the change in the Gibbs free energy with the
change in entropy (Eq. 2.42) one obtains

dGsys ¼ dHsys � T � dSsys ) dGsys

T
¼ dHsys

T
� dSsys ð2:48Þ

This can be substituted into Eq. 2.47 which yields:

dSuniverse ¼ � dGsys

T
ð2:49Þ

The above equation delivers a fundamental paradigm. From the 2nd law of
thermodynamics, we know that any process that happens spontaneously needs to
increase the entropy in the universe, i.e.
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dSuniverse > 0 ) dGsys < 0 for spontaneous processes: ð2:50Þ
Therefore, the Gibbs free energy change of a spontaneous process has to be

negative.
For a reversible process, we have discussed earlier that an equilibrium can be

considered as a state of the system where there is cross-over from the forward to the
reverse reaction, both of which occur spontaneously. Reversible processes therefore
occur while the system remains at equilibrium at all times. For such processes, we
know from Eq. 2.33 that dS ¼ 0; therefore:

dSuniverse ¼ 0 ) dGsys ¼ 0 for processes at equilibrium: ð2:51Þ

2.2.3 The Helmholtz Free Energy

For processes that occur at constant volume, the internal energy U is used to describe
the energy and energy changes of a system. One can then define a free energy that
linked to internal energy changes, and thus useful for characterising process that
occur under constant volume and temperature. This free energy is named after
Hermann von Helmholtz (1821–1894), who introduced this function in 1882 inde-
pendently of Gibbs. This function is thus called the Helmholtz free energy A. The
state function A is defined as

A ¼ U � T � S ð2:52Þ

Differentiation of the Helmholtz free energy function
The differential of the state function A is obtained as:

dA ¼ dU � d T � Sð Þ
For the second term on the right hand side of the equation, the product rule

(see Appendix A.2.3) needs to be applied:

dA ¼ dU � T � dS� S � dT
If we consider processes at constant volume and temperature:

V ¼ const: ) dV ¼ 0
T ¼ const: ) dT ¼ 0
dA ¼ dU � T � dS� S � 0
dA ¼ dU � T � dS; T ,V ¼ const:

ð2:53Þ

The requirement for V ¼ const. is a condition of using the internal energy
U which describes the energy of systems at conditions of constant volume.
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2.2.4 Free Energy Available to Do Useful Work

For practical applications, it is useful to obtain an expression that describes the free
energy under conditions of thermodynamic equilibrium, i.e. reversible processes.

Gibbs Free Energy
From the definition of entropy we know that the heat exchange at constant tempera-
ture is

dQ ¼ T � dS: ð2:54Þ
Using the definition of the Gibbs free energy (Eq. 2.42), we therefore obtain:

dG ¼ dH � T � dS ¼ dH � dQ

The value obtained for dG in above equation describes the amount of energy that
originates from the process and could be used to perform ‘useful’work, i.e. work that
is not compression or expansion. We have already established that the maximum
work is done when a process is carried out reversibly (Sect. 2.1.6); this can easily be
understood by recalling that in reversible processes, there is no change of entropy:

dSrev ¼ 0 ) dQrev ¼ 0 ) dGrev ¼ dHrev

Since dS ¼ 0, there is no further term subtracted from the enthalpy change dH.
This shows that the change of the Gibbs free energy of a reversible process equals the
enthalpy change, which represents the maximum additional non-expansion work
done by a system during this process:

dGrev ¼ dHrev ¼ dWmax ð2:55Þ

Helmholtz Free Energy
In the previous section, we derived the differential of the Helmholtz free energy as

dA ¼ dU � T � dS ð2:53Þ
in which we can substitute dQ for T�dS, and therefore obtain

dA ¼ dU � T � dS ¼ dU � dQ

As we discussed above, in reversible processes, there is no change in entropy
(dS¼ 0), and therefore there is no heat exchange (dQ¼ 0). Therefore, the Helmholtz
free energy is maximised in reversible processes and equals the change in the
internal energy for this process:

dArev ¼ dUrev ¼ dWmax ð2:56Þ
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2.2.5 Gibbs Free Energy Change for a Reaction (Part 1)

So far, we have mainly been considering unspecified ‘processes’ which comprise
physical as well as chemical transformations. We now want to consider a chemical
reaction with the stoichiometry coefficients νA, νB, νC and νD, and the physical states
indicated by the subscripts (l) for liquid and (g) for gaseous:

νaA lð Þ þ νbB gð Þ ! νcC lð Þ þ νdD gð Þ

for which we can obtain the macroscopically measurable change in the Gibbs free
energy in a generic expression as:

ΔG ¼ Gproducts � Greactants ð2:57Þ
This expression does not take into account that the reaction may be conducted

with varying concentrations of the reactants A and B. Once the concentrations are
considered, the following expression is obtained:

ΔG ¼ ΔGØ þ R � T � lnQ

with Q ¼

YNproducts

i¼1

ci
cØ

� �νi
YNreactants

j¼1

cj
cØ

� �νj ¼
c Cð Þ
cØ

� �νc
: c Dð Þ

cØ

� �νD
c Að Þ
cØ

� �νA c Bð Þ
cØ

� �νB ¼ C½ �νc � D½ �νD
A½ �νA � B½ �νB

ð2:58Þ

Q is called the reaction coefficient. We will derive this equation later using the
chemical potential (Sect. 3.2.4). For the moment, we just consider the fact that the
change of the Gibbs free energy during a reaction is dependent on the concentrations
of the individual reactants. Equation 2.58 also introduces a reference value for the
Gibbs free energy of the reaction, ΔGØ, and the standard molar concentration cØ.
The symbol ‘Ø’ (stroked letter O) is used to denote a property or quantity under
standard conditions; cØ = 1 mol l�1.

If all reactants are present at a concentration of 1 mol l�1 each, then the reaction
coefficient Q equals 1. The term R � T � ln Q ¼ R � T � ln 1 then becomes zero, as all
logarithmic functions are zero when their argument is 1 (see Fig. 2.4). In this case,
the Gibbs free energy change for the reaction,ΔG, equals the reference valueΔGØ; it
is therefore called the standard Gibbs free energy change for this reaction.

If the reaction has reached equilibrium, all reactants exist with particular
concentrations that characterise that state of equilibrium, and there is no net change:

νAA lð Þ þ νBB gð Þ Ð νCC lð Þ þ νDD gð Þ

We derived earlier in Sect. 2.2.2 that there is no change in the Gibbs free energy at
equilibrium, ΔG ¼ 0 (Eq. 2.51). The relationship that introduced the reaction
coefficient Q (Eq. 2.58) therefore yields for the equilibrium state:
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ΔGeq ¼ ΔGØ þ R � T � lnQeq ¼ 0

and thus

lnQeq ¼ lnK ¼ �ΔGØ

R � T , as well as K ¼ e�
ΔGØ
R�T ð2:59Þ

In the state of equilibrium, the reaction quotient Q ¼ Qeq is termed the equilib-
rium constant K. From the above relationship it is obvious that knowledge of the
value of the equilibrium constant allows calculation of the standard free energy ΔGØ

of a reaction. Vice versa, if the value of the standard free energy of a reaction is
known, the equilibrium constant of the reaction at any temperature can be calculated.

2.2.6 Temperature Dependence of the Equilibrium Constant

If we are interested in the temperature dependence of the equilibrium constant, we
can use Eq. 2.59 to evaluate the variation of K with temperature. This variation is
expressed as the differential of ln K with T:

δ lnK
δT

� �
p

We denote the differential with ‘δ’ to indicate that K is dependent on several
parameters (T, p and V ). Using Eq. 2.59 one then obtains:

δ lnK
δT

� �
p

¼ �1
R
� δ ΔGØ

T

δT

 !
p

¼ �ΔGØ

R
� δ1T

δT

� �
p

where the gas constant R can be excluded from the differential as it is a constant. The
same is true for ΔGØ which is the standard free energy of the reaction and thus a
characteristic constant for the process. The temperature differential on the right hand
side of the above equation can easily be resolved by setting x ¼ T and f xð Þ ¼ 1

x. The

Fig. 2.4 All logarithmic
functions assume the value of
zero when their argument is 1

44 2 Thermodynamics



derivative of f(x) is f
0
xð Þ ¼ � 1

x2. Therefore,
δ1T
δT

� �
resolves to � 1

T2:

δ lnK
δT

� �
p

¼ � ΔGØ

R � T2

With knowledge of the following relationship between enthalpy and free energy

H ¼ G� T � δG
δT

� �
p

we obtain the van’t Hoff equation for an isobaric process:

δ lnK
δT

� �
p

¼ ΔHØ

R � T2 ð2:60Þ

which describes the reaction isobar, i.e. the variation of the equilibrium constant with
temperature under these conditions.

For a reaction that occurs under constant volume and temperature—an isochoric
process—the van’t Hoff equation is analogous to Eq. 2.60, with the enthalpy being
replaced by the internal energy:

δ lnK
δT

� �
V

¼ ΔUØ

R � T2 ð2:61Þ

Finally, a reaction that occurs under constant temperature, the van Laar-Planck
reaction isotherm delivers the variation of the equilibrium constant with pressure:

δ lnK
δp

� �
T

¼ �ΔVØ

R � T ð2:62Þ

The three Eqs. 2.60–2.62 describe numerically what is known as the principle of
Le Châtelier (see also Sect. 6.1.2):

" A system at equilibrium, when subject to a disturbance, responds in a
way that tends to minimise the effect of the disturbance.

2.2.7 Pressure Dependence of the Gibbs Free Energy

We are now interested in the pressure dependence of the Gibbs free energy. To
evaluate the variation of the Gibbs function with pressure, we attempt to find a direct
relationship between G and p, using the set of thermodynamic functions and
relationships we have encountered so far.

Starting with the definition of the Gibbs free energy, we recall that
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G ¼ H � T � S ð2:44Þ
We also remember that

H ¼ U þ p � V ð2:13Þ
and therefore

G ¼ U þ p � V � T � S
Since we are interested in a variation of G with p, we differentiate the above

equation, and obtain

dG ¼ dU þ d p � Vð Þ � d T � Sð Þ
The differentials of the products, d( p � V ) and d(T � S), need to be resolved with

the product rule (Appendix A.2.3), and yield p � dV + V � dp and T � dS + S � dT,
respectively. Therefore:

dG ¼ dU þ p � dV þ V � dp� T � dS� S � dT ð2:63Þ

From the 1st law of thermodynamics we know that

dU ¼ dQþ dW ð2:15Þ

The heat exchange dQ can be expressed in terms of the entropy change dQ¼T � dS,
and the work done by the system at constant pressure is the volumework dW¼ p � dV.
Equation 2.15 then becomes

dU ¼ T � dS� p � dV
which we can use to substitute in Eq. 2.63:

dG ¼ T � dS� p � dV þ p � dV þ V � dp� T � dS� S � dT
This simplifies to:

dG ¼ V � dp� S � dT ð2:64Þ
At constant temperature, dT ¼ 0 which renders the expression for the Gibbs free

energy change as

dG ¼ V � dp ð2:65Þ
For two distinct pressure values, pinitial and pfinal, the Gibbs free energy change

then yields
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ΔG ¼ G pfinalð Þ � G pinitialð Þ ¼
ðpfinal

pinitial

dG ¼
ðpfinal

pinitial

V � dp

Importantly, the volume is itself dependent on the pressure and thus cannot be
isolated from the integral! Instead, we will attempt to find an expression for the
volume of the system in terms of the pressure. For an ideal gas this can conveniently
be achieved by using the ideal gas equation

p � V ¼ n � R � T ) V ¼ n � R � T
p

ð2:6Þ

which yields for the Gibbs free energy change:

ΔG ¼
ðpfinal

pinitial

n � R � T
p

� dp

Since n, R and T are not dependent on the pressure, they can be isolated from the
integral, yielding:

ΔG ¼ n � R � T �
ðpfinal

pinitial

dp
p

The integral is of the type
Ð
1
x dx and resolves to lnx (see Table A.2). One thus

obtains:

ΔG ¼ n � R � T � ln p½ �pfinalpinitial

ΔG ¼ n � R � T � ln pfinal � ln pinitialð Þ
ΔG ¼ n � R � T � ln pfinal

pinitial

The standard state of a gas is defined as the gas at a pressure of pØ ¼ 1 bar. If we
define any change of the system with respect to standard conditions, the initial
pressure becomes the standard pressure: pinitial ¼ pØ. Above equation then reads:

ΔG ¼ G pfinalð Þ � G pØ
� � ¼ n � R � T � ln pfinal

pØ

and resolves to the general form of
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G pð Þ ¼ GØ þ n � R � T � ln p

pØ
ð2:66Þ

with the standard Gibbs free energy GØ ¼ G(1 bar).
Equation 2.66 allows us to calculate the Gibbs free energy of an ideal gas at any

given pressure, provided that we have a value for the standard Gibbs free energy of
that gas.

2.3 Properties of Real Systems

In the previous sections, we have focused on single component systems whose
composition does not change. This is clearly a limitation, since many real systems
(as opposed to ideal systems) consist of multiple components and we thus need to
consider varying compositions.

When considering the free energy of real systems it proves useful to introduce
three new properties:

• chemical potential
• fugacity
• activity

2.3.1 Chemical Potential

In the previous section, we derived a relationship that enables calculation of the free
energy of an ideal gas at any given pressure:

G pð Þ ¼ GØ þ n � R � T � ln p

pØ
ð2:66Þ

If we consider 1 mol of the ideal gas, this becomes:

G pð Þ ¼ GØ þ 1mol � R � T � ln p

pØ

G pð Þ
1mol

¼ GØ

1mol
þ R � T � ln p

pØ

The reference to the molar amount of 1 mol is indicated by the subscript ‘m’:

Gm pð Þ ¼ GØ
m þ R � T � ln p

pØ
ð2:67Þ

thereby introducing Gm as the molar Gibbs free energy and thus the chemical
potential μ:
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Gm pð Þ ¼ μ pð Þ ¼ μØ þ R � T � ln p

pØ
ð2:67Þ

The term ‘potential’ is chosen based on the idea that for mechanical systems, the
lowest potential energy is the most stable state. Similarly, the state of a system with
the lowest chemical potential constitutes the most stable state, since for all sponta-
neous processes

ΔG < 0 ) ΔGm < 0 ) μ < 0

From the point of view of varying compositions, the change of the chemical
potential μ equals the change of the free energy of the system, if a molar amount of
n ¼ 1 mol more substance is added.

The chemical potential μ is thus the molar free energy of a substance, and
therefore an intensive property; its value is independent of the amount, since it has
been normalised against 1 mol substance.

2.3.2 Open Systems and Changes of Composition

If we are dealing with chemical and biological systems comprising of multiple
components, the composition will likely change. Sometimes, substances may even
leave the system under observation; such systems are called open systems. We thus
need to consider changes in the molar amount of substance in the system.

So far, we have assumed that the state of a system can be expressed as a function
of two variables, say T and p. However, if the composition changes, the state also
depends on the molar amount of each substance:

G ¼ G p; T; n1,n2,ni; . . . ; nNð Þ
To evaluate the change of the free energy of the system, we therefore need to

consider the change in all properties, including the amount of each component. This
can be expressed as the differential of the Gibbs free energy with respect to each of
the variable parameters ( p, T, ni):

dG ¼ δG
δp

� �
T ,ni

dpþ δG
δT

� �
p,ni

dT þ
XN
i¼1

δG
δni

� �
p,T ,nj 6¼i

dni ð2:68Þ

Form earlier considerations in Sect. 2.2.7, we know how the Gibbs free energy
varies with pressure and temperature:

dG p; Tð Þ ¼ V � dp� S � dT ð2:64Þ
And we also know that the chemical potential m is the change of the free energy

of a substance when changing its molar amount (‘adding 1 mol’):
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G ¼ n � Gm ¼ n � δG

δn

� �
¼ n � μ ð2:67Þ

If we substitute Eqs. 2.64 and 2.67 into Eq. 2.68, we obtain the fundamental
equation of thermodynamics:

dG ¼ V � dp� S � dT þ
XN
i¼1

μi � dni ð2:69Þ

In chemical and biological systems (e.g. electrochemical or biological cells),
T and p often remain constant, but the composition changes. For example, the
intra- and extracellular metal ion concentration in cells is markedly different
(Table 2.6):

Muscle cells expend energy to transport calcium ions to the outside of the cells.
The calcium ions that flow into the muscle cells promote the cross-bridging between
two fibre proteins (actin and myosin) which ultimately causes contraction. It is thus
the change of chemical composition that drives this biological reaction.

2.3.3 Fugacity: A Pressure Substitute for Non-ideal Gases

When we derived the chemical potential in Sect. 2.3.1, we have been considering a
system that contained an ideal gas:

μ pð Þ ¼ μØ þ R � T � ln p

pØ
ð2:67Þ

Real gases, i.e. such that behave in a non-ideal fashion, don’t fulfil some or all of
the criteria we have requested for an ideal gas. The ideal gas equation poses that the
product ( p�V ) remains constant at constant temperature; the value of ( p�V ) should
thus be independent of the pressure. However, experimental observation for real
gases shows that this is not the case. To account for these deviations, The ideal gas
equation may be extended by additional terms containing virial coefficients (B, C, D,
. . .):

p � V ¼ n � R � T þ n � B � pþ n � C � p2 þ n � D � p3 þ . . . ð2:70Þ
These deviations include the observation that the volume of a gas may change

under certain circumstances, even if pressure and temperature remain constant,
e.g. when the gas condenses to a liquid. Since the existence of a condensed phase

Table 2.6 Extra- and intra-cellular concentrations of biologically important metals

Extra-cellular c(Na+) ¼ 140 mM c(K+) ¼ 4 mM c(Ca2+) ¼ 9 mM

Intra-cellular c(Na+) ¼ 12 mM c(K+) ¼ 139 mM c(Ca2+) < 0.2 mM
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is not possible without intermolecular interactions, it becomes clear that a central
requirement for an ideal gas is being violated.

In order to adjust the chemical potential such that one can also accommodate
non-ideal behaviour, a new property called fugacity f is defined. The fugacity
constitutes an adjusted pressure and is related to the pressure by a scalar factor
called the fugacity coefficient ϕ:

p ¼ ϕ � f ð2:71Þ
Fugacity is thus measured in units of pressure: [ f ] ¼ 1 Pa.
The fugacity of a gas expresses its tendency to escape (being fugitive). This is

intimately connected with how compressible the real gas is, compared to the
ideal gas.

It is common to use an implicit definition of the fugacity: it is the property that
replaces the pressure p in the definition of the chemical potential, thus ensuring that
the following equation remains valid even in the case of non-ideal behaviour:

μ pð Þ ¼ μØ þ R � T � ln f

pØ
ð2:72Þ

The difference between pressure and fugacity, and thus the extend of deviation
from ideal gas behaviour, is illustrated in Table 2.7 for nitrogen at various pressures.

2.3.4 Solutions

When we consider solutions or mixtures, characteristic properties for the system
under observation are the concentrations of individual components in the system. In
addition to the well-known molar concentration that defines the molar amount of a
substance in a particular volume of solution

csolute ¼ nsolute
V solution

, with c½ � ¼ 1 mol l�1 ð2:73Þ

Table 2.7 Fugacities and
fugacity coefficients for N2

at TØ ¼ 273.15 K

p (bar) ϕ f (bar)

50 0.98 49

100 0.97 97

200 0.97 194

400 1.06 424

600 1.22 732

800 1.47 1176

1000 1.81 1810
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it may be more convenient to use further measures of concentration, depending on
the system under study (for a summary see Sect. 4.3.2). Here, we want to focus in
particular on

• the mole fraction: xi
• the partial molar volume: vi

Mole Fraction
The mole fraction is defined as the molar amount of an individual component
divided by the total molar amount in a system:

xi ¼ ni
n1 þ n2 þ n3 þ . . .þ nN

¼ niPN
j¼1

nj

ð2:74Þ

In the above notation, the index i denotes an individual compound from the set
(1, 2, 3, . . ., N ). The running index on the sum in the denominator of the quotient
thus needs to be a different character (here j) to indicate that it is independent of i.

For gas mixtures, the mole fraction can be calculated based on the partial pressure
of the individual components:

xi ¼ pi
p1 þ p2 þ p3 þ . . .þ pN

¼ piPN
j¼1

pj

¼ pi
p

ð2:75Þ

The mole fraction is a frequently used measure of concentration in gas, liquid and
solid phase systems.

Partial Molar Volume
The partial molar volume of a particular substance is defined as the change in volume
of a mixture, when 1 mol of the particular substance is added. One can thus express
the partial molar volume as the change of the volume of the entire system when
changing the molar amount of the particular substance in the system:

vi ¼ δV
δni

� �
p,T ,nj 6¼i

ð2:76Þ

In the above expression, the index i denotes an individual substance, and the
subscripts to the right of the differential inform us that not only the pressure and
temperature need to remain constant during the addition of further amounts of the i-
th substance, but also the amounts of all other substances in the system (denoted by
the index j which has to be different from i) need to remain constant.

The partial molar volume is a function of the composition of the mixture to which
it is added, i.e. the partial molar volume is not a constant for a given substance!
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Notably, gases and liquids behave differently, due to the existence of inter-
molecular interactions: If two different ideal gases are combined, the total volume
is the sum of the individual volumes of each gas. However, if two different liquids
are combined, the total volume is not the sum of each, due to the interactions
between the liquids.

Example
If 1 mol of water is added to a very large volume of water, the change in
volume is 18 ml.

However, if 1 mol of water is added to a very large volume of ethanol
(so large that each water molecule is surrounded by ethanol molecules) then
the increase is just 14 ml.

The partial molar volume of water in pure water is v(H2O,
H2O) ¼ 18 ml mol�1, the partial molar volume of water in pure ethanol is v
(H2O, EtOH) ¼ 14 ml mol�1.

Once determined, the partial molar volume can be used to determine the change
in volume of system composed of two components (A and B), when a known
amount of A is added to a solution:

dV system ¼ vA xA; xBð Þ � dnA þ vB xA; xBð Þ � dnB
Integration of this equation yields the total volume of a system with known

composition:

ðV
0

dV system ¼
ðnA
0

vA xA; xBð Þ � dnþ
ðnB
0

vB xA; xBð Þ � dn

All integrals in above equation are of the type
ðxfinal

xinitial

dx ¼ x½ �xfinalxinitial
¼ xfinal � xinitial,

so the equation resolves to:

V ¼ nA � vA xA; xBð Þ þ nB � vB xA; xBð Þ

2.3.5 The Gibbs-Duhem Equation

In the previous section, by means of describing concentrations, we have expressed
the volume of a multi-component system as function of the molar amounts of the
individual components.
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In the same way, other properties such as e.g. the Gibbs free energy of a mixture
can be expressed in terms of the molar composition:

G ¼ nA � GmA þ nB � GmB ¼ nA � μA þ nB � μB, or generally G ¼
XN
i¼1

ni � μi

ð2:77Þ
The above expression allows calculation of the Gibbs free energy (extensive!)

based on knowledge of the molar amounts of the individual components as well as
their chemical potentials (intensive!).

The molar functions we have introduced so far include:

• molar Gibbs free energy ¼ chemical potential (a partial molar function when it
refers to an individual component)

• partial molar volume
• mole fraction (a partial molar function as it relates to an individual component)

" If the partial molar function (e.g. the chemical potential or the partial
molar volume) of one component of a mixture changes, it must be
balanced by the opposing change in the partial molar functions of the
other.

For example, when adding an additional volume of liquid to a solution, the partial
molar volume of that substance increases, while the partial molar volumina of all
other components decrease:

XN
i¼1

ni � dvi ¼ 0

Applying the same considerations to the chemical potential, one obtains the
Gibbs-Duhem equation:

XN
i¼1

ni � dμi ¼ 0: ð2:78Þ

2.4 Exercises

1. Calculate the work done per mole when an ideal gas is expanded reversibly by a
factor of three at 120 �C.
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2. A friend thinking of investing in a company that makes engines shows you the
company’s prospectus. Analysing the machine, you realise that it works by
harnessing the expansion of a gas. The operating temperature is approx. constant
at 120 �C, and the gas doubles in volume during the power extraction phase of
operation. It is claimed that the machine produces 5.5 kJ mol�1 of work during
expansion. What advice would you give your friend? Briefly explain the thermo-
dynamic rationale.

3. Which of the following equations embodies the first law of thermodynamics:

að Þ dS ¼ dQrev

T

bð Þ U ¼ QþW

cð Þ ΔSuniverse > 0

dð Þ Ssystem > 0

eð Þ Cp ¼ δH

δT

� �
p

4. If the pressure is constant, the system is in mechanical equilibrium with its
surroundings and no work is done other than work due to expansion and
compression, which of the following are true:

að Þ ΔH ¼ ΔQ and ΔW ¼ �p � ΔV
bð Þ ΔU ¼ ΔQ and ΔW ¼ �p � ΔV
cð Þ ΔU ¼ ΔQ� p � ΔV and ΔW ¼ p � ΔV
dð Þ ΔH ¼ ΔQ� p � ΔV and ΔW ¼ �p � ΔV
eð Þ ΔU ¼ ΔQ and ΔW ¼ p � ΔV

5. Which of the following equations define fugacity?

að Þ μ pð Þ ¼ μØ pð Þ þ R � T � ln f

pØ

bð Þ f ¼ p

pØ

cð Þ μA ¼ μ∗A þ R � T � ln aA
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6. The chemical potential is defined as:

að Þ μ ¼ G

bð Þ μ ¼ Gm

cð Þ μ ¼ GØ
m

dð Þ μ ¼ n � Gm

eð Þ μ ¼ GØ þ n � R � T � ln p

pØ

fð Þ μ ¼ GØ
m þ R � T � ln p

pØ
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Mixtures and Phases 3

3.1 Why Do or Don’t Things Mix

In every-day life, we frequently encounter systems that consist of more than one
component and thus represent mixtures. An important fundamental question in this
context is whether two different components will spontaneously mix.

3.1.1 Gases

Experience tells us that two gases contained in the same physical container will inter-
mix. Since all spontaneous processes (at constant pressure) must be accompanied by
a negative change of the Gibbs free energy (Eq. 2.50), we can assess the every-day
experience by thermodynamic means.

The Gibbs free energy change for the mixing process can be calculated as per:

ΔGmix ¼ Gfinal � Ginitial ð3:1Þ
The Gibbs free energies for the initial state of the system is given by the sum of

the chemical potentials of each of the components that are about to mix, A and B,
multiplied by their respective molar amounts nA and nB. The chemical potential of a
gas at a pressure p was introduced with Eq. 2.67, and μØ indicates represents the
chemical potential under standard conditions:

Ginitial ¼ nA � μA pinitialð Þ þ nB � μB pinitialð Þ

¼ nA � μØ
A þ R � T � ln p

pØ

� �
þ nB � μØ

B þ R � T � ln p

pØ

� �

When the mixing process starts (i.e. in the initial state), we are releasing two gases
A and B into a container with an atmosphere of pressure p. In the final state, when the
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inter-mixing of the gases is complete, we know that each component can be
described by its partial pressure, pA and pB (see page 28). The chemical potential
for each component can thus be calculated by using the partial pressures, and one
thus obtains for the Gibbs free energy in the final state:

Gfinal ¼ nA � μA pAð Þ þ nB � μB pBð Þ

¼ nA � μØ
A þ R � T � ln pA

pØ

� �
þ nB � μØ

B þ R � T � ln pB
pØ

� �

Both expressions can now be used to substitute in Eq. 3.1:

ΔGmix ¼ nA � μØ
A þ R � T � ln pA

pØ

� �
� nA � μØ

A þ R � T � ln p

pØ

� �

þ nB � μØ
B þ R � T � ln pB

pØ

� �
� nB � μØ

B þ R � T � ln p

pØ

� �

The molar amounts nA and nB, the chemical potentials in the standard state, as
well as R and T are all constants and therefore separated from the unknown
parameters p, pA and pB:

ΔGmix ¼ nA � μØ
A � nA � μØ

A þ nA � R � T � ln
pA
pØ

� ln
p

pØ

� �

þ nB � μØ
B � nB � μØ

B þ nB � R � T � ln
pB
pØ

� ln
p

pØ

� �

We see that the above expression can be simplified since some terms cancel:

ΔGmix ¼ nA � R � T � ln
pA
pØ

� ln
p

pØ

� �
þ nB � R � T � ln

pB
pØ

� ln
p

pØ

� �

With the logarithm rule of log a� log b ¼ logab (see Appendix A.1.2) one obtains:

ΔGmix ¼ nA � R � T � ln pA � pØ
pØ � p þ nB � R � T � ln pB � pØ

pØ � p
ΔGmix ¼ nA � R � T � ln pA

p
þ nB � R � T � ln pB

p

As we have introduced earlier (Eq. 2.75), the quotient of partial pressure and total
pressure yields the mole fraction x, when dealing with gases. The above equation can
thus be re-written in terms of mole fractions xA and xB:

ΔGmix ¼ nA � R � T � ln xA þ nB � R � T � ln xB
The molar amounts of A and B, nA and nB, are related to the mole fractions via the

total molar amount of compounds in the system:
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nA
n

¼ xA ) nA ¼ n � xA and
nB
n

¼ xB ) nB ¼ n � xB

Therefore we arrive at:

ΔGmix ¼ n � R � Tð Þ � xA � ln xA þ n � R � Tð Þ � xB � ln xB < 0 ð3:2Þ
Since xA and xB are positive numbers between 0 and 1, it becomes clear that lnxA

and lnxB are negative numbers, since any logarithmic function is negative between
0 and 1 (Fig. 3.1). With (n � R � T ) yielding a positive value, we can then conclude
that ΔGmix from Eq. 3.2 will always deliver a negative value. Since all processes
with ΔG < 0 are spontaneous processes, the mixing of two gases is a spontaneously
occurring process!

Considering that the Gibbs free energy change at constant pressure and constant
temperature is composed of enthalpic and entropic changes as per:

ΔG ¼ ΔH � T � ΔS ð2:42Þ
we can conclude that the mixing two ideal gases is a purely entropic effect, since
there is no enthalpy change (ΔH ¼ 0) when two ideal gases intermix. This follows
from the requirement of the gas being ideal; in the ideal gas there are no intermolec-
ular forces between the molecules.

In contrast, in real gases inter-molecular interactions do occur and there is
therefore a change of enthalpy upon mixing (ΔH 6¼ 0), due to intermolecular forces
between molecules. It also needs to be considered that ΔH and ΔS depend on p and
T. However, the Gibbs free energy change for the inter-mixing of real gases is still
generally negative.

3.1.2 Liquids

A similar approach can be taken, when considering the mixing of two liquids. As in
the previous section, we establish the Gibbs free energy of the system before mixing
occurs. This can be expressed as the sum of the chemical potentials of the pure

Fig. 3.1 Any logarithmic
function results in negative
values between 0 and 1
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liquids (indicated by the asterisk ‘*’), multiplied with the respective molar amounts
of each liquid in the system (since the chemical potential is the Gibbs free energy per
1 mol of substance):

Ginitial ¼ nA � μ∗A lð Þ þ nB � μ∗B lð Þ

When applying Eq. 2.67 to liquid systems, we appreciate that the chemical
potential of a liquid at any concentration can be expressed with reference to the
chemical potential in its pure state (‘*’) by adjusting for the concentration of the
liquid with the term R � T � ln x, where x is the mole fraction of the liquid:

μ ¼ μ∗ þ R � T � ln x ð3:3Þ
The final state of the liquid mixture is attained when both liquids are present in

their respective concentrations, expressed as mole fractions xA and xB. With Eq. 3.3
we thus obtain:

Gfinal ¼ nA � μ∗A lð Þ þ R � T � ln xA
� �

þ nB � μ∗B lð Þ þ R � T � ln xB
� �

and can now proceed to calculate the change in the Gibbs free energy during the
mixing process:

ΔGmix ¼ Gfinal � Ginitial

ΔGmix ¼ nA � μ∗A lð Þ þ nA � R � T � ln xA þ nB � μ∗B lð Þ þ nB � R � T � ln xB
� nA � μ∗A lð Þ � nB � μ∗B lð Þ

Since several terms cancel, this simplifies to:

ΔGmix ¼ nA � R � T � ln xA þ nB � R � T � ln xB
We then express the individual molar amounts nA and nB as mole fractions xA and

xB (and thus with respect to the total molar amount n in the system):

nA
n

¼ xA ) nA ¼ n � xA and
nB
n

¼ xB ) nB ¼ n � xB

which yields for the Gibbs free energy change of the mixing process:

ΔGmix ¼ n � R � T � xA � ln xA þ n � R � T � xB � ln xB
ΔGmix ¼ n � R � T � xA � ln xA þ xB � ln xBð Þ ð3:4Þ

As we have discussed in the previous section, due to the mole fractions xA and xB
taking values between 0 and 1, Eq. 3.4 we always deliver a negative value for the
Gibbs free energy change, and the mixing of two liquids should thus always occur
spontaneously. However, as in the case of gases, this is only true for ideal liquids,
i.e. such that do not possess any intermolecular forces between molecules. With
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ΔG ¼ ΔH � T � ΔS ð2:42Þ
we can then conclude that in ideal solutions, at constant temperature and constant
pressure, there is no enthalpy change (ΔH ¼ 0) and the mixing of ideally behaving
liquids is thus a purely entropic effect: ΔGmix ¼ � T � ΔS.

In contrast to gases, non-ideal effects are a lot more common in liquids, and
therefore we frequently need to consider changes inΔH due to intermolecular forces,
which differ when comparing interactions between A–A, B–B and A–B. A positive
change of the enthalpy during the mixing (ΔH > 0) of two liquids is therefore
possible and may eventually exceed the entropic effect. The Gibbs free energy of
mixing of non-ideal liquids may thus be positive or negative; this will determine
whether or not the liquids mix.

3.2 Liquids

3.2.1 Chemical Potential of Liquid Solutions

A closer look at liquids and liquid solutions shows that there is not only the liquid
phase that needs to be considered, but also a vapour phase above the liquid. If we
envisage a container in which there is a liquid in equilibrium with its vapour, we can
describe the entire contents of the container as one system. Since we assume
equilibrium conditions, the chemical potential must be uniform throughout the
system, i.e. the chemical potential in the liquid phase is the same as in the vapour
phase:

μ gð Þ ¼ μ lð Þ

For an ideal gas A, we know that chemical potential at any pressure (p∗A) can be
described as per Eq. 2.67:

μ∗A gð Þ ¼ μØ
A þ R � T � ln p

∗
A

pØ

μ∗A gð Þ ¼ μØ
A þ R � T � ln p

∗
A

pØ
¼ μ∗A lð Þ

ð3:5Þ

where the asterisks ‘*’ indicate the pure component (i.e. here pure component A in
either liquid or vapour form).

When two components A and B are mixed, they no longer exist in their pure
forms, and we indicate this by omitting the asterisk ‘*’. However, for each compo-
nent A and B in the liquid mixture, the chemical potential in the different phases can
still be calculated as in Eq. 3.5; we thus obtain:
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μA lð Þ ¼ μA gð Þ ¼ μØ
A þ R � T � ln pA

pØ
ð3:6Þ

μB lð Þ ¼ μB gð Þ ¼ μØ
B þ R � T � ln pB

pØ
ð3:7Þ

The pressures pA and pB now indicate the partial pressure of component A and B
in the vapour above the liquid.

Inspection of Eqs. 3.5 and 3.6 shows that the chemical potential of component A
is different when we compare the pure state with a mixture where A is not the
exclusive component of the system. The difference in the chemical potential between
both states is available by subtracting Eq. 3.5 from 3.6:

μA lð Þ � μ∗A lð Þ ¼ μA gð Þ � μ∗A gð Þ

μA lð Þ � μ∗A lð Þ ¼ μØ
A þ R � T � ln pA

pØ
� μØ

A þ R � T � ln p
∗
A

pØ

� �

μA lð Þ � μ∗A lð Þ ¼ R � T � ln pA
pØ

� R � T � ln p
∗
A

pØ

μA lð Þ � μ∗A lð Þ ¼ R � T � ln
pA
pØ

� ln
p∗A
pØ

� �

Using the log rule of logb(uv) ¼ logbu + logbv and logb
u
v

� � ¼ logbu� logbv
(Appendix A.1.2), this yields:

μA lð Þ � μ∗A lð Þ ¼ R � T � ln pA � pØ
pØ � p∗A

which simplifies to

μA lð Þ ¼ μ∗A lð Þ þ R � T � ln pA
p∗A

ð3:8Þ

This equation delivers a relationship between the chemical potential of a particu-
lar component in a liquid mixture (μA) and its partial vapour pressure ( pA). It is
found that pA always takes smaller values than p∗A (see next section), which results

in
pA
p∗A

< 1 and thus ln
pA
p∗A

< 0; the chemical potential μ of a solvent is therefore

lowered as a result of the presence of the solute.

3.2.2 Raoult’s Law

Eq. 3.8 can be transformed with some basic algebra to yield:
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pA
p∗A

¼ e
μA lð Þ�μ∗

A lð Þ
R�T ð3:9Þ

The French chemist Francois-Marie Raoult (1830–1901) discovered experimen-
tally that there is a relationship between the partial vapour pressure of component
and its mole fraction in the liquid mixture, and summarised his results in 1886 in a
rule known as Raoult’s law:

" The partial vapour pressure of a component in a liquid mixture is equal to
the vapour pressure of the pure component multiplied by its mole
fraction in the liquid phase

pA ¼ xA � p∗A ð3:10Þ
Equation 3.9 can thus be extended to read:

pA
p∗A

¼ e
μA lð Þ�μ∗

A lð Þ
R�T ¼ xA ð3:9Þ

Since the mole fraction xA takes values less or up to 1 (0 � xA � 1), an important
effect of Raoult’s law is that the vapour pressure of a solution is always lower than
that of the pure solvent at any particular temperature. This effect is also known as
vapour pressure depression.

Considering that the boiling point of a solution is the temperature at which the
vapour pressure of the liquid is equal to the surrounding environmental pressure,
another consequence of the above effects is the boiling point elevation observed with
liquid solutions. A solution therefore always has a higher boiling point than the pure
solvent. More generally, several properties of liquids (Tm, Tb, p, etc) depend on the
presence of solute molecules, in particular the number of particles in solution. Such
properties are called colligative properties and will be further discussed in Sect.
4.3.2.

3.2.3 Activity: Mole Fraction for a Non-ideal Solution

In Sect. 2.3.3, we have defined the fugacity f for a non-ideal gas to ensure that the
chemical potential of the gas at any pressure can be calculated according to the
equation

μ pð Þ ¼ μØ þ R � T � ln f

pØ
: ð2:72Þ
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In Sect. 3.2.1 of this chapter, we established a relationship between the chemical
potential of a liquid component (μA(l)) in a mixture and its partial vapour pressure
( pA) above the liquid mixture:

μA lð Þ ¼ μ∗A lð Þ þ R � T � ln pA
p∗A

ð3:8Þ

For an ideal ideal solution, it then follows with Raoult’s law that ln
pA
p∗A

¼ ln xA,

and therefore:

μA lð Þ ¼ μ∗A lð Þ þ R � T � ln xA ð3:11Þ

Analogous to the fugacity in the case of gases, we can now define a property that
will account for non-ideal behaviour in the liquid mixtures. This property is called
activity (a) and replaces the mole fraction xA in the above case, such that the
chemical potential of compound A at any concentration in a non-ideal solution
varies as per the relationship:

μA lð Þ ¼ μ∗A lð Þ þ R � T � ln aA ð3:12Þ

The activity coefficient γ indicates the deviation from the ideal behaviour:

aA ¼ γA � xA: ð3:13Þ

3.2.4 Gibbs Free Energy Change for a Reaction (Part 2)

In Sect. 2.2.5, we discussed the Gibbs free energy change of the following reaction

νΑA lð Þ þ νB B gð Þ ! νC C lð Þ þ νDD gð Þ

by means of the reaction quotient Q, before introducing the chemical potential.
After discussing mixtures of components by means of their chemical potentials in

the preceding sections, we can now apply this knowledge and revise our discussion
of the Gibbs free energy change for a reaction.

As before, the change in free energy is given by

ΔG ¼ Gproducts � Greactants ¼ GC þ GDð Þ � GA þ GBð Þ
This free energy change is an extensive property, as it depends on the actual

amounts of compounds. We can introduced the corresponding intensive state
functions which are the molar Gibbs free energies (Gm):
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ΔG ¼ νC � GmC þ νD � GmDð Þ � νA � GmA þ νB � GmBð Þ
The molar Gibbs free energies Gm are indeed the chemical potentials, so we can

substitute and obtain:

ΔG ¼ νC � μ∗C þ νC � R � T � ln xC þ νD � μØ
D þ νD � R � T � ln pD

� �
� νA � μ∗A þ νA � R � T � ln xA þ νB � μØ

B þ νB � R � T � ln pB
� �

By combining the constant terms (νi � μ∗,Øi represent the chemical potentials of
the components in their pure or standard states), we obtain:

ΔG ¼ νC � μ∗C þ νD � μØ
D � νA � μ∗A � νB � μØ

B

þR � T � νC � ln xC þ νD � ln pD � νA � ln xA � νB � ln pBð Þ
The constant terms νi � μ∗,Ø

i represent a standard Gibbs free energy change for this
reaction and are thus substituted by ΔGØ. Using the logarithm rules of
a � log x ¼ log xa, log a + log b ¼ log (a � b) and log a� log b ¼ logab (see
A.1.2) one obtains:

ΔG ¼ ΔGØ þ R � T � ln xνCC � pνDD
xνAA � pνBB

which is a relationship between the Gibbs free energy change for a reaction at
varying concentrations of components, here expressed as mole fractions for the
liquids A and C, and as partial pressures for the gases B and D. The argument of
the logarithm is the reaction coefficient Q introduced earlier. Based on the above
rigorous assessment of the chemical potentials, we can thus confirm the relationship
introduced in Sect. 2.2.5:

ΔG ¼ ΔGØ þ R � T � lnQ ð2:58Þ
We recall that when the reaction has reached equilibrium, there is no change the

Gibbs free energy observed, therefore:

ΔG ¼ 0

Also, at equilibrium, the reaction coefficient Q becomes the equilibrium constant

Qeq ¼ K

One thus obtains from Eq. 2.58 for equilibrium conditions:

3.2 Liquids 65

https://doi.org/10.1007/978-3-319-74167-3#Sec4


ΔG ¼ ΔGØ þ R � T � lnK ¼ 0

lnK ¼ �ΔGØ

R � T and K ¼ e�
ΔGØ

R�T
ð2:59Þ

This means that if we can determine the change in the Gibbs free energy of a
process, we can calculate the equilibrium constant.

3.3 Phase Equilibria

3.3.1 Phase Diagrams and Physical Properties of Matter

Phase diagrams tell us the state of a system under various conditions. The states of a
system at various pressures and temperatures can be depicted in a p-T diagram (see
for example Fig. 3.2). In phase diagrams, lines separate regions where various
phases are thermodynamically stable. These lines are called phase boundaries and
show values of p and Twhere two phases coexist in equilibrium. When changing one
of the two parameters ( p or T ), in order to maintain the state of equilibrium, the other
parameter needs to follow suit. Phase boundaries are therefore univariant (one
parameter can be freely chosen).

From the ideal gas equation, we know that

p � V ¼ n � R � T ð2:6Þ

Fig. 3.2 Pressure-temperature phase diagram of a one-component system. Lines in a p-T phase
diagrams have the same volume all along the way (isochores)
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If we assume a system with constant molar amount n, then the above equation
relates the three variables p, V and T. For a given state, the third variable is
determined by choosing the two other—a characteristic of equations of state that
we have introduced earlier. As a consequence, the lines in a p-T phase diagram need
to describe conditions of constant volumes; these lines are thus called isochores.

There are several points of interest in a phase diagram, illustrated in the p-T
diagram in Fig. 3.2.

Boiling Point
The boiling point is the temperature at which the vapour pressure of the liquid is
equal to the external pressure. Note that the frequently used term ‘boiling point’ is
strictly speaking not correct, as it is not a single point in the phase diagram. It is a
temperature extrapolated from the isochore branch that separates liquid and vapour
phases. If the external pressure is the normal pressure

pnormal ¼ 1 atm ¼ 101:3 kPa then this is called the normal boiling point:

If the external pressure is the standard pressure

pØ ¼ 1 bar ¼ 100:0 kPa then this is called the standard boiling point:

Melting Point
The melting point is the temperature at which the liquid and solid phases coexist; it
equals the freezing temperature. As above, please note that the frequently terms
‘boiling/freezing points’ are strictly speaking not correct, as it is they are not single
points in the phase diagram. It is a temperature extrapolated from the isochore branch
that separates solid and liquid phases. If the external pressure is the normal pressure

pnormal ¼ 1 atm
¼ 101:3 kPa then this is called the normal freezing or melting point:

If the external pressure is the standard pressure

pØ ¼ 1 bar
¼ 100:0 kPa then this is called the standard freezing or melting point:

Critical Point
At the critical point, there is no physical interface between the liquid and the vapour;
both phases coalesce and there is no liquid phase. At pressures and/or temperatures
beyond the critical point, the system is said to be in the supercritical state, which is
neither vapour nor liquid. Note that the isochore branch stops at the critical point,
i.e. this isochore branch does not continue beyond the critical point. Since the critical
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point is defined by two discrete values on the p- and T-axes, it is indeed a point in the
p-T diagram. The critical point of water occurs at:

Tcrit ¼ 647:10 K, pcrit ¼ 22:1 MPa

Triple Point
At a single definite pressure and temperature, three phases can exist in equilibrium;
this is called a triple point. There may be more than one triple points in a phase
diagram. Since triple points are defined by two discrete values on the p- and T-axes,
they are indeed points in the p-T diagram. One important triple point of water is
observed at

T triple ¼ 273:16 K, ptriple ¼ 611 Pa

Here, solid, liquid and gaseous water exist at the same time; this triple point has a
general importance as it is used to define the thermodynamic temperature scale.

3.3.2 Phase Diagrams with Isotherms

Phase diagrams may also be constructed by plotting the pressure versus the volume
of a system; a useful method especially when analysing gases. As discussed in the
previous section, the third parameter, now the temperature, needs to be constant
when characterising a system under varying pressures and volumes. The lines in the
p-V diagram are thus called isotherms; the temperature is the same all the way along
(see Fig. 3.3).

In Fig. 3.3 (left), the behaviour of a real gas is compared to that of an ideal gas.
The real gas undergoes condensation. At a certain pressure, the volume collapses
(B–C–D) and the gas turns into a liquid, but the system maintains the same pressure
(Fig. 3.4). The pressure at B–C–D is called the vapour pressure of the liquid. For
condensation to occur, the molecules must be close enough and slow enough to
aggregate.

High temperatures imply high molecular velocities. Therefore, at sufficiently high
temperatures (above Tcrit), the individual gas molecules possess too high velocity in
order to engage in intermolecular interactions and thus no condensation will occur,
no matter how small the volume is made.

At the critical point, when the boundaries between liquid and gas phase vanish,
the isotherm in the p-V diagram has zero slope (Fig. 3.3, right; red isotherm). Since
the critical point is indeed a point in the phase behaviour of compounds, it possesses
three discrete values for pressure, temperature and volume: pcrit, Tcrit and Vcrit. The
critical point is a characteristic of a particular substance (Table 3.1).
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Fig. 3.3 Lines in phase diagrams that plot pressure versus volume have the same temperature all
along the way (isotherms). Left: The condensation observed with real gases gives rise to a
horizontal section in the p-V diagram. Right: Isotherms of CO2 at different temperatures. At
sufficiently high temperature, the condensation behaviour of real gases disappears

a b c d e

Fig. 3.4 In real gases, condensation occurs due to inter-molecular interactions, which gives rise to
a volume decrease at constant external pressure (points B–C–D in Fig. 3.3). The lengths of the
vectors indicate the magnitude of the pressure

Table 3.1 Critical
constants for selected gases

Gas pcrit (kPa) Vcrit (cm
3 mol�1) θcrit (�C)

Ar 4862 75.3 �123

CO2 7385 94.0 31.0

He 228.9 57.8 �268

O2 5075 78.0 �118
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3.3.3 Phase Transitions

A form of matter that is uniform throughout in chemical composition and physical
state of matter is called a phase. The fundamentally different phases are solid, liquid
and gas; with water, for example, ice, liquid water and water steam. However, there
may also be various solid phases, conducting and superconducting phases, super-
fluid phases. A phase transition is the conversion of one phase into another. The
possible phase transitions between the three states of matter—solid, liquid and gas—
are illustrated in Fig. 3.5. Some compounds possess more than one liquid or solid
phase; transitions are then also possible between those.

When two or more phases are in equilibrium, the chemical potential of a sub-
stance is the same in each of the two phases and at all points in each of the phases.
This is a consequence of the 2nd law of thermodynamics. For a given pressure, the
temperature at which two phases are in equilibrium (and thus matter spontaneously
transitions from one to the other) is called transition temperature.

3.3.4 The Gibbs Phase Rule

In Sect. 3.3.1, we introduced phase boundaries is univariant regions in the phase
diagram: it is possible to freely choose one parameter in order to maintain this
particular state of the system. The Gibbs phase rule allows calculation of the number
of intensive parameters (i.e. independent of the amount of substance) that can be
varied independently (F) while the number of phases (P) remains constant, given a
system with a particular number of components (C) of a system:

F ¼ C � Pþ 2 ð3:14Þ
For example, if two phases (P ¼ 2) in a system consisting of one component

(C ¼ 1) are in equilibrium, then

Fig. 3.5 Phase transitions
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F ¼ 1� 2þ 2 ¼ 1

parameter (e.g. T ) can be changed, but the other parameters (e.g. p) will follow suit.
Systems with F ¼ 1 are called univariant.

Gibbs phase rule examples
Water steam

Water steam describes one phase (P ¼ 1) in the one-component system
water (C ¼ 1). Therefore:

F ¼ 1� 1þ 2 ¼ 2

With two degrees of freedom, water steam constitutes a bivariant system. It
corresponds to an area in an x–y plot (for example, in a p-T diagram). We can
vary the temperature of the steam without having to change the pressure at the
same time, but still maintain the gas phase.

Liquid water in equilibrium with its vapour
Here, we again deal with the one-component system water (C¼ 1), but now

have to consider two phases, liquid and vapour, i.e. P ¼ 2. Therefore:

F ¼ 1� 2þ 2 ¼ 1

With one degree of freedom, this constitutes a univariant system. It
corresponds to a line in an x–y plot. The temperature can be varied, but the
pressure needs to be varied accordingly to in order to preserve the equilibrium
between liquid and vapour phase.

3.3.5 One Component Systems: Carbon Dioxide

The phase diagram of carbon dioxide is shown in Fig. 3.6, annotated with the three
states of matter. as well as the triple and critical points. The degrees of freedom for
the different areas in the phase diagram are also shown.

A closer look at the numerical values of the p- and T-axes shows that solid CO2

sublimes (i.e. transitions to the vapour phase). Since the solid and liquid phases of
CO2 do not co-exist at normal pressure, solid CO2 is also called dry ice. The liquid
phase does not exist below a pressure of 518 kPa. In other words, if liquid CO2 is
required, a pressure of at least 518 kPa must be applied.

At a pressure of 101.3 kPa, which constitutes the normal atmospheric pressure,
the transition temperature between solid and gas phase is 195 K (�78 �C), so solid
CO2 evaporates under normal conditions.

Inspection of the phase boundary between solid and liquid CO2 shows that an
increase in pressure results in an increase in the melting temperature; the slope of the
solid–liquid isochore is positive. This is due to solid CO2 being denser than the
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liquid. An increase in pressure promotes the denser phase, so higher pressures
stabilise the solid state. This behaviour is typical of most substances.

The phase changes when approaching the critical point and formation of super-
critical propane is illustrated in Fig. 3.7. In the supercritical fluid, one homogenous
phase is formed which shows properties of both liquids and gases.

Fig. 3.6 Phase diagram of CO2

a b c d

Fig. 3.7 Formation of supercritical propane. (a) Liquid and gas phases of propane are visible and
the meniscus is easily observed. (b) With an increase in temperature the meniscus begins to
diminish. (c) Increasing the temperature further causes the gas and liquid densities to become
more similar. The meniscus is less easily observed but still evident. (d) Once the critical temperature
and pressure have been reached, the two distinct phases of liquid and gas are no longer visible and
the meniscus can no longer be observed. Images obtained from CM Rayner, AA Clifford and KD
Bartle, University of Leeds, UK and reproduced with permission
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3.3.6 One Component Systems: Water

The p-T phase diagram for water is shown in Fig. 3.8. The thick lines indicate the
main phase boundaries between solid, liquid and vapour states. Especially at high
pressures, water can form several different solid phases, the boundaries of which are
shown by the thin lines. Therefore, the phase diagram contains several triple points,
where three phases are in co-existence. The main triple point, where solid, liquid and
vapour water are in equilibrium, is observed at T ¼ 273.16 K and p ¼ 611 Pa. This
triple point has fundamental importance, as it is used to define the zero point on the
Celsius temperature scale.

Of particular importance is the rather exceptional property of water arising from
the steep slope of the solid–liquid phase boundary (the melting temperature curve): it
not only has a very steep, but a negative slope. The negative slope indicates that the
liquid phase has a higher density than the solid phase. Therefore, solid ice floats on
liquid water (due to the lower density of the former; see also Sect. 3.4.6), and the
possibility of ice skating also arises form this unusual behaviour. A skater on ice of
about 70 kg exerts a pressure of about 7 MPa (assuming a contact area of 1 cm2). At

Fig. 3.8 Phase diagram of H2O. Thick lines show the main phase boundaries; thin lines indicate
phase boundaries of the various solid phases. The critical point is labelled; all other indicated points
are triple points. The phase at normal conditions (Tnormal ¼ 298.15 K, pnormal ¼ 101.3 kPa) is
marked
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that high pressure, the melting temperature of ice is no longer 0 �C but �1 �C. The
high pressure leads to disruption of hydrogen bonds that hold the water molecules in
the solid structure. The generated film of liquid water enables the smooth skating
process.

Water: not one, but two liquids?
The list of anomalies of water is constantly increasing, and currently includes
some 72 properties that distinguish water from conventional liquids (Chaplin
2014). Among the best known anomalies are the density maximum of water in
its liquid state at 3.98 �C, as well as the so-called Mpemba effect which
describes the phenomenon that hot water freezes faster than cold water
(Mpemba and Osborne 1969).

The reason for such extra-ordinary behaviour lies in discontinuities in the
heat capacity Cp (see also Sect. 3.4.9). Such a discontinuity gives rise to the
critical point, where fluctuations happen at all length scales and thus light
cannot penetrate the system—it becomes opaque. The critical point indicates
the end of the boiling curve, and liquid and gas state are no longer distinguish-
able (supercritical fluid). In supercritical water, salts can no longer be
dissolved, but mixture with apolar solvents is observed. However, the Cp

discontinuity at the critical point cannot explain anomalies that occur at
lower pressures and temperatures.

Based on simulations (Poole et al. 1992), it has thus been proposed that a so
far non-identified equilibrium curve exists in water that separates the liquid
phase into two liquids, a high-density and a low-density liquid. Similar to the
boiling curve, this postulated equilibrium curve may contain a critical point at
approx. �50 �C and atmospheric pressure.

This hypothesis is a matter of ongoing debate, but may have notable
implications. If this second critical point exists, then water under standard
conditions would constitute a supercritical fluid that fluctuates between a low-
and a high-density liquid state. At lower temperatures, the mixture of the two
phases should spontaneously separate into a low-density liquid that flows on
top of the high-density liquid.

3.3.7 One Component Systems: Helium

Compared to the two substances we have looked at so far, the phase diagram for
helium shows further unusual behaviour. The two isotopes of helium, 3He and 4He,
have different phase diagrams; the p-T diagram of 4He is illustrated in Fig. 3.9. In
contrast to its lighter isotope, 4He has two liquid phases, called He-I and He-II, with a
transition between them. This transition line is called the λ-line. Whereas the liquid
phase He-I forms a normal liquid, He-II has properties of a superfluid: it flows with
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zero viscosity (Figure 3.10). At the low temperature triple point of helium, the
phases He-II(l), He-I(l) and He(g) coexist. Another unusual observation is that solid
and gas are never in equilibrium, due to the light He atoms having large amplitude
vibrations. Therefore, helium needs very high pressures to form a solid.

Fig. 3.9 Phase diagram of 4He. hcp: hexagonal closed packing, bcc: body-centred cubic packing

Fig. 3.10 Superfluid He-II flows with zero viscosity. It will “creep” along surfaces in order to
equally level the two compartments in the container. The Rollin film also covers all interior surfaces
of the container. If the container was not closed, He-II would creep out and escape
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3.3.8 Other Phases

In addition to the three fundamental phases (solid, liquid, gas), there a few unusual
phases:

• Plasma is a phase formed by an ionised gas when electrons are stripped from
atoms at high temperatures. Plasmas are an important phase in high-temperature
processes such as nuclear fusion and stellar atmospheres. They have a practical
importance in spectroscopic instruments where they are used as ionisation
devices (e.g. inductively-coupled plasma atomic emission spectroscopy,
ICP-AES).

• Supercooled liquids constitute a phase that is established by cooling a liquid
below the freezing temperature but without crystallisation. The most prominent
example for a supercooled liquid is glass. Albeit these materials appear solid, the
particles form an amorphous (formless) structure.

• Liquid crystals flow like ordinary liquids, but the molecules form swarms with
some low-order structure. As such, the liquid crystalline phase is an intermediate
between the crystalline and liquid phase. The liquid crystalline phase is of
eminent importance for the physics of membranes. It also has important practical
applications since the low-order structure of liquid crystalline materials can be
changed by orienting the molecules by applying a small electric potential; the
change of orientation results in different optical properties of the liquid crystal.
These phenomena are used in liquid crystalline displays (LCDs), which makes
this phase a highly important phenomenon for microelectronic devices (displays,
computer and TV screens).

3.4 Thermodynamic Aspects of Phase Transitions

The locations of phase boundaries (lines) in phase diagrams are determined by the
relative thermodynamic stability of the individual phases, i.e. by the chemical
potential μ (molar Gibbs free energyGm). The chemical potential can thus be thought
of as the potential of a substance to bring about a physical change. Under different
conditions, different forms of the same system become more stable. A system that is
in equilibrium has the same chemical potential throughout in all actually existing
phases at that time.

In this section, we will discuss how the stability of phases are affected by
particular environmental conditions. Knowledge about these relationships will
allow us to predict phase transitions based on thermodynamic parameters.

3.4.1 Temperature Dependence of Phase Stability

We have previously (2.2.1) learned that the Gibbs free energy of a system is given
by:
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Gsys ¼ Hsys � T � Ssys ð2:44Þ
and thus its derivative is calculated as per

dGsys ¼ dHsys � d T � Ssys
� � ð2:45Þ

which can be resolved by considering the product rule (A.2.3):

dGsys ¼ dHsys � Ssys � dT � T � dSsys
After dividing the equation by dT, one obtains:

dGsys

dT
¼ dHsys

dT
� Ssys � dT

dT
� T � dSsys

dT

which simplifies to:

dGsys

dT
¼ dHsys

dT
� Ssys � T � dSsys

dT
ð3:15Þ

In Sect. 2.2.2, it was established that for processes at equilibrium, there is no net
change in the entropy of the universe:

dSuniverse ¼ 0 ð2:51Þ
The entropy of the universe was given by Eq. 2.47:

dSuniverse ¼ dSsys � dHsys

T

which combines to:

dSuniverse ¼ dSsys � dHsys

T
¼ 0

From this equation, it follows that

dSsys ¼ dHsys

T
and thus

dHsys ¼ T � dSsys
We can now use this expression to substitute dHsys in Eq. 3.15 and obtain:

dGsys

dT
¼ T � dSsys

dT
� Ssys � T � dSsys

dT

which simplifies to
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dGsys

dT
¼ �Ssys ð3:16Þ

When considering a system consisting of 1 mol of substance (so we can use
Gm ¼ μ), and remembering that the Gibbs free energy is not only dependent on the
temperature, but also on the pressure, we obtain the following expression from
Eq. 3.16 and also introduce the molar entropy Sm:

δGm

δT

� �
p

¼ δμ
δT

� �
p

¼ �Sm ð3:17Þ

Since G (as well as Gm, μ) is also dependent on the pressure, we need to request
constant pressure when calculating the temperature differential; this is done by
calculating a partial differential (indicated by ‘δ’), and denoting the pressure as a
subscript.

The molar entropy Sm is a characteristic parameter of a substance and always
positive. Therefore, the change of the chemical potential μ with increasing tempera-
ture at constant pressure is always negative.

The phase with the lowest chemical potential μ at a particular temperature is the
most stable one for that temperature. The transition temperatures (Tm/Tf and Tb) are
the temperatures, at which the chemical potentials of the two interfacing phases are
equal and the phases are thus at equilibrium.

3.4.2 Entropies of Substances

In the previous section, we have introduced the molar entropy Sm in the context of
different phases of a one-component system. We also noted that molar entropies are
characteristic parameters of a substance.

In gases, molecules can freely diffuse through the volume they are contained in
and the individual molecules (as well as their energies) are dispersed across the entire
volume. Therefore, the degree of disorder is rather large, compared to that of liquids
or solids. The molar entropy Sm of gases is thus larger than that of liquids or solids
(see Table 3.2).

In contrast, the molecules in a solid are confined to a small volume and their
degrees of freedom are restricted to vibrational motion. The molar entropies Sm of
solids are thus fairly low. Solids comprising of large molecules (e.g. sucrose) or
complexes (CuSO4�5 H2O) have a large number of atoms and may thus possess
comparatively high molar entropies, since the energy may be shared among the
many atoms.

We remember that we have defined the explicit entropy change dS in Sect. 2.1.10
as:
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dS ¼ dQ
T

ð2:30Þ

where dQ is the reversibly transferred heat at a particular temperature T. From this
equation, it becomes clear that there is a smaller change of entropy when a given
quantity of energy (dQ) is transferred to an object at high temperature than at low
temperature. More disorder is induced when the object is cool rather than hot.

The ability of a substance to distribute energy over its molecules is related to the
heat capacity. As we have discussed in Sect. 2.1.12, this link can be used to establish
a relationship between the entropy change and the heat capacity Cp:

ΔS ¼
ðTend

Tstart

Cp

T
dT ð2:39Þ

which forms the basis for entropy determination of substances by heat capacity
measurements (i.e. calorimetrically). Alternatively, electrochemical cells can be used
to determine entropies of substances.

3.4.3 Pressure Dependence of Melting

In Sect. 4.1 above, we looked at the change of the Gibbs free energy with tempera-
ture (at constant pressure) and derived the definition of the molar entropy Sm. From
the Maxwell equations describing the relations between different state variables
(Sect. 2.1.14), the variation of the Gibbs free energy with pressure (at constant
temperature) can be derived, leading to the definition of the molar volume Vm:

δGm

δp

� �
T

¼ δμ
δp

� �
T

¼ Vm ð2:65Þ

Table 3.2 Molar entropies Sm in J K�1 mol�1 of selected solids, liquids and gases at 25 �C

Solids Liquids Gases

C (diamond) 2.4 Hg 76.0 H2 130.6

C (graphite) 5.7 H2O 69.9 N2 192.1

Fe 27.3 H3C–COOH 159.8 O2 205.0

Cu 33.1 C2H5OH 160.7 CO2 213.6

AgCl 96.2 C6H6 173.3 NO2 239.9

Fe2O3 87.4 NH3 192.3

CuSO4�5 H2O 300.4 CH4 186.2

sucrose 360.2 N2O4 304.0
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Like the molar entropy, the molar volume Vm is a characteristic parameter for a
substance and always positive. Therefore, the change of the chemical potential μ
(¼ Gm) with increasing pressure at constant temperature is always positive. Gener-
ally, the molar volume Vm is larger for liquids than for solids (exception: water).

We remember that the transition temperatures (Tm/Tf and Tb) are the temperatures,
at which the chemical potentials of the two interfacing phases are equal and the phases
are thus at equilibrium. The transition temperature between the solid and liquid phases
(Tm/Tf) is generally larger at higher pressures (exception: water).

Conceptually, this is illustrated in Fig. 3.11. If the molar volume Vm of the solid is
smaller than that of the liquid (Fig. 3.11 left)—an observation made for most
substances—the chemical potential of the solid phase μ(s) increases less than the
chemical potential of the liquid phase, μ(l), when the pressure is increased. This
situation leads to a shift of the intersect between the two branches to higher
temperatures; therefore, the melting temperature increases when the pressure is
increased.

In contrast, water, for example, shows the behaviour illustrated in the right panel
of Fig. 3.11: the molar volume Vm of the solid is larger than that of the liquid.
Therefore, when the pressure is increased, the liquid phase experiences a lesser
change of the chemical potential than the solid phase. The intersect between the two
branches thus migrates to lower temperatures. This means that at higher pressure,
substances like water freeze at lower temperatures.

Fig. 3.11 The blue and green lines show the chemical potential in dependence of the temperature.
The branch at lower temperature describes the chemical potential for the solid and the branch at
higher temperature describes the chemical potential for the liquid phase. The transition temperature
is the temperature where the two branches intersect. An increase of the chemical potential (when the
pressure is increased) results in a vertical shift of the branches. The phase with the smaller volume is
less impacted by a change of pressure and thus has a lesser change of the chemical potential
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3.4.4 Pressure Dependence of Vapour Pressure

In Sect. 3.2.2, we arrived at an expression of Raoult’s law that relates the vapour
pressure of a solution with that of the pure solvent as per:

pA ¼ p∗A � e
μA lð Þ�μ∗

A lð Þ
R�T ð3:11Þ

μA(l) and μ∗A lð Þ describe the chemical potentials of the solution and the pure solvent,

respectively. In the previous section, we have seen that the differential of the chemical
potential with respect to pressure changes is

δμ
δp

� �
T

¼ Vm: ð2:65Þ

We then realise that the chemical potential difference in Eq. 3.11 can be
expressed in terms of the molar volume and the pressure change:

μA lð Þ � μ∗A lð Þ ¼ Δμ ¼ Vm � Δp

which we can substitute in Eq. 3.11 and obtain:

p ¼ p∗ � eVm �Δp
R�T ð3:18Þ

The pressure difference Δp in the exponential term describes the pressure of two
different states. Let the initial state be at pinitial ¼ pØ, and the final state at a much
high pressure. In that case, Δp > 0 and thus the exponent is positive and the entire
exponential term a factor greater than 1 (see Fig. 3.12). This means that the vapour
pressure of a pressurised liquid is higher than that of the system under standard
pressure.

Similarly, if we consider the case where pfinal describes the system at lower
pressure (e.g. the evacuated system), then we appreciate that Δp < 0, the exponent

Fig. 3.12 For positive
arguments x, the function
y ¼ ex yields values larger
than 1. For negative
arguments, the function yields
values less than 1
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becomes negative and thus the exponential factor has a value less than 1. Therefore,
the vapour pressure will be less in an evacuated system than in one that contains
ambient atmosphere.

3.4.5 Phase Boundaries

As we have established earlier, the lines in a phase diagram separating two
neighbouring phases are called phase boundaries. Along those boundaries, two phases
(we will here call them ‘a’ and ‘b’) co-exist. Being lines in a two-dimensional plot, the
phase boundaries are best discussed in terms of their slopes. So for a p-T diagram,
phase boundaries are characterised by the differential

dp
dT

� �
:

Since the two phases co-exist, there must be equilibrium and the changes in the
chemical potentials must be equal:

dμa p; Tð Þ ¼ dμb p; Tð Þ
From earlier discussions we know that

dμ ¼ dGm ¼ Vm � dp� Sm � dT ð2:45Þ
and can therefore substitute this expression on both sides of the equilibrium equation
above:

Vm,a � dp� Sm,a � dT ¼ Vm,b � dp� Sm,b � dT
We group together the volumes and entropies on opposing sides:

Sm,b � Sm,að Þ � dT ¼ Vm,b � Vm,að Þ � dp
and consider that the differences of the volumes and entropies of phases ‘a’ and ‘b’
describe the transition from one phase to the other:

ΔSm, trans � dT ¼ ΔVm, trans � dp
This equation can be re-arranged to yield the slope of the phase boundary through

the differential of pressure and temperature:

dp
dT

� �
¼ ΔSm, trans

ΔVm, trans
ð3:19Þ

This equation is of fundamental importance as it describes the phase transitions
(phase boundaries) in p-T phase diagrams; it is also known as the Clapeyron
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equation, developed by the French physicist an engineer Benoît Clapeyron in 1834
(Clapeyron 1834). Equipped with this equation, we can now discuss the three phase
boundaries solid–liquid, liquid–vapour and solid–vapour.

3.4.6 Phase Boundaries: Solid–Liquid

We can apply the general form of the Clapeyron equation above to particular phase
transitions, such as the melting or fusion process where solid and liquid phases are in
equilibrium. The slope of the solid–liquid phase boundary in a p-T diagram is
described as the differential of pressure (y-axis) with respect to temperature
(x-axis), dp

dT. The differences in the molar entropies and volumes between solid and
liquid states are macroscopically measurable; we thus use ‘Δ’ instead of ‘d’, and
obtain the Clapeyron equation for the melting (fusion) process:

dp
dT

¼ ΔSm,melt

ΔVm,melt
ð3:19Þ

We remember from earlier discussions that

ΔS ¼ ΔH
T

ð2:35Þ

and therefore can express the phase transition in terms of the molar enthalpy change:

dp
dT

¼ ΔSm,melt

ΔVm,melt
¼ ΔHm,melt

Tmelt � ΔVm,melt
ð3:20Þ

For the melting process, we can evaluate the Clapeyron equation in an approxi-
mative fashion. The change in molar enthalpies

ΔHm,melt ¼ Hm, liquid � Hm, solid

is generally positive, and the change in molar volumes

ΔVm,melt ¼ Vm, liquid � Vm, solid

is generally positive and rather small (the liquid and solid states of most substances
have a similar volume, with the liquid phase typically having a slightly larger
volume; exception: water). Also, ΔVm,melt can be considered independent of the
temperature. Therefore, the differential

dp
dT
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is generally positive and large. This means we will obtain steep boundaries at the
solid–liquid interfaces in a p-T diagram (Fig. 3.13), with this phase boundary having
a positive slope.

3.4.7 Phase Boundaries: Liquid–Vapour

In analogy to the discussion in the previous section, we can formulate, based on the
Clapeyron equation, an expression for the vapourisation process, i.e. the transition
from the liquid to the gas phase:

dp
dT

¼ ΔSm, vap
ΔVm, vap

¼ ΔHm, vap

T � ΔVm, vap
ð3:19Þ

For the vapourisation process, we can not assume that ΔVm,vap is independent of
the temperature. We remember that for an ideal gas, there is a relationship between
the gas volume and the temperature and pressure, given by the ideal gas equation:

V ¼ n � R � T
p

ð2:6Þ

When we consider the molar volume Vm, we normalise the volume with respect to
the molar amount n (Vm ¼ V

n), so we obtain:

Vm ¼ R � T
p

Since the gas phase of a substance occupies a much larger volume than the liquid
state, we can assume that the volume of the liquid is negligible compared to the
volume of the gas:

Fig. 3.13 Using the
Clapeyron equation, the slope
of the phase boundary
between solid and liquid
phases can be calculated.
Most substances have a lesser
density in their liquid than in
their solid states, hence the
molar volume difference upon
melting is positive, and the
phase boundary therefore has
a positive slope
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Vm,gas � Vm, liquid ) ΔVm,vap ¼ Vm,gas � Vm, liquid � Vm,gas

ΔVm,vap � Vm,gas ¼ R � T
p

Note that we now assume conditions of an ideal gas and negligible volume of the
solid compared with the gas. This expression for ΔVm,vap can be used to substitute in
Eq. 3.19 which then yields:

dp
dT

¼ ΔHm,vap

T � ΔVm,vap
¼ ΔHm,vap

T � R�T
p

� �

This simplifies to

dp
dT

¼ p � ΔHm,vap

R � T2 :

We isolate the two independent variables, p and T, on opposite sides of the
equation, and use the formality of

Ð
1
x dx ¼ ln x , 1

x dx ¼ d ln xð Þ to achieve a
more convenient notation (see Appendix A.3.1). This results in a relationship known
as the Clausius-Clapeyron equation:

dp
p � dT ¼ d ln pð Þ

dT
¼ ΔHm,vap

R � T2 : ð3:21Þ

This equation was first derived by the German physicist and mathematician
Rudolf Clausius in 1850 (Clausius 1850).

3.4.8 Phase Boundaries: Solid–Vapour

The phase boundary between the solid and vapour phases describes the sublimation
(or deposition) process. For this process, the Clapeyron equation yields:

dp

dT
¼ ΔSm,subl

ΔVm,subl
¼ ΔHm,subl

T � ΔVm,subl
ð3:19Þ

As in the vapourisation process (previous section), we can not assume that ΔVm is
independent of the temperature, because a gas phase is involved. Therefore, we again
replace Vm with the expression from the ideal gas equation. We thus assume
conditions of an ideal gas and negligible volume of the solid compared with the
gas. The substitution yields:

dp
dT

¼ ΔHm,subl

T � ΔVm,subl
¼ ΔHm,subl

T � R�Tp
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Which simplifies to the following equation, also called the Clausius-Clapeyron
equation for the sublimation process:

dp
p � dT ¼ d ln pð Þ

dT
¼ ΔHm,subl

R � T2 : ð3:22Þ

3.4.9 The Ehrenfest Classifications

In Fig. 3.11, we visualised the change of the chemical potential μwith temperature in
the region where the solid–liquid phase transition occurs. At the transition, the
chemical potential function shows a kink (the function is continuous, but the first
derivative of the function is not), so the change in the chemical potential μ is not
smooth with a change in the temperature T. This is observed at all major phase
transitions

• solid$liquid (melting/freezing)
• liquid$gas (vapourisation/condensation)
• solid$gas (sublimation/deposition)

which are therefore called first order phase transitions. At a molecular level, first-
order transitions involve the relocation of atoms, molecules or ions, accompanied by
a change of the interaction energies.

What is the implication of this for material properties? As mentioned above, a
mathematical function with a kink is characterised by an abrupt change of direction
of the plotted function. Whereas the function is continuous and possesses discrete
values all the way along, the first derivative is discontinuous. At the kink, the first
derivative is infinite.

We remember that the Clapeyron equation (3.19, 3.20) is a function of enthalpy
and temperature, in fact f ¼ H

T , and the first derivative of this function, f
0 ¼ dH

dT , leads
us to the heat capacity for constant pressure, Cp:

Cp ¼ δH
δT

� �
p

ð2:29Þ

At a first-order transition, H changes by a finite amount whereas T changes by an
infinitesimal small amount. The heat capacity Cp (the first derivative) thus becomes
infinite.

Following this classification concept, a transition for which the first derivative of
the chemical potential μwith respect to the temperature T is continuous, but the second
derivative is discontinuous, is called second order phase transition. This implies that
volume, entropy and enthalpy do not change at the transition. The heat capacity Cp is
discontinuous but not infinite. At a molecular level, second-order transitions are often
associated with changes of symmetry in a crystal structure. Rather than the molecular
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interaction energies, it is the long-range order that varies. Examples for second order
phase transitions include the conducting-superconducting transition in metals at low
temperatures.

Phase transitions that are not first order, but where nevertheless the heat capacity
Cp becomes infinite, are called λ-transitions. In such instances, the heat capacity
typically increases well before the actual transition occurs. At a molecular level,
λ-transitions are associated with order-disorder transitions. Examples include:

• order-disorder transitions in alloys
• onset of ferromagnetism
• fluid-superfluid transition in liquid helium (hence the name λ-line in the He phase

diagram, Fig. 3.9)

3.5 Mixtures of Volatile Liquids

3.5.1 Phase Diagrams of Mixtures of Volatile Liquids

We assume a mixture of two volatile liquids, A and B, where the liquid and vapour
phases are in equilibrium. Even though, the compositions in the two phases are not
necessarily the same; the vapour phase will contain more of the more volatile
component.

Raoult’s law enables calculation of the vapour pressure of a particular liquid
(A) in a mixture, for different concentrations of that liquid in the mixture (expressed
as molar fraction x):

pA ¼ xA � p∗A ð3:11Þ
p∗A is the vapour pressure of the pure liquid A (i.e. at xA ¼ 1). Since we will have

to consider mole fractions for several different phases in the following discussion, in
this current chapter, we will denote the mole fraction of substances in the liquid
phase as ‘z’ instead of ‘x’.

The total vapour pressure in an ideal mixture of A and B is then given by Dalton’s
law (Eq. 2.8), which poses that the total vapour pressure of a vapour mixture is the
sum of the partial vapour pressures of all components (here, the partial vapour
pressures are given by Raoult’s law for A and B):

p ¼ zA � p∗A þ zB � p∗B ¼ p∗B þ p∗A � p∗B
� � � zA ð3:23Þ

where zA and zB are the mole fractions of A and B in the liquid, and p∗A and p∗B the
vapour pressures of the pure liquids, respectively. This relationship may be plotted in
a diagram (see Fig. 3.4, upper left) where the total pressure p provides the ordinate
(y-axis) and the mole fraction zA the abscissa (x-axis). It is obvious, that at zA ¼ 0,
there is pure liquid B and hence the total vapour pressure is given by the vapour
pressure of pure liquid B, p∗B .
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With Dalton’s law informing us that the total pressure of a gas mixture equals the
sum of the partial pressures of the individual components, we have access to the
mole fraction of the individual components in the vapour phase, which, for clarity,
we call ‘y’ instead ‘x’ in this section:

pA
p

¼
nA�R�T

V
nAþnBð Þ�R�T

V

¼ nA
nA þ nB

¼ yA and
pB
p

¼
nB�R�T

V
nAþnBð Þ�R�T

V

¼ nB
nA þ nB

¼ yB ð3:24Þ

yA and yB are the mole fractions of A and B in the vapour. This relationship may also
be plotted in a phase diagram (Fig. 3.14, upper right) with pressure as the ordinate (y-
axis), but this time the mole fraction yA as abscissa (x-axis). It is no surprise that the
resulting phase boundary is now a different line than before; after all we are no
longer plotting against the mole fraction of A in the liquid, but in the vapour. From
Eq. 3.24 it is obvious that at yA¼ 1, the vapour contains pure substance A, hence the
total vapour pressure p is the vapour pressure of A, p∗A.

Equipped with these relationships, we can now calculate the mole fraction of each
component in the vapour phase (yi) of the liquid mixture, knowing their mole
fractions in the liquid phase (zi).

From Raoult’s law we know:

pA ¼ zA � p∗A
and from Dalton’s law:

yA ¼ pA
p

Therefore:

yA ¼ zA � p
∗
A

p

For a mixture consisting of two components only, the mole fraction of the second
component is then available as

yB ¼ 1� yA:

From a practical perspective, it will be very inconvenient to plot two phase
diagrams, one each for liquid and vapour mole fractions. Hence the two diagrams
are combined into one (Fig. 3.14, bottom).

The combined phase diagram is plotted with the pressure as ordinate and the mole
fraction of the total composition as abscissa. The mole fraction of the total composi-
tion (xi) can easily be obtained from the mole fractions in the liquid (zi) and vapour
phases (yi); an example is shown in Table 3.3.
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From binary phase diagrams such as the one shown in Fig. 3.15, composition data
of the system at various conditions can be easily obtained.

For example, a mixture of two liquids A and B, each present with a mole fraction
of 0.5 and a phase diagram as shown in Fig. 3.15 is held at a pressure p ¼ p0. In the

Fig. 3.14 Concept of a binary p-x phase diagram. The phase diagram plotting total composition as
the abscissa can be thought of as a superposition of phase diagrams for liquid and vapour
composition

Table 3.3 Example calculation to obtain the total composition of a binary system, when the
compositions of liquid and vapour phases are known

n(A) n(B) Mole fraction of A Mole fraction of B

Liquid 2 mol 3 mol 2/5 ¼ zA
3/5 ¼ zB

Vapour 1 mol 2 mol 1/3 ¼ yA
2/3 ¼ yB

Total 3 mol 5 mol (2+1)/(5+3) ¼ 3/8 ¼ xA
(3+2)/(5+3) ¼ 5/8 ¼ xB
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diagram this situation is depicted as a point at (xA; p) ¼ (0.5; p0). This point lies in
the region between the two lines marking the liquid–vapour phase boundary; the
upper line which delivers the molar composition of the liquid phase and the lower
line which represents the composition of the vapour phase. This area is called the
two-phase area, where the liquid and vapour phases co-exist. Therefore, at the
identified point, a line parallel to the x-axis is used to extrapolate to the phase
boundary lines (such a line is called a conode or tie line). Where the tie line
intersects, drop lines to the x-axis are used to determine the molar fraction of A in
the vapour and liquid phases. The molar fractions for B are available as per:

xB liquidð Þ ¼ 1� xA liquidð Þ and xB vapourð Þ ¼ 1� xA vapourð Þ

As a result of the mixing with substance B, the vapour pressure of A in the
mixture is lowered as compared to the vapour pressure of pure liquid A. The mole
fraction of A in the vapour phase of a 1:1 mixture is therefore larger than 50%,
despite it possessing the higher vapour pressure when comparing the pure liquids.

Any point located in the two-phase indicates a mixture composition where
separation into the two co-existing phases occurs. The tie line further yields infor-
mation about the relative molar amounts of substance A (since xA is plotted as
abscissa) in the liquid and vapour phases. The ratio of molar amounts of substance A
in the liquid and vapour phases is given by the lever rule, graphically illustrated in
Fig. 3.16:

Fig. 3.15 Illustration of how to obtain molar compositions of liquid and vapour phases of a binary
liquid mixture
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nA, liquid
nA,vapour

¼ xA � xA,vapour
xA, liquid � xA

¼ dliq
dvap

: ð3:25Þ

The examples and illustrations above were all concerned with pressure-
composition ( p-x) phase diagrams, where phase boundaries are characterised in
dependence of pressure at a particular constant temperature.

Of practical importance are also temperature-composition (T-x) phase diagrams,
which show phases at a single pressure. A typical T-x diagram found with many real
mixtures is shown in Fig. 3.17. The way of determining the mole fractions of a
substance in the liquid and vapour phases in T-x diagrams is the same as discussed
above for p-x diagrams. The lever rule can also be applied in an analogous fashion.

Temperature-composition phase diagrams are particularly useful when analysing
distillation processes.

3.5.2 Simple Distillation

Distillation procedures are based on vapour and liquid having different compositions.
In a simple distillation apparatus, mixtures comprising two components of low
(component A) and high (component B) volatility can be separated to some degree.
Since the distillation experiments are carried out at constant pressure (ambient pressure

Fig. 3.16 Illustration of the lever rule to determine the molar amounts of substance A in the liquid
and vapour phases
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or under vacuum), temperature-composition phase diagrams such as the one shown in
Fig. 3.18, can be used to track the process of simple distillation.

We are starting at ambient temperature with a liquid mixture that has relatively
low concentration of the high volatility component B (xA � 0.75, so xB � 0.25). The
mixture is heated (arrow 1), and at the intersection of arrow 1 with the boiling curve a
vapour phase appears. The composition of the vapour can be obtained where the tie
line (arrow 2) intersects with the condensation curve. In a basic distillation appara-
tus, vapour with this composition is condensed on the fractionation side of the
apparatus; the condensate consists of a liquid with enriched component B
(Fig. 3.19).

3.5.3 Fractional Distillation

In the fractional distillation, vapour is continually removed from the boiling equilib-
rium system, thus allowing enrichment of the more volatile component to very high
purity. This is illustrated in Fig. 3.20.

Fig. 3.17 Illustration of how to obtain molar compositions of liquid and vapour phases of a binary
liquid mixture from a T-x phase diagram. The process is the same as described above for p-x
diagrams. However, note that the location of liquid and vapour phases in T-x diagrams is different to
those in p-x diagrams
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• Step 1: A mixture of less volatile component (A; higher boiling temperature) and
more volatile component (B; lower boiling temperature) is heated. The mole
fraction of component B in the initial mixture is xB � 0.15.

• Step 2: The boiling point of the mixture at this molar composition is reached, and
a vapour phase with a much higher mole fraction xB is obtained.

• Step 3: The vapour from (2) condenses as it cools at a fractionation plate and
reaches the boiling temperature of the liquid mixture at the new molar
composition.

• Step 4: A new vapour phase is formed, that is further enriched in component B.
• Steps 5 onwards repeat this process, until an endpoint in the phase diagram is

reached.

The efficiency of a fractionating column is expressed in terms of the number of
theoretical plates. A theoretical plate is a hypothetical zone in which two phases
establish an equilibrium with each other. This is the number of effective condensa-
tion and vapourisation steps that are required to achieve a condensate with desired
composition from a given distillate. In the example in Fig. 3.20, five theoretical
plates are required to obtain pure component B from the initial liquid mixture with
xB � 0.15.

Fig. 3.18 Illustration of a simple distillation process
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Fig. 3.19 Photograph of a distillation apparatus. For a simple distillation process as shown in
Fig. 3.18, the small fractionation column is omitted
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In distillation experiments, this process can be achieved by using Vigreux
fractionation columns (Fig. 3.21) that contain spikes which form the contact devices
(physical plates) between liquid and vapour and thus provide for a number of
separation steps. In industrial applications, so-called bubble-cap or valve-cap trays
are used. The trays are perforated, thus allowing efficient flow of vapour upwards
through the column.

The efficiency of physical plates is non-ideal and therefore the number of physical
plates needed for a desired separation step is more than the calculated number of
theoretical plates:

Na ¼ N t

E

Na is the number of actual plates, Nt the number of theoretical plates, and E is the
plate efficiency. Obviously, in order to be able to calculate the number of theoretical
plates for a distillation process, substantial liquid–vapour equilibrium data (i.e. phase
diagrams) need to be available.

Fig. 3.20 Illustration of the fractional distillation process. Five theoretical plates (steps 2, 4, 6, 8,
10) are required to obtain pure component B from the initial mixture. For clarity, steps 7–10 are not
individually labelled
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3.5.4 Mixtures of Volatile Liquids with Azeotropes

The phase diagrams of liquid mixtures we have encountered so far featured monot-
onous boiling and condensation curves. Some mixtures, though, show additional
features in their phase diagrams. The phase diagram of the mixture illustrated in
Fig. 3.22 possesses a point where boiling and condensation curves touch in one
point. At this point, the liquid and vapour phases have the same composition; the
point is called an azeotrope. For example, an ethanol–water mixture with 4% water
forms an azeotrope that boils at 78 �C at ambient pressure.

When boiling a liquid mixture that forms an azeotrope, evaporation will proceed
without a changing composition of liquid and vapour phases. The mixture behaves
as if it were a pure substance. If mixture with azeotropes are subjected to fractionated
distillation, the distillation process stops being useful when the azeotrope is reached.

Two types of azeotropes can be distinguished. In low boiling azeotropes, the
interactions between the two mixture components are unfavourable compared to
ideal mixing. The azeotrope thus boils at the lowest temperature of all possible
mixtures of the two components. An example for mixtures with low-boiling
azeotropes is the ethanol–water system. In contrast, high boiling azeotropes are
mixtures where the interactions between both components are more favourable
when compared to the ideal case. Such azeotropes boil at the highest temperature
of all possible mixtures of the two components. An example of such behaviour is a
system comprising of chloroform and acetone.

Fig. 3.21 Photograph of a Vigreux fractionation column (top) and close-up of a spike section
(bottom)
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3.5.5 Mixtures of Immiscible Liquids

Not all liquids can be mixed. If liquids are immiscible, then we can treat the solutions
separately, but the vapour pressure of a system that comprises both components is
the sum of the two vapour pressures (p∗A, p

∗
B ). Boiling occurs when the vapour

pressure of the liquid phase equals the atmospheric pressure:

p ¼ p∗A þ p∗B ¼ pnormal ¼ 1atm

This results in an interesting consequence: When two immiscible liquids are put
together, the pair of them possesses a lower boiling point than either pure liquid
alone.

This behaviour is useful when heat-sensitive compounds need to be distilled.
When put together with an immiscible liquid, the distillation can proceed at lower
temperature than the boiling point of the pure compound. This process is typically
carried out as steam distillation.

3.5.6 Phase Diagrams of Two-component Liquid/Liquid Systems

In the previous sections, we have discussed liquid mixtures that were either fully or
not miscible. The mutual solubility or miscibility of two liquids is a function of
temperature and composition. Of course, there are systems where the two liquid

Fig. 3.22 Phase diagram of a mixture that forms a low boiling azeotrope
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components mix under some but not all conditions. When two liquids are partially
soluble in each other, two liquid phases can be observed. These are partially miscible
liquids (e.g. methanol–cyclohexane, nicotine–water, phenol–water, triethylamine–
water, and others). A typical phase diagram for the most common types of partially
miscible liquids is shown in Fig. 3.23. The phase diagram indicates that the two
liquids are fully miscible and form a one-phase liquid) at high temperatures (above
Tuc), but separate into two liquid phases at lower temperatures (below Tuc). Tuc is
called the upper critical temperature. The tie line is used to determine the composi-
tion of the two phases.

There are two other cases of liquid–liquid mixtures, which are less common. The
left panel in Fig. 3.24 shows the phase diagram of a mixture that possesses a lower
critical solution temperature Tlc. Below this temperature, the mixture forms one
liquid phase, i.e. the two components are fully miscible. Above Tlc, two liquid phases
exist. This type of behaviour is observed when there are weak interactions between
both components (below the critical solution temperature), such as for example in
water-triethylamine.

There also exist some systems that possess both a lower and an upper critical
solution temperature, the most prominent example being water and nicotine
(Fig. 3.24 right panel). These mixtures are characterised by weak interactions
between both components that ensure full miscibility below the lower critical
solution temperature. Above Tlc, these interactions are disrupted and there is only
partial miscibility, and accordingly, two phases. Above the upper critical solution
temperature, the mixture is homogenised and exists as a single liquid phase.

Fig. 3.23 Phase diagram for two partially miscible liquids with an upper critical solution tempera-
ture (Tuc)
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3.5.7 Phase Diagrams of Two Component Liquid–Vapour Systems

If we now consider a mixture of two partially miscible liquids and also form a
low-boiling azeotrope, we arrive at a fairly common behaviour of real substances.
Both properties, partial miscibility and azeotrope formation, emphasise the fact that
the molecules of the two components tend to avoid each other.

This behaviour is possible with two different options:

• the liquids may become fully miscible before they boil, i.e. the azeotrope is well
separated from the upper critical solution temperature (Fig. 3.25 left), or

• boiling occurs before the two liquids are fully mixed, i.e. the azeotrope and the
upper critical solution temperature merge (Fig. 3.25 right).

Fig. 3.24 Left: Phase diagram for mixture with a lower critical solution temperature (Tlc). Right:
Phase diagram for system with both lower (Tlc) and upper (Tuc) critical solution temperatures

Fig. 3.25 Phase diagrams of two-component liquid–vapour systems of partially miscible liquids
with a low-boiling azeotrope. Left: The liquids fully mix before the mixture starts to boil. Right: The
mixture starts to boil before the two components become fully miscible
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3.5.8 Phase Diagrams of Two-component Solid–Liquid Systems

In the previous sections, we considered systems consisting of two components and
discussed their liquid and vapour phase behaviour. In the same fashion, solid and
liquid phases can be characterised. Conceptually, there is no difference in the way
such phase diagrams are interpreted. As an example, Fig. 3.26 illustrates the phase
diagram of two partially miscible solids whose melting point occurs before the two
solids are fully mixed.

It is immediately obvious that this phase diagram is highly similar to the one we
have seen before (Fig. 3.25 right) in the case of a two-component liquid–vapour
system where the two liquids were partially miscible and boiling occurred before full
mixing of the liquids. For solids, the mixture with the lowest melting point is called
the eutectic point (as opposed to the azeotrope in the liquid–vapour systems).

3.5.9 Phase Diagrams of Three-component Systems

Of course, mixtures can be made of more than just two components, but visualisation
of phase diagrams for higher order systems becomes challenging. For three-
component systems, it is still possible to plot two-dimensional phase diagrams.
Instead of a Cartesian x–y diagram, a triangular coordinate system can be used,

Fig. 3.26 Phase diagram of two partially miscible solids. The mixture with the lowest melting
point has eutectic composition
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that allows to plot the composition of each of the three components (A, B, C) in the
system. However, such phase diagrams are restricted to a particular temperature and
pressure.

Like for binary systems before, we can state that the sum of the individual mole
fractions is 1:

xA þ xB þ xC ¼ 1

Figure 3.27 illustrates such a triangular phase diagram, showing the mole
fractions for a ternary system, at a certain pressure and temperature. The phase
separation of the water-butanol-acetic acid system is shown with the grid of the
coloured coordinate system in the background.

3.5.10 Cooling Curves

Cooling curves show how the temperature in a system changes during the time
course of the cooling process. Pure liquid, solid or gas phases have smooth,
monotonous changes in temperature, until the process approaches a phase transition.

The phase transitions of pure substances proceed along the pathway of gas! liq-
uid ! solid, occur at single temperatures and are exothermic (they are endothermic
along the opposite pathway). During the phase transition, the temperature does not

Fig. 3.27 Qualitative ternary phase diagram for the three liquids water, acetic acid and butanol.
The one and two phase regions of this system are separated by the black line. The arbitrary point
marked in the diagram represents 10% water, 60% acetic acid and 30% butanol
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change until the phase of the substance has been fully converted. This is illustrated in
Fig. 3.28 for a phase diagram with three (left panel) and two phases (middle panel).

Phase transitions during cooling of mixtures also proceed along the pathway of
gas! liquid! solid, but occur over a temperature range (see Fig. 3.28 right panel).
As with pure substances, the phase transitions during cooling of mixtures are
exothermic processes. Therefore, the temperature during these transitions is not
constant, but abrupt changes in the overall cooling curve are still visible when the
cooling process begins and ends (i.e. the phase transition still leads to occurrence of
kinks in the graph). Notably, azeotropes and eutectics behave like a pure substance
and show a constant temperature during the phase transition.

Fig. 3.28 Cooling processes of a pure substance with three phases (left), a pure substance with two
phases (middle), and a binary solid–liquid mixture with eutectic point. The upper row shows the
phase diagrams, and the lower row the cooling curves as time-temperature diagrams
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3.6 Exercises

1. Is it possible for a one-component system to exhibit a quadruple point?

2. Henry’s law is valid for dilute solutions. Using the Henry’s law constant for
oxygen (solute) and water (solvent) of K(O2) ¼ 781�105 Pa M�1, calculate the
molar concentration of oxygen in water at sea level with an atmospheric pressure
of patm ¼ pØ.

3. Below is the T-x phase diagram of the benzene/toluene system acquired at a
constant pressure of two bar. A mixture that contains 40% benzene is heated
steadily to 122 �C. How many phases are present at this point and what are their
compositions? If the total amount of 1 mol of substances was in the initial mixture
with 40% benzene, how many moles of substances are in the phase(s) at 122 �C?

4. A mixture of benzene and toluene with x(benzene)¼ 0.4 is subjected to fractional
distillation at 2 bar (see Exercise 3.3 above). What is the boiling temperature of
this mixture? How many theoretical plates are required as a minimum to obtain
pure benzene in the distillate?
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Solutions of Electrolytes 4

4.1 Fundamental Concepts

4.1.1 Ions in Solution

In the previous sections, we have mostly assumed that the systems under study
consisted of non-dissociating solutes, i.e. non-electrolytes. We now want to expand
considerations to substances that dissociate in solution. Such substances are called
electrolytes and form ions when being dissolved in solvents. Electrolytes can be
classified into strong and weak electrolytes.

Strong electrolytes completely dissociate in solution:

NaCl sð Þ þ H2O ! Naþ aqð Þ þ Cl� aqð Þ þ H2O
HCl gð Þ þ H2O ! H3Oþ

aqð Þ þ Cl� aqð Þ
AgCl sð Þ þ H2O ! Agþ aqð Þ þ Cl� aqð Þ þ H2O

In contrast, weak electrolytes do not fully dissociate in solution, due to inter-ionic
interactions:

H3C� COOH lð Þ þ H2O ! H3O
þ

aqð Þ þ H3C� COO�
aqð Þ

The occurrence of ions in solutions of electrolytes is not dependent on the flow of
current; electrolytes dissociate readily upon dilution in solvent. The degree of
dissociation α (see Sect. 4.3.3) describes the fraction of solute present as ions.

In aqueous solution, ions have water molecules associated with them; this is
called the hydration shell. Ions change the structure of the water hydrogen bond
network. In the presence of an ion, a water molecule reorients such that its polarised
charge faces the opposite charge of the ion. During this reorientation process, the
hydrogen bonds of the water molecule to its nearest neighbours is broken. The
orientation of the water molecules that form the hydration shell directly around the
ion is called the inner solvation shell (see Fig. 4.1, orange molecules) and results in a
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net charge on the outside of this shell. This charge is of the same sign as that of the
ion in the centre. The charge on the outside of this inner hydration shell causes
further water molecules in the vicinity to reorient, leading to a second solvation shell
(see Fig. 4.1, red molecules).

The occurrence of such hydration shells explains the freezing point depression of
solutions. The hydration shells of dissolved ions disrupt the hydrogen bonding
network of water that would otherwise form the hexagonal structure of ice.

4.1.2 Charge and Electroneutrality

The charge Q describes the quantity of electricity; it can be positive (cations,
protons) or negative (anions, electrons). The charge is measured in units of Cou-
lomb: [Q] ¼ 1 C.

The elementary charge is the charge of the electron: |Q(e�)|¼ e¼ 1.602 � 10�19 C.

Fig. 4.1 Quantum-chemical calculations with the semi-empirical AM1 method show that mono-
atomic ions (such as e.g. Na+, blue) exist in a hydration shell resulting in the complex [Na(OH2)20]

+

(Peslherbe et al. 2000). The shell consists of an inner solvation shell where six water molecules take
the vertex positions of an octahedron (orange). The remaining 14 water molecules (red) form the
second solvation shell. The water structure around the cation takes the form of a puckered
dodecahedron. The formation of this structure can be thought of as a ‘pulling in’ of the inner
solvation shell molecules from their initial positions on the vertices of a regular dodecahedron
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If matter possesses only fixed charges, then it is called an insulator. In contrast,
the existence of mobile charges makes matter a conductor. In case of an electronic
conductor, the mobile charges are electrons, in ionic conductors, the mobile charges
are ions. Some examples are given in Table 4.1. In solutions, ions represent the
moving charges and are thus responsible for conducting electricity.

The principle of electroneutrality states that there can be no significant net charge
in any macroscopic volume within a conductor. This is a consequence of the work
required to separate opposite charges, or to bring like charges into close contact. This
work raises the free energy change of the underlying process that may lead to
unbalanced charges, thus making it less spontaneous. The amount of unbalanced
charges that is allowed is due to different concentrations of oppositely charged
species that are not chemically significant (and thus results in differences in the
electric potential of no more than a few volts; see Sects. 4.1.4 and 4.2.3).

4.1.3 Electric Current

Current (I ) is the flow of charge dQ in a particular time interval dt through a defined
volume:

I ¼ dQ
dt

� �
volume

ð4:1Þ

If we consider charges moving through a cylindrical wire (Fig. 4.2), we can
calculate the amount of charge dQ passing through a cylindrical volume element

Table 4.1 Examples of different types of conductors

Electronic conductors Ionic conductors Mixed types

Metals Seawater: Na+(aq), SO4
2�

(aq) Plasma: e�, gas ions
Graphite ZrO2(s): O

2� e�(NH3) + Na+(NH3)

Semiconductors RbAg4I5: Ag
+ H2 in Pd: H+, e�

PbO2 Pure water: H3O
+
(aq), OH

�
(aq)

Polypyrrole

Fig. 4.2 Mobile charges passing through a cylindrical volume element V. The cylinder has a cross-
section area A. The length dl of the volume element is given by the speed v of the charges multiplied
with the time interval dt
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during the time interval dt by counting the number of passing charges (Npassing) and
multiply with the unit charge e as well as the charge state z:

I ¼ dQ
dt

� �
volume

¼ Npassing � z � eð Þ
dt

ð4:2Þ

By multiplying and diving with the volume V of the volume element and
substituting

Npassing ¼ n � NA and V ¼ A � dl
we obtain:

I ¼
Npassing

V � V � z � eð Þ
dt

¼
n�NA
V � A � dl � z � eð Þ

dt

We can further substitute

c ¼ n

V
and dl ¼ v � dt

which yields

I ¼
Npassing

V � V � z � eð Þ
dt

¼ c � NA � A � v � dt � z � eð Þ
dt

This simplifies to:

I ¼ c � NA � A � v � dt � z � eð Þ
dt

¼ z � c � NA � A � v � e ¼ z � c � A � v � e � NAð Þ
¼ z � c � A � v � F ð4:3Þ

F is the Faraday constant and has the value of:

F ¼ NA � e ¼ 6:022 � 1023 mol�1 � 1:602 � 10�19 C ¼ 96485 C mol�1

Equation 4.3 provides a relation between the current and the molar concentration
c of charged particles with the charge state z that move with the speed v.

4.1.4 Electric Potential

Figure 4.3 shows the scheme of a simple electric circuit where a direct current power
supply gives rise to electrons moving from the cathode (excess of electrons) to the
anode (shortage of electrons) through a cylindrical wire. The fact that electrons move
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from the cathode to the anode can be conceptualised by the existence of a potential
difference ΔE between the cathode and the anode. The potential difference ΔE is
measured in units of volts:

ΔE½ � ¼ 1V:

Whereas the physical movement of electrons has the direction cathode ! anode,
the current I is defined to flow in the opposite direction.

As in the previous section, we consider a volume element V in the cylindrical wire
of Fig. 4.3; the volume of this element can be calculated from the cross-sectional area
A and the length l, as per V ¼ A�l.

It is obvious that there will be more current flowing, if the potential difference of
the power supply is higher; I andΔEwill thus be proportional to each other. Because
the potential difference between the anode and the cathode is taken as positive, and
the current flows from the anode to the cathode, the directions of the two phenomena
are opposite, hence:

ΔE � �I ð4:4Þ
If we increase the length l of the volume element, we will need to increase the

potential difference ΔE to have the same amount of charges (i.e. the same current)
flowing through that volume element. Therefore:

ΔE � l ð4:5Þ
The opposite is true for the cross-sectional area A. If we widen the area A, but

require the same amount of charges to flow through, the potential difference ΔE
needs to be decreased. It thus appears that

Fig. 4.3 Illustration to derive the relationship between the potential difference ΔE, current I and
the travelling parameters (length, cross-sectional area) of the moving charges
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ΔE � 1
A

ð4:6Þ

It follows from Eqs. 4.4–4.6:

ΔE � �I � l
A

ð4:7Þ

If we define a new quantity j called the current density as

j ¼ I

A
ð4:8Þ

then we obtain from Eq. 4.7:

j ¼ I

A
� �ΔE

l
ð4:9Þ

As proportionality factor we introduce κ as the electric conductivity:

j ¼ I

A
¼ �κ � ΔE

l
¼ �κ � dϕ

dx
with j½ � ¼ 1 A m�2 ð4:10Þ

The potential difference ΔE over a distance l is called the electric field. The
electric field is the gradient of the electric potential ϕ over a distance:

dϕ
dx

¼ ΔE
l

with
dϕ
dx

� �
¼ 1Vm�1 ð4:11Þ

It follows that the conductivity κ is measured in units of siemens per metre:

κ½ � ¼ 1
A �m
m2 � V ¼ 1

A
V �m ¼ 1

Ω �m ¼ 1 Sm�1 ð4:12Þ

Since conductivity is a specific property of a substance, it lends itself as a quantity
to distinguish conducting from insulating matter (see Table 4.2).

4.1.5 Resistance

An important relationship for electric circuits (see Fig. 4.3) is that between the
electric potential and the current flowing through the circuit. From Eq. 4.10 we
can resolve an expression for the potential ΔE:

j ¼ I

A
¼ �κ � ΔE

l
ð4:10Þ
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ΔE ¼ � I � l
κ � A ð4:13Þ

The quotient l
κ�A with the length l, the area A and the conductivity κ describes

constants of a particular electric circuit and as such represents a material constant for
the given system. This quotient is thus defined as the electric resistance R:

R ¼ l

κ � A ð4:14Þ

and Eq. 4.13 yields:

j ΔE j¼ I � R ð4:15Þ
which constitutes Ohm’s law. The resistance is measured in units of ohm: [R]¼ 1Ω.

The electric resistance of a conductor represents the opposition to the passage of
charges through that conductor. Intuitively, the willingness of a conductor to let
charges pass through will be a quantity that is inversely related to the resistance. The
quantity describing the ease with which charges can pass through is called the
conductance G:

G ¼ 1
R
¼ I

ΔE
ð4:16Þ

The conductance is measured in units of siemens: [G] ¼ 1 Ω�1 ¼ 1 S. Like the
resistance, the conductance is a property of the conductor used in the electric circuit.

Table 4.2 Conductivity of different substances

Material κ (S m�1) Charge carrier Property

Superconductors 1 (at low temperature) Electron pair "
ConductingCu 6 � 107 e�

Hg 1 � 106 e�

Graphite 4 � 104 π-electrons
Molten KCl 220 (at T ¼ 1043 K) K+, Cl�

Battery acid 80 H3O
+
(aq), HSO4

�
(aq)

Seawater 5.2 Cations, anions

Ge 2.2 e�, holes
0.1 M KCl(aq) 1.3 K+

(aq), Cl
�
(aq)

Insulating
#

H2O 6 � 10�6 H3O
+
(aq), OH

�
(aq)

Typical glass 3 � 10�10 Univalent cations

Teflon 10�15 Impurities

Vacuum, most gases 0 None
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4.1.6 Conductivity and Conductance

The electric conductivity κ is the ratio between the current density and the electric
field (Eq. 4.10). As such, it is a property of the conducting material. In contrast, the
conductance G describes the current-carrying capacity of the electrolytic substance;
in solutions of electrolytes, the conductance is thus a property of the dissolved ions.
The conductance of electrolytic solutions increases with dilution for both strong and
weak electrolytes, because at low concentration there is less hindrance for the
migrating ions from neighbours.

The specific conductance gmeasures the current-carrying capacity of all ions in a
specific volume:

g ¼ G

V
, with g½ � ¼ 1 S m�3 ð4:17Þ

For strong electrolytes, the specific conductance decreases with dilution.
Whereas the conductance G depends on the physical size of the conductor, the

conductivity κ is independent of the conductor size. Conductivity and conductance
are related as per:

j j j¼j I
A
j¼ �κ � ΔE

l
ð4:10Þ

j I j �l
A � ΔE ¼ κ

With G ¼ 1
R ¼ I

ΔE it follows:

G � l
A

¼ κ

G ¼ κ � A
l

ð4:18Þ

The conductance of a system is therefore equal to the conductivity of this system,
multiplied by the area through which the migrating charges pass, and divided by the
distance travelled.

4.2 Electrochemical Reactions

After having introduced some fundamental concepts and quantities of electricity, we
will now consider their applications in a chemical context. Electrochemical reactions
can proceed in systems when a suitable electric potential difference ΔE is applied. In
this case, electric energy is converted into chemical energy. Such cells are called
electrolytic cells.
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Alternatively, chemical reactions may result in the build-up of an electric poten-
tial difference, i.e. chemical energy is converted into electric energy. These cells are
called galvanic cells.

Conceptually, an electrochemical cell is separated into two half-cells, separating
the oxidation and the reduction processes. The two electrochemical half reactions
oxidation and reduction are combined into a net reaction, called Redox reaction. For
example:

Fe2+ ions in aqueous solution are unstable and oxidised readily to Fe3+ by oxygen
from ambient air:

O2 gð Þ þ 4 Hþ
aqð Þ þ 4 e� ! 2 H2O lð Þ Red:
Fe2þ aqð Þ ! Fe3þ aqð Þ þ e� Ox:

4 Fe2þ aqð Þ þ O2 gð Þ þ 4 Hþ
aqð Þ ! 4 Fe3þ aqð Þ þ 2 H2O lð Þ Redox

Bromo-naphthalene is a component of battery paste and used as an insulating
liquid in graphite paste electrodes. It can undergo a Redox reaction with iodide in
lithium-iodide batteries:

C10H7Br lð Þ þ 2e� ! Br� solnð Þ þ C10H7
�

solnð Þ Red:
3I� aqð Þ ! 2 e� þ I3� aqð Þ Ox:

C10H7Br lð Þ þ 3 I� aqð Þ ! C10H7
�

solnð Þ þ Br� solnð Þ þ I3� aqð Þ Redox

The lead acid battery (invented by Gaston Planté in 1859, and still in use today as
car battery) may produce H2 gas when the battery is deeply or rapidly discharged:

2 Hþ
aqð Þ þ 2 e� ! H2 gð Þ Red:

Pb sð Þ þ SO4
2�

aqð Þ ! 2 e� þ PbSO4 sð Þ Ox:
Pb sð Þ þ SO4

2�
aqð Þ þ 2 Hþ

aqð Þ ! PbSO4 sð Þ þ H2 gð Þ Redox

4.2.1 Galvanic and Electrolytic Cells

If two half-cells are combined where the different chemical reactions give rise to an
electric potential difference, the resulting electrochemical cell is called a galvanic
cell. A prominent example is the so-called Daniell element shown in Fig. 4.4, left
panel. Here, the spontaneously proceeding Redox reaction converts chemical into
electric energy; this constitutes the working principle of batteries.

According to Faraday, the definition of anode and cathode depend on charge and
discharge. The anode is the electrode to which anions flow. The anode possesses
positive potential and thus gives rise to an oxidation reaction, where suitable species
(elementary zinc in Fig. 4.4, left panel) deposit their electrons onto the electrode. In
contrast, the cathode is the electrode attracting cations; it is the electrode with
negative potential. Here, suitable species (Cu2+ ions in Fig. 4.4, left panel) are
reduced by receiving electrons from the electrode.
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In an electrolytic cell, a chemical reaction is forced to occur due to current flowing
through a cell. An electric potential needs to be applied externally (Fig. 4.4, right
panel), causing conversion of electric to chemical energy. Both electrodes are placed
in a container that contains the solution of molten or dissolved electrolyte. The
external power supply provides the electrons. They enter the electrolyte solution
through the cathode (negative potential) and leave through the anode (positive
potential).

At the anode, which has a lack of electrons due to the positive potential, electrons
are removed from suitable substances at the anode surface—an oxidation occurs.
The cathode, in contrast, possesses a surplus of electrons due to its negative
potential. Here, electrons will be transferred onto suitable substances—this is a
reduction.

Figure 4.4 contrasts the two different electrochemical cell types by using the same
element, i.e. a Zn/ZnSO4 and a Cu/CuSO4 half-cell (the Daniell element). Of course,
a galvanic cell is not supposed to be used as an electrolytic cell, hence the right panel
of Fig. 4.4 is for illustration of the concept only. Note that when the Daniell element
is inverted to become an electrolytic cell, the reduction at the anode does not deposit
elementary zinc at the electrode, but rather produces hydrogen gas from water, since
the reduction of hydrogen is electrochemically more favourable (see Sect. 4.2.8).

Fig. 4.4 Illustration of the processes in a galvanic cell (left panel) and electrolytic cell (right panel),
using the Daniell element which consists of Zn/ZnSO4 and Cu/CuSO4 half-cells. At the cathode of
the electrolytic cell, one would expect hydrogen gas evolving, as the H+/H2 Redox potential is
0.76 V in favour as compared to Zn2+/Zn (see Table 4.3). However due to the hydrogen
overpotential, H2 generation is hindered and thus elementary zinc is deposited
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In technical applications, electrolytic cells are not constructed as two physical
half-cells, but one cell which comprises the molten or dissolved electrolyte
(e.g. CuSO4) and electrodes made of the corresponding metal (Cu). In such cells,
solid metal (Cu) will be deposited on the cathode; impurities either remain in
solution or collect as an insoluble sludge. This process is known as electrolytic
refinement and used to obtain metals of highest purity.

Rechargeable Batteries
Rechargeable batteries, such as e.g. NiMH cells or lead-acid batteries, act as
galvanic cells when discharging, i.e. they convert chemical energy to electrical
energy, and as electrolytic cells when being charged. In the charging process,
electrical energy is converted to chemical energy.

In summary, the reaction happening at the anode is oxidation and that at the
cathode is reduction. Electrons are supplied by the chemical species getting
oxidised at the anode, leave the electrolyte solution through the anode and
enter the electrolyte solution in the other half-cell through the cathode. In this
circuit, the anode therefore has a positive potential, and the cathode a negative
potential.

Overpotential
In the electrolytic cell in Fig. 4.4, the electrodeposition of zinc will occur in
competition with the generation of hydrogen. Whereas thermodynamically the
reduction of hydrogen is favoured (the Redox potential of the H+/H2 element is
higher than that of the Zn2+/Zn element, so less energy is required to push
electrons into the H+/H2 process), the Zn2+ reduction process is kinetically
favoured. By way of steric hindrance, it is difficult for hydrogen atoms to
move around on the surface of the zinc electrode to eventually form H2

molecules. This difficulty varies for different metal surfaces. In electrochemi-
cal cells, this phenomenon gives rise to an overpotential which needs to be
considered when designing galvanic and, importantly, electrolytic cells. Pro-
cesses such as electrolytic refinement of metals, which require large quantities
of electricity, need to be optimised for power consumption and thus consider
overpotentials.

4.2.2 The Faraday Laws

Of great importance for industrial applications of electrochemical processes as well
as for the development of electrochemistry in general have been the Faraday laws,
which Michael Faraday developed in 1834 (Ehl and Ihde 1954).
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Consider the electrolytic cell illustrated in the right panel of Fig. 4.4 in the
previous section. At the cathode, hydrogen gas is produced in an electrochemical
reduction, powered by the application of an electrochemical potential to the element.
The gas leaving the half-cell can be captured and thus its volume can be determined.
The quantity of gas produced will be dependent on the current flowing through the
cell, i.e. the quantity of electrical charge passing through.

This is summarised in Faraday’s first law of electrolysis:

" The mass of a substance altered at an electrode during electrolysis is
directly proportional to the quantity of electricity transferred at that
electrode.

m � I � t ¼ Q ð4:19Þ
If one was to serially combine several different electrolytic cells in each of which

a different elementary substance is produced at the cathode, there will be a particular
mass of that element generated in the individual cells.

Faraday’s second law of electrolysis states:

" For a given quantity of electric charge, the mass of a deposited/
generated elementary substance is proportional to the molar mass of
that substance divided by the change in oxidation state (i.e. in most
cases the charge of the cation in the electrolyte).

m � M

z
with Q ¼ I

t
¼ const: ð4:20Þ

Applying Eq. 4.20 to two different electrolytic cells 1 and 2 through which the
same amount of charge Q is passed, one obtains the following mass ratio of
generated elementary substances:

m1

m2
¼

M1
z1
M2
z2

¼ M1 � z2
M2 � z1 ð4:21Þ

4.2.3 The Electromotive Force

We consider a galvanic cell where two half-cells are combined to generate an electric
potential difference ΔE. This potential difference arises from the different chemical
potentials in the two half-cells that causes electrons to flow from one half-cell to the
other. It is thus called the electromotive force (e.m.f.) of the cell (see Fig. 4.5).
Importantly, the value of the e.m.f. can only be established if a negligible current is
drawn from the cell (which is a requirement for any Volt meter used to determine the
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voltage when placed in parallel to a resistor). If the two half-cells were connected by
a short circuit (i.e. the external resistance would be zero, Rext ¼ 0), then current flow
would be maximised and there was no potential difference (ΔE ¼ 0). If the two
half-cells are connected by a Volt meter which possesses a very large resistance, then
the current I is negligible and the potential difference ΔE is maximised. This is the
desired configuration, as any current flowing between the two half-cells is the
consequence of a proceeding Redox reaction and thus inevitably results in a lower-
ing of the potential difference.

The combination of two half-cells is denoted by separating the electrode material
and electrolyte solutions of the left and right half-cells by vertical lines. For example,
the Daniell element, which we have introduced in Sect. 4.2.1, is written as:

Zn sð Þ 1 M ZnSO4 aqð Þ
�� �� 1 M CuSO4 aqð Þ j Cu sð Þ e:m:f : ¼ ΔE ¼ þ1:103 V

The above cell denotes a zinc electrode immersed in an electrolyte solution of 1M
aqueous ZnSO4 as the left cell and a copper electrode immersed in 1 M aqueous
CuSO4 solution as the right cell.

Importantly, the e.m.f. (or electric potential difference) is by convention defined
as

e:m:f : ¼ ΔE ¼ Eright � Eleft ð4:22Þ
with Eright and Eleft being the electric potentials of the right and left half-cells,
respectively. In the example above, the right half-cell consisting of the system:

Fig. 4.5 The convention for
determining the electromotive
force of an electrochemical
cell; e.m.f.¼ ΔE¼ Eright�Eleft
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Cu2þ aqð Þ þ 2 e� ! Cu sð Þ Eright ¼ 0:340 V

possesses the higher potential and therefore pulls electrons from the left half-cell
which consists of the system:

Zn2þ aqð Þ þ 2 e� ! Zn sð Þ Eleft ¼ �0:763 V

Therefore, the spontaneously proceeding reactions in this electrochemical cell
will consist of the reduction of Cu2+ ions and the oxidation of Zn, with the following
net reaction:

Zn sð Þ þ Cu2þ aqð Þ ! Zn2þ aqð Þ þ Cu sð Þ

ΔE ¼ Eright � Eleft ¼ 0:340 V� �0:763 Vð Þ ¼ 1:103 V ð4:23Þ
The potential difference between the right and the left half-cell yields the

electromotive force of that cell.
Importantly, when the number of electrons consumed or produced in the two half-

cells differ, the Redox potentials must not be multiplied. In manipulating potentials,
one can only change the signs of the values, not the magnitude. For example, a
combination of the hydrogen electrode (see Sect. 4.2.7) with the silver/silver chlo-
ride electrode comprises the following reactions:

Agþ aqð Þ þ e� ! Ag sð Þ j �2 Eright ¼ 0:222 V
2 Hþ

aqð Þ þ 2 e� ! H2 gð Þ j �1 Eleft ¼ 0 V

and yields the net spontaneous reaction:

H2 gð Þ þ 2 Agþ aqð Þ ! 2 Hþ
aqð Þ þ 2 Ag sð Þ

ΔE ¼ Eright � Eleft ¼ 0:222 V� 0 V ¼ 0:222 V

The multiplication with factor 2 in above Ag+/Ag reaction only applies to the
chemical reaction, not to the Redox potential.

Sacrificial Anodes
The above example has an important application in the protection of active
metals that may be subject to corrosion. Consider large metal containers such
as hulls of ships, water heaters, pipelines, distribution systems, or metal tanks,
all of which are made of metals that could potentially be oxidised (e.g. copper).
By combination with a less valuable metal (such as zinc), an electrochemical
cell is generated which uses zinc (or any metal alloy with a more negative
electrochemical potential than the other metal) as the sacrificial anode. When

(continued)
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exposed to environmental processes, the sacrificial anode will be consumed in
place of the metal it is protecting. Obviously, these anodes must be periodi-
cally inspected and replaced when consumed, in order for the protection to
continue.

4.2.4 Concentration Dependence of the Electromotive Force

The electromotive force of a cell arises from spontaneously proceeding reactions in
the half-cells. In the half-cell where the oxidation occurs we can formulate the
following reaction:

Oxþ z e� ! Red

where ‘Red’ denotes a substance to be oxidised (a reducing agent), and ‘Ox’ denotes
a substance to be reduced (an oxidation agent). The electromotive force arising from
this reaction is also called the Redox potential of this ‘Red’-‘Ox’ pair.

The change in the free energy ΔG of the above reaction represents the electric
work the system can provide to the environment:

ΔWel ¼ ΔG ð4:24Þ
We have established earlier that

ΔWel ¼ R � I2 � Δt ð2:10Þ

I ¼ Npassing � z � e
Δt

ð4:3Þ

If 1 mol charges are passing through, then Npassing ¼ n � NA, and thus

I ¼ NA � z � e
Δt

¼ z � F
Δt

for 1 mol charges ð4:25Þ

We can then calculate the electric work based on 1 mol passing charges:

ΔWm,el ¼ R � I2 � Δt ¼ R � Ið Þ � I � Δt
From Eq. 4.15 we know that R � I ¼ ΔE. ΔE describes the potential difference

between two electrodes or half-cells. Since we are here considering just one half-cell
(the one where oxidation occurs), we describe an absolute potential E ¼ R � I, albeit
this absolute value will be impossible to determine (see Sect. 4.2.7). Furthermore,
using Eq. 4.25 yields:
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ΔWm,el ¼ R � Ið Þ � I � Δt ¼ E � z � F
Δt

� Δt

ΔWm,el ¼ z � F � E ð4:26Þ
Considering the molar Gibbs free energy in Eq. 4.24 allows the following

conclusion:

ΔWm,el ¼ z � F � E ¼ ΔGm

and we remember that the difference of molar Gibbs free energy is the difference of
chemical potential (Eq. 2.67):

z � F � E ¼ Δμ

and this difference is the difference between the chemical potential of the oxidised
and reduced states of the Redox pair

z � F � E ¼ μOx � μRedð Þ
Using Eq. 3.12 (μ = μØ + R � T � ln a , and assuming an activity coefficient of

γc = 11mol�1 such that a = |c|), this resolves to:

z � F � E ¼ μØox þ R � T � ln c Oxð Þ
cØ

� �
� μØRed þ R � T � ln c Redð Þ

cØ

� �

z � F � E ¼ ΔμØ þ R � T � ln c Oxð Þ
c Redð Þ

E ¼ ΔμØ

z � F þ R � T
z � F � ln c Oxð Þ

c Redð Þ

When combining the quotient of constants ΔμØ
z�F into a new constant EØ (called the

standard e.m.f.) and inverting the argument of the logarithm, we obtain:

E ¼ EØ � R � T
z � F � ln c Redð Þ

c OXð Þ ð4:27Þ

This equation is known as the Nernst equation and describes the concentration
dependence of the electromotive force, and thus the Redox potential.

The standard electromotive force EØ is the standard electrode potential (standard
Redox potential) of the ‘Red’-‘Ox’ pair.
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4.2.5 Combination of Two Half-Cells

In Sect. 4.2.3, we have introduced the combination of two half-cells as illustrated by
the Daniell element:

Zn sð Þ 1 M ZnSO4 aqð Þ
�� �� 1 M CuSO4 aqð Þ j Cu sð Þ e:m:f : ¼ ΔE ¼ þ1:103 V

In this formalism, an electrochemical cell is denoted by a series of compartments.
It is understood by convention that the electrode potential of the right-hand electrode
is higher than that of the left-hand electrode, because the e.m.f. is reported positive in
above example, and calculated as

e:m:f : ¼ ΔE ¼ Eright � Eleft ð4:22Þ
so if e.m.f. > 0 then Eright > Eleft.

If the cell above had been written in reverse order, then the e.m.f. would be
negative:

Cu sð Þ 1 M CuSO4 aqð Þ
�� �� 1 M ZnSO4 aqð Þ j Zn sð Þ e:m:f : ¼ ΔE ¼ �1:103 V

Importantly, the electrode with the higher potential is always the one where
reduction occurs; the electrode with the lower potential is where oxidation occurs.

We can re-formulate the above example in a more general fashion, combining a
Redox pair in the left half-cell (Redleft, Oxleft) with one in the right half-cell (Redright,
Oxright):

Redleft Oxleftj j Oxright j Redright e:m:f : ¼ ΔE > 0

with the following chemical reactions:

Redleft ! Oxleft þ z e� Eleft oxidation
Oxright þ z e� ! Redright Eright reduction
Redleft þ Oxright ! Oxleft þ Redright ΔE Redox

If Eright > Eleft, then electrons will be flowing from the left half-cell to the right
half-cell. That means ΔE is positive, and all reactions above will proceed from the
left to right.

ΔE ¼ Eright � Eleft ð4:22Þ

ΔE ¼ EØ
right �

R � T
z � F � ln c Redright

� �
c Oxright
� � � EØ

left þ
R � T
z � F � ln c Redleftð Þ

c Oxleftð Þ
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ΔE ¼ EØ
right � EØ

left þ
R � T
z � F � ln

c Redleftð Þ
c Oxleftð Þ � ln

c Redright
� �
c Oxright
� �

 !

ΔE ¼ ΔEØ þ R � T
z � F � ln

c Redleftð Þ
c Oxleftð Þ þ ln

c Oxright
� �

c Redright
� �

 !

ΔE ¼ ΔEØ þ R � T
z � F � ln c Redleftð Þ � c Oxright

� �
c Oxleftð Þ � c Redright

� �
ΔE ¼ ΔEØ þ R � T

z � F � ln 1
K

ΔE ¼ ΔEØ � R � T
z � F � lnK ð4:28Þ

Electromotive Force Under Non-standard Concentrations
We can now consider the Daniell element at varying electrolyte
concentrations, and calculate the electromotive force for example under the
following conditions:

Zn sð Þ j 0:01 M ZnSO4 aqð Þ j 0:2 M CuSO4 aqð Þ j Cu sð Þ e:m:f : ¼ ΔE ¼ ?

This cell denotes a zinc electrode immersed in an electrolyte solution of
0.01 M aqueous ZnSO4 as the left cell and a copper electrode immersed in
0.2 M aqueous CuSO4 solution as the right cell. The potential difference in this
electrochemical cell is now calculated using the Nernst equation 4.28, consid-
ering the different concentrations of the electrolytes:

ΔE ¼ ΔEØ � R � T
z � F � lnK ð4:28Þ

We have previously established the net reaction for this cell in Eq. 4.23, and
thus obtain for the standard potential difference of this cell:

ΔEØ ¼ 1:103 V

The equilibrium constant K is calculated from the reaction in 4.23 by:

K ¼ c Zn2þ
� �
c Cu2þ
� �

Therefore:

(continued)
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ΔE ¼ 1:103V� 8:3144 � 298 � J � K �mol
2 � 96485 � K �mol � C � ln c Zn2þ

� �
c Cu2þ
� �

ΔE ¼ 1:103V� 8:3144 � 298 � J
2 � 96485 � C � ln 0:01 M

0:2 M

ΔE ¼ 1:103V� 8:3144 � 298 � V � C
2 � 96485 � C � ln 0:05

ΔE ¼ 1:103 V� 8:3144 � 298 � V
2 � 96485 � �2:996ð Þ

ΔE ¼ 1:103Vþ 2:996 � 8:3144 � 298
2 � 96485 V

ΔE ¼ 1:114 V

When the reactants of the cell have reached their equilibrium concentrations,
there is no electric current flowing between the two half-cells (such as for example in
a flat battery), and ΔE ¼ 0. It then follows that:

ΔE ¼ 0 ¼ ΔEØ � R � T
z � F � lnK

ΔEØ ¼ R � T
z � F � lnK ð4:29Þ

Hence, the standard electrode potential difference ΔEØ of an electrochemical cell
can be used to determine the equilibrium constant K of the system. The importance
of this conclusion is that from a tabulation of standard electrode potentials for
individual half-cells (see Sect. 4.2.8), one can derive the standard electrode
potentials for the electrochemical cell (i.e. a combination of two half-cells) and
predict the value of the equilibrium constant for that system.

Flat Battery
A battery that is exhausted (‘flat’) no longer generates an electric current when
connected to an external circuit. In this condition, there is no chemical reaction
occurring in the combination of the two half-cells, which means that the
overall cell reaction is at equilibrium. In equilibrium state, all chemical
components are present in their equilibrium concentrations. Therefore, we
can state that when the reactants of an electrochemical cell have reached
their equilibrium concentrations, the e.m.f. of the cell is zero:

ΔE ¼ 0 for a chemical reaction at equilibrium.
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4.2.6 The Thermodynamics of the Electromotive Force

From Sect. 2.2.5, when we discussed the Gibbs free energy of a reaction, we know
that

ΔGØ
m ¼ �R � T � lnK ð2:59Þ

Also, from Eq. 4.29 in the previous section, we can derive for one half-cell that

z � F � EØ ¼ R � T � lnK ð4:29Þ
It thus follows that

ΔGØ
m ¼ �z � F � EØ ð4:30Þ

Therefore, by measuring the standard electromotive force of an electrochemical
half-cell, EØ, we can determine the change in the molar Gibbs free energy Gm of the
underlying reaction.

4.2.7 Reference Electrodes

The electric potential of a half-cell is a potential difference itself, namely between a
solid metal (electrode) and the electrolyte solution in which it is immersed. This
potential difference is called the electrode potential, and it is physically impossible to
measure its value. However, as we have already introduced above, it is possible to
measure the difference between the electrode potential of one half-cell when com-
bining it with another half-cell. If one chooses a particular half-cell for reasons of
comparison, i.e. a reference cell, then standardised electrode potentials can be
measured and tabulated.

In this context, the standard hydrogen electrode has been introduced as the
reference standard, whereby the electric potential of a platinum electrode which is
exposed to H2 gas with a pressure of pnormal ¼ 1.013 bar at θnormal ¼ 25 �C and
immersed into a solution with a(H+) ¼ 1 M is arbitrarily set to EØ ¼ 0:

H2 gð Þ ! 2 Hþ
aqð Þ þ 2e� EØ ¼ 0

In order to determine standard electrode (or Redox) potentials, one thus measures
the e.m.f. of a cell, in which the concentration of solutions are all 1 M. When
determining the standard electrode potentials of any electrode, the standard hydro-
gen electrode is chosen as the left electrode (see Fig. 4.6).
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Since the standard hydrogen electrode requires a rather elaborate experimental
setup, which proves impractical for many routine laboratory applications, other,
more convenient reference electrodes are frequently being used. In principle, any
half-cell can be employed which maintains a potential that remains practically
unchanged during the course of an electrochemical measurement. One needs to
evaluate the standard potential difference of the chosen electrode to the standard
hydrogen electrode (see Sects. 4.2.8 and 4.3.1) and correct for this difference, when
deploying the chosen electrode in a measurement. The most commonly used refer-
ence electrodes in this context are:

Fig. 4.6 The standard hydrogen electrode and the principle of determining standard electrode
potentials
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Standard hydrogen electrode

H2 gð Þ j Hþ
aqð Þ EØ ¼ 0 2 Hþ

aqð Þ þ 2 e� ! H2 gð Þ

Silver/silver chloride electrode

Ag sð Þ j AgCl sð Þ EØ ¼ 0:22 V AgCl sð Þ þ e� ! Ag sð Þ þ Cl� aqð Þ

Calomel electrode

Hg2Cl2 sð Þ j Hg lð Þ EØ ¼ 0:26 V Hg2Cl2 sð Þ þ 2e� ! 2Hg lð Þ þ 2 Cl�

Secondary reference electrodes such as the silver/silver chloride or the calomel
electrode that are required to maintain a constant potential employ a rather insoluble
metal ion salt (AgCl, Hg2Cl2) together with the elementary metal (Ag, Hg). In these
cases, the potential difference with respect to the standard hydrogen electrode is not
just the standard potential difference of the Redox reaction. Additionally, the
transition of the metal ion from the solid to the dissolved state needs to be taken
into account as well (see Sect. 4.3.1).

4.2.8 Standard Electrode Potentials

Standard electrode potentials are determined for any electrode by measuring the
electromotive force or electric potential difference between that particular electrode
and the standard hydrogen electrode. This enables tabulation of standard reduction
potentials EØ for individual electrodes or half cells. By convention, for such
measurements to be conducted under standard conditions, the following parameters
need to be ensured:

• The molar concentration of each ion needs to be c ¼ 1 M
• The pressure of gases needs to be p ¼ pnormal ¼ 1.013 bar
• The temperature needs to be θnormal ¼ 25 �C.

Note that the standard reduction potentials indeed refer to ‘normal’ conditions.
Selected standard electrode (Redox) potentials are given in Table 4.3. When
predicting the direction of Redox reactions arising from the combination of half-
cells, one needs to remember that the electron flow is from the lower to the higher
potential. The electrode with the higher potential is where the reduction occurs
(‘oxidising’); the electrode with lower potential is where the oxidation occurs
(‘reducing’).
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4.2.9 Absolute Electrode Potentials

The determination of absolute electrochemical reduction potentials of isolated half-
cells in solution is a challenging task. Therefore, most commonly, reduction
potentials are measured relative to other half-cells which establishes a series of
reduction potential values that can be ordered from lowest to highest potential.
The anchor for this series is the standard hydrogen electrode which has arbitrarily
been assigned a value of 0 V.

Table 4.3 Standard
reduction potentials for
selected half-cells

Half-cell EØ (V)

Most electropositive, most reducing

Li+(aq) + e� ! Li(s) �3.04

K+
(aq) + e� ! K(s) �2.92

Ca2+(aq) + 2 e� ! Ca(s) �2.76

Na+(aq) + e� ! Na(s) �2.71

Mg2+(aq) + 2 e� ! Mg(s) �2.38

Al3+(aq) + 3 e� ! Al(s) �1.66

Zn2+(aq) + 2 e� ! Zn(s) �0.76

Fe2+(aq) + 2 e� ! Fe(s) �0.41

Cd2+(aq) + 2 e� ! Cd(s) �0.40

Ni2+(aq) + 2 e� ! Ni(s) �0.23

Pb2+(aq) + 2 e� ! Pb(s) �0.13

Fe3+(aq) + 3 e� ! Fe(s) �0.04

2 H+
(aq) + 2 e� ! H2(g) 0.00

Sn4+(aq) + 2 e� ! Sn2+(aq) 0.15

Cu2+(aq) + e� ! Cu+(aq) 0.16

AgCl(s) + e� ! Ag(s) + Cl�(aq) 0.22

Hg2Cl2(s) + 2 e� ! 2 Hg(l) + 2 Cl�(aq) 0.26

Cu2+(aq) + 2 e� ! Cu(s) 0.34

MnO4
�
(aq) + 8 H+

(aq) + 5 e� ! Mn2+(aq) + 4 H2O(l) 1.49

H2O2(aq) + 2 H+
(aq) + 2 e� ! 2 H2O(l) 1.78

Co3+(aq) + e� ! Co2+(aq) 1.82

S2O8
2�

(aq) + 2 e� ! 2 SO4
2�

(aq) 2.01

O3(g) + 2 H+
(aq) + 2 e� ! O2(g) + H2O(l) 2.07

F2(g) + 2 e� ! 2 F�(aq) 2.87

Most electronegative, most oxidising

The potential difference of a galvanic cell (one that produces electric
power) is calculated as the difference between the electrode with the
higher potential (reduction) and that with the lower potential (oxida-
tion):ΔEgalv¼ Ered – Eox. Importantly, when the number of electrons
consumed or produced in the two half-cells differ, the reduction
potentials must not be multiplied
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The availability of an absolute scale would help to bridge a current divide in the
electrochemical characterisation of solids, in particular semiconductors, and
solutions. When dealing with solid/gas interfaces, it is typically the energy of a
free electron in vacuo that is taken as a reference energy. There have thus been
numerous efforts to estimate the potential of the standard hydrogen electrode versus
a free electron.

A recent approach in this context comprises of the experimental measurement of
the energy gained by hydrated metal ions of the type [M(H2O)32]

2+ or [M
(NH3)6(H2O)55]

3+ when capturing an electron, by means of FT/ICR mass spectrom-
etry (Donald et al. 2008). The reduction of a cluster of hydrated metal ions is
accompanied by the loss of water molecules, and the sum of the binding energies
of these molecules is correlated with the energy deposited onto the cluster by the
gained electron. The energies determined in this fashion represent absolute free
energy changes for the reduction of a metal cluster, ΔGabs. These absolute values
can be compared to the relative free energy changes ΔGrel measured for the metal
clusters by using the conventional reference half-cell methodology (Fig. 4.7). The
linear correlation obtained allows for conversion of relative into absolute reduction
potentials, and also allows provides an estimate of the absolute reduction potential of
the standard hydrogen electrode which is about 4.2 � 0.4 V (Donald et al. 2008).

4.2.10 External Potential Difference

As we have introduced in Sect. 4.2.1, when combining two half-cells into an
electrochemical cell, that cell can be set up as a galvanic or electrolytic cell by

Fig. 4.7 Absolute electrode
potentials as determined by
Evan Williams and colleagues
(Donald et al. 2008)
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choosing an appropriate external potential difference ΔΕext (see Fig. 4.8). If the
electric potential difference of a cell is ΔEcell, then any external potential difference
that is more positive will result in the cell working as a galvanic cell:

ΔEext > ΔEcell galvanic cell Pb sð Þ þ H2SO4 aqð Þ ! PbSO4 aqð Þ þ H2 gð Þ

An external potential difference that is more negative than ΔEcell will operate the
cell as an electrolytic cell with the reverse chemical reaction:

ΔEext < ΔEcell electrolytic cell PbSO4 aqð Þ þ H2 gð Þ ! Pb sð Þ þ H2SO4 aqð Þ

Fig. 4.8 Depending on the external potential difference, an electrochemical cell can either run as
electrolytic cell, galvanic cell or rest at equilibrium
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4.3 Electrolytes in Solution

4.3.1 Solubility Product

In the previous section, we have introduced the silver/silver chloride electrode as a
frequently used reference electrode. The electrode is made of a silver wire coated
with silver chloride that is immersed into a solution containing chloride ions.
The step which determines the potential of this electrode (half-cell) is the transition
of Ag+ ions from the electrode into solution. Here, the metal ions (Ag+(s)) are in a
heterogeneous equilibrium between the solid electrode material (AgCl(s)) and the
dissolved ions (Ag+(aq), Cl

�
(aq)). A saturated aqueous AgCl solution contains only

13 μM Ag+ and 13 μM Cl� ions; the equilibrium of the following disassociation
reaction is thus on the left hand side

AgCl sð Þ þ H2O ! Agþ aqð Þ þ Cl� aqð Þ

and results in an equilibrium constant of small value:

K ¼
c Agþð Þ

cØ
c Cl�ð Þ
cØ

c AgClð Þ
cØ

¼ Agþ½ � � Cl�½ �
AgCl½ � ð4:31Þ

Remember that H2O is omitted from calculation of the equilibrium constant, since
it is neither consumed nor produced. The concentration of any solid substances are
considered to be constant in solvation reactions, hence c(AgCl) ¼ const.

The silver chloride concentration can thus be multiplied into the equilibrium
constant, yielding a new constant, the solubility product, which is solely a function
of the concentration of dissolved ions:

Ksp ¼ K � AgCl½ � ¼ Agþ½ � � Cl½ � ¼ c Agþð Þ
cØ

c Cl�ð Þ
cØ

ð4:32Þ

The electrode (half-cell) potentials are themselves potential differences (see
Fig. 4.9). They arise from the transition of ions from the solid to the dissolved
state. To stay consistent with the nomenclature used in previous sections, we will
denote these differences as E and EØ, respectively, to indicate that we are referring to
an electrochemical half-cell. In analogy to the way in which we derived Eq. 4.27, we
can formulate an expression for the potentials arising from Ag+ transitions in the
silver/silver chloride electrode, by using Eq. 4.32:

E Cl�jAgCljAgþð Þ ¼ EØ AgþjAgð Þ þ R � T
z � F � ln

Agþaqð Þ
h i
Agþsð Þ
h i

) E Cl�jAgCljAgþð Þ ¼ EØ AgþjAgð Þ þ R � T
F

� ln Agþaqð Þ
h i

ð4:33Þ
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From Eq. 4.32 we obtain

caq Agþð Þ ¼ Ksp

caq Cl�ð Þ � cØ
� �2

which we can substitute into Eq. 4.33:

E Cl�jAgCljAgð Þ ¼ EØ AgþjAgð Þ þ R � T
F

� ln Ksp

caq Cl�ð Þ
cØ

h i ð4:34Þ

Using the logarithm rule of Ksp

caq Cl�ð Þ
cØ

h i ¼ lnKsp � ln caq Cl�ð Þ
cØ , we obtain:

Fig. 4.9 Illustration of transition processes at electrodes and the generation of an electrode
potential. Positively charged ions transition from the solid to the dissolved state. This changes the
electroneutrality and leads to generation of an electrostatic double layer. The double layer is
responsible for the electrode potential

4.3 Electrolytes in Solution 131



E Cl�jAgCljAgð Þ ¼ EØ AgþjAgð Þ þ R � T
F

� lnKsp � R � T
F

ln
caq Cl�ð Þ

cØ

As R�T
F � lnKsp is a constant, it can be combined with the standard potential of the

Ag+ | Ag transition:

E Cl�jAgCljAgð Þ ¼ EØ Cl�jAgCljAgð Þ � R � T
F

� ln caq Cl�ð Þ
cØ

ð4:35Þ

Determining the Solubility Product from Standard Electrode Potentials
Since the solubility product of a poorly soluble salt forms part of the standard
electrode potential if that salt is part of the solid electrode material, one can
determine the solubility product from these (tabulated) standard electrode
potentials. Comparison of Eqs. 4.34 and 4.35 shows that the right hand sides
of both equations can be set equal:

EØ AgþjAgð Þ þ R � T
F

� ln Ksp

caq Cl�ð Þ
cØ

h i ¼ EØ Cl�jAgCljAgð Þ � R � T
F

� ln caq Cl�ð Þ
cØ

Using the logarithm rule of ln Ksp

caq Cl�ð Þ
cØ

h i ¼ lnKsp � ln caq Cl�ð Þ
cØ , we obtain:

EØ AgþjAgð Þ þ R � T
F

� lnKsp � R � T
F

� ln caq Cl�ð Þ
cØ

¼ EØ Cl�jAgCljAgð Þ � R � T
F

� ln caq Cl�ð Þ
cØ

EØ AgþjAgð Þ þ R � T
F

� lnKsp ¼ EØ Cl�jAgCljAgð Þ
R � T
F

� lnKsp ¼ EØ Cl�jAgCljAgð Þ � EØ AgþjAgð Þ

lnKsp ¼ F
R � T � EØ Cl�jAgCljAgð Þ � EØ

�
AgþjAg�	 
 ð4:36Þ

The tabulated standard electrode potentials for the two reactions are:

EØ Cl�jAgCljAgð Þ ¼ 0:800 V

EØ AgþjAgð Þ ¼ 0:222 V

This yields for Eq. 4.36:

(continued)
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lnKsp ¼ 96485C � K �mol
8:3144 � 298 �mol � J � K � 0:800 V� 0:222 Vð Þ

With 1 C = 1 J V�1 this resolves to:

lnKsp ¼ 96485 � �0:57:8ð ÞJ � K �mol � V
8:3144298V �mol � J � K
lnKsp ¼ �22:5

Ksp ¼ e�22:5 ¼ 1:7 � 10�10

From Eq. 4.32, we know that the units of the solubility product for silver
chloride are:

Ksp

	 
 ¼ 1 mol2 l�2

and therefore:

Ksp AgClð Þ ¼ 1:7 � 10�10 mol2 l�2

4.3.2 Colligative Properties and the van’t Hoff factor

As we have seen in Sect. 3.2.2, colligative properties result from the reduction of the
chemical potential μ∗solvent of the pure liquid solvent, as a result of the presence of
the solute. For an ideal solvent/solution we can state:

In the absence of solute : μsolvent ¼ μ∗solvent
In the presence of solute : μsolvent ¼ μ∗solvent þ R � T � ln xsolute ð3:13Þ

Because xsolute is the mole fraction, its value in case of a solution is larger than
0 and less than 1:

0 < xsolute < 1 ) ln xsolute < 0

Hence the second term in Eq. 3.13 is always negative and thus μsolvent < μ∗solvent.
These properties depend on the particular solvent and on the concentration of

solute, but not on the nature of the solute. If we assume ideal solutions, then the
solute and the solvent have identical intermolecular forces. Therefore, the enthalpy
of solution is zero (ΔHsol ¼ 0), since the potential energy of solvent and solute
molecules is not affected. However, the intermixing of solute and solvent will raise
the entropy of the solution: ΔSsol > 0. Therefore, the lowering of the chemical
potential of the liquid solvent is an entropic effect.

In summary, colligative properties:
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• Do not depend on the chemical nature of the solute
• Depend on the concentration of the solute
• Depend on the nature of the solvent
• Are entropic effects, thus depend on the number of dissolved particles.

There are four important colligative properties (see Table 4.4), all of which are
related to the concentration of the solute.

For historical reasons, different types of concentrations are used for the different
phenomena (Table 4.5). The concentrations are:

Raoult’s law, which describes the lowering of the vapour pressure of a liquid in
the presence of solutes has already been described in an earlier Sect. 3.2.1. Intrigu-
ingly, the fact that the vapour pressure of a solution is lower than that of the pure
solvent results in the observation that the boiling point of a solution is higher than
that of the pure solvent.

In order to consider the entropic effects of solutes, a factor that considers the
number of dissolved particles in the solution needs to be introduced. This is
especially important for electrolytes, as the number N of particles always increases
upon dissociation:

NaCl sð Þ ! Naþ aqð Þ þ Cl� aqð Þ
N ¼ 1 N ¼ 2 ¼ v

Therefore, the van’t Hoff equation for the osmotic pressure is corrected by a
factor i, called the van’t Hoff factor:

Table 4.4 Colligative properties

Effect Equation Parameters Concentration

Lowering of vapour
pressure (Raoult’s law)

p ¼ x � p∗(3.12) p∗: vapour pressure of
pure liquid

Mole fraction x

Melting point
depression

ΔTf ¼ Kf � b(4.37) Kf: cryoscopic constant Molality b

Boiling point elevation ΔTb ¼ Kb � b(4.38) Kb: ebullioscopic constant Molality b

Osmosis Π ¼ c � R � T(4.39) Π: osmotic pressure Molar
concentration c

Table 4.5 Commonly used measures of concentration

Mole fraction xj ¼ nj
Σini

[x] ¼ 1 (2.74)

Molality b ¼ nsolute
msolvent

[b] ¼ 1 mol kg�1 (4.40)

Molar concentration c ¼ nsolute
V solution

[c] ¼ 1 mol l�1 (2.73)

Mass ratio w ¼ msolute
msolvent

[w] ¼ 1 (4.41)
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Π ¼ i � c � R � T ð4:39Þ
Similarly, for boiling point elevation and melting point depression one obtains:

ΔTb ¼ i � Kb � b ð4:38Þ
ΔT f ¼ i � Kf � b ð4:37Þ

For an ideal (i.e. infinite) dilution, the van’t Hoff correction factor i approaches
the theoretical number of ions v into which the solute molecule dissociates (see
Fig. 4.10). The variation of the van’t Hoff factor from the theoretically expected
dissociation numbers for both electrolytes and non-electrolytes may arise from the
following phenomena:

• Difference in internal pressure of solute and solvent
• Polarity
• Compound formation or complexation
• Association of either solute or solvent

In case of electrolytes, additional effects arise from:

• The dissociation of weak/strong electrolytes
• Interaction of the ions of strong electrolytes.

4.3.3 Degree of Dissociation

If the deviation of the van’t Hoff factor i from the theoretically expected value v is
due to dissociation only, then the degree of dissociation α can be determined as per:

Fig. 4.10 The van’t Hoff
factor i approaches the
theoretical number of ions into
which an electrolyte
dissociates (ν) only at infinite
dilution. For non-electrolytes,
the van’t Hoff factor may also
differ from the theoretical
value of ν ¼ 1 at increasing
concentrations
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α ¼ i� 1
v� 1

ð4:42Þ

where v is the theoretical number of ions yielded per solute molecule (e.g. for CaCl2:
v ¼ 3).

The degree of dissociation α can be reliably estimated for weak electrolytes, as
there are only few ions at all concentrations, and therefore other solution effects are
negligible.

For strong electrolytes, Eq. 4.42 works well at low concentrations, but substan-
tially deviates from experimental observations at moderate or strong concentrations,
due to interactions between ions. With increasing concentrations, attractive
interactions between dissolved electrolytes become important, and ion pairs or
triplets may form (Fig. 4.11). Since ions involved in those pairings no longer account
as individual ions, the degree of dissociation is less than expected.

4.3.4 Activities and Ionic Strength

In cases such as the one described in the previous section, where significant
deviations from the ideal behaviour need to be considered, it is appropriate to use
an ‘effective concentration’. Therefore, for strong electrolytes as well as weak
electrolytes in the presence of salts (e.g. buffer systems), activities instead of
concentrations should be used in order to quantify the deviation from the completed
dissociation behaviour.

We have previously defined the activity a such that the following equation is true
for a real liquid (see Sect. 3.2.3):

μ ¼ μ∗ þ R � T � ln a ð3:12Þ
where the activity a (non-ideal solution) is related to the mole fraction x (ideal
solution) by a scaling factor called the activity coefficient γ:

Fig. 4.11 Illustration of ion
association. In solution, ions
of opposite electrical charge
may come together to form a
distinct chemical entity. Top
panel: fully solvated ions;
bottom panel: an ion triplet
with solvent sharing
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a ¼ γ � x ð3:13Þ
Importantly, activity can be defined in terms of any other concentration measure

(see Table 4.6). The activity of solutes is usually less than the concentration, but it
approaches the same value as the concentration at high dilution. Activities may be
different for cations and anions of an electrolyte. For ideal solvents, the activity
coefficient γ¼ 1, for non-ideal solvents, the activity coefficient approaches 1 at very
high concentration of the solvent.

When comparing activities of electrolytes, experimental conditions should be
chosen to ensure constant ionic strength. If a solution contains N different types of
ions with the charge states z1, z2, . . ., zN and at concentrations c1, c2, . . ., cN, it is
appropriate to use an average concentration. The ionic strength I is such an averaged
concentration, weighted by the square of the charge state:

I ¼ 1
2
� ΣN

i¼1ci � z2i ð4:47Þ

Here, ci is the molar concentration and zi is the charge of the ith ion; N is the
number of different ions in the solution.

The ionic strength is important in many biochemical applications. For instance,
when evaluating the effect of pH on an enzymatic reaction, the effect of the salt
concentration in the buffer may obscure the results, unless the buffer is adjusted to
ionic strength in each experiment.

4.3.5 pH Buffers

In analogy to the solubility product of electrolytes (see Sect. 4.3.1), one can consider
the following dissociation of water

2 H2O lð Þ Ð H3O
þ

aqð Þ þ OH�
aqð Þ K ¼ H3Oþ½ � � OH�½ �

H2O½ �2 ð4:48Þ

and define the ion product of water as

Kw ¼ K � H2O½ �2 ¼ H3O
þ½ � � OH�½ � ð4:49Þ

The equilibrium constant K has a very small numerical value, since the equilibrium
of reaction 4.48 resides on the left hand side. Since the molar concentration of water

Table 4.6 Definition of activity in terms of frequently used concentration measures

Activity in terms of the mole fraction x a ¼ γx � x (4.43)

Activity for a volatile solvent (Raoult’s law: p ¼ x � p∗) a ¼ p
p∗ (4.44)

Activity in terms of molality b a ¼ γb � b (4.45)

Activity in terms of molar concentration c a ¼ γc � c (4.46)
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can be assumed constant (c ¼ 55.56 mol l�1), it is combined with the equilibrium
constant K to yield the ion product of water: Kw ¼ 1.0 � 10�14.

Since in pure water, the amounts of hydronium (H3O
+) and hydroxide (OH�) ions

resulting from the dissociation reaction above are equal, the concentration of hydro-
nium ions (for convenience frequently replaced by protons) can be calculated from
Eq. 4.49:

c Hþð Þ ¼ c H3O
þð Þ ¼ H3O

þ½ � � cØ ¼ ffiffiffiffiffiffiffi
Kw

p � cØ ¼ 1:0 � 10�7 mol l�1 ð4:50Þ
This gives rise to the definition of the pH and pOH, which are calculated as the

negative decadic logarithms of the H+ and OH� concentrations, respectively:

pH ¼ �lg
c Hþð Þ
1M

ð4:51Þ

pOH ¼ �lg
c OH�ð Þ
1M

ð4:52Þ

From Eq. 4.50 follows that:

pHþ pOH ¼ 14 ð4:53Þ
The pH of aqueous solutions can be affected by:

• Neutral salts, which may modify the ionic strength
• Water addition, which may either change activity coefficients or act as a weak

acid or base
• Temperature, which changes Kw and Ka or Kb in case of acids/bases (see below).

Therefore, pH buffers are of high practical importance in many (bio-)chemical
formulations (e.g. drug preparations, creams, etc) as well as living cells where, for
example, buffers in blood keep the pH at ~7.4 (blood pH outside the range 6.9 and
7.8 puts life in danger).

Buffers are compounds or mixtures of compounds that withstand a change in pH
upon addition/generation of acid or base (in a reasonable window). Buffer
compounds are typically weak acids with their conjugate bases, or weak bases and
their conjugate acids. For example, on addition of a strong acid to a solution
containing equal quantities of acetic acid and sodium acetate, the hydrogen ions
react with the acetate according to

H3O
þ

aqð Þ þ H3C� COO�
aqð Þ Ð H3C� COOH aqð Þ þ H2O

thus converting the hydronium ion to water and eliminating the acidic property.
Obviously, the capacity of the buffer system to ‘eliminate’ additional hydronium

ions will be exhausted, when all available molecules of the weak base have been
consumed. The amount of either strong acid or base that can be added before a
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significant change in the pH will occur is a matter of stoichiometry. The maximum
amount of strong acid that can be buffered is equal to the amount of conjugate base
present in the buffer. Similarly, the maximum amount of base that can be tolerated is
equal to the amount of weak acid present in the buffer.

The pH of a solution that contains a buffer system consisting of a weak acid and
conjugate base can be calculated based on the equilibrium of the dissociation
reaction

HA aqð Þ þ H2O Ð H3O
þ

aqð Þ þ A�
aqð Þ

where HA denotes the acid (e.g. H3CCOOH) and A� the conjugate base
(e.g. H3CCOO

�). The equilibrium constant Ka for the dissociation reaction is
given by:

Ka ¼ H3Oþ½ � � A�½ �
HA½ �

This yields for the concentration of hydronium ions:

c H3O
þð Þ ¼ H3O

þ½ � � cØ ¼ Ka � HA½ �
A�½ � c

Ø

We divide the left and right hand side of this equation by the unit of the molar
concentration (1 M), and then subject both sides to a logarithmic operation, with
lg ¼ log10:

lg
c H3Oþð Þ

cØ
¼ lg Ka � HA½ �

A�½ �
� �

Using the logarithm rule of log(a � b) ¼ log a + log b, we obtain:

lg
c H3Oþð Þ

cØ
¼ lgKa þ lg

HA½ �
A�½ �

After multiplying the equation with (�1):

�lg
c H3Oþð Þ

cØ
¼ �lgKa � lg

HA½ �
A�½ �

we recognise that the left hand side is the definition of the pH: pH ¼ �lg c H3Oþð Þ
cØ

¼ �lg H3Oþ½ � and the expression �lgKa defines the pKa of the acid HA:
pKa ¼ �lgKa

This yields:
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pH ¼ pKa � lg
HA½ �
A�½ � or pH ¼ pKa þ lg

A�½ �
HA½ � ð4:54Þ

which is known as the Henderson-Hasselbalch equation.
For real (non-ideal) situations, the equilibrium constant needs to be set up with

activities instead of concentrations. If we consider a buffer system consisting of
acetic acid (HAc) and acetate (Ac�) for illustration, this yields:

Ka ¼ a H3Oþð Þ � a Ac�ð Þ
a HAcð Þ ¼ a H3Oþð Þ � γc :Ac�ð Þ � c Ac�ð Þ

γc HACð Þ � c HACð Þ
Since HAc constitutes the solvent, and is thus present at a large concentration

(i.e. its mole fraction approaches 1), we know from Sect. 4.3.4 that:
γx ! 1 as x ! 1, therefore γc(HAc) � 1, which yields:

Ka ¼ a H3O
þð Þ � γc Ac�ð Þ � c Ac�ð Þ

c HAcð Þ
Resolving for a(H3O

+) yields:

a H3O
þð Þ ¼ Ka � c HACð Þ

γc Ac�ð Þ � c Ac�ð Þ
In order to the logarithm of both sides, we need to divide by the units of activity

which in this case are 1 M:

�lg a H3O
þð Þ ¼ �lg Ka � c HAcð Þ

γc Ac�ð Þ � c Ac�ð Þ
� �

Using the logarithm rule log(a � b) ¼ log a + log b, we obtain:

�lg a H3O
þð Þ ¼ �lgKa � lg

c HAcð Þ
γc Ac�ð Þ � c Ac�ð Þ

�lg a H3O
þð Þ ¼ �lgKa � lg

1
γc Ac�ð Þ � lg

c HACð Þ
c Ac�ð Þ

With the rule log 1
a

� � ¼ �loga, this yields:

�lg a H3O
þð Þ ¼ �lgKa þ lgγ Ac�ð Þ þ lg

c Ac�ð Þ
c HAcð Þ

and therefore:
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pH ¼ pKa þ lg
c Ac�ð Þ
c HAcð Þ
� �

þ lg γ Ac�ð Þ ð4:55Þ

which is the Henderson-Hasselbalch equation considering activities. Comparison
with Eq. 4.54 shows that the additional term of lg γ(Ac�) needs to be taken into
account.

4.3.6 Applications of Conductivity Measurements

When titrating weak acids (bases) with strong bases (acids), the determination of the
end point of titration may be difficult due to the buffering properties described in the
previous section. In such cases, conductivity measurements (also called
conductometry) can be used to detect the end points of titrations. Conductometric
titrations are also a useful alternative for acid-base titrations where indicators can not
be used, because the sample or titrant are coloured. The observable parameter in
these titrations is the conductivity κ (see Eq. 4.10).

Figure 4.12 compares observations in conductometric titrations with different
acid/base pairings. When a strong base (e.g. NaOH, the analyte) is titrated with a
strong acid (e.g. HCl, the titrant), the solution initially contains Na+(aq) and OH�

(aq)

ions, therefore high conductivity is observed (Fig. 4.12, left panel). As the titration
proceeds, the conductivity falls sharply since OH�

(aq) ions react with H+
(aq) to

neutral H2O and the added Cl�(aq) ions replacing OH
�
(aq) have a lower conductivity

than OH�
(aq) (see Table 5.5). At the end point, the exact amount of H+

(aq) has been
added to match the amount of OH�

(aq), and the solution shows a conductivity
expected of a solution of NaCl in water. As more titrant is added, the conductivity
begins to rise sharply, due to H+

(aq) having higher conductivity than Na+(aq).
Determination of the end point is conveniently done by extrapolating the two
branches of the conductometric plot.

When a weak base (e.g. NaAc) is titrated with a strong acid (e.g. HCl), the initial
conductivity of the solution is low, since the salt of the weak base is only partially

Fig. 4.12 Schematic plots of conductometric titration data for strong acid/strong base (left), strong
acid/weak base (middle), weak acid/weak base (right). Typical experimental conductivity values for
such titrations are in the range of μS cm�1
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dissociated (Fig. 4.12, middle panel). Addition of H+
(aq) and Cl

�
(aq) leads to a rise in

conductivity, as the acid-base reaction causes dissociation of the salt and thus
releases Na+(aq). After the amount of base is been matched by H+

(aq) at the endpoint,
the conductivity rises sharply, as now excess H+

(aq) become available which possess
substantially higher conductivity than any other ions (see Table 5.5).

4.3.7 The Debye-Hückel Theory

So far, any deviation from ideal behaviour has been treated by an empirical
approach. In order to be able to account for non-ideal behaviour, the concentration
of an electrolyte has been replaced with the activity, and we demanded that all
underlying thermodynamic relations such as the variation of the chemical potential
(Eq. 3.12) should then remain valid even for non-ideal solutions. The value of the
activity may be found by experimentally determining the activity coefficient and
using the known concentration. With these activity values, fundamental thermody-
namic quantities such as the chemical potential can then be calculated.

Experimental Determination of Activity Coefficients
The activity a and the activity coefficient γ are intimately linked to the mole
fraction or concentration whenever a system deviates from ideal behaviour
(see Table 4.6). Any such phenomena can thus be used, in principle, to
determine activity coefficients.

For example, the colligative property of vapour pressure lowering by a
solute may be used to determine the activity coefficient of the solvent. From
Raoult’s law, we know that

x ¼ p

p∗
ð3:12Þ

where x is the mole fraction of the solute, p the vapour pressure of the solution
and p* the vapour pressure of the pure solvent. In Table 4.6, we have thus
defined the activity of a non-ideal solvent as

a ¼ p

p∗
ð4:44Þ

Remembering that the activity in terms of the mole fraction is generally
defined as

a ¼ γx � x ð4:43Þ
we obtain:

(continued)
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γx � x ¼
p

p∗
) γx ¼

p

p∗ � x ð4:56Þ

which allows for the experimental determination of the activity coefficient γ of
the solvent directly from observation of the colligative property of vapour
pressure lowering by a solute. The only requirement is that the vapour of the
solution/solute behaves as an ideal gas. If that is not the case under the chosen
conditions, fugacities instead of pressures need to be used.

Debye and Hückel developed a theoretical basis to quantify the non-ideal
behaviour of electrolyte solutions. Their theory is based on the following
assumptions:

• The electrolyte solution needs to be dilute (i.e. c < 0.01 mol l�1)
• The electrolytes are completely dissociated into ions
• On average, each ion is surrounded by ions of opposite charge (see Fig. 4.13).

Based on these assumptions, Debye and Hückel calculated the chemical potential of
a completely dissociated electrolyte from the chemical potentials of the cat- and
anions. These calculations result in a relationship between the mean activity coeffi-
cient γ� and the ionic strength I of the solution, called the Debye-Hückel limiting
law:

lg γ� ¼ zþ � z� � A �
ffiffi
I

p
ð4:57Þ

where z+ and z� are the charge numbers of the cat- and anion of the electrolyte, and
I is the ionic strength as defined in Eq. 4.47. A is a constant for the solvent of interest;
in case of aqueous solutions at θ ¼ 25 �C, A ¼ 0.5099 dm3/2 mol�1/2.

Due to the principle of electroneutrality (see Sect. 4.1.2), one can only prepare
solutions that contain cat- as well as anions. Therefore, the Debye-Hückel theory
provides the above relationship only for a mean activity coefficient. Notably,

Fig. 4.13 The Debye-Hückel
theory assumes an ionic
atmosphere: on average, each
ion is surrounded by a sphere
of counter-ions
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electrolytes that possess the same charge numbers also possess the same mean
activity coefficients.

Using the Debye-Hückel limiting law, we can now return to the Henderson-
Hasselbalch equation for the non-ideal solutions, illustrated by the acetic acid/acetate
buffer system (Eq. 4.55):

pH ¼ pKa þ lg
c Ac�ð Þ
c HAcð Þ þ lg γ Ac�ð Þ ð4:55Þ

The last term in this equation can be evaluated from Eq. 4.57 as follows:

lgγ� ¼ z Ac�ð Þ � A �
ffiffi
I

p
¼ �1ð Þ � 0:51 l3=2

mol1=2
�
ffiffi
I

p

Therefore:

pH ¼ pKa þ lg
c Ac�ð Þ
c HAcð Þ � 0:51

l3=2

mol1=2
�
ffiffi
I

p
ð4:58Þ

4.3.8 Tonicity

As well as controlling the pH of a solution, it is often necessary to control the
osmotic pressureΠ of a solution, especially when preparing biochemical buffers. For
example, in cases where membranes are involved, a difference in the osmotic
pressure between the two sides of the membrane may have devastating effects and
cause swelling, contraction or even rupture of the membrane.

The measure of the osmotic pressure gradient of two solutions that are separated
by a semi-permeable membrane is called tonicity. It is thus a qualitative description
of the relative concentrations of solutes in the two solutions and determines the
direction of diffusion. Three different cases can be distinguished: hypertonic, hypo-
tonic and isotonic solutions. Commonly, tonicity refers to the osmotic pressure, but
it can also be defined for any other colligative property (melting point, boiling point).
Isotonic solutions thus describe solutions that possess the same colligative
properties.

In biological settings, a hypertonic solution is one with a higher concentration of
solutes outside the cell than inside the cell. Therefore, hypertonic solutions will
cause diffusion of water out of the cell in order to balance the concentration of the
solutes. Hypotonic solutions, in contrast, possess a lower concentration of solutes
outside the cell than is found inside the cell. The direction of diffusion in this case is
thus such that water flows into the cell, causing swelling and possible bursting. If an
outside solution provides the same concentration of solutes as found inside the cell,
then this solution is called isotonic. Water molecules diffuse through the membrane
in both directions at equal rates. Isotonic solutions have great importance for
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biochemical and medical applications; they are for example used as intravenously
infused fluids with patients or as washing solutions for the eye in laboratories.

The Concentration of an Isotonic NaCl Solution
The melting point of human blood and tears is �0.52 �C. Determine the mass
ratio w of an isotonic NaCl solution in water (Kf ¼ 1.86 K kg mol�1).

The colligative property of melting point depression is given by:

ΔT f ¼ i � Kf � b ð4:37Þ
The molality b is given by:

b ¼ n soluteð Þ
m solventð Þ ¼

n NaClð Þ
m H2Oð Þ ð4:40Þ

The concentration of solute is expressed here as the mass ratio w, which is
defined as:

w ¼ m soluteð Þ
m solventð Þ ¼

m NaClð Þ
m H2Oð Þ ð4:41Þ

We thus obtain from Eq. 4.40:

b ¼ n NaClð Þ
m H2Oð Þ ¼

m NaClð Þ
m H2Oð Þ �M NaClð Þ ¼

w NaClð Þ
M NaClð Þ

This yields for the mass ratio w:

w NaClð Þ ¼ b NaClð Þ �M NaClð Þ
From Eq. 4.37, we can substitute for the molality:

w NaClð Þ ¼ ΔT f

i � Kf
�M NaClð Þ

w NaClð Þ ¼ 0:56 � 58 � K � g �mol
2 � 1:86 �mol � K � kg ¼ 0:56 � 58 � 10�3 � K � kg �mol

2 � 1:86 �mol � K � kg
w NaClð Þ ¼ 0:009 ¼ 0:9%
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4.4 Exercises

1. Nickel-cadmium batteries are based on the following half-cell reactions:

NiO OHð Þ sð Þ þ H2O lð Þ þ e� ! Ni OHð Þ2 sð Þ þ OH�
aqð Þ

Cd sð Þ þ 2 OH�
aqð Þ ! Cd OHð Þ2 sð Þ þ 2 e�

(a) The e.m.f. of a nickel-cadmium cell is 1.4 V, and the standard Redox
potential of Cd(OH)2(s) is �0.809 V. What is the standard Redox
potential of NiO(OH)(s)?

(b) What is the standard free energy of formation of NiO(OH)(s)?

2. Calculate the standard e.m.f. and the equilibrium constant under standard
conditions for the following cell:

Pt sð Þ, H2 gð Þ HCl aqð Þ
�� �� AgCl sð Þ, Ag sð Þ

3. Calculate the pH of a solution with a formal concentration of 5 � 10�7 M of the
strong acid HI at 25 �C.

4. What e.m.f. would be generated by the the following cell at 25 �C, assuming ideal
behaviour:

Pt sð Þ, H2 gð Þ 1 barð Þ Hþ
aqð Þ 0:03 Mð Þ�� �� Cl� aqð Þ 0:004 Mð Þ j AgCl sð Þ, Ag sð Þ

5. The lactate/pyruvate Redox system can be described as per:

pyruvateþ 2 Hþ þ 2 e� Ð lactate

The standard reduction potential is measured at c(lactate) ¼ c(pyruvate) ¼ c(H+)
¼ 1 M and has a value of EØ ¼ 0.21 V. Calculate and plot the pH dependency of
the reduction potential for this system at 298 K, assuming c(lactate) ¼ c(pyruvate).
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Molecules in Motion 5

5.1 Transport Processes

We have already seen that physico-chemical processes do not always require a
chemical reaction to proceed, such as for example when considering solutions or
phase changes. Irreversible processes that arise from non-equilibrium conditions
may also include the spatial translocation of objects and properties. In particular, one
can observe the transfer of

• matter
• energy
• any other property.

Such transport processes are fundamental processes in biological settings (molec-
ular transport in the cell) and engineering (e.g. liquid flow, thermo devices, etc). Four
important instances of transport processes are:

• diffusion: migration of matter along a concentration gradient
• thermal conduction: migration of energy along a temperature gradient
• electric conduction: migration of charges along an electric potential gradient
• viscosity: migration of a linear momentum along a velocity gradient.

We have already considered electric conduction in Sect. 4.1, and will consider
these properties again in more detail in Sects. 5.1.4–5.1.6. However, to introduce
some fundamental concepts and parameters, we shall start with an introduction to the
kinetic molecular theory of gases.

# Springer International Publishing AG, part of Springer Nature 2018
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5.1.1 The Kinetic Molecular Theory of Gases

In the kinetic molecular theory of gases, we only consider energy contributions that
arise from the kinetic energy of the individual gas molecules. We assume an ideal
gas, and therefore contend that

• the gas consists of molecules of mass m in random motion
• the molecules have negligible size
• the molecules interact only through brief, infrequent, elastic collisions.

Elastic collisions are those where the total translational kinetic energy of
molecules is conserved.

From this kinetic molecular theory, one can derive an equation that relates
pressure and volume of an ideal gas with the speed of the individual gas molecules:

p � V ¼ 1
3
� n �M � c2 ð5:1Þ

with c being the root mean square speed of the molecules, i.e. a speed averaged over
the entire population of gas molecules:

c ¼
ffiffiffiffiffiffiffiffi
v2h i

p
ð5:2Þ

In the above equation, hv2i is the arithmetic mean of the squared speeds:

v2
� � ¼ 1

n
Σn
i¼1v

2
i

The speed of the individual gas molecules only depends on the temperature (see
Eq. 2.1 which defines the relationship between temperature and average kinetic
energy of molecules). Therefore, at constant temperature, the root mean square
speed c will also be constant. It follows straight from Eq. 5.1 that at constant root
mean square speed c (i.e. constant temperature) the product p�V is constant. This is
otherwise known as Boyle’s law, which states that

" the absolute pressure exerted by a given mass of an ideal gas is inversely
proportional to the volume it occupies, if the temperature and amount of
gas remain unchanged within a closed system:

p � 1
V

or p1 � V1 ¼ p2 � V2 ð5:3Þ

Since we are considering an ideal gas, we can further develop Eq. 5.1:
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p � V ¼ 1
3
� n �M � c2 ¼ n � R � T ð5:4Þ

and derive an expression for the root mean square speed of the gas molecules:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � R � T

M

r
ð5:5Þ

Analysis of Eq. 5.5 shows that

• the higher the temperature, the higher the speed of the molecules, and
• heavy molecules travel slower than light molecules.

5.1.2 The Maxwell–Boltzmann Distribution

The root mean square speed c of the gas molecules is an averaged speed over the
entire population of gas molecules in the system. Obviously, the speeds of individual
gas molecules vary and span a range of different values. A molecule may be
travelling rapidly, but then collide and travel slower. It may then accelerate again,
only to be slowed down by the next collision.

The distribution of speeds (velocities) can be calculated based on the Boltzmann
distribution, which is a probability distribution over various possible states of a
system frequently used in statistical mechanics (Maxwell 1860a, 1860b). The
resulting function is called the Maxwell–Boltzmann distribution:

f vð Þ ¼ 4 � π �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

2 � π � R � T
� �3

s
� v2 � e�M�v2

2�R�T ð5:6Þ

In Eq. 5.6, the exponential factor e�
M�v2
2�R�T resembles the well-known Boltzmann

factor that describes the ratio of two states which only depends on the energy
difference between the two states:

f state 1

f state 2
¼ e�

Estate 2�Estate 1
kB �T ð5:7Þ

A graphical representation of the Maxwell–Boltzmann distribution for either
varying molecular masses or temperatures is shown in Fig. 5.1. For a particular
gas (Fig. 5.1 right panel, molecular mass is constant), the average speed of the
molecules, as indicated by the position of the peak, increases with increasing
temperature. At the same time, the distribution of different speeds becomes lees
uniform within the population of gas molecules when the temperature increases; this
is obvious from the distribution curves spreading out. Notably, the areas underneath
the curves remain the same, since the number of gas molecules in the system is
considered to be constant.
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When comparing different gases with different molecular masses (Fig. 5.1 left
panel) at the same temperature (and assuming the same number of molecules), the
Maxwell–Boltzmann distribution shows that lighter molecules possess higher aver-
age speeds than heavier molecules. Also, the distribution of individual speeds is less
uniform in populations of lighter molecules.

5.1.3 Transport Properties

The generally accessible concept of flux as a stream of moving bodies (objects that
have a mass) can be readily expanded to any object, including those that have no
mass, such as physical properties. The migration of a property, i.e. property trans-
port, can phenomenologically be described by its flux:

flux J ¼ quantity of property
area passed � time interval

ð5:8Þ

In order to calculate the total quantity of a property that is migrating, one can
re-arrange above equation to obtain:

quantity of property ¼ J � A � Δt
In general, we can distinguish two types of properties migrating, matter and

energy (Table 5.1):

Fig. 5.1 Graphical representation of the Maxwell–Boltzmann distribution (Eq. 5.6) for either
varying temperatures or molecular masses
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5.1.4 Diffusion: Flux of Matter

In most cases, it is found that the flux J of one property is proportional to the first
derivative of another. This fundamental observation is called the general transport
equation.

For example, the flux of molecules (property1 ¼matter) that migrate by diffusion
along a particular direction x is proportional to the first derivative of the concentra-
tion of these molecules (property2 ¼ concentration) along that direction. If we
choose to work with the molar concentration c, then the first derivative of c with
respect to the travel coordinate x is dc

dx, and we can denote the above rule mathemati-
cally as:

J � dc
dx

ð5:9Þ

This relationship is known as Fick’s first law of diffusion.
Since matter migrates from areas of high concentration to low concentration, the

direction of migration is opposite to the concentration gradient. The opposite
direction between flux and concentration gradient is expressed by a minus sign,
when the proportionality relationship in Eq. 5.9 is converted to an equation:

J ¼ �const: � dc
dx

In this equation, the constant factor will become D0, a coefficient for the diffusion
process:

J ¼ �D
0 � dc
dx

ð5:10Þ

Practically, it is not the molar concentration c that is used for the particle flux, but
rather the concentration expressed as number of particles per volume, NV . Therefore,
Eq. 5.10 is transformed as per:

Table 5.1 Migration of properties

Property
migrating Process Flux

Units of
flux

Matter Diffusion Number of molecules per area per time 1
m2s

Energy Thermal
conduction

Energy per area per time ¼ power per
area

1 J
m2s ¼ 1W

m2

Momentum Laminar flow Force per area 1 N
m2
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J ¼ �D
0 � dc
dx

¼ �D
0 �
d

n

V

� �
dx

¼ �D
0 �
d

N

NA � V
� �

dx

J ¼ �D
0 � 1
NA

�
d

N

V

� �
dx

J ¼ �D � dIN
dx

ð5:11Þ

Equation 5.11 contains the diffusion coefficient D that is commonly used.
(According to the above transformations, D and D0 are related as per D ¼ 10�3

NA
� D0

).

The SI units of the different components in eq. 5.11 are given in Table 5.2.

5.1.5 Thermal Conduction: Flux of Energy

Energy migrates along a temperature gradient; this transport is called thermal
conduction. Similar to the diffusion process, energy migrates from high to low
temperature, i.e. opposite the temperature gradient. When applying the general
transport equation for thermal conduction, we therefore need to include a minus
sign to account for the opposite direction of flux and gradient:

J ¼ �κ � dT
dx

ð5:12Þ

The proportionality constant κ is called the thermal conductivity. The SI units of
the different components in Eq. 5.12 are given in Table 5.3.

Table 5.2 Units of the parameters for particle flux (diffusion)

Parameter Units Explanation

Concentration gradient d IN
dx

	 
 ¼ 1
m3

m ¼ 1 m�4 Number of molecules per volume travelling
over a distance

Flux [J] ¼ 1 m�2 s�1 Number of molecules passing an area per
time interval

Diffusion coefficient [D] ¼ 1 m2 s�1

Table 5.3 Units of the parameters for thermal conduction

Parameter Units Comment

Temperature gradient dT
dx

	 
 ¼ 1Km�1

Flux [J] ¼ 1Jm�2s�1 ¼ 1Wm�2 Also called the heat flux density

Thermal conductivity [κ] ¼ 1JK�1m�1s�1 ¼ 1WK�1m�1
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5.1.6 Viscosity: Flux of Momentum

A substance streaming through a tube (Fig. 5.2) can be considered as consisting of
laminar layers that flow in the same direction. If the substance is very fluid (‘non-
viscous’) and flows through the tube with negligible resistance, then all layers move
with the same speed. In contrast, the speed of the individual layers in a viscous
substance are different: at the walls, the liquid moves with a substantially lesser
speed than in the centre of the tube, giving rise to a ‘U’- or ‘V’-shaped profile.

When molecules from an outer layer (which moves at slow speed) switch to a
neighbouring layer that moves faster, the neighbouring layer will be retarded
because of the lower momentum of the switching molecules. The opposite will
happen when molecules switch from a faster (inner) to a slower moving (outer) layer.

When molecules switch from one layer to another (a movement perpendicular to
the flow direction z), then a momentum of (m�vx) or (m�vy) migrates from one layer to
another. The flux of momentum is described by:

J ¼ �const: � d m � vxð Þ
dx

J ¼ � const: � mð Þ � dvx
dx

ð5:13Þ

J ¼ �η � dvx
dx

ð5:14Þ

The constant of proportionality, η, is called the viscosity. If all layers move at the
same velocity, the gradient d m�vxð Þ

dx is zero, and there is no flux of momentum; the
substance may still have a viscosity, though! The SI units of the different
components in Eq. 5.14 are given in Table 5.4.

When discussing the flow of a substance through a tube in the above paragraph,
most likely liquids came to mind; for example, water as a liquid with negligible
viscosity, and glycerol as a liquid with considerable viscosity. However, these
phenomena are not limited to liquids. For example, the shape of the Bunsen burner
flame is due to the velocity profile across the tube.

Fig. 5.2 Top: If a substance flow in a tube has negligible resistance, the speed is the same all across
the tube. Bottom: When a viscous substance flows through a tube, its speed at the walls is
substantially less than in the centre of the tube
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5.1.7 The Transport Parameters of the Ideal Gas

Earlier in this section, we introduced the kinetic molecular theory of gases (Sect.
5.1.1), and started to link the behaviour of particular gas molecules to macroscopic
laws. We then learned about transport properties and can now apply these to an ideal
gas. Using the kinetic theory, expressions for the different transport parameters can
be derived. We will not derive these relationships rigorously, but rather discuss their
impact on the gas molecules.

The diffusion coefficient D of the ideal gas is obtained as per

D ¼ 1
3
� λ � c ð5:15Þ

Here, λ is the mean free path length, i.e. the average distance a molecule travels
without collision; c is the mean speed of the molecules.

We can predict the following effects:

• Since the mean free path λ of gas molecules decreases with increasing pressure
(more collisions), Eq. 5.15 tells us that the diffusion coefficient D also decreases
with increasing pressure. This means that at higher pressure, molecules diffuse
more slowly.

• The mean speed c increases with increasing temperature, and according to
Eq. 5.15 so does the diffusion coefficient D. This means that at higher
temperatures, molecules diffuse more quickly.

• The mean free path λ (and thus the diffusion coefficient D) increases when the
collision cross-section of molecules decrease. Smaller molecules therefore diffuse
quicker than large molecules.

The thermal conductivity κ of an ideal gas A is given by

κ ¼ 1
3
� λ � c � CV ,m � c Að Þ ð5:16Þ

where λ and c are the mean free path and mean speed as before. CV,m is the molar
heat capacity at constant volume and c(A) the molar concentration of the gas.

This allows the following predictions:

Table 5.4 Units of the parameters for the momentum flux

Parameter Units Comment

Momentum
gradient

d m�vxð Þ
dx

h i
¼ 1 kg s�1 ¼ 1 N sð Þm�1

Flux [J] ¼ 1 kg m�1s�2 ¼ 1 N m�2

Viscosity [η] ¼ 1 kg m�1s�1 ¼ 1 N s m�2 ¼ 10 P The unit poise is named after Jean
Léonard Marie Poiseuille
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• The mean free path λ is inversely proportional to the concentration (high concen-
tration means more molecules which make the occurrence of collisions more
likely, thus decreasing the mean free path). The thermal conductivity κ would
thus be expected to decrease with increasing concentration, but since the concen-
tration itself features as a factor in Eq. 5.16, the two effects balance and κ is thus
independent of the concentration. Since pressure and concentration are ‘two sides
of the same medal’ with gases (a high concentration of gas is accompanied by
high pressure), we can conclude that the thermal conductivity κ is independent of
the pressure.

• The thermal conductivity is larger for gases with a larger heat capacity.

For the viscosity η of an ideal gas A, the following relationship is obtained:

η ¼ 1
3
�M � λ � c � c Að Þ ð5:17Þ

We can thus predict that:

• Since the mean free path λ is inversely proportional to the concentration, and the
concentration itself features as a factor in Eq. 5.17, the viscosity η is independent
of the concentration, and thus also of the pressure.

• The mean speed c increases with increasing temperature, and so does the viscosity
η. At higher temperatures, gases have a higher viscosity.

This behaviour is in contrary to observations with a liquid: for a molecule in a
liquid to move it must overcome intermolecular interactions. With increasing
temperature, more molecules acquire this energy and can move; the viscosity of a
liquid thus decreases with increasing temperature.

5.2 Molecular Motion in Liquid Solutions

We have seen in Sect. 4.1.4 that ions can be dragged through a liquid solvent by
applying a potential difference ΔE between two opposing electrodes. From the
potential difference ΔE over a distance l, we defined the electric field dϕ

dx as

dϕ
dx

¼ ΔE
l

ð4:11Þ

The fundamental property that characterises the ability of ions to move through
the solution is the resistance R (see Sect. 4.1.5); the higher the resistance, the harder
it is for the ions to migrate. The conductance G of a solution is the inverse of the
resistance. Therefore, the lower the resistance, the higher becomes the conductance
and the easier it gets for ions to migrate through the solution:
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G ¼ 1
R

ð4:16Þ

The conductance G increases with the cross-sectional area A and decreases with
the length l; as the constant of proportionality we introduced the conductivity κ:

G ¼ κ � A
l

ð4:18Þ

If we measure the conductance of an electrolyte solution in suitable container and
two fixed electrodes, then the cross-sectional area A and the length l are invariant
parameters of the experimental system. The measured conductance will thus depend
only on the number of charged species present solution. If we normalise the
proportionality factor κ (the conductivity) with respect to the molar concentration
of ions (c), we obtain a property that is a characteristic constant for a particular ion.
This constant is called the molar conductivity Λm:

Λm ¼ κ

c
with units of Λm½ � ¼ 1 S m2 mol�1 ð5:18Þ

5.2.1 Conductivities of Electrolyte Solutions

In extensive measurements with strong electrolytes (substances that are fully
dissociated in solution), Friedrich Kohlrausch found in the nineteenth century that
at low concentrations, the molar conductivities vary with the square root of the
concentration:

Λm ¼ Λ0m � κ � ffiffiffi
c

p ð5:19Þ
which is known as Kohlrausch’s law and introduces the limiting molar conductivity
Λ0m as a maximummolar conductivity that is attained only at indefinite dilution. The
dependence on

ffiffiffi
c

p
, rather than c, is due to inter-ionic interactions. While migrating,

ions of a particular charge may pass ions of opposite charge and thus retard their
migration. Kohlrausch’s law is only valid for strong electrolytes and describes the
non-linear decrease of the molar conductivity with increasing concentration.

For weak electrolytes (which only dissociate partially in solution), the molar
conductivity depends strongly on concentration. The more dilute a solution, the
greater its molar conductivity, due to the increased ionic dissociation (see Fig. 5.3).
The degree of dissociation α (see Sect. 4.3.3) can be obtained from the ratio of the
molar and limiting molar conductivities:
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α ¼ Λm

Λ0m
: ð5:20Þ

The dissociation constant Kd of weak electrolytes is related to the degree of
dissociation by Ostwald’s dilution law:

Kd ¼ Aþ½ � � B�½ �
AB½ � ¼ α2

1� α
� AB½ �0 ð5:21Þ

where [A+], [B�] and [AB] are the equilibrium concentrations of the cation, anion
and nondissociated electrolyte, respectively. [AB]0 is the total concentration of
electrolyte. Considering Eq. 5.20, Ostwald’s dilution law can also be expressed in
the form of molar conductivities:

Kd ¼ Λ2
m

Λ0m � Λmð Þ � Λ0m
AB½ �0 ð5:22Þ

Experimentally, it could also be shown that the limiting molar conductivity (Λ0m)
is comprised of the two independent limiting molar conductivities of the anions (λ-)
and cations (λ+):

Λ0m ¼ νþ � λþ þ ν� � λ� ð5:23Þ
This finding is also known as the law of the independent migration of ions. In

Eq. 5.23, ν denotes the number of ions per formula. For example:

NaCl νþ ¼ 1, ν� ¼ 1
CaCl2 νþ ¼ 1, ν� ¼ 2

Fig. 5.3 The molar
conductivities of strong and
weak electrolytes increase
with decreasing
concentrations, but to
different extents. The molar
conductivity at infinite
dilution is the limiting molar
conductivity Λ0m
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5.2.2 Mobilities of Ions

In an electric fieldE ¼ dϕ
dx, where the two electrodes are at a distance dx¼ l, a particle

with the charge Q ¼ z�e experiences the force:

Fel ¼ z � e � E ¼ z � e � dϕ
l

ð5:24Þ

The particle is thus accelerated towards the appropriate electrode, but it has to
overcome friction in the liquid medium. According to Stokes’ law of friction, the
frictional force Ffr of a spherical particle with radius r is related to its velocity v by

Ffr ¼ f � v with the frictional constant f ¼ 6 � π � η � r: ð5:25Þ
Here, η is the viscosity of the solvent, which we have introduced in Sect. 5.1.6.
Since both forces, the electrostatic attraction and the frictional force, act in

opposite direction, the final drift speed of the moving particle is established, when
both forces balance each other (i.e. no net force):

Fel ¼ Ffr ð5:26Þ
In the above equation, we substitute the expressions from 5.24 and the left, and

5.25 on the right hand side:

z � e � E ¼ f � v
Resolving for the drift speed yields:

v ¼ z � e
f

� �
� E ¼ u � E ð5:27Þ

where u is the mobility of the ion and E the electric field the ion is exposed to.
Resolving Eq. 5.27 for u and substituting the expression for the frictional constant

from above delivers an expression that links the ion mobility to the charge of the ion
as well as the viscosity of the liquid medium:

u ¼ z � e
f
¼ z � e

6 � π � η � r with the units u½ � ¼ 1m2V�1 s�1: ð5:28Þ

The ion mobility u provides a link between the charge z of an ion and its
conductivity λ:

λ ¼ z � u � F ð5:29Þ
In this equation, the constant F ¼ NA�e is the Faraday constant. Earlier, we have

introduced the limiting molar conductivity Λ0m as
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Λ0m ¼ νþ � λþ þ ν� � λ� ð5:23Þ
where ν+ and ν- denote the stoichiometric number of cations and anions in the
formula of the electrolyte, and λ+ and λ- are the conductivities of the cation and
anion, respectively.

By combining Eqs. 5.23 and 5.29, we can now conclude for the limiting molar
conductivity:

Λ0m ¼ νþ � zþ � uþ � Fþ ν� � z� � u� � F ð5:30Þ
In the absence of inter-ionic interactions (i.e. at low concentrations) for a sym-

metrical z:z electrolyte, such as CuSO4 (ν+ ¼ ν� ¼ 1, z+ ¼ z� ¼ z ¼ 2) this equation
simplifies to:

Λ0m ¼ uþ þ u-ð Þ � z � F ð5:31Þ
Therefore, ion mobilities are highly useful parameters in determining the limiting

molar conductivities of electrolytes (Table 5.5).

5.2.3 Ion–Ion Interactions

In the absence of an electric field, the atmosphere surrounding a particular ion is
spherical. When an ion migrates through an electric field, its atmosphere is no longer
spherical but distorted, since the centres of gravity do no longer coincide. This gives
rise to a reduced mobility (relaxation). The opposite direction of the movement of
ionic atmosphere and the central ion also causes a viscous drag called the electro-
phoretic effect (Fig. 5.4).

The quantitative treatment of these phenomena is complicated, but has been
achieved with the Debye–Hückel–Onsager theory. This theory allows calculation
of numerical values for limiting molar conductivities which are in good agreement
with experimental data at low molar concentrations (mM and below). A rigorous
treatment of the Debye–Hückel–Onsager theory is beyond the scope of this intro-
duction, but we will summarise the main finding which culminates in a linear

Table 5.5 Limiting molar
conductivity of selected
ions in water at 25 �C. Note
the extraordinarily high
limiting conductivity of the
proton and the hydroxyl ion
in aqueous solution

Cation λ0+ Anion λ0�
mS m2 mol�1 mS m2 mol�1

H+ 35.0 OH� 19.9

Li+ 3.87 Cl� 7.63

Na+ 5.01 Br� 7.84

K+ 7.35 I� 7.68

Mg2+ 10.6 SO4
2� 16.0

Ca2+ 11.9 NO3
� 7.14

Ba2+ 12.7 H3C-COO
� 4.09
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relationship between the conductivity κ and the limiting molar conductivity of an
electrolyte Λ0m:

κ ¼ Aþ B � Λ0m or Λ0m ¼ �A

B
þ 1
B
� κ ð5:32Þ

We remember that Kohlrausch’s law delivered a relationship between Λ0m and κ
that satisfies the generic expression in Eq. 5.32:

Λ0m ¼ Λm þ ffiffiffi
c

p � κ therefore � A

B
¼ Λm and

1
B
¼ ffiffiffi

c
p ð5:19Þ

which can be resolved to A ¼ �Λmffiffi
c

p and B ¼ 1ffiffi
c

p

The theory by Debye, Hückel and Onsager yields the following expressions for
the two coefficients A and B:

A � z2

η � ffiffiffiffi
T

p ð5:33Þ

and

B � z3ffiffiffiffiffi
T3

p ð5:34Þ

5.2.4 Diffusion

Earlier in this chapter, we have introduced diffusion as flux of matter. Since this
phenomenon is of utmost importance for any chemical and biochemical process, we

Fig. 5.4 In the absence of an electric field, the atmosphere surrounding an ion is spherical (left).
However, when an ion experiences an external electric field, its surrounding atmosphere gets
distorted, giving rise to reduced mobility and a viscous drag (right)
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will extend the discussion of this particle transport and also consider some thermo-
dynamic aspects that are linked to this transport property.

Thermodynamically, we know that if a molecule is moving from a location with
the chemical potential μ1 ¼ μ to another location with the chemical potential
μ2 ¼ μ + dμ, the work done by the system is dW ¼ dμ.

In a system, where the chemical potential depends on the spatial position x, this
results in a chemical potential gradient, i.e. the differential of μ with respect to
x : δμ

δx

� �
. For this process, we assume constant pressure and temperature, and there-

fore obtain for the work dW done by the system during the diffusion:

dW ¼ dμ ¼ δμ
δx

� �
p,T

� dx ð5:35Þ

According to classical Newton mechanics, translocation work can generally be
expressed in terms of a force opposing the direction of translocation:

dW ¼ �F � dx ð5:36Þ
The fact that the force F opposes the spatial translocation x results in a minus sign

in the above equation. By comparison of Eqs. 5.35 and 5.36, we conclude that the
force F is defined by

F ¼ � δμ
δx

� �
p,T

ð5:37Þ

and is thus called the thermodynamic force. The thermodynamic force does not
necessarily represent a real force that is pushing the particles down the slope of the
chemical potential. It rather represents the spontaneous tendency of molecules to
disperse, and thus provides a link between classical mechanics and the 2nd law of
thermodynamics.

5.2.5 Fick’s First Law of Diffusion

If we now consider a solution that contains a solute of activity a, we can calculate the
chemical potential of the solute as per:

μ ¼ μØ þ R � T � ln a ð3:12Þ
If the solution is not uniform and the activity depends on the position x, then there

exists a gradient of the chemical potential (as discussed in the previous section).
From Eq. 5.37, we know that this gradient is the thermodynamic force:
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F ¼ � δμ
δx

� �
p,T

¼ � δμØ

δx

� �
p,T

� R � T � δ ln a
δx

� �
p,T

ð5:38Þ

Using Eq. 3.12, the gradient δμ
δx

� �
p,T can be separated into two terms, namely

δμØ
δx

� �
p,T

and δ ln a
δx

� �
p,T . Since μØ is the standard chemical potential it is a constant

parameter and thus not dependent on the location. Its differential with respect to x is
thus zero. This results in the following expression for the thermodynamic force:

F ¼ �R � T � δ ln a
δx

� �
p,T

ð5:39Þ

which we can simplify under the assumption that the solution is ideal; in that case,
a ¼ c:

F ¼ �R � T � δ ln c
δx

� �
p,T

ð5:40Þ

Using the fact that dlny ¼ 1
y (see A.2.4), we can use the transformation of d ln y

dx

¼ 1
y � dy

dx

� �
to obtain:

F ¼ �R � T
c

� δc
δx

� �
p,T

ð5:41Þ

This equation describes the flux of diffusing particles as motion in response to a
thermodynamic force which arises from the concentration gradient.

The particles reach a steady drift speed vdr, when the thermodynamic force is
matched by the viscous drag. We can then construct the following chain of
conclusions:

The drift speed vdr is proportional to the force F : vdr � F
The particle flux J is also proportional to the drift speed: J � vdr
The force F is proportional to the concentration gradient: F � dc

dx

� �

Therefore : J � vdr � F � dc
dx

� �

This means that the flux J is proportional to the concentration gradient; we have
already come across this relationship in Sect. 5.1.4: Fick’s first law of diffusion.

From the introduction of Fick’s first law in that section, we remember that we can
express the flux in terms of the concentration gradient by using the diffusion
coefficient D as a constant of proportionality:
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J ¼ �D � dc
dx

ð5:10Þ

The flux is also related to the drift speed vdr by:

J ¼ vdr � c ð5:42Þ
Note the equality of units: J½ � ¼ 1

m2�s

vdr � c½ � ¼ m
s
� 6:022 � 10

23

mol

� �
� mol

10�3m3

� �

vdr includes the Avogadro constant NA.
By combining Eqs. 5.10 and 5.42, one obtains:

vdr � c ¼ �D � dc
dx

ð5:43Þ

and from Eq. 5.41 we know that dc
dx

� � ¼ � F�c
R�T, which then yields the numerical

relationship between the particle drift speed vdr and the thermodynamic force:

vdr ¼ �D

c
� dc
dx

¼ D � F
R � T ð5:44Þ

The constant of proportionality between the drift speed and the thermodynamic
force is therefore D

R�T.

5.2.6 The Einstein Relation

In Sect. 5.2.2, we discussed the mobilities of ions and derived the following
expression for the ion drift speed in an electric field E:

vdr ¼ u � E ð5:44Þ
In this equation, u is the mobility and E ¼ dϕ

dx the electric field.
In the case of 1 mol of ions moving through an electric field, the driving force F is

the electrostatic force Fel, which is calculated according to

Fel ¼ NA � z � e � E ¼ z � F � E ð5:24Þ
Note: ‘F’ on the right hand side is the Faraday constant

Combining Eqs. 5.44 and 5.24 yields:
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u � E ¼ z � F � E � D
R � T

which simplifies to

u ¼ z � F � D
R � T ð5:45Þ

and thus delivers an expression for the diffusion constant D as per:

D ¼ u � R � T
z � F ð5:46Þ

Note: ‘F’ on the right hand side is the Faraday constant
This important relationship between the diffusion coefficient D and the ion

mobility u is known as the Einstein relation.
Typical ion mobilities take values at the order of u¼ 5�10�8 m2 s�1 V�1for which

Eq. 5.46 yields a value of D ¼ 1�10�9 m2 s�1as a typical value of the diffusion
coefficient of an ion in water.

5.2.7 The Stokes-Einstein Equation

We can now take advantage of the relationship between the ion mobility u and the
diffusion coefficient D given by the Einstein relation and combine it with Eq. 5.28,
which we derived when introducing the ion mobility in Sect. 5.2.2:

Einstein relation : u ¼ z � F � D
R � T ð5:45Þ

u ¼ z � e
f
¼ z � e

6 � π � η � r ð5:28Þ

Mobility u of an ion with radius r and charge z in a medium of viscosity η
The combination of both equations yields:

u ¼ z � e
6 � π � η � r ¼

z � F � D
R � T ð5:47Þ

We then substitute the Faraday constant F ¼ NA�e and obtain:

z � e
6 � π � η � r ¼

z � NA � e � D
R � T

The product of charge state and elementary charge, (z�e), can be eliminated, and
with kB ¼ R

NA
the above equation becomes:
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1
6 � π � η � r ¼

D

kB � T
which resolves for the diffusion coefficient D as:

Stokes-Einstein equation : D ¼ kB � T
6 � π � η � r ð5:48Þ

This equation relates the diffusion coefficient D of a solute of radius r migrating
through a medium with the viscosity of that medium, η.

This important equation is called the Stokes-Einstein equation and is the basis of
determination of the diffusion coefficient D by viscosity measurements. Importantly,
there is no reference to the charge state of the solute, so all molecules (not just ions)
can be assessed this way.

5.3 Exercises

1. At 25 �C, the molar ionic conductivities Λm of the alkali ions Li+, Na+ and K+ are
3.87, 5.01 and 7.35 mS m2 mol�1, respectively. What are their mobilities?

2. Fullerene (C60) has a diameter of 10.2 Å. Estimate the diffusion coefficient of
fullerene in benzonitrile at 25 �C. The viscosity of benzonitrile at that temperature
is 12.4 mP. How large is the error of your estimate when comparing the result to
the experimental value of 4.1�10�10 m2 s�1?

3. The mean free pathlength of gas molecules can be calculated according to
Maxwell as λ ¼ 1ffiffi

2
p �IN�σ, where the particle density is IN ¼ p

kB�T. Calculate the

diffusion coefficient of argon at 298 K and a pressure of 1 bar. The collisional
cross-section of argon is σ ¼ 0.41 nm2.

4. The diffusion coefficient of sucrose in water is 5.2�10�6 cm2 s�1 at room
temperature. Estimate the effective radius of a sucrose molecule, if water has a
viscosity of 10 mP.
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Kinetics 6

6.1 Introduction

6.1.1 From Thermodynamics to Reaction Kinetics

The thermodynamic principles we have introduced in Sect. 2, and subsequently
applied to a variety of systems, all had a common point of focus: they were targeting
systems in equilibrium. A chemical reaction that has reached equilibrium still
exhibits a forward and a reverse reaction, but the rates of both processes are equal,
and since the reactions are of opposing direction, there is no net change.

In this part, we want to address the question of what happens to reactants in the
course of time. This will also lead us to investigate what particular reaction pathways
are engaged during a chemical reaction. The fundamental kinetics concepts will thus
characterise a reaction with respect to

• time
• concentration
• temperature.

6.1.2 Spontaneous and Non-Spontaneous Reactions, Processes
at Equilibrium

We have seen earlier (see Sect. 2.2.1) that the Gibbs free energy G provides a single
criterion of spontaneity and equilibrium:

G ¼ H � T � S ð2:44Þ

ΔG ¼ ΔH � T � ΔS T ¼ const:; p ¼ const:ð Þ ð2:42Þ
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Importantly, the function G is based on state functions, and hence a state function
itself. It was derived that:

• ΔG > 0 for a non-spontaneous process
• ΔG ¼ 0 for a process at equilibrium
• ΔG < 0 for a spontaneous process.

With knowledge of the enthalpy of reaction and by calculating the entropy change
ΔSsys (see Sect. 2.1.10), we can therefore predict whether or not a reaction will be
spontaneous at a selected temperature.

For processes that are at equilibrium, the principle of Le Châtelier (Le Chatelier
and Boudouard 1898) allows us to predict what happens to the position of the
equilibrium when the conditions are changed:

" A system at equilibrium, when subject to a disturbance, responds in a
way that tends to minimise the effect of the disturbance.

Energy changes during a reaction
Consider the following reaction which describes the synthesis of ammonia
from its elements:

N2 þ 3H2 Ð 2NH3 ΔG ¼ �32kJmol�1

ΔH ¼ �92:4kJmol�1

In this example, ΔG is the free energy change of the system, as 1 mol of
nitrogen gas reacts with hydrogen to form ammonia. ΔG is a difference in free
energy, i.e. the system has a lower free energy after the reaction proceeded to
the right-hand side of the chemical equation. The fact that the free energy
change is negative indicates that the reaction will proceed from the left to the
right (albeit it requires pressures of 150–250 bar, temperatures of 300–550 �C
and a catalyst—a technologically important process known as the Haber-
Bosch process).

We see that the change of enthalpy during the reaction takes a much more
negative value than the change of the free energy. This makes for two
observations. First, the fact that the enthalpy change is negative indicates
that the reaction is exothermic, i.e. 92.4 kJ mol�1 of heat are produced for
every mol of nitrogen being transformed. Second, the question is what
happens to the remaining energy of 60.4 kJ mol�1. This is energy “consumed”
as the reaction proceeds from the left to right, because the disorder of the
system is decreased. Whereas there are four molecules of starting products,
there are only two molecules of end products; the system has taken a state with

(continued)
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more order. Therefore, the entropy term T � ΔS accounts for 60.4 kJ for each
mol of nitrogen transformed.

Note: Since the chemical reaction above describes the synthesis of ammo-
nia from its elements, the change of enthalpy for this reaction is called the
enthalpy of formation.

6.1.3 Stoichiometry and Molecularity

A stoichiometric equation is the simplest equation involving whole numbers of the
molecules involved in the overall chemical reaction. For example:

N2 þ 3H2 ! 2NH3

2KMnO4 þ 16HCl ! 2KClþ 2MnCl2 þ 8H2Oþ 5Cl2

N2 þ O2 ! 2N2O

Stoichiometric equations do not represent the kinetic equations! The molecularity
of a reaction as calculated by adding the stoichiometric coefficients of the reactants
does therefore in most cases not agree with the experimentally observed order of a
reaction (see Sect. 6.2.2). However:

" For an elementary reaction, the molecularity calculated as the number of
reacting species in the stoichiometric equation, is the same as the order
of the reaction.

" An elementary reaction is defined as a single step reaction with a single
transition state and no intermediates.

Therefore, more complex chemical reactions consist of a sequence of reactions
each known as an elementary reaction. The concept of the transition state will be
discussed in more detail in Sect. 6.5.2.

Reactions that involve

• One molecule are called unimolecular,
• Two molecules are called bimolecular, and
• Three molecules are called termolecular.
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6.2 Reaction Rates, Rate Constants and Orders of Reaction

6.2.1 The Rate of Reaction

What is the rate of a reaction? Studies in the mid-nineteenth century by Cato
M. Guldberg and Peter Waage led them to put forward the law of mass action
(Guldberg 1864; Waage 1864; Waage and Guldberg 1864) which states that

" the rate of any chemical reaction is proportional to the product of the
masses of the reacting substances, with each mass raised to a power
equal to the coefficient that occurs in the chemical equation:

νAAþ νBB ! νCCþ νDD

v � m Að ÞνA � m Bð ÞνB ð6:1Þ

After being re-discovered by van’t Hoff (1877), this law is now of historical
interest, since the rate expressions derived from this law are now known to apply
only to elementary reactions. However, it is still useful for obtaining the correct
equilibrium equation for a reaction

K ¼
QNproducts

i¼1

ci
cØ

� �vi
QNreactants

j¼1

cj
cØ

� �vj ¼
c Cð Þ
cØ

� �vc � c Dð Þ
cØ

� �vD
c Að Þ
cØ

� �vA � c Bð Þ
cØ

� �vB ¼ C½ �vc � D½ �vD
A½ �vA � B½ �vB ð6:2Þ

since Guldberg and Waage recognised that chemical equilibrium is a dynamic
process in which the rates of reaction for the forward and backward processes
must be equal at chemical equilibrium.

In Physical Chemistry, the rate of reaction is defined as the change of concentra-
tion over time, divided by the appropriate stoichiometric coefficient. Convention
describes a positive rate as a formation of products (¼loss of reactants). So for the
following reaction,

νAAþ νBB ! νCCþ νDD

where A is consumed and C is produced, the reaction rate is defined as:

v ¼ � 1
νA

� dc Að Þ
dt

¼ þ 1
νC

� dc Cð Þ
dt

ð6:3Þ
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The rate of a reaction can be expressed with respect to different components
When considering the following reaction

2NOBr gð Þ ! 2NO gð Þ þ Br2 gð Þ

with the formation of NO proceeding with dc NOð Þ
dt ¼ 0:16mmol dm�3s�1,

what is the rate of formation of NO in this reaction?

v ¼ 1
ν NOð Þ �

dc NOð Þ
dt

¼ 1
2
� 0:16mmol dm�3s�1 ¼ 0:080mmol dm�3s�1

For the consumption of NOBr one obtains the rate:

v ¼ � 1
ν NOBrð Þ �

dc NOBrð Þ
dt

Since � dc NOBrð Þ
dt ¼ dc NOð Þ

dt and ν(NOBr) ¼ 2, this yields:

v ¼ �1
2
� �0:16mmoldm�3s�1
� � ¼ 0:080mmoldm�3s�1

This illustrates that the rate for a reaction can be calculated with respect to
any component, but always yields the same numerical value.

6.2.2 Rate Laws, Rate Constants and Reaction Order

The rate of a reaction is often proportional to the concentrations of the reactants,
raised to a power:

νAAþ νBB ! νCCþ νDD

v � c Að Þm, v � c Bð Þn

This proportionality relationship can be transformed into an equation:

v ¼ const: � c Að Þm � c Bð Þn

Importantly, the exponents m and n cannot be predicted a priori. In some
instances, they agree with the stoichiometric coefficients (i.e. m ¼ νA, n ¼ νB), but
in many instances this is not the case. The constant factor is called the rate constant k:
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v ¼ k � c Að Þm � c Bð Þn rate lawð Þ ð6:4Þ

If m ¼ n ¼ 1, the units of k for this equation are:

k½ � ¼ 1dm3mol�1 s�1

The rate constant is independent of the concentrations of the reactants, but
dependent on the temperature (see Sect. 6.5). Since the exponents m and n cannot
be predicted, their values need to be determined experimentally. Equation 6.4 is thus
subject to experimental verification and is called the rate law of the reaction.

The exponentsm and n define the order of a reaction. A reaction with a rate law as
given in Eq. 6.4 is then said to be of

• m-th order in A
• n-th order in B
• the overall order of (m + n)

The exponents m, n, . . . do not need to be integers, they can also be fractional,
e.g. 12.

Some reactions obey a zero-order rate law and therefore proceed with a rate that is
independent of the concentration of the reactant (as long as some is present). For
example, phosphine (PH3) is catalytically decomposed on a tungsten (W) surface

4PH3 gð Þ ! P4 gð Þ þ 6H2 gð Þ

and follows a zero-order reaction. In that case, the generic rate law 6.4 simplifies to:

v ¼ k

Reactions of zero-th order are typically found when there is a limiting parameter
in the reaction, such as e.g. the surface of a catalyst.

Some reactions have complicated rate laws with no overall order. For example,
the formation of HBr from its elements

H2 gð Þ þ Br2 gð Þ ! 2HBr gð Þ

has the following rate equation:

v ¼ k1 � c H2ð Þ � c Br2ð Þ3=2
c Br2ð Þ � k�1 � c HBrð Þ

This reaction is of first order with respect to H2, but of indefinite order with
respect to Br2 and HBr (see also Sect. 6.4.2).
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6.2.3 Reaction Profile

Since the concentrations of reactants and products change with time during a
chemical reaction, the reaction rates are often monitored experimentally by continu-
ously measuring the concentration of a particular species during the reaction. The
resulting plot that represents the change of the concentration of a species with time is
called a reaction profile.

The term ‘continuous’ needs to be taken with some caution. In some cases,
samples are taken at various time points during a reaction and then analysed as to
the concentration of a particular species (e.g. by quenching methods). Such
measurements are taken at select time intervals and thus yield discrete data points.
In other cases, the proceeding reaction may be monitored with a sensor
(e.g. thermocouple, photodetector of a UV/Vis absorption spectrometer, etc) that
delivers an electric signal which is acquired as digital data by a computer. Despite
such data are often taken as continuous data, the data acquisition is not continuous
but depends on the sampling rate of the analog–digital converter (i.e. consists of—a
large number of—discrete data points).

The choice of the sampling rate in the experimental setting has repercussions
in the mathematical treatment of kinetics (see Fig. 6.1). If a low sampling rate
is applied (such as e.g. in the offline analysis/quenching method), data points
are acquired spaced by long time intervals. This is called a reaction profile with
discrete data points. The rates measured from various pairs of points then correspond
to a mathematical Δ. Note that when graphically depicting data from discrete
measurements, the appropriate choice is a scatter plot where each data point is
depicted as a discrete point with a symbol (and possibly error bars, if multiple
measurements are available). Discrete data points should never be connected
by lines. If a mathematical model, such as a rate equation, is available, discrete
data points are fitted with that equation and the fit may be superimposed as a
continuous line graph on the discrete data points. The rate may then be extracted
by differentiation of the underlying mathematical (fit) equation. Since the fit line
is based on a mathematical equation and thus data are known for every point on
the ordinate (x-axis), this constitutes truly continuous data and thus represented by
connected dots (¼line).

Fig. 6.1 Reaction profiles. Left: effects of low sampling rates. Centre: reaction profiles appear
different, depending on whether reactant or product concentrations are followed; however, the
reaction rate is the same. Right: illustration of a scatter plot and data fit
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At high sampling rates, a near-continuous profile is acquired and the differences
between the different data points approaches the mathematical ‘d’, which is the slope
of the curve at a particular point.

The left panel of Fig. 6.1 shows that a low sampling rate (turquoise) results in
acquisition of discrete data points; the rates determined from discrete data points are
approximations, since they represent macroscopic differences taken between two
clearly distinct points (‘Δ’). High sampling rates enable a near-continuous data
acquisition and the rates may be determined as the slopes of tangents at any point
(‘d’). The centre panel of Fig. 6.1 illustrates different reaction profiles for the same
reaction. Depending on whether product (turquoise) or reactant (magenta)
concentrations are followed, the rate is obtained either as the positive or the negative
slope from the reaction profile. The right panel of Fig. 6.1 illustrates a scatter plot
of discrete data for a chemical reaction. Multiple independent measurements at
individual time points allow calculation of the mean (black dots) and the estimated
standard deviation (shown as positive and negative error bars). Data fitting with an
appropriate rate equation results in a truly continuous reaction profile from which
rates can be determined by differentiation of the underlying rate law. The goodness
of fit needs to be indicated (here illustrated as an R2 evaluation).

6.3 Rate Equations

A summary of the differential and integrated rate equations for the different reaction
orders, along with their derived half-lives is given in Table 1.11.

6.3.1 Differential Rate Equation

For the reaction

νAA ! νBBþ νCC

The rate law of the form

v ¼ k � c Að Þm

can be expressed as

� 1
νA

� dc Að Þ
dt

¼ k � c Að Þm ð6:5Þ

which constitutes the differential form of the rate equation.
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The exponent in the rate law, m, determines the order of the reaction; it is said to
proceed with the m-th order. The differential rate equations for the different reaction
orders are:

� 1
νA

� dc Að Þ
dt

¼ k � c Að Þ0 ¼ k 0th order ð6:6Þ

� 1
νA

� dc Að Þ
dt

¼ k � c Að Þ1 ¼ k � c Að Þ 1st order ð6:7Þ

� 1
νA

� dc Að Þ
dt

¼ k � c Að Þ2 2nd order ð6:8Þ

� 1
νA

� dc Að Þ
dt

¼ k � c Að Þ3 3rd order ð6:9Þ

6.3.2 Integrated Rate Expression for the First Order Rate Law

In order to derive an expression for a given rate law that allows calculation of
numerical values for the concentration of a reactant over time, the differential rate
expression needs to be integrated:

v ¼ � 1
νA

� dc Að Þ
dt

) ct Að Þ ¼ ?

To integrate the differential 1st-order rate law

� 1
νA

� dc Að Þ
dt

¼ k � c Að Þ ð6:7Þ

one first identifies the two variables that are of interest for the integration; here, these
are c(A) and t. The equation is then re-arranged such that the two variables get
isolated on opposite sides:

� 1
νA

� 1
c Að Þ � dc Að Þ ¼ k � dt

The integration has to be carried out with respect to the two differential variables,
i.e. 1

c Að Þ � dc Að Þ on the left side and dt on the right side. The factors � 1
νA

and

k are constants with respect to the integration and thus can be taken outside the
integral. In order to calculate determined integrals, one also needs to specify the
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boundaries within which the integration is supposed to happen. We start at time t0
where the concentration of A is the initial concentration c0(A), and proceed up to
time t, where the concentration of A is ct(A):

� 1
νA

�
ðct
c0

1
c Að Þ � dc Að Þ ¼ k �

ðt
t0

dt ð6:10Þ

The integral on the left side,
Ð

1
c Að Þ � dc Að Þ, corresponds to the type

Ð
x�1dx and

is resolved to lnx. On the right hand side,
Ð
dt is of the type

Ð
dx which resolves

to x (see Table A.2). Equation 6.10 with determined integrals thus yields:

� 1
νA

� ln c Að Þ½ �ctc0 ¼ k � t½ � tt0 ð6:11Þ

The expressions of the resolved integrals x½ �xendxstart
need to be calculated as per:

x½ �xendxstart
¼ xend � xstart

Equation 6.11 then yields:

� 1
νA

� ln ct Að Þ � ln c0 Að Þ½ � ¼ k � t � t0ð Þ

With t0 ¼ 0 one obtains:

� 1
νA

� ln ct Að Þ � ln c0 Að Þ½ � ¼ k � t

In order to calculate a numerical value for the only unknown, ct(A), we isolate the
expression for ct(A) on one side:

ln ct Að Þ � ln c0 Að Þ ¼ �νA � k � t ð6:12Þ

ln ct Að Þ ¼ �νA � k � t þ ln c0 Að Þ ð6:13Þ

Equation 6.13 shows that if we measure the concentration of A, ct(A), at various
time points t, and plot ln ct(A) versus t, we obtain a line with a negative slope,
(�νA�k), and a y-intercept of ln c0(A) (Fig. 6.2). Linear relationships in x–y plots are
a convenient way of analysing data, and historically (before the advent of the
computer) the only way to determine numerical values of fitting constants.

With modern fitting software, it is, of course, possible to fit non-linear
relationships. If Eq. 6.12 is resolved for ct(A), one obtains:
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ln
ct Að Þ
c0 Að Þ ¼ �νA � k � t ð6:14Þ

ct Að Þ
c0 Að Þ ¼ e�νA�k�t

ct Að Þ ¼ c0 Að Þ � e�νA�k�t ð6:15Þ

A closer look at Eqs. 6.13 and 6.15 reveals that the experimentally determined
rate constant is indeed (νA�k) and includes the stoichiometric coefficient! This needs
to be taken into account when calculating the rate constant k from experimental data.

6.3.3 Half-lives and Time Constants

Half-lives and time constants are secondary parameters derived from the rate
equations and can be calculated for reactions of any order.

The half-life t1/2 describes the time required to reduce the concentration of a
reactant to 1/2 of its initial value. The time constant τ describes the time required to
reduce the concentration of a reactant to 1

e of its initial value.
For 1st-order chemical reactions, the half-life and time constant are particularly

useful indicators for the rate of the reaction, since with 1st-order reactions the two
parameters do not depend on the initial concentration of reactants is the half-life t1/2 of
a reactant.

In order to derive an expression for half-life of a 1st-order reaction, we consider
its definition:

t ¼ 0 : ct Að Þ ¼ c0 Að Þ

Fig. 6.2 Analysis of
1st-order kinetics by
means of linear regression
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t ¼ t1=2 : ct Að Þ ¼ 1
2
� c0 Að Þ

Using this relationship in the 1st-order rate Eq. 4.13 yields:

ln
ct Að Þ
c0 Að Þ ¼ �k � t

ln
1
2 � c0 Að Þ
c0 Að Þ ¼ �k � t1=2

� ln
1
2
¼ k � t1=2

Making use of a logarithm rule that multiplies (�1) into the argument of the
logarithm yields:

ln 2 ¼ k � t1=2

and thus

t1=2 ¼ ln 2
k

Half-life of a 1st-order reaction

Irrespective of the initial concentration, the time it takes in a 1st-order reaction to
reduce the initial concentration to half its value is always 0:693

k .
Earlier, we have introduced the time constant τ of a reaction as the time it takes

for the concentration of a reactant to fall to 1
e (e � 2.71828) of its initial value. As

above in the case of the half-life, we use this relationship and apply it to the 1st-order
rate law 4.13 which yields:

ln
1
e � c0 Að Þ
c0 Að Þ ¼ �k � τ

� ln
1
e
¼ k � τ

ln e ¼ k � τ

1 ¼ k � τ
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τ ¼ 1
k

Time constant of a 1st-order reaction ð6:17Þ

6.3.4 Integrated Rate Expression for the Second Order Rate Law

The differential 2nd-order rate law is given by Eq. 6.8:

� 1
νA

� dc Að Þ
dt

¼ k � c Að Þ2 ð6:8Þ

We re-arrange the equation such that the two variables c(A) and t get isolated on
opposite sides:

� 1
νA

� 1

c Að Þ2 � dc Að Þ ¼ k � dt

and integrate from time t0 where the concentration of A is c0(A) to time t, where the
concentration of A is ct(A):

� 1
νA

�
ðct
c0

dc Að Þ
c Að Þ2 ¼ k �

ðt
t0

dt ð6:18Þ

The integral on the left side,
Ð dc Að Þ

c Að Þ2 corresponds to the type
Ð
x�2dx and is

resolved to 1
�2þ1 � x�2þ1 ¼ �x�1. On the right hand side,

Ð
dt is of the type

Ð
dx

which resolves to x (see Table A.2). Equation 6.18 with determined integrals thus
yields:

1
νA

� 1
c Að Þ
� �ct

c0

¼ k � t½ � tt0

1
νA

� 1
ct Að Þ �

1
c0 Að Þ

� 	
¼ k � t � t0ð Þ

With t0 ¼ 0, this yields:

1
ct Að Þ �

1
c0 Að Þ

� 	
¼ νA � k � t
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1
ct Að Þ ¼ νA � k � t þ 1

c0 Að Þ ð6:19Þ

or, when resolving for ct(A):

ct Að Þ ¼ c0 Að Þ
1þ νA � k � t � c0 Að Þ ð6:20Þ

Equation 6.19 shows that for the second order rate law, a linear correlation is
obtained when plotting 1

ct Að Þ versus t, where the slope is νA � k and the y-intercept is
1

c0 Að Þ (Fig. 6.3).

6.3.5 Integrated Rate Expression for the Third Order Rate Law

The differential 3rd-order rate law is given by Eq. 6.9:

� 1
νA

� dc Að Þ
dt

¼ k � c Að Þ3 ð6:9Þ

For integration, we again isolate the two variables, c(A) and t, on opposite sides:

� 1
νA

� 1

c Að Þ3 � dc Að Þ ¼ k � dt

and integrate from [t0, c0(A)] to [t, ct(A)]:

Fig. 6.3 Analysis of
2nd-order kinetics by means
of linear regression
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� 1
νA

�
ðct
c0

dc Að Þ
c Að Þ3 ¼ k �

ðt
t0

dt ð6:21Þ

The integral on the left side,
ðct
c0

dc Að Þ
c Að Þ3 corresponds to the type

Ð
x�3dx and is

resolved to 1
�3þ1 � x�3þ1 ¼ �1

2 x
�2. On the right hand side,

ðt
t0

dt is of the type
Ð
dx

which resolves to x (see Table A.2). Equation 6.21 with determined integrals thus
yields:

� 1
νA

� � 1

2 � c Að Þ2
" #ct

c0

¼ k � t½ � tt0

1
2 � νA � 1

ct Að Þ2 �
1

c0 Að Þ2
 !

¼ k � t � t0ð Þ

1

ct Að Þ2 ¼ 2 � νA � k � t þ 1

c0 Að Þ2 ð6:22Þ

Therefore, a plot of 1
ct Að Þ2 against t will yield a line with slope 2 � νA � k and

intercept 1
c0 Að Þ2 (Fig. 6.4).

Fig. 6.4 Analysis
of 3rd-order kinetics
by means of linear regression
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6.3.6 Integrated Rate Expression for the Zero-th Order Rate Law

In order to integrate the differential rate law of zero-th order

� 1
νA

� dc Að Þ
dt

¼ k ð6:6Þ

the two variables, c(A) and t, are isolated on opposite sides of the equation:

� 1
νA

� dc Að Þ ¼ k � dt

We then integrate from [t0,c0(A)] to [t, ct(A)]:

� 1
νA

�
ðct
c0

dc Að Þ ¼ k �
ðt
t0

dt ð6:23Þ

The integrals on both sides side,
ðct
c0

dc Að Þ and
ðt
t0

dt, correspond to the type
Ð
dx

which resolves to x (see Table A.2). Equation 6.23 with determined integrals thus
yields:

� 1
νA

� c Að Þ½ �ctc0 ¼ k � t½ � tt0

which results in

� 1
νA

� ct Að Þ � c0 Að Þ½ � ¼ k � t � t0ð Þ

With t0 ¼ 0 this yields:

� 1
νA

� ct Að Þ � c0 Að Þ½ � ¼ k � t

ct Að Þ � c0 Að Þ ¼ �νA � k � t

ct Að Þ ¼ �νA � k � t þ c0 Að Þ ð6:24Þ
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Therefore, a plot of ct(A) against t will yield a line with slope �νA � k and
intercept c0(A) (Fig. 6.5).

6.4 Determination of the Rate Law

6.4.1 Analysing Data Using the Integrated Rate Laws

If kinetic data for a chemical reaction have been obtained, there are two ways to
check whether the reaction adheres to any of the standard rate laws (0th–3rd order).

If at least two data points, t and ct(A), are known, one can substitute these values
into the four integrated rate laws (Eqs. 6.24, 6.15, 6.19 and 6.22) and estimate the
rate constants k for the different orders. For the correct order, the two data points
need to yield the same value for the rate constant.

Alternatively, the linear relationships (Eqs. 6.24, 6.13, 6.19 and 6.22) of the
integrated rate equations can be plotted and subjected to a linear fit (see Figs. 6.2,
6.3, 6.4, and 6.5). The rate law that produces the best fit is likely to be the right one
(Table 6.1).

Importantly, the experimentally determined rate constant kexp as obtained from
the slope of these linear relationships is related to the ‘true’ rate constant k by a
proportionality factor that also depends on the stoichiometric coefficients of the
reaction.

Table 6.1 The rate law
may be determined
by graphical representation
of data and checking for
a linear relationship.
The rate constant is then
obtained from the slope

Order Rate law Graph Rate constant

0 � 1
νA �

dc Að Þ
dt ¼ k c(A) vs t k ¼ � 1

νA � kexp
1 � 1

νA �
dc Að Þ
dt ¼ k � c Að Þ ln c(A) vs t k ¼ � 1

νA � kexp
2 � 1

νA �
dc Að Þ
dt ¼ k � c Að Þ2 1

c Að Þ vs t k ¼ 1
νA � kexp

3 � 1
νA �

dc Að Þ
dt ¼ k � c Að Þ3 1

c Að Þ2 vs t k ¼ 1
2�νA � kexp

Fig. 6.5 Analysis
of 0th-order kinetics
by means of linear regression
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6.4.2 Experimental Design: Isolation Method

Given the reaction

Aþ B ! Cþ D

with the general rate law

v ¼ k � c Að Þm � c Bð Þn ð6:4Þ

we are now concerned with experimental approaches that allow determination of the
exponents m, n, etc.

In the isolation method, all starting reactants are supplied in excess except for one
(e.g. reactant A). One can then assume that all excessively supplied reactants remain
approximately at their initial concentration; the one component with limited supply
is ‘isolated’. In the above example, one can then assume for B that:

c Bð Þ ¼ c0 Bð Þ ¼ const:

For the rate law (Eq. 6.4), it follows that

v ¼ k � c Að Þm � c Bð Þn ¼ k � c Að Þm � c0 Bð Þn

The rate constant k and the constant factor c0(B)
n can be combined to an apparent

rate constant k 0:

v ¼ k
0 � c Að Þm ð6:25Þ

This resulting rate law only features the concentration of one component (the
isolated reactant) and is thus called a pseudo-1st-order rate law.

In order to exploit the pseudo-1st-order rate law in such a way, one needs to
determine the rate of a reaction at a given time t, as well as the concentration of A at
that particular time t. The most frequently used approach in this context is to just
consider the initial rates, i.e. the rate at time t ¼ 0. This eliminates the need to
re-examine the concentration of A, as it will be essentially the starting concentration
of the reactant, c0(A). In the method of initial rates, the rate is thus measured at the
very beginning of the reaction when the concentration of the reactants is still at their
initial values. Equation 6.25 then becomes:

v0 ¼ k
0 � c0 Að Þm

and by subjecting the equation to a logarithmic transformation (and using the
logarithm rule of log(a � b) ¼ log a + log b), one obtains:
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log v0 ¼ log k
0 þ log c0 Að Þm½ �

With the rule of log am ¼ m � log a this yields:

log v0 ¼ log k
0 þ m � logc0 Að Þ ð6:26Þ

Experimentally, the initial rates are determined for a series of different initial
concentrations of A. A plot of logv0 versus logc0(A) then results in a line with slope
m and intercept log k0A (see Fig. 6.6).

Using this pseudo-1st-order rate law, the exponent of the isolated reactant can be
obtained and thus the true order of the reaction with respect to this reactant may be
established. Subsequently, all other starting reactants are isolated, one at a time, thus
allowing conclusions as to the remaining reaction orders.

A caveat for the method of initial rates
The method of initial rates may not always reveal the full rate law. Reaction
products may participate in the reaction and thus affect the rate. As first
proposed in 1907 (Bodenstein and Lind 1907), in the reaction that synthesises
HBr from H2 and Br2

H2 gð Þ þ Br2 gð Þ ! 2HBr gð Þ

the product HBr engages in the radical reaction mechanism (which consists
of consecutive elementary reactions; see Sect. 6.6):

(continued)

Fig. 6.6 Determination of
the reaction order using the
isolation method on initial
rates
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Initiation
Br2 ! Br • þ Br •

Propagation
Br • þ H2 ! HBr þ H •

H • þ Br2 ! HBr þ Br •

H • þ HBr ! Br • þ H2

Termination
Br • þ Br • ! Br2
H • þ Br • ! HBr
H • þ H • ! H2

Based on this reaction mechanism, the following rate equation is derived:

v ¼ k1 � c H2ð Þ � c Br2ð Þ3=2
c Br2ð Þ � k2 � c HBrð Þ

6.4.3 Reactions Approaching Equilibrium

In practice, kinetic studies often conducted immediately after initiation of a reaction,
i.e. far from the equilibrium. Therefore, reverse reactions need not be considered and
the method of initial rates may be applied. However, when a reaction actually
approaches equilibrium, the concentrations of products have to be taken into
account. As an exemplary case, we consider a chemical equilibrium

A Ð B ð6:27Þ

where both the forward and reverse reactions follow a 1st-order rate law (which is,
for example, the case in some isomerisation reactions).

The concentration of A is thus decreased by the forward reaction, but increased
by the reverse reaction, and one obtains the following rate expression:

dc Að Þ
dt

¼ �k1 � c Að Þ þ k�1 � c Bð Þ ð6:28Þ

With

c Að Þ þ c Bð Þ ¼ c0 Að Þ ) c Bð Þ ¼ c0 Að Þ � c Að Þ

we can substitute c(B) in Eq. 6.28 and obtain:
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dc Að Þ
dt

¼ �k1 � c Að Þ þ k�1 � c0 Að Þ � c Að Þ½ �
¼ �k1 � c Að Þ � k�1 � c Að Þ � k�1 � c0 Að Þ

dc Að Þ
dt

¼ � k1 þ k�1ð Þ � c Að Þ � k�1 � c0 Að Þ ð6:29Þ

The integrated form of the differential Eq. 6.29 resolves to:

c Að Þ ¼ k�1 þ k1 � e� k1�k�1ð Þ�t

k�1 þ k1
� c0 Að Þ ð6:30Þ

From Eq. 6.30, one can calculate the equilibrium concentration of A by
considering a very large value for the time t; if the reaction is allowed to continue
for a long time, it will certainly have reached equilibrium. With knowledge of the
function e�x (see Fig. 6.7) it becomes clear that:

if t ¼ 1 ) e� k1�k�1ð Þ�t ! 0

Therefore, the term k1 � e� k1�k�1ð Þ�t in Eq. 6.30 can be neglected and the equilib-
rium concentration of A resolves to:

ceq Að Þ ¼ k�1

k�1 þ k1
� c0 Að Þ ð6:31Þ

For the equilibrium concentration of B, one obtains:

Fig. 6.7 The function e�x

anneals to zero when x takes
very large values
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ceq Bð Þ ¼ c0 Að Þ � ceq Að Þ ¼ c0 Að Þ � k�1

k�1 þ k1
� c0 Að Þ

ceq Bð Þ ¼ k�1 þ k1
k�1 þ k1

� c0 Að Þ � k�1

k�1 þ k1
� c0 Að Þ

ceq Bð Þ ¼ k�1 þ k1 � k�1

k�1 þ k1
� c0 Að Þ

ceq Bð Þ ¼ k1
k�1 þ k1

� c0 Að Þ ð6:32Þ

As illustrated in Fig. 6.8, in the course of the reaction, the concentration of A
decreases over time and attains its equilibrium value once the equilibrium has been
reached. In turn, the concentration of B increases over time up to the value of its
equilibrium concentration. Importantly, at equilibrium the rates of the forward and
reverse reactions are the same. We can thus conclude:

v1 ¼ v�1

k1 � ceq Að Þ ¼ k�1 � ceq Bð Þ

k1
k�1

¼ ceq Bð Þ
ceq Að Þ ¼ K ð6:33Þ

This relationship provides a link between the equilibrium constant of the reaction,
K (see Eq. 6.2), a thermodynamic quantity, and the rate constants, k1 and k�1, which
are kinetic properties.

Fig. 6.8 Time-dependent
development of the
concentrations of A and B
in reaction 6.27
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6.4.4 Relaxation Methods

When a system is disturbed and thus taken off equilibrium conditions, the term
relaxation refers to the return to a state of equilibrium. When a chemical reaction is at
equilibrium, and environmental parameters such as temperature or pressure are
suddenly changed, the system will adjust itself to new equilibrium conditions
(cf. Le Châtelier’s principle; Sect. 6.1.2).

Manfred Eigen (1967 Nobel Prize in Chemistry) developed methodologies in the
1950s to experimentally determine rate constants of fast reactions based on these
phenomena (Eigen et al. 1953; Eigen 1954). Technically, it is possible to elicit
sudden changes in temperature (T-jump) or pressure (p-jump). If a reaction has a
definite reaction enthalpy ΔrH (ΔrH 6¼ 0), the equilibrium constant K of that reaction
is dependent on the temperature (van’t Hoff equation, Eqs. 2.60, 2.61 in Sect. 2.2.6).
In response to a sudden temperature change (T-jump), the reaction will respond by a
relaxation process that established the new equilibrium based on the new tempera-
ture. Similarly, if the reaction volume ΔrV has a definite value (ΔrV 6¼ 0), then its
equilibrium constant is dependent on the pressure. A sudden pressure change
(p-jump) will result in a relaxation that adjusts the equilibrium to the new conditions.

Irrespective of the order of the underlying reaction, the relaxation process will
follow a 1st-order kinetics.

Since the equilibrium composition of a reaction depends on the temperature
or pressure, the concentrations of the individual components after a T- or p-jump
will differ from the equilibrium concentrations ceq(A), ceq(B) and ceq(C) by a
concentration difference Δjumpc. For the simple equilibrium

Aþ BÐk1
k�1

C

this means

c Að Þ ¼ ceq Að Þ þ Δjumpc

c Bð Þ ¼ ceq Bð Þ þ Δjumpc

c Cð Þ ¼ ceq Cð Þ � Δjumpc

Without rigorously deriving the consequences here, it can be shown that the
change of the concentration difference Δjumpc with time occurs as per

d Δjumpc
� �

dt
¼ �Δjumpc � k1 � ceq Að Þ þ ceq Bð Þ
 �þ k�1

� 

After separation of variables and integration, this leads to the relationship
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Δjumpc tð Þ ¼ �Δjumpc 0ð Þ � e� k1� ceq Að Þþceq Bð Þ½ �þk�1f g�t ð6:34Þ

In Eq. 6.34, Δjumpc(t) is the concentration change at time t, and Δjumpc(0)
the concentration change immediately after the T/p-jump. By comparison, we find
that this equation takes the form of equation

ct Að Þ ¼ c0 Að Þ � e�νA�k�t ð6:15Þ

which describes a 1st-order kinetics.
The time constant τ of a first order reaction as then as per Eq. 6.17:

1
τ
¼ k

Note: k is the true rate constant from Eq. 6.15.
Applied to Eq. 6.34 for the relaxation after a T/p-jump, the time constant

becomes:

1
τ
¼ k1 � ceq Að Þ þ ceq Bð Þ
 �þ k�1

By using the relationship K ¼ k1
k�1

, this can be transformed to:

1
τ
¼ k1 � ceq Að Þ þ ceq Bð Þ þ 1

K

� 	
ð6:35Þ

Due to the system relaxing after a T/p-jump, the time constant τ is now called
relaxation time.

T-jump and p-jump experiments therefore offer a way to determine rate constants
of the forward and reverse reactions of an equilibrium. If the equilibrium constant is
known, a single measurement of the relaxation time τ can reveal the values for k1
and k�1.

6.4.5 Monitoring the Progress of a Reaction

The rates of chemical reactions are measured using techniques that monitor the
concentrations of species present in the reaction mixture. Moderately fast reactions
can be monitored by ‘freezing’ the state of a reaction at a certain time—a method
called quenching. The quenched reaction can then be analysed offline, using a
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suitable experimental procedure. Fast reactions often require real-time analysis or the
application of relaxation methods (see previous section). We will look at some
experimental methodologies for both cases in Sects. 6.4.6 and 6.4.7.

Importantly, the time scale of a particular reaction often does not solely depend on
the value of the rate constant. Only for 1st-order reactions does the half-life t1/2 depend
exclusively on the rate constant k:

t1=2 ¼ ln 2
k

Half-life of a 1st-order reaction ð6:16Þ

For 2nd- and 3rd-order reactions, the half-lives depend on the concentration of the
reactants as per:

t1=2 ¼ 1
k � c0 Að Þ Half-life of a 2nd-order reaction ð6:36Þ

t1=2 ¼ 3

2 � k � c0 Að Þ2 Half-life of a 3rd-order reaction ð6:37Þ

and such reactions can thus be slowed down by choosing lesser initial
concentrations. However, the accuracy of concentration measurements decreases
as concentrations become smaller, and therefore there will be technical limits. For
reactions that follow 0th-order, the half-life is

t1=2 ¼ c0 Að Þ
2 � k Half-life of a 0th-order reaction: ð6:38Þ

So in order to increase the half-life in such cases, larger initial concentrations are
required.

A reaction where at least one component is a gas might result in an overall
change of pressure in a system of constant volume. Such reactions may be followed
by recording the variation of pressure with time. Spectrophotometry is a widely
applicable technique; it measures the absorption of electromagnetic radiation and is
particularly useful, if a component in the reaction mixture has characteristic
spectral properties. Reactions where the number or type of ions change can be
monitored by recording the electric conductivity. If hydrogen ions are produced or
consumed during a reaction, its progress can be followed by monitoring the pH of
the solution.
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Examples of monitoring reaction kinetics
(1)

H2 gð Þ þ Br2 gð Þ ! 2HBr gð Þ

This gas phase reaction may be monitored by absorption of visual light by
Br2. The visual absorption maximum of Br2 is at λmax ¼ 420 nm (Hubinger
and Nee 1995).

(2)
H3Cð Þ3CCl aqð Þ þ H2O lð Þ ! H3Cð Þ3COH aqð Þ þ Hþ

aqð Þ þ Cl� aqð Þ

Here, the conductivity or pH of the solution may be monitored.

(3)

The kinetics of the alkaline hydrolysis of acetylsalicylic acid (aspirin) in
solution can be analysed by quenching the reaction mixture at various time
points and determining the amount of hydroxyl ions remaining at that time by
back-titration.

Alternatively, the reaction may be monitored by UV/Vis spectroscopy. The
product of the reaction, salicylic acid/salicylate, possesses an absorption
maximum at λmax¼ 298 nm; acetylsalicylic acid has no significant absorbance
at this wavelength.

(4)
H2O2 aqð Þ þ 2Hþ

aqð Þ þ 2I� aqð Þ ! 2H2Oþ I2 aqð Þ

The reaction of hydrogen peroxide with iodide in acid solution is a fast
exothermic reaction. The kinetics of this process can be monitored via the
released heat output, i.e. in terms of temperature rise. This can be done with a
calorimeter.

6.4.6 Experimental Techniques for Moderately Fast Reactions

In order to achieve homogeneous mixing of reactants at the beginning of a reaction,
the experimental challenges increase with increase of the reaction rate. With
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moderately fast reactions (half-lives at the order of seconds), conventional mixing
techniques are quite appropriate. Typically, such reactions are started by addition of
one of the reactants to a stirred solution containing the remaining reactants.

Data acquisition may either occur using a real-time technique (e.g. pH electrode,
recording of absorbance) or by stopping the reaction at various time points
(quenching) and analysing the concentration of reactants with a suitable protocol.
There are three types of quenching methods:

Conventional Quenching
Here, the reaction is stopped after it has been allowed to progress for a certain time.
Reaction intermediates may be trapped and analysis can proceed at any time. This
works for reactions that are slow enough such that there is negligible reaction going
on during the quenching process.

Freeze Quench Method
Here, the reaction is quenched by rapid cooling of the mixture. Concentrations of
reactants, intermediates and products can then be measured.

Chemical Quench Flow Method
Reactants are mixed as in the flow method (see next section). The reaction is
quenched by another reagent (e.g. acid, base) after the mixture travelled along a
fixed length through the outlet tube. Once the reaction has been quenched, analysis
of concentrations can proceed with any suitable “slow” method.

6.4.7 Experimental Techniques for Fast Reactions

For fast reactions, mixing of reactants at the start of the reaction needs to be achieved
by flow methods. Here, reactants are mixed rapidly as they are introduced into a
chamber. The reaction continues while the mixture flows through the outlet tube.
Two types of flow methods are commonly in use: the continuous flow and the
stopped flow (see Fig. 6.9).

With exception of the chemical quench flow method (see previous section), data
acquisition in flow methods is typically by real time methods, whereby either a small
sample is withdrawn or the bulk reaction mixture is monitored. Figure 6.10 shows a
stopped flow instrument with an integrated absorbance spectrometer.

Enzymatic activity of carbonic anhydrase by stopped-flow kinetics
Carbonic anhydrases are essential enzymes in all organisms regulating CO2

but also pH homeostasis. They catalyse the (de-)hydration of CO2:

(continued)
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Fig. 6.9 Schematic comparison of the experimental setup for continuous flow (top) and stopped
flow (bottom)

Fig. 6.10 A stopped flow UV/Vis absorption spectrometer
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CO2 aqð Þ þ H2O lð Þ Ð HCO3
�

aqð Þ þ Hþ
aqð Þ

In the forward direction, the environmental pH is lowered, in the reverse
direction, the pH is increased. This pH change, which is due to the production
of 1 mol H+ for each mol CO2 consumed, allows monitoring of the reaction
(Khalifah 1971). For stopped-flow experimentation, this is done by a pH
indicator whose colour change is monitored spectrophotometrically (com-
pared to the fast reaction, pH electrodes require too long to equilibrate for a
stable read-out). The pH indicator used at mildly acidic pH is m-cresol purple;
its spectral characteristics at different pH conditions are shown in Fig. 6.11.
m-cresol purple has an absorption band at λmax ¼ 578 nm; the absorbance
decreases with decreasing pH. The indicator in the reaction mix thus allows
monitoring of H+ production and, therefore, CO2 consumption.

Figure 6.12 shows a reaction profile obtained by stopped-flow kinetics
experiments with human carbonic anhydrase II. Note that the reaction has
finished after 80 ms!

pH
pH
pH

Fig. 6.11 Absorption spectra of m-cresol purple in the visual range at different pH conditions (6.5,
7.5, 8.5)
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6.5 Temperature Dependence of Reaction Rates

6.5.1 The Arrhenius Equation

We have previously discussed the temperature dependence of the equilibrium
constant K (Sect. 2.2.6) which has been developed by van’t Hoff in 1884. Since
the equilibrium constant is the ratio of the rate constants of the forward and the
reverse reaction (Sect. 6.4.3, Eq. 6.33), it is reasonable to expect that both rate
constants would be dependent on the temperature as well. This concept has been
developed by Svante Arrhenius in 1889, who found that the temperature dependence
of most reaction rates adheres to the Arrhenius equation (Arrhenius 1889a, 1889b):

k ¼ A � e� Ea
R�T ð6:39Þ

Here, A is called the pre-exponential factor and Ea is the activation energy. When
writing Eq. 6.39 in its logarithmic form

ln k ¼ lnA� Ea

R � T ð6:40Þ

it becomes clear that a plot of lnk versus 1
T yields a line with slope�Ea

R; such a plot is
called an Arrhenius plot. The comparison of two reactions with different activation
energies Ea shows that the higher the activation energy of a reaction, the stronger the
reaction depends on the temperature. This is illustrated in Fig. 6.13, where the
reaction with the higher activation energy is shown in blue. Due to the larger

Fig. 6.12 Reaction profile of human carbonic anhydrase II from a stopped flow kinetics assay
using m-cresol purple as indicator
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value of Ea, the slope of that line is steeper, and therefore the rate constant k varies
stronger with temperature T.

If a reaction has an activation energy of Ea ¼ 0, its rate constant does not depend
on temperature. If negative activation energies are found, the rate constant decreases
with increasing temperature—an indication of a complex reaction mechanism. There
are also several cases, where the relationship between ln k and 1

T is not linear
correlation; this means that the reaction does not behave according to the Arrhenius
equation. Non-Arrhenius behaviour may be observed in explosions, enzyme
reactions, heterogeneous catalysis and in cases of pre-equilibria.

As a general case, the activation energy at any temperature can be calculated
according to

Ea ¼ R � T2 � d ln k
dT

� 	
ð6:41Þ

which applies to both Arrhenius and non-Arrhenius behaviour.
Since the variation of the rate constant k of a reaction directly affects the rate v,

there is a practical implication of the Arrhenius equation: for many reactions at room
temperature, the reaction rates double for every 10 K increase in temperature.

6.5.2 Interpretation of the Arrhenius Equation

When following the course of a reaction between two reactants A and B, the two
molecules come into contact with each other, conformations change, and atoms are
exchanged or discarded. These events are collectively summarised as the reaction
coordinate. The potential energy along the reaction coordinate has a maximum
value, and the corresponding atomic structure is called the activated complex (see
Fig. 6.14). Here, the reactants are in a state of distortion where any further distortion
will send them on the way to the products. This geometric configuration is thus
called the transition state.

a a

a

a

Fig. 6.13 Temperature
dependence of the rate
constant according to
Arrhenius
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The energy difference of the system between the start of the reaction and the
activated complex is the activation energy Ea as introduced in the Arrhenius Equa-
tion (6.40). One can thus conclude that Ea is the minimum kinetic energy that the
reactants must have in order to form products. The pre-exponential factor A is a
measure of the rate with which collisions between molecules occur, irrespective of
their energy. The product between the rate of collisions and the minimum kinetic
energy required for reaction is thus the rate of successful collisions.

This fundamental concept and the exponential factor e�
Ea
R�T turn out to be essential

components of the collision theory (Sect. 6.8) as well as the transition state theory
(Sect. 6.11). Since the rate constant of a reaction is macroscopic parameter, the
Arrhenius activation energy derived from Eq. 6.40 is also a macroscopic property,
and should thus not be interpreted at the level of single molecules. Ea is an average
energy determined from many individual collisions with varying collision
parameters (collision angle, kinetic energy, internal energy); it is not simply a
molecular threshold energy.

6.6 Linking the Rate Laws with Reaction Mechanisms

So far, we have focused on the explanation of kinetic observations with respect to
mathematically formulated rate laws. In the following, we will try to explain the
observed rate laws in terms of a postulated reaction mechanism.

a

Fig. 6.14 Energy profile of a reaction without intermediate where the products have lower free
energy than the reactants. Ea is the activation energy and ΔG is the free energy of the reaction. See
further development of this concept in the transition state theory (Fig. 6.20)
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6.6.1 Elementary Reactions

Most reactions occur as a sequence of steps which are called elementary reactions,
each of which involves only a small number of different molecules or ions (see Sect.
6.1.3).

For example, the net reaction describing the formation of HBr from its elements

H2 gð Þ þ Br2 gð Þ ! 2HBr gð Þ

can be broken down into the elementary reactions arising from a radical reaction
mechanism (Bodenstein and Lind 1907; Christiansen 1967):

Initiation
Br2 ! Br • þ Br •

Propagation
Br • þ H2 ! HBr þ H •

H • þ Br2 ! HBr þ Br •

H • þ HBr ! Br • þ H2

Termination
Br • þ Br • ! Br2
H • þ Br • ! HBr

In an elementary reaction, there is no phase specified; it is simply a proposed
individual step of a larger reaction mechanism. For instance in the following step

H • þ Br2 ! HBr þ Br •

an H atom attacks a Br2 molecule: a bimolecular reaction. In Sect. 1.3, we introduced
the molecularity of the reaction as the number of molecules that come together to
react in the elementary reaction. It was also discussed that the molecularity needs to
be distinguished from the reaction order which is an empirical quantity, derived from
the experimental rate law. However, the reaction order of the individual elementary
reactions can be derived directly from the molecularity.
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Unimolecular Elementary Reactions

A ! P

follow a 1st-order rate law, because the number of molecules A that can decay is
proportional to the number of molecules A initially available:

dc Að Þ
dt

¼ �k � c Að Þ ð6:7Þ

Bimolecular Elementary Reactions

Aþ B ! P

follow a 2nd-order rate law, because their rate is proportional to the rate with which
the two reactants meet—which in turn depends on their concentrations:

dc Að Þ
dt

¼ �k � c Að Þ � c Bð Þ ð6:8Þ

6.6.2 Consecutive Elementary Reactions

When investigating a reaction mechanism, the postulated mechanism can only be
explored by a detailed investigation of the system, considering that side products or
intermediates may appear in the course of the reaction. Importantly, if a reaction is an
elementary bimolecular reaction, then it has a 2nd-order kinetics. However, if
2nd-order kinetics are observed for a net reaction, then it may be a complex reaction.

In the following, we will need to combine a series of consecutive simple steps,
i.e. elementary reactions, in order to arrive at a reaction mechanism and the
corresponding rate law.

Some reactions proceed through formation of an intermediate (I), so the entire
mechanism is described by consecutive unimolecular reactions:

A!k1 I!k2 P

An example is the decay of radioactive isotopes, such as

When we consider the variation of concentration with time for consecutive
unimolecular reactions, it becomes clear that A decays according to a 1st-order
rate law to I:
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dc Að Þ
dt

¼ �k1 � c Að Þ

The intermediate I is formed from A, and decays to P; both processes follow
1st-order rate laws:

dc Ið Þ
dt

¼ k1 � c Að Þ � k2 � c Ið Þ

P is formed from I in a 1st-order reaction:

dc Pð Þ
dt

¼ k2 � c Ið Þ

In order to obtain expressions for the concentrations of A, I and P, the differential
equations need to be integrated. This yields for the above equations:

c Að Þ ¼ c0 Að Þ � ek1�t ð6:42Þ

c Ið Þ ¼ k1
k2 � k1

� e�k1�t � e�k2�t� � � c0 Að Þ ð6:43Þ

c Pð Þ ¼ 1þ k1 � e�k2�t � k2 � e�k1�t

k2 � k1

� 	
� c0 Að Þ ð6:44Þ

The time-dependent development of the concentrations of A, I and P is illustrated
graphically in Fig. 6.15.

6.6.3 Steady-State Approximation

It is quite apparent from the algebraic expressions 6.42–6.44 in the previous section,
that there is an increase in mathematical complexity when looking at reactions with
more than one step. A reaction scheme that comprises many steps may become
virtually unsolvable, and numerical rather than algebraic integration may be required.

Alternatively, an approximation can be introduced that yields more directly acces-
sible results than the rigorous mathematical treatment. The (quasi-)steady-state
approximation assumes that, after an initial induction period, where concentrations
of intermediates rise from zero to a peak value, they remain approximately constant
and the rate of change of concentrations of intermediates are negligibly small:
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c Ið Þ � const: ) dc Ið Þ
dt

� 0 ð6:45Þ

Figure 6.15 shows that this is indeed an approximation as the curve depicting the

concentration of the intermediate I does not possess a slope ¼ dc Ið Þ
dt

� �
of zero after

rising to a peak value. Nevertheless, we assume the approximation stated by Eq. 6.45
for the following considerations and obtain for the concentration of the intermediate:

dc Ið Þ
dt

¼ k1 � c Að Þ � k2 � c Ið Þ ¼ 0

and thus

c Ið Þ ¼ k1
k2

� c Að Þ

Which yields for the rate of product concentration change:

dc Pð Þ
dt

¼ k2 � c Ið Þ ¼ k1 � k2
k2

� c Að Þ ¼ k1 � c Að Þ

This reveals a 1st-order rate law, whereby P is formed by a decay process of A:

c Að Þ ¼ c0 Að Þ � e�k1�t ð6:15Þ

For the rate of product formation, one thus obtains:

Fig. 6.15 Concentrations of reactant, intermediate and product in a set of consecutive elementary
interactions
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dc Pð Þ
dt

¼ k1 � c0 Að Þ � e�k1�t ð6:46Þ

In order to integrate Eq. 6.46, we first isolate the two differential variables on
opposite sides of the equation:

dc Pð Þ ¼ k1 � c0 Að Þ � e�k1�tdt

and then consider the development of products in the time interval 0!t, i.e. from
c0(P) to ct(P):

ðct Pð Þ

c0 Pð Þ

dc Pð Þ ¼
ðt
0

k1 � c0 Að Þ � e�k1�tdt

The factors k1 and c0(A) are constants with respect to the integral and can thus be
taken outside the integral:

ðct Pð Þ

c0 Pð Þ

dc Pð Þ ¼ k1 � c0 Að Þ �
ðt
0

e�k1�tdt

The integral on the left side of the equation is of the type
Ð
dx ¼ Ð

x0dx and
resolves to x0 + 1 ¼ x. On the right hand side, the integral is of the type

Ð
ea � xdx

which resolves to 1
a � ea�x. We thus obtain:

c Pð Þ½ �ct Pð Þ
c0 Pð Þ ¼ k1 � c0 Að Þ � � 1

k1
� e�k1�t

� � t
0

ct Pð Þ � c0 Pð Þ½ � ¼ �k1
k1

� c0 Að Þ � e�k1�t � e�k1�0� �

Since there is no product present at time t ¼ 0, it follows that c0(P) ¼ 0; for the
term e�k1�0, one obtains e0 ¼ 1. Therefore:

ct Pð Þ � 0ð Þ ¼ �c0 Að Þ � e�k1�t � 1
� �

ct Pð Þ ¼ c0 Að Þ � 1� e�k1�t� � ð6:47Þ

When compared to the expression we obtained for the product concentration by
rigorous kinetic analysis above
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c Pð Þ ¼ 1þ k1 � e�k2�t � k2 � e�k1�t

k2 � k1

� 	
� c0 Að Þ ð6:44Þ

it becomes clear that expression 6.47—obtained with the steady-state approxima-
tion—constitutes a special case of Eq. 6.44. In the case when

k2 � k1

k1 in the denominator of the quotient in 6.44can be neglected. Also, a large value of
k2 will give rise to e�k2�t approaching zero, based on the behaviour of the function e�x

(see Fig. 6.16). Under these conditions, Eq. 6.44 becomes:

c Pð Þ ¼ 1þ k1 � 0� k2 � e�k1�t

k2

� 	
� c0 Að Þ

c Pð Þ ¼ 1þ�k2 � e�k1�t

k2

� 	
� c0 Að Þ

c Pð Þ ¼ 1� e�k1�t� � � c0 Að Þ

and thus shows the relationship (6.47) obtained with the steady-state approximation.
It is found that k2 does not have to be much larger than k1 in order to obtain

reasonably accurate results from the steady-state approximation. For example,
k2 ¼ 20�k1 already yields a good agreement.

6.6.4 The Rate-Determining Step

In the previous section, we have considered the special case of k2 � k1 in the
following set of consecutive reactions

Fig. 6.16 The function e�x

anneals to zero when
x assumes very large values
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A!k1 I!k2 P

which means that the first reaction proceeds a lot slower than the second reaction.
The first reaction thus becomes the rate-determining step.

In consecutive reactions, the rate-determining step is the one with the lowest rate
constant. In many cases, the rate law for a consecutive reaction with a rate-
determining step can thus be written in a straight-forward way: the rate of the overall
reaction equals the rate of the rate-determining step.

6.6.5 Pre-Equilibria

In many instances of consecutive reactions, the first reaction needs to be treated as an
equilibrium process (pre-equilibrium). We thus consider the case where an interme-
diate I is formed by reaction of A and B in an equilibrium reaction, and that the
reaction to the product P proceeds a lot slower than the reverse reaction in the
equilibrium:

Aþ BÐk1
k�1

I!k2 P

Since we assume the product formation as rate-determining step, the rate constant
for the second reaction takes a much smaller value than the rate constant for the
reverse reaction of the equilibrium:

k�1 � k2

For the first reaction, the equilibrium constant is given by:

K ¼ I½ �
A½ � � B½ � ¼

c Ið Þ � cØ
c Að Þ � c Bð Þ ¼

k1
k�1

� cØ

Substituting this into the rate law for the product formation yields:

dc Pð Þ
dt

¼ k2 � c Ið Þ ¼ k2 � KcØ � c Að Þ � c Bð Þ ð6:48Þ

This is the form of a 2nd-order rate law with the rate constant k ¼ k2 � K
cØ ¼ k2 � k1

k�1
.
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6.6.6 Kinetic and Thermodynamic Control

A common feature of reactions in organic chemistry (e.g. nitration of mono-
substitute benzenes yielding o-, m-, p-derivatives) is the formation of multiple
products from one set of reactants:

Aþ B ! P1 rate constant : k1; rate : v1 ¼ dc P1ð Þ
d t

¼ k1 � c Að Þ � c Bð Þ

Aþ B ! P2 rate constant : k2; rate : v2 ¼ dc P2ð Þ
d t

¼ k2 � c Að Þ � c Bð Þ

The relative proportion of products formed is given by the ratio of the two rates,
and thus the two rate constants:

v1
v2

¼ k1
k2

¼ c P1ð Þ
c P2ð Þ ð6:49Þ

The ration given by Eq. 6.49 is due to the kinetic control over the proportion of
products formed. Notably, this refers to the concentration of products produced at
any stage during the reaction, i.e. before the reaction reached equilibrium. Kinetic
control is also the reason for the occurrence of electrochemical overpotentials;
cf. Sect. 4.2.1). If a reaction is allowed to reach equilibrium, then the proportion of
products is determined by the thermodynamic considerations. The ratio is then under
thermodynamic control.

6.6.7 The Lindemann–Hinshelwood Mechanism

Examples for unimolecular reactions such as

A ! P

are homogeneous gas phase reactions that appear to follow 1st-order kinetics, such
as e.g. the isomerisation of cyclo-propane:

For a 1st-order kinetics, the following rate law can be formulated:

v ¼ k � c Að Þ
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However, in order to react in this gas phase process, an individual molecule needs
to acquire enough energy through collision. Since the collision is a bimolecular
process, the question arises how this may still adhere to a kinetic law of 1st-order.

A closer look reveals that there is an elementary unimolecular step in this process
(hence 1st-order gas phase reactions are called unimolecular reactions), but there is
also a bimolecular step in the overall reaction. Lindemann and Hinshelwood
provided a plausible mechanism:

Aþ A ! A∗ þ A A can become activated in a collision with another molecule:
Aþ A∗ ! Aþ A The activated molecule may lose its excess energy by collision:
A∗ ! P Alternatively, the activated molecule might react to products:

If the unimolecular step of product formation is slow enough to be rate-
determining, then the overall reaction will have a 1st-order kinetics (as observed).

The reaction rates for the above set of elementary reactions can be derived as:

Aþ A ! A∗ þ A
dc A∗ð Þ

dt
¼ k1 � c Að Þ2

Aþ A∗ ! Aþ A
dc A∗ð Þ

dt
¼ �k�1 � c Að Þ � c A∗ð Þ

A∗ ! P
dc A∗ð Þ

dt
¼ �k2 � c A∗ð Þ

From these individual rates, the net rate of formation of A* is thus:

dc A∗ð Þ
dt

¼ k1 � c Að Þ2 � k�1 � c Að Þ � c A∗ð Þ � k2 � c A∗ð Þ

Applying the steady-state approximation, dc A∗ð Þ
dt � 0, yields:

dc A∗ð Þ
dt

¼ k1 � c Að Þ2 � k�1 � c Að Þ � c A∗ð Þ � k2 � c A∗ð Þ � 0

This can be re-arranged to:

k1 � c Að Þ2 ¼ k�1 � c Að Þ � c A∗ð Þ þ k2 � c A∗ð Þ

c A∗ð Þ ¼ k1 � c Að Þ2
k�1 � c Að Þ þ k2

which yields for the rate of product formation from this rigorous consideration:
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dc Pð Þ
dt

¼ k2 � c A∗ð Þ ¼ k1 � k2 � c Að Þ2
k�1 � c Að Þ þ k2

ð6:50Þ

However, this is not a 1st-order rate law!
Two special cases can be singled out. If the overall pressure in the reaction vessel

is sufficiently high, the rate of de-activation by collisions between A* and A is
greater than the rate of the product formation, then

dc A ! A∗ð Þ
dt

����
���� ¼ �k�1 � c Að Þ � c A∗ð Þj j � dc A ! Pð Þ

dt

����
���� ¼ �k2 � c A∗ð Þj j

k�1 � c Að Þ � c A∗ð Þ � k2 � c A∗ð Þ

k�1 � c Að Þ � k2

and we can neglect k2 in the denominator of above product rate and obtain

dc Pð Þ
dt

¼ k1 � k2 � c Að Þ2
k�1 � c Að Þ ¼ k1 � k2

k�1
� c Að Þ ð6:51Þ

which describes a rate law for a 1st-order reaction.
What happens if the overall pressure in this gas phase reaction is lowered, for

example by decreasing the concentration of gas A?
If the number of A molecules is decreased, the activation and de-activation

reactions are affected. In particular, it becomes less likely that A* molecules are
de-activated, since less A molecules are available for a collision. In relation to the
de-activation, the product formation step will be more likely. Therefore, at low
concentration of A:

k�1 � c Að Þ 	 k2

This means we can neglect k�1 � c(A) in the denominator of Eq. 6.50, and thus
obtain:

dc Pð Þ
dt

¼ k1 � k2 � c Að Þ2
k2

¼ k1 � c Að Þ2 ð6:52Þ

This means that if we reduce the pressure of A (i.e. the concentration), then the
reaction should switch to a 2nd-order rate law, since the activation step becomes
rate-determining.

The Lindemann–Hinshelwood mechanism can be experimentally tested, because
the 1st-order rate law (Eq. 6.51) was obtained with the assumption that the rate of
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de-activation by collisions between A* and A is greater than the rate of the product
formation. This will only be the case, if there are enough molecules A available for
frequent collisions. For the second case of low concentration of A (or, more
generally, low overall pressure), a 2nd-order rate law is obtained (Eq. 6.52).

6.7 Polymerisation Kinetics

There are two main types of polymerisation processes that differ in their underlying
reaction mechanism and the variation of the average molecular mass of the products
over time (Table 6.2).

6.7.1 Stepwise Polymerisation

For illustration of stepwise polymerisation processes, we will consider the
polymerisation of polyamides (see Fig. 6.17). Examples of naturally occurring
polyamides of technological importance are proteins which constitute wool and
silk. Synthetic polyamides are typically made by stepwise polymerisation to produce
materials such as Nylons and Aramids. Due to their high durability and strength,
most polyamides are used in textiles, automotive applications, carpets and
sportswear.

Here, two different monomers are joined together, and the resulting product is
thus called a copolymer. In regular copolymers such as polyamides, polyesters and
polyurethanes, the repeating unit consists of one of each monomer, so that they
alternate in the chain. In the example shown in Fig. 6.17, each monomer has the
same reactive group on both ends; the direction of the amide bond therefore
alternates between each monomeric unit. This is different in natural polyamides
(proteins), where the direction of the amide bond stays the same throughout.

The reaction rate in a stepwise polymerisation reaction depends on the concen-
tration of ─NH2 (amine) and ─COOH (acid) groups:

Table 6.2 Characteristics of the two main types of polymerisation reactions

Stepwise polymerisation Chain polymerisation

• Any two monomers in the mixture can
link together at any time.

• Growth of the polymer is not confined
to chains already growing.

• Monomers are consumed early in the
reaction.

• Average molecular mass of the
product grows with time.

•An activated monomer attacks another monomer and
links to it.

• This unit then attacks another monomer and links to
it.

• Long polymers are formed rapidly.

• The yield, but not the molecular mass of the
product, increases with longer reaction times.
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dc acidð Þ
dt

¼ �k � c amineð Þ � c acidð Þ

Because there is one amine group for each acid group (assuming that enough
amine reactants are provided), it follows:

dc acidð Þ
dt

¼ �k � c acidð Þ2 ð6:53Þ

which constitutes a differential 2nd-order rate law.
If we assume that the rate constant for the reaction k remains constant with

growing chain length, Eq. 6.53 can be integrated and yields (cf. Table 1.11):

c acidð Þ ¼ c0 acidð Þ
1þ k � t � c0 acidð Þ ð6:54Þ

which is the integrated 2nd-order rate law. It provides a means to calculate the
concentration of ‘free’ (not yet condensed) acid groups at any time during the
reaction.

Fig. 6.17 Schematic illustration of the formation of Nylon 6-6 from hexane-1,6-diamine and
hexanedioic acid (adipic acid). Instead of adipic acid, adipoyl chloride may be used
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The fraction of condensed acid groups, p, can then be calculated as the concen-
tration of condensed acid groups, divided by the initial concentration of acid groups.
By using the expression for the concentration of acid groups that are still available
(Eq. 6.54), one obtains:

p ¼ c0 acidð Þ � c acidð Þ
c0 acidð Þ ¼ 1� c acidð Þ

c0 acidð Þ ¼ 1� 1
1þ k � t � c0 acidð Þ ð6:55Þ

This equation can be arithmetically re-arranged to yield:

p ¼ 1þ k � t � c0 acidð Þ
1þ k � t � c0 acidð Þ �

1
1þ k � t � c0 acidð Þ ¼

k � t � c0 acidð Þ
1þ k � t � c0 acidð Þ ð6:56Þ

As a practical useful parameter, one defines the degree of polymerisation, <N>,
as the average number of monomer residues per polymer molecule. <N> therefore
indicates the average length of the polymer. It is calculated as the ratio between the
initial concentration of acid, c0(acid), and the concentration of acid end groups
remaining non-condensed, c(acid). By using the relationship from Eq. 6.56, this
yields Carothers’ equation (Carothers 1932) for stepwise polymerisation of linear
polymers:

Nh i ¼ c0 acidð Þ
c acidð Þ ¼ 1

1� p
¼ 1þ k � t � c0 acidð Þ ð6:57Þ

One can thus conclude that the average length <N> obtained from a stepwise
polymerisation reaction grows linearly with time. The longer a stepwise
polymerisation proceeds, the higher the average molecular mass of the product.

6.7.2 Chain Polymerisation

Many gas-phase reactions (for example the synthesis of hydrogen bromide from its
elements, Sect. 6.6.1), but also liquid-phase polymerisations are chain reactions. In a
chain reaction, an intermediate produced in one step generates another intermediate
in the subsequent step. These intermediates are called chain carriers. In a radical
chain reaction, the chain carriers are radicals, i.e. the intermediates possess unpaired
electrons. Chain polymerisation occurs by addition of monomers to a rapidly
growing polymer. The manufacture of frequently used plastics such as polyethylene
(PE), polypropylene (PP), and polyvinyl chloride (PVC) is based on chain
polymerisation (albeit these are mostly conducted catalytically, e.g. by using
Ziegler–Natta catalysts). Mechanistically, the free radical mechanism consists of
three stages: chain initiation, chain propagation, and chain termination (see
Fig. 6.18).
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The central feature of the kinetic treatment of chain polymerisation reactions is
that the rate is proportional to the square root of the initiator concentration:

v ¼ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c initiatorð Þ

p
� c monomerð Þ ð6:58Þ

In chain polymerisation processes, the kinetic chain length ν is defined as the
number of monomer units consumed per number of activated centres produced in the
initiation step. The kinetic chain length can be expressed in terms of the rate
expressions: it is the rate of propagation of the chains (i.e. monomers are consumed
at the rate with which chains propagate) divided by the rate of production of radicals.
Without rigorously deriving this relationship, we appreciate that this yields the
following expression for the kinetic chain length:

v ¼ kprop � c monomerð Þ
2 � kterm � c radicaleð Þ ¼

k � c monomerð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c initiatorð Þp ð6:59Þ

The final polymer produced by the chain mechanism may arise from mutual
termination. In this case, the average number of monomers in the final polymer,
<N>, is the sum of the numbers in the two combining chains. Since the average
number of monomers in each chain is ν, we obtain:

Nh i ¼ 2 � v ¼ 2 � k � c monomerð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c initiatorð Þp ð6:60Þ

Fig. 6.18 Illustration of the
three stages of a radical chain
reaction that will result in
polypropene. The radical
starter in this example is a
peroxide (R─O─O─R)
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It follows that the slower the initiation of the chain (i.e. the lower the concentra-
tion of initiator and the slower the rate of initiation), the greater the kinetic chain
length, and therefore the higher the average molecular mass of the polymer.

6.8 Collision Theory

After having discussed the overall dynamics of chemical reactions in the preceding
chapters, we now want to have a closer look at what happens to molecules at the
climax of reactions. We can certainly expect that extensive structural changes take
place and energies are re-distributed among bonds.

The calculation of rates of such processes from first principles is very difficult, but
a quantitative account of reaction rates can be given in terms of

• collision theory for gas-phase reactions
• diffusion theory for diffusion-controlled reactions in solution
• transition state theory for activation-controlled reactions in solution

6.8.1 Collision Theory for Bimolecular Gas-phase Reactions

In Sect. 6.5.2, we introduced the concept that products are only formed if the
collision between two reactants is of sufficiently high energy; this required activation
energy Ea is described by the Arrhenius equation. An encounter of two reactants
with less energy than Ea will lead to separation without product formation.

This concept of collision can well be used to describe gas-phase reactions. For
solution reactions, one can imagine the two reactants approaching by diffusion and
then acquiring energy from their immediate surroundings while they are in contact.

We consider the following bimolecular elementary reaction

Aþ B ! P with the rate law v ¼ k � c Að Þ � c Bð Þ: ð6:61Þ

The rate of the reaction will be proportional to the rate of collisions, and thus to

the mean speed of molecules, �c �
ffiffiffiffiffi
T

M

r
(cf. Sect. 5.1.1, Eq. 5.5). Also, the size of the

reactants is an important parameter for successful collision; this is described by the
cross-sectional area σ. (also called collisional cross-section). We thus obtain:

v � σ � �c � c Að Þ � c Bð Þ or v � σ �
ffiffiffiffiffi
T

M

r
� c Að Þ � c Bð Þ

We have already established that not every collision will be reactive. Only those
collisional encounters where the kinetic energy of the reactants exceeds the
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activation energy Ea will lead to product formation. This is expressed by the
Boltzmann factor: e�

Ea
R�T , leading to:

v � σ �
ffiffiffiffiffi
T

M

r
� e� Ea

R�T � c Að Þ � c Bð Þ

Still, despite considering the cross-sectional area σ, not every collision may lead
to a reaction, since the reactants may have to collide in a particular orientation. This
additional steric requirement is encoded in the factor P, so we obtain:

v � P � σ �
ffiffiffiffiffi
T

M

r
� e� Ea

R�T � c Að Þ � c Bð Þ

and from comparison with the rate law in Eq. 6.61, we derive the following
relationship for the rate constant:

k � P � σ �
ffiffiffiffiffi
T

M

r
� e�Ea

R�T ð6:62Þ

In words, Eq. 6.62 can be expressed as:

rate constant � steric requirement P � σ


 encounter rateminimum

ffiffiffiffiffi
T

M

r


 energy requirement e�
Ea
R�T

In the following, we will see that this concept describes all aspects of a successful
collision and can be rigorously derived by the collision theory.

6.8.2 Collision Rates in Gases

In Sect. 5.1.1, we have briefly introduced the kinetic molecular theory of gases, and
derived an expression for the speed of the molecules in a homogeneous system filled
with gas. Extending this consideration to the more general case of two different
gases A and B, the relative mean speed of two species can be derived from that
theory:

�crel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
ð6:63Þ

with μ ¼ mA�mB
mAþmB

being the reduced mass.
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The collision frequency ZAB between molecules of gas A and gas B can be
derived as:

ZAB ¼ σ � �crel � N Að Þ
V

� N Bð Þ
V

¼ σ � �crel � n Að Þ � NA

V
� n Bð Þ � NA

V

which yields

ZAB ¼ σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
� N2

A � c Að Þ � c Bð Þ ð6:64Þ

The collision cross-section σ is the area within which a projectile (A) must enter
around the target (B) in order for a collision to occur. Figure 6.19 illustrates that,
under the assumption of spherical particles, this requires a distance of the centres of
gravity of the two particles of (rA + rB).

The cross-section area is thus the area of a circle with radius (rA + rB):

σ ¼ rA þ rBð Þ2 � π ð6:65Þ

The values of collision cross-sections of some select gases are given in 6.3. Using
Eq. 6.64 and tabulated values of the collision cross-section, the collision frequency
Z can be calculated. As an example, N2 under normal conditions (Tnormal¼ 298.15 K,
c ¼ 1 M) has a collision frequency of Z ¼ 5�1034 m�3 s�1.

Fig. 6.19 Illustration of the
collision cross-section of two
spherical particles

Table 6.3 Collision cross-section of select gases

Gas σ in nm2 Gas σ in nm2

H2 0.27 Ar 0.36

He 0.21 CH4 0.46

N2 0.43 CO2 0.52

O2 0.40 C2H4 0.64

Ne 0.24 SO2 0.58
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6.8.3 Energy Requirement for Successful Collision

We have previously established that for a successful collision to occur, the reactants
need to have sufficient kinetic energy. The ratio of particles that possess energies εi
and εj is given by the Boltzmann distribution (see Sect. 5.1.2):

Ni

Nj
¼ e�

εi�εj
kB �T ð5:7Þ

with Boltzmann’s constant kB ¼ 1.381 10�23 J K�1

Note that the product of Boltzmann’s and Avogadro’s constant yields the gas
constant kB�NA ¼ R ¼ 8.3144 J K�1 mol�1.

Here, ε denotes extensive energies measured in J, and E molar energies (inten-
sive) measured in J mol�1.

From this equation it follows that the number of molecules that possess an energy
Ei � Emin is:

Ni Ei � Eminð Þ ¼ N total � e�
εmin
kB �T ¼ N total � e�

Emin
R�T

We can now combine the encounter (collision frequency ZAB) and the energy
requirement (Boltzmann factor) to obtain a preliminary reaction rate:

rate � �ZAB � e�Emin
R�T ¼ �σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
� e�Emin

R�T � N2
A � c Að Þ � c Bð Þ ð6:66Þ

6.8.4 Steric Requirements

When comparing experimental data from gas phase reactions with the theory
developed so far, it becomes obvious that there is agreement in some, but not all
cases. Insights come from experiments using molecular beams, where it was
observed that there can be three kinds of collisions:

• elastic (molecules separate again with total kinetic energy conserved)
• in-elastic (molecules separate again, but there is partial conversion of kinetic to

potential energy)
• reactive (products are produced)

It thus seems appropriate to introduce a scaling factor (P) for the collision cross-
section, that can be used to define the reactive cross-section σ*:
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σ∗ ¼ P � σ ð6:67Þ

It is immediately obvious, that the steric factor P is indeed a scaling factor that
describes the fraction of the cross-sectional area that delivers successful encounters:

σ∗

σ
¼ P

Intuitively, one would expect that the steric factor P assumes a maximum number
of 1, and less than 1 for most instances. This is indeed the case, although exceptions
are known. The reaction between K and Br2, for example, has a steric factor of
P ¼ 4.8, which indicates that this reaction proceeds by an unusual mechanism.

6.8.5 Combining the Collision Parameters

After having derived the individual components of molecular collision in the
previous sections, we can now combine all of them into a theoretical reaction rate:

rate ¼ �P � ZAB � e�Emin
R�T ¼ �P � σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
� e�Emin

R�T � N2
A � c Að Þ � c Bð Þ ð6:68Þ

This agrees with the formal obtained for a bi-molecular reaction:

rate ¼ dc Að Þ
dt

¼ �k � c Að Þ � c Bð Þ

with the rate constant being a rate constant for the collision process

kcollision ¼ σ � P �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
� e�Emin

R�T � N2
A

However, when we compare the units of the rate constant obtained from a
bi-molecular reaction with the units for the collision rate constant, we find:

kreaction½ � ¼ 1m3mol�1s�1

kcollision½ � ¼ σ � P �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
� e�Emin

R�T � N2
A

" #
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kcollision½ � ¼ 1m2 � 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1J � 1K
1K � 1kg

s
� 1 � 1

mol2

¼ 1m2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1kg m2 � 1K
1K � 1kg � s2

s
� 1

mol2
¼ 1m3mol�2s�1

This shows that the units of the two rate constants are not the same, but they
should! Both rate constants kreaction and kcollision contain the units of ‘volume per
molar amount and time’, but due to the definition of the collision reaction in terms of
molecules (rather than molar amounts), we now have to adjust for one additional
molar amount unit. This is done by multiplying in Avogadro’s constant:

kreaction � NA ¼ kcollision

And we finally obtain the rate constant for a gas-phase bimolecular reaction (and
substitute ‘kreaction’ with ‘k’):

k ¼ P � σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
� NA � e�Emin

R�T ¼ P � A � e�Emin
R�T ð6:69Þ

with the pre-exponential factor A being

A ¼ σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
� NA: ð6:70Þ

A describes the theoretical encounter rate minimum and the energy requirement for a
successful collision of the two gas molecules based on collision theory. It may need
to be adjusted for the reactive cross-section (σ*), which is done by multiplication
with the steric factor P.

Estimation of the steric factor for a reaction
Consider the following gas-phase reaction

H2 þ C2H4 ! C2H6

and determine the steric factor P at T ¼ 628 K, given that the experimental
pre-exponential factor is Aexp ¼ 1.24�106 dm3 mol�1 s�1.

In order to calculate the steric factor, we need to calculate the theoretical
pre-exponential factor for the reaction (A), and compare it to the experimental
value (Aexp). The ratio between the two will be P, since Aexp ¼ P�A.

(continued)
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A ¼ σ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � kB � T
π � μ

s
� NA ð6:70Þ

Collision cross-sections (see Table 6.3):

σ H2ð Þ ¼ 0:27nm σ C2H4ð Þ ¼ 0:64nm

We approximate the cross-section as the average of the two:

σ ¼ 0:46nm

For the mean speed of gas particles, we need the reduced mass:

μ ¼ 2:016 Da � 28:05 Da
2:016 Daþ 28:05 Da

¼ 1:881Da ¼ 1:881 � 1:661 � 10�27 kg

¼ 3:124 � 10�27 kg

Therefore:

A ¼ 0:46nm2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � 1:381 � 10�23 � 628 � J � K
3:142 � 3:124 � 10�27 � kg � K

s
� 6:022 � 1023 mol�1

A ¼ 0:46 � 10�9
� �2 �m2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7068481

kg �m2

kg � s2

s
� 6:022 � 1023 mol�1

A ¼ 0:46 � 10�18 �m2 � 2659 �m
s
� 6:022 � 1023 �mol�1

A ¼ 0:46 � 2659 � 6:022 � 10�18þ23 m3

mol � s

A ¼ 7:37 � 108 m3

mol � s ¼ 7:37 � 108 10
3dm3

mol � s

A ¼ 7:37 � 1011 dm3

mol � s

It follows:

(continued)
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P ¼ Aexp

A
¼ 1:24 � 106

7:37 � 1011 ¼ 1:7 � 10�6

This low value for P is one reason, why catalysts are required to achieve
hydration of ethane at reasonable rates.

6.9 Reactions in Solution

In the previous chapter, we considered reactions in the gas phase, which proceed by
collisional encounter of molecules in space. Reactants in solution are encountering
each other in a different way than in the gas-phase.

First, in solution, reactants have to find their way through the solvent (i.e. a
network of other molecules), so we can expect the frequency of reactive encounters
to be considerably less than in the gas-phase. Second, after an encounter, the
reactants are leaving their current positions slower than in the gas phase, since
they are held in place by the surrounding solvent. This is called the cage effect.

Conceptually, it is, of course, still required that the reactants require the minimum
energy (activation energy), in order for the reaction to proceed. However, an
encounter pair may accumulate enough energy to react in due course, even though
it may not have had sufficient energy initially. This gives rise to two classes of
reactions, namely those with

• diffusion control
• activation control.

The complicated overall process can be divided into two stages, the encounter
step and the post-encounter; both stages can subsequently be combined into the
overall rate law.

The Encounter Step
We suppose, the encounter of two reactants was of 1st-order with respect to each of
the reactants which need to diffuse towards each other in order to meet up:

Aþ B ! AB vd ¼ kd � c Að Þ � c Bð Þ

The rate of this step is determined by the constant kd that specifies the diffusional
characteristics of A and B.

Post-Encounter
The encounter AB can either break up into its individual partners, or react to product
P. If we assume pseudo 1st-order for both processes, we obtain:
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AB ! Aþ B v0d ¼ k0d � c ABð Þ

AB ! P va ¼ ka � c ABð Þ

The rate constant for the break-up is denoted k0d, as this step is the reverse reaction
of the encounter step.

Combining Both Steps to Yield the Overall Rate Law
We can thus formulate an expression for the change of concentration of AB over
time:

v ¼ vd � v0d � va ¼ dc ABð Þ
dt

dc ABð Þ
dt

¼ kd � c Að Þ � c Bð Þ � k0d � c ABð Þ � kac ABð Þ ð6:71Þ

Using the steady-state approximation for intermediates, we can claim:

dc ABð Þ
dt

� 0 ð6:45Þ

and thus obtain:

c ABð Þ ¼ kd � c Að Þ � c Bð Þ
ka þ k0d

The rate of product formation is thus:

dc Pð Þ
dt

¼ ka � c ABð Þ ¼ ka � kd � c Að Þ � c Bð Þ
ka þ k0d

ð6:72Þ

which may be denoted simpler by combining all individual rate constants into an
overall rate constant k:

dc Pð Þ
dt

¼ k � c Að Þ � c Bð Þwithk ¼ ka � kd
ka þ k0d

ð6:73Þ

Considering the reaction scheme and the expression of the rate constant in 6.73,
we can now distinguish two different cases:

6.9 Reactions in Solution 221



Diffusion Control
The reaction to product happens faster than the separation of AB. This means, the
break-up reaction (characterised by k0d) is much slower than the reaction to product
(characterised by ka).

k0d 	 ka ) k � kd

If k0d is much smaller than ka, k0d has a negligible contribution to the denominator
in Eq. 6.73, and can thus be eliminated. This means that the overall rate constant k is
dominated by contributions of kd, which is the encounter rate constant. The reaction
is then said to be under diffusion control.

Activation Control
In the reverse case, the break-up of AB (characterised by k0d) happens faster then the
reaction to product (characterised by ka); k0d is much larger than ka:

ka 	 k0d ) k � kd
k0d

� ka

If ka is much smaller than k0d, ka has a negligible contribution to the denominator
in Eq. 6.73, and can thus be eliminated. This results in an overall rate constant k that
is characterised by the encounter equilibrium, but also has contributions from the
rate constant that characterises the actual reaction to product. Such reactions are said
to be under activation control.

6.10 Diffusion Control

For diffusion-controlled reactions, we will need to consider the rate at which the
reactants diffuse to each other. In Sect. 5.2.7, we learned that the diffusion coefficient
D of a solute is given by the Stokes-Einstein equation:

D ¼ kB � T
6 � π � η � r ð5:48Þ

with η being the viscosity of the solution, and r the radius of the solute. Without
rigorously deriving the following relationship, we appreciate that the rate constant of
diffusion-controlled reactions can be calculated as follows:

kd ¼ 4 � π � r∗ � NA �
XN
i¼1

Di ð6:74Þ
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Here, the parameter r* describes the maximum distance the reactants may adopt

such that a reaction can occur. The factor
XN
i¼1

Di is the sum of the diffusion

coefficients of all reactants.
If we consider a bi-molecular reaction and substitute with the diffusion

coefficients as calculated by the Stokes-Einstein relationship, we obtain:

DA ¼ kB � T
6 � π � η � rA and DB ¼ kB � T

6 � π � η � rB

As an approximation, we assume that rA � rB � 1
2 � r∗, so we can build the sum

of the diffusion coefficients

D ¼ DA þ DB ¼ 2 � DA ¼ kB � T
6 � π � η � 12 � r∗

þ kB � T
6 � π � η � 12 � r∗

¼ 2 � kB � T
3 � π � η � r∗

and then obtain for the rate constant of diffusion-controlled reactions (according to
Eq. 6.74):

kd ¼ 4 � π � r∗ � NA � 2 � kB � T
3 � π � η � r∗ ¼ 8 � kB � NA � T

3 � η

We remember that the product of Boltzmann’s and Avogadro’s constant equals
the gas constant, kB�NA ¼ R, and therefore arrive at the following expression for the
rate constant of a bi-molecular diffusion-controlled reaction:

kd ¼ 8 � R � T
3 � η : ð6:75Þ

A notable observation from this approximation is the fact that the rate constant is
independent of the identity of the reactants. Therefore, the rate constant for the
diffusion-controlled reaction only depends on the temperature and the viscosity of
the solvent!

6.11 Transition State Theory

In Sect. 6.5.2, we discussed molecular aspects of the Arrhenius equation and
introduced the concept, that an activated complex needs to be formed that possesses
the minimum energy (activation energy Ea) required for the successful reaction.

With regards to terminology, the ‘activated complex’ and the ‘transition state’ are
intimately linked, but not the same thing. The term ‘activated complex’ describes a
chemical assembly, i.e. a cluster of atoms. In contrast, the ‘transition state’ describes
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the nuclear and electronic configurations of the reactants which assume a form that
transforms them into the products (see Fig. 6.20).

6.11.1 Formal Kinetics of the Activated Complex

The appearance of an activated species in the course of a reaction can be subjected to
a formal kinetics treatment. Formation of the transition state C{ in the course of a
reaction can be formulated as a rapid pre-equilibrium

Aþ B Ð C{

If we consider, for illustration, a gas phase reaction, then we can describe the
equilibrium constant as follows:

K{ ¼ pC{ � pØ
pA � pB

ð6:76Þ

Fig. 6.20 Illustration of the transition state in an energy profile of a reaction. The ‘activated
complex’ describes the atomic assembly; the ‘transition state’ comprises the entire configuration of
that state, including nuclear and electronic configuration, and the internal motions. The energy
profile is the same as seen earlier in Fig. 6.14
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with the partial pressures pi ¼ R�T�ci used instead of the concentrations ci. Because
the equilibrium constant K{ has no unit, we need to multiply with the standard
pressure pØ. This yields for the concentration of the activated complex:

1
pØ

� K{ � pA � pB ¼ pC{

1
pØ

� K{ � R � T � c Að Þ½ � � R � T � c Bð Þ½ � ¼ R � T � c C{� �

1
pØ

� K{ � R � T � c Að Þ � c Bð Þ ¼ c C{� �

c C{� � ¼ R � T
pØ

� K{ � c Að Þ � c Bð Þ ð6:77Þ

The overall reaction

Aþ B ! P v ¼ dc Pð Þ
d t

¼ k � c Að Þ � c Bð Þ

is a bi-molecular reaction and thus follows a second order rate law. Since the
activated complex can decay to the products in a unimolecular reaction

C{ ! P v ¼ dc Pð Þ
dt

¼ k{ � c C{� �

we can also formulate the rate law with respect to product formation based on the
decay of the activated complex. For the rate of product formation we can therefore
conclude:

v ¼ dc Pð Þ
dt

¼ k � c Að Þ � c Bð Þ ¼ k{ � c C{� � ¼ k{ � R � T
pØ

� K{ � c Að Þ � c Bð Þ ð6:78Þ

The above equation yields an expression of the macroscopic rate constant in
terms of parameters that characterise the activated complex:

k ¼ k{ � K{ � R � T
pØ

ð6:79Þ
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6.11.2 Internal Coordinates of the Activated Complex

In a more rigorous treatment of the activated complex that considers the internal
motions (vibrations, rotations), it becomes apparent that not all of these motions
(degrees of freedom) send the complex into the way of the products. Since we now
think of the activated complex (atomic arrangement) together with its internal
motions, we will use the term ‘transition state’ for the following discussion.

Based on the idea that not all internal motions lead to product formation, a
transmission coefficient κ is introduced. The transmission coefficient describes the
successful passage of the reactants through the transition state, on to the products. In
the absence of specific information about a reaction, one assumes that κ ¼ 1.

Within this concept, a modified equilibrium constant, �K{
C, is introduced; it

describes the transition state C{ with one vibrational mode being discarded. We
have seen in the previous section, how the macroscopic 2nd-order rate constant is
linked to the transition state:

k ¼ k{ � K{ � R � T
pØ

ð6:79Þ

By taking into account the internal motions and the associate modified equilib-
rium constant, Henry Eyring, and, independently, Meredith Evans and Michael
Polanyi, have further developed the theory of the activated complex to arrive at a
description of the transition state (Evans and Polanyi 1935; Eyring 1935).

The Eyring equation

Aþ B Ð C{ ! P v ¼ k � c Að Þ � c Bð Þ

The 2nd-order rate constant can be developed as follows:

k ¼ k{ � K{ � R � T
pØ

¼ κ � �K{
C � kB � T

h

This expression is called the Eyring equation and links the macroscopic reaction
kinetics and the molecular parameters of the reactants:

k ¼ κ � �K{
C � kB � T

h
ð6:80Þ

The factor kB�T
h

� �
describes a general frequency with respect to individual particles

where h is the Planck constant. Notwithstanding the importance of this relationship,
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the required knowledge of the partition function of the transition state C{

(represented by �K{
C ) makes its use in applied settings challenging. Internal modes

of the activated complexes are difficult to access, since their characterisation (e.g. by
means of spectroscopy) is rather complex.

6.12 Exercises

1. Consider the gas-phase reaction

H2 þ I2 ! 2HI

(a) Assume that the reaction order is as suggested by the chemical equation.
Calculate the rate constant at 681 K, assuming that from an initial
pressure of iodine of 823 N m�2, the rate of loss of iodine was 0.192 N m
�2 s�1. The initial pressure of hydrogen was 10,500 N m�2.

(b) What is the rate of the reaction if the iodine pressure was unchanged and
the initial hydrogen pressure was 39,500 N m�2?

2. The rate constant for the decomposition of a particular substance is 2.80�10�3 dm3

mol�1 s�1 at 30 �C, and 1.38�10�2 dm3 mol�1 s�1 at 50 �C. Evaluate the
Arrhenius parameters of the reaction.

3. The reaction mechanism for the reaction of A2 and B to product P involves the
intermediate A:

A2 Ð Aþ A fastð Þ

Aþ B ! P slowð Þ

Deduce the rate law for the reaction assuming a pre-equilibrium.

4. The rate constant of a first-order reaction was measured as 1.11�10�3 s�1.
(a) What is the half-life of the reaction?
(b) What time is needed for the concentration of the reactant to fall to 1/8 of

its initial value?
(c) What time is needed for the concentration of the reactant to fall to 3/4 of

its initial value?
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Catalysis 7

Catalysts accelerate reactions but do not undergo a net chemical change themselves.
The process of catalysis is achieved by lowering the activation energy of a reaction,
and providing an alternative path to circumvent the slow, rate-determining step of
the non-catalysed reaction (see Fig. 7.1).

While the catalyst does not undergo a net chemical reaction, it can take part in the
reaction, but will be regenerated in due course. Two types of catalysts can be
distinguished:

• Homogeneous catalyst: a catalyst that exists in the same phase as the reaction
mixture

• Heterogeneous catalyst: exists in a different phase than the reaction mixture.

Examples for reactions with homogeneous catalysis include hydrogen peroxide
decomposition by iodide and any reactions by biological enzymes; here, the iodide
and the enzymes are present in solution, as are the reactants. In contrast, heteroge-
neous catalysts do not exist in the same phase as the reactants. Examples for such
processes include the olefin hydrogenation by palladium, platinum or nickel
catalysis.

7.1 Homogeneous Catalysis

In order to appreciate the kinetics of a homogeneously catalysed reaction, we will
have a closer look at the decomposition of hydrogen peroxide, a process which can
be catalysed by iodide ions. The reactant (H2O2) and the catalyst (I�) are both
present in solution, hence this constitutes a case of homogeneous catalysis.

# Springer International Publishing AG, part of Springer Nature 2018
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The decomposition of H2O2 is a disproportionation reaction, i.e. a reaction where
an element changes its oxidation to a higher and a lower state simultaneously.
It follows the net reaction:

2H2O2 aqð Þ ! 2H2O lð Þ þ O2 gð Þ

The reaction is believed to happen via the following pre-equilibrium that leads to
generation of the hydroxyoxidanium ion H3O2

+:

H3O
þ þ H2O2 Ð H3O2

þ þ H2O

I� can act as a catalyst by reacting with the hydroxyoxidanium ion to hypoiodous
acid, HOI:

H3O2
þ þ I� ! HOIþ H2O

HOIþ H2O2 ! H3O
þ þ O2 þ I�

The equilibrium reaction is characterised by the equilibrium constant K. Treating
the reaction of iodide with the hydroxyoxidanium ion as an elementary reaction, we
can formulate a rate law of second order.

H3O
þ þ H2O2 Ð H3O2

þ þ H2O K ¼ c H3O2
þð Þ

c H2O2ð Þ � c H3Oþð Þ ð7:1Þ

H3O2
þ þ I� ! HOIþ H2O v ¼ ka � c H3O2

þð Þ � c I�ð Þ ð7:2Þ
HOIþ H2O2 ! H3O

þ þ O2 þ I� fastð Þ

Fig. 7.1 Comparison of the
energy profile of a reaction in
the absence and presence of a
catalyst. The free energy
stabilisation of products over
reactants is not altered; the
catalyst only lowers the
activation energy for the
reaction
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Since the reaction of hypoiodous acid with peroxide is an extremely fast reaction,
the contribution of this step to the overall rate of peroxide decomposition is negligi-
ble. The reaction rate for the catalysed reaction is thus:

v ¼ dc O2ð Þ
d t

¼ dc HOIð Þ
d t

From Eq. 7.2, we obtain for the rate

v ¼ dc HOIð Þ
d t

¼ ka � c H3O2
þð Þ � c I�ð Þ

For the concentration of the hydroxyoxidanium ion, we know from the equilib-
rium 7.1 that

c H3O2
þð Þ ¼ K � c H2O2ð Þ � c H3O

þð Þ
This yields for the overall rate:

v ¼ dc O2ð Þ
d t

¼ ka � c H3O
2þ� � � c I�ð Þ ¼ ka � K � c H2O2ð Þ � c H3O

þð Þ � c I�ð Þ ð7:3Þ

The notable observation from Eq. 7.3 is that an experimentally observed rate
constant k is indeed the product of the rate constant of the reaction in 7.2 and the
equilibrium constant of reaction 7.1 (ka � K ). The derived rate law also shows that the
catalysed reaction is dependent on the concentration of the catalyst, the iodide anion.

7.1.1 Acid and Base Catalysis

Acid and base catalysis are of particular importance as they are frequently observed
features of organic reactions. We will only look briefly at catalysis involving
Brönstedt acids and bases, but Lewis acids/bases can also take part as catalysts in
reactions. The crucial step in acid catalysis involving Brönstedt acids is the transfer
of a proton to the substrate. Examples include acid-catalysed ester hydrolysis and the
keto-enol tautomerism illustrated in Fig. 7.2.

In base catalysis involving Brönstedt bases, abstraction of a proton from the
substrate is the crucial step. Examples for such reactions include the isomerisation

Fig. 7.2 The mechanism of acid catalysis in the transformation of a ketone to an enol (keto-enol
tautomerism)
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and halogenation of organic compounds, Claisen condensation, aldol condensation,
keto-enol tautomerism (see Fig. 7.3).

7.1.2 Enzymatic Catalysis

Of particular importance for many biochemical reactions is the homogeneous catal-
ysis carried out by enzymes. Enzymatic functions are observed with particular
proteins (enzymes) or nucleic acid molecules (ribozymes) that possess active sites
which bind the substrates and process them to products. Enzyme-catalysed reactions
are prone to inhibition by molecules that interfere with product formation. Many
drugs for treatment of diseases work by inhibiting particular enzymes.

Experimental studies of enzyme kinetics are typically conducted by monitoring
the initial rate of product formation in solution, with low concentrations of enzymes
present. The general features for enzyme-catalysed reactions are:

• For a given initial substrate concentration c0(S), the initial rate of product
formation v0 is proportional to the total concentration of enzyme c0(E):

v0 � c0 Eð Þ

• For a given total concentration of enzyme c0(E) and at low concentrations of
substrate c0(S), the rate of product formation is proportional to c0(S):

v0 � c0 Sð Þ for smallc0 Sð Þ

• For a given total concentration of enzyme c0(E) and large substrate concentrations
c0(S), the rate of product formation becomes independent of the substrate
concentrations, reaching a maximum rate vmax:

v0 ¼ vmax for largec0 Sð Þ

Fig. 7.3 The mechanism of base catalysis in the transformation of a ketone to an enol (keto-enol
tautomerism)
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7.1.3 The Michaelis-Menten Mechanism

The general features of enzyme-catalysed reactions (see previous section) are
accounted for in the Michaelis-Menten mechanism, which assumes an enzyme-
substrate complex as intermediate in the enzymatically catalysed product formation:

Eþ SÐk1
k�1

E-S½ � !k2 Pþ E

Investigating the kinetics of the hydrolysis of sucrose into glucose and fructose by
the enzyme invertase, Leonor Michaelis and Maud Menten developed the above
mechanism and derived the following expression for the rate of an enzymatic
reaction, known as the Michaelis-Menten equation (Michaelis and Menten 1913):

v ¼ k2 � c0 Eð Þ
1þ Km

c0 Sð Þ
or v ¼ k2 � c0 Eð Þ � c0 Sð Þ

c0 Sð Þ þ Km
ð7:4Þ

with the Michaelis-Menten constant

Km ¼ k�1 þ k2
k1

ð7:5Þ

Equation 7.4 describes the shape of the v0�c0(S) curve as shown in Fig. 7.4, and
thus explains the three observations introduced in Sect. 7.1.2 that characterise
enzymatic catalysis.

max

max

m

Fig. 7.4 Typical Michaelis-Menten kinetics of an enzyme in the v0�c0(S) plot
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As apparent from Table 7.1, these considerations also deliver a definition of the
maximum rate as per vmax ¼ k2 � c0(E), which we can substitute into the initial
Michaelis-Menten Eq. 7.4:

v ¼ k2 � c0 Eð Þ � c0 Sð Þ
c0 Sð Þ þ KM

ð7:4Þ

and thus obtain

v ¼ vmax � c0 Sð Þ
c0 Sð Þ þ KM

ð7:6Þ

This form of the Michaelis-Menten equation is of practical importance, as it
contains all parameters accessible in experimental measurements of enzymatic
reactions. The equation can be transformed into a linear relationship, which has
been of huge importance for enzymology studies. This analysis technique has been
of great importance before the availability of computer-aided non-linear fitting
software; it is still applied today in particular applications. By inverting both side
of Eq. 7.6 one obtains:

1
v
¼ c0 Sð Þ þ KM

vmax � c0 Sð Þ
where the right side can be separated into two terms:

1
v
¼ 1

vmax
þ KM

vmax
� 1
c0 Sð Þ ð7:7Þ

By plotting 1
v0
on the ordinate (y-axis) and 1

c0 Sð Þ on the abscissa (x-axis), a linear

relationship with the positive slope KM
vmax

and positive y-intercept 1
vmax

is obtained. This

plot is known as the Lineweaver-Burk plot (see Fig. 7.5).

Table 7.1 The Michaelis-
Menten kinetics describes
the three general
observations of enzymatic
reactions

Observation Michaelis-Menten

v0 � c0(E) v ¼ k2 �c0 Eð Þ�c0 Sð Þ
c0 Sð ÞþKm

v0 � c0(S) for small c0(S) for c0(S) << Km follows:
v ¼ k2

KM
� c0 Eð Þ � c0 Sð Þ

v0 ¼ vmax for large c0(S) for c0(S) >> Km follows:
v ¼ vmax ¼ k2 � c0(E)
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7.1.4 Enzyme Efficiency and Enzyme Inhibition

The turnover number of an enzyme, kcat, is the number of catalytic cycles performed
in a given time interval, divided by that time interval. kcat is a first-order rate constant
and equivalent to the rate constant for release of product from the enzyme-substrate
complex, k2:

Eþ S Ðk1
k�1

E-S½ � !k2 Pþ E

kcat ¼ k2 ¼ vmax

c0 Eð Þ ð7:8Þ

Equation 7.8 is a direct consequence of one of the three general observations for
enzymatic reactions (see Table 7.1).

The efficiency of an enzyme is dependent on

• How much substrate it requires
• How many turnover cycles it performs in a given time period.

The substrate concentration required to achieve 50% of the maximum rate of an
enzymatic reaction is described by the Michaelis-Menten constant KM. Therefore, a
lower KM will result in higher efficiency. Likewise, the efficiency will be higher, if
the turnover number (kcat) is high. The catalytic efficiency η of an enzyme is thus
defined as:

η ¼ kcat
Km

ð7:9Þ

max

max

m

m

Fig. 7.5 Illustration of the
Lineweaver-Burk plot
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and, by using the relationships from Eqs. 7.5 and 7.8, can also be expressed in terms
of the rate constants k1, k�1 and k2:

η ¼ kcat
Km

¼ k1 � k2
k�1 þ k2

7.1.5 Enzyme Inhibition

Molecules that affect enzyme activity are called effectors and can either be activators
or inhibitors. The discovery of enzyme inhibitors (and thus the study of enzyme
inhibition) is an important biomedical discipline, since enzyme inhibitors may be
used as therapeutics. Drug discovery therefore relies heavily on enzyme inhibition
studies.

There are three different types of enzyme inhibition mechanisms:

• Competitive inhibition
• Un-competitive inhibition
• Non-competitive inhibition

In competitive inhibition, either the substrate or the inhibitor can bind to the
enzyme, but not both of them simultaneously. This can come about by way of two
different scenarios: The inhibitor may directly compete with the substrate for binding
in the active site (one binding site); alternatively, the inhibitor may bind to a site
different from the active site (two binding sites), but its binding will exclude binding
of the substrate in the active site. This latter case is called allosteric inhibition. When
comparing the enzyme kinetics data at different concentrations of effector in the
Lineweaver-Burk plot, competitive inhibition shows the behaviour illustrated in
Fig. 7.6, left panel.

Fig. 7.6 Different types of inhibition show different changes in the Lineweaver-Burk plot. In this
schematic illustration, the turquoise curves show enzyme activity data in the absence, and the
magenta curves in the presence of an inhibitor
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The mechanism of uncompetitive inhibition requires two different binding events,
the substrate binding to the active site of the enzyme, and the inhibitor binding to a
different site. Binding of the inhibitor decreases the activity of the enzyme. However,
in contrast to the above allosteric competitive inhibition, in the case of uncompetitive
inhibition the effector binds only when the substrate is present. Therefore, binding of
the inhibitor is indeed to the enzyme-substrate complex [E-S]. In the Lineweaver-Burk
plot, uncompetitive inhibition results in parallel lines with different x- and y-intercepts
(Fig. 7.6, centre panel).

Non-competitive inhibition of an enzymatic reaction arises when the inhibitor
reduces the binding of the substrate to the free enzyme as well as the enzyme-
substrate complex [E-S]. This mechanism can be distinguished from the two other in
the Lineweaver-Burk plot as illustrated in Fig. 7.6, right panel.

7.2 Heterogeneous Catalysis

We have established earlier that catalysts accelerate reactions, but do not undergo a
net chemical change themselves. Catalysis is thus achieved by lowering the activa-
tion energy of a reaction, and by providing an alternative path to circumvent the
slow, rate-determining step of the non-catalysed reaction.

A heterogeneous catalyst, exists in a different phase than the reaction mixture; its
catalytic activity builds on the capability to bring the reactants into very close spatial
vicinity. A typical example is the olefin hydrogenation reaction catalysed by metals
such as palladium, platinum or nickel.

If we consider a heterogeneous catalytic process involving solids, we need to
conceptualise the attachment of particles to the surface of the solid (adsorption), as
well as the reverse process (desorption). The substance that attaches to the surface is
called the adsorbate; the underlying material is called the adsorbent or substrate.

7.2.1 Solid Surfaces

While the surface of solids appears flat from a macroscopic perspective, this percep-
tion is a matter of resolution. Indeed, at sub-microscopic level, surfaces of solids are
not flat but show various features and defects. At atomic detail, the flat surface looks
like a layer of oranges in the grocery store. Importantly, there may be higher order in
solids whereby the constituting atoms, ions or molecules are arranged in particular
repeating structures. Such structures are called a crystalline lattice and the solid is then
called a crystal.

The terrace step kink (also known as terrace ledge kink) model describes the
surface formation and transformations of crystals, whereby the energy of a particular
atom on a surface depends on the number of bonds that atom has with neighbouring
atoms (Stranski 1928). As the term ‘terrace step kink model’ implies, the typical
features on surfaces are terraces, steps and kinks (see Fig. 7.7).
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When an atom arrives at a terrace, it is called an adatom and may bounces across
the surface depending on the inter-molecular potential—this process is called
accommodation (see Physisorption in the following section). If it comes to lie in a
kink (kink atom) or at a step (step atom), it can interact with more than one surface
atom, and the interaction may be strong enough to trap it. When ions deposit from
solution, the loss of solvation energy is offset by strong Coulomb forces (i.e. the
electrostatic forces) between the arriving ions and ions on the surface.

Macroscopically, many crystals are recognised by their shape which is constituted
by flat faces with sharp angles. A distinct shape is not a necessary criterion for a solid
to be a crystal, but it is a frequently observed property. How quickly a surface (or face)
growths on a crystal, depends on the particular plane. As illustrated in Fig. 7.8, the
slowest growing faces dominate the overall shape of the crystal.

7.2.2 Adsorption

When particles adsorb to surfaces, a fundamental observable is the fractional
coverage of the available surface area. As occupancy of a surface area comes

Fig. 7.8 Different faces of a crystal grow at different speeds, indicated by the length of the
turquoise arrows. Evidently, the slowest growing faces dominate the overall shape and macroscopic
appearance of a crystal

Fig. 7.7 Schematic illustration of the terrace step kink model of solid surfaces
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about by particles occupying individual sites, the fractional coverage Γ can be
defined as per

Γ ¼ Noccupied

N total
ð7:10Þ

Here, Noccupied is the number of occupied adsorption sites and Ntotal is the number
of total adsorption sites on the surface. Another frequently used definition expresses
the fractional coverage Γ in terms of the volume of adsorbate (V ) and the volume of
adsorbate required for total coverage (V1):

Γ ¼ V

V1
ð7:11Þ

The rate of adsorption is the rate of change of surface coverage (dΓ) over time (dt)
and can be determined using the observables of Eqs. 7.10 or 7.11:

vads ¼ dΓ
d t

ð7:12Þ

Two types of adsorption are typically distinguished, based on the types of forces
involved in the interaction between adsorbate and adsorbent: physisorption and
chemisorption. The problem of distinguishing between the two types is akin to
that of distinguishing between chemical and physical interactions in general.

Physisorption
If molecules or atoms attach to a surface exclusively due to van der Waals
interactions, this adsorption process is called physisorption. This type of adsorption
is for example observed in dispersions and arises due to dipolar interactions. van der
Waals interactions are long-range interactions of rather low energy. The rather small
enthalpies of physisorption (~ �20 kJ mol�1) are not sufficient to break bonds, so
the adsorbate retains its identity on the surface; geometric distortions may be
possible, though. Despite being rather weak interactions, there are examples of
notable roles in natural process. For example, the ability of geckos to climb walls
and ceilings rests on the van der Waals attraction between surfaces and their foot-
hairs. The energy released upon physisorption can be absorbed as vibrations of the
substrate lattice (increased thermal motion) and thus lead to an approaching particle
bouncing across the surface, until it has lost its energy. This process is called
accommodation. The enthalpy of physisorption can be measured by monitoring
the temperature of a sample of known heat capacity during the adsorption process.

Chemisorption
Atoms or molecules that stick to the surface by forming a covalent bond perform
chemisorption. The enthalpy of chemisorption is much higher than in the case of
physisorption (~ �200 kJ mol�1) and may thus lead to bond breakage in the
adsorbate, which allows the resulting species (molecular fragments) to maximise
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their coordination number with the substrate. The existence of molecular fragments
on the substrate is one of the reasons why solid surfaces act as catalysts.

Except for special cases, chemisorption is exothermic (ΔH < 0). An example of
an endothermic process is the adsorption of H2 on glass. Since spontaneous pro-
cesses require a change in the free energy of ΔG < 0, the positive enthalpy change
during H2 adsorption needs to be overcome. In the case of H2 on glass, there is a
significant increase in entropy as H2 molecules dissociate into H atoms, thereby
outnumbering the enthalpy change and thus leading to a negative ΔG:

ΔG ¼ ΔH � T � ΔS < 0 ð2:42Þ

7.2.3 Adsorption Isotherms

During the adsorption process, free and adsorbed particles are in dynamic equilibrium.
If we consider a gas as the adsorbing species, then the fractional surface coverage Γ
depends on the pressure of the gas overlying the substrate. The variation of fractional
coverage Γ with pressure p at constant temperature is called the adsorption isotherm.

If we make the following assumptions:

• Adsorption cannot proceed beyond monolayer coverage
• All sites are equivalent and the surface is uniform (at microscopic scale)
• The ability of a particle to adsorb is independent of the occupancy of neighbouring

sites (i.e. there is no interactions between adsorbed particles)
• Every particle provides a single species that will be adsorbed (no dissociation)

then the rate of adsorption can then be expressed as:

vads ¼ dΓ
d t

¼ kads � p � N � 1� Γð Þ ð7:13Þ

This equation is reminiscent of a second-order rate law. Here, the rate constant is
kads, the concentration of one reactant is given by the pressure p, and the concentra-
tion of the second reactant is the number of free sites on the substrate, [N � (1 � Γ)].

Similarly, the rate of desorption is given by:

vdes ¼ dΓ
d t

¼ �kdes � N � Γ ð7:14Þ

This is a first-order rate law, with the rate constant kdes and the concentration of
‘product’ given by the number of adsorbate molecules bound to substrate sites,
i.e. the number of occupied sites, (N � Γ).

At equilibrium, there is no net change, so the rate of adsorption equals the rate of
desorption, and by substituting expressions from Eqs. 7.13 and 7.14 one obtains:
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j vads j¼j vdes j ) j kads � p � N � 1� Γð Þ j¼j �kdes � N � Γ j
kads � p � N � kads � p � N � Γ ¼ kdes � N � Γ

kads � p � N ¼ kads � p � N � Γþ kdes � N � Γ
kads � p � N ¼ kads � p � N þ kdes � Nð Þ � Γ

Γ ¼ kads � p � N
kads � p � N þ kdes � N ¼ kads � p

kads � pþ kdes

Γ ¼
kads
kdes

� p
kads
kdes

� pþ 1

This yields an expression for the Langmuir isotherm (see Fig. 7.9), which relates
the fractional coverage to the pressure of adsorbate:

Γ ¼ K � p
K � pþ 1

ð7:15Þ

whereby the Langmuir constant K is given by the ratio between the rate constants of
the adsorption and desorption processes:

K ¼ kads
kdes

ð7:16Þ

Fig. 7.9 The Langmuir
adsorption isotherm describes
the saturation of binding sites
on the catalyst (substrate) in
dependence of the pressure of
gas molecules (adsorbate)
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7.2.4 Adsorption Isotherms with Dissociation

When deriving the concept of the Langmuir isotherm in the previous section, we
assumed that the particles arriving at the catalyst’s surface do not dissociate. In many
cases (for example the synthetically important hydrogenation reactions using H2)
this can not be assumed. If the adsorbate dissociates into two species upon surface
attachment, then the rate of adsorption is proportional to the pressure and the
probability that both fragments find sites, i.e. the square number of vacant sites.
Instead of Eq. 7.13, one thus obtains:

vads ¼ dΓ
d t

¼ kads � p � N � 1� Γð Þ½ �2 ð7:17Þ

Similarly, for the rate of desorption, we need to take into account that two
dissociated fragments re-combine and thus two occupied sites are being vacated:

vdes ¼ dΓ
d t

¼ �kdes � N � Γð Þ2 ð7:18Þ

The combination of Eqs. 7.17 and 7.18 yields the Langmuir isotherm for adsorp-
tion with dissociation:

Γ ¼
ffiffiffiffiffiffiffiffiffiffi
K � pp

ffiffiffiffiffiffiffiffiffiffi
K � pp þ 1

ð7:19Þ

as illustrated in Fig. 7.10.

Fig. 7.10 Comparison of
Langmuir isotherms for
non-dissociating and
dissociating (N ¼ 2)
adsorbates

242 7 Catalysis



7.2.5 The Isosteric Enthalpy of Adsorption

As per the definition, the isotherms describe the adsorption behaviour at constant
temperature. Therefore, if adsorption experiments are carried out at different
temperatures, different isotherms are obtained. The variation between those
isotherms is captured by different values of K ¼ kads

kdes
. Since K is an equilibrium

constant, we can use the van’t Hoff equation to obtain an enthalpy:

δ lnKð Þ
δT

� �
Γ
¼ ΔH Ø

ads

R � T2 ð2:60Þ

ΔHØ
ads is called the isosteric enthalpy of adsorption and is the standard enthalpy

of adsorption at a fixed surface coverage.

7.2.6 Mechanisms of Heterogeneous Catalysis

The previous sections have been concerned with the adsorption of particles at the
surface of a solid catalyst. Since catalysts are used to facilitate particular reactions,
we now want to look at the rates of these reactions. Two different mechanisms for
bimolecular surface-catalysed reactions have been proposed. The Langmuir-
Hinshelwood mechanism assumes that the two molecules adsorb to the surface
and then undergo the reaction. In contrast, in the Eley-Rideal mechanism, only
one of the molecules adsorbs and the other one reacts with it directly from the gas
phase without adsorbing. In the following, we will see that the kinetics for the two
mechanisms differ. However, the rate constant k of the catalysed reaction will always
be much larger than that of the non-catalysed reaction, since the reaction on the
surface has a much lower activation energy.

Langmuir-Hinshelwood Mechanism
In the Langmuir-Hinshelwood mechanism, a reaction takes place between two
reactants A and B adsorbed on the surface of the catalyst. The reaction rate thus
depends on the extent of surface coverage by the two species, ΓA and ΓB:

A adsð Þ þ B adsð Þ ! P with v ¼ k � ΓA � ΓB ð7:20Þ
If we use the partial pressures, pA and pB, for the two reactants, we can express the

partial surface coverages ΓA and ΓB by Langmuir isotherms (assuming no
dissociation):

ΓA ¼ KA � pA
1þ KA � pA þ KB � pB

and ΓB ¼ KB � pB
1þ KA � pA þ KB � pB

Substituting these expressions in Eq. 7.20 yields the reaction rate for the
Langmuir-Hinshelwood mechanism as:
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v ¼ k � KA � KB � pA � pB
1þ KA � pA þ KB � pBð Þ2 ð7:21Þ

Examples for reactions following the Langmuir-Hinshelwood mechanism
include (Table 7.2):

Eley-Rideal Mechanism
Examples for reactions following the Eley-Rideal mechanism include (Table 7.3):

In the Eley-Rideal mechanism, a reactant B in the gas phase collides with a
reactant A already adsorbed on the surface. The rate of reaction is thus dependent on
the partial pressure of B and the extent of surface coverage of A:

A adsð Þ þ B gð Þ ! P with v ¼ k � ΓA � pB ð7:22Þ
If the adsorption of A follows a Langmuir isotherm without dissociation, one

obtains the rate of the Eley-Rideal mechanism as:

v ¼ k � K � pA � pB
1þ K � pA

ð7:23Þ

7.3 Methods to Investigate Surfaces and Surface Processes

In heterogeneous catalysis, catalysis happens on the surface of the catalyst (also
called adsorbent or substrate). Therefore, in order to investigate processes at
surfaces, or indeed their make-up, experimental techniques are required. Two
types of methods of surface investigation can be distinguished: spectroscopic
methods and imaging methods.

The choice of a particular spectroscopic method depends on what exactly is to be
investigated. From Fig. 7.11, which shows the electromagnetic spectrum, it is
obvious that different energy regions of the spectrum need to be employed,

Table 7.2 Examples of
surface-catalysed reactions
that follow the Langmuir-
Hinshelwood mechanism

Catalyst Reaction

Pt 2 COþ O2 ! 2 CO2

Pt N2Oþ H2 ! N2 þ H2O

Pd 2 C2H4 þ O2 ! 2 H3C� CHO

Cu C2H4 þ H2 ! C2H6

ZnO COþ 2 H2 ! H3C� OH

Table 7.3 Examples of
surface-catalysed reactions
that follow the Eley-Rideal
mechanism

Catalyst Reaction

Pt 4 NH3 þ 3 O2 adsð Þ ! 2 N2 þ 6 H2O

Ni, Fe C2H2 þ H2 adsð Þ ! C2H4

Ag 2 C2H4 þ O2 adsð Þ ! 2 H2COCH2
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depending on whether bonds between adsorbate and substrate molecules are to be
investigated, or atomic information is required. A frequent problem in practical
applications is, for example, the chemical composition of a surface. This can be
determined by using ionising electromagnetic radiation such as X-rays (see also
Sect. 13.5) or hard UV. The interaction of a beam of high energy electromagnetic
radiation leads to a variety of effects in a solid sample (Fig. 7.12) which can be used
to characterise the specimen.

Whereas spectroscopic methods result in ‘abstract’ information about a sample,
imaging methods provide pictures as to the distribution of features or physical
structures of samples and typically yield ‘images’ as an immediate result of the
experiment. In the following, a few methods used in surface characterisation will be
briefly introduced.

Fig. 7.11 The electromagnetic spectrum

Fig. 7.12 Interaction of a beam of high energy electromagnetic radiation with a solid specimen
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7.3.1 Photoelectron Spectroscopy

This method is based on the photoelectric effect which was originally observed by
James Franck and Gustav Hertz, and later explained by Albert Einstein. Light of
sufficiently high energy can be used to ionise a sample, giving rise to photo electrons
from species present. Depending on whether X-rays or hard UV radiation is used, the
method is called XPS or UPS (see also Sect. 13.5.1). Since the kinetic energy of
electrons ejected from an atom depends on the internal electronic structure of that
atom, information about the electronic structure and chemical composition is
obtained (Fig. 7.13).

7.3.2 Auger Electron Spectroscopy

The Auger effect is the emission of an electron after incident high energy caused loss
of an electron. The hole left by the first departing electron is filled by a second
electron from a higher shell that takes the place of the first electron. This transition
releases energy which can either be emitted as a photon (X-ray fluorescence; see
Sect. 7.3.3) or lead to ejection of a third electron, called the Auger electron (see
Fig. 7.14). The energies of the Auger electrons are characteristic of the species
present which makes Auger electron spectroscopy a useful tool for determination of
the chemical identities in samples. The incident energy may be provided by X-ray,
hard UV or electron beams. The Auger process is discussed in more detail in Sect.
13.6.3.

7.3.3 X-ray Fluorescence

Arising from the same physical process as the Auger electrons, photons may be
emitted instead of secondary electrons (Fig. 7.15, left panel). In this case, the process

Fig. 7.13 Schematic illustration of the photoelectric effect (left) and its application in photoelec-
tron spectroscopy
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is called X-ray fluorescence (see also Sect. 13.6.2). Again, spectral analysis of the
emitted energies allows conclusions as to the species present. By rastering a sample
through the incoming beam of high energy photons and determining the energy of
the emitted X-rays, a spatial mapping can be performed (Fig. 7.15, right panel). In
doing so, the spectroscopic method of X-ray fluorescence becomes an imaging
method and is thus called X-ray fluorescence microscopy.

7.3.4 LEED

The arrangement of atoms close to the surface can be determined by low energy
electron diffraction (LEED). Here, the wave character of electrons is used. An
incident electron beam of relatively low energy (typically in the range 20–200 eV)

Fig. 7.14 Schematic illustration of the Auger effect

Fig. 7.15 Left: The emission of a photon instead of an Auger electron (after electron loss due to
high energy impact) is called X-ray fluorescence. Right: An X-ray fluorescence micrograph
mapping iron in the egg of the parasitic worm Schistosoma japonicum. Figure adapted from
Hofmann et al. (2014)
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is diffracted by the atomic lattice formed by atoms on or close to the surface. The
diffracted electrons can be observed by a fluorescent screen, and the resulting
diffraction pattern is then visible from behind the sample (modern instruments use
a position sensitive detector instead of the fluorescent screen, thus enabling digital
data acquisition). The diffraction pattern represents the two-dimensional reciprocal
lattice of the specimen’s surface.

As introduced in Sect. 7.2.1, hardly any surface is an ideal surface (i.e. like a
cut through the bulk material). Instead, there are many terraces, steps and kinks
in surfaces of solids which can be identified with LEED. Besides characterisation
of the basic lattice of a solid sample, further information can be gained from
particular features caused by super lattices, step lattices or domain formation
(Fig. 7.16).

Like photo-electron and Auger electron spectroscopy, LEED requires the
sample to be brought into an chamber of ultra high vacuum. The correct align-
ment of the crystalline sample can be achieved with the help of X-ray diffraction.
After mounting, the specimen is cleaned chemically by oxidation/reduction cycles
and the surface flattened using exposure to high temperature. This process (called
annealing) may lead to re-surfacing of impurities. Therefore, Auger electron
spectroscopy is often used in conjunction with LEED to monitor the purity of
the sample.

Fig. 7.16 Left: Schematics of a LEED instrument. The concentric grids are used for filtering
inelastically scattered electrons. Instead of optical observation of the LEED pattern, modern
instruments have a position-sensitive digital detector (called delay-line detector) instead of the
fluorescent screen. Right: LEED pattern of an Ir(100)�1 � 1 surface recorded at an energy of
195 eV. The image was kindly provided by L Hammer (Friedrich-Alexander-Universität Erlangen-
Nürnberg, Germany) and is reproduced with permission
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7.3.5 Scanning Probe Methods

Most of the surface methods mentioned in the previous sections deliver information
about the surface of materials from which information about topological features is
available by means of reconstruction. However, we have also seen that X-ray
fluorescence can be used in conjunction with raster scanning of the sample, thus
directly resulting in an image.

Scanning probe methods are based on a similar principle; here, a probe is raster
scanning over a surface, and the interaction between the probe and the surface is
measured. The most scanning probe methods are scanning tunneling microscopy and
atomic force microscopy (AFM). In both cases, the physical elevation of surfaces (z-
direction) is probed.

Scanning Tunneling Microscopy (STM)
Gerd Binnig and Heinrich Röhrer (Nobel prize in 1986) developed STM in the early
1980s. A sharp metal tip is brought into a distance of 2–5 Å of a conducting surface,
and a potential of about 2 V is applied between the tip and the sample. In this
configuration, electrons can tunnel across the gap between the tip and the sample,
and the current depends on the distance between the tip and surface in an exponential
fashion. This strong dependence is the reason for the high resolving power of STM
which allows imaging an true atomic resolution.

Atomic Force Microscopy (AFM)
This surface-sensitive method enables imaging of surfaces or detection of interactions
between molecules; it was conceived by Binnig and colleagues in the mid-1980s as a
further development of STM. In AFM, the surface is visualised in three dimensions by
touching it with a tiny probe called the tip. The physical phenomenon probing surface
elevation is the interaction force between the tip and the sample surface.

Attractive or repulsive forces between tip and surface are observed through
measurement of the reflection of a laser beam by the cantilever. The reflected laser
beam is detected by a photodiode detector which converts the optical into an
electrical signal. The microscope uses a feedback loop which triggers a z-movement
of the piezoelectric scanner upon bending of the cantilever. The parameters of the
feedback loop are optimised such as to minimise and maintain a constant value of the
force between the tip and the sample.

The surface area (x- and y-direction) is scanned in a raster-like fashion with a tip
brought very close to the sample. The tip is attached to the free end of a cantilever
(Fig. 7.17) which will be bent due to interactions between the tip and the sample
surface. It provides an image of the surface topography of the specimen at high
resolution.

The lateral resolution depends on the diameter and geometry of the tip apex. With
conventional instruments, high resolution images at a lateral resolution of 0.5–1 nm
(¼ 5–10 Å) can be obtained. The vertical resolution is higher, but limited by
mechanical vibrations and thermal fluctuations of the cantilever. Typically, vertical
resolutions of about 0.1–0.2 nm (¼ 1–2 Å) can be achieved. Further developments of
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this technique even allows imaging and characterisation of surfaces at subatomic
resolution (Sugimoto et al. 2007; Emmrich et al. 2015) whereby single adatoms
appear as toroidal structures and multi-atom clusters as connected structures,
showing each individual atom as a torus (Fig. 7.18).

Fig. 7.17 Schematic illustration of an atomic force microscope. Figure kindly provided by A
Simon (Université Lyon 1, France) and adapted from Hofmann et al. (2014)

Fig. 7.18 AFM at sub-nanometer scale can visualise individual atoms. Right top: AFM image of
the Si(111)-(7� 7) reconstruction using a CO-terminated metal tip. The rest atoms and adatoms are
clearly visible. Right bottom: AFM image of a Cu adatom on Cu(111), showing a ringlike
symmetry that is caused by a toroidal charge density of the adatoms. Experimental AFM images
are reproduced from Emmrich et al. (2015) with permission (License No 3691111422111)
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AFM is a technique with a wide variety of applicability. It can operate in vacuum,
air or liquid and be used to probe conductor or non-conductor surfaces. It can also be
used with biological samples (see Fig. 7.19) and has become very popular in many
fields, including materials science, polymer science, physics, life sciences and nano-
biotechnology.

7.4 Exercises

1. The initial rates of the myosin-catalysed hydrolysis of ATP were measured in the
presence of varying starting concentrations of ATP:

c0(ATP) mmol dm�3 0.005 0.010 0.020 0.030 0.050 0.100 0.200 0.300

v0 μmol dm�3 s�1 0.051 0.083 0.118 0.138 0.158 0.178 0.190 0.194

Assume that the enzymatic reaction follows a Michaelis-Menten mechanism and
determine the maximum rate and the Michaelis constant.
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Fig. 7.19 Example of a biological AFM application: an AFM profile of cells (Simon et al. 2003)
with a colour gradient indicating the vertical height. Figure kindly provided by A Simon (Université
Lyon 1, France)
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2. The adsorption behaviour of 1 g activated carbon at 0 �C has been quantitatively
assessed using different pressures of N2. The following molar amounts of N2 are
adsorbed:

p(N2) kPa 0.524 1.73 3.06 4.13 7.50 10.3

nads(N2) 10�4 mol 0.440 1.35 2.27 3.14 4.60 5.82

Assuming Langmuir adsorption behaviour, determine (a) the maximum amount
of N2 that can be adsorbed by 1 g activated carbon at 0 �C and (b) the Langmuir
constant.
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The Fabric of Atoms 8

8.1 Properties of Light and Electrons

Several simple experiments indicate that neutral substances, i.e. such that possess no
overall charge, are composed of charged particles whose individual charges balance
each other. For example, if a salt is dissolved in water, the conductivity of the
resulting solution is larger than that of pure water. Historically, the first findings in
this context (Elster and Geitel 1882; Hertz 1887) were those showing that a metal
can emit charged particles when either heated (thermionic emission) or exposed to
ultraviolet light (photoelectric effect).

When the emitted charged particles in those experiments are accelerated by an
electric field, they can even penetrate thin metal layers without being diverted from
their initial direction of propagation (Lenard 1903). The emitted particles were thus
termed cathode rays. Lenard therefore concluded that if atoms make up matter, then
they cannot be solid particles that fill all the space occupied by matter. From those
scattering experiments, the atomic radius was estimated to be approx 10�8 cm. The
part of the atom that carries most of the mass (the nucleus) was estimated to possess a
radius of approx 10�12 cm.

8.1.1 Charge and Mass of the Electron

Indeed, the charged particles emitted from metals upon exposure to high-energy
light or heating are electrons, and the fact that they can be emitted by matter indicates
that they are a constituting component of matter.

The charge of the electron was first estimated in a landmark experiment by
Millikan who injected oil droplets into the slit between two horizontally arranged
capacitor plates (Millikan 1913). The tiny charged droplets become charged and
suspended against gravity. The electric field E provided by the capacitor plates, gives
rise to an accelerating electrical force onto the charge Q which is given by
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Fel ¼ Q � E:
This accelerating force is either increased or lessened by the gravity, depending

on whether the particles move upwards or downwards. The force on the particles due
to gravity is calculated as per:

Fgravity ¼ m � g:
For a spherical particle, one obtains the following relationship between mass and

radius:

m ¼ V � ρ ¼ 4
3
� π � r3 � ρ

and thus

Fgravity ¼ 4
3
� π � r3 � ρ � g:

The total accelerating force on the charged particle in this experiment is thus

Facc ¼ Fel � Fgravity ¼ Q � E � 4
3
� π � r3 � ρ � g:

This is counteracted by the frictional force, as the particles are moving in air
atmosphere. The frictional force is calculated according to Stokes for spherical
particles that move with velocity v through medium of viscosity η:

Ffriction ¼ 6 � π � η � r � v:
A steady movement is observed when the two forces balance each other:

Ffriction ¼ Facc:

From this, the velocity of the moving particles can be calculated for the two cases,
one where the particles move downwards (along the gravitational field) and one
where they move upwards (against the gravitational field):

vdown ¼
Q � E þ 4

3 � π � r3 � ρ � g
6 � π � η � r

vup ¼
Q � E � 4

3 � π � r3 � ρ � g
6 � π � η � r :

This constitutes two equations with two unknowns, Q and r; one of the unknown
parameters can thus be calculated by measuring the velocities vup and vdown for a
sufficiently large number of particles. Since the oil droplets are macroscopic particles
and might be multiply charged, the experimental values of Q are integer multiples of
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the elementary charge Q(e�) ¼ e. This constant charge of the electron has been
determined to be

e ¼ 1:60210 � 10�19 C: ð8:1Þ
In experiments with the cathode rays, it became apparent that the flight path of

electrons emitted from the metal cathode can be altered by exposing the electron
beam to an external magnetic field. This phenomenon was used by Thomson to
quantitatively characterise the electron (Thomson 1897), allowing the calculation of
its mass.

A charged particle with velocity v that is exposed to a magnetic field
B experiences an acceleration by the Lorentz force, giving rise to a circular flight
path. The Lorentz force acts as a centripetal force (directed towards the centre of the
circle), and is balanced by the centrifugal force:

FLorentz ¼ Q � v � B ¼ m � v2
r

¼ Fcentrifugal:

This yields an expression for the ratio between mass and charge of the particle,
and in particular for the electron:

m

Q
¼ me

e
¼ v

B � r )
m2

e

e2
¼ v2

B2 � r2 : ð8:2Þ

If the electrons in the cathode ray tube are accelerated by applying an external
potential U, then we know that the electrons entering the magnetic field have a
kinetic energy of

Ekin ¼ 1
2
�me � v2 ¼ e � U

from which it follows that

v2 ¼ 2 � e � U
me

:

The above expression can be substituted into Eq. 8.2 which then yields:

m2
e

e2
¼ v2

B2 � r2 ¼
2 � e � U

me � B2 � r2

and thus
me

e
¼ 2 � U

B2 � r2 : ð8:3Þ

The mass-to-charge ratio of the electron can thus be obtained by knowledge of the
external magnetic field strength B, the applied acceleration voltage U and the radius
of the circular flight path of the electron. Importantly, as this relationship applies to
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any charged particle, its mass-to-charge ration m/Q can be obtained from the
parameters B, U and r, when forcing the particle onto a circular flight path—a
concept used for detectors in mass spectrometers.

With the known elementary charge e (Eq. 8.1), the mass of the electron has been
determined to

me ¼ 9:1091 � 10�31 kg: ð8:4Þ

8.1.2 The Wave Properties of Light

The corpuscular theory of light was put forward at the end of the sixteenth century by
several philosophers and taken up by Isaac Newton (1704), explaining the optical
phenomena known at the time. The Dutch mathematician and scientist Christiaan
Huygens proposed in 1677 that light was a wave phenomenon (Huygens 1690);
however, that theory only gained wider acceptance when the observation of interfer-
ence could not be explained by the corpuscular theory.

The phenomenon of interference was demonstrated by experiments attributed
toThomas Young (Young 1802), where light from a coherent source passes two
parallel slits and then observed behind the slits on a screen (Fig. 8.1). With just one
open slit, a projection of the slit geometry is produced on the screen by a smooth
distribution of light, as would be expected for a stream of particles. However, when
both slits are open, a fringe-like pattern appears on the screen. This varying intensity
of light after it passed the slits is called interference and is a phenomenon that cannot
be explained by light behaving as particles, but rather waves.

In 1871, James Clerk Maxwell formulated, based on ideas of Faraday and
experiments by Hertz, the concept of light as an electromagnetic phenomenon, and
light was then seen as a sole wave phenomenon.

Yet once again, these ideas were challenged by results obtained from black-body
radiation. A black-body is a perfectly insulated enclosure that absorbs all incident
electromagnetic radiation and only emits radiation through a hole made in its wall.

Fig. 8.1 Double-slit
experiment to demonstrate
interference
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The emitted radiation is independent of the chemical nature of the body and only
depends on its temperature; it is hence called thermal radiation. The higher the
temperature of the black-body, the more radiation it emits at every wavelength (see
Fig. 8.2). For example, at room temperature, it emits radiation that is mostly in the
infrared and invisible region of the spectrum. At higher temperatures, the emission of
infrared light increases; it can be felt as heat and the body glows visibly red. At even
higher temperatures (e.g. stars like the sun with a temperature of 5780 K at the
surface), the body appears bright yellow or blue-white and emits significant amounts
of short wavelength radiation, including UV and even X-rays.

Rayleigh and Jeans proposed in 1900 that electrons at the surface of the black-
body oscillate with a frequency ν, thus giving rise to electromagnetic radiation
according to Maxwell’s theory of light for which the spectral flux density E(ν) can
be calculated:

E νð Þ ¼ ν2

c2
� kB � T or E λð Þ ¼ c

λ4
� kB � T: ð8:5Þ

These expressions (known as the Rayleigh-Jeans law) describe the intensity of
emitted radiation at a particular frequency ν or wavelength λ. This law predicts that

Fig. 8.2 Spectral flux density of the black-body
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the flux density increases with decreasing wavelength, and becomes infinite at very
small wavelengths. As can be seen from Fig. 8.2, this predication is at odds with the
experimentally observed spectral emission of the black-body. Whereas there is
agreement at longer wavelengths, the experimental data shows an emission maxi-
mum at shorter wavelengths.

The issue arises from the assumption that surface electrons adopt a behaviour
similar to linear oscillators, giving rise to the inner energy

U e�ð Þ ¼ kB � T :
It was Max Planck who realised that the energy of the oscillating electrons should

be expressed as

U e�ð Þ ¼ h � ν
e

h�ν
kB �T � 1

which then yields the Planck law:

E νð Þ ¼ h � ν3
c2 � e

h�ν
kB �T � 1

� � orE λð Þ ¼ h � c2
λ5 � e

h�c
λ�kB �T � 1

� � : ð8:6Þ

Planck’s law correctly predicts the radiation emitted by the black-body and
introduces a constant h ¼ 6.626176�10�34 J s which is called the Planck constant
and possesses a finite value. The Planck constant is at the core of quantum theory:

" Any action (¼ energy�time) of a natural event is an integer multiple of
the quantum of action h. The smallest possible action is h.

This concept is part of a set of a distribution statistics for thermal equilibria.
According to Planck, the energy is distributed among the atoms according to the
temperature of the object. A few atoms have low energy, many have medium energy
and a few have high energy. The large amount of atoms possessing medium energy
increases as the temperature increases. Each atom can emit electromagnetic radia-
tion. For very high frequencies ν, the energy needed to emit one quantum of energy
is very large, and only a few atoms in the black-body have that much energy
available, so only a few high-frequency quanta are radiated. It is much easier for
atoms to emit low-energy (low frequency) radiation. In between the two extremes,
however, there are many atoms that have enough energy to emit radiation of
moderate energy. These add up to produce the peak in the emission curve of the
black-body. This peak shifts to higher frequencies for bodies at higher temperature,
since there are more individual atoms that possess higher energy.
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8.1.3 The Photoelectric Effect

When light of sufficient energy is hitting onto a metal plate, electrons (now called
photoelectrons) are released from the metal that possess a certain kinetic energy
Ekin ¼ 1

2 � m � v2� �
. This energy can be measured by clamping the metal plate against

another electrode and apply an electric field that opposes the stream of
photoelectrons. By varying the electric potential such that the stream (¼ current I )
of photoelectrons reduces to zero (U0), one can measure the maximum kinetic
energy of the photoelectrons:

Emax ¼ 1
2
� m � v2max ¼ e � U0:

Since the photoelectrons are released as a result of the incident light, the wave
theory of light predicts that the kinetic energy of the photoelectrons should vary with
the intensity of the incoming light wave whose impulse is being transferred onto the
electrons. However, whereas more intense light causes a larger current of
photoelectrons, the maximum kinetic energy of those electrons, measured via the
potential U0, remains constant.

If the energy (h�ν) of the incident light is increased by shining light of higher
frequency ν (shorter wavelength λ) onto the metal electrode, the kinetic energy of the
photoelectrons increases in a linear fashion (Fig. 8.3). If the metal electrode is
changed to a different material, the same type of relationship is observed, but the
line is shifted parallel along the x-axis. This relationship can be mathematically
formulate as:

U0 ¼ const: � ν� νcathð Þ
and multiplied with the elementary charge e to obtain the same relationship in terms
of energies:

e � U0 ¼ e � const:ð Þ � ν� νcathð Þ: ð8:7Þ

The first factor on the right hand side of Eq. 8.7 is again a constant and turns out to
be the Planck constant h. Re-arrangement of this equation then yields Einstein’s
frequency law (Einstein 1905) which earned him the Nobel prize in 1921:

h � ν ¼ e � U0 þ h � νcath: ð8:8Þ
These results from the photoelectron experiments do not agree with the wave

theory of light. Instead, Eq. 8.8 suggests that light propagates in the form individual
quanta that travel with the speed of light c. These light quanta are called photons
which have an energy

E ¼ h � ν ð8:9Þ
and can thus be likened to corpuscular radiation. The term h�νcath on the right hand
side of Eq. 8.8 is dependent on the material of the photoelectrode and constitutes the
work required to remove an electron from the solid matter.
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8.1.4 The Dual Nature of Light

The photoeffect is proof that light, besides its wave behaviour, also possesses
corpuscular characteristics. Emission of photoelectrons is only possible if the
incoming light possess an energy larger than the work required to release an electron
from the solid. The kinetic energy of photoelectrons cannot be changed by the
intensity of the incoming light, but only by changing its energy. The intensity only
affects the current (i.e. number) of released photoelectrons.

The interference experiments described in Sect. 8.1.3 (Fig. 8.1), can be modified
such as to measure photons as they pass through the slits. These measurements show
that each photon passes through one slit as it would be expected for a particle.
Furthermore, the photons detected on the screen behind the slits are always detected
at discrete points, demonstrating again behaviour of a single particle. Only the
varying density of these hits (i.e. a distribution counted over many individual events)
gives rise to the interference pattern (see also the discussion of electron diffraction in
the next section).

8.1.5 The Dual Nature of the Electron

In Sect. 8.1.1, we discussed the corpuscular characteristics of the electron. If a thin
layer of solid polycrystalline material is subjected to an incident electron beam
(Fig. 8.4), then the corpuscular theory would predict a single point of incident on

Fig. 8.3 The photoelectric effect. Left: Schematics of an apparatus to measure the kinetic energy of
photoelectrons. Right: The higher the energy of the incident photons (i.e. the higher the frequency ν),
the higher the kinetic energy (measured via the potential U0 required to reduce the current to zero)
of the photoelectrons emitted by the cathode. Different cathode materials show the same relationship,
but the energy of the incoming photons required to elicit photoelectrons is different
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the detector. However, diffraction rings are observed instead, similar to the observa-
tion made in X-ray diffraction experiments (see Sect. 13.5.2).

The diffraction of electrons cannot be explained by the corpuscular theory as it is
an interference phenomenon that requires waves. Just as light, the electron therefore
also possesses properties of a particle and a wave.

In the cathode ray tube, it is possible to accelerate the electrons by varying the
potential difference that gives rise to the electric field experienced by the electrons.
Experimentally, it can be shown that the wavelength of the electrons is indirectly
proportional to their momentum:

λelectron � 1
pelectron

¼ 1
melectron � velectron ) λ ¼ const:

melectron � velectron :

This important relationship is known as the DeBroglie relationship and links the
corpuscular property (momentum) of the electron with its wave property (wave-
length). The proportionality constant is thus of pivotal importance as it is the very
factor that enables this conversion. It will not come as a big surprise that this constant
is the Planck constant h, which renders the DeBroglie relationship as

λ ¼ h
melectron � velectron : ð8:10Þ

Optical resolution and electron microscopes
The wave properties of electrons are the basis for the important practical
application in electron microscopes. The resolving power of optical systems
defines the ability of an imaging device to separate points that are located at a
small distance. The minimum resolvable distance is often called (angular)
resolution. Physically, this is determined by the Rayleigh criterion which

(continued)

Fluorescent screen
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Fig. 8.4 Electrons accelerated in a cathode ray tube onto a thin metal layer show electron
diffraction on the fluorescent screen
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states that two point-like light sources are just resolved, when the main
diffraction maximum of one image coincides with the first minimum of the
other. Any greater distance between the two point sources means they are well
resolved; any smaller distance makes the two points non-resolvable. In terms
of a circular aperture, this leads to the equation

sin θ ¼ 1:22 � λ
D

where θ is the angular resolution, λ the wavelength of light used to
image and D the diameter of the aperture of the lens system; the factor of
1.22 is derived from the Bessel function of first order first kind, divided by
π (J1/π ¼ 1.22). It is obvious from above equation that the resolution (θ) will
assume smaller values (i.e. “increase”), as the wavelength of the light used
becomes smaller.

The human eyes are sensitive to wavelengths of light in the range of 750 nm
to 400 nm; the maximum resolution is equivalent to an object size at the order
of 0.1 mm. With the help of optics, the light microscope (operating in the same
wavelength range) can achieve a resolution of about 200 nm. In electron
microscopes, the wave behaviour of electrons yields radiation of a wavelength
of about 0.1 Å and contemporary instruments achieve a resolution of about
1–2 Å.

The dualism raises the question of what individual objects, such as a single
electron is at a particular point in time. Is it simultaneously a particle and wave?
We therefore consider again an electron beam produced in an evacuated tube
(Fig. 8.5).

If there is no solid material in the way of the electron beam, it can be focussed and
appears as a single intense spot on the detector (Fig. 8.5, left panel). When the beam
penetrates a thin sample of solid polycrystalline matter, a diffraction image appears
on the detector that is reminiscent of those obtained with X-rays as mentioned above
(Fig. 8.5 centre panel). If one now lowers the intensity of the electron beam, the
intensity of the diffraction rings gradually decreases. However, when the intensity is
lowered such that it is no longer a beam of electrons, but rather a stream of individual
electrons hitting the solid sample, the diffraction rings disappear from the detector
and only individual and independent spots of incidence are recorded (Fig. 8.5 right
panel). When observed over a long time, the individual spots of incidence will
compose the original diffraction image.

If the electrons indeed possessed wave properties throughout, the complete
diffraction image in above experiment should have been visible at all times. These
observations suggest, that in this type of experiment the wave properties only exist
for statistics of many particles.
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8.1.6 The Wave-Particle Dualism

In the previous sections, we came to appreciate that light as well as electrons possess
characteristics of particles as well as waves. With the characteristic properties of
waves being the wavelength λ, and the characteristic properties of moving particles
being their momentum p, the pivotal relationship of the wave-particle dualism is the
DeBroglie relationship:

λ ¼ h
p
¼ h

m � v : ð8:10Þ

For photons, the corpuscular energy is E ¼ m�c2, so their momentum is p ¼ m�c.
With Eq. 8.9 it then follows that

p ¼ h � ν
c

and substitution in Eq. 8.10 then leads to the relationship between wavelength λ and
frequency ν of photons:

λ ¼ h
h�ν
c

¼ c
ν
: ð8:11Þ

Whereas these discoveries were originally made with light and electrons, it has
been shown by using atomic and molecular rays that the wave-particle dualism also
exists for larger and thus heavier particles. From the DeBroglie relationship 8.10 it is
obvious that the wavelengths of heavy particle rays have very small wavelengths
(due to the high mass as compared to electrons or photons) and these small
wavelengths are very difficult to detect. The largest entities for which the wave-
particle dualism has been experimentally tested were molecules with some
800 atoms and a total mass of approx. 10,000 Da (Eibenberger et al. 2013).

In the previous sections, we discussed the interference of light and the diffraction
of electrons. If we describe the beam of photons or electrons as a stream of particles,
then a measure for the intensity of the beam is the number of particles passing a tiny
volume slice per time. If we describe the beam as a wave characterised by an

Fig. 8.5 Electron diffraction experiments. See main text for discussion
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amplitude Ψ, then the intensity of the beam in a small volume element is propor-
tional to the squared amplitude, Ψ2.

In the case of the low intensity beam in above diffraction experiment (Fig. 8.5
right panel), we can not predict where an electron will be hitting the detector area.
However, the probability will be high in those regions where a strong diffraction ring
is located (known from the experiment that worked with the intense electron beam).
Notably, the intensity of a diffraction ring is a function of the intensity (¼ squared
amplitude) of the electron wave. The squared amplitude Ψ2 therefore is a measure of
the probability to find an electron at a particular location (in this case on the
detector area).

In this particular experiment, we can determine with confidence the kinetic
energy of the electrons forming the beam; it is given by the electric potential applied
to accelerate the electrons in the tube. We thus know with great certainty what the
momentum p¼ m�v and thus the wavelength λ of the electron beam is. However, we
cannot be certain where exactly an electron will hit the detector, the exact three-
dimensional coordinates (x, y, z) are unknown.

This observation illustrates Heisenberg’s uncertainty relationship which states
that

" The more precise the momentum of a particle is defined, the less
certainty there is about the particle’s location. And vice versa, the more
precisely the location of a particle is known, the less certainty there is
about its momentum.

Wave packets
For (heavy) particle waves, neither the wavelength λ, nor the frequency ν can
be measured. The same is true for the phase velocity which is the rate at which
the phase of the wave propagates in space (note: for light, the phase velocity is
c and can be measured).

If waves of slightly differing wavelengths are superimposed, this yields a
so-called wave packet (Fig. 8.6). In such packets, oscillations of the individual
constituting waves amplify each other in some areas, and they cancel the
amplitudes in other areas. The wave packet as whole travels through space
with the group velocity.

The propagation of an electron beam—when considered as a wave—may
thus be described as a travelling wave packet, where the areas of large
amplitudes indicate a high probability of the location of an electron and the
areas of low or zero amplitude indicate low or zero probability of finding an
electron.

A wave packet that describes a moving particle requires a particular width
Δx. If this width is very small, the location of the particle is well defined.
However, in order to obtain a very thin wave packet, the superposition of many

(continued)
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waves of varying wavelengths λ is required; the wavelength range Δλ is large.
In contrast, if only few waves with differing wavelengths are superimposed
(Δλ is small), the resulting wave packet is rather broad (Δx is large), therefore
giving a considerable ambiguity as to the actual location of the particle. Earle
Hesse Kennard then derived the inequality of the product of the two
distributions Δx and Δλ:

Δx � 1
Δλ

� 1
4π

from which one derives with the DeBroglie relationship 8.10:

Δx � Δp � h
4π

ð8:12Þ

which summarises Heisenberg’s uncertainty relationship in a numerical
fashion.

Importantly, this quantum mechanical principle does not violate
observations made with macroscopic objects. For heavy particles, which are
the subject of classical mechanics, the mass m is orders of magnitudes larger
than for (sub)atomic particles. If we replace the momentum p by the product of
mass and velocity, we obtain:

Δx � Δ m � vð Þ � h
4π

Δx � Δv � h
4π � m : ð8:13Þ

In formula 8.13, the right side of the inequality assumes values near zero in
the case of heavy particles due to the large numerical value of their mass. This
means that the uncertainty on the left hand side of may take very small values
or indeed zero. In other words, there is virtually no uncertainty as to the
location (Δx) and velocity (Δv) of the particle.

Since we have recognised that the wave-like behaviour of electrons and light can
only be established through a distribution of many individual events, we can
understand that it is not possible to track the path of an individual wave, for example
behind the slits in the interference experiment in Fig. 8.1. Any screen or detector
would only ever measure the absorption of a particle like-photon at a discrete point.
The act of observation therefore affects the result obtained with the measurement. It
is not possible to observe the particle and wave aspects of these beams simulta-
neously. This phenomenon is termed the complementarity principle.
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8.2 Properties of Atoms

8.2.1 Atomic Spectroscopy

Equipped with some knowledge about electrons and photons, we next want to
investigate their interactions with atoms in order to learn more about the inner makings
of atoms. Therefore, we again employ accelerated electrons, such as in a cathode ray
tube (Fig. 8.7), and probe their collisions with gas molecules. The cathode ray tube is
thus filled with mercury vapour such that the electrons can collide with Hg atoms in
the gas phase. A grid is placed between the cathode and the anode and a counter
voltage is applied between grid and anode to slow down the electrons.

With increasing acceleration voltage, an increased current (¼ stream of electrons)
is registered, as more and more electrons are being emitted by the cathode. The
collisions with Hg atoms thus need to be elastic, i.e. they appear without loss of
kinetic energy. However, once the acceleration voltage is larger than a threshold
voltage (here 4.9 V), the current drastically drops, indicating that a large number of
electrons no longer possesses the necessary energy to overcome the potential
difference between the grid and the anode. Apparently, the electrons lose their
energy in an inelastic collision with the Hg atoms. Once the voltage is increased
beyond the threshold voltage, the mercury vapour starts to emit light with a wave-
length of 253.6 nm, which corresponds to an energy of 4.9 eV which is exactly the
energy lost by the electrons in their inelastic collisions. This energy appears to be
transferred onto the gas atoms, which then are in an excited state. They return from
this excited state in to the ground state by emitting this energy in form of photons.

This experiment by Franck and Hertz indicates that atoms only absorb and emit
energy in discrete portions, demonstrating the quantum nature of atoms (Franck and
Hertz 1914). Since the collisions between the accelerated electrons and atoms indeed
happen by collisions between the accelerated electrons and the electrons in the
atomic sphere, one can conclude that indeed the atomic electrons exists in discrete
energy states.

Fig. 8.6 Illustration of a
wave packet
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Atoms can not only be excited by collisions with electrons; if sufficient thermal
energy is provided, this may also lead to formation of excited atomic states. A simple
experiment in this context is the observation of excited sodium atoms in the flame of
a Bunsen burner or a plasma torch (Fig. 8.8 left). Sodium-containing salts introduced
into the flame of a Bunsen burner result in a yellow colour of the flame. As the
excited sodium atoms return to the ground state, they emit yellow light which can
visually be observed. More generally, it becomes apparent that atoms only emit light
of discrete wavelengths which is why atomic spectra are called line spectra.

A similar experimental setup can be used to investigate absorption of light by
atoms (Fig. 8.8 right). Using a light source that provides light in the entire visual
spectral range, a continuous spectrum is observed when that light is refracted by a
wavelength discriminator. If a Bunsen burner or plasma torch is placed between the
light source and the wavelength discriminator, the thermal energy is used to
vapourise individual atoms from salts introduced into the plasma or flame. Individ-
ual atoms in their ground states will absorb light of particular wavelengths coming
from the light source and thus transition into excited states. These particular
wavelengths are missing from the light that reaches the detector and appear as
dark lines in the observed spectrum.

These concepts form the basis of atomic absorption (AAS) and atomic emission
spectroscopy (AES). Both methodologies have been in use in analytical chemistry
laboratories; however, atomic emission spectrometers are most frequently employed
in contemporary laboratories, typically with an inductively coupled plasma as source
of thermal energy (ICP-AES).

Fig. 8.7 Illustration of the experiment by Franck and Hertz. Left: Electrons emitted by the cathode
are accelerated towards a grid by a varying acceleration potential and eventually collide with
mercury atoms in the gas phase (magenta). After being slowed down, they hit the anode and a
current is registered. Right: Electron current in dependence of the acceleration potential. The sharp
drop of current on the right side of each peak indicates a loss of energy of the electrons. This energy
is absorbed by the mercury atoms, which transit into an excited state
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For illustration, we will consider the line spectrum of atomic hydrogen in more
detail. Johann Balmer found empirically in 1885 that the spectral lines of atomic
hydrogen can be classified into series which follow a mathematical relationship
further developed by Johannes Rydberg and Walter Ritz:

1
λ
¼ R1 � 1

n20
� 1
n2

� �
: ð8:14Þ

Here n and n0 are integer numbers and n is always larger than n0. For a particular
series of lines, n0 is a constant. The constant R1 is known as the Rydberg constant
and assumes a value of R1 ¼ 1.097�107 m�1 for hydrogen. The reciprocal wave-
length is known as the wavenumber eν, and from Eq. 8.11, the following relationship
can be derived:

1
λ
¼ ν

c
¼ eν: ð8:15Þ

In Eq. 8.14, the expressions Tn ¼ �R1
n2

and Tn0 ¼ �R1
n20

are called atomic terms.

For varying numbers n one thus obtains (Table 8.1):

Fig. 8.8 Comparison of atomic emission (AES) and absorption spectroscopy (AAS). In AES, the
emission of light from atoms in their excited states is measured and yields lines at discrete
wavelengths observed against a dark background. In contrast, atoms may exist in their ground
states and an external light source can be used to cause transition to an excited state. As this energy
is then missing from the transmitted light, discrete wavelengths appear as absorption (black) lines
against the continuous spectrum. The spectra shown illustrate the sodium line spectra

268 8 The Fabric of Atoms



Equation 8.14 can thus be expressed as:

ev ¼ Tn � Tn0 ð8:16Þ
The different series of spectral lines observed for atomic hydrogen are then

obtained from Eq. 8.16 and given particular names as summarised in Table 8.2.
Importantly, the wavenumbers eν of the individual lines can now be obtained by the
difference of two atomic terms. Graphically, this can be visualised in a so-called term
scheme (Fig. 8.9) whereby every term is shown as a horizontal line. The individual
terms are ordered vertically with the ascending running number n. In such a term
scheme, a specific spectral line then appears as a vertical difference line between two
particular terms.

The interpretation of the term scheme was a breakthrough by Niels Bohr in 1913.
If Eq. 8.16 is multiplied with (h�c), one obtains:

h � c � ev ¼ h � v ¼ h � c � Tn � h � c � Tn0 ¼
h � c � R1

n20
� h � c � R1

n2
:

Since the left side of this equation describes an energy, the same must be true for
the right hand side:

h � ν ¼ Eend � Estart ¼ h � c � R1
n20

� h � c � R1
n2

¼ h � c � R1 � 1

n20
� 1
n2

� �
, with n > n0: ð8:17Þ

The energies Eend and Estart are correlated with energy levels of the atom. The
emitted light observed as the spectral line in the atomic emission spectrum—or

Table 8.1 Spectroscopic
terms

n Tn

1 T1 ¼ � R1
2 T2 ¼ �R1

4

3 T3 ¼ �R1
9

4 T4 ¼ �R1
16

1 T1 ¼ 0

Table 8.2 Spectral series
of atomic hydrogen

Lyman series n0 ¼ 1 ~v ¼ Tn � T1 n ¼ 2, 3, . . .

Balmer series n0 ¼ 2 ~v ¼ Tn � T2 n ¼ 3, 4, . . .

Paschen series n0 ¼ 3 ~v ¼ Tn � T3 n ¼ 4, 5, . . .

Bracket series n0 ¼ 4 ~v ¼ Tn � T4 n ¼ 5, 6, . . .

Pfund series n0 ¼ 5 ~v ¼ Tn � T5 n ¼ 6, . . .
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similarly, the absorbed light observed as line in the atomic absorption spectrum—is
thus the difference of two particular energy levels. Absorption of light of a particular
wavelength therefore causes transition of an atom from a lower to a higher energy
state. Vice versa, atoms can return from a high to a low energy state by emission of
light of a particular wavelength.

A closer look at the wavelengths of the spectral lines in Fig. 8.9 shows that within
each of the series, their values are closer together the shorter the wavelengths (i.e. the
larger the energy of the absorbed/emitted light) become. For each series, there is thus
a shortest wavelength called the series limit. If the energy of light used in an
absorption experiment is larger than the energy of the series limit, the incident

Fig. 8.9 The term scheme of atomic hydrogen
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photon carries so much energy that it ionises the atom when absorbed. Atomic
spectroscopy can thus be used to determine the ionisation energy of atoms.

8.2.2 The Hydrogen Model by Bohr

According to Rutherford, atoms should consist of a positively charged nucleus
around which electrons orbit in relatively large distances. This idea of atoms having
a similar constellation like a solar system was further developed by Bohr. In contrast
to planets orbiting a sun based on a gravitational attractive force, the orbiting
electrons should be attracted to the nucleus by an electrostatic (i.e. the Coulomb)
force. However, according to the macroscopic laws, an orbiting electron should thus
be able to assume any energy and orbiting radius, depending on its velocity. A loss
of energy would eventually lead to the electron collapsing onto the nucleus. Bohr
therefore postulated that the quantisation discovered by Planck should also be
applied to the electrons orbiting an atomic nucleus. By combining this quantum
mechanical principle with the planet model, individual states of energies for the
orbiting electrons are obtained:

En ¼ � me � e4
8 � ε20 � n2 � h2

ð8:18Þ

where ε0 ¼ 8.8542�10�12 A2 s4 m�3 kg�1 is the vacuum permittivity. These energy
levels depend on particular states characterised by the principal quantum number n:

En ¼ � me � e4
8 � ε20 � h2

� 1
n2

¼ �EA � 1
n2

: ð8:19Þ

The jump from a higher (n2) to a lower (n1) energy state therefore requires an
energy change in the system which is given by:

ΔE ¼ E2 � E1 ¼ �EA � 1

n22
� 1

n21

� �
¼ EA � 1

n21
� 1

n22

� �
, whereby n2 > n1:

With ΔE ¼ h�ν, this yields:

h � ν ¼ EA � 1

n21
� 1

n22

� �
: ð8:20Þ

Comparison with Eq. 8.17 shows that the above equation for atomic energy states
based on the principal quantum number n is identical with the equation derived for
the atomic line spectra. EA is the lowest possible energy of the atom, i.e. the energy
of the ground state. It corresponds to the energy of the electron which is orbiting
closest to the nucleus (n¼ 1; see Eq. 8.19). By comparison with Eq. 8.17 it transpires
that this energy is linked to the Rydberg constant:
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R1 ¼ EA

h � c :

In case of atomic hydrogen, EA is the ionisation energy as it represents the energy
that one has to provide to remove the electron from the atom.

Whereas the model developed by Bohr successfully describes spectroscopic
observations for single electron species such as atomic hydrogen and similar ions
(He+, Li2+), it fails to explain spectra of multi-electron species (He, Li+, . . .).

The orbiting radius of an electron in the atomic model by Bohr
The planet model by Bohr uses the macroscopic laws of mechanics and
electrostatics. An object moving around a centre is subject to two forces, the
centripetal force Fcp and the centrifugal force Fcf. The centripetal force in
Bohr’s model is provided by the electrostatic attraction between the positively
charged nucleus and the negatively charged electron:

Fcp ¼ 1
4π�ε0 � e

2

r2 :

The centrifugal force is a function of the angular velocity ω:
Fcf ¼ p � ω ¼ me � ω2 � r, where the momentum is p ¼ me � ω � r.
For a stable circular orbit, this yields the requirement:

Fcp ¼ Fcf ¼ 1
4π � ε0 �

e2

r2
¼ me � ω2 � r: ð8:21Þ

In order to achieve discrete energy values, Bohr postulated that the angular
momentum L is only allowed discrete values, which would then need to be
multiples of the quantum of action h:

L ¼ p � r ¼ me � ω � r2 ¼ n � h
2π

: ð8:22Þ

Combining Eqs. 8.21 and 8.22, this yields:

1
4π � ε0 �

e2

r2
¼ n � h

2π

� 	2
� 1
me � r3

1
4π � ε0 � e

2 � r ¼ n2 � h
2

4π2
� 1
me

:

This delivers an expression for the radius of the orbiting electron:

(continued)
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r ¼ n2 � h
2

4π2
� 1
me

� 4π � ε0
e2

¼ n2 � h2 � ε0
π �me � e2 : ð8:23Þ

For the electron in the atomic hydrogen, the orbiting radius would thus be:

r ¼ n2 � h2 � ε0
π �me � e2 ¼ 1 � 6:626 � 10�34

� �2
J2 s2 � 8:854 � 10�12 A2 s4 m�3 kg�1

π � 9:110 � 10�31 kg � 1:602 � 10�19
� �2

C2

r ¼ 1 � 6:6262 � 8:854 � 10�68 � 10�12 kg2 m4 s�4 s2 A2 s4 m�3 kg�1

π � 9:110 � 1:6022 � 10�31 � 10�38 kg � A2 s2

r ¼ 1 � 6:6262 � 8:854 � 10�80 m

π � 9:110 � 1:6022 � 10�69 ¼ 1 � 6:6262 � 8:854
π � 9:110 � 1:6022 � 10

�11 m

r ¼ 5:295 � 10�11 m ¼ 0:53 Å

8.3 Introduction to Quantum Mechanics

8.3.1 The Schrödinger Equation

Whereas the planet-like model chosen by Bohr can easily be visualised and is thus a
fairly accessible model, the postulates required to achieve agreement with experi-
mental observations are not immediately accessible. The general problem with this
approach is the direct application of macroscopic laws to processes at the atomic
level.

A different concept was suggested by Erwin Schrödinger based on the dualism of
wave and matter, giving rise to the so-called wave mechanics. In that context, we
have previously introduced the wave function Ψ which describes matter as a wave
and as such does not require an individual point in space and time for
characterisation. It has also become clear that the squared amplitude, Ψ2, is a
measure of the probability to find a particle in a volume element of space. In order
to learn about states in atoms, it will be sufficient to analyse the wave function Ψ for
its properties in various locations, i.e. Ψ(x, y, z). If we are dealing with processes
such as radiation, however, the time time-dependence of the wave function will also
need to be considered, i.e. Ψ(x, y, z, t).

For instances independent of time, Schrödinger suggested the following equation
for the wave function Ψ(x, y, z) in three dimensions
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ΔΨþ 8π2 � m
h2

� E � Epot
� � � Ψ ¼ 0 ð8:24Þ

Notably, this equation cannot be proven from first principles. Very much like the
laws of thermodynamics, the equation is a description of naturally occurring phe-
nomena, whose ‘proof’ is the fact that it correctly describes these phenomena.

In Eq. 8.24, ‘Δ’ does not indicate a difference, but rather the Laplace operator
which describes the second derivative:

Δ ¼ δ2

δx2
þ δ2

δy2
þ δ2

δz2
: ð8:25Þ

For simplicity, we will reduce further discussion of this problem to just one
dimension (x). Visually, this suggests that we are dealing with a standing wave
(Fig. 8.10). The mathematical expression for such a wave (cf. harmonic oscillator) is:

Ψ xð Þ ¼ e
2π�i�x
λ ¼ cos

2π � x
λ

þ i � sin 2π � x
λ

� �
, ð8:26Þ

where x is the coordinate in space (one dimension), λ is the wavelength and i is
defined as per i2 ¼ �1. Calculation of the first and second derivative of the
expression for the one-dimensional wave Ψ(x) yields:

dΨ xð Þ
dx

¼ 2π � i
λ

� e2π�i�x
λ and

d2Ψ xð Þ
dx2

¼ � 2π
λ

� �2

� e2π�i�x
λ : ð8:27Þ

The expression for the second derivative can be re-arranged to read:

d2Ψ xð Þ
dx2

þ 2π
λ

� �2

� e2π�i�x
λ ¼ 0

d2Ψ xð Þ
dx2

þ 2π
λ

� �2

� Ψ xð Þ ¼ 0: ð8:28Þ

From the DeBroglie relationship (Eq. 8.10), we can derive that

Fig. 8.10 Illustration of a
one-dimensional
standing wave

274 8 The Fabric of Atoms



v ¼ h
m � λ

and then can obtain an expression for the kinetic energy Ekin that can be resolved for
λ2:

Ekin ¼ 1
2
� m � v2 ¼ 1

2
� m � h

m � λ
� �2

) λ2 ¼ h2

2 � m � Ekin
,

and the above expression can be substituted in the wave Eq. 8.28:

d2Ψ xð Þ
dx2

þ 8π2 � m
h2

� Ekin �Ψ xð Þ ¼ 0:

Since the total energy of a particle is the sum of its kinetic and potential energy
(E ¼ Ekin + Epot), we obtain:

d2Ψ xð Þ
dx2

þ 8π2 � m
h2

� E � Epot
� � � Ψ xð Þ ¼ 0, ð8:29Þ

and find that Eq. 8.29 is the one-dimensional form of the Schrödinger Eq. 8.24.
Importantly, this agreement itself is not proof that the Schrödinger equation is
correct.

Conceptually, the use of this equation for quantum mechanical problems assumes
a model whereby particles with a mass m can be described as waves of matter. This
raises the question of what exactly is propagating through space in a wave of matter.
This question was answered by Max Born in 1928 who interpreted waves of matter
as probability waves. Intriguingly, quantum mechanics therefore is intrinsically
probabilistic. Whereas in classical mechanics, one can assign precise coordinates
to a particle (limited only by the instrumentation used for measurement), quantum
mechanics only allows assignment of probabilities to find a particle in one volume
element or another. The Schrödinger equation acts as the link between both of these
‘worlds’. The particles possess a potential energy Epot and a mass m both of which
can be determined using physical laws of the macroscopic world. Based on these
numerical values the Schrödinger equation delivers the wave functionΨ and the total
energy E which describe the quantum mechanical behaviour of the particle.

8.3.2 Basic Properties of Wave Functions

Wewill find later that wave functions can be determined with exception of a constant
factor (Sect. 9.1.1, Eq. 9.3). However, since we concluded that the squared ampli-
tude of the wave function is a measure of the probability to find the particle in a
volume element dV, then the total probability to find the particle somewhere has to
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equal one. Mathematically, the total probability corresponds to an integration of the
function |Ψ|2 over the entire volume V:

ðV
0

Ψj j2dV ¼ 1: ð8:30Þ

The constant factor will thus have to be set such, that Eq. 8.30 is adhered to. In
that case, the wave function Ψ is called a normalised wave function. A close look at
the above equation shows that |Ψ|2 carries the units of probability per volume and
therefore constitutes a probability density.

The reason we have now introduced |Ψ|2 instead of Ψ2 for the probability density
is that wave functions will involve complex numbers (as opposed to real numbers),
in which the case the square amplitude is computed as the product of the amplitude
and its complex conjugated:

Ψ � Ψ∗ ¼ Ψj j2 ð8:31Þ
Complex numbers consist of a real (ℜ) and an imaginary (ℑ) part: C ¼ ℜ + i � ℑ

The complex conjugate of C is defined as C∗ ¼ℜ � i � ℑ. It is thus obvious that the
product of C and C* yields the sum of the squared real and imaginary parts:

C � C∗ ¼ Cj j2 ¼ ℜþ i � ℑð Þ � ℜ� i � ℑð Þ ¼ ℜ2 þ i � ℑ �ℜ� i � ℑ �ℜ� i2ℑ2

¼ ℜ2 þ ℑ2

If the imaginary part is zero (ℑ ¼ 0) then C is a real number and the square
operation reduces to the case well-known for real numbers:

C � C∗ ¼ ℜ2, if ℑ ¼ 0:

Above, we came to appreciate that in order for |Ψ|2 to assume a physical meaning,
we require the wave function Ψ to adhere to Eq. 8.30. Therefore, the function Ψ has
to fulfil the following pre-requisites:

• Ψ needs to be a continuous function and we need to be able to determine its
derivative. This requires that the first and second derivative of Ψ are also
continuous functions. In other words, Ψ must not have any kinks are jumps.

• Ψ has to be unambiguous; for a particular set of values of the independent
variables (x, y, z, t), there has to be only one value of Ψ.

• Ψ needs to assume finite values throughout and approach values of zero when the
spatial variables x, y and z become infinite.

It is frequently necessary to calculate properties of a particle or system that are not
immediately obtained by solving the Schrödinger equation. Obvious examples are
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the potential energy Epot or the momentum p of a particle that are not directly
available from the Schrödinger equation which only allows direct calculation of
the total energy E.

In order to outline the general procedure for such cases, we will, for simplicity,
again consider a one-dimensional wave function Ψ(x). The probability density
function ρ(x) is given based on Eq. 8.31:

ρ xð Þ ¼ Ψ xð Þj j2 ¼ Ψ∗ xð Þ � Ψ xð Þ, assuming that Ψ xð Þ is normalised: ð8:32Þ
The probability to find the particle in the interval x and x + dx is then available via

the integral
ðxþdx

x

ρ xð Þdx. Therefore, if we are interested in the average value of the

potential energy Epot, which itself is a function of the location x, the function Epot(x)
needs to be multiplied with the probability ρ(x) to find the particle at each location x,
and then integrate over all location values x. In this context (of probability theory),
the average value of a quantity (e.g. �Epot) is called the expected value of this quantity,
denoted as <Epot>:

Epot


 � ¼
ðþ1

�1
Epot xð Þ � ρ xð Þdx ¼

ðþ1

�1
Ψ∗ xð Þ � Epot xð Þ � Ψ xð Þdx: ð8:33Þ

8.4 Exercises

1. Calculate the wavelength of an electron that is accelerated by a potential differ-
ence of 10.0 kV.

2. The atomic model suggested by Niels Bohr in 1913 depicts atoms as systems very
much like a solar system, where electrons travel in circular orbits around the
positively charged nucleus. If one wanted to determine the location of an electron
at a particular point in time with a certainty of �0.05 Å, what is the uncertainty
with respect to the speed of the electron?

3. The wavelength of macroscopic objects: what is the wavelength of a person of
65 kg walking at a speed of 0.8 m s�1?

4. Two consecutive lines in the atomic spectrum of hydrogen have the
wavenumbers ev i ¼ 2:057 � 106 m�1 and ev iþ1 ¼ 2:304 � 106m�1. Calculate to
which series these two transitions belong and which transitions they describe.
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5. Assuming that (a) the sun (T ¼ 5780 K) and (b) the earth (T ¼ 298 K) behave as
black-bodies, calculate and plot the spectral flux densities for the sun and the
earth. What are the similarities and differences between both radiation curves?
Use Planck’s law to calculate E(λ) for the wavelength range 100 nm–8 μm.
Calculation and plotting might be best done with a spreadsheet software.
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Quantum Mechanics of Simple Systems 9

9.1 The Particle in a Box

9.1.1 The Free Particle

As a first application of the Schrödinger equation, we will characterise a free particle
that exists in space without any potential (Epot ¼ 0). For convenience, we will also
consider just one dimension. Given these conditions, the Schrödinger equation 8.28
becomes

d2Ψ xð Þ
dx2

þ 8π2 � m
h2

� E �Ψ xð Þ ¼ 0

For simplicity, we introduced the parameter k to substitute the factor containing
the mass of the particle (m), its energy (E) and the constants:

k ¼ 2π
h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � m � E

p
, ð9:1Þ

which yields

d2Ψ xð Þ
dx2

þ k2 � Ψ xð Þ ¼ 0: ð9:2Þ

If we assume that the wave function is Ψ(x)¼ eb � x, then the second derivative of
Ψ(x) is d2Ψ(x) ¼ b2 � eb � x. Substitution of those values in Eq. 9.2 yields:

b2 � eb�x þ k2 � eb�x ¼ 0

Since the function eb�x never assumes the value of zero, the above equation is only
true if:
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b2 þ k2 ¼ 0:

For this quadratic equation, two solutions are possible. We also remember that
b might be a complex number, and therefore obtain:

b ¼ �i � k:
This results in two solutions for the wave function:

Ψ1 xð Þ ¼ ei�k�x ¼ cos k � xð Þ þ i � sin k � xð Þand
Ψ2 xð Þ ¼ e�i�k�x ¼ cos k � xð Þ � i � sin k � xð Þ

Using these two partial solutions, we one can solve the differential Eq. 9.2.
Without performing this mathematical exercise in a rigorous fashion, we appreciate
that the general solution for a wave function fulfilling Eq. 9.2 is:

Ψ xð Þ ¼ A � Ψ1 xð Þ þ B �Ψ2 xð Þ, which is equivalent to
Ψ xð Þ ¼ A � ei�k�x þ B � e�i�k�x, or
Ψ xð Þ ¼ A � sin k � xð Þ þ B � cos k � xð Þ, or
Ψ xð Þ ¼ C � sin k � xþ δð Þ

ð9:3Þ

where A, B, C and δ are constants resulting from the integration required when
solving the differential Eq. 9.2.

It can be shown that for B¼ 0, the particle possesses a momentum that is positive
with respect to the x-axis, i.e. it moves along the direction of the positive x-axis
branch. In contrast, for A ¼ 0, the momentum is negative, indicating that the particle
moves in the direction of the negative x-axis branch. Inspection of the general
solution of the wave function, e.g. in the form of

Ψ xð Þ ¼ A � sin k � xð Þ þ B � cos k � xð Þ ð9:3Þ
shows that Ψ is the superposition of two sine-like waves. The two waves are running
in opposite directions and, by interference, result in a standing wave.

In the above discussion, it has not been necessary to demand any particular values
for the parameter k. Upon re-arrangement of Eq. 9.1, we obtain the energy E of the
particle:

E ¼ h2 � k2
8π2 � m ¼ Ekin

which constitutes the kinetic energy of this particle, since we set out with the
requirement that the potential energy was zero. Since k can assume any value, the
kinetic energy of the free particle can assume any value—it exists in a continuum.
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9.1.2 The Particle in a One-dimensional Box with Infinite Potential
Walls

In the previous section, we introduced the general solution of the Schrödinger
equation and derived a wave function that describes a freely moving particle of the
kinetic energy Ekin and no potential energy (Epot ¼ 0).

We now want to consider the case that the particle is enclosed in a box of width
a in which it can move around freely (no potential energy), but from which it cannot
escape. This can be realised by imposing a steeply rising potential at the walls of the
box (Fig. 9.1). The potential at the walls of the boxes will be set infinitely high.
Therefore, three regions need to be considered:

Region 1 : x � 0 Epot ¼ 1
Region 2 : 0 � x � a Epot ¼ 0
Region 3 : x � a Epot ¼ 1

For regions 1 and 3, the Schrödinger equation is:

d2Ψ xð Þ
dx2

þ 8π2 � m
h2

� E �1ð Þ �Ψ xð Þ ¼ 0

This equation can only be adhered to, if the wave function is Ψ(x) ¼ 0. Notably,
this results in a probability density of ρ(x)¼ 0, which means that the particle does not
exist in those regions:

Fig. 9.1 The potential well
for the particle in a box
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ρ xð Þ ¼ Ψ xð Þj j2 ¼ 0:

In region II, the particle can move without restriction, since Epot ¼ 0. This is the
same case we have discussed in the previous section. The Schrödinger equation is
thus:

d2Ψ xð Þ
dx2

þ k2 � Ψ xð Þ ¼ 0, with k ¼ 2π
h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � m � E

p
, ð9:2Þ

and we obtain the general solution

Ψ xð Þ ¼ A � sin k � xð Þ þ B � cos k � xð Þ: ð9:3Þ
It is important to remember now that a general prerequisite for any wave function

Ψ is that it is a continuous function (Sect. 8.3.2). Due to the high potential at the
walls of the box, which made us conclude for Ψ(x) ¼ 0 in regions I and III, this
means that:

Ψ 0ð Þ ¼ 0 and Ψ að Þ ¼ 0

The condition of Ψ(x) ¼ 0 can only be met, if in Eq. 9.3 the cosine term
disappears, i.e. B ¼ 0. The second condition, Ψ(a) ¼ 0, requires then that

Ψ að Þ ¼ A � sin k � að Þ ¼ 0:

Since a sine function periodically assumes values of zero when the argument is an
integer multiple of π (Fig. 9.2), the product k�a needs to fulfil the requirement:

k � a ¼ n � π, with n ¼ 0, 1, 2, 3, . . .

which means that k can only take particular values:

k ¼ n � π
a

, withn ¼ 0, 1, 2, 3, . . . ð9:4Þ

The allowed solutions for the Schrödinger Eq. 9.2 thus are:

Fig. 9.2 The function sin
x periodically assumes a value
of zero
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Ψn xð Þ ¼ A � sin n � π
a

� x
� �

, with n ¼ 1, 2, 3, . . .

Note that at this stage, only solutions with n 6¼ 0 remain possible, since a wave
function of Ψ0(x) ¼ 0 would not be a sensible solution; the particle has to be in the
box. The value of A is chosen such that the wave function is normalised, and this
process yields:

Ψn xð Þ ¼
ffiffiffi
2
a

r
� sin n � π

a
� x

� �
, with n ¼ 1, 2, 3, . . . ð9:5Þ

Importantly, the energy values that the particle in the box can assume are no
longer continuous, but subject to the condition 9.4:

En ¼ h2 � k2
8π2 � m ¼ h2 � n2 � π2

8π2 � m � a2 ¼
h2

8 � m � a2 � n
2, with n ¼ 1, 2, 3, . . . ð9:6Þ

So whereas the freely moving particle can assume any energy value, the particle
confined in a potential well (box) is only allowed to assume discrete energy values
(Eq. 9.6) which are a function of the principal quantum number n. The allowed
discrete energy values are called eigenvalue of the Schrödinger equation

Figure 9.3 summarises the allowed energy levels, the wave functions and proba-
bility densities for the first four quantum numbers n. It becomes obvious that the
probability of finding the particle in various areas within the box is not the same at all
locations x, and it also is a function of the quantum number n. The graphs of the
wave functions in Fig. 9.3 illustrate that the number of knots (where the wave
function assumes a value of zero) equals (n�1); note that the knots at the walls are
not considered.

Lastly, Eq. 9.6 shows, that any particle in a potential well has a minimum energy
and cannot assume a state of zero energy. Since the lowest value for the quantum
number is n ¼ 1, the minimum energy is:

E1 ¼ h2

8 � m � a2 :

9.1.3 The Particle in a One-dimensional Box with Finite Potential
Walls

In the previous section, the potential well was constructed with infinitely high
potential such that it was impossible for the particle to leave, regardless of how
much energy would be provided to the system. here, we will consider the more
realistic case of potential walls with finite heights. Within the well, the particle of
mass m shall not be exposed to any potential (Epot ¼ 0), outside the well, the particle
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shall be exposed to the potential energy V0. As before, we need to distinguish three
regions:

Region I : x � 0 Epot ¼ V0

Region II : 0 � x � a Epot ¼ 0
Region III : x � a Epot ¼ V0

but also two different cases with respect to the total energy E of the particle:
E < V0: in this case, the energy of the particle is not sufficient to leave the well.

This is the case of the bound particle.
E > V0: here, the energy of the particle is sufficient to leave the well. However,

when outside the well, it experiences the potential V0, in contrast to the free particle
(Sect. 9.1.1).

When solving the Schrödinger equation for the different cases, it is found in
agreement with the previous simpler models, that the allowed energy of the particle
inside the well are discrete (Fig. 9.4 left). In addition, one observes that the number
of possible energy states increases with the potential energy value V0 outside the
well, and also with the width of the box a. And lastly, the values of the allowed
energy levels (eigenvalue) increase with increasing potential V0.

Fig. 9.3 Allowed energy levels En, wave functions Ψn and probability densities |Ψn|
2 for the

particle in a linear potential well
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A further notable observation of the box with finite potential walls is made when
the wave functions Ψ and the probability densities |Ψ|2 are analysed (Fig. 9.4 right).
The solution of the Schrödinger equation in this case shows that both functions
assume non-zero values outside the potential well, in contrast to the box with infinite
walls (Fig. 9.3). The fact that the bound particle may also be found outside the box
shows that it can exist in regions where the total energy E is less than the potential
energy V0; this is only possible if it possesses negative kinetic energy!

9.2 The Rigid Rotor

9.2.1 The Rigid Rotor with Space-fixed Axis

Following the introductory applications of the Schrödinger equation to individual
particles, we now consider the circular movement of two masses m1 and m2 that are
connected by a rigid connection—a very simple model for a two-atomic molecule.
For rotational movement of a mass m, we need to consider the momentum of inertia
I which is given by

I ¼ m � r2 ð9:7Þ
where r is the distance of the mass to the axis of rotation. For convenience, the
velocity of the mass m is given as an angular velocity ω which is related to the
rotational frequency νrot:

Fig. 9.4 Energy levels of a particle in a well with potential V0. If the total energy of the particle E is
less than V0 (lower right half of the diagram), the particle is bound and can only assume discrete
energy levels (eigenvalue). The number of the different possible levels as well as their numerical
value depends on the value of V0 and the width of the well a. If the total energy of the particle E is
larger than V0 (upper left half of the diagram), the particle is in an energy continuum (it may assume
any energy) and no longer bound
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ω ¼ 2π � νrot: ð9:8Þ
If two connected masses m1 and m2 rotate around their centre of gravity

(at distance r1 from mass m1 and at distance r2 from mass m2), the system can be
substituted by one where a reduced mass μ (sometimes also called effective mass)
rotates around a centre at distance r (Fig. 9.5):

r ¼ r1 þ r2: ð9:9Þ

The position of the centre of gravity is given by:

m1 � r1 ¼ m2 � r2: ð9:10Þ
Combining Eqs. 9.9 and 9.10 yields the following expressions for the distances r1

and r2:

r1 ¼ m2

m1 þ m2
� r and r2 ¼ m1

m1 þ m2
� r: ð9:11Þ

The momentum of inertia for the system consisting of two connected masses is
then:

I ¼ m1 � r21 þ m2 � r22
With Eq. 9.11 this yields:

I ¼ m1 � m2

m1 þ m2
� r2 ¼ μ � r2 ð9:12Þ

and thus defines the reduced mass μ.
In the simplest case, a rigid rotor (r¼ const.) possesses a rotation axis which itself

is fixed in space. The circular movement of a point around the rotation axis at
distance r is then best described by monitoring the angle ϕ (measured against the
positive branch of the x-axis in a Cartesian coordinate system). The location param-
eter describing the movement is thus chosen as (r�ϕ). If we assume that the rotor is
not subject to any outside potential (Epot ¼ 0), the Schrödinger equation 8.28
becomes:

Fig. 9.5 The reduced mass μ
allows substitution of a
two-body rigid rotor with a
one-body rigid rotor
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d2Ψ r � ϕð Þ
d r � ϕð Þ2 þ 8π2 � μ

h2
� E � Ψ r � ϕð Þ ¼ 0

where the radius r can be isolated from the differential since the only variable in the
location parameter in a given rotor is the angle ϕ:

d2Ψ
r2 � dϕ2 þ

8π2 � μ
h2

� E � Ψ ¼ 0: ð9:13Þ

For further convenience it seems useful to introduce a rotational constant B which
is defined as

B ¼ h
8π2 � c � μ � r2 ¼

h
8π2 � c � I : ð9:14Þ

Eq. 9.13 then becomes

d2Ψ
dϕ2 þ

E

h � c � B � Ψ ¼ 0: ð9:15Þ

If we define a further constant k as

k2 ¼ E

h � c � B
Eq. 9.15 takes the form of

d2Ψ
dϕ2 þ k2 � Ψ ¼ 0 ð9:16Þ

which we can solve immediately, recalling the general solution of the Schrödinger
equation for a free particle that is not subjected to an external potential:

Ψ ¼ A0 � ei�k�ϕ þ B0 � e�i�k�ϕ or, equivalently,
Ψ ¼ C0 � sin k � ϕþ δð Þ: ð9:17Þ

Sensible solutions for Eq. 9.17 are obtained when the wave function Ψ assumes
the same value after a full rotation, therefore

Ψ ϕð Þ ¼ Ψ ϕþ 2πð Þ:
This requirement, however, is only met, if the constant k in the Schrödinger

Eq. 9.16 assumes only integer values:
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k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

h � c � B

r
¼ 0, � 1, � 2, . . . ,

which means that the energy of the rigid rotor cannot assume any, but only discrete
values (Fig. 9.6):

Ek ¼ h � c � B � k2, withk ¼ 0, � 1, � 2, . . .

9.2.2 The Rigid Rotor with Space-free Axis

The rigid rotor with space-fixed axis only rotates in a plane perpendicular the
rotation axis. If we think about this as a model for an electron rotating around an
atomic nucleus, in the general—and more realistic—case, the rotation plane can
form any angle with the rotation axis. In addition to the two parameters r (distance of
the mass from the rotation axis) and ϕ (rotational angle of the mass with respect to
the positive x-axis), a third parameter needs to be considered that describes the angle
of the rotational plane with the positive z-axis; this angle is called θ.

Since these three parameters uniquely describe the position of a point in the
three dimensional space they can be used instead of the Cartesian coordinates x,

Fig. 9.6 Allowed energy
levels for a rigid rotor with
fixed rotation axis
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y and z. This new coordinate system is called the spherical coordinate system
consisting of

• r radial coordinate
• ϕ azimuth angle
• θ polar (or inclination) angle.

The transformation of spherical to Cartesian coordinates is possible by:

x ¼ r � cosϕ � sin θ
y ¼ r � sinϕ � sin θ
z ¼ r � cos θ

ð9:18Þ

and graphically illustrated in Fig. 9.7.
When solving the Schrödinger equation, we now need to explicitly consider the

wave function Ψ being a function of three coordinates, Ψ(r, ϕ, θ). The mathematical
treatment therefore becomes more advanced than in the previous cases where we
considered just one dimension. without discussing a rigorous derivation of the
solution of the Schrödinger equation for this case, we summarise the main points.

Since the rotor considered is a rigid rotor, the radial coordinate r is constant and
therefore does not need to be considered in the differentiation. The wave function Ψ
is therefore composed of two functions

• one that describes the behaviour of the azimuth angle ϕ: Φ(ϕ), and
• one that describes the behaviour of the polar (inclination) angle θ: Θ(θ)

Therefore:

Ψ ϕ; θð Þ ¼ Φ ϕð Þ � Θ θð Þ ð9:19Þ
In the course of the solving the Schrödinger equation, it will become useful to

substitute the function Θ(θ) with a function that depends cosθ instead:

Fig. 9.7 Polar coordinates
and the Cartesian coordinate
system
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Ψ ϕ; θð Þ ¼ Φ ϕð Þ � P cos θð Þ ð9:20Þ
For the azimuth function Φ(ϕ), the following expression is obtained:

d2Φ ϕð Þ
dϕ2 þ C �Φ ϕð Þ ¼ 0 ð9:21Þ

and we recognise by comparison with Eq. 9.16, that this can be resolved to:

Φ ϕð Þ ¼ A0 � ei�m�ϕ þ B0 � e�i�m�ϕ: ð9:22Þ
In analogy to the case of the rigid rotor with space-fixed axis, the system has to be

in the same state after each full rotation, and therefore it can be concluded that

m ¼
ffiffiffiffi
C

p
, with m ¼ 0, � 1, � 2, . . . ð9:23Þ

which introduces m as a quantum number.
Instead of the inclination functionΘ(θ) the function P(cosθ) is used as a substitute

and solving the Schrödinger equation yields the requirement

E

h � c � B ¼ mþ sð Þ � mþ sþ 1ð Þ, ð9:24Þ

where m and s are two integer numbers that possess a particular relationship. If one
introduces

l ¼ mþ s ð9:25Þ
then the following requirements arise from the relationship between m and s:

l ¼ 0, 1, 2, 3, . . . and l � mj j: ð9:26Þ
From these requirements, it is obvious that m can take the following values:

m ¼ �l, � lþ 1, . . . , 0, 1, . . . , l� 1, l: ð9:27Þ
The function P(cosθ) turns out to be dependent on the two variablesm and l and is

called the associated Legendre function Pm
l cos θð Þ.

When combining the solutions for the azimuth and the inclination function to
yield an expression for the wave function Ψ, one obtains:

Ψ ϕ; θð Þ ¼ Pm
l cos θð Þ � ei�m�ϕ, ð9:28Þ

with the two quantum numbers l and m. The wave functions obtained are known as
spherical harmonics.
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From Eq. 9.24, we can derive the allowed energy states of the rigid rotor with
space-free axis (Fig. 9.8):

E ¼ h � c � B � mþ sð Þ � mþ sþ 1ð Þ ¼ h � c � B � l � lþ 1ð Þ:

When this model is applied to a molecule, the quantum number J is typically used
instead of l:

EJ ¼ h � c � B � J � J þ 1ð Þ, with J ¼ 0, 1, 2, . . . ð9:29Þ
With setting J ¼ l and Eq. 9.27, it is obvious that for each quantum number l (J ),

there are (2l + 1) different wavefunctions (one for each value of m) with the same
energy. Levels with the same energy are said to be degenerate. For the rigid rotor, the
degeneracy of each level is thus (2J + 1).

9.3 The Harmonic Oscillator

In the previous models considering the rigid rotor, we did not require to pay
particular attention to the potential energy, as the distance between the two masses
m1 and m2 does not change. The potential energy of the rigid rotor is therefore zero.

Fig. 9.8 Allowed energy
levels for a rigid rotor with
free rotation axis
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If we consider a di-atomic molecule, however, the distance between the two atoms is
not constant, due to the molecular vibration which causes the inter-atomic distance to
fluctuate around an equilibrium distance.

From classical mechanics, we remember that the elongation of a mass m
suspended by a spring leads to an oscillation behaviour (see Fig. 9.2) which is
described by Hook's law:

F ¼ �k � x, ð9:30Þ
where the force of elongation F is proportional to the elongation distance x and
related by the spring constant k.

Since the force is the first derivative of the potential energy

F ¼ � dEpot

dx
, ð9:31Þ

it becomes clear that

dEpot

dx
¼ k � x, ð9:32Þ

which can be integrated to allow calculation of a numerical value of the potential
energy V and results in a parabolic dependence of the potential energy from the
elongation distance x (Fig. 9.9):

Epot ¼ 1
2
� k � x2: ð9:33Þ

The frequency of vibrational oscillation of a di-atomic molecule can also be
derived from the classical mechanics, if the reduced mass μ is used to describe the
two connected masses m1 and m2:

ν0 ¼ 1
2π

ffiffiffi
k

μ

s
, withμ ¼ m1 � m2

m1 þ m2
: ð9:34Þ

For the quantum mechanical treatment of the vibration of a di-atomic molecule,
we need to use the potential energy (Eq. 9.33), as well as the reduced mass μ when
compiling the Schrödinger equation:

d2Ψ xð Þ
dx2

þ 8π2 � μ
h2

� E � 1
2
� k � x2

� �
� Ψ xð Þ ¼ 0 ð9:35Þ

Due to some advanced mathematics required to solve this equation, we refrain
from a rigorous discussion and appreciate that solutions for Eq. 9.35 can be found
whereby the wave functions Ψn take the form of
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Ψn xð Þ ¼ Nv � Hv xð Þ � e�β
2�x2 , withv ¼ 0, 1, 2, 3, . . . ð9:36Þ

introducing the new quantum number, v. The constant β is comprised of the
mechanical properties of the di-atomic molecule (reduced mass μ and spring con-
stant k), and Nv is a normalisation factor. Their definitions are:

β ¼ 2π
h
�

ffiffiffiffiffiffiffiffiffi
μ � k

p
and Nv ¼ β

1
4

π1
4 � 2v � v!ð Þ12

ð9:37Þ

The function Hv(x) is a potential development series; the wave functions for the
first five quantum numbers (v ¼ 0, 1 . . . , 4) are summarised in Table 9.1 and
graphically illustrated in Fig. 9.10.

pot

Fig. 9.9 Potential energy of
the harmonic oscillator

Table 9.1 Solutions to the
Schrödinger Eq. 9.35 for
the first five quantum
numbers v

v ¼ 0 Ψ0 xð Þ ¼ N0 � e�β
2�x2

v ¼ 1 Ψ1 xð Þ ¼ N1 � 2 � β1
2 � x

� �
� e�β

2�x2

v ¼ 2 Ψ2 xð Þ ¼ N2 � 4 � β � x2 � 2ð Þ � e�β
2�x2

v ¼ 3 Ψ3 xð Þ ¼ N3 � 8 � β3
2 � x3 � 12 � β1

2 � x
� �

� e�β
2�x2

v ¼ 4 Ψ4 xð Þ ¼ N4 � 16 � β2 � x4 � 48 � β � x2 þ 12
� � � e�β

2�x2
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As observed in the previous systems, the harmonic oscillator assumes discrete
energy levels (Fig. 9.10), which are a function of the quantum number v:

Ev ¼ h � ν0 � vþ 1
2

� �
, ð9:38Þ

where ν0 is the frequency as defined in Eq. 9.34. Notably, the lowest energy state
achieved at the quantum number v ¼ 0 still comprises the zero-point energy of

E0 ¼ 1
2
� h � ν0: ð9:39Þ

Figure 9.10 (right) illustrates that the probability of finding the particle varies
strongly with the location x, and this variation, in turn, differs with the quantum
number v. Importantly, the quantum mechanical results also show that the particle
can exist outside the region enclosed by the parabolic potential wall.

Fig. 9.10 Allowed energy levels (left), wave functions (centre) and probability density (right) of
the harmonic oscillator
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9.4 Tunnelling

In Sect. 9.1.3, we saw that the probability to find a particle outside a box with walls
of a finite potential is non-zero (Fig. 9.4), i.e. it may exist outside the box. A similar
observation has been made in the previous section when discussing the harmonic
oscillator (Fig. 9.10). Therefore, the question arises as to whether and how a particle
may be able to tunnel through a sufficiently thin potential barrier, despite its energy
E being lower than the potential energy Epot ¼ V0.

The situation is illustrated in Fig. 9.11. Three regions need to be considered:

Region1 : x � 0 Epot ¼ 0
Region2 : 0 � x � a Epot ¼ V0

Region3 : x � a Epot ¼ 0

For regions 1 and 3, the Schrödinger equation is thus:

d2Ψ xð Þ
dx2

þ 8π2 � m
h2

� E � Ψ xð Þ ¼ 0,

and for region 2, it reads:

d2Ψ xð Þ
dx2

þ 8π2 � m
h2

� E � V0ð Þ � Ψ xð Þ ¼ 0

Fig. 9.11 Illustration of the
tunnelling through a
sufficiently thin potential wall
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For both equations, we can define a constant k that comprises of the factor before
Ψ(x), i.e.:

k1 ¼ 8π2 � m
h2

� E and k2 ¼ 8π2 � m
h2

� E � V0ð Þ,

which leads to the following solutions for the wave functions in the three regions
1–3:

Ψ1 ¼ A � ei�k1�x þ B � e�i�k1�x

Ψ2 ¼ C � ei�k2�x þ D � e�i�k2�x

Ψ3 ¼ F � ei�k3�x þ G � e�i�k3�x

In all of the three above equations, the first term describes particles moving from
the left to the right (see Fig. 9.11), and the second term describes particles moving
from the right to the left. In regions 1 and 2 particles originally moving from the left
to the right will be partially reflected on the potential walls, which leads to some
particles moving from the right to left in those regions. Therefore, the coefficients
B and D need to be non-zero. In region 3, if particles made it through to that region,
they will keep on moving to the right and not return, so the coefficient G is zero.

Importantly though, the fraction of particles which made it from region 1 to
region 3 depends on the ratio of the coefficients F and A. This ratio is called the
transmission coefficient T:

T ¼ Fj j2
Aj j2 : ð9:40Þ

In order to determine the constants A, B, C, D and F, we need to consider that the
overall wave function Ψ (and its derivatives) need to be continuous. Without
discussing this mathematical derivation in detail, we appreciate that the following
result is obtained for the transmission coefficient:

T ¼ 16 � E � V0 � Eð Þ
V2
0

� e�2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2 �m�a2 � V0�Eð Þ

h2

q
: ð9:41Þ

This equation demonstrates that the tunnelling probability, given by the transmis-
sion coefficient T, mainly depends on the energy difference (E–V0) as well as the
width a of the potential barrier. For a given energy E of the particle, the transmission
coefficient decreases with increasing height of the potential barrier (V0). The trans-
mission coefficient further decreases, if the width a, i.e. the barrier thickness,
increases.
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9.5 Exercises

1. The radius of the first orbit in the Bohr model is r1 ¼ 5.3�10�9 cm. As a rough
estimate, calculate the energy of the electron in the hydrogen atom, assuming it
was a particle in a cubic box of the same volume as that of a sphere with radius r1.
Compare the result with the energy that is predicted by the Bohr model.

2. Calculate the zero-point energy of 1H35Cl (a) for one molecule, and (b) for 1 mol,
assuming a force constant of 480.6 Nm�1.

3. What is the value of the transmission coefficient for an electron with an energy of
1 eV that moves against a potential barrier of 5 eV and 2 nm thickness?

4. Calculate the probability of locating a particle in a potential-free one-dimensional
box of length a between 1/4 a and 3/4 a, assuming the particle being in its lowest
energy state.

9.5 Exercises 297



Quantum Theory of Atoms 10

10.1 The Hydrogen Atom

In the previous chapter, we familiarised ourselves with various applications of the
Schrödinger equation, and can now discuss the hydrogen atom from a quantum
mechanical view.

The hydrogen atom constitutes the simplest atomic constellation, comprising a
proton and an electron. The potential energy of this system is of electrostatic nature
and therefore given by the Coulomb attraction

Epot ¼ � e2

4π � ε0 � r :

The Schrödinger equation is thus

ΔΨþ 8π2 �me

h2
� E þ e2

4π � ε0 � r
� �

� Ψ ¼ 0, ð10:1Þ

where Δ is the Laplace operator as introduced in Sect. 8.3.1. Since the electrostatic
potential takes the form of a spherical potential, it will prove convenient to use the
spherical coordinates, so the wave function Ψ depends on r, θ, ϕ: Ψ(r,θ,ϕ). In order
to solve the Schrödinger equation, the wave function is separated into three
functions, each of which depends on one of the three spherical coordinates

Ψ r; θ;ϕð Þ ¼ R rð Þ � Θ θð Þ �Φ ϕð Þ ¼ R rð Þ � Y θ;ϕð Þ, ð10:2Þ
i.e. a radial function R(r), an inclination function Θ(θ) and an azimuth functionΦ(ϕ).
The function Y(θ,ϕ) combines the azimuth and inclination functions and resolves to
the spherical harmonics we have already introduced when solving the Schrödinger
equation for the rigid rotor with space-free axis:
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Y θ;ϕð Þ ¼ Pm
l cos θð Þ � ei�m�ϕ, ð9:28Þ

with the quantum numbers

m ¼ 0, � 1, � 2, . . .
l ¼ 0, 1, 2, . . .
l � mj j:

ð10:3Þ

For the radial function R(r), one finds the solution

R rð Þ ¼ e�
ffiffiffiffiffiffiffi
�2�η

p
�r � Pn, l rð Þ, ð10:4Þ

where Pn, l(r) is a potential development series, and dependent on the quantum
numbers

n ¼ 1, 2, 3, . . .
l ¼ 0, 1, 2, . . .
n � lþ 1j j:

ð10:5Þ

For convenience, the parameter η has been introduced in the exponential function
of Eq. 10.4; it is defined as

η ¼ 4π2 �me � E
h2

: ð10:6Þ

The wave functions that solve the Schrödinger equation for the hydrogen atom
are thus functions

Ψ r; θ;ϕð Þ ¼ N � e�
ffiffiffiffiffiffiffi
�2�η

p
�r � Pn, l rð Þ � Pm

l cos θð Þ � ei�m�ϕ ð10:7Þ
that depend on the three quantum numbers n, l and m; N is the normalisation factor.
From Eqs. 10.3 and 10.5 it becomes obvious, the quantum numbers n, l and m have
particular relationships and therefore only select combinations are possible as
illustrated in Table 10.1.

Since the wave functions Ψ that describe the atom are dependent on the three
quantum numbers (Eq. 10.7), there will be a particular number of different wave
functions (called linear independent wave functions). The number of possible wave
functions is 1 for n ¼ 1, 4 for n ¼ 2, and 9 for n ¼ 3. Due to the general hierarchy
provided by the quantum number n, it is called the principal quantum number.
Generally, the number of different (linear independent) wave functions is given by

Table 10.1 Possible combinations of quantum numbers for the first three principal quantum
numbers (n ¼ 1, 2, 3)

n 1 2 3

l 0 0 1 0 1 2

m 0 0 �1 0 1 0 �1 0 1 �2 �1 0 1 2
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Xn�1

l¼0

2 � lþ 1ð Þ ¼ n

2
� 1þ 2 � n� 1ð Þ ¼ n2: ð10:8Þ

Like in the discussion of the rigid rotor and the harmonic oscillator, the allowed
energy levels of the hydrogen atom are not continuous but discrete, and are obtained
by considering particular requirements when solving the Schrödinger equation such
that the solutions are physically sensible. The allowed energy states (eigenvalues) of
the hydrogen atom are obtained as

En ¼ � me � e4
8 � ε20 � h2 � n2

, with n ¼ 1, 2, 3, . . . ð10:9Þ

As with previously discussed models, we find that the allowed energy levels of
the hydrogen atom vary with a quantum number—specifically the principal quantum
number n—and thus there are n different allowed energy levels. At the same
time, we derived above (Eq. 10.8) that there are n2 different wave functions,
i.e. measurable different states. The energy levels are therefore said to be degenerate.

" Multiple states of a quantum mechanical system are degenerate if they
possess the same energy value. Vice versa, an energy level is degenerate,
if it corresponds to multiple different measurable states.

The wave functions solving the Schrödinger equation are called eigenfunctions.
In the discussion above, we found that those wave functions are best separated into a
function depending on the radial (r) and another function depending on the angular
spherical coordinates (θ, ϕ). Since it is also necessary to normalise the wave
function, a normalisation factor N became a third component; thus:

Ψ ¼ N � Rn, l rð Þ � Yl,m θ;ϕð Þ: ð10:10Þ
In the following sections, we will have a closer look at the radial eigenfunction as

well as the spherical harmonics, and then compose the normalised eigenfunctions.

10.1.1 The Radial Eigenfunctions of the Hydrogen Atom

In the previous section, we introduced the solution for the radial function of the
hydrogen atom as

R rð Þ ¼ e�
ffiffiffiffiffiffiffi
�2�η

p
�r � Pn, l rð Þ, with η ¼ 4π2 �me � E

h2
ð10:4Þ

An explicit calculation of the exponent in Eq. 10.4 thus yields:
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ffiffiffiffiffiffiffiffiffiffiffiffi
�2 � η

p
� r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4π

2 �me � E
h2

r
� r:

The allowed energy levels are given by Eq. 10.9; therefore:

ffiffiffiffiffiffiffiffiffiffiffiffi
�2 � η

p
� r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4π2 �me � � me�e4

8�ε20�h2�n2
� �

h2

vuut � r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � π2 �m2

e � e4
8 � ε20 � h4 � n2

s
� r

ffiffiffiffiffiffiffiffiffiffiffiffi
�2 � η

p
� r ¼ π �me � e2

ε0 � h2
� 1
n
� r

Comparison with Eq. 8.22 shows that the first factor in above equation is the
reciprocal of the radius of the first orbit in the atomic model by Bohr:

rBohr ¼ ε0 � h2
π �me � e2 ¼ 5:3 � 10�11 m,

and thus allows us to measure the radius of the electron in multiples of the Bohr
radius:

ρ ¼ r
rBohr

, yielding
ffiffiffiffiffiffiffiffiffiffiffiffi�2 � ηp � r ¼ ρ

n, and therefore:

Rn, l rð Þ ¼ e�
ρ
n � Pn, l rð Þ: ð10:11Þ

Notably, the radial eigenfunction described in above Eq. 10.11 is not yet
normalised. Table 10.2 summarises explicit normalised radial eigenfunctions for
the hydrogen atom; Figure 10.1 illustrates these functions graphically.

Notably, the radial eigenfunction R only depends on the quantum numbers n and
l, but not m. From Fig. 10.1, it is obvious that the number of zero-crossings of
R increases with n, but decreases with l:

Table 10.2 Normalised radial eigenfunctions of the hydrogen atom for n ¼ 1, 2, 3

n l Rn,l

No of radial nodes
n�l�1

1 0 R1, 0 ¼ 2 � e�ρ 0

2 0 R2,0 ¼ 1
2� ffiffi

2
p � e�ρ

2 � 2� ρð Þ 1

2 1 R2,1 ¼ 1
2� ffiffi

6
p � e�ρ

2 � ρ 0

3 0 R3,0 ¼ 2
81� ffiffi

3
p � e�ρ

3 � 27� 18 � ρþ 2 � ρ2ð Þ 2

3 1 R3,1 ¼ 4
81� ffiffi

6
p � e�ρ

3 � 6 � ρ� ρ2ð Þ 1

3 2 R3,2 ¼ 4
81� ffiffiffiffi

30
p � e�ρ

3 � ρ2 0
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No of zero-crossings ¼ No of total nodes ¼ n� l� 1: ð10:12Þ
We have previously introduced for the wave function that the squared function is

a probability density to find the particle in particular spatial locations. The same
concept applies to the radial eigenfunction, where R2 describes the probability
density to find an electron along a beam originating in the nucleus.

When asking the question of the actual probability to find the electron at a
particular distance from the nucleus, e.g. between ρ and (ρ + dρ), the function R(ρ)
2 needs to be integrated. For spherical symmetry, the volume of the spherical shell
described by ρ and (ρ + dρ) is (4π�ρ2�dρ), which yields for the radial probability
distribution

radial probability density ¼ 4π � ρ2 � R ρð Þ2dρ
The plotted probability distribution functions in Fig. 10.2 indicates that for the

lowest possible principal quantum number n ¼ 1, the highest probability to find the
electron is at the distance of ρ¼ 1, i.e. r¼ rBohr. In this case, we see that the electron
can be found in a spherical space around the nucleus, most likely at distance rBohr.
However, the electron does not have a well-defined position and the space where the
electron can be found certainly has no sharp boundary. The probability distribution
decreases rapidly with increasing distance and anneals to zero at large distances.

Fig. 10.1 Graphical illustration of normalised radial eigenfunctions of the hydrogen atom for
n ¼ 1, 2, 3
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For the case (n ¼ 1, l ¼ 0) in Fig. 10.2, we see that there are two maxima in the
probability density function. Furthermore, there is a region where the probability to
find the electron is zero. This region corresponds to the zero-crossing of the radial
wave function R(ρ) in Fig. 10.1 and is called a (radial) node. We can imagine this
case as two concentric spheres with a node in between, which takes the shape of a
spherical shell.

10.1.2 The Spherical Harmonics of the Hydrogen Atom

When solving the Schrödinger equation for the hydrogen atom, we obtained the
spherical harmonics component as

Yl,m θ;ϕð Þ ¼ Pm
l cos θð Þ � ei�m�ϕ: ð9:28Þ

Notably, these functions are not yet normalised and thus need to be multiplied
with normalisation factors. The first nine normalised functions are summarised in
Table 10.3.

In contrast to the radial eigenfunctions, which depend on only one variable (r or
ρ), the spherical harmonics Y possesses two variables, the azimuth angle ϕ and the
inclination angle θ. Illustration of the spherical harmonics therefore requires three
dimensions. However, from Table 10.3, we learn that for (l¼ 0,m¼ 0), the spherical
harmonics is independent of both ϕ and θ; it has a constant value of 1

2� ffiffi
π

p .

Fig. 10.2 Radial probability distribution functions of the hydrogen atom for n ¼ 1, 2, 3
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Geometrically, this describes a sphere around the origin with a radius of 1
2� ffiffi

π
p (see

Fig. 10.3 left panel).
The construction of the spherical harmonics for (l ¼ 1, m ¼ �1) is illustrated in

Fig. 10.3 for a particular angle θ (centre panel) and a particular angle ϕ (right panel).
The plots show the value of the function Y1,1 and Y1,�1 in dependence of the angles ϕ
(centre panel) and q (right panel).

As before when discussing the general wave functions Ψ and the radial
eigenfunctions R, we are next interested in the probability density which informs
about the probability to find the particle in a particular location. For the spherical

Table 10.3 The normalised spherical harmonics of the hydrogen atom for l ¼ 0, 1, 2

l m Yl,m Number of angular nodes l

0 0 Y0,0 ¼ 1
2� ffiffi

π
p 0

1 �1 Y1,�1 ¼ 1
2 �

ffiffiffiffi
3
2π

q
� sin θ � e�i�ϕ 1

1 0 Y1,0 ¼ 1
2 �

ffiffi
3
π

q
� cos θ 1

1 1 Y1,1 ¼ 1
2 �

ffiffiffiffi
3
2π

q
� sin θ � ei�ϕ 1

2 �2 Y2,�2 ¼ 1
4 �

ffiffiffiffi
15
2π

q
� sin 2θ � e�2�i�ϕ 2

2 �1 Y2,�1 ¼ 1
2 �

ffiffiffiffi
15
2π

q
� sin θ � cos θ � e�i�ϕ 2

2 0 Y2,0 ¼ 1
4 �

ffiffi
5
π

q
� 3 � cos 2θ� 1ð Þ 2

2 1 Y2,1 ¼ 1
2 �

ffiffiffiffi
15
2π

q
� sin θ � cos θ � ei�ϕ 2

2 2 Y2,2 ¼ 1
4 �

ffiffiffiffi
15
2π

q
� sin 2θ � e2�i�ϕ 2

Fig. 10.3 The spherical harmonics functions (angular eigenfunctions) Y0,0 (left) and Y1,�1 (centre
and right) of the hydrogen atom
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harmonics Y, the probability distribution is given (similar to Ψ and R) by the squared
function, Y2. (see Fig. 10.4).

Like with the radial eigenfunctions, we also find for the spherical harmonics that
there are areas in which the function Y is zero. In the probability density Y2, the
values in these areas remain zero, thus giving rise to the (angular) nodes, i.e. areas in
which the probability to find the electron is zero. From Table 10.3 it is obvious that
the number of angular nodes is given by the quantum number l:

No of angular nodes ¼ l: ð10:13Þ

10.1.3 The Normalised Eigenfunctions of the Hydrogen Atom

Solving the Schrödinger equation for the hydrogen atom led us to the wave functions
given in Eq. 10.10, which represent the normalised eigenfunctions of the
hydrogen atom.

In a process called separation of variables, we have found solutions for the radial
(Sect. 10.1.1) as well as the angular component (Sect. 10.1.2) of those
eigenfunctions. Now, we need to combine both of those components, R and Y, and
determine the final normalising factor N to obtain the normalised eigenfunctions.

Additionally, since the final wave functions for m 6¼ 0 are complex (i.e. contain
the number i), linear combinations of the corresponding +m and �m wave functions
are generated, which leads to real eigenfunctions (i.e. not containing the number i).
For example, the px and py orbitals are formed by linear combinations of p+1 and p�1.
In contrast, the pz orbital is the same as p0.

The results are summarised in Table 10.4 and show that the state of the electron is
characterised by three quantum numbers:

Fig. 10.4 The angular probability distribution functions (Y0,0)
2 (left) and (Y1,�1)

2 (centre and right)
of the hydrogen atom
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• the principal quantum number n ¼ 1, 2, 3, . . .
• the quantum number l ¼ 0, 1, 2, . . .
• the quantum number m ¼ 0, �1, �2, . . .

In addition to the numerical description of electron states by the above quantum
numbers, a further nomenclature system ascribes letters to the various different
states. The principal energy level (quantum number n) is thought of as a shell in
which the electrons orbit; the individual shells are often (especially when referring to
X-ray processes) given the letters K, L, M, etc. The quantum number l describes the
subshells, denoted by the letters s, p, d, etc (see Table 10.5). The subshells, in turn,
comprise of the individual atomic orbitals. As shown in Table 10.4, particular
subshells are most commonly denoted by combining the numerical value of the
principal quantum number with the letter describing the subshell. The characteristic
director of the individual atomic orbital is then added as a subscript. For example,
2px denotes the p orbital (n ¼ 2, l ¼ 1) which primarily extends along the x-axis.

In order to describe the final eigenfunctions, we now need to combine the radial
and the angular components. It rapidly becomes clear that this is best done with
three-dimensional shapes, since the spherical harmonics depend on two angles, ϕ
and θ. The radial eigenfunction provides a measure for how far away from the atomic
nucleus an orbital extends, but its nodes might also call for regions in which the

Table 10.4 The real eigenfunctions of the hydrogen atom for the principal quantum number n = 1, 2, 3

Symbol n l m N R(r) Y(θ,ϕ)
Radial
nodes

Angular
nodes

1s 1 0 0 1ffiffi
π

p e�ρ 1 0 0

2s 2 0 0 1
4� ffiffiffiffi

2π
p 2� ρð Þ � e�ρ

2 1 1 0

2pz 2 1 0 1
4� ffiffiffiffi

2π
p ρ � e�ρ

2 cos θ 0 1

2px 2 1 �1 1
4� ffiffiffiffi

2π
p ρ � e�ρ

2 sin θ � cos ϕ 0 1

2py 2 1 �1 1
4� ffiffiffiffi

2π
p ρ � e�ρ

2 sin θ � sin ϕ 0 1

3s 3 0 0 1
81� ffiffiffiffi

3π
p 27� 18 � ρþ 2 � ρ2ð Þ � e�ρ

3 1 2 0

3pz 3 1 0
ffiffi
2

p
81� ffiffi

π
p 6� ρð Þ � ρ � e�ρ

3 cos θ 1 1

3px 3 1 �1
ffiffi
2

p
81� ffiffi

π
p 6� ρð Þ � ρ � e�ρ

3 sin θ � cos ϕ 1 1

3py 3 1 �1
ffiffi
2

p
81� ffiffi

π
p 6� ρð Þ � ρ � e�ρ

3 sin θ � sin ϕ 1 1

3dz2 3 2 0 1
81� ffiffiffiffi

6π
p ρ2 � e�ρ

3 3 � cos2 θ � 1 0 2

3dxz 3 2 �1
ffiffi
2

p
81� ffiffi

π
p ρ2 � e�ρ

3 sin θ � cos θ � cos ϕ 0 2

3dyz 3 2 �1
ffiffi
2

p
81� ffiffi

π
p ρ2 � e�ρ

3 sin θ � cos θ � sin ϕ 0 2

3dx2�y2 3 2 �2 1
81� ffiffiffiffi

2π
p ρ2 � e�ρ

3 sin2 θ � (sin 2�ϕ) 0 2

3dxy 3 2 �2 1
81� ffiffiffiffi

2π
p ρ2 � e�ρ

3 sin2 θ � (sin 2�ϕ) 0 2
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electron cannot exist. The angular eigenfunction provides the overall shape informa-
tion. As illustrated in Fig. 10.5, one might think of atomic orbitals as a sphere, from
which particular regions—defined by the nodes—are cut off.

In the three-dimensional graphs of the final eigenfunctions, the areas where the
wave functions assume positive and negative values (phase of the wave function) are
typically mapped in different colours (see Fig. 10.5).

The real eigenfunctions, i.e. atomic orbitals, are summarised in Table 10.4 for the
principal quantum numbers n ¼ 1, 2, 3. The three-dimensional graphs of these
orbitals are shown in Fig. 10.6. The s orbitals (l ¼ 0) possess an overall spherical
shape and are nested shells for n > 1. The p orbitals (l ¼ 1) for n ¼ 2 consist of two
ellipsoids arranged either along the x-, y- or z-axis. This make-up is very similar for

Table 10.5 Shell and atomic orbital nomenclature

Quantum number n Shell Quantum number l Atomic orbital

1 K 0 s

2 L 1 p

3 M 2 d

4 N 3 f

5 O 4 g

6 P 5 h

7 Q 6 i

7 k

Fig. 10.5 Conceptual construction of atomic orbitals (final eigenfunctions Ψ) from the radial
eigenfunction R (sphere), consideration of radial nodes, and application of angular nodes provided
by the spherical harmonics (angular eigenfunctions Y ). The three-dimensional graphs in the last
panel are shown with cut-away wedges to reveal the interior of the functions. The colours indicate
positive (blue) and negative (green) values of the wave function Ψ
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the p orbitals in the shell n¼ 3, however, an additional radial node leads to four final
ellipsoids arranged along the major axis of extension. The shell n¼ 3 is the first shell
with d orbitals, four of which appear very similar and take the form of four drop-like
lobes arranged orthogonally around the central nucleus. The centres of all four lobes
lie in one plane. These planes are the xy-, xz-, and yz-planes, where the lobes are
located between the pairs of the cartesian coordinate system; one of these orbitals has
the centres along the x- and y-axes. The fifth d orbital consists of a torus with two
pear-shaped lobes placed symmetrically on the z-axis.

It is important to remember that the graphically depictions in Fig. 10.6 are the
wave functions Ψ of the individual atomic orbitals. The probability to find the
electron within the orbital is given by |Ψ|2, which is a probability density function.
Therefore, the shapes depicting the probability is different from those that illustrate
Ψ; with exception of the s orbitals, all other orbitals become more prolate when
considering |Ψ|2. Also, due to the square operation, there is no longer a difference
between positive and negative regions in the orbitals, thus making the probability
density functions uniformly positive.

10.2 The Quantum Numbers

The solution of the Schrödinger equation for the hydrogen atom provided three
quantum numbers, n, l and m. Importantly, the energy of the electron of atomic
hydrogen only depended on the primary quantum number n (Eq. 10.9) and a
degeneracy of n2 (Eq. 10.8). These quantum mechanical findings are in agreement
with the energy levels in Bohr's atomic model as well as the atomic spectrum of
hydrogen.

However, when observing the atomic spectrum of hydrogen in the presence of an
outside magnetic field, the degeneracy of energy levels disappears resulting in

Fig. 10.6 Three-dimensional graphs of the atomic orbitals for the principal quantum numbers
n¼ 1, 2, 3 as summarised in Table 10.4. The atomic orbitals are shown with cut-away wedges. The
colours indicate positive (blue) and negative (green) values of the wave function Ψ
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splitting of individual spectral lines. This effect was discovered in 1896 by the Dutch
physicist Pieter Zeeman and is thus called the Zeeman effect.

10.2.1 The Quantum Numbers of the Orbital Angular Momentum
and Magnetic Momentum

The discussion in the previous sections showed, that the type of rotation of an electron
around the atomic nucleus is described by the spherical harmonics Yl,m(θ,ϕ) (Eq. 9.28)
as described for the rigid rotor with space-free axis. Therefore, the quantum number
l characterises the orbital angular momentum �l of the orbiting electron. The orbital
angular momentum is a vector and thus has a length and a direction. Notably, electrons
in s orbitals (l ¼ 0) possess no orbital angular momentum, but electrons in other
orbitals (p, d, f, . . .) do.

The quantum number m becomes important, when the electron rotates around a
fixed axis, for example, when the atom is brought into a magnetic field. The quantum
number m (or ml) is thus called the magnetic quantum number and determines the
orientation of the orbital angular momentum in space.

Since an electron orbiting the atomic nucleus is a moving moving charge, it
represents an electrical current, which, in turn, induces a magnetic field. In the
presence of an outside magnetic field, the magnetic field of the orbiting electron is
aligned with the external magnetic field. More specifically, the orbital that the
electron is in is aligned by the outside field. For illustration, we consider the
d orbital where l ¼ 2 and |ml| � l (see Eq. 9.27), so that there are five (2�l + 1)
degenerate energy levels. Since all five levels possess the same energy, the orbital
angular momentum �l has no preferred orientation. This changes when an external
magnetic field is applied. The five energy levels of the d orbital are no longer
degenerate and split into discrete levels that also enforce particular directions of
the orbital angular momentum �l—this phenomenon is known as space quantisation
(Fig. 10.7). The value of the orbital angular momentum (the length of the vector�l ) is
different for the different subshells and given by:

�l
�� �� ¼ h

2π
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l � lþ 1ð Þ

p
, ð10:14Þ

so for l¼ 2, this yields a value of �l
�� �� ¼ h

2π �
ffiffiffi
6

p
. In the presence of a magnetic field �B,

the component parallel to �B then depends on the magnetic quantum number ml:

�l~B
�� �� ¼ h

2π
� mlj j: ð10:15Þ
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10.2.2 The Spin Quantum Number

Based on the considerations in the previous section, one would expect that the
spectral lines of atomic hydrogen split into three (l ¼ 1) or five (l ¼ 2) lines in the
presence of an external magnetic field. However, experimentally it is observed that
the spectral lines split into even numbered sets when a magnetic field is present. The
pivotal discovery by George Uhlenbeck and Samuel Goudsmit in 1925 was the fact
that electrons not only orbit the atomic nucleus but also rotate around their own axis,
leading to the term electron spin. In addition to the orbital angular momentum �l, one
thus also needs to consider a spin momentum �s, which is characterised by a spin
quantum number s. In contrast to all other quantum numbers, the spin quantum
number only assumes one value:

s ¼ 1
2
: ð10:16Þ

In analogy to the magnetic quantum number ml (Eq. 9.27), it follows for the
magnetic spin quantum number ms:

ms ¼ �s, s, ð10:17Þ
and therefore assumes the values of �1/2 or 1/2.

The general considerations we introduced for the orbital angular momentum
(Eqs. 10.14 and 10.15) are also valid for the spin momentum and thus lead to the
equations:

Fig. 10.7 Space quantisation illustrated for an electron in the d orbital. Left: Possible directions of
the orbital angular momentum �l with respect to an external magnetic field �B. Right: Space
quantisation in the presence of an external magnetic field leads to a potential magnetic energy Emag
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�sj j ¼ h
2π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s � sþ 1ð Þ

p
, and ð10:18Þ

�s~B
�� �� ¼ h

2π
� msj j: ð10:19Þ

With s only assuming one value (s¼ 1/2), this means that the spin momentum for
all electrons is the same, regardless of the orbital they occupy:

j �s j¼ h
2π

�
ffiffiffi
3
4

r
: ð10:20Þ

Also, there are only two possible states with respect to an external magnetic field
�B (Fig. 10.8).

10.2.3 Spin–Orbit Coupling

We mentioned earlier (Sect. 10.2.1) that orbiting of an electron around the atomic
nucleus gives rise to a magnetic field. If an electron spins around its own axis, as we
have just introduced in the preceding section, then this also constitutes the motion of
a charge which also induces a magnetic field. Both of those magnetic fields couple
and result in a total angular momentum �j

�j ¼ �lþ �s, ð10:21Þ
which is characterised by the quantum number j of the total angular momentum.

The values assumed by j combine the angular quantum number l and the spin
quantum number s:

Fig. 10.8 Possible directions
of the electron spin with
respect to an external
magnetic field
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j ¼ lþ sð Þ, lþ s� 1ð Þ, . . . l� sj j: ð10:22Þ
For example, for an electron in a p orbital where l ¼ 1 and s ¼ 1/2, this yields:

j ¼ 1þ 1=2Þ, 1� 1=2Þ ¼ 3=2, 1=2:ðð
The magnetic quantum number of the total angular momentum, mj, can generally

assume the values:

mj ¼ �j, �jþ 1ð Þ, . . . , j� 1ð Þ, j ð10:23Þ
and specifically for the above example of the electron in the p orbital:

j ¼ 1=2 mj ¼ �1=2, 1=2

j ¼ 3=2 mj ¼ �3=2, � 1=2, 1=2, 3=2:

This shows that through the spin�orbit coupling, there are already two energeti-
cally different states in the p orbital: one with j ¼ 1/2, and one with j ¼ 3/2. If an
external magnetic field is applied, these states split up further, characterised by the
magnetic quantum number of the total angular momentum (Fig. 10.9). The external
magnetic field causes the disappearance of the degeneracy in the two j-states,
resulting in two energy levels for j ¼ 1/2 and four energy levels for j ¼ 3/2, in
agreement with the observed splitting of lines in the atomic spectra.

Fig. 10.9 Spin–orbit coupling of an electron in the p orbital. Even in the absence of an external
magnetic field, there are two different states of the total angular momentum. In the presence of an
external magnetic field, these two states split into further states (Zeeman effect)
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10.3 Multi-Electron Atoms

10.3.1 The Schrödinger Equation for Multi-Electron Atoms

We have seen in the previous sections that the Schrödinger equation can be solved for
the hydrogen atom, which consists of a positively charged nucleus and one electron.
The same is true for any one-electron species, such as H2

+, He+, Li2+, Be3+, etc.
However, atoms that possess more than one electron present additional challenges
such that the Schrödinger equation can no longer be solved in an exact fashion.

If more than one electron is present, each electron experiences an attractive force
by the nucleus, but a repelling force by all other electrons. The potential energy in the
Schrödinger equation therefore not only depends on the distance of an electron from
the nucleus, but also from the distance to all other electrons. As this requires
consideration of all individual interactions between the electrons, it becomes impos-
sible to determine an exact solution of the Schrödinger equation.

An approximation suggested by Douglas Hartree in 1927 replaces the individual
inter-electronic interactions by the interaction of an electron with a mean field which
may be assumed to be of spherical symmetry. The non-linear equations evolving
from this approach are solved in an iterative fashion, and the methodology has
become known as the self-consistent field method or Hartree-Fock method. Even
though more accurate methods have been developed since, the Hartree-Fock method
remains the starting point for almost all methods that describe multi-electron
systems. Its inherent shortcomings stem from that fact that the mean field of other
electrons are assumed to be of spherical symmetry. However, it has become apparent
that especially for heavy atoms those errors are indeed very small.

10.3.2 Electronic Configuration of Atoms

We have seen in the previous discussion of the hydrogen atom, that the allowed
energy levels can be calculated and only depend on the principal quantum number
n (Eq. 10.9), such that the atomic orbitals can be arranged in the order of increasing
energy:

1s < 2s ¼ 2p < 3s ¼ 3p ¼ 3d < 4s ¼ 4p ¼ 4d ¼ 4f < . . .

For multi-electron systems, calculations show that the order differs from that of
the one-electron system above; specifically:

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d . . .

The reason for this difference is in the fact that electrons for example in the 2s
orbital are closer to the nucleus than those in the 2p orbital, given the spherical
distribution of the former (see Sect. 10.1.3). The 2s electrons thus experience a
stronger attractive force by the nucleus than the 2p electrons which are shielded
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(by the 2s electrons). The shielding makes it a less stable arrangement and hence leads
to a higher potential energy. When arranging the individual atomic orbitals relative to
each other on an energy scale, one arrives at scheme as illustrated in Fig. 10.10.

The order number Z of the periodic system indicates the number of protons in the
nucleus and hence the number of positive charges of an atom that need to be
balanced by the surrounding electrons (when considering an element). Clearly,
when populating the scheme in Fig. 10.10 with electrons for atomic hydrogen, the
one electron needs to go into the lowest lying orbital (1s). When considering the
helium atom, a first complication arises due to the fact that the 1s state is a two-fold
degenerate state (see Sect. 10.2.2), with two possibilities for the magnetic spin
quantum number ms ¼ �1/2, +1/2. The question is whether both electrons will
assume the same (parallel) spin direction (�1/2 and �1/2, or +1/2 and +1/2), or
whether they assume different (anti-parallel) directions (�1/2 and +1/2). Analysis of
the atomic spectrum of helium shows that only the second scenario agrees with the
observed spectrum, therefore, the two electrons occupying the 1s orbital assume
anti-parallel spins (Fig. 10.11).

For the alkali metal lithium, the atomic spectrum indicates a one-electron system,
despite the total number of three electrons that need to be considered. This can only
be achieved if two electrons occupy the 1s orbital, as in the case of the preceding
element (helium), and the third electron occupies the next higher orbital in the
scheme (2s). Since the energy of the 2s orbital is higher than that of the 1s orbital,
the electrons in the 2s orbital are in a less stable state, and therefore easier to remove
from the atom. The ionisation energy of lithium, which can be determined from the

Fig. 10.10 Relative energetic levels of atomic orbitals in multi-electron systems
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atomic spectrum (see Sect. 8.2.1), would thus be expected to be less than the
ionisation energy of hydrogen or helium, and this is indeed the case (Fig. 10.12).

Another challenge is then observed with carbon. The 2p orbital has already been
populated by boron with one electron. The question arises whether the next electron
goes into the same p orbital or into another one. And what spin does it assume?
Figure 10.11 shows that a new p orbital is occupied, and the spin of the added
electron is the same as the one in the first p orbital.

These rules for populating atomic orbitals are known as the Aufbau principle,
Pauli exclusion principle and Hund's rules:

Fig. 10.11 Population of atomic orbitals with electrons for the first ten elements in the periodic
system

Fig. 10.12 The first ionisation energies of elements as a function of their order number (Z ) in the
periodic system
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" The Pauli exclusion principle states that in atomic and molecule systems,
two electrons cannot possess the exact same four quantum numbers.

" The Aufbau principle is a consequence of the Pauli principle which requires
electrons to occupy higher energy levels once lower levels are filled.

" According to Hund's rules, if there are multiple orbitals at similar energy
levels, electrons populate individual orbitals before pairing up. Unpaired
electrons that populate orbitals of the same energy level assume the
same spin direction.

The Pauli exclusion principle, formulated by the Austrian physicist Wolfgang
Pauli in 1925, is a general quantum mechanical principle that applies to all particles
with half-integer spin (so-called fermions). Like the laws of thermodynamics, it is a
fundamental principle of observation that cannot be proven.

Hund's rule is also known as the rule of maximum multiplicity. Since electrons
are charged particles and pairing them up is energetically costly due to the repelling
force between particles of like charges, this is avoided as long as possible. In general,
the achievement of half-filled orbitals is preferred, even if an orbital of slightly lower
energy is only partially filled as a consequence (see e.g. transition metals).

Above rules enable the prediction of electron configurations of individual
atoms (and molecules). When applying these rules to the elements, arranged in
increasing order of their nuclear charge (order number Z ), the periodicity becomes
apparent. These quantum mechanical rules therefore explain the periodic system of
the elements which was originally assembled based on chemical and physical
properties of the individual elements (and credited to Dmitri Mendeleev in 1869).

Table 10.6 The electron configuration and relationships of quantum numbers explain the period-
icity in the periodic table of the chemical elements

Principal
quantum
number n Shell

Electron symbol
based
on angular
momentum
quantum number l

Possible
quantum
numbers
ml

Possible
spin
states

Max. number of
electrons for given

l n

1 K 1s 1 2 2 2

2 L 2s 1 2 2 8

2p 3 2 6

3 M 3s 1 2 2 18

3p 3 2 6

3d 5 2 10

4 N 4s 1 2 2 32

4p 3 2 6

4d 5 2 10

4f 7 2 14

10.3 Multi-Electron Atoms 317



Table 10.6 summarises the relationships between the quantum numbers, electron
configurations and shells.

An obvious illustration of the periodicity caused by the quantum mechanical
electron configuration is given by the first ionisation energies, which describe the
energy required to remove one (the outermost) electron from the atom (see
Fig. 10.12). Their comparison shows that moving from a noble gas to the following
alkali metal is accompanied by a drastic lowering of the binding energy of the
outermost electron; the binding energy then rises again up to a maximum at the
next noble gas. This implies phenomenologically that a new shell of electrons is
being filled with each alkali metal.

10.4 Exercises

1. Calculate at which distances from the nucleus the 3s orbital possesses radial
nodes.

2. Derive the electron configuration for (a) vanadium, and (b) chromium in their
ground states.

3. Name the four quantum numbers of the electron and state their relationships/
possible values.

4. Describe the overall shape of the orbitals characterised by the angular momentum
quantum number l ¼ 0, 1, 2.

5. Determine the ground-state electronic configuration of the following species: S�,
Zn2+, Cl�, Cu+.

6. (a) Using the knowledge about the allowed energy states (eigenvalues; Eq. 10.9),
calculate the ionisation potential of the hydrogen atom.
(b) The equation yielding the allowed energy states of a multi-electron atom is

often modified to En ¼ �me � e4 � Z � σð Þ2
8 � ε20 � h2 � n2

to accommodate the shielding of the

nuclear charge by electrons in the various orbitals; the parameter σ is thus called
the screening constant. Calculate the value of σ for helium, assuming its first
ionisation potential is 24.5 eV.
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The Chemical Bond 11

After considering the make-up of isolated atoms, we now want to have a closer look
at how atoms interact with each other to form compounds and molecules. Practical
experiences with different substances tell us that the type of bonds between atoms
can be quite different.

When combining two atoms of substantially different ionisation energies, such as
for example observed with alkali halides (see Fig. 10.12), one can expect a tendency
of an electron being transferred from one atom to another, resulting in the generation
of ions. These substances are thus likely to form bonds based on electrostatic
interactions, i.e. ionic bonds. A different type of bond is to be expected between
atoms that have similar or the same ionisation energies, such as e.g. gaseous
hydrogen or diamond. These types of substances are formed by covalent bonds.
Yet a different type of substance are metals. While also being formed by interactions
of atoms of the same element, the main difference of metals when compared to
covalently bonded substances is the fact that they can conduct electric current. The
metallic bond therefore must have particular features. Last, we know that noble gases
generally resist chemical reactions and, for large parts, do not engage in compound
formation. However, even noble gases form liquid and solid phases. In those states,
the noble gas atoms are held together by van der Waals interactions.

In the following sections, we will discuss these four types of chemical bonds, but
appreciate that these are particularly distinct instances; there will also be many cases
where the type of chemical bond is a mixture of two of these distinct bonding types.

11.1 The Ionic Bond

As an example for an ionic substance we will consider the alkali halide NaCl which
adopts a cubic close-packed crystal structure where every individual ion is
surrounded by six counter-ions sitting on the vertices of an octahedron (Fig. 11.1).
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The force describing the electrostatic interaction between two ions of charge Q1

and Q2 is given by Coulomb’s law:

FCoulomb ¼ Q1 � Q2

ε � r2 , ð11:1Þ

where ε is the dielectric constant of the medium. Since energy is the product of force
and distance:

E ¼ F � r, ð11:2Þ
the potential energy between two ions is due to the Coulomb force of electrostatic

attraction and given by

VC ¼ Q1 � Q2

ε � r : ð11:3Þ

For two ions with the charge numbers z+ and z� in a crystal ε lattice, this yields
the following expression:

VC ¼ zþ � z- � e2
4π � ε0 � r , ð11:4Þ

Fig. 11.1 Cubic close packing of NaCl. Na+ ions are shown in green, Cl� ions in magenta. Sphere
sizes have been decreased to allow drawing of the crystal lattice
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where we replaced the dielectric constant ε with the vacuum permittivity ε0 (more
precisely the product 4π�ε0) introduced in Sect. 8.2.2. Note that the numerical value
of the Coulomb potential energy VC in Eq. 11.4 is negative, since z+ has a positive
and z� a negative sign. VC thus assumes an indefinite negative value at r ¼ 0,
i.e. when both ions collapse. This is certainly not what we observe. The Coulomb
potential energy thus describes the real phenomenon only when the two ions are at
sufficient distance from each other.

As two particles get spatially very close, the short-range repulsion forces gain
weight. Therefore, we also need to consider a potential energy VR describing this
repulsion which may be modelled in this case by

VR ¼ A � e�r
ρ, ð11:5Þ

where A and ρ are constants.
The total potential energy between two ions in the lattice is thus a composite of

the attractive (Coulomb) and the repulsive terms:

Epot ¼ VC þ VR ¼ zþ � z� � e2
4π � ε0 � r þ A � e�r

ρ: ð11:6Þ

As illustrated in Fig. 11.2, the total potential energy Epot possesses a minimum at
a particular distance req which is the equilibrium distance between the two ions.

pot

eq

Fig. 11.2 Potential energy of
the ionic bond, illustrated
for NaCl
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Since there are more than two ions in an ionic crystal, we need to consider all
possible inter-ionic interactions. Therefore, we first focus on one cation which has a
charge z+ and the distance of this ion to each other ion with running index i shall be
r+,i. We thus obtain for the Coulomb potential energy for this cation:

VCþ ¼ zþ � e2
4π � ε0 �

X
i

zi
rþ, i

:

Similarly, this approach yields for the Coulomb potential energy of a particular
anion:

VC� ¼ z� � e2
4π � ε0 �

X
i

zi
r�, i

:

Since the distances do not vary continuously, but systematically due to the regular
arrangement of ions in the lattice, r+,i and r�,i can be expressed as multiples of a
smallest distance r0:

rþ, i ¼ aþ, i � r0 and r�, i ¼ a�, i � r0:
Further, we need to make sure that the interactions between cat- and anions are

not counted twice when combining VC+ and VC�, and thus introduce a factor of 1/2.
Considering 1 mol of substance, we obtain for the molar Coulomb potential energy
in the ionic crystal:

VC ¼ 1
2
� VCþ þ VC�ð Þ � NA ¼ zþ � z� � e2 � NA

4π � ε0 � r0 � 1
2
�
X
i

zi
z� � aþ, i þ

zi
zþ � a�, i :

ð11:7Þ
The factor

1
2
�
X
i

zi
z� � aþ, i þ

zi
zþ � a�, i ¼ M ð11:8Þ

is called the Madelung constant M, named after the German physicist Erwin
Madelung. This yields for the attractive (Coulomb) potential energy (Eq. 11.7) in the
ionic crystal

VC ¼ 1
2
� VCþ þ VC�ð Þ � NA ¼ zþ � z� � e2 � NA

4π � ε0 �M
r0

where z+, z� and r0 are characteristic constants of a substance, and the Madelung
constant M is a characteristic parameter capturing the geometric arrangements in a
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particular lattice type. Using the above expression, the total potential energy
(Eq. 11.6) becomes

Epot ¼ zþ � z� � e2 � NA

4π � ε0 �M
r0
þ A � e�r0

ρ ð11:9Þ

The lattice energy ΔUlattice of a crystal describes the energy required to break the
bonds of 1 mol of an ionic solid under standard conditions; it equals the potential
energy at the equilibrium distance req, i.e. the minimum of the function Epot(r0)
illustrated in Fig. 11.2. At the minimum of a function f(x), the derivative df xð Þ

dx
equals zero.

For the potential energy function in Eq. 11.9 this results in

dEpot

dr0
¼ �zþ � z� � e

2 � NA

4π � ε0 �M
r20
� A

ρ
� e�r0

ρ ¼ 0

and allows calculation of the parameter A:

A ¼ �zþ � z� � e
2 � NA �M � ρ

4π � ε0 � r20
� er0

ρ :

If we substitute this expression for A in Eq. 11.9 we obtain the following
expression for the lattice energy of an ionic crystal:

ΔUlattice ¼ Epot req
� � ¼ zþ � z� � e2 � NA �M

4π � ε0 � r0 � 1� ρ
r0

� �
: ð11:10Þ

As mentioned above, the charge numbers z+ and z� are characteristic parameters
of a substance, r0 is available from the lattice parameters for this substance andM is a
geometric constant for a particular lattice type. The extent of the repulsion potential
is expressed by ρ. We appreciate that this parameter is directly linked to the
compressibility of the ionic crystal: the longer the range of the repulsion potential,
the larger is ρ and the less the lattice can be compressed. The experimental determi-
nation of compressibility of solids thus allows determination of the parameter ρ.

11.2 Electronegativity

The tendency of an atom to attract electrons when being part of a molecule is called
electronegativity. The distribution of electrons in a heteronuclear molecules there-
fore can be seen as a direct result of differences in electronegativity. Accordingly, in
an ionic bond, as discussed in the previous section, the difference in electronegativ-
ity between the two atoms is thus at its most extreme.

The most commonly used method to calculate electronegativity is the one
proposed by Linus Pauling (Pauling 1932). In its original form, the Pauling scale
of relative electronegativity values (arbitrarily) assigns a value of 4.0 to fluorine. The
values of a subsequently refined scale are summarised in Table 11.1. Generally,
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caesium is the least electronegative element in the periodic table (0.79), while
fluorine is the most electronegative (3.98).

11.3 The Covalent Bond

The occurrence of ionic bonds appears as a fairly straightforward phenomenon, since
we can easily appreciate its coming-about due to the attraction between two particles
of opposite charge. A more complex situation arises when bonds occur between
rather similar atoms, i.e. such that exhibit rather small differences in their electro-
negativity values. Obviously, the formation of particular molecules must result in
stable arrangements, meaning that these molecules correspond to a minimum in the
overall energy function.

As we have previously seen, even in the case of multi-electron atoms, it is not
possible to find an exact solution of the Schrödinger equation. The same problem
arises when one considers molecules which comprise of multiple atoms and thus
many electrons. Different ways of approximation of such more complex systems
have been developed, including the valence bond (VB) method and the molecular
orbital (MO) method.

The molecular orbital method, introduced by Friedrich Hund and Robert
Mulliken in 1928, considers the nuclear scaffold of a molecule (e.g. the two nuclei
of a di-atomic molecule) with varying distances. First, the molecular orbitals are
determined; these orbitals localise to multiple atoms (i.e. they are poly-centric), as
opposed to the atomic orbitals which localise to just one atom. Then, the molecular
orbitals are filled with electrons according to the Aufbau principle as well as the
Pauli principle and Hund rules.

11.3.1 The Born-Oppenheimer Approximation

Since atoms comprise of the atomic nucleus as well as electrons, the kinetic energies
of both nuclei and electrons need to be considered in a rigorous treatment of energies
in a molecule. The Born-Oppenheimer approximation poses that the heavier nuclei
remain static at time scales during which the electrons are in movement (see also
Franck-Condon principle, Sect. 13.4.1). In other words, this approximation allows
separation of the motion of electrons from that of atomic nuclei. In mathematical
terms, the wave function of a molecule can thus be thought of as being composed of
an electronic and a nuclear function:

Ψ ¼ Ψelectrons �Ψnuclei: ð11:11Þ
At the time scale of electron motion, the atomic nuclei only affect electrons by an

electrostatic potential.
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11.3.2 Linear Combination of Atomic Orbitals

If we consider a di-atomic molecule consisting of atoms 1 and 2, electrons travel on
paths that wrap around both atoms. However, if they are spatially closer to atom
1, they will experience mainly the forces by the nucleus of atom 1 as well as the
electrons in its vicinity. The forces originating from the nucleus and electrons of
atom 2 are comparably small, due to atom 2 being located further away. The
situation electrons find around atom 1 will therefore be similar (but not the same)
as if they were part of an isolated atom 1 that is not part of a molecule. The same
argument can be made for the situation around atom 2.

It is thus conceivable that the molecular orbital Ψ will have strong characteristics
of the individual atomic orbitals Ψ1 and Ψ2 in vicinity of either atom 1 or atom
2. Mathematically, this can be modelled by a linear combination of the individual
atomic orbitals Ψ1 and Ψ2 which constitute the molecular orbital Ψ. The
contributions of the individual atomic orbitals—which are now called base
functions—don’t have to be the same and are thus expressed in the general form
by weighting factors (c1, c2):

Ψ ¼ c1 �Ψ1 þ c2 � Ψ2 ð11:12Þ
This approach is called the linear combination of atomic orbitals (LCAO) and can

alternatively be formulated as:

Ψ ¼ Ψ1 þ λ � Ψ2, ð11:13Þ
where λ is a measure of the polarity of the molecular orbital.

Conceptually the LCAO describes an interference of the two base functions Ψ1

and Ψ2. Keeping in mind that the base functions are indeed wave functions, we
remember from Sect. 8.1.2 that waves can interfere in a constructive and a destruc-
tive manner. In a similar fashion we need to consider a two types of interactions
between the base functions; they can either add or subtract, giving rise to two
different molecular orbitals, a bonding one Ψ and an anti-bonding one Ψ*:

Ψ ¼ c1 �Ψ1 þ c2 � Ψ2

Ψ∗ ¼ c1 � Ψ1 � c2 �Ψ2:

As an example, we consider the formation of the hydrogen molecule H2. The 1s
orbitals of each of the individual H atoms combine according to the linear combina-
tion of atomic orbitals to yield two molecular orbitals, the σ and the σ* orbital
(Fig. 11.3). Since the σ orbital shows build-up of electron density in the space
between two the atomic nuclei, it is called a bonding orbital, since its population
with electrons keeps the two atomic nuclei together. In contrast, the σ* orbital shows
low electron density between the two nuclei, hence its population with electrons
would lead be destabilising for the assembly of the two atoms; it is called anti-
bonding orbital.
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When considering linear combinations of the p orbitals of two atoms engaging in
an interaction, it becomes obvious that there are two types of overlap (Fig. 11.4): In
one case, the p orbitals extending along the inter-nuclear axis can overlap and this
gives rise to electron density between the two atoms along the inter-nuclear axis. If
we think of the inter-nuclear distance as a rotation axis, we appreciate that the
resulting orbital has rotational symmetry, just like the σs orbital. This type of
interaction therefore results in a σp and a σ*p orbital.

The other two p orbitals have their lobes extending either above/below or in front/
behind of the internuclear axis. Overlap of those p orbitals therefore leads to electron
density between the two atoms above/below or in front/behind of the inter-nuclear
axis. Such orbitals are called π orbitals. As before, constructive and destructive
interference is possible, giving rise to two molecular orbitals upon interaction, π and

Fig. 11.3 Linear
combination of the two 1s
orbitals in hydrogen leads to
bonding and anti-bonding
molecular orbitals of H2

Fig. 11.4 The interaction of
two p orbitals can result
in formation of either σ/σ* or
π/π* molecular orbitals
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π*. Notably, the π/π* orbitals do not possess rotational symmetry, as the sign of those
orbitals changes when rotating 180� around the inter-nuclear axis. The relative order
of σ- and π orbitals arising from linear combination of 2p orbitals is illustrated in
Fig. 11.5.

Generally, when choosing atomic orbitals for linear combination, three
pre-requisites need to be fulfilled:

• The energies of the two atomic orbitals need to be at a comparable level.
• Both atomic orbitals need to be able to produce sufficient overlap.
• The two atomic orbitals need to have the same symmetry with respect to the inter-

atomic axis.

11.3.3 Bond Order

We have mentioned earlier that the molecular orbitals are populated with electrons
according to the Aufbau principle. Of course, just as in the case of atomic orbitals,
the Aufbau principle requires knowledge of the relative energetic levels of the
individual molecular orbitals, so that we fill the different orbitals from the bottom
to the top. As illustrated for O2 in Fig. 11.6, this requires that anti-bonding orbitals
are populated and we remember that electrons in anti-bonding orbitals result in
destabilisation of the bond between two atoms.

In order to obtain an overall measure of the strength of a bond, the bond order is
defined as:

bond order ¼ 1
2
� Nbonding � Nanti-bonding
� � ð11:14Þ

Fig. 11.5 Energy diagram
for linear combination of the
p orbitals in the second period
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where Nbonding is the number of electrons in bonding and Nanti-bonding the number of
electrons in anti-bonding orbitals. For the O2 molecule (see Fig. 11.6), the border is
calculated as per:

bond order ¼ 1
2
� 10� 6ð Þ ¼ 2:

11.3.4 Magnetic Properties of Diatomic Molecules

The molecular orbital scheme for oxygen highlights that the O2 molecule has two
unpaired electrons. Because unpaired electrons can orient in either direction, they
exhibit magnetic moments that can align with an external magnetic field; such
molecules are called paramagnetic. In contrast, molecules that do not possess
unpaired electrons are called diamagnetic; they possess no net magnetic moment
and are thus not attracted into a magnetic field. Indeed, diamagnetic materials exhibit
a weak repulsion to external magnetic fields.

The prediction of the magnetic properties of molecules is a major advantage of
molecular orbital theory as compared to the concept of Lewis structures. The concept
of Lewis structures, introduced by Gilbert N. Lewis in 1916 (Lewis 1916) for
covalently bonded molecules, predicts the bonding between and lone pair electrons
of atoms in molecules based on the number of electrons in their outermost shell (the

Fig. 11.6 MO scheme for
oxygen (O2)
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valence shell). For the O2 molecule, the Lewis structure does not inform about the
presence of unpaired electrons (and hence paramagnetism).

Table 11.2 summarises properties of select diatomic gases. Importantly, the bond
order and electron configuration determined by the molecular orbital theory correctly
predicts the magnetic properties and even the fact that some diatomic molecules
(such as for example He2, Ne2) do not exist, since their bond order is zero.

11.3.5 Dipole Moment

The considerations in the previous chapters assumed that the linear combination of
atomic orbitals occurs between two atoms of the same element, which results in
formation of homonuclear di-atomic molecules. In the illustrations (Figs. 11.3, 11.5,
and 11.6), this manifests itself in the fact that the two interacting atomic orbitals
possess the same energy. Moreover, at the level of the quantum mechanical wave
function, this results in equality of the two coefficients c1 and c2 (Eq. 11.12) or
λ ¼ �1 (Eq. 11.13).

Whereas the same methodology can be applied to hetero-nuclear di-atomic
molecules, we appreciate that the two atoms no longer belong to the same element,
hence the energies of the interacting atomic orbitals are no longer equal. Similarly,
the weighting coefficients c1 and c2 are not the same, and λ 6¼ �1.

As mentioned in Sect. 11.3.2, the coefficient λ is a measure of the polarity of the
molecular orbital, and if its value deviates from 1, the bond possesses a permanent
electric dipole momentum (i.e. a bond moment). This is a result of one atom in the
molecule attracting electrons more strongly than the other, leading to a formal partial
negative charge on one atom and a formal positive charge on the other. In general, a
dipole moment μ arises from a charge separation in space, and is thus defined as

μ ¼ Q � r, ð11:15Þ
where Q is the separated charge (e.g. 1 � e ¼ 1.602 � 10�19 C) and r the distance
between the positive and negative centres. Since such separations happen at the scale
of a chemical bond, the dipole moment is measured in multiples of 3.338 � 10�30 C m
which is called the debye:

Table 11.2 Properties of select diatomic gases. The magnetic properties and bond order are
predicted by molecular orbital theory. The experimental values of bond lengths and bond energies
reflect the predicted bond order

Molecule Magnetic properties Bond order Bond length (Å) Bond energy (kJ mol�1)

H2 diamagnetic 1 0.74 436.0

He2 – 0 – –

N2 diamagnetic 3 1.10 941.4

O2 paramagnetic 2 1.21 498.8

F2 diamagnetic 1 1.42 150.6

Ne2 – 0 – –
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μ½ � ¼ 3:338 � 10�30 C m ¼ 1 D

and leads to the dipole moment for the charge separation due to one electron
displaced by 1 Å ¼ 0.1 nm ¼ 10�10 m of

μ ¼ 1:602 � 10�19 C � 10�10 m ¼ 1:602 � 10�29 C m ¼ 4:8 D:

When assessing the overall dipole moment of a molecule, one considers the
individual bond moments as vectors (i.e. they have a value/length and a direction)
and estimates the overall dipole moment by vector addition.

Table 11.3 compares bond moments of some select heteronuclear bonds with the
electronegativity difference between the two atoms. If the dipole moment in a bond
becomes larger, this results in the bond adopting more and more ionic character.

Dipole Moment of Ionic Compounds
The electronegativity difference between Na and Cl of 2.1 suggests that NaCl
forms an ionic bond. If the bonding in crystalline NaCl was 100% ionic, the
charge on the sodium atom was +1�e, and the charge on the chlorine �1�e.
With an inter-nuclear distance of 2.36 Å, this results in a dipole moment of
μ¼ 11.34 D. The experimental value of the dipole moment can be obtained by
microwave spectroscopy and yields μ¼ 9.001 D. The ratio of the experimental
and theoretical dipole moments

μexp
μtheor

¼ 9:001 D
11:34 D

¼ 0:794

indicates that the bonding between sodium and chlorine in the ionic solid is
~80% ionic.

Table 11.3 Examples of
bond moments and
electronegativity difference
of the constituting atoms

Bond Bond moment (D) Electronegativity difference

HF 1.9 1.8

HCl 1.1 1.0

HBr 0.80 0.8

HI 0.42 0.5

H–O 1.5 1.2

H–N 1.3 0.8

H–P 0.40 0

C–H 0.40 0.4

C–F 1.4 1.5
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11.4 The Metallic Bond

The characteristic property of metals is their ability to conduct electric current. In
contrast to the covalent bond where electrons are localised, the metallic bond is
characterised by delocalised electrons. Notably, this delocalisation does not result in
weaker bonding; the bond energies of metals are indeed of the same order as those of
ionic crystals or covalent di-atomic molecules.

The ability to conduct electrons requires a reasonable spatial extension of the
metal (as opposed to, for example, fairly isolated di-atomic gas molecules). In other
words, in order for a metallic bond to exist, one requires a bulk assembly of atoms in
a condensed phase. In order to understand the metallic bond, it will thus be necessary
to consider the arrangement of large numbers of atoms in space. For illustration
(Fig. 11.7), we start with a di-atomic molecule, say Li2 (which can be observed in
the gas phase). Focussing on the outer shell only, the molecular orbital scheme for
Li2 can be established by linear combination of the two 2s orbitals, leading to a σ and
a σ* molecular orbital. Upon addition of a third and a fourth Li atom, the 2s orbitals
of those atoms combine with the 2s orbitals of the initial Li atoms which leads to
three and four molecular orbitals of different energies, respectively. For a large
number of atoms (N ), N molecular orbitals with slightly differing energies arise. If
N¼ 6.022 � 1023, then the metal has 1 mol atoms and 6.022 � 1023 molecular orbitals.
Whereas the energies of these individual orbitals are different, they are so densely
situated that an energy band (here: s-band) is established in which the energy levels
are pseudo-continuous.

In the case of a Li atom, there is one electron in the 2s orbital. This means that in
metallic lithium, there are as many electrons as molecular orbitals arising from the 2s
combination. These electrons populate the s-band; but because every orbital can
harbour a maximum of two electrons, the band is only half-populated. Due to the
energy levels in the band being pseudo-continuous, electrons can be take up indefi-
nitely small amounts of energy and thus become highly mobile. The energy can be
provided by an electric field, established by a potential difference, which leads to
electrons travelling and thus conduction of an electric current.

Fig. 11.7 The assembly of
discrete atoms into bulk
condensed matter in metals
leads to generation of an
electron band
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11.5 The van der Waals Bond

In the previous sections, we have seen that condensed matter can arise from different
types of bonds, namely ionic (e.g. NaCl), metallic (e.g. Fe) and covalent
(e.g. diamond). But what about the condensed phases such as for example the liquid
or solid states of the noble gases, where the electronic configuration does not allow
for covalent or ionic bonds?

The electrostatic potential of the nucleus is fully balanced by the electrons
surrounding it. In the case of the noble gases, the electrons are distributed around
the nucleus with spherical symmetry, due to full occupancy of all shells. However,
this scenario describes the situation only in an averaged time window. Since the
electrons are orbiting the nucleus, at any particular time, there may be a distribution
that is not of spherical symmetry, and therefore leads to a temporary dipole momen-
tum (see also Sect. 12.2). This dipole moment establishes an electric field whose
value is given by

E ¼ μA
4π � ε0 � r3 ð11:17Þ

where μ1 is the dipole moment in atom A, r is the distance from the dipole and ε0 is
the permittivity in vacuo. The electric field E then leads to an induced dipole moment
in a neighbouring atom (atom B):

μB ¼ α � E ¼ α � μA
4π � ε0 � r3 ; ð11:18Þ

α is called the polarisability and discussed in more detail in Sect. 12.2.1.
The potential energy of a dipole in an electric field is given by the product

between the two quantities and given a negative sign since it is an attractive
interaction:

V attr ¼ �μB � E ¼ �α � E2 ¼ � μ2A � α
4π2 � ε20 � r6

: ð11:19Þ

The important relationship in above equation is that the attractive interaction
between the two atoms (¼ temporary dipoles) varies with r�6:

V attr � � 1
r6
: ð11:20Þ

This attractive potential is called the van der Waals potential (see Fig. 11.8).
If the distance between two atoms is made less and less, the two atoms approach

each other and their electron shells start to overlap. This universal repulsive force
becomes stronger, the closer the two atoms get. Empirically, it was found that this
potential varies with r�12 and is known as the Pauli repulsive potential:

V rep � 1
r12

: ð11:21Þ
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The sum of the above attractive and repulsive terms yields the potential between
two particles based on temporary dipoles. The combination of the van der Waals and
Pauli terms is called the Lennard-Jones potential:

Epot ¼ b

r12
� a

r6
: ð11:22Þ

The universal repulsive force arises from two quantum mechanical principles and
prevents two atoms from occupying the same space. It is indeed of universal
importance since it gives rise compressibility and hardness of solids, was famously
linked by Victor Weisskopf to the heights of mountains, lengths of ocean waves, and
even sizes of stars (Weisskopf 1975). On the one hand, due to the uncertainty
relationship by Heisenberg (see Sect. 8.1.6), the position of the electrons
surrounding an atomic nucleus cannot be exactly located. They possess kinetic
energy which results in a pressure that would drive them off the nucleus if they
were not held back by the attractive force of the positively charged nucleus. If the

Fig. 11.8 The Lennard-
Jones potential (Epot) as a
combination of the attractive
van der Waals potential (Vattr)
and the repulsive potential
(Vrep) between two atoms. The
minimum in the potential
curve occurs at the
equilibrium distance req.
σ ¼ ffiffi

a
b

6
p
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volume occupied by the electrons was decreased by an approaching atom intruding
in that space, the electron pressure would increase dramatically and thus resist this
change in volume. Ultimately, this is also the reason why condensed matter can
hardly be compressed.

On the other hand, according to the Pauli exclusion principle (see Sect. 10.3.2),
the electrons in an atom must all have different quantum numbers. In the event of an
approaching atom intruding into the space of another atom, some electrons are
forced into higher quantum states to fulfil the exclusion principle. However, higher
quantum states occupy larger volumes, thereby counteracting the attempted volume
decrease by intruding atoms.

11.6 Crystal Field and Ligand Field Theory

As we have seen earlier, a further level of complexity arises in transition metals since
they populate the fivefold degenerate d orbitals. We found that four of the d orbitals
possess a very similar shape and differ mainly in the orientation of the different lobes
(see Fig. 11.9). The fifth d orbital was unique as it extends its two lobes along the z-
axis and has a torus around its equator.

In an isolated transition metal atom, the five d orbitals are fully degenerate and
possess the same energy. However, when the transition metal engages in a complex

Fig. 11.9 Three-dimensional graphs of the five d orbitals of the third shell (principal quantum
number n ¼ 3) with respect to a Cartesian coordinate system
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where it interacts with ligands that are distribution around it in a particular spatial
distribution, ligands perturb the d orbitals that extend into their direction, thereby
affecting the energies of the individual d orbitals. Those d orbitals that do not extend
into the direction of a ligand are stabilised (their energy decreases) and the other
d orbitals whose lobes extend into the direction of the ligands are destabilised (their
energies increase). This concept is known as the crystal field theory and the energy
difference between the stabilised and destabilised d orbitals is called the crystal field
splitting Δ.

11.6.1 Crystal Field Splitting

Obviously, the way in which the degenerate d orbitals split upon complex formation
depends on the geometry of the complex. The geometries of transition metal
complexes mainly consist of tetrahedral, octahedral and square planar arrangements;
the crystal field splitting for these cases is illustrated in Fig. 11.10.

Fig. 11.10 Energetic splitting of d orbitals in response to different coordination geometries. Those
orbitals that extend along a direction projects towards a ligand are destabilised and move to higher
energy; the others are stabilised and move to lower energy
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Importantly, the magnitude of Δ, which can be measured spectroscopically (d-d-
transitions), depends on the identity and charge of the metal ion, as well as the type
of ligand. By characterising a range of different ligands, a spectrochemical series can
be established which lists the ligands in the order of increasing Δ:

I� < Br� < S2� < SCN� < Cl� < NO3
� < F� < OH�

< oxalate2� < H2O < NCS� < H3C� CN <

 weak field� strong field!
NH3 < ethylenediamine < 2, 2

0 � bipyridyl < o� phenantrolin < NO2
�

< CN� < CO

Given the same geometry of coordination and identical ligands, the crystal field
splitting Δ for different metals increases in the following order:

Mn2þ < Ni2þ < Co2þ < Fe2þ < Fe3þ < Cr3þ < Co3þ < Rh3þ < Ir3þ < Pt4þ

 weak field� strong field!
Because a complex with tetrahedral geometry has fewer ligands than a complex

with octahedral geometry, the magnitude of the crystal field splitting observed with
tetrahedral coordination (Δt) is smaller than with octahedral coordination (Δo):

Δt ¼ 4
9
� Δo: ð11:23Þ

11.6.2 Low-Spin and High-Spin Complexes

The magnitude of the crystal field splitting Δ can affect the electronic configuration,
and thus the magnetic properties of a complex; in particular, if there are several
electrons populating the d orbitals, such as for example in Fe3+.

As illustrated in Fig. 11.11, electrons are filled into the orbitals according to the
principles we have established before. One electron is added to each of the degener-
ate orbitals until each orbital has one electron with the same spin. In an octahedral
complex, this works straightforward up to the third electron. The fourth electron
could either be placed as a paired electron in the lower set of d orbitals (low-spin
complex) or as an unpaired electron in the energetically higher set of d orbitals (high-
spin complex). Whether the first or the second scenario happens depends on the
magnitude of crystal field splitting Δ. Therefore, high-spin complexes are typically
found with metals/ligands at the weak-field end of the spectrochemical series (such
as e.g. [FeCl6]

3�); vice versa, low-spin complexes are expected in complexes that
comprise of metals and ligands at the high-field end of the spectrochemical series
(such as e.g. [Fe(CN)6]

3�). Since the formation of either a high-spin or a low-spin
complex affects the pairing of electrons, the crystal field splitting has repercussions
in the magnetic properties of a complex.
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Importantly, with octahedral geometry, the options of forming either low-spin
or high-spin complexes only exist for systems with 4–7 electrons in the d orbitals (d4,
d5, d6, d7 complexes). For d1, d2 d3 and d8, d9, d10 complexes, there is only one
possible electron configuration.

11.6.3 Ligand Field Theory

Properties such as the absorption of visual light due to d-d-transitions and magnetic
susceptibility of metal complexes can be macroscopically observed, and the crystal
field theory delivers predictions that are in good agreement with macroscopic
observations for some complexes. However, the concept has a fundamental short-
coming in that it only considers the electrostatic interactions between metal and
ligands, and ignores any covalent character of metal-ligand bonds; you may have
noticed that the ligand orbitals are not actually featured in Fig. 11.11.

The ligand field theory overcomes this defect by also taking into account covalent
contributions of metal-ligand interactions. To apply this concept, we construct
molecular orbitals as introduced earlier (Sect. 11.3.2). The d orbitals that do not
extend into the direction of the coordinated ligands are now deemed to not take part
in bond formation and thus called non-bonding orbitals. Accordingly, their energy
does not change as compared to the set of degenerate d orbitals in the free metal ion.

This concept is illustrated for [FeCl6]
3� in Fig. 11.12. The Fe3+ ion possesses five

electrons in the 3d orbitals and has empty 4s and 4p orbitals. Energetically, the 3d, 4s
and 4p orbitals are at a level that allows molecular orbital formation with the atomic
orbitals provided by the six chloride ligands. In this scheme, a total of 17 electrons
need to be filled, twelve of which occupy the bonding orbitals. The three
non-bonding d orbitals (coloured red in Fig. 11.12) and the two anti-bonding orbitals
(upper pair of yellow coloured orbitals in Fig. 11.12) arising from the linear
combination of two 3d orbitals with the two ligand orbitals results in an energetic
scheme we have already seen in the discussion of the crystal field theory. Therefore,
the crystal field splitting Δ is also observed in the ligand field theory.

Fig. 11.11 Comparison of
crystal field splitting for two
Fe3+ complexes
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11.7 Valence Bond Theory and Hybridisation of Atomic Orbitals

The valence bond (VB) approach considers the overlap of the half-filled valence
atomic orbitals of each atom containing one unpaired electron, thereby assuming that
all bonds are localised bonds. This approach builds on the Lewis structures of
molecules which have been introduced in introductory chemistry courses. Histori-
cally, the VB theory is a further development of the Lewis structures that also
accounts for the geometric shape of molecules. Its main advantage is indeed the
description of molecular shapes, but shortcomings remain in the correct prediction of
electronic structures in some cases (e.g. molecular oxygen, O2). However, despite
those deficits, the VB method is still frequently used in qualitative descriptions of
bond formation in molecules.

Conceptually, the VB method assumes that due to the spatial closeness of the
electrons and nuclei of two atoms engaging in a bond, their orbitals become distorted
as a consequence of the electrostatic interactions. Therefore, these orbitals no longer
adopt their pure forms but rather a mix of the features of the pure orbitals; the
resulting orbitals are thus called hybrid orbitals. Importantly, the mixing must not be
confused with the linear combination of atomic orbitals in Sect. 11.3.2 which
resulted in molecular orbitals. The hybrid orbitals are still atomic orbitals, since
they arise from a single atom.

Fig. 11.12 Molecular orbitals for [FeCl6]
3�
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11.7.1 Hybridisation of Atomic Orbitals

To illustrate the concept, we consider methane (CH4). All experimental studies show
that the four C–H bonds in methane are identical in length and energy; the four
hydrogen atoms are indistinguishable and the molecule possesses tetrahedral sym-
metry, resulting in the angle of 109.5� between any pair of C–H bonds. Recalling the
three-dimensional arrangements of the 2s and the three 2p orbitals, it is obvious that
the tetrahedral symmetry cannot be explained by overlap of those ‘pure’ atomic
orbitals with the four 1s orbitals of the hydrogen atoms. Since four identical bonds
require four identical orbitals, one can suggest four identical atomic orbitals which
may be derived from one s and three p orbitals by mixing them into four hybrid
orbitals (sp3) that extend into the four directions of a tetrahedron. The mathematical
representation of the mixing is given in Table 11.4. Each sp3 orbital has the same
shape (see Fig. 11.13) and its direction is determined by the signs. The C–H bonds
are now accomplished by overlap of the four 1s orbitals of the hydrogen atoms with
the four sp3 hybrid orbitals of carbon (see Fig. 11.14).

Schematic drawings such as the one in Fig. 11.14 qualitatively depict the shape of
atomic orbitals and frequently used in pen-and-paper discussions of the binding
situation in molecules.

In contrast to methane, ethylene (C2H4) is a planar molecule. The angle between
two C–H bonds is 120�, which can be explained by the formation of three sp2 hybrid
orbitals from the 2s and two 2p orbitals (for example, px and py; see Fig. 11.13 and
Table 11.4) of carbon, each occupied with one electron, ready to pair up with the one
electron in a bonding orbital provided by another atom (2� 1s orbital of hydrogen
and 1� sp2 hybrid orbital from the other carbon; see Fig. 11.14). The fourth
remaining electron occupies a pure ‘left-over’ p orbital; since px and py have been
mixed, the remaining pure p orbital is pz. Overlap of the two pz orbitals of the two

Table 11.4 Mixing rules of to obtain hybrid from pure atomic orbitals. There are as many hybrid
orbitals as pure orbitals used for mixing

Hybrid
orbital Mixing of atomic orbitals Topology

Angle between hybrid
orbitals

sp t1 ¼
ffiffi
1
2

q
� sþ

ffiffi
1
2

q
� px

t2 ¼
ffiffi
1
2

q
� s�

ffiffi
1
2

q
� px

linear 180�

sp2 t1 ¼
ffiffi
1
3

q
� sþ

ffiffi
2
3

q
� px

t2 ¼
ffiffi
1
3

q
� s�

ffiffi
1
6

q
� px þ

ffiffi
1
3

q
� py

t3 ¼
ffiffi
1
3

q
� s�

ffiffi
1
6

q
� px �

ffiffi
1
3

q
� py

planar 120�

sp3 t1 ¼ 1
2 � sþ px þ py þ pz

� �
t2 ¼ 1

2 � sþ px � py � pz
� �

t3 ¼ 1
2 � s� px þ py � pz

� �
t4 ¼ 1

2 � s� px � py þ pz
� �

tetrahedral 109.5�
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neighbouring carbon atoms provides a further bond, in addition to the bond arising
from overlap of two sp2 hybrid orbitals. Earlier (Sect. 11.3.2), we have introduced
the distinction between electron density arising between atoms on the inter-nuclear
axis (σ bond) and above/below or in front/behind the inter-nuclear axis (π bond). As
illustrated in Fig. 11.14, the overlap of the pure p orbitals in ethylene occurs above
and below the C–C axis and therefore constitutes a π bond.

Bonding in the linear acetylene (C2H2) molecule can be explained by mixing of
the 2s and one 2p orbital of carbon, resulting in the formation of two sp hybrid
orbitals (see Fig. 11.13 and Table 11.4). As illustrated in Fig. 11.14, the sp orbitals of
the two neighbouring carbon atoms overlap on the inter-nuclear axis and thus form a
σ bond. The second sp hydrid orbital on each of the carbon atoms overlaps with the
1s orbital of the hydrogen atoms, forming another σ bond. The remaining pure
p orbitals py and pz on each of the neighbouring carbon atoms also possess one
electron each and overlap above/below ( pz) and in front/behind ( py) of the inter-
nuclear axis and therefore give rise to two π bonds.

Fig. 11.13 Shapes and
directions of sp, sp2 and sp3

hybrid orbitals obtained by
mixing pure s and p orbitals as
specified in Table 11.4
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11.7.2 Valence Shell Electron Pair Repulsion

The hybridisation of atomic orbitals can be successfully applied to many
molecules comprising of covalent bonds. In ammonia (NH3), for example, one
might think that due to the electronic configuration of 1s2 2s2 2p3 of nitrogen the
three hydrogen atoms might be bound by overlap of the three 2p orbitals of
nitrogen (with one electron each) with the 1s orbitals of the hydrogen atoms
(also one electron each). This would result in an angle of 90� between any two
N–H bonds. However, experimentally, the angle between two N–H bonds is
observed with 107.3�.

Alternatively, we can consider formation of four sp3 hybrid orbitals on the
nitrogen; three of those hybrid orbitals are occupied by one electron and overlap
with the hydrogen 1s orbitals. The fourth sp3 hybrid orbital is populated with two
electrons of anti-parallel spin and forms a so-called lone pair. Repulsion between the
lone pair electrons and the electrons in the N–H σ bonds ‘pushes’ the three N–H
bonds closer together and thus causes a decrease of the expected bond angle from

Fig. 11.14 Schematic illustration of bond formation in acetylene, ethylene and methane. The
hybrid atomic orbitals of carbon are coloured turquoise, the 2p orbitals grey and the 1s orbitals of
hydrogen are coloured magenta
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109.5� to 107.3�. This concept forms the central idea of the so-called valence shell
electron pair repulsion (VSEPR).

The repulsive effect is more pronounced in the presence of more electrons. For
example, in the water (H2O) molecule, the bond angle between the two O–H bonds
is 104.5� and therefore even further decreased from tetragonal angle of 109.5�. With
oxygen having an electron configuration of 1s2 2s2 2p4, the orbitals of the second
shell can again hybridise to form four sp3 hybrid orbitals. However, two of those
hybrid orbitals are occupied by two electrons each, thus forming two lone pairs
which exert a stronger repulsive effect towards the electrons in the σ bonds than the
one lone pair in the case of ammonia.

The VSEPR approach remains a popular method for qualitative description of
covalent bonding in for lighter elements, but does not predict correct geometry for
some compound groups involving heavier elements (such as e.g. calcium, strontium
and barium halides).

11.7.3 Resonance Structures and Electron Delocalisation

Both the molecular orbital (MO) theory and the valence bond (VB) theory are useful
approaches to describe chemical bonding. One aspect of the VB method that is very
appealing to many chemists is the fact that it allows depiction of molecules in
connectivity diagrams which remains the by far most frequently used method to
denote molecular structures.

However, it is often impossible to denote the properties of particular molecules
with a single structure. The most prominent example is certainly benzene (C6H6) for
which a cyclic structure was first proposed by Kekulé in 1865. A ring structure can
be accomplished with 6 � 4 ¼ 24 carbon valence electrons, if one assumes three
alternating double bonds (see Fig. 11.15). Such a structure would require that there
are two types of C–C bond lengths in the ring: 1.54 Å for a single, and 1.33 Å for a
double bond. In contrast, the experimentally determined C–C bond length in ben-
zene is 1.40 Å. We realise that the assignment of the C–C double bond in the ring is
entire arbitrary and can formally suggest a second structure where the double bonds
are localised differently. More realistically, though, the molecule resonates between
the two depicted structures which depict two possible extremes. The possible
extreme structures are those we can depict with localised bonds and are called
resonance structures. In the depiction of such structures, a double-headed arrow is
used to indicate that the structure(s) shown are indeed resonance structures.

Fig. 11.15 Depiction of
resonance and aromatic
structures of benzene
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Aromaticity
Cyclic planar molecules that possess increased chemical stability when
compared to linear molecules with the same number of atoms are called
aromatic compounds. The increased stability is a direct consequence of the
electron delocalisation within the molecule, i.e. the existence of resonance
structures.

The properties of aromatic systems include:

• Delocalised π electrons, typically a result of alternating single and double
bonds

• Coplanar structure
• Atoms are part of one or more ring systems
• Hückel’s rule: the number of π electrons is 4 � N + 2, with N ¼ 0, 1, 2, . . .

When depicting chemical structures, the existence of aromaticity is often
shown as a circular bond (see Fig. 11.15).

Resonance structures arise when the valence bond method is used to describe
molecules; this is typically the case when constructing connectivity diagrams such as
in Fig. 11.15. An alternative explanation for phenomena such as aromaticity is
provided by the molecular orbital (MO) theory. Focussing on the π electron system,
we need to consider the six pz orbitals which need to be combined in accordance with
the linear combination of atomic orbitals. Therefore, six different linear
combinations of the wave functions of the six pz orbitals have to be generated.
This results in three bonding and three anti-bonding molecular orbitals. The phase
distribution in the different molecular orbitals are indicated in Fig. 11.16 by colours
and the boundaries define the nodal planes. The (bonding) MO with the lowest
energy shows that these electrons are delocalised over the entire ring. With increas-
ing energy, the number of nodal planes increase and thus the compartmentalisation
of the orbitals. Electrons populating the higher energy MOs are therefore increas-
ingly localised.

Fig. 11.16 The molecular
orbitals and schematic
representation of wave
functions of the π system of
benzene
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11.8 Exercises

1. NaCl crystallises in the lattice type sodium chloride (M ¼ 1.747565) with
r0 ¼ 2.82 Å and ρ ¼ 0.321 Å. Calculate the lattice energy of NaCl.

2. Discuss the bonding of carbon monoxide (CO) using the valence bond theory
without and with hybridised atomic orbitals as well as the molecular orbital
theory. Compare the bond order derived by the three approaches.

3. Repeat exercise 10.5 and determine for each of the species S�, Zn2+, Cl� and Cu+

whether they are diamagnetic or paramagnetic.

4. Using an appropriate molecular orbital scheme, explain why [Co(NH3)6]
3+ is a

diamagnetic low-spin complex, whereas [CoF6]
3� is a paramagnetic high-spin

complex.
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Intermolecular Interactions 12

In the preceding chapter, we discussed the various types of chemical bonds that are
holding individual atoms together such as to build up new entities—molecules
(or metals). These new entities possess different characteristics and functions than
the individual atoms they comprise of. Molecules can engage in further interactions,
which is the subject of this chapter.

The strength of interaction decreases in the following three phenomena in the
order of their discussion: the interactions of permanent dipoles is stronger than
interactions involving induced dipoles. The weakest interaction thus arises from
interactions exclusively between induced dipoles, the so-called London dispersion
force. The combined interactions involving dipoles constitute the van der Waals
interactions (or van der Waals bond) which has been discussed in Sect. 11.5. For
consistency, we continue to denote the potential energy as V in the following
sections in order to avoid confusion with the electric field E. The dipole moment
has been introduced in Sect. 11.3.5.

The hydrogen bond gives rise to a much stronger, but still non-covalent, interac-
tion between two molecules. This type of interaction occurs when a hydrogen atom
is bound to a highly electronegative (see Sect. 11.2) atom such as nitrogen, oxygen
or fluorine. Coulomb interactions are electrostatic interactions and have been
discussed when introducing the ionic bond (Sect. 11.1).

12.1 Interactions of Permanent Dipoles

12.1.1 Dipole–Dipole Interactions

Polar molecules are characterised by a localisation of charges in different parts of the
molecule. Frequently, the value of charges separated is smaller than the fundamental
charge e, i.e. the localised charges are partial charges (denoted by δ+ and δ�). This
charge separation constitutes a permanent dipole and such molecules may interact
with each either through attractive electrostatic interactions.
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For two molecules with dipole moments μA and μB, respectively, many different
relative orientations (with attractive as well as repulsive interactions) of the two
dipoles are possible. Four extreme cases of orientations with attractive/repulsive
interactions are shown in Fig. 12.1.

In orientation 1A, the interaction energy (potential energy) is

V ¼ � μA � μB
4π � ε0 � r3 ð12:1Þ

and in orientation 2A, the energy is:

V ¼ � 2 � μA � μB
4π � ε0 � r3 , ð12:2Þ

whereby ε0 is the permittivity in vacuo and r the distance between the two dipoles.
Note that the negative sign in Eqs. 12.1 and 12.2 relates to the directions of the dipole
moments as shown in Fig. 12.1. The interaction energy assumes negative values and
hence describes an attraction. If the direction of one of the dipole moments is
reversed (orientations 1B and 2B in Fig. 12.1), the negative sign in above equations
needs to be reversed to, which makes the interaction energy positive and thus
describes a repulsion.

If we consider a bulk system of above molecules, it would appear at a first glance
that all possible orientations are populated and the mean interaction energy was zero,
since the attractive and repulsive interactions cancel each other in the sum. However,
due to the Maxwell–Boltzmann statistics (see Sect. 5.1.2), orientations with
favourable interactions outweigh those with unfavourable interactions with a factor
that is proportional to

e�
E
k�T ¼ e

� μA �μB
4π�ε0 �r3 �k�T :

Averaged over all rotational orientations of the two dipole moments μA and μB,
the interaction energy of two permanent dipoles, the interaction energy between the

a b

Fig. 12.1 Extreme orientations of two permanent dipoles for attractive (a) and repulsive
(b) interactions
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two dipoles has been derived by Willem Hendrik Keesom (1915). The interactions
between two permanent dipoles are thus also known as Keesom interactions and
their interaction (potential) energy is inversely proportional to the sixth power of r,
i.e. it falls of rapidly with increasing distance:

V ¼ �2
3
� μ2A � μ2B
4π � ε0ð Þ2 � r6 �

1
k � T : ð12:3Þ

The above relationship also shows that the interaction energy decreases with
increasing temperature. This is to be expected, since the molecules (¼permanent
dipoles) possess higher kinetic energy at higher temperatures which prevents the
spatial alignment of dipole moments required for favourable interactions.

12.1.2 Ion–Dipole Interactions

The interactions between ions and permanent dipoles are an important characteristic
of aqueous solutions. Water is a highly polar molecule with a dipole moment of 1.8
D. In the presence of cations (e.g. Na+), the water dipoles are arranged around the
cations such that their negative (oxygen) ends point towards the cation. Similarly,
around an anion (e.g. Cl�), the dipoles are oriented with their positive (hydrogen)
ends pointing towards the anion. Due to these attractive interactions, ions in aqueous
solutions are always hydrated.

12.2 Interactions of Temporary Dipoles

Neutral, non-polar atoms or molecules possess no localised electrical charge or
permanent dipole moment (i.e. no separated partial charges). However, the approach
of an ion or a dipole induces a temporary dipole in the non-polar species. The
interaction between the ion or dipole with the induced dipole results in an attractive
interaction.

12.2.1 Ion–Induced Dipole Interactions

In Fig. 12.2, we consider an atom that possesses an electron density of spherical
symmetry around the nucleus. The approach of a charged particle (e.g. a cation)
distorts the electron density of the atom and induces a dipole. The magnitude of the
induced dipole moment μind depends on the properties of the atom (or chemical
moiety) as well as the electric field elicited by the approaching charged particle. The
ease with which an outside electric field can distort the electron density of the neutral
species is called polarisability α. The interaction energy of ion–induced dipole
interactions is then given by:
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V ¼ �1
2
� α � e2
4π � ε0 � r4 ¼ �1

2
� α

0 � e2
r4

, ð12:4Þ

where ε0 is the vacuum permittivity and r the distance between the charged ion and
the neutral species. We recall that the polarisability is the factor of proportionality
between the field strength E and the induced dipole momentum μind (see Sect. 11.5):

μind ¼ α � E: ð11:18Þ
Often, the polarisability is expressed as a related quantity that is more suitable to

the context in which it is determined. Frequently, it is the polarisability volume α0
which is given by

α
0 ¼ α

4π � ε0 , ð12:5Þ

and has the units of a volume. Some polarisability-related quantities for H2O are
summarised in Table 12.1.

In larger molecules, polarisability is typically assessed for individual groups, such
as bonds or chemical functionalities. In general, larger groups with diffuse electron
densities possess a higher polarisability than smaller groups with strongly located
electrons. Highly polarisable groups therefore include

• anions,
• groups with π electron systems (e.g. phenyl group, nucleic acids, etc.),
• unsaturated bonds (e.g. C¼C, C¼N, nitro groups).

Generally, the polarisability of atoms depends on two factors. First, the
polarisability of atoms with a large number of electrons is higher than those of
atoms with a smaller number of electrons (the nuclear charge has less control on

Table 12.1 Polarisability and related quantities for H2O

Polarisability α 1.65 � 10�40 C m2 V�1 ¼ 1.65 � 10�40 C2 m2 J�1

Polarisability volume α0 1.48 � 10�30 m3 ¼ 1.48 Å3

Molar polarisability volume α0m 0.89 cm3 mol�1

µind µind

Fig. 12.2 Attractive
interactions of ion-induced
and dipole-induced temporary
dipoles in a neutral atom. The
dot indicates the position of
the nucleus
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charge distribution the more electrons there are). Second, the more distant electrons
are from the atomic nucleus, the less their localisation can be controlled by the
nuclear charge; therefore, the polarisability increases the more distant electrons are
located from the nucleus. The combination of both factors results in the observation
that heavier atoms possess a higher polarisability, since heavier atoms possess more
electrons and occupy more distant orbitals.

In molecules with an extended shape (this excludes tetrahedral, octahedral and
icosahedral molecules), the orientation with respect to an electric field can also affect
the polarisability. Higher polarisability in such molecules (e.g. 2,4-hexadiene) is
achieved when the electric field is applied parallel rather than perpendicular to the
molecule.

12.2.2 Dipole–Induced Dipole Interactions

A permanent dipole can also distort the electron distribution of a neutral atom or
non-polar molecule, and thereby induce a temporary dipole. This leads to an
attractive interaction as illustrated in Fig. 12.2 and the interaction energy as derived
by Peter Debye:

V ¼ � α � μ2
4π � ε0ð Þ2 � r6 : ð11:19Þ

In above equation, ε is again the dielectric constant of the medium, r the distance
between the two dipoles, α the polarisability of the non-polar molecules and μ the
dipole moment of the permanent dipole.

The interaction between permanent and induced dipoles is also known as the
Debye force. Importantly, in contrast to the interactions of permanent dipoles
(Keesom interactions), the interactions involving induced dipoles is not dependent
on the temperature. Since the temporary dipoles can be induced instantaneously, the
thermal motion of the molecules does not affect this interaction.

12.3 London Dispersion Force

Whereas the Keesom interactions and Debye forces require either a charged or polar
species to be present, we now consider matter that entirely consists of neutral/non-
polar atoms or molecules, such as e.g. helium or nitrogen gas. Since such gases can
be condensed into liquids, there must be attractive interactions between those atoms/
molecules in the absence of charged or polar species.

As illustrated in Fig. 12.2, an atom with spherical electron density is non-polar
because it possesses no permanent dipole moment. However, this is only the view on
average. At any individual moment in time, the electron density may not be
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spherically uniform but exhibit localised peaks. Such deformation of the spherical
symmetry is mainly due to collisions between individual atoms. The non-uniform
distribution of electrons constitutes a temporary dipole which can induce another
temporary dipole in a neighbouring atom at appropriate distance and thus give rise to
an attractive interaction, named the London dispersion force after the physicist Fritz
London (1930).

For a pure substance, London showed that the interaction (potential) energy is
given by

V ¼ �3
4
� I � α

2

r6
, ð12:6Þ

where α is the polarisability, and I the first ionisation potential. Similarly, for a
mixture of substances A and B, the interaction is given by:

V ¼ �3
2
� IA � IB
IA þ IB

� αA � αB
r6

: ð12:7Þ

In contrast to the other dipole-based interaction types mentioned before (collec-
tively termed van der Waals interactions), the London dispersion forces are always
attractive. Independent of the relative orientation of two non-polar molecules, the
induced dipoles will always possess compatible directions (since they are induced).
The London dispersion forces are the weakest interactions among the van der Waals
interactions. This is in agreement with macroscopic observations: the above-
mentioned liquid helium and nitrogen boil at 4.2 and 77 K, respectively. These
low temperatures suggest that only weak forces are holding the atoms/molecules
together in the liquid state.

12.4 van der Waals Interactions

Many molecules do not just engage one of the interactions discussed above, but their
condensed states are held together by a combination of interactions involving
dipoles. These combined interactions are termed van der Waals interactions, refer-
ring to all weaker forces between molecules and thus contrasting the stronger
intermolecular interactions (Coulomb attraction, hydrogen bond). The attractive
van der Waals interactions are often modelled by a potential that varies with sixth
power of the distance—a relationship we have observed several times in above
discussions (e.g. Debye force, London force).

Balanced by the universal repulsive force, which varies with the twelfth power of
the distance, the van der Waals interactions result in the bonding interaction between
two non-polar atoms/molecules. This interaction is often described by a Lennard–
Jones potential and has been introduced in Sect. 11.5:
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V ¼ b

r12
� a

r6
: ð11:22Þ

This superposition of the energies resulting from the attractive and repulsive
forces results in a potential energy function that depends on the distance between
the two molecules (or atoms) and that possesses a minimum at the equilibrium
distance (see Fig. 11.8). This distance is the average distance the two particles
maintain if there are no other forces acting on them.

By way of example, the potential energy of two argon atoms approaching other
decreases as they are brought closer together. However, the minimum energy
attained at the equilibrium distance is approx. �1.3 kJ mol�1 the value of which is
less than the thermal energy at ambient temperature (Etherm ¼ R � T� 2.5 kJ mol�1),
and thus not enough to hold the two atoms together. These non-bonding attractions
enable argon to exist as a liquid and solid at low temperatures (when the potential
energy is larger than the thermal energy). However, at ambient temperature, the
potential energy due to van der Waals interactions is not enough to withstand
disruptions caused by thermal energy, so argon exists as a gas under ambient
conditions.

Table 12.2 shows estimates of the contributions of the various types of van der
Waals forces that act between different types of molecules. This comparison
highlights the importance of the ubiquitous dispersion forces on the one hand,
even in cases of polar molecules (high dipole moment).

12.5 The Hydrogen Bond

With hydrogen only possessing one electron, the nucleus becomes partially
unshielded when the atom engages in a covalent bond. The ‘partial proton’ can
then interact directly with a nearby atom that possesses a lone pair of electrons,
such as oxygen, nitrogen, fluorine or chlorine. The existence of hydrogen bonds
has drastic effects on properties of substances and is of tremendous importance for

Table 12.2 Contributions of the various types of van der Waals forces in select molecules

Boiling
point
(�C)

Dipole
moment
(D)

Polarisability
(10�40 C m2 V�1)

Interaction

Dipole–induced
dipole
(%)

Dipole–dipole
(%)

Dispersion
(%)

Ar �186 0 1.85 0 0 100

CO �190 0.117 2.20 0 0 100

HCl �84 1.08 2.93 4.2 14.4 81.4

NH3 �33 1.47 2.47 5.4 44.6 50.0

H2O 100 1.85 1.65 4.0 77.0 19.0
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the folding and properties of biological macromolecules. Depending on geometry
and environmental conditions, the potential energy of a hydrogen bond is between
5 and 30 kJ mol�1, which makes it much stronger than van der Waals interactions,
but weaker than covalent or ionic bonds. The hydrogen bond extends from the
hydrogen bond acceptor (the atom that has a lone pair of electrons) to the hydrogen
bond donor (the electronegative atom to which the hydrogen atom is covalently
bound).

For example, the boiling points of liquids in a series of homologues increases
with polarisability (which results in stronger London dispersion forces; see Sect.
12.3). However, in the series shown in Table 12.3, H2O possesses a substantially
higher boiling point than the homologous compounds, while indeed it would be
expected to have the lowest boiling point based on the London dispersion forces.
Despite the low polarisability of H2O, the existence of intermolecular hydrogen
bonds leads to much stronger interactions between water molecules and thus results
in the much higher boiling point.

Each H2O molecule contains two hydrogen atoms and two lone pairs. In water,
the number of hydrogen bonds is therefore maximised by a tetrahedral arrangement
of hydrogen atoms around the oxygen atoms. In the hexagonal structure of ice, each
oxygen atom is surrounded by a distorted tetrahedron of hydrogen atoms that form
bridges to the oxygen atoms of adjacent water molecules. Importantly, the hydro-
gen atoms are not located at the same distance from the two oxygen atoms they
connect (see Fig. 12.3); the shorter distance is indicative of a covalent O–H bond,
and the longer distance constitutes the hydrogen bond. The hexagonal structure of
ice is the form of all natural snow and ice on Earth (note the sixfold symmetry in ice
crystals grown from water vapour). The packing of H2O molecules in this cage-like
structure is expanded as compared to the packing of molecules in liquid water.
Therefore, ice is less dense than liquid water, which explains why it floats on the
liquid.

Table 12.3 Comparison of boiling points of a homologue series. The polarisability increases with
the heavier group VI atoms. This leads to stronger dispersion forces and thus higher boiling points.
However, the strong hydrogen bonds in water give rise to a substantial increase in interaction energy
between H2O molecules, leading to an unusually high boiling point

Liquid Boiling point (K) Polarisability α Dipole moment μ (D) H-bonds possible

H2O 373 1.8 +

H2S 213 1.1 –

H2Se 231 0.4 –

H2Te 271 0.2 –
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12.6 Exercises

1. The dipole moment of HF is 1.92 D.
(a) Calculate the potential energy of the attractive dipole–dipole interaction
between two HF molecules oriented along the x-axis in a plane, separated by 5 Å.
(b) What is the potential energy of the dipole–dipole interaction for 1 mol HF?
(c) Calculate the average thermal energy of bulk matter at room temperature.
Can the dipole–dipole interaction of HF be sustained at room temperature?

2. Explain why the boiling point of the two isomers of butane, n-butane and i-
butane, are different. Which isomer has the higher boiling point?

Fig. 12.3 The hexagonal structure of ice. Oxygen atoms are shown in red and hydrogen atoms in
grey. Hydrogen bonds are indicated by green dashed lines. The distance of the covalent O–H bond
measures 1.01 Å and that of the hydrogen bond 1.74 Å, respectively
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3. In which of the following substances are molecules held together by hydrogen
bonds? Draw the hydrogen bonds where applicable.

(a) XeF4, (b) CH4, (c) H2O, (d) NaH, (e) BH3, (f) NH3, (g) HI.

4. What is the relationship of the interaction energy between two particles due to
Coulomb forces and dispersion forces with the distance? Compare the falloff of
these energies with distance by calculating their ratio for the distances 1, 2 3, 4
and 5 Å. Based on these results, assess the implications for ideal/non-ideal
behaviour of solutions.
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Interactions of Matter with Radiation 13

In Sect. 8.2.1, we already had a look at the interaction of atoms and electromagnetic
radiation. Specifically, the atomic spectra were used to obtain insights into the inner
fabric of atoms and their energetic states. Importantly, the spectral data provided the
experimental verification of theoretical models such as the atomic model by Bohr
(Sect. 8.2.2) and the quantum mechanics of the hydrogen atom by the Schrödinger
equation (Sect. 10.1).

Since detailed information about structure, bonding and intra-/inter-molecular
processes can be obtained from analysis of the interaction between matter and
electromagnetic radiation, the area of spectroscopy is of fundamental importance
for a wide variety of chemical disciplines.

13.1 General Spectroscopic Principles

In the study of matter and its interaction with electromagnetic radiation, two general
processes can be distinguished:

• absorption describes the uptake of energy by an atom or molecule from incident
electromagnetic radiation

• emission describes the release of electromagnetic radiation from an atom or
molecule.

Either process is due to transitions between different energetic states; we have
used this concept already in Sect. 8.2.2. The fundamental equation is therefore:

ΔE ¼ Eend � Estart ¼ h � ν, ð13:1Þ
which means that in order to enable a transition from the lower (start) to the higher
(end) energy level, electromagnetic radiation is required that possesses just the right
quantum of energy ΔE. This is called the resonance condition.
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When irradiating matter with light of appropriate energies, such transitions
between discrete energy states occur as a consequence of either induced absorption
or emission. Additionally, if a molecule has populated an excited state and it
transitions back into the ground state, such transition might be accompanied by
spontaneous emission of photons.

13.1.1 Intensity

A fundamental question of the interaction between radiation and matter addresses
the loss of intensity of an incident beam as it travels through a sample of interest
(Fig. 13.1). Practically, in most cases the sample will be contained in cuvette and
potential interactions of the incident radiation with the cuvette material thus needs to
be corrected for when conducting the experiment.

If the intensity of the beam at any point x on its way through the sample is I, the
loss of intensity dI is proportional to the intensity at that point. Furthermore, dI is
also proportional to the sample thickness dx penetrated:

�dI � I, � dI � dx ) �dI � I � dx ) �dI ¼ μ � I � dx
Conversion of the proportionality to an equality relation requires the introduction

of the proportionality constant μ (also known as the linear attenuation coefficient; see
Sect. 13.6.2). Considering that the overall thickness of the sample shall be l and the
intensity of the incident beam be I0, the above equation can be integrated between the
boundaries of x ¼ 0 and x ¼ l after separating the integration variables I and x:

Z I
I0

�dI
I

¼
Z l

0

μ � dx

� ln I � ln I0ð Þ ¼ μ � l� 0ð Þ
ln
I0
I
¼ μ � l

ð13:2Þ

Fig. 13.1 Loss of intensity of
an incident beam due to
absorption
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The natural logarithm of above equation is converted into a decadic logarithm,
which yields:

lg
I0
I
¼ a � l ð13:3Þ

known as the Bouger-Lambert law where a is the linear absorption coefficient. If the
sample consists of a solution where the solvent shows no absorption of the incident
radiation, the absorption coefficient depends on the molar concentration c of the
radiation-absorbing solute:

a ¼ ε � c
and introduces the molar absorption coefficient ε, from which the law of Lambert-
Beer is obtained:

A ¼ lg
I0
I
¼ ε � c � l ð13:4Þ

where A is called absorbance and the ratio of transmitted versus incident intensity is
called transmittance: T ¼ I

I0
. The absorbance has no units and can in principle take

infinite values; however, in experimental designs, only values of A< 2 deliver useful
results, owing to the fact that the law of Lambert-Beer is only valid for comparably
low concentrations (<0.5 M).

13.1.2 Intensity and Absorption Strength at the Molecular Level

A spectrum observed for a particular sample represents the superposition of a large
number of transitions in individual atoms or molecules. The intensity of the observed
absorption peaks therefore depends on the difference in the number of atoms/
molecules occupying the two different energetic states. The ratio of these
populations is given by the Boltzmann expression (see also Sect. 5.1.2)

N E2ð Þ
N E1ð Þ ¼ e�

E2�E1
kB �T ð13:5Þ

where N(E2) and N(E1) are the number of atoms or molecules in the excited (energy
E2) and ground states (energy E1), respectively. The larger the difference in the
population of the two states, the more intense the spectral peak will be.

From physics and radio communications it is known that in order to transmit or
receive radio waves one requires an oscillating dipole and a dipole antenna, respec-
tively. In addition, since radio waves emitted by an oscillating dipole are linearly
polarised, the receiving dipole antenna needs to be oriented such that is in alignment
with the plane of polarisation of the emitted signal. The emission and absorption of
light (or generally electromagnetic radiation) by molecules follows the very same
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physical concepts. One can thus only expect absorption or emission of light by
molecules that possess a dipole momentum. Typically, these will be permanent
dipoles, but in some applications dipoles may also be induced in molecules that
have no permanent dipole momentum. In cases involving linearly polarised light,
one also needs to consider orientation effects.

Chromophores are the light absorbing moieties within a molecule. Due to
differences in electronegativity between individual atoms, they possess a spatial
distribution of electric charge. This results in a dipole momentum μ0 (ground state),
such as for example the permanent dipole momentum of a carboxylic acid or an
amide group (Fig. 13.2).

When light is absorbed by the chromophore, the distribution of electric charge is
altered and the dipole momentum changes accordingly (~μ1 ; excited state). The
transition dipole momentum~μ01 is the vector difference between the dipole momen-
tum of the chromophore in the ground and the excited state. This transition dipole
momentum is a measure for transition probability, and its dipole strength, D01, is
defined is the squared length of the transition dipole momentum vector:

D01 ¼ ~μ01j j2 ð13:6Þ
The strength of this transition dipole momentum is directly related to the proba-

bility with which a transition occurs, i.e. the strength of an absorption band.
Spectroscopic data can thus be analysed to obtain numerical values for a transition
dipole momentum which connects the absorption spectrum to the quantum mechan-
ical wave function of a molecule.

13.1.3 Selection Rules

Owing to the underlying quantum mechanics, transitions between different energy
states have to follow particular selection rules. Whereas allowed transitions possess a
high probability of occurring, forbidden transitions are unlikely to occur. Forbidden
transitions can be classified into spin-forbidden and symmetry-forbidden transitions.

Spin-forbidden Transitions
As we have seen earlier, the electronic states of atoms and molecules can be
described by orbitals which contain up to two electrons paired with anti-parallel

Fig. 13.2 Permanent dipole moment of the carboxyl group (left) and the amide bond (centre).
Right: The permanent dipole momentum changes when the molecule transitions into an excited
state. The difference vector between the permanent dipole momentum in the ground state (~μ0) and
the excited state (~μ1) is called transition dipole momentum (~μ01)
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spin orientation. The total spin S is calculated as the sum of the individual electron
spins (si):

S ¼
X
i

si: ð13:7Þ

The spin multiplicity M is given by

M ¼ 2 � Sþ 1 ð13:8Þ
and informs about the number of different possible arrangements of the unpaired
spins in an external magnetic field (Table 13.1).

For a transition to be allowed, the spin multiplicity must not change, i.e.

M ¼ const: and therefore ΔS ¼ 0: ð13:9Þ
Thus, a transition from a singlet to a triplet state and vice versa is normally

forbidden.

Symmetry-forbidden Transitions
In Sect. 13.1.2 above, we have introduced the transition dipole momentum μ01 the
strength of which is a measure for transition probability. Quantum-mechanically, the
transition dipole momentum is described as

μ01 ¼
Z

Ψ∗
0 �

X
i

Qi � ri
 !

�Ψ1dτ ð13:10Þ

which tracks the positions (ri) of the electron charges (Qi) in the molecule. Ψ1 is the
wave function describing the molecular orbital of the excited state and Ψ*0 is the
complex conjugate wavefunction of the ground state; dτ ¼ dx dy dz is the volume
element. The wavefunctions inherently describe the symmetry of the molecular

orbital. Unless the product Ψ∗
0 �

X
i

Qi � ri
 !

�Ψ1 is of a certain symmetry, the

integral in Eq. 13.10 will be zero and therefore the strength of the transition dipole
momentum D01 ¼ ~μ01j j2 will be zero, i.e. the transition will not occur. Transitions
with D01 ! 0 are called forbidden transitions, the probability of their occurrence is
low. If D01 ! 1, the transition is called allowed and occurs with high probability.

Table 13.1 Spin multiplicity of atoms and molecules

Number of unpaired electrons Total spin S Spin multiplicity M

0 0 1 Singlet state

1 1=2 2 Doublet state

2 1 3 Triplet state

3 3=2 4 Quartet state

13.1 General Spectroscopic Principles 361



Symmetry rules and wavefunctions
When comparing the three wave functions in Fig. 13.3, it becomes obvious
that Ψ0 and Ψ2 are symmetric with respect to their centre plane (mirror plane),
but Ψ1 possess no mirror symmetry (instead it possesses an inversion centre).
The symmetry properties of wavefunctions are also known as parity.

Ψ0 and Ψ2 are thus called ‘symmetric’ or ‘even’, and Ψ1 is called ‘anti-
symmetric’ or ‘odd’. In algebraic terms, this means:

• if f(x) ¼ f(�x), then f is an even function;
• if f(x) ¼ �f(�x), then f is an odd function.

When multiplying functions, the following rules apply:

• An even function times an even function yields an even function;
• an odd function times an odd function yields an even function;
• an even function times an odd function yields an odd function.

When dealing with wavefunctions, there are two general rules to be
considered:

• The integral over all space for an even function is non-zero.
• The integral of an odd function over all space yields zero.

Using ethylene as an example, we can now use Eq. 13.10 to appraise a
potential transition from the π to the π* orbital of ethylene (Fig. 13.4):

Ψ*
0: The π orbital of ethylene is even.

Ψ1: The π* orbital of ethylene is odd.
(Qi�ri): The distribution of charge develops with distance and is therefore an

odd function.
The product this yields: ‘even’�‘odd’�‘odd’ ¼ ‘even’. The integral over the

product is thus non-zero and the transition from the π to the π* orbital in
ethylene is allowed.

In contrast, if the molecular orbitals of the excited state had the same
symmetry as those of the ground state, such as e.g. in butadiene, then
transitions between those orbitals are forbidden based on the symmetry rules.

Fig. 13.3 The symmetry (parity) of wavefunctions
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13.1.4 Line Width and Resolution

Theoretically, the two energy levels involved in a transition have discrete energy
values which should result in a sharp spectral line. However, since the life time of the
excited state of an atom or molecule is limited and much shorter than the life time in
the ground state, the peak width broadens due to the Heisenberg uncertainty rela-
tionship (see also Sect. 8.1.6). Spectral lines thus have a non-zero width. Applied to
transitions between energy levels, the uncertainty relationship is

ΔE � Δt � h
4π

ð13:11Þ

where ΔE is and Δt are the uncertainties in determining the energy difference of a
transition and life time of a particular state, respectively. The uncertainty relationship
as given in Eq. 13.11 causes a natural line width Δλ0 for a particular spectral
transition. The uncertainty relationship enables us to calculate a minimum natural
line width as per

Δλ0 � Δt � h
4π

) Δλ0 � h
4π � Δt ð13:12Þ

where Δt is the observation time.
In the recorded spectrum, the line shape follows a Lorentzian function. If the

maximum intensity (¼transition probability) for a transition is recorded at the central
wavelength λc, then there will be a distribution of intensities given by the
relationship

I ¼ const:

λ� λcð Þ2 þ Δλ0
2

� �2 : ð13:13Þ

Additionally, the width of spectral lines may also be broadened by collisional
processes or chemical reactions. For example, the absorption spectrum of a sub-
stance in its liquid state typically shows broader peaks than a spectrum obtained in
the gas phase. Since the likelihood of collisions is larger in the liquid than in the gas
phase, excited molecules are more readily deactivated and thus have a shorter
life time.

Fig. 13.4 The π and π*

orbitals of ethylene
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As illustrated in Fig. 13.5, the peak width is typically defined as the width at half
maximum (FWHM, full width at half maximum). From a practical perspective, it is
important that two neighbouring peaks in a spectrum can be distinguished. This
separation of two neighbouring peaks in a spectrum is called resolution. It is
quantitatively measured by the resolving power, which in case of a wavelength-
based spectrum is calculated as per:

RP ¼ λ
Δλ

: ð13:14Þ

a

b

c

Fig. 13.5 Schematic explanation of full width at half maximum as well as the effect of resolution.
(a) Two fully resolved peaks; (b) two overlapping peaks; (c) two non-resolved peaks. The red line
indicates the observed spectrum which is the sum of the individual peaks
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Here, Δλ is the difference between the wavelengths of the two neighbouring
peaks λ1 ¼ λ and λ2 ¼ λ + Δλ.

13.1.5 The Electromagnetic Spectrum

Figure 13.6 shows the spectrum of electromagnetic radiation, organised in increasing
energy from left to right. We have previously introduced the energy of a photon
(Sect. 8.1.4) and can thus introduce the relationship between wavelength λ and
wavenumber eν and the photon energy as per:

E ¼ h � ν ¼ h � c
λ

¼ h � c � eν: ð13:15Þ

From this equation, we immediately appreciate that the frequency ν and the
wavenumbereν increase with increasing energy, whereas the wavelength gets shorter
the higher the energy of the radiation.

Different types of interactions happen between electromagnetic radiation of
certain energy regions with matter. The various interactions with matter and the
appropriate types of spectroscopy are mapped to the electromagnetic spectrum in
Fig. 13.6.

Fig. 13.6 The electromagnetic spectrum and the use of particular regions for spectroscopic
applications
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13.2 Magnetic Resonance Spectroscopy

13.2.1 General Principles

As we have seen in Sect. 10.2.2, an electron rotating around its own axis (spin)
constitutes a charged particle in motion, leading to a magnetic spin momentum �s
which is characterised by the magnetic spin quantum number ms. As a consequence,
the electron spin is oriented with respect to an external magnetic field (see Fig. 10.8).

If we consider atomic nuclei, it is obvious that these are charged particles, too,
and, upon rotation around their own axis there is a resulting nuclear spin momentum
�I the value of which is given as

~I
�� �� ¼ h

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I � I þ 1ð Þ

p
, ð13:16Þ

introducing the nuclear spin quantum number I. Whereas the electron spin quantum
number s assumes only value (½), the value of the nuclear spin quantum number I is
not as tightly restricted and, in general, cannot be predicted; values between 0 and
8 have been observed so far. Whereas protons and neutrons (the components
constituting the atomic nucleus; also called nucleons) each have net spins of ½,
there are also spin interactions among the elementary particles (quarks) that, in turn,
compose the nucleons. As a result of this complexity, there is no simple formula to
predict I based on the number of protons and neutrons within an atom. However,
there are three main rules:

• If the number of protons (Z ) as well as the number of neutrons (N ) is even, the
nuclear spin quantum number I is zero. For example, 12C and 16O possess no
nuclear spin.

• If Z is even and N odd, or vice versa, then I is half-integral. For example, the
nuclear spin quantum number of 1H, 13C, 15N, 19F and 31P is I ¼ ½.

• If both Z and N are odd, then the nuclear spin quantum number takes an integral
value. For example, 2H and 14N have I ¼ 1.

If either an electron or a nucleus with their respective spins are exposed to an
external magnetic field ~B, then the spins need to orient themselves such that the
space component of the electron spin (~S~B ) or nuclear spin (~I~B ) can only take the
following values (Table 13.2):

Table 13.2 Comparison of electron and nuclear spin directions in an external magnetic field ~B

Electron spin Nuclear spin

Space component parallel to
magnetic field

~s~B
�� �� ¼ h

2π
msj j ~I~B

�� �� ¼ h
2π

mIj j
with

Spin quantum number ms ¼ �s, þ s ¼ �1
2 , þ 1

2
mI ¼ � I, � I + 1, . . ., I � 1, I
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An external magnetic field will exert a torque on a magnetic dipole and, therefore,
the potential energy of both electrons and nuclei includes a magnetic component
which is given as the product between the magnetic momentum ~m~B of either electron
or nucleus and the magnetic field ~B itself:

Epot ¼ �~m~B � ~B: ð13:17Þ
The magnetic momentum ~m~B is derived from the spin quantum numbers ms

(electron) and mI (nucleus):
We appreciate that in this derivation, the use of a gyromagnetic ratio (also called

g-factor) is introduced. The g-factor for an orbital is gl¼ 1, but for the electron spin a
factor of ge � 2 has been found. For nuclei, the g-factor depends on the individual
element; measurements for the protein and neutron yielded that

gproton ¼ 5:5856947, and
gneutron ¼ �3:8260837:

Surprisingly, the g-factor for the neutron is far from zero, despite the neutron does
not carry a charge! This indicates that inside the neutron there is an internal structure
involving the movement of charged particles (the elementary particles called
quarks).

Table 13.3 also introduced the magnetons which are units of the magnetic
momentum. For the electron, this yields the Bohr magneton μB, and for nuclei
units of nuclear magnetons μN are commonly used. The quantisation of electron
and nuclear magnetic momentum thus yields equally spaced energy levels.

As an illustration, we will calculate the the potential magnetic energy difference
for the two magnetic spin states of the electron (ms ¼ �1/2) as well as the the two
nuclear spin states of the proton (mI ¼ �1/2) in the presence of an external magnetic
field ~B. For the electron, this yields:

E ms ¼ þ1
2

� �
¼ þ1

2
� 2:002 � 9:285 � 10�24JT�1 � ~B

�� �� ¼ 9:294 � 10�24JT�1 � ~B
�� ��

E ms ¼ �1
2

� �
¼ �1

2
� 2:002 � 9:285 � 10�24JT�1 � ~B

�� �� ¼ �9:294 � 10�24JT�1 � ~B
�� ��

ΔE ¼ E ms ¼ þ1
2

� �
� E ms ¼ �1

2

� ����� ���� ¼ ge � μB � ~B
�� �� ¼ 18:59 � 10�24JT�1 � ~B

�� ��
ð13:18Þ

The same evaluation yields for the proton:

Table 13.3 Comparison of the potential magnetic energy of electrons and nuclei

Electron spin Nuclear spin

Potential magnetic energy Epot ¼ ge � μB � ms � ~B
�� �� Epot ¼ �gN � μN � mI � ~B

�� ��
where

Gyromagnetic ratio ge ¼ 2.0023193134 gN depends on the nucleon

Magneton μB ¼ 9.284832�10�24 J T�1 μN ¼ 5.050824�10�27 J T�1
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E mI ¼ þ1
2

� �
¼ �1

2
� 5:586 � 5:051 � 10�27JT�1 � ~B

�� �� ¼ �14:105 � 10�27JT�1 � ~B
�� ��

E mI ¼ �1
2

� �
¼ þ1

2
� 5:586 � 5:051 � 10�27JT�1 � ~B

�� �� ¼ 14:105 � 10�27JT�1 � ~B
�� ��

ΔE ¼ E mI ¼ þ1
2

� �
� E mI ¼ �1

2

� ����� ���� ¼ gN � μN � ~B
�� �� ¼ 28:21 � 10�27JT�1 � ~B

�� ��
ð13:19Þ

We see, firstly, that whereas for the electron the state ms ¼ �1/2 is energetically
favoured, for the proton it is the state with mI ¼ +1/2. Second, assuming the same
strength of the externally applied magnetic field, the difference between both energy
levels is much larger for electrons than for protons.

In the introduction to this chapter, we discussed that in order to elicit a transition
from a just the difference in energy between the two states the spin momentum
component, i.e. satisfies the resonance condition. Assuming an external magnetic
field of 2.0 T, the energy required for proton spin resonance would thus be:

h � ν ¼ 28:21 � 10�27 J T�1 � 2:0 T ) ν ¼ 85:1 MHz ) λ ¼ 3:5 m:

which is in the region of radio waves.
We can thus conclude that in order to satisfy the nuclear magnetic resonance

condition, electromagnetic radiation in the range of radio waves will be required.
Since the energy difference of the magnetic electron spin levels is three orders of
magnitude higher (at the same magnetic field strength), radiation in the microwave
range will satisfy the resonance condition for electron spin resonance. In principle,
the resonance condition can in both cases be achieved by either applying a constant
magnetic field and variation of the frequency ν of the incident electromagnetic
radiation, or a constant frequency and variation of the magnetic field ~B

�� ��.
Using the Boltzmann expression introduced in Sect. 13.1.2, it is possible to

calculate the ratio of populations of the lower and the higher energy states of electron
and nuclear spins in the presence of an external magnetic field (Table 13.4). Owing
to the small energy differences between higher and lower states, the differences in
population of both states are extremely small. Provision of the resonance energy ΔE
by incident electromagnetic radiation leads to a change of the population ratio as the
energetically higher spin states are increasingly populated after absorption of ΔE.

For the comparison in Table 13.4, we have used the field strength of the external
magnetic field supplied by the instrumentation used for electron spin resonance or

Table 13.4 Comparison of the ratio of populations of lower and higher states for electron and
nuclear spin using the energy differences from Eqs. 13.18 and 13.19 at a temperature of T ¼ 300 K

Electron spin Nuclear spin

External magnetic field strength ~Bj j 0.5 T 2.0 T

Energy difference ΔE between lower and higher state 9.30�10�24 J 56.4�10�27 J

Ratio of population of lower and higher

spin states Nhigh

N low
¼ e�

ΔE
kB �T

0.9977572 0.9999864
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nuclear magnetic resonance spectrometry. A closer look at the observed phenomena
shows that the field strength experienced by a particular electron or nucleus in a
molecule does not exactly equal the the field strength of the external magnetic field
but is slightly different. Since the electron density varies with the type of chemical
bond, the observed resonance is shifted with respect to the position expected based
on the external magnetic field strength. This shift is also called chemical shift and
constitutes an important parameter when deducing the chemical structure from
magnetic resonance spectra.

After the absorption of the resonance energy caused an increase in the population
of the higher spin states, the reverse process occurs whereby spins return to the lower
energy state—this is known as relaxation. The population ratio Nhigh:Nlow returns to
values determined by the presence of the external magnetic field (see Table 13.4).
The energy released during those transitions is dissipated into the environment
(‘lattice’) as heat. This process happens with a kinetics of first order and has a rate
known as spin-lattice relaxation time or longitudinal relaxation time T1. The rate
constant is, accordingly, T1

�1.
A related phenomenon is observed for the phases of the spins. After turning on

the magnetic field, the movement of all spins are in phase, but the exchange of
energy between spins, inhomogeneous/disturbed local magnetic fields as well as the
spin-lattice relaxation all lead to a decrease in the phase correlation of spin
movements. This process also happens with a kinetics of first order and is described
by the transversal (sometimes also called spin-spin) relaxation time T2.

Both T1 and T2 are characteristic parameters for the life time of the excited state
and thus affect the peak width observed in magnetic resonance spectra. A brief
comparison is summarised in Table 13.5 (Fig. 13.7).

13.2.2 Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy requires a strong homogeneous magnetic field which is provided
in contemporary spectrometers by superconducting magnets (currently up to 23.5 T
equivalent to a resonance frequency of 1 GHz). Historically, the early spectrometers

Table 13.5 Comparison of T1 and T2 relaxation

T1 relaxation T2 relaxation

Longitundinal relaxation
Spin-lattice relaxation

Transversal relaxation,
Spin-spin relaxation

Requires energy transfer from spins to
environment (“lattice”).

May occur with or without energy transfer.

Source of fluctuating field is molecular
motion of a nearby electron or nucleus.

Anything causing T1 relaxation also causes T2
relaxation.

T2 relaxation can also occur without T1 relaxation.
Major causes include de-phasing by static local
field disturbances and flip-flop exchanges between
spins.
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operated in the so-called continuous wave method and used electromagnets. A
sweep generator was used for sweeping either the magnetic or radio frequency
field through the resonance frequencies of the sample. Contemporary spectrometers
are operated as Fourier Transform NMR spectrometers where all required radio
frequencies are transmitted at once in a radiation pulse and cause nuclei in the
magnetic field to flip into the higher-energy alignment (so-called pulse-acquire
method). In the following time T, the nuclei return to their original states and emit
a radio frequency signal called the free induction decay (FID). The FID contains all
the resonance signals of the sample, but they are coded in the time domain. With the
computational process of Fourier transformation, these data can be converted into a
conventional spectrum where the resonance intensities are ordered per frequency.
For illustration, we will focus on proton (1H) NMR to discuss some general
principles of this spectroscopic method.

When considering the energy difference between the higher and lower proton
spin states as derived in Eq. 13.19, one needs to be aware that the value of ~B

�� �� in that
equation is not the strength of the external magnetic field ~Bext

�� ��, but the local

Fig. 13.7 Illustration of T1 and T2 relaxation. ‘+ΔE’ indicates provision of the resonance energy.
(a) T1 or longitudinal relaxation leads to a decrease of the magnetisation anti-parallel to the external
magnetic field. (b) T2 or transversal relaxation results in decrease of magnetisation orthogonal to the
external magnetic field
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magnetic field experienced at the position of the nucleus. The local field strength ~B
�� ��

is less than ~Bext

�� ��, since the orbiting electrons generate a magnetic field counteracting
the external magnetic field. The orbital motion of electrons around a nucleus creates
constitutes current loops, which produce magnetic fields of their own. In the
presence of an external magnetic field, these current loops will align in such a way
as to oppose the applied field. Macroscopically, this effect may be illustrated by a
tiny magnet that is brought into an external magnetic field; the small magnet will
align itself such that its field is opposed to the external magnetic field (Fig. 13.8). The
lesser magnetic field exhibited by a particular nucleus therefore leads to a lesser
resonance energy which is called the chemical shift. Since the electron density in a
molecule varies with location, depending on the chemical bonds, different chemical
shifts are observed for different bonding situations.

Since the registered chemical shifts are extremely small compared to the external
magnetic field, NMR spectra are not plotted against the effective magnetic field
strength but rather compared to an internal standard; for 1H-NMR this is typically
tetramethylsilane (TMS) which produces a single peak in a proton NMR experiment.
The chemical shift δ is defined as

δ ¼ Bsample � Bstandard

Bstandard
� 106 ¼ νsample � νstandard

νstandard
� 106 ð13:20Þ

and therefore yields δ ¼ 0 ppm for the standard. Figure 13.9 shows the 1H-NMR
spectrum of 1-chloropropane which features three clusters of peaks. The step-type
curves show the integration of the individual peak clusters (i.e. peak areas). The
integration values form the ratio 2:2:3 which indicates that the peak clusters originate
from the ClCH2�, the �CH2� and the CH3-group with 2, 2 and 3 protons, respec-
tively. The fine structure in each peak cluster demonstrates the substantial impact of
the local environment and is thus an extremely important part of structure
determination.

As evident from Fig. 13.9, the 1H-NMR spectrum of 1-chloropropane shows a
triplet peak for the methyl group (δ ¼ 1.02 ppm). This is due to the coupling of the
spin of methyl protons with the spins of neighbouring methylene protons (spin-spin
coupling). With two possible spins for each methylene proton, the spin of a methyl

Fig. 13.8 The field of small
magnets experiencing an
external magnetic field
opposes the direction of the
external field
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proton can couple with four different combinations of methylene proton spin
orientations; however, two of those combinations are indistinguishable and thus
collapse into one peak (Fig. 13.9).

The methylene proton spins experience the the spin configurations of the methyl
group of which there are eight different. However, there are three indistinguishable
configurations each that possess a total spin of +1/2 and �1/2, respectively. The
splitting pattern of the methylene protons thus yields a quartet. Additionally, the
methylene proton spins can also couple with the spins of the chloromethyl protons
(three distinct possible orientations) which leads to a triplet splitting of each of the
quartet peaks. This results in a complex multiplet that is difficult to resolve and
appears as a sextet (δ ¼ 1.80 ppm). The two protons of the chloromethyl group split
into a triplet pattern (δ ¼ 3.51 ppm) as their spins experience the spin combinations
of the two methylene protons.

The separation between the lines of a multiplet yields the spin-spin coupling
constant J. The magnitude of the coupling constant is determined by the extent of the
magnetic interaction between two nucleic spins. There are three important
observations regarding proton spin-spin coupling:

• Nuclei that have the same chemical shift (i.e. they constitute equivalent nuclei) do
not interact with each other in this manner.

• Coupling occurs primarily between protons that are separated by three bonds; the
number of bonds between two coupling nuclei is indicated by a subscript on the
coupling constant (e.g. 2J, 3J, . . .).

• Coupling is most noticeable with protons bonded to carbon (Fig. 13.10).

Fig. 13.9 1H-NMR spectrum of 1-chloropropane acquired in CDCl3 at room temperature on a
Bruker 500 MHz Avance III NMR spectrometer at room temperature. Each peak cluster has been
integrated and the numerical values are shown above the integration curves. (Spectrum courtesy of
Dr Siji Rajan.)
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13.2.3 Electron Spin Resonance (ESR) Spectroscopy

ESR (also called electron paramagnetic resonance or EPR) spectroscopy shares the
general concepts with NMR spectroscopy and both methods therefore have many
features in common. In ESR spectroscopy, a sample is exposed to a homogeneous
external magnetic field which leads to a slight over-population of the lower spin state
(see Table 13.4). The energy difference ΔE between the lower and higher spin state
is overcome by provision of electromagnetic radiation that satisfiers the resonance
condition. In Sect. 13.2.1 we have seen, that the energy difference between the two
spin states of the electron is about three orders of magnitude larger than in case of the
nuclear spin states. Using Eq. 13.18 and assuming an external magnetic field of
0.5 T, the energy required for electron spin resonance is:

h � ν ¼ 18:59 � 10�24 J T�1 � 0:5 T ) ν ¼ 14:0 GHz ) λ ¼ 2 cm

which is in the region of microwaves.

Fig. 13.10 Proton spin-spin couplings in 1-chloropropane
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Importantly, only molecules that possess an unpaired electron are amenable to
ESR spectroscopy, since paired electrons cannot undergo a change of spin as this
would violate the Pauli exclusion principle (see Sect. 10.3.2). Therefore, ESR
spectroscopy is limited to the investigation of radical species of which there are
naturally only few. However, the use of so-called spin-labels—chemical groups with
a stabilised radical that can be covalently attached to molecules of interest—allows
the investigation of many processes by means of the attached reporter group carrying
an unpaired electron. ESR spectroscopy with spin labels is a frequently used method
in the biosciences to study processes on and around proteins and membranes. Only
two transitions are allowed for the unpaired electron, though, as is reflected by the
selection rules:

Δms ¼ �1,ΔmI ¼ 0: ð13:21Þ
The rule demanding conservation of the nuclear spin (ΔmI ¼ 0) can be explained

if one assumes that the motion of a nucleus is much slower than that of an electron. In
other words, in the time it takes for the electron to change its spin (Δms ¼ �1), the
nuclear spin has no time to reorient.

For practical reasons, ESR spectra don’t register the absorption peak but rather its
first derivative (Fig. 13.11). For free electrons, the ESR spectrum contains just one
peak. If we consider the hydrogen atom, which constitutes the simplest radical
consisting of one proton and one electron, we find that the ESR spectrum shows
two peaks with the same intensity; the distance between both peaks is measured at
50.7 milli-tesla (mT). For comparison, the signal of the free electron comes to lie in

a

b

c

Fig. 13.11 (a) ESR
absorption signal of an
unpaired electron, and (b) its
first derivative. (c) The
hyperfine splitting of the ESR
signal of the unpaired electron
in the hydrogen atom shows a
doublet with a coupling
constant of aH ¼ 50.7 mT
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the centre between the two peaks of the hydrogen atom. Similar to the observations
made in nuclear magnetic resonance, the spin signal of the hydrogen electron is split
into a doublet.

The splitting is the result of an interactions between the spin of the unpaired
electron and the nuclear spin, known as the Fermi contact. This interaction only
arises when the unpaired electron is inside the nucleus—a phenomenon that can only
be explained using the probability density (introduced in Sect. 8.3.2):

ρ xð Þ ¼ Ψ xð Þj j2 ¼ Ψ∗ xð Þ �Ψ xð Þ: ð8:32Þ
The effect of the nuclear magnet on the spin of the unpaired electron can be

summarised in form of an additional magnetic field ~Bcontact (contact field), which
depends on the magnetic moment of the nucleus (given by the quantum number mI),
the g-factor of the nucleus (gN), the nuclear magneton (μN), as well as the spin
density of the unpaired electron in the nucleus (|Ψ|2):

~Bcontact

�� �� ¼ 8π
3
� gN � μN � Ψj j2 � mI ¼ aN � mI ð13:22Þ

thereby defining the hyperfine coupling constant aN.
For the proton, the probability density of the electron in the 1s orbital can be

calculated, thereby allowing the computation of a theoretical hyperfine coupling
constant for the hydrogen atom. The calculated value of aH¼ 50.8 mT is in excellent
agreement with the experimentally observed value of 50.7 mT.

If the unpaired electron of a radical interacts with two different (non-equivalent)
nuclei, for example protons H1 and H2, a more complex splitting pattern arises due
to independent nuclear spin orientations of both protons. Interaction of the electron
with H1 leads to a doublet pattern with a coupling constant of aH1 as discussed
above. Due to the presence of H2, one needs to consider that each of those situations
can also show coupling with the nuclear spin orientations of H2, which possesses a
different coupling constant aH2. The hyperfine splitting therefore results in ‘doublet
of doublet’ pattern where all peaks possess the same intensity (Fig. 13.12 left).
Notably, if the electron was to interact with two equivalent protons (e.g. in the
formyl radical H2CO

�), then the coupling constants aH1 and aH2 have the same value
and the two centre peaks collapse into one peak. The resulting pattern of the
hyperfine splitting thus appears as a triplet with intensity ratio 1:2:1 (Fig. 13.12
right). Generally, the number of hyperfine lines can be predicted as per

number of lines ¼ 2 � N � I þ 1 ð13:23Þ
where N is the number of chemically equivalent nuclei and I is the nuclear spin.
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13.3 Rota-vibrational Spectroscopy

13.3.1 The Rotational Spectrum

In Sect. 9.2.2 we discussed the rigid rotor with space-free axis which we now
consider as a model to describe the rotation of a two-atomic molecule. This model
assumes that the two atoms are bonded to each other at a fixed distance (‘rigid’) and
that the axis of the two-atomic molecule is allowed to take any orientation in an
outside coordinate system (‘space-free axis’) while the centre of gravity rotates
around the origin. Equation 9.29 delivered the allowed energy levels of such a
rotor as

E Jð Þ ¼ h � c � B � J � J þ 1ð Þ, ð9:29Þ
whereby the rotational constant

B ¼ h
8π2 � c � I ð13:24Þ

is dependent on the momentum of inertia I; h and c are the Planck constant and the
speed of light, respectively. In order for a transition between different rotational
levels to occur, the resonance condition needs to be met; i.e. electromagnetic radia-
tion of the matching energy needs to be provided to (absorption spectrum) or is
released from (emission spectrum) the molecule. Second, we need to consider

Fig. 13.12 Hyperfine splitting by coupling of an unpaired electron with two non-equivalent
protons (left) and two equivalent protons (right)
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relevant selection rules as there are many different rotational levels between which
transitions could potentially occur.

The selection rules define that only transitions with ΔJ ¼ �1 are possible. If we
assume a starting level of Jstart and an end level of Jend ¼ Jstart + 1, we can calculate
the resonance energy for a transition:

ΔE ¼ E Jendð Þ � E Jstartð Þ
ΔE ¼ h � c � B � Jend � Jend þ 1ð Þ � h � c � B � Jstart � Jstart þ 1ð Þ
ΔE ¼ h � c � B � Jstart þ 1ð Þ � Jstart þ 2ð Þ � Jstart � Jstart þ 1ð Þ½ �
ΔE ¼ h � c � B � J2start þ 3 � Jstart þ 2� J2start � Jstart

� 	
ΔE ¼ h � c � B � 2 � Jstart þ 2ð Þ
ΔE ¼ 2 � h � c � B � Jstart þ 1ð Þ:

ð13:25Þ

Using the relationship in Eq. 13.15, we can thus calculate the wavenumber of a
transition between the two rotational levels J and (J+1) as per:

eν ¼ 2 � B � J þ 1ð Þ: ð13:26Þ
This equation allows a conclusion as to the appearance of a rotational spectrum.

For the transition of rotational level 0 to level (0 ! 1) we are expecting a peak in a
plot of absorbance versus wavenumber that is spaced at a distance of 2�B fromeν¼ 0.
For transition 1! 2 the peak is spaced 4�B fromeν¼ 0, etc. In other words, Eq. 13.26
predicts a spectrum with peaks with a distance of 2�B between them (see Fig. 13.14).
In reality, the distance between the absorption peaks decreases as the wavenumber
increases, owing to the fact that the molecule is indeed not a rigid rotor as assumed in
the above model. At higher rotational states, the distance between the two atoms (and
thus the momentum of inertia I ¼ m � r2, Eq. 9.7) increases due to the centrifugal
force. As per Eq. 13.24 above, an increase in I prompts a decrease in B (see analysis
of rota-vibrational spectra in Sect. 13.3.4).

To appreciate the type of electromagnetic radiation that fulfils the resonance
condition for a rotational spectrum, we consider the molecule HCl which possesses
a bond length of 1.29 Å. This yields a momentum of inertia of

I ¼ μ � r2 ¼ 1 � 35
1þ 35

u � 1:67 � 10�27 kg
u
� 1:29 � 10�10 m
� �2 ¼ 2:70 � 10�47 kg m2:

The rotational constant of HCl is then

B ¼ h
8π2 � c � I ¼

6:626 � 10�34 J s

8π2 � 2:99 � 108 m s�1 � 2:70 � 10�47 kg m2

B ¼ 6:626
8π2 � 2:99 � 2:70 � 10

�34�8þ47 � kg m2 s�2 s
kg m3 s�1

B ¼ 0:0104 � 105 m�1 ¼ 10:4 cm�1:

For the transition from the rotational ground to the first excited state (0! 1), the
following wavenumber can be computed by using Eq. 13.26:
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eν ¼ 2 � B � J þ 1ð Þ ¼ 2 � 10:4 cm�1 � 0þ 1ð Þ ¼ 20:8 cm�1

and converted into a wavelength or frequency

λ ¼ 1eν ¼ 0:048 cm ¼ 480 μm

ν ¼ c
λ
¼ 2:99 � 108 m s�1

480 � 10�6 m
¼ 0:62 � 1012 Hz ¼ 0:62 THz,

corresponding to a resonance energy ofΔE¼ 4.1�10�22 J. These values indicate that
rotational transitions in molecules require a resonance energy in the range of
microwaves and far infrared. Purely rotational spectroscopy is thus often called
microwave spectroscopy (Fig. 13.13).

If the transition moment is the same for all different starting levels J (which is
indeed the case), then the intensity of individual peaks in the rotational spectrum
should be dependent on the population of the starting level of the transition that elicits
an individual peak. However, one needs to remember that the quantum mechanical
discussion of the rigid rotor resulted in several degenerate states, whereby (2J + 1)
states of the same energy were possible for each state J (see Sect. 9.2.2). This
degeneracy has to be accounted for in addition to the Boltzmann expression that
describes the ratio of population of a rotational state J with respect to all states:

NJ

N
¼ 2 � J þ 1ð Þ � e�

h�c�B�J� Jþ1ð Þ
kB �TP

i
2 � Ji þ 1ð Þ � e�

h�c�B�Ji � Jiþ1ð Þ
kB �T

Using the above equation, the population ratio of NJ/N and NJ¼0/N can be
evaluated, and the quotient of both ratios yields the ratio of populations of state
J and state J ¼ 0:

Fig. 13.13 Wavenumbers for transitions in a rotational spectrum (see Eq. 13.26). The absorption of
individual transitions is based on the relative absorption of the starting states as given in Eq. 13.27
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NJ
N

NJ¼0
N

¼ NJ

NJ¼0
¼ 2 � J þ 1ð Þ � e�

h�c�B�J� Jþ1ð Þ
kB �T ð13:27Þ

For HCl at T ¼ 293 K with B ¼ 10.4 cm�1 the relative population of state J ¼ 1
with respect to J ¼ 0 is then:

NJ¼1

NJ¼0
¼ 3 � e�0:412�10�21J

4:05�10�21J ¼ 2:7,

which means that the population of the rotational level J¼ 1 is 2.7 times higher than
the rotational ground state J ¼ 0. The peak intensity in the rotational spectrum thus
progresses through a maximum value with increasing J, as indicated in Fig. 13.14.

13.3.2 The Vibrational Spectrum

The quantum mechanical background for vibrational modes of molecules are given
by the harmonic oscillator which we discussed in Sect. 9.3 where we derived the
discrete energy levels in dependence of the vibrational quantum number v as

E ¼ h � ν0 � vþ 1
2

� �
ð9:38Þ

whereby the oscillation frequency ν0 is a function of the force constant k and the
reduced mass μ:

Fig. 13.14 Comparison of
the potential energy of the
harmonic (blue) and
anharmonic (red) oscillator
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ν0 ¼ 1
2π

�
ffiffiffi
k

μ

s
ð9:34Þ

The selection rule for vibrational transitions is Δv ¼ �1, allowing only
transitions between neighbouring vibrational levels. The resonance energy required
for a transition from vstart to vend ¼ vstart + 1 is thus:

ΔE ¼ E vendð Þ � E vstartð Þ
ΔE ¼ h � ν0 � vend þ 1

2

� �
� h � ν0 � vstart þ 1

2

� �
ΔE ¼ h � ν0 � vstart þ 1þ 1

2
� vstart � 1

2

� �
ΔE ¼ h � ν0

ð13:28Þ

The frequency of the electromagnetic radiation fulfilling the resonance condition
is thus the same as the frequency of the vibrational mode of the molecule. Using
again HCl (k ¼ 480.6 N m�1) as an example, the type of energy required for
vibrational resonance can be calculated:

ΔE ¼ h � ν0 ¼ h
2π

�
ffiffiffi
k

μ

s
¼ h

2π
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � m Hð Þ þ m Clð Þ½ �

m Hð Þ � m Clð Þ

s

ΔE ¼ 6:626 � 10-34 J s
2π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

480:6 N m-1 � 36 u

35 u2 � 1:67 � 10-27 kg u-1

s

ΔE ¼ 1:06 � 10�34 J s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
296 � 1027 � kgms�2 m�1 u

u2 kg u�1

s
ΔE ¼ 1:06 � 10�34 J s � 5:44 � 1014 s�1 ¼ 5:77 � 10�20 J

This corresponds to a wavelength and wavenumber of:

λ ¼ h � c
ΔE

¼ 3:43	 10-6 m ¼ 3:43 μm eν ¼ 1
λ
¼ 0:291 � 106 m�1 ¼ 2910 cm�1,

thus indicating that the resonance energies are in the region of the infrared.
The resonance energy for a vibrational transition is thus two orders of magnitudes

higher than that required for transition between two rotational states. This has
substantial implications for the relative population of the individual vibrational
states. In analogy to the discussion of the electron/nuclear magnetic states
(Table 13.4) as well as the rotational states (Eq. 13.27), this can be calculated
using the Boltzmann statistics:
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Nv

Nv¼0
¼ e�

h�ν0 � vþ1=2ð Þ
kB �T ð13:29Þ

For HCl at T ¼ 293 K with ν0 ¼ 0.87�1014 Hz, the relative population of state
v ¼ 1 with respect to v ¼ 0 is then:

Nv¼1

Nv¼0
¼ e�

1:5�5:77�10�20J
4:05�10�21J ¼ 5:1 � 10�10,

indicating that at room temperature virtually all molecules occupy the vibrational
ground state.

13.3.3 Anharmonicity

A closer look at Eq. 13.29 shows that at increasing temperatures one expects that the
population of vibrationally excited molecules will be continuously increasing. It
should thus be possible to store ever higher energy in molecules which would
undergo ever more intense vibrations. This situation is in contradiction to experi-
mental observations: we know that molecules dissociate (i.e. the distance between
atoms becomes very large) if they are exposed to high enough temperature.

We remember that the model we used to describe vibrational modes of a
di-atomic molecule is based on the harmonic oscillator (see Eq. 9.33 and Fig. 9.9).
Graphically, this is illustrated by a symmetric potential curve where the potential
energy develops with the square of the distance between two bonded atoms:

Epot rð Þ ¼ 1
2
� k � r � req

� �2 ð13:30Þ

where the equilibrium bonding distance between the two atoms is req, and k is the
force constant.

Two adjustments of the harmonic potential are required to describe the real
behaviour of molecular vibration (see Fig. 13.14):

• Even at high energy levels, the distance between the two atoms cannot get
arbitrarily small. The Coulomb repulsion between the two nuclei prevents very
small inter-atomic distances. The left branch of the parabolic function thus needs
to develop steeper than suggested by the harmonic potential.

• The right branch of the potential function needs to progress into a horizontal line
at an energy level that represents the dissociation energy. When the molecule
reaches this vibrational state, the distance between the two atoms can become
arbitrarily large.

The resulting function describes a so-called anharmonic oscillator. At low energy
levels, an anharmonic oscillator behaves very similar to a harmonic oscillator. At
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higher energies, substantial deviations from harmonicity are observed. The energy
difference between the minimum of the potential energy curve and the horizontal
branch equals the dissociation energy Deq. Since any bond possesses a zero point
energy

E v ¼ 0ð Þ ¼ h � ν0 � 0þ 1
2

� �
¼ h � ν0,

the first vibrational level is elevated by h�ν0 from the minimum of the potential
energy curve. The experimentally relevant dissociation energy is thus D0 which is
the difference between the vibrational ground state and the horizontal branch of the
potential curve.

The potential curve of the anharmonic oscillator cannot be rigorously derived.
The Lennard-Jones potential (see Sect. 11.5 and Fig. 11.8) is one model to describe
the potential energy function of an anharmonic oscillator. Another very frequently
used function is the Morse function

Epot rð Þ ¼ Deq 1� e�β� r�reqð Þh i2
ð13:31Þ

which features the dissociation energy Deq and the constant β as a modified force
constant (see also Eq. 9.37). Mathematically, the above function can be developed
into a so-called Maclaurin series:

Epot rð Þ ¼ Deq � β2 � r � req
� �2 � Deq � β3 � r � req

� �3
þ 7
12

� Deq � β4 � r � req
� �4 � . . .

which shows high similarity with the potential energy function for the harmonic
oscillator above (Eq. 13.30); the anharmonicity correction results from additional
terms with (r�req)

3, (r�req)
4, etc. Using this Morse potential to solve the

Schrödinger equation, the following energy eigenvalues are obtained for the
anharmonic oscillator:

E vð Þ ¼ h � ν0 � vþ 1
2

� �
� h � ν0 � xe � vþ 1

2

� �2

þ h � ν0 � ye � vþ 1
2

� �3

� . . . ð13:32Þ
with the anharmonicity constants xe and ye.

The anharmonicity has two major implications:

• The selection rules are different from those of the harmonic oscillator, owing to a
different wavefunction. The selection rules for the anharmonic oscillator allow
further transitions with Δv ¼ �1, �2, �3, . . .
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• A transition with Δv ¼ �1 is called fundamental; transitions with Δv ¼ �2, �3,
. . . are called overtones.

• Due to the presence of additional terms with power 2 and higher in Eq. 13.32, the
distance between consecutive vibrational levels is not constant but decreases with
increasing quantum number v. Therefore, there is only a finite number of vibra-
tional levels until the dissociation energy is reached.

13.3.4 The Rota-vibrational Spectrum: Infrared Spectroscopy

The discussion of the pure rotational and pure vibrational spectra in the previous
sections showed that the resonance energy required for vibrational excitation is by
about two orders of magnitudes larger than that required for rotational excitation.
One can thus expect that upon vibrational excitation vibrational modes will also be
excited. The observed vibrational spectra therefore consist of peaks rather than lines.
If sufficient spectral resolution can be achieved, the vibrational peaks show a
structure that can be analysed as to rotational transitions. The resulting spectra are
thus called rota-vibrational spectra.

In infrared spectroscopy, the probing of rota-vibrational transitions is carried in
an absorption experiment where samples are exposed to infrared light and the
absorbance is monitored. Since vibrational as well as rotational transitions will be
observed, one needs to consider the selection rules for the vibrational quantum
number as well as those for the rotational quantum number; for the purpose of the
following discussion, we are ignoring the possible overtones due to anharmonicity:

• Δv ¼ �1
• ΔJ ¼ �1.

Figure 13.15 shows two vibrational states v¼ 0 and v¼ 1 and overlayed on each
the rotational states. It is obvious that when transitioning from vstart ¼ 0 to vend ¼ 1,
there are two ways to satisfy the rotational selection rule; one can start from a lower
rotational state and transition to the next higher rotational state (Jstart¼ 0, Jend¼ 1) or
vice versa (Jstart ¼ 1, Jend ¼ 0). This gives rise to two different blocks of transitions
(called branches) which are grouped at lower (P-branch) and higher (R-branch)
energies, respectively.

The wavenumbers for the two different branches can be calculated considering
Eqs. 13.25 and 13.28:

In exceptional cases, e.g. when molecules exist in triplet state (where the total
electron spin is not zero), the selection rules may also include Δv ¼ �1 and ΔJ ¼ 0.
In such cases, a third branch called Q-branch is observed.

A close look at the expressions in Table 13.6 shows that a wavenumber ~v that
corresponds to the pure vibrational transition ( ~v0 ) is not possible, i.e. the pure
vibrational transition is not observed, since ΔJ ¼ 0 is not allowed in the absence
of a Q-branch. This gives rise to the so-called zero gap of the rota-vibrational
spectrum; the distance between the two first peaks of the P- and R-branches is:
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ΔJ ¼ �1 : Jstart ¼ 1, Jend ¼ 0 ) eν ¼ eνo � 2 � B � 1
ΔJ ¼ þ1 : Jstart ¼ 0, Jend ¼ 1 ) eν ¼ eνo þ 2 � B � 0þ 1ð Þ
Δeν ¼ eν0 þ 2 � B� �eν0 � 2 � B	 ¼ 4 � B:

Figure 13.16 depicts the rota-vibrational spectrum of HCl and shows two partic-
ular details. First, there are two peaks for each individual vibrational transition,
owing to the fact that HCl is a mixture of two isotopes H35Cl and H37Cl. H37Cl has a
slightly larger reduced mass than H35Cl (but the same force constant). According to
Eqs. 13.24 and 13.26, this results in a lower frequency and hence a smaller
wavenumber.

Second, the distance between the vibrational peak clusters decreases with increas-
ing wavenumber; this cannot be explained by an effect of higher vibrational levels as
in that case, the effect should be symmetric in the P- and R-branch with respect to the
zero gap. The explanation for this effect becomes obvious when comparing the
harmonic and anharmonic oscillator potential curves (Fig. 13.14). The potential
curve for the anharmonic oscillator is symmetric with respect to the equilibrium

Fig. 13.15 Top: Rotational
transitions for the excitation of
the first vibrational state from
the vibrational ground state.
Bottom: The resulting
schematic rota-vibrational
spectrum

Table 13.6 Wavenumbers
for rota-vibrational
transitions

P-branch R-branch

Δv ¼ +1, ΔJ ¼ �1 Δv ¼ +1, ΔJ ¼ +1eν ¼ eν þ 2 � B � Jstart eν ¼ eνo þ 2 � B � Jstart þ 1ð Þ
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distance req; when moving to higher vibrational levels, the equilibrium distance
remains constant. In case of the anharmonic oscillator this is different. Excitation of
higher level vibrational modes leads to an increase in the bonding distance. With an
increase in distance between the two bonded atoms, there is an increase in the
momentum of inertia and thus a decrease of the rotational constant B (Eq. 13.24).
The rotational constant is therefore dependent on the vibrational mode and its
decrease with larger quantum numbers v is reflected in a decrease of the distance
between peaks in the rota-vibrational spectrum.

We thus conclude that in order to explain all observations in the rota-vibrational
spectrum, we not only need to replace the harmonic with the anharmonic oscillator
model, but also the rigid rotor with the non-rigid rotor model.

13.3.5 The Rota-vibrational Spectrum: Raman Spectroscopy

In the discussion of general concepts of absorption spectroscopy in Sect. 13.1.2, we
mentioned that an interaction of incident electromagnetic radiation with a molecule
(¼ absorption) only happens if the molecule possesses a dipole momentum. This
means that

• homonuclear two-atomic molecules (e.g. O2, Cl2, etc)
• symmetric multinuclear linear molecules (e.g. CO2)
• fully symmetric multinuclear molecules (e.g. CH4)

possess no rotational absorption spectrum due to the absence of a dipole momen-
tum. Furthermore, homonuclear two-atomic molecules possess no vibrational
absorption spectrum either.

Fig. 13.16 Rota-vibrational infrared spectrum of HCl. The peaks of individual transitions are split
into two with the less intense peaks (at lower energies) belonging to isotope H37Cl and the more
intense peaks (at higher energies) arise from H35Cl
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However, in this discussion it was implied that the light-absorbing matter needed
to possess a permanent dipole momentum which changes upon interaction with
incident electromagnetic radiation, thus giving rise to a transition dipole momentum
and hence absorption.

We now consider the possibility that the interaction of incident radiation can
induce a dipole momentum in a molecule. This phenomenon results in a similar
situation, namely that there has been a change in the dipole momentum. The induced
dipole momentum μind can be calculated as per

μind ¼ α � E ð11:18Þ
where E is the electrical field strength and α is the polarisability, a quantity we have
discussed earlier (see Sect. 12.2.1).

If the electrical field E at the molecule arises due to an electromagnetic wave (with
energy h�ν), the field changes periodically with the frequency ν and so does the
induced dipole momentum μind. In turn, the dipole momentum μind oscillating with
frequency ν causes emission of light with the energy h�ν. Therefore, the molecule
emits light of the same energy that it is being exposed to. This effect is known as
Rayleigh scattering and macroscopically appears as an elastic scattering of light by
an object.

However, if an energy transfer between incident radiation and molecule happens
during this process, the resulting scattering is inelastic, i.e. the energy of the emitted
light has different energy than the incident light; this is called the Raman effect. It
had been predicted by Adolf Smekal (Smekal 1923) and experimentally proven by
Sir Chandrasekhara Venkata Raman. Two situations can arise:

• The incident photon transfers energy onto the molecule which, in turn, transitions
into a higher energy state. The emitted light thus has lesser energy than the
incident light. This gives rise to the so-called Stokes lines (or S-branch).

• The incident photon gains energy from the molecule which transitions from a
state of higher energy to a state of lower energy. The emitted light here has higher
energy than the incident light, giving rise to the anti-Stokes lines (or O-branch).

The energy levels between which such transitions occur are the rotational levels
as well as the vibrational levels. Therefore, the energy difference between incident
and emitted light corresponds to the energy difference between the rotational (and
vibrational) levels between which the transition occurs.

The selection rules for rota-vibrational transitions in the Raman effect are

• Δv ¼ �1
• ΔJ ¼ 0, �2

Since it is the energy difference between the incident light and the emitted light
that contains the information about the rota-vibrational transitions in the molecule,
Raman spectra are interpreted based on the ΔE (or Δν). This is called the Raman
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shift and obtained as difference between an individual peak and the energy or
wavenumber of the incident light which features as the Rayleigh scattering peak in
the Raman spectrum.

For a rotational transition Jstart ! Jend with Jend ¼ Jstart + 2, the wavenumber can
be quantum mechanically calculated based on the rotational quantum number as per

Δeν ¼ �4 � B � Jstart þ 3
2

� �
: ð13:33Þ

For Jstart ¼ 0, this yields for the first Stokes line:

Δeν ¼ �4 � B � 0þ 3
2

� �
¼ �6 � B

and for the first anti-Stokes line:

Δeν ¼ þ4 � B � 0þ 3
2

� �
¼ þ6 � B:

It is thus obvious, that the rotational Raman spectrum (Fig. 13.17) features the
first Stokes and anti-Stokes lines in a distance of 6�B from the Rayleigh scattering
peak. The peaks for the following transitions are then spaced at a distance of 4�B
from each other.

Fig. 13.17 Simulated rotational Raman spectrum of N2. If light with a wavenumber of 2358 cm�1

is used as incident beam, the spectrum would feature a broad Rayleigh scattering peak at this
wavenumber. The N-N triple bond vibration occurs at 2358 cm�1
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The angular dependency of the Raman scattering intensity is given by the
relationship

I ¼ I0 � 8 � π
2 � α2

λ4 � r2 � 1þ cos 2θ
� � ð13:34Þ

where I0 is the intensity of the incident beam at wavelength λ, α is the polarisability,
r the distance of the sample to the detector and θ the angle between the incident and
the scattered ray. The function cos2θ oscillates between the values of 0 and 1 and
assumes 0 at 90
, and the function (1 + cos2θ) thus has its lowest values at 90
 and
270
 (see Fig. 13.18). Therefore, the scattering intensity at right angles is half the
scattering intensity in forward direction.

13.3.6 Conclusion

Infrared and microwave spectroscopy on the one hand and Raman spectroscopy on
the other are useful tools that allow determination of force constants and atomic
distances in bonds. The former methods require a change in the permanent dipole
momentum of a substance during transition between different rotational or vibra-
tional states. In contrast, Raman spectroscopy requires a change of the polarisability
during the transition. Therefore, the two types of rota-vibrational spectroscopic
methods are often complementary.

The vibrational spectra of molecules are typically rather complex and therefore
assure that two different molecules have different vibrational spectra. Among other
applications, this can be used very effectively in technique called fingerprinting. The
vibrational spectrum of an unknown substance is acquired using either infrared or

Fig. 13.18 The function
(1 + cos2θ) oscillates between
values of 1 and 2
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Raman spectroscopy and then compared with a database of reference spectra. If a
match is found, the unknown substance can be identified.

13.4 Electron Transition Spectroscopy

Electromagnetic radiation of sufficient energy may not only trigger excitation of
rotational or vibrational modes of molecules but also cause transition of electrons
into energetically higher orbitals. From the discussion of the hydrogen atom in Sect.
10.1, we know that the allowed electronic energy states vary with the principal
quantum number n as per:

En ¼ � me � e4
8 � ε20 � h2 � n2

, ð10:9Þ

which yields for n ¼ 2 and n ¼ 4:

E2 ¼ � 9:11 � 10�31 kg � 1:602 � 10�19 C
� �4

8 � 8:854 � 10�12 A2 s4m�3kg�1
� �2 � 6:626 � 10�34Js

� �2 � 22
E2 ¼ �0:00054 � 10�15 kg

3 m6

s6 J2
¼ �3:40eV

E4 ¼ � 9:11 � 10�31 kg � 1:602 � 10�19 C
� �4

8 � 8:854 � 10�12 A2 s4 m�3 kg�1
� �2 � 6:626 � 10�34 Js

� �2 � 42
E4 ¼ �0:00014 � 10�15 kg

3 m6

s6 J2
¼ �0:85 eV

and thus for the difference between both electronic states:

ΔE ¼ E4 � E2 ¼ 2:55 eV:

According to the resonance phenomenon, electromagnetic radiation of the same
energy is required to enable a transition between both states. The wavelength of such
radiation thus needs to be:

λ ¼ h � c
ΔE

¼ 6:626 � 10-34 Js � 2:99 � 108 ms-1

4:09 � 10-19 J ¼ 4:84 � 10-7 m ¼ 484 nm,

which maps to the visual region of the electromagnetic spectrum. This estimation
used the electronic orbitals of the hydrogen atom. In molecules, the energy differ-
ence between orbitals is typically found in the region of 1–10 eV. The light required
to meet the resonance condition is this in the range of the visual and ultraviolet
region of the spectrum.

From the discussion of rota-vibrational spectra in the previous sections, we recall
that the vibrational excitation of a molecule causes a simultaneous excitation of
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rotational modes, i.e. the rotational spectrum is superimposed on any vibrational
spectrum. Since the energy quanta meeting the resonance condition for electronic
transitions (1–10 eV � 10�19

–10�18 J) are one to two orders of magnitude larger
than those for vibrational transitions (10�20 J), rota-vibrational transitions will
simultaneously occur with electronic transitions. Therefore, rota-vibrational spectra
are superimposed on the electronic spectra. The fact that multi-nuclear molecules
possess fairly large moments of inertia, the observation of rotational fine structure
and vibrational transitions typically occurs as broad bands in the electronic spectra.

In the introduction to this chapter we considered the overall selection rules for
transitions between different energy states: one was concerned with the overall
electronic spin state and the other with the symmetry of wave functions.

• For the electronic spin states, it was stated that the multiplicity M has to remain
constant, and therefore the total spin S of the molecule does not change during the
transition:

ΔS ¼ 0: ð13:9Þ

• For the symmetry rules, one needs to consider the symmetry of the wavefunctions
(also called parity) as well as the spatial properties of orbitals. If two orbitals
involved in a transition do not possess large amplitudes in the same region of
space, a transition will not be possible (see also Eq. 13.10).

These selection rules certainly need to be considered for electronic transitions,
just as for the rota-vibrational transitions discussed in previous sections. However,
further effects will need to be taken into account (see below).

13.4.1 UV/Vis Absorption Spectroscopy

If we consider a diatomic molecule, we can represent the individual electronic states
(S0, S1, T1, etc) by their potential energy curves, each of which features the set of
vibrational and rotational energy levels. In general, the electronic excited states (S1,
T1) possess a larger bond distance than the molecule in its ground state. The three
potential curves are therefore not only positioned at different levels on the energy
scale, but also at different positions with respect to the nuclear displacement scale
(Fig. 13.19).

Since the time required for an electronic absorption (10�15 s) is much shorter than
the time required to complete a vibration (10�14

–10�13 s), one assumes that the
atoms remain at their current position while the electronic transition happens. This is
the so-called Franck-Condon principle and requires that we draw an electronic
transition as a strictly vertical arrow in the potential energy plot in Fig. 13.19.
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Conceptually, it is based on the Born-Oppenheimer approximation that assumes that
the motion of atomic nuclei and electrons in a molecule can be separated.

From previous discussions, we know that the vibrational excited states are
essentially not populated when the molecule is in its ground state. When absorbing
UV/Vis light (which causes an electronic transition), one thus needs to start in the
vibrational ground state of the electronic ground state (S0v0). As per the resonance
condition, an energy quantum will be absorbed only if it exactly matches the energy
difference between S0v0 and a vibrational excited state in the electronic excited state
(S1vi). Different vibrational levels will be populated to different extents, therefore
producing a larger or smaller amplitude in the acquired spectrum. The extent to
which a particular vibrational state in the electronic excited state is populated
depends on the overlap integral between the probability density Ψ2 (see Sect.
8.3.2) of the starting state (S0v0) and that of the end state (S1vi). The vibrational

Fig. 13.19 Potential energy diagram sowing different electronic states of a di-atomic molecule and
the process of absorption of a photon with energy h�ν
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overlap integral is also known as the Franck-Condon factor. Graphically, this means
that the most likely transition is the one where the probability densities of starting
and end state share the largest area under their graphs when transitioning strictly
vertically. In Fig. 13.19, the largest overlap is between the probability densities of
S0v0 and S1v3.

We also note that because the start and end vibrational levels of an electronic
transition belong to two different potential curves, the vibrational selection rule of
Δv ¼ �1 is no longer valid. The Franck-Condon principle applies to electronic
transitions (as opposed to pure rota-vibrational transitions) and thus requires a more
complex mathematical treatment than the introductory discussion of the transition
dipole momentum (Eq. 13.10), at the centre of which are the overall wavefunctions
that are obtained as the product of the individual vibrational, electronic and spin
wavefunctions.

13.4.2 Spontaneous Emission from Electronically Excited States

While the elevation of an electron from the ground into an excited state requires the
absorption of UV/Vis light, systems may return from the electronic excited to the
ground state, in which case there is a possibility that the energy difference is released
as a photon. This is the process of emission. When investigating the fabric of atoms,
we have seen that atomic absorption and emission spectra produced identical line
spectra. In contrast to molecules, however, we did not need to consider rotational or
vibrational quantum states. In the following, we will discuss the situation in
molecules where the rota-vibrational quantum levels need to be considered.

As discussed in the previous section, upon absorption, electrons typically transition
into the first excited singlet state S1 and the molecule assumes an excited vibrational
state (S1vi). The life time of such excited states is generally around 10�9

–10�5 s and
therefore much longer than the time required to complete a vibration (10�14

–10�13 s).
Most of the vibration al energy in the excited electronic state is thus dissipated as heat
into the environment and the molecule subsequently relaxes into the vibrational
ground state S1v0. This process is called internal conversion and is not accompanied
by emission of radiation.

Whereas some molecules return to the electronic ground state S0 by further
non-radiative relaxation (internal conversion), others emit a photon in this process
and transition into a vibrational excited state of the electronic ground state (S0vi).
This spontaneous emission of light is called fluorescence. Note that the starting state
for the fluorescence emission is always the vibrational ground state of the electronic
excited state (here: S1v0). For this electronic transition, the Franck-Condon principle
needs to be applied as introduced in the previous section, since the inter-atomic
distances in the molecule remain constant during the electronic transition. The same
considerations as for absorption apply, and it turns out that the population of the
vibrational end states during the transition are mirrored to to those in the absorption
process (see Fig. 13.20). In other words, if the state S1v3 was the preferred end state
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during absorption (Fig. 13.19), the most populated end state in the fluorescence
emission process will be S0v3.

When illustrating electronic transitions in molecules, the scheme showing poten-
tial energy curves (Fig. 13.19) are often replaced by so-called Jablonski diagrams
(Fig. 13.21). Here, the individual states are depicted by horizontal lines that are
grouped together based electronic states; along the y-axis, the states are arranged

Fig. 13.20 Absorption and fluorescence emission spectra typically are mirror images of each
other. The fluorescence spectrum always appears at longer wavelengths than the absorption
spectrum (Stokes shift). The band structure of the absorption spectrum shows the vibrational
structure of the excited state. In contrast, the fluorescence spectrum shows the vibrational structure
of the ground state

Fig. 13.21 Jablonski
diagram explaining transitions
in and between electronic
ground and excited states
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according to increasing energy. Non-radiative transitions are indicated by dotted
arrows and radiative transitions by straight arrows.

Fluorescence
The spontaneous emission of fluorescence photons following light absorption
follows a first-order kinetics and the intensity of light emitted is therefore given by

I ¼ I0 � e�t
τ ð13:35Þ

where τ is the mean life time of the fluorescent state.
The efficiency of the fluorescence process is expressed by the quantum yield Φ:

Φ ¼ Number of photons emitted
Number of photons absorbed

: ð13:36Þ

Fluorescent molecules (also called fluorophores) may not operate at 100% effi-
ciency and emit less photons than they absorbed, since the excited state can be
deactivated by other processes. These processes include:

• internal conversion (here: relaxation from electronic excited to electronic ground
state without radiation);

• intersystem crossing (change from the singlet to a triplet state of same energy; see
below);

• quenching (transfer of excess energy to a quenching molecule);
• fluorescence resonance energy transfer (transfer of excess energy to an acceptor

molecule that subsequently emits a fluorescence photon);
• photoreaction.

The rate constant for all deactivation processes is then the sum of the radiative
(fluorescence) and all non-radiative processes:

k ¼ kradiative þ
X

knon-radiative:

The reciprocal of this overall rate constant k is the mean life time τ of the
fluorophore. The ratio of the rate constant describing the radiative process and the
overall rate constant therefore equals the quantum yield:

Φ ¼ kradiative
k

¼ kradiative � τ: ð13:37Þ

Phosphorescence
In some cases, the triplet state of molecules may possess an intersecting potential
curve of lower energy than the excited singlet state (Fig. 13.19). In such cases, it is
possible that molecule populates the triplet state after having reached the excited
singlet state. This conversion is called intersystem crossing (Fig. 13.21) and, despite

394 13 Interactions of Matter with Radiation



being a forbidden process since it involves inversion of the spin of an electron
(i.e. ΔS 6¼ 0), this selection rule may be weakened if there is a strong spin-orbit
interaction such as e.g. in the presence of a heavy atom. Once in the triplet state, the
molecule relaxes to the vibrational ground state of the triplet state (T1v0) from where
it can return to the electronic ground state by emission of a photon. This process is
known as phosphorescence and also requires a spin inversion, possible only because
of the weakening of the spin selection rule. The occurrence of two ‘forbidden’
processes leads to a substantial time delay, therefore the photon is emitted at a
much later time than the initial absorption.

13.4.3 Stimulated Emission from Electronically Excited States

In addition to the spontaneous emission of light by fluorescence and phosphores-
cence, molecules can also emit light in a non-spontaneous fashion when returning
from an electronic excited to the ground state. Since this process requires stimulation
as well as amplification in order to operate, the process is called light amplification
by stimulated emission of radiation (laser).

In contrast to the spontaneous emission of light such as in fluorescence and
phosphorescence which happens in a statistical fashion, stimulated emission requires
the presence of non-participating but stimulating photon of the same energy. Photons
resulting from spontaneous emission have a defined energy equal to the difference
between the two energy levels between which the transition occurs. The polarisation
and direction of travel, however, are random. In the case of stimulated emission, the
energy, as well as other properties of the stimulating and emitted photons are
the same.

In the cases of spontaneous emission of light, an intrinsic characteristic is that the
electronic transitions take place between two different levels, and excited and a
ground state. Light amplification in such systems would only be possible if the
population of the excited state was larger than that of the ground state. Such a
population ratio is called inversion. Even with sustained excitation, the population of
the two states in a two-level system can only achieve a balanced distribution; it is not
possible to achieve inversion.

However, in three- or four-level systems, inversion may be possible by a process
called optical pumping (Fig. 13.22). Absorption of light with appropriate energy can
excite molecules from the ground state to level 1, from which they transit into level
2. If the life time of level 2 is much larger than that of level 1, it is possible to build up
a large population of level 2. From this state, the molecule can transition to level 3 by
stimulated emission and thus release a photon. If the life time of level 3 is much
shorter than that of level 2, the molecule quickly relaxes into the ground state from
which it can be excited again into level 1. Importantly, the population of level
3 needs to be fairly small compared to level 2. If this process is repeated many
times by means of a constant feedback, an oscillating system is generated that can
produce an enormous amplification. This is technically achieved in an optical
resonator that sends the photons multiple times through a tube; oscillating properties
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are possible if the resonator length is an integer multiple of half of the wavelength of
the emitted light.

The laser medium can be a gas, liquid, or solid semi-conducting material. The
excitation of the laser medium may be achieved electrically, with light flashes or
even the reaction enthalpy of an exothermic chemical reaction. After excitation, a
photon may be emitted spontaneously in the long direction of the resonator. This
photon can serve as the stimulating photon that elicits release of another photon by a
neighbouring molecule. As this process continues, more and more photons are
emitted which then reach a mirror at one end of the resonator. The light is reflected
back into the laser medium and leads to further amplification as it travels into the
opposite direction. At the other end of the resonator is a partially transparent mirror
that reflects most of the light back into the medium. Owing to the relationship
between the resonator length and the wavelength of the emitted light, an oscillation
results since forth- and back-running light waves are always in phase. Some of the
light can leave the resonator through the partially transparent mirror (output coupler)
such as to be used for particular purposes.

13.5 Spectroscopic Methods Involving X-rays

13.5.1 Photoelectron Spectroscopy

In Sect. 8.1.3 we discussed the photoelectric effect that described the release of
electrons from a metal plate that is exposed to electromagnetic radiation (Fig. 8.3).
From Einstein’s frequency law (Eq. 8.8) it became clear that the energy of the
incident light (h�ν) equals the work required to release electrons from the material
(h�νcath) and the kinetic energy of the released electrons (½�me�v2):

τ1

τ2 τ3

τ2

Fig. 13.22 Schematics of
optical pumping in a four-
level system
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h � ν ¼ h � νcath þ 1
2
�me � v2: ð8:8Þ

This photoelectric effect can also be observed with non-metals, and the frequency
law is then formulated more generally as

h � ν ¼ Ii þ 1
2
�me � v2 ð13:38Þ

where, according to Koopman’s theorem, Ii is the ionisation energy, i.e. the energy
required to expel an electron from a particular orbital i.

This effect forms the basis of photoelectron spectroscopy where light of a
particular wavelength (monochromatic light) is directed onto a sample and the
kinetic energy of released photoelectrons is determined. Energy measurements of
electrons require conditions of very high vacuum; therefore, fairly sophisticated
equipment as well as careful sample preparation is required for such experiments.
The choice of light source depends on whether photoelectrons originating from
valence orbitals (with low ionisation energies) or such from deeper orbitals (with
high ionisation energies) are investigated. For the former, UV light available
e.g. from helium gas discharge lamps is used; this is known as UV photoelectron
spectroscopy (UPS). Spectra obtained from UPS show peaks that correspond to the
ionisation energies of the valence orbitals, but also a fine structure due to vibrational
levels of the molecular ion, which facilitates the assignment of peaks to bonding,
non-bonding or anti-bonding molecular orbitals.

Photoelectrons originating from core orbitals require higher energies in the X-ray
region. These types of experiments are known as X-ray photoelectron spectroscopy
(XPS). In contrast to valence electrons, the electrons in core orbitals of an atom
should not be affected by neighbouring atoms. At a first approximation, XP spectra
of a particular element therefore show peaks at the same energy irrespective of
whether it exists as an isolated atom in the gas phase, covalently bonded in a
molecule or embedded in a solid. XP spectra are therefore ideal to determine the
elemental composition of samples (a technique known as electron spectroscopy for
chemical analysis, ESCA).

Closer inspection shows that the type of bonding does have a small effect on the
position of the core photoelectrons in XP spectra and small shifts are seen when
comparing the same element in varying bonding environments.

13.5.2 X-ray Diffraction

When discussing the scattering of light by atoms and molecules in previous sections
(e.g. such as in the case of Raman spectroscopy), we very much focussed on the
scattering by single isolated molecules. When atoms and molecules are arranged in a
periodic array with long-range order, the superposition of light scattering from
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individual atoms gives rise to the phenomenon of diffraction, due to constructive
interference of waves at particular angles.

The scattering of light arises from the interaction of electromagnetic radiation with
matter which causes the electrons in the exposed sample to oscillate. The accelerated
electrons, in turn, will emit radiation of the same frequency as the incident radiation
(secondary waves). In a crystalline sample, the individual atoms can be considered
point scatterers which all emit secondary waves. The strength with which an atom
scatters light is proportional to the number of electrons around that atom. Upon
superposition of individual secondary waves, the phenomenon of interference occurs.
Depending on the displacement (phase difference) between two waves, their
amplitudes either reinforce or cancel each other out. The maximum reinforcement is
called constructive interference, the cancelling is called destructive interference. The
interference gives rise to dark and bright rings, lines, or spots, depending on the
geometry of the object causing the diffraction. Diffraction effects increase as the
physical dimension of the diffracting object (aperture) approaches the wavelength of
the radiation. When the aperture has a periodic structure, for example in a diffraction
grating, repetitive layers or crystal lattices, the features generally become sharper.

Constructive interference of secondary waves from point scatterers occurs only
when the diffraction condition is met. Using a geometric approach (Fig. 13.23), the
father-son team of William Henry and William Lawrence Bragg found that the
diffraction condition is met for re-radiated waves that enclose an angle of 2�θ with
the incident beam of monochromatic radiation (i.e. single wavelength), if the path
difference is equal to an integer multiple of the wavelength (Bragg and Bragg 1913).
The diffraction condition is known as Bragg’s law:

n � λ ¼ 2 � d � sin θ ð13:39Þ

From the observed diffraction rings (powder/multi-crystalline samples) or spots
(mono-crystalline samples) that appear at a particular angle 2�θ with respect to the

Fig. 13.23 Geometric construction to explain the Bragg diffraction
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incident beam, one can therefore calculate distances of lattice planes (d ) via the
geometric relationship with the integer multiples (n) of the wavelength λ.

Since the distances between atoms or ions are at the order of 10�10 m (1 Å),
diffraction methods used to determine structures at the atomic level require radiation
in the X-ray region of the electromagnetic spectrum, or beams of electrons or
neutrons with a similar wavelength. We recall from Sect. 8.1.5, that electrons
(as well as neutrons) are particles, but also possess wave properties with the
wavelength depending on their energy (DeBroglie relationship). Accordingly, dif-
fraction can not only be observed X-rays but also electron and neutron beams.

Crystalline materials are characterised by the long-range order/periodic arrange-
ment of atoms. The unit cell of a crystal is the basic repeating unit that defines the
crystal structure. It repeats in all three dimensions and thus defines the lattice
parameters of the crystal. Parallel planes of atoms intersecting the coordinate system
of the unit cell define directions and distances in the crystal. The different sets of
parallel planes are characterised by their intercepts with the axes of the coordinate
system (defined by the unit cell). The reciprocal fractional intercepts are called the
Miller indices (h with x-axis, k with y-axis and l with the z-axis), which together with
the distance dhkl between the parallel planes in the set, describe a particular set of
planes that elicits a diffraction spot at the angle 2�θ.

Notably, in contrast to the definition of resolution in optical microscopy (see Sect.
8.1.5), the resolution of structures derived by diffraction methods is the smallest
distance dhkl of lattice planes (corresponding to the maximum reflection angle θ) that
can be resolved on the diffraction image.

13.5.3 Mößbauer Spectroscopy

Similar to the resonance phenomena discussed in earlier sections of this chapter,
there is a phenomenon of nuclear resonance of γ-rays. If a particular nucleus with
Z protons (¼ order number) and N neutrons exists in an excited state of the energy
level Eexc, it can transition into the ground state with the energy level Eground and
emit the energy difference as a photon; due to the magnitude of the energy difference

E0 ¼ Eexc � Eground,

the photon will be a γ-ray. If this photon hits another nucleus of the same element,
that second nucleus can transition from the ground into the excited state. As we have
seen earlier, such resonance phenomena are possible only if the incident photon
possesses exactly the same energy that corresponds to the difference between the
energy levels of the excited and the ground states.

However, similar to a gun, the excited nucleus experiences a recoil effect when
emitting a γ-ray photon, owing to the conservation of the total momentum. The
recoil effect results in the nucleus to be kicked back, in the direction opposite to the
emitted photon. Since the principle of conservation of energy still needs to be
considered, too, the emitted photon possesses an energy that is slightly less than
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the energy difference between the ground and excited states of the transitioning
nucleus; the energy of the recoil effect needs to be subtracted from the energy
difference between the two nuclear states:

Ephoton ¼ E0 � Erecoil: ð13:40Þ
The recoil energy of a free atom or molecule can be calculated as per

Erecoil ¼ E2
0

2 � m � c2 : ð13:41Þ

Since the energy E0 takes substantial values (due to the photons being γ-rays), the
recoil energy Erecoil is orders of magnitudes larger than the natural line width of a
transition. The emitted photon thus carries less energy than the resonance difference
E0 (Eq. 13.40) and this difference cannot be ignored; this is different with electro-
magnetic radiation of lesser energies where the recoil energies are less than the
natural line widths, and the recoil effect thus does not play a significant role.

As the absorbing nucleus also experiences a recoil effect as it receives the
incoming photon, for a successful resonance transition to occur the energy of the
incoming photon needs to carry not only the resonance energy E0, but also the
energy to compensate for the recoil effect:

Ephoton ¼ E0 þ Erecoil: ð13:42Þ
The energies of emitted and received photons are therefore separated by 2�Erecoil

(Eqs. 13.40, 13.41) and, due to the large value of Erecoil with respect to the natural
line width, do not overlap (Fig. 13.24). It is thus virtually impossible to observe this
resonance phenomenon in the gas or liquid phase.

Fig. 13.24 The γ-ray emission and absorption lines observed with free atoms do not appear at the
theoretical energy E0 but are shifted to higher/lower energies due to the recoil effect. In order for the
resonance condition to be met in the absorption case, the incoming γ-ray needs to possess a higher
energy than the difference between the two atomic energy levels in order to account for the
additional energy when transferring momentum (recoil). For emitted photons, the energy of the
γ-ray is decreased by the amount of the recoil energy
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However, Rudolf Mößbauer discovered in 1958 that in the crystalline phase the
crystal lattice is able to absorb the recoil energy and thus allows the observation of
nuclear resonance (Mößbauer 1958). This is called the Mößbauer effect, which led to
award of a Nobel prize to his discoverer in 1961; the criterion for it to occur is
generally formulated as

E2
0

2 � m � c2 < kB � Θ ð13:43Þ

whereby Θ is a measure for the strength of the crystal lattice (the so-called Debye
temperature). For a given temperature the probability of a successful nuclear reso-
nance to occur is higher the stronger atoms are embedded in a crystal. At lower
temperatures, the probability of recoil-free emission and absorption of photons
increases.

In a Mößbauer spectrometer, the resonance absorption of emitted photons due to
nuclear transitions is disturbed in a controlled fashion by varying the energies of the
incoming photons. This is achieved by mounting the emitter of the photons (source)
on a drive that moves the source with constant velocity either towards or away from
the sample (absorber). Due to the externally controlled velocity, the emitted photons
experience an additional momentum (Doppler effect) and their energy is thus higher
or lower than the transition energy E0.

If the velocity of the moving source is varied from zero to a maximum value, then
the resonance condition is only met at zero velocity and the overlap of the emission
and the absorption lines decreases as the photons emitted by the source are subject to
significant Doppler shifts and their energies thus deviate from E0. Since the detector
in a Mößbauer spectrometer acquires the transmittance of photons through the
sample (absorber), the maximum signal is registered in the regions outside the
resonance condition and the lowest transmittance is registered when the resonance
condition is met exactly (see Fig. 13.25).

Fig. 13.25 Mößbauer
spectra are recorded as
relative transmission which is
the ratio of γ-quant counts in
the resonance range and the
number of counts in the
non-resonance range. This
results in a resonance curve
with lowest transmission at
the velocity of the source that
exactly meets the resonance
condition. The isomeric shift δ
is defined as the offset to zero
velocity
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The number and position of resonance lines in Mößbauer spectra depend on the
interactions between nuclei as well as the electric and magnetic fields experienced by
the nuclei. These fields are dominated by electrons in the valence shell which define
many chemical and physical properties of substances. Three parameters of
Mößbauer spectra can be used to assess the interactions between nuclei (see
Table 13.7):

• isomeric shift
• electric quadrupole splitting
• magnetic splitting.

Suitable nuclei for Mößbauer spectrometry include Fe, Ni, Zn, Ru, Ag as well as
all elements of the third transition metal row, and most lanthanide and actinide
metals.

Table 13.7 Summary of the main parameters observed in Mößbauer spectra of substances in solid
phase

Parameter Type of interaction Description

Isomeric
shift

Interaction between
nucleus and electrons

Reminiscent of the chemical shift observed in NMR.
Information about the absorber:
• oxidation state
• binding properties of complexes
• electronegativity of ligands

Quadrupole
splitting

Interaction of the
nuclear quadrupole
momentum and the
electric field at the
nucleus

Only possible for nuclei with a spin I > ½; results in
(I + ½) sub-levels.
Information about the absorber:
• spin state
• oxidation state
• molecular symmetry
• binding properties, magnetic behaviour

Magnetic
splitting

Interaction between
the nuclear magnetic
momentum and the
magnetic field at the
nucleus

Only possible for nuclei with a spin I > 0; results in
(2�I + 1) sub-levels.
Reminiscent of the hyperfine splitting (Zeeman effect)
observed in EPR.
Information about the absorber:
• spin state
• oxidation state
• molecular symmetry
• binding properties, magnetic behaviour
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13.6 Atomic Spectroscopy

The interactions of matter with radiation discussed in this chapter so far mainly
focussed on molecules; the resulting spectroscopic methods are therefore invaluable
for the investigation of structure and properties of molecular matter. However, there
also particular interactions between electromagnetic radiation and single atoms.
These interactions and the spectroscopic methods arising will be the subject of this
section, and also close the loop to some observations and concepts we have
discussed earlier. At few previous instances we have made reference to atomic
spectra. In Sect. 8.2.1, we used atomic spectroscopy to learn about the fabric of
atoms, and in Sect. 10.3.2, we discussed the ionisation energies of elements (derived
from atomic spectroscopy) and the concept of shells. Furthermore, the importance of
atomic spectroscopy for the study of surfaces and surface processes was in Sect. 7.3.

Clearly, there will be two types of electrons that can reveal information about the
particular atoms studied. If the radiation used is of relatively low energy (such as in
the optical spectra), the electrons investigated will be those of the outer (valence)
shell, i.e. those that define the chemical behaviour of an atom. Radiation of high
energy, in contrast, will be probing the tightly bound electrons in the inner (core)
shells.

13.6.1 Optical Spectroscopy

When we considered the line spectrum of hydrogen in Sect. 8.2.1, we learned that
the different spectral series observed with hydrogen in either atomic absorption or
emission spectroscopy followed a particular relationship

1
λ
¼ R1 � 1

n20
� 1
n2

� �
ð8:14Þ

whereby R1 is the Rydberg constant, and n0 and n are the principal quantum
numbers of the lower and higher energy states, respectively, between which an
electronic transition occurs.

If we now consider heavier atoms that also possess only one electron like
hydrogen, such as

Heþ, Li2þ, Be3þ, B4þ andC5þ,

we appreciate that their fabric is very similar to that of hydrogen. The difference is
that these ions possess a heavier nucleus and multiple nuclear charges (order number
Z > 1). Their spectra can be observed under extreme conditions, for example when
studying the light of stars. The spectra of these one-electron atoms are very similar to
that of hydrogen, but the individual lines are shifted to higher frequencies. Impor-
tantly, the values of the Rydberg constant for those heavier ions differs from that of
hydrogen. The reason for this discrepancy is that when deriving R1 it is assumed
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that an electron of mass me orbits around a nucleus of indefinitely high mass;
therefore, the nucleus is assumed non-moving. However, nuclei with a real mass
mnucleus rotate together with the orbiting electron around the centre of gravity.
Instead of the mass of an orbiting electron (me), one needs to use the reduced
mass (see Sect. 9.2.1), which in this case is given as

μ ¼ me � mnucleus

me þ mnucleus

The Rydberg constant for atoms with real mass mnucleus is therefore obtained as

Rmnucleus ¼
R1

1þ me
mnucleus

: ð13:44Þ

For optical transitions in heavier atoms (than hydrogen) with one electron, one
also needs to consider that the nuclear charge is greater than +1e. The field experi-
enced by the orbiting electron is thus different than in the case of hydrogen and
depends on the nuclear charge, represented by the order number Z. Equation 8.13
therefore needs to be adjusted for the heavier one-electron atoms and then becomes

1
λ
¼ Z2 � Rmnucleus �

1

n20
� 1
n2

� �
: ð13:45Þ

The spectra of atoms with more than one electron are more complicated than
those of atoms with just one electron. The wavelengths at which individual lines
appear in atomic emission or absorption spectroscopy are, of course, again given by
the difference between the energies of the two states between which the transition
occurs. However, compared to the fairly simple spectrum of hydrogen-like atoms
(see above), the number of lines observed with multi-electron atoms is much larger
and can be explained by superposition of different series. Historically, the individual
terms (i.e. energy levels) have been called S (sharp), P (principal), D (diffuse) and
F (fundamental); the explanation of these different series in terms of the principal
quantum number n is illustrated in Table 13.8 (see also Fig. 13.26).

Table 13.8 Term series in optical spectroscopy, illustrated using sodium as an example

Term series Na (1s2 2s2 2p6 3s1) General

Principal series 3S ! nP n¼ 3, 4, 5, . . . n0S ! n1P n1 ¼ n0, n0+1, n0+2, . . .

Sharp series 3P ! nS n¼ 4, 5, 6, . . . n0P ! n1S n1 ¼ n0+1, n0+2, n0+3, . . .

Diffuse series 3P ! nD n¼ 3, 4, 5, . . . n0P ! n1D n1 ¼ n0, n0+1, n0+2, . . .

Fundamental
series
(Bergmann
series)

3D ! nF n¼ 4, 5, 6, . . . n0D ! n1F n1 ¼ n0+1, n0+2, n0+3, . . .
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Optical Spectra of Alkali Metals
The optical spectra of alkali metals are quite similar to that of the hydrogen atom,
owing to the fact that only one electron is responsible for the electronic transitions
giving rise to these spectra. In this context, the nucleus and the non-valence electrons
are often seen as an entity called the atomic core. The core electrons shield the
nuclear charge up to the effective nuclear charge (1 e in case of the alkali metals).
The effective nuclear charge is compensated by the valence electron. However, in
contrast to the hydrogen atom, the effective nuclear charge experienced by the
valence electron is not a point charge. The potential depends on the relative location
of the valence electron with respect to the core and is therefore no longer of spherical
symmetry. As a consequence, the n2 different energy levels (see Eq. 10.8) are no
longer degenerate, and assume different values depending on the orbital angular
momentum l.

Therefore, the spectroscopic terms S, P, D and F are linked to orbital quantum
number l, in a similar fashion like the atomic orbitals (see Table 10.5). In order to

Fig. 13.26 The term scheme of sodium. The inset shows the dublet splitting of lines in spectra of
alkali metals due to spin-orbit coupling
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avoid confusion, atomic orbitals are denoted in lower case and spectroscopic terms
in upper case letters (Table 13.9):

In Sect. 10.2.3, we discussed the phenomenon of a magnetic field arising from the
motion of a charged particle (electron) that spins around its own axis. This magnetic
field couples with the magnetic field arising from the orbiting motion of the electron
around the atomic nucleus. This spin-orbit coupling led us to introduce the total
angular momentum �j, characterised by the quantum number j that can assume the
values

j ¼ lþ sð Þ, lþ s� 1ð Þ, . . . l� sj j: ð10:22Þ
Obviously, we need to consider this phenomenon when assessing the possible

transitions of a valence electron. The selection rules for the optical spectra of the
alkali metals are thus:

Δl ¼ �1 i:e: transitions are only possible between neighbouring terms, and
Δj ¼ 0, � 1 thereby allowing two transitions between S and P terms,

and three transitions between the other terms:

ð13:46Þ
The different possible transitions are illustrated in the term scheme of sodium

(Fig. 13.26). In spectroscopy, the individual quantum states are denoted with
symbols such as

2S1=2,
2P1=2,

2P3=2,
2D3=2,

2D5=2, etc:; general formula : 2�Sþ1Lj

In this nomenclature, the spin multiplicityM ¼ 2 � Σ si + 1 (Eq. 13.8) is shown as
superscript. Then, the spectroscopic term (dependent on the orbital quantum number
l ) is given and the quantum number of the total angular momentum ( j) is appended
as subscript. Since alkali metals have just one valence electron, the total spin is thus
Σ si ¼ ½ and the spin multiplicity is M ¼ 2; such terms are called dublet terms.

Optical Spectra of Multi-electron Atoms
In the context of optical spectroscopy, multi-electron atoms are those that possess
more than one valence electron. The optical spectra of such atoms are thus much

Table 13.9 The spectroscopic terms and the orbital quantum number. Possible values of the
quantum number for the total angular momentum for atoms with one valence electron are also given

Spectroscopic
term L

Orbital quantum
number l

Quantum number of the total angular
momentum ( j)

S 0 0

P 1 1=2, 3=2

D 2 3=2, 5=2

F 3 5=2, 7=2
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more complicated than those of single-electron atoms, since there are multiple term
systems.

In the case of lighter atoms, the orbital momenti~lof individual electrons couple to
form a total orbital momentum ~L. Similarly, the spin momenti �s of individual
electrons couple to yield a total spin momentum �S. Both of those total momenti then

form a total angular momentum~J ¼ ~Lþ ~S. This coupling is called Russel-Saunders
coupling or L-S-coupling.

Heavier atoms possess a larger nuclear charge and therefore the spin-orbit
become as strong as the interactions between individual spins or orbital angular
momenti. In such cases, the orbital momenti �l and spin momenti �s of individual
electrons tend to couple to form individual total angular momenti �j. These individual
total momenti j then form a total angular momentum �j, hence this phenomenon is
called j–j-coupling.

The selection rule for allowed transitions in multi-electron atoms is

ΔJ ¼ 0, � 1: ð13:47Þ

13.6.2 X-ray Spectroscopy

The energy required to elicit emission of optical spectra from atoms may be provided
in the form of thermal energy such as in the flame of a Bunsen burner, a plasma or by
a discharge lamp. As discussed in the previous section, the energy difference in the
quantum states of valence electrons as of the same order as that of the thermal energy
and therefore the spectra arising from transitions of the valence electrons appear in
the range of optical and UV light.

If atoms are exposed to electron beams of much higher energy (10 keV–100 keV),
emission of light at much shorter wavelengths (X-rays) is observed. Notably, this
emission of X-ray light consists of two components, light that contains a continuous
distribution of wavelengths (also known as Bremsstrahlung) as well as characteristic
X-ray emission at particular wavelengths (see Fig. 13.27).

When accelerated electrons impact on matter they are slowed down by the electric
fields of individual atoms. This deceleration results in a loss of kinetic energy which
is released in the form of photons. The different wavelengths of the released photons
thus result from the different kinetic energies of impacting electrons. Therefore, a
minimum wavelength is observed in the Bremsstrahlung; this wavelength
corresponds to the highest kinetic energy in the energy distribution of the impacting
electrons.

A second process arising from the impact of high energy electrons onto matter is
the displacement of an electron from the atomic core (i.e. from an inner shell). The
vacated position is subsequently filled by an electron from an outer shell. This
transition between two energy levels is accompanied by emission of a photon
whose energy equals the energy difference between the two levels of this transition.

13.6 Atomic Spectroscopy 407



The light emitted due to this latter process constitutes the characteristic X-ray
emission of an element.

The individual lines of the characteristic X-ray emission can be classified into
different series that depend on the principal quantum numbers (shells) of the two
energy levels involved in the transition of the electron that fills the gap arising from
the impact of high energy electrons (see Fig. 13.28). As with the optical spectra, the
orbital angular momentum (represented by the quantum number l ) and the total
angular momentum (represented by the quantum number j) give rise to a fine
structure, hence the selection rules for possible transitions are the same as for the
optical spectra:

Δl ¼ �1 and Δj ¼ 0, � 1: ð13:46Þ

The emission of characteristic X-ray photons can also be elicited by directing
X-ray light onto matter. In this case, the process of X-ray emission is called X-ray
fluorescence.

Fig. 13.27 X-ray spectrum obtained with a copper anode and electron beams of increasing energy.
The shortest observed wavelength of the continuous X-ray spectrum shifts to higher energies as the
kinetic energy of the incoming electrons is increased. At the same time, the intensity at individual
wavelengths increases. Note that the wavelengths of characteristic X-ray emission remain constant
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The naming of the lines in X-ray spectra frequently uses the traditional Siegbahn
notation which denotes the shell of the high energy level as an upper case character
(e.g. K) and appends Greek letters (α, β, . . .) as well as numerical indices. Since this
notation is non-systematic, it often appears confusing. A more systematic nomen-
clature has thus been recommended by IUPAC (see Table 13.10).

The Mass Attenuation Coefficient
In Sect. 13.1.1 we saw that there is a loss of intensity as light travels through a
sample of interest. The intensity of the exiting beam can be calculated from Eq. 13.2
and is given as per

I ¼ I0 � e�μ�l, ð13:48Þ
where l is the thickness of the material (in cm) and μ the (linear) attenuation
coefficient (in cm�1) which comprises of two components: the absorption coefficient

Fig. 13.28 Illustration of the allowed electron transitions resulting in the X-ray spectrum of atoms
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τ and the loss off intensity based on scattering (σ). For X-rays, the scattering
attenuation is negligible, therefore μ � τ.

Since the attenuation is dependent on the mass of matter that is penetrated by the
incident beam, the attenuation coefficient is often normalised with respect to the
density ρ, thus yielding the so-called mass attenuation coefficient:

μ
ρ


 �
¼ 1

cm�1

g
cm3

¼ 1
cm2

g
ð13:49Þ

The mass attenuation coefficient is characteristic for a particular element and
independent of the chemical and physical state of the sample. In mixtures and
compounds, the mass attenuation coefficient is an additive property and therefore
be calculated based on the molar ratio of the individual elements in the sample.

Notably, the mass attenuation coefficient depends on the wavelength of the
incident radiation (Fig. 13.29). Moving from longer to shorter wavelengths
(i.e. from lower to higher energy), the value of the mass attenuation coefficient
continuously decreases, until the energy of the incident radiation is sufficient to
remove an electron from the next inner shell; at this point, a strong increase in the
mass attenuation coefficient is observed, giving rise to a so-called absorption edge.
Further increase in the energy of the incident light leads to a renewed decrease of the
mass attenuation coefficient until the energy is sufficient for displacement of an
electron from the next inner shell.

Moseley’s Law
The concepts discussed in the above sections have been concerned with X-ray
spectra observed with a particular atom. An important discovery was made by the
British physicist Henry Moseley in 1913, when he compared the energies of
particular lines, e.g. the Kα2 transition, of different elements (Moseley 1913).
Expressing the energies of these transitions as either the frequency or wavenumber,
a linear correlation between the square root of either ν oreνwith the order number Z is
found:

Table 13.10 Naming of characteristic lines in X-ray spectra

Siegbahn notation

Transition between

IUPAC notation

High energy level Low energy level

Shell Electron state Shell Electron state

Kα1 K 1s LIII 2p3/2 K-L3

Kα2 LII 2p1/2 K-L2

Kβ1 MIII 3p3/2 K-M3

Kβ3 MII 3p1/2 K-M2

Lα1 LIII 2p3/2 MV 3d5/2 L3-M5

Lβ1 LII 2p1/2 MIV 3d3/2 L2-M4

Mα1 MV 3d5/2 NVII 4f7/2 M5-N7
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ffiffiffiffiffiffiffieν
R1

s
¼

ffiffiffi
3
4

r
� Z þ b: ð13:50Þ

For a particular transition between two shells with the principal quantum numbers
nhigh (the inner shell) and nlow (the outer shell), the law can be formulated as:

~v ¼ R1 � Z � að Þ2 � 1
nhigh

� 1
n1ow

� �
, with a ¼ �

ffiffiffi
4
3

r
� b: ð13:51Þ

Interestingly, the term (Z-a) suggests that there is a correction with respect to the
positive charge (given by the number of protons ¼ order number). This correction
makes sense when we consider that an electron jumping from the outer to the inner
shell experiences only the effective nuclear charge, since electrons in inner shells

Fig. 13.29 The X-ray absorption spectrum of molybdenum
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shield the nuclear charge to some degree. This shielding effect is captured by the
constant a.

For example, for the Kα transition (principal quantum numbers nhigh ¼ 1 and
nlow ¼ 2), an electron jumps from the L- to the K-shell to fill a gap caused by a
displaced electron. There is one remaining electron in the K-shell and provides a
shielding of the nuclear charge by about 1�e. Consequently, the constant a is found to
be approximately 1 for this transition.

13.6.3 Auger Electron Spectroscopy

In Sect. 7.3.2, we have introduced the technique of Auger electron spectroscopy as a
method to investigate surface processes. The Auger phenomenon arises as an
alternative pathway when core electrons are displaced by impact of high energy
electrons or photons. As discussed above, the displacement of an inner shell electron
leads to the transition of an electron from an outer shell to fill the gap closer to the
nucleus. The energy released during this transition can be emitted in form of a
photon (characteristic X-ray lines), but also be transferred onto another electron
which is then departing from the atom due to its high energy. Although this process
was discovered independently by Lise Meitner (Meitner 1922) and Pierre Auger in
the 1920s, it has historically been credited to Auger; the emitted electron is thus
called the Auger electron. Auger electron emission and X-ray photon emission are
two competing processes. The Auger electron emission typically dominates in
lighter atoms, whereas X-ray emission is the preferred process in heavier atoms.

As a consequence of the outlined Auger process, the kinetic energy of the emitted
electron equals the energy difference between the two levels involved in the transi-
tion of the electron that closes the gap in the inner shell. Notably, this energy is not
identical with the energy of a characteristic X-ray photon in the X-ray process.
Whereas the latter results in an atom with one positive charge (due to the electron
displaced by the impacting high energy electrons), the Auger process results in a
doubly charged ion (due to one displaced electron and one emitted Auger electron).

In order to characterise individual Auger process, three electron states need to be
described:

• the first state denotes the state from which the primary electron is dislodged
• the second state describes where the electron originates from that fills the inner

shell gap
• the third state identifies the level from which the Auger electron originates.

For example, the the Auger spectrum of palladium shows three distinct peaks
(Fig. 13.30). For all three types of Auger electrons, a hole is generated in the K-shell
by impact of high energy electrons. This core hole can be filled by transition of an
electron from either the LI , LII or LIII levels. The energy released during that
transition is then transferred to an electron in one of the L levels which is then
emitted as an Auger electron from the atom.
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The kinetic energy of Auger electrons is measured by electron energy analysers
which are typically based on retardation or deflection of the emitted electrons as they
pass through a variable electric or magnetic field. The degree of retardation or
deflection is proportional to the kinetic energy. Electrons detected at a particular
energy are then directed into an electron multiplier for analysis. Frequently, Auger
spectra are measured in a differentiated form (Fig. 13.30b, inset) which allows for a
more sensitive detection of peaks.

Importantly, the emission of Auger electrons is not dipole radiation and, there-
fore, selection rules such as those observed with X-ray emission do not apply. The
energy of a particular Auger electron is given by

EAuger ¼ Ehole � Esecondð Þ � E0
binding, ð13:52Þ

where Ehole is the energy of the electron being displaced, Esecond is the energy of the
electron replacing the dislodged electron and E0

binding is the binding energy of the
Auger electron in the atom, corrected for the doubly charged state of the atom. Note

a

b

Fig. 13.30 (a) Schematics of particular Auger processes. (b) Auger spectrum of palladium based
on data by Babenkov1982. The inset shows the differentiated form of the Auger spectrum
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that the energy of the impacting electron is not featured in Eq. 13.52, since it does not
affect the energy of the emitted Auger electrons. The only requirement is that the
energy of the impacting electron is sufficiently large to displace an electron from a
core shell. The energy of the impacting electron thus needs to be at least as high as
the binding energy of the electron to be displaced.

Equation 13.52 shows further that the energies of Auger electrons arise as
characteristic for particular elements. Auger electron spectra are thus valuable
tools for identification of atoms (see also Sect. 7.3.2), but also for measuring energy
levels of the different shells.

13.7 Exercises

1. The infrared spectrum of carbon monoxide shows a vibration (v ¼ 0 ! v ¼ 1)
band at 2176 cm�1. What is the force constant of the C-O bond, assuming the
molecule behaves as a harmonic oscillator?

2. Determine the ratio of populations of the vibrational levels v ¼ 1 and v ¼ 0 for
carbon monoxide at 300 K and 1000 K. The wavenumber for the transition from
v ¼ 0 to v ¼ 1 is 2176 cm�1.

3. Which spectroscopic symbol denotes the ground state of Li? What is the symbol
of the lowest excited state? What feature can be deduced for the spectral line in
the optical spectrum for this transition?

4. In the free electron molecular orbital method, the π electrons in an alkene with
conjugated double bonds are assumed to be freely moving within extent of the
conjugation system. The conjugation system can be treated as a one-dimensional
box.

(a) Calculate the box length for the conjugation system in hexatrien, assum-
ing that the C-C-bond length is 1.4 Å and considering that the electrons
are free to move half a bond length beyond each outermost carbon.

(b) Calculate the wavelength of the lowest energy peak in the absorption
spectrum of hexatriene using the free electron molecular orbital method.

5. How many lines/clusters are to be expected in the 1H-NMR spectra of
(a) benzene, (b) toluene, (c) o-xylene, (d) p-xylene, (e) m-xylene?

6. Predict the number of hyperfine lines in the proton coupling observed in the ESR
spectrum of the benzene anion radical C6H6

�.

7. Determine the Raman and infrared activity of one symmetric and two different
anti-symmetric vibrational modes of the square planar molecule XeF4.
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Appendix A Mathematical Appendix

A.1 Basic Algebra and Operations

A.1.1 Exponentials

Definitions

an ¼ a�a�a�a. . . �a a
1
n ¼ ffiffiffi

an
p

a1 ¼ a a
m
n ¼ ffiffiffiffiffiffi

amn
p

a0 ¼ 1 a�
m
n ¼ 1ffiffiffiffi

amnp

a�n ¼ 1/an

Computation rules

axaz ¼ ax + z axbx ¼ (ab)x

ax

az ¼ ax�z ax

bx ¼ a
b

� �x
(ax)z ¼ ax � z

A.1.2 Logarithm

Definition

logba ¼ x , bx ¼ a

Special cases

log10a ¼ lga a ¼ 10x , x ¼ lga
logea ¼ ln a a ¼ ex , x ¼ ln a e ¼ 2:71828 . . .

# Springer International Publishing AG, part of Springer Nature 2018
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Computation rules

logb(u � v) ¼ logbu + logbv logb
u
v

� � ¼ logbu� logbv

logb(u
z) ¼ z � logbu logb

ffiffiffi
un

p ¼ 1
n logbu

Change of base

logca ¼ logba
logbc

A.1.3 Nonlinear Equations

The quadratic equation a � x2 + b � x ¼ � c , a � x2 + b � x + c ¼ 0

has two solutions x1,2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4�a�c

p
2�a , if b2 � 4 � a � c� � � 0

A.2 Differentials

A.2.1 Functions of One Variable

We consider a quantity U which changes over time t; U is then a function of t and
denoted as U(t).

At time t1 (start): U ¼ U(t1)
At time t2 (end): U ¼ U(t2)
The difference in U at times t1 and t2 (Fig. A.1a) is indicated as ΔU (differences

are always calculated as end minus start):

ΔU ¼ U t2ð Þ � U t1ð Þ
The slope of the line joining U(t2) and U(t1) is calculated as

slope ¼ ΔU
Δt

¼ U t2ð Þ � U t1ð Þ
t2 � t1

The use of Δ to indicate a difference does not imply anything about the size of the
difference. If we want to imply a very small change, we write δU instead of ΔU
(Fig. A.1b).

We now consider U to be a continuous function of t as opposed to the discrete
function with two individual points as above (Fig. A.1c).

Now consider two time points t1 and t2 very close to each other, such that the
difference between the two is infinitesimal (infinitely small). The line passing through
the two points U(t2) and U(t1) is now called the tangent of U at point t1 (Fig. A.1d).

416 Appendix A Mathematical Appendix



a

b

c

d

Fig. A.1 Graphical
illustration of differences and
differentials. For explanation
see text
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The slope of the tangent is still ΔU/Δt, but because Δt is now infinitesimal small,
we use ‘d’ instead of ‘Δ’:

dU
dt

¼ lim t!0
ΔU
Δt

dU/dt tells us how U is varying with t at a particular point.
The lower case ‘d’ indicates that the changes in t (and normally U ) are infinitesi-

mal. There are various functions f for which the derivative is known analytically,
e.g. f(x) ¼ ln x ¼> df(x)/dx ¼ x�1.

If we are told that

dU
dt

¼ f tð Þ

then a small change in t will result in a small change in U:

dU ¼ f tð Þdt
dU is called the differential of U. dU

dt

� �
is called the Leibniz notation; another notation

may be U0(t).
You can integrate both sides of this equation to get the overall change in U as the

system changes from its initial to its final state:

ðU t2ð Þ

U t1ð Þ

dU ¼
ðt2
t1

f tð Þdt

U t2ð Þ � U t1ð Þ ¼
ðt2
t1

f tð Þdt

ΔU ¼
ðt2
t1

f tð Þdt

A.2.2 Functions of More Than One Variable

Consider we have a function that varies with two variables, z and t (see Fig. A.2);we
denote this as U(z,t).

How does U change with t when z is fixed? This may be denoted as:

dU
dt

� �
z

¼ f tð Þ, but . . .
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we replace d
dt with

δ
δt (which is called the partial derivative) to indicate that U is a

function of more than one variable:

δU
δt

� �
z

¼ f tð Þ

So if z is fixed:

d Uð Þz ¼ f tð Þdt ¼ δU
δt

� �
z

dt

Similarly, we can now look at how U changes with z when t is fixed:

δU
δz

� �
t

¼ g zð Þ

d Uð Þt ¼ g zð Þdz ¼ δU
δz

� �
t

dz

Therefore, the total differential of U when both variables, t and z, are allowed to
vary is given by:

dU ¼ f tð Þdt þ g zð Þdz ¼ δU
δt

� �
z

dt þ δU
δz

� �
t

dz

A.2.3 Product Rule

The product rule is a formula used to find the derivatives of products of two or more
functions.

Fig. A.2 Variation of a
function U in dependence of
two parameters, t and z
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Consider the function h being the product of two functions, f and g:

h xð Þ ¼ f xð Þ � g xð Þ
The derivative of h is then calculated according to the product rule:

h0 xð Þ ¼ f 0 xð Þ � g xð Þ þ f xð Þ � g0 xð Þ
which can be written in the Leibniz notation:

dh
dx

¼ f � dg
dx

þ g � df
dx

or, after multiplying with dx on both sides:

dh ¼ f � dgþ g � df

A.2.4 Functions with Known Derivatives

Table A.1 Functions with known derivatives

Function Derivative

f(x) ¼ a; a ¼ const. f 0(x) ¼ df(x)/dx ¼ 0

f(x) ¼ x f 0(x) ¼ df(x)/dx ¼ 1

f(x) ¼ xn f 0(x) ¼ df(x)/dx ¼ n � xn�1

f(x) ¼ 1/x ¼ x�1 f 0(x) ¼ df(x)/dx ¼ �1/x2 ¼ �x�2

f(x) ¼ 1/xn ¼ x�n f 0(x) ¼ df(x)/dx ¼ �n/xn+1 ¼ �n�x�n�1

f(x) ¼ ffiffiffi
xn

p ¼ x1/n f 0(x) ¼ df(x)/dx ¼ 1/n�xn�1

f(x) ¼ ex f 0(x) ¼ df(x)/dx ¼ ex

f(x) ¼ ax; a ¼ const. f 0(x) ¼ df(x)/dx ¼ ax�ln a

f(x) ¼ ln x f 0(x) ¼ df(x)/dx ¼ 1/x ¼ x�1

f(x) ¼ sin x f 0(x) ¼ df(x)/dx ¼ cos x

f(x) ¼ cos x f 0(x) ¼ df(x)/dx ¼ �sin x

A.3 Integration

Integrating is similar to summing a property as is it gradually changes from one state
to another. Therefore, U is simply the sum of all the infinitesimal changes dU.

There are various functions f for which the integral is known analytically. You
may remember a number of these (e.g.

Ð
x�1 dx ¼ ln x).
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A.3.1 Functions with Known Integrals

Table A.2 Functions with known integrals

Function Integral

f(x) ¼ a; a ¼ const.
Ð
f(x) dx ¼ Ð

a dx ¼ a�Ð dx ¼ a�x
f(x) ¼ x

Ð
f(x) dx ¼ Ð

x dx ¼ 1/2 x
2

f(x) ¼ xn
Ð
f(x) dx ¼ Ð

xn dx ¼ 1/(n+1) xn+1

f(x) ¼ 1/x ¼ x�1 Ð
f(x) dx ¼ Ð

1/x dx ¼ ln |x|; x 6¼ 0

f(x) ¼ 1/xn ¼ x�n Ð
f(x) dx ¼ Ð

x�n dx ¼ 1/(‑n+1) x‑n+1 ; n 6¼ 1

f(x) ¼ ffiffiffi
xn

p ¼ x1/n
Ð
f(x) dx ¼ Ð

x1/n dx ¼ 1/(1/n+1) x1/n+1

f(x) ¼ ex
Ð
f(x) dx ¼ Ð

ex dx ¼ ex

f(x) ¼ eax
Ð
f(x) dx ¼ Ð

eax dx ¼ 1/a�ex
f(x) ¼ ax; a ¼ const.

Ð
f(x) dx ¼ Ð

ax dx ¼ ax/(ln a)

f(x) ¼ ln x
Ð
(lnx) dx ¼ x � ln x � x

f(x) ¼ sin x
Ð
(sinx) dx ¼ � cos x

f(x) ¼ cos x
Ð
(cosx) dx ¼ sin x

f(x) ¼ sin2(a � x) Ð
sin 2 a � xð Þ dx ¼ x

2
� sin 2 � a � xð Þ

4 � a

A.3.2 Rule for Partial Integration

The rule for partial integration is useful for integration of more complicated
functions. In particular, the rule relates the integral of a product of two functions,Ð
u(x)v0(x), to the integral of their derivative and anti-derivative,

Ð
u0(x)v(x)dx. It is

frequently used to transform the anti-derivative of a product of functions into an anti-
derivative for which a solution can be more easily found.ð

u xð Þv0 xð Þdx ¼ u xð Þ � v xð Þ �
ð
u0 xð Þv xð Þdx

Example: Integrate the function ln x.ð
ln xdx

This can be solved by using partial integration. Define two appropriate functions
u and v:

u ¼ ln x and dv ¼ dx, i:e: v ¼ x:

Therefore:
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ð
ln xdx ¼

ð
udv

We know the derivative of u:

u ¼ ln x ) du ¼ 1
x
dx

The anti-derivative of dv is v, therefore:

dv ¼ dx ) v ¼ x

So we can now solve the substituted integral:Ð
ln x dx ¼ Ð

udv ¼ u � v� Ð
vduÐ

ln x dx ¼ ln x � x� Ð
x � 1

x
dxÐ

ln x dx ¼ x � ln x� Ð
dx

With
Ð
dx ¼ x this yields: Ð

ln x dx ¼ x � ln x� x

A.4 Data Visualisation and Fitting

A.4.1 Software

Very commonly, basic data visualisation and analysis (such as averaging, error
estimation and fitting with linear functions) can be carried out with generic spread-
sheet programs such as MS Excel or the spreadsheet programs from the open-source
suites LibreOffice or OpenOffice. More sophisticated software dedicated to data
analysis and visualisation include the commercial products SigmaPlot, Origin,
Prism, IGOR and others. There are also free and open-source programs (see
Table A.3).

A.4.2 Independent and Technical Repeats

Measurements are repeated in order to obtain estimates of the precision of the
experimental method. Repeating the measurement of an individual sample several
times does not constitute an independent repeat; rather, it is a technical repeat. In
order to obtain independent repeats, the same condition needs to be reproduced
multiple times. A commonly used parameter to assess precision is the estimated
standard deviation σexp:
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σexp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yexp � μexp
� �2

s

where μexp ¼
1
n

Xn
i¼1

yexp is the mean of the experimental values.

A.4.3 Data Visualisation

The way data are presented can make a substantial difference to the perception of
experimental results by the reader. A typical example is the scale chosen; the plot of
a baseline can be presented as a steady straight line or as noisy data, depending on
the scale of the y-axis. Other aspects to consider are the type of plot used (line
graphs, bar graphs, pie charts, etc).

Here, we will focus on some basic considerations for simple two-dimensional
plotting of data. In general, the following should be followed (Fig. A.3):

• Plots are presented with respect to two dimensions, one on the x-, the other on the
y-axis. Always label the axes with the parameter that is plotted in that dimension;
include the units. For example: x-axis: c(NaOH) in mM; y-axis: A(280 nm)—no
units, since absorbance is a scalar.

• The scale needs to be available to the reader. This means that in most cases one
needs to indicate the origin of each axis (‘0’) and at least one data point
(e.g. ‘1 mM’).

• Choose appropriate scales on the axes, and avoid overly long numbers. For
example, instead of ‘0.0001 M, 0.0002 M, . . .’ label ticks with ‘0.1 mM,
0.2 mM, . . .’.

• If an experiment comprised of acquisition of individual data points (e.g. absorbance
of a sample at select concentrations of a reactant), then the data are discrete data
points and should be plotted as individual points, without connecting them with
lines; this is called a scatter plot. Only if (quasi-)continuous data have been acquired

Table A.3 Some free and open-source software for data analysis and visualisation

Software Web page Reference

R http://www.R-project.org/

SDAR http://www.structuralchemistry.org/pcsb/sdar.php Weeratunga et al. (2012)

Grace http://plasma-gate.weizmann.ac.il/Grace/

gnu-plot http://www.gnuplot.info/

Fityk Wojdr (2010)

peak-o-mat http://lorentz.sourceforge.net/

HippoDraw http://www.slac.stanford.edu/grp/ek/hippodraw/

Veusz http://home.gna.org/veusz/

ParaView http://www.paraview.org/
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(e.g. by using sensor readings at a reasonably high sampling rate), the data can be
shown as line graphs. In a line plot, individual data points may or may not be visible
and subsequent data points are connected by a line.

• If independently repeated measurements for individual conditions are available,
the values for each condition are averaged and the estimated standard deviation is
calculated. Error bars are constructed by adding and subtracting the estimated
standard deviation to/from the averaged value.

• Discrete data (scatter plots) are never smoothed; only (quasi-)continuous data
may be subjected to smoothing procedures.

• Data fitting may be undertaken as a means to show agreement with a theoretical
model. Data fits are superimposed on the experimental data as line plots. Since
data fits arise from a theoretical model with a numerical equation, they are per
definition continuous data.

A.4.4 Data Fitting

When fitting a theoretical model to experimental data, statistical parameters need to
be calculated to assess the goodness of fit between the theoretical and experimental
data. Commonly used statistical parameters include:

Fig. A.3 Example plot of experimental data with superimposed linear fit using the free spreadsheet
software LibreOffice
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In Table A.4, μexp is the mean and σexp the estimated standard deviation of the
experimental data. The parameter χ2 is a weighted measure of error, since it is
divided by the estimated standard deviation (i.e. the error appearing in independent
repeats); the non-weighted χ2 is identical to the summed square error.

A.4.5 Correlation

In order to evaluate the correlation of two different quantities (e.g. the variables x and
y), correlation coefficients can be determined.

The Pearson product-moment correlation coefficient r is a measure of the linear
correlation between two variables x and y, giving a value between +1 and �1:

• +1: total positive correlation
• 0: no correlation
• �1: total negative correlation

r ¼
Pn
i¼1

�
xi � �x

� � �yi � �y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
xi � �x

�2s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
yi � �y

�2s

Here, �x and �y denote the arithmetic mean over all x- and y-values, respectively.
If the two variables x and y are related in a monotonous fashion, but a linear

relationship cannot be expected, then Spearman’s rank correlation coefficient instead
of the Pearson correlation needs to be applied.

Table A.4 Commonly used goodness-of-fit parameters

Parameter Definition Value for perfect fit

Chi-square χ2 ¼ P yexp�yfit
σexp

� �2 0

R-square
R2 ¼

P
yfit�μexpð Þ2P
yexp�μexpð Þ2 with μexp ¼ 1

n

P
yexp

1

Summed square error SSE ¼ ∑ (yexp � yfit)
2 0

R-factor
R ¼

P
jyexp j�jyfit jP

jyexp j
0
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Appendix B Solutions to Exercises

Chapter 2

2.1. Calculate the work done per mole when an ideal gas is expanded reversibly by a
factor of 3 at 120 �C.

Expansionwork : dW ¼ p � dV
The work is done by the system (hence we count it as negative) in a reversible process

from state ‘1’ at the volume Vstart ¼ V1 to state ‘2’ at volume Vend ¼ 3�V1. In order to
obtain the amount work during the entire process, we need to integrate above equation:

ðW2

W1

dW ¼ �
ðVend

Vstart

p � dV

During the reversible process, the outside pressure is constantly adjusted to match
the pressure in the system. Hence, p is a function V and calculated as per the ideal gas
equation:

p ¼ n � R � T
V

Therefore: ðW2

W1

dW ¼ �
ðV end

V start

n � R � T
V

� dV ¼ �n � R � T
ð3�V1

V1

dV
V

W½ �W2
W1

¼ �n � R � T � lnV½ �3�V1
V1

W2 �W1ð Þ ¼ �n � R � T � ln 3 � V1ð Þ � lnV1½ �
ΔW ¼ �n � R � T � ln 3 � V1

V1

ΔW ¼ �1 mol � 8:3144 J
K �mol

� 120þ 273ð Þ K � ln 3
ΔW ¼ �3:6 kJ
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The work done when 1 mol of an ideal gas is expanded reversibly by a factor of
3 at 120 �C is �3.6 kJ.

2.2. A friend thinking of investing in a company that makes engines shows you the
company’s prospectus. Analysing the machine, you realise that it works by
harnessing the expansion of a gas. The operating temperature is approx. constant
at 120 �C, and the gas doubles in volume during the power extraction phase of
operation. It is claimed that the machine produces 5.5 kJ mol�1 of work during
expansion. What advice would you give your friend? Briefly explain the thermody-
namic rationale.

No process can produce more work than an equivalent process (see Exercise 2.1)
running under reversible conditions. The claim that the machine produced 5.5 kJ mol�1

is thus in error. Your friend should not invest.

2.3. Which of the following equations embodies the first law of thermodynamics:

(a) dS ¼ dQrev
T

(b) U ¼ Q + W
(c) ΔSuniverse > 0
(d) Ssystem > 0
(e) Cp ¼ δH

δT

� �
p
:

In the integrated form, the first law of thermodynamics states that the internal
energy of a system (U ) comprises of heat (Q) and work (W ); the correct answer is
therefore (b). (a) is the definition of entropy change of a system for a reversible
process; (c) describes the second, and (d) the third law of thermodynamics; (e) is the
definition of the heat capacity for processes under constant pressure.

2.4. If the pressure is constant, the system is in mechanical equilibrium with its
surroundings and no work is done other than work due to expansion and compres-
sion, which of the following are true:

(a) ΔH ¼ ΔQ and ΔW ¼ � p � ΔV
(b) ΔU ¼ ΔQ and ΔW ¼ � p � ΔV
(c) ΔU ¼ ΔQ – p � ΔV and ΔW ¼ p � ΔV
(d) ΔH ¼ ΔQ – p � ΔV and ΔW ¼ � p � ΔV
(e) ΔU ¼ ΔQ and ΔW ¼ p � ΔV

The correct answer is (a). Under constant external pressure the enthalpy change
equals the transferred heat if only work due to expansion and compression is done.
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In solution (c), ‘ΔU ¼ ΔQ�p�ΔV’ is correct, but ‘ΔW ¼ p�ΔV’ is not correct!

2.5. Which of the following equations define fugacity?

(a) μ pð Þ ¼ μØ pð Þ þ R � T � ln f
pØ

(b) f ¼ p
pØ

(c) μA ¼ μ∗A þ R � T � ln aA

The correct answer is (a). The fugacity replaces the pressure in the equation for
the chemical potential to account for non-ideal behaviour of gases. Fugacity
measures how compressible a gas is compared to the ideal gas; it is measured in
units of pressure. Therefore, (b) is not correct, as this would yield a scalar.
(c) describes the chemical equation for a solution containing a solute A of activity a.

2.6. The chemical potential is defined as:

(a) μ ¼ G
(b) μ ¼ Gm

(c) μ ¼ GØ
m

(d) μ ¼ n � Gm

(e) μ ¼ GØ þ n � R � T � ln p
pØ

(f) μ ¼ GØ
m þ R � T � ln p

pØ

The correct answers are (b) and (f). The chemical potential is defined as the molar
free energy, i.e. the free energy of 1 mol of substance. Note that (e) is not correct, as
these are not molar free energies.

Chapter 3

3.1. Is it possible for a one-component system to exhibit a quadruple point?
For a one-component system (C ¼ 1) to exhibit a quadruple point (P ¼ 4), the

Gibbs phase rule yields F¼ C – P + 2¼ 1–4 + 2¼�1. Since the number of degrees
of freedom cannot be negative, a quadruple point cannot exist in a one-component
system.

3.2. Henry’s law is valid for dilute solutions. Using the Henry’s law constant for
oxygen (solute) and water (solvent) of K(O2)¼ 781�105 Pa M�1, calculate the molar
concentration of oxygen in water at sea level with an atmospheric pressure of
patm ¼ pØ.
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Since the fraction of O2 in the atmosphere is 21%, its partial pressure is
p(O2) ¼ 0.21�patm ¼ 0.21�pØ ¼ 0.21�105 Pa. From Henry’s law, this yields
c(O2) ¼ 0.27 μM.

3.3. Below is the T-x phase diagram of the benzene/toluene system acquired at a
constant pressure of two bar. A mixture that contains 40% benzene is heated steadily
to 122 �C. How many phases are present at this point and what are their
compositions? If the total amount of 1 mol of substances was in the initial mixture
with 40% benzene, how many moles of substances are in the phase(s) at 122 �C?

At 122 �C (395 K), there are two phases: xliq(benzene) ¼ 0.34,
xvap(benzene) ¼ 0.54. According to the lever rule, the ratio of molar amounts in
the liquid and vapour phase is nliq

nvap
¼ 0:72

0:28. Since the total amount of substances in the

mixture was set at n0 ¼ 1 mol, there is nliq ¼ 0.72 mol and nvap ¼ 0.28 mol.

3.4. A mixture of benzene and toluene with x(benzene) ¼ 0.4 is subjected to
fractional distillation at two bar (see Exercise 3.3 above). What is the boiling
temperature of this mixture? How many theoretical plates are required as a minimum
to obtain pure benzene in the distillate?
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The mixture boils at 393 K (120 �C). A minimum of five theoretical plates are
required to obtain pure benzene.

Chapter 4

4.1. Nickel-cadmium batteries are based on the following half-cell reactions:

NiO OHð Þ sð Þ þ H2O lð Þ þ e� ! Ni OHð Þ2 sð Þ þ OH�
aqð Þ

Cd sð Þ þ 2 OH�
aqð Þ ! Cd OHð Þ2 sð Þ þ 2 e�

(a) The e.m.f. of a nickel-cadmium cell is 1.4 V, and the standard Redox potential
of Cd(OH)2(s) is �0.809 V. What is the standard Redox potential of
NiO(OH)(s)?
The half-reactions for the nickel cadmium cell are:

NiO OHð Þ sð Þ þ H2O lð Þ þ e� ! Ni OHð Þ2 sð Þ þ OH�
aqð Þ EØ NiO OHð Þ sð Þ

� �
¼ ?

Cd OHð Þ2 sð Þ þ 2 e� ! Cd sð Þ þ 2 OH�
aqð Þ EØ Cd OHð Þ2 sð Þ

� �
¼ �0:809 V

In order for the nickel-cadmium cell to operate, the second reaction needs to run in
reverse, i.e. it constitutes the oxidation; the first reaction constitutes the reduction.
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e:m:f : ¼ EØ reduction cellð Þ � EØ oxidation cellð Þ
e:m:f : ¼ EØNiO OHð Þ sð Þ j Ni OHð Þ2 sð Þ

� �
� EØ Cd OHð Þ2 sð Þj Cd sð Þ

� �
EØ NiO OHð Þ sð Þ j Ni OHð Þ2 sð Þ

� �
¼ e:m:f :þ EØ Cd OHð Þ2 sð Þj Cd sð Þ

� �
EØ NiO OHð Þ sð Þj Ni OHð Þ2 sð Þ

� �
¼ 1:4 V� 0:809 V ¼ 0:6 V

EØ NiO OHð Þ sð Þj Ni OHð Þ2 sð Þ
� �

¼ 0:6 V:

(b) What is the standard free energy of formation of NiO(OH)(s)?
The standard Gibbs free energy change for the overall nickel half-cell reaction
can be calculated as per:

ΔGØ
r ¼ �z � F � EØ NiO OHð Þ sð Þj Ni OHð Þ2 sð Þ

� �
ΔGØ

r ¼ �2 � 96485 C mol�1 � 0:6 V ¼ �58 kJ mol�1

The standard Gibbs free energy of formation is then obtained from the reaction free
energy:

ΔGØ
r ¼ ΔGØ

f Ni OHð Þ2 sð Þ
� �

þ ΔGØ
f OH�

aqð Þ
� �� ΔGØ

f NiO OHð Þ sð Þ
� �

� ΔGØ
f H2O lð Þ
� �

ΔGØ
f NiO OHð Þ sð Þ
� �

¼ ΔGØ
f Ni OHð Þ2 sð Þ
� �

þ ΔGØ
f OH�

aqð Þ
� �� ΔGØ

f H2O lð Þ
� �� ΔGØ

r

ΔGØ
f NiO OHð Þ sð Þ
� �

¼ �444 kJ mol�1 � 157 kJ mol�1 � �237 kJ mol�1
� �� �58 kJ mol�1

� �
ΔGØ

f NiO OHð Þ sð Þ
� �

¼ �306 kJ mol�1:

4.2. Calculate the standard e.m.f. and the equilibrium constant under standard
conditions for the following cell:

Pt sð Þ, H2 gð Þ HCl aqð Þ
		 		 AgCl sð Þ, Ag sð Þ

This cell consists of the following two half-cells:

2 Hþ
aqð Þ þ 2 e� ! H2 gð Þ EØ Hþj H2ð Þ ¼ 0

AgCl sð Þ þ e� ! Ag sð Þ þ Cl� aqð Þ EØ AgCljAg;Cl�ð Þ ¼ 0:223 V

According to the reduction potentials, the first reaction needs to run as oxidation,
and the second one as reduction, just like the electrochemical notation suggests. The
standard e.m.f. is then calculated as per:

e:m:f : ¼ EØ AgCljAg;Cl�ð Þ � EØ Hþj H2ð Þ
e:m:f : ¼ 0:223 V

The net reaction in the electrochemical cell is thus:
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2 AgCl sð Þ þ H2 gð Þ Ð 2 Ag sð Þ þ 2 Cl� aqð Þ þ 2 Hþ
aqð Þ

When this reaction is in equilibrium, there is no potential difference between the
two half cells:

ΔE Pt;H2jHCljAgCl;Agð Þ ¼ 0 ¼ ΔEØ Pt;H2jHCljAgCl;Agð Þ � R � T
z � F lnK

R � T
z � F lnK ¼ ΔEØ Pt;H2jHCljAgCl;Agð Þ

ln K ¼ z � F � ΔEØ Pt;H2jHCljAgCl;Agð Þ
R � T

ln K ¼ 2 � 96485 � 0:223 � C � V �mol � K
8:3144 � 298 � J � K �mol

ln K ¼ 17:37

K ¼ 35 � 106

4.3. Calculate the pH of a solution with a formal concentration of 5�10�7 M of the
strong acid HI at 25 �C.

Strong acids fully dissociate in aqueous solution:

HI aqð Þ ! Hþ
aqð Þ þ I� aqð Þ

Therefore, the concentration of protons and base anion is:

c Hþð Þ ¼ c I�ð Þ ¼ c HIð Þ ¼ 5 � 10�7 M

The pH can thus be calculated as:

pH ¼ �lg
c Hþð Þ
1M

¼ �lg5 � 10�7 ¼ 6:3:

4.4. What e.m.f. would be generated by the following cell at 25 �C, assuming ideal
behaviour:

Pt sð Þ, H2 gð Þ 1 barð Þ Hþ
aqð Þ 0:03 Mð Þ		 		 Cl� aqð Þ 0:004 Mð Þ j AgCl sð Þ, Ag sð Þ

This cell consists of the following two half-cells:

2Hþ
aqð Þ þ 2e� ! H2 gð Þ EØ Hþj H2ð Þ ¼ 0

AgCl sð Þ þ e� ! Ag sð Þ þ Cl� aqð Þ EØ AgCljAgð Þ ¼ 0:223V

According to the reduction potentials, the first reaction needs to run as oxidation,
and the second one as reduction, just like the electrochemical notation suggests. The
net reaction in the electrochemical cell is thus:

Appendix B Solutions to Exercises 433



2AgCl sð Þ þ H2 gð Þ Ð 2Ag sð Þ þ 2Cl� aqð Þ þ 2Hþ
aqð Þ

The concentration dependence of an electrochemical cell is given by the Nernst
equation:

ΔE Pt;H2jHþjCl�jAgCl;Agð Þ¼ΔEØ Pt;H2jHþjCl�jAgCl;Agð Þ� R �T
z �F � ln

Qc Redð Þ
cØQc Oxð Þ
cØ

ΔE Pt;H2jHþjCl�jAgCl;Agð Þ ¼ E
_6 AgCljAgð Þ � EØ H2jHþð Þ � R � T

z � F ln

Q c Redð Þ
cØQ p Oxð Þ
pØ

ΔE ¼ EØ AgCljAgð Þ � EØ H2jHþð Þ � R � T
z � F � ln

c Cl�ð Þ
cØ

h i2
� c Hþð Þ

cØ

h i2
p H2ð Þ
pØ

h i
ΔE ¼ 0:22 V� 0 V� 8:3144 � 298 J � K �mol

296485 C � K �mol
ln

0:0042 � 0:032
1

ΔE ¼ 0:22 V� 0:013 V � ln 14:4 � 10�9
� �

ΔE ¼ 0:22 V� 0:013 V � �18:1ð Þ
ΔE ¼ 0:46 V:

The e.m.f. generated is 0.46 V.

4.5. The lactate/pyruvate Redox system can be described as per:

pyruvateþ 2Hþ þ 2e� Ð lactate

The standard reduction potential is measured at c(lactate) ¼ c(pyruvate) ¼ c(H+)
¼ 1 M and has a value of EØ ¼ 0.21 V. Calculate and plot the pH dependency of the
reduction potential for this system at 298 K, assuming c(lactate) ¼ c(pyruvate).

The concentration dependence is given by the Nernst equation:

E ¼ EØ � R � T
z � F � ln

Q c Redð Þ
cØQ c Oxð Þ
cØ

where c(Ox) refers to the concentration on the oxidised side and c(Red) to the
concentrations on the reduced side of the equilibrium reaction. Therefore:

E ¼ EØ � R � T
z � F � ln

c lactateð Þ
cØ

h i
c pyruvateð Þ

cØ

h i
� c Hþð Þ

cØ

h i2
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E ¼ 0:21V� 8:314 � 298 � J � K
2 � 96485 � C � K �mol

� ln
c lactateð Þ

cØ

h i
c pyruvateð Þ

cØ

h i
� c Hþð Þ

cØ

h i2

The relationship between the reduction potential and the pH is linear with
E(pH ¼ 0) ¼ 0.21 V and E(pH ¼ 14) ¼ �0.15 V, i.e. a slope of �0.026 V per pH
unit.
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Chapter 5

5.1. At 25 �C, the molar ionic conductivities Λm of alkali ions are

Table B.1 Molar
conductivities for select
alkali ions

Ion Λm (mS m2 mol�1)

Li+ 3.87

Na+ 5.01

K+ 7.35

What are their mobilities?
The mobility of ions provides a link between their charge and the conductivity in

solution:

λ ¼ z � u � F
The molar conductivity Λm is linked to the conductivity λ of the counter-ions by:

Λm ¼ νþ � λþ þ ν� � λ�
Since we are interested in the isolated alkali ions, we set Λm ¼ ν+�λ+ with ν+ ¼ 1.
Therefore:

u ¼ λ
z � F ¼ Λm

ν � z � F
For Li+, this yields:

u ¼ Λm Liþð Þ
ν � z � F ¼ 3:87 � 10�3

9:649 � 104
S �m2

C

Remember that 1 S ¼ 1 Ω�1 ¼ 1 A/V, and that 1 C ¼ 1 A s. Therefore:

u ¼ 0:401 � 10�7 A �m2

V � A � s ¼ 4:01 � 10�8m2V�1s�1

In summary:

Table B.2 Ion
mobilities for select
alkali ions

Ion Λm (mS m2 mol�1) u (m2 V�1 s�1)

Li+ 3.87 4.01�10�8

Na+ 5.01 5.19�10�8

K+ 7.35 7.62�10�8

5.2. Fullerene (C60) has a diameter of 10.2 Å. Estimate the diffusion coefficient of
fullerene in benzonitrile at 25 �C. The viscosity of benzonitrile at that temperature is
12.4 mP. How large is the error of your estimate when comparing the result to the
experimental value of 4.1�10�10 m2 s�1?
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The diffusion coefficient can be calculate by the Stokes-Einstein relationship:

D ¼ kB � T
6 � π � η � r

The viscosity is η(benzonitrile) ¼ 12.4 mP ¼ 12.4�10�3 P ¼ 1.24�10�3 N s m�2

The radius is r(C60) ¼ 1/2�10.2 Å ¼ 5.1 Å ¼ 5.1�10�10 m
Therefore:

D ¼ 1:381 � 10�23JK�1 � 298K
6 � π � 1:24 � 10�3Nsm�2 � 5:1 � 10�10m

D ¼ 298 � 1:381 � 10�23 � J � K �m2

6 � π � 1:24 � 5:1 � 10�13 � N � K � s �m 1N ¼ 1Jm�1

D ¼ 298 � 1:381 � 10�10 � J � K �m2 �m
6 � π � 1:24 � 5:1 � J � K � s �m

D ¼ 298 � 1:381 � 10�10 � J � K �m2 �m
6 � π � 1:24 � 5:1 � J � K � s �m

D ¼ 3:5 � 10�10 m2 s�1:

The calculated diffusion coefficient thus has a value of 3.5�10�10 m2 s�1. The
difference to the experimental value is:

ΔD ¼ 4:1 � 10�10m2s�1 � 3:5 � 10�10m2s�1 ¼ 0:6 � 10�10m2s�1

This is an error of approximately

ΔD
Dexp

¼ 0:6
4:1

¼ 15%

The relatively large error is due to the very nature of the Stokes-Einstein relation-
ship which applies thermodynamic quantities (temperature, the average energy of
particles kB�T ) that relate to large numbers of particles to single molecules.

5.3. The mean free path length of gas molecules can be calculated according to
Maxwell as λ ¼ 1ffiffi

2
p �Iℕ�σ, where the particle density is Iℕ ¼ p

kB�T. Calculate the

diffusion coefficient of argon at 298 K and a pressure of 1 bar. The collisional
cross-section of argon is σ ¼ 0.41 nm2.

The diffusion coefficient for an ideal gas is calculated as per

D ¼ 1
3
� λ � c

The mean speed of molecules, c, is calculated as per
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c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � R � T

M

r
:

The mean free path length is accessible from above formulae as per

λ ¼ 1ffiffiffi
2

p � Iℕ � σ ¼ kB � Tffiffiffi
2

p � p � σ :

This yields for the diffusion coefficient:

D ¼ 1
3
� kB � Tffiffiffi

2
p � p � σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � R � T

M

r

D ¼ 1
3
� kB
p � σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � R � T3

2 �M

s

D ¼ 1
3
� 1:381 � 10

�23 JK�1

1bar � 0:41 nm2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 8:3144 JK�1 mol�1 � 2983 K3

2 � 39:948 gmol�1

s

D ¼ 1
3
� 1:381 � 10�23 JK�1

105Pa � 0:41 � 10�18 m2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 8:3144 J � 2983 K2

2 � 39:948 � 10�3 kg

s

D ¼ 1
3
� 1:381 � 10

�5 kg m2 s�2 K�1

105 kg m�1 s�2 � 0:41 m2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 8:3144 kg m2 s�2 � 2983 K2

2 � 39:948 � 10�3 kg

s

D ¼ 1
3
� 1:381 � 10

�10

0:41
� kgm

2s�2K�1

kgm2s�2m�1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � 8:3144 � 2983
2 � 39:948 � 10�3 �

kg m2 s�2 K2

kg

s

D ¼ 1:123 � 10�10 �m
K
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:261 � 109 �m

2 K2

s2

s

D ¼ 1:123 � 10�10 �m
K
� 9:089 � 104 �mK

s

D ¼ 10:21 � 10�6m
2

s
¼ 1:021 � 10�5m

2

s
:

The diffusion coefficient of argon thus has a value of 1.021�10�5 m2 s�1.

5.4. The diffusion coefficient of sucrose in water is 5.2�10�6 cm2 s�1 at room
temperature. Estimate the effective radius of a sucrose molecule, if water has a
viscosity of 10 mP.

The diffusion coefficient can be calculate by the Stokes-Einstein relationship:

D ¼ kB � T
6 � π � η � r

The effective radius of the molecule is then:
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r ¼ kB � T
6 � π � η � D

The viscosity is η(water) ¼ 10 mP ¼ 1.0�10�2 P ¼ 1.0�10�3 N s m�2

The diffusion coefficient is D(sucrose) ¼ 5.2�10�6 cm2 s�1 ¼ 5.2�10�10 m2 s�1.
Therefore:

r ¼ 1:381 � 10�23 JK�1 � 298 K

6 � π � 1:0 � 10�3 N s m�2 � 5:2 � 10�10 m2 s�1

r ¼ 1:381 � 298 � 10�10

6 � π � 1:0 � 5:2 � J
N

r ¼ 4:2 � 10�10 � J m
J

:

The effective radius of a sucrose molecule is thus estimated at 4.2 Å.

Chapter 6

6.1. Consider the gas-phase reaction

H2 þ I2 ! 2HI

(a) Assume that the reaction order is as suggested by the chemical equation.
Calculate the rate constant at 681 K, assuming that from an initial pressure of
iodine of 823 N m�2, the rate of loss of iodine was 0.192 N m�2 s�1. The initial
pressure of hydrogen was 10500 N m�2.
If the reaction order is as suggested by the chemical equation, we are dealing
with first order kinetics:

v ¼ � dc H2ð Þ
dt

¼ � dc I2ð Þ
dt

¼ kr � c H2ð Þ � c I2ð Þ

Since this is a gas phase reaction, and all parameters are given in the units of
pressure, we can substitute the molar concentration against the pressure:

v ¼ � dp H2ð Þ
dt

¼ � dp I2ð Þ
dt

¼ kr � p H2ð Þ � p I2ð Þ
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The data given are:

� dp I2ð Þ
dt

¼ v ¼ 0:192 N m�2 s�1

p I2ð Þ ¼ 823Nm�2

p H2ð Þ ¼ 10500Nm�2:

Therefore

kr ¼ v

p H2ð Þ � p I2ð Þ

kr ¼ 0:192
10500 � 823 �

N �m2 �m2

m2 � s � N � N
kr ¼ 22:2 � 10�9 m2 s�1 N�1:

To obtain the rate constant in molar units, we assume ideal gas conditions, and thus
p

R � T ¼ n

V
¼ c:

kr ¼ v

c H2ð Þ � c I2ð Þ ¼
� dc I2ð Þ

dt
c H2ð Þ � c I2ð Þ ¼

� dp I2ð Þ
dt � R � T

p H2ð Þ
R � T � p I2ð Þ

R � T
¼ v

p H2ð Þ � p I2ð Þ � R � T

kr ¼ 22.2�10�9 m2 s�1 N�1�8.3144 J K�1 mol�1�681 K
kr ¼ 0.126�10�3 m3 s�1 mol�1

kr ¼ 0.126 M�1 s�1.

(b) What is the rate of the reaction if the iodine pressure was unchanged and the
initial hydrogen pressure was 39500 N m�2?
The rate of the reaction for the new hydrogen pressure p(H2) ¼ 39500 N m�2 is
then

v ¼ kr � p H2ð Þ � p I2ð Þ
v ¼ 22:2 � 10�9 m2 s�1 N�1 � 39500Nm�2 � 823Nm�2

v ¼ 0:72Nm�2 s�1:

Alternatively, if we calculate the rate in molar units instead of pressure:
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v ¼ kr � c H2ð Þ � c I2ð Þ

v ¼ kr � p H2ð Þ
R � T � p I2ð Þ

R � T ¼ kr � p H2ð Þ � p I2ð Þ
R2 � T2

v ¼ 0:126 � 39500 � 823 � dm3 � N � N � K � K �mol �mol

8:31442 � 6812 �mol � s �m2 �m2 � Nm � Nm � K � K
v ¼ 0:128 � 10�6 M s�1

6.2. The rate constant for the decomposition of a particular substance is 2.80�10�3

dm3 mol�1 s�1 at 30 �C, and 1.38�10�2 dm3 mol�1 s�1 at 50 �C. Evaluate the
Arrhenius parameters of the reaction.

Data compilation:

θ1 ¼ 30
�
C ¼> T1 ¼ 303K kr1 ¼ 2:80 � 10�3 dm3 mol�1 s�1

θ2 ¼ 50
�
C ¼> T2 ¼ 323K kr2 ¼ 1:38 � 10�2 dm3 mol�1 s�1

As above, we build the ratio of the two Arrhenius equations for the two
conditions:

kr1
kr2

¼ A � e� Ea
R�T1

A � e� Ea
R�T2

and obtain after cancellation of the pre-exponential parameter A and some
re-arrangements:

Ea ¼
R � ln kr1

kr2
1
T2
� 1

T1

This yields for the data given:

Ea ¼
8:3144 � ln 2:80 � 10�3

1:38 � 10�2

� �
1

323
� 1
303

� J

K �mol � 1
K

Ea ¼ 8:3144 � ln 0:203ð Þ
0:003096� 0:003300

� J
mol

¼ 65 kJ mol�1

This allows calculation of the pre-exponential factor:

A ¼ kr1 � e�
Ea
R�T1

A ¼ 2:8 � 10�3 dm3 mol�1 s�1 � e� 64989 J�K�mol
8:3144�303�K�J�mol ¼ 4:5 � 108 dm3 mol�1 s�1:
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6.3. The reaction mechanism for the reaction of A2 and B to product P involves the
intermediate A:

A2 Ð Aþ A fastð Þ
Aþ B ! P slowð Þ

Deduce the rate law for the reaction assuming a pre-equilibrium.
If we assume an equilibrium for the first reaction, we know that the equilibrium

constant K is the ration of the rate of the forward (k1) and reverse reaction (k�1). We
also know that this equals the ratio of the equilibrium concentrations of A2 and A:

K ¼ k1
k�1

¼ c Að Þ2
c A2ð Þ

This yields for the equilibrium concentration of A:

c Að Þ2 ¼ c A2ð Þ � K ¼> c Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c A2ð Þ � K

p
For the second reaction, the rate equation is:

v2 ¼ � dc Að Þ
dt

¼ dc Pð Þ
dt

¼ k2 � c Að Þ � c Bð Þ

Substituting the expression for the equilibrium concentration of A yields:

v2 ¼ k2 � K1=2 � c A2ð Þ1=2 � c Bð Þ:
6.4. The rate constant of a first-order reaction was measured as 1.11�10�3 s�1.

(a) What is the half-life of the reaction?
The first order rate law is

v ¼ � dc Að Þ
dt

¼ k � c Að Þ

and the half-life is

t1=2 ¼
ln 2
k

Therefore:
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t1=2 ¼ ln 2

1:11 � 10�3 s�1
¼ ln 2

1:11
� 103 s ¼ 624s:

(b) What time is needed for the concentration of the reactant to fall to 1/8 of its initial
value?

In order to calculate a different life time, the differential rate law needs to be
integrated:

� dc Að Þ
dt

¼ k � c Að Þ
dc Að Þ
c Að Þ ¼ �k � dt

dlnc Að Þ ¼ �k � dtÐ 1=8c0
c0

dlnc Að Þ ¼ �k � Ð t0 dt
ln c Að Þ½ �1=8c0c0

¼ �k � t½ � t0
ln

1
8
c0

� �
� ln c0 ¼ �k � t � 0ð Þ

ln
c0

8 � c0 ¼ �k � t
ln 8 ¼ k � t
t ¼ ln 8

k

t ¼ ln 8

1:11 � 10�3 s�1
¼ ln 8

1:11
� 103 s ¼ 1873 s ¼ 31:2 min:

(c) What time is needed for the concentration of the reactant to fall to 3/4 of its initial
value?
In analogy to the above, one derives:

t ¼
ln
4
3
k

t ¼
ln
4
3

1:11 � 10�3 s�1
¼

ln
4
3

1:11
� 103 s ¼ 259s:
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Chapter 7

7.1. The initial rates of the myosin-catalysed hydrolysis of ATP were measured in
the presence of varying starting concentrations of ATP:

Table B.3 Initial rates for myosin-catalysed ATP hydrolysis

c0(ATP) mmol dm�3 0.005 0.010 0.020 0.030 0.050 0.100 0.200 0.300

v0 μmol dm�3 s�1 0.051 0.083 0.118 0.138 0.158 0.178 0.190 0.194

Assume that the enzymatic reaction follows a Michaelis-Menten mechanism and
determine the maximum rate and the Michaelis constant.

max

max

M

For an accurate determination of vmax, the original data either need to be fitted with
by non-linear regression (above) or transformed into a reciprocal relationship that
linearises theMichaelis-Menten equation, e.g. by using the Lineweaver-Burk approach:

1
v
¼ 1

vmax
þ KM

vmax
� 1
c0
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max

maxM

Table B.4 Lineweaver-Burk transformation of the initial data

1/c0(ATP) dm3 mmol�1 200 100 50.0 33.3 20.0 10.0 5.00 3.33

1/v0 dm3 s μmol�1 19.6 12.1 8.47 7.25 6.33 5.62 5.26 5.15

The fit with a linear equation yields a function:

1
v
¼ 4:85079

sdm3

μmol
þ 0:07336

mmol � dm3 � s
dm3 � μmol

� 1
c0

with the goodness of fit R2 ¼ 0:99978

From the line fit one obtains:

1
vmax

¼ 1
4:85079

μmol

dm3s
¼ 0:206

μmol

dm3s
KM

vmax
¼ 0:07336

mmol � dm3 � s
dm3 � μmol

KM ¼ 0:07336
mmol � dm3 � s
dm3 � μmol

� vmax

KM ¼ 0:07336
mmol � dm3 � s
dm3 � μmol

� 0:206 μmol

dm3s

KM ¼ 0:015
mmol

dm3 :
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7.2. The adsorption behaviour of 1 g activated carbon at 0 �C has been quantitatively
assessed using different pressures of N2. The following molar amounts of N2 are
adsorbed:

Table B.5 Data for adsorption of N2 by activated carbon

p(N2) kPa 0.524 1.73 3.06 4.13 7.50 10.3

nads(N2) 10�4 mol 0.440 1.35 2.27 3.14 4.60 5.82

Assuming Langmuir adsorption behaviour, determine (a) the maximum amount of
N2 that can be adsorbed by 1 g activated carbon at 0 �C, and (b) the Langmuir constant.

The Langmuir adsorption isotherm is

Γ ¼ nads
nmax

¼ K � p
K � pþ 1

Taking the reciprocal value on both side of above equation yields:

nmax

nads
¼ K � pþ 1

K � p ¼ 1þ 1
K
� 1
p

and thus

1
nads

¼ K � pþ 1
K � p ¼ 1

nmax
þ 1
K � nmax

� 1
p

From this equation, it is obvious that a plot of 1/nads versus 1/p yields a line with
y-intercept 1/nmax and slope 1/(K�nmax).

The reciprocal values of the original data yield:

Table B.6 Transformation of initial data for Langmuir adsorption isotherm

1/p(N2) kPa�1 1.91 0.578 0.327 0.242 0.133 0.0968

1/nads(N2) 104 mol�1 2.27 0.741 0.441 0.318 0.217 0.172
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Linear fit of these data result in the following equation:

1=nads ¼ 1:162 � 104 kPamol�1 1=pþ 0:0574 � 104 mol�1

with R2 ¼ 0:9998
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(a) From the linear fit, the y-intercept yields the 1/nmax:

1
nmax

¼ 0:0574 � 104 1
mol

nmax ¼ 1:74 � 10�3 mol

(b) The slope reveals the product of the Langmuir constant K and nmax:

1
K � nmax

¼ 1:162 � 104 kPa
mol

K ¼ 1

1:162 � 104
mol
kPa

� 1

1:74 � 10�3 mol

K ¼ 1
1:162 � 1:74 � 10

1
kPa

K ¼ 0:049 kPa�1:

Chapter 8

8.1. Calculate the wavelength of an electron that is accelerated by a potential
difference of 10.0 kV.

The energy gained by an electron accelerated in an electric field (its kinetic
energy) equals the potential energy provided by the electric field:

Ekin ¼ Epot
1
2
�me � v2 ¼ e � U

The DeBroglie relationship links the wave and corpuscular properties of a particle in
form of the wavelength λ and the momentum p. Specifically for the electron, this yields:

λ ¼ h
p
¼ h

me � v
The squared equation yields:

λ2 ¼ h2

me � vð Þ2 or me � vð Þ2 ¼ h2

λ2

We now multiply me into both sides of above energy equation and obtain:
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1
2
�m2

e � v2 ¼ me � e � U
m2

e � v2 ¼ 2 �me � e � U
For the squared momentum we can substitute the wavelength expression from the

DeBroglie relationship:

h2

λ2
¼ 2 �me � e � U

Resolving for the wavelength yields:

λ2 ¼ h2

2 �me � e � U
λ ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 �me � e � U
p

λ ¼ 6:626 � 10�34 J sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 9:108 � 10�31 kg � 1:602 � 10�19C � 10 � 103 V

p
λ ¼ 6:626 � 10�34 J sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 9:108 � 1:602 � 10�46 kg C V
p

λ ¼ 6:626 � 10�34 J sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29:18 � 10�46 kgJ

p
λ ¼ 6:626 � 10�34 kg m2 s�2 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

29:18 � 10�46 kgkg m2 s�2
p

λ ¼ 6:626 � 10�34 kg m2 s�1

5:402 � 10�23 kg m s�1

λ ¼ 6:626
5:402

� 10�11 m

λ ¼ 1:23 � 10�11 m ¼ 0:0123 nm ¼ 0:123 Å :

8.2. The atomic model suggested by Niels Bohr in 1913 depicts atoms as systems
very much like a solar system, where electrons travel in circular orbits around the
positively charged nucleus. If one wanted to determine the location of an electron at
a particular point in time with a certainty of �0.05 Å, what is the uncertainty with
respect to the speed of the electron?

The uncertainty relationship by Heisenberg informs of the minimum value of the
product (Δx�Δp):

Δx � Δp � h
2π

Δx � Δ m � vð Þ � h
2π

With m ¼ me and Δx ¼ 0.1 Å, this yields:
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Δv � h
2π � Δx �me

Δv � 6:626 � 10�34 J s

2π � 0:1 � 10�10 m � 9:109 � 10�31 kg

Δv � 6:626
2π � 9:109 �

10�34

10�11 � 10�31 �
kg m2 s�2 s

m kg

Δv � 6:626
2π � 9:109 � 10

8 �m
s

Δv � 0:12 � 108 �m
s
:

The uncertainty about the speed of the orbiting electron is approx. 0.12�108 m s�1.
This dramatically high uncertainty shows that no statement as to the exact location of
the electron can be made at a particular time.

8.3. The wavelength of macroscopic objects. What is the wavelength of a person of
65 kg walking at a speed of 0.8 m s�1?

According to the deBroglie relationship, the wavelength λ is related to the
momentum of an object as per:

λ ¼ h
p
¼ h

m � v
This yields:

λ ¼ 6:626 � 10�34 J s
65kg � 0:8 m s�1

λ ¼ 0:127 � 10�34 kg m2 s�2 s
kg m s�1

λ ¼ 1:27 � 10�35 m:

This is a very tiny wavelength; for comparison, the proton has a radius of about
0.8 fm ¼ 0.8�10�15 m. This explains why the waves of macroscopic objects cannot
be measured.

8.4. Two consecutive lines in the atomic spectrum of hydrogen have the wave
numbers ν̃i ¼ 2.057�106 m�1 and ν̃i+1 ¼ 2.304�106 m�1. Calculate to which series
these two transitions belong and which transitions they describe.

According to Bohr’s term scheme, the wave numbers for the two transitions are
related to the states n0, ni and ni+1 as per:
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h � c � eνi ¼ R1 � c � h
n20

� R1 � c � h
n2i

) eνi ¼ R1
n20

� R1
n2i

h � c � eνiþ1 ¼ R1 � c � h
n20

� R1 � c � h
n2iþ1

) eνiþ1 ¼ R1
n20

� R1
n2iþ1

Subtraction of the first equation from the second yields:

eνiþ1 � eνi ¼ R1
n20

� R1
n2iþ1

� R1
n20

þ R1
n2ieνiþ1 � eνi ¼ R1

n2i
� R1
n2iþ1eνiþ1 � eνi

R1
¼ 1

n2i
� 1

n2iþ1

The left hand side of this equation computes as per:

eνiþ1 � eνi
R1

¼ 2:304 � 106m�1 � 2:057 � 106m�1

1:097 � 107m�1
¼ 0:0225

From comparison of this value with the following transitions between ni and ni+1
we find a suitable pair ni, ni+1:

Table B.7 Term scheme differences

ni ni + 1

1
ni

1
niþ1

1
ni

� �2 1
niþ1

� �2 1
ni

� �2

� 1
niþ1

� �2

1 2 1 0.5 1 0.25 0.75

2 3 0.5 0.3333 0.25 0.1111 0.1389

3 4 0.3333 0.25 0.1111 0.0625 0.0486

4 5 0.25 0.2 0.0625 0.04 0.0225

5 6 0.2 0.1667 0.04 0.0278 0.0122

ni ¼ 4, niþ1 ¼ 5:

With this knowledge, we can calculate n0:
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eνi ¼ R1
n20

� R1
n2ieνi

R1
¼ 1

n20
� 1

n2i
1

n20
¼ eνi

R1
þ 1

n2i
1
n20

¼ 2:057 � 106 m�1

1:097 � 107 m�1
þ 1
16

¼ 0:25

n20 ¼
1

0:25
¼ 4

n0 ¼ 2:

The two transitions thus are: n0 ¼ 2 ! n ¼ 4 and n0 ¼ 2! n ¼ 5. Since n0 ¼ 2,
the transitions belong to the Balmer series.

8.5. Assuming that (a) the sun (T¼ 5780 K) and (b) the earth (T¼ 298 K) behave as
black-bodies, calculate and plot the spectral flux densities for the sun and the earth.
What are the similarities and differences between both radiation curves? Use
Planck’s law to calculate E(λ) for the wavelength range 100 nm–8 μm. Calculation
and plotting might be best done with a spreadsheet software.

Planck’s law describes radiation (spectral flux density) E(λ) of a black-body at
varying wavelengths for a a particular temperature:

E λð Þ ¼ h � c2
λ5 � e

h�c
λ�kB �T � 1

� � :

We set out to calculate E(λ) for the following wavelengths in a spreadsheet
program:

Table B.8 Wavelength values in μm

0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Since above equation involves several factors with large exponential values, we
separate the problem into different individual steps and deal with the exponential
factors manually, since such software use floating point numbers, which is a finite
sized representation. Therefore, approximated results or error conditions might occur
when using very large numbers.

(1) h � c2 ¼ 6:626 � 10�34 J s � 3 � 108ms
� �2 ¼ 59:634 � 10�18 J m2

s

(2)
h � c
kB � T ¼ 6:626 � 10�34 J s � 3 � 108 ms�1

1:381 � 10�23 JK�1 � 5780 K ¼ 0:002491 � 10�3 m ¼ 2:491 � 10�6 m

(3) The exponential factor exp�factor ¼ e
h�c

λ�kB �T can now be calculated in a spread-
sheet program as a function of the wavelength λ using the factor of 2.491 from
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above; note that “10�6 m” cancels when using the wavelength values from

Table B.9: exp�factor ¼ e
2:491�10�6 m

λ ¼ e
2:491
λ½ � :

(4) When using the wavelength values from Table B.8, λ5 values are obtained as
multiples of 10�30 m5:

0:1 μmð Þ5 ¼ 0:1 � 10�6 m
� �5 ¼ 0:15 � 10�30 m5

(5) We then combine (3) and (4) to obtain λ5 � e
h�c

λ�kB �T � 1
� �

. For this purpose we

multiple the fifth power of the wavelength values from Table B.8 [λ]5 with
(exp_ factor-1). The resulting values are multiples of 10�30 m.

(6) Now, we can combine (1) with (5). In the spreadsheet, this will be calculated as
59:634

result from 5ð Þ½ �. Taking care of the exponential factors and units, this calculation

yields:

59:634
result from 5ð Þ½ � �

10�18 J m2 s�1

10�30 m5
¼ 59:634

result from 5ð Þ½ � � 10
12 � J

m3s

Table B.9 The four quantum numbers of the electron

Name Symbol Values Description

Principal quantum
number

n 0, 1, 2, ... Size of the wave function, energy
level.

Angular momentum
quantum number

l 0, 1, ..., (n�1) Shape of the wave function.

Magnetic quantum
number

ml �l, (�l+1), ...,
0, ..., (l�1), l

Orientation of the wave function in
space.

Magnetic spin quantum
number

ms �1/2, +
1/2 Orientation of the magnetic

moment of the electron.
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(a) The sun
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(b) The Earth

From comparison of both radiation curves, we see that the earth emits less
radiation than the sun (note the difference of orders of magnitude on the y-axes).
Also, the interesting wavelength range is 0.4–0.7 μm (or 400–700 nm), as this is the
visual range. Whereas the earth as a comparably cold planet emits no radiation in the
visual range, this is different for hot stars such as the sun. The maximum of the
spectral flux density for the sun is exactly in the range of visual light.
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Chapter 9

9.1. The radius of the first orbit in the Bohr model is r1 ¼ 5.3�10�9 cm. As a rough
estimate, calculate the energy of the electron in the hydrogen atom, assuming it was a
particle in a cubic box of the same volume as that of a sphere with radius r1. Compare
the result with the energy that is predicted by the Bohr model.

(1) Energy in the Bohr model

The energy of the electron in different orbits is given by

En ¼ � me � e4
8 � ε20 � n2 � h2

for n ¼ 1 this yields:

E1 ¼ � 9:11 � 10�31 kg � 1:602 � 10�19 C
� �4

8 � 8:854 � 10�12 A2 s4 m�3 kg�1
� �2 � 1 � 6:626 � 10�34 J s

� �2
E1 ¼ � 9:11 � 1:6024 � 10�31 � 10�76 � kg A4 s4

8 � 8:8542 � 6:6262 � 10�24 � 10�68 � A4 s8 m�6 kg�2 J2 s2

E1 ¼ � 9:11 � 1:6024
8 � 8:8542 � 6:6262 � 10

�15 � kg A4 s4

A4 s8 m�6 kg�2 kg2 m4 s�4 s2

E1 ¼ �0:00218 � 10�15 � kg
m�2 s2

E1 ¼ �2:18 � 10�18 J:

(2) Energy of the particle in a box

The energy of a particle in a three-dimensional box is given by

En ¼ h2

8 � m � a2 � n
2

Since we assume a cubic box where the volume equals the volume of a sphere with
the radius of the first orbit in the Bohr model, we can calculate a as follows:
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V sphere ¼ 4
3
� π � r3Bohr ¼ a3 ¼ Vcube

a ¼ 4
3 � π
� �1

3 � rBohr
a ¼ 4

3 � π
� �1

3 � 5:3 � 10�9 cm

a ¼ 8:54 � 10�11 m:

We can now calculate the energy of the particle in a cubic box of width a with n¼ 1:

E1 ¼
6:626 � 10�34 J s
� �2

8 � 9:11 � 10�32 kg � 8:54 � 10�11 m
� �2 � 1

E1 ¼ 6:6262 � 10�68 J2 s2

8 � 9:11 � 8:542 � 10�32 � 10�22 � kg m2

E1 ¼ 6:6262

8 � 9:11 � 8:542 � 10
�14 � kg

2 m4 s�4 s2

kg m2

E1 ¼ 0:00826 � 10�14 � kg m2 s�2

1
E1 ¼ 8:26 � 10�17 J:

Comparison of the numerical values of the energies for the first orbit in the Bohr
model with the lowest energy state in the quantum mechanical model shows that the
energy predicted by the Bohr model is by an order of magnitude lower.

9.2. Calculate the zero-point energy of 1H35Cl (a) for one molecule, and (b) for
1 mol, assuming a force constant of 480.6 Nm�1.

The zero-point energy is given by

E0 ¼ 1
2
� h � ν0

where ν0 is the frequency of vibrational oscillation of a di-atomic molecule defined
by

ν0 ¼ 1
2π

ffiffiffiffi
D

μ

s
, withμ ¼ m1 � m2

m1 þ m2
:

Therefore:
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ν0 ¼ 1
2π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D
m1 � m2

m1 þ m2

vuut ¼ 1
2π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D � m1 þ m2ð Þ

m1 � m2

s
, and thus,

E0 ¼ 1
2
� h � ν0 ¼ 1

2
� h � 1

2π
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D � m1 þ m2ð Þ

m1 � m2

s
¼ h

4π
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D � m1 þ m2ð Þ

m1 � m2

s

E0 ¼ 6:626 � 10�34 J s
4π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
480:6 Nm�1 � 1:008 uþ 34:969 uð Þ

1:008 u � 34:969 u

s

E0 ¼ 6:626 � 10�34 J s
4π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
480:6 Nm�1 � 35:977 u

35:249 u2

s

E0 ¼ 6:626 � 10�34 J s
4π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
480:6 kg ms�2 m�1 � 35:977
35:249 � 1:661 � 10�27 kg

s

E0 ¼ 6:626 � 10�34 J s
4π

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
480:6 � 35:977
35:249 � 1:661 � 10

27 1
s2

r
E0 ¼ 6:626 � 10�34 J s

4π
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29:532 � 1028 1

s2

r
E0 ¼ 6:626 � 10�34 J s

4π
� 5:434 � 10141

s

E0 ¼ 6:626 � 5:434
4π

� 10�20 J

E0 ¼ 2:87 � 10�20 J:

For 1 mol of HCl, one needs to multiply with Avogadro’s constant:

E0 1molð Þ ¼ E0 � NA ¼ 2:87 � 10�20 J � 6:022 � 1023 1
mol

E0 1molð Þ ¼ 17:3 � 103 J
mol

¼ 17:3 kJ mol�1:

9.3. What is the value of the transmission coefficient for an electron with an energy
of 1 eV that moves against a potential barrier of 5 eV and 2 nm thickness?

The transmission coefficient is given by

T ¼ 16 � E � V0 � Eð Þ
V2
0

� e�2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2 �m�a2 � V0�Eð Þ

h2

q

With m ¼ me ¼ 9.110�10�31 kg, one obtains:
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T ¼ 16 � 1 eV � 5 eV� 1 eVð Þ
5 eVð Þ2 � e

�2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2 �9:110�10�31 kg� 2nmð Þ2 � 5 eV�1 eVð Þ

6:626�10�34 J sð Þ2
q

T ¼ 16 � 4 eV2

25 eV2 � e
�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2 �9:110�10�31 kg� 2�10�9 mð Þ2 �4 eV

6:626�10�34 J sð Þ2

r

T ¼ 2:56 � e�2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2 �9:110�10�31 kg�4�10�18 m2 �4�1:602�10�19 J

6:6262 �10�68 J2 s2

q
T ¼ 2:56 � e�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2 �9:110�4�4�1:602�10�31 �10�18 �10�19 J kg m2

6:6262 �10�68 J2 s2

q
T ¼ 2:56 � e�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2 �9:110�4�4�1:602

6:6262
�10�31�18�19þ68 J kg m2 J�2 s�2

p
T ¼ 2:56 � e�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
419:5�100 J J J�2

p

T ¼ 2:56 � e�2�20:48 ¼ 2:56 � 1:63 � 10�18

T ¼ 4:2 � 10�18:

The transition coefficient is 4.2�10�18.

9.4. Calculate the probability of locating a particle in a potential-free
one-dimensional box of length a between 1/4 a and 3/4 a, assuming the particle
being in its lowest energy state.

The probability of finding the particle is described the squared wave function |Ψ|2.
The normalised wave function solving the Schrödinger equation for a
one-dimensional box without a potential is given by

Ψn xð Þ ¼
ffiffiffi
2
a

r
� sin n � π

a
� x

� �
,

which yields for the probability:

Ψn xð Þj j2 ¼ 2
a
� sin 2 n � π

a
� x

� �
:

In order to calculate the probability density, the accumulated probability to find
the particle between 1/4a and 3/4a, the probability needs to be integrated in this
region:

ð34�a
1
4�a

Ψn xð Þj j2dx ¼
ð34�a
1
4�a

2
a
� sin 2 n � π

a
� x

� �
dx ¼ 2

a
�
ð34�a
1
4�a

sin 2 n � π
a

� x
� �

dx:

We find that we need to integrate a function of the type sin2(C � x), with C ¼ n�π
a

for which the following integral is known:ð
sin 2 C � xð Þdx ¼ x

2
� sin 2 � C � xð Þ

4 � C þ const:

With n ¼ 1 (lowest energy state), this yields:
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ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 2
a
�
ð34�a
1
4�a

sin 2 π
a
� x

� �
dx

ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 2
a
� x

2
� sin 2 � πa � x

� �
4 � πa


 �3
4 � a
1
4 � a

ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 2
a
�

3
4
� a
2

�
sin 2 � π

a
� 3
4
� a

� �
4 � π

a

�
1
4
� a
2

þ
sin 2 � π

a
� 1
4
� a

� �
4 � π

a

2664
3775

ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 2
a
� 3 � a

8
�

sin
3
2
� π

� �
4 � π

a

� a

8
þ

sin
1
2
� π

� �
4 � π

a

2664
3775

ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 2
a
� 3 � a� a

8
þ a

4π
� sin 1

2
� π

� �
� a

4π
� sin 3

2
� π

� �
 �
ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 2
a
� 2 � a

8
þ a

4π
� sin

1
2
� π

� �
� sin

3
2
� π

� �� �
 �
ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 2 � 2 � a
8 � a þ 2 � a

4π � a � 1� �1ð Þ½ �

ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 1
2
þ 1
2π

� 2 ¼ 1
2
þ 1
π

ð34�a
1
4�a

Ψ1 xð Þj j2dx ¼ 0:82

The probability to find the particle between 1/4 a and 3/4 a is 82%.

Chapter 10

10.1. Calculate at which distances from the nucleus the 3s orbital possesses radial
nodes.

The radial eigenfunction for the 3s orbital (n ¼ 3, l ¼ 0) is
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R3,0 ¼ 2

81 � ffiffiffi
3

p � e�ρ
3 � 27� 18 � ρþ 2 � ρ2� �

:

Nodes are areas in which the probability to find the electron is zero. For the 3s
orbital, the number of radial nodes is (n–l–1) ¼ (3–0–1) ¼ 2. In the eigenfunction,
these are the points where the function has a zero-crossing, i.e. the function assumes
a value of zero. Therefore:

R3,0 ¼ 2

81 � ffiffiffi
3

p � e�ρ
3 � 27� 18 � ρþ 2 � ρ2� � ¼ 0:

This function is a product of three factors; neither the scalar factor 2
81� ffiffi

3
p nor the

exponential factor e�
ρ
3 can assume a value of zero. The only factor that can assume a

value of zero is the expression in brackets:

27� 18 � ρþ 2 � ρ2� � ¼ 0

This is a quadratic equation; the zero-crossings are thus calculated as per the

formula x1,2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4�a�c

p
2�a . This yields:

ρ1,2 ¼
þ18�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
182 � 4 � 2 � 27

p

2 � 2
ρ1,2 ¼

18� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
324� 216

p

4
¼ 18� ffiffiffiffiffiffiffiffi

108
p

4
¼ 18� 10:4

4
ρ1 ¼ 1:9, ρ2 ¼ 7:1:

Since ρ is the ratio between a a radial distance and the radius of the first orbit rBohr
(ρ ¼ r

rBohr
), the metric distances of the two nodes are:

r1 ¼ ρ1 � rBohr ¼ 1:9 � 5:3 � 10�11 m ¼ 1:0 � 10�10 m
r2 ¼ ρ2 � rBohr ¼ 7:1 � 5:3 � 10�11 m ¼ 3:8 � 10�10 m:

10.2. Derive the electron configuration for (a) vanadium, and (b) chromium in their
ground states.

(a) The order number of vanadium is Z ¼ 23, i.e. there are 23 electrons to be filled
into the atomic orbital scheme.
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The electronic configuration of vanadium is 1s2 2s2 2p6 3s2 3p6 3d3 4s2.

(b) Chromium has an order number of Z ¼ 24, i.e. there is one more electron to be
filled in as compared to vanadium. However, due to the fact that the 4s and 3d
orbitals are energetically close and a half-filled 3d subshell can be achieved,
there is only one electron in the 4s orbital.
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The electronic configuration of chromium is 1s2 2s2 2p6 3s2 3p6 3d5 4s1.

10.3. Name the four quantum numbers of the electron and state their relationships/
possible values.

10.4. Describe the overall shape of the orbitals characterised by the angular momen-
tum quantum number l ¼ 0, 1, 2.

l ¼ 0

This is an s-orbital; it has spherical symmetry.

l ¼ 1

These are p-orbitals and they have a two-lobed structure.

l ¼ 2

These are d-orbitals; four of them adopt a four-lobed structure, one of them has
rotational symmetry and consists of a two-lobed structure with a torus.

10.5. Determine the ground-state electronic configuration of the following species: S-,
Zn2+, Cl�, Cu+.
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S�

17 electrons

1s22s22p63s23p5 or Ne½ � 3s23p5

Zn2+

28 electrons

1s22s22p63s23p63d84s2 or Ne½ � 3s23p63d84s2 or Ar½ � 3d84s2

Cl�

18 electrons

1s22s22p63s23p6 or Ne½ � 3s23p6 or Ar½ �
Cu+

28 electrons

1s22s22p63s23p63d104s0 or Ne½ � 3s23p63d104s0 or Ar½ � 3d104s0:
10.6. a) Using the knowledge about the allowed energy states (eigenvalues), calcu-
late the ionisation potential of the hydrogen atom.

The allowed energy states (eigenvalues) of the hydrogen atom are obtained as

En ¼ � me � e4
8 � ε20 � h2 � n2

,

with n ¼ 1, since the only electron in hydrogen in the ground state occupies the first
shell. In order to remove the electron, the energy of |E1| needs to be provided, hence
this is the ionisation energy.

j E1 j¼
9:11 � 10�31 kg � 1:602 � 10�19 C

� �4
8 � 8:85 � 10�12 A2 s4 m�3 kg�1

� �2 � 6:63 � 10�34 J s
� �2 � 12

j E1 j¼ 9:11 � 10�31 � 1:6024 � 10�76

8 � 8:852 � 10�24 � 6:632 � 10�68 �
s4 kg A4 s4 m6 kg2

A4 s8 s2 kg2 m4

464 Appendix B Solutions to Exercises



j E1 j¼ 9:11 � 1:6024
8 � 8:8526:632 � 10

�15 � kg m6

s2 m4

j E1 j¼ 0:00218 � 10�15 � kg m2

s2
¼ 2:18 � 10�18 J

j E1 j¼ 2:18 � 10�18J � 6:24 � 1018 eV
J

¼ 13:6 eV:

The ionisation energy of hydrogen is 13.6 eV.
b) The equation yielding the allowed energy states of a multi-electron atom is

often modified to En ¼ �me � e4 � Z � σð Þ2
8 � ε20 � h2 � n2

to accommodate the shielding of the

nuclear charge by electrons in the various orbitals; the parameter σ is thus called the
screening constant. Calculate the value of σ for helium, assuming its first ionisation
potential is 24.5 eV.

For non-hydrogen atoms (Z > 1), the above equation for eigenvalues needs to
consider the number of electrons (which equals the order number Z in the periodic
system)

En ¼ � me � e4 � Z2

8 � ε20 � h2 � n2

but then needs to be adjusted for the shielding of the nuclear charge by electrons
present. One way to do this is to replace Zwith (Z�σ) where σ is called the screening
constant:

En ¼ �me � e4 � Z � σð Þ2
8 � ε20 � h2 � n2

:

From the first ionisation energy of He (24.6 eV), the screening constant s can be
calculated using the above equation. For convenience, we will first determine (Z�σ)2

and then determine σ. The He-specific parameters are:

n¼1
E1j j¼24:6 eV
Z¼2

jE1 j¼me �e4 � Z�σð Þ2
8 �ε20 �h2 �12

Z�σð Þ2¼jE1 j �8 �ε20 �h2
me �e4

Z�σð Þ2¼ 24:6 eV �8 � 8:85 �10�12 A2 s4 m�3 kg�1
� �2 � 6:63 �10�34 J s

� �2
9:11 �10�31 kg � 1:602 �10�19 C

� �4
Z�σð Þ2¼ 24:6 �1:602 �10�19 J �8 � 8:85 �10�12 A2 s4 m�3 kg�1

� �2 � 6:63 �10�34 J s
� �2

9:11 �10�31 kg � 1:602 �10�19 C
� �4
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Z � σð Þ2 ¼ 24:6 J � 8 � 8:85 � 10�12 A2 s4 m�3 kg�1
� �2 � 6:63 � 10�34 J s

� �2
9:11 � 10�31 kg � 1:602 � 10�19

� �3
C4

Z � σð Þ2 ¼ 24:6 � 8 � 8:852 � 10�24 � 6:632 � 10�68 J A4 s8 m�6 kg�2 J2 s2

9:11 � 10�31 � 1:6023 � 10�57 kg A4 s4

Z � σð Þ2 ¼ 24:6 � 8 � 8:852 � 6:632
9:11 � 1:6023 � 10�4 � J3 s6

kg3 m6

Z � σð Þ2 ¼ 24:6 � 8 � 8:852 � 6:632
9:11 � 1:6023 � 10�4 � J

3

J3

Z � σð Þ2 ¼ 18090 � 10�4 ¼ 1:809

Z � σð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1:809

p ¼ 1:345

σ ¼ Z � 1:345 ¼ 2� 1:345 ¼ 0:66:

The screening constant σ for He is thus calculated as 0.66, i.e. 0.33 per electron in
the 1s orbital. This value agrees qualitatively the semi-empirical screening constants
suggested by Slater’s rules (Slater 1930). These rules provide numerical values for
each electron in an atom. For the 1s orbital, Slater’s value for σ is 0.30 per electron.

Chapter 11

11.1. NaCl crystallises in the lattice type sodium chloride (M ¼ 1.747565) with
r0 ¼ 2.82 Å and ρ ¼ 0.321 Å. Calculate the lattice energy of NaCl.

The lattice energy of an ionic crystal can be calculated by the following
expression:

ΔUlattice ¼ zþ � z- � e2 � NA �M
4π � ε0 � r0 � 1� ρ

r0

� �
We thus require the following parameters:

zþ ¼ þ1 Naþð Þ
z� ¼ �1 Cl�ð Þ
M ¼ 1:747565
r0 ¼ 2:82Å ¼ 2:82 � 10�10 m
ρ ¼ 0:321Å ¼ 0:321 � 10�10 m
e ¼ 1:602 � 10�19 C
ε0 ¼ 8:854 � 10�12 A2 s4 m�3 kg�1

This yields:
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ΔUlattice ¼
þ1ð Þ � �1ð Þ � 1:602 � 10�19C

� �2 � 6:022 � 1023 mol�1 � 1:747565
4π � 8:854 � 10�12 A2 s4 m�3 kg�1 � 2:82 � 10�10 m

�

1� 0:321 � 10�10 m

2:82 � 10�10 m

� �
ΔUlattice ¼ � 1:6022 � 10�38 � 6:022 � 1023 � 1:747565 � C2 mol�1

4π � 8:854 � 10�12 � 2:82 � 10�10 � A2 s4 m�3 kg�1 m
� 1� 0:321

2:82

� �
ΔUlattice ¼ � 1:6022 � 6:022 � 1:747565 � 10�15 � A2 s2 mol�1

4π � 8:854 � 2:82 � 10�22 � A2 s4 m�2 kg�1 � 0:8862ð Þ

ΔUlattice ¼ � 1:6022 � 6:022 � 1:747565 � 0:8862
4π � 8:854 � 2:82 � 107 � mol�1

s2 m�2 kg�1

ΔUlattice ¼ �0:0763 � 107 � m
2 kg

s2 mol

ΔUlattice ¼ �763 � 103 � J
mol

ΔUlattice ¼ �763
kJ
mol

:

The lattice energy of sodium chloride is �763 kJ mol�1.

11.2. Discuss the bonding of carbon monoxide (CO) using the valence bond theory
without and with hybridised atomic orbitals as well as the molecular orbital theory.
Compare the bond order derived by the three approaches.

(a) VB theory:

Several resonance structure can be drawn for CO:

(i) a double bond structure without formal charges;
(ii) a triple bond structure with a positive formal charge on oxygen and a negative

formal charge on carbon, not in agreement with the atomic electronegativities;
(iii) a single bond structure that has a formal positive charge on carbon and a

negative charge on oxygen, in agreement with the atomic electronegativities.

For (i) and (iii), the octet rule is nor satisfied for carbon, making the triple bond
structure more favourable.
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Experimentally, CO is found to possess a small dipole moment of 0.1 D; this
suggests that structures with formal charges are less populated.

Overall, one could conclude for a bond order that is between a double and a
triple bond.

(b) Hybrid orbitals:

The CO bonding can be explained by sp hybridisation which suggests two lone
pairs (n) and predicts a bond order of:

1
2 � 8� 2ð Þ ¼ 1

2 � 6 ¼ 3. (Note that the MO scheme above does not show the first
shell electrons.)

The overlap of one sp orbital of C and O each establishes a σ bond; the overlap of
py and pz orbitals of C and O established two π bonds: this suggests a C–O triple
bond. One sp orbital on C and O each is occupied by a lone pair.
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(c) MO theory:

Bond order:

1
2
� 10� 4ð Þ ¼ 1

2
� 6 ¼ 3:
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11.3. Determine for each of the species S�, Zn2+, Cl� and Cu+ whether they are
diamagnetic or paramagnetic.

S�

17 electrons

1s22s22p63s23p5 or Ne½ � 3s23p5

The ground state of S is [Ne] 3s2 3p4. The extra electron is added to the 3p orbitals
and renders a species with one unpaired electron. Therefore, S� is paramagnetic.
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Zn2+

28 electrons

1s22s22p63s23p63d84s2 or Ne½ � 3s23p63d84s2 or Ar½ � 3d84s2

The ground state of Zn is [Ar] 3d10 4s2. In Zn2+, two electrons are removed from
the 3d orbital, rendering a species with two unpaired electrons, hence Zn2+ is
paramagnetic.
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Cl�

18 electrons

1s22s22p63s23p6 or Ne½ � 3s23p6 or Ar½ �
With the ground state of Cl being [Ne] 3s2 3p5, the extra electron completes the

octet of the third shell and Cl� attains noble gas configuration. There are no unpaired
electrons, hence Cl� is diamagnetic.
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Cu+

28 electrons

1s22s22p63s23p63d104s0 or Ne½ � 3s23p63d104s0 or Ar½ � 3d104s0

The ground state configuration for Cu is [Ar] 3d10 4s1. In Cu+, the 4s1 electron is
removed and the outer shell is now 3d10, which has no unpaired electrons. Therefore
Cu+ is diamagnetic.

11.4. Using an appropriate molecular orbital scheme, explain why [Co(NH3)6]
3+ is a

diamagnetic low-spin complex, whereas [CoF6]
3� is a paramagnetic high-spin

complex.
The ground state electron configuration of Co is 1s2 2s2 2p6 3s2 3p6 3d7 4s2. In

both complexes, cobalt takes the oxidation state +3, and has thus lost three electrons:
two from the 4s and one from the 3d orbitals. The resulting electron configuration is
thus 3d6.

[Co(NH3)6]
3+

According to the spectrochemical series, NH3 is a ligand that elicits a strong field,
hence the crystal field splitting Δ is large. The six electrons are filled into the three
low lying d orbitals which results in a low-spin, diamagnetic species.

[CoF6]
3�

According to the spectrochemical series, F- is a ligand that elicits a weak field,
hence the crystal field splitting Δ is small. The first three electrons populate the low
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lying d orbitals, then the fourth and fifth electrons occupy the high-lying d orbitals.
The sixth electron pairs up with an electron in the low-lying d orbitals. This results in
a high-spin, paramagnetic species.

Chapter 12

12.1. The dipole moment of HF is 1.92 D.

(a) Calculate the potential energy of the attractive dipole-dipole interaction
between two HF molecules oriented along the x-axis in a plane, separated by
5 Å.
The attractive arrangement of the two permanent HF dipoles in the plane along
the x-axis can be illustrated as:

The potential energy for this orientation is given by
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V ¼ � 2 � μ2
4π � ε0 � r3

V ¼ � 2 � 1:92 Dð Þ2
4π � 8:854 � 10�12 A2 s4 m�3 kg�1 � 5 � 10�10 m

� �3
V ¼ � 2 � 1:92 � 3:336 � 10�30 C m

� �2
4π � 8:854 � 10�12 A2 s4 m�3 kg�1 � 5 � 10�10 m

� �3
V ¼ � 2 � 1:922 � 3:3362 � 10�60 C2 m2

4π � 8:854 � 10�12 A2 s4 m�3 kg�1 � 125 � 10�30 m3

V ¼ � 2 � 1:922 � 3:3362 � 10 �60þ12þ30ð Þ C2 m2

4π � 8:854 � 125 A2 s4 m�3 kg�1 m3

V ¼ � 2 � 1:922 � 3:3362
4π � 8:854 � 125 � 10�18 � A2 s2 m2

A2 s4 m�3 kg�1 m3

V ¼ �0:0059 � 10�18 �m
2 kg
s2

V ¼ �0:0059 � 10�18 �m
2 kg
s2

V ¼ �5:9 � 10�21 J:

(b) What is the potential energy of the dipole–dipole interaction for 1 mol HF?
For 1 mol HF:

Epot ¼ V � NA ¼ �5:9 � 10�21 J � 6:022 � 1023 mol�1

Epot ¼ �3553
J

mol
¼ �3:6

kJ
mol

:

(c) Calculate the average thermal energy of bulk matter at room temperature. Can
the dipole–dipole interaction of HF be sustained at room temperature?

Average thermal energy of bulk matter:

Ethermal ¼ R � T ¼ 8:3144
J

Kmol
� 298 K ¼ 2478

J
mol

¼ 2:5
kJ
mol

The dipole–dipole interaction is stronger than the thermal motion and can be
sustained at 25 �C.
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12.2. Explain why the boiling point of the two isomers of butane, n-butane and i-
butane, are different. Which isomer has the higher boiling point?

Being isomers, n-butane and i-butane (2-methylpropane) have the same chemical
formula C4H10. The isomers differ in their structures; whereas n-butane is an
unbranched alkane, i-butane is branched:

Stronger inter-molecular forces result in a higher boiling point, as they must be
overcome to free molecules into the gas phase. Of the different inter-molecular
forces, only London dispersion forces apply to butane as both isoforms are alkanes
and neutral molecules (no charge). They possess no hetero-atoms (i.e. C and H only)
and thus no permanent dipole.

The longer, unbranched n-butane molecule has a larger surface area which
provides more possibilities to anneal to neighbouring molecules and thus exert/
experience dispersion forces. With i-butane being more compact, there are less
dispersion forces between neighbouring molecules.

n-butane therefore has the higher boiling point.
This conclusion agrees with the literature values for the boiling points of n- and i-

butane:

Table B.10 Comparison
of the boiling points of
butane isomers

Boiling point

n-butane 0 �C
i-butane �11 �C

Therefore, Tb(n-butane) > Tb(i-butane).
12.3. In which of the following substances are molecules held together by hydrogen
bonds? Draw the hydrogen bonds where applicable.

(a) XeF4
Since this does not contain hydrogen, there are no hydrogen bonds possible in XeF4.

(b) CH4

Whereas hydrogen is bonded covalently to carbon, the latter is not very electronega-
tive and possesses no lone pairs. CH4 is a non-polar molecule and does not exhibit
hydrogen bonds.

(c) H2O
There is a considerable electronegativity difference between oxygen and hydrogen

and the lone pairs of oxygen engage in intra-molecular hydrogen bonds.
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(d) NaH
This is not a covalent molecule, but rather an ionic structure consisting of Na+ and H-

(hydride) ions. There are no hydrogen bonds possible.

(e) BH3

Boron is less electronegative than hydrogen, hence hydrogen is not experiencing
sufficiently positive partial charge; there are not hydrogen bonds.

(f) NH3

Compared to hydrogen, nitrogen is considerably more electronegative (polar N–H
bond) and also possesses a lone pair which can engage in hydrogen bonding.

(g) HI
There is no hydrogen bonding; iodine is not sufficiently electronegative to generate a

polar H–I bond.

12.4. What is the relationship of the interaction energy between two particles due to
Coulomb forces and dispersion forces with the distance? Compare the falloff of these
energies with distance by calculating their ratio for the distances 1, 2, 3, 4 and 5 Å.
Based on these results, assess the implications for ideal/non-ideal behaviour of
solutions.

The Coulomb force depends on the charges on the two particles as well as their
distance as per

VC ¼ Q1 � Q2

ε � r
and is thus indirect proportional to the distance: VC � 1

r.
In contrast, the London dispersion force for a mixture of two particles A and B is

given by
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VL ¼ �3
2
� IA � IB
IA þ IB

� αA � αB
r6

and therefore indirect proportional to the sixth power of the distance: VL � 1
r6.

Table B.11 Comparison of Coulomb and dispersion force falloff with distance

Distance Coulomb falloff Dispersion falloff Ratio

r (Å) r�1 (Å�1) r�6 (Å�6) Coulomb:Dispersion falloff

1 1.00000 1.00000 1

2 0.25000 0.01563 16

3 0.11111 0.00137 81

4 0.06250 0.00024 256

5 0.04000 0.00006 625

This (simplified) analysis shows that Coulomb forces between charged particles
fall off much slower with separation distance than the weak dispersion forces. At a
separation distance of 5 Å, Coulomb forces are several 100 times more pronounced
than the weak dispersion forces. Therefore, even in dilute solutions, where the
average separation distance of particles is large, Coulomb forces are major
contributors.

For a solution to be ideal it is required that the interactions of solvent–solvent,
solvent–solute, and solute–solute molecules are identical. This is clearly not the case
when electrolytes are present, hence ionic solutions typically show non-ideal
behaviour (which has implications for colligative properties; concentrations need
to be replaced by activities, etc).
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Chapter 13

13.1. The infrared spectrum of carbon monoxide shows a vibration (v ¼ 0! v ¼ 1)
band at 2176 cm�1. What is the force constant of the C–O bond, assuming the
molecule behaves as a harmonic oscillator?

The frequency of the harmonic oscillator is given by ν ¼ 1
2π �

ffiffi
k
μ

q
, and the

wavenumber is related to the frequency as per eν ¼ ν
c
. Therefore:

eν ¼ 1
2π � c �

ffiffiffiffiffi
k

μ
:

s

The reduced mass μ needs to be calculated using particular isotopes (12C and 16O),
yielding

μ¼ m 12C
� � � m 16O

� �
m 12C
� �þ m 16O

� � ¼ 12:0000 Da � 15:9949 Da
12:0000 Daþ 15:9949 Da

¼ 6:856 Da

¼ 6:856 � 1:661 � 10�24 g μ ¼ 1:139 � 10�23 g ¼ 1:139 � 10�26 kg:

The force constant can now be calculated as follows:

k ¼ 4 � π2 � eν2 � c2 � μ
k ¼ 4 � π2 � 2170 cm�1ð Þ2 � 2:998 � 108 ms�1

� �2 � 1:139 � 10�26 kg

k ¼ 4 � π2 � 4:709 � 106 cm�2 � 8:988 � 1016 m2 s�2 � 1:139 � 10�26 kg

k ¼ 4 � π2 � 4:709 � 106 � 104 m�2 � 8:988 � 1016 m2 s�2 � 1:139 � 10�26 kg

k ¼ 4 � π2 � 4:709 � 8:998 � 1:139 � 106þ4þ16�26 m2 � kg
m2 � s2

k ¼ 1905:3
kg �m
s2

1
m

k ¼ 1:905 � 103N
m
:

13.2. Determine the ratio of populations of the vibrational levels v¼ 1 and v¼ 0 for
carbon monoxide at 300 K and 1000 K. The wavenumber for the transition from
v ¼ 0 to v ¼ 1 is 2176 cm�1.

The population ratio is given by the equation based on the Boltzmann statistics:

Nv

Nv¼0
¼ e�

Ev�Ev¼0
kB �T :

The difference (Ev�Ev¼0) is the energy difference between the two vibrational
levels and can be accessed via the wavenumber observed for this transition:
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ΔE ¼ h � ν ¼ h � eν � c
ΔE ¼ 6:626 � 10�34 J s � 2176 cm�1 � 2:998 � 108 ms�1

ΔE ¼ 6:626 � 10�34 J s � 2176 � 102 m�1 � 2:998 � 108 ms�1

ΔE ¼ 6:626 � 2176 � 2:998 � 10�34þ2þ8 J � s �m
m � s

ΔE ¼ 43226 � 10�24 J

ΔE ¼ 4:323 � 10�20 J:

For T ¼ 300 K, the population ratio is then:

Nv¼1

Nv¼0
¼ e

� 4:323�10�20 J

1:381�10�23 JK�1 �300 K ¼ e�0:0104�103 ¼ e�10:4 ¼ 0:00003:

For T ¼ 1000 K, the population ratio is:

Nv¼1

Nv¼0
¼ e

� 4:323�10�20 J

1:381�10�23 JK�1 �1000 K ¼ e�0:0031�103 ¼ e�3:1 ¼ 0:045:

Whereas at 300 K, the first excited vibrational mode is virtually not populated, at
1000 K, about 4.5% of the CO molecules populate the mode v ¼ 1.

13.3. Which spectroscopic symbol denotes the ground state of Li? What is the
symbol of the lowest excited state? What feature can be deduced for the spectral
line in the optical spectrum for this transition?

Li ground state:

Electronic configuration 1s2 2s1

Quantum numbers of the valence electron n ¼ 2, l ¼ 0, ms ¼ 1/2, j ¼ 0 + 1/2 ¼ 1/2
Total spin S ¼ |Σ si| ¼ |+ 1/2 –

1/2 +
1/2| ¼ 1/2

Spin multiplicity M ¼ 2�S + 1 ¼ 2�1/2 + 1 ¼ 2

Spectroscopic symbol 2S1/2

Li first excited state:

Electronic configuration 1s2 2p1

Quantum numbers of the valence electron n ¼ 2, l ¼ 1, ms ¼ 1/2, j ¼ 1 + 1/2 ¼ 3/2
n ¼ 2, l ¼ 1, ms ¼ �1/2, j ¼ 1 - 1/2 ¼ 1/2

Total spin S ¼ |Σ si| ¼ |+ 1/2 –
1/2 –

1/2| ¼ 1/2
Spin multiplicity M ¼ 2�S + 1 ¼ 2�1/2 + 1 ¼ 2

Spectroscopic symbol 2P3/2 and
2P1/2

The transition from the ground state to the first excited state can be from 2S1/2 to
either 2P3/2 or 2P1/2. The spectral line therefore appears as a doublet with the
individual lines having slightly differing energies.
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13.4. In the free electron molecular orbital method, the π electrons in an alkene with
conjugated double bonds are assumed to be freely moving within extent of the
conjugation system. The conjugation system can be treated as a one-dimensional
box.

(a) Calculate the box length for the conjugation system in hexatrien, assuming that
the C–C-bond length is 1.4 Å and considering that the electrons are free to
move half a bond length beyond each outermost carbon.

(b) Calculate the wavelength of the lowest energy peak in the absorption spectrum
of hexatriene using the free electron molecular orbital method.

a b

(a) With six consecutive carbon atoms participating in the π conjugation system,
the box length a can be calculated as per:

a ¼ 5 � r þ 2 � 1
2
� r

� �
¼ 6 � r

a ¼ 6 � 1:4 � 10�10 m ¼ 8:4 � 10�10 m:

(b) The lowest energy transition in the absorption spectrum of hexatriene is the one
occurring between the highest occupied and the lowest unoccupied orbital.
These frontier orbitals will be filled by π electrons, since the σ electrons occupy
lower lying orbitals. With six p electrons, we need to consider three energy
levels (n ¼ 1, n ¼ 2, n ¼ 3) when applying the model of a particle in a
one-dimensional box. The energy level at n ¼ 4 constitutes the lowest unoccu-
pied model. The electronic transition giving rise to the lowest energy peak in the
absorption spectrum will be between n ¼ 3 and n ¼ 4.

The energy of a particle in the one-dimensional box is given by
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En ¼ h2 � n2
8 � m � a2 , wherem ¼ me ¼ 9:11 � 10�31 kg:

This yields for the energy difference of the transition:

ΔE ¼ E4 � E3 ¼ h2

8 �me � a2 � 42 � 32
� �

The wavelength is obtained as per:

ΔE ¼ h � ν ¼ h � c
λ

) λ ¼ h � c
ΔE

Therefore:

λ ¼ 8 �me � a2 � h � c
h2 � 42 � 32

� � ¼ 8 �me � a2 � c
h � 16� 9ð Þ ¼ 8 �me � a2 � c

7 � h

λ ¼ 8 �me � a2 � c
7 � h ¼ 8 � 9:11 � 10�31 kg � 8:4 � 10�10 m

� �2 � 2:99 � 108 ms�1

7 � 6:63 � 10�34 J s

λ ¼ 8 � 9:11 � 8:42 � 2:99
7 � 6:63 � 10�31� 2�10ð Þþ8þ34 � kg m2 m

J s s

λ ¼ 331 � 10�9 � kg m2 m
kg m2 s�2 s s

λ ¼ 331 � 10�9 m ¼ 331 nm:

13.5. How many lines/clusters are to be expected in the 1H-NMR spectra of
(a) benzene, (b) toluene, (c) o-xylene, (d) p-xylene, (e) m-xylene?

Protons Lines/clusters δ (ppm)

(a) benzene 6 aromatic H Singlet 7.33

(b) toluene 2+2+1 aromatic H
3 methyl H

Multiplet
Singlet

7.00–7.38
2.34

(c) o-xylene 2+2 aromatic H
6 methyl H

Multiplet
Singlet

7.22–7.28
2.40

(d) p-xylene 4 aromatic H
6 methyl H

Singlet
Singlet

7.24
2.48

(e) m-xylene 1 aromatic H
2+1 aromatic H
6 methyl H

Doublet of doublet
Multiplet
Singlet

7.28–7.31
7.11–7.14
2.47

13.6. Predict the number of hyperfine lines in the proton coupling observed in the
ESR spectrum of the benzene anion radical C6H6

�.
The six protons in the benzene anion are chemically equivalent (N ¼ 6); the

nuclear spin of the proton is I ¼ 1/2. Therefore:
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2 � n � I þ 1 ¼ 2 � 6 � 1
2
þ 1 ¼ 7:

The benzene anion radical shows seven lines in the proton hyperfine coupling.

13.7. Determine the Raman and infrared activity of one symmetric and two different
anti-symmetric vibrational modes of the square planar molecule XeF4.

a b c

The symmetric stretching mode (a) does not lead to a change in the dipole
momentum, but a change in the distribution electrons, i.e. polarisability. This
mode is thus IR inactive and Raman active.

The anti-symmetric stretching mode (b) does not lead to a change in the dipole
momentum but to a change in the electron distribution (polarisability). This mode is
therefore IR inactive and Raman active.

The anti-symmetric stretching mode in (c) does indeed lead to a change in the
dipole momentum as the individual dipole momentum changes by bond stretching
on opposite sides do no longer cancel. The overall electron distribution does not
change, since the compression on one side of the molecule is compensated for by an
expansion on the other side; the polarisability does not change. Therefore, this mode
is Raman inactive, but IR active.
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Index

A
AAS, see Atomic absorption spectroscopy

(AAS)
Abscissa, 87
Absorbance, 359
Absorption, 357

coefficient, 359, 409
of UV/Vis light, 390
of X-rays, 409

Accommodation, adsorption process, 239
Action, quantum, 258
Activated complex, 197, 223
Activation

control, 222
energy, 196, 223

Activity, 136, 142
definitions, 137
non-ideal liquid solution, 64

Activity coefficient, 64, 136
experimental determination, 142

Adatom, 238, 250
Adiabatic

bomb calorimeter, 30, 32
process, 20
system, 30

Adsorbate, 237
Adsorbent, 237
Adsorption, 237

isotherm, 240
AES, see Atomic emission spectroscopy (AES)
Aldol condensation, 232
Alkali metal, 405
Allosteric inhibition, 236
Allowed transition, 361
Amplitude of wave, 263
Angular

momentum, 272
node, 306

probability distribution function, 306
velocity, 272, 285

Anharmonic oscillator, 381
Anti-bonding orbital, 326
Anti-Stokes lines, 386
Aperture, 262, 398
Aramid, 209
Aromaticity, 344
Arrhenius equation, 196
Arrhenius, Svante, 196
Atomic

ground state, 271
orbitals, 307
spectra, 267, 315, 403
term, 268

Atomic absorption spectroscopy (AAS), 267, 392
Atomic emission spectroscopy (AES), 76, 267,

392
Atomic force microscopy (AFM), 249
Attenuation coefficient, 358, 409
Aufbau principle, 316
Auger electron spectroscopy, 246, 412
Auger, Pierre, 412
Avogadro's constant, 22, 216, 223
Azeotrope, 96, 100, 102
Azimuth angle, 289

B
Balmer, Johann, 268
Battery

car, 113
flat, 123
paste, 113

Bergmann series, 404
Bimolecular reaction, 169
Binnig, Gerd, 249
Bivariant, 71
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Black-body radiation, 256
Bohr, Niels, 269, 271
Bohr radius, 302
Boiling point, 67

elevation, 63, 134
Boltzmann

constant, 216, 223
distribution, 149, 216, 359
factor, 149, 214

Bonding orbital, 326
Bond moment, 330
Bond order, 328
Born, Max, 275
Born-Oppenheimer approximation, 325, 391
Bouger-Lambert law, 359
Boyle's law, 148
Bragg's law, 398
Bragg, William Henry, 398
Bragg, William Lawrence, 398
Bremsstrahlung, 407
Bromo-naphthalene, 113
Brönstedt acids and bases, 231
Bubble-cap tray, 95
Buffer capacity, 138
Bunsen burner, 153

C
Cage effect, 220
Calomel electrode, 126
Calorimeter, adiabatic bomb, 30
Calorimetry

determination of entropy, 79
differential scanning, 33
isothermal titration, 33

Carbon dioxide, phase diagram, 71
Carothers' equation, 211
Cartesian coordinate system, 288
Catalysis

heterogeneous, 237
homogeneous, 229

Catalytic efficiency, 235
Centrifugal force, 255, 272
Centripetal force, 255, 272
Chain polymerisation, 211
Chain reaction, 211
Charge, 106
Chemical potential

liquid mixture, 61
of a liquid, 60
of a non-ideal gas, 51
of an ideal gas, 48
pure liquid, 61

Chemical shift, 369, 371
Chemisorption, 239
Chromophore, 360
Claisen condensation, 232
Clapeyron, Benoît, 83
Clapeyron equation, 82
Clausius-Clapeyron equation

sublimation, 86
vapourisation, 85

Clausius, Rudolf, 85
Closed system, 16, 26
Colligative property, 63, 133, 143, 144
Collisional cross-section, 213
Collision frequency, 215
Competitive inhibition, 236
Complementarity principle, 265
Complex

conjugate, 276
metal-ligand, 335
numbers, 276

Concentration
molar, 134
of liquid water, 137
types, 134

Conductance, 111, 156
Conductivity, 141, 160

electrical, 110
molar, 156
thermal, 152

Conductometry, 141
Conode, 90
Constructive interference, 398
Continuous data, 173, 423
Continuous function, 276
Continuous wave NMR, 370
Cooling, phase transitions, 101
Coordinate system, 289
Copolymer, 209
Core shell, 403
Corpuscular theory of light, 256
Coulomb force, 238
Coulomb's law, 320
Coupling constant, 372
Critical constants, selected gases, 69
Critical point, 67, 68
Cross-sectional area, 213

reactive, 217
Crystal, 237
Crystal field

splitting, 336
theory, 336

Crystal lattice, 320, 398
Crystallographic resolution, 399
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Cubic close packing, 319
Current density, 110

D
Dalton's law, 19
Daniell element, 113, 121
Data fitting, 173, 424
Deactivation processes, 394
DeBroglie relationship, 261, 399
Debye force, 351
Debye-Hückel

limiting law, 143
theory, 143

Debye-Hückel-Onsager, 159
Debye, Peter Joseph William, 351
Debye temperature, 401
Degeneracy

definition, 301
of orbitals, 310
of rotational states, 291, 378

Degree of dissociation, 135, 156
Degree of freedom, 226
Degree of polymerisation, 211
Delocalisation of electrons, 344
Desorption, 237
Destructive interference, 398
Diamagnetism, 329
Dielectric constant, 320
Differential scanning calorimetry (DSC), 33
Diffraction, 398
Diffraction grating, 398
Diffuse series, 404
Diffusion, 164

coefficient, 152
ion in water, 164

control, 222
Fick's first law, 151

Dilution law by Ostwald, 157
Dipole momentum

induced, 349, 386
permanent, 330, 348, 360
temporary, 333
transition, 360, 392

Discrete data, 173
Disproportionation, 230
Dissociation, degree of, 105
Distillation

fractional, 92
heat-sensitive compounds, 97
simple, 91
steam, 97

Doppler effect, 401

d orbitals, 335
Double layer, electrostatic, 131
Doublet state, 361
Drug(s), 232
Drug discovery, 236
Dry ice, 71

E
Effective mass, 286
Efficiency of fluorescence, 394
Eigen function, 301

hydrogen, 307
Eigen, Manfred, 189
Eigenvalue, 283, 301
Einstein, Albert, 246
Einstein relation, 164
Electric

conductivity, 110
field, 110, 155
quadrupole splitting, 402

Electrical
force, 253
resistance, 20, 111
work, 20

Electrochemical reaction, 112
Electrode potential, 124
Electrolytes, 105
Electrolytic cell, 112, 129
Electrolytic refinement, 115
Electromagnetic spectrum, 244
Electromotive force, 116

under non-standard concentrations, 122
Electron

charge, 253
mass, 256
spin, 311, 361

Electronegativity, 323, 331
Electroneutrality, 107, 131, 143
Electronic, transition, 390
Electron microscope, 261
Electron spectroscopy for chemical analysis

(ESCA), 397
Electron spin resonance (ESR, EPR), 373
Electrophoretic effect, 159
Electrostatic double layer, 131
Elementary charge, 106
Elementary particle, 366
Elementary reaction, 169, 199

bimolecular, 200
unimolecular, 200

Eley-Rideal mechanism, 244
Emission, 357
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Energy, 24
Energy crisis, 36
Enthalpy

of adsorption, 243
change, 30
definition, 21, 30
of formation, 169
molar, 33
vapourisation, 35

Entropy
definition, 21, 34
measurement, 79
molar, 78
of the universe, 40

Enzyme, 232
inhibition, 236

Equation of state, 23, 38
Equilibrium, 16, 35, 41

mechanical, 18
thermal, 17, 23

Equilibrium constant, 44
from law of mass action, 170
from standard electrode potential

difference, 123
link with rate constants, 188

ESCA, see Electron spectroscopy for chemical
analysis

Ester hydrolysis, acid-catalysed, 231
Eutectic point, 100, 102
Evans, Meredith, 226
Even function, 362
Extensive parameters, 16
Eyring equation, 226
Eyring, Henry, 226

F
Faraday constant, 108, 158
Faraday, Michael, 115
Faraday's law of electrolysis

first law, 116
second law, 116

Fermi contact, 375
Fermions, 317
Fick's law of diffusion, first law, 151, 162
Fingerprinting, 388
Fit line, 173, 424
Fluorescence, 392

life time, 394
resonance energy transfer, 394

Fluorophore, 394
Flux, 150
Forbidden transition, 361

Force constant, 379
Fourier transform(FT) mass

spectrometry, 128
Fourier transform (FT), NMR, 370
Fractional coverage, 238
Franck-Condon principle, 325, 390, 392
Franck-Hertz experiment, 266
Franck, James, 246, 266
Free energy, 168
Free induction decay (FID), 370
Freezing point depression, 106
Frequency, 365
Frequency law by Einstein, 259, 396
Friction, 158
Frictional force, 254
Fugacity, 51, 143
Full width at half maximum, 364
Function, multiplication rules, 362
Fundamental equation of thermodynamics, 50
Fundamental oscillation, 383
Fundamental series, 404

G
Galvanic cell, 113, 129

potential difference, 127
Gas constant, 216, 223
G-factor, 367
Gibbs-Duhem equation, 54
Gibbs free energy, 38

definition, 39
differentiation, 39
molar, 48
of a reversible process, 42
of a spontaneous process, 38, 41
of reaction, 43
standard, 43, 48, 65

Gibbs, Josiah Willard, 39
Gibbs phase rule, 70
Glass, 76
Goodness of fit, 424
Goudsmit, Samuel, 311
Gravitational force, 254
Ground state, atomic, 271
Guldberg, Cato M., 170
Gyromagnetic ratio, 367

H
Haber-Bosch process, 168
Half-cell, 113
Half-life, 177, 191
Halogenation, base-catalysed, 232
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Harmonic oscillator, 381
Hartree, Douglas, 314
Hartree-Fock method, 314
Heat, 20
Heat capacity, 79

at constant pressure, 33
at constant volume, 29
discontinuity, 74, 86
relationship for ideal gas, 33

Helium, phase diagram, 74
Helmholtz free energy, 41

reversible process, 42
Henderson-Hasselbalch equation

for activities, 141
for molar concentrations, 140

Hertz, Gustav, 246, 266
High-spin complex, 337
Hook’s law, 292
Hund, Friedrich, 325
Hund’s rule, 316
Huygens, Christiaan, 256
Hybridisation of atomic orbitals, 340
Hydration shell, 105
Hydrogen

bond, 353
electrode, 118, 124
line spectrum, 268

Hydrogen peroxide, decomposition, 229
Hydronium ion, 138
Hydroxide ion, 138
Hydroxyoxidanium ion, 230
Hyperfine splitting, 402
Hypertonic, 144
Hypoiodous acid, 230
Hypotonic, 144

I
Ice, 354
ICP-AES, 267
Ideal gas, 18

equation, 19, 23
Imaginary part (complex number), 276
Inclination angle, 289
Independent migration of ions, 157
Induced dipole, 349, 386
Inductively-coupled plasma (ICP), 76, 267
Inertia, 285, 376, 377
Infrared spectroscopy, 383
Initial rates, 185
Initiation reaction, 199
In real gases, condensation, 68

Intensity
of light, 358
squared amplitude, 264

Intensive parameters, 16
Interference, 398

double-slit experiment, 256
Internal conversion, 392
Internal energy, 24

definition, 21
Internal motion, 226
International System of Units, 22
Intersystem crossing, 394
Ion

association, 136
cyclotron resonance mass spectrometry, 128
mobility, 158

Ionic strength, 137
Ionisation energy

atomic, 271, 316
atomic hydrogen, 272

Ion product, of water, 137
Irreversible process, 26
Isobaric process, temperature dependence of the

equilibrium constant, 45
Isochore, 67
Isochoric process, temperature dependence of

the equilibrium constant, 45
Isolated system, 16, 26
Isolation method, 184
Isomeric shift, 402
Isomerisation, base-catalysed, 231
Isosteric enthalpy of adsorption, 243
Isotherm, 68
Isothermal process, 28
Isothermal titration calorimetry, 33
Isotonic, 144

NaCl solution, 145
IUPAC, 22

J
Jablonski diagram, 393
Jeans, Sir James, 257
J-J-coupling, 407

K
Keesom interactions, 349
Keesom, Willem Hendrik, 349
Kekulé, Friedrich August, 343
Kennard, Earle Hesse, 265
Keto-enol tautomerism, 231
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Kilogram, 22
Kinetic chain length, 212
Kinetic control, 206
Kinetic energy, 21
Kinetic molecular theory of gases, 148, 154,

214
Kink, in mathematical function, 86
Kohlrausch, Friedrich, 156
Kohlrausch's law, 156
Koopman's theorem, 397

L
Lambda-line, 74
Lambda-transition, 87
Lambert-Beer law, 359
Langmuir-Hinshelwood mechanism, 243
Langmuir isotherm, 241

for adsorption with dissociation, 242
Laplace operator, 274
Lattice, 237, 398
Lattice energy, 323
Law

of dilution (Ostwald), 157
of independent migration of ions, 157
of mass action, 170

Law of thermodynamics
0th, 22
1st, 25
2nd, 35, 161
3rd, 37

Lead acid battery, 113
Le Châtelier's principle, 45, 168, 189
LEED, see Low energy electron diffraction

(LEED)
Legendre function, 290
Leibniz notation, 418
Lennard-Jones potential, 334, 382
Lever rule, phase diagram, 90
Lewis acids and bases, 231
Lewis, Gilbert N., 329
Lewis structures, 329
Life time of fluorescent state, 394
Ligand field theory, 338
Light microscope, 262
Limiting molar conductivity, 160
Linear absorption coefficient, 359
Linear attenuation coefficient, 358, 409
Linear combination of atomic orbitals, 326
Line plot, 424
Line spectra, 267
Lineweaver-Burk plot, 234
Line width, 363

Liquid crystal, 76
Liquid crystalline displays (LCDs), 76
London dispersion force, 352
London, Fritz, 352
Lone pair, 342
Longitudinal relaxation, 369
Lorentz force, 255
Lorentzian function, 363
Low energy electron diffraction, 247
Low-spin complex, 337
L-S-coupling, 407

M
Maclaurin series, 382
Madelung constant, 322
Madelung, Erwin, 322
Magnetic

quantum number, 310, 366
spin momentum, 366
splitting, 402
total angular momentum, 313

Magneton, 367
Mass attenuation coefficient, 410
Mass ratio, 134, 145
Maxwell-Boltzmann distribution, 149
Maxwell relations, 38
Maxwell, James Clerk, 38, 256
m-cresol purple, 195
Mean free path, 154
Mean speed of molecules, 154, 213
Mechanical equilibrium, 18
Mechanical work, 20
Meitner, Lise, 412
Melting point, 67

depression, 134, 145
Mendeleev, Dmitri, 317
Menten, Maud, 233
Metal complex, 335
Metallic bond, 332
Method of initial rates, 184
Metric system, 22
Michaelis, Leonor, 233
Michaelis-Menten kinetics, 233
Microwave spectroscopy, 378
Millikan oil droplet experiment, 253
Mixing

of gases, 57
of ideal liquids, 61
of real gases, 59

Mobility, ion, 158
Molality, 134
Molar absorption coefficient, 359
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Molar amount, 22
Molar concentration, 51
Molar conductivity, 156

limiting, 156
Molar entropy, 78

of substances, 78
Molar heat capacity, 30
Molar mass, 4
Molecularity, 169, 199
Molecular mass, 4
Molecular orbital method, 325
Mole fraction, 52, 134
Momentum, 272

of inertia, 285, 376, 377
orbital angular, 310
spin, 311
total angular momentum, 312

Monochromatic radiation, 398
Morse function, 382
Moseley, Henry, 410
Moseley's law, 410
Mpemba effect, 74
Mulliken, Robert S, 325
Multiplicity

maximum (rule of), 317
spin, 361, 390, 406

N
Natural line width, 363
Nernst equation, 120
Nernst heat theorem, 37
Newton, Isaac, 256
Newton mechanics, translocation work, 161
Node(s)

angular, 306
radial, 304

Non-bonding orbitals, 338
Non-competitive inhibition, 237
Nuclear charge, 317, 405
Nuclear magnetic resonance (NMR), 369
Nuclear resonance, 399
Nuclear spin, 402
Nuclear spin momentum, 366
Nucleon, 366
Nylon, 209

O
O-branch, 386
Odd function, 362
Ohm's law, 111
Open system, 16

Optical resolution, 261
Orbitals

angular momentum, 310, 405, 408
atomic, 307
molecular, 326

Order
of a reaction, 172
number, 315, 410
of elementary reaction, 169

Order-disorder transition, 87
Ordinate, 87
Osmosis, 134
Ostwald’s law of dilution, 157
Overlap integral, 391
Overpotential, 115, 206
Overtone, 383
Oxidation, 113

P
Paramagnetism, 329
Parity, 362, 390
Partial integration, 421
Partial molar volume, 52
Partial pressure, 19, 52, 58
Path function, 20, 26
Pauli

exclusion principle, 316, 374
repulsive potential, 333

Pauling, Linus, 323
Pauli, Wolfgang, 317
P-branch, 383
Peak width, 364
Pearson correlation, 425
Periodic system, order number, 315
Permanent dipole, 347
Permanent dipole momentum, 360
Permittivity, 271, 321
pH and pOH, 138
Phase, 70
Phase boundary, 66, 82
Phase diagram

p-T diagram, 66
p-V diagram, 69

Phase rule, 70
Phase transition, 35, 70

first order, 86
lambda-transition, 87
second order, 86

pH buffer, 138
Photoelectric effect, 246, 253, 396
Photoelectron, 259
Photoelectron spectroscopy, 397
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Photoreaction, 394
Physisorption, 239
pi (π) orbital, 327
p-jump, 189
Planck constant, 258
Planck, Max, 37, 258
Planck's constant, 22
Planté, Gaston, 113
Plasma, 76
Poise, 154
Poiseuille, Jean Léonard Marie, 154
Polanyi, Michael, 226
Polar angle, 289
Polarisability, 333, 349, 386

units, 350
Polarisability volume, 350
Polarity, molecular orbital, 326, 330
Polyamide, 209
Polyester, 209
Polymerisation, 209

average length of polymer, 211
chain, 212
stepwise, 209

Polypropylene, 211
Polyurethane, 209
Potential development series, 293, 300
Potential difference, 109
Potential energy, 21
Precision, 422
Pre-equilibrium, 205
Pre-exponential factor, 196, 218
Pressure, 18

partial, 19
scales, 18

Principal quantum number, 271, 283, 300,
403, 411

Principal series, 404
Probability

density, 276, 375
squared amplitude of wave, 264
waves, 275

Probability density, 391
Probability distribution function

angular, 306
radial, 304

Product rule, 419
Propagation reactions, 199
Proteins, 209
Pseudo-1st-order rate law, 184
Pulse-acquire NMR, 370

Q
Q-branch, 383
Quantum number

magnetic quantum number, 310
orbitals, 307, 405
principal, 271, 283, 300, 403, 411
spin quantum number, 311

Quantum yield, 394
Quark, 366
Quartet state, 361
Quenching, 394

methods, 193

R
Radial

coordinate, 289
node, 304
probability distribution function, 304

Radical reaction mechanism, 199
Raman effect, 386
Raman shift, 386
Raman, Sir Chandrasekhara Venkata, 386
Raoult, Francois-Marie, 63
Raoult's law, 63, 81, 134, 142
Rate

adsorption, 239
constant

definition, 171
diffusion-controlled reaction, 223
experimental, 183
gas-phase collision, 218
link with equilibrium constant, 188

equation
differential, 174
integrated, 175

law, definition, 172
reaction, 170

Rate-determining step, 205
Rayleigh, criterion, 261
Rayleigh-Jeans law, 257
Rayleigh, Lord (John William Strutt), 257
Rayleigh scattering, 386
R-branch, 383
Reaction

isobar, 45
isochore, 45
isotherm, 45

Reaction coefficient, 43, 65
Reaction coordinate, 197
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Reaction intermediate, 169
Reaction order, 172

of elementary reactions, 199
Reaction profile, 173
Reactive cross-section, 216
Real numbers, 276
Real part (complex number), 276
Rechargeable battery, 115
Recoil effect, 399
Redox

potential, 119
reaction, 113

Reduced mass, 214, 292, 379, 404
definition, 286

Reduction, 113
Reduction potentials

absolute, 127
standard, 127

Relaxation, 159, 189, 369
spin-lattice (longitudinal), 369
spin-spin (transversal), 369
time (kinetics), 190

Repeated measurements, 422
Repulsion, 321
Resistance, 20, 111, 155
Resolution, 261, 364

in diffraction methods, 399
Resolving power, 364

optical systems, 261
Resonance, 357
Resonance structures, 343
Reversible process, 26, 35, 41

work, 28
Rigid rotor

space-fixed axis, 285
space-free axis, 288, 376

Ritz, Walter, 268
Röhrer, Heinrich, 249
Root mean square speed, 148
Rotational constant, 287, 376
Rotational spectrum, 376
Rota-vibrational spectrum, 383
Russel-Saunders coupling, 407
Rutherford, Ernest, 271
Rydberg constant, 268, 271, 403
Rydberg, Johannes, 268

S
Sacrificial anode, 118
Sampling rate, 173, 424
S-branch, 386
Scanning tunneling microscopy, 249

Scattering, elastic, 386
Scatter plot, 173, 423
Schrödinger, Erwin, 273
Secondary wave, 398
Selection rule(s), 360

rotation, 377
vibrational, 392
vibrational transition, 380

Self-consistent field method, 314
Semi-permeable membrane, 16
Series limit, 270
Sharp series, 404
Shells, 307, 318
Short-range, repulsion, 321
SI, 22
Siegbahn notation, 409
Sigma (σ) orbital, 326
Silk, 209
Silver/silver chloride electrode, 118, 126, 130
Singlet state, 361
Smekal, Adolf, 386
Solubility product, 130
Solvation shell, 105
Solvent sharing, 136
Spearman’s correlation, 425
Specific heat, 30
Spectral resolution, 364
Spectrochemical series, 337
Spectroscopic terms, 404
Spectrum, 359
Spherical coordinate system, 289
Spherical harmonics, 290, 299
Spin

electron, 311, 361
magnetic momentum, 366
momentum, 311
multiplicity, 361, 390, 406
quantum number, 311, 366

Spin-forbidden transition, 360
Spin-label, 374
Spin-lattice relaxation, 369
Spin-orbit coupling, 313, 406
Spin-spin coupling, 371
Spin-spin relaxation, 369
Standard electrode potential, 120, 126
Standard electromotive force, 120
Standard Gibbs free energy change, reaction, 65
Standard hydrogen electrode, 124
Standard reduction potential, 126
State function, 23, 168
State variable, 23
Steady-state approximation, 201
Steric factor, 217
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STM, see Scanning tunneling microscopy
(STM)

Stoichiometric equation, 169
Stoichiometry coefficient, 43
Stokes-Einstein relationship, 223
Stokes' law of friction, 158
Stokes lines, 386
Stokes shift, 393
Subshells, 307
Substrate

adsorption, 237
enzyme reactions, 232

Supercooled liquid, 76
Supercritical state, 67, 72
Superfluid, 74
Symmetry

rules, 362, 390
of wavefunction, 362

System, 15
closed, 16
isolated, 16
open, 16, 49

T
Tautomerism, 231
Temperature, 17

scales, 17
Temporary dipole, 349
Temporary dipole momentum, 333
Termination reactions, 199
Termolecular reaction, 169
Term scheme, 269, 404
Terrace step kink model, 237

kink, 237
Tetramethylsilane, 371
Theoretical plates, 93
Thermal conduction, 152
Thermal equilibrium, 17, 23
Thermionic emission, 253
Thermodynamic control, 206
Thermodynamic force, 161
Tie line, 90
Time constant, 177
T-jump, 189
Tonicity, 144
Total angular momentum, 312, 406, 408
Transition

dipole momentum, 360, 361, 392
electronic (rules), 390
between energy levels, 357

probability, 360
spin-forbidden, 360
state, 169, 197, 223
temperature, 70

Translocation work, 161
Transmission coefficient, 226, 296
Transmittance, 359
Transport, 150

general transport equation, 151
Transversal relaxation, 369
Triple point, 17, 68
Triplet state, 361
Tunnelling, 295
Turnover number, 235

U
Uhlenbeck, George, 311
Uncertainty relationship, 264, 363
Uncompetitive inhibition, 237
Unimolecular reaction, 169
Univariant, 66, 71
Universal repulsive force, 333, 352
UV photoelectron spectroscopy (UPS), 246, 397
UV/Vis absorption, 391

V
Valence bond method, 325
Valence bond theory, 339
Valence shell, 329, 403
Valence shell electron pair repulsion, 343
Valve-cap tray, 95
Van der Waals

interactions, 239, 352
potential, 333

van Laar-Planck equation, 45
van't Hoff equation, 45, 243
van't Hoff factor, 134
van't Hoff, Jacobus Henricus, 170
Vapour pressure, 68

lowering (Raoult’s law), 63
lowering (Raoult's law), 134

Velocity, angular, 285
Vibrational spectrum, 379
Vigreux column, 95
Virial coefficient, 50
Viscosity, 153, 254
von Helmholtz, Hermann, 41
VSEPR, see Valence shell electron pair

repulsion (VSEPR)
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W
Waage, Peter, 170
Water

molar concentration, 137
phase diagram, 73
triple point, 17

Wave
function, 273
standing, 274

Wave function, 273
normalised, 276

Wavelength, 365
Wavenumber, 268, 365
Weisskopf, Victor Frederick, 334
Wool, 209
Work, 26

electric, 20
mechanical, 20
translocation, 161

X
X-ray absorption spectrum, 411
X-ray fluorescence, 247, 408
X-ray photoelectron spectroscopy (XPS), 246,

397
X-ray spectroscopy, 407
X-ray spectrum, 408

Y
Young, Thomas, 256

Z
Zeeman effect, 310, 402
Zeeman, Pieter, 310
Zero gap, 383
Zero-point energy, 294
Ziegler-Natta catalysts, 211
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