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SERIES PREFACE

Theoretical chemistry is one of the most rapidly advancing and exciting fields in the
natural sciences today. This series is designed to show how the results of theoretical
chemistry permeate and enlighten the whole of chemistry together with the multi-
farious applications of chemistry in modern technology. This is a series designed for
those who are engaged in practical research. It will provide the foundation for all
subjects which have their roots in the field of theoretical chemistry.

How does the materials scientist interpret the properties of the novel doped fullerene
superconductor or a solid-state semiconductor? How do we model a peptide and
understand how it docks? How does an astrophysicist explain the components of
the interstellar medium? Where does the industrial chemist turn when he wants to
understand the catalytic properties of a zeolite or a surface layer? What is the meaning
of 'far-from-equilibrium' and what is its significance in chemistry and in natural
systems? How can we design the reaction pathway leading to the synthesis of a
pharmaceutical compound? How does our modelling of intermolecular forces and
potential energy surfaces yield a powerful understanding of natural systems at the
molecular and ionic level? All these questions will be answered within our series
which covers the broad range of endeavour referred to as 'theoretical chemistry'.

The aim of the series is to present the latest fundamental material for research
chemists, lecturers and students across the breadth of the subject, reaching into the
various applications of theoretical techniques and modelling. The series concentrates
on teaching the fundamentals of chemical structure, symmetry, bonding, reactivity,
reaction mechanism, solid-state chemistry and applications in molecular modelling.
It will emphasize the transfer of theoretical ideas and results to practical situations
so as to demonstrate the role of theory in the solution of chemical problems in the
laboratory and in industry.

D. CLARY, A. HINCHLIFFE, D. S. URCH AND M. SPRINGBORG

JUNE 1994
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In his book, Mr Tompkins in Wonderland, the physicist, George Gamow, gives a
popular description of two of the most important scientific developments of the 20th
century: quantum theory and the theory of relativity. Gamow's book is split into two
parts, in which we follow the adventures of the main character, Mr Tompkins, in
a universe where some of the physical laws have been modified. In the first part,
the speed of light has been greatly reduced, while in the second Planck's constant
has been greatly increased. In this way, the typical length scales of the theory at
hand have been changed to those of our daily life in order to make the differences
between the classical-mechanical description of our customary life and the relativistic
or quantum-mechanical description clear. In the first case (in which the theory of
relativity is popularized), this corresponds to a reduction in the distance light travels in
one time unit by orders of magnitude, whereas in the second case (i.e. the description
of quantum theory) the typical length of objects experiencing quantum effects has
been increased by orders of magnitude.

This book testifies to a common belief that the theory of relativity is to be applied
to one class of physical objects, while quantum theory is relevant for another class of
physical objects. The exceptions are exotic and most often not relevant for a scientist
working in physics or chemistry, at least as long as he or she is studying the properties
of real materials that could also be of interest to a nonscientist.

Thus, the most common assumption was that a material's properties are governed
by quantum theory and that relativistic effects are mostly minor and of only secondary
importance. Quantum electrodynamics and string theory offer some possible ways of
combining quantum theory and the theory of relativity, but these theories have only
very marginally found their way into applied quantum theory, where one seeks, from
first principles, to calculate directly the properties of specific systems, i.e. atoms,
molecules, solids, etc. The only place where Dirac's relativistic quantum theory is
used in such calculations is the description of the existence of the spin quantum
number. This quantum number is often assumed to be without a classical analogue
(see, however, Dahl 1977), and its only practical consequence is that it allows us to
have two electrons in each orbital.
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However, relativistic effects have a much more profound influence on a material's
properties. Thus, the existence of a spin quantum number allows for the existence of
magnetism. Moreover, as shown in most standard textbooks on physical chemistry,
the phenomenon of phosphorescence can only be explained through the existence
of relativistic effects. Phosphorescence involves transitions between, for example,
singlet and triplet states which are only possible if some spin-operating effects exist,
e.g. spin—orbit couplings. Furthermore, several experimental techniques are indirectly
based on exploiting relativistic effects. These include, for example, electron-spin and
NMR spectroscopies.

Relativistic effects are more important for heavier elements. Moreover, the different
electronic orbitals are influenced differently by these effects, which means that they
ultimately may modify the material's properties differently for different elements.
A famous example of this is the colour of gold, which is atypical when compared
with the colours of copper and silver but which can be explained by incorporating
relativistic effects.

These very few examples should demonstrate that in many cases relativistic effects
are important and cannot be either simply ignored or, better, treated at a low-accuracy
level. Nevertheless, the combination of quantum theory and the theory of relativity
at a level that makes qualitative and quantitative predictions possible is very far from
trivial and has not yet reached a mature level, but is a currently active field of dispute,
discussion and progress.

There exist many methods for electronic-structure calculations (see, for example,
Springborg 2000) that are becoming increasingly important in both science and indus-
try. Some of these methods have led to commercially available programs that are used
worldwide. With these methods we can study many different systems but relativistic
effects are at best treated only approximately. As indicated above, this is fine for many
properties and for systems with lighter atoms, but in many cases it is precisely the rel-
ativistic effects that are responsible for important details. Therefore, there is a strong
need for reliable methods for electronic-structure calculations that include relativistic
effects and the treatment of those is a topic of intensive worldwide research.

In this context, Europe is playing a central role, so that a relatively large part of the
frontier research in this field has taken place there. And within Europe, Germany is
particularly strong, with two major research programs, one of which was supported
by the European Science Foundation and the other by the German Research Council.

The purpose of this book, edited by Bernd A. Hess, is twofold. On the one hand,
the different theoretical tools for including relativistic effects in quantum-theoretical
calculations (at very many different levels of theory and sophistication) developed
recently are presented. And on the other hand, the results obtained with these methods
for both simple and complicated (i.e. many-atom) systems are presented.

The book concentrates largely on the results of the German research activities
(with, however, contributions from other groups outside Germany) and is the result
of the above-mentioned German research effort. It is interdisciplinary with first of all
contributions from chemistry and physics and has been written by scientists who are
among the leaders in this field. Since the authors have had close contact over several
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years, the present book is not solely a collection of largely independent parts but the
different parts are strongly interrelated.

Michael Springborg
Physical Chemistry, University of Saarland,
66123 Saarbrucken, Germany
m.springborg@mx.uni-saarland.de



Preface

In August 1991, seven scientists from seven European Countries, working in the field
of relativistic electronic structure theory, met in Strasbourg as guests of Dr Manfred
Mahnig, who was at this time a representative of the European Science Foundation.
They gathered in order to discuss the state of the art in relativistic electronic structure
theory of atoms and molecules and to explore the possibilities of promoting the field at
a European scale. The initiative for this meeting can be traced back to correspondence
between Dr Mahnig and Professor Pekka Pyykko, which can therefore be taken as
the germ of the various REHE programmes promoting the field of relativistic effects
in heavy-element chemistry and physics. The first was the REHE programme of the
European Science Foundation, which was current in the years 1993–1998 and proved
extremely effective by providing the opportunity for many scientists to take advantage
of short visits and also longer visits lasting up to several weeks to the most active
laboratories in the field all over Europe. In addition, a series of Euroconferences and
workshops ensured a rapid exchange of ideas. The newsletter of the program1 provided
rapid exchange of information between the participating groups. The programme was
directed by a steering committee comprising E. J. Baerends (Amsterdam), J. P. Daudey
(Toulouse), K. Faegri (Oslo), I. P. Grant (Oxford), B. Hess (Bonn, Vice-Chairman),
J. Karwowski (Torun), P. Pyykko (Helsinki, Chairman), K. Schwarz (Vienna) and A.
Sgamellotti (Perugia). The success of this programme is documented by an impressive
list of papers which received funding by REHE.2

The European REHE programme fostered rapid development of the area, and soon a
Collaborative Research Program ('Schwerpunkt') programme of the German Science
Foundation (DFG) was approved, which in the years 1994–2000 provided funding for
about 30 research groups, mostly in the form of positions for graduate students and, in
some cases, postdoctoral researchers. This funding was granted based on applications
of individual research groups, which were reviewed in a collaborative context every
second year by an international committee of referees. The collaborative aspect was
strengthened by reports by the groups at yearly meetings, which soon led to new
collaborations and exchanges of ideas across the participating groups.

1 http://www.chemie.uni-erlangen.de/hess/html/esf/nl.html
2 http://www.chemie.uni-erlangen.de/hess/html/esf/papers.htrnl
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The topic of the REHE programmes was relativistic effects in heavy-element chem-
istry, but what are relativistic effects? In principle, the answer is easy. A relativistic
effect is any phenomenon which can be traced back to the fact that the velocity of
light is a universal, finite constant in all frames of reference, even those moving with
some unchanging velocity with respect to each other. Thus, a relativistic effect relies
on a comparison with a fictitious world where the velocity of light is infinite and a
'nonrelativistic' description applies.

There is still discussion, in particular, in experimentally oriented papers, about
whether relativistic effects 'really exist' and are measurable, or if they are an artefact
of a 'wrong theory', namely, the nonrelativistic one, and cannot be measured because
in reality there are no nonrelativistic atoms. However, since the notion of relativistic
effects is well defined, I claim that they can even be measured in favourable cases
directly from the behaviour of a simple function of the atomic number Z. Consider the
binding energies of the 1s electron of hydrogen-like atoms, which are well accessible
to measurement. Obviously, this quantity depends on Z, and we attribute the depen-
dence on Z beyond second order to relativity, since nonrelativistic theory predicts that
there are no nonvanishing Taylor coefficients beyond second order. The relativistic
effect therefore can in this particular case be measured as the deviation of E as a
function of Z from parabolic behaviour, a very simple prescription indeed.

It is remarkable that the Dirac theory of the relativistic electron perfectly describes
this deviation, and the difference to the reference (the nonrelativistic value) is unusu-
ally well defined by the limit of a single parameter (the velocity of light) at infinity.
The special difficulty encountered in 'measuring' relativistic effects is that relativistic
quantum mechanics is by no means a standard part of a chemist's education, and
therefore the theory for interpreting a measurement is often not readily at hand. Still,
a great many of the properties of chemical substances and materials, in particular,
'trends' across the periodic system of elements, can be understood in terms of rela-
tivistic effects without having to consider the details of the theory.

Needless to say, many-electron atoms and molecules are much more complicated
than one-electron atoms, and the realization of the nonrelativistic limit is not easily
accomplished in these cases because of the approximations needed for the description
of a complicated many-particle system. However, the signature of relativistic effects
(see, for example, Chapter 3 in this book) enables us to identify these effects even with-
out calculation from experimental observation. Two mainly experimentally oriented
chapters will report astounding examples of relativistic phenomenology, interpreted
by means of the methods of relativistic electronic structure theory. These methods for
the theoretical treatment of relativistic effects in many-electron atoms and molecules
are the subject of most of the chapters in the present volume, and with the help of this
theory relativistic effects can be characterized with high precision.

The present book serves a twofold purpose. On one hand, the book was designed
to serve as a final report on the work done in the Collaborative Research Programme
('Schwerpunkt') of the German Science Foundation on Relativistic Effect in Heavy-
Element Chemistry and Physics. I apologize that for that reason it is certainly biased
towards the work of the groups who had participated in the last period of this pro-
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gramme, and as a consequence our account will certainly be found to have missed
important contributions to the field. On the other hand, to some extent it should also
give an account of the worldwide progress made in the last decade as far as the method-
ology of calculating relativistic effects in heavy-element chemistry and physics and
their interpretation are concerned. Thus, we have made some effort to review the work
done in Europe, in particular, in the framework of the REHE programme, and all over
the world in the field of relativistic electronic structure calculations.

On behalf of the participants of the 'German REHE Schwerpunkt', I thank the
German Science Foundation for their generous and highly effective funding. The
professional guidance through the technical aspects of the programme by Dr Car-
nell, Dr Kuchta and Dr Mahnig, who were the officers of the DFG in charge of the
'Schwerpunkt', was instrumental to its success. Since Dr Mahnig also guided the
early stages of the 'European REHE' at the European Science Foundation, it is fair
to say that without his help and initiative in the early 1990s the REHE programmes
would not exist, nor would the present book. An important instrument in the design of
a 'Schwerpunkt' is the refereeing process, carried out by an international committee
of experts, all of them with illustrious reputations in the field. Their presence at the
meetings was highly appreciated and without doubt provided many stimuli which
found their way into the work of the groups refereed by them. I express my sincerest
gratitude for the time and the work they have devoted to the programme.

Finally, I also thank the participants of the last term of this programme for supplying
a large amount of the material which has been used by the authors of the seven chapters
of this book in order to accomplish the task of providing a report on six years of
research in a fascinating area of modern science.

Bernd Hess
Chair of Theoretical Chemistry, University of Erlangen—Nuremberg,
91058 Erlangen, Germany
bernd.hess@chemie.uni-erlangen.de



1 Basic Theory and Quantum
Electrodynamics in Strong Fields

Gunter Plunien and Gerhard Soff
Institutfur Theoretische Physik, Technische Universitat Dresden

1.1 Introduction

Theoretical and experimental investigations of relativistic and QED effects in atomic
physics and chemistry have increased continuously during the last decade. As a con-
sequence of this interest in various relativistic phenomena and in their empirical
manifestations a diverse field of research has developed linking together widespread
activities ranging from high-energy heavy-ion collision physics, atomic or molecular
physics and chemistry of heavy elements to solid-state physics.

Giving a rigorous account of relativistic effects is now an important goal in theor-
etical and experimental studies because of recent progress made in experimental
techniques and because of the accuracy currently achievable in measurements, e.g. in
atomic and molecular spectroscopy, or in view of newly available laser techniques.
Present accessible energies in heavy-ion accelerators allow a new generation of exper-
iments with ultrarelativistic ions, which, for example, enable us to probe the structure
of the vacuum via the electromagnetic particle-antiparticle pair creation.

In particular, the consideration of relativistic and QED effects of electronic systems
(i.e. free electrons, electronic ions, atoms or molecules) in strong external electro-
magnetic fields provides various appropriate scenarios for sensitive tests of our under-
standing of the underlying interactions. Theories of fundamental interactions, such as
quantum electrodynamics (QED) or the standard model of electroweak interactions
can be tested conclusively by studying QED radiative corrections and parity-violating
effects (PNC) in the presence of strong fields.

This chapter partly reviews current developments in studies of relativistic phenom-
ena that occur under the influence of the strongest accessible electromagnetic fields
realized in nature and in the laboratory:

(1) electrons in external electromagnetic fields of superintense lasers;

(2) lepton pair creation in time-dependent external fields generated in peripheral
ultrarelativistic collisions of heavy ions;

Relativistic Effects in Heavy-Element Chemistry and Physics
Edited by B. A. Hess © 2003 John Wiley & Sons Ltd



2 INTRODUCTION

(3) relativistic and QED effects in strong external electric and magnetic fields of
highly charged ions.

A proper framework for a relativistic description of the various scenarios indicated
above is based on Dirac's theory of the electron and QED as the quantum field theory
of leptons and photons.

A rigorous approach requires us to perform exact, i.e. all-order, calculations with
respect to the coupling to the strong external fields. Laser field intensities of the order
of 1021 W cm-2 corresponding to so-called ponderomotive energies comparable with
the electron rest mass or effective coupling constants Za ~ (9(1), where Z denotes
the nuclear charge number of heavy ions, reveal the inherent nonperturbative nature
of the problems under consideration. Perturbation theory is thus inadequate and can
at best only serve as a rough estimate.

On the level of quantum mechanics we are faced with the problem of solving
numerically the Dirac equation governing the time-evolution of an electron state
\*P(t)) under the influence of a space-time-dependent (classical) electromagnetic field
A^xt(r, r) including the binding nuclear potential AnUC(r):

H(t) = a (p - eAext(x, t) + eA°ext(x, t) + ftm.

Employing simplifying conditions, this task can in principle be achieved for particular
scenarios. To develop efficient computer codes for solving the time-dependent Dirac
equation in four dimensions with arbitrary external electromagnetic potentials is the
task of numerous theoretical investigations based on different numerical approaches.
Once this goal is achieved it will facilitate applications ranging from the descrip-
tion of dynamical processes in atoms or molecules, from studies of the behaviour of
electrons or atoms in time-dependent intense laser fields to nonperturbative calcula-
tions of lepton pair production in the time- varying electromagnetic field generated in
ultrarelativistic heavy-ion collisions.

A general quantum field-theoretical framework for treating all the different prob-
lems outlined above may be specified in the interaction representation. Let the total
system under consideration be described by the time-dependent Hamiltonian

This decomposition suggests that at least in principle the H0-problem can be solved.
The additional interaction Hamiltonian HI(t) is assumed to be localized in time,
i.e. H I( \ t \ -> oo) = 0. The explicitly time-independent Hamiltonian H0 can be
diagonalized through a proper definition of creation/annihilation operators ai

(s)+,- /ai
(s)

corresponding to noninteracting particles of the species (s) and characterized by a set
of quantum numbers denoted by a label i :
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The vacuum |0) == 0S |0S) defined as the ground state of the system is annihilated
according to a^ |0) = 0. Time-dependent operators obey the equation of motion

,

while the dynamics of any given quantum state \&(i)) is governed by

at

This equation of motion for the quantum state |#(f )} is formally integrated by means
of the (unitary) time-evolution operator U

= Texpl-i

0 0 (-i\n f t f t
= y]L-r d ' l - - - / d/nr[H,(ri)-..Hi(rn)]|^(f')}.

*—* n\ it' it*
n=0 Jt Jt

Whether or not perturbation theory with respect to the interaction described by the
interaction Hamiltonian is meaningful depends on the problem under consideration.
Otherwise, we have to search for appropriate, nonperturbative approximations for the
time-evolution operator U.

Strongly bound electrons in highly charged ions experience permanently the exter-
nal electromagnetic field generated by the nucleus and interact permanently as well
with the quantized radiation field. Typical binding energies of K-shell electrons
in heavy, hydrogen-like ions, which, for example, in the uranium system amount
to about 132 keV, become comparable in magnitude with the electron rest energy.
In the same system the dominant QED-radiative corrections contribute to the 1s-
Lamb shift already at the level of 10-4. A value for the effective coupling constant
Za ~ 0.6 for uranium indicates the breakdown of perturbation theory with respect
to the nuclear Coulomb field. Moreover, K-shell electrons have considerable over-
lap with the nucleus and with its nearby region, where the local energy density of
the electric field reaches the critical Schwinger value. Spontaneous electron-positron
pair creation could occur if this region extended over a spatial volume of the order
of the electron Compton wavelength. These qualitative remarks strongly support the
expectation that relativistic and QED effects will become relevant, for example, for a
quantitative explanation of recent spectroscopic data.

When dealing with few-electron ions, corrections due to the interelectronic inter-
action have to be properly taken into account. While this can be achieved with suffi-
cient accuracy perturbatively for helium- or lithium-like ions, a rigorous accounting
of electron correlation effects requires the ambitious task of solving the interact-
ing many-electron system. Various all-order approaches—such as relativistic Dirac-
Hartree-Fock (RDHF), relativistic many-body perturbation theory (RMBPT), rela-
tivistic configuration interaction methods or coupled cluster expansions—are avail-
able employing specific approximations to the exact many-body problem, such as, for
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example, projecting out the negative-energy Dirac states (no-pair approximation), etc.
Accordingly, theoretical predictions of QED and PNC effects in atoms are still lim-
ited by uncertainties set by the present capability to account for all relevant electron
correlation. Because of such inherent problems within the methods used in relativis-
tic atomic-structure calculations it is desirable to search for a consistent framework
that treats simultaneously electron-correlation and QED effects on an equal footing
from the very beginning. Attempts to merge QED and many-body approaches on a
fundamental level also represent a challenging task in future research.

1.2 Electrons in Superintense Laser Fields

Investigation of the various aspects related to the problem of the interactions of fast
electrons with intense laser fields has become a very active field of current research
(Bula et al. 1996; Connerade and Keitel 1996; Grochmalicki et al. 1990; Hartemann
and Kerman 1996; Hartemann and Luhmann 1995; Hartemann et al. 1995; Keitel and
Knight 1995; Meyerhofer et al. 1996; Moore et al. 1995), strongly motivated by the
potential applications discussed in the recent literature (Hussein et al. 1992; Kormendi
and Farkas 1996; Maine et al 1988; Patterson and Perry 1991; Patterson et al 1991)—
such as the generation of X-rays via scattering intense radiation with fast free electrons
(Kormendi and Farkas 1996) and the acceleration of charged particles by powerful
lasers (Hussein et al 1992)—that have now become possible in present highly intense
pulsed and focused laser fields (Maine et al. 1988; Patterson et al. 1991). To appreciate
intensities of the order of I = 1021 W cm-2 of currently generated laser light we
should compare this number with the intensity Ia = 1 a.u. = 3.5 x 1016 W cm-2

(a.u. = atomic units) corresponding to the binding Coulomb field experienced by an
electron in the ls ground state of hydrogen.

Pulsed laser fields may be represented by a classical external vector potential A(n)
considered as a function of the invariant phase r = cot — k • r. A natural scale for
characterizing the intensities is provided by the dimensionless parameter

which relates characteristic properties of the electron, i.e. charge e, mass m and
its classical radius T0, with those of the radiation fields, such as the speed of light
c, wavelength A, intensity / and the peak amplitude a, respectively. The averaging
(A)2 is taken over a time interval that is short compared with the pulse duration
but long enough to contain many field cycles. The so-called ponderomotive energy
Up = e2I/(4mo)Q) becomes comparable with the rest energy of the electron. As
a consequence, the motion of the electron can become relativistic even in the case
of optical photons possessing nonrelativistic energies, for example, /KWQ ~ 2 eV.
Fields characterized by values q ^ 1 are called super-intense. Accordingly, with the
advent of superintense lasers we have entered the regime where relativistic effects
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become relevant and thus have to be taken into account. Already at intensities of
about / = 1018 W cm-2 the electron can gain energies of the order of its rest energy
from the electric-field mode of the laser. Under those conditions the dynamics of
the electron is dominated by relativistic effects. We should mention, for instance, the
effect of self-focusing and acceleration of electrons up to energies of about 100 MeV
(Wagner et al 1997). Achieving the goal of a consistent relativistic description of
the atom-laser interaction has also been the subject of recent research (Blasco et al.
2001; Faisal and Radozycki 1993; Salamin and Faisal 1996, 1997, 1999, 2000).

One important issue among other interesting topics to which current theoretical
studies are devoted is the examination of the influence of superintense laser fields on
the process of coherent emission of high-energy photons with frequencies CD equal
to high multiples of the fundamental frequency w0 of the incident laser field. The
generation of such photons, commonly called high-harmonic generation (HHG), has
been first observed experimentally in intense but nonrelativistic laser fields (Ferray
et al. 1988; McPerson et al. 1897). Intensive nonperturbative calculations employing
the formalism of Floquet states (see, for example, Gavrila 1992; Muller and Gavrila
1993, and references therein) or solving numerically the time-dependent SchrSdinger
equation on the lattice (Kulander et al 1991; Muller 1999) have contributed important
results to the elucidation of atom-laser interactions. In these computationally intensive
studies, the laser field is treated in the dipole approximation and thus magnetic and
retardation effects are usually neglected.

Similarly, for superintense fields we could attempt to solve the corresponding
time-dependent Dirac problem. It turns out, however, that unlike the nonrelativistic
Schrodinger case a full numerical integration of the Dirac equation in four dimensions
for realistic scenarios is faced with additional technical difficulties connected with the
discretization of spinor equations of motion. Accordingly, many of the approaches
which work nicely in the Schrodinger case cannot be applied straightforwardly to the
solving of the relativistic Dirac problem. An inherent difficulty obviously follows from
the specific nature of the atom-laser interaction. Depending on the particular system
and process under consideration, it could be appropriate to employ the Furry picture,
where the bound-electron problem is solved exactly (Coulomb states) and the laser
field is treated as a perturbation, or, conversely, the problem is solved exactly with
respect to the interaction with the external laser field (Volkov states) and the Coulomb
potential plays the role of a minor perturbation. Both interaction pictures, however,
may become inadequate in the scenario of highly charged ions in superintense laser
fields.

Exact and nonperturbative numerical evaluations are thus severely constrained. As
a first step towards a fully numerical integration, we can investigate an analogous
dimensionally reduced model scenario, for example, in 1 + 1 dimensions (one spatial
and time direction). Such simulations still allow us to elucidate some generic features
of relativistic effects on the electron dynamics. Calculations along this line have been
performed recently providing new insight into the process of HHG and atomic ioniza-
tion under the influence of superintense fields (Blase 2001). It turns out that at such
high intensities the electron, although initially bound, will become ionized even before
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the maximum (peak) field strength of the incident laser fields sweeps over the atom.
Hence, at the time when the superintense field takes effect, the atom-laser interaction
becomes essentially a problem of a free electron in the presence of a superintense field.
With this picture in mind and placing particular emphasis on the relativistic aspects,
we could try to simulate the problem of HHG from free electrons in superintense
laser fields employing semiclassical or even classical relativistic electrodynamics in
four dimensions, treating the electron as classical, relativistic point particle (Salamin
and Faisal 1996). In the following we discuss the result of such model simulations on
HHG and above-threshold-ionization (ATI) spectra in superintense fields.

1.2.1 Model simulations

For the (1 + l)-dimensional model system, the numerical integration of the corre-
sponding Dirac equation has been performed (Blase 2001) employing an explicit
finite-difference method. Numerical studies revealed that, for example, the time-
discretization interval 8t has to be chosen about three orders of magnitude smaller
than the corresponding interval Sx of the spatial grid. This is basically connected
with the finite velocity of light, which amounts to c = 137.036 a.u. To be explicit,
for the calculations performed for a hydrogen atom (Z = 1) in an intense laser field
(Blase 2001) numerical stability required a choice of Sx = 0.05 a.u. for the spatial
and St = 0.00002 a.u. for the temporal grid.

We can employ the results of such simulations for both the Dirac and Schrodinger
equations in order to calculate the HHG as well as the ATI spectra for the same laser
parameters. This allows us to estimate the relativistic effects. An important observable
is the multiharmonic emission spectrum S(w). It can be represented as the temporal
Fourier transform of the expectation value of the Dirac (Schrodinger) current density
operator j(t) according to

a

/

+00

-00

It describes the radiated power, while the atomic electron undergoes the dynamics.
Another important physical quantity of interest is the ATI spectrum, which corre-
sponds to the energy density spectrum of the electron in the continuum. It can be cal-
culated by projecting the simulated, time-dependent wave function | V (t)> that evolves
from the initially unperturbed ground state of the atom \&°) = \V(t -» — oo)) under
the influence of the external laser pulse onto free-electron continuum states \<t>n). The
transition amplitudes involved are obtained via

(4>n\U(t, -oo)|*°) = «*» I /* dr'//,(r')}U°y
1./-00 Jl /

7-exp

where the interaction Hamiltonian contains the time-dependent laser pulse.
Generic features of the results for both HHG and ATI spectra obtained in such model

simulations have been recently provided (Blase 2001). In particular, the simulations
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Figure 1.1 Electron current density as a function of time. The laser pulse is characterized by a
frequency to = 27.21 eV and an intensity / = 3.51 x 1021 W cm-2 = 105 a.u. Nonrelativistic
(left part) and relativistic (right part) results are shown.
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Figure 1.2 Generated HHG spectrum after 10 optical cycles. Parameters of the laser pulse
are the same as in the previous figure. Nonrelativistic (left) and relativistic case (right).

have been carried out for hydrogen. The atomic system is considered as being initially
in the ls ground state. The laser pulse was modelled by means of a s i n 2 O - s h a p e d
external field assuming a laser frequency w = 27.2 eV and a pulse duration between
6 and up to 20 cycles. In order to investigate the role of relativistic effects results were
obtained for laser intensities / varying between 7 = 1 a.u. ~ 3.51 x 1016 W cm-2

and I = 105 a.u.~ 3.51 x 1021 W cm - 2 . For laser intensities I = 1 a.u., apart from
slight details, the electron-current density and the HHG as well as the ATI spectra
turn out to be more or less the same in both simulations, i.e. in the nonrelativistic
Schrodinger and the relativistic Dirac case. For the considered laser pulse with an
intensity I = 3.5lx 1016 W cm–2, no influence of relativistic effects can be observed.
However, the situation changes significantly when the intensity of the laser pulse is
increased. In Figures 1.1-1.3 the corresponding results for the same quantities are
displayed for a much higher intensity 7 = 3.51 x 1021 W cm-2 = 105 a.u., which is
five orders of magnitude larger than typical atomic intensities.

While in the case of low-intensity laser pulses, 7 = 1 a.u., we can hardly recognize
any differences between the Schrodinger and the Dirac simulations, for large inten-
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Figure 13 ATI spectrum after 10 optical cycles.
Otherwise the same as in the previous figure.

sities, I = 105 a.u., nonrelativistic and relativistic simulations can now be clearly
distinguished. Looking, for example, at the densities displayed in Figure 1.1, we
observe that the maximum of the nonrelativistic electron-current density (left part)
amounts to about 500 a.u. According to the classical interpretation, we can relate
the current density j and the probability density p to a classical electron velocity v
via j = pv, which exceeds the velocity of light c at the maximum nonrelativistic
value. This consideration may already indicate the breakdown of the nonrelativistic
Schrodinger theory and that the relativistic Dirac equation has to be used in order to
provide a consistent description of the behaviour of atomic electrons in very intense
laser fields. Accordingly, the relativistic simulation (right part) in which the maximum
of the envelope of the current density flattens out and thus does not give rise to an
electron velocity greater than c at any time. Figure 1.2 reveals that in very intense laser
fields harmonic generation of very large order becomes possible. This conclusion may
already be drawn from the occurrence of a rich peak structure in the emitted power
spectrum up to high photon energies. Note that although the nonrelativistic (left) and
relativistic simulations (right) show significant qualitative differences in the details,
the spectra appear to be quite similar. As shown in Figure 1.2 the corresponding ATI
spectra exhibit a remarkable difference. In comparison with the nonrelativistic sim-
ulation (left) the relativistic ATI spectrum (right) the peak is shifted towards lower
energies. Note that there is a nonvanishing probability that the electron can be excited
into continuum states with energies of several keV.

It is also interesting to examine the situation of the time-evolution of bound electrons
under the influence of intense laser pulses in hydrogen-like ions with considerably
higher nuclear charge numbers Z. In order to provide some knowledge about the
generic effect of strong electron binding, we discuss some results for hydrogen-like
neon (Z = 10). In this case, the initially bound ls electron has a binding energy nearly
100 times larger than that in the hydrogen atom. The electron wave function of such
tightly bound electrons strongly localized in the vicinity of the nucleus. Accordingly,
as mentioned above, the number of spatial and temporal grid points has to enlarged.
To give an example, the corresponding results of relativistic simulations of the wave
function for Z = 10 are shown in Figure 1.4 (Blase 2001).
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Figure 1.4 Relativistic simulation of the time-evolution of the ground-state electron density of
hydrogen-like neon during 10 optical cycles of the laser field (&> = 54.4 eV). Upper part: assum-
ing an intensity I = 3.51 x 1019 W c m - 2 , the electron remains tightly bound and the proba-
bility for ionization is negligible. Lower part: assuming an intensity / = 3.51 x 1020 W c m - 2 ,
the electron becomes ionized.

Figure 1.4 displays the simulated probability-density distribution for finding the
ground-state electron at a finite distance x (a.u.) away from the nucleus after a time
(measured in units of optical cycles) corresponding to 10 laser-field cycles. The impor-
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tant feature to be pointed out here is that for a laser intensity of I = 103 a.u. a tightly
bound electron remains near to the vicinity of the nucleus during the duration of the
laser pulse (upper part of Figure 1.4). This indicates that the ionization probability is
negligible. However, the situation changes drastically with increasing intensity; for
example, as indicated in the lower part of Figure 1.4, a further increase in the intensity
by one order of magnitude now has the consequence that after four and a half cycles
the electron density has already propagated far out from the nucleus and reached the
edge of the simulation grid (x > 100 a.u.)-

1.2.2 Laser-electron interaction from
classical electrodynamics

From the considerations of the previous subsection, it is evident that a fully relativis-
tic description of the laser—electron interaction within the framework of QED still
represents a challenge for present and future research efforts. In view of this situation
it is also interesting to consider the problem of laser-electron interaction within the
framework of classical electrodynamics. It is known that semiclassical approaches
in nonrelativistic quantum mechanics allow for a description of atomic physics pro-
cesses whenever large quantum numbers are involved. In laser-electron interactions
the laser field can be described as a classical external field. Electronic excitation pro-
cesses taking place in strong fields imply large energy scales and quantum numbers as
well. To a good approximation, the atomic electron interacting with very intense laser
fields can be considered as being 'born' freely in a continuum state. Furthermore,
classical electrodynamics is capable of accounting for relativistic effects because of
its Lorentz invariance. In order to check whether or not the behaviour of the ionized
electron interacting with intense laser fields can be described in the framework of
classical electrodynamics, the so-called ponderomotive scattering of electrons emit-
ted via ionization from neutral atom near the focus of a very intense laser pulse has
been investigated theoretically by several authors (Corkum et al. 1992; Reiss 1990,
1996; Salamin and Faisal 1997). Thereby, the ionized electron is scattered by the
force derived as the gradient of the ponderomotive potential of the laser field. Pro-
vided the electron is ionized with sufficiently high energy, it may penetrate the laser
beam and undergo a scattering process (Bucksbaum et al. 1987; Bula et al. 19%;
Hartemann et al. 1995; Kibble 1966; Meyerhofer et al. 19%; Moore et al. 1995). In
recent experiments (Meyerhofer et al. 1996; Moore et al. 1995) that used electrons
generated by ionization near the focus of a circularly polarized laser pulse, the pon-
deromotive scattering has been measured. The experimental results have been found
to be consistent with the assumption that the ionized electron has initially almost zero
kinetic energy before it gets highly accelerated and undergoes ponderomotive scat-
tering in the intense laser field. However, it is important to analyse the dependence of
the measured results on the initial conditions.

Salamin and Faisal (1996, 1997) analysed harmonic generation and the pondero-
motive scattering of electrons in intense laser fields based on a classical relativistic



BASIC THEORY AND QED 11

Hamilton-Jacobi theory of charged point particles in external electromagnetic fields.
For laser pulses with arbitrary intensity, polarization and pulse shape under rather gen-
eral initial conditions, exact expressions for the ponderomotive scattering angles of
electrons have been derived. This also allowed earlier investigations to be generalized
(Eberly 1969; Sarachik and Schappert 1970). The results obtained within this classi-
cal approach have been employed in the analysis of the measurements (Meyerhofer
etal. 1996).

Let us briefly recall the essentials of the relativistic Hamilton-Jacobi approach
(we refer to Salamin and Faisal (1996, 1997) for a detailed discussion). Assume
that initially the electron is incident on the focal region of the laser pulse with an
arbitrary velocity V0 = cßo, where c denotes the velocity of light. Accordingly, the
electron possesses an initial energy E0 = yomc2 = (1 — /?o) 1 / / 2 and a canonical
momentum 0 = yomcßo. Accordingly, the kinetic energy of the electron K is
obtained from the energy E by subtracting its rest energy K = (y — 1) mc2. Assuming
elliptical polarization, the laser pulse may be modelled by a transversal vector potential
(V - A = 0)

A(n) = a(€\ 8 cos rj + €2 l - 82 sin n) g(n).

Here a denotes the maximum field amplitude, n is the ellipticity together with the
pulse-shape function g (n ) , which depends on the phase rj = cot — k • r. The laser
beam is characterized by the frequency and the wave vector k with ck = w. The
transversality condition implies k • A = 0. For a charged point particle interacting
with this external electromagnetic field, the Hamilton-Jacobi equation reads

2, (1.2)

where S denotes Hamilton's principal function. The latter may be assumed to be of
the form

The constant vector s and the constant £ are determined by the initial conditions.
Insertion of this ansatz into (1.2) together with the transversality condition for the
vector potential allows for the solution (Sarachik and Schappert 1970)

\s2 - f 2 + (me)2

L

The initial conditions for the electron motion mentioned above are consistent with
the choice s — yomc ßo and = —yomc, respectively (Salamin and Faisal 1996).
Given this result for 5 the energy of the electron can be derived via £(??) = —dS/dt.
Subtracting the rest energy the kinetic energy of the electron can be expressed as

V I Y°mc2 \l (eA . "*(»?)• ft 1= AO H -- s - - I - 5- I H -- 5— .
1 -k-fo L2 VXomcV y0mc2 J
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Here k — (a)/c)k defines the propagation direction of the laser beam. Employing the
relation between the canonical momentum, the principal function 5 and the kinetic
momentum of the electron, i.e. n = VS = p — (e/c)A, yields

p(r,) =

The energy and the kinetic momentum of the electron derived above are both consistent
with the initial conditions.

The initial velocity PQ of the electron may be represented with respect to the local
polar coordinate system with the origin at the electron-laser crossing beam

fto = A) (sin #o cos<£o f\ + sin OQ sin 0o *2 4- cosOQ k),

where the angles OQ, 0o determine the initial orientation of the electron velocity. With
respect to the same coordinate system we can describe the ponderomotive scattering
of the electron in terms of the angles 6 and <J>, respectively. It is now straightforward
to derive explicit expressions for the ponderomotive scattering angles for arbitrary
initial conditions as function of the electron kinetic energy and the parameters of the
laser pulse:

% sin OQ + 2(1 - A) cosfloX* - tf0)/yomc2

+ (K- *o)/tt>mc2

and

fa sin OQ sin 0p 4- ae g(y/)/(mc2yo) Vl - S2 sin n

Note that in the equation for 0 all reference to the radiation field has been eliminated
in favour of the kinetic-energy difference K — K0 of the electron. By this means
the scattering angle 0 becomes a functional of the laser-field amplitude A(n) and its
phase n). The predicted curve for the angle 0 as function of the escape kinetic energy
K holds for any laser field. It is the scattering angle 0 that reflects specific features
of the laser pulse.

The results of this classical relativistic calculations (Salamin and Faisal 1997) are
presented in Figure 1.5 and compared with experimentally deduced ponderomotive
scattering angles 0 (Meyerhofer et al. 1996; Moore et al 1995) as a function of the
escape kinetic energy K of the electron.

Various initial conditions for the emitted electron are depicted and it can be con-
cluded that the measured results are well reproduced by the classical theory based
on the assumption that the electrons are 'born' in the laser field with small kinetic
energy K0 and move essentially in the direction of the polarization of the field, i.e.
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Figure 1.5 The ponderomotive scattering angle 9 (in degrees) versus the escape kinetic
energy of the electron (in keV) for initial kinetic energies KQ = 0.1,1,10 and 100 eV and
for initial scattering angles = 0, ir/4 and 7r/2. Experimental data have been taken from
(Meyerhofer et al. 1996). The various curves for a given pair of initial conditions (OQ, KQ)
are as follows: a, (0,100); b, (n/4,100); c, (0,10); d, (n/4,10); e, (0,1) and (x/4, 1); and
f, (0, 0.1), (Tt/4, 0.1), (7T/2, 0.1), (7T/2, 1), (7T/2, 10), Or/2, 100) and (0,0).

#o ~ n/2. It is then accelerated to higher energies by the field. In very intense laser
fields the electron can already appear in a region of lower intensity before the pulse
maximum arrives and it can then be accelerated by the high-intensity peak.

As another consequence the interaction between ionized (free) electrons with very
intense laser fields results in a highly nonlinear Thomson scattering of the incident
laser photons. This gives rise to a variation in the angular distribution of the emitted
(scattered) photon of the same energy as that of the incident laser photon. Without
intending to review the theoretical description (see Salamin and Faisal 1996, for
detailed derivations), we mention only the following. For the derivation of a cross-
section it is convenient to start from the (time-) averaged scattered radiant power
dP& per unit solid angle d&R with respect to the averaged rest frame (R) of the
electron and to Lorentz-transform the quantities into the laboratory (L) frame. The
total scaled cross-section for the observed radiated power (summed over all harmonic
contributions n) is obtained by dividing the averaged power dPL observed per solid
angle di?L by the incident laser-beam intensity 7 = (equL )2/'(87

1

Here a>^ denotes the observed (L-frame) frequency of the incident laser frequency.
Figure 1.6 indicates the generic features based on the classical approach (Salamin
and Faisal 1996). The calculated angular distribution of the scattering cross-section



14 ELECTRONS IN SUPERINTENSE LASER FIELDS

30 60 90 120 150
Observation angle 6(deg)

180

Figure 1.6 Angular distribution of the scaled differential cross-section ( l / r X
of the first harmonic n = 1. Vanishing initial velocity ß0 = 0 is assumed and rO =
2.82 x 101 3 cm denotes the classical electron radius. The dotted line corresponds to the
ordinary Thomson scattering cross-section.

of the first harmonic (n = 1) is plotted versus the observation angle 9 with respect to
the laboratory frame.

The different curves correspond to various values of the ponderomotive energy
measured in terms of of Up/(mc2) (see Equation (1.1)). For a comparison, the ordi-
nary Thomson cross-section is also plotted in order to demonstrate the effect of
high-intensity laser fields. Increasing the laser intensity (measured in Up/(/nc2)),
but keeping the laser frequency fixed, strong deviations in the cross-section occur,
with the general tendency that it becomes highly asymmetrical with respect to the
direction perpendicular to the incident laser light. Thus, the well-known ( 1 +cos2 0)/2
behaviour characteristic of the linear regime of Thomson scattering changes drasti-
cally. For increasing intensity the cross-section becomes peaked towards 0 = 0 and
the backward scattering diminishes. In other words, in very intense laser fields the
forward-backward symmetry, which is characteristic of the Thomson regime, is bro-
ken. Radiation due to Thomson scattering occurs only in the forward direction. The
spectrum of emitted radiation can be analysed in terms of multiple Compton harmon-ics
ics of the incident photons scattered off from the free electron due to the presence
of intense laser fields (see also Salamin and Faisal 1999, 2000). A typical sequence
of spectra measured in terms of scaled emission cross-sections r-2 d L for
increasing intensities Up/(mc2) is plotted in Figure 1.7 versus the order of the har-
monic n.

For low harmonics of radiation, the spectra exhibit a nonlinear dependence even at
a logarithmic scale. Moreover, in this region the emission cross-section is found to be
larger for higher harmonics, sometimes at the expense of contributions of lower order
(e.g. as for n = 1). It is also seen that with increasing intensities the harmonics have
comparable emission strengths that can extend to very large harmonic orders. Further-
more, the semi-logarithmic plot reveals a remarkably simple asymptotic dependence
in the sense that it turns over into straight lines for large orders of n. This pro-
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Figure 1.7 Differential cross-section (i/r^)(dcr^ /dQi,) against the harmonic order n for
ponderomotive potential U p / ( m c 2 ) = 1,2, 3,4 and a fixed observation angle 0 = 40°.

vides the possibility of obtaining the contributions from even higher harmonics by
linear extrapolation. The classical electrodynamical approach turns out to be capa-
ble of analysing important features of the electron-laser interaction in very intense
fields. However, we should emphasize that investigations of relativistic effects in the
electron-laser interaction for realistic scenarios require a fully relativistic quantum
mechanical description.

1.3 Electron-Positron Pair Creation in Relativistic
Heavy-Ion Collisions

The investigation of electron-positron pair production due to the strong time-varying
electromagnetic fields that occur during relativistic collisions of highly charged heavy
ions allows us to probe quantum electrodynamics at small distances as well as to deter-
mine the interaction between fast projectiles and matter. Electron-positron (lepton-
antilepton) pair production in relativistic heavy-ion collisions has received great atten-
tion in recent years. Due to the development of heavy-ion accelerators, numerous
calculations have been devoted to this subject employing both perturbative and non-
perturbative methods (see Bertulani and Baur 1988; Eichler and Meyerhof 1995; Soff
1980; Wu et al. 1999, and references therein). A review of recent developments can
also be found in Becker et al. (1987), Thiel et al. (1994) and Tenzer et al. (2000a).
Lepton-index pair production in relativistic collisions of highly charged ions at small
impact parameters is a nonperturbative process. This is evident in view of the very
strong electromagnetic fields generated during the collision. For systems with large
nuclear charge numbers Z the effective coupling constant Za. is not small compared
with one. Accordingly, a proper description requires a nonperturbative numerical solu-
tion of the Dirac equation in the strong, time-dependent external field generated by
the colliding ions. Being able to provide efficient numerical codes to generate exact
solutions of the time-dependent Dirac equation allows for a description of various
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dynamical processes, such as electronic excitations, ionization and charge transfer as
well. Here we report on recent developments and achievements.

Basically, one distinguishes between pair creation, where the electron and positron
are produced in free (continuum) states and pair creation with an electron in a bound
state of one of the ions, for example, in a K-shell state. The latter process is also
called bound-free pair production. Pair creation with electron capture into a bound
state of the ion changes the charge state of the ion represents one of the major loss
processes affecting the stability of ion beams in relativistic heavy-ion colliders. The
corresponding cross-section for electron capture is of the order of 100 barn for RHIC
energies in U92+(100 GeV /u) +U92+(100 GeV/u) collisions and determines the
lifetime of ionic charge states in the beam and then the luminosity.

Electron-positron pair creation is usually calculated within the semiclassical ap-
proximation. Within this approach the motion of the ions is treated classically and
described by constant velocities and straight-line trajectories. The electromagnetic
fields generated by the ions are considered as classical fields, while the electron-
positron field is quantized. It obeys the Dirac equation in the presence of a time-
dependent external electromagnetic field. The field strengths that occur during the
collision depend on the nuclear charge numbers Z of the ions and on the impact
parameter. Depending on the particular scenario, simplifying approximations can
be employed. In the case of lower Z and larger impact parameters, time-dependent
perturbation theory of first or second order can be applied yielding reasonable proba-
bilities for the pair creation. In the ultrarelativistic regime of extremely high incident
energies, taking the limit y -> oo for the Lorentz factor is legitimate. For this limiting
case an exact solution of the Dirac equation has been found (Baltz 1997) that allows
the calculation of cross-sections in the light-cone approximation. We shall return to
this situation below.

Most of the difficulties occur in the regime of moderate relativistic energies together
with impact parameters smaller than the reduced Compton wavelength, i.e. b <
X = h/(mc) = 386 fm, and for highly charged heavy ions. This characterizes the
regime, where the time-dependent perturbation theory fails and the electron-positron
pair creation becomes an inherently nonperturbative process. Results on electron-
positron pair production have been obtained within the framework of two approaches
for solving the Dirac equation nonperturbatively. The first method is based on the
solution of coupled-channel equations employing momentum eigenfunctions (Tenzer
et al. 2000b) and the second one carries out a direct integration with the help of the
finite-element method (Busic et al. 1999a).

1.3.1 Theoretical framework

Let us first summarize the results of the field-theoretical description of pair creation.
For details we may refer to Eichler and Meyerhof (1995) and Strayer et al. (1990).
Electron-positron pair creation can be viewed as an excitation of an electron from the
(occupied) negative energy continuum into a positive energy bound or continuum state
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leaving a hole in the Dirac sea. The latter is reinterpreted as a free positron. Assuming
that the (vacuum) ground state is a many-body state of noninteracting electrons, the
total Hamiltonian may be decomposed into an unperturbed (time-independent) part
HO and a time-dependent interaction part H1(t). This decomposition of the Hamilto-
nian is not unique and may be performed suitably depending on the particular situation
under consideration and with respect to physical initial conditions. However, we may
assume that the interaction part vanishes for asymptotic times, i.e. HI(t | -> oo) = 0.
The proper definition of (quasi-)particles is provided by diagonalization of the unper-
turbed Hamiltonian H0.

With respect to the rest frame of the target ion we can write

H0 = ca • p + ßmc2 + VT(r) (1.3)

with the static Coulomb potential of the target nucleus. We can specify the one-particle
states of the target Hamiltonian as Coulomb-Dirac wave functions

Vfn,±(r' 0 = 0n,±(/)e~ i£n '±r- (1-4)

The subscripts '(«>+)' label positive-energy levels (bound and upper continuum
states) and ' (n ,—) ' refer to negative-energy continuum states, respectively. The time-
dependent interaction HI is due to the projectile ion giving rise to a time-dependent
external electromagnetic four-potential (Ap(r, t), Ap(r, t ) ) . Assuming the projectile
to move with a constant velocity v along a straight line (e.g. parallel to the z-axis) with
impact parameter b, the time-dependent interaction Hamiltonian HI is described by
the Lorentz-boosted Coulomb potential of the projectile ion. The total Hamiltonian
of the scattering system reads

H(t) = ca • p + ßmc2 + VT(r) + HI,

where

3..* l-v/caz

This total Dirac Hamiltonian possesses time-dependent solutions

H(t) xn,±(r, t) = ill— Xn,±(r, 0 (1.5)
at

with the initial condition that in the infinite past the solutions Xn,± refer to a solution
n, of the unperturbed Hamiltonian with a defined sign of energy and same quantum

numbers n, i.e.

lim Xn.±(r,t) = n,±(r)e-En

The field operator can be represented at first in terms of eigenfunctions (1.4)
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with time-evolved (electron) annihilation operators an+ and (positron) creation oper-
ators bn _ =an, respectively. Equivalently, we may decompose the (Heisenberg)
field operator with respect to the (one-particle) basis set (1.5)

t(r, 0 = 5».+ *«.+(r' 0 + ._ Xn,-(r, 0
n,+ n,—

with time-independent (one-particle) operatorsan>+ and b\ _ = «„,_. The above rela-
tions have the following physical interpretation. Under the influence of the time-
dependent interaction with the projectile ion, any positive-energy state 0n,+ con-
sidered at asymptotic time t -> — oo will become an admixture of positive- and
negative-energy states xn,± after the time-evolution to t -> +00. Conversely, any
positive-energy state x/i,± at r -> +00 appears as admixture of positive- and negative-
energy initial states 0n,±. Accordingly, the number of electrons #„,+ created in the
state (n, +) and equivalently the number of positrons Nn created referring to the
initially occupied negative-energy state (n, — ) are given by

Employing time-reversal symmetry, the number of generated electrons can be rewrit-
ten as

(1.6)

This expression is much more convenient for practical evaluations since only one state
has to be evolved in time, namely the state x«,+ referring to the final electron state
under consideration. By these means the equation above may describe pair production
with electron capture. It also yields ionization and electron-transfer probabilities of
a hydrogen-like target. These probabilities are obtained by projecting Xn,+ onto the
target and projectile states. Non-perturbative calculations of such processes require a
fully numerical time-evolution of the Dirac equation.

1.3.2 Coupled-channel calculations

Let us briefly discuss the idea of and the results obtained from coupled-channel
calculations with momentum eigenfunctions as it has been employed recently (Tenzer
et al. 2000b). The collision is considered in a coordinate system, where the scattering
ions have equal but opposite velocities v = ±V0ez.. With respect to this system the
total time-dependent Hamiltonian H is decomposed into the unperturbed (free) Dirac
Hamiltonian

H0 = COL • p + ßmc2,
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Table 1.1 Cross-sections for free electron-positron pair production. Collision energies are
given in units of GeV per nucleon (GeV/u).

cross-section (barns)

coupled Born PT PT
System (GeV/u) Exp. channels approx. (a) (b)

La57+
La57+
La57+
Au79+
Au79+
Au79+

+ Cu29+
+ Ag47+
+ Au79+
+ Cu29+
+ Ag47+
+ Au79+

1.3
1.3
1.3

10.8
10.8
10.8

0.30
0.80
2.64

42
85

180

0.54
1.16
3.56

43.4
92.2

212.0

0.23
0.43

13.9
41.3
91.2

12
31
87

15
40

113

and a time-dependent interaction part, which now appears as the sum of the Lorentz-
boosted Coulomb potentials of both target and projectile ions,

d.7)
r+ cct r_ ca

with

Target and projectile ions have the charge numbers ZT and Zp, respectively, b denotes
the impact parameter and y = (l-(vo/c)2)1/2 the Lorentz factor. The corresponding
Dirac equation is solved by expanding the electron-positron field into eigenstates
of the free Hamiltonian HQ. Since these eigenstates are free continuum states with
a momentum p, it is convenient to discretize the positive and negative continuum
leading to a system of coupled equations for the expansion coefficients of the electron-
positron field ..

In Table 1.1 experimental and calculated cross-sections for free electron-positron
pair production in collisions of La57+(1.3 GeV/u) and Au79+(10.8 GeV/u) on Cu29+,
Ag47+ and Au79+ are listed. The experimental data for the cross-sections are taken
from Belkacem etal. (1997) and A. Belkacem (1999, personal communication) and
compared with various theoretical predictions. The results obtained with the described
coupled-channel method are also compared with predictions based on first-order Born
approximation (Steih 1999) and with corresponding data obtained by means of pertur-
bation theory as reported by Becker et al. (1986) (PT (a)) and by lonescu and Eichler
(1993) (PT (b)), respectively. In the latter case the numbers given are deduced from
the scattering system U92+ +U92+ by scaling with a factor (ZTZp)

2. The perturbative
calculations yield cross-sections that are too small. This fact indicates the necessity of
using nonperturbative methods, e.g. coupled-channel procedures, for the calculation
of cross-sections for electron-positron pair production.
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13.3 Finite-element method

In a recent work (Busic et al. 1999a), the time-dependent Dirac equation has been
solved by a finite-element method. For convenience, the rest frame of target nucleus
has been chosen. For calculating the electron-positron pair production probabilities
with electron capture into the K-shell of the target ion the time-reversal symmetry has
been employed. According to (1.6) the 1s 1/2 wave function has to be developed in
time under the influence of the projectile ion. In order to obtain the proper asymptotic
behaviour for the wave function at large distances we can make use of the gauge free-
dom and transform the wave function by a phase transformation according to Eichler
and Meyerhof (1995). This leads to potentials falling off faster than the Coulomb
potential for large internuclear distances. The projectile is assumed to move on a
straight line parallel to the z-axis in the (y, z)-plane and the electron spin is quantized
with respect to the x-axis. A three-dimensional, Cartesian lattice with equidistant grid
points is introduced. Then the Dirac equation is transformed into a matrix equation by
using basis functions written as a product i (x)<f>j (y )<fo (z) of three one-dimensional
linear finite-element functions depending on a Cartesian coordinate. Each function
fulfils the following condition i(xj) = at the grid points Xj. The time-evolution
of the resulting matrix equation is carried out in discrete time-steps Ar, where higher
powers of Ar are taken into account. This method has been applied to the study of
the scattering systems (Busic et al. 1999a)

U92+(y = 1.5 = 466 MeV/u) + U91+

and

Au79+(y = 2 = 930 MeV/u) + U91+.

For a Lorentz factor y = 1.5, the probability for pair creation turns out to be rather
small. However, in this energy region we can study excitation, ionization and charge
transfer into the ground state of the projectile. For collisions of

U92+(y = 1.5) + U91+,

typical results for the corresponding probabilities are displayed in Figure 1.8 in com-
parison with results obtained by perturbation theory. The spin is quantized with respect
to a direction perpendicular to the scattering plane. Note that the perturbative ioniza-
tion probability exceeds unity for small impact parameters. In Figure 1.9 the density
distribution in the scattering plane at a time t = 4780 fm/c after the collision is given.
The target is at rest in the right corner at (y = 0, z = 0), where the residual probability
of the ground state is located. The projectile appears underneath the second maximum
in the front left corner. The charge transfer is clearly visible in the density distribution
indicating that the electron has been torn away partly by the projectile ion.

In the case of the collision system Au79+(y = 2) 4- U914" calculations have been
carried out with high precision. The time-step Af is set to 25.4 fm/c. In order to
achieve an error in the norm of the wave function less than 10–12, the time-evolution
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Figure 1.8 (a) Probability for excitation of the ls1/2 state of U91+ uiU92+(y = 1.5)+U91+

collisions as a function of the impact parameter. The solid curve is calculated with the
finite-element method, the dashed curve with perturbation theory, (b) The same for charge
transfer into the ground state of the projectile ion.

operator has been expanded up to the 25th order in the Hamiltonian. The probabil-
ities for pair production with electron capture are calculated by projecting the final
wave function onto states of the negative energy continuum with angular momentum
quantum numbers \K\ 8. A probability for free-pair production of 3.1 x 10–4 at
an impact parameter b = 0 is predicted in comparison with a value of 3.9 x 10–4

reported by Momberger et al. (1996). The lattice calculations yield 1.3 barn for the
cross-section. However, this value disagrees considerably with the experimental value
of 2.19 barn (Belkacem et al. 1993).
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Figure 1.9 Probability density of the time-evolved ground state of U91+ in
U92+(y = 1.5) + U91+ collisions in the scattering plane after the collision for b = 1060 fm.

At high Lorentz factors y, the effective width of the Lorentz-contracted projectile
potentials becomes smaller than the lattice spacing and, therefore, the potentials are
poorly described on a grid which is fixed in the target system. Hence, it is more
convenient to introduce a coordinate frame, where both target and projectile move
with equal but opposite velocities. Furthermore, the z-coordinate in the direction of
motion is transformed to z' = y z to ensure that the lattice spacing is sufficiently small
for a proper representation of the electromagnetic potentials. To give an example, we
present calculations for U92+(y = 10000) -I- U91+ collision at an impact parameter
of b = 530 fm with the finite-element method (Busic et al. 1999a) in Table 1.2. The
results for the probabilities for the excitation of five bound states are compared with
those obtained in the ultrarelativistic limit y —> oo (Baltz 1997) and with predictions
based on perturbation theory. The values provided by the finite-element method are
already in fair agreement with those calculated in the limit of infinite y. As shown in
Figure 1.10 the results obtained for ionization and pair-creation probabilities display
a similar behaviour.

Some aspects of the so-called fermion doubling and how to avoid them in standard
finite-element or finite-difference methods have been addressed recently by Busic et
al (1999b).

The examples presented above demonstrate that the finite-element method can
be applied successfully to the investigation of processes such as excitation, ioniza-
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Table 1.2 Probabilities for the excitation of the lowest bound states of U91+ in collisions
U92+(y = 10000) + U91+ at b = 530 fm.

state limit Y --> oo

ls1/2(+1/2) 0.524

2siy2(+1/2)

2pl/2(–1/2)

2p3/2(-1/2)

2p3/2(+3/2|)

4,

9

5,

1.

.565 x

.329 x

.049 x

.049 x

10

10

10

10

-2

-4

-3

-3

finite elements

0.528

4.497

9.765

x 10

x 10

_2

-4

5.15 x 10–3

6.949 x 10-3

PT

—

8.628 x

1.848 x
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1.609 x
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Figure 1.10 Spectrum of positrons in the p1/2 (m = -1/2) state at b == 530 fm calculated at
the ultrarelativistic limit (solid curve), with the finite-element method (short dashes) and with
perturbation theory (longer dashes).

tion, charge transfer and electron-positron pair production in relativistic collisions
of highly charged heavy ions. The results reveal that the considered reactions can
only be correctly described by nonperturbative methods. However, further investi-
gations with respect to the analysis of the states in the negative electron continuum
have to be carried out in order to provide definite statements on the probabilities for
electron-positron production.

1.3.4 Electromagnetic pair production:
the ultrarelativistic limit

As we have mentioned above it is possible to evaluate the electromagnetic lepton pair
production in the limiting case of infinite Lorentz factors y. One interesting aspect
among others is that peripheral heavy-ion collisions at ultrarelativistic energies offer
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z,=

Figure 1.11 Type of diagrams contributing to pair production.

great opportunities for testing QED in the strongest, time-dependent, electromagnetic
fields accessible in experiments.

Focusing on electron-positron pair creation in collisions of highly charged heavy
ions, it is well known that in such strong external fields—for point-like nuclei the
result dates back to the early days of QED (Landau and Lifshitz 1934; Racah 1937)—
according to which the total pair creation cross-section, which behaves as In3 y, has to
be extended in two main directions. First we have to consider multiple pair production
and vacuum diagrams to restore the unitarity- violation of this result, and, secondly,
any process considered has to be evaluated to all orders in the expansion parameter
Za since for heavy collision systems this effective coupling is of order 1. Assuming,
however, the independence of multiple pair production, the single pair production
probability may be interpreted as the mean number of created pairs (Best et al. 1992;
Hencken et al 1995; Rhoades-Brown and Weneser 1991). In this respect it is sufficient
to consider only the impact of higher orders of this process and not to care about the
unitarization procedure leading to the mentioned inclusion of multiple-pair production
and vacuum diagrams.

The attempt to calculate pair production via the crossing invariance of the exact
scattering amplitude has led to the conclusion that the full consideration of higher-
order corrections to the cross-section vanishes (Baltz and McLerran 1998; Eichmann
et al. 1999; Segev and Wells 1998). On the other hand, the straight calculation starting
directly from pair-production diagrams results in rather large higher-order corrections
(Ivanovetal. 1999).

In the following we briefly discuss both approaches in more detail. It has been shown
that the calculation of the amplitude for lepton scattering in the field of ultrarelativistic
colliding nuclei can be performed exactly (Eichmann 2000; Eichmann et al. 2000a).
The interaction part of the Dirac Hamiltonian (1.7) for two colliding nuclei, referred
to by the subscripts '(1)' and '(2)', at infinite energy y - oo reads

H1(t) = 2x[-a-8(t - z) VJVj.) - a+S(t + z) v[2)(r_L)L (1-8)

where a± = 1 ± az defines the light-cone components of the Dirac matrices. v|}

and v[2) denote the transverse parts of the transformed Coulomb potentials of the



BASIC THEORY AND QED 25

target and projectile nucleus

with the impact parameter b of the colliding nuclei. Exact analytical solutions for
the corresponding Dirac equation have been derived by Baltz and McLerran (1998)
in terms of an integral representation involving free Dirac spinors. The resulting
electron-scattering amplitude is

- Pi) Fi (Pi ~ *L)

( t, K -a±-k_L + pmx (u (p ) - ; - -z - -—a+u(p)
\ P+P~ -k\ - m + i€

(PJ.
p-.pV-(p± + Pi-*Lr-w

with

The resulting amplitude coincides with the single- and double-scattering contributions
to the Watson series of multiple scattering (Watson 1953), implying that alternating
interactions of the lepton with both ions vanish.

The direct calculation of the pair-production process is mandatory. It turns out
that an exact calculation of the pair-creation process is not possible because diagrams
including higher-order interactions of the lepton pair with both ions cannot be entirely
evaluated in closed form. One obvious reason for this is the fact that it has not yet
been feasible to account for all possible classes of diagram.

General considerations permit the decomposition of the exact amplitude into lead-
ing and subleading terms (Ivanov et al. 1999). Approximate expressions can be derived
for a selected set of leading contributions. For example, the type of diagram shown in
Figure 1.11 has been found to give rise to a very large Coulomb correction (Eichmann
et al. 2000a; Ivanov etal. 1999).

In logarithmic accuracy the above-mentioned class of diagrams may be neglected
for the approximate calculation of pair production. Clearly, the leading contribution
is the two-photon diagram. The next-to-leading contributions consist of all diagrams
in which one of the ions only exchanges one photon and the respective other ion
interacts in higher orders with the lepton pair. The resulting corrections to the lowest-
order cross-section arise from the squared sum of these diagrams and the interference
with the two-photon diagram. In the Weizsacker-Williams approximation they can
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Figure 1.12 /{-dependence of the nonCoulomb corrections for a homogeneously
charged sphere. From top to bottom the nuclear charges are Z = 10, 40, 60, 80.

be expressed as the product of the photon distribution function of the ion interacting
in first order and the higher-order corrections to the photoproduction of a lepton pair
in the field of the ion interacting by multiphoton exchange.

An estimate of the higher-order effects on pair creation in ultrarelativistic heavy-
ion collisions thus requires the investigation of high-energy photoproduction in the
field of heavy ions (Eichmann 2000; Eichmann et al. 2000b). In the case of point-
like nuclei these so-called Coulomb corrections were first calculated by Davis et al.
(1954) employing Furry-Sommerfeld-Maue wave functions for the created leptons.
Consideration of the extended nuclear-charge distribution leads to a qualitatively
different behaviour of the production of light (e+e–) and heavy (u+u–), (T+T–)
leptons.

The effect of finite nuclear extension on the total cross-section a may be described
in terms of a nonCoulomb correction Sa to the point-charge cross-section opoint, i.e.

So = aP°int - a

8am2 /•» r1 f°°
= - / d<p I drr I dx

n Jo Jo Jo
-e2ivlnr

with £ = 1 — 2rcos0> + r2. The eikonal

X(r) = 2Za dVp(r')ln(|rj. -ri

depends on the nuclear charge-density distribution p.
Electron-positron pair production is rather unaffected by the charge distribution.

It is sufficiently well described by assuming point-like nuclei. The tiny effects caused
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Figure 1.13 Corrections to the photoproduction cross-section relative to the point-charge
value in the field of different nuclei. The nuclei are described by homogeneously charged
spheres with R = 1.12 A1/3 fm, with A taken from the table of elements.

by the charge distribution may be assigned to an interesting coherence effect of multi-
ple photon exchange which is similarly observed in the so-called eikonal form factor
of the nucleus at small momentum transfers (Eichmann et al. 2000b). The influence
of finite nuclear size on the nonCoulomb corrections is presented in Figure 1.12 for
electron- and muon-pair production employing the homogeneously charged-sphere
model. 8a is found to increase with increasing nuclear radius R. However, the calcu-
lation of electron and muon pair production in the field of nuclei with different charge
numbers Z shows that for electron pair production this rise is overcompensated by
the rapid decrease of 8a at large Z. For small nuclear charge- and mass-numbers the
competing effects of the R- and the Z-dependence only partly cancel. Accordingly,
for the photoproduction of electron pairs the relative corrections to the point-charge
cross-section are smaller for heavy nuclei than for light nuclei. On the contrary, muon
pair production shows the expected behaviour that with an increasing nuclear exten-
sion the relative corrections become larger (see Figure 1.13). With increasing lepton
mass the importance of the nuclear-charge distribution increases whereas the influence
of higher orders can be gradually neglected. For T production it can be completely
discarded.

The knowledge gained about high-energy photoproduction allows us to assess the
higher-order corrections to lepton pair production in heavy-ion collisions. It is found
that for the colliders RHIC (Au + Au) and LHC (Pb + Pb) the corrections to the total
cross-section are of the order of -25% (RHIC) and -14% (LHC) for e+e–, -12.2%,
i.e. —5% for u+u– and —0.36%, i.e. 0.043% for T+T– pair production (Eichmann et
al. 2000b).

According to Baltz et al. (2001) the inclusive cross-section (summing over all
numbers of pairs) can be formulated in terms of the retarded electron propagator and
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allows the use of the known exact solution of the Dirac equation (1.8) without the
need to invoke crossing invariance.

1.4 Relativistic and QED Effects in
Highly Charged Ions

Quantum electrodynamics, the relativistic quantum field theory of interacting charged
particles and photons provides to an extremely high precision the theory of atoms
(Kinoshita 1990; Labzowsky et al 1993; Mohr et al. 1998). The comparison of
theory and experiment for energy levels of bound electrons allows for a critical tests
of quantum electrodynamics in external fields. In light systems, such as the hydrogen
atom, QED effects are extremely important in connection with the determination of
fundamental constants, as, for example, the fine-structure constant a or the electron
mass (Mohr 1996; Niering et al. 2000). Complementary to that, the investigation of
QED corrections in highly charged ions allows for a determination of the range of
validity of QED in strong external fields.

QED can be considered to be one of the most precisely tested theories in physics at
present. It provides an extremely accurate description of systems such as hydrogen and
helium atoms, as well as for bound-leptonic systems, for example, positronium and
muonium. Remarkable agreement between theory and experiment has been achieved
with respect to the determination of the hyperfine structure and the Lamb shift. The
same holds true for the electronic and muonic g-factors. The free-electron g-factor is
determined at present as

= 2 + 2 x 1 159652 188.4(4.3) x 10~12,

= 2 + 2 x 1159652216.0(1.2)(67.8) x 10–12,

where we refer to Dyck et al (1987) and Hughes and Kinoshita (1999) for the experi-
mental values and theoretical predictions, respectively. The second error indicated in
the theoretical prediction reflects already the uncertainty of the value of a employed
in this calculation (Jeffrey et al 1997). Nowadays, similar precision is obtained in
systems like positronium or for the Lamb shift in hydrogen, where the accuracy of
theoretical predictions is limited by the insufficient knowledge of nuclear parameters
(Karshenboim 1999; Pachucki 1999). The hyperfine-structure splitting of the ground
state in hydrogen represents another impressive example of a quantity in nature that
is most precisely known. Simultaneously, there are major theoretical difficulties asso-
ciated with it. Measurement and calculation are conventionally not even presented in
a comparable manner due to effects ascribed to the internal structure of the proton
(Bodwin and Yennie 1988; Kinoshita 1990). The small deviation from the idealized
point-dipole magnetic field still cannot be described theoretically from first princi-
ples. The current numbers for the transition frequency of the ground-state hyperfine-
structure splitting in hydrogen obtained from experiment (Essen et al. 1971; Hellwig
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et al. 1970), respectively, provided by theory (Kinoshita 1990) are

VHFS = 1420.405751 7667(9) MHz,

yJfFS = 1420.451 99(10) MHz + nuclear-structure effects,

where the nuclear-structure effects include all contributions of the proton, from finite
size and mass to form factors and internal structure. Most of the discrepancy between
both numbers is reduced if the finite size of the proton is taken into account (Zemach
1956), but the theoretical precision does not increase. Quantum electrodynamical
effects are included in the theoretical value up to a level of accuracy at which effects
due to the internal proton structure become important as well.

Basically, QED is formulated in terms of a perturbation expansion of the S matrix,
taking the fine-structure constant a 1/137.036 as an expansion parameter. The
individual terms of the perturbation expansion are usually represented by Feynman
diagrams. For light atomic systems the standard theoretical approach treats the nuclear
Coulomb field perturbatively as well, where the (effective) nuclear coupling constant
Za is taken as an additional expansion parameter. Z denotes the nuclear charge
number. However, this approach becomes inadequate for heavy systems in which the
parameter Za approaches unity. For example, in highly charged ions like uranium, the
effective coupling constant is no longer a small parameter but amounts to Za 0.6.
Accordingly, a proper theoretical description of high-Z few-electron atoms should
account for all orders in Za simultaneously. This underlines that, from a theoretical
point of view, QED of heavy atoms is essentially different from that for light systems
and thus requires new calculational techniques and renormalization approaches. Also
the experimental situation looks significantly different. The energy of the Ly-a tran-
sition in hydrogen amounts to 10.2 eV (about 1200 A), while the same transition in
hydrogen-like uranium belongs to the X-ray region with an energy of about 98 keV.
As a result, solid-state X-ray detectors should be employed, which severely compli-
cates any high-precision measurement of the Is-Lamb shift in hydrogen-like high-Z
ions.

Highly charged ions provide the strongest electromagnetic fields accessible to
experimental investigation. Heavy ions in an arbitrary charge state or even bare heavy
nuclei can be prepared. Hydrogen-like ions are obtained by stripping all but one elec-
tron from a heavy atom, for example, lead or uranium. The expectation value of the
electric field strength in these systems is depicted in Figure 1.14.

The field strength at the nuclear surface may be even higher. For example, at the
surface of a uranium nucleus it amounts to about | £ | = 2 x l O I 9 V cm–1.

Highly charged ions do not only provide a strong electric but also a strong magnetic
field. In Figure 1.15 the expectation value for the magnetic field strength is given
for hydrogen-like ions over the whole range of Z. It ranges from about 10–1 T for
hydrogen to several times 105 T for the heaviest hydrogen-like ions accessible to
experiment. For each nucleus characterized by a charge number Z and a mass number
A, the odd-A isotope with the highest natural abundance or longest lifetime was
chosen. Since the magnetic interaction involves powers of 1/c, even this enormous
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Figure 1.14 Expectation value of the electric field strength for the lowest-lying states
of a hydrogen-like atom in the range Z = 1-92. Electron wave functions for extended
nuclear-charge distributions are employed.

field strength leads to only a small influence on the atomic energy levels. As a result
of the interaction of an electron with this magnetic field, a level splitting occurs
corresponding to the possible values of the total angular momentum F = J + I of
the ion, where / is the total electronic angular momentum and / denotes the total
nuclear angular momentum. Only the total angular momentum F is an observable. The
resulting hyperfine-structure splitting and its value can be determined quite accurately
by spectroscopic means.

Evidently, the question arises of whether in such strong electric and magnetic fields
'usual' atomic physics—well established for hydrogen atoms, where the fields probed
by the electron are up to six orders of magnitudes smaller—will still be valid or not.
The determination of the range of validity of QED in strong external fields is also very
promising for the detection of new physics beyond QED in such heavy atomic systems.
During the last decade, great progress has been made in experimental investigations
of heavy few-electron ions. The ground-state Lamb shift in hydrogen-like uranium
was measured with an accuracy of a few per cent (Beyer 1995; StOhlker et al. 2000),
and further progress towards increasing the accuracy by an order of magnitude is
anticipated (Stohlker et al. 2000). Experimental data are also available for various
hydrogen-like ions (Beyer et al. 1994; Mokler et al. 1995; Stohlker et al. 1992).
Despite inherent problems encountered with the renormalization of the bound-state
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Figure 1.15 Expectation value of the nuclear magnetic field strength for the ls1/2 state of
a hydrogen-like atom in the range Z = 1–92. The values were calculated employing wave
functions for extended nuclear-charge distributions (Beier 2000).

QED, its predictions can be tested to very high precision, e.g. via measurements of
the Lamb shift of electron levels in highly charged ions. Dominant corrections to the
energy spectrum are due to finite nuclear size and due to QED effects: self-energy
and vacuum polarization of order a. Both radiative corrections have to be evaluated
to all orders in Za in the interaction with the external Coulomb potential to achieve
agreement with Lamb-shift data measured with the relative precision of about 10–4

for hydrogen-like systems. Aiming at the utmost experimental precision, it is essential
to determine the level of accuracy at which we leave the framework of pure QED.
The natural limitation for testing QED is set by nuclear polarization effects and by the
uncertainties of the nuclear parameter. In heavy systems, nuclear structure becomes
nonnegligible at the level of a relative precision of about 10–6 (Nefiodov et al. 1996;
Plunien and Soff 1995; Plunien et al. 1991). To provide predictions for the Lamb
shift taking into account this ultimate standard requires the exact evaluation of all
QED-radiative corrections of order a2 (Beier et al. 1997a).

An even higher precision is achieved in experiments with highly charged lithium-
like ions. The splitting between 2p1/2 and 2s levels in lithium-like uranium was
determined experimentally (Schweppe et al. 1991) to be 280.59 eV with an uncer-
tainty of only 0.09 eV. To a large extent, this result has initiated calculations of QED
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effects of second order in a as a goal for theorists, which is still under progress at
present. Accurate experimental data are available at present for 2p1/2–2s and 2p3/2–2s
transitions of several high-Z lithium-like ions (Beiersdorfer et al. 1998; Bosselmann
et al. 1999; Feili et al 2000; Staude et al. 1998). In helium-like ions, the two-electron
contribution to the ground-state energy has been measured directly by comparing
ionization energies of helium- and hydrogen-like ions (Marrs et al. 1995; Stohlker et
al. 1996). This experiment is of particular importance since the corresponding contri-
butions due to the interelectronic interaction are calculated completely from QED up
to second order in or (Persson et al. 1996b; Yerokhin et al. 1997a). For an overview of
the present situation in heavy helium-like ions, we refer to the recent review (Shabaev
et al. 2000a) and to a previous paper (Yerokhin et al. 1997a), where the most accurate
theoretical prediction for these two-electron contributions to the ground-state energy
of helium-like ions have been obtained.

At present, the hyperfine splitting in heavy hydrogen-like ions can also be measured
with excellent precision (Klaft et al. 1994; Lopez-Urrutia et al. 1996, 1998; Seelig
et al. 1998). Investigations of the g-factor of a bound electron look very promising
as well for testing higher-order QED effects, although its direct measurement has
so far been accomplished only for light systems up to carbon (Haffner et al. 2000;
Hermanspahn et al. 2000).

1.4.1 Relativistic description of few-electron systems

Atomic electrons interacting via the exchange of photons are bound in the electro-
magnetic field generated by the atomic nucleus. Because of the high nuclear mass
and high nuclear charge number, the electromagnetic field generated by the nucleus
can be approximated as a classical external field in which the fermion field and the
free-photon field are quantized (bound-state QED). Although the fundamental inter-
action between electrons and photons is known, the influence of nuclear properties,
which must be taken into account at a certain level of accuracy, in addition involves
the solution of the nuclear many-body problem, which cannot be accomplished from
first principles. This has far-reaching consequences even in one-electron systems,
for which effects due to the electron—electron interaction are negligible. Although it
might be possible to evaluate pure QED corrections to atomic spectra up to any desired
accuracy, we have to include nuclear effects, which will inevitably set inherent lim-
itations for tests of QED due to the uncertainties of nuclear parameters. Conversely,
we may be able to determine such parameters from high-precision measurements of
the atomic structure.

The relevant part of the action may be specified as

= fd4

, *>*(*)} + -Cnuc + Add + ^counter},
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with the standard free-field Lagrangians of the Dirac field (^) and the total Maxwell
field (F), respectively. The total nuclear Lagrangian Xnuc and additional interac-
tions d a d d beyond QED will not be specified explicitly. The counter-term Lagrangian
Lcounter is required for renormalization. The interaction term between the total Max-
well field eAM and the total electromagnetic source current $M is written in a properly
symmetrized form. The total source current appears as a sum of the Dirac current j£
and of the nuclear source current jnuc, i.e.

with

The nuclear current consists of a classical, external part On^c) = j^t describing the
nucleus in its ground state and a second quantized part j^. describing internal nuclear
degrees of freedom. Specification of this fluctuating current employs nuclear models.
The action principle yields equations of motion for the coupled Dirac-Maxwell fields

*" and A^".

(*» = 0.

$v. (1.9 b)

Maxwell's equations (1.9) can be formally integrated with the aid of the free-photon
propagator Dv. According to the total current introduced above, the resulting total
radiation field AM may be decomposed as

the sum of the classical (external) part Axt generated by the nucleus in its ground state
and a total, second quantized part, which is given as the sum of the free radiation AM,
the field Au due to the presence of electrons and the fluctuating field A f̂luc generated
by the nuclear transition current j£w. Going beyond the external-field approximation
we may keep as the total radiation field

The total Hamiltonian describing the total interacting many-body problem—Dirac
particles + radiation field + nucleus—may be obtained from the T00-component of
the energy-momentum tensor. The part of the Hamiltonian relevant for the relativistic
description of the atomic many-body problem in the presence of the external electro-
magnetic field of the nucleus including radiative corrections and possible interactions
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with internal nuclear degrees of freedom is given by

I+ I d3* { ( * ) , A C J C ) } +

together with the one-particle Dirac Hamiltonian

hext(x) = [—ia (V + ie Aext(x)) + Vext(x)

Here orM = y^y0 and y° = ft denote the Dirac matrices. The first term Hext defines
the dominant external field problem. The interaction with the classical electromag-
netic field generated by the extended nucleus in its ground state has to be treated to
all orders in the effective coupling Za. Here a = e2 denotes the fine-structure con-
stant. Neglecting recoil effects due to the finite nuclear mass the external field may be
considered as static. In the case of even—even nuclei and in the infinite-nuclear-mass
limit the external field problem treats the motion of Dirac electrons in a static external
Coulomb potential Vext only. In odd-A nuclei a magnetic interaction potential Aext has
also to be taken into account. The second term He-e accounts for the electron—electron
interaction self-consistently up to order a. Finally, the term Hrad describes the inter-
action between bound electrons and the vacuum of the total radiation field. This gives
rise to various QED-radiative corrections (AM) and nuclear (recoil and polarization)
effects (AJUC), which can formally be treated at the same level. All effective radiative
effects (AJf1) are evaluated perturbatively in powers of the coupling constant a (and
m/M for nuclear effects, respectively). The Hamiltonian also contains a part Hcounter

which denotes all necessary counter terms required for the renormalization of mass
and charge divergences. It has to be incorporated into the radiative part Hrad.

A proper definition of (quasi-)particle-creation and (quasi-)particle-annihilation
operators an

+ and an is provided by diagonalization of the (time-independent) unper-
turbed part H0 = Hext+He-e of the total Hamiltonian. After the iteration is performed
(e.g. on the Dirac—Fock level) the latter may be cast into the form

H0 = i / dVh^OO./ieff

where heff denotes an effective one-particle Hamiltonian. The Dirac-field operator y
may be expanded in terms of noninteracting (quasi-)particle annihilation and creation
operators

ir(x) = Y^an^n(jc) + \J£^n(jc), <pn(x) = <Pn(r)e~l "' •
n>F n<F
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F denotes the Fermi surface fixed at the Fermi energy EF located above the highest
occupied electron state. The operator an annihilates an electron described by the spinor
pn and the energy eigenvalue Sn > EF, and similarly b+

n creates an electron-hole in
the state pn with the energy eigenvalue 8n < EF. In the case of bare nuclei, the QED
vacuum state is defined with respect to the Fermi surface F0 with a Fermi energy EF0

located above E = — 1 and below the lowest (unoccupied) bound state. The operator
b+

n = an with Sn < EF0 creates a positron in the state pn with energy (— Sn). Over the
range Z of the known periodic system all electron bound states occur at level energies
Sn > 0, so we may choose EF0 = 0.

Although a number of different approaches exist, the general solution to the prob-
lem of setting up a relativistic Hamiltonian from QED describing many-electron sys-
tems is not known. While the spectrum of the nonrelativistic many-body Schrodinger
Hamiltonian is bounded from below, fundamental difficulties arise due to the neg-
ative energy continuum states. Most of the existing methods may be considered as
prescriptions to avoid these difficulties in one way or another. A pragmatic approxi-
mation consists of the introduction of Hamiltonians, where the negative-energy states
are projected out (so-called no-pair Hamiltonians). The commonly accepted point
of view is that QED effects associated with the negative Dirac sea may be treated
perturbatively as corrections to the many-electron problem. Accordingly, most of the
relativistic many-body calculations (see, for example, Sucher 1980) take the no-pair
Hamiltonian as a starting point. It may be written in a second quantized form as

H = Hext + V + B

E T-, t .1 V—^ t t , 1 X~^ L t t

Eifl/fli + 2 2^ viJUaiajakai + ^2^biJkiaiajakai-
i ijkl ijkl

The creation/annihilation operators ai
+ /ai denote the one-particle operators which

diagonalize the Hamiltonian Hext .The summation indices i, j, k, l denote the usual
set of one-electron quantum numbers and run over positive-energy states only. The
quantities vijkl are two-electron Coulomb matrix elements and the quantities bijkl

denote two-electron Breit matrix elements, respectively. We specify their static limit
(neglecting any frequency dependence):

Pipj <PWk

and

<Xl • #2 + Of 1 ' f\
= —9i<Pj <Pl9k],

where r\2 = In — TI\ and r = r/r. It remains a challenge for the theory to examine
the possibilities of merging QED and relativistic many-body methods from the very
beginning. This subject is still under investigation (Lindgren 2000).
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1.4.2 Relativistic model Hamiltonians for
many-electron systems

As mentioned above, QED is considered to be the theory describing low-energy
processes between charged particles, i.e. electrons and ions. There is strong experi-
mental evidence that it provides a relativistic description most relevant for chemistry
and atomic physics. Nevertheless, the impressive success in describing fundamental
physics contrasts with a poor mathematical understanding of QED. Accordingly, it is
worthwhile trying to close this gap in a mathematically rigorous manner by investi-
gating relativistic models which could serve as testing cases. These should be simple
enough to be treated rigorously but still contain physically essential and generic fea-
tures of the real system under consideration.

Recent investigations along this line have dealt with models, for example, the naive
relativistic Hamiltonians (Chandrasekhar), no-pair Hamiltonians (see, for example,
Sucher 1980) and with models of QED including the electric interaction but disre-
garding the magnetic one (interacting electron-positron field). One basic feature of
all these models should be the boundedness of the energy per particle (stability of
matter). Without this basic property, no further detailed chemical computations are
worthwhile. That this is indeed a suitable question has been pointed out and solved
partly by Lieb and Yau (1988) in their basic work on relativistic stability. Recent
activities have continued along this path by investigating (pre-)QED models (Bach et
al. 1998, 1999; Chaix and Iracane 1989; Chaix et al. 1989; Evans et al. 19%).

To start with, consider systems consisting of N dynamical electrons and positrons
and K fixed nuclei with Coulomb interactions between all pairs of particles. The
clamped-nuclei approximation (the Born—Oppenheimer approximation) may be legit-
imate because of the huge difference in mass between electrons and nuclei. Stability
of matter means that the energy of such a model system is bounded from below by
a negative constant times the number of particles: E > —C(N + K). Such a con-
dition is necessary for some basic physical properties such as the existence of the
thermodynamical limit.

Relativistic N-particle model Hamiltonians

Recent investigations (Lieb et al. 1996) have concentrated on, as a first task, optimizing
the stability result for the Chandrasekhar operator

H = T + VC

N

K N

i < j
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This operator defines a pseudorelativistic model which includes neither positrons
nor the spin of the electrons. These authors have improved on some of results derived
earlier (Lieb and Yau 1988), notably in the presence of magnetic fields. In the physical
case, a = 1/137, they proved stability for all elements with nuclear charge numbers
Z less or equal to 59. The short proof presented employed several inequalities also
used in earlier work. One of them concerns the estimate of the localization error for
the kinetic energy (Lieb and Yau 1988). The size of the error is determined by the
fourth power of the L4-norm of some function Y. It is expected that any improvement
of this estimate could increase the critical Z-value considerably. With numerical
computations, Lieb et al. (1996) succeeded in demonstrating the stability up to a
critical charge number Z = 60. Relativistic no-pair Hamiltonians have also been
considered. The stability of the Brown-Ravenhall operator—neglecting magnetic
field components—has been investigated by Hoever and Siedentop (1999), while in
Lieb et al. (1997a,b) the magnetic field generated by the electrons has been included.

Electron-positron field

The mathematical problem associated with the Dirac Hamiltonian, i.e. the starting
point of the relativistic theory of atoms, can be phrased in simple terms. The electron-
positron field can have states of arbitrarily negative energy. As a general feature of
the Dirac spectrum this instability occurs even in the case of extended nuclei and
even in the absence of any nucleus (free Dirac spectrum), the energy is not bounded
from below. This gives rise to the necessity of renormalization and well-established
renormalization schemes have been around for many decades. Despite their successful
applications in physics, we may ask instead whether there exist states that allow for
positivity of the energy.

A rigorous mathematical model for the relativistic electron-positron field in the
Hartree—Fock approximation has been recently proposed (Bach et al. 1999). It de-
scribes electrons and positrons with the Coulomb interaction in second quantization
in an external field using generalized Hartree-Fock states. It is based on the standard
QED Hamiltonian neglecting the magnetic interaction A = 0 and is motivated by a
physical treatment of this model (Chaix and Iracane 1989; Chaix et al. 1989).

Being a true relativistic model, the one-particle energy is given by the Dirac Hamil-
tonian H = a • (p + eA) + mp + V acting in the Hilbert space ft := L2(R3) ® C4.
The Dirac operator includes both electrons and positrons. In order to second quantize
the field, we have to split y into the electron subspace y+ and the positron subspace
y–. There is no unique way of doing this. For the proposed model (Bach et al. 1999),
however, there exists a distinct way of doing so. As shown rigorously in Bach et al.
(1999), the highest ground-state energy is indeed obtained when choosing the electron
subspace to be the positive spectral subspace of H. For a related model this has been
assumed by Mittleman (1981) on physical grounds. The corresponding orthogonal
projections may be denoted here by P+ and P_.

Instead of investigating the QED energy in generalized Hartree—Fock states in the
electron-positron Fock space, it turns out that it is sufficient to consider charge-density
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matrices y : y - y and their energy (Hundertmark et al 2000). The charge-density
matrices have the properties

y self-adjoint , tr y < oo, -P- < y < P+; (1.10)

the number of particles is N(y) := tr(P+ – P – )y and the charge is Q(y) := tr y.
Their energy in the model is given by the Hartree—Fock functional

•00 = *<*, X) + *« f dV dV £&£l£l - i« ( d'r dV!>^2]!,2 J \r-r'\ 2 J \r-r'\

where pY(r) denotes the charge density at the point r and y(r, r') forms an integral
kernel of y.

According to Chaix et al. (1989), in the absence of external potentials (\A\ =
V = 0) it has been argued that for stability we need or < 2/n and for instability we
need a > jr/log4. The stability result has been proved by Bach et al. (1999). To
demonstrate the instability result a translationally invariant density matrix yc based
on a rotation in momentum space has been employed (Chaix et al. 1989). But since
the model is defined on R3, such a density matrix is either zero or has an infinite
number of particles, it has either zero energy or infinite energy. This is because the
state represented by the density matrix is the same in every unit volume. Therefore,
the arguments presented by Chaix et al. (1989) could just show the instability within
a unit volume.

This investigation has been improved recently (Hundertmark et al. 2000) by finding
a way to implement asymptotically this density matrix in R3. The basic idea was to
put yc in a box and let its radius r tend to infinity. But besides the technical difficulties
with estimating the energy of such a density matrix, there is the fundamental problem
that for every r the inequality (1.10) has to be fulfilled. This implies that electrons
and positrons may not mix. A possibility for overcoming this problem is to introduce
a cut-off in the coordinates, where the electron subspace consists of the first two spin
components and the positron subspace of the second two. As a result, the correct
angle for the rotation, which can be guessed using a method of Evans et al. (1996),
has been derived yielding the sharp result: instability occurs for a > 4/n.

The stability of atoms (V = — Za|r|–1) including an external magnetic field has
been demonstrated for Z < 68 (Bach et al. 1998). In a following paper (Bach et
al. 1999) the stability of matter has finally been proved. For the atomic problem an
inequality for the moduli of Dirac operators,

| - ia • V + mb — Za|r|–1 > d| — ia • V|

has been shown. Although the proof is very short and elegant, the resulting numbers
turned out to be unsatisfactory.

In a recent work (Brummelhuis et al. 2001) the stability result has been improved
up to charge numbers Z < 117, which covers the range of all known elements. Again
the proof starts by taking the square of the inequality, because the modulus of the
Dirac operator with the Coulomb potential is not easy to handle. However, instead
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of using the triangle inequality, the dilation homogeneity of the massless (m = 0)
Dirac operator was employed to reduce the problem to a related one for multiplication
operators. With this method the sharp constant for the squared inequality can actually
be shown. The massive case reduces to the massless one by using the positivity of the
ground-state energy to control the mass terms.

As expected the lowest energy of these models is the generalized Hartree—Fock
vacuum state. To describe atoms, we need to restrict the allowed charge or particle
number. One way of changing that is to subtract a part of the rest energy m c 2 N ( y )
of the charge-density matrix y from the total energy. For the free system with Z = 0
the vacuum turns out to still be the ground state if 0.999 983 times the rest mass is
subtracted. On the other hand, subtracting the full rest mass or more, the model does
not possess a ground state. To provide a similar proof for Z > 0 would be more
difficult, because to compute the number of particles of a state involves knowledge
of the electron and positron subspaces, which are much more complicated in that
case (see Rohrl 2000). Some of the problems associated with the charge and mass
renormalization have been recently addressed (Lieb and Siedentop 2000).

1.4.3 Bound-state QED

Bound-state QED provides a proper and practicable description of few-electron sys-
tems. Both QED-radiative corrections and electron—electron interactions may be
treated perturbatively with respect to the coupling a = e2, counting the number
of virtual photons involved, while the interaction with the external nuclear fields is
included to all orders in Za.

The QED radiative effects are treated perturbatively by the inclusion of Hrad.
Accordingly, the unperturbed Hamiltonian H0 reduces to the external-field problem
(normal ordering is indicated by ::)

(1.11)

Even—even nuclei may be described by a spherically symmetric Coulomb potential
Vext of an extended nucleus with charge number Z. Pure QED effects due to the
interaction with the free radiation field are carried by the interaction Hamiltonian

3 - l 3

The field operator f is now expanded into the set of solutions i of the corresponding
one-particle Dirac equation hext i = Ei0, according to

Ei >0 Ei, < 0

with
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The subscript i labels the principle quantum number and angular momentum quantum
numbers (njlm). Here ai, and b+

i denote electron-annihilation and positron-creation
operators, respectively, defined via diagonalization of the unperturbed Hamiltonian
(1.11)

#0=
£, >0 £, <0

Unperturbed N-electron state vectors are generated according to

i1,...,iN

The main application of bound-state QED is the evaluation of energy levels of few-
electron atoms. The energy levels appear as a series of even powers of the coupling
with the radiation field since only virtual photons, each of which enters with two
powers of the coupling constant (e2), are involved

In this formulation the zeroth-order level energy is just the Dirac eigenvalue Enj

summed over the electrons in the unperturbed state. In particular, EN
(0) = (N |H0 |N),

where the unperturbed states and the action of H0 are explicitly given by

H0|nljm) = Enj|nljm)

for one-electron states, and by

\nljn'l'j'JM) =
m,m

H0\nljnflfj'JM) = (Enj + En

for two-electron states. Two-electron states are summed with vector addition coeffi-
cient weights to generate states of definite total angular momentum.

The particular interaction picture defined by Equations (1.11)—(1.13) treating the
interaction with the external nuclear Coulomb potential exact to all orders in Za
is called the Furry picture. The derivation of the general formula for the energy
shift caused by the interaction (1.12) utilizes the concept of adiabatic switching,
i.e. HI(t) -» A.He

I (t) = Ae~€|" HI (t). The exponential factor renders the integrations
over time involved in 5 matrix elements or energy shifts finite. Restoring the original
interaction in the limit e —»• 0 leads to energy conservation (S functions) at each
vertex. The parameter A is introduced to trace back the order in the coupling constant
e. This allows us to collect singularities arising from separate terms (same order in A)
of the energy shift expression which cancel if the appropriate diagrams are evaluated
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simultaneously. The S operator may be expanded in powers v of the coupling e:
00 (—\i\v r f

Sf ,A = £ 1— _L / dti • • • / dtv T [ H 1 ( t 1 ) • • • H I(tv)].
v=0 V- J J

According to Gell-Mann and Low (1951) and Sucher (1957) the energy shift of an
unperturbed N -electron state \N) can be derived from the S matrix element (up to an
irrelevant, state-independent constant)

The subscript 'c' indicates that only connected diagrams have to be included because
the contributions due to disconnected graphs can be eliminated using the factorization
property (Goldstone 1957)

The Gell-Mann—Low—Sucher formula necessitates the evaluation of vacuum expec-
tation values of time-ordered products involving multiple fermion and photon opera-
tors. Such products can be evaluated by means of Wick's theorem (Wick 1950), which
decomposes time-ordered products into a sum of normal-ordered terms and complete
contractions. To give an explicit example we specify the energy shift to lowest order
in a for one-electron systems. Note that the derivation of formulae for the energy shift
based on the Gell-Mann—Low—Sucher formula and in particular the renormalization
becomes increasingly cumbersome if more than one electron is involved. An equiva-
lent but technically far more convenient approach is provided by the two-time Green
function approach (Shabaev 1990a,b, 1991), which has been widely used in recent
calculations of QED effects in few-electron systems (see, for example, Artemyev et
al. 1999; Shabaev 1993, 1994; Yerokhin et al. 1999).

The energy shift of a bound-electron state \<j>a} is derived as a sum of completely
contracted terms of the second-order S matrix element 5; ? taking into account the/j\ C,A, f
mass-renormalization counter term provided by 5"e ( according to

Details of the derivation of general expressions for energy shifts at a given order can
be found in Mohr et al. (1998). Contractions between pairs of fermion \jf or boson field
operators Au lead to electron and photon propagator functions. The exact electron
propagator in a static external field is homogeneous in time and appears as

f dE
~/cF2^

—— f !

J 2n E — E n ( l – i n )
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where the temporal Fourier transform of the exact Green function G fulfils the Dirac
equation in the external Coulomb field of the nucleus:

[E – (—ia • V + Vext(r) + m)] G(r, r', E) = S(r — r1).

This Green function is analytic in the complex energy plane except for the bound-state
poles at En with branch points at \E\ = 1 and cuts along the real axis for \E\ > 1.
Bound states occur only at energies E > 0. The free-photon propagator appears as a
time-ordered product of free-photon field operators (in Feynman gauge)

iDuv(x— x') = <0|T[Au(x)Av(x')]|0) = guv i D(x — x')

8flVJcfln
e \r-r'\ '

with b = — iVE2 — is. The propagation function D is analytic in the complex E-
plane except for branch points and cuts at Re(E) > 0. The analytic properties of both
the electron propagator G and of the free-photon propagator Duv play a key role in
the evaluation and renonnalization of QED-radiative corrections.

As QED-radiative effects of order a, we identify the formal expression for the
self-energy correction

/
3 3 , t f dE

a Jcf 2n

x D u V(r , r', Ea — E)<j>a(r') — 8m
j

(1.14)

where the first-order self-energy operator 17SE has been introduced, and for the
vacuum-polarization correction

AEjp = -ia d3 rd3 ( r)dV0J(r)aM0a(r)DMW(r, r', E = 0)

= <0altfVP!0a), (1.15)

which appears as a first-order perturbation with respect to the vacuum-polarization
potential <WVP. In Figure 1.16 the corresponding Feynman diagrams are depicted.
The self-energy of the electron arises due to the emission and absorption of a virtual
photon by the bound electron. The vacuum-polarization correction can be viewed as
an additional interaction of the bound electron with virtual electron-positron pairs
induced by the Coulomb potential of the nucleus which modifies the external field.

Bound-state QED thus treats the interaction with the external field exact to all
orders in Za, while additional effects due to the interaction with the quantized, free
radiation field are treated perturbatively to any desired order in a. The order of a
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SE) VP)

Figure 1.16 Feynman diagrams for the self-energy (SE) and the vacuum polarization (VP)
of a bound electron of order a. The double lines indicate wave functions and propagators in
the external Coulomb potential of the nucleus.

given (bound-state) QED diagram is given by the number of free internal photon
lines involved.

1.4.4 Self-energy correction

In Figure 1.16 the self-energy correction to first order in a is depicted. We sketch
the exact evaluation of the self-energy corrections for hydrogen-like systems plac-
ing particular emphasis on the covariant renormalization approach (Indelicato and
Mohr 1992; Mohr 1974a, b; Mohr and Soff 1993) and on the noncovariant partial-
wave renormalization (PWR) (Persson et al 1993a; Quiney and Grant 1993). Both
methods have been employed successfully for evaluating radiative corrections of first
and second order in a (see, for example, Persson et al. 1993a,b, 1996a; Quiney and
Grant 1994). All these calculations of the self-energy are based on angular-momentum
decompositions of propagators and electron states. The unrenormalized self-energy
is infinite, a method of subtracting off the infinite mass renormalization term must
be employed which is suitable for a numerical calculation as well. This is accom-
plished by constructing counter terms that can be calculated analytically and that are
also expanded in terms of angular momentum eigenfunctions so that a term-by-term
subtraction can be performed. One aspect in which the various approaches differ is
in the detailed form of the term subtracted.

Regularization and the singular part

The self-energy correction (1. 14) includes an integration over intermediate energies
which diverges for spatial arguments r21 = |r2—r| ~ 0. Accordingly, appropriate
regularizations are required to make the integral finite and to isolate the infinite mass
divergence. For instance, in coordinate space the Pauli-Villars regularization (Pauli
and Villars 1949) is implemented by the replacement of the photon propagator in the
integrand of Equation (1. 14),

D ( r 1 — , r 2 E — E )
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with

b' = -iV (Ea — E)2 —A2-is and b = -iJ(Ea — E)2 — ie,

respectively. A denotes the regularization parameter. At the same time, the mass
renormalization term 8m (free-electron self-energy) is replaced by the corresponding
term calculated with the regularized photon propagator, i.e. 8m -> 8m(A). The
regulator-dependent expression for the self-energy then reads

SF f i ^ t f &EESE
a (A) = —ia I d3 r2d3 r1 0I(r2)ofu I — G(r2 r1, E)au0a(r1)

J Jcf 2?r

— -Q-J^L~\-Bm(A) f t f x t ,
r21 r21 J ./

It yields the finite physical energy shift AF.fE in the limit ./I -»• oo. Singular terms
arise from the high-energy region of the integration over E. They can be isolated in
the first few terms in the expansion of the electron propagator

in powers of the external potential. The resolvent operator

may be represented in the form

G(E) = F(E) + F(E) Vext F(F.) + F(E) Vext G(E) Vext F(F.)

(1.16)

together with the free resolvent operator F(E) = (ho — E ) – 1 . The term in square
brackets contains the leading divergent terms in the asymptotic expansion in\E|–1.
The asymptotic term Gas(F.) can be derived from the high-energy region by extract-
ing the leading terms in a form amenable to analytic calculation and evaluating the
remainder (G(E) — Gas(F,)) numerically. The various methods of calculation can be
characterized in part by the choice of Gas(E), which is made from variations of the
expansion of G(E) in powers of Vext. The first method of numerically calculating
the QED self-energy was proposed in Brown et al. (1959), which was subsequently
corrected and implemented (Desiderio and Johnson 1971). Different variants of self-
energy calculations have been developed by several authors (Blundell and Snyderman
1991; Indelicate and Mohr 1992; Mohr 1974a,b; Mohr and Soff 1993). Mohr's method
deals with the choice

1 1

where the off-diagonal terms that connect the large to the small components of the
electron wave function are omitted (indicated by the notation |D) in this term.
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As a final result we obtain the exact self-energy of order a but to all orders in Za
for bound ns states with principal quantum number n. We may write

(Za,#). (1.17)
n n

The most accurate calculations of the SE correction were carried out in Mohr (1974a,
1992) and in Indelicato and Mohr (1998) for the point nucleus, and in Mohr and Soff
(1993) for the extended nucleus. For heavy systems (Z > 50) the dependence of the
self-energy correction FSE on the nuclear radius R also Ahas to be taken into account
(Soff 1993).

1.4.5 Vacuum polarization

In Figure 1.16 the Feynman diagram corresponding to the vacuum-polarization cor-
rection of order a is depicted. Here we briefly discuss the method to evaluate this
QED correction to all orders in Za involving exact electron orbitals and propagators
in external Coulomb potentials.

According to Equation (1. 15) the exact first-order vacuum polarization potential
induced by the static external Coulomb field of a nucleus reads (in the Feynman
gauge)

Uvp(r) = -ia f d3n i / — Tr[G(r, r', E)]

\ r — r i \

where the total induced vacuum polarization charge density pvp follows as an energy
integral over the trace of the exact electron propagator G along the contour CF-
Utilizing the integral equation (1. 16) for the Green function G, we obtain the vacuum
polarization density pvp as a sum of the Uehling part (one-potential term)

r d.E r
pJ5,(r) = -ie J — J dV Tr[F(r, r', E)V^(r')Fr', r, E)}

and of the Wichmann-Kroll part summarizing all multiple-potential terms of higher
orders in Za

VP f dE (
/°WK(r) = —le I ^— jTr[G(r, r, E)]

- fd3r'Tr[F(r,r',E)V™(r")F(rf,r,E)]\. (1.18)
J i

The zero-potential term ~ (Za)°, as well as all terms of even power ~ (Za)2n, vanish
by virtue of Furry's theorem (Furry 1951).



46 RELATTVISTIC AND QED EFFECTS IN HIGHLY CHARGED IONS

Uehling potential

The Uehling potential represents the dominant vacuum-polarization correction of
order a(Za) to the one-photon exchange potential between the nuclear-charge distri-
bution and the bound electron. Finally, we derive the analytically known renormalized
polarization function in terms of an integral representation. For spherically symmetric
external charge distributions we obtain the renormalized Uehling potential (Klarsfeld
1977):

UuSiO-) = ~ — f°° dr/ r' A*t('') [X2(2|r - r'|) - X2(2(r + r'))],3n r JQ

/

°° / 1 1/2

*('-

Wichmann-Kroll contribution

(1.19)

The representation (1. 18) implies a subtraction scheme for calculating the finite part
of the Wichmann-Kroll potential and the vacuum polarization charge density p^.
It was first considered by Wichmann and Kroll (1956). A detailed discussion of the
evaluation of this contribution for high-Z nuclei of finite extent is presented in Soff
and Mohr (1988) and Soff (1989). A special application of the computed vacuum
polarization potential to muonic atoms has been presented in Schmidt et al. (1989).

The numerical approach developed in Soff and Mohr (1988) utilizes the decompo-
sition of the exact Green function into partial waves and derives the radial vacuum
polarization charge density after the integration contour has been Wick-rotated

= -e %L k| )

This formal expression contains the divergent Uehling term of order or(Za), while
all higher-order terms (a(Za)n with n ^ 3) are finite. A successful renormalization
scheme for the total vacuum polarization charge density is therefore provided by
subtracting off the corresponding partial- wave decomposition of the Uehling contri-
bution. The effect of the Uehling potential is then calculated separately based on the
analytic expression (1. 19). Denoting the partial wave components of the free Green
function by Fk

iJ , the final expression for the vacuum polarization charge density of
order a(Za)n with n ^ 3 reads

du S

f°°dr'r'2Vnl(r') £ [F?n(r, r',iu)f\.
J° = '

(1-20)
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Given the Wichmann-Kroll density we can calculate first the contribution to the
vacuum polarization potential and then the corresponding energy shift. The energy
correction associated with the Wichmann-Kroll potential caused by the density (1. 20)
is usually expressed in terms of a function HWK - Again for bound ns states we may
write similarly to Equation (1. 17)

AEa
vp(WK) =

For extended nuclei the remaining Wichmann-Kroll contribution was first calculated
in Soff and Mohr (1988) and Soff (1989), while corresponding results for the point
nucleus can be found in Manakov et al. (1989). The renormalization scheme for the
Wichmann-Kroll part was also used later (Persson et al. 1993b) to generate more
precise results. Finite nuclear size effects have also been taken into account, and the
results are in fair agreement with the corresponding data given by Soff and Mohr
(1988). The calculations performed in Persson et al. (1993b) and Soff and Mohr
(1988) underline the importance of including finite-size effects in any state-of-the-art
calculations of the vacuum-polarization correction for high-Z systems.

1.4.6 Lamb-shift calculations for highly charged ions

The ground-state Lamb shift in heavy hydrogen-like atoms

The term Lamb shift of a single atomic level usually refers to the difference between
the Dirac energy for point-like nuclei and its observable value shifted by nuclear and
QED effects. Nuclear effects include energy shifts due to static nuclear properties such
as the size and shape of the nuclear charge density distribution and due to nuclear
dynamics, i.e. recoil correction and nuclear polarization. To a zeroth approximation,
the energy levels of a hydrogen-like atom are determined by the Dirac equation. For
point-like nuclei the eigenvalues of the Dirac equation can be found analytically. In
the case of extended nuclei, this equation can be solved either numerically or by
means of successive analytical approximation (see Rose 1961; Shabaev 1993).

Besides nuclear finite-size effects, the leading corrections to the Dirac energy levels
originate from QED-radiative corrections of order a, i.e. the first-order self-energy
(SE) and vacuum polarization (VP) (see Figure 1.16). We refer to the tabulation
provided in Johnson and Soff (1985). At present, the calculation of the first-order
QED corrections can be considered as well established. Extensive tabulations for
the Wichmann-Kroll part of the vacuum polarization are presented in Beier et al.
(1997b) and for the self-energy correction in Beier et al. (1998). At the present level
of experimental precision all available Is-Lamb-shift data for hydrogen-like ions
can be explained on the basis of these dominant QED corrections and finite nuclear
size effects. However, the accuracy of about 1 eV, which is aimed for in the exper-
iments under preparation at the Gesellschaft fur Schwerionenforschung mbH (GSI)
(Stohlker et al. 2000), demands that theory provide a calculation of the whole set of
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Figure 1.17 QED corrections of order a2 in hydrogen-like ions.

QED corrections of order a2. The corresponding Feynman diagrams are depicted in
Figure 1.17.

The set of second-order QED corrections can be divided into separately gauge-
invariant subsets: the two-photon self-energy diagrams SESE (a)-(c), the loop-after-
loop vacuum polarization VPVP (d), the two-loop vacuum polarization VPVP (e)
together with the diagram VPVP (f), the mixed self-energy vacuum polarization SEVP
(g) — (i) and finally the effective self-energy diagram S(VP)E (k). Most of these cor-
rections have been calculated by employing various modifications of the methods
developed for the evaluation of the first-order self-energy and vacuum-polarization
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corrections. By this means the contributions of all diagrams (d)—(k) have been evalu-
ated by a number of authors. However, we should note that the corrections VPVP (f)
and S(VP)E (k) are at present calculated only in the Uehling approximation, which
should be considered only as an estimate of the real contribution.

Renormalization schemes for the two-photon self-energy were first developed by
Labzowsky and Mitrushenkov (1996) and later by Lindgren et al. (1998), where the
Feynman gauge has been employed. Within this gauge choice the irreducible con-
tribution of the loop-after-loop diagram SESE (a) can be separately calculated. The
first calculations were presented in Mitrushenkov et al. (1995). The loop-after-loop
vacuum-polarization correction VPVP (d) has been considered (Persson et al. 1993b)
and tabulated (Beier et al. 1997b). The Kalle'n-Sabry contributions, i.e. the VPVP (e,f)
corrections in the Uehling approximation, have been investigated by Beier and Soff
(1988) for point-like and Schneider et al. (1993a) for extended nuclei. A renormaliza-
tion scheme for deducing the energy shifts due to higher orders in Za of the two-loop
vacuum polarization VPVP (e) diagram and corresponding numerical results have
been delivered in Plunien et al. (1998). It allows us to assign separately a value for
the Uehling part of the VPVP (f) diagram. The mixed self-energy vacuum polariza-
tion SEVP (g)-(i) was first evaluated in Lindgren et al. (1993) taking into account
only the Uehling part of the vacuum-polarization potential, and later in Persson et
al. (1996a). Until now the effective self-energy S(VP)E (k) has been calculated only
within the Uehling approximation (Mallampalli and Sapirstein 1996; Persson et al.
1996a). While a considerable effort has been made during the last decade in evalu-
ating the a2-corrections (a) and (d)-(k), the calculation of the remaining two-photon
self-energy diagrams SESE (b) and SESE (c) together with the reducible part of SESE
(a) (employing the Feynman gauge) turns out to be a far more difficult task.

The first attempt to perform this was carried out by Mallampalli and Sapirstein
(1998), where a specific part for this correction was evaluated. However, since there
is nothing to suggest that this part represents a dominant contribution, this calcula-
tion still does not provide any information about the actual value of this correction.
Combined with the results of a previous investigation (Mallampalli and Sapirstein
1998), a direct evaluation of the two-loop self-energy contributions SESE (b,c) to the
Is-Lamb shift in hydrogen-like uranium has been reported recently (Yerokhin and
Shabaev 2001). These calculations employ a covariant renormalization scheme based
on the potential expansion of electron propagators. All the corrections discussed so
far are treated in the external-field approximation. This means that the nucleus is
considered only as a source of an external Coulomb field. Going beyond this approx-
imation requires as a first step the evaluation of nuclear-recoil corrections. In contrast
to nonrelativistic quantum mechanics, where the recoil effect is accounted for simply
by the reduced mass, a full relativistic theory of the nuclear recoil has to be formulated
within the QED framework. Investigations reveal that the nonrelativistic treatment of
the nuclear recoil is incorrect by more than 50% for heavy hydrogen-like systems
like uranium. A formula for the recoil effect in a hydrogen-like ion to first order in
m/M (the mass ratio of the electron and the nucleus) that accounts for the complete
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Table 13 Lamb-shift contribution for the Is ground state of 238U91+ and 208pt,8l+
(in eV), including the full nuclear-structure corrections.

Corrections (in eV): 208pb 81 +

Finite nuclear size
Self-energy (order a)
Vacuum polarization (order a)

SESE (a) (irred.)
SESE (a) (red.) (b) (c)
VPVP (d)
VPVP (e)
VPVP (f) (Uehling approx.)
SEVP(g) —(i)
S(VP)E (k) (Uehling approx.)
Nuclear recoil
Nuclear polarization

198.82 ±0.10
355.05
-88.60

-0.97
-0.90 ±0.10
-0.22
-0.15
-0.60 ±0.10

1.12
0.13
0.46

-0.20 ±0.10

67.25 ±0.02
226.33
-48.41

-0.51
±0.00a

-0.09
-0.07
-0.34

0.53
0.07
0.37
0.00

Lamb shift (theory) 463.94 ±0.40 245.13 ±0.02

Lamb shift (experiment) 468 ±13 290 ±75

aA result for the SESE (b,c) contribution for lead is not yet available.

Zor-dependence was first derived in Shabaev (1985). A detailed description of the
method can be found in Shabaev (1998).

The numerical evaluation of nuclear-recoil effects to all orders in Za has been
carried out by Artemyev et al. (1995) and Shabaev el al. (1998a) for point-like and for
extended nuclei, respectively. A second step beyond the external-field approximation
accounts for the internal nuclear dynamics, i.e. the polarizability of the nucleus.
The nuclear-polarization correction was derived and evaluated in the framework of
the effective photon propagator in Plunien et al. (1991), Plunien and Soff (1995)
and Nefiodov et al. (1996). For a detailed discussion we also refer to Mohr et al.
(1998). The individual contributions to the Is-ground-state Lamb shift in 238u91 + and
208 Pb81+ are presented in Table 1.3. The finite nuclear size correction is calculated for
a Fermi distribution with a root-mean-square (RMS) radius (r2)1/2 = 5.860(2) fm
for uranium and <r2) l /2 = 5.505(1) fm for lead (Zumbro et al. 1984). The indicated
uncertainties of 0.10 eV for uranium and 0.02 eV for lead reflect the uncertainty in
the RMS radii. We also note that an uncertainty of 0.38 eV for uranium and 0. 14 eV
for lead may be ascribed to the nuclear size effect when calculating the difference
between the corrections using a Fermi model or a homogeneously charged sphere
distribution with the same RMS radius (see Beier et al. 1997a, for details).

To obtain the total binding energies, the (point-nucleus) Dirac eigenvalues of
–132279.92(1) eV for uranium and –101581.37(1) eV for lead should be added
to the Lamb-shift contribution quoted in Table 1.3. We may note, for example, that in
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the case of uranium an error of 0.01 eV of the Dirac binding energy even results from
the uncertainty of the Rydberg constant (Mohr and Taylor 2000). As can be seen from
the table, the present level of experimental precision provides a test of QED effects
to first order in a at the level of 5%.

2p1/2–2s Lamb shift in lithium-like uranium

In heavy lithium-like ions, in addition to the one-electron QED and nuclear correc-
tions discussed above, additional contributions due to the electron-electron interac-
tion have to be taken into account. Traditionally, energy levels in high-Z lithium-like
ions have been calculated employing the relativistic many-body perturbation theory
(RMBPT) (Blundell 1993; Kim et al. 1991; Ynnerman et al. 1994), the multicon-
figuration Dirac-Fock method (Indelicato and Desclaux 1990) and the relativistic
configuration-interaction method (Chen et al. 1995; Cheng et al. 2000). These meth-
ods account for the correlation and the relativistic corrections but do not provide a
rigorous treatment of the QED effects. This fact does not create any problems in first
order in a, where the correlation effects are naturally separated from the radiative cor-
rections, and the first-order QED corrections can be simply added to the many-body
results. However, a calculation valid up to order a2 must be carried out rigorously
starting from first principles of QED. To some extent, the electron-electron interaction
can be accounted for by considering the first-order QED corrections for an electron
in an effective field, that is, the sum of the nuclear potential and an additional spher-
ically symmetric potential generated by other electrons. We refer to this approach as
the effective-potential approximation. By effective potential we mean here the direct
part of the electron-electron interaction,

dr2r| — [gf(r2) + f2(r2)l
r>

where g,(r) and //(r) are the upper and the lower radial components of the wave
function, and r> = max(n, r2).

In that method, a part of the second-order effects is included in the first-order QED
corrections (Blundell 1993; Chen et al. 1995; Cheng et al. 1991, 2000; Indelicato
1991).

Ab initio QED calculations for heavy few-electron atoms are generally performed
by perturbation theory. In recent research (Yerokhin et al. 2000, 2001), in the zeroth
approximation the electrons interact only with the Coulomb field of the nucleus. To
zeroth order the binding energy is given by the sum of one-electron binding energies.
The interelectronic interaction and the radiative corrections are accounted for by
perturbation theory in the parameters 1/Z and a, respectively. Since 1/Z ~ a for
very-high-Z ions, for simplicity we can classify all corrections by the parameter a.

The correction corresponding to the interelectronic interaction of order a (one-
photon exchange) can easily be evaluated numerically. While the QED corrections
of first order in a can be considered as well established at present (see, for example,
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Figure 1.18 Vacuum-polarization screening diagrams.

Shabaev et al. 2000a, for a recent review), the complete second-order calculation is
not yet finished.

The two-electron QED corrections of order a2 for the ground state of helium-like
ions with Z > 20 have been calculated completely. The corresponding two-photon
exchange correction was calculated in Blundell et al (1993) and Lindgren et al
(1995). For helium-like systems the self-energy and vacuum-polarization screening
diagrams have been evaluated (Persson et al 1996b; Yerokhin et al. 1997a). The
related calculations for excited states of helium-like ions were performed for the
vacuum-polarization screening diagrams in Artemyev et al (2000) and, in the case
of nonmixed states, for the two-photon exchange diagrams in Mohr and Sapristein
(2000). As aresult of several years of effort, the complete evaluation of all two-electron
QED corrections of order a2 for the 2p1/2–2s transition in heavy lithium-like ions
has recently been reported (Yerokhin et al 2000, 2001).

The set of a2-corrections can be divided into three separately gauge-invariant sub-
sets: the vacuum-polarization screening contribution (Figure 1.18), the self-energy
screening correction (Figure 1.19), and the two-photon exchange diagrams (Fig-
ure 1.20). We refer to the diagram in Figure 1.20(c) as the three-electron contribution
and to the diagrams in parts (a) and (b) of Figure 1.20 as the ladder and crossed
contributions, respectively.

For the 2p1/2–2s transition in lithium-like high-Z ions, the gauge-invariant sets of
the screened vacuum-polarization corrections and of the screened-self-energy have
been evaluated recently by Artemyev et al (1999) and Yerokhin et al (1999), respec-
tively. Finally, the complete two-electron contributions have been presented recently,
even beyond the Breit level (Yerokhin et al 2000, 2001).

Most of these diagrams contain two intermediate electron propagators and, there-
fore, double summations over the whole spectrum of the Dirac equation in the external
nuclear field. This makes their computation numerically intensive. Both the self-
energy and vacuum-polarization screening corrections are ultraviolet divergent and
require renormalization to yield a finite result.

The numerical evaluation of the two-photon exchange corrections has been carried
out in a way similar to that for the (Is)2 state in Blundell et al (1993). The summa-
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Figure 1.19 Self-energy screening diagrams.

(a) (b) (c)

Figure 1.20 Two-photon exchange diagrams.

tion over the whole spectrum of the intermediate states was performed by using the
B-spline approach for the Dirac equation (Johnson et al 1988). The finite size of the
nucleus is taken into account by using a homogeneously charged sphere distribution
of the nuclear charge with RMS radii taken from Yerokhin et al. (1999). Calcula-
tions performed both in the Feynman and in the Coulomb gauge exhibit an excellent
agreement. The direct and the exchange parts are found to be separately gauge invari-
ant on the level of numerical accuracy. Their contribution has been accounted for
within the Breit approximation (Shabaev et al. 2000b). Due to the restrictions of the
Breit approximation the uncertainty assigned to this contribution may be about 50%.
A complete overview of the present status of QED calculations of the interelectron
interaction in two- and three-electron ions was recently given by Andreev etal. (2001).

In Table 1 .4 the individual contributions to the 2p 1 /2–2s transition energy in lithium-
like uranium are compiled. The one-electron QED-corrections are included as well.
The predicted value of 280.46(9) ± 0.20 eV for the total Lamb shift is in agreement
with the related experimental result of 280.59(10) eV (Schweppe et al. 1991).

The error of 0.20 eV ascribed to the theoretical value originates from the second-
order one-electron QED contribution, which is not yet completely established. The
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Table 1.4 Various contributions to the 2p1/2–2s transition in 238U89+ (in eV).

One-electron nuclear size

One-photon exchange

First-order

Two-photon exchange

Two-electron

^3 photon exchange

Nuclear recoil

Nuclear polarization

One-electron a2 QED

Total theory
Experiment

SE
VP
Breit approximation
beyond Breit approximation

SE
VP

-33.35(6)

368.83

-55.87
12.94

-13.54
0.17

1.52
-0.36

0.16(7)

-0.07

0.03(1)

±0.20

280.46(9) ± 0.20
280.59(9)

total two-photon exchange correction can be conveniently divided into a dominant part
that can be evaluated within the Breit approximation, and a remainder which can be
interpreted as a contribution of the second-order QED effects. For the exact definition
of the two-photon exchange contribution within the Breit approximation we refer to
(Yerokhin et al. 2000, 2001). As can be read off from the table, the first-order QED
corrections contribute with —42.93 eV, while the total second-order QED correction
beyond the Breit approximation amounts to about 1.33 ± 0.20 eV. In summary, the
present status in the prediction of the Lamb shift in lithium-like uranium provides a
sensitive test for QED effects of first order in a on a level of accuracy of about 0.5%,
and of QED corrections of order a2 on a level of accuracy of about 15%. Thus, for
the first time, this opens up the possibility of probing second-order QED effects in a
strong Coulomb field by a comparison between theory and experiment. However, we
should be aware of the fact that a reliable estimate of the uncertainty of the predicted
value can be achieved only after the calculation of the second-order one-electron QED
corrections have been established.

1.4.7 Hyperfine structure and bound-electron g-factor

Basic formulae

Magnetic interactions between bound electrons and external magnetic fields are
described by the additional interaction Hamiltonian

Hint = –u-B =ea • A,
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where u is the magnetic moment operator, B denotes the vector of the magnetic field
and A denotes the corresponding vector potential. The two major effects involving
magnetic fields are the Zeeman effect, where the magnetic moment of the electron
u J interacts with a homogeneous external magnetic field Bext (respectively Aext),
and the hyperfine-structure splitting, where the magnetic moment of the nucleus u1

interacts with the magnetic field Bhfs (respectively Ahfs), caused by the motion of the
electron. For these two different kinds of perturbation the potentials are given by

A ext( r) \ —- J? v t*
6Xl \ ) """" 7 •'•^CXt * '

. , . /«-/ x r

The operators of the magnetic moments of electron and of the nucleus read

J
-r,
fi

I
T>n

where J now denotes the total angular momentum of the electron and / denotes the
angular momentum of the nucleus. The quantities gj and gI denote the g-factor of the
bound electron and of the nucleus, respectively. The latter accounts for the complex
structure of the nucleus. The magnetic moments are expressed in units of the Bohr
magneton for an electron

eh
- — (% 0.579 x 1CT4 eV T~ ' )
2me

and the nuclear magneton

eh Q i
_ - (% 3.152 x 1CT8 eV T"1).

2mp

For a free electron, the Dirac theory yields a value gfree = 2. Corrections to the free-
electron g-factor are essentially due to the interaction with the free radiation field.
The determination of the g-factor of a bound electron interacting with an additional,
homogeneous magnetic field Bext via measurements of the induced energy shift on
atomic levels is one of the basic experiments for testing QED. The deviation (g — 2)
can be measured rather precisely.

The generic magnetic interaction gives rise to a level energy shift

A\<PnFM}.

The matrix element has to be evaluated with states

m1



56 RELATIVISTIC AND QED EFFECTS IN HIGHLY CHARGED IONS

where the angular momentum of the electron and the nucleus are coupled to total
angular momentum quantum numbers F and M, respectively. Due to the presence of
a Zeemann-type interaction, the generic energy shift of a bound electron characterized
by quantum numbers n and K in hydrogen-like ions reads

(1.21)

which defines the gJ -factor according to

Assuming, for example, a point-like atomic nucleus and taking into account the pure
Coulomb potential, where the wave functions are analytically known, yields for the
Is state (Breit 1928)

Sy.pointiike = f (1 + 2V7! - (Za)2).

Similarly, the generic expression for the energy shift of a level induced via the hyper-
fine interaction is given by

*•/•
1)1

(1.22)

Beside finite nuclear size effects that are carried essentially by the bound-electron
wave functions gnK and fnK, QED corrections will contribute to observable modifi-
cations of the generic level shifts, Equations (1.21) and (1.22), respectively. Carrying
out the complete derivation and numerical evaluations based on the 5 matrix formal-
ism is rather cumbersome. Alternatively, in the case of weak magnetic interactions
all expressions can also be obtained by considering the perturbations of the electron
wave function 0a, the corresponding binding energy Ea, and of the electron prop-
agator (Indelicato 1991). Performing the following replacements in a given generic
bound-state QED diagram of order a, i.e.

,^ v M. \ _L_ v- \9n)(9n\ea-A\9a)\9a) -*• \9a) + / . -z. •£ +
E*a En

= |Va) + \Wa) + • • • , (1.23)

SF(x, y, E) -+ Sf(x, y, E) + f d3z SF(x, z,E)ect-A SF(z, y, £) + • • - ,

(1.24)

Ea ->• Ea + (<j>a\e<*-
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will lead, for example, to a modification of the self-energy operator

The dots indicate higher orders of perturbation theory and are not considered here.
This method of deriving expressions has been employed frequently for magnetic
perturbations as well as for the related electron-electron interaction (Persson et al.
1996b,c; Sunnergren et al. 1998).

Hyperfine-structure calculations

The theoretical description of QED corrections to the hyperfine-structure splitting
(HFS) is practically the same as for the g-factor. In both cases radiative corrections
to a magnetic perturbation are considered. The HFS in highly charged ions has been
investigated experimentally until now at the GSI (Klaft et al. 1994; Seelig et al. 1998;
Winter et al. 1999) as well as at the Lawrence Livermore National Laboratory (Lopez-
Urrutia et al 1996, 1998). Corresponding to the rather high experimental precision
achieved in such systems, theoretical investigations have been carried out in particular
on the QED contributions of order a. As in the case of the Lamb shift, calculations
that are nonperturbative in Za are required. Nuclear-size corrections may be taken
into account either by solving numerically the Dirac equation for the wave functions
or by employing approximate analytical formulae. For hydrogen-like ions the HFS
of the ground state can be written in the form

€) + x j (1.25)
Nmp 21

where m is the electron mass, mp is the proton mass, u1 is the nuclear magnetic
moment and uN denotes the nuclear magneton. The terms in the square brackets rep-
resent the corrections to the classical nonrelativistic hyperfine splitting: the relativistic
factor A(Za) for the ls1/2 state is given by (Pyykko et al. 1973)

1
A(Za) = — with y = v/1 – (Z«)2,

y(2y – 1)

the finite-size nuclear-charge distribution correction is 8, the finite-size nuclear-mag-
netization distribution correction is e, and the QED corrections are denoted by XQED-
The effect due to a deviation of the nuclear magnetization distribution from the point-
dipole model is often termed the Bohr-Weisskopf effect. The first numerical investi-
gations date back to Bohr (1951) and Bohr and Weisskopf (1950), where calculations
based on the nuclear single-particle model were performed. Within this approach the
extended magnetization distribution is due to a single-valence nucleon moving in
the effective nuclear field generated by the core nucleus. A more elaborate version
of this model has been employed to obtain numerical values for this effect in the
range Z = 49-83 for hydrogen- and lithium-like ions (Shabaev 1994; Shabaev et al.

Administrator
ferret
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Figure 1.21 The self-energy and vacuum-polarization correction to a bound electron per-
turbed by an external magnetic field. The solid line terminated by a cross denotes the interaction
with the external magnetic field.

1997, 1998c). For 209Bi82+ a relativistic dynamic-proton model developed by Lab-
zowsky et al (1995,1997) yields similar results. Here we refer to a number of other
approaches that only try to model the magnetization distribution inside of the nucleus
(Arima and Horie 1955; Finkbeiner et al. 1993; Noya et al. 1958; Schneider et al.
1993b; Tomaselli et al. 1995, 1997). A detailed discussion on the current difficulties
in estimating the Bohr–Weisskopf effect is given in a recent review (Beier 2000).

QED radiative corrections of order a to a bound electron interacting with a perturb-
ing magnetic field (depicted in Figure 1.21) have all been calculated independently
during the last decade by several groups for the Is1/2 and the 2s 1/2 state (Blundell
et al. 1997; Persson et al. 1996c; Schneider et al. 1994; Shabaev et al. 1997, 1998c,
2000b; Sunnergren et al. 1998; Yerokhin et al. 1997b). It turns out, however, that
their magnitude is of similar size to the uncertainty of the Bohr-Weisskopf effect
caused by the inherent model dependence of the nuclear magnetization distribution.
Measuring the hyperfine-structure splitting in highly charged ions provides an alterna-
tive scenario for precision tests of bound-state QED. As was pointed out in Shabaev
et al. (1998b) and Shabaev (1998), it is yet possible to combine measurements of
the hyperfine-structure splitting in hydrogen-like and lithium-like ions of the same
species. By extracting a value for the Bohr-Weisskopf effect from one experiment, its
magnitude for the other charge state of the ion can be adjusted and its uncertainty is
much less than that induced by the inherent model dependence. The Bohr-Weisskopf
effect for a hydrogen-like ion can be deduced from a measurement by means of the
formula

€(ls) _ ^Dirac
(Is)
Dirac

where

- ( l s ) is the value of the ls1/2 hyperfine-structure splitting including the nuclear-
charge distribution,
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Table 1.5 Hyperfine-structure splitting of the ground state in
hydrogen- and lithium-like bismuth.

209Bi82+ 209Bi80+

Relativistic one-electron value
Finite nuclear size effect
Bohr-Weisskopf effect
One-electron QED (order a)
Interelectronic interaction

of first order in 1/Z
of second and higher orders in 1/Z
estimate for QED correction (eV)

Theory, total (eV)
Experiment (eV)

5.8393(3)
-0.6482(7)
-0.061(27)
-0.0298

5.100(27)

5.0840(8)
5.0843(4)

0.95849
–0.1138(2)
-0.0134(2)
-0.005 1(2)

-0.02948
0.00024(12)
0.000 18(9)

0.797 1(2)
0.820(26)

and

ls ^ QED correction to the hyperfine-structure splitting for the ls1/2 state,

is the experimental value of the Is 1/2 hyperfine-structure splitting.

The first and the last of these quantities are well known, and the QED value is also
known but can be tested when a similar experiment is carried out on the 2s 1/2 state of
a lithium-like ion, where a similar formula has to be applied. The expected ratio for
the Bohr-Weisskopf effect is € (2s) /<? ( l s) = 1 .078 for the case of 209Bi (Shabaev et al.
1998b). This quantity has to be tested by experiment. The QED contributions have to
be known to a very high precision. The possibility for testing QED in experiments on
the hyperfine splitting via the determination of a specific difference of the hyperfine
splitting values of hydrogen- and lithium-like bismuth has been recently examined
(Shabaev et al, 2001 ). The quoted experimental data are taken from Klaft et al. (1994)
and Winter et al. (1999) for hydrogen-like bismuth and from Beiersdorfer et al. (1998)
for lithium-like bismuth.

The theory's proposal of evaluating the a2 -corrections has already been taken up
and a precision search was started at the GSI (Borneis et al. 2000). The search is
not yet complete and a high-precision test of the QED contributions to the hyperfine-
structure splitting in highly charged ions is not therefore currently available. For
209Bi, theoretical and experimental values are displayed in Table 1.5. For 209Bi82+,
the QED corrections and the relativistic one-electron value including the finite nuclear
size effect have been taken from Sunnergren et al. (1998). The separate finite nuclear
size effect has been obtained by subtracting the corresponding value of a point-like
nucleus calculated via Equation (1.25) (neglecting 8, € and XQED)- The numbers for
the Bohr-Weisskopf effect presented in Table 1.5 and all values for 209Bi80+ have
been taken from Shabaev et al. (2000b).
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The lifetime of the upper hyperfine-structure level in 209Bi82+ was measured to
be rexp = 397.5(1.5) us (Winter et al 1999). Employing the experimental value
of the HFS transition energy o> together with the transition amplitude for 209Bi82+,
the experimental value of the bound-electron g-factor.is found to be 1.7343(33).
This result is in remarkably good agreement with the theoretical value of 1.7310 for
209Bi82+ Also the measured value for 207pb81+ (Seelig et al. 1998) was found to be
in good agreement with the theoretical prediction.

To summarize in brief: QED provides a unique framework for the foundation of
a relativistic description of atomic many-electron systems. Being able to account for
their effects in few-electron systems to the utmost precision is of great importance
for the determination of fundamental constants in experiments with hydrogen or to
explore the range of validity in the strong external fields as they occur in highly
charged ions. At present, measurements of the one-, two- and three-electron ions, the
hyperfine-structure splitting and of the g-factors of bound electrons are considered
to be the most promising scenarios for sensitive tests for QED. In all cases radiative
corrections have to be taken into account as well. Complete QED calculations for
electron correlation effects are necessary in order to describe the measured Lamb
shift in lithium-like uranium.
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2.1 Introduction

Relativistic effects play an important role in the spectroscopy of atoms and molecules
whenever heavy atoms are involved or electronic or nuclear spins become significant,
as in ESR and NMR spectroscopy or for the fine and hyperfine structure of electronic
states. Also the chemical behaviour of the heavy elements, beyond Z ~ 50, is strongly
influenced by relativistic effects. As the chemical interactions are affected by the
'slow' valence electrons, relativistic effects were thought to be of minor importance.
However, electrons of shells with low / values, especially s electrons, do penetrate the
atomic core and experience relativistic retardation effects near highly charged nuclei;
these shells therefore contract. On the other hand, electrons in shells with higher /
values, / ^ 2, are screened better, due to the contracted s shells, from the nuclear
charge and therefore become destabilized; thus these shells are more expanded than
expected.

The mathematical basis of the relativistic quantum mechanical description of many-
electron atoms and molecules is much less firm than that of the nonrelativistic coun-
terpart, which is well understood. As we do not know of a covariant quantum mechan-
ical equation of motion for a many-particle system (nuclei plus electrons), we rely
on the Dirac equation for the quantum mechanical characterization of a free electron
(positron) (Darwin 1928; Dirac 1928, 1929; Dolbeault et al. 2000b; Thaller 1992)

o 3[ca • p + moczp]V(r, t) = ih—V(r, t),
at

which is covariant. Here mo is the rest mass of the electron and c is the velocity of
light in vacuum. We use the notation, which has become the accepted convention, that
3-vectors of objects are set in a bold face, while matrices are in regular type, except

Relativistic Effects in Heavy-Element Chemistry and Physics. Edited by B. A. Hess
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for unit matrices, which are set in a bold face. The 4 × 4 matrices ak and ft are

with the 2 x 2 matrices ak in the Pauli representation given as

O 1 /O -i\
= (i oj'

The wave function «^(r, t) will have four components, as the operators are 4 x 4
matrices. Separation of the tune leads to the time-independent version of the Dirac
equation for a free electron (positron)

[ca - p + m0c/3 - El]V(r) = 0, (2.1)

which has two types of continuum solutions:

(1) m0c
2 ^ E < oo for electrons and

(2) —m0c2 ^ E > — oo for positrons.

The energy, E1, of the stationary states for electrons bound by an attractive potential,
e.g. a positively charged nucleus, must lie in the energy gap —m0c

2 ^ E1 < m0c
2.

However, the interaction potential between two charged particles, nucleus-electron
or electron-electron, is not just the Coulomb interaction, since in the relativistic
description a retarded, velocity-dependent interaction must be considered. The full
and general derivation of these interaction 'potentials' is involved and approximate
relativistic corrections to the Coulomb interaction are used in general. The frequency-
dependent correction to the electron-electron Coulomb interaction, the Breit operator

i. /i ox ai • <*2 cos (a>ri2) cos(ft>ri2)- 1
Ml, 2) = -- -I- («i • Vi)(«2 • V2)

is obtained in the Coulomb gauge as a leading term in a QED perturbation expansion.
In general, the frequency-independent form, CD -+ 0,

[, 2) = l—"- - £(«, • V,)(«2 • V2)r,2 (2.2)

or its equivalent

, 2) = -fl^2 - (*i"-")(«2 — (2.3)
2ri2 2rf2

is used.
For the nucleus-electron interaction the Coulomb potential, either for a point

nucleus or a finite nucleus, is used directly. The relativistic contributions to the inter-
action operator are obtained approximately, using the Pauli approximation. They are
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computed, given a zeroth-order wave function, as a first-order perturbation correc-
tion. Much of this can be found for atoms in the textbook by Szasz (1992), or, more
generally, for atoms and molecules in the textbook by McWeeny (1992).

With these approximations, the electronic structure can be treated using a relativistic
quantum mechanical description, while the nuclei are held fixed. To overcome this
clamped-nuclei approximation, an attempt has been made (Parpia et al. 1992b) to
include relativistic corrected nuclear motion terms and to reach an adiabatic separation
of the electronic and nuclear motion at least for atoms.

2.2 General Many-Electron Formalism

For the sake of brevity, we proceed in presenting a pragmatic approach to relativistic
electronic structure theory, which is justified by its close analogy to the nonrelativistic
theory and the fact that most of the finer relativistic aspects must be neglected for
calculations on any atom or molecule with more than a few electrons. For a recent
comprehensive account on the foundations of relativistic electronic structure theory
we refer to Quiney et al. (1998b).

The electron-electron interaction is usually supposed to be well described by the
instantaneous Coulomb interaction operator 1/r12. Also, all interactions with the
nuclei whose internal structure is not resolved, like electron-nucleus attraction and
nucleus-nucleus repulsion, are supposed to be of this type. Of course, corrections
to these approximations become important in certain cases where a high accuracy is
sought, especially in computing the term values and transition probabilities of atomic
spectroscopy. For example, the Breit correction to the electron-electron Coulomb
interaction should not be neglected in fine-structure calculations and in the case of
highly charged ions. However, in general, and particularly for standard chemical
purposes, these corrections become less important.

Four-component quantum mechanical methods for the calculation of the electronic
structure of atoms, molecules and solids are based on the n-electron Hamiltonian

Vnuc(i)]

where the one-electron operator hD(i) used for the description of the kinematics of
the electron is, as discussed for Equation (2.1),

/ID = cot • p + moc2ft'.

The appropriately chosen electron-nucleus potential is denoted as Vnuc(i). Usually,
we shift the energy scale with ft' = ft - 1 to yield energy expectation values which
are directly comparable with those obtained from nonrelativistic calculations.

In the case of polynuclear systems like molecules and solids, it is common to use
the standard nonrelativistic Born-Oppenheimer approximation for the separation of
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nuclear and electronic coordinates of the stationary (time-independent) Dirac equa-
tion, such that the nonrelativistic Coulomb-type nucleus-nucleus interaction potential
is added to the many-electron Hamiltonian H (clamped-nuclei approximation),

to yield the electronic Hamiltonian He1 used in electronic structure calculations.1

Since the exact relativistic many-electron Hamiltonian is not known, the electron-
electron interaction operators g(i, j) are taken to be of Coulomb type, i.e. 1/rij.
As a first relativistic correction to these nonrelativistic electron-electron interaction
operators, the Breit correction, Equations (2.2) or (2.3), is used. For historical reasons,
the first term in Equation (2.2) is called the Gaunt or magnetic part of the full Breit
interaction. Since it is not more complicated than 1/r12, it is from an algorithmic
point of view equivalent to the Coulomb interaction, therefore it has frequently been
included in the calculations. The second term, the so-called retardation term, appears
to be rather complicated and it has been considered less frequently. In the case of
few-electron systems further quantum electrodynamical corrections, like self-energy
and vacuum polarization, have also been considered and are reviewed in another part
of this book (see Chapter 1).

To set up the total time-independent wave function of the many-electron system the
independent-particle model is used in general, resulting in an antisymmetrized Hartree
product of four-component orthonormal one-electron functions. Independent of the
system (atom, molecule or solid) these four-component single electron functions, the
spinors, may be written as

with the two-component functions ^(r) and ̂ ff(r) being its large and small compo-
nents, respectively. The particular form of the one-electron spinors for atoms, mole-
cules and solids will be detailed in the following sections. An explicit dependence
of the many-electron wave function on the interelectronic distance r\2 as used in the
R12 approach of the nonrelativistic theory (for a recent review see Klopper 2000) has
not been explicated thus far for four-component many-electron theories.

As the standard ansatz for the many-electron wave function is an antisymmetrized
product of one-electron spinors |#b)» it may be written as a Slater determinant or in
the language of second quantization (see, for example, Helgaker et al. 2000) as

where |0) denotes the electron vacuum state on which the electron creation oper-
ators a] act. As fermion operators, the creation operators a] and their Hermitian

1 All operators are given in Hartree atomic units, whereby the numerical values of the charge of an
electron e, its rest mass mo and h as well as 4n€Q are 1 and the speed of light is c = 137.035 999 76(50)
(Mohr and Taylor 2000).
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conjugate annihilation operators ai, which correspond to the one-electron orbitals
(four-component spinors) fa ;(r), are to satisfy the anti-commutation relations,

ai' aj'. + ajai\ = aia j + ajai = 0 and a ia. j + ajai = <$ i j.

With this ansatz the Dirac-Hartree-Fock equations for the determination of the
orbitals can be obtained using the variation method. Their form is

ca p v(r) - 2m0c
2

where the potential operator v(r) will depend on the orbitals, and will contain local
(electron-nucleus and electron-electron Coulomb interactions) as well as nonlocal
(electron exchange and coupling) parts; it may be different for different orbitals.
If the Breit operator is included explicitly in the variational determination of the
orbitals, additions to the off-diagonal elements also appear. The foundations and
implications of this ansatz have been reviewed recently from the viewpoint of quantum
electrodynamics (Quiney et al. 1998b) (compare also Lindgren 1998; Sucher 1980;
Wilson 2001).

For a more accurate treatment, electron correlation has to be taken into account; to
this end methods akin to those used in a nonrelativistic description are employed. The
total wave function may be considered as a superposition of (all possible) excitations.
This can be expressed in terms of a configuration interaction (CI) ansatz

which can be used in CI or multiconfiguration self-consistent-field (MCSCF) the-
ory. Alternatively, perturbation theory or a size-consistent coupled-cluster approach
(Helgaker et al. 2000) may be used with

where the cluster operator T, which generates the excitations, is defined as

with the i-fold excitation operators 7} given as

ai abij

At first sight, it seems that in the relativistic case, it would be only a little more
difficult to solve the SCF equations (2.4) based on the Dirac equation (2.1) for the
four-component orbitals rather than the one-component SCF equations of the non-
relativistic theory. This could be done numerically, using a finite-difference method,
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or algebraically with a basis-set expansion to express the orbitals. Extra orbitals gen-
erated via MCSCF theory or as 'virtual' orbitals could then be used to include elec-
tron correlation effects. Early attempts to do just this with basis functions for atoms
proved feasible, provided the basis set was not optimized in the relativistic envi-
ronment (Kim 1967), while relativistic finite-difference SCF calculations (Desclaux
1975) were quite successful. These difficulties arise because the Dirac Hamiltonian is
not bounded from below due to the positronic continuum states. This aspect has been
discussed by Talman (1986), who proposed an appropriate mini-max procedure for
the extremalization, i.e. the orbital Equations (2.4) should be solved to yield a mini-
mum with respect to the large component and a maximum with respect to the small
component (for more recent work see Dolbeault et al. 2000a,b,c; Esteban and Sere
1999; Griesemer and Siedentop 1999; Griesemer et al. 1999; Kutzelnigg 1997). To
prevent the positronic continuum interfering in the solutions of the orbital equations,
different projection methods have been suggested.

In the case of finite-basis sets, which are used for the representation of the one-
electron spinors, the basis sets for the small component must be restricted such as to
maintain 'kinetic balance' (Stanton and Havriliak 1984), which means in terms of the
rearranged second equation in the matrix equations (2.4) that

*?(r) = -[fi(r) - 2m0c
2 - €/rW . p^(r) (2.5)

can be fulfilled by the basis-set expansions at least approximately. The matrix repre-
sentation of operators in four-component theories and resulting consequences which
arise from the basis-set choice for the representation of one-electron spinors have been
detailed by Dyall et al. (1984). Maintenance of the exact relationship between large
and small components (i.e. exact kinetic balance) would require (see the discussion
in Kutzelnigg 1997) that

where X fulfils the equation

X = T-^tca • p + [V, X] - cXa • pX].
2mQC*

A solution of this equation (Heully et al. 1986) for X in closed form is not known and
a hierarchy of approximations for X is used in practice instead (see, for example, the
'atomic balance' in Section 2.4).

In the numerical solution of the SCF orbital equations kinetic balance restrictions
are not required, as this condition will be satisfied exactly. However, in the numerical
solution of MCSCF equations for purely correlating orbitals, difficulties may arise if
the 'orbital energy' €/ becomes too negative (Bieron et al. 1994; Indelicato 1995, 1996;
Kim et al. 1998). Here it is suggested that we use projection operators to eliminate
the functions that correspond to the negative continuum.

Apart from these 'one-particle effects', additional complications arise in the case
of two electrons, which may dissolve from a bound state to the positronic and elec-
tronic continua. A mathematically rigorous approach to avoid this so-called 'con-
tinuum dissolution' is to use as basis functions the relativistic Coulomb Sturmians
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(Szmytkowski 1997) or equivalently the L spinors (Grant and Quiney 2000a; Quiney
et al. 1989b), derived for atoms. In light of these contributions, it is not clear at all,
whether the 'negative-energy' states can be eliminated in perturbation, coupled-cluster
or CI expansions (Grant and Quiney 2000a); the jury is still out.

Independently of the approximations used for the representation of the spinors
(numerical or basis expansion), matrix equations are obtained for Equations (2.4)
that must be solved iteratively, as the potential v(r) depends on the solution spinors.
The quality of the resulting solutions can be assessed as in the nonrelativistic case by
the use of the relativistic virial theorem (Kim 1967; Rutkowski et al. 1993), which
has been generalized to allow for finite nuclear models (Matsuoka and Koga 2001).
The extensive contributions by I. P. Grant to the development of the relativistic the-
ory of many-electron systems has been paid tribute to recently (Karwowski 2001).
The higher-order QED corrections, which need to be considered for heavy atoms in
addition to the four-component Dirac description, have been reviewed in great detail
(Mohr et al 1998) and in Chapter 1 of this book.

A different approach to the solution of the electron correlation problem comes from
density functional theory (see Chapter 4). We hasten to add that in a certain approxi-
mation of relativistic density functional theory, which is also reviewed in this book,
exchange and correlation functionals are taken to replace Dirac-Fock potentials in
the SCF equations. Another approach, which we will not discuss here, is the direct
perturbation method as developed by Rutkowski, Schwarz and Kutzelnigg (Kutzel-
nigg 1989, 1990; Rutkowski 1986a,b,c; Rutkowski and Schwarz 1990; Schwarz et
al 1991).

2.3 Atomic-Structure Calculations

The electronic structure of atoms has been studied for many decades on the basis of
four-component methods (Grant 1994; Kim 1993a,b; Reiher and Hess 2000; Sapir-
stein 1993, 1998). Nevertheless, significant improvements have been achieved in
recent years. Even one-electron atoms still give us new insight into four-component
electronic structure theory (Andrae 1997; Autschbach and Schwarz 2000; Chen and
Goldman 1993; Chen et al 1994; Pyykko and Seth 1997). In this section we review
methodological improvements as well as new implementations and typical applica-
tions.

In general, the many-electron wave function is expressed in terms of antisym-
metrized products of one-electron functions and the clamped-nucleus approximation
as well as the central-field and equivalence restriction for the orbitals is used. Thus
the one-electron spinor takes the form

where x^-m,-./ (0, <£) is the standard two-component spherical spinor, with the orbital
angular momentum, /, and spin coupled to j and mj . The values of the relativistic
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spherical symmetry quantum number k = (l - j)(2j + 1) are ̂ 1, ^2, .... which
correspond to j = |k| — 1/2 and l = j +sgn(k)/2. In the central-field approximation
for atoms the angular dependence can be integrated analytically and the Dirac-type
one-dimensional one-electron equations of the type,

(2.6)

are obtained for the determination of the shell functions. Here the potential, v(r', r),
which may depend on nk, may be local (r' = r) or nonlocal, containing exchange
and coupling terms; this depends on the details of the derivation of the one-electron
equations. The radial shell functions, PnK (r) and QnK (r), are expressed either numer-
ically on a mesh of grid points or in terms of basis functions as Slater-type functions,
Gauss-type functions or B-splines.

Note that the kinetic balance condition (see preceding section), which prescribes
a fixed relationship (to a certain order of 1/c) between large and small component
and which plays a crucial role in finite-basis-set expansions, need not be introduced
explicitly if a numerical representation of the spinor components on a mesh is used,
since in this case the integro-differential orbital equations of the type of Equation (2.6)
are solved directly. Difficulties do arise, however, in the MCSCF determination of
those orbitals, which are required to account for the dynamical correlation only and
which already have a large number of nodes (Bieron et al. 1994). On the other hand,
if B-splines are used as basis functions, the kinetic balance condition cannot be intro-
duced easily and the electron-electron interaction operator is generally protected by
projection operators, such as to eliminate the contribution of 'negative-energy' states.

2.3.1 Methods and programs

During the last few decades, general computer programs, based on the Dirac equa-
tion, for extensive four-component electronic structure calculations for atoms have
been developed by several groups. These programs are being improved and extended
continually, incorporating the explicit treatment of the Breit interaction as well as an
ever more sophisticated consideration of interelectron correlation and even of QED
effects.

Early numerical Dirac-Fock SCF programs were implemented by Smith and John-
son (1967) and by Desclaux (1975). Desclaux's program has been extended to a more
general MCSCF form and to the possibility of also calculating the small QED contri-
butions (Desclaux 1993; Indelicato and Desclaux 1993). With this code it is now also
possible to calculate the Breit interaction variationally as has been demonstrated for
caesium ions (Rodrigues et al. 2000). The other commonly used general numerical
MCSCF atomic structure program GRASP (Dyall et al. 1989) is continually improved
and has been extended for large-scale CI calculations (Parpia et al. 1996) in order to
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permit a more extensive treatment of electron correlation effects. The GRASP program
has also been modified and supplemented such that the total wave function is rep-
resented on a determinant basis (Fritzsche and Anton 2000), which has become the
foundation for a program extension (Fritzsche et al. 2000b) especially suited to the
calculation of transition energies and transition moments for atoms. Several additional
program parts have been implemented in the course of these developments (Fritzsche
1997, 2000; Fritzsche et al. 1998b; Gaigalas and Fritzsche 2001).

In addition, new numerical Dirac-Fock atomic structure programs have been devel-
oped independently: one of these can treat ground and excited states (Chernysheva and
Yakhontov 1999) and another one is of the general MCSCF type (Reiher 1998), which
includes new numerical and algorithmic techniques (Andrae et al. 2000a; Reiher and
Hinze 1999) for highly accurate calculations. With the latter program the influence
of different finite-nucleus models on the computed electronic structure results has
been investigated in detail (Andrae 2000; Andrae et al 2000b) and an extensive study
on the variationally treated frequency-independent Breit interaction in few-electron
systems has been carried out (Reiher and Kind 2001).

A program using Slater-type basis functions (STFs) to expand the spinors with
the provision to perform large-scale CI calculations has been used to investigate the
problem of what has been called 'continuum dissolution' (Jauregui et al. 1997) by
studying the full-CI expansion, including the 'positive' and 'negative' energy spinors,
for two-electron ions. Here it is demonstrated, at least for finite-basis sets, that the
eigenstates of the full-CI Hamiltonian, which correspond to two-electron states, do
not 'dissolve' in the continuum, even though they contain 'positive' and 'negative'
one-particle states to all orders (Ley-Koo et al. 2000).

Gauss-type basis functions (GTFs), which are the mainstay of molecular electronic
structure calculations, are also used for the expansion of the spinors in programs for
the relativistic description of atomic states. There appear to be several programs where
Gaussian basis functions are used to expand the four-component spinors for the com-
putation of atomic states; however, these programs are not described explicitly. One
was developed originally in Ishikawa's group (Ishikawa 1990a,b; Ishikawa and Koc
1997; Ishikawa and Quiney 1993; Ishikawa et al. 1992, 1991). Other developments of
this type have evolved into molecular programs (see below), which could still be used
for atomic wave function calculations. The 'Ishikawa' program is the basis for the
coupled-cluster method developed by Eliav and Kaldor (Eliav et al. 1994a; Ilyabaev
and Kaldor 1992a,b, 1993; Landau et al. 1999), which has been used for the calcula-
tion of ground-state energies and atomic term values (Eliav et al. 1994b,c, 1995, 1996;
Eliav (Ilyabaev) et al. 1994) and electron affinities (Eliav et al. 1997). The 'Ishikawa'
program has been extended to account via a single operator MCSCF formulation
for the nondynamical correlation (Vilkas et al. 1997, 1998a,b). This also yields the
virtual functions, which are then used to account for the dynamical correlation using
multi-reference M011er-Plesset perturbation theory (Ishikawa et al. 2000; Vilkas et
al 1998c). The Dirac-SCF part of this program has also been used in a number of
papers for the development of what is called 'universal Gaussian basis sets', for the
optimization of which a generator coordinate method has been developed (Canal Neto



70 ATOMIC-STRUCTURE CALCULATIONS

et al 2000; Jorge and da Silva 1996a,b, 1997, 1998; Malli and Ishikawa 1998). These
basis sets are developed so that they can be used in relativistic molecular calculations.
It seems puzzling, however, that some of the atomic ground-state energies obtained
with the 'universal Gaussian basis sets' are as low or even lower than those obtained
with the corresponding finite-difference calculation, which is probably due to the fact
that the use of the approximate kinetic balance according to Equation (2.5) implies
that the resulting SCF equations are correct only to the order 0(c–4).

Intermediate between the numerical finite-difference method and the use of global
expansion functions, STFs and GTFs, is the representation of the spinors by local
B-splines. This is used in a relativistic atomic program developed in Johnson and
Sapirstein's group, which again is not explicitly documented or cited in the liter-
ature, though its evolution can be traced (Chen et al 1993; Johnson et al. 1988;
Plante et al 1994). On the basis of this program, many-electron atoms, their term
values and transition probabilities are computed by including the electron correla-
tion using many-body perturbation theory (MBPT) or coupled-cluster (CC) methods.
However, in order to avoid the 'continuum dissolution' in these calculations, the elec-
tron interaction operator is projected onto the space spanned by the positive-energy
states, to yield what is termed the no-pair approximation. As the one-particle positive
energy functions, which span this space, are obtained as solutions of a one-particle
Dirac equation with a specified potential, they and thus the space spanned by these
functions should depend on the specific potential used. In addition, it is found that
certain properties, especially the agreement of transition probabilities computed in
their length or velocity form, do require the contribution of negative-energy states
(Johnson et al. 1995; Safronova et al 1999a). From this, it appears not yet clear how
to treat electron correlation in a four-component framework correctly, though some
progress in this direction has been made (Kolakowska 1997; Ley-Koo et al 2000).

The relativistic many-body approach has also been developed and advanced by the
Goteborg group (Lindgren 1987, 1989; Lindgren and Morrison 1986; Undroth 1988;
Martensson-Pendrill et al 1995), whose work concentrated mainly on QED effects
which are reviewed in Chapter 1 of this book.

For the relativistic description of electron-atom collision cross-sections, the R-
matrix method has been extended to permit the explicit numerical computation of
electron-atom scattering on a four-component relativistic target by using the combi-
nation of the GRASP program with the DARC2 (Dirac Atomic R-Matrix Code) package
(Norrington and Grant 1987). Here it is possible, without loss of accuracy, to integrate
the close-coupling equations in the outer region, using just a regular two-component
nonrelativistic description (Schwacke 2000). The theory for the variational R-matrix
method, based on the Dirac equation has also been developed (Hamacher and Hinze
1991; Szmytkowski 2001; Szmytkowski and Hinze 1996a,b); however, thus far no
general computer programs based on this theory have evolved.

Of these programs only GRASP and to some extent the DARC package have achieved
a wide distribution, such that they are being used by a larger number of research groups.

2 See Norrington's manuals for GRASP version 0.9 and DARC (1994).
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The other programs are generally used only by the members of those research groups
where these programs have been or are being developed.

Valuable results have been attained with these programs, but much more is possible
in the future. For one there are the term values of highly ionized heavy atoms, which are
difficult to access experimentally, but also the corresponding transition probabilities
important for the explicit simulation of a high-temperature plasma. Another aspect,
which has attracted attention, is the hyperfine structure of atomic spectra and with it
the determination of nuclear moments in the combination of computation and high-
resolution experiments.

2.3.2 Term values

Desclaux's list of Dirac-Fock expectation values for almost all atoms of the periodic
table (Desclaux 1973), which has served as a very valuable reference in the past, has
been updated and extended (Visscher and Dyall 1997).

An exhaustive study of the four term values that arise out of the configuration 2p5 3s
for the ions with Z = 10–92 has been performed (Avgoustoglou et al. 1995) using a
B-spline basis and MBPT with a no-pair Hamiltonian for the electron interaction. In
this study the contributions of the various corrections, i.e. correlation, Breit and its
correlation and frequency dependence, QED and reduced mass, are investigated in
detail in their Z dependence. All these corrections, except the reduced mass correction,
are found to be quite significant, particularly for high-Z values of the ions. The final
results obtained are in good agreement with the available experimental data and can
serve as predictions in those cases where experimental data are not available.

With the CC method, using kinetically balanced Gaussian basis sets, many term
values for neutral and low ionized states of lanthanum, actinium and eka-actinium
(Z = 121) and the corresponding ionization potentials and electron affinities were
computed (Eliav et al. 1998c). With this method the ionization energies and fine-
structure splittings of zinc-like and copper-like ions were also calculated (Vilkas et
al. 2000) as well as the electronic structure of eka-lead (Z = 114) (Landau et al.
2001). In those cases, where the experimental data are known, remarkable agreement
is obtained, providing credence for the predicted values. The states arising out of
the half-filled 5f shell of americium were computed using the numerical MCSCF
approach (Johnson et al. 1996), while the intrashell excitations of the f2 shells of
Pr3+ and U4+ could be determined using the CC method (Eliav et al 1995). MBPT
for quasidegenerate systems was used to obtain the energy levels of the ions of the
oxygen isoelectronic sequence (Vilkas et al. 1999).

2.3.3 Transition probabilities and lifetimes

The computation of transition probabilities using MBPT is an arduous task, since
an explicit wave function is not obtained in the calculation of the corresponding
term values; thus the correlation corrections, implicit in the effective Hamiltonian
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used, have to be considered again in the computation of the transition moments.
The theoretical foundations have been presented in an explicit study for two-electron
atoms (Johnson et al. 1995), where electric dipole as well as magnetic dipole and
quadrupole transition rates were computed for two-electron ions with Z = 2–100.
It is found that the contribution of the negative-energy states needs to be included
in order to attain a gauge independence of the results and agreement between the
length and velocity forms of the electric dipole transition moments. A similar study is
presented for the term values (Safronova et al. 1996,1997) and the transition moments
(Safronova et al 1999b) of the beryllium-like ions for Z = 6–100. Likewise for the
sodium-like ions for Z = 11–16 (Safronova et al. 1998) and the alkali atoms Na-Fr
(Safronova et al 1999a), not only term values and transition moments are computed
to high precision, but also the hyperfine interactions and the dipole polarizabilities are
determined. Furthermore, the transition probabilities for beryllium-like ions (Chou
2000), magnesium-like ions (Safronova et al. 2000b), nickel-like ions (Safronova et
al. 2000a) and for the 3d2 states of the calcium-like ions (Safronova et al. 2001) have
been computed. Transition energies and rates of helium-like argon and beryllium-like
iron and molybdenum have also been studied with MBPT (Lindroth and Hvarfher
1992; Lindroth and Salomonson 1990). Ka transition energies have been calculated
with high accuracy in medium- and high-Z atoms (Indelicate and Lindroth 1992).

As the MBPT and CC methods for electron correlation appear to still be limited to
systems with one or two electrons (holes) outside (inside) a closed shell, the more flex-
ible MCSCF method is used to compute several term values of the lithium- through
neon-like ions of uranium, thorium and bismuth (Santos et al. 1998), for which some
observations have been reported recently. With the inclusion of the Breit interac-
tion and QED effects good agreement between computed and experimental data is
obtained. With the calculation of the corresponding transition moments many predic-
tions for further observations could be made. In those cases where MBPT data could
also be obtained, they are compared with the MCSCF results and the merits of the
two methods are assessed. The MCSCF methodology was also employed to compute
the spin-forbidden transition probability for the 3s2 (1So)-3s3p(3P1) transition of Al+

through S4+ (Zou and Froese Fischer 2000). In order to resolve earlier discrepancies,
the lifetimes of the 3s3p2 levels of Au66+ and Br22+ were reconsidered (Beck and
Norquist 2000).

Using the numerical MCSCF description as implemented in the GRASP programs,
term values and transition probabilities for many atoms and ions have been computed,
i.e. for Nb+ (Beck and Datta 1995), for the beryllium-like isoelectronic sequence
(JOnsson and Froese Fischer 1998; Jonsson et al. 1998; Ynnerman and Froese Fischer
1995) and for the magnesium-like isoelectronic sequence (Jonsson and Froese Fischer
1997), for the oxygen isoelectronic sequence (Froese Fischer et al. 1998) and for the
Cd isoelectronic sequence (Biemont et al 2000) as well as for Na6+ and Na7+ (Tordoir
et al. 1999). In a study of the parity forbidden lines of Pb, the magnetic- and electric-
quadrupole transition probabilities are computed (Horodecki et al. 1999). Using the
orbitals determined in the field of an optimized core potential for a large CI expansion,
the transition probabilities for several states of Hg were computed (Gtowacki et al.
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2000). The amplitude of the 5p(2Pj)-5d(2D3/2) transition of 87Rb was determined
(Bayram et al. 2000), in order to aid the interpretation of the two-step, two-photon
absorption of the 5s(2S1/2)-5p(2Pj)-5d(2D3/2) process.

Extensive numerical MCSCF studies have been carried out on energy levels, transi-
tion probabilities and lifetimes for phosphorus-like and for silicon-like ions (Fritzsche
et al 1998a, 1999; Kohstall et al. 1998) as well as on electric-dipole emission lines
in Ni II (Fritzsche et al. 2000a).

2.3.4 Hyperfine structure

The hyperfine structure of the nd2 states of Sc+ and of Y+ has been computed (Bierori
et al. 1995), as well as for the J = 2 states of the configuration (4d + 6s)2 of 139La+

(Datta and Beck 1995). In a similar study the hyperfine structure of the 72P3/2 and
72P1/2 states of Ra+ has been calculated (Yuan et al. 1995). In extensive MCSCF
studies using GRASP, the hyperfine structure for a number of states and the nuclear
quadrupole moments of 45Sc (Bieron et al. 1997), of 90Y (Bierori and Grant 1998) and
of 49Ti (Bierori 1999) were computed. The effects of electron correlation, relativity
and nuclear structure on the computed hyperfine-structure constants of Be+ and F6+

have been investigated (Bierori et al. 1999).
New high-resolution experimental studies of the hyperfine structure have been

used in conjunction with a thorough calculation of these interactions using GRASP to
determine the electrical quadrupole moment of the 131Xe nucleus (Paduch and Bierori
2000). With a large-scale numerical multiconfiguration Dirac-Fock calculation of the
diagonal magnetic dipole hyperfine-structure constants A of the lowest 2S1/2,

 2P1/2,
and 2P3/2 states of lithium, as well as the electric quadrupole constant B of the 2P3/2

state, the power of this method has been tested and demonstrated (Bieron et al. 1996).
The converged results obtained reproduced the experimental values to high precision.
This provided the basis for a similar study of the hyperfine structure of lithium-like
ions up to high-Z values (Boucard and Indelicato 2000). In this study information
was sought about the Bohr-Weisskopf effect (changes in the hyperfine structure due
to the distribution of the magnetic moment in the finite nucleus) versus QED effects,
in order to yield information on the nuclear anapole moment as observed in parity
nonconservation experiments.

2.3.5 Photoionization and electron-atom scattering

The photoionization cross-sections of 4d shell electrons of Ba have been computed
(Band and Trzhaskovskaya 1997), using a modified version of GRASP for the calcu-
lation of the atomic and ionic wave functions in an extended average configuration
description, and a special procedure was used to integrate the integro-differential
equations for the determination of the continuum orbital for the unbound electron.
This type of methodology, i.e. computing bound and unbound single electron states
by solving the Dirac equation with a suitably chosen effective potential, has also been
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used to compute differential cross-sections for the elastic scattering of electrons by
mercury (Sienkiewicz 1997) as well as the inner-shell hole-state relaxation effects of
krypton (Shi et al 1998) and of ytterbium and mercury (Santos et al. 1999). A very
detailed and exhaustive study of electron-atom scattering, using the R-matrix method
as implemented in the combination of the GRASP and DARC program system, has been
carried out for two- and five-electron ions, especially for iron (Schwacke 2000). The
detailed results obtained are compared with those of more approximate methods, and
the influence of the Breit interaction and other QED corrections is investigated.

2.4 Molecular Structure Calculations

It took until the 1980s before relativistic molecular calculations were carried out
However, early calculations on the basis of one-centre approximations can be traced
back to the early 1970s (Desclaux and Pyykkd 1974). In these calculations wave
functions from four-component atomic calculations on anionic centres like Pb4–

were used to set up a model for the PbH4 molecule by surrounding the anion by four
protons. Some years later, the first accurate all-electron Dirac-Fock calculations were
performed on the linear molecules AgH and AuH using spinor expansion into Slater-
type functions (Lee and McLean 1982). This appears to be the first time that the small
component basis has been restricted according to 'kinetic balance'. A formalism of a
relativistic CI approach for four-component molecular calculations has been devised
and applied to Hg and Pb atoms (Esser 1984a,b).

The last decade has seen a vast amount of method and algorithm development to set
up computer programs that can be used for efficient four-component calculations of the
electronic structure of molecules. These calculations need incredibly large computer
resources even for standard noncorrelated methods like Dirac-Hartree-Fbck applied
to molecules with only one heavy atom.

In the sequel, we describe which program packages have been developed and which
algorithmic improvements have been achieved. Afterwards we discuss applications
of these programs to few-atom molecules.

2.4.1 Molecular one-electron functions

The expansion of four-component one-electron functions into a set of global basis
functions can be done in several ways independent of the particular choice of the type
of the basis functions. For instance, four independent expansions may be used for
the four components. However, we might also relate the expansion coefficients of the
four components to each other. In contrast to these expansions, the molecular spinors
can also be expressed in terms of 2-spinor expansions. This latter ansatz appears to
be quite common and will be described in greater detail now. Obviously, analogous
thoughts also apply for the first two possibilities (for a detailed discussion compare
Dyall et al. 199 la).
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The most frequently used ansatz for the representation of molecular one-electron
spinors is a basis expansion into Gauss-type spinors (where we have adopted the
notation used in Quiney et al. (1998b))

with the spherical two-component basis functions

<V <pAfi), (2.7)

K^(#A», <PAM), (2–8)
''A

containing Gauss-type radial basis functions

/>A) = A£r£+Iexp(-XMrJ),

I? exp (-XMrJ),

and standard two-component spin-angular functions XK^^ (#AM . <PAM) (Grant and
Quiney 1988). The small component's radial function has been fixed according to the
kinetic balance condition (Stanton and Havriliak 1984), which has its origin in the
coupled nature of Dirac's first-order differential equations and is introduced to keep
the method variationally stable. The index A denotes the coordinates of the nucleus's
centre RA of atom A, to which the basis function Mu is attached, i.e. rA = r — RA.

As an alternative, Cartesian Gaussians,

/L(rA) = A£*<V^ exp (-X{;rj), (2.9)

/M fo) = Nl*«»yhzY» exp (-xjrj), (2.10)

may be used. The exponents aM, ft^ and yM are connected to the angular quantum
number. The approximate kinetic balance condition,

is to be fulfilled here as well, which means that first derivatives of Cartesian primitive
Gaussians,

o

-

have to be evaluated to find the exponents A,^ for the small component from the
exponents of the large components A.^. In the case of contraction of Gaussian basis
functions, the kinetic balance condition becomes even less rigorous. For these cases
an atomic balance procedure has been developed (Visscher et al 1991a,b).
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The relativistic one- and two-electron integrals are evaluated using standard tech-
niques well known from nonrelativistic quantum chemistry. For a detailed discussion
on how to evaluate efficiently two-electron integrals over Gaussian basis functions
see (Helgaker etal. 2000). The choice and generation of basis sets has been addressed
by many authors (Da Silva et al. 1993; Dyall and Enevoldsen 1999; Dyall and Faegri
1996; Hu etal. 1999; Ishikawa etal. 1997,1992; Jorge and da Silva 1998; Malli etal.
1992, 1993, 1994; Okada et al. 1990; Quiney et al. 1989a). Dyall and Faegri (1996)
stress that the selection of the number of basis functions used for the representation
of a shell {ni, ki, } should not be made on the grounds of the nonrelativistic shell clas-
sification {ni, li} but on the natural basis of j quantum numbers resulting in basis sets
of similar size for, e.g., s1/2 and p1/2 shells, while the p3/2 basis may be chosen to be
smaller. As a consequence, if, for instance, the p1/2 and p3/2 shells are treated on the
{nili} footing, the number of contracted basis functions may be doubled (at least in
principle).

Apart from the expansion into Gauss-type functions the use of Slater-type functions
has been discussed (Grant and Quiney 1988), although the analytic evaluation of
integrals becomes as hopeless as in the nonrelativistic theory. Therefore, these STFs
are only a good choice for atoms, linear molecules, or for four-component density
functional calculations, where integrals over the total electron density are evaluated
numerically.

2.4.2 Program development

In principle, all four-component molecular electronic structure codes work like their
nonrelativistic relatives. This is, of course, due to the formal similarity of the theo-
ries where one-electron Schrodinger operators are replaced by four-component Dirac
operators enforcing a four-component spinor basis. Obviously, the spin symmetry
must be treated in a different way, i.e. it is replaced by the time-reversal symmetry
being the basis of Kramers' theorem. Point group symmetry is replaced by the theory
of double groups, since spatial and spin coordinates cannot be treated separately.

Until now several program packages for ab initio four-component molecular elec-
tronic structure calculations have been developed. Because their number is compara-
tively small and the algorithmic development of these programs is still ongoing, it is
worthwhile to describe briefly their particular features.

MOLFDIR has been developed since the mid 1980s and represents a pioneering land-
mark since it is the first general program for four-component molecular calculations.
On the basis of the Dirac-Fock kernel of the package (Aerts 1986; Aerts and Nieuw-
poort 1986; Visser et al. 1991c), correlation methods have been introduced. Within
the configuration interaction (CI) framework a complete open shell CI (COSCI) and
a relativistic variant of the restricted active space CI method have been implemented
(Nieuwpoort et al. 1994; Visscher et al. 1994, 1995a). As a size-consistent correla-
tion method, a coupled-cluster code has been developed and incorporated for CCSD
calculation with perturbatively estimated triples contributions (Visscher et al. 1995b,
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1996a). The CCSD program also provides in turn the total energies from M011er-
Plesset perturbation theory to second order (MP2). Cartesian Gaussians as given in
Equations (2.9) and (2.10) are used as basis functions. The program has been paral-
lelized for the calculation of two-electron integrals for the Dirac-Fock SCF method
and for the SCF procedure itself (Pernpointner et al. 2000). Recently, the coupled-
cluster program has also been parallelized for CCSD calculations (Pernpointner and
Visscher 2001 b). The magnetic part of the frequency-independent Breit interaction
can be evaluated either self-consistently or as a first-order perturbation. The pro-
gram supports all double groups which can be constructed from the point group Oh
and its subgroups. It appears now that all future developments are not going to be
incorporated in the MOLFDIR package but in DIRAC, which will be described in the
following.

DIRAC contains probably the most efficient and elegant implementation of Dirac-
Fock theory as a direct SCF method (Saue et al. 1997) in terms of quaternion algebra
(Saue and Jensen 1999; Visscher and Saue 2000). The program was first tested for
the CsAu molecule (Saue et al. 1997). For the treatment of electron correlation,
MP2 has been implemented in its direct Kramers-restricted RMP2 version (Laerdahl
et al. 1997). Additionally, the formalism of a relativistic MCSCF procedure based
on a Newton-Raphson procedure for the determination of orbital and state rotation
parameters has also been developed within this framework (Jensen et al. 1996). An
implementation according to this formalism has now been completed (Thyssen 2001).
This MCSCF module accounts for near degeneracies which occur more frequently
than in nonrelativistic theory because of the spin-orbit splitting of shells. The MCSCF
program has been supplemented by a direct CI module for the treatment of large-
determinant expansions (Fleig etal. 2001; Thyssen 2001).

The coupled-cluster and CI modules from the MOLFDIR program suite have been
included in the DIRAC program. The Breit interaction has not yet been implemented
in the DIRAC package. DIRAC supports point group symmetries up to D2h symmetry.

Apart from these programs, the following computer codes with less general func-
tionality but particular individual features have been developed.

DREAMS is a program that has evolved as a Dirac-Fock code (Dyall 1994c; Dyall
et al. 199la) and has been extended to the RMP2 approach for the estimation of
correlation energies for closed and open-shell systems (Dyall 1994a).

BERTHA can perform Dirac-Fock and RMP2 calculations (Grant and Quiney 2000b;
Quiney et al. 1998b,c). The two-electron integrals are evaluated using the well-
established McMurchie-Davidson algorithm. Spherical Gaussians, as given in
Equations (2.7) and (2.8), are used as basis functions. The evaluation of matrix ele-
ments for electromagnetic properties within the quantum electrodynamical frame-
work has been described (Quiney et al. 1997). Test calculations have been per-
formed for the water molecule (Quiney et al. 1998c).

FSRCC is a multi-reference Fock-space relativistic coupled-cluster program by Eliav
and Kaldor for correlated calculations on the ground and excited states of molecules.
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The Dirac-Fock wave function generated by MOLFDIR is used as the reference func-
tion. The principles of the method are described in Eliav et al. (1994b, 1995,1996),
Eliav (Ilyabaev) et al. (1994) and Ilyabaev and Kaldor (1992a,b). The hydrides
SnH4 (Eliav and Kaldor 1996) and CdH (Eliav et al 1998a) have been studied with
this approach. The latest development is the so-called intermediate Hamiltonian
Fock-space coupled-cluster method (Landau et al. 1999), which yields highly accu-
rate results due to an increased size of the model space. The relativistic Fock-space
coupled-cluster by the Tel Aviv group is now being incorporated into the MOLFDIR
and DIRAC packages, respectively, to become generally available (E. Eliav 2000,
personal communication).

Additionally, molecular four-component codes have also been developed in several
laboratories but they have not yet reached the functionality and general applicability
of those discussed above. For example, Mohanty, dementi and Parpia developed
Dirac-Fock programs (Mohanty 1992; Mohanty and Clementi 1990, 1991; Parpia
and Mohanty 1995). Mohanty (1992) treated the frequency-dependent and frequency-
independent Breit interaction on the same footing to be included in the self-consistent
field procedure. Pisani and Clementi implemented the unrestricted (open-shell) Dirac-
Fock method (Pisani and Clementi 1993,1994a, 1995b) and Matsuoka et al, also set up
a Dirac-Fock program (Fujimura and Matsuoka 1992; Matsuoka 1992,1993; Watan-
abe and Matsuoka 1998). An efficient algorithm has been developed for the calculation
of two-electron repulsion integrals (Yanai et al 2001) and molecular symmetry has
also been discussed for Dirac-Fock theory in Cao et al (1998).

The programs described so far use basis-set expansions for the one-electron spinors.
The fully numerical approach, which is still a challenging task for general molecules in
nonrelativistic theory (Andrae 2001), has also been tested for Dirac-Fock calculations
ondiatomics(Dusterhoft et al.. 1994, 1998; Kullie et al. 1999; Sundholm 1987, 1994;
Sundholm et al 1987; v. Kopylow and Kolb 1998; v. Kopylow et al. 1998; Yang et al
1992). The finite-element method (FEM) was tested for Dirac-Fock and Kohn-Sham
calculations by Kolb and co-workers in the 1990s. However, this approach has not yet
been developed into a general method for systems with more than two atoms; only test
systems, namely few-electron linear molecules at some fixed internuclear distance,
have been studied with the FEM. Nonetheless, these numerical techniques are able
to calculate the Dirac-Fock limit and thus yield reference data for comparisons with
more approximate basis-set approaches. The limits of the numerical techniques are
at hand:

(i) calculations of general molecules with more than two atoms have not yet been
achieved,

(ii) molecular structure optimization techniques will be very computer time con-
suming because gradients and approximates to the Hessian matrix for the total
electronic energy must be calculated numerically,

(iii) virtual orbitals, which are needed for correlated methods, are not obtained
automatically as in basis-set approaches, and finally
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(iv) convergence is usually worse for fully numerical methods (compare the quadrat-
ically convergent Newton-Raphson approach in basis-set MCSCF algorithms).

In addition to the ab initio approach to relativistic electronic structure of molecules,
four-component Kohn-Sham programs, which approximate the electron-electron
interaction by approximate exchange-correlation functionals from density functional
theory, have also been developed (Liu et al 1997; Sepp et al. 1986). However, we
concentrate on the ab initio methods and refer the reader to Chapter 4, which treats
relativistic density functional theory (RDFT).

2.4.3 Avoiding (55 | 55) integrals

The main bottleneck of four-component calculations has its origin in the kinetic
balance condition that generates a very large basis set for the small component, which
contributes for moderate nuclear charge numbers Z only little to expectation values.3

To reduce the tremendous computational effort of the evaluation of two-electron
integrals for small components, i.e. for (SS \ SS)-type integrals, approximations
have been developed. Of course, the number of integrals can be reduced by using
increased thresholds for these integrals to be evaluated or by neglecting these integrals
completely. However, this would change the relativistic Roothaan equations in a
somehow uncontrollable manner, although it might work in certain cases where light
atoms are bound to heavy ones (Dyall 1992; Dyall et al. 1991b; Pisani and Clementi
1994a; Sty szynski et al. 1997). A much more consistent way of avoiding these integrals
has been suggested by Visscher (1997), who found that a simple point-charge model
(the so-called simple Coulombic correction (SCC)) can be used very successfully to
correct for the complete neglect of (SS \ SS) integrals. The reason for this is that
the molecular small component density can be approximated by a superposition of
atomic small component densities. The working procedure of the SCC method is
surprisingly simple: calculate the potential energy curve without (SS \ SS) integrals
and correct a posteriori the energy at every point by adding half of the point-charge
interaction of the small component's atomic charges, which can be obtained from
numerical atomic Dirac-Fock calculations, at the given internuclear distance plus
the difference in total energy of the atoms calculated with and without (55 | 55)
integrals. Results for I2 and At2 in particular demonstrate that for DF and CCSD(T)
calculations, bond distances, harmonic frequencies, total energies and dissociation
energies are completely recovered by using the SCC method to correct for the neglect
of (55 | 55) integrals. The main advantage of the SCC approach is that it works
independently of the particular electronic structure method employed.

3 Note that this changes for high-Z atoms in molecules, where the so-called 'small' component becomes
large and thus its contribution to expectation values and integrals is increased.
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2.4.4 The nonrelativistic limit within the basis set approach

The nonrelativistic limit appears to be clearly defined as the limiting case for the
speed of light approaching infinity. However, the several approximations introduced
in practical calculations may lead to a wrong limit if the speed of light is just increased
to a sufficiently high value of, say, 105. If contracted basis sets are used and the
contraction coefficients are determined from Dirac-Fbck atomic calculations, they
only represent the optimum contraction coefficients in the relativistic case, but not in
the nonrelativistic limit. In the corresponding nonrelativistic calculation the atomic
orbitals might not be well represented by the relativistic contraction coefficients. It
is therefore necessary to redetermine the contraction coefficients for the large value
of the speed of light using the same primitive set of basis functions. We might also
think about the case where the exponential coefficients of the basis set are dependent
on the speed of light. Only in complete basis sets, which are out of reach in practical
calculations, would these problems not occur.

The correct nonrelativistic limit as far as the basis set is concerned is obtained for
uncontracted basis sets, which obey the strict kinetic balance condition and where the
same exponents are used for spinors to the same nonrelativistic angular momentum
quantum number, for examples, see Parpia and Mohanty (1995) and also Parpia et
al (1992a) and Laaksonen et al. (1988). The situation becomes more complicated
for correlated methods, since usually many relativistic configuration state functions
(CSFs) have to be used to represent the nonrelativistic CSF analogue. This has been
discussed for LS and jj coupled atomic CSFs (Kim et al. 1998).

2.4.5 Electronic structure calculations

In general, only small molecules, usually diatomics, have been studied with four-
component methods. Often, correlation effects have not yet been taken into account.
Those larger molecules, which have also been studied to some extent, exhibit high
symmetry like Oh or Td consisting of only two symmetry-inequivalent atoms. There-
fore, hydrides, oxides and halides are by far the most extensively studied molecules.

Table 2.1 gives an overview over those molecules which have been investigated so
far. The table is not complete in the sense that some molecules which have already
been mentioned and which primarily served as 'guinea pigs' for testing a new tech-
nique or implementation—particularly when noncorrelated, i.e. when Dirac-Fock
calculations have been performed—are missing. (We did not include recent calcula-
tions on molecules with superheavy atoms like element (111) (Liu and van Wiillen
1999; Seth and Schwerdtfeger 2000), but refer to the review by Kratz and Pershina
in this volume.)

One purpose of these calculations is to understand the effect of a four-compo-
nent treatment for different types of molecules to evaluate the reliability of more
approximate treatments like two-component or one-component methods. In other
words, those cases must be identified where only four-component calculations yield
sufficiently accurate results. In all other cases, more approximate methods, which do
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not suffer from large-basis expansions due to the fulfilment of the kinetic balance
condition, may be used. Obviously, this decision depends on the accuracy wanted.
For highly accurate calculations four-component methods are always the right choice
if the basis set can be chosen to be large enough. This assessment of the reliability of
approximate methods, which enable high-throughput calculations on large molecules,
is important, for example, for the computational approach to the nuclear waste problem
(compare Ismail et al. 1999). Very recently, effective core potentials (ECPs) were
generated by adjusting the parameters to four-component MCSCF calculations (Metz
et al. 2000b). The assessment of the accuracy of ECPs for heavy atoms can be based
on comparison with DF results (Schwerdtfeger et al. 2000).

For molecules the evaluation of the Breit correction to the Coulomb-type electron-
electron interaction operator becomes computationally highly demanding and cannot
be routinely evaluated, not even on the Dirac-Fock level. To test the significance
of the Breit interaction, the Gaunt term is evaluated as a first-order perturbation. It
turned out that it can be neglected in most cases as can be seen from the DF + Bmag

calculations cited in Table 2.1.
Molecules with more than one heavy atom are seldom studied. For example, heavy

diatomics of the sixth row of the periodic table like Pt2, Au2, Tl2, Pb2 and Bi2 (Varga
et al. 2000b) and the mercury dimer (Bastug et al 1995) have only been investigated
with a four-component method within the framework of DFT. Since present-day DFT
calculations are not able to reproduce adequately the van der Waals interaction, it is
preferable to treat the mercury dimer on the grounds of post-Dirac-Fock methods
like relativistic coupled-cluster using a sufficiently large basis set. This becomes
computationally extremely demanding, so that at the present time the most thorough
study on the mercury dimer has been performed using scalar relativistic methods with
spin-orbit corrections (Dolg and Flad 1996a; Flad and Dolg 1996a). Attempts have
been made to improve on the results of Munro et al. (2001) and Schwerdtfeger et al.
(2001), but four-component all-electron correlated calculations on the mercury dimer
have not yet been done. As a test calculation on a large molecule, germanocene has
been calculated within Dirac-Fock theory using a small double zeta quality basis set
(Quiney et al. 1998b). Point group symmetry could not be exploited and structure
optimization was also not possible. For sure, results from Dirac-Fock calculations
on such molecules can only be understood as pure test calculations, since they lack
a suitable treatment of correlation and are, from this point of view, as uncertain as
nonrelativistic Hartree-Fock calculations, particularly with small basis sets.

Since relativity affects spinor energies, four-component methods perform best for
the calculation of properties for which this has direct consequences, like ionization
energies. In contrast with this direct effect on properties, it is not obvious and straight-
forward to draw conclusions for physical quantities which are given relative to a refer-
ence system, like De or re (see Rutkowski and Schwarz 1990; Rutkowski et al 1992;
Schwarz 1987, 1991; Schwarz et al 1996c). For example, if the relativistic effects
are almost the same in an A-B molecule and in the corresponding atoms A and B and
the bonding is hardly affected by relativity, the four-component calculation would
only shift the absolute energy scale while the relative energetic quantities remain
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Table 2.1 List of molecules studied with four-component methods. The fourth column lists
quantities, which have been investigated; primary data P = {total electronic energies <£),
orbital energies €,-, population analyses PA}, ionization energies IE, election affinities EA,
atomization energies A, spectroscopic data S = {equilibrium distance re, dissociation energy
De, frequencies/wave numbers we, bond angles }, electric properties E = {dipole moment
//,, quadrupole moment 0, dipole polarizability a}, infrared intensities I, excited states ES,
electric field gradients EFG, energetics of reaction R.

class molecule type calc. of ref.

(metal)
hydrides

hydrogen

halides

di-and
inter-
halogens

YbH
PtH
Pt{H1,2}
PdH
{Cu,Ag,Au}H
{Si,Ge,Sn,Pb}{H2,4}
{0,S,Se,Te,Po}H
{O,S,Se,Te,Po}H2

{C,Si,Ge,Sn,Pb}H4
{Si,Ge,Sn,Pb}H4

{I,At,Uus]H
T1H
{La, Lu, Ac, Lr}{H1,3}

H{F,Cl,Br,I}
HC1
HBr
H{F,Cl,Br,I,At}

12
F2,Cl2,Br2,I2,At2

XYe{F,Cl,Br,I}

RDFT

DF/CI
DF
DF/CI
DF/MP2
DF
DF
DF
DF + Bmag

DF
DF
DF + Bmag/CC
DF/MP2

DF/CC
DF/CI
DF/CI
DF/CC

DF + Bmag/CC/CI
DF/CC
DF/CC

S,ES,u

S.ES

S, PA, IE, u

ES, PA, re

S,PA

(E), S, u, I, R

re,A,IE
re,A,€,

re, De

re,we

re, we,

S

re,0,we

(E),EFG
S.ES

S,ES

S

S,IE,ES
S
S,E

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]
[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[1] Liu et al. (1998), [2] Visscher et al. (1993), [3] Dyall (1993a), [4] Sjovoll et al. (1997),
[5] Collins et al. (1995), [6] Dyall (1992), [7] Pisani and dementi (1995a), [8] Pisani and
dementi (1994b), [9] Visser et al. (1992a), [10] Dyall et al. (1991b), [11] Saue et al. (19%),
[12] Faegri and Visscher (2001), [13] Laerdahl et al. (1998), [14] Visscher et al. (1998),
[15] Ellingsen et al. (2000), [16] Matila et al. (2000), [17] Visscher et al. (1996b), [18] de Jong
et al. (1997), [19] Visscher and Dyall (1996), [20] de Jong et al. (1998).

approximately the same. Therefore, it is most interesting to discuss those molecules
where relativity affects these 'secondary' quantities significantly. From the list given
in Table 2.1 we will discuss in more detail those results which yield large relativistic



FOUR-COMPONENT ABINIT1O METHODS

Table 2.1 Cont.

83

class molecule

metal {Ge,Sn,Pb}O

oxides YbO

ThO
UO2+

2, PaO2+,ThO2

UO2+2
U06

6

(metal) YbF

halides GdF

{Cu,Ag,Au}F

{La,Lu,Ac,Lr]F

GdF2

Hg{F2,4,Cl2,4}
ThF4

UF6

CuCl

[Ti,Zr,Hf,Rf}Cl4
RfCl4

{Nb,Ta,Ha}Cl5

Xe{F1,2,4,6 ,}
{Tl,(113)},[At,(117)]

{Al,Ga}{F,Cl,Br}

type

DF

RDFT

DF

DF

DF/CC

DF

DF/CI

RDFT

DF

RMP2

DF

DF/MP2

DF

RDFT

DF + Bmag

DF + Bmag

DF + Bmag - CI

DF-CI

RDFT

DF + Bmag

RDFT

DF + Bmag

DF

DF/CCSD(T)

calc. of

S, ES, , PA

(E) ,S
re ,we ,€ i , PA

€i PA, EFG

S, PA

ES

S,ES, u.

P, IE, EA, S

S
EFG

re,we

P, IE, EA, S, A

S
P
P

P, re, EA

S,ES

S
P

PA, IE, EA

(E), re, De

S, PA, e,-,At

EFG

ref.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[22]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[21] Dyall (1993b), [22] Liu et al (1998), [23] Watanabe and Matsuoka (1997), [24] Dyall
(1999), [25] de Jong et al. (1999), [26] Pyykko et al (2000), [27] Visser et al. (19925),
[28] Tatewaki and Matsuoka (1997), [29] Laerdahl et al (1997), [30] Pernpointner et al
(1998), [31] Laerdahl etal. (1998), [32] Tatewaki and Matsuoka (1998), [33] Liu etal (1999),
[34] Malli and StyszyJlski (1994), [35] Malli and Styszynski (1996), [36] de Jong and Nieuw-
poort (1998), [37] Sousa et al (1997), [38] Varga et al (2000a), [39] Malli and Styszynski
(1998), [40] Pershina and Fricke (1993), [41] Styszynski et al. (1997), [42] Fsgri and Saue
(2001), [43] Pernpointner and Visscher (2001 a).

effects that can be determined only on the basis of four-component methods instead
of scalar or two-component ones. Obviously, this situation is fulfilled for molecules
containing actinide or transactinide elements.
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A prominent example is UFe, for which seemingly only four-component methods
give the full relativistic effect (Malli and Styszynski 19%). However, this conclusion
may be questioned since the Dirac-Fock method by definition does not contain cor-
relation effects. But correlation usually plays a decisive role and cannot be neglected.
To safely draw a conclusion on whether four-component methods are the only means
to arrive at reliable energetic and structural data for UF6, a calculation on a correlated
level must be performed and compared with its thoroughly calculated nonrelativistic
limit by setting the speed of light to about 10s and taking into account that several
approximations depend implicitly on the speed of light, as discussed above.

The UF6 molecule has also been studied extensively using a more elaborate method,
namely configuration interaction, to assign the experimental photoelectron spectrum
(de Jong and Nieuwpoort 1998). The qualitative analysis of chemical bonding exhibits
that the U-F bond is more ionic in the relativistic framework (de Jong and Nieuwpoort
1998). The 6s orbital of uranium remains atom-like in the molecule due to relativistic
contraction and does not contribute to chemical bonding, while it contributed in
nonrelativistic Hartree-Fock theory.

While relativity stabilizes UF6, stabilization need not always occur. Recently, it has
been found that UO6 is no local minimum within Dirac-Fock theory, while it is stable
in quasirelativistic single- and multi-reference calculations (Pyykko etal. 2000). Only
four-component multi-reference calculations will give the final answer to the stability
of this molecule, in which uranium is in the extraordinary formal oxidation state +XII.

Apart from studies on single molecules or homologous molecules for the analysis
of vertical trends in the periodic table of the elements, some interesting chemical and
physical effects—such as lanthanide contraction, phosphorescence phenomena and
parity violation—that are perfect areas to be tackled by four-component methods have
been investigated. Some of the latest results are discussed in the following subsections.

2.4.6 Lanthanide and actinide contraction

The long-known lanthanide contraction has been recently investigated with four-
component methods to determine the percentage of the relativistic effect (Laerdahl et
al. 1998). The filling of inner f shells in lanthanide and actinide atoms, respectively,
is accompanied by a steady decrease of the size of the atom. As a result, the 'size'
of atoms in the same group in the second and third transition-metal series of the
periodic table is similar. Of course, the lanthanide contraction is also observable
in the nonrelativistic framework, but it is amplified through 'relativity'. Although
the four-component approach, for which Dirac-Fock and, to account somehow for
correlation effects, relativistic MP2 calculations have been utilized, is not supposed
to give surprisingly new results and insight into the problem already studied using
relativistic effective core potential methods (Kuchle et al 1997; Seth et al. 1995),
the four-component study is more rigorous and appealing as far as the treatment of
relativity is concerned. It has been found (Laerdahl et al. 1998) that between 10%
and 30% of the lanthanide contraction and between 40% and 50% of the actinide
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contraction is caused by relativity in monohydrides, trihydrides and monofluorides
of La, Lu and Ac, Lr, respectively.

2.4.7 Phosphorescence

A major advantage of four-component methods, in which not only the ground state
but also excited states are accessible (CI, MCSCF or Fock-space CC methods), is
that electronic transitions, which are spin forbidden in nonrelativistic theory, can be
studied due to the implicit inclusion of spin-orbit coupling. Four-component methods
are thus able to describe phosphorescence phenomena adequately. However, only a
little work has been done for this type of electronic transitions and almost all studies
utilize approximate descriptions of spin-orbit coupling (see, for instance, Christiansen
et al 2000).

2.4.8 Parity violation

Probably one of the most appealing features of four-component methods is the possi-
bility of testing fundamental physical symmetries through accurate electronic struc-
ture calculations of molecules. Parity nonconservation (PNC) effects are produced by
electroweak interactions and lead to asymmetries on a macroscopic level. The parity-
violation processes in nature, discovered by Lee and Yang (1956), attribute a very
small energy difference to two enantiomeric molecules. This energy difference has
been considered (and controversially discussed) as a possible reason for the existence
of homochirality, i.e. the natural existence of L-amino acids and D-monosaccharides
in our biosphere (Berger et al. 2000; Bonner 2000). The behaviour of a system under
inversion (reflection through the origin of the coordinate system) is denoted by its
parity. The wave functions of two enantiomeric molecules are not eigenfunctions of
the parity operator any more because the parity operator converts one into the other.
The energy difference, which can be attributed to both isomers through a parity-odd
interaction operator, has been given and discussed, for instance, in Quiney et al.
(1998b).

The electric dipole transition from shell ns to (n + l)s, for example, is parity
forbidden; only the magnetic-dipole and electric-quadrupole transitions are allowed.
However, taking account a 'model' interaction Hamiltonian for the exchange of an
intermediate Z0 vector boson between the nucleus and an electron introduces (odd)
matrix operators that exchange upper and lower components, which have different
parity. Through PNC interaction the spinors become parity mixed such that a nonzero
transition amplitude results (Hartley and Sandars 1991). This PNC effect has first been
discussed for the electronic structure of atoms (see, for example, Hartley and Sandars
(1991), Chriplovic (1991) and Khriplovich and Lamoreaux (1997) for reviews, Wood
et al. (1997) and Bennett and Wieman (1999) for recent experimental and Johnson et
al. (1993b) for theoretical work). Only very recently has the PNC effect been exten-
sively studied in electronic structure calculations on molecules using nonrelativistic
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wave functions (see, for instance, Bakasov and Quack 1999; Bakasov et al. 1998;
Berger and Quack 2000a,b)

To assess the parity-violation effect in chiral molecules, the four-component meth-
ods approach their limit as far as the treatment of electron correlation and the size of
the basis sets are concerned. Therefore, pioneering work on molecules using single-
determinantal Dirac-Fock calculations for TIP (Laerdahl et al. 1997; Quiney et al.
1998a), YbF (Quiney et al. 1998d), H2X2 (with X = O, S, Se, Te, Po) (Laerdahl and
Schwerdtfeger 1999), and chiral halogenides of methane and its higher homologues
(Laerdahl et al. 2000a) is only preliminary. Four-component coupled-cluster results
have only recently been presented for H2O2 and H2S2, demonstrating that electronic
correlation contributions are small in these cases but depend critically on the molec-
ular structure (Thyssen et al. 2000). A preference for one enantiomeric form is not
evident (Laerdahl et al. 2000b). In a very recent combined experimental-theoretical
study, the first evidence for an energy difference between chiral molecules in a crystal
has possibly been found: namely, for iron complexes containing the Fe(phen)3+ metal
fragment (Lahamer et al. 2000).

2.4.9 Calculation of properties from response theory

Apart from primary structural and energetic data, which can be extracted directly from
four-component calculations, molecular properties, which connect measured and cal-
culated quantities, are sought and obtained from response theory. In a pilot study,
Visscher et al. (1997) used the four-component random-phase approximation for the
calculation of frequency-dependent dipole polarizabilities for water, tin tetrahydride
and the mercury atom. They demonstrated that for the mercury atom the frequency-
dependent polarizability (in contrast with the static polarizability) cannot be well
described by methods which treat relativistic effects as a perturbation. Thus, the varia-
tionally stable one-component Douglas-Kroll-Hess method (Hess 1986) works better
than perturbation theory, but differences to the four-component approach appear close
to spin-forbidden transitions, where spin-orbit coupling, which the four-component
approach implicitly takes care of, becomes important. Obviously, the random-phase
approximation suffers from the lack of higher-order electron correlation.

Of particular importance in chemistry is the response of a molecular system to an
external magnetic field as applied in routinely performed NMR experiments for the
identification of compounds, the analysis of reaction mechanisms, and reaction con-
trol. Theoretical tools must provide spin-spin coupling constants and shielding tensors
in order to calculate quantities, which can be related to experimental data. Needless
to say, coupling constants and chemical shifts calculated from shielding tensors can
only be obtained from accurate four-component methods for heavy nuclei. The theory
of relativistic calculations of magnetic properties has recently been analysed in great
detail (Aucar etal. 1999).

On the molecular level, magnetic fields arise also from nuclei with nonzero spin
resulting in nuclear spin-spin and electronic-spin-nuclear-spin interactions.
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An interaction operator for the interaction of an electron at position r with an
external magnetic field Bext and with a nucleus at position RA (rA = r — RA) is of
the form (Quiney et al. 1998b)

[ , 1 ft x TA 1
iJSext x r + -x r— ,

C r IL 'A -I

with the four-potential A corresponding to the magnetic field Blol = V x A. The
first term in this interaction operator accounts for the applied laboratory magnetic
field, while the second reflects the interaction with the magnetic moment of nucleus
A with spin not equal to zero. In first-order perturbation theory, matrix elements of the
unperturbed electronic wave function with this interaction operator may be evaluated.

The components of the shielding tensor are defined by (Quiney et al. 1998b)

B=0, u=0

The isotropic (spherically averaged) part of this tensor is used for the calculation of
chemical shifts, i.e. shifts relative to some reference molecule, which can be compared
with shifts obtained from NMR measurements in solution (compare, for instance, the
results obtained for H2O and NH3 (Quiney et al. 1998b)). An extensive study of NMR
shielding and indirect nuclear spin-spin coupling tensors for hydrogen halides can
be found in Visscher et al. (1999). Four-component calculations of indirect spin-spin
coupling constants within the random-phase approximation have also been performed
on MKU with M = C, Si, Ge, Sn, Pb and Pb(CH3)3H (Enevoldsen et al. 2000). It was
found that for GeH4 and PbH4 the relativistic increases in the coupling constant for
the one-bond coupling are 12% and 156%, respectively.

2.5 Electronic Structure of Solids

Relativistic electronic structure calculations on solid-state systems have usually been
performed using scalar relativistic approximations to the full four-component Dirac-
Fock and post-Dirac-Fock theory (see, for example, Andersen 1975; Boettger 1998a;
Geipel and Hess 1997; Shick et al. 1997; Wood and Boring 1978). Four-component
approaches that would shed light on the errors of the above-mentioned more approx-
imate methods are rare. Although the extension of the standard Dirac-Fock model to
solid-state calculations appears to be straightforward (see, for example, Ladik 1997),
calculations have only been carried out on somewhat artificial test systems like a
one-dimensional periodic chain of selenium atoms (Hu et al. 1998, 2000; Schmidt
and Springborg 2000).

Methods for solid-state calculations have been devised on the basis of the Dirac
equation (bei der Kellen and Freeman 1996; Shick et al. 1999; Wang et al. 1992).
Very recent progress has been achieved in the framework of four-component density
functional theory for solids (Theileis and Bross 2000) (compare also the review on the
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calculation of magnetic properties in this volume). For the basis expansion in Theileis
and Bross (2000), the modified augmented plane wave (MAPW) method is used:
the one-electron spinor is represented by four-component plane waves well known
from the relativistic treatment of free electrons. These plane waves are augmented
by four-component spinors for bound states—of the type discussed in the preceding
two sections—from which, finally, an expansion into spherical waves is subtracted.
The MAPW method has been applied to the electronic structure of FCC gold and
platinum reproducing the experimental lattice constants very well, but overestimating
the compressibility by a few per cent (Theileis and Bross 2000).

2.6 Concluding Remarks and Perspective

Four-component theories for the calculation of electronic structures as described in
detail in this review have become mature particularly in the last decade as a highly
accurate tool for any kind of system be it an atom, molecule or solid. Theoretical as
well as methodological understanding gave detailed insight into the foundations of
relativistic electronic structure theory. Some fundamental questions are still open as
we have explicated, especially in the first two sections of this review, and they will
certainly be tackled and answered in the years to come. Methodological advances
will also continue to be made.

For atomic structure calculations, the four-component MCSCF approach was the
method of choice for a long time. The implementation of methods for treating very
large CSF spaces, particularly Davidson-type diagonalization techniques, produced a
tool to compete with highly precise experimental measurements. The coupled-cluster
method—or MBPT approach as it is usually called in the physics community—turned
out to be a valuable, alternative, size-consistent method.

Dirac-Fock calculations were the standard four-component method for electronic
structure calculations on molecules during the last decade. However, they are still
very demanding or completely infeasible if applied to large unsymmetric molecules
with several heavy atoms. In addition, taking properly care of electron correlation
increases the computational effort tremendously. Future work will certainly continue
the development of relativistic correlation methods, which will be far less expensive.

Finally, four-component methods will reach a high degree of applicability such
that the relativistic approaches will become the standard tool for electronic structure
calculations in the next decades. The four-component theories provide the general
framework, in which more approximate methods—such as elimination methods for
the small components, reduction methods to one-component wave functions, and also
the nonrelativistic approaches—elegantly fit. This function of the four-component
theories as the theoretical basis will certainly be reflected in algorithms and computer
codes to be developed.
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3.1 Introduction

Relativistic effects have a marked influence on the electronic structure of heavy atoms
and molecules. After very early pioneering work (Kotos and Wolniewicz 1964; Ladik
1959), they were brought to the attention of the community by Pyykko (1978), Pyykko
and Desclaux (1979) and Pitzer (1979). The development of the field since has been
documented in many review papers, and we only mention a few more recent ones
contributed to by authors of the 'Schwerpunkt' (Dolg and Stoll 1995; Hess and Marian
2000; Hess et al. 1995; Marian 2000). The bibliography of the field is very well
documented in the books by Pyykkd (1986,1993,2000), an up-to-date version of the
bibliography being available online (Pyykko 2001).

Relativistic effects in atoms and molecules are commonly separated in kinematical
effects, which do not cause a splitting of energy levels due to the spin degrees of
freedom, and the effects of spin-orbit coupling. This separation is not unambiguously
defined (Visscher and van Lenthe 1999), but is nevertheless extremely convenient
when discussing effects on phenomenology.

Kinematical relativistic effects are caused by the fact that in the vicinity of the
nucleus the electrons acquire high velocities, at a substantial fraction of the velocity of
light. The direct influence of the relativistic kinematics (the so-called direct relativistic
effect) is thus largest in the vicinity of the nucleus. However, as far as their impact on
chemistry is concerned, relativistic effects are most important in the valence shells,
which despite the small velocities of outer electrons are still strongly affected by
relativistic kinematics (Schwarz et al. 1989). In particular, valence s and p orbitals
possess inner tails: they are core-penetrating orbitals, which means that there is
a nonvanishing probability of finding their electrons close to the nucleus and thus
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exposed to the direct relativistic effect. The shells with higher angular momentum,
d and f, are not core-penetrating orbitals due to their centrifugal barrier. They are
subjected to an indirect relativistic effect, which is due to the relativistic relaxation
of the other shells (in the first place the contraction of s and p orbitals), which will
alter the shielding of the d and f electrons. In particular, the contraction of the s and
p semicore (i.e. the s and p shells with the same quantum numbers and about the
same spatial extent as the shell in question, albeit with very different energy) will
lead to a more effective shielding of the d and f orbitals and thus to an energetic
destabilization. Thus, a good rule of thumb is that s and p shells are energetically
stabilized (with a concomitant higher ionization potential and electron affinity for
ionization or attachment of an electron in these shells) and that (valence) d and f
shells experience relativistic destabilization.

This destabilization may lead, in turn, to an indirect stabilization of the next higher
s and p shells with spatial extent similar to the d shell in question. This situation occurs
in the case of the late transition metals and leads to the 'gold maximum' of relativistic
effects and the unusually large relativistic effects in the elements of groups 10–12. If
the d shell is only weakly occupied, as is the case in the early transition metals, the
direct effect on the s and p shells is partly balanced by the indirect effect on those
shells, and the relativistic effects are generally much smaller.

The spin-dependent relativistic effects are connected with the spin degrees of free-
dom, which also enter as dynamical quantities in the relativistic theory and thus couple
with the orbital motion, leading to spin–orbit coupling phenomena. Since they are
of symmetry-breaking nature, they may also be of importance in the Lightest ele-
ments and their compounds (Hess et al 1995; Langhoff and Kern 1977; Minaev and
Agren 1996). Their magnitude scales with the fourth power of the nuclear charge, and
becomes comparable with the effects of the Coulomb interaction in the sixth row of
the periodic system.

The atomic relativistic effects on the orbital energies and thus on excitation ener-
gies, ionization potentials and electron affinities have a direct influence on chemically
relevant data, namely structure, electronic spectra and force constants of molecules.
For molecules containing heavy elements, it is thus mandatory that relativistic effects
be included in the computational methods to determine the electronic structure. The
canonical theory to accomplish this is the Dirac theory of the relativistic electron
(Dirac 1928), which makes use of a wave function with four components, two for the
two spin degrees of freedom of the electron and two more for the spin degrees of free-
dom for the charge-conjugated partner of the electron, namely the positron. Methods
for the calculation of the electronic structure using this kind of four-component wave
function are covered in Chapter 2.

While theoretically most appealing, the four-component methods are very expen-
sive in terms of computational resources. This is, of course, because the charge-
conjugated degrees of freedom are treated as dynamical variables and thus require
their own basis set in the calculation. For technical reasons, the basis set for the small
component tends to be even larger than the large-component basis. Since the charge-
conjugated degrees of freedom are not excited at energies typical for the valence shell



TRANSFORMED HAMILTONIANS 91

of neutral or mildly ionized atoms and molecules, it is desirable to integrate them
out at the very beginning. This leads to a transformed Hamiltonian, operating on a
two-component wave function for the electronic degree of freedom. Moreover, it is
also possible for the Dirac equation to separate off spin-dependent terms rigorously
(Dyall 1994b; Visscher and van Lenthe 1999), so that in many cases we can use a spin-
averaged one-component wave function, calculated from a Hamiltonian transformed
from the spin-free (scalar relativistic) part of the Dirac equation. The transformed
Hamiltonians are obtained by means of a unitary transformation that annihilates the
coupling between the electron-like and the positron-like degrees of freedom. Their
wave functions still formally have four components. Since, however, there is no cou-
pling any more between the states of positive energy (the electrons) and the states of
negative energy (the positrons), we now have the possibility of focusing on the former
and working only with two-component wave functions. While spin—orbit coupling is
described in the 'Dirac-like' (four-component) representation by a purely algebraic
structure (the Clifford algebra of the Dirac matrices), there is a space part of the
spin—orbit coupling operator in the decoupled representation.

In the next two sections we shall present the theory of transformed Hamiltonians and
applications obtained in the framework of the 'Schwerpunkt' of the German Science
Foundation on Relativistic Effects on Heavy-Element Chemistry and Physics.

However, we can even go a step further in the development of efficient calculational
tools for the electronic structure of molecules. Noting that the inner-shell electrons
are also relatively inert to the interactions of the electrons in the valence shell, we
may strive to include the relativistic effects in an effective core potential (ECP) and
treat only the valence electrons explicitly. Section 3.4 of this chapter will deal with
various methods to describe relativistic effects in molecules by means of ECPs.

3.2 Transformed Hamiltonians: Theory

The wave function in the Dirac equation is a multi-component quantity, two compo-
nents describing the spin degrees of freedom (spin up and spin down) of the electron,
and two more describing the spin degrees of freedom for a charge-conjugated particle,
loosely speaking, a positron. The Dirac Hamiltonian operates on these four compo-
nents by means of 4 x 4 matrices, which do not depend on the dynamical variables.
It is most convenient to group the four components two-by-two, and the four Dirac
matrices,

-Co) . ' -G-°,
are used to formulate the operators describing the observables. Every entry in the
matrices above is to be interpreted as a 2 x 2 matrix, in particular the a matrices are
the familiar Pauli spin matrices

O 1\ /O -i\ /I 0
o)' ^ = (i o
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The one-particle Dirac equation for a particle with spin 1/2 in the external potential
of the nucleus Vext can then be written as

-0mcz + Vext (3.1)

or in split notation as

2 i i \~f~ me Y\_ ~\~ V^xtVl- == E\f/\^, \
2 } (3.2)

— me Vs + VextIPS = E^s. J

In this notation the presence of two upper and two lower components of the four-
component Dirac spinor Vt> is emphasized. For solutions with positive energy and
weak potentials, the latter is suppressed by a factor 1 /c2 with respect to the former, and
therefore commonly dubbed the small component ^s. as opposed to the large compo-
nent ^. While a Hamiltonian for a many-electron system like an atom or a molecule
requires an electron interaction term (in the simplest form we add the Coulomb inter-
action and obtain the Dirac-Coulomb-Breit Hamiltonian; see Chapter 2), we focus
here on the one-electron operator and discuss how it may be transformed to two com-
ponents in order to integrate out the degrees of freedom of the charge-conjugated
particle, which we do not want to consider explicitly.

A representation of the one-electron Dirac equation which is decoupled in the
electronic and the charge-conjugated degrees of freedom is achieved by a unitary
transformation of (3.1)

Hdecoupled = U*DU = (h+ .° ) (3.3)
y 0 h—j

with

U =

and D denoting a Dirac-type Hamiltonian.
The operator X maintains the exact relationship between the large and the small

component

for any trial function for the small component fe and for the large component #L.
The operator X is not known in general. For exact eigenfunctions of the one-electron
Dirac equation, dubbed (Vt, ^s)> it could in principle be determined by expressing
the small component in terms of the large component in (3.2) using the expression
for Vs from the lower equation

An expansion in (E - V)/2mc2 is the basis of the method of elimination of the small
component, which in its classical version is only of limited use because the expansion
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is valid only for E - V(r) < 2mc2, a condition which does not hold close to the
nucleus.

In the general case, X must fulfil the nonlinear equation (Chang et al. 1986; Heully
et al 1986; Kutzelnigg 1997)

X = (c*P ~ (X, V] - X(cap)X).

Obviously, the solution of this equation for X is as complex as the solution of the
Dirac equation itself, and approximations have to be employed.

Since the transformed large component, now describing electron states only, should
be normalized to one, the equation contains renormalization terms (1 + X tX) - 1 / 2

to take the change from the Dirac normalization prescription for any four-component
wave function <t>

into account. Closed-form solutions for X are known only for a restricted class of
potentials (Nikitin 1998). A very important special case is, however, the free particle,
defined by V = 0. In this case, we find a closed-form solution

Xv=0 = (me2 + Jm2c4 + p2c2) cap.

This defines the exact Foldy-Wouthuysen transformation for the free particle. Note
that the square root is not expanded here.

Early attempts to reduce the Dirac and Dirac-Coulomb-Breit Hamiltonian to the
electronic degrees of freedom are the Foldy-Wouthuysen transformation (Foldy and
Wouthuysen 1950) and the elimination of the small component. Both methods lead
to first order in c-2 to the Breit-Pauli Hamiltonian. Even in first order a singular
operator obtains, featuring a 8(r) function in the so-called Darwin term and a p4

term with negative sign as relativistic correction to the kinetic energy, both of which
preclude their use in a variational calculation. Beyond first order the expansion leads to
increasingly singular and even undefined expressions (Morrison and Moss 1980). We
shall not further describe these older approaches and also do not discuss formulations
leading to energy-dependent or nonHermitian operators. Instead, we focus on the
variationally stable transformed Hamiltonians that have appeared more recently in
the literature (Chang et al. 1986; Douglas and Kroll 1974; Hess 1986).

A very well-studied technique to arrive at regular expansions was developed in the
mid 1980s (Chang et al. 1986; Heully et al. 1986). The essential point is to rewrite
the prefactor of cap in (3.4) as

2mc2

2mc2 - V

and expand the term in parentheses. This expansion is the basis of the so-called
Chang-Pelissier—Durand (CPD) Hamiltonian and the regular approximations, which
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were developed by the Amsterdam group (van Lenthe et al. 1995,1996) to a workable
method for electronic-structure calculations.

A truncation of the expansion (3.5) demies the zero- and first-order regular approx-
imation (ZORA, FORA) (van Lenthe et al. 1993). A particular noteworthy feature of
ZORA is that even in the zeroth order there is an efficient relativistic correction for the
region close to the nucleus, where the main relativistic effects come from. Excellent
agreement of orbital energies and other valence-shell properties with the results from
the Dirac equation is obtained in this zero-order approximation, in particular in the
scaled ZORA variant (van Lenthe et al. 1994), which takes the renormalization to the
transformed large component approximately into account, using

1 1

VI

The analysis (van Leeuwen et al. 1994) shows that in regions of high potential the zero-
order Hamiltonian reproduces relativistic energies up to an error of order —E2/c2.
On the other hand, in regions where the potential is small, but the kinetic energy of
the particle high, the ZORA Hamiltonian does not provide any relativistic correction.

The main disadvantage of the method is its dependence on the zero point of the
electrostatic potential, i.e. gauge dependence. This occurs because the potential enters
nonlinearly (in the denominator of the operator for the energy), so that a constant shift
of the potential does not lead to a constant shift in the energy. This deficiency can,
however, be approximately remedied by suitable means (van Lenthe et al. 1994; van
Wiillen 1998).

The second major method leading to two-component regular Hamiltonians is based
on the Douglas-Kroll transformation (Douglas and Kroll 1974; Hess 1986; Jansen
and Hess 1989). The classical derivation makes use of two successive unitary trans-
formations

H+ =

of the Dirac operator, the first being a free-particle FW transformation characterized
by the parametrization U0 = exp(iS) for a Hermitian operator 5, which is chosen
to annihilate the coupling term between the upper and the lower component in the
free-particle Dirac equation. The second transformation is parametrized

for a suitably chosen skew-Hermitian operator W1 . While this prescription seems to
be rather ad hoc, a transparent explanation has recently been given by Kutzelnigg
(1999) from the theory of effective Hamiltonians.

We consider a Hamiltonian operating on two subspaces characterized by projectors
P and Q = I — P. This partitioning defines projected Hamiltonians

H++ = PHP, H+- = QHP,

H-+ = PHQ, H— = QHQ,
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which we write in a shorthand notation similar to Equation (3.3) as

We now look for an operator L = W^HW with W^W = 1 such that L is block
diagonal,

++ 0

0 L—
We are interested in the effective Hamiltonian L++ only, which acts on the model
space described by the projector P. This operator can be obtained if the equation

LN = L+_ + L_+ = (W*HW)u = 0

can be solved, where the subscript 'N' denotes the nondiagonal part of the corre-
sponding operators (Kutzelnigg 1982). If H is given by means of a perturbative
ansatz H = HQ + A V (with corresponding partitioning of H0 and V in terms of the
projectors P and Q), L is obtained with perturbative contributions

Lo = H0, L1 = V++, L2 = W 1 H 0 W 1 + W1H0 + H0W
2
1, etc.,

and W1 is obtained by solving

If we employ this formalism for the decoupling of D according to Equation (3.3), we
have different choices for H0 at our disposal, which in turn define different transfor-
mations:

HO = ftmc2 Foldy-Wouthuysen transformation,

H0 = — 2 A + Vext direct perturbation theory (Kutzelnigg 1989),
^H0 — fimc + cap Douglas-Kroll transformation.

It is clear from H0 that the Douglas-Kroll transformation makes use of a model
space of relativistic free-particle spinors, and that it is defined by a perturbative
expansion with the external potential as perturbation. Indeed, using the formulas
given above, we get the familiar expressions for the second-order Douglas-Kroll-
transformed Dirac operator, which is often dubbed Douglas-Kroll-Hess (DKH) oper-
ator

H+ = Lo + L1 +L2 ,

L1 = V++(p, p1) = ApRpV(p, p 1 )R p 'A p ,

VN(p, p1)= ApRpV(p, p1)Ap - ApV(p, p')Rp'Ap,
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where V(p, p') denotes the Fourier transform of the external potential Vext (x) and we
have given the kernels of the respective nonlocal operators. Ap and Rp are given by

+ mc2 _ cap
~' ~

If a multiparticle system is considered and the electron interaction is introduced, we
may use the Dirac-Coulomb-Breit (DCB) Hamiltonian which is given by a sum of
one-particle Dirac operators coupled by the Coulomb interaction l/rij and the Breit
interaction Bij . Applying the Douglas-Kroll transformation to the DCB Hamiltonian,
we arrive at the following operator (Hess 1997; Samzow and Hess 1991; Samzow et
al. 1992), where an obvious shorthand notation for the indices pi has been used:

with

i, 7) = AiAj\— + (a/P,-)— (a,P,) + (VjPj)—
inj ru nj

+

Making repeated use of the Dirac relation

(a«)(aw) = uv + icr(u x »),

which is valid for operators u and v not containing a matrices, terms linear in either
one of the a matrices are extracted:

j,Pi)

(3.6)
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In this expression, H1
so(i) denotes the one-electron operator for electron i, and

H2
so (i , j) the two-electron operator for electron pair (i, j). The quantities f\ and

f2 are constants equal to (2mc2)-1 in the case of the Breit-Pauli operator, which
defines the spin—orbit operator obtained in second order from the FW transforma-
tion. By contrast, they are momentum-dependent operator functions in the case of
the spin—orbit part of the Douglas-Kroll-transformed Hamiltonian, which effectively
regularize the 1/r3 singularity of the Breit-Pauli Hamiltonian:

AI Aj Aj
fl(pi) = •=—. 7' /2(pi, Pj) = •=—; 2 •Et + me2 Ei + me2

Since the factors (Ei + me2)-1 grow asymptotically (for \pi\ -> oo, i.e. n -» 0)
like 1/l/pi |, all contributions of momentum operators in the numerator (leading to the
1/r3 divergence in the case of the Breit-Pauli operator) are cancelled asymptotically,
and only a Coulomb singularity remains. Recently, Brummelhuis et al. (2002) have
formally proved that the operator is variationally stable.

The Breit-Pauli operator may be recovered by expanding in powers of c-2

Ei + me2 2mc2 16m3c4

and keeping only the lowest-order term.
Since the operators f1 and f2 occur only at the level of the calculation of the spatial

spin—orbit integrals over atomic orbitals, Breit-Pauli spin—orbit coupling operators
and DKH spin—orbit coupling operators can be discussed on the same footing as far
as their matrix elements between multi-electron wave functions are concerned. These
terms constitute, by definition, the spin—orbit interaction part of the operator H+ (Hess
et al. 1995). The spin-independent terms characteristic of relativistic kinematics define
the scalar relativistic part of the operator, and terms with more than one a matrix
(not considered here) contribute to spin-spin coupling phenomena.

In the case of singlet ground states well separated from the rest of the spectrum,
it is often convenient to use the spin-averaged approximation and treat the spin-
orbit coupling operator in a second step, be it perturbatively or variationally in a
spin—orbit configuration interaction procedure with two-component spinors. In most
applications (see, however, Park and Almlof 1994; Samzow et al. 1992) the Douglas-
Kroll transformation of the external potential V is limited to its one-electron part
while the two-electron terms are left in their Coulomb form. This leads to the most
frequently used spin-averaged one-component DKH operator

HDKH = ]£ EPI + ]T Veff (0 + ]T —.
/</ r 'J

A numerical analysis of the energy values (Hess 1986; Molzberger and Schwarz
1996) and also perturbation theory (Kutzelnigg 1997) shows that the eigenvalues
of the DKH Hamiltonian for a single particle agree with the results of the Dirac
equation to order c-4. Note that this is the same order in which deviations in the
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matrix representation of the Dirac equation itself are expected (Kutzelnigg 1997;
Stanton and Havriliak 1984).

Implementations of the spin-free DKH Hamiltonian exist by now for many stan-
dard quantum chemistry packages like MOLECULE-SWEDEN, COLUMBUS, TURBO-
MOLE, MOLCAS and NWCHEM. The method has also been implemented in several
programs for the calculation of periodic structures, in particular crystals (Boettger
1998b; Fehrenbach and Schmidt 1997; Geipel and Hess 1997).

The DKH Hamiltonian has been implemented and also applied in the context of the
density-functional theory of molecules. Important contributions have been made in
the last decade by Notker Rosch's group in Munich, who implemented the formalism
(Haberlen and Rosch 1992; Rosch et al. 1996) in their LCGTO-FF scheme (linear
combination of Gaussian-type orbitals with fitting functions). Rosen's group was also
among the first to implement relativistic exchange-correlation functional (compare
Chapter 4) and tested their performance in practical applications on AuH, AuCl, Aui,
Ag2 and Cu2 (Mayer et al. 1996). Since the influence of relativistic corrections to
the exchange-correlation functional on structural parameters was found to be small,
the authors came to the conclusion that the common practice of neglecting them is
justified, at least for compounds without superheavy elements.

For the first time, analytic gradients have been devised and implemented for the
DKH approach by Nasluzov and Rosch (1996), which is a prerequisite for efficient
geometry optimizations of molecules with more than just a few atoms.

The modules for relativistic electronic structure theory were all integrated in the
program PARAGAUSS, which is a parallelized implementation of the LCGTO-FF-DFT
method (Belling et al. 1999a,b).

The Douglas—Kroll transformation can be carried out to higher orders, if desired
(Barysz et al. 1997). In this way, arbitrary accuracy with respect to the eigenvalues
of D can be achieved.

3.2.1 Two-component all-electron methods for
spin-orbit coupling

The evaluation of the spin-orbit one- and two-electron operators is very demanding
in terms of computing power. Recently, a method has been developed which makes
it possible that effective one-electron integrals are used as spin—orbit operators. This
approach depends on the observation that the two—electron part provides an effective
screening of the one-electron contributions, and the approach is thus termed a spin—
orbit mean-field (SOMF) approach (Hess et al. 1996). To date, it appears to be one of
the most rigorous approaches towards the definition of an effective one-electron spin-
orbit operator. In effect, it constitutes an extension of the frozen-core approximation
and reproduces matrix elements of the full one- and two—particle operator excellently,
even in light molecules, where the two-electron contributions to the total matrix
element amount to about 50% of the total spin—orbit splitting (Danovich et al. 1998;
Hess et al 1996; Marian and Wahlgren 1996; Tatchen and Marian 1999).
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Since the many-electron wave function can be expanded in a linear combination
of Slater determinants, its matrix element with a spin—orbit coupling operator of the
form of Equation (3.6) can be expressed as a sum of matrix elements of the operator
between Slater determinants. For a matrix element between Slater determinants which
differ in exactly one spin orbital (i.e. which are singly excited from i -*• a with respect
to each other), the matrix element is

° ° - ° - *°

(3.7)

= (i\H\a) + nk{(ik\H\ak) - (ik\H\ka) - (ki\H\ak)},

nk denoting the occupation number of the kth orbital.
In an independent-particle model, Equation (3.7) defines a Fock operator describing

valence electrons moving in a field generated by the electrons in orbitals k. Using this
relationship, we define an approximate operator

field = (/|#SO|a}

° ° °, nk{(ik\H\ak} - ( i k \ H \ k a ) - ( k i \ H \ a k ) }
k, fixed {nk}

with fixed occupation numbers, which can be taken as an effective average over the
two-electron contribution of the valence shell in Equation (3.7).

In general, a mean-field approximation is defined by any set of occupation numbers
{nk } by means of a corresponding Fock operator matrix element, and the dependence
of the results on the specific set of occupation numbers turned out to be very weak in
practical calculations. This approximation has also been developed independently by
Berning et al. (2000).

The fact that the construction of the molecular mean field necessitates the evaluation
of two-electron spin—orbit integrals in the complete AO basis represents a serious
bottleneck in large applications. Based on earlier observations by Richards et al.
(1981), we realized the possibility that all multi-centre two-electron integrals are
neglected as an additional approximation. This results in considerable speed-up, since
it provides the possibility of devising special programs which evaluate one centre only
(Schimmelpfennig 1996) if one-electron two-centre terms are also neglected. Indeed,
thorough investigations into a variety of molecules show that multi-centre one- and
two-electron contributions partly compensate in a systematic manner (Danovich et
al. 1998; Rakowitz 1999; Tatchen and Marian 1999). Even more efficiency may be
gained if the spin-independent core-valence interactions are also replaced by atom-
centred effective core potentials (ECPs), and we shall come back to this approach in
Section 3.4.

Current versions of the SoMFEcp program (Rakowitz 1999) can process Breit—
Pauli and spin—orbit integrals based on the Douglas-Kroll transformation from the
general-utility integral programs within the BNSoc package (Hess et al. 2000) and
one-centre integrals from AMFI (Schimmelpfennig 1996). The use of the spin—orbit
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Hamiltonian resulting from the Douglas-Kroll transformation is particularly indi-
cated for heavy elements and in variational calculations, because it is bounded from
below (Samzow et al. 1992). The raw integrals are by now combined with AO and
MO information from a variety of standard program packages (MOLECULE-SWEDEN,
COLUMBUS, TURBOMOLE) and SOMF integrals are provided for BNSoc, COLUMBUS,
MOLCAS and LUCIAREL.

Electron correlation effects on spin—orbit interactions

In light molecules, spin—orbit coupling predominantly affects spectral properties such
as fine-structure and transition probabilities. In heavy-element compounds spin—orbit
interaction is also of concern for bond distances and binding energies. Independent of
the spin-orbit interaction scheme, it is indispensable to employ methods which take
electron correlation and relativistic effects into account. Recent review articles give
an overview of progress in this field (Hess and Marian 2000; Marian 2000).

In compounds containing heavy main-group elements electron correlation depends
on the particular spin—orbit component. The j-j coupled 6p1/2 and 6p3/2 of, for
example, thallium exhibit very different radial amplitudes. As a consequence, electron
correlation in the p shell, which has been computed at the spin-free level, is not
transferable to the spin—orbit coupled case. This feature is named spin polarization.
It is best recovered in spin—orbit CI procedures where electron correlation and spin—
orbit interaction can be treated on the same footing, at least in principle (Hess and
Marian 2000; Rakowitz and Marian 19%).

In practice, configurations are selected according to some criterion such as exci-
tation class or energy. Unfortunately, electron correlation contributions are slowly
convergent. They originate mainly from double and higher excitations, while spin—
orbit coupling is dominated by singly excited configurations. The SPDIAG spin—orbit
CI program (Hutter 1994) within the BNSoc package (Hess et al. 2000) is based
on the MRD-CI approach. The latter makes use of a correlation energy criterion
for configuration selection and estimates the contribution of the discarded configu-
rations to the spin-free correlated energy by means of Epstein-Nesbet perturbation
theory (Buenker and Peyerimhoff 1974). If we assume that a quasidegenerate pertur-
bation theory expansion in the basis of the most important LS-contracted CI vectors
represents a decent approximation to the spin—orbit CI solution, the MRD-CI extrap-
olation scheme can easily be extended to the spin—orbit coupled case (Rakowitz 1999;
Rakowitz and Marian 1997). Also, other approaches towards a balanced treatment of
spin—orbit interaction and electron correlation are based on a manipulation of the spin-
free energies and wave functions (Balasubramanian 1988; DiLabio and Christiansen
1998; Llusar et al. 1996; Teichteil et al. 1983; Vallet et al. 2000). In the so-called spin-
free state shifted (SPSS) spin—orbit CI method, diagonal energies are shifted by means
of a projector on the set of LS-contracted CI states (Llusar et al. 19%). Rakowitz et
al. (1998) employed this method to the spectrum of the Ir+ ion. They demonstrated
that the heavily spin—orbit-perturbed spectrum of this ion can be obtained in good
agreement with experiment at the single excitation level if higher-level correlated
electrostatic energies are used to determine the energy shifts.
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Density functional approaches

The quantum-chemical determination of electronically excited states of chromophores
with 100–200 valence electrons is not feasible with standard ab initio correlation
methods. Recently, a combined density functional and single-excitation CI (DFT/SCI)
approach was proposed by Grimme (1996). The SCI is based on Kohn–Sham orbitals,
employs scaled Coulomb integrals for diagonal and off-diagonal elements of the CI
matrix and an empirical shift function for diagonal elements, utilizing five global
empirical parameters in all. The method, which is constrained to singly excited states
and geometries close to the equilibrium, was successfully applied to a series of spec-
troscopical problems (Bulliard et al. 1998; Grimme et al. 1998; Pulm et al. 1997).
To treat multiply excited states and bond dissociation, the program was developed
further towards a general-utility one-component CI (Grimme and Waletzke 1999).
Double counting of dynamic correlation is avoided by exponential scaling of off-
diagonal matrix elements. In order to ease the computational effort, resolution of the
identity (Rl)-approximated two-electron integrals are employed as available from the
TURBOMOLE package (Weigend and Haser 1997; Weigend et al. 1998).

In the DFT/SCI and DFT/MRCI programs, matrix elements of spin-free one- and
two-electron Hamiltonians are evaluated according to the ansatz by Wetmore and
Segal. These authors introduced patterns which reduce the number of possible spin-
couplings to an extent that all coupling patterns can be calculated in advance and
stored (Segal et al. 1978; Wetmore and Segal 1975). Kleinschmidt and Marian (2000)
showed that this procedure can easily be extended to effective one-electron spin–orbit
Hamiltonians. By means of the Wigner-Eckart theorem the effort can be reduced
further. For states of equal multiplicity (AS = 0), only matrix elements of the SQ
operator have to be considered explicitly. Likewise, it is sufficient to set up arrays
for 5+ if A 5" = ±1. Routines for the computation of these arrays have already been
implemented in a spin-orbit extended version of the DFT/MRCI program.

An implementation of spin–orbit coupling in the framework of the LCGTO-FF
method was developed by Rosch's group. Their first approach makes use of a transfor-
mation of the kinetic energy and the external potential only (Mayer 1999), featuring an
extension of the programs to complex two-component spinors in a double-group for-
malism. Very recently (Mateev et al 2002; Mayer et al. 2002), the classical Coulomb
interaction was also included in the transformation, which made accurate calculation
of the spin–orbit splitting and binding energies of actinoid complexes feasible.

3.3 Transformed Hamiltonians: Applications

3.3.1 Small molecules

In order to show that transformed Hamiltonians are useful even for very heavy sys-
tems, numerous case studies have been carried out in the last decade. Due to space
limitations, only a small number can be reviewed explicitly.
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Table 3.1 Equilibrium distance of the Au2 molecule obtained in a CCSD(T) calculation using
the DKH Hamiltonian with a basis set including up to i functions; 34 electrons are correlated,
and the results have been counterpoise corrected. In the lower part of the table we give the
deviations from the best result which are obtained if a less demanding treatment is undertaken
(Hess and Kaldor 2000).

Re(pm) we(cm-1) D0 (eV)

CCSD(T)
experiment

248.8
247.2

186.9
191

2.19
2.29

A/?e AtUfe A DO

neglect of semicore correlation
neglect of triples
omitting counterpoise correction
omitting g, h, i FCTS
omitting h, i FCTS
omitting i FCTS

1.0
0.6

-1.8
1.4
0.4
0.1

-2.7
-0.3

7.4
-4.5
-0.3
-0.2

-0.05
-0.21

-0.10
-0.01

0.00

A comparison of different methods was undertaken for the hydride of element 111
(Seth et al. 1996). The conclusion of this study was that Dirac–Fbck calculations,
all-electron DKH calculations and relativistic pseudopotential calculations give very
similar results, showing that relativistic effects are also well described in the more
approximate methods. A large relativistic bond length contraction of about 50 pm
was found, which makes the bond length of (111)H even slightly shorter than that of
AuH, which is 152.4 pm, with a relativistic effect of the order of 20 pm (see Kaldor
and Hess 1994).

A recent study on the benchmark molecule Au2 (Hess and Kaldor 2000) shows
that in particular the proper treatment of correlation is crucial for also getting reliable
structural data for heavy molecules. Even a basis set including up to i functions was
found to lead to a deviation of 1.6 pm from experiment for the equilibrium distance.
Semicore (5p) correlation, triples contribution and counterpoise correction prove to be
important for a reliable determination of the electronic structure of Au2 (see Table 3.1).
The paper features a sizeable bibliography of earlier benchmark calculations on this
molecule carried out with a large variety of methods.

A pilot calculation on CdH using one-, two- and four-component Fock space rel-
ativistic coupled-cluster methods has been published by Eliav et al. (1998b). The
calculated values obtained were in very good agreement with experiment. While the
four-component method gives the best results, one- and two-component calculations
include almost all the relativistic effects.

The LCGTO-DF method was used to calculate electronic and spectroscopic prop-
erties of the monoxides and monocarbonyls of Ni, Pd and Pt (Chung et al. 1995).
Substantial relativistic effects have been found for the metal–ligand distance in the Pt
compounds. At the relativistic level the Pt–O distance was calculated to be 172 pm,
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which is 20 pm shorter than in the nonrelativistic calculations, comparing well with
the experimental result of 173 pm. The bond in PtO is found to be 9 pm shorter than
in the corresponding Pd compounds, for which the relativistic effects are smaller
(6–7 pm), albeit nonnegligible. The shortening of the bond is in line with a consider-
able strengthening of the bond (e.g. by 2.57 eV in PtO). Similar results were obtained
for PtCO, with a relativistic shortening of roughly the same size. For the carbonyls of
Ni, Pd and Pt, a study has been carried out (Chung et al 1996a) that carefully analyses
their bonding mechanisms. The bond is found to be dominated by the TT back-donation
mechanism, which for Pd and Pt is considerably reinforced by relativistic effects.

3.3.2 Metal clusters and metal complexes

The scalar relativistic LCGTO-DF method mentioned above was used to study a large
variety of metal clusters in order to investigate the development of bulk properties
when the clusters get larger and larger. Gold clusters with up to 147 atoms have been
investigated using this self-consistent all-electron method (Haberlen et al. 1997). For
the mean bond length and atomization energy, scaling properties were determined
which were found to be similar to those of the lighter transition metals Ni and Pd
(Kruger et al. 1997; Xiao et al. 1999).

Relativistic effects on metal–ligand interactions were studied in the case of Mo–N
bonds on R3Mo(III) complexes with N2 (Neyman et al 1997). An unusually large (for
a second-row transition metal) relativistic effect was found, leading to strong Mo–N
bonds with a marked lowering of the reaction barrier for N2 cleavage.

A more complex situation was found for Na6Pb. The unusual stability of this cluster
was explained by comparison with the analogous Mg compound (Albert et al. 1995)
and was found to originate in a larger charge transfer to the more electronegative lead
and a larger polarizability of the Pb atom. In a combined experimental and theoretical
study it was shown for the clusters Na^Au and CsxAu that certain properties of the
bulk are qualitatively present at the level of small clusters (Heiz et al. 1995). While the
Na compounds show metallic behaviour, and the electronic structure can be described
by means of the jellium model, in the Cs–Au clusters an ionic bond is most prominent.

Several gold cluster compounds were investigated theoretically in collaboration
with experimental projects in the 'Schwerpunkt' (compare Chapter 7). Again, the
scalar relativistic LCGTO-DF method was used. In the case of trigold oxonium the
dimerization behaviour dependent on the ligands was studied (Chung et al. 1996b).
Preparation and calculation of the electronic structure of a novel anionic gold–indium
cluster was reported in Gabbai' et al. (1997). Geometry and electronic structure of gold
phosphine thiolate complexes were reported by Kruger et al (2000).

In the investigations of clusters with iron carbonyl fragments (Albert et al 1996;
Sinzig et al. 1998; Stener et al 1999) the magnetic properties were at the focus of
interest. In the case of [M4{Fe(CO)4}4]4~, M = Cu, Ag, Au, a sizeable reduction
of magnetism of the bare metal clusters M4Fe4 upon carbonylation was found, in
analogy with the Ni carbonyl clusters. The planar quadratic structure of the metal
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core was explained by the oxidation state I of the noble metal. [Pt3Fe3(CO)15]~ and
[Ag13{Fe(CO)4}8]

4~ were identified as interesting candidates for molecular mag-
netism. In a combined experimental and theoretical study it was shown that the mag-
netic moment of these compounds is not due to unpaired spins of d electrons, but
rather due to unpaired electrons which are delocalized over the whole metal cluster.

3.3.3 Properties depending on spin–orbit coupling

Nuclear magnetic resonance and g tensors

The so-called heavy-atom chemical shift of light nuclei in nuclear magnetic resonance
(NMR) had been identified as a spin–orbit effect early on by Nomura et al. (1969). The
theory had been formulated by Pyykko (1983) and Pyper (1983), and was previously
treated in the framework of semi-empirical MO studies (PyykkO et al. 1987). The
basis for the interpretation of these spin–orbit effects in analogy to the Fermi contact
mechanism of spin–spin coupling has been discussed by Kaupp et al. (1998b).

For these spin-orbit and spin-spin effects, Nakatsuji etal. (1995) have formulated
a UHF-based theory using the Breit-Pauli Hamiltonian and recently extended it to
include scalar relativistic effects using the Douglas–Kroll transformation (Ballard et
al. 1996). A large number of applications have since been reported by the Kyoto group.
It already turns out that for the chlorine compounds, the inclusion of spin-coupling
terms is necessary to bring the calculations into agreement with experiments, the
largest contributions being due to the Fermi contact term.

The calculation of spin–orbit corrections to NMR shielding constants has also been
recently implemented in the framework of density functional theory (Malkin et al.
1996) and developed further in the groups of Kaupp and Malkin. Within the DEMON
code, the third-order perturbation method for DFT-IGLO (density functional theory -
individual gauge for localized orbitals) calculations of spin-orbit corrections to NMR
chemical shifts was extended to include the full one- and two-electron spin–orbit
operators (Malkina et al. 1998) as well as the atomic mean-field approximation (Hess
et al. 1996) by including the AMFI program (Schimmelpfennig 19%). As shown in
Table 3.2 for hydrogen halides and methyl halides, the corresponding approximation
allows us to calculate the spin-orbit contributions with excellent accuracy at almost
negligible extra cost over one-electron operators. Basis-set and gauge-origin effects
are found to exceed the error introduced by the mean-field approximation by more
than an order of magnitude. As expected from analogy with spin–orbit splittings, the
two-electron contributions are substantial (30-35%) in the lighter compounds, and
considerably smaller for the heavier halogens (6–7% for iodine).

Numerous recent applications have been reported which were carried out either
with the all-electron mean-field spin–orbit approach or using pseudopotentials; see
the recent reviews by Kaupp et al. (1998a) and Buhl et al. (1999).

The analogy with the Fermi contact interaction predicts particularly large spin–
orbit effects when a large-s character of the bonding of the NMR atom to the heavy
atom is present. This has been shown—e.g. for the PI^" cation (Kaupp et al. 1999),
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Table 3.2 Spin–orbit corrections to NMR shieldings (in ppm)a.

nonrel leb le + 2ec mean-fieldd total exp.

IH

'H
'H
1H

13C
13C
13C
13C

HF
HC1
HBr
HI
CH3F
CH3C1
CH3Br
CH3I

29.09
30.98
31.27
31.74

119.98
162.78
171.09
188.76

0.17
0.91
4.86

13.30
0.66
1.95

10.73
21.92

0.12
0.74
4.38

12.38
0.47
1.62
9.74

20.58

0.12
0.73
4.38

12.37
0.50
1.62
9.66

20.56

29.21
31.71
35.65
44.11

120.48
164.40
180.75
209.32

28.89
31.06
34.96
43.86

116.8
162.5
178.5
212.1

aMalkinae/a/. (1998).
b One-electron Breit–Pauli spin–orbit operator.
cOne- and two-electron Breit–Pauli spin–orbit operators.

Mean-field approximation.

for which the calculations predicted an unprecedented high-field 31P NMR shift of
below —500 ppm—with an SO contribution of more than —700 ppm. The spin–orbit-
induced high-field shift has subsequently been confirmed by solid-state NMR on a
number of salts of this cation. It turned out that diiodine bridges reduce the phos-
phorus s character of the P–I bonds and thus the large SO shifts for noninnocent
counteranions, and thus the spin–orbit shifts are probes of the bonding conditions.
Earlier claims for the existence of PI5 could be refuted.

The mean-field method for calculating screened spin–orbit integrals has also been
employed for the calculation of g tensors, the electron paramagnetic resonance (EPR)
analogue of NMR chemical shifts (Malkina et al. 2000). In close analogy with the
NMR chemical shift implementation, second-order perturbation theory is employed
in the framework of the DEMON code. The dominant paramagnetic contribution to
the g tensor is due to the cross term between spin-orbit coupling and the orbital
Zeeman term. Therefore, the proper treatment of spin–orbit coupling is mandatory
even for the treatment of g tensors in light-element compounds. In addition to this
cross term, the one-electron contribution to the gauge-correction term (analogous to
the second-order term for spin–orbit corrections to NMR chemical shifts) and the
relativistic mass correction to the spin Zeeman term have been included.

While this work is based on density-functional theory, recent ab initio work on g
tensors comprises contributions from Bruna et al. (1997) and Engstrom et al. (1998).

Electronic spectra of thioketones

In order to test the validity of the inherent approximations in the spin–orbit mean-
field and the DFT/MRCI approaches, electronic spectra and transition rates for spin-
allowed as well as spin-forbidden radiative processes were determined for two thioke-
tones, namely dithiosuccinimideandpyranthione (Tatchen 1999; Tatchen et al. 2001).
In either case absorption and emission spectra as well as depletion rates for the first
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excited triplet state (TO have been measured experimentally (Meskers et al. 1995;
Sinha et al. 1993; Szymanski et al. 1987; Taherian and Maki 1983). Spin-independent
properties such as electronic excitation energies and dipole (transition) moments are
computed by means of the DFT/MRCI program (Grimme and Waletzke 1999). Spin-
orbit coupling matrix elements were calculated with the BNSoc package (Hess et al.
2000) for LS-coupled MRD-CI states and phosphorescence lifetimes are determined
at the level of quasidegenerate perturbation theory.

The DFT/MRCI approach reproduces excitation energies and other spin-indepen-
dent properties of experimentally known electronic states of pyranthione and dithio-
succinimide excellently. As far as phosphorescence lifetimes of dithiosuccinimide are
concerned, calculations have not yet been completed. For the T1 state of pyranthione
we find that phosphorescence and nonradiative decay via intersystem-crossing to the
So state are concurrent processes occurring at approximately equal rates in the range
of 104 s-1, in good accord with experimental data. The Tj -»• So radiative transition
borrows its intensity from two sources:

(1) direct spin-orbit coupling of the So and TI levels combined with the large
dipole moment difference between these states, and

(2) the strong S2 ->• So fluorescence.

The computed spin–-orbit splitting in the TI state of D = —18 cm-1 is mainly due to
interaction with the close by TI state. A rapid depletion of the S1 state via intersystem
crossing to the TI state can be mediated by the T2 state if spin relaxation within the
triplet levels is fast.

3.4 Valence-Only Effective Hamiltonians

A further reduction of the computational effort in investigations of electronic struc-
ture can be achieved by the restriction of the actual quantum chemical calculations to
the valence electron system and the implicit inclusion of the influence of the chemi-
cally inert atomic cores by means of suitable parametrized effective (core) potentials
(ECPs) and, if necessary, effective core polarization potentials (CPPs). Initiated by the
pioneering work of Hellmann and Gombas around 1935, the ECP approach developed
into two successful branches, i.e. the model potential (MP) and the pseudopotential
(PP) techniques. Whereas the former method attempts to maintain the correct radial
nodal structure of the atomic valence orbitals, the latter is formally based on the so-
called pseudo-orbital transformation and uses valence orbitals with a simplified radial
nodal structure, i.e. pseudovalence orbitals. Besides the computational savings due
to the elimination of the core electrons, the main interest in standard ECP techniques
results from the fact that they offer an efficient and accurate, albeit approximate, way
of including implicitly, i.e. via parametrization of the ECPs, the major relativistic
effects in formally nonrelativistic valence-only calculations. A number of reviews
on ECPs has been published and the reader is referred to them for details (Bala-
subramanian 1998; Bardsley 1974; Chelikowsky and Cohen 1992; Christiansen et
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al. 1988; Cundari et al 1996; Dixon and Robertson 1978; Dolg 2000; Ermler et al
1985; Frenking etal. 1996; Gropen 1988; Hibbert 1982; Huzinaga 1991, 1995; Kahn
1984; Krauss and Stevens 1984; Laughlin and Victor 1988; Pickett 1989; Pitzer 1984;
Pyykko and Stoll 2000; Seijo and Barandiaran 1999; Weeks et al 1969).

In ECP theory an effective Hamiltonian approximation for the all-electron no-pair
Hamiltonian Jfnp is derived which (formally) only acts on the electronic states formed
by nv valence electrons in the field of TV frozen closed-shell atomic-like cores:

Hv = v(0 + (/, 7) + Vcc + VCCP- (3-8)

The subscripts 'c' and ' v' denote core and valence, respectively. hv and gv are effective
one- and two-electron operators, Vcc represents the repulsion between all cores and
nuclei of the system, and VCCP denotes the CPPs. The total number of electrons in the
neutral system n and the number of valence electrons nv are related by the charges of
the nuclei Z\ and the corresponding core charges Q\:

Both scalar-quasirelativistic (one-component) and quasirelativistic (two-component)
ECPs use a formally nonrelativistic model Hamiltonian

MO = -5 A/ + VCv(0 and gv(i, j) - —.ru
Relativistic contributions merely result only from the parametrization of the ECP
VCv, which describes the interaction of a valence electron with all nuclei and cores
of the system. A simple superposition of atomic ECPs is usually applied to model
the molecular ECP, with the Coulomb attraction between point charges as the leading
term

N»•?( — 4- AVX
' " vcv

Similarly, the point-charge approximation is the leading term in the interaction be-
tween nuclei and cores

Experience shows that a suitable parametrization of A Vc^ and A V<£is usually able
to compensate for all underlying approximations with sufficient accuracy.
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3.4.1 Model potentials

The most straightforward approach to constructing an ECP is to use the Fock operator
Fv of a valence orbital <p% and to model the effective one-particle Hartree–Fock
potential by a simpler operator Vcv using the following identity:

N O \
~— + A V£(/fc) . (3.10)

On the left-hand side the first sum runs over all nuclei A with charge Z>. and the
second over all core orbitals c. Jc and Kc denote the usual Coulomb and exchange
operators. Under the assumption of nonoverlapping cores the second sum on the
left-hand side can also be regarded as a superposition of one-centre terms. Thus the
above equality can be applied for each atom A individually and, in the sense of the
frozen-core approximation, before the molecular calculation. Another approximation
follows from the goal that relativistic effects should be treated implicitly. Therefore,
not only Vcv is approximated but also an additive relativistic correction term Vrel. In
order to obtain the relevant atomic potentials V£, + Vc* a two- or one-component
quasirelativistic atomic all-electron calculation is performed. The most widely used
variant of the method are the ab initio model potentials (AIMP) of Seijo, Barandiaran
and co-workers (Barandiaran and Seijo 1992, 1994; Casarubios and Seijo 1998, 1999;
Diaz-Megias and Seijo 1999; Seijo 1995; Seijo et al 2001), where the quasirelativis-
tic Hamiltonian proposed by Wood and Boring (1978), dubbed WB subsequently,
for density functional calculations is used in the framework of Hartree–Fock theory
according to the scheme outlined by Cowan and Griffin (1976), which in turn will
be denoted by CG. The WB and CG approaches correspond essentially to the use of
an energy-dependent one-particle Hamiltonian, which results from the elimination
of the small components from the Dirac equation, within the Hartree–Fock scheme,
disregarding any resulting nonorthogonality between orbitals of equal Ij.

The AIMP method in its present form starts from a quasirelativistic all-electron
Hartree–Fock calculation for the atom under consideration in a suitable electronic
state and approximates the operators on the left-hand side of Equation (3.10) for an
atomic core A as described in the following.

The long-range local Coulombic (C) part is spherical and is represented by a linear
combination of Gaussians with prefactors 1/r, i.e. a local radial MP

X/) = _L

The exponents a£ and coefficients C£ are adjusted to the all-electron potential in a
least-squares sense under the constraint that £t C£ = Zx — Gx in order to enforce
the correct asymptotic behaviour of the MP. Since the evaluation of integrals over
such a local potential is not costly, any desired accuracy can be easily achieved by
using a sufficiently long expansion. The nonlocal exchange (X) part is substituted by
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its spectral representation in the space defined by a set of functions Xp centred on
core A

ceX p,q

This operator yields the same one-centre integrals as the true core exchange operator
as long as the basis functions can be represented by the set of the Xp- Tw°- and
three-centre integrals are approximated. Since, in contrast to the Coulomb part, the
exchange part is short ranged, a moderate number of functions Xp is needed and the
one-centre approximation is expected to be very good, at least for not-too-large cores.
In practical applications the basis used in the spectral representation is chosen to be
identical to the primitive functions of the valence basis set used for the atom under
consideration and the Ax

pq are calculated during the input processing of each AIMP
calculation.

With the Coulomb and exchange parts of the MP discussed so far, the core-like
solutions of the valence Fock equation would still fall below the energy of the desired
valence-like solutions. In order to prevent the valence-orbitals collapsing into the
core during a variational treatment and to retain an Aufbau principle for the valence
electron system, the core-orbitals are moved to higher energies by means of a shift
operator

ceA.

Here the $ denote the core orbitals localized on core A. For practical calculations
they are represented by a sufficiently large (all-electron) basis set. In principle, only
D£ -> oo would effect a strict orthogonality between core and valence orbitals;
however, the more or less arbitrary choice D% = — 2e* is usually made for numerical
reasons. With this choice there is no strict orthogonality between core and valence
orbitals, but the resulting errors are expected to be small.

The scalar-relativistic and relativistic extensions of the AIMP approach are called
CG-AIMP (Cowan–Griffin) and WB-AIMP (Wood-Boring), respectively. In the CG-
AIMP approach the mass-velocity and Darwin operators are cast together with the
exchange terms into their spectral representation Equation (3.11). The valence orbital
energies €nK are kept fixed during the extraction process and are also used for any
semi-core orbitals of the same K, which are included in the AIMP valence space. A
similar strategy is followed for dealing with the first derivative of the valence orbital
in the Darwin term. It should be noted, however, that due to the use of relativistic
core orbitals and core orbital energies, relativistic contributions are also present in
the Coulomb and shift terms of the AIMP. The WB-AIMP method adds to this a
representation of the SO operator in the form

/



110 VALENCE-ONLY EFFECTIVE HAMILTONIANS

Table 3.3 Bond lengths Re (A), vibrational constants we (cm-1) and binding energies De

(eV) of group 5 monoxides from ab initio model potential (AIMP) MCPF calculations with
an explicit treatment of relativistic effects in the valence shell using the Douglas—Kroll-Hess
(DKH) Hamiltonian. Comparison is made with corresponding all-electron DKH MCPF results
using basis sets of the same quality (Rakowitz et al. 1999a), ab initio energy-consistent pseudo-
potential (EC-PP) ACPF results (Dolg et al. 1993b) and experimental data (Exp.).

Molecule State Method

NbO

TaO

4E- AIMP
EC-PP
AEDKH
Exp.

4S~ AIMP
EC-PP
AE DKH

2A AIMP
EC-PP
Exp.

1.680
1.675
1.676

1.706
1.701
1.710
1.689
1.691
1.686

1022
1033
1022
989

981
1004
990

1026
1023
1030

7.21
6.91
7.23
7.93 ± 0.26

7.11
6.91
7.03
7.53
7.67
8.24 ±0.13

where /*, = /•>./ x pi and s, denote the operators of orbital angular momentum and
spin, respectively, and Pf is the projection operator onto the subspace of angular
quantum number / with respect to core X. The coefficients Bfk and exponents fy are
determined by means of a least-squares fit to the radial components of the Wood–
Boring SO term. AIMP parameters and corresponding basis sets are available on the
Internet.1

The MP approach shifts the core orbitals in the virtual orbital space and yields
valence orbitals with the same nodal structure as the all-electron orbitals. It is therefore
possible to combine the MP approach with an explicit treatment of relativistic effects
in the valence shell, for example, in the framework of the DKH no-pair Hamiltonian
(Rakowitz et al. 1999a,b). Corresponding ab initio model potential parameters are
available on the Internet.2 It remains to be seen if the additional effort of an explicit
treatment of (essentially the direct relativistic effects) in the valence shell leads to a
higher accuracy when compared with the implicit treatment using model potentials
derived from DKH atomic calculations. Although a strict separation between direct
and indirect relativistic contributions is not possible, it is obvious that the indirect
effects originating from the core are still provided by the MP. A recent comparison
between AIMP calculations with an explicitly relativistic valence model Hamiltonian
and corresponding AE DKH calculations on group 5 transition-metal monoxides
demonstrates the accuracy of the AIMP approach (Table 3.3). Older PP results using
basis sets of slightly lower quality are also included for comparison.

1 http://www.qui.uam.es/Data/AIMPLibs.html
2 http://www.thch.uni-bonn.de/tc/TCB.download.html
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3.4.2 Pseudopotentials

The analytical forms of the modern PPs used today have little in common with the
formulas we obtain by a strict derivation of the theory (Dolg 2000). Formally, the
pseudo-orbital transformation leads to nodeless pseudovalenee orbitals for the lowest
atomic valence orbitals of a given angular quantum number / (one-component) or
Ij (two-component). The simplest and historically the first choice is the local ansatz
for A Vcv in Equation (3.4). However, this ansatz turned out to be too inaccurate and
therefore was soon replaced by a so-called semilocal form, which in two-component
form may be written as

L-l 1+1/2

A V£ <rw) = X! L W} (r*i> - V£(r«))/>,}(i) + VL fai).
1=0 ;=|/- 1/2 1

Ph denotes a projection operator on spinor spherical harmonics centred at the core A

For scalar-quasirelativistic calculations, i.e. when spin-orbit coupling is neglected, a
one-component form may be obtained by averaging over the spin

The projection operator Pf refers now to the spherical harmonics centred at the core
A

mi—— I

An SO operator may be defined as

which contains essentially the difference between the two-component PPs

For some calculations (see below) it is advantageous to separate space and spin

L-l

,) = E
1=1
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The potentials V and V (/ = 0 to / = L) and AV/- (l = 1 to / = L - 1) arc
either represented as a linear combination of Gaussians multiplied by powers of the
electron-core distance or alternatively cast into a nonlocal representation in a (nearly)
complete auxiliary basis set.

Relativistic PPs to be used in four-component Dirac-Hartree-Fbck and subsequent
correlated calculations can also be successfully generated and used (Dolg 1996a);
however, the advantage of obtaining accurate results at a low computational cost is
certainly lost within this scheme. Nevertheless, such potentials might be quite useful
for modelling a chemically inactive environment in otherwise fully relativistic all-
electron calculations based on the Dirac-Coulomb–Breit) Hamiltonian.

3.4.3 Shape-consistent pseudopotentials

The origin of shape-consistent PPs (SC-PPs) (Christiansen et al. 1979; Durand and
Barthelat 1975) lies in the insight that only the admixture of core orbitals to valence
orbitals in order to remove the radial nodes leads to pseudovalence orbitals that are
too contracted and finally as a consequence to poor molecular results, for example, to
bond distances that are too short. About 25 years ago it was recognized that it is indis
pensable to have the same shape of the pseudovalence orbital and the original valence
orbital in the spatial valence region, where chemical bonding occurs. Formally, this
also requires an admixture of virtual orbitals. Since these are usually not obtained in
finite-difference atomic calculations, another approach was developed. The starting
point is an atomic all-electron calculation at the nonrelativistic, scalar-relativistic or
quasirelativistic Hartree-Fock or the Dirac-Hartree-Fock level. In the latter case the
small components are discarded and the large components of the energetically low-
est valence shell of each quantum number Ij are considered as valence orbitals after
renonnalization. To generate the pseudovalence orbitals the original valence
orbitals are kept unchanged outside a certain matching radius rc separating the
spatial core and valence regions (shape-consistency; exactly achieved only for the
reference state), whereas inside the matching radius the nodal structure is discarded
and replaced by a smooth and, in the interval [0, rc], nodeless polynomial expansion

for r rc,
for r < rc.

The free parameters in flj are determined by normalization and continuity conditions,
for example, matching of flj and <pvjj as well as their derivatives at rc The choice of
rc as well as the choice of flj; is in certain limits arbitrary and a matter of experience.

Having a nodeless and smooth pseudovalence orbital y>pjj and the corresponding
orbital energy ev,/y at hand, the corresponding radial Fock equation
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can be solved pointwise for the unknown PP V^p for each combination Ij of interest.
The term Wpjj stands for an effective valence Coulomb and exchange potential for
Vpjj. Relativistic effects enter the potentials implicitly via the value of the orbital
energy v,lj and the shape of the pseudovalence orbital outside the matching radius.
The resulting potentials are tabulated on a grid and are usually fitted to a linear
combination of Gaussian functions. SC-PPs including SO operators based on Dirac-
Hartree-Fock calculations using the Dirac-Coulomb Hamiltonian have been gener-
ated by Christiansen, Ermler and co-workers (Blaudeau and Curtiss 1997; Ermler
et al. 1991; Hurley et al 1986; LaJohn et al 1987; Nash et al. 1997; Pacios and
Christiansen 1985; Ross etal 1994,1990; Wallace et al 1991;Wildmane et al. 1997).
The potentials and corresponding valence basis sets are available on the Internet.3 A
similar set for main group and transition elements based on scalar-relativistic Cowan-
Griffin all-electron calculations was published by Hay and co-workers (Hay 1983;
Hay and Martin 1998; Hay and Wadt 1985a,b; Wadt and Hay 1985). Another almost
complete set has been published by Stevens and co-workers (Cundari and Stevens
1993; Stevens et al. 1984, 1992).

3.4.4 Energy-consistent pseudopotentials

Energy-consistent ab initio PPs (EC-PPs) developed from energy-adjusted semi-
empirical PPs, i.e. pseudopotentials which were fitted to reproduce the experimental
low-energy atomic spectrum. Since it is usually not possible to account with sufficient
accuracy for valence correlation effects, such semi-empirical energy-adjustment was
only applicable for one-valence-electron systems. Results for alkaline and alkaline-
earth systems obtained with one- and two-valence-electron PPs augmented by CPPs
were excellent, especially for atoms and relatively weakly bound molecules, for exam-
ple, dimers or clusters. However, due to the Limited validity of the frozen-core approx-
imation when going from a highly charged one-valence-electron ion to a neutral atom
or nearly neutral ion, the one-valence-electron adjustment was bound to fail for other
elements, especially for transition metals where a small core has to be chosen. Never-
theless, the idea to fit exclusively to quantum mechanical observables like total valence
energies instead of relying on quantities like orbitals and orbital energies, which are
only meaningful in an approximate one-particle picture, is very appealing. Therefore,
the approach was extended to a many-valence-electron adjustment within a purely
ab initio framework (Dolg et al. 1987). Essentially, any (relativistic) Hamiltonian,
coupling scheme and valence correlation treatment may be chosen to generate the
all-electron reference data, provided that the same quality of the valence-only wave
function is used during the PP adjustment. Moreover, the formalism can be used
to generate one-, two- and also four-component PPs at any desired level of relativ-
ity (nonrelativistic Schrodinger, or relativistic Wood-Boring, Douglas-Kroll-Hess,
Dirac-Coulomb or Dirac-Coulomb-Breit Hamiltonian; implicit or explicit treatment
of relativity in the valence shell).

3 http://www.clarkson.edu pac/reps .html



114 VALENCE-ONLY EFFECTIVE HAMILTONIANS

Table 3.4 Bond lengths Re (A), vibrational constants we (cm- l) and binding energies De (eV)
of halogen dimers from ab initio energy-consistent (EC-PP) CCSD(T) calculations including a
core-polarization potential and corrections for spin-orbit effects (Dolg 1996b). Comparison is
made to experimental values (Exp.). Total valence correlation energies Ec (mH) from EC-PP
and nonrelativistic all-electron (AE) calculations as well as differential correlation contributions
A EC (mH) to the binding energies De (Dolg 1996c). In all cases extended all-electron basis
sets including up to g-type functions were applied.

Re (EC-PP)
Re (Exp.)

£>e (EC-PP)
De (Exp.)

o>e (EC-PP)
o>e (Exp.)

EC (EC-PP)
EC(AE)

AEC (EC-PP)
A EC (AE)

F2

1.409
1.412

1.66
1.66

927
917

615.0
606.9

107.0
105.7

Cl2

1.982
1.988

2.44
2.51

561
560

505.7
478.7

45.9
46.5

Br2

2.281
2.281

1.95
1.99

324
325

424.0
406.9

42.6
41.7

I2
2.668
2.666

1.57
1.56

215
215

386.1
361.3

35.9
34.1

At2

2.979

0.80
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The current version of the EC-PP approach uses reference data derived from finite-
difference state-averaged all-electron multiconfiguration Dirac-Hartree-Fock calcu-
lations based on the Dirac-Coulomb or Dirac-Coulomb-Breit Hamiltonian (Dolg ef
al. 1993b, 2001; Metz et al 2000a,b; Stoll et al 2001). These calculations are per-
formed for a multitude of electronic configurations, states or levels / of the neutral
atom and the low-charged ions. The total valence energies EAE derived from these
calculations define the PP parameters for a given ansatz in a least-squares sense. A
corresponding set of finite-difference valence-only calculations (especially the same
coupling scheme and correlation treatment has to be applied) is performed to generate
the total valence energies EPP and the parameters are varied in such a way that the
sum of weighted squared errors in the total valence energies becomes a minimum,

Parameters of ab initio EC-PPs and corresponding valence basis sets are available for
almost all elements of the periodic table, including some superheavy elements (Andrae
et al. 1990; Bergner et al. 1993; Dolg et al. 1987, 1989a,b, 1993a,b; Haussermann
et al 1993; Kiichle et al. 1991; Metz et al. 2000a,b; Seth et al. 1997; StoU et al.
2001). They are also available on the Internet.4 Besides tests performed in the original
publications, a number of additional molecular calibration studies has been carried

4 http://www.theochem.uni-stuttgart.de
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out in the past for EC-PPs, i.e. XH4 (X = C, Si, Ge, Sn, Pb) (Steinbrenner et al 1994),
X2H6 (X = Si, Ge, Sn, Pb) (Nicklass and Stoll 1995), InCl and InCl3 (Schwerdtfeger
et al. 1995a), MF (M = K, Rb, Cs) (Leininger et al 1996b), InX (X = H, F, Cl)
(Leininger et al 1996a), HX and X2 (X = F, Cl, Br, I, At) (Dolg 1996b), MX (M =
La, Lu, Ac, Lr; X = H, O, F) (Kttchle et al. 1997), AuH (Schwerdtfeger et al 2000).
A selection of the results for the homonuclear halogen dimers is listed in Table 3.4.

Special attention was given to the accuracy of valence correlation energies obtained
with pseudovalence orbitals, since due to the simplified nodal structure these quantities
tend to be too large (Dolg 1996c,d). Although in single extreme cases the valence
correlation energies are significantly overestimated, for example, by 20% in F5+, the
errors in total valence energies of neutral and low-charged systems are usually less
than 10%. The correlation contributions to energy differences as binding energies,
ionization potentials or electron affinities exhibit errors of less than 0.1 eV, even
when large-core EC-PPs or SC-PPs are applied. The accuracy of total and differential
valence correlation energies obtained from PP methods appears to be comparable with
those of MP approaches. Note that in contrast to all-electron (frozen-core) calculations
in both of these methods the core orbitals are present in the orbital space used in the
correlation treatment.

3.4.5 Core-core/nucleus repulsion correction

In the case of large cores a correction to the point-charge repulsion model in Equa-
tion (3.9) is needed. A Born-Mayer-type ansatz

proved to be quite successful for the parametrization of core-core and core-nucleus
repulsion corrections (CCRC, CNRC). For the CNRC the parameters B and b
can be obtained by fitting directly to the electrostatic potential of the atomic core
electron system A and multiplying the resulting coefficient with the charge of nucleus

whereas for the CCRC the deviation from the point-charge model has to be deter-
mined by molecular Hartree-Fock or Dirac-Hartree-Fock calculations for each pair
of frozen cores.

3.4.6 Core polarization potentials

Although the frozen-core approximation underlies all ECP schemes discussed so
far, both static (polarization of the core at the Hartree-Fock level) and dynamic
(core-valence correlation) polarization of the core may accurately and efficiently
be accounted for by a core polarization potential (CPP). The CPP approach was origi-
nally used by Meyer and co-workers (Miiller et al. 1984) for all-electron calculations
and adapted by the Stuttgart group (Fuentealba et al. 1982) for PP calculations. The
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CPP term accounting for the dipole polarizability orx of the core X is given as

Here f is the electric field at core X generated by all other cores and nuclei as well as
all valence electrons. Since the validity of the underlying multipole expansion breaks
down for small distances from the core X, the field has to be multiplied by a cut-off
function:

A = ~ exp(-*e'fx))'"5 + CMO - e x p C - ) ) " ' . (3.12)

In cases where ns and np valence orbitals are present together with (n– l)d and (n — 2)f
valence orbitals, for example, for Cs, it proved to be more accurate to augment the
core-polarization potential by a short-range local potential (Dolg 1996a)

The use of an l-dependent cut-off function in Equation (3.12) might even lead to
superior results (Foucrault et al. 1992).

The use of CPPs to account for core-valence correlation effects of inner shells
in combination with accurate relativistic small- or medium-core ECPs (Yu and Dolg
1997) may be a useful direction for future developments, especially in view of the
large computational effort for an explicit treatment of core-valence correlation in case
of d and/or f shells and the significant basis-set superposition errors occurring at the
correlated level (Dolg et al. 2001).

3.4.7 Choice of the core

A critical point when adjusting and applying an ECP is the proper choice of the core.
It is clear that the computational savings become larger for increasing size of the
core; however, due to the limitations of the underlying frozen-core approximation
the accuracy decreases at the same time. Whenever computationally feasible, small-
core ECPs should be applied, for example, for transition metals the (n — l)spd and
ns shells should be treated as valence shells (11–20 valence electrons for groups
3-12). The failures of large-core ECPs (3-12 valence electrons for groups 3–12)
independent of the actual ECP approach are illustrated by a recent calibration study
of AuH (Table 3.5).

Small-core ECPs are also found to be more reliable for alkaline and alkaline-earth
elements (9 and 10 valence electrons for groups 1 and 2, respectively (Leininger et al.
1996b)) as well as for the early post-d-group elements (21 and 22 valence electrons
for groups 13 and 14, respectively (Leininger et al. 1996a; Metz et al. 2000a,b)).
Since the underlying d-shell becomes more core-like the later post-d-group elements
may also be treated with large-core ECPs (4–8 valence electrons for groups 14–18);
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Table 3.5 Bond length Re (A), vibrational constant we (cm-1) and binding energy De (eV)
of gold hydride AuH at the Hartree-Fock level obtained with different pseudopotentials and
all-electron (AE) approaches (Seth and Schwerdtfeger 2000). The parentheses following the
acronym PP denote the reference data and the number of valence electrons for the Au PP.

method HF MP2 HF MP2 HF MP2

AE,DC
AE,DKH
EC-PP(WB,19)a

SC-PP(DHF,19)b

SC-PP(DHF,19)C

SC-PP(CG,19)d

SC-PP(DHF,ll)e

SC-PP(CG,ll)f

AE nonrel.

1.570
1.576
1.575
1.579
1.570
1.561
1.592
1.626
1.830

1.484
1.486
1.480
1.484
1.477
1.472
1.519
1.547
1.694

2095
2068
2071
2064
2088
2130
2024
1897
1475

2521
2517
2523
2518
2542
2587
2303
2156
1716

1.79
1.74
1.70
1.69
1.72
1.77
1.66
1.43
1.10

3.21
3.03
3.16
3.14
3.19
3.31
2.52
2.45
1.96

aAndrae et al (1990), bStevens et al. (1992), cRoss et al (1990), dHay and Wadt (1985b),
eRoss et al. (1990), fHay and Wadt (1985a).

however a CPP has to be added to account for core-valence correlation in accurate
calculations (Dolg 1996b; Nicklass et al. 1995; Steinbrenner et al. 1994).

3.5 Effective Core Potentials: Applications

The ECPs discussed so far, accounting for the most important relativistic effects
including SO interaction, should be applied together with high-level wave-function-
based correlation treatments in order to arrive at results close to experimental data.
In contrast to scalar-relativistic calculations, in which after the initial integral eval-
uation step no differences occur compared with a nonrelativistic treatment, we have
essentially three different strategies for correlated calculations including SO inter-
action: the SO contributions may be taken into account before, during or after the
treatment of electron correlation effects. In the limit of complete one- and many-
electron basis sets the results of all approaches have to be the same; however, the
convergence with respect to this limiting result is quite system dependent. In practice,
the first method is the most rigorous for heavy elements, but it is usually also the
most expensive. Although the last approach is often computationally the cheapest, it
has the smallest flexibility of the wave function with respect to SO contributions and
is therefore mostly limited to not too heavy atoms. Finally, in view of discussions
of SO contributions to molecular constants obtained from various valence-only and
all-electron computational schemes, we have to make sure that the scalar relativistic
level is defined in exactly the same way (see, for example, Dolg et al. 2001).
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Tbble 3.6 Bond length Re (A), vibrational constant we (cm–1) and binding energy De (eV) of
Eka-Au hydride (111)H without (with) counterpoise correction of the basis-set superposition
error. All-electron (AE) values based on the Dirac-Coulomb-Hamiltonian (Seth and Schw-
erdtfeger 2000) are compared with valence-only results obtained with energy-consistent (EC)
(Dolg et at. 2001) and shape-consistent (SC) (Han and Hirao 2000) pseudopotentials (PP). The
numbers 19 and 34 in parentheses denote the number of valence electrons for the Eka-Au PP.

method

AE,DHF
EC-PP(19), SO, HFa

SC-PP(19), SO, HF8

AE, DHF+CCSD(T)
EC-PP(19),SO,ACPFa

EC-PP(19),ACPF + SOb

EC-PP(19), CCSD(T) + SOb

SC-PP(19), SO, CCSD(T)a

SC-PP(34), SO, CCSD(T)a

1.521
1.518(1.518)
1.516
1.523
1.525(1.532)

(1.531)
(1.529)
1.506
1.512

2743
2779(2779)
2786
2674
2648(2616)

(2622)
(2642)
2721
2668

1.56
1.69(1.69)
1.59
2.83
2.79(2.73)

(2.76)
(2.83)
3.16
2.87

a Kramers-restricted two-component HF and subsequent correlation treatment.
bScalar-relativistic one-component HF and correlation treatment, spin-orbit corrections added.

Small molecules

The most accurate and computationally demanding approach is to use relativistic
ECPs, including the SO terms, already at the independent particle level (Esser 1984b;
Esser et al. 1981; Hafner and Schwarz 1979). Due to the spin degrees of freedom,
the spinor basis is twice as large as in the nonrelativistic case and usually complex.
This complicates the subsequent integral transformation and correlation treatment.
Kramers symmetry and double point group symmetry can be exploited both at the one-
and many-electron function level to reduce the computational effort. The approach
offers the largest flexibility of the wave function and is conceptually closest to all-
electron treatments based on the Dirac-Coulomb-(Breit) Hamiltonian. It is certainly
the best approach for systems containing atoms in which SO interaction leads to
significant differences in the radial shape and energy of the j = I - 1/2 and j = I + 1/2
spinors, for example, in order to study the splitting of the 2P1/2 and 2P3/2 components
of the Tl ground state (Visscher and Saue 2000). Recently correlated all-electron and
shape-consistent as well as energy-consistent pseudopotential calculations of this type
were performed for the spectroscopic constants of the monohydride of the superheavy
element 111 (Table 3.6).

In many cases, less costly treatments of the SO interaction may be successful as
well. Scalar-relativistic ECPs are employed at the independent particle level to gen-
erate a set of (real) orbitals which are used for the integral transformation. The SO
term of the ECP is included in the calculations at the correlated level, i.e. electron
correlation and spin-orbit effects are treated on an equal footing. Double group sym-
metry may again be applied to reduce the computational effort (Chang and Pitzer
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1989; Tilson et al. 2000; Yabushita et al. 1999). This approach performs very well
for systems with atoms in which SO interaction, despite a large energetic splitting
between the j = I — 1/2 and j — 14- 3 spinors, leads only to relatively small differences
in their radial shape, for example, the f shells of lanthanide or actinide atoms. Usually,
the space spanned by the many-electron function basis in the SO case is much smaller
than what is feasible in calculations without SO coupling, i.e. the electron correlation
treatment is less accurate. To account for these deficiencies, SO corrections derived
from limited calculations with and without SO ECP may be added to scalar-relativistic
energies obtained from high-quality correlation treatments, or spin-free state-specific
shifts derived from such calculations may be added to the Hamiltonian matrix with
SO coupling before diagonalization (Llusar et al. 1996).

Finally, the most efficient treatment, which works well in all cases where SO effects
are small, is the inclusion of the SO part of the ECPs in the calculations at the latest pos-
sible stage, i.e. after the correlation treatment performed with scalar-relativistic ECPs
in the nonrelativistic coupling scheme (Alekseyev et al. 1994b; Buenker etal. 1998;
Teichteil and Spiegelmann 1983; Vallet et al 2000). A low-dimensional (0(102))
complex Hamiltonian matrix including SO interaction is set up and diagonalized in
the basis of the many-electron states obtained without SO interaction. Applying this
approach, during the last decade Buenker and co-workers studied ground and excited
states of numerous, mainly diatomic, main-group molecules and molecular ions, for
example, BiF (Alekseyev etal. 1993), BiH (Alekseyev etal. 1994b), BiO (Alekseyev
et al. 1994a) and BiS (Lingott et al. 1999). With a few exceptions shape-consistent
PPs were used in connection with the MRD-CI correlation treatment, including per-
turbative selection of variationally treated configurations, energy-extrapolation to a
full variational treatment and a multi-reference Davidson size-extensivity correction,
to generate the wave functions and energies in the nonrelativistic coupling scheme.

The ECPs described so far are often applied in DFT calculations. Although there is
no guarantee that ECPs designed for wave function-based treatments perform well in
DFT calculations, experience shows that this seems to be the case, at least for small-
core potentials. A recent study of Han and Hirao investigated the transferability of both
shape- and energy-consistent nonrelativistic and scalar-relativistic small-core PPs for
Au to DFT calculations of AuH, AuCl and Au2 using LDA and GGA functional (Han
and Hirao 2000). For example, at the DFT level the maximum absolute deviations for
Re, u>e and £>e from nonrelativistic (scalar-relativistic DKH) all-electron data obtained
with corresponding 19-valence-electron energy-consistent PPs were 0.001 (0.007) A,
1 (2) cm"1 and 0.02 (0.05) eV for Au2- These maximum deviations are only slightly
larger than those obtained at the HF and CCSD level, i.e. 0.001 (0.003) A, 0 (1) cm"1

and 0.01 (0.02) eV.

Metal clusters

The extension of the applicability of quantum Monte Carlo (QMC) calculations to
systems with heavy elements depends critically on the availability and accuracy of
large-core PPs, possibly augmented by CPPs. Besides the usual problems of QMC,
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Figure 3.1 Size dependence of cohesive energies per atom (CE/n) of mercury clusters Hgn
from calculations using a large-core EC-PP and CPP for Hg. Valence correlation is accounted
for either within the hybrid model approach (HNf) by a pair-potential adjusted for Hg2 or by
pure-diffusion quantum Monte Carlo (PDMC) calculations (Wang etal. 2000).
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Figure 3.2 As Figure 3.1, but for ionization potentials.

for example, fixed-node errors in standard pure diffusion QMC, a local representation
of the generally semilocal PP has to be generated using some suitable many-electron
trial wave function. Quite accurate results have been obtained by Mitas (1994) for
excitation energies of the Fe atom in the LS-coupling scheme, whereas Flad et al.
(1997) demonstrated for Pb that with the help of a coordinated sampling scheme in
variational QMC also accurate spin-orbit splittings can be obtained. Flad et al. also
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Figure 3.3 lH-NMR chemical shifts in HX (X = F, Cl, Br, I) from scalar-relativistic (SR) and
relativistic (SR+SO) EC-PP DFT calculations for common gauge (CG) and individual gauge
for Pipek-Mezey (PM) localized orbitals (LO) in comparison to experimental gas-phase values.
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Figure 3.4 As Figure 3.3, but 13C-NMR chemical shifts in CH3X (X = F, Cl, Br, I). The
calculated values are compared with experimental gas phase (X = F) and neat liquid (X = Cl,
Br, I) values.

showed that QMC in combination with large-core EC-PPs and CPPs for Hg can be
used to study the weak bonding (mainly van der Waals) interaction in Hg2 (Dolg and
Flad 1996b; Flad and Dolg 1996b) as well as the size dependence of properties and
the bonding type in small- to medium-size Hg clusters (Wang et al. 2000). A simple
combination of PP+CPP+CCRC Hartree—Fock calculations with a pairwise additive
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valence correlation correction derived from highly correlated Hg2 calculations (hybrid
model, HM) yields results in favourable agreement to PP+CPP+CCRC pure diffusion
QMC calculations and experimental data, for example, for the size dependence of
cohesive energies (Figure 3.1) or the ionization potentials (Figure 3.2).

Properties depending on spin—orbit coupling

In addition to the determination of molecular geometries, vibrational frequencies,
binding energies, dipole moments and polarizabilities, excitation energies, ionization
potentials and electron affinities, ECPs can also be useful for the derivation of NMR
and EPR properties of heavy-element compounds. Besides the relativistic changes of
geometrical parameters, the relativistic effects on the electron distribution at a given
geometry are also important. A disadvantage of the PP approach is that due to the
pseudo-orbital transformation, a straightforward calculation of NMR parameters of
the heavy-element centres themselves is not possible. Often, however, it is the NMR
of light nuclei in systems containing heavy elements that is of interest. It was demon-
strated by Kaupp, Malkina, Malkin and co-workers that energy-consistent PPs in con-
nection with gradient-corrected DFT can be applied successfully to evaluate 1H, 13C,
17O and 31P NMR chemical shifts of the ligands of heavy-metal complexes (Vaara
et al. 2001). Self-consistent KS calculations are performed with scalar-relativistic
PPs, followed by a third-order perturbation calculation for SO corrections, evaluated
with SO PPs within the DFT-IGLO (individual gauges for localized orbitals) scheme.
Recent results of calibration calculations for small systems, for example, 1 H-chemical
shifts for halogen halides (Figure 3.3) and 13C-chemical shifts for methyl halides (Fig-
ure 3.4), as well as applications to 13C-chemical shifts of transition-metal carbonyls
and methyl mercury compounds demonstrate that the experimental trends are very
well reproduced, although the numerical accuracy of the results is not yet quantita-
tive. The simultaneous inclusion of scalar relativistic and SO effects at moderate cost
should also allow future applications to even larger systems of chemical interest, for
example, complexes with several heavy atoms. Similarly, scalar-relativistic PPs and
SO PPs have been applied to the evaluation of electronic g-tensors, the EPR analogue
of the NMR chemical shift. The PP approach appears to be particularly suitable for
the evaluation of g-tensors, since these are largely a valence property. Presently, the
methodology is also extended to spin-spin and hyperfine coupling constants.
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4.1 Introduction
Over the last decade density functional theory (DFT) has left its traditional realm,
condensed matter theory, and has attracted widespread interest in quantum chemistry,
material science and biophysics (see, for example, Barnett and Landman 1993; Becke
1992; Chetty et al 1995; Eichinger et al 1999; Johnson et al. 1993a; Krajci et
al. 1997; Morgan et al. 1999; Moroni et al. 1997). The question of a relativistic
generalization (RDFT) thus emerges quite naturally. While the basic concepts of
RDFT were introduced quite some time ago (MacDonald and Vosko 1979; Rajagopal
1978; Rajagopal and Callaway 1973), their practical implementation has taken a lot
longer. Both the advancement of the RDFT formalism and its implementation have
been the subject of our contribution to the programme Relativistic Effects in Heavy-
Element Chemistry and Physics (REHE) of the Deutsche Forschungsgemeinschaft.

In this chapter we summarize the various projects pursued in this context. We place
some emphasis on an overview of the various formulations of RDFT in the literature.
Starting from quantum electrodynamics (QED), we are directly led to the covariant
form of RDFT, in which the ground-state four-current jv = (cn, j) plays the role
of the basic density variable. This RDFT variant is ideally suited to a discussion of
the basic existence theorem, questions of gauge invariance and the field-theoretical
form of the effective single-particle equations (Engel and Dreizler 1996; Engel et
al. 1995b, 1998a; Facco Bonetti et al. 1998). In practical calculations for magnetic
systems, on the other hand, an RDFT version which depends on the magnetization
density m, rather than on j, is utilized (MacDonald and Vosko 1979; Ramana and
Rajagopal 198la). Applications of this relativistic 'spin-density' functional approach
are given in Chapter 5. As one of our projects within the REHE programme, a stable
algorithm for the investigation of open-shell atoms has been developed on this basis
(Engel et al. 2001a).

Most frequently, however, a purely density-dependent version of RDFT is used.
In this context we have examined the role of relativistic corrections to the exchange-
correlation (xc) energy functional. In view of the limited accuracy of the relativistic
local density approximation (RLDA) (Das et al. 1980; Engel et al. 1995a; Ramana et

Relativistic Effects in Heavy-Element Chemistry and Physics. Edited by B. A. Hess
© 2003 John Wiley & Sons Ltd
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al. 1982), the generalized gradient approximation (GGA) has been extended into the
relativistic domain (RGGA) (Engel et al. 19%, 1998b). Applications of the RGGA to
gold compounds as well as to the bulk showed, however, that, in spite of the obvious
improvements obtained for atoms, the gradient terms overcorrect the errors of the
RLDA for equilibrium distances and binding energies in molecules or solids with
heavy constituents (Schmid et al. 1998; Varga et al. 1999). This deficiency of the
RGGA indicates the need for truly nonlocal xc-functionals.

The prototype of such a functional is the exact exchange of RDFT, which not only
includes the relativistic kinematics of the electrons but also the (retarded) Breit inter-
action among them. As an explicit functional of the auxiliary single-particle spinors of
RDFT, the exact exchange is an implicit density functional, for which the multiplica-
tive Kohn—Sham (KS) potential must be evaluated indirectly via the relativistic version
of the optimized potential method (OPM) (Engel et al. 1995a, 1998a; Kreibich et al.
1998). Within the REHE programme we have obtained a variety of exchange-only
(x-only) ROPM results and put forward an accurate semi-analytical approximation
to the full ROPM. A corresponding orbital-dependent correlation functional has been
derived from perturbation theory on the basis of the KS Hamiltonian (Engel et al.
1998a) and studied for atoms and molecules (Engel et al. 2000a; Facco Bonetti et al.
2001).

In order to facilitate the application of the ROPM to more complex systems we have
constructed relativistic pseudopotentials on the basis of the exact exchange (Engel
et al. 2001c; Hock and Engel 1998), using a relativistic extension of the Troullier—
Martins approach to norm-conserving pseudopotentials (Engel et al. 2001b). On this
basis the antiferromagnetic (AFM) ground states of transition-metal oxides have been
studied (Schmid 2000).

As a fully relativistic density functional approach to the electronic and geometric
structures of molecules containing heavy elements, the relativistic discrete variational
method (RDVM) (Rosen and Ellis 1975) has been successively improved to a new
level of quality within the REHE programme. Individual projects addressed the effi-
cient calculation of the Hartree potential (Bastug et al. 1995; Varga et al. 2000b), the
interatomic forces (Varga et al. 2001) and the necessary multicentre integrals (Heit-
mann et al. 2001). As a result, the RDVM now allows theoretical studies of rather
complex systems, as clusters (Bastug et al. 1997b) and complexes or compounds con-
taining superheavy and transactinide elements (Fricke et al. 1997; Varga et al. 2000a)
(compare Chapter 6). It can also be applied to the investigation of problems in surface
physics, e.g. adsorption processes of adatoms on surfaces (Geschke et al. 2000).

4.2 Foundations

4.2.1 Existence theorem

The appropriate starting point for the discussion of the foundations of RDFT is QED.
Although relativistic quantum field theories like QED do not provide a Schrodinger-
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like wave equation for the relativistic many-body problem, there nevertheless exists a
well-defined procedure for the derivation of the Hamiltonian of a stationary system.
It emerges as one component of the energy-momentum tensor, which is most conve-
niently established within the framework of Noether's theorem. For the standard QED
Lagrangian of interacting electrons coupled to some classical, stationary C-number
potential VM we obtain

H = H

He(x°) = i / d3r ^T(JC), (-ic« • V

VAv(x) • VAv(x)}, (4

Here ty(x) denotes the fermion field operator of the interacting, inhomogeneous sys-
tem characterized by H (in the Heisenberg picture), j* is the corresponding fermion
four-current operator,

jc), «**#(*)],

and A^(x) represents the field operator of the photons, for which the covariant quan-
tization scheme and Feynman gauge are used (x^ = (et, r), «M = X°XM). Both
H and j'M have been formulated in the commutator form, which ensures the correct
behaviour under charge conjugation (Kalien 1958), although we will not dwell on
this point in the following. The Hamiltonian commutes with the charge operator

This allows a classification of all many-electron states with respect to their total
charge.

As is well known, the expectation values of H and j'M diverge if taken directly
without some additional prescription. This is most easily seen for noninteracting
electrons experiencing an external potential VM. The existence of the negative energy
continuum states requires the redefinition of the energy scale in order to take into
account the nonvanishing energy of the vacuum. Furthermore, the fact that V^ can
create virtual electron-positron pairs makes a renormalization of the four-current
necessary. The situation is even more involved for interacting electrons. Within the
standard perturbative approach the coupling between electrons and photons leads to
large classes of divergent contributions which have to be first regularized and then
renormalized by a suitable redefinition of the fundamental parameters of QED. For
the ground state \4>) of the Fock space sector with charge Ne,

H\<P) = E\<P),
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the total binding energy ER of the elections is thus given by the energy difference
between | <P } and the ground state of the zero-charge sector, i.e. the interacting vacuum
|0), augmented by the counterterm contributions (CTCs) required to keep ER finite,

ER = Etot = (<P\H\<t>) - (0|tf|0) + CTCs. (4.2)

An analogous renormalization is necessary for the ground-state four-current,

(4.3)

Of course, RDFT, whose central ingredients are the ground-state energy and four-
current, must reflect this structure of the underlying quantum field theory. The need
for renormalization thus shows up in the formulation of the basic existence theorem,
in the single-particle equations and in the derivation of explicit functionals for the
xc-energy. A detailed discussion of the various issues involved has been given in
Engel and Dreizler (19%) and Engel et al. (1995b, 1998a), to which we refer the
interested reader. In the following we always assume the quantities involved to be
properly renormalized; all counterterms as well as the corresponding index 'R' will,
however, be suppressed for brevity.

On this basis, we can summarize the existence theorem of RDFT (Engel and Drei-
zler 19%; Engel et al. 1995b; MacDonald and Vosko 1979; Rajagopal 1978; Rajagopal
and Callaway 1973) as follows. There exists a one-to-one correspondence between
the class of ground states which result from external potentials just differing by gauge
transformations and the ground-state four-current,

|0) from Vv + 3VA} 4=» jv(x) (4.4)

(here and in the following \4>) is always assumed to be nondegenerate). In other
words, the class of physically equivalent realizations of the ground state is uniquely
determined by j v . Choosing a suitable representative of each class, i.e. fixing the
gauge for the complete set of Vv , we can understand this representative | <t> ) as a unique
functional of jv, \<P[j v]}. If we insert a specific four-current jfi into this functional,
we obtain the ground state |#o) of the corresponding system, |*o) = !*[./<)])• ^°
information beyond j£ is needed, i.e. the same functional applies to atoms, molecules
and solids (\<P[jv]) is universal).

The existence of a unique relation between the ground state and jv immediately
leads to the statement that all ground-state observables are unique functionals of the
four-current, most notably the ground-state energy,

Elol(f] = Wllff I*UV]>-

In view of its field-theoretical basis, this energy functional not only accounts for
the relativistic kinematics of both electrons and photons, but, in principle, also for
all radiative corrections. With the Ritz principle,1 avoiding the question of interact-
ing v-representability (Dreizler and Gross 1990), we may then formulate the basic

1 We are not aware of any rigorous minimum principle for the renormalized ground-state energies (4.2).
There are, however, a number of arguments which can be given in favour of such a minimum principle.
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variational equation of RDFT,

todjv] / d3* jQ(x) \ = 0, (4.5)
c J * j=jo

where the subsidiary condition ensures charge conservation. Given the functional
E tot[jv], Equation (4.5) allows the determination of the ground-state four-current j0
corresponding to the external potential V^ in the Hamiltonian (4.1) and, by subsequent
insertion of jo into E tot[jv], the ground-state energy.

The proof for this existence theorem of RDFT (Engel and Dreizler 1996; Engel et al
1995b) proceeds in a similar way as the original argument of Hohenberg and Kohn
(HK) (1964), whose basic ingredients are the multiplicative nature of the external
potential and the Ritz variational principle. This proof involves inequalities between
ground-state expectation values of different Hamiltonians, so that we necessarily have
to rely on their renormalized form (4.2). Fortunately, we can show that the HK-type
proof is compatible with the QED renormalization scheme if we utilize the fact that
the counterterms are unique functionals of the four-current (Engel et al. 1995b).

We may nevertheless ask whether it is possible to base RDFT on an approximate
relativistic many-body approach, as, for example, the Dirac—Coulomb (DC) Hamil-
tonian,

HDC = 4(0) 4- 4xt(0) + 4-*,

i 2 [= ?e J * .3 ,d rd r
\r-r'\

or its Dirac—Coulomb—Breit (DCB) extension, so that we avoid the discussion of
renormalization. In this case, the no-pair (np) approximation plays the role of the
renormalization scheme,

where A+ is a projection operator onto positive-energy states. However, the no-pair
approximation can be unambiguously specified only within some well-defined single-
particle scheme. Even in this case A+ depends on the actual single-particle potential
and thus on the external potential, A+IV1*]. As a consequence, H^ is a nonlinear
functional of VM, which does not allow the usual reductio ad absurdum of the HK-
proof. In addition, the no-pair approximation introduces a gauge dependence into the

First of all, with increasing speed of light, i.e. in the nonrelativistic limit (v/c — >• 0), the energies (4.2)
continuously approach values which do satisfy the Ritz principle. There seems to be no reason to assume
that the minimum principle is restricted to the isolated value c = oo. Secondly, we can explicitly verify
that there exists a minimum principle for the renormalized ground-state energy of noninteracting fermions
in an arbitrary four potential V* (within the Furry picture, compare Rafelski et al. (1978)). Finally, real
atoms and molecules are stable (indicating that there exists a lower bound for energies) and QED has
proved to be the most accurate theory available to date for describing these systems (note that, as a matter
of principle, we do not have to rely on a perturbative treatment of QED systems, so that the asymptotic
character of this perturbation expansion does not contradict this argument).



128 FOUNDATIONS

ground-state energy (Engel et al. 1998a), so that an unambiguous comparison of two
ground-state energies is only possible if we neglect the Breit interaction and restrict
ourselves to a purely electrostatic external potential. It thus seems that the existence
theorem of RDFT can only be based on the field-theoretical Hamiltonian (4.1) together
with the standard QED renormalization scheme. The no-pair approximation, which
is used in most applications, is much more easily introduced at a later stage, i.e. in
the context of the single-particle equations of RDFT.

From this discussion it is obvious that the two central approximations of the DC
or DCB approach, the no-pair approximation and the neglect of either the complete
Breit interaction (DC) or the retardation corrections to it (DCB), play a different role
in RDFT. In fact, while the no-pair approximation is also a standard in RDFT, there
exists no fundamental conceptual problem with including the full electron-electron
interaction. In order to understand this we have to recall that RDFT is not based on a
Schrodinger-like single-time single-field wave equation, but only requires a suitable
approximation for Etot[jv]. The building blocks for the evaluation of (4.2), (4.3) are
the propagators of the noninteracting particles, as the free-photon propagator,

2
D°>»v(x - y) = -it-(0Y\TA%(X)Av

0(yWY),

where Ajj denotes the noninteracting photon field operator and |0y} is the correspond-
ing vacuum state. The derivation of explicit approximations to Etot[j

v] via the usual
field-theoretical methods thus automatically leads to the inclusion of the full trans-
verse interaction. In fact, this is true not only in principle, but also in practice (Engel
and Facco Bonetti 2000; Engel et al. 1998a; MacDonald and Vosko 1979; Rajagopal
1978; Ramana and Rajagopal 1981b).

On the other hand, there is also no fundamental problem with restricting RDFT to
the Coulomb or Coulomb-Breit level. Choosing the Feynman gauge as used for the
Hamiltonian (4.1), the full DJJV is explicitly given by

-4ne2

which is easily reduced to the weakly relativistic (Coulomb—Breit),

or the nonrelativistic (Coulomb) level,
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However, the propagators (4.6) and (4.7) are equivalent to their Coulomb gauge coun-
terparts (usually applied in quantum chemistry),

(4.8)
, C B / _ x _ TV

- -

only in gauge-invariant expressions. In general, gauge invariance can only be ensured
by the inclusion of the negative continuum in all intermediate sums over states (Engel
et al. 1998a) (with one important exception — see Section 4.3.1). As soon as the no-
pair approximation is applied a gauge dependence is introduced, so that a consistent
comparison of RDFT and DCB data should be based on the same gauge. The absolute
size of this gauge dependence has been examined for the correlation energy of the
relativistic homogeneous electron gas (RHEG) by comparison of the gauge-invariant
standard form with its no-pair counterpart, evaluated for different gauges (Facco
Bonetti et al. 1998). It was found that for high densities the error resulting from the
combination of the no-pair approximation with a specific gauge can be substantial.
On the other hand, the effect of this gauge dependence on atomic correlation ener-
gies is rather limited. Utilization of the no-pair form within the LDA showed that
the gauge error is small compared with the error introduced by use of the LDA, in
particular for the Coulomb gauge. Thus, assuming this result to also be characteristic
of the gauge dependence of DCB data, gauge questions do not seem to be relevant
for comparisons of DCB or experimental data with RLDA or RGGA results (or of
different xc-functionals).

In most applications the external magnetic field

= V x V(r)

vanishes. In this case, the external Hamiltonian reduces to

Axt — * 4'xt = / d3r n(*)i>ext(r), v«t(r) = eV°(r),

where we have introduced the more familiar n for the density,

n(x) = $[#*(*), fax)] <-» jv(r) = (cn(r), j(r)).

(4.9)

Following the standard HK scheme we can then prove that there exists a one-to-one
mapping between the zeroth component of the external potential, the ground state
and the ground state density (MacDonald and Vosko 1979),

{fext | fext + const.} «=> {\<P) \ \<P) from Uext + const.} «=>• n(r).

In this case, we can thus understand the ground state to be a functional of the density
alone, \<P[n]). The same is then true for the ground-state observables as the energy,
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Etot[n]. As a consequence, there is only one single variational equation,

74-r|£w[n]-/i/>d3xn(*)}| =0. (4.10)
8n(r> I J \ \n=n

It must be emphasized that the restriction to an external potential of the type VM =
( V0, 0) does not imply that the system cannot have some magnetic moment. Rather,
the spatial components of the four-current must be viewed as functionals of the density,

Thus, in principle, the density is sufficient for an exact RDFT treatment of mag-
netic systems, similar to the situation in nonrelativistic DFT. In practice, on the other
hand, spin-density functional theory proved to be necessary for the description of
spin-polarized ground states in the nonrelativistic context. Its spin-density dependent
energy functional allows a distinction between the spin-up and spin-down channels,
which is also important if Bext = 0. As a matter of principle, the explicit inclu-
sion of magnetic effects is possible via the four-current version of RDFT. However,
the standard energy functionals of (R)DFT are based on the (relativistic) homoge-
neous electron gas (see Section 4.4.1), for which j vanishes. Consequently, explicitly
j-dependent approximations for the energy cannot be derived from the RHEG. Thus
a direct relativistic extension of spin-density functional theory is desirable, whose
basic variables are suitably generalized spin-densities.

The starting point for this generalization is the Gordon decomposition, in which
the total current is split into the paramagnetic (orbital) component jp, a gauge term
proportional to the scalar density ps, and the curl of the magnetization density m,

j(r) = jp(r) - — V(r)ps(r) - -V x m(r),
me e

~
Lm

m(r) = -

with

"B = 4? •E = VO a

Neglect, for the sake of argument, the coupling of V to the orbital current,

^ ^ .. / o _ .

The resulting Hamiltonian
^ ^ ^ A ^ //

is completely legitimate if we aim at the description of systems not subject to magnetic
fields. In this case, we formulate a density functional approach for a more general
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class of systems than physically required. In this more general class the systems of
interest are included as a subset which is obtained in the limit Bext —0: H" only
serves to identify the fundamental variables of an RDFT scheme for Bext = 0. On the
basis of H" we can establish an existence theorem, connecting the ground state with
the ground-state charge and magnetization densities (MacDonald and Vosko 1979),

|<£) <=^(n,m). (4.12)

In other words : | <P } is a unique and universal functional of(n, m),\<P[n, m]}. Again the
minimum principle for the ground-state energy provides a set of variational equations,

=0, -L-Etot[n, m] = 0. (4.13), ,
8n(r) [ J J 8m(r)

RDFT in the form (4. 12), (4. 13) can be considered exact for Bext — > 0. Due to its
universality 1 <$» [n , m]} remains unchanged in this limit. The same statement then holds
for all components of Etot [n , m ] for which the associated part of the Hamiltonian does
not depend on Bext- Thus, the only point at which the limit Bext — > 0 actually shows
up is the explicit coupling term /d3rm . Bext. However, these statements should
be taken with a grain of salt. In view of the prominent role of Ward identities and
gauge invariance for the success of the QED renormalization scheme it is obvious that
the arguments leading to (4. 12), (4.13) are built on somewhat less solid ground than
those underlying the four-current version of RDFT, Equations (4.4), (4.5). A detailed
investigation of this issue is not yet available. It seems worthwhile remarking that for
JBext # 0 the Hamiltonian (4.11) and thus the RDFT variant (4.12), (4.13) represent
approximations whose usefulness depends on the absolute size of Bext.

In the form (4. 12), (4.13) RDFT is perfectly suited for dealing with systems in
which the direction of m varies with r. On the other hand, if the noncollinearity of
m is not an important feature for the system, we may restrict the artificial coupling
between the electrons and the magnetic field to its z-component,

4'xt = j (r) + mz(r)Bext,z(r)},

so that the one-to-one mapping reduces to

(n, mz). (4.14)

In this case, the ground state is uniquely determined by n and mz, \<P[n, m z ] ) , and
the variational equations (4. 13) reduce accordingly,

4.2.2 Single-particle equations

The next task is to derive an alternative form, more useful in practice, of the funda-
mental variational equations of Section 4.2.1. The basic idea is to represent the ele-
mentary density variables of RDFT in terms of auxiliary single-particle four spinors
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<t>k (assuming that this is possible for arbitrary external fields, i.e. assuming noninter-
acting v-representability). Such a representation in general also includes all vacuum
corrections to the ground-state four-current and energy (Engel and Dreizler 19%;
Engel et al. 1998a). For most RDFT applications, however, these field-theoretical
effects are irrelevant. In the following we thus restrict ourselves to summarizing the
no-pair form for brevity.

In the four-current version of RDFT the auxiliary spinors are chosen to reproduce
the complete ju,

(4.15)

where

0 fore* ^ —mc2,
1 for — mc2 < €

0 fOT€p < €*,

(4.16)

in the no-pair approximation and €p is the Fermi energy. Equation (4. 15) then induces
a decomposition of Etot> in which the manageable single-particle components are
separated from the more complicated many-body contributions,

Etot = Ts + EH + EH + Exc.

Here Ts denotes the kinetic energy of the 'auxiliary particles',

r)(-ica • V + (0 — I)mc

and Eext represents the coupling between the electrons and the external fields,

(4.17)

(4.18)

EH is the 'covariant' form of the Hartree energy , which can be split into the Coulomb
contribution EC

H and a transverse part EH
T

(4.19)

\r-r'\

Finally, the xc-energy Exc, in which all many-body aspects beyond the Pauli principle
are absorbed, is defined by (4. 17) (the rest mass of the electrons has been subtracted
from Etot). As the existence theorem (4.4) is equally valid for noninteracting particles,



RELA1WISTIC DFT 133

not only Etot but also Ts is a unique functional of ju. Consequently, Exc must also be
a unique functional of ju, EXC[ju]. Minimization of Etot

witil respect to the #k rather
than j'M thus leads to effective single-particle equations (MacDonald and Vosko 1979;
Rajagopal 1978),

{-ica • V + (ft - l)mc2 + aus(x)}fk(4f) = €*k(x ) , (4.20)

with the multiplicative KS potential Usu consisting of the sum of VM, the Hartree
potential Uu

H and the xc-potential Uu
xc,

vs
M(r) = e V u ( r ) + v|J(r) + Uu

xc{*c(r), (4.21)

r/|7~77|' (4'22)

I (4.23)

Equations (4.15), (4.20)–(4.23) have to be solved self-consistently. With the exact
E x c ( j u ] their solution leads to the exact ground-state four-current, which, upon inser-
tion into (4. 17), yields the exact ground-state energy. On the other hand, no statement
is made about the true many-body ground state \<P). Moreover, as a matter of princi-
ple, the eigenvalues €k have no physical meaning in the case of interacting particles.
The only exception is the eigenvalue of the highest occupied KS state, which, in non-
relativistic DFT, can be shown to be identical with the ionization potential (Almbladh
and von Earth 1985) (for finite systems, no rigorous proof of this statement is known
in the field-theoretical situation).

At this point it is convenient, though not necessary, to define the exchange compo-
nent Ex of Exc. As in the nonrelativistic context (Langreth and Mehl 1983; Sahni et
al. 1982; Sham 1985) we identify Ex with the first-order contribution to Exc resulting
from perturbation theory on the basis of the KS auxiliary Hamiltonian (Engel et al.
1998a). Within the no-pair approximation this leads to

dV | r ~ r |

(4.24)

(u>ki — \£k — £/ l/c) which can be easily decomposed into a Coulomb part

(4 25)
*,/ -

and a transverse remainder #J = Ex - EC
x. It is worthwhile emphasizing that neither

EK nor E£ are identical with their Dirac-Fock (DF) counterparts. The KS spinors
<j>k used for the evaluation of (4.24) or (4.25) are solutions of (4.20) with its multi-
plicative total potential, in contrast to the DF orbitals which experience the nonlocal
DF exchange potential. In fact, the multiplicative nature of Usu also ensures the gauge



134 FOUNDATIONS

invariance of (4.24) (Engel et al 1998a), which is lost as soon as the 0k correspond
to a nonlocal single-particle potential. So, while (4.24) is most easily derived in the
Feynman gauge, the Coulomb gauge propagator (4.8) finally leads to the same Ex-
The correlation energy Ec of RDFT is then given by Ec = Exc — EK.

Variants of the single-particle equations (4.20) are obtained for the other versions
of RDFT. Starting from the zeroth component of (4.15),

n(r) = ]T @k<f>l(r)<t>k(r\ (4.26)
k

the self-consistent equations of the purely n-dependent formalism (4.10) have the
same form as the time-like component of Equation (4.20),

{-ica - V + (ft - l)mc2 + vs(r)}0k(r) == <Fk0k(r), (4.27)

(4.28)
nr nr

with VR = VH (MacDonald and Vosko 1979). In Equations (4.27), (4.28) we have
used the fact that j can be understood as a functional of n, j[n] = (<t>[n]\j\<t>[n]).
This not only allows the exact inclusion of ET

H, but also relates the .j-dependent
EXc of Equation (4.16) to the purely n-dependent Exc of the present RDFT variant,
ExC[n] = ExC[n, j[n]]. In practice, however, the functional j[n] is not at all known,
so we usually simply neglect ET

H at this point. Note that for the large class of time-
reversal invariant systems (closed shells), j vanishes, so that ET

H does not contribute
anyway.

For the Hamiltonian (4.11) we start with a single-particle representation of the
charge and the magnetization density rather than of the full ju,

n(r) = 2_^ ®k<l>k(r)^(r), m(r) = -fiB 2^ ®wk(r)pZfa(r). (4.29)
k k

The total energy can then be decomposed as in (4.17) with Eext replaced by

Eext = / d3r {n(r)uext(r) + m(r) - Bex,(r)}. (4.30)

In order to simplify the resulting single-particle equations, we next absorb ET
H into

ET
H (MacDonald and Vosko 1979), relying on the fact that j is a unique functional of

n, m. However, as for Equations (4.27), (4.28) this usually implies the neglect of ET
H.

With this redefinition/approximation, Equation (4.13) leads to (Eschrig et al. 1985;
Ramana and Rajagopal 198 la)

{-ica • V + (0 - l)mc + vs - fjLBfti: • Bs}<t>k(r) = €*^(r), (4.31)
, m] ,. ._. (4.32)

dn(r)
,^ aax. (4.33)
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We can now easily take the limit Bext = 0. Equations (4.29H4.33) provide the
appropriate starting point for density functional studies of magnetic systems. They
have nevertheless not yet found widespread use due to their rather complex structure.
Only recently, the first calculations with truly noncollinear m have been performed
(Eschrig and Servedio 1999; Nordstrom and Singh 1996). While ground states with
noncollinear m were found for a number of solids (see, for example, Sandratskii
1 998), noncollinearity turned out to be only of limited importance for open-shell atoms
(Eschrig and Servedio 1999). Moreover, presently only the exchange contribution to
the RLDA for Exc[n, m] is available (MacDonald 1983; Ramana and Rajagopal 1979,
198 la; Xu et al. 1984).

We are thus led to consider the RDFT formalism for collinear m, Equation (4. 14),
which serves as a standard tool for the discussion of magnetic systems. The corre-
sponding single-particle equations follow from Equations (4.29)-(4.33) by restriction
to the z -component of m. A particularly useful form of the equations for collinear m
is found in terms of the generalized spin-densities n±,

n±(r)

Setting fiext.z = 0, we obtain

{_ica . V + (ft - l)mc2 + (1 + ftZz)vs+ + ̂ (1 - fiEJv^tok = €k(j>k, (4.35)

i>xc,<r(r), (4.36)

ir i n i [ a y
= - n(r) qp — mz(r) = Y>kl0J(r) - £-^<t>k(r). (4.34)

2|_ ^B J 2.

, _ ] <$£xc[n,mz] 8EKC[n,mz]
v*c,a(r) = — - — — — = — -— -- sgn(or)AtB — — rr— . (4.37)8na(r) 8n(r) 8mz(r)

Given the explicit form of the projection matrices in Equations (4.34), (4.35),

/I 0 0
0 0 0 0
0 0 0 0
o o o 1

/O 0 0 0N

0 1 0 0
0 0 1 0
o o o o

Equations (4.34}-(4.37) are immediately identified as the relativistic extension of the
standard form of nonrelativistic spin-density functional theory.

Clearly, the choice of the appropriate variant of RDFT depends on the system under
consideration. As already indicated, however, the availability of suitable approxima-
tions for £xc is similarly important. Even within the purely n-dependent form of
RDFT the relativistic Exc[«] is not identical with the nonrelativistic xc-functional. In
Exc[n], relativity not only enters via the relativistic form of n, but also shows up in
the functional dependence of Exc on n. In applications, however, these corrections
are often neglected, e.g. by the use of nonrelativistic spin-density functionals with the
relativistic n± in Equation (4.37). Of course, the large variety of nonrelativistic forms
for Exc[nt'n^] which have been suggested in the literature cannot be reviewed here;
the interested reader is referred to Dreizler and Gross (1990). An overview of the few
available relativistic forms for Exc is given in the next two sections.



136 IMPLICIT DENSITY FUNCTIONALS

4.3 Implicit Density Functionate

4.3.1 Optimized potential method

The exact exchange (4.24) immediately raises the question whether orbital-dependent
xc-functionals can be utilized in practice. As in the case of Ts, Equation (4.18), we
can use the fact that, via the relativistic HK theorem for noninteracting particles, the
KS orbitals are unique functional of yM, &k[ju]. This allows the replacement of
the functional derivative of £xc with respect to y"M required for the evaluation of t&
by functional derivatives to the fk and the corresponding KS eigenvalues €k, which
leads to the ROPM integral equation of RDFT (Engel et al. 1998a) (in the no-pair
approximation),

XQV(r, r>xc,v(r') = c(r), (4.38)

with xo denoting the static response function of the KS system,

x£V. r') = - E 0k<t>i(r)a»Gk(r, r')ctv W) + c.c., (4.39)

')^g_ + c.c.] + £ jf

Equations (4.38H4.41) are easily reduced to the purely density-dependent form of
RDFT (Engel et al. 1995a; Shadwick et al 1989). Recently, the ROPM equation for
the (n, m)- version of RDFT has also been formulated (Auth 1999).

The numerical solution of Equations (4.38)-(4.41) is rather involved, due to the fact
that the evaluation of Gk requires a summation over the complete KS spectrum. In
the nonrelativistic case the semi-analytical Krieger-Li-Iafrate (KLI) approximation
(Krieger et al 1990) for (4.38M4.41) proved to be very accurate for atoms (Krieger
et al 1992), molecules (Engel et al 2000b) and solids (Schmid 2000). The KLI
approximation can be most easily extended into the relativistic domain by use of a
closure approximation, €/ — e* « Ae, for Gk (Engel et al. 1998a),

, (4.42)
&<pk(r)

/

&E C
d3r^(r)-T^-, vk = I d3r^,x(r)v^c(r), (4.43)

50I(r) J
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Table 4.1 Exchange-only ground-state energies from ROPM and RHF calculations for noble
gas atoms: Coulomb (C) and Coulomb-Breit (C + B) limit in comparison with complete
transverse exchange (C + T) (Engel et al. 1998a). For the RHF approximation the energy
difference with respect to the ROPM is given, AE = Etot(RHF) - Etot(ROPM), providing
results from (a) finite-differences calculations (Dyall et al. 1989) and (b) a basis-set expansion
(Ishikawa and Koc 1994). All energies in mHartree. vext and c as in Ishikawa and Koc (1994).

Atom

He
Ne
Ar
Kr
Xe
Rn

~ECctot
ROPM

2862
128690
528678

2788849
7446882

23601947

A£c

RHFa

0
-2
-5

-13
-19
-35

AEC

RHF5

0
-2
_5

-12
-6

-19

irC + B
^tot

ROPM

2862
128674
528546

2787423
7441115

23572625

AEC + B

RHFb

0
-2

c

-12
—3
11

FC+Tctot

ROPM

2862
128674
528546

2787431
7441 179

23 573 332

where, consistent with the closure approximation, the 3 Exc/d€k-contribution to (4.40)
has been neglected. Alternatively, Equations (4.42), (4.43) may be derived from a
rearranged form of (4.38M4.41) (Kreibich et al 1998).

4.3.2 Results for the exact exchange

The x-only ground-state energies of noble gas atoms obtained by solution of Equations
(4.38)-(4.41) for different forms of the electron-electron interaction are listed in
Table 4.1.

In the Coulomb limit a direct comparison with fully numerical RHF calculations
is possible. Due to the multiplicative nature of i>jpPM, the OPM energies are higher
than the RHF data. The actual differences, however, are extremely small. As a con-
sequence, basis-set limitations easily dominate over these conceptual differences, as
can be seen from the Coulomb-Breit energies in Table 4.1. Finally, the comparison of
the Coulomb-Breit values with those found by inclusion of the complete £j, demon-
strates the size of the retardation corrections to the Breit interaction. It is obvious that
these corrections are only relevant for truly heavy atoms.

The importance of a self-consistent treatment of the transverse interaction is exam-
ined in Table 4.2.

The fully self-consistent handling is compared with a perturbative evaluation of
only the beyond-Breit terms and a perturbative treatment of the complete £"J. Even
for the heaviest atoms the perturbative evaluation of the retardation corrections to the
Breit term seems to be sufficient. On the other hand, use of first-order perturbation
theory for the complete £"J leads to errors of the order of 1 eV for heavy atoms. An
accurate description of inner shell transitions in these systems requires the inclusion
of second-order Breit corrections.
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Table 42 Exchange-only ground-state energies from ROPM, RHF, RKLI, RLDA and
RGGA(PW91) calculations for noble gas atoms. In the case of the ROPM the self-consistent
(SC) treatment of the complete £j (T) is compared with a self-consistent inclusion of only
its Breit (B) limit (together with a first-order perturbative (FT) calculation of the beyond Breit
contributions (T—B)) as well as a fully perturbative evaluation of £j. The latter procedure
has also been used for the RHF calculations (Dyall et al 1989). All energies are in mHartree
(Engel et al. 1998a). Reproduced with permission from Engel et al. (1998a) © 1998 Kluwer
Academic/Plenum Publishers.

SC:
PT:

He
Ne
AT
Kr
Xe
Rn

c-C+T
^tot

ROPM
C + T

—

2862
128674
528546

2787429
7441173

23573354

ROPM
C + B
T-B

0
0
0
0
1

C
T

0
0
0
2

10
8 68

f-C+T
Et<* ~

RHF
C
T

0
-2
-5

-12
-11

29

-EJj;+T[ROPM:s(C + T)]

RKLI
C + T

—

0
1
2
3
6
9

RLDA
C + T
—

138
1080
2458
6543

13161
35207

RGGA
C+T

—

6
-24

41
-22

83
-9

GGA
C
—

6
-43

-111
-1683
-6705

-35 145

Table 4.2 also demonstrates the accuracy of the KLI approximation in the relativistic
situation. In fact, for heavy elements the differences between the KLI and the full
OPM energies are smaller than those resulting from a perturbative treatment of the
transverse interaction.

4.33 Correlation

Given the possibility of using the exact exchange in actual applications, we need a
correlation functional which can be combined with the exact Ex. The most appropri-
ate form of such an Ec is an open question even in the nonrelativistic case (Engel and
Facco Bonetti 2000; Facco Bonetti et al. 2001; GOrling and Levy 1994; Grabo and
Gross 1995; Kotani 1998; Seidl et al. 2000). In most applications the exact Ex has
thus been augmented by the LDA or GGA for correlation (Bylander and Kleinman
1995a,b, 1996, 1997; Chen et al. 1996; Engel and Drcizler 1999; Kim et al. 1999;
Kotani 1994,1995; Kotani and Akai 1996; Stadele etal. 1997). However, this strategy
does not lead to a consistent improvement over x-only results (Engel and Dreizler
1999; Kim et al. 1999). Error cancellation between exchange and correlation plays an
important role for the success of the LDA and is also relevant in the case of the GGA.
Conceptually, a fully nonlocal, orbital-dependent approximation for Ec appears to
be most adequate. Presently, the most promising scheme for the derivation of such a
functional is perturbation theory on the basis of the auxiliary KS Hamiltonian (Gorling
and Levy 1994; Sham 1985). This approach can be directly extended into the rela-
tivistic domain (Engel et al. 1998a), including all transverse and vacuum corrections.
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Table 4 J Coulomb correlation energies of the helium isoelectronic series: EC (OPM) versus
CS (Colle and Salvetti 1975), LDA (Vosko et al. 1980), GGA (Perdew et al 1992), MP2
(Ishikawa and Koc 1994) and exact results (Davidson et al. 1991). Both the nonrelativistic
values EN

C
R and the difference between the relativistic numbers and £^R are given (all energies

in mHartree). Reproduced with permission from Engel and Dreizler (1999). © 1999 Academic
Press.

Ion

He
Ne8+

Zn28+
Sn48+
Yb68+

Th88+

LDA

112.8
203.0
267.2
297.7
318.0
333.2

GGA

45.9
61.7
71.3
76.0
79.3
81.7

CS

41.6
40.6
33.2
30.0
28.2
27.0

jNR

OPM

48.21
46.81
46.67
46.65
46.63
46.62

MP2

37.14
44.37
45.71
45.98

exact

42.04
45.69
46.34
46.47
46.53
46.56

£NR .

ROPM

0.00
-0.07
-0.19

0.72
3.71

11.00

-£C
R

RMP2

0.00
-0.07
-0.19

0.69

In principle, not only low-order perturbative Ec can be obtained in this way, but also
resummed forms like the RPA (Engel and Facco Bonetti 2000). In practice, however,
the resulting functionals are computationally much more demanding than the exact
Ex, so that until now only the lowest-order contribution has been applied. Within the
no-pair approximation and neglecting the transverse interaction, this second-order
term reads

MP2

^AHF

OVIIW) -/*,/.

(4.44)

where (i\a\l)

Illustrative results obtained by a perturbative evaluation of this functional on the
basis of a self-consistent calculation with the exact ECx are given in Table 4.3 and
Figures 4.1 and 4.2. Table 4.3 lists the correlation energies of the helium isoelectronic
series, separating the nonrelativistic from the relativistic contribution.

As is well known, the LDA overestimates the exact Ec of neutral atoms by roughly
a factor of 2. This error increases to a factor of 5 or more for highly charged ions.
Moreover, while the PW91-GGA is rather close to the exact Ec for neutral helium, the
error increases to a factor of 2 for Fm98+. Obviously, these explicit density functionals
do not scale properly with Z. The same is true for the orbital-dependent Colle-
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figure 4.1 Energy surface of He2: X-only and correlated OPM data (FC2 s Ex + £^ ))
versus LDA, HF (Silver 1980), MP2 (Woon 1994) and exact (Aziz and Slaman 1991) results.

Salvetti (CS) functional, which, however, underestimates Ec by far. On the other
hand, Equation (4.44) leads to very accurate Ec for the highly charged ions, reflecting
its systematic origin. For neutral atoms E^ and the conventional MP2 energies (also
listed in Table 4.3) bracket the exact values. Also, the relativistic corrections in Ec

obtained with E^ are almost identical with their MP2 counterparts.
Table 4.3 shows that EC ) is less accurate for neutral atoms than for positive ions.

As an example of a negative ion, the most critical case, we consider Cs~. For Cs~
£c2) amounts to 3625 mHartree, which may be compared with the nonreiativistic
value of 3593 mHartree. Lacking any information on the exact £c, we resort to an
analysis of the corresponding electron affinities (EA), for which we obtain 1.31 eV
(rel.) and 1.17 eV (nonrel.). These values are much larger than the experimental
EA of 0.47 eV, which indicates the importance of higher-order correlation terms. In
fact, the inclusion of the Epstein-Nesbet type diagrams in (4.44) reduces the EA to
0.46 eV. Nevertheless, even on the level of EC this example demonstrates (i) the mere
existence of negative ions within the OPM (which is due to the complete elimination
of the electronic self-interaction by the exact Ex), and (ii) the effect of relativity on
theEA.

One can show that E^ includes the leading component of the dispersion force
between two atoms (Engel et al. 1998a). Thus, from a fundamental point of view,
£c2) is the first xc-functional which allows a seamless description of van der Waals
bond molecules. As an example we show the energy surface of He2 in Figure 4.1
(Engelefa/. 2000a).

As is well known, the LDA is not able to reproduce the van der Waals interaction,
due to its local density-dependence. Figure 4.1 reflects this fact: in the LDA the He



RELATWISTIC DFT

0.3

141

exact
MP2/CA
PW91
CS
LDA

i(T 2 5 icr
r [Bohr]

Figure 4.2 Correlation potential of Ne: exact vc (Umrigar and Gonze 1994) versus LDA,
PW91-GGA (Perdew et al. 1992) and CS (Colle and Salvetti 1975) results as well as closure
approximation for vc (MP2/CA). Reproduced with permission from Facco Bonetti et al.
(2001). © 2001 American Physical Society.

dimer is contracted until the individual atomic densities overlap substantially. On
the other hand, the x-only OPM predicts Hei to be unbound, consistent with the HF
result. As for the behaviour of Ec for neutral atoms, the correlated OPM and the
conventional MP2 results bracket the exact variational energy surface. Thus, while
the need for higher-order correlation is again obvious, Figure 4.1 verifies the basic
ability of functionals of the type (4.44) to describe dispersion forces.

All EC -results discussed so far have been obtained by a perturbative evaluation
of EC on the basis of an x-only OPM calculation. We may thus ask to what extent,
for example, the comparatively poor EA found for Cs– is due to the lack of the
correlation component in vs. A straightforward self-consistent application of E^\
however, is not only extremely involved, it also leads to a diverging vc in the asymptotic
regime (Facco Bonetti et al. 2001). This divergence originates from the dependence
of (4.44) on unoccupied states, so that this problem can be avoided by use of a closure
approximation in the OPM process (without affecting Ec) (Facco Bonetti et al. 2001).
The resulting vc for Ne is plotted in Figure 4.2.

Figure 4.2 exhibits the complete failure of the LDA and PW91-GGA for atomic
vc. The CS potential also has little in common with the exact vc. The closure approx-
imated potential corresponding to (4.44) is the first DFT potential which at least
qualitatively follows the exact vc. The need for the inclusion of higher-order contri-
butions is apparent from the overestimation of the 'shell structure' of vc. In addition,
the asymptotic 1/r4-behaviour of the exact vc is not reproduced. Clearly, perturbative
correlation functionals like EJP cannot be the final answer to the question of which
Ec should be combined with the exact EK.



142 EXPLICIT DENSITY FUNCTIONALS

4.4 Explicit Density Functionals

4.4.1 Local density approximation

In view of the computational demands of OPM calculations and the open question for
a suitable orbital-dependent Ec explicitly density-dependent xc-functionals, i.e. the
LDA or GGA, will remain the standard in RDFT applications in the nearer future. The
RLDA is obtained from the xc-energy density ̂ ^(no) of the relativistic homo-
geneous electron gas (MacDonald and Vosko 1979; Rajagopal 1978; Ramana and
Rajagopal 1981b) by substitution of the gas density no by the local n(r). Decompos-
ing e^EG into exchange and correlation we have

] = d3r [e™°(n(r))*x.o(0) + «JEO<«<r))*c.oG&)]. (4.45)

where ß is defined by

mc

and both the exchange and correlation energy densities of the RHEG have been
factorized into their respective nonrelativistic limits and relativistic corrections factors
#x/c,o08) • While 0Xto has been known for quite some time (Akhiezer and Peletminskii
1960),

<Pc,o has only been evaluated within the RPA (Engel et al. 199Sa; Ramana and
Rajagopal 1981b). The resulting correction factor can be accurately parametrized
in the form (Schmid et al. 1998)

RPA
<"c,o iPJ i+^in^ + fc^ + WAlnW + W7' *•

which incorporates the analytically known high-density limits of both the relativis-
tic RPA as well as its nonrelativistic limit. Both #x,o and 0J{JA include the full
transverse interaction, and, to some extent, vacuum corrections beyond the no-pair
approximation (Engel and Dreizler 1996). As the relativistic form of all nonRPA
contributions to e™5** is not known, the corresponding relativistic corrections must
either be neglected (Engel et al. 1995a), using

rRDLA _ r-RRPA _ c-RPA , PLDA
cc ~~ cc cc "f" Ec '

or be taken into account in an empirical form, combining $^QA with a parametrization
for e^3 which goes beyond the RPA (Schmid et al. 1998).

Applications of (4.45)–(4.48) to atoms, however, showed that the accuracy of the
RLDA is not very satisfying (Das et al. 1980; Engel et al. 1995a; Ramana et al. 1982).
This is illustrated in Table 4.2 and Figure 4.3.
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Figure 4.3 Relativistic contribution to Ec: percentage deviation of RLDA and RGGA results
from relativistic MP2-data for Ne isoelectronic series. Reproduced with permission from Engel
et al. (1998a) © 1998 Kluwer Academic/Plenum Publishers.

A rigorous reference standard for the analysis of the RLDA exchange is provided
by x-only ROPM results. For heavy atoms the x-only RLDA ground-state energies are
off by more than 10 Hartree, which is mainly due to the incomplete elimination of the
K-shell self-interaction (see Table 4.2 (compare also MacDonald et al. 1981, 1982);
for a relativistic version of the Perdew-Zunger self-interaction correction scheme
(Perdew and Zunger 1981) see Rieger and Vogl (1995)). The picture is similar for
the correlation energy. As discussed earlier, the nonrelativistic LDA overestimates
atomic Ec by a factor of 2. At this point only the relativistic contribution to Ec, i.e.
the performance of 4>JoA, is of interest. In Figure 4.3 we plot the deviation of the
relativistic correction evaluated from Equations (4.45), (4.48) for the Ne isoelectronic
series from the corresponding MP2 data (Ishikawa and Koc 1994) (which can serve
as reference values for the present purpose, in spite of the fact that they have been
evaluated with the Coulomb-Breit interaction in Coulomb gauge and the no-pair
approximation (compare Facco Bonetti et al. 1998)). As Figure 4.3 shows, the rel-
ativistic correction in Ec is overestimated by the RLDA, the error being as large as
70% for neutral atoms.

While Equations (4.45)–(4.48) correspond to a spin-saturated RHEG, the exchange
energy has also been evaluated for a polarized RHEG (MacDonald 1983; Ramana and
Rajagopal 1979, 1981a; Xu et al. 1984), which yields the input Ex[n, m] to Equations
(4.32), (4.33) or (4.37). As its m-dependence is only implicitly given, this functional
has only rarely been used (Cortona 1989; Cortona et al. 1985; Eschrig and Servedio
1999). For magnetic systems usually the nonrelativistic LDA is utilized with (4.37)
(see, for example, Huhne et al. 1998). However, even for open-subshell atoms, the
solution of (4.35) under the assumption of spherical symmetry is nontrivial. Several
variants for handling the resulting intricate set of four coupled radial differential equa-



144 EXPLICIT DENSITY FUNCTIONALS

25

20

15

10

5

0

-5

-10

unpolarized
spin-dependent

0 10 20 30 40 50 60 70 80 90
Z

Figure 4.4 lonization potentials of neutral atoms: percentage deviation of
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tions have been suggested in the literature (Cortona 1989; Cortona et al. 1985; Ebert
1989; Forstreuter et al. 1997; Yamagami et al. 1997). Their solution is particularly
difficult for neutral atoms, so that the available results are mainly for ions. A new,
more stable scheme has been developed recently (Engel et al. 2001a). This scheme
relies on a careful analysis of the appropriate boundary conditions which allows the
identification of a suitable criterion ('quantum number') to distinguish the 'spin-up'
and 'spin-down' solutions. Its practical success is illustrated in Figure 4.4, in which
the percentage deviation of the resulting ionization potentials (IPs) of neutral atoms
from experiment is shown for the complete periodic table.

The spin-dependent treatment via (4.35) is compared with the solution of (4.27) (on
the basis of the LDA). The error of the spin-dependent IP in general is considerably
smaller than that of its unpolarized counterpart, most notably for the light atoms and
the lanthanides. On the other hand, the error is still substantial for the 3d and 4d
elements, so that the question of gradient corrections has to be raised.

4.4.2 Generalized gradient approximation

For a large variety of applications in quantum chemistry and condensed matter the-
ory, the inclusion of gradient corrections to the LDA in the form of the generalized
gradient approximation (GGA) (Becke 1988a; Perdew et al. 1992) turned out to be
advantageous (Bagno et al. 1989; Becke 1992; Johnson et al. 1993a). The direct use
of nonrelativistic GGAs in RDFT calculations, however, leads to substantial errors in
total energies, as can be seen from Table 4.2. Consequently, a relativistic extension
of the GGA (RGGA) is required. The most appropriate form of an RGGA for Ex is
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given by

jjRGGA = dr e ( n ) [ 0 x o 0 8 ) + *(£)*x,2G8)], (4.49)

with £ = [Vn/(2(3jr2rt)1/3n)]2 and g(£) being the gradient part of a nonrelativistic
GGA (Engel et al. 1996). The correction factor #x,2 can, in principle, be calculated
from the first-order response function of the RHEG. However, as this approach proved
to be already very involved in the nonrelativistic limit (Antoniewicz and Kleinman
1985; Chevary and Vosko 1990; Engel and Vosko 1990) and as the gradient function
g(£) contains some semi-empirical information anyway, a semi-empirical approach
to <£X)2 should be sufficient. Following the strategy behind the Becke GGA (Becke
1988a), a reasonably accurate #x,2 may be obtained by making a sufficiently flexible
ansatz (in the form of a Fade approximant) and fitting its coefficients to the exact
relativistic Ex of a number of closed-subshell atoms (keeping the form of g(%) fixed)
(Engel et al. 1996, 1998b). Corresponding fits have been performed for the two most
frequently used forms of GGAs (Becke 1988a; Perdew et al. 1992), the resulting <£x,2
being very similar. As is demonstrated in Table 4.2 for the PW91- version, the RGGA
leads to much more accurate atomic EK (and vx) than both the RLDA and the GGA.

The correlation functional requires a slightly different scheme, as, on the one hand,
the RLDA is not known completely, and, on the other, some GGAs for Ec (Lee et al.
1988) are not based on the LDA. Therefore, only one overall correction factor for the
complete correlation part of the GGA has been used,

GGA 3 GGA[n] = /E [ n ] = d r e ( n , (Vn)

keeping the nonrelativistic form eGGA(«, (Vn)2, . . . ) fixed (Engel et al. 1998b). In
view of the fact that the relativistic corrections to atomic Ec are much smaller than
those to atomic Ex this less sophisticated approach should be sufficient. Again a Fade
approximant has been used as ansatz for 0°°^ Its coefficients have been fitted to the
most systematic set of relativistic Ec available (MP2 results for the Ne isoelectronic
series on the basis of the DCB Hamiltonian (Ishikawa and Koc 1994)), starting from
two different eGGA (Lee et al. 1988; Perdew et al. 1992). As Figure 4.3 shows, atomic
Ec are clearly improved by this RGGA.

In contrast to the rather inaccurate RLDA, the RGGA allows an examination of the
importance of relativistic corrections to £xc[«] for the properties of molecules and
solids. This question has been investigated both for noble-metal compounds (Mayer
etal. 1996; Vargas al. 1999) and for metallic gold and platinum (Schmide? al. 1998)
within the framework of LAPW calculations (Blaha et al. 1995). Prototype results
for Cui and Au2 are given in Table 4.4.

It turns out that even for Au, which usually exhibits the effects of relativity most
clearly (Pyykkd 1988), the impact of the correction factors <£x/c on the molecular
binding properties is marginal, i.e. smaller than usual differences between two basis
sets. It seems worthwhile pointing out that in the case of the dissociation energy the
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Table 4A Spectroscopic parameters of noble-metal dimers: PP (Engel et al. 2001b) versus
AE results for both LDA and BP86-GGA.

RC DC We RC DC £Ue
Mode Exc (Bohr) (eV) (cm-1) (Bohr) (eV) (cm-1)

PP
AE

PP
AE
AE
AE
AE
Exp.

LDA
LDAa'b

GGA
GGAa

RGGAa

GGAC

RGGAC

4.04
4.05

4.16
4.17
4.20
4.21
4.20

2.83
2.86

2.28
2.27
3.27
3.27
2.05

304
307

287
285
283
282
265

4.61
4.64

4.72
4.75
4.76
4.78
4.79
4.67

3.02
3.00

2.38
2.30
2.27

(3.19)
(3.17)
2.30

198
1%

179
179
177
188
187
191

aMayer et al (1996); bLiu and van Wttllen (2000); 'Varga et al. (2000b), the Dc in parentheses
correspond to unpolarized atomic ground-state energies.

Table 4.5 Lattice constant OQ and cohesive energy Ecoh of Au and Pt obtained from LAPW
calculations with various xc-functionals in comparison to experiment (Brewer 1977; Khein et
al. 1995). Reproduced with permission from Schmid et al. (1999). © 1999 Academic Press.

Au Pt

00 -Ecoh 00
(Bohr) (eV) (Bohr) (eV)

LDA 7.68 4.12 7.36 6.76
RLDA 7.68 4.09 7.37 6.73
GGA 7.87 2.91 7.51 5.34
RGGA 7.88 2.89 7.52 5.30

Exp. 7.67 3.78 7.40 5.85

similarity of GGA and RGGA results is due to the cancellation of the large relativistic
corrections to the individual ground-state energies of the molecule and its constituents.
The same observation is made for solids, as can be gleaned from Table 4.5.

On the other hand, a comparison of the (R)GGA results in Tables 4.4 and 4.5 with
experiment reveals the limitations of GGAs for heavy elements. For both Au2 and the
Au metal the gradient terms overcorrect the errors of the LDA. It seems worthwhile
noting that the particularly large deviations in the case of the metal are not due to the
usual neglect of the spin-orbit coupling for the valence electrons within the LAPW
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Table 4.6 Cohesive properties of 5d metals from LDA-LAPW calculations with (+SO) and
without (—SO) spin—orbit coupling of the valence electrons.

00 ~£coh #0
(Bohr) (eV) (GPa)

-SO 5.93 10.47 335
W +SO 5.94 10.72 316

Exp. 5.98 8.90 310

Ir

Au

-SO
+SO
Exp.

-SO
+SO
Exp.

7.22
7.22
7.26

7.67
7.65
7.67

9.45
9.58
6.93

4.29
4.23
3.78

419
377
355

214
217
171

approach. Table 4.6 provides a comparison of LAPW results with and without spin-
orbit coupling for some 5d metals (on the basis of the LDA).

While spin—orbit coupling contributes significantly to the cohesive energy, its
effect is too small to explain the differences between GGA and experimental data
in Table 4.5. Thus, on the one hand, the results in Tables 4.4 and 4.5 illustrate the role
of error cancellation, in particular for the LDA. On the other hand, they indicate the
need for fundamentally new concepts for Exc[n] (such as implicit functionals) in the
relativistic regime.

4.5 Norm-Conserving Pseudopotentials

A particularly efficient method for the inclusion of relativity in electronic structure
calculations is the pseudopotential (PP) approach. In the framework of DFT usually
norm-conserving PPs (Bachelet et al. 1982; Hamann et al. 1979; Troullier and Martins
1991) are applied for this purpose. The standard form of norm-conserving PPs is given
by

- r') + ^-1

£
1=0 j=l±l/2

x > > I -ri—-vn*n(r) -uw(r) I Y^/—/

(4.50)

where the individual components vps,lj correspond to the various relevant valence
states of the atom (and as usual a local component vloc has been extracted from
the vps,lj). In (4.50) a j-average is used to generate j-independent PPs as DFT PP
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calculations are typically based on nonrelativistic (spin-) density functional theory.
However, the vps,lj could equally well be utilized in relativistic PP calculations, similar
to energy-adjusted PPs (Seth et al. 1997). The construction of the vps,lj proceeds in
three steps. First an all-electron (AE) calculation is performed for the atom of interest,
utilizing the n-dependent version of RDFT. Next, a screened PP u* l . is generated
from the results of the AE calculation, requiring the lowest eigenstate obtained from
"ps //' ^e pseudo-orbital (PO), to be identical with the corresponding AE orbital for
r larger than a suitably chosen cut-off radius rc,l. Finally, the interaction among the
valence electrons is eliminated from vsc

ps,lj. The simplest form for this unscreening
reads

Vpsjj(r) - v*jj(r) - VH([«V>PS]; r) - i>xc([«v,ps]; r), (4.51)

where nv,ps is the valence density obtained from the POs. In (4.51) the nonlinear con-
tributions to the core-valence interaction, resulting from the nonlinearity of Exc[n],
are neglected. While this is an acceptable approximation for first- and second-row
atoms, the nonlinearity of the core—valence interaction cannot be ignored in LDA or
GGA calculations for many others, most notably the transition-metal elements. In
this case, the inclusion of nonlinear core corrections (NLCCs) is necessary (Louie et
al. 1982).

Among the various schemes for the construction of vsc
ps,lj presently the Troullier—

Martins (TM) form (Troullier and Martins 1991) seems to be most widely used.
However, in contrast to the original approach (Bachelet et al. 1982; Hamann et al
1979) the TM scheme has been formulated for nonrelativistic situations. A consistent
relativistic extension (Engel et al. 2001b) is presented in the next section.

4.5.1 Relativistic Troullier—Martins scheme

For atoms Equation (4.27) reduces to two coupled radial equations for the large and
small components of the orbitals,

(dr + ̂ \an,j(r) = (2mc2 - vs(r) + €„/,-)*»*/, (r), (4.52)

(dr - ^ V/,(r) = (us(r) - *„/,)*„/,(/•) (4.53)

(Equations (4.52), (4.53) imply a spherical average in the case of open subshells, K =
-20' — /)C/ + j)-) The corresponding components of the PO satisfy Equations (4.52),
(4.53) with vs replaced by v* /y . Given the AE solutions of Equations (4.52), (4.53)
the explicit construction of v!* 7 starts with an ansatz for the large component of the
PO,

1anij(r) forr > rc,/, *
. P(r) = 2^

rl+l exp[p(r)] forr^rc , / , J=0
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For valence states for which the associated screened PP has a depth of no more than
100 Hartree, v™ , , can then be extracted from (4.52), (4.53), using a weakly relativistic

ps,<./
expansion,

vs forr > rcj,,sc _ J

ij for r ^ rcj,

sc,nr f ,
W=^ + — -

/..sc.nr \

r̂)'

where the primes denote derivatives with respect to r. The corresponding small com-
ponent bpsjj of the PO then follows from (4.52). Finally, the coefficients c2i are
determined by requiring continuity of aps,lj and its first four derivatives at rc,l, proper
normalization as well as a smooth PP at the origin, (i>p^'™)"(0) = 0.

Prototype LDA and GGA results obtained with these PPs are given in Tables 4.4
and 4.7. As Table 4.4 demonstrates, the PP calculations reproduce the AE results for
both Cu2 (Mayer et al. 1996) and Au2 (Liu and van Wullen 2000) very accurately, both
on the LDA and on the GGA level. Similar agreement is found for the transition-metal
compounds listed in Table 4.7, for which, however, only nonrelativistic AE reference
values (Castro and Salahub 1994; Engel et al. 2001b) are available.

Nevertheless, the relativistic corrections are not negligible even for these 3d ele-
ments. In fact, in the case of FeO relativity reduces the excitation energy from the
5 A ground state to the first excited state (5 E ) from the nonrelativistic value of 0.4 e V
to 0.2 eV. On the other hand, the comparison of the LDA results with experiment
clearly shows the need for nonlocal corrections. The GGA results are consistently
closer to the experimental data, in particular for Re. The GGA values for De are
nonetheless not completely satisfying, which underlines the importance of the truly
nonlocal contributions to Exc.

4.5.2 Results for the exact exchange

The use of PPs is particularly attractive in the case of implicit xc-functionals. Even
an x-only calculation within the KLI approximation (4.42), (4.43) is computationally
more demanding than corresponding LDA or GGA calculations as an evaluation of
the Slater integrals in (4.24) or (4.25) is required. PPs for the exact Ex have been
introduced both on the KLI level (Bylander and Kleinman 1995a) and for the full
OPM (Hock and Engel 1998; Moukara et al. 2000). However, it was noted very
early on that standard norm-conserving PPs for the exact Ex suffer from a spurious
long-range exchange component in the ionic PP (Bylander and Kleinman 1995a).
This xc-tail originates from the nonloeality of Ex, which leads to a contribution of
the core states to the exchange potential in the valence regime. This feature of the
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Table 4.7 Spectroscopic parameters of transition-metal compounds: PP versus AE (Castro
and Salahub 1994; Engel et al. 2001b) results and experimental data (Cheung et al. 1981;
Moskovits and DiLella 1980; Moskovits et al. 1984; Murad 1980; Purdum et al. 1982). For 3d
elements the valence space includes the complete M shell. NLCCs have been used.

nonrelativistic lelativistic

Mode EXC (Bohr) (eV) (cm-1) (Bohr) (eV) (cm-1)

FC2
7A

FeO
5A

FeO
5E

AE
PP
PP

Exp.

AE
PP
PP

Exp.

AE
PP

LDA
LDA
GGA

LDA
LDA
GGA

LDA
LDA

3.68
3.68

3.01
2.99

3.06
3.04

4.38
4.31

7.06
7.00

6.70
6.60

497
440

957
968

942
947

3.66
3.77
3.82

2.97
3.04
3.06

3.01

3.95
2.67
1.30

6.80
5.36
4.06

6.59

451
414
300

984
913
881

969

Table 4.8 Equilibrium lattice constant a, cohesive energy Ecoh and bulk modulus B of
FCC Al: Exact exchange in comparison with LDA results.

Mode
a Ecoh B

(Bohr) (eV/atom) (GPa)

Exact
Exact
LDA

—
—

LDA

OPM-PP
SC-OPM-PP

LDA-PP+NLCC

7.10
7.79
7.48

3.98
1.37
4.05

135
71
88

Exp. 7.65 3.39 77

core-valence interaction cannot be eliminated by (4.51). In applications to molecules
or solids the xc-tail leads to a spurious ionic force which prevents accurate structural
optimizations, in particular for solids.

As an example we show FCC aluminium in Table 4.8. The original OPM-PP for the
exact Ex yields a lattice constant which is much too small, although the bond length
of Al2 is overestimated by an AE-OPM calculation (Engel et al. 2001c).

In order to eliminate the spurious xc-tail, a self—consistent scheme for the generation
of norm-conserving PP has been developed (Engel et al. 2001c). In this parameter-
free scheme the screened PP is iterated until its asymptotic structure matches that of
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Table 4.9 s—p and p—p transfer energies of first-row atoms: PP versus AE x-only OPM
results versus LDA data (all energies in eV).

2s;-+2pt 2pt-*2P4

Mode

Be AE
PP
PP+NLCC

B AE
PP
PP+NLCC

C AE
PP
PP+NLCC

LDA

2.47
2.37
2.46

3.23
3.00
3.21

4.05
3.68
4.01

OPM

1.67
1.67

2.13
2.16

2.46
2.50

Mode

C AE
PP
PP+NLCC

N AE
PP
PP+NLCC

O AE
PP
PP+NLCC

LDA

1.20
1.34
1.21

2.70
2.98
2.73

1.48
1.62
1.49

OPM

1.35
1.35

3.24
3.26

1.93
1.95

vXC([nV,PS]; r) in (4.51), so that the final unscreened PP vps,lj has the correct ionic
behaviour. The resulting PPs (SC-OPM-PP) substantially improve OPM results for
molecules and solids, as can be seen from Table 4.8. While the cohesive energy
reflects the missing correlation energy, both the lattice constant and the bulk modulus
are clearly closer to the experimental values than the original OPM-PP data.

It seems worthwhile emphasizing that, apart from the fact that they lead to the
spurious xe-tail, the nonlinear contributions to the core-valence interaction seem to
be less important for the exact Ex than for the LDA. This is illustrated in Table 4.9,
which lists atomic excitation energies associated with the transfer of an electron from
one spin channel into the other. While in the case of the LDA, NLCCs are required for
the accurate reproduction of these transfer energies, linear unscreening is sufficient
for the exact EK.

As already noted in Section 4.4, the exact Ex provides a standard that can be used
to analyse conventional density functionals. As an example we show in Figure 4.5 the
vx of bulk aluminium obtained within the PP approach.

The solution of (4.38) (in a plane-wave basis) is compared with the KLI approxi-
mation as well as the corresponding LDA and PW91-GGA potentials (Schmid 2000).
While the LDA is reasonably close to the exact vK (at least if we exclude the vicinity
of the atomic core), the GGA is much less accurate, in spite of the improved cohesive
properties found with the GGA (Fuchs et al. 1998). Even in the interstitial regime the
gradient contributions to the GGA potential have the wrong sign. This demonstrates
once more that the performance of GGAs is to some extent based on the cancellation
of local errors (Engel and Vosko 1993). The KLI approximation, on the other hand,
just underestimates the shell structure in the exact vx.

As a final example of the application of the exact Ex, the band structure of FeO in
AFM-II structure is plotted in Figure 4.6.
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Figure 4.5 Exchange potential of FCC Al in [110] direction: full OPM versus KLI approxi-
mation, LDA and PW91-GGA (Ecut = 100 Ryd, 44 special k-points, 750 states (per k-point)

Gk; •, the position of the atom).
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For this PP calculation the exact Ex has been combined with the LDA for Ec. In
spite of the use of the exact exchange functional, FeO is predicted to be a metal, in
contrast to experiment. At present, it is not clear whether this failure to reproduce
the insulating ground state of FeO originates from the use of the LDA for Ec or
from the technical limitations of the PP calculation (KLI approximation for vx, only
three special k-points for the integration over the Brillouin zone, 3s electrons in the
core). It must be emphasized, however, that the band structure shown in Figure 4.6 is
rather different from its LDA counterpart (Dufek et al 1994), which emphasizes the
importance of the exact vx for this system.

4.6 Applications of RDFT using the Relativistic
Discrete Variational Method

In this section a summary of four-component molecular density functional calcula-
tions within the RDVM (Rosen and Ellis 1975) is given. In the RDVM we restrict
ourselves to the no-pair limit of RDFT, since QED effects are irrelevant for chemical
bonding. On the other hand, all relevant relativistic effects are fully included a priori.
The starting point for the molecular calculations is the purely n-dependent version
of RDFT, Equations (4.26)–(4.28), with neglect of EH

T- Accordingly, the total energy
consists of the kinetic energy (4.18), the external energy (4.9) with inclusion of the
associated ionic interaction energy,

= d
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Y K U K

Figure 4.6 Band structure of FeO from OPM-PP calculation with exact Ex and LDA corre-
lation. The dashed line represents ep (KLI approximation, 3p, 3d, 4s states of Fe in valence
space, Ecut = 250 Ryd, three special k -points).

where

-r

the Coulomb contribution to the Hartree energy (4.19) and the xc-energy. The molecu-
lar wave functions fa in the RDVM are linear combinations of numerical atom-centred
Dirac spinors £M,

(/x = (inkm)). An important computational simplification is obtained by the decom-
position of the molecular orbital basis into a symmetry-adapted basis according to the
irreducible representations of the molecular point (double) group (Meyer et al. 1996).
Equation (4.27) is thus recast as an algebraic eigenvalue problem. The correspond-
ing matrix elements are evaluated with the highly accurate multicentre integration
scheme of Boerrigter et al (1988). It is based on a clever partitioning of the whole
space into so-called Voronoi cells around each atom. These cells have the shape of
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Wigner—Seitz—type cells. The singularities caused by the cusps of relativistic wave
functions at the nuclear sites are eliminated by suitable transformations of the sample
points, which leads to an improved numerical representation of the wave functions
(Bastug et al. 1995). With this method, a total of approximately 1400 sample points is
needed to achieve a relative accuracy of 10-8 in calculations for diatomic molecules.

The most difficult step in this molecular approach is the evaluation of the Hartree
potential vH = v0

H Equation (4.22) and the Hartree energy (4.19). In the present
version of the RDVM vH is obtained by utilizing an auxiliary charge density n(r),
which is related to the full density (4.26) by

n(r) = n(r) + An(r).

n(r) is expanded as

Natom MI Lj /

*<r> = E E E E Q'im \f/(n)f YlmM, (4.55)
i j 1=0 m=-l

where i runs over all atoms (symmetry equivalent centres), f/ represents the jth basis
function at centre i and j runs over all orbitals of interest The coefficients Qil

jm are
determined by a least-squares fit of n to the complete n in such a way that the total
electronic charge is conserved. In (4.28) VH is then approximated by the electrostatic
potential corresponding to (4.55),

. . |ijlm

x [jT' dr'r" |/j(r',-)|2 + r?+l £" dr'p^|/;V)|2], (4.56)

while EH is approximated by

EH * J d3rn(r)vn(r) - ^J d3r n(r)t)H(r),

so that only terms of second order in An are neglected. It has been shown that this
procedure not only provides an efficient computational scheme, but also yields a
variationally consistent total energy (Bastug et al. 1995).

4.6.1 Results

In this section we give some exemplary results from RDVM calculations using the
Slater expression for Exc (with Xa = 0.7). In Table 4.10 the spectroscopic parameters
of some heavy diatomic molecules obtained by the RDVM (Bastug et al. 1997a)
are compared with relativistic configuration interaction (RCI) data on the basis of
relativistic effective core potentials (RECPs). An interesting result of this investigation
is the observation that the binding energies from relativistic calculations are smaller
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Table 4.10 Spectroscopic parameters of some heavy dimers: relativistic and nonrelativistic
DVM results versus RECP-RCI data.

molecule method Re (Bohr) De (eV) w e ( c m - 1 )

T12

Pb2

Bi2

RECP-RCI3

AE-RDVM
AE-DVM
Exp.d

RECP-RCIb

AE-RDVM
AE-DVM
Exp.e

RECP-RCIC

AE-RDVM
AE-DVM
Exp.f

6.69
6.13
6.24
5.67

5.61
5.68
5.72

5.27
5.16
5.23
5.03

0.16
0.63
1.41
0.43

0.88
1.33
3.35
1.02

2.30
2.88
5.51
2.04

39
66
76
80

103
110
119
108

170
175
189
173

aChristiansen (1983); bBalasubramanian and Pitzer (1983); cChristiansen (1984); dFroben et
al (1983); eStranz and Khanna (1981); fHuber and Herzberg (1950).

than their nonrelativistic counterparts (AE-DVM). This can be understood by an
analysis of the molecular valence orbitals: for T12 and Pb2 they are of 5<a)-type, for
Bi2 there are four 3(<r)-type and two |(jr)-type orbitals. These orbitals are mainly
linear combinations of atomic 6p1/2 and 6p3/2 wave functions of the constituent
atoms. As a result of spin—orbit splitting, the 6p(3/2) state is less bound, which leads
to a weaker bonding in the relativistic case.

In another study the geometric and electronic structures of highly symmetric neutral
and multiply charged Cx+

60 (x = 0–7) fullerenes were investigated (Bastug et al.
1997b). From these calculations we can estimate that stable Cx+

60 clusters should exist
up to x — 13. This value can be compared with a value of at least x = 9 obtained
from slow ion impact experiments (Jin et al. 1996). Another theoretical investigation
predicted a critical charge of x = 16 (Seifert et al. 1996).

The binding energies for the molecules calculated so far systematically overesti-
mate the experimental data, which is a hint that a better description of the xc-energy
is required. For that purpose, the RDVM was extended using the xc-functionals dis-
cussed in Section 4.4. Results for some diatomic molecules have already been pre-
sented in Table 4.4.

4.6.2 Geometry optimization

To obtain equilibrium geometries for small molecules and clusters we have imple-
mented a variable metric method which is based on a quasi-Newton scheme and is
widely used in optimization theory (Lipkowitz and Boyd 1993; Schlegel 1987). In this



156 APPLICATIONS OF RDFT

method the energy surface E(R) is expanded around the present set of internuclear
distances Rk up to second order. An improved geometry Rk+1 can then be obtained
by

Rk+i =Rk~ *-kHj~gk, (4.57)

where H denotes the matrix of the second derivatives (Hessian), g — dE/dR and A.
is a step-length parameter. Due to the huge computational effort required, H cannot
be calculated directly. It can, however, be approximated by the displacements and
the gradients of previous steps. Iterative use of (4.57) finally leads to the equilibrium
geometry.

For the calculation of the energy gradient we follow the computational scheme
applied in nonrelativistic codes (Foumier et al. 1989; Satoko 1981, 1984; Versluis
and Ziegler 1988). The only contribution to the total energy which explicitly depends
on the nuclear coordinates is the energy (4.54). The force on nucleus a can thus
be obtained by calculating the first derivative of (4.54) with respect to the nuclear
coordinates Ra,

-J,, (4.58)

This so-called Hellmann–—Feynman force (HFF) represents the electrostatic interaction
between the negatively charged electrons and the nuclei as well as the interaction
among the nuclei. Equation (4.58) would describe the forces correctly for an exact
solution of the Dirac equation. However, in practical calculations we have to introduce
approximations which have a rather large influence on the forces. There are two such
'artificial' forces resulting from the following.

A. Finite-basis sets. The molecular wave functions are represented as a finite sum of
atom-centred four-component basis functions, which causes a spurious force often
called orbital basis correction (OBC) (also known as Pulay force (Pulay 1983)).
For an atom centred at Ra it reads

+ text + vH +vxc — £/)£v + C.C.

Here, /* runs over the basis functions centred at position Ra, while v runs over all
basis functions.

B. Charge density fit The approximation of VH by (4.56) leads to the density fit
correction (DFC) (again for an atom at

DFC
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Table 4.11 Analytical versus numerical gradient for Au2.

force (Hartree/Bohr)

R (Bohr) De (eV) numerical analytical HFF OBC DFC

4.5
4.6
4.65
4.7
4.75
4.8
4.9

-2.977
-3.051
-3.069
-3.076
-3.074
-3.064
-3.023

-0.038
-0.018
-0.009
-0.001

0.005
0.011
0.020

-0.037
-0.018
-0.009
-0.001

0.004
0.011
0.020

1.954
2.091
2.147
2.194
2.236
2.270
2.320

-1.905
-2.028
-2.078
-2.122
-2.159
-2.190
-2.237

-0.087
-0.081
-0.078
-0.075
-0.072
-0.069
-0.063

Table 4.12 Estimated M—F bond lengths (in Bohrs) of MF6 compounds (M = U, Np,
Pu). The calculations were performed in Oh,-symmetry. In the RECP calculations the
Becke—Lee—Yang—Parr GGA has been applied.

Method UF6 NpF6 PuF6

AE-RLDA
RECP-LDAa

RECP-GGA3

RECP-GGAb

Exp.c

3.79
3.87
3.97
3.86
3.77

3.76

3.87
3.74

3.76
3.81

3.82
3.72

aGagliardi et al. (1998); bHay and Martin (1998); cWeinstock and Goodman (1965).

The total energy gradient used in (4.57) is thus given by

*L „(*£.}
dRa \d/?a/ (DEC

(4.59)

To check the accuracy of the analytical energy gradient (4.59) we have calculated
both (4.59) and the numerical gradient for Au2 (using the RLDA). In this case, the
numerical force can be obtained easily by numerical differentiation of E(R) via a two-
point formula. As can be seen from Table 4.11, the analytical gradient is in very good
agreement with the numerical gradient. Moreover, the force vanishes at the minimum
of the binding energy at about 4.71 Bohr. It is worth noting that the artificial gradient
terms are of the same order of magnitude as the physical Helhnann—Feynman force.
They exactly compensate the errors introduced by the use of finite atom-centred basis
sets and the approximate treatment of vH-

In Table 4.12 our results of geometry optimizations for the hexafluoride actinide
compounds UF6, NpF6 and PuF6 are compared with results of RECP calculations,
using different xc-functionals. The optimized bond lengths obtained with the RDVM
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on the level of the RLDA are in very good agreement with the experimental data.
Moreover, the RLDA result for UF6 is very close to the value of 3.77 Bohr obtained by
a DCB calculation (Jong and Nieuwpoort 19%). The RECP values, on the other hand,
overestimate the bond lengths substantially. In addition, the bond-length reduction
from UF6 to NpF6 is not reproduced by the RECP calculations.

4.63 Adsorption on surfaces

Another investigation was dedicated to the question whether the RDVM is able to
describe adsorption processes on surfaces. In a first conceptual study we have calcu-
lated the binding energy of a single barium adatom on a barium(110) surface, varying
the distance perpendicular to the surface (Geschke et al. 2000) (within the Slater-Xa

approximation for Exc). A first investigation showed that the adatom is preferably
adsorbed at a hollow position, as shown in Figure 4.7. The Ba surface was modelled
by an atomic cluster, consisting of four first- and five second-layer atoms in the most
restricted case. The internuclear distances in the cluster were kept fixed at the bulk
values, i.e. relaxation effects were not considered. In order to check the sensitivity
of the results to the size of the cluster the number of atoms in the first layer was
further increased laterally up to 12 atoms. As can be seen from Figure 4.7, which
shows the binding energy of the adatom as a function of the distance to the surface,
the cluster approach is justified at least for the system chosen here. The differences of
the potential energy curves around the equilibrium distance between the simulation
of the surface by a 13-atom cluster and that by a 17-atom cluster are marginal.

We have also investigated the adsorption of a carbon oxide molecule on a platinum
(lll)-surface, comparing different adsorption sites. Due to its catalytic properties
there exists an enormous interest in the chemistry of Pt surfaces. In particular, the
adsorption of CO on Pt(l 11) has been extensively studied both experimentally (Ertl
etal 1977;Froitzheim et al. 1977;Seebauer et al. 1982) and theoretically (Brako and
Sokcevic 1998; Hammer et al. 1996; Kopalj and Causa 1999; Lynch and Hu 2000).
Our results are consistent with the experimental observation that the CO molecule
is preferably adsorbed in an on-top position, in which the internuclear axis of CO
is perpendicular to the surface and the carbon atom sits directly above a Pt surface
atom (Seebauer et al. 1982). This result emphasizes the importance of relativity, as a
corresponding nonrelativistic calculation predicts a bridge position to be energetically
preferred (Philipsen et al 1997). Detailed data are given for the on-top position in
Table 4.13. In our calculations for this geometry the surface was modelled by an
atomic cluster with seven atoms in a first layer and six atoms representing a second
layer. The RLDA value for the distance between the C atom and the closest Pt atom in
the surface is in very good agreement with experiment. On the other hand, the binding
energy is overestimated by the RLDA, even though, in view of the influence of the
coverage, the recent experimental value of 1.89 ± 0.20 eV (Yeo et al 1997) obtained
for low coverages has to be taken with a grain of salt. This deviation is significantly
reduced by use of the RGGA (employing the relativistic form (4.49) of the Becke
GGA (Becke 1988a) for EK and the Perdew GGA for Ec (Perdew 1986a)).



RELATIVISTIC DFT 159

o.l

OQ -0.4

-0.5

-0.6

i r
• 10 atoms
• 14 atoms
• 18 atoms

A• 0
t\

*'• m
* *

^ "" * <

-0 m
•• 1 3.420 a.ur— -

^

r
^

9.490 a.u.

•^

8 9 10 11 12

Distance R to surface in a.u.

14

Figure 4.7 Potential energy curves of an adsorbed Ba atom in the hollow position on
a Ba(l 10) surface for different cluster sizes.

Table 4.13 Distance of C atom to closest Pt atom in the surface (Rpt-c) and binding energy
(Eb) for CO adsorbed on Pt(l11) in the on-top position: RDVM results versus complete active
space self-consistent-field data (CASSCF) (Roszak and Balasubramanian 1995) and GGA
results within the zeroth-order regular approximation (ZORA) (Philipsen et al. 1997). Exp.
Ogletree et al. (1986).

method

RDVM RLDA
RDVM RGGA
CASSCF
ZORA GGA
Exp.

Rpt-C (Bohr)

3.50
3.57
3.84
3.59

3.49 ±0.19

Eb (eV)

3.25
2.30
1.44
1.41

1.89 ±0.20

model

two-layer cluster
two-layer cluster

two-layer slab

From the results given in this paragraph we can conclude that the RDVM gives
realistic data within a reasonable computing time even for such complex systems.

4.6.4 Improved numerical integration scheme

The most time-consuming step in RDVM calculations is the numerical evaluation of
multicentre matrix elements. Although the Baerends integration scheme used so far
(te Velde and Baerends 1992) is rather accurate and efficient due to the partitioning
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Table 4.14 Comparison of the Baerends integration scheme with new method: total charge
and energy of neutral RfCl4 (172 elections) for different numbers of sample points ntot (<$B«
relative accuracy in the Baerends method; 50, relative accuracy in the angular integration of
the new scheme). The values in parentheses denote the number of radial points used in the new
scheme.

8

1.0 x 1(T-6

SB 1.0 x 10–8

1.0 x 10-10

1.0 x 10–11

1.0 x 10–3

1.0 x 10–5

8n 0.3 x 10–6

1.0 x 10–7

0.3 x 10–7

ntot

4442
8753

15716
25934

589
2646
8776

14125
22247

(42)
(80)

(109)
(119)
(128)

Q

172.00076
172.0000024
172.00000047
172.00000040

171.99910
172.000016
172.000001 1
172.00000038
172.000000019

-Etot (Hartree)

40491.4
40490.991
40490.93052
40490.930497

40490.88
40490.9294
40490.930435
40490.930433
40490.930414

of the complete integration area into smaller subregions, this scheme still suffers
from the discontinuities between different subregions. In order to avoid numerical
inaccuracies a large number of sample points is necessary in these critical regions.
Hence, for very large systems or for molecules of low symmetry too many sample
points are required.

We have implemented a new integration scheme which requires fewer grid points
(Heitmann et al 2001). We followed the basic concept of decomposing the whole
space into smaller subregions via overlapping cell functions ZA (r ) (Becke 1988b;
Becke and Dickinson 1988; Perez- Jorda et al. 1994) in order to reduce the multicentre
integrals to integrals of lower dimensions (Ishikawa et al. 1999),

(
J

F(r)d3r =

The z A (r) are chosen so that they tend to 1 in the vicinity of atom A but drop to zero
in the direction of all other nuclei. Thus, even for integrals involving atomic basis
functions of two different atoms the integrand of each contribution I A has no more
than one singular point. The integration can be further simplified by suitable trans-
formations to intrinsic coordinates, e.g. elliptic-hyperbolic coordinates for diatomic
molecules or spherical coordinates for polyatomic systems.

In Table 4.14 the performance of this new integration scheme is compared with that
of the Baerends method for the case of RfCl4 (for fixed Td symmetry), focusing on the
most basic properties, the total charge and energy. Since Rf is the first transactinide
element with nuclear charge Z = 104, this 'test system' offers the possibility to study
the performance of the integration scheme in the high-Z regime. It can be seen that
with the new method the same accuracy is reached for both Q and Etot with half as
many grid points as in the case of the Baerends scheme.
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5.1 Introduction

Relativistic influences on the electronic properties of solids have been known for quite
a long time. One of the most prominent examples of these is the position of the optical
absorption edge of Au. Compared with that of Ag, this is higher in energy giving rise
to the characteristic yellow colour of Au (Christensen and Seraphin 1971). If the
properties of a solid that are determined by the electronic structure at the Fermi level
are considered, it is often the case that scalar relativistic effects are most important.
For transition-metal systems these have a very strong impact on the relative position
of the sp and d bands and therefore on the density of states at the Fermi energy.
As a consequence the electronic specific heat and magnetic susceptibility may be
influenced in a very pronounced way by relativistic effects (Liu et al. 1979). More
examples of this are the quadrupolar and magnetic hyperfine interactions (Pyykko et
al 1973). Because these take place in the vicinity of the nucleus, where relativistic
influences on the electrons are most pronounced, these will show up even for relatively
light elements (Tterlikkis et al 1968).

As implied by the term scalar, the corresponding relativistic corrections do not
influence the symmetry of a system. In particular, they do not involve the spin operator,
leaving the spin quantum number as a good quantum number even for a magnetic
solid. The spin–orbit coupling on the other hand, removes degeneracies because it
couples the two spin subsystems. For magnetic solids this has many far-reaching
consequences, which will be the main focus of this contribution. Compared with its
nonmagnetic state, spin–orbit coupling obviously gives rise for a magnetic solid to a
lowering of its symmetry that is reflected by an anisotropy for more or less any of its
physical properties. Concerning the optical properties of a magnetic solid, this leads,
for example, to the Faraday and Kerr effects, discoveries of the 19th century, and
could be ascribed to the presence of spin–orbit coupling in the 1930s (Hulme 1932).
Further examples are the anomalous Hall resistivity and magnetoresistance (McGuire
and Potter 1975) as well as the magnetocrystalline anisotropy and the magnetostriction
(Bruno 1993). These examples demonstrate that many physical phenomena caused

Relativistic Effects in Heavy-Element Chemistry and Physics. Edited by B. A. Hess
© 2003 John Wiley & Sons Ltd
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by spin–orbit coupling have very important applications in everyday technology.
To some extent this explains the numerous theoretical research activities at present
underway in this field. In addition, these are strongly motivated by the discovery
of new phenomena found during the last two decades in electronic spectroscopy
using synchrotron radiation of well-defined polarization. The most prominent of these
effects is the magnetic dichroism in X-ray absorption in its linear (van der Laan et
al 1986) and circular (Schutz et al 1987) versions. This magneto—optical effect is
now an established tool for the investigation of the spin and orbital moments of an
absorber atom on the basis of the so—called sum rules (Carra et al. 1993; Schutz et
al 1993; Thole et al 1992; Wienke et al. 1991) and is also exploited for element-
specific domain imaging (Fischer et al 1999;Stohr et al. 1999). Interestingly, circular
dichroism has not only been intensively investigated for magnetic solids, but has been
predicted to also occur for superconducting systems (Capelle et al 1997).

The first band-structure calculations aiming to calculate spin—orbit—induced prop-
erties in magnetic solids have been done by Callaway and co—workers (Callaway and
Wang 1973). These authors and later on many others (Antropov et al 1995; Brooks
and Kelly 1983; Eriksson et al 1990b; Lim et al 1991; Min and Jang 1991; Sticht
and Kubler 1985; Temmerman and Sterne 1990; Wang et al 1995) accounted for
spin—orbit coupling in the variational step with the unperturbed Hamiltonian matrix
describing a spin-polarized system. As an alternative to this approach it was sug-
gested to perform band-structure calculations on the basis of the Dirac equation for
a spin-dependent potential to deal with all relativistic effects and magnetic ordering
on the same level (Doniach and Sommers 1981; Feder et al. 1983; Strange et al
1984). During the last few years several conventional band-structure schemes have
been adopted to fit into this framework (Ebert 1988; Krutzen and Springelkamp 1989;
Solovyev et al 1989). In particular, multiple scattering theory, which leads directly to
the electronic Green function, has been generalized in an appropriate way (Schadler
et al 1987; Strange et al 1989). Because of its great flexibility, this approach has been
used for most of the investigations to be reviewed in this contribution. Accordingly,
relativistic multiple scattering theory for magnetic solids will be briefly sketched in
the next section.

Nearly all theoretical investigations of the consequences of spin—orbit coupling for
magnetic solids that can be found in the literature are done within the framework of
density functional theory. As discussed in Chapter 4, relativistic spin density func-
tional theory supplies in principle a consistent formal platform for this type of inves-
tigations. In many applications, however, it was found that the calculations based on
relativistic spin density functional theory could reproduce experimental findings only
in a semi-quantitative way. This applies in particular if we study properties connected
with the spin—orbit-induced orbital current density. To cure the shortcomings of plain
relativistic spin density functional theory, several schemes have been suggested in the
literature. A short review of current density functional theory (CDFT) (Vignale and
Rasolt 1987) and on Brooks's orbital polarization (OP) formalism (Brooks 1985) will
be given in the next section. In addition, the relativistic version of the Bogoliubov-
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de Gennes equations will be introduced that supplies a sound formal platform for
dealing with dichroic effects in superconductors.

5.2 Formalism

5.2.1 Relativistic density functional theory

When dealing with the electronic structure of magnetic solids, we usually neglect
the influence of orbital magnetism on it. Accordingly, corresponding band-structure
calculations are mostly done on the basis of spin density functional theory (SDFT) as
derived by von Barth and Hedin (1972) and others in a nonrelativistic way. This frame-
work still seems to be acceptable when relativistic effects are included by introducing
corresponding corrections terms to the Schrodinger equation. If fully relativistic cal-
culations are performed instead, in principle a corresponding basis should be adopted
to deal with many-body effects. The first step in this direction was made by Rajagopal
and Callaway (1973), who derived the SDFT starting from a relativistic level. These
authors demonstrated in particular that quantum electrodynamics supplies the proper
framework for a relativistically consistent density functional theory and derived the
corresponding relativistic Kohn—Sham—Dirac equations:

ea • V + - Adr(r) + fimc + Veff(r)"U(r) = €/*i-(r) (5.1)2

with

(r)+ I|dV^-^ + c^^-^ |, (5.2)
\r-r'

A /_\ I A /_\ i ~ I jJ t J \T ) . "—AVL- j I xr o\eff(r) = -d Aext(r) + - / dV -—— + c——-— . (5.3)

A detailed derivation is given in Chapter 4. Other treatments can be found elsewhere
(Dreizler and Gross 1990; Engel and Dreizler 1996; Eschrig 1996). In Equation (5.1)
the #/(/•) are four-component (Dirac spinor) wave functions with corresponding
single-particle energies e,. The matrices a, and ft are the standard 4x4 Dirac matrices
(Rose 1961). The effective potentials, Veff and Aeff, respectively, contain as a first term
the corresponding external contributions. The second terms in Equations (5.2) and
(5.3) are the familiar Hartree potentials, and the third terms arise from exchange and
correlation. The corresponding exchange-correlation energy EX C[Ju] is a functional
of the electronic four-current /M, which is determined self-consistently via

7° - -tj — t

Jl =
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Here J0/c is identical to the ordinary electronic charge density p, while the other three
components represent the electronic current density j. J* is the central quantity of
relativistic density functional theory. All properties of the system are determined by
7u.

Thus, in contrast to nonrelativistic SDFT, where the central quantities are the spin
densities n^d) or, more generally, the particle density n and spin magnetization m,
the relativistic formalism leads in a natural way to a current density functional theory
(CDFT). In view of the complexity of this very general scheme, an approximate rel-
ativistic version of SDFT has been worked out by several authors (MacDonald 1983;
MacDonaldand Vosko 1979; Rajagopal 1978; Rajagopal andCallaway 1973; Ramana
and Rajagopal 1979). The first step in this direction is the Gordon decomposition of
the spatial current density into its orbital and spin parts (Eschrig 1996; Eschrig et al.
1985; Rajagopal and Callaway 1973),

./orb = T-*^ r V -TV + 2eA \V + -—V x V*fiaV, (5.4)
2m LI i J 2m

where cr is the vector of 4 x 4 Pauli matrices (Rose 1961). The coupling of the spin part
.jspin (the second term in Equation (5.4)) to the vector potential Aeff may alternatively
be described by introducing the corresponding spin magnetization

This leads to the coupling term
—m

with Beff the effective magnetic field corresponding to Aeff. Thus, ignoring the orbital
current density contribution yorb we arrive at a Kohn—Sham—Dirac equation com-
pletely analogous to the nonrelativistic SDFT Schrodinger equation (Eschrig 1996;
Eschrig et al. 1985):

Lea • V + ftmc2 + Veff(r) - nafta . fleff(r) |*i(r) = €/*i(r) (5.5)

with

_ n SExctn, m]
- ext(O 5m(r)

This approach was first suggested by MacDonald and Vosko (1979) and MacDon-
ald (1983), who justified the simplification by introducing a fictitious magnetic field
that couples only to the spin degree of freedom as reflected by Equation (5.5). This
formal justification was criticized by Xu et al. (1984) because, by describing a rel-
ativistic electronic system in terms of the particle density n and spin magnetization
density m alone, the magnetic interaction part connected with the electronic current
density is not Lorentz invariant. This problem was circumvented by Rajagopal and
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co-workers (Ramana and Rajagopal 1979, 198la; Xu et al. 1984) by first consider-
ing the problem in the rest frame of an electron—for which jorb vanishes—giving a
consistent justification for the use of relativistic SDFT.

The orbital current density contribution to Exc—ignored within SDFT—was first
considered by Vignale and Rasolt on a nonrelativistic level (Vignale 1995; Vignale
and Rasolt 1987, 1988, 1989). As one of the central quantities, these authors introduce
the paramagnetic orbital current density jorb.p- Gauge invariance then implies that the
exchange-correlation energy depends on Jorb,p only through the so-called vorticity:

y JU-IIL V7 y **^

n(r) '
This step in particular allows us to derive a local version of nonrelativistic CDFT. A
corresponding explicit expression for the corresponding Exc has been given for the
first time by Vignale and Rasolt (1988),

r\V3 1

where rs = (3/(47rn))1/3 and

Q. = 1 + 0.027 64rs In rs + 0.014 07rs + 0(r2 In rs)
XL

is the ratio of the diamagnetic susceptibility for the interacting and noninteracting
electron gas. Later, more sophisticated expressions for Exc have been given (Capelle
and Gross 1997a; Skudlarski and Vignale 1993).

The Vignale—Rasolt CDFT formalism can be obtained as the weakly relativistic
limit of the fully relativistic Kohn—Sham—Dirac equation (5.1). This property has
been exploited to set up a computational scheme that works in the framework of
nonrelativistic CDFT and accounts for the spin—orbit coupling at the same time (Ebert
et al 1997a). This hybrid scheme deals with the kinematic part of the problem in a
fully relativistic way, whereas the exchange-correlation potential terms are treated
consistently to first order in 1/c. In particular, the corresponding modified Dirac
equation

(5.6)

incorporates a term

Hop,a = -1—[Axc,<r(r), V]+
2mc

that explicitly represents the coupling of the orbital current and the exchange-correla-
tion vector potential AXC,CT. Since in the CDFT formalism of Vignale and Rasolt A X C T

is defined in a spin-dependent way, the spin-projection operator Pa = \(l ±. ftaz)
appears in addition to Hop,a in Equation (5.6).
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Within the above approximate relativistic CDFT scheme, the Breit interaction has
been ignored. This radiative correction accounts for the retardation of the Coulomb
interaction and exchange of transversal photons. A more complete version than that
included in Equation (5.1) is given by the Hamiltonian (Bethe and Salpeter 1957;
Pyykkd 1978):

—e1 e*1 f 1
#Breit = *2jf«i '«2 + 2£ «i • «2 -«i • Ra2 - R\ withR = r2 -r1,

where the first part is the magnetic Gaunt part and the second is the retardation
term. While inclusion of the Breit interaction within quantum-chemical calculations
for atoms and molecules is nearly standard (Pyykko 1978), so far only one model
(Jansen 1988) and one fully relativistic (Ebert 1995) calculation have been done in
the case of solids. This is quite astonishing, because the Breit interaction gives rise to
the so—called shape anisotropy that contributes in general to the magnetocrystalline
anisotropy energy to the same order of magnitude as the spin—orbit coupling (see
below).

An alternative to the CDFT approach is the heuristic suggestion by Brooks and
co-workers (Brooks 1985; Eriksson et al 1989, 1990a) to use a k-space method and
to add a so—called orbital polarization (OP) term to the Hamiltonian matrix. This
additional term has been borrowed from atomic theory and is meant to account for
Hund's second rule, i.e. to maximize the orbital angular momentum. During the last
few years, this approach has been applied with remarkable success to d- as well as
f-electron systems and has been refined by various authors (Severin et al 1993; Shick
and Gubanov 1994). As can be shown (Ebert and Battocletti 19%), Brooks's OP
term can be formulated in a way that can be incorporated into the Dirac equation
allowing in that way for a corresponding extension of band-structure methods based
on multiple scattering theory (Ebert and Battocletti 19%). For a d-electron system,
i.e. for the case in which the orbital magnetism is primarily due to an open d-electron
shell, Brooks's OP term takes the form -Bmt (lz)mjni fa- This term describes a shift
in energy for an orbital with quantum numbers / = 2, m/ and ms that is proportional
to the average orbital angular momentum (lz)ms for the ms-spin subsystem and the
so-called Racah parameters Bms (Racah 1942) that in turn can be represented by the
Coulomb integrals F2

ms and F4
ms. An operator that corresponds to this energy shift is

given by

with

where Aim, describes the average charge density of a d electron with spin character
ms. Obviously, the operator has the form expected within CDFT for rotational
symmetry (Vignale and Rasolt 1988). This is emphasized by introducing the vector
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potential function A™ = -5°s
p(r){/z) that leads to the Dirac equation:

"ea - V + pmc2 + Veff(r) - nB0a • Hcff(r) 4- Aopfilzl^-(r) = <^(r). (5.7)

For further discussion of the connection of this equation with CDFT see below.
In addition to the OP formalism, several alternative schemes have been suggested

in the past to account, within a relativistic band-structure calculation, for correla-
tion effects not incorporated within the local approximation to SDFT (LSDA). For
example, the LDA+U scheme has been applied to the compound CeSb (Antropov
et al. 1995), a system that has a maximum Kerr-rotation angle of 90° (Pittini et al.
1996). Similar experience has been made for other f-electron systems. Nevertheless,
we should point out that by applying the LDA+U scheme we leave the framework of
DFT. This does not apply to the SIC (self-interaction correction) formalism (Dreizler
and Gross 1990), for which a proper relativistic formulation has been worked out
recently (Forstreuter et al. 1997; Temmerman et al. 1997) and applied to magnetic
solids (Temmerman et al. 1997).

From the above, it is obvious that relativistic effects influence the electronic struc-
ture in a twofold way. On the one hand, there is the influence of the electronic kinet-
ics, which is accounted for by working with the Dirac-formalism. On the other hand,
relativity leads to pronounced corrections in the exchange-correlation energy Exc

compared with its nonrelativistic counterpart. Explicit approximations for the rela-
tivistic exchange-correlation energy functional were derived and analysed in detail
by MacDonald and Vosko (1979), MacDonald (1983), Ramana and Rajagopal (1979,
198la), Xu et al. (1984) and Engel et al. (1998a). Until now, however, only a few
investigations have been performed on the importance of these corrections (Koelling
and MacDonald 1983; MacDonald et al. 1981; Schmid et al. 1999; Severin et al.
1997). Nevertheless, we may conclude from these few studies that the absolute mag-
nitude of the total energies as well as the binding energies of tightly bound core
states is affected in a rather appreciable way. However, for properties such as the
equilibrium lattice parameter and even for many magnetic properties, no pronounced
changes are expected. For this reason, the use, in Equation (5.5), of approximate
exchange-correlation functional derived within nonrelativistic SDFT seems to be
well justified.

5.2.2 Relativistic Bogoliubov—de Gennes equations

In the nonrelativistic regime, the microscopic description of inhomogeneous singlet
superconductors is based on the Bogoliubov-de Gennes (BdG) equations (de Gennes
1966):

[-^V2 + (Veff(r) - fJL)]uk(r) + / Aeff(r, r>*(r')dV = Ekuk(r), (5.8)

- V)]vk(r) = Ekvk(r). (5.9)
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Originally, the effective potential Veff (r) and the effective pairing potential Aeff (r , r')
were either treated as given functions of r or they were approximated by the stan-
dard mean-field expressions, i.e. the Hartree potential for Veff(r) and the BCS term
for Aeff (r, r'). More recently, a density functional theory for superconductors was
developed (Oliveira et al 1988) where the effective potentials Veff (r) and Aeff (r , r')
are expressed as functional of the density,

n(r) =

and the superconducting order parameter,

X(r,r') = <xo(r,r')>,

Xo(r, r') =

Here, a(r) and (r) represent the ordinary nonrelativistic electron annihilation
and creation operators. An LDA-type approximation has recently been derived for
the exchange-correlation free energy Fxc[n, x], leading to explicit expressions for
the effective potentials Veff(r) and Aeff(r, r') (Kurth et al 1999).

In second-quantized notation, the BdG Hamiltonian corresponding to Equations
(5.8) and (5.9) reads

- I d3r / dV (A*ff(r, r')xo(r, r') + Aeff(r, r')xj(r, r')). (5.11)
J J

In the relativistic generalization of this Hamiltonian, two separate issues have to
be addressed: (i) the relativistic analogue of the nonrelativistic order parameter in
Equation (5.10) needs to be constructed, and (ii) explicit expressions for the effective
potentials have to be found. A relativistic density functional theory for superconduc-
tors, properly derived from quantum electrodynamics, has not yet been formulated.
Ultimately, such a theory should provide explicit functionals for the effective poten-
tials. For the time being, we shall consider these potentials as given functions of
r modelling, for example, an SNS multilayer or a Josephson junction (Plehn et al.
1994). Even in this simplified case, it is by no means obvious how the second term
on the right-hand side of Equation (5.11), i.e. the order parameter x0(r, r'), should
be generalized to the relativistic domain. As we shall see below, this generalization
leads to a number of highly interesting consequences.

Before proceeding with the construction of relativistic order parameters, we note
that the singlet order parameter given in Equation (5.10) does not represent the only
possible pair state in the nonrelativistic domain. Spin-triplet order parameters found,
for example, in liquid 3He, can be formed as well. A convenient way of describing
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arbitrary pairing potentials is given by
A \

> 12)

where Z>2x2('', r') is a general 2x2 matrix of functions of (r, r'). Expanding this
quantity in a suitable basis {Mi} of 2 x 2 matrices

(
A \

tt(l>, } ) , (5.
^(r)/

A = d r
issQ

;=o

the expression in Equation (5.12) reduces to

=/'
J

with the four order parameters

In principle, the basis {Mi} can be chosen arbitrarily. However, if we want the order
parameters xi (r , r') to have well-defined transformation properties under the Galilei
group we are led to the Balian—Werthamer matrices (Balian and Werthamer 1963):

(M>\MQ = kry, I M2 I = <r(iay).
\M3/

With this choice, the singlet order parameter given in Equation (5.10) is represented
as

(5.13)

and can easily be shown to transform like a scalar, while the three triplet order param-
eters

X(r, r') = (Vrt(r), ̂ (r))cr(wry) (5.14)
/-')

transform like a vector.
Normally, we would use the unit matrix I2x2 and the vector of Pauli matrices <r as

basis for this type of expansion, since by using this symmetry-adapted set of matrices
one achieves a separation of scalar quantities (^ /2 X2 $) from quantities transforming
as a vector ($^er^), i.e. a classification with respect to irreducible representations of
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the rotation group. However, Cooper pairs are formed with two annihilation (or two
creation) operators, and not with one creation and one annihilation operator, and a
scalar- vector separation is only achieved in terms of the Balian—Werthamer matrices
Mi . We note that a density functional theory in terms of the above set of singlet and
triplet order parameters was recently formulated (Capelle and Gross 1997b).

To construct the relativistic analogue of the nonrelativistic order parameters in
Equations (5.13) and (5.14), the two—component Pauli field operators

have to be replaced by the four-component Dirac field operators &(r). Hence, the
most general relativistic pairing field is given by

A = j d3r j dV £T(r)D4x4(r, r')£(r'). (5.15)

Expanding the 4 x 4 matrix of pairing potentials in a basis {ni} of the space of 4 x 4
matrices

15

;=o

the expression in Equation (5.15) reduces to

A = /" d3r ( dV (]£ A,(r, r')x,rel(r, r'))
J J \=o '

with the 16 relativistic order parameters

(5.16)

Requiring these order parameters to transform in a Lorentz-covariant way, we are
led to a particular basis of 4 x 4 matrices {ni} which was recently derived in detail
(Capelle and Gross 1999a). The resulting order parameters represent a Lorentz scalar
(one component), a four vector (four components), a pseudo scalar (one component),
an axial four vector (four components), and an antisymmetric tensor of rank two (six
independent components). This set of 4 x 4 matrices is different from the usual Dirac
y matrices. The latter only lead to a Lorentz scalar, a four vector, etc., when combined
with one creation and one annihilation operator, whereas the order parameter consists
of two annihilation operators.

The 16 order parameters in Equation (5.16), with the matrices {ni} given in Capelle
and Gross (1999a), exhaust the possible pairings which can be formed from two Dirac
spinors. The most important among these 16 order parameters is the Lorentz scalar

(5.17)
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where n0 can be written in terms of the standard y matrices as

rjo = ylY3-

Equation (5.17) represents the relativistic generalization of the nonrelativistic sin-
glet order parameter given in Equation (5.10). Initially (Capelle and Gross 1995),
the relativistic generalization X0 of the nonrelativistic singlet order parameter in
Equation (5.10) was constructed by replacing the nonrelativistic time-reversal matrix
t — iffy in Equation (5.13) by the relativistic one, T = yly3, i.e. it was postu-
lated that the relativistic Cooper pairs should still consist of time-conjugate states.
In the complete construction of all relativistic order parameters, which was derived
later (Capelle and Gross 1999a), the matrix 770 = T naturally emerges as that of the
16 matrices {77,} leading to the order parameter which reduces to the singlet order
parameter in Equation (5.10) in the nonrelativistic limit.

Having derived the relativistic order parameter in Equation (5.17), the relativistic
generalization of the BdG equations (5.8) and (5.9) is straightforward (Capelle and
Gross 1995, 1999a). We obtain

y°[cy •p + mc2(l-y°) +

+ 1 dV A(r,r')»;owt(r') = Ekuk(r), (5.18)

—7°[cy • p + mc2(l — y°) + tfX/z^/J**)*(r)

- y dV A*(r, r')iK)i«t(r') = £*y*(r). (5.19)

Here both «* and u^ are four-component (Dirac) spinors, representing the particle
and hole amplitudes, while XM is the four-vector of y matrices and y the corre-
sponding three-vector, containing yl, y2 and y3. AM is the four-potential, and A the
pair potential. The subscript 'eff', indicating that these potentials will ultimately be
self-consistent effective potentials, has been dropped for notational simplicity. The
chemical potential /i has been absorbed in the component A0 of the four-potential.
The Dirac-Bogoliubov-de Gennes (DBdG) equations (5.18) and (5.19) generalize
the conventional BdG equations (5.8) and (5.9) to the relativistic domain in the same
way as the Dirac equation generalizes the SchrOdinger equation.

The DBdG equations (5.18) and (5.19) can be diagonalized analytically (Capelle
and Gross 1995) for spatially uniform superconductors, employing a point-contact
pair potential

A(r, r') = A(5(r - r')

and setting AM = (—\JL, 0,0, 0). The resulting energy spectrum is given by

(5.20)

where
a = me2 + IJL and ek = +J(tik)2c2 + m2c4.
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The energy spectrum has four branches corresponding to the four possible choices of
the signs. We can immediately work out two important limiting cases.

(i) In the nonsuperconducting limit (A = 0), Equation (5.20) reduces to ±(ek ±a).
The two branches ±€k — a are the usual Dirac spectrum shifted by a. The
remaining two branches, — (±€k — a) being the negative of the first, represent
the hole spectrum, as always for BdG-type equations.

(ii) In the nonrelativistic limit (v/c -» 0), Equation (5.20) reduces to the well-
known BCS result ±J(h2k2/2m - n)2 + |A|2.

In both the relativistic and nonrelativistic cases, the superconducting gap is 2| A|.
The relativistic theory predicts, however, that the position of the gap is slightly shifted
away from the Fermi wave vector kp. We find

9 "7 1 "J

with the Fermi velocity vF. The predicted shift is of the same order of magnitude as
the experimentally confirmed relativistic correction to the Cooper-pair mass (Cabrera
and Peskin 1989).

For ordinary matter, terms of higher than second order in (v/c) are often very
small. Hence it is desirable to have a set of weakly relativistic (Pauli-type rather
than Dirac-type) BdG equations. By systematic elimination of the lower components
of the DBdG equations (i.e. those which are suppressed by factors of (v/c) in the
weakly relativistic limit) we obtain from Equations (5.18) and (5.19) the two equations
(Capelle and Gross 1995, 1999b):

[h(r) + Sh(r)]uk(r) + J[A(r, r')iay + SA(r, r')]vk(r') dV = Ekuk(r),

(5.21)

~[h(r) + Sh(r)]*vk(r) - /W(r', r)i<ry - 5Af(r', r)]uk(r') dV = Ekvk(r),

(5.22)

where uk and vk are two-component (Pauli) spinors,

I f a ~ \ 2

h(r) = — p A(r) + (V(r) — /z) — n&aB(r)
2m \_ c \

is the normal-state Hamiltonian, including the vector potential A and the magnetic
field B, and /KB is the Bohr magneton. Neglecting the relativistic correction terms 8h
and 8 A, we obtain from Equations (5.21) and (5.22) the traditional spin-dependent
version of the BdG equations for spin-singlet superconductors (de Gennes 1966). The
term
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represents the well-known second-order relativistic corrections, i.e. spin—orbit cou-
pling, the Darwin term, and the mass-velocity correction. Analogously,

5A(r, r') = --^[hcr • [VA(r, r')] x p' + ift2(V + V')2 A(r, r')]iay (5.23)
*2 *

contains the second-order relativistic corrections involving the pair potential. These
terms, evidently, appear only in the superconducting state. (The prime on p and V
denotes a derivative with respect to the primed coordinate.) Since these terms depend
on the pair potential in a similar way to those of Sh(r) depend on the lattice potential,
they will be referred to as the anomalous spin—orbit coupling and anomalous Darwin
terms, respectively.

The spin-orbit, mass-velocity and Darwin corrections contained in 8h already
appear in the normal state and are thus not of superconducting origin. Nevertheless,
their effect on observables in a superconductor can be dramatically modified by super-
conducting coherence. An example will be given in Section 5.3.5, where we show the
dichroic response of a superconductor.

The anomalous spin—orbit and Darwin corrections <SA(r, r'), given in Equation
(5.23), are fundamentally different from 8h(r), since they depend explicitly on the
pair potential and are nonzero only in the superconducting state of matter. These terms
were derived for the first time only a few years ago (Capelle and Gross 1995). The
anomalous spin—orbit coupling provides a contribution to dichroism in superconduc-
tors, which can be distinguished from that of conventional spin—orbit coupling due
to their very different temperature dependence (Capelle et al. 1997, 1998). The first
appearance of a spin—orbit term containing the pair potential dates back to 1985,
when Ueda and Rice postulated such a term on group theoretical grounds in their
phenomenological treatment of p-wave superconductivity (Ueda and Rice 1985).
However, at that time it was not clear how such a term could be obtained microscop-
ically, and what its detailed form was. These questions were answered only 10 years
later on the basis of the theory outlined above (Capelle and Gross 1995). Both Darwin
terms, the conventional and the anomalous one, have also been rederived phenomeno-
logically (Capelle 2001). This rederivation showed that the anomalous Darwin term
can be understood as a consequence of relativistic fluctuations of paired particles in
the pair potential of the superconductor, in a similar way in which the conventional
Darwin term can be understood as a consequence of fluctuations of charged particles
in the electric (lattice) potential (Sakurai 1967).

More correction terms arise if, additionally, the relativistic generalizations of the
nonrelativistic triplet order parameters in Equation (5.14) are considered. Some of
these terms are highly unusual, containing, for example, products of the pair potential
with the vector potential (Capelle et al. 2001 ; Marques et al. 1999).

5.2.3 Multiple scattering formalism

Most methods of band-structure calculation are based on the muffin-tin, atomic sphere
approximation (ASA) or Wigner—Seitz construction for the electronic potential and
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charge density. These geometric schemes give in particular a subdivision of space into
atom-centred spheres or cells, respectively. Accordingly, the first step of a relativistic
band-structure calculation is to deal with the Dirac equation for an isolated atomic
potential well. Based on the resulting solution to the single-site problem, the solution
to the Dirac equation for the solid can be obtained by making use of the variational
principle (Ebert 1988; Solovyev et al. 1989). This approach in general relies on three-
dimensional periodicity and leads to a representation of the electronic structure in
terms of Bloch states |*jk*) and the associated energy eigenvalues Ejk. Alternatively,
we may use multiple scattering theory as introduced by Korringa, Kohn and Rostoker
(KKR) and extended by many others (Gonis 1992; Weinberger 1990) to solve the
Dirac equation for a solid. In this case, the electronic structure is represented by the
Green function leading to an extreme flexibility. In particular, we are able to deal
with impurities, disordered alloys, surfaces and so on. Because most examples to be
shown below have been obtained by the spin-polarized relativistic version of multiple
scattering theory (SPR-KKR) this approach will be outlined briefly in the following.

To solve the single-site Dirac equation for a spin-dependent potential well, we start
from the ansatz (Doniach and Sommers 1981; Feder et al. 1983; Strange et al. 1984),

Av(r, E) (5.24)

i f K V ( r , E)x-A(r)'

where the index v numbers the various linearly independent solutions. The large and
small components of the partial waves Av(r, E) are composed of the radial wave
functions gK(r, E) and fk(r, E) and the spin-angular functions,

ms=±l/2

with the Clebsch-Gordon coefficients C ( l j ; m1, mss), the complex spherical har-
monics Y1

m1 and the Pauli spinors Xms, (Rose 1961). The spin-orbit and magnetic
quantum numbers K and n, respectively, have been combined to A = (k, n) and
—A = (—K, /i), respectively.

For the case where the magnetic ordering of the system is accounted for by a
spherically symmetric potential with a spin-dependent part ßB(r)ez • a that is set
up within the framework of SDFT, the ansatz given in Equation (5.24) leads to the
following set of radial differential equations,

/ _ K \E-V "I B \^/ \nPAv = — -PAV + —~2 *" * \Q*V + 71 2^\X-AMX-A')QAfv^ (5.25)
L J A'

Q'AV = -QAV~[E- V]PAv + B^(XA\<rz\XA')PA'v, (5-26)
r A'



MAGNETIC PHENOMENA IN SOLIDS 177

where the usual notation PAv = rgAv and QAV = crfAv has been used. The coupling
coefficients occurring here are given by

= G(k,K',)

for K = K',
(K + 1/2)

for k = —K' — 1,

0 otherwise.

Because of the properties of G(K, K', ) only partial waves for the same get cou-
pled, i.e. u is still a good quantum number. In addition, we can see that for the orbital
angular momentum quantum numbers l and l' of two coupled partial waves we have
the restriction / — /' = 0, ±2,..., i.e. only waves of the same parity are coupled.
Nevertheless, this still implies that an infinite number of partial waves are coupled.
In practice, however, all coupling terms for which / — /' = ±2 are ignored. A justi-
fication for this restriction has been given by Feder et al. (1983) and Cortona et al.
(1985). Results of numerical studies further justify this simplification (Ackermann
1985; Jenkins and Strange 1994). Altogether, this restricts the number of terms in
Equations (5.25) and (5.26) to 2 if |u| < j. For the case |u| = j, there is no coupling
at all, i.e. the solutions ij/v have pure spin-angular character A.

By requiring that the wave function <Pv(r, E) in Equation (5.24) has a unique
spin-angular character A in the limit r —> 0, the index v may be identified with A.
The corresponding single-site /-matrix is then obtained by introducing the auxiliary
matrices a and b (Ebert and Gyorffy 1988; Faulkner 1977):

r, E)] r ,

= ipr2[h+(pr), <PAA'(r, E)]T.

Here p = E(! + E/c2) is the momentum, the functions h^(pr) are the relativistic
Hankel functions of the first and second kind (Rose 1961) and [• • • ]r denotes the
relativistic form of the Wronskian evaluated at r outside the potential well. Finally,
the single-site t-matrix t(E) is obtained from the expression (Ebert and Gyorffy
1988):

t(E) = ~(a(E) - b (E ) )b - l (E). (5.27)
2p

The scattering path operator T (Gyorffy and Stott 1973) supplies a very powerful tool
for dealing with the multiple scattering problem for an arbitrary array of scatterers.
The corresponding matrix ^, describes the transfer of a wave with spin-angular
character A' coming in at site n' into a wave outgoing from site n with character A
and with all possible scattering events that may take place in between accounted for.
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According to this definition it has to fulfil the following self-consistency condition,

L
nn' = £%„, + t_

n 0"*!*"', (5.28)

where all quantities are energy dependent and the underline denotes matrices with
their elements labelled by A = (K, n). Here the single-site t-matrix t" is fixed by
the solutions to the single-site Dirac equation for site n. Furthermore, Gnn is the
relativistic real-space Green function or structure-constants matrix that represents the
propagation of a free electron between sites n and n' (Wang et al. 1992).

For a finite cluster of atoms, Equation (5.28) can be solved by inverting the corre-
sponding real-space KKR matrix (Ebert et al. 1999),

£=[^-g]-1, (5.29)

where the double underline indicates supennatrices with the elements being labelled
by the site indices of the cluster. The elements themselves are matrices labelled by
A as for example (G)nn' = Gnn'' with (Gnn')AA> = G™'A,. The matrix m in Equa-
tion (5.29) is site-diagonal and has the inverse of the single-site f-matnx r" as its
diagonal elements, i.e. (m)nn' = mn8nn> = (t n) - l8 nn'-

For ordered infinite systems, Equation (5.28) can be solved exactly by means of
Fourier transformation. For one atom per unit cell, the term r"^, (£) is obtained from
the Brillouin-zone integral

/ 1 f
TA A/(E) = _ I d k [t (E) — G(Jfc, E)] A A,c " " . (5.30)

AA ^BZJflBZ ~~

Here Rn(n) denotes the lattice vector for site n (n') and G(k, E) is the relativistic
k-dependent structure-constants matrix (Wang et al. 1992).

To deal with the electronic structure of surfaces within the framework of the spin-
polarized relativistic KKR formalism, the standard layer techniques used for LEED
and photoemission investigations (Pendry 1974) have been generalized by several
authors (Fluchtmann et al. 1995; Scheunemann et al. 1994). As an alternative to
this, Szunyogh and co-workers introduced the so-called screened version of the KKR
method (Szunyogh et al. 1994, 1995). A firm basis for this approach has been sup-
plied by the tight-binding (TB) KKR scheme introduced by Zeller et al. (1995). The
corresponding spin-polarized relativistic version has been applied by various authors
to multilayer and surface-layer systems (Nonas et al. 2001).

To simplify the evaluation of the Brillouin-zone integral given in Equation (5.30)
on the basis of group theory requires the use of magnetic groups. This problem
was first considered for the cubic case (Hormandinger and Weinberger 1992; Zecha
1997). Recently, a general scheme has been presented to deal with the integral in
Equation (5.30) and related schemes for arbitrary two- and three-dimensional periodic
systems (Huhne and Ebert 2002).

Having solved the multiple scattering problem, the electronic Green function
G(r, r', E) for a solid can be set up in analogy to the nonrelativistic formalism
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(Faulkner and Stocks 1980):

G(r, r', E) = Zn
A(r, E}in

A
n

A,(E)Zn
A? (r1 , E)

AA'

- ]T[ ZA(r> E)J^(r', E)0(r' - r)
A

+ /"(r, E)Zn
A*(r', E)0(r-r')]Snn>. (5.31)

Here r (r') is confined to the atomic cell at site n (n') and the wave functions
Z^(r, E) and JA(r, E) are the properly normalized regular and irregular solutions
of the corresponding single-site problem for site n (see above). In Equation (5.31) the
multiplication sign 'x' indicates that the wave functions Z^x(r, E) and JA

x(r, E)
are the left-hand side regular and irregular solutions of the corresponding modified
Dirac equation (Tamura 1992). Fortunately, for most situations these are obtained from
the same radial differential equations as the conventional right-hand side solutions
Zn

A(r,E) and Jn
A(r ,E).

Representing the electronic structure in terms of the Green function has many
appealing advantages compared with an approach using Bloch states. Systems that
are locally distorted but otherwise ordered can straightforwardly be treated on the basis
of the Dyson equation. Important examples for this situation are impurities that distort
the host matrix only within a certain spatial range (Cabria et al 2000) and adsorbates
on surfaces (Nonas et al 2001). The treatment of randomly disordered alloys can be
achieved by adopting in addition an appropriate alloy theory. In particular, Seven's
coherent potential approximation (CPA) (Soven 1967) has proved to be extremely
successful in the past. Finally, we should mention that the Green function formalism
supplies an outstanding theoretical platform for dealing with linear response func-
tions (Banhart and Ebert 1995; Matsumoto et al. 1990) and spectroscopic properties
(Fluchtmann et al 1995).

The form ßB(r)ez • a for the spin-dependent exchange-correlation potential term
corresponds to a magnetic moment pointing along the z-direction. This strongly facil-
itates the solution of the single-site Dirac equation because it keeps the number of
coupling terms in Equations (5.25) and (5.26) to a minimum compared with any other
orientation. In the case of a noncollinear spin structure it is therefore most efficient
to solve the single-site Dirac equation with respect to a local frame of reference for
which the magnetic moment points along the local z-axis. To deal with the multiple
scattering problem, the resulting r-matrix is transferred to the global crystallographic
frame of reference. Transformation of the resulting scattering path operator matrix i
to the local frame of reference finally allows the corresponding Green function to be
set up according to Equation (5.31) (Ebert et al. 2000).

The use of a spherically symmetric potential is also not a necessary requirement
for the SPR-KKR formalism. Representing the angular dependency of the potential
terms V (r) and B(r) in terms of spherical harmonics leads to a coupled system of
radial differential equations analogous to Equations (5.25) and (5.26). This implies
that the details of the potential enter the calculation of the single-site wave functions
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Zn
A(r, E) and Jn

A(r, E) (see Equation (5.31)), while the scheme to set up the single-
site /-matrix (Equation (5.27)) and the various ways for dealing with the multiple
scattering problem (Equations (5.29) and (5.30)) remain unchanged. This important
feature of the KKR formalism also applies to the use of more complex Hamiltonians,
as demonstrated by the inclusion of the Breit interaction (Ebert 1995) and the OP
term (Battocletti and Ebert 1996), as well as for the use of CDFT (Ebert etal 1997a).

While a fully relativistic approach is very satisfying from a formal point of view, it
is in general not very transparent. In particular, analysing the results for spin-orbit-
induced properties is often quite difficult In this situation it is very helpful to vary
the speed of light (Banhart et al. 1996). Of course, this simple trick leads not only
to a corresponding change for the spin-orbit coupling, but for all other relativistic
corrections as well. To allow a manipulation of the spin-orbit coupling alone within
an SPR-KKR calculation, an alternative scheme has been worked out by Ebert and
co-workers. This consists of a change from a four- to a two-component formalism by
the elimination of the minor component. Because one term of the resulting second-
order differential equation for the wave function can unambiguously be associated
with the spin-orbit coupling, it can be manipulated independently without affecting
the other relativistic corrections (Ebert et al 1996a). In addition, it allowed us to
split the spin-orbit coupling into two terms that have rather different consequences
(Ebert et al. 1997b). The first term (£Z2) commutes with the spin-dependent part of
the exchange-correlation potential and for this reason it primarily leads to a removal
of degeneracies. The second term ( x y ) > on the other hand, leads to a mixing of the
two spin subsystems.

5.3 Applications

53.1 Ground-state properties

While all relativistic corrections to the Schrodinger equation may influence the prop-
erties of a magnetic solid, the consequences of the spin-orbit coupling are most
interesting, because it leads to effects that cannot be understood on the basis of a
nonrelativistic or scalar relativistic description. The most obvious consequence of
spin-orbit coupling for a magnetic solid is that it lowers its symmetry compared with
the corresponding paramagnetic state. This can be demonstrated in the most detailed
way on a microscopic level by investigation of the electronic structure. On the other
hand, this reduction in symmetry also shows up on a macroscopic level, giving rise
to the magnetocrystalline anisotropy, orbital magnetic moments and other important
physical phenomena.

Electronic properties

The various consequences of the spin-orbit coupling for the electronic structure are
demonstrated in Figure 5.1 for the dispersion relation Ej (k) of Ni (Ebert et al. 1997b).
Note that the spin-orbit coupling gives rise to a lifting of degeneracies (e.g. at A and
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Figure 5.1 Dispersion relation Ej (k) of FCC-Ni for the magnetization M and the wave
vector k along the [001]- and [100]-axes, respectively. The panels show from left to right
results based on the full Dirac equation and those obtained keeping only the zz- and jcy-parts
of the spin-orbit coupling.

B in Figure 5.1, left) and causes hybridization or mixing of bands (e.g. at C, D, E and
F) that otherwise would cross.

In addition, we find that for Bloch states | Vjk} the expectation value {#)£ |az | &jk)
is not restricted to ±1 (Ackermann et al 1984; Richter and Eschrig 1989), i.e. spin is
no longer a good quantum number. However, remarkable deviations from the values
±1 occur in general only in the region where bands cross if spin-orbit coupling is
neglected. For this reason it is justified to attach the labels \, and f to the bands to
indicate their dominant spin character for a certain range of the wave vector k.

Keeping only the £zz-part of the spin-orbit interaction all electronic states have
pure spin character that does not change along a band. However, this does not rule out
the hybridization of bands induced by £zz (E and F in the middle panel of Figure 5.1).
On the other hand, no hybridization is found at C and D, where bands of different spin
character now cross. Furthermore, note that the splitting of the bands, e.g. at A, B, E
and F, caused by the £zz-part is nearly the same as for the full spin-orbit interaction.

In contrast to £zz, the ̂ -part gives rise to a pronounced hybridization of bands of
different spin character (C and D in the right panel of Figure 5.1)—just as for the full
spin-orbit interaction. While hybridization is also present at E and F, it is much less
pronounced than for £zz. Surprisingly, the splitting of the bands caused by %xy, while
being in general smaller than for £zz, is still quite appreciable.

In the case of disordered alloys, the concept of the dispersion relation Ej(k) is no
more meaningful. Instead, we use the Bloch spectral function AB(k , E) that can be
viewed as a k-dependent density of states (DOS) function (Faulkner 1982). Due to
the chemical disorder, AB (k) for a given energy E is in general spread out in £-space,
implying that the wave vector k is not a good quantum number. By introducing the
spin-projected Bloch-spectral function within the framework of the SPR-KKR-CPA
approach, the mixing of the spin subsystems due to the spin-orbit coupling could also
be demonstrated for disordered alloys (Ebert et al 1997c). In addition, the anisotropy
of the Fermi surface represented by AB(k , EF) could be shown. These spin-orbit-



182 APPLICATIONS

Figure 5.2 Orbital current density jp for BCC-Fe in the (001) plane (left). The right part
gives the corresponding radial component scaled by a factor of around 350 with respect to the
left part of the figure. For display jp has been weighted with r2.

induced features of the electronic structure of disordered alloys have important con-
sequences for their transport properties (see below).

For a paramagnetic solid, time-reversal symmetry implies that spin-orbit coupling
viewed as a perturbation leads for states with quantum numbers (m1, ms) to the same
changes as for (—m1, —ms). As a consequence, the spatial symmetry of the charge
distribution is not affected and no orbital current is induced. For a spin-polarized solid,
on the other hand, this no longer holds, i.e. states with quantum numbers (m1, m5)
and (—m1, — ms) are affected by the inclusion of the spin-orbit coupling in a different
manner because of the exchange splitting. As a consequence, the charge distribution
will be rearranged according to the lowered symmetry of the system compared with
its paramagnetic state. For a magnetic solid with a cubic lattice and the magnetiza-
tion along the [001]-, [111]- or [110]-axes the effective symmetry is only tetragonal,
trigonal or orthorhombic, respectively (Cracknell 1970). This could be demonstrated
by a determination of the corresponding electric field gradient (EFG) tensor for sub-
stitutionally dissolved impurities in BCC-Fe by NMR measurements (Ebert 2000;
Seewaldefa/. 1999,1997).

A further consequence of the presence of the spin-orbit coupling for a spin-
polarized solid is that its orbital angular momentum is quenched no more. This cor-
responds to the occurrence of a finite paramagnetic orbital current density jp, which
can be obtained from the expression

jp = ~TrImt Fd£ |[V - V]G(r,r', E)\r=r>.

Corresponding results (Huhne et al. 1998) obtained for the current density jp in
BCC-Fe are shown in Figure 5.2.

Here the direction and magnitude of jp are represented by arrows for the (001)
plane with the z- and magnetization axes pointing upwards. At first sight the current
density distribution seems to be rotational symmetric. However, a closer look reveals
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Figure 53 Orbital magnetic moments for BCC-Fe, FCC-Co and FCC-Ni. The various
columns represent from left to right the experimental data (E) (Stearns 1987) and theoret-
ical data obtained by the KKR method on the basis of plain SDFT (K), CDFT (C) (Ebert et
al 1997a) and using the OP-potential term (O) (Ebert and Battocletti 19%). The last column
labelled with L gives results obtained using the LMTO with the OP term included (Eriksson et
al 1990b,c).

that it has in fact a lower symmetry. This is demonstrated in the right part of Figure 5.2
which gives the radial component of jp within the (001) plane. Note that there is only
a fourfold symmetry axis along the z-axis. For the paramagnetic state the x- and
y-axes as well as the diagonal axes in between would be twofold symmetry axes.
Obviously, the corresponding symmetry operation C2 is missing here because of the
ferromagnetic state and the spin-orbit coupling accounted for. However, we can also
clearly see from the right part of Figure 5.2 that this symmetry operation combined
with the time-reversal operator T results in the proper symmetry operation (TC2)
for the ferromagnetic state (Cracknell 1970).

Orbital magnetic moments and hyperfine fields

With the spin-orbit-induced orbital current density in magnetic solids there is obvi-
ously a finite orbital angular momentum density associated. The corresponding orbital
magnetic moment orb can be obtained from the expression (Ebert et al, 1988a):

fj,OTb = -¥*L Trim I F dE f d3r ß l zG(r, r, E).

As Figure 5.3 shows, the spin-orbit-induced /zorb contributes 5-10% of the total
magnetic moments of the elemental ferromagnets Fe, Co and Ni.

However, we also note from this figure that the results obtained on the basis of
plain SDFT are much too small compared with experiment in the case of Fe and Co.
An obvious way to cure this shortcoming of plain SDFT is to calculate the orbital
magnetic moments on the basis of CDFT. Corresponding results for orb of Fe, Co
and Ni, which have been obtained using the relativistic version of Vignale and Rasolt's
CDFT formalism, are given in Figure 5.3 (Ebert et al 1997a). Using CDFT instead
of plain SDFT obviously leads to an appreciable enhancement of uorb for Fe and
Co. Although this effect is found to be too small, we can expect that the remaining
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deviation from experiment will be reduced with improved parametrizations for the
exchange-correlation potentials available.

The basic CDFT Hamiltonian in Equation (5.6) does not rule out the existence of
a finite orbital magnetic moment in the nonrelativistic limit. With the help of model
calculations, it could be demonstrated that this is not the case for bulk Fe, Co and
Ni (Ebert el al. 1997a). Starting an SCF calculation with a finite spin-orbit-induced
orbital current density and switching off the spin-orbit coupling during the SCF-cycle
the orbital magnetic moment vanished (see also next section).

An alternative to CDFT, which leads in most cases to a rather satisfying agreement
with experiment and which is numerically not very demanding, has been suggested
by Brooks. To deal with the orbital magnetism of f-electron systems, this author
introduced the so-called OP formalism (Brooks 1985), which was originally restricted
to k-space band-structure methods. Using the real-space formulation given above,
we can see that it effectively leads to a feedback of the spin-orbit-induced orbital
current into the potential term of the Dirac equation (see Equation (5.7)). Based on
the corresponding spin- and orbital-polarized relativistic KKR formalism (Ebert and
Battocletti 1996), we find a strong enhancement of the orbital magnetic moment for Fe
and Co leading to a rather satisfying agreement with experiment (see Figure 5.3). The
spin magnetic moment, on the other hand, is hardly affected by inclusion of the OP
term. Furthermore, calculations done in the full-potential mode (Huhne et al. 1998)
clearly demonstrated that the OP term does not include aspherical potential terms that
would be counted twice in a full-potential calculation, as sometimes suspected in the
past.

Apart from minor numerical differences, the results obtained with the SPR-KKR
are completely in line with those obtained before using the LMTO method (Eriksson
et al. 1990b,c;Tryggefa. 1995). However, the latter approach accounts for spin-orbit
coupling and the OP term only in the variational step, while for the SPR-KKR these
are also included when calculating the wave functions and the corresponding single-
site /-matrices. As a consequence, the SPR-KKR can straightforwardly be combined
with the CPA to deal with disordered alloys. As an example of an application of the
SPR-KKR-CPA, results for Orb of BCC-FexCo1-x are shown in Figure 5.4.

As we can see in this figure, the enhancement of orb for Fe and Co in BCC-
FejcCoi-j is very similar to that found for the pure metals. Again this enhancement
brings the average orbital magnetic moment for the alloy into very satisfying agree-
ment with experimental data deduced from magnetomechanical and spectroscopic
g-factor measurements.

Within a nonrelativistic calculation of the hyperfine fields in cubic solids, one gets
only contributions from s electrons via the Fermi contact interaction. Accounting for
the spin-orbit coupling, however, leads to contributions from non-s electrons as well.
On the basis of the results for the orbital magnetic moments we may expect that these
are primarily due to the orbital hyperfine interaction. Nevertheless, there might be a
contribution via the spin-dipolar interaction as well. A most detailed investigation of
this issue is achieved by using the proper relativistic expressions for the Fermi-contact
(F), spin-dipolar (dip) and orbital (orb) hyperfine interaction operators (Battocletti
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Figure 5.4 Orbital magnetic moments in BCC-FexCo1-x. The triangles pointing upwards
and downwards represent the theoretical moments of Fe and Co, respectively, while the con-
centration weighted sum is given by circles. Full and open symbols stand for results obtained
with and without the OP term included, respectively (Ebert and Battocletti 1996). Experimental
data (Stearns 1987) for the average magnetic moment (right part) stemming from magnetome-
chanical and spectroscopic g-factors are given by full squares and diamonds.

1997; Pyper 1988):

= ea • An(r)
= ea • (fin x r)An(r),

<n • or-~ 6>(rn - r),

'
1 •>

-r[3(Atn • r)(or • r) - (fin • a}r2}0(r - rn),

//orb =

(5.32)

(5.33)

(5.34)

(5.35)

where An(r) is the vector potential of the nucleus with magnetic moment /zn and
finite size rn.

Figure 5.5 shows results for the hyperfine field BNi of Ni in the disordered alloy
system FCC-FexNi1-x obtained using Equation (5.32).

While the concentration dependence of the experimental fields are reproduced
rather well by the theoretical fields (a phase transition to the BCC structure occurs
around 65% Fe), the later ones are obviously too small. This finding has been ascribed
in the past to a shortcoming of plain spin density functional theory in dealing with
the core polarization mechanism (Ebert el al. 1988a). Recent work done on the basis
of the optimized potential method (OPM) gave results for the pure elements Fe, Co
and Ni in very good agreement with experiment (Akai and Kotani 1999).

The core contribution to BNi nearly exclusively comes from the s electrons. For
the valence band electrons, on the other hand, there are appreciable contributions
from the non-s electrons as well. While p contributions are nonnegligible for 4d and
5d elements, they are extremely small for 3d elements. Accordingly, these will be
ignored in the following. On the basis of the spin-orbit-induced orbital magnetic
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Figure 5.5 Top: hyperfine fields Bhf of Ni in the disordered alloy system Fex Ni1-x together
with experimental data (Stearns 1987). Apart from the total field the contributions of the core,
valence band as well as non-s electrons are given separately. Bottom: corresponding orbital
and total valence hyperfine fields, Bval

orb,d and Bval
 d, respectively, for the d electrons. In addition,

the orbital fields Bval
orb according to the approximate expression due to Abragam and Pryce

(Equation (5.36)) are given.

moments discussed above we may assume that the hyperfine fields of non-s elections
are also primarily of orbital origin. This can be confirmed in a simple way by using an
approximate expression that connects the orbital magnetic moment and the hyperfine
field (Abragam and Pryce 1951):

B.val(AP)
orb,/

,-3 (5.36)
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Corresponding results for the d electrons of Ni are given in the right panel of Fig-
ure 5.5. Obviously, these fields are very close to the field Bvald corresponding to the
full hyperfine interaction (Equation (5.32)). In Figure 5.5 results for the orbital hyper-
fine field calculated by use of the proper orbital hyperfine interaction operator Horb

(Equation (5.35)) are shown in addition. The corresponding field Bval
orb nearly coin-

cides with the total field Bval
d indicating that the contributions of the Fermi-contact

and spin-dipolar operators (see Equations (5.33) and (5.34)) are very small. Indeed
it was found that the Fermi-contact field of the d electrons is completely negligible
and the small difference between Bval

d and Bval
orb,d seen in Figure 5.5 can be ascribed

to the spin-dipolar contribution.

5.3.2 Surfaces

In the past, the interest in surface magnetism was primarily caused by the enhancement
of the spin moments at surfaces due to the reduced coordination. A typical example of
this effect is iron, for which the bulk moment (2.15/ie) is enhanced at the (001) surface
to 2 . 9 B (Ohnishi et al. 1983). Similar enhancements are also found in ultrathin
magnetic films (Bliigel et al. 1989) and in particular in 3d monolayers on noble-metal
surfaces (Bliigel and Dederichs 1989), where the 3d moments approach the atomic
values given by Hund's first rule. Also some 4d monolayers seem to be magnetic. For
example, for Rh and Ru on an Ag or Au surface, moments of about 0.62 and 0.29uB,

respectively, have been calculated (Eriksson et al. 1991). Even larger moments have
been obtained for single transition-metal adatoms on surfaces (Lang et al. 1994;
Stepanyuk et al 1996). Here the 4d and 5d atoms, being nonmagnetic as impurities in
the bulk, show as adatoms very large local moments comparable with the free-atom
values. Sizeable moments also survive when these atoms are incorporated into the
first atomic layer at the surface.

In contrast to the spin magnetism, the orbital magnetism in transition-metal solids
has in general its origin in the spin-orbit interaction. While the orbital magnetic
moments in bulk transition-metal systems are nearly quenched due to the strong
hybridization with neighbouring atoms, they are usually enhanced at surfaces because
of the reduced coordination. For example, an increase by 50% for the surface layer of
Co (0001) (0.090uB) has been found compared with the bulk value (0.058uB). Even
larger orbital moments were obtained for 3d monolayers, e.g. for a Co monolayer on
Cu(100) (0.12luB) (Hjortstam et al. 1996; Tischer et al. 1995). Thus, at surfaces the
quenching of the orbital moments is less pronounced due to the reduced hybridization.
Nevertheless, we should note that these enhanced orbital moments are still an order
of magnitude smaller than the corresponding free-atom values, as given by Hund's
second rule.

However, there are exceptions to this rule. Riegel and co-workers have already
shown that Fe impurities, being injected into alkali metals, show hyperfine properties
that indicate very large orbital moments close to the full atomic values (Riegel et al.
1986). This seems to be due to the weak hybridization with the host electronic states
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Figure 5.6 Calculated spin (ASpin) and orbital (Aorb) moments of 3d adatoms (left) and 5d
adatoms (right) on the Ag (001) surface. Hie results have been obtained in a scalar (SRA) as
well as fully relativistic (SPR) procedure. The label OP indicates that the orbital polarization
term has been included in the Dirac equation.

caused by the low electron density of the alkali metals. In line with this experience,
very pronounced enhancement effects for the spin as well as orbital magnetic moments
have been obtained recently for adatoms on Ag and Au surfaces (Nonas et al. 2001).

Figure 5.6 shows the corresponding results for the local spin and orbital moments
for the 3d (left) and 3d (right) atoms as adsorbate atoms on the Ag (001) surface.

For comparison, the spin moments have also been calculated in the scalar relativistic
approximation. As we can see, the 3d spin moments are very large and agree very
well with the fully relativistic data. Similar behaviour has also been found for 4d and
5d transition-metal adatoms. The spin moments of the 5d adatoms are considerably
smaller than the 3d ones due to the larger extent of the 5d wave functions and the
resulting stronger hybridization with the Ag substrate electrons. Nevertheless, these
moments show the same parabolic variation as a function of the valence of the adatoms.
In contrast to the 3d elements, the spin magnetic moments of the 5d elements are
slightly reduced compared with a scalar relativistic calculation. For instance, for Os
the scalar relativistic moment of 2.42/Lte is reduced to 2.06uB by inclusion of the
spin-orbit coupling. Most significant is the reduction for IT, for which the moment
vanishes in a relativistic treatment. Qualitatively, the reduction of the spin moments
can be understood from the broadening of the local density of states (LDOS) due to
the spin-orbit splitting. Due to the larger spin-orbit coupling parameter these effects
are larger for the 3d atoms.

In addition to the spin moments, Figure 5.6 also shows the orbital moments of the
adatoms, calculated self-consistently in the fully relativistic scheme. For the 3d and
5d atoms we observe a change of the orbital moment from negative values in the
first half of the series to positive values in the second half, with reduced values at
the beginning and at the end of the series, In the 3d series by far the largest orbital
moments are obtained for Fe and Co adatoms, with values of 0.55 and 0.76uB • Apart
from these two cases, the 5d orbital moments are considerably larger than the 3d
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Figure 5.7 Orbital moments (Aorb) of single 5d adatoms on the Ag (001) surface. The results
labelled TB have been obtained on the basis of Equation (5.37), while the other data stem from
a non- (SPR 1 iter.) and a fully converged (SPR scf) self-consistent relativistic calculation,
respectively.

ones. This is a consequence of the much larger spin-orbit coupling parameter of the
5d transition-metal atoms.

The trends for the calculated orbital moments presented in Figure 5.6 can be under-
stood qualitatively if we treat the spin-orbit term in first-order perturbation theory. In
this order, the spin-orbit perturbation A V can be written as follows,

leaving the spin as a good quantum number. In a simple tight-binding model (Bruno
1993; Ebert et al. 1990) we obtain for the expectation value of the orbital angular
momentum operator

where n ( E F ) and n+(E F ) are the spin-up and spin-down LDOS at the Fermi energy
EF for the considered adatoms. This expression explains the findings in Figure 5.6 in a
natural way. Due to the reduced coordination, the adatoms have rather narrow virtual
bound states with a high densities of states, and thus quite large orbital magnetic
moments emerge. At the end of the series the widths of the virtual bound states are
narrower, so that the orbital moments become larger, while the sign changes from
negative to positive, since then the minority states are filled.

The validity of this model is illustrated in Figure 5.7 for the orbital moments of 5d
adatoms on the Ag (001) surface.

This figure shows the orbital moments as calculated from Equation (5.37) with
tabulated spin-orbit parameters (Mackintosh and Andersen 1980) and the LDOS
obtained from a scalar relativistic treatment. These data are compared with the results
of a nonself-consistent relativistic calculation, i.e. the Dirac equation has been solved
using converged scalar relativistic potentials as input. Obviously, the trends are very
well described by the above model. The self-consistent fully relativistic calculation
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Table 5.1 Spin moment, orbital moment and anisotropy of the orbital moment
/LtB/atom) and magnetocrystalline anisotropy energy per cluster atom AE (in meV) of Ru
clusters on Ag (001) surface. N is the number of atoms in the cluster and Nc is the coordination
number for the various atom types.

position
N Nc of atom Moito

1 0
2 1
3 2

1
1.3

4 2
5 4

1
1.6

centre
border
average

centre
border
average

2.23
2.19
2.17
1.97
2.04
1.85
1.68
2.05
1.98

0.75
0.36
0.27
0.42
0.37
0.17
0.12
0.43
0.37

-0.19
-0.07
-0.05
-0.05
-0.05
+0.07
+0.06
+0.02
+0.03

+6.44
+2.54

—

—
+1.05
-0.48

——
+1.95

+0.09
+0.25
+0.06
+0.12

+3.37

—
—

+2.35

gives practically the same results, except for Ir, for which the spin and orbital moments
vanish in a self-consistent treatment.

Equation (5.37) also gives a straightforward explanation for the dependency of the
orbital magnetic moment on the atomic coordination. In particular, it suggests that
the formation of atomic clusters on surfaces should lead to a reduction in the orbital
magnetic moments because of the broadening of the electronic bands. This behaviour
was demonstrated recently by calculations for transition-metal clusters on an Ag (001)
surface that contained up to five atoms (Cabria et al. 2002). The atoms of these clusters
were assumed to occupy hollow surface sites with a linear arrangement for less than
four atoms and a most compact one for the larger clusters. The resulting spin and
orbital magnetic moments for Ru on the Ag (001) surface are given in Table 5.1.

As we can see, the tendency for the spontaneous formation of a spin magnetic
moment reduces with increasing coordination number Nc. Nevertheless, there is still
a finite moment in the limit of complete coverage of the Ag (001) surface. For Os, on the
other hand, the spin magnetic moment found for small clusters depends strongly on the
atomic configuration and collapses upon growing due to the increased hybridization.

Although there is no one-to-one relationship (see above), a similar behaviour is
found for the orbital magnetic moment. As Table 5.1 shows, there is also a strong
decrease with increasing coordination. However, quite different from the behaviour of
the spin magnetic moment, the orbital moment shows a very pronounced anisotropy.
This is represented in Table 5.1 by the difference of the orbital magnetic moment
A^orb)-Z f°r an orientation of the moment along the x- or y-axis lying in the surface
plane and the z-axis that coincides with the surface normal.

The anisotropy Ax(y)-z
orb of the orbital magnetic moment has been connected by

several authors (Bruno 1989; van der Laan 1998) to the corresponding magnetocrys-
talline anisotropy energy AEx(y)-z Results obtained from band-structure calculations
for layered systems were found in the past to be in rather satisfying agreement with
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the proposed interrelationship (Ujfalussy et al. 1997). In particular, the anisotropy
energy deduced from the anisotropy of the orbital magnetic moment using van der
Laan's expression was found to be very close to the directly calculated ones (Cabria
etal. 2001). For atomic clusters on an Ag (001) surface, however, the situation seems
to be quite different. First of all, note that the magnetocrystalline anisotropy energies
are very large and depend sensitively on the atomic number and specific configura-
tion (Cabria et al. 2002). For Ru, for example, AE is positive apart from the cluster
with four atoms, implying that we have an out-of-plane anisotropy. In the case of
Fe, on the other hand, the easy axis was found to be in-plane for the monomer and
dimer. In contrast to the previous work on layered systems, no clear interrelationship
between the anisotropy of the orbital magnetic moment A/uorb and the magnetocrys-
talline anisotropy energy AE could be found by the investigation of 3d, 4d and 5d
transition-metal clusters on the (001) surface of Ag and Au (Cabria et al 2002). This
finding indicates that the assumptions made in the past to correlate A/uorb and A£
are no more justified for these relatively complex systems.

As shown in the last section, electron-electron interactions may have a rather pro-
nounced influence on the spin-orbit-induced orbital magnetic moment of transition
metals. The importance of these has also been studied for adatoms on the Ag (001)
surface using Brooks's orbital polarization (OP) formalism. Figure 5.6 shows that
the orbital magnetic moments of the 5d elements are enhanced by the OP term to an
extent comparable with bulk 3d metals. For Fe, Co and Ni as adatoms, however, an
enhancement by a factor of 4–5 has been found, leading to orbital magnetic moments
that are larger than the spin magnetic moments for Co and Ni. This finding indicates
that the large orbital magnetic moments shown in Figure 5.6 are primarily due to a
Stoner-like instability of the state without orbital moment (Nordstrdm 1991) and to a
lesser extent to spin-orbit coupling. This is just the behaviour expected for the atomic
limit and described by Hund's second rule. To investigate this point in more detail
additional calculations have been made with the strength of the spin-orbit coupling
reduced but with the OP term kept unchanged (Ebert et al. 1996a). Even for vanishing
spin-orbit coupling, i.e. in the scalar relativistic limit, the orbital magnetic moments
were only slightly reduced compared with a fully relativistic calculation: for example,
from 2.57 to 2.40uB for Co and from 1.78 to 1.75uB for Os. This spontaneous for-
mation of an orbital magnetic moment via a Stoner-like mechanism was not observed
before for a transition-metal system. The reason that an orbital magnetic moment
forms spontaneously for the investigated adatom systems is obviously a sharp virtual
bound state like the peak at the Fermi level with a strong spin polarization. This is a
direct consequence of the low coordination number and the weak hybridization with
the substrate.

5.3.3 Noncollinear spin structures

For the previous examples it was assumed that the magnetization of the system is
oriented either parallel or antiparallel to a common axis. There are many cases where
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this assumption is not well justified or does not apply at all. At finite temperatures
or in disordered and amorphous alloys it is quite obvious that the orientation of the
atomic magnetic moment may change from site to site. In fact it has been claimed
recently that this behaviour plays an important role for the invar effect of Fe0.65Ni0.35

(van Schilfgaarde et al 1 9 9 9 ) . A p a r t from the disordered noncollinear spin structures there are also ordered ones.
A prominent example of these is the transition-metal compound y-FeMn, which has
a magnetic unit cell that is not much larger than the chemical one. On the other hand,
magnetic spiral structures, which are quite common in rare earth metals, can possess
very large or even infinite magnetic unit cells.

Theoretical investigations of systems showing a noncollinear spin structure require
an appropriate extension of SDFT that is normally formulated assuming a collinear
spin structure (Sandratskii 1998). This important aspect has recently been reconsid-
ered by Fritsche and co-workers in great detail (Reinert 2000). For a system with
an ordered noncollinear spin structure the calculation of its electronic structure is
dramatically simplified by making use of group theory (Sandratskii 1998). For this

purpose w e introduce t h e concept o f spin-space groups, whose elements { a s | R | t } a r e c o m b i n a t i o n s o f spatial translations a n d rotations, t a n d O R , a n d rotations a s , which

act only on the spin part of the wave function. If the spin-orbit coupling is ignored,
the allowed rotations aR and as are completely independent from one another. As a
consequence, a generalized Bloch theorem can be derived that describes the symmetry
properties of Bloch states in systems with a spin spiral structure. This important step
allows one, even for noncommensurate spin spirals, to restrict the electronic wave
vector k to the first Brillouin zone, which is defined in the usual way, and to consider
only the chemical unit cell.

Within a nonrelativistic or scalar relativistic approach the electronic structure of
a magnetic solid depends only on the relative orientation of the magnetic moments
on the various atomic sites. As a consequence, we expect the same total energy and
magnitude of the moments for spin configurations that have the same relative orienta-
tion of the magnetic moments. This has been demonstrated for example in the case of
the metallic perovskite-like compound Mn3GaN for two noncollinear spin structures
(Kubler et al. 1988). Because the relative orientation of the magnetic moments with
respect to the lattice is different for these spin configurations, their energetic degen-
eracy is removed if the spin-orbit coupling is accounted for. In addition, inclusion
of the spin-orbit coupling requires the spatial and spin rotations mentioned above
to be identical (aR = as). For that reason the generalized Bloch theorem for spin
spiral structures does not hold any more. As a consequence, we have to deal with the
proper magnetic unit cell in the case of commensurate spin spiral structures, while
noncommensurate configurations cannot be handled any more by a band-structure
scheme that relies on translational symmetry.

Most electronic structure calculations for noncollinear spin structures have so far
been done assuming spherical symmetric potential terms within an atomic cell. During
the last few years a number of computational schemes have been developed that take
the noncollinearity of the intra-atomic magnetization in atoms (Eschrig and Servedio
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Figure 5.8 Triple-* structure (left) and single-* structure (right) in USb. Reproduced with
permission from Knopfle and Sandratskii (2000) © 2000 from the American Physical Society.

1999) and in solids (Knopfle et al. 2000; Nordstrom and Singh 1996; Oda et al. 1998)
into account. A corresponding version of the MASW (modified augmented spherical
wave) method that uses two-component wave functions and includes the spin-orbit
coupling in the variational step has been recently applied for an investigation of the
compound USb (Knopfle and Sandratskii 2000). In contrast to other U-monopnictides,
USb possesses a complex triple-* magnetic structure that is shown in Figure 5.8 (k
denotes here the wave vector of superimposed spin waves).

Under pressure, a phase transition to a collinear, anti-ferromagnetic single-k struc-

ture occurs (see Figure 5.8). While the single-* structure has a body-centred tetrago- nal magnetic unit cell with two formula units per cell, the triple-k structure is simple

cubic with four formula units in the magnetic unit cell. The different symmetry of the
two magnetic configurations is represented in detail in Table 5.2, where the allowed
symmetry operations are listed.

Due to the inclusion of the spin-orbit coupling there is no need to distinguish
between rotations in real and spin space. As can be seen in Table 5.2, the operations
{«R|t) } can be accompanied by the time reversal T. Because the operator T reverses
the direction of the magnetic moments, time reversal T itself is of course no symmetry
operation.

By including the OP term in the underlying Hamiltonian, the above-mentioned
MASW calculations could improve the agreement of the calculated moments of the
U atoms (2.24u,B) compared with previous work (1.54B) (Yamagami 2000). The
strong influence of the OP term is understandable, because the U moment is primarily
of orbital origin (+4.46B) with the spin moment (-2.22uB) oriented antiparallel.
In agreement with experiment, the MASW calculations found the triple-k structure
to be the ground-state configuration. Also the transition to the single-k Configuration
under pressure could be reproduced.

The magnetic configurations of USb shown in Figure 5.8 are both spin compen-
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Table 5.2 Symmetry operations for the single- and triple-* structures in of USb. Here
— fiii^andsoon.

symmetry operations {OR|t| }

single-k {E|0} (C2x|0} {C2>|0} {C2z|0}

(I|t} tarlfzl

triple-k {E|0} {C2x|0} {C2y|0} {C2z|0}
{C31|0} {C32|0} {C^IO}

T{C2b|t]

T{C2e|t}

T ( C 2 f | t ]
{I|t} {ax|t} {ay\t}

I>d(|0}

sated, i.e. the net magnetic moment of the compound vanishes. However, this is not a
necessary condition for the occurrence of a noncollinear spin structure as exemplified
by the series of compounds 113X4 (X = P, As, Sb, Bi). These compounds crystallize
in the Th3P4 structure, which has a BCC lattice with four formula units per unit cell.
Experimentally, it is found that U3P4 and U3As4 have their net magnetic moment
oriented along the [1 Ill-axis, while for U3Sb4 and U3Bi4 an orientation along the
[001]-axis is found. The corresponding configurations of the individual U moments
are shown in Figure 5.9.

The change of the orientation of the easy axis along the series could be reproduced
by band-structure calculations. Recent work done using the MASW method (Knopfle
et al. 2000) led to a continuous change of the anisotropy energy AE = E[111] -
E[001], defined as the difference in total energy for an orientation along the [111]- and
[001]-axes, from -0.15 mRy/U-atom for U3P4 to -1-0.15 mRy/U-atom for U3Bi4

This variation of AE has been ascribed to the different change of the U-U and
U-X hybridizations along the series (X = P, As, Sb, Bi); the U-U hybridization
decreases, while the U-X hybridization slightly increases. Also the experimental
magnetic moment of the U atoms could be reproduced in a satisfying way by the
calculations, as can be seen in Table 5.3.
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0[001]

Figure 5.9 Magnetic structures with net moment along the [11 l]-axis (a) and [001]-axis (b).
The projections of the moments onto the plane perpendicular to these axes and the corresponding
conical structures are shown. Reproduced from Knopfle et al. (2000). © (2000), with permission
from Elsevier Science.

Table 5.3 Spin, orbital and total moments for the 1)3X4 (X = P, As, Sb, Bi) compounds
calculated with the MASW together with the experimental values (Wisniewski et al. 1999).

Axis

U3P4 [111]
U3As4 [111]
U3Sb4 [001]

U3Bi4 [001]

Atom

Ul-6
Ul-6
Ul-4
U5-6

average
Ul-4
U5-6

average

Mspin

-1.62
-1.71
-1.78
-1.86

-2.01
-2.05

Ao r b

3.01

3.45
3.91
4.09

4.34
4.41

Mtot

1.40
1.74
2.14
2.24
2.17
2.33
2.36
2.34

Exp.

1.34
1.82
1.72
2.36
1.93
1.96
2.31
2.08



196 APPLICATIONS

Table 5A Deviation angles of spin, orbital and total moment calculated with the MASW
method. The last column gives experimental values (Gukasov et al. 1996; Wisniewski et al.
1999).

Axis Spin(deg) Orbital (deg) Total (deg) Exp. (deg)

U3P4

UsAS4
U3Sb4

U3Bi4

[111]
[111]
[001]
[001]

0.96
1.83
9.37

13.20

1.10
1.69
7.47

11.48

1.27
1.56
5.85
9.98

0.0 ± 2.3
3.1 ±0.5
3.7 ±3.3
collinear

Again, inclusion of the OP-correction term is necessary to obtain the large orbital
magnetic moments that by far exceed the spin moments in all cases.

The data given in Table 5.3 reflect the fact that there are two inequivalent U sites if
the net magnetization points along the [001]-direction (see Figure 5.9). This is a direct
consequence of the restriction imposed by symmetry for the two considered magnetic
configurations. However, symmetry does not require the individual moments to be
collinear with the net magnetic moment. For the U3X4 compounds considered, the
deviations from the common axis are shown in Figure 5.9 by the projection of the U
moments onto the plane perpendicular to the net magnetic axis and the corresponding
conical structures. Because the canting of the total magnetic moment of a U atom
does not affect the symmetry, there is no need to have the same canting angle for the
spin and the orbital moments. In fact, for the series U3X4 different canting angles are
found. As can be seen in Table 5.4, these are in reasonable quantitative agreement
with corresponding experimental data, which have a rather high uncertainty.

Most importantly, however, the results summarized in Table 5.4 are in full agree-
ment with a criterion formulated by Sandratskii and Kttbler for the instability of a
collinear spin structure:

if the collinear magnetic structure under consideration is not distin-
guished by symmetry compared with the noncollinear structures obtained
with infinitesimal deviations of the magnetic moments from collinear
directions, this structure is unstable.

(Sandratskii and Kubler 1995)

5.3.4 Linear response

Using the Green function formalism for a description of the underlying electronic
structure gives several important advantages when dealing with response quantities. In
particular, it allows us to investigate impurity systems (Terakura et al. 1982), surfaces
(Freyer et al. 1999) and disordered alloys (Butler 1985). In the later case we have to
deal with the configurational average of the product of two Green's functions. This
problem has been studied in a rather detailed way within the framework of the KKR-
CPA (Staunton 1982) leading to corresponding expressions for the so-called vertex
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corrections (Butler 1985). Using the relativistic version of the KKR-CPA in particular
accounts for the spin-orbit coupling that can play a very important role for response
functions. In the case of the susceptibility, Knight shift or induced magnetic form
factor, which describes the response of a paramagnetic solid to an external magnetic
field, the spin-orbit coupling leads to spin-orbit cross terms that do not occur within a
nonrelativistic approach (Yasui and Shimizu 1985). In the case of transport properties
of magnetic solids it gives rise to the galvanomagnetic effects, which are of great
technological importance (McGuire and Potter 1975).

Static magnetic susceptibility and Knight shift

The response of a solid to a perturbation AH can be described straightforwardly by
means of the Dyson equation. Restricting to a linear response, the Green function GB

of the distorted system is given by

GB = G + G AH G. (5.38)

Assuming that the perturbation AH stems from a coupling of an external magnetic
field Bext = Bextez to me spin of the electrons we may write for the induced spin
magnetization,

f

*J§£(r') y"V) Xs^ext G(r', r, E), (5.39)

where r' is restricted to the atomic cell n'. The first term in Equation (5.39) stands for
the conventional Zeeman term, while the second accounts for the change A Vxc(r) in
the exchange correlation potential due to the induced spin magnetization mspin (r). It is
well justified to assume that A VXc (r) depends linearly on mspin (r) with a correspond-
ing interaction kernel Kxc,n

spin(r) (Gunnarsson 1976). In Equation (5.39) mspin(r) has
been replaced by the product yn(r) X s p i next with yn(r) the normalized spin density
and Xn

spin the localPauli spin susceptibility for site n. For a pure system xn
spin does not

depend on the site n and we get the conventional expression for the Stoner enhanced
Pauli spin susceptibility x"spin

:

Xspin = SXspin

Here S is the so-called Stoner enhancement factor, usually written as

with / the Stoner exchange correlation integral (Gunnarsson 1976) and x0spin the
unenhanced Pauli spin susceptibility obtained if the second term in Equation (5.39) is
ignored. For more complex systems with more than one atom type, Equation (5.39)
leads to a system of linear equations for the local susceptibilities xn

spin. As a conse-
quence, the Stoner enhancement factor will also depend on the lattice site or atom
type, respectively (Staunton 1982).
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Within a nonrelativistic theory, the coupling to the orbital degree of freedom leads,
in addition to the spin susceptibility, to the Langevin and Landau diamagnetic as
well as to the Van Vleck paramagnetic susceptibility (Benkowitsch and Winter 1983).
The Langevin diamagnetic susceptibility xdia can be calculated straightforwardly in
a relativistic manner (Mendelsohn et al. 1970). This also applies for the Van Vleck
susceptibility xw derived from the expectation value of the z-component of the
orbital angular momentum operator lz and using the perturbation Hamiltonian (Deng
et al. 2000):

Horb = ßlzBext

Calculating xw within the framework of plain spin density functional theory
(SOFT), there is no modification of the electronic potential due to the induced orbital
magnetization. Working instead within the more appropriate current density func-
tional theory, however, there would be a correction to the exchange correlation poten-
tial just as in the case of the spin susceptibility giving rise to a Stoner-like enhance-
ment. Alternatively, this effect can be accounted for by adopting Brooks's orbital
polarization formalism (Brooks 1985).

Within a nonrelativistic formalism the spin and orbital degrees of freedom are
completely decoupled; this means that the cross terms (azGlzG) and (lzGcrzG) van-
ish. However, Yasui and Shimizu (1985) pointed out that these cross terms lead to
corresponding contributions xso and xos, respectively, to the susceptibility if the
spin-orbit coupling is accounted for.

In analogy to the treatment of the susceptibility, any other magnetic response func-
tion can be derived from Equation (5.38). For the Knight shift K this leads to the
expression,

K = — Im / dE X,g z GB(r, r, E),

where the observable in the integral corresponds to the vector potential stemming
from the nuclear magnetic dipole moment (Rose 1961). As for the susceptibility,
there are contributions to K because of the coupling of an external magnetic field to
the spin (AHSpin) as well as to the orbital degree of freedom (AHorb>) of the electrons.
Furthermore, note that the Stoner mechanism also leads to an enhancement of the
corresponding Knight shift contributions.

The formalism outlined above has been recently applied to supply a firm basis
for the interpretation of the results of susceptibility and NMR measurements on a
number of disordered alloy systems (Deng 2001). In the case of AgxPt1-x the most
prominent feature of its electronic band structure is the rather narrow d band of Ag
(3.1 eV) lying about 3.2 eV below the Fermi level. Pt, on the other hand, has a d
bandwidth of about 7.4 eV with the Fermi level cutting the d band complex. As a
consequence, the density of states (DOS) at the Fermi energy is dominated by the Pt d
states for most concentrations. Starting from pure Pt, an increase in Ag content leads
to a shift of the Pt bands towards lower energies. This gives rise to a monotonous and
rapid decrease of the DOS at EF with the filling of the Pt d bands. In the past it has been
assumed that this behaviour should be reflected directly by the magnetic susceptibility
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Figure 5.10 Left: calculated component resolved Pauli spin contributions to the magnetic
susceptibilities of Ag^Pti_^ as a function of the Ag concentration. The Pauli spin suscep-
tibilities are given without Stoner enhancement x0.a

spin and with Stoner enhancement xa •

Right: calculated partial magnetic susceptibility for Ag and Pt in AgxPt1-x as well as the total
susceptibility as a function of the Ag concentration together with corresponding experimental
data (Ebert et al. 1984).

X (Hoare et al. 1953). However, this point of view, based on the rigid band model,
is oversimplified for several reasons, as can be demonstrated by calculations for the
susceptibility.

Figure 5.10 shows theoretical results for the Pauli contributions to the magnetic
susceptibility of the various alloy partners in Ag^Pti-*.

As expected from the behaviour of the partial DOS, the relatively high unenhanced
Pauli susceptibility xipm of pure Pt decreases rapidly with increasing Ag content.
The partial susceptibility xftin8 of Ag, on the other hand, is rather small and hardly
varies with concentration. As we can see from Figure 5.10, the Stoner enhancement
of the Pauli spin susceptibility of pure Pt is rather large. Accordingly, Pt dominates
the total magnetic susceptibility on the Ag-poor side of AgxPti -x. Because the Stoner
enhancement also gets weaker when the spin susceptibility x0spin decreases, the partial
susceptibility of Pt decreases more rapidly with increasing x than the bare density
of states at the Fermi level suggests. For the alloy partner Ag, on the other hand, the
situation is quite different. Here the Stoner enhancement amounts to only a few per
cent. Only on the Ag-poor side is it somewhat more pronounced. On the Ag-rich side,
however, it can more or less be ignored.

As for the spin susceptibility, the partial Van Vleck susceptibility XVY °f Pt is found
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to be much larger than for Ag. Because XVY is primarily determined by the filling
and width of the d band, it shows only a rather weak concentration dependence. As
a consequence, XVY exceeds XPt

spin on the Ag-rich side of the system although it is
only about one-quarter of xPt

spin for pure Pt. Not only their concentration dependency,
but also the Stoner enhancement of Xa

spin and XYV is^te different. Using the OP
formalism we find for Pt only about 10% and negligible corrections in the case of Ag.

The negative Langevin susceptibility xa
dia hardly varies with concentration x for

both components in AgjPti-*. It more or less compensates for the positive orbital
contribution xavv of me corresponding atom. A variation in xa

dia with concentration
should primarily arise from the change of the lattice parameter with concentration
(Banhart et al. 1986). It seems that this effect is not very pronounced for AgxPti_x.

In accordance with the strong relativistic effects that can be expected for Pt in
AgxPt1-x, the spin-orbit cross-term contributions XPtSo and XPt

OS which are almost of
the same magnitude, should not be ignored over the whole concentration range. For
Ag, on the other hand, the cross-term contributions can be ignored.

In Figure 5.10, the resulting partial susceptibility

X = Xspin + Xw + Xso + XQS + Xdia

as well as the total susceptibility

i-jr are shown together with the corresponding experimental data measured
at 4.2 K (Ebert et al. 1984). These results demonstrate that the SPR-KKR-CPA method
allows us to reproduce the experimental susceptibilities of disordered alloys in a very
reliable way.

It was found in many experimental investigations that the Knight shifts of the
noble metals Au, Ag and Cu are positive but become negative if they are dissolved
as impurities in the transition metals Pd and Pt (Ebert et al. 1984; Kobayashi et al.
1963; Narath 1968). It was assumed quite early on (Kobayashi et al 1963) that these
negative shifts are not due to the polarization of the core electrons, as in the case of
pure Pd or Pt (Krieger and Voitlander 1980), but due to the influence of the host metals
Pd and Pt coming from their strongly enhanced spin susceptibility. The underlying
mechanism giving rise to the observed negative Knight shift was always assumed to be
essentially the same as that leading to the negative hyperfine field of the noble metals
dissolved in a ferromagnetic host metal (Narath 1968). This assumption could be
verified by the calculation of the spin contributions to the Knight shifts in AgxPt1-x

Due to the large spin magnetization of Pt on the Ag-poor side of AgxPt1_x, the
core polarization contribution Kcp of Pt is quite large. As can be seen in Figure 5.1 1,
it rapidly decreases with increasing Ag concentration x because of the decreasing Pt
spin magnetization. For Ag, on the other hand, the core polarization contribution is
nearly zero. In contrast to this, the Stoner enhanced spin contribution to the Knight
shift of Ag in Agx Pt1-x has a relatively large absolute value with a negative sign on the
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Figure 5.11 Calculated total Knight shifts Ka of Ag (left) and Pt (right) in AgxPt1–x in
comparison with the experimental data (Ebert et al. 1984). In addition, the theoretical core
polarization contribution Ka

cp is shown.

Ag-poor side, which is attributed to interatomic effects arising from the strong induced
spin magnetization of Pt. This finding is completely in line with the results of previous
calculations (Graf et al. 1993) that included the effect of an external magnetic field
in the SCF cycle. The analysis of the induced spin density of the various components
for the Pd-rich side of AgxPd1–x and CuxPd1–x demonstrated that for Pd the core
polarization dominates the magnetization at the nuclear site. For Ag and Cu, on the
other hand, the Stoner enhanced spin density of the valence electrons has negative
sign and is responsible for the main part of the magnetization at the nuclear site. Since
the spin density at a nuclear site leads to the Fermi contact contributions to the Knight
shift, it was concluded that the negative Knight shift of the noble metal arises from
the large induced spin moment of neighbouring Pd atoms in the alloy, instead of from
the much smaller magnetization within the atomic cell of Ag or Cu.

The calculated total Knight shifts Ktheory = Kspin + Kvv + Kcp + Kdia for the
various components in AgxPd1–x compared with the corresponding experimental
data, are shown in Figure 5.11. For the Ag-poor side of the alloy systems note a rather
pronounced deviation of the calculated Knight shifts of the alloy partner Pt from the
corresponding experimental data. This has to be attributed to a large extent to the
problems in dealing with the core polarization mechanism within the framework of
plain SDFT. The same problem is present when dealing with the corresponding core
polarization hyperfine field in spontaneously magnetized solids that in general is also
found to be too small compared with experiment. Recently, it could be demonstrated
that using the so-called optimized potential method (OPM) the core polarization
hyperfine field in ferromagnets is strongly increased compared with plain SDFT-
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type calculations leading to a satisfying agreement with experiment (Akai and Kotani
1999). From this we can conclude that an improved treatment of the core polarization
Knight shift Kcp should also improve the agreement with experiment in Figure 5.11.

Transport properties

The resistivity tensor p of a paramagnetic cubic solid is diagonal with all elements
identical, i.e. its resistivity is isotropic. For a ferromagnetic cubic solid, however, this
does not apply. In particular, we find that the form of the resistivity tensor depends
on the direction of the magnetization reflecting the lowering of the symmetry of
the system upon magnetic ordering. On the basis of group theoretical considerations
(Huhne 2000; Kleiner 1966), we find the following form for p of a cubic solid with
the magnetization along the z-axis:

Here p± , p\\ and pH are the transverse, the longitudinal and the spontaneous or anoma-
lous Hall resistivities, with a the corresponding conductivity tensor. In addition, we
define the spontaneous magnetoresistance anisotropy (SMA) or anomalous magneto-
resistance (AMR) ratio Ap/p (McGuire and Potter 1975), with Ap = PU — pj_ and
the isotropic resistivity p = ^(2pj_ + p\\). Because these quantities depend on the
magnetic domain structure, they are determined experimentally from measurements
at high magnetic fields Bext with a subsequent extrapolation to Bext = 0.

A sound theoretical framework for dealing with the galvanomagnetic properties
of disordered alloys, i.e. their anomalous magnetoresistance and Hall resistivity, is
supplied by the Kubo formalism. Representing the electronic structure in terms of the
Green function leads to the following expressions for the elements of the conductivity
tensor a (Greenwood 1958; Strda and Smrcka 1975),

a,,,, =

<Vv =

V Im G+(£F) Jn Im G+(EF))conf , (5.40)

, (5.41)
/conf

where y'M is the /xth spatial component of the electronic current density operator
j = eca. In the following it is assumed that a finite conductivity or resistivity of
the investigated system stems exclusively from chemical disorder, i.e. contributions
caused by lattice imperfections, grain boundaries, phonons, magnons, and so on are
ignored. This implies in particular that we are dealing with the residual resistivity
for T = 0 K and that {• • • )conf in Equations (5.40) and (5.41) denotes the atomic
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Figure 5.12 Left: residual isotropic resistivity p of disordered CoxPd1–x (•) and CoxPt1–x

(o) alloys. Full lines, calculated including vertex corrections; broken lines, calculated omit-
ting vertex corrections. Right: calculated anomalous magnetoresistance (AMR) ratio Ap/p of
CoxPd1–x (•) and CoxPt1–x (o) alloys. Experimental data denoted by open squares, white
diamonds, triangles and crosses arise from various sources (Ebert et al. 1996b).

configuration average for a disordered alloy. This can be achieved in a very reliable
way within the framework of the KKR-CPA formalism (Butler 1985).

The magnetization of transition-metal systems is primarily due to the exchange-
splitting of their spin subsystems. Accordingly, the aforementioned symmetry reduc-
tion due to magnetic ordering affects the transport properties only due to the presence
of the spin-orbit coupling. This implies that the galvanomagnetic properties discussed
here are of pure relativistic origin. As a consequence, to deal with these, Butler's non-
relativistic approach had to be generalized by adopting the SPR-KKR-CPA formalism
(Banhart and Ebert 1995).

As an example of an application of the formalism sketched above, the calculated
isotropic resistivities p for the alloy systems CoxPd1–x and CoxPt1–x are shown in the
left part of Figure 5.12 (Ebert et al. 1996b) together with corresponding experimental
data measured at low temperature. As we can see, the agreement between calcu-
lated and measured resistivities is very good for CoxPd1–x. The maximum value of
the resistivity in this system (16 \&l cm) as well as the composition for which the
maximum occurs (about 20% Co) are well reproduced by the calculations.

Using Butler's approach in dealing with Equations (5.40) and (5.41) we account
for the so-called vertex corrections within the framework of the CPA. For CoxPd1–x

it was found that their contribution increases from about 2% for 5 at.% Co to about
25% for 80 at.% Co.

For the system CoxPt1–x the calculated resistivities are much higher than for
CoxPd1–x, reaching almost 40 \iQ cm for 30 at.% Co. This agrees in a satisfying
way with the experimental maximum of about 35 \iQ, cm at that composition. In con-
trast to CoxPd1–x, the vertex corrections are quite small for CoxPt1–x, contributing
less than 3% to the total conductivity over the entire composition range. Previous
investigations of paramagnetic alloy systems (Banhart et al. 1994) led to the conclu-
sion that the vertex corrections are more important the lower the d-like DOS at the
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Fermi level is. For CuxPt1–x (Banhart et al. 1994), for example, this applies to the
noble-metal-rich side of this system. For ferromagnetic systems, on the other hand,
the vertex corrections seem to be more important if the d-like DOS at the Fermi level
is low at least for one spin subsystem. For this reason, they are more pronounced for
CoxPd1–x compared with CoxPt1–x and more important on the Co-rich side of both
systems. The anomalous magnetoresistance (AMR) ratios for the two alloy systems
CoxPd1–x and CoxPt1–x are shown in the right part of Figure 5.12. Experimental val-
ues for both systems are included for comparison. CoxPd1–x shows remarkably high
AMR values of more than 6% for concentrations higher than 20 at.% Co (Jen 1992;
Senoussi et al. 1977). The calculations reproduce the increase in the experimental
data at low Co concentrations very well. For higher Co concentrations the calculated
values are slightly too low. Here it should be noted that the AMR in CoxPd1–x is still
as large as 1.5% even for very low Co contents (Hamzic et al. 1978; Senoussi et al.
1977), which was attributed to local orbital moments on the magnetic sites (Senoussi
et al. 1977). In contrast to CoxPd1–x, the AMR for CoxPt1–x was found to be below
1% throughout the whole concentration range (Jen et al. 1993; McGuire et al. 1984).
These findings are perfectly reproduced by the relativistic calculation, which reflects
the weak variation of the AMR in CoxPt1–x with concentration.

For the discussion of experimental galvanomagnetic properties, a number of phe-
nomenological descriptions have been developed and used in the past These ap-
proaches were based on Mott's two-current model that ascribe to each spin subsys-
tem an independent current contribution and introduced a number of model param-
eters. The SPR-KKR-CPA formalism, on the other hand, does not rely on Mott's
two-current model and allows for a parameter-free and quantitative investigation of
galvanomagnetic properties. By manipulating the strength of the spin-orbit coupling
it was possible in particular to demonstrate numerically the dependency of the AMR
and the AHR on the spin-orbit coupling (Banhart et al. 1996). In addition, it could be
shown that even the isotropic resistivity p can be strongly influenced by the spin–orbit
coupling, as previously predicted (Mertig et al. 1993).

Further insight into the mechanisms giving rise to galvanomagnetic effects could
be obtained by a decomposition of the spin–orbit coupling. To demonstrate this,
corresponding results for p and AMR ratio Ap/p are given in Figure 5.13.

The left part of this figure shows the isotropic residual resistivity p of BCC-
FejcCoi-jc obtained from calculations using the full spin-orbit coupling (£). Note
that the variation of p with composition is strongly asymmetric. This agrees well
with the experimental findings (Beitel and Pugh 1958; Freitas and Berger 1988). The
deviation from a parabolic shape can be qualitatively explained by the change of
the DOS at the Fermi energy n(EF) that decreases monotonously with increasing
Fe content. Keeping only the spin mixing part $xy of the spin-orbit coupling (see
Section 5.2.3), we find that p hardly changes. This already indicates that the coupling
of the two spin subsystems is the primary source for the relativistic enhancement of
p. This spin mixing or hybridization can be directly demonstrated by means of the
spin-projected Bloch spectral function AB (k, E). For FCC-Fe0.2Ni0.8, for example,
we find in this way that there is an appreciable minority spin character admixed to
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Figure 5.13 Isotropic residual resistivity p (left), and spontaneous magnetoresistance
anisotropy ratio A/o/p (right) of disordered BCC-FexCo1–x alloys calculated in four different
ways. The results obtained using the full spin-orbit coupling, indicated by £, are represented
by full circles. Open triangles give the results obtained keeping the xy-part %xy and zz-part
£zz, respectively, of the spin-orbit coupling. Full squares give the result with the spin-orbit
coupling completely suppressed (£ = 0).

the majority spin states which form a F-centred sheet of the Fermi surface and which
primarily carry the electronic current (Ebert et al. 1997c; Mertig et al. 1993). Admix-
ture of minority spin character opens a new scattering channel for these states that
is very effective because of the high DOS n^(Ep) at the Fermi energy with minority
spin character. As a consequence, the total resistivity has to go up in a pronounced
way compared with a calculation based on the two-current model (Banhart et al.
1997). This interpretation is confirmed by the results obtained by keeping just the
spin-diagonal part £zz of the spin-orbit coupling, i.e. suppressing the spin mixing
effect. In Figure 5.13 we can see that this manipulation leads to a strong reduction of
the total resistivity throughout the whole range of concentration. To demonstrate that
the remaining part £zz of the spin-orbit coupling has practically no influence on p, an
additional calculation has been carried out with the spin-orbit coupling completely
suppressed (£ = 0). The corresponding results nearly completely coincide with the
£zz-data, confirming this expectation. Here we should note that the latter calculational
mode (£ = 0), although technically somewhat different, corresponds essentially to
a calculation on the basis of the two-current model, where the electronic structure
is calculated in a scalar relativistic way, i.e. with the relativistic corrections Darwin-
and mass-velocity-terms taken into account (Banhart et al. 1996).

For the spin-orbit-induced AMR ratio the results obtained by the various calcula-
tions are given in the right panel of Figure 5.13. Here we find that keeping only j-xy

slightly reduces A/O//O . This means that in contrast to p, £zz has some small effect on
this quantity. Nevertheless, we find that keeping £zz alone brings A/?//o essentially to
zero. From this result it can be concluded that the part £zz of the spin–orbit coupling
can in general be neglected as a source for the AMR compared with t-xy. Finally,
setting £ = 0 of course reduces A/o/p exactly to zero (not shown here) in agreement
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with the above statement that galvanomagnetic properties are caused by spin–orbit
coupling (Banhart et al. 1996).

The model calculations performed for the residual resistivity tensor elements of
FexCo1–x allow us to check the above-mentioned phenomenological models for the
galvanomagnetic effects. For example, Smit (1951) ascribed the occurrence of the
AMR to the spin hybridization caused by the spin-orbit coupling. From an analysis
of experimental data, on the basis of corresponding expressions for A/o/p, Jaoul et
al. (1977) concluded that there should be an additional contribution due to the spin-
diagonal part of the spin-orbit coupling. The results presented in Figure 5.13 clearly
demonstrate that the mechanism discussed by Jaoul et al. can be neglected for the
isotropic resistivity p and has only a minor contribution to the AMR in the case of
the alloy system BCC-FexCo1–x.

Finally, it should be mentioned that the expression for the diagonal conductivity
tensor elements <rMM given in Equation (5.40) has been generalized to deal with the
giant magnetoresistance (GMR) of multilayer systems (Butler et al. 1995). A corre-
sponding spin-polarized relativistic formulation has been given by Weinberger et al.
that accounts in particular for the influence of the spin-orbit coupling (Weinberger
et al. 1996). A straightforward extension of Equation (5.40) to finite frequencies to
giving the absorptive part of the optical conductivity tensor element <rM/i(o>) has been
presented by Banhart for the visible regime of the light and for paramagnetic alloy
systems (J. Banhart 1998, personal communication). With the full optical conductivity
tensor for a ferromagnetic available, we get access to a treatment of the spin-orbit-
induced magneto-optical Kerr effect (MOKE) (Ebert 1996). A corresponding fully
relativistic expression has been recently derived within the framework of the SPR-
KKR formalism (Huhne and Ebert 1999; Szunyogh and Weinberger 1999). This new
approach allows us to deal with, in particular, the Kerr effect for surface-layer systems
(Huhne 2000).

53.5 Spectroscopy

Spectroscopy plays a central role in the investigation and understanding of the various
properties of solids. One of the early hints for the importance of spin–orbit coupling
for the electronic structure of solids stems from X-ray absorption experiments on Pt
(Cauchois and Manescu 1940). While for the L3-edge a pronounced white line was
observed, none was found for the L2-edge. Mott (Mott 1949) ascribed this finding to
the spin-orbit coupling, which should cause the d states of Pt above the Fermi energy
to have predominantly ds/2 character. As a consequence of this and because of the
dipole selection rules Aj = 0, ±1, we expect strong absorption for the L3-edge but
not for the L2-edge.

Another consequence of spin-orbit coupling is the occurrence of the Fano effect in
photoemission (Fano 1969a,b). This term denotes the phenomenon where we obtain
a spin-polarized photoelectron current even for a paramagnetic solid if circularly
polarized light is used for excitation (Heinzmann et al. 1972). Due to time-reversal
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symmetry the spin polarization gets just reversed if the helicity of the radiation is
reversed. For a magnetic solid, however, time-reversal symmetry is broken, leading
to a large number of interesting magneto-optical effects.

As an example of spin-orbit-induced magneto-optical properties of magnetic solids,
magnetic dichroic effects in X-ray absorption and photo-emission will be discussed
in the following. In supplying an adequate theoretical description for these we have
in principle to account for the fact that the corresponding experiment in general trans-
fers the investigated system from its ground state to an excited state. This can be
done, for example, on the basis of Hedin's GW-approximation (Hedin and Lundqvist
1969), which proved extremely successful when dealing with the band-gap problem
of semiconductors (Godby et al. 1988). Although many-body effects may also have
a strong impact on the spectroscopic properties of transition-metal systems (Liebsch
1979), it is often well justified to discuss these on the basis of the electronic structure
of their ground state alone. This point of view will be adopted in the following.

Magnetic circular dichroism in X-ray absorption

Guided by their experience with the magneto-optical Kerr effect (MOKE), Erskine
and Stern (1975) suggested that there should be a corresponding magnetic dichroism
in X-ray absorption when circularly polarized radiation is used. This magnetic circular
X-ray dichroism (MCXD) could be demonstrated for the first time for transition metals
by Schutz et al. (1987) by measurements at the K-edge of Fe in BCC-Fe in the XANES
(X-ray absorption near edge structure) region.

This pioneering work was followed by many investigations into a great variety of
systems (Ebert 1996). In particular, extensive work has been done in the soft X-ray
regime at the L2,3 -edges of 3d transition metals to probe their magnetic properties
(see below). Schutz et al. (1989) also observed the magnetic dichroism in the EXAFS
(extended X-ray absorption fine structure) region by investigating the L2,3-edges of Gd
in HCP-Gd. This opened the way to magnetic EXAFS as a new type of spectroscopy
(Knulle et al. 1995; Schutz and Ahlers 1997).

Although there are also various interesting forms of linear magnetic dichroism
(Kortright and Kim 2000), most experimental investigations of the magnetic dichro-
ism in X-ray absorption spectroscopy use circularly polarized radiation because the
circular dichroism is most pronounced. To allow a sound interpretation of the cor-
responding dichroic signal A/i = /x+ — \JT , given by the difference in absorption
of left- and right-circularly-polarized radiation, a set of sum rules have been derived
by several authors (Carra et al. 1993; Schutz et al. 1993; Thole et al. 1992; Wienke
et al. 1991). The main virtue of these rules is that they should allow us to obtain a
reasonable estimate for the expectation values (arz) and (lz) of an absorber atom from
its energy integrated dichroic signals / A/i(E) dE. Of course, this is a very appeal-
ing property because these quantities are directly proportional to the spin and orbital
magnetic moments, ju,spin and /-0rb> respectively. However, in applying the sum rules
one of the main problems is to fix the upper energy integration limit. For that reason it
has been suggested the sum rules be applied in their differential form and the dichroic
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spectra A/u(E) discussed directly. For the 1.2,3 -edges these differential sum rules are
given by (Ebert et al. 1999)

3[A/iL3 – 2A/*L2] = Cd~<<r2)d + 7 < r z ) d (5.42)

(5.43)

Here Cd is a normalization constant and Tz is the magnetic dipole operator, which
often can be ignored. Thus, the basic information to be deduced from the dichroic
signal at the L2,3-edges is the spin and orbital polarization,

3g<*«)d and ±«z)d,

respectively, of final states with d character.
Motivated by the MCXD measurements on BCC-Fe, Ebert et al. (1988b,c) devel-

oped a corresponding fully relativistic description based on the SPR-KKR formalism
and which has since been applied to a great variety of different systems (Ebert 1996).
This approach was later extended to deal with magnetic EXAFS (MEXAFS) by mak-
ing use of the cluster approximation for the multiple scattering representation of the
final states. Using the SPR-KKR formalism, the X-ray absorption coefficient /-i*x(w)
is given by (Ebert 1996)

aim
iocc-ylyl

(5.44)

Here the sum i runs over all involved core states with energy Ei and wave function
<£,. The electron-photon interaction operator Xqx, occurring in the matrix elements
Mq

A], carries, in particular, information on the wave vector q of the radiation and on its
polarization \. The last term /** in Equation (5.44) is an atomic-like matrix element
(Ebert 1996) and is connected to the term in the Green function involving the irregular
solution to the Dirac equation (see Equation (5.31)). Accordingly, it contributes only
when working with complex energies to account for finite lifetime effects.

The magnetic dichroism of the L2,3-edges spectra of Pt in the disordered alloy
system FexPt1–x has been studied experimentally as well as theoretically in great
detail in the past (Baudelet et al. 1997; Ebert and Akai 1993; Ebert et al. 1993;
Maruyama et al. 1992; Stahler et al. 1993). Typically, for Pt L2,3-spectra it was found
that the white lines at the L2- and L2 -edges are quite different because of the influence
of the spin–orbit coupling acting on the final states. This finding makes clear that a
fully relativistic approach is indispensable to achieve a quantitative description of the
L2,3-absorption spectra of Pt. This applies in particular if we are dealing with magnetic
EXAFS (MEXAFS). The top panel of Figure 5.14 shows the results of calculations
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Figure 5.14 EXAFS (top) and MEXAFS spectra (bottom) at the L2-edge of Pt in Fe3Pt.
Calculations for the ordered compound (full line), compared with the experimental data for
the Fe0.72Pt0.28 (dashed line) (Ahlers 1998). The corresponding calculations for the scattering
path operator T™A, have been done using the matrix inversion technique for a cluster of 135
atoms in the XANES and 55 atoms in the EXAFS region, including the central absorber site.
The effects of self-energy corrections (Fujikawa et al. 1997; Mustre de Leon et al. 1991) have
been accounted for after calculating the spectra.

for the L2-edge EXAFS-spectra of Pt in ordered Fe3Pt. Corresponding experimental
data, obtained by Ahlers and co-workers (Ahlers 1998) for an ordered but slightly
off-stoichiometric sample, are added. As we can see, the agreement of the theoretical
and experimental spectra is quite satisfying. Additional calculations for disordered
Feo.72Pto.28 led to spectra in rather poor agreement with experiment (Popescu et al.
1999). Obviously, these findings confirmed in particular that the experimental sample
is indeed ordered.

The circular dichroic spectrum A/ZL2 for the L2-edge is shown in the bottom panel
of Figure 5.14. Again a very satisfying agreement with the corresponding experi-
mental results could be achieved. The results for A//,L2 clearly demonstrate that the
occurrence of magnetic dichroism is by no means restricted to the white line region.
Although the amplitude for A^L2 is quite small compared with the white line region,
it is present throughout the whole EXAFS range.

As mentioned above, the applicability of the sum rules in their conventional form
seems to be somewhat doubtful because of these findings. Nevertheless, a clear-cut
interpretation of the MEXAFS spectra can be given making use of the sum rules in
their differential form.
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Figure 5.15 Top: spin polarization (d/dE)(az)d for the d states of Pt (full line) compared
with that derived from the MCXD spectra using Equation (5.42) (dotted line). Bottom: orbital
polarization (d/dE)(lz)d for the d states of Pt (full line) compared with mat derived from the
MCXD spectra using Equation (5.43) (dotted line). To compare the spectroscopic data with
the band-structure results, the normalization factor Cd in Equations (5.42) and (5.43) has been
used as a free scaling parameter using the same value for the upper and lower parts of the figure.

In the upper part of Figure 5.15 a superposition of the theoretical magnetic dichro
ism spectra A^L2 and A/*L3 according to Equation (5.42) is given (here the very
small contribution (d/dE)(Tz)d has been neglected). This is compared with the spin
polarization (d/dE)(az)d of the d states that have been obtained directly from the
band-structure calculations. In the lower part of Figure 5.15 the superposition accord-
ing to Equation (5.43) of the dichroic spectra is compared with the directly calculated
orbital polarization (d/dE)(lz)d of the d states.

The nearly perfect coincidence of the various curves in the upper and lower parts
of Figure 5.15 convincingly demonstrates that the primary information that can be
deduced from circular L2,3-MEXAFS spectra is the spin and orbital polarization for
the final d-like states of the absorber atom. Of course, these are no pure atomic prop-
erties because the absorber atom is not decoupled from its surroundings. In particular,
the variation of its spin and orbital polarization with energy strongly depends on the
bonding to the neighbouring atoms. For this reason we may expect from the Fourier
transform of a MEXAFS spectrum information on the magnetization distribution
around the absorber atom (Ahlers 1998). Motivated by this consideration Schutz and
co-workers extended the standard theoretical description of conventional EXAFS to
deal with magnetic EXAFS (Ahlers and Schutz 1998; Schutz and Ahlers 1997). In this
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way it could be shown that the spin dependency of the scattering amplitude of an atom
with a small magnetic moment should also be small. Accordingly, the atom should
not show up as a backscatterer in the pair distribution function obtained by Fourier
transformation of a MEXAFS spectrum. For a number of rare earth compounds con-
taining oxygen, it was indeed found that oxygen, whose magnetic moment is always
rather small, hardly shows up as a backscatterer in the MEXAFS spectra of the rare
earth metals (Ahlers et al. 1998). This sensitivity of the MEXAFS spectra on the
magnetic moment of the backscattering atoms could be exploited within a study on
the interface roughness of Co/Cu multilayers (Schutz and Ahlers 1997). In this case,
conventional EXAFS does not supply much information because the spin-averaged
scattering amplitudes of Co and Cu are very similar. This does not hold for MEXAFS,
because the magnetic moment of Co in Co/Cu is about two orders of magnitude larger
than for Cu.

Magnetic dichroism in valence-band photoemission

The electronic structure of magnetic solids can be investigated in a very detailed
way using spin- and angle-resolved photoemission. Adopting the so-called one-step
model, the photocurrent at the detector is described by a 2 x 2 spin-density matrix
(Braun 1996; Feder 1985),

Pss' = 2j(Pw' ~ P*'S),

where

pssr(E, k\\) = {£", k\\, s\HG(E — hco, k\\)H* \E, k\\, s'), (5.45)

where H = a • A is the interaction of the electrons and the photon field. In Equa-
tion (5.45) the initial band states are represented by the Green function G(E—fuo,k\\),
while the final states \E, k\\, s) are time-reversed LEED states with k\\ being the sur-
face parallel wave vector common to the initial and final states.

The above equations have been proved to supply an excellent framework for dealing
with magnetic aspects in photoemission that are connected with spin–orbit coupling. A
very prominent example of this is the Fano effect in paramagnetic, i.e. nonmagnetic,
solids (Fano 1969a). Usually, the Fano effect denotes the observation that a spin-
polarized photocurrent is created if circularly polarized radiation is used for excitation.
However, a few years ago it was predicted by theory (Tamura et al. 1987) and later
confirmed by experiment (Schmiedeskamp et al. 1988) that we can also have spin-
polarization for s-polarized radiation impinging on (111) surfaces of cubic solids.
Corresponding calculations have been done in the past making use of the muffin-
tin geometry for the potential. This simplifying step has been removed recently by
using the full potential version of relativistic multiple scattering theory (Fluchtmann
et al. 1995). This step leads, even for a dense-packed metal like Cu, to noticeable
changes in the photoemission spectra (Fluchtmann et al. 1998). This is demonstrated



212 APPLICATIONS

"1

I

hv = 21.2eV
FLUX
0 = 0*

Experiment

-7 -5 -2 -1

•E
<0

• Full-Potential
Muffin-Tin

i Theory

-7 -5 -4 -3 -2

Binding energy (eV)

-1

Figure 5.16 Top: experimental normal emission (F-L) ARUPS spectrum for Cu (111),
hv = 21.2 eV(Gerlach et al. 1998). Bottom: corresponding calculated ARUPS spectrum using
the muffin-tin approximation and the full potential version of relativistic multiple scattering
theory. Reproduced with permission from Fluchtmann et al. (1998). © Elsevier Science.

in Figure 5.16, which shows theoretical results based on the muffin-tin as well as
full-potential geometry in comparison with experimental data (Gerlach et al. 1998).

Using the full-potential geometry influences to some extent the peak positions and
also the relative peak heights. Both modifications bring the theoretical spectrum in
closer agreement with experiment. The same experiment has also been carried out
for other systems, for example, GaAs (Fluchtmann et al. 1999), which is the standard
source for spin-polarized electron beams by making use of the Fano effect (Meier
1985).

Due to time-reversal symmetry the spin-polarization from a paramagnetic solid
using circularly polarized radiation is just reversed if the helicity of the radiation
is reversed. This feature is of course removed if the solid is magnetically ordered,
giving rise to magnetic circular dichroism in valence-band photoemission (Schneider
et al. 1991). In a corresponding experiment we have in general the emission direction,
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Table 5.5 Magnetic dichroic effects and photoelectron spin-polarization components Pi, for
perpendicular (M||<?z) and in-plane (M||ey) magnetization M of surfaces with twofold, three-
fold or fourfold rotational axes, s, p and c stand for s, p and normally incident circularly
polarized light. The sequence of signs indicates whether the respective component Pi, occurs
(+ sign) or not (— sign) if only spin–orbit coupling (first sign), only exchange splitting (second
sign), or both (third sign) are present. MLD (L) and MCD (C) occur if a spin-polarization
component parallel to M is produced by spin-orbit coupling in the nonmagnetic case, i.e. if
there is a combination (+, +, +) (Feder and Henk 1996).

M perpendicular M in-plane

Pol. Sym. Px Py Pz

s 2mm -,-,- -,-,- +,+,+ L -,-,+ -,+,+ +,-,+
4mm -,-,- -,-,- -,+,+ -,-,+ -,+,+ -,-,+
3m +,-,+ +,-,+ -,+,+ +,-,+ +,+,+ -,-,+ L

p 2mm +,-,+ +,-,+ +,+,+ L +,-,+ +,+,+ +,-,+ L
4mm +,-,+ +,-,+ -,+,+ +,-,+ +,+,+ -,-,+ L
3m +,-,+ +,-,+ -,+,+ +,-,+ +,+,+ -,-,+ L

c 2mm -,-,- -,-,- +,+,+ C -,-,+ -,+,+ +,-,+
4mm -,-,- -,-,- +,+,+ C -,-,+ -,+,+ +,-,+
3m -,-,- -,-,- +,+,+ C -,-,+ -,+,+ +,-,+

the incoming photon beam as well as the magnetization perpendicular to the surface
of the sample. The reversal of the helicity of the radiation or magnetization gives
rise to a change in the intensity of the photocurrent, which is often also analysed
with respect to the spin polarization. Apart from magnetic circular dichroism (MCD)
we may also observe magnetic linear dichroism (MLD) (Rampe et al. 1996). In a
typical MLD experiment with normal electron emission the magnetization lies in the
plane. The photon beam is p-polarized, at an angle of 90° with the magnetization
vector. Reversing, for example, the orientation of the magnetization gives rise to a
magnetic linear dichroism. The various configurations that can lead to MLD and MCD
in photoemission have been carefully analysed using symmetry arguments by Feder
and co-workers (Henk et al. 1996). This analytical study, which accounted for the
appropriate double-group symmetry of the half-space initial and final states, led to
explicit expressions for the spin polarization vector of the photoelectrons, and the spin-
averaged intensity and its change upon reversal of the magnetization direction. The
most important results of this study, which elucidated the origin of spin polarization
and dichroism in terms of an interplay between spin–orbit coupling and exchange
splitting, are summarized in Table 5.5.

These analytical considerations support the analysis and interpretation of corre-
sponding experimental and theoretical dichroic spectra in an appreciable way. As an
example of such a combined investigation, valence-band photoemission spectra for a
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Figure 5.17 Left: valence-band photoemission spectra from a seven-monolayer-thick HCP
(0001) Co film on W taken with linearly polarized radiation for opposite magnetization direc-
tions. Right: corresponding asymmetry values for binding energies between —2 eV and EF.
Experiment (Bansmann et al. 2000).

seven-monolayer-thick HCP(000l) Co film on top of a W(l10) substrate are shown
in Figure 5.17.

The experiment has been carried out in normal emission mode with the plane of
incidence perpendicular to the magnetization that was aligned along the easy axis,
i.e. in-plane along the W[110]-direction. To investigate the MLD, the photoemis-
sion spectra shown in Figure 5.17 have been recorded with p-polarized light for two
opposite orientations of the magnetization.

For a direct comparison of calculated spectra with experiment, these had to be
shifted by about 2 eV, as indicated in the second panel of Figure 5.17. This finding
is quite common and has to be ascribed to self-energy corrections. With this shift
applied, the experimental spectra could be reproduced by the calculations in a rather
satisfying way allowing for a detailed discussion of these. The observed main peak of
the experimental spectra is found to be almost constant for the various photon energies
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Figure 5.17 (Com.) Theory (Bansmann et al. 2000).
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at a binding energy of around 0.7 eV. This is in full agreement with the theoretical
dispersion relation for HCP-Co, which has a rather flat band in that energy regime. For
a photon energy of around 24 eV we find the onset of a peak very close to the Fermi
level. This could be ascribed to an initial state close to EF directly at the F-point.

Figure 5.17 shows that MLD is rattier pronounced and energy dependent. As a
possible explanation for this it was suggested that the involved transitions connect
initial states with a strong mixing of the spin subsystems due to the spin–orbit coupling
to final states with a nonvanishing exchange splitting (see also Table 5.5). As can be
seen in Figure 5.17, the MLD is reproduced quite well by the calculations. A more
detailed analysis of the theoretical spectra reveals in particular that the MLD is nearly
exclusively due to transitions from initial states with d character to final states having
f character.

Dichroism in superconductors

We now turn to relativistic effects in the spectroscopy of superconductors. Several
recent experiments have reported the observation of dichroic phenomena in super-
conductors (Lawrence et al. 1992; Lihn et al. 1996; Lyons et al. 1990, 1991; Weber et
al. 1990; Wu et al. 1996). On the theory side, the difference AP between the power
absorption of left- and right-circularly-polarized light has been investigated on the
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Figure 5.18 Difference in power absorption A Ps between left- and right-circularly-polarized
light in the superconducting state, divided by the corresponding normal-state difference APN,
as a function of temperature divided by the transition temperature Tc. The difference APS

is proportional to lm[ajy((o, T, H)], the imaginary part of the off-diagonal elements of the
conductivity tensor in the superconductor, as a function of frequency, temperature and magnetic
field (ft> = 4.5 meV and H = 0.05 T for the data in me figure).

basis of the relativistic Bogoliubov-de Gennes equations described in Section 5.2.2.
It has been demonstrated (Capelle et al. 1997, 1998) that in the presence of a static
magnetic field, both ordinary spin–orbit coupling and the anomalous spin-orbit term,
which involves the pair potential, can lead to circular dichroism (i.e. nonvanishing
A P) in the electromagnetic response of superconductors. It is expected that the effect
of ordinary spin–orbit coupling will be large for materials with heavy atoms in the lat-
tice. Anomalous spin–orbit coupling, on the other hand, is expected to be important for
strongly inhomogeneous superconductors (e.g. SNS multilayers or the vortex lattice)
because then the gradients of the pairing potential will be large. Mechanisms, other
than ordinary or anomalous spin–orbit coupling, have also been identified (Capelle
et al. 1997, 1998). Those include orbital currents in the presence of a static magnetic
field, as well as 'exotic' order parameters which break either inversion symmetry or
time-reversal symmetry. The latter mechanism is unique in that it does not depend on
the presence of an (external or internal) magnetic field. The observation of dichroism
below Tc in the absence of such fields will be a strong hint for unconventional order
parameters breaking either time-reversal or inversion symmetry.

Numerical calculations have been performed, so far, only for ordinary spin–orbit
coupling in superconductors (Capelle et al. 1997, 1998). Figure 5.18 shows the dif-
ference A Ps in the superconducting phase divided by the corresponding quantity
APN in the normal state as a function of (T/ Tc) for a simple model superconductor.
The figure shows that, below the critical temperature Tc, the dichroic response is dra-
matically modified compared with the normal state. Without spin–orbit coupling both
numerator and denominator would be zero, while without superconducting coherence
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Figure 5.19 Dichroism ratio versus frequency o>. The plot corresponds to a reduced temper-
ature T / Tc of approximately 0.45 (well below the strong peak in Figure 5.18) and a magnetic
field of 0.1 T

the curve would be flat (= 1) throughout. The strong peak seen immediately below
the transition temperature thus arises only from the simultaneous presence of super-
conducting coherence and spin–orbit coupling. Figure 5.19 shows the same ratio as a
function of the frequency a) of the incoming light. Here an absorption edge at a) = 2 A
produced by pair-breaking processes becomes clearly visible.
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6.1 Introduction
The study of chemical properties of the very heavy elements is an important and
exciting task, since in this area of the periodic system relativistic effects are so strong
that some deviations from well-established periodicities could be observed. Under
theoretical and experimental investigations are presently elements with atomic num-
ber 104 and higher called transactinides. In these elements the filling of the 6d-shell
takes place. Thus, they are expected to exhibit chemical behaviour analogous to that
of the 4d and 5d transition elements. The task we are confronted with is therefore
to prove experimentally and theoretically whether the chemical properties of these
very heavy elements are typical for elements in the corresponding chemical groups,
or whether they deviate from the trends found within the lighter homologues due to
strong relativistic effects on their electronic shells.

Due to short half-lives and low production rates of these elements, there are many
difficulties involved in the experimental investigation of their properties. To over-
come these problems, special 'fast-chemistry' techniques of the one-atom-at-a-time
chemistry have been developed (Kratz 1999). These are based on the principle of
chromatographic separation, which has an advantage over other methods, since each
of the few available atoms experiences many adsorption-desorption cycles thus ensur-
ing a statistical chemical behaviour. The experiments are subdivided into two large
groups: gas-phase chromatography experiments (Gaggeler 1994) studying volatility
of the heavy elements and their compounds, and liquid chromatography experiments
(Kratz 1999) studying the complex formation in aqueous solutions.

Results of these experiments provided strong evidence that elements 104, ruther-
fordium (Rf), 105, dubnium (Db), 106, seaborgium (Sg) and, very recently, element
107, bohrium (Bh) (Eichler et al. 2000) behave similarly to their lighter homologues

Relativistic Effects in Heavy-Element Chemistry and Physics. Edited by B. A. Hess
© 2003 John Wiley & Sons Ltd



220 THEORY

in the chemical groups and their place in the periodic system was confirmed (Prepa-
rations are presently under way to conduct gas-phase experiments with element 108,
hassium (Hs), which was found to have an isotope with a half-life of the order of
10s (Hofmann 1996), suitable for chemical studies.) These experiments have, how-
ever, revealed that measured properties were often different from those expected from
straightforward extrapolations within the groups, and trends were even reversed. Some
further, finer experiments were therefore to be carefully planned and conducted in
order to study the properties of these elements in more detail, as well as theoretical
investigations to help explain these phenomena and/or predict the outcome of new
experiments. Thus, combined experimental and theoretical research has been going
on in our groups leading to a better understanding of the chemistry of these exotic
elements.

In this chapter, results of the recent theoretical and experimental studies of the
chemical properties of elements 105 and 106 performed within the REHE project
are reviewed (for earlier reviews see Kratz 1999; Pershina 1996; Pershina and Fricke
1999).

6.2 Theory
A suitable computational approach for the investigation of electronic and geometric
structures of transactinide compounds is the fully relativistic Dirac–Slater discrete-
variational method (DS-DVM), in a modern version called the density functional
theory (DFT) method, which was originally developed in the 1970s (Rosen and Ellis
1975). It offers a good compromise between accuracy and computational effort. A
detailed description can be found in Chapter 4 of this book.

The total energy functional (in atomic units) is given by

E[n] = TS + Eext[n] + EH[n] + Exc[n] (6.1)

with the relativistic form of kinetic energy, Ts,

([–ica • V + (0 - l)mc2M, (r).

The next term is the external potential energy with the nuclear charges Za at the
positions Ra

with the external potential

\*a-r\
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The Hartree functional

is described by the Hartree potential

l (6.2)

The last term in Equation (6.1) represents the exchange-correlation energy Exc. The
total energy can then be obtained by the solution of the relativistic Kohn–Sham equa-
tions (RKS)

([-ica -V + (P- l )mc] + uext(r) + vH(r) + Vxc(r))V*(r) = €* ^t(r) (6.3)

on a three-dimensional point mesh using the highly accurate multicentre integration
scheme developed by Boerrigter and co-workers (Boerrigter et al. 1988; te Velde
and Baerends 1992). The exchange-correlation potential can be derived from Exc

according to

(6.4)-8n(r)

Both the local density approximation (LDA) and different types of semilocal func-
tionals via the generalized gradient approximation (GGA) can be applied. The Becke
(1988a) or the Perdew (1991) forms of the gradient corrected exchange functional
are used. The correlation part is treated within the LDA by the parametrization of
Vosko–Wilk–Nusair (Vosko et al. 1980) or by the semilocal functional of Perdew
(1986a,b). All functionals are used in their relativistic extensions, denoted as RLDA
and RGGA, respectively (Engel et al. 1995a, 1996).

The RKS Equation (6.3) can be recast as an algebraic eigenvalue problem

Hc = € Sc

with H being the Hamiltonian and S the overlap matrices, respectively. Since Exc

depends only on the density and its first derivative, Equation (6.3) are solved self-
consistently on the RLDA level. After convergence, the GGA energies are evaluated
by the density gradient. The difference between this efficient 'post-LDA' approach
and fully self-consistent calculations is marginal (Becke 1992).

A further important methodological development of the DS-DVM to obtain accurate
total energies was the implementation of a so-called variationally consistent proce-
dure, which is based on a simplified but efficient treatment of the Hartree potential
UH (Bastug et al. 1995; Varga et al. 2000b).

This improved computational scheme was used to study the electronic structure and
stability of various gas-phase compounds of the transactinides, such as, for example,
RfCl4 (Varga et al. 2000a), BhOCl3 (Pershina and Bastug 1999) and HsO4 (Pershina
et al. 2001), and their lighter homologues in the corresponding chemical group.
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Table 6.1 Binding energies De (in eV) of the MCl4 (M = Ti, Zr, Hf, Rf) complexes
(Varga et al. 2000a).

Molecule RLDA RGGA AC Theor. Exp.a

TiCl4

ZrCU
HfCU
RfCU

22.75
23.80
23.30
21.65

20.81
21.98
20.46
19.75

-0.58
-0.30
-0.32
-0.25

20.23
21.68
21.14
19.50

17.81
20.35
20.61

Calculated via a Born–Haber cycle using the data of Wagmann (1982).

Table 6.2 Optimized bond distances Re (in a.u.) for MCl4 (M = Ti, Zr, Hf, Rf).

Molecule RLDA RGGA Exp.

4.08 4.16 4.10a

ZrCl4 4.39 4.43 4.38b

4.36 4.43 4.376b

4.46 4.54

aWagmann (1982); bGirichev et al. (1981).

In the following, we will present a methodology for choosing optimized basis sets
for such calculations on the example of RfCl4 (Varga et al. 2000a). As a first step, cal-
culations of the total energy for a metal–ligand distance around the equilibrium geom-
etry were performed with a minimal basis. The latter included all atomic occupied 1s
to (n – l)d wave functions and ns (n = 4, 5, 6, 7 for Ti, Zr, Hf, Rf, respectively) of
the (neutral) central atom and 1s to 2p wave functions of the (neutral) chlorine atoms.
As a result of these calculations, the total energy as a function of the internuclear
metal-ligand distance was obtained. Due to a large electronegativity of Cl, there is a
polarization of the electronic charge distribution (a slightly positively charged central
atom and negatively charged chlorine atoms) leading to fractional occupation num-
bers of the valence orbitals. The atomic basis functions were then recalculated with
these new atomic occupations in order to include polarization effects in a consistent
way. To be more complete, at a second step, further unoccupied np and nd atomic
wave functions were added to the basis sets of the central atoms Ti, Zr, Hf and Rf .
Additionally, wave functions of a 3d and 4s character shifted towards the binding
region for slightly (approximately 2.0) ionized atoms were included for the basis sets
of Cl. The inclusion of the additional basis sets resulted in an increase in the total
energy by approximately 3 eV (compared with the minimal basis sets) reflecting the
importance of adjusting the basis sets. The addition of further basis functions did
not change the energies further. Finally, the total energies were recalculated for all
internuclear distances around the equilibrium geometry with the optimized basis.

Table 6.1 shows the results of our calculations for the binding energies (De) of
TiCl4, ZrCl4, HfCl4 and RfCl4. In the first column, the values of De obtained within
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Table 6.3 Comparison of De and Re for RfCl4.

Method Re (a.u.) De (eV)

RECP-KRHF 4.51 16.9
AREP-MP2 4.42 20.4
RECP-CCSD(T) 4.50 18.8
DFB 4.51 15.5
Our RLDA 4.46 21.4
Our RGGA 4.54 19.5

the RLDA are listed, while in the second column the values of De obtained by the
RGGA are shown. All the values were calculated by subtracting the total energies
of the atoms from the total energies of the corresponding molecules after the atomic
DFT calculations in the same approximation were performed. The atomic values had
then to be corrected by the multiplet splitting contributions listed in the third column
of Table 6.1 (these atomic corrections are denoted as 'AC'). The latter were obtained
by performing atomic multiconfiguration Dirac–Fock (MCDF) calculations. The final
theoretical values of De are presented in the second to last column. They can be com-
pared with the experimental dissociation energies (last column of Table 6.1), which
were calculated via Born–Haber cycles for the formation enthalpies. The energetics
of the compounds are shown to be improved within the RGGA, as compared with the
RLDA.

Table 6.2 presents the values of bond distances Re. A shift to larger values can be
observed in going from the RLDA to RGGA, which is in agreement with results of
calculations for diatomic molecules (Varga et al. 1999).

In Table 6.3, the values of De for RfCl4 are compared with those obtained within
various approximations using relativistic effective core potentials (RECP) Kramers-
restricted Hartree–Fock (KRHF) (Han et al. 1999), averaged RECP including second-
order M011er-Plesset perturbation theory (AREP-MP2) for the correlation part (Han et
al 1999), RECP coupled-cluster single double (triple) [CCSD(T)] excitations (Han
et al. 1999), and a Dirac–Fock–Breit (DFB) method (Malli and Styszynski 1998).
The AREP-MP2 calculation of De gives 20.4 eV, while the RECP-CCSD(T) method
with correlation leads to 18.8 eV. Our value of De of 19.5 eV is just between these
calculated values.

Thus, it was demonstrated that the present fully relativistic DFT can be applied
successfully to calculations of binding energies of compounds containing superheavy
elements. In the present publication, the use of the DFT method will, however, be
restricted to calculations of electronic density distribution data of heavy-element com-
plexes in terms of the Mulliken numbers (Mulliken 1955). Since we were dealing
within the REHE project mostly with the solution chemistry of the very heavy ele-
ments, optimization of geometry of large, often negatively charged complexes did not
seem to be feasible or economically efficient, so that geometries and bond lengths
were chosen on the basis of a careful analysis of numerous experimental data for
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the lighter homologues of the transactinides. The bond lengths for transactinide com-
plexes were then estimated taking into account bond lengths optimized within the
DFT and other approximations for simpler gas-phase compounds. To predict stability
of complexes and free-energy changes of complex formation reactions, some special
models were used, as described in Section 6.4.1.

6.3 Experiment
The transactinide elements are being synthesized in nuclear fusion reactions with
heavy-ion projectiles. Details of the production and decay of these elements can be
found in Munzenberg and Hofmann (1999) and Kratz (1999). The production rates
rapidly decrease from about 1 atom per minute for element 104 to 1 atom per several
days for the heaviest artificial elements. Half-lives decreasing from about 1 min to the
order of 1 ms for the longest-lived isotopes of these elements present an additional
challenge. Low production rates and short half-lives lead to the situation in which,
on the average, each synthesized atom has decayed before a new one is made. The
consequences for chemical studies with one atom at a time have been discussed
in Kratz (1999). Cold fusion reactions in which 50Ti, 54Cr, 58Fe, 62,64Ni and 70Zn
projectiles are fused with 208Pb and 209Bi targets tend to give the highest possible
cross-sections; however, the neutron deficient product nuclei in these reactions have
half-lives too short for chemical investigation. More neutron rich and, hence, longer-
lived product nuclei are obtained in hot fusion reactions of 18O, 22Ne, 26Mg and 34S
projectiles with actinide targets. Typical experimental conditions are heavy-ion beam
currents of 3 x 1012 particles per second and a maximum useful target thickness of
about 900 ug cm–2. The studies referred to in this report used 34 s 262Db produced
in the 249Bk(18O,5n) reaction to chemically characterize element 105 (dubnium) and
7.4 s 265Sg produced in the 248Cm(22Ne,5n) reaction to characterize element 106 (sea-
borgium). These are produced with cross-sections of 6 nb and 240 pb, respectively.

6.3.1 Target and transport systems

A schematic of a target- and recoil-chamber arrangement is shown in Figure 6.1.
Heavy-ion beams pass through a vacuum isolation window, a volume of nitrogen
cooling gas, and a target backing before interacting with the target material. Reaction
products recoiling out of the target are thermalized in a volume of He gas loaded
with aerosol particles of 10–200 nm in size to which the reaction products attach.
At a flow rate of about 21 min–1 the transport gas with the aerosols is transported
through capillary tubes (~ 1.5 mm inner diameter) to the chemistry apparatus where it
deposits the reaction products. He–aerosol jets allow for transportation over distances
of several tens of metres with yields of about 50% (Schadel et al. 1988; Trautmann
1995). Transport times are of the order of 2–5 s. Aerosol materials are selected so as
to minimize their influence on the chemical procedures. Separations in the aqueous
phase often use KC1 as an aerosol.
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Figure 6.1 Schematic representation of a target-and-recoil chamber arrangement with
He-aerosol jet. Reproduced with permission from Trautmann (1995). © 1995 R. Oldenbourg
Verlag.

The experiments within the frame of the REHE project were performed in the
aqueous phase in a discontinuous, batch-wise manner. It was necessary, in order to
get a statistically significant result, to repeat the same experiment several hundred or
even several thousand times with a cycle time of typically 45 s. These studies were
performed with the Automatic Rapid Chemistry Apparatus (ARCA) II (Schadel et al.
1989), a computer-controlled apparatus for fast, repetitive high-performance liquid
chromatography (HPLC) separations. A schematic of the ARCA II components is
shown in Figure 6.2.

ARCA II consists of a central catcher-chemistry part incorporating the sliders SL1–
SL3, and two movable magazines containing 20 of the chromatographic columns C1,
C2 (1.6 x 8 mm2) each, and peripheral components, i.e. three chemically inert HPLC
pumps, P1–P3, and a number of pneumatically driven four-way slider valves, S1–S3.
Each pump pumps one eluent—in the case of the separations of element 105 in HC1
solutions (Paulus et al. 1999), one 10 M HC1, another 6 M HC1, and the third 6 M
HNO3/0.015 M HF—through Teflon tubing of 0.3 mm inner diameter to the central
catcher-chemistry unit. The He(KCl) gas jet deposits the transported reaction products
continuously onto one of two frits F. After 1 min collection, the frit is moved on top of
one of the microcolumns C1, washed with 10 M HC1, whereby the reaction products
are dissolved, complexed and extracted into the organic phase (the columns are filled
with Teflon grains coated with the quaternary ammonium salt Aliquat 336(C1–),
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W3
SL2 SL3

Figure 6.2 Schematic of the computer-controlled HPLC-system ARCA II; for details see
text Reproduced with permission from Schadel et al. (1989). © 1989 R. Oldenbourg Veriag.

while the nonextractable species (notably the actinides) run through into the waste,
W3. The column is then washed with 6 M HC1, and the effluent (containing the
lighter homologue Ta) is directed through SL2 to the fraction collector FC, where it
is collected on a Ta disc and quickly evaporated to dryness by intense IR light and
hot He gas. Next, the column is stripped with 6 M HNO3/0.0l5 M HF (containing
Nb, Pa and element 105), which is collected on a Ta disc and evaporated to dryness.
The Ta discs are inserted into vacuum chambers where they are assayed for a activity
by silicon detectors starting 60 s after the end of collection. Simultaneously, the next
1 min collection on the twin frit is complete. That frit is moved on top of the column
C2 contained in the opposite magazine, and the next separation cycle is carried out.
After each separation, the magazine is moved by one step, thus introducing a new
column into the elution position. In this way, the time-consuming reconditioning of
used columns and cross-contaminations from previous separations are avoided. After
40 min of continuous collection and separation cycles, the program is stopped, the
used magazines are removed, two new magazines are introduced, and another 40
cycles are started. More than 7800 of such and similar ARCA II experiments have so
far been conducted in the study of element 105.
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6.4 Element 105

6.4.1 Theoretical predictions of complex formation of
element 105 in aqueous acidic solutions

Experimentally, complex formation is studied by solvent extraction or anion exchange
separations. By studying complex formation of the transactinides along with their
lighter homologues, we obtain information about similarity or differences in com-
plexing ability and ionic radii of the extracted metals. Results of previous experimen-
tal investigations of complex formation (Kratz et al. 1989) of element 105 in aqueous
HC1/HF solutions have shown that complex formation and extraction do not simply
continue trends within the chemical group found for the lighter homologues. Thus,
element 105, Db, has revealed a nontantalum-like behaviour and similarity to Nb and
Pa in its extraction from mixed HC1/HF solutions by amines (Kratz et al. 1989). In a
similar way, in group 4, Rf was extracted between Zr and Hf from 8 M HC1 by TBP
(Gunther et al. 1998). In order to interpret the results of these experiments and to
predict those of new experiments on extraction chromatography separations of ele-
ment 105 and its homologues from pure HF, HC1 and HBr solutions, the following
theoretical study has been undertaken within the REHE project (Pershina 1998a,b;
Pershina and Bastug 1999).

Hydrolysis of the transactinides

Since transition elements are known to be subject to strong hydrolysis, the latter
influences both the complex formation and extraction.

Hydrolysis of cations. In studying hydrolysis, we have to distinguish between
hydrolysis of cations and hydrolysis of complexes. For hydrolysis of cations, each
step in the formation of a mononuclear species can be described as a successive loss
of a proton

1 + H (6.5)

with the hydrolysis constant being

log K = - AGr/2.3/?r. (6.6)

Experimental data (Baes and Mesmer 1976) show that, within the entire range of
HC1 concentrations, hydrolysis of group 5 elements and Pa has the trend,

Nb > Ta » Pa.

The simple electrostatic model of hydrolysis (Baes and Mesmer 1976), which
predicts log K to change linearly with the ratio of the ionic charge to ionic radius,
does not explain, for example, the difference between Nb and Ta having the same
value of the formal charge and ionic radius, as it does not explain the reversed order
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in hydrolysis of Zr relative to that of Hf . It was thought to be even less applicable
to the transactinides, where covalent interactions are the strongest among the known
transition elements. The following proposed model is free of those drawbacks.

Since calculations of total energies of large (often negative) complexes do not seem
feasible, or efficient, the free-energy change of Reaction (6.5) was suggested to be
calculated via differences in both the ionic and covalent contributions to the binding
energy of reaction components separately. For a reaction component, in a fashion
analogous to that of Kassiakoff and Harker (1938),

, v, w)

- log(u\v\w\2w) + (2u + v + 1) log 55.5, (6.7)

where the first term on the right-hand side, £) °i » is a sum °f nonelectrostatic contri-
butions from M, O, OH and H2O, and the next term, ]T a,; , is a sum of each pairwise
electrostatic interaction. P is the partition function representing the contribution of
structural isomers and the last two terms are statistical: one is a correction for the
indistinguishable configurations of the species, and the other is a conversion to the
molar scale of concentration.

The second term on the right-hand side of Equation (6.7) can be calculated as

2.3RTaij = E = -BQiQj/dij€, (6.8)

where (?,• is the effective charge, dij is the metal–ligand distance, € is the dielectric
constant and B transforms the energy in eV. The free-energy change of a reaction is
then

-AGr/2.3/?r = A + JTAOP + AS, (6.9)

where OP is the difference in overlap populations for complexes on the right- and
left-hand sides of Reaction (6.5). Both AEc and AOP are then obtained as a result of
the Mulliken electronic density distribution analysis implemented in the DFT method
described in Section 6.2.

With this aim in mind, calculations of the electronic structure of the hydrated,
M(H2O)5

6
+, and hydrolysed, M(OH)6

- , complexes of Nb, Ta, Db and Pa, have been
performed using the DFT method (Pershina 1998a,b). The calculations have shown
Ec to be the predominant type of the metal–ligand interaction, so that by calculating
only AEc, correct trends in the complex formation can be predicted for all the ele-
ments under discussion (see Table 6.4). This electrostatic interaction must, however,
be defined on the basis of the real (relativistic) electronic density distribution in the
considered systems.

Thus, the following trend in the hydrolysis of group 5 elements has been denned:

Nb > Ta > Db » Pa.
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Table 6.4 EC and A£c (in eV) for reaction M(H2O)5
6
+ 4> M(OH)6

- ,
where M = Nb, Ta, Db and Pa (Pershina 1998a).

Ec Nb Ta Db Pa

-21.74 -23.33 -21.48 -19.53

M(H2O)^+ -21.92 -25.38 -25.37 -29.71

AEC 0.18 2.05 3.89 9.18

The way to define hydrolysis constants is shown in Pershina (1998b). The theoretical
results for Nb, Ta and Pa obtained here are in agreement with experiments on hydrol-
ysis of Nb, Ta and Pa (Baes and Mesmer 1976), with the difference between Nb and
Ta being reproduced. Thus, a weaker hydrolysis of Db with respect to that of Nb and
Ta has been predicted.

Complex formation and extraction of group 5 elements

Complex formation and hydrolysis of complexes. In acidic solutions, hydrolysis
of group 5 elements is competing with complex formation. For group 5 complexes,
it is described by the following equilibrium:

M(OH)(
y
z~y}~ + aH+ + aX~ ^ M(OH)y_aX^-y)~ + aH2O. (6.10)

As a result, in HC1 solutions the following complexes of Nb, Ta, Pa and, assuming the
same stoichiometry, of Db are formed: M(OH)2CI4;j~, MOC1^~, MOCl*" and MCl^ .

To predict the stability of products of Reaction (6.10), the same technique has
been applied as in the case of hydrolysis of group 5 cations (Equations (6.7}-(6.9)).
With this aim in mind, calculations of the electronic structure of various complexes
of Nb, Ta, Pa and Db (indicated above) have been performed using the DFT method
(Pershina 1998a,b; Pershina and Bastug 1999). AEC and relative free-energy changes
of Equilibria (6.10) determined on their basis indicate the following trend in the
complex formation of group 5 elements

Pa » Nb > Db > Ta. (6.1 1)

The Sequence (6.11) for Pa, Nb and Ta is in agreement with experimental data
showing that among analogous complexes, those of Pa are formed in much more
dilute HC1 solutions, while much higher acid concentrations are needed to form com-
plexes of Ta (Gmelin 1970; Scherff and Herrmann 1966). The calculations have also
confirmed the experimentally found sequence in the formation of the following types
of complexes of the same element as a function of HC1 concentrations

M(OH)2C14
- > MOC14 > MCl6 .

We have also studied formation of the MF^ and MBr6
- complexes (M = Nb, Ta, Db and

Pa) in HF and HBr solutions (Pershina and Bastug 1999). The same trend in formation
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Table 6.5 AE0 (in eV) for reaction M(OH)6
- o MX6

-, where M = Nb, Ta, Db and Pa;
X = F, Cl and Br (Pershina and Bastug 1999).

Complex

1

F

12.20

12.69

12.38

12.19

a
19.57

20.78

20.46

17.67

Br

21.40

22.63

22.11

19.91

of each types of complexes as that obtained for MCI-6 has been found. Calculations
have reproduced well the sequence in the formation of the MX6

- complexes (X = F,
C1 and Br) of the same metal as a function of the ligand (Table 6.5): MF6

- > MCl̂ " >
MBr^". Thus, MF^" are the strongest complexes formed in much more dilute HF
solutions, while to form MCl^ or MBr6, more concentrated HC1 and HBr solutions
should be used.

The analysis of all the factors contributing to the extraction process has shown the
latter to be governed by the complex formation and ion transfer, so that the distribution
of the group 5 complexes between an organic and aqueous (above 4 M) HC1 and HBr
phases has the following trend (Pershina 1998b):

Pa » Nb > Db > Ta. (6.12)

Thus, the trends in the complex formation and extraction known for group 5 elements
Nb and Ta turned out to be reversed in going to Db. This could not be predicted by
any straightforward extrapolation of these properties within the group, but came out
as a result of considering the real chemical equilibria and calculating relativistically
the electronic structure of their components.

6.4.2 Experimental results

The first studies of the aqueous phase chemistry of element 105 were conducted by
Gregorich et al. (1988). Like Nb and Ta, Db was adsorbed on glass surfaces upon
fuming with nitric acid. In 801 manually performed experiments, 24 a events due
to the decay of 34 s 262Db or its 3.9 s 258Lr daughter including five aa mother-
daughter correlations were observed. In an attempt to study the extraction of the
dubnium fluoride complex from 3.8 M HNO3/l.l M HF into methyl isobutyl ketone
(MIBK), no decays attributable to 262Db could be observed. Under these conditions,
Ta extracts while Nb does not. From an extrapolation in group 5 it was expected that Db
would behave more like Ta than Nb but, surprisingly, Db apparently did not extract.
The nontantalum-like behaviour of Db might indicate that Db forms polynegative
anions like DbF2-

7 under the chosen conditions. The higher charge would then prevent
extraction even into solvents with a relatively high dielectric constant such as MIBK.
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Figure 6.3 Percentage extracted activity of Nb, Ta and Pa tracers (curves) as a function of HC1
concentration in the system TiOA-HCl/0.03 M HF. The bold bars encompass the upper and
lower limits deduced for the Db extraction from the elution positions in the chromatography
experiments (Kratz et al. 1989; Zimmermann et al. 1993). The complete extraction of Db into
TiOA from 12 M HC1/0.02 M HF is not indicated for clarity. Reproduced with permission from
Zimmermann et al. (1993). © 1993 R. Oldenbourg Verlag.

To investigate this unexpected finding and more facets of dubnium chemistry, a
large number of automated separations were conducted with the ARCA II (Schadel
et al. 1989). In the first experiments, extraction chromatography separations with
the liquid anion exchanger triisooctylamine (TiOA) on an inert support (Kratz et al.
1989) were performed. TiOA extracts all group 5 elements including Pa, irrespective
of the formation of mono- or poly negative anions, from HCI solutions above 10 M. At
lower concentrations, selective back extractions allowed to distinguish between the
chemical behaviour of Nb, Ta, Pa and Db. Small amounts of HF (typically 0.02 M)
were added to the HCI solutions as this is recommended in the literature (Korkisch
1989) to prevent hydrolysis and 'to maintain reproducible solution chemistry' of the
group 5 elements.

Element 105 was shown (Kratz et al. 1989) to extract into the TiOA on the chro-
matographic columns in ARCA II from 12 M HC1/0.02 M HF as do Nb, Ta and Pa,
due to the formation of anionic halide complexes. In subsequent elutions, the elution
positions of element 105 relative to those of Nb, Ta and Pa were determined (Kratz et
al 1989) in 10 M HCI/0.025 M HF, in 4 M HC1/0.02 M HF and in 0.5 M HC1/0.01 M
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HF (Zimmermann et al. 1993). 2198 collection and separation cycles on a 1 min
timescale (Kratz et al. 1989; Zimmermann et al. 1993) were necessary to obtain the
results shown in Figure 6.3.

It is seen that element 105 shows a striking nontantalum-like behaviour and that it
follows, at all HC1 concentrations below 12 M, the behaviour of its lighter homologue
Nb and that of its pseudohomologue Pa. The electronic structure of the group 5 anionic
complexes MCl-6, MOCl-4, M(OH)2Cl-4 and MOCl25

- was calculated with the DS-
DVM code (Pershina et al. 1994). By applying Bom's theory of ion transfer between
the aqueous phase and the organic phase (mixed HC1/HF solutions and TiOA (Kratz et
al. 1989)), the extraction sequence Pa » Db ̂  Nb was found theoretically (Pershina
et al. 1994) that was the inverse sequence compared with that found experimentally
(Kratz et al. 1989).

Due to the complicated situation in mixed HC1/HF solutions with the possibility
of forming mixed chloride/fluoride or fluoride complexes, it was advisable to repeat
the experiments in the pure HC1 system (Pershina et al. 1994).

In the frame of the REHE project, the amine extractions of the group 5 elements
were systematically revisited by Paulus et al. (1999). Pershina (1998b), by considering
the competition between hydrolysis and halide complex formation, predicted the
extraction sequence

Pa » Nb ̂  Db > Ta,

as described in Section 6.4.1. Distribution coefficients (Kd values) for Nb, Ta and Pa
were measured in new batch extraction experiments with the quaternary ammonium
salt Aliquat 336 and pure HF, HC1 and HBr solutions (Paulus et al. 1999). Based on
these results, new chromatographic column separations with ARCA II were elaborated
to study separately the fluoride and chloride complexation of element 105. As an
example, the separation of Eu-, Ta-, Nb- and Pa-tracers in the Aliquat 336 (C1- VHC1
system is shown in Figure 6.4. After feeding of the activities onto the column in the
10 M HC1 (whereby the disturbing actinides modelled by trivalent Eu run through the
column), Ta is eluted in 6 M HC1, Nb in 4 M HC1 and Pa in 0.5 M HC1 (Paulus et al.
1999).

1307 experiments were conducted with element 105 with a cycle time of 50 s. In
the system Aliquat 336/HC1, after feeding of the activity onto the column in 10 M
HC1, a Ta fraction was eluted in 6 M HC1, as shown in Figure 6.4. This was followed
by stripping of a combined Nb, Pa fraction from the column in 6 M HNQ3/0.0l5 M
HF. From the distribution of a-decays between the Ta fraction and the Nb, Pa fraction,
a Kd value of 438]̂  for element 105 in 6 M HC1 was deduced, which is close to that
of Nb and differs from the values for Pa and Ta; see Figure 6.5. Thus, the extraction
sequence Pa > Nb ^ Db > Ta is established exactly as theoretically predicted (see
Section 6.4.1).

In the system Aliquat 336/HF, the reaction products were loaded onto the column
in 0.5 M HF. In elutions with 4 M HF (Pa fraction) and with 6 M HNO3/0.015 M HF
(combined Nb, Ta fraction) all a-decay events of element 105 were observed in the
Nb, Ta fraction. This results in a lower limit for the Kd value of element 105 in 4 M
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Figure 6.4 Elution curves for trivalent cations (Eu) and for Ta, Nb and Pa from Aliquat
336/voltalef columns (1,6 x 8 mm2) in ARCA II. The activities are fed onto the column in
10 M HCI. IWs is followed by separate elutions of a Ta. fraction in 6 M HCI, of a Nb fraction
in 4 M HCI and of a Pa fraction in 0.5 M HCI. Reproduced with permission from Paulus et al
(1999). © 1999 R. Oldenbourg Verlag.

HF of more than 570, which is close to that of Nb and Ta (^ 103) and differs markedly
from that of Pa (~ 10).

It is satisfying to see that not only is the extraction sequence in the system Aliquat
336/HC1 correctly predicted by theory (Pershina 1998b), but the calculated free-
energy changes of the reactions of complex formation are of the order of 12 eV for
the fluorides, 20 eV for the chlorides and 22 eV for the bromides (see Table 6.5 and
(Pershina and Bastug 1999)) (not taking into account the free enthalpy of formation
of H2O, which is 3 eV), which, again, is in agreement with the experimental findings.
For fluorides, extractable complexes are formed even at low HF concentrations; for
chlorides, it takes more than 3 M HCI to form extractable chloride complexes; and
for bromides, the threshold is shifted to above 6 M HBr.

To conclude, the amine extraction behaviour of dubnium halide complexes is always
close to that of its lighter homologue Nb, in agreement with the predicted inversion of
the trend of the properties when going from the 5d to the 6d elements (Pershina 1998b;
Pershina et al 1994). In pure HF solutions, it differs mostly from the behaviour of Pa.
In pure HCI solutions, it differs considerably from both Pa and Ta. In mixed HC1/HF
solutions, it differs markedly from the behaviour of Ta. The studies of the halide
complexing and amine extraction of the group 5 elements both theoretically (Pershina
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Figure 6.5 Distribution coefficients of Pa, Nb and Ta in the system Aliquat 336VHQ. The Kd

for Db in 6 M HC1 is also indicated. The system shows the inverse extraction sequence as com-
pared with the TiOA/HCl/HF system as theoretically predicted. Reproduced with permission
from Paulus et al (1999). © 1999 R. Oldenbourg Veriag.

1998a; Pershina et al 1994) and experimentally (Paulus et al. 1999) demonstrate that
enormous progress has been made in understanding detailed facets of the chemistry
of the transactinide elements.

6.5 Element 106

6.5.1 Theoretical predictions

Estimates of redox potentials of Sg

Knowledge of the stable oxidation states of an element is very important since many
other properties depend on these states. It is also important to know about the relative
stability of oxidation states, i.e. redox potentials, for a chemical application. Trends
in their values can also provide information about similarities or differences between
the transactinides and their lighter homologues. Thus, for example, the stability of the
maximum oxidation state is known to increase within transition element groups. It is
therefore of great interest to investigate whether transactinides fall within this trend:
those at the beginning of the 6d row were expected to be stabilized in lower oxidation
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states (+3 for Db or +4 for Sg) due to the relativistically stabilized 7s2 electronic
ground-state configuration. Thus, aiming at achieving a general knowledge of trends
in the stability of oxidation states as well as predicting redox potentials for a future
experiment on the reduction of Sg (Strub et al. 1999), the following theoretical study
has been undertaken.

To characterize an oxidation state, the oxidation-reduction potential E0 is of crucial
importance. For the reaction

(6.13)

E° is given by

(6.14)

where AG° is the standard Gibbs energy change for Reaction (6.13) and F is the
Faraday constant. The change in the free energy of the redox Reaction (6.13) can be
expressed as

AG° = -(IP+AG£ydr), (6.15)

where IP = / ± Af1, / is the ionization energy Mz+ — > Mz+n and A E is the energy
needed to reconstruct the electronic configuration of the metal ion when going from
the z+ to the (z + n) ionized state. / and AG£ydr are usually smooth functions of
the atomic number. Thus, A£ correlates linearly with redox potentials and defines
all the changes in their values. If IP includes the changes in electronic configurations,
£'0(Mz+n/Mz+) is directly proportional to IP.

In lonova et al. (1992), redox potentials for Db in aqueous solutions have been
estimated on the basis of the above-mentioned linear correlations between E0 and
multiple IPs calculated using the MCDF method (Johnson et al. 1990). In the present
work, the IP for Sg and those experimentally unknown for Mo and W were determined
using the same approach (Pershina et al. 1999). For that purpose, multiple IPs for
element 106, Sg and its lighter homologues, Cr, Mo and W, were calculated using
the MCDF method (Johnson et al 1999). Using the calculated MCDF IP and, where
available, experimental redox potentials, the unknown values of E0 were defined for
group 6 elements on the basis of the linear correlations (Equations (6. 14) and (6. 15)).
As an example, one of those plots for E°(MO2/M

3+) is shown in Figure 6.6. From
this figure, we can see that the 4+ oxidation state of Sg is less stable than the 4+
oxidation state of Mo and W. The total scheme of obtained redox potentials is shown
in Figure 6.7.

The data of Figure 6.7 indicate that the stability of the maximum oxidation state,
6-f , increases in the group, while that of the 5+ , 4+ and 3+ states decreases. In
contrast to expectations, the 4+ state of Sg will be less stable than that of Mo and W.
This fact can be explained by the step- wise ionization scheme of Sg (see Figure 10
from Pershina et al. (1999)) showing that the 4+ state of Sg has the 6d2 electronic
configuration, by analogy with Mo and W, and not the 7s2. Since the 6d orbitals of Sg
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Figure 6.6 Correlation between IP(3 + /4+) and standard potentials E0(MO2/M
3+), where

M = Cr, Mo, W and Sg. Reproduced with permission from Pershina et al. (1999). © 1999
American Chemical Society.

are more destabilized than those of Mo and W (due to an indirect relativistic effect),
the 4+ state of Sg is less stable than those of Mo and W.

An analysis of the influence of relativistic effects on redox potentials has shown the
stability of the maximum oxidation state to increase with increasing Z in groups 4–6
as a result of relativity. Nonrelativistic IP corresponding to transitions from the neutral
to the maximum oxidation state would give a less stable maximum oxidation state
of the 6d elements than those of the 4d and 5d homologues. A correlation between
relativistic and nonrelativistic energies of the charge-transfer transitions and E0 for
some compounds (see Figure 6 in Pershina and Fricke (1999)) clearly shows that this
is a pure relativistic effect. The calculations have also shown the increase in stability
of the maximum oxidation state in the groups to become less pronounced in going
from group 4 to group 6: for W and Sg the stability of the 6+ state is nearly the same.
Thus, along the transactinide series, the stability of the maximum oxidation state
decreases: Lr3+ > Rf*+ > Db5+ > Sg6"1". The 7+ oxidation state of element 107
will probably not be attainable in solutions. Calculations of MCDF IP for elements
107 and 108 and their homologues allowing for predictions of redox potentials have
just been finished (Jacob et al. 2000).

Hydrolysis and complex formation of Sg

Results of the first aqueous chemistry experiments on Sg showed that it formed neutral
or anionic oxyfluorides in 0.1 M HNO3/5 x 10-4 M HF (Schadel et al. 1997a). The
next experiments on the ion exchange of Sg from pure 0.1 M HNO3 solutions (Schadel
et al. 1998) showed that Sg was not eluted from the cation exchange column in contrast
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Figure 6.7 Standard reduction potentials for group 6 crystalline and aqueous phase com-
pounds. Reproduced with permission from Pershina et al. (1999). © 1999 American Chemical
Society.

to Mo and W. This nontungsten-like behaviour of Sg was tentatively attributed to its
lower tendency to hydrolyse compared with that of W. To interpret the behaviour of
Sg in these experiments and to predict its complex formation in HF/HC1 solutions,
the following theoretical study was undertaken.

For group 6 elements, Mo and W, the protonation scheme is known to be as that
shown in Figure 6.8. Equilibrium constants (Baes and Mesmer 1976) indicate that
hydrolysis of Mo is stronger than that of W. The question arises whether Sg will
follow the trend found for the lighter homologues.

The model used for the present study was the same as that used for predictions
of hydrolysis of group 5 elements. For that purpose, calculations of the electronic
structure of all types of complexes for Mo, W and Sg indicated in Figure 6.8 were
performed using the DFT method. As in the previous case, AEC and AOP were
defined for each reaction, with the results for A£c shown in Table 6.6 and in Pershina
and Kratz (2001). As in the case of group 5 complexes, changes in the Coulomb part
of the metal–ligand interaction, A£c, were shown to define AG° of the processes.
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Figure 6.8 Hie protonation scheme for group 6 oxocomplexes, where M = Mo, W and Sg.
Reproduced with permission from Pershina and Kratz (2001). © 2001 American Chemical
Society.

Table 6.6 A £c (in eV) for the step wise protonation of MO2
4
- (M = Mo, W and Sg).

Reaction Mo W Sg

^~+H+^±MO3(OH)- -12.98 -13.13 -12.%

- + H+ ̂  M02(OH)2(H2O)2 -21.43 -22.08 -21.61

))2+H+^MO(OH)3(H2O)J -5.84 -6.35 -6.65

if + H+^ M(OH)4(H2O)|+ -0.43 -0.76 -1.23

M(OH)4(H2O)2+ + H+ • • • ̂  M(H2O)^" 41.97 38.71 37.11

Thus, for the first two protonation steps, the trend is W > Sg > Mo. For the further
processes, the trend is Sg > W > Mo. It was also possible to give absolute values of
the protonation constants for Sg using the results of the present calculations and the
experimental log K for Mo and W. Thus, with the use of Equations (6.7)-(6.9), the
values of log K for the known protonation steps are

log Ki = *AOP + BAEC - 1.142,

log K2 = *AOP + BA£c + 2BDn2o - 2.464,

log KI = fcAOP + B A£c - 0.176,

where B and k correct not only for an unknown dielectric constant in solution, but
also for the fact that the values of Ec are calculated for the species in vacuum. B and
k, in turn, can be defined by solving a couple of equations for Mo and W, such as, for
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example,

log K\ (Mo) = 0.16*+ 12.98B - 1.142 = 3.7,

log #i(W) = 0.12* + 13.13S - 1.142 = 3.8.

Using, then, A£c from Table 6.6 and AOP from Pershina and Kratz (2001),

= 0.11* + 12.95B- 1.142 = 3.74.

The values of log K obtained for Sg and the experimentally unknown log K for W are
given in Table 1 of Pershina and Kratz (2001). They confirm the sequence in the hyrol-
ysis/protonation obtained here just on the basis of the AEc data. Thus, hydrolysis of
the neutral species with formation of negative oxo-complexes has a reversed trend in
the chemical group: Mo > Sg > W. An analogous trend was observed for complex
formation of group 5 elements in HC1 and HBr solutions: Nb > Db > Ta (Paulus et al.
1999). For positively charged complexes, the trend in hydrolysis from Mo to W con-
tinues further to Sg so that Mo > W > Sg. This theoretical result is in agreement with
experimental data on hydrolysis/protonation of Mo and W (Tytko and Glemser 1976)
and, recently, on Sg (Schadel et al. 1998). The present calculations have again clearly
shown the decisive factor in the complex formation (hydrolysis/protonation) process
to be predominant changes in the electrostatic metal–ligand interaction energy.

Complex formation of Sg in aqueous HF solutions

The first experiments on the chemical identification (the valence state and possi-
ble form of complexes) of Sg have been carried out by cation exchange separations
(Schadel et al 1997a). Sg was eluted from cation exchange columns with dilute
nitric/hydrofluoric acid together with Mo and W, thus confirming that it formed
probably SgO2F

-
3, SgO3F

- or SgO2F2 by analogy with Mo and W. The values of
the distribution coefficient, Kd were, however, not defined in that experiment. In
future experiments, Kd values are planned to be determined on an anion exchanger
in HF/0.1 M HNO3 solutions using on-line chromatography with the multicolumn
technique (Pfrepper et al. 1997). To predict an outcome of the chemical experiments,
the following theoretical study has been started, with some preliminary results shown
here.

The group 6 elements Mo and W are known to form the MO2F3(H2O)- complexes
at lower HF concentration and MOF^ at higher HF concentration (Caletka and Krivan
1990). In solutions at pH = 1 (0.1 M HNO3), neutral complexes are in equilibrium
with monocharged ones, so that the reactions with formation of each type of the
fluoro-complexes could be of the following types, starting from the monocharged and
neutral complexes, respectively,

+ HF ^± MOF~ or MO2F3(H2O)~, (6.16)

MO2(OH)2(H2O)2 + HF ?=± MOF~ or MO2F3(H2O)". (6.17)
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Table 6.7 Ec and AEc(in eV) for reactions: (1) MO2(OH)2(H2O)2 & MO2F3(H2O)-
and (2) MO2(OH)2(H2O)2 o> MOF-

5, where M = Mo, W and Sg.

£° Mo W Sg

MO2(OH)2(H2O)2 -29.32 -30.68 -28.97
MO2F3(H2Or -14.80 -16.77 -14.86
MOFJ -13.11 -15.33 -14.46
AEC(1) 14.52 13.90 14.11
AEC(2) 16.21 15.35 14.51

To calculate the free energies of those equilibria, we have calculated the electronic
structure of MO2F3(H2O)- and MOF-

5 for M = Mo, W and Sg using the DFT method.
Using the Ec for the neutral and monocharged hydrolysed complexes of Mo, W and
Sg from Pershina and Kratz (2001), we have calculated AEC for Reactions (6.16)
and (6.17) according to the model described by Equations (6.7H6.9). The work is
still in progress and some preliminary results are shown in Table 6.7.

The data of Table 6.7 show that at pH = 1, in the area of low HF concentrations,
the complex formation in group 6 has a reversed trend, W > Sg > Mo, while in the
area of high HF concentrations, Sg follows the trend found for Mo and W, so that
Sg > W > Mo. The obtained sequences for Mo and W agree with the experimental
sequence in the values of Kd for the sorption of Mo and W from HF solutions by an
anion exchange resin (Caletka and Krivan 1990). Thus, Sg will be extracted below
or above W depending on the HF concentrations. Considerations of further reactions
at much lower HF concentrations with formation of the MO3F

- and MO2F2(H2O)2

complexes of Mo, W and Sg are in progress.

6.5.2 Experimental results

The ARCA II that has been successful in studying chemical properties of element
105 (Kratz 1999; Kratz et al. 1989; Paulus et al. 1999; Zimmermann et al. 1993),
and recently also of element 104 (Gunther et al 1998; Strub et al. 2000) in aqueous
solutions, was foreseen to also perform the first aqueous chemistry with element 106,
seaborgium.

Several chemical systems were tested with the fission products 93Y, 97Zr, 99Mo and
W isotopes produced in the 20Ne + 152Gd reaction (Bruchle et al. 1992) at the PSI
Philips cyclotron, a-hydroxyisobutyric acid solutions of 5 x 10-2 M, pH = 2.65 or
pH = 5 used to elute W in a rapid, one-stage separation from cation exchange columns
provided a good separation from Hf and Lu (Bruchle et al. 1992). Likewise (Bruchle et
al. 1992), solutions with 0.1 M HC1 and various HF concentrations between 10-4 M
and 10-2 M were eluting W rapidly while Hf was safely retained on the column below
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Sg-fraction 0.1 M HN03 / 5 x 10'* M HF

8 10 12

Time / s
u 16 18

Figure 6.9 Elution curve for W-tracer modelling the seaborgium separation in ARCA II using
a solution of 0.1 M HNO3/5 x 10-4 M HF with a flow rate of 1 ml min -1. The 1.6 x 8 mm2

columns are filled with the cation exchange resin Aminex A6. Reproduced with permission
from Schadel et al. (1997b). © 1997 R. Oldenbourg Verlag.

10-3 M HF. Hf was observed to be partially eluted for not less than 2.8 x 10+3 M HF
in 0.1 M HC1. Finally, the decision was made to use 0.1 M HNO3/5 x 10-4 M HF to
elute a seaborgium fraction from cation exchange columns (Giinther et al. 1995) in
order to avoid the formation of mixed chloride-fluoride complexes, which are difficult
to model. MO2F3(H2O)- is a likely form of the complexes that are eluted, but neutral
species such as MO2F2 cannot be excluded. Some problems were encountered with
adsorption of the activities on the slider in ARCA II. Among the various materials
tested, titanium showed the lowest losses of W and Hf due to adsorption. Figure 6.9
shows the elution curve for short-lived W isotopes from the reaction of 20Ne with
enriched 152Gd.

The activity was transported to ARCA II with a He(KCl)-jet within about 3 s
and deposited on a titanium slider, dissolved and washed through the 1.6 x 8 mm2

chromatographic column (filled with the cation exchange resin Aminex A6, 17.5 ±
2 urn) at a flow rate of 1 ml min-1 with 0.1 M HNO3/5 x 10-4 M HF. 85% of the W
are eluted within 10 s. No di- or trivalent metal ions and no group 4 ions are eluted
within the first 15s. Also, uranium, in the form of UO2

2
+, is completely retained on

the column.
In the seaborgium experiments (Schadel et al. 1997b), a 950 \ig cm -2 248Cm target

was bombarded with 3 x 1012 22Ne ions per second at 121 MeV. 3900 identical
separations were conducted with a collection and cycle time of 45 s and a total dose
of 5.48 x 1017 22Ne ions. The transport efficiency of the He(KCl) jet was 45%.
On average, counting of the samples started 38 s after the end of collection. The
overall chemical yield was 80%. Three correlated ota mother-daughter decays were
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106 i265* !265, 265,

104

/8.24 MeV/8.26 MeV/8.52 MeV
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Figure 6.10 Nuclear decay chains originating with 265Sg after chemical separation with
ARCA II. The or-decay energies are given in MeV and the observed lifetimes in seconds.
Reproduced with permission from Schadel et al. (1997b). © 1997 Nature & Macmillan Pub-
lishers Ltd.

observed that are assigned to the decay of 261Rf and 257No as the decay products
of 265Sg (see Figure 6.10). The three correlated events have to be compared with an
expectation value of 0.27 for random correlations. This gives a probability of 0.24%
that the three events are random correlations. As the mother decays were not observed,
Figure 6.10, it is important to note that 261Rf and 257No can only be observed if 265Sg
passed through the column because group 4 elements and No are strongly retained on
the cation exchange columns in ARCA II. Most likely, the decay of 7 s 265Sg was not
observed because it decayed in the time interval between the end-of-separation and
the start-of-measurement, which was equivalent to four half-lives. That the columns
really retained 261lRf was demonstrated recently in an experiment where 261Rf was
produced directly in the 248Cm(18O,5n) reaction at the PSI Philips cyclotron (Strub
et al 2000), and processed in the seaborgium chemistry in 0.1 M HNO3/5 x 10-4 M
HE 261Rf did not elute from the column and was subsequently stripped from the
column with 0.1 M HNO3/10-1 M HF

From the observation of the three correlated a-decay chains of 265Sg daughters,
it was concluded that, for the first time, a chemical separation of seaborgium had
been performed in aqueous solution. Seaborgium shows a behaviour typical for a
hexavalent element located in group 6 of the Periodic Table and different from that of
the pseudogroup-6 element uranium, which is fixed as UO2

2|
+ on the cation exchange

column. Presumably, Sg forms SgO2F3(H2O)- or the neutral species SgO2F2, but due
to the low fluoride concentration used, the anionic SgO2

4
- ('seaborgate' in analogy to

molybdate, MoO2
4
-, or tungstate, WOj~) cannot be excluded.

In order to get experimental information on this latter question, a new series of
seaborgium experiments with ARCA II was performed in which 0.1 M HNO3 without
HF was used as the mobile aqueous phase and Aminex A6 as stationary phase. If the
'seaborgate' ion was what was isolated in Schadel et al. (1997b), it was supposed to
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show up here again. A 690 u,g cm -2 248Cm target containing 22 ug cm - 2 enriched
152Gd was bombarded with 123 MeV 22Ne ions. The simultaneously produced 169W
served as a yield monitor. 45 s cycles were run in which the effluent was evaporated
on thin (~500 jig cm~2) Ti foils mounted on Al frames. These were thin enough to be
counted in close geometry by pairs of PIPS detectors, thus increasing the efficiency
for aa-correlations by a factor of four as compared with the 1995 experiment. A
beam dose of 4.32 x 1017 beam particles was collected in 4575 separations. Only one
aa-correlation attributable to the 261Rf-257No pair was observed. With an expected
number of random correlations of 0.5 this is likely (the probability is 30%) to be
a random correlation. From the beam integral and the overall yield as measured
simultaneously for 169W (27% on the average), a total of five correlated events was
to be expected. This tends to indicate that, in the absence of fluoride ion, there is
sorption of seaborgium on the cation exchange resin (SchMel et al. 1998).

This nontungsten-like behaviour of seaborgium under the given conditions may be
attributed to its weaker tendency to hydrolyse (see the equations in Table 6.6), For
Mo and W, the sequence of subsequent hydrolysis reactions in diluted HNO3 reaches
the neutral species MO2(OH)2- A weaker tendency to hydrolyse for seaborgium
would stop this sequence earlier, e.g. with MO(OH)3(H2O)2

+, which sorbs on a cation
exchange resin. Calculations of the electronic structure of hydrolysed species of Mo,
W and Sg and application of the theoretical model for hydrolysis lead indeed to the
prediction of the sequence of hydrolysis (Section 6.5.1)

Mo > W > Sg

in acidic solutions, as indicated by the experiment (Schadel et al. 1998).
In the presence of fluoride ions having a strong tendency to replace OH-ligands,

the formation of neutral or anionic fluoride species is favoured:

M02(OH)2(H20)2 + 2HF ^ MO2F2 + 4H2O, )
} (6.18)

MO2F2+F~ ~

Thus, in the early experiments with seaborgium in the presence of fluoride ions,
neutral or anionic fluoride complexes, e.g. MO2F2 or MO2F

-
3, were likely to be

formed and were eluted from the cation exchange columns. Experiments using the
on-line three-column technique (Pfrepper et al. 2000) are in preparation to determine
the Kd value of seaborgium oxofluorides on an anion exchange resin relative to the
respective values for Mo and W. The theoretical predictions (Section 6.5.1) provide
a guideline for these experiments.

6.6 Summary
We have shown here how the chemical properties of the very heavy elements can be
studied both experimentally and theoretically, each complementing the other and lead-
ing to an understanding of the chemistry of the very exotic short-lived elements. The
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study has also shown that theoretical models are adequate to describe real processes
and are able to predict the results of chemical experiments.

The investigations have established trends, as well as revealed new unexpected
features in the properties of the heavy elements in relation to the well-studied lighter
homologues. Theoretical predictions of redox potentials in solutions and complex
formation using the DFT method seem to be especially promising. The present inves-
tigations have also demonstrated that linear extrapolations of properties are no more
reliable in the area of the very heavy elements, where relativistic effects are very
strong, and that fully relativistic calculations are indispensable for defining trends in
the correct way.

The combination of fully relativistic calculations with some additional physico-
chemical schemes is still presently the best way of reliably predicting the outcome of
sophisticated experiments.
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7.1 Introduction

In the design of experimental probes for relativistic effects in the chemistry of heavy
d- and f-metals, gold is a key element because relativistic effects reach a local max-
imum (Bartlett 1998; Kaltsoyannis 1997). The two research groups involved in this
collaborative study follow different approaches. The Berlin group aims to examine
the gas-phase ion chemistry of heavy elements with respect to the role of relativis-
tic effects on metal-ligand binding in general and chemical reactivity in particular.
Based on the expertise in the preparation of 5d metal compounds, the Munich group
is predominantly oriented towards the investigation of the influence of relativity on
molecular and supramolecular structures. Common to both projects is the attempt to
experimentally probe predictions made by theoreticians as well as to guide computa-
tional studies towards problems of chemical relevance. These efforts are summarized
in this chapter, which focuses on some more recent, representative studies rather than
covering all our research projects carried out in this context.

7.2 Gas-Phase Ion Chemistry of Heavy Elements

The starting point for the involvement of the Berlin group in the topic of relativistic
effects was the experimental detection of the elusive gold(I) fluoride, whose existence
had been conjectured by theory, but had not so far been seen experimentally. In a
collaborative effort with Klapotke and co-workers we were able to unambiguously
establish the existence of AuF as a long-lived molecule in the gas phase by mass
spectrometric means (Schroder et al \ 994a,b). Almost simultaneously, Schwerdtfeger

Relativistic Effects in Heavy-Element Chemistry and Physics. Edited by B. A. Hess
© 2003 John Wiley & Sons Ltd
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Figure 7.1 Stability diagram (in eV) of the diatomic UF3+ trication.

et al. (1994) also provided evidence for the formation of gaseous AuF; this molecule
continues to receive considerable attention (Andreev and DelBruno 2000; Evans and
Gerry 2000; Schwerdtfeger et al. 1995b).

7.2.1 Thermochemistry

There exist numerous reports on the influence of relativistic effects on calculated bond
strengths and redox properties of heavy elements and their compounds (Hess 1997).
While quantitative predictions require explicit consideration, some general patterns
and trends evolve clearly. As far as transition metals are concerned, the relativistic con-
traction of s orbitals is most significant because of their large contribution to chemical
bonding. For many metal atoms, the low-lying s orbitals result in both enlarged elec-
tron affinities (EAs) and ionization energies (lEs). For example, EA(Au) = 2.31 eV
and IE(Au) = 9.23 eV of the neutral gold atom having an s'd10 configuration are sig-
nificantly larger than those of the lighter 3d and 4d congeners, i.e. copper and silver
with EA(Cu) = 1.23 eV, EA(Ag) = 1.30 eV, IE(Cu) = 7.73 eV and IE(Ag) = 7.58 eV.
These trends translate to the compounds of 5d-block elements. Of course, the effect
vanishes when s occupation is not involved in ionization and even reverses for f-block
elements because the f orbitals are destabilized by relativistic effects. Indeed, the lEs
of lanthanide and actinide atoms are rather low, and some of them are close to those
of alkali metals, for example, IE(Pr) = 5.47 eV and IE(Ac) = 5.17 eV compared with
IE(Na) = 5.12 eV. Among the numerous examples of relativistic effects on bond and
redox energies, let us consider three specific cases.

The relativistically lowered ionization energies of lanthanides and actinides permit
the generation of several multiply charged cations in oxidation and charge states
which are difficult to reach with other elements. For example, the diatomic cations
UFn+ with n up to 3 can be generated by electron ionization of uranium hexafluoride.
Moreover, not only the mono- and dications, but also the diatomic trication UF3+, is
thermochemically stable in that the Coulomb explosion is endothermic (Figure 7.1)
(Schroder et al. 1999a,b). By comparison, while the diatomic trication TiF3+ exists
in a local minimum, it is unstable with respect to the charge separation of Ti2+ +
F+ by more than 5 eV (Schroder et al. 1998a). Choosing heavier group 4 elements
does not lead to thermochemical stability, because the metals' BEs do not decrease
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monotonically. Thus, while the ionization energies of titanium, IE(Ti) = 6.82 eV,
IE(Ti+) = 13.57 eV and IE(Ti2+) = 27.47 eV, exceed those of zirconium, IE(Zr) =
6.64 eV, IE(Zr+) = 13.13 eV, IE(Zr2+) = 22.98 eV, those of hafnium slightly increase
again due to relativistic contraction of the 6s shell: IE(Hf) = 6.83 eV, lECHf4") =
14.9 eV and IE(Hf2+) = 23.2 eV.

While none of the bare M+ cations of the 3d and 4d series is capable of activat-
ing methane at ambient temperatures, pioneering work of Irikura and Beauchamp
(1991a,b) demonstrated that several 5d metals can give rise to efficient dehydrogena-
tion of methane according to Reaction (7.1) leading to the exothermic formation of
cationic metal-carbene complexes (Schwarz and Schroder 2001):

M + +CH 4 -^MCH++H 2 . (7.1)

This dramatic difference in reactivity can be attributed to the significantly stronger
M+-CH2 bonds of the 5d metals (Heinemann et al. 1995d). For example, the dissoci-
ation energies £>(Ni+-CH2) = 3.17 eV and D(Pd+-CH2) = 2.95 eV are much lower
than for the 5d congener, £>(Pt+-CH2) = 4.80 eV (see Zhang et al 2001, and refer-
ences cited therein); thermal occurrence of Reaction (7.1) requires D(M+-CH2) >
4.7 eV. High-level ab initio calculations with explicit consideration of relativistic
effects have demonstrated that the large bond strength of PtCH2

+ is to a notable extent
caused by relativity (Heinemann et al 1995e, 1996b; Rakowitz et al. 2000). This
effect is complemented by a significantly better overlap between the jr-orbitals of
the carbene fragment with the 5djr orbitals of Pt compared with the 3dn and 4dn

counterparts of Ni and Pd. A related consequence is that high oxidation states are
much more favourable for 5d compared with 3d and 4d elements.

A particularly intriguing case evolves from the consideration of the Mo-O bond
strengths in MoO+ and MoO+

2. Thus, £>(Mo+-O) = 3.78 eV computed nonrela-
tivistically increases to 4.60 eV when relativity is included, whereas the nonrela-
tivistic and relativistic values for the corresponding dioxide are almost identical, i.e.
D(OMo+-O) = 5.21 versus 5.24 eV (Kretzschmar et al 1997). Hence, relativity is
of prime importance for MoO+, but negligible for MoO+

2. The origin of this unusu-
ally large difference is associated with the significant 5s occupation in MoO+, while
this is small in Mo+ (6S) and MoOj (2Aj). The lowering of the 5s orbital due to
relativity therefore results in a differential stabilization which is most pronounced for
MoO+. Notable is the significant effect of relativity on the thermochemistry, although
molybdenum is a 4d element for which relativistic effects are often assumed to be
negligible.

A final system mentioned here demonstrates the strength of contemporary ab initio
methods. During a study of metal-mediated C–C coupling processes, it was discovered
that thermalized Pd+ reacts with methyl iodide to yield a PdCH2I

+ cation (Schwarz et
al 1996a). As no obvious intermediates were observed, occurrence of Reaction (7.2)
was assumed:

Pd+ + CH3I —> PdCH2I+ + H. (7.2)
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Reaction (7.2) is quite surprising because the strong C–H bond is selectively activated
in the presence of the considerably weaker C–I bond. Hence, the PdCH2I+ product
seems to experience some particular stabilization. In fact, ab initio studies reveal a
notable interaction between palladium and iodine, giving rise to a Pd–C–I angle of
only 78°. Nevertheless, none of the rather demanding theoretical methods applied led
to £>(Pd+-CH2I) > 4.5 eV, which is required to render Reaction (7.2) exothermic.
While we may speculate about an additional stabilization of PdCH2I

+ due to syn-
ergistic interaction of two heavy elements being involved in the bonding, advanced
theoretical investigations enforced a reconsideration of the experiments. Upon more
detailed analysis, the true route for the formation of PdCH2I"

1" was found to involve
two elementary steps, Reactions (7.3) and (7.4):

Pd+ + CH3I —-* PdCH3
 +I, (7.3)

PdCH3
 + CH3I —* PdCH2I

+ + CH4. (7.4)

Failure to observe the PdCH3
+ intermediate in the first study is due to a delicate balance

of the associated rate constants leading to an extremely low steady-state concentra-
tion of the PdCH3

+ intermediate. The sequence via Reactions (7.3) and (7.4) begins
with C–I bond activation and is consistent with all experimental and computational
findings (Schwarz et al. 1996b). The lesson from this study is that only the conse-
quent improvement of the theoretical methods leads to a correct interpretation of the
experiments.

7.2.2 Coordination chemistry

Gold(I) is particularly suited to probing the effects of relativity on the coordination
chemistry of closed-shell ligands L for several reasons. At first, relativistic effects are
particularly pronounced for gold; this has also been referred to as the 'gold maximum'
(Pyykkd 1988). Next, the 6s°5d10 configuration of the valence space facilitates the
treatment of gold(I) compounds at appropriate levels of theory. Further, many ligated
gold(I) compounds are easily accessible in the gas phase (see below), thereby allowing
a reasonable flexibility in the choice of the binding partners. Last but not least, in the
gas phase Au+ shows little chemical reactivity—except electron transfer (ET) and
reactions with highly reactive substrates (Wesendrup et al. 1995)—such that skeletal
rearrangements of the ligands, competing bond cleavages, etc., do not severely disturb
the examination of the coordination properties.

The first challenge concerned the exploration of a route which allows for a flexible
synthesis of various gold(I) compounds in the gas phase. The equivalent of gold(I)
in these studies is the bare metal cation Au+. Due to the high ionization energy of
atomic gold (IE = 9.23 eV), direct association with organic ligands is inappropriate
in many cases because ET as well as anion abstractions compete (Chowdhury and
Wilkins 1987; Ho and Dunbar 1999; Weil and Wilkins 1985). Another difficulty in
preparing Au(L)+ complexes in the diluted gas phase is that, despite the attractive
potentials between Au+ and L, direct associations in two-body collisions are unlikely
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to occur for ligands of small to moderate sizes. This is because the energy gained upon
complexation is, of course, also sufficient for redissociation; only species with suffi-
cient lifetimes can experience radiative and/or collisional stabilization. For example,
although the dissociation energy D(Au+-C2H4) amounts to about 3 eV, bimolecular
association of Au+ and ethene is almost too slow to be measured in the low-pressure
regime of the experiments (typically less than 10-6 mbar).

A versatile route for the gas-phase synthesis of various gold(I) complexes is pro-
vided by the reaction of Au+ with hexafluorobenzene. While IE(C6F6) = 9.91 eV is
large enough to prevent ET, C6F6 has a sufficient number of rovibronic states to allow
for efficient formation of the Au(C6F6)

+ complex via radiative stabilization in the
low-pressure regime according to Reaction (7.5) (Schroder et al. 1995):

Au+ + C6F6 —* Au(C6F6)
+, (7.5)

Au(C6F6)
+ + C6F6 —> Au(C6F6)2+. (7.6)

In an excess of hexafluorobenzene, the adduct continues to react yielding the bisligated
ion in Reaction (7.6); complexes of gold(I) with more than two ligands were not
observed in these and similar experiments conducted in the low-pressure regime
(Taylor et al. 1997). By pulsing the C6F6 reactant into the mass spectrometer and
appropriately adjusting pulse lengths and heights, yields of Au(C6F6)

+ up to 70%
(based on Au+) can be achieved in a rapid and well-reproducible manner. The key
aspect is that hexafluorobenzene adds efficiently to Au+ according to Reaction (7.5),
while at the same time it is a poor ligand due to the electron deficient n -system. In fact,
theoretical studies indicate that coordination of the gold cation to one of the fluorine
atoms is energetically almost equivalent to binding at the n -system (Schroder et al.
1998c). Consequently, C6F6 can be exchanged by other equally well or more strongly
bound ligands L according to Reaction (7.7):

Au(C6F6)+ + L —> Au(L)+ + C6F6, (7.7)

Au(L)+ + L' —-> Au(L')+ + L. (7.8)

One of these ligands is water, hardly an avoidable impurity in high-vacuum devices,
and formation of Au(H2O)+ was indeed observed in all experiments conducted with
Au(C6F6)

+. The same approach can then be applied using other ligands L' in sub-
sequent reactions such as (7.8). Under thermal gas-phase conditions, Reaction (7.8)
can only occur when the reaction enthalpy ArG298(7.8) is close to or lower than
zero (Bouchoux et al. 1996). Thus, ligand exchange is only observed if D(Au+-L')
approaches or exceeds D(Au+-L); in some cases, notable entropic contributions to
ArG298 need to be considered as well (Schroder et al. 1998c). In addition to these qual-
itative aspects, the experiments permit quantitative analysis of the reaction kinetics
if the internal energy deposited in radiative association is adequately acknowledged
(Schroder et al. 2000a). Fortunately in some cases, equilibrium constants Keq can
be determined that provide accurate thermochemical information using the Gibbs–
Helmholtz equation ArG = —RT ln Keq. In the present case, a series of systematic
studies led to an order of relative Au+ affinities of several prototype ligands (Schroder
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Au(C6F6)
+
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Au(OH2j

Au(Xe)+

Figure 12 Generation of Au(Xe)+ upon reacting Au(C6F6)+ with xenon. Note the
competitive formation of Au(H2O)+ due to reactions with background water.

2.133
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Figure 73 Computed structure of the Au(H2O)+ cation
(bond lengths in angstroms and angles in degrees).

et al. 1995,1998c), i.e. Xe < Ofo < H2O < CO < H2S < CH3CN « C2H4
NHa « CHaNC < CHsSCHs < PH$. Various experimental and theoretical studies,
including a detailed examination of equilibrium isotope effects for Au(C2X4)+ (X =
H, D) (Schroder et al. 2000c), were used to determine relevant properties of gaseous
gold(I) complexes of which we would like to discuss three systems in more detail
here.

First, the experimental studies conducted by the Berlin group did confirm Pyykko's
prediction that xenon is a suitable ligand for gold(I) (PyykkO 1995). Thus, atomic Xe
is able to replace the arene ligand in Au(C6F6)

+ according to Reaction (7.7) to afford
Au(Xe)+ as revealed by the characteristic isotope pattern as well as high-resolution
mass analysis (Figure 7.2) (Schroder et al. 1998c). At longer reaction times, the
bisligated cation Au(Xe)2

+ is also formed, again confirming the theoretical prediction
(Pyykko 1995). These results suggest that liquid xenon may be used as a suitable
solvent in the synthesis of gold compounds in the condensed phase (see also Seidel
and Seppelt 2000).

Next, the coordination geometry of the Au(H2O)+ complex is noteworthy. Unlike
all other monocationic complexes M(H2O)+ of main-group or transition metals M
with water, Au(H2O)+ is a nonplanar molecule (Figure 7.3, HruSik et al. 1994).
This deviation from planarity is basically caused by relativistic effects which ener-
getically lower the 6s orbital, such that Au+ in Au(H2O)+ behaves like a proton in
H3O+: it prefers covalent to predominantly electrostatic bonding (Hrusak et al. 1995).
Theoretical studies of the corresponding benzene complex Au(C6H6)

+ predict a sim-
ilar deviation from usual coordination geometries: unlike most other monocationic
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Table 7.1 Bond dissociation energies D(M+-C2H4) (in eV) of M(C2H4)
+ complexes for

transition metals M (taken from Schroder et l. 1998c).

D D D

Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu

1.39
1.34
1.21
1.30
0.87
1.50
1.86
1.82
1.95

Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag

1.43
1.52
1.60
1.08
1.13
1.30
1.34
1.21
1.47

La
Hf
Ta
W
Re
Os
Ir
Pt
Au

1.99
1.56
1.91
2.17
1.30
1.95
2.43
2.39
2.99

metal-benzene complexes, that of gold trades off Cev geometry in that n1- and n2
type coordinations are strongly preferred (Dargel et al. 1999; Hertwig et al. 1995;
Schroder et al. 2000a). Again, this behaviour of Au+ resembles that of a proton inter-
acting with benzene (Bouchoux et al 1999; Glukhovtsev et al 1995; Mason et al.
1995), and the facile interconversion of the n1- and n2-structures of A u C 6 H 6 ) + finds
its equivalent in the hydrogen ring-walk of protonated arenes (Kuck 1990).

The third aspect concerns the strengths of Au+-L interactions in general. A suit-
able comparison can be made with L = ethene for which sufficient data are available
(Table 7.1). Among all M(C2H4)+ complexes studied so far, D(Au+-C2H4) is out-
standingly large, being in fact almost twice that of the lower congeners copper and
silver (Hertwig et al. 1996; Hrusak et al. 1995). The bond strength is even sufficient
for ethene replacing the formally covalent iodine ligand in the Aul+ cation (Reac-
tion (7.9), Schoder et al 1995).

Aul+ + C2H4 — > Au(C2H4)
+ + I. (7.9)

This large bond strength can be attributed to the bonding scheme
which is best described as that of a metallacyclopropane, rather than a simple metal-
olefin complex. Thus, an atoms-in-molecules analysis (Bader 1994) reveals primarily
T-shaped types of electrostatic bonding for Cu(C2H4)

+ and Ag(C2H4)+, whereas
Au(C2H4)

+ clearly shows bond critical points between gold and carbon (Hertwig et
al 1996).

7.2.3 Reactivity

Gas-phase reactivity studies form the key issue in the research of the Berlin group.
Note that relativity is not explicitly addressed here because reactivity is determined
by thermochemical and kinetic aspects, and nonrelativistic considerations of reaction
kinetics are almost meaningless (see also Section 7.4). Whereas bare Au+ shows
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Figure 7. 4 Mechanistic model for the Pt-catalysed HCN synthesis from CH4 and
NH3 in the Degussa process.

little chemical reactivity, a rather diverse and fascinating chemistry is exhibited by
gaseous platinum ions. For example, Pt+ is not only capable of activating methane
according to Reaction (7. l)(Heinemann et al. 1995f;Irikura and Beauchamp 1991a,b;
Schwarz and Schroder 2001), the resulting PtCHj cation shows interesting reactivities
towards methane (Irikura and Beauchamp 1991b; Wesendrup et al. 1994a,b), oxygen
(Pavlov et al. 1997; Wesendrup et al. 1994a,b), as well as various nucleophiles, such
as water, ammonia, hydrogen sulphide, several alcohols and amines (Bronstrup et
al. 1999). The most instructive system in this context is Pt+/CH4/NH3 (Aschi et al.
1998a,b; Diefenbach et al. 1999), which provides a gas-phase model for the synthesis
of hydrogen cyanide in the Degussa process according to Reaction (7.10):

CH4 + NH3 —> HCN + 3H2. (7.10)

In the gas phase, Pt+ gives rise to a sequence of reactions. The first step is the activation
of methane according to Reaction (7.1) to yield the platinum carbene cation PtCH2+
in contrast, bare Pt+ does not activate ammonia. Subsequently, PtCH2

+ undergoes
efficient C-N coupling with ammonia whereas successive reactions with methane are
of minor importance. Interestingly, two kinds of coupling products are formed: the
aminocarbene complex PtCH(NH2)

+ and the aminomethyl cation CH2NH+2, namely
protonated formimine. Examination of the consecutive reactions, collisional activa-
tion studies, labelling experiments, and ab initio calculations allowed us to suggest a
mechanistic scenario of the Degussa process (Figure 7.4) (Diefenbach et al. 1999).

Thus, HCN is proposed to be formed in two competing routes, a surface-bound
pathway via platinum aminocarbenes and a gas-phase channel involving successive
dehydrogenation of formimine. Common to both routes is the Pt-mediated activation
of methane as the first step. A crucial aspect is the remarkable selectivity observed,
i.e. bare Pt+ only reacts with methane while the resulting PtCH+2 preferentially reacts
with ammonia. Exploratory studies of other transition metals indicate that platinum
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is most efficient in fulfilling both tasks simultaneously, the activation of methane and
the subsequent C-N coupling with ammonia (Diefenbach et al. 1999). Mimicking
the related Andrussow process, in which oxygen is added to the CH4/NH3 mixture,
reveals that the Pt/O species formed only affect oxidation of methane (Brftnstrup et
al. 2001; Pavlov et al. 1997; Wesendrup et al. 1994a,b), while not intervening in the
C-N coupling that is crucial for HCN formation.

Another reaction to be mentioned briefly is the Ta+-mediated coupling of methane
and carbon dioxide to afford ketene; the latter can serve as a precursor for acetic acid
(Wesendrup and Schwarz 1995a,b). The rather attractive, yet hypothetical, coupling
Reaction (7.11) is endothermic, however. In the mass spectrometric model study, the
thermochemical driving force is provided by the oxidation of tantalum yielding the
TaO+2 cation as the final product (Sandig and Koch 1998). Therefore, the coupled
activation of methane and carbon dioxide so far remains stoichiometric:

CH4 + CO2 —> CH3COOH. (7.11)

In addition to the chemistry of the d-block elements, several chemical transformations
promoted by lanthanides (Cornehl et al. 1995), actinides (Heinemann et al 1995a)
and their oxides (Cornehl et al. 1996a,b, 1997b; Heinemann and Schwarz 1995) have
been examined, such as C-C bond couplings (Heinemann et al. 1994), C-F bond
activations (Cornehl etal. 1996c; Heinemann et al. 1995b,c), olefin oxidation (Cornehl
et al. 1997'a; Heinemann et al. 1996a) and alkadiene oligomerization (Cornehl et al.
1997b). In this context, an elegant technology developed by Gibson is noteworthy
as it permits us to investigate the gas-phase ion chemistry of 'hot' elements such as
plutonium (see Gibson 2001, and references therein).

In the course of the research project, it turned out that a major aspect of relativity for
chemical processes is associated with reaction dynamics, rather than mere energetics.
Moreover, this effect seems to be more relevant for lighter than for heavier elements.
Numerous reactions of organometallic fragments in the gas phase—among them
important processes such as hydrocarbon oxidation—involve formally spin-forbidden
steps. In the reactions of heavy elements, for example, in the rich chemistry of gaseous
platinum, we may assume that spin is not a meaningful quantum number. Instead,
spin-orbit coupling predominates and spin rules do not play a crucial role any more.
For lighter elements, however, spin constraints can affect chemical reactivity and may
even become a decisive factor. For example, several hydroxylations of hydrocarbons
by transition-metal oxides involve formally spin-forbidden steps (Fiedler etal. 1994;
Shaik et al 1998). Yet, the reactions occur at ambient temperature via surface crossings
mediated by spin-orbit coupling (Yarkony 2001). This behaviour has also been termed
two-state reactivity (TSR) (Shaik et al. 1995). In brief, the key feature of TSR is a
change of spin multiplicity along the reaction coordinate from the reactants to the
rate-determining transition structure (Schroder et al. 2000b). In addition to oxidation
reactions (see Shiota and Yoshizawa 2000, and references therein) evidence for the
mechanistically decisive role of TSR in main-group (Aschi et al 1998c; Harvey et
al 1998; Schrocler et al. 1998b) and transition-metal chemistry (Kretzschmar et al
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Figure 7.5 Multiply aurated oxygen, nitrogen and carbon.

1998; Rue et al. 1999), as well as in surface reactions (Triguero et al. 1998), has been
provided.

7.3 Structural Chemistry of Gold Compounds in
the Condensed Phase

In recent years, extensive preparative, structural, spectroscopic and theoretical studies,
which have been oriented towards a better understanding of relativistic phenomena in
the chemistry of gold, have been carried out by the Munich group (Schmidbaur 2000).
Not only atomic and ionic radii are influenced by relativity, but also the stability of the
oxidation states and coordination numbers are heavily affected, with consequences
ranging from relatively small to supramolecular ensembles.

7.3.1 AuL+: a big proton?

At first sight, the structures of gold(I) compounds appear to be quite simple. Thus,
the s°d10 configuration of Au+ leads to bisligated complexes with perfectly linear
arrangement of the ligands irrespective of the net charge of the compounds, for exam-
ple, (OC)AuCl, Au(NH3)J and Au(CN)2 show L-Au-L angles of 180°. However,
gold(I) compounds exhibit a fascinating structural chemistry when multiply ligated
to elements with more than one valency. Most notable is the formation of several
hypercoordinated, multiply charged complexes which give insight into some quite
unexpected molecular architectures (Schmidbaur 1995). For example, when counte-
rions and stoichiometries are chosen appropriately, compounds with tetracoordinated
oxygen (Schmidbaur et al 1995), pentacoordinated nitrogen (see Schier et al. 2000,
and references therein) and even hexacoordinated carbon (Scherbaum et al. 1988a,b)
can be synthesized as bulk substances and were fully characterized by X-ray diffrac-
tion (Figure 7.5).

The formation of hypercoordinated compounds is not restricted to carbon, nitrogen
and oxygen, but also occurs with their heavier congeners (Preisenberger et al. 1999a),
and the phosphine ligand can be replaced by others, for example, arsines (Tripathi
et al 1998a). These multiply charged cations can be regarded as analogues of the
elusive dications H4O2+, NH2 and C H + , which it has been suggested exist in the
gas phase (Lammertsma et al. 1989a,b) as well as condensed media (Olah 1993a,b,
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Figure 7.6 Sketch of a gold triangle resulting from aurophilic interaction.

1995a,b). Hence, while the coordination chemistry of gold(I) does indeed resemble
that of a proton (see also Section 7.2.2), the evidence for the existence of the hydrogen
compounds is merely indirect, whereas the corresponding gold(I) complexes can
be isolated in crystalline form and in appreciable yields, for example, a 53% yield
(Preisenberger et al. 1999a) in reaction

[(Ph3P)Au]4N+ BF4 + (Ph3P)Au+ BF4 — [(Ph3P)Au]5N
2+ • 2BF4.

An important reason for the stability of these hypercoordinated complexes is the
aurophilic interaction between the gold atoms linked to the core element, as discussed
in the next section.

7.3.2 Aurophilicity

The research conducted by the Munich group inter alia contributed to the uncovering
of a new type of bonding: the attractive interaction between gold(I) centres for which
the term 'aurophilicity' has been coined and widely accepted (Schmidbaur 2000).
From a classical point of view, this interaction is quite unexpected because the perfect-
pairing s°d10 configuration of Au+ does not imply an obvious bonding scheme; in
fact, we might anticipate repulsion of the positively charged gold(I) centres. The
interaction between the closed-shell d10 configuration is based largely on electron
correlation, somewhat similar to van der Waals interactions. Though the closed-shell
interaction is not inherently relativistic, inclusion of relativity increases the attractive
interaction by an appreciable amount (Pyykko 1997). In contrast to the weak van
der Waals type bonding, the strengths of aurophilic interactions are comparable with
hydrogen bonding. Thus, the Au • • • Au contacts do not impose major barriers for
molecular motion at ambient temperatures, but can crucially determine the structural
chemistry of gold compounds. For example, a fluoroboryl-bridged organophosphinite
ligand leads to the formation of a triangular arrangement of three gold atoms joined
by aurophilic bonding (Figure 7.6) (Hollatz et al 1998, 1999b).

An ongoing topic in the Munich group is the search for a corresponding argen-
tophilic interaction. While Ag • • • Ag bonding is predicted to be much weaker than
for gold, some results indicate the occurrence of a similar phenomenon in silver com-
pounds. The shortest Ag-Ag distance realized so far occurs in a binuclear silver(I)
complex with two tridentate phosphine ligands (Zank et al. 1999) and amounts to
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Figure 7.7 Dynamics of the dinuclear [M2(TP)2] [BF4]2 complexes of silver and gold.
TP = bis[2-(diphenylphosphino)phenyl]phenylphosphine, M = Ag, Au.

fXgAg = 2.857 A compared with rAgAg = 2.889 A in bulk silver. Likewise, attention
is paid to other metallophilic interactions including those between different metal
atoms, for example, Ag • • • Au.

7.3.3 Ligand design

Considering that the strength of aurophilic interaction is comparable with hydrogen
bonding, its occurrence crucially depends on the steric requirements of the ligands
(Hollatz et al. 1999a; Monge Oroz et al 1999; Tripathi et al 1998b). An interesting
case is the comparison of the dinuclear complexes of a tailored tridentate phosphine
with silver(I) and gold(I), respectively (Figure 7.7) (Zank et al. 1998,1999). In solu-
tion, dynamic NMR experiments reveal fluxional behaviour for both complexes, yet
the patterns differ greatly. In the silver complex, both Ag atoms undergo degener-
ate displacements of the ligands to afford two identical, tricoordinated metal centres.
While degeneracy also occurs for the gold compound, the metal atoms exhibit different
coordination numbers in the equilibrium geometry, i.e. one gold atom is coordinated
to two and the other to four phosphorus atoms. This notable difference is ascribed
to the strength of the metallophilic interaction of gold compared with that of silver.
Nevertheless, in the silver complex the Ag-Ag distance is also remarkably short (see
above). Complexes with chiral ligands have also been examined and provided deeper
insight into the rather complicated organization of chiral units at three- and four-
coordinate gold(I) centres (Bayler et al 1998). An interesting competition comes into
play with several sulphur-containing ligands. Because coordination of gold to sulphur
is particularly favourable, it can in fact override the aurophilicity, resulting in a switch
from Au • • • Au to Au • • • S contacts (Preisenberger et al. 1999b; Tzeng et al. 1999b).

Like hydrogen bonding, the aurophilic interaction can give rise to di- and tridimen-
sional structures in which the gross architecture is determined by weak but significant
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Figure 7.8 Supramolecular binding sites of gold(I) thiazolate.

forces (Schmidbaur 2(XX)). For example, dithiophosphate complexes of gold show
a chain-like arrangement in the solid which is determined by Au • • • Au contacts
(Preisenberger et al. 1998). Particularly fascinating is the combination of aurophilic
interaction with hydrogen bonding found for thiazolate complexes of gold(I) (Tzeng
et al. 1999a). Here, the supramolecular architecture of the solid is determined by
Au • • • Au interactions as well as N • • • H bridges of the thiazole ligands with them-
selves as well as interstitial solvents such as methanol. These coordination modes are
sketched in Figure 7.8 (see Tzeng et al (1999a) for the complete structures). Other
options arise from Au • • • S coordination (Tzeng et al. 1999b), and a combination of
these effects gives rise to several interesting supramolecular structures (Schmidbaur
2000).

7.4 Conclusions
The chemistry of transition metals, lanthanides and actinides is significantly influ-
enced by relativistic effects. Qualitatively, these effects become apparent in the com-
parison of certain structural properties or reactivity patterns for a group of metals, for
example, trends in the chemistry of copper, silver and gold. Quantification of rela-
tivistic effects can, however, only be achieved by relating the experimental findings
to the results of adequate ab initio studies. Reference to theory is required because
nonrelativistic properties cannot be probed directly. Thus, elements behave relativis-
tically in any kind of experiment, whether one deals with the spectrum of H+

2 or the
properties of transuranium compounds.

As far as thermochemistry, ligand bonding and molecular structures in the gaseous
as well as condensed phase are concerned, the case studies described above demon-
strate the fruitful interplay of experiment and theory. For example, an understanding
of the unusual stability of the gaseous PtCH+2 cation can only be achieved upon
inclusion of relativistic effects. Likewise, the bond strengths of Au(L)+ complexes
can only be rationalized if relativity is considered explicitly, and the same applies
to the structural chemistry of gold(I) compounds in the condensed phase, for exam-
ple, aurophilic interaction. Somewhat different is the situation as far as reactivity is
concerned, because nonrelativistic descriptions of chemical reactivity are somewhat
artificial and cannot be probed at all. If, for example, the thermochemistry of gold(I)
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compounds is already poorly described by nonrelativistic approaches, it is simply
inadequate to use these results for any conclusion with respect to reaction kinet-
ics. Likewise, the search for extreme relativistic effects should be taken with care.
Depending on the choice of the reference systems, we may in fact construct cases in
which relativistic effects are either extremely large or small, which are nothing other
than accumulations or cancellations of errors, however.

From an applied point of view, there is another, rather important aspect to consider.
Nowadays, there exist quite reliable theoretical methods to describe heavy elements
and their compounds within chemical accuracy as far as minima are concerned. The
appropriate inclusion of spin-orbit coupling in the quantum chemical description of
complete potential-energy surfaces is, however, usually limited to systems comprising
only a few atoms (Rakowitz et al. 2000, e.g. PtCH2

+). Unfortunately, this is partic-
ularly true for the description of transition structures as well as the crossing points
between surfaces of different spin multiplicities. The ability to handle reaction barri-
ers and crossing points in polyatomic systems is, however, of prime importance for
the understanding of the chemical reactivity of heavy transition metals—the thermo-
chemical properties of the minima are at best a prerequisite. Improvement of the
theoretical tools would inter alia require the development of gradients for geometry
optimizations while appropriately acknowledging spin-orbit coupling. In this respect
the performance of contemporary ab initio methods is still too limited to really predict
the chemical behaviour of heavy elements, which is good news for experimentalists
and constitutes an ongoing challenge to theory.
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above-threshold ionization, 6
actinide compounds, 157
adsorption on surfaces, 158
AIMP, 108

CG, 109
WB, 109

AMFI, 104
AMR, 202, 204
anisotropy ratios, 204
anomalous magnetoresistance, 202
ARCA, 225
aurophilicity, 255
Automatic Rapid Chemistry

Apparatus (ARCA), 225
auxiliary spinors, 132

Balian-Werthamer matrices, 171,172
band structure

antiferromagnetic FeO, 151
calculations, 164, 175

basis expansion, 66, 68
B-splines, 53, 68, 70
Cartesian Gaussians, 75
Gauss-type functions, 69, 75
Slater-type functions, 69, 74, 76
universal Gaussian basis sets, 70

Bloch spectral function, 181
Bloch theorem

generalized, 192
Bogoliubov-de Gennes equations,

169
Bohr magneton, 55
Bohr-Weisskopf, 57
Born-Oppenheimer approximation,

36,63

bound-state QED, 39
Breit

approximation, 53, 54
interaction, 64, 68, 69, 78, 81, 96,

128, 137, 168
Gaunt term, 64, 81
operator, 62, 65
retardation term, 64

matrix elements, 35
Breit-Pauli Hamiltonian, 93

CCRC, 115
CDFT, 166
central-field approximation, 67, 68
Chandrasekhar operator, 36
Chang-Pelissier-Durand

Hamiltonian, 93
charge conjugation, 125
chemical shift, 104, 122
chromatography, 219
CI, 65, 67, 74, 76

direct, 77
full, 69
large scale, 68, 69

clamped-nuclei approximation, 63,
64,67

classical electrodynamics, 10
closure approximation, 136
clusters

mercury, 119
CNRC, 115
coherent potential approximation,

179
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cohesive properties
5d metals, 146, 147
aluminium, 150

Colle-Salvetti functional, 139
component

large, 64,66
small, 64, 66, 79

continuum dissolution, 66, 69, 70
Cooper pair, 172, 174
core

choice of the, 116
polarization potentials, 106,115

core polarization potentials, 106,115
correlation

dynamical, 69
nondynamical, 69
potential, 141

correlation energy
atomic, 139
functional, 134,145

second order, 141
relativistic, second order, 139

correlation energy functional
relativistic, 138, 142

Coulomb gauge, 129
Coulomb states, 5
counterterms, 126,127
coupled-channel equations, 18
coupled-cluster, 65, 67, 69, 70, 76,

77,102
Cowan-Griffin, 108,109
CPA, 179
CPD, 93
CPP, 106
current density functional theory, 166
cusp

of relativistic wave function, 154

DBdG equations, 173
Degussa process, 252
density

magnetization, 130
scalar, 130

density functional theory, 123
relativistic, density-only form, 129
relativistic, four-current form, 127
relativistic,

magnetization-dependent form,
130, 131

relativistic, spin-dependent form,
131, 143

DFT-IGLO, 104
diamagnetic susceptibility, 198
Dirac equation, 61,62, 91

time-dependent, 2
Dirac Hamiltonian, 66
Dirac matrices, 91
Dirac sea, 17, 35
Dirac-Bogoliubov-de Gennes

equations, 173
Dirac-Coulomb, 113
Dirac-Coulomb-Breit, 113

Hamiltonian, 92,96
operator, 127

Dirac-Fock, 34
Dirac-Slater discrete-variational

method, 220
discrete variational method, 152
dispersion forces, 140
DKH,95
Douglas-Kroll transformation, 94
Douglas-Kroll-Hess, 110,113

method, 86
operator, 95

DS-DVM, 220, 232

ECP, 99, 106
large-core, 116
scalar relativistic, 118
small-core, 116

effective core potential, 81,99
effective core potentials, 106
effective Hamiltonian

valence-only, 107
effective-potential approximation, 51
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electrodynamics
classical, 10
quantum, 1

electron correlation, 4, 65
electron paramagnetic resonance, 122
electron-atom scattering, 70, 73
electron-positron

pair creation, 15
pair production, 27
virtual pair, 125

elimination of the small component,
92

energy
ponderomotive, 2, 4

energy gradient, 156
energy-momentum tensor, 33
equation of motion, 3
equivalence restriction, 67
ethene complexes, 251
exact exchange, 137, 149, 152
EXAFS, 207

magnetic, 208
exchange energy functional, 133, 144

relativistic, 142
exchange-correlation

relativistic energy functional, 132,
135

relativistic functionals, 98
relativistic potential, 133

existence theorem of RDFT, 126, 127
extended X-ray absorption fine

structure, 207

Fano effect, 211
Fermi contact interaction, 104
Fermi distribution, 50
Fermi surface, 35
Feynman diagrams, 29,42, 43,48
Feynman gauge, 128
finite-difference method, 6
finite-element method, 20, 78
finite-nucleus model, 69
Floquet states, 5

Foldy-Wouthuysen transformation,
93

FORA, 94
four-current, 126
free-photon propagator, 33
fullerenes, 155
Furry picture, 40

g tensors, 105
g-factor, 28, 60
gauge dependence, 127, 129
gauge invariance, 129

of exchange energy, 134
Gell-Mann-Low-Sucher formula, 41
generalized gradient approximation,

138, 139, 144, 146, 151
relativistic form, 144, 145

geometry optimization, 155
giant magnetoresistance, 206
GMR, 206
gold compounds, 248, 254
gold fluoride, 245
gold maximum, 90
gold-sulphur interaction, 256
Gordon decomposition, 130
ground-state energy

atomic, 137
ground-state energy functional, 132

four-current form, 126

Hall resistivities, 202
Hamilton-Jacobi equations, 11
Hamiltonian

Dirac-Coulomb, 127
in quantum field theory, 125

Hankel functions, 177
Hartree energy

covariant, 132
Hartree potential, 154
Hartree product, 64
helium dimer, 140
hexafluorobenzene, 249
high-harmonic generation, 5
highly charged ions, 28
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homogeneous electron gas
relativistic, 129, 142

hydrogen cyanide, 252
hypercoordination, 254
hyperfine splitting, 28, 32, 57
hyperfine structure, 28, 30,55,

57-60, 73

implicit density functionals, 136
interconfigurational energies, 151
ion chemistry, 245
ionization potential

atomic, 144
ions

highly charged, 28

jellium model, 103

kinematical effects, 89
kinetic balance, 66, 68,74, 75,79, 81

approximate, 70, 75
exact, 66
hierarchy, 66

KKR formalism, 180
spin-polarized relativistic, 178

KKR matrix, 178
KKR theory, 176
Knight shift, 197,200
Kohn-Sham

kinetic energy, 132
perturbation theory, 133, 138
response function, 136
single-particle energies, 133

Kohn-Sham equations
relativistic, 221
relativistic, density-only form,

134, 152
relativistic, four-current form, 133
relativistic,

magnetization-dependent form,
134

relativistic, spin-dependent form,
135

Kramers symmetry, 118

Krieger-Li-Iafrate approximation,
151
relativistic, 136, 138

L spinors, 67
Lamb shift, 28,57
lanthanide and actinide contraction,

84
laser fields

superintense, 4
laser-electron interaction, 10
LCGTO-DF, 102
LCGTO-FF, 98
LDOS, 188
LEED,211
lepton

pair production, 15
lepton-antilepton

pair production, 2
lifetimes, 71
ligand design, 256
limit

ultrarelativistic, 23
linear combination of atomic orbitals,

153
linear response, 1%
local density approximation, 138,

139, 142,151
relativistic, 142

local density of states, 188

magnetic circular dichroism, 213
in X-ray absorption, 207

magnetic circular X-ray dichroism,
207

magnetic dichroism, 211
magnetic solids, 163
magnetic susceptibility

diamagnetic, Landau, 198
diamagnetic, Langevin, 198
paramagnetic, Van Vleck, 198
static, 197

magnetism
molecular, 104
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magneto-optical Kerr effect, 206, 207
magnetocrystalline, 190
magnetocrystalline anisotropy, 168,

190
magnetoresistance

giant, 206
magnetoresistance anisotropy

spontaneous, 202
many-electron Hamiltonian, 64
MAPW method, 88
MASW, 193
MBPT, 70
MCD, 213
MCSCF, 65, 66, 68, 69, 77, 81
MCXD, 207
metal

clusters, 103, 119
complexes, 103

metallophilicity, 255
methane activation, 247, 253
MEXAFS, 208
mini-max principle, 66
model potential, 108
model potentials, 106

ab initio, 108
modified augmented spherical wave

method, 193
MOKE, 206, 207
molecular magnetism, 104
molecular structures, 245
molybdenum oxide, 247
MP, 106
MRD-CI, 100
multiple scattering theory

spin-polarized relativistic version,
176

multiple-scattering formalism, 175
muon

pair production, 27
M011er-Plesset perturbation theory,

69,77

negative continuum, 129
negative ions, 140

NMR, 86, 87, 104
parameters, 122
shielding constants, 104

no-pair approximation, 127-129,
132, 133, 139, 152

noncollinear spin structures, 191
noncollinearity, 131,135
nonlinear core corrections, 148
nonrelativistic limit, 80
nuclear magnetic resonance, 122
nuclear magneton, 55
nuclear-recoil corrections, 49
numerical integration, 160
numerical methods, 65, 66, 68, 69

one-atom-at-a-time chemistry, 219
one-electron function, 64, 67

radial function, 68
operators

time-dependent, 3
OPM, 185, 201
optimized potential method, 136,

141, 185,201
orbital polarization, 168,198
orbital-dependent functionals, 136,

139
orbitals

core-penetrating, 89

pair creation, 1-3, 15, 16, 18-27
lepton-antilepton, 15
muon, 27

pair production
muon, 27

palladium, 248
paramagnetic current, 130
paramagnetic susceptibility, 198
parity violation, 1, 85
partial-wave renormalization, 43
Pauli representation, 62
Pauli-Villars regularization, 43
phosphorescence, 85
photoionization, 73
photon propagator, 128
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platinum
aminocarbenes, 252
carbene, 247

ponderomotive energy, 2,4
ponderomotive potential, 15
ponderomotive scattering, 10–12
positronic states, 67–69
potential

core polarization, 106, 115
effective core, 106
model, 106, 108
pseudo-, 106

PP, 106
projection operators, 66, 68
propagator

free-photon, 33
pseudo-orbital, 148
pseudo-orbital transformation, 106
pseudopotential

for exact exchange, 150
screened, 149
for exact exchange, 149
norm-conserving, 147
shape consistent, 112

pseudopotentials, 106
energy-consistent, 113

pseudovalence orbital, 106
Pulay force, 156

QMC, 119
quantum electrodynamics, 1,65,68,

124
four-current operator, 125
Hamiltonian, 125

quantum Monte Carlo, 119,120

R-matrix method, 70,74
variational, 70

Racah parameters, 168
regular approximation, 94
relativistic density functional theory,

123

relativistic effect
direct, 90
indirect, 90

renonnalization, 37,49, 125, 126
repulsion correction

core-core, 115
core—nucleus, 115

scalar relativistic, 91,97
scattering

ponderomotive, 10–12
Thomson, 13

SCF equations, 65
SDFT, 165
self-energy, 31,42–45,47–49, 52, 57
self-energy corrections, 214
self-interaction correction, 169
shape anisotropy, 168
SIC, 169
simple Coulombic correction, 79
Slater determinant, 64
SMA, 202
SOMF, 98
spectroscopic parameters

heavy dimers, 155
noble-metal dimers, 102,146
transition-metal compounds, 150

spin density functional theory, 165
spin magnetization

induced, 197
spin polarization, 100
spin-orbit

splittings from QMC, 120
spin-orbit coupling, 89,122,147,

163
spin-orbit interaction, 100
spin-orbit mean-field, 98
spin-density functional theory

nonrelativistic, 135,148
spin-singlet superconductors, 174
spontaneous magnetoresistance

anisotropy, 202
SPR-KKR, 176
Stoner enhancement, 199
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Stoner enhancement factor, 197
Sturmians, 66
superconductors, 215

spin-singlet, 174
superheavy elements

111, 118
superintense laser fields, 4
supramolecular structures, 245

term values, 71
Thomson cross-section, 14
Thomson scattering

nonlinear, 13
time-dependent operators, 3
time-evolution operator, 3
transactinides, 219
transformed Hamiltonians, 91
transition metals, 246
transition probabilities, 71
transport properties, 202
transverse interaction, 128, 132, 134,

137, 142
TSR, see also two-state reactivity
two-state reactivity, 253

Uehling potential, 46
ultrarelativistic limit, 23
uniqueness

of density functionals, 126
universality, 126
unscreening, 148

uranium fluoride, 246

vacuum, 125
vacuum polarization, 31,45–49
van der Waals interaction

in QMC, 121
Van Vleck susceptibility, 198
variational equation

density-only form, 130
four-current form, 127
magnetization-dependent form,

131
virial theorem, 67
Volkov states, 5
Voronoicell, 153
vorticity, 167

water complexes, 250
weakly relativistic expansion, 149
Weizsacker-Williams approximation,

25
Wichmann-Kroll, 45
Wick's theorem, 41
Wood-Boring, 108, 109, 113

X-ray absorption near edge structure,
207

XANES, 207
xenon, 250

ZORA, 94
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