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PREFACE

Prysican chemistry is a difficult and diversified subject. The diffi-
culty can, of course, be overcome by a suitable intensity of application
and the diversity dealt with in some measure, by judicious specializa-
tion. This is very well as far as it goes, but leaves something to be
desired, because there is, it is to be hoped, still room for a liberal
occupation with wide studies, and this in a manner which goes beyond
the polite interest of the dilettante. In the light of a good long spell
of University teaching, however, I have the impression that this
aspect of the matter is in some danger of neglect. I thought, there-
fore, I would like to write a book of moderate compass which, in no
way competing with more formal works, should lay emphasis on the
structure and continuity of the whole subject and try to show the
relation of its various parts to one another. Certain themes or, one
might almost say, leitmotifs run through physical chemistry, and
these would be used to unify the composition.

The treatment would be neither historical, nor formally deductive,
but at each stage I would try to indicate the route by which an
inquiring mind might most simply and naturally proceed in its
attempt to understand that part of the nature of things included
in physical chemistry. This approach I have ventured to designate
humanistic. The proper study of mankind, no doubt, is man, but
one of the greatest activities of man is to find things out.

Apart from the question of seeing the subject as a whole, there is
that of seeing it with a sober judgement. It seems to me specially
important in modern physical chemistry to be clear and honest about
fundamentals. This is not so easy as it sounds. Some of the current
working notions are expressed in words which easily become invested
with a more literally descriptive character than they deserve, and
many young chemists—this is my impression at least—are led to
think they understand things which in fact they do not. Something
simple and direct seems to be conveyed by words such as ‘resonance’
and ‘activity’, which is not legitimately conveyed at all. By certain
descriptions, which it is easy to give, one is reminded of Alice: ‘Some-
how it seems to fill my head with ideas—only I don’t exactly know
what they are.’” Many of the mathematical equations which serve
important technical purposes in the modern forms of theoretical
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chemistry are of a highly abstract kind, but they have acquired a
dangerous seductiveness in that they clothe themselves rather readily
in metaphors. Occasionally it is salutary to regard this metaphorical
apparel with the eyes of the child who surveyed the emperor’s new
clothes. I have done my best here and there to help the uninitiated
reader keep in mind just what the content of theories amounts to.

On the other hand, T have not attempted any refined analysis of
conceptions such as probability, or statistical equilibrium, since these
are not difficult to have a working knowledge of, though purists could
subject to harassing criticism almost any treatment save a very
elaborate one. Excessively detailed analysis however, would have
obscured the general plan which I was anxious to try and depict.

Evidently, therefore, my undertaking, although on a fairly modest
scale, is a somewhat rash one involving various kinds of compromise,
but as the book does not claim in-the slightest degree to supersede or
replace other sources of information (upon which, of course, it almost
wholly depends itself) I hope the boldness is not quite unjustified.

Finally I should like to express indebtedness to various colleagues
who have helped me in many ways; to Dr. R. F. Barrow for also
reading through the proofs, and to the staff of the Clarendon Press
who have given much more help than any author has the right to
expect.

C.N.H.

OXFORD
January 1951
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PART I

THE WORLD AS A MOLECULAR CHAOS

SYNOPSIS

SomE of the ancient philosophers conceived the world to be made up of primor-
dial particles in random motion, but their theories were not very fruitful since
they lacked the necessary empirical basis. The formation of this was a long,
complex, and far from obvious process.

Quantitative relations between the masses, and in certain cases the volumes,
of substances which combine chemically establish the atomic theory as a
scientific doctrine, and rather subtle coherence arguments reveal the distine-
tion between atoms and molecules. Developments in physics lead to the
recognition of heat as the invisible motion of the molecules themselves, and
the kinetic picture of matter emerges.

Even in its first primitive version, this picture gives a satisfying representa-
tion of nature in many of its broad aspects. Molecules are envisaged as micro-
scopic masses following the laws which Newtonian mechanics prescribe for
macroscopic bodies. They are believed to be in chaotic motion and also to
exert forces upon one another at small distances. Their motions tend to scatter
them through all space: the forces to agglomerate them into condensed phases.
The conflict between these two tendencies governs the existence of material
systems in their various states, determines the range of stability of gases,
liquids, and solids, and regulates the extent to which various possible combina-
tions of atoms into molecules oceur.

Reasonable estimates can be made of the absolute sizes, masses, speeds,
and modes of motion of molecules, and coherent explanations can be given
of many of the physical properties of matter in its different forms.

At this level of interpretation nothing is yet postulated about the forces,
except that they manifest themselves in the measurable energy changes which
accompany almost every kind of physical and chemical transformation. It is
necessary, therefore, to describe the state of a chaotic system of particles
primarily in terms of its energy. Such & description is provided in statistical
theory.

In the world of molecular chaos various energy states are regarded as so
many boxes occupied by molecules at random, and everything tends to that
condition which may be realized in the largest number of ways. This idea
leads to the definition of entropy, a function which measures the probability
of a molecular assemblage, and to the laws of thermodynamics, which prescribe
the conditions of equilibrium and the direction of possible changes in all such
processes as expansion and contraction, melting and evaporation, and in
actual chemical transformations. These laws themselves are closely related
to empirical observations about heat-changes which can be used to provide an
independent basis for them.

Given only an empirical knowledge of the energy changes accompanying
atomic and molecular regroupings, the dynamical and statistical laws (or the
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2 SYNOPSIS

equivalent thermodynamical principles) predict the relations of solids, liquids,
and gases for single substances and for mixtures, and also the dependence of
chemical equilibrium upon concentration and temperature.

But the representation so made is limited in two ways. First, the forces
remain unknown. The energy changes are measurable by experiment, but
their nature remains unexplained. Secondly, the actual prescription of the
condition of molecular chaos proves on closer inspection to present certain
subtle problems which cannot be solved at this stage. If molecules are assigned
to states according to the laws of probability, then what constitutes a state ?
In the first instance, equal ranges of momentum can be satisfactorily regarded
as defining a series of states. But while this idea leads to valuable laws
regarding changes in entropy, and the dependence of all kinds of equilibrium
upon variables such as concentration and temperature, it leaves quite unsolved
the question. of the absolute position of chemical and physical equilibria.

Scientific explanations seek to describe the unknown in terms of the known.
The first attempt at such an explanation of the material forms and relations of
the world works in terms of particles which are themselves small-scale models
of grosser objects. It goes a long way, but reaches a boundary beyond which
it cannot pass.

I
ATOMS AND MOLECULES

Introductory observations

Apawm and Eve, tradition tells us, ate from a tree of knowledge and
though driven forth from Eden were the forebears of a progeny which
never lost their taste. Prometheus, we also hear, stole fire from
heaven, yet the fate he met has not deterred posterity from emula-
tion. These two old stories are the symbols of two deep desires: the
one to understand the essence of the world, the other to achieve the
power of dominating nature. It is not inappropriate that the alle-
gories are taken from diverse mythologies, expressing as they do
profoundly different attitudes of mind. To some men knowledge of
the universe has been an end possessing in itself a value that is
absolute: to others it has seemed a means to useful applications.
These two divergent views are never reconciled by argument, yet by
a strange entanglement the history of the sciences was made not
by the one or by the other school of thought but from the interplay
of both. The route to mastery has lain indeed through abstract
knowledge, yet the path to knowledge by the ways of contemplation
has seldom proved a practicable one. Direct solution of the problems
which the useful arts present is not infrequently attainable by



ATOMS AND MOLECULES 3

application of the principles already known and understood, but
theories and hypotheses of other than a vague and misty kind are
seldom based upon a panoramic survey of the general scene. They
rest more often on a detailed searching into matters which a casual
view might well dismiss as specialized, recondite, and obscure, and
access to the realm of fruitful theories is usually by devious and
unexpected ways, found out by men with very different ends in
view.

As it is handed down, the outcome of past probings into nature
presents a variegated and uneven picture, resembling in some ways
those interlocking growths of crystals which have sprung from many
centres. By the proper methods such tangles may be induced to
recrystallize into uniformly oriented systems, and from the character
of its origins any experimental science stands in need from time to
time of the treatment which this analogy suggests.

The matter goes deeper even than the metaphor implies. Science
is not the mere collection of facts, which are infinitely numerous and
mostly uninteresting, but the attempt by the human mind to order
these facts into satisfying patterns. Now a pattern or design is not
a purely objective function but something imposed by the mind on
what is presented to it, as is seen in those pictures of piled cubes
which can be made at will to appear in advancing or receding order.
The imposition of design on nature is in fact an act of artistic
creation on the part of the man of science, though it is subject to
a discipline more exacting than that of poetry or painting. Two
painters may depict quite differently a given scene, though the can-
vasses of both may present essential truth. Science has greater
objectivity than painting, but the formulation of its laws cannot be
rendered wholly independent of the individual mind. The limitation
is the greater since knowledge is never absolute and its expression
rarely perfect. Much of the content of a growing science is subsumed
in working hypotheses, constructions which in the last analysis are
not impersonal.

Upon the heterogeneity imparted to science by its multiple and
fortuitous origins is thus superimposed another resembling that of
a picture whose various parts are painted by artists of different
schools. Judgements may often differ as to which of two conceptions
is the more fundamental, so that related theories may sometimes
start from very varying premisses. The unaesthetic element of
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variegation can never be wholly removed, but from time to time
greater harmony can be introduced by rearrangement. To resort
once more to metaphor: in a time of great expansion a museum
might £ill its galleries with the most disparate works of art, revealing
to the scholar, stimulating to the craftsman, and to the man of taste
a little disconcerting. But at intervals the acquisitions are regrouped
according to a principle—in which the critics may not acquiesce—
but which at least is consciously decided. In science, too, this re-
arrangement must from time to time be undertaken, and on the
writer who describes a field of any breadth there falls the task of
making what is practically an artistic judgement.

These more or less philosophical observations would a generation
ago have seemed out of place as an introduction to an account of
the field which we call physical chemistry. Today, however, they
are relevant and serve to suggest what may be expected from the
survey and what may not. To realize that the content of the subject
is a geries of accounts of how human minds have tried to represent
their probings into nature, by diminishing unjustified expectation,
increases admiration for what in fact has been achieved. What might
appear as oddnesses, inconsistencies, and arbitrary assumptions fall
into their perspective and no longer disconcert. The best under-
standing of the subject is attainable, to return to the metaphor
already used, by proceeding from room to room of the gallery and
studying the works of various schools with a due realization that
values must be adjusted in transit.

It is in this spirit that we shall examine the scope and achieve-
ments of physical chemistry, and see what views about the nature
of things it reflects. We shall attempt to show the subject in a con-
tinuous development which reveals its structure and displays the
relation of its parts. We shall therefore not pay much attention to
the accidents of history, but we shall be very much concerned with
the methods by which an inquiring mind can penetrate the secrets
of nature. In this sense the treatment may reasonably be called
humanistiec.

We shall find it necessary to keep before us what is meant by a
scientific explanation: it is in effect the representation of the un-
known in terms of the known, but we shall find that the idiom in
which the representation is expressible has to suffer some remarkable
transformations as we proceed. In the early stages, to employ yet
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again the metaphor of the picture gallery, we spend some profitable
time in a school of primitives: presently we find that more abstract
schools command our attention.

Atoms and molecules

Chemistry rests largely upon the theory of atoms and molecules.
The idea of an atomic constitution of things was arrived at by the
ancients, though the basis of their speculations differed considerably
from that of modern chemistry. They thought that there must be
a limit to the divisibility of matter, that living creatures must be
reproduced from ultimate primordial bodies of the appropriate kind,
that various natural phenomena such as the penetration of heat and
cold depend upon the hidden motions of tiny particles, and so on.
It is hardly conceivable that chemistry as we know it could have
arisen directly in this way.

The theory, however, that the sensible qualities of objects could
be interpreted in terms of the motion of minute particles of specific
kinds was a very great achievement, and itself must have depended
upon a long evolution of ideas. We need not enter into this history,
but it is important to realize that it must have existed. To distin-
guish between the material substratum and the qualities for which
it is responsible required enlightenment and profound thinking. As
far as chemistry is concerned, the process cannot be said really to
have been completed until the phlogiston theory disappeared.

The fundamental ideas of matter and motion only acquired their
dominance after long processes of trial and error had shown how
more and more could be described in terms of them. One accustomed
to the ways of thought of science may now find it difficult to realize
the elaboration of the analysis by which, for instance, colour came
no longer to be regarded as something which a substance contains
rather as a fabric contains a dye. Our notions about the scientifically
describable substratum of the world are now so familiar that there
is some danger of forgetting to what extent it is based upon a work-
ing hypothesis, and one which possesses natural limitations.

The basis of chemistry as it grew up in the nineteenth century is
Dalton’s atomic theory. In this the intuitive idea of ultimate particles
is applied to explain definite quantitative laws of chemical composi-
tion, those, namely, of constant, multiple, and reciprocal proportions.
These rules could only have emerged after a long empirical study
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of diverse and often obscure chemical substances, since many of the
things most obviously attracting the attention of the contemplative
philosopher—wood, rocks, plants, and the like—would have yielded
singularly unfruitful evidence for an atomic theory in its infancy.
When, however, the labours of many generations of alchemists, arti-
ficers, and craftsmen had provided the necessary facts, when the
technique of weighing had been refined and the practice of quantita-
tive measurement had become established, and when the various apt
conjunctions of experiment and speculation had at length occurred,
there crystallized out the notion that certain specific substances—
and not principles such as fire—constituted the chemical elements,
and that their union according to quantitative laws gave rise to all
the other substances.

The same elements combine in constant and fixed proportions.
This suggests that the union of macroscopic quantities is simply an
n-fold repetition of the union of indivisible microscopic units of
characteristic mass. Other mathematical descriptions of the pheno-
menon could doubtless be devised, but they could hardly possess the
vividness of the atomic conception, which is further strengthened by
the facts about multiple and reciprocal proportions. Two elements,
which we may call 4 and B, not infrequently form several compounds
with one another, and in these the masses of B which have combined
with unit mass of A stand in the ratio of simple integers. This is the
law of multiple proportions. To each element, further, there may be
assigned an equivalent weight, such that it defines the relation of
that element not to one other but to every other. The proportions
in which any two elements unite are in the ratio of their equivalent
weights or in one which is a simple integral multiple of it. This is
the law of reciprocal proportions. By extending the idea of units to
give a coherent set of relationships between all the elements it gives
to the atomic theory a still higher status. Some kind of quantitative
metric which would satisfy a mathematical physicist could conceiv-
ably be devised to embrace the combination of single pairs of elements,
but that any other system as simple as that of Dalton could be found
to describe the possible relations of every element to every other is
unlikely.

A great advance became possible when the technique of making
measurements with gaseous substances was introduced. Gay Lus-
sac’s famous rule states that when chemical combination occurs
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between gases the volumes of those consumed and of those produced,
measured under standard conditions of temperature and pressure,
stand in a simple numerical ratio. Since what applies to the masses
according to the atomie theory itself now proves to apply to the gas
volumes, the conclusion follows that equal volumes of substances in
the gaseous state under the standard conditions actually contain, to
within a small numerical multiple, equal numbers of the primordial
combining units. After various trials and some groping in the dark
it proved further that a coherent system requires the hypothesis of
Awogadro, namely that the numerical multiple in question is unity,
but that the primordial particles existing in the free state are mole-
cules which may consist of more than one atom. For many common
elements the number of atoms in the molecule was discovered to be
two. According to the hypothesis equal volumes of gaseous com-
pounds at equal temperature and pressure possess masses propor-
tional to those of their constituent molecules, a principle of the
greatest help in the establishment of chemical formulae and in the
‘assignment of atomic weights to the elements.

The detailed arguments by which the individual atomic weights,
after a long process of trial and error, were established need not be
enlarged on here, but the principles of the method must be sum-
marized. As many compounds as possible were analysed and the
proportions of their elements determined. To a chosen element was
arbitrarily given a conventional atomic weight (originally unity to
hydrogen, later changed for practical convenience). As many mole-
cular weights as possible were determined from the gaseous densities,
and the least weight of a given element which ever appeared in the
molecule of any compound came to be accepted as its atomic weight.

The system which was gradually built up, like the hypothesis of
Avogadro upon which it was largely based, rested upon arguments
of coherence, and could have involved errors of simple numerical
multiples—for some time indeed carbon was given the atomic weight
six. But the discovery of the periodic system of the elements, and
the realization that Avogadro’s hypothesis fitted in very well with
the kinetic theory of gases, presently showed that the probability of
error could be disregarded.

The numerical relations of Gay Lussac’s law are only approximate
and Avogadro’s hypothesis is correspondingly inexact. For this fact
the kinetic theory provides a ready explanation. It is, however, only
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intelligible in terms of developments which would probably never
have occurred had the inexactitude not been in the first instance
neglected. In science, as in everything else, there is need for courage
to act upon the conviction that more significance may reside in an
approximation to the truth than in the deviations which it for the
moment disregards.

Before passing to consider the alliance of chemistry with physics
we shall try to focus once more the way in which pure chemistry
itself emerges from the complex whole which nature presents to
contemplation. First, this complex is analysed in various tentative
ways until substances are found to be enumerable separately from
qualities, and we realize, for example, that when we say mercury
oxide contains mercury, oxygen, and redness, the first two are
differently significant from the third. Substances commonly existing
in the world are found not infrequently to be separable into parts by
simple means such as distillation. Some which resist this process of
fractionation are classified as pure substances. But these sometimes
change when brought together, and seem to disappear giving rise to
others, often with evolution of heat or light. Such drastic changes
can be reversed by various roundabout ways, and the original partici-
pants in what is termed the chemical reaction can be regenerated.
Most substances can be split up into others or made by the union of
others, but some are incapable of further resolution or of synthesis
and become recognized as the chemical elements. Gradually the list
of them is filled, and presently coherent relations between the pro-
perties of the individuals emerge. The structure of the periodic
system is revealed and interlopers can be detected and ejected.

In chemical reactions, however spectacular, mass is found to be
conserved within the limits of the sensitivity of chemical balances,
and this is as it should be if the transformations are mere regroupings
of the units of a material substratum. The atoms of ancient specula-
tion fill the roles required. The quantitative laws of chemical com-
bination then follow and permit the development of chemistry in the
form in which it is known today.

It is hard to see how the evolution could have been other than
long and painful, since the commonest objects are among the most
unsuitable for elementary chemical investigation, and the major task
for chemistry in one sense was the discovery of its own tools. Only
by a fortunate disposition of providence has the story not been made
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more tangled still, since mass is not really conserved and the elements
are only relatively unchanging. But the phenomena of nuclear
physics are on such a scale that in chemical reactions they may be
neglected, not only in a first but in much higher approximations.

Matter and motion

Chemistry concerns itself with the material substratum of the
world. It was once said that the only thing you can do with matter
is to move it, and though this statement would probably not sustain
detailed analysis in the light of modern physics, it expresses an
essential truth with a high degree of approximation. The least that
can be said is that it brings into clear relief the need for a kinetic
theory of molecules. The atoms of the ancient philosophers were in
lively motion, and Lucretius tries to explain in detail how chaotic
displacements of minute particles below the threshold of visibility
can give the semblance of rest. Facts of common observation, such
as diffusion, evaporation, and the like, are readily interpretable by
a rudimentary kinetic theory which, however, only attains to the
rank of a serious scientific hypothesis when the Newtonian laws are
applied to the molecules conceived by chemistry. The laws of motion
themselves are based upon the observation of massive bodies, and
their application to the invisible, and indeed in the first instance
hypothetical, particles of Dalton and Avogadro rests upon an as-
sumption. On the face of it and in the absence of evidence to the
contrary there is more reason for making this assumption than for
not making it, and the taking of the risk proves to be abundantly
justified. But there must be no surprise or concern when the utility
of the picture so created turns out to have its limits.

One of the simplest routes to the understanding of the question is,
as it happens, that which was followed historically. Observation of
common phenomena such as the winds suggests the reasonableness
of assuming a material substratum even for the tenuous and invisible
parts of nature like the air. The next step consists in making experi-
ments by confining gases in tubes, observing their ‘spring’, and
measuring their pressures in terms of the heights of mercury columns
which the spring supports. Boyle’s law emerges in the well-known

form pv = constant,

where p is the pressure exerted by a volume » of a gas at a constant
temperature.
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That the spring or pressure increases as the gas is compressed
vividly suggests the picture of a crowd of flying particles seeking to
escape and causing pressure on the surface of the containing vessel
by their impacts. This idea leads immediately to the first quantita-
tive result.

Gas pressure

Let there be » molecules of a gas in unit volume of an enclosure,
and let their motion be random both in direction and in the magni-
tude of the speeds. Consider those which approach unit area of the
surface at an angle of incidence within df of a given value 6 and
which possess velocities within du of a value . When they impinge
upon the surface they may be supposed to suffer an elastic reflec-
tion, the normal component of the momentum of each being changed
from mucosf to —mucosd. The change for each molecule is thus
2mucos§. The number of particles which suffer reflection in each
second is proportional to » and to u, so that the rate of change of
momentum for the type of particle defined is anmu?, where « is a
numerical multiplier independent of %, m, and u. Averaged over all
possible directions of approach and over all permissible velocities,
the result becomes o'nmu?, where @2 is the average value of 42 and
o« is still a numerical multiplier. By Newton'’s second law the surface
will be urged outward with the force necessary to maintain this rate
of change of momentum, and the force on unit area constitutes the
Ppressure, p.

Thus p = o'nma.

A very elementary argument shows that o is roughly 4. If the
speeds are fairly closely grouped about the average value all may
be taken approximately as %. Let all velocities be normal to one
or other surface. Then in any given direction the number of mole-
cules approaching unit area of the surface and reaching it in unit
time is not far from one-sixth of those contained in a prism of unit
base and height 4. Thus

= ni X 2ma = nma?.
The more precise evaluation of the multiplier does not in fact make
much difference, and for most purposes we shall accept the result
p = Inmau?.

It must be emphasized that the parts of the above argument which
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are stated without proof or sketched in only roughly relate to the
value of the numerical multiplier only and not to the proportionality
of p and mu2.

When a gas is expanded or compressed, n, and consequently p,
varies inversely as the volume. This is Boyle’s law. No real gases
follow it exactly at higher pressures, but many do with a good degree
of approximation, and all do at very low pressures.

Temperature

If a gas becomes hotter, the pressure which it exerts increases.
In the first instance hotness is gauged simply by sensation. Since p
is proportional to mu?, that is to the mean kinetic energy of the
molecules, the hotness appears to be a function of the invisible trans-
lational motion. So rational does this interpretation of the origin of
the sensation seem that it becomes expedient to introduce a scale
of hotness and to define the degree of hotness, or temperature, as
proportional to the pressure which a gas having that degree would
exert, For a standard scale the gas must obey Boyle’s law. This
so-called perfect gas scale is simple theoretically and convenient
practically, since the deviations of actual gases from the law are
easily corrected for by extrapolation to low pressures.

To define the temperature of a gas we consider one gram molecule
of it and write T — pV/R,

or pV = RT,

where R is a proportionality factor defined by the arbitrary condi-
tion that at 760 mm. pressure there shall be 100 degrees of tempera-
ture between the freezing-point and the boiling-point of water. What
we mean by the temperature of the water, or of any non-gaseous
substance, is simply the temperature which a gas would assume if
left in econtact with it for a long enough time. The idea of thermal
equilibrium will require further discussion at a slightly later stage.
In terms of the primary definition of temperature which we have
for the time being adopted, Charles’s law, which states that gas
pressure is proportional to the absolute temperature, would be a
tautologous statement. It is not necessarily so, and was not so in
its historical setting, since other scales of temperature, notably that
based upon the expansion of a mercury column by heat, are possible.
The mercury thermometer and the gas thermometer provide scales
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which in fact correspond rather closely, and it is the former which
has been used in practice more than the latter. The approach to the
theoretical aspect of temperature which is now being followed thus
departs in an important way from the line of historical development.

The statements contained in the equations p = inma?and pV = BT
constitute the simplest possible illustrations of the thesis, established
in the course of the nineteenth century, that heat in general is a mode
of motion. Since, as in the experiment where Joule warmed up water
by the churning action transmitted from falling weights, mechanical
energy of a mass is quantitatively convertible into heat, and since
all attempts to account for such phenomena in terms of a special
kind of caloric fluid prove to be sterile, the identification of heat with
the invisible chaotic motion of the molecules is compelling. Mechanical
energy becomes apparent when the motions of the invisible parts are
8o coordinated as to give rise to perceptible motion of the group: it
is transformed into heat when the coordination is destroyed and the
motion is no longer discernible by any of the senses save that which
permits the appreciation of warmth. From the point of view of the
individual molecule, nothing has occurred when mechanical energy
has become heat, and the quantitative equivalence of heat and energy
is simply a special example of the conservation of energy. This
equivalence is asserted as an empirical principle in the First Law of
Thermodynamics.

Chemistry gives reason to suppose that molecules, being groups
of atoms, should possess shapes, and therefore be capable of rotations.
Since, moreover, the union of atoms implies some kind of force to
hold them together, there is the further possibility of internal vibra-
tional motions. The existence of liquids and solids, as well as the
departure of real gases from Boyle’s law, shows that there are forces
between molecules themselves, so that there must be potential energy
stored up in any collection of them.

We may therefore expect that if we can find appropriate conditions
in which to make the comparison, the total energy contents of gram-
molecular quantities of various substances should differ greatly ac-
cording to the specific shapes and structures of the molecules. The
possibility of a valid comparison depends upon the principle of
thermal equilibrium.

Suppose a portion of substance to be placed in contact with a gas
thermometer, or with a mercury thermometer calibrated in terms of
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one. The reading of the thermometer changes at first and then settles
down to a steady value, say, 7}, which is taken as the common
temperature of itself and of the substance with which it is now in
thermal equilibrium. Suppose now that equal masses of two different
substances at temperatures 7 and 7} respectively are placed in con-
tact. 7} and 7}, both alter until a common steady value 7} is attained.
T, is not in general the mean of 7} and 7,. It may, however, be
calculated, as elementary physics teaches, by the aid of the assump-
tion that something called heat flows from one body to the other
until a common temperature is reached, and that the quantity of
heat required to raise a unit mass by one degree varies from sub-
stance to substance, each one possessing its own characteristic specific
heat.

The interpretation which the molecular hypothesis gives of thermal
equilibrium and of what constitutes equality of temperature between
two bodies with different specific heats is one of the most important
chapters of physical chemistry.

Let us begin by supposing that two gases, each of which obeys
Boyle’s law sufficiently well, are mixed. Initially their respective
temperatures are 7) and 7. Their molecules interchange energy by
collision, and the transfers in any given encounter may be in either
direction, but on the average they will oceur predominantly from the
gas initially at the higher temperature to that at the lower. When
the common temperature, T, is reached the interchanges still con-
tinue, but now they take place equally in both directions. What is
called a statistical equilibrium is set up. In this state, for one gram
molecule of each gas at a common temperature, pressure, and volume,

1 -y 1 -9
3N My Uy = 3Ny Mg Us.

If, from the purely chemical evidence to which reference has already
been made, we are prepared to believe Avogadro’s hypothesis, we
assume that n, = n, and infer that

72 — 72
My U2 = My 3.

The condition of thermal equilibrium is thus seen to be that the mean
translational kinetic energy should be the same for each gas.

This latter result is derivable, as it happens, quite independently
of Avogadro’s principle and in a form which gives it even greater
generality and importance.
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The equipartition principle

The establishment of statistical equilibrium is not confined to
translational energy. When two substances are in contact or mixed,
whether they are gaseous, liquid, or solid, a state must be reached
where the gains and losses of each kind of energy, translational,
rotational, and vibrational, by the molecules of the two kinds balance.
Such a condition corresponds to equality of temperature, and in-
volves a quite definite relation between the different types of energy
in the various kinds of molecule,

In a mixture of gases at a uniform temperature the average trans-
lational energies of the various kinds of molecule are the same. If
some of the molecules present are of more complex structure than
others, they will have more possibilities of motion, and the share of
the total energy which they take might well be expected to be
greater. A detailed 1nvest1gat10n which will be given later, shows
in fact that the sharing out is governed by a law known as that of
the equipartition of energy. The nature of this law is as follows.

Translational, rotational, and vibrational energies may be ex-
pressed in terms of vectorial quantities. Translational and rotational
velocities may be represented by vectors, that is by lines with definite
lengths and directions, which may be resolved into components along
three spatial axes of coordinates. Similarly a vibration has an axis
and an amplitude, and it is resolvable. Each component of each type
of motion is called a degree of freedom. To a reasonable degree of
approximation the energy may be expressed as a sum of terms in
each of which a characteristic molecular constant multiplies the
square of a suitable coordinate. Thus kinetic energy of translation
is Im(i24-9y2-+2?) where &, ¢, and 2 are the components of velocity
along the three axes z, y, and 2. Rotational energy may be expressed
as a sum of terms of the type 1Jw?, where [ is the moment of inertia
about the axis of rotation and « is the angular velocity. When the
vibrational motion is simple harmonic, which it may often be assumed
to be, there is a term for the kinetic energy, 4m#?, and also a term
for the potential energy, iux? where x is the displacement of the
particle from its equilibrium position and p is a constant. In so far
as the total energy can be represented correctly by a sum of such
square terms, the equipartition principle states that the average value
of each for all types of molecule becomes the same when thermal
equilibrium is attained.
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The representation of the energy in this way is not really exact:
nor are the different kinds of energy in the molecule strictly inde-
pendent of one another. Thus, for example, as the amplitude of
vibration increases the moment of inertia changes, so that the rota-
tional energy is affected. While this complication limits the exactness
of the equipartition principle (which is subject to even more im-
portant restrictions, as will appear Jater), it in no way affects the
validity of the general conception of a definite functional relation
defining the energy distribution in statistical equilibrium. It is the
existence of such a relation which gives significance to the ideas of
temperature and of heat flow.

The mathematical treatment of equipartition and the general
consideration of energy distributions will presently occupy our atten-
tion a good deal. For the moment we shall turn to the way in which
the simplest form of the principle has helped to deepen our knowledge
about the existence of molecules.

Molecular reality and the determination of Avogadro’s number

Considerations of the kind which have been so far advanced lay
the foundations of a kinetic theory of molecules, which seeks to
interpret physical and chemical phenomena in terms of particles and
their motions. The conceptions of the ancient philosophers have
gained in precision, and the way seems clear for further fruitful in-
vestigations. But the atoms and molecules remain, as far as any
arguments so far considered go, inferential. They are creations of
the mind, inaccessible to the ordinary senses. There was indeed a
school of thought about the end of the last century which regarded
them as fictions, deplored their excessive use in the theories of
physical chemistry, and sought for the description of phenomena in
terms of energy and of matter to which no minute structure was
attributed. This plea, even in its day, was an extravagance, and it
has since been put out of court by the detailed study of such pheno-
mena as the emission of countable particles from radio-active sub-
stances and by the application of the techniques of X-ray and
electron diffraction to reveal discrete structure in matter. The most
direct way in which the challenge can be met is by the analysis of what
is called the Brownian motion. This phenomenon provides a means,
exploited by Perrin and others, of bridging the vast gulf between
the invisible motions of molecules and the visible displacements
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of macroscopic bodies, of making molecular happenings sensible,
and of determining the absolute masses of molecules. It consists
simply in this: that certain minute particles still large enough to
be directly discernible by the light which they scatter into a micro-
scope are observed to be in rapid random movement.

According to the equipartition principle, the average translational
energy of an oxygen molecule at a given temperature is the same as
that of a molecule of hydrogen, benzene, or any other substance.
No matter how many internal degrees of freedom there are, they do
not affect the issue. In the derivation of the principle itself nothing
is said about a limit to the size, mass, or complexity of the particle.
Thus even a macroscopic lump of lead in thermal equilibrium with
the ordinary air is buffeted on all sides by molecules of oxygen and
of nitrogen, and acquires translational motion, now in one direction
and now in another, such that the time-average of its energy of
translation is the same as that for the gas molecules. Its mass being
millions of times greater than theirs, its speed is of course imper-
ceptibly small and its displacements quite below the threshold of
detection. The question, now, is whether the smallest particles which
are still accessible to direct observation may acquire a mean transla-
tional energy large enough for their motion also to be perceptible
and measurable.

Fortunately this is so, as the existence of the Brownian motion
shows. The particles in certain colloidal suspensions fulfil the re-
quired conditions. Observation with the ultra-microscope leaves no
doubt about their particulate character, and they are seen to be in
a state of random motion, darting hither and thither in a manner
which gives a vivid impression of irregular impacts first from one
side and then from another. These impacts must come from other
particles which are themselves invisible, so that the Brownian motion
(once the technical difficulty of showing that it is not due to con-
vection currents is overcome) is justly claimed to provide evidence
of molecular reality.

The mean kinetic energy of translation of a colloidal particle exe-
cuting this kind of motion may be written ;M U? and is equal to
that of any gas molecule, that is to imu2. Now for the latter

p= la_nmd2,
and if V is the molecular volume,
pV = mVmu? = RT.
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nV is the total number of molecules in a gram molecule (Avogrado’s
number), §. Thus }Nma2 = RT.

Any means of determining 1M U2 gives at the same time the value
of }ma? which is equal to it. Since R7T is known, N becomes determin-
able, and thus the individual mass of any kind of molecule may be
discovered.

It remains, therefore, to seek such a method of finding the kinetic
energy of a particle accessible to observation in the ultra-microscope
while it is executing the Brownian motion. There are several such
methods. The simplest depends upon a study of the sedimentation
equilibrium. Particles heavier than the solution in which they are
suspended would if at rest sink to the bottom. Their motion, how-
ever, keeps them suspended, though more thickly in the lower layers
of the medium than in the higher ones. This sedimentation equi-
librium is analogous to the equilibrium of the Earth’s atmosphere
under gravity and may be similarly treated.

Consider a column of unit cross-section in which small particles
are suspended in a medium of some kind. Suppose that the concen-
tration of particles at height % is n and at height hA-tdh is n4-dn.
In between two horizontal planes at these respective heights there
are n dh particles and these are urged downwards with a gravitational
force wn dh, where w is the effective weight of each. (w is in fact
g X volume of particle x difference in density of particle and medium.)
This force produces a downward momentum of wn dh units in each
second. When the suspension is in equilibrium the communication
of downward momentum must be balanced in accordance with New-
ton’s second law. Now the motion of the particles renders them
capable of communicating momentum and thereby of exercising
what is dynamically analogous to a gas pressure. Its valueis inM U?,
as in the equation derived on p. 16. Thus dp = }MU2dn. —dp
must balance wn dh, and therefore

wndh = —31MU2dn,

d_n _ wdh
n iMOU?
N —éMUf

5298 C
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where % is the concentration at height 2 and », that at height %,
w(h—ho)

n = noe_ 1MU?

The scale of the phenomenon is very small and the concentration
falls off rapidly as the height increases. It so happens that with
suitable colloidal suspensions, by the focusing of a microscope at
different depths, (h—h,) being measured by a micrometer arrange-
ment, counts of the particles (observed by scattered light according
to the principle of the ultra-microscope) can be be made, and numbers
proportional to n and n, conveniently obtained.

The particles being accessible to direct observation by counting
and by coagulation, filtration, and weighing, w can be found. The
only unknown is M U2 which is thus calculable.

Avogadro’s number, N, is RT/3MU?, and the absolute mass of
a molecule is the gram-molecular weight divided by N. The value
of N is 6x 10% (the best measurements being in fact made by a quite
different method).

Another method of finding the kinetic energy of the particles in
Brownian motion depends upon the observation of their mean dis-
placements: this need not be described, as from the present point of
view it introduces no important new principle.

That, in the manner which has just been indicated, a limit to the
fine-grained character of matter is determinable by the observation
of visible phenomena directly and qualitatively explicable by the
molecular hypothesis provides a strong argument for the reality of
the entities with which this hypothesis deals.

Some other molecular magnitudes
The speeds of molecules are calculable very simply from the
formula for the gas pressure. Since p = inmu?, it follows that

% = (3p/nm)i.
But nm = p, the density, so that
@ = (3p/p)}.
If p is expressed in dynes/em.2 and p in gram/c.c., then 4 is given
in cm./sec. It comes out to be of the order of magnitude of a kilo-
metre a second for simple molecules, and varies inversely as the

square root of the molecular weight.
With the reasonable presumption that molecules have a real
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existence and ascertainable mass and translational energy, the next
step is clearly to seek some means of obtaining information about
their size. What precisely is meant by the size of a molecule raises
some quite profound questions, the consideration of which, how-
ever, is better deferred until the nature of the possible experimental
approaches has been surveyed. For a first attempt, a molecule may
be envisaged as a small solid elastic sphere obeying the rules of
Newtonian mechanies.

With a large number of mass particles in rapid motion the most
obvious effect of their finite dimensions will be to cause collisions
which interfere with their motion. Instead of pursuing an unbroken
trajectory each particle will suffer abrupt changes of direction at each
encounter, and will describe a zigzag path. The average length of
an uninterrupted straight portion of this zigzag is called the mean
free path (I). A smaller mean free path implies a greater interference
of the particles with one another. Thus to find an experimental
approach one must turn to a phenomenon which seems to depend
upon the mutual obstruction of the moving molecules,

Such a phenomenon is that of viscosity, and the study of this
property in gases does in fact provide clear-cut results, though not
perhaps in quite the way which might have been expected. The
bodily jostling of the molecules, which is more pronounced the
bulkier they are, plays the major part in determining the viscosity
of liquids, but the treatment of this effect proves to be rather compli-
cated. The viscosity of gases depends not upon a crowding tendency
but upon a transfer of momentum by molecules as they move from
one volume element to another, and the collisions determine it in so
far as they regulate the sort of momentum which is available for
transfer. The matter may be rendered clearer by a simple caleulation.

Suppose that a stream of gas moves in the direction of the 2-axis
and that there is a velocity gradient dv/dz in the direction z per-
pendicular to that of the flow. Consider a reference plane of unit
area parallel to the flow and thus perpendicular to the velocity
gradient. Let the velocity of the stream in this plane be ». In so
far as the gas is treated as a continuous fluid one may say that
between the faster moving and the slower moving layers there is a
frictional force tending to slow down the former and to accelerate
the latter until the velocity gradient is destroyed. To maintain this
gradient an external force must be applied, and it is the magnitude
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of this force which measures the viscosity of the medium. The
coefficient of viscosity is defined by the simple hydrodynamic re-
lation:

force per unit area of reference plane = ndv/dz,
where 7 is the coefficient.

In the kinetic interpretation of this effect a distinction is drawn
between the streaming velocity, v, the direction of which is common
to all the molecules in a given volume element, and the thermal
velocity 4, the direction of which for the various molecules is com-
pletely random. Molecules move across the reference plane from the
faster to the slower layers and equally well in the reverse direction.
There is thus a net transport of streaming momentum of a kind
which would destroy the velocity gradient unless a force equal to the
rate of transport across the reference plane were continuously applied.

The mass of gas moving in one direction perpendicular to unit area
of the reference plane in one second is %p%, by an argument exactly
analogous to that used in the derivation of the expression for the
gas pressure (p. 10). The streaming momentum carried through the
plane in this direction in one second is }péiv,, where v, is the average
value of the streaming velocity for those molecules passing across in
virtue of their thermal motion. Now it is the value of », which is
determined by the mean free path. This latter represents the distance
from the reference plane at which the molecules are last brought into
mechanical equilibrium with the stream by mutual collisions. Thus
v, will be (v+1dv/dz). Similarly momentum is carried in the reverse
direction and is equal to }p@ multiplied by (v—Idv/dz). The excess
of that taken in one direction over that taken in the other is thus

$pt(v+1dvldz)—}pia(v—1dv/dz) = %ptl dv/dz.
This represents the viscous force, so that
Ypuldv/dz = ndv/dz,
or n = }pal.
A simple and obvious modification of the above argument yields
an expression for the thermal conductivity of a gas

K = }pilo,,

where ¢, is the specific heat at constant volume.
According to the above formula, the viscosity of a gas increases
with the mean free path. This result may seem a little paradoxical
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at first sight. The interpretation, however, is that the streaming
momentum can be transferred from farther up or down the velocity
gradient the remoter from the reference plane is the place at which
the molecules last come into equilibrium with the general current.
The viscosity does, however, depend upon mutual collisions directly,
since without them there would be no hydrodynamic equilibrium
at all.

The two equations just derived predict certain quite characteristic,
and indeed slightly surprising, phenomena, the experimental verifica-
tion of which affords good evidence for the essential correctness of
the underlying ideas. Thus the viscosity of a gas is independent of
the pressure, since p and ! vary in a compensating way: it increases
with rise in temperature, the momentum transfer becoming more
lively: and the ratio of viscosity to thermal conductivity is constant
and calculable from the specific heat. These results could hardly be
explained in any other simple way.

The viscosity coefficient of gases may be determined from measure-
ments of the rate of flow through a capillary tube of known radius
under a given pressure difference, and from the result the mean
free path, I, may be calculated. For simple gases at atmospheric
pressure it is of the order 10-3 em. It varies inversely as the pres-
sure, and long before the highest vacuum given by a modern pump is
reached it exceeds the dimensions of ordinary small-scale laboratory
apparatus.

From the mean free path the size of molecules may be inferred.
4/l gives the number of times in a second that the trajectory of a
particular molecule has been interrupted and thus measures the
number of collisions which it has suffered in unit time. Thus we

have Z, = all.

The number of collisions is fairly simply related to the size. Let
the diameter of a molecule be o, which may be regarded as an effec-
tive value only, since we are not assuming much about the nature
of a collision. With this convention two molecules may be regarded
ag entering into collision whenever their centres approach to within
a distance o of one another.

Let all the molecules in the system save one be imagined frozen
into immobility and this selected one be thought to move about
among the others with an effective velocity which we will denote
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by . ris evidently proportional to % and may be written «#%, where
« is & numerical factor. If in reality all the molecules possessed the
same speed, the directions alone being random, » would be the average
value of the relative velocity of two molecules, the average being
taken over all possible angles in space between the two directions.
«, as a simple geometrical calculation shows, would then have the
value 4/3. Correction, however, has also to be made for the fact that
the velocities themselves vary according to the distribution law, and
when the necessary calculations are made they show that « should
be ~2. Let the stationary molecules further be reduced to points
and the selected molecule which moves among them swell so that
its radius becomes equal to ¢. This process will not affect the number
of encounters.

As the selected specimen moves it sweeps out in the course of a
second a cylindrical space of cross-section 7o? and length v24. The
volume is V27o%i and is inappreciably affected by the changes in
direction which occur at each encounter, the mean free path being,
as it turns out, normally very much greater than o. The number of
the point molecules contained in this cylinder is equal to V2wo2a
% the number per unit volume, that is, to ~2mo%in, which must
represent the number of collisions made by any given molecule in
unit time. Since the same applies to every molecule, the total number
entering into collision in a second in one cubic centimetre is v/27ain2.
Each collision involves two molecules, so that the number of collisions
is half this. Thus we have

Z = iN2moin?.
The viscosity of the gas is comparatively easy to measure, and
from it I may be calculated and thus Z may be estimated. For all
ordinary molecules, that is to say for those other than the macro-

molecules formed by complex polymerization processes, ¢ is of the
order of magnitude 10-8 cm. Some typical values are given below.

o x 108 cm.
Helium . . . . . 2:18
Argon . . . . . 3-66
Hydrogen . . . . .2:72
Oxygen . . . . . 362
Water . . . . . 466
Carbon dioxide . . . . 466

If the two molecules entering into collision are not of the same
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species, the above calculation has to be modified, and the result
found is of the following form:

Z = nynpoyp{8nBT(1/M,-+1/Mp)},

where n 4 and ny are the respective numbers in unit volume, M, and
M, the gram-molecular weights, and o, the average of the two
diameters. A derivation of this formula, by a method which is more
precise than that sketched above for the molecules of the same
species, will be given at a later stage (p. 384).

Although in the foregoing discussion the molecule was pictured as
an elastic sphere, the result retains a good deal of its value even if
this simple representation is entirely abandoned and the molecule is
regarded, for example, as a mere centre of force which repels similar
centres when they approach too closely. What the above calculations
have really yielded is information about the average distance between
the molecular centres at which transfers of momentum occur. For
many purposes this constitutes quite a reasonable definition of the
diameter. Ambiguity is, however, avoided if o is termed the collision
diameter. In actual fact it corresponds fairly closely to the molecular
magnitudes determined by the methods of X-ray and electron
diffraction.

The elementary treatment of the mean free path envisages, as it
were, a balancing of the molecular accounts at a distance ! from any
reference plane. It is very useful as far as it goes, but it leaves
certain important effects unaccounted for. Its limitations are well
illustrated by the phenomenon of thermal diffusion (upon which one
of the most efficient separations of isotopes depends). If a long
vertical tube is heated axially by a wire while the walls remain cold,
the heavier constituent of a gas mixture becomes concentrated to-
wards the circumference. Here it sinks towards the bottom of the
tube while fresh gas rises in the warm central region. When a steady
state is established the lighter constituent of the mixture predomi-
nates at the top of the tube and the heavier at the bottom. The
convection effect itself is easy enough to understand, but the initial
enrichment of the heavier molecules in the colder region is not ex-
plicable in terms of the elementary theory. If pressure is uniform
throughout, then, since p = Inmai?, »n is inversely proportional to
ma?. That is to say that the density is inversely proportional to the
absolute temperature, whatever the value of m, since m? is the same
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for all types of molecule. Thus no separation of the gases in a tem-
perature gradient seems explicable solely in virtue of the different
molecular masses.

This consideration neglects the circumstance that a temperature
gradient is only maintainable by a continual transport of heat from
one region to another, and furthermore that the assumption of a true
equilibrium state established at the end of each free path is only
roughly correct. Molecules with a large component of velocity in a
given direction tend in general to retain some fraction of it after
collision, and the degree of this so-called persistence of velocity is
a function both of the mass and of the law of force between the
colliding particles. Normally it is such that the lighter molecules
outstrip the heavier in penetrating into the warmer regions, so that
the concentration of molecules in the cooler regions becomes more
pronounced for the heavier than for the lighter. This is a second-
order effect which is magnified by the continuous action of the
vertical convection currents. With a different law for the inter-
molecular forces the thermal diffusion could work in the opposite
sense and lead to an accumulation of lighter molecules in the cooler
parts.

In spite of the importance in certain special circumstances of these
subtler phenomena, the achievements even of the rather naive forms
of the kinetic theory are undeniable. They amount to this: that in
some major respects the properties of matter are interpretable in
terms of the behaviour of sensible objects. Atoms and molecules
seem not only to exist, but also to be enumerable and measurable,
and representable in some degree as small-scale models of the objects
which they themselves build up. This takes us a long step forward
in describing the unknown in terms of the known, and this is what
really constitutes a scientific explanation. The process can be carried
even farther, but we shall soon find that a fresh turn has to be given
to it, and that the kinds of known things by which the unknown have
to be described become less homely.
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MOLECULAR CHAOS AND ENTROPY

Molecular chaos

THE quantitative laws of chemical combination provide clear pointers
to the molecular theory of matter, which increases progressively in
vividness and realism with the application of Newton’s laws to the
motions of the particles. The interpretation of phenomena such as
the pressure and viscosity of gases and the Brownian motion, and
the assignment of definite magnitudes to molecular speeds, masses,
and diameters render it clear that a continual interchange of energies
must occur between the molecules of a material system, a circum-
stance which lies at the basis of temperature equilibrium and deter-
mines what in ordinary experience is called the flow of heat. It is
responsible indeed for far more than this, and a large part of physical
chemistry follows from the conception of the chaotic motion of the
molecules. This matter must now be examined more deeply.

In a sufficiently numerous collection of molecules left to themselves
a statistical equilibrium is established, usually, as it proves, with
great rapidity. In this state the total quantities of energy in the
various forms, translational, vibrational, and rotational, bear definite
steady ratios to one another. Each kind of energy in every individual
molecule fluctuates with time about a mean value, every kind of
motion waxing and waning throughout the system. At a given
instant the statistical equilibrium only becomes susceptible of com-
plete definition as the number of molecules under consideration is
indefinitely increased, but, even for a few molecules, the average
state taken over an extended period of time corresponds to that of
the true equilibrium for very large numbers at a single instant.

The state of such a molecular system is obviously chaotic in the
sense that some molecules move fast and others slowly: some are in
violent vibration or rotation while others are almost quiescent; and
the condition of individuals is continually changing. A rough idea
of the rapid and irregular variations of motion would be provided by
the behaviour of a number of billiard balls propelled in random
directions on a table, their translations and spins fluctuating accord-
ing to the hazards of their mutual encounters.

For an elastic collision of two smooth spheres the laws of mechanics
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allow the final speeds and directions to be estimated from the initial
values, and similar calculations are possible, in principle, for rough
spheres, for non-spherical masses, and even for masses which do not
collide in the ordinary sense but exercise mutual repulsive forces on
close approach. Given the initial state of a mechanical system con-
sisting of any number of particles, the final state is in principle
calculable. In the initial state the distribution of motions may not
have been random, but may in fact have been governed by definite
conditions. For example, in a lead bullet cooled to a very low
temperature and possessing a very high translational speed the
motions of the molecules are largely ordered in a parallel way. If
this bullet is stopped by a stone wall, it grows hot and the move-
ments of the particles become random in the sense that all mass
motion disappears and only the irregular invisible motion of the
molecules remains. It requires, however, very subtle consideration
to decide whether or not the state of motion after the impact can be
strictly described as absolutely chaotic. The following reflection
shows this problem in a clearer light. If the final motion of every
particle in the mass were reversed, then a series of collisions would
ensue such that the original initial state would be regained. Now
the reversal of a chaotic set of velocities might be said still to leave
them chaotic; yet the reversed set in this example would soon be
replaced by a highly ordered system.

The original state of all the matter in the world is not known; nor
can we predict what would happen if all molecular speeds were re-
versed. As far as the laws of mechanics go, we cannot assert that
existing conditions are unrelated to an earlier condition of order.
Whether, therefore, the complete randomness of all microscopic
motion can be logically related to the Newtonian laws has in fact
been a subject of controversy and no wholly satisfactory answer
emerges.

What is undoubtedly true is that for practical purposes the chaos
can be regarded at least as very nearly complete. That this is so
irrespective of the origin of the present order of things is attested by
such simple experiences as the shuffling of a pack of cards, which
show how rapidly all vestiges of order become undetectable. While
forgoing any attempt at a rigid application of the laws of dynamics
to the question, we may therefore introduce as a specific postulate
the assumption of molecular chaos for ordinary systems endowed with
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thermal energy. In any portion of matter in statistical equilibrium
the distribution of motions is taken to be calculable from the laws
of probability in conjunction with the appropriate rules of mechanics
without any reference to the remote history of the system.

This postulate is broad, clear, and intuitive and quite worthy to
serve as the basis of a theory of matter. With its aid wide tracts of
physics and chemistry can be illuminated. Its consequences are much
more positive than might have been suspected for what sounds at
first like a somewhat negative principle.

The distribution law

The first task is to derive some of the important rules of statistical
equilibrium among molecules. The state of a given individual at any
instant is described by its position coordinates and by other coordi-
nates which define its translational, rotational, and vibrational energy.
For the present purpose the different contributions to the total
energy of the individual will be taken as independent and expressible
by square terms in the way previously outlined (p. 14).

The problem is to define how many molecules out of a very large
number are at a particular instant in any given state. Here the
definition of what we are to understand by a state requires detailed
consideration. If the component x of the velocity along the axis x
is denoted by u, the natural way of formulating the distribution
question is to inquire about the number of molecules with velocities
in the range from w to u--du, with corresponding inquiries about the
other coordinates in terms of which the energy is expressed. With
the idea, however, of introducing a convenient approximation we
might agree to envisage a small arbitrary range in the neighbourhood
of » and to consider all the molecules possessing velocities in that
range as having the same definite energy ¢ in respect of that coordi-
nate. In this way we should define a discrete series of energy states
corresponding to each variable. Thus if the coordinates are p, p’,
p",..., there are series corresponding t0 Py, Pa, Dgseees P15 Poseres D1s Poyeres
and so on. As will appear, it is best to let the p’s represent momenta.
The contributions to the total energy of the molecule, which are
proportional to the squares of these, may be written 7y, s, 73,...,
N1 Naseres N1 Nase-»» C.

The total energy of a molecule is then n;4u;-+n;z+-..., where
%, 7, k,... can be taken in any combination. The multitudinous values
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of the total energy which a molecule might have as a result of these
different combinations can themselves then be arranged in an ordinal
series €, €, €g,...

It will remain to be decided whether subsequently the intervals in
the various series of coordinates or energies are to be made vanish-
ingly small. Later developments will show that this procedure is
unnecessary and indeed incorrect, and that a discrete series of states,
properly defined by what will be called quantum rules, is what corre-
sponds to nature. For the present, however, the assumption of the
series of numerous and fairly closely defined states may be regarded
as a convenient simplification.

We envisage, then, a series of energy states like so many compart-
ments into which molecules can be placed, and the distribution
among which is to be investigated. The postulate of molecular chaos
deliberately assimilates the problem to that of the random partition
of a large number of objects among a number of boxes.

Let there be N molecules to be distributed among the states corre-
sponding to the series of energies ¢, €,, €3,.... [N may conveniently
be taken as the number in a gram molecule. Let there be, in a given
distribution, X, in state 1, NV, in state 2, and so on. The number of
ways, W, in which such a distribution can be achieved is given by

the formula
N!

W=mewx

which follows in an elementary way from the principles of permuta-
tions and combinations.

The expression may be simplified by the use of Stirling’s approxi-
mation for the factorials of large numbers, namely that In N! tends
to the value NIn N—N when N is large enough. Taking logarithms
and making the substitutions for the factorials we obtain

InW=NIhN— 3 N,InN, (1)

The principle now to be applied is that in statistical equilibrium
W, and thus In W, will attain a maximum value. N, N,..., can be
subjected to small tentative changes 8N, 31V,,..., and if the value of
In W is a maximum, then 8§1n W will be zero for such processes.

Thus we have as the major condition of our problem

SInW = 0,
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and from (1), since N is constant,
28N InN) =3 (1+InN;)3N; = 0. (2)
Since the total energy of the whole collection of molecules remains

constant and since the total of the numbers in all the states must
always add up to N, we have the two auxiliary conditions

SN =,
so that > 6N, =0, (3)
and N e+ Nye+... = E,

so that 33 Nyeg = > €8N, = 0. (4)

The solution of (2) subject to the conditions (3) and (4) is a standard
problem in conditioned maxima, and what follows down to the result
in equation (7) is purely mathematical.

Before we proceed with the solution, however, a word should be
said about the use of the Stirling approximation. It has been ob-
jected that, although IV is large, the number of states is also large,
so that some of the numbers &, N;,,..., may not be great enough to
justify the use of the approximation. If this is so, then one must
take N to be much larger still until all the states really do contain
enough molecules. The result might apply then only to the time
average of any real system of finite size. This is quite all right,
because in actual fact there would be a definite distribution law for
such a system only if we averaged its condition over a period of time.

We proceed therefore to the solution of (2). (3) and (4) are multi-
plied by arbitrary constants, « and 8, and added to (2) with the

result S (1-+In N)SN, 4o 3 8N, S ¢, 8N, = 0. (5)

o and B may have any values required by other conditions of
the problem, since (5) is an identity based upon three independent
equations. Rearrangement of (5) gives

> (1+In Ny +o+ey) 8N, = 0. (8)

3N, 8N,,..., it must be remembered, are small arbitrary transfers

made to test whether the condition for a maximum is fulfilled. They

are variable and subject only to condition (3). Let o and f§, being
assignable at will, be given such values that

1+InN,+a+Pe; =0 and 1+InN,-ta+Be; = 0.
Then in (6) the sum of all the terms from SN; upwards equals zero.
From the nature of 81, 3Nj,..., they may be chosen, if we so wish,
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to be zero. Let them be so chosen, but let 6V; be given a value
distinct from zero. Then we have

(1+In Ny-+a-t+-Bep)oN; — 0,
and since 31V, itself is not zero its coefficient must be. Thus
(1+In Ny+a-+feg) = 0.

A repetition of the argument with appropriate modifications shows

that in general 1+ In Nj+ot-fe; = 0.
Therefore N, = e1-%ePq,
Since >N, =N,
N = e1-2 Y efe,
whence N; = Ne-fa| > e~Fs, (7)

the sum in the denominator being taken over all possible states.

This equation is known as the Maxwell-Boltzmann distribution
law. It rests, as has been seen, on the assumption that the distri-
butions occurring in nature are those which can be achieved by the
maximum number of permutations. All possible distributions are,
as it were, explored in the course of the blind wanderings of the
molecules from state to state, but the condition of real systems
for most of their time corresponds closely to that of maximum
probability.

The equipartition law

The Maxwell-Boltzmann law is of fundamental importance. We
shall begin by applying it to the derivation of the equipartition law,
which plays so prominent a part in determining the equilibrium of
material systems. e, the energy of a molecule, is the sum of terms
7, 7', 1";... corresponding to the different coordinates p, p’, p”,...
which describe the motions. Let attention be fixed upon one parti-
cular type of coordinate, p, and for this purpose let (7) be rewritten
in the form N B+ 4.

N"' - z e~Ba+ +9"+.)°

Ne—-Ba'+9"+.)e—B1
= E e—PaT T )
Ne—Ba +1"+.)g—Bn
= Z e-—ﬁ(”)'+"7”+---) z e_ﬂn’
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the factorization of the denominator being possible since every value
of % (that is 7, 7s,...) is combined in the sum with every value of
7', 3",... (that is 93, 15,...; 71, 93,.-.)-

Now let N; be summed over all possible values of %', 5",..., and
the result, which may be written N, gives the number of molecules
which possess the energy 7 in the mode of motion corresponding to
p, irrespective of the other components.

N{ z e—ﬂ("]’+7lll+~c-§e—ﬁ')7
> e~Ba' 0"+ 3 e~By

Ne—Bn
= > e—Bn’

Equation (8) might have been obtained intuitively from (7) by imagin-
ing the derivation of the latter for the series of 7 states only, without
any consideration of the others.

If Ny is now summed over the whole series of 7 states, > N, will
clearly embrace all the molecules, so that it is equal to N.

Consider now the sum > e-#7. As it stands it consists of a number
of discrete terms, and the law of the series is not defined. One might
assume from one term to the next equal increments of the energy
itself or equal increments of the coordinate p which determines it.
The best assumption, which makes a special appeal to those deeply
versed in the science of dynamics, is that the series should be defined
by equal increments in momentum, that is in general by equal incre-
ments of the variables corresponding to p. The basis of this idea is
in fact wide experience of the way in which dynamical laws assume
their simplest form when expressed in terms of momentum and space
coordinates (Hamiltonian coordinates) as the fundamental variables.
The successive energy states are then

f(p), flp4+-Ap), [flp-+2Ap),

Equation (8) becomes

Ny =

(8)

Ne-Bro
No = S e-PiD)”
This may be multiplied top and bottom by Ap:
Yy P P
N — Ne-PioAp
D73 eBropAp”

If Ap is made small enough we have for the number of molecules in



32 MOLECULAR CHAOS AND ENTROPY

the state corresponding to f(p), or in the range Ap about it,

Ne-Bfo g
Ny= 77—, 9)
f e~F1) dpp
. Ne—-Pug,
ie. $(p)dp = f-erp (9a)
e~"tap

é(p)dp being for the continuous distribution the equivalent of N
for the discontinuous one.

Consider further the integral in the denominator of (9a). It is
taken over the whole range of coordinates. A partial integration
with respect to p gives the result

upper limi d
f ePrdp = [peF 1’]101::)er llijmi: +8 f peft EI% -

The first term on the right is zero at both limits: at the lower limit
since p = 0 and at the upper limit since e~#7 is a zero of higher order
than the infinity of p. Rearrangement of the terms gives

1 [ {ptdnjapye-trip

:8 fe“ﬁ’fldp
dm/dp)}d
From (94), %= f¢>(p){1ogv nidp)ydp

The expression on the right is the average value of p(dy/dp), so that
the equation may be written

d’r)) 1
pP—]==. 10)
a5 ‘
It is clear from the derivation that the value of 1/8 is the same for
all possible momentum coordinates,

Now if the energy is expressible as a square term

n = ap? where @ is a constant.

dn
™M _ 9
dp w

dn
= 2ap2 = 2n.
and P p ap 27
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Thus for all the square terms in the energy the average value is
such that 27 = 1/8,
or 7= 1/(28),

the bar signifying as usual an average value.
From the equations for the gas pressure,

p = dnma® and pV = RT,

whence pV = INma? since alV = N.

Therefore Im(#2+92+22%) = RT|N = kT,

where k= R|N.

The average values of #2, 42, and 2% will be equal and thus
mat = kT,

or Ima? = 3kT.

But 3ma? is 1/(28) by the result just obtained, and thus
B = 1/kT, (11)
and 7 = $kT.

The discussion so far has shown that the average energy in each
square term is 147 for a given type of molecule. It remains to show
that this result holds good in a mixture of different molecular species.

Let there be N, molecules of type a and N, of type b in the same
enclosure, and let them be capable of exchanging energy. Let their
individual energy states be €., €40,..., a0d €3, €ps,..., and the numbers
in these states be respectively N, N,o,..., Ny, Nyg,... .

The number of ways of achieving this distribution is

N,! N,
a 12
NN o NN (12)

and this must be a maximum. The auxiliary conditions to be ob-

W =

served are S N, =N, (13)
and z -ZV;;]_ == -ZVb’ (14)
and 2 Nyt 2 Ny = E. (15)

The problem is solved as before: the logarithm of (12) is trans-
5293 D
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formed by Stirling’s formula, differentiated, and equated to zero.
(13), (14), and (15) are also differentiated and equated to zero.

SInW =0, (16)
38N, =0, (17)
E Slvbl =0, (18)
2 €adNy+ 2 €8N, = 0. (19)

(17) and (18) are multiplied by arbitrary constants «, and «, and
(19) by B. The results are added and the rest of the calculation
proceeds as for the case of the single kind of molecule.

There is no need to carry it through in order to obtain the result
required at the present juncture. The important thing to notice is
that whereas there are now fwo separate constants «; and «, relating
to the total numbers of each species of molecule, there is still only
one single constant B relating to the constant total energy of the
whole system. This expresses the obvious fact that whereas molecules
of the types @ and b are not interconvertible, energy, on the other
hand, is both transformable and transferable from any one type of
molecule to any other. Thus 3, which plays exactly the same role
as in the previous calculation, is the same for both species. The mean
energies for a square term are therefore independent of the masses
and other physical constants, such as the moments of inertia of the
individual molecules.

As will have been seen, the derivation of the equipartition law
depends upon certain rather general, and perhaps somewhat abstract,
assumptions about molecular dynamics. It is desirable, therefore,
to bring the result as soon asg possible into relation with experi-
mentally measurable matters. The most striking method of doing
this is afforded by the study of specific heats.

Energy content and specific heat

The most obvious test of the validity of the equipartition prin-
ciple is the attempt to calculate the energy content and thus the spe-
cific heat of substances composed of molecules simple enough for a
fair guess at their structure and mechanics to be made.

Helium, argon, and the other inert gases might be assumed to
consist of small masses devoid of internal motions, and as a first trial
one might assume the absence of rotations. They would then possess
three translational degrees of freedom only, and the energy of each
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gram atom would be N x3x kT, or (3/2)ET. The increase of this
for each degree of temperature is (3/2) R, and R being 1-98 cal./degree,
the atomic heat should be 2-97, which corresponds exactly to the
measured value.

Very stable diatomic molecules such as oxygen, nitrogen, and
hydrogen should possess a structure, and might be schematized as
objects with a sort of dumb-bell shape, but they might be devoid
of vibrational energy, since the two atoms might be imagined to
constitute a practically rigid body. If these guesses were correct,
there would be three translational degrees of freedom and some
rotational degrees. The rotational energy would be referable to three
axes, one of which would be chosen to coincide with the geometrical
axis of the dumb-bell. Viewed along this axis the structure would
be seen in projection in a monatomic form and thus, by analogy with
helium, might be supposed to have no rotation about it. Two rota-
tional degrees of freedom would, however, be expected for the two
other rectangular axes, making five degrees of freedom in all. These
would account for a specific heat of (5/2) R calories per gram molecule.
Once again the estimated value is exactly right.

An unstable diatomic molecule, such as iodine, should perhaps be
capable of vibration along the axis joining the two atoms, and there
would then be an addition to the specific heat of } R for the kinetic
energy of this motion and (according to the properties of simple
harmonic motion) of an equal amount for the potential energy. Thus
the total value should be about 2 calories greater than that for
oxygen. This, too, is in agreement with experiment.

The application of this method of calculation to crystalline mon-
atomic solids (a category to which many metallic elements would
according to a simple view belong) is interesting. Assuming the
absence of rotations and translations, and the existence only of three
degrees of freedom of vibration, one calculates that the atomic heat
of all such solids should be 3(}R-+%R) or 6 calories, which is a fairly
good approximation to the famous law of Dulong and Petit.

There can be little doubt, therefore, that in many respects the
equipartition law gives a rather accurate account of what happens.
Its successes leave little doubt that when translations, rotations, and
vibrations do exist, they are reasonably well describable as sums of
independent square terms.

Second thoughts about the whole problem, however, suggest not



36 MOLECULAR CHAOS AND ENTROPY

so much that the equipartition principle is in any very important
way inaccurate as that it altogether neglects some factor belonging
to the essential nature of things.

The guesses which were made about the modes of motion of various
types of molecule seem plausible enough at-first sight, but they are
strictly speaking inadmissible. There is, in fact, no reason in New-
tonian mechanics why helium atoms should not rotate, why oxygen
molecules should not have three rotational degrees of freedom, or
why all diatomic molecules should not be in vibration. Smooth sym-
metrical molecules, it is true, are difficult to make rotate, but they
are difficult to stop again when once they have been set in rotation.
The equipartition law should, in fact, apply whether or not particular
modes of motion happen to be difficult to excite. If they are difficult
to excite they may acquire energy but slowly: they will also lose
energy slowly, and in the equilibrium state they should possess the
normal quota. All that can be said is that the dynamical constants
characterizing some of the degrees of freedom which do not appear
are quantitatively considerably different from those of the modes which
do appear. But in the derivation of the law no assumption at all
about these magnitudes is made.

Furthermore, detailed experiment shows that all specific heats are
functions of temperature, at least over certain ranges, and this is
completely inexplicable in terms of the equipartition principle, which
makes the energy proportional to T, so that the specific heat, the
differential coefficient of the energy with respect to 7', should be
constant.

The actual mode of variation of the specific heat is such as to
suggest that in certain ranges of temperature some of the degrees of
freedom pass entirely out of action. The principles so far introduced,
then, need amplification by some quite fundamental new rules which
provide reasons why sometimes degrees of freedom should be opera-
tive and sometimes not. These rules cannot be derived in any way
except by the introduction of the guantum theory. In the meantime
it appears that the equipartition principle is an incomplete state-
ment. If the results it predicted were merely inaccurate in a numerical
sense, the discrepancies could be attributed to causes within the
framework of ordinary mechanics, for example, to the non-indepen-
dence of rotations and vibrations, which would spoil the formulation
of the energy as a sum of square terms, but the difficulty lies deeper.
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There is a complete absence of contributions from modes of motion
which according to mechanical principles should exist, a clear-cut
qualitative absence, rendered all the more conspicuous by the relative
precision with which the contributions of the other modes can be
calculated.

At this juncture it is well to remember that the attempt to deseribe
the nature of matter by the application to atoms and molecules of
the rules which Newton inferred from the behaviour of massive
bodies is no more than an hypothesis to be tested. In the present
direction the conclusion about its validity is: thus far and no farther.

But in other directions the simple kinetic theory, without the
specific considerations of quantum phenomena, has eminent services
to render.

Entropy

We return to the conception of molecular chaos, of statistical
equilibrium, and of a partition law defining the thermal balance
between the various parts of a material system and making intelligible
the idea of a temperature. The obvious task seems now to be the
formulation of some quantitative rules about equilibria in systems
of many atoms and molecules.

In the solution of this problem a quantity called the entropy has
come to play a dominant role. What transpires is this: that the
conception of molecular chaos, with very little in the way of sub-
sidiary hypotheses except a few very general dynamical laws, goes
a long way in explaining many of the major phenomena of physics
and chemistry. This being so, it is clearly worth while examin-
ing carefully various expressions for the probability of molecular
distribution.

We refer once more to the result found for the distribution of the
N molecules of a gram molecule among their various energy states.
For the present the volume of the system will be taken as constant,
and to mark this restriction, which will presently be removed, the
number of assignments will be written W, instead of W. The equation
which was derived on p. 28 takes the form

InW, = NInN— 3 N,In N,

W, measures the number of ways in which the molecules can be as-
signed to the various energy states for the distribution in question.
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The basic principle employed in developing the theory was that W,
and thus In W, tends to a maximum value.

It is convenient to work generally with In W, rather than with W,
itself, since, if there are two systems characterized by values W, and
W, separately, the number of assignments for the combined system
being W, W,, the corresponding logarithm is InW,4+InW,, and the
function describing the state is then formed additively from the
values characterizing the individual components. This proves to be
a great practical convenience.

In W, defines the degree of probability of the system and gives
a quantitative measure of the state of chaos which prevails. Its
properties will now be examined. It will be found to be closely re-
lated to important thermal magnitudes, and will prove to be one of
the most important funections in physical chemistry.

By the calculation already given
Ne—elkT
where the sum > e~</*T will be written f,.

For convenience we multiply InW, by k£ (the expediency of this
trivial operation will appear later) and denote k1n W, by the symbol 8,.

N, =

Thus 8, =kNInN— > kN, InN,.
The value of IV, is now substituted in this expression for S,, the result
being 8, = kN Inf,A-kNTdInf,/dT,
or S,= Rlnf,+RTdInf,/dT.
The appearance of the differential coefficient of f, depends upon
the relation f, = e,
df, 3 e esltT
ar kr:
whence S ey ekl = ET24f,[dT.
Now the total energy, E, of the system is clearly related to f,, We
have B=3 N, = 2alfe 1}7"’ o -7 Yo
whence B = RTzdlnf &

and thus S, = Rlnfe-}-T.
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This relation of the entropy to the total energy is extremely im-
portant. We shall now throw it into a simple form, in which it will
prove to play a quite dominant role. We take the differential coeffi-
cient of the entropy, §,, with respect to the temperature, that is we
examine the function which tells us how the degree of disorder changes
as the temperature rises and molecules pass into generally higher
energy states.

ds,

_ pdlnf, 1dE E
T =

T TTar TR
dinf, 1dE_ pdlnf, 1dE

R

=R

ar tTadr- T dr T Tdr
We have supposed the volume of the system to remain constant,
so that the last equation is more accurately written

as) _ 1(eE
eT), T\eT),

Now the rate of change of energy with temperature is the specific
heat. We thus arrive at the fundamental result that the change of
entropy due to an increase of temperature d7' at constant volume is
given by

0Se\ s

C,dT
T

dSez(

As the temperature rises S, increases according to the relation
S, = C,In T+8,,,
where S,, may be a function of the volume.

It is important to have an intuitive understanding of the reason
why S, increases with the temperature. 1t is that as the total energy
of the system becomes greater, more and more of the higher energy
states become accessible to more and more of the molecules, and that
as the distribution so widens, the number of ways of realizing it
correspondingly increases. In this sense it is correct to say that when
a substance becomes hotter its state becomes more probable.

The question of an analogous treatment of the distribution of
molecules in space now arises.

Entropy and volume
If chaotically moving particles are unconfined, they will wander
in all directions and fill the whole of any volume accessible to them.
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If the temperature is uniform and if the molecules exert no appre-
ciable attractive forces upon one another, they will distribute them-
selves with a uniform density over all the volume elements, provided
that these elements contain numbers great enough for the application
of statistical averages. This result could be derived formally by a
method similar to that employed in the calculation of the energy
distribution, but is itself as obvious intuitively as would be the postu-
lates made in a seemingly more rigorous treatment.

Suppose a gaseous system of total volume V contains N molecules
which exert negligible forces upon one another and are of a size
negligible in comparison with their average separations. Let the
volume be divided into many small elements », this being a constant
standard reference magnitude, entirely arbitrary except in so far as
it is supposed small compared with V while being still large enough
to contain many molecules. In the equilibrium state the number in
each element is Nv/V. The number of ways in which the N indi-
viduals can be distributed among the V/v compartments into which
the gas is virtually divided so that there are equal numbers in each
is given by N

"= @
Application of Stirling’s formula, InN! = NInN—N, gives the

result
V{Nv, Nv Nv
W, — NlnN—N-;(—Vln—VT—v)
=NInV—NIno.
Thus klnW, = RlnV—Rlnv.

As the volume increases, therefore, the state becomes more probable.
By analogy with the corresponding value of kInW,, we may write

S,= BRInV—Rlnw,
and thus, since v is a constant arbitrary magnitude,

oS av
(W)T =5

If we now consider systems in which the temperature and the
volume are both variable, we can combine the two foregoing results.

The number of ways in which the energy distribution can be realized
is W,: and the number in which the volume distribution is satisfied
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is W,. The number of ways in which both can be satisfled together is
expressed by W = W x W,
then we have
knW =klnW+kln W
= (,In T+ RIn V 4-arbitrary constant
= 4.
8, which takes into account both the spatial positions of the mole-

cules and their motions, is called the statistical entropy of the system.
At the present stage the equation is most useful in the differential

f
o dS = G, dT/T+R dV/V |

This expresses the inerease in entropy and probability which accom-
panies rise in temperature or expansion of volume.

Imperfect gases and substances in general

When there is interaction between the molecules, as in an imperfect
gas, and still more in solids and liquids, the form of the volume-
dependence becomes too complex to be satisfactorily formulated.
feo» the sum of the terms like e~¢/*T' ig itself a function of the mole-
cular separations. The number of possible energy states becomes
indefinitely larger because variable potential-energy terms, each
depending upon the proximity of other molecules, are included in
the energy of each molecule in any given state.

One relation, however, retains its simplicity: and this fact is of
vital importance for the whole of the science of thermodynamics.
However complex the expression for 98/6V may become, the value of
(88/eT), remains C,/T. This crucial result may be seen by inspection
of the derivation which was given earlier (p. 38) and where S, was
expressed in the form Rlnf,+ E/T, after E itself had been given in
terms of f,. No matter how complex the series of states may become,
or how involved a function of volume f, may become, the relation
of E to f, and of S, to f, remains, and hence the relation of S, to K.
Therefore, in a differentiation at constant volume the value of 88/67T
remains C,/T. Put rather crudely, complex interactions have the
same effect on C,/T as they do on 88/07'. Thus the key relation

o8
as, = (ﬁ)vdT = C,dT|T
holds good.



42 MOLECULAR CHAOS AND ENTROPY

Conditions of equilibrium in molecular systems

At first sight it might appear that the conception of a molecular
chaos, though picturesque and affording the opportunity for some
ingenious calculations, could hardly bear fruit of a very substantial
kind. Nothing could be farther from the truth. It leads directly to
the treatment of physical and chemical equilibrium in a manner
which is not only illuminating but very useful.

The basic principle to be applied is this: a chaotic collection of
molecules will always tend to pass into the state of maximum proba-
bility. If it moves nearer to equilibrium from a state in which equi-
librium has not yet been established, then the probability increases.
If, on the other hand, a completely isolated system moves from one
state of equilibrium to an alternative one (as it may on occasion do),
the probability does not change.

Molecular systems, however, are not normally found in complete
isolation. They are in contact with other systems, and, since the
world as a whole is not in equilibrium, they are liable to gain or lose
heat by exchange with their surroundings. Moreover, in their blunder-
ings towards a state of maximum chaos the molecules of a given as-
sembly tend to transgress their bounds, and if impeded by obstacles,
exert pressure on these, pushing them back in appropriate circum-
stances and performing mechanical work.

The laws of these interactions determine in a remarkable way the
form of many of the phenomena of chemistry and physics.

It is convenient to begin by considering the adiabatic expansion
of a quantity of gas, that is, the increase in volume of an assemblage
of molecules isolated entirely from their surroundings. The system
is supposed to be held in equilibrium throughout the process, the
external pressure being always adjusted to the exact value charac-
teristic of the momentary temperature and volume of the gas itself.
Thus the system is not to be regarded as moving spontaneously from
a given initial state to one of greater probability, but simply as being
led successively from one possible equilibrium state to a neighbouring
one. In these circumstances In W remains constant, and therefore
d8 is zero. Volume and temperature change, so that we have

28 28
ds = (W)war(ﬁ)vdm ~ 0.

If the transition had been, not to the neighbouring state of equi-
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librium, but towards equilibrium from a less probable state, then dS
would have been positive, and we should have had dS > 0.

Now we may consider an isothermal expansion, also to a neigh-
bouring state of equilibrium. This may be imagined to occur in two
stages. First, the change of volume, dV, takes place adiabatically,
the change in entropy being zero, so that

o8 N
(é‘v)V”W = ‘(ﬁ)ﬂ“"

In this part of the process the system cools. Next a source of heat
is found, by contact with which the change of temperature d7 may
be neutralized, and 7' restored to its original value. In this stage a
quantity of heat must be communicated to the system, the amount
required being given by the equation d@ = C,dT. Now by the
general result obtained on p. 39, the value of (08/oT),dT is
C,(dT|T), which is the same as d@/T. This represents, in fact,
the whole entropy change accompanying the isothermal expansion,
since that occurring in the initial adiabatic part of the double
elementary process was zero. Thus, for an isothermal expansion we
have that the entropy change is given by d@/T.

Next let us consider the general case where ¥ and T both change,
the conditions, however, not being adiabatic. Once again the process
may be imagined to occur in elementary stages. In the first, which
is adiabatic, there is a temperature change dT;, such that

o8 o8

(W)dV—i—(ﬁ)dTl — 0.
An amount of heat d¢), = C,dT}, is then put in to neutralize d7j,
the change in entropy by the previous argument being d@,/7T.
Finally the temperature is further changed by the prescribed amount
dT at constant volume, heat d@, = C,dT being absorbed and the

entropy changing by d@,/7. The total change of entropy has been
for the various partial steps

dQ,/T+dQyT = dQIT,
where d@ is the total heat taken in.

The argument can be generalized still farther. Let a system as
complex as we please, including different chemical substances (which
may even suffer interconversions), have a total entropy S, and
let it move from a state of equilibrium to an adjacent one, being
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caused to do so by the change of certain variables, X,, X,,..., and 7'.
X4, X,,..., may be pressure, chemical composition, or anything that
has a physically intelligible meaning in this connexion. Once again
let the change take place in stages: first an adiabatic one for which,
since the probability remains a maximum,

o8
aXl)dX1+( )dX2+ +( )dT—O

as = (
The change of temperature, d7', is now neutralized by the communi-
cation of heat, the amount required being > C,d7T. The correspond-
ing value of d@/T represents the change in entropy expressible by
o8 o8
(aX )Xm—[—( )dX2

Thus we arrive at the fundamentally important result that when-
ever any system, however complex, or whatever the law of depen-
dence of entropy upon volume or other variables may be, moves

from one state of equilibrium to a neighbouring one,

s = dQT,

where d@) is the heat taken in from outside the system itself.

This result, it should be emphasized once again, depends upon the

fact that, however complex 98/6X may be, (28/07"), remains C,/T
(or 3 C,/T), and however complex a function of variables C, itself
may be, it is always the measure of the heat required to produce
unit rise of temperature.

Since in practical chemistry and physics—not to mention engineer-
ing—measurements of heat quantities play a very important part,
the equation dS = d@/7 is of great value. It provides a mathe-
matical formulation of a condition of equilibrium.

When a system moves from a condition in which equilibrium does
not prevail to one in which it does, the probability increases. The
change of entropy will therefore be greater than it would have been
in the movement to a neighbouring state of equilibrium. Thus the
applicability of the equation dS = d@/T to a small displacement is
a condition that the initial state is one of equilibrium. The important
applications of this will appear shortly.

Some of the basic principles of the calculus of molecular chaos may
be illustrated in a more direct way by the detailed consideration of
the expansion of a perfect gas.
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Suppose the volume to increase from V; to ¥;. No matter how the
change is brought about, the last state may be regarded as more
probable than the first, since it is that to which the aimless diffusion
of the molecules would lead them if they were unconstrained Sup-
pose that they could wander at random through the whole of the
volume ¥, then the chance that a given one of them finds itself at
a particular instant in a reserved part of the enclosure of volume ¥
is evidently ¥;/V,. The chance that the N molecules of a gram
molecule should do so simultaneously is (V;/V,)¥. This may be re-
garded as the ratio of two probabilities and written W;/W,, where
W, is an unknown absolute probability of the state of larger volume.

Then WiWy = (/Ve)™,
InW,—InW, = NIn¥V,-—NIn¥,,
thus dkIn W) = ENdInV,
or dS = RAV/[V.

In an expansion by dV the entropy increases by RdV/V if the tem-
perature remains constant. This result holds good whether the
expansion is to a neighbouring state of equilibrium or not.

Suppose first that it is, then the condition of equilibrium implies that
the expansive pressure of the gas is held in check by an equal and
opposite balancing pressure. This opposing resistance must be forced
back as the gas expands and work is done equal in amount to pdV.
If the temperature is to remain constant, this work must be provided
for by a flow of heat from without, since in a perfect gas the molecules
" exert no attraction on one another and the internal energy is inde-
pendent of the volume. Thus an amount of heat given by d@ = pdV
ig taken in.

dQ = pdV = RTAV|V = TdS, since dS = RdV]|V,
or dS = dQ@/T,
in accordance with the general law.
If the gas is not in equilibrium but expands, for example, into a

vacuum, the change in entropy is still RdV/V, but no work is done
and no heat need be taken in, so that d@Q = 0, and therefore in this

case s > dQ/T.

Now consider a case where the expansion is adiabatic and where
it takes place against a balancing pressure, in overcoming which
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work is done. Since no heat is taken in, the work of expansion, pdV,
must be balanced by a decrease in the internal energy of the gas,
which does in fact cool in the process. Thus

pdV+4C,dT = 0,
or RTAV|V = —C,dT.

There is no change in the probability of state in this process: the
spatial distribution of the molecules in the expanded gas is more
probable, but the energy distribution at the lower temperature is
correspondingly less so. The contribution to dS due to the volume
change is RdV/V, so that the contribution due to the temperature
drop must, according to the last equation, be —C,d7"/T. This again
agrees with the general statistical result given above.

If the equilibrium conditions were not maintained and if the gas
expanded against no opposing pressure, then the entropy would still
increase by RdV/V in virtue of the volume increase, but since no
work would be done, there would be no cooling and no corresponding
drop in entropy to compensate the increase. Thus we should have
d@Q = 0 and dS = RdV/V, so that dS > d@Q/T.

The kind of transformation which occurs when a system passes
from one state of equilibrium to an adjacent one is known as a
reversible change: that which occurs when it passes from a state farther
removed from equilibrium to one less far removed is called érreversible.

The condition for equilibrium is that all forces acting upon the
system shall be exactly balanced by opposing forces. In a reversible
change the maximum resistance is overcome and thus the maximum
possible amount of work is done. In an irreversible change the work
done is less and may fall to zero.

In a reversible change dS = d@/T: in an irreversible change
a8 > d@/T.

The condition, then, that a given small displacement should be
reversible is also the condition that the system in question starts out
from a state of equilibrium.

Thermodynamics and molecular statistics

The ideas outlined in the foregoing pages provide a transition from
the notions of molecular statistics to those of heat and work, and
thus to the science known as thermodynamics. They have just been
illustrated by reference to gases which obey Boyle’s law, but the
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more detailed statistical argument which preceded showed the
generality of the law relating d.S with d@/T for equilibrium and non-
equilibrium systems respectively.

The exploitation of the idea of molecular chaos, which in turn is
based upon the view that molecules are small particles subject to
mechanical laws, thus leads to a new point of departure from which
wide regions of physical chemistry can be explored.

The entropy principle which has just been developed is susceptible
of experimental verification and is equivalent to what is usually
called the Second Law of Thermodynamics.

Before examining the scope of thermodynamical principles, it may
be well to consider the degree of validity and the limitations of the
statistical ideas so far developed. In the first place, it has been ex-
pedient for the calculations to assume a finite series of discrete energy
states, among which the molecules are distributed (p. 27). The
number of assignments is then definite, and a calculus of probabilities
can be applied. If the spacing of the successive states in the series
is made infinitesimally fine, then the number of assignments assumes
a large and indefinite value. The absolute magnitude of the statistical
entropy, as far as the present discussion has gone, is therefore devoid
of significance. That ratios of numbers, both of which tend towards
infinity may retain significance is, of course, perfectly possible, so
that differences in entropy may be finite and non-arbitrary even
when the absolute values are unknown, unknowable, or possibly
meaningless. But to assume that this should be so involves some-
thing of a working hypothesis.

The positive fruitful results of the foregoing statistical calculations
did not in any way depend upon the extrapolation to the case of
infinitesimally small differences of energy. The calculations related
to small finite differences. If there were a definite law specifying the
spacing of discrete energy levels, and if these did not merge into a
continuous series, then the number of assignments and the statistical
entropy would possess exactly knowable absolute values, and a whole
range of possible new applications of the entropy principle might
open out.

The series is in fact a discrete one, the laws in question are those
of the quantum theory, and the applications of the knowledge which
they bring are indeed extensive, as will appear.

To obtain the equipartition law in the form which gave, apart
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from the mystery of the missing degrees of freedom, the correct form
for the specific heat, the finite and discrete spacing of the energy
levels had to be given a particular character. The series corresponded
not to equal increments of energy but to equal increments of momen-
tum. Even if an extrapolation to a continuous distribution had
been made, this hypothesis would have had to be retained. Thus
it again becomes apparent that something beyond the normal
mechanical laws is needed for a complete solution of the problem.
In the meantime the entropy principle itself has a host of applica-
tions which do not involve knowledge of what this something is.
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The laws of thermodynamics

TaE entropy principle emerges from the conception of the world as
a chaos of particles endowed with random motions. It states that
when any system undergoes a small displacement from equilibrium
the heat taken in, d@, is related to the entropy change by the

equation dQ|T = dS
Such a change is called reversible: for the irreversible change
aQiT < dSs.

These relations hold whether the molecules exert forces on one
another or whether they are nearly independent masses as, approxi-
mately, are those of dilute gases. When mutual influences are not
negligible, then the internal energy becomes a function of the volume.
In general it may also be a function of other external variables.

The difference between d@), the heat taken in by any system, and
dE, the change in the internal energy, is accounted for according to
the principle of energy conservation by the performance of external
work as, for example, when a gas expands against an external pres-
sure. This available balance is a maximum when d@ itself has its
maximum of 7'd8 in the reversible transformation. It is then termed
the change in free energy or the change in thermodynamic potential.

The question of the relation between the heat changes accompany-
ing various kinds of natural process and the work which may be
performed is one that has been of dominating importance. The con-
ception of the statistical entropy is evidently one which penetrates
more deeply into the nature of things, but the idea of deriving work
from heat is one which has appealed more strongly to minds bent
upon the useful arts such as the construction of steam-engines, and
the laws of thermodynamics were discovered independently of the
statistical ideas which interpret them.

The first law of thermodynamics states that there is an exact
quantitative equivalence between heat consumed and mechanical
work generated and vice versa. In the light of the notion that heat

is the invisible energy of molecules, differing only from mechanical
52903 B
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energy in being disordered rather than ordered, the first law appears
as a simple corollary of the principle of the conservation of energy.
What is known as the second law follows from the entropy principle
in a fairly direct way. Suppose there are two systems, one of which
transfers heat to the other. Let the temperature of the one which
loses the heat be 7}, and that of the one which gains it 7,. The
former gives up an amount of heat @, and the drop in its entropy
is dS,: the latter receives an equal amount of heat, and its entropy
increases by dS,. If the whole transaction is one which takes place
spontaneously, the probability increases on balance, so that dS,—dS,;
will be a positive quantity. In the limit when the transfer of heat is
only just possible as a spontaneous process, dS,—dS, just approaches

zero. We have a8, = dQ/T,

ds, = dQ/T;,
dQ/T,—1/Ty) = A.

A being positive (or in the limit just zero) and d@ by hypothesis
a positive quantity we have

1/T,—1/T, is positive (or in the limit zero).

Therefore, for a spontaneous transfer, 7} > 7,, or in the limit when
the flow just ceases to occur, 7] = 7}.

This is in fact the second law of thermodynamics which states
that it is impossible for heat to pass spontaneously from a body at
a lower temperature to one at a higher,

An equivalent form of this statement, which relates it more ob-
viously to practical considerations, is that work cannot be derived
by the continuous utilization of the heat contained in a system at
uniform temperature. An aeroplane, for example, cannot propel it-
self with the aid of some device which consumes the heat of the
atmosphere in which it moves. If it did so, it would leave the sur-
roundings cooler than itself, and the process could only continue if
heat flowed against the adverse temperature gradient so created.

The second law in this form denies the possibility of what has
sometimes been called perpetual motion of the second kind, just as
the first law denies that of the first kind, which is generation of work
from nothing at all.

These principles follow from the molecular nature of things, but
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they have in the past themselves played the part of fundamental
laws and, since they are directly relatable to our experience of the
sensible world, some people would still prefer to regard them as more
satisfactory starting-points than the statistical considerations into
which they may be translated. It has been argued that we can be
sure of the validity of the two laws of thermodynamics in a way in
which we cannot be sure of the molecular theory. Perhaps there is
no answer to this, except that the molecular theory might claim
greater intelligibility than the laws of thermodynamics by themselves
possess.

One claim that is sometimes made is that the laws of thermo-
dynamics are more objective and realistic than molecular-statistical
considerations. This purist attitude looks somewhat artificial in the
light of the fact that the second law of thermodynamics is really not
rigidly true at all, except as a statistical average for large numbers
of molecules. For systems small enough to show the Brownian
motion it becomes patently false if advanced as a law which takes
no cognizance of molecules,

Nevertheless, the adoption of the two formal laws as the starting-
point of thermodynamic considerations has many conveniences,
Various modes of development are possible, and each hag some ad-
vantage in yielding a different point of view and clarifying a different
set of relations.

Discussion of the second law of thermodynamics

In the first place, by a suitable reversal of the arguments already
given, the entropy principle may be derived from the second law.
The process is a little cumbrous as traditionally carried out. The
following is perhaps the simplest way.

Gases exist which obey Boyle’s law nearly enough for the pro-
perties of perfect gases to be inferred with some precision. The
pressure, volume, and temperature of a perfect gas (for convenience
we consider one gram molecule) are connected by the relation
pV = RT. The temperature which this equation defines is taken as
the standard scale. When a perfect gas expands into a vacuum there
is no temperature change, so that the internal energy must be inde-
pendent of the volume. When expansion takes place against an
external pressure, work is done, its amount reaching a maximum of
pdV for an increase of volume dV against a pressure just equal to
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that exerted by the gas itself. If the temperature is to remain
constant, heat, d@, must flow in, the amount being given by

dQ = pdV = RTAV/|V.

If the temperature changes by d7', there is an additional absorption
of heat, C,dT, so that

dQ = pdV+0,dT = RTAV/V+C,dT.

Pe ,V2 ’ Tz

v
Fia. 1

Now suppose the reversible change is of finite magnitude. The
work done is f pdV, where p varies in a way which depends upon
the course of the temperature change. The total heat taken in can
be expressed by the integral of the last equation, namely

[ (RTavv+0,am),

a quantity which cannot be evaluated unless an auxiliary equation
is provided giving 7" in terms of V at every stage. The value of the
integral can vary widely according to the nature of this 7, V relation,
as may be seen in the diagram (Fig. 1). The two curved lines repre-
sent two possible paths from p,, V, 7} to p,, V,, T, and the two shaded
areas correspond to the two different values of f pdV, the work done.

On the other hand, the value of f dQ/T is perfectly definite and

depends only upon V;, 7, and ¥, T;.
f dQIT = [ (RTdV[VT+C,dT|T) = [ Ravv+ [ ¢.amir
= RInV,/V;+C,InT,/T;.

If the changes of pressure, temperature, and volume are cyclical,
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so that the system returns to its original state, the value of f aQ/T
is clearly zero, (In1-4-In1), as the last equation shows, though the
work done and the total heat absorbed, f d@, need not by any means
be zero, as is seen in Fig. 2, where the area enclosed in the curve is
proportional to the work done.

What has just been said is equivalent to the statement that there
exists, for a perfect gas, a function, which may be called the thermo-

v
Fic. 2

dynamic entropy, defined by the equation dS = d@/7" (reversible),
and which depends only upon the instantaneous values of the
variables describing the state. Had the changes involved in the fore-
going argument been irreversible, then the work done in a given
expansion would have been less, so that

dQ(irrev) < dQ(rev);
but dQgey) = T'dS, by definition, and therefore

dQ(irrev) < Tds s
or d8 > d@Q/Tgrrey

So far all this has followed merely from the properties of the perfect
gas. But the perfect gas has no special status except in so far as it
is used to define the normal temperature scale. The important task,
therefore, is to show that the entropy principle also applies to other
substances.

This is done by a proof that unless the principle applied to all
substances the second law of thermodynamics could not be true.
The demonstration is as follows.
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Suppose there were a substance which could be caused to go
through a reversible series of operations and to return to its starting-
point in such a way that the value of the funection fdQ/T were
greater than zero. One may obviously choose such an amount of
this substance that the heat which it requires to take in while
traversing some defined small cycle is equal to that taken in by a
standard amount of a perfect gas going through a corresponding

chle. That is f dQ/ — f dQ
where the dash refers to the new substance. By hypothesis, however,
[a@T >0 while [dQ/T =0,

where the letter without the dash refers to the perfect gas.

Now we let the hypothetical substance, in the appropriately chosen
amount, traverse its cycle, using any work which it performs to
compress the gas, and having any work which must be done upon it
done by the gas. The two cycles are in effect coupled together. The
integral f d@Q’/T consists of a sum of positive and of negative contri-
butions from different parts of the cycle, and, since for the cycle as
a whole it is greater than zero, the positive terms must predominate.
In fdQ/T, on the other hand, the positive and negative ones are
equal. Thus for the joint system of gas and hypothetical substance
the positive contributions must predominate over the negative. But
for this joint system the positive and negative contributions to 4@
and d@Q’ cancel, since we chose the amounts of material so that these
two quantities were numerically equal, and, in the circumstances
prevailing, they are of opposite sign, the new substance forcing the
gas to traverse its cycle in reverse. Thus the positive contribu-
tions must be associated in general with lower values of 7' than the
negative ones. In other words, the system as a whole must have
taken in heat at lower temperatures and rejected it at higher tem-
peratures. This possibility is denied by the second law, and we must
therefore conclude that the assumption f dQ’/T > 0 is inadmissible.
A similar argument shows that an integral less than zero is equally
inadmissible. Hence we must conclude that for all possible substances
dQ' /T ¢y = 0. It follows by the same argument which was used in
connexion with the gas that dS or d@/T., measures a quantity
which is a function of the variables of state only. For an irreversible
change, moreover, dS = dQ/T oy > 3@/ T (actuan
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The application of this result to the formulation of conditions of
equilibrium follows in exactly the same way as for the statistical
entropy.

The principle of Carathéodory

There is yet another method by which the laws of thermodynamics
may be derived, and one which exemplifies a completely different
attitude towards the interpretation of nature.

The quantity of heat introduced into a system may be expressed
as a sum of the quantities going into various separate parts of it,

that is, 0Q = dQ,+dQy....
Each term in the sum is of the form
d@Q, = dE,+p,dV,,

where dF; itself may be expressed in terms of other variables

4B, — (%f_l)dxl-i—....
1

Thus d@) is of the general form
dQ = X, dx,+X,dxy+-...,

where X;, X,,..., are functions of the different variables which
describe the state of the whole system. For an adiabatic transforma-
tion X, dwy+ X, dyt-... = 0,

a differential equation of the type known as Pfaff’s equation.

Expressions of this kind have of course geometrical interpretations
in terms of lines and surfaces, and it is in the light of such ideas that
Carathéodory develops the principles of thermodynamics.

First we enter into certain considerations regarding a single sub-
stance. Pressure, volume, and temperature are connected by an
equation of state, any one of the variables p, ¥V, and 7' being calcu-
lable in principle from the other two. (pV = RT for a perfect gas
is the simplest possible example of an equation of state.) It follows
that d@) can be expressed as an equation in two variables, and such
an equation is in principle always susceptible of integration. The
example of a perfect gas will make this point clear.

dQ = C,dT+pdV.
Since pV = RT, p can be eliminated from the equation for @), which
becomes dQT = C,dT|T+RdAV/|V,
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after division by 7. The right-hand side is now immediately inte-
grable and yields

8 = [dQT = f(V,T).
The factor 1/7 which multiplies d@ is called an integrating factor.
Now d@ = T'dS, and therefore when d@) = 0, S = constant. For
an adiabatic change, then, d@ = 0 and d8 = 0.

These results are in no way dependent upon the second law, and
follow simply from the existence of an equation of state where two
independent variables may be chosen and the third expressed in
terms of them.

The following result is also obvious for a single substance. In any
adiabatic change all attainable states are represented by points on
a curve for which § = constant. There are other points which do
not lie on this curve, and which represent states which cannot be
reached by an adiabatic transition.

Geometrically the condition that some states are reachable by an
adiabatic transition and that others, as near to them as we please,
are not, is intimately connected with the existence of an integrating
factor for the equation d@Q = X, dx,+ X, dz,. (x, and x, were V and
T in the above example.) If there are adiabatically unreachable
points, they fill an area bounded by the line of reachable points.
This line must be described by an equation of the form

JF(V,T) = constant,

which in turn must be derivable from the equation d@ = 0 by a
purely mathematical process. Hence the existence of the integrating
factor.

The argument thus briefly outlined survives more rigid analysis
and, what is important, can be generalized to the case of more than
two independent variables. The result which emerges is this: that
if in the immediate neighbourhood of any given point, corresponding
to coordinates x,, z,,..., there are points not expressible by solutions
of the equation X,dz,+X,dz,+... = 0, then for the expression
X, do,+ X, dx,+... itself there exists an integrating factor. When such
a factor multiplies d¢), the product becomes a perfect differential,
that is the differential of a function which depends only on the
coordinates and not upon the shape of the path connecting two sets
of values of these coordinates.

Now, as has been said, the application of this geometrical and
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analytical result tells us little or nothing about the behaviour of
single substances which could not have been inferred directly from
the mere existence of the equation of state. But it involves a special
condition about the equilibrium between any two substances, and
this condition can be used as a basis for a formulation of the second
law of thermodynamics.

For two substances in contact

dQ = d@,+-dQs,
and to express this we need a three-variable equation of the form
ol ol,
4Q = (G2 + (5 o) Wk (Cut Co) T
4 A

The equations d@, = 0 and d@, = 0 individually have integrating
factors in any case, and may be written 7}dS, = 0 and 7,dS, = 0
respectively. The equation d@) = 0 has an integrating factor only if
the assertion is true that in the neighbourhood of any point repre-
senting a state of the system there are other points not accessible
by adiabatic transformations. If this assertion is in fact true, then
geometrical arguments, which are an elaboration of the simple con-
siderations outlined above for the two-variable system, show the
existence of an integrating factor for d@, which can then be written
as TdS.
When this last operation is permissible we have

Tds = T,dS,+T,ds,

for the three-variable system.

Further detailed argument of a purely mathematical nature shows
that in this case there is one universal factor, 7', for the separate
systems and for the joint system, and that dS = d(S,48;), that is,
that there is an absolute temperature and an entropy function for
all substances. From this point the derivation of the principles of
thermodynamics follows the same course as before.

In the orientation given to it by Carathéodory, thermodynamics
is made to depend upon the postulate that in the immediate vicinity
of any state of a system of more than one body there exist other
states which cannot be reached by reversible adiabatic transitions.

That this should be analytically equivalent to the second law may
perhaps be seen in a general way by reflecting that if there were no
limitation upon the direction of heat transfers, such as the second
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law asserts, then, even subject to the condition d@ = 0, d@, and
d@, could assume values corresponding to unnatural transitions, and
states could thereby be reached which in reality are unattainable.

Comparison of various methods of formulation of the second
law

There are thus three main avenues of approach to thermodynamics.
The first is that which starts from the laws of probability, and in its
origins is specially associated with the name of Boltzmann. The
second is that of Carnot, of Clausius, and of Thomson, and sets out
from experience of the flow of heat and of the convertibility of heat
into work. The third is that of Carathéodory.

A comparison of these three approaches is of more than historical
gignificance, in that it raises a question which cannot legitimately be
evaded, that, namely, of what is meant by a scientific interpretation
of the world.

It has been claimed that Carathéodory’s method avoids what
is alleged to be the unsatisfactory notion of the flow of heat, and
dispenses with cumbrous conceptions such as cycles of operations in
which heat is utilized and work performed: that it reduces the whole
argument to a clean-cut mathematical consideration of the geometry
of lines and surfaces, and that it makes only one simple postulate
about the possibility of reaching certain states by adiabatic means.

As to the matter of the ‘flow of heat’, one might ask for a definition
of the symbol d@ employed in the development, and it may be
suspected that the answer would make a rather thinly veiled use of
the notion to which exception is taken. This, however, is a rather
unimportant point.

More seriously it can be said that the rigid mathematical develop-
ment of Carathéodory’s arguments is no less elaborate than the
alternative mode of discussion, and the question could certainly be
raised whether his fundamental postulate would really be of any
interest or significance in itself were it not known to be going to lead
to the second law of thermodynamics. From one point of view it
might be regarded rather as an incidental corollary to the latter, and
the derivation of the law from the principle might even be represented
as putting the cart before the horse. Moreover, in its primitive form,
Carathéodory’s postulate is hardly open to confirmation by direct
observation.
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There is, however, no means of deciding whether the one or the
other of these different views about the matter is the more correct
one. Something that conforms to a mathematical pattern of an
established type will always appeal strongly to some people and there
are even parts of science, as will appear, where this mode of descrip-
tion seems to be the only one available. But it is well to remember
that this conformity provides a means of description only, and that
its significance is partly a matter of aesthetic judgement.

To some men of science such descriptions seem satisfying and to
some they do not, just indeed as to certain other people any purely
scientific description of the world lacks depth and cogency. Bearing
this consideration in mind, we may turn for a moment to the other
thermodynamic formulations.

It is in the forms which deal with the flow of heat and the possi-
bilities of obcaining mechanical work that the second law is linked
most closely with the everyday experience upon which science partly
rests, and with the useful arts to which it owes so much. Here per-
haps an objective criterion does exist for giving the traditional formu-
lation precedence over that of Carathéodory. If a major object of
science is discovery, then, to that extent, the most satisfactory pre-
sentation is that which proceeds by the smallest steps from the known
to the unknown. This the methods of the nineteenth-century masters
do, whereas those of Carathéodory are more of the nature of a sophis-
ticated commentary on discoveries already made by other means.

The doctrine of molecular chaos, leading to the interpretation of
entropy as probability, is in a somewhat different case again. It is
based, though not upon direct experiment, upon the primary hypo-
thesis of all chemistry, that of the existence of molecules, and upon
the assumption, common to most of physics, that these particles are
in motion. Itisrelated very closely to such facts of common observa-
tion as diffusion and evaporation, and it takes its place among the
major theories about the nature of things. In scope and significance
it is of a different order from rather colourless assertions about the
geometry of lines and surfaces constructed with the variables of state.

Yet while the geometrical method is self-consistent and, within its
limitations, complete, the statistical method is beset with problems.
One at least of these, the formulation of what constitutes a molecular
state, has already appeared. But it is precisely the examination of
this question which leads to fresh realms of discovery.
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The geometrical method has qualities about it which might seem
to appeal to purists, and as far as the setting forth of the arguments
goes, with reason. Yet these qualities are to some extent illusory.
No approximation like Stirling’s formula is used, yet the very rigidity
results in & derivation which ignores in principle the possibility of
the Brownian motion, and does not take into account the fact that,
in the last analysis, the most interesting thing about the second law
of thermodynamics is that it is not absolutely true.

Mode of application of the second law

In its usual form the second law of thermodynamics appears as a
negative principle, denying the possibility of certain kinds of change.
This being so, it is remarkable how many positive and quantitative
results, constituting landmarks throughout physics and chemistry,
are built upon it. Some general consideration of the methods by
which fruitful conclusions are drawn from the second law is therefore
opportune.

All the spontaneous processes which occur in the world are move-
ments from states where equilibrium does not prevail towards those
where it does. In these transitions the probability increases. Detailed
examination of any individual example reveals that a means can
always be devised by which the change could be opposed and the
system made to yield work in overcoming a resistance in its passage
towards its stabler final state. The greater the opposing influence,
the greater is the amount of work which can be obtained, up to a
maximum when the system can overcome no greater resistance.
When yielding the maximum work the system passes through what
is really a series of states of equilibrium between the defined initial
and the defined final state, the opposing force being adjusted at
each moment to what can just be overcome. The whole process
is then carried out in what is called a reversible or quasi-static
manner.

These ideas may be illustrated by simple examples. If a concen-
trated solution is placed in contact with more solvent, molecules
of solute diffuse spontaneously until the concentration is uniform
throughout. No work is done (provided that there is no volume
change on mixture) and the process is irreversible. But there exist
what are called semi-permeable membranes, which retain solute
while permitting the passage of solvent, and one may imagine a
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vessel provided with a movable piston permeable to solvent. If solu-
tion is placed on the inner side and solvent on the outer, the piston
will be urged outwards with a pressure, II known as the osmotic
pressure, and can overcome any opposing pressure which does not
exceed this in magnitude. If a volume dV of solvent enters the solu-
tion, the maximum work which can be performed is I1dV. This in
fact is the work of reversible or quasi-static dilution.

This quantity is, of course, of no particular significance in itself and
only becomes interesting when compared with the maximum work
obtainable in other methods of reversible dilution. Such alternative
methods do in fact exist.

Suppose the volume dV of liquid corresponds to dx gram molecules
of the substance. Imagine this quantity to be evaporated under its
own constant vapour pressure p,. The volume of vapour generated
is R7T dx/p,, and the work which is performed against the external
pressure in the course of its generation is BT dx p,/p, = RT dx. This
vapour could be condensed into the solution by a compressing force
which would expend work R7 dx in the process, this latter quantity
cancelling that obtained in the evaporation. But the vapour pressure,
Py, of the solution is lower than that, p,, of the pure solvent. Thus,
before the condensation is caused to occur, a levy of work can be
taken by expanding the vapour against a maximum opposing force
as its own pressure drops from p, to p,.

The work obtainable in this process is

A
dxe RT f dV|V = dx RTInW|V, = dx RT Inpy/p,.
12

If this levy is not taken, there is a catastrophic and irreversible
condensation of vapour when the solvent is placed in contact with
the solution with its lower vapour pressure.

The operation described provides, then, an alternative method of
reversible dilution. The maximum work obtainable by the first
method is expressible in terms of the osmotic pressure: that obtain-
able by the second method is expressible in terms of the vapour-
pressure ratio. These two quantities of work, as is easily shown,
must be equal, provided that temperature is constant.

The proof follows in a quite general form from the second law of
thermodynamics. Let the maximum amounts of work derivable from
two alternative methods of carrying out a given transformation be



62 THERMODYNAMIC PRINCIPLES

A, and A, respectively. If one of the processes were reversed, say
the second, the work done by the system as it returned to the initial
state would be —A4,. Now let the transformation take place in the
forward direction by the first mode and subsequently be reversed by
the second, the temperature being maintained constant throughout.
The total work derived from this cycle of operations is 4,—A4,. The
system returns to its starting-point and its internal energy is there-
fore unchanged. The amount of work 4,—A4, must, therefore, have
been done at the expense of heat absorbed from the surroundings.
The second law denies that work can be obtained in this way, so
that the value of 4,—A4, must be zero. It follows that 4, = 4,.

In the above particular example the two quantities to be equated
are the two amounts of work obtained by reversible dilution of the
solution. We have therefore the expression

1dV = dx RT In py/p,.

Certain simple substitutions make this equation more useful. dx
gram molecules are equivalent to M dx grams where M ;is the mole-
cular weight of the solvent. M,dx grams occupy dV c.c., so that
M,dz/dV = p,, the density of the liquid solvent. Thus

I = Egﬂln&)
M, »’
an equation which proves to contain a major part of the theory of
dilute solutions.

Free energy and related functions

When a solution is diluted reversibly, work, as has been seen, may
be derived from the process. The total volume of liquid, solvent plus
solute, may change only negligibly. When the volume can be re-
garded as constant, it is expedient to represent the maximum work
as the decrease, —AF, in a potential function, ¥, which is called
the constant volume free energy. When, on the other hand, the pressure
is constant and the volume changes, the maximum work may be
represented as the decrease, —AG, in another potential function, @,
the constant pressure free energy. F and G are called thermodynamic
potentials, and exist in general for all systems. The idea underlying
their use is simply that if the maximum work is independent of the
nature of the reversible process by which a system passes from a
given initial to a given final state, it represents the decrease in some
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inherent capacity of the system to do work. Such a capacity is what
is normally called a potential.

In the particular example which was quoted in the last section
the work is derived partly, or, with a sufficiently dilute solution,
entirely from the heat of the surroundings. This is known from the
fact that there is no heat change on further irreversible addition of
solvent to a solution already dilute, so that the internal energy must
be unaffected by the mixing. The inherent improbability of a con-
version of heat into work in the reversible dilution is exactly com-
pensated by the increased probability of the spatial distribution of
the molecules, which become more randomly scattered as the solute
spreads through the larger volume of solvent.

The theorem of the equality of the maximum work derivable iso-
thermally from alternative reversible transformations is applicable in
many wajys, since, as has been stated, all spontaneous processes can
be made to yield work. That is to say, they all occur with diminu-
tion of free energy. The exercise of imagination provides means for
expressing the maximum work in terms of very varied physical
properties, and the equating of the various values leads to connexions
between these properties in formulae which are often of great
importance.

The scope of the application of these ideas is widened still farther
when variation of temperature is brought into the picture. For this
extension a preliminary codification of formulae and equations is
desirable.

The following quantities are conveniently introduced:

U = internal energy of a substance or system,
H = U+-pV = heat content.

Changes in U and H determine the heat taken in or evolved when
a change occurs in a calorimeter, at constant volume or at constant
pressure respectively, under such conditions that no work is done
(other than that of simple expansion).

S = entropy.
If a quantity of heat d@ is added to a system, the balance-sheet
is given by dQ = dU+pdv,

that is to say, the heat supplies the increased internal energy and
the work of expansion.
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By the second law, if the process is reversible, that is, so long as
equilibrium conditions prevail,

dQ = TdS.
Therefore TdS = dU+pdV. (1)
Since in general dT8)y=TdS+84dT
and d(pV) = pdV+Vdp,

equation (1) can be written
dU—d(T8) = —pdV—-84dT,

so that dU—-T8) = —pdV—8dT.

For any small displacement from equilibrium in which dV and d7
are zero YU—TS8) = 0.
We write U—-TS =F,

where F is defined as the constant volume free energy, so that for
the small displacement from equilibrium

dF = 0.
Since, for displacements of systems not in equilibrium, § increases,
F must decrease. That is to say, in spontaneous changes at constant
temperature and volume, the free energy decreases.
Equation (1) can also be written

adUA-d(pV)—d(T8S) = Vdp—8dT,
so that dU+pV—-T8) = Vdp—8dT
or dH-TS) = Vdp—8dT.
For small displacements from equilibrium at constant temperature
and pressure dp and d7' are zero, so that

d(H—-T8) = 0.
We write H-TS = G,

where @ is defined as the constant pressure free energy, so that the
equilibrium condition becomes d@ = 0. In spontaneous changes G
decreases.

The variations of F and @ with temperature are specially im-
portant.

In general dF = —pdV—8dT.

When F is expressed as a function of volume and temperature, its
total variation is the sum of the partial variations which it would
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suffer by change of each of these separately. In the notation of
partial differentials

a7 — (av) dV—{—(aT) ar,

where (0F/8V ), represents the rate of change of F' with V at constant
temperature and (6F/oT'); that of ¥ with T' at constant volume.
Comparison of the last two equations shows that

or
(ez), =~
but F=U-TS,
or F—-U
and therefore (ﬁ)y =—7
oF
or F—U~= T(OT) @)
Similarly dG = Vdp—S8dT
04
and i0 = (ap) d +(3T) 4T,
0@
so that (ﬁ)p = —8,
but G=H-TS.
4G G—H
Thus (a_'ﬁ)p =~
or G—H=— T(ggf) (3)

The importance of equations (2) and (3) will presently appear in
various ways.

Entropy and volume

Another useful equation which may be derived by rearrangement
of the fundamental equation (1) is that giving the variation of en-
tropy with volume.

Since dF = —pdV-—-84dT,

and since in general

dF = (av) dV—]—( )dT,

5293 '
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it follows that

oF oF
(517)1'= —p and (ﬁ)Vz —48.

By the well-known property of partial differentials

@ (oF) _ o (oF
eT\ov) — ev\er/)
op\ _ (o8
so that (ﬁ)rf = (51—7)1'

Systems of several phases or components

Before embarking on a brief survey of what thermodynamics has
to say about the general pattern of physico-chemical phenomena it
will be convenient to deal with certain formalities and one or two
general principles.

Normally the systems which come under consideration consist of
several substances or phases. These may change one into the other
by physical or chemical processes, and we are often concerned with
the free energy or entropy differences accompanying such trans-
formations as solid into liquid, or hydrogen and oxygen into water.
Energies, entropies, and free energies are additive, so that in the
following chemical reaction, for example:

2H,+0, = 2H,0

the total energy change is:

(energy of two gram molecules of steam) minus (energy of two gram
molecules of hydrogen plus energy of one gram molecule of oxygen).

This may be written in the following conventional way:

2UH20_(2UH2+ Uoz) = z nlU = AU,

the reaction products being given a‘positive sign and the initial
substances a negative one. The total change AU has a positive sign
when the energy of the system is greater after reaction than before,
that is, when there is absorption of heat if the reaction takes place
in a constant volume calorimeter without performance of any kind
of work.

With this convention the equations (2) and (3) of p. 65 can be
applied to express the changes of free energy accompanying physical
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or chemical transformations. They assume the forms:

_ 1 9(AF)

AF—AU = T =5 (4)
_ 1 (0AG)

AG—AH = T257, (5)

the A referring to the finite increase which occurs in the whole com-
posite system as the result of the change.

Entropy of gas mixtures

Entropy is an additive function, but a special question arises in
connexion with the entropies of mixtures of gases. Here, if the gases
obey Boyle’s law, the total entropy is the sum of the entropies which
each gas separately would possess if it occupied the whole volume

filled by the mixture.
a b a b
B
X+Y X Y
D C C
D
d c d c

n (2)
Fi1c. 3

This result follows at once from the fact that the probability of the
state is the product of two other probabilities which, in so far as the
molecules do not exert appreciable influences on one another, are
independent. Macroscopically the result follows from considerations
which can be more clearly envisaged if the idea of a semipermeable
membrane is introduced (though of course the conclusion implies
nothing at all about the real existence of such devices). In Fig. 3
ABCD and abcd are two containers which move with the aid of
suitable seals and joints from position 1 to position 2 and back. The
wall BC is semipermeable to the gas ¥ only, and ad to X only.
Movement from 1 to 2 and back can occur without performance of
work and without absorption or evolution of heat. Thus there is no
entropy change in this type of mixing or unmixing. The entropy in
condition 1 is the same as that in condition 2, and the principle stated
above is evidently true. This case, it is to be noted, is quite different
from that where two gases intermingle in such a way that each ex-
pands from its own original volume to one which is the sum of the
two. In such conditions the entropy would of course increase.
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Variation of masses and proportions of components

With a substance in one phase the changes which oceurin 8, F, G
and other thermodynamic quantities are due to variations of tem-
perature, pressure, or concentration. In a system consisting of more
than one phase, or of more than one chemical compound, there are
further important possibilities.

If a mass, dm, of a solid phase, for example, is transformed into
liquid, then there is a gain of G,dm units of free energy on account
of the fact that dm of a phase not previously present and contributing
@, per unit mass appears: and there is a corresponding loss of G| dm
units on account of the bodily disappearance of the mass dm of the
solid phase with free energy G, per unit mass. Thus

dG = G,dm—G dm.

Similarly if dn , gram molecules of a substance 4, the free energy
of which is G4 per gram molecule, react chemically and are replaced
by dng gram molecules of B, the value of d@ is given by

provided that A and B themselves constitute phases in which G,
and G5 are independent of concentration terms.
Still more generally we may write

dG = ;;7)'% d’ml—}—aa—”(jz dmy+...,
where 2G/om,, ... may individually be functions of all the concentra-
tions in any given phase.

Similar expressions of course apply to dF.

It should be observed that when G is written with a subscript,
G,, G,,..., it refers to the free energy per unit amount of a substance
or phase. If we have, for example, a pure solid phase, ¢, means just
the same as 8G/om,, m, being the mass of solid present. When con-
centrations change, 0G/omx can still be written G5 as long as one
remembers that Gx is a function of concentration.

Activity
The free energy function, @, is defined as H—T8. For a perfect
gas the entropy is of the form

8 = C,In T+ R1n ¥ - const.
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If the concentration, ¢, is introduced in the form ¢ = 1/V, then at
constant temperature S is of the form (const.— Rln¢). Therefore ¢
is of the form G = G+ BT Inc, where G, is a constant.

For substances other than perfect gases it is convenient to write

G = Gy-+RThha,

where a is a function of the concentration which is called the activity.
For a perfect gas @ = ¢, and for other substances it is a function of
¢—in general quite a complicated one. Nevertheless, except in special
circumstances, @ at least varies in the same direction as ¢, increasing
and decreasing with it, though in no simple manner.

Forces and ordered structures

The particles of which the world is assumed to be built up are
conceived to be in chaotic motion. But this cannot be the whole
story, or everything would consist of rarefied gas. Solids and liquids
testify to the existence of ordering and agglomerating forces. At the
present stage the nature of these is unknown. The union of atoms
to give molecules depends upon attractions of another kind, also
unknown. The inquiry into the origin of these mutual influences has
to pursue a route other than that of statistics and thermodynamiecs,
but for many purposes the forces are sufficiently characterized, both
experimentally and theoretically, in terms of the energy changes
which manifest themselves when they operate. As is now known,
atoms are composed of electrical particles, molecules of atoms, solids
and liquids of agglomerations of molecules (or occasionally atoms).
At each level of this hierarchy of structures there is a balance between
two tendencies: that, on the one hand, for the random motions to
dissipate the constituent particles as widely as possible through the
available space, and that, on the other hand, for the forces to order
them into patterns possessing a minimum of potential energy.

These two opposing effects are reflected in the two terms of the
free energy equations. For displacements from equilibrium, at con-
stant pressure and constant volume respectively, we have, if ar = 0,

d@ = d(H-T8) = 0,
dF = d(U—-T8) = 0,
so that, S being maximal at equilibrium, & and F are minimal. At

a given temperature the influence of A and 8 or of U and § are
opposed to one another.
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From what has been said of the nature of the problem and
from the character of these thermodynamic functions it is obvious
that they will define important properties of physical and chemical
equilibria. Among the major problems which confront us in the
attempt to see how the world emerges from chaos are three: first,
that of the equilibrium between gases, liquids, and solids, and in
general of the equilibrium between any number of gaseous and con-
densed forms; secondly, that of the relations between systems of
molecules which pass from states of segregation to states of ad-
mixture, in other words, the process of solution; and thirdly, that of
the equilibrium between free elements and their compounds, and in
general between the reacting substances and the products in any
chemical change.
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AGGREGATION OF MOLECULES TO
SOLIDS AND LIQUIDS

Matter in various states of aggregation

WHEN molecules pass from one phase to another, for example, from
the solid to the gas, the intensity of the binding forees changes and
the potential energy is altered. As the molecules become freer, energy
is absorbed, and constitutes what is measured calorimetrically as
latent heat.

For the purposes of a statistical or thermodynamic treatment of
phase equilibria the magnitude of the forces themselves is sufficiently
characterized by the value of AU or AH accompanying the transition
from one phase to another.

The conditions under which condensed phases are formed from
vapour, or one condensed phase is transformed into another, are
subject to important general laws. Suppose two phases of a single
pure substance coexist and suppose that the first is capable of passage
into the second with absorption of energy; that is, AU and AH are
positive. This would apply, for example, to the transition from solid
to liquid, where the potential energy increases because the orderly
orientation of molecules is destroyed, or to the passage from a con-
densed phase to the vapour state, where the potential energy in-
creases because the molecules have been separated against the action
of the attractive forces.

We may first examine the conditions under which two phases can
coexist at constant pressure. Suppose drn gram molecules of sub-
stance pass from phase 1 to phase 2. The change in free energy is
given by

dad = (G,—G,) dn,

G, and @, being the respective free energies per gram molecule in
the two phases. For equilibrium d@ = 0, so that

@, = G,

(,— @G, according to the convention explained above, is written AG,
so that, under conditions of stable coexistence, AG = 0.
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From the definition of G itself
Gy— Gy = Hy—H,—T(8,—8,),

or AG = AH—TAS.
When AG == O, T el anquil'
Thus J‘quuil == AH/AS.

Now AH and AS are both single-valued functions of temperature,
and, therefore, AH, on the one hand, and TAS, on the other, when
plotted against temperature are respectively represented by lines.
Only at the intersection of these two curves can TAS = AH and
AG = 0. Thus, for a given pressure, there exists a single equilibrium
temperature at which G; = G,. At any other temperature these two
quantities are not equal and no equilibrium is possible.

If out of one gram molecule of a substance a fraction « exists in
phase 1 and (1—a) in phase 2, then we have

G = oG+ (1—a)G,,

and @ reaches its minimum value corresponding to equilibrium either
when « = 1 or when « = 0, according as G; or @, is the smaller,
except of course when G} = G,.

If, therefore, we consider a given pressure, molecules of a pure
substance will pass all into one phase or all into the other, except at
a single temperature where a given pair of phases can coexist, that
is at the melting-point, condensation point, or transition point. At
this equilibrium temperature, since & = G,, G remains at its mini-
mum for all values of «. Thus the equilibrium does not depend upon
the relative amounts of the two phases present.

This result corresponds, of course, with ordinary experience, the
temperature of melting of a pure substance, for example, remaining
constant so long as solid and liquid are both present.

Variation of pressure: vapour-pressure formula

The question now arises as to what happens when the constant
pressure at which the phase transition occurs is altered from one
value to another. The influence of variation of pressure may be

treated as follows.
Let dn gram molecules of a substance pass from one phase in which
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the molecular volume is ¥} to another phase in which it is ¥,. The
volume change is given by
V= (,—V)dn,
and the heat absorbed by Adn, where A is the molecular latent heat.
The change in entropy is d.S, where
o8
s — (6 T) dT 1 (W) av.

In this example the temperature stays constant and

o8
a8 = (W)T av.
If the system remains in equilibrium, then by the general law
d8 = dQJT.
28 dQ _ Adn _ AdvV
Therefore (W) av = = (V 7

By the result on p. 66,

7). = G,

op A
h op\ _ A
0 that (@T)V =TT

Since at the equilibrium temperature the proportion of the phases is
immaterial, we may write simply

dp _ A
ar ~ (—)T’
or dp _ AH
aT — TAV’
since V,—V; = AV, and A is a special value of what in general is
represented by AH.

The equilibrium temperature will vary with pressure, and in a
direction which depends upon the sign of AV.

When liquid or solid passes into vapour, AV is positive and p
increases with 7. With rising temperature the equilibrium pressure
becomes higher: this is the well-known increase of vapour pressure
with temperature.

The last equation can be thrown into a convenient approximate
form with the help of two assumptions, namely that the volume of
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the condensed phase is negligible in comparison with that of the
vapour, and that the vapour obeys the laws of perfect gases. In these
circumstances AV = ¥, and

dp __ pr. ldp A
dT — RT¥ pdT RT?
dlnp A
adT — RT?

If, further, the variation of the latent heat with temperature is as-
sumed negligible in comparison with that of the vapour pressure
itself, the last equation may be integrated in the simple approximate
form | o x

np = C—zp,

where C is a constant. Thus the logarithm of the vapour pressure
should be a linear function of the reciprocal temperature. Over
moderate ranges this relation is in fact rather well satisfied.

For other phase transitions occurring in the sense for which AH
is positive, the sign of AV may be positive or negative and, accord-
ingly, the equilibrium pressure increases or decreases with rising
temperature; or, if the pressure be regarded as arbitrarily controlled,
the equilibrium temperature rises or falls with increasing pressure.
In the transition from ice to water, for example, there is a contrac-
tion, AV is negative, and hence the melting-point falls as the pressure
increases.

ie.

Coexistence of several phases

Most substances can assume the three forms: solid, liquid, and
vapour, and we may inquire under what conditions the three can
coexist. For any given pair of phases at a selected pressure there is
in general a definite equilibrium temperature (with an exception
which will be referred to later). For solid and liquid the equilibrium
temperature may be plotted as a function of pressure, and yields a
definite curve. For liquid and vapour there is a corresponding curve,
neither identical with nor parallel to that for solid and liquid. The
two lines will in general, therefore, cut at a definite point, represent-
ing a fixed temperature and a fixed pressure. Under these conditions
the three phases can coexist stably. They can do so nowhere else.
The point of coexistence is called the triple point.
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When there are several components in the system, fresh possi-
bilities open out. We may begin by considering two substances 4
and B which as solids are immiscible, but which in the liquid state
are miscible in all proportions, a behaviour exemplified by many real
pairs. For equilibrium of solid 4 with liquid we have

Goa,py Iy — Gy dng = 0 (1)
and for the equilibrium of solid B with liquid
Gop,0 Ing—Gypdng = 0, (2)

where the subscript 2 refers to the liquid phase and the subscript 1
to the solid phase. dn, and dny represent the amounts of 4 and B
respectively which pass from one phase to the other in the small dis-
placement from equilibrium by which the constancy of G is tested.
Gy 4, is the free energy per gram molecule of 4 in the mixed liquid
at the prevailing composition, and Gy 4 that per gram molecule of
B. Both these latter quantities are functions of the composition of
the liquid, but it is to be noted that the fixing of the value of one
automatically fixes the value of the other. Gy, and Gy contain
no concentration terms and neither depends upon the ratio of 4 to
B in the system as a whole, since each refers to a pure solid phase.
Since G4 p) has a different value for each proportion of 4 to B, there
will be a whole range of temperatures at which equation (1) can be
satisfied. Thus solid A can exist in equilibrium with liquid at tem-
peratures which vary with the composition of the system. Similar
considerations apply to the solid B. If a fixed temperature is chosen
(within a certain range), a composition of liquid can be found which
will permit equilibrium with A, but this composition, though determin-
ing Gyg 4, Will not in general permit equilibrium with B. For the
simultaneous equilibrium of the two solids with the mixed liquid at
a given pressure it is necessary to choose from the range of com-
positions possible for 4 and B separately that one which suits both
together. This being fixed, the temperature is also fixed. Thus the
two solids can only coexist with liquid at one particular temperature,
which is known as the eutectic temperature.

The situation is again changed if the two substances 4 and B are
miscible in the solid state. For equilibrium at constant pressure we

now have
Gou,p— Gru,p = 0,

GZ(B,A)_GI(B,A) =0,
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where Gy, 5 and Gy 4 are now functions of composition as well as
of temperature. For any given temperature (within a certain range)
a composition can be found which corresponds to equilibrium, since
now the concentration in the solid phase as well as that in the liquid
can adjust itself in such a way that the two equations can be satisfied
together. The equilibrium temperature will vary continuously be-
tween the melting-points of the separate substances.

b
b

a
T T

&

c ¥ a
100% A 100% B 100% A 100% B
Fia. 4 Fia. 5

The relations between solid and liquid to which these principles
lead are shown in Figs. 4 and 5. In Fig. 4 a is the melting-point of
pure A, b that of pure B. If there is no miscibility in the solid state,
the composition of solid must correspond either to 4 or to B, except
at the eutectic, where it can correspond to any proportion of the two
solid phases. Thus composition of solid follows the line axzyb. That
of liquid follows ach.

Where miscibility in the solid phase is complete, the relations are
as shown in Fig. 5, where the upper line represents the composition
of the liquid phase and the lower line that of the solid in equilibrium
with it at a given temperature. Variants of this case are shown in
Figs. 6 and 7, and an intermediate case where the miscibility in the
solid state is partial is shown in Fig. 8.

Fig. 4 illustrates the fact of common observation that the melting-
point of each pure component is lowered by the addition of a second
substance. That it should be changed has already been shown: that
it should specifically be lowered is a matter for more detailed con-
sideration.

The condition for equilibrium of the pure substance is that G, = G;.
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oG, oG-
Also, (Wz)p — 8, and (ﬁl‘)p — &,
Now since heat is absorbed when solid changes reversibly into liquid,
the entropy of the liquid is the greater, that is, S, > 8,. Therefore

T T
100% A 12007 B 100% A 1002%B
F16. 6 F1a. 7
T
100%, 1002
A B
Fia. 8

@, decreases more rapidly with rise of temperature than @,. If, then,
the temperature drops, the free energy of the liquid increases relatively
o that of the solid. The two phases are in equilibrium at the melting-
point, so that as the temperature drops below it there develops a
positive tendency for the liquid to change into solid with decrease
of free energy. This tendency could be counteracted and the equi-
librium could be preserved if the free energy per unit quantity of the
liquid were reduced in some compensating way. A simple way is to
add a foreign substance to the liquid. Free energy in general is
expresgible in the form ¢ = G+ RT In a, where a is a function which,
except in quite special circumstances, increases with concentration
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(p. 69). If the pure liquid phase of 4 is diluted by a substance B
the value of Gy, is lowered. The addition, therefore, provides the
compensating influence which, by decreasing the free energy of the
liquid phase, allows equilibrium with the solid at a temperature
below the normal melting-point.

General rules of phase equilibrium

Solid, liquid, and vapour of a given substance can, as has been
seen, coexist in equilibrium only at a fixed temperature and pressure.
Such a system is said to be non-variant or to possess no degrees of
Jreedom. Solid and liquid can coexist over a range of temperatures,
provided that for each temperature an appropriate pressure be chosen.
Liquid and vapour can be in equilibrium at a continuous series of
pressures, each corresponding to a definite temperature. These
systems are called monovariant, and are said to possess one degree
of freedom.

The addition of another substance to a given system increases the
number of degrees of freedom. For example, with two substances
present in the liquid phase, a given solid can exist in equilibrium
with liquid over a whole range of temperatures at a given pressure,
and not at the normal melting-point only: the pressure can be varied
independently. Thus, while in the one-component system there is
only one degree of freedom when two phases are present, for the two-
component system there are two degrees of freedom. The extra
variability is due, as is clear from the foregoing discussion, to the
existence of an adjustable concentration in the liquid. In general,
we may infer that when the number of components, C, is increased
by one, the number of degrees of freedom, F, will be increased by
one also. In other words, for a given number of phases in equilibrium
we should suspect the relation, #—C = constant.

Furthermore, as was seen above, if there is one solid phase and one
liquid phase in the two-component system A, B, the equilibrium is
possible over a range of temperatures even at one pressure, whereas,
if the two solid phases are separately present, the equilibrium, for
a given pressure, is possible at one temperature only. Thus, for a
given number of components, the addition of a new phase reduces
the number of degrees of freedom by one. This result, too, is general,
and we may well suppose that P+ F = constant, where P is the
number of phases.
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Combining these two tentative rules, we obtain
P+ F—(C = constant.

Since for a single substance, three phases coexist in an invariant

system, 3-+0—1 = constant,

whenece the constant is evidently equal to 2, and the above induction
takes the form PAF = C+2.

This is known as the Phase Rule.

A more formal derivation is possible and runs as follows. For each
pair of phases, as has been seen, there must be an equation expressing
the change in free energy which accompanies the virtual transfer of
any given component, If there are P phases, the number of inde-
pendent pairs is (P—1). With C components there will be C equa-
tions for each pair of phases, the total number being C(P—1). To
define the composition of the whole system the concentrations of
C—1 components in each phase must be known (the remaining con-
centration always being calculable by difference). Thus there are
P(C—1) concentration variables. To these must be added tempera-
ture and pressure, making P(C'—1)+2in all. The C(P—1) equations
define a corresponding number of variables, leaving

P(C—1)+2—0(P—1)

to be assigned at will. These assignable variables constitute the
degrees of freedom. Thus

P(C—1)+2—C(P—1)=F,
or PL+F = (CH4-2.

The Boltzmann potential energy relation

So far the equilibria between phases have been considered in the
light of thermodynamic principles. These, of course, are only a
formal embodiment of the statistical laws governing the behaviour
of large numbers of particles, and the major results which they pre-
dict should be interpretable directly in terms of the molecular-kinetic
picture. Though sometimes more difficult to carry through in detail,
the molecular interpretations are of considerable interest in them-
selves. All are variations on the familiar theme that the random
motions of the molecules tend by themselves to dissipate matter into
the state of rarefied gas, while attractive forces tend to collect it into
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condensed phases. Equilibria result from the opposition of these two
tendencies.

The first departure from random distribution is expressed in the
Boltzmann potential energy law. If in any region the potential
energy of molecules differs by an amount AU from that in the rest
of space, U, the molecules will cluster there more or less densely in
the ratio n/n, such that

n = nge-AUKT,

If AU is negative, that is, if the potential energy is lower in the
special region, they cluster more thickly.

The proof of the theorem is as follows. From the general statistical
law, the relative numbers of molecules in two states of energy ¢; and

€;, respectively are
'Nj e—€j/ kT

N — —ek]ﬁ' —_ e—(Ej—Ek)lkT'
k€

If the state j differs from the state & only in the value of the potential
energy, 8o that ¢, = ¢;+ U, and ¢; = ¢;+Up+AU,

Ej“‘é'k = AU,

N; — o-AURT,

N,
The last expression is quite independent of the value of ¢;, so that
N; and N, may, for all internal energy states of the molecules, be
replaced by the general values # and n,.

The existence of attractive forces leads to a certain condensing
tendency, since potential energy runs down as attracting molecules
approach one another. The average disturbance of density (or orienta-
tion) is insignificant as long as AU is small compared with k7. When
temperature drops there comes a point at which complete condensa-
tion or orientation occurs and a phase change results.

The nature of the phase changes and the conditions of equili-
brium between matter in different states is a subject for detailed
examination.

Kinetic consideration of equilibrium between different phases
of matter
In the consideration of actual phase changes evaporation is the
simplest case with which to begin. Consider the surface which
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separates a liquid from its vapour. If there is a condition of equi-
librium, the rate of condensation of molecules from the vapour equals
the rate of evaporation from the liquid. Since the surface of separa-
tion of the two phases is unchanging, the rate of evaporation at a
given temperature is constant.

The rate of condensation is, however, proportional to the pressure
of the vapour. The latter increases until the rate of condensation
equals the rate of evaporation, at which point

¢ =GP,

where ¢, and ¢, are functions of temperature only. Thus p = constant
at any given temperature. For small changes of temperature ¢, does
not change very much, the rate at which molecules return to the
surface being proportional to their speeds, which in turn vary as 7.
The rate of evaporation, however, is determined by the fraction of
molecules in the liquid which have enough energy to escape from
the attractions of their neighbours. This fraction is approximately
proportional to e-NET, where A is the latent heat.

Thus C; e")‘/RT = Cy P
approximately, or p = const. e-NET,
dlnp A
whence T =TT

the formula which has already been derived (p. 74).

Next we may discuss melting. When the molecules of aliquid orient
themselves into regular geometrical arrays, solidification occurs, and
the potential energy (which decreases in liquefaction of vapour) runs
down still farther. To escape from solid into liquid, molecules require
extra energy (derived from their neighbours by the hazards of colli-
sion), while to pass from liquid to solid, molecules need to assume
special orientations. The two corresponding rates of transfer are
separate and independent functions of temperature, and could be
plotted as curves. Where the lines cut equilibrium is possible. This
is at the melting-point. The rates are separately and independently
influenced by pressure, whence the functional relation between melt-
ing-point and pressure.

The balance liquid < solid is affected by pressure, and that of

5203 G
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liquid = vapour by temperature. By choosing the correct tempera-
ture a vapour pressure can be defined which will be equal to the
equilibrium pressure for the system solid < liquid at that same tem-
perature. This defines the position of the triple point.

The entropy of a solid is less than that of a liquid, a fact which is
reflected in the evolution of heat when the liquid solidifies. It is an
expression of the ordered state of the solid, in which the regular
orientation of the molecules contrasts with the more random con-
figuration of the liquid.

Certain aspects of the phenomena of condensation and crystalliza-
tion which the thermodynamic discussion ignores are accounted for
by kinetic principles. In the last paragraphs the balancing of the
rates of transfer from phase to phase was assumed to occur at plane
interfaces which do not modify their character as the change of state
proceeds. This assumption is perfectly correct when the equilibrium
involves large amounts of established phases. Such quantities, how-
ever, are not present during the first formation of an entirely new
phase; and the conditions become very different, with the result that
special phenomena make their appearance.

If droplets of liquid are to form in the midst of vapour, or minute
crystals in the midst of liquid, they must grow from nuclei which, in
the first instance, have to be produced by the chance encounters of
molecules with appropriate velocities and orientations. The incipient
nuclei are subject to two opposing influences. In virtue of the attrac-
tive forces, they tend to grow, and in virtue of the thermal motion
they tend to disperse. These tendencies exist at all temperatures, but
above the point of condensation or crystallization they come into
balance while the agglomerates are still few, minute, and transitory.
The existence of the nuclei amounts to no more than an increased
probability of finding small groups of molecules closer together than
they would be in the absence of attractive forces, and is a direct
consequence of the Boltzmann principle.

As the temperature falls the chance of a considerable gathering
together of molecules increases. Growth of the clusters brings about
two effects. First, the tendency to redisperse becomes greater with
the number of independently moving molecules in the aggregate.
But, secondly, the tendency to capture yet more molecules increases
also, since the decrease in potential energy accompanying capture is,
up to a point, greater the more complete and ordered the central
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nucleus has become. Thus, on growth of a nucleus, one factor favours
and another antagonizes still further enlargement. At high tempera-
tures the first factor predominates, at lower temperatures the second.
There may be a definite size below which a nucleus will redisperse
and above which it will grow. The lower the temperature the smaller
is the critical size.

The temperature at which spontaneous condensation or crystalliza-
tion will occur is ill defined. It depends upon the probability that
somewhere in the system there is formed by a series of chance en-
counters a nucleus which exceeds the critical size and is large enough
to grow continuously rather than to redisperse. Crystallization or
condensation thus becomes more likely the lower the temperature,
the longer the time allowed for the consummation of chance events,
and the greater the volume in which the chances are awaited. Large
quantities of liquid are in fact much less given to supercooling than
small ones, and if a considerable number of small tubes of liquid are
sealed up and left at a constant temperature somewhat below their
melting-point, one can observe a functional relation between the
time of waiting and the number which have crystallized at the end
of it.

If there is present in the system a foreign body capable of attract-
ing the molecules which are to condense or crystallize, it may consti-
tute a sort of base on which a veneer of the new phase is deposited.
Small numbers of molecules then imitate a nucleus which could only
have been formed from much larger numbers in the pure substance.
Hence the efficacy of dust particles and the like in promoting phase
changes.

Prineciples similar to those which provide the interpretation of
phase relations for single substances apply to the equilibria existing
in systems of several. They can be illustrated conveniently by
reference to the melting of a pair of substances, 4 and B, for the
two cases respectively where these are immiseible and completely
miscible in the solid phase, though miscible in all proportions in the
liquid. The pressure may be taken as constant.

Pure solid 4 and pure liquid can coexist at one temperature only,
that, namely, at which the rate of melting at the interface equals
the rate of crystallization. These opposing rates are functions of
temperature and are equal only for a single value of the latter. If
a liquid phase of 4 is diluted by the addition of B, the rate of passage
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of molecules of 4 from the solid to the liquid will not be sensibly
affected, but the rate of passage from the diluted liquid to the solid
will usually be lowered. Thus passage from solid to liquid will come
to predominate and melting will occur. In other words, the melting-
point of 4 will be lowered by the presence of B. If the temperature
is reduced, both the opposing rates fall, but the rate of passage from
solid to liquid falls more than the reverse rate (since it depends upon
the probability that molecules should acquire enough energy to
escape from the ordered array of the solid state). Thus a new balance
can be established at a lower temperature. The greater the reduction
of the equilibrium temperature, the greater is the proportion of B
required to produce it. As this proportion mounts there comes a
point where there is enough in the liquid to hold in check the loss
of B molecules from a crystal of solid B itself. Two solid phases now
occur in the equilibrium state, and no further adjustments are pos-
sible while they persist. The temperature remains set at the eutectic
point: 4 and B can crystallize out together in the proportion which
leaves the composition of the liquid constant. A degree of freedom
has disappeared. If more B is added to the liquid it occasions too
great a rate of deposition on the solid and equilibrium cannot be
maintained unless the temperature is raised. If this is done, solid 4
has to disappear, there being too little 4 in the liquid to balance its
solution.

When, in contrast, 4 and B are miscible in the solid state, both
may exist in each phase over a complete range of temperature.
Suppose the rate of passage from solid to liquid at a given tempera-
ture balances the reverse rate for each of the two substances. Now
let the temperature fall so that the balance is disturbed. Suppose 4
now crystallizes faster than it dissolves. The liquid becomes depleted
of A and the solid enriched until a new steady state is reached in
respect of A. This would in general lead to an 4/B ratio in the liquid
quite incompatible with the existence of pure B, or with any arbi-
trarily chosen proportion of B in the solid. But, since the concentra-
tions of B both in liquid and solid are now independently adjustable,
a new equilibrium for B also is attainable, In brief, any maladjust-
ment of the relative rates in either direction is rectifiable both for
A and for B by changes in their proportions in liquid and in solid,
while any general disturbance of rate of melting relative to rate of
crystallization is rectifiable by change of temperature.
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Quantitative discussion of melting-point lowering: illustra-

tion of some general principles

It is now desirable to consider quantitatively the influence of a
substance B on the melting-point of another substance A. The
essential methods are illustrated, and the result assumes a con-
veniently simple form if attention is restricted to the special case
where B is present in small proportion in a large amount of 4, B
thus constituting a ‘solute’ and 4 a ‘solvent’. A and B are further
assumed to be miscible in the liquid state but not in the solid
gtate.

The principle of the calculation will first be stated. At the equi-
librium temperature we have

AG = G,—G, = 0.

For pure 4, as has been seen, (, and @, are unaffected by the extent
of the transformation, since affluence of fresh molecules of a uniform
species to solid or liquid makes no difference to the properties of
either. When the solid consists of pure 4 and the liquid is a mixture,
G, retains its constant character but G, becomes a function of the
proportions of 4 and B. In particular, it will be shown that the
contribution to G from A drops as A becomes admixed with B.
Addition of B thus lowers G, without changing @,. At the melting-
point of pure A, therefore, AG will no longer be zero and the equi-
librium is disturbed. A@ in fact becomes negative and there is a
decrease in free energy accompanying melting, which thus tends to
occur spontaneously. A, however, depends upon temperature, and
the departure from zero, which may be written §(AG), can be can-
celled by a compensating change in AG brought about by a reduction
in temperature. The change in temperature, 37, required to com-
pensate the disturbance caused by the presence of B, measures the
lowering of melting-point.

The detailed calculations fall into several parts, some of which
involve results of general importance and validity.

1. We first require to know how the contribution to G from two
components of a mixed phase are related. In general we may write

where n, and np are the respective numbers of gram molecules and
G, and G are the respective contributions per gram molecule.
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G4 and Gy are themselves functions of the proportions of 4 and B,
though not of their absolute amounts. Aslong as n, and ny are varied
in such a way as to keep a standard ratio, G, and G5 remain constant.

Thus A6 = G, dny+Gpdny

On the other hand, as a quite general mathematical relation we have
dG = Gydn,+Ggdng+n, dG+ngdGy.

Comparison of the last two equations reveals that

whence a6, = —"BaG,.
(7

This relation is important, since for a dilute solution of B there is
a simple expression for changes in G, whereas for the purposes of
the present calculation it is the corresponding changes in G, which
are required.

2. As has already been shown (p. 69),

G = Gy+RTIna,
where a is the activity, and for a substance obeying the gas laws
a = ¢ the concentration.

It will be shown in due course that for a dilute solution also @ may
be replaced by ¢. Moreover, apart from a constant which may
be transferred to the G, term, Inc is, for a dilute solution, equal to
to Inx, where z is the molecular fraction of the solute:

xp = np/(ng+ng) ~ ng/n,.
Thus for the solute B in the liquid
GB - GOB+RTlan'

From the result of the previous paragraph,

G, = _:_j dGp = —uy RTdInzy.
Thus G, = —RT f xpdInzy = constant— BRTxp.

Thus the change in G, as the molecular fraction of solute increases
from zero to 2y is given by
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The addition of B does not affect ; which refers to the solid.
The change in AG is thus due to the change 3G, and for the present
purpose the change in AG due to B may be written

S(AG) = — RTxy.

This must be compensated, if equilibrium is to be preserved, by a
change of temperature.
3. It now remains to calculate the variation of AG with tempera-
ture. The result follows from the general equation
2(AG)

AG—AH = T 2020,

Division by T2 and rearrangement gives

15AG) AG  AH

T T T2 T T2’
or 9 (AG) _AH
oT\ T 72"

For small changes of temperature therefore

AG\ _AH
8(_T—) — s,

or S(AG) = _A_Tlf 5T.

4. It now remains to choose 37 so that the change in AG caused
by the presence of B is compensated. Thus

_éj,f:’ ST—RTxy — 0,

RT®*  RT?ng
or == RF "= " AHn,
approximately,

2
or 5T = — ET% "
qusion Ny

This formula for the lowering of freezing-point provides the basis for
the standard method of determining the molecular weights of dis-
solved substances.
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Kinetic treatment of melting-point lowering

The following kinetic derivation of this same relation, although by
no means rigid or complete, throws further light upon the nature of
melting-point lowering.

When pure A is in equilibrium with its liquid, the rate of passage
of molecules from solid to liquid, 7;,, is equal to the rate of return,
74,. For the passage of a molecule from solid to liquid, energy must
be supplied sufficient to detach it from the lattice. Let this be B,
(calculated for convenience per gram molecule). The number of

molecules which possess this energy at any moment is proportional
to e_EllRT. Thus 7'12 = pys e—EI/RT,

where p;, to a first approximation is independent of temperature.
The rate r,; may similarly be written

_ ~EyRT
Tq1 = poy e~ TET,

where, however, E, is less than E; (and in fact approaches zero, since
a molecule in the liquid does not necessarily require energy to attach
itself to the solid). E,—E, is equal to AH = Ly;,,. Thus at the

melting-point pyp e~ BURT —

so that e~Ltusiod BT = p, /oo,

-E
pa e~ PHIET,

Addition of B to the system does not affect p,,, since B does not enter
the solid. On the other hand, the molecular fraction of 4 in the liquid
is thereby reduced to x, = 1—zp, and it is reasonable to suppose
that py, is reduced to py; = pyy(1—25). Thus in presence of B, 7y,
no longer balances r,,. If the temperature is lowered r, falls more
rapidly than 7, and equilibrium can be restored. At a temperature
T-4-8T we have ,
P12 =~ P12
pa1 = par(l—2g).
Therefore
e~ Lrusod RT+T) . P21 (1 5 5)
P12
= el RT(1—zp),

1 —xp = e—qugion/R{ll(T-{-ST)—llT}

= ¢ Ll -3TVRT® approximately.

8T. quslon

ln(l—xB) == RTZ 5
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and if zy is small we find, on expansion of the logarithm,

— Ty == 8T qusion
B= RTE

RT?

qusion

Thus

8 = —

Lowering of vapour pressure and related phenomena

A case that has played an important part in the development of
physico-chemical theory is that where a solvent 4 possesses a measur-
able vapour pressure. This is lowered by the presence of a solute B,
as may be inferred from the following argument.

If a gram molecule of A is transferred by distillation from pure
solvent to solution the work derivable (p. 61) is BT Inp,/p, where
p is the vapour pressure of the solution and p, that of the solvent.
Thus the free energy of the solution is seen to be less than that of
the solvent by this amount. But by the argument given in a
preceding section, the decrease in free energy of 4 caused by the
presence of a small molecular fraction x5 of B is RTxp. Thus we

have RTnp,/p = RTxp,
or Inp/p = x5 = np/n,.

But Inp,/p = In{l+(py—p)/p} and when py—p = 3p is small the
logarithm may be expanded to the first term only, so that

dp ngp

P my
What is called the relative lowering of vapour pressure is approxi-
mately equal, for sufficiently dilute solutions, to the ratio of the
number of molecules of solute to the number of molecules of
solvent.

This famous rule was first discovered experimentally by Raoult
and provides another basis for the determination of the molecular
weights of dissolved substances.

In some treatments of the thermodynamics of dilute solutions
Raoult’s law is taken as the fundamental datum, and the other rela-
tions concerning change in equilibrium temperatures are derived
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from it. For example, the elevation of boiling-point which is observed
when a non-volatile solute is dissolved in a liquid may be calculated
in terms of the relative vapour pressure lowering very simply.

At the boiling-point, the vapour pressure of the solvent attains
a standard value equal to the fixed external pressure. The addition
of a solute lowers the vapour pressure so that the system is no longer
in equilibrium. The change is given by Raoult’s law,

op/p = ng/ny.

3p must be compensated by an increase in temperature if equilibrium
is to be restored. Since dInp/dT = L/RT?, it follows that for small

changes lsﬁ_ __L_ o 82__ LsT
pdT  RT? p  RT*

The two values of §p/p must correspond, so that

LST_n__B 8T__RTzn_B
RT:  n,’ L ny

Depression of freezing-point may be treated in an analogous fashion
on the basis of the fact that at the equilibrium temperature of solid
and liquid their respective vapour pressures are equal.

Osmotic pressure: dilute solutions and the gas laws
For perfect gases the influence of concentration on the free energy
is simply expressed, as has been shown, in the form

G—Gy = RTInc.
When the system is not a perfect gas the form is preserved by writing
G—G, = RTa,

a being the activity. If from a theory of molecular interaction a can
be expressed in terms of ¢, then all thermodynamic problems can be
dealt with simultaneously.

For a binary system in which a molecular species 4 constitutes
the solvent and a species B the solute, there is an important result,
of which use has already been made in anticipation, namely that in
the limit of sufficiently small concentrations @ = ¢p. This may be
expressed by saying that in dilute enough solutions B follows the
perfect gas laws. This statement is worthy of some detailed considera-
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tion. It implies that the solvent plays a recle which is in certain
respects analogous to the vacuum in which gas molecules move. In
so far as deviations from the gas laws depend upon interactions of
B molecules among themselves, an approach to conformity at infinite
dilution is perfectly natural. What effect the mutual influences of
solvent and solute, in general powerful, may have requires more
careful examination. As we shall see, the analogy between a dilute
solution and a gas is valid enough within certain well-defined limits,
which, however, must not be transgressed.

The pathway to a clearer understanding of the matter lies through
the study of the phenomenon called osmosis. Osmosis is sometimes
dismissed as an obscure and secondary effect. It is, on the contrary,
the most direct expression of the molecular and kinetic nature of
solutions. This nature impels the molecules of a solute placed in
contact with a solvent to diffuse until the concentration is every-
where the same. The spontaneous tendency towards the equalization
of concentration can, according to a quite general principle (p. 60),
be harnessed to yield work. If a solution of B in 4 is separated from
pure A by a membrane which is permeable to 4 but not to B, then
a pressure, known as the osmotic pressure, acts on the partition,
whereby it is urged to move in such a direction that solvent flows in
to dilute the solution. The motion of the partition may be opposed
by a resistance against which work is done. If II is the osmotic
pressure and dV the volume of solvent which enters, the work done
is11dV.

Such semi-permeable membranes do in fact exist for solutions and
solutes, just as they do for gases—warm palladium, for example, lets
through hydrogen but no other gas. Their mode of action—and in-
deed their practical efficiency—is quite irrelevant. Given the specific
permeability, the only matter which concerns us at the moment is
the pressure which acts upon them.

Experiment shows that for dilute solutions the osmotic pressure
of the solute is the same as the pressure which it would exert if it
were present at the same concentration in the gas phase. Thus for
a gram molecule TIV = R7T. Free energy changes accompanying
variation of concentration depend upon f IT dV, and all the results
for gases are transferable to dilute solutions.

While the empirical basis for the laws of dilute solutions is satis-
factory as far as it goes, its theoretical interpretation is a matter of
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some subtlety, and has occasioned a good deal of difficulty in the
past.

The problem is best approached by starting with a gaseous system
and imagining the concentration to increase steadily until the liquid
state is reached.

First let us consider a mixture of hydrogen and nitrogen. The total
pressure is equal to the sum of the partial pressures of the two consti-
tuents. If the mixture were contained in a palladium vessel at a
fairly high temperature, hydrogen inside and hydrogen outside would
equalize their partial pressures and exert no resultant effect on the
walls. The measured pressure in the vessel would now correspond
to the partial pressure of the nitrogen. This would be analogous to
the osmotic pressure of a solute. If the partial pressure of hydrogen
inside the vessel were low, more hydrogen from outside could flow
in to raise it, even though the measured partial pressure of nitrogen
were high. (This, of course, is quite natural-—though in the past some
scepticism has been excited by the idea that solvent could flow into
a container ‘against the osmotic pressure’ of a solute.) With an
appropriate membrane the same considerations apply to a liquid
mixture of B with 4.

Suppose B starts as a gas unmixed with 4. There are in each
second a certain number of collisions between the molecules, which
also make a certain number of impacts on the surface of the con-
tainer. The calculation of the collision numbers has already been
given. Reference to the derivation (p. 21) will show that the result
would be in no way affected by the assumption that some foreign
molecules, of A, were present. The cylindrical space swept out by
the representative molecule of B becomes more and more bent as
collisions with 4 increase, but apart from this these extra encounters
of B with A have no relevance either to the collisions of B with B,
or to the impacts of B on any surface which it may meet.

What does happen as the concentration of 4 becomes very high
(and this can be shown very clearly with a mechanical model in which
metal spheres of different kinds are agitated in a moving tray) is
that pairs of B molecules tend to become hemmed in by the surround-
ing crowd of solvent molecules and caused to pommel one another
repeatedly instead of wandering off to collide with new adversaries.
But, as both theory and the mechanical model indicate, the total
number of B, B collisions remains sensibly constant, although the
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ratio of repeated collisions to collisions of fresh pairs increases steadily
as the state corresponding to that of a liquid is approached. (In the
limit, if the concentration of 4 becomes so high that the system con-
geals to a glass, some of the B’s would be kept locked in a perpetual
clinch, but this would not be a state where B, B collisions could be
said to have ceased.) In the same way the number of impacts of
B on a membrane or partition is substantially unaffected by the
presence of A4, though, here again, in crowded systems the same B
molecules make repeated hits, whereas in a gas the same number of
hits would be made by a much more rapidly changing series of
attackers.

As far, then, as the number of encounters goes, the mere impeding
action of the solvent makes no major difference, and B behaves as
though it were a gas.

Molecular interaction of 4 and B will also have little effect.
Suppose 4 and B actually combined to give new molecules, such as
BA or BA4,. The average kinetic energy of these would be precisely
equal to that of B itself, and hence the kinetic pressure would be the
same. If, then, at the two limits of complete independence and of
definite chemical union the solute pressure is the same, it does not
seem likely that any intermediate degree of attraction between A
and B would alter it.

Thus we may reasonably conclude that deviations from the gas
laws depend essentially upon solute-solute interactions, and that if
the solute is at a low enough concentration it ‘obeys the gas laws’.

The range of validity of this statement should now be evident.
Osmotic pressure is equal to gas pressure, activity is equal to con-
centration, and the free energy is expressible by a formula which
would apply to a gas. On the other hand, diffusion rates of solute
through solvent bear no relation whatever to those of gas molecules
through free space. In dynamic problems the strength and the weak-
ness of the gas analogy become specially evident. As regards total
numbers of encounters between solute molecules, the gas formula
gives an adequate answer, provided that repeated impacts count as
effective. If molecules reacted chemically at each collision, there
would be no opportunity for repetitions, and the effective rate of
reaction would come to depend upon a diffusion rate. For thermo-
dynamic purposes, however, this limitation is not important, and the
statement is essentially valid.
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With uncharged molecules of ordinary size, activity and concentra-
tion converge at dilutions still within experimentally useful ranges.
With charged ions, or with very long molecules, such as those of
various polymerized substances, allowance for solute-solute inter-
action can hardly ever be disregarded, even in the most dilute solu-
tions which it is convenient to employ.
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FACTORS GOVERNING PHYSICAL
AND CHEMICAL EQUILIBRIUM

Further liquid-vapour relations

THE thermodynamic discussion of phase equilibria is based largely
upon the principle that the free energy of unit mass of any given
pure phase is constant at constant temperature. The corresponding
assumption made in arguments resting directly upon the kinetic
theory is that the rate of passage of molecules from one phase to
another across an interface is independent of the absolute amounts
of the phases present. For mixed phases the free energies and the
rates depend upon concentrations, with corresponding modification
of the equilibrium conditions.

When a new phase is in process of formation, it may be dispersed
in droplets, or minute particles, so small that the free energy per
unit mass is no longer independent of the state of mechanical division,
and the phenomenon of delayed transformation—which is connected
with this—may appear.

The transition from gas to liquid, in particular, follows a different
course according as there is a continuous vapour-liquid interface
present initially or not. If there is, then the liquid phase simply
increases and the vapour phase decreases. If there is not, then
droplets must form and grow safely past the limit of the region
where redispersion is their likely fate.

In Fig. 9 the pressure-volume relations of a gas-liquid system are
represented. A corresponds to a dilute unsaturated vapour. On
compression at constant temperature the pressure and volume change
more or less in accordance with Boyle’s law and the curve 4B is
followed. Imagine the vapour to be tested at various points by being
placed in contact with a continuous surface of its liquid. Up to B,
the saturation point, it would take up liquid which would evaporate
into it. At B there would be equilibrium, and if in presence of the
liquid the pressure were infinitesimally raised, complete condensation
would occur at constant pressure: the line BC would be followed
to the point C. If pressure were raised further, the compression
curve of the liquid, CD, would be traversed. The only variable
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quantity along BC would be the proportion of the two bulk phases,
liquid and vapour.

Now suppose the compression from A to occur in complete absence
of liquid. This time the point B possesses no special significance.
From B to X the average aggregates of molecules in the vapour
(formed in conformity with the Boltzmann principle) are too small
to grow. Although beyond B the free energy per unit mass of vapour

D
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has become greater than that of massive liquid, it has not become
greater than that of the average spontaneously formed clusters. At
X, however, these latter acquire the power to grow at the expense
of vapour. Asthey do so they cause condensation. During the course
of this process the state of affairs prevailing in the system is unstable
with respect to time, but at any given moment there is an instan-
taneous relation between pressure and total volume such that both
drop together, the vapour pressure falling as the vapour condenses
to liquid and leaves the space unfilled with molecules. This pheno-
menon corresponds to the line XY, and though it represents a passage
through a series of unstable states, it is none the less characterized
by a perfectly definite pressure-volume relationship. The free energy
per unit mass of vapour at a point along XY corresponds correctly
to that of unit mass of liquid in its instantaneously realized state of
dispersion, though this state is one which cannot persist in time.
The droplets in fact coalesce to give liquid of lower free energy. If
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they could by some means be caused to retain their sizes, then the
equilibrium represented by a point on XY would also be stable.
When Y is reached we practically pass to the case previously
considered and the rest of the condensation would follow the
course Y C.

Next we may consider the process from the other end, starting
with liquid at D. The pressure is reduced along .DC and the liquid
dilates very slightly. At C under some conditions vapour can stream
off from the liquid interface and evaporation occurs along CB. Under
other conditions in a mass of heated liquid no vapour forms, since
the minute bubbles which arise in the midst of the liquid redissolve.
Their average size—and they constitute mere invisible holes in the
normal texture of the liquid phase—is very small. It increases, how-
ever, as pressure drops along CZ. At Z spontaneous increase of these
minute holes becomes possible. The pressure and the volume now
increase as copious bubble formation ocecurs. The system passes
through a series of states, once again unstable in respect of their
permanence in time, but definite enough in that for each liquid—
vapour ratio there is an average size of the growing bubble at which
the free energy per unit mass of vapour equals that per unit mass
of liquid, even though the distribution of sizes is continuously chang-
ing, and with it the equilibrium pressure. The curve ZY must be
continuous with XY since obviously spontaneous evaporation and
spontaneous condensation are reciprocal processes.

At any moment during the traversing of CZ on the one hand or
of X B on the other, there is the possibility that a sufficiently large
accidental fluctuation in the original phase may give rise to centres
of the new one large enough to cause a rapid switch to ZY or to XY
respectively, with consequent instability and rapid passage to those
states of equilibrium corresponding to the presence of bulk phases.
Such transitions eorrespond to the bumping of a superheated liquid
on the one hand and, on the other, to the sudden relief of super-
saturation in a vapour.

Van der Waals’ equation and other equations of state. Critical
phenomena
Somewhat similar relations find expression in equations, such as
that of van der Waals, which, starting from the perfect gas laws,
modify the expression pV = RT by taking into account both the

5298 H
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finite size of molecules and the existence of attractive forces between
them, and seek to comprehend, at least in a rudimentary way, the
whole fluid state of matter, liquid as well as gas.

Van der Waals’ equation itself assumes the form

(p+a/V®(V—b) = RT.

The attractive forces between the molecules lower the momentum
of the impacts which they make on the walls of a container, and
hence reduce the pressure. To correct for this and obtain a value
of p which would satisfy the equation of a perfect gas, van der Waals
added the term a/V?, where « is a constant. The correction is taken
to be inversely proportional to V2 since it is a function of the inter-
action of pairs of molecules and the numbers of close pairs will depend
roughly on the square of the density. b is a correction for the finite
size of the molecules, (V —b) representing the free space in which
movement can actually occur. The equation is approximate, and
indeed of qualitative significance only, so that more elaborate argu-
ments for the form of the correction terms are not worth entering
into. Nevertheless, it gives an overall picture of important pheno-
mena which is extremely valuable.

Rearrangement of the terms gives a cubic equation in V. For
appropriate values of 7', the cubic has three real roots. This means
that for certain values of p, V has three values, as shown in Fig. 10,
and indeed in Fig. 9, where the general form of the curve DCZYX BA
is just that given by van der Waals’ equation in the region where it
has three real roots. For large values of 7' there is only one root, and
there is a definite transition temperature where the three roots become
identical and above which two of them become imaginary. The
family of curves corresponding to a series of increasing values of T
is as shown in Fig. 10.

At temperatures above that where the three roots coalesce and
the curve assumes the form 3, there ceases to be any region corre-
sponding to XZ of Fig. 9, where unstable conditions prevail, and
which can correspond to the growth of droplets or bubbles. Neither
is there any possibility of a line such as BC short-circuiting the passage
through unstable states when continuous phases are present. Pressure
of vapour increases and volume decreases without any discontinuity,
until the system is dense enough to be regarded as liquid. Conversely
on reduction of pressure the liquid never generates bubbles of vapour,
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but thins down progressively till it can be called gas. There exists,
in these circumstances, what is called continuity of state. The point
above which the transformation of liquid to vapour becomes con-
tinuous in this way is called the critical temperature. Its existence is
due to the fact that when thermal agitation is violent enough there
is no pressure at which small liquid aggregates begin to grow spon-
taneously at the expense of vapour. They can grow gradually as the

I
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pressure is raised and as the assembly passes through a series of
states of stable equilibrium. At some not well-defined point we
may choose to call the state liquid, but the single phase is in a
sufficient condition of turmoil to be regarded equally well as highly
compressed gas.

The mathematical derivation of the critical temperature in terms
of the constants of the van der Waals’ equation is simple. p is given
ag a function of V. Maxima and minima occur where (2p/oV)y = 0.
When there are three roots there are two such turning-points. The
three roots coalesce at the critical point and here

’p\
()=

Differentiation with respect to V in the equation

(p+aV=2)(V—b) = RT
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gives op
(__2aV—3)(V—b)+p+aV-2 —o,
v
oy ptaV?
av = VT

= 2aV-3—RT(V—b)-2 =0,
Zp _ —6aV~4+2RT(V—b)-3 = 0.
vz
From the last two equations it follows that
V=38b and T = 8a/27Rb.

These expressions give the critical temperature and the correspond-
ing volume in terms of the constants of the gas equation.

Van der Waals’ equation, however, is by no means the only one
which yields the critical constants. Values for these are derivable
from any analogous formulation which suitably introduces two terms,
one favouring further reduction of pressure as the volume increases,
that is, expressing the influence of an attractive force, and the other
acting in the opposite sense.

The prediction of critical constants made by most equations of
state is not very accurate. Comparison of the predicted values with
experiment provides rather a good criterion for the degree of approxi-
mation of the equations themselves.

The direction of phase changes: range of existence of phases

Phase changes from solid to liquid or from liquid to vapour are
accompanied by the absorption of heat. This is because there is
more motion in the less constrained phase. There is also greater
disorder, that is, higher entropy.

We write AG = G—G,,

AH = H,—H,,
where the subscript 2 refers to the phase of higher energy content.
o(AH) oH, oH,

Then ~r —er o =%
where C,, is the specific heat measured at constant pressure. There-
f
ore AH = AHy+ [ AG,dT,

where AH, is the latent heat at the absolute zero.
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From the general relation (p. 67),

9(AG)

oT

Rearrangement and division by 7' gives
19AG) AG _ AH

T or T2 T T2’
AHy+ [ AC,dT
ie. _AE— _ f ( ° f )dT—i—J,

where J is an integration constant.

AC,dT
AG = AH,—T f (—f———)dT—l—TJ.

When 7' = 0, AG = AH,.

According to this, at the absolute zero the decrease in free energy
will occur always in the direction in which the energy content de-
creases. That is to say, the molecular arrangements of the minimum
potential energy prevail: all vapours will condense and all liquids
will solidify.

What antagonizes this tendency and leads ultimately to the re-
versal of sign of A@ is the influence of the entropy terms. In general
liquids have more molecular freedom than solids, and vapours than

liquids. As a result
AC, AT
T f (_f_T;__)dT

contains positive terms, and the influence of these in the expression
for AG becomes more important as the temperature rises. Finally
they reduce AG to zero. This means that the tendency to pass into
a state of minimum potential energy is now opposed by the tendency
to attain the more random conditions of the phase of higher energy
{we shall return to this matter on p. 141).

The absolute position of the equilibrium point on the temperature
scale depends upon the magnitude of the potential energy factor and
upon the disparity in degree of randomness between the two phases.

Some interesting consequences follow from this conception. For
example, the relative positions of melting- and boiling-points of a
given compound vary very markedly with its chemical structure.

AG—AH =T -~
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When the molecules are very far from spherical in form, rotations
about the equilibrium positions are impossible in the solid, but
become possible in the liquid. This means that large differences in
entropy between liquid and solid exist. With molecules having some-
thing which approaches a spherical symmetry, rotations (or at any
rate oscillatory angular displacements from the equilibrium orienta-
tion) can begin in the solid state without destruction of the ordered
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crystalline lattice. Thus the solid can approach much more closely
to the gas in entropy, and the melting process may be deferred until
the temperature has risen quite close to the boiling-point. In some
examples the range between melting- and boiling-point is extra-
ordinarily small.

In Fig. 11 the difference between the melting-point and the boiling-
point is plotted as a function of the number of carbon atoms for the
series of the normal paraffins. The range expands steadily as the
molecule becomes more elongated and its symmetry departs from
that of methane.

The isomeric pentanes form an interesting series. With n-pentane
the range is 168°, with the branched 2-methyl butane it is 187°, but
with the completely symmetrical tetramethyl methane it falls abruptly
to 30°, not very much more than for methane itself. Clearly the sym-
metrical molecule must possess in the solid state much of the freedom
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which other molecules only achieve by breaking loose from the crystal
lattice.

The compound hexachlorethane has a melting-point and a boiling-
point which practically coincide: in fact, at atmospheric pressure it
sublimes before it melts. With benzene there is a liquid range of 74°,
which rises to 202° in toluene. o- and m-xylene are also less sym-
metrical than benzene and the ranges are 171° and 193° respectively,
but p-xylene achieves a certain measure of symmetry once more and
the melting-point iises to within 125° of the boiling-point.

For the understanding of the range of existence of the solid and
liquid states the entropy factor as affected by the degrees of freedom
is thus of great importance. The position of the boiling-point itself
is often to a predominant extent determined by the magnitude of
the potential energy factor, as reflected in the latent heat, the other
factors for gaseous and liquid states not being so different.

According to Trouton’s rule the ratio of molecular latent heat to
boiling-point is constant, and this statement is by no means very
far from the truth. In so far as it holds it means that the expression

A
Inp = f = 4T
can be integrated in the form

A
Inp=20C — R
with C varying little from liquid to liquid in comparison with A.
A/T, is in fact constant within about 10 per cent. for a quite wide
range of liquids. (7}, = boiling-point at atmospheric pressure.)

Yet another aspect of this general question of the factors determin-
ing phase equilibria is illustrated by the partition of a solute between
two solvents. In so far as the activity of a solute in a dilute solution
is proportional to its concentration, the equilibrium distribution will
be such that the ratio of concentrations in two immiscible solvents
in contact is constant at constant temperature and pressure. The
same principle will apply to the solution of a gas in a liquid. The
concentration of dissolved gas is proportional to its partial pressure
above the solution. These statements presuppose that the molecular
complexity of the solute is the same in both phases, and that associa-
tion or dissociation, ionic or otherwise, is excluded.

An interesting illustration of general thermodynamic and statistical



104 FACTORS GOVERNING

principles is provided by the behaviour of very long molecules, such
as those of a polymerized substance like rubber. In distribution
experiments these substances show a marked tendency to go either
wholly into one phase or wholly into the other. The distribution is,
as always, determined by the free energy relationships. But a very
long molecule, say of n» segments, has an interaction energy with a
solvent (or with molecules of its own kind) which is » times as great
as that of a similar molecule of a single segment. By the equiparti-
tion law, however, it possesses only the normal allocation, (3/2)kT,
of translational energy. Therefore its free energy relationships are
determined almost entirely by the potential energy terms, and the
concentration of molecules occurs where the potential energy is least.
There is an almost complete displacement of the equilibrium in the
one direction or in the other, as there would be even with small
molecules in the neighbourhood of the absolute zero.

The discussion of these and other interesting matters demands inti-
mate knowledge of the modes of motion of molecules and of the way
in which these modes are affected by temperature. This is precisely
what the simple conception of molecular chaos and of the kinetic
theory cannot yield. As we have seen, these ideas, fruitful as they
are, do not account for the variation of specific heats with tempera-
ture, nor indeed for the non-operation of certain degrees of freedom.
Nor, moreover, do they yield any information about the magnitude
of the constant J in the formula for the free energy change.

These limitations are removed by the introduction of the quantum
theory. We shall have oceasion to return to the whole problem after
the quantum laws have been considered.

Chemical changes

The equilibrium in the solid state between such substances as the
allotropic forms of tin or sulphur, or between the participants in any
other chemical reaction, is governed by principles precisely similar
to those which regulate the coexistence of phases such as solid and
liquid.

The method of applying thermodynamics to the discussion of
chemical equilibria in the gaseous state, or of equilibria in solutions,
is also essentially the same. A small displacement of the equilibrium
at constant temperature is envisaged, and, according as the pressure
or the volume is fixed, d¢ or dF is equated to zero.
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Consider the reaction
2H,+ 0, = 2H,0.
For this transformation we have
AU = 2Ug,0—2Ug,— Up,= 3 U,
AH = AU+ 3 npV.
For constant volume and temperature
AF = AU—TAS
=AU—~T 3 nS
= AU—T 3 n(C,In T— RInc+8).

Now let 262 gram molecules of hydrogen react with dx of oxygen
to give 28z gram molecules of steam. The change in free energy is
expressed by dF = SxAF. If the concentrations of all the gases
present correspond to an equilibrium state, then sz AF = 0. Thus

AU—T 3 n(C,In T—RIncy,+8p) = 0.

In this equation the only terms which, for perfect gases, depend upon

the concentrations at all are those contained in the set > nRInc,,.
Therefore, since none of the other quantities could compensate a

variation in this group as a whole, it must be constant. Thus, at

constant temperature,
> nlnc,, = constant.

It may be written In K, where Kj, is a function of the concentrations.
In the specific example which was quoted above it assumes the form

Ky = ch,0/ch, Co,
In general, if the concentrations do not correspond to equilibrium,
AF = AU—T 3 n(C,In T'— Rlnc+8,).
But from the equilibrium condition itself
0 =AU—T 3 n(C,n T'— Rlncy,+S,y),
whence by subtraction
AF = RT[Y nlnc—In K ].

If, for example, there were less steam and more hydrogen and
oxygen than corresponded to equilibrium, ¥ zlnc would be less than
In K}, (products being positive and reacting substances negative in
the summation). AF would thus be negative and the reaction would
go forward spontaneously.
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The equation for AF is frequently known as the van 't Hoff reac-
tion isotherm. (It must be noted that AF is the free energy change
which would occur if molecular quantities reacted without change of
their existing concentrations.)

The value of AF may be inserted in the general thermodynamic

equation o(AF)
giving
dIn K,
RT Y nlnc—RTIn K,—AU = T[R > alnc—RIn K,—RT e
din K, AU
whence _d_T_V = pre’

In a precisely analogous manner, for areaction at constant pressure,

there is found the result
din K, AH

T~ RT¥
These two equations illustrate a well-known principle of stable
equilibrium. Substances formed endothermically become more stable
as the temperature rises—a fact shown, for example, by the synthesis
of nitric oxide from its elements in the high temperature arc. For
such substances AU and AH are positive, that is, the energy or heat
content of the products exceeds that of the starting materials. Thus
the sign of d1n K/dT is positive, In K (and hence K) increases with
temperature, and, from the manner in which the equilibrium constant
is written, this corresponds to a greater concentration of product.
The above equations (known as the two forms of the reaction
1sochore) may be integrated. For example

T
AU

anV = _RT2

0

dT 4 1.

NOW a(AU) — aUprod’ucts__aUrezwta,nts — z ’l’&Ov — on’

ol oT orT
so that AU = AUyt [ AC,dT.
T T
AT ([ Ac,aT)
Thus &, = [ 270 ar+ f_WdT
0 0

The corresponding equation for K, involves AH, and f AC,dT.



PHYSICAL AND CHEMICAL EQUILIBRIUM 107

AU or AH is often large compared with AC, or AC, and then,
especially since K varies rapidly in the relatively small range of
temperatures where measurements are practicable, it is permissible
to write approximately

AU
In Kj; = constant — BT
AH
InkK, = constant—ﬁ,
In K being a linear function of the reciprocal of the absolute tem-

perature.

For reactions where AU or AH are small and AC, or AC, large this
ceases to be admissible.

In the formation of steam from its elements AU is of the order 105
calories and AC, under 10. Thus over a hundred-degree range, for
example, the approximation would be a quite good one. In the dis-
sociation of a weak acid in aqueous solution AH is of the order 103
and AC, may be as much as 50 calories. Neglect of its influence here
ceases to be even an approximately justifiable procedure and would
lead to gross errors.

For these gaseous systems, as for condensed systems, the thermo-
dynamic formulae provide complete information about the variation
of equilibrium constant with temperature. They predict also the
manner in which equilibrium is governed by concentration. They
do not, however, provide information about the absolute values of
the equilibrium constant. Knowledge of this depends upon the intro-
duction of fresh conceptions.

The formulae which have been derived for gases apply also to
dilute solutions in which the solute follows the gas laws in the sense
which has been discussed previously. When these laws are not valid,
the concentrations are formally replaced by activities and K is ex-

pressed in the form InK =3 nln Goq

and the free energy change becomes

AG = RT[3 nlna—In K].
One of the most important cases where activities and concentra-
tions differ very widely is that of equilibria in solutions of ionized

substances.
As has been shown, the condition that solutes should obey the gas
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laws is that the mutual interference of their molecules is negligible
to a sufficient degree of approximation. Charged ions, acting upon
one another according to the inverse square law of electrostatics, are
subject to a mutual interference which only becomes negligible at
dilutions far greater than those conveniently employed in ordinary
chemical measurements. The calculation or experimental determina-
tion of the activity becomes, therefore, of great importance. Once
its relation to the concentration has been discovered, it is applicable
to all problems which depend upon the free energy, that is to say,
to the formulation of chemical equilibria and the phase relationships
of solutions.

The calculation of the activity itself is a problem quite independent
of thermodynamics and rests upon an adequate theory of interionic
forces, or, in general, of molecular interactions (see p. 278).

Achievements of the molecular and kinetic theory: conditions
for further progress

From the foregoing pages it is already evident that much illumina-
tion about the nature of things does in fact proceed from the simple
and easily intelligible assumption of a world of matter consisting of
randomly moving particles, whose inherent tendency to dissipate
themselves through all space is combated by attractive forces.

The essential character of thermal phenomena becomes clear, the
conditions of coexistence of solids, liquids, and gases in systems of
any number of chemical components are explained, the dependence of
equilibria upon concentrations, upon pressure, and upon temperature
is defined. The conceptions of entropy and free energy, of statistical
equilibrium and energy distribution, provide quantitative laws which
describe the perpetual conflict of order and chaos, and which pre-
scribe in a large measure not only the shapes assumed by the material
world but also the pattern of its possible changes.

The power, clarity, and beauty of these ideas are undeniable. Yet,
great ag is their range, it has its boundaries. It constitutes a brilliantly
illuminated circle surrounded by obscurity. This darker region can,
however, be penetrated and proves to contain many strange new
things.

The first great limitation of what we might perhaps call the neo-
Epicurean picture of matter is its lack of information about the
character of the forces which hold the primordial motion in check.
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They are made manifest by the energy changes which accompany
their operation. For the theory these energies constitute the funda-
mental data, a circumstance which has fortunately proved to be
no practical impediment, since in experimental science the direct
measurement of them is precisely what has been most expedient.

Nevertheless, the nature of these all-important quantities must be
inquired into and inferences made about the modes of interaction of
the particles concerned.

But even when we accept the energies as known, there is still no
way of understanding what determines the absolute position of an
equilibrium, whether of solid and liquid, or of the participants in a
chemical reaction. The influence of temperature and other variables
can be precisely foretold, but all the knowledge is relative. The
reason for this lies deep in the character of the theory.

Equilibria are determined by free energies which depend in turn
upon entropies. Entropies are measures of the probability of given
conditions, and probabilities are defined in terms of the number of
modes in which assignments of molecules to states can be made.

The number of ways in which X molecules can be distributed
among Y states depends upon the number Y. The extent of what
constitutes an energy state has so far remained indefinite. If in-
finitesimally small differences in energy are detectable and significant,
then the number of possible states is indefinitely large and the assign-
ments are infinite. Thus an absolute entropy would be a meaningless
quantity.

While changes in an indefinitely large quantity might themselves
possess a relative significance and might possibly govern the be-
haviour of a single system, they could hardly predict the relations
of one system with another. When the conceptual substratum is
structureless and indefinite the search for a means of predicting the
absolute position of equilibrium appears quite vain.

But if infinitesimally small differences of energy were not signi-
ficant, and if the states were of finite range, then the number of
assignments would become a definite number with an absolute mean-
ing. The probability of one system in a given state could be com-
pared with that of any other in another given state, and absolute
prediction of equilibria would become a possibility. The substratum
of the conceptual world would acquire a structure, and become, as
it were, an atomic system rather than a continuum.
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The imparting of this structure is precisely what the quantum
theory does.

It has indeed already become obvious that the rules of Newtonian
mechanics are insufficient for the full understanding of statistical
phenomena. The division of molecular states into ranges of equal
probability needed the assumption that equal ranges of momentum
rather than of energy should be chosen (p. 31). There was no ob-
vious reason for this. Even more striking is the complete failure of
mechanics to account for the non-contribution of certain degrees of
freedom to specific heats, and for the variation with temperature
of the number of degrees of freedom which do so contribute.

It is the further investigation of this problem which leads most
directly and simply into the realm of the quantum theory.

This theory, when established, indicates how the numbers of states
may be defined, and it opens the way to a complete understanding
of the absolute position of the equilibria between all forms of matter.

This fuller understanding, however, is purchased only by the
sacrifice of the primitive and simple picture of a molecular chaos
which rather resembles a swarm of bees and which is easy to visualize
in a quite naive fashion. It requires the introduction of abstract
statements about a non-material substratum. The new picture loses
in appeal to the senses what it gains in appeal to the intelligence.

In the course of the development of the quantum theory further
sacrifices will be demanded from the naive conception of particles.
In particular it appears that for the correct calculation of entropies
the identity of individual particles may even have to be disregarded.
The intervening steps, however, will have so accustomed the inquirer
to the shedding of his original ideas that he needs to feel no surprise—
though possibly he experiences a slight regret. He does well, how-
ever, to remember that what emerges in the end is essentially a
construction of the human mind by which various sets of facts are
related in the most elegant and helpful way.

What is perhaps most important of all is to keep clear which parts
of the construction are closely related to things of direct observation
and experience, and how the hypothetical edifice expresses these
relations.



PART II

CONTROL OF THE CHAOS BY THE
QUANTUM LAWS

SYNOPSIS

As a result of a long series of intricate discoveries a solution is found to the
problem of knowing where, in the absolute sense, the equilibrium lies between
the different states of aggregation of matter and between the various con-
figurations of atoms concerned in chemical transformations.

The first stage is the emergence of the quantum theory, according to which
the energy of atomic or molecular systems varies discontinuously. The laws
governing the various discrete series of possible energy states are discoverable
from the study of such phenomena as specific heats and radiation. They evolve
through different forms and are at length crystallized in rules whereby the
energies are defined in terms of the permissible solutions of a semi-empirical
differential equation, known as the wave equation.

The foundation of this equation is the discovery that on the scale of electronic
or atomic phenomena particles obey dynamical laws which are neither precisely
those followed by macroscopic masses nor yet those followed by light waves,
but are of a special kind.

The new rules impart to the theory an abstract basis. Atoms and molecules
can no longer be regarded as small-scale versions of ordinary objects. Further-
more, we have to conclude that there is no physical sense in treating different
permutations of individual atoms or molecules within a given energy state as
even theoretically distinguishable systems.

Given these apparent sacrifices of the primitive simplicity, energy states
become, in compensation, like so many exactly defined boxes, the allocation
of molecules to which can be treated by the laws of probability. Absolute
equilibria are now seen to be governed by the interplay of two major factors:
on the one hand, the tendency of atoms and molecules to assume a condition
of minimal potential energy, and on the other hand, their tendency to fill
impartially all energetically equivalent states.

‘With the equilibrium of solid and vapour, for example, the potential energy
factor favours condensation of all the molecules to solid. But in the vapour
the range of possible energy levels is much greater and molecules populate
states according, as it were, to the housing conditions, quantum levels repre-
senting in effect accommodation. Expressed in another way, the atoms and
molecules escape from the restraints imposed by the forces acting upon them
in so far as they achieve fuller self-realization in conditions where more modes
of motion and more quantum levels offer them opportunity. The quantum
theory having given exact formulations of the accommodation ranges, these
statements can be translated into precise terms which lead to a quantitative
treatment of all types of equilibrium.

At this stage the nature of the forces and of the interaction energies still
remains unknown.
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Specific heats
THE most direct route to an understanding of the rules governing
the energy content of substances is by the study of specific heats.
From the formula for the pressure of a perfect gas, p = ynma?,
and the relation pV = NkT, it follows that the kinefic energy in
the three translational degrees of freedom is k7. The allocation for
each is thus $47. The equipartition law provides that where the
energy is shared between s square terms, the average amount in a
molecule is 3sk7. The molecular heat, C,, is therefore

0
N o (skT) = JsB.

The assumptions about s which have to be made to account for
observed values of C, are at first sight not unplausible. For the inert
gases, s == 3, so that they apparently contain translational energy
only. For the stable diatomic molecules such as oxygen, nitrogen,
and hydrogen, s = 5, while for less stable ones such as iodine, it ig
closer to 7. It would seem that the extra two square terms appearing
with iodine represent vibrational energy (kinetic energy imaz? and
potential energy laz?, where z is the extension from the equilibrium
position, m the effective mass, and @ an elastic constant).

The two square terms, other than those for the translational energy,
which occur with the diatomic gases are evidently connected with
rotation. They are two rather than three, since one of the three axes
of reference is that joining the two atoms, and about this particular
axis the molecule will possess just the same kind of inertia as if it
were monatomic. Given that monatomic substances do not in fact
show rotation, there is no reason why diatomic substances should
show it about the axis in question.

The three vibrational degrees of freedom reasonably attributable
to a monatomic solid should account for a constant specific heat of 6,
in fair accord with the law of Dulong and Petit.

In one sense these interpretations of the specific heats of simple
substances are very successful. But deeper reflection shows that
something fundamental is missing. There is no reason in Newtonian
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mechanics why all the possible degrees of freedom should not be
operative in all cases, three translational and three rotational degrees
with monatomic gases, and with diatomic gases these six together
with a vibrational degree of freedom. Some extraneous factor must

4~-J
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C,
2 -,
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Fia. 12
Pb
Al
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dictate whether or not a mechanically possible motion does in fact
contribute to the energy.

This factor cannot be connected with permanent structural capa-
cities or disabilities of molecules, since the operation or non-operation
of degrees of freedom depends upon the temperature. At low tem-
peratures the specific heat of hydrogen falls from 5 to 3, and that
of metals drops to zero. Fig. 12 illustrates the behaviour of hydrogen,
Fig. 13, that of some typical solids, and Fig. 14 shows the ideal course
of the complete curve for a diatomic molecule.

These phenomena are fully interpreted by the quantum theory.
This theory declares that the possible energy states of a molecule, or
of a mechanical system in general, form not a continuous but a

discrete series.
5293 I
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Suppose the energy of three successive states is 0, €;, and e,. At
a certain low temperature, 87°, the atoms or molecules, which accord-
ing to the classical theory should possess a quota of less than e,
possess in fact nothing. Thus the energy content and the specific
heat fall below the expected values.

Cy

T
Fic. 14

At a high temperature the proportional difference between ¢; and
€41 1s quite small because j is large, so that the energy and the specific
heat approximate closely to the classically expected values.

These qualitative remarks are rendered clearer by a simple calcula-
tion. Suppose that for a solid vibrating in one degree of freedom the
energies of the atoms must correspond to 0, €, 2¢, 3e,..., that is, the
successive values are multiples of a standard ‘quantum’. Out of N
atoms, the number which would normally possess energy greater
than je is given by the Maxwell-Boltzmann law to be Ne—<T (see
p. 133). The number with energy between 0 and ¢ is the difference
between those with energy greater than 0 and those with energy
greater than e, that is to N—Ne~<*T. These, according to the rules
of the quantum theory, contribute nothing. The number with energy
greater than e but not greater than 2¢ is similarly Ne—¢kT — Ne-2¢kT
and these contribute ¢ only. The sum total of the contributions is
thus

O(N — Ne—¢/kT) ¢(Ne—<hT— Ne-2ekT) | ¢(Ne—2¢/hT — Ne-3¢kT) 1
—_ Ne(e—G/kT+e—2€/kT+e—3€lkT+.")

Nee-<lkT
= ] g—elkd’
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the series in the brackets being a geometrical progression with the
first term e-<*T and the common ratio e~<*7 also. The total energy
ig in fact contributed by three degrees of freedom, so that

3Nce~<lkT 3Ne

£ = l—e—ekT ~ gekT __]"

When 7' = 0, E = 0 and the energy vanishes. The behaviour at
high temperatures may be seen by expanding the exponential term:

. 3Ne
T 14 (e/kT) ... —17
When 7T is large enough this tends to the value

3Ne
By = kT
If € is small enough, the same result holds for all temperatures, and
in the limit when e vanishes, that is, when the series of possible energy
states is continuous, the energy is 3RT over the whole range and the
specific heat is constant with the value 3R.
In general the value of O, is given by the relation
O — 0B  3NeetTe[lT?
v ol T (eSIRT —1)2 :
This is the Einstein specific heat formula.
The course predicted by the equation for C, as a function of tem-
perature is similar to that shown in Fig. 13. The limiting values are
found, as before, by expansion.

0 — 3Ne{14-(e/kT)+.. }(e/kT?) .
v {14-(e/kT)+...—1}2

When ¢ - 0 or 7' — oo this becomes

E

= 3NkT = 3RT.

__ 3Ne(e/kT?) .
V= RTE 3Nk = 3R.
When 7" approaches zero C, becomes

3Netesh? 3Ne?
ET?(eoT)2 ~ pT21 4 (e/kT)--(e2/2102T2) 4.}

I 3Ne?

T kT2 €T+ (€2/21k) -terms in 1/T, 1/T2...

3N 0

= 0+ 0+ (221k) Footoot..
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It will be observed that the course of the specific heat-temperature
curve is determined by the value of ¢/7. If € = 0, the specific heat
remains 3R down to 7' = 0, and the greater the value of ¢, the higher
is the temperature at which C, first begins to approach its limit.
Inspection of Fig. 13 suggests therefore that the values of ¢ vary
considerably from one solid substance to another.

The history of the stages by which the rules governing the magni-
tude of the energy quanta and the spacing of the possible states were
discovered is a slightly tangled one. We may begin the elucidation
of these rules by stating in a general way that the results regarding
the specific heats of solids justify two assumptions: (a) that the sue-
cessive increments of energy accompanying the passage from one
possible state to the next are equal, and (b) that these increments
are proportional to the frequency of the vibrational motion with
which the energy is associated.

Measuring the energy of a given vibrational degree of freedom
from 7T = 0, and taking no account of any which may in one way
or another remain stored in atoms or molecules at the absolute zero,
we write

E—Ey = ne = nhy,
where 7 is an infeger.

C, may be determined as a function of temperature for various
solids and may be represented approximately by the Einstein formula
from which the size of the quantum may be calculated. This is found
to be proportional to the vibration frequency of the solid, which can
be estimated in various approximate ways.

A qualitative illustration of this proportionality is easily provided.
The frequency of a simple harmonic motion is given by the
formula

v — 1 /frestoring force per unit displacement
T 2n mass )

We may compare the three substances whose specific heats are re-
presented in Fig. 13. Diamond is excessively hard, infusible, and in-
volatile, lead soft and fusible, while aluminium is intermediate in
character. Thus the frequencies, in so far as they depend upon the

strength of the forces holding the atoms in the crystal, will tend to
be in the order

Vg 2> VAl > Vppe
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Precisely the same order is indicated by the relative masses. If then
€ = hv, we should have
€ > €A1 > €pp,s

and thus, from what has been said, we should expect lead to retain
its specific heat of about 6 to much lower temperatures than carbon,
and aluminium to lie between the other two. This is precisely what
is found, and constitutes a striking verification of the rule relating
quantum size to frequency.

The quantitative side of the matter is less definite as far as solid
crystals are concerned, because the vibrations of the solid are in
reality very complex and can only be described in rough approxima-
tion by a single frequency. In fact a complicated spectrum of fre-
quencies must be invoked to do justice to the finer details of behaviour.
Nevertheless, the operation of the first of the quantum rules is clearly
shown by what has been described.

Radiation and the quantum laws

As it happened, the law that the vibrational energies increase by
equal multiples of ~v had already been much more accurately, though
perhaps less simply vindicated by Planck’s study of radiation prob-
lems. We shall find it expedient to defer detailed discussion of radia-
tion, but enough will be said here to indicate its place in the evolution
of the quantum theory.

Matter absorbs and emits radiation, good absorbers being also good
emitters, as shown by the fact that a blackened piece of metal glows
more brightly when heated to a high temperature than a correspond-
ing piece which has been polished. A cavity surrounded by matter
at a given temperature reaches an equilibrium state and becomes
filled with radiation of all wave-lengths (as can be shown by spectral
analysis of what emerges from an opening in a furnace). The energy
per unit volume and the distribution of energy among the various
wave-lengths prove to be functions of temperature alone, and spectro-
scopic.examination of the so-called black body radiation escaping
through a small opening in an enclosure where thermal equilibrium
prevails, reveals the character of this function, which is of great
significance. The intensity passes through a maximum at a certain
wave-length, and this maximum itself not only becomes higher
but is displaced towards shorter wave-lengths as the temperature
rises.
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The theoretical treatment of the distribution problem is based
upon principles analogous to those which determine the partition of
molecules among energy states. That average condition is supposed
to be realized in nature which can be achieved in the largest number
of ways: where many possibilities exist, they contribute largely,
where few exist they contribute little.

Radiation contained in an enclosure must satisfy certain rela-
tions analogous to those governing, for example, the modes of
vibration of the air in an organ pipe, and the wave-lengths of
the admissible components are governed by geometrical boundary
conditions.

There are many more numerical possibilities for the accommoda-
tion of short waves than of long ones, so that the number of admissible
frequencies in a given interval dv increases rapidly with v itself. If,
then, energy distribution were governed solely by available modes,
the intensity should increase continuously with frequency. There
should be no maximum, and the actual existence of one reveals the
operation of a second factor which discourages the location of energy
in the shorter wave-lengths.

If now the quantum law is introduced, specifying that a vibration
of frequency v contains energy in quanta v, then for high frequencies
the total available energy can provide relatively few quanta only.
If these were allocated, the number of ways would be limited. When
the frequency is high, therefore, theré are too few quanta, while
when it is low there are too few states to which they can be allotted.
The maximum variety of assignments is possible when an inter-
mediate number of moderate-sized quanta are shared among the
modes, that is to say, at a wave-length neither too long nor too
short.

As the temperature rises the energy supply increases and more
quanta of greater size become available for distribution. The maxi-
mum is displaced to higher frequencies. The law of this displace-

ment is N

max] = constant.

It can be shown to define precisely the form of the dependence ¢ = hv,
and this same form also leads to the correct form of curve for the
relation of intensity and wave-length at any given temperature.
These results will be shown in greater detail later on when Planck’s
law is considered in the light of still further developments which
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make possible a derivation far more satisfactory than the original
one.

The problem of rotations

The form of the quantum law which makes increments of vibra-
tional energy proportional to frequency deals adequately with the
requirements of the specific heat problem. The absence of vibrations
in molecules such as O, at ordinary temperatures is explained by the
tightness of binding of the atoms and the consequent high frequency,
which corresponds to a quantum too great for appreciable occurrence.
The specific heat-temperature relations of solids are accounted for as
has been seen, the difficulties of detail which arise being connected
simply with the determination of the true frequency-spectrum.

The question next arises how rotational energy states are to be
specified. The proportionality of energy and frequency is here mean-
ingless, since a rotation possesses no natural frequency, but merely
one depending upon the energy, and which vanishes as this energy
falls to zero.

The obvious course is to throw the formulation of the rule for
vibrations into some form which does not involve the frequency ex-
plicitly, and to seek to generalize this rule in the modified version.
A provisional solution of the problem on these lines was in fact soon
found, in a way which came rather naturally to those versed in applied
mathematics.

It had long been known that the laws of dynamics assume their
simplest and most elegant formn when the so-called Hamiltonian
coordinates are employed as the fundamental variables. These are
position coordinates, usually written ¢, gy,..., on the one hand, and
momentum coordinates, usually written p;, p,,..., on the other.

The law ¢, == nhy for a simple harmonic motion can be expressed
in Hamiltonian coordinates in the form

T

f p dg = nh,

0
where 7 is an integer, and 7' = 1/, is the periodic time. This is the
Sommerfeld-Wilson equation.

The identification of the two versions is easily made. A particle
executing a simple harmonic motion follows the equation

x = asin 2w,
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where « is the displacement at time ¢ and @ is a constant. In Hamil-
tonian coordinates
p = m& = 2wyma cos 2mit,
dq = dz = 2wva cos 2nvt di,
T 1y
f p dg = 4n**ma? f cos2 2mvi di = 2m*vma®.
0 b
If then we write 2n2vma? = nh,
it is the same thing as to put
2% ma? == nhy,
and the expression on the left isnone other than the energy. (For, total
energy = K.E.4-P.E. = constant: when P.E. =0, K.E. = maxi-
mum: therefore, total energy = maximum value of K.E. = maxi-
mum value of ima?2 = {m(2ma)? = 2n%2ma?.)

T
The formula f p dg = nh can be applied immediately to a rotation.
0

Here, p = angular momentum

and dg = db,

where 6 is an angular coordinate. For a complete rotation
T o
fp dg = f ang. mom. df = nh,
0 0

whence angular momentum = nh/2.
If the moment of inertia is J and the angular velocity w,
Iw = nh/2m,
whence the energy is given by
E = }lw? = n?h?/8n%1.

Here, it is to be noted, what increases by equal steps is not the
energy but the angular momentum. This formula does in fact give
satisfactory results in the discussion of rotational specific heats. But
it does not yet tell the whole story.

The angular momentum rule found its most accurate and striking
application in Bohr’s interpretation of the hydrogen spectrum, where
an analogous postulate was made about the permissible states of an

electron circulating around a nucleus, and it may be regarded apart
from a trivial correction as established.
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Translational energy

The question of translational energy remains. To a superficial view
this might appear less urgent than that of rotational and vibrational
energy. There is no obvious need to account for any significant
departure of the specific heats of monatomic gases from the classical
values. Yet a discrete series of translational energies must be postu-
lated if we are to retain the fundamental statistical principle.

If the translational distribution were infinitely fine-grained, and
the rotational and vibrational ones were coarse-grained, the infinite
increase in entropy which would accompany the passage of energy
into the translational form would ensure that this process prevailed
to the entire exclusion of the reverse change. Any prospect of defin-
ing absolute entropies and of calculating where a chemical equilibrium
lies would vanish again. And, anyhow, it seems unlikely that one
kind of motion, not differing on close analysis much from the others,
should be exempt from what appears to be so fundamental a law of
nature.

In the formulation of quantum rules the characteristic of the
motion which always enters explicitly is its periodicity. The only
sense in which a particle executing translational motion can be said
to have a period is in relation to its impacts on the sides of a contain-
ing vessel. If the particle moves parallel to the x-axis, in a cubical
box of side [, it repeats its motion each time it completes a path of
length 21,. We might try using this fact to determine a periodic time
insertion in the Sommerfeld—Wilson equation.

T T 2l
fp dg = fmvwdx = fmvmdx = nh,
0 0 0

mw, 21, = nh,

35
nl= =1,
2 my,

This gives a form of quantization for translational energy in one
degree of freedom, which does in fact agree with that later formulated
on the basis of a more general theory.

Wave mechanics

The more general theory of quantum states developed from certain
surprising discoveries in physics. These could be summed up in the
statement that light, first regarded by Newton as corpuscular and
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then for a long time believed to consist of some kind of wave motion,
possesses a character which is both particulate and undulatory at the
same time.

Absorption and emission of light, according to one view, occur in
quanta of magnitude Zv. Einstein regarded the quanta themselves
as having some of the dynamic properties of particles. For such
particles the term photons was introduced. By the theory of rela-
tivity, the mass and the energy of a particle are connected by the
equation:

E = mc?, where c is the velocity of light (see p. 230).
For a photon me? = hv.
Thus me = hvjc.

Since photons move with velocity ¢ themselves, mc represents their
momentum.

The photon theory achieves many brilliant results.

1. Calculation of the momentum reversal occurring when photons
impinge upon a surface gives the pressure exerted by radiation, just
as impact of gas molecules accounts for gas pressure. The results
are in complete accord with experiment.

2. Consideration of the statistics of photons yields Planck’s law
of energy distribution in the simplest possible way (p. 155).

3. What is called the Compton effect is accounted for. When pho-
tons are scattered by matter their momentum is changed, presumably
in accordance with the ordinary laws of impact. Since the momen-
tum is Av/e, a calculable change of frequency is observed in the
scattered radiation.

4. An otherwise very difficultly interpretable character of the
photo-electric effect is explained. When ultra-violet light falls on a
metal surface, electrons are emitted. The kinetic energy of these
photo-electrons increases with the frequency of the light but is inde-
pendent of the intensity (though the latter determines the rate of
emission). The energy of the photon thus appears as though it were
concentrated in packets which increase in size with the frequency,
and which become more numerous, but no bigger, as the light in-
tensity increases.

But the idea of photons does not dispense with the need for the
wave theory of light, which is eategorically demanded by the pheno-
menon of interference. Therefore, a great abnegation of naive realism
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is imposed, and it has to be accepted that light behaves in accordance
with rules which are unlike those describing the behaviour of bullets
on the one hand or of the waves of the ocean on the other. Spatial
distribution of light intensities (in interference, diffraction, and so
on) follows undulatory laws: intimate interaction of light with matter
seems to be governed by the photon properties which are something
like those of bullets—though not by any means exactly like.

In the sense of the general thesis that the unknown is to be ex-
plained in terms of the known, it appears that the kinds of known
things by which the unknown are to be interpreted have advanced
a considerable stage in sophistication.

With the blurring of the distinetion between waves and particles,
the status of what have hitherto been accepted indisputably as
particles becomes open to question once more. In a theoretical study
L. de Broglie examined the conditions under which singularities in
interfering trains of waves might be propagated according to the laws
of moving mass points. His considerations led to the view that there
could be important correspondences if the wave-length of the hypo-
thetical waves and the momentum of the hypothetical particle were
related by the equation

A = h/mv.
This led rapidly to the discovery that beams of electrons are in fact
subject to interference and that they behave in respect of this pheno-
menon as though an electron possesses, not indeed a constant wave-
length, but one related to its momentum in precise accordance with
the above equation.

If this result is extended to particles of macroscopic mass, the
predicted wave-length is so small that the divergence from rectilinear
propagation of a stream of such masses is quite negligible.

A mass moving with one degree of freedom in an enclosure of
length 7, must, to be in a steady state, possess such a momentum
that an integral number of half wave-lengths fit into /,. Thus

nA[2 =1, or nh/2mv,=1,
which is just the relation for the quantization of translational motion

inferred from the tentative application of the Sommerfeld-Wilson

equation.
Beams of electrons having many of the properties of minute masses
(p- 164), but being capable of diffraction in a manner only describable
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by the equations of wave motion, the assumption of a general duality
of behaviour is evidently worth exploring. Since a rule for the speci-
fication of possible translational states can be guessed from that
which defines vibrational and rotational states, and since the same
rule follows also from the ascription of a wave-length A/mv to the
moving mass, it is fairly evident that all the consequences of the
Sommerfeld-Wilson equation should be derivable from some form of
wave theory.

Such a theory is embodied in the wave equation of Schrédinger.
The propagation of a wave in three dimensions is represented by the

expression 2 o % dm?
gt o T =
ox® ' oy? ' oz A

where i is the quantity which varies periodically in space and time.¥
If for the wave-length is substituted the value A/mv, then this
equation describes the motion of free particles of momentum mwv,
subject to interference after the manner of electrons.
The meaning of ¢ will be considered more closely in a later section.
At the present juncture it suffices to say that it is of the form

i = iy €2,

T The following considerations show how this equation represents a wave.

i = 1, sin2z(x/A—t) is periodic in x when £ is constant (instantaneous picture of
a wave) and periodic in ¢ when x is constant (each point vibrates). If the eye is kept
fixed on a point such that x/A—vt = 0, then ¢ remains constant: thus the eye is
following a disturbance which travels at a rate given by x/t = Av = ». This is the
characteristic of wave propagation along the z-axis.

Partial differentiation of the first equation gives

% 4n?

r T TR
For the three-dimensional problem the wave may be represented by the expression

2 2 214
1/1 = lIIOSiHZW{(—aiy—i:iz—)—-—yt}

= sin R.
Then
o2 42 5 |
Z?x_l/; = ""WT tholsin R)xz(w2+y2+zz)‘1+‘;‘7 Po(cos B)[(a2+ 2+ 22) ¥ —a2(a?+ 42+ 22) %)
o2 o2 o2 42
"’”f ayf &zf = — =7 fo(sin B)[(@*+y*+22)(at+y*+20) 1]+

+27 hofoos RY(@t-+-y2-+ 27— (@474 274

492
= z/:ost__ -—-Xz—
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where i, is a function of the spatial coordinates only, the periodic
variation with time being represented in the conventional way by
the term e v is the frequency, and ¢ has the usual meaning of
J(—1). If one writes
= hoe ™, then i = .

Y2 is the square of a wave amplitude which in any wave phenomenon
expresses the intensity. Thus 2 is the density of distribution of
particles in an interference experiment, or the probability of finding
a given particle in the region specified by the spatial coordinates of
s. For the present we only need to bear in mind that if y = 0 there
are no particles.

If masses are contained in an enclosure, then solutions of the
equation are only possible for certain integral relations between the
wave-length and the linear dimensions of the container itself. For
example, if the motion is confined to the z-axis, then

Z—z% = —4T7;2¢, whence = Asin?:—x,
where 4 is a constant. Since there is no particle outside the con-
tainer, ¢y must be zero when z = 0 and when z = . The value of
sin(2mx/A) is zero whenever 2z/A is integral, that is when 2[, /A = »
or nA/2 = [: thus the permitted values of the wave-length and of
the momentum are defined.

The relations are not quite so easily understandable for vibrating
and rotating systems, but Schrodinger made the remarkable dis-
covery that the wave equation is applicable quite generally if handled
according to the following prescription.

From the total energy E of the particle under study is subtracted
the potential energy U which it may possess in virtue of its presence
in any field of force. The balance E— U is the kinetic energy, which

is imev? Thus me? — 2m(B—"U),
and since 1/A%2 = m%?[h? = 2m(B—U)/h?,

The appropriateness of the form ¢ = 2™t to represent the time variation is
Pprop o P!
seen by differentiation. )

= — 42,

%Y
or —4ay = 0.

2 T
This is the simplest representation by a differential equation of a quantity vibrating
in time.
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it follows from the general equation that

621/; o%l 0% 8mim( E U) .
ox2 022

it T ot

This semi-empirical equation has become famous in virtue of the
many remarkable properties which it possesses. Only certain of these
concern us at the moment. The first set is connected with the possi-
bilities of solution. The differential equation only possesses finite,
single-valued solutions for certain quite definite values of the energy,
E. These values, known as characteristic or proper values (German,
Eigenwerte), specify the possible quantum states of the system.

The quantization of translational energy has already been con-
sidered. For vibrational systems the equation is found to yield
physically admissible solutions only for values of £ defined by the
relation & = (n-+31)hv. The successive energy levels differ by &v as
required. The lowest value occurs when the integer » is zero, so that
E, = }hv. Schrodinger’s equation, unlike the quantum rule which
it has superseded, predicts the existence of a so-called zero-point
energy. The assumption that there is such a thing is in fact required
for the explanation of certain phenomena, so that in this respect the
new equation possesses an important advantage.

For a rotating system with a moment of inertia I, the permitted
energy states are given by the relation

__n{n4-1)A?
B=—gsr
The previous rule was expressed by the equation
nh . o NEh?
Iw = 3> 5 that F = ilw? = Y

The new one replaces n? by n(rn--1). We may write

B — n(n-1)h? (n—{—g)%2

) A my s -+ constant.

Thus the succession of states according to the Schrddinger rules is
governed by the values of (n+%)? instead of »2. In the interpretation
of certain spectroscopic phenomena this also proves to be an essential
emendation.

Before proceeding we may illustrate the manner in which the
specification of the quantum states occurs.
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Succession of vibrational states
For a simple harmonic motion the acceleration is related to the
displacement from the equilibrium position by the equation

i = —pux,
&
so that U=m f px de = mux?/2.
0
Also x = Asin Vut = A sin 2mit,
8o that p=4n%? and U = 27%*maZ
The Schrodinger equation thus becomes
2% 8nPm
J_b+ ’;&2 (B —2a22ma?)) = 0. (1)

This may be thrown into the form

Y XY =0 @)

by the substitutions

X2 — 4m2my 28

2
2 and @ ='"—,
hv

The equation (2) has finite, single-valued solutions only for values
of a which are of the form (2n+1), » being a positive integer. Thus,
for acceptable solutions,

2B by = (2n4-1),

or E = (2n-{—1)}—g= (n-+-3)hv.

The method of proving these statements belongs to the standard
theory of differential equations and will be quoted as an example.
In (2) let = etXyp,

where v is an appropriate function. Then

a‘l’ 2 2
L = pe X _pe1X°X,
oxX v

2
% = 0"t X" gfe XXyt X X pp(e-1X" — X 20-1X*)

= e Xv" 20’ X —v+XW),
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where »" and »” are the differential coefficients of » with respect to X.
Substitution in (2) and division by e—*X* gives
(v'—20'X —v4-X%)4-(a— X2 = 0,

or v"—20' X+ (a—1)w = 0, (3)
Now, further, let v be represented by the general power series
v=>b,X" (4)

Substitution gives for the coefficient of X* in (3) the values

(1 2)(1+1)b, 45— 2mb, - (a—1)b,.
(It will be seen that in ¢", for example, the term in X” has been
derived by differentiation twice of the term in X7+2) For (3) to
be general the coefficient of X%, and that of any other power of X
in it, must equal zero, so that we have

bn+2 — (a——1—2n)
b, (e2)(t1)
If v is to constitute a finite series, the coefficient of some power of
X in (4) must become zero, so that

a—1—2n = 0,
or 2n+1 = a,
which establishes the required result.

Rotational states

The general case of the rotator free to move in three dimensions
is more complicated, but is treated according to similar principles.
The Schrédinger equation is first expressed in spherical polar coordi-
nates, 7, 6, and ¢. For the rotation of a rigid body about its centre
of gravity, r is constant and is included in a term representing the
moment of inertia, I. The conditions for physically admissible solu-
tions lead to the result

h2
= 82 n(n+1),
where n is a positive integer.

A new factor enters here. The function i itself begins to assume
considerable direct importance. For each admissible value of I there
proves to be not a single value of ¢, but a sef of 2n+1 values. This
is expressed by saying that the statistical weight of the nth energy
level is 2n-+1, and, in accordance with the general principle, it is
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supposed that the population of this level will be correspondingly
dense.

The factor (2n-+1) comes, in this present mode of calculation,
from the conditions for solution of the differential equation. In the
more primitive form of the quantum theory it may be arrived at by
considerations which, if less general and indeed in a certain sense
less precise, are easier to relate to a more naive picture of molecular
events. The body is imagined to rotate on its axis, and the axis is
conceived to possess not an indefinite number but a finite number of
possible spatial orientations. n is, in fact, supposed to represent a
vector the projection of which on a given axis must also be a whole
number. This projection may, according to the angle between it and
the vector, possess any value from -+n to —n, including zero (when
the vector and the line of projection are perpendicular). Thus there
are 2n—1 possible values altogether.

The orientation does not normally affect the energy, so that the
nth rotational level is, as it is called, a (2rn-1)-fold degenerate one.

Degenerate states: statistical weight

The dependence of the whole statistical theory upon the idea that
natural phenomena are largely determined by the possible ways of
filling molecular states has already been abundantly illustrated. It
is evident, therefore, that if several states of equal energy exist, they
really should be regarded as multiple. Their availability does depend
upon their number and not upon the accident that they are associated
with energies which are quantitatively the same. The case of the
orientations of the molecular axis was specially simple to visualize,
since one can see clearly that if there are many possible orientations,
then the chance that molecules possess motions which avail them-
selves of this freedom is correspondingly greater.

The example is important, since it shows also that the number
of solutions of the ¢ equation, which correspond to a given value of
the permitted energy value E, is the expression for the statistical
weight in the wave-mechanical formulation.

Conclusion
The need for defining the range of individual energy states arose
as a logical necessity in the consideration of statistical problems.

The discoveries which have been made in the study of specific heats,
5293 K
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radiation, and various other matters have shown how the range can
be defined.

The formulation of the rules has gone through various phases, the
most comprehensive statement being that based upon the wave
equation. This expresses the possible energy levels for any kind of
system, and provides information about their multiplicity. The
equation is not itself based upon any explicit theory of the nature
of things, except in so far as it contains a general implication of the
wave-particle duality in systems of minute enough dimensions.

The duality referred to, while cutting us off completely from the
possibility of describing the invisible in terms of the visible, has the
great simplicity that translational motion becomes subject in a not
wholly unexpected way to the quantum rules. All kinds of molecular
states fall, as a result, into discrete series, and the calculation of
absolute probabilities acquires a meaning. There is thus a prospect
of answering the fundamental question as to what determines the
forms, physical and chemical, into which atoms and molecules even-
tually settle down.



VII

THE ABSOLUTE POSITION OF
EQUILIBRIA

Further statistical considerations
THE great principle which governs the domain of equilibria and which
so largely determines the nature of things is that states of equivalent
energy are occupied in proportion to the accommodation they afford.
Before, however, chemical and physical equilibria can be calculated
from the fundamental energy data there is still an important problem
to be solved about the assessment of this accommodation.
According to the principle which has already been invoked, the
number of ways in which N molecules can be assigned to a series of
energy levels, so that the occupation numbers are I, N,,..., respec-

tively is given by Nz

NI!Nt..
The entropy, which we shall now write more specifically as Spoitzmanns
or 8y is given by Sy =kinW.

Replacement of the factorials in W by Stirling’s approximation,
InN! = NInN—N, gives

Sg = kNInN— Y N, InN,).
The condition that W shall be a maximum subject to the two condi-

tions SN,=N and SNe=2FE
. Ne—<kT Ne—lkT
gives N, = S -eT = 7 (see p. 30).

Substitution of this value for N, leads to the expression
Sp = kNInf+kNT dInf/dT.

In making the substitution it is to be noted that since

df €, e—lkT
=] —efkT ] wl
f=2e o &TE
so that > e el = pT24f/dT.

—e kT
Thus Ezzmﬁzzi%h‘=ww__.
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The entropy, total energy, and free energy are thus given by
Sg = ENInf+EkNTdInfldT,
B = NkT*Inf/dT,
Fp=E—-T8S; = —kNTInf.

The sequence of quantum states being known, f can be caleulated
in absolute terms. Sp, X, and Fy are thus known.

Although the resulting formulae are correct enough in so far as
they are applied to the calculation of changes of entropy or free
energy, for example, in consideration of shifts of chemical equilib-
rium with temperature, they still prove to be wrong in absolute
magnitude.

The error lies not in the calculation of f, nor in the identification
of 8 with kIn W, but in the way in which W itself is computed.

What is called the Boltzmann statisties must be replaced by a new
form which is naturally enough called quantum statistics. This new
method of computation leaves the form of § unchanged, but makes
a considerable difference to the constant term in the entropy formula,
that is, to the absolute value of the entropy. It will be considered
in more detail in the following section.

Before proceeding to investigate the need for a change in the
definition of the probability, we shall find it convenient first to
formulate some values of f, the partition function, in various simple
cases.

The total partition function is represented by

f — z e—e/k.’l‘,
the sum being taken over all possible states.
In a given state the vibrational, rotational, and translational
energies can often be regarded in a sufficient degree of approximation
as independent, so that

€ = €V+€R+€T.

Moreover, each kind itself is represented by a whole series of states,
and partial partition functions may be defined as follows:

fV —_ E e—€y/kT, fR — Z e—-eR/kT, fT — z e—€rlkl
The total partition function, f, is simply the product of the factors
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v [r> and fr, as may be seen by inspection of the following formula,
in which, for brevity, 1/kT is written .
Fofute = ePonteBont ) ePonto-fent .. )(eBerteber ..
= e*BEVIg—BERIe—ﬂfﬂ+e—ﬂfvze—ﬂfﬂle—ﬁfn-}—,,_

= e~Plertenter) o—Bleyterter)

The quantities multiplying B in the final series represent every com-
bination of every possible value of the energies in the partial series.
They therefore include every possible state. The final sum is there-
fore, by definition, f.

By an analogous argument the translational partition function
itself may be split into three factors, each representing the contri-
bution of a single degree of freedom. Thus

fo,,, = fo fT, fT,-

For the series of energy levels characteristic of a single vibrational
degree of freedom ¢ = (n-}-1)hv. The absolute zero may be taken as
the energy reference point, so that the successive energies on the new
scale are nhv and thus

fV — i e—nthkT,
[}

a geometrical series of which the sum is
1
fr= 1 —g—tikT*
The number of molecules in the nth and higher states, that is, the
number with energy greater than ¢, is given by

Ne—nhvlkT Ne—(n+1)hvlkT Ne—nhvlkl'
e d = -_f—(1+e—hv/k1'+...)
14 14 14
Ne—nhvlkT
T S—— 7
Ir
— Ne—E”IkT.

The correct treatment of rotations is somewhat difficult and gives
rise to series which have no simply expressible sum. For a rigid
rotator which is a solid of revolution of moment of inertia I and
which, for reasons which will emerge later, must not consist of two
identical atoms, the following simple treatment is possible.

The successive energy levels are represented by the formula

e, = n(n-1)h?/8x21.
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For the nth level there are (2n-1) possibilities corresponding to
(2n-}-1) orientations of the axis. Thus

fR — z (2n + l)e—n(n+1)h2/8n2IkT_

If the levels are fairly close and » is considerable, this sum may be
expressed approximately by an integral

[ (@nt1)e-annivdn  where A = h*/8z*IkT.
0
Let n2-+n = z, then the integral becomes
f e~4® d = 1/A.
0

Thus for this simple case
fr = 8x2IkT [
Translational states are defined by the equation
nh/2mv, =1, so that Ime? = n2h?/8mi}.
The unidimensional partition function is given by
fr.=23 e~ R BmERT

Since the energy steps are small the sum can be fairly well represented
by an integral

fe*anzdn = ~m/2B.
0

(2mmET)H,
e

For the three degrees of freedom we have

Fro = (2wka)%l 11— (2wmkT)tV
Tays — 7,3 by ts = __k3—‘_7

Thus fr,=

where V is the volume.

The translational partition function unavoidably involves the
volume, since only by relating the motion of the particle to the
dimensions of the container in which it moves can any formulation
of the quantum states be reached. This necessary connexion exists
both in the older quantum theory and in the wave mechanical theory
which replaced it.
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For future reference it will be convenient here to tabulate the
partition functions so far calculated.

Vibrational energy in one degree of freedom
p = 1/(L—e ),
Rotational energy, rigid rotator, solid of revolution
fr = 8n2IkT [h2
(This is a two-dimensional case.)

Translational energy in three degrees of freedom

(2amk TRV
szy; = T .

The use of partition functions of the type just derived, or in appro-
priate cases more complex ones, in the calculation of absolute entro-
pies, leads to incorrect results. The fault lies, as has been stated,
with the mode of definition of the probability. The question of a
modified definition and a reconsideration of what constitutes the
number of assignments to states must now be considered.

Quantum statistics

The treatment of particles by the principles of wave mechanics
results in a complete blurring of their identity as individuals. The
calculation of statistical probability is profoundly modified thereby
and a reformulation of Boltzmann’s rules for calculating entropy
becomes necessary.

So long as molecules were conceived as distinguishable units, the
number of ways in which a given distribution over a series of energy
states may be realized could be given by the expression

N!
NN,

where ] is the number in the first state, &, the number in the second,
and so on. When, however, identity is lost, the permutations of
individuals within a given state becomes meaningless, and this
formula becomes unsuitable as a measure of the probability. It may,
however, be replaced by another which defines the possible numerical
types of assignment of molecules to various states, no distinguishable
characteristics being attributed to individuals.

The reason for this renunciation lies in the wave-like nature
ascribed to the particle, which is defined as regards its quantum state
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by its relation to the whole of the vessel in which it is located. This
applies to all particles which, whatever they may possess of definite
localization in respect of phenomena such as molecular collisions,
have lost it in respect of the application of the quantum rules.
Therefore there is, at any rate for the purposes of this problem, no
way of distinguishing them, and the operation of working out per-
mutations of individuals in a sort of box loses its sense. There will
be further opportunity of pondering on this principle as the subject
develops.

In the new formulation different assignments are represented by
the statements that there are N, molecules in state 1, N, in state 2
and so on, on the one hand, or, on the other hand, that there are
N7 in state 1, Ny in state 2, and so on. But it makes no difference
how for these two assignments, N;, N,,..., or N;, N,..., are selected
and which individuals constitute these groups.

The detailed calculations proceed along lines which differ in the
earlier stages from those followed previously. In each possible state
the energy of a molecule is determined by the sum of translational,
rotational, and vibrational contributions. The translational quantiza-
tion involves three-dimensional space coordinates as well as momen-
tum coordinates and leads to the existence of very large numbers
of closely spaced levels, many of the states being in fact of equal
energy. Thus there will be in general g; states of energy ¢;, and the
N; molecules which possess this energy will be shared among the g;
states. The problem is to know how many numerical types of alloca-
tion there are when N; molecules are distributed among g; states,
permutations among the individuals being not only undetectable but
assumed to be of no interest, and even meaningless.

The problem is that of sharing N; objects among g, boxes. To solve
it we consider this procedure: place one box on the left, and then to
the right of it in line place in any order the N; objects and the remain-
ing g;—1 boxes. There are (N;+g;—1)! orders possible. For any one
arrangement, sweep up all the sets of objects and place each set in
the box immediately to its left. This experiment may be done in any
of the (N;4g,—1)! ways. But although variations in the number of
objects in a box are of interest, the orders of them among themselves,
as of the boxes among themselves, are irrelevant. The total number
of significant results of the experiment therefore is

(N+g;,— DY) (g, —1)!
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Thus we have g; states of energy ¢; with N, molecules, g;, states of
energy €, with N, molecules, and so on. The combined probability
of the complete distribution is given by

P — (Mt+g,—1)! . (Np+g,—1)!
Mg, —1t  Nel(gs—1)!
Neglecting unity in comparison with NV, ... and applying Stirling’s
approximation, we obtain
InP = 3 [(N;+9,)In(N;+g;)—N;In N;—g,Ing;].
j

The entropy may now be defined as
S=FknP.

For the state of greatest probability we now have the relations
dInP =0, >8N, =0, 2 ;0N; = 0.
These are combined by the method explained on p. 29 and the rest
of the calculation proceeds as before, yielding the result
'/
I exePea 1"
This differs from the Boltzmann expression only in the presence of
the —1 in the denominator, and for low densities becomes indis-
tinguishable from it.
We now proceed to a direct comparison of the two types of ex-

pression for the entropy itself.
That already derived is of the form

EInW = k(NInN— 3 N,InN,).

This, however, is not based upon quite the same distribution as that
we have just envisaged in calculating P. The number of molecules
in each possible state is specified in the value of W, states which
happen to be of equal energy being considered separately. In the
expression for P all the molecules with energy ¢; are taken together.
What must be compared with P is not the W previously calculated
but W', a larger quantity. For W’ we have in fact instead of

N NI g2

NIN! ... "N N

since each of the N, molecules with energy e, has a choice of ¢, sub-
compartments, these extra options giving rise to g fresh possibilities.

the expression
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When N; and g; are large
InW' =NInN+ 3 Njlng,— > N;InN,

We may now compare kln P with kIn W’. In general, they are
different in form and in magnitude. But in one important special
case they approximate closely in form, while remaining of quite
different absolute value. If the density is low, that is for gases, g;
is much greater than N, the number of translational states being
enormous because of the fine-grained nature of the quantization.
When g; > N,

InP =3 (N;+g,)lng,— 3 N;lnNj— 3 g;Ing;
= 2 Njlng;+ 3 g;Ing;,—2 Njln N;—3 g;Ing;
=2 Njlng;—3 N;In N,

Thus InW =InP4+NIhN,
EinW = klnP+-kNInN,
or SBoltzmann = Squantum+kln(N ')

This result is important. It shows that, for gases at least, the
newly defined entropy possesses all the properties of the old except
that its absolute magnitude is different.

When this absolute value is required, it may be obtained from the
Boltzmann entropy by subtraction of kIn(N!). Itislowerinso far as
it is based upon neglect of distinctions which a non-quantum theory
might have regarded as valid.

All previous conclusions about equilibria in gases and in dilute
solutions retain their applicability, but the convention now adopted
will affect assessments of the absolute entropy. The distribution
law itself is not appreciably affected. When the density is such that
g can no longer be regarded as large compared with N further
complications enter which will not be dealt with at this stage.

Absolute calculation of equilibria

With expressions for partition functions appropriate to various
special cases, the calculation of absolute values of equilibrium con-
stants becomes possible. The most important step in creating this
possibility was, of course, the defining of what constitutes a molecular
state. For some purposes the more correct idea of absolute proba-
bility is also essential.
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Four examples of major importance will cover in principle a large
part of the physico-chemical nature of things. They are:

1. The integration constant of the vapour-pressure equation.

2. The transition temperature for a reaction taking place in a
condensed phase: for example, an allotropic change, or the
melting of a solid phase.

3. The equilibrium constant of a chemical equilibrium in the gas.
phase.

4. The equilibrium of radiation and matter.

The first shows in the simplest way how a balance is established
between order and chaos when molecules endowed with a primeval
tendency to roam all space are impelled by attractive forces to
agglomerate. The second and third illustrate the subtle interplay of
factors which governs the transformation from one possible atomic
pattern to another; and the fourth defines the sharing of energy
between atomic and molecular systems and what was once called the
ether, but later came to be regarded, for some purposes, as space
containing photons.

As a first step we proceed to the calculation of the absolute entropy
of a perfect gas.

Absolute entropy of a monatomic gas

SBoltzma.nn = kN lnf+kNlenf/dTa (1)

2amk TV
where f= Lw_mm_)_, (2)
since there is no energy to be considered except that of the transla-
thl’l&l motion. Squantum = SBoltzmann_kln(N Y) (3)
pV = kENT. 4)

Insertion of (1), (2), and (4) into (3) gives
27rm)tktet
Santom = SN 10 T—kNInp+kN 1n(Lh)3_#
All the quantities in this expression are known, so that the entropy
is calculable in absolute measure.

Absolute calculation of vapour pressures

What is perhaps the first and simplest task to attempt in the light
of knowledge of the absolute entropy is the calculation of the equi-
librium between the gaseous and the solid phase for a monatomic
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substance. This equilibrium expresses the first departure of matter
from the state of random dispersion and the first emergence of the
forms of things we meet in the ordinary world.

For the equilibrium of solid and vapour,

Gl = GZ (P 71)9
where G, is the free energy for a gram molecule of the solid and @, that
for one of vapour. 2@,
6,—H =T
o7’
TH
whence G, =-—-T f ?; dT+TJ (see p. 101).
0
Since oG _ g
oT ’
oG,
57 ~8;=J whenT =0

(see also later, p. 145).

With a condensed phase, it is by no means unreasonable to assume
that at the absolute zero S; = 0. With the disappearance of mole-
cular identities there will be only one way in which particles can be
assigned to their lowest state, unless, for some special reason con-
nected with geometrical or other molecular characteristics, the
ground level can be regarded as multiple.

With this reservation, to which further reference will be made, J

may be set equal to zero.

Then @, - _Tf% ar.
0
For the vapour Gy, = H,—T8,,

where

) eted
8, — 5kN1n T—kNIn p—{-kNln%i (p. 139).

When G1 = (,, p = m, the vapour pressure. Thus

(2mm)Hited

T f o AT = Hy— BN T In T ENT Inm— kN7 1n 7

But H, = Uy+p,V, = 3kNT+ENT = 5kNT,
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and therefore

T
H (27rm )R ktet
Inm— — f}?ﬁlﬁ‘ AT —§+§1n T-+1n ZTILE
. H ar 5 (27m)ik . 5§ __ 5
— kNT2+2ln T4+In —h-—, since Inet =i,
0
or if we write _ .
Inm = $(T)++,
§)%
P = ln@l%—)——](in

This gives the absolute value of the integration constant of the
vapour-pressure equation

Inm = fRTz 4T 1.

For monatomic substances, then, the vapour pressure is determined
by A and by %, where the latter appears from this discussion to be a
function only of the atomic weight and of universal constants.

Calculated and observed values for various monatomic vapours are
in general agreement and sometimes correspond very closely.

A certain reservation must be made about the possible multiplicity
of the lowest states of the molecules or atoms. If this is taken into
account, the formula becomes
(2mm)ikt g,

Bog,
where g, is the so-called statistical weight of the ground level in the
gas and g, that of the ground level in the crystal.

An analogous discussion for diatomic molecules leads to the formula

—In (277712)2‘702 821 go
B e g

3 =1In

where I is the moment of inertia of the molecule and ¢ is the sym-
metry number, a geometrical characteristic which determines what
orientations count as separate states.

Factors determining the balance of solid and vapour
It is now possible to form a general picture of the factors which
determine the tendency of a given substance to exist as solid or to
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escape as vapour. The equation for the vapour pressure is

dinr A Nt [AGAT
aT" ~ RT*~ ~  RT*

Le, Inm = —%-}- fm#i)d’f—i—i.

A, measures the potential energy of attraction. The greater this
attraction, the lower the vapour pressure. Neither thermodynamics
nor statistics vouchsafes any information about the magnitude of A,

AC, may be written in the form «+7'-..., and its contribution to
the second term on the right of the above equation depends upon
the signs of o and 8. As long as AC, is positive A increases, since
dM\dT = AC,. The energy of the vapour is then increasing more
rapidly than that of the solid, and thus still more energy runs down
when condensation occurs. But other influences are at work: con-
sider, for example, a negative value of 8. A negative 8 means that C,
of the vapour increases less rapidly than that of the solid. Increase
of 0, means that fresh degrees of freedom ecome into operation (or
that existing ones come more fully into operation). If this happens
less rapidly in the vapour than in the solid then, from the point of
view of entropy, the solid is gaining in disorder relatively to the
vapour. Additional possibilities for existence in the solid state are
thus opening up, and the further rise in vapour pressure with in-
creasing temperature is antagonized. Some of the facilities previously
offered by vapour only are now offered by existence in the solid
state.

An increase of energy of the solid relatively to the vapour has thus
two opposing effects. In so far as it represents an increasing facility
of escape from the attractive forces it favours evaporation: in so far
as it leads to a more disordered state in the solid it favours condensa-
tion, or at any rate lessens the tendency to evaporate.

The influence of the constant term 7 is connected purely with the
entropy. If ¢ becomes larger, the vapour pressure becomes greater
algo. Scrutiny of the formulae reveals several points of interest. As
the mass of the molecules or atoms increases, the vapour-pressure
constant increases also. This is because a greater mass leads to a
more fine-grained quantization of the translational energy in the gas
phase. There are thus relatively more possibilities of existence as
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vapour for the heavier than for the lighter particles. The effect of
this factor itself is to favour the existence of heavier molecules in
the gaseous state. The fact that the vapour pressure itself usually
decreases with increasing mass is due to the influence of A, acting in
strong opposition to that of <.

A large ratio g,/g, lowers 7, and thus operates in the direction of
diminishing the vapour pressure. If there are multiple ground states
in the crystal which are not possible in the gas, then the solid phase
is thereby favoured. But the question of these relative statistical
weights is not very well understood.

For diatomic molecules and polyatomic molecules generally, the
moment of inertia appears in the integration constant of the vapour-
pressure equation, because the existence of rotations in the gas, while
there are usually none in the solid, favours the evaporation of mole-
cules by offering more possibilities of distribution in the gas phase.
The greater the moment of inertia, the smaller the rotational quan-
tum and the more numerous the levels. Hence the increase of ¢ with
I revealed in the formula.

This whole subject illustrates in a very interesting way how what
might metaphorically be called the tendency of matter to achieve
self-realization in the dynamical sense opposes the discipline of the
attractive forces and determines the partition between different
states of aggregation. Quite a vivid mechanical picture can be formed
of this conflict, though it must be remembered that the principles
underlying the dynamical behaviour are in fact highly abstract.

Transition temperatures
The equilibrium between two solid phases, whether the same in
chemical composition or not, is governed by the condition

AG = 0.
As shown on p. 101,
AG AH
CE f’T—z AT 4-J.

AH may be expressed as a power series in the following manner:
AH = AHy+aT+-bT%+...,

§AH) .
S = AC, = a+2T+....
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Since at the absolute zero the specific heats of solid phases vanish,
o must be zero. Thus

AG = _Tf% AT +TF

T2
= AH,—bT24... 4T,
oAG)
7 = — 267+ J.
When T = 0, AAG)
oT
oQ o(AQ)
But e A2 _ _AS.
u i S and T A8

If, therefore, the change of entropy vanishes at the absolute zero,
the integration constant .Jis zero.

In many solid substances the entropy probably does vanish when
T = 0. Permutations of individual molecules, as has been seen, do
not count in the world of quantum mechanics, and at the absolute
zero all molecules occupy the lowest possible levels, which they can
do in one way only. If the entropy is proportional to the logarithm
of unity it of course vanishes. The lowest energy levels may possibly
be multiple for one reason or another, and if they are so to different
extents for the initial and final phases of a given transformation, J
may in fact not be accurately zero. Nevertheless, in many cases it
will be.

The original arguments of Nernst on this subject were based upon
the view that AG and AH are equal not only at the absolute zero
itself (as they must be from the general thermodynamic equation)
but also in the immediate vicinity of this point, so that 9(AG)/eT
and (AH)/eT vanish when 7' = 0. From these conditions it follows
that J will be zero. Nernst put forward the hypothesis about the
temperature coefficients as a fundamental thermodynamic principle
(sometimes spoken of as the third law of thermodynamics). While
there are reservations about the complete validity of this view, it is
certainly one which is always nearly true, and may often be ac-
curately so.

In so far as the Nernst postulate may be accepted,

AH
AG = _Tf_T_ZdT.



THE ABSOLUTE POSITION OF EQUILIBRIA 145

If AH is known from experimental observations and is represented
as a function of temperature, then AG may also be so expressed with
the aid of the same data.

For example, if experimentally determined heat quantities are

given by AH — AH+-bT74 ...,
the free energies will be given by
AG = AHy—bT?4-....

When G is plotted as a function of 7', the point at which it becomes
zero can be read off from the graph. This point is the transition
temperature at which one solid phase would be transformed into the
other.

The nature of the factors which cause AG to drop from the value
AH, at the absolute zero to nothing at the transition temperature
has already been partially discussed (p. 140). As is now evident, the
omission of any reference in the previous account to the influence
of the term 7'J was immaterial. Its influence is unimportant since
it usually vanishes. The sign of b is important. Suppose in the transi-
tion I — II, AH, is positive. When 7 = 0, AG = AH, and I is
stable. If b is positive, AG gradually falls to zero as the temperature
rises, and II now becomes stable in spite of its higher potential
energy.

Now B(AH)

L = 2bT ...
er T

=C

pII

— AC,

C

br

and
(AC,)
2t ==

_ 9
—erT

()

bII

—GCp))-

If b is positive it means that the specific heat of the second phase
increases with temperature more rapidly than that of the first. In
other words, the second phase develops new degrees of freedom more
rapidly, and offers relatively more accommodation in the way of
molecular energy states. This, essentially, is why it eventually

becomes the preferred form.
5293 L
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Chemical equilibrium in gases
We may now turn to the further consideration of gaseous equi-
libria. Thermodynamic principles lead to the equations
dn K,/dT = AU/RT?
and dInK,/dT = AH|RT?
We may take the latter as typical and integrate it thus:

WK, = [ 27 a4 1.

Knowledge of the absolute magnitude of K, depends upon the evalua-
tion of I.

The first important step in this direction depends upon a theorem
due to Nernst which shows that

I=73ni,
where the 7’s are the integration constants of the respective vapour-

pressure equations for the various substances participating in the
equilibrium,

A .
Inm— fR—W AT 4.

The proof is simple and depends upon the fact that J = 0 for a trans-
formation in the solid state.
As shown on p. 105 for a gaseous reaction,

AF = RT(3 nlnc—In K),
and similarly AG = RT3 nlnp—InK)).

If the corresponding chemical change occurred between substances
in the solid state we should have

AGg = —T f A—I;fglﬂ dT +zero.

Now suppose all the solids participating in the reaction to be in
equilibrium with their respective vapours. There is no change in
free energy when evaporation occurs at the saturated vapour pres-
sure. Consequently the value of

AGsat vap — AGsoli«i’
but AGytvap = BT Y nlnm—RTIn K,

A .
and Inm = deT+z.



THE ABSOLUTE POSITION OF EQUILIBRIA 147
Therefore
AGypivap = BT S0 f E%‘z AT+ RT'S ni— RTIn K, = AGuya,
and thus

A . A
RTzandTJFRsz—RTf

gas
d7T —
B2 T—RTI

AH
- ._Tf,?glﬂ dT 4.

The integrals contain no terms independent of 7' except the inte-
gration constants which have been written explicitly. Moreover, the
above equation must be identically true for all values of 7', and one
may therefore equate coefficients of like powers of 7' on the two sides.
The coefficients of the first powers are seen to be the various integra-
tion constants themselves, so that

RYni—RI=0

or I =73 ni.
AH .
Thus K, — fw AT+ S ui,
- AU .
Similarly InK;, = T dT + 3 niy.

1, differs from ¢ by a constant, the logarithm of the saturated vapour
concentration differing from that of the pressure in a way calculable
from elementary theory.

The two constants ¢ and 4, are, in principle, calculable in terms of
the absolute entropies, so that these two formulae define the equi-
librium constants themselves in terms of known quantities.

Gaseous equilibrium constants from partition functions

Before the significance of the various factors expressed in the
equations for In K is discussed further, an alternative method of
deriving the equilibrium constant will be considered. In this it is
related to the partition functions of the various molecules taking part
in the reaction. It will suffice to deal with K.

In simple examples the problem is accessible to frontal attack.
The following derivation applies in the first instance to an equi-
librium between free atoms and diatomic molecules of a single species
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formed from them, but the conditions for generalizing the proof are
fairly evident.

Let there be in all M atoms of one species and N of another, and
let the numbers which exist in the free state be X and Y respectively.
Let there be Z molecules formed by the union of one atom of each
kind. Then we have the balance-sheet

X+Z=M,
Y+Z = N.

There is only one way in which all the atoms could be free and only
one in which they could all be combined, but there are many ways
in which some can be free and some combined. The total number
of permutations by which the balance-sheet specified above can be
realized is given by the expression
M!N!

T XYIZT
This follows from the fact that the total number of permutations of
the two kinds of atom is M!N!. For each of these, the first X of
one kind and the first ¥ of the other kind could be detailed for the
free state and the residual Z of each sent to form molecules. But
the order within the groups X, Y, and Z is immaterial.

The atoms of the two species and the molecules are now assignable
to their several energy states, and this process leads to additional
combinations

W

X! Y! Z!
X, X, ny.’ Z'Z,..0
where X is the number of atoms of the first kind in the first of their
possible energy levels, and so on.
The probability of the whole assignment—atoms to the free or
combined conditions, atoms and molecules to their various energy
states—is given by

W = W W, MIN!

AP AR AV ANAY AN
Stirling’s approximation gives
nW=MnM—-M4+NnN—N— 3 X, InX,+ 3 X,—
~2HWnY+ 3V — 3 Z,InZ+ 3 Z,. (1)
We also have S X+ 3 2, = M, (2a)
2h+237, =V, (20)
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for the constancy of the total numbers of atoms, and for the constancy
of the total energy we have

SaXi+2Xmb+ 3wz, =E, (3)
where €, n, and u are the energies of the corresponding atoms and
molecules in the levels denoted by the subscripts.

The condition that W shall be a maximum subject to (2a), (2b),
and (3) is

=8I W = 3 (1+In X,)8X,+ 3 (1+InY;)8Y,+

+ 3 (1410 2,)8%,— 3 6X,— 3 8%,— 3 6, = 0,

E 0X;+ E 6Z; =0,
2+ 3687, =0,
2 &dXy+ 3 81+ 3 87, = 0.

The last four equations are, according to the method of un-
determined multipliers illustrated already on p. 29, multiplied
separately by unity, «,, «,, and B, and are then added and re-
arranged. The result is

2 (X +o,+Pe) 83X+ 3 (In Yy +o,+Br,) 813+

+ > (InZ,+oyto,+pu,)8Z; = 0.
By an argument similar to that used before, the separate coefficients
of 8X,, 8Y;, and 8Z; are therefore equal to zero. Thus

InX; = —o,—fe,
InY, = —a,—fny,
In Z1 = ——ax-—ay—ﬁul,
whence X, = e-teo-fe,
Y, = e-wvebm,
Z, = e—(Catoy)p—Pur_
It follows that
X=3X=e*y eBa = g—uf!
Y=3Y =e%> ePn = e-mf)
Z = Z Z, = e (at®) ¥ e—Bur — e~(cto)f,

and thus
VA fz' e—(aa-tay) f’

XY~ fufy eve fif)
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As before, 8 = 1/kT.

The functions f;, f,, and f, are of the form of ordinary partition
functions except in so far as they require adjustment in respect of
the energy zeros.

When a molecule is formed from its constituent atoms there is a
release of energy, ¢, of which equation (3) took no account. That
expression rests therefore on the convention that the levels belong-
ing to the u series are measured from a zero which is uniformly ¢
higher than the normal molecular level. If we wish to drop this tacit
convention and to use normal partition functions, we must increase
the values u;, %y,... by ¢. Thus

= ~(u+QkT — f’ o—alkT
e e fe
Therefore [ = f,edkT,

But ¢ is the energy released and is thus —AU,/N, where AUj is the
conventional increase of energy per gram molecule. Thus

fi = frevin,

[z and f, may be replaced by f, and f, since there is no adjustment
of the reference levels to be undertaken. We therefore have

Z [ e—-AUWRT,

XY fufy
Reference to the formulae on p. 135 reminds us that all the parti-
tion functions will contain V, the volume, once for each species (from
the translational quantization). We may conveniently extract it
from f by writing f = f, V. Transposition of the last formula then

gives (Z|V) _ Jos e-AUWRT,
X/VYXIV)  foufoy

The last equation may be written

Ky = TI(fo)e=2 VIR,
where I1(f;) represents products and quotients of partition functions
(with V omitted) built up on precisely the model of the equilibrium
constant. For example, for the equilibrium 2H,-+0, = 2H,0 the
value of II( f,) would be

S0/ f5m -Fooy-

K, denotes an equilibrium constant in which concentrations are ex-
pressed not in the usual way as numbers of gram molecules per unit
volume but as numbers of molecules per unit volume.
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An inspection of the steps of the above derivation reveals what
changes will be introduced by a modification in the form of the
chemical equation. If the reaction were of a type where two atoms
of the first species and one of the second entered the molecule, we
should have for the balance-sheet of the total numbers of atoms

XH42Z =M,
Y+Z=N.
Equation (2a), which is differentiated and multiplied by «,, would
then contain 2y Z, and give rise to a term 2u, in the coefficient
of > 8Z,. The cancellation of the « terms then requires the presence
of X2 and of f2 in the final expression.

It will be noted that the above calculations, like those given on
p. 28, amount to the derivation of a distribution law. The result
is therefore unaffected by the question of the constant defining the
absolute entropy.

More formal consideration of the foregoing theorem
As shown on p. 132, the Boltzmann free energy is related to the
partition function by the equation
F=U—-T8 = —RTInf.
The quantum-mechanical requirement gives for the absolute entropy
a value less by kln(N!) = k(NInN—N) so that k7T (NInN—N)

must be added to F.
Since, moreover, chemical changes are to be taken into account,

and since these involve releases or uptakes of energy in forms which
do not constitute part of the ordinary thermal energy—being in fact
changes in the internal electronic energy, a term U, will be added
to F. U, represents the non-thermal energy which changes only
when the chemical nature of the molecule is altered.

Thus F = U,—RTInf+RTInN—RT.

J» the complete partition function, contains a factor V, the volume
occupied by a gram molecule, and may be written f, V.

Thus F = Uy—RTInfy+RTIn(N/V)—RT.
In a chemical change, with the usual meaning of Y =,
AF = 3 n(Uy— RTInfy+ BT Inc— RT+RTInN),
since 1/V = ¢, the concentration of the gram molecule occupying the
volume V.
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If the gases are in equilibrium and if a small chemical transforma-
tion takes place such that dx times each of the quantities represented
in the chemical equation reacts, then

(AF)dx = 0,
(AF)ydx = 3 n(Uy— RTInfy+RTInc—RT+ RTIn N)dx+-

d
—}—% (3 nRTInc)dx.

The last term must be added, since it is in fact impossible to conduct
the small virtual displacement without slight changes in ¢. But

——(anTlnc)dx = RT > (ld_"_)d — RT3 nde

since defc = dx, dx being the fraction of each gram molecule which
reacts, and therefore the fractional change in concentration. There-
fore

(AF)dzx = 3 n(Uy—RTInfyo+ RTInc+ RTIn N)dx = 0,

AF =3 nUy— 3 nRTInfy+> nRTIn(N/V) = 0,
whenoce annT/—v_annfO——W,

since > nl, = AU, the heat of reaction at 7’ = 0.

> nIn(N/V) = In K, where K, is the equilibrium constant with
concentrations expressed as number of molecules in unit volume.
(V is the volume of one gram molecule, while N, Avogadro’s number,
is the number of molecules in one gram molecule.)

This formula is that arrived at in the last section, InII(f,) being
identical with Y nlnf,.

General discussion of the factors determining the position of a

gaseous equilibrium

In the light of the formulae derived in the preceding sections we
may once more make a general survey of the competing factors which
determine the chemical make-up of things.

We begin by collecting together the relevant equations: they are

AU

]IIKV = _RTZ dT+ zmo, (1)
— AT,
InKy = annfo-—ﬁ, (2a)

Ky = II(fo)e-sVoEL, (20)
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K is written, as usual, with the reaction products in the numera-
tor. Thus in (1) a large value of nz, favours completeness of reaction.
The influence of this term might be roughly but vividly expressed
by saying that those molecules which have the greatest inherent
tendency to escape from the solid state into the vapour have also
the greatest tendency to be formed in chemical transformations in the
gas phase. The reason is that such molecules have open to them
the widest range of states and that populations in general increase
with the number of available states.

The operation of the same principle is revealed in a slightly
different way in (2¢). Other things being equal, K increases in pro-
portion as the partition functions of products exceed those of the
initial substances, and they may do this in so far as the selection
of available states offered to them is wider.

(1) and (2) both express the powerful influence exerted by > n
itself. Values of ¢y and values of f, vary, of course, considerably from
one substance to another, but not so much that the sign of > ni,
or of X nlnf, will not usually be positive or negative according as
there are more molecules of product or more molecules of the initial
substances in the chemical equation. In other words, products formed
with an increase in the number of molecules are favoured, while those
formed with a decrease in this number are not. That is to say, that
there is a factor rendering decomposition reactions essentially more
probable than synthetie reactions. The interpretation of this is
obvious. The latter require the fortuitous encounter of a larger
number of particles to unite to a smaller number, a process of com-
parative rarity compared with the spontaneous break-up of a more
complex structure into chaotically dispersed fragments.

As T approaches infinity, the factor e-2U/ET tends towards unity
and the two influences which have just been considered, namely the
relative numbers of available states open to reactants and products
on the one hand, and on the other, the relative probabilities of con-
gregation or dispersal, dominate the situation entirely. Conversely,
as T drops, the relative effect of these factors declines until at very
low temperatures the influence of AU, becomes paramount.

AU, represents the amount by which the potential energy of the
structures formed in the reaction exceeds that of the original ones.
K increases as {—AU,;) becomes numerically greater, that is, as the
running down of potential energy accompanying the reaction grows
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larger. In a static world everything would tend to be in a state of
minimum potential energy and this condition is more nearly realized
as the absolute zero is approached, the formative tendencies of the
attractive forces being here less and less combated by the disruptive
action of molecular motions and the blind urge to explore all possible
states of existence.

It is interesting to observe the form in which the potential energy
factor is expressed in (25). Consider the simple example of a reaction
A = B. The equilibrium constant K = [B]/[A] contains a term
e-AUJET  The chance that a molecule of B is in its jth energy state
is normally e-9/*¥T or e-EIET counting on a gram-molecular basis.
If, however, B is formed from A in a reaction, it Yeceives, as it were,
a bonus of energy E, and only needs E;—E, to attain its jth state,
the chance of which now becomes e~E-EJET  Thug every single
state of B increases in probability by e+EdET and, since By, = —AU,,
by e-AUWRT,

There is still another matter illustrating the interplay of energy
and entropy factors which the equations (1) and (2) reveal. (1) may
be written

nC,dT
K = _AU°+ ffz—_)dqur S i (3)
: BAU)
since o = > nC,
so that AU = AU+ [ 3 nC,dT.

Thus

dnK, AU, +_f 2 nG,dT

dT ~— RT? RT2
Differentiation of (2a) gives (since the temperature variations of K,
and K, are the same)

dinKy AU,
ar RT"‘—I—z

From the result on p. 132 the final terms of the last two equations
are seen to be consistent. The thermal energy E is RT*dInf/dT, so
that > ndInf/dT = > nE/RT? 3 nkE is the amount by which AU
will differ from AU, and so is f > nC,dT.

Equation (3) brings one factor more clearly to light. If the specific
heats of products increase with temperature more rapidly than those
of the reactants, the formation of products is favoured (cf. p. 142).

dlnf0
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f > nC,dT in these circumstances contains posifive terms in the
higher powers of 7' and in the integral these give other terms which
are also positive. If the products are formed with increase in energy,
AU, is positive and (—AU,/RT) operates against their formation,
but the positive terms just referred to neutralize this influence and
favour the products. Specific heats increase with temperature be-
cause new degrees of freedom make increasing contributions. If this
applies more to the products than to the initial substances, then
the states available for the former increase more rapidly than
those available for the latter: hence the favourable displacement of
equilibrium.

To cite a few specific cases in exemplification of these principles:
hydrogen and oxygen combine almost completely except at very high
temperatures, in virtue chiefly of the favourable heat of reaction:
the influence of the 3 n term is adverse. The equilibrium amount
of saturated hydrocarbons formed in synthetic reactions is small for
any except methane, and chiefly because of the highly adverse 3 n
term. Attempts at a thermal synthesis of ozone would always be
relatively disappointing: both energy and > n factors are unfavour-
able. The more subtle factors which the foregoing discussion has
brought to light interplay in a complex manner, and this explains
why no simple general rules, such as the Berthelot principle (which
related equilibrium to heat of reaction), can have more than restricted
validity.

Once again the situation can be summed up by the statement that
the chemical balance of the world is determined by the interaction
of three prineipal factors: forces which tend to impose order, proba-
bilities of encounter and departure, and the numbers of states avail-
able for occupation by molecules in their various chemical forms.

Equilibrium of radiation and matter

Having studied the material equilibrium of particles, it will be
advantageous to turn attention briefly to the equilibrium of matter
itself with the radiation which bathes it.

In an enclosure containing radiation the role of the matter is to
define the temperature. At a given temperature the energy and
wave-length relations of the radiation are governed by statistical
considerations of a rather general character.

The energy of a photon corresponding to the frequency v is hv.
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According to the principle of relativity (p. 230) the photon behaves
as though it possessed a mass m such that

me2 = hy,
where ¢ is the velocity of light. The momentum is therefore given by
p = mc = hv/c.
In a quite general way particles or photons moving in an enclosure

must conform to certain boundary conditions. If the motion is con-
fined to the x-axis, the condition for a steady state is

nA/2 = a,
n being a positive integer and a, being the length of the enclosure

in the z direction. Since in general A = h/p (for photons in particular
since h/p = ¢/v and ¢ = Av) we have
nh/2p, = a,, Py Oy = Nh2.

Up to a given maximum value, p, a,, of this product, there would
be n possible values spaced at intervals of 12. As far as energy states
go there is a similar set with p reversed, so that there are n states
each spaced % apart in units of the product momentum and length.
In other words, the texture of what is called the phase space is such
that dpde = h.

Similarly the volume of the phase space which constitutes a state
for the three-dimensional motion is 3. If desired this last statement
can be taken as the fundamental postulate.

Suppose the volume of the enclosure is V and the resultant mo-
mentum in three dimensions is p. Let p be represented as a function
of p,, p,, and p,, giving a vector. Now consider all the vectors
corresponding to momenta between p and p-+dp. Their terminal
points lie in a region bounded by two spheres of radii p and p+dp
respectively. The extent of this zone is 4mp?dp. This last quantity
is now multiplied by V, the volume of the enclosure. Thus 47p2dp V/h®
gives the number of states corresponding to momenta between the
limits specified.

With photons the number of states comprehended in a given
momentum range determines the number in a given frequency range,
since p = hv/c and dp = hdv/c. Thus, as far as this goes, in the
frequency range dv there would be

4m (@)2é dv VIR
cj] C
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states. This number has, however, to be doubled. Light possesses
the property of polarization, two planes of polarization at right angles
to one another being possible. Whatever this ultimately means in
relation to photons, it certainly involves a doubling of the number
of states, which now amount to

8aVv2dy/c3.

Now photons may reasonably be taken to be indistinguishable one
from another, so that the statistical considerations which apply in
the light of quantum mechanics to molecules should apply at least
equally well here. We may take all photons corresponding to fre-
quencies between v and v-+dv to possess energy €; and, as we have
seen, there will be g; states of this energy, where g; has the value
which has just been calculated.

Let there be N; photons in the energy range under consideration.
The problem, then, is that of allocating N; objects to g; compart-
ments just as in the case of molecules already discussed (p. 136).
The number of allocations is

(B;+g;— !
Nl (g;,—1)!
The combined probability for all frequency ranges is
(Ni+g:— 1! (Nytg,—1)!

R DR AT 7SS Ve
By use of Stirling’s formula we obtain, neglecting unity,
I P = 3 [(;-+g,)n(N;-+9,)— N o Nj—g,Ing ]
7

This must be a maximum subject to the condition of a constant
total energy.

In sharp contrast with the problem of energy distribution among
molecules, there is here no condition that the total number of photons
should remain eonstant like the total number of molecules.

We have simply SInP — 0
8 z GJN] = (0.
Solution by the standard method (p. 29) gives the result
./
N =

If we formulate a problem about the sharing of energy between
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molecules and photons, there will be a condition of constant total
energy once more, and the multiplier 8 will be common to molecules
and photons. The value of 8 is thus as usual 1/k7'.

N/
Thus N; == eej/kTJ_ 7
but g; = 8aVvidy/c®
and € = hv,
2
so that N; = BV vidy 1

3 kT _7°

Now N;hv/V is the energy in unit volume in the frequency range »
to v-+dv, which is usually written %, dv. Thus

8mhy? 1
u, dv = T W———l dv.

This formula enshrines many important and remarkable results.
In the first place it gives a maximum value of u, at a given frequency,
as required by experiment, and as was inexplicable without the
application of the quantum theory. This explanation is the historie
triumph of Planck by which the quantum theory was founded. The
account which has just been given of the matter differs, however,
considerably from the original one and rests largely upon later con-
siderations, which in their turn depended historically upon the initial
discovery.

In the second place, the formula leads to Wien’s law according to

which v, /T = constant. The condition for the maximum is
du, 24mh? 8alw® h
Ty 2TV o —1)-2emikT " __
PR & ) g = 0

ie. ehvikT ]:L—;,/(eh"/”—l) = 3.

(e"VIkT —1)-1

The expression on the left is a universal function of »/7" so that
Vmax/T is constant.

This result is also fully established experimentally and is of funda-
mental importance. Unless ¢ were of the form Av, the universal
funetion of v/T could not appear in the condition for v, and Wien’s
law would not be followed. It was in fact the necessity for con-
forming to this law which guided Planck originally to the postulate
regarding the proportionality of the quantum and the frequency.

Wien’s law is often derived by a formal application of thermo-
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dynamies, but in the course of this the law of radiation pressure is
assumed—and this law must depend upon some property of photons:
moreover, the entropy principle is employed, which is equivalent to
the proper statistical rules. There is thus no lack of coherence
between the two modes of derivation.

The next matter of moment is the total radiation density expressed
as a function of temperature. This density is given by fuv dv over
all frequencies. Let Av/kT = x. Then the integral becomes

e o]

3 8mwhv® 1 87h kT\¢
f u,,dv = f T mdv = —c?— f (T) Xa(EX—l)_ldX
0 0 0

— constant X 74 f xi(ex—1)1dy.
0

The definite integral can be evaluated to give a purely numerical
quantity, so that the total radiation density is seen to be proportional
to the fourth power of the absolute temperature. This is Stefan’s law,
also a well-known result of experiment and the basis of high-tempera-
ture pyrometry.

Powerful as the theory of photons has proved itself, and deeply as
the statistical method permits us to penetrate into the nature of
radiation, there are aspects of the subject which can only be under-
stood in terms of the electrical theory of matter and of the electro-
magnetic theory of light. The introduction of the electrical theme
cannot be much longer deferred.

Conclusion: need for further principles

The conceptions of the kinetic theory and of chaotic molecular
motion, even by themselves, provide interpretations of a surprising
range of phenomena. They fail to give any account of absolute
entropies, or to define the exact position of any equilibrium. They
lack, as it were, an origin of reference. This failure is largely redeemed
by the introduction of the quantum theory and of the statistical
principles whereby the occupation of molecular states is defined.

The greater precision thus achieved is, of course, at the cost of
several particular assumptions. The quantum rules are admirably
summarized in the wave equation, but the formulation of this
expression and the rules for its application do remain postulates
of a specialized kind.
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One rather radical assumption has had to be made: that, namely,
of the indistinguishability of molecules, which converted the Boltz-
mann definition of the entropy into the quantum mechanical
definition, and proved essential for the calculation of the absolute
entropy. This represents the most drastic departure which we have
so far met from the naive conception of molecules as small-scale
reproductions of the recognizable macroscopic objects around us.
But still more drastic departures will prove necessary.

The equations of quantum mechanics and rules for their applica-
tion are needed for deeper purposes than the mere prescription of
energy levels. The wave equation itself is much more than a vehicle
for the values of E which permit solutions: the properties of the
function ¢ itself assume great importance. One example has already
appeared in connexion with rotational states: for the nth state there
are 2n-1 solutions and this number determines the weight of the
state.

But it is not only the number of the solutions which matters: their
character assumes predominant importance in some problems, and
this in various peculiar ways which, however, it is only expedient
to introduce as the interpretation of experimental facts demands.
One concrete example arises from certain of the facts already con-
sidered. The necessity for the quantum theory itself emerges clearly
from the failure of the kinetic theory to provide without it an
adequate description of the energy content of matter. The need for
further postulates is shown by the failure of the ideas so far intro-
duced to account adequately for the detailed behaviour of the specific
heat of hydrogen.

The molecular heat at constant volume falls from 5 to 3, owing to
the decay of the rotational degrees of freedom as the temperature
falls. Aeccording to the rules for rotational quanta, the partition
funetion for a molecule composed of two similar atoms should be

n(n+1)h?

n=w
Jrot = (2n4-1)esmirT .

Since B = RT*dln f/dT, E,, is computable, and its differential
coefficient with respect to 7' gives the rotational contribution to the
specific heat.

The formula derived, although expressing qualitatively the decay of
the rotational specific heat as the temperature drops, is quantitatively
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quite inadequate to reproduce the course of the curve which repre-
sents this decay. If, however, the energy states are assumed to
constitute two quite independent series, with odd and even values
of n respectively, transitions from odd to even states and vice versa
being vmpossible, and if, further, the states corresponding to odd
values of n are assumed to have three times the weight of the corre-
sponding even values, then the specific heat formula assumes the
form

Chot, = dByiJdT, where E,, = RT*dInf/dT = RT2(1/f)df/dT.

Thus
h

2 patrDme
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n=even

+3 > (204 Dn(nt1)
n=odd

rot = 9 2
(20-+ D)o Smnr +3 > (2n-+1)e"swiir

n=even n=o0dd
This formula reproduces the experimental values in a satisfactory
manner.

This curious result is by no means a mathematical fiction. By
fractional adsorption on active charcoal at the temperature of liquid
hydrogen and subsequent desorption, hydrogen can in fact be sepa-
rated into two gases, ortho- and para-hydrogen. The former has a
specific heat (and thermal conductivity) corresponding exactly to the
possession of odd numbers of rotational quanta. The properties of
the latter correspond to even numbers only. The two forms are
stable and interconvertible only by atomization at high temperatures,
or by special catalytic methods in which molecules are taken out of
the gaseous state.

There are two important matters here. First, odd and even rota-
tional states have different statistical weights and, secondly, transi-
tions between the two kinds of state do not normally occur.

These extraordinary facts can be expressed in terms of the pro-
perties of the wave function i, but before the discussion is earried
farther it is necessary to assemble a whole series of results. It is only
in the light of developments proceeding from the electrical theory
of matter that the necessary ideas become intelligible (see p. 193).
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PART III
THE ELECTRICAL BASIS OF MATTER

SYNOPSIS

THERE are good reasons for believing matter to be built up from units which
individually act upon one another with the electrostatic inverse square law of
attraction or repulsion.

Atoms are discovered to consist of positive nuclei surrounded by systems of
negative electrons, the various dispositions of which determine different
series of atomic energy states. The rules governing the possible sequences of
energy levels are ascertainable by the study of spectra and other means, and
are derivable in general from the differential equation which summarizes all
the other quantum laws.

The condition of any electron in an atom is characterized by four quantum
numbers. It turns out that no two electrons in the atom can have all four
quantum numbers the same, a rule of fundamental importance known as the
Pauli principle.

The structure of the entire system of the chemical elements is explicable on
the following basis: the interactions between nucleus and electrons are according
to the Coulomb inverse square law: the electrons of an atom are assigned one
after another to various energy levels with the succession of quantum numbers
required by the wave equation and by the Pauli principle.

The electron, however, has not the properties of a macroscopic particle,
and indeed the Pauli principle would probably not apply to entities possessing
individual spatial identities. Electrons show properties of interference more
characteristic of waves than of small discrete masses. Accordingly the dis-
tribution of electron density in an atom is discovered to be regulated by a
certain amplitude function (the wave function) which already plays a key role
in the differential equation defining the quantum states.

The function for an atomic system must, in order that the Pauli principle
shall hold good, possess a character of antisymmetry, changing its sign when
the coordinates of two electrons are interchanged. This principle, though
abstract, is unambiguously related to very definite experimental facts, such
as the character of the helium spectrum, and the specific heat relations of
hydrogen.

The electrical distribution within atoms can now be inferred. Evidence
about the distribution in molecules is also available from experimental ob-
servations on spectra, dielectric properties, and so on.

Electrical displacements within atoms and molecules are closely related
to the electric and magnetic fields of light waves. The electromagnetic theory
of light and the quantum theory both play their part in the interpretation of
optical and other properties of various kinds of matter.



VIII
THE NATURE OF ATOMS

Introductory

Maxy of the phenomena of nature, it is clear, can be described,
analysed, and in a sense understood in terms of the kinetie, statistical,
and thermodynamic principles so far outlined, without deeper inquiry
into the character of the forces which cause particles to congregate
together. This is true whether the attractions are those between
atoms to give chemical compounds or those between molecules to
give condensed matter. But we cannot rest content to forgo more
detailed knowledge about these forces or to accept energy changes
as fundamental data without further investigation of what they
mean.

The study of forces proves to be intimately bound up with the
electrical constitution of the atoms themselves. The whole question
of their structure has so far entered into the discussion in the most
indirect way only. It now emerges as a dominant theme. Once again,
however, the road to deeper knowledge is full of unexpected turns.

When two pieces of the appropriate materials are rubbed together
they acquire attractive and repulsive properties called electrical.
A great many of the manifestations observed in the following up of
this observation can be interpreted by the hypothesis that there is
a something called electricity with properties roughly analogous to
those of a fluid, and normally contained in matter, its distribution
being disturbed by processes such as friction. Sometimes in the
development of physics it proved useful to postulate two kinds of
electricity, positive and negative, sometimes it was enough to assume
either an excess or defect in relation to a normal content of one single
kind. Currents through conductors are ascribed to movements of
electricity.

Salts in aqueous solution conduct electricity and are decomposed
in the process, not infrequently into their elements. Since the latter
are liberated at the electrodes only, some at the positive and some
at the negative one, the natural hypothesis to make is that electricity
is carried through the solution by ions, such as Ag+ or Cl-, which
give up their charges at the electrodes and become normal atoms.
Among the keystones of chemistry is Faraday’s law of electrolysis
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which states that the quantity of an element discharged by a given
current in a given time is directly proportional to the chemical
equivalent. In fact one gram equivalent of any element is dealt with
by the passage of 96,500 Coulombs (one Faraday, F') of electricity.

The far-reaching consequences of this law were first clearly ex-
plained by von Helmholtz in 1881. Since one gram equivalent of an
n-valent element is discharged by F, one gram atom corresponds
to nF, the atomic weight being » times the equivalent. The amount
of electricity by which a gram atom of an element is released is
nothing other than the charge which that gram atom bears in the
ionic state. Thus a gram atom must carry a charge of nF.

n is necessarily a whole number, so that the ionic charges of all
elements are integral multiples, positive or negative, of a standard
unit. This means no less than that electricity is atomic in character.

A fundamental unit of electricity may be postulated and all ionic
phenomena explained by the supposition that atoms can possess
an excess or defect of one, two, three, or more of these units. The
assumption of a possible deficiency of charge units implies what is
already suggested by the ready generation of electricity from all
bodies by friction, namely that the electrical ‘atoms’ are normal
constitutents of all ordinary matter.

The absolute magnitude of the unit charge, e, is obtained when F
is divided by Avogadro’s number,

e= F[N.

Electrons

The discovery of free electrons was made in the course of the study
of cathode rays which are generated when an electric discharge passes
through a gas at very low pressures. The path of these rays can be
made visible by the use of fluorescent sereens and recorded by photo-
graphic means. They are deflected by electric and by magnetic fields
in a manner consistent with the assumption that they consist of
negatively charged particles.

Their properties are found in the following way. Deflexion experi-
ments give the ratio of charge to mass e/m. First, a magnetic field,
H, is applied. The rays bend into an arc of a circle about the lines
of foree, after the manner of a flexible wire bearing a current. In
a stream of particles of charge e and velocity v the magnetic force
acting on each is Hev and is directed to the centre of the circle. This
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force provides the acceleration v?/r required to maintain motion in

the circular arc. Thus .
Hev — gt (1)

In another kind of experiment the rays are deflected by the mag-
netic field H and the deflexion is then exactly annulled by the
application of an electrostatic field X at right angles to H. When
the electric and magnetic forces balance

Hey = Xe. (2)

From (1) and (2) both » and e/m may be calculated.

The first method of finding e itself was that of Townsend, who
measured with an electrometer the total charge on a cloud of water
droplets condensed on the negative particles which constitute the
rays. The principle is applied in a much more accurate way in
Millikan’s oil-drop method. Droplets of oil are sprayed into a cham-
ber in which they can be individually observed by a microscope, and
in which they can be subjected to an electric field acting in opposi-
tion to gravity. They prove to have negative charges. Normally they
fall slowly under gravity, but by the application of an opposing field,
X, their motion can be arrested and, if necessary, reversed. When
a given droplet is held in exact balance

XE = My,

where E is the total charge and M is the mass of the oil drop. M may
be determined by observation of the rate of fall under gravity alone,
Stokes’s law giving the radius of the drop in terms of the viscosity
of air, the density of the oil, and g. (In practice measurements are
made in air at various pressures so that deviations from the simple
hydrodynamic formula can be corrected for.) E is now known, and
proves to vary from droplet to droplet, and for a given one at different
periods of its existence, but is always an integral multiple of a basic
unit e.

This is the charge of the electron: it is identical with that carried
by the cathode ray particles and with that borne by univalent ions in
solution (F/N).

e/m and e being known, m is calculable and proves to be 1/1,850
of the mass of the hydrogen atom.

The B-rays emitted by radio-active substances are also found to
consist of negatively charged particles with properties closely similar
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to those of cathode rays, except in one respect. While some of them
have values of e/m equal to that for the cathode-ray electrons, others,
and specifically those with high speeds, show values of e/m which
are a function of the velocity.

It has been found expedient to regard the charge as the funda-
mental and invariable quantity and to attribute changes in the ratio
to variations in m, which, in any case, would be predicted by the
theory of relativity (p. 230). On this basis the mass is found to vary
with the speed according to the formula

m — mo/(1—0?e?),

where m, is the mass of the particle at rest, v is the speed, and ¢ is
the velocity of light. The increase of m above m, is only of importance
in comparatively rare circumstances, but some of the particles emitted
by radio-active elements do in fact possess speeds approaching that
of light and show considerably enhanced masses.

Electron waves

The picture of the electron, the fundamental negative electric unit,
as a minute mass, obeying the laws of particle dynamics seems so far
to be very satisfactory, but matters are really much more complex.
If a beam of electrons at a suitable angle of incidence is reflected
from a crystal surface, the distribution of intensities is not at all
what would be expected for a shower of projectiles, but is repre-
sented by a pattern with maxima and minima just like those occur-
ring in the diffraction of light.

Measurements on photographs of the intensity patterns allow the
calculation of a wave-length, which is found to be a function of the
speed of the electrons. Experiments with beams accelerated by
known voltage differences established the following relation:

I3

- 3
muv

which is one of the fundamental results on which quantum mechanics
rests.

It is of interest to note that the formulae € = hv, A = h/mwv, and
the relativity relation ¢ = mc? (p. 230) are interconnected. If, for
example, the general equation A = h/mv is applied to a photon,
A = hjmc and since Av = ¢, ¢/v = h/mc; that is, me? = hv or ¢ = hv.
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The diffraction of electrons is more than an interesting special
phenomenon. It shows that happenings on the scale of electronic
magnitudes cannot be envisaged in the same way as ordinary macro-
scopic events, where it would be nonsensical to find wave properties
and particulate properties mixed up in this way.

On analysis, there is no particular justification for the belief that
the substratum of the visible world should merely consist of small-
scale models of those very things which it underlies. But in the
attempt to understand nature this naive idea does represent the
first step in relating the unknown to the known, and may properly
be allowed to render what service it can.

For many purposes it remains expedient to regard electrons as
particles, like those of Newtonian dynamics, but to add special
rules regarding the distribution of electrons in space when problems
of intensity have to be considered. From this point of view the un-
dulatory character is a statistical property and relates to the prob-
ability of finding electrons in a given element of volume. But this
mode of interpretation may also prove to be of provisional utility
only.

The nuclear atom

The evolution of our ideas about matter now becomes influenced
by discoveries and by theories from many quarters. Certain elements
are found to show radio-activity, that is, the property of emitting
rays and changing into other elements. The naturally occurring
radio-elements emit three kinds of rays, «-rays or helium atoms with
a double positive charge, B-rays or negative electrons, and y-rays or
radiation of wave-length shorter than ultra-violet light. The particles
which make up a-rays possess immense energies and constitute pro-
jectiles with which experiments on the bombardment of matter can
be carried out. The key result is that the a-particles usually pass
straight through thin sheets of any element, most of them suffering
inappreciable deflexions, an observation suggesting that matter con-
sists largely of emptiness. Once in a very large number of times,
however, an a-particle suffers a violent deviation, as though it had
passed close to something which repelled it powerfully. On the basis
of this, Rutherford founded the nuclear theory according to which
the atom consists of a minute positively charged nucleus, surrounded
by electrons.
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The nuclear charge and the relative dimensions of nucleus and
atom can be inferred from a detailed statistical investigation of the
numbers of «-particles scattered through various angles on their
passage through sheets of different elements. The conclusion reached
is that the nuclear charge is equal to the atomic number, that is, the
serial number of the element in the periodic system, and that the
dimensions of the nucleus itself are so minute that it cannot be
regarded as ordinary matter at all. Indeed, matter as something
distinet from electricity fades out of the picture. The atom consists
of the nucleus, which is somehow compounded of positive units of
charge, and of electrons, which are themselves negative units. There
is, however, a dissymmetry in that the positive units must bear most
of the mass of the atom. If the hydrogen atom is assumed to consist
of one positive unit, or proton, and one electron, then the mass of
the former is 1,850 times as great as that of the latter.

The fundamentals of electrical theory are not satisfactorily de-
scribable at this stage. At the present time it is known that there
exist: the proton, or positive unit; the negative electron; the positive
electron, which appears in experiments on cosmie rays, and which in
properties, though not apparently in the role it plays in nature, is
symmetrical with the negative electron; the neutron, an uncharged
particle of mass nearly equal to that of the proton. These are well-
established stable particles. There are in addition mesons, unstable
particles which decay with short periods, oceurring in cosmic rays
and possessing various masses intermediate between that of the
electron and that of the proton, and possibly the neutrino, a particle
of very small mass and no charge, postulated to account for certain
phenomena in B-ray radio-activity.

The situation is mysterious, and a complete theory of these so-
called ultimate particles is awaited.

What is interesting and important, however, is that so far as the
chemistry of atoms is concerned nothing has yet been found in-
consistent with the idea that negative electrons constitute the sole
components outside the nucleus. Nuclear chemistry is a separate
branch of study, so that much progress can be made by accepting
the nucleus as a minute central positive charge equal to the atomic
number, deferring inquiry into its structure, and seeking in the first
instance to find what can be explained in terms of the external
electrons.
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Atomic structure: Bohr’s theory

The existence of the periodic system of the elements shows that
atoms are not unrelated individuals. The gradation in properties
suggests, perhaps, varying patterns of the extra-nuclear electrons;
and the periodicity suggests that these patterns from time to time
complete themselves in some sense and start again. Many detailed
studies confirm these ideas.

The shortest route into the heart of the matter is perhaps by the
study of atomic spectra.

The frequencies of the lines in the spectrum of an element obey
a rule known as the Ritz combination principle. All the observed
values may be derived by additive or subtractive combinations of a
much smaller number of quantities called spectral terms. Thus, if the
terms are 7}, T, T,..., then the observed frequencies are related as
in the following examples:

Vg = %—Tl’
Va1 = -1,
V3g = %_Tz’

80 that vy, = vg,-+-v,, and so on.
One famous example is the hydrogen spectrum, where Balmer’s

formula v = R(1/n3—1/n?)

expresses three complete series of lines according as n, = 1, 2, or 3
with »n, as a variable integer in each case, R being constant.

The interpretation of these remarkable relations was for a long
time completely baffling. In the light of the quantum theory it
becomes transparently clear. If an atom can exist in a series of
quantum states or energy levels, and if the energy released as it
passes from one to another becomes in some way a photon of energy

hv, then U, —U,, = hvy,
and thus vy = U, [h—U,,/h,

and the general value U/h is immediately identifiable with the
spectral term 7'.

The combination principle follows simply from the conservation
of energy. Since Uy—U, = (Uy—U,)+(Uy—U)), vy = vgo-tvy. The
energy levels in question seem likely to depend upon the dynamics
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of the negative electrons, which, as has been seen, appear to play
the major role in atomic structure. The Balmer formula shows in
what way this happens.

As a first approximation it suffices to consider Bohr’s simple
model of the hydrogen atom. This consists of a nucleus of charge E
around which a single electron describes a circular orbit of radius r,
and does this with a linear speed v. (£ = e, but the two separate
symbols will be used for the purpose of a subsequent extension of
the calculation to certain atoms other than that of hydrogen.) The
angular momentum of the electron is by ordinary dynamical rules
mor. According to the simple form of the quantum theory, mor might
be expected to possess only the discrete values nh/27, where n is an
integer. According to normal dynamics and electrostatics, the Cou-
lomb attraction by the nucleus provides the acceleration towards the
centre necessary to maintain the motion of the electron in the circular
orbit.

The two conditions are expressed in the equations

mor = nh/2m, (1)
Eejr? = mv?/r. (2)
The potential energy of the electron at a distance » from the
nucleus is f li:dr _ 0_@3,
T r

where C is a constant. The kinetic energy is mo?, which from (2)
is L Ee/r.

The total energy of the electron, potential and kinetie, is therefore
given by
v=oc-2

2r

Elimination of  and » from (1) and (2) and substitution in the above
gives 272m [ 22

U=0C— 72n2

As n increases, U increases also. If a transition occurs from a state
where n = n, to one where n = n,, then

2, 2,2
Uz_U1=2ﬂ-mEe (1__1)

2 ey
h "Ny
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If U,— U, provides the energy of a photon of frequency v,;, then
this latter is (U,— U,)/%, so that
2mmE%2 (1 1
s
This is the Balmer formula.

Two observations are to be made here. In the first place, the value
of R, the Rydberg constant, appears as 2=%n E2%?*/h® and this agrees
very closely indeed with that obtained by measurements on the
spectral frequencies. Secondly, the characteristic form of the relation
involving the factor 1/n? in the energy would not follow from any
assumption other than one equivalent to the quantization of the
angular momentum.

The outstanding success of this simple model of the hydrogen atom
encourages the attempt to extend and refine the ideas on which it
is based. This process occurs in several stages.

X-ray spectra

A first very simple stage is the extension of the frequency formula
to an atom in which the nucleus has a charge of Ze units (as may be
assumed for an element of atomic number Z) but which contains a
single electron only—that is to say, an atom which has lost all its
electrons save this one. The frequencies are obviously given by

b 2n2me4Z2( 1 1)

h3 nf 03
_nr(iod)
"y Mg

where R is the Rydberg constant.
Let n; = 1 and n, = 2, then
v = 3RZ?%/4,
or vt = Z,J(3R/4).
The square root of the frequency for corresponding lines of successive
elements should vary directly as the atomic number.

Almost precisely this relation was found by Moseley for the X-ray
spectra of the elements. All save the lightest emit X-ray spectra on
bombardment with cathode rays. The lines of these spectra form
various series. The lines of highest frequency for a given element
are the K lines, and for these Moseley found the relation

vt = (Z—a)J(3R/4).
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@ is a small constant with a numerical value of about unity, apart
from which the formula is exactly that derived from the hypothetical
model.

Now if the elements contain numbers of electrons arranged in
groups and patterns, some, the innermost, must be under the direct
influence of the nucleus. The dynamics of one of these will corre-
spond approximately, though not exactly, to that of a single electron
associated with a nucleus of charge Ze. The difference will be due
to the perturbing action of the other electrons. The perturbation
may be represented empirically by a screening constant deducted
from the real nuclear charge to give the effective nuclear charge.
This is the constant @ of Moseley’s formula. The latter, in spite of
this small empirical correction, is so strikingly in agreement with the
theory that it leaves little doubt about the identity of the nuclear
charge and the atomic number, or about the idea that some of the
electrons in a heavier atom move under the direct influence of the
multiple central charge.

There are other series of X-ray lines. For some of them a is much
larger, which indicates a much more powerful screening, or in other
words the presence of substantial numbers of electrons between the
nucleus and that one actually responsible for the emission. There
is thus direct evidence in the various X-ray series, K, L, M, and so
on, of different groups of electrons at various removes from the
nucleus.

Sets of energy levels

Having firm ground for the hypothesis that atoms can exist
in energy states which differ from one another in the angular
momentum of the electrons, and having, moreover, good evidence
that in an atom of atomic number Z, Z electrons group themselves
round the nucleus in patterns which must possess a certain repeti-
tive character, the next step is to seek the rules governing these
arrangements.

The study of line spectra yields a good deal of additional informa-
tion which helps to this end. For atoms other than hydrogen the
spectra show series relationships, but the effective atomic numbers
which have to be inserted in the formula to give the correct order
of magnitude of the frequencies are much lower than the real values.
This shows that the emission of light is due to outer electrons,
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screened from the nucleus by an inner negative core. Moreover, the
successive lines are no longer given by differences between terms of
the form const./zn%, but of the form const./(n+8)%, where 6 is an
empirical constant expressing the perturbing action of the electrons
upon one another. This much is already understandable. The vital
matter, however, is that, with most atoms, one series of spectral
terms is no longer sufficient by its combinations to express the ob-
served frequencies. There exist, in fact, a whole set of series of energy
levels. With the alkali metals, for example, sets of spectral terms,
designated, for historical reasons which no longer possess validity,
S, P, D, F,..., exist, which have the property of combining with
one another only according to special rules.

The most important rule is that if the sets are arranged in a certain
order—that in which they have just been cited—then members of
a given set will combine with members of an adjacent set but with
no others. Thus, if we write

18 1P 1D 1F
28 2P 2D 2F

we may select any P term and take the difference between it and
any S or D term to obtain a possible frequency. But § and D terms
may not be subtracted. D may be combined with ¥ or P, but F
may not combine with P.

The obvious formal interpretation of this rule is that there exist
two series of integers to define the quantum states of the atom: that
successive values of one of them correspond to the successive S terms,
18, 28,..., or P terms, 1P, 2P,..., respectively, while successive values
of the other correspond to transfers from the S set to the P, from
the P to the D, and so on.

The first set of integers may be denoted by =, the second by 1.
To account for the peculiar sequence of S, P, D, F,... terms in the
combination rule, we agsume that / always changes by one unit at
a time, and that the given order of the term symbols corresponds to
suecessive increments of unity in the number /.

These conclusions are quite independent of any special hypothesis
about the dynamical nature of n and /. This question will arise almost
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immediately, but before discussing it we had better have the com-
plete picture of the multiplicity of possible spectral terms and there-
fore of atomic levels.

When a strong magnetic field is applied to emitting atoms, the
spectral lines are split (Zeeman effect). This shows that the atom
can exist in a series of states which in a magnetic field have different
energies, having had the same energies in its absence, though they
must have been distinct states all the time. For the numbering of
these a third quantum number, which will be designated m, will be
required.

The list is not yet complete. Spectrum lines may exhibit what is
termed fine structure. They consist not always of ‘singlets’, but of
‘doublets’, ‘triplets’, and higher ‘multiplets’. The fairly close pair
represented by the yellow D lines of sodium is the most familiar
example. Evidently, then, there exists some further factor, variation
in which causes the rather delicate shifts in the atomic energy levels.
Different values of this unknown factor will be denoted by different
values of a quantum number 7.

A still more refined kind of multiplicity can indeed be observed
and is reflected in what is called the hyperfine structure of the lines.
This is only revealed by special optical methods, and, to anticipate,
is dependent upon nuclear effects, which at the present stage we
shall not deem relevant to ordinary chemistry (though it would be
wrong to suppose that they also have not their importance even in
connexion with chemical behaviour).

As to the interpretation of the four quantum numbers, =, I, m,
and 7, there was an evolution of ideas away from the more naive
towards the less naive—and in one respect back again, which it will
be best, for onece, to consider in a more or less historical order, since
in this particular example the matter is most clearly seen in this
way.

Interpretation of quantum numbers

The first step was made by an extension of Bohr’s rule for the
angular momentum of the electron. This rule, as has been seen, is
a special case of the relation f p dg = nh (p. 119). Bohr had assumed
a circular orbit, as in the calculation which was outlined above, and
the natural extension to a plane elliptical orbit was soon made,
largely by Sommerfeld, motion in such an orbit being as consistent
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with the Coulomb inverse square law as the motion of planets in
their elliptical paths is with Newton’s law of gravitation. Two co-
ordinates, an angle, 8, and a radius vector, p, are needed to describe
the position of a given electron with respect to the nucleus at any
instant, and thus the quantum conditions become

fppdp:nph and fpgdﬁzngh,

referring respectively to the radial and angular components of the
momentum. These equations in conjunction with the dynamical
conditions of the motion lead to an expression for the spectral terms
of the form: constant/(n,+ng)?. The sum n,+-ny may be written
simply as n, so that the terms assume the same form as for the circular
orbit, namely: constant/n?. The value ny is called the azimuthal
quantum number and measures the angular momentum of the elec-
tron, which would be zero of course if the motion were purely a radial
oscillation. » measures the major axis of the ellipse and the ratio
ng/n determines the eccentricity. A given value of » may be made
up in various ways, for example, 5 might be made up of 441, 342,
and so on, so that the various levels of the same total energy are
really multiple.

With atoms more complex than hydrogen the perturbations due
to other electrons are not the same for the different combinations
of nyg and n,, so that various systems of terms exist. These would
correspond to S, P, D, and F terms, which according to this inter-
pretation correspond to different types of elliptical orbits.

ng might be supposed to assume any value from 1 to n. In fact
it proves expedient to number the values from 0 to n—1. In antici-
pation of the wave-mechanical developments it is also expedient to
denote this adjusted quantum number by /.

Plane elliptical orbits have various possible orientations in space.
Ordinarily these all correspond to the same energy, but revolving
electrons possess magnetic properties, so that there will be, accord-
ing to the orientation of the plane of the orbit, varying degrees of
interaction with an external field. Hence the magnetic splitting of
the frequencies which reveals the existence of the multiple atomic
states. To define the orientation, a simple vector theory was intro-
duced. The quantum number / measures units of angular momentum
and can thus be regarded as a vector. It can be assumed that the
resolved part of this in the direction of the magnetic field is also
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quantized, and that this quantization determines the possible angles
of orientation. The various integral projections of I on a given line
arel,1—1,1—2,...,1,0, —1,..., —I, that is to say, they amount to 2/-}-1
values. There are, therefore, 2/ 1 possible assignments of the quan-
tum number which was termed m.

The hypothesis introduced to account for the multiplet structure is
that the electron itself is endowed with a proper spin about its own
axis and that the magnetic moment of this is-compounded with the
moment due to the orbital motion. Two values only of r, the spin
quantum number, are postulated. They are denoted 43 and —%
respectively, so as to give a difference of one unit, and they apply
according as the proper spin is direct or retrograde with respect to
the orbital motion.

The rules regarding =, !, and m can be derived in a more general
way by the direct application of the Schrédinger wave equation to
atoms of the same type as hydrogen. And by this method much
additional information may be obtained about the actual distribu-
tion of electrons in atoms.

Before this matter is dealt with, however, the verification of the
rules themselves by application to some characteristic spectroscopic
phenomena may be profitably considered. These phenomena are, of
course, important in themselves, but even more so in so far as they
confirm the quantum rules, which will presently provide the key to
the whole structure of the periodic system of the elements.

Spectra and atomic structure in the light of the quantum rules

First, the status of the principal quantum number, », is assured
not only by the various series in the hydrogen spectrum, but also by
the succession of terms in the spectra of other elements. The general
form is C/(n+-3)2 and although 3 is an empirical constant, which is
of considerable magnitude, non-integral and negative, within a given
series n increases by one unit at a time.

The value of C, as has been explained, depends upon the nuclear
charge less the screening effect of other electrons. For the K, series
of X-ray frequencies it varies nearly as Z2. As the degree of ioniza-
tion of the atom increases with more intense methods of spectral
excitation, for example, passage from flame spectra to spark spectra,
C increases. For the spectrum of ionized helium (nuclear charge 2,
one electron) it is four times the value for hydrogen (nuclear charge
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1, one electron), apart from a small correction due to the fact that
the nucleus, instead of remaining fixed, really moves about the
common centre of gravity of itself and the electron.

Secondly, the existence of the second quantum number, [, is at-
tested by the existence of the various types of series in the spectra
of elements such as the alkali metals. The order of the terms with
respect to the I values can be inferred from the combining possibilities
and in other ways. As will appear presently, the true value of » for
the lowest state of an atom can be inferred from other considera-
tions. The value (n+3), the effective quantum number, of the lowest
term of a given series can be found from spectral data. The difference
decreases steadily for terms of the types S, P, D, and F in this order,
which correspond to values of I = 0, 1, 2, and 3 respectively. The
higher values of [ belong, according to the theory of elliptical orbits,
to more nearly circular paths and the lower values to eccentric orbits
in which the electron must pass close to the nucleus. In this latter
circumstance the perturbation may be supposed to be much more
serious and the value of 8, therefore, to be correspondingly larger.
In this way the assignment of the / values to the terms can be
checked.

Thirdly, the facts of magnetic splitting are accounted for by the
rules regarding the quantum number m.

Fourthly, the multiplicities are accounted for by the existence of
7, having for each electron values of +3% or —%. With the aid of
one additional hypothesis, of a reasonable character, a great variety
of facts, at first sight complex, can be explained. The required hypo-
thesis relates to the so-called coupling of the orbital and the spin
angular momenta of electrons. The value of [ measures the angular
momentum of the electron. If the atom contains several electrons
in the outermost group, the respective values of { are supposed to
compound to a resultant L. The spin moments are supposed to
compound independently to their own resultant S. L and S are
then assumed to compound to a resultant L--8, and the number of
possible values for this determines the multiplicity of the state and
of the corresponding spectral term.

As a first example the alkali metals may be considered. Since they
are univalent and readily form positive ions with a single charge,
it is natural to suppose that they possess a single electron in the

outermost and least tightly bound system, and that this electron is
5293 N
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responsible for the optical spectrum. It has two possible spin num-
bers, -} and —%. Suppose I = 0, then there is only one absolute
value of [+4s, namely %, the sign being irrelevant when I = 0 since
there is no other rotation to which to relate the sense of the spin.
Hence the terms appear single. If, however,7 = 1,l-+smay have the
values 141 and 1—1, that is § and . Thus there are two energy
levels and the terms are doublets.

Now in a given spectral series the frequency is always the difference
between a constant and a variable term, the latter diminishing to
zero as n, the principal quantum number, increases. If the constant
term is a doublet and the variable term single-valued, the separation of
the frequencies will remain constant throughout all the series. If,
on the other hand, the constant term is single-valued and the variable
term a doublet, the separation will gradually diminish to zero as n
increases, and it will vanish when n tends to infinity, that is as the
series converges to its limit. This explains the interesting fact that
in some of the series shown by the alkali metals the doublets con-
verge to a common series limit, while in others they have two separate
limits, the frequency difference being in fact constant throughout.

On passage from the alkali metals to the alkaline earths the number
of electrons in the optical system may reasonably be supposed to
increase from one to two. With two electrons, S may have the values
1—1=0,0r }+1 = 1. With § = 0 there is only one value of L+
for a given value of L. This means singlet terms (whatever value
L itself may actually have). With § = 1, the values of the resultant
of L and § can be L--1, L, or L—1, that is to say there is a triplet
state.

With three electrons in the optical system of the atom, S may be
14 or 4, since two electrons give 0 or 1 and the extra one either adds
1 to the 1 or subtracts § from it. With § = }, the resultant of the
vector L-+8 can have the values L+ or L—1, giving doublets, and
with § = 1} it can be L+1%, L+3%, L—§, L—14, giving quadruplets.

We have in general

alkali metals one electron doublets
alkaline earths two electrons singlets and triplets
trivalent metals three electrons doublets and quadruplets.

The law of alternation here revealed is fully confirmed by observa-
tion.
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Atom building

The foregoing and other facts place the rules about quantum
numbers upon a sure empirical foundation. As has been seen,
Moseley’s X-ray spectrum rules and the variation of spectral type
from element to element clearly show that the periodic system pos-
sesses an underlying unity. The principle upon which the whole is
constructed becomes apparent in the light of certain conceptions
introduced by Bohr.

Given that atoms are built up of positive nuclei and negative
electrons, the study of Mendeleev’s classification already makes very
obvious the existence of closed stable groups of electrons. The inert
gases display no chemical reactivity, that is, no tendency to enter
into other states of combination. Their atoms may, therefore, be
regarded as possessing maxima of stability. Hach inert gas is pre-
ceded in the system by an element whose atoms are very ready to
appear in the form of univalent negative ions, that is, as structures
with an extra electron. Correspondingly the inert gas is succeeded
by an element whose atoms are ready to lose an electron with forma-
tion of a univalent positive ion. Thus it seems clear that the first
electron added to the inert gas configuration is the sole representa-
tive of a new group and readily lost, while if the configuration in
question lacks a single electron, it will have considerable avidity for
one, the capture of which from somewhere will complete a stable
group.

Elements forming divalent positive ions follow those forming uni-
valent positive ions, and those forming divalent negative ions pre-
cede those forming univalent negative ions. Thus there appears a
progressive character in the process of atom building, involving the
addition of fresh electrons to configurations which tend to repeat
themselves.

But the process is not one of simple repetition, or the periodicity
of the system would be uniform, which in fact it is not. The number
of electrons which must be added to form the successive inert gases
does not show equal increments. They form the series 2, 8, 18, 32,
which is representable by the formula 2n? where n = 1, 2, 3, or 4.
Helium occurs at the atomic number 2, neon at 2-++8 = 10, and so
on. The subsequent expansions of the intervals make room for the
transition elements and then for the series of the rare earths and
later for the series of closely related transuranic elements.
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The interpretation of this remarkable fact depends upon two prin-
ciples: the Pauli principle and the atom-building principle of Bohr,

The Pauli principle may be discovered by a careful survey of all
the types of spectral term encountered among the different elements.
No atom ever exists in a state where two of its electrons have all
the quantum numbers the same, or where in other words there are
two electrons which are indistinguishable from one another. Since
the quantum numbers are to some extent interrelated, this provision
evidently limits the number of electrons which can constitute a group
with a given value of n.

If n = 1, then by the rules, ! must be zero, m may vary from —I
to 41 and thus is zero also. This leaves two possibilities only, namely
for two values of r, +1 and —%. According to this there could be
only two electrons in any atom with » = 1. Hydrogen can have
n = 1 and one electron, helium »n = 1 and two electrons. The group
with » = 1 is then closed.

If the nuclear charge is raised to three and three electrons must
be accommodated, two of them can form a closed group of the helium
type and the third must be added in a different way.

Bohr’s building principle now comes into play. The very nearly
self-evident hypothesis is this: the normal state of the third electron
(in lithium) will correspond in the value of the principal quantum
number to what would have been the first excited level in hydrogen.
In other words, even in the unexcited state, the third electron of
lithium, its optical or valency electron, has n = 2.

Ifn=2 IlmaybeOorl Withl=0,m=0andr= +}:two
possibilities. Ifl = 1,m = 1, 0, or —1, and for each of these » = +4:
six possibilities. Thus altogether there are eight possibilities. When
these are exhausted, we arrive at neon, an inert gas, and a new
electron, in sodium, must go into a state corresponding to n = 3,
even for the normal unexcited atom.

From the relation of the element in question to the inert gases, the
value of n can thus normally be inferred. Comparison with the
apparent value, in spectral terms, gives 8 and hence information
about the penetration of electron paths into regions near the nucleus,
as referred to earlier.

The triumph of the Pauli principle and of the quantum number
rules is that the complete structure of the periodic system follows
immediately from them.
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The number of electrons in successive complete quantum groups
may be calculated as follows. Let the principal quantum number
be n. Then ! may vary from 0 to n—1. For each value of ! there
are 2041 values of m (from -1 through 0 to —I), and for each of
these there are two values of r. Thus for each value of » and [ there
are 41-+2 values of m and r.

Summing over all the range from / = 0 to / = n—1, we have for
a given n the possibilities

a2 = 4(”"7”0)71_[_%
=0
= 202 —2n-+2n
= 2n2

This is precisely the number of electrons which complete successive
groups in atoms, as judged from the position of the inert gases in
the periodic classification. There can be no doubt, therefore, that the
system of the elements owes the main lines of its structure to the
Pauli principle. A great many details about the interrelationships
of the elements and about the variations in properties with atomic
number are also interpretable in the light of the different rules which
have been outlined.

Before the discussion of atomic properties is developed farther,
however, a more formal codification of these rules will be considered.

Quantum mechanical rules

The quantum laws themselves represent a considerable departure
from the naive hypothesis that happenings on the atomic scale are
reduced models of those in which macroscopic objects are observed
to participate in everyday life. The Pauli principle proceeds still
farther in this direction. Although in a sense one can easily enough
think of various types of state as so many boxes into a given one
of which an electron may or may not go according as there is or is
not a vacancy, nevertheless we know perfectly well that these boxes
are nothing but fictions. Two other major examples of analogous
intangible constraints have been encountered already. Rotating
hydrogen molecules form two separate groups, those possessing re-
spectively odd and even numbers of rotational quanta, and no con-
versions from the one set to the other normally occur. Nothing
suggested by the dynamies of large-scale events even remotely pro-
vides an explanation of this,
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Again, as we have seen, the correct calculation of absolute entropies
and properties depending upon them requires that the identity of
individual molecules should be disregarded. The number of mole-
cules in a given state is important, but the different assignments of
individuals to make up that number do not count as variations which
are in any way detectable. Objects such as coins, even if they appear
identical, are in fact individual entities and are in principle capable
of having labels attached to them. The discovery that, for purposes
of statistical mechanics, molecules are in effect incapable of bearing
labels marks once again the fact that they are not so many micro-
scopic versions of ordinary objects.

It is interesting to note that St. Thomas Aquinas had already
applied the Pauli principle to angels, and for reasons which give what
in some ways is an illuminating hint about its meaning in physies.
He says that since angels are not composed of matter and form, it
follows that there cannot be two of the same species: each must be
unique.t

The wave function

The construction of a special code of dynamical rules for systems
on the molecular scale being called for, we need not, from what has
been said, expect it to be other than sui generis. Some of the rules
must now be developed and illustrated. They are not always im-
mediately illuminating, since they have been established partly by
trial and error and partly by mathematical analogies of a somewhat
abstract kind.

The first step is taken in the recognition of the wave-like element
in the nature of the electron. The insertion of the wave-length,
A = h/mw, in the general equation of wave propagation leads, as has
been shown (p. 126), to the Schrédinger equation

o4 0% 0% 8nPm(E-—-U) .
’a‘x—z‘-}-é?—/g-l"‘a;z"f‘_rlﬁ =0,
or V2¢y+gr_.2m_(_}l:zz;—_q)i[’ = {).

1 The actual text runs: ‘Si ergo angeli non sunt compositi ex materia et forma,
ub dictum est supra, sequitur quod impossibile sit esse duos angelos unius speciei.’
He also says of their motions, in a passage for knowledge of which I am indebted to
my colleague Mr. Kneale: ‘Motus angeli potest esse continuus et discontinuus sicut
vult. . . . Et sic angelus in uno instante potest esse in uno loco, et in alio instante in
alio loco, nullo tempore intermedio existente.” Orbital motions and quantum transi-
tions were thus provided for.
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To this is added a series of rules of operation and interpretation
which constitute what is called wave mechanics or quantum mecha-
nies. The evolution of the rules is briefly as follows.

The Schrédinger equation is assumed to be valid not only for
electrons but for any dynamical system. When a single particle is
concerned the problem is wholly defined by the value of the potential
energy; for example, if the particle is freely moving, U = 0; if it is
an electron at a distance r from the nucleus of a hydrogen atom,
U = —e?/r and so on.

For the case of several particles the equation is tentatively genera-
lized in a way which proves satisfactory in practice, and assumes the

form
o b Vet T g o
0% 82 0%
where 2—{— E=k

%y, Yy, and z; being the coordinates of the first particle, and V2 refers
similarly to the second particle.

Ashasbeenstated andillustrated, the Schrédinger equation possesses
physically acceptable solutions (continuous, finite, and single-valued)
only for certain definite values of the energy—the characteristic or
proper values (Eigenwerte). These define the quantum states of the
system. The way in which vibrational, rotational, and translational
quantization follow has already been considered (p. 126).

Application to the problem of a single electron under the influence
of a nucleus, as in a hydrogen atom, leads to the result that there
are various arrays of quantum states, specified by values of three
numbers, 7, I, and m. The relations between them are precisely those
which have been discussed and which, in conjunction with the Pauli
principle, define the structure of the periodic system. The details
of the calculations will be given in a separate section.

There is no doubt, therefore, that as a mode of specification of
energy levels the wave equation is empirically justified.

As will appear, the calculation of the states available when pairs
of atoms coexist in molecules provides also a solution of the problem
of interatomic forces.

The immediate development of the ideas with which the present
section began depends upon a closer consideration of the function
itself, which has so far only served as an auxiliary quantity. The
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conditions for acceptable solutions of the wave equation define the
values of £, and to each value of E there corresponds a value of 4,
which is a function of the spatial coordinates x, ¥, and z (or the
corresponding polar coordinates r, 8, and ¢).  is taken, as a special
assumption suggested by the wave-like aspect of particles, to be a func-
tion of time such that = oy €2,

As a further special assumption v is expressed in the form
v = H/h,
so that i = iy e2mIERY,

The wave equation as already written down deals only with the space
variation of 4, and is therefore referred to as the amplitude equation.
An equation in which the time enters explicitly is obtained by com-

bining .
Vap L 87’m f Uy 0
and = iy 2B,

Differentiation of the latter and substitution in the former with

elimination of & leads to

dmmi of  8x*mU "
h ot h?

i is now given an interpretation: or rather, a series of conventions

are established for the expression of molecular events in terms of .
We have s = €2, The so-called conjugate of i, written ¢, is

—2mrivt -
foem = 3
This product is independent of time. It depends upon the space
coordinates and is assumed to be proportional to the probability of
finding the particle at the point x, y, z corresponding to a given value
of ¢, or in a small volume element in the vicinity of this point.

If the particle is an electron, then i} is proportional to the average
electric density at x, y, z. Y, being independent of time, can be
represented in space as a continuous cloud of electrification varying
from point to point in a manner shown by the solution of the wave
equation which has yielded . Although this cloud is fictitious and
corresponds to a probability or to a time-average, it is very con-
venient to visualize its spatial symmetry, and even to look upon the
electrical distribution as a real one. This in one sense illustrates the
reluctance with which naive realism is forsaken.

Va) = 0.
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In general, in its application to an electron and a nucleus the i
function passes through maxima and minima as the radial distance
of the former from the latter increases, and finally it dies away
asymptotically to zero at great distances. The electric density rises
and falls and finally drops to zero. The places where the density is
zero are called nodes. According to the various relations of =, I,
and m, there are varying numbers of nodes and the cloud possesses
either spherical symmetry or various kinds of axial symmetry. The
symmetry and the values of the wave function in various directions
prove to be very significant in problems of valency and determine
the spatial orientation of valency bonds. These matters will be
illustrated more fully in a later section.

These various rules about the interpretation of ¢ will prove to be
justified by their results. An extension of them states that the
probable value of any quaniity X, characteristic of a particle at a given
point is proportional to Xy« at that point.

Transitions

Further special rules are found to be appropriate for the treatment
of problems about the transitions of systems from one energy state
to another. Suppose the wave equation has solutions corresponding
to two permitted energy levels, F; and H,. If there are two possible
solutions of a differential equation, it is easily seen that the sum of
the two, or indeed any linear combination of them, is also a solution.
Thus if o, €27 Bt and o, e2m B4 gre solutions, then

l/l = ¢ ll'l e277iElt/h_|_02 ¢,2 e2miEsdh

is also one, ¢, and ¢, being constants. (This is easily verified by trial.)

The combination written above is not intended to mean that
the gystem is in two energy levels at the same time, but to express the
fact that for a large assembly of systems both states are possible. The
squares of the coefficients ¢; and ¢, are taken to give the probabilities
of the levels E, and E, respectively.

If these coefficients themselves become functions of time, it means
that transitions are occurring between the two states.

The orthogonal property of wave functions

A very considerable part in the description of nature is being
assigned to a particular differential equation, so that clearly its
detailed properties are of no little moment. One property which is
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of special technical significance is the orthogonal character of its
solutions. This means that f i, ¢, dedydz taken over the whole range

of coordinates is zero unless k == I. (An example of orthogonality
2m

is sinmx, the integral f sinma sinnx dx being zero unless m = n.)
0

Products such as dadydz will be written dw for brevity.

The reason why the orthogonal property is of importance is best
shown at once. When there are solutions of the wave equation ¢,
Pigsenes Y Py,..., the combination

Cy iy tathat oyt = 2 0ty

is also a solution which needs frequently to be used for the purpose
mentioned above. A device is required for determining the coeffi-
cients. To find ¢; one may multiply the whole by i, and integrate.
Every integral except ¢, f I, by, dow will be zero, so that the value of
the coefficient ¢; can be isolated, just as in the determination of the
coefficients of a Fourier sine or cosine series.

The proof of the orthogonal property for a one-dimensional prob-
lem is given below. The extension to three dimensions involves no

new principles. 22 872m
eSO = 0

B S B Uy = 0.

Multiply the former by z/;, and the latter by i, and subtract:

‘/fza i l/‘k 8902 T (By— By = 0.

ox?

Integration gives

jr) (z/zk Py S[‘la ‘ﬁk) 87;:277& (E,—E) T bty dv.

ox? ox?

—0oo

z//ka "y l/}la "y,

ox2 ox2

may be seen by trial to be the result of the operation
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Therefore

to ) +eo
[pit—nt| =SB [ gy e
For physically significant cases ¢, and ¢, vanish at infinity, so that
the left-hand side of the last equation is zero. If k = I, &), = X, and
the right-hand side vanishes automatically. If, however, k is not
equal to /, then it only vanishes on condition that f Yy de = 0,
which is thereby proved.

Applications of the orthogonal property will appear in due course.



IX

DESCRIPTION OF STATES BY WAVE
FUNCTIONS

General

A soMEWHAT formidable array of rules has been laid down for the
description of microscopic phenomena. Some further consideration
of their status in relation to directly ascertainable experimental facts
is now called for.

We remember that one of the principal objects of scientific inter-
pretation is the relating of the unknown to the known. The descrip-
tion of atoms and molecules in terms of everyday macroscopic objects
having proved inadequate, they are to be described in terms of a
mathematical formalism constituting the new ‘known’ to which the
unknown is to be referred. The success of the process can be gauged
only by reasonably wide experience.

Given that atomic systems are to be represented by wave func-
tions obeying a special kind of differential equation, it is perhaps
best to go to the heart of the matter and start by considering some
general rules about the types of wave function which are in fact
required for the purpose.

Suppose a system to consist of two dissimilar particles, which may
be designated 1 and 2. In the first instance they may be considered
as quite independent, neither exerting any influence on the energy
of the other. The states of particle 1 are defined by the equation

| R, 872
— V1¢(1)+7LT(E1_U1)‘/‘(1) = 0. (1)
my
One of the solutions permits an energy E, with a value of
P(1) = o (1).
Similarly one of the solutions of the analogous equation
1 872
— VEH(2) +y (B Uphh(2) = 0 (2)
My

for particle (2) permits an energy k), with a value ${2) = ,(2).
When the two particles are considered together, the wave equation
assumes the form

1 o, 1 o 82 . .
o Vi Vi (B0 = 0,
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according to the basic convention, where i is the wave function of
the joint system.
E = E,+ L, U = U,+U0,.

If 1, (1) and ,(2) are solutions of the separate equations, then
lﬁ - Sba(l)‘/}b(‘?)
is a solution of the composite equation. For
872

o V)4 (B U1) = 0,

82

o that  (2) - V)T (B T D(2) = .

Also o V) T (B U(2) = 0,
so that  fo(l) L V3(2) 4y (B UMu(2W(1) = 0.
2

Addition of the last line and the last but two gives
1 1
%(%EV%S[’a(l)‘Hﬁa(l)n—lz‘V%‘/’b(z)—f—

+ 57 (Bt By Uy U (2) = O

Since V3 represents partial differentiation with respect to the coordi-
nates of particle 1, which do not apply to particle 2, and conversely
for Vi, the first two terms are the same as

1 1
-~ Viga(1)s(2) + my VEha(1)h(2).
The equation thus becomes

milvwauwbwwﬁlgw bal10(2) +

872
+ h—ﬂ; (Bt By — Uy — Up (1) (2) = 0.
Therefore s = ,(1);(2) is a solution of the composite equation.

Since l[il]l- = ¢a(1)ll‘-a(l)¢'b(2)¢’b(2)>
the result simply states that the probability of finding particle 1 in
state @ and particle 2 in state b is the product of the independent
probabilities of finding the one in the one state and the other in the
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other. Since we postulated lack of interaction, this result is in ac-
cordance with reason. It follows from the differential equation and
it is consistent with the interpretation of i as a probability.

Now let us consider the two particles to be not dissimilar but
identical. Tirst let them be thought of as two separate systems.
Suppose that one of them is in the state a with energy K, and wave
function 4,(1), and the second in state b with energy E, and wave
function ¢,(2). By analogy with the dissimilar particles, the wave func-
tion ,(1),(2) might be constructed to describe the joint system
constituted by the two particles together, and this expression would
indeed be a solution of the Schrédinger equation. A second system
is conceivable in which the first particle is in state b and the second
in state a. The energy would be the same as before, but the wave
function would now be i (1),(2).

The discussion of absolute entropies has shown that there is no
statistical significance in the distinction represented by i, (1),(2)
and ¢,(1)¢,(2). As we have seen, there is sense in saying that we
have two particles, one in state @ and the other in state 6, but no
significance in the further specification as to which individual is in
which state. Thus the two wave functions under consideration,
although mathematically correct, do not correspond to the needs of
the situation.

Since, however, ,(1)},(2) and i, (1),(2) are solutions of the wave
equation, any linear combination of them is also a solution, and
certain linear combinations do in fact express just what is required.

They are by = Pa(Dn(2)-E b (Liha(2)
and b = dal (D — P (Da(2).

These obey the wave equation and they give for the probability
of the joint system g iy or 4 44, which in turn are represented by

Pal D 2P a(105(2) - (Lehia( 2 1)a(2) £
A {al i (2)F(VPa(2) - (i 2a(1)ih(2)}-
Whether the positive or the negative sign is taken, the expression for
the probability involves no decision whatever about the allocation
of particles 1 and 2 to states @ and b respectively, since all combina-

tions of 1 and 2 with @ and b appear in each form.
g and ¢, may therefore be accepted as satisfying requirements.
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The actual values of these wave functions differ, however, in one
respect. If particles 1 and 2 are interchanged, ¢ retains its identical
value, and is therefore called the symmetrical combination, while if
the corresponding exchange is made i, changes sign, since

Pa(Uihy(2) = (1)iha(2) = —{al2)ihs(1) — i (2)iha(1)}-
4 is called the antisymmetrical combination, as is any combination
which changes sign on interchange of the two particles.

We now arrive at a principle of enormous importance. 4 and g
are both satisfactory functions in so far as they express the rule
about the product of independent probabilities, without attributing
statistical significance to interchanges of identical particles. But
they cannot both be valid functions for a real system at the same
time. If they were, a linear combination of both of them would also
be valid, and a linear combination of s, and 4 leads straight back
10 i, (1), (2) or to iy (1),(2) which reassert the distinguishability of
particles. Hence for real systems—if the lessons learnt from the in-
sufficiency of Boltzmann’s statistical scheme are correct—the wave
function must be either symmetrical or antisymmetrical, but it
cannot be both.

As will appear, for certain kinds of particle, notably electrons, the
wave functions describing natural systems are in fact necessarily
antisymmetrical, while for others they are symmetrical.

Let us now attempt to bring these curious doctrines about the
nature of things as immediately as possible into relation with observa-
tion.

Perhaps the most striking connexion is that between the anti-
symmetrical character of electron wave functions and the Pauli principle.

Pauli principle in terms of wave functions
Consider two electrons, 1 and 2, in an atom. If one is in state a
and one in state b, we have

by = Pa(L)p(2)+(1)ha(2),
b = Pa(L)p(2)— (1 )ha(2).
Suppose g is possible, and consider what happens to it if state a is
now assumed to become identical with state b.
by = 2 (1)h(2) and ¢igfg can have a perfectly definite value.
This contradicts the Pauli principle which denies the existence in an
atom of two electrons in the same state.
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On the other hand, if @ becomes identical with b,

a4 = (1)a(2) ¢ (1),(2) = O,
and the probability i, is also zero. Thus the assertion that the
electronic wave function is antisymmetrical is very similar to the
Pauli principle itself, and lies indeed at the basis of the whole struc-
ture of the periodic system.

Evidence from the helium spectrum

A less grandiose but more specific verification of the principle
comes from the study of the helium spectrum. This contains two
sets of terms which do not combine. So completely independent are
they that at one time they were aseribed to two modifications, known
respectively as ortho-helium and para-helium. The para terms are
singlet and the ortho terms triplet. The normal or ground state of
the atom belongs to the para system. This state of affairs first
becomes explicable in terms of the symmetry of the wave functions.

The fine structure is ascribed to differences depending upon the
modes of electron spin. The helium atom has two electrons. Each
electron has two spin possibilities represented by the quantum num-
bers +% and —%. The spin allocations can, in principle, be described
by wave functions, the state where each electron has, for example,
+ 4 being represented by ¢()4(4). Provided that the other quantum
numbers differ, so that the two electrons can have the same spin
without violating the Pauli principle, the possibilities are

(1) $ @),
(2) H—=3)h(—
(3) $E(— %)Jrl/'( $(E),
(4) (=D —(—23),

the last two replacing (1)4(—1) for the reasons already explained.
Of these combinations, (1), (2), and (3) are symmetrical and (4) anti-
symmetrical.
The weight of the symmetrical spin combinations is thus #riple.
Now the total wave function of the electronic system can be repre-
sented as the product of two parts, one describing the orbital motion
of the electrons and one describing the spin relations. We have

Ellto tal = ‘ﬁorbital’?l’spin .
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This form follows from the principle outlined earlier (p. 191). If
Pitotar 18 to be symmetrical, 40 and g, must be both sym-
metrical or both antisymmetrical. (If both are symmetrical, the
product is obviously so: if both change sign together when the elec-
trons are interchanged, the product is unaltered.) If, on the other
hand, o, is to be antisymmetrical, either ;a1 OT Py, must
change sign when the electrons are interchanged, but both must
not do so together. Thus one must be symmetrical and the other
antisymmetrical.

The symmetrical spin functions have been seen to be triplet and
the antisymmetrical to be singlet. Furthermore, the singlet states
include the lowest or ground state, where presumably the two elec-
trons have their orbital quantum numbers equal. Thus the anti-
symmetrical spin combination is associated with the symmetrical
orbital wave function to give a total wave function which is anti-
symmetrical. This result verifies the principle of the antisymimetrical
character of electron wave functions.

Conversely, since ., has this character when ;. 18 anti-
symmetrical (different electronic orbital quantum numbers), the spin
combinations must be symmetrical. There are three of them and the
triplet ortho states result.

Quantum statistics

When particles are describable only by antisymmetrical wave
functions, no two may occupy identical states. The statistical distri-
bution among energy states may be thereby profoundly affected.
The particles are said to follow Fermi—Dirac statistics. When the
wave functions are symmetrical, the particles are said to obey Bose—
Einstein statistics. If their states were describable by symmetrical as
well as by antisymmetrical wave functions, then, as shown, individual
allocations to states would acquire significance and they would be
obeying the Boltzmann statistics.

Evidence from rotational specific heats

The problem which had to be left unsolved at an earlier stage can
now be dealt with. The mode of variation with temperature of the
rotational component of the specific heat of hydrogen indicated
clearly that hydrogen molecules are divisible into two well-defined
groups, those with even numbers of rotational quanta and those with

odd numbers. In the light of what has just been discussed there seems
5293 0o
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a likelihood that this state of affairs is connected with the symmetry
requirements of the relevant wave function. In the definition of the
rotational quanta the important magnitudes are the masses and
positions of the two hydrogen nuclei in each molecule. The behaviour
of these nuclei can be described by means of a wave function y which,
as already shown, might be symmetrical or antisymmetrical with
respect to an interchange of them. If we assume that the nuclei are
capable of a proper spin with two possible values as for electrons,
then for a pair of them the possible combinations may be expressed
by a wave function X which has three symmetrical forms and one
antisymmetrical form. This result follows from considerations exactly
analogous to those discussed for the two electrons of the helium
atom.

If now we imagine the condition that the product y2 must be
antisymmetrical, then the three possibilities with X, must be
associated with y,ptisymm and the one possibility with X, oo mm must
be associated with ygmm-

The next question is the relation between the symmetry of x and
the number of rotational quanta.

In polar coordinates the Schriédinger equation assumes the shape

1 0 8¢ 1 P o 1 32¢ 872m
2 or ( 8r) ™ r%sin 6 20 (sm b 39) +7‘2s1n249 3¢2+ (E—U)p =

as found by the usual methods of changing coordinates in a differen-
tial expression. For a rigid rotator, r = constant, U = 0, and for
m the reduced mass p may be written. Since ur? = I, the moment
of inertia, the equation becomes
1 . &ﬁ 1 &%  8x2l
Lt B = 0.
sin g 60(31 60)+sin20 et T

J may be expressed in the form i = 6(8)p(¢$), where 6 and ¢ are

functions of § and ¢ respectively.
A solution for ¢ is given by

Q= eimrﬁ,
where m is an integer.
For 0 is found by substitution

1 of. .66\ m20  8x2]
sin 6 90 (sm 6_6') R A T 78 = 0.
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Solutions of this standard differential equation are possible for values

87721 J(J )’

where J is an integer. The corresponding values of s are the set
of functions written P%(cos 6)eim?,

x for the rigid rotator is thus represented by a set of functions of
this form, 6 and ¢ being the two angular coordinates of the motion,
and m and J being integers. The functions P are exemplified by
the following members of the set:

Py =1, P = cos b, P = Fcos?0—1,
P}l =ginf, P} = 3cosfsinf, Pj= }(15cos*—3)sind.

If the two nuclei of the rotating molecule are interchanged, it is
equivalent to making 8 into w—§@ and ¢ into 7--¢. Inspection of the
P functions shows that this substitution leaves the sign unchanged
if J is even, but changes it if J is odd.

Thus y is a symmetrical function for even values of J and an anti-
symmetrical function for odd values of J.

Now since the xemm must be associated with X, 4iomm and vice
versa, it follows that the even values of J correspond to the single
antisymmetrical spin functions and the odd values of J to the triple
symmetrical spin functions.

The states with the higher statistical weight are called ortho (as
with the triplet states of ortho-helium). Thus ortho-hydrogen has
the odd numbers of rotational quanta and para-hydrogen the even
numbers.

If equilibrium were established between the two forms, then at
high temperatures the proportion would be governed by the statis-
tical weights, and there would be three times as much ortho as para.
At low temperatures, on the other hand, the proportion would be
governed mainly by the occupation of the energy levels. Thus there
would be a predominant tendency to occupy the zero level, and since
zero, being next below one, is an even number, para-hydrogen would
tend to exist in an almost pure state.

These expectations are fulfilled with the reservation that the equi-
librium is established with almost infinite slowness except in speecial
circumstances. This matter will receive consideration in the next
section.
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First, however, the behaviour in respect of rotational energies of
molecules other than hydrogen must be dealt with.

Deuterium proves to have its ortho states (higher statistical weight,
antisymmetrical spin function) associated with even numbers of rota-
tional quanta. Thus its total wave function is symmetrical, and it
is said to follow the Bose-Einstein statistics. Moreover, the nuclear
spin appears to have the value 1 instead of the value 1 as with
hydrogen.

The basis of this conclusion is as follows. Suppose the spin of a
nucleus has the value r, then, allowing for the quantized projection of
r on a defined axis, there are 2r+1 states for each (from —r to 7).
For the two nuclei there are (2r+1)% states. There are, of course,
2r-+1 of these in which the two are in identical conditions, and which
thus correspond to symmetrical spin wave functions. Therefore there
are (2r-+1)2—(2r-+1), that is 2r(2r--1), in which the particles are not
in identical conditions. The corresponding wave functions, in the
way already explained, divide themselves into 7(2r+4 1) symmetrical
and 7(2r--1) antisymmetrical ones. The total number of symmetrical
wave functions is thus (2r4-1)47(2r4-1) or (r+1)(2r+1) and the
total number of antisymmetrical functions is #(2r+-1).

Thus symmetrical (r+1)@2r1) 41

antisymmetrical ~ r(2r4-1) r

If r = 4, this ratio is 1}/3 = 3, as for ortho- and para-hydrogen.
With r = 1, it becomes 2. This latter value is in fact required to do
justice to the observations on the specific heat of deuterium, with
which, moreover, the ortho form predominates when equilibrium is
established at low temperatures.

The rotational states of other molecules consisting of two identical
atoms can be studied in the structure of their band spectra, and
further information about the nuclear spins may be inferred. Most
nucleiof even atomic weight, suchas deuterium, seem to follow the Bose-
Einstein statistics. Protons and electrons follow the Fermi statistics.

With full allowance for internal conditions of the nuclei themselves,
which after all are composite particles, they would all no doubt con-
form to a single pattern of behaviour.

Transitions and the symmetry of states
The establishment of equilibrium between ortho- and para-hydro-
gen is very difficult. The reason is that, were it not for perturbing
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factors which relax the ban, transitions between symmetrical and
antisymmetrical states would be impossible.

This conclusion follows from the nature of the fundamental postu-
lates of quantum dynamics. In the wave equation written in the
form which contains the time explicitly

V& 1s a symmetrical function of the coordinates. (If there are two
particles, the operator has the form iV%zﬁ—i—ng $.) U is sym-
mny ey

metrical with respect to all the particles. Thus the symmetry of
ofs/ot is the same as that of . Hence if ¢ is symmetrical, changes
in it are also symmetrical and therefore it retains its original
character.

A rather more detailed picture of transition probabilities is ob-
tained as follows. Suppose there are a number of molecular systems
which exert slight forces upon one another. These perturbing in-
fluences can be expressed by the addition of a small extra term 7 to
the potential energy U. Thus

4mrmi O 82
Vo w}:m%;_ wm22]+r)¢=0- (1)

If r were zero, possible solutions of the equation would be i, e2mE: 4k
and i, e27iE24h and also the linear combination

b= Cuthy T gy P, )

where ¢, and ¢, are constants.

The last equation expresses the fact that constant fractions of the
molecules can exist in the one or in the other state together. When,
however, 7 is not zero, the linear combination with constant values
of ¢, and ¢, will not satisfy the equation.

Substitution of (2) in (1) gives values for dc,/dt and dc,/dt, thus

b eznmlﬁhﬂlﬁ 4o ezwiEzz/h‘ZC_z _ 2m r(cq iy 2B L g, o, 2B 1) (3)

1 dt 2 dt h 171 272
In forming (3) it is borne in mind that (2) satisfies (1) when » = 0.

We now multiply (3) by #, and integrate, choosing the units so
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that J' o, dw = 1. The orthogonal property makes f Yothy dw = 0,

% 2Bt g;_:g( f 0y by 1ifrg €27 ELUR doy - f Co g iy €271 B2 R dw).

Suppose we start with all the molecules in the state corresponding
to E,, when ¢, = 0, so that the initial rate of transfer to the second
state dc,/dt is seen to be proportional to the integral f iy 1y dw
(which, of course, is not the same as r f i, dw since 7 is a function
of the coordinates).

Integrals of this form, according to the theory, determine all transi-
tion probabilities. For a transition from a gymmetrical to an anti-
symmetrical state the probability would depend upon f Pg iy dow.
r is a symmetrical function of the coordinates. g would not change
if two particles were interchanged. ¢ ,, on the other hand, would
change, so that all the contributions to the integral would change
sign when the coordinates of the particles were exchanged. The in-
tegral must therefore consist of two parts, positive and negative in
balance, and its total value is zero.

The arguments about the signs of functions are the only intelligible
account which can be given of the reluctance of hydrogen molecules
to pass from odd to even rotational states, as of helium atoms to
change from singlet to triplet levels.

For the further development of the theory of atoms and molecules
a more detailed knowledge of wave functions and associated elec-
tronic distributions proves to be of great importance. We now pro-
ceed to this question.

Electron distributions from wave functions

For the application of the wave equation to an atom similar to
that of hydrogen, consisting of a charged nucleus and a single elec-
tron, transformation to polar coordinates is necessary.

{772
Va4 (E—U)p = 0
by a standard method then yields

Voo 1 8. 3 1 & Sem(E—U),
?éa_r(’" 5) 7%5in 0 ae(S‘neae)+r2sin2e o2 =0

(1)

This may be satisfied by a product of separate functions, namely

¢ = R(r)8(0)(4), (2)
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provided that

PP | o —
@?‘i—m‘?——@, (3)
1 d do m
e gé(sm 0 @) + ( 1n20) 6 =0, 4)
1 df,dR 8m2m L,
and ﬁ%(f 37)-%{72— (E—U)—ﬁ}R = 0, (5)

ag may be verified by substitution. m and L are constants. From
(3) is taken the solution

(P = Ae’iMIﬁ’

where 4 is a further arbitrary constant. For single-valued solutions
m must be integral (since ei™$ = cosmp--isinmé and whenever ¢
increases by 27 the value must repeat itself). (4) is a standard
differential equation which has been thoroughly studied. L is best
written in the form [(I4-1), where [ is another constant, in which
case it proves that there are acceptable solutions for all integral
values of [ greater than m. In general there are 2{41 values of m
which permit a solution for each value of {. Thus the relation of I
and m corresponds precisely to that of the two quantum numbers to
which these letters have already been assigned.

The solutions of (5) depend upon the form of U. For a hydrogen-
like atom it can be written in the form — Ze?/r. States in which the
atom is not completely ionized correspond to values of £ which are
negative (with respect to the separate nucleus and electron). For
these the theory of differential equations gives the values

E, = —2a%m, Z%*|h*n?,

n

where m, is the mass of the electron, e the electronic charge, Z the
nuclear charge. n = n'-+141 where »n’ is an integer (not negative).

7 corresponds to the principal quantum number. I, as is obvious
from this relation, cannot be greater than n—1. The Bohr energy
levels are thus predicted, as also are the correct relations of » and [.

If the potential energy loses the simple form Ze?/r, as it does when
there are mutual perturbations of more than one electron, then ¥ no
longer depends upon the total value of » alone, but upon the separate
values of #»’ and I. The energy levels corresponding to the same
principal quantum number are then split according to the values of
l,and 8, P, D,... states result.
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The wave functions themselves assume various forms according to
the values of n, [, and m. The following are a few examples:

n=11=0m=0, z//:i(g)e‘f/“,

vr\a
n=21=0,m=0, = 4~/(127r)(a§)%(2_—2) el
n=21=1m=0, = 4\/(1277') (%)%234/2“005 9,
n=21=1m=1, = 4J(12#)(aé)%:—;e—ﬂzasinecos¢,
n=21l=1m= —1, zﬁ:ﬁ(?)g%e—”z“sin%ingb.

Tt is obvious that the description of atomic systems has led far
away from any sort of crudely pictorial representation, and yet this
form continually tends to creep back, and where it is not definitely
incorrect, it is convenient and helpful.

Since ¢} represents the probability of finding an electron in a given
volume element, the value of this function, expressed in suitable
units, can be taken to represent the density of a sort of electric cloud
surrounding the nucleus. Such an electronic cloud can be visualized
in simple examples.

For a hydrogen-like atom, when I = 0, ¢ is a function of » only.
For the so-called S states, therefore, one may visualize a spherically
symmetrical distribution of electricity.  and ¢y have their maxima
when r = 0, as may be seen from the list given above. Thus the S
states correspond to a frequent penetration of the electron to the
immediate vicinity of the nucleus. According to the older orbital
theory, { = 0 would correspond to an oscillation along a line passing
through the nucleus. The two pictures thus agree in respect of the
deep penetration of the atom. The spherical symmetry of the later
theory is at first sight in sharp contrast with the linear oscillation
of the earlier one, but appears less so if every possible orientation in
space of the line is imagined.

For n = 1, I = 0 the dependence of 4 upon r is shown in Fig. 15.
Jup follows a similar but steeper curve. The probability of finding an
electron at a given distance r depends not upon s} itself but upon
this quantity multiplied by 4mr?dr, the volume of a spherical shell
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at this distance. The latter quantity follows a curve of the form
shown in Fig. 16. There is a maximum probability at a given

distance 7.

h'd
r
F1c. 15
4ar’yv
n=1, -0
x
r
Fic. 16
4nr*vy
n=2, L=0
r
Fic. 17

For n = 2, 1 = 0 the corresponding quantity is as shown in Fig.

17.

When ! = 1, the spherical symmetry is replaced by symmetry
about either the z-, the y-, or the z-axis, with an electrical distribution
approximately as shown in perspective in Fig. 18.

The wave functions are called P wave functions and the corre-

sponding states P states.
D states correspond to I = 2 and F states to [ = 3. These have

more complicated distributions of density.
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The electron density assumes great importance in the problem of
chemical valency. Before this important subject is approached,
something must be said about the nature of forces in general.

A
%

(1
O

Fic. 18

Some considerable knowledge about the electrical make-up of
molecules is, however, derivable from the study, on the one hand, of
the dielectric properties of substances, and, on the other hand, of band
spectra. The former study yields information about the charge
distribution between the atoms, and incidentally many interesting
facts relating to molecular structure generally. The latter reveals the
kinds of electronic transition which oceur in molecules and also pro-
vides a method for the determination of various important molecular
constants.

A related matter which will claim attention is the interaction of
atoms and molecules with electromagnetic radiation.



X

ELECTRICAL PHENOMENA IN
MOLECULES AND IN SPACE

Introduction

THE electrical theory of matter has proceeded through various stages,
from the conception of an electric fluid to the recognition of the
primary particles, and from the discovery that atoms bear charges
to the realization that they consist of nothing else. The principle
on which atoms are built emerges from obscurity in the light of the
quantum theory, and unexpected developments of a highly abstract
kind are expressed in the character of wave functions.

Electrical phenomena occur in space as well ag in atoms. Radia-
tion consists of electromagnetic waves in which there is a propagation
of alternating fields. A close connexion exists between these fields
and the movement of charges in atoms and molecules. The laws of
such interactions must now be explored, partly because they are of
the greatest importance in their own right and partly because they
reveal many intimate details about the economy of the molecules
themselves.

First comes the question of the crude charge distribution within
the molecule, which largely determines the nature of its interaction
with radiation. Then there comes the quantum theory of molecular
emission and absorption, and finally the electromagnetic theory of
radiation itself.

Molecular dipoles

In atoms the centres of gravity of the positive and negative charges
coincide. In molecules they may not, since even in a diatomic struc-
ture A—B the hold of the atom A on the electrons may be tighter
than that of atom B, and there will result a distribution representable

by A—-ﬁ. If 4e is the effective charge on A and B and [ is the
distance between the centres of gravity of the two atoms, el = p,
and is called the dipole moment. Knowledge of it may be obtained
without detailed information about e or I individually.

The dipole moment of its constituent molecules is closely related
to the dielectric constant of a substance in bulk.

Coulomb’s law states that the force between two charges e, and
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e, in a vacuum is given by e, e,/r% r being the distance between them.
In a medium of dielectric constant K this force is weakened to
e, e,/ Kr?. The weakening can come about in two ways. First, the
field induces a separation of positive and negative charges in the
molecules in such a way as partially to neutralize itself. Secondly,
the field causes orientation of molecules possessing natural dipoles,
which set themselves in opposition to it and counteract its influence.

The first effect is independent of temperature, the second not.
Thermal agitation continuously destroys orientation, so that the
higher the temperature the smaller is the contribution which the
permanent dipoles can make to the neutralization of the field.

Detailed calculation leads to the formula

§_1%= 47TN(04-{— w? ),
+2p 3 3kT

where K is the dielectric constant, M the molecular weight, p the
density, N Avogadro’s number, and « is the polarizability, defined
by the relation:

induced dipole = « X field strength.

The principles of the derivation are as follows. If a dipole makes
a given angle with the field, it has a calculable potential energy, and
it makes a calculable contribution to the neutralization of the field.
Boltzmann’s equation for the relative numbers of configurations in
regions of stated potential energy gives an expression for the distribu-
tion of angles and the temperature, and hence predicts the effect on
K as a function of 7'.

The equation written down above contains two terms: one, involv-
ing «, independent of temperature, the other, involving u, strongly
temperature-dependent. Hence, in principle, measurements of the
temperature coefficient of the dielectric constants of gases yield the
values of the dipole moments.

The general ideas upon which the theory is based are very fully
confirmed by the fact that vapours containing symmetrical molecules
such as CCl,, or CH,, in which any internal dipoles would neutralize
one another in respect of their external action, have dielectric con-
stants which are independent of temperature, and that the tempera-
ture-dependence increases in a regular manner as the molecules are
made less symmetrical by substitution, as for example in CH;Cl or
CHCl,,.
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In practice, the elaborate measurements of dielectric constants of
gases at different temperatures are usually circumvented, on the one
hand by the use of dilute solutions and the application of additive
relations for solvent and solute, and, on the other hand, by the
theoretical calculation of « from the refractive index, so that p can
be found from measurements at one temperature only.

Knowledge of the dipole moment finds valuable application in
many problems of molecular structure. This field constitutes a large
special study and only one or two examples will be quoted to illustrate
its place in the scheme of things. We are primarily concerned with
the dipolar character of the molecule as an expression of its power
to interact with radiation, and, as will appear, with other molecules.

X Y
The moments of benzene derivatives such as O and O can be

X X

Y
measured. In a first approximation, the moments of O, O
Y
X

and O are calculable by vector addition from those of the
Y X

mono-derivatives. The compound O has moment zero, and that
X X

of O is the sum or difference of the values for the mono-derivatives

Y
according as the directions of the dipoles are the same or opposite. In

this way from one reference compound the absolute signs of dipoles

can be found.
X

If we know the moment of O, then from that of the molecule

PEN

X X

0
AN
9
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and the vector addition principle the valency angle, 8, can be calcu-
lated in a first approximation. Actually the mutual influences of
dipoles are by no means negligible, and in more than approximate
treatments must be allowed for. This also constitutes an interesting
field of study.

Evidence from band spectra. Absorption and emission by
molecules

Band spectra yield information about the electronic levels in
molecules and about the types of symmetry shown by wave func-
tions. They also provide values for molecular vibration frequencies,
energies of dissociation, and moments of inertia.

In order to understand how this is possible, it is first necessary to
know something about the general nature and structure of band
spectra. At one time they appeared to be of a quite unintelligible
complexity, which, however, the applications of the quantum theory
and of wave mechanies have shown to depend upon combinations
of relatively simple elements.

Line spectra are emitted by atoms, band spectra by molecules, as
is clear both from the conditions under which they are observable
and from the theoretical interpretation of their characteristics.

Emission or absorption occurs, of course, in quanta when the mole-
cule makes a permitted transition from one to another of the possible
energy levels. The transitions in question generally involve con-
current changes in electronic energy, AZ,, vibrational energy, AE,,
and rotational energy, AE,, so that the total energy change AF is

given by AE = AE,+-AE,+-AE,.

The three terms in this expression are in a first approximation inde-
pendent, and need not be of the same sign, so that very varied
combinations occur, and the emitted or absorbed frequency v = AK/h
has many values.

If E, alone changes, a series of frequencies in the remote infra-red
or short radio region occur. They are defined by the transitions
between the energy levels of the series

E = J(J+1)h?/8n%1,
where J is an integer and I is the moment of inertia of the molecule.

J changes by one unit at a time, in virtue of what is called a selection
rule (p. 225).
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The spacing of the vibrational levels is much greater, X, being
given by (n--1)hw, where w is a normal vibration frequency of the
molecule itself. If E, alone changed, there would be a series of lines
characteristic of the various molecular frequencies. But since E, is
very much greater than ., there is no reason to expect changes in
the former without the likelihood of concomitant changes in the
latter. Thus 1

v = E[AEH—AET]:

where AE, defines the general position of absorption or emission,
and the various positive or negative values of AE, impart to it the
fine structure which gives the band its characteristic appearance.

Absorption may be considered for definiteness. AE, is then posi-
tive. J may remain the same, or it may increase or decrease by one
unit. Correspondingly there are three parts to the band, usually
called the P, @, and R branches (¢ for AJ = 0). If J increases from
J to J+1, AE, is given by

h2
8m2l

h?

{(J+INJ+2)—J(J+1)} or Y™y

(J+1).

This increases by equal steps as the original value of J increases.
Thus on the high-frequency side of the line corresponding to AE, /R
there is a series of equally spaced lines, corresponding to the rotational
transitions 0 to 1, 1 to 2, 2 to 3, and so on (not, it is to be noted,
0to 1, 0to 2, 0to 3). If J decreases, the total energy absorbed is
less than A, 72
m{(J—l)J——J(J—{—I)},

being —h2J/(472I). In a rough approximation this result means a
series of lines equally spaced on the other side of the central line.

From what has been said the rotational band would appear to
have the symmetrical structure shown in Fig. 19. In fact it is some-
what unsymmetrical in virtue of changes in I accompanying the
changes in the rotational state. The intensity variations of the
different lines are determined by the Maxwell-Boltzmann distribu-
tion of the initial values of .J.

Vibrational bands with rotational fine structure oceur in the short
infra-red region of the spectrum. The variations in I itself become
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still more important in band spectra of the visible region. Here AE,
determines a band system, AE, governs a progression of bands within
the system, and AE, imparts a fine structure to each band. For a
given system, corresponding to one single electronic transition in the
molecule, AE, may have values A(n-+})hw. For low values of n this
leads to a number of equally spaced bands. But as % increases the
binding in the molecule weakens and w itself drops towards zero, so
that the bands come closer and closer together.

! l L

Fig. 19

Theoretically, the spacing becomes zero when the vibrational
energy corresponds to the energy of dissociation of the molecule.
The convergence point is seldom observable. But empirical formulae
expressing the gradual diminution of the frequency differences can
be applied to the existing bands and used to calculate by extrapola-
tion what the dissociation energy would be. This procedure is of
importance in principle, but of some uncertainty in practice, since
the extrapolation is usually over a rather wide range.

In discussing the fine structure of a rotation-vibration band it was
permissible as an approximation to assume a constant moment of
inertia. Bands of the visible region involve electronic transitions
which so modify the molecular structure that I is not even approxi-
mately constant. When the molecule passes from the initial to the
final state I changes to I’. This is responsible for one of the most
characteristic features in the appearance of the bands. For given
values of AE, and AE, those of AE, are

(J+H(J+2) J(J+1)

8w’ 8721 °

or (J—1)J JJ+1)
8x2l” 82l
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The terms in J2 no longer vanish as they do when I = I'. The two
expressions are quadratics in J of the forms

J2(1 1 J (3 1 1 (2
éﬁ{?“i}+8_ﬁ{?_7}+é?2{7}
and _"_7_2 _!'____1_ __:{_ i_i_l .
8x2\I' I} 8x2{[' " I

If I’ is less than I, then the coefficient of J2 is positive in both these
expressions, but that of J is positive in one and negative in the

Fic. 20

other. If I' is greater than I, the coefficient of J2 is negative in
both. 3/1' will still be greater than 1/, so that the coefficient of J
will be positive in the first expression and negative in the second.
Thus the frequencies of the lines making up the band will form
progressions of the types

vo-baJ +bJ2,

where a and b are positive. When the progression is of the form
vot+aJ —bJ 2, the frequencies of successive lines at first increase, while
the J term dominates the expression: then, when the J2 term grows,
the lines crowd closer together until finally » no longer increases.
Further increase in J leads to a more and more rapidly diminishing
frequency, so that the band has the appearance shown in Fig. 20,
where the dotted lines belong to the frequencies in the region where
the bJ2 term outweighs aJ.

The limit beyond which the frequency shows no further increase
is called the band head. It might,fromits appearancein thespectrum,
have been supposed to have special significance. Actually it has not,
representing simply the frequency at which the terms in a quadratic
happen to balance. According to the relative values of the different
constants, the band head may lie on the side of longer or of shorter
wave-lengths. The crowding of the lines in the one direction and

5293 P
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the spreading out in the other give the spectrum the peculiar appear-
ance sometimes described as fluted.

As to the determination of molecular constants, the spacings of
rotational lines in the infra-red, visible, or ultra violet give in-
formation about the moments of inertia. This is frequently precise
enough to serve for the unequivocal identification of the species
responsible for the absorption or emission. The progression of bands
in the visible yields, when enough terms are determinable to allow
a satisfactory extrapolation, a value for the dissociation energy. The
vibration-rotation bands of the short infra-red yield direct informa-
tion about the frequencies of molecular vibration. Long infra-red
and short radio waves provide values for rotations and yield
moments of inertia.

Evidence from the Raman effect

Not all molecular frequencies lead to absorption in the infra-red.
Many which do not, however, may be discovered by an examination
of what is called the Raman effect.

When light of the visible range of frequency is scattered, there
may appear not only the original frequency v, of the incident beam
but the frequencies vy-+v, and v,—v;, where v, is one of the molecular
vibration frequencies of the scattering substance. The quantum Av,
is absorbed and returned plus or minus a levy of kv, according as
the molecule has passed to a lower or a higher vibrational level in
the process. v, will, of course, be small compared with v,,.

In general, molecular vibration frequencies do not appear both in
the infra-red and in the Raman spectra. To couple with infra-red
radiation directly the molecule must undergo a vibration attended
with a displacement of its electrical centre of gravity: that is, its
dipole moment must change during the course of its vibration. This
condition will become clearer after the discussion of the electro-
magnetic theory later in the present chapter. To give rise to a
Raman line the molecule must suffer a change, as it vibrates, not
in moment, but in polarizability.

The reasons for these conditions may be seen in a general way as
follows. Light waves involve periodic fluctuations of electro-magnetic
fields, and for the generation of such waves there must be an oscilla-
tion of electric charges. Hence the need for a change in the dipole
moment for infra-red activity.
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The symmetrical vibration of the molecule illustrated in (@) would
not be attended with a variation of moment nor, therefore, by

(@) <O O O
(0) O <O O

infra-red emission or absorption. On the other hand, the antisym-
metrical vibration (b) gives a fluctuating moment and corresponds
to an observable infra-red frequency.

Where the Raman effect is concerned the important thing is not
the moment but the mutual interaction of the vibrations caused by
the visible light and the vibrations of the molecule itself. The light
induces in the molecule a fluctuating moment with a period equal to
its own. This is given by

p = oF = aFysin 27vyt,

where « is the polarizability of the molecule, F is the field due to
the wave, and v, its frequency. Now « may or may not be a function
of the displacements which the molecule suffers in virtue of its own
vibrations. If it is, then there will be a Raman frequency to corre-
spond. Suppose « varies with x, the displacement in a given mole-
cular vibration of frequency v;. o may now be written

a = agt+kx = agtkrgsin 2mvy ¢,
where oy and k are constants. Substitution gives
p = (agtkxysin 2y, 1) Fysin 2mvyt.

The moment, p, which determines the subsequent emission by the
molecule of the scattered light, containg one term in sin 2zv,¢ corre-
sponding to an unchanged frequency v, and another term with the

product sin 27y, tsin 2zvt.

This expression is equivalent to

e27n'v1 t__ e—27riv‘ [4 6277751/0 i__ e—2-n-1lvot
24 24 ’

and when multiplied out contains terms in 2™ *¥X representing
frequencies v,+v; (as can also be seen by transformation of the sine
product by the usual trigonometrical formula).

The vibration (a) shown above, although not attended by a change
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of moment, will clearly be accompanied by variations in « since the
interatomic distances alter during the movement. It will appear,
therefore, as a Raman frequency.

Electronic transitions in molecules

So far nothing has been said about the nature of the electronic
transitions in molecules. These, of course, determine the fabric on
which the vibrational and rotational fine structure of the visible
spectra is embroidered.

The energy of the electronic transition itself corresponds, as with
atomic spectra, to the difference of two terms characteristic respec-
tively of an upper and a lower state. The molecular states present
close analogies with the S, P, D,... states of atoms, and the values
of AE, are generally of the same order of magnitude as those which
determine atomic spectra. Higher terms sometimes fall into sequences
of the Rydberg type, so that they evidently do not differ fundamen-
tally from atomic terms.

In the application of the quantum theory to the simplest example
of a diatomic molecule, the important new factor is the existence in
the molecule of an axis defining a specific direction. An atom pos-
sesses no such axis. There exists therefore for the molecule a quan-
tum number A which measures the number of units of angular
momentum in the component of the electronic orbital motion pro-
jected along the axis joining the nuclei. According as A = 0, 1, 2,...,
the state is called 2, II, A,..., by analogy with the atomic states
S, P, D,..., which are determined by the values of { (p. 199).

The molecular terms may show multiplicity and, once again, this
is interpretable in relation to the electron spins. The resultant
spin, S, has a component of X' units about the molecular axis,
and the sum, Q = A4-X’, gives a new quantum number which has
multiple values according to the magnitude of § and its possible
projections.

In general the different values of Q for a given A correspond to
different states of energy, but if A = 0, as it is in a X state, the
magnetic field in the line of the axis is zero and no actual splitting
of the spectral lines occurs in a non-rotating molecule.

The interaction of molecular rotation and electronic motion is,
however, of great importance, and forms the basis of the most usual
method for the diagnosis of the nature of the electron terms—whether
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Z, II, and so on. In the simplest kind of coupling A and X’ first
combine to give (), the total units of electronic angular momentum
about the axis: and then Q forms a resultant, J, with the angular
momentum of the molecular rotation about the axis. It is J which
now determines the sequence of the rotational states. According to
the wave equation, in this case the energies are a function not simply
of J but of J and of Q. Although, for a given set of lines, Q is
constant, it affects the possible values of /. When Q is greater than
zero, some of the lower rotational levels are missing.

Thus the detailed analysis of the rotational structure of bands will
reveal the type of electronic transition with which they are associated.
If the resultant spin is zero and A = 0, then the state is a singlet
% state, and the simple theory of rotational fine structure given
previously is uncomplicated by further considerations of multiplicity.
In general, however, the rotational fine structure is a function of the
electronic transition itself.

The fact that the molecular terms are determined by principles
fundamentally similar to those defining atomic terms suggests a
procedure, which leads to useful results, whereby the former are
qualitatively derivable, or at least guessable, from the latter. The
terms being known for two atoms A and B, the problem is to ascertain
in what respects they will change when the isolated atoms are brought
together to form a molecule.

The two atoms are in states with angular momenta defined by 7,
and Iy respectively. As they approach, an axial field develops and
the components L, and Ly emerge, quantized in the direction of
the axis. When the molecule has been formed, it possesses a value
of A given by L+ Lg. All possible integral values of L, and Ly
combine to give the various possibilities for A itself. Two atomie
S states with I = 0 must give rise to a X state with A = 0. If L,
can be as great as 2, as in a D state, and if Ly is zero, as with the
second atom in an S state, A can be either 0, 1, 2, —1, or —2,
so that Z, II, and A states become possible.

The more detailed discussion of these matters leads to a classifica-
tion of molecular states according to the symmetry characteristics of
the wave functions defining them. States are negative (—) or
positive (4 ) according as the wave function changes sign or not on
reflection in a plane passing through the nuclei, and odd (u) or
even (g) according as it changes sign on passage through the centre
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of the line joining the nuclei and from one side of the axis to the
other.

+ +
O—+~O Oo——O0
(+) (—)
-+ - 3
O——0 O——0
+ - - +

(9) (u)

The decision as to whether the atomic terms become positive or
negative, odd or even, when combined to give molecular terms de-
pends upon detailed prescriptions derivable from the wave equation.

Analogous qualitative argument about the origin and nature of
molecular terms can be based upon an imaginary genesis of a mole-
cule by the splitting of a given atom of known configuration into
two fragments which are then drawn apart. For example, there
should be a discernible relation between the atomic terms of calcium
and the molecular terms of magnesium oxide: the calcium nucleus is
thought of as dividing into Mg and O while still surrounded by all
its electrons. The two nuclei then part company with a continuous
adjustment of the electron configurations until the whole system
turns into MgO. In general, this line of investigation leads to in-
telligible, though, of course, not quantitative, results. But it seems
clear that no fundamentally new laws govern the behaviour of elec-
trons when they happen to be assigned to two nuclei rather than to
a single nucleus.

Stable and unstable levels

The application of these principles is limited in practice by the
fact that many of the formally possible molecular levels are unstable.
If the molecule is excited to one of these, it decomposes before it has
a chance to return to the initial state. The fragments formed by the
dissociation can carry away varying amounts of kinetic energy, and
the result is a continuum in the absorption spectrum.

For the emission of the normal band spectrum a molecule must be
capable of vibrations in the upper and in the lower electronic states,
and the condition for this is that the relation between potential
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energy (U) and interatomic distance (r) should be of the general
form shown in Fig. 21 (a) and (b), where the energy is a minimum at
the equilibrium interatomic distance (r;). The energy relations for
an unstable level are represented by the curve (¢) where the con-
tinuous increase with diminishing distance corresponds to a steadily
increasing repulsion between the atoms and the absence of an equi-
librium state.

The excitation of one of the electrons to a higher level frequently
weakens the binding between the atoms and a large number of the
higher molecular states are represented by potential energy curves
of the type (c). Were the stable states more numerous, the com-
plexity of band spectra would be even greater than it is and might
never have been disentangled.

(b)

(c)
(a)

r
Fia. 21

Morse curves
The curves (@) and (b) of Fig. 21 are conveniently represented by
the equation of Morse

B(r) = De-2ar=10_2 De=atr—),

where E(r) is the energy, measured in relation to such a standard
level that it becomes zero for infinite separation of the atoms. When
r = r,, the equilibrium distance, E(r), according to the equation, has
a minimum value of — D, which thus represents the energy of forma-
tion of the molecule from its atoms (in the states in which they would
be produced by dissociation). When » = 0, F(r) assumes, not an
infinite value as it should really do, but a high one which is a good
enough approximation. The great advantage of the Morse equation
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is that on insertion into the wave equation it yields for the permitted
vibrational levels of the molecule a series of the same form as one
of the most useful empirical formulae derived from experimental
spectroscopy. The nth level is defined by the relation

2,,2
L N
where 7 is an integer and v, is the frequency of oscillations still small
enough to be simple harmonic. The vibrational levels of actual bands
can often be well enough expressed by

W(n) = hvy(n+34)—x(n+4)?
where # is the so-called anharmonicity constant. This formula gives
levels which at first are equally spaced and then converge to a limit.

W(n) = hvo(n+3)—

The Franck-Condon principle

Transitions between the molecular levels are governed by a prin-
ciple, formulated by Franck and Condon, according to which the
passage of the electron from one to another occurs in too short a time
for the much more massive atoms to have suffered appreciable dis-
placement. The transfers, therefore, occur along a vertical line of the
diagram in Fig. 21, and since the maxima of the upper and lower
states seldom correspond, a change in the vibrational levels nearly
always accompanies the electronic excitation. This principle, as can
be seen, has a good deal to say regarding the intensities of the
vibrational bands observed in spectra.

Sometimes the potential energy curves of stable and unstable
excited states cut one another, as with (b) and (¢) in the diagram,
and in such circumstances excitation may be followed by dissocia-
tion after a varying delay. If this time lies between the periods of
rotation and of vibration, the rotational fine structure may disappear
from the vibration bands: there is still enough time for vibrations,
but not enough for the slower rotations.

Interaction of matter and radiation: electromagnetic theory

of light

The interaction of matter and light manifests itself in absorption
and emission, in reflection, refraction, and dispersion, in diffraction
and polarization, as well as in the chemical changes which radiation
may bring about in a molecule which absorbs it.

The quantum theory describes many of the phenomena with little
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more concern about the apparatus of radiation than that involved
in the knowledge of the mode in which the transfers are parcelled
up. This suffices for the theory of spectra—in most respects—and
certainly for photochemistry, which depends only upon the stability
or otherwise of the excited states into which the absorbed quanta
lift the molecules.

In other ways, however, the attempt to understand the nature of
things is powerfully helped by an appreciation of the profound con-
nexion between the electrical theory of matter and the electromag-
netic theory of light. The ideas underlying this theory have still a
great deal of importance, although their place in the general structure
of physics has greatly changed since the days of their introduction.

The theory of electricity and magnetism developed from the study
of macroscopic phenomena such as the mutunal attraction of magnets
or of electrically charged bodies, and of the forces exerted by magnets
on wires carrying electric currents. Faraday was convinced that the
various effects were transmitted from one body to another through
a field which involved happenings of some kind in the intervening
space, and Maxwell proposed the laws of this field in one of the most
wonderful of all physical theories.

He began with the bold and brilliant hypothesis that certain rules
discovered for macroscopic systems such as electric circuits would
be applicable, when suitably formulated, to elementary regions of
space. For example, the law of electromagnetic induction discovered
by Faraday states that the electromotive force induced in a circuit
is proportional to the total rate of change in the number of lines of
magnetic force passing through the area. Electromotive force is the
work involved in the transport of unit charge, and can therefore be
expressed as the integral of a force with respect to a distance.
Mazxwell accordingly assumes that for any small closed curve in space

fEds: ._;)’f”?g(zs, (1)

where K is the electric field, ds an element of the curve, H the
magnetic field, . the magnetic permeability, and dS the area of the
elementary region of space (corresponding to Faraday’s circuit
although it contains no conductor). The factor v is to convert the
field E, normally measured in terms of Coulomb’s law in electrostatic
units, into the electromagnetic system of units which is based upon
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current-magnet interactions. It is an experimental constant. The
negative sign in the equation takes account of the fact that the in-
duced electromotive force is always in opposition.

Maxwell needed an equation to balance (1). Now it is well known
from the elementary laws of galvanometers that the work done in
carrying unit magnetic pole round a wire bearing a current ¢ is 4.
This work is independent of the distance, provided that a complete
circuit is made. Thus we have

f H ds = 4mi. (2)

The left-hand side is already symmetrical with (1). As to the right,
Maxwell assumed that there is a quantity which he called the dis-
placement, D, whose variation with time in a non-conducting medium
corresponds to the current in a conductor. Thus we have

i — H%)ds, 3)

the current being replaced by the integral of 6D/ot taken over the
complete area of the elementary region considered. D itself has a
simple relation to the electric field, . At a distance r from a charge
e in a medium of dielectrie constant K the force is given by

E =e/Kr? or e= KriK.

Maxwell imagined that when a charge e establishes the field around
itself, the displacement spreads outwards through space. At a
distance r the area is 4mr2, and 472D represents the total, as it were,
polarization of space, 4mr2D balancing e, so that

e = 42D = Kr?E, whence D = KE[4n.
Combining this with (3) and inserting the result in (2) we find

fHds=K”§Eds,
ot

oE /ot representing what is virtually a current, but E itself being
normally expressed in electrostatic units. The empirical conversion
factor must thus be applied and we obtain

fﬂ@:%”%d& 4)

(1) and (4) now constitute an almost symmetrical pair.
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From this point on, Maxwell’s development of (1) and (4) is purely
mathematical and consists in showing that the electric and magnetic
fields in space are so related that waves can be propagated, and that
the velocity of these waves is v/\[(uK). A brief derivation of this for
the simplified case of a plane polarized wave travelling along one
axis will illustrate the principles.

E and H have the components E,, E,, E, and H,, H,, H,. 1t is
easy to show that round a circuit in the XY -planet

o [ -2

There will thus arise six equations for the various components of
H and E respectively. Of these, from (1),

peH, 0B, @,

v ot oz oy

is typical. (H,is combined with E, and E, since it is round a circuit
in the Y Z-plane that electromotive force is induced by variation of
the magnetic field along the z-axis.)

We shall now simplify the problem by considering the case where
E, and E, = 0, with E, as the only effective component of the
electric field. E, moreover, is to be uniform over the whole X¥-
plane (plane and plane-polarized electromagnetic wave).

T The reader unacquainted with simple properties of vectors can satisfy himself
about this by working out K ds for the circuit shown in the diagram. The contri-
butions from the traversing of the sides 1, 2, 3, 4 are

1 0F 1 e8 1 0E 19E,
+( y+2 = 3z |8y Em+2 % Sy |ox V"3 o Sz )8y -\ E, 5 oy 8y )8z

oE, o,
The sum of these is (———”———9) Sxdy
ox By

and integration over a larger circuit gives the result required. It can be substituted
in (1) and the integral signs dropped on both sides of the resulting equation.

2

B,

{
I

—>F, 1

[
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Then of the six equations we are left with
K om, _°H, oH,

v ot oy ox’ (5)
__pmoH, 9E,
v o  ox’ (6)

E, cannot vary with time without affecting H, and H,, nor can H,

vary with time without affecting E,. Moreover, the variations in

space and time are interconnected, so that everything is as required
for the propagation of waves.
Differentiation of (5) gives

K &E, @ (6Hx) 0 (6Hy) 0 (E)Hz) 0 (aHy)

ot

ot oy\ ot ox
_ _2(_viE) _voE,
@ 0x?

v ooE ot

oy

(the term 0H, /ot being zero since it is 0K, [9z—0K, /oy, and E, = 0
and oK, /oy = 0).
uK 7B, _ o,

Therefore =
v: B ox?’
2 2
and similarly pK o, =2 H”.
% o2 ox?

These last equations represent the propagation of Z, and H, as plane
waves. It is easily verified by substitution that the equations are
satisfied by expressions of the form

where V = v/\/(uK).

For a vacuum p and K are unity and V = v. v, the empirical
conversion factor of electromagnetic and electrostatic units, is 3 x 101¢
cm. /sec. which is none other than ¢, the velocity of light in free space.

This remarkable result left nobody in any doubt that light waves
are in fact propagated electromagnetic vibrations.

The electromagnetic theory suffered a certain eclipse with the
advent of the quantum theory, and yet it cannot really be said to
be superseded. The quantum laws are quite distinet from anything
implicit in Maxwell’s equations, and, of course, in flat contradiction
to any idea that frequencies of electromagnetic waves are related to
the actual frequencies of movements of electrons in atoms. The
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relation AE == hv for the frequency of the radiation emitted in a
transition between two stationary states seems at first sight to re-
place this idea in a quite radical manner. But the fact remains that
v refers to some character of the radiation which governs many of
its most important properties, including refraction and dispersion.

Though there is a so-called quantum theory of dispersion, it in-
cludes elements directly derived from the electromagnetic theory,
and still postulates alternating fields associated with light waves.

There is in fact a formal way in which the conception of the
fluctuating field of the light wave and the quantum transition in the
atom can be in some measure reconciled.

If an atom can exist in the two levels B, and X, then, as shown on
p- 185, the wave equation takes the form

= Cq iy 2B ¢ oy, @2t

where s, e2miErth gnd o, e?7iEatk gre individual solutions. The electric
density (in so far as we visualize this in more than a statistical sense)
is given by

B = U ey oy A7 Es B i
= R i+-cR 8 +2¢, caify iy cOS[2m (B — By)i[R]
= cF i+ cF i+ 20, Cyify thy cOS 2L

Thus when the two energy levels coexist, the density contains a term
which varies periodically with time. This term has not a frequency
equal to that of either of the separate values E,/h or E,/h but one
equal to (&;—E,)/h. Thus we obtain a link between the wave-
mechanical theory of the atom and the classical theory of the field
which is formally very striking, though, in the light of any statistical
interpretation of the electric density, it cannot be said that the
problem is entirely free from mystery.

In view of general experience of the ultimate failure of all macro-
scopic analogies to explain microscopic phenomena, and indeed of
the essentially illogical character of the demand that they should,
one can hardly regard the analogies which suggested Maxwell’s
equations as more than suggestive. The possibility of other formal
schemes which express the properties of radiation and its inter-
action with matter in quantum phenomena lies open. Such field
theories lie, however, beyond the present bounds of physical chemistry.
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Refraction and Dispersion

Refraction and dispersion are matters of some physico-chemical
interest and merit brief attention at this stage. If we ask why the
presence of atoms in the path of light waves should hinder their
propagation, the answer in qualitative terms is somewhat as follows.
The rate of propagation of any disturbance depends upon the restor-
ing force called into play by the displacements occurring in the
medium which transmits the waves. The presence of particles which
are set in forced vibration, whether as a result of mechanical or of
any other kind of interaction, contributes to the system an extra
element of inertia which is formally equivalent to a weakening of
the elastic constants. Hence the lowering of the velocity which is
observed.

The treatment of refraction and dispersion in terms of the quantum
theory proceeds more or less in the following way. Suppose an atom
becomes polarized in the direction z, and thereby develops a moment
ze. Then, in the alternating field of a light wave, its potential energy
will contain an extra term Adezcos 2nvi, where 4 is a constant and
v is the frequency of the field. (We note that the electromagnetic
theory holds its own at this stage.) The modified potential energy
term is inserted into the wave equation which gives the permitted
states of the atom, and hence the effective moments which it can
exhibit under the influence of the light wave. These moments, which
in effect determine the polarizability, affect K (the dielectric constant
of the region through which the light travels) and hence modify the
velocity of propagation, which, as shown, depends upon 1/vK.

Increased polarizability means increased K and hence lowered
speed of propagation. The ratio of the velocity in free space to that
in the medium is the refractive index. The detailed calculation
shows that the refractive index depends upon the relation between
v, the frequency of the light, and the Ay’ corresponding to the
various transitions between stationary states in the atom. Hence
it is a function of the light frequency. This is the phenomenon
of dispersion.

Various functions of the refractive index multiplied by the mole-
cular weight have been found to be partly additive and partly
constitutive. They are made up additively from contributions by
the various atoms in the molecule, provided that corrections are
applied for the modes of binding of individual atoms. At one time
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the study of molecular refractivities was much used as a diagnostic
test for various types of structure.

Optical activity

We will now turn to the consideration of a phenomenon which
has played a very special part in structural chemistry, that, namely,
of the influence of molecules on polarized light. According to the
theory which, even before the advent of Maxwell’s ideas, described
most of the phenomena of physical optics, light waves are transverse,
with displacements perpendicular to the line of propagation. In
plane polarized light the displacements are confined to one single
plane, the plane of polarization. Two light waves polarized at right
angles and of equal amplitude compound to give a wave with what
is called circular polarization. Thus if the vibrations in one are

represented by z — asin wt

and in the other by Y = aCos wt,
then 22 Ly? = a?,
so that the path of the point (x, %) is a circle. Conversely a circularly
polarized wave may be resolved into two plane waves of equal ampli-
tude at right angles to one another. The components of two circular
motions executed in opposite directions are
2, = asinwl, %, = asin wt,
Y, = @ COS wi, Yg = —Q COS wi,
and the sum of these gives
x = x,+%, = 2asin wl,
Yy=41Y%=0,
a plane polarized vibration.
A plane polarized vibration is thus equivalent to two circular
motions executed in opposite senses. The points imagined to execute
these motions cross when wt = 0, 7, 27, and so on. Suppose one of

the circular motions suffers a retardation relatively to the other so

that while x, = asinwt, Y1 == @ COS wi

the other two values change:
%y = asin(wt+¢), Yy = —a cos(wi--¢).

We now refer the motions to a new set of rectangular axes making
an angle § with the former set. According to the standard rules for
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transformation of axes, if #,, x,, ¥;, ¥, become respectively z;, x5,

! 7
then .
Y1, Y2 2z, = 27 cos —ysin b,

Yy, = xy sinf-+y; cos b,

with a corresponding pair of equations for x, and y,.

Thus . ;
asin wt = x; cos f—y;sin b,

. ’
@ cos wt = 2} sin §-4-y; cos B,

whence Z; = asin(wt+0),

Yy = acos(wi+0).
Similarly @y = asin(wt+¢—0),
Yo = —a cos(wt+¢d—0).
If ¢ = 20, then
xy = asin(wt-4-06), xp = asin(wt+-0),
¥y = acos(wt+0), Yo = —a cos(wt-10).
These combine to give a plane polarized vibration in the line making
an angle § with the original.

Now if a medium were related to one of the circular components
of a plane polarized light wave as the female thread to the male
thread of a helical screw, it would be expected to transmit that one
more easily than the oppositely directed one, and so cause a rotation
of the plane of polarization. We have therefore to examine the
conditions under which the analogy of the screw might be applicable.
Some crystalline media, for example certain forms of quartz, do in
fact possess a space lattice with a helical configuration of atoms, and
the successive actions of these on the light waves can be imagined
to produce retardations depending on the direction of the circular
component.

Optical activity is, however, also shown in solution. It is due to
molecules which themselves lack a plane of symmetry. In virtue of
this lack they cannot be brought into coincidence with their own
mirror images, any more than right-handed and left-handed helices
can be superposed. They have in fact the same geometrical property
as the helical media in causing a selective retardation of one of the
two circular vibrations, each of the mirror image forms retarding a
different component of the wave.

That the collective effect of a randomly oriented assemblage of
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molecules does not give a zero resultant can be realized if it is borne
in mind that a right-handed helix remains right-handed even when
it is turned through 180°, as common observation will show. Thus
the sign of the effect on the one or the other circular component of
the wave does not depend upon the direction in which the molecule
is traversed. Hence the randomly oriented solution behaves for this
purpose like a medium of definite geometrical form.

Selection rules

Atoms and molecules change their energy levels and emit or absorb
radiation. All transitions between states, even though the states
themselves are possible, are not necessarily legitimate. The restric-
tions imposed upon transfers are known as selection rules. Rather
closely related to them are the prescriptions which define the state of
polarization of an emitted light wave, such a formulation amounting
to a selection rule applicable to particular components of the wave.

Examples of selection rules have already been mentioned: in the
condition that the atomic quantum number ! must change by one
unit at a time; in the requirement that the rotational quanta re-
sponsible for the fine structure of molecular band spectra change by
one unit or zero; and, in a more general way, in the prohibition of
transfers from symmetrical to antisymmetrical states.

Most selection rules emerge from long and detailed calculation of
transition probabilities, and only the general principles of the matter
will be outlined here.

As already explained (p. 198), transition probabilities depend upon
integrals of the form f Yy 1, dw, where the two wave functions refer
to the initial and final states and 7 is a small potential energy term.
Selection rules are derived from the conditions that the integral should
have a value different from zero.

Emission of light will depend upon the moment of the fluctuating
part of ¢af (p. 221). The z component of this moment is of the form
f znf dw. If this vanishes for all three directions, then the line will
not appear in the spectrum. If it vanishes for all directions except z,
then there is a plane polarized emission: if the z component vanishes
while there are equal « and y components (in the right phase), then
we have a circularly polarized emission.

Detailed working out is necessary for each special case. The

simplest possible is given as an example. Suppose we have a rotator
5293
Q
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with a fixed axis. Its motion is describable by a one-coordinate wave
equation thus: %y 82l

@t
since there is no potential energy, and the moment of inertia replaces

the mass when the angular coordinate 6 is used to describe the
movement. The equation has a simple solution

4 — sin (SJT}Z_E)%
Each time 6§ becomes a multiple of 27, 4 must begin to repeat itself,
s0 we write ¢ = sinnf with » integral. Suppose the rotator is an
electron (or something bearing a charge), and that the x and y com-
ponents are asin @ and acosf. Now imagine the rotator capable of
existing in two of its energy states with n = n; and n, respectively.
The probability of a transition from one to the other depends upon

By = 0,

J.xsinnlf)sinnzﬁdﬁ and fysinnlé?sinn20d0,

the emission of radiation being determined by the electric moment.
The values of

2w b1

fxsinnlosinnzede and jysinnlesinnzede

are in turn proportional to

27 2
J.asinnlﬁsinnzﬁsinﬂ df and to jasinnl(?sinnzﬁcosﬁ dé.
0 0

To take the first as an example, sinn, sinn,§ can be expressed in
terms of a difference of cosines of (n,+n,)0 and of (n;—n,)0; these
in their turn when multiplied by sin @ lead to integrals of the form

2w 27
f cos(n,+n,)0sinf df and f cos(n,;—n,)0sin § dé,
0 0

which vanish unless n,+n, =1 or n,—n, = 1 respectively. If
f,+n, = 1, then n, or n, = 0, so that in either case the difference
of ny and n, is unity. Thus we see that n, can only differ by one unit
from n, The other combinations lead to the same result. This
calculation establishes, for the simple case, the well-known selection
rule about rotational quantum numbers.



PART IV
FORCES

SYNOPSIS

THE nature of the forces which hold together all the various groupings and
sub-groupings of particles making up matter has so far remained largely
unknown. The emission or absorption of energy which accompanies a change
of configuration has been a fundamental datum introduced empirically into
statistical theories and their thermodynamic counterparts.

Force itself is a convenient descriptive term which relates energy changes
to potential muscular sensations, and mathematically it can be replaced by a
differential coefficient of energy with respect to a space coordinate. Essentially
a theory of forces is a theory about energies. When particles tend to enter
into a new configuration of lower energy they are said to exert an attractive
force on one another.

The principal groupings which take place on appropriate occasions are: the
union of protons and neutrons (and possibly of other entities) to give atomic
nuclei ; the gathering of electrons round these nuclei to form atoms ; the com-
bination of atoms to molecules ; and the aggregation of molecules to condensed
phases of solid and liquid. These associations may be said to occur under the
influence respectively of nuclear forces, intra-atomic forces, valency forces,
and van der Waals forces.

Nuclear forces are not fully understood, but important contributions are
made by proton-neutron attractions and by the electrostatic repulsion of
protons for one another. The theory of relativity, which evolved from certain
observations on the propagation of light, leads to a relation between the binding
energy of a nucleus and the departure of the mass from a whole number of
units (¢*Am = AE), so that an empirical method of judging nuclear stability
is available.

Intra-atomic forces prove to be simply the Coulomb attractions and repul-
sions of the positive nuclei and negative electrons for one another. But it is
the quantum theory and the Pauli principle which impose a structure on the
atom and dictate the rules for the building up of the periodic system of the
elements.

Valency forces are also electrostatic in nature. A consistent application of
the quantum laws to two hydrogen atoms shows that the pair may exist in a
lower energy level than the isolated individuals, but only on condition that
their electrons have opposite spins. This condition is imposed by the require-
ment of antisymmetry in the wave function. Analogous conclusions apply to
other atoms, and the limitations on the possible electron states which the
Pauli principle demands restrict combination to the saturation of specific
valencies. Valency forces fall off exponentially as distance between atoms
increases.

The amplitude functions of the wave equation yield information about the
general types of electrical density distribution in molecules of different
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kinds, and provide a foundation for stereochemistry and for the detailed study
of molecular properties.

Molecular vibration frequencies, force constants, bond lengths, and dissocia-
tion energies provide experimental methods for studying interatomic forces in
detail.

Van der Waals forces are also electrostatic, and, generally speaking, dipolar:
they exist in virtue of (a) permanent dipoles in molecules, (b) dipoles induced
by other permanent dipoles and, most characteristically, (¢) the coupling of
the zero-point oscillations of positive and negative charge which must occur
even in molecules without an observable moment. Van der Waals forces
normally fall off as the inverse seventh power of the distance.

When one atom has received electrons from another so that a pair of ions
is formed, the Coulomb forces between the two obey the inverse square law.
Such forces act therefore over long ranges and profoundly affect the properties
of solutions of ionized substances.

XI

THE BUILDING OF ATOMS AND
MOLECULES

Forces

AN ever-recurring theme in what has been said so far is the conflict
between the random motions of the constituent particles of matter
and the forces which tend to order them into structures. So far little
or nothing has been said about the character of these forces, the
operation of which has been expressed simply in the various energy
terms entering into kinetic, statistical, or thermodynamic calcula-
tions. It is now necessary to examine this problem more explicitly,
and to consider what can be said about the ways in which entities
such as neutrons and protons are held together in atomie nuclei,
electrons are grouped round nuclei in atoms, atoms form molecules,
and molecules become aggregated into the varied kinds of structure
constituting ordinary matter.

The notion of force itself is not quite simple. It is derived primarily
from the sensation of muscular effort. This is something so familiar
that to relate other things to it may be deemed to increase under-
standing. Muscular effort is expended in setting bodies in motion
or in stopping them again, and when gravitating or electrified bodies
are observed to hasten together or apart, they are said, in the first
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instance in a somewhat anthropomorphic sense, to exert on one
another forces of attraction or repulsion.

The science of mechanics provides objective criteria by which
forces may be compared. Newton’s laws relate force, mass, and
acceleration. In a strict sense the mere formulation of the rule
force = mass X acceleration is not helpful, since by it force cannot
be defined except in terms of mass, nor mass except in terms of
force. But the value of mechanics lies in the coherence of the system
to which it leads. If masses are compared in terms of the accelera-
tions imparted by a constant force, such as gravity at a given place
(about which nothing need be postulated save its constancy), then
the order found will in fact determine their relative behaviour under
the influence of quite different forces. A very vast system of observed
phenomena can be correlated in terms of the auxiliary quantities
force and mass, even though a logician uninterested in calculations
about the actual behaviour of matter may see little point in their
introduction.

Force interests the less sophisticated investigator because it sug-
gests familiar sensations, but for most purposes the quantity known
as the potential energy is more convenient to work with. For a
particle of mass m, if # is a space coordinate and P, the component
of force in that direction, f P, dx = work.

fmxdx_.fm dz fm v = A (."’2_”2)

where A represents total change.

If a particle acted upon by forces which could impart kinetic
energy to it may be said to possess potential energy, then the sum of
these two energies is constant. Since, moreover, according to the
kinetic theory, heat is the sum of the invisible molecular energies,
this rule will be quite general. In certain connexions calculations of
energies are made directly, and the interpretation of the results in
terms of forces is introduced only as an afterthought. Two hydrogen
atoms, for example, according to the rules of quantum mechanics,
may exist in a state where the energy is lower than the sum of the
energies which they would possess in isolation. If they come together
and enter into this state, therefore, energy must be removed from
them. This means that they will have appeared to move together
under the influence of an attractive force. Some people say that
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force has become a superfluous conception. In a purely formal
mathematical system it is not really needed, and is simply the
differential coefficient of a potential energy. Yet for descriptive
purposes forces may often be more conveniently spoken of.

Mass and energy

In the original Newtonian conception mass was a permanent and
invariable quantity. This idea, however, was substantially modified
by the advent of the theory of relativity, according to which mass
and energy are interconvertible. If particles possessed of mass
coalesce, as for example may be supposed to happen when the
constituents of an atomic nucleus come together, there may be a
powerful release of energy, probably as radiation, and the mass of
the composite system may be less than the sum of the individual
isolated masses. The transformations are related by the equation
c?Am = AE, where AE is the emission of energy corresponding to a
diminution of mass Am, and ¢ is the velocity of light. This surprising
relation is of fundamental importance in connexion with the strue-
ture and stability of atomic nuclei, and with the whole problem of
atomic energy.

The evolution of ideas which has led to the mass—energy equation
is a quite strange one. It begins with the famous Michelson and
Morley experiment, the original object of which was to detect if
possible the absolute motion of the Earth through space. The prin-
ciple of the experiment is as follows. Suppose a swimmer crosses a
river one mile wide and returns to the starting-point, taking time #;
over the double transit. Suppose then that he swims one mile up-
stream against the current and returns to the starting-point, taking
a total time #,. A simple arithmetical calculation shows #; and ¢, to
be different. It was expected that in a similar way there would be
a difference in the time required by a light ray to make a return
journey of given length according as its path lay in or per-
pendicular to the direction of the Farth’s motion through space.
In a suitable experimental arrangement the time difference should
be revealed by a displacement of interference fringes. No such effect
can be detected.

The result of a long process of experimentation and discussion
was the remarkable but inescapable conclusion that in the nature
of things no composition of another velocity with the velocity of
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light can lead to a value for the latter different from the standard
value ¢. In fact, a new law for the combination of velocities has to be
established. A comparatively simple formula satisfies the require-
ments. If u and v are two parallel velocities, their resultant is not

u-+v but o . When « and v are small compared with ¢, this
1-4-uw/c?

reduces to the usual form u--v. In the limit, when v = ¢, the re-

sultant becomes u-tc

Tfucfc® ¢
as required by the generalized implication of the Michelson and
Morley experiment.

The new law for velocity composition is best arrived at by a more
formal process of coordinate transformation. Coordinates x and ¢ in
terms of which a given observer might record his dynamical observa-
tions are normally related to the coordinates z’ and ¢’ of a second

observer, in motion along the xz-axis relative to the first with velocity
v, by the simple and obvious transformations

t=1,
x = x'+ot’.
These lead to the law u4-» for the composition of parallel velocities,
and certainly would not account for the result of the Michelson and
Morley experiment. To arrive at the required relation one has to
. apply what is called the Lorentz transformation. According to this
@ ot
~ A=
and ¢ is no longer equal to ¢, but is given by

¢ ¢4 (v/cHa’

=0t
The velocity composition law follows from these transformations.
Suppose someone on a ship measures the speed of an object moving
on the deck (for simplicity in the direction of the ship’s motion).
He determines a distance which he records as 2’ and divides it by
a time which he records as ¢'. He then sets v = «’/t’. Suppose now
the same moving object is observed from an aeroplane flying in a
parallel course with speed v relative to the ship. With his own instru-
ments the observer records a distance x and a time ¢ and calculates
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a velocity z/¢. On the old basis this would be #-+v. On the new basis
it is given by
x 4ot 4 (v/cP)x’ u—+-v

t (1—o?fe) (1—ov?cH)t — 1-tuw/c?

as already stated.

There is nothing mysterious about the origin of the Lorentz trans-
formation. It isinvented to give an invariable value for the velocity
of light and to reduce to the normal law for small speeds. Much
discussion has in fact arisen as to possible metaphysical implications
of these changed dynamical rules, and upon the nature and condi-
tions of physical observations in general. Whatever may be said on
this score, it is clear that new rules for compounding velocities must
have repercussions on other parts of dynamics. In particular, the
principle of the conservation of momentum encounters difficulties.
Suppose an experiment is performed by observer 4, who verifies the
fact that in a collision of two masses momentum is conserved.
Suppose now that this identical experiment is witnessed by observer
B who is in motion with speed v relative to A. All the velocities
measured by A will be measured by B according to the new law of
composition, and a simple algebraical calculation shows that if A
finds momentum to be conserved, B, according to his own measure-
ments on the same process, will not.

For the most satisfactory and coherent system of dynamics and
physics the conservation of momentum must be retained, and what
now emerges is that even in the modified dynamical theory (special
theory of relativity) the observers 4 and B would both verify the
constancy of momentum if the mass of a body were itself assumed
no longer to be invariable but to be a function of its velocity in the
particular system where the measurement is made. KEinstein con-
cluded that there would be a variation according to the equation

My
"= Ay
where mg is the mass of the body at rest and m its mass when it moves
with speed .

If the observations of one observer are related to those of another,
the respective measures of mass are different. The combination of
the Einstein mass—velocity relation and the new rule for the com-
position of velocities shows, however, that the conservation of
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momentum will now hold for both. The following equations show the
various relations. With non-relativity mechanics, observer 4 would
make measurements represented by (1) and observer B measure-
ments represented by (2):

My Uy 1My Uy = constant, 1)
My (Uq V) Mg (Ug+ V) = My Uy +Mg Uy} (M +My)V
= constant. (2)

The constancy of total momentum holds during a collison in which
#, and wu, change. With the Lorentz transformation and an assumed
constancy of mass the corresponding observations would be given by
(1a) and (2a):

My Uy -+my U, = constant, (la)
My (U +) | my(Up+0)
. 2
1+ulv/cz+l—{—uzv/c2 # constant (2a)

With the assumption of variable mass the relations are replaced by
(1b) and (2b):
my Uy
(1—uf/c?)

YUy +v Ug+v
i) )
1] o )}l ) 1( Ut )}%
{ —0_2(1+u1v/02 { T e\l 4u,v)c?

= (1—_;7/6_2);[#+Mv] = constant. (2b)

Mo Uy

(=)t = constant = p, (16)

+

(2a) can by no means be reduced to a form independent of the
separate values of u; and wu,: (26) can, and if p is found constant in
an experiment, the expression in (26) will be found constant also.
The mass—velocity relation introduced in this way, for the con-
venience of retaining the conservation of momentum in the relativity
system of mechanics, has been directly verified by experiments on
the m/e ratios of electrons with differing velocities. Some of the B-
particles emitted by radioactive atoms have velocities which amount
to a considerable fraction of ¢, and m/e (measured in deflexion experi-
ments) is much higher than for slow electrons. The variation is well
expressed by Einstein’s mass equation. It is much more convenient
to attribute the variability to m than to e, since an electron is a
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certain quantity of electricity and could scarcely be deemed to retain
its identity if e itself varied.

The mass—velocity relation acquires on the strength of these experi-
ments a status independent in a considerable measure of the argu-
ments from the special theory of relativity upon which it is primarily
based.

Given that mass is variable, some reconsideration of the energy
principle is forced upon us. The kinetic energy must continue to be
representable as the difference between the total energy of a body
moving in a given system with speed « and that of the same body
at rest in the same system. For speeds which are small compared
with ¢ the result should be img,u2 Thus

— 2
B —Ey = {mgyu?.

To retain this result it is found that one must make a radical new
agsumption and introduce the relation E = mc?, where mc? is what
is called the proper energy. The relation implies an equivalence of
mass and energy and suggests at least the formal possibility of their
interconversion, since in virtue of its existence a mass has energy as
it were stored up in it.

The kinetic energy equation now becomes:

2
My C

K.E. haad EI_EO = (ng/cz)%—

2
My €

— moet(1—utje?)+—1]
= my ¢ $u?/c?+higher powers]
= Imyu® when u<ec.

This last result shows the appropriateness of the relation £ = mc?,
which reduces to the traditional form for low speeds.

This mass—energy relation must dominate the whole question of
the genesis of elements, the dynamies of stars, the origin of cosmic
radiations, and other fundamental matters. The only respect in
which it affects ordinary terrestrial chemistry is in connexion with
the stability of atomic nueclei. The changes which occur in chemical
reactions are too small to affect practically the traditional principle
of mass conservation upon which so much of chemical theory has
been based.
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Nuclear stability

In a survey of forces which bind material systems into their various
configurations the first question to arise is that of the interactions
in the atomic nucleus itself. To this question only a partial answer
can be given. The real components of the nucleus are not definitively
known, and the part played by mesons is uncertain, but a reasonable
working hypothesis, which accounts for at least some of the facts,
is that the building-blocks consist of neutrons and protons. Between
these two kinds of particle an attractive force is postulated, and in
opposition to the attraction there is the Coulombic repulsion of the
protons for one another. If there are Z protons and N neutrons,
the approximate atomic weight 4 will be given by 4 = N+ Z, and
the atomic number, or nuclear charge will be Z.

In a very rough first approximation the potential energy of a
nucleus will be lowest when the numbers of the two kinds of mutually
attracting particle are more or less equal. If N ~ Z, then Z ~ 4/2,
and indeed atomie numbers are not very far removed from half the
corresponding atomic weight.

The problem can, however, be considered in a somewhat higher
degree of approximation than this. Two kinds of evidence exist; on
the one hand, the precise values of the atomic masses, determined
by the mass spectrometer for individual isotopes of the elements and,
on the other hand, the occurrence of the different types of radio-
activity in various nuclei, natural and artificial.

Atomic weights of pure isotopes are nearly enough whole numbers
to suggest very strongly indeed that the nuclei are built up from
common units. The deviations, however, are not only large enough
to be significant, but are spread throughout the roll of the elements
according to a more or less regular pattern. Taken together, these
two facts point to the hypothesis that the amount by which a given
nuclear mass falls below that of an integral number of H nuclei is
a measure of the binding energy of its components, and that the mass
defect will be related to the energy of binding by the relativity rela-
tion ¢?Am = AE. In other words, there are nuclei which have
different mass defects because they have radiated away varying
amounts of their mass as energy during their formation.

The relation of the mass defect to the atomic number is shown in
the well-known curve of Aston (Fig. 22). A quite rough model of the
nucleus provides some sort of explanation for the existence of the
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minimum in Aston’s curve. The main binding force is the proton—
neutron attraction. This is opposed by the proton repulsion, which
becomes more serious the greater the number of protons present,
and tends to reduce stability in the larger nuclei. On the other hand,
these larger nuclei tend to gain stability from their compactness and
from the smaller ratio of surface to volume, whereby the waste of

Mass
defect
Atomic
weight

Atomic number
F1c. 22

unsaturated forces at their boundaries is lessened. The opposing
trends of increasing proton repulsion and diminishing unsaturation
are supposed to account for the minimum in the curve of stability.
Somewhat more subtle considerations indicate that in the nucleus
neutrons and protons respectively may form closed groups consisting
of pairs, perhaps with opposing spins, and that successive pairs must
occupy progressively higher energy levels. The general analogy
between this and what is known of electrons in atoms is obvious.
The experimental evidence is less conclusive. It consists in the
statistical study of what isotopes are possible, and of the relations
between 4 and Z. As very rough generalizations the following may
be said:
(@) For a given even value of A, several values of Z occur, them-
selves usually even.
(b) For a given odd value of 4, there is usually one value only for
Z, with about an equal probability of its being odd or even.

These are tendencies rather than rules and may be interpreted as
follows. Suppose one starts with A, the approximate integral mass
number, at an even value 4,, and that Z has also the even value Z,.
Then N, the number of neutrons, is even and all the particles will
occupy closed groups. Now let another particle be added so that A
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becomes odd. Whether the addendum is a proton or a neutron, it
will be unpaired, and there is no predictable advantage in favour of
either, so that 4,+1 (odd) may be associated with (Z,+1, IN,) or
(Zy, Ny+1). Thus Z may be odd or even. This corresponds to the
regularity (b).

Now let a further particle be added. There is an advantage in
pairing off whichever existing particle is unpaired, so that the build-
ing of the stabler structures will proceed as follows:

AO) ZO’ NO/A0+1’ Z0+1’ M)+A0+2’ Z0+2, NO
even Ny 11 7, Nyl A,+2, Zy, Nyt-2.

In this scheme we have arrived from a given 4, at 4,42 which is
even and associated with two values of Z both even, a result which
corresponds to (a).

The same pairing process can be invoked to explain the stability
of the a-particle, which consists of 2 protons and 2 neutrons, and
which seems, if not to exist ready-made in nuclei, at least to be
formed and emitted with some facility in various transformations of
radioactive elements.

The tendency of nuclei to achieve an approximate balance of
neutrons and protons explains the emission of S-particles or of posi-
trons according as there is under- or over-representation of the
positive constituents of the system.

Knowledge of nuclear forces is thus in one way very definite. The
magss defects, which can be determined with considerable precision,
yield quite reliable information about the relative energies of forma-
tion from possible constitutents. The quantitative application of the
equation ¢?Am = AF is well illustrated by the example of the reac-
tion occurring when a fast proton causes the disintegration of

lithium: H|Li7 — 2He*

In this transformation the changes in mass defect and the energy
balance have been verified with precision.

The nature of the nuclear forces themselves is less clear. Proton—
proton repulsions relate one term in the energy to familiar ideas.
Proton-neutron attractions are also intelligible in so far as they can
be roughly envisaged as an interaction between two structures, one
(+) and the other (+—). A quantum-mechanical calculation
depending upon the so-called exchange principle can also be invoked.



238 THE BUILDING OF ATOMS AND MOLECULES

The two systems neutron-proton and proton-neutron being indis-
tinguishable and the one being derivable from the other by a change
in the assignment of an embodied electron, the energy relation can
be treated in a way somewhat similar in form to that which will be
employed in dealing with the interaction of hydrogen atoms (p. 240).
In this way semi-quantitative theories can be developed.

The pairing prineciple seems to be supported by good evidence and
is of great importance. It means that interaction energies are deter-
mined in some measure, not by laws of force, but by numerical rules
about the energy levels which can be occupied, a state of affairs very
familiar in the theory of the electronic constitution of the atoms
themselves.

But a considerable element of mystery still shrouds the nucleus,
as is perhaps understandable for an entity so remote from ordinary
things. It is smaller in size than the electrons which on occasion it
can generate. It is possessed of a spin, and obeys sometimes Fermi-
Dirac and sometimes Bose-Einstein statistics, in accordance, pre-
sumably, with the symmetry of its internal make-up. It emits
a-particles with a discrete energy spectrum and S-particles as a con-
tinuum, to reconcile which with momentum conservation laws a new
particle, the neutrino, devoid of charge and nearly devoid of mass,
is sometimes postulated. The occurrence in cosmic rays of a range
of labile particles with masses believed to lie between that of the
electron and that of the proton, the mesons, raises the question of
the part which these too may play in the strange world of the atomie
depths.

Yet most of chemistry needs to know little of the nucleus beyond
the fact of its smallness, the charge it bears, and the form of statistics

it obeys.

Atom building

Atoms by comparison are familiar objects, and the forces which
govern atomic structures are simply the electrostatic Coulomb inter-
actions of nuclei and electrons. These forces follow the law of inverse
squares and provide the central accelerations required to maintain
the electrons in orbital motion about the nuclei. The numbers and
modes of disposition of electrons are governed not by laws of force
but by quantum rules, a matter which has already been discussed
in some detail.



THE BUILDING OF ATOMS AND MOLECULES 239

The mass of the electron determines the de Broglie wave-length
A = h/mw and so fixes the scale of the quantum phenomena in which
it participates. It is because the electron is of small mass that the
atom has a radius very many times greater than the nucleus. The
electrons being remote, the nucleus may be treated as a point charge
with a high degree of approximation, and most of chemistry thus
becomes an affair of the electron patterns alone.

Molecules

The next stage in the hierarchy of structural patterns is the
molecule.

The simplest kind of chemical interaction is that due to what is
called electrovalency. The quantum laws prescribe maxima of elec-

@ 4+ — — +

@+ — + —

Fia. 23

tronic stability for the configurations corresponding to the inert
gases. Atoms with arrangements possessing one, two, or three elec-
trons short of the stability maximum will tend to capture the appro-
priate amount of negative electricity and give rise to ions, with one,
two, or three charges respectively. Atoms with numbers in excess
of the stability maximum will tend to lose electrons giving positive
ions with corresponding charges.

Positive and negative ions will normally exist together, in the gas
phase, in solution, or in the regular geometrical arrangement of a
crystal lattice, in numbers such that electrical neutrality is preserved.
We then speak of electrovalent chemical compounds. Such com-
pounds possess the well-known property of electrical conductivity.
They are in fact only compounds to the extent that the positive and
negative ions are present in fixed proportions: they are not bound
together in any more profound sense than this.

In covalent compounds the atoms are united into a single struec-
ture. The problem of the mode of formation long eluded theoretical
treatment. The difficulty may be seen by reference to Fig. 23, which
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crudely represents two hydrogen atoms. In (1) there will clearly be
repulsion, in (2) attraction. Until the advent of quantum mechanics
there was no means of specifying what might be called the relative
phases of the two atoms and so predicting whether in fact they
should attract or repel.

The equations of wave mechanics, however, allow the composite
system of the two atoms to be treated, and the behaviour of two
electrons under the influence of two nuclei to be preseribed.

Quantum-mechanical theory of covalency

The theory of chemical combination by covalencies still assumes
that the interactions between atoms are electrostatic in nature. The
principle can be illustrated by reference to the example of two
hydrogen atoms.

In Fig. 24 A and B are two nuclei,
and 1 and 2 are two electrons, the
various intervening distances being
as indicated.

Suppose, first, that the combina-
tion (A, 1) is very remote from (B, 2).
The potential energies of the isolated
atoms are respectively —e2/r, and
—e2/r,, (e being the charge), and the atomic energy levels are defined
by the two equations

1 17, 2

r, z,

Lo, Iy

A R B
Fic. 24

72 2
V%sbﬁ%}”(]ﬂﬁj—)% =0 (1)
87%m €
and A ¢2+—}02~(E0+E)¢2 = 0. (2)

The total energy of the two atoms in their ground states is 2.
Now suppose the atoms are brought together into a configuration
similar to that in the figure. Two considerations arise. In the first
place, neither of the two electrons can be regarded as belonging to
a single nucleus. In thought, the atoms can be constituted as (A, 1),
(B, 2) and also as (4, 2), (B,1). Neglecting for the moment all inter-
actions except that of a given nucleus and what we may choose to
call its own electron, we have (A, 1) and (B, 2) described by equations
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(1) and (2), and (A, 2) and (B, 1) described by equations (3) and (4),

1
ey V2¢2+822m( +:—2) ‘/’2 =0, (3)
Vi 4 7 (Bt ) = 0. ()

If there were no more to it than the ambiguity of ownership, then
these four equations would suffice. Mathematically possible solutions
for the combined systems would be ¢, ¢, and i, ¢,. Since, however,
either of these implies that there is a sense in the conception of
private ownership of electrons by nuclei, by arguments precisely
analogous to those developed on p. 190 we conclude that either the
symmetrical combination or the antisymmetrical combination,

Xs = 1 batihach (6)
or Xa = P1ds—tady, (6)
is the correct one to describe the system.

Furthermore, the electrons possess spin, and, as already shown,
symmetrical and antisymmetrical spin functions, og and oy, are pos-
sible. By the principle that the total wave function must be anti-
symmetrical (p. 191) we see that the combinations must be yxgo,
Or X,0g.

So much for considerations depending upon particle identities and
symmetry of wave functions. An entirely different set of considera-
tions arise from the fact that as the two atoms approach, the potential
energy assumes a more complicated form, since in addition to nucleus—
electron interactions there are repulsions between the two nuclei and
the two electrons respectively and attractions between each nucleus
and the electron of what was originally the other atom.

The complete expression assumes the shape

2 €2 e2 €2

U——+— ________ . (7)

7.12 Ta1 rag 7'b1 Tba

An attempt on the lines of classical physics to find the stable con-
figuration of the atom by making the potential energy a minimum
collapses, of course, since it would predict the falling of the electrons
into the nuclei. A further attempt on the basis of the older forms
of the quantum theory also fails because they do not specify any-
thing about the relative phases of the electronic motions, and, as

these vary, the atoms could either attract or repel.
5203 R
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In principle, quantum mechanics yields the solution. The value
of U given by (7) is introduced into the Schrédinger equation, and
energy levels are (in theory) defined in the usual way. These are
functions of R, and a graph of the energy of the ground level as a
function of R shows whether there is a minimum value for any
particular separation, R,. If there is, then stable molecule formation
is possible and R, is the equilibrium distance.

In practice, however, it is not such plain sailing, since the equation

(VYD + T (B Uy = 0 (8)

cannot be solved directly with U in the form given by (7).

Various approximate methods are employed. The general nature
of the procedure is illustrated quite well by the original method of
Heitler and London, which is based upon a so-called ‘perturbation’
computation.

If the two atoms did not exert special forces on one another as
they approached, (8) would assume the form

Sﬂm

(Vi+VExo+—55— (E—V)xo = 0. (9)

E would be simply 2, and solutions would include products, i, ¢,
and i, ¢, of solutions of (1), (2), (3), and (4).

With the extra terms, U becomes V' 4u. x now becomes x,-f and
E becomes E--e.

(V24+V2) 8” m V—u)y = 0. (10)

Replacement of x by x,+f gives

87Tm

(V%+V2)Xo+(v +V2 —V)xot+

77.2 E 2 —_
+8 B V) p Srmem )y =0, ()

if products of f with e and » are neglected. This latter condition
introduces a considerable restriction, and reduces the whole procedure
to one of approximation.

Subtraction of (9) from (11) gives

2 ( 8m2m(e—
(V34vy 4 TI D SO =0 (1)
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For y, the combination ays, ¢,+bif, $, is taken. fis expanded in a
series of terms =" oy
- 172>

where ' means the mth proper value of .
8m2m

Since (Vi VEWT$E + —— (B — V)95 = 0

by the nature of ¢; and ¢,, E,, being the appropriate energy, it
follows that

VI > ST (0, Vi = 0. (13)
Subtraction of (13) from (12) gives
oS (B B W3+ S (o) - bihy) = O
or 2 (B —E, W ¢y = —(e—u)ahy pot-bifa ). (14)

We now multiply by i, ¢, and integrate over the whole range of the
spatial coordinates, remembering that «, a function of these coordi-
nates, must not be taken outside the integral sign.

S (BB [ 045 b deo = —ea [ (o) dot-as [ uly ) deo—

—eb f P o tha by dwt-b f iy pothy by dew.

By the orthogonal property the integral on the left-hand side of the
equation is zero unless y7* = ¢, and ¢% = ¢,, in which case £ = E,,,.
The whole of the left-hand side is thus zero, in either event. On the
right, the integral multiplying the term —eb is also zero in virtue
of the orthogonal property. The units, moreover, are deemed to be
so chosen that f (1 $9)? dw = 1, a process called normalization.

We then have

—ea+-a f (i h2)* dew+-b f wh $o sy dw = 0.

Equation (14) is next multiplied by #,¢, and an analogous process
of argument leads to

@ [ wy by bo do—be+b [ ulthyd)* dww = 0.

The numerical values of f w(ify Ps)? dw and f u(ip ;)% dw being equal,
the last two equations may be written

(e—K)a—bS8 = 0,
—8Sa-+(e—K)b =0,
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where K = [ u($)? doo
and 8 = [ whitadidy do
Solution gives e=K+8

and correspondingly a = +b.

e is the displacement of the energy level due to the interaction of
the two atoms, and its magnitude is seen to depend upon whether
@ is +b or —b, that is, whether the symmetrical or the antisym-
metrical combination of ¢, and ,¢; is taken as the starting-
point.

% is of the form obvious from (7). iy, s, ¢, ¢, are ground state
wave functions of single hydrogen atoms, as given on p. 200, each
with the appropriate spatial coordinates. The integrals are calculable
in principle, though, here again, there are certain difficulties in
practice.

What emerges is that the symmetrical function yg corresponds to
a lower energy, and indeed an energy with a minimum at a definite
value of R. Such a state of affairs represents the possibility of a
stable molecule formed from the two atoms.

As already pointed out, yg must be associated with g,. In other
words, the stable molecule is formed from two atoms in which the
electrons have opposite spins. x,, which is associated with og, and
thus with parallel spins, corresponds to repulsion of the two atoms
at all distances.

When approximate values of the wave functions are known, the
electron distribution in the molecule can be calculated. For the
symmetrical wave function corresponding to molecule formation
there is a concentration of electric charge in the region between the
two nuclei. This, in one sense, is what constitutes the chemical bond,
the negative electron cloud acting, as it were, as a cement between
the two mutually repelling nuclei.

If, then, the question is asked: why do two hydrogen atoms com-
bine? the answer is that the two electrons of opposite spins move
in such a way that on the average the electrostatic attractions of
electrons and nuclei outweigh the mutual repulsions of electrons for
electrons and of nuclei for nuclei. To the further question: why do
the electrons move in this particular way? the answer is that this
way corresponds to the electric density distribution prescribed by
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the wave equation and to the requirement that the total wave
function must be antisymmetrical.

That an accumulation of negative charge between them should
bind two positive nuclei can be made the basis of a naive picture
of the chemical bond. That its occurrence is determined by the
symmetry of the wave function, however, can not.

From this point the theory of valency develops in various direc-
tions. First, qualitative extensions of the Heitler—London result to
atoms heavier than hydrogen are attempted. Secondly, efforts are
made to improve the kind of approximation upon which the treat-
ment of the hydrogen atom itself has been based. Thirdly, a number
of more or less empirical rules, supported by but not strictly derivable
from the principles of quantum mechanics, are introduced for the
handling of special types of problem.

Extension to systems more complex than the hydrogen
molecule

The first steps in extending the theory may be illustrated by the
example of three hydrogen atoms, which may be labelled A, B, and
C. Each of them possesses one electron, the spin function of which
must be S or 4, and may be referred to shortly as plus or minus.
The approximate wave function which serves as a basis for the
perturbation calculation will consist of combinations of positive and
negative spins with assignments to A, B, and C. The complete
function must be antisymmetrical. The detailed treatment of the
general case is very complicated, but the most important result can
be arrived at by the consideration of two atoms in close proximity
and the third at a considerable distance. Such a system represents
the interaction of a molecule and an approaching atom. The sign
and magnitude of the various integrals involved is such as to indicate
that the atom will be repelled by the molecule.

In a rough-and-ready way the result can be seen to be of this kind
by the following argument. In the molecule two electrons are paired,
that is to say they have opposite spins. The electron of the third
atom, which is approaching, must have a spin parallel to that of one
of those already paired in the molecule. The Pauli principle dis-
allows the inclusion of this extra electron in the group of valency
electrons, and therefore the triatomic combination is not per-
missible,
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For two normal helium atoms a wave function must be constructed
to describe a system of two nuclei and four electrons, and antisym-
metrical in all the latter. Estimation of the energy of such a com-
bination leads to the conclusion that repulsion will occur. In an
elementary way, the inclusion of more electrons in the closed group
of the two 1s electrons already present in the normal helium atom
may be regarded as forbidden by the Pauli principle.

If helium atoms are excited to higher levels by any means, they
no longer have their electrons paired, since the principal quantum
numbers themselves now differ, and in these circumstances fresh
electrons may be admitted to the valency system. In consequence,
excited helium does form chemical compounds, as exemplified by the
diatomic molecules He, which may be detected spectroscopically
when electric discharges are passed through the gas.

Detailed calculations about the more complex atoms are virtually
impossible to perform, but the Pauli principle provides the general
rules of valency, and, furthermore, certain empirical extensions of
wave mechanics prove of great utility in the treatment of such
matters as the spatial direction of valency bonds.

The principles of this subject will be sufficiently well illustrated
by reference to carbon, nitrogen, and oxygen. According to Bohr’s
atom-building principle, the electronic system of carbon is made up
of six electrons to balance the nuclear charge, two 1ls electrons with
paired spins completing an inner group, and four more belonging to
a group with principal quantum number 2, With n = 2, one may
have l=0,m=0,r=4+}0orl=1,m=1,0, —1,and r = +3.
The first two, with I = 0, are s electrons and the next six possibilities
relate to p electrons. Since p wave functions are axially sym-
metrical, the six may be divided into pairs of p,, p,, and p, electrons.
Carbon being quadrivalent, its four electrons with » = 2 are pre-
sumably unpaired—since one may suppose that orbits are filled as
far as possible without pairing—so that the probable assignment
would appear to be (2s)!, (2p,)!, (2p,)!, and (2p,)!, the index showing
the number of electrons in each state.

Things are not, however, quite so simple as this, as will appear in
a moment. But first let us consider nitrogen and oxygen. For the
former, one more electron must be added to the carbon group. No
new type of orbit is possible and therefore pairing with the 2s electron
seems likely. Thus we have the assignment (2s)2, (2p,)!, (2p,)% (2p,)%
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For oxygen, by a similar argument we arrive at (2s)2, (2p,)2, (2py)1,
(2p.)*-

If the valency is equated to the number of unpaired electrons, then
nitrogen is tervalent and oxygen bivalent as required by their normal
chemical behaviour. These prescriptions are not rigid and this cir-
cumstance corresponds to the fact of variable valency. In carbon
there might well be paired s electrons, and the group (2s)* would
leave unpaired (2p,)! and (2p,)! only. This would signify a bivalent
atom. Carbon does indeed exist in a bivalent form, and, what is still
more significant, energy is required to raise the atom from the bivalent
to the quadrivalent state.

The so-called quinquivalent state of nitrogen and the quadrivalent
state of oxygen arise of course in a quite different manner. Com-
pounds in which these forms of the elements seem to appear are
really ionic: for example (NH,)*Cl-. The chlorine having removed
an electron from the nitrogen atom, the latter is left with four un-
paired electrons which can pair with the four electrons of the hydro-
gens to give the ammonium ion.

The interaction of the unpaired electrons of atoms such as carbon,
nitrogen, and oxygen with the electrons of other atoms cannot be
directed calculated. The formation of valency bonds, however, may
be treated in terms of a rule called the principle of maximum overlap.
This asserts that the valency bond is formed in such a direction that
there occurs a maximum overlap of the wave function concerned,
that is in the directions of maximum electron density of the original
atoms.

s electrons being described by wave functions which represent a
spherically symmetrical distribution of electricity, all directions are
equally likely for bond formation. p wave functions have axial sym-
metry. Thus if a p, electron participates in a bond, that bond will
tend to be formed in the direction of the x-axis.

This principle, which is not in fact proved rigidly from the equa-
tions of quantum mechanics, provides the theoretical basis of stereo-
chemistry.

The three valencies of nitrogen are at right angles and in conse-
quence the molecule NH; should be pyramidal in shape with angles
of 90° between the three valencies. This corresponds roughly, though
by no means accurately, to the truth.

The two valencies of oxygen should be at right angles to one
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another (p, and p,). The shape of the water molecule is indeed much
more nearly rectangular than linear, though the actual angle between
the valencies appreciably exceeds 90°.

Carbon presents a rather special problem. Its four valencies are
equal and disposed symmetrically in space, as we know from the
evidence of stereochemistry itself. The scheme (2s)!, (2p,)!, (2p,)},
(2p,)t, which implies four valencies not all equal, has evidently been
modified.

It is customary to speak of what has happened in terms of a process
called hybridization of the wave functions.

In this method of description the separate functions

$(25), P$(2ps), $(2py),  $(2p.)

are replaced by linear combinations of the following forms:

h(28)F(2p,) +(2p,) +¥(2p,),
1/1(28)+¢(2px)—¢(2py)”—¢(2pz)s
$(28)—(2p,)+(2p,) —$(2p,),
h(28)—h(2p,)—b(2p,) +¥(2p.)-
These represent equal concentrations of density along four sym-
metrically directed spatial axes. Accordingly, if the principle of
maximum overlapping is valid, methane, for example, will possess
a tetrahedral structure—as of course it has to do.

Hybridization can also be employed in the description of molecules
in which the valency angles do not correspond to the expectations
based upon the simple application of the theory of maximum over-
lapping.

Once again it must be emphasized that we are here dealing not
with a phenomenon predicted by quantum mechanies, but with a
convenient mode of description, in terms of approximations, of
matters to which those approximations ought really never to have
been applied. That they have been so applied in an imperfect world
is a necessity imposed by the absence of methods which are at the
same time precise and manageable. A correct solution of the wave
equation for a combined carbon atom (in methane) would presumably
predict four symmetrically disposed axes of maximum electric den-
sity for the configuration of minimum energy, and not the existence
of 2s and 2p wave functions. The latter apply to isolated atoms in
any case. Interaction with other atoms modifies the density distri-
bution, as is seen from the fact that two hydrogen atoms, each with
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a spherically symmetrical distribution, give a molecule with an axial
concentration between the two. Thus the principle of maximum
overlapping as applied to unmodified wave functions is not likely
to be exact. Hybridization in one sense is a mathematical fiction
expressing the extent to which the approximate principle may be
adjusted to the equally inexact conception of unmodified atomic
wave functions.

The foregoing observation does not, of course, constitute a eriticism
of the computational methods that have to be used. It does, how-
ever, bear upon the question of what we are to think about the theory
of chemical forces as a whole. In the last resort these depend simply
upon the Coulomb electrostatic law, the condition of minimum
energy consistent with acceptable solutions of the wave equation,
and the Pauli principle in its generalized form. All the other prin-
ciples, such as maximum overlapping and hybridization, are really
auxiliaries introduced for the purposes of practical calculation. Used
with discretion they are also helpful in permitting us to construct
certain naive pictures of molecules and atoms, which, however, must
not be taken too literally.

Description of molecules by wave functions

In the treatment of the interaction of hydrogen atoms by the
method of Heitler and London it is, as has been explained, impossible
to solve the appropriate wave equation by frontal attack, and there-
by to derive the correct wave functions for the description of the
hydrogen molecule. What has to be done, not from choice but from
necessity, is to postulate an inherently reasonable form of wave
function and to insert it tentatively into Schrédinger’s equation.
In the calculation already outlined the combination chosen was
iy po+bipy by, where the individual functions apply to isolated and
unperturbed atoms. It is as well, however, not to forget that there
is no quite rigid justification for this procedure, which is sensible
but essentially empirical, and we only create difficulties for ourselves
if we seek deeper reasons where they do not exist. With the above
combination, however, it was possible to obtain an approximate
solution of the problem: Given that the interaction of the atoms intro-
duces an extra term into the potential energy, by what amount is
the total energy altered ? The answer gave a measure of the valency
force.
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In all such problems it is necessary to have a ready-made wave
function to replace that which would emerge from the fundamental
equation could it be solved. With the aid of this tentative solution
the energy can be calculated. In principle, certainty that the pro-
cedure has been the correct one can only be reached by the trial of
innumerable empirical functions and the demonstration that none
leads to a lower value of the energy than that chosen. The correct
solution must always be that which gives the lowest energy.

This last principle provides a method by which many problems
can be treated. Quite frequently it appears obvious that the true
wave function must be somewhere between y; and y,, which are
functions corresponding to the solutions applicable under simpler
or more nearly ideal conditions. A tentative function is then con-
structed by a linear combination of the two, ¥ = ax,+0bx,. This is
inserted in the wave equation, and the values of @ and & are deter-
mined for which the energy is a minimum. These express the best
possible combination of the type specified. The corresponding value
of the energy is more nearly the true one, the more skilfully y, and
xs have been chosen. Here again the method is really empirical, and
the determination of ¢ and b does not in any way establish the
appropriateness of the two functions themselves.

A simple analogy describes the situation fairly well. Suppose we
assume that three points 4, X, and B lie on a straight line, then,
if we determine the ratio 4X/BX, we shall define the position of X
accurately in relation to the other two. Suppose now we assume that
we can define the position of Rugby by a linear interpolation between
Manchester and London, we shall not do badly. If, on the other hand,
we make the best computation of the position of Plymouth on such
a basis, it will be a very poor best at that. Everything thus depends
upon the initial choice of the reference functions.

The combination of wave functions, i, ¢,+1hé;, used in the
Heitler-London calculation fixes attention on the electron-nucleus
assignments Al, B2, and A2, B1, where A and B represent nuclei
and 1 and 2 represent electrons. The individual members of the
combination are simple 1s wave functions of the hydrogen atom.
The first elaboration which can be introduced in seeking a more
accurate solution is no longer to use 1s wave functions for electrons
moving in the field of a nucleus with unit charge, but to give the
nuclear charge the effective value Ze. The value of Z at a given
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nuclear distance, B, can be adjusted so as to yield the minimum
value for the energy.

The next possibility in elaborating the calculation is to take into
account assignments of the type (Al, 2) (B) and (A) (B1, 2), where
both electrons belong to the one or to the other nucleus. These
represent the polar molecules H-H+ and H+H-. The form of wave
function in such a case is then

a(fy pot-hahy) b0y oty ba)s

by, s, ¢y, and ¢, themselves being ordinary wave functions of un-
perturbed atoms, or, if desired, wave functions of unperturbed atoms
with effective nuclear charges empirically modified as in the first
method. The ratio a/b and, if necessary, the value of Z, can be so
chosen as to give a minimum energy.

There is, in principle, no limit to the complexity of the combina-
tions which may be set up. The ratios of constants such as @ and b
can be determined by the minimum energy condition, and, in this
sense, it is possible to speak of the relative contributions of various
forms of structure to the make-up of the hydrogen molecule. For
example, one can speak of the molecule as receiving contributions
in such-and-such proportions from polar and non-polar forms respec-
tively.

But there is a good deal of convention about this mode of desecrip-
tion. The ideal forms in terms of which the state is described have
no real existence, and they are only important in so far as they
are simple limiting cases about which it is convenient to think.
Neither the Heitler-London hydrogen molecule nor the polar H+H~
molecule exists in nature. As is well known, the superposition of
two photographs of human faces gives a composite portrait not very
like either. Certain individuals might be imitated fairly well by
superposition, in varying proportions of intensity, of pictures say
of Napoleon and of Dante, and it might be a convenient mnemonic
to remember that X was 30 per cent. of the former and 70 per cent.
of the latter, yet in fact he is neither, but just himself. It must be
admitted, however, that the reference systems in the case of the
polar and non-polar hydrogen molecules are not quite so far removed
from their mean as those of the analogy.

In building up convenient wave functions for the exploration of
the minimum energy state one special distinction assumes a great
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deal of importance, that, namely, between what are called afomic
orbitals and molecular orbitals respectively. In the Heitler—London
hydrogen molecule the contributions to the wave function for each
electron are always of the form which they assume when that
electron belongs to one single nucleus. Thus Al, B2 and A2, BI lead
to i, Pty h;. The electrons are here said to be assigned to atomic
orbitals. Alternatively, one could try to construct a wave function
by taking the first electron to belong to both nuclei and writing its
function in a form such as ¢;+¢,, and similarly for the second.
A possible form for the complete function is then (¢y+¢;)(fy+ds).
The two electrons are said in such circumstances to be assigned to
molecular orbitals.

Calculations on molecules by the variation method

At this stage it will be expedient to illustrate certain methods of
calculation, not because we propose to develop the technique of such
matters, but in order that the principles of the processes may be
clearer and the significance of the results seen in better perspective.

The considerations which follow are based upon the theorem that
if an incorrect value of i is inserted in the wave equation, the
calculated energy will be greater than the true energy.

To prove this theorem formally it is first convenient to express
the wave equation in an abbreviated conventional form. If it is
written, not in the manner used hitherto,

872 {72

P B o
but " Nveiu)y — By
Bt =

the term in the bracket on the left is an operafor which is commonly
written I, the main equation then assuming the shape

Hy = Ey.
Multiplication by  and integration over the whole range of coordi-
nates then gives

[#H) do = [ §BY do = B [ yif do,
since X is a simple quantity, not an operator. Therefore
SH dw
P LA
f Yif dow
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If the units are so chosen that f b dw = 1, then
E = [ty do.

In the equation Hy = Ky, if ¢ is not correct, then by the theorem
just enunciated £ will be too great.
Consider a function ¢ expressed as a series

56 = za’n‘/‘n with ()Z = zan'*/-;n!

where a2 =1.
Nowlet B = [$Bdo = [3a,f,HS a,,) do.
But H(zanl/’n) = zanHﬁbn = zanE’nlpn'
Substitution in the energy integral gives

B =3%alL,
since f by dw = 0 or 1 according as n # m or n = m.

Since dai=1, Ey=Ya%E,

Therefore E'—Ey =Y aXE,—E,).

E, cannot be less than E,, so that £’ cannot be less than ;. It will
be greater than £, except in the limiting case where ¢ is the true
ground state wave function.

It is now a question of seeing how the minimum energy condition
can be usefully applied.

Suppose a trial wave function for the description of a molecule is
constructed having the form

¢ = ¢1 x1+Ca X
where y, and y, themselves are wave functions appropriate to some
simpler version of the problem, and ¢; and ¢, are adjustable constants.

The energy for the lowest level permitted by the solution for ¢ is
given by the expression

_ f ¢H dw . f (c1 X1 FCa X2)H (cy X1+ X2) dw
f ¢ dwv f (61 X1FCa X) (€1 x1-HC2 X2) dow

This last equation is multiplied out and then differentiated with
respect to ¢; and ¢, in turn. 9E’/dc; and 8L’ [éc, are equated to zero.
This process leads to the relations

¢y(Hy— EAgy) +co(Hyp— EA) = 0,

¢1(Hyy— BAgy)+Co(Hop— EAgp) = 0,
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where, as a result of the differentiation, E is the lowest possible
value of &', and

Hy; = f X1 Hx, dw, H, = fX_1HX2 dw,

Ay = f %1 X1 do, Ay = f X1 X2 dw, and so on.
The last two equations in ¢; and ¢, impose a condition which may be
expressed in the form of the determinant
HII_EAll H12—EA12
HZl—EAZI H22_EA22
The whole process can easily enough be extended to a tentative wave
function with a greater number of adjustable constants, ¢;, ¢s, Cg,...

The method of calculation just outlined can be applied to various
structural problems. It is in fact a widely used technique. What at
first sight appears somewhat puzzling is how advantage can be
derived from it when the values of y, and y, themselves are in most
real examples inaccessible to calculation from first principles. The
matter is perhaps made clearer by the following example.

Suppose we have a molecule with a conjugated carbon atom
skeleton. It is assumed that certain electrons, the o electrons, are
allocated to certain particular bonds and that they retain their
places. Others, the = electrons, are assigned to molecular orbitals.
What this means mathematically is that each is deseribed by a wave
function which is constructed tentatively as a sum of atomic orbitals

¢ = cyfytCothatcahst....

¢, of course, measures the probability that the electron occurs near
the point represented by the coordinates of ¢ itself. Each of the
terms is connected with a probability that the electron is in the
neighbourhood of, or in a sense belongs to, the atom 1, 2, 3,...,
according to the subscript of the term. By the principle of the multi-
plication of probabilities, the wave function of the whole molecule
contains the product of the ¢ functions for each of the = electrons.

The condition of minimum energy can now be applied and it leads
to values for ¢;, ¢,,..., and so on ¢n terms of integrals of the type Hy,,
H,,, and so on of the preceding paragraphs. These integrals are not
in general determinable, but this does not mean that a useful result
cannot be achieved, even with a rather rough approximation. Some
of the integrals, namely those relating to pairs of atoms which are
not directly bonded in the molecule, are set equal to zero, and others

= 0.
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are given a constant standard value, assumed to be the same through-
out a whole series of molecules of not too different general type.
This removes much of the specificity from the problem, but not all.
One very important element remains, that, namely, of the algebraical
form of a determinant similar to that above. The character of this
determinant, in turn, is governed by the total number of carbon
atoms in the molecule under study, and, what is also important, upon
the number of neighbours each individual atom possesses in that
molecule, this last factor deciding which of the standardized integrals
are zero and which not. Relative values of the constants, ¢;, c,,...
are now calculable. The use made of them is this: the relative
electron distributions in a series of molecules of steadily changing
structure can be compared, for example in the series, benzene,
naphthalene, anthracene, the successive polyenes, different types of
heterocyclic ring, and so on.

i, represents an assignment of an electron to the jth atom of a
structure, and ¢? is the probability of this state of affairs. 3 ¢,
therefore, taken over all the electrons, may be regarded as expressing
the total density of electrons on the jth atom, and in this way the
distribution of charge throughout the structure in the different types
of compounds can be studied.

In general the procedure is attended with considerable success.
What must be borne in mind, however, is that the success of the
calculations technically depends upon the neglect of all save what,
in the example quoted, is virtually the geometrical factor in the
particular structural problem. It is of great interest that the geo-
metry of carbon ring systems should so largely determine their
character, but this fact could not, in the present state of knowledge,
have been predicted from the outset.

Retrospect

In all the foregoing the only fundamental law of force which has
emerged is the inverse square law of electrostatics. The interaction
of particles is chiefly regulated by prescriptions of permissible energy
states. If the only level into which a combination of particles may
enter is lower than corresponds to the sum of their original energies,
then energy has to be discarded. The result is a manifestation which
can be described as the operation of an attractive force. But it is
really something more abstract. If a traveller is not allowed to bring
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currency into a country, he may discard it on his way there, but it
is the Jaw rather than the circumstances of the journey which really
compels the sacrifice. Dynamics does not demand that an electron
passing from one orbit to another in an atom should radiate energy:
what does is the requirement that its new angular momentum shall
not exceed the prescription of the quantum rules. And similarly in
many other connexions.

Another most potent factor is the selection of alternative energy
states imposed by the Pauli principle. This in its turn is based upon
abstract requirements about the distinguishability of particles and
has nothing to do with the nature of force as such. Chemical valencies
are therefore determined more by categorical principles than by
dynamical rules.

The general tendency illustrated by these developments is evident
throughout physics: gravitation is reduced to a manifestation of the
geometry of space and time, electron spin loses its primitive signi-
ficance and becomes a quality required for relativistic invariance of
the wave equation, and, according to the speculations of Eddington,
every kind of physical interaction, including gravitation, is ultimately
dependent upon some sort of generalized Pauli principle in which
multiple occupation of states is impossible.

In its present stage of evolution, chemistry compromises between
the abstract principle and the naive pictorial hypothesis.



XII

INTERATOMIC FORCES AND
MOLECULAR PROPERTIES

Introduction

It will now be expedient to discuss briefly the relation between inter-
atomic forces and certain other molecular characteristics which are
more or less closely connected with them.

Vibration frequencies and force constants

The forces between atoms are, of course, only indirectly accessible
to experimental study. What is most commonly measured is the
energy change accompanying a transformation, but this quantity
introduces the force as a complicated integral, the constitution of
which is seldom clear. The nearest approach to an immediate mani-
festation is perhaps in the vibration frequency of a diatomic molecule.

When two masses joined by a spring execute a simple harmonic
motion about their equilibrium position, the frequency is given by
the equation o 1 ( 7 )%

27
where m* is the reduced mass, that is, the harmonic mean of the
two individual masses, and f is the force constant, or restoring force
for unit displacement.

If the vibrations which a diatomic molecule manifests in its spec-
trum are assumed to be simple harmonic, then f may be calculated
from ».

For polyatomic molecules the situation is more complicated, and
the vibrations are characteristic not of individual pairs of atoms but
of the molecule as a whole. If it contains N atoms, their positions
in gpace are describable by 3N Cartesian coordinates which may be
written ¢y, ¢a,...s ¢;e... These may conveniently be measured from
the equilibrium positions of the respective atoms. The total kinetic
energy of the system is Y dm(dg,/dt)?, where m; is the mass of a
representative atom. The potential energy is of the form

U=312;494
¢ and j being two representative atoms. If all the displacements were

zero except one, U would assume the form }a,; %, that is, the ordinary
5293 s

m*
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form for the simple harmonic motion of a single mass where the
potential energy is proportional to the square of the displacement.
But a,; in general would be a function of more than one interatomic
force, since the movement of one atom will affect the forces between
others. In real problems it is usually uncertain what relative weight
should be given to the square terms of the form a,;¢? and what to
the cross terms of the form 4a;,q; q;, but trial-and-error methods can
be used to find appropriate potential energy functions for given
molecules, and the observed spectrum of vibration frequencies can
often be satisfactorily reproduced.

Sometimes the potential energy function can be simplified by
representation as the sum of squares proportional to the linear dis-
placements of masses, on the one hand, and to the angular deforma-
tions of bonds, on the other:

U =73 th,(Ax)2+ > k(A6

This implies that the stretching of bonds between adjacent atoms
or the distortion of the valency angles are the only important factors.
It neglects the consideration that a stretched bond probably has a
different bending constant and that a number of other mutual in-
fluences are at work.

In the more generalized forms of potential energy expression there
may be more unknown constants than there are observable fre-
quencies. Various devices must then be introduced for the resolution
of the problem. One of the best of these, where it is applicable, is the
observation of the change in frequency which occurs when various
atoms in the molecule are replaced by isotopes, the substitution of
deuterium for hydrogen, for example, being one of the commonest
cases where the mass can be changed without change of force
constant.

Even when an empirically chosen potential energy function gives
satisfactory results for a set of observed frequencies, care has to be
exercised in evaluating the conclusions about the interatomic forces.
In a first approximation these conclusions will be valid enough, but
there is much interest in the exploration of just such matters as the
way in which the strength of one bond varies when the character of
an adjacent one is changed: in the question, for example, as to how
the strength of a C—C link depends upon its environment. There is
a not inconsiderable danger of supposing that details which are really
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a function of the approximate forms assumed for the potential energy
may be manifestations of real physical effects. With care and judge-
ment, however, very interesting results may be achieved.

Normal modes of vibration

The way in which the normal frequencies for a complete molecular
framework arise is of some interest in itself, and will be illustrated
by a somewhat idealized example, namely the linear vibrations of a
system of equal masses—which might serve as a model of a straight
carbon chain. The method of calculation is typical of that to be
applied to more complex cases, and shows quite clearly how the
frequencies are characteristic not of individual bonds but of the
structure as a whole.

Suppose we have three equal masses bound by elastic forces and
susceptible of displacements along the z-axis only, this axis being
the one along which they are spaced.

O—0O—o0
1 2 3

If the displacements are x,, ¥, and x, respectively we shall have,
from the equations of simple harmonic motion,

k(xy—x;) = mi;,
k(2 +2y—21,) = mi,,
k(xy—g) = mds,

where m is the mass and £ is the elastic constant.

The restoring force on the first mass is proportional, not to its own
displacement, but to the difference between it and that of the ad-
jacent mass. The force on the second depends upon the difference
between (x;—x,) and (r,—xy).

If the vibrations are to be repeated time after time without change
in the relative amplitudes of movement of the various masses, these
must all move with the same frequency, and this frequency will
characterize what is called a normal vibration of the system as a
whole. Thus if # = Asin(nt+4«), » must be the same for all the
masses.

Since
& = —ntry, & = —n¥r,, and & = —niy,,
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as may be seen by differentiation, the equations of motion become

(k/m)(xy—2,) = —nP2y,
(k/m)(2y+25—22,) = —nw,,
(k/m)(xyg—2g) = —nPag,
or, by rearrangement,
nz——k T +£m =0
poog Rt R y

k 2
Ex2-|- (n ——)x3 = 0,
whence
n?— k _l_c_ 0
m m
—]2 n2 — —2-—]{-: —I—c— =0
m m m
0 —k— N2 — _l_c_
m m
and
4k 3k2
2[4 2 9%y
n (n pon - m2) y
ie. n2 (n2 —_ ﬁ) (n2 —_ 3£) = 0,
m m

oo mmo B« [

The solution n = 0 corresponds to a translation of the whole set
along the axis with no relative displacement of the masses. The
other two solutions determine the frequencies of normal modes. The

value (k/m)t corresponds to relative amplitudes »; = —ux;, 2, =0,
while (3&/m)? corresponds to z, = x5, x, = —2x,. These modes are
shown in (a) and (b) respectively.

(@) ~—0 O O—

To find the relative amplitudes of the different displacements corre-
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sponding to the modes (#) and (b) we write down the various
quantities A, = 2, —x,, Ay = 2,—25, and so on, and adjust the
absolute magnitudes so that > A? for each normal mode is the same
(as required by the equipartition prineciple).

It is of some interest to see how the modes and frequencies evolve
as the system becomes more complex. For a chain of any number

4 T T T T T

3
_nt
(k/m)

1

i i 1 L 1 1 L 2.
o 1 2 3 4 5 6 7 8 9 10
No. of atoms in chain
Fic. 25

of masses in a line, the method of calculation is similar to that already
exemplified, except that the high-order equations become rather
laborious to solve. Fig. 25 gives the relative values of n?/(k/m) for
all the linear modes of a chain composed of any number of equal
masses from 2 to 10. These values, as may be seen from the above
equations, are proportional to the squares of the frequencies.

The number of modes increases with the number of masses. The
lowest value of the frequency diminishes steadily towards zero. It
always corresponds to a mode in which two halves of the sys-
tem vibrate with respect to one another somewhat as though they
were two composite heavy masses. For example, in the four- and
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seven-chains respectively, the modes of lowest frequency are those
shown below.

~—0O O Oo— O—
~—0O «—0O 0O O O O O

In a sense they are like vibrations of two composite groups, but this
is not at all exactly so, since the relative displacements of the various
masses moving in a given direction are by no means all equal.

The highest frequency increases towards a limit. It always belongs
to a mode in which alternate masses are moving in opposite direc-
tions, for example, with the six-chain

If the chain is infinite in length, the influence of the two end masses
becomes negligible and each atom, or mass, since it moves in the
opposite direction from both its neighbours, is subject to twice the
restoring force which it would experience in a system of two masses.
The frequency being proportional to the square root of the restoring
force, its square, which the numbers in the diagram measure, will be
just double for the infinite chain what it is for the chain of two
members. The convergence of n?/(k/m) to a value just twice the
initial value is evident in the diagram.

In the linear model which has just been discussed the number of
modes is one less than the number of masses. In general, three-
dimensional modes have to be considered, and here the relation
obeyed is that if there are N atoms in the molecule, there are 3N —6
normal modes of vibration. This is easily proved. NN isolated masses
have 3N translational degrees of freedom and no others. Into what-
ever system the masses may be combined, they retain these. But
since when IV atoms constitute a molecule they must preserve certain
relations between their coordinates, it becomes convenient to formu-
late some modes of motion in common: namely 3 for the translation
of the centre of gravity of the entire system and 3 for the rotation
of the whole about three axes. This leaves 3N —6 degrees of freedom
for vibration.

When a molecule is set into vibration by some process such as a
collision with another molecule, the various normal modes are in
general excited in a random way. It then vibrates not with a single
mode, but with a superposition of several or all of them. These,
naturally, show interference phenomena, and the amplitude of
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stretching of individual bonds shows secular variations according as
the phases of the sundry modes with the separate frequencies rein-
force one another or annul one another. In this sense one may speak
of an ebb and flow of energy in individual links of the molecule.
This effect is of considerable significance in connexion with the theory
of reaction velocities.

Dissociation energies and related quantities

The potential energy function is, as will be obvious, not simply
related to the force which would exist between two isolated atoms
except with a diatomic molecule. Nor will this function be simply
related to a dissociation energy.

Even with a diatomic molecule there is no direct proportionality

between these two quantities. The energy required to cause a dis-
T

placement « is [ F dx, where F is the restoring force. For small
0

displacements F = fix, where f is the force constant previously spoken

of, and the energy will be

ffx dx = fx?
1}

But as x increases, f begins to fall and, of course, vanishes for very
large separations of the atoms.
The dissociation energy will thus be

J d(x)x dx,

where ¢(x) is a function which decreases according to a very compli-
cated law as x increases. The law in question is not only complicated
but highly specific and varies from molecule to molecule.

There will therefore be no precise correlation between dissociation
energies and force constants, though there will be a general parallelism.
Small force constants will be associated with weak binding and low
energies, and large constants with tight binding and high energies,
but this is all that can be said.

In hydrocarbons there are certain vibrations identifiable as due
mainly to relative displacements of H-atoms and the C-atoms to
which they are bound. These vibrations decrease in frequency ac-
cording as the H forms part of a group CH,, CH,, or CH, and from
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this it is probably correct to conclude that the energy required to
detach it would decrease also in that order. A quantitative com-
parison would not, however, be justified.

As will have become evident in the earlier parts of this account,
energies are in general more important than forces, since it is they
which appear in the equations of thermodynamics and of the quan-
tum theory. Energies, as has been said, are derivable in principle
from forces, but the calculation requires a knowledge of the variation
of force with distance. They must therefore be determined in practice
from calorimetric or from spectroscopic observations. Even these
two methods do not always measure the same quantity. When a
molecule AB dissociates under the influence of light, either or both
of the atoms may be formed in one of their excited states. Thus, for
example, AB—>A+B_D,,

AB-——> A*+B—D,.
(D,—D,) is the energy of the transition A > A* and must thus corre-
spond to one of the excitation quanta of the atom A. If D, and D,
can be separately determined, the nature of the state in which the
atom A is formed in the spectral dissociation can be recognized.
Since the atomic levels are fairly widely spaced, a rough value of
D,— D, may suffice for the identification.

With diatomic molecules, energies of dissociation may be deter-
mined in various other ways. One method depends upon the varia-
tion with temperature of the equilibrium constant of the dissociation,
and application of the thermodynamic relation dIn K/dT = AU/RT?.
A second method involves determinations, based upon measurements
of explosion temperatures, of the apparent specific heat of the par-
tially dissociated gas.

What is usually measured in calorimetric experiments is, however,
something rather different from a dissociation energy. For example,
in studying the molecule H,0 we might be presented with experi-
mental results in the following form:

H, (gas) - 2H—Q),
0, (gas) - 20—0Q,
2H,+ 0, — 2H,0 (gas)+@;.
For the perfectly definite but experimentally less accessible reaction

of H and O, we have
2H+0 — H,0 (gas)+€,.
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From the rule known as Hess’s law, which is simply a special case
of the conservation of energy,

Qs = 305+ Q1 +30Qs,
since the energy change must be the same whether hydrogen atoms
and oxygen atoms unite directly with one another or whether they
first form diatomic molecules which subsequently react to give water.
Q, represents the energy liberated when two O—H bonds are formed.
In a purely formal way it may be divided into two equal parts which
are then termed the bond energies of the oxygen-hydrogen links in
water.
But the energies of the two reactions

H4+0-—->O0H and H-+O0H - H,0
are not necessarily even approximately the same, since the addition
of the first hydrogen atom will, in principle, modify the attraction
of the oxygen for the second.
From the heats of the reactions
CH,+20, = C0,+2H,0,
Csottat0g == €O,
2H,+ 0, = 2H,0,
H, — 2H,

that of the reaction Coona+4H = CH,

may be calculated. If the heat of vaporization of solid carbon to
the atomic state may be assumed, the energy of the reaction

Cyas+-4H == CH,

is calculable. According to a conventional formulation, one-quarter
of this energy of formation is called the bond energy of the C—H
bond in methane.

It is, however, not equal to the energy of the reaction

CH,+H = CH,,

since the methyl radical cannot be regarded simply as a methane
molecule minus one hydrogen atom. When the fourth atom is re-
moved the remainder of the molecule suffers a reorganization, in this
case quite a profound one, since the tetrahedral configuration of the
methane molecule gives place to a planar configuration with the three
valencies of the methyl group at angles of 120°.

Bond energies might have remained of a purely formal significance
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were it not for the fact that in a first rough approximation they have
been found to be not only additive but constant. In any given
molecule the sum of the bond energies must by definition equal the
heat of formation from the atoms. For a single molecule this means
nothing. The bond energy of C—Cl in methyl chloride is only obtain-
able by subtraction of three times the bond energy assumed for
hydrogen from the heat of formation of the CH;Cl. But what is
found is that a single list of bond energies can be drawn up from
which, approximately, the heat of formation of any molecule of
normal valency structure can be predicted.

This scheme is subject to very distinet limitations, but is of im-
portance in that it provides a norm of behaviour the deviations from
which can be studied and compared in various examples.

In the table of bond energies separate values are conveniently
listed for singly, doubly, or triply bound atoms, for O in C=O0, for
0O in C—0—C, and so on.

Resonance

When a compound is so constituted that more than one normal
valency formula may be used to represent its molecule, as with
benzene where the two Kekulé forms and the three Dewar forms are
possible, the energy of formation usually proves to be greater than
that calculated for any of the possible individual formulae. The
molecule thus appears to exist in a state which is more stable than
that corresponding to any of the conventional valency-bond repre-
sentations. Detailed evidence from many sources, indeed, suggests
that these formulae are quite often inadequate. Benzene, for ex-
ample, is best regarded not as possessing three single and three double
carbon—carbon bonds, but six equal bonds of order approximately 1-5.

The extra stability in such examples is often said to be derived
from a process called resonance between the canonical structures corre-
sponding to the alternative valency formulae. But there is really
no process, and the canonical structures as such do not exist. They
are called canonical because they possess the formal simplicity of
classical structural chemistry, and it is this that gives them their
importance as aids to thought or visualization.

Bond lengths
A highly significant extra datum in the discussion of molecular
energies, and in the attempt to assign rational and useful bond
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energies, is the length of a bond. The distances between the centres
of gravity of atoms can be determined, in favourable examples with
high accuracy, by the diffraction of X-rays or of electrons by mole-
cules. The length of the CH bond in methane is 1-094 A (Angstrom
units), in ethylene 1-071 A, in acetylene 1-059A. Here the bond
shortens as the force constant increases, but the two effects are not
simply related.

The C—C links in ethane, ethylene, and acetylene respectively are
1-55A, 1:35A, and 1-20A. If the bond orders are taken as 1, 2, and 3
for the three molecules there appears a well-defined functional rela-
tion when order is plotted against length, and, according to this, the
value for benzene, 1:40 A, corresponds well enough to an order of 1-5,
that is, half-way between a single and a double bond.

Once this functional relation is established, other bond orders can
be inferred from the corresponding lengths. Much of the finer detail
of structural relationships may be studied in this way.

In more elaborate discussions, closer consideration of the definition
of bond orders is needed, along the lines, for example, of the quantum-
mechanical theories which have been referred to earlier and which
yield information about the average density of electronic charge on
the various atoms of a molecule (p. 255).
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FORCES BETWEEN MOLECULES AND
BETWEEN IONS

Van der Waals forces

InTERATOMIC forces, as manifested in valency bonds, are essentially
electrostatic. They depend upon electron distributions so prescribed
that attraction outweighs repulsion. The prescriptions are dictated
largely by the need to conform with the condition of an antisym-
metrical wave function. It is the fact, moreover, that spin states
are defined by simple alternatives which restricts the modes of
chemical interaction to the saturation of definite valency linkings.
When the considerations resting upon symmetry and spin conditions
have no longer to be applied, the property of saturability ceases to
be a characteristic of the forces between particles. Two sets of inter-
actions exempt from this limitation are of importance in physical
chemistry. They are, on the one hand, the so-called van der Waals
forces which cause the agglomeration of atoms or molecules to liquids
and solids, and, on the other hand, the simple Coulomb forces be-
tween charged ions in gases, or, more commonly, condensed phases
and especially solutions.

In general the forces which cause the condensation of molecules
to solids and liquids are much weaker than those of valency. The
heat of the reaction 2H,+ 0, = 2H,0, which involves the making
and breaking of valency bonds, is of the order 105 cal., while the
latent heat of vaporization of water is of the order 104 cal. for a gram
molecule.

There is really nothing in the whole theory of atomic and molecular
structure which suggests any interpretation of these intermolecular
forces as other than electrical. They exist between systems which
individually are electrically neutral, and therefore they are not simple
ionic forces. But many molecules possess as a whole an electrical
fine structure which endows them with a field at points not too far
remote.

An ion possesses a field the intensity of which is inversely pro-
portional to the square of the distance. A dipole, which may be
deemed uncharged as a whole, still exerts a field, but one which falls
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off more rapidly, being inversely proportional to a function of the
distance approximately representable as a cube.

Suppose we have a dipole as shown:

e —e
+ l r 0.
The force on unit charge at a point O is e/r®—e/(r-+1)%.. This is
approximately equal to 2rle/r* when r is great compared with I.
el = p, the dipole moment, so that the force is 2u/r3. If the point O
is not on the axis a trigonometrical factor appears, and this, averaged
over all orientations to the dipole, leads to a numerical multiplier.
The force remains, however, proportional to u/r3.

A dipole is detectable in that it swings round to align itself with
an electric field, and in consequence molecules with dipolar moments
possess special dielectric and other properties. Many molecules pos-
sess no such moments, but, even so, their fine structure still permits
the existence of an external field. The structure shown below is
called a quadrupole 4+

—t.
A simple calculation, similar to that made on the dipole, shows that
the field at an external point falls off still more rapidly with the
distance from the centre of gravity of the combination.

It is clear, therefore, that ionic forces are more important than
dipolar forces, and the latter more important than quadrupolar onés.
Yons, obviously, are not always present, but where they are, ionic
interactions outweigh the others. At first sight, dipoles seem only
to appear in special molecules, and even quadrupoles would appear
to be absent from atoms such as those of the inert gases which show
complete spherical symmetry in their electron distributions. Since
the latter do in fact condense to liquids, there must be a mode of
interaction independent of permanent electrical multipoles of any
kind. As was first shown by London, the quantum theory predicts
such a mode, and it proves after all to be of a dipolar nature.

Any neutral atom or molecule can be schematized in terms of a
positive centre surrounded by a cloud of negative electrification. If
the positive centre is displaced from its equilibrium position, it will
oscillate with a frequency »,. According to the quantum theory,
even in the lowest possible energy state, an oscillator possesses energy
$hv,. Thus the atom or molecule will, from this cause alone, always
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show a fluctuating dipolar moment. The average value of this is
zero, but at most instants it is finite. The important fact is that this
fluctuating dipole will induce similar dipoles in other systems.

That the interaction of the induced and the inducing dipole leads
to a lowering of energy is to be seen qualitatively in a very simple
way. If two pendulums of frequency v, are coupled, they develop
two new frequencies vy4-Ap,. In the same way the two zero-point
oscillations of the electrical systems in the molecules develop by their
interaction new frequencies, as a result of which their total energy
is lowered in a way to be discussed in more detail presently. This
is the origin of the van der Waals attraction.

The forces so called into play are sometimes called dispersion forces,
since the oscillator frequencies entering into the calculations are also
those which enter into the theory of the dispersion of light.

The London dispersion forces are the most important cause of
van der Waals attraction in so far as they are the only ones exerted
generally by all kinds of molecule. In actual magnitude, however,
they may be exceeded by other kinds of dipole force in substances
which in fact happen to possess a permanent dipolar moment.

Molecules with permanent moments exert two important actions.
On the one hand, they induce dipoles in other molecules, the direc-
tion of the induced moments being such that attraction results. On
the other hand, they cause bodily orientation of such particles present
as may themselves bear dipoles. This again results in a running down
of potential energy.

The three types of interaction vary in quantitative importance
from substance to substance. With carbon monoxide, for example,
the London forces account for almost all the interaction, while with
water, which possesses a large permanent moment, the orientation
forces are estimated to account for about four-fifths of the total
effect. The dipole induction forces are, on the whole, much less
important.

One extremely significant characteristic of the London forces is
that they are additive. One fluctuating dipole, 4, induces in another,
B, a moment in such a way that the relative phases correspond to
attraction; and if a third, C, is brought near, it causes no important
disturbance. Suppose C induces in 4 a moment which causes attrac-
tion of C and 4. This moment is superposed on that which attracts
A to B, but the phases of the two are not necessarily in any special
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relation. The new component in A4 interacts only in an irregular
fashion with that of B, giving an alternation of attraction and re-
pulsion, the average effect over a period of time being negligible.
But the original component of the total moment in A4 gives rise to
a steady attraction by its interactions with B, and in general the
appropriate component in each oscillator gives rise to attraction by
its interaction with the corresponding component in the others.
These considerations extend to the mutual influences of any number
of oscillators.

Whether the van der Waals forces arise from the zero-point oscilla-
tions and their mutual effects, from the orientation of existing
permanent moments, or from the induction of new ones, they are all
essentially of the nature of dipole attractions—to which multipole
interactions of higher order may be added as correction terms.

For this reason the potential energy of the interaction is in general
proportional to the inverse sixth power of the distance between the
attracting particles, as may be seen by a more detailed consideration
of the various cases. Roughly speaking, the principle is this. The
field, F', due to one dipole oc 1/r3. The moment, ', induced in another
particle, or the orientation impressed upon it, is proportional to the
field, and the energy of the second particle in the field is proportional
to w'F. Since u’ oc F, the energy oc u'F, and F oc (1/23), it follows
that energy oc F% oc (1/78).

A somewhat more detailed discussion will now be given.

Interaction of zero-point oscillations

The zero-point oscillation of the atom or molecule may be schema-
tized as an elastic vibration of a charge of mass m. The frequency
is then given by the formula

e L
0'_2_7; ma

where £ is the elastic restoring force for unit displacement. From
another point of view the motion may also be thought of as involving
the displacement of a charge e through a distance x under the in-
fluence of a field F. The equivalence of these formulations is ex-
pressed by the equation oF — k.

The moment ex may also be equated to the field F multiplied by
a polarizability, o.
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Thus ex = ofF.

From the two relations, we have

r=t_<

z o

The kinetic energy of the oscillating charge is p?/2m, where p is
the momentum, and the potential energy is 3kz% If there are two
such oscillators, far enough apart to exert no mutual influence, then
the total energy is given by

2 ka? pd kad
Bp —P1 K%, Py | K%
8= 0 T2 Tam T2
Suppose now the two approach close enough to interact. In the
simplest example we may assume a linear configuration as shown

below: 4oz — ay—

r

The mutual potential energy of the system is

9 1 1 1 1} 2e%x, 2y

e —_ — J Qi Tt

Tt Zy—xy Ty r—y T »
The total energy is thus

PP Ka s
2m+2m+2(x1+x2)_

approximately.

2
22, 1y

L
The coordinates are now changed to

1 1
U = ;/—2(“’14‘902) and  u, = ;/—é(xl—xz),
1 1
so that xy = @(ul—}—ua) and z, = E(ul—-uz).
The potential energy assumes the form

k (u1+u2)2+(u1"’“2)2}__212 (ui—uj)
2 2 2 73 2

k, , e? 1 2¢2 1 2¢?
=35 (ui+uf) —8 (ui—uf) = 5(7"—-?) u%-l—é(k-l-ﬁ) ug.
This last expression represents the potential energy of two oscilla-

tors with coordinates u, and %, and having two new values of %,
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k+-2¢€2/r3. There are two corresponding frequencies

1 J{k4-2e2/r® 1 [{k—2e%r®
=) e e 50)

The original frequency of the unperturbed oscillators was

1 [k
"= 5ra \in)
so that vy = vo(14 262/ kr3)h
and vy = vo(1—2e%[kr3)t.

The zero-point energy will have changed from
vyt 3hvy = Iy,

to %’ ( +2e2/k?3)*+% (1—2¢%/kr?)3.

When the binomials in this last expression are expanded, the first
terms in 7 cancel, but the second terms are added. The higher terms
may be disregarded, the result being hvy(1—e?/2k%€). The lowering
of energy resulting from the interaction is

hvget  hvyo®

k%%~ 28 "
If the calculation is made for three-dimensional oscillators, the
numerical factor comes out to be  instead of . In any event the

interaction energy remains inversely proportional to the sixth power
of the distance.

Induction effect

Next the induction effect will be considered.

Suppose that there are in a molecule positive and negative charges
susceptible of relative displacement under the influence of a field.
The polarization that occurs may be formally represented as the
movement of a charge e through a distance x. If there were no field,
the displacement would be reversed, so that an elastic restoring force
may be formally postulated. The potential energy increase attend-
ing the elastic displacement is

f kwdx = Lka?.
1]

5203 T
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But the displacement is due to the field F', and the drop in potential
energy caused by movement in this field is — Fex. Moreover, the
force Fe must equal kx, so that — Fex = —ka?. The resultant fall
in potential energy is thus

—ka?4tka? = —Lka?.
It is expedient to define a polarizability, «, by the relation
ex = o',
Then, potential energy == — tka?
= —3Fex
= —%al,
This shows that the energy depends upon the square of the field.

The interaction of the two dipoles, that which gives rise to the
inducing field and that induced thereby, is thus associated with a
potential energy term proportional to F2. But F itself is proportional
to 1/r3, so that the interaction energy depends upon 1/r6. The attrac-
tive force is given by the differential coefficient of the energy with

respect to the distance, and is thus dependent upon the inverse
seventh power of the latter.

Orientation effects

Dipolar molecules, as explained, not only induce extra moments
in one another but tend to assume such orientations as to reduce
the potential energy.

At very low temperatures the degree of orientation is nearly com-
plete. The energy of one molecule of moment p in the field # of
another is proportional to pF, where F varies as p/r®. Here the
potential energy of the interaction is proportional to u?/73. But this
state of affairs changes rapidly as the temperature rises, since thermal
agitation destroys the order more and more. When the state of
affairs is almost completely random, the potential energy of inter-
action of two dipoles becomes proportional not only to the field of
the first but to the degree of orientation which this can impress upon
the second. The latter effect, as in the case of the induced moment,
is again proportional to the field. For this reason 1/r® again appears
in the interaction energy, together with a term 1/£7" which measures
the resistance to orientation opposed by the thermal motion.

The essential principles of the calculation are contained in the
following considerations. If a molecule with a permanent moment
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w makes an angle B with the field F, its potential energy is propor-
tional to —uF cosB. By Boltzmann’s relation (p. 79) the number
of molecules at temperature 7" which possess this potential energy
is proportional to e +#FeosfikT and to trigonometrical factors. If &7
is not too small, this last expression may be written in the form of
an expansion with higher powers neglected, namely, 1 Fp cos 8/kT'.
The average moment is proportional to the integral of a product
which includes —pu cosf, the moment in the direction of the field,
and 14 FpcosB/kT, taken over all angles.

The trigonometrical terms lead to numerical factors only, and the
mean moment thus depends upon p*F/kT. But the effective polariza-
bility is given by «F = mean moment.

Therefore aoc u?/kT.

The interaction energy, being determined by }«#2 becomes pro-
portional to (u2/kT)(n/r?)? and thus to pt/rSkT.

Attractions and repulsions

In all important cases, therefore, the potential energy of the attrac-
tion varies as 7%, the orientation energy being the only term which
depends significantly upon the temperature.

When molecules are brought very close together, attraction changes
into repulsion, because the electron clouds begin to overlap. The
potential energy now rises steeply as the distance between the centres
diminishes. The function expressing the change in the repulsive
energy is sometimes written in the form A4/r* and sometimes, better,
in the form Ae—rlp. In the former, » is a rather high power (approxi-
mately the ninth), expressing the rapid increase in repulsion with
diminishing distance. This steep rise of the repulsive force is repre-
sented even more effectively by the exponential formula.

When the repulsive and the attractive potentials are combined,
the expression for the energy assumes the form

U = Ae-"lr— B/r®.
For the equilibrium distance, r,,
dUJdr = 0.

The variation of U accompanying displacements from equilibrium
determines the elastic properties of the substance, such as its com-
pressibility. From these properties information may be derived
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about the forms of the various functions in the energy equation and
about the values of 4 and B.

The problem of calculating what equilibria exist in and what
motions are executed in general by a close-packed assembly of mole-
cules exerting van der Waals forces upon one another is so complex
as to elude precise treatment. Some further reference will be made
to the question in connexion with the liquid state in general (p. 318).

Interionic forces, especially in solutions of electrolytes

The law of force between individual pairs of ions is simple, being
given by Coulomb’s law which postulates proportionality to e, e,/r2,
where ¢; and e, are their respective charges and r is the distance
apart of their centres. In the close-packed assembly presented by
many crystals there is an equilibrium between the attractive Coulomb
forces of oppositely charged ions (partly masked by the repulsive
forces of like ions) and the repulsions due to the interpenetration of
electron clouds on close approach. The treatment of this problem
is complicated and is similar to that mentioned in the last paragraph.
In an electrolytic solution containing highly dissociated salts another
type of problem arises. The ions in general are well separated, but
the total effect of all the others present upon the potential energy
of a given individual is considerable and determines the most charac-
teristic properties of such solutions.

The influence may be calculated by an elegant approximation due
to Debye and Hiickel which also leads to a qualitative picture
possessing many useful applications.

Let the focus of attention be a given positive ion. Any negative
ones carried past it by their thermal motion will be deflected towards
it, while positive ions will be constrained to swerve away from it.
If innumerable instantaneous photographs were taken and super-
posed, the composite picture would show a spherically symmetrical
atmosphere of negative electrification round the central ion.

This ionic atmosphere of opposite sign may for many purposes be
regarded as possessing a physical reality, and use may be made of
it both for approximate calculations and for qualitative discussions.
It is employed in the theory of ionic interactions in the following
way.

At a given point distant » from a central positive ion let the
electric potential be . If the concentration in regions remote from
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other charges is », then, according to the Boltzmann principle, the
respective concentrations, n, and n_, at the distance » will be given by
n, = ne~*¥T and n_ = ne+ewdlkT

where —-zei is the potential energy at distance r of an ion of valency
z and charge +ze. The concentration of positive ions is smaller, and
that of negative ions greater, than the normal for the reason already
explained.

If there are various kinds of positive and negative ion of valency
typified by z; and of concentration typified by =,, the electric density,
p, at the distance r will be represented by

p=e nze kT,
T

If zeys is small compared with &7, the first term in the expansion
of the exponential may be taken, and we have

i€ ¢
pz_—eznizi( ;):aZnizi_k_l_T/‘znizg,
Electrical neutrality of the solution as a whole demands that
Z /n/,,: z,t = O,
62
so that = 70—% Z n, z%

Now in so far as a physical reality may be attributed to the at-
mosphere of electrification, p may be inserted in the classical electro-
static relation between density and potential, Poisson’s equation.
For a spherically symmetrical system this is:

621[! 2 31/1 . jiﬂ(_)
o* 'rar D’
D being the dielectric constant of the medium. Therefore
Py 200 g,
ot Trar ’
47re? 2
where = DT Z n,; 2.

The solution of the differential equation is
Ae—XKr  BeKr
b= .

"
When r == w0, i = 0, so that B = 0. When r = 0, ¢ = 2z,¢/Dr, since
in the immediate neighbourhood of a given ion the potential is
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determined by its own charge, and the influence of the other ions
becomes negligible in comparison. Thus 4 = z,e/D and

If the central ion were present alone, the potential at » would be
z;e/Dr. The difference, representing the effect of the atmosphere, is

- K
28 ger 20 _me[lme)
Dr Dr D 7

If the exponential is expanded to the first term, the result is found
to be ¥, = —z,eK/D.

i, represents the potential at the point » = 0 due to the ionic at-
mosphere, that is to say, the potential which the other ions impose

upon the central ion.
The energy of a charge @ raised to the potential ¥ being 1Q7V,
the electrostatic energy acquired by the central ion in virtue of its

atmosphere is Iz e, = —1e2e2K/D.
The energy per gram ion is thus —22e2KN/D.

It is reasonable to suppose that the electrostatic energy constitutes
a simple addition to the free energy of the collection of ions. If such

an hypothesis is made, then important properties of the solution
become deducible by purely thermodynamic means.

Activity of electrolytes

If the ions were far enough removed from one another to exert
no mutual electrostatic forces, they would follow the laws of ideal
solutions. The free energy could be expressed in the form

where ¢; is the concentration. In fact an empirically determined
function, the activity, must be introduced in place of ¢; (p. 68):

G, = Gy, +RTna,;
and a, = f;c;,
where f; is the activity coefficient. Thus
@, = Gy, +RTInc,+RTInf,.
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The term by which the free energy differs from the ideal value is
equated to the electrostatic energy, so that

RTInf, = —22e2KN/2D,
—z2e2N ( 47e? 2)%

= 22 — 2
Inf; = —}EKN2DRT — — 20

DT 2, "%
2N [ dne? Ne;2\3
~ 2DRT \DRTJN £ 1000 ’

since n; is expressed in ions/c.c. and ¢; in gm. ions/l. Thus finally

22e3N? [ 7 3
—Infi =GRy (W) 2, "'iz%)z‘

The sum { > ¢;2? is known as the ionic strength. The formula just
derived shows, therefore, that the activity coefficient depends upon the
square root of the ionic strength in a solution of sufficient dilution.

It is customary to define an activity coefficient of a salt in terms
of the separate activity coefficients of its constituent ions according
to a convention which for a uni-univalent salt takes the form

@, = (a+a_)*,
whence Jo = (f+fR

If the electrolyte dissociates into v, positive ions and v_ negative
ions, the mean activity coefficient is defined by the relation

f;t = (ﬂ+ﬂ_)llv’

where v=y,-}tv_.
Thus
_ _ _vilnfi4v Inf  (izi+4v 22) N2 [ .o 2\%
Inf, = y = v (DRT)E 006 2. )
For a uni-univalent electrolyte the relation reduces to the form
—Inf, = 0-51+k,

when the appropriate numerical values are inserted in the equation.

There will be further occasion to apply these results on the electro-
static attractions and repulsions of the ions in explanation of various
specific properties of electrolytic solutions.

Having learnt something of the motions of molecules, the statistics
of their assemblages, and of the forces by which they are formed and
in virtue of which they interact with one another, it will now be
expedient to devote some attention to certain more detailed pro-
perties of matter in bulk.



PART V
THE FORMS OF MATTER IN EQUILIBRIUM

SYNOPSIS

TaE antagonism of ordering forces and primordial motions leads to equilibria
between gases and condensed phases. The rich display of forms and structures
in the latter arises from the mode of operation of the forces and especially
from the regulating ordinances of the quantum code.

The rule about the kind of distinguishability characterizing electrons in
atoms (antisymmetry of wave function, Pauli principle), together with the
other rules about quantum numbers, fixes the constitution of complete electron
groups possessing maximum stability (inert gas structure). Atoms normally
depart from the stability maximum in that they have either excess or defect of
electrons relatively to the nearest inert gas. Those with excess may achieve
greater stability by shedding electrons or by transferring them to other atoms:
those with defect by sharing electrons or by capturing them from elsewhere.
The two sets of possibilities are not symmetrically related, whence comes the
first major differentiation of substances.

When electrons are simply shed, the metals result. These consist of a
regular array of positive ions with a system of free electrons held communally
and obeying special statistical laws. Metals, in consequence, possess charac-
teristic electrical, optical, mechanical, and, sometimes, magnetic properties.

When electrons are transferred, positive and negative ions are formed : when
they are shared covalent compounds result. Both ionic and covalent com-
pounds form in the solid state extended arrays (space lattices) with a geometric
order that allows an approach to minimum potential energy. Since valencies
are discrete and spatially directed, molecules possess shapes, and the force
fields around them have characteristic forms which give rise to a whole range
of different space lattices.

Univalent atoms united by covalencies in molecules such as Cl, have no
bonds left, but polyvalent atoms can form lattices in which each atom is
joined to one or more neighbours by a covalency, making the whole array into
a giant molecule. The molecules or ions in other lattices are held by van der
Waals or Coulomb forces. The physical characteristics of the varied types
of solid show very wide variations which reflect these different modes of
assemblage.

In condensed phases & minimum potential energy is not the sole considera-
tion. The molecules all execute motions of various kinds, consistently with
their structure and the quantum rules, and room must be found in the space
lattice for movements of the required amplitude. Rise in temperature increases
the motions and leads to increased entropy. Sometimes this is compatible
with the maintenance of the original lattice, and then the entropy changes are
manifested in the specific heat. Sometimes, however, a new lattice must be
formed to accommodate the livelier and more diverse movements, and then
there is a change of phase, the entropy increase being now revealed in the
absorption of latent heat.
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Restraints on motion may be relaxed in respect of some coordinates and not
of others: and considerable degrees of order may persist even when rigidity
of the structure has disappeared. Very varied relations of mobility and order
are, in fact, met with in liquid crystals, in liquids, in substances with rubber-
like properties, and in condensed helium.

Interpenetration of condensed systems leads to solutions which have their
own special conditions of formation and stability.

Extended phases of liquid or solid are more stable than droplets or minute
crystals. Yet the highly dispersed phases which play so important a part in
nature (foams, emulsions, gels, and so on) may in certain circumstances achieve
a relative degree of permanence. The tendency of phase boundaries to reduce
their area to & minimum is compensated in some degree by their capacity for
taking up foreign substances which partially neutralize the unbalanced forces
responsible for the contractive urge. These boundary effects manifest them-
selves in different ways, and dominate that part of the subject called colloid
chemistry.

XIV

DISPOSAL OF ELECTRONS IN
ATOMIC ASSEMBLAGES

Forms of matter

ANYONE who has sought in chemistry a road to the understanding of
everyday things will probably have been impressed by the apparent
gulf separating the substances with which simple chemical experi-
ments are done in the laboratory and the materials of which the
ordinary world seems largely to be made. Trees, rocks, alloys, and
many other common objects and substances are of evident com-
plexity, and this is not all: even the simpler chemical bodies seem
to be extraordinarily diverse, and the problem of their classification
is a formidable one. Among the major questions of physical chemistry
is that of the connexion between the electrical theory of matter, the
kinetic theory, quantum mechanical and statistical principles, and
the forms assumed by the various systems accessible to normal
experience.

The survey of the general scene begins with certain material
assemblies which are remote at any rate from terrestrial concern.
According to our conception of atomic structure the nucleus is small
and dense. Stripped of their electrons at immensely high tempera-
tures, nuclei constitute systems in which enormous concentrations
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do not preclude the kind of mobility normally characteristic of gases.
Matter in this state probably exists in the interior of stars, and
models of it play their part in astronomical and astrophysical theories.
Extraordinary relations of star size and density and the peculiar
dynamics of stellar bodies bring such unfamiliar forms of substance
within the range of scientific observation.

The temperatures prevailing inside certain stars are believed to be
of the order of millions of degrees. Collision energies, proportional
to kT, are great enough to make nuclear reactions possible, and
stellar alchemy accompanied by nuclear transformations must con-
tribute largely to the energy output of the great suns. One interest-
ing scheme which has been built upon a knowledge of mass defects
is that by which helium nuclei are supposed to be synthesized from
hydrogen, not directly, but in a kind of catalytic cycle:

120+ 1H == 18N +radiation

BN — 13C{-positive electron
BCH1H == 14N 4-radiation
UN +1'H = 150 }-radiation

150 = 15N positive electron
15N+1H J— 12C+4He.

This sort of thing lies outside the boundaries of what we arbitrarily
call physical chemistry, but it is well to observe what lies on the
frontiers of the conventional domain.

In the cooler, though still very hot, surface layers of stars like the
sun, atoms in less violent states of ionization are detectable by
spectroscopic means. Equilibria of the type

M = M+--electron

are established, and are in some measure accessible to study. They
may indeed be treated theoretically by thermodynamic rules, if
appropriate assumptions are made about the relevant properties of
free electrons, and formulae for thermal ionization have been worked
out on this basis by Lindemann and by Saha.

Thermal ionization is observable in flames, so that the gap between
celestial and terrestrial conditions is in a certain measure bridged.

What is called chemistry in the traditional sense only begins when
primordial matter has cooled sufficiently to allow the nuclei to retain
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possession of their electrons—except in so far as atoms share or inter-
change them. The chemical properties of substances are indeed
largely determined by the manner in which the external electrons of
the atom are disposed of.

This subject has already been dealt with to some extent in con-
nexion with atomic structure. The major landmarks of the periodic
system are, of course, the inert gases, whose properties show clearly
that they possess completed electron groups. Their lack of chemical
reactiveness provides a measure of the stability of such groups, and
of the categorical nature of the Pauli principle which imposes the
rules of constitution.

In a general way it may be said that when there are few electrons
in the outermost group they are readily shed to leave a positive ion,
and when they are many they readily make their number up to that
of the next inert gas. A quantum group which is nearly filled counts
in fact not as well supplied but as defective.

On this basis the main distribution of electropositive and electro-
negative elements in the periodic system may be easily understood.

But electrons lost or gained must be accounted for, and it is the
variety of ways in which this balance may be struck which so greatly
diversifies the picture of chemical types.

If an atom with an excess transfers its electrons to one with a
deficiency, positive and negative ions are created. These may either
build themselves into a continuous crystal lattice, as occurs in simple
salts, or else they may fall apart, when in a medium of high dielectric
constant, to give electrolytic solutions. At higher temperatures the
salts may exist as gases with an equilibrium between ion-pairs and
free ions.

‘When, on the other hand, two atoms which both count as defective,
are brought together, they may complete their groups by sharing
electron pairs, and the characteristic covalency results.

The simplest covalent compounds are the diatomic molecules
formed from electronegative atoms. The variety and complexity of
covalent structures depend essentially upon the fact that certain
polyvalent elements can form stable chains of atoms, the most notable
being of course those which occur among the derivatives of carbon.
They are responsible for those compounds of high molecular weight
which can constitute fibres and sheets and which therefore play so
important a part in the structure of living tissues. Scarcely less
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notable are the extended patterns of silicon and oxygen which form
the basis of silicate rocks and clays.

Another and very characteristic mode of disposition of the elec-
trons occurs when atoms of electropositive elements are brought
together. In the vapour state these elements are not infrequently
monatomic, though spectroscopic and other evidence shows the
existence in small concentration of molecules such as Na,, or NaK.
In the solid state, however, they form structures which possess the
well-defined and peculiar properties of metals.

Electron transfers and the formation of stable ions depend upon
the Coulomb forces, and upon the regulating character of the Pauli
principle. The nature of atomic stability has already been discussed,
and it can be said that an ion is simply a more stable form of atom.
The problem of how it disposes itself with other ions to achieve an
overall electrical neutrality is, from the point of view of the theory
of atomic structure, a secondary matter: but from another point of
view it presents us with a quite fundamental question. From what
has been said so far it cannot be concluded that the nature of the
metallic state is at all obvious, and yet this is one of the commonest
conditions which matter assumes. The constitution of the metallic
state therefore calls for special consideration.

Metals

The more obvious and striking properties of metals are their
opacity and lustre, their mechanical characters, such as malleability
and ductility, and their very high electrical and thermal conduc-
tivity.

Much of this can be explained by a quite crude form of the theory
that metals contain a high proportion of free electrons scattered
among an array of positive ions.

In the first place, the metallic elements are in fact those which
form positive ions by shedding valency electrons, and these latter,
without escaping wholly from the field of the positive ions, could
wander about among a collection of them without remaining firmly
attached to any individual. In the second place, metallic conduc-
tion, unlike electrolytic conduction, occurs without any transfer
of matter, and can very plausibly be ascribed to the moverment
of free electrons under a potential gradient. In the third place,
when a metal is heated it emits electrons which give rise under ar
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appropriate potential difference to a thermionic current. The magni-
tude of the latter increases with temperature according to the law,
C oc e~4/ET  which at once suggests that the emission is determined
by the evaporation of something present in the metal with the usual
kind of statistical energy distribution.

If there is a characteristic concentration of electrons in each metal,
then when two metals are placed in contact there will be a certain
tendency for diffusion from one to the other. Movement of electrons
will occur until it is checked by the opposing potential difference
which the redistribution sets up. Hence the contact potential and
the possibility of galvanic cells.t

When a current crosses the junction of two metals there occurs
a change in electron concentration analogous in some ways to the
expansion or contraction of a gas. This will be accompanied by

+ There is a change in free energy when electrons are transferred from one metal
to another, and at the surface of contact of two metals there is a corresponding
potential difference. A noble metal, offering lower levels for the occupation of
electrons, assumes a negative charge with respect to a less noble metal. (In the

equilibrium state, of course, the charges modify the levels themselves so that the
work of transfer becomes zero.)

Electrolyte

(a) (b)
F1a. 26

There is correspondingly a potential difference between metals and solutions in
which they are immersed. Of two metals connected as in Fig. 26 (a) to form a cell
with an electrolyte providing ions of both kinds, the one will dissolve and the other
acquire fresh substance by the discharge of ions. There will be potential differences
at # and y such that their sum is equal to E, the electromotive force of the cell.

In such a case the free energy of the cell is that of the process

A+4+B = A++B+,

if we assume that the free energy of the actual electrolyte is unchanged by the replace-
ment of one kind of ion by the other.

In certain cases, however, the free-energy changes occurring in the solution itself
are important, and may even become the dominant factor.

This last case is illustrated by the so-called concentration cell, which is represented
in Fig. 26 (b). Two electrodes of the metal A dip into solutions of A ions of differing
concentrations, ¢; and c,, the former being greater than the latter. This combination
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exhibits an electromotive force for reasons which have nothing to do with the total
energy, or with the affinities of metals for electrons. If A ions dissolve into the
right-hand solution and are discharged from the left-hand solution, the total distri-
bution of electrons among metal atoms is unaltered. But there is a concomitant
transfer of material from a more concentrated to a less concentrated solution, and
therefore an entropy increase. In the process positive charge is given to the left-
hand electrode and negative to the right. Thus the system develops an electro-
motive force and constitutes a cell.

We will calculate the electromotive force for the simple case of a univalent metal
and a uni-univalent salt in solution. Silver and silver nitrate will serve as examples.
If one Faraday of electricity passes, the following is the balance-sheet of the happen-
ings:

More concentrated solution Less concentrated solution
1 gram jon Ag+ discharged: 1 gram ion Agt+ enters solution from
n gram ions Ag+* gained by migration electrode:
from less concentrated solution in n gram ions Ag+ lost by migration into
transport of current. more concentrated solution in trans-
port of current.
Net result: (1 —n») gram ions Ag+ lost. Net result: (1—n) gram ions Ag+ gained.

It may easily be shown that the changes in NOj concentration exactly parallel
those in the Ag+* concentration. Thus, if the salt is completely dissociated, 2(1 —n)
gram ions are transferred from concentration c¢; to concentration c¢,. The osmotic
work is 2(1 —n)RT In(c,/c,), and this must equal the electrical work which is EF. Thus

B =20-n)
F oo
n is the transport number of the silver ion.

We have now seen two extreme cases, in one of which the source of the free energy
is an electron transfer from one metal to another, while in the other it is an equaliza-
tion of concentration. In the limit, there need be no heat of dilution for this second
case, and any electrical energy is generated at the expense of the heat which is
absorbed while the process of dilution goes on.

In the example of the cell: copper, copper sulphate solution, zine sulphate solution,
zine, the total electrical energy represented by the product (electromotive force
x valency x Faraday) is almost exactly equal to the heat which would be released if
metallic zine precipitated metallic copper in a calorimeter. The entropy changes
associated with dilution factors are negligible. On the other hand, almost all the energy
of a silver nitrate concentration cell is provided by the heat which the cell is authorized
to absorb from the surroundings in virtue of the accompanying entropy increase.

In general, both kinds of effect play their part in varying degrees.

Their relative importance can be judged from the effect of temperature on the
electromotive force. In the general free-energy equation (p. 67)

O(AF)
AF—-AU =T E

AU is the calorimetric heat, measured under conditions where there are no electrical
effects. AF is the product of valency, Faraday, and electromotive force. If AF and
AU are equal, then the electromotive force is independent of temperature: if AU
is zero it becomes directly proportional to the absolute temperature. In some cases
the cell warms or cools as it works. The reason is that the transfer of electrons
to more stable states is accompanied by other alterations in the system (such as
establishment of more or less favourable concentration relations) which correspond
to increased or lowered probability and favourable or adverse entropy changes.
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energy and entropy changes, and an absorption or emission of heat
which manifests itself in the Peltier effect. The Thomson effect is the
related phenomenon whereby the application of heat to the junction
of two metals gives rise to an electromotive force (that, namely, which
is exploited in the measurement of temperatures by thermocouples).

Similarly naive, but on the whole satisfying, pictures can be drawn
of the mechanical and optical properties of metals. The lubrication
of the lattice of ions by numerous minute and highly mobile electrons
could well be imagined to confer special ease of deformation and
rearrangement and thus to explain the phenomena of slip and
extension.

The opacity and reflecting power are attributable to the influence
of free electrons on the propagation of electromagnetic waves. Suffi-
ciently mobile electrical particles annul the electric field of the waves
and thus prevent their propagation. The surface of the metal should
therefore constitute a node or plane in which the displacement
vanishes. This requirement can only be met if the reflected wave is
equal in amplitude to the incident wave and differs from it in phase
by =, a condition implying perfect reflection. Electrons are not,
however, infinitely mobile and, although they can nearly enough
annul the field of light waves of low frequency, their response is not
lively enough to do the same to waves of high frequency. Hence a
certain degree of transparency, as for example with alkali metals in
the ultra-violet region, the imperfect reflecting power and the specific
colours exhibited by various metals.

The simplest assumption to make in the development of a more
detailed theory is that the electrons of a metal form a sort of gas.
The strength and weakness of this hypothesis is well illustrated by
the consideration of electrical and thermal conductivity.

The electrons are assumed to possess a mean free path, /, and a
root mean square velocity, 4, determined by the relation

Im@® = 36T (p. 17).

The thermal conductivity will then be proportional to l4, as for an
ordinary gas.

If an electric field F acts upon the metal it will produce in each
electron an acceleration Fe/m during a time interval which on the
average is I/#. At the end of this time the acquired velocity,
(Fe/m)(l/a), will be lost in a collision with an atom. The mean excess
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velocity in the direction of the field is therefore 4 Fel/m#, which is
$Peli/mi®. The electrical conductivity is proportional to this
quantity and thus to li/kT. Since the thermal conductivity is pro-
portional to & (p. 20) there follows the relation '

thermal conductivity

= tant X 7.
electrical conductivity constant X

This law is in fact well obeyed.

The hypothesis of the electron gas breaks down, however, in its
application to specific heats. It implies that the thermal energies of
electrons are equal to those of atoms, by the equipartition principle.
But the specific heats of metals can be almost entirely accounted
for by the atomic motions alone. Dulong and Petit’s law, and indeed
the Einstein and Debye relations, ignore any contribution from the
electrons to the energy, and yet in their respective spheres give a
good enough account of the facts.

That the discrepancy was to be explained in terms of a quantum
phenomenon of some kind was first suggested in Lindemann’s theory
that the electrons constitute not so much a gas as a solid lattice inter-
penetrating that of the positive ions. If the vibration frequency is
high enough, then, in accordance with Einstein’s equation, the
specific heat of the electron lattice will vanish at normal tempera-
tures, just as that of the atomic lattice itself vanishes in the region
of the absolute zero. An interesting possibility suggested by this
picture is that at very low temperatures where the thermal vibrations
of the ionic lattice no longer cause it to engage and entangle with the
electron lattice, the latter could slip unopposed through the solid.
In this way the extraordinarily high conductivity, or supraconduc-
tivity, shown by some metals in the neighbourhood of the absolute
zero might be explained.

That the peculiar properties of metals are indeed manifestations
of the quantum laws is no longer in doubt, but the evolution of ideas
has led to a rather more sophisticated conception than that which
has just been outlined.

Two major facts point the way. In the first place, electrons con-
tribute to the conductivity without adding significantly to the specific
heat. In the second place, the difference between metallic conductors
and insulators attains more nearly to the character of an absolute
distinction than the primitive theories can account for.
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Electrons, as is easily seen, can acquire a certain freedom to move
in virtue of the fact that the force exerted by one positive ion is
largely balanced by that of neighbouring ions. A similar effect should
be present, even if in smaller degree, in any regular array of atomic
structures, and differences in binding energies alone do not account
for the whole orders of magnitude which separate the conductivities
of various types of solid.

Some kind of categorical law seems to be involved, and once again
the role of censor is played by the Pauli principle. This rule,
generalized in what is called the Fermi-Dirac statistics, states that
no two electrons in a system can ever rely upon mere particle identity
for distinguishability and that a given energy state may be occupied
by two electrons only, and then only if the two have opposite
spins.

The first development of the older electron gas theory is in Som-
merfeld’s conception of a metal as a system in which electrons possess
quantized translational energies but with each possible level filled
by two electrons only. If the number of free electrons is roughly
equal to that of the atoms, the filling up of the states is such that the
higher levels correspond to considerable energies. Conduction is thus
provided for. But, according to the Fermi-Dirac statistics, precisely
when the states are thickly occupied the distribution becomes largely
independent of temperature. Thus the energy of the electrons does
not change with the energy of the atoms and there is no contribution
to the specific heat.

This view of the matter is still far from completely satisfactory
and does not explain the wide gap between conductors and insulators.
The conception of electrons in a metal as rather like so many particles
in a box is far too much idealized, and account must be taken of the
potential field of the positive ions in which these electrons move.
This field is periodic with the same periodicity as the lattice itself,
and the electron velocity distribution in such a region is susceptible
of mathematical study in a more complete way.

The result of the calculations may be anticipated by the state-
ment that the energies of the electrons prove no longer to form a
continuous series, but to fall into a group of bands separated by
ranges in which no possible states exist. In a general way this might
be expected. If the atoms were very far removed from one another,

each electron would be bound in a sharply defined quantum level.
5203 U
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If the electrons, on the other hand, were free to move in a uniform
field formed by the complete averaging of all the ionic forces, they
would have a complete range of closely spaced translational states.
In the intermediate condition they occupy bands of closely crowded
energies separated by forbidden regions.

This being so, the distinction of conductors and insulators can be
very sharp. If a band is only partially filled, electrons can easily
move to other and higher translational levels within it, and these
faster electrons contribute to the current. If the band of energies
is full, the electrons cannot contribute to an effective transport of
electricity unless they receive enough energy to jump the forbidden
zone into one of the levels of a higher zone. In these circumstances
we have an insulator or semi-conductor in which current only passes
under enormous electrical stress or as a result of considerable thermal
activation.

The regions of permitted energy can be marked out in a solid
diagram, in which the three rectangular axes are the components of
the momentum. The permitted regions in this momentum space are
called Brilloutn zones. Since they depend upon the periodicity of
the potential energy, they are determined by the lattice constants
of the crystal. The degree to which they are filled is a function of
the number of valency electrons possessed by the metal, but since
the various zones may on occasion overlap, the relation of the con-
ductivity to the valency of the metal and to the crystal structure is
a complex one.

It is now important to give a somewhat more detailed considera-
tion to the matters which have just been outlined, since the ideas,
apart from their quantitative mathematical expression, have a limited
significance only, and translations of quantum-mechanical formula-
tions into everyday language have a meaning which is largely meta-
phorical—and not infrequently convey the illusion of understanding
rather than understanding itself.

Fermi-Dirac statistics

Something must first be said about the Fermi-Dirac statistics,
which, indeed, are most appropriately introduced here, since the
theory of metals is the field in which they find their principal
application.

The principles according to which the distribution of particles
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among states is calculated are quite similar to those which have been
employed already (p. 135) except for the additional postulate that
one particle only may be allocated to each level. If the possible
states are duplicated by the existence of two opposing spins, then
two particles, one of each spin, may be placed in each translational
level.

Now a given translational energy e; corresponds to a multiplicity
of states, since each rectangular component of the momentum is
itself quantized, and numerous values of p,, p,, and p, can satisfy

the relati
€ relation _p%+p§+p§ — pz = 2me.

All values of p satisfying this condition lie on a sphere of radius
A/(2me) in a diagram constructed with the components of p as axes.
The volume of the sphere is im(2me)%. The particles are scattered
through a geometrical volume ¥V, so that the volume of what is called
phase space (that space of which the element is dp, dp, dp; dxdydz)
for the particles whose momenta do not exceed p is

$m(2me)tV.
Both the older quantum theory and the wave-mechanical formula-
tion of the quantum laws specify the parcelling of phase space into
elements such that dp,dz = h, and in a three-dimensional problem
what constitutes a state is a volume of phase space equal to A%
(compare p. 156). The number of states corresponding to momenta
up to p, or energies up to ¢, is
47 (2me)tV
ER
and the number corresponding to energies between ¢ and e4-de is
2m(2m)V
—
All these, since the distribution is not in fact continuous, and the
differentiation is a convenient approximation, correspond to an
energy ¢;. Thus we may write for the multiplicity
27(2m)2V
g; = ——(h—s)—— etde.
The problem is to calculate the number of ways in which N
particles may be assigned to these g; states, not more than one being
permitted in each. This is simply a form of the elementary question

etde.
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of the number of ways in which N; objects (the filled states) may be
chosen, without regard to order, from a total of g; objects (all the
states). The answer is , Cy, or g;!/{N;!(9,—N;)!}. The total number
of ways in which distributions can be made in all the energy ranges
is the produect of similar expressions for all values of j. Converting
products to sums by taking logarithms, we find

N
=3 s w
Tor statistical equilibrium
SlnP =0, @)
subject to the further conditions
5N, =0, (3)
83 Nje; = 0. (4)

Equation (1) is simplified by the introduction of Stirling’s approxi-
mation, and (2), (3), and (4) are solved by the method of un-
determined multipliers (p. 29).

The result of the calculation follows in a straightforward way and is

9

ex+Be 1’

j=

where « is determined by the condition

Z _ 9% _N
ex+tPeii1 ’

To understand the nature of the constants « and 8 we will antici-
pate and assume that in appropriate circumstances e**+f< is great
compared with unity. The above results then reduce to

N, = gjeePe
with > g;ece Py = N.
In other words we have returned to the Maxwell-Boltzmann distri-
bution. This will naturally be indistinguishable from the Fermi-
Dirac distribution when g; is very large compared with N, that is,

at high enough temperatures. This limiting case shows us that 8 will
be 1/kT as before (p. 33), so that we have

D gje %4kl = N.
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As a good approximation we may replace the sum by an integral
e f g;e~*Tde = N.
0

Introducing the value of g; from above we have

1 2” 'y f -7 de — N.
0

The integral is a standard one and equal to (£7')¥/7/2, so that

e% = NI;:; (2mmkT)E.

If T is great enough, e* in turn is great enough to make ex+Bes
outweigh unity by as much as we please. The basis of our calculation
is then justified and the distribution law followed is in fact similar
to the Maxwell-Boltzmann. When, however, 7' is small e* drops and
eventually it becomes so small that ex+fs is itself small compared
with unity. In these circumstances N; tends to become independent
of temperature. This is because the states are so few that there are
hardly any alternatives about filling them. The distribution of the
particles now differs sharply from the classical one and the system
shows what is sometimes spoken of as degeneracy.

An ordinary gas should, if it follows the Fermi-Dirac statistics,
show degeneracy at low enough temperatures. But the effects cannot
be detected, since they are masked by deviations from the gas laws
due to van der Waals forces.

Electrons, however, are in a different case. %, as shown by the
formula given above, depends upon m?. Since the mass of an electron
is several thousand times smaller than that of an atom or molecule,
an electron gas would remain degenerate up to temperatures several
thousand times higher. Expressed in another way this means that
the density of states is much lower for electrons,g; being proportional
to mi, so that they remain filled completely even at temperatures
where quite large quantities of energy are available. In the ordinary
temperature range, therefore, the energy distribution is determined
mainly by the requirement of complete filling, and the change with
temperature is small. Hence the low specific heat of the electron
component of the metal.
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Quantum-mechanical theory of metals

The conception of an electron gas explains certain major properties
of metals. The application to this gas of the Fermi-Dirac statistics
removes some grave difficulties, but for a fuller understanding the
energies of electrons in a periodic potential field must be studied.
This problem is one which the application of the wave equation is
adapted to solve.

To simplify matters we shall consider the translational motion of
electrons along the axis of x only.

In the absence of a potential field the Schrodinger equation has the
form & semB

o T

This is satisfied by the solution

l/l — eika:,
according to which k? = 8n*mE[h?
and if B = jme?, k= 2amo/h.

k is thus proportional to the momentum, and may be referred to as
momentum if we understand the appropriate units to be employed.
Moreover, since h/mv == A, k = 2x/A, where A is the electron wave-
length.

If the length of the metal in which the electrons move is L, and
if we wish ¢ to satisfy the correct boundary conditions, L must equal
nA, where n is an integer. This condition would give us the quantiza-
tion of the momentum in the xz-direction. It follows that

k = 2an/L.
Analogous considerations apply to the three-dimensional problem.
The arrays of k-values are closely spaced but unbroken series.

Now let a periodic potential field be introduced, such as would
exist in the presence of positive ions placed at uniform distances in
a space lattice. The wave equation now becomes

¥y  8m*m
CW-F‘F—(E—V)‘/J =0,
where V is a periodic function of z.
It is reasonable to guess—and the guess is confirmed by formal
mathematical analysis—that ¢ now assumes the form
¢ — ez'ka:u’

where u is a function of # with the same periodicity as V.
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The essential nature of the problem is illustrated in a simple
version (due to Kronig and Penney) where V is assumed to be of
the form shown below, and to consist of rectangular barriers of height
V, and width b separated by intervals of length a.

-
A
123
| H )
—b 0 a
We then have fromx = 0tox = a
d%s  8m*m . axy | e,
E-a.:_é—}-————hz E¢f = 0, or %—2"'{—3 Sl’ =0, (1)
and from x = 0 tox = —b
d%p  8nim _ dyh o,
Tt (B=Toip =0, or —oty%=0. (2)

The expression ¢ = %%y is substituted first in (1) and then in (2),
when the following conditions become apparent:
Fromz=0tox =a

du . du . 8m2m B
- 2k~ (B2 — By = 2 —
dx2+ ? o (k2—B%u =0 with B 7 (3)
and from z = 0 to x = —b
2w ., du o1 o o 8*m(V,—E)
3;24—2@70%—(70 +9¥u =0 and y = (4)

The solutions of (3) and (4) are of the form u = Me™* 4 Ne™®, and
substitution shows that the values of the constants must be as

follows: u = Ae~tk+9)e_| Be~tik+y)e, (5)
u = Cel-k+Pr_t De~ik+Pz, (6)
At the points = 0, x = a, and # = —b, the values of % and of

du/dx given by (5) and by (6) respectively must naturally be con-
sistent with one another.

Thus A+ B = C+D,
to fit 4 at = 0 in (5) and (6).
(—ik4+y)A+(—ik—y)B = i(—k+B)C+i(—k—B)D,
to adjust du/dx for x = 0 from (5) and (6).
Aelik=b_L Belik+7b — (lgit—k+Pa_|. Do-itk+Pa
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for v at —b from (5) and » at a from (6).
(—tk+y)Aetk— 4 (—ik—y) Beltk+y)b

— z’(——k—i—B)Oe“—“B)“—i—i(—k—B)De—“’”ﬁ)‘l
for du/dx at —b from (5) and at a from (6).

These relations constitute four simultaneous equations in A, B, C,
and D which may be eliminated from them (most easily by equation
to zero of the appropriate determinant). @, b, 8, y must satisfy the
relation

(,},2___62) (eyb___e-—'yb) (eiﬁa_e—iﬂa) n (eyb+ e—yb) (eiﬁa_l_e—'éﬁa)

28y 2 2t 2 2
eik(a+b)+e—ik(a+b)
=5
that is
2 —p% . .
5 sinh yb sin fa --cosh yb cos Ba = cos k(a—-b). (7)
Y

It is now convenient to make ¥, very large and b very small, while
preserving a finite value for the product, or, what amounts to the
same thing, for y%6. This makes the potential peaks high and narrow,
and reduces the period of ¥, to @ instead of (e+5). (In proceeding
to the limit the following points are to be observed:

sinh yb = L{ev?—e7P)
2 2
= 1(1 —1—2’——{)—-}—.—1—{—2—1)—) — 2'yzb/2y = 'yb,
2 Y Y

when ¥, and thus y increases without limit, while 25 reaches a finite
value.

2 2
cosh yb = §(er™ly{-e—v0lv) = %(1-[-7-/;/9—}-...—{—1—2}-/9 ) =1,

as the same limiting conditions are reached.)
In the limit condition (7) becomes

2
i ybsin fa+cos fa = coska,

28y
S
or Z2b—a SIE f * —+cos Ba = cos ka,
or sin B —+cos Ba = cos ka. (8)

P = 1y?ba and is a measure of the potential barriers, the product
v?b being by hypothesis finite.
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The total energy of the electron in this system is proportional to
o o
£, since B2 = 8n2mE/[h2.

The relation (8) has important properties which are the key to the
whole situation.

In the first place, £ must be a real quantity. If it were imaginary,
the product ¢k in the fundamental equation ¢ = e¥*%u would be real
and i could become infinite as « increased indefinitely. This would
be contrary to the requirements which a wave function has to satisfy.

According to (8), however, certain values of I, the total energy,
namely those which would make Ba nearly a multiple of 7, make
cos Ba nearly unity, and when to this is added P(sin fa)/Ba the result
gives a value of cos ke which exceeds unity. The cosine cannot exceed
unity for any real value of k. The values of & which demand it are
therefore impossible.

Here we have in its simplest form the fundamental result that
energy states corresponding to certain values of the momentum are
excluded. The forbidden regions occur periodically and are separated
by regions crowded with permitted states.

The alternation of allowed and impossible levels depends, as the
above formulae show, upon the value of @, the periodicity of the
potential energy. In the corresponding three-dimensional problem
there are three components of £, and three periodicities determined
by the geometry of the lattice unit cell. The values of k,, k,, or k,
for which the forbidden energy levels exist depend upon the direction
of movement of the electron through the lattice. When the three
momentum components are plotted in momentum space, the per-
mitted regions can be marked out and constitute the Brillouin zones.
In view of their relations to the periodicity they are closely dependent
upon the form of the unit cell as revealed by X-ray analysis of the
crystal.

It will be noted that in (8) if P is made very large, that is, if the
potential barriers become very high, no solution is possible at all
exocept in so far as sin fa = 0. Thus fa = nr and therefore f%2 = n?xn?
or B = n?h?/8ma? The energy levels become discrete and the elec-
trons are confined.

The great importance of the Brillouin zones is that the number of
possible states in each is limited. In certain circumstances, there-
fore, they may be entirely filled with the electrons present and none
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of these can pass into a state where it can participate in conduction
phenomena unless it is given enough energy to carry it across the
forbidden zone into a higher zone. The energy required for this may
be prohibitive, and then an insulator results.

The number of states in a zonre is supposed to be equal to the number
of atoms in the metal. The argument upon which this statement is
based is as follows. In virtue of the factor u in ¢ = ey, ¢ itself
is periodic with period @, where a is a periodicity of the lattice. The
periodicity of ¢#* must be that of some multiple of @, and in order
that the boundary conditions at 0 and L shall be satisfied, the form
must be e2mn2lL which is e27@Ne2 where N, is the number of spacings
along the axis. » may now have the values 0, +1, 4-2,..., 4-4N,. The
value 0 gives e® = 1, the value 3N, gives e™™@e, The number of values

s (2N,/2)+1 = N 41, which equals the number of atoms spaced
along the axis. This defines the possible states in the zone.

In the three-dimensional problem the number of states comes out
equal to the product of three sets of numbers of spacings, and thus
to the total number of atoms in the metal.

Specific properties of metals and non-conductors

In the lattice of a univalent element belonging to group 1 of the
periodic system there is one valency electron for each atom. There
is thus one electron for each state in a given Brillouin zone. But
according to the Pauli principle each level accommodates two elec-
trons of opposite spin. There are thus twice as many possible billets
as there are electrons. If an electron is offered an excess velocity
in one or other direction by the solicitation of an electric field, it can
easily find adjacent to its own a vacant translational level in which
it can respond.

The bivalent metals possess two valency electrons for each atom,
and since these should fill the lowest zone entirely, the conductivity
might have been expected to show a very sharp fall. While it is
quite true that group 1 contains the best conductors known, the
power of other metals to carry current is also quite considerable.
What has to be postulated, and what can be supported by semi-
quantitative calculations, is that with certain atoms the three-
dimensional Brillouin zones for the p electrons partially overlap with
those of the s electrons, so that there can be a response to an accelerat-
ing field by a passage from the one type of zone to the other. The
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further discussion of this matter involves detailed cousideration of
zone structure and approximate estimates of the actual energies.

In the higher gro.ups of the periodic system there is no such am-
biguity. Vacant levels are certainly not available. In diamond, for
example, each carbon atom is linked by a covalent electron pair to
four other atoms arranged tetrahedrally about it. In this sym-
metrical structure all the valency electrons are equally shared and
each pair is held in balance between two atoms. On purely energetic
grounds, therefore, there is no good reason why they should not
display a modicum of mobility. The highly insulating character of
diamond is in fact due to the complete filling of the Brillouin
zones and to the absence of permitted levels in which electrons can
display an excess velocity in the direction of an applied potential
difference.

Although, as we have seen, some of the differences between insula-
tors and conductors are of a categorical nature, the existence of
metallic properties sometimes depends upon quantitative factors of
a less definite kind. While carbon and silicon are insulators and give
crystal lattices of the covalent giant molecule type, lead and tin in
the same group of the periodic system exhibit metallic conduction.
The outer shells of these elements consist of two s electrons and two
p electrons, the former constituting a sub-group which is in some
degree saturated. It appears, with tin often and with lead usually,
to be stable enough to remain aloof from covalency formation and
to play no part in the building of the metallic crystal. Lead and
crystalline tin, therefore, behave as bivalent metals and owe their
conductivity to this fact.

When permitted and forbidden zones are separated by a gap of a
certain moderate width, rare transitions are possible for thermally
excited electrons. The substances in which this happens are semi-
conductors. They show a small conductivity which, unlike that of
pure metals, increases as the temperature rises. Most semi-conductors
owe their property to impurities which create fresh energy levels
bridging the gap between the zones. These levels may, according to
the nature of the impurity, furnish electrons which can conduct in
the higher zone, or else may provide homes for electrons from the
lower zone, thereby freeing levels in which other electrons of that
zone can show response to the accelerating field.

Such, in general, is the sort of account which can be given of the
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nature of metals and of the contrast between them and the non-
metallic elements.

Essentially it rests upon the fact that while completion of electron
groups by sharing is simple enough for two atoms lacking only one
or two electrons, a similar manoceuvre for those which lack five, six,
or seven would lead to peculiarly cumbrous structures, such as a
cluster of eight sodium atoms. The communal holding of electrons
in a positive ion lattice is then preferred.

The whole theory hangs upon the mathematical conceptions which
this communal system suggests. They are not without certain arbi-
trary characters, and it is therefore of importance that the under-
lying ideas should find further confirmation in another major
phenomenon, namely that of ferromagnetism.

Magnetism in general: ferromagnetism

Since a magnetic field is produced by an electric current, which
consists in a flow of electrons along a conductor, the motion of free
electrons in atomic orbits may fairly be supposed to give rise to a
similar effect. It is also a reasonable hypothesis that the spin of an
electron should be associated with a magnetic moment, and so it
proves.

In most molecules with symmetrically disposed orbits and paired
spins the effects cancel out, but where there is an unbalanced moment
a substance shows what are called paramagnetic properties, and
orientates itself in line with a magnetic field. The susceptibility, ¥,
of a body is defined by the relation y = I/H, where H is the applied
field and I is the magnetic moment per unit mass. The magnetic
moment is called forth by the field in so far as this orientates the
permanent moments. Orientation becomes less easy as thermal motion
increases, and consequently the susceptibility decreases with increase
of temperature, sometimes in accordance with the law yoc 1/7'.

Although paramagnetism is confined to substances with incomplete
groups of electrons, a property called diamagnetism is universal. In
any material a magnetic field will induce a moment in such a direc-
tion that it opposes the inducing force. The diamagnetic body sets
itself at right angles to the field. All substances are in principle
diamagnetic, but if they possess natural moments the influence of
these outweighs that of the induced moments, so that in effect para-
magnetism is observed.
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The phenomenon of ferromagnetism long remained mysterious. It
iz confined to a few substances, iron, cobalt, nickel, and certain of
their alloys and compounds, and is characterized by being enormously
more powerful than paramagnetism.

The moments are called forth by the magnetizing field applied
from outside, but do not disappear completely when the field is
removed—a phenomenon known as hysteresis. The development of
the observable magnetism seems to depend upon the alignment of
small domains of order in the solid substance (which, it appears, are
not the microcrystalline units of which the macroscopic crystal is
usually built up). The domains themselves possess the inherent and
fully developed property, and it is the nature of the magnetism
within the individual elements rather than the question of the relation
of these to the whole crystal which is of fundamental interest.

The formal theory of Weiss represents the field within the substance
by the equation H, = Hyppou o,
where A is a constant and o is the intensity of magnetization. Ao is
the so-called molecular field. It depends upon some kind of coupling
of the elementary magnets within the domain, but the major problem
is to determine what this coupling involves.

In the first place, it appears from delicate measurements on the
mechanical moment acquired by a body when it is magnetized that
the spin moments rather than the orbital moments of electrons are
those chiefly responsible for ferromagnetism. This finding points to
some hypothesis about the mode of coupling of electron spins. The
ordinary magnetic interaction of the spin moments is much too small
to account for the powerful mutual effect.

A much more drastic sanction resides in the requirement that the
total wave function of the system shall be antisymmetrical, because
in certain circumstances this imposes on the electrons the condition
of parallel spins. In the hydrogen molecule the electrons possess
opposite spins in virtue not of any mutual force which they exert
directly upon one another, but of the condition that the lowest energy
state demands an orbital wave function of the symmetrical type.
The categorical requirement of overall antisymmetry then dictates
the antiparallel spin function. According to the calculation of Heisen-
berg, there are certain crystals for which the lowest energy state
involves the parallel alighment of the spins. These crystals are
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ferromagnetic. In this theory also the electrons coordinate their
spins not, as it were, by their own efforts, but to conform to the
general symmetry rules of quantum mechanics.

The calculations which are made to determine which is the state
of lowest energy in a given example envisage an extended molecule
with a large number of communal electrons. The wave function
is the product of two factors ¢ and u. « = u, for spins of the same
kind.

If the spins are parallel, ¢ must be antisymmetrical in the space
coordinates of all the electrons. The form which satisfies this condi-
tion is expressed by the determinant

$1(r1)  ilry)
$a(ry) olrs) - . P

73, Tg,... being coordinates of electrons and the serial numbers at-
tached to ¢ indicating the assignment of the electrons.
By the general theorem of wave mechanics (see p. 252) the energy

is given by f$H¢ deo

f Jip dw ’
the denominator being normalized in the usual way. The numerator
contains inter alia a series of terms of the type

[ $008a(r2)... Hpolr)palr)... deo

with each ¢ balancing the ¢ of the same subscript. These terms
collectively contribute an amount to the integral which may be
written roughly Ne,, where N is the number of electrons. There are
other terms of the type

[ $ulra)or Hy(ry)... deo

where k and ! are different (exchange integral). It is assumed that
the contribution of all such terms is zero unless £ and [ refer to
nearest neighbours in the crystal (the extended molecule). The total
energy then assumes the form
Wy = N(ey—ZI),

where Z is the number of nearest neighbours and I is one of the
exchange integrals.

Whether or not the crystal is ferromagnetic now depends upon the
sign of I. If, as the equation is written, it is positive, the chosen
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combination with ¢ antisymmetrical and » corresponding to parallel
spins will in fact correspond to the lower energy and be the stable
one.

A positive value for I does in fact demand special conditions, so
that ferromagnetism can be seen to be rare, The conditions required
are also in qualitative conformity with those in fact applying to the
metals iron, cobalt, and nickel.

Inspection of the details of the calculation shows that the posi-
tive contributions to I arise from electron-electron or nucleus-
nucleus interactions in the energy term of the operator H. Thus
they will be most evident when there is a considerable overlap of
electron clouds, which occurs most markedly in atoms possessing d
and f electrons (quantum number I = 2 and 3). This factor tends
to locate ferromagnetism in transition elements. For electron over-
lap to outweigh electron-nucleus interaction, the nuclei should not
be too close. Nor, on the other hand, should they be too far apart,
or all interaction of any kind becomes feeble. This factor makes for
further specificity, and in fact for the elements iron, cobalt, and
nickel the ratio (interatomic distance/radius of d electron shell) does
lie within a special rather narrow range.

Qualitative as the above considerations are, they illustrate further
the importance of the communal electrons in the interpretation of
metallic properties.



XV
EXTENDED ARRAYS OF MOLECULES

Types of assemblage formed by atoms

THE communal metallic electrons come into their own when private
sharing between pairs of individuals becomes too cumbrous for stabi-
lity. It predominates when the valency electrons are few, as in groups
1, 2, and 3, and in the transition elements, or where some tend to
remain in inert sub-groups, as in the heavier elements of group 4.

Covalent bond formation becomes practicable when not more than
four neighbours have to be involved in the sharing. Carbon (group
4) and tin in its grey non-metallic modification form such links with
four tetrahedrally disposed neighbours, antimony (group 5) with
three close neighbours, while selenium and tellurium (group 6) com-
plete their octets by sharing with two neighbours. In all these
examples what is called a giant molecule is formed. It varies from
the well-knit diamond structure to the less evident spiral chains of
the group 6 elements.

With the elementary halogens the sharing of electrons is confined
normally to a single pair. The diatomic molecules so formed have
no valencies left to knit the lattices of the solids into continuous
frameworks, and van der Waals forces are left to dictate the structure
of the crystals.

In such a manner the general disposition of metallic properties and
the variation in the mode of linking throughout the periodic system
of the elements can be explained. On the overall pattern there are
many embroideries, and highly specific influences play their parts.

Oxygen and nitrogen, for example, form diatomic molecules which
do not, in the solid state, participate in more extended covalent
arrays like the continuous spirals of selenium. This is because, for
specific reasons, the diatomic molecules are very stable. The double
link of the oxygen molecule is in fact more than twice as strong as
the single link. Thus a large number of separate O, molecules are
more stable than a long chain—0—0—0—0—0—0—....

That the pictures of covalent bonds, on the one hand, and of the
communal electrons, on the other, are not necessarily quite so
different as might at first sight appear is suggested by the views of
Pauling on the nature of the bonds in metals. He postulates a state
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of affairs where covalent bonds are indeed formed, but are shared
in a special way between any given atom and all its neighbours. This
is sometimes interpreted in terms of the process which has already
been referred to as resonance, and a vivid though essentially in-
correct idea of it may be formed by imagining the bonds to alternate
between the various pairs of atoms. But there is no real process of
alternation. What quantum mechanics envisages is not a switch
from A—B C to A B—C but a state of affairs intermediate between
the two. This being so, the Pauling view does not so much constitute
a rival to the hypothesis of the communal electrons as offer an
alternative technique for handling it—and one which for many of
the purposes of chemistry may well be more convenient.

The crystalline state

In solids, then, the forces which tend to impose order on the indi-
vidual chemical units may be van der Waals forces, as with the inert
gases, with elements which form diatomic molecules, and with organic
substances; they may be Coulomb forces between ions, as in many
simple salts and with the positive ion—electron interaction in metals;
and, finally, they may be the covalencies binding atom to atom
throughout extended regions of space.

While it is not possible to predict behaviour in each individual
example, the reasons for this general classification and the trend in
character through the periodic system are explicable in terms of the
electrical theory of matter.

Whichever kind of interaction prevails, the molecular or ionic units
must tend to set themselves into arrays which possess a minimum
of potential energy. Hence the existence of the crystalline state and
its characteristics of symmetry. Symmetrical orderings naturally
allow potential energies lower than the unsymmetrical arrangements
which would result from their distortion. To represent a possible
spatial configuration of ions or molecules the system need not possess
a potential energy which is an absolute minimum. Several relative
minima may be separated from one another and from the absolute
minimum by intervening maxima.

Thus several spatial configurations which correspond to relatively
but not absolutely stable minima may have to be taken into con-
sideration. Each has certain elements of symmetry, but some have

more than others. Hence the existence of polymorphic modifications.
5203 x
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If the molecular force field is highly unsymmetrical, two or more
molecules can orient themselves into a sub-system which then arrays
itself with other similar sub-systems fo give an extended configura-
tion of minimal potential energy. The number of modes in which
the extended configuration can be built up is large, and the analysis
of the various possible cases is dealt with in the science of crystallo-
graphy.

The potential energy minima can be achieved in patterns which
repeat themselves throughout extended portions of space—in prin-
ciple indefinitely—and which constitute space latiices. The smallest
complete unit of pattern represents the unit cell of the lattice. The
piling together of the unit cells gives the crystal. In order that they
may be repeated indefinitely in all dimensions the unit cells must
possess the form of parallelepipeds. The shape of these governs the
symmetry of the crystal as a whole, though it does not unambiguously
dictate the external form, since various geometrical figures are com-
patible with the same elements of symmetry.

Various kinds of symmetry are distinguished. In the first place,
there are planes, axes, and centres of symmetry. A structure pos-
sesses a plane of symmetry when what lies on one side of a given
plane is a mirror image of what lies on the other side. It possesses
an n-fold axis of symmetry when rotation through an angle of 360/n
degrees brings it into a condition indistinguishable from the original.
For a centre of symmetry there must correspond to each point in the
structure another point such that the lines joining the respective pairs
are all bisected at the centre.

The combination of symmetry elements defining a crystal form is
referred to as a point group. There are thirty-two such combinations
encountered among real crystals. They fall into classes according to
the form of the unit cell. In general the latter has three sides a, b, ¢
and three angles «, 8, v. In ascending order of symmetry the crystal
classes are: the triclinic with a, b, and ¢ unequal and one axis per-
pendicular to the other two; rhombic with three unequal but mutually
perpendicular axes; hexagonal with ¢ = b at 120° and ¢ unequal to
them but at right angles; rhombohedral with equal sides, and angles
equal but not right angles; tetragonal with @ = b 4 ¢, and the angles all
right angles; and finally, cubic witha = b = cand o = B = y = 90°.

Two further elements of symmetry enter into the definition of the
extended space lattice, namely glide planes and screw axes.
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If by reflection in a plane and simultaneous linear displacement the
array may be brought into self-coincidence, it possesses a glide plane,
and if this same effect is achieved by rotation through a given angle
and simultaneous linear displacement, there is a screw axis.

The complete set of symmetry elements which define the geo-
metrical relationships between all the individual constituents of the
three-dimensional repeating pattern is called the space group.

Fie. 27

Purely geometrical analysis shows that there are 230 space groups
divided unequally among the thirty-two point groups, which in turn
are shared unequally by the seven crystal systems.

Macroscopic crystallography can discover the point group, but
only X-ray analysis reveals the space group. These matters will not
be treated here. All that will be said is this: a regular array of atoms
or molecules such as occurs in a space lattice may be traversed by
numerous planes passing through two-dimensional arrays of points.
According to the nature of the lattice, the density of points in a given
plane may be greater or smaller and in general varies from one type
of plane to another in a given lattice. In an ionic lattice, moreover,
a given plane may contain positive ions or negative ions or both,
and the chemical and electrical character of the layer varies with
the way in which the section through the lattice is taken. The general
principle is illustrated in Fig. 27.

These crystal planes reflect X-rays and interference occurs accord-
ing to the relation 2dsin 6 = A,

where d is the distance between successive planes of the same type,
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and 0 is the angle of incidence. A is the wave-length and » is an
integer. From the various values of d the dimensions and angles of
the unit cell can be calculated. From its volume, the density of the
solid, and the molecular weight, the number of ions or molecules in
each unit cell can be determined. Detailed study of the actual in-
tensities of the various X-ray reflections allows conclusions to be
drawn about the distribution of electric density in the lattice and
hence about the precise spatial pattern. We shall not, however, enter
into the technique of such matters.

In principle, the space lattice is determined by the symmetry of
the force field of the individual molecule or ion, the way in which
several molecules or ions may reduce their potential energy by form-
ing groups of higher symmetry, and the way in which the primary
or secondary units then reduce their own potential energy by form-
ing the repeating spatial pattern.

All this, however, has ignored the influence of the thermal motions.
Forms of lattice which do not allow room for the vibrations appro-
priate to the temperature, even if the potential energy relations are
exceedingly favourable, are impossible. The lattice form chosen by
a given substance is that corresponding to the minimum potential
energy compatible with the dynamical degrees of freedom of the
constituent molecules.

As the temperature rises a form of lattice which allows room for
feeble vibrations frequently has to change into another with greater
tolerance. In a general way, polymorphic transformations occur in
such a sense that more compact structures are stable at lower tem-
peratures and more open structures at higher. Exceptions to this
rule do indeed occur, but can sometimes be explained in terms of
special circumstances, as for example when increasing thermal energy
leads to the rupture of special chemical bonds (such as hydrogen
bonds) which maintain an open structure in the forms stable at lower
temperatures.

In these general respects polymorphic changes in the solid state
resemble the transition from solid to liquid (p. 100): and once again
the energy-entropy motif is dominant.

The change from one possible lattice form of a given substance
to another obviously makes a finite and indeed profound difference
to the size and shape of the unit cell. Units of one lattice type are
geometrically incompatible with units of the other, and the new
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polymorphic form must constitute a separate phase. This being so,
for thermodynamic and kinetic reasons which have already been
discussed (p. 71), there is a definite transition temperature at which
the change of phase occurs.

Order—~disorder transitions

The foregoing considerations become modified for certain systems,
especially those of more than one component, such as alloys, and
here a special kind of change, known as an order—disorder transition,
can occur. The phenomena shown by the alloy of copper and zine
known as B-brass will introduce us to a matter of some general im-
portance. At low temperatures the alloy consists of a regular lattice
of copper atoms, one at each corner of a series of cubes, and of a
similar lattice of zinc atoms, so disposed that each cube of the copper
lattice has a zine atom at its centre and each cube of the zinc lattice
a copper atom. The two interpenetrating simple cubic lattices thus
give what is called a body-centred cubic lattice.

The X-ray reflections for layers of zine and copper atoms respec-
tively are separate, distinct, and recognizable. As the temperature
increases the character of the reflections changes and comes to corre-
spond more and more to randomly mixed atoms of the two sorts.
The ordered configuration of the lower temperatures gives place to
the random configuration of the higher without any change in the
lattice itself. What occurs constitutes the order—disorder transition.

A quantitative criterion for the degree of order can be laid down.
Imagine 2n lattice points all unoccupied. For the perfectly ordered
state n specific points are reserved for copper and » for zinc. In the
actual state let a fraction p of the zinc atoms occupy their own
reserved points, the remainder intruding into the places reserved for
copper. For perfect order, p = 1; for complete randomness p = %,
since there is then an equal chance for the zinc to find one of its own
sites or a copper site. The formula ¢ = (p—$)/(1—1) then gives a
convenient measure of the order, becoming 1 or 0 for the two ex-
tremes of configuration.

The more ordered the configuration the lower the potential energy:
the lower also the entropy, and the relation of these two is important.
The energy change, AU, accompanying a given transfer of atoms
from ordered to random positions (at approximately constant volume)
is a continuous function of o itself, since, for example, there is no



310 EXTENDED ARRAYS OF MOLECULES

change in potential energy when atoms are moved from a given random
configuration to a neighbouring one, so that AU — 0 when o - 0.
In an ordinary phase change at constant volume the equilibrium is
defined by AF = AU—TAS = 0. AU and AS being constant charac-
teristics of a given pair of phases and independent of their amount,
Toqun 18 fixed and definite. In the
transitions from order to disorder
at a given temperature AU is posi-
tive but alters as the change proceeds.
AS is also positive, so that neither
order nor disorder need always be-
come complete. As 7 increases, TAS
overcomes AU more and more easily,
and there comes presently a range
T in which AU cannot balance T’AS at

Fic. 28 all for any value of o, so that com-

plete disorder sets in.

What is of very wide interest here is that the entropy change which
in a phase transition would have occurred at a fixed temperature
has in the order—disorder transition been spread out over a range of
temperature. The increase in potential energy which in the former
would have manifested itself as a latent heat absorbed at the constant
transformation temperature is in the latter absorbed over a finite
range and thus manifests itself as an anomalously great specific heat.
In the region of temperature where such phenomena are in process
of evolution the specific heat generally follows a curve of the form
shown in Fig. 28.

Gradual transitions

Many of the changes which occur in solids are not profound enough
to impose a new space lattice and thereby to reveal themselves as
polymorphic phase transformations. They may depend upon altera-
tions of configuration of the statistical kind exemplified by the
copper-zine alloy; and the abnormality in the specific heat with which
they are associated is connected with the increased potential energy
imposed by the more random arrangement. The heat absorption is
due primarily, not to the excitation of new degrees of freedom, but
to the increase in configurational entropy.

In other examples new modes of motion appear, not disruptive
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enough to destroy the original lattice. The study of specific heats
at low temperatures has revealed the existence of many of these
gradual transitions. They are shown by the ammonium halides, by
methane, by the hydrogen halides, and many other substances.

The precise nature of the change in the motions of the molecules
or ions is not quite certain. It probably varies from one example to
another. Sometimes torsional oscillations may give place to free
rotations. Sometimes vibrations about ordered axes may be replaced
by vibrations about disordered axes.

Types of solid lattice and the properties of solids

The calculation of the energy of solid structures is possible in
principle, but in practice is difficult except in very simple examples.
The geometrical constants of the lattice must first be known and the
magnitude of the forces acting in different directions between the
elements which constitute it. For reasons which ultimately go back
to the Pauli principle, different kinds of binding between these
elements exist. The various types of lattice may be roughly classified
in the following way. First, there are those in which some small
number of complete molecules form the content of the unit cell, the
interaction between them being due to van der Waals forces. The
binding energy of such an array is not very high. Secondly, there
are the simple ionic lattices formed typically by salts. Here the im-
portant interactions are Coulomb aftractions which are balanced by
the repulsive forces preventing interpenetration of electron clouds.
Finally, there are those lattices in which covalencies spread through-
out the crystal.

van der Waals interactions are not susceptible of very precise
calculation. The ionic lattices have, however, been subjected to
successful quantitative treatment. Their energy is expressible in the

form U = —Aetjr+Bjr.
—e?/r is the potential energy of two univalent ions at a distance r
A a numerical constant (Madelung constant) which comes from
an averaging by integration over each possible pair of ions in the
system, and B/r™ is a term which represents the repulsion between
ions at small distances.

For equilibrium dU/dr = 0 when r = r,, r, being known from the
geometry of the structure. » may be determined from the com-
pressibility of the solid and the energy thus estimated.
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Some of the conditions governing the existence of metallic lattices
have already been discussed, but a little more may be said about
the compactness of the structures formed by various elements. The
alkali metals all form body-centred cubic lattices, that is, structures
in which one ion occurs at each of the eight corners of a cube and
one at the centre. This is a relatively open formation and one which
allows for the low density and comparative softness of these elements.
Copper, silver, and gold form face-centred lattices, that is, structures
in which there is an ion not only at each corner of the cube but in the
centre of each face also. This is much more compact. The densities
are in fact much greater.

Transition metals in general have greater bonding, according to
the point of view of Pauling. These elements belong to the regions
of the periodic system where the group of 8 electrons is expanding
to 18. In the first long period, for example, there occur electronic
states with n = 3, I = 2. These are d-states and there are 2[-+1 = 5
of them, each accommodating two electrons. They are filled in com-
petition with the s- and p-states of the » = 4 group. There is one
4s-state for two electrons and three (21+-1) of the 4p-states (I = 1)
for six electrons. Electrons from a number of these states may be
concerned in metallic bonds. The structures are thus much more
compact than those of the alkali metals. Detailed correlations have
been made between the bonding of the so-called resonating systems
and the bond lengths or interionic distances.

The lattices in which covalencies link atoms through many unit
cells are themselves of various kinds. The simplest is perhaps that
of diamond, in which each carbon is joined by tetrahedral covalencies
to four others. The interatomic distances correspond to those between
carbon atoms linked by single bonds in the molecules of organic
compounds, and the total energy of the lattice is the sum of all the
bond energies.

Diamond possesses a structure which is continuous in three dimen-
sions. In some solids the covalent unions extend over two dimensions,
or simply stretch along one axis. Silicates provide examples of all
types, from the simple ionic lattices of orthosilicates such as Mg,SiO,
to the three-dimensional networks of the various forms of silica itself.

The characteristic forms and properties of the substances met in
daily life depend to a large extent upon the lattice properties. Simple
molecular and ionic structures are not remarkable for hardness or
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stability. They show cleavage, and appropriate solvents can usually
be found for their dispersion. Metals, on the other hand, have special
properties which, as has been explained, they owe to the free
electrons which determine their electrical, thermal, optical, and
mechanical peculiarities. It is, however, necessary to remember that
some of the mechanical properties of metals, as indeed of other ionic
crystals, are also determined to a considerable extent by the cohesion
between the microcrystals of which the large specimens are built up
rather than by the atomic or molecular constants. This fact turns
the study of mechanical character into a highly complicated special
subject.

Many of the qualities upon which natural form, on the one hand,
or applicability in the arts, on the other hand, depend derive from
the special structure of covalent lattices which adapts them accord-
ing to circumstances to form sheets, fibres, or extended arrays of
greater or smaller hardness, softness, compactness, or porosity.

The silicates, already mentioned, provide examples of special im-
portance since they make up so large a portion of the earth’s crust.
Orthosilicic acid is Si(OH),. By loss of water it gives rise to meta-
silicates with chains of any length

OH OH OH OH

—8i—0—Si—0—Si—0—Si—. (@)

OH OH OH OH

As the length increases, the composition tends towards the limit
H,SiO; from which the salts are derived. The sodium silicate of
‘water glass’ belongs to this type. The long chains with their possi-
bility of becoming intertwined or randomly linked together by the
formation of fresh Si—O-—=Si bridges are probably responsible for
the stickiness of the solutions and for the firm jellies to which these
set when acidified at even quite low concentrations. The solid meta-
silicates possess a more or less rigid backbone of covalently linked
silicon and oxygen atoms running right through their lattices. This
has ionic charges spaced uniformly along it, in the neighbourhood
of which the metallic cations are set.

Further elimination of water can occur between two chains of the
type illustrated above, (a), and this process, which is called cross-
linking, gives rise to extra strength and toughness. When it is con-
fined to two chains the structures produced are fibrous, and the
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peculiar physical properties of asbestos are supposed to be due to
the fact that it is a silicate of this variety. The mode of linking is
illustrated in (b).
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The chains are easily separated from one another, but are difficult
to break. Thus asbestos is easily split into fibres, but is none the
less tough and refractory. Unlike the simple metasilicate chains these
double chains are rigid. The limiting composition of long chains of
the metallic slats corresponds to HgSi,0,,.

Further cross-linking can occur and gives rise to planar or at least
two-dimensional surface structures as shown in (¢). The correspond-
ing metallic derivatives constitute silicates such as mica, remarkable
for its easy cleavage into thin laminae. The limiting composition for
infinite arrays of this kind is H,Si,Oj.
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Here again the silicon-oxygen structure is continuous and the metallic
cations are inserted according to the requirements of electrical
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neutrality, and also, it must be added, according to conformity of size.
This last factor explains the occurrence of isomorphous replacements
which give rise to what at first sight may be very puzzling variations
in composition. Talc, for example, is Mg,(OH),8i,0,,. The two Si,Oy
units need to be balanced by four positive charges, here represented
by the six positive charges of the three magnesium ions and the two
negatives of the hydroxyls.

Clays also contain silicon-oxygen sheets alternating with alumi-
nium-oxygen sheets. It appears that the whole structure falls into
successive layers between which only relatively weak forces exist, so
that the soft and yielding structure results. The plasticity of such
materials is of great importance in the economy of nature.

Very stable three-dimensional structures analogous to diamond
exist in silica itself. Cristobalite is in fact rather similar in structure
to diamond, each silicon being surrounded by four oxygens and each
oxygen lying midway between two silicons, a position forcing the
oxygen valencies to assume an angle of 180° which is not the pre-
ferred angle. For this reason, probably, cristobalite is not so refrac-
tory as diamond. The tendency of the oxygen bonds to lie at a
smaller angle explains in some measure the existence of the alterna-
tive form of silica which occurs in quartz. The kind of symmetry
which is established in quartz involves a helical disposition of atoms,
and there are in fact right- and left-handed screw structures which
act differently upon polarized light traversing the crystals.

The variations in hardness, in the tendency to form sheets and
fibres, plasticity, and so on which are manifested by these various
inorganie structures and which have their importance in explaining
the properties of rocks and soils, minerals, and metals, appear in an
even more remarkable degree among complex organic compounds,
which in their turn serve as the bases of living tissues, or of sub-
stances with properties of great value in the industrial arts.

Organic compounds may interact to form polymers or polycon-
densation products of enormous molecular weight. The condition
that they should do so is the presence in each molecule of more than
one functional group. Ethylene, which may react as —CH,CH,—,
forms polymers containing from two to many thousand units: gly-
cols form with dibasic acids polyesters with chains of any length:
hexamethylene diamine and adipic acid form polyamides of high
molecular weight which constitute one of the varieties of ‘nylon’,
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and organic silicon compounds lead to condensation products such as
methyl silicones. Among naturally occurring substances, proteins
consist of long chains of —CHR CONH— units, polysaccharides,
such as cellulose, of long chains in which the units are the rings
derived from pentoses and hexoses.

When the original molecules or monomers contain two functional
groups only, the conditions favour single straight chains, but if they
contain extra functional groups, cross-linking may occur with the
production of sheets and three-dimensional covalently linked struec-
tures.

When the molecule consists of a long chain, this constitutes a
tough backbone traversing many umit cells of the lattice. In other
dimensions the binding is less strong than that due to the covalencies
and depends upon van der Waals and dipolar forces which are more
easily overcome. Hence the prevalence of thread-forming properties
among macromolecular compounds.

The study of the relation between structure and properties in these
substances of high molecular weight constitutes an important chapter
of chemistry. The character of the materials is determined partly
by the chemical nature—hydrocarbon chains repel water, hydroxyl
groups tend to confer solubility in water, or at least the power to
absorb water—but also by the molecular weight and the degree of
polymerization, by the degree of cross-linking, and, in more subtle
ways, by the actual distribution of molecular weights among the
molecules making up a given preparation, which is seldom homo-
geneous.

Sufficient length of chain is necessary to give strength to threads,
while cross-linking confers rigidity, toughness, and insolubility.
Qualities such as plasticity and susceptibility to cold drawing depend
upon the flexibility of the individual chains and also upon the ease
with which they slip past one another in the lattice. The elastic
properties will also depend in an important way on the readiness
with which rotation about the valency bonds of the main chain can
occur, and the hindrance to this rotation opposed by the geometrical
form of attached groups or side chains.

When the solid preparation consists of a medley of chains of
different lengths, their ends will not conform to any regular pattern.
A given chain will pass from crystal to erystal, and in fact there will
be a rather curious state of affairs in which a number of virtually
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separate crystals are united by threads of longer molecules passing
from one to another in a way shown diagrammatically in Fig. 29.
Regions of crystalline regularity will be separated from one another
by amorphous regions, and the phase relationships as well as the
mechanical properties will be appreciably influenced thereby.

A
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It has been shown that certain protein chains may exist in straight
or in folded forms in the crystal, and this circumstance probably
determines some of the elastic properties of living tissues.

The details of these various matters will not be discussed here,
but it is very obvious that the different combinations to which known
principles of structure and arrangement can give rise constitute a
set of remarkable scope and versatility. How these combinations
work themselves out is a subject for detailed and specialized study.
But in general it can be said that the picture of the world with the
tough fibres of its woods, the laminae of its rocks, the elastic tissues
of its living beings, its burnished and resonant metals, its hard
diamonds, and its friable salts can be referred back to a fundamental
motif of which it is only an elaboration. Molecules and ions form
patterns of minimum potential energy, in so far as their motions
allow them to do so. These patterns are determined by the charges
and the shapes: the shapes depend upon the linking of the co-
valencies, while both charges and covalencies differ from atom to
atom because of two categorical laws admitting no compromise.
These are, namely, that the spin of an electron has either one or the
other of two possible values, and that the wave function of an atomic
system is antisymmetric. After this interpretation the spectacle of
nature may seem more uniform: it hardly seems less mysterious.
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The liquid state

Ix the study of the solid state the guiding theme is that of order and
of the mode of ordering. In the liquid state some of the order charac-
teristic of the solid has been lost, and the first theories of liquids
assumed them to possess the random configurations of gases while
still being subject to cohesive forces of considerable magnitude. This
view is, however, far from completely satisfactory. The primary
quality of a liquid is not its disorder but its fluidity, namely its
tendency to yield continuously under stress and to conform to the
shape of its container without necessarily filling it. X-ray reflections
reveal that in fact some degree of order does exist in liquids, and the
kinetic and thermodynamie relations of the various states of matter
are most easily understandable in terms of the hypothesis that order
is relaxed in stages of which melting is not the last.

Let us consider the possible changes in entropy as a solid with a
regular space lattice is raised in temperature. At first the mean
positions of the molecules are constant, the vibrational energy in-
creasing and the entropy varying according to the expression
dS = C,dT|T. New modes of motion, such as rotations, may ap-
pear and C, itself increases. Further, in solids such as alloys, inter-
change of particles between lattice sites may occur with increase in
potential energy and further increase in entropy which is continuous
over a range of temperature (p. 310).

If new degrees of freedom or growing amplitudes in existing ones
are incompatible with the old lattice configuration, a new lattice
corresponding to a higher potential energy has to be formed. Small
regions of this new lattice cannot, for geometrical reasons, normally
remain disseminated through the old and a fresh phase has to develop.
The growth of this new phase, for thermodynamic and kinetic reasons
dealt with earlier, imposes a constant temperature. The increased
potential energy and the associated entropy change now manifest
themselves, not as a contribution to specific heat, but as a latent heat.

Before the phase change, however, there has been the possibility
of a considerable relaxation of order. When molecules rotate on their
axes extra configurational complexions arise. An angular coordinate
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becomes freely disposable for each unit of the lattice. Whether or
not this has repercussions upon the other coordinates depends upon
the molecular shape, the lattice dimensions, and the intermolecular
forces. Were the molecules highly symmetrical, they could acquire
freedom of rotation without interfering with their neighbours: were
they in the form of long rods, they could not rotate without disturb-
ing the centres of gravity of all those around them. This is an ex-
treme and obvious case, but the interrelations of coordinates are
quite general and often subtle.

Let us consider in general a reference molecule and also a second
molecule with Cartesian coordinates relative to the first of z, y, and z,
and with polar coordinates relative to the first of r, 8, and ¢. The
mean value of  can only increase to that characteristic of the gaseous
state when the kinetic energy is raised considerably. Changes in 6
and ¢, however, may become easy for adjacent molecules long before
changes in r. Shear will then be possible and the substance acquires
fluid properties. In principle, the restraints on the variation of the
different coordinates may be relaxed separately. Three-dimensional
separation corresponds to vaporization, angular displacement in any
direction to liquefaction. When restraint in one particular direction
weakens, a solid becomes susceptible to cold drawing. When the
orienting forces in liquids retain their effect sufficiently to align
certain kinds of molecule along the z-, y-, or z-axis, there arises the
anisotropic liquid or liquid crystal formed by various substances of
elongated structure.

The various kinds of relaxation of restraint are all attended with
increases of potential energy and also of configurational entropy.
It depends upon their geometrical character whether or not they
force a phase change and so complete themselves at constant tem-
perature. If a few molecules could indulge in mutual displacements
of the kind involved in shear, a solid would no doubt simply acquire
liquid-like elements which increased in number according to Boltz-
mann’s law as the temperature rose. But the only lattice which
allows these (without strong restoring forces) differs too much from
that of the original solid. Hence all the new entropy is associated
with a latent heat.

A liquid, then, would appear to be a lattice so mobile under shear
that it exists only as a time average. It might perhaps be likened
to a flight of birds attempting to keep formation in a gale. They are
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continually blown into confusion, but as continually strive to re-
establish their order.

One of the more remarkable properties of liquids is their high
specific heat. This suggests strongly what the X-ray reflections con-
firm, that they still have configurational order to lose, and thus
configurational entropy to gain: and this without enough disturbance
of their geometry to provoke a further phase change until cohesion
is finally overcome by kinetic energy, and they pass into the state
of vapour.

That order and mobility are by no means very closely correlated
is evident from the existence of glasses, which represent highly super-
cooled liquids. They are hard and brittle, but possess no definite
crystalline structure. The randomness of the molecular arrangement
is about the same as that in liquids, but they are not necessarily
entirely devoid of certain kinds of order, as is suggested by the
characteristic conchoidal fracture which is often shown.

Rubber-like properties

A special kind of ordering and disordering is believed to occur in
substances which show the elastic properties typified in rubber. The
molecules of rubbery substances are long, and are probably in some
degree coiled up in the normal condition. One view, which contains
a good deal of truth though it may well be oversimplified, is that the
ends of the molecules occupy quite random positions in the un-
stretched state and that the molecules are brought more nearly into
alignment by the stretching. A crude picture of this relationship is
shown in Fig. 30.

If the chains are composed of singly bound carbon atoms, the
tetrahedral valency angle at each link in the chain permits a whole
cone of orientations, so that the position in space of the nth atom
relative to the first can vary widely. From a knowledge of the
valency angle, the bond length, and the number of atoms, the most
probable linear distance between the ends of the chain can be calcu-
lated, and the probability of particular distances estimated. A col-
lection of chains has a calculably greater entropy when randomly
coiled than when parallel, and the change in S corresponding to a
given average increase in effective length, that is, distance between
ends, can be worked out. To stretch the rubber at constant tem-
perature requires expenditure of work. The increase of free energy
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determines the force which must be applied to effect the elongation.
When the tension is relaxed the chains assume their random con-
figuration once more. According to circumstances AU, the change
in the internal energy, may or may not contribute to AF. In rubber
itself it contributes little, and the entropy changes are the major
factors, as may be inferred thermodynamically from the influence of
temperature on the contractile force of the stretched material. Here
is the argument.

/ !
} Unstretched Stretched
F1g. 30

In a perfect gas the expansive force originates in the tendency to
assume a state of greater entropy, and 8U/oV is zero. In rubber the
contractile force originates in what is essentially the same way,
namely in the tendency of the molecules to pass to a state of higher
entropy. In the two cases there is the same law of temperature
variation. Gas pressure on the one hand and contractile force on the
other both increase in direct proportion to the absolute temperature.

F = U—-T8, so that

or _oU_ 08
ov eV ov
For the gas 0F/0V = —p, and 8U[eV = 0, so that
o8
== T—
ov
(though here we must be careful to avoid any apparent logical contra-
diction if we have originally defined 7' in terms of p). For rubber
of length I, and contractile force P, we have
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Now since P for a given elongation is found experimentally to vary
directly as 7, oU/ol cannot contribute in any important way. In
other cases, of course, there is no reason why internal energy changes
accompanying the distortion should not be the major factors in
causing the appearance of the contractile force. Here the tempera-
ture dependence would become quite different.

The simple picture of coiling and uncoiling chains in rubbery
substances is highly idealized, but in all real examples there is
probably some form of entropy change depending upon varying
constraints on the succession of valency angles in a chain. The energy-—
entropy relations are, of course, more general than the simple model
of the coiling chains.

Whether rubber, in the light of the foregoing discussion, would be
better described as a liquid or a solid is one which would no doubt
have appealed to the scholastic philosophers. What is really more
significant is that rubber provides another example of the way in
which certain combinations of the variables defining configurations
cease to be fixed while others remain subject to control. At low
temperatures rubber-like substances freeze, in the sense that the
molecular motions characteristic of the condition cease to be possible.

Condensed helium

The most remarkable, or more correctly the least familiar, kind
of behaviour resulting from the interrelations of order, entropy, and
mobility is perhaps that exhibited by condensed helium. Helium is
light and the interatomic forces are feeble. Therefore the condensa-
tion occurs in a region near the absolute zero where the thermal
energy is small. The low mass of the atoms corresponds to a high
frequency of any oscillations in which they may engage and a corre-
spondingly high value of 1Av,, the zero-point energy. The ratio of
the zero-point energy to the thermal energy is thus of a different
order of magnitude from anything known in comparable examples.

The matter may be regarded from the point of view of the un-
certainty principle. The behaviour of particles which is defined by
the wave equation is equivalent to an indefiniteness in what may be
known of their dynamical coordinates. If p and g are the momentum
and position coordinates, Heisenberg’s principle states that both
cannot be known simultaneously except with a range of uncertainty
given by the relation ApAq = h, approximately. In the temperature
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range of condensed helium, p is very small, so that Ap and Ag repre-
sent ranges of uncertainty of unusual relative magnitude. If Ap is
defined to within a reasonably small fraction of p itself, then Ag will
have an abnormally great value. These circumstances peculiar to
helium might be expected to give rise to some special properties, and
80 it proves. The uncertainty in Ag is probably responsible for the
extraordinary phenomena connected with the transport of energy
and momentum in helium at the
lowest temperatures, and the high
zero-point energy may well account
for the coexistence of mobility with
what is probably a considerable Spheat

degree of order. \
That condensed helium should

have unusual qualities is not sur-
prising and is indeed to be expected. T

What is surprising is how these quali- T1e. 81

ties manifest themselves in terms of

phenomena, such as conductivity and viscosity, of which our mental
pictures are formed by observations in higher ranges of tempera-
ture.

Some of the important facts about condensed helium will now be
summarized. The gas first condenses to a liquid known as helium I,
the properties of which are not specially remarkable. Below about
2° absolute helium IT is formed. This shows a specific heat—tempera-
ture relation of the form represented in Fig. 31. The specific heat
rises to a sharp peak at 2-19° (38 mm. pressure), the so-called A-point,
the excess over the normal in the neighbourhood of this point suggest-
ing an ordered state for helium II, with a rapid decrease in order
and increase in entropy as the temperature rises. The general type
of behaviour here referred to has already been discussed (p. 310).
According to one view, for which, in the light of the earlier discussion,
there is much to be said, helium IT possesses an atomic arrangement
which has a certain crystalline character.

In spite of this ordered structure, the mobility is high and ab-
normal in character. The viscosity of helium II is low and the viscous
flow is independent of the pressure gradient under which it takes
place. The substance cannot be confined in a vessel in the ordinary
way but flows in the surface films with a facility unlike that shown
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by anything else known. The thermal conductivity is greater than
that of copper.

At higher pressures helium can be constrained into a crystalline
form possessing the mechanical characteristics of a normal solid.

Viscosity of liquids
Although liquids possess a relatively high degree of mobility, the
movements of their parts are by no means unopposed. They exhibit
in fact the quality of viscosity.
The coefficient of viscosity, 7, is defined as with gases, by the
equation:
force per unit area opposing shear = 7 X velocity gradient.

It is usually determined by measurement of the rate of flow of liquid
through a capillary tube of length ! and radius r under a pressure
head p, the volume, v, of liquid delivered in unit time being given

by the formula v = 7prd/8yl.

n varies over a very wide range from liquid to liquid, and shows a
general tendency to increase in parallel with the molecular weight—
a relation exploited in approximate determinations of the molecular
weights of polymers.

Viscous resistance has not the same origin in liquids and in gases.
In the latter it depends upon the transfer of momentum from faster
to slower moving layers (p. 20), and increases with temperature as
the thermal exchange becomes more lively. In liquids it falls. The
inverse of the viscosity, the fluidity, increases with temperature
according to the law 1
T = Ae—)\[RT’
ki
where A is a constant and A is an energy which is usually in the
neighbourhood of one-third the latent heat of vaporizasion of the
liquid, and shows a distinet parallelism with it from liquid to liquid.

This law of temperature variation is of the same form as that
representing the proportion of molecules with energy greater than
A, and suggests very strongly indeed that the condition for move-
ment is that molecules should possess enough kinetic energy to push
others out of their way. This is sometimes referred to as creating
holes in the liquid. That the creation of a hole should require an
amount of energy which is a more or less constant fraction of that
required to dissipate the liquid as vapour is wholly reasonable.
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Apart from the general parallelism with molecular weight there is
no simple relation between viscosity and structure.

Solubility

The forms observable in the world about us depend in an im-
portant degree upon the ways in which molecules remain free in the
gaseous state or agglomerate together, and upon the kinds of order
and mobility possessed by the condensed systems which they form.
Only less important is the degree in which these condensed systems
themselves are able to interpenetrate and mix.

All gases are completely miscible, liquids are more selective, and
solids more selective still. Nevertheless, solid solutions are not un-
common, and occur especially among metals, where they constitute
an important class of alloys.

The conditions governing miscibility in the solid state are fairly
well understood. The atoms and molecules which enter into the
mixed lattice must not differ by more than a limited margin in size.
Furthermore, the detailed study of alloys has revealed that the pos-
sible solid phases are determined by certain definite electron ratios,
and that in fact the structure is mainly governed by the concentra-
tion of valency electrons.

With liquids, the degree of order being much lower, conformity of
size is of far less importance. The solubility of A in B is mainly a
question of the mutual attractions AA, BB, and AB. If AA and BB
very much exceed AB, then the liquids remain as separate phases.
If the AB attractions prevail strongly, solubility is complete. In
intermediate cases limited miscibility is possible, because the ten-
dency of A to separate from B as a distinct phase depends not only
upon the AA attractions but upon the frequency of encounter. The
treatment of the phase equilibria is very similar to that of solid
miscibility discussed on p. 75.

If the AB attractions greatly exceed the AA-BB types, heat will
be evolved on mixture. But solution is frequently, indeed usually,
accompanied by absorption of heat. The mixture of A molecules and
B molecules involves a considerable increase in entropy, so that AG,
which is AH—TAS, may remain negative and thus correspond to
a spontaneous process in spite of a considerable positive value of
AH, which represents heat absorption.

The interaction terms of the AA, BB, and AB types are very varied
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and very specific, but one major classification exists, namely that
into polar and non-polar interactions. Substances with dipoles tend
to be soluble in other dipolar liquids, but to be insoluble in non-polar
media. In the same way, solid salts dissolve in liquids which in virtue
of their own dipoles possess high dielectric constants.

Solutions of electrolytes in water

Since the polar compounds of metals with non-metals are both
frequent and, from the point of view of their elementary chemistry,
simple, and since water, the commonest liquid of nature, possesses
a high dielectric constant, it happens that solutions of salts in water
not only are important in practical life but have played a very
prominent role—perhaps more prominent than they really deserved
—in the history of physical chemistry. Matters which fall into their
true perspective at the present stage often appear in rather too strong
relief at the outset of elementary courses in the subject.

The application of thermodynamic methods to the determination
of molecular weights showed salts to be dissociated in solution, a
result which helped to establish the accepted views about their
structure. If there is an equilibrium between molecules and ions of

the type MX < M+4X-,
then, on condition that the species present obey the gas laws in the
sense already considered,
[MAX]
mx] K.
If one gram molecule of the compound MX has been dissolved in
V litres and if « is the fraction dissociated, then

-@_@:K or (l—i%—i—/,:K.

V

This formula expresses what was called Ostwald’s dilution law, and
was at one time supposed to apply to all electrolytes which dissociate
into two univalent ions. It does in fact apply to what are called
weak electrolytes, a class of substances of which organic acids are the
commonest representatives.

In the historical evolution of the subject the variation of electrical
conductivity with increasing dilution was for some time attributed
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to the gradual rise of « towards unity, and « itself was computed
from the well-known relation of Arrhenius, « = Ap/A,. Ap and A,
are the equivalent conductivities at dilution V, and at infinite dilu-
tion respectively. Equivalent conductivity is specific conductivity
(reciprocal of resistance of a centimetre cube) multiplied by the
volume in cubic centimetres which contains one gram equivalent, so
that A, /A, would in fact measure the degree of ionization if the
inherent conducting power of the individual ions depended only on
themselves and not on the presence of others.

This last condition is fulfilled when the ionic concentrations are
very low, as they are in fact in dilute solutions of weak electrolytes.
The dissociation constants of substances such as weak organic acids
can be determined by a combination of the formulae of Ostwald and
Arrhenius, but the procedure is quite inadmissible for salts. Here
the degree of dissociation is large. In fact the value of « is often
indistinguishable from unity, and the mutual influences of the ions
are considerable. They are calculable in principle by methods due
to Debye and Hiickel, and operate differently on different properties.
The procedure outlined on p. 276 allows the calculation of the
activity coefficients. In general the thermodynamic properties of the
salt in solution correspond to those of a system with apparently
incomplete dissociation, not because the concentrations of the ions
are reduced by molecule formation but because the activity coeffi-
cients are lowered by mutual ionic influences.

The equivalent conductivity at finite dilutions is less than A, not
on account of incomplete dissociation but because the motion of each
ion in the electric field is interfered with by the others. An approxi-
mate correspondence between Aj,/A, and the apparent degree of
dissociation determined by thermodynamic methods is fortuitous in
the sense that the mechanisms underlying the reduction in activity
coefficient on the one hand and the lowering of the equivalent con-
ductivity on the other are different. Conduectivity of electrolytes has
lost some of the fundamental significance which it appeared to possess
in the days of Arrhenius, but it remains an interesting property of
one of the most important classes of solutions.

Electrical conductivity of solutions

Some of the principal facts about electrolytic conductivity will be
briefly summarized. Conductivity depends upon the number of ions
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in the solution, upon their charges, and upon the speed with which
they move under a potential gradient.

We consider a uni-univalent salt which is completely dissociated
giving ¢ gram ions of each kind in unit volume. Let there be a
potential gradient of £ volts per centimetre. The absolute mobilities
of the ions are defined as the speeds in cm./sec. with which they
move under unit potential gradient. These are # and v for cation
and anion respectively. Across unit section of the solution perpen-
dicular to the gradient the number of positive ions moving in unit
time in one direction corresponds to Ecu gram ions and the number
of negative ions moving in the other direction to Ecv gram ions,
since all the positive ions within a volume %X 1 or negative ions
within a volume »x 1 reach and pass the cross-section. Since one
gram ion of a univalent element according to Faraday’s law carries
the charge F, the total transport of electricity through the section
is EcF(u+v) in one second. This is the current in amperes, ¢:

1 = HBcF(u+v),

but ¢+ = E/p, where p is the resistance per cm. of a solution of 1 sq.
cm. in cross-section. 1/p = o, the specific conductivity. The equi-
valent conductivity, A, is given by

A = oXxdilution = a/c,
o= Ac and ¢ = FAc.
Therefore EAc = EcF(u+tv)
and A = Fu-tv).

When the dilution is great enough A = A, and the mutual inter-
ference of the ions is negligible. # and v are now characteristic pro-
perties of cation and anion respectively and of the solvent.

A, is in fact expressible as the sum of two independent terms, one
for the positive ion and one for the negative. These may be written
U and V respectively, so that

U4V = Fluiv),
and U/F =u and V/F =wv.

U and V are contributions to equivalent conductivity expressed in
reciprocal ohms: » and v are absolute speeds expressed in cm./sec.
under a potential gradient of 1 volt/cm.
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u and v may be determined by the direct observation of the move-
ment of coloured ions—or ions which have any measurable effect
on the optical properties of the solution: U and V from the measure-
ment of A, once the separate values have been found in any single
example.

The principle of the method for finding individual mobilities is as
follows. Ay is determined as a function of the dilution and A,
obtained by extrapolation. A, = U-+V. Theratio U/(U-+V), which
is called the transport number of the cation, is also obtainable, and
with a knowledge of this ratio together with the sum, the separate
values are calculable.

The transport number itself is found from a special type of experi-
ment, which will be exemplified by the case of silver nitrate. Suppose
a solution of this salt is electrolysed in an apparatus where the cathode
and anode compartments are so arranged that the contents of each
can be subjected separately to chemical analysis. If one Faraday of
electricity passes, one gram ion of silver is deposited at the cathode
and, in consequence of the discharge of nitrate ion, one gram ion
of silver dissolves at the anode. The total current is proportional
to UV and is made up of fractions of U/(U-V) of positive current
towards the cathode and of V/(U+V) of negative current towards
the anode. Thus U/(U+ V) gram ions of silver migrate from anode
compartment to cathode compartment and V/(U+-V) gram ions of
nitrate migrate in the opposite sense. The balance-sheet is thus

Cathode Anode
Ag+ NO; Ag+ NoO;
Gain . UU-+Vv) 0 1 ViiU+7V)
Loss . 1 VI(U4V) UN(U+TV) 0
Balance —V(U+7V) —VI(U+7V) +V(U+V) +VIU+V)

There is a net transport of V/(U--V) gram molecules of silver nitrate
from the cathode compartment to the anode compartment. This is
measured by analysis, so that the transport number is determinable.

The separate values of U and V for silver and nitrate ion are thus
calculable from A,. If now A, is measured for, say, sodium nitrate,
by subtraction of the known value for nitrate we obtain U for sodium:
measurements on sodium chloride then give V for the chlorine ion,
and so on.

As the concentration of ions in a solution increases, u and v, and
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correspondingly U and V, diminish. The ionic atmosphere of opposite
sign with which, according to the arguments of Debye and Hiickel
(p- 276), any given ion is effectively surrounded, impedes its motion
in a field. The major effect is due to the finite time required for the
establishment and dissipation of the atmosphere, the so-called time
of relaxation. Ifthe central ion moves,the new equilibrium configura-

2-2

Ve
Fic. 32

tion is not at once established. The atmosphere continues transitorily
to exist as a charge of opposite sign which opposes the departure from
its midst of the migrant. Calculations show that A varies according
to a law which at low concentrations assumes the limiting form

A= A_—anc,

¢ being the concentration of the electrolyte and @ a constant.

This law had been discovered empirically by Kohlrausch long
before its interpretation was understood. The constant @, while in
some degree specific for each salt, is to a major extent determined
by the valencies of the constituent ions. Thus uni-univalent, uni-
bivalent, and bi-bivalent salts fall into well-marked groups as illus-
trated (schematically) in Fig. 32.

The dominant influence of the ionic charges shows clearly that the
decrease in conductivity in the more concentrated solutions is caused
by electrostatic interactions between the ions rather than by the
specific molecule formation which occurs in weak electrolytes. It
might have pointed the way to the more modern theory earlier than
it did.
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Many substances occupy an intermediate position between the
highly ionized salts and the weak electrolytes. They are not fully
dissociated, yet the concentration of the ions which they form is high
enough to give rise to an important degree of mutual interference.

One of the most remarkable illustrations of the pictorial utility of
the ionic atmosphere theory is provided by the variation of electrical
conductivity with frequency. If a strong electrolyte is acted upon
by an alternating current, each ion may be imagined to oscillate
about a mean position. When the frequency is low the oppositely
charged atmosphere keeps on being dissipated and re-formed, but
with a time-lag which allows it to offer resistance to the migration
of the central ion. But when the frequency is high enough the ion
oscillates too rapidly for the atmosphere to suffer much change or
for much asymmetry to be created, so that the conductivity rises.

Some other properties of electrolytic solutions

It is, moreover, on account of the ionic atmospheres that the
viscosity of very dilute solutions of salts is greater than that of pure
water. When a velocity gradient is continuously maintained in the
liquid the ionic atmosphere becomes distorted, since it does not reach
the equilibrium configuration instantaneously. If a given positive
ion is at O and there is a positive velocity gradient in the direction
BOA, then the velocities relative to that at O are as shown in the
diagram. Excess negative electricity is carried forward at AP and
a similar excess lags behind at B@. The resulting electrostatic attrac-
tions tend to reduce the velocity gradient and thus to manifest
themselves as contributions to the viscosity.

AP

l

)

|

@< B

Salts dissolve in water and other polar solvents in virtue of the
powerful interaction between their own charges and the dipoles
present in these media. Round each ion the molecules of the solvent
probably form loosely patterned configurations with some degree of
order. The more rigidly defined is this pattern the lower is the en-
tropy of the solution. On the other hand, the greater is the running
down of potential energy which accompanies its establishment and
the greater the energy released.
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Solubility varies with temperature according to the formula

dlns . AH
dT ~ RT¥

whence § = Ae~AHIRT — eASIR g~AH|RT

—RT1Ins is the free energy of solution and equal to AH—TAS.
From dIns/dT, AH is calculable, and thence AS when s itself is
known. An inverse correlation between the energy and entropy
terms in the sense expected is in fact often in evidence.

In connexion with the question of solvent orientation there has
always been a good deal of discussion as to whether definite ion
hydrates exist in aqueous solution, but this has lost much of the
significance which it seemed to possess before the idea of patterned
configurations in liquids became current. Indeed the problem tends
to resolve itself into one of those slightly tiresome matters of defini-
tion. There is a striking gradation in the ionic mobilities of the alkali
metals. Lithium, the lightest and in itself presumably the smallest
ion, moves slowest and caesium, the heaviest and largest, the fastest.
If the ions were free spheres moving through an ideal continuous
viscous medium, they would suffer resistances proportional to the
squares of their radii, and lithium would be the most mobile. It
follows that the water in some way impedes the motion of lithium
more effectively than that of caesium. The water dipoles can close
in more tightly on the smaller ion and give a more rigid configuration
of lower mobility. Whether or not this is called hydration is a matter
of choice. If salt solutions are electrolysed with membranes parti-
tioning the solution, or with reference non-electrolytes present, a
differential transport of water by the two ions can often be demon-
strated. Evidently, then, the ions do not move without causing some
displacement of water molecules in the same direction, and to an
extent which varies specifically from one ion to another.

Aqueous media and hydrogen-ion concentration
Water is the commonest solvent, and it is dissociated to a small
extent in accordance with the equation

H,0+H,0 = H,0++0H-,
which may be formally written
H,0 == H+4O0H~.
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The rules of thermodynamie equilibrium require, in so far as the ions
obey the gas laws at very low concentrations,

[H*)[OH"] = K,
the concentration of the water itself being constant.

If acid or alkali is added to the water, the ionic product must still
remain constant, except in so far as the concentrations are replaced
by activities ag+@op— = constant.

The tonic product of water is a constant of very great importance
for the following reasons.

First, water is the medium which bathes all living tissues, which
consist largely of proteins containing ionizable acid and basic groups.
The balance of their ionization (which determines their properties to
an important extent) depends upon the hydrogen and hydroxyl ion
concentration of the medium, and these two concentrations are con-
nected permanently by the value of K.

Secondly, a great many chemical reactions are catalysed by sub-
stances which can either receive or donate (unhydrated) hydrogen
ions, so that the influence of a medium upon changes occurring in it
is often largely determined by the hydrion concentration.

There is a well-established convention according to which the state
of the medium is described by what is called the pH. This function
is simply the negative logarithm of the hydrion concentration. At
ordinary temperatures K, is of the order 10-4, so that in pure
neutral water, [H] = [OH~] = 107 (gram ions/l.) and the pH is 7-0.
N/100 strong acid, in which the hydrion concentration is 10-2, has
pH equal to 2, with the hydroxyl ion concentration equal to 10-2.
N/100 alkali has pH 12.

The pH of a medium is best maintained at a standard value by
the use of what is called a buffer solution. This is one in which the
hydrion concentration is defined by an equilibrium between species
present in large enough amounts not to be seriously influenced by
the addition of impurities. The equilibrium

[H][Ac] _ O Gae
[HAc] = K, or better, dma K,

defines the hydrion concentration, or activity, in terms of the ratio
of acetate ion to acetic acid. Iflarge concentrations of sodium acetate
and acetic acid are mixed they define a pH which is not disturbed
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by small additions of anything else in the way which a minute con-
centration of a single pure acid could be.

The various arts and devices for preparing and using buffers and
for measuring the pH are outside the scope of this discussion. We
should, however, indicate briefly the method by which K, itself is
determined.

In a hundredth-normal solution of sodium hydroxide the hydrion
concentration is too small to affect the numerical value of [OH]
which as nearly as may be is 10-2. If then the hydrion concentration
of this solution is found by any indirect method, the product of the
answer with the known value of [OH] gives K,, directly. The minute
value prevailing in the alkaline solution, 10-!2, can be measured by
the use of a concentration cell (p. 285). A platinum electrode sur-
rounded by gaseous hydrogen behaves like a metal electrode rever-
sible to a cation, in this case hydrion. Two such electrodes immersed
respectively in acid and alkali give a concentration cell from the
electromotive force of which the ratio of the two hydrion concentra-
tions can be calculated. That in a solution of dilute acid is known
by chemical analysis (if the acid is dilute enough to be all dissociated
while still strong enough to be analysed): hence that in the alkali is
calculated. All data for evaluating K, (apart from various some-
what difficult corrections) are now available. In all such determina-
tions the choice of conditions and the manipulation of the results
in such a way as to obtain the most accurate values is a matter for
special art.

Another method which is interesting in principle is to find K,
from the conductivity of pure water. Given that the molecular
conductivity is known, and that the mobilities of the two ions are
measured separately by the use of acid or alkali, the concentrations
of the ions may be calculated and K,, worked out. The difficulty is
to know when the water is pure, since normally it contains dissolved
substances which contribute far more to the conductivity than its
own ions do. The problem was solved by a special device. The
temperature coefficient of the dissociation of water is high, since it
depends upon the displacement of an equilibrium: moreover, the
numerical value may be known from the heat of the dissociation
(which is nothing other than the heat of neutralization of strong
acid by strong alkali) by the application of the thermodynamic
equation dIn K/dT = AH/RT?. The temperature coefficient of the
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conductivity due to the impurities is low, since it does not depend
upon an equilibrium shift. Therefore, as water is progressively puri-
fied, the conductivity falls, while the temperature coefficient rises.
The one quantity can be plotted against the other, and the curve
extrapolated to show what conductivity would be possessed by water
of the (unattained) degree of purity corresponding to the theoretical
temperature coefficient. From this conductivity the degree of ioniza-
tion and K, are calculated.

There are other methods, one at least of which is technically easier
than those mentioned, but these are the most interesting in principle.



XVII
MATTER IN DISPERSION

Disperse phases

EXTENDED masses of homogeneous or nearly homogeneous phases
are common enough in nature. They occur in the air, in the sea, and
in the crystalline rocks and minerals. But equally conspicuous are
forms in which dispersion seems to be the order of the day, from
clays and muds, foams and latexes, to the intricate and tenuous
structures of living cells and their conglomerations.

In so far as a condition of minimum potential energy is sought,
massive phases are favoured, and small particles or droplets tend to
fuse together into larger ones. If, for example, a drop of a liquid 4
is surrounded by another liquid B, the condition that it should not
dissolve is that the attractions between the molecules of 4 should
outweigh those between molecules of 4 and molecules of B. This
being so, molecules in the surface layer of 4 are subjected to a pull
into the interior of the drop. The greatest response to this pull is
made when the surface between the two liquids assumes its minimum
area.

The work done by the forces when the interfacial area is reduced
by dA may be written o dA, where o defines the surface tension of A
in contact with B, and the work measures a change in surface energy.
The surface of a sphere being proportional to the square of the radius,
72, and the volume to the cube, 73, the ratio of surface to volume
varies as 1/r. The surface energy of a given mass of liquid is a mini-
mum, therefore, when it forms one drop of large radius rather than
many drops of small radius.

The tendency of small drops of liquid to coalesce to large ones is
manifested in an increase of vapour pressure with diminution of
radius. The relation between vapour pressure and drop radius is
easily calculated. When a small amount of liquid, volume dV,
evaporates from a drop of radius r, the change in surface area is dA.

We have V = &mr®, dV = 4ar2dyr,
A = 472, dA = Sardr.
Therefore d4 = gglj{

r
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The diminution of surface energy due to the contraction of area is

given by 90 dV

r

cdd =

The vapour is obtained at vapour pressure p, which is greater than
that, p,, corresponding to an infinite mass of liquid with a plane
surface. When the vapour is evaporated from the drop at p, ex-
panded till the pressure drops to p,, and condensed into the large
mass, the work obtained (cf. p. 61) is de RT In(p/p,), where dz is the
number of gram molecules corresponding to dV. We have also
Mydx/dV = p, where M, and p are molecular weight and density
respectively. The work obtained from the expansion of the vapour
is derived from the energy yielded up in the contraction of the
surface during the evaporation. Equating the two free-energy terms
p

fi
we find ?g_pRTln__
r My po

When 7 -> oo, In(p/p,) = 0, and p/p, - 1. The formula expresses
quantitatively the tendency of large drops to grow at the expense of
small ones, and thus for bulk phases to be produced.

Similar relations hold for small particles in contact with a solution,
if vapour pressure is replaced by solubility. Larger crystals of solids,
in virtue of their lower vapour pressure and solubility, tend to grow
at the expense of smaller ones. For qualitative purposes small
crystals of solids may be treated as spheres to which the above
formula is roughly applicable. In fact, however, each face of a crystal
has its own specific surface energy, and the condition for equilibrium
is that the total surface energy shall be a minimum. This condition
involves not a minimum surface area but a compromise in which the
faces of higher energy are reduced and those of lower energy are
increased. For a given mass there is thus an equilibrium shape. It
still remains true that one large crystal has a lower energy than
several smaller ones of the same total mass.

These influences make for uniformity and continuity in the distri-
bution of matter, but an opposing tendency is also observable.
Ordinary crystals consist, in general, not of single perfect blocks but
of a mosaic of smaller ones with planes of easy fracture between
them. This structure is partly the result of the conditions prevailing

during growth. A minute inclusion of impurity-—which is never
5293 Z
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wholly absent—is enough to deflect the planes of deposition so that
invisible faults and cracks result. Another powerful influence must
be the irregular temperature gradients in which all real systems
growing at a finite rate evolve. Even in the most carefully controlled
thermostats they still exist, while outside the laboratory the relation
of earth and sun makes temperature inequalities a major factor in
determining the course of natural phenomena. Alternate heatings
and coolings set up strains even in crystals which initially are per-
fect. The same agency helps to denude rocks.

But these effects are manifestations of the lack of equilibrium in
the world, and such processes as the attrition of sand by the action
of the wind contribute in a humble way to the degradation of solar
energy. It remains true that the bulk phases are the stabler. In
metals the large crystals grow by annealing, and by suitable me-
chanical and thermal treatment perfect single crystals are obtained.
Yet the disperse systems come into existence and not infrequently
achieve a relative degree of permanence.

That new phases should originally be formed in a disperse state
is a natural consequence of growth from nuclei. In precipitation,
whether from the gaseous state or from liquid, the original nucleus
formation is usually a matter of chance. Minute centres are produced
in a random way throughout the original phase, and these grow until
the transformation is complete. The result is a disperse system of
particles which constitute a fog or a suspension. How fast these
coalesce is a matter which depends upon circumstances having
nothing to do with their formation.

When solutions of gold salts are reduced, suspensions of metallic
particles known as gold sols are produced. Some reducing agents
favour formation of many fresh nuclei; others are unable to do this,
but can cause deposition of fresh gold on those already formed. If
small nuclei produced by the first kind of reducing agent are added
to a solution containing a gold salt mixed with the second kind of
agent, precipitation occurs steadily on a constant number of nuclei
until the supply of gold is exhausted. A suspension of particles of
uniform size results. With reducing agents which produce new nuclei
throughout the course of the reduction, suspensions of very uneven
particle size result.

In this and other examples the initial dispersion depends upon the
mode of formation. The stability depends upon quite different
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factors. Gold sols are relatively stable. The thick jellies of calcium
carbonate formed by mixing very concentrated solutions of calcium
bromide and sodium carbonate change in a few minutes to a coarsely
crystalline form. Fogs, foams, and emulsions vary in stability as
widely as sols.

Stabilization of disperse systems

The factors which make for the stabilization of disperse forms are
of great importance. They operate in virtue of a process called ad-
sorption, which is the preferential concentration of certain kinds of
molecule at the boundary surface between two phases.

Tt is illustrated by the behaviour of a soap (which is the alkali salt
of a long-chain fatty acid) at the boundary of benzene and water.
Groups such as —COONa favour solution in the water, as evidenced
by the properties of sodium formate or acetate, while the hydro-
carbon chains favour solution in benzene. The soap molecules make
the best of both worlds when they become concentrated in the inter-
facial zone so that their carboxylic groups, with or without their
associated alkali ions, are in contact with the water, and the rest
of the molecule penetrates into the benzene. In the state of equi-
librium the concentration of soap at the boundary exceeds that in
either of the liquid phases.

The enrichment of the interfacial layers is attended by a decrease
in free energy which is the greater the larger the area involved. The
adsorption, therefore, stabilizes the finely dispersed system of drop-
lets which constitutes an emulsion.

Oil and water having been agitated together normally separate
rapidly, but in presence of various agents with the requisite adsorp-
tive properties form stable emulsions. Substances which draw these
agents back into solution in either phase will break the emulsion.

In the system which has just been discussed the adsorption occurs
in virtue of the specific affinity of the parts A and B of the adsorbed
molecules for phases I and II respectively.

A—-B
Phase I A—B Phase IT
A—B

A similar effect would be produced by an attraction between B and
the molecules of phase Il and a mutual attraction between the A
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groups themselves. Phase I might well then be a relatively indifferent
medium such as air, and the considerations just applied to explain
the stability of emulsions could be transferred to foams and froths.

Chemical inhomogeneity at interfaces can manifest itself in nu-
merous ways. If molecules of a type A are strongly attracted by
others of type M but not powerfully enough to overcome the mutual
forces between the individuals of their class, then adsorption of A
by M will occur but no solution.

The forces which hold A to the free surface of a continuous mass
of M may be of any kind—van der Waals forces, whether of the
London type or of the dipolar type, interionic forces, or covalencies.
The adsorption of gases by charcoal at low temperatures depends
upon van der Waals forces. At high temperatures oxygen is held
by covalencies. Oxygen and hydrogen may, according to circum-
stances, be taken up by metals as molecular layers or as surface
films of oxide or hydride.

In the stabilization of disperse systems ionic forces play a specially
important part. When arsenic sulphide is precipitated from an
arsenical solution by hydrogen sulphide a stable sol is obtained, the
particles of which can be shown by observation of their migration in
an electric field to bear a negative charge ascribable to adsorbed
ions. Metal sols, whether formed by precipitation or by the passage
of a discharge between metal electrodes under water, also possess
negative charges. Ferric hydroxide sols are positive. The adsorbed
ions have the important effect of creating a repulsion between the
particles in the sol and so hindering their agglomeration and precipi-
tation.

The addition of electrolytes to a sol, by offering the opportunity
for a compensating adsorption of ions opposite in sign to those which
stabilize it, cause precipitation. The efficacy of various salts is in
some degree specific, but governed by one overriding principle,
namely, that in the coagulation of a negative sol, positive ions of
high valency are specially powerful and in that of a positive sol,
negative ions. To cause precipitation within, say, one minute of
addition to a positive sol, the amounts required of sodium chloride,
sodium sulphate, and sodium citrate would be of the orders of magni-
tude 1,000:50:1. For a corresponding action on a negative sol the
amounts of sodium chloride, barium chloride, and aluminium chloride
would be in somewhat similar ratios.
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Quantitatively the problem is a compiex one, since the effect
depends upon the differential adsorption of the two ions contributed
by the salt. But if the condition for coagulation is that a given charge
should be neutralized, then the number of univalent ions required is
three times as great as the number of tervalent ions and the proba-
bility that the necessary adsorptions shall oceur is much smaller.

In solutions of compounds like soaps, particles of a special kind
make their appearance. These consist of a central core of non-polar
material, such as hydrocarbon chains, with a periphery of ionizable
groups such as carboxyl groups. The particle may effectively consti-
tute a very large ion with a high charge. Since the viscous resistance
to the motion of such an ion varies as the square of its radius and
thus as the two-thirds power of its volume, while the force acting
upon it varies with its total charge which can be considerable, the
electrical conductivity of the solution is sometimes very high.
Substances which form such solutions are referred to as colloidal
electrolytes.

The application of the usual equilibrium law to the dissociation of
colloidal electrolytes gives in rough approximation

[R*-][Na*}* — constant.
If this product is exceeded precipitation occurs. The solubility is
thus very sensitive to the concentration of the cation. This general
principle explains the precipitation of such bodies as proteins by
salts. The individual relationships are, however, of great specificity
and complexity and will not be further dealt with here.

Changes in concentration at interfaces not only play a considerable
part in regulating the forms assumed by disperse systems: they are
of importance in themselves in connexion with such phenomena as
the adsorption of gases, vapours, or dissolved substances by charcoal
and by various catalytic agents.

The Gibbs relation

Negative adsorption, such as the depletion of the dissolved sub-
stance at the boundary of a solution, may occur as well as positive
adsorption. The condition is that the surface layers of uncontami-
nated solvent should be more stable than layers into which solute
penetrates. This might at first sight appear to imply also the condi-
tion of insolubility. But the boundary layers of a solvent differ quite
a lot from the bulk phase in that they are often oriented and possess
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a distinctive structure of their own. If solvent—solvent interactions
in the specialized interfacial regions are more powerful than solvent-
solute or solute-solute interactions, then relative displacement of
solute into the interior will occur.

Positive and negative adsorption are closely connected with changes
in surface tension. If the entry of solute into the boundary layer
gives a more stable structure, then the surface energy is lowered and
the tendency of the surface to contract is weakened. Thus the condi-
tion for positive adsorption is that the surface tension is reduced by
the solute. Conversely the condition for negative adsorption is that
it is enhanced.

There is a thermodynamic relation between the adsorption and the
surface-tension changes. Creation of concentration differences by
accumulation of molecules in a boundary layer would, in itself, repre-
sent an increase in free energy, but it is compensated by the fact
that the surface free energy is correspondingly lowered, since o is
decreased. An equilibrium between the two effects is maintained.
The simplest derivation of the well-known Gibbs relation which ex-
presses the balance will now be given.

Suppose a solution is reversibly diluted by the addition of dV of
solvent, the area of the surface of the liquid remaining constant.
The change in free energy is —II 4V, where II is the osmotic pressure.
Now let the surface area be increased by dA (for example by allowing
the liquid to flow into a shallower vessel). The increase in free

energy is 0
(0'—|— b dV) i,

the surface tension, which was o before the dilution, having now
changed. The total change in free energy accompanying the dilution
and the surface alteration is thus

do
—d — .
(0+W V) dA—TIdV

The same result could be achieved by carrying out the operations
in the reverse order, namely with increase in area first and then
addition of more solvent osmotically. The expression for the change
of free energy in the second procedure is

adA—(H +g dA) av.
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The two expressions must be equal by the second law of thermo-
dynamies. Therefore,

do oIl
8y a4’
do oc oll ec
or e et i
oc oV oc 04

¢ = n/V, where n is the number of gram molecules of solute present
in the whole system. Thus

ac n c?

v VR T ar
Also, if the solution is dilute enough for activity to be taken as
equal to concentration, I — cRT

¢ 0o _mdéc L b
RTaoc  cod o4’

The coefficient oc/64 is the change in the number of gram mole-
cules in unit volume of the solution caused by unit increase of area.
V(ec/oA) is therefore the amount of solute from the whole solution
which must have pagsed into some interfacial region when the surface
underwent unit increase. It must correspond to the quantity usually
called I, the surface excess. Thus

It follows that

ac
P=-V
¢ Oo
or P=—%ra

From experimental measurements of the influence of a given
substance on an interfacial tension its tendency to accumulate in or
to avoid the boundary region may thus be inferred.

Boundary regions and bulk phases have their own special struc-
tures and their own special energies. That is why forms of delicacy
and intricacy are possible in nature; or at least an important part
of the reason.

Adsorption isotherms

Equations which express, for a constant temperature, the relation
between the amount of a substance occupying unit area of an inter-
facial region and the concentration in the continuous phase are called
adsorption isotherms.



344 MATTER IN DISPERSION

The simplest is represented by the Langmuir isotherm which will
be derived for the simple example of a gas adsorbed on a solid, the
derivation being, however, applicable with minor changes to other
examples. It is assumed that there are on the surface a definite
number of sites which are capable of accommodating adsorbed mole-
cules, and that when these are occupied the surface is saturated.

When the pressure of the gas is p, the fraction of the sites filled
with adsorbed molecules is x.

For equilibrium the rate of condensation of molecules on to vacant
sites equals the rate of evaporation from occupied sites. Thus

klp(l—x) = kzxa

p .
p+kofley
x rises from zero to unity as p rises from zero to infinity, but for
suitable values of k,/k, very nearly reaches unity at moderate finite
pressures.

The assumption of a defined number of sites for adsorption is
consistent both with experimental evidence and with the very short
range of action of molecular forces, which in general are not trans-
mitted through one adsorbed layer to a second one. Multiple layers
probably occur in the adsorption of vapours when they are near to
their saturation pressures. A solid adsorbent then forms a base on
which the first layer is taken up and this itself forms the base for
a second, but in virtue of its own attractive forces rather than those
of the underlying solid. We are dealing in such cases with an anticipa-
tion of the liquefaction process which would set in at a somewhat
higher pressure even without the help of the solid surface.

The Langmuir isotherm represents the simplest possible case, but
it is of considerable practical utility. It usually describes observed
behaviour qualitatively, and quite often with a reasonable quantita-
tive success. The over-simplification which it involves is essentially
the disregard of the mutual interactions of the adsorbed molecules
themselves. The presence of molecules on a surface may, according
to circumstances, either facilitate or impede the adsorption of others,
so that much more complicated relations of p and z result. The
appropriate equations to express them must in the nature of things
involve more constants than the Langmuir isotherm. They consti-
tute a specialized study.
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The form of isotherm expressed by the Langmuir equation is shown
by curve @ in Fig. 33. Curve b is an isotherm for a system in which
a strong co-operative effect exists between the adsorbed molecules.
The field due to adsorbed molecules already on the surface contri-
butes to the holding of fresh adherents. Such effects foreshadow
liquefaction or crystallization, but sometimes only remotely.

P
Fic. 33

Other complications may be contributed by the nature of the ad-
sorbent itself. If it contains capillaries and narrow crevasses, con-
densation of liquid from vapours near their saturation pressures will
oceur, and a strongly sigmoid isotherm will result.

The condensation of a vapour into a wide vessel would take place
abruptly at the saturation pressure, and if the amount of liquid in
the vessel were plotted as a function of the pressure of the vapour,
a curve of the form shown in Fig. 34 would be obtained. In this
diagram the height of @ would be simply a measure of the capacity
of the vessel. p, is the saturation pressure. If the radius of the vessel
were reduced to capillary dimensions, p, would fall very considerably,
as is shown by the thermodynamic calculation already given (p. 337).
A mass of an adsorbent such as active charcoal may be regarded as
equivalent to a series of vessels of varying radius and capacity.
(Narrow laminar spaces between planes have the same effect as
capillaries for this purpose.) In such a system the idealized form
of Fig. 34 becomes that of Fig. 35. From the slope of the curve at
different points the distribution of effective pore sizes could be
calculated. Some vapours, notably that of water, are in fact ad-
sorbed by active charcoal according to curves of the shape shown
in Fig. 35: others give isotherms approximately of the Langmuir
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type. Broadly speaking, the differences in behaviour depend upon
the relative importance of the interactions between surface and ad-
sorbed molecules on the one hand, and the contribution made by
the mutual forces between the adsorbed molecules themselves on the
other.

———
x x
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Another factor affecting the form of adsorption relations is the
geometrical one that the number of molecules which the surface can
accommodate varies according to the regularity of their packing.
A random occupation of sites by irregularly oriented molecules will
effectively block further adsorption before more than a fraction of
the total sites is filled, whereas an orderly accession might have left
room for many more. Complex time-lags and hysteresis effects may
result from circumstances such as these.

The various influences of the molecules already present on the
adsorption of fresh recruits are reflected in functional relations be-
tween x and the heat of adsorption, which is seldom constant over
any wide range.

Surface films of sparingly soluble substances

Sparingly soluble substances, such as compounds with a long
hydrocarbon chain and an active end-group, spread on the surface
of water to give unimolecular films. The molecules are anchored by
the penetration of groups such as hydroxyl into the water, but they
do not dissolve bodily. Such films constitute what is virtually a two-
dimensional state of matter, and they are of special interest in that
many of the characteristic properties of three-dimensional systems
reappear with appropriate modifications in this restricted world,
which has been rather thoroughly explored by Rayleigh, Pockels,
Devaux, Langmuir, and Adam.
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The key experimental method is the measurement of the surface
pressure F', that is, the number of dynes acting on 1 cm. length of
a mechanical barrier by which the film can be compressed. The
extent of the water surface which the film covers can easily be made
visible, so that the area, 4, may be determined as a function of F,
and the equation of state of the two-dimensional phase may be
discovered.

Different types known as gaseous, condensed, and expanded films
are distinguished. In the gaseous films there appears to be free
motion of the molecules over the surface, and in certain examples
an equation FA = kT has been verified. This is the analogue of
Boyle’s law, and k itself has approximately the value to be expected
from a variant of the kinetic theory calculation of gas pressure.
The equation holds only for large values of A. As the pressure in-
creases, F'A passes through a minimum, just as pV does with an
imperfect gas. At certain pressures condensation occurs to a film
which is very resistant to further compression.

In some films there must be a powerful lateral adhesion between
molecules, since the area remains small even at zero pressure. These
are the condensed films and correspond to matter in bulk in the liquid
or solid state. In them actual polymorphic changes may occasionally
be observed to occur at definite temperatures, so that the analogy
is quite a far-reaching one.

In some examples the transition from gaseous to condensed films
has been observed as a function of temperature. At some tempera-
tures there is a collapse to the condensed state when the pressure
exceeds the two-dimensional analogue of the vapour pressure, but
above a critical temperature this no longer oceurs.

Just as in other phase relationships, there is the usual complex
specificity. The energy and entropy conditions prescribe various
configurations for the two-dimensional array of molecules, which
cannot be so closely packed as to be incapable of executing the
motions required by the temperature and by their own dynamies.
Hence arise varying degrees of covering by the condensed films,
varying angles of tilt of the chains with respect to the water, and
S0 on.

The molecules concerned in the formation of surface films are
usually dipolar, so that the interface acquires special electrical pro-
perties. These are susceptible of rapid measurement and thus provide
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one method for the investigation of occurrences in labile systems
such as those undergoing chemical reactions.

A greater variety of specific interactions can arise at or near the
boundary of two phases than in the bulk of any single one. Peculiar
combinations of mobility with orientation can exist, in which the
character of a gas is in some degree harmonized with that of a crystal.
Structures not at all possible in a three-dimensional continuum can
be built by appropriate relations of surfaces. It is not surprising,
therefore, that surface films play so prominent a part not only in
the catalytic reactions of the inorganic world but in biology. The
scheme of things depends greatly upon its regions of transition.

Colloid chemistry

Many of the disperse systems which are commonly observed in
nature or in the laboratory owe their origin, as we have seen, to the
unbalanced forces which act at phase boundaries. Others, however,
depend upon the existence of molecules so large that they must be
deemed to count in a macroscopic sense as particles themselves.
Such are the molecules of proteins like gelatine, polysaccharides like
starch, and the polycondensation products formed in the laboratory
from substances with several functional groups.

In solution these substances scatter light, they exhibit high vis-
cosity and low diffusion rates, and they enter into complex structural
relations with the solvent. In some of their physical properties the
solutions, although they are true solutions by many criteria, simulate
the sols and gels of the more truly heterogeneous systems. Owing
their stability, however, to the interactions between their own mole-
cules and the solvent, they are less subject to coagulation and precipi-
tation. In so far as they form solutions they are called lyophilic, in
contradistinction to the easily precipitable sols of inherently in-
soluble substances such as metals or arsenic sulphide in water, which
are called lyophobic.

The famous distinction made by Graham between crystalloids and
colloids was based primarily upon ease of diffusion through mem-
branes in the process known as dialysis. The non-diffusible colloids,
as is now realized, owe their property to a wide variety of circum-
stances, and what came to be called colloid chemistry has grown into
a vast and miscellaneous subject.

Substances often tend to assume colloidal properties in virtue
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simply of a very great molecular weight. Polymerization or poly-
condensation reactions which build up such bodies are seldom so
exactly controllable that all the molecules formed are of equal size.
If, for example, the condensation of a dibasic acid with a glycol gives
an ester with an average molecular weight of 5,000, the product will
normally contain many molecules larger and many smaller than the
average. It will be precisely characterized, not by its molecular
weight alone, but by the frequency distribution of various molecular
weights among its constituents. Chemically its behaviour may con-
form well enough to that of a single compound, but physically it will
constitute a system of many components, a fact which may be
reflected in lack of crystallinity, indefiniteness of melting-point, and
in such mechanical properties as plasticity. The way in which
physical and mechanical properties are governed by average mole-
cular weight and by molecular weight distribution in macromolecular
compounds of any given class constitutes another elaborate and
specialized study which has come to assume no little importance.
Colloid chemistry can also be deemed to include the study of the
structure and properties of various extended phases which are solid
but non-crystalline, such as gels. A few words about the relation
of these to other forms of material may not be inapposite at this
stage. As we have seen, continuous solid lattices may be built up
from small units when these are held by van der Waals forces, or
when they become linked one to another by covalencies. We know
that mixed crystals may be formed. Sometimes this is due to simple
replacement of similar molecules one by another, sometimes, no
doubt, to specific interactions of the two components. If the size
relations are suitable, very unlikely-seeming molecules may room
together. In an extreme case we have the clathrate compounds,
where molecules of aromatic substances form cages which hold in
the solid lattice large quantities of inert gas atoms. In the compound
of quinol and argon four out of five of the cages made by the former
contain atoms of the latter. Size, on the one hand, and interaction
forces, on the other, interplay, in general, in a complex way. We know
that liquids, though mobile, have a residue of ordered configuration,
and we know that liquids may bring solids into solution. It is hardly
surprising, therefore, that when a liquid, possessing mobility and a
degree of order, interacts with molecules of a polymerized substance,
some very original architectural combinations may result. The long
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molecules may form frameworks, into which the liquid, already need-
ing but little inducement to form ordered arrays, fits. If the girder-
like structure provided by one component is deformable, as it may
well be, then the natural mobility of the liquid content allows it to
conform, and special elastic properties result.

It is hardly reasonable to expect a general theory of such systems.
All that can be said is that the factors which govern their properties
are already operative in simpler examples, and that the more compli-
cated types must be understood in terms of analogies drawn from
various sources. That is why the subject remains on the whole at
the qualitative level. What does emerge in a striking way is the
wealth of forms which arise from the interplay of relatively few
fundamental motifs. This is specially significant for the understand-
ing of the way in which natural forms originate and of the merging
of physical chemistry into the related parts of geology and biology.



PART VI
PASSAGE TOWARDS EQUILIBRIUM

SYNOPSIS

TaE world, not being in equilibrium, presents a complex spectacle of changes
varying from the almost instantaneous to the imperceptibly slow. The rates
of chemical transformations offer a more intricate problem than equilibria.
If the speeds of direct and inverse reactions are known, equilibria can be
calculated, but the converse proposition does not hold. Infinitely numerous
pairs of values for the rates are consistent with the same equilibrium constant.
In fact, alternative routes to the same chemical equilibrium are not only
possible in principle but followed in practice, often simultaneously.

No theories which liken chemical reactions to processes of hydrodynamic flow,
or which introduce conceptions such as friction and lubrication, are of much
help. Chemical reactions require a statistical interpretation. Molecules capable
of even transient existence represent configurations with a minimum potential
energy. The products of a reaction correspond to a lower minimum than
the initial substances, and the two minima are separated by a maximum.
This maximum corresponds to a transition state, access to which is possible
only for those molecules which acquire activation energy (E). If the activation
energy is known, the probability that molecules acquire it by collision or
otherwise is calculable from the statistical distribution laws. The need for
activation explains the factor e~EZ/ET occurring in all expressions for reaction
rate, and determines the characteristic form of the temperature-dependence.
A survey of many reactions reveals numerous correlations between variations
of rate and changes in £.

There is a possibility, indicated by wave-mechanical theories, that micro-
scopic systems may pass from one state to another separated from the first
by an energy barrier without actually acquiring the high energy corresponding
to the intermediate region. This so-called tunnel-effect appears to operate in
the escape of a-particles from nuclei, but for systems with the masses, energies,
and distances usually involved in chemical reactions it appears unimportant.

Rates of transformation are governed by the need that the requisite mole-
cular encounters should occur, that activation energy should be available, and
that the orientations and internal conditions of the colliding molecules should
be correct. Or, according to an alternative statement, the rate may be related
to the statistical probability of a transition state having a specified configura-
tion.

Activation energies are calculable in principle from interatomic forces, and
are easily determined by experiment. With certain tentative assumptions,
the problem of estimating absolute reaction rates may then be attempted on
the basis of kinetic and statistical theories. In some simple examples the
estimates are reasonably successful. In the simplest cases the rate is equal to
the number of collisions in which activation energy is available, but usually
much more complex conditions have to be fulfilled.
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In bimolecular reactions all conditions must be satisfied at the moment of
encounter: in unimolecular reactions they may be satisfied at any time
between the collision which imparts the activation energy and the next one—
in which the energy is likely to be removed again. For this reason the absolute
rates of unimolecular reactions tend, for a given value of E, to be much higher.

Very many chemical reactions take place in a series of steps, each one of
which satisfies certain criteria of simplicity, often consisting in a transfer of
electrons, the breaking of a single bond, or the exchange of a single atom
between two molecules. A limit to the simplification of mechanism is set by the
high activation energy which the most primitive steps, such as resolution into
atoms, would demand. In related series of reactions there is often an inverse
correlation between the effects on the rate of the activation energy (low values
of which correspond to high rates) and of the so-called entropy factor (low
values correspond to small rates). Roughly speaking, the more primitive
processes require more energy but are more probable in other respects.

Not infrequently, however, a difficult initial formation of free atoms or
radicals leads to the propagation of a chain reaction which greatly multiplies
the effect. Sometimes the chains may branch, when special phenomena of in-
flammation and explosion may occur at sharply defined limits of concentra-
tion.

The addition of foreign substances to a reaction system may open the possi-
bility of alternative reaction mechanisms of lower activation energy (or
occasionally more favourable transformation-probability). The resulting
increase in the speed of attainment of equilibrium constitutes catalysis, but
there is no single theory of this phenomenon, which is practically coextensive
with the whole of reaction kinetics.

Chemical reactions are propagated in space as well as in time. Flames and
explosions travel with definite speeds, new phases grow, and interdiffusion
phenomena may lead to periodic precipitation effects.

The linking of reactions in space and time manifests itself in the growth and
functioning of the living cell. This is an autosynthetic system which possesses
adaptive and other properties which in a considerable degree depend upon the
principles of chemical kinetics.

The structure of the organic world is ordered, but the maintenance of the
order is compensated by concomitant increases in entropy. From one point
of view living systems are by-products of degradative processes, but this point
of view is far from being the only one, or even the most important.



XVIII

THE STATISTICAL NATURE OF
CHEMICAL CHANGES

Passage to equilibrium

IF the world reached equilibrium it would be a sterile and ungracious
place: winds and rivers would become quiescent, fires burnt out, and
life extinet. All the events which give vitality and movement to the
scene are transitions towards equilibrium from the condition of
violent unbalance in which the universe was found at the beginning
of the present cosmological era—whenever and whatever that in-
comprehensible point of departure was.

Among these happenings chemical transformations, nuclear, atomic,
and molecular, play their titanic and their subtle roles. Nuclear
reactions control the rate of release of energy from stars, and thus
in turn everything of interest to humanity: and the cerebral me-
chanisms by which humanity is enabled to take an interest in any-
thing at all are controlled by intricate molecular changes in chemical
compounds of high molecular weight.

The routes to equilibrium are manifold and tortuous, and the
theory of the processes of change more complicated than that of
equilibria themselves. Apart from a passing consideration of nuclear
changes we shall be concerned only with chemical reactions in the
ordinary sense of the term.

At the outset the principles which govern the rate of establish-
ment of equilibrium were by no means easy to discern. Obviously
much of the matter in the world is separated by large distances from
other matter with which it might react; and evaporation, solution,
and diffusion are the factors which limit the occurrence of many
possible changes. But there is a real chemical inertia of some kind
which slows down, often to a negligible speed, the reactions even of
substances perfectly mixed in the gaseous state.

There arises naturally enough the question whether the rate of
a given transformation should not be a function of its free energy,
and indeed the equation:

free energy

chemical resistance
5293 AS

rate of reaction =
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was once proposed by analogy with Ohm’s law, and with the expres-
sion for the terminal velocity of a body moving against a viscous
resistance. This formulation does not in fact contribute seriously to
the understanding of the problem. In the first place, there is no
means of defining the chemical resistance except in terms of the
equation itself. This logical difficulty might have been circumvented
had there proved to be any general parallelism between free energy
and reaction rate, of a kind which would allow the resistance, though
undefined, to be regarded as roughly constant. But in fact many
reactions with very large free energies, such as the combination of
hydrogen and oxygen, occur extremely slowly in comparison with
others of low free energy. Only in certain particular series of related
reactions is there any correlation between rate and affinity, and this
comes about for special reasons which will appear.

Light dawned on the matter only when the statistical nature of
molecular happenings came to be realized. A slow chemical change
is not analogous to a uniform hydrodynamic flow. It is an affair
where molecules one after another, in random places and at random
times, do something which some have already done and others have
yet to do. This idea is inherent in the notion of the chaotic move-
ments of molecular systems and in the conception of the laws of
energy distribution. It evolved, as things happened, chiefly from
the need to explain the law connecting reaction rate and tempera-
ture.

This law is expressed, with good approximation, by the equation

k = Ae-EIET

(where k= rate constant, R = gas constant, and A and Z are
constants), which resembles the expression for the probability that
an amount of energy equivalent to £ per gram molecule should be
collected in a molecule.

In certain simple examples of gaseous reactions the rate proved
to be calculable in order of magnitude at least from the equation:

number of molecules reacting = number of collisions X e~EIET,

The statistical idea thereby gained a status which it might in any
case have achieved on its own merits. The subsequent developments
proved less simple, but never fundamentally out of harmony with
this beginning.
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Classical and quantum-mechanical principles

What might have transformed the whole conception of chemical
reaction rates would have been new principles derived from quantum
mechanies. This, however, did not happen. Calculation of entropies
and many related problems, such as the derivation of distribution
laws, were profoundly affected by the changed ideas about the count-
ing of states. Methods of estimating interatomic and intermolecular

B C
U
0 A D
—_ X
Fia. 36

forces, and indeed the whole theory of molecular structure, depend
upon quantum mechanics, but, given the molecular properties so
determined, the theory of the rate of attainment of equilibrium can
be developed in terms of ideas not so far removed from those called
classical as the conceptions needed in some other parts of chemistry
and physics.

The principle which might have made so much difference is that
which is believed to govern the slow escape of «-particles from atomie
nuclei. It may be explained in simple terms as follows. Suppose the
potential energy of a particle is represented by the line OABCD
(Fig. 36). If the particle has a kinetic energy which is less than 4B,
and if its position (x) is to the left of AB, it cannot, according to
classical mechanics, pass to the right of A BCD which constitutes
a potential barrier. This barrier can only be surmounted by a
particle with sufficient kinetic energy. According, however, to the
equations of wave mechanics there is a finite probability that the
particle will be found to the right of the barrier, and the barrier is
said to have been penetrated rather than surmounted. The pheno-
menon is also referred to as leakage or tunnelling.

It is believed to explain how o-particles having escaped from nuclei
are sometimes found to possess less kinetic energy than they would
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have acquired in being repelled by the Coulomb forces from a distance
corresponding to the top of the potential barrier, which they are
therefore supposed to have penetrated below its summit. This rather
rough statement will be amplified later, but the important matter
here is that occurrence of phenomena of this sort might have made
reaction rates follow laws very different from those indicated by the
ordinary kinetic and statistical theory. That in fact they do not is
a consequence of the relative magnitudes of the potential barriers
encountered in molecular phenomena and of the masses of the
particles concerned.

We shall find, therefore, that in interpreting chemical reaction
rates there will not be much need to invoke more than the familiar
kinetic and thermodynamic principles, in which of course quantums-
mechanical considerations are already to a large extent embodied.

Penetration of potential barriers

The principle of the so-called tunnel mechanism will now be
outlined, partly because of its probable significance in nuclear trans-
formations—a subject which borders closely on physical chemistry—
and partly because it emphasizes the general blurring of the con-
ception that a particle is something as strictly localized in space and
time as primitive theories had suggested. This may help to remind
us that even if rather rough mechanical pictures serve well enough
for the interpretation of chemical changes, they are, nevertheless,
only convenient modes of representation.

Suppose that in Fig. 34 the origin is at 4 and that the potential
energy of a particle would be U anywhere from x = 0 to # = a, and
zero when x <C 0 or when x > a; that is to say, there is an energy
barrier of height U and width a. If particles start to the left of the
barrier (z negative) with energy ¥, they can reach z = 0 without
change of kinetic energy. From x = 0 to x = a, however, the kinetic
energy is £—U. According to classical mechanics if £ << U the
particles cannot pass to the right of the barrier.

Quantum mechanics formulates matters quite differently. Its
equations do not deal with localized individuals but only with
amplitude functions, and it proves that the amplitude function
on the far side of the barrier need not be zero even when E--U is
negative.

With the conditions postulated, the wave equation gives, for all
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regions except between z = 0 and z = a,
ox 877 m

and between x = 0 and x = @
%) sﬂzm

where E— U is negative.
These two equations may be written

8x2+A2l/l =0, except from z = 0 to z = a, (1)
2
27‘/; = B%, fromz=0toz=a, (2)

where A? and B? are positive, that is 4 and B are real.

The solution of (1) is easily seen by substitution to be y = e* 42,
The amplitude function is in any case combined with the time-
variable function €27 and thus it is seen that the two alternative
values of ¢¥?7+42) represent waves travelling in opposite directions.
When « > a there will be only a forward wave so that i = el4z
while when «z is less than zero there will be a forward and a reflected
wave, the latter corresponding to particles which have been unable
to penetrate the barrier.

Thus we have

$ = ei4r 4 YPe~idr  (x < 0), (3)

where M is a constant,
p = Netts (2> a). (4)

The solution of (2) is
= Pebr4Qe-B2 (0 <z < a), (5)

there being no v(—1) factor since B? is positive.

The constants in (3), (4), and (5) are not unrelated, since at the
points z = 0 and « = @ the alternative values given by (3) and (5)
and by (4) and (5) respectively, both for ¢ and for é/ox must corre-
spond: otherwise the solutions would be devoid of physical meaning.

For s at x = 0 and at x = a, we have

1+ M = P4Q,
Netda — PeBa_i_Qe—Ba’
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and for of/éx at = 0 and at x = a,
id(1—M) = B(P—Q),
tAN¢ide — B(PeBe—(Je~Ba),

These four equations may be solved for M, N, P, and ¢. The im-
portant thing is that N need not be zero. Thus there is in fact a
transmitted wave, and particles leak through the barrier. With the
appropriate value of IV, the expression for the i of the transmitted
wave can be written down. i then gives the density of particles
passing. When B, that is (U— E)}, or a is large, the dominant term
in the expression is of the form e¢-28¢ which indicates how the
probability of crossing the barrier falls off rapidly with its width
and height.

The foregoing does not of course in any way constitute an explana-
tion of how a particle in the ordinary sense of the word can penetrate
into a region where its potential energy becomes greater than the
kinetic energy which it possesses as it approaches. The application
of the wave equation is simply an assertion that on the microscopic
scale the rules according to which such a question arises are in any
case inapplicable except as approximations. For most of the purposes
we have in view, however, the approximations seem to be sufficiently
good.

Velocity and equilibrium

Purely thermodynamic principles by themselves can have nothing
to say about the absolute rate of phenomena, though, of course,
they may impose conditions to which kinetic relations must conform.
In a simple chemical equilibrium, the velocity constants of the two
opposing reactions are related to the equilibrium constant by the
equation K = k,/k,. For a system such as

CO+H,0 = CO,+ H,
it might be supposed that since

[CO,J[H,] _
[COJ[H0]

the two velocities could be set proportional to k,[CO][H,0] and
k,[CO,][H,] respectively. But even this is not correct. Actually, for

K,
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the system in question reacting in presence of solid carbon as a
catalyst the two velocities are given by

KICOIH,01 o k[COH,]*
[H,]' [H,0]* °
where 2 and y are small. These expressions combine to give the
correct form for K, but they are certainly not predictable from it.
Still less are the numerical values of k; and k, determined. There
are, of course, an infinite number of pairs of values for these two
constants which combine to yield the required ratio for K.

An equilibrium constant depends upon the initial and final states
only, a velocity constant upon the intermediate stages through which
molecules must pass on the way from one to the other. In particular,
there is, for a chemical reaction, a transition state in which reacting
substances and products are indistinguishable. The kinetic theory
tells us a good deal about the attainment of this transition state.
In the formulation of its properties, thermodynamic analogies are
also found helpful in a way which will appear at a later stage.

It may be noted at once, however, that since k, = Ae-F/ET,

dink, E, C e dink, E,
AT = TR and similarly T = BT
din K dn(k;/k,)) AU o
Also = ar = e % that AU = E,—E,.

Transition states

The key to much of chemical kinetics lies in the law of force which
regulates atomic interaction. If two univalent atoms A and B unite,
the molecule AB repels a third atom C, even though A or B might
individually attract C more than they attract one another. Thus the

exchanges AB+C — AC+B
or AB4-C = BC+A

can only come about by one of the following processes. (1) C is
brought up to AB with enough kinetic energy to overcome the
repulsion of AB. When it is forced up close enough it can expel B
or A as the case may be. (2) AB is given enough energy to dissociate
it into atoms, A or B then falling victim to C should it be in the
vicinity. (3) AB is set in vibration with amplitude large enough to
weaken the bond between A and B, C being brought up at the same
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time with sufficient kinetic energy to overcome any repulsion which
the weakened combination A—B still exerts. There is a certain posi-
tion where C can compete with A for B on equal terms. AB and C
are then in what is called the transition state.

Initial state . . AB C
Transition state . A..B..C
Final state . . A BC

Practically all chemical changes involve variants or elaborations
of one or other of these processes, and in general it may be said that
before new structures are formed, energy must usually be supplied
to disrupt or weaken existing ones. This energy is called activation
energy. The probability that a given molecule or a specified small
group of molecules possesses energy in excess of an amount F is
proportional to e~E/ET  and in general the velocity constant of a
chemical reaction may be written

k= Ae-FIRT

where A4 is a constant, or a function varying but little with tempera-
ture, and E is the activation energy. This equation expresses the
well-known law of Arrhenius.

Since Ink = InA—E/RT, the plotting of Ink against 1/T gives
a line of slope E/R whence E can be determined.

Encounters between molecules are usually necessary for reaction.
If the chemical change consists in the decomposition of a single
molecule, an encounter may not be absolutely necessary, though even
here the activation energy must be provided somehow and is usually
brought in by collision with other molecules. Hence the rate of en-
counter is often a primary factor determining the reaction rate and
can never be disregarded.

The meeting together of the requisite species and the provision of
the activation energy are necessary but not sufficient conditions for
reaction. Other factors, notably the orientations and the states of
movement of the reacting molecules, must be favourable. If, for
example, the transformation to be effected is AB+4C = A+ BC, the
orientation A—B C is clearly favourable, while that of C A—B
is not. Further, if at the moment when C approaches, the state of
vibration of AB is such that the bond between A and B is extended
and weakened, then reaction is more likely than if it is compressed.
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Thus we should have
A—B C favourable
A—B C unfavourable.

Activation energy

The interplay of these three factors, provision of activation energy,
encounter of the appropriate species, and existence of favourable
orientations and conditions of internal motion, manifests itself in
various ways according to circumstances.

It will first be convenient to consider the three factors separately.

In the majority of examples the activation energy plays a major
role. E is very often ten or twenty times as great as R7, and in
consequence the temperature dependence of the reaction velocity is
very pronounced.

Throughout the range of chemical reactions whose velocities can
be measured there is a clearly marked correlation between the value
of E and the temperature at which the rate attains some specified
standard value. In the equation

k = Ae-EIRT,
if A were a universal constant, the ratio E/T would determine %.
A is not a universal constant, but it often enough remains of the
same order of magnitude through considerable series of reactions for
the correlation in question to be clearly discernible.

In a series of reactions which are built on the same plan but differ
in rate through the operation of such influences as varying substi-
tuent groups, as in the reactions of a series of substituted benzene
derivatives, there is often a well-marked correlation from one member
of the series to another between AE and Aln k.

For example, in the benzoylation of different substituted anilines,
the rate changes by three or four powers of ten as the substituents
in the benzene nucleus are varied. When E is plotted against Ink
a straight line is found, in accordance with the equation

RTInk = constant— K.

The slope is — R7 as required. Incidentally, the influence of two
substituents is rather accurately the sum of their individual effects.
If the first changes E for the parent compound by AE, and the
second by AE,, the change produced by their simultaneous presence
is AE,+AE,, and the value of Ink corresponds.
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Observations of this kind, though not infrequently overlaid with
other effects which will be considered in due course, are numerous
enough to leave no doubt about the significance of the activation
energy as one of the major factors determining the absolute rate of
a chemical change.

Attempts have naturally been made to calculate activation energies
from the theory of interatomic forces, and they have met with some
success, though they are not really quantitative. The method of
calculation depends upon a theorem which relates the potential
energy of a system of several atoms to the energies of individual
combinations of them taken two at a time. If, for example, there
are four atoms A, B, C, and D, then the potential energy is given
by the formula

E = Q+[%{(‘xl+°‘2*ﬁ1—ﬁz)2+(°‘1+0‘2")’1—'}’2)2+
+(B1+32—71—72)2}]§>

where @ is the sum of the six Coulomb energies of the possible
diatomic pairs, and «;, a,,... are the exchange energies of the six
diatomic combinations. Information about a;, ay,... is obtainable
from the spectra of the various diatomic molecules. A guess has to
be made about the proportion of the whole contributed by @, and
E can then be calculated. It can be determined for all sorts of
relative positions and distances of A, B, C, and D. In particular,
the greatest interest attaches to configurations in which AB and CD
are initially paired.

The results confirm what can be seen qualitatively from general
considerations, namely that as AB approaches CD the energy in-
creases, that is, there is repulsion, which rises to a maximum at a
certain distance of approach. Lower energy states then become
possible by regroupings to give AC and BD. Furthermore, the maxi-
mum itself is least pronounced for one particular mode of approach
of AB to CD. This mode will represent the easiest reaction path, and
the difference between the maximum energy on this path and the
energy of the isolated molecules AB and CD is the activation energy.

The problem of three atoms is susceptible of a relatively simple
graphical representation. If the reaction under consideration is
AB+C = A4-BC, then it is almost self-evident that the most favour-
able conditions of approach of C is along the line of AB. When this
is so the energy can be conveniently expressed as a function of the
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two distances AB and BC, which may be employed as coordinates,
and points of equal energy joined by lines. The result is a sort of
contour map upon which the path of minimum energy from AB-+C
to BC+A can be followed. The path itself possesses a maximum,
which, however, is a minimum with respect to any alternative path.

{a) (b)

A-B distance A-~B distance

(c) {d)

BC*A

A~ B distarce A - B distance
Fic. 37

Absolute caleulations on this basis lead to values too crude to be
of real use for quantitative purposes, but the comparison of series
of related reactions gives illuminating results. In this sense the
further consideration of the simple system AB+4C = A-+BC will be
useful. Let U, the energy, be plotted as a function of the distance
AB. For the molecule AB the energy is represented by a curve with
a minimum of the form shown in the Fig. 37 (a). The energy of
dissociation is represented by ¢. The presence of the atom C causes
a general displacement of the curve, as shown in Fig. 37 (b). The
molecule BC would repel A, so that the energy of BC+4A would be
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represented by the series of curves shown in (c¢), each curve corre-
sponding to a given state of BC.

In the transition state of the reaction system (AB+ C) becomes
identical with (A+BCQC), and this condition is represented by the
intersection of the two appropriate curves of the families already
considered, as shown in (d). The activation energy would be given
by E,, and that of the reverse reaction by E,. The heat of reaction
would be approximately as marked on the diagram (—AU).

AU = E,—E,,
as required by the relations

dinK AU dlnk, K, dink, E,
dT — RT?¥ dT ~— RT? dT ~ RT?
and K =k /k,,
where K is the equilibrium constant, and k, and k, are the two
velocity constants.

Fig. 37 (d) shows how the repulsion curve may cut the curve with
the minimum in a variety of ways. If the point of intersection is far
to the right, as shown by the dotted line, then K, becomes equal
to @, and the reaction resolves itself into the steps

AB = A+}B,

B-+C = BC.
In general, however, it appears likely that E, will be quite consider-
ably less than the full energy of dissociation of AB. It is at once
obvious that A, bears no sort of relation to —AU. The activation
energy always represents energy absorbed, whether the total energy
change in the reaction is positive, negative, or zero. For this reason
there can be no general relation between rate of reaction and equi-
librium constant, and the early attempts to exploit the equation

affinity

chemical resistance

reaction rate =

would be meaningless, even if a more precise definition could be given
of chemical resistance.

On the other hand, if the general pattern of the reaction remains
the same while alterations in the energy relations are brought about
by variations in the nature of A, B, or C, then certain systematic
correlations between changes in £ and the corresponding changes
in AU may be found.
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The kinds of series here envisaged are exemplified on the one hand
by reactions of an alkyl halide RX with various alkali metals, and
on the other by the reactions with a given alkali metal of different
halides, R or X being systematically varied. The sort of example
where correlated changes in £ and AU occur is illustrated in Fig. 38.

Fic. 38

Suppose a change in one of the reacting substances causes a lower-
ing of the repulsion curve from pg to p’q’ or p”q”. The heat of reaction
changes by an amount ¢q’ or ¢¢” and the activation energy by 7’ or
rr”. The diagram makes it clear that an increase in the energy
liberated in the reaction is, in this example, associated with a lower-
ing of E, that is, an increase in rate of transformation. If the Morse
curve in the region of the intersections is taken to be approximately

linear, and pq, p'q’, p"q" are of similar form, r' and " will be
proportional to ¢¢’ and gq” respectively, or in general

UE) _
dAU)
where « is constant.
Thus E = a AU-constant.
Since E — constant— RTInk
and AU = constant— RTIn K
constant— BT Ink = ofconstant— R7 In K)-+constant
whence Ink = oln K- constant.

In other words, the logarithm of the velocity constant plotted against
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that of the equilibrium constant will give a straight line of slope a.
From the geometry of the diagram « is seen to be less than unity.

Such relations are in fact not infrequently found. The best known
of them is slightly different in character from that illustrated. It is
the Bronsted relation between the velocity constants of acid-catalysed
reactions and the dissociation constants of the acids which act as
catalysts. Here the comparison is made virtually between the activa-
tion energy of one reaction and the equilibrium constant, not of the
same but of a closely related reaction.

Influence of encounter rates

The range of possible activation energies allows every speed of
reaction from the immeasurably fast to the almost infinitely slow.
Conditions for collision between the appropriate kinds of molecule
also permit a similar wide range, although the magnifying effect of
the exponential factor is absent.

Rates of encounter in gases at atmospheric pressure are extra-
ordinarily high. A bimolecular gas reaction occurring without the
need for activation energy, and without any restrictive condition
save the necessity that the molecules should meet, would be almost
complete in an immeasurably short space of time. Only at extremely
low pressures would its progress be observable. Under the conditions
of very high rarefaction which may prevail in interstellar space
however, even free atoms could exist for long periods. It is indeed
found that metastable excited species, which in the laboratory would
be quenched by collisions, can in this undisturbed state in space take
the time they require to emit spectra unknown on the earth. Very
slow recombination reactions of atoms and ions are possible in the
upper atmosphere.

If a reaction is bimolecular, the rate is directly proportional to
the collision number, which for two molecules A and B in a gas is
given by . 1\
7 = NNy agB{sﬂRT(EJF E;)} ,
where N, and Ng are the numbers of the two species in unit volume,
oap is the mean of the molecular diameters, and M, and My are the
molecular weights.

If the reaction is unimolecular, in the sense that the essential
chemical transformation is an affair of one single isolated molecule,
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then the rate may or may not depend upon the encounter number.
If the molecule receives its energy of activation, as it normally does,
by collision, two cases arise. In the first the chemical reaction follows
almost immediately upon the activation, so that its rate is determined
by the speed at which the energized molecules are provided. In these
conditions the reaction velocity is proportional to the collision num-
ber. The second case is that where the simple provision of activation
energy is by no means the only condition to be fulfilled, and where
this energy has to suffer internal redistribution in the molecule before
the latter is disrupted or ready to reorganize its bonds. In these
conditions the energized molecule is not unlikely, before the chemical
transformation has supervened, to have made another collision in
which it runs great risk of losing its high energy. A small proportion
only of the energized molecules are, in such circumstances, bled off,
as it were, by chemical reaction from the main supply, which remains
in statistical equilibrium with the bulk of the population. The reac-
tion velocity is now proportional to the number of energized molecules
in unit volume, and this number in turn is proportional to the first
power of the concentration, not, like the collision number, to its
square.

The dependence of reaction rate upon encounters is reflected in
what is termed the order of reaction. If the rate is directly propor-
tional to the first power of a single concentration, the reaction is said
to be of the first order. If it is proportional to the product of two
concentrations or to the square of a single one, the reaction is of the
second order. In a reaction of the third order the proportionality is
of one of the forms: rate oc abc, a?b, or as.

A bimolecular reaction is normally of the second order, but, as
has just beeen explained, a unimolecular reaction may be either of
the first order or of the second order, and, in general, may show a
transition from one class to the other.

Suppose there are » normal molecules in unit volume and @
energized molecules. The rate of formation of the latter will be
proportional to the rate of collision of normal molecules: the rate of
removal will be the sum of two terms, one representing their de-
privation in further collision, and the other their disappearance in
actual chemical transformations. Thus the equation

da = kynP—kyna—ksa =0

dt
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represents the steady state established in the system.

o — kyn?

kom—+-Foq

kykym® kym?
kon-t-ky ™~ 14-(kyfkg)n
When 7 is small enough, the rate cc »2, and when = is large enough
the rate oc n. For intermediate values the order of reaction varies
between one and two.

The real situation is somewhat more complicated than that sug-
gested by the simple formula just derived. k; does not need to be
constant. The transformation probability of an energized molecule
may vary continuously with the amount of energy which it contains,
or even discontinuously according to the mode of distribution of this
energy, some modes of vibration, for example, being more likely to
facilitate transformation than others. The variation of reaction rate
with » in these circumstances can be quite complex.

By an argument already given (p. 92), the formula for the number
of collisions in a gas may be applied in appropriate circumstances
also to encounters in a solution. The condition that must be fulfilled
is that repeated collisions of a given pair of molecules should count
as effectively as an equal number of collisions between fresh pairs.
When there is an appreciable activation energy, this is very likely
to be true, since only one collision in a very large number actually
leads to chemical transformation, and repeated chances of reaction
offered to a given pair of molecules are as useful as many single
chances offered to larger numbers. If, on the other hand, the chance
of reaction at a given encounter is high, then the successive collisions
which the pair might have made with one another are likely to be
lost, since the molecules themselves are removed in chemical change,
and the rate of the further transformation becomes dependent upon
the diffusion of molecules through the liquid medium to find one
another. This process is slow, and is a function of the viscosity of
the medium in which the reaction occurs.

In most chemical reactions, however, the conditions are such that
the rate of encounter between the relevant species of molecules is
little influenced by the presence of other molecules. An important
exception occurs with ionic reactions. Interionic forces are of long
range and the mutual interference of ions is considerable. It leads

and rate of reaction = k;a =



CHEMICAL CHANGES 369

to what is called the salt effect on reaction velocity. High concentra-
tions of salts may exert some influence upon almost any reaction
oceurring in solution, but there is a specially well-marked effect upon
bimolecular reactions between substances both of which are ionized.

Reactions between ions of like charge are accelerated by an in-
crease in the total ionic strength of the solution: those between ions
of unlike charge are retarded. Those in which either or both of the
interacting species are uncharged suffer much less influence.

The simplest way of making calculations about the effect is to
imagine a temporary complex formed by the collision of the two
ions, to suppose that this is in equilibrium with its constituents, and
to set the rate of reaction proportional to its coneentration. Let C,
and Cy be the concentrations of the two ions, Cyp that of the collision
complex. Letfy,fp, and fyp be the corresponding activity coefficients.

Casf
Then _ZABJAB __ g
CafaCrfr
and Cun =122 g0,
AB

Rate of reaction = k'Cyp = k’ﬁfﬁ Ca Cg.
fas

This is also kC,Cy, where k is the conventional bimolecular
constant.

Thus k oc‘fiﬁz.

AB

The influence of salts in the solution may now be referred to
changes in fup, fa, and fg. The activity coefficient falls as the ionic
strength rises, the fall being known both on theoretical and experi-
mental grounds to be the more rapid the higher the valency of the
ion. If A and B have like charges, AB is of high valency and f,p is
very sensitive to the salt concentration, its fall as the ionic strength
rises being reflected in an increase of k. Conversely, if A and B are
of unlike sign, AB is of lower valency and f,p less sensitive than f,
and fg to changes in the ionic strength. As the latter increases, the
fall in f, fp governs the decrease in reaction velocity.

Calculations can be made with the aid of the Debye-Hiickel
formulae (p. 279), though they are of quantitative significance only
in regions of great dilutions.

5293 B b



370 THE STATISTICAL NATURE OT

The influence of ionic charges upon encounters may be great enough
to dictate the whole mechanism of a reaction, and indeed it explains
certain facts which at first sight seem a little strange. The well-
known interaction of hydrogen bromide and bromic acid in aqueous
solution proceeds according to the chemical equation

5HBr+ HBrO, == 3Br,+3H,0.
It is found, by the variation of concentrations, to be kinetically of

nearly the fourth order and in fact to follow approximately the
differential equation

d[Br.‘a‘] +12 - —
A — A HPBr-[BrO5 )

HBr and HBrO, are both highly ionized. Br- and BrOj; are clearly
the major participants from the purely chemical point of view, yet
their approach is hindered by their like negative charges. If these
charges are screened, as in the ion-pairs H+Br—~ and H+BrOjy, the
approach is much easier. We may then have the simple atomic

exchange HBr+HBrO, — HBrO+HBrO,

followed by rapid secondary reactions of the unstable species formed.
But, approximately, [HBr] cc [H*][Br-], since [HBr] is a small frac-
tion of the total, and [HBrOg] oc [H*][BrOj ], so that
[HBr][HBrO,] oc [H+1}[Br-][BrO;],

whence the overall order of the change. Here, incidentally, we have
an example of the resolution of a reaction into a series of stages,
each of maximum simplicity—a principle the importance of which
will become increasingly evident.

A somewhat similar result is found with the reaction between
nitrite and iodide ions in aqueous solution. Here, too, the NO;
and I- ions react most efficiently when screened by hydrions and
the rate is proportional to [H+][NOy J[H+][I-], that is to [HNO,|[HI].

Another interesting example is that of the Sandmeyer reaction—
the elimination of nitrogen from ArN,Cl under the influence of CuCl.
Here the dependence of rates upon concentrations shows that one
reactant is the ion ArN; and that the other is the ion CuCl;. These
two oppositely charged ions are well adapted for mutual encounters.
If CuCly becomes CuCly the access of the ArNj} to the copper
atom is hindered and the reaction fails. The reaction rate oc 1/[C1-]?,
and this is explained by the equilibrium CuCly +2Cl- = CuClj.
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Favourably related ionic charges of the reacting species on the one
hand, and suitably coordinated central atoms on the other, are two,
among others, of the factors which explain why so many of the reac-
tions of inorganic chemistry involve subsidiary equilibria between
simple and complex ions.

Transformation probabilities

As has been said, activation energy is necessary, and the requisite
molecular species must come together, but other conditions must
also be fulfilled before a chemical transformation is successfully
completed.

This matter may be introduced by the consideration of certain
striking contrasts between reactions of different orders. If we write

number of molecules reacting in unit time = PZe~F#/ET,

where Z is the encounter number and P a constant, then this latter
factor may vary from one reaction to another over the range from
105 to 10-8. In a fairly well-defined group of examples it has a value
of the order of magnitude unity. These are all simple bimolecular
reactions such as

CH,Br+OH~ = CH,O0H+Br~-
and 2HT = H,+1,,

where the subsidiary conditions to be satisfied at the moment of
encounter of the activated molecules are relatively few and easy.
With other bimolecular reactions P ranges from 1 to 10-%, but
in no authenticated case of a single-stage transformation of this class
does it exceed unity.
Some typical examples are the following:

Et,N+EtI = Et,NI (P ==10-%-10"8: various solvents)
CH,COCl4CH;NH, == C;H,CONHC H ,-+HCI
(P == 10-": benzene solution).

Reactions for which P is very small depend frequently upon the
union of two molecules to form one, or at least upon the formation
of more complex from less complex structures. In such examples
correct orientation of the reacting molecules at the moment of en-
counter is clearly demanded, and also a favourable relation of the
phases of their internal movements.

The necessity for special conditions of orientation and phase is
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perhaps more clearly realized if one considers the mechanical degrees
of freedom of the whole system. When two molecules unite to form
one, then three translational degrees of freedom and three rotational
degrees disappear, and are replaced, since the total number remains
constant in any mechanical system, by six vibrational degrees. These
new degrees of freedom involve coordinated motions of atoms which,
before the reaction, were executing uncoordinated motions, and
which therefore must first chance to come into step before the new
structure can be formed. It follows that the more elaborate the
mechanical reorganization which the reaction involves, the lower will
be the value of P. In a general way this expectation is fully con-
firmed.

It is at first sight paradoxical that in the simplest case of all, the
union of two atoms, P falls again to very small values. This is not
because the formation of the molecule demands other than the
simplest conditions of encounter, but because its persistence once
formed is impossible unless the released energy can be removed. For
this purpose a collision with a third body is necessary, whereby the
excess energy can be carried off. Atomic recombinations, which can
be observed directly in streams of atomic hydrogen, and indirectly
in various reactions of the halogens, and in the decay of active
nitrogen, are in general ternary processes,

X+ XA+M = X,+M.

The efficiency of M in removing the energy is very variable, and
depends upon specific interactions of X, and M, which will be con-
sidered at a later stage.

If X and X are not atoms, their union to form X, does not demand
to be clinched by the third-body collision. Evidence based upon the
study of the photolysis of acetaldehyde, for example, shows that the
process 2CH,; = C,H, is generally bimolecular. The reason is clear.

The energized molecule
HH

H—C—C—H
H H

would only be incapable of existence if the energy of formation re-
mained in the C—C bond. This energy can, however, easily enough,
become digsipated throughout the molecule in a way which, of course,
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is not possible for H—H. As long, however, as the excess energy
remains in the molecule at all, there is always the possibility that it
may collect in the C—C bond once more, and thus cause dissociation.
This, in fact, would happen if the pressure were low enough, and the
molecule left undisturbed by collision for a long enough time. It does
not normally occur, the time required for the reversal of the com-
bination being longer than the average time between the collisions
of ethane with other molecules. In a sense, therefore, these collisions
are necessary for the final and irrevocable completion of the reaction,
but the rate of combination is not governed by their number, pro-
vided only that there are enough of them to make reversal im-
probable.

The quantitative formulation of this argument is worth giving.
Combination of 2CH, gives energized C,Hg, which may be written

C,Hg*. Then 2CH, = C,H,*, k&,
C,He* = 2CH,, £,
C.Hg*+M = C,Hg, £k,
d[C,Hg*]/dt = k;[ CH P —k [ CoHg*]— ko CoH*[M] = 0,

w1 Kk[CHG]?
(O™ = Tl
d[csz]/ dt = kz[osz*][M}
ke ko[ M][CH, ]
T kRkM]

Provided only that k,[M] is large compared with kj, the rate reduces
simply to k,[CH;]%. At really low pressures quite different results
would, of course, be found, the rate becoming proportional to
[CH, M),

This matter has been discussed in some detail, because it leads
directly to the consideration of unimolecular reactions, an example
of which is in effect presented by the redissociation of the energized
ethane. If the latter instead of retaining its energy from the process
of formation, had received it in collisions, then the situation would
have corresponded to an ordinary unimolecular decomposition.

In a unimolecular reaction, such as the decopomsition of a mole-
cule like ether, P is normally much greater than unity. At first sight
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there may be a little difficulty in seeing how it can attain values of
10 or 105. The explanation is as follows. The reaction involves the
series of steps represented in the scheme below:

1
Normal molecule == Energized molecule possessing activation energy K
17 distributed at random

——2-—> Transition state molecule —3—> Reaction product.
with energy so distributed
that the necessary links
can be broken

The first process depends upon collisions, but the others are purely
internal affairs. With a molecule of complex structure there are so
many ways of receiving and losing energy, and so many degrees of
freedom in which the energy can be stored, that the collection of the
amount ¥ is relatively easy. If a diatomic molecule is to dissociate,
it must receive the activation energy in its one vibrational degree
of freedom. For a polyatomic molecule the average energy in each
of its numerous vibrational degrees is the same as that for the
diatomic molecule in its one degree. Yet, given time for process 2
to occur, all this energy could conceivably collect into a single bond
and so disrupt it. Thus, in extremely favourable circumstances, a
polyatomic molecule with § vibrational degrees of freedom might
rupture one of its bonds though the average energy taken over them
all might be of the order of only 1/8 of that which a diatomic mole-
cule would require to rupture a bond of equal strength.

Calculation shows, as we shall see, that the chance of a total energy
E in a molecule rises very steeply with the number of degrees of
freedom in which it can be accommodated. For process 1, therefore,
PZe-EIET has a very large value. It is determined by all collisions
putting into the molecule, in no particularly specified way, a total
energy which for a single degree of freedom would be much greater
than the average, but which for many degrees of freedom may be
no more than a moderate excess. In the absence of a chemical reac-
tion, process 1 and its reverse (the loss by further collisions of the
energy gained) would come into equilibrium, so that the energized
molecules would be a constant fraction of the total. This may still
remain true even when processes 2 and 3 occur, provided that they
are slow compared with 1 and 1’. The rate of reaction is then
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independent of the collision number, and can assume any value less
than the maximum of PZe-E/ET (process 1) which, as we have seen,
is very large. (If the rate approaches this maximum, then dependence
on the collision number reappears.)

The improbability of the step 2, the mobilization of the energy
from all parts of the molecule so that particular links can be ruptured,
does not necessarily slow down the reaction very seriously, since on
the scale of molecular happenings the time between collisions is
relatively long, and allows the internal motions to run through very
many cycles.

In a bimolecular reaction where both the colliding partners are
necessary for the actual chemical change, they must meet with the
energy of activation already more or less favourably distributed.
For any mobilization of this energy they have not the relatively long
time between collisions, but the extremely brief moment of the colli-
sion itself, after which they part, and further opportunity is lost.
Thus it is that the rates of bimolecular reactions do not exceed
Ze~EIRT.

Unimolecular reactions, on the other hand, have the advantage of
activation in stages. In collisions the molecules draw in energy in
quantities which their many degrees of freedom may often render
abundant: then in the period of relative quiet between collisions this
energy is redistributed.

The ratio of the time between collisions to the duration of a colli-
sion, which is thus seen largely to determine the statistical differences
between unimolecular and bimolecular reactions, can be roughly
estimated. Two molecules might be deemed to be in collision while
their separation is not more than about half their own diameter, that
is for a time of the order of magnitude o/@. The time between colli-
sions is of the order /%, where I is the mean free path. The ratio
in question is then of the order I/o. At atmospheric pressure in a
gas [ is of the order 10-% and, ¢ being of the order 10-8, the ratio is
about 103,

At low enough pressures in a gas the time between collisions
becomes large enough for an appreciable fraction of the energized
molecules to decompose before losing their energy. The rate of reac-
tion is now no longer independent of collisions, and the order changes
from the first towards the second, according to the formula already
discussed (p. 368).
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Maximum rate of activation

It now remains to calculate the maximum possible rate of reaction
in a unimolecular process.

The number of molecules N; in a given energy state is represented
by the formula NN = e-olk[S ¢-aitT

We will consider now a continuous range of momentum and space
coordinates, p to p-+dp and q to g-+dg, such that ¢; is of the general
form p?/2m, being the energy associated with the gingle coordinate p.
We shall choose to regard N; as the number of molecules in this
range, and write it as dN. Then

AN|N = ¢-p'2mkT| 3" o-v*j2mkT
= e~P2mRT dpq] ' e~PH2mRT dpdg.

The denominator may with sufficient approximation be replaced
by a definite integral, and we shall consider the case where the spatial
distribution is uniform. Then

AN|N = e-v2mkT gy, / f e—pI2mkT dpy
e—p’l2kadp
T (2emkT)E

If now we require the fraction of the molecules with energies,
corresponding to this one coordinate, between @ and Q-+-dQ per
gram molecule, where ¢ = Ne;, we must substitute for p and double
the result, since a given energy corresponds to two numerically equal
positive and negative values of p.

Q = Np?/2m,
dQ = Npdp/m,
2 X e~QURT x miQ-tdQ
(2mmkT)E X /(2N)
_ QteCIrT4Q
" (wRT)

whence
dN|N =

Now suppose we wish to know the probability that a molecule shall
have energy between @, and ¢,+d@),, corresponding to one coordi-
nate, @, and @,+d@, corresponding to a second, and so on for »
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coordinates, with the condition that @,-+@,+Qs+... = E. The re-
quired value will be the product

E E
1
BT f f o Qrle-QIRT 4Q % Q5 te-9IRT 4@, ... X
0 0

X {E_ (@1 + @yt __.)}—%E—IE—(Ql-f-QH-...)]/RT ar,
all the integrals being taken from 0 to ¥ since, in principle, the whole
of the energy might be associated with one coordinate. The above
expression can be integrated by standard methods and the result is

¢~EIRT an-1) JJ
L(En)(RT)"
The chance that a molecule possesses an energy greater than £
distributed at random in the n coordinates is found by integrating
with respect to E from E to co. The result is an infinite series of
which the first term alone is of importance when E/RT is large, as
it is in most problems of activation energy: it is
e~EIRT (| RT)in-1
HB) = (3n—1)! )

As to the maximum possible rate of activation, we may proceed
as follows. Suppose the activated molecules are those with energy
greater than Z in n square terms, as we have just considered. In
statistical equilibrium, the number of molecules Z; entering the
active state equals the number Z, leaving it. Now activated mole-
cules are of exceptionally high energy: therefore nearly every collision
of an energized molecule causes it to leave the active state. Thus

Zy = Zf(E),
where Z is the total number of collisions and f( &) the fraction of active
molecules. But Z, = Z,: therefore rate of activation = Z f(¥).

From this last formula we see that the maximum possible rate of

activation is Ze~EIRT(F|RT)in-1

(3n—1)!
The factor (E/RT)"-1/(in—1)! may attain a very considerable
magnitude with increase in n.

The experimental study of unimolecular reactions has been at-
tended with not inconsiderable complications which arise from the
existence of chain reactions. Nevertheless, it seems clear that in the
decomposition of numerous organic compounds—ethers, ketones,
alkyl halides, and so on—there is a truly unimolecular process, often
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occurring side by side with a chain reaction. The former does in fact
show a transition from the first order to the second as the pressure
falls; and the absolute rate can in general only be accounted for on
the assumption that the energy of activation is received initially
into not less than about 10 square terms (see p. 420).

Probability of internal energy redistribution
Suppose we have a molecule such as hexane, which is to suffer
the decomposition represented by the equation

CH,CH,CH,CH,CH,CH, — CH, - CH,: CHCH,CH,CH,,
then it is obvious that a considerable amplitude of vibration in the
link 12 is a necessary preliminary to the separation of the two carbon
atoms. We wish to form some idea of the factors which determine
the accumulation in this bond of energy entering the molecule in a
random fashion.

The problem can be envisaged from several points of view. Accord-
ing to one, the molecule is regarded as a collection of s oscillators,
possessing between them m quanta, and the question is raised: what
is the chance that a particular oscillator should possess j of the m
for itself ? Here the quanta and the oscillators are likened to objects
and boxes respectively and the solution is found by the usual statis-
tical methods. The probability that the j quanta are localized in-
creases of course with the excess of m over j, so that the transition
rate of the energized molecules is a function of the total energy which
they contain.

Now according to the formula derived on p. 368, the conventional
first-order velocity constant is given by
ky by m?
kgn-t+ky’

kykyn

so that k= Fynth,

k3 now becomes f(m, j), so that for each value of m there is a different
transition probability, and an integration has to be made over all
energies. The formula derived is a rather complicated function of
s, m, and j, the chief merit of which is that it allows a precise calcula-
tion of the variation of k& with pressure. It still leaves the question
of the absolute magnitude of k; unsolved, since it contains an arbi-
trary constant which is determined from the limiting value of k at
high pressures.

kn=k3a=
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The factors involved may be seen more clearly if we consider the
simpler approximation that k4 is a constant. From the above equa-

tion we have 11 l_*_lcﬁl
B kg\n) Tk \ky)

If 1/k is plotted against 1/n, the reciprocal of the initial concentra-
tion, there should be a straight line, making an intercept proportional

1
n
Fic. 39

to 1/k;. In fact, the general tendency for such plots is to show a
strong curvature in the sense represented in Fig. 39. As the initial
pressure drops (1/n increases), the intercept made by the tangent to
the curve becomes greater: that is 1/k,; increases, or k; falls. In
fact at lower pressures there is an increasing contribution to
the reaction from molecules with smaller transformation probabili-
ties. These take longer, as it were, to make up their minds what
they will do, and would at higher pressures lose their energy before
reaching a decision. Thus the form of the curve provides information
about the spectrum of k; values. At first it seemed that the formula
depending upon the localization of j out of m quanta into one bond
represented the experimental facts rather well—certainly better than
the rough approximation with a constant k, (as it should do with
an extra adjustable constant). And at any rate it became clear that
k5 was not constant.

But the earlier observations were largely complicated by unsus-
pected chain reactions, so that the numerical agreements were rather
fortuitous. Further, a wider range of experimental material now
suggests strongly that the values of k, fall into discrete groups: a
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given molecule seems to decompose by alternative unimolecular
mechanisms to yield the same products. This raises the problem of
the physical nature of k,.

The statistical treatment of quanta in oscillators like objects in
boxes leaves open the question of how they get there. To understand
this we must drop the not very accurate idea of the vibrations of
bonds, and of the energy in particular links, and realize that the
fundamental quantities are the normal vibrations of a molecule as
a whole. Consider the two linear modes of the three masses discussed

on p. 259, 1 9 3
<O O O~

Any irregular linear vibrations of this system are superpositions of
the two modes, which themselves are of unvarying amplitude in the
absence of collisions. But since their frequencies are different, the
amplitude of a particular bond, for example 1—2, waxes and wanes
according as the separate modes reinforce or cancel one another.
Now the maximum reinforcement lasts only for a passing instant
and the bond 1—2 has its abnormal elongation for a minute fraction
of the total period of the complex motion. In this sense the accumu-
lation of energy in this bond is statistically very improbable, yet the
brief instant may well be enough for the irrevocable chemical reac-
tion.

Thus, given the requisite total energy in the various normal modes
of a molecule, fleeting accumulations in particular bonds are in-
evitable provided that there is no disturbance by further collision.
The time required for the process is of the order of magnitude of the
period of the complex motion. If the amplitude reinforcement had
to be very exact, and if the periods of the individual normal modes
were incommensurable, the time could be very long indeed, but the
first condition is not likely to be at all rigorous. Even so, the time
clearly depends upon the arithmetical relations of the normal fre-
quencies and is thus specific and not calculable from statistical
considerations alone.

Although in statistical equilibrium all normal modes are excited
to the same extent, the ease with which they individually gain and
lose energy in collision may vary widely and specifically. (As long
as easy acquisition of energy is associated with correspondingly easy
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loss, this specificity is not inconsistent with statistical principles.)
Thus at any given moment various combinations of normal modes
may exist in given molecules. For these combinations specific values
of k4 are quite conceivable.

Thermodynamic analogies
The non-exponential factor of the equation

k = Ae-FIRT

can, for many purposes, be conveniently split into a collision number
on the one hand and, on the other, a probability that various condi-
tions are fulfilled in the encounter which provides the activation
energy. For other purposes it is expedient to regard 4 in another
way. Formally the equation may be written

b — eSIRg-E|RT — o~(E-TS)RT

whence —RThnk = E-TS.
By analogy with the thermodynamic equation
—RTInK = AU—-TAS,

~RTInk may be called the free energy of activation, E the energy
of activation, and S the entropy of activation. A small entropy of
activation means a small reaction rate, or an improbable transforma-
tion, whether the improbability arises from rarity of encounter or
from the difficulty of fulfilment of other necessary conditions.

The thermodynamic analogy can be carried farther if the molecules
in their transition state, that is, in the condition where they are on
the point of changing into reaction products, are regarded as consti-
tuting a definite and special chemical species. This species may be
imagined to possess properties which can be formulated in the same
way as those of normal molecules. There then arises the possibility
of applying the statistical formula for the absolute value of an
equilibrium constant:

__product of partition functions for resultant species ¢~ AU/ET
" product of partition functions for reacting species

(see p. 150). If AU is replaced by K, K becomes

" concentration of transition molecules ¢

~ product of concentrations of reacting species  I1(c)"
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For example, if the reaction is H,--I, - 2HI, II(c) = [H,][I,], while
¢’ is the concentration of the hypothetical transﬂnon species

H....I

H. . .I

It is supposed that the transition molecule possesses vibrational
degrees of freedom, all save one of which resemble those of normal
molecules. There is, however, one exceptional mode of vibration,
namely that along a coordinate corresponding to the separation of
the final products. For this the binding force is so weak that the
molecule survives one period of vibration only. The rate of reaction
is therefore vc’, where v is the frequency of this vibration.

The rate of reaction being also given by k,1I{c), where k, is the
conventional velocity constant,

koll{c) = vc¢' = vll(c)K*
or ky = vK*.
Now, by the statistical formula,

__product of partition functions for transition molecules o~EIRT

K*
product of partition functions for reacting species

The one special vibration of the transition molecule has a partition
function which reduces to the form k7' /hv when the binding is weak
(p. 133). Therefore we have

by — v J; (kT/B) | _gimr
finitia,l)

j;i) kT e—-EIRT
flmtml) h

where I1'(f,) represents the product of all the partition functions,
except one, for the transition molecule.

To illustrate the meaning of these formulae we will consider briefly
Eyring’s treatment of the reaction 2NO+0, —> 2NO,. This had been
shown by Bodenstein to be of the third order, with a rate propor-
tional to [NO]YO,], and to be remarkable in that it goes the less
rapidly the higher the temperature.

The system is composed of 6 atoms and thus possesses 18 degrees
of freedom. In the initial state there are 9 translational degrees (3 for

or ky =
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each molecule), 6 of rotation and 3 of vibration. For the transition
state it is plausible to assume something of the form

(l) 0O
0———0

which will possess 3 translational degrees, 3 rotational degrees, and
a number of vibrations equal to (18—6) = 12 in all, of which one is
the special one already discussed. The velocity constant will be of

the form ko _ f%f?zfrlll @ e—E/RT,

f2ik1y b
where f, fr, fi signify partition functions for translation, rotation,
and vibration respectively, and the powers are simply written as
shorthand for products of the corresponding numbers of terms.

In general the vibrational partition functions are small compared
with the rotational, and the latter in their turn with the translational.
Consequently the product in the formula for &, is small, that is the
concentration of transition complexes is low. The non-exponential
factor in the Arrhenius equation is therefore small or, otherwise ex-
pressed, the entropy of activation is low. The reaction velocity will
only be appreciable in these circumstances if E is small, which, for
the oxidation of nitric oxide, it proves to be. If ¥ is small enough,
the influence of the exponential term is unimportant, and the tem-
perature variation of &k, may be determined by such terms in 7' as
the partition functions themselves contain. In the present example
the non-exponential term contains an inverse cube of the absolute
temperature, which, since £ — 0, imposes the negative temperature
dependence of the reaction velocity.

Absolute reaction rates

Attempts have been made in the foregoing example to calculate
the absolute value of the reaction rate with the assumption that the
frequencies of the transition complex are the same as those of the
molecule N,O,, and with the further assumption of plausible dimen-
sions for its structure. The various partition functions can then be
worked out and these, with a value of E giving the correct tempera-
ture dependence, lead to a value for k,. This is of the correct order
of magnitude.
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One of the great advantages of considering reaction velocity from
the point of view of the transition state is that this method focuses
attention upon the importance of changes in the degrees of freedom
which accompany the chemical transformation. Whenever several
molecules combine to form one, rotations and translations disappear
and are replaced by vibrations. The magnitudes of the partition
functions are such that the non-exponential factor is thereby dimi-
nished. When, on the other hand, a single molecule breaks up to
give more than one, the replacement of the ordered vibrations by
the less ordered translations and rotations of the fragments leads to
a large non-exponential factor.

The general question of an absolute calculation of reaction rates
is one of much interest. It might perhaps be said to be soluble in
principle though not in practice. From the point of view of the
equation k = PZeEIET on the one hand, or of the transition state
equation on the other, the answer is much the same.

In the first place, the activation energy must be calculated from
the theory of molecular forces. The principles according to which
such a calculation is made are understood, but the execution is
possible in a rough-and-ready manner only. E can, however, be
derived from the temperature dependence of the reaction rate with
some accuracy.

Z, the collision number, is calculable to within a power of ten.
There is a little ambiguity in the definition of what constitutes the
collision diameter, but this is not very serious. With regard to the
factors of orientation and internal phase, unless the reaction is one
of extremely simple molecules, then only rough guesses can be made
as to the magnitude of P.

In about the same measure as these estimates are uncertain,
knowledge of the configuration of the transition state is vague, and
the assignment of values to the partition functions is arbitrary.
Nevertheless, in certain cases the hypothesis that the properties of
the transition complex resemble those of the reaction product enables
one to assign values which are not far removed from the truth.

Collision numbers

An illuminating comparison of the two methods, and an analysis
of the inner meaning of both, emerges from a simple calculation
of the rate of encounter of two sets of masses which suffer no
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change other than the formation of what is virtually a diatomic
molecule.

Let the masses be m, and m,, and let them be deemed to be in the
transition state when they are juxtaposed in a complex, the moment
of inertia of the latter being I. In this state they possess only one
vibrational degree of freedom, and this is the special one correspond-
ing to the coordinate along which they will separate after collision.

According to the formula derived on p. 382, the ‘reaction’ of
encounter and separation will proceed at the rate

]CON N N N 11y (fA) kT e—EIRT
Hf lnltla..l
N, and N, being the respective numbers of molecules in unit volume.
E = 0. II'(f,) consists of a three-dimensional translational function
and a two-dimensional rotational function; IT(fi 1) of two separate
three-dimensional translational functions. Thus
kT {2m(my+my)kT} 872 IkT
Mo e 5 hn h3 h?
(2mm, kT)t (27vmqy kT)E
h? h?

ko Ny N,

— N, Ny(8kT)} (”“‘“"2)21
mymy
To know I we must know the separation in the transition state, o.
Th
o o ™™
my+my

and the ‘reaction’ rate becomes

MMMMN% mf

If we care to identify ¢ with the collision diameter, usually taken as
the sum of the two separate radii, then this expression is none other
than the normal formula for the rate of collision of unlike molecules.

Interchanges of energy by collision

As will have been seen, the interchange of energy between mole-
cules in collision is an important factor in the establishment of equi-
librium. It determines possible rates of activation, and also the
efficiency with which a third body can stabilize a newly formed

molecule by removing its excess energy.
3293 oc¢
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The communication or removal of vibrational energy is specially
important, and this proves to be a rather specific function of the
forces which the molecules exert on one another when they approach-
The way in which a molecule is set in vibration by an encounter with
a second molecule is illustrated in Fig. 40. In (@) the atoms are at

their normal equilibrium distance.

(@) O Q In (b) under the influence of the
forces exerted by a passing mole-
cule, this equilibrium distance has

(b) O O assumed a new value. In (¢} the
perturbing molecule has passed

leaving the atoms of the first
one displaced from their natural
distance. They therefore begin to
vibrate.

According to this argument it
would appear that the molecules which can most effectively com-
municate vibrational energy to another are those which exert the
maximum perturbing action on its potential energy curve. This
idea is in a general way borne out by experiment.

The most direct way of studying exchanges of vibrational energy
is by the measurement of supersonic dispersion. At very high fre-
quencies the successive rarefactions and compressions in sound waves
follow one another so rapidly that the adiabatic temperature changes
cannot affect all the degrees of freedom of the molecules. In parti-
cular, any vibrational degrees of freedom which are not easily excited
will fail to take or relinquish their share of energy, and the molecule
will appear to be of simpler structure than it is. The ratio, y, of the
specific heats will rise, and the velocity of sound, which depends upon
it, will rise also. From the relation between the frequency and the
sound velocity, therefore, calculations can be made of the ease with
which the various vibrations are excited.

In general it may require very many collisions to effect the transfer
of a single quantum of vibrational energy, and the actual number
varies in a highly specific way. Correspondingly, the efficacy of
different gases in stabilizing diatomic molecules formed by atomic
recombination is very varied. The power of different gases to com-
municate the kind of activation energy required in unimolecular
reactions is also specific.

-
]
~
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FIG. 40



XIX

ENERGY AND ENTROPY FACTORS
IN REACTION VELOCITY

Resolution of reactions into stages

It is evident that if complicated changes in the modes of motion of
molecules have to accompany a chemical transformation, the non-
exponential term in the expression for the reaction rate will be small.
That the probability factor will be low, that the partition function
of the transition complex will be unfavourable, and that the entropy
of activation will be small are all equivalent statements of the same
fact.

For the reasons so expressed, chemical reactions are frequently
resolved into a series of steps for each one of which the entropy of
activation is as large as possible. The overall transformation thus
appears complex, especially if the observed rate is expressed in terms
of the concentrations of the initial and final substances, but this
apparent complexity is itself the result of the tendency to proceed
by the simplest possible stages.

There are, of course, plenty of reactions which occur in a single
chemical step. The unimolecular decompositions and some of the
bimolecular reactions which have been discussed belong to this
category, but there are even more examples of chemical changes
which do not.

The reaction between stannous salts and ferric salts occurs formally
according to the equation:

2Fet - Sntt = 2Fet* - Snttt,

The probability that a reaction should really take place in this way
is, however, extremely small. Not only does the equation demand
the simultaneous collision of three molecules, but of molecules with
multiple positive charges which would exert strong mutual repul-
sions. The observed relations between the rate and the concentra-
tions of the various ions present are consistent with the idea that
the principal reacting species are actually the ferric ion and the
complex ion SnCly-, which participates in the equilibrium

SnCl,+2Cl~ = SnCl; .
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A simple series of one-electron transfers can then take place
SnCly~+Fettt = Fe™ - 8nCly,
SnCly 4-Fettt = Fet*-SnCl,.

The oxidation of oxalic acid by bromine shows rather complicated
rate—concentration relations which can be formally reduced to a
dependence of the rate-determining step upon the product

[HC,0; THBrO].

A direct action of the acid oxalate ion and a molecule of hypobromous
acid, although plausible enough as far as the probability of encounter
is concerned, would involve a rather elaborate set of simultaneous
atomic displacements to yield the reaction products, which are carbon
dioxide, bromide ion, and water. The probable interpretation of
what happens is much simpler. Halogens are to some extent ampho-
teric and a small dissociation of bromine

Br, = Br~+Br*

is very likely, and involves no more than an electron redistribution.
The cross equilibria which are immediately established in aqueous
golution between Br— and H+* and between Br*+ and OH- give at
once, and in the most natural way, the bromine-bromide-hypobro-
mite equilibrium. We may now consider the behaviour of the positive
bromine ion when it encounters the oxalate ion C,0;-.

0

¢ 2 o:(1) ..
3y Br:
Ci(4) O: E
0 ®

If a positive bromine ion approaches the electron pair labelled (1)
it can remove them and become a negative ion, IjS:r:, with a complete
octet. Electron pair (3) now joins pair (2) with rupture of the bond
between the two carbon atoms and formation of the double bond
of CO,. Then pair (5) joins pair (4) and the second molecule of CO,
is formed, the whole process amounting to a simple flow of charge.
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The rate may be set proportional to
[C.05 J[Br];

-1 7 [HCO;7] [HC,O7J[0OH-]
[CO7] = Ky =22t TH = K, TR,
since [H+][OH-] = K,
Moreover, since [Br+][OH-] = K,[HBrO],
R [HBrO]
[Brt] = K, TOH]
Therefore  [C,07[Br+] = 22 K2 [HC,05 [HBrO]

as required by experiment.

According to this interpretation, the key step in the reaction is
of the utmost possible simplicity. It occurs between two univalent
ions of opposite charge, and involves no more than an internal flow
of electrons. The experimental complexity arises because the con-
centrations of the species which are able to undergo this simple change
are themselves governed by a series of equilibria. In fact we normally
seek to relate the rate of reaction not to the concentrations of the
true participants but to other quantities.

Individual steps in chemical reactions might be classified in the
following way:

1. Simple internal redistribution of electrons with the breaking of

a bond in one place and the appearance of an ionic charge or
a free bond in another place. This has just been illustrated.

2. Transfer of a charge from one atom or molecule to another.
This is exemplified by the major steps in the oxidation of stan-
nous salts with ferric salts.

3. Transfer of an atom from one molecule to another. This process
is exemplified in the reaction (cited on p. 370) between HBr

and HBrO,.
4. Exchange of partners according to the scheme
=1
X—Y X Y

The reaction 2HI = H,+-I, belongs to this class.
The entropy of activation diminishes through the series 1 to 4,
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and it is rather seldom that any reaction involves a stage much more
complex than one of those formulated.

On the other hand, it must be borne in mind that the energy
demands usually become more exacting as the mechanism becomes
more primitive. In the reaction of bromine and oxalic acid, great
simplicity may be achieved by the co-operation of the positive bro-
mine ion. But the amphoteric ionization of bromine will require a
not inconsiderable amount of energy. With chlorine the correspond-
ing dissociation will require even more, and there is evidence that
the hydrolysis of chlorine takes place by the mechanism

CL+OH- = HOCL4-Cl- rather than Cl++OH- = HOCL

The former is one degree more complex but demands less activation
energy than the latter.

Energy and entropy factors

The possible simplification of mechanism is limited, since the
activation energy of the most primitive kinds of reaction steps may
become extremely high. In one way nothing could be more simple
from the point of view of entropy than the resolution of the reacting
molecules into their atoms, and the re-addition of these, one by one,
until the desired product is formed. There would, however, be a
quite unnecessary expenditure of activation energy in the first stage
of this process. The entropy and energy factors are always in opposi-
tion, and a compromise between them determines the reaction path
actually followed. Thus the reaction 2HI = H,+1, is more econo-
mical in respect of energy, and prevails over the alternative

HI = HA4T

as the rate-determining step in the decomposition of hydrogen iodide,
although in other ways the transition state is less probable.
Interesting light is thrown on this matter by the study of reactions
in which conditions can be gradually varied by the introduction of
substituents into the participating molecules, or by alteration of
the solvent in which the interaction occurs. In some such series the
differences in reaction rate are quantitatively accounted for by the
variations in the activation energy alone, the value of the factor P
(p. 371) remaining constant. The introduction of substituents into
either benzene ring influences the benzoylation of aniline in this way,
the correlation of AE and Alnk being very close over a range of k
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of about 105. The result appears to be true for the influence of
substituents on the rate of reaction of benzene derivatives generally,
applying also, for example, to the hydrolysis of various substituted
benzoic esters.

In other series there is a correlated variation of In PZ and of E,
occurring in such a way that the change in one partly compensates
the effect of the change in the other. A given increase in Z, for
example, does not cause, in a reaction of this type, so great a drop
in the rate as it does in reactions of the first type, since PZ increases
so as to tend to maintain it constant. Examples are found in the
esterification of acids by aleohols, hydrolysis of certain alkyl halides,
and many other series of reactions.

The reason for the distinction between the two classes seems to lie
in the fact that changes in the reactants or in the solvent can influence
reaction rates in various ways. The principal effect of a substituent
in a benzene ring is to cause electron displacements which modify
bond strengths on the one hand and affect the repulsion offered to
approaching molecules on the other. There is little change made in
the geometry of the transition state. In such cases the influence might
be expected to appear almost entirely in £. In other systems not
only the forces but the steric conditions in the neighbourhood of the
reaction centres may be profoundly changed when the nature of one
of the reactants or of the solvent is altered. Suppose, for example,
that when A reacts with BC a rather exact alignment of the molecules
permits the reaction to occur without a very high activation energy.
E will be small, but so also, in view of the need for the precisely
specified configuration, will be PZ. Suppose now that a change
from BC to BC' renders this exact alignment impossible. The reac-
tion will now occur only in so far as a greatly increased activation
energy is provided (permitting, for example, the more drastic stretch-
ing of the bond B—C’). E will have risen, but so also, in view of the
fact that the precise geometry is no longer important, will PZ. There
will thus be a compensatory effect in evidence.

Such an effect can, of course, manifest itself in many different ways,
but its general basis is that where plenty of energy is available (or
must for independent reasons be provided) the need for very exactly
defined configurations becomes less.

In some reactions a very precisely adjusted pattern of solvent
molecules may help to lower the activation energy. If the reactants
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are changed so that, for steric or other reasons, this nicely balanced
system is no longer possible, a greater K becomes necessary, but the
entropy of activation rises, and the fall in rate is less than would
have been imposed by the increase in £ alone.

An interesting example is observed in the reactions of ester hydro-
lysis. In the alkaline hydrolysis of benzoic esters, changes in the
substituent cause changes in rate wholly accounted for by changes
in the activation energy. In the acid hydrolysis of esters and also in
the acid-catalysed esterification reaction there is & marked compensa-
tion of the energy and the entropy terms. The alkaline and acid
hydrolysis reactions may be formulated as follows:

Alkaline Acid
1 i
R.C—OR/ R.C—OR’
OH H.OH H.OH H*
| I
R-C R'OH R-C R'OH
OH OH
OH H*

The chief resistance to reaction is represented by the energy re-
quired to bring the hydroxyl ion or the water molecule up to the
carbonyl carbon. This energy is less with the hydroxyl ion, and one
might suppose the reaction to approximate to the two-stage process:

(@ R-C—OR’+O0H = R-COOH+OR/,

() OR’'+H,0 = R'OH+OH,
(b) being rapid compared with (a). If this is so, the orientation and
distance of the water molecule become irrelevant, and the only in-
fluence of changes in R is on the energy term. In acid hydrolysis
the water molecule is & much less active agent, the activation energy
is greater, and the co-operation of the hydrogen ion is required.
Furthermore, we might suppose the link between the carbonyl carbon
and the alkoxyl group to weaken in different degrees according to

the magnitude of the repulsion overcome by the approaching water.
If this repulsion is great, the transition state may well be attained
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when the water is at a greater distance than when the repulsion is
weaker; the entropy of the transition state is thus greater, and com-
pensates to some extent the more adverse energy.

In these examples we are dealing with what in a subtle way really
amounts to a change of mechanism. Much profounder changes of
mechanism are encountered in the transition from ordinary molecular
reactions to chain reactions.

Chain reactions

The progress towards equilibrium of most chemical systems de-
pends upon statistical fluctuations whereby individual molecules or
small groups of them escape from their relative minima of potential
energy and pass into transition states whence in turn they proceed
to other minima.

In a reversible reaction the transition state is common to the
forward and to the reverse transformations, and the total energy
absorbed in the change is related to the two activation energies by
the equation E,—E, = AU, E; being the activation energy of the
forward reaction and E, that of the reverse.

When the change takes place in the forward direction, %, is given
out by the products as they descend from the transition state, and
if AU is negative, as in an exothermic reaction, F, is greater than
E,. Unless the reaction is actually endothermic, the amount of energy
released by the products is therefore at least equal to the original
activation energy. If it could be passed on efficiently from the pro-
ducts to fresh molecules of the reacting substances, it would suffice
to activate them immediately. Often, however, it is dissipated by
sharing among a number of molecules. Eventually, in so far as the
temperature is maintained constant, any excess, equal to —AU, is
lost from the system. If the heat of an exothermic change does not
escape as rapidly as it is generated, the temperature rises and the
reaction rate steadily increases until an explosion occurs.

Without a general rise of temperature, however, there are more
specific ways in which the effect of the original activation can persist.
There may be specially effectual energy transfers from the activated
products to fresh molecules of reactant, though any wide occurrence
of such processes is perhaps doubtful. Much more significant is the
circumstance that the activation energy of the first step may have
been employed in splitting a molecule into free atoms or radicals.
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These store up the energy as chemical unsaturation, a form in which
it is not wastefully dissipated, but remains available for further
transformations whenever suitable opportunities arise. In this way
originate what are called chain reactions.
The following are some well-known examples:
@) Cl, = 2C1,
Cl+H, — HCI+H,
H-+Cl, — HCI+Cl;
(2) C,H, = C;H,+H,
H+C,H, = C,H,+H,,
C,H; = C,H,+H;

3) CH,CHO = CH,+CHO,
CH,+CH,CHO = CH,+CH,+CO;
@) R--CH,:CH, = ROH,CH,—,
RCH,CH,—-+CH,: CH, — RCH,CH,CH,CH,—;
(5) CH,+0, = CH,+ H—0—0—,

CH;+0, = CH;—0—0—,
CH;—0—0—+4CH, = CH;,—0—0—H+-CH,.

The initial step of a chain reaction is nearly always difficult, and
requires the absorption of a large activation energy to produce the
atoms or radicals which are the usual participants. The activation
energy of subsequent stages is normally quite small, so that the
propagation of the chain occurs with ease.

It not infrequently happens that a chain reaction and a molecular
reaction take place concurrently and make contributions of com-
parable magnitude to the total observed chemical change. In the
thermal decomposition of acetaldehyde vapour, for example, there
are probably two major mechanisms, a direct molecular rearrange-
ment : CH;CHO = CO+4-CH,, and a chain process similar to (3)
above. The activation energy, E,, for the formation of radicals is
very much higher than that for the rearrangement, #, and in conse-
quence the number of molecules which initiate chains is smaller in
about the ratio e~ Er-ENET than the number which suffer simple
decomposition. But for each primary act of decomposition into
radicals there may be hundreds of secondary reactions. The net
result is that the two mechanisms are of about equal importance in
respect of the total reaction which they occasion. A highly im-
probable initiating process with a long sequence of consequences
competes, and, as it proves, on about equal terms, with a much more
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probable process having no chain of consequences to multiply its
effect.

Chains do not go on being propagated indefinitely. The free atoms
or radicals sooner or later suffer fates which remove them from the
cycle of operations. They may combine with one another, they may
react with foreign substances, they may diffuse to the walls of the
vessel and there suffer chemical reaction or adsorption, while radicals
may undergo decomposition, or isomerization to inactive forms. The
mode in which the chains are ended is one of the major factors
determining the kinetics of these reactions, as will be evident from
examples to be given later omn.

The proofs that chain processes actually play an important part
in the progress of chemical systems towards equilibrium are various.
The most direct evidence comes from photochemical observations.
A single quantum of light can bring about one primary process only,
but it may be responsible for the ultimate chemical transformation
of a very large number of molecules. The ratio of the molecules
reacting to the quanta absorbed is called the quantum efficiency and
may be identified with the chain length.

Another criterion is the susceptibility of the reaction to inhibition
by small quantities of foreign substances capable of removing atoms
or radicals. One part of nitric oxide in several hundred will very
markedly slow down the decomposition of ethers, hydrocarbons, and
other organic vapours, the effect being due to its combination with
alkyl radicals. Large amounts of an inhibitor could, of course, act by
the stoicheiometric removal of something normally participating in
a non-chain reaction, but minute quantities could not. They must
remove particles which would otherwise cause the transformation of
molecules many times more numerous than themselves.

Chain reactions are sometimes, though by no means always, recog-
nizable by the special forms of the equations relating rate and con-
centration. For example, the kinetic equation for the formation of
hydrogen bromide from its elements would be very difficult to in-
terpret except in terms of a cycle in which bromine atoms and
hydrogen atoms are alternately generated (see p. 415).

Branching chains

One of the most striking phenomena shown by chemical reactions
is the apparently abrupt transition from almost complete quiescence
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to inflammation or explosion which is sometimes brought about by
a quite minute variation in conditions.

A mixture of phosphine and oxygen may be stored in a glass tube
at the ordinary temperature and at a pressure of about 1 mm. for
many hours without appreciable combination. Yet a quite small
increase of pressure will cause the mixture to burst into vivid flame.
No premonitory increase in reaction rate is detectable at pressures
just below the inflammation point. In a somewhat analogous way,
if to a 300 c.c. quartz vessel at 550° C. we add 200 mm. hydrogen
followed by 100 mm. oxygen, the rate of combination observable is
normally quite slow. It becomes slower still if the pressure is reduced
and at about 100 mm. is almost imperceptible. Yet, if the pressure
is reduced by another millimetre or so below this limit, the mixture
explodes with a bright flash and a sharp sound.

The only explanation of these phenomena is that the reactions
take place by way of what are called branching chains.

In accordance with the principle that there is a minimum disturb-
ance of atoms and bonds at each individual step of a reaction, we
might imagine the union of hydrogen and oxygen to occur in the
following stages:

(1) Hz = 2H (OI‘ H2+02 = H202 = 2OH)
() H+0,=O0H+O0

(3) OH+H, = H,0+H

(4) O+H,=O0H-+H.

Every hydrogen atom introduced by any means into the system will
after the cycle of events (2), (3), and (4) have generated three others.
If there is no loss, the number will increase in geometrical progression
with each cycle and the rate of reaction will tend to become im-
measurably great. The individual atomic and radical reactions being
rapid, the growth of the rate can occur in a space of time too minute
for ordinary observation, with the result that any generation of
hydrogen atoms in the mixture leads to practically instantaneous
explosion.

But the condition that there should be no loss is an ideal one. In
reality the atoms and radicals are removed in a variety of ways, and
there will be a competition between the processes of chain-branching
and the processes of removal. Except under certain sharply specified
conditions where the two opposing rates balance, one or other must
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prevail. If branching prevails, so that there is in effect an increase
in the number of active particles with each cycle of reaction, then
there will be an explosion after the (usually imperceptible) interval
necessary for the geometric multiplication. If, on the other hand,
the removal mechanisms can keep the number emerging from each
cycle no larger than that entering, then there will be a steady reaction
rate, which in fact may be quite a slow one.

We shall have occasion at a later stage to study in detail the
characteristics of a typical branching chain gas reaction, and all
that need be said at this moment is that the expression for the rate
usually assumes the form

B
f s+f c—q[’,
where F] is a function of the concentrations characteristic of the step
by which the chain is initiated, f, is some function determining the
breaking of chains by the walls of the vessel, f, another function
determining the breaking in the gas phase, and ¢ a function express-
ing the inherently branching nature of the chains.

When ¢ fails to be kept in balance by f,+f, the rate soars up
towards infinity however small ¥} may be. Before it can actually
reach an infinite value, of course, the evolution of heat in the system
is so great that there is an explosion. In general f, will fall as the
pressure of the gas rises, since diffusion of active particles to the wall
becomes more difficult. It is usually this effect which determines an
abrupt onset of explosion as the pressure rises. On the other hand,
f. vsually rises with increasing concentration of the reacting gases,
so that its influence may be responsible for the quenching of an
explosion on passage from a lower to a higher initial pressure. The
two kinds of transition are exemplified in the experiments with
phosphine-oxygen and hydrogen—oxygen mixtures which have just
been quoted.

When the branching of a chain is held in check by the diffusion
of atoms or radicals to the walls there is normally a marked de-
pendence of the inflammation limit upon the size of the containing
vessel. Rate of chain-branching depends upon the volume of reacting
gas: removal by diffusion depends upon the surface area. Thus with
increase in size there is a shift in favour of branching and an in-
crease in explosive character. The critical pressure limit above which
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inflammation oceurs moves downwards as the vessel becomes larger.
There are well-established examples of all these effects.

The branching chain which leads to explosion is the extreme of
a continuous series. Most chemical reactions begin with a minute
and highly localized statistical fluctuation in which molecules pass
to a transition state. Often the transformation of each molecule or
group of two or three interacting molecules must await a fresh fluc-
tuation. Sometimes, however, the original one can be propagated,
either through a short or through a longer sequence of successive
events which constitute a chain reaction. In the limit it gains mo-
mentum as it proceeds so that a branching chain results and leads
to the catastrophic establishment of the final state of equilibrium.

Catalysis

We have already encountered various examples of the fact that
in their progress to equilibrium chemical systems may follow multiple
routes. Chain reactions and molecular reactions sometimes compete
as alternatives, for example, in the decomposition of ethers, alde-
hydes, and hydrocarbons. Sometimes reactions which appear to be
closely enough related to justify the expectation of similar mechan-
isms proceed in fact by different courses, as in the formation of the
hydrogen halides. Sometimes again the divergence of route is more
subtle, and reveals itself only in the differing energy—entropy relation-
ships of the transition states of reactions belonging to related series.
Examples of all these things might be multiplied indefinitely. Some
alkyl halides in the gaseous state decompose by a chain reaction,
others by a single-stage unimolecular mechanism. In some circum-
stances olefinic compounds take up halogens by a bimolecular reac-
tion, in others by a reaction of higher order which may possibly
involve molecules such as Br,.

Whenever the addition of a new substance to the system offers
the possibility of an alternative and more speedy reaction route, what
occurs is called catalysis.

Examples are numberless. Nitrous oxide is decomposed by colli-
sions with molecules of its own kind, provided that the activation
energy to the extent of 50,000 to 60,000 cal. is available. In contact
with platinum the activation energy of the reaction

N,0-+Pt = N,-+Pt(0)
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is only about half as great. The oxygen atom is more easily trans-
ferred to the platinum than liberated into space. Its subsequent
escape after a sojourn on the surface of the solid occurs in conjunction
with a second atom with which it unites to form a molecule.

Formic acid may suffer two alternative decompositions:

HCOOH = H,+-CO, and HCOOH = H,0-CO.

That yielding hydrogen and carbon dioxide is catalysed by various
metals, which lower the activation energy in virtue of their affinity
for hydrogen atoms. The alternative mode of reaction is favoured
by oxides such as alumina, whose affinity for water lowers the activa-
tion energy for its extraction. The subsequent processes by which
the products escape from the catalyst themselves require some energy,
but a series of stages requiring lower activation energies can usually
be run through more rapidly than a single stage with a much greater
demand than any of the others.

Alternative routes of lower activation energy present themselves
in homogeneous gas reactions. The decomposition of acetaldehyde
is catalysed by iodine, which opens an energy by-pass in the follow-
ing way: (1) CH,CHO = CH,+CO,

(20) CH,CHO+I, = CH,I4HI+CO,

(2b)  HI+CH,I = CH,+1,.
E,whether for (2a) or for (26), is much lower than the corresponding
value for (1),

There is no sense or profit in talking about theories of catalytic
reactions in general. The theory of catalysis is the theory of chemical
reaction velocity, and the methods of operation of catalysts are as
diverse as the modes of chemical change. Normally the catalyst adds a
new path of reaction of lowered activation energy, but sometimes it is
the non-exponential factor for the new mechanism which is more
favourable, as for example in a chain reaction. Anything, such as an
extraneous source of radicals, which initiates a chain reaction is of
course a catalyst.

In a sense a solvent is one, though people with a taste for debate
about terminology might question whether the word catalytic is
appropriate to describe the influence of the entire environment.
Environmental influences can certainly lower activation energies.
Often they do this at the expense of compensating changes in non-
exponential factors.
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The following calculation, though crude, is significant, and illus-
trates a typical effect. Suppose that n solvent molecules suitably
grouped around a transition complex lower the value of &' by their
united perturbing actions. Each makes a contribution e to the lower-
ing so that AE = ne. Let the chance that any one of them is correctly
disposed for the job be p: then the overall chance of their co-operation
is p™, where p is less than unity. Compared with reaction in absence
of solvent the rate now rises in the ratio ¢"/®7T and falls in the ratio
p™. In the equation k = PZe F/ET we have AE = ne, P|F, = p,
whence it follows that Aln P will be proportional to AE. In such a
case the solvent may increase the reaction rate, but to a smaller extent
than that indicated by the value of AE, since the non-exponential
factor varies in a compensatory fashion.

It is conventional to classify certain types of reaction mechanism
under the headings homogeneous catalysis and heterogeneous catalysis
respectively.

Homogeneous catalysig does not really raise any special questions.
Its problems are the general ones of deciding what chemical reactions
are possible between molecules of different kinds; what the activa-
tion energies will be; and what general kinetic laws they will follow.
But there is one piece of chemistry to which reference should here
be made, and that is the widespread influence of acids and bases upon
reactions which, as far as conventional chemical equations go, do not
appear to demand them.

Acid-base catalysis

The formal equation for ester hydrolysis is

RCOOR'+HOH = RCOOH+R'OH,

and this is typical of a very large number of reactions in which the
elements of water are added or removed. The hydrolysis is normally
dependent upon the intervention of acid or alkali, when, according
to good evidence, it proceeds by one of the mechanisms set forth on
p- 392 and upon which some further comments may now be made.

Most molecules exhibit an internal electrical inhomogeneity, and
this means that there will often be a point at which attack by a
positive or negative ion is eagier than attack by a neufral molecule.
In the alkaline ester hydrolysis the key assault is made by the OH~—
on a positive centre in the ester. The OH- comes not from the
water but from the catalyst. The water molecule contributes a
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complementary H+ to round off a process already nearly complete,
and leaves behind another OH - to replace that consumed in the initial
attack. The analogy of this whole set of operations with a chain
reaction is to be observed. In & chain reaction a particle with the
asymmetry of an unbalanced valency attacks a molecule from which
it appropriates a piece to complete its own structure, leaving this
molecule itself unbalanced, and so setting up a see-saw process of
redistribution. Something similar occurs in the hydrolytic reaction,
only that here the part of the free radicals is taken over by the
ions.

The kind of initial disturbance which is most likely to set up the
see-saw in hydrolytic reactions is the addition or removal of a proton
or a hydroxyl ion, the removal of a proton in presence of water being
equivalent to the addition of hydroxyl. Very many reactions are
accordingly subject to what is called general acid or basic catalysis,
any reagent, such as the anion of an acid, which can accept protons
counting as a base and any reagent which can donate them counting
as an acid. The H;O+ ion occurring in aqueous solutions of disso-
ciated acids is in principle of no special importance in this connexion
compared with other molecules such as undissociated carboxylic
acids, which can also donate hydrogen ions. An aqueous solution
of what is conventionally called acetic acid contains both HAe and
H, 0+ in equilibrium,

HAc-+H,0 = H,0*+Ac-,

and both may exert catalytic effects. Often enough the rate of
reaction in a solution containing acetic acid is proportional to

{k,[H;0+]+k,[HAc]}

and may depend upon other ionic species as well.

Although the reason for acid or basic catalysis is specially clear
in reactions involving the addition or removal of water, the effect 13
not by any means confined to such reactions. It is very prominent
in prototropic reactions such as the enolization of acetone. Here the
first step appears to be the acceptance by the acetone of a proton
from the acid to give an addition compound which readily isomerizes
by a redistribution of charge. The result is a molecule from which
any proton acceptor present, including water, will readily remove
H+ to leave the enol. The general principle is still the same.

5203 Dd
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In the acetone enolization reaction the rate-determining step is the
first one, namely the transfer of the proton from the acid to the
acetone. By a principle which has already been discussed (p. 365)
the rate-constant k for the reaction in presence of an acid HA, shows
a parallelism with the equilibrium constant of the reaction

HA+H,0 = A-+H,0%,
which measures the acid strength of HA in water. This parallelism
is expressed by the equation

Alogk = aAlog K,
for a series of acids.

The rate-determining step need not be the transfer of the proton
from the acid catalyst to the molecule whose transformation is to be
catalysed. We may write in general for the catalytic reaction of a
substance X under the influence of an acid:

(1) X+HA = XH++4A-,
(2) XH++A- = X+HA,
(3) XH+= X'Ht,
(4) X'H+4B- = X'|BH,
X’ being the reaction product from X. If (1) is rate-determining, we
have the case already considered. The rate is k[X]|[HA], and the
reaction is said to exhibit general acid catalysis.
But (1) and its inverse (2) may both be rapid in comparison with
(3). We shall then have
[X][HA]
[A-] °
If the rate is determined by (3) it is
ky K[ X[ HA]
[A]

[XH+] = K, where K, = k,/k,.

ks[XH+] =

But in any aqueous solution
[HyO+J[A-] _
(HA]
[HA] _ [Hy0%]
[A-] T K,
k3 Kl
s [XIE,04,

So that

Therefore kg XH+] =
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and the reaction rate appears to be determined simply by the con-
ventional hydrion concentration of the solution. The constant k;
does not enter. If k, were rate-determining, other relations still
would be found.

Evidently a wide variety of behaviour may be expected in cata-
lytic reactions involving hydrolysis, enolization, and the like, and
one may say that it is in fact found. A large amount of experimental
work is concerned with the disentangling of the various relationships,
especially in the field of what is sometimes called physical organic
chemistry.

Heterogeneous catalysis

The problems of heterogeneous catalysis are of a somewhat different
kind from the foregoing. Two of the most characteristic questions
are, on the one hand, that of interpreting the various concentration—
rate relationships which are found, and, on the other, that of under-
standing in what way the catalyst changes the activation energy so
as to make a new reaction route possible.

As to the concentration-rate relations, these are at first sight some-
times a little surprising. They fall into line, however, when handled
in the light of the principle that a heterogeneous reaction occurring
on a solid surface is in many respects analogous to a homogeneous
reaction in two dimensions.

In the first place we must know the surface concentrations of the
reactants, a matter upon which the adsorption isotherm provides
information, and for many purposes the simple Langmuir formula
(p. 344) renders this service well enough. If the pressure of a consti-
tuent of the gas phase is p, the fraction ¢ of the solid surface which
is covered is given by the equation

r
g b—l—p.

When p is small, ¢ is directly proportional to it, but when p is large,
o remains constant at a value of unity. Thus if we have a single
reacting gas, undergoing for example a decomposition, the reaction
can be of the first order at lower pressures and of order zero at higher
pressures.

When ammonia suffers thermal decomposition at the surface of
a heated tungsten wire, the rate is nearly independent of the am-
monia pressure over quite a considerable range, the time taken for
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an assigned fraction to react ¢ncreasing with the pressure. The
decomposition of phosphine in contact with a silica surface is, on
the other hand, of the first order, the time taken for a given fraction
to react being independent of the pressure.

One gas may easily impede the reaction of another by preventing
its access to the surface. The simplest case is where the inhibitory
gas is rather strongly adsorbed, so that the reactant has available
only the fraction of the surface which is left free. Since

op = pp/(b-+pg)
the free surface is given by

(1—op) = b/(b+pp).
When pj is relatively large, or b is small, (1-~ogz) becomes inversely
proportional to py.

If py is the pressure of the inhibitory gas and p, that of the
reactant, then when the adsorption of the latter is not very strong,
o, is proportional to p,. The reaction rate will be proportional to
o 4(1—og) and thus to p,/pg.

The decomposition of ammonia on the surface of a glowing plati-
num filament follows approximately the equation

—d[NH,]/d¢ = k[NH;]/[H,],

the interpretation of which is now obvious.

When the adsorptions are such that the limiting relations o, oc p,,
or o, is independent of p,, and oz oc 1/pg do not apply, the kinetic
equations are naturally more complicated.

If two gases, 4 and B, react together and both compete for the
surface, the rate in general will be proportional to o, op, since the
probability of finding two molecules in juxtaposition is more or less
proportional to this product. The reaction velocity may be propor-
tional to p, or to pp at low values of either, and to 1/p, or 1/pg at
high values, since excess of one reactant may displace the other from
the surface. The rate as a function of p, or pz may then pass through
a maximum at a given value of one or the other. The mechanism
may not, however, require the simultaneous adsorption of 4 and B,
but rather a collision from the gas phase of A4 with adsorbed B. The
various combinations are, of course, quite numerous, but the most
likely possibilities can usually be inferred from experimental results.

When the adsorption of one of the gases is neither very strong
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nor very weak, o is proportional to p/(b-+p), that is, to a power of
p between 0 and 1. Over limited ranges one may use the approxima-
tion that the rate depends upon some more or less constant fractional
power of the pressure, positive for reactants, negative for inhibitors.
In this way are to be explained the results quoted earlier (p. 358)
for the water—gas reaction. The decomposition of nitrous oxide on
a glowing platinum wire obeys the equation

d[N,0]  k[N,0]
o dt b+[0y]
which could be represented with reasonable approximation by
—d[N,0]/d¢ = k[N,0][0,]-,
where  is a positive fractional number.

The broad outlines of the kinetic interpretation of such reactions
are clear enough, but there is material for deeper investigation in
many details, such as: the extent to which one layer of molecules
may be adsorbed on a layer of a different kind already present; the
relative role of atoms and molecules of gases like hydrogen and
oxygen adsorbed on metals; and the mobility of adsorbed atoms and
molecules on the surface. It is beyond the scope of the present
discussion to enter into these questions.

The formal kinetics of a heterogeneous reaction having been dis-
entangled, the problem still presents itself why the route by way
of the adsorbed condition should frequently prove more expeditious
than that of a homogeneous reaction. There is no one single explana-
tion, any more than there is one for the power of molecules to exert
forces on one another in general. Numerous causes contribute.

In the first place, molecules adsorbed on a solid surface are in
steady communication with a relatively unrestricted energy supply,
so that limitations on the rate of communication of activation energy
will not play the part which they may play in the reactions of the
gas phase. Moreover, surface interactions have not the transiency
of bimolecular collisons, and two molecules adsorbed on neighbour-
ing sites have a better chance to attain the phase favourable to
reaction than they have in the brief moment of a gas-phase encounter.

More important still is the active intervention of the surface atoms
in the chemistry of the transformations, with the creation of fresh
reaction intermediates, such as atoms and radicals which are held
in a state known as that of chemisorption. Metals remove atoms of
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hydrogen or oxygen from substances containing them, and retain
them as surface hydrides or oxides until they are ready to evaporate
or to react with other species. Carbon surfaces, to quote another
example, probably take up H, in the form of atoms, and H,0O as
H and OH. These surface complexes resemble any ordinary com-
pound in that they are held together by valencies, but differ from
this in that the atoms of the surface are still held firmly as a part
of the main solid lattice. The formation of these special surface
compounds creates new reaction stages of lowered activation energy,
since in a structure A—X, A will be removed more easily from X
if it is simultaneously taken up with release of energy by M.
Naturally M must not hold A too avidly, or the reaction will soon
come to a halt—and susceptibility to inhibition by reaction products
is indeed a not uncommon character of surface reactions.

The capacity to form the appropriate kind of covalent links—
neither too strong nor too weak—is a matter as specific as any other
chemical interaction, and general explanations can hardly be
expected. Oxides are good catalysts for hydration and dehydration;
certain metallic sulphides which form SH links intervene effectively
in hydrogenations of organic compounds, and so on.

Sometimes the adsorption of a molecule A—X with resolution into
the radicals A and X depends upon the correct interatomic spacings
on the catalyst, and this opens the way to studies of the relation of
catalytic power and crystal structure. The formation of covalencies
with adsorbed atoms of one kind and another is a function of the
electron orbitals of metallic catalysts, and a considerable field of in-
vestigation exists in the relation between the occupation of electron
levels in metals and alloys and their catalytic properties. Electron
distributions in solid carbon may also play a significant part in its
catalytic reactions. Metallic impurities modify these distributions
and so change activation energies directly, without opening qualita-
tively new reaction paths. These matters demand specialized study
and we shall not enter further into them here.

Development of chemical kinetics

For the sake of showing a rather complex picture in better per-
spective we have given something like an analytical survey of the
principles governing the progress of chemical reactions. The principles
themselves may in the event seem almost self-evident, but at one
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time this was far from true. To correct any impression so created
it will be useful briefly to outline the course of development of some
of the main ideas. After that a more detailed examination of the
actual behaviour of a few representative reaction systems may serve
to correct the impression still further, and also to show how the
relatively simple principles underlie a highly complex mass of facts.

The conception of a chemical system which evolves gradually in
time was not so obvious to early chemists as it has since become.
Preoccupation with the preparation of substances naturally leads to
the rough-and-ready classification of reactions into those which go
and those which do not, and encourages the search for conditions
under which the desired transformations do actually occur. In the
older literature there is a fairly widespread tacit assumption of a
temperature where certain reactions first become possible—with the
implication of a discontinuous transition into the realm of possibility.
Although a prolonged action of substances is obviously required in
many chemical operations, this fact was not the subject of much
fruitful thought, the need being probably deemed to arise from some
undefined kind of contact resistance.

The conditions in which slow reactions of relative simplicity become
accessible to precise measurement are not normally obvious, and
have to be discovered. Even when they have been found, the pheno-
mena which become apparent would be, in the eyes of many, little
more than curiosities. Nevertheless, the development of any pheno-
menon in time has a fascination of its own, and the laws which it
follows have an attraction to those interested in the quantitative
aspect of things. The application of the so-called law of mass action
led to the idea of reaction order, and provided a basis for a rational
classification of slow chemical changes. Examples of reactions of
different orders were sought and found, and indeed the existence of
this convenient system of grouping not infrequently led to the over-
simplification of the real relations. But the obvious molecular ex-
planation of the order in terms of collision probability did not fail
to arouse interest in the statistical theory of reaction rates. Even so,
an unconscious tendency to compare chemical changes with pheno-
mena of viscous flow or movement under friction persisted, terms such
as chemical resistance were endowed with a fictitious significance,
and catalysts were likened to lubricants.

One of the most potent stimuli to thought about the actual
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happenings in slow chemical transformations was the striking law of
temperature-dependence. This, of course, has the same form as the
thermodynamic equation for the variation of equilibrium constant,
and the first interpretation assumed an equilibrium between normal
and hypothetical active molecules. The latter were supposed to be
formed endothermically from the former, to increase in number as
the temperature rises, and to be the actual participants in the
chemical reaction. Increasing knowledge of kinetic theory and of
statistical molecular theory in general made it clear that the active
molecules need not be special chemical forms, but are simply those
with excess of energy.

The notion of how this energy facilitates the transformation be-
came more precise over a series of years in the light of concurrently
evolving ideas on spectroscopy, quantum mechanics, and molecular
forces in general. The idea of activation has passed from the status
of a slightly fanciful hypothesis to that of something very nearly
self-evident. The transition has been in part due to the inherent
reasonableness of the idea, but largely also to various experimental
discoveries—that of reactions where the absolute rate could be calcu-
lated from the number of collisions between suitably energized mole-
cules, and that of the quite definite correlations existing between
changes in the activation energy and changes in the velocity through-
out series of related chemical reactions. At this stage, pictures of
the intimate mechanism of chemical transformations in terms of
molecular happenings began to acquire vividness and colour.

The problem of unimolecular reactions came to the fore with
the question of how the molecules receive their activation energy.
A hypothetical reaction in which rate and concentration are con-
nected by the equation —dc/d¢ = kc would go half-way to completion
in a time independent of the initial value of ¢. In a gas, therefore,
this time should be the same at infinite dilution as at atmospheric
pressure. The implication at one moment seemed to be that the supply
of activation energy could not be dependent upon collisions, and the
only alternative agency was absorbed radiation. But did any gaseous
reaction follow this law? At the time when this discussion arose,
obvious candidates for the role, such as the decomposition of phos-
phine and arsine, were disqualified by their heterogeneity, so that
no answer was forthcoming.

The discovery of unimolecular reactions in the decomposition of
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organic vapours, such as that of acetone, provided the missing ex-
perimental material, and it soon became clear that they did not
follow a uniform first-order law, but the transitional type of relation
which has already been explained. Collisions were established as the
major mode by which activation energy is in fact communicated.

But a new difficulty arose from the apparent insufficiency of the
collisions to provide energy at the required absolute rate. The way
out was provided by the now very natural idea that multiple internal
degrees of freedom can be drawn upon to contribute to the activation
process. The theory of reaction rates now becomes correlated with
the study of normal modes of vibration of complex molecules.
Fresh questions about the dependence of transformation probability
on energy excess or energy distribution arise and the subject
enters its specialized phase—where there are still some unsolved
problems.

In the meantime the theory of chain reactions was gradually
coming into its own. Beginning with the need to explain how a single
quantum of light could provoke the combination of thousands of
molecules of hydrogen and chlorine, the theory served to account
for abnormally high activation rates in general, and to interpret the
mysterious phenomenon of negative catalysis by minute traces of
inhibitory substances. Presently it proved to give the only possible
explanation of the complex and varied phenomena revealed by the
experimental study of gaseous combustion reactions. The natural
extension of the idea to include branching chains was thoroughly
justified by its application to the various kinds of explosion limit,
at first sight so puzzling, shown by systems such as that of hydrogen
and oxygen.

The simplest participants in chain reactions are atoms and radicals.
These are now quite familiar entities. Hydrogen atoms may be
generated in discharges, pumped along tubes, and allowed to raise
wires to incandescence: methyl radicals can be produced in furnaces
and watched as they eat away mirrors of tellurium from the cooler
walls of the exit channel. But at one time it was a very bold hypo-
thesis to assume the intervention in ordinary chemical reactions of
such unfamiliar species.

The discovery of the unimolecular reactions which depend upon
collisions blurred the classification in terms of orders, and the com-
plex kinetics of chain reactions still further lessened its utility as a
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practical system. Elementary stages in reaction mechanisms cer-
tainly have definite orders: the steps

CH, = C,H,+H,

H+0, = OH-+O0,

H+H+M =H,+M

being of the first, second, and third orders respectively. But this
statement does not relate the rates to the concentrations of the
substances which are introduced into the system as major reactants,
and the individual steps can only be formulated when the mechanism
has been analysed. From the point of view of concentration relation-
ships, chemical kinetics often presents a complexity which looks
somewhat discouraging. But the complexity is only the outcome of
combinatory processes in which essentially simple stages follow one
another in many different ways.

The immediately accessible experimental material is not infre-
quently a somewhat tangled skein, but when unravelled reveals an
underlying unity and continuity. The pattern of the whole subject
becomes clearer and more symmetrical as time goes on.

Some of the manifold modes in which elementary mechanisms are
combined are best illustrated by examples, a selection of which are
set forth in the next chapter.
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SOME TYPICAL REACTION
MECHANISMS

Reactions of different orders

As has become evident, the chemical changes which are directly
measured by analytical methods are relatively seldom of a single
definite integral order. Nevertheless, examples exist which do con-
form to the simple classification, and they include some important
reactions. It will be convenient to start this brief survey of typical
reactions with the consideration of some of these.

First-order reactions

These are not necessarily or even usually unimolecular. Some
examples are the inversion of sucrose under the influence of a constant
concentration of hydrion, the decomposition of nitrous oxide on the
surface of an incandescent gold wire, the decomposition of phosphine
in contact with the walls of a silica reaction ves