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Preface

Why I wrote this book

The first rigorous formulation of quantum mechanics (QM) was proposed by Hei-
senberg and Schrödinger about 80 years ago. Since then, the field has experienced
enormous evolution. Initially aimed at explaining atomic spectra, quantum mecha-
nics has now entered the foundation of virtually all branches of physics. Accor-
dingly, QM is an inseparable part of every physics student’s training: whatever field
future physicists choose after graduation, they will almost certainly need quantum
mechanics in their work.

Yet our way of teaching QM to students has not changed much over the years.
We begin with the notion of the wavefunction, and write the time-independent, and
then the time-dependent Schrödinger equation in the position representation. We de-
termine the energy spectra and the corresponding wavefunctions of simple potential
wells, and evolution of wavepackets incident on potential barriers. Finally, we in-
troduce the angular momentum operator and calculate the spectrum of the hydrogen
atom. For the last 60 years, this has been, with minor variations, the first semester
undergraduate quantum mechanics course program.

This tradition has many advantages. It works with a physical system that a stu-
dent has already dealt with in classical physics classes, and it is one that they can
easily imagine. It allows one to see differences between the behaviors of a classical
and a quantum particle, and brings to light several fundamental phenomena that are
characteristic of quantumness: tunneling, quantization and the uncertainty principle.
It provides a student with the toolbox to solve experimentally relevant problems that
cannot be solved classically: after calculating the hydrogen spectrum in the class-
room, a student goes to a lab and measures it!

Yet this approach is imperfect. It gives a student an algorithm to analyze a spe-
cific physical system, but it does not reveal the inner workings of quantum physics
and the logic behind it. We teach our students multiple facts and computational
approaches related to wavefunctions, operators, and measurements, but we do not
construct a rigorous logical connection among them and do not explain which of
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these facts are the postulates and which their consequences, and in which logical
sequence these consequences are derived.

As a result, the student — at least a thinking student — ends up being immen-
sely confused. Why does simply placing hats on top of letters turn a classical ex-
pression into a valid quantum one? Why is the momentum operator’s action on the
wave function equivalent to taking the derivative? Why do we never see momentum
eigenstates (and Schrödinger cats) in practice? Why do de Broglie waves have a
normalization factor of 1/

√
2π h̄? Why do we observe atoms transitioning between

energy eigenstates, but not other states? How is a projective measurement related
to measuring an observable? Why are some states described by wavefunctions and
some by columns of numbers? If all states have norm 1, why don’t we normalize the
de Broglie wave? If observables are matrices, what is the matrix of the momentum
observable?

On top of that there is the most dreaded question. If quantum physics is suppo-
sed to be more general than classical, why must one resort to classical notions to
understand the concept of measurement? Why is the measurement, in contrast to all
other physical processes, not described by unitary evolution? If quantum systems
do become classical at some point during the measurement, where exactly is that
point?

The fundamental way of thinking we are trying so hard to instill in our students
through the years of training in science is “Question everything!”. In quantum clas-
ses our message seems to be just the opposite: “Shut up and calculate!”1

Having been a quantum mechanics student myself, I have eventually found ans-
wers to these questions, but in many cases not until long after my PhD. When I
asked them as a student, there was no one around, not only to give me the answers,
but even to help me state these questions properly.

My quest while writing this book is to address this issue. I attempted to build a
clear logical structure, containing as few loopholes as possible. One that would al-
low the reader to trace each statement down the logical chain back to first principles.
One that would leave no question unanswered.

So, in a sense, I wrote this book for myself. Not for today’s myself, but for myself
twenty-five years ago. A kind of book that I would have been grateful to have while
a third-year student, and one that would have saved me years of agonizing search
for the truth.

It is natural to ask: How realistic is my aspiration? Some of the questions I asked
earlier sound quite advanced. Perhaps one does need a doctoral degree to answer
them?

My answer is twofold. First, there is a pedagogical issue: mechanics, with its Hil-
bert space of infinite dimension, does not seem to be the best venue for conveying
quantum principles. Many of the above questions can be addressed by exemplifying
QM with a simpler physical system; I will further elaborate on this below. Second,
most of the inconsistencies and paradoxes can be eliminated by properly introdu-
cing the notion of entanglement. This notion underlies two essential, mutually rela-

1 More on this slogan, incorrectly ascribed to Feynman, in Sec. 2.4.
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ted concepts: the von Neumann measurement and decoherence. The first provides a
way to avoid making measurement an exception in the domain of quantum physics,
thereby eliminating the Klein bottle logic characteristic of the Copenhagen inter-
pretation. The second describes “inadvertent” measurements that occur naturally,
making the quantum world appear to macroscopic observers such as ourselves in
the way that is familiar to us under the name of classical physics.

These concepts are not excessively complicated. Mathematically, they are much
simpler than many elements of the traditional quantum course, such as the afore-
mentioned hydrogen atom or scattering theory. The main challenge in understan-
ding entanglement is not the challenge to a student’s mathematical skills; it rather
concerns their imagination. And developing a strong imagination is inherent to be-
coming a good physicist; as Einstein said, imagination is in fact more important than
knowledge.

Quantum mechanics or quantum optics?

The name of our discipline — quantum mechanics – implies that we are studying the
applications of quantum principles to the laws of motion. But in fact the framework
of quantum theory is not limited to mechanics; it actually applies to all fields of
physics. If our aim is to study the general principles of quantum physics, is it wise
to choose mechanics as the physical system for illustrating these principles?

Faced with this question, we are compelled to admit that the answer is negative.
Mechanics is there mainly due to tradition, because historically, the first successful
application of these principles in their modern form was in mechanics. But educatio-
nally speaking, using the example of mechanics to explain basic quantum principles
is a recipe for disaster. The Hilbert space associated with this system is of infinite di-
mension; moreover, its basis has the cardinality of the continuum. The student must
deal with the unfamiliar, enormously complicated, and not always rigorous mathe-
matical background which includes generalized functions, Fourier transformations,
and functional analysis. As a result, instead of concentrating our students’ efforts on
understanding the physical concepts, we force them to struggle with mathematics,
and this often leads to confusion between the end and the means. It is unrealistic to
expect any kind of deep understanding to result from this experience. The student
simply won’t see the forest behind the trees.

If we are to choose the physical system to illustrate quantum physics, we should
pick one whose Hilbert space has the lowest nontrivial dimension: two. There is
a variety of such systems that are currently studied in the context of quantum in-
formation technology as quantum bits. Among them, one stands out as the most
thoroughly studied and intuitive: the polarization of the photon. Optical wave pola-
rization would normally already have been studied by the student entering a quan-
tum class. The Jones polarization vectors directly translate into photon polarization
state vectors, and the matrices describing the transformation of these vectors by wa-
veplates translate into operators. It is straightforward to argument the measurement
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postulate from the classical polarization measurement picture, taking into account
the discrete nature of the photon. In this way, the quantum fundamentals arise from
classical polarization optics (and the students’ laboratory experience with the same)
in the most straightforward and natural fashion.

Photon polarization is of further benefit when we go on to study entanglement.
A vast body of proof-of-principle experiments in quantum information have been
performed using this system as the carrier of the quantum bit. Some of these ex-
periments, such as those on quantum cryptography, teleportation and noonlocality,
relate directly to the concepts covered in this book. By illustrating the theoretical
material with these experiments, right from the start, this book will take students
straight into the very heart of quantum physics using examples from today’s hot-
test research topics. And what could make learning an academic discipline more
exciting than fresh results from a research lab?

Talking about labs, the student’s experience does not have to be limited by rea-
ding about experiments done by somebody else. A great advantage of the polariza-
tion qubit as the example system is that it is perfectly realistic to augment the course
with a laboratory component. Almost all the material of the first chapter is illus-
trated by a classical polarization experiment containing a laser, a few waveplates,
a polarizing beam splitter and two detectors. The material on entanglement can be
visualized by a series of labs on single-photon interference remote state preparation
and Bell nonlocality. Such experiments are more difficult to set up, but fully within
the capabilities of an average physics department, as evidenced by the experience
of many colleges around the world, including my home, the University of Calgary.
More details on possible educational labs can be found at the book’s web site.

The connection between quantum physics and optics in this book is not limited
to using the photon to illustrate the discipline’s primary concepts. It also manifests
itself in the many optical examples scattered throughout the book, as well as the set
of subjects chosen for more advanced sections (deep study of the harmonic oscil-
lator, Heisenberg picture, squeezing, density matrices, two-level systems, quantum
tomography). These subjects are particularly relevant for those who are interested
in quantum optics in particular and quantum information in general.

Structure of the course

The book contains material that can be taught during a two-semester undergraduate
quantum mechanics course. In the first chapter, the main principles and postulates
of QM are introduced and illustrated by the photon polarization qubit. The reader
may wish to study this chapter in parallel with Appendix A, which covers the basic
linear algebra that is relevant to QM, as summarized in the following table.
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Linear algebra concept
(Appendix A) Quantum concept Physical illustration

Linear space, basis, dimension,
inner product Quantum state, Hilbert space Polarization of the photon

(Appendix C)

Orthonormal basis Projective measurement,
quantum tomography

Polarization measurements,
polarization state tomography,
quantum cryptography

Linear operator,
Hermitian operator

Observable,
uncertainty principle

Pauli matrices as observables
in the polarization space

Unitary operator,
functions of operators Schrödinger evolution Evolution of the photon in a bi-

refringent medium

The second chapter is entirely dedicated to entanglement, its consequences and
applications. I first introduce the tensor product space mathematically, then explain
partial quantum measurements, remote state preparation, and the nonlocality para-
dox (both the Bell and Greenberger-Horne-Zeilinger forms of it), illustrating the
theory with experiments on entangled photons. Nonlocality is arguably the primary
paradox of quantum mechanics, and it is natural to follow up with a discussion of
the mechanism of quantum measurements, their natural counterpart (decoherence),
and the interpretations of quantum mechanics. This section (Sec. 2.4) is where we
find out when and why a quantum system becomes classical during a measurement,
and why we don’t see Schrödinger cats walking around town. Subsequently, I talk
in a fairly rigorous fashion about applications of entanglement, such as quantum
computation, teleportation and repeaters. When this material is presented in a class-
room setting, it is useful to ask two or three students to give presentations on recent
experimental research on the subject.

The third and fourth chapters are, to some extent, a tribute to the “mainstream”
undergraduate quantum mechanics of a particle in a potential field. Here we have
to deal with the Hilbert space whose basis is a continuum, so the third chapter is
accompanied by a tutorial on Dirac delta functions and the Fourier transform (Ap-
pendix D). It is my hope that at this point, when students have already internalized
the primary tenets of QM, they will be able to face the technical issues associated
with continuous-variable Hilbert spaces without losing sight of the physical prin-
ciples. As an introduction to continuous-variable systems, I explain how and why
some of the normalization rules are affected. Then I present the usual scenarios of
potential wells, potential barriers, tunneling, and the harmonic oscillator. This is the
point where I envision the first semester to be concluded.

The third chapter goes on to explain the Heisenberg picture and how it is con-
sistent with the Schrödinger picture, illustrating with many examples relating to
the physics of the harmonic oscillator (and demonstrated in quantum optics experi-
ments): displacement, phase shift, as well as single- and dual-mode squeezing. With
the help of the latter, I present the original version of the Einstein-Podolsky-Rosen
paradox.

In the fourth chapter, I introduce the three-dimensional geometric space (as a
tensor product of three one-dimensional spaces) and explain the angular momentum,
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spin, and, finally, the hydrogen atom. Then I discuss the behavior of a spin in a
magnetic field and magnetic resonance, covering the phenomena of spin echo and
Ramsey spectroscopy.

The fifth chapter revisits the fundamental principles of QM, now presenting them
in the language of density operators, which is of primary significance for all ap-
plications of quantum physics. To demonstrate the utility of this language, I apply
it to give a formal description of decoherence and relaxation in nuclear magnetic
resonance. I then cover the topics that are relevant to modern quantum information
science: generalized measurements (POVMs) as well as quantum state, process and
detector tomography.

How to use this book (a message to the student)

I have been involved in education, on both sides of the podium, for most of my
conscious life. This experience taught me one truth: it is almost impossible to learn
anything by passively listening to a lecturer or reading a book. Learning requires
active engagement. In the case of theoretical physics, this means that you should
perform the derivations yourself rather than observing them performed by somebody
else on the blackboard or in the textbook.

With this in mind, I tried to write this text using the Socratic approach: the stu-
dent comes to the truth by answering the teacher’s questions. My own experience
with this method comes from high school. I was fortunate enough to attend one
of the best Russian science high schools, which has a unique approach to teaching
mathematics. Instead of explanations, we were provided with assignments consis-
ting of only of definitions, axioms, and problems. After solving them, we discussed
our solution with a tutor, whose task was to ensure that we understood the material
correctly.

This book works in the same fashion. You will notice that it contains an unusually
large number of exercises. Some of them are conceptual theorems; others are there
just for practice; quite a few are both. The idea is that, by solving them one-by-one,
you yourself will construct QM with as little help from me as possible. Accordingly,
it is not advisable to skip the exercises. This is equivalent to skipping a page or two
from a regular textbook: you will not be able to follow what comes next.

Almost all of the exercises have solutions, which are available for download
from my website, accessible via https://www.springer.com/gp/book/
9783662565827. However, please do not look at the solution until you have at le-
ast tried to solve the exercise independently. Even if you fail to arrive at the answer
yourself, you will be conscious of the point where you are stuck, so the solution will
be there as an answer to your existing question. In this way, the seed will fall onto
soil that is already fertilized.

On the other hand, I advise that you do have a quick look at the solution even if
you have found your own. In this way you will become aware of the errors you (or I)
may have made, or of a possible alternative approach to solving the same problem.

https://www.springer.com/gp/book/9783662565827
https://www.springer.com/gp/book/9783662565827
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Those exercises I consider more difficult are marked with asterisks (∗). Unfortu-
nately, many of them contain statements that are essential for subsequent material.
Therefore, while it may be acceptable to defer solving (or studying the solutions
of) these exercises to the future, you should at least make sure you understand the
statements contained therein.

Similarly, sections labeled with asterisks contain more advanced material. You
can safely skip these sections without fear to compromise your ability to understand
the subsequent content.

Some of the exercises (marked with the symbol §) are not provided with solu-
tions. Usually this is the done when I believe that the problem is relatively simple;
in these cases I generally provide an answer immediately after the exercise. Very
rarely, there will be an exercise that is marked by both an asterisk and a paragraph
sign. These constitute independent research projects that may be worth looking at
in your free time.

What knowledge do I expect you to have before you open this textbook?

• You should be familiar with trigonometry (e.g. how to expand cos(α + β ) or
cosα cosβ into a sum of terms).

• You should be able to work with complex numbers, being familiar with the
notions of conjugation, complex phase, and complex exponent (e.g. simplify
|1+ eiφ |2).

• You should be reasonably comfortable with probability theory. To help you, Ap-
pendix B contains some rudiments of this field.

• The same applies to the physics of optical wave polarization: Appendix C briefly
covers the necessary knowledge, but would not be a good replacement for a
proper textbook.

• Calculus and ordinary differential equations are essential throughout book, es-
pecially Chap. 3 (quantum physics of continuous-variable systems); this require-
ment extends to multivariate calculus (Jacobian determinant, etc.) for Chap. 4.
There is no appendix on calculus, but Appendix D covers the Dirac delta function
as well as the direct and inverse Fourier transforms, so pre-existing knowledge
of mathematical physics is not required.

• Of primary importance to quantum physics is linear algebra, including the no-
tions of linear spaces, basis, dimension, inner product, orthonormal basis, linear
operators and matrices, spectral theorem, functions of operators, and so on. These
are covered in Appendix A. However, basic matrix manipulation techniques, such
as matrix multiplication, finding eigenvectors and eigenvalues, do not feature in
this appendix and should be familiar to you before you start the course.
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Chapter 1
The quantum postulates

1.1 The scope of quantum mechanics

Perhaps the first thing to understand about quantum mechanics is that it has as much
to do with mechanics as with, say, electrodynamics, optics, condensed-matter, or
high-energy physics. Rather than describing a particular class of physical pheno-
mena, quantum mechanics provides a universal theoretical framework that can be
used in all fields of physics — akin to a computer’s operating system that provides a
foundation upon which other applications can run. The term “quantum mechanics”
emerged historically, because the first successful applications of the quantum fra-
mework were in studies of the mechanical motion of electrons in an atom. A better
term would be “quantum physics” or “quantum theory”.

So the scope of quantum physics is global: it covers all physical phenomena in
the universe. However, a quantum treatment is practical only in the case of very
small (microscopic) physical systems. The behavior of larger systems is very well
approximated by the laws of classical physics, which are much simpler and more
intuitive, at least for beings that have evolved on that length scale.

Let me illustrate this by an example. You have probably heard of Heisenberg’s
uncertainty principle: ∆ p∆x & h̄/2. That is, a particle’s position and momentum
cannot be measured precisely and simultaneously: the product of the uncertainties is
at least h̄/2≈ 5×10−35 kg·m2/s. For a macroscopic object with a mass on a scale of
a kilogram, reaching the quantum uncertainty limit would require measuring either
the position with a precision on a scale of at least ∼ 10−17 m or the velocity with
precision ∼ 10−17 m/s. This is, of course, unrealistic, so for all practical purposes
we may as well forget about the uncertainty principle and treat the position and
momentum as precise quantities. But for an electron of mass∼ 10−30 kg, the product
of the position and velocity uncertainties will be about 5× 10−5 m2/s, which is
well within experimentally attainable measurement precision and must be taken into
account.

So the predictions of quantum theory are different from classical ones only for
relatively simple, microscopic objects. This explains why quantum mechanics was
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not discovered until the early 20th century. Before then, we (who ourselves are ma-
croscopic entities) only dealt with macroscopic objects. But as soon as we developed
tools to probe the microscopic world deeply enough, quantum phenomena became
manifest.

This is an example of the correspondence principle: a philosophical maxim that
states that any new, more modern, theory should reproduce the results of older well-
established theories in those domains where the old theories have been tested. Here
is another example of this principle. As long as we had to do with objects that
move much more slowly than light, Newtonian mechanics was sufficient to describe
the world around us. But as soon as we became able to observe bodies that move
quickly (e.g., the Earth around the sun in the Michelson-Morley experiment), we
began to see discrepancies and were compelled to develop the theory of relativity.
This theory is distinctly different from Newtonian mechanics — yet it is consistent
with the latter in the limiting case of low velocities. It would be unwise to use spe-
cial relativity to describe, for example, a tractor transmission, because the classical
approximation is in this case both sufficient and tremendously simpler. Similarly,
using quantum physics to describe macroscopic phenomena would in most cases be
overcomplicated and unnecessary.

In classical physics, we deal with quantities: a rock flying at a speed of 10 meters
per second, a circuit carrying a current of 0.2 amperes, and so on. Even if we do not
know a physical quantity exactly, we can work on improving our theory and expe-
riment to predict and measure it with ever increasing precision. In other words, the
classical world is infinitely knowable. In quantum physics, the situation is different:
some knowledge (such as the simultaneous values of the position and momentum)
is “sacred”: it cannot be attained even in principle. And this situation can no longer
be described in terms of quantities alone. Instead, we must use the concept of the
quantum state of a physical system. As we shall see, this concept incorporates the
boundary between the knowledge that is possible and the knowledge that is impos-
sible to obtain. We can learn precisely what state the system is in, but each state is
associated with fundamental limits on the precision with which physical quantities
can be known.

Because quantum mechanics has this role as a general framework, we will study
it in a fairly rigorous, mathematical fashion. I will introduce definitions and axioms,
then predict phenomena that arise from them, and then illustrate these phenomena
with examples from different fields of physics, primarily from optics.

The main mathematical tool of quantum mechanics is linear algebra. Appendix
A of this book teaches the concepts of this discipline that are relevant to quantum
physics. So if you feel comfortable with your linear algebra, please proceed to the
next section. Otherwise I would recommend that you study the first four sections of
Appendix A before moving on.
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1.2 The Hilbert Space Postulate

Let me first give a succinct formulation of the Postulate1, and then explain its mea-
ning in more detail.

a) Possible states of a physical system form a Hilbert space over the field of com-
plex numbers.

b) Incompatible quantum states correspond to orthogonal vectors.
c) All vectors that represent physical quantum states are normalized.

This Postulate contains two notions that have not been defined: quantum state
and physical system. They are so basic that their rigorous definition is difficult2. So
let me try to explain these notions intuitively, using examples.

A physical system is an object, or even one or several degrees of freedom of
an object, that can be studied independently of other degrees of freedom and other
objects. For example, if our object is an atom, quantum mechanics can study its
motion as a whole (one physical system) or the motion of its electrons around the
nucleus (another physical system). On the other hand, if we wish to study the for-
mation of a molecule out of two atoms, motional states of both the atoms and the
electrons therein affect each other, so we must consider all these degrees of free-
dom as one physical system. For a molecule itself, quantum mechanics can study
its center of mass motion (one physical system), rotational motion (another physical
system), vibration of its atoms (a third system), quantum states of its electrons (a
fourth system), and so on.

To grasp the notion of a state, consider the following physical system: a mas-
sive particle that can move along the x coordinate axis. One can define its quantum
state by saying “the particle’s coordinate is exactly x = 5 meters”. This is a va-
lid definition; we would denote this state as |x = 5m〉. Another valid state would
be |x = 3m〉. These states are orthogonal (〈x = 5m| x = 3m〉= 0) because they are
“incompatible”: if a particle’s coordinate is definitely known to be 5 meters, it can-
not be detected at x = 3 meters. On the other hand, the particle can be in the state
“moving at a speed v = 4 meters per second”. This is also a valid quantum state. Be-
cause the momentum of the particle is certain in this state, the position is completely
uncertain, which means that the particle in this state can, with some probability, be
detected at x = 5 m. Hence the inner product 〈x = 5m| v = 4m/s〉 does not vanish;
these states are not incompatible.

The Postulate also says that if |x = 5m〉 and |x = 3m〉 are valid quantum states,
then (|x = 5m〉+ |x = 3m〉)/

√
2 (where 1/

√
2 is the normalization factor — see

Ex. 1.1 for the explanation) is also a valid state. It is called a superposition state.

1 There are no universally accepted postulates of quantum mechanics. If you say “This follows
from Newton’s Second Law”, people will understand you, but if you say “This follows from the
First Postulate of quantum mechanics”, they won’t. You should instead say, for example, “It follows
from the linearity of the quantum Hilbert space”.
2 As in geometry, which is an extremely rigorous science, despite the fact that its primary notions
such as the point, straight line, and plane are not defined.
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More spectacularly, if |living cat〉 and |dead cat〉 are valid states of the physical sy-
stem “cat”, so is the superposition of these states3.

Are superposition states a mathematical abstraction or do they manifest them-
selves in their physical behavior? The answer is, certainly, the latter. As we
shall see shortly, if we subject, e.g., a cat in states (|living cat〉+ |dead cat〉)/

√
2,

(|living cat〉− |dead cat〉)/
√

2 and just a probabilistic mixture of either |living cat〉
or |dead cat〉 to a quantum measurement, we will observe distinctly different results.

Another natural question to ask here is the following. We don’t see superposi-
tion states in everyday life — and yet they are fully compatible with the canons
of quantum mechanics. Why is that so? As we shall see in the next chapter, this is
because superpositions of macroscopically distinct states are extremely fragile and
quickly transform into one of their components — in the case of Schrödinger’s cat,
into either the dead state or the alive state. In the microscopic world, on the other
hand, superposition states are relatively robust and are necessary for its physical
description. The need to deal with entities whose very existence is in conflict with
our everyday experience is one of the reasons why quantum mechanics is so difficult
to comprehend.

Exercise 1.1. What is the normalization factor N of the state of the Schrödinger
cat |ψ〉= N [2 |alive〉+ i |dead〉] that ensures that |ψ〉 is a physical state?

Exercise 1.2. What is the dimension of the Hilbert space associated with one moti-
onal degree of freedom of a massive particle?
Hint: If you think the answer is obvious, check the solution.

1.3 Polarization of the photon

We will begin studying quantum mechanics with one of the simplest physical sys-
tems: the polarization of the photon4. The dimension of its Hilbert space is just two,
yet it is quite sufficient to show how amazing the world of quantum mechanics can
be.

Suppose we can isolate a single particle of light, a photon, from a polarized wave.
The photon is a microscopic object and must be treated quantum-mechanically. We
begin this treatment by defining the associated Hilbert space. We first notice that the
horizontally polarized photon state, which we denote by |H〉, is incompatible with its
vertical counterpart, |V 〉: an |H〉 photon can never be detected in a |V 〉 state. That is,
if we prepare a horizontally polarized photon and send it through a polarizing beam
splitter (with the properties described in Sec. C.2), it will always be transmitted and
never reflected. This means that states |H〉 and |V 〉 are orthogonal.

3 This state is sometimes called Schrödinger’s cat, after one of the founding fathers of quantum
physics, Erwin Schrödinger. But in fact, Schrödinger discussed a more complex entity, see Box 2.5.

4 If you are not familiar with the polarization of an electromagnetic wave, this is a good place to
read the first two sections of Appendix C.
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Box 1.1 Discovery of the photon

Max Planck

In 1900, Max Planck explained the experimentally observed
spectrum of blackbody radiation by introducing the quantum of light,
now known as the photon∗. He found that a good agreement between
theory and experiment can be obtained if one assumes that the energy
of the photon is proportional to the frequency ω of the light wave. The
proportionality coefficient, h̄ = 1.05457148× 10−34, became known
as Planck’s constant.

In 1905, Albert Einstein reconfirmed the validity of Planck’s for-
mula

E = h̄ω

by using it to explain quantitatively the experimental results on the photoelectric effect (see
Box 4.6 for more details)∗∗. Later, in 1916, Einstein argued that, since it is known from clas-
sical electrodynamics∗∗∗ that an electromagnetic wavepacket carrying energy E also carries
momentum p = E/c, the same must be true for photons. From Planck’s formula he found†

p = h̄ω/c. Expressing the frequency of the wave in terms of its wavelength, ω = 2πc/λ , he
then wrote

p = 2π h̄/λ .

Arthur Compton

Arthur Holly Compton used Einstein’s findings in 1923 to provide
a theoretical explanation for his own experiments in which he studied
the scattering of X rays on free electrons††. By treating X ray pho-
tons as high-energy particles, he applied the laws of momentum and
energy conservation to the collision between a photon and an electron
to calculate the scattered photon energy as a function of the scattering
angle. He then related that energy to the wavelength, thereby obtaining
a theoretical fit to his experimental data. The excellent agreement he
observed serves as an explicit proof of the photon’s existence.

Curiously, the term “photon” did not exist at that time. It was in-
troduced later, in 1926, by the physical chemist Gilbert Lewis.

∗M. Planck, Über das Gesetz der Energieverteilung im Normalspectrum, Anna-
len der Physik 4, 553 (1901).

∗∗A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichts-
punkt, Annalen der Physik 17, 132 (1905).

∗∗∗This phenomenon manifests itself, in particular, through the effect of radiation pressure, which was
observed experimentally by Peter Lebedev in 1900.

† The expression for the photon momentum can also be obtained as follows. Using Einstein’s famous rela-
tion E = Mc2 together with Planck’s formula, we can calculate the mass of the photon, M = h̄ω/c2. The photon
moves with the speed of light, and hence its momentum is p = Mc = h̄ω/c.

†† A. H. Compton, A Quantum Theory of the Scattering of X-Rays by Light Elements, Physical Review 21
483 (1923).

†††G. N. Lewis, The conservation of photons, Nature 118, 874 (1926).
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A light wave whose electric field is given as a function of space and time by
[see Eq. (C.2)]

~E(z, t) = Re[(AHeiϕH î+AV eiϕV ĵ)eikz−iωt ] (1.1)

(with real AH,V and ϕH,V ) consists of photons in the state5

|ψ〉= 1√
A2

H +A2
V

(
AHeiϕH |H〉+AV eiϕV |V 〉

)
e−iωt . (1.2)

For example, if AH = AV and ϕH = ϕV = 0, the associated classical wave is ~E =
Re[AH(î+ ĵ)eikz−iωt ], i.e., linearly polarized at +45◦. Accordingly, the state (|H〉+
|V 〉)/

√
2 (where the factor of

√
2 is due to normalization) denotes a single photon

with +45◦ linear polarization. Some further examples are listed in Table 1.16.
It follows that states |H〉 and |V 〉 form an orthonormal basis in the Hilbert space

of photon polarization states — so this space is two-dimensional. To begin with,
these states are orthogonal and thus linearly independent (Ex. A.17). Furthermore,
any polarized classical wave can be written in the form (1.1), so any polarization
state of the photon can be written in a similar way to (1.2), i.e., as a linear combina-
tion of the states |H〉 and |V 〉. We will call the basis {|H〉 , |V 〉} the canonical basis
of our Hilbert space.

Table 1.1 Important polarization states.

state matrix description notation

|H〉
(

1
0

)
horizontal |H〉

|V 〉
(

0
1

)
vertical |V 〉

cosθ |H〉+ sinθ |V 〉
(

cosθ

sinθ

)
linear polarization at angle θ to horizontal |θ〉

1√
2
(|H〉+ |V 〉) 1√

2

(
1
1

)
diagonal, +45◦ polarization |+45◦〉 or |+〉

1√
2
(|H〉− |V 〉) 1√

2

(
1
−1

)
(anti-)diagonal, −45◦ polarization |−45◦〉 or |−〉

1√
2
(|H〉+ i |V 〉) 1√

2

(
1
i

)
right circular polarization |R〉

1√
2
(|H〉− i |V 〉) 1√

2

(
1
−i

)
left circular polarization |L〉

5 It may appear surprising that Eq. (1.2) carries no information about the position of the photon
along the z axis. The reason is that the photon, as a quantum particle, is smeared across space and
time, potentially to a large extent. Among the factors affecting the spread are the properties of the
source, as well as the “quantization volume” chosen for the theoretical analysis. In the case of a
coherent laser beam, the photon length is limited by the coherence length of the laser, which can be
many kilometers. In this book, we will usually assume that the photons are spread over a distance
that is much larger than the size of any apparatus, and can therefore be treated as infinitely long.
6 See footnote 1 on page 289 for a discussion of conventions for circularly polarized states.
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Exercise 1.3. Show that

a) ±45◦ polarization states form an orthonormal basis;
b) right and left circular polarization states form an orthonormal basis.

Exercise 1.4. Decompose |H〉 and |V 〉 into the {|+〉 , |−〉} and the {|R〉 , |L〉} bases.

Exercise 1.5. Decompose |a〉 = |+30◦〉 and |b〉 = |−30◦〉 in the {|H〉 , |V 〉},
{|+〉 , |−〉}, and the {|R〉 , |L〉} bases. Find the inner product 〈a| b〉 using matrix
multiplication in all three bases. Do they come out the same?

Let me clarify a possible confusion. For linearly polarized photons, there is a
continuum of polarization angles. But in the case of one-dimensional particle mo-
tion, discussed in the previous section, there is also a continuum of position states.
Why do we say that one of these Hilbert spaces has dimension two and the other
infinity?

The difference is that linearly polarized states can be written in the form (1.2),
i.e., as a superposition of other linearly polarized states. If we place a polarizing
beam splitter (Sec. C.2), which transmits only horizontally polarized photons, in the
way of a diagonally polarized wave, a part of it will be transmitted. This means that
a diagonally polarized photon can be detected in the horizontal polarization state.

The states associated with different positions, in contrast, are all orthogonal: a
particle prepared in the state |x = 3 m〉 cannot be observed at x = 4 m. Nor can a
position state be written as a superposition of other position states. Accordingly, the
corresponding Hilbert space would need to have a much larger basis than the Hilbert
space of polarization states.

For a classical wave (1.1), shifting the phases of both the horizontal and the ver-
tical component by the same amount (i.e., ϕH → ϕH +ϕ0, ϕV → ϕV +ϕ0, which is
equivalent to multiplying the right-hand side by eiϕ0 ) does not change the polariza-
tion of the wave.

A similar rule applies to quantum states. Multiplying a state vector by eiφ does
not change the physical nature of a state. For example, |V 〉, i |V 〉, and−|V 〉 represent
the same physical object, as do, say, |R〉= (|H〉+ i |V 〉)/

√
2 and e−iπ/2 |R〉= (|V 〉−

i |H〉)/
√

2. For this reason, we will neglect the factor e−iωt in Eq. (1.2) for the time
being.

We call the complex quantity eiϕ with a real ϕ a phase factor. Multiplying a
quantum state by a phase factor is called applying a phase shift by ϕ . In the language
of this definition, we say that applying a phase shift to a quantum state does not
change its physical properties. As we shall see in the next section, this rule turns
out to be very general: it works for all physical systems, not only electromagnetic
waves. Of course, the phase shift must be of an overall nature: if we apply it to only
a part of a state, that state will change. For example, if we apply a π/2 phase shift
to the vertical component of the +45◦ polarized photon, |+〉 = (|H〉+ |V 〉)/

√
2,

we will obtain (|H〉+ i |V 〉)/
√

2 = |R〉— a right circularly polarized photon, i.e., a
physically different object.
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The photon polarization is a realization of the quantum bit (qubit). This term is
used to denote any physical system whose Hilbert space is two-dimensional in the
context of viewing it as an information carrier. The qubit is the basic unit of quantum
information — in analogy to the bit being the unit of information in classical com-
puters. In contrast to the latter, a quantum bit can be, not only in one of the two basis
states, but also in their superposition. This enables a number of new technological
opportunities that we will discuss throughout this book.

1.4 Quantum measurements

1.4.1 The Measurement Postulate

The second Postulate deals with quantum measurements, i.e., experiments whose
aim is to obtain information about the quantum state of a system. In classical, ma-
croscopic physics, measurements are more a matter of technology than fundamental
science. This is because we can precisely measure the state and the evolution of a
system without disturbing it. For example, a soccer ball will not fly differently de-
pending on whether the stadium is empty or full of cheering spectators — so we
don’t need to know what technique is used to observe its trajectory in order to study
the laws of its motion.

In the quantum world, the situation is different: we are big and the things we
want to measure are small. Therefore, any measurement will most likely change the
quantum state of our system. More generally, quantum measurements are events in
which the state of a microscopic quantum object affects that of a macroscopic appa-
ratus. As such, measurements involve crossing the boundary between the quantum
and classical domains of physics. As we know, the laws governing these two re-
alms are very different. In order to have a unified picture of the world, we need to
understand when and how the transition between these two “jurisdictions” occurs.

Furthermore, phenomena in which a quantum state of something microscopic af-
fects something macroscopic are not limited to laboratories. They range from ther-
modynamic phase transitions and lasing to hurricanes, the birth of black holes, and
perhaps the emergence of the universe itself. The physics of such phenomena is
quite similar to that of quantum measurements. Understanding this physics is hence
essential for learning the nature of the world around us.

The main principles of the Measurement Postulate are quite intuitive. Suppose a
photon in state (1.2) hits a polarizing beam splitter (PBS) — an optical element that
transmits horizontally polarized light but reflects vertically polarized [Fig. 1.2(a)].
What will happen to that photon? If we were dealing with a classical wave (1.1),
we would expect it to split: a part would be transmitted through the PBS, and the
remainder reflected. The fractions of energy going into the transmitted and reflected
channels would be proportional to A2

H and A2
V , respectively. But the photon is the

smallest energy portion of light, and cannot be divided into parts.
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We have come to an apparent contradiction. On the one hand, we know that a
classical wave, which consists of photons, divides. On the other hand, every indi-
vidual photon is indivisible. How can these two imperatives be upheld at the same
time?

It seems that the only way to solve the conundrum is to postulate that the outcome
will be random: the photon will be transmitted through the PBS with probability
prH = A2

H/(A
2
H +A2

V ) = | 〈H| ψ〉 |2, and reflected with probability prV = A2
V/(A

2
H +

A2
V ) = | 〈V | ψ〉 |2. In this way, if a large number N of photons are incident on the

PBS, the number ratio of the transmitted and reflected energies will be A2
H/A2

V , as
expected classically (see Sec. C.2). And yet, no individual photon is divided.

As we know, the part of the classical wave that is transmitted through the PBS is
horizontally polarized — that is, all photons making up the wave are of horizontal
polarization. The same is true for the reflected wave: all its photons are vertically
polarized. But then, the same must be true if the photons are sent to the PBS one-by-
one. Not only will the photon randomly choose its path, but also, in a quite Orwellian
fashion, it will change its state to conform with the path chosen. After the PBS, the
photon state in the transmitted channel will become |H〉, and in the reflected channel
|V 〉. If we place a series of additional PBS’s in the transmitted channel of the first
PBS, the photon will be transmitted through all of these PBS’s — there will be no
further randomness.

The process I just described constitutes the polarization state measurement of a
photon. To complete it, we place single-photon detectors (Box 1.2) into both output
channels of the PBS. Of these two detectors, only one will click, thereby providing
us with the information about the photon’s polarization [Fig. 1.2(a)].

The above measurement apparatus is designed to distinguish between the hori-
zontal and vertical polarizations. One can think of other designs as well. For ex-
ample, by tilting the PBS by 45◦, we can have it transmit |+〉 and reflect |−〉,
so if we send an arbitrary state |ψ〉, it will transmit or reflect with probabilities
pr+ = | 〈+| ψ〉 |2 and pr− = | 〈−| ψ〉 |2, respectively. More generally, we can con-
struct a measurement apparatus that would distinguish between any two polarization
states, as long as these states are orthogonal to each other.

We are now ready to formulate our Postulate.

Fig. 1.1 A theoretician’s picture of a quantum measurement.

Measurement Postulate. An idealized measurement apparatus is associated with
some orthonormal basis {|vi〉}. After the measurement, the apparatus will randomly,

measurement apparatus

display
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with probability
pri = | 〈vi| ψ〉 |2, (1.3)

where |ψ〉 is the initial state of the system, point to one of the states |vi〉. The system,
if not destroyed, will then be converted (projected) onto state |vi〉 (Fig. 1.1).

A quantum measurement that proceeds in accordance with the above Postulate
is called a projective measurement. The projection of the state measured onto one
of the basis elements is also called collapse of the quantum state. Equation (1.3) is
called Born’s rule.

The probabilistic behavior of quantum objects led to a lot of controversy at the
time quantum mechanics was founded. This is because, by the end of the 19th cen-
tury, the principle of determinism was universally accepted: physicists believed that,
if the initial conditions of a given quantum system are known precisely enough, its
future evolution can be predicted arbitrarily well. Quantum physics breached this
fundamental belief, and many physicists found it extremely difficult to accept. For
example, Albert Einstein made a famous statement that “God does not play dice”
and came up with a brilliant Gedankenexperiment7 showing that the postulates of
quantum mechanics are in contradiction with common sense. We will study this Ge-
dankenexperiment in the next chapter and see that quantum randomness can be at-
tributed to observers themselves being quantum objects, but not being able to verify
their own quantum nature experimentally. For now, however, let us accept quantum
randomness as a postulate corroborated by vast experimental evidence.

Exercise 1.6. Show mathematically that, for a state |ψ〉, the sum of detection proba-
bilities (1.3) for all basis elements is 〈ψ| ψ〉, i.e., it equals 1 if the state is physical.

Exercise 1.7. Show that applying an overall phase factor to a quantum state will
not change the probabilities of its measurement results — in agreement with the
fact that this phase has no influence on the physics of a state, as discussed in the
previous section.

1.4.2 Polarization measurements

Above, we discussed the fact that one can rotate the PBS to modify the apparatus
of Fig. 1.2(a) so that it can measure the polarization in a non-canonical, linearly
polarized basis. However, the photon reflected from the PBS will not propagate in
the horizontal direction, and this is not convenient in a practical tabletop experiment
(Box 1.3). Therefore most experimentalists take advantage of the optical element
called a waveplate8 which interconverts polarization states of a photon from one to
another. Here are some examples.

Exercise 1.8. Show that:

7 “Gedankenexperiment” is the German for “thought experiment”.
8 This is a good place to read the third section of Appendix C.
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Box 1.2 How to detect a photon?

A photon detector is a device that converts a photon into a “click” — a macroscopic pulse
of electric current or voltage. Making such an extremely sensitive device is a challenging
technological task. This figure sketches one of the modern ways of addressing this challenge:
the superconducting single-photon detector.

The sensitive area of the detector is a nanowire that is cooled down to a superconducting
state, with a small constant current flowing in it. The nanowire is so thin that, when it absorbs
even a single photon, it warms up enough to become resistive in part of its length. The current
will then heat up this area as predicted by Joule’s law, further destroying superconductivity
around it. In this way, a kind of avalanche process develops, in such a way that the entire
nanowire becomes resistive for some time. This resistance leads to a pulse in the voltage
across the nanowire that is easily detectable.

This detector suffers from a few imperfections that are typical of practical photon de-
tectors. First, the detector is non-discriminating: its response to a pulse containing multiple
photons is the same as its response to a single photon. This is because the entire nanowire
will lose superconductivity and acquire the same resistance no matter how many photons are
absorbed. Second, a photon incident on the detector may get reflected, thereby generating no
click. The probability that a click will occur in response to a photon is known as the quantum
efficiency of the detector. In some modern detectors, this parameter exceeds 99%. Finally, a
detector may produce a click even in the absence of a photon. The frequency of such dark
counts is another important technical characteristic of this device.

a) the setup in Fig. 1.2(b) performs the photon polarization measurement in the
diagonal (|±45◦〉) basis;

b) the setup in Fig. 1.2(c) performs the measurement in the circular ({|R〉 , |L〉})
basis.

Hint: When a piece of apparatus described in the Measurement Postulate is mea-
suring one of its own basis states |vi〉, the measurement will point to that state with
probability 1. Conversely, if the apparatus can distinguish a particular orthonormal
set of states with certainty, we can conclude that this set is the measurement basis of
the apparatus. Therefore, to solve this exercise, it is enough to show that the basis
states [i.e., |±45◦〉 in (b) and |R〉 , |L〉 in (c)], when sent onto the PBS, will generate
clicks in different photon detectors.

Exercise 1.9.§ Each of the states |H〉 , |V 〉 , |+〉 , |−〉 , |R〉 , |L〉 is measured in

a) canonical,
b) diagonal,
c) circular

photon

superconducting 
nanowire
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Box 1.3 Optical table

This photograph shows a typical quantum optical experiment. It is performed on an op-
tical table — a massive metal plate upon which one mounts various optical elements, such
as lenses, mirrors, lasers, crystals, and detectors. The beams typically run horizontally, at the
same level throughout the entire table.

bases. Find the probabilities of the possible outcomes for each case.
Answer: For each state, when the measurement is performed in the basis to which
the state belongs, the probabilities are 0 and 1. If the state does not belong to the
measurement basis, the probabilities of both outcomes are 1

2 .

Fig. 1.2 Photon polarization measurements in the canonical {|H〉 , |V 〉} (a), diagonal {|+〉 , |−〉}
(b), and circular {|R〉 , |L〉} (c) bases.

Exercise 1.10. Propose a scheme for a quantum measurement in the basis
{|θ〉 ,

∣∣π

2 +θ
〉
}.

photon 
detectors

polarizing
beam splitter horizontal

polarization

vertical
polarization

b) /2-plate 
@ 22.5°

c) /4-plate 
@ 0°

/2-plate 
@ 22.5°

a)
lll
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Exercise 1.11. Propose a scheme for a quantum measurement in the basis {|R〉 , |L〉}
that would use just one waveplate.

Exercise 1.12. Consider a photon that is not in a superposition state, but in a random
statistical mixture, or ensemble9: either |H〉 with probability 1/2 or |V 〉 with proba-
bility 1/2. The polarization of this photon is measured in

a) canonical,
b) diagonal,
c) circular

bases. Find the probabilities of the possible outcomes for each case.

Exercise 1.13. A photon is prepared with a linear polarization 30◦ to horizontal.
Find the probability of each outcome if its polarization is measured in (a) the cano-
nical, (b) the diagonal, and (c) the circular basis.

Exercise 1.14. A photon in state |ψ〉= (|H〉+ eiϕ |V 〉)/
√

2 is measured in the dia-
gonal basis. Find the probability of each outcome as a function of ϕ .

This exercise, along with Ex. 1.7, shows once again the important difference
between a phase factor applied to a part of a quantum state or applied to the whole.
In the former case the added phase has an effect on the measurable properties of the
object; in the latter, it doesn’t.

Although a single measurement provides us with some information about the
initial state of a quantum system, this information is very limited. For example,
suppose we have measured a photon in the canonical basis and found that it has
been transmitted through the PBS. Does this tell us that the initial photon was in the
state |H〉? No. It could have been in any state ψH |H〉+ψV |V 〉; as long as ψH 6= 0,
there is some probability of getting a click in the transmitted channel. So the only
thing we learn from this measurement is that the photon was not vertically polarized.

Suppose now we have performed the same measurement many times, every time
preparing our photon in the same state10. Now we know much more! We know how
many clicks we obtained from the “horizontal” detector, and how many from the
“vertical” one — that is, we have measurement statistics. From these, we can cal-
culate, with some error, prH = |ψH |2 and prV = |ψV |2, i.e., learn about the absolute
values of the state components. But both ψH and ψV are complex numbers, and their
arguments are still unknown. For example, if we observe prH = prV = 1/2, the state
|ψ〉 could be |R〉 or |L〉 or |+〉 or |−〉, or many other options. What can we do about
this?

As you will see in the following exercise, it is helpful to perform additional sets
of measurements in other bases. From the statistics acquired, we obtain additional
equations, which can be solved to find ψH and ψV up to an uncertainty associated
with a common phase factor.

9 Such mixed states are not elements of the quantum Hilbert space. More detail on this in Sec. 2.2.4.
10 Although we don’t know what the state is, we can make sure we can repeatedly prepare the
photon in the same state by setting up identical experimental conditions.



14 A. I. Lvovsky. Quantum Physics

Exercise 1.15. Suppose multiple polarization measurements of photons identically
prepared in the state |ψ〉 are carried out in the canonical, diagonal, and circular ba-
ses, and all six respective probabilities (prH , prV , pr+, pr−, prR, prL) are determined.
Show that this information is sufficient to fully determine |ψ〉 and express its de-
composition in the canonical basis through prH , pr+, and prR. Give an example to
show that measuring just in the canonical and diagonal bases would be insufficient
— that is, find two different states that would yield the same prH and pr+.

This method of obtaining complete information about the quantum state by per-
forming series of measurements in several different bases on the state’s multiple
identical copies is called quantum state tomography. It can be generalized to other
quantum systems, including those of higher dimension. We discuss quantum tomo-
graphy in more detail at the end of the book (Sec. 5.7).

Exercise 1.16. Suppose you are given a single copy of a quantum system that is in
one of the two non-orthogonal states |a〉 and |b〉. You know what these states are,
but you don’t know which one the system is in.

a) Show that it is not possible to construct a piece of measurement apparatus that
would always reveal the system’s state with certainty.

b)∗ Show that it is possible to construct a measurement device that would produce,
with some probability, outcomes of three types: “definitely |a〉”, “definitely |b〉”,
and “not sure”, and the outcomes of the first two types would always be correct.
Hint: It may be helpful to use a non-polarizing beam splitter — an optical
element that randomly reflects or transmits a photon independently of its pola-
rization.

1.5 Quantum interference and complementarity

Consider the experiment displayed in Fig. 1.3. A single photon, initially in the dia-
gonal polarization state |+〉= (|H〉+ |V 〉)/

√
2, enters an arrangement known as an

interferometer11. First, a PBS transmits the horizontal component of the state and
reflects the vertical one. The reflected component then propagates through a variable
delay line,12 after which the two components are recombined by means of another
PBS. Subsequently, the interferometer output state is subjected to a measurement in
the diagonal basis.

The delay line introduces a difference between the optical path lengths of the
vertical and horizontal components. If the length of the delay line is l, the verti-
cal component will acquire a phase shift of ϕ = kl with respect to the horizontal
one, where k = 2π/λ is the wavenumber. As a result, the photon, when exiting the
interferometer, will be in the state |ψ〉= (|H〉+ eiϕ |V 〉)/

√
2.

11 More specifically, the Mach-Zehnder interferometer.
12 The delay line is assumed much shorter than the length of the photon pulse, so the interference
visibility remains constant when the delay is varied.



1.5 Quantum interference and complementarity 15

polarizing
beam splitter

horizontal
polarization

vertical
polarization

l/2-plate 
@ 22.5°

mirror

mirror

2

H V+
+ =

photon in state

2

iH e Vj+
photon in state

measurement in diagonal basis

delay line

+

-

delay line length 
0

1
pr+ pr-

Fig. 1.3 A single-photon interference experiment. Inset: event probabilities for the two detectors
as a function of the interferometer path length difference.

We studied the measurement of this state in Ex. 1.14 and found that the proba-
bilities for the detectors “+” and “−” to click are pr± = 1

2 (1± cosϕ), respectively.
When we vary the length of the delay line, the probabilities will vary sinusoindally.
In other words, we will observe interference fringes — of the same kind that a ma-
croscopic wave would exhibit in this optical arrangement.

What is truly remarkable about this conclusion (and it has, of course, been tho-
roughly confirmed experimentally) is that the interference fringes are generated by
a single photon. This is in drastic conflict with intuition. Indeed, in a classical ex-
periment, interference would occur because the two waves, traveling along the two
paths of the interferometer, acquire different phases and then add coherently on the
photodetectors. But in our experiment only one photon is present. A photon is an
indivisible elementary particle of light — and hence it cannot split13 in the interfe-
rometer to generate the two waves required to produce interference fringes. It must
be traveling along either the upper or the lower interferometer path — but never the
two at the same time.

However reasonable and intuitive, this “devil’s advocate” argument turns out to
be inconsistent with both our calculation and the experimental observation. How
can this be explained?

The photon entering the interferometer is in a superposition of the vertical and
horizontal polarization states. After the first PBS, it remains in a superposition —
but now, it is also a superposition of the upper and lower interferometer paths. Once
the paths are recombined, the superposition is again transformed into that of pola-
rization states — albeit with a phase shift on one of its components. It is these two

13 We will see later that a photon may in fact split into two photons of lower energy through
a nonlinear optical phenomenon known as parametric down-conversion. However, this effect is
quite exotic, occurring with low probability and only under special conditions. Our interferometer
contains no nonlinear optical elements, so parametric down-conversion is irrelevant here.
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Box 1.4 Quantum weapon inspection

Here is an exciting paradox associated with the single-photon interference experiment
discussed in Sec. 1.5∗. Suppose there is a “bomb” equipped with a photon sensor, so that it
will explode if even a single photon interacts with it. Can we detect the presence of the bomb
in one of the arms of our interferometer without detonating it?

Let us set up the delay line in our single-photon interferometer (Fig. 1.3) such that ϕ = 0.
Then, if the bomb is absent, every incoming photon will leave the interferometer polarized at
+45◦ and cause an event in detector “+”. Detector “−”, on the other hand, will never click.

Now if the bomb is present, as shown in the figure above, it may explode or not, de-
pending on which way the photon goes. In this way, the bomb implements a Welcher-Weg
measurement. Accordingly, the photon will behave like a particle that goes randomly into
either the lower or the upper part of the interferometer. If it goes into the lower path, the
bomb will explode. But if it goes into the upper part, the bomb will remain intact and the
photon will exit the interferometer in the vertical polarization state. When measured in a
diagonal basis, this photon will be equally likely to generate an event in either of the two
detectors.

Hence, if the bomb is present, there will be a nonzero probability of hearing a click
in detector “−”. Moreover, this detector can click only in the presence of the bomb. If this
detector does click, we know for certain that the bomb is present — without having interacted
with it!

The above setup is not a perfect tool for weapon inspection, as it does not guarantee a
conclusive result, nor that the bomb will not detonate (Ex. 1.17). However, if one places the
bomb in a high-finesse Fabry-Perot interferometer rather than a Mach-Zehnder interferome-
ter, one can achieve an efficiency close to 100%. In this case, the photon will likely pass
through the interferometer when the bomb is absent, but reflect if the bomb is present.

∗A. C. Elitzur, L. Vaidman, Quantum mechanical interaction-free measurements, Foundations of Physics
23, 987 (1993).

/2-plate 
@ 22.5°

delay line
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components of the superposition that play the role of the two waves in the classical
experiment, interfering with each other. This is known as the wave-particle duality
of quantum particles14.

So, in a sense, the photon does get divided between the two interferometer chan-
nels. However, this wavelike behavior is only possible if the components remain in
the superposition state. To illustrate this, let us suppose that we place non-destructive
detectors in both interferometer arms, able to register the presence of the photon wit-
hout destroying it. Every time a photon is sent into the interferometer, one of these
detectors will “click”, indicating whether the photon went through the upper or the
lower path. In this way, as the founding fathers of quantum mechanics would say,
we obtain Welcher-Weg (which-way) information about the photon.

Obtaining Welcher-Weg information means measuring the location of the pho-
ton. As we learned in the previous section, such a measurement will collapse the
superposition state onto the photon being either in the upper or lower path of the
interferometer. By looking at the Welcher-Weg detector, the observer is able to tell
with certainty whether the photon will leave the interferometer in the horizontal or
vertical state. In either case, a subsequent measurement of that photon in the dia-
gonal basis will yield either outcome with probability 1/2, with no dependence on
the path-length difference. The Welcher-Weg measurement destroys the wavelike
property of the photon and makes it behave like a particle.

This is, of course, the case even if the observer does not look at the Welcher-Weg
detectors. The photon is then in a mixed state of being either in the upper or lower
path of the interferometer with probability 1/2, but no longer in the superposition
state. That is, we are now in the situation of Ex. 1.12 rather than 1.14. The photon
state has lost its quantum coherence — a well-defined phase relation between the
superposition terms. Hence it is no longer able to exhibit interference.

This Gedankenexperiment demonstrates quantum complementarity — a general
principle of quantum physics stating that objects may have complementary proper-
ties which cannot be observed or measured at the same time. We can have either the
Welcher-Weg information or interference, but not the two together.

Exercise 1.17. In the setting of Box 1.4, what are the probabilities of

a) detecting a bomb without detonating it,
b) detonating the bomb,
c) obtaining an inconclusive result without detonating the bomb?

1.6 Quantum cryptography

We can now discuss the first application of quantum physics in this course. This ap-
plication is to cryptography — the art of exchanging secret messages over insecure
channels.

14 This is probably why popular quantum books like to describe superposition states as ones in
which “an object is in two different places at the same time”.
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Box 1.5 Classical cryptography
Cryptography is easily implemented if the communication parties, which we call Alice

and Bob, share a prearranged, secret data set (a sequence of 0’s and 1’s) known as secret key or
one-time pad. With this resource available, a cryptographic protocol can proceed as follows.
Alice chooses a piece of the secret key which has the same length (i.e., the same number of
bits) as the message she wishes to send to Bob. She then applies an XOR (exclusive OR, or
bitwise sum modulo 2) operation to every bit of her message and the corresponding bit of her
secret key:

original message 01110011...
XOR

secret key 10011010...
encrypted message 11101001...

In this way she obtains an encrypted message which can be safely transmitted over an
insecure channel, as it cannot be decrypted by anyone who is not privy to the secret key. Bob,
on the other hand, can easily decrypt the message. To this end, he applies XOR to every bit
of the encrypted message he receives and the corresponding bit of the secret key, thereby
recovering the original message.

encrypted message 11101001...
XOR

secret key 10011010...
recovered original message 01110011...

This protocol, known as private-key cryptography, is very secure and simple; it has been
known for hundreds of years. The trouble is, it is not easy for Alice and Bob to arrange
sharing random data that would be secret to everyone else. As a rule, the only safe way to
do this would be to send a courier carrying a briefcase loaded with random data. This is, of
course, very expensive. For this reason, private-key cryptography is only used in the most
sensitive government and commercial communications.

For other applications, such as e-commerce, a family of protocols known as public-key
cryptography is used. Without going into details, these protocols rely on the existence of
“one-way” functions that are easy to compute, but very difficult to invert. For example, mul-
tiplying two prime numbers containing a few dozen digits will take microseconds on a mo-
dern computer, but factoring a number of similar length will take months or years. Public-key
cryptography protocols rely on one-way functions to enable secure communication between
parties who have never had an opportunity to exchange a secret key.

While public-key protocols are convenient and inexpensive, they are not perfectly secure.
The computational power available to us doubles every year or two, so a calculation that
takes years at present may take only hours a few years in the future. Furthermore, quantum
computers (Sec. 2.5) are potentially capable of cracking the security of public-key protocols
almost instantly.
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Known since ancient times, cryptography is now a major branch of the telecom-
munications industry, aimed at protecting the privacy and information security of
individuals, businesses and government entities. Box 1.5 reviews classical approa-
ches to cryptography. To sum it up, within the classical domain we are compelled
to choose between private-key cryptography, which is secure but expensive, and
public-key cryptography, which is cheap, but not perfectly secure.

Quantum mechanics offers us a solution that takes “the best from both worlds”.
On the one hand, its security is guaranteed by fundamental laws of nature. On the
other hand, it does not require random information to have been shared previously
between the parties.

1.6.1 The BB84 protocol

Quantum cryptography, or, more precisely, quantum key distribution, relies on the
property of measurements to alter the quantum state they are used on. The idea is
that the sending party (Alice) sends secret data to the receiving party (Bob) by means
of single photons, encoding the data in their quantum states. Anyone who tries to
eavesdrop on this transmission will either destroy or alter these photons, thereby
revealing themselves.

The best known quantum cryptography protocol is named “BB84” after its in-
ventors C.H. Bennett and G. Brassard15. To implement it, Alice and Bob perform
the following operations.

1. Alice tosses a coin to randomly choose the value of a bit, either 0 or 1, to be
sent.

2. Alice tosses a coin again to choose the encoding basis, either canonical or dia-
gonal.

3. Alice generates a photon and encodes the bit in that photon’s polarization:{
0→ |H〉
1→ |V 〉 or

{
0→ |+45◦〉
1→ |−45◦〉

She then sends the photon to Bob.
4. Bob tosses a coin to choose the measurement basis, either canonical or diagonal.
5. Bob measures the arriving photon in the chosen basis:

• if he chooses the same basis as Alice, he will detect the same bit value as the
one Alice sent;

• if he chooses the other basis, he will detect a random bit value.

This procedure is repeated many times. Of course, both Alice and Bob must keep
record of the bases they used, states sent or detected, and the exact time when the

15 C. H. Bennett, G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tos-
sing”, Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New
York, 1984), p. 175.
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photons were sent or received. After many thousands of such records have been
collected, Alice and Bob inform each other (via a classical, insecure channel) of
their choice of bases for each photon, but not the bit values they sent or measured.
Bob also informs Alice of those instances when he did not detect a photon, e.g., if it
has been absorbed in the transmission line (this requires, of course, that the timing
of Alice’s transmissions be known to Bob, but this information need not be secret).
Subsequently, Alice and Bob discard the data for those events in which different
bases were used or the photon has been lost.

Alice and Bob now share a string of identical bits, which they can use as the one-
time pad in a private-key protocol. To see why this string is guaranteed to be secret,
let us suppose an eavesdropper (Eve) cuts the transmission line, intercepts Alice’s
photons, measures their polarization, and re-sends them to Bob (Fig. 1.4). Will she
be able to obtain a copy of the secret key?

Alice Bob

Eve

Fig. 1.4 Eavesdropping in quantum cryptography.

The answer is negative. Eve’s problem is that, according to the Measurement
Postulate, she must measure in a particular basis, and does not know which basis to
choose. No matter how she chooses that basis, it will sometimes happen that Alice
and Bob work in the same basis and Eve in a different one. But in this case Eve’s
measurement will alter the photon’s state and Bob may not receive the same bit
value as the one Alice sent him. The secret keys that Alice and Bob record will end
up being different, and this will alert them to the eavesdropping.

Suppose, for example, that Alice and Bob both work in the canonical basis, but
Eve in the diagonal basis. Alice sends a horizontally polarized photon, encoding bit
value 0. But Eve uses the diagonal basis, so she will detect |+〉 or |−〉 with equal
probabilities. If she detects and resends either of these states, Bob (who detects in
the canonical basis) is equally likely to observe |H〉 or |V 〉. Bob’s observation of |V 〉
will cause him to record a different bit value compared to the one Alice has sent.

In order to check whether the eavesdropper was present, Alice and Bob exchange,
via an insecure channel, a part of the secret bit string they obtained. If there are no
(or very few) errors, they can use the remainder of that string as the one-time pad.

Exercise 1.18. Suppose Eve intercepts Alice’s photons and measures them in either
the canonical or diagonal basis (she chooses at random). She then encodes the bit
she measured in the same basis and re-sends it to Bob. What error rate will Alice
and Bob register, i.e., what fraction of bits in the secret key they created will come
out differently on average?
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This exercise implies that, if Alice and Bob see that the secret key they obtain
contains a certain fraction of non-identical bits, they can no longer be sure they are
not being eavesdropped. However, the error rate obtained in Ex. 1.18 applies only
to one specific attack by Eve. By choosing more sophisticated attack strategies, Eve
can obtain a copy of the secret string while creating an even lower error rate in Alice
and Bob’s records.

So how low does the error rate need to be for Alice and Bob to be sure their
communication is secure? It has been proven16 that the boundary lies at about 11%.
No matter what Eve’s strategy is, if the error rate is below that value, Alice and
Bob can use a procedure called privacy amplification to “distill” a perfectly secure,
identical secret key from the partially non-identical bit strings they obtained via the
quantum protocol.

Exercise 1.19. As discussed, a large fraction of the photons sent by Alice do not re-
ach Bob. But Alice and Bob do not know whether these photons were in fact lost due
to the absorption in the line or “stolen” by an eavesdropper. Does this consideration
affect the security of quantum key distribution?

1.6.2 Practical matters in quantum cryptography

Quantum cryptography is no science fiction. The protocol described above is fully
within reach of present day technology. In fact, there exist commercial quantum
cryptography servers that can be connected to commercial fiber optical communi-
cation lines and implement the BB84 protocol. Many cities have constructed me-
tropolitan quantum communication networks. Quantum cryptography was used for
communications during the 2007 Swiss federal elections and the 2010 FIFA world
cup in South Africa. Further examples will emerge as this text is being written.

Still, we do not see quantum key distribution universally replacing classical cryp-
tographic protocols. Is there still a technical obstacle or is this just a matter of mental
inertia?

Unfortunately, there do exist unsolved practical issues, the main one being loss
in communication lines. This loss follows Beer’s law n(L) = n0e−βL, where n(L)
is the number of non-absorbed photons at distance L from Alice, and β is the loss
coefficient. The best fibers used in telecommunications today involve a loss of about
5% per kilometer. This does not sound like much; yet, when transmitted through an
intercity communication line, only a tiny fraction of all photons will reach Bob; the
remainder will be lost.

Exercise 1.20. Alice sends a photon to Bob, who is 300 km away, via a fiber line.
The fiber has a loss rate of 5% per kilometer.

a) Find the loss coefficient β in that fiber.

16 P. W. Shor and J. Preskill, Simple Proof of Security of the BB84 Quantum Key Distribution
Protocol, Physical Review Letters 85, 441 (2000).
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b) What fraction of the photons sent by Alice will reach Bob?

In addition to the loss, there is a problem associated with dark counts (see Box
1.2). It may happen that, e.g., an |H〉 photon sent by Alice is lost, and, at the same
time, Bob’s detector in the vertical polarization channel generates a dark event. Bob
will then interpret this event as an observation of a |V 〉 photon coming from Alice,
and make a record of it. As a result, Alice and Bob will observe an error, and will
no longer be confident that their communication is secure.

As long as the transmission line is not too long, there are enough photons rea-
ching Bob so the fraction of errors due to dark counts is small. But the photon rate
decreases exponentially with the distance, whereas the rate of dark counts remains
constant. So at some point secure transmission will no longer be possible.

This is illustrated in Fig. 1.5. When the communication distance is short, the rate
of secure bits distilled by Alice and Bob (dotted lines) follows the rate of photons
reaching Bob (solid lines) multiplied by a constant factor. But when this rate decre-
ases, so that the fraction of errors due to dark counts becomes significant, the secure
key starts to fall off faster with the privacy amplification protocol becoming less
and less efficient. When the number of photons reaching Bob falls below the criti-
cal level corresponding to the error fraction of 11%, the transmission is no longer
secure.
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Fig. 1.5 Secure communication rate as a function of distance in the setting of Ex. 1.21.

Exercise 1.21. Assuming that Alice has a perfect single-photon source, sketch the
photon transfer rate and the distilled secret bit rate as functions of the distance and
estimate the maximum possible secure communication distance given the following
parameters:

• photon loss in the fiber communication line: β = 0.05 km−1;
• emission rates of Alice’s source: n0 = 2×107 and 2×1010 photons per second;
• quantum efficiency of the photon detectors: η = 0.1;
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• frequency of dark events that are synchronized with Alice’s photons17 in each of
Bob’s detectors: fd = 10 s−1;

Answer: see Fig. 1.5.

The range of secure quantum communication can be improved by increasing
Alice’s photon emission rate or reducing the detector dark counts. However, this
will not lead to dramatic results: the exponential nature of Beer’s law prevents quan-
tum communication at distances beyond a few hundred kilometers. In the setting of
Ex. 1.21, increasing the emission rate by three orders of magnitude increases the
communication distance by only a factor of 1.7 (Fig. 1.5).

To overcome this limit — and create the “quantum internet” that would cross
oceans and eventually cover the entire planet — we need a fundamentally different
technology. This technology, known as the quantum repeater, is discussed at the end
of Chapter 2.

1.7 Operators in quantum mechanics

We now proceed to discussing linear operators, which are a key element of quan-
tum physics18. They play a dual role. First, they describe evolution: as time passes,
quantum states change, and this change is described mathematically by operators.
A second, less obvious application of linear operators is the formal description of
quantum measurements. We shall start with the first role in this section.

Exercise 1.22. Find the matrix of the operator |+〉〈−| in the canonical and the
(|R〉 , |L〉) bases.

Exercise 1.23. Find, in the canonical basis, the matrix of the linear operator Â that
maps

a) |H〉 onto |R〉 and |V 〉 onto 2 |H〉;
b) |+〉 onto |R〉 and |−〉 onto |H〉.

The waveplate, which transforms photon polarization states, is an example of
a physical operation that can be associated with a quantum operator. In order to
calculate this operator, we need to adopt a convention. As discussed in Sec. C.3,
the waveplate changes the relative phase of the extraordinary (parallel to the optic
axis) and ordinary (orthogonal to the optical axis) polarization states by an angle
∆ϕ , which is equal to π for a half-wave plate and π/2 for a quarter-wave plate. In
addition, it introduces a common phase shift for the entire wave.

These optical phase shifts transform into quantum phase shifts when applied to
the single photon. The overall phase shift, common for all polarization components,

17 The actual dark count rate can be higher. But because Bob knows the exact timing of Alice’s
transmission, the only dark count events that contribute to the error rate are those that occur syn-
chronously with the clicks expected due to Alice’s photons.
18 A fuller introduction into linear operators and matrices can be found in Sections A.5 and A.6.
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Box 1.6 How to generate a photon?
The most straightforward, but incor-

rect, answer to this question is as follows:
attenuate a laser. Suppose one has a pul-
sed laser with mean power P and pulse re-
petition rate R. Then each laser pulse con-
tains n = P/Rh̄ω photons, where ω is the
frequency of the laser radiation. Therefore, one might argue, one could place an attenuator
(dark glass) into the laser beam that would reduce its power by a factor of n, so that each
pulse would contain precisely one photon.

The mistake in this argument is that the photon numbers in the pulses transmitted through
the attenuator will be stochastically distributed according to the Poisson distribution (see
Sec. B.3). While there may indeed be one photon per pulse on average, this does not mean that
each pulse will contain exactly one photon. Sometimes there will be zero photons, sometimes
one, sometimes two or more.

In spite of this criticism, the attenuated laser provides a useful replacement for a true
photon source in some applications. In particular, in practical quantum cryptography, the
laser is attenuated to an extremely weak level, so the probability for each pulse to contain
even a single photon is quite low. Then the probability that the pulse contains more than one
photon is negligible, and hence the communication security is not compromised.

In order to guarantee production of a single photon “on
demand”, more sophisticated schemes are required. For exam-
ple, a single two-level atom, when excited, will spontaneously
decay back to the ground state, emitting precisely one photon.
Practical realization of such a source, however, is challenging.
First, one needs to trap a single atom and hold it in position for

the duration of the experiment. Second, the photon will be emitted in a random direction.
To make the atom emit in a specific direction, physicists sometimes put a Fabry-Perot cavity
around it. This arrangement is commonly referred to as cavity quantum electrodynamics.

To obviate the need to trap the atom, experiments are conducted with solid atom-like
sources, such as single-site defects in crystal lattices or quantum dots. The idea is the same:
to consider an object in which only one quantum excitation of a certain energy is allowed.
At the time this manuscript is being written, these experiments are evolving rapidly towards
better efficiency and reproducibility of the protons produced.

In the meantime, a powerful alternative approach to sin-
gle photon preparation is offered by spontaneous parame-
tric down-conversion. This is a nonlinear quantum optical
process that takes place when a strong laser beam propaga-
tes through a crystal with nonlinear optical properties. Each
photon of the beam can spontaneously split into two pho-
tons of lower energy. Such an event is spontaneous and has
a very low probability. However, it has a fundamental pro-
perty: whenever it occurs, it is always a pair of photons that is produced. So if we detect one
of the photons, we know that its counterpart has been generated and we can experiment with
it.

This setup is called the heralded single-photon source, because the detection of one
photon “heralds” the presence of the other. It is not capable of producing photons on demand;
it only announces when a spontaneously emitted photon is produced without destroying it.
Hence its application in quantum technology is limited. However, because we do not yet
have a reliable on-demand source, heralded sources are widely used in experimental quantum
optics research.

laser

attenuator

p
ro

b
a
b
ili

ty

number of photons

laser

atom

laser

crystal

heralding detector

signal
photon



1.7 Operators in quantum mechanics 25

can be neglected (see Sec. 1.3). We need to agree on how to treat this common
phase shift. Our convention will be that the waveplate brings about no phase shift in
the ordinary polarization component, while the extraordinary component acquires a
phase shift ∆ϖ . In other words, a waveplate with its optical axes oriented at angle
θ to the horizontal effects the following transformations:

|θ〉 → ei∆ϕ |θ〉 ; (1.4a)∣∣∣π
2
+θ

〉
→
∣∣∣π

2
+θ

〉
. (1.4b)

Exercise 1.24. Find, in the canonical basis, the matrices of the operators associated
with a half- and quarter-wave plate with its optical axes oriented at angle α to the
horizontal, by following these steps.

a) Write the operator Â∆ϕ associated with the transformation (1.4) in the form of
Eq. (A.25).

b) Express each bra and ket in the result of part (a) in the matrix form in the
canonical basis and calculate the matrix of the resulting operator.

c) Specialize the result to the half- and quarter-wave plates.

Answer:

ÂHWP(α) =

(
−cos2α −sin2α

−sin2α cos2α

)
; (1.5a)

ÂQWP(α) =

(
sin2

α + i cos2 α (i−1)sinα cosα

(i−1)sinα cosα i sin2
α + cos2 α

)
. (1.5b)

Exercise 1.25. Using the result of the above exercise, check the following:

a) when applied to a photon linearly polarized at angle θ , a λ/2 plate with its optic
axis oriented at angle α produces a photon linearly polarized at angle 2α −θ ,
in agreement with Fig. C.4;

b) a λ/4-plate with the optic axis oriented horizontally or vertically interconverts
between the circular and±45◦ polarization photons, in agreement with Ex. C.9.

Exercise 1.26. Pauli operators19 are defined as

σ̂x ≡ |H〉〈V |+ |V 〉〈H| ; (1.6a)
σ̂y ≡−i |H〉〈V |+ i |V 〉〈H| ; (1.6b)
σ̂z ≡ |H〉〈H|− |V 〉〈V | , (1.6c)

or in the matrix notation,

σ̂x ≡
(

0 1
1 0

)
; σ̂y ≡

(
0 −i
i 0

)
; σ̂z ≡

(
1 0
0 −1

)
. (1.7)

19 The meaning of subscripts x, y, and z will be made clear in Chapter 4, when we study quantiza-
tion of angular momenta.
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Propose the implementation of these operators by means of waveplates.
Hint: Find the states onto which the Pauli operators map |H〉 and |V 〉, then use
Ex. 1.24.

Exercise 1.27. The matrix of the Hadamard operator Ĥ in the canonical basis is
1√
2

(
1 1
1 −1

)
.

a) Express this operator in the Dirac notation.
b) Onto which states does Ĥ map |H〉 and |V 〉?
c) How can one implement this operator using waveplates?

1.8 Projection operators and unnormalized states

We previously postulated that physical quantum states have norm 1. Let us now
extend this convention. A norm of a state vector |a〉 can be less than 1; this means
that state |a〉 exists not with certainty, but with a probability that equals the square
of its norm

pra = ‖|a〉‖2 = 〈a| a〉 . (1.8)

Such states are called unnormalized.
Consider a projective measurement of the state |ψ〉 in the basis {|vi〉}. The ca-

nonical formulation of the Measurement Postulate says that the measurement trans-
forms |ψ〉 into one of the |vi〉 with probability (1.3). Using the extended conven-
tion, we can equivalently state that this measurement transforms |ψ〉 into a set of
unnormalized states |ψ ′i 〉 = 〈vi| ψ〉 |vi〉. Each |ψ ′i 〉 is proportional to |vi〉, but has a
probability of existing that is equal to its squared norm〈

ψ
′
i
∣∣ ψ
′
i
〉
= | 〈vi| ψ〉 |2

(1.3)
= pri. (1.9)

We can rewrite this according to∣∣ψ ′i〉= Π̂i |ψ〉= 〈vi| ψ〉 |vi〉 , (1.10)

where we have introduced the projection operator

Π̂i = |vi〉〈vi| . (1.11)

For example, a non-destructive measurement of the state |ψ〉= (2 |H〉+ |V 〉)/
√

5
in the canonical basis generates the following unnormalized states:∣∣ψ ′H〉= Π̂H |ψ〉= |H〉〈H| ψ〉= 2 |H〉/

√
5;∣∣ψ ′V 〉= Π̂V |ψ〉= |V 〉〈V | ψ〉= |V 〉/

√
5.
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The state |ψ ′H〉 represents a horizontally polarized photon existing with probability
prH = 4/5, while the state |ψ ′V 〉 represents a vertically polarized photon existing
with probability prV = 1/5.

The interpretation of measurements in terms of projection operators is often use-
ful, as we shall see later in this course.

Exercise 1.28. Find the matrix of the projection operator associated with basis state
|v2〉 in the basis {|vi〉} for the Hilbert space of dimension N = 4.

1.9 Quantum observables

1.9.1 Observable operators

The Measurement Postulate of quantum physics, as defined in Sec. 1.4, states that a
quantum measurement is performed in an orthonormal basis and the measurement
result is a random element of that basis. Let us now go one step further and associate
with each basis element, |vi〉, a real number, vi. Then, instead of saying “the result
of the measurement is state |vi〉”, we say “the result of the measurement is the value
vi”.

For some measurements, this association is natural. For example, a state with a
certain position, such as |xi〉 = |x = 3m〉, is naturally associated with a value of the
particle’s coordinate (xi = 3 m). For other measurements, such as the measurement
of a photon polarization, there is no natural connection between basis elements and
numbers, but it can be introduced artificially. For example, if we are measuring in
the canonical basis, we can associate number 1 with state |H〉 and−1 with state |V 〉.

The information about the measurement basis and the values associated therewith
can be conveniently expressed in the form of the operator

V̂ = ∑
i

vi |vi〉〈vi| . (1.12)

This operator is called the observable operator, or simply the observable. As we
know (Sec. A.8), the elements |vi〉 of the measurement basis (the observable’s ei-
genbasis) are the eigenstates or eigenvectors of the observable and the correspon-
ding values vi are its eigenvalues. Using Eq. (1.12), one can introduce an observable
operator for almost any measurement or measurable quantity: position, momentum,
angular momentum, energy, etc. As we shall see in the coming sections, observable
operators are of paramount significance in quantum physics.

There is one important exception to this general statement. Time is never treated
as an operator in quantum physics. There are no eigenstates of time, nor quanta of
time. Time is simply a continuous variable.

Exercise 1.29. Find the observables associated with the {|H〉 , |V 〉}, {|+〉 , |−〉},
and {|R〉 , |L〉} bases (i.e., the pieces of measurement apparatus in Fig. 1.2) and
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the eigenvalues ±1 (respectively) in the Dirac notation. Find the matrices of these
operators in the {|H〉 , |V 〉} basis.
Answer: Pauli operators (1.6):

|H〉〈H|− |V 〉〈V |= σ̂z; (1.13a)
|+〉〈+|− |−〉〈−|= σ̂x; (1.13b)
|R〉〈R|− |L〉〈L|= σ̂y. (1.13c)

Now we have seen the two roles of operators in quantum mechanics: transforma-
tion of quantum states and the description of pieces of measurement apparatus. A
natural question to ask is whether the physical implementations of the same opera-
tor in these two roles are in any way similar. The example above shows that it is not
the case. The pieces of measurement apparatus implementing the Pauli operator are
shown in Fig. 1.2. The Pauli operators as state transformations, on the other hand,
have been implemented in Ex. 1.26. We can see that these setups are quite different.

Exercise 1.30. Show that:

a) operators corresponding to physical observables (1.12) are Hermitian;
b) any Hermitian operator can be associated with a physical observable, i.e., can

be expressed in the form (1.12) with real eigenvalues and eigenstates that form
an orthonormal basis.

Exercise 1.31. Perform the spectral decomposition of the Pauli matrices (1.7) using
the methods of linear algebra. Check the consistency of your result with the defini-
tion given in Ex. 1.29.

We see that every measurement can be associated with a Hermitian operator, and
every Hermitian operator can be associated with a measurement. Furthermore, the
observable operator contains, in a compact form, full information about the mea-
surement basis and the associated eigenvalues. If somebody gives us a Hermitian
matrix of an observable operator, we can retrieve this information using the spectral
decomposition20.

1.9.2 Mean value and uncertainty of an observable

Suppose we measure an observable V̂ = ∑i vi |vi〉〈vi| in the state |ψ〉. The result of
this measurement is probabilistic: we will observe each value vi with probability
pri = | 〈vi| ψ〉 |2. We can treat the measured value of the observable as a random
variable (Appendix B) and find out its salient statistical properties: the expectation
value and the variance.

Exercise 1.32. Observable V̂ is measured in the state |ψ〉.

20 An important exception is the case where the matrix has degenerate eigenvalues. In this case,
the solution for the eigenbasis is not unique. See Ex. A.68 for an example.
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a) Show that the expectation value of this measurement is

〈V 〉=
〈
ψ
∣∣ V̂
∣∣ ψ
〉
. (1.14)

The expression on the right-hand side of the above equation is also called the
quantum mean value of the observable V̂ in the state |ψ〉.

b) Show that the variance of the value of V̂ is〈
∆V 2〉= 〈ψ

∣∣∣ (V̂ −〈ψ∣∣ V̂
∣∣ ψ
〉)2
∣∣∣ ψ

〉
, (1.15)

and that this variance can be calculated according to〈
∆V 2〉= 〈ψ∣∣ V̂ 2∣∣ ψ

〉
−
〈
ψ
∣∣ V̂
∣∣ ψ
〉2

. (1.16)

As in probability theory, the uncertainty of a quantum variable is the square root
of its variance.

The strange notion of the operator observable introduced in the previous section
now turns out to be quite useful. Not only does it carry complete information about
the measurement, but it also provides an easy way to calculate the statistical proper-
ties of this measurement when applied to a given state. Let us do a simple example.

Exercise 1.33.§ Calculate the mean, variance, and uncertainty of the observable σ̂z
in the state |+〉.
Answer: 〈σz〉= 0;

〈
∆σ2

z
〉
=
〈
σ2

z
〉
= 1;

√〈
∆σ2

z
〉
= 1.

To interpret the above result, recall that the observable σ̂z can be measured using
the setup in Fig. 1.2(a). The observable takes on the value of +1 if the photon is
transmitted (projected onto the horizontal polarization state) and −1 if the photon
is reflected (projected onto the vertical polarization state). The diagonally polarized
photon has an equal chance of being transmitted or reflected, so the mean value over
multiple measurements would be zero. Regarding the variance, in every instance of
the measurement, we have a value of either +1 or −1, so the mean square deviation
from zero must be 1.

This is a good example of a transition between classical and quantum measure-
ments. Quantum measurements are probabilistic: in the present case, each photon
will be randomly transmitted or reflected. In classical physics, on the other hand,
everything is deterministic: if we send a 45◦-polarized classical wave onto a PBS,
it will split exactly equally, without any uncertainty. The correspondence principle
demands that quantum behavior become classical in the macroscopic limit. We trace
this transition from quantum to classical behavior in the following exercise.

Exercise 1.34. A set of N +45◦-polarized photons are sent onto a PBS. Calculate
the mean and uncertainty of the difference N− between the numbers of transmitted
and reflected photons.
Hint: use Ex. B.5
Answer: the expectation value is zero, the uncertainty is

√〈
∆N2
−
〉
=
√

N.
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This may appear strange at first: as our experiment becomes more macroscopic,
the uncertainty increases rather than decreases. How is this consistent with classical
physics? The answer is that what matters is not the absolute uncertainty, but the rela-

tive one, i.e.,
√〈

∆N2
−
〉
/N = 1/

√
N. The higher N, the higher the relative precision

of photometry in the two channels required to discover quantum fluctuations.
For example, if N = 104, the statistical deviation is

√
N = 100, so the relative

uncertainty is 1/100. But if N = 106, this uncertainty becomes ten times smaller,
1/1000. Now remember that the photon energy is very small (∼ 4× 10−19 joule
for the visible range), so any experiment involving a macroscopically significant
amount of light — even on a scale of nanojoules — will contain an enormous
number of photons. The relative difference between the transmitted and reflected
energies is minuscule, and would require photometers of extraordinary precision to
register.

1.9.3 The uncertainty principle

Exercise 1.35. Show that an observable V̂ in a certain quantum state |ψ〉 has zero
uncertainty if and only if |ψ〉 is an eigenstate of the observable (i.e., V̂ |ψ〉= v |ψ〉).

Exercise 1.36. Consider two Hermitian operators Â and B̂. Show that they are si-
multaneously diagonalizable (become diagonal in the same orthonormal basis) if
and only if21 [Â, B̂] = 0.
Hint: The proof is simpler if you assume that one of the operators has no degenerate
eigenvalues.

The last exercise shows that any two commuting observables can be measured
simultaneously. That is, one can construct a piece of apparatus that performs a mea-
surement in an orthonormal basis that can be associated at the same time with both
these observables.

Commuting observables are “compatible”: there exists an eigenbasis of Â such
that, when a system is prepared in one of its elements |vi〉, it will remain in this
state when observable B̂ is measured and the measurement result will be certain,
namely, |vi〉22. If, on the other hand, Â and B̂ don’t commute, a system prepared in
an eigenstate of the observable Â can give a random result if B̂ is measured23. The

21 See Sec. A.9 to learn about commutators.
22 This does not mean, though, that the measurement of any eigenstate of the observable Â will
produce a certain result when B̂ is measured. If Â has degenerate eigenvalues, its eigenbasis is not
unique (see Sec. A.8), so not every eigenvector of Â is guaranteed also to be an eigenvector of B̂.
For example, if Â = 1̂ and B̂ = σ̂z, the state |+〉 is an eigenstate of Â but not of B̂, so the observable
B̂ will exhibit uncertainty when measured in this state.
23 Even if Â and B̂ don’t commute, this does not mean that measuring observable B̂ in an eigenstate
of Â will always give a random result. For example, suppose the eigenvectors of Â in a three-
dimensional Hilbert space are |v1〉, |v2〉, and |v3〉, and the eigenvectors of B̂ are |v1〉, |v′2〉, and

∣∣v′3〉
(all eigenvalues are nondegenerate). These sets are different, so Â and B̂ do not commute. However,
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degree of this randomness is quantified by the Heisenberg uncertainty principle,
which we study next.

Exercise 1.37. Show that, for any Hermitian operators Â and B̂,〈
{Â, B̂}

〉
= 2Re

〈
ÂB̂
〉

(1.17)〈
[Â, B̂]

〉
= 2i Im

〈
ÂB̂
〉

; (1.18)∣∣〈[Â, B̂]〉∣∣2 ≤ 4
∣∣〈ÂB̂

〉∣∣2 , (1.19)

where the quantum mean value is calculated in an arbitrary state |ψ〉.

Exercise 1.38. Show that, for any two Hermitian operators Â, B̂, and any state |ψ〉,〈
Â2〉〈B̂2〉≥ ∣∣〈ÂB̂

〉∣∣2 . (1.20)

Hint: Let |a〉= Â |ψ〉 and |b〉= B̂ |ψ〉 and apply the Cauchy-Schwarz inequality.

Exercise 1.39. Prove the Heisenberg uncertainty principle: For Hermitian Â, B̂, and
any state |ψ〉 〈

∆ Â2〉〈
∆ B̂2〉≥ 1

4

∣∣〈[Â, B̂]〉∣∣2 . (1.21)

assuming for simplicity that
〈A〉= 〈B〉= 0. (1.22)

Exercise 1.40. Redo the proof without assuming Eq. (1.22). Would the uncertainty
principle (1.21) remain valid if its right-hand side were 1

4

∣∣〈{Â, B̂}〉∣∣2 or
∣∣〈ÂB̂

〉∣∣2?

Exercise 1.41. Show that, if [Â, B̂] = ε · 1̂, then the product of the variances of
observables Â and B̂ is independent of |ψ〉:

〈
∆ Â2〉〈

∆ B̂2〉≥ |ε|2
4

. (1.23)

Exercise 1.42. For Â = σ̂x and B̂ = σ̂y:

a) find
〈
ψ
∣∣ Â
∣∣ ψ
〉
,
〈
ψ
∣∣ ∆ Â2

∣∣ ψ
〉
,
〈
ψ
∣∣ B̂
∣∣ ψ
〉
,
〈
ψ
∣∣ ∆ B̂2

∣∣ ψ
〉
, and

〈
ψ
∣∣ [Â, B̂]∣∣ ψ

〉
for

|ψ〉= |H〉;
b) check that the uncertainty principle holds for Â, B̂ and |ψ〉= |H〉;
c) give an example of a state |ψ〉 for which the uncertainty product of observables

Â and B̂ is zero.

The Heisenberg uncertainty principle is one of the most important tenets of quan-
tum physics and one of the primary signatures that distinguishes it from classical.
It was also one of the most controversial ideas at the time when quantum mecha-
nics was being developed. Similarly to the Measurement Postulate, the uncertainty

they have one common eigenstate |v1〉, and the system prepared in this state will yield a certain
result when either of the two observables are measured.
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principle appeared to be in direct contradiction with the deterministic picture of the
world accepted by classical physics. According to the latter, any uncertainty one
may have in a measurement is a consequence of imperfect measurement apparatus,
and can be indefinitely reduced by improving that apparatus. In the framework of
quantum mechanics, this is not the case: if one builds a piece of apparatus that is
precise for measuring one observable in a particular state of the system, this appa-
ratus is bound to perform poorly when the other observable is measured, no matter
how good it is.

Particularly interesting is the case of Ex. 1.41. If the commutator of the two
observables is proportional to the identity operator, their uncertainty product has a
lower bound for all states. An example of such a pair is position and momentum,
which we will be studying in Chapter 3. Their commutator equals ih̄, and hence the

uncertainty product for any state cannot fall below
√

h̄2/4 = h̄/2.

1.10 Quantum evolution

Our goal for this section is to find out how quantum states evolve: given the initial
state |ψ(0)〉 of a physical system, we need to determine its state |ψ(t)〉 at an arbitrary
moment in time. In classical physics, the complete set of equations of motion can
be obtained from the Hamiltonian (full energy) of the system. That is, the entire
information about the time-dependent behavior of the system, for any initial state, is
contained in that Hamiltonian. As we shall see, the same is true for quantum physics.

It is not possible to derive the rules for the quantum evolution from the postulates
we have studied so far. Therefore we will follow the same tactic as when working out
the Measurement Postulate. We will first develop a speculative physical argument
for the evolution of a specific physical system, the photon. Then we will generalize
it to other systems.

Let us have another look at Eq. (1.2). The evolution of the photon’s state consists
in the overall phase factor e−iωt :

|ψ(t)〉= |ψ(0)〉e−iωt . (1.24)

We have neglected it so far because, as we argued, it has no effect on the physical
properties of the state. But let us consider it more closely now.

Recalling that the photon energy is E = h̄ω , we can rewrite Eq. (1.24) as

|ψE(t)〉= |ψE(0)〉e−
i
h̄ Et , (1.25)

where the subscript E reminds us that we are dealing with a state of a certain energy
(in this case, a photon of a certain frequency).

The next step is to invoke the de Broglie hypothesis, according to which not
only photons, but all freely moving particles can be associated with waves whose
space-time behavior is described by the factor ei~k·~re−

i
h̄ Et , where k = p/h̄. We will
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discuss this hypothesis more extensively in Chapter 3; for now, let us observe that
the time dependence of the de Broglie wave is the same as in Eq. (1.25). This leads
us to conclude that Eq. (1.25) is valid not only for photons, but for all freely moving
quantum particles. We will postulate that such behavior is even more universal, i.e.,
that it is valid for all non-relativistic quantum objects in the universe, as long as
they are in a state with a certain energy — that is, in an eigenstate of the energy
(Hamiltonian) operator.

Because this operator corresponds to a physical observable, it is Hermitian, and
hence permits the spectral decomposition

Ĥ = ∑
j

E j
∣∣E j
〉〈

E j
∣∣ , (1.26)

with its eigenstates {
∣∣E j
〉
} forming a basis into which any arbitrary state can be

decomposed:
|ψ(0)〉= ∑

j
ψ j
∣∣E j
〉
. (1.27)

Each component of this decomposition evolves in time according to Eq. (1.25).
Because the evolution is linear, we can write

|ψ(t)〉= ∑
j

ψ j
∣∣E j
〉

e−
i
h̄ E jt . (1.28)

We postulate that this equation applies universally to the evolution of all quantum
states.

Exercise 1.43. Let the initial state of some system be a superposition of two energy
eigenstates |ψ(0)〉 = (|E1〉+ |E2〉)/

√
2. Find the lowest t > 0 for which the state

|ψ(t)〉 becomes physically equivalent to (|E1〉− |E2〉)/
√

2.

We see that, while the quantum evolution corresponds to an unphysical phase
factor for energy eigenstates (such as in the case of polarization states of a photon
of a certain frequency), other states do change their physical constitution with time.

Because energy eigenstates do not physically evolve, they are called stationary.
As an example of stationary states, we can also think of an atom in the framework
of the Bohr model. According to this model, if the electron is in an “orbital” corre-
sponding to a certain energy value, it can stay in it for a long time period.

Equation (1.28) can be used to calculate the evolution of a quantum state directly.
However, it is sometimes more practical to present the evolution in a more compact
form, such as the evolution operator that maps any initial state onto its evolved
version:

|ψ(t)〉= Û(t) |ψ(0)〉 . (1.29)

Let us obtain the evolution operator explicitly.

Exercise 1.44. Using Eqs. (1.27) and (1.28),

a) obtain the matrix of the evolution operator in the eigenbasis of the Hamiltonian;
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b) show that24

Û(t) = e−
i
h̄ Ĥt . (1.30)

Check that this operator is unitary.

The unitarity of the evolution operator is not surprising. This operator must map
a physical state onto another physical state, which means that it must preserve the
norm.

Exercise 1.45.§ Check that the waveplate transformation operators (1.5) are unitary.

As we know (Ex. A.82), all unitary operators are invertible and the inverse of a
unitary operator is also a unitary operator. This has quite a deep consequence. If we
know the evolution operator and the state resulting from this evolution, we can re-
produce the initial state by applying the inverse evolution operator to the final state.
No information is ever lost during the evolution of an isolated quantum system. In
the language of statistical physics, this means that the entropy of a physical system
does not increase during its evolution.

Equation (1.30) tells us explicitly how to implement this inversion. Replacing Ĥ
by−Ĥ in Eq. (1.30) is equivalent to replacing t by−t, i.e., it makes the evolution go
back in time, eventually bringing the system back to its original state. This pheno-
menon, known as the time reversibility of quantum mechanics, has many interesting
applications, for example, the spin echo (Sec. 4.7.4).

Exercise 1.46. For any state |ψ(t)〉, show that

d |ψ(t)〉
dt

=− i
h̄

Ĥ |ψ(t)〉 . (1.31)

Equation (1.31) is the Schrödinger equation. This is yet another way to describe
the law for the evolution of quantum systems, and historically, it was in fact the first.

Suppose we are given the initial state |ψ(0)〉 of the system and its Hamiltonian
Ĥ, and need to predict its state |ψ(t)〉 at any moment in time. To this end, we can
use three methods:

I. decompose |ψ(0)〉 into the energy eigenbasis according to Eq. (1.27) and then
apply the simple evolution Eq. (1.28) to each basis element in order to find
|ψ(t)〉;

24 See Sec. A.11 about functions of operators.

Our next goal is to practice finding the time-dependent evolution of quantum sta-
tes. The physical system we have used so far, the photon polarization, is not very
convenient for this purpose because the energy of the photon equals h̄ω indepen-
dently of the polarization. However, in order to practice (before we learn about
other physical systems with a diverse energy spectrum), let us suppose that, under
certain conditions, the photon energy can become polarization-dependent, and study
the way the polarization evolves.
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II. calculate the evolution operator from (1.30), using the tricks learned in
Sec. A.11, and then apply this operator to the initial state according to
Eq. (1.29);

III. solve the Cauchy problem consisting of the Schrödinger differential equation
(1.31) and the initial state |ψ(0)〉. In this approach, the Schrödinger equation
can be written in the matrix form(

ψ̇H(t)
ψ̇V (t)

)
=− i

h̄

(
HHH HHV
HV H HVV

)(
ψH(t)
ψV (t)

)
, (1.32)

and solved as a system of two differential equations for a pair of functions
(ψH(t),ψV (t)).

Exercise 1.47. Write the Schrödinger equation for the following Hamiltonians:

a) Ĥ = h̄ωσ̂z;
b) Ĥ = h̄ωσ̂x.

For each case, find the polarization state of the photon at time t if its initial state
is either |ψ(0)〉 = |H〉 or |ψ(0)〉 = |+45◦〉, using each of the three methods listed
above. Express your answer in the canonical basis.

Exercise 1.48. Find the values of t in Ex. 1.47 for which the action of the evolution
operator is equivalent to that of half- and quarter-wave plates at angles 0 and 45◦ for
parts (a) and (b), respectively.

We see that the evolution of photons studied in Ex. 1.47 is equivalent to that
occurring in birefringent materials. However, the physics is not entirely the same.
In birefringent materials, the eigenstates of the evolution operator incur different
phases because of the different refraction indices for the ordinary and extraordinary
polarizations (Appendix C). In Hamiltonian evolution, on the other hand, the phase
shift is due to the different energies of the energy eigenstates.

1.11 Problems

Problem 1.1. Find the commutator [(σ̂x + σ̂y)
2, σ̂z].

Problem 1.2. Two states are decomposed in the circular basis according to

|ψ〉= 2 |R〉+ i |L〉√
5

, |φ〉= i |R〉+2 |L〉√
5

. (1.33)

a) Show that these states form an orthonormal basis.
b) Find the decompositions of these states in the canonical basis using two met-

hods:

• by expressing |R〉 and |L〉 in the canonical basis and substituting into
Eq. (1.33);
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• by finding the matrices of |ψ〉 , |φ〉 , |H〉, and |V 〉 in the circular basis and
using the inner product.

c) Check that the states |ψ〉 and |φ〉 form an orthonormal set using the inner pro-
duct in the canonical basis.

d) Decompose the states |H〉 , |V 〉 , |R〉 , |L〉 ,(|H〉 + 2i |V 〉)/
√

5 in the basis
{|ψ〉 , |φ〉}. Write your answer in both the Dirac and the matrix notations.

e) States |H〉 , |V 〉 , |R〉 , |L〉 ,(|H〉 + 2i |V 〉)/
√

5 are measured in the basis
{|ψ〉 , |φ〉}. What are the probabilities of the outcomes?

Problem 1.3. Repeat Ex. 1.12 for a photon that is in a random statistical mixture
described by the following ensemble:

a) either |+〉 with probability 1/2 or |−〉 with probability 1/2;
b) either |R〉 with probability 1/2 or |L〉 with probability 1/2.

Problem 1.4. Consider the modified BB84 protocol in which Alice sends
and Bob analyzes the photon in a polarization basis that is randomly cho-
sen, with the same probability for each choice, among the following three:
(0◦,90◦), (30◦,120◦), (60◦,150◦). Find the bit error rate that Alice and Bob will
see in the event of a straightforward “intercept-resend” attack, i.e., if Eve intercepts
the photon, measures it in one of the above three bases (randomly chosen with equal
probabilities), and resends whatever she detects. There are no losses, all equipment
is perfect.

Problem 1.5. Consider an operator Â that performs the following transformation.

|H〉 → 2 |H〉+ i |V 〉√
5

; (1.34)

|+〉 → 2+ i√
5
|+〉 . (1.35)

a) How is the vertical polarization state mapped by Â?25

b) Write the matrix of Â in the canonical basis.
c) Express Â in the Dirac notation in terms of outer products of states |H〉 and |V 〉;
d) Using the fact that, for any linear operator, Â(λ |a〉+ µ |b〉) = λ Â |a〉+ µÂ |b〉,

determine how Â acts on the circular polarization states.
e) Using the previous result, find the matrix of Â in the circular polarization basis;
f) Find the matrix of Â in the canonical basis from its matrix in the circular basis,

using the resolution of the identity. Is your result consistent with that of part
(b)?

g) Is Â Hermitian? If not, what is its adjoint?

Problem 1.6. Solve Ex. 1.24 using an alternative method.

25 In this case, the overall phase on the right-hand side of Eq. (1.35) does matter. This is because
we are interested, not only in the transformation of the state |+〉 itself, but in the whole linear
operation defined by this transformation. To see the effect of the overall phase, you may want to
try solving part (a) using |+〉 → |+〉 instead of Eq. (1.35).
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a) Write the waveplate operator matrix in the basis {|α〉 , |90◦+α〉}.
b) Convert this matrix to the canonical basis using the resolution of the identity

(Sec. A.6).

Problem 1.7. Using Eqs. 1.5, show that Â2
QWP(α) = ÂHWP(α), i.e., two quarter-

wave plates with parallel optic axes, when placed together, comprise a half-wave
plate.

Problem 1.8. Using matrix multiplication, show that a quarter-wave plate oriented
at any angle, when applied to a circular polarization state, generates a linear polari-
zation state.

Problem 1.9. Find the measurement basis associated with apparatus which consists
of a

a) half-waveplate,
b) quarter-waveplate

with the optic axis oriented at angle α , followed by a polarizing beam splitter and
two photon detectors.

Problem 1.10. Operator Â has the following matrix in the canonical basis.

Â'
(

41 −12i
12i 34

)
a) Present this operator in the form Â = v1 |v1〉〈v1|+v2 |v2〉〈v2|, where {|v1〉 , |v2〉}

is an orthonormal basis. Find v1, v2, as well as the matrices of |v1〉 and |v2〉 in
the canonical basis.

b) Write the matrices of the outer products |v1,2〉〈v1,2| in the canonical basis and
check explicitly that Â = v1 |v1〉〈v1|+ v2 |v2〉〈v2|.

c) The observable Â is measured in the circularly polarized state |R〉. What are the
probabilities of the possible outcomes?

d) Calculate the expectation value of the measurement result

• using the definition of the expectation value from probability theory;
• using the expression for the quantum mean.

Check that the results are the same.
e) Calculate the variance of the observable Â in the state |R〉.

Problem 1.11. Consider a piece of apparatus for measuring the photon polarization
that has the following properties:

• whenever a linearly polarized photon at angle θ enters the apparatus, it displays
“2”;

• whenever a linearly polarized photon at angle π/2+ θ enters the apparatus, it
displays “3”.
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a) Find the eigenvalues and the eigenstates of the operator Â associated with the
observable measured by this apparatus.

b) Find the matrices of Â in its eigenbasis and in the {|H〉 , |V 〉} basis.
c) Find the probability of each measurement outcome for a linearly polarized pho-

ton at angle ϕ .
d) Find the expectation value and uncertainty of this measurement.

Problem 1.12. Write the uncertainty principle for observables σ̂x and Â = |R〉〈R|−
2 |L〉〈L| measured in the state |H〉. Check explicitly that it holds.

Problem 1.13. Measurements of the observable Â in the state |H〉 yield results 0
and 1, each with probability 1/2. Measurements of the observable B̂ in the state |H〉
yield the result 2 with probability 3/4 and result 4 with probability 1/4. It is also
known that [Â, B̂] = ixσ̂z. Find the upper bound on the absolute value of x.

Problem 1.14. Find ei π
4 (3|H〉〈H|+

√
3i|H〉〈V |−

√
3i|V 〉〈H|+|V 〉〈V |).

Problem 1.15. An atom is described in some basis {|v1〉 , |v2〉} by the Hamiltonian

Ĥ = h̄ω

(
1 3i
−3i 9

)
.

a) Find the energy eigenstates and eigenvalues.
b) The energy of the atom is measured in the state |ψ0〉 = 1√

2
(|v1〉+ i |v2〉). Find

the probabilities of detecting each energy eigenvalue, as well as the mean and
variance of this measurement.

c) The atom is initially in the state |v1〉. Find its state |ψ(t)〉 at an arbitrary time t.
How much time will elapse until the atom is once again in the state |v1〉 (up to
a phase factor)?

Problem 1.16. Suppose the operator (1.5a) associated with a half-waveplate at an-
gle α corresponds to the evolution under some Hamiltonian for time t0.

a) Find the matrix of this Hamiltonian in the canonical basis.
b) Check that the evolution for the time t0/2 will give rise to the quarter-waveplate

operator (1.5b).
c) For the Hamiltonian found in part (a) and α = 30◦, solve the differential

Schrödinger equation (1.31) for the initial state |H〉. Is the result for t = t0 con-
sistent with what you would expect from the physics of polarization transfor-
mations?

Problem 1.17. A quantum system can be found in one of three orthogonal states
|a〉, |b〉, |c〉. These three states form an orthonormal basis. Â is an operator which
cyclically permutes the states, i.e., Â |a〉 = h̄ω |b〉, Â |b〉 = h̄ω |c〉, Â |c〉 = h̄ω |a〉
(where ω is real). The Hamiltonian is Ĥ = Â+ Â†.

a) Find the energy eigenvalues and eigenstates of the system.
b) Find the evolution of the system that is initially in state |c〉.
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Problem 1.18. An atom has two energy eigenstates |v1〉 , |v2〉with eigenvalues 0 and
3h̄ω , respectively, where ω > 0.

a) Write the matrix of the corresponding Hamiltonian Ĥ0.
b) At time t = 0, a field is turned on which makes the Hamiltonian equal to Ĥ =

Ĥ0 + V̂ with V̂ = 2ih̄ω |v1〉〈v2| − 2ih̄ω |v2〉〈v1|. Write the matrix of the new
Hamiltonian and the associated evolution operator in the basis {|v1〉 , |v2〉}.

c) At time t = 0, the atom is in the state |v1〉. Find all values of the time t at which
the probability of finding the atom in the state |v2〉 is maximized.



Chapter 2
Entanglement

2.1 Tensor product spaces

2.1.1 Tensor product states and entangled states

Consider two physical systems that are separated in space and/or time, but are in-
teracting, or have been interacting in the past. In order to study the states emerging
after such an interaction, it is not enough to treat each system separately. They must
be treated as a single Hilbert space, which unites the Hilbert spaces associated with
the individual systems.

Suppose, for example, that Alice, on Venus, has1 a horizontally polarized photon,
|H〉, while Bob, on Mars, has a photon in the state |V 〉. Then we say that the joint
state of Alice’s and Bob’s photons is

|H〉A⊗|V 〉B ≡ |H〉 |V 〉 ≡ |H V 〉 . (2.1)

These joint states are called the tensor product states2.
However, the joint Hilbert space contains not only tensor product states. For ex-

ample, since it contains states |HV 〉 and |V H〉 and it is a linear space, it must also
contain the state (|HV 〉−|V H〉)/

√
2. This is a physical state, because it has norm 1.

But it can no longer be interpreted as a tensor product, i.e., a combination of Alice’s
photon being in one state and Bob’s in another. This is a nonlocal superposition, or
entangled state. It is a quantum superposition of two situations: one in which Alice
has a horizontal photon while Bob has a vertical one, and vice versa. If they measure

1 This is a manner of speaking, of course. Photons move at the speed of light, and no one can “have”
them for any extended period of time. The notion of Alice or Bob “having” a photon corresponds,
as a rule, to an instant in time just before the measurement.
2 The four equivalent parts of Eq. (2.1) represent alternative notations for tensor product states
that we will be using interchangeably. Note that the subscript A or B labelling the Hilbert space
is positioned outside the ket. When these subscripts are omitted, the first component of a tensor
product is always assumed to pertain to Alice and the second to Bob.
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their photon polarizations in the canonical basis, they will always detect orthogonal
polarizations.

We see that uniting two Hilbert spaces results in a brand new class of states,
which gives rise to new physics, the physics of nonlocal quantum phenomena. This
is the main subject of the present chapter. Some of these phenomena are not only
unthinkable from the point of view of classical physics, but they even seem to con-
tradict the most basic common sense.

Before we study this novel physics, we need to sharpen our pencils and upgrade
our theoretical machinery so that it can be applied to tensor product Hilbert spaces.
We will carry out our derivations for bipartite tensor products (i.e., involving two
parties), but they can be straightforwardly extended to systems with three or more
parties.

The tensor product space VA ⊗VB of Hilbert spaces VA and VB is a Hilbert
space consisting of elements |a〉⊗ |b〉 (with |a〉 ∈ VA and |b〉 ∈ VB) and their linear
combinations. Operations in the space obey the following rules:

1. Multiplication by a number:

λ (|a〉⊗ |b〉) = (λ |a〉)⊗|b〉= |a〉⊗ (λ |b〉). (2.2)

2. Distributivity:

(|a1〉+ |a2〉)⊗|b〉= |a1〉⊗ |b〉+ |a2〉⊗ |b〉 ; (2.3a)
|a〉⊗ (|b1〉+ |b2〉) = |a〉⊗ |b1〉+ |a〉⊗ |b2〉 . (2.3b)

3. The inner product of two states |a〉⊗ |b〉 and |a′〉⊗ |b′〉 in VA⊗VB is given by〈
ab
∣∣ a′b′

〉
=
〈
a
∣∣ a′
〉〈

b
∣∣ b′
〉
. (2.4)

Elements of VA⊗VB that can be presented in the form of a tensor product |a〉⊗ |b〉
are said to be separable. Others are entangled.

Exercise 2.1. For any two vectors |a〉 ∈ VA, |b〉 ∈ VB, show that

|zero〉VA
⊗|b〉= |a〉⊗ |zero〉VB

= |zero〉VA⊗VB
.

Exercise 2.2. Given orthonormal bases {|vi〉}N
i=1 and {|wi〉}M

i=1 in VA and VB, re-
spectively, construct an orthonormal basis in VA⊗VB. What is the dimension of
VA⊗VB?
Answer: The set of tensor products {|vi〉⊗

∣∣w j
〉
} is an orthonormal basis. The di-

mension of the tensor product space is the product NM of the dimensions of its
components.

For example, the Hilbert space representing the polarizations of two pho-
tons is four-dimensional. The canonical orthonormal basis in this space is
{|HH〉 , |HV 〉 , |V H〉 , |VV 〉}.
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Box 2.1 How to make an entangled state?
Consider parametric down-conversion (Box 1.6) in a se-

ries of two nonlinear crystals, as shown in the figure∗. The
crystals are constructed in such a way that the first one only
produces pairs of horizontally polarized photons |H〉⊗ |H〉,
and the second one pairs of vertically polarized photons
|V 〉 ⊗ |V 〉. The probability of generating a pair is small in
both crystals. Then, whenever a pair is present, it can be in
either the state |HH〉 or the state |VV 〉. Moreover, because
the distance between the crystals is constant, so is the optical phase ϕ between these two
pairs. So the state of the two photons produced by the crystals is

|HH〉+ eiϕ |VV 〉 .

By choosing the value of ϕ , one can generate either of the two Bell states |Φ+〉 or |Φ−〉.
To convert these states into |Ψ+〉 or |Ψ−〉, it suffices to place a half-wave plate in one of the
emission channels.

∗This scheme was proposed and realized, for the first time, in P.G. Kwiat, E. Waks, A.G. White, I. Appel-
baum, and P.H. Eberhard, Ultrabright source of polarization-entangled photons, Physical Review A 60, R773(R)
(1999).

Exercise 2.3. Find the canonical basis decomposition of the state in which Alice
has a 30◦ polarized photon, and Bob a right circularly polarized photon. Write the
matrix representation of that state. Is it separable or entangled?

Exercise 2.4. Find the inner product 〈Π | Ω〉, where

a) |Π〉= 5 |HH〉+6i |R−〉 and |Ω〉= 2 |+L〉+3 |RR〉;
b) |Π〉= i(2 |H〉+ i |V 〉)⊗|R〉 and |Ω〉= (2i |H〉−3i |V 〉)⊗|+〉.

Exercise 2.5.§ Do the sets

a) {|++〉 , |+−〉 , |−+〉 , |−−〉},
b) {|RR〉 , |RL〉 , |LR〉 , |LL〉},
c) {|H−〉 , |H+〉 , |V−〉 , |V+〉},
d) {|H−〉 , |H+〉 , |V R〉 , |V L〉},
e) {|H−〉 , |HH〉 , |V R〉 , |V L〉}

form bases in the two-photon Hilbert space? Are they orthonormal?
Answer: All five sets form bases; all but the last are orthonormal.

Exercise 2.6. Show that the Bell states

|Hс
|Vс

|Vс
| сH

laser

photon 1

photon 2
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〉
=

1√
2
(|HV 〉+ |V H〉) (2.5a)∣∣Ψ−〉 = 1√

2
(|HV 〉− |V H〉) (2.5b)∣∣Φ+

〉
=

1√
2
(|HH〉+ |VV 〉) (2.5c)∣∣Φ−〉 = 1√

2
(|HH〉− |VV 〉) (2.5d)

are entangled.

Exercise 2.7. Show that the four Bell states form an orthonormal basis.

Exercise 2.8. Rewrite the Bell states (2.5) in the diagonal basis.

Exercise 2.9. Let |θ〉 be the linear polarization state at angle θ to horizontal. Show
that, for any θ , the state |Ψ−〉= 1√

2
(|HV 〉− |V H〉) can be expressed in the form

∣∣Ψ−〉= 1√
2

(
|θ〉⊗

∣∣∣π
2
+θ

〉
−
∣∣∣π

2
+θ

〉
⊗|θ〉

)
. (2.6)

This means that the state |Ψ−〉 is isotropic, i.e., it remains the same no matter
which direction we define as horizontal (as long as it is perpendicular to the direction
of propagation of the photons, of course). This property of |Ψ−〉 is unique among
all the Bell states.

2.1.2 Measurements in tensor product spaces

Exercise 2.10. For |Ψ−〉= 1√
2
(|HV 〉− |V H〉), find the probability of detecting the

state

a) |R〉⊗ |−30◦〉;
b) 1

3 (|HV 〉+2 |V H〉+2 |VV 〉).

Assume that the measurement is performed in some orthonormal basis that contains
the state we are interested in.

Exercise 2.11. Alice and Bob share the state

|Ψ〉= 1√
2
(|HV 〉+ e−iφ |V H〉).

The Measurement Postulate of quantum physics applies to tensor product states
in the usual fashion. The measurement basis can consist of separable as well as
entangled states. If the basis is constructed as a tensor product of bases in VA and
VB, such as in Ex. 2.2, the measurement would simply consist of Alice and Bob
measuring their objects within their individual Hilbert spaces (Fig. 2.1).
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Alice Bob

entanglement source

Fig. 2.1 A measurement of a polarization entangled photon pair in a tensor product basis. Alice’s
and Bob’s apparatus each consists of waveplate(s), a polarizing beam splitter and two single-photon
detectors.

a) Find the probabilities of all outcomes if Alice and Bob measure |Ψ〉 in (i) cano-
nical and (ii) diagonal {|++〉 , |+−〉 , |−+〉 , |−−〉} bases.

b) Alice and Bob share a single copy of one of the Bell states, |Ψ−〉 or |Ψ+〉, but
they do not know which one. Can they distinguish them by measuring in the
canonical basis? What about the diagonal basis?

An important conclusion we make from this exercise is that, while entangled sta-
tes can only be created through interaction between the two physical systems, their
measurement (e.g., distinguishing between them) does not require any interaction
or even projection onto entangled states. In fact, one can perform full quantum to-
mography of a quantum state in a tensor product Hilbert space by measurements in
bases containing only separable states. We will show this rigorously at the end of
the book (Ex. 5.78).

Exercise 2.12.∗ Propose a procedure for performing the measurement in the basis
{|H−〉 , |H+〉 , |V R〉 , |V L〉}.
Hint: Assume that Alice and Bob are connected by a classical communication chan-
nel.

2.1.3 Tensor products of operators

Now let us extend the notion of the tensor product to operators. This extension is
straightforward: in the operator Â⊗ B̂, component Â acts on Alice’s Hilbert space
while component B̂ acts on Bob’s. Here is a formal definition followed by a few
exercises.

The tensor product of operators Â on VA and B̂ on VB is defined as a linear
operator Â⊗ B̂ on VA⊗VB such that, for any vector |Ψ〉= ∑i λi |ai〉⊗ |bi〉,
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(Â⊗ B̂) |Ψ〉 ≡∑
i

λi(Â |ai〉)⊗ (B̂ |bi〉). (2.7)

Exercise 2.13. Express the matrix of the tensor product operator Ĉ = Â⊗ B̂ in the
basis {|vi〉⊗

∣∣w j
〉
} through the matrices of operators Â and B̂ in the respective bases

{|vi〉} and {
∣∣w j
〉
}.

Answer: For each matrix element,3

Ci ji′ j′ =
〈
viw j

∣∣ Ĉ
∣∣ vi′w j′

〉
= Aii′B j j′ . (2.8)

Exercise 2.14. Find the expectation value and uncertainty of the operator σ̂x⊗ σ̂y
in the state |Ψ−〉= 1√

2
(|HV 〉− |V H〉).

Exercise 2.15.§ Suppose |v〉 and |w〉 are eigenstates of operators Â and B̂, respecti-
vely, with corresponding eigenvalues v and w. Show that the state |v〉⊗ |w〉 is an
eigenstate of the operator Â⊗ B̂ with eigenvalue vw.

Exercise 2.16. Show that, for operators Â1, Â2 in VA and B̂1, B̂2 in VB,

Â1Â2⊗ B̂1B̂2 = (Â1⊗ B̂1)(Â2⊗ B̂2)

Exercise 2.17.§ Show that a tensor product operator cannot make an entangled state
from a separable one.

Exercise 2.18. For two outer product operators Â = |a1〉〈a2| and B̂ = |b1〉〈b2| in VA
and VB, respectively, show that

Â⊗ B̂ = |a1b1〉〈a2b2| . (2.9)

The notion of operator tensor product is nicely illustrated by an important result
known as the no-cloning theorem4. Suppose we have two objects represented by
identical Hilbert spaces, VA and VB, and the object represented by VA is in some
arbitrary quantum state |a〉. Quantum cloning is a hypothetical operation that would
create a copy of |a〉 in VB while preserving it in VA. In other words, it corresponds
to an operator on VA⊗VB such that, for any |a〉 ∈ VA and some |0〉 ∈ VB,

|a〉⊗ |0〉 → |a〉⊗ |a〉 (2.10)

Exercise 2.19. Show that quantum cloning, as defined above, is impossible.
Hint: use the fact that any physically possible evolution in quantum mechanics is
described by a linear operator.

3 We will normally use the intuitive double-index notation for matrices of states and operators in
tensor product spaces. That is, each element |vi〉⊗

∣∣w j
〉

of the tensor product basis is identified by
a pair of indices (i, j), such as in Eq. (2.8). This means, for example, that an operator matrix has
four, rather than two, indices.
4 W. Wootters, W. Zurek, A Single Quantum Cannot be Cloned, Nature 299, 802 (1982); D. Dieks,
Communication by EPR devices, Physics Letters A 92, 271 (1982).
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We define the adjoint tensor product space analogously to the direct tensor pro-
duct space, i.e., for any tensor product state |a〉⊗ |b〉5

Adjoint(|a〉⊗ |b〉)≡ Adjoint(|a〉)⊗Adjoint(|b〉)≡A〈a|⊗B〈b| ≡ 〈ab| . (2.11)

Exercise 2.20. Show that, for Â in VA and B̂ in VB: (A⊗B)† = A†⊗B†

Exercise 2.21. Show that:

a) a tensor product of two Hermitian operators is Hermitian;
b) a tensor product of two unitary operators is unitary.

2.1.4 Local operators

Tensor product operators of the form Â⊗ 1̂ or 1̂⊗ B̂ are called local operators be-
cause they affect only one of the component Hilbert spaces. An example is a wave-
plate which is placed in the path of Alice’s photon and rotates its polarization while
leaving Bob’s photon untouched. Local operators are often written in a simplified
notation: one writes just Â instead of Â⊗ 1̂ and B̂ instead of 1̂⊗ B̂.

Exercise 2.22. Show that a local unitary operator cannot change a state’s property
of being entangled or separable.

Exercise 2.23. Suppose |a〉 is an eigenstate of operator Â on Alice’s Hilbert space
with eigenvalue a. Show that, for any vector |b〉 in Bob’s Hilbert space, |ab〉 is an
eigenstate of the local operator Â⊗ 1̂ with the same eigenvalue.

Exercise 2.24. Â and B̂ are observables in Alice’s and Bob’s spaces, respectively.
A bipartite state |Ψ〉 is an eigenstate of Â⊗ B̂ with eigenvalue x, but it is not an
eigenstate of local operators Â or B̂.

a) Give an example of such a situation.
b) Show that, whenever Alice measures Â and Bob B̂ in the state |Ψ〉, the product

of the values they observe is equal to x.

Hint: use Ex. A.66.

Exercise 2.25. Suppose Alice and Bob share the Bell state |Ψ−〉. Alice performs
an operation corresponding to one of the three Pauli operators locally on her qubit.
Show that

a) (σ̂z)A |Ψ−〉= |Ψ+〉 ;
b) (σ̂x)A |Ψ−〉=−|Φ−〉 ;

5 The order of symbols inside a bra vector is the same as inside a ket: the first symbol pertains
to Alice, the second to Bob. The subscripts A and B indicating the Hilbert spaces, if present, are
usually placed to the left of bra vectors.
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Box 2.2 Holevo bound and quantum dense coding
Suppose Alice and Bob are connected by a communication channel (for example, an op-

tical fiber). Alice wishes to send an n-bit classical message to Bob, encoding the information
in a set of quantum particles, each of which is carrying a qubit∗. Can she achieve this goal
using fewer than n quantum particles?

A simple argument shows that the answer is negative. Indeed, n qubits correspond to a 2n-
dimensional quantum system (Ex. 2.2). No matter how Alice encodes, Bob’s measurement on
this system can produce no more than 2n possible outcomes, so the total number of different
messages that can be encoded in n qubits is 2n. The capacity of n bits of classical information
is exactly the same. This restriction is a case of the so-called Holevo bound in quantum
information science.

However, if Alice and Bob have prearranged shared entangled qubits, the Holevo bound
can be overcome via the protocol known as quantum dense coding. Suppose Alice wishes to
send 2 bits of classical information to Bob. The protocol runs as follows:

1. Alice and Bob prearrange a shared state |Ψ−〉 of two qubits (for example, photons).
2. Depending on the value of her 2 bits, Alice performs the operation 1̂, σ̂x, σ̂y, or σ̂z on

her qubit, thereby transforming the shared entangled state into one of the four Bell states
as in Ex. 2.25. This can be realized using waveplates (see Ex. 1.26).

3. Alice sends her qubit to Bob.
4. Bob now possesses two qubits. He measures them in the Bell basis and recovers the

value of Alice’s two classical bits.

In this way, Alice is able to transfer two bits of classical information by sending only one
qubit.

∗A reminder: the qubit is any two-dimensional Hilbert space. Photon polarization is an
example of a qubit.

c) (σ̂y)A |Ψ
−〉= i |Φ+〉 .

The above result has an important application in a quantum communication pro-
tocol called quantum dense coding (Box 2.2).

Exercise 2.26. Suppose the Hamiltonian in VA⊗VB is given by a sum

Ĥ = ĤA + ĤB

of Hamiltonians that are local operators in their component spaces. Show that:

a) if the initial state in VA⊗VB is a tensor product

|ψ(0)〉= |ψA(0)〉⊗ |ψB(0)〉

then the Schrödinger evolution of that state remains a tensor product

|ψ(t)〉= |ψA(t)〉⊗ |ψB(t)〉 ,

where each |ψA,B(t)〉 is the solution of the Schrödinger equation for the corre-
sponding Hamiltonian ĤA,B;
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b) if some |ψA〉 and |ψB〉 are eigenstates of their respective Hamiltonians with
energies EA and EB, respectively, then the state |Ψ〉 = |ψA〉⊗ |ψB〉 in VA⊗VB
is an eigenstate of the full Hamiltonian Ĥ with energy E = EA +EB;

c)∗ any eigenstate of the Hamiltonian corresponding to energy E can be written as
a linear combination of products of the form |ψA〉⊗ |ψB〉, where |ψA,B〉 are the
Hamiltonian eigenstates for the individual Hilbert spaces,

ĤA,B |ψA,B〉= EA,B |ψA,B〉 ,

with E = EA +EB.

2.2 Local measurements of entangled states

As we have seen in the last exercise, extension of the Measurement Postulate to
bipartite systems is straightforward if the two observers perform measurements on
their respective Hilbert spaces simultaneously. However, since the two observers are
independent, it may be that only one of them (e.g., Alice) performs the measurement
while the other one (Bob) does not. We call this a local measurement.

2.2.1 Remote state preparation

Suppose Alice measures state |Ψ−〉= 1√
2
(|HV 〉−|V H〉) in the canonical basis. Be-

cause |Ψ−〉 contains states |HV 〉 and |V H〉 with amplitudes ±1/
√

2, Alice will be
equally likely (prH = prV = 1/2) to observe either the horizontal or the vertical pola-
rization. If she observes a horizontally polarized photon, we can state with certainty
that Bob’s photon is vertically polarized, so its state becomes |V 〉, and vice versa.

This correlation by itself is not so surprising. For example, even in the classical
world we can play a game in which we give Alice one shoe from a pair, and Bob
the other. Each shoe is packed in an opaque box, so their color cannot be seen. Then
Alice flies to Venus and Bob flies to Mars, where they open their boxes. Suppose
Alice discovers that she has got the left shoe. Then she also instantly learns that
Bob’s shoe is right, even though he is millions of miles away.

But properties of quantum superpositions extend beyond this simple picture.
In addition to polarization correlations, there is a certain phase relation, signified
by the negative sign between terms |HV 〉 and |V H〉. In this way, state (|HV 〉 −
|V H〉)/

√
2 is distinctly different from, e.g. (|HV 〉+ |V H〉)/

√
2, even though both

exhibit similar correlations when measured in the canonical basis. To see the impli-
cations of this phase relation, try solving the following problem.

Exercise 2.27. Suppose Alice and Bob share the state |Ψ−〉. Alice measures her
portion of the state in the basis {|θ〉 ,

∣∣π

2 +θ
〉
}. Show that
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a) if Alice detects |θ〉, Bob’s state becomes |π/2+θ〉;
b) if Alice detects |π/2+θ〉, Bob’s state becomes |θ〉;
c) each of these results happens with probability 1/2.

Hint: Use the isotropic property of state |Ψ−〉 (Ex. 2.9)

The above result is truly remarkable. By choosing the tilt angle θ of the measu-
rement basis, Alice can remotely prepare an arbitrary linear polarization state (with
a ±90◦ ambiguity) at Bob’s location. This happens in spite of the fact that Alice
and Bob can be millions of miles away from each other, and have no opportunity to
interact. Furthermore, this happens instantly, i.e., faster than the speed of light!

This appears to be in outrageous contradiction with special relativity, and even
with the principle of causality, which governs all the physics we know, and follows
from the most basic common sense. How can it be possible to change something
instantly when it is located far away, without any possibility of interacting with that
location?

Perhaps the very first question a diligent physics student would ask is whether
this conclusion has been verified experimentally. The answer is affirmative. To per-
form the experiment, one prepares the state |Ψ−〉 and makes Alice’s measurement
many times, each time in the same basis. Every time Alice detects, say, |θ〉, Bob
makes measurements on this photon. From the measurement statistics, he can re-
construct the state using the technique of quantum state tomography (see Ex. 1.15)
with arbitrarily high precision.

Over the last quarter of a century, physicists have studied different versions of
the remote state preparation effect. Some of the setups have been arranged so that
Alice’s and Bob’s laboratories were located kilometers away from each other, and
their measurements were ensured to occur within a space-like interval, in order to
exclude even the theoretical possibility for Alice to affect Bob’s state through any
interaction known in nature. All these experiments have unequivocally confirmed
the validity of the quantum mechanical predictions.

So how can we reconcile these findings with causality? To answer this question,
let us first give a formal description of local measurement.

2.2.2 Partial inner product

Suppose Alice and Bob share some entangled state and Alice performs a local mea-
surement on her part thereof in some basis. What are the probabilities of the possible
outcomes and what state will be remotely prepared at Bob’s location in the case of
each outcome? Before answering this question in all its generality, let us look at an
example. Let the shared state be

|Ψ〉= 1
3
(|HH〉−2 |HV 〉+2 |VV 〉) (2.12)

and suppose that Alice’s measurement basis is diagonal.
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Exercise 2.28. Rewrite the state (2.12), expressing the state vectors corresponding
to Alice’s photon in the diagonal basis.
Answer:

|Ψ〉= 1√
18

[|+〉⊗ |b+〉+
√

17 |−〉⊗ |b−〉], (2.13)

where
|b+〉= |H〉 , |b−〉=

1√
17

(|H〉−4 |V 〉)

are normalized vectors in Bob’s Hilbert space.

We see that, in order to answer the question posed in the beginning of this sub-
section, it suffices to rewrite the initial entangled state as a linear combination of
tensor products, such that Alice’s component in each of them is an element of her
measurement basis. Let us now reproduce the same argument in a more general
form.

Suppose the initial state is

|Ψ〉= ∑
i j

Ψi j |vi〉⊗
∣∣w j
〉
, (2.14)

where {|vi〉} is the orthonormal basis in which Alice is to perform her measurement,
while {

∣∣w j
〉
} is some orthonormal basis in Bob’s Hilbert space. Let us rewrite this

as
|Ψ〉= ∑

i

1
Ni
|vi〉⊗ |bi〉 , (2.15)

where
|bi〉= Ni ∑

j
Ψi j
∣∣w j
〉

is a vector in Bob’s Hilbert space and

Ni =
1√

∑ j |Ψi j|2
(2.16)

is a normalization factor such that ‖|bi〉‖ = 1 for all i (in the sum (2.15), we omit
the terms with ∑ jΨi j

∣∣w j
〉
= 0, so all the Ni are finite).

So we have expressed the state to be measured as a sum of orthonormal compo-
nents |vi〉⊗ |bi〉. These components have amplitudes 1/Ni, so the probability with

Because the vectors |+〉 and |−〉 are orthogonal, so are |+〉⊗|b+〉 and |−〉⊗|b−〉,
as in Eq. (2.4). This means that we can construct an orthonormal basis in VA⊗VB
containing these states as elements. If we measure |Ψ〉 in this basis, we will observe
|+〉⊗ |b+〉 with the probability 1

18 and |−〉⊗ |b−〉 with the probability 17
18 . But this

in turn means that, if only Alice performs her measurement on her photon, she will
detect the state |+〉 with the probability 1

18 and |−〉 with the probability 17
18 . This

is because, if Alice observes |+〉, the state of Bob’s photon will certainly become
|b+〉, and if Alice observes |−〉, it will become |b−〉.
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which Alice will detect the corresponding |vi〉 is prA,i = 1/N 2
i . Whenever this hap-

pens, the state of Bob’s system will become the corresponding |bi〉.

Exercise 2.29. For a physical state |Ψ〉, show that, in Eq. (2.15), ∑i(1/N 2
i ) = 1.

Exercise 2.30. For the state |Ψ〉= N (|RV 〉+ |H+〉):

a) find the factor N such that |Ψ〉 is normalized;
b) present this state in the form of Eq. (2.15), where {|vi〉} is the canonical basis;
c) find the probabilities of the possible results when Alice performs her local mea-

surement on |Ψ〉 in the canonical basis, and specify the remotely prepared state
of Bob’s photon for each of Alice’s results.

We have developed a method for predicting results of local measurements on an
entangled state. This method is functional, but somewhat clumsy, so we shall now
introduce a notion that will allow us to streamline the procedure.

The partial inner product between a local state |a〉 in the Hilbert space VA and a
bipartite state |Ψ〉= ∑i jΨi j |vi〉

∣∣w j
〉

in the Hilbert space VA⊗VB (where {|vi〉} and
{
∣∣w j
〉
} are orthonormal bases in VA and VB, respectively) is a state in the Hilbert

space VB given by

〈a|Ψ〉 ≡∑
i j

Ψi j 〈a| vi〉
∣∣w j
〉

; (2.17a)

〈Ψ | a〉 ≡∑
i j

Ψ
∗

i j 〈vi| a〉
〈
w j
∣∣ . (2.17b)

This definition is analogous for the partial inner product of |Ψ〉 with a local state in
the space VB.

Exercise 2.31. For |ψ〉 = 2 |H〉+ i |V 〉, find 〈ψB| Ω〉 and 〈Π | ψA〉, where |Ω〉 =
2 |HH〉+3 |HV 〉+4 |V H〉, |Π〉= (2 |H〉+ i |V 〉)⊗(i |H〉−|V 〉) and subscripts A and
B on a state |ψ〉 indicate that it is localized in Alice’s or Bob’s space, respectively.

Exercise 2.32. Show that, for any separable state |ab〉 ∈ VA⊗VB, and any state
|a′〉 ∈ VA, 〈

a′
∣∣ ab
〉
=
〈
a′
∣∣ a
〉
|b〉 (2.18)

Exercise 2.33. Suppose |Ψ〉 is a state in the tensor product space, and |a〉 and |b〉
are states in Alice’s and Bob’s spaces, respectively. Show that

〈a|(〈b|Ψ〉) = 〈b|(〈a|Ψ〉) = 〈ab|Ψ〉 . (2.19)

Exercise 2.34. Show that, for any two orthonormal bases {|vi〉} ⊗ {
∣∣w j
〉
} and

{|v′i〉}⊗{
∣∣∣w′j〉} in VA⊗VB, a local state |a〉 ∈ VA and a bipartite state

|Ψ〉= ∑
i j

Ψi j |vi〉⊗
∣∣w j
〉
= ∑

i j
Ψ
′

i j
∣∣v′i〉⊗ ∣∣w′j〉 , (2.20)

the partial inner product 〈a|Ψ〉 is independent of the choice of basis, i.e.,
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∑
i j

Ψi j 〈a| vi〉
∣∣w j
〉
= ∑

i j
Ψ
′

i j
〈
a
∣∣ v′i
〉∣∣w′j〉 . (2.21)

Exercise 2.35. Show that, in Eq. (2.15),

a) |bi〉= Ni 〈vi|Ψ〉;
b) ‖〈vi|Ψ〉‖= 1/Ni.

The last exercise offers a straightforward way to calculate the decomposition
(2.15) for a given state and Alice’s measurement basis, and hence also to calculate
the results of local measurements. Indeed, the partial inner product gives us not only
the state |bi〉 that will be prepared remotely at Bob’s location, but also the probability
prA,i = 1/N 2

i of each outcome on Alice’s side.

prA,i = 〈Ψ | vi〉〈vi|Ψ〉 . (2.22)

This can be reformulated in terms of projection operators (Sec. 1.8): Alice’s mea-
surement transforms the state |Ψ〉 into a set of unnormalized states

{
Π̂i |Ψ〉

}
, where

Π̂i = |vi〉〈vi| and the squared norm of each state in the set is the probability of the
corresponding outcome.

After a local measurement, an entangled bipartite state will collapse into a se-
parable one. If Alice destroys her system in the process of the measurement, the
resulting state, Ni 〈vi|Ψ〉, will be localized with Bob.

Exercise 2.36. Solve Ex. 2.30(c) using partial inner products.

Exercise 2.37. For each Bell state, show that a local measurement by Alice in any
orthonormal basis will yield either result with a probability of 1/2.

Exercise 2.38.§ Suppose Alice measures |Ψ−〉 = 1√
2
(|HV 〉− |V H〉) in the circular

polarization basis. Which state will Bob’s photon project onto for each of Alice’s
results?

Exercise 2.39. Suppose Alice and Bob share the state |Ψ−〉. Alice wishes to prepare
some linear superposition α |H〉+β |V 〉 remotely at Bob’s location, where α and β

are arbitrary, but |α|2+ |β |2 = 1 (i.e., the output state is normalized). In which basis
should she measure? What is the probability of success?

2.2.3 Local measurements and causality

These results, in essense, constitute extension of the Measurement Postulate of
quantum physics to local measurements. Let us summarize them. Alice’s local mea-
surement on a bipartite state |Ψ〉 in the basis {|vi〉} will randomly collapse |Ψ〉 onto
one of the states Ni |vi〉⊗〈vi|Ψ〉 with the probability

Now let us return to our previous discussion regarding the consistency of the remote
preparation effect with causality. The fact that a measurement by Alice affects the
state of Bob’s photon does not in itself constitute a violation of causality. This is
because the notion of a quantum state is rather abstract. The real question we need
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One could be tempted to give an affirmative answer. Indeed, before the mea-
surement, Bob’s state was part of a completely isotropic bipartite state; after the
measurement, it is a state with a certain polarization angle — that is, one with drasti-
cally different physical properties. However, this answer misses an important point.
Alice’s local measurement does not always prepare the same state at Bob’s loca-
tion: sometimes it is |θ〉, and sometimes |π/2+θ〉. In order to know which one it
is, Bob needs to receive classical communication from Alice, about the result she
obtained from her measurement. Until then, Bob knows only that he has one of the
two states — and thanks to this uncertainty, the measurable properties of Bob’s pho-
ton are completely identical to those prior to the measurement. Before we prove this
statement rigorously, let us look at an example.

Exercise 2.40. In the setting of Ex. 2.27, Bob measures the polarization of his
photon in the canonical basis after Alice’s measurement. What is the probability of
each result given that Bob does not know the result of Alice’s measurement?
Answer: prBob,H = prBob,V = 1/2 independently of the basis Alice uses.

Exercise 2.41. Alice and Bob perform measurements on their portions of a bipartite
state |Ψ〉, in bases {|vi〉} and {

∣∣w j
〉
}, respectively. These measurements can occur

according to three alternative scenarios.

1. Alice and Bob perform their measurements simultaneously, so the original Me-
asurement Postulate applies for a projective measurement of the state |Ψ〉 in the
basis {|vi〉⊗

∣∣w j
〉
}.

2. Alice performs her measurement first, and then Bob measures the remotely pre-
pared state.

3. Bob performs his measurement first, and then Alice measures the remotely pre-
pared state.

Show that the probability that Alice detects |vi〉 while Bob detects
∣∣w j
〉

is the same
for each of these scenarios: pri j = |

〈
viw j

∣∣Ψ〉 |2.

Exercise 2.42. Test the statement of the previous exercise on the example of the
state |Ψ〉 from Ex. 2.30 and the measurements performed by both parties in the
canonical bases.

a) Find the probabilities prHH , prHV , prV H and prVV for Alice and Bob performing
their measurements simultaneously.

b) Assume that Alice does her measurement first. Find the probabilities and the
remotely prepared states of Bob’s photon for each of Alice’s results. Then let
Bob measure each of these remotely prepared states and determine the corre-
sponding probabilities. Use this information to evaluate prHH , prHV , prV H and
prVV and check that they are the same as in part (a).

c)§ Repeat part (b) for Bob performing his measurement first.

Exercise 2.43. For each of the scenarios of Ex. 2.41, show that the overall probabi-
lity for Bob to observe the state

∣∣w j
〉

is ‖
〈
w j
∣∣Ψ〉‖2.

to ask is this: will the physical properties of Bob’s photon — that is, the behavior it
will exhibit when measured, — change after Alice’s measurement?
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The above results mean that, without knowing the outcome of Alice’s measure-
ment, the physical properties of Bob’s photon do not change, so Bob can extract
no information whatsoever about Alice’s actions. Although instant remote state pre-
paration is predicted by theory and confirmed by experiment, it cannot be used for
superluminal, interaction-free communication. Quantum mechanics leads us into
thinking otherwise by telling us that Bob’s state after Alice’s measurement depends
on the setup of that measurement. But in fact, the quantum state is a pure theo-
retical construct, and it is never directly observed in an experiment. We can infer
information about the state only indirectly from the statistic obtained in multiple
measurements.

So perhaps we can avoid all these paradoxes by dismissing the concept of the
quantum state altogether and inventing another theory, which explains experimental
results equally well but does not involve theoretical concepts that contradict com-
mon sense? We find the answer to this question in Sec. 2.3. For now, let us discuss
another paradox that looks at the problem from an even more acute angle. Consider
the following scenario.

1. Alice and Bob share many copies of state |Ψ−〉.
2. On each copy, Bob first performs a measurement in the canonical, diagonal, or

circular basis (he chooses randomly). Then Alice measures her photon in the
basis {|θ〉 ,

∣∣π

2 +θ
〉
} and tells Bob her result.

3. After all measurements have been completed, Bob reconstructs the quantum
state of his photon from the data he recorded using the techniques of quantum
tomography (Ex. 1.15), taking into account (postselecting) only those events in
which Alice detected |θ〉.

If Bob’s measurements occurred after Alice’s, he would reconstruct the state
|π/2+θ〉 thanks to the effect of remote state preparation. But, as we know from
Ex. 2.41, the correlated probabilities of Alice’s and Bob’s results do not depend on
the sequence of measurements. That is, Bob will have exactly the same statistics
for the outcomes of his measurements — that is, the same prH , prV , pr+, pr−, prR,
prL — no matter whether his measurements occur before or after Alice’s, and hence
reconstruct the same state |π/2+θ〉. So the remote state preparation effect takes
place even after Bob has measured and destroyed his photon.

Exercise 2.44.∗ Show that, if quantum cloning were possible, superluminal commu-
nication would also be possible.
Hint: use remote preparation and quantum tomography.

2.2.4 Mixed states

Let us now consider a situation in which Alice loses her share of the entangled state
or fails to inform us about her measurement results. The photon is absorbed on its
way toward Alice’s detector, or the detector fails to function, or Alice simply lets her



56 A. I. Lvovsky. Quantum Physics

photon fly out of the lab window into the sky, where it may eventually get measured
by distant aliens. What can we say about the quantum state of Bob’s photon6?

One thing we do know (Ex. 2.41) is that no matter what happens to Alice’s pho-
ton, the experimentally measurable properties of Bob’s photon do not change. The-
refore, as long as we are interested in describing Bob’s photon, we can make any
convenient assumption about the fate of Alice’s photon. So let us assume that Alice
has measured it in the canonical basis and did not tell us the result.

Specializing once again to the initial state being |Ψ−〉, we know that, Alice can
detect either |H〉 (in which case Bob’s photon projects onto |V 〉) or |V 〉 (in which
case Bob’s photon projects onto |H〉). But since we do not know Alice’s result, we
can only describe the state of Bob’s photon verbally as the ensemble “either |H〉
with probability 1/2 or |V 〉 with probability 1/2”.

This is the best we can do. Assuming other bases that Alice could have used, we
could also describe Bob’s photon as “either |+45◦〉 with probability 1/2 or |−45◦〉
with probability 1/2” (Ex. 2.9) or “either |R〉 with probability 1/2 or |L〉 with pro-
bability 1/2” (Ex. 2.38), and so on. All these descriptions are equivalent (Ex. 1.12).
The polarization of Bob’s photon is completely mixed — similar to that of natural
light. Its state is not represented by a certain vector in the Hilbert space.

In Chapter 5 we will study properties of mixed states and ways to describe them
mathematically. It is important to understand now, though, that if we lose a part of
an entangled state, the remaining part loses coherence: it stops being in a superposi-
tion state and becomes just a statistical mixture. It is now described in terms of the
classical theory of probabilities rather than quantum mechanics.

Let me note that we already discussed the loss of quantum coherence in the con-
text of Welcher-Weg measurements in a quantum interference experiment (Sec. 1.5).
In fact, this phenomenon is of the same nature as what we are studying here, as we
shall see in Sec. 2.4.

Exercise 2.45. Alice and Bob share an entangled two-photon state:

a) |Ψ〉= (|HH〉+2 |VV 〉)/
√

5;
b) |Ψ〉= (|HH〉+ |HV 〉+ |VV 〉)/

√
3.

Describe, in the form of an ensemble, the state of Bob’s photon assuming that Alice
measures the polarization of her photon (i) in the canonical basis and (ii) in the
diagonal basis, but does not tell Bob the result.

In each part of this exercise, the ensemble describing Bob’s mixed state depends
on the basis in which Alice performs her measurement. But let me emphasize again:
these different ensembles correspond to the same set of probabilities should Bob
perform a measurement on his portion of the state. If this were not the case, Bob

6 One may naı̈vely be tempted to answer that, when Alice’s photon is lost from state |Ψ−〉 =
(|HV 〉−|V H〉)/

√
2, for example, Bob’s photon becomes (|V 〉−|H〉)/

√
2 = |−〉. This is incorrect,

of course. To see that, recall Ex. 2.9, where we found that |Ψ−〉 can also be written as (|+−〉−
|−+〉)/2. This means that Bob’s photon has equal probabilities of being in states |+〉 and |−〉.
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would be able to make inferences about Alice’s actions, and this, as we found in
Sec. 2.2.3, is impossible7.

2.3 Quantum nonlocality

2.3.1 Einstein–Podolsky–Rosen paradox

In Sec. 2.2 we discussed local measurements on entangled states. We found that a
local measurement by Alice leads to instant collapse of the nonlocal state into a state
that is localized with Bob and depends on the measurement that Alice chooses to
perform. We have shown that remote state preparation does not “violate causality,
i.e., that the measurable properties of Bob’s photon remain unaffected by Alice’s
measurement. We then argued that the quantum state is a pure theoretical construct,
so it is “okay” for it to exhibit seemingly unphysical properties on paper as long as
there are no consequences in the experiment. The problem, however, is not solved
completely: if a theoretical model has nonsensical, counterintuitive elements that
are not related to measurable physics, perhaps it’s not a very good model!

This paradox was rigorously formulated for the first time in 1935, in a paper
by Albert Einstein, Boris Podolsky, and Nathan Rosen (EPR)8. The original EPR
paradox was proposed for the mechanical motion of a pair of particles, so we have
to postpone its discussion to Chapter 3. Here we will instead discuss an alternative
formulation similar to the one proposed by David Bohm in 19519.

The EPR argument relies on the notion of physical reality. An observable is
defined to be an element of physical reality when the result of its measurement
can be correctly predicted prior to measurement. For example, suppose Alice and
Bob (two remote, non-interacting parties) share an entangled state |Ψ−〉= (|HV 〉−
|V H〉)/

√
2 of two photons. Let Alice measure the polarization of her photon in the

canonical basis. This measurement will remotely prepare state |H〉 or |V 〉 at Bob’s.
If now Bob chooses to measure his photon in the canonical basis, his measurement
result can be predicted with certainty, which means that the observable σ̂z is an
element of physical reality of Bob’s photon.

If Alice instead measures in the diagonal basis, Bob’s photon is remotely prepa-
red as either |+45◦〉 or |−45◦〉. Now, if Bob chooses to measure his photon in the
diagonal basis, his measurement result can be predicted with certainty — so in this
case the observable σ̂x corresponds to physical reality for Bob’s photon.

Next, EPR argued that, if the two parties are far apart and/or cannot interact with
each other, then no action by one party can change the physical reality at the ot-

7 We show rigorously that Bob’s ensembles obtained for the two Alice’s measurement bases are
identical in Ex. 5.40.
8 A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality
be Considered Complete?, Physical Review 47, 777 (1935).
9 D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, 1951.
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her. They called this the locality principle or local realism. Applying this common-
sense principle to our case, we are forced to conclude that both σ̂x and σ̂z are parts
of physical reality as far as Bob’s photon is concerned. This is, however, impossi-
ble, because observables σ̂x and σ̂z have a non-overlapping set of eigenstates (see
Ex. 1.35).

This contradiction lead EPR to conclude that “quantum-mechanical description
of reality . . . is not complete.” Under completeness, EPR understand the requirement
that “every element of physical reality must have a counterpart in physical theory”.
In the present case, two elements of physical reality — σ̂x and σ̂z — can have no
more than one counterpart in the quantum theory.

EPR concluded their paper by saying:

While we have thus shown that the wave function does not provide a complete
description of the physical reality, we left open the question of whether or not
such a description exists. We believe, however, that such a theory is possible.

In other words, maybe one day a theory will be developed which would predict
experimental results as well as quantum mechanics, but at the same time exhibit
no paradoxical features. Specializing to our case, the “new” theory will allow one
to predict the results of Bob’s measurement in any basis, independently of Alice’s
actions.

One may object that, according to the experiment, Bob’s results, unless he mea-
sures in the same basis as Alice, are random. Doesn’t this rule out any possibility of
a deterministic theory? To answer this objection, let us recall the visualization we
invented in Sec. 2.2.1: somebody randomly sending one shoe from a pair to Alice
and the other to Bob. To Alice and Bob, the handedness of their shoe will appear
random. Yet the party who packs the shoes and sends them out does know which
shoe went to which observer: they possess the knowledge of a hidden parameter
that Alice and Bob do not have access to.

The behavior of photons is more complex than the shoes, because the correlati-
ons between measurement results depend on the bases the two parties choose. But
maybe it still permits a similar explanation? Maybe the two photons, at the time
of their creation, are given a set of hidden parameters which somehow fully pre-
determine the outcome of their polarization measurements, in any bases, and we
just don’t yet know what these parameters are?

In 1935, quantum mechanics was already established as a powerful theory capa-
ble of explaining many experimental results better than any other theory. Therefore
EPR did not challenge the ability of quantum mechanics to predict and explain ex-
perimental observations. They only pointed out the holes in its logic. While they
hypothesized that there may exist a theory without these holes, they said nothing
specific about this theory. As such, the EPR hypothesis appeared to leave no oppor-
tunity for experimental testing, and hence found itself outside the realm of physics,
an inherently experimental science.
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2.3.2 The Bell inequality

John Bell

The situation changed almost thirty years later, in 1964. John
Bell proposed10 an experiment in which any local realistic the-
ory would predict a result that differs from what is predicted by
quantum mechanics. Specifically, he derived an inequality that
would hold in any local realistic theory, but is violated accor-
ding to quantum mechanics.

Bell’s discovery is ingenious because he found a way to test
a theory without knowing anything about it — except that it
follows common sense in the form of local realism. He tackled
this nearly impossible mission by analyzing the experimental
apparatus from the “front-panel” perspective, without making any assumption about
the underlying physics. This very basic description of the experiment turns out to be
sufficient to make significant predictions about its results.

Alice

M

N

�1

M

N

�1

Alice

M

N

�1

Bob

M

N

�1Source

Fig. 2.2 Front panel of Bell’s experiment.

Specifically, the front-panel description of the experiment is as follows. Each of
the two remote observers, Alice and Bob, operates a device as shown in Fig. 2.2.
Each device has two buttons marked M and N, and a display that can show either
“+1” or “−1”. Alice and Bob have no way to communicate with each other.

A “source”, located about halfway between Alice and Bob, sends them a pair
of particles of a certain kind. Alice and Bob receive the particles and insert them
in their device. They then randomly choose and simultaneously push one of the
buttons. Each device displays a value of ±1, possibly related to the state of the
particle received. We refer to this routine as an event.

Both observers keep records of the buttons they pressed and the numbers dis-
played. After acquiring the data for many events, the two parties meet and perform
correlation analysis of their records. That is, they evaluate the quantity

〈S〉= 〈MAMB−MANB +NAMB +NANB〉, (2.23)

where MA,B and NA,B refer to the values obtained by each observer when they push
the relevant button. Of course, each pair of particles contributes to only one term in
Eq. (2.23). For example, if Alice pushes M and Bob N, the values they observed are
used to evaluate 〈MANB〉, and so on.

10 J. S. Bell, On the Einstein–Poldolsky–Rosen paradox, Physics 1, 195 (1964).
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Let us write out Eq. (2.23) in its complete form:

〈S〉 =
+1

∑
MA,MB=−1

prMA,MB
MAMB−

+1

∑
MA,NB=−1

prMA,NB
MANB (2.24)

+
+1

∑
NA,MB=−1

prNA,MB
NAMB +

+1

∑
NA,NB=−1

prNA,NB
NANB,

where, e.g., prMA,NB
for MA = 1,NB = −1 is the probability that Alice’s display

showed 1 and Bob’s −1 under the condition that Alice pressed M and Bob N.
Now look at the structure of these probability distributions. Under local realism,

each device determines the value displayed for each button on the basis of the local
information which happens to be available — the hidden parameter of the particle
that has arrived (which we denote λA and λB for Alice’s and Bob’s particles, re-
spectively) and some algorithm. This algorithm may possibly involve randomness,
so it is characterized by a set of probabilities prMA|λA

, prMB|λB
,prNA|λA

, prNB|λB
. For

example, prMA|λA
determines the probability of the value MA that will be displayed

on Alice’s apparatus when she presses the M button if the value of the hidden para-
meter of the incoming particle is λA.

Using the expression (B.6) for conditional probabilities, we can write the proba-
bility to obtain a certain pair of values on Alice’s and Bob’s displays as

prMA,MB
= ∑

λA,λB

prλA,λB
prMA|λA

prMB|λB
, (2.25)

for the case where both Alice and Bob press the M buttons. Here, prλA,λB
is the

probability of having a pair of particles with the hidden parameters λA and λB. Note
that these parameters can be correlated because the particles come from the same
source, so we may not express prλA,λB

as a product of probabilities. For the other
three possible combinations of buttons, the expressions are similar.

Exercise 2.46. Given the above result, show that Eq. (2.24) can be rewritten in the
form

〈S〉=
+1

∑
MA,MB,NA,NB=−1

prMA,MB,NA,NB
[MAMB−MANB +NAMB +NANB], (2.26)

where prMA,MB,NA,NB
is a non-negative variable with the property

+1

∑
MA,MB,NA,NB=−1

prMA,MB,NA,NB
= 1.

Express prMA,MB,NA,NB
in terms of prλA,λB

, prMA|λA
, prMB|λB

, prNA|λA
, and prNB|λB

.

The importance of Eq. (2.26) is that the set of four values {MA,MB,NA,NB} obeys
a valid probability distribution. This means that, for any local realistic experiment
with Bell’s front panel (Fig. 2.2), it is mathematically possible to construct an al-
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ternative setup that would generate and display these four values for every event
(Fig. 2.3), and these values would exhibit exactly the same statistics for each pair
(MA,MB), (MA,NB), (NA,MB), (NA,NB) as does the original setup.

Note that this is not the case if the locality principle does not hold — for exam-
ple, if MA depends not only on λA, but also on the button that Bob pressed. This
dependence would invalidate Eq. (2.25) and hence also Eq. (2.26).

Fig. 2.3 Alternative scheme of Bell’s experiment valid under local realism.

Exercise 2.47. Derive the Bell inequality

|〈MAMB−MANB +NAMB +NANB〉| ≤ 2 (2.27)

for any apparatus whose front panel is represented by Fig. 2.3.
Hint: rewrite Eq. (2.26) as 〈S〉= 〈MA(MB−NB)+NA(MB +NB)〉.

The above result readily extends to any local realistic apparatus with Bell’s front
panel (Fig. 2.2). Indeed, if the Bell inequality did not hold for such a setup, it would
also be violated for its counterpart in Fig. 2.3, and we have just shown this to be
impossible.

Let me emphasize once again that our derivation did not rely on any assumption
about the physics of the particles or the measurement devices, but only on very
general principles of causality and local realism.

2.3.3 Violation of the Bell inequality

We now describe a specific experimental setup which has a front panel consistent
with the above description, yet violates the Bell inequality. The two particles re-
ceived by Alice and Bob are two photons in the Bell state |Ψ−〉. Both Alice’s and
Bob’s setups consist of a half-waveplate followed by a PBS with two photon de-
tectors at its output ports (Fig. 2.1). When Alice and Bob press their buttons, the
waveplates rotate through the angle θ/2, where the values of θ are given in Table
2.1. The detectors are wired to the display so that the registration of the photon in
the transmitted (reflected) port results in the number +1 (−1) being shown. This is
equivalent to Alice and Bob each measuring the observable

σ̂θ = |θ〉〈θ |−
∣∣∣π

2
+θ

〉〈
π

2
+θ

∣∣∣ (2.28)

11

11

11

11

AliceAlice Bob

Source
M

N

M

N
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In the following exercises, we shall make a quantum mechanical prediction for the
statistics of the measurement outcome, so we will be able to determine the expecta-
tion value of the observable S.

Table 2.1 Angle θ in the observable (2.28) in Bell’s experiment.

Observer
Alice Bob

Button pressed
M 0 π/8
N π/4 3π/8

Exercise 2.48. Write the observable (2.28) in the Dirac notation in the canonical
basis.

Exercise 2.49. Calculate the expectation values of the following operators in the
state |Ψ−〉:

a) M̂A⊗ M̂B;
b) M̂A⊗ N̂B;
c) N̂A⊗ M̂B;
d) N̂A⊗ N̂B.

Hint: To reduce calculations, use the isotropicity of |Ψ−〉 (Ex. 2.9).
Answer: a) − 1√

2
; b) 1√

2
; c) − 1√

2
; d) − 1√

2
.

We now find that, according to quantum mechanics, the expectation value of S is

〈S〉= 〈M̂AM̂B− M̂AN̂B + N̂AM̂B + N̂AN̂B〉=−2
√

2, (2.29)

which violates the Bell inequality (2.27).
This result concludes Bell’s argument, which provides us with experimental me-

ans to test the Einstein–Podolsky–Rosen hypothesis.
Experimental tests of the Bell inequality began shortly after it had been formu-

lated, and they continue today. All of them testify in favor of quantum mechanics.
However, all the experiments done until recently contained loopholes — additional
assumptions that had to be made in order to exclude a local realistic explanation of
the observed results. At the time of writing this manuscript, in 2015, three experi-
ments have been reported in which all the significant loopholes have been closed
(Box 2.3).

There are two main types of loopholes. The locality loophole occurs if the ob-
servers are too close to each other (for example, on the same optical table), and
they do not make their M versus N decisions quickly enough. Then they are, at le-
ast theoretically, able to influence each other. In experiments in which this loophole
is eliminated, Alice’s and Bob’s laboratories are set up a few hundred meters or
even kilometers apart. To decide on the basis, they use fast random number gene-
rators, typically based on quantum principles. Instead of rotating waveplates, they
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change their measurement bases using electro-optical modulators — optical ele-
ments whose birefringence can be controlled within a few nanoseconds by means of
an applied voltage. In this way, the decisions made by the two parties are separated
by a space-like interval, thereby precluding any communication between them.

The detection loophole arises due to optical losses or inefficient detection. These
imperfections result in a nonzero probability that, at Alice’s or Bob’s location,
neither detector will register a photon. In this case, the value on the display of the
corresponding party will be uncertain, which means that the front panel is no longer
consistent with Fig. 2.211. Many experiments deal with this issue by invoking the
so-called fair sampling assumption that the losses occur randomly, and are not af-
fected by the local hidden variables. Operating under this assumption, they calculate
〈S〉 taking into account only those events in which a photon has been detected by
both Alice and Bob. This fair sampling assumption, while quite natural in the physi-
cal context of the setup in Fig. 2.1, is incompatible with the general ideology of the
Bell theorem which does not allow any assumptions whatsoever about the physics
of the experiment.

Exercise 2.50.§ For the quantum optical setup discussed in this section, show that
Alice and Bob, taken individually, will observe results +1 and −1 with equal pro-
babilities, no matter what buttons they press.
Hint: Check out Ex. 2.37.

Exercise 2.51.∗ Suppose that the efficiency of each photon detector is 50%. The
rest of the apparatus is ideal, so, under the fair sampling assumption, 〈S〉 = 2

√
2.

Propose a local realistic model for the particles and detectors that would reproduce
this behavior.

Exercise 2.52. To perform a Bell experiment with imperfect detectors, the electro-
nic circuits in Alice’s and Bob’s devices are programmed to randomly display +1 or
−1 in those events when neither photon detector has clicked. Assuming that the rest
of the apparatus is ideal, find the value for the left-hand side of the Bell inequality
that would be obtained in this experiment as a function of the detector efficiency η .
What is the minimum η for which the Bell inequality will be violated?

2.3.4 Greenberger–Horne–Zeilinger (GHZ) nonlocality

Following Bell’s discovery, there have been many proposals for demonstrating the
nonlocal nature of quantum mechanics. In this section, we will study an argument
that is particularly spectacular because it contains no inequalities12. In discussing it,

11 Of course, one can set up the electronics so that, if neither detector clicks, the display shows a
value of±1 randomly. With this programming, the experiment will be consistent with Fig. 2.2, but
then a problem emerges elsewhere (see Ex. 2.52).
12 Theoretical proposal: D. M. Greenberger, M. A. Horne, A. Shimony, A. Zeilinger, in Bell’s
Theorem, Quantum Theory, and Conceptions of the Universe (M. Kafatos, ed.), p. 73 (Kluwer
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Box 2.3 Experimental tests of the Bell inequality
The first tests were performed by John Clauser and his group∗ (1972) and, in a more

complete form by Alain Aspect and coworkers∗∗ (1981-1982). At that time, parametric down-
conversion was not sufficiently well understood, so atomic ensembles were used to prepare
the required entangled states.

The locality loophole was closed by the group of Anton Zeilinger∗∗∗ (1998). Alice and
Bob were separated by a distance of 400 meters and quantum random number generators
were used to choose their measurement bases.

The detection loophole was closed for the first time in the group of David Wineland†

(2001), but using qubits based on beryllium ions in a magnetic trap, rather than photons.
Trapped ions can remain in a trap for a very long time and their quantum states can then
be measured with high efficiency. However, the two ions on which that experiment was per-
formed were located in the same trap, separated by a distance of only a few micrometers.
Therefore the experiment was severely affected by the locality loophole.

In 2015, three experiments were published within three months of each other reporting
the simultaneous closure of both loopholes. The first one, under the leadership of R. Han-
son††, avoided the detection loophole by using entanglement swapping (Ex. 2.69) to entangle
long-lived electron spin states of two nitrogen-vacancy centers in diamonds positioned 1.3
kilometers apart. The other two experiments, led by A. Zeilinger††† and L. Shalm§, used ela-
borate down-conversion setups and high-efficiency photon detectors to minimize the losses
associated with the propagation and detection of the photons below the threshold required to
violate the Bell inequality.

∗S. J. Freedman and J. F. Clauser, Experimental test of local hidden-variable theories, Physical Review
Letters 28, 938 (1972).

∗∗A. Aspect, P. Grangier, G. Roger, Experimental Realization of EinsteinPodolsky–Rosen–Bohm Gedanke-
nexperiment: A New Violation of Bell’s Inequalities, Physical Review Letters 49, 91 (1982).

∗∗∗G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Violation of Bell’s inequality under strict
Einstein locality conditions, Physical Review Letters 81, 5039 (1998).

† M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, D. J. Wineland, Experimen-
tal violation of a Bell’s inequality with efficient detection, Nature 409, 791 (2001).

†† B. Hensen et al., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,
Nature 526, 682 (2015).

††† M. Guistina et al. Significant-loophole-free test of Bell’s theorem with entangled photons, Physical
Review Letters 115, 250401 (2015).

§ L. K. Shalm et al. A strong loophole-free test of local realism, Physical Review Letters 115, 250402
(2015).

we will follow the same logic as for Bell’s theorem. We first consider the experiment
from the front-panel perspective and draw conclusions on the assumption of local
realism. We then describe the physics underlying the front panel and calculate the
theoretical predictions in accordance with the laws of quantum mechanics.

In GHZ, there are three remote observers, Alice, Bob, and Charley. Each of them
operates a device similar to Bell’s, but the buttons are marked σx and σy. In each
event, the source simultaneously sends three particles to Alice’s, Bob’s, and Char-
ley’s devices, where they measure them by pressing one of the buttons. After many
events, the parties meet and discuss the results.

Academic, Dordrecht, 1989). Experiment: J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter
and A. Zeilinger, Experimental test of quantum nonlocality in three-photon GHZ entanglement,
Nature 403, 515 (2000).
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Fig. 2.4 Setup for the Greenberger–Horne–Zeilinger experiment

The apparatus is known to have the following property (which Alice, Bob, and
Charley check by analyzing the statistics of their measurement results): whenever

(2.30a)
(2.30b)
(2.30c)

Exercise 2.53. Assuming local realism and using hidden parameters akin
to Sec. 2.3.2, show that one can define a common probability distribution
prσxA,σyA,σxB,σyB,σxC ,σyC

that simultaneously governs all possible observations that
can be made in a GHZ experiment. Show that this probability is always nonnegative
and its values add up to one.

We now follow the same line of logic as when deriving the Bell inequality. Be-
cause the possible sets of results (σiA,σ jB,σkC) (where each index i, j, and k can
be x or y) obey a common probability distribution, one can construct an alternative
experiment in which the three devices have no buttons, but display both values of
σx and σy for every event. This alternative experiment would exhibit the same sta-
tistical properties as the original one. In particular, Eqs. (2.30) would hold for every
event.

Let us now multiply the left- and right-hand sides of these three equations toget-
her and conclude that the following is true for every triplet of particles:

(2.31)

any two of the parties press the σy button, and the third one the σx button, the product
of the three results is always −1.

σxA σyB σyC = −1;
σyA σxB σyC = −1;
σyA σyB σxC = −1.

σxA σxBσxC =−1.
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Because this result holds for the alternative experiment, it should also hold for the
original one. That is, whenever all three observers push the “σx” button, the product
of the displayed values will be −1. This conclusion is true under local realism.

Now we consider the quantum argument. The source sends three photons in the
state

|ΨGHZ〉=
1√
2
(|HHH〉+ |VVV 〉)

to Alice, Bob, and Charley. When each of the observers presses one of the buttons,
the Pauli observable corresponding to that button is measured on that observer’s
photon and the measurement result is displayed, corresponding to one of the eigen-
values of that observable.

Exercise 2.54. Show that |ΨGHZ〉 is an eigenstate of the operators

a) σ̂xA ⊗ σ̂yB ⊗ σ̂yC , σ̂yA ⊗ σ̂xB ⊗ σ̂yC , σ̂yA ⊗ σ̂yB ⊗ σ̂xC with eigenvalue −1;
b) σ̂xA ⊗ σ̂xB ⊗ σ̂xC with the eigenvalue +1.

Part (a) of the above exercise means that, whenever two of the three observers

their measurement results will be−1 (see Ex. 2.24). This implies that the setting fits
the front-panel description given above.

Part (b), on the other hand, proves that whenever all three observers measure σx,
the product of their results will be +1. This result is in direct contradiction with
the local realistic prediction (2.31). In contrast with the Bell inequality, where the
violation of local realism is observed by collecting multiple data and calculating
averages, the GHZ setting shows a discrepancy every time the observers perform
a measurement. This absence of statistical uncertainty makes the GHZ argument
especially appealing as a means of demonstrating quantum nonlocality.

2.4 An insight into quantum measurements

2.4.1 Von Neumann measurements

At the end of the previous chapter, we learned that any quantum process is described
by a unitary operator. On the other hand, the Measurement Postulate states that a
measurement converts a quantum superposition into a statistical mixture of elements
of the measurement basis13. This process cannot be described by a linear operator,
which, by definition, reversibly maps any element of the Hilbert space to another
element of the Hilbert space. How can this inconsistency be resolved?

If this question sounds too abstract, let us restate it in more concrete terms.
Suppose an observer, Alice, is measuring a diagonally polarized photon

13 This standard approach to quantum measurements is referred to as the
tion in honor of Niels Bohr.

Copenhagen interpreta-

measure σ̂y, and the third measures σ̂ on their portions of |ΨGHZ〉, the product ofx
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|Ψ〉= 1√
2
(α |H〉+β |V 〉) (2.32)

(where α and β are real and positive) in a canonical basis
[Fig. 1.2(a)]. The photon propagates through or reflects off the
PBS, then hits the sensitive area of one of the photodetectors
(Box 1.2), triggering an avalanche, which, in turn, produces an
audible click that Alice can hear. At which point does the superposition (2.32) col-
lapse into a set of probabilities? Is it when the photon passes the PBS? Or when an
avalanche occurs in one of the detectors? Or when the click sounds?

To answer these questions, let me introduce a model of quantum measurements
proposed by John von Neumann. This model treats the quantum system to be measu-
red and the measurement apparatus as two Hilbert spaces, which become entangled
during the measurement. Suppose the system is initially in the state |ψ〉= ∑i ψi |vi〉,
where {|vi〉}N

i=1 is the measurement basis. The initial state of the apparatus is |w1〉,
an element of the orthonormal basis {|wi〉}M

i=1 (with M > N) in the Hilbert space
of the apparatus. During the measurement, the system interacts with the measure-
ment apparatus and entangles itself with it through a unitary evolution, generating
the state14

Û(|ψ〉⊗ |w1〉) =
N

∑
i=1

ψi |vi〉⊗ |wi〉 . (2.33)

The states |w1〉 , . . . , |wn〉 are macroscopically distinct (for example, different lights
coming on or a needle being displaced to a different position). The observer has
access to the apparatus and can learn the state of the system.

In the example mentioned at the beginning of this section, the entanglement of
the system with the apparatus produces the state15

|ΨSA〉 = α |H〉⊗ |avalanche in detector 1〉
+ β |V 〉⊗ |avalanche in detector 2〉 . (2.34)

The superposition (2.34) is relevant to the Welcher-Weg measurement situation
of Sec. 1.5. Even if there is no observer present to read off the measurement result,
the photon alone can no longer exhibit interference because the superposition state
now involves an additional object: the apparatus.

Suppose now that the experiment is carried out by an observer, Alice, who can
repeat it many times. In principle, Alice is able to verify the entangled nature of the
superposition (2.34) experimentally. To that end, she would first perform multiple
measurements of the photon in the canonical basis and correlate these results with

14 It may appear that Eq. (2.33) is equivalent to quantum cloning (Sec. 2.1.3) because, for each basis
element of the system, the apparatus evolves into the corresponding basis element of its Hilbert
space. In fact, this is not the case. A proper cloning operation would also clone superposition
states, i.e. it would make the right-hand side of Eq. (2.33) look like

(
∑

N
i=1 ψi |vi〉

)
⊗
(
∑

N
i=1 ψi |Wi〉

)
.

Transformation (2.33) is different and hence does not contravene the no-cloning theorem.
15 For the sake of argument, let us assume that the photon is not destroyed at the time of detection,
and let us also neglect the different spatial paths taken by the horizontal and vertical photons.

John von Neumann
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the indications of the detectors. This would tell her the absolute values of α and β

for the two terms in Eq. (2.34). Additionally, Alice would acquire the measurement
statistics for both the photon and the detectors in the diagonal basis [for the de-
tectors, it is {(|avalanche in detector 1〉± |avalanche in detector 2〉)/

√
2}] and de-

termine the phase relation between the superposition terms (see Ex. 2.11). Such
a measurement is, of course, far beyond our technical capability, but theoretically
feasible.

But what if Alice remains passive and hears the click from one of the detectors
in the state (2.34)? Since she is also a quantum object, we can continue our line of
argument and say that she becomes a part of the same entangled superposition:

|ΨSAO〉 =
1√
2
(|H〉⊗ |avalanche in detector 1〉⊗ |Alice heard click in detector 1〉

+ β |V 〉⊗ |avalanche in detector 1〉⊗ |Alice heard click in detector 2〉).

This point marks a fundamental change for Alice as the observer. However intel-
ligent and well-equipped she may be, she is unable, even in principle, to project
herself onto the diagonal basis. As a result, she has no possibility of knowing she
is in a superposition state. For her, whenever the photon is horizontal, she hears the
click in detector 1, and vice versa. She has no possibility of finding out experimen-
tally that there exists another part of the superposition, because everything she can
observe (the photon and the detector) is consistent with her own state. For Alice, it
will appear that the quantum state of the photon has collapsed and one of the two
outcomes has occurred randomly.

Another observer, Bob, who is outside Alice’s lab and has not yet become a
part of the superposition, is still able to check the existence of the superposition by
measuring the photon, the detector, and Alice in their diagonal bases. Here, again,
I am asserting only the theoretical possibility of such a measurement, abstracting
from its practical implementation (which is prohibitively complicated)16.

We see that the von Neumann model answers the question asked at the beginning
of this section. The collapse of the superposition need not be a part of the quantum
theory — it is a subjective phenomenon that seems to happen when the observer
becomes a part of the superposition. In reality, or at least in the theoretical reality
put forward by quantum mechanics, the superposition never collapses, but lives on,
involving an ever increasing part of the universe.

From this point of view, Einstein’s sentiment that God does not play dice turns
out to be valid. The evolution of the wavefunction of the universe is deterministic.
The quantum randomness is only an illusion, a consequence of our limited observa-
tional power.

This interpretation, while eliminating the logical inconsistency noted at the be-
ginning of this section, is highly unpractical. If our goal is purely utilitarian — to
use quantum mechanics to predict the experimental results that are relevant to us as

16 This is known as Wigner’s friend Gedankenexperiment. It has been proposed by Eugene Wigner,
who placed himself in the position of Bob and and a hypothetical friend in the position of Alice.
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observers, it makes no sense to speculate about measurements that are possible only
in theory. Instead we should adopt the Copenhagen interpretation and assume that
the state collapses as soon as its degree of macroscopicity becomes so large that we
are no longer able to measure the phase between the two terms of the superposition.
In the example above, this would happen with the emergence of the avalanche in
one of the detectors17.

2.4.2 Decoherence

Quantum measurements do not only occur in laboratories. Measurement-like phe-
nomena, in which the environment plays the role of the apparatus, take place around
us all the time. Suppose, for example, that we prepare a single atom in a state |ψ〉
with a well-defined momentum. According to the uncertainty principle, the position
observable is uncertain in this state, which means we can write it as a superposition
of many position eigenstates18.

|ψ〉= ∑
i

ψi |xi〉 (2.35)

Unless the atom is in a perfect vacuum, it will interact with other particles, such
as gas molecules and photons. Most such interactions have a highly local character.
For example, collisions between atoms are governed by the Lennard-Jones poten-
tial, whose strength falls off inversely proportionally to at least the sixth power of
the distance. Accordingly, any such interaction changes the state of the environment
particles depending on the atom’s position. One can therefore say that the environ-
ment performs a measurement of the atom’s state in the eigenbasis of the position
observable. The joint state of the atom and the environment becomes

∑
i

ψi |xi〉atom⊗|xi〉environment . (2.36)

A realistic observer cannot keep track of the multiple objects that have interacted
with “our” atom. Therefore, from that observer’s point of view, this atom will even-
tually find itself in the situation discussed in Sec. 2.2.4. It will no longer be in a co-
herent superposition of position eigenstates (which constitutes a momentum eigen-
state), but in a statistical mixture thereof. This loss of coherence due to interaction
of a quantum system with its environment is called dephasing or decoherence.

17 Such an “instrumentalist” approach was particularly favored by Richard Feynman, whose views
are nicely summarized by the fictional slogan “Shut up and calculate” (N. D. Mermin, Could
Feynman have said this?, Physics Today 57, 10 (2004)).
18 The precise form of the momentum eigenstate will be discussed in the next chapter; for the
present argument, Eq. (2.35) is sufficient.



70 A. I. Lvovsky. Quantum Physics

Exercise 2.55. The atom is initially in the state (2.35). It experiences decoherence,
entangling itself with the environment according to Eq. (2.36). Write down the en-
semble describing the state of the atom state after the decoherence.

Because the environment-induced measurement occurs in the position basis, it
has no detrimental effect on position eigenstates. Indeed, if the atom is prepared in
a state with a certain position, the sum Eq. (2.35) consists of only a single term. The
interaction with the environment would then not lead to entanglement and the state
(2.36) would be separable.

It is quite typical for the interactions of the system with the environment to be
dominated by a single physical mechanism. Accordingly, there will be a certain
basis in the system’s Hilbert space whose elements will not entangle themselves
with the environment and hence will not decohere19. It is called the decoherence-
preferred basis.

Because of local nature of physical interactions, the position basis is often the
decoherence-preferred basis for motional degrees of freedom. This is why it is much
easier to prepare objects in a state with a certain position rather than a certain mo-
mentum, even though mathematically there is no preference for either case. A si-
milar line of argument can also explain why superpositions of dead and living cats
are never observed in practice, even though mathematically these states are as le-
gitimate as each of the superposition terms. The environment persistently measures
the location of various body parts of the cat by interacting with them. Because the
results of these measurements contain information about whether the cat is dead
or alive, any coherent superposition of these states will instantly decohere. In other
words, the decoherence-preferred basis of the cat, whatever it is, does not include
superpositions of dead and alive states.

19 W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Reviews of
Modern Physics 75, 715 (2003).
20 Such collisions are called elastic.

A much more likely candidate for the status of the decoherence-preferred ba-
sis for internal states is the eigenbasis of the energy operator, i.e., the Hamiltonian.
This is a consequence of the adiabatic theorem (Box 2.4). Because the electronic
energy levels in atoms are quite far from each other (Sec. 4.4), the fields arising
during a collision are typically “smooth” enough so an atom initially in an energy
eigenstate will stay in that state20. On the other hand, a collision will unpredictably
affect the quantum phase of each energy eigenstate, which evolves according to
|ψE(t)〉 = e−i

∫
E(t)/h̄dt |ψE(0)〉 as per Eq. (1.25). So, while energy eigenstates are

often preserved in a collision, coherence between them is typically not. This behav-
ior is characteristic of a decoherence preferred basis, and the main reason why it is

For internal states of quantum objects, as well as motion on a microscopic scale,
such as the motion of electrons in atoms, the position basis is not decoherence-
preferred. This is because those electrostatic interactions that cause decoherence are
typically caused by objects that are located much further away from the atom than
the size of the atom itself.
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Box 2.4 Adiabatic theorem
Suppose that at time t = 0 a certain quantum system is in an eigenstate |ψ(0)〉= |Em〉 of

its Hamiltonian. The Hamiltonian Ĥ(t) is time-dependent and has a discrete energy spectrum
{En(t)}. The adiabatic theorem, due to Max Born and Vladimir Fock (1928), states that, if
the Hamiltonian changes sufficiently slowly, the system will to a good approximation remain
in the same energy eigenstate.

As a visual example, consider the following experiment which can be performed at home.
Place a compass between the poles of a U-shaped magnet. The needle will orient itself along
the field lines of the magnet. Now, if we slowly turn the magnet, the needle will follow its
orientation. If, on the other hand, we flip the magnet quickly, or the magnet is weak, the
needle will lose its alignment with it, and take some time to regain it. This, in essence, is the
adiabatic theorem.

The adiabaticity condition can be loosely formulated as

d
dt

En� h̄∆
2, (2.37)

where ∆ is the minimum distance between Em and other energy eigenvalues during the evo-
lution process (see the figure below). A complete proof of the adiabatic theorem is relatively
complicated and beyond the scope of our course.

Schematic view of the evolution of atomic energy eigenvalues during a collision. The value of ∆ shown is relevant
to the adiabaticity condition for m = 2.

the energy eigenstates in which atoms and molecules are most frequently observed
in experiments.

2.4.3 Interpretations of quantum mechanics

In Sec. 2.4.1, we analyzed the measurement process: the quantum object becomes
entangled with the macroscopic measurement apparatus and, subsequently, with the
experimentalist. Thereafter, we discussed a process of similar nature, in which the
role of the experimentalist is played by the natural environment. In both cases it is
clear that the expansion of the superposition to encompass further objects will con-
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Box 2.5 Schrödinger’s cat

Schrödinger’s cat is something more complex than just a superposition of the dead and
alive states of a cat. Here is a quote from the 1935 Schrödinger’s article in the German ma-
gazine Naturwissenschaften (“Natural Sciences”).∗

A cat is penned up in a steel chamber, along with the following device (which must
be secured against direct interference by the cat): in a Geiger counter, there is a tiny bit
of a radioactive substance, so small that perhaps in the course of the hour, one of the
atoms decays, but also, with equal probability, perhaps none; if it happens, the counter
tube discharges, and through a relay releases a hammer that shatters a small flask of
hydrocyanic acid. If one leaves this entire system to itself for an hour, one would say that
the cat still lives if meanwhile no atom has decayed. The psi-function of the entire system
would express this by having in it the living and dead cat (pardon the expression) mixed
or smeared out in equal parts.

In modern language, the quantum state of the cat and the atom is entangled and described
by the equation

|Ψ〉= 1√
2
(|atom not decayed〉⊗ |cat alive〉+ |atom decayed〉⊗ |cat dead〉).

From the subjective point of view of the cat inside the box, the quantum superposition has
collapsed as soon as this entangled state has been formed (Sec. 2.4.1). An experimentalist
outside with infinite technological capabilities, however, is in principle able to verify the
presence of the superposition by projecting both the cat and the atom onto diagonal bases.

∗E. Schrödinger, Die gegenwartige Situation in der Quantenmechanik, Naturwissenschaften 23, 807–812,
823–828, 844–849 (1935).

Original artwork: courtesy R. Kazaryan.
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tinue beyond the point where we stopped our analysis. The experimentalist, Alice,
will act at least slightly differently depending on the detector in which she observed
an event; this difference, however small, will affect atoms and photons surrounding
her. Similarly, the particles that collided with the atom in the decoherence example
will interact with other objects, undergo optical transitions, and so on. The more ma-
croscopic a quantum superposition is, the more likely it is to involve more and more
objects. The entanglement brought about by any measurement, deliberate or inad-
vertent, inevitably expands, eventually to encompass the entire universe and create
a giant superposition state.

Measurement-like situations, in which the state of a microscopic object affects
that of macroscopic objects, occur uncountably often in nature. Accordingly, the
universe finds itself in an unimaginably complex superposition state. Taking this lo-
gic to the extreme, one would argue that all randomness in the world is of a quantum
nature. For example, when we toss a coin, its motion is affected by minute vibra-
tions of our hands and the motion of air molecules, both of which are affected by
quantum fluctuations. Every hurricane is a result of a quantum fluctuation somew-
here back in time, somewhere in the world. For any possible outcome of a random
event or series thereof, however unlikely, there exists a “universe” in which it took
place.

This is called the many-worlds interpretation of quantum mechanics. It was pro-
posed by Hugh Everett in 1957. While it is a logical consequence of the quantum
theory, the conclusion about the existence of multiple universes is purely speculative
in the sense that it cannot be verified experimentally. As discussed above, once we
become a part of the entangled superposition state, we no longer have the means to
characterize that state.

Moreover, this conclusion is valid only if one believes quantum physics to be the
ultimate, universal theory of the world. While all experiments so far have suggested
this to be the case, these experiments are limited by our ability to isolate quantum
systems from the environment. The largest objects for which quantum superpositi-
ons have been observed are organic molecules consisting of a few thousand atoms.
One could imagine that, once one exceeds a certain degree of complexity, quantum
superpositions cease to exist for fundamental reasons; in fact, certain arguments
stemming from general relativity seem to suggest that. Finding the limits of ap-
plicability of quantum physics is therefore an important open question in modern
physics. To address it, we need to construct increasingly macroscopic superposition
states and check whether they retain their properties in spite of their large size.

The rather shocking nature of the many-worlds interpretation is often seen as the
strongest argument against it. One must remember, however, that the Copenhagen
interpretation is also full of paradoxes, some of which we have seen on the pages
of this book. These paradoxes arise entirely due to the notion of quantum state col-
lapse associated with measurements, and they disappear in the many-worlds picture,
where such collapse does not exist.

Consider the Elitzur-Vaidman “Bomb” paradox (Box 1.4), for example. In the
framework of the the many-worlds interpretation, we would say that the photon,
initially in a localized superposition state |+〉= |H〉+|V 〉√

2
, experiences evolution as it
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propagates through the interferometer, and at some point entangles itself with the
bomb. The state of the two objects then becomes

1√
2
[|H, lower path〉⊗ |bomb exploded〉+ |V, upper path〉⊗ |bomb not exploded〉] .

This entanglement changes the state of the photon, so not surprisingly, it will conti-
nue to evolve through the interferometer in a different manner compared to the case
in which the bomb is absent. Eventually, it will become absorbed by one of the two
detectors, so the state becomes21

1√
2
|bomb exploded〉⊗ |detector “+ ” not clicked〉⊗ |detector “− ” not clicked〉

+
1
2
|bomb not exploded〉⊗ |detector “+ ” clicked〉⊗ |detector “− ” not clicked〉

+
1
2
|bomb not exploded〉⊗ |detector “+ ” not clicked〉⊗ |detector “− ” clicked〉

It is therefore incorrect to say that a click of detector “−” has occurred without inte-
raction of the photon with the bomb. The interaction has in fact occurred, and given
rise to the entangled superposition above, in which the event in the detector “−” is
only one of the terms. But because this superposition includes macroscopic objects,
it will quickly encompass the entire universe, including the observers. Therefore the
observers in the “universe” in which detector “−” clicked will have no possibility to

and hence the bomb has been detected without interaction.

Exercise 2.56. Two photons in the Bell state |Ψ−〉 are distributed to Alice and
Bob. They perform non-destructive von Neumann measurements on their photons
in the bases {|θ〉 ,

∣∣π

2 +θ
〉
} and {|H〉 , |V 〉}, respectively. What is the state of the two

photons and two measurement apparata after this measurement? Denote the relevant
basis elements in the Hilbert spaces of Alice’s and Bob’s apparata by {|wA1〉 , |wA2〉}
and {|wB1〉 , |wB2〉}, respectively.
Hint: use Eq. (2.6).

2.4.4 The superposition tree∗

Before we conclude our discussion of the many-worlds interpretation, we must ad-
dress an important outstanding question. We argue that the collapse of a quantum
state is a subjective phenomenon that occurs only in the view of the observer once
that observer becomes a part of the entangled state. But then it must follow that the
Measurement Postulate of quantum mechanics is not really a postulate: it must be
a consequence of the Hilbert Space Postulate. That is, we should be able to derive

21 I omitted the state of the photon for brevity.

see the other terms of the superposition. In their view, the other terms do not exist,
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Born’s rule — that the measurement output probability, as it appears to the observer,
is the square of the absolute value of the amplitude. This is our goal in this section.

Before proceeding, I would like to caution the reader that this section is quite
difficult (even more so than the other chapters of this book) and not a part of “main-
stream” quantum mechanics. Therefore I would recommend skipping it in the first
reading.

Without attempting to be extremely rigorous, let us develop an argument for
Born’s rule for the state (2.32). How does the observer, Alice, determine the pro-
bability? She repeats the experiment many times and counts how many times each
result is observed. The trouble is, though, that Alice herself is a part of the su-
perposition state, so these apparent probabilities are different in each term of the
superposition. For example, there exists a “universe” in which Alice repeated the
experiment a thousand times and observed |H〉 every time. Alice in this universe
will then conclude that the probability of detecting |H〉 is unity, in direct contra-
diction with Born’s rule.

However, we can prove that Born’s rule holds in the overwhelming majority of
universes.

We start with a simplified case of equal probabilities for the two measurement
outcomes, so that α = β = 1/

√
2. Let us suppose that Alice performs measurements

on multiple copies of the superposition (|H〉+ |V 〉)/
√

2 in the canonical basis. After
the first measurement, she becomes part of an entangled state which contains two
terms:

|Ψ〉= 1√
2
(|H〉⊗ |Alice observed H〉

+ |V 〉⊗ |Alice observed V 〉). (2.38)

After the second measurement, there will be four terms:

|Ψ〉= 1
2 (|HH〉⊗ |Alice observed H in 1st measurement, H in 2nd measurement〉
+ |HV 〉⊗ |Alice observed H in 1st measurement, V in 2nd measurement〉
+ |V H〉⊗ |Alice observed V in 1st measurement, H in 2nd measurement〉
+ |VV 〉⊗ |Alice observed V in 1st measurement, V in 2nd measurement〉),

(2.39)

and so on. This superposition can be visualized as a tree-like structure, with every
measurement doubling the number of terms in the superposition, and doubling the
branches of the tree [Fig. 2.5(a)]. After n measurements, the number of terms will
be 2n. Each term has amplitude

√
1/2n and corresponds to a unique downward path

along the tree branches.
Although in each term of the superposition Alice cannot see other terms, she is

aware of the full history of the measurement results that occurred within her term.
Accordingly, she can calculate the frequency of occurrences for each of her results
and interpret these statistics as probabilities. Specifically, if she observed |H〉 k times
and |V 〉 n− k times, she will conclude that the probability of detecting |H〉 is k/n.
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|HHH� |HHV� |HVH� |HVV� |VHH� |VHV� |VVH� |VVV�

1st measurement

2nd measurement

3rd measurement

1st measurement

2nd measurement ...
mH mV mH mV

a)

b)

Fig. 2.5 The superposition tree. Solid lines correspond to observations of the horizontal polariza-
tion, and dashed lines to vertical. a) For an equal superposition of |H〉 and |V 〉, each measurement
doubles the number of branches. b) For unequal superpositions, we use multiple branching to equa-
lize the amplitude of each branch.

Exercise 2.57. Suppose Alice performs a large number n of measurements on co-
pies of the state (|H〉+ |V 〉)/

√
2. Calculate the fraction of paths along the superpo-

sition tree that contain k results |H〉 and n− k results |V 〉.
Hint: Review Ex. B.8.
Answer:

1
2n

(
n
k

)
=

1
2n

n!
k!(n− k)!

. (2.40)

Exercise 2.58.§ Calculate the above result numerically and plot it as a function of k
for n = 100.
Answer: see Fig. 2.6(a).

Exercise 2.59.∗ Show that, for n� 1, Eq. (2.40) can be approximated by the Gaus-
sian function

A(n)exp

[
−2

(
k− n

2

)2

n

]
, (2.41)

where A(n) depends on n alone.
Hint: This well known mathematical result can be obtained using the following
approximations:
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1. Approximate the natural logarithm of
(

n
k

)
using the Stirling formula lnx! ≈

x(lnx−1).
2. Set k = n

2 +δ and assume δ � n. Then approximate ln
( n

2 ±δ
)

using the second
order Taylor decomposition.

As we can see from these exercises, an overwhelming majority of the superposi-
tion tree paths will have k ≈ n

2 , i.e., contain an approximately equal number of the
H and V events, with the standard deviation scaling as the square root of the number
of measurements [Fig. 2.6(a)]. The experience of observers in these paths is consis-
tent with Born’s rule. While, as discussed above, there exist “deviant” universes in
which Born’s rule does not hold, their number is unimaginably minuscule.
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Fig. 2.6 Number of paths in the superposition tree containing k horizontal polarization detection
events with n = 100 measurements for α2 = β 2 = 1

2 (a) and α2 = 1
4 , β 2 = 3

4 (b).

Let us now redo our derivation for a more complex setting. Suppose that the
initial photon state is |ψ〉= α |H〉+β |V 〉, with amplitudes α and β not necessarily
equal (we still assume them to be real, though)22. After the first measurement, the
joint state of the photon and Alice is

|Ψ〉= α |H〉⊗ |Alice observed H〉+β |V 〉⊗ |Alice observed V 〉 . (2.42)

The superposition tree branches with subsequent measurements. However, the ar-
gument we developed above for the case α = β will not work because different
branches will enter the superposition tree with different amplitudes. To address this
issue, we modify the superposition tree in the following fashion.

22 This derivation mainly follows the papers by W. H. Zurek, Environment-Assisted Invariance, En-
tanglement, and Probabilities in Quantum Physics, Physical Review Letters, 90, 120404 (2003);
Probabilities from entanglement, Born’s rule from invariance, Physical Review A 71, 052105
(2005).
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Let us approximate

α =

√
mH

mH +mV
, β =

√
mV

mH +mV
, (2.43)

where mH and mV are natural numbers. By choosing these values sufficiently high,
we can approximate any real α and β with arbitrarily high precision. Alice is a com-
plex quantum system, so her Hilbert space is highly multidimensional. Then, accor-
ding to Ex. A.25, we can introduce a set of orthonormal states of Alice

{∣∣∣h(`)i

〉}mH

i=1

and
{∣∣∣v(`)i

〉}mV

i=1
such that

|Alice observed H in the `th measurement〉 = 1
√

mH

mH

∑
i=1

∣∣∣h(`)i

〉
; (2.44)

|Alice observed V in the `th measurement〉 = 1
√

mV

mV

∑
i=1

∣∣∣v(`)i

〉
. (2.45)

Substituting these decompositions along with Eq. (2.43) into Eq. (2.42), we find

|Ψ〉=
√

1
mH +mV

(
mH

∑
i=1
|H〉⊗

∣∣∣h(1)i

〉
+ |V 〉⊗

mV

∑
i=1

∣∣∣v(1)i

〉)
. (2.46)

This superposition has mH +mV orthogonal terms, mH of them corresponding to the
observation of horizontal polarization, and mV to vertical polarization. Subsequent
measurement will result in further branching of the superposition tree, in such a
way that there is a total of (mH +mV )

n branches after n measurements [Fig. 2.5(b)].
Importantly, all branches now have equal amplitudes, so we can proceed in a similar
fashion to the case of α = β studied previously.

Exercise 2.60. For a superposition state that is prepared after n measurements:

a) calculate the fraction of terms that contain k results |H〉 and n− k results |V 〉;
b) evaluate the above result numerically and plot it as a function of k for n = 100,

α2 = 1
4 , β 2 = 3

4 ;
c)∗ calculate the Gaussian approximation in the neighborhood of k = α2n, akin to

Ex. 2.59.

Answer:

a)
(

n
k

)
mk

Hmn−k
V ;

b) see Fig. 2.6(b);
c)

A(n)exp

[
−
(
k−α2n

)2

2α2β 2n

]
. (2.47)
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We see once again that Born’s rule holds in the great majority of the worlds.
We can conclude that the Measurement Postulate of quantum mechanics follows
from the Hilbert space postulate and the unitarity of quantum evolution. Does this
mean that we should now drop this postulate — given its redundancy and logical
inconsistency?

Unfortunately, we cannot do so. The very example studied here shows how dif-
ficult it is — both computationally and psychologically — to use this approach for
practical purposes. Effectively, we need to calculate the wavefunction of the uni-
verse every time we want to predict a measurement on a photon! If the goal is to
make predictions for the phenomena experienced by finite observers such as hu-
mans, it makes much more sense to just assume that the wavefunction collapses —
because this is indeed what happens in the subjective view of those observers. Then
the Copenhagen interpretation is the tool of choice. Therefore, in the remainder of
this book, we shall “shut up and calculate”, only rarely referring to the many-worlds
interpretation in order to get a broader perspective.

2.5 Quantum computation

The idea of quantum computation is to use quantum bits as basic units of informa-
tion. In contrast to a classical bit, a qubit can be not only in a definite state |0〉 or |1〉,
but also in a superposition of these states. Accordingly, multiple qubits can also be
in superposition states, which are entangled with respect to individual qubit Hilbert
spaces.

It is the entanglement that makes the quantum computer much more powerful
than a classical one. Consider, for example, three qubits in a superposition

a000 |000〉+a001 |001〉+a010 |010〉+a011 |011〉
+a100 |100〉+a101 |101〉+a110 |110〉+a111 |111〉 . (2.48)

Performing a set of logical operations with these three qubits in this state, we simul-
taneously perform them with all 23 = 8 sets of qubit values contained in state (2.48).
In this way, we achieve an exponential degree of parallelism in our calculations. For
example, even a tiny, 30-qubit quantum computer will work a billion (230 ≈ 109)
times faster than its classical counterpart.

Of course, quantum computation is not as simple as it may appear from this
example. Problems arise at both the theoretical and the practical level. Just to give
one example of the many fundamental issues, let me mention the following. Suppose
the quantum computer has completed its calculation on a superposition of qubit
strings. Now we need to read out the answer. But the answers associated with each
input string are also in a superposition state! If we now try to measure this state,
the only thing we will obtain is one of the terms of the superposition. A systematic
readout of a specific term associated with the input of interest is not possible.
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Thus it turns out that the parallelism offered by quantum computers is useful for
only a very limited class of problems. One such problem is the factorization of large
numbers, which is known to be computationally difficult for classical computers and
is thus used as the basis for public-key cryptography (Sec. 1.6). A technology for
quickly deciphering public-key codes would pose a significant threat for society’s
information security. This is one of the reasons why quantum computation remains
a subject of intense research.

Fortunately, this threat is not immediate because the quantum computer is very
difficult to build. As we discussed in Sec. 2.4, any interaction of a quantum state
with the environment makes the environment a part of the superposition. In the
view of an observer who does not have control of that environment, this is equiva-
lent to a superposition collapse. The likelihood of this happening is especially high
for a multipartite entangled state, because interaction of any of the qubits with the
environment will cause decoherence of the entire superposition.

This is one of the primary reasons why quantum computation technology has
been developing so slowly. At the moment, we don’t even know what physical sy-
stem is best suited to carry quantum information. Different research groups around
the world are investigating different systems — trapped atoms and ions, supercon-
ducting junctions, quantum dots, and even liquids — to determine their potential for
this role. As it turns out, the photon is also a promising candidate. This is because
the average energy of the optical photon (2–4 electronvolts) corresponds to a few
tens of thousands of kelvins, i.e., much higher than the typical temperature of our
environment. As a result, photons are not too likely to interact with this environment,
and are hence robust against decoherence. In addition, it is easy to encode the qubit
in the polarization of a photon: for example, the logical state |0〉 can correspond to
the horizontal polarization and the state |1〉 to vertical.

It is also easy to implement single-qubit logical operations with this encoding.
For example, we can perform the logical “not” operation using a λ/2 plate with
its optic axis oriented at angle 3π/4 to horizontal: state |0〉 (|H〉) will become |1〉
(|V 〉) and vice versa (see Ex. 1.24). Another important operation is the Hadamard

gate (see Ex. 1.27) with the matrix Ĥ ' 1√
2

(
1 1
1 −1

)
which interconverts between

the canonical and diagonal polarization states. The Hadamard gate is implemented
using a half-waveplate oriented at angle π/8 to horizontal.

Additionally, in order to obtain the full range of computations accessible to
a classical computer (Turing machine), we need conditional operations in which
qubits could interact: the state of one qubit would affect the state of another. Theo-
retical research has shown that, in order to build a universal quantum computer, it is
sufficient, in addition to single-qubit operations, to be able to implement only one
kind of two-qubit operation: the conditional “not” gate, or the c-not gate. Imple-
mentation of this operation is a “holy grail” of quantum computation in any physical
system. It is particularly complicated with photons.

The c-not gate involves two qubits: control and target. If the state of the control
qubit is |0〉, the gate does not change the qubit values. But if the control qubit is
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|1〉, the value of the target “flips”: |0〉 becomes |1〉 and |1〉 becomes |0〉. This is
summarized in Table 2.523.

Table 2.2 Truth table of the c-not gate.

input output
control target control target
|0〉 |0〉 |0〉 |0〉
|0〉 |1〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉

The c-not gate can be thought of as a “gremlin” that looks at the polarization
of the control photon and, if the polarization is vertical, inserts a half-waveplate
at 45◦ into the path of the target photon. The problem is that the gremlin must do
this somehow without measuring the control photon, because such a measurement
would entangle it with the qubits and collapse their quantum state (Sec. 2.4.1). As
the following exercises show, this is theoretically possible.

Exercise 2.61. Write the matrices of operators corresponding to the following ope-
rations on a pair of qubits. The logical state |0〉 is encoded by the horizontal polari-
zation and the logical state |1〉 by the vertical.

a) The c-not gate.
b) An operation that leaves states |00〉 , |01〉 , |10〉 unchanged, but multiplies the

state |11〉 by a phase factor of−1 (the conditional phase shift, or c-phase gate).
c) A tensor product of the identity operator on the first qubit and the Hadamard

gate upon the second (target) photon.

Are these operators unitary?

c-phase

gate

Hadamard

gate

control

target Hadamard

gate

Fig. 2.7 Implementation of the c-not gate using a c-phase gate and two Hadamard gates.

23 Note that the output value of the target qubit corresponds to the result of the classical exclusive-
or (XOR) gate.
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Exercise 2.62. Show that the c-not gate can be constructed by applying, in se-
quence, a Hadamard gate in Bob’s space, a conditional phase shift, and a Hadamard
gate in Bob’s space again (Fig. 2.7).

Exercise 2.63. Show that the c-phase gate between two photons can be realized by
the action of the Hamiltonian Ĥ = h̄ω |VV 〉〈VV | for a time π/ω .
Hint: other Hamiltonian eigenstates (|HH〉, |HV 〉, and |V H〉) correspond to zero
energy values.

Exercise 2.64. Show that the c-not gate constitutes the von Neumann measurement
in the sense of Eq. (2.33) for N = M = 2 with |w0〉= |w1〉.

Exercise 2.62 shows us that, if we have a c-phase gate available, it can be used
to construct the c-not gate. This does not solve the problem, but reduces it to a so-
mewhat simpler one: rather than changing the values of the qubits, we only need to
modify their phases. In application to photons, the implementation of the c-phase
gate requires an optical element in which a photon would experience different phase
shifts (i.e., different indices of refraction) depending on the polarization of another
photon present in it. This is not something we would normally observe in optics:
typically, if multiple light waves are present in the same medium, they will not in-
teract, but propagate independently of the presence of the other waves. Situations
involving the mutual influence of electromagnetic waves belong to the class of non-
linear optical phenomena. Nonlinear properties are observed in everyday media,
such as glass or crystals, only when at least one of the fields is extremely strong, on
the scale of trillions of photons. Making nonlinear optical effects significant at the
optical intensity level of a few photons is a difficult problem and is currently being
investigated by many research groups.

Exercise 2.65. Show that the operators from Ex. 2.61 (a,b) can create an entangled
state from a separable one (cf. Ex. 2.17).

Exercise 2.66. Suppose you have available a c-not gate for photons. Propose a
scheme that uses this gate to implement a measurement of two photons in the Bell
basis.

2.6 Quantum teleportation and its applications

2.6.1 Quantum teleportation

Suppose Alice holds a single copy of a photon in some quantum state that she would
like to transfer to Bob. However, she does not know the state of that photon, nor is
there a direct quantum communication channel from Alice to Bob. Then it would
appear that Alice’s mission is impossible. Indeed, if she cannot send the photon to
Bob directly, then the only option she is left with is to measure it. But, as we discus-
sed in Sec. 1.4.2, a measurement on a single copy of a quantum state reveals very
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little information about that state, and definitely not enough to recreate an exact copy
elsewhere. Yet, as we shall see here, Alice can exploit the power of entanglement
to transfer the state of her photon to Bob indirectly with a 100% probability and
perfect fidelity.

In Sec. 2.2.1, we studied remote state preparation — a quantum communication
protocol that allows the transfer of a quantum state from Alice to Bob by means of
an entangled “resource” state shared between the two parties and a classical commu-
nication channel. In order to remotely prepare a desired state at Bob’s station, Alice
must know what state it is. By measuring her portion of the entangled resource in
a basis chosen in accordance with that knowledge, Alice remotely converts Bob’s
portion of that resource into the desired state or the one orthogonal to it.

The quantum teleportation protocol is similar in some respects. However, in con-
trast to remote state preparation, Alice has no knowledge of the state she wishes to
transfer to Bob. Instead, she possesses one copy of that state. It turns out that, by
implementing a joint measurement on it and her share of the entangled resource,
Alice can accomplish a similar goal: convert Bob’s share of the resource into the
desired state or one that can be transformed into it by means of a local operation24.

So in contrast to science fiction, in which teleportation is relocation of an ob-
ject, quantum teleportation is relocation of the quantum state of an object. While
some may view it as less spectacular, I would argue that the phenomenon of quan-
tum teleportation is not a bit less amazing. We know that, in order to determine an
unknown quantum state, we must measure many copies of it in a variety of ways.
Furthermore, we know that it is theoretically impossible to clone a quantum state,
i.e., make a copy of it while keeping the original intact. Yet we can recreate a state
at a remote location, while destroying the original one, and for that purpose only
one copy of that state is needed.

The quantum teleportation protocol is shown schematically in Fig. 2.8. Alice has
one copy of the input state |χ〉 = α |H〉+ β |V 〉 in channel 1, associated with the
Hilbert space V1; additionally, Alice and Bob share the entangled state |Ψ−〉 in
the Hilbert space V2⊗V3 encompassing channels 2 and 3. The following exercise
explains, step by step, how teleportation works.

Exercise 2.67. a) Express the state |χ〉⊗|Ψ−〉 in the canonical basis of V1⊗V2⊗
V3.

b) Express the canonical basis states of V1⊗V2 in the Bell basis.

24 The theoretical proposal for quantum teleportation was first published in C. H. Bennett, G. Bras-
sard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an Unknown Quantum State via
Dual Classical and Einstein–Podolsky–Rosen Channels, Physical Review Letters 70, 1895–1899
(1993). The first experiments, in different settings, were realized by several groups: D. Bouwmees-
ter, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental Quantum Teleporta-
tion, Nature 390, 6660, 575–579 (1997); D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu,
Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual classical and
Einstein–Podolsky–Rosen channels, Physical Review Letters 80, 1121–1125 (1998); A. Furusawa,
J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik, Unconditional quantum
teleportation, Science 282, 706–709 (1998).
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Fig. 2.8 Quantum teleportation

c) Express the state |χ〉⊗|Ψ−〉 in the form of Eq. (2.15), i.e., as a linear combina-
tion of tensor products between Bell basis elements of V1⊗V2 and normalized
states in V3.

d) Suppose Alice performs a local measurement on V1⊗V2 in the Bell basis. Cal-
culate the probability of each measurement outcome and the state onto which
the space V3 is projected.

e) Alice communicates her measurement result to Bob via the classical channel.
Show that, with this information, Bob can convert the state of V3 into |χ〉 via a
local operation. Write this operation as an operator and propose implementation
with waveplates.

Answer: see Table 2.3.

Table 2.3 Output states of quantum teleportation.

Bell state observed by Alice Probability State in Bob’s channel Bob’s local operation
|Φ+〉

1/4

−β |H〉+α |V 〉 σ̂zσ̂x = iσ̂y
|Φ−〉 β |H〉+α |V 〉 σ̂x
|Ψ+〉 −α |H〉+β |V 〉 σ̂z
|Ψ−〉 −(α |H〉+β |V 〉) none

We see that, by receiving classical communication from Alice stating which Bell
state she has detected and performing one of the Pauli operations on his photon, Bob
will obtain a copy of the source state |χ〉. The original source state is destroyed in
Alice’s measurement.

Importantly, the probabilities for each of Alice’s measurement outputs are equal
to 1/4, independently of the parameters α and β of the source state. This means
that Alice does not learn anything about the source state through her measurement.
Neither does Bob (unless he chooses to measure his state at some point). This igno-
rance of both parties is a prerequisite for the perfect transfer of the source state. If we
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were able to learn at least some information about a quantum state, while keeping
its exact copy, we could use it for faster-than-light communication in a similar way
to what was found in Ex. 2.44.

A prerequisite for implementing the teleportation protocol is a scheme for me-
asuring two photons in the Bell basis. While such a measurement is theoretically

Exercise 2.68. Suppose a pair of photons in one of the Bell states enters the appa-
ratus shown in Fig. 2.9. Show that:

a) if the input is in the state |Φ+〉, the detectors in the two gray boxes will si-
multaneously observe identical diagonally polarized photons (i.e., either both
detectors 1 and 4 or both detectors 2 and 3 will click);

b) if the input is in the state |Φ−〉, the detectors in the two gray boxes will si-
multaneously observe orthogonal diagonally polarized photons (i.e., either both
detectors 1 and 3 or both detectors 2 and 4 will click);

c) if the input is in the state |Ψ+〉 or |Ψ−〉, photon detection events will occur in
only one of the two gray boxes.

Fig. 2.9 A scheme for partial Bell-basis measurement. Squares denote polarizing beam splitters.

A protocol closely related to quantum teleportation is entanglement swapping25.
It starts with four photons prepared in a pairwise entangled state

∣∣Ψ−12

〉
⊗
∣∣Ψ−34

〉
. A

25 Theoretical proposal: M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-
detectors” Bell experiment via entanglement swapping, Physical Review Letters 71, 4287 (1993).
Experiment: J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental Entang-

feasible, in practice it is about as hard to implement as the c-not gate for photons
(see Ex. 2.66). If only linear-optical tools are available, one can distinguish just two
out of the Bell states. The latter approach is much easier to implement in practice,
and has been used in most experiments on the teleportation of photon polarization
qubits.
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Box 2.6 Can we teleport a human being?
Quantum physicists are sometimes asked how long it will be before we can teleport a

person. Now you can answer this question. In order to teleport a quantum object, one requires
two copies of it in a fully entangled state, i.e., a state that encompasses all possible quantum
states of that object, in addition to the original one. So to teleport the Star Trek captain Picard
from USS Enterprise to planet Betazed, we need first to make two exact copies of him, one
on the ship and one on Betazed, and prepare them — that is, each pair of molecules in their
respective bodies — in a fully entangled state!

measurement is then performed on photons in channels 2 and 3 in the Bell basis
(Fig. 2.10). Through this action, the photon in channel 2 gets teleported into chan-
nel 4 (or, equivalently, the photon in channel 3 is teleported into channel 1). As a
result, photons in channels 1 and 4 become entangled, even though they have never
interacted with each other.

The following exercise provides a more rigorous analysis.

Exercise 2.69. A measurement is performed on channels 2 and 3 of state
∣∣Ψ−12

〉
⊗∣∣Ψ−34

〉
in the Bell basis (Fig. 2.10). Determine the resulting state of channels 1 and 4

after each possible measurement outcome.

entanglement

source

output entangled state

Bell-basis

measurement

�
�

�
�

1 2 3 4

entanglement

source

Fig. 2.10 Entanglement swapping.

lement Swapping: Entangling Photons That Never Interacted, Physical Review Letters 80, 3891
(1998).
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2.6.2 Quantum repeater

Both quantum teleportation and entanglement swapping find applications in quan-
tum communications. In Chap.1 we learned that the primary issue preventing wide-
spread practical application of quantum cryptography is losses in the transmission
line. The exponential character of Beer’s law, which governs the losses, leads to the
transmissivity declining by many orders of magnitude on a scale of a few hundred
kilometers, disabling quantum communications at any reasonable rate.

Of course, similar losses also occur in classical fiber optic communication lines.
However, in the classical case the problem can be solved by means of the repeater
— a device that receives the signal and retransmits it at a higher power. In quantum
lines, classical repeaters are unusable because their action involves measurement of
the incoming state. From the point of view of communicating parties, a classical
repeater is indistinguishable from an eavesdropper.

In this section, we discuss the concept of the quantum repeater. While its prin-
ciples are drastically different from those of its classical counterpart, the purpose is
the same — to enhance the communication rate over a lossy line.

The first cornerstone of the quantum repeater is teleportation. If Alice and Bob
share an entangled resource, Alice need not send the photon to Bob over a direct
channel, but can teleport it to Bob. Because the Bell measurement can be perfor-
med at Alice’s station, the source photon will travel a very short distance, hence
experiencing negligible loss.

The problem of losses still arises, however, when we attempt to create the entang-
led resource required for teleportation and distribute it between Alice and Bob. The
quantum repeater addresses this issue and permits quick and efficient distribution of
entanglement over long distances.

This is shown schematically in Fig. 2.11. The repeater consists of multiple links,
each covering the distance of a few dozen kilometers. Each link consists of two
entanglement sources, an device for measuring pairs of photons in the Bell basis, and
two quantum optical memory cells. The latter are devices that can store a quantum
state of light for a relatively long time and subsequently retrieve it on demand.

Each entangled state source generates a pair of photons [Fig. 2.11(a)]. One of
these photons propagates towards the Bell-state analyzer while the polarization state
of the other is stored in memory. A Bell measurement on the central pair makes the
stored states entangled thanks to entanglement swapping.

The sources are positioned in the neighborhood of the memory cells, so the loss
for the photons that are to be stored is minimized. The photons that undergo the Bell
measurement, on the other hand, have a significant chance of being lost, albeit much
less than if they had to traverse the entire distance from Alice to Bob. Therefore
multiple attempts may be required before entanglement swapping is successful. The
length of the links is chosen on a scale of a few dozen kilometers — such that the
expectation value for the number of attempts needed is reasonably short.

The significance of the quantum memory — the second cornerstone of the quan-
tum repeater technology — is that once the entanglement within a link is created,
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Fig. 2.11 Quantum repeater. a) An individual link creates entanglement between two memory
cells. b) After all individual links have been prepared, entanglement swapping distributes entang-
lement through the links.

it can stay there for an extended period of time, until the entanglement is created in
all other links.

Once this is accomplished, the procedure shown in Fig. 2.11(b) is performed.
Photons are released from adjacent pairs of memory cells and subjected to Bell
measurements. In this way, entanglement is swapped sequentially through the entire
length of the communication line, resulting in Alice and Bob possessing a pair of
entangled memory cells.

The advantage of the quantum repeater over direct transmission can be under-
stood intuitively as follows. In order for direct transmission to be successful, the
photon must not be lost anywhere in the fiber, and the probability of that happening
is exponentially low. In the quantum repeater protocol, on the other hand, the loss
in one of the links does not destroy the entanglement constructed in other links, so
the probability of success falls off with distance at a much lower rate.

Exercise 2.70. A quantum repeater consists of two links. Each of the entanglement
sources generates a state |Ψ−〉. The Bell measurements in the first and second links
detect states |Φ+〉 and |Φ−〉, respectively. A subsequent Bell measurement on the
two adjacent memory cells of the two links detect |Ψ+〉. What is the resulting joint
state of the two memory cells adjacent to Alice and Bob?

Exercise 2.71. An L = 500 km quantum communication line between Alice and
Bob consists of k = 10 quantum repeater links. The fiber loss coefficient β = 0.05
km−1. The distance between each entangled source and the Bell basis analyzer
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within each link is the same, viz., L/2k = 25 km. All entanglement sources generate
photon pairs simultaneously, at a rate of f = 106 per second.

a) For a single link, find the probability of obtaining entanglement in its memory
cells after a single attempt and after n attempts.

b) Find the probability of obtaining entanglement in all k links after n simultaneous
attempts in each link.

c) Find the time t required to obtain entanglement in all links (and therefore en-
tanglement between Alice’s and Bob’s cells) with a probability of at least 1/2.

d) Instead of using a quantum repeater, Alice sends photons directly to Bob via a
fiber line of length L km using a photon source with an emission rate of f = 106

photons per second. Find the time t ′ such that the probability that at least one of
the photons sent by Alice during that period reaches Bob is 1/2.

Assume the performance of the quantum optical memory cells and Bell basis mea-
surements to be ideal.

We see that the quantum repeater offers a multiple order of magnitude advantage
in comparison with direct transmission. However, practical realization of this device
presents a challenge, associated primarily with the construction of high-performance
quantum optical memory cells. This memory must be able to hold a quantum state
for a long time and it must be possible to retrieve the stored state in a faithful and
loss-free fashion. At the time of writing, quantum optical memory with performance
characteristics suitable for use in quantum repeaters has not been achieved, but the
field is developing quickly and further breakthroughs are frequently announced26.

2.7 Problems

Problem 2.1. Modify the quantum dense coding protocol for the state that Alice
and Bob pre-share being |Ψ+〉, |Φ+〉, or |Φ−〉.

Problem 2.2. For the observable σ̂z⊗ σ̂θ , where

σ̂θ = |θ〉〈θ |−
∣∣∣π

2
+θ

〉〈
π

2
+θ

∣∣∣ ,
perform the following calculations.

a) Find the matrix in the canonical basis{|HH〉 , |HV 〉 , |V H〉 , |VV 〉}.
b) Find the matrix in the Bell basis.
c) Determine the eigenstates and eigenvalues.

Hint: you need not solve any equations.
d) Calculate the expectation value and uncertainty in the Bell state |Ψ−〉.

26 A. I. Lvovsky, B. C. Sanders, and W. Tittel, Optical Quantum Memory, Nature Photonics 3,
706–714 (2009); N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, Quantum repeaters
based on atomic ensembles and linear optics, Reviews of Modern Physics 83, 3380 (2011).
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Problem 2.3. Two qubits interact according to the Hamiltonian

Ĥ = h̄ωσ̂x⊗ σ̂x.

The initial state of the qubits is |Ψ(0)〉= |HH〉. Find |Ψ(t)〉 in the canonical basis.

Problem 2.4. The tensor product Hilbert space of Alice’s and Bob’s photons evol-
ves according to the Hamiltonian

Ĥ = h̄ω(σ̂x⊗ σ̂x + σ̂y⊗ σ̂y + σ̂z⊗ σ̂z).

a) Find the 4×4 matrix of the Hamiltonian in the canonical basis.
b) Find the matrix of the evolution operator e−iHt/h̄.
c) What is the final state of the system after the period ωt = π/4 if the initial state

is an arbitrary separable state (a |H〉+b |V 〉)⊗ (c |H〉+d |V 〉)?

Problem 2.5. The Greenberger–Horne–Zeilinger state |ΨGHZ〉 = 1√
2
(|HHH〉 +

|VVV 〉) is distributed among Alice, Bob, and Charley. Rewrite |ΨGHZ〉 :

• in the basis that is canonical in Alice’s Hilbert space, diagonal in Bob’s Hilbert
space, and circular in Charley’s Hilbert space;

• in the Bell basis in the Hilbert space of Alice and Bob and canonical in Charley’s
Hilbert space.

Problem 2.6. Alice and Bob share two photons in the polarization state

|Ψ〉= 1√
11

(|HH〉+ i |V H〉+3 |VV 〉).

a) Alice and Bob each perform measurements on their respective photons. Find
the probabilities of all possible results.

b) Only Alice performs a polarization measurement on her photon. Find the proba-
bility of each outcome and the remotely prepared state of Bob’s photon after the
measurement. Apply each of the two alternative techniques to solve the problem
in each basis:

• using the partial inner product;
• decomposing the initial state according to Eq. (2.15).

c) Suppose Bob does not know Alice’s result. Based on part (b), describe the state
of Bob’s photon after Alice’s measurement as an ensemble.

d) Check that the probability values found in parts (a) and (b) are mutually consis-
tent.

Solve this problem for all measurements performed in the (i) canonical and (ii)
circular bases.

Problem 2.7. Alice and Bob perform measurements on multiple copies of some
bipartite state |Ψ〉 and find the following:
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• if Alice measures in the diagonal basis:

– whenever Alice detects |+〉, Bob gets |H〉;
– whenever Alice detects |−〉, Bob gets |V 〉.

• if Alice measures in the canonical basis:

– whenever Alice detects |H〉, Bob gets |L〉;
– whenever Alice detects |V 〉, Bob gets |R〉.

What is |Ψ〉?

Problem 2.8. The Greenberger–Horne–Zeilinger state is distributed among Alice,
Bob, and Charley. Alice and Bob perform a joint measurement on |ΨGHZ〉. What is
the probability for them to detect

a) |Ψ−〉,
b) |HR〉,
c) |Θ〉= (3 |HH〉+4 |VV 〉)/5.

and onto which state will Charley’s particle project? For each of the above states,
assume any measurement basis that contains the state in question.

Problem 2.9. Alice, Bob, and Charley share an entangled state of three photons

|Ψ〉= (3 |+−+〉+4 |−+−〉)/5. (2.49)

Alice and Bob measure their photons in the canonical basis. Alice detects a hori-
zontal polarization, and Bob vertical.

a) What is the probability of this event?
b) Onto which state will Charley’s photon project?

Problem 2.10. Modify observables M̂A, M̂B, N̂A, N̂A as necessary to violate the Bell
inequality for the state produced when the source is |Ψ+〉, |Φ+〉, or |Φ−〉.

Problem 2.11. Reproduce the Greenberger–Horne–Zeilinger argument for∣∣∣Ψ ′
GHZ

〉
=

1
2
(|HHH〉+ |HVV 〉+ |VV H〉+ |V HV 〉)

and operators

σ̂z⊗ σ̂y⊗ σ̂y

σ̂y⊗ σ̂z⊗ σ̂y

σ̂y⊗ σ̂y⊗ σ̂z

σ̂z⊗ σ̂z⊗ σ̂z

Problem 2.12. A von Neumann measurement of the photon polarization state |ψ〉=
α |H〉+β |V 〉 is performed in the diagonal basis.
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a) Write the joint state of the system and the apparatus after the measurement in
the measurement basis.

b) Give an ensemble description of the state of the system alone after the measu-
rement.

Problem 2.13. A photon is initially in the state |ψ〉 = (3 |H〉+ 4 |V 〉)/5. Describe,
in the form of an ensemble, the photon’s state after it has decohered in either of the
following decoherence-preferred bases:

a) canonical;
b) circular.

Problem 2.14. An atom has two energy eigenstates |v1〉 , |v2〉 with eigenvalues 0
and 3h̄ω , respectively, where ω > 0. The atom is initially in the state |v1〉. At time
t = 0, a field is turned on which makes the Hamiltonian equal to Ĥ = Ĥ0 + V̂ with
V̂ = 2ih̄ω |v1〉〈v2| − 2ih̄ω |v2〉〈v1|. The atom experiences decoherence with the ei-
genbasis of the new Hamiltonian being the decoherence-preferred basis. Write the
ensemble defining the atom’s state after it has decohered.

Problem 2.15. A Bell inequality test, as described in Sec. 2.3, is performed with a
defective entangled source which produces a statistical mixture of the state |Ψ−〉
with probability η and |Ψ+〉 with probability 1−η . What is the range of η values
for which the Bell inequality is violated?

Problem 2.16. Show that teleportation will work with other Bell states as the en-
tangled resource. For each Bell state, determine the local operations Bob would
need to perform on V3 after receiving classical communication from Alice.

Problem 2.17. The quantum teleportation protocol is implemented with state |Ψ〉=
(|HV 〉−2 |V H〉)/

√
5 as the entangled resource, instead of |Ψ−〉. Alice’s input state

is |χ〉= α |H〉+β |V 〉. Determine:

a) the state in which Bob’s photon will be prepared in the event of each of the four
outcomes of Alice’s Bell measurement;

b) the probability of each outcome.

Problem 2.18.∗ In the quantum repeater described in Ex. 2.71, one of the following
imperfections is present:

a) the Bell basis measurement apparatus is only able to detect states |Ψ±〉, but not
|Φ±〉;

b) for each photon stored in quantum memory, the retrieval efficiency is ηM =
0.75.

For each case, find the new time t required to obtain entanglement between Alice’s
and Bob’s memory cells with a probability of at least 1/2.



Chapter 3
One-dimensional motion

We are now ready to put the “mechanics” into quantum mechanics. In this chapter,
we shall study basic quantum physics of the simplest motional system: a point-like
particle with a single degree of freedom. While it may sound a bit like a “spher-
ical horse in vacuum”, this model turns out to be quite relevant to many practical
physical settings, describing their properties surprisingly well. Moreover, the quan-
tum theory of one-dimensional motion will provide us with theoretical tools to study
more complex, three-dimensional, motion in the next chapter. This theory can be di-
rectly applied to the motion of electrons in atoms to calculate, for example, atomic
emission and absorption spectra. These spectra can then be compared with those me-
asured experimentally, thereby providing the basis for a confirmation or refutation
of the quantum theory. The remarkably good agreement found in this comparison
was the main factor in the triumph of quantum theory in the early 20th century.

3.1 Continuous observables

In classical mechanics, one-dimensional motion is described by two canonical varia-
bles, position and momentum. Accordingly, in our quantum treatment, we introduce
two observable operators: position x̂ and momentum p̂1.

Although the geometric space containing the particle is one-dimensional, the as-
sociated Hilbert space is of infinite dimension: there are infinitely many position
eigenstates |x〉, and all these eigenstates are orthogonal2. Furthermore, position ei-
genstates form a continuum: for every real value of x there exists an associated
eigenstate |x〉. The same is true for the momentum observable.

1 If you are not familiar with the Dirac delta function and the Fourier transformation, please review
Sections D.1 and D.2 in appendix before proceeding.
2 Why does the continuum of position eigenstates span a Hilbert space of infinite dimension, while
the continuum of linearly polarized states only a two-dimensional Hilbert space? If you do not
remember the answer, refer to Sec. 1.3.

A. I. Lvovsky, Quantum Physics, Undergraduate Lecture Notes in
Physics, https://doi.org/10.1007/978-3-662-56584-1_3
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We know (see Ex. 1.30) that the set of eigenstates of any physical observable
forms an orthonormal basis. Position and momentum are no exception. However,
the continuous nature of these observables implies that most mathematical rules
(state and operator decomposition, normalization, basis conversion, etc.) derived for
finite-dimensional Hilbert spaces have to be modified: summation must be replaced
by integration. This is our task in this section. In order to reproduce these rules
in the form that closely resembles those for the discrete case, we need to define a
special normalization convention for continuous observable eigenstates. Instead of
normalizing these states to one, as we would do in the discrete case, we write:〈

x
∣∣ x′
〉
= δ (x− x′); (3.1a)〈

p
∣∣ p′
〉
= δ (p− p′). (3.1b)

This may appear strange at first. According to Eq. (3.1a), the inner product of
the position eigenstate |x〉 with itself is 〈x| x〉= δ (0), so this state has infinite norm.
How is this consistent with the Hilbert space postulate of quantum mechanics, which
says that all physical states must have norm 1? We answer this question by saying
that continuous-observable eigenstates are unphysical: it is impossible to set a par-
ticle at an absolutely precise location or make it move at an absolutely precise velo-
city. Therefore, the normalization rule for physical states does not apply to |x〉 or
|p〉; these states are just a mathematical abstraction3. All physically realistic states,
which have some uncertainty both in the position and momentum, do have norm
one in accordance with the Postulate.

Any quantum state |ψ〉 can be decomposed in the basis associated with a
continuous-variable observable according to

|ψ〉=
+∞∫
−∞

ψ(x) |x〉dx. (3.2)

This equation replaces Eq. (A.1) for the decomposition of a state into a discrete ba-
sis: the sum is replaced by an integral. The function ψ(x) is called the wavefunction
of the state |ψ〉 in the x-basis (-representation) and is the continuous-observable ana-
log of the column representation of a vector in a Hilbert space of finite dimension.
Taking the adjoint of both sides of Eq. (3.2), viz.,

〈ψ|=
+∞∫
−∞

ψ
∗(x)〈x|dx, (3.3)

we also find that the wavefunction of 〈ψ| is ψ∗(x).

3 To treat this matter more rigorously, one introduces a special construction called rigged Hilbert
space. See R. de la Madrid, The role of the rigged Hilbert space in quantum mechanics, European
Journal of Physics 26, 287 (2005) for details.
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Box 3.1 What happens for a finite-dimensional normalization rule?
What if we wish to avoid using generalized functions and try to apply the finite-

dimensional normalization rules to the continuous-variable Hilbert space? Unfortunately, it
is then impossible to develop a consistent set of relations among states, wavefunctions, and
observables. For example, let us set

〈
x
∣∣ x′
〉
=

{
1 if x = x′

0 if x 6= x′
. (3.7)

Then by substituting Eq. (3.2) into Eq. (3.4), we would have

ψ(x) = 〈x| ψ〉=
+∞∫
−∞

ψ(x′)
〈
x
∣∣ x′
〉

dx′.

The last expression in the line above contains an integral of a function that has a non-
vanishing finite value at just one point x′ = x, and hence vanishes. So under the assumption
(3.7), the wave functions of all physical states would be zero.

Exercise 3.1. Show that we can construct the following continuous analogues of
the major discrete-case relations:

a) instead of Eq. (A.6):
ψ(x) = 〈x| ψ〉 ; (3.4)

b) instead of Eq. (A.26):
+∞∫
−∞

|x〉〈x|dx = 1̂; (3.5)

c) instead of Eq. (A.4):

〈ψ1| ψ2〉=
+∞∫
−∞

ψ
∗
1 (x)ψ2(x)dx. (3.6)

Exercise 3.2. Show that, for physical states,

+∞∫
−∞

|ψ(x)|2dx = 1. (3.8)

Exercise 3.3. Calculate the normalization factor A for states with the following
wavefunctions:

a) a “top-hat function”

ψ(x) =
{

0 if x < a or x > b
A if a≤ x≤ b ; (3.9)
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b) a Gaussian wavefunction

ψ(x) = Ae−
x2

2d2 . (3.10)

Exercise 3.4. Find the wavefunction of the state of definite position |x0〉 in the
position basis.

As in the discrete case, operators associated with continuous observables are
given by

x̂ =
+∞∫
−∞

x |x〉〈x|dx. (3.11)

The operator functions are naturally defined by

f (x̂) =
+∞∫
−∞

f (x) |x〉〈x|dx. (3.12)

For an arbitrary operator Â, the two-dimensional function

A(x,x′) = 〈x| Â
∣∣x′〉 , (3.13)

is referred to as the operator’s matrix element.
As we shall see below and similarly to the discrete-variable case, as a function

of x and x′, the matrix element 〈x| Â |x′〉 contains complete information about the
operator. More generally, we can perform operations with states and operators re-
presented by one- and two-dimensional functions, respectively, just as we operate
with matrices in the discrete case, only replacing summation with integration.

Exercise 3.5. Show that x̂ |x〉= x |x〉.

Exercise 3.6. Prove that:

a) any operator Â can be written in the form

Â =

+∞∫
−∞

+∞∫
−∞

A(x,x′) |x〉
〈
x′
∣∣dxdx′, (3.14)

where A(x,x′) is given by Eq. (3.13);
b) for an operator function of x̂,

〈ψ| f (x̂) |ψ〉=
+∞∫
−∞

|ψ(x)|2 f (x)dx; (3.15)

c) for any operator Â and any two states |ψ〉, |φ〉,
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〈φ | Â |ψ〉=
+∞∫
−∞

+∞∫
−∞

φ
∗(x)A(x,x′)ψ(x′)dxdx′; (3.16)

d) the wavefunction of the state Â |ψ〉 is

〈
x
∣∣ Â
∣∣ ψ
〉
=

+∞∫
−∞

A(x,x′)ψ(x′)dx′; (3.17)

e) the wavefunction of the state 〈ψ| Â is

〈
ψ
∣∣ Â
∣∣ x
〉
=

+∞∫
−∞

ψ
∗(x′)A(x′,x)dx′; (3.18)

f) the matrix elements of an operator Â and its adjoint Â† are related by

(A†)(x,x′) = A∗(x′,x); (3.19)

g) the product of operators Â and B̂ can be written in terms of their “matrices” as

〈
x
∣∣ ÂB̂

∣∣ x′
〉
=

+∞∫
−∞

A(x,x′′)B(x′′,x′)dx′′. (3.20)

Let us now reformulate the Measurement Postulate of quantum mechanics for
the continuous-observable case. Suppose the observable x̂ is measured in the quan-
tum state |ψ〉 with wavefunction 〈x| ψ〉= ψ(x). What is the probability distribution
for the possible measurement results? In Sec. B.4, we introduced the continuous-
variable probability density pr(x) such that the probability of observing x in a certain
interval [x′,x′′] is

pr[x′,x′′] =
x′′∫

x′

pr(x)dx. (3.21)

Let us express pr(x) in terms of ψ(x).
According to the Measurement Postulate for the discrete case, the probability

of projecting onto a specific element |vi〉 of the measurement basis is | 〈vi| ψ〉 |2.
We cannot make exactly the same statement for the continuous case, because the
probability of observing the particle precisely at position x is infinitesimal. It is,
however, reasonable to say that the legitimate probability measure associated with
x — its probability density — must be proportional to | 〈x| ψ〉 |2 = |ψ(x)|2. So we
have pr(x) ∝ |ψ(x)|2.

To find the proportionality coefficient, we recall to begin with that
+∞∫
−∞

pr(x)dx = 1

according to the properties of the probability density [cf. Eq. (B.12)]. On the ot-
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her hand, we also have, for a normalized state,
+∞∫
−∞

|ψ(x)|2dx = 〈ψ| ψ〉 = 1 as per

Eq. (3.6). Comparing these two conditions, we find

pr(x) = |ψ(x)|2. (3.22)

Which state will |ψ〉 project onto after the measurement? As already discussed,
the obvious answer |x〉 is unphysical. Yet it is useful as an approximation for many
theoretical applications, as long as we do not forget to take the normalization is-
sue into account. The more physically realistic answer will depend on the specifics
of the measurement apparatus; generally, one would obtain some superposition or
statistical mixture of multiple position eigenstates within a certain narrow neighbor-
hood of x.

Exercise 3.7. Using the expressions (B.13) and (B.14) for the mean and variance
of a continuous random variable, show that, for the continuous quantum observable
x̂ measured in the state |ψ〉:

a) the expectation value is given by

〈x〉= 〈ψ| x̂ |ψ〉 ; (3.23)

b)§ the variance is given by〈
∆x2〉= 〈ψ∣∣ x̂−〈x〉)2∣∣ ψ

〉
=
〈
ψ
∣∣ x̂2∣∣ ψ

〉
−〈ψ| x̂| ψ〉2 . (3.24)

The findings of this section are summarized in Table 3.1.

Table 3.1 Comparative summary of the rules for working with discrete- and continuous-variable
bases.

discrete basis {|vi〉} continuous basis {|x〉}
orthonormality

〈
vi
∣∣ v j
〉
= δi j 〈x| x′〉= δ (x− x′)

decomposition of a state
|ψ〉= ∑

i
ψi |vi〉

ψ(x) = 〈x| ψ〉
|ψ〉=

+∞∫
−∞

ψ(x) |x〉

ψi = 〈vi| ψ〉

Measurement Postulate pri = | 〈vi| ψ〉 |2
(probability)

pr(x) = | 〈x| ψ〉 |2
(probability density)

decomposition of an operator
Ai j =

〈
vi
∣∣ Â
∣∣ v j
〉

Â = ∑
i, j

Ai j |vi〉
〈
v j
∣∣ A(x,x′) =

〈
x
∣∣ Â
∣∣ x′
〉

Â =
+∞∫
−∞

+∞∫
−∞

A(x,x′) |x〉〈x′|dxdx′

decomposition of 1̂ 1̂ = ∑
i
|vi〉〈vi| 1̂ =

+∞∫
−∞

|x〉〈x|dx

product of operators (AB)i j = ∑
k

AikBk j (AB)(x,x′) =
+∞∫
−∞

A(x,x′′)B(x′′,x′)dx′′
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3.2 De Broglie wave

In the previous section, we developed the mathematical machinery for handling Hil-
bert spaces spanned by eigenstates of a continuous observable, such as position or
momentum. But in fact, position and momentum are operators within the same phy-
sical Hilbert space associated with a particle’s motion. We bring these two observa-
bles together by postulating the relation between their eigenstates:

〈x| p〉= 1√
2π h̄

ei px
h̄ . (3.25)

The relation (3.25) states that the wavefunction of the state with a definite momen-
tum is an infinite wave which is known as the de Broglie wave. This wave is a
manifestation of the wave–particle duality, i.e., the property of all quantum matter
to exhibit both particle and wave features (cf. Sec. 1.5).

The de Broglie wave cannot be derived from the quantum mechanics postulates
we have studied so far. Rather, it is a generalization of a multitude of experimental
observations and theoretical insights. The historical path towards the de Broglie
wave is briefly outlined in Box 3.2.

You may be surprised that Eq. (3.25) contains no time dependence, even though
the very notion of the wave implies that such dependence must be present. We will
indeed recover the wave motion by applying the Schrödinger equation in Sec. 3.4.
For now, however, let us abstract from that motion and study the relations between
the bases formed by the position and momentum eigenstates, which we define to be
time-independent.

Exercise 3.8. Show that the wavelength of the de Broglie wave given by Eq. (3.25)
is related to the momentum according to

λdB =
2π h̄

p
, (3.26)

i.e., in the same way as the momentum of the photon and the optical wavelength
(Box 1.1).

Exercise 3.9. Estimate the de Broglie wavelength for

a) a car;
b) air molecules at room temperature;
c) electrons in an electron microscope with a kinetic energy of 100 keV;
d) rubidium atoms in a Bose–Einstein condensate at a temperature of 100 nano-

kelvin.

Exercise 3.10. Show that, according to Eq. (3.25), the position and momentum
eigenstates can be expressed in terms of one another as follows:
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Box 3.2 History of de Broglie’s discovery

Niels Bohr

In 1913, Niels Bohr used Planck’s concept to develop his model of
the atom, according to which, the electron’s orbital is stable if its angu-
lar momentum equals an integer multiple of h̄. However, Bohr’s model
was purely empirical. Although it seemed to explain experimental re-
sults, the physics behind it remained a mystery.

Louis de Broglie proposed the concept of his wave in his 1924
PhD thesis. By then, Planck and Einstein had already found the relati-
ons between the photon’s wavelength, frequency, energy, and momen-
tum, and Compton had confirmed them experimentally (Box 1.1). De
Broglie hypothesized that the relation E = h̄ω did not have to be limi-
ted to light particles. Rather, any particle with a certain energy can be
associated with a wave whose frequency is given by Planck’s formula. Then de Broglie used
Einstein’s special relativity theory to show that the wavelength of that wave had to be given
by Eq. (3.26), i.e., the same expression as for the photon.

Louis de Broglie

De Broglie used his assumption to reformulate Niels Bohr’s mo-
del of the atom (Box 4.2). He hypothesized that the electron orbital is
stable if its circumference contains an integer number n of de Broglie
wavelengths:

2πr = nλdB, (3.28)

where r is the radius of the orbit. In this way, the matter wave asso-
ciated with the orbiting electron experiences constructive interference
with itself, thereby forming a standing wave. This hypothesis led him
to a theoretical prediction of atomic spectra that was identical to Bohr’s
(Ex. 4.42) and consistent with the experimental data.

This agreement constituted strong evidence in favor of de Broglie’s hypothesis. Even
more direct evidence was obtained at the Bell Labs in 1927. Clinton Davisson and Lester
Germer observed the scattering of a flux of electrons on the crystalline lattice of nickel and
found the measured angular distribution of the scattered electrons to be consistent with the
laws of diffraction known from optics∗. The wave-like nature of the electrons was the only
possible explanation for this behavior.

∗ C. J. Davisson, The Diffraction of Electrons by a Crystal of Nickel. Bell System Technical Journal 7, 90
(1928).

|p〉 = 1√
2π h̄

+∞∫
−∞

ei px
h̄ |x〉dx; (3.27a)

|x〉 = 1√
2π h̄

+∞∫
−∞

e−i px
h̄ |p〉dp. (3.27b)

The de Broglie wave has infinite extent in space. This is consistent with the un-
certainty principle: the wavefunction of a state of definite momentum has an infinite
position uncertainty. However, this becomes absurd if we interpret the square of the
absolute value of the de Broglie wavefunction, a constant | 〈x| p〉 |2 = 1/2π h̄, as a
probability density. Integrating this over the entire space, we obtain infinity.
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This, again, is a consequence of the momentum eigenstate being unphysical,
which means that its probability density is meaningless. In practice, realistic sta-
tes are linear combinations of momentum eigenstates so their position uncertainty
can be limited. We will soon see this in more detail, when we discuss Gaussian
wavepackets.

The de Broglie argument explains the exponential in Eq. (3.25), but not the nor-
malization factor. The following exercise shows how to understand this.

Exercise 3.11. Expressing two arbitrary momentum eigenstates |p〉 and |p〉′ as
de Broglie waves according to Eq. (3.27a) and using 〈x| x′〉 = δ (x− x′), calculate
〈p| p′〉 and check that your result is consistent with the orthonormality condition
〈p| p′〉= δ (p− p′).

The wavenumber of the de Broglie wave is

k =
2π

λdB
=

p
h̄
. (3.29)

Sometimes it is convenient to handle momentum eigenstates |p〉 in the physically
equivalent form of wavenumber eigenstates |k = p/h̄〉, because then we need not
worry about the Planck constant in the exponent.

There is a subtlety though. As for any continuous observable, the wavenumber
eigenstates are normalized according to〈

k
∣∣ k′
〉
= δ (k− k′). (3.30)

But, as we know from Eq. (D.6), δ (k−k′) = δ [(p− p′)/h̄] = h̄δ (p− p′) = h̄〈p| p′〉.
We are compelled to conclude that

|k〉=
√

h̄ |p = h̄k〉 . (3.31)

This is yet another seemingly absurd result: two vectors that represent the same
state — a state with a certain momentum — have a different norm. Once again, it is a
consequence of the unphysical character of normalization for continuous observable
eigenstates.

Exercise 3.12.§ Show that the de Broglie wavefunction for the wavenumber eigen-
state takes the form

〈x| k〉= 1√
2π

eikx. (3.32)

Show that the position and wavenumber eigenstates are expressed in terms of one
another according to
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|k〉 = 1√
2π

+∞∫
−∞

eikx |x〉dx; (3.33)

|x〉 = 1√
2π

+∞∫
−∞

e−ikx |k〉dk. (3.34)

Check consistency with the normalization condition (3.30).

3.3 Position and momentum bases

3.3.1 Conversion between position and momentum bases

Here we discuss the problem of converting the representations of various states and
operators between the position and momentum bases. As in the discrete case, the
primary tool for such conversion is the resolution of the identity, i.e., we exploit the
fact that the operator (3.5)

1̂ =

+∞∫
−∞

|x〉〈x|dx =
+∞∫
−∞

|p〉〈p|dp (3.35)

can be inserted into any inner product expression.

Exercise 3.13. Find explicit formulae for converting between the position ψ(x) and
momentum ψ̃(p) representations of a given quantum state |ψ〉.
Answer:

ψ(x) =
1√
2π h̄

+∞∫
−∞

ψ̃(p)ei px
h̄ dp; (3.36a)

ψ̃(p) =
1√
2π h̄

+∞∫
−∞

ψ(x)e−i px
h̄ dx (3.36b)

Exercise 3.14.§ Show that conversion between the wavefunctions in the position and
wavenumber representations and back simply corresponds to the direct and inverse
Fourier transformation, respectively:

ψ(x) =
1√
2π

+∞∫
−∞

ψ̃(k)eikxdk; (3.37)

ψ̃(k) =
1√
2π

+∞∫
−∞

ψ(x)e−ikxdx, (3.38)
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with

ψ̃(p) =
ψ̃(k)√

h̄
(3.39)

for p = kh̄.

In this course, we will always use a tilde [e.g., ψ̃(p) or ψ̃(k)] to denote wa-
vefunctions in the momentum or wavenumber representations.

Exercise 3.15. As we know (Sec. A.4), the inner product between any two states
|ψ〉 and |ϕ〉 is independent of the basis in which it is calculated. Check this explicitly
for the position and momentum basis, i.e., show that

+∞∫
−∞

ψ
∗(x)ϕ(x)dx =

+∞∫
−∞

ψ̃
∗(p)ϕ̃(p)dp

using only the relations (3.36) and the properties of the Fourier transform.

Exercise 3.16. Show that, for a state with a real wavefunction ψ(x), pr(p) = pr(−p)
and the expectation value of the momentum observable is zero.

Exercise 3.17. The matrix element A(x,x′) = 〈x| Â |x′〉 of the operator Â is known
for all x and x′. Find Ã(p, p′) = 〈p| Â |p′〉.

Exercise 3.18. Consider a function V (x̂) of the position operator. Write the matrix
element of this operator:

a) in the position basis;
b) in the momentum basis.

Answer:

a)
V (x,x′) =V (x)δ (x− x′); (3.40)

b)

V (p, p′) =
1

2π h̄

+∞∫
−∞

e
i
h̄ x(p′−p)V (x)dx. (3.41)

If you have studied introductory quantum mechanics, you may have encountered
the expression

p̂ =−ih̄
d
dx

, (3.42)

which says that the momentum corresponds to an operator whose action on the
wavefunction is differentiation. In the context of the more rigorous theory we are
developing here, this statement does not make much sense. Operators act on state
vectors, and the wavefunction is not a vector; rather, it is an inner product of two
vectors — that is, a number. How can an operator act on a number? Let us figure
this out.
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Exercise 3.19. Show that the matrix element 〈x| p̂ |x′〉 of the momentum in the po-
sition representation is given by

〈x| p̂
∣∣x′〉=−ih̄

d
dx

δ (x− x′) = ih̄
d

dx′
δ (x− x′) (3.43)

Exercise 3.20. Show that, for an arbitrary state |ψ〉,

〈x| p̂ |ψ〉=−ih̄
d
dx
〈x| ψ〉=−ih̄

d
dx

ψ(x). (3.44)

This result explains the meaning of Eq. (3.42). If the state |ψ〉 has wavefunction
ψ(x) in the position basis, then the state p̂ |ψ〉 has wavefunction−ih̄dψ(x)/dx. This
is the sense in which this equation is used in calculations, even though it is questio-
nable from a rigorous mathematical point of view.

Exercise 3.21.§ Obtain the analogues of the above results for the position operator
in the momentum representation.

a) Show that the matrix element is

〈p| x̂
∣∣p′〉= ih̄

d
dp

δ (p− p′) (3.45)

b) Show that, for an arbitrary state |ψ〉,

〈p| x̂ |ψ〉= ih̄
d

dp
ψ̃(p). (3.46)

Exercise 3.22. Show that 〈x| p̂2 |ψ〉=−h̄2d2ψ(x)/dx2.

3.3.2 Position–momentum uncertainty

Now that we have some practice at switching between the position and momentum
bases, we are ready to introduce the uncertainty relation between these observables.
As we know from Sec. 1.9.3, the uncertainty relation corresponding to any two
observables is determined by their commutator.

Exercise 3.23. Show that, for any state |ψ〉:

a)

〈x| x̂ p̂| ψ〉=−ih̄x
d
dx

ψ(x); (3.47)

b)

〈x| p̂x̂| ψ〉=−ih̄x
d
dx

ψ(x)− ih̄ψ(x); (3.48)

c)
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[x̂, p̂] = ih̄. (3.49)

Exercise 3.24. Show that the Heisenberg uncertainty principle for the position and
momentum observables and any state |ψ〉 has the form

〈ψ|∆x2 |ψ〉〈ψ|∆ p2 |ψ〉 ≥ h̄2

4
. (3.50)

We have thus obtained the uncertainty principle in its original form: a particle
state with simultaneously precise position and momentum is not possible4.

Exercise 3.25. Perform the following calculations for a Gaussian wavefunction

ψ(x) =
1

(πd2)1/4 ei p0x
h̄ e−

(x−a)2

2d2 : (3.51)

a) Check normalization.
b) Find the corresponding wavefunction in the momentum basis.

Hint: use the standard rules for the Fourier transformation.
Answer:

ψ̃(p) =
(

d2

π h̄2

)1/4

e−
i(p−p0)a

h̄ e−
(p−p0)

2d2

2h̄2 . (3.52)

c) Determine the expectation values and uncertainties of the position and momen-
tum, as well as the product of these uncertainties.
Answer:

〈x〉= a; 〈p〉= p0; 〈∆x2〉= d2/2; 〈∆ p2〉= h̄2/2d2. (3.53)

We see that, for Gaussian states, the position–momentum variance product equals
h̄2/4, the minimum allowed by the uncertainty principle. Here we can relate the
position–momentum uncertainty to the properties of the Fourier transformation
(Sec. D.2): if the wavefunction in the position basis becomes “narrower”, its Fourier
image, i.e., the wavefunction in the momentum basis, becomes “wider”. The gene-
ral quantum uncertainty principle, is, of course, much broader in scope: it holds for
any pair of non-commuting observables, no matter whether they are related by the
Fourier transform.

Exercise 3.26.∗§ Show that Gaussian wavepackets of the form (3.51) are the only
states for which the inequality (3.50) expressing the uncertainty principle saturates5.

4 The original Heisenberg formulation was actually slightly different. See Box 3.3 for further
discussion.
5 A solution can be found in, e.g., Ulf Leonhardt, Measuring the quantum state of light (Cambridge
University Press, 1997).
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Box 3.3 Can position and momentum be measured simultaneously?
In his original work∗, Werner Heisenberg formulated the uncertainty principle as follows:

The more precisely the position is determined, the less precisely the momentum is
known, and vice versa.

Here is a counterexample that shows a flaw in this formulation.∗∗ Suppose we prepare
a particle of mass M in the position eigenstate |x = 0〉 at time t = 0. Because its position is
certain, the momentum is completely uncertain. We let this state evolve freely for some time
t0 and then perform a measurement of x̂, obtaining some value x0. Now the position of the
particle immediately before the measurement is precisely known. But so is the momentum!
Indeed, because the position at t = 0 was known to be precisely x = 0, and at t = t0 it is
precisely x = x0, we conclude that the velocity before the measurement was precisely v =
x0/t0, whence the momentum must be p0 = mx0/t0.

Naturally, this example does not contradict the uncertainty principle as defined by
Eq. (3.50). That equation says that the measurements of x̂ and p̂ will exhibit a certain degree
of randomness, but it does not say that they cannot be correlated with each other. This is ex-
actly the case for our particle: because its initial state has a completely uncertain momentum,
the values of x0 and p0 that the measurement at t0 could yield are completely unpredictable.
However, they are correlated, being proportional to each other.

Our example shows that it is possible to know the position and momentum of a particle
simultaneously post factum, after the measurement. However, it is impossible to prepare a
particle whose position and momentum are both known a priori, before the measurement.

Let me also clarify that there is no contradiction to our discussion in Sec. 1.9.3, where we
said that non-communing observables cannot be measured simultaneously. That discussion
referred to the possibility of constructing an apparatus that would yield the same information
about the position and momentum for every state. In our example, on the other hand, the
simultaneous information about these observables is obtained for one specific state that we
have deliberately concocted in order to devise a paradox.

∗W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,
Zeitschrift für Physik 43, 172 (1927).

∗∗This example is due to A. V. Belinsky and V. B. Lapshin.

3.3.3 The original Einstein–Podolsky–Rosen paradox

Now let us reproduce another research masterpiece, the 1935 Einstein–Podolsky–
Rosen paradox. In Sec. 2.3.1 we studied a version of that paradox adapted to the
quantum system we were considering at that time: the polarization of the photon.
Now we possess enough tools to handle the EPR argument in its original form.

Suppose each of the two observers, Alice and Bob, holds a one-dimensional
point-like particle. The two particles are prepared in an entangled state |ΨAB〉 whose
wavefunction is

Ψ(xA,xB) = δ (xA− xB) (3.54)

(neglecting normalization). In other words, Alice’s and Bob’s particles (in their re-
spective reference frames) always have the same space coordinate, but the specific
value of that coordinate is completely random.



3.4 The free space potential 107

Exercise 3.27. For the original EPR state (3.54), answer the following questions:

a) Find the wavefunction of the two particles in the momentum representation.
b) Suppose Alice performs a measurement of her particle’s position and obtains

some result x0. Onto which state will Bob’s particle project?
c) Suppose Alice instead performs a measurement of her particle’s momentum and

obtains some result p0. Onto which state will Bob’s particle project?

Answer:

a) Ψ̃(pA, pB) = δ (pA + pB);
b) |x0〉;
c) |−p0〉.

We see that if Alice chooses to measure the position of her particle, she will
remotely prepare Bob’s particle in a state in which the position is certain and the
momentum is uncertain. On the other hand, if Alice measures the momentum, Bob
obtains a state with a certain momentum and uncertain position. In this way, Alice
can remotely, without any interaction, choose to prepare one of two mutually in-
compatible realities at Bob’s location.

One may object that the argument requires the use of singular wavefunctions,
which, as emphasized previously, are unphysical. This objection is valid. However,
the EPR paradox can be readily reformulated for a physically possible Gaussian
state in which the correlation of the positions and the anticorrelation of the momenta
is almost, but not exactly, precise. In this way, the state becomes physically plausible
while local realism remains violated. We shall see this in Sec. 3.10.3.

Let me emphasize that the original EPR paradox does not demonstrate the nonlo-
cality of nature to the same extent as Bell’s experiment does. The Bell inequality is
valid for any local realistic experiment whose front end is described by Fig. 2.2, so
one need not believe in quantum mechanics in order to be convinced of nonlocality
by observing the Bell inequality violation in an experiment. The original EPR Ge-
dankenexperiment, on the other hand, will not appear paradoxical to someone who
does not believe in quantum mechanics, and in particular, to someone who does not
believe in the uncertainty principle. Indeed, if particles are allowed simultaneously
to have certain position and momentum, the observed correlations can be readily
explained by saying that Alice’s and Bob’s particles are prepared every time with
the same (but random) positions and opposite (but random) momenta. In Bell’s lan-
guage, this means that the original EPR experiment, unlike Bell’s experiment, can
be explained by a local hidden variable model.

3.4 The free space potential

So far, we have discussed static, time-independent properties of the de Broglie wave.
Now let us see how that wave evolves with time. As we postulated in Sec. 1.25,
the quantum evolution is determined by the Hamiltonian, which is the sum of the
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Box 3.4 Just add hats?
We obtained Eq. (3.55) by placing hats on top of the variables in the corresponding

classical expression. While this operation has only a small effect on the appearance of the
equation, it changes its physical essence quite drastically: variables turn into operators. By
what right are we making this change?

As an example, consider the relation between the momentum and kinetic energy. The
momentum observable is

p̂ =

+∞∫
−∞

p |p〉〈p|dp,

which means, according to the definition given in Sec. 1.9.1, that the set of all kets |p〉 forms
an orthonormal basis of the Hilbert space, and each of these kets denotes the state of the
particle with a certain momentum value, p.

Now each such state also has a certain kinetic energy, K = p2/2M. Therefore the kinetic
energy observable would be written, according to the same definition, as

K̂ =

+∞∫
−∞

p2

2M
|p〉〈p|dp.

But according to Definition A.25 for operator functions, this expression can be written simply
as

K̂ =
p̂2

2M
.

kinetic and potential energies expressed as functions of the particle’s position and
momentum:

Ĥ =V (x̂)+
p̂2

2M
. (3.55)

This Hamiltonian is identical to the classical one except that the canonical observa-
bles are written as operators (see Box 3.4 for a discussion of why we can do this).
Here M is the particle mass, p̂2/2M is the kinetic energy operator, and V (x̂) is the
potential energy, which is a function of the position observable.

The motion of the particle and the evolution of its state depend on the specific
form of the potential V (x̂). Let us start with the simplest case, V (x)≡ 0 (free space
evolution). Under this condition, any eigenstate |p〉 of the momentum operator with
eigenvalue p is also an eigenstate of the Hamiltonian (3.55) with the eigenvalue
(energy) E = p2/2M.

Exercise 3.28. Show that the wavefunction describing the evolution of the state |p〉
under the Hamiltonian (3.55) with V (x)≡ 0 is given by

ψp(x, t) =
1√
2π h̄

ei p
h̄ x−i p2

2Mh̄ t . (3.56)
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According to the above, the time-dependent behavior of the wavefunction of the
momentum eigenstate is similar to that of a traveling wave with wavenumber k =
p/h̄ and angular frequency

ω =
p2

2Mh̄
=

h̄k2

2M
. (3.57)

The evolution of this wave constitutes a translation with phase velocity (Box 3.5)
vph = λdB/T = ω/k = p/2M, where T = 2π/ω is the period associated with the
wave motion.

Surprisingly, this phase velocity is different from the value p/M expected classi-
cally. The explanation is that, in the (unphysical) momentum eigenstate, the position
is completely uncertain and the probability of finding the particle is uniform over
the entire one-dimensional universe. This probability does not change with time.
Accordingly, the phase velocity of the de Broglie wave does not correspond directly
to the motion of matter.

In order to understand how the Schrödinger evolution translates into motion, we
have to study a state whose wavefunction is to some extent localized in space (we
use the term wavepacket for such wavefunctions). The motion of these waves is
governed by the group velocity:

vgr =
dω

dk
(3.57)
=

h̄k
M

=
p
M
, (3.58)

in exact agreement with classical expectations6.
For example, let us look at a Gaussian state with nonzero mean momentum. As

we learned in Ex. 3.25, we can decompose it into a set of de Broglie waves. Each
of these waves evolves according to Eq. (3.28). How will this evolution affect the
wavepacket as a whole?

Exercise 3.29.∗ Consider a wavefunction which, at time t = 0, has a Gaussian form
(3.51).

a) Find the corresponding wavefunction ψ̃(k,0) in the wavenumber representa-
tion. Find its evolution ψ̃(k,0) under the free space Hamiltonian.

6 In fact, the phase velocity of the de Broglie wave is a matter of convention rather than physics.
Suppose we shift the potential energy reference point by −V0 so that the particle is now under a
constant potential V (x) =V0. The same physical state as (3.56) would now have energy E +V0, so
its time-dependent wavefunction would be of the form

ψp(x, t) =
1√
2π h̄

ei p
h̄ x−i E+V0

h̄ t .

The spatial behavior of this wavefunction is the same as that in Eq. (3.56), because it is determined
by the momentum, and the latter is related to the kinetic energy, which did not change. But the
time evolution will depend on V0 because the frequency of the wave now equals (E +V0)/h̄ rather
than E/h̄. The phase velocity will thus depend on V0, too.

The group velocity, on the other hand, is proportional to the derivative of the energy, and is
thus independent of the choice of the zero potential energy reference point.



110 A. I. Lvovsky. Quantum Physics

Box 3.5 Phase and group velocities
The phase and group velocities are fundamental notions from wave mechanics. Let us

review them briefly here. Consider a wave propagating along the z axis:

W (z, t) =W0Re [eikz−iωt ].

The exact nature of the wave does not matter: it can be an optical, acoustic, or a quantum de
Broglie wave. The above equation can be rewritten as

W (z, t) =W0Re [eik(z−ivpht)],

where vph = ω/k is the phase velocity. It is clear from the above equation that this is the
velocity with which points of constant phase (wave fronts) travel. It is determined by the
function k(ω), known as the dispersion relation. This function depends on the physics of the
wave and/or the medium through which it propagates.

carrier

envelope vgr

vph

Now suppose the wave is modulated as shown in the figure. At time t = 0, it has the form

W (z,0) =W0Re [eikz]cos∆kz =
1
2

W0Re [ei(k+∆k)z + ei(k−∆k)z],

where ∆k� k describes the modulation envelope. Let us find the velocity of that envelope.
Setting a nonzero time in the above equation, we find

W (z, t) =
1
2

W0Re [ei(k+∆k)z−i(ω+∆ω)t + ei(k−∆k)z−i(ω−∆ω)t ]

=W0Re [eikz−iωt ]cos(∆kz−∆ωt)

=W0Re [eik(z−vpht)]cos[∆k(z− vgrt)],

where ∆ω is the frequency shift corresponding to the shift ∆k of the wavenumber and vgr =
∆ω/∆k is the group velocity, the velocity at which the envelope propagates.

The group velocity determines, for example, the speed of signals carried by the wave.
In systems in which the wavenumber is proportional to the frequency (for example, electro-
magnetic waves in vacuum), the phase and group velocities are equal. If the relation between
these two quantities is more complicated, these velocities can differ dramatically, giving rise
to many curious phenomena.
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b) Use the inverse Fourier transform to find the wavefunction ψ(x, t) in the position
basis.
Hint: for the direct and inverse Fourier transformations, use properties (D.13)
and (D.14).

c) Find the mean value 〈x〉 and variance 〈∆x2〉 of the position as functions of time.
Answer: 〈x〉= a+(p0/M)t, 〈∆x2〉= d2

2

(
1+ h̄2t2

M2d4

)
As expected, the wavepacket moves with the effective group velocity vgr = p0/M.

But in addition, it becomes wider and wider as time goes by. This phenomenon,
known as spreading of the wavepacket, is a consequence of group velocity disper-
sion, i.e., the group velocity (3.58) not being the same for different values of k. As
a result, the simple description of the motion of the wavefunction in terms of the
phase and group velocities, as in Box 3.5, is only approximately valid.

It is instructive to compare this behavior with that exhibited by laser pulses. Such
pulses can propagate over long distances in a vacuum without any spreading be-
cause the group velocity of light in vacuum is a constant; it does not depend on
the frequency or wavenumber. But when the propagation takes place in a refractive
medium with strong dispersion, such that the refractive index and hence the group
velocity vary as a function of the frequency, the pulses will spread.

We learn from the above results that the spreading can be neglected as long as
h̄

md2 t� 1, in which case the shape of the Gaussian wavepacket remains the same; it
travels as a single unit, reproducing the classical motion of a pointlike particle. The
above condition is almost always true for microscopic objects.

Even for microscopic objects, the spreading effect is quite difficult to observe
experimentally. This is, in particular, because of the particle’s interaction with other
objects. As we discussed in Sec. 2.4.2, such interaction brings about decoherence,
which collapses the state onto a position eigenstate or a mixture thereof, thereby
“resetting” the spreading. The spreading will also be suppressed if the particle is
localized in some kind of a potential well, which we shall study shortly.

Exercise 3.30. Estimate the time required by:

a) the wavepacket associated with a single electron with position uncertainty of
the order of 1 Å to spread over a length of 1 mm;

b) the wavepacket associated with a metal ball of mass 1 g with the position un-
certainty of the order of 1 Å to spread over a length of 1 mm;

c) the wavepacket associated with a 40-kg interferometer mirror in the LIGO gra-
vitational wave project, whose position is known with a d = 10−18 meter accu-
racy, to spread until its position variance doubles.

Exercise 3.31. Show that, if the mean momentum greatly exceeds the momentum
uncertainty of the initial wavepacket, the distance traveled by the center of the wa-
vepacket during time t is much greater than the length over which it spreads.
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3.5 Time-independent Schrödinger equation

For the remainder of this chapter, we will study the quantum behavior of a pointlike
particle in the field of some conservative force. We know that it is governed by the
Schrödinger equation. Rather than finding its general solution, we will first master a
more modest task: finding the set of energy eigenvalues and eigenstates for a certain
potential. If we address this problem successfully, we will be able to determine the
time-dependent dynamics as well. To that end, we would decompose the initial state
into the energy eigenstates and then apply the evolution equation (1.25) to each of
these states.

In addition to being useful for calculating the evolution, energy eigenstates are
physically significant because they often form a decoherence-preferred basis (see
Sec. 2.4.2). This means that these states and their statistical mixtures occur much
more frequently than their coherent superpositions.

Furthermore, energy eigenstates can be probed with light. The transition between
these states in atoms or molecules is associated with absorption or emission of a
photon whose energy h̄ω equals the difference between corresponding energies. By
performing spectroscopy — measuring the wavelengths at which the absorption or
emission occurs — one can determine the respective energies, and thereby check a
quantum-mechanical calculation experimentally.

So our goal is to find states |ψ〉 such that

Ĥ |ψ〉= E |ψ〉 . (3.59)

This equation is referred to as the time-independent Schrödinger equation. As a rule,
we will be working in the position basis, looking for the wavefunction ψ(x) of state
|ψ〉. To that end, we take the inner product of both sides of Eq. (3.59) with the bra
vector 〈x|.

Exercise 3.32. Show that, in the x-basis, the time-independent Schrödinger equation
(3.59) takes the form [

V (x)− h̄2

2M
d2

dx2

]
ψ(x) = Eψ(x). (3.60)

This is a second-order ordinary differential equation, which can be solved either
analytically or numerically. Before we go on to find solutions for specific potentials,
let us discover a few general properties of these solutions.

Exercise 3.33. Find the general solutions to Eq. (3.60) for V (x) =V0. Consider the
following cases:

a) E >V0;
b) E <V0.

Answer:

a) Aeikx +Be−ikx, where k =
√

2M(E−V0)/h̄;
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b) Aeκx +Be−κx, where κ =
√

2M(V0−E)/h̄

with A and B being arbitrary coefficients.

We see that the solutions are fundamentally different for the energies above and
below the potential level. In the former case, we obtain oscillatory behavior akin to
the de Broglie wave. In the latter case, the solutions grow or fall off exponentially
as a function of the position. Such a solution will blow up at x→±∞ — a behavior
which implies infinite probabilities and thus cannot occur in a physical state (or even
in an approximation thereof).

The next exercise generalizes this observation to arbitrary potentials.

Exercise 3.34. Show that the Hamiltonian (3.55) cannot have eigenvalues that are
less than the minimum of the function V (x) on the real axis.

In other words, there can be no energy eigenvalues such that E < V (x) for all x.
However, situations where the energy is lower than the potential for a part of the x
axis are possible, as is the case, for example, with quantum tunnelling (which we
will study shortly).

Exercise 3.35. Show that, if ψ(x) is a solution of the time-independent Schrödinger
equation, then both ψ(x) and dψ(x)/dx must be continuous at points where the
potential V (x) is finite.

This result will turn out to be extremely useful for many problems in which the
potential is given by a piecewise function, i.e., a set of different elementary functions
each defined on its own interval of positions. It is relatively easy to find the solution
for each interval, but then these solutions must be “stitched” together to form a
physically meaningful wavefunction. Exercise 3.35 provides us with the guidelines
for this “stitching”.

Exercise 3.36. Consider the set SE consisting of all Hamiltonian eigenstates with
energy eigenvalue E. Show that there exists a spanning set of SE which consists only
of states with real wavefunctions

For example, the de Broglie wave

ψp(x) =
1√
2π h̄

ei px
h̄ , (3.61)

associated with the momentum eigenstate |p〉, is a solution of the time-independent
Schrödinger equation with energy eigenvalue E = p2/2M. The same is true for the
wavefunction

ψ−p(x) =
1√
2π h̄

e−i px
h̄ , (3.62)

which is the de Broglie wave for the momentum eigenstate |−p〉. The set SE consists
of states |±p〉 and their linear combinations. In particular, real wavefunctions

ψp,+(x) =
ψp(x)+ψ−p(x)

2
=

1√
2π h̄

cos
px
h̄

(3.63)
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and

ψp,−(x) =
ψp(x)−ψ−p(x)

2i
=

1√
2π h̄

sin
px
h̄

(3.64)

also represent energy eigenstates with the same eigenvalue. The de Broglie wa-
vefunctions (3.61) and (3.62) — and hence any other wavefunction corresponding
to the same energy — can be written as linear combinations of these real wavefuncti-
ons.

In this way, Ex. 3.36 simplifies our search for solutions of the time-independent
Schrödinger equation. We can restrict the search to real wavefunctions without fear
of “missing” anything: any other solution can be written as a linear combination of
real ones.

Exercise 3.37. Consider the set SE consisting of all Hamiltonian eigenstates with
energy eigenvalue E. Show that, if V (x) is an even function of the position, there
exists a spanning set of SE consisting only of states with wavefunctions that are
either even or odd.

3.6 Bound states

Bound states are characterized by a wavefunction that tends to zero at both x→ ∞

and x→−∞, so that the particle exhibits some degree of localization. This property
is typical for energy eigenstates in well-like potentials, i.e., fields in which the par-
ticle is attracted towards a certain location or set of locations. Physical examples
include a pea inside a cup, a ball on a spring (harmonic oscillator), or an electron
within an atom. For this type of potential, we usually take advantage of Ex. 3.36 and
look for solutions of the time-independent Schrödinger equation in the real domain.

Exercise 3.38. Consider a potential V (x) that asymptotically approaches the values
V1,2 at |x| → ±∞, respectively. Show that an energy eigenstate is bound if and only
if its energy does not exceed min(V1,V2).

The boundary conditions imposed on the wavefunction at x→±∞ augment the
differential time-independent Schrödinger equation, giving rise to a Cauchy pro-
blem. This problem has solutions only for specific, discrete values of the energy.
In other words, bound states exist for a discrete or quantized spectrum of energy
eigenvalues, which are called energy levels.

Exercise 3.39. Find the energy eigenvalues and eigenwavefunctions for the finite
square well potential:

V (x) =
{

V0 for |x|> a/2
0 for |x| ≤ a/2

(3.65)

with V0 > 0 (Fig. 3.1).

a) Write the general solution for each region where the potential is constant. Eli-
minate unphysical terms that grow at infinity.
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V0

�a / 2 a / 2
0

V0

Fig. 3.1 Potential for Ex. 3.39

Hint: use the result of Ex. 3.37.
Answer: A generic odd wavefunction is of the form

ψ(x) =

−Beκx, x <−a/2
Asinkx, −a/2≤ x≤ a/2
Be−κx, x > a/2

, (3.66)

and a generic even wavefunction

ψ(x) =

Beκx, x <−a/2
Acoskx, −a/2≤ x≤ a/2
Be−κx, x > a/2

, (3.67)

where

k =

√
2ME
h̄

, (3.68a)

κ =

√
2M(V0−E)

h̄
. (3.68b)

b) Apply the statement of Ex. 3.35 to “stitch” these results together. Show that the
energy values that can simultaneously allow continuity of the wavefunction and
its derivative at x =±a/2 must obey the transcendental equations

tanθ =

√
θ 2

0
θ 2 −1

for even wavefunctions and

−cotθ =

√
θ 2

0
θ 2 −1

for odd wavefunctions, where

θ =
ka
2

and θ0 =

√
2MV0

h̄
a
2
.
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c) Solve these equations numerically and plot the energies of the three lowest
bound states as a function of the depth V0 of the potential well.
Answer: see Fig. 3.2(a).

d) What is the minimum depth that is required in order for the well to contain a
given number N of bound eigenstates?
Answer: [π h̄(N−1)]2

/
2Ma2.

e) Plot the wavefunctions corresponding to all possible energy eigenvalues for
V0 = 9

2 h̄2/Ma2, V0 = 49
2 h̄2/Ma2, and also the three lowest energy solutions

for V0 = ∞.
Answer: see Fig. 3.2(b).
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Fig. 3.2 Solution for Ex. 3.39. a) Lowest energy eigenvalues as a function of the well depth. At
least one bound state exists for all values of V0; the existence of further bound states is conditional
on V0 exceeding certain threshold values. b) Wavefunctions for the lowest energy eigenstates with
different well depths. The well on the left supports only one bound state, the well in the middle
three bound states, and the well on the right infinitely many.

This problem requires more work than most of our other exercises, yet I would
advise you to try it, or at least carefully study the solution, because it is a good
illustration of the general behavior of bound state wavefunctions. Let us discuss the
salient features of this behavior.

    , in units of     

   , in units of     
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As we can see from Fig. 3.2(b), the wavefunction extends outside the box, so
there is a finite probability of finding the particle in the region where the potential
is higher than the particle’s energy. This is, of course, an expressly nonclassical
phenomenon: if the particle were a classical ball bouncing in a gap between two
walls, we would never find it outside that gap. The greater the difference between the
energy E of the state and the well depth V0, the faster the decay of the wavefunction
outside the well, and the lower the probability of finding the particle in that region.
In the limit V0→ ∞, this probability tends to zero. In this case, the problem admits
an analytic solution, as we shall see in the exercise below.

In contrast to the exponential decay outside the well, the wavefunction exhibits
oscillatory behavior inside, as per Ex. 3.33. For each subsequent energy eigenstate,
the number of times the wavefunction crosses the x axis goes up by one. The increa-
sing number of crossings is associated with faster oscillation, a higher wavenumber,
and hence a higher energy value. Accordingly, for each nonzero number of crossings
there exists a certain minimum potential, below which the bound state no longer ex-
ists [Fig. 3.2(a)]. The deeper and wider the potential well, the more bound states it
can support. However, no matter how shallow it is, it does support the bound state
with no zero crossings.

Exercise 3.40. Find the energy eigenvalues and the wavefunctions of bound statio-
nary states for Ex. 3.39 in the case V0→ ∞ (known as the box potential).
Answer: A discrete energy spectrum with

En =
h̄2

π2n2

2Ma2 (3.69)

and eigenwavefunctions

ψn(x) =


{√

2
a sin( nπx

a ), even n√
2
a cos( nπx

a ), odd n.

}
, −a/2≤ x≤ a/2

0, |x|> a/2
. (3.70)

These wavefunctions are displayed in Fig. 3.2(b), right panel.

They exhibit a number of interesting features:

• ψ(x) = 0 outside the box;
• dψ(x)/dx exhibits discontinuities at x =±a/2;
• ψ(x) is continuous for all position values.

The vanishing wavefunction outside the box can be seen as the extreme case of
the exponential decay outside the well observed in the previous exercise; in the
present case, the well is infinitely deep and the decay constant is infinite. The in-
finite value of the potential outside the box also implies that we are not affected
by the conditions of Ex. 3.35, so neither the wavefunction nor its derivative need
be continuous at x = ±a/2. However, we observe that only dψ(x)/dx exhibits dis-
continuities, while the wavefunction does not. This can be understood as follows.
According to Ex. 3.33, the derivative of the wavefunction inside the box is limited
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by |dψ(x)/dx| ≤ k|ψ(x)|, where k =
√

2ME/h̄. Outside the box, |dψ(x)/dx| = 0.
This means that the discontinuity in the derivative of the wavefunction at the box
boundary is finite, and this in turn implies that the wavefunction is continuous.

A similar argument can be made in all practical cases, so the wavefunction can
always be safely assumed to be continuous — perhaps with the exception of some
extremely exotic potentials. The derivative of the
can exhibit discontinuities whenever the potential is infinite or singular.

Let us now look at another extreme case of a rectangular potential well, important
from both the educational and the scientific point of view.

Exercise 3.41. Find the energy eigenvalues and the wavefunctions of bound statio-
nary states of the potential V (x) =−W0δ (x) in the position basis.
Hint: Integrate both sides of the time-independent Schrödinger equation over an
infinitesimal interval around x = 0 and use Eq. (D.9).
Answer: A single eigenstate with E =−W 2

0 M/2h̄2 and wavefunction (Fig. 3.3):

ψ(x) =
√

κ
{

e−κx at x > 0
eκx at x ≤ 0

. (3.71)
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Fig. 3.3 Wavefunction of the energy eigenstate of the delta potential (Ex. 3.41).

Exercise 3.42.∗ Obtain the result of the previous exercise by an alternative method.
Solve the time-independent Schrödinger equation for the finite well potential (3.65)
analytically in the limit of an infinitely deep and narrow potential well: a → 0, V0 =
W0/a, with W0 = const. How many bound states can this well contain?

Exercise 3.43. A particle is in the bound state of the potential V (x) = −W0δ (x).
The potential suddenly changes to V (x) = −2W0δ (x). Find the probability that the
particle will remain in a bound state.

Exercise 3.44.∗ Investigate the bound states of the potential

V (x) =−W0δ (x−a)−W0δ (x+a). (3.72)

a) Find the equation for the energy eigenvalues (consider both the even and the
odd case). How many solutions does it have?

wavefunction, on the other hand,
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Box 3.6 Ammonia maser
The “double-delta” setting of Ex. 3.44 consti-

tutes the theoretical basis of the first ammonia ma-
ser, the precursor of modern lasers, built in 1953 by
Charles Townes and colleagues∗. The source of the
radiation used in the maser is the ammonia molecule
NH3, shown on the right. It has the shape of a py-
ramid, with a base formed by three hydrogen atoms
and a nitrogen atom located “at the top”. This posi-
tion of the nitrogen atom corresponds to the poten-
tial energy minimum represented by one of the delta
functions. The other delta function corresponds to
the mirror image of that configuration, where the ni-
trogen atom is “below” the base plane. These confi-
gurations have the same energy, and there is a non-
vanishing probability for the nitrogen atom to “hop”
between them. Because of this possibility, the energy eigenstates are not the “top” and
“bottom” positions of the nitrogen atom, but their symmetric and antisymmetric linear combi-
nations, as in Ex. 3.44. It is the transition between these two states that produces the 24-GHz
microwave radiation emitted by the maser.

∗ J. P. Gordon, H. J. Zeiger, and C. H. Townes, Molecular Microwave Oscillator and New Hyperfine Struc-
ture in the Microwave Spectrum of NH3, Physical Review 95, 282 (1954); J. P. Gordon, H. J. Zeiger, and C.
H. Townes, The Maser — New Type of Microwave Amplifier, Frequency Standard, and Spectrometer, Physical
Review 99, 1264 (1955).

b) Show that in the limit a→ ∞ this equation becomes identical to the one for a
single well.

c) Find the expression for the energies and wavefunctions of the Hamiltonian ei-
genstates for the potential (3.72) up to the first order in h̄2/W0Ma� 1.
Answer: The even and odd state energies are

Ee,o =−W 2
0 M/2h̄2(1±2e−2κ0a). (3.73)

The behavior observed here is common in quantum mechanics. For example, a
proton forms an attractive potential for a free electron; this potential gives rise to
bound states referred to as the hydrogen atom. If there are two protons far away
from each other and a single electron, the states of the electron bound to either pro-
ton correspond to the same energy eigenvalue — so this value is degenerate. But
when the protons are close enough, so the electron is affected by both potentials at
the same time, the energy eigenstates become nonlocal and the energy eigenvalue
degeneracy is lifted: energy levels split as in Eq. (3.73). This splitting can be used
for practical applications, as discussed in Box 3.6. Moreover, the negative energy
shift of one of the new energy eigenstates can become larger than the positive po-
tential arising due to the Coulomb repulsion of the two protons; in such a situation,
a molecule will be formed.
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Exercise 3.45. Under the conditions of the previous problem (distant wells), sup-
pose that at time t = 0 the particle is localized at the first well (i.e., its wavefunction
is that of Ex. 3.41 centered at x = a). What is the probability of finding it in the
second well as a function of time?

Finally, let us derive an important property of bound states that will be useful
later on.

Exercise 3.46.∗ Show that bound energy eigenstates of a point-like particle with a
single degree of freedom cannot be degenerate when the potential is bounded from
below.

3.7 Unbound states

Unbound state wavefunctions take finite, nonzero values at x→−∞ or x→ +∞ or
both. As we found previously, this happens if the energy E satisfies the condition

E >V (−∞) or E >V (+∞). (3.74)

Box 3.7 Energy: a discrete or continuous observable?
For most observables studied so far, their discrete or continuous character depends on

their physical nature. For energy, it depends on the specific physical setup being studied: the
energy spectrum is discrete inside potential wells and continuous for unbound states. In fact,
energy spectra can contain discrete and continuous domains within the same setting. Such
is the situation with a finite well (Ex. 3.39), where the states become unbound and energy
spectrum continuous for E > V0 . To consider a more physical example, an electron can be in
a bound state with respect to a nucleus, thereby forming an atom with a discrete energy
spectrum, or in an unbound, continuous-spectrum state, corresponding to an ionized atom.

One may argue that energy, by nature, is a continuous variable, and the shape of the po-
tential only determines which values of this variable associate with Hamiltonian eigenvalues.
However, by definition (Sec. 1.9.1), it is exactly this association that establishes the allowed
set of values of a quantum observable operator. If energy eigenstates exist for a discrete set
of energy values, this makes the energy a discrete observable.

We know that discrete and continuous observables follow different normalization rules.
Conveniently, the energy eigenstates are compliant with these rules. Bound states have
square-integrable wavefunctions, allowing the application of the discrete-spectrum normal-
ization rule

〈
Ei
∣∣ E j

〉
= δi j . Unbound wavefunctions, on the other hand, have infinite norms,

as expected for continuous-spectrum states.
Another interesting feature of energy eigenstates is that, however complex their spec-

trum, they will form a basis in the Hilbert space of the states that are physically allowed
under a given potential. For example, all the energy eigenwavefunctions of the infinite poten-
tial box (Ex. 3.40) vanish outside the box. The space they span is not the Hilbert space of all
possible functions, but only that of the functions localized within the box, i.e., those allowed
under a potential of this shape.



3.7 Unbound states 121

A straightforward example of an unbound state is the momentum eigenstate |p〉
in free space. The associated energy eigenvalue, E = p2/2M, is greater than the
potential V (x)≡ 0.

Because, in contrast to the bound case, we don’t have the boundary condition
ψ(x)→ 0 at x→±∞, the Schrödinger equation (3.60) has a solution for any energy
value (as long as Eq. (3.74) holds). Moreover, in some cases energy eigenstates are
degenerate. Such is the case, for example, in the free-space potential where states
|±p〉 have the same energy.

The existence of an eigenstate for any energy value satisfying Eq. (3.74) means
that the energy becomes a continuous observable in this region. For this reason,
unbound states are sometimes called continuous spectrum states. For example, in
the situation of Fig. 3.1, the energy spectrum is discrete for E < 0 and continuous
for E ≥ 0.

As we know from Sec. 3.2, normalization for continuous-observable eigenstates
is tricky and ambiguous. Typically, then, we do not worry about normalization when
analyzing unbound-state wavefunctions.

3.7.1 The single-step potential

Exercise 3.47.§ Find the wavefunctions corresponding to eigenstates of the Hamil-
tonian with the potential

V (x) =
{

0 for x≤ 0
V0 for x > 0

(3.75)

[Fig. 3.4] corresponding to a given energy E >V0, taking into account the continuity
requirement for the wavefunction and its derivative at x = 0.
Answer: Any wavefunction of the form

ψ(E,x) =
{

Aeik0x +Be−ik0x, x < 0
Ceik1x +De−ik1x, x≥ 0

, (3.76)

where k0 =
√

2ME/h̄, k1 =
√

2M(E−V0)/h̄ and the four amplitudes A, B,C, D
satisfy

A+B = C+D; (3.77a)
ik0(A−B) = ik1(C−D). (3.77b)

We see that the general solution depends on four parameters, while the continuity
conditions give rise to only two equations (3.77). An additional equation would
come from normalization; however, because we agreed to neglect normalization, we
simply say that any two wavefunctions that differ by a constant factor are physically
identical. This leaves us with three parameters and two equations; therefore, for
each energy value, there are two linearly independent solution sets. We find them by
introducing an additional equation into the system.
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Fig. 3.4 Solution of the time-independent Schrödinger equation for the single-step potential
(Ex. 3.47 and 3.51).

Exercise 3.48.§ Solve Eqs. (3.77) for B and C when the additional equation is:

a) D = 0,
b) A = 0.

Answer:

a)

B = A
k0− k1

k0 + k1
; C = A

2k0

k0 + k1
. (3.78a)

b)

B = D
2k1

k0 + k1
; C = D

k1− k0

k0 + k1
. (3.78b)

Of course, any linear combination of these solutions is also a solution.
The choice of D = 0 or A = 0 in the above exercise is dictated by the following

intuition. As we found in Sec. 3.4, the evolution of a de Broglie wave of the form
eikx with positive k corresponds to propagation in the positive x direction, while e−ikx

corresponds to propagation in the negative x direction. Accordingly, the case D = 0
corresponds to the de Broglie wave with amplitude A (let us call it the A-wave)
coming from the left and encountering a barrier. Part of the wave passes through the
barrier and becomes the C-wave; another part reflects as the B-wave. The case A = 0
corresponds to the particle approaching from the right (D-wave) and giving rise to
B- and C-waves in transmission and reflection, respectively.

Somewhat unintuitive in this argument is perhaps our treatment of the collision
of a particle with the barrier as a stationary state, i.e., an event of infinite duration.

in Sec. 3.2. Perhaps a good analogy to this effect would be a continuous laser beam
which propagates from air into glass, experiencing partial reflection in accordance
with the Fresnel equations (Box 3.8). Similarly to the situation with the quantum
particle, the reflection is not an instantaneous event but a stationary process. Inte-
restingly, if we compare the Fresnel equations (3.79) for the field amplitudes with
Eqs. (3.78), and take into account the fact that the optical wavenumber is proporti-

This is related to the infinite spatial extent of the de Broglie wave that we discussed

Ae

Be

Ce

De

ik x

ik x

ik x

ik x
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Box 3.8 Fresnel equations

0n 1n

0E

rE

tE

Consider an optical wave of amplitude E0, propagating
through a material with refractive index n0. If it is incident on an
interface with another material with refractive index n1, it will be
partially transmitted through the interface, and partially reflected.
The Fresnel equations relate the amplitudes of the transmitted and
reflected waves (Et and Er , respectively) to E0, as functions of the
angle of incidence and polarization. For normal incidence, these
equations take the form

Et = E0
2n0

n0 +n1
; (3.79a)

Er = E0
n0−n1

n0 +n1
. (3.79b)

Note that for n0 > n1 we have Et > E0. However, there is no violation of energy conservation.
This is because the intensity (flux of energy) of an optical wave is proportional not only to
the square of its amplitude, but also to the refractive index:

I = 2ncε0|E|2.

The transmitted wave travels at a lower speed, so the flux of energy carried by that wave is
reduced accordingly. The sum of the intensities of the reflected and transmitted waves, viz.,

It + Ir = 2cε0(n1|Et |2 +n0|Er|2) = 2cε0n0|E0|2 = I0,

is equal to that of the incident wave.

onal to the reciprocal phase velocity, and hence to the index of refraction, we will
find these two sets of equations to be almost identical!

A curious feature of the result (3.78a) is that the amplitude C of the transmitted
de Broglie wave is higher than the amplitude A of the incident wave. Similarly to
the optical case (Box 3.8), this does not contradict the law of conservation of matter
because the flux of matter is proportional to both the probability density associated
with the wavefunction and the phase (or group) velocity of that wavefunction. If we
take this into account, we find that the conservation of matter is perfectly respected.

Exercise 3.49. Defining the probability density current of the de Broglie wave by
j = vph|ψ(x)|2, find the probability density currents for the A-, B- and C-waves in
Eq. (3.78a). Find the reflection and transmission coefficients for these currents, i.e.,
jB/ jA and jC/ jA. Show that their sum is 1. What is the behavior of these coefficients
for E→V0 and E→ ∞?

Exercise 3.50. Solve Ex. 3.47 for energies below V0. Check that the reflection coef-
ficient is unity.

If you still feel uneasy with collisions of infinitely long duration, try the following
exercise. Start with a Gaussian wavepacket moving towards the barrier, decompose
it into a set of de Broglie waves, and study its evolution in a similar way to Ex. 3.29.
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Exercise 3.51.∗ Find the evolution of the state whose initial wavefunction is a Gaus-
sian packet described by Eq. (3.51) with a positive momentum p0 and negative
center position a in the single-step potential field [Fig. 3.4]. Assume that:

• |a| � d, so the wavepacket is initially entirely to the left of the step;
• d2� h̄t/M so that spreading of the wavepacket (Ex. 3.29) can be neglected;
• the initial average energy of the particle E = p2

0/2M is greater than V0;
• the momentum uncertainty of the wavepacket h̄/2d is small compared to the

average momenta h̄k0 and h̄k1 of the incident and transmitted de Broglie waves.

V0

x = 0x a=

0pd

0p- d 1 0d k k 0 1 0p k k

before collision

after collision

before collision: t = 0 during collision: t = |a|/(p /M)0 after collision: t = 2|a|/(p /M)0

( )  

(arb. units)

( )  

(arb. units)

( )  

(arb. units)

a)

b)

x (nm) x (nm) x (nm)

Fig. 3.5 Gaussian wavepacket interacting with a single-step potential (Ex. 3.47 and 3.51). a) Sche-
matic diagram of the evolution. b) Numerical simulation for an electron with a = −10 nm, initial
energy E = 3.78 eV (corresponding to k0 = 1010 m−1), and potential height V0 = 2.42 eV (corre-
sponding to k1 = 0.6×1010 m−1). Interference fringes visible during the collision are between the
incident and reflected waves. In the rightmost plot, the transmitted wavepacket is clearly seen to
be moving more slowly than the reflected one.

The solution is presented graphically in Fig. 3.5. When it encounters the step, the
initial wavepacket splits. Part of the wavepacket continues to propagate past the step
with a lower group velocity, while the other part reflects off the step and begins to
travel in the backward direction. It may be surprising that all this complex motion
comes from simple phase rotation of the component de Broglie waves, and yet this
is indeed the case!

As a final comment on the potential step problem, let us note that the particle’s
nonvanishing probability of bouncing off a potential step that is lower than the par-
ticle’s energy or even negative [as in the case described by Eq. (3.78b)] is expressly
quantum. Any classical particle will simply “fly above” the potential step, reducing
or increasing its speed, but never reversing its direction of motion.

-20 -10 10 20 -20 -20-10 -1010 1020 20

x x x
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3.7.2 Quantum tunnelling

V0

E
Aeik x0

Be ik x- 0
xDe-k

xCek

0
x = 0 x L=

0 ( )ik x LFe -

0 ( )ik x LGe- -

Re ( ) (arb. units)x

x (nm)

a)

b)

Fig. 3.6 Tunnelling through a barrier (Ex. 3.52). a) Notation for the de Broglie component waves.
b) Real part of the numerical solution for an electron with initial energy E = 0.95 eV (correspon-
ding to k0 = 0.5×1010 m−1) and potential height V0 = 1.51 eV (corresponding to k0 = 0.39×1010

m−1). The barrier of length L = 1 nm is shown in gray. The three parts of the wavefunction are vi-
sible: oscillatory before the tunnel, exponentially decaying within the tunnel, and again oscillatory
with a lower amplitude after the tunnel.

Exercise 3.52. Consider the potential in Fig. 3.6(a), i.e.,

V (x) =
{

0 for x≤ 0 or x > L
V0 for 0 < x≤ L

(3.80)

with the energy satisfying the condition 0 < E <V0.

a) What is the degeneracy of the energy levels?
b) Find the solution of the time-independent Schrödinger equation corresponding

to a de Broglie wave entering from the left with energy between 0 and V0.
c) Find the transmission and reflection coefficients for the probability current. Is

their sum equal to one?
Answer:

-4 -2 2 4
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Box 3.9 Optical analog to tunnelling
The phenomenon of quantum tunnelling also has an analog in optics. When an optical

wave experiences total internal reflection, e.g., on a glass–air interface, an evanescent wave
emerges at the opposite side of the interface (in the air). The evanescent wave normally decays
exponentially on a length scale comparable to the wavelength and does not carry any energy.
This situation is analogous to the one studied in Ex. 3.50. However, if another glass object
is placed in close proximity to the interface, the evanescent wave will enter that object and
propagate away from the interface. Similarly to the case of quantum tunnelling, the group
velocity of the wave inside the air gap is infinite.

E

x

a)

E

x

b)

a) Evanescent wave emerging as a result of total internal reflection. b) Evanescent coupling — an optical analogue
of quantum tunnelling.

Transmission:
jF
jA

=

∣∣∣∣FA
∣∣∣∣2 = 4k2

0κ2

4k2
0κ2 +(κ2 + k2

0)
2 sinh2(κL)

; (3.81a)

Reflection:
jB
jA

=

∣∣∣∣BA
∣∣∣∣2 = (κ2 + k2

0)
2 sinh2(κL)

4k2
0κ2 +(κ2 + k2

0)
2 sinh2(κL)

, (3.81b)

where k0 =
√

2ME/h̄ and κ =
√

2M(V0−E)/h̄.

We observe that a particle encountering a finite potential barrier which is higher
than the particle’s kinetic energy has a finite probability of “tunnelling” through
this barrier Fig. 3.6(b)]. This phenomenon has, of course, no analogy in classical
physics. But even more surprising is the following.

Exercise 3.53.∗ Investigate the propagation of a Gaussian wavepacket through a
potential shown in Fig. 3.6(a) under the same conditions and assumptions as in
Ex. 3.51. Calculate and plot the center positions of the incoming and transmitted
wavepackets (A- and F-waves, respectively) as a function of time.
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0
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(A-
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ve)

before barrier: t = 0 at barrier: t = |a|/(p /M)0 after barrier: t = 2|a|/(p /M)0

a)

b)

x (nm) x (nm) x (nm)

x (nm) x (nm) x (nm)

c)

transmitte
d packet

(F-
wa

ve)

Fig. 3.7 Superluminal tunnelling of a Gaussian wavepacket (Ex. 3.53). a) Schematic diagram.
b) Numerical simulation for an electron starting at a = −10 nm, with the same parameters as in
Fig. 3.6. c) Numerical simulation with the same parameters, except L = 5 nm and V0 = 5.66 eV;
the section to the right of the barrier is magnified by a factor of 1023. The center of the transmitted
wavepacket emerges from the barrier at the same time as the center of the incident wavepacket
enters it.

velocity’s being the derivative vgr = dω/dk. Inside the barrier, the wavefunction
consists of real exponentials (C- and D-waves in Fig. 3.6), and hence has a con-
stant complex phase. This means that the effective wavevector k = 0 and the group
velocity is infinite.

If you do everything correctly, you should obtain a picture similar to Fig. 3.7.
That is, tunnelling occurs instantaneously: the transmitted wavepacket emerges be-
hind the barrier simultaneously with the initial wavepacket being absorbed. The
wavepacket spends no time inside the barrier. This can be traced back to the group

-20 -10 10 20 -20 -10 -1010 1020 20

-20 -10 10 20 -10 10 20 -10 10 20
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We found the velocity of the center of the wavepacket to be infinite. But let us
ask ourselves: at what moment does an observer behind the barrier learn that the
particle is entering the barrier? Does it have to happen when exactly a half of the
wavepacket has emerged from the barrier, or is it one-fourth or perhaps one-tenth?

The correct answer is, much earlier than that. From complex analysis, we know
that the Gaussian function is analytic: any fragment of this function allows one to
reconstruct its behavior in the entire complex plane. Therefore, theoretically, any
observer anywhere in space and time is aware of the presence of the particle with
a Gaussian wavefunction, and can predict its evolution. With this in mind, it makes
no sense to talk about instant communication.

What if we tried a different wavefunction, for example, with the top-hat shape
(3.9), which takes on nonzero values only within a finite spatial region? The pro-
blem with such wavefunctions is that we cannot apply the approximations we used
for the Gaussian wavepacket (see Ex. 3.51). The feature of a Gaussian wavepacket
which allows us to use these approximations is that its momentum representation
is also Gaussian, so it falls off exponentially away from the center point. In con-
trast, states with spatially limited wavepackets are not narrow in the momentum
representation: for example, the Fourier transform of the top-hat function is the sinc
function [Ex. D.9(f)]. This means that such a state will have significant components
corresponding to arbitrarily high energies: not only above the barrier, but also exten-
ding into the relativistic domain. Hence the formalism of non-relativistic quantum
mechanics, which we are studying here, cannot be applied to this problem.

To complete our study of the barrier potential, let us see what happens when the
particle energy is above the barrier. For generality, we will allow V0 to be either po-
sitive or negative, which corresponds to the cases of a barrier or a well, respectively.

Exercise 3.54. Solve Ex. 3.52 for E > 0 and E >V0.
Answer:

Transmission:
jF
jA

=
4k2

0k2
1

4k2
0k2

1 cos2(k1L)+(k2
1 + k2

0)
2 sin2(k1L)

; (3.82a)

Reflection:
jB
jA

=
(k2

1− k2
0)

2 sin2(k1L)
4k2

0k2
1 cos2(k1L)+(k2

1 + k2
0)

2 sin2(k1L)
, (3.82b)

where k0 =
√

2ME/h̄ and k1 =
√

2M(E−V0)/h̄.

In Chapter 2 we already encountered a quantum phenomenon that appeared to
enable faster-than-light communication, but after careful analysis found this to be
only an illusion. In the present case, the superluminal group velocity is a correct con-
clusion. However, once again, it does not imply the possibility of instant signaling,
for the following reason.
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Fig. 3.8 Transmission coefficient (3.82)(a) of the potential barrier for the case of the particle’s
energy above the barrier, specialized to k0L = 3π/2.

Exercise 3.55. Under which conditions is the transmission coefficient in the previ-
ous exercise equal to one?
Answer: V0 = 0 (i.e. k0 = k1) or klL = mπ , where m is a positive integer.

We see that the transmissivity of the potential barrier (or well, if V0 < 0) exhibits
oscillatory behavior and becomes unity when the thickness of the barrier corre-
sponds to an integer or half-integer number of de Broglie waves inside the barrier.
Again, there is an immediate analogy to optics: the optical cavity, also known as the
Fabry-Pérot etalon. In such a cavity, the optical wave bounces between two highly
reflective interfaces, and the multiple reflections interfere with each other. If the
roundtrip distance 2L of the wave in the interferometer is an integer number of wa-
velengths (i.e., 2L = mλ = 2πm

k1
), this interference becomes constructive, and the

transmissivity of the cavity becomes unity.
We can also see that the width of each resonance decreases with k1. This is due

to the increasing reflectivity of each “cavity mirror”, which is given by the first part
of Eq. (3.78a) and Eq. (3.79b) for quantum mechanics and optics, respectively. The
closer the reflectivity to one, the higher the finesse of the etalon, the sharper the
resonance.

3.8 Harmonic oscillator

The harmonic oscillator is a physical system of primary importance, with applicati-
ons extending far beyond pure mechanics. In fact, virtually any oscillatory motion
is governed by a Hamiltonian that is analogous to that of the mechanical harmo-
nic oscillator, and thus has the same quantum description. Examples include the
electromagnetic field, inductor–capacitor circuits in electronics, and quasiparticles
in condensed matter. Even the photon, which we discussed frequently in the pre-

p 2p 3p 4p 5p 6p 7p 8p 9p
p
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vious two chapters, can be seen as an energy eigenstate of the quantum harmonic
oscillator describing a mode of the light field.

Exercise 3.56. Check that the solution for the classical equations of motion (3.84)
of the harmonic oscillator is given by Eqs. (3.85).

3.8.1 Annihilation and creation operators

The harmonic oscillator potential is a typical well. Therefore its energy eigenstates
are bound and nondegenerate (see Ex. 3.46). The wavefunctions of these states can
be found by solving the time-independent Schrödinger equation (3.60) in the posi-

Box 3.10 The classical harmonic oscillator

Figure (a) below displays the simplest harmonic oscillator — a “ball on a spring”. When
the ball is displaced from the equilibrium position x= 0, the spring will exert a force F =−κx
according to Hooke’s law, where κ is the spring constant. The potential of the spring tension
is then U(x) = κx2/2, which corresponds to the Hamiltonian

H =
p2

2M
+

κx2

2
. (3.83)

x

p

m

a) b)

x

A classical harmonic oscillator. a) Physical model; b) motion in the phase space.
When left alone, the ball will obey the equations of motion

dx
dt

=
p
M

, (3.84a)

dp
dt

=−κx, (3.84b)

which give rise to the oscillation with frequency ω =
√

κ/M:

x(t) = x(0)cosωt +
1

Mω
p(0)sinωt, (3.85a)

p(t) = p(0)cosωt −Mωx(0)sinωt. (3.85b)

This classical motion of the oscillator can be represented as a trajectory in the phase space,
i.e., as a parametric plot of its momentum vs. position, as shown in part (b) of the figure
above. This trajectory has an elliptical shape with half-axis ratio given by pmax = Mωxmax.

бс

б с
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tion basis. However, the harmonic oscillator permits a special, much more elegant
theoretical treatment. To develop this treatment, we first rescale the position and
momentum observables to make them more convenient to work with.

Exercise 3.57. Find the proportionality constants A and B such that the observables
defined by X = Ax, P = Bp have the following properties:

• In the new variables (X , P), the phase space trajectory is circular, so Eqs. 3.85
take the form

X(t) = X(0)cosωt +P(0)sinωt; (3.86a)
P(t) =−X(0)sinωt +P(0)cosωt. (3.86b)

• For the corresponding quantum operators,

[X̂ , P̂] = i. (3.87)

Show that the rescaled observables X̂ and P̂ are dimensionless.
Answer:

X̂ = x̂

√
Mω

h̄
; P̂ =

p√
Mω h̄

(3.88)

Being continuous observables, the rescaled position and momentum eigenstates
are normalized according to〈

X
∣∣ X ′
〉
= δ (X−X ′);

〈
P
∣∣ P′
〉
= δ (P−P′). (3.89)

As we observed in Sec. 3.2, rescaling a continuous observable, while imposing nor-
malization conditions like those above, results in the renormalization of eigenstates
of these observables, as well as the wavefunctions and operators written in terms of
these eigenstates. Let us see how this applies in the present case.

Exercise 3.58. a) Show that the eigenstates of the canonical and rescaled obser-
vables are related according to

|X〉=
(

h̄
Mω

)1/4

|x〉 ; (3.90a)

|P〉= (Mh̄ω)1/4 |p〉 . (3.90b)

Hint: use the same argument as at the end of Sec. 3.2, where we related the
position and wavenumber observables.

b) Show that

〈X | P〉= 1√
2π

eiPX . (3.91)

c) If a certain quantum state has wavefunctions ψ(x) = 〈x| ψ〉 and ψ̃(p) = 〈p| ψ〉,
what are the corresponding wavefunctions ψ(X) = 〈X | ψ〉 and ψ̃(P) = 〈P| ψ〉
in the rescaled variables?
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d) Show that the relations for converting wavefunctions between the X̂- and P̂-
bases are

〈X | ψ〉 = 1√
2π

+∞∫
−∞

〈P| ψ〉eiPX dP; (3.92)

〈P| ψ〉 = 1√
2π

+∞∫
−∞

〈X | ψ〉e−iPX dX . (3.93)

e) Show that

〈X | P̂ |ψ〉=−i
d

dX
ψ(X); 〈P| X̂ |ψ〉= i

d
dP

ψ(P). (3.94)

f) Show that the Heisenberg uncertainty principle for the rescaled position and
momentum takes the form 〈

∆X2〉〈
∆P2〉≥ 1

4
. (3.95)

Exercise 3.59. Write the Hamiltonian (3.83) in terms of the rescaled observables X̂
and P̂.
Answer:

Ĥ =
1
2

h̄ω
(
X̂2 + P̂2) . (3.96)

We now define and study the properties of the two operators which, as we shall
see in the next subsection, effect transitions between adjacent energy eigenstates.
The annihilation operator is defined as follows:

â =
1√
2

(
X̂ + iP̂

)
; (3.97)

The operator â† is called the creation operator.

Exercise 3.60. Show that:

a) the creation operator is

â† =
1√
2

(
X̂− iP̂

)
; (3.98)

b) the creation and annihilation operators are not Hermitian;
c) their commutator is

[â, â†] = 1; (3.99)

d) the position and momentum can be expressed as

X̂ =
1√
2

(
â+ â†) ; P̂ =

1
i
√

2

(
â− â†) ; (3.100)
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e) the commutation relations of the creation and annihilation operators are

[â, â†â] = â; [â†, â†â] =−â†; (3.101)

f) the Hamiltonian (3.96) can be written as

Ĥ = h̄ω

(
â†â+

1
2

)
. (3.102)

3.8.2 Fock states

Our next goal is to find eigenvalues and eigenstates of the Hamiltonian. Because of
Eq. (3.102), they are also eigenstates of the operator â†â. This is called the number
operator and denoted by the symbol n̂. A normalized eigenstate of this operator with
eigenvalue n is denoted by |n〉:

â†â |n〉= n |n〉 (3.103)

Exercise 3.61. Show that:

a) the state â |n〉 is also an eigenstate of n̂ with eigenvalue n−1;
b) the state â† |n〉 is also an eigenstate of n̂ with eigenvalue n+1.

Hint: Use Eq. (3.101).

We know from Ex. 3.46 that energy spectra of bound states are nondegenerate,
i.e., for each value of n there exists no more than a single energy eigenstate |n〉.
Hence we can conclude from Ex. 3.61 that the states â |n〉 and â† |n〉 are proportional
to the states |n−1〉 and |n+1〉, respectively. Note that I say “proportional” rather
than “equal”, because the states â |n〉 and â† |n〉 are not guaranteed to be normalized,
whereas |n−1〉 and |n+1〉 are normalized by definition. In fact, the normalization
condition is used to determine the proportionality coefficient.

Exercise 3.62. Using the fact that all energy eigenstates must be normalized to 1,
show that, up to an arbitrary phase factor,

a)
â |n〉=

√
n |n−1〉 ; (3.104a)

b)
â† |n〉=

√
n+1 |n+1〉 . (3.104b)

Hint: use 〈n| â†â |n〉= n.

The phase factor mentioned in the exercise above is our choice; we can define
it however we want. We choose the simplest option and define it to equal 1, so the
relations (3.104) are valid as they are.



134 A. I. Lvovsky. Quantum Physics

Equation (3.104a) tells us that, if the state |n〉 with energy h̄ω(n+1/2) exists as
a physical state (i.e., if it is a normalized element of the Hilbert space), so does the
state |n−1〉 with energy h̄ω(n− 1/2). Similarly, the states |n−2〉, |n−3〉, and so
on must also exist. Continuing this chain for sufficiently many steps, we would end
up with energy eigenstates with negative energy values. This is impossible because
the Hamiltonian is a non-negative operator (Ex. A.72, A.87).

How can we resolve this contradiction? The only way is to assume that n must
be a nonnegative integer so that the chain is broken at n = 0, in which case

â |0〉= |zero〉 . (3.105)

Then (provided that the state |n = 0〉 exists), number eigenstates exist only for non-
negative n, comprising an infinite set with the corresponding energy eigenvalues
h̄ω(n+1/2).

Energy eigenstates of a harmonic oscillator are called Fock or number states. The
state |0〉 is called the vacuum state7.

Exercise 3.63. Express |n〉 in terms of |0〉.
Answer:

|n〉=
(
â†
)n

√
n!
|0〉 (3.106)

Exercise 3.64. Calculate the wavefunctions of the vacuum state in the position and
momentum representations.
Hint: use Eqs. (3.94), (3.97) and (3.105).
Answer:

ψ0(X) =
1

π1/4 e−X2/2; (3.107a)

ψ̃0(P) =
1

π1/4 e−P2/2. (3.107b)

As we can see, both the position and momentum observables are uncertain in the
vacuum state. That is, if we prepare our “ball on a spring” in the state of minimum
possible energy, and then measure its position, we will find it to be away from the
equilibrium position by a random microscopic amount. Similarly, if we measure
the velocity, we will find it to be microscopically small, but nonzero. This quantum
phenomenon is known as the zero-point vibration.

The above wavefunctions are unique up to an arbitrary overall phase factor. For
the vacuum state, by convention, we choose this factor so as to obtain a real and
positive-definite wavefunction in the position basis. It then automatically follows
that the wavefunction in the momentum basis is also real and positive. Furthermore,

7 Let me emphasize the difference between the vectors |0〉 and |zero〉 (see Defn. A.1). The vector
|zero〉 is the zero of the Hilbert space, such that, for any vector |ψ〉, we have |ψ〉+ |zero〉= |ψ〉. Its
norm is 〈zero| zero〉= 0 so this vector does not represent any physical quantum state. The vacuum
|0〉, on the other hand, is a physical state: 〈0| 0〉= 1 and |ψ〉+ |0〉 6= |ψ〉.
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as we shall see below, this convention ensures that the wavefunctions of all other
Fock states are also real.

Having explicitly found the wavefunction of the vacuum state, we have proven
its existence and uniqueness, and thus, automatically, the existence and uniqueness
of all other Fock states — because these states are obtained from the vacuum state
by applying the creation operator.

Exercise 3.65. a) By applying Eq. (3.106), calculate the wavefunctions of the
Fock states |1〉 and |2〉.
Answer:

ψ1(X) =

√
2

π1/4 Xe−X2/2; (3.108)

ψ2(X) =
1√

2π1/4
(2X2−1)e−X2/2. (3.109)

b)∗ Show that the wavefunction of an arbitrary Fock state |n〉 is given by

ψn(X) =
Hn(X)

π1/4
√

2nn!
e−X2/2, (3.110)

where Hn(X) are the Hermite polynomials,

Hn(X) =

(
2X− d

dX

)n

1. (3.111)

A special feature of the Hamiltonian of the harmonic oscillator is that its energy
levels not only quantize, but are equidistant. The distance h̄ω between the levels
is called the quantum of energy. Physically, the equidistant energy structure means
that, by pumping quanta of the same frequency into a harmonic oscillator, one can
excite it to arbitrarily high energy. For example, you can rock a swing to any desired
amplitude by pulling and pushing it with the same frequency; you can also amplify
a laser pulse to any desired strength. An opposite example is the atom: by driving
it with a resonant laser, you can bring it from a ground state to one of the higher
energy eigenstates, but increasing the laser power is not likely to help you excite
that atom any further8.

Energy quanta are often interpreted as particles, especially in the context of ge-
neralizations of the harmonic oscillator mentioned at the beginning of this section.
For example, the photon is an energy quantum in an optical pulse (see Box 3.11)
and the phonon is the energy quantum in a vibrational mode of a solid state.

It is instructive to compare the wavefunctions of the Fock states with those of
energy eigenstates of the finite potential well (shown in Fig. 3.2). In both cases, the
wavefunctions exhibit oscillatory behavior inside the well and fall off exponentially

8 These statements are valid within limits, because physical models of the harmonic oscillator
or two-level system may break down for very strong excitations. This happens, for example, if a
swing flies too high to invalidate the small-angle pendulum approximation, or if the electric field
in a laser pulse becomes so strong that it starts to give birth to electron–positron pairs.



136 A. I. Lvovsky. Quantum Physics

n = 0

n = 1

n = 2

n = 3

X0

Fig. 3.9 Wavefunctions of the few lowest energy levels of a harmonic oscillator.

outside. The number of zero crossings is equal to the number of the energy level.
The difference is that the energy levels are equidistant for the harmonic oscillator,

Box 3.11 What is the photon?
In the previous two chapters, we treated the photon as a particle and discussed the quan-

tum states it can be found in. Now we seem to be saying that the photon is a state of the
electromagnetic harmonic oscillator mode. How can these views be reconciled?

These two approaches are known as first quantization and second quantization, respecti-
vely. In the first quantization, we associate a Hilbert space with each particle; the elements
(vectors) of this space are the various states that the particle can be in. For example, a single
photon (Hilbert space) can be in different polarization states.

In the second quantization, the roles of state vectors and Hilbert spaces are exchanged.
What we call a basis of the Hilbert space of the first quantization is treated as a set of separate
Hilbert spaces in the second quantization. For example, the vertical and horizontal polari-
zation modes are treated as individual Hilbert spaces. A photon in the state |H〉 in the first
quantization is written as the state vector |1〉H ⊗ |0〉V in the second. A photon in the state
|+45◦〉 becomes the entangled state 1√

2
(|1〉H ⊗ |0〉V + |0〉H ⊗ |1〉V ). Alternatively, we can

choose the two diagonal polarization modes as Hilbert spaces; in this case, the diagonally
polarized photon is a separable state while the horizontally polarized photon is an entangled
one.

We thus see that the first quantization treatment is more compact and convenient when we
know a priori that we are dealing with exactly one particle. In the case of multiple identical
particles, the first quantization gives rise to complications. For example, suppose we have two
photons with orthogonal polarizations. In the framework of the second quantization, we have
a unique way of writing this state: |1〉H⊗|1〉V . Using the first quantization, on the other hand,
we could write this state — the same physical object — in two possible ways: |H〉⊗ |V 〉 or
|V 〉⊗ |H〉, or any linear combination thereof. In order to eliminate this ambiguity, additional
rules need to be introduced as to which state vector can be considered physical, depending
on whether the particle is fermionic or bosonic.

To summarize, while both approaches are valid and can be used to treat physical pheno-
mena, one or the other may turn out to be more practical, depending on the problem we are
trying to solve.
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but not equidistant for the rectangular well. Further, each eigenwavefunction of the
well is defined in a piecewise fashion [see Eqs. (3.66) and (3.67)], while it is a single
elementary function for the harmonic oscillator potential.

Exercise 3.66. Calculate the matrices of the position and momentum observables
in the Fock basis.
Hint: Rather than integrating the wavefunctions, it is more convenient to employ
Eqs. (3.100) and (3.104).

Exercise 3.67. For an arbitrary |n〉, calculate 〈X〉, 〈∆X2〉, 〈P〉, 〈∆P2〉 and check the
uncertainty principle.
Answer: 〈

X̂
〉
=
〈
P̂
〉
= 0; (3.112)〈

∆X2〉= 〈∆P2〉= 1
2
(2n+1). (3.113)

We see that the product of the position and momentum uncertainties increases
with the energy. The vacuum state is the only Fock state for which this product
reaches the minimum (3.95).

Exercise 3.68. Consider the Schrödinger evolution |ψ(t)〉 of an arbitrary state
|ψ(0)〉= ∑n ψn |n〉 under the harmonic oscillator Hamiltonian. Derive the following
behavior of operator mean values as a function of time:

a)

〈â〉(t) = 〈â〉(0)e−iωt ; (3.114a)〈
â†〉(t) = 〈â†〉(0)eiωt ; (3.114b)

b)

〈X〉(t) = 〈X〉(0)cosωt + 〈P〉(0)sinωt; (3.115a)
〈P〉(t) =−〈X〉(0)sinωt + 〈P〉(0)cosωt. (3.115b)

The Fock states themselves are stationary and thus exhibit no time variation of
the mean position and momentum. In this sense, they are highly nonclassical, incon-
sistent with our familiar notion that a ball on a spring must oscillate (unless it is at
rest, i.e., in the lowest energy state). On the other hand, in all other states, the mean
position and momentum do change. Remarkably, in any quantum state, they change
in the same way as the position and momentum in the classical harmonic oscillator
[see Eq. (3.86)]. We will generalize this observation in Sec. 3.9.
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Box 3.12 Measuring the position of the harmonic oscillator: an experiment
At the time of writing this manuscript, physicists are not yet able to prepare and measure

arbitrary quantum states of mechanical oscillators. They have much better control of the
optical realization of the harmonic oscillator. In particular, they are able to prepare a few of
the lowest number states and their superpositions with high fidelity.

In the optical realization of the harmonic oscillator, the position and momentum observa-
bles correspond to the magnitudes of the electric field in the electromagnetic wave at certain
phases. Phase-sensitive measurements of the electromagnetic field are performed using the
so-called optical homodyne detector. I will not go into a detailed description of this techno-
logy, but it can be found in many quantum optics textbooks.

The figure below shows the experimental data on multiple measurements of the posi-
tion observable in the vacuum state (top) and the single-quantum state (bottom) of an op-
tical mode. The vacuum state is obtained by simply blocking the light; the heralded sin-
gle photon is prepared using parametric down-conversion (Box 1.6). The histograms (right)
of the raw experimental data (left) are expected to correspond to the probability densities
pr0,1 = |ψ0,1(X)|2, where the wavefunctions ψ0,1(X) are given by Eqs. (3.107a) and (3.108),
respectively.
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Data taken from A. I. Lvovsky and S. A. Babichev, Synthesis and tomographic characterization of the displaced
Fock state of light, Physical Review A 66, 011801 (2002).

We can see that, while the agreement between theory and experiment is almost perfect
for the vacuum state, the data for the single-photon state are best fit with a mixed state of the
single photon with probability 0.62 and vacuum with probability 0.38. This is because it is
impossible to create a perfect single-photon state. The measured state fidelity is inevitably
diminished by losses in the optical path, imperfect detection efficiency, and other issues.
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3.8.3 Coherent states

The coherent state is the closest quantum approximation of the classical picture of
harmonic oscillator motion. As we have seen, the mean position and momentum
in any quantum state oscillate as functions of time in the same way as those of a
classical ball on a spring. A special feature of the coherent state is that, while the
amplitude of this oscillation can be arbitrarily high, the position and momentum
uncertainties remain as low as in the vacuum state. Because of their classical-like
behavior, coherent states frequently occur in nature, not only in mechanics, but also
in other “incarnations” of the harmonic oscillator, such as the quantum state of the
light field in a laser pulse.

The coherent (Glauber) state |α〉 is an eigenstate of the annihilation operator
with eigenvalue α:

â |α〉= α |α〉 . (3.116)

Because â is not a Hermitian operator, its eigenvalue α can be complex. Its absolute
value |α| is called the amplitude, and the complex argument Argα the coherent
phase of the coherent state.

0

Fig. 3.10 Wavefunctions of coherent states. a) α = 0 (vacuum state), b) α = 5, c) α = 5+4i (real
part).

We begin our studies of the coherent state from its wavefunction. The wa-
vefunction can be determined by solving Eq. (3.116) as a differential equation in
the position basis akin to Ex. 3.64. However, to avoid this fairly tedious calculation,
an easy answer is provided in the exercise below. We will develop an alternative
way to calculate the wavefunction of the coherent state in Sec. 3.10.

Exercise 3.69. For a coherent state |α〉, show that its wavefunctions in the position
and momentum bases are given by

ψα(X) =
1

π1/4 e−i Pα Xα
2 eiPα X e−

(X−Xα )2
2 ; (3.117a)

ψ̃α(P) =
1

π1/4 ei Pα Xα
2 e−iXα Pe−

(P−Pα )2
2 , (3.117b)

x

(a) (b)

(c)

a 2
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where
Xα =

√
2Reα; Pα =

√
2Imα. (3.118)

Check that these wavefunctions are normalized. Show that the expectation values
and uncertainties of the position and momentum in the coherent state |α〉 are

〈X〉= Xα ,〈P〉= Pα (3.119)

and 〈
∆X2〉= 〈∆P2〉= 1/2, (3.120)

respectively.

The coherent state wavefunction is a Gaussian wavepacket. For α = 0, the cohe-
rent state becomes the vacuum, as is evident by comparing Eqs. (3.105) and (3.116)
[Fig. 3.10(a)]. For real α , the shape of the wavefunction is identical to that of the
vacuum state, shifted by α

√
2 along the x axis [Fig. 3.10(b)]. For complex α , this

Gaussian wavepacket is multiplied by a linearly varying phase factor, because of the
nonzero mean momentum [Fig. 3.10(c)], akin to Ex. 3.25.

9 In fact, this circle has more than just a symbolic value. The behavior of uncertainties in the phase
space is described by the so-called Wigner function, which is the analog of the classical phase-space
probability density.

We see that there exists a coherent state for any complex α and that each such
state can be normalized according to 〈α| α〉 = 1. This may seem to contradict
our discussion early in this chapter, where we argued that eigenstates of continu-
ous quantum observables must be normalized via the Dirac delta function, as in
Eqs. (3.1). The reason why this rule does not apply to coherent states is that the
annihilation operator is not a Hermitian observable. For the same reason, coherent
states associated with different values of α are not orthogonal (see Ex. 3.75 below).

As per Eq. (3.120), any coherent state has the lowest possible position–
momentum uncertainty (3.95), similarly to the vacuum state.

One can picture the coherent state in the phase space as a circle centered at the
point (〈X〉 =

√
2Reα , 〈P〉 =

√
2Imα) (Fig. 3.11). The radius of the circle, 1/

√
2,

symbolically represents the standard deviations of the position and momentum,
which are independent of the coherent amplitude9.

The overall phase factors e±iPα Xα/2 are included in Eqs. (3.117a) and (3.117b) as
a matter of convention. These factors make these two equations (which are obtained
from one another by means of a direct or inverse Fourier transform) look similar.
Additionally, this convention is necessary for consistency with another phase con-
vention that we introduce below for the decomposition of the coherent state into the
Fock basis.

Let me emphasize the role of the phase Argα of the coherent state. This phase
is the angle of the radius vector pointing to (〈X〉 ,〈P〉), as shown in Fig. 3.11, and is
thus directly related to measurable parameters of the state. This is in contrast to the
quantum phase factor, which, as we have discussed several times already, does not
affect a state’s physical properties.
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Fig. 3.11 Phase space picture and evolution of the position and momentum observables in the
coherent state.

Now let us find the Schrödinger evolution of the coherent state in time. To this
end, we first decompose the coherent state in the energy eigenbasis.

Exercise 3.70. Find the decomposition of the coherent state |α〉 in the number basis.
Hint: Assume some decomposition,

|α〉=
∞

∑
n=0

αn |n〉 , (3.121)

and apply the definition (3.116) of the coherent state to it.
Answer: up to an overall phase factor,

|α〉= e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 . (3.122)

Once again, we introduce an overall phase convention according to which the
overall phase factor in Eq. (3.122) is 1; that is, we set 〈n| α〉 real for real α . We
need to check whether this convention is consistent with the one chosen for the
phase of the coherent state wavefunction (3.117a).

Exercise 3.71. Calculate the inner product 〈0| α〉 for an arbitrary α in the position
and Fock bases. Check whether the results are the same.

If one performs an energy measurement on a coherent state, the probabilities of
the possible results are distributed according to

X

P

2 Re

2 Im

a

a
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prn = |〈n| α〉|
2 = e−|α|

2 |α|2n

n!
. (3.123)

This turns out to be the famous Poisson distribution (see Sec. B.3). From its proper-
ties (Ex. B.15), we see that both the mean and the variance of the Fock number in
the coherent state are equal to

〈n〉=
〈
∆n2〉= |α|2. (3.124)

This means, for example, that in a laser pulse train with n photons per pulse on
average, the root mean square uncertainty of that photon number in a pulse is

√
n.

Actually, we don’t need to know the properties of the Poisson distribution to
obtain the latter result. It follows directly from the definition of the coherent state.

Exercise 3.72. Calculate the mean and variance of the Hamiltonian operator (3.102)
in the coherent state using the properties of the creation and annihilation operators
and check that your result is consistent with Eq. (3.124).

Exercise 3.73. Show that the action of the evolution operator exp(iĤt/h̄) on the
state |α〉 is given by

e−
i
h̄ Ĥt |α〉= e−iωt/2

∣∣∣αe−iωt
〉
. (3.125)

Exercise 3.74. Calculate the expectation values of

a) the creation and annihilation operators;
b) the position and momentum observables

in a coherent state as a function of time using Eqs. (3.119) and (3.125). Check that
your result is consistent with Eqs. (3.114) and (3.115).

The result of Ex. 3.73 is remarkable. Neglecting the unphysical quantum phase
factor, a coherent state evolves into another coherent state with the same amplitude,
but different coherent phase, as shown in Fig. 3.11. This means that the position and
momentum uncertainties remain constant, equal to those of the vacuum state.

This result illustrates once again the difference between the quantum and cohe-
rent phases. The quantum phase factor e−iωt/2, outside of the ket in Eq. (3.125), has
no physical counterpart. The coherent phase e−iωt , which has observable physical
meaning, is inside the ket.

Finally, Ex. 3.73 makes manifest the classical analogy of large-amplitude cohe-
rent states. If the amplitude of the coherent state is macroscopic, the relative un-
certainties are negligible, so the coherent state is well approximated by a classical
oscillation. In contrast, for microscopic amplitudes, the uncertainties play a signifi-
cant role and the classical approximation fails.

Exercise 3.75. Show that 〈α| α ′〉= e−|α|
2/2−|α ′|2/2+α ′α∗ .

This result addresses once again our earlier point that coherent states associated
with different values of α are not orthonormal. Because the annihilation operator is
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not Hermitian, the spectral theorem (Ex. A.60), which states that the eigenstates of
a Hermitian operator constitute an orthonormal basis, does not apply here. Coherent
states do form a spanning set, but they are not orthogonal.

Exercise 3.76. Coherent states are eigenstates of the annihilation operator. Do their
counterparts — eigenstates of the creation operator — exist, and if so, what is their
decomposition in the number basis?

3.9 Heisenberg picture

By now, we have encountered a few cases in which quantum mechanics predicts be-
havior that is expected classically. Examples are the evolution of the mean position
and momentum in free space or under the harmonic oscillator potential. Such ob-
servations are in principle not surprising because we know that the classical picture
corresponds to the macroscopic limit of the quantum physics. But at the same time,
the theoretical and mathematical frameworks of the two treatments are so different
that, even if they do lead to similar results, it is difficult to understand the intuition
behind this similarity.

If we attempt to reconcile the two treatments and find a common intuitive ground
beneath them, one obstacle that we inevitably encounter is in the way that classical
and quantum physics treat temporal evolution. In the classical picture, it is the obser-
vables that evolve: for example, the position of a moving particle changes with time.
In the quantum world, in contrast, observables, such as the position operator x̂, are
constant; the evolution is associated with the system’s state |ψ(t)〉. In this section,
we shall make the connection between the two worlds more transparent by develo-
ping an alternative quantum formalism, in which states are constant and observables
evolve.

3.9.1 Operator evolution

The Heisenberg picture

Suppose that we need to find the mean value of a certain ob-
servable Â in a quantum state |ψ〉 that evolves under a Hamil-
tonian Ĥ. Our usual approach (Sec. 1.10) prescribes calcula-
ting the evolution of the state of interest according to |ψ(t)〉 =
Û(t) |ψ(0)〉, where Û(t) = e−

i
h̄ Ĥt is the unitary evolution ope-

rator10. The quantum mean value is then

〈A〉=
〈
ψ(t)

∣∣ Â
∣∣ ψ(t)

〉
. (3.126)

10 Throughout this section, we assume that the Hamiltonian does not explicitly depend on time.
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This approach is known as the Schrodinger picture¨ of quantum evolution.
An alternative is the Heisenberg picture, which assumes that operators evolve

according to
Â(t) = Û†(t)Â(0)Û(t) = e

i
h̄ Ĥt Â(0)e−

i
h̄ Ĥt , (3.127)

while all quantum states remain constant: |ψ(t)〉 = |ψ(0)〉. The mean value of Â is
then

〈A〉=
〈
ψ(0)

∣∣ Â(t)
∣∣ ψ(0)

〉
. (3.128)

At time t = 0, the states and operators in the two pictures are assumed equal.

Exercise 3.77. Show that the operator expectation values calculated according to
the Schrödinger and Heisenberg pictures [Eqs. (3.126) and (3.128), respectively]
are the same.

Exercise 3.78. For the Heisenberg picture, show that the operator evolution can be
written in the form (sometimes referred to as Heisenberg’s equation)

d
dt

Â(t) =
i
h̄
[Ĥ, Â(t)]. (3.129)

To see how the Heisenberg picture helps to reconcile the classical and quantum
approaches, let us look at an example.

Exercise 3.79. Write the Heisenberg equations of motion (3.129) for the position
and momentum of the harmonic oscillator assuming the Hamiltonian (3.83).
Answer:

d
dt

x̂ =
p̂
M

; (3.130a)

d
dt

p̂ =−κ x̂. (3.130b)

We find, quite remarkably, that the evolution of the harmonic oscillator’s position
and momentum observables in the Heisenberg picture are identical to the classical
ones (Box 3.10). Indeed, Eq. (3.130a) is the definition of the momentum as the
product of the mass and velocity, while Eq. (3.130b) is Newton’s Second Law of
Motion, because F =−κx is the spring force.

Because Eqs. (3.130) are equivalent to the classical ones (Box 3.10), so is their
solution, aside from the hats on top of the observables:

x̂(t) = x̂(0)cosωt +
1

Mω
p̂(0)sinωt; (3.131a)

p̂(t) = p̂(0)cosωt− κ

ω
x̂(0)sinωt. (3.131b)

The observed quantum-to-classical analogy may appear to be purely formal be-
cause, as one may argue, the position and momentum in the above equations are
operators, abstract notions of linear algebra. But in fact there is a direct practical
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connotation. To see it, we can “sandwich” both sides of Eqs. (3.131) between sym-
bols 〈ψ| and |ψ〉 associated with an arbitrary quantum state. Then these equations
take the form

〈x(t)〉= 〈x(0)〉cosωt +
1

Mω
〈p(0)〉sinωt; (3.132a)

〈p(t)〉= 〈p(0)〉cosωt− κ

ω
〈x(0)〉sinωt. (3.132b)

Now, rather than abstract operators, we have measurable physical quantities: mean
position and momentum — and they do behave identically to their classical coun-
terparts in any quantum state. This finding reproduces our earlier result (3.115),
obtained using the Schrödinger picture.

Is this consistency with the classical behavior a unique property of the harmonic
oscillator or general for all mechanical systems? A simple argument suggests the
latter.

Exercise 3.80. For the Schrödinger evolution of a state of a point-like particle under
the Hamiltonian (3.55), show that

dx̂
dt

=
p̂
M

; (3.133a)

d p̂
dt

=−V ′(x̂), (3.133b)

where V ′(·) is the derivative of the function V (·).
Hint: decompose V (x) into a power series.

Equation (3.133b) corresponds once again to Newton’s Second Law because, in
classical mechanics, the potential energy of a conservative force is related to that
force according to11

F(x) =−V ′(x). (3.134)

The relations (3.133) can be made more tangible by taking the mean values of
the position and momentum of the particle in an arbitrary state. They then take the
form

d〈x〉
dt

=
〈p〉
M

; (3.135a)

d〈p〉
dt

=−
〈
ψ
∣∣V ′(x̂)

∣∣ ψ
〉
=−

+∞∫
−∞

ψ(x)V ′(x)ψ∗(x)dx. (3.135b)

These relations are known as the Ehrenfest theorem. Importantly, it deals with
expectation values of observables rather than directly with states or operators. Be-
cause these expectation values are the same in both the Schrödinger and Heisenberg
pictures (Ex. 3.77), the Ehrenfest theorem is valid in both pictures as well.

11 We specialize to one-dimensional motion.
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Note that, as we know from mechanics, the classical form of Eqs. (3.133) gene-
ralizes to the Hamiltonian equations of motion:

dx
dt

=
∂H
∂ p

;
dp
dt

=−∂H
∂x

. (3.136)

In the quantum domain, these equations are replaced by Heisenberg’s equation.
In this way, the Heisenberg picture makes the relationship between quantum and

Newtonian mechanics quite apparent. There is, however, a trade-off: a loss of con-
nection between the observable and its eigenstates. For example, consider the har-
monic oscillator evolution (3.131) for one-quarter of the oscillation period. Deno-
ting this duration by t0 (so that ωt0 = π/2), we find x̂(t0) = p̂(0)/Mω . This result is
easy to interpret classically: the position of a pendulum after one-quarter of its pe-
riod is determined entirely by its initial velocity. But in quantum mechanics, where
observables are associated with operators, the observation that the position operator
at a certain moment t = t0 becomes proportional to the momentum operator at t = 0
is much less comfortable to accept. Indeed, we have defined the position operator
as an integral (3.11) over position eigenstates. Its having evolved into the momen-
tum operator at t = t0 means that it is no longer described by that integral. The
very nature of the position operator changes with time as it acquires a different set
of eigenstates. Moreover, the position observable at different times does not even
commute with itself:

[x̂(0), x̂(t0)] =
1

Mω
[x̂(0), p̂(0)] =

ih̄
Mω

.

The evolution of observables becomes even less intuitive when we are dealing
with the interaction of different quantum systems. It can then happen, for example,
that the position of one particle at a particular moment becomes the momentum of
another particle at a different moment. Or, if we are dealing with light–atom in-
teractions, the electric field observable associated with the electromagnetic wave
transforms into an operator defining the transition between atomic levels. This fea-
ture can make the application of the Heisenberg picture to quantum problems quite
confusing.

To add to this confusion, let me draw your attention to the following. The Ha-
miltonian (3.55) uses operators x̂ and p̂ whose physical nature is the position and
momentum, respectively. But, as we found, the nature of these operators in the Hei-
senberg picture changes with time. Therefore, it seems that Eq. (3.55) represents the
correct Hamiltonian only at time t = 0, whence the equation should be rewritten as

Ĥ =V (x̂(0))+
p̂(0)2

2M
. (3.137)

But then Heisenberg’s equation (3.129) would contain a commutator between the
Hamiltonian, which is a function of x̂(0) and p̂(0), and the observable Â(t), which
can be either x̂(t) or p̂(t). That is, we calculate the commutator between operators
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associated with different moments in time. But when we solved the above exercises,
we gave no thought to this, simply writing [x̂, p̂] = ih̄. Wasn’t this a mistake?

Exercise 3.81. Show that the Hamiltonian does not evolve in time12, i.e., Ĥ(t) =
Ĥ(0).

Exercise 3.82. Show that the Hamiltonian (3.137) can be rewritten as

Ĥ =V (x̂(t))+
p̂(t)2

2M
, (3.138)

where t is an arbitrary moment in time and operators x̂(t) and p̂(t) are obtained from
Eq. (3.127).
Hint: Use the power series decomposition of the function V (x̂).

Remarkably, we find that, even though the position and momentum observables
evolve with time, their function given by the right-hand side of Eq. (3.138) remains
constant. So both components of the commutator in Eq. (3.129) can be associated
with the same time t, thereby resolving our concern.

This observation can be generalized.

Exercise 3.83. Consider some operator B̂ that at time t = 0 is a function of operators
Â1, . . . Âm:

B̂(0) = f
(
(Â1(0), . . . , Âm(0)

)
. (3.139)

By decomposing this function into a power series, show that the above relation is
preserved at an arbitrary time t, i.e.,

B̂(t) = f
(
Â1(t), . . . , Âm(t)

)
. (3.140)

As we see, the evolution in the Heisenberg picture preserves any functional rela-
tionship between operators that may have existed prior to that evolution. One conse-
quence of this result is that the Hamiltonian has the same dependence on the position
and momentum at different times [see Eqs. (3.137) and (3.138)]. Another relevant
example is given in the next exercise.

Exercise 3.84. Show that the time evolution of the position and momentum obser-
vables in the Heisenberg picture does not change their commutator:

[x̂(t), p̂(t)] = ih̄. (3.141)

Exercise 3.85. Substitute the solution (3.131) into the Hamiltonian (3.83) to check
explicitly that the right-hand sides of Eqs. (3.137) and (3.138) are the same.

12 The fact that the Hamiltonian, when not explicitly dependent on time, does not evolve under the
Heisenberg picture can be viewed as the quantum counterpart of the classical energy conservation
law.
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3.9.2 Displacement operator

In this section, we will study in detail an example Hamiltonian that can be treated
using both the Schrödinger and Heisenberg pictures.

Exercise 3.86. Solve Heisenberg’s equation for the Hamiltonian

Ĥ = β p̂, (3.142)

where β is a real constant, and show that the evolution of the position and momen-
tum operators during time t0 is given by

x̂(t0) = x̂(0)+ x0; (3.143a)
p̂(t0) = p̂(0), (3.143b)

where
x0 = β t0. (3.144)

We see that the evolution under the Hamiltonian (3.142) leads to the displacement
of the position observable by x̂0. Accordingly, the evolution operator

e−
i
h̄ Ĥt = e−

i
h̄ p̂x0 ≡ D̂x(x0) (3.145)

is called the position displacement operator. Let us now study its action in the
Schrödinger picture.

Exercise 3.87. Show that the displacement operator is unitary and D̂†
x(x) =

D̂−1
x (x) = D̂x(−x).

Exercise 3.88. Using the Schrödinger picture, show that

a)
D̂x(x0) |x〉= |x+ x0〉 ; (3.146)

b) if the wavefunction of a state |ψ〉 in the position basis is ψ(x), then the wa-
vefunction of the state D̂x(x0) |ψ〉 is ψ(x− x0) (Fig. 3.12)13;

c)
D̂x(x0) |p〉= e−

i
h̄ x0 p |p〉 ; (3.147)

d) if the wavefunction of the state |ψ〉 in the momentum basis is ψ̃(p), then the
wavefunction of the state D̂x(x0) |ψ〉 is e−

i
h̄ x0 p

ψ(p).

Exercise 3.89. Using both the Heisenberg and Schrödinger pictures, show that the
application of the position displacement operator:

a) adds x0 to the mean position value, but does not change the mean momentum
value;

13 Note that the displacement by positive x0 corresponds to a negative change in the argument of
the wavefunction. More on this in Sec. 3.9.3.
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b) does not change the position and momentum uncertainties.

Fig. 3.12 Effect of the position displacement operator on a wavefunction.

Exercise 3.90. Show that the momentum displacement operator D̂p(p0) ≡ e
i
h̄ p0 x̂

has similar properties with respect to the momentum as the position displacement
operator with respect to the position.

Exercise 3.91. The state |ψ〉 has wavefunction ψ(x) in the position basis. For given
values of x0 and p0, find the wavefunctions of the following states in the position
basis:

a) D̂p(p0) |ψ〉;
b) D̂x(x0)D̂p(p0) |ψ〉;
c) D̂p(p0)D̂x(x0) |ψ〉.

Answer:

a)
〈
x
∣∣ D̂p(p0)

∣∣ ψ
〉
= e

i
h̄ p0x 〈x| ψ〉= e

i
h̄ p0x

ψ(x);

b)
〈
x
∣∣ D̂x(x0)D̂p(p0)

∣∣ ψ
〉
= e−

i
h̄ p0x0e

i
h̄ p0x

ψ(x− x0);

c)
〈
x
∣∣ D̂p(p0)D̂x(x0)

∣∣ ψ
〉
= e

i
h̄ p0x

ψ(x− x0).

The wavefunctions obtained in parts (b) and (c) are not the same. This means that
the effect of the position and momentum displacement operator sequence depends
on their order, so the operators do not commute. However, the permutation of these
operators results only in an overall phase factor e−ip0x0/h̄, and hence does not affect
the physics of the resulting state. This is a manifestation of the Baker–Hausdorff–
Campbell formula (A.54), as we shall see next.

Exercise 3.92. For the phase-space displacement operator D̂xp(x0, p0) ≡
e

i
h̄ (p0 x̂−x0 p̂), show that

D̂xp(x0, p0) = e
i

2h̄ p0x0D̂x(x0)D̂p(p0) = E−
i

2h̄ p0x0D̂p(p0)D̂x(x0) (3.148)

The above result implies that D̂x(x0)D̂p(p0) = e−
i
h̄ p0x0D̂p(p0)D̂x(x0), which is

consistent with the difference between the answers to parts (b) and (c) of Ex. 3.91.

Exercise 3.93. Write the Hamiltonian that would lead to the evolution correspon-
ding to the phase-space displacement operator. Find the corresponding transforma-
tion of the position and momentum observables in the Heisenberg picture.

x xy = y( )
x0

y - = y

x

x x x D x( ) ( )
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3.9.3 Evolution of probability densities∗

We have seen that the position observable, evolving under the displacement Hamil-
tonian, produces an operator x̂(t) that is a function of the initial x̂(0). Situations
such as this are relatively common. Here we shall investigate whether, in such a si-
tuation, we can use the information we have from the Heisenberg picture to predict
the evolution of a wavefunction in the Schrödinger picture. In the case of position
displacement, for example, the relation is straightforward (Fig. 3.12). But can it be
generalized?

Throughout this section, we consider the Hamiltonian to be time-independent as
usual.

Exercise 3.94. Suppose that in the Heisenberg picture the evolution of an operator
x̂ under the Hamiltonian Ĥ transforms it as follows:

x̂(t) = e
i
h̄ Ĥt x̂(0)e−

i
h̄ Ĥt = f (x̂(0), t), (3.149)

where f (x, t) is a real invertible function. Show that in the Schrödinger picture an
eigenstate |x〉 of operator the x̂ with the eigenvalue x will evolve into an eigenstate
of the same operator with eigenvalue f (x, t).

This result can be written mathematically as

e−
i
h̄ Ĥt |x〉= K(x, t) | f (x, t)〉 , (3.150)

where K(x, t) is some proportionality coefficient. In the case of position displace-
ment and position eigenstates, this coefficient is equal to one as in Eq. (3.146), but
this is not so in general. For example, the if we look at the effect of position displa-
cement on the momentum observable, we have f (p, t0) = p [see Eq. (3.143b)], but
K(x, t0) = e−

i
h̄ x0 p 6= 1 as in Eq. (3.147).

So there appears to be no possibility of determining the complex argument of
K(x, t) from the evolution of x̂ in the Heisenberg picture. However, fortunately, we
can determine its absolute value by recalling that e−

i
h̄ Ĥt is a unitary operator, and

hence the right-hand side of Eq. (3.150) must have the same norm as |x〉.

Exercise 3.95. Show that 〈
f (x, t)

∣∣ f (x′, t)
〉
=

δ (x− x′)
f ′(x, t)

, (3.151)

where the derivative f ′(x, t) = ∂

∂x f (x, t) is assumed finite and nonzero.

Exercise 3.96. Show that, in Eq. (3.150),

|K(x, t)|2 = | f ′(x, t)|. (3.152)
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For example, let’s say that for some t, f (x, t)= 2x, so the evolution “stretches” the
position observable by a factor of two. Then Eq. (3.151) becomes, quite reasonably,
〈2x| 2x′〉= 1

2 δ (x− x′), and hence |K(x, t)|2 = 2.

Exercise 3.97. Assuming Eq. (3.150) to hold, show that the wavefunction ψ(x, t)
of an arbitrary state |ψ〉 evolves in time according to

ψ(x, t) = K∗(x,−t)ψ( f (x,−t),0). (3.153)

Exercise 3.98. Show that

a) f (x,−t) = f−1(x, t);
b) |K(x,−t)|2 = 1

| f ′(x,t)| .

Exercise 3.99. Synthesize the above results to obtain, for the evolution of the pro-
bability density associated with the wavefunction ψ(x, t),

|ψ(x, t)|2 = 1
| f ′(x, t)|

|ψ( f−1(x, t),0)|2. (3.154)

Looking again at our example where f (x, t) = 2x, Eq. (3.154) becomes
|ψ(x, t)|2 = 1

2 |ψ( x
2 ,0)|

2. The probability density function stretches along the x
axis and acquires a renormalization factor of 1

2 , in agreement with what we would
expect intuitively.

Although the Heisenberg picture does not predict the evolution of the complex
phase of the wavefunction, it can be used to calculate the time dependence of its
absolute value, and hence the experimentally measurable probability density asso-
ciated with the observable x̂. Generally, the Heisenberg picture is as powerful as
the Schrödinger picture in predicting experimental results; the choice of one or the
other for a specific calculation is dictated by considerations of simplicity and, quite
frequently, the personal taste of the scientist.

3.10 Transformations of harmonic oscillator states

Let us now look at a few operators that can be applied to quantum states of the
harmonic oscillator and are particularly important in the context of quantum optics.
We study these operators in both the Schrödinger and the Heisenberg picture, the-
reby acquiring additional practice and learning more about the relationship between
these pictures.

Throughout this section, we will not be assuming that the system is under the
action of the harmonic oscillator Hamiltonian. The reference to the harmonic os-

With the result of the above two exercises, we can predict the effect of the evolu-
tion on the absolute value of the wavefunction of observable x. Before we do so, let
us eliminate the inconvenient negative time argument in the above equation.



152 A. I. Lvovsky. Quantum Physics

cillator is limited to the use of the rescaled position and momentum observables
introduced in Sec. 3.8, the creation and annihilation operators, and also the states
and relations developed in their context. These relations (except those that pertain
to the energies and evolution of the states) remain valid no matter what the Hamil-
tonian may be, and are valid for any values of κ , M, and ω used for the rescaling.

3.10.1 Coherent state as displaced vacuum

We begin by showing that the coherent state can be written as the displaced vacuum
state and reproducing some of the results of Sec. 3.8.3 in a simplified fashion.

Exercise 3.100. Show that the phase-space displacement operator in the rescaled
units, D̂XP(X0,P0)≡ eiP0X̂−iX0P̂, corresponds to the following transformations in the
Heisenberg picture [Fig. 3.13(a)]:

D̂†
XP(X0,P0)X̂D̂XP(X0,P0) = X +X0; (3.155a)

D̂†
XP(X0,P0)P̂D̂XP(X0,P0) = P+P0; (3.155b)

D̂†
XP(X0,P0)âD̂XP(X0,P0) = â+

X0 + iP0√
2

, (3.155c)

where â is the annihilation operator.
Hint: Introduce a fictitious Hamiltonian Ĥ = h̄ω(P0X̂ −X0P̂), where ω = 1/t, and
study the evolution of operators X̂ , P̂ and â under this Hamiltonian for time t.

Exercise 3.101. Check that the vector D̂XP(Xα ,Pα) |0〉, where |0〉 is the vacuum
state, is an eigenvector of the annihilation operator with eigenvalue α = Xα+iPα√

2
.

Check that the norm of this vector is 1.

Comparing this result with the definition of the coherent state (Sec. 3.8.3), we
see that

|α〉 ∝ D̂XP(Xα ,Pα) |0〉 . (3.156)

Note that we used a proportionality sign, rather than the equality sign: coherent
states |α〉 follow a certain phase convention and we cannot yet be confident that the
right-hand side of Eq. (3.156) has the same phase. We will determine this phase in
the following.

Exercise 3.102.∗

a) Show that the displacement operator can be rewritten as

D̂XP(Xα ,Pα) = eα â†−α∗â. (3.157)

Hint: Use Eq. (3.100).
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b) Transform the result of part (a) as follows:

D̂XP(Xα ,Pα) = e−|α|
2/2eα â†

e−α∗â. (3.158)

Hint: Use the Baker–Hausdorff–Campbell formula (A.54).
c) Show that the right-hand side of Eq. (3.156) can be rewritten as

D̂XP(Xα ,Pα) |0〉= e−|α|
2/2eα â† |0〉 . (3.159)

Exercise 3.103. Express the right-hand side of Eq. (3.159) in the Fock basis by
expanding the exponent in a power series.

We see that the right-hand side of Eq. (3.156) has exactly the same Fock de-
composition (3.122) as the coherent state (3.122). This means that, by displacing
the vacuum, we obtain a state that is not just proportional, but actually equal to the
coherent state:

|α〉= D̂XP(Xα ,Pα) |0〉 . (3.160)

0

0

Fig. 3.13 Phase space representation of the displacement (a), phase shift (b), and squeezing (c)
operators. The squeezing shown corresponds to e−r = 1

2 .

3.10.2 Phase shift

The evolution under the harmonic oscillator Hamiltonian (3.96) can be written as

e−
i
h̄ Ĥt = e−iωt(n̂+ 1

2 ). (3.161)

We found in Ex. 3.73 that this evolution transforms the coherent state |α〉 into anot-
her coherent state e−

1
2 iωt

∣∣αe−iωt
〉
. The coherent state acquires a coherent phase

shift of ωt and, in addition, a quantum phase factor e−
1
2 iωt that arises from the free

a) b) c)

X

P

X

P

X

P

P
X

j
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term in the Hamiltonian. It is convenient to introduce the phase-shift operator

F̂(ϕ)≡ e−iϕ n̂, (3.162)

where ϕ is a real number. The action of this operator is equivalent to the evolution
(3.161) for a time t = ϕ/ω , but does not contain this extraneous quantum phase
factor.

Exercise 3.104. Show that

a)
F̂(ϕ) |n〉= exp(−iϕn) |n〉 , (3.163)

b)
F̂(ϕ) |α〉=

∣∣∣αe−iϕ
〉
. (3.164)

Equation (3.163) shows how the coherent phase shift works: it applies a quantum
phase factor exp(−iϕn) |n〉 to each Fock component |n〉 of a state. Acting together
within a superposition of Fock states, these (individually unphysical) quantum phase
shifts result in a physically meaningful coherent phase shift of the coherent state.

Exercise 3.105. Show that the phase shift transforms the harmonic oscillator ope-
rators as follows [Fig. 3.13(b)]:

F̂†(ϕ)âF̂(ϕ) = âe−iϕ ; (3.165)
F̂†(ϕ)â†F̂(ϕ) = â†eiϕ ; (3.166)
F̂†(ϕ)X̂ F̂(ϕ) = X̂ cosϕ + P̂sinϕ; (3.167)
F̂†(ϕ)P̂F̂(ϕ) = P̂cosϕ− X̂ sinϕ. (3.168)

Hint: Similarly to Ex. 3.100, introduce a fictitious Hamiltonian such that the opera-
tor transformations on the left-hand sides of the above equations can be interpreted
as their evolution under this Hamiltonian in the Heisenberg picture.

We see that applying the phase shift operator (or the harmonic oscillator evolu-
tion) leads to clockwise rotation of the phase space through an angle ϕ = ωt around
the origin. This reproduces our earlier result (3.115) for the evolution of the mean
position and momentum under the harmonic oscillator Hamiltonian. Let us also re-
call that we obtained the last two of the above equations, albeit in non-rescaled
variables, when we introduced the Heisenberg picture in Sec. 3.9.1.

3.10.3 Squeezing

The single-oscillator (single-mode) squeezing operator is given by

Ŝ(r) = er(â2−â†2)/2, (3.169)



3.10 Transformations of harmonic oscillator states 155

where the squeezing parameter r is a real number.

Exercise 3.106.§ Show that the squeezing operator is unitary and Ŝ†(r) = Ŝ−1(r) =
Ŝ(−r).
Hint: See Ex. 3.87.

Exercise 3.107. Check that the squeezing operator is equivalent to the evolution
operator under the Hamiltonian

Ĥ =
i
2

h̄γ[â2− (â†)2] =−1
2

h̄γ[X̂ P̂+ P̂X̂ ] (3.170)

for time t with r = γt. Show that this evolution in the Heisenberg picture transforms
operators as follows:

Ŝ†(r)X̂ Ŝ(r) = X̂e−r; (3.171)
Ŝ†(r)P̂Ŝ(r) = P̂er; (3.172)
Ŝ†(r)âŜ(r) = âcoshr− â† sinhr; (3.173)

Ŝ†(r)â†Ŝ(r) = â† coshr− âsinhr. (3.174)

Exercise 3.108. Suppose that the state |ψ〉 has mean square uncertainties in the
position and momentum equal to

〈
∆X2

0
〉

and
〈
∆P2

0
〉
, respectively. Show that the

mean square uncertainties in these observables in the state Ŝ(r) |ψ〉 are e−2r
〈
∆X2

0
〉

and e2r
〈
∆P2

0
〉
, respectively.

These results justify the name “squeezing operator”. It “shrinks” the position
observable while “stretching” the momentum by a factor er [Fig. 3.13(c)]. This si-
multaneous opposite effect on the two observables ensures that the position and mo-
mentum uncertainty product is unaffected, so the uncertainty principle still holds. In
particular, when the squeezing operator is applied to a vacuum or coherent state, the
uncertainty product in the resulting state corresponds to the minimum value (3.95)
allowed by the theory.

When we apply the squeezing operator to the vacuum state, we obtain the squee-
zed vacuum state. Its remarkable feature is that its zero-point vibration amplitude in
position (for r > 0) or momentum (for r < 0) is less than that of the vacuum state
— the state of lowest possible energy, with zero energy quanta. In the optical im-
plementation of the harmonic oscillator, this zero-point vibration manifests itself as
random fluctuations of the electric field around zero. So, in the squeezed vacuum
state, this noise is lower than when the light is completely off!

Let us now ask ourselves what the wavefunction of the squeezed vacuum state
Ŝ(r) |0〉 looks like. Direct derivation of these wavefunctions in the Schrödinger pic-
ture is quite tedious. However, in view of our results from the Heisenberg picture,
it is easy to guess that the operation of squeezing results in horizontal rescaling and
renormalization of the vacuum state wavefunction (3.107a):
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ψsq(X) =
〈
X
∣∣ Ŝ(r)

∣∣ 0
〉
= er/2

ψ0(Xer) =
er/2

π1/4 e−X2e2r/2; (3.175a)

ψ̃sq(P) =
〈
P
∣∣ Ŝ(r)

∣∣ 0
〉
= e−r/2

ψ0(Pe−r) =
e−r/2

π1/4 e−P2e−2r/2. (3.175b)

Exercise 3.109. Check that the wavefunctions (3.175) are

a) normalized;
b) consistent with Eq. (3.154).

The test we just performed does not tell us whether we have guessed the complex
phase of the wavefunctions correctly. To perform this test, let us simply plug them
into the time-dependent Schrödinger equation and check for consistency.

Exercise 3.110. Check that wavefunctions (3.175) satisfy the Schrödinger equation
for the Hamiltonian (3.170) with r = γt.

The two-oscillator (two-mode) squeezing operator, acting on two oscillators in-
dicated by subscripts A and B, is given by

Ŝ2(r) = exp[r(−âAâB + â†
Aâ†

B)], (3.176)

where r is a real number.

Exercise 3.111. a) Check that the two-mode squeezing operator can be associated
with the following fictitious Hamiltonian:

Ĥ = ih̄γ(−âAâB + â†
Aâ†

B) = h̄γ(X̂AP̂B + P̂AX̂B) (3.177)

with r = γt.
b) Show that two-mode squeezing is represented in the Heisenberg picture by the

following operator transformation14:

Ŝ†
2(r)X̂±Ŝ2(r) = X̂±e±r; (3.178)

Ŝ†
2(r)P̂±Ŝ2(r) = P̂±e∓r; (3.179)

Ŝ†
2(r)âAŜ2(r) = âA coshr+ â†

B sinhr; (3.180)

Ŝ†
2(r)âBŜ2(r) = âB coshr+ â†

A sinhr; , (3.181)

where

X̂± =
X̂A± X̂B√

2
; P± =

P̂A± P̂B√
2

. (3.182)

c) Find the expectation values and uncertainties of the observables X̂A,B, P̂A,B, X̂±
and P̂± in the two-mode squeezed vacuum state Ŝ2(r) |00〉.
Answer: All expectation values are zero. The mean square uncertainties are:

14 The mode operator transformation given by Eqs. (3.173), (3.174) or Eqs. (3.180), (3.181) is
called the Bogoliubov transformation.
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∆X2
−
〉
=
〈
∆P2

+

〉
=

1
2

e−2r; (3.183)〈
∆X2

+

〉
=
〈
∆P2
−
〉
=

1
2

e2r; (3.184)

〈∆X2
A〉= 〈∆X2

B〉= 〈∆P2
A〉= 〈∆P2

B〉=
1
2

cosh2r. (3.185)

Exercise 3.112. By substituting into the time-dependent Schrödinger equation,
check that the normalized wavefunctions of the two-mode squeezed vacuum state
in the position and momentum bases are (Fig. 3.14):

Ψsq2(XA,XB) =
〈
XA,XB

∣∣ Ŝ2(r)
∣∣ 0,0

〉
(3.186a)

=
1√
π

e−(XA−XB)
2e2r/4e−(XA+XB)

2e−2r/4;

Ψ̃sq2(PA,PB) =
〈
PA,PB

∣∣ Ŝ2(r)
∣∣ 0,0

〉
(3.186b)

=
1√
π

e−(PA−PB)
2e−2r/4e−(PA+PB)

2e2r/4.

Fig. 3.14 Wavefunction of the two-oscillator squeezed vacuum state in the position (a) and mo-
mentum (b) bases. The position observables are correlated, and the momentum observables an-
ticorrelated, so the uncertainties in their difference and sum, respectively, are below the vacuum
level (represented by the circles). By measuring either the position or momentum, Alice remo-
tely prepares a state that approximates, for large r, an eigenstate of the same observable at Bob’s
location.

Exercise 3.113. The two-oscillator squeezed state (3.186a) is shared between ob-
servers Alice and Bob.
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-
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a) Suppose Alice measures her particle’s position and obtains the result XA. What
will the wavefunction of Bob’s particle become in the position basis? What is
its corresponding position uncertainty

〈
∆X2

B
〉
?

b) Suppose Alice measures her particle’s momentum and obtains the result PA.
What will the wavefunction of Bob’s particle become in the momentum basis?
What is its corresponding momentum uncertainty

〈
∆P2

B
〉
?

Answer: 〈
∆X2

B
〉
=
〈
∆P2

B
〉
=

1
2cosh2r

. (3.187)

Equation (3.187) reveals a remarkable property of the two-mode squeezed va-
cuum. If we measure either the position or momentum of one of the two oscillators,
we will know the corresponding observable of the other oscillator with an uncer-
tainty that is less than that of the vacuum state (Fig. 3.14). In other words, we can
remotely, at will, prepare the other oscillator in one of the two states for which the
product of the position and momentum uncertainties is below the minimum allowed
by by the uncertainty principle. This violates local realism by the same logic as
does the original Einstein–Podolsky–Rosen state (Sec. 3.3.3).

This property of the two-mode squeezed vacuum, occurring for any value of the
squeezing parameter r (positive or negative), is due to its entangled nature. Because
it is relatively easy to prepare experimentally (Box 3.13), this state is a primary
entangled resource in various quantum optical information protocols that rely on
continuous-variable representations of electromagnetic oscillators.

Let us look briefly at the two-mode squeezed state in non-rescaled variables.
What would be its wavefunction and under which circumstances would it instantiate
the EPR paradox?

Exercise 3.114. Alice and Bob share a state with the wavefunction

Ψ(xA,xB) = N

[
e−

(xA−xB)2

4d2 e−
(xA+xB)2

4D2

]
, (3.188)

where xA and xB are non-rescaled position and momentum observables, and d and
D are positive constants.

a) Find the factor ζ that rescales the position observable according to X̂A,B = ζ x̂A,B
in such a way that the above wavefunction takes the form (3.186a). Show that

the corresponding squeezing factor is er =
√

D
d .

b) Find the corresponding rescaling factor for the momentum observable such that
[X̂A,B, P̂A,B] = i.

Our result means that a two-particle Gaussian wavepacket (3.188) exhibits en-
tanglement with any amount of correlation between the positions of the two parti-
cles, no matter how small. The entanglement is absent only for d = D, i.e., when
this state becomes explicitly separable:
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Ψ(xA,xB) = N

[
e−

x2
A+x2

B
2d2

]
.

Our final goal in the discussion of squeezing is to find the Fock basis decomposi-
tion of the single-mode and two-mode squeezed states. We will first do an approxi-
mate evaluation for small r to illustrate the concept, and then a complete calculation.

Exercise 3.115. a) Decompose the single-mode squeezing operator into a power
series to first order in r and apply it to the vacuum state in the Schrödinger
picture in the Fock basis. Show that the resulting state is given by

Ŝ(r) |0〉 ≈ |0〉− r√
2
|2〉 . (3.189)

Calculate the position and momentum variances in this state and show that they
are consistent with the result of Ex. 3.108.

b) Decompose the two-mode squeezing operator into a power series to first order
in r and apply it to the double-vacuum state |0,0〉. Show that the resulting state
is given by

Ŝ2(r) |0,0〉 ≈ |0,0〉+ r |1,1〉 . (3.190)

Calculate the variances of the observables X̂± and P̂± in this state and show that
they are consistent with Eqs. (3.183) and (3.184).

We can see the salient features of the Fock structure of the squeezed states from
this simple calculation. The Taylor decomposition of the two-mode squeezing ope-
rator contains terms with various powers of the operators âAâB and â†

Aâ†
B. This me-

ans that Ŝ2(r) creates and destroys energy quanta in the two oscillators strictly in
pairs, so the two-mode squeezed state only contains terms with the same numbers
of quanta:

Ŝ2(r) |0,0〉=
∞

∑
n=0

Dn |nn〉 .

Similarly, the single-mode squeezing operator creates and annihilates quanta in a
single oscillator in a strictly pairwise fashion, so the Fock decomposition of the
single-mode squeezed state only contains terms with even numbers of photons:

Ŝ(r) |0〉=
∞

∑
m=0

Cm |2m〉 .

In the following, we will find the coefficients Cm and Dn. This calculation is a good
exercise but relatively lengthy, so it can be skipped in the first reading.

Exercise 3.116.∗ Show that

Ŝ(r) |0〉= 1√
coshr

∞

∑
m=0

(− tanhr)m

√
(2m)!

2mm!
|2m〉 (3.191)



160 A. I. Lvovsky. Quantum Physics

Box 3.13 Preparing and measuring the squeezed states.
In the optical realization of the harmonic oscillator, squeezed states can be produced

using (you guessed it) parametric down-conversion (Box 1.6). As we know, a primary pro-
perty of this phenomenon is that the photons are generated in pairs — exactly as one would
expect to see in squeezed vacuum states. The down-conversion is configured differently de-
pending on whether the single- or two-mode squeezed vacuum is to be generated: either in
the degenerate fashion, when the two photons are emitted into the same optical mode or
non-degenerate, when the photons in a pair are distributed between two optical channels.

Spontaneous parametric down-conversion. a) Degenerate configuration, leading to the single-mode squeezed
vacuum. b) Non-degenerate configuration, leading to the two-mode squeezed vacuum.

The non-degenerate configuration is the same as discussed in the context of heralded
photon sources (Box 1.6) and entangled-pair sources (Box 2.1). However, these discussions
relied on the assumption that the pumping was weak, so the probability of generating two or
more pairs at a time is negligible. When we drop this assumption we obtain squeezing.

We see that the series (3.193) is a geometric progression: the amplitude of each subse-
quent term is a factor of tanhr times the previous one. This is what is expected from para-
metric down-conversion: because this process is spontaneous, the probability of producing
n pairs is the n th power of the probability of producing a single pair. If this probability is
significant, the squeezing factor e−r (see Ex. 3.108) is substantially different from 1.

In the single-mode squeezing case (3.191), this geometric-progression relation becomes
more complicated because of the interference between photons of the same pair emitted into
the same mode.

Once the squeezed state has been generated, how can it be detected? One way to obtain
evidence for two-mode squeezing is to measure the photon numbers in the two emission
modes and check that they are correlated. However, this method does not reveal the phase
relation between the photon pair components, and furthermore, it is not suitable for detecting
single-mode squeezing. It is much more conclusive to perform multiple measurements of the
position and momentum observables using the homodyne detector (Box 3.12) and check that
their statistics behave as expected.

Multiple measurements of the observable X̂ cosθ + P̂sinθ in the single-mode position-squeezed vacuum state.
The parameter θ varies with time so ∼10, 90, 160 ms correspond to measurements of the position observable,
and those at ∼50, 130, 200 ms to the momentum. Reproduced from G. Breitenbach, S. Schiller, and J. Mlynek,
Measurement of the quantum states of squeezed light, Nature 387, 471 (1997).

a) b)

pump

photon paircrystal

photon

pair

pump

crystal
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by going through the following steps:

a) Calculate the inner product between Ŝ(r) |0〉 and a coherent state |α〉 (with a
real amplitude α), e.g., in the position basis.
Answer: 〈

α
∣∣ Ŝ(r)

∣∣ 0
〉
=

√
1

coshr
exp
[
− e2r

1+ e2r α
2
]
. (3.192)

b) Decompose the coherent state on the left-hand side of Eq. (3.192) in the Fock
basis and the exponent on the right-hand side of that equation into a power
series in α . Equate the terms with the same power of α on the two sides of the
equation to obtain Eq. (3.191).

Exercise 3.117.∗ Show that

Ŝ2(r) |0,0〉=
1

coshr

∞

∑
n=0

tanhn r |nn〉 (3.193)

by going through the following steps:

a) Calculate the overlap of Ŝ2(r) |0,0〉 with the tensor product |α,α〉 of identical
coherent states in Alice’s and Bob’s oscillators:〈

α,α
∣∣ Ŝ2(r)

∣∣ 0,0
〉
=

1
coshr

exp
[
− 2

1+ e2r α
2
]
. (3.194)

b) Decomposing the coherent states on the left-hand side in the Fock basis and
keeping only the terms with equal photon numbers, show that

∞

∑
n=0

〈
n,n
∣∣ Ŝ2(r)

∣∣ 0,0
〉 α2n

n!
=

1
coshr

eα2 tanhr. (3.195)

c) Decompose the exponent on the right-hand side of the above equation into a
power series in α to obtain Eq. (3.193).

Exercise 3.118.∗ Find the mean and variance of the number of energy quanta

a) in the single-mode squeezed vacuum state;
b) in the two-mode squeezed state (per channel).

Hint: Write the squared norm of both states using Eqs. (3.191) and (3.193) and
calculate the derivative by tanhr.
Answer:

a) 〈m〉= sinh2 r;
〈
∆m2

〉
= 2sinh2 r+2sinh4 r.

b) 〈n〉= sinh2 r;
〈
∆n2

〉
= sinh2 r+ sinh4 r.
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3.11 Problems

Problem 3.1. A state has wavefunction

ψ(x) = Axe−κ2x2/2.

a) Find the normalization factor A.
b) Find the wavefunction ψ̃(p) in the momentum basis.
c) Check the uncertainty principle:

〈
∆ p2

〉〈
∆x2

〉
≥ h̄2/4.

Hint:
+∞∫
−∞

x2e−x2
dx =

√
π

2
;

+∞∫
−∞

x4e−x2
dx =

3
√

π

4
.

Problem 3.2. Find the matrix element
〈

p
∣∣ Â
∣∣ p′
〉

if the operator Â is a function of
position:

a) Â(x) = A0;
b) Â = e−x̂2/b2

.

Problem 3.3. For the energy eigenstates of Ex. 3.40, find the uncertainties in the
position and momentum and check that the uncertainty principle is satisfied.

Problem 3.4. Consider the state ψ(x) =
{

Ax for |x|<a/2
0 for |x|≥a/2 (where A = 2

√
3/a3/2 is the

norm) in the potential of Ex. 3.40. Find the energy spectrum of this state, i.e., the
probabilities prn of observing each energy eigenstate. Show that these probabilities
add up to 1.
Hint: ∑1/n2 = π2/6.

Problem 3.5. Consider a particle of mass M whose initial state has the wavefunction
ψ(x), in an infinite potential box of width a. Show that the evolution under the
Schrödinger equation will restore the initial state (possibly with a phase factor) after
time t = 4Ma2/π h̄.

Problem 3.6. For the finite well potential (3.65):

a) find analytically the approximate corrections to the first two energy levels of an
infinitely deep potential well (Ex. 3.40) when it is replaced by a finite well with
V0� E1, where E1 is given by Eq. (3.69);

b) find numerically the first two energy eigenvalues for k0a = 10. Is your result
consistent with the result of part (a)?

Problem 3.7. A particle is in the ground state of an infinite potential box of length
a. The box suddenly expands (symmetrically) to twice its width. What is the proba-
bility of finding the particle in the ground state of the new potential?
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Fig. 3.15 Potential for Problem 3.8

Problem 3.8. Sketch qualitatively the real parts of the stationary wavefunctions for
the potentials shown in Fig. 3.15 with energy levels as shown. Your solution should
give proper attention to details, such as the relations between de Broglie wavelengths
in different areas of the plot, continuity conditions, etc.

V0

a

�

0
0

Fig. 3.16 Potential for Problem 3.9

Problem 3.9. Find the transcendental equation for the energy eigenvalues associa-
ted with the bound stationary states of the potential

V (x) =

+∞ for x≤ 0;
0 for 0 < x≤ a;
V0 for x > a.

Compare your result with that of Ex. 3.39.

Problem 3.10. Solve Ex. 3.41 in the momentum basis. Check consistency with the
position basis solution.
Hint:

+∞∫
−∞

1
1+ x2 dx = π;

+∞∫
−∞

1
(1+ x2)2 dx = π/2 (3.196)

Ґ Ґ
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Fig. 3.17 Potential for Problem 3.11.

Problem 3.11. Find the energies and wavefunctions of all bound states associated
with the potential

V (x) =V0θ(x)−W0δ (x),

where V0 and W0 are positive and θ(x) is the Heaviside step function (Fig. 3.17).
Find the conditions for the existence of at least one bound state.

Problem 3.12. Calculate the reflection and transmission for scattering on a delta-
potential V (x) =W0δ (x), with energy E > 0. Compare your results with those obtai-
ned from Eqs. (3.81) for an infinitely thin and high rectangular potential barrier
(L→ 0, V0 =W0/L).

Problem 3.13. A massive particle of mass M is attached to a spring with spring
constant κ . The other end of the spring is attached to a wall, resulting in harmonic
oscillatory motion.

a) Write the full set of energy eigenvalues and the corresponding normalized wa-
vefunctions in the non-rescaled position basis.

b) Suppose another wall is inserted at point x = 0 as shown in Fig. 1, so the particle
cannot go into the region x > 0. How should the above set be modified in order
to represent the energy eigenvalues and eigenstates for the new potential?

Fig. 3.18 Illustration for Problem 3.13

Problem 3.14. A massive particle of mass M is attached to a spring with spring
constant κ . The other end of the spring is attached to a wall, resulting in harmonic
oscillatory motion. The particle is initially in the ground energy eigenstate.

k

0

m

x

0

V0
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a) At time t = 0, an additional, position-independent force F begins to act on the
particle. Find the probability of detecting the particle in the ground state of the
new potential.

b) Find the expectation values of the position 〈x(t)〉 and momentum 〈p(t)〉 of the
particle as a function of time.
Hint: you need not find the evolution of the wavefunction.

Problem 3.15. 15

The single-photon added coherent state (SPACS) is obtained from coherent states
by action of the creation operator: |α,1〉= N â† |α〉.

a) Find the normalization factor N .
b) Find the decomposition of this state in the photon number basis (you are not

required to simplify the result).
c) Find the expectation value of the position observable.
d) Find the wavefunction of the SPACS for real α .
e) Which quantum state does SPACS approach in the limit α = 0? α → ∞?

Problem 3.16. Consider the state of the harmonic oscillator whose decomposition
in the photon number basis has the form

|ψ(t = 0)〉= α |0〉−β |2〉 ,

where α and β are real and α2 +β 2 = 1.

a) Find the wavefunction of |ψ(t = 0)〉 in the position basis.
b) Find the behavior |ψ(t)〉 of this state as a function of time in the photon number

basis.
c) Find the expectation value and variance of the energy as a function of time.
d) Find the expectation value and variance of the position as a function of time.
e) For which values of α and β is the state |ψ(t = 0)〉 position-squeezed, i.e., the

position variance is less than that of the vacuum state?

Problem 3.17. Consider the following state of two harmonic oscillators:

|ψ〉= α |0,0〉−β |1,1〉 ,

where α and β are real with α2 +β 2 = 1.

a) For which values of α and β does this state exhibit two-mode position-
squeezing, i.e., the variance of X̂A− X̂B is less than that of the double-vacuum
state?

b) Answer the same question for the momentum observable.

15 In all problems below, use the rescaled position and momentum observables, i.e., [X̂ , P̂] = i.
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Problem 3.18. Consider coherent superpositions of coherent states |S±〉 =
N±(|α〉 ± |−α〉), where N± are normalization factors and the amplitude α is
real and positive16.

a) Find N±.
b) Find the matrices (wavefunctions) of these states

• in the Fock basis;
• in the position basis;
• in the momentum basis.

c) Show that, for small amplitudes α , these states can be approximated, up to the
first two terms in the Fock decomposition, by the states

|S+〉 ≈ Ŝ(r+) |0〉 ,
|S−〉 ≈ Ŝ(r−) |1〉 ,

and find r±(α) for which the approximation is optimal.

Problem 3.19. For the phase-space displacement operators D̂XP(Xα ,Pα) and
D̂XP(Xβ ,Pβ ) with α,β =

Xα,β+iPα,β√
2

:

a) express the operator D̂XP(Xβ ,Pβ )D̂XP(Xα ,Pα) through D̂XP(Xα +Xβ ,Pα +Pβ );
b) express the state D̂XP(Xβ ,Pβ ) |α〉 through the coherent state vector |α +β 〉.

Problem 3.20. For the position displacement operator D̂X (X0) in rescaled variables:

a) Find D̂†
X (X0)âD̂X (X0) and D̂†

X (X0)â†D̂X (X0).
b) Find [a, D̂X (X0)] and [a†, D̂X (X0)].
c) Find the Fock decomposition of the displaced single-photon state D̂X (X0) |1〉.

Hint: |n〉= (â†)n |0〉/
√

n!.

Problem 3.21. A harmonic oscillator, initially in the vacuum state, has evolved un-
der the Hamiltonian Ĥ1 = r

[
â2 +(â†)2

]
/2 or Ĥ2 = rP̂2, with a real and positive r,

for time t0. Perform the following calculations for the resulting state:

a) Find the mean and variance of the general quadrature observable
X̂θ = X̂ cosθ + P̂sinθ for an arbitrary angle θ .

b) Which angle corresponds to the highest squeezing?
c) What is the corresponding quadrature variance?

Answer these questions for both Hamiltonians Ĥ1 and Ĥ2.

16 This state is dubbed the “Schrödinger kitten” because it is a superposition of two “classical” and
potentially macroscopic coherent states, and yet it is highly nonclassical. It is a subject of intense
research because, by constructing such states with increasingly high amplitudes α , we may be able
to identify the limits of quantum physics — see Sec. 2.4.3.
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Problem 3.22. Two harmonic oscillators, initially in the vacuum state |0〉⊗ |0〉, in-
teract under the Hamiltonian

Ĥ = h̄χX̂AP̂B

with a real and positive χ .

a) Write the differential equations for the position and momentum observables
X̂A,B(t) and P̂A,B(t) in the Heisenberg picture.

b) Solve these equations and obtain the expressions for X̂A,B(t) and P̂A,B(t).
c) Find the expectation values and variances of observables X̂A,B, P̂A,B, X̂± = (X̂A±

X̂B)/
√

2, and P̂± = (P̂A± P̂B)/
√

2 as functions of time t.
d) For which values of t is two-mode squeezing present, i.e., one of the uncertain-

ties of X̂± or P̂± is below that of the vacuum state at time t = 0?
e) Find the first-order approximation of the state into which the double-vacuum

state evolves under Hamiltonian Ĥ in the Fock basis, in the Schrödinger picture,
assuming χt/h̄� 1.

f) Find the mean square value
〈
X2
±
〉

of that state. Is your result consistent with that
of part (d)?



Chapter 4
Angular momentum

4.1 3D motion

Now that we’ve become experts in one-dimensional quantum mechanics, it is time
to remember that the space we live in is three-dimensional. So in order to provide
a quantum theoretical description for realistic physical objects, such as atoms, we
need to generalize our results to three dimensions. A straightforward way of doing
so would be to say that the Hilbert space of three-dimensional states of a point-like
particle is a tensor product of Hilbert spaces associated with individual coordinates:

V3D = Vx⊗Vy⊗Vz. (4.1)

The 3D position and momentum observables are vectors1 whose components
are the position and momentum observables of individual one-dimensional spaces2:
~̂r = (x̂, ŷ, ẑ), ~̂p = ( p̂x, p̂y, p̂z). The commutation relations between the components of
the 3D position and momentum observables are [r̂ j, p̂k] = ih̄δ jk. That is, the position
and momentum do not commute if and only if they belong to the same Hilbert space.

By eigenstates of vector operators we understand simultaneous eigenstates of
their component operators. For example, the state |~r〉= |x〉⊗|y〉⊗|z〉 simultaneously
satisfies three equations:

x̂ |~r〉= (x̂⊗ 1̂⊗ 1̂)(|x〉⊗ |y〉⊗ |z〉) = x |~r〉 ; (4.2)
ŷ |~r〉= (1̂⊗ ŷ⊗ 1̂)(|x〉⊗ |y〉⊗ |z〉) = y |~r〉 ;
ẑ |~r〉= (1̂⊗ 1̂⊗ ẑ)(|x〉⊗ |y〉⊗ |z〉) = z |~r〉 ,

so |~r〉 is an eigenstate of ~̂r.
Let me emphasize that a vector operator is not a tensor product operator in the

sense of Sec. 2.1.3. Rather, it is just a set of three operators. This means, for example,

1 To avoid confusion, we will not be using the term “vector” in the sense “element of the Hilbert
space” in this chapter. We use this term only for observables which have x-, y- and z-components.
2 Sometimes we will be using an alternative notation, as follows: ~̂r = (r̂1, r̂2, r̂3), ~̂p = ( p̂1, p̂2, p̂3).

A. I. Lvovsky, Quantum Physics, Undergraduate Lecture Notes in
Physics, https://doi.org/10.1007/978-3-662-56584-1_4
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that acting with operator ~̂r upon a tensor product of position eigenstates |~r〉 ≡ |x〉⊗
|y〉⊗ |z〉, we will obtain a set of three states (x |~r〉 ,y |~r〉 ,z |~r〉). If ~̂r were an operator
tensor product, we would instead obtain a single state xyz |~r〉.

As in the one-dimensional case, the wavefunction of any state |ψ〉 is given by

ψ(~r) = 〈~r| ψ〉 . (4.3)

Exercise 4.1. Show that:

a) any state |ψ〉 is related to its wavefunction (4.3) according to

|ψ〉=
+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

ψ(~r) |~r〉dxdydz; (4.4)

b) the inner product of two states |ψ〉 and |ϕ〉 in V3D is given by

〈ψ| ϕ〉=
+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

ψ
∗(~r)ϕ(~r)dxdydz. (4.5)

Exercise 4.2. Write down the three-dimensional de Broglie wave, i.e., the inner
product of states |~r〉= |x〉⊗ |y〉⊗ |z〉 and |~p〉= |px〉⊗

∣∣py
〉
⊗|pz〉.

Answer:
〈~r| ~p〉= 1

(2π h̄)3/2 e
i
h̄ (xpx+ypy+zpz) =

1
(2π h̄)3/2 e

i
h̄~r·~p. (4.6)

We shall now look at the Hamiltonian governing the motion in 3D space. As in
the one-dimensional case, one of our goals in this chapter will be to find wavefuncti-
ons of energy eigenstates for various potentials.

A general Hamiltonian for mechanical motion is the sum of kinetic and potential
energies. In 3D, it takes the form

Ĥ =
p̂2

x

2M
+

p̂2
y

2M
+

p̂2
z

2M
+V (~̂r). (4.7)

The kinetic energy observable in V3D is a sum of the kinetic energies corresponding
to individual coordinates. If this is also the case for the potential, i.e., if one can
decompose V (~̂r) = Vx(x) +Vy(y) +Vz(z), we can look for solutions of the time-
independent Schrödinger equation among separable states according to Ex. 2.26(c).
A simple example of such a situation is the free-space case with V (~r) = 0. Indeed,
the 3D de Broglie wave (4.6), which represents an eigenstate of this Hamiltonian, is
a product of de Broglie waves for the individual coordinates.

Exercise 4.3. Show that the state |~p〉 is an eigenstate of the kinetic energy operator
p̂2/2M = ( p̂2

x + p̂2
y + p̂2

z )/2M with eigenvalue (p2
x + p2

y + p2
z )/2M.

Another example is given in the following exercise.
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Exercise 4.4.∗ Find the energy eigenvalues and their degeneracy for a three-
dimensional isotropic harmonic oscillator with V (~r) = Mω2r2/2, where
r2 = x2 + y2 + z2.

Generally, however, the potential is not a sum of potentials for individual coordi-
nates. As a result, the evolution under the Hamiltonian (4.7) will typically entangle
states that were initially tensor products of vectors in Vx, Vy, and Vz. The eigenstates
of the Hamiltonian will also be entangled with respect to the three component spa-
ces. To illustrate this point, let us write the time-independent Schrödinger equation
for 3D motion in the position basis.

Exercise 4.5. Show that, in the position basis:

a) the action of a component of the momentum operator on an arbitrary state |ψ〉
in the position representation is 〈~r| p̂i |ψ〉=−ih̄ ∂

∂ ri
〈~r| ψ〉=−ih̄ ∂

∂ ri
ψ(~r);

b) the action of the momentum operator vector in the position basis is 〈~r|~̂p |ψ〉 =
−ih̄~∇〈~r| ψ〉 = −ih̄~∇ψ(~r), where ~∇ = ( ∂

∂x ,
∂

∂y ,
∂

∂ z ) (in other words, in the posi-

tion basis, ~̂p'−ih̄~∇);
c) the time-independent Schrödinger equation takes the form[

p̂2

2M
+V (~r)

]
ψ(~r) = Eψ(~r), (4.8)

or [
− h̄2

2M
∇

2 +V (~r)
]

ψ(~r) = Eψ(~r), (4.9)

where ∇2 = ∂ 2/∂x2 +∂ 2/∂y2 +∂ 2/∂ z2 is the Laplacian.

We have obtained a three-dimensional partial differential equation. Its solution
typically cannot be written as a product of functions of individual Cartesian varia-
bles — a manifestation of the entanglement mentioned above.

Solving Eq. (4.9) in its general form is a formidable task. Fortunately, physical
problems that require such an undertaking are relatively rare. Usually, the potential
has some symmetries that simplify the solution. We study one such case next.

4.2 Rotationally symmetric potential

4.2.1 Spherical coordinates

Consider a rotationally invariant potential V (~r) = V (r), where r =
√

x2 + y2 + z2

is the length of the radius vector to the point (x,y,z) — such as the potential of
the electric field that an atomic nucleus imposes on electrons. If we learn how to
solve the time-independent Schrödinger equation for that potential, we will be able
to calculate stationary state wavefunctions of an electron in an atom.
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Fig. 4.1 Spherical coordinates.

How would we calculate the motion of a particle in a rotationally invariant po-
tential classically? Perhaps we would consider the two degrees of freedom of such
motion — radial and angular, and notice that they are largely decoupled from each
other because the angular momentum is conserved. This decoupling would allow us
to write and solve the equations of motion for each degree of freedom separately.
Mathematically, this would correspond to using spherical, rather than Cartesian,
coordinates — thereby significantly simplifying the calculation.

Our strategy in the quantum case will be quite similar. We start by presenting
V3D as a tensor product of Hilbert spaces associated with the spherical coordinates:

V3D = Vr⊗Vθ ⊗Vφ (4.10)

with (Fig. 4.1)

x = r sinθ cosφ ; (4.11a)
y = r sinθ sinφ ; (4.11b)
z = r cosθ . (4.11c)

Accordingly, the wavefunction ψ(~r) becomes a function of r, θ , and φ . The advan-
tage of switching to spherical coordinates is that the rotationally symmetric potential
is now an operator only in Vr. The trade-off, however, is the kinetic energy. In con-
trast to the Cartesian case, it cannot be presented as a sum of terms each of which
is local within its component Hilbert space. Nevertheless there is an advantage in
using this approach, which we will see before the end of this section.

To proceed, we must introduce the rule for calculating inner products between
two states whose wavefunctions are expressed in spherical coordinates. This inner
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Box 4.1 Normalization in spherical coordinate Hilbert spaces
The extra factor r2 sinθ in Eq. (4.13) may appear strange. We derived the relationship

(3.6) and its multidimensional analogue (4.5) from first principles, so one may argue that the
inner product between two states expressed in any continuous basis must be of the same form,
without any extra factors. The explanation is that Eq. (3.6) was derived using the normaliza-
tion rule Eq. (3.1)(a) for the position eigenstates. The eigenstates of the three spherical ob-
servables do not have to follow this rule because they have different properties. For example,
spherical coordinates can take values from limited ranges: r ∈ [0,+∞), θ ∈ [0,π], φ ∈ [0,2π),
in contrast to the position x, which ranges from −∞ to +∞.

A detailed study of this matter would lead us too deeply into the mathematical jungle,
away from physics, so we will not undertake to do this. However, you can try it indepen-
dently as an exercise. To this end, you would need to define the inner products of spherical
coordinate eigenstates 〈r1| r2〉 ,〈θ1| θ2〉 ,〈φ1| φ2〉 and use them to obtain analogs of relations
from Sec. 3.1, while making sure that they are consistent with each other and with Eq. (4.13).

product in the position basis is given by Eq. (4.5).In order to change the integration
variables from Cartesian to spherical, we must include the Jacobian determinant:

〈ψ| ϕ〉 (4.5)
=

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

ψ
∗(~r)ϕ(~r)dxdydz

=

2π∫
0

π∫
0

∞∫
0

ψ
∗(~r)ϕ(~r)|J|drdθdφ

whose absolute value is given by

J =

∣∣∣∣∣∣∣
∂x
∂ r

∂x
∂θ

∂x
∂φ

∂y
∂ r

∂y
∂θ

∂y
∂φ

∂ z
∂ r

∂ z
∂θ

∂ z
∂φ

∣∣∣∣∣∣∣= r2 sinθ (4.12)

For the inner product (4.5) we must therefore write

〈ψ| ϕ〉=
2π∫
0

π∫
0

∞∫
0

ψ
∗(~r)ϕ(~r)r2 sinθdrdθdφ . (4.13)

Exercise 4.6. Prove the second equality in Eq. (4.12).

It is a common convention to unite the two Hilbert spaces associated with the
angular motion into a single tensor product space Y≡ Vθ ⊗Vφ , so that

V3D = Vr⊗Y (4.14)
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Elements of the space Vr are represented by wavefunctions R(r) of the radius, while
the functions Yλ (θ ,φ) of the two angles define elements in Y.

Given Eq. (4.13), it is natural to define inner products for spaces Vr and Y as
follows:

〈R1| R2〉=
∞∫

0

R∗1(r)R2(r)r2dr (4.15a)

〈Y1| Y2〉=
2π∫
0

π∫
0

Y ∗1 (θ ,φ)Y2(θ ,φ)sinθdθdφ , (4.15b)

where R1,2(r) and Y1,2(θ ,φ) are wavefunctions of arbitrary states |R1,2〉 and |Y1,2〉
in Vr and Y, respectively.

Exercise 4.7. Show that

a)§ inner products (4.15) are consistent with Defn. A.9;
b) inner products (4.15) are consistent with the inner product in V3D, according to

the definition (2.4) of the inner product in the tensor product space.

4.2.2 Angular momentum

Following in the footsteps of the classical treatment of motion in a rotationally inva-
riant potential, we now introduce the quantum notion of angular momentum — the
observable defined as

~̂L =~̂r× ~̂p. (4.16)

This is the cross (vector) product familiar from geometry and mechanics. It can be
rewritten in a number of ways. We can write each component explicitly:

L̂x = ŷ p̂z− ẑ p̂y; (4.17)

L̂y = ẑ p̂x− x̂ p̂z;

L̂z = x̂ p̂y− ŷ p̂x.

Alternatively, we can use the Levi-Civita symbol3 to write

3 The Levi-Civita symbol, also known as the antisymmetric unit tensor of rank 3, is defined as
follows:

• For any j, k, l, the value of ε jkl changes sign whenever any two indices are exchanged. Conse-
quently, whenever any two indices are equal, ε jkl = 0.

• ε123 ≡ εxyz = 1.

Explicitly,
εxyz = 1, εxzy =−1, εzxy = 1, εzyx =−1, εyzx = 1, εyxz =−1, (4.18)

all other ε jkl = 0.
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L̂ j = ε jkl r̂k p̂l , (4.19)

where we have used Einstein’s convention that summation is implied over repeated
indices (and we will continue to do so throughout this chapter).

Exercise 4.8. Show that the angular momentum operator is Hermitian.

Exercise 4.9.§ Show that the angular momentum operator in the position basis is
represented by4

L̂x '−ih̄
(

y
∂

∂ z
− z

∂

∂y

)
; (4.20)

L̂y '−ih̄
(

z
∂

∂x
− x

∂

∂ z

)
;

L̂z '−ih̄
(

x
∂

∂y
− y

∂

∂x

)
.

We will now proceed to derive the commutation properties of the angular mo-
mentum operator. This task is greatly simplified by using the Levi-Civita symbol.
Therefore, I would recommend that you become comfortable with this symbol (un-
less you are already familiar with it from classical electrodynamics). In particular,
we will need the identity in the following exercise.

Exercise 4.10. Show that

ε jklε jmn = δkmδln−δknδlm. (4.21)

Exercise 4.11. Check the following (for any arbitrary j,k ∈ {1,2,3}):

a) [L̂ j, r̂k] = ih̄ε jkl r̂l ;
b) [L̂ j, p̂k] = ih̄ε jkl p̂l ;
c) [L̂ j, L̂k] = ih̄ε jkl L̂l ;
d) [L̂ j, r̂2] = 0;
e) [L̂ j, p̂2] = 0;
f) [L̂ j, L̂2] = 0.

Exercise 4.12.Show that the definition (4.16) of angular momentum can be rewritten
as ~̂L = −~̂p×~̂r, in spite of the fact that the position and momentum observables do
not generally commute.

4 As discussed in Sec. 3.3.1 (see also Sec. A.2), the meaning of the symbol “'” is that Eq. (4.20)
applies to wavefunctions in the position basis alone. The full form of Eq. (4.20) would be

〈
~r
∣∣ L̂x
∣∣ ψ
〉
=−ih̄

(
y

∂

∂ z
− z

∂

∂y

)
ψ(~r),

etc.
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Exercise 4.13. Show that, if the potential is rotationally invariant [i.e., V (~r)=V (r)],
then

a) each component ~̂Li, and also the square ~̂L2 of the angular momentum vector,
commutes with the Hamiltonian (4.7);

b) in any state |ψ〉, the mean value of each component of the angular momentum
is conserved: d

dt

〈
ψ
∣∣ L̂i
∣∣ ψ
〉
= 0.

This result has a direct classical analogy: the angular momentum is conserved in
a rotationally symmetric potential, in accordance with Noether’s theorem.

Let us now incorporate the angular momentum observable into the Schrödinger
equation.

Exercise 4.14. a) Show that

L̂2 = r̂2 p̂2− (~̂r · ~̂p)2 + ih̄~̂r · ~̂p. (4.22)

How does this result change for the classical angular momentum?
b) Rewrite the time-independent Schrödinger equation (4.8) as[

(~̂r · ~̂p)2− ih̄~̂r · ~̂p
2M

+
L̂2

2M
+~̂r2V (~r)

]
ψ(~r) =~̂r2Eψ(~r). (4.23)

Equation (4.23) is beginning to look like the favorable case of separated varia-
bles discussed in the previous section. Indeed, each term on the left-hand side is a
local operator in either Vr or Y. The first term, for example, is expressed through
the operator ~̂r · ~̂p, whose classical analogue is proportional to the projection of the
momentum onto the radius vector. We would expect this projection to affect only the
radial degree of freedom, i.e., to be a local operator in Vr. The second term — the
angular momentum, — on the other hand, affects only the angular degree of free-
dom: it is local in Y. The third term is of course local in Vr as long as the potential
is rotationally invariant: V (~r) =V (r).

In order to show this separability rigorously, we must convert the first two terms
of Eq. (4.23), which are now known to us in Cartesian coordinates, into spherical
coordinates. We shall do so using the chain rule for partial derivatives, known from
multivariate calculus. The calculation is straightforward but quite tedious, so if you
are not comfortable with it, you may just go over the solutions in the first reading.

Exercise 4.15.∗

a) Show that
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∂

∂x
= sinθ cosφ

∂

∂ r
+

1
r

cosθ cosφ
∂

∂θ
− 1

r
sinφ

sinθ

∂

∂φ
; (4.24a)

∂

∂y
= sinθ sinφ

∂

∂ r
+

1
r

cosθ sinφ
∂

∂θ
+

1
r

cosφ

sinθ

∂

∂φ
; (4.24b)

∂

∂ z
= cosθ

∂

∂ r
− 1

r
sinθ

∂

∂θ
. (4.24c)

b) Derive the components of the angular momentum operator in spherical coordi-
nates from those (4.20) in Cartesian coordinates:

L̂x ' ih̄
(

sinφ
∂

∂θ
+ cotθ cosφ

∂

∂φ

)
, (4.25a)

L̂y ' ih̄
(
−cosφ

∂

∂θ
+ cotθ sinφ

∂

∂φ

)
, (4.25b)

L̂z '−ih̄
∂

∂φ ,
(4.25c)

c) Show that

L̂2 '−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂φ 2

]
. (4.26)

d) Express operators ~̂r · ~̂p and (~̂r · ~̂p)2 in spherical coordinates:

~r ·~p'−ih̄r
∂

∂ r
; (4.27)

(~r ·~p)2 '−h̄2
(

r2 ∂ 2

∂ r2 + r
∂

∂ r

)
. (4.28)

We see that the expressions (4.25) for the angular momentum in spherical coor-
dinates depend only on θ and φ , but not at all on r, while the opposite holds for
the operator~̂r · ~̂p. This confirms our intuition: the first operator on the left-hand side
of the time-independent Schrödinger equation (4.23) is local in space Vr, while the
second one is local in Y. Let us now use this fact to solve the Schrödinger equation.

In Ex. 4.13 we found that the Hermitian operator L̂2 commutes with the Hamilto-
nian. As we know (Ex. 1.36), two commuting Hermitian operators have a common
eigenbasis in which they both diagonalize. So it would appear that, in order to find
energy eigenstates, it is enough to find the eigenstates of L̂2.

Unfortunately, this argument does not work in a straightforward fashion. The
problem is, as we discussed, that L̂2 is local in Y. Accordingly, the eigenstates of the
counterpart operator 1̂⊗ L̂2 in V3D are given by |R〉⊗|λ 〉, where |λ 〉 is an eigenstate
of L̂2 in Y, while |R〉 is an arbitrary state in Vr (Ex. 2.23).
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In other words, each eigenvalue λ of the operator 1̂⊗ L̂2 is massively degenerate5,
so there is no guarantee that any arbitrary state of the form |R〉⊗|λ 〉 is automatically
an eigenstate of the Hamiltonian. We can only say that there exists an eigenbasis of
the Hamiltonian such that each of its elements has the form |R〉⊗|λ 〉. So our strategy
will be to to select, among states of the form |R〉⊗ |λ 〉, those that are eigenstates of
the Hamiltonian.

To perform the selection, let us write these states in the position basis

ψ(r,θ ,φ) = R(r)Yλ (θ ,φ), (4.29)

and demonstrate the following.

Exercise 4.16. Show that, in order for a wavefunction of the form (4.29) to re-
present an eigenstate of the Hamiltonian with eigenvalue E [i.e., satisfy the time-
independent Schrödinger equation], it is necessary and sufficient that the radial part
of the wavefunction (4.29) satisfy the radial equation[

− h̄2

2Mr2
∂

∂ r

(
r2 ∂

∂ r

)
+

λ

2Mr2 +V (r)
]

R(r) = ER(r). (4.30)

We have thus divided the problem into two simpler ones: diagonalizing L̂2 and
solving an ordinary differential equation (4.30).6 Moreover, only the second part
needs to be solved anew for each specific potential. The first does not depend on the
potential at hand and hence needs to be solved only once. This will be our task in
the next section.

4.3 Angular momentum eigenstates

4.3.1 Matrix representation of the angular momentum

Our task of finding the eigenvalues and eigenstates of the L̂2 observable is compli-
cated by the following circumstance.

Exercise 4.17. Show that there exist degenerate eigenvalues of L̂2 in Y.
Hint: Apply the fact that two observables are simultaneously diagonalizable if and
only if they commute (Ex. 1.36) to operators L̂2, L̂x, and L̂y.

The above result means that an eigenstate of L̂2 may not be uniquely identified
by the corresponding eigenvalue λ . As per Ex. A.70, we can say that each λ defines
a subspace of eigenstates of L̂2, and that this subspace may not be of dimension one.
We should find the basis and dimension for each of these subspaces.

5 This is aside from the fact that the eigenstates of L̂2 are degenerate even in Y, as we shall see in
the next section.
6 This approach is a particular case of the variable separation method for solving partial differential
equations.
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To this end, let us bring into the picture an additional observable in Y that com-
mutes with L̂2. Then it will have a common set of eigenstates with L̂2 (see Ex. 1.36)
and hence give rise to an orthonormal eigenbasis within each λ -subspace. With luck,
this eigenbasis will be non-degenerate with respect to the eigenvalue µ of this new
observable; a pair of eigenvalues λ ,µ will then uniquely identify the state.

The traditionally chosen observable that satisfies this condition (as we shall see
later) is L̂z

7. So our task is to find common eigenstates |λ µ〉 L̂2 and L̂z
8

The wavefunctions of states |λ µ〉 can, in principle, be found by solving

L̂2 |λ µ〉= λ |λ µ〉 ,
L̂z |λ µ〉= µ |λ µ〉 ,

We will follow a strategy that is closely reminiscent of the technique we used
with the harmonic oscillator in Sec. 3.8.2. We begin by defining the analogues of
the creation and annihilation operators, the raising and lowering operators, as

L̂+ = L̂x + iL̂y, (4.31a)

L̂− = L̂x− iL̂y. (4.31b)

Exercise 4.18. Show that:

a) L̂− = L̂†
+;

b) [L̂z, L̂±] =±h̄L±, [L̂2, L̂±] = 0, [L̂+, L̂−] = 2h̄Lz;
c) L̂2 = L̂+L̂−+ L̂2

z − h̄L̂z = L̂−L̂++ L̂2
z + h̄L̂z.

Exercise 4.19. Suppose some state |λ µ〉 is a common eigenstate of L̂2 and L̂z. Show
that then

a) the state L̂+ |λ µ〉 is also a common eigenstate of these operators with eigenva-
lues λ , µ + h̄;

b) the state L̂− |λ µ〉 is also a common eigenstate of these operators with eigenva-
lues λ , µ− h̄.

Hint: try the same approach as in Ex. 3.61.

7 We could equally well have chosen L̂x or L̂y. We will look at a few examples to this effect later
in this section.
8 The notation |λ µ〉 may mislead one into thinking that this state is tensor product. This is, of
course, not the case: |λ µ〉 is an element of a single Hilbert space Y.

in the position basis using the differential operators (4.25c) and (4.26). However, this
road would quickly lead us into an unwieldy mathematical mess. Fortunately, there
is an alternative way. We may find out quite a lot about these states, the correspond-
ing eigenvalues, and even the matrices of the components of the angular momentum
operator, simply from the commutation relations between these components. Once
we have these properties, we will still have to use a bit of calculus to determine the
wavefunctions, but it will require much less effort than a direct calculation.
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The above exercise shows that states L̂+ |λ µ〉 and L̂− |λ µ〉 are proportional to
the normalized states |λ ,µ + h̄〉 and |λ ,µ− h̄〉, respectively. In the following, we
find the proportionality coefficient.

Exercise 4.20. Show that, neglecting an arbitrary phase factor,

L̂+ |λ µ〉=
√

λ −µ(µ + h̄) |λ ,µ + h̄〉 ; (4.32a)

L̂− |λ µ〉=
√

λ −µ(µ− h̄) |λ ,µ− h̄〉 . (4.32b)

Hint: Using Ex. 4.18(c), find 〈λ µ| L̂+L̂− |λ µ〉 and 〈λ µ| L̂−L̂+ |λ µ〉 and reconcile
the result with the statement of Ex. 4.19.

Exercise 4.21. Show that µ2 cannot be greater than λ .

Exercise 4.22. Show that the condition of Ex. 4.21 can be satisfied only if λ =
h̄2l(l +1) and µ = h̄m with

• l being a nonnegative integer or half-integer (0, 1
2 , 1, 3

2 , . . .);
• for a given l, m ∈ {−l,−l +1, . . . , l−1, l}.

Hint: apply the same logic as in Sec. 3.8.2 where we proved that the eigenvalues of
the number operator of the harmonic oscillator must be integer.

This is one of the main results of this section. To put it another way, if we try to
measure the observable L̂2 in some state, we can only detect values h̄2l(l+1), where
l ∈ {0, 1

2 , 1, 3
2 , . . .}. Furthermore, if we now prepare our system in a state with a

given L̂2 (for example, by having measured it) and then perform the measurement
of the observable Lz, we will detect one of the 2l + 1 possible values ranging from
−lh̄ to lh̄ in steps of h̄. This is because, as argued at the beginning of this section, the
eigenvalues of L̂2 are indeed degenerate, and the degree of degeneracy (the number
of orthogonal eigenstates corresponding to the same eigenvalue) is 2l +1.

From now on we will use the notation |lm〉 instead of |λ µ〉 to denote the common
eigenstates of L̂2 and L̂z with eigenvalues λ = h̄2l(l +1) and µ = h̄m, respectively.
In the context of the motion of a point particle, the value of l is called the orbital
quantum number9, and m the magnetic quantum number.

Exercise 4.23.§ Show that Eqs. (4.32) can be rewritten as follows:

L̂+ |lm〉= h̄
√

l(l +1)−m(m+1) |l,m+1〉= h̄
√
(l−m)(l +m+1) |l,m+1〉 ;

(4.33a)

L̂− |lm〉= h̄
√

l(l +1)−m(m−1) |l,m−1〉= h̄
√
(l +m)(l−m+1) |l,m−1〉 .

(4.33b)

Note that Ex. 4.22 establishes only the necessary conditions for the existence
of common eigenstates of L̂2 and L̂z with given eigenvalues. We do not yet know

9 Sometimes the orbital quantum number l is just called “angular momentum”. This jargon term is
used to suggest that the value of h̄l is the quantum counterpart to the classical absolute value of the
angular momentum vector.
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whether an eigenstate exists for a given pair (l,m), even if this pair satisfies the
conditions, nor whether this eigenstate is unique. We will address this question in
the next subsection. For now, let us just note that, if we take the uniqueness and
existence of states |lm〉 for granted, it follows that they comprise an orthonormal
basis in Y according to the spectral theorem (Ex. A.60). We will be calling the basis
{|lm〉} canonical in the context of angular momentum physics.

Exercise 4.24. Show that matrix elements
〈
lm
∣∣ Â
∣∣ l′m′

〉
, where Â =~̂L2, L̂±, L̂x, L̂y,

L̂z, vanish whenever l 6= l′ without calculating these matrix elements explicitly.

According to the above result, matrices of all components of ~̂L, as well as L̂2,
have the structure shown in Table 4.1. It is a block-diagonal matrix, each block
describing the angular momentum operator within the subspace of Hilbert space Y
associated with a specific value of l. The size of each block is (2l+1)× (2l+1). In
each block, values of m are traditionally listed in decreasing order.

Table 4.1 Structure of matrices of angular momentum operator components (Ex. 4.25). Shaded
areas may contain nonzero matrix elements.

l′ 0 1/2 1 3/2

l
H

HHHm
m′

0 1
2 −

1
2 1 0 −1 3

2
1
2 −

1
2 −

3
2

0 0
1/21/2 −1/2

1
01
−1
3/2
1/2
−1/23/2

−3/2 . . .

Exercise 4.25. Find the matrix elements
〈
lm
∣∣ Â
∣∣ l′m′

〉
, where Â=~̂L2, L̂±, L̂x, L̂y, L̂z.

Exercise 4.26.§ Write the matrices of Ex. 4.25 explicitly for the Hilbert space sub-
spaces associated with

a) l = 1/2,
b) l = 1.

Verify for both cases that the angular momentum matrices obey L̂2
x + L̂2

y + L̂2
z = L̂2.
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L̂x'
h̄
2

(
0 1
1 0

)
, L̂y'

h̄
2

(
0 −i
i 0

)
, L̂z'

h̄
2

(
1 0
0 −1

)
, L̂2' 3h̄2

4

(
1 0
0 1

)
.

(4.34)
b)

L̂x '
h̄√
2

0 1 0
1 0 1
0 1 0

 , L̂y '
h̄√
2

 0 −i 0
i 0 −i
0 i 0

 , L̂z ' h̄

 1 0 0
0 0 0
0 0 −1

 ,

L̂2 ' 2h̄2

1 0 0
0 1 0
0 0 1

 . (4.35)

Notice that the angular momentum matrices for the subspace l = 1/2 are propor-
tional to the Pauli matrices [see Eq. (1.7)]. This identity explains the physics behind
the subscripts x, y, and z that we have been assigning to these matrices throughout
the course.

Exercise 4.27. Suppose you perform measurements of the x or y components of the
angular momentum of a certain particle.

a) What possible values can the measurement yield if the particle is known to have
been prepared in a state with

i) l = 1/2,
ii) l = 1?

Answer:

i) {h̄/2,−h̄/2}
ii) {h̄,0,−h̄}.

b) Find the states upon which the particle state will collapse, expressing them in
the canonical basis.

The result of the last exercise — that the eigenvalues of L̂x and L̂y run from
−lh̄ to lh̄ in steps of h̄ — is not surprising. Although we have chosen L̂z to help
us in finding the basis of Y, there is nothing unique about the z axis in terms of
physical properties. The space is isotropic, so the observables L̂x and L̂y behave
under application of quantum measurements in the same way as L̂z. Moreover, the
same properties would be observed if we looked at the projection of the angular
momentum vector onto an arbitrary axis.

Exercise 4.28. Consider the observable L̂θφ defined by the projection of the angu-
lar momentum onto the unit vector ~Rθφ characterized by spherical angles (θ ,φ).
Restrict your analysis to the subspace with l = 1/2.

a) Show that the eigenvalues of L̂θφ are ±h̄/2 and find the corresponding eigen-
states in the eigenbasis of L̂z.

a)

Answer:
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Hint: Find the matrix of L̂θφ = sinθ cosφ L̂x + sinθ sinφ L̂y + cosθ L̂z in the
eigenbasis of L̂z.

b) Find the mean values of L̂x, L̂y, L̂z in these states and show that they are propor-
tional to the projections of vector ~Rθφ onto the corresponding coordinate axes.
Answer:

(〈Lx〉 ,
〈
Ly
〉
,〈Lz〉) =±

h̄
2
~Rθφ for the eigenvalues ± h̄

2
. (4.36)

Exercise 4.29. Find the expectation values and uncertainties of the operators L̂x and
L̂y in the state |lm〉. Verify the uncertainty principle. Does the inequality saturate for
any values of l or m?
Answer:

〈Lx〉=
〈
Ly
〉
= 0;〈

∆L2
x
〉
=
〈
∆L2

x
〉
=

h̄2

2
[l(l +1)−m2].

The uncertainty principle takes the form

〈
∆L2

x
〉〈

∆L2
y
〉
≥ h̄4

4
m2.

It is instructive to look at the uncertainty principle for states with m = ±l, such
that Lz takes its maximum possible value for a given L2. Classically, this would im-
ply that L2

x = L2
y = 0. But in the quantum case,

〈
L2

z
〉
= l2h̄2, which is less than

〈
L2
〉
=

l(l +1)h̄2. Therefore there is still “room left to play” for the x and y components of
the angular momentum: 〈L̂2

x〉= 〈L̂2
y〉= (〈L̂2− L̂2

z 〉)/2 = h̄2[l(l+1)− l2]/2 = h̄2l/2.
This ensures that the uncertainty principle can be upheld for these components.

4.3.2 Wavefunctions of angular momentum eigenstates

Before we end our discussion of angular momentum matrices, let us take a brief
look at Heisenberg’s uncertainty principle.

Remarkably, everything we learned in the previous subsection — and we learned
quite a bit — follows solely from the commutation relations between angular mo-
mentum components that we derived in Ex. 4.11. Aside from these relations, we
never made direct use of the definition of that observable, nor of any of its physical
properties. But now our goal is to find the wavefunctions of states |lm〉. To achieve
this, we do require the explicit expressions for operators L̂2 and L̂z in the position
basis, which we calculated in Ex. 4.15.

Exercise 4.30. Show that the wavefunction of any eigenstate of operator L̂z with
eigenvalue m must be of the form
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T (θ)eimφ . (4.37)

Exercise 4.31.§ Show that the raising and lowering operators in the position basis
are given by

L̂+ ' h̄eiφ
(

∂

∂θ
+ i cotθ

∂

∂φ

)
; (4.38a)

L̂− ' h̄e−iφ
(
− ∂

∂θ
+ i cotθ

∂

∂φ

)
. (4.38b)

Hint: use Eqs. (4.25) and (4.31).

Exercise 4.32. Show, by induction, that the wavefunctions of states |lm〉 are given
by the spherical harmonics10

Y m
l (θ ,φ) = Nl

√
(l +m)!
(l−m)!

sin−m
θ

dl−m

d(cosθ)l−m sin2l
θeimφ , (4.39)

where

Nl = (−1)l

√
2l +1

4π

1
2l l!

(4.40)

is the normalization factor11, by applying the following steps.

a) Application of the raising operator to the state |lm〉 with m = l must yield zero
according to Eq. (4.33a). Check that this applies to the wavefunction Y l

l (θ ,φ)
of the state |ll〉 given by Eq. (4.39).

b) Check the correctness of the normalization factor (4.40).
Hint:

1∫
−1

(1− x2)ldx =
22l+1(l!)2

(2l +1)!
. (4.41)

c) Apply the operator L̂2, which in the position basis is given by Eq. (4.26), to
Y l

l (θ ,φ), in order to check that this function represents an eigenstate of L̂2 with
eigenvalue l(l +1)h̄2.

d) Suppose the wavefunction of the state |lm〉 is given by Eq. (4.39) for some m.
Apply the lowering operator (4.38b) to show that Eq. (4.39) also expresses the
wavefunction of the state |l,m−1〉.

Note that suffices to check that Y m
l (θ ,φ) is normalized and an eigenwavefunction

of L̂2 for m = l alone, as we have done in parts (b) and (c). This is because we

10 The standard definition of spherical harmonics uses associated Legendre polynomials. Our de-
finition, borrowed from R. Shankar, Principles of quantum mechanics (Kluwer, 1990), bypasses
these polynomials, and is hence less cumbersome. It is consistent with the convention most com-
monly used in quantum mechanics.
11 The factor (−1)l in Eq. (4.40) is conventional.
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already know, according to Eq. (4.33), that the lowering operator preserves both the
eigenvalue of L̂2 and the normalization (with a factor

√
(l +m)(l−m+1)).

Exercise 4.33.§ Calculate explicitly the spherical harmonics for all possible values
of m consistent with l = 0 and l = 1.
Answer:

Y 0
0 (θ ,φ) =

√
1

4π
;

Y 1
1 (θ ,φ) =−

√
3

8π
sinθeiφ ;

Y 0
1 (θ ,φ) =

√
3

4π
cosθ ;

Y−1
1 (θ ,φ) =

√
3

8π
sinθe−iφ .

Absolute values of spherical harmonics up to l = 2 are plotted in Fig. 4.2. Accor-
ding to what we found in Ex. 4.30, these absolute values are independent of φ and
hence axially symmetric.

l = 2

l = 1

l = 0

m = 2� m = 1� m = 0 m = 1 m = 2
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Fig. 4.2 Absolute values of spherical harmonics for the first three values of l, plotted as radii
dependent on spherical angles θ and φ .

Earlier in this section, when we derived the conditions on physically allowed
values of l and m, I mentioned that these are only necessary conditions, and not all of
them may be realized in nature. By explicitly calculating the wavefunctions of states
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|lm〉, we have proven the existence (and uniqueness) of these states, but only for
integer l and m. Indeed, spherical harmonics contain a factor eimφ . For a half-integer
l, m is also half-integer, and this factor results in ψ(r,θ ,φ) = −ψ(r,θ ,φ + 2π),
which is impossible. Therefore, a point-like particle in a radially symmetric field
must have an integer orbital quantum number.

4.3.3 Spin

Particles can nevertheless have an “intrinsic” angular momentum — the spin ~̂S. It
can be visualized as the rotation of the particle about its own axis — in contrast to the
“orbital” motion of a point particle in an external field that we studied previously.
The spin degree of freedom follows the rules for angular momentum eigenstates
derived in Sec. 4.3.1. In particular, possible eigenvalues of the observable ~̂S2 are
given by s(s+1)h̄2, with s a non-negative integer or half-integer number12. Because
the spin degree of freedom has no position basis representation, s is allowed to take
on half-integer values.

Wolfgang Pauli

The specific value of s is determined by the nature of the par-
ticle and cannot be controlled by external means. For example,
electrons, protons, and neutrons have s = 1

2 , while photons have
s = 1.

Physicists sometimes use the term “spin” to refer to this va-
lue of s — just as they use the term “angular momentum” to
refer to the value of l — even though these values do not repre-
sent actual absolute values of ~̂S or ~̂L. For example, they say that
the electron has spin 1

2 .
Particles with half-integer spin are called fermions, while

those with integer spin are called bosons. According to Wolf-
gang Pauli’s exclusion principle, two identical fermions cannot be in the same quan-

The z component Ŝz of the spin observable has eigenvalues given by msh̄, where
ms ∈ {−s, . . . ,s} is called the spin quantum number. In contrast to s, projections
of the spin observable of a particle onto particular axes are not determined by the
nature of the particle. We can prepare spin states with any values of ms within the
range allowed by the particle’s spin, as well as arbitrary superpositions of them.

12 In application to spin, the symbol s is normally used instead of l. The symbol l is reserved for
the orbital angular momentum.

tum state. This principle is essential for many physical phenomena, for example,
the periodic table of elements (Sec. 4.4.3). However, the physical reasons behind
Pauli’s principle require an understanding of quantum electrodynamics, which we
do not study here.
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4.4 The hydrogen atom

4.4.1 Radial wavefunctions

In Sec. 3.5 I mentioned that one of the primary motives behind our interest in the
time-independent Schrödinger equation is that it allows us to obtain the energy le-
vels of electrons in atoms. Because transitions between energy levels are associa-
ted with absorption or emission of an optical photon, these theoretical calculations
can be directly verified experimentally. Now we are fully equipped to calculate the
energy levels and the corresponding wavefunctions of the hydrogen atom. The pre-
cise agreement between the results of this calculation and the experimental data on
the emission spectrum of atomic hydrogen was one of the most significant triumphs
of quantum mechanics (see Box 3.2).

In the hydrogen atom, an electron moves in the electrostatic potential created by
a heavy nucleus:

V (r) =− 1
4πε0

e2

r
, (4.42)

where e is the electron charge and ε0 is the electric constant (we use the SI system
of units). Hence the hydrogen atom problem is a special case of motion in a central
field. Therefore we can follow our strategy developed in Sec. 4.2.2, namely, to look
for an energy eigenwavefunction in the form of a product (4.29). In that product,
as we now know, λ = h̄2l(l + 1) and the angular component of the wavefunction
Yλ (θ ,φ) = Y m

l (θ ,φ) is one of the spherical harmonics, so we can rewrite it as

ψElm(r,θ ,φ) = REl(r)Y m
l (θ ,φ). (4.43)

All we need to do now is to find the radial component, which we will denote by
REl(r).

Exercise 4.34.§ Write the radial equation (4.30) for the hydrogen atom.
Answer:[

− h̄2

2M
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
+

h̄2l(l +1)
2Mr2 − 1

4πε0

e2

r

]
REl(r) = EREl(r). (4.44)

Even though it is an ordinary differential equation, it is quite difficult to solve.
The first step in simplifying it is a simple variable replacement.

Exercise 4.35. Redefine
REl(r) =UEl(r)/r (4.45)

and rewrite Eq. (4.44) for UEl(r).
Answer: [

− h̄2

2M
∂ 2

∂ 2r
+

h̄2l(l +1)
2Mr2 − 1

4πε0

e2

r

]
UEl(r) = EUEl(r). (4.46)
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A common tactic in solving differential equations is to try guessing the general
form of the solution, and then adjust its parameters to satisfy the equation. In the
present case, we will look for a solution of the form

UEl(r) =
n

∑
j=l+1

A jr je−κr, (4.47)

where n is some natural number Al+1 6= 0, and

κ =
√
−2ME/h̄. (4.48)

The following exercise helps to see how we arrived at this guess.

Exercise 4.36. Show that the asymptotic behavior of UEl(r) given by the above
equation is consistent with Eq. (4.46) for r→ 0 and r→ ∞.

Let us now find the coefficients A j and the upper summation limit in Eq. (4.47).

Exercise 4.37. Show that, in order for Eq. (4.46) to hold, the following relationship
must be satisfied: [

2κ j− 2
a

]
A j +[l(l +1)− j( j+1)]A j+1 = 0, (4.49)

where

a =
4πε0h̄2

Me2 ≈ 0.53 Å. (4.50)

The latter quantity has dimensions of length and is known as the Bohr radius. We
shall discover its physical meaning shortly.

We see from Eq. (4.49) that, for large j, A j+1/A j → 2κ/ j. If the series (4.47)
with such a property were infinite (n = ∞), it would diverge. Indeed, in the limit
j→ ∞ we would have A j ∼ (2κ) j/ j! and hence for r→ ∞

UEl(r)∼∑
j

(2κr) j

j!
e−κr→ e2κre−κr = eκr,

where we have used the decomposition of the exponent into a Taylor series. As we
know, a wavefunction that tends to infinity is unphysical.

To prevent this, we must require that the series be finite. This is fulfilled if the
factor in front of A j in Eq. (4.49) vanishes for some j = n. In this case

2κn =
2
a

(4.51)

and all A j vanish for j > n.

Exercise 4.38. Calculate the radial wavefunctions Rnl(r) of the hydrogen atom for

a) n = 1, l = 0;
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b) n = 2, l = 0;
c) n = 2, l = 1.

Normalize the wavefunctions according to
∫
|ψ(~r)|2d3~r = 1.

Hint:
∞∫

0

xne−xdx = n! (4.52)

Answer (Fig. 4.3):

R10(r) = 2a−3/2e−r/a; (4.53)

R20(r) =
1√
2

a−3/2
(

1− r
2a

)
e−r/2a; (4.54)

R21(r) =
1√
24

a−5/2re−r/2a. (4.55)

We now see the physical meaning of the Bohr radius: it determines the charac-
teristic length scale of wave functions of energy eigenstates, as well as the approxi-
mate size of the ground state orbital.

n = 1 n = 2 n = 3

Fig. 4.3 Absolute values of the wavefunctions of a few lowest eigenstates |nlm〉 of the hydrogen
atom. Cross-sections through the x-z plane are shown; the ranges are from −20a to 20a in both
dimensions.
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4.4.2 Energy spectrum and transitions

Combining Eqs. (4.48) and (4.51), we find

En =−
1

2M

(
h̄

na

)2

=−
(

e2

4πε0

)2 M
2n2h̄2 . (4.56)

This result marks a major milestone: we calculated the energy spectrum of the hyd-
rogen atom13.

Interestingly, although the radial wavefunctions do depend on the orbital quan-

Each energy level, identified by the value of n, is degenerate with respect to the
orbital quantum number l, which can take on any integer value from 0 to n− 1.
But the actual degeneracy of energy levels is even higher. To see this, we recall that
the wavefunction (4.43) of the electron in the hydrogen atom has an angular part
in addition to the radial one. The angular part of the wavefunction depends on the
magnetic quantum number m, which does not affect the energy. Additionally, each
electron has a spin degree of freedom, which is associated with a two-dimensional
Hilbert space.

Exercise 4.39. Show that the degree of degeneracy of the energy level with principal
quantum number n is 2n2.

Before proceeding, let us agree on a convention. Because the principal, orbital,
and magnetic quantum numbers define the motional state of the electron in the atom,
we will use the notation |nlm〉 to identify that state, rewriting Eq. (4.43) as follows:

ψnlm(r,θ ,φ) = Rnl(r)Y m
l (θ ,φ). (4.57)

So far, we have assumed the nucleus to be infinitely heavy, so the electron moves
in the stationary potential (4.42). But it is easy to take a finite mass of the nucleus
into account. As we know from classical mechanics, the two-body problem in the
center-of-mass reference frame can be reduced to the motion of a single particle
with the reduced mass

M =
Me

1+Me/Mp
,

where Me and Mp are in our case the rest masses of the electron and the nucleus
(proton). The reduced mass is smaller than the mass of the electron by a factor of
1/1836.

Equation (4.56) establishing the energy levels of the hydrogen atom can be ex-
pressed in the form

13 Energies are negative, as expected for bound states.

tum number l, the energy eigenvalues (4.56) don’t. Rather, they are determined by
the upper limit n of the sum 4.47. For this reason, n is called the principal quantum
number.
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Box 4.2 The model of the atom: a brief history
Although the idea of the atom dates back to ancient Greek philosophers (the very word

“atom” is of Greek origin, meaning “uncuttable”), the first physical model thereof was pro-
posed in 1904 by J. J. Thomson shortly after his discovery of the electron. He hypothesized
that the negatively charged electrons were situated inside a blob of positively charged matter,
like plums inside a pudding.

Thomson’s hypothesis was refuted by experiments led by Ernest
Rutherford, in which metal foil was bombarded by alpha particles.
Rutherford and his colleagues found that, while most particles made
it through the foil as though it were not present, a very small fraction
(∼ 1/8000) were reflected backwards. Rutherford interpreted this ob-
servation as evidence that positive charges inside atoms are concentra-
ted in tiny but heavy nuclei. Subsequently, in 1911, Rutherford put for-
ward the planetary model of the atom∗, according to which electrons
orbit the nucleus akin to planets around the Sun. A legend says that
one morning Rutherford entered his lab with a loud announcement: ”I
know what the atom looks like!”

Rutherford’s model, however, had a major shortcoming that he and
his colleagues immediately realized. Orbiting around the nucleus, the electron will create
alternating electric and magnetic fields around itself, bringing about an electromagnetic wave
that will carry the electron’s energy away. As a result, the electron will fall upon the nucleus
within picoseconds.

Niels Bohr

Rutherford asked his associate, a young theoretician Niels Bohr,
to resolve this conundrum. Within two years, Bohr found a partial
solution∗∗. He postulated that there exists a discrete set of “stationary”
orbits in which the electron can stay without radiating. Specifically, the
orbit is stationary if its angular momentum equals an integer number
of h̄:

pr = nh̄, (4.58)

If the electron transitions between these orbits, it emits or absorbs a
photon whose energy is equal to the energy difference between the
levels. The spectrum of optical transitions of the hydrogen atom that
Bohr calculated using his model (see Ex. 4.41) turned out to be consis-

tent with the Rydberg formula (4.61), which was already known empirically at that time (see
Box 4.3), and demonstrated excellent agreement with experiment.

A shortcoming of Bohr’s model was its purely empirical nature. Although it seemed to
explain experimental results, the physics behind it remained a mystery. Some light was shed
on the physics by Louis de Broglie in 1924. He reconciled Bohr’s model with his matter wave
concept (see Box 3.2 and Ex. 4.42). In subsequent years, the model of the atom underwent a
number of refinements, most notably by Wolfgang Pauli in 1926, gradually approaching the
modern form that we study here.

∗E. Rutherford, The Scattering of α and β Particles by Matter and the Structure of the Atom, Philosophical
Magazine. 21, 669 (1911).

∗∗N. Bohr, On the Constitution of Atoms and Molecules, Philosophical Magazine 26, 1–24 and 476–502
(1913).

Ernest Rutherford
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En =−
1

1+Me/Mp

Ry
n2 , (4.59)

where

Ry =− e4Me

32π2ε2
0 h̄2 ≈ 2.17987217×10−18J ≈−13.6056925 eV (4.60)

is the Rydberg constant. This is one of the most significant, and most precisely
measured fundamental physical constants. Because hydrogen is ubiquitous in the
universe, its emission arrives on Earth from a wide variety of astronomical objects.
Some of that emission was generated in the early stages of the existence of the uni-
verse. By measuring its spectrum, we can find out whether the value of the Rydberg
constant, and therefore the fundamental laws of physics, have changed during the
universe’s lifetime.
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Fig. 4.4 Energy spectrum of atomic hydrogen.

Exercise 4.40. Using Bohr’s postulate that transitions between atomic levels are
accompanied by absorption or emission of a photon whose energy equals the diffe-
rence between the energies of the levels, derive the equation (known as Rydberg’s
formula) for the wavelengths of the lines observed in the hydrogen spectrum:

2π h̄c
λ

=
1

1+Me/Mp
Ry
∣∣∣∣ 1
n2

1
− 1

n2
2

∣∣∣∣ , (4.61)
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Box 4.3 Balmer’s discovery
The discovery of Rydberg’s formula is worth a separate story. The particular case

for n1 = 2, n2 ≥ 3 was discovered by Johann Jakob Balmer as early as 1885, al-
most thirty years before Bohr’s model (Box 4.2). Remarkably, Balmer was not even
a physicist; he was a Swiss school mathematics teacher. Apparently, as a hobby, he
studied data on the solar spectrum published in 1868 by A. J. Ångström. These
data included the following set of lines that were attributed to atomic hydrogen:

Johann Jakob Balmer

656.3 nm
486.1 nm
434.0 nm
410.2 nm

Driven solely by the belief that the world is governed by mathematical
harmony, Balmer looked for and found a regularity behind this set of
numbers. His expression for this regularity was similar to Eq. (4.61),
except for the value of n1 being equal to two. Three years later, in 1888,
the Swedish physicist Johannes Rydberg became aware of Balmer’s
formula and generalized it to other values of n1.

Of course, the reason why the series of lines that now carries
Balmer’s name was discovered first is that it lies within the visible
spectrum. About twenty years later, the two series corresponding to
n1 = 1 and n1 = 3 were measured in the ultraviolet and infrared ran-
ges, respectively, by Theodore Lyman and Friedrich Paschen, and were
found to be in excellent agreement with Rydberg’s formula.

where n1 and n2 are positive integers.
Evaluate numerically the ranges of experimentally observable wavelengths of the

transitions of the Lyman (n2 = 2,3,4, . . .→ n1 = 1), Balmer (n2 = 3,4,5, . . .→ n1 =
2), and Paschen (n2 = 4,5,6, . . .→ n1 = 3) series (Fig. 4.4).

Exercise 4.41. Reproduce the result (4.56) for the hydrogen energy spectrum using
the semi-classical Bohr theory (Box 4.2). Assuming the electron to be a point object
moving in a circular orbit of radius r around the proton, obtain the relationship
between the orbital radius and velocity by observing that the centripetal acceleration
is due to the electrostatic attraction of the proton. Then reconcile this relation with
Eq. (4.58) to find the parameters of the orbit as a function of n and determine the
corresponding kinetic and potential energies.

Exercise 4.42. Reproduce the result (4.56) using de Broglie’s equation (3.28)
instead.

It may appear from the above two exercises that the full-blown quantum theory,
as used in the previous subsection, is unnecessary to describe the hydrogen atom;
the same results can be obtained in much simpler ways. But in fact, the approaches
proposed by Bohr and de Broglie are of an ad hoc nature: while they yield a cor-
rect formula describing one particular observation, they cannot be used to reliably
predict the results of any other experiment. Even if we only consider the hydro-
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gen atom, the scope of possible questions extends far beyond merely cataloguing
spectral lines. Answers to these questions can be found with the help of quantum
mechanics, but not Bohr’s or de Broglie’s approaches.

Exercise 4.43. For the state |n, l = n−1,m〉, with an arbitrary principal quantum
number n,

a) calculate the radial wavefunction;
b) calculate the mean and variance of the distance between the electron and the

nucleus;
Answer: 〈r〉= an

(
n+ 1

2

)
.

c) compare your result with the one obtained from the Bohr model (Ex. 4.41).

Atoms in states with high principal quantum numbers are called Rydberg atoms.
We see that these atoms are very large in size: the electron orbital radius scales as the
second power of n. For example, the n = 137 state of hydrogen has an atomic radius
∼ 1 µm. Rydberg atoms have many interesting properties that make them a subject
of intense research, particularly in application to quantum information processing.

Exercise 4.44. Find the expectation value and the uncertainty of the observables x̂,
ŷ, ẑ in the state |1,0,0〉.

Exercise 4.45. Without calculation, determine which of the matrix elements
of the observables r̂i = x̂, ŷ, ẑ in (a) 〈1,0,0| r̂i |2,0,0〉, (b) 〈1,0,0| r̂i |2,1,0〉,
(c)〈1,0,0| r̂i |2,1,±1〉 vanish.
Hint: The matrix elements have the form

∫
riψnlm(~r)ψn′l′m′(~r)d2r, with the wa-

vefunctions given by Eq. (4.57). Use the symmetries of the spherical harmonics
to determine whether the integrand is an even or odd function and find out how it
depends on φ .

Exercise 4.46. Calculate the nonvanishing matrix elements from the previous exe-
rcise explicitly.

The above two exercises allow us to determine whether the transitions between
the respective states in the hydrogen atom can occur due to interaction with the op-
tical field. For example, they tell us whether an atom in state |1,0,0〉 can be excited
into state |2,1,1〉 by a resonant laser that is polarized along the x axis or, on the con-
trary, whether an atom in state |2,1,1〉 can emit an x-polarized photon and transition
into |1,0,0〉. This is because the mechanism of the light–atom interaction occurs
through the coupling of the electric field with the atomic electric dipole, which has
the form ~̂d = e~̂r. The strength of the optical coupling is determined by the magnitude
of the dipole moment matrix element associated with the relevant transition.

4.4.3 The periodic table

The periodic law, discovered by Dmitri Mendeleev in 1869, states that chemical
properties of elements exhibit periodic dependence on the charge of their atomic
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Table 4.2 Ground-state electron configurations for chemical elements up to Z = 36. For each
element, the populations of energy levels defined by quantum numbers n and l are listed.

n 1 2 3 4

element @
@Z

l
0 0 1 0 1 2 0 1 2 3

Hydrogen 1 1
Helium 2 2
Lithium 3 2 1

Beryllium 4 2 2
Boron 5 2 2 1
Carbon 6 2 2 2

Nitrogen 7 2 2 3
Oxygen 8 2 2 4
Fluorine 9 2 2 5

Neon 10 2 2 6
Sodium 11 2 2 6 1

Magnesium 12 2 2 6 2
Aluminum 13 2 2 6 2 1

Silicon 14 2 2 6 2 2
Phosphorus 15 2 2 6 2 3

Sulfur 16 2 2 6 2 4
Chlorine 17 2 2 6 2 5
Argon 18 2 2 6 2 6

Potassium 19 2 2 6 2 6 1
Calcium 20 2 2 6 2 6 2

Scandium 21 2 2 6 2 6 1 2
Titanium 22 2 2 6 2 6 2 2
Vanadium 23 2 2 6 2 6 3 2
Chromium 24 2 2 6 2 6 5 1
Manganese 25 2 2 6 2 6 5 2

Iron 26 2 2 6 2 6 6 2
Cobalt 27 2 2 6 2 6 7 2
Nickel 28 2 2 6 2 6 8 2
Copper 29 2 2 6 2 6 10 1

Zinc 30 2 2 6 2 6 10 2
Gallium 31 2 2 6 2 6 10 2 1

Germanium 32 2 2 6 2 6 10 2 2
Arsenic 33 2 2 6 2 6 10 2 3

Selenium 34 2 2 6 2 6 10 2 4
Bromine 35 2 2 6 2 6 10 2 5
Krypton 36 2 2 6 2 6 10 2 6

nucleus14. We can get some understanding of the periodic law by extending the
physics of the hydrogen atom to other elements.

Atoms are normally neutral, so they have as many electrons as protons. Hydrogen
has one proton and one electron, helium two of each, lithium three and so on. When
the number of electrons in the atom exceeds one, they start interacting with each

14 Mendeleev’s original formulation stated that this periodic dependence is on the element’s atomic
weight, because the nucleus had not yet been discovered at that time.
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other, and the problem of calculating their wavefunctions and energy levels becomes
intractable. To deal with this complication, we shall first assume that the electrons
do not interact with each other. This is, of course, a gross oversimplification, yet it
will allow us to set up the “zero order approximation” as a basis for the discussion.

Dmitri Mendeleev

There are two fundamental principles we must take into ac-
count. The first is the principle of minimum energy. That is, the
electrons will normally occupy the state (or one of the states)
with the lowest possible energy (the ground state). This is jus-
tified because, if the atom is in thermal equilibrium with the
environment, it follows from Boltzmann statistics: the probabi-
lity of finding the atom in a state with energy E is proportional
to e−E/kT , where k is the Boltzmann constant and T the tem-
perature of the environment. As long as kT � E1−E0 (where
E1−E0 is the energy difference between the first higher energy
state and the ground state), the probability for the atom to become excited is low.

Exercise 4.47. Estimate the probability for the hydrogen atom to become excited
to a state with n = 2 at room temperature.
Hint: Don’t forget to take into account the degeneracy of energy levels.

If multielectron atoms were governed entirely by the principle of minimum
energy, all electrons would be found in the energy level with n = 1. However, this
is prevented by the Pauli exclusion principle. As we found in Ex. 4.39, the n = 1
energy level (or shell, as chemists say) has room for only two electrons. If the atom
has more than two electrons, the remaining ones will be pushed into the n = 2 shell,
which has room for eight electrons, n = 3 with room for eighteen, and so on. The
higher the atomic number, the more shells are occupied.

Let us now bring the interactions between electrons into the picture. The quantum
many-body treatment can be simplified by observing that the electrons in different
shells tend to interact only weakly with each other. This is because, as is evident
from Fig. 4.3, lower shell electrons are, on average, much closer to the nucleus.
Spatial overlaps of wavefunctions associated with different shells are relatively low,
so the electrons spend little time in direct proximity with each other. From the point
of view of the outer shell electrons, the inner shell electrons effectively act as a solid
negatively charged sphere (hence the name “shell”) around the nucleus, offsetting
its attractive potential by their negative charge.

Chemical properties of an element are primarily determined by the electrons in
the outermost occupied shell, the valence shell. This is because they have the hig-
hest energies (Fig. 4.4), and hence are more likely to enter chemical reactions. The
crucial factor is the number of electrons in that shell. If it is filled (the Pauli principle
does not allow additional electrons to join it), the ground state lies low, so the atom
is reluctant to enter chemical reactions with other atoms — the element is then a
noble gas. As we can see in Table 4.2, this is the case with helium (atomic number
Z = 2) and neon (Z = 2+ 8 = 10). Note that the next noble gas, argon, has atomic
number Z = 18, rather than 2+ 8+ 18 = 28, so it does not follow this rule. I will
explain this in a moment.
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If the valence shell has only one electron (lithium Z = 2+ 1 = 3, sodium Z =
10+ 1 = 11, potassium Z = 18+ 1 = 19 etc.), this electron interacts weakly with
those of inner shells, so it behaves as if it were the only electron in the atom. Such
atoms are called alkali metals. They are likely to enter chemical reactions by giving
away their single valence electron and becoming positively ionized. This is because
the bound state energy of the outer electron is close to zero.

In halogens (fluorine Z = 10−1 = 9, chlorine Z = 18−1 = 17, etc.), on the other
hand, the valence shell is missing a single electron, so it is beneficial for the atom
to “steal” an electron and thereby fill its outer shell, yielding a low-lying energy
eigenstate. This is why alkali metals and halogens tend to react strongly with each
other and form stable substances such as table salt (NaCl).

In elements starting with potassium (Z = 19) in Table 4.2, the n = 4 shell starts to
fill before those states with n = 3, l = 2. The reason is as follows. We found earlier
that in the hydrogen atom, states with the same principal quantum number n but
different orbital quantum numbers l have the same energy. As it turns out, this is a
unique property of atoms or ions that have only one electron. Electrons with higher
angular momenta are located, on average, further away from the nucleus. Therefore,
in a multielectron atom, an electron in a state with a large l is shielded from the field
of the nucleus by other electrons, and therefore has a higher energy than its peer
with the same n, but lower l15. This property is especially prominent for high values
of n and l. In particular, states with n = 3, l = 2 have higher energy than those with
n = 4, l = 0. Therefore after argon, in which states with n = 3 and l = 0,1 are filled,
the fourth shell begins to fill even though there are still vacancies in the third shell.
This explains why argon behaves like a noble gas.

Of course, the third shell would have to fill up, too, at some point. This happens
for Z = 21 to 30, scandium to zinc. Because all these elements (except chromium
and copper) have two electrons in the outer shell, they have largely similar chemical
properties.

4.5 The Bloch sphere

In previous sections, we found the eigenstates of the operators associated with the
projections of the angular momentum vector onto various axes. Let us now pose
a converse problem. Can an arbitrary element of the Hilbert space be viewed as
an eigenstate of the projection of the angular momentum onto a particular axis? In
other words, can one associate an angular momentum vector of a certain direction
with any motional state, as one does in classical physics? The answer turns out to
be affirmative, but only for the subspace associated with l = 1

2 .

15 The magnetic quantum number m, on the other hand, does not affect the energy, even in multie-
lectron atoms.
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Exercise 4.48. Consider an arbitrary normalized spin state |ψ〉 = ψ↑ |↑〉+ψ↓ |↓〉.
Without loss of generality, we define the overall quantum phase of that state such
that ψ↑ is real and non-negative.

a) Show that, for any state |ψ〉, we can define a unique set of angles θ ∈ [0,π] and
φ ∈ [0,2π) such that

ψ↑ = cos
θ

2
; (4.62a)

ψ↓ = sin
θ

2
eiφ . (4.62b)

b) Show that the state |ψ〉 is the eigenstate of the projection of the angular mo-

mentum ~̂S16 onto the vector ~Rθφ directed along the spherical angles θ ,φ with
the eigenvalue h̄/2.

c) Show that the Cartesian coordinates of the tip of ~Rθφ equal the mean values of
the observables σ̂x, σ̂y, σ̂z for the corresponding state |ψ〉.

Hint: recall Ex. 4.28.

Exercise 4.48 tells us that for every spin state |ψ〉, one can define a vector such
that the spin in that state “points in the direction” of that vector. This vector is called
the Bloch vector of state |ψ〉, and the full set of such vectors is called the Bloch
sphere.

Exercise 4.49. Explain why a similar correspondence cannot be established for
subspaces with angular momentum l > 1

2 .

Exercise 4.50.§ Check that the eigenstates of operators Ŝx, Ŝy, Ŝz correspond to the
points on the Bloch sphere as shown in Fig. 4.5.

Exercise 4.51. Show that any two states that are represented by opposite points on
the Bloch sphere are orthogonal.

The Hilbert space associated with a spin- 1
2 particle is a qubit. Indeed, its basis

consists of two elements: “spin-up” |↑〉 and “spin-down” |↓〉. This means that we
can establish a one-to-one correspondence (isomorphism17) between spin states and
those of any other qubit — for example, photon polarization states, mapping any
spin state α |↑〉+β |↓〉 onto a polarization state α |H〉+β |V 〉. Then the eigenstates

16 We use the symbol ~̂S, rather than ~̂L, to emphasize that the subspace l = 2 can correspond only to
a spin degree of freedom.
17 An isomorphism f (·) between linear spaces V and W is a one-to-one mapping |a〉 ∈ V 7→
f (|a〉) ∈W such that, for any |a〉 , |b〉 ∈ V and number λ ,

f (|a〉+ |b〉) = f (|a〉)+ f (|b〉); (4.63)

f (λ |a〉) = λ f (|a〉).

Note the difference between an isomorphism and a linear operator (Defn. A.15). A linear operator
is a map within a single linear space, while an isomorphism may be between two different linear
spaces. In addition, a linear operator does not have to be a one-to-one map.
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Fig. 4.5 The Bloch sphere.

of Ŝx will be mapped onto the diagonal polarization states |+〉 and |−〉, and the
eigenstates of Ŝy onto the circular polarization states |R〉 and |L〉.

Accordingly, we can represent the polarization states by points on the Bloch sp-
here (Fig. 4.5). Note that the linear polarization states |α〉 = cosα |H〉+ sinα |V 〉
(where α is the polarization angle) can at the same time be written according to
Eq. (4.62) as |α〉 = cos θ

2 |H〉+ sin θ

2 |V 〉 (where θ is the polar angle on the Bloch
sphere). This means that this polar angle is twice the polarization angle. For exam-
ple, as evidenced by Fig. 4.5, states |H〉 and |V 〉 are separated on the Bloch sphere
by a 180◦ arc, and states |H〉 and |±〉 by a 90◦.

Note the different logic we used in dealing with the Pauli operators and their ei-
genvectors when studying photon polarization in Chapter 1 and spin in this chapter.
In the former case, we first introduced the three polarization bases and then defined
the Pauli operators as the observables associated with these bases in Ex. 1.29. Here,
on the other hand, we first obtained the Pauli operators from the physics of angular
momentum in Ex. 4.26, and then calculated their eigenstates.

Exercise 4.52. A horizontally polarized photon propagates through a

a) half-wave plate;
b)∗ quarter-wave plate

with its optic axis oriented at angle α with respect to the horizontal. Plot the locus
of the resulting polarization states on the Bloch sphere for all possible values of α .
Hint: refer to Ex. 1.24. Part (b) can be solved numerically.
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Exercise 4.53. A pair of electrons, shared between Alice and Bob, are prepared in
an entangled spin state ∣∣Ψ−〉= 1√

2
(|↑↓〉− |↓↑〉) .

Alice measures the projection of her electron’s spin onto vector ~Rθ ,φ defined by
spherical angles (θ ,φ). Find the probability of each possible outcome of this mea-
surement and the resulting state of Bob’s electron. What is the location of that state,
and Alice’s corresponding measurement result, on the Bloch sphere?

4.6 Magnetic moment and magnetic field

4.6.1 Angular momentum and magnetic moment

Many elementary particles are charged, so their having an angular momentum im-
plies that there is an electric charge moving in a loopwise fashion. This motion
gives rise to a magnetic moment, which can interact with externally applied magne-
tic fields (Box 4.4). This interaction has a wide range of applications, from quantum
information processing to biological imaging.

Exercise 4.54. For the classical motion of a point-like particle of mass M and charge
e in a circular orbit with angular momentum~L, show that the gyromagnetic ratio18

is given by
γ =

e
2M

. (4.70)

Although we derived this result classically, it remains valid in the quantum dom-
ain, but the quantum gyromagnetic ratio includes a dimensionless factor called the
Landé factor:

γ = g
e

2M
. (4.71)

This factor depends on the nature of the motion. If the angular momentum is entirely
due to the orbital motion, g = 1 (so the quantum expression is the same as the
classical one). For the spin of the electron it is 2.0023, for the proton 5.5857.

18 See Box 4.4 for the definition of the gyromagnetic ratio.

The Landé factor for the spin can be derived theoretically using methods of rel-
ativistic quantum electrodynamics. A way to visualize this factor is to picture a
spinning electron which is not exactly pointlike but has a finite size. The distribu-
tions of mass and charge over the electron’s volume are different: while the mass is
more concentrated in the particle’s center, the charge is spread over the periphery.
As a result, the ratio between the magnetic moment and the mechanical angular mo-
mentum is higher than that expected from a particle with identical distributions of
mass and charge.
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Box 4.4 Magnetic moment in a magnetic field: a classical summary

Forces on an electric current loop placed in a magnetic field

Suppose a rectangular loop of dimensions a×b carrying current I is placed in a magnetic field
~B oriented along the z axis. The normal to the loop is at angle α to the z axis as shown in the
figure. Each side of the loop will experience a magnetic force for which the general expression
is ~F = I~l×~B, where~l is the length vector of that side. The forces acting on the sides of length
a will balance each other, but the forces acting on the sides of length b (whose magnitudes are
Fb = IbB) will produce a torque of magnitude τ = 2Fb×(a/2)sinα = IBabsinα = IBAsinα ,
where A is the area of the loop.

The magnetic moment ~µ carried by the loop is a vector of magnitude

µ = Iab = IA (4.64)

and the direction is perpendicular to the plane of the loop. The torque acting on the loop is
therefore

~τ =~µ×~B. (4.65)

In this form, the relation is quite general and valid for loops of any shape.
Being acted upon by the magnetic forces, each of the wires carries potential energy.

Let us calculate the full potential energy of the loop as a function of the angle α , assuming
that the loop can rotate around the axis that coincides with one of the sides of length b, and
that α = π/2 corresponds to the zero energy position. Rotating the loop from that position
to another α means displacing the other side of length b by the distance ±acosα in the y
direction, thereby performing the work W =−Fbacosα =−IBabcosα =−µBcosα . Hence
the potential energy is given by

U =−~µ ·~B. (4.66)

Once again, the latter expression does not depend on the shape of the loop or the location of
the axis. The potential energy of a magnetic dipole in a magnetic field is minimized when the
two are collinear.

In addition to the current, the charged particles moving in the loop carry mass, so their
motion is associated with angular momentum~L. The magnetic moment is proportional to the
angular momentum,

~µ = γ~L, (4.67)

where the proportionality coefficient is the gyromagnetic ratio (see also Ex. 4.54).
The effect of the torque on that angular momentum is~̇L =~τ . Using Eqs. (4.65) and (4.67)

we obtain
~̇L = γ~L×~B. (4.68)

As we know from classical mechanics, the solution of the differential equation (4.68) is a
precession of the loop around the direction of the magnetic field with angular frequency

ΩL = γB, (4.69)

known as the Larmor frequency.
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Exercise 4.55. For a charged particle with an orbital or spin angular momentum,
show that

a) the projection of the magnetic moment onto the z axis quantizes according to

µz = h̄γm; (4.72)

b) under the action of a constant magnetic field B, the energy eigenvalues are

Em =−h̄ΩL =−h̄γBm, (4.73)

where m is the corresponding magnetic or spin quantum number and ΩL is the
Larmor frequency (4.69).

Fig. 4.6 Zeeman splitting of the energy in a magnetic field. The example in the figure has L = 2.
The electric charge of the spinning particle, and hence the gyromagnetic ratio γ , are assumed
positive.

The energy level splitting in the magnetic field that we found in part (b) is called
the Zeeman effect (Fig. 4.6). It is ubiquitous in atomic and nuclear physics.

If the angular momentum in the above exercise is orbital, then we can see from
Eq. (4.70) that the quantum of the projection of the magnetic moment onto the z
axis is

µB =
e

2M
h̄. (4.74)

For the electron (M = Me), this quantity is called the Bohr magneton. It is equal to
5.8×10−9 eV/Gauss = 9.3×10−24 J/T.

Exercise 4.56.§ Verify that the data in the last column of Table 4.3 are consistent
with those in the other columns.

B

En
er
gy

m

m

m

m

m

LBg = Wh h

E
ne

rg
y

 = 0

 = 1

 = 2

 = 1

 = 2

0

-

-



4.6 Magnetic moment and magnetic field 203

Table 4.3 Magnetic dipole properties of some elementary particles.

Particle Mass, kg Charge, C Spin Landé factor Larmor frequency, MHz/T

Electron 9.10938×10−31

1.60218×10−19 1/2
2.0023 28025

Proton 1.67262×10−27 5.5857 42.5781

muon 1.883532×10−28 2.0023 135.539

4.6.2 Stern–Gerlach apparatus

A particle with a magnetic moment placed in an external magnetic field has a poten-
tial energy given by Eq. (4.66). If the magnetic field varies as a function of position,
this potential energy has a gradient, which manifests itself as a force: ~F = −~∇U .
Using Eq. (4.66), we can rewrite this as ~F = ~∇(~̂µ ·~B). If we define the z axis to be
along the magnetic field, this result simplifies to

~F = (~∇B)µ̂z. (4.75)

The magnitude of the force is proportional to the projection of its magnetic moment
onto the field direction.

This observation can be used to measure components of the quantum angular
momentum vector. The Stern–Gerlach apparatus19 contains a permanent magnet of
such a shape that the field it produces is significantly non-uniform. When a particle
is traveling through this field, it experiences a force and deviates from its original
path. The path taken by the particle is revealed by a sensitive screen placed behind
the magnet (Fig. 4.7).

Fig. 4.7 The Stern–Gerlach apparatus

Because the magnetic moment is proportional to the angular momentum, the
Stern–Gerlach apparatus effectively measures the component of the angular mo-

19 W. Gerlach and O. Stern, Der experimentelle Nachweis der Richtungsquantelung im Magnet-
feld, Zeitschrift für Physik 9, 349–352 (1922); W. Gerlach and O. Stern, Das magnetische Moment
des Silberatoms, Zeitschrift für Physik 9, 353–355 (1922); W. Gerlach and O. Stern, Der experi-
mentelle Nachweis des magnetischen Moments des Silberatoms, Zeitschrift für Physik 8, 110–111
(1922).
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mentum along the direction of the field. Because the values of this component are
quantized, the particle will land at discrete spots on the target screen. For example,
a free electron can end up at two spots corresponding to ms =± 1

2 . In the context of
the spin-polarization isomorphism (Sec. 4.5), the Stern–Gerlach measurement of the
z projection of the electron spin is equivalent to measuring the photon’s polarization
in the canonical basis using a polarizing beam splitter (Sec. 1.4).

Exercise 4.57. An electron prepared in an eigenstate of the spin component along
the vector with polar coordinates (θ ,φ) and with the eigenvalue h̄

2 passes through a
Stern–Gerlach apparatus with the field vector along the z-axis. What are the proba-
bilities that the electron will end up on each of the two spots on the screen?

Exercise 4.58. In a Stern–Gerlach apparatus, the directions of the field and its gra-
dient may be different. Which of these two directions determines the measurement
basis?

Exercise 4.59. A beam of particles with the spin s = 1 in the eigenstate of ŝx with
zero eigenvalue passes through a Stern–Gerlach apparatus with the field vector al-
ong the y-axis. How many spots will be formed on the target screen and in which
proportion will the particles divide among these spots?

Exercise 4.60. A beam of electrons prepared with the spins pointing in the negative
z direction passes through a Stern–Gerlach apparatus with the field vector oriented
in the x-z plane, at angle θ0 to the z-axis. What is the splitting proportion?

4.6.3 Evolution of magnetic states

From classical physics (Box 4.4), we know that a magnetic moment placed in a
magnetic field will precess around that field. Do we also expect an effect of this kind
in the quantum domain? To answer this question, we need to study the evolution of
our quantum system under the Hamiltonian (4.66). Taking Eq. (4.71) into account,
we rewrite this Hamiltonian as

Ĥ =−~̂µ ·~B =−γ~̂L ·~B. (4.76)

Note that we treat the macroscopic magnetic field as a classical vector rather than
an operator.

Exercise 4.61. By writing the differential equation for the evolution of the compo-
nents of the angular momentum vector observable in the Heisenberg picture, repro-
duce the classical result (4.68).

We see that the Heisenberg picture behavior of the quantum magnetic moment
in a field is similar to the classical one: it precesses around the field with Larmor
frequency ΩL = γB (Fig. 4.8). Of course, if we are interested in the mean values of
the angular momentum vector operator, this result applies independently of whether
we use the Heisenberg or Schrödinger picture for the calculation. In the case of the
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two-level system, for example, the Bloch vector [whose components Rx,y,z =
〈
σx,y,z

〉
as per Ex. 4.48(c)] evolves according to

~̇R = γ~R×~B. (4.77)

This important result illustrates the utility of the Heisenberg picture: obtaining
it in the Schrödinger picture would be much more difficult. We do this in the next
exercise for a few special cases.

Fig. 4.8 Precession of the Bloch vector around the magnetic field. The gyromagnetic ratio is
assumed positive.

Exercise 4.62. Find the evolution in the Schrödinger picture of the spin state of a
free electron under the action of a constant magnetic field ~B given the following
conditions:

a) the initial state is represented by an arbitrary point (θ0,φ0) on the Bloch sphere
and the magnetic field is along the z axis;

b) the initial state corresponds to the spin pointing along the z axis and the magne-
tic field is along the y axis;

c) the initial state corresponds to the spin pointing along the z axis and the magne-
tic field is along a vector with polar angles (θ0,0).

Present your solutions in the matrix form in the canonical basis and as trajectories
on the Bloch sphere. Check that your result is consistent with Eq. (4.77). For each
answer, find the splitting ratio that would be observed in a Stern–Gerlach measure-
ment with the magnetic field in the z direction.
Hint: See Ex. 1.47 for a related problem.

Exercise 4.63. A photon and an electron are prepared in the entangled state∣∣Ψ−〉= 1√
2
(|H ↓〉− |V ↑〉) (4.78)

and distributed between Alice and Bob, who use them to perform quantum telepor-
tation of another photon in state |χ〉= α |H〉+β |V 〉 onto the spin of Bob’s electron.
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To this end, Alice performs a Bell measurement on her two photons. For each pos-
sible output of this measurement, find the direction and magnitude of the magnetic
field ~B that Bob would need to apply to his electron for a given time τ in order to
bring its spin to the state α |↑〉+β |↓〉.

4.7 Magnetic resonance

4.7.1 Rotating basis

Suppose a spin- 1
2 particle is placed in a constant magnetic field B0 directed along the

z axis. As discussed previously [Ex. 4.55(b)], the states |↑〉 and |↓〉 are the eigensta-
tes of the Hamiltonian with energies E↑,↓ = ∓ h̄

2 Ω0, where Ω0 = γB0 is the Larmor
frequency20, with γ the particle’s gyromagnetic ratio. Our goal in this section is to
study the phenomena that occur if, in addition, a relatively weak magnetic field,
oscillating at a frequency ω close to Ω0

21, is applied along the x axis:

~B = B0k̂+Brf cosωt î. (4.79)

In other words, we would like to know what happens if this oscillating field is close
to resonance with the two-level system formed by states |↑〉 and |↓〉 (Fig. 4.9).

Fig. 4.9 Magnetic resonance in a two-level system.

Exercise 4.64. Write down the Hamiltonian and the differential equations for the
Schödinger evolution of the particle’s spin state |ψ(t)〉 in the (|↑〉 , |↓〉) basis.
Answer:

H =− h̄
2

γ(B0σ̂z +Brfσ̂x cosωt)' h̄
2

(
−Ω0 −γBrf cosωt

−γBrf cosωt Ω0

)
; (4.80)

20 We will be using the symbol Ω0 rather than ΩL for the Larmor frequency in this section.
21 This magnetic field is usually referred to as the radio frequency (rf) field, because ω is typically
in the range where radio and TV transmissions occur. The field B0 is referred to as the dc (direct
current) field.
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ψ̇↑ =
i
2

Ω0ψ↑+
iγ
2

Brf cosωtψ↓; (4.81a)

ψ̇↓ =−
i
2

Ω0ψ↓+
iγ
2

Brf cosωtψ↑, (4.81b)

where ψ↑(t) = 〈↑ | ψ(t)〉 ,ψ↓(t) = 〈↓ | ψ(t)〉.

Equations (4.81) are similar to the ones we deal with when we study quantum
evolution in any two-dimensional Hilbert space (see, for example, Ex. 1.47). Ho-
wever, the coefficients on the right-hand side are now time-dependent. This com-
plicates the calculation quite a bit. However, for Brf � B0 and near the resonance,
an elegant approximate solution exists. As the first step in finding it, let us define a
new, time-dependent, basis in our Hilbert space:∣∣↑̃〉= |↑〉e i

2 ωt ; (4.82a)∣∣↓̃〉= |↓〉e− i
2 ωt . (4.82b)

For a reason that will become evident in the next exercise, the new basis is called
the rotating basis. We denote the decomposition coefficients of the state |ψ〉 in the
rotating basis by

ψ̃↑(t) =
〈
↑̃
∣∣ ψ(t)

〉
= ψ↑(t)e−

i
2 ωt ; (4.83a)

ψ̃↓(t) =
〈
↓̃
∣∣ ψ(t)

〉
= ψ↓(t)e

i
2 ωt . (4.83b)

We will be referring to the original canonical basis {|↑〉 , |↓〉} as stationary.

Exercise 4.65. Show that the Bloch vectors in the stationary and rotating bases22

are related by rotation through an angle ωt around the z axis.

We know that, in the absence of the rf field, the Bloch vector in the stationary
basis precesses around the magnetic field with the Larmor frequency Ω0. In the
rotating basis, the Bloch vector precesses much more slowly, with angular velocity
Ω0−ω .

Exercise 4.66. Show that Eqs. 4.81, rewritten in terms of ˙̃ψ↑ and ˙̃ψ↓, take the form

˙̃ψ↑ =−
i
2

∆ψ̃↑+
iγ
4

Brf(1+ e−2iωt)ψ̃↓; (4.84a)

˙̃ψ↓ =
i
2

∆ψ̃↓+
iγ
4

Brf(1+ e2iωt)ψ̃↑, (4.84b)

where ∆ = ω−Ω0 is the detuning of the rf field from the resonance.

Up to now, our calculations have been precise. Next, we perform an important
trick known as the rotating-wave approximation. We will neglect the quickly oscil-
lating terms involving e±2iωt on the right-hand side of Eqs. (4.84). The argument for

22 The Bloch vector in the new basis is obtained by substituting (ψ̃↑, ψ̃↓) into Eq. (4.62) instead of
(ψ↑,ψ↓).
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doing so is that these terms average out during an oscillation period 2π/ω , so their
effect becomes negligible in comparison to the other terms, which do not oscillate.
This approximation is valid as long as ∆ � ω,Ω0 and Brf� B0.

Exercise 4.67. Show that, under the rotating-wave approximation, the evolution
defined by Eqs. (4.84) is the same as under the Hamiltonian

ĤRWA '
h̄
2

(
∆ −Ω

−Ω −∆

)
, (4.85)

where Ω = γBrf/2 is called the Rabi frequency.

We see that, in the rotating basis and under the rotating-wave approximation,
the evolution due to a time-varying field is described by a constant Hamiltonian,
and this greatly simplifies the calculations. In addition, this Hamiltonian provides
us with a way to visualize things, which we shall examine next.

Exercise 4.68. Show that a Hamiltonian with a matrix identical to (4.85) is obtained
if the spin is placed in a constant magnetic field ~B of magnitude

B =

√
Ω 2 +∆ 2

γ
, (4.86)

with components

Box 4.5 Unphysical nature of the rotating-wave Hamiltonian
Given that the stationary and rotating bases are related to each other by a complex phase

shift (4.82), we would expect, for example, that
〈
↑
∣∣ Ĥ
∣∣ ↑ 〉 = 〈↑̃∣∣ Ĥ

∣∣ ↑̃〉. But this equality
seems inconsistent with the matrices of the stationary and rotating-wave Hamiltonians given
by Eqs. (4.80) and (4.85), respectively: H↑↑ = h̄Ω0/2, while (HRWA)↑̃↑̃ = h̄∆/2. But where
does this discrepancy come from? The rotating-wave approximation cannot be the answer,
because it affects only the off-diagonal elements of the Hamiltonian, not the diagonal ones.

The reason is that we can express the Schrödinger equation in a matrix form, such as
Eq. (1.32), only for a time-independent basis. Only then can we write, for example, that
〈↑|
( d

dt |ψ〉
)
= d

dt 〈↑ | ψ〉. If the basis is time-dependent, we would also need to take into
account the time derivative of the basis element, so the above equality would not be valid.
But in deriving the rotating-wave Hamiltonian matrix (4.85) from the evolution (4.84), we
neglected this, handling the rotating basis as if it were time-independent.

As a result, the rotating-wave Hamiltonian is unphysical, or fictitious: it does not repre-
sent the actual energy observable∗. In particular, the element (HRWA)↑̃↑̃ of its matrix is not
equal to the expectation value

〈
↑̃
∣∣ Ĥ
∣∣ ↑̃〉 of the full Hamiltonian Ĥ. Nevertheless, HRWA gives

a correct mathematical description (4.84) of the spin state evolution. If our goal is to find that
evolution, we may as well not worry about the physics of the rotating-wave Hamiltonian, and
just use it as a formal tool for a theoretical treatment.

∗ In fact, Eq. (4.85) does correctly represent the Hamiltonian of the system in the so-called interaction
picture, which we do not study here.

−
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Box 4.6 Rabi oscillations and photoelectric effect
The photoelectric effect is the emission of free electrons from a surface illuminated by

light. Its salient properties, as determined experimentally, are as follows.

• The kinetic energy of the ejected electrons depends on the wavelength of the light but not
its intensity.

• Electrons are emitted only if the wavelength is below a certain threshold value.

These properties, inconsistent with classical physics, were explained by Einstein in 1905
using the notion of the photon. According to this explanation, the energy h̄ω of a photon
absorbed by the surface is partially used up to overcome the potential U that binds the elec-
tron to the host substance; the remainder (K = h̄ω−U) becomes the photoelectron’s kinetic
energy. Therefore only light with h̄ω ≥U can produce photoelectrons.

The intuitive nature of Einstein’s explanation and its excellent agreement with the expe-
rimental data were instrumental in bringing about universal acceptance of the quantum theory
by the physics community. It was primarily for this discovery that Einstein was awarded his
Nobel prize in 1921.

The quantum physics of two-level systems studied here allows for an alternative explana-
tion of the photoelectric effect. Transitions between energy levels in matter due to the action
of resonant electromagnetic fields are governed by the same laws as in magnetic resonance.
When a (classical) wave of frequency ω is in resonance with the transition between a bound
state of energy −U and a continuous-spectrum free electron state of energy K, a Rabi oscil-
lation between these states ensues. Once the electron is in a superposition of the bound and
unbound states, it may be observed in the unbound state and collapse onto that state, thereby
manifesting the photoelectric effect.

In summary, it is not necessary to invoke photons to explain the photoelectric effect. It
suffices to treat the host matter quantum-mechanically and the electromagnetic wave classi-
cally.

Bx =
Ω

γ
, By = 0, Bz =−

∆

γ
. (4.87)

We find that the rotating-wave Hamiltonian can be interpreted to arise due to a
constant magnetic field oriented at a certain angle. Of course, being a consequence
of a fictitious Hamiltonian (Box 4.5), this field itself is unphysical; it has nothing
to do with the actual field (4.79). But it is nevertheless supremely convenient, be-
cause it allows direct application of the results for the quantum evolution of a spin
in a constant magnetic field, as obtained in the previous section, to the magnetic
resonance problem.

4.7.2 Evolution under the rotating-wave approximation

As we found in Ex. 4.61, the behavior of the Bloch vector in a magnetic field is
identical to the classical behavior. This means that the evolution of the Bloch vector
in the rotating basis under a Hamiltonian (4.85) consists in precession around the
fictitious field (4.87), as shown in Fig. 4.10(a).



210 A. I. Lvovsky. Quantum Physics

In the case of exact resonance, ∆ = 0, the fictitious field ~B is of magnitude Ω/γ

and directed along the x axis, so the trajectory of the Bloch vector is a meridian cros-
sing the y axis. The precession occurs with angular velocity γB = Ω . Accordingly,
the populations23 of the spin-up and spin-down states will oscillate sinusoidally with
the Rabi frequency. This phenomenon is known as Rabi oscillations.

Detuning the rf field from the resonance (so that ∆ 6= 0) has two effects
[Fig. 4.10(a,b)]. First, the frequency of the Rabi oscillations will increase because
of the term ∆ 2 in the fictitious field magnitude (4.86). Second, the direction of
that field is no longer horizontal. If a trajectory starts in the spin-up state, it will
no longer reach the south pole of the Bloch sphere, so we will never observe the
spin-down state with probability one.

Exercise 4.69. Find the highest probability pr↓max of observing the spin-down state
during the Rabi cycle as a function of the detuning ∆ . The cycle starts in the spin-up
state.
Hint: Although the problem can be solved by calculating the Schrödinger evolution
under the Hamiltonian (4.85) (and we shall do it in the next exercise), the question
is much easier to answer by just looking at the geometry of the Bloch sphere.
Answer:

pr↓max =
Ω 2

Ω 2 +∆ 2 . (4.88)

We can now see why this phenomenon is called “resonance”. The Lorentzian
shape of the curve (4.88) [Fig. 4.10(c)] is quite similar to the response of a mecha-
nical harmonic oscillator or an LC circuit to a periodic driving force. Note an im-
portant difference, though: in the case of a harmonic oscillator, the resonance width
is determined by the damping constant, but is independent of the driving field. The
width of the magnetic resonance, in contrast, is proportional to the Rabi frequency,
i.e., to the amplitude of the rf field. This phenomenon is called power broadening
and is characteristic of two-level systems.

The two-level system has limited energy: its highest energy eigenstate is that of
the spin-down state. However high the applied rf power is, it cannot further increase
the system energy; the system saturates. The harmonic oscillator, on the other hand,
has infinitely many energy levels and therefore does not saturate: when we drive
it more strongly, it will respond by going into increasingly higher energy states.
Accordingly, it will not exhibit any power broadening24.

Exercise 4.70. Find the evolution of the spin state |ψ(t)〉 under the Hamiltonian
(4.85), starting with the initial state |ψ(0)〉= |↑〉. Find the probabilities of the spin-
up and spin-down states as a function of time, Rabi frequency, and detuning. Re-
concile the result with that of Ex. 4.69 and Fig. 4.10(b).
Hint: use Ex. 4.62(c).

23 The population of a quantum state is the total number of particles in that state. In our case, the
spin-up and spin-down populations are, respectively, npr↑ and npr↓, where n is the total number of
electrons in the sample.
24 See a related discussion in Sec. 3.8.2.
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Fig. 4.10 Evolution in the rotating-wave Hamiltonian (4.85), with the particle initially in the spin-
up state. a) Trajectory on the Bloch sphere, specialized to ∆ = −Ω/

√
3 and viewed in the x-z

plane. b) Probability of detecting the spin-down state as a function of time. c) Resonance curve
(4.88). Dashed lines show its width at half-maximum.

Exercise 4.71.∗ Find the rotating-wave Hamiltonian for the setting in which the rf
field is given by Brf cos(ωt +β ), where β is an arbitrary phase, and is directed

a) along the x axis;
b) along the y axis.

Find the coordinates of the corresponding fictitious magnetic field vector. Show
that, if the rf frequency is resonant with the two-level transition, this field is always
horizontal.
Answer: The fictitious magnetic field is

a) B = (Ω

γ
cosβ ,−Ω

γ
sinβ ,−∆

γ
);

b) B = (Ω

γ
sinβ , Ω

γ
cosβ ,−∆

γ
).

Exercise 4.72. Write the Schrödinger equation in the stationary basis for the rf field
directed along the z axis. Show that no transitions between the spin-up and spin-
down states will occur in this case.

4.7.3 Pulse area

We have seen in the previous section that a resonant rf field whose Rabi frequency
is Ω , acting for time t, will rotate the Bloch vector through the angle Ω t. In many
practical applications, the resonant rf field is applied in a pulsed manner, so that its
amplitude and hence the Rabi frequency depends on time: Ω = Ω(t). Such a pulse
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will rotate the Bloch vector through the angle
∫

Ω(t)dt. This quantity is known as
the pulse area25. The notion of the pulse area is convenient because it is a single
parameter that fully describes the effect of the pulse on the spin; there is no need to
know the exact shape of the pulse as long as we know its integral.

For example, applying a pulse of area π/2 to the spin-up state will transform it

into the state with the spin pointing along the y axis, 1√
2

(
1
i

)
. If we apply another

π/2 pulse to that state, we will obtain the spin-down state. Together, these two pulses
comprise a pulse of area π , whose effect is to “flip” the Bloch vector around the x
axis26.

If the rf field is applied in a pulsed manner (as is typically the case in magnetic
resonance applications, see Box 4.7), achieving a macroscopic pulse area requires a
relatively high Rabi frequency. Then we need not worry about precise tuning of the
rf field as long as Ω � ∆ for most of the pulse duration (but we must still observe
Ω �Ω0). If this is the case, the fictitious magnetic field (4.87) is almost horizontal,
and the effect of detuning negligible.

Exercise 4.73. A particle is initially in the spin-up state. It is subjected to a π/2
pulse, followed by another π/2 pulse, in which the phase of the rf field is shifted
through an angle β . Find the final population of the spin-down state as a function of
β . Interpret your results for β = 0 and β = π .

4.7.4 Applications of magnetic resonance

Suppose we have a large set (ensemble) of spin- 1
2 particles, initially prepared in

the state |↑〉, along the dc magnetic field. If we apply a pulse of area π/2 to that
ensemble, the spins will rotate to a horizontal position. After the rf pulse, if the dc
field is still present, the spins will precess around the z axis at the frequency Ω0.

Exercise 4.74. A short pulse of area π/2 is applied to a particle initially in the
spin-up state, ending at t = 0. Calculate the mean values of the three Cartesian
components of the magnetic moment observable at t > 0

a) in the rotating basis;
b) in the stationary basis.

A precessing magnetic moment will emit an electromagnetic field at the fre-
quency of the precession. This field, which is proportional to the horizontal compo-
nent of the Bloch vector, can be detected by a radio receiver and provides us with
important insights into the substance that contain the spins. Here we discuss the
properties of this emission.

25 In reference to the integral being the “area underneath the curve”.
26 The π pulse corresponds to a logical “not” operation on a spin-based qubit: it transforms |0〉=
|↑〉 into |1〉= |↓〉 and vice versa.
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The signal obtained in response to a single pulse is known as the free induction
decay. This name refers to the fact that the signal quickly loses its strength with
time as a result of various damping and decoherence mechanisms. The primary
mechanism causing the damping is the slight variation (inhomogeneity) in the dc
magnetic field with the spatial position. This results in inhomogeneous broadening
of the resonance: each spin will have a different ∆ within a certain range ∆0 known
as the inhomogeneous width. The Bloch vectors with different detunings will precess
around the z axis with different angular velocities, and spread across the equator of
the Bloch sphere on a time scale of ∆

−1
0 [Fig. 4.11(a), panel 2]. Then the fields

emitted by different spins will acquire different phases and cancel each other.

Exercise 4.75. An ensemble of spins is inhomogeneously broadened in such a way
that its detunings are distributed as follows:

p(∆) =
1√
π∆0

e−(∆/∆0)
2
.

Under the conditions of Ex. 4.74, calculate the average magnetic moment vector of
a spin in this ensemble as a function of time t > 0 in the rotating basis.
Hint: Use Ex. D.9(c).
Answer:

〈~µ〉=
(

0,
h̄γ

2
e−

(∆0t)2

4 ,0
)
. (4.89)

The horizontal bar over 〈~µ〉means that quantum averaging is followed by statisti-
cal averaging over the ensemble. Note also that the mean direction of the spin in the
rotating basis is constant along the y axis; in the stationary basis, this corresponds
to precession at the frequency ω , as per Ex. 4.65.

Inhomogeneous broadening is frequently the dominant limitation on the free in-
duction decay lifetime. As such, it prevents one from measuring the time constants
associated with other mechanisms that degrade the spin state — decoherence and
thermalization — collectively known as the homogeneous dephasing (relaxation).
But for applications such as imaging (Box 4.7), it is these latter time constants that
are of interest, as they are characteristic of the sample substance.

Fortunately, the effect of inhomogeneous broadening can be reversed by means
of an elegant technique known as the spin echo. After the free induction decay has
ended, one applies an additional π pulse to flip all the Bloch vectors around the x
axis. As is evident from Fig. 4.11, this will invert the positions of the Bloch vectors
with respect to the ensemble average. As a result, the spreading will reverse, even
though each individual spin will continue to evolve at the same pace as before. The
spins will reunite to point in the same direction at time t = 2t0, generating a strong
electromagnetic field — the echo pulse.

Exercise 4.76. Under the conditions of Ex. 4.75, after time t0� 1/∆0, the ensemble
is subjected to a very short π pulse. Calculate the mean magnetic moment in the
rotating basis as a function of time t > t0. Neglect relaxation.
Answer:
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Box 4.7 Magnetic resonance imaging

A medical magnetic resonance scanner. The toroidal structure is a superconducting solenoid that produces the dc
field. Source: Wikipedia.

Magnetic resonance imaging relies on detecting the spin echo signal from protons (hyd-
rogen nuclei) that are contained in water molecules within the patient’s body. This signal is
analyzed to determine the characteristic relaxation time of these spins, which is then mapped
relative to the source location to form a 3D image. Because the dephasing time depends on
the substance embedding the emitter spins, this 3D image reflects the organ and tissue struc-
ture, as well as their pathologies. For example, gray matter and white matter in the human
brain differ in the dephasing time by about 30%.

In order to implement this kind of imaging, we must know which point each echo signal
is coming from. This is achieved by applying the dc field with a gradient, so that the resonance
frequency is position-dependent. In this way, only the protons located within a narrow slice
of the patient’s body will respond to the rf field of a specific frequency. Three-dimensional
imaging utilizes complex sequences of pulses, for each of which the dc field has a gradient
in a different direction. This results in a spin echo signal with a temporal pattern that carries
information about the location of its source.

One of the many issues arising in magnetic-resonance imaging is that it is difficult to pre-
pare all spins in the same initial state. Before the rf pulses are applied, the proton spins are in
a thermal equilibrium with the environment, which means that there is only a small difference
between the densities of the spin-up and spin-down photons (Ex. 5.54). During the evolution,
the Bloch vectors of these groups of protons will be oriented oppositely, and the signals they
emit will largely cancel each other. This is in contrast to atomic physics (Ex. 4.47), in which
the energy difference between levels is much higher, and so is the population contrast.
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Fig. 4.11 Free induction decay and spin echo. a) Bloch sphere visualization. 1. The π/2 pulse at
t = 0 rotates the Bloch vectors of all spins to point in the positive y direction. 2. Spins with different
detunings spread across the equator of the Bloch sphere. 3. The π pulse at t0 flips all Bloch vectors
around the x axis. 4. At time 2t0, the Bloch vectors come back together. b) Field emitted by the
ensemble (proportional to the mean y component of the spin) as a function of time.

〈~µ〉=
(

0,− h̄γ

2
e−

[∆0(t−2t0)]
2

4 ,0
)
. (4.90)

Relaxation phenomena, neglected in the above calculation, lead to a degrada-
tion of the echo signal with t0. By measuring the effect of changing t0 on the echo
strength, one can measure the characteristic relaxation time.

Another major application of magnetic resonance is in time metrology. Suppose
we need to know precisely whether our rf field is resonant with the spin transition.
This goal can be achieved using the technique known as Ramsey spectroscopy.

Exercise 4.77. Consider the following procedure performed on a spin initially in
the |↑〉 state.

1. A short pulse of area π/2 is applied. The Rabi frequency is chosen such that
Ω � ∆ , so that we can neglect detuning during the pulse and assume the pulse
area to be precisely π/2.

2. The rf field is turned off for time t, so the atom evolves freely.
3. Another pulse of area π/2 is applied.
4. The populations of states |↑〉 and |↓〉 are measured.

Show that the final probability of detecting the particle in the state |↓〉 behaves as
|ψ↓|2 = cos2 ∆ t/2. Solve the problem in the rotating basis using two different met-
hods:

1. using geometry to trace the Bloch vector behavior as a function of time;

a) z
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2. calculating the evolution operator matrices associated with the two pulses and
the free evolution period.

The advantage of the Ramsey method is that the two-level system can be left
alone during the free evolution time. This allows one to minimize its disturbance

4.8 Problems

Problem 4.1. Find the general form of the commutator [L̂ j, [L̂k, r̂l ]]. Check your ans-
wer by specific examples: [L̂x, [L̂y, r̂z]], [L̂x, [L̂x, r̂z]] and [L̂x, [L̂z, r̂x]].

Problem 4.2. Derive the differential operator (4.26) for the angular momentum
squared from the expression for the Laplacian in spherical coordinates that is known
from calculus:

∇̂
2 =

1
r2

[
∂

∂ r

(
r2 ∂

∂ r

)
+

1
sinθ

∂

∂θ
sinθ

∂

∂θ
+

1
sin2

θ

∂ 2

∂ 2φ

]
(4.91)

as well as Eqs. (4.22), (4.27) and (4.28).

Problem 4.3. From the expressions (4.25) for the angular momentum compo-
nents in spherical coordinates, derive these components in Cartesian coordinates
[Eq. (4.20)].

Problem 4.4. Show that [L̂x, L̂y] = ih̄L̂z for the angular momentum components ex-
pressed as differential operators

a) in Cartesian coordinates;
b) in spherical coordinates.

Problem 4.5.∗ Solve Ex. 4.4 in spherical coordinates and check consistency with the
solution in Cartesian coordinates.

Problem 4.6. For l = 3/2:

during that time, thereby optimizing its precision as a frequency standard (Box 4.8).
The phenomenon of Ramsey fringes may appear paradoxical. The process that

leads to the dependence of the final population on ∆ t is the free evolution of the
atom, while the rf field is off. How can the detuning of a field that is turned off have
any effect on an experimentally measurable quantity?

The answer is that the detuning of the rf field determines the phase difference of
the two π/2 pulses with respect to each other. As we found in Ex. 4.73, this differ-
ence has a crucial effect on the final population of the energy levels. When solving
Ex. 4.77, we used the same operator for the two pulses, thereby quietly assuming
that their phases are consistent with Eq. (4.79). In other words, the two phases are
tied to a single “clock” cosωt, which keeps running throughout the experiment. The
detuning of the clock frequency will affect the relative phase of the two pulses, and
hence the populations observed in the final measurement.
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Box 4.8 Atomic clock
The atomic clock employs a narrowband, stable, and reproducible atomic transition as the

“pendulum”. In fact, the very definition of the second is linked to the frequency corresponding
to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.
The second is defined so that the transition frequency ∆E/2π h̄, with ∆E the energy difference
between the levels, is precisely 9 192 631 770 Hz.

The photograph above (source: Wikipedia) shows the NIST F1 cesium fountain clock in
Colorado, the United States’ primary time and frequency standard. Its relative uncertainty
is 3.1× 10−16, which corresponds to about a second in a hundred million years. The clock
utilizes Ramsey spectroscopy. The cesium atoms are collected and cooled to microkelvin
temperatures in a magneto-optical trap, and then “tossed” upwards by means of a laser beam.
During the free fall, they are subjected to two Ramsey pulses separated by a free fall time of
0.56 s. This free fall operation ensures that the atomic level energies are not perturbed during
the experimental cycle. No dc field is necessary because the energy level splitting is present
naturally.

After the second Ramsey pulse, the populations of the two atomic levels are measured.
The measurement data shows by how much the frequency of the rf field generator that pro-
duces the Ramsey pulses has deviated from the atomic transition. That frequency is then
adjusted by means of a feedback mechanism.
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a) find the matrices of L̂x, L̂y, L̂z , L̂±, and L̂2 explicitly;
b) check that these matrices obey L̂2

x + L̂2
y + L̂2

z = L̂2;
c) determine the commutators [L̂i, L̂ j] in the matrix form and check that they are

consistent with the known commutation relations for the angular momentum
components.

Problem 4.7. Generalize Ex. 4.28 to a subspace with arbitrary l. Consider the ei-
genstate

∣∣lmθφ

〉
of the observable L̂~Rθφ

(which is the projection of ~̂L onto the vector
~Rθφ ) with eigenvalue mh̄. Find the mean values of L̂x, L̂y, L̂z in this state and show
that they are proportional to the projections of the vector ~Rθφ onto the correspon-
ding coordinate axes.
Hint: Change the reference frame to (x′,y′,z′), where the new axis z′ is parallel to
~Rθφ , and express L̂x, L̂y and L̂z through L̂x′ , L̂y′ and L̂z′ .

Problem 4.8. Assuming the radius of the proton to be rp ∼ 10−15 m, estimate the
fraction of time the electron in the state |1,0,0〉 spends inside the nucleus. How
will your answer change if the electron is replaced by a muon (the muon has the
same charge as the electron and the mass Mµ = 207Me)? Why are muonium atoms
considered useful for studying nuclear structure?

Problem 4.9. Consider two objects whose angular momentum states are
|l1,m1 = l1〉 and |l2,m2 = l2〉. Show that the tensor product state |l1,m1 = l1〉 ⊗
|l2,m2 = l2〉 is an eigenstate of the operators L̂2 and L̂z (where ~̂L = ~̂L1 +~̂L2) with
the eigenvalues corresponding to l = m = l1 + l2.
Hint: Express L̂x and L̂y through L±,1 and L±,2.

Problem 4.10. As we know, the raising and lowering operators L̂± respectively in-
crease and decrease the eigenvalue L̂z by h̄. Construct the analogous operators L̂x

±
that would raise and lower the eigenstates of L̂x. Specializing to l = 1,

a) find the matrices of L̂x
± in the canonical basis;

b) find the eigenstates of L̂x in the matrix form;
c) apply L̂x

± to these eigenstates and check that their action is analogous to the
action of L̂± on the eigenstates of L̂z (up to an arbitrary phase factor that may
arise from the randomness in defining the eigenstates of L̂x).

Problem 4.11. The electron in a hydrogen atom is prepared in a state that is a si-
multaneous eigenstate of the following observables:

• energy with eigenvalue ∼−(13.6/4) eV,
• orbital angular momentum squared with eigenvalue 2h̄2,
• projection of the orbital angular momentum onto the x axis with eigenvalue h̄.

Write the wavefunction of that state.

Problem 4.12. Find the expectation value and the uncertainty of the observables x̂,
ŷ, ẑ in the states
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a) |2,1,0〉,
b) |2,1,1〉

of the hydrogen atom.

Problem 4.13. Treating the world as the Bloch sphere, write in the canonical basis
the spin state corresponding to your city. The Greenwich meridian corresponds to
φ = 0.

Problem 4.14. For an arbitrary spin state ψ↑ |↑〉+ψ↓ |↓〉, express the Cartesian com-
ponents of the corresponding Bloch vector in terms of ψ↑ and ψ↓.

Problem 4.15. Linearly polarized photons with different polarization angles α pass
through a quarter-wave plate with its optic axis oriented

a) horizontally;
b) at 45◦.

Find the locus of the resulting states on the Bloch sphere.

Problem 4.16. Consider the evolution of the spin state of a spin-1 particle under the
action of a constant magnetic field ~B oriented along the x axis. The initial state is
|ψ(0)〉= |ms = 1〉.

a) Find the spin state |ψ(t)〉 as a function of time in the matrix form, in the eigen-
basis of Ŝz.

b) Find the mean values
〈
Ŝx(t)

〉
,
〈
Ŝy(t)

〉
,
〈
Ŝz(t)

〉
and check that they are consistent

with what is expected classically.
c) The state |ψ(t)〉 is measured using a Stern–Gerlach apparatus with the magnetic

field along the y axis. Find the probability for the particle to end up in each of
the three spots. Are the values found at one-quarter and three-quarters of the
Larmor period consistent with what you would expect from part (b)?

Problem 4.17. Two spin- 1
2 particles interact via the Hamiltonian

Ĥ = χ ŜAŜB.

a) Find the 4×4 matrix of the Hamiltonian in the canonical basis.
b) Find the matrix of the evolution operator.
c) Show that the evolution for the time t = π/h̄χ will swap the states of the parti-

cles, i.e., transform any state |ψ〉⊗ |ϕ〉 into |ϕ〉⊗ |ψ〉.

Problem 4.18. An electron is placed in a harmonic oscillator potential and prepared
in a state in which its spin and motional degrees of freedom are in an entangled state

|Ψ〉= N (|↑〉 |α〉+ |↓〉 |−α〉) ,

where |α〉 is a coherent state.

a) Find the normalization factor N .
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b) The number of vibrational quanta n is measured. For each n, find the probability
of the corresponding result and the direction of the spin after the measurement.

c) The projection of the spin onto a vector ~Rθ ,φ is measured. Find the probability of
each possible result and the wavefunction of the electron after the measurement
in the position basis.

Problem 4.19. Solve Ex. 4.74(a), 4.75, and 4.76 using the Schrödinger evolution of
the spin state in the matrix form, without appealing to the geometry of the Bloch
vector.

Problem 4.20. In a spin echo experiment, instead of the standard excitation pulse
sequence

(
π

2 ,π
)
, the sequence

a)∗
(

π

2 ,θ
)
;

b) (θ ,π)

is applied. Calculate the amplitude of the echo signal in comparison with the one
obtained under the standard pulse sequence.

Problem 4.21. In a Ramsey spectroscopy experiment, instead of the standard exci-
tation pulse sequence

(
π

2 ,π/2
)
, the sequence

a)
(

π

2 ,θ
)
;

b)
(
θ , π

2

)
;

c) (θ ,θ)

is applied. Calculate the populations of the states |↑〉 and |↓〉 as a function of θ and
∆ t, where ∆ is the detuning of the rf field and t the duration of the experiment.



Chapter 5
Quantum physics of complex systems

5.1 The density operator

5.1.1 Pure and mixed states

In many practical cases we may not have complete knowledge of the state of a
quantum system. Our knowledge could be of the form of a statistical ensemble, or
mixture: that our system is in state |ψ1〉 with a probability p1, in state |ψ2〉 with a
probability p2, etc., with ∑i pi = 1. The states |ψi〉 are all assumed to be normalized,
but may not necessarily be orthogonal; their number does not have to be equal to
the dimension of the Hilbert space.

Situations of such limited knowledge occur very often. One case in point is the
mixed state that is produced when we lose a part of an entangled state, as discussed
in Sec. 2.2.4. Another example is if we have a large collection of particles in dif-
ferent states and we are interested in a value of an observable that is averaged over
all these particles, such as in the case of inhomogeneously broadened ensembles in
magnetic resonance (Sec. 4.7.4).

The first thing we need to do is to invent a convenient mathematical formulation
of the information we have about the ensemble. While listing all possible states
and their probabilities would work in principle, it is verbose and difficult to handle.
There exists a description that is much more concise, yet sufficient for all practical
purposes. It is the operator

ρ̂ = ∑
i

pi |ψi〉〈ψi| , (5.1)

A. I. Lvovsky, Quantum Physics, Undergraduate Lecture Notes in
Physics, https://doi.org/10.1007/978-3-662-56584-1_5
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which is called the density operator of the ensemble. The matrix of the density ope-
rator ρ jk =

〈
v j
∣∣ ρ̂ |vk〉 in any orthonormal basis {

∣∣v j
〉
} is called the density matrix1.

1 The density operator formalism was proposed independently by John von Neumann and Lev
Landau in 1927. The terms “density matrix” and “density operator” are often used interchangeably.
We will do so in this book, too.

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-56584-1_5&domain=pdf


222 A. I. Lvovsky. Quantum Physics

Exercise 5.1. For the following ensembles within the Hilbert space of polarization
states of a single photon, write the density operators in the Dirac notation and the
density matrices in the canonical basis:

a) |H〉;
b) ψH |H〉+ψV |V 〉;
c) |+45◦〉 with a probability 1/2, |−45◦〉 with a probability 1/2;
d) (|H〉+ |V 〉)/

√
2 with a probability 1/2, |H〉 with a probability 1/4, |V 〉 with a

probability 1/4.

Exercise 5.2. Suppose an ensemble is measured in the basis {|vm〉} (1≤ m≤ N =
dimV). Show that the probability of detecting a specific basis element |vm〉 is the
corresponding diagonal element of the density matrix in that basis:

prm = 〈vm| ρ̂ |vm〉 . (5.2)

Hint: you may find it useful to learn about conditional probabilities (see Sec. B.2).

Physical properties of a quantum state manifest themselves through measure-
ments. Exercise 5.2 shows that the density operator can be used to calculate pro-
babilities of any measurement result as precisely as the full verbal description of
a statistical ensemble. So the density operator contains complete information about
the ensemble’s measurable physical properties. This is what I meant by saying above
that the density operator is “sufficient for all practical purposes”.

Equation (5.2) is the extension of Born’s rule, which we studied in the context of
the Measurement Postulate, to statistical ensembles.

Exercise 5.3. A photon’s polarization is described by a density matrix ρ̂ . The pola-
rization is measured in the

a) canonical,
b) diagonal,
c) circular bases.

Express the probability associated with each measurement outcome through the ele-
ments of the matrix of ρ̂ in the canonical basis.

Exercise 5.4. Show that the density operator of an ensemble of unnormalized states
{|ψi〉} is given by ρ̂ = ∑i |ψi〉〈ψi|.

A given density operator does not necessarily represent a unique ensemble, as is
evident from the following.
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Exercise 5.5. Show that the following statistical ensembles are associated with the
same density operator:

• |H〉 with a probability 1/2, |V 〉 with a probability 1/2;
• |+〉 with a probability 1/2, |−〉 with a probability 1/2;
• |R〉 with a probability 1/2, |L〉 with a probability 1/2;
• |θ〉 with a probability 1/2, |π/2+θ〉 with a probability 1/2.

Different ensembles described by the same density operator (such as those above)
exhibit identical physical behavior, so it is fundamentally impossible to determine
by measurement which of the ensembles we are dealing with. Therefore, at least
some of the information contained in the description of an ensemble as a list of
states and probabilities is redundant. This is an additional argument in favor of using
the density matrix instead.

From now on, we will use the term “state” for both pure states that can be as-
sociated with a specific element |ψ〉 of the Hilbert space and statistical ensembles
identified by a density operator. If the state is not pure — so its density operator
cannot be written in the form ρ̂ = |ψ〉〈ψ|— we shall call it mixed.

Exercise 5.6. Show that an ensemble (5.1) with two or more nonzero terms with
unequal |ψi〉 cannot correspond to a pure state.

Exercise 5.7. Which of the states of Ex. 5.1 are pure?

A special status among mixed states belongs to the fully mixed state, whose den-
sity operator is ρ̂ = 1̂/N (where N is the dimension of the Hilbert space). As is
evident from the following exercise, if a system is in the fully mixed state, this me-
ans that no information whatsoever is available about the quantum system.

Exercise 5.8. Show that, if a fully mixed state is measured in any orthonormal basis,
the probability for each result is 1/N.

Exercise 5.9. Show that all states in Ex. 5.5 are fully mixed.

Exercise 5.10. For the subspace corresponding to the orbital quantum number l = 1,
find the density matrix of each of the eigenstates of observable L̂x with eigenvalues
h̄, 0, and −h̄. Then find the density matrix of the mixture of these states with proba-
bility 1

3 each. Show that the result is a fully mixed state.
Hint: Use the result of Ex. 4.27.

5.1.2 Diagonal and off-diagonal elements

Exercise 5.11. Show that the diagonal elements of the density matrix of a physical
state in any basis

a) are real and nonnegative;
b) add up to one.
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Exercise 5.12.∗ For each off-diagonal element ρmn of a density matrix, show that

a)
|ρmn|2 ≤ ρmmρnn, (5.3)

b) the inequality (5.3) saturates for all elements of a density matrix if and only if
the corresponding state is pure.

The last exercise, together with Ex. 5.2, reveals the different roles played by the
diagonal and off-diagonal elements of the density matrix. The diagonal elements
show the probabilities of detecting the system in the associated basis states. Off-
diagonal elements, on the other hand, show the extent to which the relevant basis
elements are in a superposition state or a statistical mixture — in other words, the
degree of coherence between these elements (see Sec. 2.4.2). Here is an example.

Exercise 5.13.§ Find the density matrices of the following states of an electron’s spin
in the canonical spin basis.

a) 1√
2
(|↑〉+ |↓〉);

b) 1√
2
(|↑〉− |↓〉);

c) an equal probability mixture of the states in (a) and (b).

Answer:

a)
1
2
(|↑〉+ |↓〉)(〈↑|+ 〈↓|)' 1

2

(
1 1
1 1

)
;

b)
1
2
(|↑〉− |↓〉)(〈↑|−〈↓|)' 1

2

(
1 −1
−1 1

)
;

c)
1
2
(|↑〉〈↑|+ |↓〉〈↓|)' 1

2

(
1 0
0 1

)
.

All these states contain equal fractions of the spin-up and spin-down components
— hence in all three cases the diagonal elements of the density matrix are the same
and equal 1/2. However, the first two states above are pure while the third is fully
mixed. Accordingly, the first two states have significant off-diagonal elements while
the third has none.

Exercise 5.14.§ For a spin- 3
2 particle, find the density matrices of states

a) |ψ〉= 1√
2
(
∣∣ 3

2

〉
+
∣∣ 1

2

〉
);

b) |φ〉= 1√
2
(
∣∣− 1

2

〉
+
∣∣− 3

2

〉
);

c) 1√
2
(|ψ〉+ |φ〉);

d) the equal-probability mixture of |ψ〉 and |φ〉.
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Answer:

a)
1
2


1 1
1 1

 ; b)
1
2

 1 1
1 1

 ; c)
1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ; d)
1
4


1 1
1 1

1 1
1 1

 .

This is a somewhat more sophisticated example. Here, comparing cases (c) and
(d), we see that the off-diagonal terms that are responsible for the coherence between
states |ψ〉 and |φ〉 are present in the density matrix of the superposition, but absent
in that of the mixture. On the other hand, the off-diagonal elements ρ12,ρ21,ρ34,ρ43
that arise due to coherences within individual states |ψ〉 and |φ〉 are not erased in the
density matrix (d) in spite of that state being a mixture. In case (d), the inequality
(5.3) saturates for some, but not all, elements of the off-diagonal elements of ρ̂ .

Exercise 5.15. Show that the density operator is Hermitian.

Exercise 5.16. Show that, for a given density operator, there exists a spectral de-
composition in the form2

ρ̂ =
N

∑
i=1

qi |vi〉〈vi| , (5.4)

where {|vi〉} is an orthonormal basis, all qi ≥ 0, and ∑i qi = 1.

The above spectral decomposition, which diagonalizes the density matrix, is use-
ful in a number of ways. It can immediately tell us, for example, if the state is pure
or mixed (see the next exercise). Additionally, the absence of the off-diagonal terms
means there is no quantum coherence between different elements of the diagonali-
zing basis, which means that the state is a probabilistic mixture of these elements.

Exercise 5.17. Find the spectral decomposition of the density operators in Ex. 5.1.

Exercise 5.18. How many nonzero elements can the diagonalized density matrix of
a pure state contain?

Exercise 5.19. Show that the density operator is non-negative.

Let us now define the analog of the density matrix for continuous bases, such
as the position and momentum. As discussed in Chapter 3 [see Eq. (3.13)], opera-
tors in such bases are represented by two-variable functions rather than matrices. In
particular, the density operator Eq. (5.1) is represented by

ρ(x,x′) = 〈x| ρ̂
∣∣x′〉= ∑

i
piψi(x)ψ∗i (x

′), (5.5)

where ψi(x) are the wavefunctions of the statistical ensemble components.

2 Note that the existence of a spectral decomposition Eq. (5.4) does not trivially follow from the
definition (5.1) of the density matrix. The two expressions are quite similar, but the elements of the
sum in Eq. (5.4) comprise an orthonormal basis, while in Eq. (5.1) they are arbitrary states.
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Exercise 5.20. Express the density operator of the state a |0〉+b |1〉 of a harmonic
oscillator

a) in the Fock basis;
b) in the position basis.

Exercise 5.21. For a normalized density operator ρ̂ , show that

a) ρ̂ cannot be unitary for any Hilbert space of dimension greater than one;
b) equality ρ̂ = ρ̂2 holds if and only if ρ̂ represents a pure state.

Exercise 5.22. Consider a mixture of states that are themselves statistical en-
sembles: state ρ̂1 occurring with probability p1, ρ̂2 with probability p2, etc., with
∑i pi = 1.

a) Show that such an ensemble is described by the density operator

ρ̂ = ∑
i

piρ̂i. (5.6)

b) Show that this ensemble cannot be pure if at least one of its terms is mixed.

5.1.3 Evolution

Exercise 5.23. Use the Schrödinger equation to show that

a) the differential equation for the evolution of the density matrix in time is

dρ̂

dt
=− i

h̄
[Ĥ, ρ̂]; (5.7)

b) the evolution of the density operator can be written as

ρ̂(t) = Û ρ̂(0)Û†, (5.8)

where Û = e−
i
h̄ Ĥt .

Differential equations for the evolution of density operators, such as Eq. (5.7),
are frequently referred to as quantum master equations.

Notice the opposite sign in Eqs. (5.7) and (5.8) as compared with the otherwise
similar Eqs. (3.129) and (3.127), respectively. This difference may appear questio-
nable: why is the evolution of the density matrix opposite to that of other operators?
The answer is that the equations in Sec. 3.9 are in the Heisenberg picture, where
we assume that quantum states are stationary and the operators corresponding to
physical observables evolve. Here, on the other hand, we work in the Schrödinger
picture, where the evolution is associated with the states, and hence with the density
matrix that expresses the state. Therefore the observable operators in Sec. 3.9 and
the density operator in this section are of different nature, and there is no reason to
expect their evolution to obey the same equations.
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Exercise 5.24. For the state which at time t = 0 is

a) a superposition (|E1〉+ |E2〉)/
√

2,
b) a statistical mixture (|E1〉〈E1|+ |E2〉〈E2|)/2

of energy eigenstates, write the density matrix as a function of time in the energy
eigenbasis.
Answer:

a) ρ̂(t) = ρ̂(0) = 1
2

(
1 0
0 1

)
;

b) ρ̂(t) = 1
2

(
1 e

i
h̄ (E2−E1)t

e−
i
h̄ (E2−E1)t 1

)
.

Generalizing Ex. 5.24(a), we see that, if an ensemble is a statistical mixture of
energy eigenstates, its density operator does not change under the Schrödinger evo-
lution. This result may appear surprising at first. We have learned that states with
the energy E acquire a quantum phase e−iEt/h̄ while evolving. States associated with
different energies should acquire different phases — so how come we do not see that
in the evolution of the density matrix?

The answer is, when we are dealing with a statistical mixture of states, their
phases are unphysical: they cannot be observed in a measurement. A mixture of sta-
tes |E1〉 and |E2〉 behaves in an experiment exactly the same way as a mixture of
|E1〉e−iE1t/h̄ and |E2〉e−iE2t/h̄. As discussed earlier (Sec. 5.1.1), the purpose of the
density matrix is to describe, as succinctly as possible, the state’s physical proper-
ties. Two states that have the same properties will have the same density matrix.

In contrast, if we have a coherent superposition of two states with different ener-
gies [Ex. 5.24(b)], its density matrix (specifically, the off-diagonal elements) does
evolve, reflecting the change in the physical properties of that state with time.

Exercise 5.25. For a state that is initially a mixture of |↑〉 with probability 3/4 and
|↓〉with probability 1/4, get practice finding the evolution ρ̂(t) of the density matrix
in a magnetic field B pointing along the x axis by using three methods:

a) calculating the evolution of each pure state component separately and subse-
quently obtaining the density matrix of the ensemble;

b) first calculating the density matrix of the initial ensemble and subsequently let-
ting it evolve according to Eq. (5.8);

c) solving Eq. (5.7) in matrix form.

5.2 Trace

The trace of an operator Â is the sum of the diagonal elements of its matrix:

Tr Â =
n

∑
m=1

Ann. (5.9)



228 A. I. Lvovsky. Quantum Physics

Traces play an important role because they express the effects of measurements on
quantum states when these states are written in the form of density matrices. Be-
fore we discover these effects, let us recall some of the trace’s salient properties, as
known from linear algebra, and derive a few new ones relevant to quantum physics.

Exercise 5.26. Show that the trace of an operator is the same in all orthonormal
bases.

This explains why we say “trace of an operator” rather than “trace of a matrix”.
The same operator will have different matrices in different orthonormal bases, but
all these matrices will have the same sum of diagonal elements.

Exercise 5.27. Show that the trace of a density operator representing a physical
state equals 1.

Exercise 5.28.§ Operators Â and B̂ have matrices Ai j and Bi j, respectively, in the
same orthonormal basis. Show that

Tr(ÂB̂) = ∑
i j

Ai jB ji. (5.10)

Exercise 5.29. Show that, for any operators,

a) Tr(ÂB̂) = Tr(B̂Â);
b) Tr(Â1 . . . Âk) = Tr(ÂkÂ1 . . . Âk−1) (chain rule).

Exercise 5.30. Find an example showing that, generally, Tr(ÂB̂Ĉ) 6= Tr(B̂ÂĈ).

Exercise 5.31. For an operator Â and vectors |ψ〉 and |ϕ〉, show that〈
ψ
∣∣ Â
∣∣ ϕ
〉
= Tr(Â |ϕ〉〈ψ|). (5.11)

Exercise 5.32. Show that the trace of the squared density matrix is useful as a
measure of a state’s degree of purity. Specifically, for a physical state ρ̂ , show that
1/N ≤ Tr(ρ̂2) ≤ 1, with the first inequality saturating if and only if ρ̂ represents
the completely mixed state, and the second inequality saturating if and only if ρ̂

describes a pure state.

Let us now restate the Measurement Postulate of quantum mechanics in terms of
density matrices.

Exercise 5.33. Suppose a projective measurement in the basis {|vm〉} is performed
on an ensemble ρ̂ and yields some result |vm〉. Show that:

a) the (unnormalized) ensemble after the measurement is given by

Π̂mρ̂Π̂m, (5.12)

where Π̂m = |vm〉〈vm| is the projection operator;
b) the probability of obtaining the result |vm〉 is

prm = Tr(Π̂mρ̂) = Tr(ρ̂Π̂m). (5.13)
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Exercise 5.34. Apply Eq. (5.12) to determine the probability of detecting a (+45◦)-
polarization in a photon described by each of the ensembles of Ex. 5.1. Check that
your findings are consistent with the probabilities expected by treating each state as
a statistical ensemble of pure states.

Exercise 5.35. A state is represented in the basis {|vm〉} by the matrix

ρ̂ '

 ρ11 . . . ρ1N
...

. . .
...

ρN1 . . . ρNN

 . (5.14)

Suppose this state is measured in the same basis {|vm〉}. The measurement is non-
destructive, but its outcome is unknown to us. Show that the density matrix after the
measurement will be of the form

ρ̂after =

ρ11
. . .

ρNN

 . (5.15)

That is, the off-diagonal elements of the density matrix will vanish after the measu-
rement, but the diagonal elements will remain intact.

I emphasize that this simple rule applies only if the density matrix is written in
the same basis in which the measurement is performed. Let me illustrate this by an
example.

Exercise 5.36. A photon polarized at +45◦ is measured in the canonical basis. Find
the density matrix before and after the measurement

a) in the canonical basis,
b) in the diagonal basis.

Exercise 5.37. Show that the expectation value of any observable V̂ in the state ρ̂

is
〈V 〉= Tr(ρ̂V̂ ) = Tr(V̂ ρ̂). (5.16)

Exercise 5.38. Using the density matrix formalism in the Schrödinger picture, spe-
cifically Eqs. (5.7) and (5.16), reproduce the Heisenberg equation of motion (3.129)
for the mean value of an arbitrary observable:

d
dt
〈V 〉= i

h̄

〈
[Ĥ,V̂ ]

〉
. (5.17)

5.3 Partial trace

Let us now return to the question we asked in Chapter 2. Suppose Alice and Bob
share a state ρ̂AB that is a density matrix over the tensor product Hilbert space. Alice
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either loses her portion of the state, or measures it in some basis, but does not tell
Bob the result. What does Bob’s portion of the state become? Or, to formulate the
question in the language we just learned, what will be the density operator of Bob’s
state3?

A partial trace of a bipartite state ρ̂AB over Hilbert space VA is the operator in
Hilbert space VB defined by

TrA(ρ̂AB) =
N

∑
m=1A

〈vm| ρ̂AB |vm〉A , (5.18)

where {|vm〉} is an orthonormal basis in VA. The procedure for calculating the par-
tial trace is sometimes referred to as tracing over the space VA.

Exercise 5.39. Alice and Bob share the state ρ̂AB. Alice performs a local measure-
ment in the basis {|vm〉} on her part of the ensemble. Show that:

a) if Alice’s measurement result is known to be a specific |vm〉, the re-
sulting (unnormalized) bipartite state is described by Π̂A,mρ̂ABΠ̂A,m =
|vm〉〈vm|⊗ 〈vm| ρ̂AB| vm〉, and Bob’s portion of this state is

ρ̂B,m = 〈vm| ρ̂AB| vm〉= TrA(Π̂A,mρ̂AB) = TrA(Π̂A,mρ̂ABΠA,m); (5.19)

b) if Alice’s measurement result is unknown, the reduced density operator of Bob’s
state is the partial trace

ρ̂B = TrA(ρ̂AB).

To make this theory a bit less abstract, let us look at a couple of examples.

Exercise 5.40. Perform the following calculations for the setting of Ex. 2.45.

a) In that exercise, we found the ensembles describing the states of Bob’s photon
for Alice performing her measurement in the canonical and diagonal bases. For
each of these ensembles, find the corresponding density matrix in the canonical
basis. Check that the density matrix does not depend on Alice’s basis.

b) Find the reduced density matrices of Bob’s photon in the canonical basis using
the partial trace formalism. Check consistency with part (a).

Exercise 5.41. For each of the four Bell states, find the reduced density operator
associated with Alice’s and Bob’s qubits.

Bob’s reduced density operator must be the same no matter which basis Alice
chooses for her measurement. If this were not the case, Alice would be able to
instantly transfer information to Bob just by choosing a particular basis, or simply
choosing whether or not to throw her portion of the state away (see Ex. 2.43). Let
us now show this rigorously in the language of density operators.

Exercise 5.42. Show that the partial trace is independent of the choice for Alice’s
basis in which it is calculated.

3 It is sometimes called Bob’s reduced density operator.
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Exercise 5.43. Show that TrA(ρ̂AB) has trace 1 if ρ̂AB is a physical state.

Exercise 5.44. Suppose Alice and Bob share a bipartite state. Show that

a) if the bipartite ensemble is in a pure, separable (non-entangled) state, then both
Alice’s and Bob’s reduced density operators are also pure states;

b) the reduced density operator of an entangled state is always a mixed state.
Hint: use Eq. (2.15).

The partial trace formalism allows us to reproduce our previous result regarding
the effect of a measurement on the density matrix (Ex. 5.35), but now analyzing the
measurement at a deeper level, using the von Neumann model.

Exercise 5.45. Let the initial state of a quantum system be described in some basis
{|vi〉} by the density operator (5.14). A measurement is performed on this system in
the same basis {|vi〉}. This measurement will entangle the system with the apparatus
according to Eq. (2.33). Show that, if the apparatus is removed from the entangled
state, the reduced density matrix of the system will only have diagonal elements, as
in Eq. (5.15).

This result has important implications for decoherence, which, as we discussed
in Sec. 2.4.2, can be interpreted as an “inadvertent” von Neumann measurement of
the system by the environment in the decoherence-preferred basis. The subsequent
loss of information about the environment corresponds to the partial trace operation.
The corresponding effect on the system’s density matrix (written in the decoherence-
preferred basis) is to strip away its off-diagonal elements. We will study a few ex-
amples to this effect in Sec. 5.5.

Taking the partial trace is an irreversible operation: it is impossible to get ρ̂AB
back from TrA(ρ̂AB). This is the mathematical reason why decoherence, in contrast
to unitary quantum evolution, is an irreversible process.

5.4 Density matrix and Bloch vector

In Section 4.5 we associated any state of a qubit with a vector on the Bloch sphere. If
the physical system associated with the qubit is the spin- 1

2 particle, the coordinates
of the Bloch vector equal the mean values of the corresponding projections of the
angular momentum [Ex. 4.48(c)]. Here I would like to extend the notion of the
Bloch vector to density matrices.

This extension is straightforward. For any ensemble

ρ̂ = ∑
i

pi |ψi〉〈ψi| ,

the Bloch vector is defined as
~Rρ̂ = ∑

i
pi~Ri, (5.20)
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where each ~Ri is the Bloch vector of the corresponding state |ψi〉. That is, the Bloch
vector of an ensemble is a weighted average of its components.

Exercise 5.46. Show that the Cartesian coordinates of the Bloch vector ~Rρ̂ defined
by Eq. (5.20) equal the mean values of the observables σ̂x, σ̂y, σ̂z for the correspon-
ding state ρ̂ .
Hint: According to Eq. (5.16), you need to show that

~Rρ̂ = Tr[ρ̂~̂σ ]. (5.21)

Exercise 5.47.§ Calculate the Bloch vector explicitly in terms of the elements of the
density matrix

ρ̂ '
(

ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

)
Answer:

Rx = 〈σx〉= ρ↑↓+ρ↓↑; (5.22a)
Ry = 〈σx〉= iρ↑↓− iρ↓↑; (5.22b)
Rz = 〈σx〉= ρ↑↑−ρ↓↓. (5.22c)

Exercise 5.48. Show that

a) the length of the Bloch vector of a mixed state is less than one;
b) the Bloch vector of the fully mixed state is zero.

Exercise 5.49. We have shown previously [see Eq. (4.77)] that the Bloch vector of
a spin- 1

2 particle in a pure state precesses in a magnetic field in the same way as a
classical magnetic moment. Show that this result also applies to states described by
density operators.

Exercise 5.50. Calculate the trajectory of the Bloch vector from the time-dependent
density matrix obtained in Ex. 5.25 and show that it precesses around the magnetic
field as expected classically [Eq. (4.77)].

Exercise 5.51. Show that the length of the Bloch vector is related to the purity factor
of the corresponding state (Ex. 5.32) according to

Trρ̂2 =
|~Rρ̂ |2

2
+

1
2
. (5.23)

Hint: Suppose the state ρ̂ has the spectral decomposition ρ̂ = p |v1〉〈v1|+ (1−
p) |v2〉〈v2|. Relate both |~Rρ̂ | and Trρ̂2 to p.

Exercise 5.52. Show that any Bloch vector of length |~Rρ̂ | ≤ 1 uniquely identifies
the corresponding density matrix.

Let us summarize the above results. Similarly to pure states, the Bloch vector of
a mixed state corresponds to the quantum mean value of the spin vector operator in
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that state. There is a one-to-one correspondence between states (pure or mixed) and
Bloch vectors. However, Bloch vectors of mixed states terminate inside the Bloch
sphere rather than on its surface. The more mixed the state, the shorter the Bloch
vector; the fully mixed state corresponds to a zero vector in the center of the Bloch
sphere.

5.5 Density matrix and magnetic resonance

In Chapter 4, we studied the basics of magnetic resonance. However, the pure state
formalism we used there did not allow us to account for interaction between the
spins and the environment, or homogeneous dephasing (relaxation), which is an
essential part of this phenomenon. Because relaxation is associated with the loss of
a state’s purity, its analysis requires the use of density operators.

There are two primary relaxation mechanisms: decoherence and thermalization.

5.5.1 Decoherence

The decoherence of spin states is brought about by their mutual interaction; for
this reason, this mechanism is referred to as the spin–spin relaxation. As is usually
the case for internal degrees of freedom (Sec. 2.4.2), the energy eigenbasis is the
decoherence-preferred basis. When the particles interact with each other, the popu-
lations of the energy levels do not change, but their energy eigenstates accumulate
random phases, which leads to loss of coherence between them.

We will be studying relaxation in the absence of the rf field, assuming that
this field is applied in a pulsed manner, so that the decoherence during the pul-
ses is insignificant. We choose the z axis along the dc field ~B0, so the Hamiltonian
(4.76) Ĥ = −~̂µ ·~B0 = −γ ŜzB0. Then the basis consisting of the eigenstates of Ŝz is
also, conveniently, the Hamiltonian’s eigenbasis, and hence also the decoherence-
preferred basis4.

We found in Sec. 5.3 that decoherence removes the off-diagonal elements of the
density matrix. However, this result was obtained for a single copy of the decoher-
ing object. In our case, the density matrix represents a large ensemble of particles,
and not all of them decohere at once. Hence the density matrix is affected by the
decoherence in a more complex way.

Let us adopt the following model. We assume that each particle, if it happens to
interact with the environment, does decohere very rapidly — effectively instantly.
This brings about the loss of the off-diagonal elements of the density matrix asso-
ciated with that specific particle. However, the probability for this event to happen

4 This is the case for both the stationary and the rotating basis, because they both consist of eigen-
states of Ŝz.
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for each particle within a certain small time interval is finite, and proportional to the
duration of that interval. Then, when we average over the many particles making up
the ensemble, the off-diagonal elements of the density matrix will decay gradually.

Exercise 5.53. Suppose the probability for an individual particle to decohere within
a small time interval ∆ t is ∆ t/T2, where T2 is a constant known as the characteristic
decoherence time.

a) Show that, in the absence of the Hamiltonian evolution, the elements of the
density matrix decay according to the differential equation[

d
dt

ρi j(t)
]

decoh
=

{
0, i = j
−ρi j(t)/T2, i 6= j , (5.24)

where the subscript “decoh” indicates that the decay is due to the decoherence
mechanism.

b)§ Show that the solution of the above equation is(
ρ↑↑(t) ρ↑↓(t)
ρ↓↑(t) ρ↓↓(t)

)
=

(
ρ↑↑(0) ρ↑↓(0)e−t/T2

ρ↓↑(0)e−t/T2 ρ↓↓(0)

)
. (5.25)

This behavior — that the diagonal elements of the density matrix are constant, but
the off-diagonal elements decay exponentially — is characteristic of decoherence,
not only for spin ensembles, but for a wide variety of physical situations.

5.5.2 Thermalization

The second mechanism is the spin–lattice relaxation, associated with the thermal
translational motion of nuclei. This mechanism tends to bring the spin state into
thermal equilibrium with the environment — that is, into the state with density ma-
trix

ρ̂0 '
(

ρ↑↑,0 0
0 ρ↓↓,0

)
, (5.26)

where the populations of the upper and lower energy levels are related according to
the Boltzmann distribution

ρ↓↓,0
ρ↑↑,0

=
exp(−E↓/kT )
exp(−E↑/kT )

(4.73)
= exp

(
−γ h̄B0

kT

)
,

with no coherence present between these levels.

Exercise 5.54. The field in a medical MRI scanner, which exploits proton spins,
is 1.5 tesla. Calculate the mean difference between the fractions of protons in the
spin-up and spin-down states at room temperature under thermal equilibrium.
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Exercise 5.55. Find the magnitude and direction of the Bloch vector ~R0 correspon-
ding to Eq. (5.26).
Answer (in Cartesian coordinates):

~R0 =

(
0,0, tanh

γ h̄B0

2kT

)
γ h̄B0/2kT�1
≈

(
0,0,

γ h̄B0

2kT

)
. (5.27)

By the same logic as above, we assume that the diagonal elements decay expo-
nentially to their thermal values, i.e.,

ρ↑↑(t)−ρ↑↑,0 = [ρ↑↑(0)−ρ↑↑,0]e−t/T1 ; (5.28a)

ρ↓↓(t)−ρ↓↓,0 = [ρ↓↓(0)−ρ↓↓,0]e−t/T1 , (5.28b)

where T1 is the characteristic time of thermalization.

Exercise 5.56.§ Show that the decay (5.28) corresponds to the following differential
equations: [

d
dt

ρ↑↑(t)
]

therm
=−[ρ↑↑(t)−ρ↑↑,0]/T1; (5.29a)[

d
dt

ρ↓↓(t)
]

therm
=−[ρ↓↓(t)−ρ↓↓,0]/T1. (5.29b)

Let us now introduce a convention. Thermalization, of course, affects not only the
diagonal elements of the density matrix, but the off-diagonal ones as well, causing
them to decay exponentially. However, this decay is considered to be a part of the
decoherence process, so Eq. (5.24) incorporates the contribution of thermalization
to the decay of the off-diagonal elements. We will therefore write the differential
equation for the density matrix thermalization as follows:[

d
dt

ρi j(t)
]

therm
=

{
−[ρii(t)−ρii,0]/T1, i = j
0, i 6= j , (5.30)

keeping in mind that the thermalization of the off-diagonal elements is accounted
for in the equation for the decoherence.

An apparent consequence of this convention is that T2 cannot exceed T1: the
off-diagonal elements decay due to both decoherence and thermalization, and the
diagonal ones due to thermalization alone. In fact, spins typically decohere much
faster than they thermalize, so T2 � T1. Human brain tissues, for example, have
T1 ∼ 1 s and T2 ∼ 0.1 s.

In other physical settings, however, T2 can be as high as 2T1. This is possible if the
thermalization mechanism differs from the decoherence mechanism, i.e., if it cannot
be modeled as a gradual admixture of the thermal state with the spin ensemble. Such
situations are common, for example, in two-level systems corresponding to optical
transitions in atoms and molecules. We shall show in Ex. 5.60 that the condition
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T2 ≤ 2T1 must hold universally, otherwise the evolution will result in an unphysical
density operator.

5.5.3 Relaxation and the Bloch vector

The overall evolution of the density matrix is the result of cumulative action of the
Hamiltonian evolution and relaxation. It is given by

dρ̂

dt
=− i

h̄
[Ĥ, ρ̂]+

[
dρ̂

dt

]
relax

, (5.31)

where the first term corresponds to the Schrödinger equation (5.7) and the second
and third to the decoherence and thermalization terms, (5.24) and (5.30), respecti-
vely. Let us now apply this result to the evolution of the Bloch vector.

Exercise 5.57. Show that the behavior of the Bloch vector components correspon-
ding to Eq. (5.31) is

d~R
dt

= γ~R×~B+

[
d~R
dt

]
relax

, (5.32)

where [
dR
dt

]
relax

=

(
−Rx

T2
,−

Ry

T2
,−Rz−R0z

T1

)
(5.33)

and ~R0 is the Bloch vector (5.27) of the thermal state.

Exercise 5.58. Show that the following solution satisfies Eq. (5.32) for the rotating-
wave approximation Hamiltonian (4.85) in the absence of the rf field, with the spin
detuned by ∆ from the rotating wave frequency.

Rx(t) = [Rx(0)cos∆ t−Ry(0)sin∆ t]e−t/T2 ;

Ry(t) = [Ry(0)cos∆ t +Rx(0)sin∆ t]e−t/T2 ; (5.34)

Rz(t) = R0 +[Rz(0)−R0]e−t/T1 .

Exercise 5.59.§ Plot the trajectory of the Bloch vector tip under the condition of
Ex. 5.58 for

a) ∆ 6= 0, T1 = 0, T2 = 0;
b) ∆ = 0, T2 = T1/10;
c) ∆ = 0, T2 = 2T1;
d) ∆ = 5T−1

1 , T2 = 2T1.

Assume that the temperature T = 0. The initial state corresponds to the spin pointing
along the x axis.
Answer: see Fig. 5.1.
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Fig. 5.1 Bloch vector tip trajectories of Ex. 5.59.

We see that decoherence causes the horizontal (x and y) components of the Bloch
vector to shrink exponentially, while the vertical (z) component thereof tends to the
value corresponding to thermal equilibrium. For this reason, historically, the ther-
malization of the diagonal elements of the density matrix is sometimes called lon-
gitudinal relaxation, while the loss of the off-diagonal elements due to decoherence
is known as transverse relaxation. We can see that this terminology is not quite
appropriate; better terms would be “vertical” and “horizontal”, respectively.

Exercise 5.60.∗ Show that T2 cannot be greater than 2T1.
Hint: assume absolute zero temperature. Apply infinitesimal evolution (5.32) in the
rotating basis to the Bloch vector with polar coordinates (θ ,0) such that θ � 1.

Now that we understand the treatment of relaxation, we are ready to get back to
the subject considered at the end of Chapter 4: measurement of relaxation times. As
discussed back then, this measurement is important for magnetic resonance imaging
applications, because it allows one to distinguish different body tissues from each
other. However, the homogeneous relaxation is often obscured by inhomogeneous
broadening, which occurs on much faster time scales.

Spin echo is the method of choice for evaluating the transverse relaxation time. In
Sec. 4.7.4, we made preliminary calculations to understand the physical principles
behind the reversal of the inhomogeneous dephasing that gives rise to the echo. Our
next task is to take homogeneous relaxation effects into account.

Exercise 5.61. For an inhomogeneously broadened spin ensemble with inhomoge-
neous width ∆0 much greater than the inverse relaxation times T−1

1 ,T−1
2 , show that

the mean magnetic moment of an ensemble element (Ex. 4.76) at zero temperature
is given by

〈~µ〉= h̄γ

2

(
0,−e−

[∆0(t−2t0)]
2

4 e−t/T2 ,1−2e−(t−t0)/T1 + e−t/T1

)
. (5.35)

x
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(a)
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In the stationary basis, this magnetic moment will precess around the z axis.
Therefore the magnitude of the echo signal is determined entirely by its horizontal
component, which decays with the characteristic time T2.

You may have noticed a subtlety when solving this exercise. In order to calculate
the spin echo signal, we had to average the Bloch vector over the ensemble com-
prising all detunings. But the state associated with each detuning is itself non-pure
(because of the homogeneous relaxation), which means that it also represents an
ensemble, as discussed earlier in this chapter.

We treated these ensembles quite differently. For decoherence and thermaliza-
tion, we average continuously over the ensemble throughout the evolution (see
Ex. 5.53), thereby accounting in real time for the effects of these phenomena on
the spin state. But for the inhomogeneously broadened ensemble, the averaging is
performed only once, at the end of the calculation. Why is there this difference?

The reason is the different physics that gives rise to the two types of ensembles.
Homogeneous relaxation occurs due to an entangling interaction between the sy-
stem and the environment. Because the environment is beyond our control, we can
trace over it without losing any valuable information; so the system state becomes
irreversibly mixed. Inhomogeneous broadening, in contrast, is caused, not by en-
tanglement, but by a slight variation in the physical conditions (and Hamiltonians)
under which each spin evolves. Moreover, these conditions do not change with time.
The evolution of each individual member of the ensemble is therefore completely
predictable and reversible. We must keep track of this evolution, without premature
averaging, in order to be able to predict the rephasing of the spins and the echo.

Let us now turn to the longitudinal relaxation time. It can be measured, for ex-
ample, using the zero crossing method. Remarkably, this method does not require
the inversion of inhomogeneous dephasing in order to work. The idea is to first flip
the Bloch vector of the thermalized ensemble using a π pulse. The ensemble will
then gradually re-thermalize. The Bloch vector will relax from pointing downward
to pointing upward, so at some point in time its length will be exactly zero.

To measure the length of the Bloch vector after it has relaxed for some time
t0, we apply a π/2 pulse. The Bloch vector will then become horizontal and start
precessing around the dc field, generating the free induction decay signal that is
proportional to its length. But if the second pulse is applied at the moment the Bloch
vector tip passes through the origin, this signal will vanish.

Exercise 5.62. Show that, in the zero crossing measurement, the free induction
decay signal will vanish for t0 = T1 ln2.

5.6 Generalized measurements∗

The density operator formalism generalizes the Hilbert Space Postulate of quantum
mechanics by accounting for the possibility that we may not have full knowledge of
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a quantum state. The Measurement Postulate can be extended in a similar manner,
to take into account realistic quantum measurement devices.

5.6.1 A realistic detector

Consider, for example, a polarization measurement setup shown in Fig. 1.2(a). Ide-
ally, we would expect it to perform a measurement of the photon polarization in the
canonical basis. Suppose, however, that the beam splitter is not perfect: it may trans-
mit some of the vertical polarization and reflect some of the horizontal. To account
for this feature, we introduce the notion of the output states of the measurement
device — macroscopic (classical) indications that the device can display. In the case
of the polarization measurement, assuming perfect detectors, there would be two
output states:

• detector in the transmitted channel clicks;
• detector in the reflected channel clicks.

Then, we model our device as an ideal projective measurement in some basis {|vi〉},
followed by a “scrambler” (Fig. 5.2). The scrambler is a classical device that functi-
ons as follows: for each output |vi〉 of the quantum measurement, it randomly, with
probability µ ji, chooses the j th output state. This state is then “displayed” by the
detector.
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Fig. 5.2 Model of a realistic detector described by a POVM.

Exercise 5.63. Consider a realistic polarization detector that consists of an ideal
polarization projective measurement in a canonical basis, followed by a scrambler
that maps the measurement results onto the output states marked H and V . The
scrambler works as follows:

• if the input state is |H〉, it will display H with probability 3/4 and V with proba-
bility 1/4;
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• if the input state is |V 〉, it will display V with probability 2/3 and H with proba-
bility 1/3.

The quantum efficiency is unity and the dark counts are negligible. Find the scram-
bler matrix of this detector.

Exercise 5.64. Show that, for any scrambler matrix,
M
∑
j=1

µ ji = 1, where M is the

total number of the detector’s output states.

The number of detector output states may not be equal to the Hilbert space di-
mension. As an example, let us consider a non-discriminating photon detector (Box
1.2). This detector has two output states: “click” and “no click”. On the other hand,
the dimension of the Hilbert space associated with these quantum measurements is
infinite: it is spanned by photon number states from zero to infinity5.

Exercise 5.65. A non-discriminating detector has the following properties:

• There are no dark events.
• Each incoming photon generates an avalanche with probability η (the detector’s

quantum efficiency). If at least one avalanche is present, the detector’s circuit
produces a “click”.

Model this detector as a projective measurement in the photon number basis, follo-
wed by a scrambler, and calculate the scrambler matrix.

5.6.2 Positive operator-valued measure (POVM)

The basis {|vi〉} of the ideal measurement, combined with the scrambler matrix
µ ji, completely describes any detector modeled by Fig. 5.2. However, as on many
other occasions we have encountered in this book, quantum theorists prefer a more
compact description that we discuss next. For a detector modeled by Fig. 5.2, the
set of operators

F̂j = ∑
i

µ jiΠi, (5.36)

each associated with the j th output state of the detector, with Πi = |vi〉〈vi|, is cal-
led the positive-operator valued measure (POVM) of that detector. A measurement
described by a POVM is called a generalized measurement.

Exercise 5.66. Show that each element of a POVM is a non-negative Hermitian
operator.

Exercise 5.67. Determine the POVMs of the detectors described in

a) Ex. 5.63;

5 As discussed in Sec. 3.8, the quantum description of an electromagnetic field mode is equivalent
to that of the harmonic oscillator.
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b) Ex. 5.65.
Answer:

F̂no click = ∑
n
(1−η)n |n〉〈n| , (5.37a)

F̂click = ∑
n
[1− (1−η)n] |n〉〈n| . (5.37b)

Exercise 5.68. Show that, for the POVM of a detector modeled by Fig. 5.2,

M

∑
j=1

F̂j = 1̂, (5.38)

where M is the number of POVM elements.

Exercise 5.69. Show the following:

a) When a quantum state ρ̂ is measured by a detector described by some POVM
{F̂j}, the probability of the j th outcome is

pr j(ρ̂) = Tr(F̂jρ̂) (5.39)

(this is the extension of Born’s rule to generalized measurements).
b) When Alice’s part of a bipartite quantum state ρ̂AB is measured by a detector

described by POVM {F̂j} and the j th outcome occurs, the (unnormalized) state
of Bob’s channel becomes

ρ̂B, j = TrA(F̂jρ̂AB). (5.40)

Exercise 5.70. Alice and Bob share two photons in a mixture of the states |Ψ1〉 =
(|HH〉+ |HV 〉+2 |VV 〉)/

√
6 with probability 3/5 and |Ψ2〉= |HV 〉with probability

2/5. Alice measures her photon by means of the detector described in Ex. 5.63 and
obtains

a) result H;
b) result V ;
c) an unknown result.

Find the resulting state of Bob’s photon

• using the pure state and projection measurement formalism (express your answer
in the form of a statistical ensemble);

• using the density matrix and generalized measurement formalism (express your
answer in the form of an unnormalized density matrix).

Check that the answers are mutually consistent.

These results show how useful the POVM is. Comparing Eqs. (5.39) and (5.40)
with Eqs. (5.13) and (5.19), we see that in many situations the POVM replaces the
set of projectors in the mathematical description of a detector.



242 A. I. Lvovsky. Quantum Physics

Exercise 5.71. a) Determine the density operator of the post-measurement state
in the case of the j th result of a measurement shown in Fig. 5.2. The answer
should be expressed in terms of the scrambler matrix and the projection opera-
tors defining the quantum part of the detector.

b) Apply the result of part (a) to the state ρ̂ = |+〉〈+| measured by the detector
described in Ex. 5.63. Find the post-measurement state for each outcome. Check
that they are not equal to F̂jρ̂F̂j.

Another difference between generalized measurements and projective measure-
ments is that the former are not repeatable. If we once again subject the state Π̂ jρ̂Π̂ j,
obtained as a result of a projective measurement, to the same measurement, we will
obtain Π̂ jΠ̂ jρ̂Π̂ jΠ̂ j = Π̂ jρ̂Π̂ j, so the state will not change. But in the case of gene-
ralized measurement, the situation is different.

Exercise 5.72. Suppose a photon in the initial state ρ̂ = |+〉〈+| is measured in
a non-destructive manner by the detector described in Ex. 5.63 and the result H
obtains. Apply the same measurement once again to the post-measurement state
and find the resulting state as well as the probability of each outcome.

Fig. 5.3 Example of a detector not described by the model of Fig. 5.2. A non-polarizing beam
splitter randomly directs a photon to two different, ideal polarization measurement setups. A pho-
ton detected in the transmitted channel of either PBS activates the same output state of the detector;
a photon in the reflected channel of either PBS activates the other output state.

To finalize the discussion of generalized measurements, let me say that not every
physical measurement can be modeled by a projective measurement plus a scram-

However, there is an important caveat. The POVM can fully replace projectors
only for measurements that destroy the measured quantum system (as is the case,
for example, with traditional photon detectors), or if we are not interested in the
state of the system after the measurement. But if the system is not destroyed, its
state after a generalized measurement is not equal to F̂jρ̂F̂j, in contrast to projective
measurements, where the post-measurement state (5.12) is Π̂ jρ̂Π̂ j. We shall see this
in the next exercise.

non-polarizing
beam splitter

output 1

output 2

waveplate A

waveplate B

mirror
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bler — an example is shown in Fig. 5.3. However, quite remarkably, any detector —
that is, any apparatus that provides us with information about a physical system —
can be described by a POVM, i.e., a set of non-negative operators whose properties
are consistent with Eqs. (5.38), (5.39), and (5.40). We will show how to construct
this POVM in the next section, but for now, let us look at an example.

Exercise 5.73. Consider the detector in Fig. 5.3, where the waveplate A is a half-
wave plate oriented at 0◦ (the top polarization detector measures in the canonical
basis), and the waveplate B a half-wave plate at 22.5◦ (the bottom detector measures
in the diagonal basis). The non-polarizing beam splitter is symmetric, i.e., it has an
equal probability of transmitting and reflecting the photon.

a) Suppose the detector is used to measure an arbitrary state with the density ma-

trix ρ̂ '
(

ρHH ρHV
ρV H ρVV

)
. Find the probabilities of the two detector outputs in

terms of ρHH ,ρHV ,ρV H ,ρVV .
b) Based on Eq. (5.39) and the result of part (a), find the POVM of this detector.

Show that the sum of the POVM elements is the identity operator.

A further beautiful result, known as Neumark’s (Naimark’s) theorem, states that,
for any set {F̂j} of non-negative Hermitian operators such that ∑ j F̂j = 1̂, one can
construct a detector whose POVM is {F̂j}. The proof of this statement is beyond the
scope of this course, but can be found in textbooks on quantum information theory6.

Exercise 5.74. A certain detector is described by a POVM {F̂j} such that Eq. (5.39)
holds for every physical state ρ̂ .

a)∗ Show that each F̂j is a Hermitian operator.
b) Show that each F̂j is a non-negative operator.
c) Prove that set {F̂j} complies with Eq. (5.38).

Exercise 5.75. Consider a “detector” that does not provide any information about
the state of a quantum system — that is, the probabilities of its outputs are indepen-
dent of the state of the input quantum system. Show that all elements of the POVM
of a such a “detector” are proportional to the identity operator.

5.7 Quantum tomography

5.7.1 Quantum state tomography

Here we revisit a topic we touched upon briefly in Section 1.4: complete characte-
rization of quantum states by measurements. But we will now utilize the arsenal of

6 For example, see A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Springer,
2011.,

∗
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tools we have learned in this chapter — the density matrix formalism — to develop
tomography of a general quantum state without assuming it to be pure.

As we know, full characterization of a state requires not just multiple measure-
ments on many copies of that state, but also that these measurements be performed
in multiple bases. Let us estimate the number of bases necessary for full state tomo-
graphy in a given Hilbert space.

Exercise 5.76. Consider an arbitrary state ρ̂ in a Hilbert space of dimension N.

a) Show that this state can be fully described by N2−1 independent real parame-
ters.

b) We perform a projective measurement on multiple copies of ρ̂ in a specific
basis. Show that the information we learn in this measurement state can be
contained within a set of N−1 independent real parameters.

So our goal is to determine (N2− 1) numbers, but a measurement in each basis
gives us only N−1 numbers. Hence complete state tomography requires acquisition
of statistics in a minimum of (N2−1)/(N−1) =N+1 bases. In practice, the choice
of bases is largely dictated by experimental convenience, which means that more
bases are sometimes needed. Let us look at two examples.

Exercise 5.77. Redo Ex. 1.15 for density matrices. That is, multiple polarization
measurements of photons prepared in the same state ρ̂ are done in the canonical,
diagonal, and circular bases, and all six corresponding probabilities are determined.
Express the four matrix elements of ρ̂ through these probabilities.

Exercise 5.78.∗ Show that full tomography of the polarization state of a photon pair
can be accomplished by measuring multiple copies of that state in each of the nine
bipartite combinations of the canonical, diagonal, and circular bases7

Hint: This is a tedious calculation, but it can be simplified by doing it in the right
order.

• Start with the bipartite canonical basis: what elements of the density matrix do
the measurement statistics in this basis help us determine?

• Let Alice’s basis be canonical and Bob’s diagonal and subsequently circular.
Using the density matrix elements known from the first step, determine four ad-
ditional elements.

• Now let Bob’s basis be canonical and Alice’s diagonal and circular. Four more
matrix elements can be found.

• The remaining density matrix elements can be evaluated from measurements in
the four remaining bipartite bases.

In Ex. 5.77, the Hilbert space dimension is N = 2, and the number of bases used
is N + 1 = 3, consistent with the minimum we found. In Ex. 5.78, on the other
hand, N = 4, while the number of bases used is 9. This means that we can think of

7 See the experiment in A. G. White, D. F. V. James, W. J. Munro, and P. G. Kwiat, Exploring
Hilbert space: Accurate characterization of quantum information, Physical Review A 65, 012301
(2001).
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optimizing our solution by invoking a lower number of bases. We need to be careful,
however, that these “optimized” bases are not too difficult to realize in a practical
experimental setup.

Another important lesson we learn from Ex. 5.78 is that, although the bipartite
Hilbert space contains entangled states, its full tomography does not require measu-
rements in entangled bases. In other words, Alice’s and Bob’s measurement devices
do not need to have any quantum correlation with each other. This is, of course, a
great relief for experimentalists.

5.7.2 Quantum process tomography

Under a quantum process we understand a “black box” that performs some kind
of processing on quantum states (Fig. 5.4). For an input state ρ̂ , the process output
state is denoted by E(ρ̂). The goal of quantum process tomography (QPT) is to
learn enough information about the black box to enable one to predict its effect upon
an arbitrary input state. This information is obtained by sending multiple copies of
certain probe states ρ̂ j into the black box and performing quantum state tomography
on the output to find E(ρ̂ j) for each probe state.

�̂ ˆ( )�E
process

Fig. 5.4 A quantum process.

At the beginning of this course (Sec. 1.10), we learned that quantum evolution
processes are represented by unitary linear operators Û = e−

i
h̄ Ĥt (where Ĥ is the

Hamiltonian). However, the same is not always true for an arbitrary quantum pro-
cess, as we shall see in a moment. Still, let us start our discussion of QPT with a
black box that is known to be described by some linear operator.

Exercise 5.79. Suppose the process is described by a linear operator Û and the state
Û |vi〉 is known for every element of some orthonormal basis {|vi〉} of the Hilbert
space. Find the density matrix of the process output state E(ρ̂) if the input state
density operator ρ̂ is given8.

According to this result, in order to fully characterize a process described by a
linear operator, it suffices to probe that process with states from any basis of the
Hilbert space.

However, quantum processes are unitary operators only if the system of interest
does not interact with the outside world (the “environment”). If such interaction does

8 Of course, if a quantum process is described by an operator, this operator must be, not just linear,
but also unitary (see Sec. 1.10). However, this fact is not relevant to this exercise.
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occur, the system and the environment will become entangled. We then have to trace
over the environment to determine the final state of the system. This irreversible
operation makes the whole process non-unitary.

Consider, for example, decoherence of a spin- 1
2 particle with the canonical basis

being the preferred one. States |↑〉 and |↓〉 are not affected by this decoherence:
E(|↑〉〈↑|) = |↑〉〈↑| and E(|↓〉〈↓|) = |↓〉〈↓|. However, any linear combination |ψ〉 =
α |↑〉+β |↓〉 becomes a statistical mixture: E(|ψ〉〈ψ|) = |α|2 |↑〉〈↑|+ |β |2 |↓〉〈↓|. If
the only information available to us is the effect of the process on the basis states
|↑〉 and |↓〉, we cannot distinguish this process from the identity process E(ρ̂) = ρ̂ .

In view of the above, it may appear that quantum process tomography is an in-
tractable problem. The interaction of systems and environments comes in all shapes
and sizes, and since the information about the environment is unavailable, it would
seem impossible to determine all properties of the process by just looking at the
system. Fortunately, however, this is not the case, as we shall see next.

Exercise 5.80. Show that any process must be linear with respect to density matri-
ces, i.e.,

E(αρ̂1 +βρ̂2) = αE(ρ̂1)+βE(ρ̂2). (5.41)

Hint: use the probabilistic nature of the density operator (see Ex. 5.22).

Exercise 5.81. Show that, in the linear space of all linear operators on a Hilbert
space of dimension N (see Ex. A.42), one can construct a basis that consists entirely
of density operators of physical quantum states.
Hint: consider, for example, the set Q that includes

• N operators ρ̂kk = |vk〉〈vk|;
• N(N− 1)/2 operators ρ̂re,kl =

∣∣ψre,kl
〉〈

ψre,kl
∣∣ with ψre,kl = (|vk〉+ |vl〉)/

√
2 for

each unique pair of indices (k, l);
• N(N− 1)/2 operators ρ̂im,kl =

∣∣ψim,kl
〉〈

ψim,kl
∣∣, with ψim,kl = (|vk〉+ i |vl〉)/

√
2

for each unique pair of indices (k, l),

where {|vk〉} is an arbitrary orthonormal basis of the Hilbert space.

Exercise 5.82. Let {ρ̂i} be a basis in the space of operators on our Hilbert space
with each element corresponding to the density operator of a physical state. Suppose
one knows the effect E(ρ̂i) of the process on each of these states. Show that the effect
of the process on an arbitrary state is given by

E(ρ̂) = ∑
i

λiE(ρ̂i), (5.42)

where λi are the coefficients of the decomposition of the density operator ρ̂ into this
spanning set:

ρ̂ = ∑
i

λiρ̂i. (5.43)
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The above exercise provides us with a conceptual framework for quantum pro-
cess tomography. Any basis9 {ρ̂i} in the space of operators over the Hilbert space
can serve as a set of probe states such that the set of output density matrices {E(ρ̂i)}
comprises complete information about the process. The exercises below provide an
example to that effect. These examples specialize to the physics of a spin- 1

2 particle.

Exercise 5.83. Show that the set of density matrices

Q =
{

ρ̂↑ = |↑〉〈↑| , ρ̂↓ = |↓〉〈↓| , ρ̂+ = |+〉〈+| , ρ̂R = |R〉〈R|
}
, (5.44)

where |+〉= (|↑〉+ |↓〉)/
√

2 and |R〉= (|↑〉+ i |↓〉)/
√

2 are the eigenstates of σ̂x and
σ̂y with the eigenvalue 1, forms a basis in the linear space of all linear operators

over the qubit Hilbert space. Express an arbitrary state ρ̂ '
(

ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

)
as a mixture

(5.42) of elements of that basis.

Exercise 5.84. Consider the partial decoherence process studied in Sec. 5.5.1:

E
(

ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

)
=

(
ρ↑↑ ρ↑↓e−t/T2

ρ↓↑e−t/T2 ρ↓↓

)
. (5.45)

a) Find the effect E(ρ̂i) of this process on all elements of the basis (5.44).
b) Suppose the basis (5.44) is used for quantum process tomography. By expres-

sing an arbitrary state ρ̂ '
(

ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

)
as a mixture of elements of that basis,

check Eq. (5.42) explicitly.

A QPT experiment provides us with a set of density matrices {E(ρ̂i)}. While, as
we have shown, this set fully describes the process, it would be good to have a more
compact and convenient description — as we had in the case of density operators
and POVMs. We thus seek a way to express the information about the process in the
form of a process tensor — a “supermatrix” Enm

lk that would generate the matrix of
the black box output state E(ρ̂) when applied to the matrix input state ρ̂:

[
E(ρ̂)

]
lk =

N

∑
m=1

N

∑
n=1

Enm
lk ρnm, (5.46)

where ρnm = 〈vn| ρ̂| vm〉 and [E(ρ̂)]lk = 〈vl | E(ρ̂)| vk〉, with {
∣∣v j
〉
} an orthonormal

basis in V.
Equation (5.46) is reminiscent of matrix multiplication (A.20), except that the

summation is over two indices. Both the input and output objects are matrices, they
have two indices. And the process tensor Enm

lk that transforms one into the other has
four indices — it is a rank-4 tensor, an N×N×N×N table of numbers that is easy
to handle, store, and communicate.

But does the process tensor exist for every quantum process, and if so, how can
it be found? The answer turns out to be relatively simple.

9 In fact, it suffices for the set {ρ̂i} to be a spanning set; it need not be linearly independent.
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Exercise 5.85. Consider a certain orthonormal basis {|vn〉} of the Hilbert space.
Let {ρ̂i} (with i = 1, . . . ,N2) be a set of QPT probe states, i.e., a spanning set in the
space of density matrices. Then each operator |vm〉〈vn| can be decomposed into this
spanning set, viz.,

|vn〉〈vm|=
N2

∑
i=1

λnmiρ̂i, (5.47)

where λnmi are the decomposition coefficients. Show that Eq. (5.46) is satisfied if
the process tensor is given by

Enm
lk =

N2

∑
i=1

λnmi 〈vl | E(ρ̂i)| vk〉 . (5.48)

Exercise 5.86. Find the coefficients of decomposition (5.47) when {|vn〉} is the
canonical basis in the qubit space and the basis {ρ̂i} is given by Eq. (5.44).

Exercise 5.87. Use Eq. (5.48) with the result of Ex. 5.84(a) and 5.86 to find the
tensor of the partial decoherence process (5.45). Verify that this tensor, when sub-
stituted into Eq. (5.46), yields Eq. (5.45).
Answer:

Enm
lk =


(

1 0
0 0

) (
0 e−t/T2

0 0

)
(

0 0
e−t/T2 0

) (
0 0
0 1

)
 , (5.49)

where each pair (n,m) identifies a 2× 2 submatrix, while the indices inside each
submatrix are (l,k).

The above result illustrates the meaning of the process tensor. The submatrix in
the n th row and m th column on the right-hand side of Eq. (5.49) gives the process
output E(|vn〉〈vm|) corresponding to the input “state” |vn〉〈vm|10. For example, the

input state |↑〉〈↑| '
(

1 0
0 0

)
is not affected by decoherence, so the upper left sub-

matrix is the same as the input:
(

1 0
0 0

)
. On the other hand, if the input “state” is

|↑〉〈↓| '
(

0 1
0 0

)
, the decohered output (upper right submatrix) is

(
0 e−t/T2

0 0

)
, and

so on. The mathematics behind this observation can be seen from Eq. (5.46): if we
set ρ̂ = |vn〉〈vm|, then

[
E(ρ̂)

]
lk = Enm

lk .
As we see, the theoretical treatment of QPT can be complicated and tedious, and

its practical realization even more so. To form a basis in the space of operators over
the Hilbert space, the set of probe states must contain N2 elements. For each of these
elements, full tomography of the output state E(ρ̂i) needs to be performed and a set
of N2−1 parameters defining its density matrix determined. So the total number of

10 For m 6= n, these are only formal mathematical objects that do not correspond to physical states.
However, they are handy for developing an intuition.
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parameters to be obtained in QPT scales as the fourth power of the Hilbert space
dimension, which means that the experimentalist will have to spend many hours
in the lab. To make things worse, the required probe basis may contain complex
superposition states that are difficult to prepare or may even be beyond the reach of
existing quantum state engineering methods.

5.7.3 Quantum detector tomography

Quantum detector tomography can be seen as a simplified case of QPT. Here, instead
of a black box with a quantum output, we have a detector — a black box with M
possible classical output states. The goal is once again to be able to predict the de-
tector response to an arbitrary state, or determine the detector’s POVM, by studying
its response to certain probe states.

Exercise 5.88. A certain detector, when measuring the states ρ̂1,2, produces the
output j with probabilities pr j(ρ̂1,2), respectively. Show that, when measuring a
linear mixture αρ̂1 +βρ̂2, the probability of the output j is given by

pr j(αρ̂1 +βρ̂2) = αpr j(ρ̂1)+βpr j(ρ̂2). (5.50)

Exercise 5.89. Suppose {ρ̂i} is the basis (or a spanning set) defined in Ex. 5.82.
For each of its elements, we have measured the complete statistics of the detector
response, i.e., pr j(ρ̂i), where j indexes the detector’s output states. From these data,
determine pr j(ρ̂) for an arbitrary input density matrix ρ̂ whose decomposition into
{ρ̂i} is given by Eq. (5.43).

Exercise 5.90.∗ Under the conditions of the previous exercise, show that Eq. (5.39)
is satisfied if the POVM of the detector is given by

F̂j =
N2

∑
i=1

N

∑
m,n=1

λnmipr j(ρi) |vm〉〈vn| , (5.51)

where λnmi are the coefficients of the decomposition of the operator |vn〉〈vm| into
the probe state basis, according to Eq. (5.47).

Exercise 5.91. Consider the detector shown in Fig. 5.3, set up in the same way as
in Ex. 5.73.

a) Find the detector output probabilities for the four states from the set Q =
{

ρ̂↑ =
|H〉〈H| , ρ̂↓ = |V 〉〈V | , ρ̂+ = |+〉〈+| , ρ̂R = |R〉〈R|

}
.

b) Use this information and Eq. (5.51) to find the POVM of the detector. Check
that the result is the same as in Ex. 5.73.

As we can see from the last exercise, we now have an algorithm to calculate a
detector’s POVM, not only from the experimental data obtained by measuring probe
states, but also theoretically from a physical model of the detector.
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5.8 Problems

Problem 5.1. Find the representation of the density operator of states |α〉+ |−α〉
and |α〉〈α|− |−α〉〈−α| of a harmonic oscillator

a) in the Fock basis;
b) in the position basis;
c) in the momentum basis,

where α and −α are coherent states. Discuss the behavior of diagonal and off-
diagonal elements in the context of Ex. 5.12. Normalization can be neglected.

Problem 5.2. Consider a photon in the ensemble of states

• |ψ1〉= (3 |H〉−4 |V 〉)/5 with probability p1 = 1/2;
• |ψ2〉= (12 |H〉−5i |V 〉)/13 with probability p2 = 1/4;
• |ψ3〉= |−45◦〉 with probability p3 = 1/4.

a) Find the density operator.
b) This ensemble is measured in the circular basis. Find the probabilities of each

result using the verbal description above and using the density matrix forma-
lism. Check for consistency.

The answers should be in numerical form, up to the third decimal point.

Problem 5.3. The density matrix of a photon state in the canonical basis is

ρ̂ =

(
1/2 i/6
−i/6 1/2

)
.

Present this state as a statistical mixture of orthogonal pure states.

Problem 5.4. Alice and Bob share two photons in the state |Ψ〉= (|HV 〉+ |V H〉+
2 |VV 〉)/

√
6. Alice measures the state in the canonical basis.

a) What state will be prepared at Bob’s station in each case?
b) What is the probability of each outcome?
c) Suppose Bob does not know Alice’s measurement outcome. Use the results of

parts (a) and (b) to write the statistical ensemble describing the state of Bob’s
photon. Find the corresponding density matrix in the canonical basis.

d) Find the reduced density matrix of Bob’s photon using the density matrix for-
malism. Check that the result is the same as in part (c).

e) Repeat parts (a)–(c) for Alice performing her measurement in the diagonal ba-
sis. Check that the reduced density matrix of Bob’s photon is the same.

Problem 5.5. Alice and Bob share two photons in a polarization state whose matrix
in the canonical basis {|HH〉 , |HV 〉 , |V H〉 , |VV 〉} is
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ρ̂AB =
1

18


3 1 −2 i
1 1 2i −3
−2 −2i 4 0
−i −3 0 10


.

a) Write the density matrix ρ̂b of Bob’s photon if he has no communication with
Alice.

b) Alice measures the polarization of her photon in the canonical basis. What is
the probability of each outcome and what state will be prepared at Bob’s station
in each case?

c) Alice measures her photon using the detector described in Ex. 5.63. What is the
probability of each outcome and what state will be prepared at Bob’s station in
each case?

Problem 5.6. An ensemble of spin-1/2 particles initially in the state |↑〉 undergoes
decoherence due to collisions with a buffer gas. Each collision results in complete
decoherence of the particle that experienced it. The decoherence preferred basis is
{|±〉}= {(|↑〉± |↓〉)/

√
2}. The probability of collision per particle per unit time is

p. Write the density matrix as a function of time

a) in the decoherence preferred basis;
b) in the canonical basis.

Problem 5.7. Redo Ex. 5.25 for a mixture of the states that corresponds to the spin
pointing along the x and y axes with probabilities 1

3 and 2
3 , respectively. The mag-

netic field B is along the z axis.

Problem 5.8. Two electrons, whose spins are initially in the state |Ψ(0)〉 = |→〉⊗
|↑〉 (where |→〉 is the eigenstate of Ŝx with eigenvalue h̄

2 ), associated with fictitious
observers Alice and Bob, are interacting with the Hamiltonian Ĥ =C~S1 ·~S2.

a) Find the evolution |Ψ(t)〉 of the electrons’ spin state in the canonical basis.
b) Alice measures the projection of her electron’s spin onto the z axis at time t.

Find the probabilities of the possible results and the state in which Bob’s elec-
tron will be prepared in each case. Based on that information, determine the
ensemble describing the state of Bob’s electron when he does not know the re-
sult of Alice’s measurement. From that description, obtain the density matrix of
Bob’s electron in the canonical basis.

c) Repeat part (b) when Alice measures the projection of her electron’s spin onto
the x axis.

d) Find the density operator ρ̂B(t) of Bob’s electron as a function of time using the
partial trace formalism. Check that your result is identical to what was found in
parts (b) and (c).

e) Find the Bloch vector trajectory of Bob’s electron spin and plot it.
f) Find the state purity of Bob’s electron spin as a function of time. Check how it

is related to the length of the Bloch vector: Trρ̂2 = (|~R|2 +1)/2.
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Problem 5.9. For the two-mode squeezed state (3.186a), calculate the density ma-
trix of Bob’s portion.
Hint: to calculate the partial trace in the continuous-variable setting, replace the
summation in Eq. (5.18) by integration.

Problem 5.10. Find the process tensor of the homogeneous relaxation process that
has both a longitudinal component (T1) and transverse components (T2).

Problem 5.11. Analyze the following technique for measuring the longitudinal re-
laxation time.

• A π

2 excitation pulse is applied to a thermalized spin ensemble to make the Bloch
vector point along the y axis.

• As time elapses, Bloch vectors of different spins will spread over the equator due
to inhomogeneous dephasing. At the same time, they will experience longitudi-
nal and transverse relaxation. The longitudinal relaxation will give rise to the z
component of the mean Bloch vector.

• After time t0� T ∗2 has elapsed, another π

2 pulse is applied. The emerging z com-
ponent of the Bloch vector is now pointing along the y axis and can produce free
induction decay.

Calculate the mean magnetic moment of the spin after the second excitation pulse
as a function of the time t, the excitation pulse separation t0, and the longitudinal
and transverse time constants of the sample.

Problem 5.12. Calculate the POVM of the non-discriminating detector described in
Ex. 5.65 taking dark counts into account. A dark avalanche occurs with probability
pdark, independently of other avalanches that may be occurring in the detector at the
same time.

Problem 5.13. Consider the polarization detector described in Ex. 5.63, taking
quantum efficiency η = 0.8 into account. In the event that no avalanche is produ-
ced in any of the photon detectors in response to an incoming photon, the detector
displays “0”.

a) Calculate the POVM.
b) Find the probability of each outcome for the input state α |H〉+β |V 〉.

Problem 5.14. Consider a two-mode optical state

|ψ〉=
∞

∑
k,m=0

ψkm |k〉A⊗|m〉B ,

where subscripts A and B denote the modes and the state is written in the Fock basis
(e.g., the state |1〉A⊗|0〉B corresponds to one photon in mode A and the vacuum in
mode B).

a) Mode B is discarded. What is the density operator of the state in mode A?
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b) Mode B is subjected to a measurement by a non-discriminating single-photon
detector with the quantum efficiency η described in Ex. 5.65. What is the density
operator of the state in mode A in the event of a “click”?

c) Repeat (b) for the case when the initial state is not pure, but described by the
density matrix

ρ̂ =
∞

∑
k,l,m,n=0

ρklmn |k〉〈l|A⊗|m〉〈n|B .

Problem 5.15. A polarization measurement device consisting of a PBS and two per-
fect photon detectors contains a “gremlin” who, with probability 1/2, inserts a half-
wave plate with its optic axis oriented at π/4 before the PBS. Find the POVM of
that detector.

Problem 5.16. A quantum process E on a polarization qubit has been subjected to
a quantum process tomography experiment. It has revealed the following transfor-
mations of the probe states:

|H〉 → 1/4 |H〉〈H|+3/4 |V 〉〈V | ;
|V 〉 → 3/4 |H〉〈H|+1/4 |V 〉〈V | ;
|+〉 → |+〉〈+| ;
|R〉 → 1/2 |H〉〈H|+1/2 |V 〉〈V |+ i/4 |H〉〈V |− i/4 |V 〉〈H| .

a) Find the process tensor Enm
lk such that

[E(ρ̂)]lk = ∑
nm

Enm
lk ρnm.

b) How will the process transform the states |−〉, |L〉, p |H〉〈H|+(1− p) |−〉〈−|?
c) This process can be described as decoherence in a certain preferred basis. What

is that basis?



Appendix A
Linear algebra basics

A.1 Linear spaces

Linear spaces consist of elements called vectors. Vectors are abstract mathematical
objects, but, as the name suggests, they can be visualized as geometric vectors. Like
regular numbers, vectors can be added together and subtracted from each other to
form new vectors; they can also be multiplied by numbers. However, vectors cannot
be multiplied or divided by one another as numbers can.

One important peculiarity of the linear algebra used in quantum mechanics is
the so-called Dirac notation for vectors. To denote vectors, instead of writing, for
example, ~a, we write |a〉. We shall see later how convenient this notation turns out
to be.

Definition A.1. A linear (vector) space V over a field1 F is a set in which the
following operations are defined:

1. Addition: for any two vectors |a〉 , |b〉 ∈ V, there exists a unique vector in V
called their sum, denoted by |a〉+ |b〉.

2. Multiplication by a number (“scalar”): For any vector |a〉 ∈ V and any number
λ ∈ F, there exists a unique vector in V called their product, denoted by λ |a〉 ≡
|a〉λ .

These operations obey the following axioms.

1. Commutativity of addition: |a〉+ |b〉= |b〉+ |a〉.
2. Associativity of addition: (|a〉+ |b〉)+ |c〉= |a〉+(|b〉+ |c〉).
3. Existence of zero: there exists an element of V called |zero〉 such that, for any

A. I. Lvovsky, Quantum Physics, Undergraduate Lecture Notes in
Physics, https://doi.org/10.1007/978-3-662-56584-1
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1 Field is a term from algebra which means a complete set of numbers. The sets of rational numbers
Q, real numbers R, and complex numbers C are examples of fields. Quantum mechanics usually
deals with vector spaces over the field of complex numbers.

A solutions manual for this appendix is available for download at 

https://www.springer.com/gp/book/9783662565827 

As an alternative notation for |zero〉, we some times use “0” but not “|0〉”.2

vector |a〉, |a〉+ |zero〉 | 〉= a .2
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4. Existence of the opposite element: For any vector |a〉 there exists another vector,
denoted by −|a〉, such that |a〉+(−|a〉) = |zero〉.

5. Distributivity of vector sums: λ (|a〉+ |b〉) = λ |a〉+λ |b〉.
6. Distributivity of scalar sums: (λ +µ) |a〉= λ |a〉+µ |a〉.
7. Associativity of scalar multiplication: λ (µ |a〉) = (λ µ) |a〉.
8. Scalar multiplication identity: For any vector |a〉 and number 1∈ F, 1 · |a〉= |a〉.

Definition A.2. Subtraction of vectors in a linear space is defined as follows:

|a〉− |b〉 ≡ |a〉+(−|b〉).

Exercise A.1. Which of the following are linear spaces (over the field of complex
numbers, unless otherwise indicated)?

a) R over R? R over C? C over R? C over C?
b) Polynomial functions? Polynomial functions of degree ≤ n? > n?
c) All functions such that f (1) = 0? f (1) = 1?
d) All periodic functions of period T ?
e) N-dimensional geometric vectors over R?

Exercise A.2. Prove the following:

a) there is only one zero in a linear space;
b) if |a〉+ |x〉= |a〉 for some |a〉 ∈ V, then |x〉= |zero〉;
c) for any vector |a〉 and for number 0 ∈ F, 0 |a〉= |zero〉;
d) −|a〉= (−1) |a〉;
e) −|zero〉= |zero〉;
f) for any |a〉, −|a〉 is unique;
g) −(−|a〉) = |a〉;
h) |a〉= |b〉 if and only if |a〉− |b〉= 0.

Hint: Most of these propositions can be proved by adding the same number to the
two sides of an equality.

A.2 Basis and dimension

Definition A.3. A set of vectors |vi〉 is said to be linearly independent if no nontri-
vial2 linear combination λ1 |v1〉+ . . .+λN |vN〉 equals |zero〉.
Exercise A.3. Show that a set of vectors {|vi〉} is not linearly independent if and
only if one of the |vi〉 can be represented as a linear combination of others.

Exercise A.4. For linear spaces of geometric vectors, show the following:

a) For the space of vectors in a plane (denoted R ), any two vectors are linearly in-
dependent if and only if they are not parallel. Any set of three vectors is linearly
dependent.

That is, in which at least one of the coefficients is nonzero.3

3
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b) For the space of vectors in a three-dimensional space (denoted R ), any three
non-coplanar vectors form a linearly independent set.

Hint: Recall that a geometric vector can be defined by its x, y and z components.

Definition A.4. A subset {|vi〉} of a vector space V is said to span V (or to be a
spanning set for V) if any vector in V can be expressed as a linear combination of
the |vi〉.

Exercise A.5. For the linear space of geometric vectors in a plane, show that any
set of at least two vectors, of which at least two are non-parallel, forms a spanning
set.

Definition A.5. A basis of V is any linearly independent spanning set. A decompo-
sition of a vector relative to a basis is its expression as a linear combination of the
basis elements.

The basis is a smallest subset of a linear space such that all other vectors can
be expressed as a linear combination of the basis elements. The term “basis” may
suggest that each linear space has only one basis — just as a building can have only
one foundation. Actually, as we shall see, in any nontrivial linear space, there are
infinitely many bases.

Definition A.6. The number of elements in a basis is called the dimension of V.
Notation: dimV.

Exercise A.6.∗ Prove that in a finite-dimensional space, all bases have the same
number of elements.

Exercise A.7. Using the result of Ex. A.6, show that, in a finite-dimensional space,

a) any linearly independent set of N = dimV vectors forms a basis;
b) any spanning set of N = dimV vectors forms a basis.

Exercise A.8. Show that, for any element of V, there exists only one decomposition
into basis vectors.

Definition A.7. For a decomposition of the vector |a〉 into basis {|vi〉}, viz.,

|a〉= ∑
i

ai |vi〉 , (A.1)

we may use the notation

|a〉 '

 a1
...

aN

 . (A.2)

This is called the matrix form of a vector, in contrast to the Dirac form (A.1). The
scalars ai are called the coefficients or amplitudes of the decomposition3.

We use the symbol ' instead of = when expressing vectors and operators in matrix form, e.g.,
in Eq. (A.2). This is to emphasize the difference: the left-hand side, a vector, is an abstract object

4
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Exercise A.9. Let |a〉 be one of the elements, |vk〉, of the basis {|vi〉}. Find the
matrix form of the decomposition of |a〉 into this basis.

Exercise A.10. Consider the linear space of two-dimensional geometric vectors.
Such vectors are usually defined by two numbers (x,y), which correspond to their x
and y components, respectively. Does this notation correspond to a decomposition
into any basis? If so, which one?

Exercise A.11. Show the following:

a) For the linear space of geometric vectors in a plane, any two non-parallel vectors
form a basis.

b) For the linear space of geometric vectors in a three-dimensional space, any three
non-coplanar vectors form a basis.

Exercise A.12. Consider the linear space of two-dimensional geometric vec-
tors. The vectors ~a,~b,~c, ~d are oriented with respect to the x axis at angles
0, 45◦, 90◦, 180◦ and have lengths 2, 1, 3, 1, respectively. Do the pairs {~a,~c}, {~b, ~d},
{~a, ~d} form bases? Find the decompositions of the vector~b in each of these bases.
Express them in the matrix form.

Definition A.8. A subset of a linear space V that is a linear space on its own is
called a subspace of V.

Exercise A.13. In an arbitrary basis {|vi〉} in the linear space V, a subset of elements
is taken. Show that a set of vectors that are spanned by this subset is a subspace of
V.

For example, in the space of three-dimensional geometric vectors, any set of
vectors within a particular plane or any set of vectors collinear to a given straight
line form a subspace.

A.3 Inner Product

Although vectors cannot be multiplied together in the same way that numbers can,
one can define a multiplication operation that maps any pair of vectors onto a num-
ber. This operation generalizes the scalar product that is familiar from geometry.

Definition A.9. For any two vectors |a〉, |b〉 ∈ V we define an inner (scalar) pro-
duct — a number 〈a| b〉 ∈ C such that:

1. For any three vectors |a〉 , |b〉 , |c〉 , 〈a|(|b〉+ |c〉) = 〈a| b〉+ 〈a| c〉.
2. For any two vectors |a〉 , |b〉 and number λ , 〈a|(λ |b〉) = λ 〈a| b〉.

and is basis-independent, while the right-hand side is a set of numbers and depends on the choice
of basis {|vi〉}. However, in the literature, the equality sign is generally used for simplicity.

The inner product of two vectors is sometimes called the overlap in the context of quantum
physics.

5
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3. For any two vectors |a〉 , |b〉 , 〈a| b〉= 〈b| a〉∗.
4. For any |a〉 , 〈a| a〉 is a nonnegative real number, and 〈a| a〉 = 0 if and only if
|a〉= 0.

Exercise A.14. In geometry, the scalar product of two vectors ~a = (xa,ya) and~b =

(xb,yb) (where all components are real) is defined as ~a ·~b = xaxb + yayb. Show that
this definition has all the properties listed above.

Exercise A.15. Suppose a vector |x〉 is written as a linear combination of some
vectors |ai〉: |x〉= ∑i λi |ai〉. For any other vector |b〉, show that 〈b| x〉= ∑i λi 〈b| ai〉
and 〈x| b〉= ∑i λ ∗i 〈ai| b〉.

Exercise A.16. For any vector |a〉, show that 〈zero| a〉= 〈a| zero〉= 0.

Definition A.10. |a〉 and |b〉 are said to be orthogonal if 〈a| b〉= 0.

Exercise A.17. Prove that a set of nonzero mutually orthogonal vectors is linearly
independent.

Definition A.11. ‖|a〉‖=
√
〈a| a〉 is called the norm (length) of a vector. Vectors of

norm 1 are said to be normalized. For a given vector |a〉, the quantity N = 1/‖|a〉‖
(such that the vector N |a〉 is normalized) is called the normalization factor.

Exercise A.18. Show that multiplying a vector by a phase factor eiφ , where φ is a
real number, does not change its norm.

Definition A.12. A linear space in which an inner product is defined is called a
Hilbert space.

A.4 Orthonormal Basis

Definition A.13. An orthonormal basis {|vi〉} is a basis whose elements are mutu-
ally orthogonal and have norm 1, i.e.,〈

vi
∣∣ v j
〉
= δi j, (A.3)

where δi j is the Kronecker symbol.

Exercise A.19. Show that any orthonormal set of N (where N = dimV) vectors
forms a basis.

Exercise A.20. Show that, if

 a1
...

aN

 and

 b1
...

bN

 are the decompositions of vectors

|a〉 and |b〉 in an orthonormal basis, their inner product can be written in the form

〈a| b〉= a∗1b1 + . . .+a∗NbN . (A.4)
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Equation (A.4) can be expressed in matrix form using the “row-times-column”
rule:

〈a| b〉=
(

a∗1 . . . a∗N
) b1

...
bN

 . (A.5)

One context where we can use the above equations for calculating the inner pro-
duct is ordinary spatial geometry. As we found in Ex. A.10, the coordinates of geo-
metric vectors correspond to their decomposition into orthogonal basis {î, ĵ}, so not
surprisingly, their scalar products are given by Eq. (A.4).

Suppose we calculate the inner product of the same pair of vectors using
Eq. (A.5) in two different bases. Then the right-hand side of that equation will
contain different numbers, so it may seem that the inner product will also depend
on the basis chosen. This is not the case, however: according to Defn. A.9, the inner
product is defined for a pair of vectors, and is basis-independent.

Exercise A.21. Show that the amplitudes of the decomposition

 a1
...

aN

 of a vector

|a〉 into an orthonormal basis can be found as follows:

ai = 〈vi| a〉 . (A.6)

In other words [see Eq. (A.1)],

|a〉= ∑
i
〈vi| a〉 |vi〉 . (A.7)

Exercise A.22. Consider two vectors in a two-dimensional Hilbert space, |ψ〉 =
4 |v1〉+5 |v2〉 and |φ〉=−2 |v1〉+3i |v2〉, where {|v1〉 , |v2〉} is an orthonormal basis.

a) Show that the set {|w1〉= (|v1〉+ i |v2〉)/
√

2, |w2〉= (|v1〉− i |v2〉)/
√

2} is also
an orthonormal basis.

b) Find the matrices of vectors |ψ〉 and |φ〉 in both bases.
c) Calculate the inner product of these vectors in both bases using Eq. (A.5). Show

that they are the same.

Exercise A.23. Show that, if |a〉 is a normalized vector and {ai = 〈vi| a〉} is its
decomposition in an orthonormal basis {|vi〉}, then

∑
i
|ai|2 = 1. (A.8)

Exercise A.24. Suppose {|wi〉} is some basis in V. It can be used to find an ort-
honormal basis {|vi〉} by applying the following equation in sequence to each basis
element:

|vk+1〉= N

[
|wk+1〉−

k

∑
i=1
〈vi| wk+1〉 |vi〉

]
, (A.9)



A.5 Adjoint Space 261

where N is the normalization factor. This is called the Gram-Schmidt procedure.

Exercise A.25.∗ For a normalized vector |ψ〉 in an N-dimensional Hilbert space, and
any natural number m ≤ N, show that it is possible to find a basis {|vi〉} such that
|ψ〉= 1/

√
m∑

m
i=1 |vi〉.

Exercise A.26.∗ Prove the Cauchy-Schwarz inequality for any two vectors |a〉 and
|b〉:

| 〈a| b〉 | ≤ ‖|a〉‖×‖|b〉‖. (A.10)

Show that the inequality is saturated (i.e., becomes an equality) if and only if the
vectors |a〉 and |b〉 are collinear (i.e., |a〉= λ |b〉).
Hint: Use the fact that ‖|a〉−λ |b〉‖2 ≥ 0 for any complex number λ .

Exercise A.27. Prove the triangle inequality for any two vectors |a〉 and |b〉:

‖(|a〉+ |b〉)‖ ≤ ‖|a〉‖+‖|b〉‖. (A.11)

A.5 Adjoint Space

The scalar product 〈a| b〉 can be calculated as a matrix product (A.5) of a row and

a column. While the column

 b1
...

bN

 corresponds directly to the vector |b〉, the row

(
a∗1 . . . a∗N

)
is obtained from the column corresponding to vector |a〉 by transposi-

tion and complex conjugation. Let us introduce a convention associating this row
with the vector 〈a|, which we call the adjoint of |a〉.

Definition A.14. For the Hilbert space V, we define the adjoint space V† (read
“V-dagger”), which is in one-to-one correspondence with V, in the following way:
for each vector |a〉 ∈ V, there is one and only one adjoint vector 〈a| ∈ V† with the
property

Adjoint(λ |a〉+µ |b〉) = λ
∗ 〈a|+µ

∗ 〈b| . (A.12)

Exercise A.28. Show that V† is a linear space.

Exercise A.29. Show that if {|vi〉} is a basis in V, {〈vi|} is a basis in V†, and if
the vector |a〉 is decomposed into {|vi〉} as |a〉 = ∑ai |vi〉, the decomposition of its
adjoint is

〈a|= ∑a∗i 〈vi| . (A.13)

Exercise A.30. Find the matrix form of the vector adjoint to |v1〉+ i |v2〉 in the basis
{〈v1| ,〈v2|}.

“Direct” and adjoint vectors are sometimes called ket and bra vectors, respecti-
vely. The rationale behind this terminology, introduced by P. Dirac together with
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the symbols 〈| and |〉, is that the bra-ket combination of the form 〈a| b〉, a “bracket”,
gives the inner product of the two vectors.

Note that V and V† are different linear spaces. We cannot add a bra-vector and a
ket-vector.

A.6 Linear Operators

A.6.1 Operations with linear operators

Definition A.15. A linear operator Â on a linear space V is a map of linear space
V onto itself such that, for any vectors |a〉, |b〉 and any scalar λ

Â(|a〉+ |b〉) = Â |a〉+ Â |b〉 ; (A.14a)

Â(λ |a〉) = λ Â |a〉 . (A.14b)

Exercise A.31. Decide whether the following maps are linear operators :

a) Â |a〉 ≡ 0.
b) Â |a〉= |a〉.

c) C2→ C2 : Â
(

x
y

)
=

(
x
−y

)
.

d) C2→ C2 : Â
(

x
y

)
=

(
x+ y

xy

)
.

e) C2→ C2 : Â
(

x
y

)
=

(
x+1
y+1

)
.

f) Rotation by angle φ in the linear space of two-dimensional geometric vectors
(over R).

Definition A.16. For any two operators Â and B̂, their sum Â+ B̂ is an operator that
maps vectors according to

(Â+ B̂) |a〉 ≡ Â |a〉+ B̂ |a〉 . (A.15)

For any operator Â and any scalar λ , their product λ Â is an operator that maps
vectors according to

(λ Â) |a〉 ≡ λ (Â |a〉). (A.16)

Exercise A.32. Show that the set of all linear operators over a Hilbert space of
dimension N is itself a linear space, with the addition and multiplication by a scalar
given by Eqs. (A.15) and (A.16), respectively.

A map is a function that establishes, for every element keta in V, a unique “image” Â |a〉.

C2 is the linear space of columns
(

x
y

)
consisting of two complex numbers.

6

7

6

7
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a) Show that the operators Â+ B̂ and λ Â are linear in the sense of Defn. A.15.
b) In the space of liner operators, what is the zero element and the opposite element
−Â for a given Â?

c)§ Show that the space of linear operators complies with all the axioms introduced
in Definition A.1.

Definition A.17. The operator 1̂ that maps every vector in V onto itself is called the
identity operator.

When writing products of a scalar with identity operators, we sometimes omit
the symbol 1̂, provided that the context allows no ambiguity. For example, instead
of writing Â−λ 1̂, we may simply write Â−λ .

Definition A.18. For operators Â and B̂, their product ÂB̂ is an operator that maps
every vector |a〉 onto ÂB̂ |a〉 ≡ Â(B̂ |a〉). That is, in order to find the action of the
operator ÂB̂ on a vector, we must first apply B̂ to that vector, and then apply Â to the
result.

Exercise A.33. Show that a product of two linear operators is a linear operator.

It does matter in which order the two operators are multiplied, i.e., generally
ÂB̂ 6= B̂Â. Operators for which ÂB̂ = B̂Â are said to commute. Commutation rela-
tions between operators play an important role in quantum mechanics, and will be
discussed in detail in Sec. A.9.

Exercise A.34. Show that the operators of counterclockwise rotation by angle π/2
and reflection about the horizontal axis in the linear space of two-dimensional geo-
metric vectors do not commute.

Exercise A.35. Show that multiplication of operators has the property of associati-
vity, i.e., for any three operators, one has

Â(B̂Ĉ) = (ÂB̂)Ĉ. (A.17)

A.6.2 Matrices

It may appear that, in order to fully describe a linear operator, we must say what it
does to every vector. However, this is not the case. In fact, it is enough to say how
the operator maps the elements of some basis {|v1〉 , . . . , |vN〉} in V, i.e., it is enough
to know the set {Â |v1〉 , . . . , Â |vN〉}. Then, for any other vector |a〉, which can be
decomposed as

|a〉= a1 |v1〉+ . . .+aN |vN〉 ,

we have, thanks to linearity,

Â |a〉= a1Â |v1〉+ . . .+aN Â |vN〉 . (A.18)
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How many numerical parameters does one need to completely characterize a
linear operator? Each image Â

∣∣v j
〉

of a basis element can be decomposed into the
same basis:

Â
∣∣v j
〉
= ∑

i
Ai j |vi〉 . (A.19)

For every j, the set of N parameters A1 j, . . . ,AN j fully describes Â
∣∣v j
〉
. Accordingly,

the set of N2 parameters Ai j, with both i and j varying from 1 to N, contains full
information about a linear operator.

Definition A.19. The matrix of an operator in the basis {|vi〉} is an N×N square
table whose elements are given by Eq. (A.21). The first index of Ai j is the number
of the row, the second is the number of the column.

Suppose, for example, that you are required to prove that two given operators are
equal: Â = B̂. You can do so by showing the identity for the matrices Ai j and Bi j
of the operators in any basis. Because the matrix contains full information about an
operator, this is sufficient. Of course, you should choose your basis judiciously, so
that the matrices Ai j and Bi j are as easy as possible to calculate.

Exercise A.36. Find the matrix of 1̂. Show that this matrix does not depend on the
choice of basis.

Exercise A.37. Find the matrix representation of the vector Â
∣∣v j
〉

in the basis
{|vi〉}, where

∣∣v j
〉

is an element of this basis, j is given, and the matrix of Â is
known.

Exercise A.38. Show that, if |a〉 '

 a1
...

aN

 in some basis, then the vector Â |a〉 is

given by the matrix product

Â |a〉 '

 A11 . . . A1N
...

...
AN1 . . . ANN


 a1

...
aN

=

 ∑ j A1 ja j
...

∑ j AN ja j

 . (A.20)

Exercise A.39. Given the matrices Ai j and Bi j of the operators Â and B̂, find the
matrices of the operators

a) Â+ B̂;
b) λ Â;
c) ÂB̂.

The last two exercises show that operations with operators and vectors are rea-
dily represented in terms of matrices and columns. However, there is an important
caveat: matrices of vectors and operators depend on the basis chosen, in contrast to
“physical” operators and vectors that are defined irrespectively of any specific basis.

This point should be taken into account when deciding whether to perform a
calculation in the Dirac or matrix notation. If you choose the matrix notation to save
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ink, you should be careful to keep track of the basis you are working with, and write
all the matrices in that same basis.

Exercise A.40. Show that the matrix elements of the operator Â in an orthonormal
basis {|vi〉} are given by

Ai j = 〈vi|
(
Â
∣∣v j
〉)
≡ 〈vi| Â

∣∣v j
〉
. (A.21)

Exercise A.41. Find the matrices of operators R̂φ and R̂θ that correspond to the ro-
tation of the two-dimensional geometric space through angles φ and θ , respectively
[Ex. A.31(f)]. Find the matrix of R̂φ R̂θ using the result of Ex. A.39 and check that
it is equivalent to a rotation through (φ +θ).

Exercise A.42. Give an example of a basis and determine the dimension of the
linear space of linear operators over a Hilbert space of dimension N (see Ex. A.32).

A.6.3 Outer products

Definition A.20. Outer products |a〉〈b| are understood as operators acting as fol-
lows:

(|a〉〈b|) |c〉 ≡ |a〉(〈b| c〉) = (〈b| c〉) |a〉 . (A.22)

(The second equality comes from the fact that 〈b| c〉 is a number and commutes with
everything.)

Exercise A.43. Show that |a〉〈b| as defined above is a linear operator.

Exercise A.44. Show that (〈a| b〉)(〈c| d〉) = 〈a|(|b〉〈c|) |d〉.

Exercise A.45. Show that the matrix of the operator |a〉〈b| is given by

|a〉〈b| '

 a1
...

aN

(b∗1 . . . b∗N
)
=

 a1b∗1 . . . a1b∗N
...

...
aNb∗1 . . . aNb∗N

 . (A.23)

This result explains the intuition behind the notion of the outer product. As dis-
cussed in the previous section, a ket-vector corresponds to a column and a bra-vector
to a row. According to the rules of matrix multiplication, the product of the two is
a square matrix, and the outer product is simply the operator corresponding to this
matrix.

Exercise A.46. Let Ai j be the matrix of the operator Â in an orthonormal basis
{|vi〉}. Show that

Â = ∑
i, j

Ai j |vi〉
〈
v j
∣∣ . (A.24)
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Exercise A.47. Let Â be an operator and {|vi〉} an orthonormal basis in the Hilbert
space. It is known that Â |v1〉 = |w1〉 , . . . , Â |vN〉 = |wN〉, where |w1〉 , . . . , |wN〉 are
some vectors (not necessarily orthonormal). Show that

Â = ∑
i
|wi〉〈vi| . (A.25)

These exercises reveal the significance of outer products. First, they provide a
way to convert the operator matrix into the Dirac notation as per Eq. (A.24). This

operator from the Dirac form into the matrix notation. Second, Eq. (A.25) allows us
to construct the expression for an operator based on our knowledge of how it maps
elements of an arbitrary orthonormal basis. We find it to be of great practical utility
when we try to associate an operator with a physical process.

Below are two practice exercises using these results, followed by one very im-
portant additional application of the outer product.

Exercise A.48. The matrix of the operator Â in the basis {|v1〉 , |v2〉} is
(

1 −3i
3i 4

)
.

Express this operator in the Dirac notation.

Exercise A.49. Let {|v1〉 , |v2〉} be an orthonormal basis in a two-dimensional Hil-
bert space. Suppose the operator Â maps |u1〉 = (|v1〉+ |v2〉)/

√
2 onto |w1〉 =√

2 |v1〉 and |u2〉 = (|v1〉− |v2〉)/
√

2 onto |w2〉 =
√

2(|v1〉+ 3i |v2〉). Find the ma-
trix of Â in the basis {|v1〉 , |v2〉}.
Hint: Notice that {|u1〉 , |u2〉} is an orthonormal basis.

Exercise A.50. Show that for any orthonormal basis {|vi〉},

∑
i
|vi〉〈vi|= 1̂. (A.26)

This result is known as the resolution of the identity. It is useful for the following
application. Suppose the matrix of Â is known in some orthonormal basis {|vi〉} and
we wish to find its matrix in another orthonormal basis, {|wi〉}. This can be done as
follows:

(Âi j)w-basis =
〈
wi
∣∣ Â
∣∣ w j

〉
=
〈

wi

∣∣∣ 1̂Â1̂
∣∣∣ w j

〉
= 〈wi|

(
∑
k
|vk〉〈vk|

)
Â
(

∑
m
|vm〉〈vm|

)∣∣w j
〉

= ∑
k

∑
m
〈wi| vk〉

〈
vk
∣∣ Â
∣∣ vm

〉〈
vm
∣∣ w j

〉
. (A.27)

The central object in the last line is the matrix element of Â in the “old” basis {|vi〉}.
Because we know the inner products between each pair of elements in the old and

result complements Eq. (A.21), which serves the reverse purpose, converting the
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new bases, we can use the above expression to find each matrix element of Â in the
new basis. We shall use this trick throughout the course.

The calculation can be simplified if we interpret the last line of Eq. (A.27) as a
product of three matrices. An example to that effect is given in the solution to the
exercise below.

Exercise A.51. Find the matrix of the operator Â from Ex. A.48 in the basis
{|w1〉 , |w2〉} such that

|w1〉= (|v1〉+ i |v2〉)/
√

2, (A.28)

|w2〉= (|v1〉− i |v2〉)/
√

2.

a) using the Dirac notation, starting with the result of Ex. A.48 and then expressing
each bra and ket in the new basis;

b) according to Eq. (A.27).

Check that the results are the same.

A.7 Adjoint and self-adjoint operators

The action of an operator Â on a ket-vector |c〉 corresponds to multiplying the square
matrix of Â by the column associated with |c〉. The result of this operation is another
column, Â |c〉.

Let us by analogy consider an operation in which a row corresponding to a bra-
vector 〈b| is multiplied on the right by the square matrix of Â. The result of this
operation will be another row corresponding to a bra-vector. We can associate such
multiplication with the action of the operator Â on 〈b| from the right, denoted in the
Dirac notation as 〈b| Â. The formal definition of this operation is as follows:

〈b| Â≡∑
i j

b∗i Ai j
〈
v j
∣∣ , (A.29)

where Ai j and bi are, respectively, the matrix elements of Â and |b〉 in the orthonor-
mal basis {|vi〉}.

Exercise A.52. Derive the following properties of the operation defined by
Eq. (A.29):

a) Â acting from the right is a linear operator in the adjoint space;
b) 〈a| b〉〈c|= 〈a|(|b〉〈c|);
c) for vectors |a〉 and |c〉, (

〈a| Â
)
|c〉= 〈a|

(
Â |c〉

)
; (A.30)

d) the vector 〈a| Â as defined by Eq. (A.29) does not depend on the basis in which
the matrix (Ai j) is calculated.
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Let us now consider the following problem. Suppose we have an operator Â that
maps a ket-vector |a〉 onto ket-vector |b〉: Â |a〉= |b〉. What is the operator Â† which,
when acting from the right, maps bra-vector 〈a| onto bra-vector 〈b|: 〈a| Â† = 〈b|? It
turns out that this operator is not the same as Â, but is related relatively simply to it.

Definition A.21. An operator Â† (“A-dagger”) is called the adjoint (Hermitian con-
jugate) of Â if for any vector |a〉,

〈a| Â† = Adjoint
(
Â |a〉

)
. (A.31)

If Â = Â†, the operator is said to be Hermitian or self-adjoint.

Unlike bra- and ket-vectors, operators and their adjoints live in the same Hilbert
space. More precisely, they live in both the bra- and ket- spaces: they act on bra-
vectors from the right, and on ket-vectors from the left. Note that an operator cannot
act on a bra-vector from the left or on a ket-vector from the right.

Exercise A.53. Show that the matrix of Â† is related to the matrix of Â through
transposition and complex conjugation.

Exercise A.54. Show that, for any operator, (Â†)† = Â.

Exercise A.55. Show that the Pauli operators (1.7) are Hermitian.

Exercise A.56. By way of counterexample, show that two operators being Hermi-
tian does not guarantee that their product is also Hermitian.

Exercise A.57. Show that
(|c〉〈b|)† = |b〉〈c| . (A.32)

It may appear from this exercise that the adjoint of an operator is somehow re-
lated to its inverse: if the “direct” operator maps |b〉 onto |c〉, its adjoint does the
opposite. This is not always the case: as we know from the Definition A.20 of the
outer product, the operator |c〉〈b|, when acting from the left, maps everything (not
only |c〉) onto |b〉, while |c〉〈b| maps everything onto |c〉. However, there is an im-
portant class of operators, the so-called unitary operators, for which the inverse is
the same as the adjoint. We discuss these operators in detail in Sec. A.10.

Exercise A.58. Show that

a)
(Â+ B̂)† = Â† + B̂†; (A.33)

b)
(λ Â)† = λ

∗Â†; (A.34)

c)
(ÂB̂)† = B̂†Â†. (A.35)

We can say that every object in linear algebra has an adjoint. For a number, its
adjoint is its complex conjugate; for a ket-vector it is a bra-vector (and vice versa);
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for an operator it is the adjoint operator. The matrices of an object and its adjoint
are related by transposition and complex conjugation.

Suppose we are given a complex expression consisting of vectors and operators,
and are required to find its adjoint. Summarizing Eqs. (A.12), (A.32) and (A.35), we
arrive at the following algorithm:

a) invert the order of all products;
b) conjugate all numbers;
c) replace all kets by bras and vice versa;
d) replace all operators by their adjoints.

Here is an example.

Adjoint
(
λ ÂB̂ |a〉〈b|Ĉ

)
= λ

∗Ĉ† |b〉〈a| B̂†Â† (A.36)

This rule can be used to obtain the following relation.

Exercise A.59. Show that

〈φ | Â |ψ〉= 〈ψ| Â† |φ〉∗ . (A.37)

A.8 Spectral decomposition

We will now prove an important theorem for Hermitian operators. I will be assuming
you are familiar with the notions of determinant, eigenvalue, and eigenvector of a
matrix and the methods for finding them. If this is not the case, please refer to any
introductory linear algebra text.

Exercise A.60.∗ Prove the spectral theorem: for any Hermitian operator V̂ , there
exists an orthonormal basis {|vi〉} (which we shall call the eigenbasis) such that

V̂ = ∑
i

vi |vi〉〈vi| , (A.38)

with all the vi being real.

The representation of an operator in the form (A.38) is called the spectral decom-
position or diagonalization of the operator. The basis {|vi〉} is called an eigenbasis
of the operator.

Exercise A.61. Write the matrix of the operator (A.38) in its eigenbasis.

Exercise A.62. Show that the elements of the eigenbasis of V̂ are the eigenvectors
of V̂ and the corresponding values vi are its eigenvalues, i.e., for any i,

V̂ |vi〉= vi |vi〉 .
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Exercise A.63.∗§ Show that a spectral decomposition (not necessarily with real ei-
genvalues) exists for any operator V̂ such that V̂V̂ † = V̂ †V̂ (such operators are said
to be normal).

Exercise A.64. Find the eigenvalues and eigenbasis of the operator associated with
the rotation of the plane of two-dimensional geometric vectors through angle φ (see
Ex. A.41), but over the field of complex numbers.

Exercise A.65.§ In a three-dimensional Hilbert space, three operators have the fol-
lowing matrices in an orthonormal basis {|v1〉 , |v2〉 , |v3〉}:

a) L̂x '

 0 1 0
1 0 1
0 1 0

 ,

b) L̂y '

 0 −i 0
i 0 −i
0 i 0

 ;

c) L̂z '

1 0 0
0 0 0
0 0 −1

.

Show that these operators are Hermitian. Find their eigenvalues and eigenvectors.

So we have found that every Hermitian operator has a spectral decomposition.
But is the spectral decomposition of a given operator unique? The answer is af-
firmative as long as the operator has no degenerate eigenvalues, i.e., eigenvalues
associated with two or more eigenvectors.

Exercise A.66. The Hermitian operator V̂ diagonalizes in an orthonormal basis
{|vi〉}. Suppose there exists a vector |ψ〉 that is an eigenvector of V̂ with eigenva-
lue v, but is not proportional to any |vi〉. Show that this is possible only if v is a
degenerate eigenvalue of V̂ and |ψ〉 is a linear combination of elements of {|vi〉}
corresponding to that eigenvalue.

Exercise A.67. Show that, for a Hermitian operator V̂ whose eigenvalues are non-
degenerate,

a) the eigenbasis is unique up to phase factors;

The latter result is of primary importance, and we shall make abundant use of
it throughout this course. It generalizes to Hilbert spaces of infinite dimension and
even to those associated with continuous observables. Let us now look into the case
of operators with degenerate eigenvalues.

Exercise A.68. Find the eigenvalues of the identity operator in the qubit Hilbert
space and show that they are degenerate. Give two different examples of this opera-
tor’s eigenbasis.

b) any set that contains all linearly independent normalized eigenvectors of V̂ is
identical to the eigenbasis of V̂ up to phase factors.



A.9 Commutators 271

Exercise A.69. Show that eigenvectors of a Hermitian operator V̂ that are associated
with different eigenvalues are orthogonal. Do not assume non-degeneracy of the
eigenvalues.

Exercise A.70. Suppose an eigenvalue v of an operator V̂ is degenerate. Show that
a set of corresponding eigenvectors forms a linear subspace (see Defn. A.8).

Exercise A.71.∗

a) Show that if
〈
ψ
∣∣ Â
∣∣ ψ
〉
=
〈
ψ
∣∣ B̂
∣∣ ψ
〉

for all |ψ〉, then Â = B̂.
b) Show that if

〈
ψ
∣∣ Â
∣∣ ψ
〉

is a real number for all |ψ〉, then Â is Hermitian.

Definition A.22. A Hermitian operator Â is said to be positive (non-negative) if〈
ψ
∣∣ Â
∣∣ ψ
〉
> 0 (

〈
ψ
∣∣ Â
∣∣ ψ
〉
≥ 0) for any non-zero vector |ψ〉.

Exercise A.72. Show that a Hermitian operator Â is positive (non-negative) if and
only if all its eigenvalues are positive (non-negative).

Exercise A.73. Show that a sum Â+ B̂ of two positive (non-negative) operators is
positive (non-negative).

A.9 Commutators

As already discussed, not all operators commute. The degree of non-commutativity
turns out to play an important role in quantum mechanics and is quantified by the
operator known as the commutator.

Definition A.23. For any two operators Â and B̂, their commutator and anticommu-
tator are defined respectively by

[Â, B̂] = ÂB̂− B̂Â; (A.39a)
{Â, B̂} = ÂB̂+ B̂Â. (A.39b)

Exercise A.74. Show that:

a)

ÂB̂ =
1
2
([Â, B̂]+{Â, B̂}); (A.40)

b)
[Â, B̂] =−[B̂, Â]; (A.41)

c)
[Â, B̂]† = [B̂†, Â†]; (A.42)

d)
[Â, B̂+Ĉ] = [Â, B̂]+ [Â,Ĉ]; (A.43a)

[Â+ B̂,Ĉ] = [Â,Ĉ]+ [B̂,Ĉ]; (A.43b)
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e)
[Â, B̂Ĉ] = [Â, B̂]Ĉ+ B̂[Â,Ĉ]; (A.44a)

[ÂB̂,Ĉ] = [Â,Ĉ]B̂+ Â[B̂,Ĉ]; (A.44b)

f)

[ÂB̂,ĈD̂] = ĈÂ[B̂, D̂]+Ĉ[Â, D̂]B̂+ Â[B̂,Ĉ]D̂+[Â,Ĉ]B̂D̂ (A.45)

= ÂĈ[B̂, D̂]+Ĉ[Â, D̂]B̂+ Â[B̂,Ĉ]D̂+[Â,Ĉ]D̂B̂.

When calculating commutators for complex expressions, it is advisable to use
the relations derived in this exercise rather than the definition (A.39a) of the com-
mutator. There are many examples to this effect throughout this book.

Exercise A.75. Express the commutators

a) [ÂB̂Ĉ, D̂];
b) [Â2 + B̂2, Â+ iB̂]

in terms of the pairwise commutators of the individual operators Â, B̂,Ĉ, D̂.

Exercise A.76. For two operators Â and B̂, suppose that [Â, B̂] = ic1̂, where c is a
complex number. Show that

[Â, B̂n] = ncB̂n−1. (A.46)

Exercise A.77. Show that, if Â and B̂ are Hermitian, so are

a) i[Â, B̂];
b) {Â, B̂}.

Exercise A.78. Find the commutation relations of the Pauli operators (1.7).
Answer:

[σ̂m, σ̂ j] = 2iεm jkσk, (A.47)

where ε is the Levi-Civita symbol given by

εm jk ≡

+1 for m jk = xyz, yzx or zxy
−1 for m jk = xzy, yxz or zyx

0 otherwise.
(A.48)

A.10 Unitary operators

Definition A.24. Linear operators that map all vectors of norm 1 onto vectors of
norm 1 are said to be unitary.

Exercise A.79. Show that unitary operators preserve the norm of any vector, i.e., if
|a′〉= Û |a〉, then 〈a| a〉= 〈a′| a′〉.
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Exercise A.80. Show that an operator Û is unitary if and only if it preserves the
inner product of any two vectors, i.e., if |a′〉= Û |a〉 and |b′〉= Û |b〉, then 〈a| b〉=
〈a′| b′〉.

Exercise A.81. Show that:

a) a unitary operator maps any orthonormal basis {|wi〉} onto an orthonormal ba-
sis;

b) conversely, for any two orthonormal bases {|vi〉},{|wi〉}, the operator Û =

∑i |vi〉〈wi| is unitary (in other words, any operator that maps an orthonormal
basis onto an orthonormal basis is unitary).

Exercise A.82. Show that an operator Û is unitary if and only if Û†Û = ÛÛ† = 1̂
(i.e., its adjoint is equal to its inverse).

Exercise A.83. Show the following:

a) Any unitary operator can be diagonalized and all its eigenvalues have absolute
value 1, i.e., they can be written in the form eiθ , θ ∈ R.
Hint: use Ex. A.63.

b) A diagonalizable operator (i.e., an operator whose matrix becomes diagonal in
some basis) with eigenvalues of absolute value 1 is unitary.

Exercise A.84. Show that the following operators are unitary:

a) the Pauli operators (1.7);
b) rotation through angle φ in the linear space of two-dimensional geometric vec-

tors over R.

operators

unitaryHermitian Pauli ops,

etc.

�,1

Fig. A.1 Relations among types of operators

The families of Hermitian and unitary operators overlap, but they are not identical
(Fig. A.1). An operator that is both Hermitian and unitary must be self-inverse, as
per Ex. A.82. Such operators are relatively rare.
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A.11 Functions of operators

The concept of function of an operator has many applications in linear algebra and
differential equations. It is also handy in quantum mechanics, as operator functions
permit easy calculation of evolution operators.

Definition A.25. Consider a complex function f (x) defined on C. The function of
operator f (Â) of a diagonalizable operator Â is the following operator:

f (Â) = ∑
i

f (ai) |ai〉〈ai| , (A.49)

where {|ai〉} is an orthonormal basis in which Â diagonalizes:

Â = ∑
i

ai |ai〉〈ai| . (A.50)

Exercise A.85. Show that, if the vector |a〉 is an eigenvector of a Hermitian operator
Â with eigenvalue a, then f (Â) |a〉= f (a) |a〉.
Exercise A.86. Suppose that the operator Â is Hermitian and the function f (x),
when applied to a real argument x, takes a real value. Show that f (Â) is a Hermitian
operator, too.

Exercise A.88. Find the matrices of
√

Â and ln Â in the orthonormal basis in which

Â'
(

1 3
3 1

)

Exercise A.89. Find the matrix of eiθ Â, where Â = 1
2

(
1 1
1 1

)
.

Hint: One of the eigenvalues of Â is 0, which means that the corresponding ei-
genvector does not appear in the spectral decomposition (A.50) of Â. However, the
exponential of the corresponding eigenvalue is not zero, and the corresponding ei-
genvectors do show up in the operator function (A.49).

Exercise A.90. Show that, for any operator Â and function f , [Â, f (Â)] = 0.

Exercise A.91. Suppose f (x) has a Taylor decomposition f (x) = f0 + f1x+ f2x2 +
. . .. Show that f (Â) = f01̂+ f1Â+ f2Â2 + . . .

Exercise A.92. Show that, if the operator Â is Hermitian, the operator eiÂ is unitary

and eiÂ =
(

e−iÂ
)−1

.

Exercise A.93.∗ Let ~s = (sx,sy,sz) be a unit vector (i.e. a vector of length 1). Show
that:

Exercise A.87. Suppose that the operator Â is Hermitian and function f (x), when
applied to any real argument x, takes a real non-negative value. Show that f (Â) is a
non-negative operator (see Defn. A.22).
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eiθ~s·~̂σ = cos θ 1̂+ i sin θ~s · ~̂σ , (A.51)

where ~̂σ = (σ̂x, σ̂y, σ̂z),~s · ~̂σ = sxσ̂x + syσ̂y + szσ̂z.
Hint: There is no need find the explicit solutions for the eigenvectors of the operator
~s · ~̂σ .

Exercise A.94.§ Find the matrices of the operators eiθσ̂x , eiθσ̂y , eiθσ̂z in the canonical
basis.
Answer:

eiθσ̂x =

(
cosθ i sinθ

i sinθ cosθ

)
;

eiθσ̂y =

(
cosθ sinθ

−sinθ cosθ

)
;

eiθσ̂z =

(
eiθ 0
0 e−iθ

)
.

Definition A.26. Suppose the vector |ψ(t)〉 depends on a certain parameter t. The
derivative of |ψ(t)〉 with respect to t is defined as the vector

d |ψ〉
dt

= lim
∆ t→0

|ψ(t +∆ t)〉− |ψ(t)〉
∆ t

. (A.52)

Similarly, the derivative of the operator Ŷ (t) with respect to t is the operator

dŶ
dt

= lim
∆ t→0

Ŷ (t +∆ t)− Ŷ (t)
∆ t

. (A.53)

Exercise A.95. Suppose that the matrix form of the vector |ψ(t)〉 is

|ψ(t)〉=

 ψ1(t)
...

ψN(t)


in some basis. Show that

d |ψ〉
dt

=

 dψ1(t)/dt
...

dψN(t)/dt

 .

Write an expression for the matrix form of an operator derivative.

Exercise A.96. Suppose the operator Â is diagonalizable in an orthonormal basis
and independent of t, where t is a real parameter. Show that d

dt eiÂt = iÂeiÂt = ieiÂt Â.
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Exercise A.97.∗ For two operators Â and B̂, suppose that [Â, B̂] = ic1̂, where c is a
complex number. Prove the Baker-Hausdorff-Campbell formula

eÂ+B̂ = eÂeB̂e−ic/2 = eB̂eÂeic/2 (A.54)

using the following steps.

a) Show that
[Â,eB̂] = ceB̂. (A.55)

Hint: use the Taylor series expansion for the exponential and Eq. (A.46).
b) For an arbitrary number λ and operator Ĝ(λ ) = eλ Âeλ B̂, show that

dĜ(λ )

dλ
= Ĝ(λ )(Â+ B̂+λc) (A.56)

c) Solve the differential equation (A.56) to show that

Ĝ(λ ) = eλ Â+λ B̂+λ 2c/2. (A.57)

d) Prove the Baker-Hausdorff-Campbell formula using Eq. (A.57).

This is a simplified form of the Baker-Hausdorff-Campbell formula. The full form of this formula
is more complicated and holds for the case when [Â, B̂] does not commute with Â or B̂.

8

8



Appendix B
Probabilities and distributions

B.1 Expectation value and variance

Definition B.1. Suppose a (not necessarily quantum) experiment to measure a quan-
tity Q can yield any one of N possible outcomes {Qi} (1≤ i≤ N)}, with respective
probabilities pri. Then Q is called a random variable and the set of values {pri} for
all values of i is called the probability distribution. The expectation (mean) value of
Q is

〈Q〉=
N

∑
i=1

priQi. (B.1)

Exercise B.1. Find the expectation of the value displayed on the top face of a fair
die.

Fig. B.1 Mean and rms standard deviation of a random variable.

Definition B.2. The mean square variance of random variable Q is
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∆Q2〉= 〈(Q−〈Q〉)2

〉
= ∑

i
pri (Qi−〈Q〉)2 . (B.2)

The root mean square (rms) standard deviation, or uncertainty of Q is then√
〈∆Q2〉.

While the expectation value, 〈Q〉=
N
∑

i=1
priQi, shows the mean measurement out-

put, the statistical uncertainty shows by how much, on average, a particular measu-
rement result will deviate from the mean (Fig. B.1).

Exercise B.2. Show that, for any random variable Q,〈
∆Q2〉= 〈Q2〉−〈Q〉2 . (B.3)

Exercise B.3. Calculate the mean square variance of the value displayed on the top
face of a fair die. Show by direct calculation that Eqs. (B.2) and (B.3) yield the
same.

Exercise B.4. Two random variables Q and R are independent, i.e., the realization
of one does not affect the probability distribution of the other (for example, a die and
a coin being tossed next to each other). Show that 〈QR〉= 〈Q〉〈R〉. Is this statement
valid if Q and R are not independent?
Hint: Independence means that events Qi and R j occur at the same time with pro-
bability prQ

i prR
j for each pair (i, j), where prQ

i is the probability of the i th value of
variable Q and prR

j is the probability of the j th value of R.

Exercise B.5. Suppose a random variable Q is measured (for example, a die is
thrown) N times. Consider the random variable Q̃ that is the sum of the N outcomes.
Show that the expectation and variance of Q̃ equal〈

Q̃
〉
= N 〈Q〉

and 〈
∆ Q̃2〉= N

〈
∆Q2〉 ,

respectively.

B.2 Conditional probabilities

The conditional probability prA|B is the probability of some event A given that anot-
her event, B, is known to have occurred. Examples are:

• the probability that the value on a die is odd given that it is greater than 3;
• the probability that Alice’s HIV test result will be positive given that she is actu-

ally not infected;
• the probability that Bob plays basketball given that he is a man and 185 cm tall;
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• the probability that it will rain tomorrow given that it has rained today.

Let us calculate the conditional probability using the third example. Event A is
“Bob plays basketball”. Event B is “Bob is a 185-cm tall man”. The conditional pro-
bability is equal to the number N(A and B) of 185-cm tall men who play basketball
divided by the number N(B) of 185-cm tall men [Fig. B.2(a)]:

prA|B =
N(A and B)

N(B)
. (B.4)

Let us divide both the numerator and the denominator of the above fraction by N,
the total number of people in town. Then we have in the numerator N(A and B)/N =
prA and B — the probability that a randomly chosen person is a 185-cm tall man who
plays basketball, and in the denominator, N(B)/N = prB — the probability that a
random person is a 185-cm tall man. Hence

prA|B =
prA and B

prB
. (B.5)

This is a general formula for calculating conditional probabilities.

Exercise B.6. Suppose events B1, . . . ,Bn are mutually exclusive and collectively
exhaustive, i.e., one of them must occur, but no two occur at the same time
[Fig. B.2(b)]. Show that, for any other event A,

prA =
n

∑
i=1

prA|Bi
prBi

. (B.6)

This result is known as the theorem of total probability.

Fig. B.2 Conditional probabilities. a) Relation between the conditional and combined probabili-
ties, Eq. (B.5). b) Theorem of total probability (Ex. B.6).

Exercise B.7. The probability that a certain HIV test gives a false positive result is

prpositive|not infected = 0.05.

The probability of a false negative result is zero. It is known that, of all people taking
the test, the probability of actually being infected is prinfected = 0.001.

a) b)

A

B

A B
A

BB B

 and 

21 3
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a) What is the probability prpositive and not infected that a random person taking the
test is not infected and shows a false positive result?

b) What is the probability prpositive that a random person taking the test shows a
positive result?

c) A random person, Alice, has been selected and the test has been performed on
her. Her result turned out to be positive. What is the probability that she is not
infected?

Hint: To visualize this problem, imagine a city of one million. How many of them
are infected? How many are not? How many positive test results will there be all
together?

B.3 Binomial and Poisson distributions

Exercise B.8. A coin is tossed n times. Find the probability that heads will appear
k times, and tails n− k times:

a) for a fair coin, i.e., the probability of getting heads or tails in a single toss is
1/2;

b) for a biased coin, with the probabilities for the heads and tails being p and 1− p,
respectively.
Answer:

prk =

(
n
k

)
pk(1− p)n−k. (B.7)

The probability distribution defined by Eq. (B.7) is called the binomial distribu-
tion. We encounter this distribution in everyday life, often without realizing it. Here
are a few examples.

Exercise B.9.§

a) On a given day in a certain city 20 babies were born. What is the probability
that exactly nine of them are girls?

b) A student answers 3/4 of questions on average. What is the probability that
(s)he scores perfectly on a 10-question test?

c) A certain politician has 60% electoral support. What is the probability that (s)he
receives more than 50% of the votes in a district with 100 voters?

Exercise B.10. Find the expectation value and the uncertainty of the binomial dis-
tribution (B.7).
Answer:

〈k〉= np;
〈
∆k2〉= np(1− p). (B.8)

Exercise B.11. In a certain big city, 10 babies are born per day on average. What is
the probability that on a given day, exactly 12 babies are born?

a) The city population is 100000.
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b) The city population is 1000000.

Hint: Perhaps there is a way to avoid calculating 1000000!.

We see from the above exercise that in the limit p→ 0 and n→∞, but λ = pn =
const, the probabilities in the binomial distribution become dependent on λ , rather
than p and n individually. This important extension of the binomial distribution is
known as the Poisson (Poissonian) distribution.

Exercise B.12. Show that in the limit p→ 0 and n→ ∞, but λ = pn = const, the
binomial distribution (B.7) becomes

prk = e−λ λ k

k!
(B.9)

using the following steps.

a) Show that lim
n→∞

1
nk

(
n
k

)
= 1

k! .

b) Show that lim
n→∞

(1− p)n−k = e−λ .
c) Obtain Eq. (B.9).

Exercise B.13. Find the answer to Ex. B.11 in the limit of an infinitely large city.

Here are some more examples of the Poisson distribution.

Exercise B.14.§

a) A patrol policeman posted on a highway late at night has discovered that, on
average, 60 cars pass every hour. What is the probability that, within a given
minute, exactly one car will pass that policeman?

b) A cosmic ray detector registers 500 events per second on average. What is the
probability that this number equals exactly 500 within a given second?

c) The average number of lions seen on a one-day safari is 3. What is the probabi-
lity that, if you go on that safari, you will not see a single lion?

Exercise B.15. Show that both the mean and variance of the Poisson distribution
(B.9) equal λ .

For example, in a certain city, 25 babies are born per day on average, so λ = 25.
The root mean square uncertainty in this number

√
λ = 5, i.e., on a typical day we

are much more likely to see 20 or 30 babies rather than 10 or 40 (Fig. B.3).
Although the absolute uncertainty of n increases with 〈n〉, the relative uncertainty√

λ/λ decreases. In our example above, the relative uncertainty is 5/25 = 20%. But
in a smaller city, where 〈n〉= 4, the relative uncertainty is as high as 2/4 = 50%.

B.4 Probability densities

So far, we have studied random variables that can take values from a discrete set,
with the probability of each value being finite. But what if we are dealing with
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Fig. B.3 the Poisson distribution with 〈n〉= 4 (empty circles) and 〈n〉= 25 (filled circles).

a continuous random variable — for example, the wind speed, the decay time of a
radioactive atom, or the range of a projectile? In this case, there is now way to assign
a finite probability value to each specific value of Q. The probability that the atom
decays after precisely two milliseconds, or the wind speed is precisely five meters
per second, is infinitely small.

However, the probability of detecting Q within some range — for example, that
the atom decays between times 2 ms and 2.01 ms — is finite. We can therefore
discretize the continuous variable: divide the range of values that Q can take into
equal bins of width δQ. Then we define a discrete random variable Q̃ with possible
values Q̃i equal to the central point of each bin, and the associated finite probability
prQ̃i

that Q falls within that bin [Fig. B.4(a,b)]. As for any probability distribution,
∑i prQ̃i

= 1. Of course, the narrower the bin width we choose, the more precisely we
describe the behavior of the continuous random variable.

The probability values associated with neighboring bins can be expected to be
close to each other if the bin width is chosen sufficiently small. For atomic decay,
for example, we can write pr[2.00 ms,2.01 ms]≈ pr[2.01 ms,2.02 ms]≈ 1

2 pr[2.00 ms,2.02 ms]. In
other words, for small bin widths, the quantity prQ̃i

/δQ is independent of δQ. Hence
we can introduce the notion of the probability density or continuous probability
distribution1:

pr(Q) = lim
δQ→0

prQ̃i(Q)

δQ
, (B.10)

where i(Q) is the number of the bin within which the value of Q is located and the li-
mit is taken over a set of discretized probability distributions for Q. This probability
density is the primary characteristic of a continuous random variable.

Note also that, because the discrete probability prQ̃i(Q) is a dimensionless quan-
tity, the dimension of a continuous probability density pr(Q) is always the reciprocal
dimension of the corresponding random variable Q.

1 Throughout this book, I use subscripts for discrete probabilities, such as in pri or prQ̃i
, and

parentheses for continuous probability densities, e.g., pr(Q).
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Fig. B.4 Continuous probability distribution. a), b) Discretization of the continuous random vari-
able with bin widths δQ = 0.5 and 0.1, respectively. c) Continuous probability density. The proba-
bility of observing the variable in a range between Q′ and Q′′ is

∫ Q′′

Q′ pr(Q)dQ. Note the variation
of the vertical scales in the three plots.

Exercise B.16. For a continuous random variable with probability density pr(Q),
show that:

a) the probability of observin the variable in the range between Q′ and Q′′ is

pr[Q′,Q′′] =
Q′′∫

Q′

pr(Q)dQ; (B.11)

b) the probability density function is normalized:

+∞∫
−∞

pr(Q)dQ = 1; (B.12)

c) the expectation value of Q is given by

〈Q〉=
+∞∫
−∞

Qpr(Q)dQ; (B.13)

d)§ the variance of Q is given by

〈
∆Q2〉= +∞∫

−∞

(Q−〈Q〉)2pr(Q)dQ =
〈
Q2〉−〈Q〉2 . (B.14)

Exercise B.17. Find the probability density, expectation and root mean square un-
certainty for the decay time t of a radioactive nucleus with half-life τ = 1 ms.

A probability density that frequently occurs in nature is the Gaussian, or normal
distribution:
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Gb(x) =
1

b
√

π
e−x2/b2

, (B.15)

where b is the width of the Gaussian distribution (Fig. B.5). Typically, the Gaussian
distribution governs physical quantities that are affected by multiple small random
effects that add up2. Examples include:

• the position of a particle subjected to Brownian motion;
• the time shown by a clock affected by random fluctuations of the temperature in

the room;
• the component of the velocity of a gas molecule along a particular axis.

Fig. B.5 Normalized Gaussian functions of different widths.

Exercise B.18. For a Gaussian distribution Gb(x−a), show the following:

a) Normalization holds, i.e.,
+∞∫
−∞

Gb(x)dx = 1. (B.16)

Note that Eq. (B.17) also holds for complex b, as long as Re(b)> 0.
b) The mean equals 〈x〉= a.
c) The variance is

〈
∆x2

〉
= b2/2.

Hint: use

2 The rigorous formulation of this statement is called the central limit theorem.

1

2





b 1 2

          x
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+∞∫
−∞

e−x2/b2
dx = b

√
π; (B.17)

+∞∫
−∞

x2e−x2/b2
dx =

b3√π

2
. (B.18)



Appendix C
Optical polarization tutorial

C.1 Polarization of light

Consider a classical electromagnetic plane wave propagating along the (horizontal)
z-axis with angular frequency ω and wavenumber k = ω/c, where c is the speed of
light. The electromagnetic wave is transverse, so its electric field vector lies in the
x-y plane:

~E(z, t) = AH îcos(kz−ωt +ϕH)+AV ĵ cos(kz−ωt +ϕV ), (C.1)

or in the complex form

~E(z, t) = Re[(AHeiϕH î+AV eiϕV ĵ)eikz−iωt ]. (C.2)

Here î and ĵ are unit vectors along the x and y axes, respectively; AH and AV are the
real amplitudes of the x and y components (which we will refer to as horizontal and
vertical), and ϕH and ϕV are their phases.

Exercise C.1.§ Show that Eqs. (C.1) and (C.2) are equivalent.

The intensity of light in each polarization is proportional to:

IH ∝ A2
H ; (C.3a)

IV ∝ A2
V . (C.3b)

The total intensity of the wave is the sum of its two components: Itotal ∝ A2
H +A2

V .
Let us study the behavior of the electric field vector at some specific point in

space, say z= 0. If the two components of the field have different phases, ~E(z, t) will
change its direction as a function of time, as illustrated in Fig. C.1. To understand
this interesting phenomenon better, try the following exercise.

Exercise C.2. Plot, as a function of time, the horizontal and vertical components of
~E(0, t) for 0≤ ωt ≤ 2π , in the following cases:

a) AH = 1 V/m, AV = 0, ϕH = ϕV = 0;

A. I. Lvovsky, Quantum Physics, Undergraduate Lecture Notes in
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Fig. C.1 Polarization pattern of a plane wave. When the vertical and horizontal components of
the electric field vector oscillate with different phases, the direction of that vector (shown with
thick arrows) does not remain constant in phase and time. The trajectory of the tip of that vector
determines the polarization pattern.

b) AH = 5 V/m, AV =−3 V/m, ϕH = ϕV = 0;
c) AH = 5 V/m, AV =−3 V/m, ϕH = π/2, ϕV = 0;
d) AH = 5 V/m, AV =−3 V/m, ϕH = π/4, ϕV =−π/4;
e) AH = 5 V/m, AV =−3 V/m, ϕH = 0, ϕV = π/6.

For each of the above cases, plot the trajectory of the point (Ex,Ey) for a constant z
as a function of time.

The field vector trajectory defines the so-called polarization state (pattern) of
light. The polarization state is one of the primary parameters of an electromagne-
tic wave; it determines how this field interferes with other waves or interacts with
matter. Importantly, the polarization pattern is conserved as the wave is propagating
through space and time, with the exception of certain materials which we will study
a bit later.

Exercise C.3. Show that the polarization pattern of a plane wave is the same for all
values of z.

This can be restated more generally: adding an arbitrary shift to both phases ϕH
and ϕV will not change the polarization pattern. One can say that the pattern depends
not on the individual phases of its two components, but on their difference ϕH −ϕV
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[see Ex. C.2(c,d) for an example]. This property of classical polarization patterns
has a direct counterpart in the quantum world: applying an overall phase shift to
a quantum state does not change its physical properties (see Sec. 1.3 for a more
detailed discussion).

In general, the polarization pattern is elliptical; however, as we have seen above,
there exist special cases when the ellipse collapses into a straight line or blows out
into a circle. Let us look at these cases more carefully.

Exercise C.4. Show the following:

a) The polarization pattern is linear if and only if ϕH = ϕV +mπ , where m is an
integer, or AH = 0 or AV = 0. The angle θ of the field vector with respect to the
x axis is given by tanθ = AV/AH .

b) The polarization pattern is circular if and only if ϕH = ϕV
π

2 +mπ , where m is
an integer, and AH =±AV .

Important specific cases of linear polarization are horizontal (AV = 0), vertical
(AH = 0), and±45◦ (AV =±AH ). For circular polarization, one can distinguish two
cases according to the helicity of the wave: right and left circular.

• For right circular polarization, AV = AH and ϕV = ϕH + π

2 +2πm or AV =−AH
and ϕV = ϕH − π

2 +2πm, where m is an integer.
• For left circular polarization, AV = AH and ϕV = ϕH − π

2 + 2πm or AV = −AH

and ϕV = ϕH + π

2 +2πm, where m is an integer1.

Exercise C.5.∗ Show that, when none of the conditions of Ex. C.4 are satisfied, the
tip of the electric field vector follows an elliptical pattern.

C.2 Polarizing beam splitter

The polarizing beam splitter (PBS) (Fig. C.2) is an important optical device for
analyzing polarization. It is a transparent cube consisting of two triangular prisms
glued to each other, constructed to transmit horizontally polarized light, but reflect
vertically polarized. If a classical wave (C.2) is incident on such a beam splitter, the
intensities of the transmitted and reflected light will be proportional to A2

H and A2
V ,

respectively.

1 Defining what circular polarization pattern should be called “left” or “right” is a matter of con-
vention. Here we follow the convention that is common in the quantum optics community. In the
right-circular pattern, the trajectory of the electric field vector is clockwise when viewed from
the “back” of the wave (from the source). However, it is counterclockwise when viewed from the
“front”, or in the x-y plane with the traditional axis orientation. In space, this trajectory has the
shape of a left-handed screw.
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Fig. C.2 Polarizing beam splitter.

C.3 Waveplates

It is sometimes necessary to change the polarization state of light without splitting
the vertical and horizontal components spatially. This is normally achieved using
an optical instrument called a waveplate. The waveplate relies on birefringence,
or double refraction — an optical property displayed by certain materials, prima-
rily crystals, for example quartz or calcite. Birefringent crystals have an anisotropic
structure, such that a light wave propagating through them will not conserve its pola-
rization pattern unless it is linearly polarized along one of the two directions: either
along or perpendicular to the crystal’s optic axis. Traditionally, these directions are
referred to as extraordinary and ordinary, respectively.

A birefringent material exhibits different indices of refraction for these two pola-
rizations. Therefore, after propagation through the crystal, the ordinary and extraor-
dinary waves will acquire different phases: ∆ϕe and ∆ϕo, respectively. Because an
overall phase shift has no effect on the polarization pattern, the quantity of interest
is the difference δϕ = ∆ϕe−∆ϕo.

Exercise C.6. The indices of refraction for light polarized along and perpendicular
to the optic axis are ne and no, respectively, the length of the crystal is L, and the
wavelength in vacuum is λ . Find δϕ .

A waveplate is a birefringent crystal of a certain length, so ∆ϕ is precisely
known. Two kinds of waveplates are manufactured commercially: λ/2-plate (half-
wave plate) with δϕ = π and λ/4-plate (quarter-wave plate) with δϕ = π/2.

If the polarization pattern is not strictly ordinary or extraordinary, propagation
through a birefringent crystal will transform it. In order to determine this transfor-
mation, we decompose the wave into the extraordinary and ordinary components.
The phase shift of each component is known. Knowing the new phases of both com-
ponents, we can combine them to find the new polarization pattern.

Exercise C.7. For each of the polarization states of Ex. C.2, plot the polarization
patterns that the waves will acquire when they propagate through (a) a half-wave
plate, (b) a quarter-wave plate with the optical axes oriented vertically.

Solving the above exercise, you may have noticed that the half-wave plate “flips”
the polarization pattern around the vertical (or horizontal) axis akin to a mirror.
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z

Fig. C.3 Action of a λ/2-plate with optic axis oriented vertically. Different refractive indices for
the ordinary and extraordinary polarizations result in different optical path lengths, thereby rotating
the polarization axis.

This is not surprising: the phase shift of π in the vertical component is equivalent
to multiplication of AV by −1. Of course, this mirroring property applies, not only
when the optic axis is oriented vertically, but for any orientation, making the half-
wave plate a universal tool for rotating the polarization of an electromagnetic field.
Specifically, a light wave that is linearly polarized at angle θ to the horizontal, after
propagating through a half-wave plate with its optic axis oriented at angle α to the
horizontal, will transform into a linearly polarized wave at angle 2α−θ (Fig. C.4).

Fig. C.4 Polarization rotation by a λ/2 plate.
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Exercise C.8.§ Show that a λ/2-plate with the optic axis oriented at 22.5◦ to the
horizontal interconverts between the horizontal and 45◦ polarizations, as well as
between the vertical and −45◦ polarizations.

However, rotations alone do not provide a full set of possible transformations. For
example, half-wave plates cannot transform between linear and circular/elliptical
patterns. To accomplish this, we would need a quarter-wave plate.

Exercise C.9. Show that a λ/4-plate with the optic axis oriented horizontally or
vertically interconverts between the circular and ±45◦ polarizations.

Exercise C.10. Linearly polarized light at angle θ to the horizontal propagates
through a λ/4-plate with the optic axis oriented vertically. For the resulting ellipti-
cal pattern, find the angle between the major axis and the horizontal and the ratio of
the minor to major axes.

Exercise C.11.∗ Suppose you have a source of horizontally polarized light. Show
that, by using one half-wave plate and one quarter-wave plate, you can obtain light
with an arbitrary polarization pattern.
Hint: It is easier to tackle this problem using geometric arguments, particularly the
result of Ex. C.5, rather than formal algebra.

Exercise C.12.∗ Linearly polarized light propagates through a half-wave plate, then
through a quarter-wave plate at angle 45◦ to the horizontal, then through a polarizing
beam splitter. Show that the transmitted intensity does not depend on the angle of
the half-wave plate.



Appendix D
Dirac delta function and the Fourier
transformation

D.1 Dirac delta function

The delta function can be visualized as a Gaussian function (B.15) of infinitely
narrow width b (Fig. B.5):

Gb(x) =
1

b
√

π
e−x2/b2 → δ (x) for b→ 0. (D.1)

The delta function is used in mathematics and physics to describe density distri-
butions of infinitely small (singular) objects. For example, the position-dependent
density of a one-dimensional particle of mass m located at x = a, can be written as
mδ (x−a). Similarly, the probability density of a continuous “random variable” that
takes on a certain value x = a is δ (x−a). In quantum mechanics, we use δ (x), for
example, to write the wave function of a particle that has a well-defined position.

The notion of function in mathematics refers to a map that relates a number, x,
to another number, f (x). The delta function is hence not a function in the traditional
sense: it maps all x 6= 0 to zero, but x= 0 to infinity, which is not a number. It belongs
to the class of so-called generalized functions. A rigorous mathematical theory of
generalized functions can be found in most mathematical physics textbooks. Here,
we discuss only those properties of the delta function that are useful for physicists.

Exercise D.1. Show that, for any smooth1, bounded function f (x),

lim
b→0

+∞∫
−∞

Gb(x) f (x)dx = f (0). (D.2)

From Eqs. (D.1) and (D.2) and for any smooth function f (x), we obtain

1 A smooth function is one that has derivatives of all finite orders.

A. I. Lvovsky, Quantum Physics, Undergraduate Lecture Notes in
Physics, https://doi.org/10.1007/978-3-662-56584-1

293© Springer-Verlag GmbH Germany, part of Springer Nature 2018



294 A. I. Lvovsky. Quantum Physics

+∞∫
−∞

δ (x) f (x)dx = f (0) (D.3)

This property is extremely important because it allows one to perform meaning-
ful calculations with the delta function in spite of its singular nature. Although the
delta function does not have a numerical value for all values of its argument, the
integral of the delta function multiplied by another function does. We may write a
delta function outside of an integral, but we always keep in mind that it will eventu-
ally become a part of an integral, and only then will it produce a quantitative value
— for example, a prediction of an experimental result.

In fact, Eq. (D.3) can be viewed as a rigorous mathematical definition of the delta
function. Using this definition, we can obtain its other primary properties.

Exercise D.2. Show that

a)
+∞∫
−∞

δ (x)dx = 1; (D.4)

b) for any function f (x),

+∞∫
−∞

δ (x−a) f (x)dx = f (a); (D.5)

c) for any real number a,
δ (ax) = δ (x)/|a|. (D.6)

Exercise D.3. For the Heaviside step function

θ(x) =
{

0 if x < 0
1 if x≥ 0

, (D.7)

show that
d
dx

θ(x) = δ (x). (D.8)

Hint: use Eq. (D.3).

Exercise D.4. Show that, for any c < 0 and d > 0,

d∫
c

δ (x)dx = 1 (D.9)
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D.2 Fourier transformation

Definition D.1. The Fourier transform f̃ (k) ≡ F [ f ](k) of a function f (x) is a
function of the parameter k defined as follows:2

f̃ (k) =
1√
2π

+∞∫
−∞

e−ikx f (x)dx. (D.10)

This is an important integral transformation used in all branches of physics. Sup-
pose, for example, that you have a light wave of the form f (ω)e−iωt , where ω is the
frequency and f (ω) is the complex amplitude, or the frequency spectrum of the sig-

nal. Then the time-dependent signal from all sources is
+∞∫
−∞

f (ω)e−iωtdω — that is,

the Fourier transform of the spectrum. The power density of the spectrum, i.e., the
function | f (ω)|2, can be measured experimentally by means of a dispersive optical
element, such as a prism.

Exercise D.5. Show that, if f̃ (k) = F [ f (x)] exists, then

a)

f̃ (0) =
1√
2π

+∞∫
−∞

f (x)dx; (D.11)

b) for a real f (x), f̃ (−k) = f̃ ∗(k);
c) for a 6= 0,

F [ f (ax)] =
1
|a|

f̃ (k/a); (D.12)

d)
F [ f (x−a)] = e−ika f̃ (k); (D.13)

e)
F [eiξ x f (x)] = f̃ (k−ξ ); (D.14)

f) assuming that f (x) is a smooth function approaching zero at ±∞,

F [d f (x)/dx] = ik f̃ (k). (D.15)

Exercise D.6. Show that the Fourier transform of a Gaussian function is also a
Gaussian function:

F [e−x2/b2
] =

b√
2

e−k2b2/4. (D.16)

We see from Eq. (D.12) that scaling the argument x of a function results in in-
verse scaling of the argument k of its Fourier transform. In particular (Ex. D.6), a

2 There is no common convention as to whether to place the negative sign in the complex exponent
of Eqs. (D.10) or (D.21), nor how to distribute the factor of 1/2π between them. Here I have chosen
the convention arbitrarily.
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signal with a Gaussian spectrum of width b is a Gaussian pulse of width 2/b, so the
product of the two widths is a constant. This is a manifestation of the time-frequency
uncertainty that applies to a wide range of wave phenomena in classical physics. In
fact, as we see in Sec. 3.3.2, in its application to the position and momentum obser-
vables, the Heisenberg uncertainty principle can also be interpreted in this fashion.

Let us now consider two extreme cases of the Fourier transform of Gaussian
functions.

Exercise D.7. Show that:

a) in the limit b→ 0, Eq. (D.16) takes the form

F [δ (x)] =
1√
2π

; (D.17)

b) in the opposite limit, b→ ∞, one obtains

F [1] =
√

2π δ (k). (D.18)

If the spectrum contains only the zero frequency, the signal, not surprisingly,
is time-independent. If, on the other hand, the spectrum is constant, the signal is
an instant “flash” occurring at t = 0. Here is an interesting consequence of this
observation.

Exercise D.8. Show that, for a 6= 0,

+∞∫
−∞

eiakxdx = 2πδ (k)/|a|. (D.19)

This result is of paramount importance for many calculations involving the Fou-
rier transform. We will see its utility shortly.

Exercise D.9. Assuming a and b to be real and positive, find the Fourier transforms
of the following:

a) δ (x+a)+δ (x−a)
b) cos(ax+b);
c) e−ax2

cosbx;
d) e−a(x+b)2

+ e−a(x−b)2
;

e) θ(x)e−ax, where θ(x) is the Heaviside function;

f) a “top-hat function”
{

0 if x <−a or x > a;
A if −a≤ x≤ a; .

The Fourier transform can be inverted: for any given time-dependent pulse one
can calculate its frequency spectrum such that the pulse is the Fourier transform
of that spectrum. Remarkably, the Fourier transform is very similar to its inverse.
This similarity can be observed, for example, by comparing Eqs. (D.13) and (D.14).
Displacing the argument of f (x) leads to the multiplication of f̃ (k) by a complex
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Box D.1 Interpreting Eq. (D.8)

The result (D.8) seems to tell us that the integral
+∞∫
−∞

eikxdx equals zero for k 6= 0. This

does not reconcile with traditional calculus, according to which the integral of a finite oscil-
lating function eikx must diverge for any k. To address this apparent inconsistency, we need
to remember that Eq. (D.19) is valid only as a generalized function — that is, as a part of
the integral (D.3). Indeed, if we substitute Eq. (D.19) into Eq. (D.3), we obtain a convergent
integral

+∞∫
−∞

 +∞∫
−∞

eikxdx

 f (k)dk =
+∞∫
−∞

 +∞∫
−∞

eikx f (k)dk

dx =
√

2π

+∞∫
−∞

F [ f ](−k)dk
(D.11)
= 2π f (0).

(D.20)
Therefore, while the numerical value of the integral (D.19) for any specific k does not exist,
it is meaningfully defined as a generalized function of k.

phase. On the other hand, if we multiply f (x) by a complex phase, the argument of
f̃ (k) gets shifted.

Definition D.2. The inverse Fourier transform F−1[g](x) of the function g(k) is a
function of the parameter x such that

F−1[g](x) =
1√
2π

+∞∫
−∞

eikxg(k)dk. (D.21)

Exercise D.10. Show that

F−1[F [ f ]](x) = f (x). (D.22)

Exercise D.11. Show that

F−1[ f (x)](k) = F [ f (x)](−k) = F [ f (−x)](k). (D.23)

Exercise D.12.§ Derive the analogues of the rules found in Ex. D.5 for the inverse
Fourier transform.
Answer: Denoting ğ(x) = F−1[g(k)],

a)

ğ(0) =
1√
2π

+∞∫
−∞

g(k)dk; (D.24)

b) for a real g(k), ğ(x) = ğ∗(−x);
c)

F−1[g(ak)](x) =
1
|a|

ğ(k/a); (D.25)
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d)
F−1[g(k−a)](x) = eixağ(k); (D.26)

e)
F−1[eiξ kg(k)](x) = ğ(x+ξ ); (D.27)

f)
F−1[dg(k)/dk] =−ixğ(x). (D.28)
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Fabry-Pérot etalon, 129
faster-than-light communications, see

superluminal signalling
fermions, 136, 186
Feynman, Richard, 69
Fock states, 134
Fock, Vladimir Aleksandrovich, 71, 134
force, 145, 203
Fourier transform, 295

inverse, 297
free induction decay, 212
Fresnel, Augustin-Jean, 123
function of an operator, 274

Gaussian distribution, 283
Gaussian wavepacket, 159
Gedankenexperiment, 10
GHZ nonlocality, 63
Glauber, Roy, 139
God does not play dice, 10, 68
Gram-Schmidt procedure, 260
Greenberger–Horne–Zeilinger nonlocality, 63
ground state, 196
group velocity, 110
gyromagnetic ratio, 200, 201

harmonic oscillator, 129
Heisenberg picture, 144, 204, 226
Heisenberg’s equation, 144
Heisenberg, Werner, 31, 105, 144
heralded photon, 24, 138
hidden parameters, 58
Hilbert space, 259

Postulate, 3
radial and angular, 174
rigged, 94

Holevo bound, 48
Holevo, Alexander Semenovich, 48, 243
homodyne detector, 138, 160
homogeneous dephasing, 233
hydrogen atom

Bohr’s model, 191, 193
energy spectrum, 190
radial wavefunctions, 189

incompatible states, 3
inhomogeneous broadening, 213
inner product, 258

in tensor product space, 42
partial, 52

intensity, 287
interaction lifts degeneracy, 119
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