# Unit - 13 - Hydrogen

Position in periodic table Atomic number Atomic mass Oxidation state Period 1 +1(Most Stable) 1 1 Group : Middle of first -1 (Hydrides) period Serial Property Similarity with alkali metals No. Alkali Metals Hydrogen  $1s^1$ ns<sup>1</sup> 1. Electronic configuration 2. Oxidation state +1+13. Good Good **Reducing Agent** Stable Halide and 4. Reaction with halogens and oxygen Stable Halide and oxides oxides Differences with alkali metals 1312KJmol<sup>-1</sup>  $\Delta_i$ H of Li =520 Ionisation enthalpy 1. 2. Physical state Diatomic Gas Solid Bonding in halides Covalent Ionic 3. Serial Property Similarity with Halogens No. Hydrogen Halogens 1s<sup>1</sup>(Short of one ns<sup>2</sup>np<sup>5</sup> (Short of one 1. Electronic configuration electron for stable electron for stable noble noble gas gas configuration)

Abundance: Hydrogen is the third most abundant element on earth surface

|    |                      | configuration)             |                            |
|----|----------------------|----------------------------|----------------------------|
| 2. | Oxidation state      |                            | -1                         |
| 3. | Atomicity            | -1 (Hydrides)              | 2                          |
| 4. | $\Delta_{i}H$        | 2                          | $\Delta_{i}$ H of F = 1681 |
|    |                      | 1312KJmol <sup>-1</sup>    | (Decreases down the        |
| 5. | Reaction with metals |                            | group)                     |
|    |                      | Hydrogen eg. NaH           | Halides eg.NaCl            |
|    |                      |                            |                            |
|    |                      | Differences                | with Halogens              |
| 1. | Colour               | Colorless                  | Colored                    |
| 2. | Oxidising agent      | Poor                       | Strong                     |
| 3. | Nature of oxide      | Neutral (H <sub>2</sub> O) | Acidic $(Cl_2O_7)$         |

Therefore hydrogen is placed in middle of first period.

# Isotopes of hydrogen

| Sl:No: | Name                             | Atomic | Atomic | No: of  | No: of   | occurrence                  | Nuclear                                                                                          |
|--------|----------------------------------|--------|--------|---------|----------|-----------------------------|--------------------------------------------------------------------------------------------------|
|        | &symbol                          | number | mass   | protons | neutrons |                             | stability&t <sub>1/2</sub>                                                                       |
| 1      | Protium $_{1}^{1}$ H             | 1      | 1      | 1       | 0        | Highest<br>99.9850%         | Stable                                                                                           |
| 2      | Deuterium<br>or 1 <sup>2</sup> H | 1      | 2      | 1       | 1        | 0.015%                      | Stable                                                                                           |
| 3      | Tritium or<br><sup>13</sup> H    | 1      | 3      | 1       | 2        | T: 1 <sup>1</sup> H<br>1:10 | 12.33yrs<br>Radioactive<br>${}_{1}^{3}\text{H} > {}_{2}^{3}\text{He}$<br>$+ {}_{-1}^{0}\text{e}$ |

# **Physical properties**

Physical properties of isotopes are slightly higher than hydrogen because the mass of isotopes are higher.

Chemical properties: The chemical properties are similar because the electronic configuration is same. The rate of reactions differs.

Laboratory preparation of hydrogen :

 $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ 

Zn +NaOH  $\rightarrow$  Na<sub>2</sub>ZnO<sub>2</sub>+H<sub>2</sub> (Sodium zincate)

Manufacture of Hydrogen:

# **Industrial Preparation:**

Electrolysis:

| Electrolyte E | lectrodes |
|---------------|-----------|
|---------------|-----------|

- a) Acidified water Pt
- b) Aqueous Ba(OH)<sub>2</sub> Ni

Hydrogen is liberated at the cathode.



# Manufacture of Hydrogen

#### i nysicar properties.

- 1. Colourless, tasteless & odourless
- 2. It is diatomic gas, insoluble in water.
- 3. It is the lightest element & diamagnetic.

 $\Rightarrow$  Chemical properties of Dihydrogen:

$$\begin{array}{c} \xrightarrow{X_{2(g)}} 2HX_{(g)} (X=F,Cl,Br,I) \\ \xrightarrow{O_{2(g)}} H_2O_{(1)} \quad \Delta H = -285.9 \text{ KJ/mol} \\ \xrightarrow{N_{2(g)}673K} MI_{200 \text{ bar Fe}} NH_{3(g)} \quad \Delta H = -92.6 \text{ KJ/mol} \\ \xrightarrow{2M_{(S)}} 2MH_{(S)} \quad M = \text{Alkali metal} \\ \xrightarrow{Pd^{2+}(aq)} Pd_{(S)} + 2H^+(aq) \\ \xrightarrow{MxOy_{(S)}} XM_{(S)} + YH_2O_{(r)} \\ \xrightarrow{CH_2 = CH_2} NI,390K \rightarrow CH_3 - CH_3 \\ \xrightarrow{Ethane} \\ \xrightarrow{CH = CH} Raney N,390K \rightarrow CH_3 - CH_3 Ethane \\ \xrightarrow{CO_{(g)}573K} 50 \text{ bar, Cu_{2O}} CH_3OH_{(1)} \end{array}$$

Hydrogen forms hydrides of the type MH<sub>x</sub> & M<sub>m</sub>H<sub>n</sub> with most metals



| -   | 1         | _                      |            | 1       |                                         | 1            |
|-----|-----------|------------------------|------------|---------|-----------------------------------------|--------------|
| Sr. | Type of   | Type of                | Type of    | Proper  | ties                                    | Uses         |
| No. | hydride   | element                | bonds      |         |                                         |              |
| 1   | Saline    | s-Block                | Ionic      | I.      | Crystaline, non volatile                | LiH is used  |
|     |           | Group 1- MH            |            |         | and non conductance                     | in           |
|     |           | Group2-MH <sub>2</sub> |            |         | solid state                             | preparation  |
|     |           | -                      |            | II.     | In molten state it                      | of LiAlH4 &  |
|     |           |                        |            |         | conducts electricity.                   | LiBH₄ which  |
|     |           |                        |            |         | Hydrogen is liberated at                | are used as  |
|     |           |                        |            |         | anode                                   | in versatile |
|     |           |                        |            | III.    | BeH <sub>2</sub> & MgH <sub>2</sub> are | reducing     |
|     |           |                        |            |         | polymeric                               | agent s in   |
|     |           |                        |            | IV.     | $MH + H_2O \rightarrow MOH +$           | organic      |
|     |           |                        |            |         | $H_2 + Heat$                            | chemistry    |
|     |           |                        |            |         | 112 · 110 ut                            | ••••••       |
| 2   | Metallic  | d-Block or p-          |            | Non st  | oicheometric because H <sub>2</sub>     | Catalysts    |
| -   |           | Block                  |            | is abso | orbed in the interstitial               | e ului yete  |
|     |           | elements               |            | spaces  |                                         |              |
|     |           |                        |            | spaces  |                                         |              |
| 3   | Molecular | Metals non-            | Covalent   | L       | Exists as gas or liquid                 |              |
|     | 11101000  | metals of p-           | e e varent | П       | Stable                                  |              |
|     |           | Block eg CH.           |            |         | Subie                                   |              |
|     |           | DH, ShH,               |            |         |                                         |              |
|     |           | 1113, 50113            |            |         |                                         |              |
|     |           |                        |            |         |                                         |              |
|     |           |                        |            |         |                                         |              |

Water: Most important compound for living beings

### i) Structure:

Type of hybridisation  $-sp^3$ Bond angle = 104.5 Bond Length = 95.7pm Bond angle is less then  $109^{\circ}28^{\circ}$ Because of presence of two lone pairs of electron



# ii) Ice:

3-d structure due to H-bond format Ice is lighter than water Reason: Due to H-bond the volume increases for the same mass of water.

# Physical properties :

- a Colourless, tasteless, odourless
- b Melting point= 273K Boiling point = 373K
- c Density at 298K = 1.00g/cm<sup>-3</sup>
- d Polar
- e Special Property: anomalous explosion between 273K & 277K

# Chemical properties of $H_2O$



# Hardness of water



#### Temporary

Due to presence of bicarbonates salts of calcium & magnesium

#### Methods of removal

- ➢ Boiling M(HCO<sub>3</sub>)<sub>2</sub>→MCO<sub>3</sub>+CO<sub>2</sub>
- ➤ Clarks method Addition of lime M(HCO<sub>3</sub>)<sub>2</sub> +Ca(OH)<sub>2</sub>→CaCO<sub>3</sub> +H<sub>2</sub>O M= Ca<sup>2+</sup> or Mg<sup>2+</sup>

#### Permanent

Due to presence of soluble salts of Soluble chlorides & sulphates of Ca & Mg

#### Methods of removal

- 1. Chemical methods :
  - (a) Addition of washing soda  $MCl_2 + Na_2CO_3 \rightarrow MCO_3 + 2NaCl$  $M = Ca^{2+}/Mg^{+2}$
  - <sup>(b)</sup> Ca<sup>2+</sup>&Mg<sup>2+</sup> ions are made ineffective by addition of calgon Sodium hexa Meta phosphate  $Na_6P_6O_{18} \rightarrow 2Na^+ + Na_4P_6O_{18}^{2-}$  $M^{2+} + Na_4P_6O_{18}^{2-} \rightarrow 2Na^+ +$  $[Na2MP_6O_{18}^{2-}]$
  - (c) Ion exchange method :
    Zeolite is used .Zeolite is sodium aluminosilicate

 $(Na_2AlSi_4O_{12})$ . The shape is like honey comb. In the voids sodium ions are replaced calcium& magnesium ions.  $2NaZ + Ca \rightarrow Ca^{2+}(Z)_2 + 2Na^+$ 

2. Synthetic Resin method :

Cation or Anion exchange resin is used.  $2RNa + M^{2+} \rightarrow R_2M + 2Na^+$ 

#### HYDROGEN PEROXIDE:

#### Structure of Hydrogen Peroxide :



### Preparation and properties of Hydrogen peroxide :

It was first prepared by J.L. Thenard



# **Heavy Water**

# Dicovery

- 1. Urey  $\rightarrow$  Discovery of heavy water
- 2. Lewis & Donald  $\rightarrow$  Prepared few cm<sup>3</sup> of D<sub>2</sub>O
- 3. Taylor, ryeing & Frost  $\rightarrow$  Electrolytic procedure

# **Physical properties:**

Almost all physical properties like Melting Point & Boiling point, Density is higher than  $H_2O$  because mass of Deuterium is greater than hydrogen. It is injurious to living organisms.

# **Chemical Properties :**

Chemical properties are very similar to H<sub>2</sub>O however rate of reaction is slower.



# Hydrogen Economy: (Use of hydrogen as fuel)

Hydrogen could replace coal & oil as major source of energy. The hydrogen fuel is environment friendly.

The problems to overcome are

- i. Production of  $H_2$  at low cost. Solar energy can be used but it depends on development of catalyst
- ii. Strong & transportation

FORMLA:  $\Rightarrow$ 

- (1)  $M = \frac{W}{M^1 \times V}$ M=Molarity W=Weight of solute M = Molecular mass V=Volume  $(2)N = \frac{W}{E \times V}$ N = NormalityW=Weight of solute E = Equivalent mass V = Volume  $gL^{-1} = N \times E$ (3)
- Equivalent weight for HQ = 17(4)
- For H,Q, N=2M(5)
- % wv = The mass of HQ in 100 ml solution (6) Shiksha
- Volume =  $\frac{1}{2}$  w/v × 3.294 (7)
- %wv = 3.4 × M (8)
- % Volume =  $11.2 \times M$ (9)

(10) 
$$NV_1 = N_2V_2$$

(11)  $\left[ (gL^{-})_{1} \times (Volume strength)_{1} \right] + \left[ (gL^{-})_{2} \times (Volume strength)_{2} \right] +$ 

$$\left[ \left( gL^{-} \right)_{3} \times \left( \text{Volume strength} \right)_{2} \right] = \left( g/L \right)_{\text{mixture}} \times \left( \text{Volume strength} \right)_{\text{mix}}$$

|     |                                            | Ν                                      | 1.C.Q.                                   |                                |
|-----|--------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------|
| 1.  | The element which is th                    | e biggest source of e                  | energy in future is                      |                                |
|     | (a) Monoatomic gas                         |                                        | (b) Gaseous non-metal                    |                                |
|     | (c) Liquid nonmetal                        |                                        | (d) lightest element                     |                                |
| 2.  | Dhydrogen is liberated a                   | at the anode by elect                  | trolysis of :                            |                                |
|     | (a) Molten sodium hydride                  |                                        | (b) Acidified water                      |                                |
|     | (c) Molten sodium chlor                    | ide                                    | (d) Water with Ba <sub>10H2</sub>        |                                |
| 3.  | The conversion of atom                     | c hydrogen to dihyd                    | rogen is :                               |                                |
|     | (a) endothermic change                     |                                        | (b) Photochemical change                 |                                |
|     | (c) exothermic change                      |                                        | (d) Nuclear change                       |                                |
| 4.  | The isotope of hydrogen                    | with half-life of 12.                  | .33 year is :                            |                                |
|     | (a) Protium                                | (b) Deuterium                          | (c) Tritium                              | (d) b & c                      |
| 5.  | Zinc on reaction with                      | liberates a conba                      | stible gas.                              |                                |
|     | (a) dil HCl                                | (b) dil KOH                            | (c) H <sub>2</sub> SO <sub>4</sub>       | (d) a, b, &c                   |
| 6.  | Hydrogen gas can be pr                     | oduced from                            | na                                       |                                |
|     | (a) Water gas                              | (b) producer gas                       | (c) coal gas                             | (d) air                        |
| 7.  | When Zn pieces are drop                    | pped in NaOH soluti                    | on $H_{2(g)}$ is obtained and solut      | de is obtamed                  |
|     | (a) Na <sub>2</sub> ZnQ <sub>3</sub>       | (b) NaZnQ                              | (c) Na ZnQ                               | (d) Na,ZnQ                     |
| 8.  | $CO_{(g)} + H_2O_{(g)} - \frac{673k}{[x]}$ | $\rightarrow CO_{2(g)} + H_{2(g)}$     | x is                                     |                                |
|     | (a) Fe                                     | (b) Pd                                 | (c) FeGQ                                 | (d) $V_2 Q_5$                  |
| 9.  | H <sub>2</sub> can be obtained from        | mmixture of CQ&                        | H <sub>2</sub> by bubbling the mixture t | hrough                         |
|     | (a) Water                                  |                                        | (b) Alkaline $Ca_2 O_2$                  |                                |
|     | (c) Conc $H_2SO_4$                         |                                        | (d) Hbt Nacl solution                    | n                              |
| 10. | $H_2 + A \xrightarrow{673k 200bar} A$      | Alkaline gas . Ais                     |                                          |                                |
|     | (a) $O_{2}$                                | (b) Q                                  | (c) N <sub>2</sub>                       | (d) Na                         |
| 11. | The decay product of tri                   | tiumis :                               |                                          |                                |
|     | (a) ${}_{2}^{4}$ He                        | <b>(b)</b> <sup>1</sup> <sub>1</sub> H | (c) ${}_{1}^{2}$ H                       | (d) ${}_{2}^{3}$ He            |
| 12. | The metal Zn, Al, Mg &<br>Hydrogen gas are | be are placed in dif                   | fferent Test tubes. If NaCH is           | added, the metal which libaate |
|     | (a) Zn, Al, Mg & Be                        | (b) Zn & A                             | (c) Mg & Be                              | (d) Zn, Al & Mg                |

13. The gas used in welding & cutting of metal is a strong ...... (a) Reducing agent (b) Oxidising agent (c) Reducing & oxidising agent (d) Dehydrating agent Hydrogen closely resembles halogens because 14. (a) Strong reducing agent (b) diatonic gas (c) it is a colourless gas (d) its is reduction potential is 0.00 V  $K_w = 1.0 \times 10^{-14}$  at 298k because 15. (a)  $\left[ OH^{-} \right] = \left[ H_{3}O^{+} \right] = \left( 1.0 \times 10^{-14} \right) M$ (b)  $\left[ \text{OH}^{-} \right] = (1.0 \times 10^{-8}) \text{ M \&} \left[ \text{H}_{3} \text{O}^{+} \right] = (1.0 \times 10^{-6}) \text{ M}$ (c)  $\left[ OH^{-} \right] = \left[ H_{3}O^{+} \right] = \left( 1.0 \times 10^{-7} \right) M$ (d)  $\left[ \text{OH}^{-} \right] = (1.0 \times 10^{-6}) \text{ M}, \left[ \text{H}_{3} \text{O}^{+} \right] = (1.0 \times 10^{-8}) \text{ M}$ The type of hybridisation of O in  $H_2O \& H_2H_{2(s)}$  is 16. (b)  $sp^2$ ,  $sp^3$  (c)  $sp^3$ ,  $sp^2$ (a)  $sp^3$ ,  $sp^3$ (d)  $sp^3$ , spThe shape of water moleale is bent and not linear because 17. (b) sp<sup>3</sup> hybridisation (a) Bond angle is < 180(d) sp<sup>2</sup> hybridisation (c) Presence of one lone pair of electron  $BH + H_2O \rightleftharpoons BH_2^+ + OH^-$ ,  $H_2O$  acts as 18. (a) Base (b) Reducing (c) acid (d) a & c A metal M belongs to period 3 & group 2 reacts with nitrogen to give compound B If B is added to 19. water the products are : (a)  $Mg(OH)_2$  &  $NH_3$ (b)  $Be(OH)_2 \& NH_3$ (c) LiOH & NH<sub>3</sub> (d)  $Ca(OH)_2 \& NH_3$ The Only compound whose density in solid state is less if than liquid is 20. (a) Water (b) Sodium hydrocide (c) Ntric acid (d) phosphoras penta chloride Fishes survive in frozen lakes because 21. (a) Ice floats on water (b) Ice acts as an insulator (c) The Solubility of  $CO_2$  in water increase (d) a &b

294

| 22. | Water is most important solvent because it is |                             |                        |                                       |  |  |
|-----|-----------------------------------------------|-----------------------------|------------------------|---------------------------------------|--|--|
|     | (a) polar                                     | (b) Non polar               |                        |                                       |  |  |
|     | (c) forms H band                              | (d) a & c                   |                        |                                       |  |  |
| 23. | Ice is lighter than water                     | because                     |                        |                                       |  |  |
|     | (a) Density of ice is gre                     | ater than water             |                        |                                       |  |  |
|     | (b) The volume of ice is                      | s more for given mas        | s of water due to H    | - banding                             |  |  |
|     | (c) Anomalous expansion                       | n                           |                        |                                       |  |  |
|     | (d) Oxygen is electrone                       | pative & size is large      |                        |                                       |  |  |
| 24. | $SiCl_4 + H_2O \rightarrow A + H_2$           | ICI Ais                     |                        |                                       |  |  |
|     | <b>(a)</b> Si(OH) <sub>4</sub>                | <b>(b)</b> SiO <sub>2</sub> | (c) SiO                | (d) $SiCl_4 \cdot 2H_2O$              |  |  |
| 25. | $\rm MH + H_2O \rightarrow \rm MOH$           | $+ H_2 \cdot M$ belongs to  | )                      |                                       |  |  |
|     | (a) p - block                                 | (b) d – block               | (c) s - block          | (d) p - block & d - block             |  |  |
| 26. | The hydrogen which are                        | used in catalytic rea       | ction are :            |                                       |  |  |
|     | (a) hydrides of p-block                       | (b) hydrides                | of d-block             |                                       |  |  |
|     | (c) interstial hydrides                       | (d) b & c                   | chiks.                 |                                       |  |  |
| 27. | Alkali metal do not for                       | n interstial hydrides       | recause                |                                       |  |  |
|     | (a) alkali metals loose c                     | lectron readily.            | (b) The pad            | king in alkali metals in vay close    |  |  |
|     | (c) Absence of interstitia                    | al voids                    | (d) size is la         | nge                                   |  |  |
| 28. | The position of the eler                      | nent which forms def        | icient hydrides.       |                                       |  |  |
|     | (a) Period 2 group 14                         | (b) F                       | encel 2 group 15       |                                       |  |  |
|     | (c) Period 2 group 13                         | (d) H                       | Errod 6 group 13       |                                       |  |  |
| 29. | An element forms electr                       | on rich hydride. The        | elctomic configuration | on of the element is                  |  |  |
|     | (a) $[He] 2s^2 2p^2$                          | (b) [He]2s                  | $^{2}2p^{1}$           |                                       |  |  |
|     | (c) $[Ne] 2s^2 2p^2$                          | ( <b>d</b> ) [He]2s         | $2^2 2p^5$             |                                       |  |  |
| 30. | The set if quantum num                        | ber for valence electr      | on of an element wh    | ich from election precise of water is |  |  |
|     | (a) $n = 4$ $\ell = 2$                        | (b) $n = 2$                 | $\ell = 1$             |                                       |  |  |
|     | (c) $n = 3$ $\ell = 0$                        | (d) $n = 2$                 | $\ell = 0$             |                                       |  |  |
| 31. | The method which can b                        | e used for removal o        | of temporary & perm    | anent hardness of water is            |  |  |
|     | (a) Decantation                               | (b) Distillat               | ion                    |                                       |  |  |
|     | (c) Boiling                                   | (d) Filterati               | m                      |                                       |  |  |
|     |                                               |                             | 295                    |                                       |  |  |

| 32.           | Which of the fo                                                   | llowing reacts easily with                                      | $H_2O$ to form hyd        | lrogen              |  |  |  |
|---------------|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------|---------------------|--|--|--|
|               | (a) HCl                                                           | (b)KH                                                           | (c) NH <sub>3</sub>       | (d) $B_2H_6$        |  |  |  |
| 33.           | It is not advisat                                                 | ble to use hard water for                                       | washing clothes b         | beacause            |  |  |  |
|               | (a) Precipitate of                                                | sodium salt of fatty acid is                                    | formed                    |                     |  |  |  |
|               | (b) Precipitate of                                                | sodium salt of sulphonic a                                      | cid is formed             |                     |  |  |  |
|               | (c) Precipitate of                                                | Magnesium salt of sulphor                                       | nic acid is formed        |                     |  |  |  |
|               | (d) Precipitate of                                                | Magnesium salt of fatty ac                                      | tid is formed             |                     |  |  |  |
| 34.           | Calgon softens                                                    | hard water by                                                   |                           |                     |  |  |  |
|               | (a) Precipation                                                   | of Ca <sup>2+</sup> & Mg <sup>2+</sup> ions                     | (b) Coagulation           | nofsolts            |  |  |  |
|               | (c) Complexing                                                    | g Ca <sup>2+</sup> & Mg <sup>2+</sup> ions                      | (d) a & c                 |                     |  |  |  |
| 35.           | clark's method                                                    | is used to remove                                               |                           |                     |  |  |  |
|               | (a) Temporary h                                                   | ardenes                                                         | (b) per                   | rmanent             |  |  |  |
|               | (c) Hardnes du                                                    | e to soluble SO <sub>4</sub> - <sup>2</sup> of Ca <sup>+2</sup> | , $MG^{+2}$ (d) Ter       | mporary & permanent |  |  |  |
| 36.           | $Na + D_2O \rightarrow A$                                         | + B, A & B are 8                                                | krespeciti                | vely.               |  |  |  |
|               | (a) NaOH & $H_2$                                                  | 0                                                               | (b) NaOD & I              | 02                  |  |  |  |
|               | (c) NaOD & $D_2$                                                  | 0                                                               | (d) Na <sub>2</sub> D & D | 2                   |  |  |  |
| 37.           | The % (mass) o                                                    | f deuterium in heavy wate                                       | ris                       |                     |  |  |  |
|               | (a) 18.0                                                          |                                                                 | (b) Cannot be             | e predicted         |  |  |  |
|               | (c) 11.1                                                          |                                                                 | (d) 20.0                  |                     |  |  |  |
| 38.           | $H_2O_2$ is not us                                                | ed as                                                           |                           |                     |  |  |  |
|               | (a) Oxidising ag                                                  | gent                                                            | (b) Redusing a            | agent               |  |  |  |
|               | (c) Catalyst                                                      |                                                                 | (d) Bleaching             |                     |  |  |  |
| $\Rightarrow$ | True - False T                                                    | уре                                                             |                           |                     |  |  |  |
| 39.           | 1. $H_2O_2$ acts as                                               | bleaching agent because                                         | e of if its oxidising     | property            |  |  |  |
|               | 2. It is dangerous to used $H_2O_2$ is maintenance of environment |                                                                 |                           |                     |  |  |  |
|               | 3. $H_2O_2$ is used is properation of good quality detergents     |                                                                 |                           |                     |  |  |  |
|               | 4. Perhydral is u                                                 | used as a disuifectant                                          |                           |                     |  |  |  |
|               | (a) TFTT                                                          | (b) FTTT                                                        | (c) TTFF                  | (d) FFTF            |  |  |  |
|               |                                                                   | 2                                                               | )6 >                      |                     |  |  |  |

| 40. | 1.                             | A paper wit                                                                 | h stain of b                                                               | lack Pbs, di                                          | pped in H                             | $H_2O_2$ solution                                                    | turns white                                                         |
|-----|--------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
|     | 2.                             | The colour                                                                  | of acidified                                                               | d KMnO <sub>4</sub> do                                | es not di                             | appear when                                                          | $H_2O_2$ is added                                                   |
|     | 3.4                            | A basic solu                                                                | tion contai                                                                | ininig Fe <sup>3+</sup> io                            | on turn bl                            | ue on addition                                                       | n of H <sub>2</sub> O <sub>2</sub>                                  |
|     | (a)                            | FFF                                                                         | (b)                                                                        | FTF                                                   | (c                                    | ) TFF                                                                | (d) TTT                                                             |
| 41. | 1.                             | Tritium can                                                                 | be obtaned                                                                 | l from natur                                          | al source                             |                                                                      |                                                                     |
|     | 2.                             | In ionic hyd                                                                | lrides the or                                                              | xidation stat                                         | eofhydro                              | gen is +1                                                            |                                                                     |
|     | 3.                             | The four ato                                                                | om of oxyg                                                                 | gen in $H_2O_2$                                       | are in the                            | e same plane                                                         |                                                                     |
|     | 4.                             | $Na_2CO_3$ ren                                                              | noves temp                                                                 | oorary & per                                          | mannent                               | hardenes                                                             |                                                                     |
|     | (a)                            | TFTT                                                                        | (b)                                                                        | FFFT                                                  | (c)                                   | ) TFFT                                                               | (d) TTTF                                                            |
| 42. | Sta<br>Sta<br>(a)<br>(c)<br>So | atement S: T<br>atement R: H<br>S & R both<br>S is incorre<br>lve the probl | The position<br>ydrogen res<br>are correct<br>ct R is corre<br>ems from qu | n of hydroge<br>emker alkalin<br>ect<br>Jestion 43-50 | en is not f<br>metals bec<br>(b<br>(d | ixed,<br>cause of its stab<br>) S is corret R is<br>) S is correct R | le +1 oxidation state.<br>s correct and explains S.<br>is incorrect |
| Que | stion                          | as 43-50 - S                                                                | olve the p                                                                 | roblems.                                              | chill                                 | <u>ر</u>                                                             |                                                                     |
| 43. | Calc                           | culate M, N %                                                               | ‰ w∕v, gL-¹o                                                               | of 10 Vol H <sub>2</sub> C                            | $D_2$                                 |                                                                      |                                                                     |
|     | (-)                            | M                                                                           | N<br>1 70                                                                  | %w/v                                                  | g                                     |                                                                      | /                                                                   |
|     | (a)<br>(b)                     | 0.89                                                                        | 1.78                                                                       | 3.030<br>- 2.036                                      | 3                                     | 036                                                                  |                                                                     |
|     | $(\mathbf{c})$                 | 0.78                                                                        | 1 95                                                                       | 2.050                                                 | 3                                     | 5                                                                    |                                                                     |
|     | (d)                            | 0.1                                                                         | 0.78                                                                       | 4.0                                                   | 3.                                    | 6                                                                    |                                                                     |
| 44. | 30 m                           | nl of acidifie                                                              | d solution o                                                               | of $H_2O_2$ requi                                     | ired 30 ml                            | of 0.1NKMn(                                                          | O <sub>4</sub> Calculate strength Volume                            |
|     | Stici                          | M                                                                           | gL <sup>-1</sup>                                                           | Volume                                                |                                       |                                                                      |                                                                     |
|     | (a)                            | 0.06                                                                        | 0.7                                                                        | 0.8                                                   |                                       |                                                                      |                                                                     |
|     | (b)                            | 0.12                                                                        | 0.9                                                                        | 0.6                                                   |                                       |                                                                      |                                                                     |
|     | (c)                            | 0.05                                                                        | 1.7                                                                        | 0.56                                                  |                                       |                                                                      |                                                                     |
|     | (d)                            | 0.1                                                                         | 1.0                                                                        | 0.90                                                  |                                       |                                                                      |                                                                     |
| 45. | 374                            | gof H <sub>2</sub> O <sub>2</sub> is p                                      | present in 15                                                              | 5 lit solution c                                      | calculate N                           | /I, N, % w/v &                                                       | volume strength.                                                    |
|     |                                | М                                                                           | Ν                                                                          | %w/v                                                  | Volume                                | gL <sup>-1</sup>                                                     |                                                                     |
|     | (a)                            | 0.89                                                                        | 1.2                                                                        | 1.49                                                  | 6.8                                   | 22.0                                                                 |                                                                     |
|     | (b)                            | 1.6                                                                         | 1.3                                                                        | 3.49                                                  | 7.9                                   | 23.1                                                                 |                                                                     |
|     | (c)                            | 1.9                                                                         | 1.7                                                                        | 0.49                                                  | 9.0                                   | 22.2                                                                 |                                                                     |
|     | (d)                            | 0.733                                                                       | 1.466                                                                      | 2.49                                                  | 8.2                                   | 24.9                                                                 |                                                                     |
|     |                                |                                                                             |                                                                            |                                                       | 297                                   |                                                                      |                                                                     |

46. 2.72 g of  $H_2O_2$  is present in 50ml solution Calculate M, N, Strength  $gL^{-1}$  Volume strength  $H_2O_2$ 

- (a) M = 10, N = 2.9, g/l = 53.0, Vol = 17.0
- (b) M = 1.6, N = 3.2, g/l = 54.4, Vol = 17.92
- (c) M = 0.89, N = 1.8, g/l = 52.9, Vol = 18.1
- (d) M = 0.90, N = 1.0, g/l = 5.44, Vol = 16.0
- 47. Calculate % w/v, Volume Strength, M & N of a mixture contaning 800 ml of 2.5% w/v, 700 ml of 4.2 w/v & 500 ml 5.3w/v of H<sub>2</sub>O<sub>2</sub> Solution

|     | % W/V | g/L   | Μ     | Ν    |
|-----|-------|-------|-------|------|
| (a) | 3.795 | 37.95 | 3.4   | 2.23 |
| (b) | 3.02  | 3.795 | 1.116 | 1.92 |
| (c) | 3.795 | 37.95 | 1.116 | 2.23 |
| (d) | 2.92  | 02.89 | 3.4   | 1.92 |

- 48. 10ml of KMnO<sub>4</sub> Solution is required ti completely oxidise acidic solution of 30ml of 1.5 Volume strength H<sub>2</sub>O<sub>2</sub> Calculate normality of KMnO<sub>4</sub> Solution
  - (a) 0.4 (b) 0.65 (c) 0.19 (d) 0.8
- 49. 500 ml of 5Vol, 400 ml of 10 Volume & 600 ml of 15 volume solution of H<sub>2</sub>O<sub>2</sub> is mixed Calculate volume strength, M, N of resulting solution.





N=2.232

- 48. HQ kMnQ Volume =11.2×M  $1.5 \times 30 =$  Strength ×10 M=0.40 V=4.5 N=2M=2×0.4 N =0.8 49.  $500 \times 5 + 400 \times 10 + 600 \times 15 =$  Volume ×1500 Volume = 10.33
  - $%W/V = \frac{1}{3.294}$ %WV=3.137 gm/L=31.37

Volume =  $11.2 \times M$ 

- M=0.92
- N=2M
- N=1.84



Answer Key

| 1  | d | 11 | d | 21 | d | 31 | b | 41 | b |
|----|---|----|---|----|---|----|---|----|---|
| 2  | а | 12 | b | 22 | d | 32 | b | 42 | а |
| 3  | С | 13 | а | 23 | b | 33 | d | 43 | а |
| 4  | С | 14 | b | 24 | b | 34 | С | 44 | С |
| 5  | d | 15 | С | 25 | С | 35 | а | 45 | d |
| 6  | а | 16 | а | 26 | d | 36 | b | 46 | b |
| 7  | b | 17 | b | 27 | а | 37 | d | 47 | С |
| 8  | С | 18 | С | 28 | С | 38 | С | 48 | d |
| 9  | а | 19 | а | 29 | d | 39 | а | 49 | а |
| 10 | С | 20 | а | 30 | b | 40 | С | 50 | а |