R. K. MALIK'S

JEE (MAIN & ADV.), MEDICAL + BOARD, NDA, IX & X

Enjoys unparalleled reputation for best results in terms of percentage selection

www.newtonclasses.net

UNIT-16: ALKYL AND ARYL HALIDES [JEE – MAIN CRASH COURSE]

Alkyl Halides

Preparation of alkyl halides

- 1. From alcohols
 - · By using hydrogen halides

$$\begin{array}{c} R-OH \xrightarrow{HX} R-X+H_2O \\ R-OH \xrightarrow{H^+} R-\overset{\oplus}{O}-H \xrightarrow{S_N1} R^{\oplus} \xrightarrow{+X^-} R-X+\\ | & H \\ x^- \downarrow s_N ^2 \\ R-X+H_2O \end{array}$$

(Some rearranged product, if possible)

By using phosphorous halides

$$R - OH + PCl5 \rightarrow R - Cl + POCl3 + HCl$$

$$3R - OH + PCl3 \rightarrow 3R - Cl + H3PO3$$

$$3R - OH + PBr2 \rightarrow 3R - Br + H3PO3$$

$$3R - OH + PI3 \rightarrow 3R - I + H3PO3$$

By using SOCl₂ (thionyl chloride)

$$R-OH+SOCl_2 \xrightarrow{pyridine} R-Cl+SO_2 \uparrow +HCl \uparrow$$

The product alkyl chloride has a configuration inverted with respect to the reactant alcohol (if it is chiral) in the presence of pyridine base. In the absence of a base and polar solvent, the chiral alcohol gives alkyl chloride with retention of configuration.

2. By halide exchange

$$R-Cl \xrightarrow{NaI} R-I+NaCl; R-Br \xrightarrow{NaI} R-I+NaBr$$

The reaction proceeds by S_N2 mechanism and is possible because NaCl and NaBr are precipitated in the reaction, as they are not soluble in weakly polar aprotic solvent.

3. By addition of H-X to alkenes

$$CH_{3} - CH = CH_{2} \xrightarrow{HX} CH_{3} - \overset{\oplus}{CH} - CH_{3} \xrightarrow{X^{-}} CH_{3} - CH - CH_{3}$$

$$(2^{\circ} carbocation) \qquad X$$

$$CH_{3} - CH = CH_{2} \xrightarrow{HBr} CH_{3} - \overset{\ominus}{CH} - CH_{2} - Br \xrightarrow{HBr} CH_{3} - CH_{2} - CH_{2}Br + Br$$

$$CH_{3} - CH_{2} - CH_{2}Br + Br$$

4. From silver salt of carboxylic acid

$$\begin{array}{c}
RCOOAg + X_2 \xrightarrow{CCl_4} R - X + AgX \downarrow + CO_2 \\
(X_2 = Cl_2 \text{ or } Br_2)
\end{array}$$

Chemical properties

1. Preparation of organometallic compounds

$$R-X \xrightarrow{Mg} RMgX$$

$$(Grignard reagent)$$

$$R-X \xrightarrow{2Li} R-Li+LiX$$

$$(Organolithium compound)$$

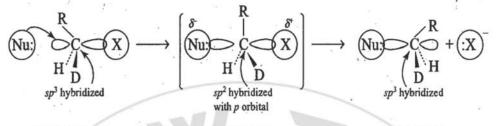
Mechanism

$$R - X + Li \rightarrow [R-X]^- Li^+; [R-X]^- \rightarrow R^{\bullet} + X^-; R^{\bullet} + Li \rightarrow R-Li$$

2. Basicity and nucleophilicity: Nucleophilicity of the species is the ability of the species to attack an electrophilic carbon, while basicity is the ability of the species to remove H⁺ from an acid. Let us have a species, B⁻. Its function as a nucleophile is shown as follows:

$$B^{\circ} + C \longrightarrow C + L^{\circ}$$

Its role as a base is indicated as follows:


$$B^{\odot} + H - A \Longrightarrow B - H + A^{\odot}$$

The order of nucleophilicity of different species depends on the nature of solvent used. For instance, let us take F⁻, Cl⁻, Br⁻, and I⁻ with their countercation as Na⁺ and see their nucleophilicity order in different solvents. There are four categories of solvents, namely non-polar (CCl₄), polar protic (H₂O), polar aprotic (CH₃SOCH₃), and weakly polar aprotic (CH₃COCH₃).

Polar solvents are able to dissociate the salts, i.e., ion-pairs can be separated. On the other hand, non-polar and weakly polar solvents are unable to dissociate salts, so they exist as ion-pairs. The ion-pairing is strong when ions are small and have high charge density.

In non-polar and weakly polar aprotic solvents, all the salts will exist as ion-pairs. The ion-pairing will be strongest with the smallest anion (F) and weakest with the largest anion (I). Thus, the nucleophilicity order of X in such solvents will be: F > CI > Br > I

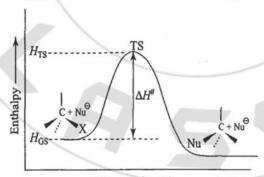
3. S_N2 reaction

S configuration

Transition state

R configuration (if Nu and X are of same priority)

The reactivity of alkyl halides towards S_N2 reaction is as follows:


The rate law for the S_N2 reaction is given by

Rate =
$$k[R - X][Nu^-]$$

The rate of the $S_N 2$ reaction is dependent on the concentration of both RX and Nu^- .

S_N2 reactions are stereospecific as well as stereoselective.

We know that successful S_N2 displacements are exothermic in nature and its energy profile is shown in the adjacent figure.

Progress of reaction -----

Thus, in general reactions with charged reactants, the S_N2 rate increases with increasing polarity of solvent.

4. S_N1 reaction

$$R-X \xrightarrow{RDS} R^+ + X^-$$
 Step 1 (slow)
 $R^+ + Y^- \longrightarrow R-Y$ Step 2 (fast)

The carbocation generated by the first step has an sp^2 hybridized carbon, i.e., the structure is flat (trigonal planar). Thus, a nucleophile will be able to attack the carbocation from the front side as well as from the rear side with equal ease, leading to the formation of two isomers, if the chiral carbon is present in the substrate.

The basic difference between S_N1 and S_N2 mechanisms is in the timing of the steps. In the S_N1 mechanism, first X^- leaves and then Y^- attacks, whereas in an S_N2 mechanism, the two things happen simultaneously. The following order of reactivity for S_N1 is observed:

The rate law for the S_N1 reaction is given by

$$Rate = k[R - X]$$

It is generally said that the rate of S_N1 reactions is favored in polar solvents than in non-polar solvents.

Ambident nucleophiles

1. Attack by CN^- nucleophile (:-C = N:)

$$R - X \xrightarrow{CN^{-}} R - CN + R - NC + X^{-}$$
Nitriles Isonitriles

In CN⁻, carbon (negatively charged) will be a soft base as compared to nitrogen. Hence if the reaction proceeds via S_N1 mechanism, which produces a free carbocation (a hard acid), then attack through nitrogen (hard base) will take place. But if the reaction proceeds via S_N2 mechanism (small positively charged carbon is soft acid), then attack through carbon (soft base) will take place.

2. Attack by NO_2 nucleophile (O - N = O)

$$R - X \xrightarrow{NO_2^-} R - O - N = O + R - NO_2 + X^-$$
Alkane nitrite Nitroalkane

In NO_2^- , oxygen (negatively charged) will be a hard base as compared to nitrogen. Hence if the reaction proceeds via S_N1 mechanism, then attack through oxygen (hard base) will take place to produce alkane nitrite. But if the reaction takes place via S_N2 mechanism, then attack through nitrogen (soft base) will take place to give nitroalkane.

Intermolecular Versus Intramolecular Displacement Reactions

A molecule with two functional groups is called a bifunctional molecule. If the two functional groups are able to react with each other, two kinds of reactions can take place.

1. Intermolecular reactions

BrCH₂(CH₂)_nCH₂O⁻ + Br - CH₂(CH₂)_nCH₂O⁻

$$\downarrow$$
An intermolecular reaction
BrCH₂(CH₂)_nCH₂OCH₂(CH₂)_nCH₂O⁻ + Br⁻

2. Intramolecular reactions

Br—CH₂(CH₂)_nCH₂O⁻
$$\xrightarrow{\text{An intramolecular reaction}}$$
 H₂C $\xrightarrow{\text{CH}_2}$ + Br

Intramolecular reactions has an advantage in that the reacting groups are tethered close together (entropy factor) and thus do not have to wander through the solvent to find a group with which it reacts. As a result, a low concentration of reactant favors an intramolecular reaction because the two functional groups have a better chance of finding one another if they are in the same molecule. When an intramolecular reaction would form a five- or six-membered ring, it would be highly favored over the intramolecular reaction because of the stability of five- and six-membered rings as they are less strained. Three- and four-membered rings are highly strained, thus they are less stable than five- and six-membered rings. The entropy factor in three-membered ring is so highly favored that three-membered rings are also formed with ease in spite of the fact that they are too strained. The high activation energy for the formation of four-membered rings cancels the advantage gained by tethering, thus they are not easily formed.

Substitution Versus Elimination Reactions

We know that an alkyl halide can undergo four types of reactions: S_N1 , S_N2 , E_1 , and E_2 . A given alkyl halide under the given conditions will follow which pathway can be decided in the following manner. The first thing you must look at is the alkyl halide: Is it 1°, 2°, or 3°. If the reactant were a primary alkyl halide, it would undergo E_2/S_N2 reactions (as their carbocations are favored by a high concentration of a good nucleophile/strong base, whereas a poor nucleophile/weak base favors E_1/S_N1 reactions. Once you have decided whether the conditions will favor E_2/S_N2 reactions or E_1/S_N1 reactions, then you should decide how much of the product will be substitution and how much will be the elimination product. The relative amount of substitution and elimination products can be decided again on the basis of structure of alkyl halide (i.e., 1°, 2°, or 3°) and on the nature of the nucleophile/base. Relative reactivities of alkyl halides in various reactions are as follows:

In an $S_N 2$ reaction: $1^{\circ} > 2^{\circ} > 3^{\circ}$ In an E_2 reaction: $3^{\circ} > 2^{\circ} > 1^{\circ}$ In an $S_N 1$ reaction: $3^{\circ} > 2^{\circ} > 1^{\circ}$ In an E_1 reaction: $3^{\circ} > 2^{\circ} > 1^{\circ}$

Aryl Halides

Preparation of aryl halides

1. From diazonium salts

$$\begin{array}{c} C_6H_6 \xrightarrow{\quad \text{conc. HNO}_3 \quad} C_6H_6NO_2 \xrightarrow{\quad \text{Sn/HCl} \quad} C_6H_5NH_2 \xrightarrow{\quad \text{HONO} \quad} \\ C_6H_5N_2 \xleftarrow{\quad \text{BF}_4^*, \Delta \quad} C_6H_5F \\ \xrightarrow{\quad \text{CuCl, } \Delta \quad} C_6H_5Cl \\ \xrightarrow{\quad \text{CuBr, } \Delta \quad} C_6H_5Br \\ \xrightarrow{\quad \text{KI}^-, \Delta \quad} C_6H_5l \end{array}$$

2. By halogenation of arenes or substituted arenes

$$ArH + X_2 \xrightarrow{Lewis acid} ArX + HX$$

where $X_2 = Cl_2$ or Br_2 ; Lewis acid = $FeCl_3$, $AlCl_3$, etc.

Chemical properties

Nucleophilic aromatic substitution

1. S_NAr mechanism: Consider the following reaction:

$$Ar - X + Z^{-} \rightarrow Ar - Z + X^{-}$$

For facile reaction, Ar must contain strongly electron-withdrawing groups at ortho and/or para position to the halogen atom. The reaction involves the formation of carbanion as an intermediate

$$\begin{array}{c|c}
Cl & OEt \\
NO_2 & C_2H_5OH \\
\hline
O_2N & NO_2 \\
\hline
NO_2 & C_2H_5OH \\
\hline
NO_2 & OEt \\
\hline
NO_2 & NO_2 \\
\hline
NO_2 & NO_2
\end{array}$$

$$\begin{array}{c|c}
OEt \\
OET \\
NO_2 \\
\hline
NO_2
\end{array}$$

Reaction proceeds through carbanion formation as intermediate. The rate of the reaction increases with the increase in the number of electron-withdrawing groups at ortho and para positions, since the cabanion formed would be readily stabilized.

Step 1:

$$\begin{array}{c} X \\ Nu \\ Slow step \\ (RDS) \end{array} \xrightarrow{Nu} \begin{array}{c} Nu \\ NO_2 \\ \hline \\ \hline \\ \end{array} \xrightarrow{Nu} \begin{array}{c} Nu \\ NO_2 \\ \hline \\ \hline \\ \end{array} \xrightarrow{Nu} \begin{array}{c} Nu \\ O \\ \hline \\ \end{array}$$

Step 2:

Benzyne mechanism: Unactivated and deactivated aryl halides undergo nucleophilic substitution by benzyne mechanism. In benzyne mechanism, the first step involves elimination, while the second step involves addition of nucleophile.

For example,

$$\begin{array}{c|c}
OCH_3 & OCH_3 \\
\hline
Br & NH_2 \\
\hline
-Br, -NH_3
\end{array}$$

$$\begin{array}{c}
OCH_3 \\
\hline
NH_2 \\
NH_3
\end{array}$$

$$\begin{array}{c}
NH_2 \\
NH_2
\end{array}$$

SOME IMPORTANT EXAMPLES

Example 1 Which one of the following is most reactive of S_N1 reaction?

(a)
$$C_6H_5Cl$$
 (b) $CH_2 = C - Br$
 CH_3
(c) $CH_3 - CH - Br$
 CH_3
(d) $CH_3 - CH = CH - CH - Br$
 CH_3
 CH_3

Solution The formation of carbocation is the slowest step, so the most stable carbocation will lead to the fastest S_N1 reaction. $CH_3-CH=CH-C$ H is allylic, which is stabilized by delocalization. CH_3

Example 2 How many structural isomers are possible for compounds having the molecular formula C₅H₁₁Br?

(a) 5

(b) 6

(c) 7

(d) 8

Solution (d)

(i) C - C - C - C - C - Br

(ii) C-C-C-C-C

(iii) C-C-C-C-C

(iv) C-C-C-Br

Br

(v) C-C-C-Br

(vi) C-C- C -C | CH₃

Example 3 Rank the following compounds in the order of increasing E_2 reaction rate with alcoholic KOH:

- (a) A < C < B
- (b) C < B < A
- (c) A < B < C
- (d) B < A < C

Solution (c)

In E_2 mechanism, both the leaving group and H are removed simultaneously, and as $C_2H_5O^{\Theta}$ base is not bulky, therefore is more stable, which means more alkylated alkene will form.

Example 4 Which of the following can be used to prepare 3-bromopropene?

(a)
$$CH_3CH=CH_2+Br_2 \xrightarrow{CCl_4} 30^{\circ}C$$

(c)
$$CH_2 = CH - CH_2 + PBr_3 \longrightarrow$$

Solution (b) Allylic substitution takes place with NBS.

$$CH_3 - CH = CH_2 \xrightarrow{NBS} CH_2 - CH = CH_2$$

Option (a) will give addition product.

Example 5 Which of the following substrate is most reactive towards methoxide

(c)
$$CH_3 - O - SO_2 - CF_3$$

Solution (b)

In the presence of weak base, E₁ reaction will occur, whereas in the presence of strong base, E₂ will occur. But for S_N2 mechanism, 1° alkyl halide is required.

OBJECTIVE QUESTIONS

- Select the regent that will yield the greater amount of substitution on reaction with CH₃ - CH₂ - Br:
 - (a) CH₃CH₂OK in dimethyl sulfoxide (DMSO)
 - (b) (CH₃)₃COK in dimethyl sulfoxide (DMSO)
 - (c) Both (a) and (b) will give comparable amount of substitution
 - (d) Neither (a) nor (b) will give any amount of substitution

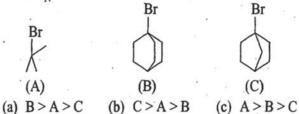
2. Under the specified conditions, substrate X undergoes substitution and elimination reactions to give products A-D. A and B are stereoisomers, but not enantiomers. C and D are enantiomers. A is not an isomer of C. Which of the following could be the starting material X?

$$X \xrightarrow{H_2O} A + B + C + D$$

I. Br
$$CH_3$$
 Br CH_3 Br CH_3 Br CH_3 IV . Br CH_3 IV . H_3C H IV . H_3C H

3. Rate limiting S_N1 follows the sequence:

$$\stackrel{\delta \oplus}{R} \stackrel{\delta \ominus}{\longrightarrow} \stackrel{R \oplus}{R} \stackrel{R$$


True statement about the sequence on the basis of the assumption that R contains three different groups is:

- (a) The more stable carbocation, the greater is the proportion of recemization
- (b) The more nucleophilic the solvent, the greater is the proportion of inversion
- (c) In above sequence, (b) represents separately solvated pair of ions
- (d) All of these
- 4. Which of the following statements is true?
 - (a) CH₃CH₂S⁻ is both a stronger base and more nucleophilic than CH₃CH₂O⁻
 - (b) CH₃CH₂S⁻ is a stronger base but is less nucleophilic than CH₃CH₂O⁻
 - (c) CH₃CH₂S⁻ is a weaker base but is more nucelophilic than CH₃CH₂O⁻
 - (d) CH₃CH₂S⁻ is both a weaker base and less nucleophilic than CH₃CH₂O⁻

5.
$$CH_3$$
 D D Alc, KOH Al

$$(a) \qquad \begin{array}{c} D \\ H \end{array} \qquad \qquad (b) \qquad \begin{array}{c} CH_3 \\ \end{array} \qquad D \\ (c) \qquad \qquad (d) \qquad \begin{array}{c} CH_3 \\ \end{array} \qquad D \end{array}$$

6. Rate of S_N2 reaction is:

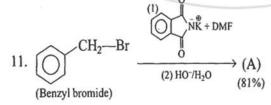
- 7. Among the given halides, which one will give the same product in both S_N1 and S_N2 reactions?
 - (I) $CH_3 CH CH_2 CH CH_3$ (II) CH_3

(IV) CH₃ - CH - Br

(d) A > C > B

(a) (III) only

(b) (I) and (II)


(c) (III) and (IV)

- (d) (I), (III), and (IV)
- 8. MeO Cl KCN Product of reaction is:

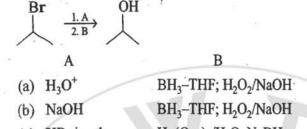
 (MOM chloride)
 - (a) Cl CN

- (b) MeO CN
- (c) Me -O-CH₂ CH₂ -CN
- (d) O
- 9. In the given pair of compounds, in which pair the second compound is more reactive so that first forward S_N2 reaction takes place?
 - (a) Cl or Cl
- (b) \bigcirc -CH₂-Cl or \bigcirc -C
- (c) Br or Br
- (d) or CI
- 10. Which compound might be synthesized by the S_N2 displacement of an alkyl halide?
 - (a) CH₂—OH
- (b) SCH₂CH₃

- (c) Me₃C OCH₃
- (d) All of these


Product (A) of the above reaction is:

(a) $Ph - NH_2$


- (b) $Ph CH_2 NH_2$
- ער אריי
- (d) Ph CH₂ NH CHO

R. K. MALIK'S NEWTON CLASSES

12. Which of the following compounds will react faster with NaCN in an S_N2 reaction?

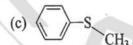
13. Which of the given reagents will accomplish the following transformations?

- (c) HBr in ether Hg(Oac)₂/H₂O; NaBH₄ (d) NaNH₂ Hg(Oac)₂/H₂O; NaBH₄
- 14. HC = CNa + Cl CH₂ CH₂ CH₂ I \rightarrow (A). Major product (A) is:

(a)
$$H - C \equiv C - CH_2 - CH_2 - CH_2 - I$$

(b)
$$CH_2 = CH - CH_2 - I$$


(c)
$$H - C \equiv C - CH_2 - CH_2 - CH_2 - CI$$


(d)
$$CH_2 = CH - CH_2 - Cl$$

- 15. Which of the following molecules would have a carbon-halogen bond most susceptible to nucleolphilic substitution?
 - (a) 2-fluorobutane
- (b) 2-chlorobutane

(c) 2-brombutane

- (d) 2-iodobutane
- 16. What is the major product obtained in the following reaction?

17. $\frac{\text{Br}}{\text{H}} + \text{OH}^{-} \xrightarrow{\text{S}_{\text{N}^{2}}} \text{A. The product A is:}$

- (c) Both are correct
- (d) None is correct
- 18. Which of the following is most reactive towards nucleophilic substitution reaction?
 - (a) $CH_2 = CH Cl$
- (b) C_6H_5C1
- (c) $CH_3CH = CHCl$
- (d) $ClCH_2 CH = CH_2$

19. Which of the following reaction will not give ether as a major product?


(a)
$$CH_3CH_2Cl + Ag_2O(dry) \longrightarrow$$

(b)
$$(CH_3)_3CCl + CH_3CH_2O^-Na^+ \longrightarrow$$

(c)
$$CH_3CH_2Cl + Na^+O^-$$

(d)
$$CH_3CI + Na^+O^- - C - CH_3 \longrightarrow CH_3$$

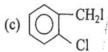
- 20. In the S_N2 reaction of cis-3-methylcyclopentyl bromide with alkali, the product formed is:
 - (a) a cis alcohol
 - (b) a trans alcohol
 - (c) an equimolecular mixture of cis and trans alcohol
 - (d) there is no reaction
- 21. If a mixture of two alkyl chlorides on treatment with sodium metal in ether solution gives isobutane as one of the products, then the reactants are:
 - (a) methyl chloride and propyl chloride
 - (b) methyl chloride and ethyl chloride
 - (c) isopropyl chloride and ethyl chloride
 - (d) isopropyl chloride and methyl chloride
- 22. Which of the following will be the least reactive towards nucleophilic substitution?

- 23. Which one of the following compounds will give in the presence of peroxide a product different from that obtained in the absence of peroxide?
 - (a) 1-butene, HCl

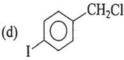
(b) 1-butene, HBr

(c) 2-butene, HCl

- (d) 2-butene, HBr
- 24. Which of the following compounds yields only one product on monochlorination?
 - (a) Neopentane (b) Toluene
- (c) Phenol
- (d) Aniline
- 25. The principal organic compound formed in the reaction is:


$$CH_2 = CH(CH_2)_3COOH + HBr \xrightarrow{\text{organic peroxide}}$$

Major product


- (b) CH₂-CH₂-(CH₂)₃COOH | Br
- (c) $CH_2 = CH(CH_2)_3COBr$
- (d) $CH_2 = CHCH_2 CH_2 CH COOH$
- 26. The reactivity order of alkyl halide is 3° > 2° > 1° in:
 - (a) both S_N1 and S_N2
- (b) both S_N2 and E₂
- (c) both E₁ and S_N2
- (d) both S_N1 and E₂
- 27. Which of the following statements is incorrect?
 - (a) An S_N1 reaction proceeds with the inversion of configuration
 - (b) An S_N2 reaction proceeds with stereochemical inversion
 - (c) An S_N2 reaction follows second-order kinetics
 - (d) The reaction of tert-butyl bromide with OH follows first-order kinetics
- 28. 3-Methyl-2-pentene on reaction with HOCl gives:
 - (a) 3-chloro-3-methyl pentanol-2
- (b) 2,3-dichloro-3-methyl pentane
- (c) 2-chloro-3-methyl pentanol-3
- (d) 2,3-dimethyl butanol-2
- 29. Arrange the following alkyl halides in the increasing reactivity towards nucleophilic substitution reaction:

- (a) A > B > D > C
- (b) A > C > B > D
- (c) B > C > A > D
- (d) D > A > C > B
- 30. Each of the following reaction is given by tert-butyl bromide, except:
 - (a) $S_N 1$
- (b) $S_N 2$
- (c) E₁
- (d) E
- 31. Which of the following compounds will give yellow precipitate on shaking with aqueous solution of NaOH followed by the addition of AgNO₃ solution?

32. The structure of the major product formed in the following reaction is:

$$(a) \bigcirc CH_2CI \xrightarrow{NaCN} DMF$$

$$(a) \bigcirc CH_2CN$$

$$(b) \bigcirc CH_2CN$$

$$(c) \bigcirc CH_2CI$$

$$(d) \bigcirc CH_2CI$$

- 33. 3-Phenylpropene on reaction with HBr gives (as a major product):
 - (a) C₆H₅CH₂CH(Br)CH₃

CN

- (b) C₆H₅CH(Br)CH₂CH₃
- (c) C₆H₅CH₂CH₂CH₂Br
- (d) C₆H₅CH(Br)CH=CH₂
- 34. Rank the following organometallic compounds in the increasing order of nucleophilicity:
 - (A) H_3 CMgBr (B) $(CH_3)_2$ Cd
- (C) CH₃Na
- (D) CH₃Li

- (a) B < C < D < A
- (b) B < A < D < C

(c) C < D < A < B

- (d) D < A < B < C
- 35. Arrange the following in the increasing order of ease of nucleophilic substitution reaction: chlorobenzene (I); 2,4,6-trinitrochlorobenzene (II); 2,4-dinitrochlorobenzene (IV):
 - (a) I < IV < III < II
- (b) I < III < IV < II
- (c) II < III < IV < I
- (d) IV < III < II < I

36.
$$CH_3OH \xrightarrow{Pl_3} (A) \xrightarrow{KCN} (B) \xrightarrow{H_2O/H^+} (C)$$

The compound (C) is:

(a) CH₃CN

(b) CH₃CH₂NH₂

(c) CH₃COOH

- (d) CH₃CH₂COOH
- 37. The following reaction is reversible:

For the completion of the reaction, we use:

- (a) anhydrous ZnCl₂
- (b) conc. H₂SO₄

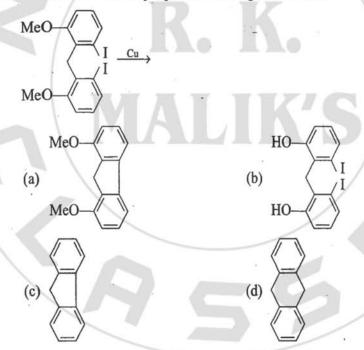
(c) CaCl₂

- (d) excess of water
- 38. Benzyl chloride on hydrolysis gives:
 - (a) benzyl alcohol

(b) benzoic acid

(c) benzaldehyde

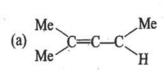
(d) benzo tri alcohol


- 39. For the reaction $R Br \rightarrow R O N = O$, the suitable reagent is:
 - (a) NaNO₂ + HCl

(b) HNO₂

(c) AgNO₃

- (d) KNO₂
- 40. Alkyl halide reacts with an alcoholic solution of ammonia to give a mixture of:
 - (a) 1° and 2° amines
 - (b) 1°, 2°, and 3° amines
 - (c) 1° and 3° amines
 - (d) 1°, 2°, and 3° amine and quaternary ammonium salt
- 41. What is compound X in the reaction?


42. What would be the major product of the given reaction?

43. On the basis of the given reaction sequence, find out the final product?

$$\begin{array}{cccc}
H & H & H & \frac{\text{I. LiNH}_2 \text{ (excess)NH}_3}{2. \text{ Et-Br (2 eq)}} & \text{[A]} & \frac{\text{Na/NH}_3}{\text{Na/NH}_3} & \text{[B]} \\
\text{(a)} & \text{Et} - \text{C} \equiv \text{C} - \text{Et} & \text{(b)} & \text{Et} - \text{C} \equiv \text{C} - \text{H} \\
\text{(c)} & \text{Et} & \text{(d)} & \text{Et} & \text{Et} & \text{Et} \\
H & & \text{Et} \\
H & & \text{Et} \\
H & & \text{Et} \\
H & & \text{Et} & \text{$$

44. Which of the following compounds will give yellow precipitate on shaking with aqueous solution of NaOH followed by the addition of AgNO₃ solution?

(b)
$$CH_3$$

 $C-CH_3$
 CH_3

(c)
$$Me$$
 $C = C - C$ I

45. When chloroform reacts with NaOH an important reactive intermediate is formed. The type of reaction involved and the intermediates formed are respectively:

(a)
$$E_2$$
 and $Cl - C - Cl$

(b) β -elimination and Cl-C.

(c)
$$E_2$$
 and $Cl - C$

(d) α-elimination and C1-C:

HINTS AND SOLUTIONS

- 1. (a)
- 2. (c)
- 3. (d)
- 4. (c)
- 5. (c)
- 6. (c)
- 7. (c)
- 8. (b)
- 9. (d)
- 10. (d)
- 11. (b)
- 12. (d)
- 13. (d)
- 14. (c)
- 15. (d)
- 16. (c)
- 17. (b)

- 18. (d)
- 19. (b)
- 20. (b)

21. (d)
$$CH_3 - C - Cl + Na + Cl + CH_3 \longrightarrow CH_3 - C - CH_3$$

$$CH_3 \qquad CH_3$$
Isobutane

22. (c) Due to partial double bond character, it is difficult to break the double bond.

$$: \overset{:}{Cl}: \qquad \overset{Cl^{\oplus}}{\longleftrightarrow} \longleftrightarrow \overset{Cl^{\oplus}}{\longleftrightarrow} \longleftrightarrow \overset{CH_{3}}{\longleftrightarrow} \longleftrightarrow \overset{CH_$$

23. (b) Peroxide effect is observed with HBr only in asymmetric alkene.

$$CH_{3}-CH_{2}-CH=CH_{2}+HBr\longrightarrow CH_{3}-CH_{2}-CH-CH_{3}$$

$$Markownikoff's product$$

$$CH_{3}-CH_{2}-CH=CH_{2}+HBr\xrightarrow{Peroxide} CH_{3}-CH_{2}-CH_{2}-CH$$

$$Br$$

$$Anti-Markownikoff's product$$

$$CH_{3}$$

$$CH_{3}$$

24. (a)
$$CH_3 - C - CH_3 \xrightarrow{Cl_2} CH_3 - C - CH_2 - Cl$$

$$CH_3 - C - CH_3 \xrightarrow{Cl_2} CH_3 - C - CH_2 - Cl$$

$$CH_3 - C - CH_3 - C$$

$$CH_3 - C - CH_2 - Cl$$

$$CH_3 - C - CH_3 - C$$

$$CH_3 -$$

25. (b)
$$CH_2=CH-CH_2-CH_2-CH_2-COOH+HBr \xrightarrow{peroxide}$$

$$CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-COOH$$

$$|$$

$$|$$

$$Br$$

Anti-Markownikoff's rule

-I effect of -COOH group do not operate after second carbon.

- 26. (d) Conceptual
- 27. (a) In S_N1, racemic mixture is obtained

28. (c)
$$H_3C-CH_2-C = C-CH_2 \xrightarrow{\theta \cdot \theta \atop |CH_3|} CH_3-CH_2-C - C-CH-CH_2 \xrightarrow{CH_3 Cl} CH_3$$

- 29. (c) Stability of formed carbocation and weak bond strength of C X (X = Br, Cl) favor the SN reaction.
- 30. (b)
- 31. (c)
- 32. (b)
- 33. (b)
- 34. (b)
- 35. (a)
- 36. (c)
- 37. (a)
- 38. (a)
- 39. (d)
- 40. (d)
- 41. (b)
- 42. (a)
- 43. (d)
- 44. (c)
- 45. (d)